Please use this identifier to cite or link to this item: 192.168.6.56/handle/123456789/33186
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorProf. Dr. Alfred Müller-
dc.contributor.authorBerk, Kevin-
dc.date.accessioned2019-01-01T13:04:43Z-
dc.date.accessioned2020-05-06T19:51:36Z-
dc.date.accessioned2020-05-10T17:52:09Z-
dc.date.available2019-01-01T13:04:43Z-
dc.date.available2020-05-06T19:51:36Z-
dc.date.available2020-05-10T17:52:09Z-
dc.date.issued2015-
dc.identifier.isbn978-3-658-08669-5-
dc.identifier.urihttp://196.189.45.87:8080/handle/123456789/33186-
dc.descriptionThe master thesis of Kevin Berk develops a stochastic model for the electricity demand of small and medium sized companies that is flexible enough so that it can be used for various business sectors. This is a completely new field of research where there does not yet exist much scientific literature, partially due to the difficulty to get access to data.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.subjectA Risk Management Perspectiveen_US
dc.titleModeling and Forecasting Electricity Demand: A Risk Management Perspectiveen_US
dc.typeMasters Thesisen_US
Appears in Collections:Public Administration & Development Management

Files in This Item:
File Description SizeFormat 
94.Kevin Berk.pdf3.36 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.