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Foreword

The liberalization of the energy sector and the rapid increase of electricity
production by renewables has changed the business of utilities as well as their
customers a lot. They both have an increasing interest in good stochastic
models for load profiles for better risk management decisions. In retail pricing
e.g. there is more and more a tendency of charging prices to customers
with fixed-price contracts that depend on their volume risk and on the price-
volume correlation risk. Utility companies have an interest in understanding
these risks and charging risk premiums to the customers. Therefore the
customers also have an interest in understanding these risks to develop
methods to reducing these risks, as they are costly.
The master thesis of Kevin Berk develops a stochastic model for the

electricity demand of small and medium sized companies that is flexible
enough so that it can be used for various business sectors. This is a completely
new field of research where there does not yet exist much scientific literature,
partially due to the difficulty to get access to data. Here we had the advantage
that some of our former students founded a start-up company called statmath
GmbH situated here in Siegen that is doing statistical consulting for many
small and medium sized enterprises. The thesis was written in cooperation
with statmath GmbH who was so kind to give us access to the load data of
several of their customers, who also agreed to use these data for scientific
purposes in anonymized form.
Kevin Berk managed to write an outstanding thesis on this topic with

many innovative ideas in an important new field of research. I am convinced
that reading this thesis will be very helpful for other researchers in the field
as well as for practitioners in utility companies and their customers.
I am very happy that I could convince Kevin Berk to continue his research

on this topic as my Ph.D. student.

Prof. Dr. Alfred Müller
University of Siegen, Germany
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The present master thesis was accepted by the Department of Mathematics
at the University of Siegen in December 2013. Several people accompanied
me on the way from the concept of the thesis to its completion, whom I
want to express my deep gratitude and appreciation.
A special thanks goes to Prof. Dr. Alfred Müller who always supported

me during my academic education and who gave me a chance to continue
my research as a Ph.D. student at his chair.
I also want to thank Dr. Alexander Hoffmann and Christian Friedrich

from statmath GmbH, where I started to work as a student assistant in
early 2012. It was my first encounter with stochastic modeling of electricity
markets and therefore shaped the field of research that I am working in
sustainably. In particular, this work was done in cooperation with statmath
who fortunately agreed to provide the database for the empirical part of the
thesis. Furthermore, the basic load model on which my research was based
was developed by statmath and Prof. Müller in the course of an industrial
cooperation in 2010. I had a great benefit from their expertise in the field of
electricity demand and price forecasting.
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their permanent and unlimited support and patience.
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Introduction

The liberalization of many European electricity markets around the turn
of the millennium opened up new challenges and opportunities for energy
suppliers as well as for households and enterprises. Prior to this deregulation,
integrated utilities did not have to face significant financial risks. The end
customers had no other option but buying cost-based contracts for electricity
and gas. With these tariffs, utilities passed all occurring costs to their
customers.
In the subsequent years, a competitive market developed where market

players can buy electricity, natural gas or even emission rights like any other
commodity. In the course of that, end customer prices switched from cost
based to market based. Utilities had to face the fact that their generated
revenues did not automatically cover their expenditures anymore. Today, as
a consequence, they see themselves exposed to a new variety of risks. On
the expenditure side, the fluctuating electricity and fuel prices are obvious
risk factors. But also uncertainties of solar, wind or hydro power generation
as well as power plant availability are possible risks. Customers who change
their supplier form a risk on the revenue side. However, there is one great
risk factor which was not mentioned so far: the uncertainty of customer
demand.
Due to the stochastic fluctuation of the electricity price, accurate load

forecasting became a necessity for all active market participants. The in-
creasing penalty costs for under- and over-contracting make minimization of
prediction errors more important as ever. For the subject of electricity pro-
curement, end customer load forecasting models are indispensable. Suppliers
use forecasts to assess the risk of a specific load profile and determine an
appropriate risk premium for the corresponding customer’s retail contract.
In other words, electricity load forecasts are the basis of risk management
decisions of suppliers. This also holds for energy vendors and other market
participants which purchase electricity directly from the wholesale market.
Furthermore, adequate models can be used to determine a fair market price of
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energy for a particular end customer and they are necessary for procurement
and demand optimization purposes.
While the total system load of a certain country or the cumulative load of a

group of households is quite homogenous, forecasting the load of a particular
enterprise can be a comparatively difficult task. The customers’ consumption
patterns can vary significantly among different business sectors. It is even
possible that enterprises of the same sector show structural differences in
their consumption behavior. Under these circumstances, a global model for
end customers is not justifiable. Instead, model building and calibration
with respect to the business sectors seems to be reasonable.
During the last decade, comprehensive literature on various load forecasting

techniques was published. It happens that the majority of analysis considers
the total system load or private households, however. Load forecasting
models for enterprises respectively end customers seem to be a rare topic of
research, hence there is a strong need for adequate modeling approaches.
This is at the same time the motivation of this thesis. The idea is to

develop a medium-term load forecasting model for industry customers. The
expression medium-term denotes the forecast horizon of the model and
includes roughly described the next year and the year thereafter. That
is the time horizon which is mainly considered for risk management and
procurement optimization issues. The structure of the thesis is described
below.
We will give a short introduction on the electricity market in chapter one,

since the wholesale market is the basis of all our considerations. We explain
what is actually meant by “trading electricity” and describe the different
markets and products. Chapter two is about energy economy in enterprises.
We will give an overview on different types of electricity procurement and
retail contracts. The differences of consumption behavior in various business
sectors are demonstrated and a short review of the most common load
forecasting methods is given.
The third chapter describes the mathematical background for the model

building process. In a first step, we introduce an algorithm for outlier
detection in a time series. We also sum up the methods of least squares
and robust regression. Afterwards, we describe the main techniques of time
series analysis as they were developed by Box et al. (2008). The single steps
of a seasonal time series model building procedure are introduced here.



3

Chapter four is the main chapter of the thesis since it includes the actual
load forecasting model. Using the methods of the prior chapter, we develop a
one factor model for medium-term load forecasting. Following the description
of the single model components, we do a model calibration for a database of
end customers in three different business sectors and apply the results to
the data. The so obtained forecast scenarios are analyzed and evaluated in
a last step.
A practical application of medium-term load forecasting is shown in chapter

five. We describe an approach to the pricing of retail electricity contracts
and apply our model to it. The results point out the advantages of the model
compared to similar ones. The last chapter includes a short overview on
the MATLAB implementation of our model. In the course of this thesis, we
developed an automated load forecasting application with a corresponding
graphical user interface.

Introduction



1. Electricity market

The market considered is the European Energy Exchange (EEX) which
is located in Leipzig, Germany. It provides many trading products for
commodities such as electricity, natural gas, coal and emission rights for
customers in Central Europe. Of course, in this thesis we consider the market
for electricity in particular.
Electricity is a secondary energy source, i.e. it is generated through

the conversion of primary energy sources. These can be divided into non-
renewable sources like oil, coal, natural gas and natural uranium on the one
hand and renewable sources like photovoltaic, wind or biomass energy on
the other hand. As a direct consequence, electricity prices are fundamentally
linked to the environment and the prices of those commodities.

Trading electricity

When it comes to trading electricity is there is one crucial question which
we need to answer in a first step, namely which is the traded product?
The most noticeable feature of trading electricity is the lack of storability.
Apart from few exceptions which are either connected with high costs or
with small capacity, there is no economically viable way to store electricity.
Additionally to storage problems the necessity for a transmission network
influences the electricity market. In Germany, there are four so-called
“Transmission System Operators”, each of which is operating the network in
their control area. These four are Amprion, TransnetBW, Tennet TSO and
50Hertz Transmission.
Since load forecasts will unlikely be a hundred percent accurate, there is

and will always be a deviation between the forecast and the real load. This
deviation can be positive or negative, of course. The main task of a trans-
mission system operator is to balance supply and demand. Balancing should
prevent the transmission network from critical states such as overloading

K. Berk, Modeling and Forecasting Electricity Demand, BestMasters,
DOI 10.1007/978-3-658-08669-5_1, © Springer Fachmedien Wiesbaden 2015



6 1. Electricity market

or regional power outages. Because of that, transmission system operators
charge a fee for this service as well as penalty costs for forecast errors.
The transmission system operator also defines the granularity of the

measured electricity supply, which is 15 minutes for Germany. In case of
electricity, the traded goods are essentially time series whose entries describe
the delivered amount of electricity at these particular time steps, e.g. four
values per hour. Due to the fact that power supply is a continuous process,
integration of the values over every 15 minute period is required to obtain
the right structure for the supply time series. To summarize this: from the
view of a customer, electricity can be bought and is delivered as a discrete
quarter-hourly time series of constant power for each of the quarter hours.
The pure price of electricity is driven by the fuels used for generation. More

precisely, it depends on the marginal costs of the most recently activated
power plant. The number and type of power plants which deliver electricity
to the network depend on the current total demand and the variable costs
of the plants. Power plants with low variable costs, e.g. wind and hydro
power plants, are employed first. In contrast, the more expensive oil and gas
power plants are not activated until the total demand is comparably high.
The employment sequence of plants is called “merit order”. The non-linear
dependence between total demand and price is described by the merit order
curve. Detailed information on the electricity price determination (and
energy markets in general) is provided in Burger et al. (2007).

Market categories and products

In the subsequent part we describe the different market categories and
products. Unless specified differently, we refer to the German market since
there could be regional variations. Usually, the electricity market is divided
into the following categories:

• Future market

The future market includes products for which the delivery period is
months or even years later. It is the relevant market for risk management
respectively risk hedging. A future contract guarantees a constant power
supply over an agreed period. Normally, the price of a future contract is
settled once a day.
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The offered contracts at the EEX contain baseload, peakload and off-
peakload futures. A baseload contract implies power delivery over every
hour of a given period. Peakload futures deliver power only during peak
hours, that are the hours of a week where the load is usually high. For
Germany, peak hours include the time between 8 AM and 8 PM for
a weekday. In contrast, off-peakload futures include a delivery during
off-peak hours, hence on the weekend and between 8 PM and 8 AM on
weekdays.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
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52
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56

58

60

62

Figure 1.1.: EEX one year ahead baseload future prices in 2011, EUR/MWh.
(Source: European Energy Exchange (2013))

For each of the different future products, the available delivery periods
are:

1. The current and the six following months.

2. The next seven quarters.

3. The next six years.

Figure 1.1 shows the EEX baseload future prices in the year 2011 with
delivery period 2012.

• Spot market

The spot market at the EEX compounds the day ahead market and the
intra-day market. As the name suggests, the day ahead market includes
products which are delivered on the next day. In case the next day is
not a trading day (e.g. weekend or public holidays), products are traded
which guarantee delivery from the next day to the next trading day. The
market includes baseload, peakload and weekend baseload contracts for

1. Electricity market
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a whole day as well as contracts for single hours or blocks of hours. In
other words, a customer is able buy a different but constant supply for
each hour of the succeeding day.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
−50

0

50

100

150

Figure 1.2.: EEX spot market 2011, EUR/MWh. (Source: European Energy Ex-
change (2013))

In the intra-day market, products with a delivery on the same day are
traded. Just like in the day ahead market, contracts for full hours or
blocks of hours are offered. These products allow very short term load
optimization.

The spot market enables continuous electricity trading 24 hours a day.
It is also underlying the future market, since the settlement price of a
monthly future is established from the average of the associated spot
market prices. Figure 1.2 shows the spot prices for day ahead trading in
2011.

• Balancing and reserve market

Broadly speaking, the reserve market is the market where transmission
system operators purchase products to close the gap between power de-
mand and supply. In the balancing market, a customer or a merchant buys
or sells energy to compensate the imbalance between real and predicted
load.

The prices for purchasing and selling imbalance energy usually differ
from the market prices (penalty costs) and they are determined by the
associated transmission system operator, not by the EEX itself. Therefore
the balancing and reserve market is not a market in the sense of the future
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EEX Electricity market products

Future market

�
�
�

Spot market

Day ahead market

Intra-day market Day of delivery

Day before 
delivery

Time

Years, months, 
weeks before 

delivery

Figure 1.3.: EEX market categories and the corresponding delivery time.

or the spot market and it depends on factors like region, net capacity
utilization and others.

Figure 1.3 displays the different EEX market categories and products
associated with the respective delivery time. Since the balancing and reserve
market is not a market in the narrow sense, it is not included in the chart.

1. Electricity market



2. Energy economy in enterprises

Energy demand is increasing all around the world, and so is the price. The
development of electricity prices in the German industry (figure 2.1) shows
a clear increasing trend.
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Figure 2.1.: Development of the electricity price for industry enterprises in Germany.
Including all taxes, in cent/kWh. (Source: Eurostat (2013))

The reason for this lies in the scarcity of resources and the rising prices
for conventional energy sources. Furthermore the political factor plays an
important role: the taxes and contributions are raised regularly. For example,
the EEG levy increased from 2 cent per kWh in 2010 to almost 5.3 cent per
kWh in 2013. Next year it will be raised again, to 6.24 cent. Taxes and
contributions establish the fixed part of the electricity price, except for some
exemption clauses like discounts on the net usage costs for companies with
a high number of operating hours.
While the proportion of energy costs on the total costs of enterprises keeps

increasing, energy management becomes more and more important. The
past years revealed a raising awareness of the opportunities which are offered
through proper dealing with the subject energy.
For enterprises, there are different types of electricity procurement which

mainly differ in the degree of risk and the attainable price. We introduce
these types in the next section.

K. Berk, Modeling and Forecasting Electricity Demand, BestMasters,
DOI 10.1007/978-3-658-08669-5_2, © Springer Fachmedien Wiesbaden 2015



12 2. Energy economy in enterprises

2.1. Electricity procurement

Long before the markets were deregulated, retail contracts, more precisely full
service contracts, were the only way for end customers to procure electricity.
The actual pricing for retail contracts happens in the wholesale market, that
is between producers and merchants. We intuitively expect lower prices in
the wholesale market than in the retail market and we are right, apart from
a few exceptions. The reason is that merchants always have the possibility
to resell the purchased energy at the wholesale market if the retail prices are
too low. As a consequence, wholesale and retail prices are directly connected.
In a deregulated market, the variable part of the electricity price, that

is excluding all taxes and contributions, is indeed manageable. There are
different factors which influence the price more or less. The four most
important factors are displayed in figure 2.2.

Bargaining / Choice of supplier

Volume

Consumption Pattern

Time of purchase / Product choice

Figure 2.2.: Price influencing factors.

Given the dominating role of purchasing time and product choice on
the price, it seems that the conventional contracts are not in conformity
with the market anymore. Therefore the customer should intervene in the
pricing routine between merchants and producers and no longer accept
the retail prices as given. In the past years we can see an increasing
willingness on the customer side to question retail prices and contemplate
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about alternative procurement methods. If and only if this trend holds,
customers can prospectively establish a negotiable demand side again.

Retail products

Since there are many possible ways of electricity procurement, we want to
analyze the most common retail products below. We refer to a market as
retail market, if electricity is sold to an end customer and the sold volume
depends on the consumption of the respective customer.

• Common full service contracts

Full service contracts were the first-ever electricity retail products to hit
the market. The customer purchases all of his power consumption from
one provider at a given price. With this type of contract, the provider
carries all the risk for the customer. Following this, the risk premium
is the highest premium under all retail products. In other words, the
customer sort of “buys” price security from the provider.

Normally, the fixed energy price per unit (MWh) P is composed through

P = B +M +R .

In this equation, B denotes the basic price, M denotes the retail margin
and R denotes the risk premium. The basic price B for a contract period
[t0, t1] is the expected price for that particular period. A load forecast
(l(t))t1t=t0 is required in order to calculate B. Then, B is obtained through

B =

∑t1
t=t0

l(t)F (t)∑t1
t=t0

l(t)
, (2.1)

where F (t) is the forward price for a delivery at time t (valid at the
conclusion of the contract).

Consequently, the provider carries the risk of forecasting errors which can
cause higher costs. This risk depends to a large extent on the structure of
the customers load profile and is covered by the risk premium R.
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• Indexed contracts

Indexed contracts allow customers to fix the wholesale energy price at
several times. The advantage of this type of contracts is, that concluding
a contract during a period of high wholesale prices does not necessarily
result in a high retail price. When the price level decreases after contract
inception, proper indexing can lower the resulting retail price.

Let n be the number of possible fixings and I(t) the indexed value at time
t. With B, M and R as provided in the last paragraph and tk ∈ [t0, t1]

being the times of indexing, the indexed price PI is given by

PI = (B +M +R) ·
1
n

∑n
k=1 I(tk)

I(t0)
. (2.2)

In other words, if the mean indexed value accounts for 80% of the indexed
value at time t0, the indexed price is PI = P · 0.8.
But in this consideration one must not forget the contrary scenario. If
the wholesale prices increase after closing the contract, the indexed price
could possibly be higher than the price P . Summarizing, the customer
assumes a part of the market price risk from the provider.

• Structured procurement

Structured procurement is the acquisition of standardized wholesale
products at different times with simultaneous covering of the residual
demand at the spot market. In this case, the provider acts more like
a broker than a supplier. The customer assumes all the risk from the
provider and has to bear all the costs. He is responsible for proper load
forecasting as he pays for the balancing power, needed to fix the forecast
error, as well. As the imbalance costs can sum up to a quite large part
of the total costs, the load forecast should be as exact as possible, which
brings us back to the subject of this thesis.

The resulting price PSP of structured procurement can be written as

PSP = F + S + I +M , (2.3)

where F denotes the future market costs, S denotes the spot market
costs, I denotes the imbalance costs and M is the margin for the broker.
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The risk premium is omitted because the customer carries all of the risk
himself.

Mo Tu We Th Fr Sa Su
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Weekly load
Future market products
Spot market products
Imbalance consumption

Figure 2.3.: Possible scenario for structured procurement.

Figure 2.3 shows a possible scenario of electricity procurement using future
and spot market products. The thick black line displays one week of an
example load profile, the dashed line is a combination of baseload and
peakload future products. The thin black line shows the spot market
purchases which were adapted to the specific load forecast for this week.
The remaining line represents the imbalance between forecast and real
load. This imbalance energy has to be bought or sold at the balancing
market for which the prices are determined by the responsible transmission
system operator.

We will consecutively list the advantages of structured procurement over
conventional contracts:

– No restrictions in consumption volume.

– Reduction of market risk through diversification of products and scat-
tering of buying times.

– Reduction of the risk premium.

– Saving potential through redistribution of load, peakshaving and others.

– Possible involvement of generation (e.g. solar panels).

– Transparency of costs.
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• Portfolio management

Portfolio management is an expansion of structured procurement in a sense
that not only standardized wholesale products but all financial or physical
products are traded. Additionally, customers with portfolio management
might generate electricity on their own and use it for peakshaving or sell
it back to the market. Possibly the customers don’t even use a broker
as intermediary (margin M is omitted) but purchase products directly
at the wholesale market. Since these products presume minimum order
volumes, this is only viable for energy intensive enterprises.

Altogether we notice that there are lots of different procurement methods
while each of which has unique advantages and disadvantages. As already
stated, they essentially differ in risk and attainable price, which can be seen
in figure 2.4.
A customer might make his own product choice depending on his special

risk preferences, price expectations and, of course, the available load fore-
casting and risk management techniques. The better these techniques are,
the more profitable it will be to turn away from conservative contracts.

Price

Risk

PORTFOLIO MANAGEMENT

STRUCTURED PROCUREMENT

INDEXED CONTRACTS

FULL SERVICE

Figure 2.4.: Price-risk relation of various procurement methods.

In the succeeding section we will analyze the role of load forecasting in
the energy economy.
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2.2. Load forecasting

Already in times of regulated markets, load forecasts have been important
for electric utilities and power plants. However, the deregulation of the
markets led to the fact that today load forecasting is indispensable for all
active market players.
There are different types of load forecasting which mainly differ in their

respective time horizon, whereas the categorization varies from publication
to publication. We characterize these types as follows:

• Long-term load forecasting (LTLF)

LTLF describes the forecasting of periods of time which lie several years
(up to decades) in the future. This type of models is especially interesting
for electric utilities or transmission system operators which want to plan
the extension of capacity or networks.

• Medium-term load forecasting (MTLF)

MTLF characterizes forecasts for the next year or the year thereafter.
These models are essential for customers who operate structured procure-
ment or portfolio management. In this thesis, we will primarily concentrate
on MTLF.

• Short-term load forecasting (STLF)

STLF handles time horizons of a single day up to a week or two. For
instance, short-term forecasting of the grid load is necessary for the
scheduling of power plants. Furthermore, it is used by electric utilities
to ensure the short-term availability of supply. Due to the time horizon
being only a couple of days, many STLF models include weather forecasts
as well.

There are various approaches and models for the different types of fore-
casting, for which we will give a short overview in section 2.4.
Load forecasting has become an integral component of the planning of

electric utilities, suppliers, transmission system operators and other market
participants. As already stated, in this thesis we will focus on MTLF for
end customers. On the one hand, suppliers use these models to price full
service contracts. On the other hand they are used by customers who
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operate structured procurement or portfolio management. Also, precise load
forecasts can help customers to perform a transparent price evaluation and
hence an assessment of their running contract.
In general, forecasting the load for a single customer is much more difficult

than forecasting the grid load. There are several reasons for this: firstly, the
history of data for the grid load is considerably longer than it is for a specific
customer. Secondly, in case of the grid load (being the cumulative load of
all customers), the stochastic effects of individual customers neutralize each
other to a certain extent, which is why the grid load is very homogenous. The
same diversification argument holds for significant changes in consumption
patterns. Another very important difficulty in single customer MTLF is that
load profiles of customers in different sectors partly show serious distinctions,
as we will show in the next section.

2.3. Industry load profiles

When it comes to comparing different load profiles, one has to divide between
factors which are relevant for model identification and those which are not.
For instance, the cumulated load or mean load will not affect the model
choice at all. The seasonal behavior of a load profile is, however, much
more important for model adaption. Load profiles normally show different
seasonalities:

• Yearly seasonality: In winter months, consumption usually is higher
because of heating and lighting. However, in some sectors there is also a
higher consumption in summer months because of cooling (e.g. groceries).

• Weekly seasonality: The consumption on Tuesdays, Wednesdays and
Thursdays is, in general, very similar. Mondays and Fridays can show a
special load pattern, for example because of machine starting or shutdown.
The load on Saturday totally depends on the sector, while Sundays are
usually very similar again.

• Daily seasonality: Except for customers producing in three-shift opera-
tion, load is obviously higher in daylight hours than it is throughout the
nighttime.
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When analyzing load profiles from different sectors one can observe signi-
ficant differences in seasonal patterns. The most obvious differences are to
be found in the weekly structure. Figure 2.5 shows the weekly consumption
of customers in different sectors. In each plot, every grey line is one week of
the year (52 in total) and the black line is the mean over all weeks.

Mo Tu We Th Fr Sa Su

Mo Tu We Th Fr Sa Su

Mo Tu We Th Fr Sa SuMo Tu We Th Fr Sa Su

Mo Tu We Th Fr Sa SuMo Tu We Th Fr Sa Su

Mo Tu We Th Fr Sa Su

Mo Tu We Th Fr Sa Su

Retail Service

Electric Steel Mill� Paper Mill�

Automotive Parts Supplier�Connection Technology�

Metal Forming Technologies�Metal Processing Industry�

Figure 2.5.: Various industry load profiles. (Source: statmath GmbH )

There are a lot of things to remark when looking at these profiles. The
two profiles in the top row, for example, are typical industry customers
operating in two shifts. The load decreases in the evening to a certain level
and goes up again in the morning hours. There were some saturdays with
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high and some with low load. Also, in a few weeks or for a couple of days,
the load decreased to its minimum level (which is usually greater than zero
due to exterior lighting or the like). A possible reason are machine outages
or public holidays, for example. The visible load peaks usually indicate
machine starting.
The profiles in the second row show industry customers with a three-shift

system. The customer with the right profile is even working throughout
saturdays. Additionally, we can clearly see the recurrent daily patterns
during weekdays. The profile on the right side seems to be predestined for a
purchase of high volume future products.
Row number three reveals two profiles which, at the first sight, show quite

chaotic behavior. Indeed they are typical profiles for their respective industry.
Remarkable is that deviations from the “normal level” (the expected load)
are very asymmetric. There are a lot of inverse peaks which most likely are
caused by short time machine shutdowns. The profile of the electric steel
mill shows an odd pattern on wednesdays (already starting on tuesdays)
which is, with closer examination, easy to describe: the electric blast furnace
of the steel mill has to be cleaned once a week. In order to do that, it has
to be turned off and cooled down. Since the blast furnace causes a high
proportion of the total consumption, we observe the decrease of load in the
middle of the week.
The last row of figure 2.5 contains load profiles of customers from the

retail and service sector. The majority of profiles from these sectors is very
homogenous and thus, compared to others, easy to predict. The weekdays
(including saturday for the retail profile) show almost exactly the same
pattern. The profile on the right is a cumulated consumption of a service
provider and a restaurant, which explains the load on saturday and sunday.
The variety of different load patterns makes it hard to find a comprehensive

forecasting model. In fact, finding a suitable method for a particular customer
requires testing of various models on real data. One could also consider
hybrid solutions since there could be different models for a given load profile,
each of which having its own advantages. Though we will concentrate on one
particular method in this thesis, we will give a short overview on forecasting
models in the following section.
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2.4. Forecasting models in literature

So far, many different forecasting techniques have been developed, all of
them with varying degrees of success. Alfares and Nazeeruddin (2002) give
a comprehensive overview on the most common approaches, also Weron
(2006) is worth reading. One can broadly classify forecasting models into
two categories:

• Artificial intelligence-based (AI-based) techniques:

Artificial intelligence-based techniques include non parametric, self-learning
methods like knowledge-based expert systems, fuzzy logic, neural networks
and support vector machines.

• Statistical approaches:

These are conventional parametric models like similar-day method, mul-
tiple regression, exponential smoothing, iterative reweighted least-squares,
adaptive load forecasting and stochastic time series analysis.

AI-based methods are widely known for their ability to handle complex,
non-linear models. This is at the same time their great advantage over
the common statistical approaches. Methods like artificial neural networks
are self-learning systems, in other words no prior modeling experience is
necessary to obtain accurate load forecasts. Input and output data is
classified automatically through the algorithms. This leads us directly to the
weaknesses of these models: due to the auto-learning feature, they are very
inflexible when it comes to non-automatical integration of specific relations.
Furthermore, they incorporate the danger of “overtraining” the model.
Evaluations of AI-based methods for load forecasting in literature revealed

acceptable results. However, we will not go into further studies of these
models since we want to concentrate on statistical (parametric) approaches.
Therefore we will give a short overview on some statistical models below.

Similar-day method

The so-called similar-day method is probably the most naive approach to
load forecasting (yet sometimes it is called “naive method”). The idea is
quite easy: for every day in the future which is to be forecasted, we search
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for days with similar characteristics in the given historical data basis. Then
we could, for example, take the mean over (or a linear combination of) all
these days and consider the result as a forecast for that certain day.
The choice of similar days varies from publication to publication. Usually

Tuesday, Wednesday and Thursday are treated as one similar day, all the
other days of the week are special though. Similar days could also be public
holidays, days in daylight saving time or even special times for work outages.
The similar-day method is an easy and fast technique to get an idea of

what future load might “look like”, based on historical data. One weakness
of this model is the susceptibility for structural changes in load patterns,
like changing opening hours in retail or the shift system in the industry.

Multiple regression

Multiple regression is a well known method to analyze statistical relationships
between dependent and describing variables, while its area of application
extends far beyond load forecasting. A possible model is one of the following
structure:

L = XΠ+ ε , (2.4)

where L denotes the n× 1-vector of dependent variables, X denotes the
n×m-matrix of m describing variables (often referred to as “design matrix”),
Π is the m× 1-vector of regression coefficients and ε denotes the model error.
The describing variables could, for example, be the type of a day, the

actual grid load or certain weather conditions. The depending variable is the
measured system load within the forecasting period, e.g. an 8760× 1-vector
for one year of hourly load. The regression coefficients are determined by
fitting historical data to the model via equally or exponentially weighted
least-squares estimation. The distribution of the model error can be analyzed
after parameter estimation, in most of the cases the normal or student’s
t-distribution provide satisfying results. Migon and Alves (2013) describe an
approach of a multivariate dynamic regression model for intraday electricity
load.
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Exponential smoothing

The idea of exponential smoothing is to predict future load through an
exponentially weighted average of past observations. This technique is
widely used because of its robustness and accuracy. A popular approach
to load forecasting is Holt-Winters exponential smoothing. The standard
Holt-Winters method was first introduced by Winters (1960):

St = α

(
Lt

It−s

)
+ (1− α)(St−1 + Tt−1)

Tt = γ(St − St−1) + (1− γ)Tt−1

It = δ

(
Lt

St

)
+ (1− δ)It−s

Lt denotes the observed values, St denotes the local level. An additive
trend component, Tt, is estimated through smoothing differences of the local
level. The s-period seasonal index It is calculated by smoothing the ratio of
the observed value Lt to the local level St. The smoothing parameters α, γ
and δ can be estimated via mean least squares or other score functions. The
k-step-ahead forecast is then given by

L̂t(k) = (St + kTt)It−s+k .

A weakness of this method is that it is only able to accommodate one
seasonal pattern, which is obviously not sufficient for MTLF. An expansion
of this model is the so-called double seasonal Holt-Winters method (as
described in Taylor (2003)), which is suitable for two seasonal patterns and
can therefore be applied to hourly data.

Others / Stochastic time series

There are a lot more forecasting techniques to be found in the literature but
since the scope of this work is limited we will not describe them here. In
this thesis, we will primarily use methods of stochastic time series analysis,
that is why we devote the next chapter to this subject.
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In this chapter, we introduce the methods and techniques of stochastic
time series analysis which we will use for the load forecasting model in the
subsequent part of the thesis. Time series analysis appears to be among the
most popular approaches to load forecasting, not least because of its great
performance in modeling seasonal patterns and stochastic behavior of time
series.

3.1. Dealing with outliers

When it comes to analyzing time series, the input data should be checked
for missing values and outliers in a first step. The poorer the data is, the
more difficult it gets to create an accurate forecast. While single missing
hours are not a big deal (as long as the number holds within normal limits),
missing days or even weeks can, depending on the data history, cause a loss
of information which cannot be compensated. That means the forecast is
distorted to a certain extent, leading to a higher forecast error and thus a
higher risk. In Germany, a common gap in automatically recorded load data
is the missing hour caused by the switch from standard time to daylight
saving time. Other missing values could be caused by power outages, for
example. However, it depends on the metering hard- and software if these
gaps are closed automatically or if it has to be done by hand.
A more challenging task is the identification of outliers in a time series.

Obviously, the definition of “outliers” or “abnormal load” is quite subjective
and depends on the personal opinion and the type of load profile which is
considered. For instance, an anomalous load pattern on a particular weekday
should not be recorded as an outlier if the weekday is a public holiday. A
high level of load on saturday is not abnormal for many customers in retail
industry, but it would be remarkable if the customer usually does not work
on saturdays. But not only anomalous load sequences are of interest, also
“unusual” single (positive or negative) load peaks should be investigated. As

K. Berk, Modeling and Forecasting Electricity Demand, BestMasters,
DOI 10.1007/978-3-658-08669-5_3, © Springer Fachmedien Wiesbaden 2015
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we already mentioned, load profiles often show hourly peaks due to reasons
like machine starting in the morning. The question is, how can we tell these
normal load peaks from abnormal ones?
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Figure 3.1.: Two weeks of load. The weekend between is Easter weekend in Germany
with Friday and Monday being public holidays.

Consider the two weeks of load displayed in figure 3.1. Comparing these two
weeks without any further information, one could detect three conspicuous
features. Most obvious is the low load on Friday and Monday. Given more
information, the explanation is quite easy: the weekend between the two
weeks is Easter weekend in Germany, i.e. Friday and Monday are public
holidays. Another abnormality is the peak on saturday of the first week,
which seems to be quite high compared to the corresponding day of week two.
This peak comes without any intuitive explanation. It therefore depends on
personal assessment if one would refer to it as an outlier or not.
Detection of outliers through visual inspection is not an efficient procedure,

though. Therefore we need an adequate method for automatic detection.
Statistical methods suggest to use moving average or running median filter
bands. We will use the running median technique since it is more robust to
outliers compared to the moving average.
The (2m + 1)-hour running median Lmed,2m+1

t of the load at time t is
given by

Lmed,2m+1
t = median(Lt−m, . . . , Lt, . . . , Lt+m)

while we set Lmed,2m+1
t = Lt for all t ≤ m and n − t ≤ m with n being

the length of the considered time series. Then, the (2m+ 1)-hour running
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median filter bands are defined as

B±
t = Lmed,2m+1

t ± κ · std(Lt − Lmed,2m+1
t ) . (3.1)

All values that lie outside these filter bands respectively all values Lt with
Lt > B+

t or Lt < B−
t are identified as outliers. We should remark that

the value κ in equation 3.1 is usually set to κ = 3 (see for example the
work of Weron (2006, p. 69)) but could also be replaced by other numbers,
depending on the goodness of results.

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su
0

50

100

150

200

250

300

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su
−100

0

100

200

300

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su
−200

−100

0

100

200

300

400

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su
−200

−100

0

100

200

300

Figure 3.2.: Two week load profile with running median filter bands: 5 hours (top
left) , 21 hours (top right), 97 hours (bottom left) and 145 hours (bottom
right).

The adaption of this method to a particular time series requires an adequate
choice of the median width m. Figure 3.2 shows running median filter bands
for four different values of m applied to the example time series which we
introduced before. Both the 5-hour and the 9-hour filter bands identify some
of the peaks in the morning hours of the weekdays as outliers which makes
them not applicable for this particular time series. The 21-hour filter detects
the peak on the first saturday as outlying. The last two filter bands (97
and 145 hours) are very rough as one can clearly see. However, there is no
universal best choice for m, it rather depends on the data which is analyzed
and the personal preferences. In some cases it is even recommendable to use
both short-term and long-term filter bands.
After the identification and removal of the outliers we have to think about

how we deal with the missing values. There are different methods imaginable:
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1. Substitute outliers with an average of neighboring values.

2. Forecast the missing values via similar-day method and treat the forecast
as original observations.

3. Generate random numbers following a certain distribution.

4. Just remove the observations (leads to a shortening of the time series).

Option 1 applies well for single hour outliers, but it reveals weaknesses
when it comes to a consecutive series of outliers, obviously. Methods 2 and
3 work better for these series, whereas method 2 is only conceivable as long
as the data history is long enough. The disadvantage of the last method is
the shortening of the given time series which makes it unusable for some
forecasting routines. Still it is a sufficient option for techniques like the
similar-day method, for example.

3.2. Linear regression

We will now give a short overview on the topic of linear regression, because
we will later use it for one component of our model. In the following we
always refer to a probability space (Ω,F ,P).
Let Y = (Yi)1≤i≤n be a (random) variable in R

n and X = (Xij)
n
i,j=1

be a (random) variable in R
n×m. One can think of Y being a time series

with horizon n and X being a matrix of m describing attributes. For all
i = 1, . . . , n we model Yi through a linear combination of the i-th row of X,
that is

Yi ≈ fβ(Xi,·) = β0 +

m∑
j=1

βjXij ,

where β = (β0, . . . , βm)ᵀ denotes the regression coefficients. In vector form,
the model is

Y = (1X)β + ε ,

with 1 = (1, . . . , 1)ᵀ and ε being the model error.
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Least squares method

We estimate the regression coefficients providing the best fit via minimization
of the residual sum of squares, given by

RSS(β) =

n∑
i=1

(Yi − fβ(Xi,·))2

= ||Y − X̂β||22
= min !

β
,

with X̂ = (1X). Under the condition that X̂ is invertible, the minimizing
problem has a unique solution

β̂ = min
β

(RSS(β)) = (X̂ᵀX̂)−1X̂Y .

β̂ is called least squares estimator.
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Figure 3.3.: Scatter plot of two time series with a least squares linear regression and a
robust regression fit.
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A measure for the goodness-of-fit of the regression model is the coefficient
of determination R2. With Ȳ = 1

n

∑n
i=1 Yi, it is given by

R2 = 1− RSS(β̂)∑n
i=1(Yi − Ȳ )2

.

Interpreting this, R2 ≈ 1 is an indicator for a good model fit.

Robust regression

A weakness of the linear least-squares is that they do not perform well
when the model error is not normally distributed, more specifically when it
follows a heavy tail distribution. One solution to this problem is to use the
least-squares method after removing outliers from the time series. Another
approach is the so called robust regression, for which the most common
method is M-Estimation, introduced by Huber (1964). Consider the model
that we described above. Instead of minimizing the residual sum of squares,
the M-estimator minimizes the function

ME(β) =

n∑
i=1

γ(Yi − fβ(Xi,·)) ,

where a reasonable γ should fulfill the following conditions:

• γ >= 0 and γ(0) = 0

• γ(x) >= γ(x̄) for |x| >= |x̄|
• γ(x) = γ(−x)

In case of linear least-squares, we have γ(x) = x2 for which these conditions
obviously hold. So at large, the M-estimator is a generalization of least
squares.
Now we are able to influence the robustness of the regression by choosing

γ. Let φ = γ′ be the derivative of gamma with respect to the regression
coefficients β. The weight function is defined as

W (x) =
φ(x)

x
.
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Common software like Matlab or R includes different weight functions for
robust regression. Figure 3.3 shows a scatter plot of two time series with a
standard least squares regression and an additional robust regression. The
used bisquare weight function is

WB(x) =

⎧⎨
⎩
(
1− (

x
k

)2)2

for |x| <= k

0 for |x| > k
,

where k denotes the tuning constant. Usually we have k = 4.685σ for the
bisquare weight function, where σ denotes the standard deviation of the
model errors.
Some values in figure 3.3 (specifically the values at level 300 on the y-axis)

were created artificially to illustrate the susceptibility of least squares to
outliers. Under the condition that these values really are outliers, the dashed
regression line provides a poor fit, whereas the solid line seems to fit well.

3.3. ARMA models

Now we introduce ARMA-models (Autoregressive Moving-average) that
we will use to describe the stochastic effects in our load forecasting model.
Furthermore, we want to state some basic time series analysis techniques
that are necessary to understand the procedure of model building in this
thesis. We start with a few definitions, still considering the probability space
(Ω,F ,P):

Definition 3.1:
A stochastic process (Xt)t∈T is a family of random variables on (Ω,F ,P).
We call the mapping t �−→ Xt(ω) for a fixed ω ∈ Ω path or realization of
the process.

Definition 3.2:
Let (εt)t∈Z be a discrete stochastic process with εt being independent and
normally distributed for all t and

• E(εt) = 0 as well as

• Var(εt) = σ2
ε .
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We call (εt)t∈Z white noise process (shortened “WN”).

An important class of time series is the class of stationary ones. For a
stationary process, the distribution of observations during a time interval
of fixed length does neither depend on the starting time nor on the ending
time of that interval.

Definition 3.3:
We call a stochastic process (Xt)t∈Z strictly stationary if the distribution
function of the random vector (Xt1 , ..., Xtm) coincides with the distribution
function of (Xt1+k, ..., Xtm+k) for all m ∈ N, k ∈ Z and {t1, ..., tm} ⊆ Z.

In particular, choosing m = 1, we obtain that Xt is identically distributed
for all t. Therefore (Xt)t∈Z has constant mean E(Xt) =: μ and constant
variance Var(Xt) =: σ2

X . For m = 2 we get (Xt1 , Xt2)
d
= (Xt3 , Xt4) for all

t1, t2, t3, t4 ∈ Z with
|t1 − t2| = |t3 − t4| = k, where d

= means equal in distribution and k denotes
the lag. As a consequence, the covariance of Xt and Xt+k is independent of
t which justifies the following definition.

Definition 3.4:
For all k ∈ Z we define the autocovariance with lag k via

γk := Cov(Xt, Xt+k) = E((Xt − μ)(Xt+k − μ)).

and the autocorrelation with lag k through

ρk :=
E((Xt − μ)(Xt+k − μ))√
E(Xt − μ)2E(Xt+k − μ)2

=
E((Xt − μ)(Xt+k − μ))

σ2
X

=
γk
γ0

.

The last equation holds due to the constant variance of a stationary process
and to

γ0 := Cov(Xt, Xt) = Var(Xt) = σ2
X .

We easily obtain ρ0 = 1, γk = γ−k and ρk = ρ−k for all k ∈ Z. The maps
k �−→ γk and k �−→ ρk are called autocovariance function respectively
autocorrelation function.
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The property of strict stationarity is often hard to verify because one has
to check all finite dimensional distributions. For many purposes, verifying
a weaker form of stationarity for a certain stochastic process is already
sufficient.

Definition 3.5:
We call a stochastic process (Xt)t∈Z (covariance) stationary if the fol-
lowing conditions hold:

• E(Xt) = μ

• Cov(Xt, Xt+k) = γk

for some μ ∈ R, (γk)k∈Z ⊆ R and for all t, k ∈ Z. In other words, the process
has a constant mean, constant variance and the covariance only depends on
the lag k.

By few considerations one can easily see that the implication

Strict stationarity ⇒ Covariance stationarity

holds.
In further analysis we will often use the backward-shift operator B for

the sake of simplicity. It is defined by BXt = Xt−1 giving

BmXt = Xt−m

for all m ∈ N.

Definition 3.6:
A linear filter (ϕj)j∈Z transforms a stochastic process (Xt)t∈Z into a
stochastic process (Yt)t∈Z via

Yt = μ+

∞∑
j=−∞

ϕjXt−j

for a constant μ. Using the backward-shift operator, we can rewrite the
equation to obtain

Yt = μ+ ϕ(B)Xt .
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The function ϕ(B) = 1 + ϕ1B + ϕ2B
2 + . . . is named transfer function

of the filter. We call (ϕj)j∈Z absolutely summable if

∞∑
j=1

|ϕj | < ∞ .

Now we have prepared everything to introduce the basic ARMA model in
the succeeding part.

Definition 3.7:
Let (εt)t∈Z be a white noise process and φi, θi ∈ R for all i = 1, . . . , p and
j = 1, . . . , q. A stationary stochastic process (Yt)t∈Z following the equation

Yt − φ1Yt−1 − ...− φpYt−p = εt + θ1εt−1 + ...+ θqεt−q (3.2)

respectively
φ(B)Yt = θ(B)εt

is called ARMA process (Autoregressive Moving-Average) of order (p, q).∑p
i=1 φiYt−i denotes the autoregressive part of the process,

∑q
j=1 θiεt−i

denotes the moving-average part.

Definition 3.8:
An ARMA process (Yt)t∈Z with φ(B)Yt = θ(B)εt is called

• invertible, if absolutely summable (πi)i∈N exist so that εt has the repres-
entation

εt =

∞∑
i=0

πiYt−i .

• causal, if absolutely summable (ψi)i∈N exist so that Yt has the represent-
ation

Yt =

∞∑
i=0

ψiεt−i .

Box et al. (2008) show that an ARMA process is invertible iff the roots
of θ(·) lie outside the unit circle, i.e. θ(x) �= 0 for all x ∈ C with |x| ≤ 1.
Furthermore, the process is causal iff the roots of φ(·) lie outside the unit
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circle. In particular, a causal and invertible process has both an infinite
order autoregressive representation

εt = π(B)Yt

and an infinite order moving-average representation

Yt = ψ(B)εt .

Simple calculations reveal the identities

π(B) = θ−1(B)φ(B) and (3.3)

ψ(B) = φ−1(B)θ(B) . (3.4)

Besides the already known autocorrelation function there is another im-
portant instrument to measure autocorrelations exhibited by time series.

Definition 3.9:
Let (Yt)t∈Z be an invertible ARMA(p, q) process with φ(B)Yt = θ(B)εt. For
k = 1, 2, ... let φk1, ..., φkk be the weights in an autoregressive representation
of order k, i.e.

Yt = φk1Yt−1 + φk2Yt−2 + ...+ φkkYt−k + εt .

φkk can be seen as the additional influence of Yt−k on Yt in the case that
the indirect influence through Yt−k+1, . . . , Yt−1 has already been considered.
The weights φkk , k ∈ N are called partial autocorrelations and the map
k �→ φkk is called partial autocorrelation function.

The partial autocorrelations can be calculated with different approaches.
For instance, Enders (1995, p. 83) developed a recursive algorithm.
The difference between the “conventional” autocorrelation function and the

partial autocorrelation function becomes obvious when one takes a look at
figure 3.4. It shows both functions for an hourly load profile with correlations
up to a lag of 3 days.
Consider the following example: The autocorrelation function suggests

that there is a high correlation (≈ 0.8) between the present hour t and hour
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t − 2. In fact, the direct correlation between these hours is even slightly
negative, as the partial autocorrelation function reveals. But since the hour
t − 1 has a high direct correlation with the present hour t and hour t − 2

has a high direct correlation with hour t− 1, an indirect correlation between
hour t− 2 and hour t occurs.
Depending on the situation one might use the one or the other function

to analyze correlations of a time series. Mostly it is advisable to use both
techniques, though.
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Figure 3.4.: Autocorrelation function (top) and partial autocorrelation function (bot-
tom) of an example load profile (hourly lags).

Since we always strive to develop parsimonious models in a sense that we
want to use as few parameters as necessary for a certain model, the following
theorem of parameter reduction should be mentioned.
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Theorem 3.10:
Consider an ARMA(p, q) process with representation φ(B)Yt = θ(B)εt.
If k = |{λ ∈ C : φ(λ) = θ(λ) = 0}| > 0 we can reduce the model to an
identical ARMA(p− k, q − k) process.

Proof. We factorize φ(B) and θ(B) to obtain

φ(B) = (1− η1B) · (1− η2B) · ... · (1− ηpB)

and θ(B) = (1− ω1B) · (1− ω2B) · ... · (1− ωqB) .

Without loss of generality, let k = |{λ ∈ C : φ(λ) = θ(λ) = 0}| with ηi = ωi

for i = 1, ..., k.

We now divide the equation

(1− η1B) · ... · (1− ηpB)Yt = (1− ω1B) · ... · (1− ωqB)εt

by (1− η1B) · ... · (1− ηkB) and obtain

(1− ηk+1B) · ... · (1− ηpB)Yt = (1− ωk+1B) · ... · (1− ωqB)εt .

Setting

(1− φ̂1B − ...− φ̂p−kB
p−k) := (1− ηk+1B) · ... · (1− ηpB)

and (1− θ̂1B − ...− θ̂q−kB
q−k) := (1− ωk+1B) · ... · (1− ωqB)

reveals an equivalent ARMA(p− k, q − k) representation of the process:

(1− φ̂1B − ...− φ̂p−kB
p−k)Yt = (1− θ̂1B − ...− θ̂q−kB

q−k)εt
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3.4. Seasonal ARIMA models

Since our intention is to model electricity load, which usually exhibits
several components that repeat every s observations (e.g. every 24 hours),
the conventional ARMA model performs badly. The reason is the lack of
seasonal factors in the model. Due to that we generalize the ARMA model
by adding seasonal components to the process. The result is a more complex
model named seasonal ARIMA (SARIMA) that we introduce in the next
definition.

Definition 3.11:
Let (εt)t∈Z be a white noise process and ∇n

m = (1−Bm)n with B being the
backward-shift operator. The process (Yt)t∈Z defined by

φp(B)ΦP (B
s)∇d

1∇D
s Yt = θq(B)ΘQ(B

s)εt (3.5)

is called seasonal ARIMA process of order (p, d, q)× (P,D,Q)s. It is

φp(x) = 1− φ1x− . . .− φpx
p

ΦP (x) = 1− Φ1x− . . .− ΦPx
P

θq(x) = 1 + θ1x+ . . .+ θqx
q

ΘQ(x) = 1 + Θ1x+ . . .+ΘQx
Q .

The indices p, P, q,Q of the polynomials determine their degree, the para-
meter s denotes the length of the season. Hence, for daily seasonality in an
hourly time series, s would be 24. The parameters d and D are only relevant
for processes which are non-stationary. If a process is non-stationary with a
unitary root of multiplicity d, it can be transformed into a stationary process
through d-fold differentiation. Afterwards, the forecasted values have to be
integrated d times, thus the letter “I” in ARIMA. Since we will only forecast
stationary time series we can concentrate on the case d = D = 0. Due to
this assumption, equation 3.5 reduces to

φp(B)ΦP (B
s)Yt = θq(B)ΘQ(B

s)εt .
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Example 3.12:
Consider a historical data set with hourly data and daily seasonality. We
want to model this time series through a SARIMA process of order (1, 0, 1)×
(1, 0, 1)24. The respective process equation is

(1− φ1B)(1− Φ1B
24)Yt = (1 + θ1B)(1 + Θ1B

24)εt .

More precisely, the equation can be written as

Yt − φ1Yt−1 − Φ1Yt−24 + φ1Φ1Yt−25 = εt + θ1εt−1 +Θ1εt−24 + θ1Θ1εt−25 .

This equation reveals the advantage of a SARIMA process over a conventional
ARMA process when we want to model seasonalities. Compared to an
ARMA process this model additionally includes the 24 hours old value in
the computation of the present value.

3.5. Testing stationarity

Consider a given time series which we want to model with an adequate
(seasonal) ARIMA process. In a first important step we have to verify the
stationarity of the time series in order to justify the model choice. That is,
the time series shows no trending behavior or non-stationarity in the mean.
If the data shows such a trend, it has to be transformed through trend
removal techniques prior to model analysis. It can be shown (see Box et al.
(2008), for instance) that a specific ARMA(p, q) model is stationary iff the
polynomial φ(B) has no unit root. Therefore statistical tests for stationarity
are often referred to as “unit root tests”. One of the most famous tests
is the Dickey-Fuller-test respectively the related Augmented Dickey-
Fuller-test, first introduced by Dickey and Said (1984). For the following
introduction of these tests we refer to Rinne and Specht (2002).
Consider the regression model

Yt = φYt−1 + εt (3.6)
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with (εt)t ∼ N (0, σ2
ε) and starting value Y0 = 0. The process (Yt)t is

stationary if |φ| < 1 and the least-squares estimator

φ̂ =

∑T
t=1 Yt−1Yt∑T
t=1 Y

2
t−1

converges to φ, i.e. √
T (φ̂− φ)

D−→ N (0, 1− φ2)

where D−→ denotes convergence in distribution. In the other case (φ = 1)
equation 3.6 denotes an ordinary random walk which shows now mean
reversion behavior in a long-term view and therefore is non-stationary.
The Dickey-Fuller-test states the hypothesis

H0 : φ = 1

versus the alternative
H1 : |φ| < 1 .

Dickey and Fuller (1979) computed values for the test statistics T (φ̂ − 1)

and
(φ̂− 1)

σ̂φ̂

via Monte-Carlo-simulation since they do not follow any known probability
distribution under the assumption of H0. Using this test we can keep the
type 1 error probability under a particular significance level. In this case, a
type 1 error would be to declare a non-stationary time series as stationary
and therefore choosing the wrong model.
Despite the fact that one can add a drift and/or a deterministic trend to

equation 3.6, the following weaknesses of the Dickey-Fuller-test cannot be
overlooked:

• εt has to be a white noise process, heavy-tail distributions are not approved.

• Only autoregressive models of order 1 are considered.
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The Augmented Dickey-Fuller-test expands the available models to AR(p)
with p ≥ 2. For a given model

φ(B)Yt = εt

with φ(B) = 1− φ1B − . . . φpB
p the test states the hypothesis

H0 : ρ = 0

versus the alternative
H1 : −2 < ρ < 0

with ρ = 1 − φ1 − . . . φp. The test statistics remain the same as in the
case p = 1. One can find tabulated values in Rinne and Specht (2002), for
example.
Dickey and Said (1984) developed a further augmentation of the test and

adapted it to ARMA(p, q) models. Additionally, Dickey and Pantula (1987)
provide a test for the hypothesis of more than one unit root. Phillips and
Perron (1988) developed a method to weaken the condition of normally
distributed innovations.
In case of seasonal ARIMA models one might test for a seasonal unit root.

An adequate method can be found in Hylleberg et al. (1990). They provide
a generalization of the ADF-test together with test statistics and critical
values determined via Monte-Carlo.

By the effort of the this section we can consecutively assume that we have
a data set of stationary time series. The empirical model building procedure
can be split into the following steps:

1. Identification of the model, i.e. choosing an adequate model from the
ones taken into consideration.

2. Estimation of parameters. The number of parameters which are to
estimate depends on the model chosen in step 1.

3. Diagnostic checking respectively evaluation of the model.

4. Application of the model.

We will give an overview on each of these steps in the following paragraphs.
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3.6. Model identification

Consider a stationary time series which we decided to model as a (seasonal)
ARIMA process. Prior to parameter estimation we have to choose the
degrees of the respective autoregressive and moving-average polynomials.
Also, we should investigate if the present time series exhibits seasonalities
and eventually determine the seasonal factor s. Literature provides different
approaches to model identification. A famous, classical one is the Box-Jenkins
method, introduced by Box et al. (2008).

Approach of Box and Jenkins

The Box-Jenkins method suggests to use the autocorrelation and partial
autocorrelation function of the given time series to determine an appropri-
ate model order. They characterized the behavior of theoretical ACF and
theoretical PACF for certain ARMA models, which can be roughly analyzed
through visual inspection. Let k �→ ρk denote the ACF and k �→ φkk denote
the PACF, then table 3.1 shows the theoretical behavior for models of differ-
ent orders.

We see that testing for pure autoregressive or moving-average models
seems to be comparatively easy. One could, for example, test the fit of an
ARMA(p, 0) model through the hypothesis

H0 : φkk = 0 for k > p .

To determine a valid test statistic we use the following theorem:

Theorem 3.13:
Let φ(B)Yt = εt be an ARMA(p, 0) process and (εt)t be a white noise with
variance σ2

ε . Let φ̂kk be the estimated partial autocorrelations of a sample
series of length M . Then (φ̂kk)k>p are asymptotically independent and
normally distributed with mean zero and variance 1

M .

Proof. See Schlittgen and Streitberg (1991, p. 218).
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Table 3.1.: Characteristic behavior for ACF and PACF of ARMA(p, q) models.

Model Behavior of ρk Behavior of φkk

order
(1,0) Decays exponentially φkk = 0 for k > 1
(0,1) ρk = 0 for k > 1 Exponential dominates decay
(2,0) Mixture of exponentials φkk = 0 for k > 2

or damped sine wave
(0,2) ρk = 0 for k > 2 Dominated by mixture of

exponentials or damped
sine wave

(p,0) Mixture of exponentials φkk = 0 for k > p
and/or damped sine wave

(0,q) ρk = 0 for k > q Dominated by mixture of
exponentials and/or damped
sine wave

(1,1) Decays exponentially Dominated by exponential
from first lag decay from first lag

(p,q) Behaves like (p,0) Behaves like (0,q)
for k > p for k > q

Therefore, we do not reject the hypothesis H0 at a significance level of α
iff

−N1−α
2

1√
M

≤ φ̂kk ≤ N1−α
2

1√
M

for k > p ,

while N1−α
2
denotes the (1− α

2 )-quantile of the standard normal distribution.
Analogous, we test the fit of an ARMA(0, q) model by

H0 : ρk = 0 for k > q .

The hypothesis must not be rejected as long as for the estimated autocorrel-
ations ρ̂k

−N1−α
2

√
1 + 2ρ̂1 + . . .+ 2ρ̂q

M
≤ ρ̂k ≤ N1−α

2

√
1 + 2ρ̂1 + . . .+ 2ρ̂q

M
,

for k > q holds (see Rinne and Specht (2002, p.377)).
However, we can only define a direct test criterion for pure
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ARMA(p, 0) or ARMA(0, q) models. The characteristics of ACF and PACF
for mixed ARMA(p, q) or SARIMA models are way more complex and hard
to determine. Nevertheless, Box et al. (2008, p. 408-411) give an overview
of the respective characteristics for common seasonal models.

Inverse autocorrelation

This approach goes back to Cleveland (1972). The advantage of this method
is that it is not necessary to determine partial autocorrelation functions,
which are in fact less intuitive than ordinary autocorrelation functions and
also sometimes hard to compute and to work with. Instead, the so-called
inverse autocorrelation function (IACF) is introduced. The IACF of
an ARMA(p, q) process with representation

φ(B)Yt = θ(B)εt

is equal to the ACF of the inverse process

θ(B)Yt = φ(B)εt .

As a consequence, the IACF of an AR(p) process behaves like the ACF
of an MA(p) process, that is, it cuts off after lag p. Therefore we can
consult the IACF for autoregressive order identification instead of using the
PACF. Depending on the situation, this method might be more advisable
for practical purposes.

Automated iterative procedure

The prior described methods of model identification have two main weak-
nesses:

• They are limited in a sense that the application gets quite complex for
mixed ARMA models and increasing number of parameters.

• They require human supervision and visual inspection of the autocorrela-
tion structure.

When one wants to model several time series at once with specific software,
an automated procedure should be used. One possible iterative procedure
can be divided into three steps:



3.6. Model identification 45

1. Choose several models with different numbers of parameters and fit them
to a specific time series.

2. Estimate parameters, compute model residuals and log-likelihood function
(see next paragraph).

3. Use an information criterion to choose the best model.

Obviously, adding more parameters will always increase the goodness-of-fit
of a model. The consequence is that an iterative procedure would result in
an infinite loop if only the log-likelihood functions were compared. It also
violates the principle of parsimony according to which the simplest adequate
model is the best one. This problem is solved by the application of so-called
information criteria, which additionally include a penalty term for high
numbers of parameters.
The five most famous information criteria are FPE (Akaike’s Final Predic-

tion Error), AIC (Akaike’s Information Criterion), AICC (bias-corrected
Akaike’s Information Criterion), BIC (Bayesian Information Criterion) and
HQ (Hannan-Quinn Criterion). Let M be the sample size, V = 1

M

∑M
t=1 ε̂t

be the variance of the model residuals and L denote the log-likelihood
function. Furthermore d is the model size, i.e. d = p + q for an ordinary
ARMA(p, q) model and d = p+ q+P +Q for a SARIMA(p, 0, q)× (P, 0, Q)s
model. Then the information criteria are defined as follows:

FPE = V
M + d

M − d

AIC = −2L+ 2d

AICC = −2L+
2dM

M − d− 1

BIC = −2L+ d logM

HQ = −2L+
2dc log(logM)

M
, c > 1

The decision rule is quite easy: the lower the value of a specific criterion, the
better the model. In an optimal case, all information criteria should lead
to the same decision. Unfortunately this is not always true. In that case,
one has to choose the “best” information criterion depending on a particular
data set and model class.
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The described model identification algorithm can be implemented in com-
mon statistical software. However, with increasing number of fitted models
and estimated parameters the computation time increases exponentially.
One should therefore restrict the maximum model size d to a reasonable
number.

3.7. Model estimation

The phase of model identification ends with a model suggestion which,
according to information criteria, promises to give a good description of
the present time series. The next step is to estimate the parameters of the
chosen model. As usual, the parameter estimation for pure autoregressive
or moving-average models is much easier as it is for mixed models. Many
estimation techniques were developed in the course of time. One can find a
recursive least squares scheme for ARMA coefficient estimation in Pollock
(1999), for instance. An overview on the so-called method of moments
can be found in Rinne and Specht (2002). We will discuss a maximum
likelihood approach below. Many software packages use this method for
ARMA model estimation. Maximum likelihood estimators exhibit general
preferences which make them superior to estimators calculated through other
methods. This however results in a higher numerical complexity.

Maximum likelihood estimation

We follow the work of Rinne and Specht (2002) for the introduction of the
maximum likelihood approach. Consider an ARMA(p, q) model which is to
be fitted to a given time series. Let the model be of the form

Ŷt − φ1Ŷt−1 − . . .− φpŶt−p = εt − θ1εt−1 − . . .− θpεp

where Ŷt = Yt − E (Y ) are centered variables and

εt
iid
∼ N (0, σ2

ε) .

Let
y = (y0, . . . , yM )ᵀ
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be the data set vector of observations and μy be the expectation vector of y.
Due to the stationarity of y we get

μy = (E (y), . . . ,E (y))ᵀ .

Furthermore, let φ and θ denote the parameter vectors

φ = (φ1, . . . , φp)
ᵀ and

θ = (θ1, . . . , θq)
ᵀ .

The gaussian log-likelihood function is given by:

L(φ, θ, μy, σ
2
ε |y) =− M

2
log(2πσ2

ε)−
1

2
log(|Γ(φ, θ)|)

− 1

2σ2
ε

(y − μy)
ᵀΓ−1(φ, θ)(y − μy) (3.7)

Here, |Γ| denotes the determinant and Γ−1 the inverse of the matrix

Γ(φ, θ) =

⎛
⎜⎜⎝

γ0

σ2
ε

· · · γM−1

σ2
ε

...
...

γM−1

σ2
ε

· · · γ0

σ2
ε

⎞
⎟⎟⎠

with γk being the autocovariance with lag k of the vector y. We consecutively
describe the stepwise maximization of the log-likelihood function. The ML-
estimator of μy for given σ2

ε and Γ(φ, θ) is

μ̂y =
1ᵀΓ−11

1 ᵀΓ1

while 1 = (1, . . . , 1)ᵀ. We obtain μ̂y by an initial estimation of Γ and
hereinafter consider a centered time series

ỹ = y − μ̂y .

Obviously, the prior estimation is needless if the original time series is already
centered. In the next step we obtain the ML-estimator of the innovation
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variance σ2
ε for a given Γ(φ, θ) as

σ̂2
ε =

ỹᵀΓ−1ỹ

M
. (3.8)

However, one might rather use the unbiased estimator

σ̂2
ε =

ỹᵀΓ−1ỹ

M − (p+ q + 1)
. (3.9)

Combining 3.7 and 3.8 and doing some minor calculations we obtain:

L(φ, θ, μ̂y, σ̂
2
ε |y) =− M

2
(1 + log(2π))

− M

2

(
1

M
log(|Γ|) + log

(
ỹᵀΓ−1ỹ

M

))
(3.10)

Since our goal is to maximize this function we can skip the constant term.
As a consequence, equation 3.10 reduces to

l(φ, θ|ỹ) = −M

2

(
1

M
log(|Γ|) + log

(
ỹᵀΓ−1ỹ

M

))
. (3.11)

Finally, we obtain ML-estimators for the parameter vectors φ and θ through

(φ̂, θ̂) = argmax
(φ,θ)

l(φ, θ|ỹ) . (3.12)

This maximization problem can be solved with numerical methods. We
should remark that one could also use a similar procedure with the assump-
tion of not normally distributed errors (εt)t. Hannan (1973) showed
that the ML-estimators (φ̂, θ̂) almost surely converge to the real parameters
(φ, θ) and they are asymptotically normally distributed as long as mean and
variance of the distribution exist (one might also refer to Brockwell and
Davis (1987) who provide an alternative formulation of the results). Also
in that case, the ML-estimator for the error variance σ̂2

ε converges almost
surely to σ2

ε .
Therefore, even with not normally distributed errors we obtain an unbiased

estimator under the condition of existing first and second moments. In this
case we speak about quasi-maximum likelihood estimation.
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3.8. Diagnostic Checking

The next stage of the model building procedure is diagnostic checking. Up
to this point, we chose an adequate model structure (AR, MA, ARMA or
SARIMA) and an appropriate number of parameters which were estimated
in a second step. The evaluation approaches can be broadly classified into
three categories:

1. Comparison of characteristics of the sample data with those of the model.

2. Comparison of characteristics of the model residuals with those of the
white noise process.

3. Comparison with larger sized models (Overfitting).

Following the first category of procedures, one approach is to compare
the empirical ACF (rt)

M
t=1 of the sample data with the theoretical ACF of

the ARMA process, given by (ρt)
M
t=1. In order to do so, the theoretical ACF

has to be determined in a prior step. Box et al. (2008) provide recursive
procedures to obtain the ACF of an ARMA model. Afterwards, we can plot
both functions simultaneously and visually inspect the goodness-of-fit. A
semi-automatic approach is shown below, using the following theorem:

Theorem 3.14:
Consider a stationary ARMA process with theoretical ACF (ρt)t, estimated
autocorrelations (ρ̂t)t and absolutely summable autocovariances. Let M be
the sample size. Then

• Cov(ρ̂t, ρ̂s) =
1
M (ξt+s + ξt−s + 2ρtρsξ0 − 2ρsξt − 2ρtξs) +O(M−2) where

ξv =

∞∑
u=−∞

ρuρu+v .

• The vector
(
√
M(ρ̂1 − ρ1), . . . ,

√
M(ρ̂k − ρk))

is for all k ∈ {1, . . . ,M} asymptotically normally distributed with mean
zero and covariance matrix

(Cov(ρ̂t, ρ̂s))
k
t,s=1 .
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Proof. See Schlittgen and Streitberg (1991, p. 161).

Therefore we set zt =
√
M(rt − ρt) and cts = Cov(rt, rs) while z =

(z1, . . . , zM )ᵀ is asymptotically normally distributed with covariance matrix
C = (cts)

M
t,s=1. As a result, we can test the hypothesis that single values of

the empirical and theoretical ACF do not significantly differ with the test
statistic

zt√
ctt

∼ N (0, 1) .

A global test assumes an asymptotical chi-squared distribution for the
so-called Mahalonobis distance zᵀC−1z. An alternative Monte-Carlo
method is described in Hope (1968).

The second category of procedures is based on the analysis of the
model residual autocorrelations. Let (et)Mt=1 be the vector of model residuals.
The corresponding estimated autocorrelations are given by

ηt =

∑M−t
s=1 eses+t∑M

s=1 e
2
s

for t = 1, . . . ,M − 1 .

The theoretical ACF (�t)t is that of the white noise process (εt)t. Since
εt

iid
∼ N (0, σ2

ε) it follows that �t = 0 for t > 0 and hence

ηt ≈ 0 , t > 0

should hold if the model is appropriate. By the way, this should also be true
for the empirical PACF.
A widely used practical sample ACF/PACF test is to plot the empirical

functions together with the bounds ±1.96/
√
M . If the model fits well, at

least 95% of the values should fall within these bounds. Schlittgen and
Streitberg (1991, p. 242) also provide interesting results on the asymptotical
distribution of the model residuals.
The minimum AICC AR model test suggests to successively fit AR(p)

processes to the model residuals. If the information criterion attains its
minimum value for p = 0, the model fits well.
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A global test is the so-called portmanteau test, introduced by Ljung
and Box (1978). The corresponding test statistic is

Q = M(M + 2)
M∑
t=1

ηt
M − t

which asymptotically follows a chi-squared distribution with M degrees of
freedom. Intuitively, a high value of Q indicates that a lot of single autocor-
relations are too great to provide a good fit. The white noise hypothesis is
rejected with a significance level of α iff

Q > χ2
1−α,M

where χ2
1−α,M is the (1− α)-quantile of a χ2

M distribution.
A last interesting test of the white noise hypothesis is the turning point

test. A turning point is basically a local maximum or minimum of the model
residuals, i.e. a value ei for which ei−1 < ei and ei > ei+1 respectively for
which ei−1 > ei and ei < ei+1. Let Υ denote the total number of turning
points of the residual time series. This number can be an indicator whether
the white noise hypothesis holds or not. Broadly speaking, if the model
residual series exhibits too many turning points, the volatility is too high
to be a white noise. In contrast, if the number of turning points is too low,
there might be a positive correlation between consecutive values which is in
conflict with the white noise assumption.
It can be shown that Υ approximately follows a normal distribution with
mean
μΥ = 2(M − 2)/3 and variance σ2

Υ = 16(M − 29)/90. The hypothesis is
rejected iff ∣∣∣∣ (Υ− μΥ)

σ2
Υ

∣∣∣∣ > N1−α/2 .

Finally, the last category of procedures is based on overfitting. This
approach compares a chosen model with models of higher orders. For
example, consider an ARMA(p, q) model with estimated parameters and
model residuals. Now increase the number of parameters (for instance q to
(q + 1)) and fit an ARMA(p, q + 1) process to the data. The goodness-of-fit
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of the ARMA(p, q) model is not optimal if one of the following scenarios
appears:

• The newly estimated parameters differ greatly from the old parameters.

• The parameters of new order (e.g. (q + 1)) differ greatly from zero, i.e.
the partial autocorrelation of that order is considerably high.

• The variance of the model residuals decreases significantly.

Corresponding to this, Godfrey (1979) and Poskitt and Tremayne (1980)
developed statistical tests of the form

H0 : “A model M provides the best fit.”

versus

H1 : “An augmented model M∗ provides the best fit.” .

3.9. Application of the model

The last phase of the model building procedure is the application of the
model. Assuming that we have determined, estimated and validated an
adequate model for a given sample time series, the forecasting routine is now
straightforward.
Using the estimated innovation variance σ̂2

ε we can easily generate a white
noise of length H, where H denotes the time horizon of the forecast. One
might also use the last data points of the sample vector as starting values
for the forecasting procedure (otherwise they are set to zero). Afterwards,
we apply a filter with the estimated parameters to the white noise and the
starting values and obtain a length H prediction of the time series. Many
software packages provide functions to apply linear filter to a given series of
shocks.



4. A one factor model for medium-term load
forecasting

By the effort of the last chapter, we now have prepared everything to
introduce our load forecasting model. We use a data set of historical data
to build up a model which describes the typical load patterns as precisely as
possible. Afterwards we use this model to extrapolate these data sets into
the future. The model is constructed by the techniques and methods of time
series analysis which were presented in advance. Furthermore, the general
model includes the total grid load as an exogenous factor, hence we refer to
it as a one factor model.

4.1. Database

The historical database consists of customer load, grid load and market
data of the years 2010 and 2011. The intention was to gather as much
customer data as possible for each of the considered industry sectors. As
a consequence, the time horizon is limited to two years, which however is
sufficient for many practical applications. On the one hand, the data history
used for medium-term load forecasting should be at least one year long in
order to capture all seasonalities and characteristics that appear over the
year. On the other hand, it should not exceed two up to three years because
the probability of significant structural changes increases substantially. The
reason why we do not consider data of the year 2012 is simply that we were
not able to procure enough files for representative studies.
As already announced, we divide the customer data into three industry sec-

tors. These sectors are retail industry, three-shift operating industry
and two-shift operating industry. We consider this distribution since
the structural differences between the respective customer’s load profiles
are quite high. Therefore we do a single model building procedure for each
of the sectors. The characterization of the three sectors is more or less

K. Berk, Modeling and Forecasting Electricity Demand, BestMasters,
DOI 10.1007/978-3-658-08669-5_4, © Springer Fachmedien Wiesbaden 2015
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rough, hence we should reflect this choice after model evaluation. We give a
short overview of the database below. For the purpose of anonymity, the
considered customer data is normalized to a yearly total consumption of 1
GW.

Retail industry

The database for the sector retail industry consists 10 different load profiles,
each of which from exactly the same business. For every customer, the data
consists of 70080× 2 data points. That is, a timestamp and the respective
load in kWh for every quarter hour of the years 2010 and 2011.
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Figure 4.1.: Cumulated load profile of retail industry customers. Each grey line de-
scribes a single week of load, the black line is the mean over all weeks.
(Source: statmath GmbH )

The cumulated load profile of all customers is displayed in figure 4.1. As
one can obviously see, the load profile exhibits a very homogenous pattern. In
fact, this feature applies for all single profiles as well. Furthermore the retail
industry sector is the most homogenous among the three chosen sectors.

Three-shift operating industry

We have 8 different load profiles of customers in the three-shift operating
industry. More precisely, half of the profiles belongs to connection technology
industries and the other half belongs to an automotive parts supplier.
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Figure 4.2.: Cumulated load profile of three-shift operating customers. Each grey line
describes a single week of load, the black line is the mean over all weeks.
(Source: statmath GmbH )

Here again each of the 8 data sets consists of 70080× 2 data points. The
cumulated load profile is shown in figure 4.2.
Due to the three-shift operation, the load maintains a certain level during

the weekdays (and the first half of saturday). From an electricity vendors
point of view, this type of load profile is predestined for a high purchase of
baseload products.

Two-shift operating industry

In case of the two-shift operating industry we obtained the smallest database.
It includes load profiles from 3 different customers, each of which consisting
of 70080× 2 data points. All of the three customers can roughly be allocated
to metal industry.
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Figure 4.3.: Cumulated load profile of two-shift operating customers. Each grey line
describes a single week of load, the black line is the mean over all weeks.
(Source: statmath GmbH )
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Figure 4.3 shows the cumulated load of these customers. The level of
load decreases to a certain base load in the nighttime, which is probably
generated through heating, exterior lighting or similar causes.

Grid load data

The total system load of Germany, often referred to as grid load, is an
exogenous factor in our forecasting model. Historical grid load data for
European countries is provided by the European Network of Transmission
System Operators for Electricity (2013). The granularity of the data is one
data point per hour, i.e. 8760 values per year. The usual unit is MWh. One
can see the typical pattern of grid load in figure 4.4. The high load in the
morning and evening hours and the bulge in between them is imputable to
the cumulated household consumption which represents a large part of the
grid load.
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Figure 4.4.: Weekly total grid load (MWh) in 2011. Each grey line describes a
single week of load, the black line is the mean over all weeks. (Source:
European Network of Transmission System Operators for Electricity
(2013))

Market data

The European Energy Exchange (2013) provides a lot of market data and
information for the German, Belgian, Dutch and French market. We use
end-of-day electricity future and spot market data for Germany. The future
data includes daily peak, off-peak and baseload future prices, whereas the
granularity of the spot market data is one price per hour.
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4.2. Electricity load model building

We will now introduce our general electricity load model. Let Ct be the load
of a particular customer at a certain time t. We describe the load by the
following equation:

logCt = Dt + u(G∗
t ) +Rt (4.1)

Here,

• Dt denotes a deterministic load forecast,

• u(G∗
t ) is a function of the residual grid load G∗

t and

• Rt is the residual time series.

Since the right hand side of equation 4.1 could possibly assume negative
values, we model the logarithm of Ct in order to avoid a negative load forecast.
The model does not include a long-term component since in practice it is
rarely the case that the data history for a particular customer is long enough
to analyze the long-term behavior of that customer. Furthermore, economic
influence on the long-term development is partly covered by the function of
the residual grid load. A detailed explanation of all model components is
given below.

4.2.1. Deterministic load forecast

Dt denotes the deterministic part of the load, i.e. the expected load level
E(Ct). We determine Dt by application of a similar-day method (see para-
graph 2.4) to the historical data set.
For formal reasons, we do a re-indexing of the hourly time series (Dt)t:

Let M be the respective time horizon in days. For every hour h of a day we
consider the time series

(Dd,h)d=1,...,M = (Dd∗24+h)d=0,...,M−1 .

In other words, we construct a separate deterministic forecast for each hour
in h = 1, . . . , 24. (Dd,3)d denotes, for instance, the time series of electricity
demand in the third hour of each day and it would consist of 365 values for
a single year load profile. For a fix h in 1, . . . , 24 we compute the expected
load Dd,h through
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Table 4.1.: Overview of dummy variables for similar day method. *Depending on the
customer. **Public holidays in North Rhine-Westphalia.

ϑ1 Mondays (if not a public holiday or a bridge day)

ϑ2 Fridays (if not a public holiday or a bridge day)

ϑ3 Tuesdays, Wednesdays and Thursdays (if not a p. hol.)

ϑ4 Saturdays (if not a public holiday)

ϑ5 Sundays (if not a public holiday)

ϑ6 Winter holiday period*

ϑ7 Summer holiday period*

ϑ8 Public holidays** (Good Friday, Easter Monday,

May 1st, Ascension Day, Whit Monday, Corpus Christi,

Day of German Unity, All Saints’ Day)

ϑ9 Bridge day (Monday before a public holiday)

ϑ10 Bridge day (Friday after a public holiday)

ϑ11 January 1st

ϑ12 December 24th

ϑ13 December 25th and 26th

ϑ14 New Year’s Eve

ϑ15,...26 Indicators for the months

Dd,h =

26∑
j=1

βj,hϑj(d), for d = 0, . . . ,M − 1 . (4.2)

The daily explanatory variables ϑj , j = 1, . . . , 26 are indicators for the
type of day and month, hence they depend on d. The meaning of the
individual dummy variables is explained in table 4.1. For example, if d is the
Day of German Unity, it is ϑ8(d) = ϑ24(d) = 1 and ϑi(d) = 0 for i /∈ {8, 24}.
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The coefficient vectors

βh = (β1,h, . . . , β26,h) , h = 1, . . . , 24

are determined through a dummy multiple regression using historical data.
For example, consider a historical, outlier-cleaned (see section 4.2.2) data
set (C̃d,h) of length N . The regression approach can be written as

⎛
⎜⎝

log C̃1,h

...
log C̃N,h

⎞
⎟⎠ =

⎛
⎜⎝

ϑ1(1) · · · ϑ26(1)
...

...
ϑ1(N) · · · ϑ26(N)

⎞
⎟⎠

⎛
⎜⎝

β̃1,h

...
β̃26,h

⎞
⎟⎠+

⎛
⎜⎝

ε1,h
...

εN,h

⎞
⎟⎠ (4.3)

for every h = 1, . . . , 24, while εh denotes the regression error. We obtain
βh via ordinary least squares. Using this dummy method we are able to
model all deterministic seasonalities of the consumption time series. The
yearly seasonality is covered by the monthly regressors ϑ15, . . . , ϑ26, the
weekly seasonality is covered by the similar days ϑ1, . . . , ϑ14 and the daily
seasonality is covered by the fact that we model every hour of the day with
a separate time series.
After the estimation of the regressors, one can obtain a deterministic hourly

forecast (Dt)t by combining the estimated time series {(Dd,h)d=1,...,M |h =

1, . . . , 24}. Due to that we now assume original indexing for further analysis.
Figure 4.5 shows the grid load and cumulated load profiles of the three

considered industry sectors in 2010. Additionally, it shows the respective
deterministic load resulting from the similar-day dummy regression.
From a visual perspective, the goodness-of-fit seems to be quite high. That

is not surprising as the regression procedure minimizes the residual sum
of squares between the model and the real load. A more significant result
therefore requires backtesting of the regression model. Consequently, we
estimate the coefficient vectors βh with the data sets of the year 2010 and
apply the similar day method to construct a deterministic forecast for the
year 2011. Naturally, the expected load does not cover the real load in its
entirety, that is why we include two additional components in our model.
We want to evaluate the goodness-of-fit of the deterministic forecast Dt

mathematically since visual inspection is not meaningful. A widely known
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Figure 4.5.: Real load profile Ct (left) for the year 2010 versus deterministic trend
Dt (right). From top to bottom: retail industry, three shift operating
industry, two shift operating industry, grid load.

measure is the so-called coefficient of determination, which we already
introduced in section 3.2. In case of the actual topic it is given by

R2 = 1−
∑T

t=1(logCt −Dt)
2∑T

t=1(logCt − C̄t)2
= 1− Variance of residuals

Variance of Ct

where

C̄t =
1

T

T∑
t=1

logCt .

A good model should generate residuals with low variance, hence for a
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high goodness-of-fit R2 ≈ 1 should hold. We computed the coefficient of
determination of the regression (historical) and of the deterministic forecast
for each sector. The results shown in table 4.2 reveal that, as expected, the
goodness-of-fit for the retail industry is the best one. That is due to the fact
that the profiles are more homogenous as in the other two sectors.

Table 4.2.: Coefficient of determination of the regression (historical) and the forecast,
averaged over all profiles in the database.

Industry type avg R2 hist. avg R2 forec.

Retail customers 0.9665 0.9184

Three-shift operating customers 0.8746 0.7248

Two-shift operating customers 0.9126 0.7654

In case of the grid load we computed R2 = 0.9525 for the regression
and R2 = 0.9196 for the forecast which is a quite good result among other
models.

4.2.2. Outlier cleaning

We use outlier-cleaned historical data to determine the deterministic load,
introduced in the last section. We already described a possible outlier
detection algorithm in section 3.1. For the practical implementation we
chose a 145-hour running median since it gave the best results (for our
purposes). Furthermore our analysis revealed that κ = 3 did not perform
well except for retail industry, hence we set κ = 3 for retail customers and
κ = 4 for two-shift and three-shift operating customers.
We also described different techniques of dealing with outliers in section 3.1.

Practically, we decided to use the last technique. That means we remove
all the values which were detected as outliers in a first step. We use this
cleaned data for the regression in 4.3 since the deterministic load should not
be affected by outliers. Afterwards, we use the original data to compute and
analyze the residual load. This procedure has two main advantages:

• The shortening of the original time series due to outlier cleaning does not
hamper the rest of the model building process.
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Figure 4.6.: One year of load for a three-shift operating customer in 2010 with corres-
ponding 145-hour running median filter bands.

• We do not lose information through the removal of values, we just “transfer”
the outlying values from the deterministic to the residual part of the load
process.

The second point also ensures that we do not underestimate the risk of high
load forecasting errors.

4.2.3. Modeling the residual grid load

Since we want to include the residual grid load G∗
t as an exogenous input

factor in our model, we have to find an adequate model for it. At first we
should explain exactly what is meant by residual grid load, though. Let
Gt denote the total grid load, i.e. the total system load in Germany. Let
DG

t be deterministic trend of the grid load, obtained through the similar-day
regression described in section 4.2.1. Then, G∗

t is the residual (detrended)
time series given by

G∗
t = Gt −DG

t .

G∗
t exhibits all the stochastic fluctuations and seasonalities which are not

covered by the deterministic component. Due to the fact that DG
t is the

expected grid load, G∗
t should be a centered process.

The residual load for the year 2010 is displayed in figure 4.7. From a
visual point of view it indeed seems to be a centered process. Also, on the
first sight it looks quite chaotic, yet it still exhibits a strong autocorrelation
structure and slight seasonalities.
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Figure 4.7.: Residual grid load G∗
t in 2010.
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Figure 4.8.: Autocorrelation and partial autocorrelation function of the grid load
residuals G∗

t .

Figure 4.8 shows the autocorrelation and partial autocorrelation function
of the grid load residuals for lags up to three days. The ACF roughly decays
exponentially but shows local “hills” around the lags which are multiples of
24 hours. Hence we assume a 24 hour seasonality for the residual time series.
This assumption is strengthened by inspection of the partial autocorrelation
function.
Before we can start with the actual SARIMA model building procedure,

we have to check the time series for stationarity, first. We introduced the
stationarity test by Dickey and Fuller in section 3.5. We use the function
adftest.m, included in the Econometrics Toolbox of the software MATLAB
(provided by MathWorks (2013)) to compute the ADF test results. Just as
a quick reminder: the ADF test states the hypothesis of a unit root, hence a
test decision of “1” or “TRUE” means we can reject this hypothesis with a
certain significance level α, i.e. the time series is stationary.
The output of the test for several autoregressive orders is shown in table 4.3.

The test decision indicates to reject the unit root hypothesis for all considered
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orders. The p value even shows that we can reject the hypothesis up to a
significance level of 0.001. We can therefore assume that the residual grid
load is stationary.

Table 4.3.: ADF test results for time series of residual grid load for a significance level
of α = 0.01.

AR order Test dec. Test stat. Crit. val. p value
0 TRUE -12.3358 -2.5666 0.001
1 TRUE -15.7145 -2.5666 0.001
2 TRUE -14.7758 -2.5666 0.001
3 TRUE -14.4708 -2.5666 0.001
4 TRUE -13.9952 -2.5666 0.001
24 TRUE -9.6396 -2.5666 0.001
48 TRUE -7.4152 -2.5667 0.001
72 TRUE -6.3902 -2.5667 0.001
96 TRUE -5.7337 -2.5667 0.001

Now we can start with the actual model building procedure. The first
step is to identify proper model orders. We have already decided to choose a
SARIMA(p, 0, q)× (P, 0, Q)24 model because of the autocorrelation structure
of the residual grid load. That means we consecutively have to choose
the order of the four parameters p, q, P,Q. For this purpose, we choose
the automated iterative procedure that we introduced in section 3.6. We
furthermore choose the Bayesian Information Criterion (BIC) for the order
identification since the penalty term for high orders is greater than it is for
the AICC, for example. We compute BIC for all p, q, P,Q ∈ {0, 1, 2, 3}, that
means we compare 44 = 256 models.
The computation results are shown in table 4.4. However, this is just a

part of the table since the complete table has 256 rows. It turns out that BIC
and AICC (and also AIC) lead to the same model decision in this case. This
is the optimal scenario but it does not always occur. The model we should
choose to describe the residual grid load is thus a SARIMA(3, 0, 1)×(3, 0, 3)24
process.
The phase of model identification connects directly to the model estimation

phase, since we already estimated the maximum likelihood parameters for
the information criteria. Following the notation of section 3.4, the ML
estimates are displayed in table 4.5.
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Table 4.4.: Model identification results for fitting a SARIMA(p, 0, q) × (P, 0, Q)24
model to G∗

t . Results of BIC and AICC are shown. The respective min-
imal (optimal) value is displayed in square brackets.

p P q Q BIC AICC
...

...
...

...
...

...
3 3 0 3 134168 134105
3 3 1 0 135285 135236
3 3 1 1 149058 149001
3 3 1 2 140296 140233
3 3 1 3 [133903] [133832]
3 3 2 0 136298 136241
3 3 2 1 149063 149000
3 3 2 2 149063 148992
3 3 2 3 134190 134112
...

...
...

...
...

...

Table 4.5.: Estimated parameters for the SARIMA(3, 0, 1)× (3, 0, 3)24 model.

φ1 φ2 φ3 Φ1 Φ2 Φ3 θ1 Θ1 Θ2 Θ3

.494 .573 -.153 -.235 .557 -.058 .701 -.472 -.87 .354

The last step of model building is the diagnostic checking. That is, we
have to check the goodness-of-fit of the chosen model to the real data.
We follow the conventional approach of Box et al. (2008), i.e. inspection
of the autocorrelations of the model residuals. The model residuals (also
referred to as “model error” or “innovations”) can be obtained through
“backward filtering”, for example. Many software packages include automated
computation of the innovations. We plotted the autocorrelation and partial
autocorrelation function of the model residuals in figure 4.9. Note that we
cut the y-axis at 0.3. Visually, we can no more detect any autocorrelations
in the model residual time series. Furthermore, the dashed lines denote the
bounds ±1.96/

√
M where M is the sample size (8760 hours in this case).

Following the sample ACF/PACF test, introduced in 3.8, the model provides
an adequate fit if more than 95% of the autocorrelations lie within these
bounds.
This holds for the innovations of the SARIMA(3, 0, 1)× (3, 0, 3)24 model.
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Figure 4.9.: Autocorrelation and partial autocorrelation function of the
SARIMA(3, 0, 1) × (3, 0, 3)24 model residuals. Bounds at ±1.96/

√
M

with M = 8760 hours (one year). Note that the y-axis is cut at 0.3.

Also, the ACF and PACF are nearly similar which is due to the fact that
there is no real correlation between the lags.
To sum this up, we can say that we eliminated all seasonalities and

correlations that were left in the residual grid load after the detrending
routine through an appropriate SARIMA model. The autocorrelations of
the model innovations confirm the goodness of the model which has already
been indicated by the information criteria.
There is one more thing to check before we finish with the model building

procedure and actually generate a forecast. That is the distribution of the
model residuals. So far we always assumed to have a white noise model
error, which is an independent, normally distributed vector with mean zero
and a certain variance.
The empirical histogram of the model innovations is shown in figure 4.10.

The first picture shows a fit of the density of a normal distribution to the
histogram. Obviously, the kurtosis of the density is too low for an accurate
fit. One can also slightly detect that the normal distribution underestimates
the tails of the empirical distribution. This is dangerous because it would
unlikely generate a forecast with peaks as high as they actually were to be
found in the historical data. Thus we get a risk of higher prediction errors.
As a consequence we also fitted a heavy-tailed distribution to the histogram.

The intuitive idea for a heavy-tailed distribution is mostly a student’s t-
distribution. Fortunately this approach already performs very good, as one
can see in the second histogram of figure 4.10. As we already stated in
section 3.7 we can also model the estimated SARIMA(3, 0, 1)×(3, 0, 3)24 with
innovations that do not follow a normal distribution under the condition
that mean and variance of the distribution exist. This condition holds
since the degree of freedom of the fitted t-distribution is 4. We estimate
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Figure 4.10.: Fit of a normal distribution (top) and a student’s t-distribution (bot-
tom) to a histogram of the SARIMA(3, 0, 1)× (3, 0, 3)24 model residuals.
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Figure 4.11.: Residual grid load (first 100 days of the year) with two forecasted scen-
arios (top row). Total grid load with two forecasted scenarios (bottom
row).

the parameters of the fitted t-distribution and generate complying model
residuals.
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Now we are able to combine all results of the model building procedure
and generate forecast scenarios. We compute t-distributed innovations in a
first step and use a linear filter to obtain SARIMA(3, 0, 1)× (3, 0, 3)24 time
series. Since we used historical data of 2010 for the model estimation we now
create a forecast for the year 2011. Figure 4.11 shows the real consumption
in the first 100 days of 2011 and two possible scenarios for the rest of the
year. Here, the top row shows the residual grid load G∗

t and the bottom
row shows the total grid load Gt = DG

t + G∗
t . In the first row one can

clearly see the heavy tails of the residual grid load and also of the generated
innovations.

4.2.4. Residual grid load as an exogenous factor

An individual customer’s load profile is naturally correlated to the total
system load. The level of correlation however depends on the sector and
can also be negative. A high part of the correlation is covered by the
deterministic part of the customer’s load and the grid load. But there
can also be a correlation between the respective residuals which we want
to analyze consecutively. We use the historical data set and obtain the
deterministic load as shown in section 4.2.1. The historical residual log
demand C∗

t of the customer is given by

C∗
t = logCt −Dt

and the residual grid load is still denoted as G∗
t . When analyzing the

correlation we differ between the peak hour load, off-peak hour load and
weekend load profiles. Due to structural features of a particular customer it
could occur that there is a positive correlation in, for example, peak hours
and a negative correlation in off-peak hours. These different correlations
would neutralize each other to a certain extent if we would consider the whole
profile. This would cause a loss of information. Therefore, this distinction
seems reasonable.
We start the inspection of dependencies between C∗

t and G∗
t with a visual

inspection of the scatter plot in figure 4.12. The scatter plot shows the
peak hour residual grid load on the x-axis versus the peak hour residual log
demand of the cumulated load profile of three-shift operating customers on
the y-axis. Apart from some extreme outliers one can spot a quite linear
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Figure 4.12.: Scatter plot of the peak hour residual grid load G∗
t and peak hour re-

sidual log demand C∗
t of the cumulated load (three shift operating in-

dustry).

dependence. The correlation coefficient is 23.16%. This value could be
questioned as it is not as high as one would expect a clear correlation to
be. But we have to remember that we covered a big part of the correlation
structure through the deterministic component and we are now inspecting
the remaining residuals. Hence this correlation is high enough to not ignore
it.
Due to the linear structure of the dependence we decided to choose u(G∗

t )

to be a linear function of the form

u(G∗
t ) = λ0 + λ1G

∗
t .

We estimate the parameters λ0 and λ1 via robust regression (see section 3.2)
since a linear regression would be too susceptible to the outliers. The
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empirical regression approach is

C∗
t,Ω = λ̃0,Ω + λ̃1,ΩG

∗
t,Ω + εt,Ω , t = 1, . . . , T

where Ω ∈ {peak, off-peak,weekend} and T is the time horizon of the his-
torical data. The so estimated regression parameters and the respective
correlation coefficients for the cumulated load profile of each sector are
displayed in table 4.6. Detailed results (i.e. for each customer in the data
set) are given in A.1.

Table 4.6.: Estimated correlation coefficients (in %) and parameters (multiplied by
105) for robust regression of residual grid load and residual cumulated log
demand per business sector.

Industry ρpeak ρoff ρwe λ0,peak λ1,peak

Retail -14.11 -18.46 -25.97 16.18 -0.36
2 Shifts 22.66 14.1 25.18 552.15 0.68
3 Shifts 23.16 31.08 24.36 195.96 0.31

Industry λ0,off λ1,off λ0,we λ1,we

Retail -309.61 -0.46 -420.45 -0.78
2 Shifts 931.97 0.6 295.27 2.31
3 Shifts 595.22 0.22 1109.06 0.55

4.2.5. Modeling the residual time series

The last part of our model is the residual time series Rt. It is chosen to
cover all possible correlations and seasonalities of the stochastic part of
the load which are not already covered by the deterministic component Dt

or the residual grid load regression u(G∗
t ). Detailed analysis of historical

data reveals that in almost all cases there is indeed a left correlation and
seasonality of the residuals. Therefore it is unjustifiable to model these
residuals as independent and identically distributed, e.g. a white noise.
Consider a customer from a machine intensive industry for instance.

Unplanned machine outages are part of the residual time series and can not
be explained by the deterministic forecast. Since a particular machine has a
certain time of repair, the load will be lower during the time immediately
following the outage. Hence, there is an autocorrelation of the residuals
which has to be described by our model. These autocorrelations however
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strongly depend on the business sector of the customer. For example, a
customer in retail industry is less susceptible to machine outages but may
have to face other scenarios which randomly change the electricity demand
pattern. In this section we describe the model building for each of the
three sectors separately in order to take care of their respective exceptional
features.
The model building procedure is quite similar to that which we went

through in section 4.2.3. At first, we obtain the historical residual time series
via

Rt = logCt −Dt − u(G∗
t )

with historical customer consumption Ct, deterministic load Dt, historical
grid load residuals G∗

t and corresponding regression function u(·). As usual,
we use the data for the year 2010 of each customer in the data set as historical
database.
Since our data set includes several customers for each of the three sectors

there are two different approaches to modeling the residual load, both of
which with their own special advantages and disadvantages.

1. Proceed with a separate automated model identification and estimation
algorithm for each of the single customers in the data set.

2. Treat the cumulated demand of each sector as a synthetic profile which
represents the average customer’s load in that particular sector, build
a model for the respective residual load and apply that model to all
customers in the data set.

The advantage of the first approach is obviously the accuracy of the models
which is achieved through modeling each of the customers separately. The
disadvantage is that this procedure requires high computation effort and the
computation time increases fast. The idea of synthetic load modeling allows,
in contrast, efficient computation. The problem with this approach is that
the models are only representative as long as the different load profiles in a
particular sector exhibit characteristics which are similar enough to justify
synthetic modeling. Since the ambition of this thesis is to develop a load
forecasting model for customers in various business sectors, we follow the
second approach and develop a general model for each of the three sectors.
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Retail customers

As already stated, the model building procedure for the residual load Rt

is quite similar to modeling the grid load residuals in section 4.2.3. We
exemplarily describe the procedure for the cumulated (synthetic) load of the
retail industry profiles in our database. The historical residual time series
for 2010 is displayed in figure 4.13, the corresponding autocorrelations in
figure 4.14.
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Figure 4.13.: Residual time series Rt of the retail customers’ cumulated load profile
in 2010.
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Figure 4.14.: Autocorrelation and partial autocorrelation function of the residual load
Rt of the cumulated retail customer’s consumption.

The autocorrelation function decays exponentially but may also exhibit
a slight seasonality. Since the ADF-test indicates stationarity we choose a
SARIMA(p, 0, q)× (P, 0, Q)24 model for the automated model identification
procedure. We compute the BIC for all p, q ∈ {0, 1, 2, 3, 4} and all P,Q ∈
{0, 1, 2}. That means estimation and comparison of 225 models. Note that
through the case P = Q = 0 we also include ordinary ARMA(p, q) models
in the identification process.
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Figure 4.15.: Autocorrelation and partial autocorrelation function of the SARIMA
model residuals. Bounds at ±1.96/

√
8760.
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Figure 4.16.: Histogram of the model residuals with a student’s t-distribution fit.

The Bayesian Information Criterion indicates to use a SARIMA(3, 0, 3)×
(0, 0, 2)24 model in this case. The autocorrelations and partial autocor-
relations of the model residuals are shown in figure 4.15 with additional
±1.96/

√
8760 bounds. Most of the autocorrelations fall within these bounds,

hence we can assume that this model provides a good fit. Figure 4.16 displays
the empirical histogram with a t-distribution fit. The degree of freedom for
the fitted t-distribution is greater than 2, which guarantees the existence of
a variance. Hence, we can generate t-distributed innovations as considered
in section 3.7. This technical assumption also holds for the two other sectors,
in addition.
Table A.2 shows the parameter estimation results of the application of

a SARIMA(3, 0, 3)× (0, 0, 2)24 model to the residual time series Rt for the
cumulated profile as well as for each of the 10 single customers in the database.
The table reveals that the second seasonal moving-average parameter Θ2

could eventually be omitted for the sake of parsimony.



74 4. A one factor model for medium-term load forecasting

Two shift operating customers
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Figure 4.17.: Visual model building results for the residual load Rt of two-shift op-
erating customers (cumulated load). Top: Residual time series and
SARIMA model residuals with a t-distribution fit. Middle: ACF and
PACF of the residual time series. Bottom: ACF and PACF function of
the SARIMA innovations. Bounds at ±1.96/

√
8760.

The model building results for the residual time series of the two-shift
operating customers’ cumulated load are displayed in figure 4.17. The ADF-
test indicates stationarity and the BIC indicates to use a SARIMA(4, 0, 4)×
(1, 0, 1)24 model. As for the retail industry, we did a model identification
procedure for every p, q ∈ {0, 1, 2, 3, 4} and all P,Q ∈ {0, 1, 2}. The ML
parameters for this particular model are listed in the appendix (table A.4).
Further inspection reveals that the ML parameters for customer 1 and 3

are very similar, whereas customer 2 falls out of the series. Furthermore,
the seasonal autoregressive parameter Φ1 and the fourth moving-average
parameter θ4 are close to zero for every customer. Hence, one might think
about a model reduction to (4, 0, 3)× (0, 0, 1)24.
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Figure 4.18.: Visual model building results for the residual load Rt of three-shift
operating customers (cumulated load). Top: Residual time series and
SARIMA model residuals with a t-distribution fit. Middle: ACF and
PACF of the residual time series. Bottom: ACF and PACF function of
the SARIMA innovations. Bounds at ±1.96/
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Three shift operating customers

At last, figure 4.18 shows the model building results for the residual time series
of the cumulated load of three-shift operating customers. The identification
process suggests to use a SARIMA(2, 0, 0)× (2, 0, 2)24 model for the residual
time series. The respective parameters are displayed in table A.3.
The parameters in this case seem to be quite stable (with one exception),

as the table reveals. That is kind of surprising since the load profiles of
three-shift operating customers do, at first sight, not look as homogenous
as load profiles in the retail industry sector, for example. However, the
residual time series of the considered customers appear to have very similar
characteristics. The value of the second seasonal autoregressive parameter
Φ2 is very small for all of the customers. Hence, a reduced (2, 0, 0)×(1, 0, 2)24
model would possibly provide a similar fit.
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4.2.6. Overview of the model

Let us sum up all considerations of the last sections to formulate and
describe the complete medium-term load forecasting model. We analyzed
every component of the model separately and are now able to combine them
in order to obtain a load forecast for every customer in the three chosen
business sectors.
As already presented in equation 4.1, our one factor load forecasting model

is given by

logCt = Dt + u(G∗
t ) +Rt .

The three components are modeled as follows:

• Dt is a deterministic forecast, obtained through a similar-day dummy
regression of the form

Dd,h =

26∑
j=1

βj,hϑj(d) .

• u(G∗
t ) is a linear regression function using the residual grid load G∗

t as a
regressor. We have

u(G∗
t ) = λ0,Ω + λ1,ΩG

∗
t

where Ω ∈ {peak, off-peak,weekend}, i.e. the regression parameters can
depend on the time and type of the day.

• The residual grid load G∗
t is modeled as a

SARIMA(3, 0, 1)× (3, 0, 3)24 process with t-distributed innovations.

• The residual time series Rt is described through a SARIMA(p, 0, q) ×
(P, 0, Q)24 model with t-distributed innovations. It is

(p, 0, q)× (P, 0, Q) =

⎧⎪⎪⎨
⎪⎪⎩
(3, 0, 3)× (0, 0, 2) for retail,

(4, 0, 4)× (1, 0, 1) for two shift operating,

(2, 0, 0)× (2, 0, 2) for three shift operating

customers. Hence the number of parameters depends on the respective
business sector.
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Adaption of the model means estimation of 26 · 24 (deterministic part)
plus 6 (grid load regression) plus p+ q + P +Q (residual part) parameters
with historical customer data. The historical data should include at least
one year of hourly load for the similar-day regression. But it should also not
exceed the horizon of two up to three years because otherwise the probability
of significant structural changes increases substantially.

4.3. Model simulation

Having described the complete model building and calibration procedure
in the last paragraph, we will now employ the model to actually create
medium-term load forecasts. In order to obtain practical results, we use
our database and choose a certain forecasting horizon. In fact we use the
historical data of the year 2010 to estimate the model parameters and create
a forecast for the year 2011 afterwards. We could also use both years of
data to estimate the model but in that case we would not have real data
to evaluate the forecasting results, since our database is limited to Jan. 1,
2010 until Dec. 31, 2011.
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Figure 4.19.: Real load (left) and deterministic forecast Dt (right) for the week of
Apr. 11 to Apr. 24, 2011 for a customer of the retail industry. The
second friday is Good Friday, that’s why the load is low on that week-
day.

For instance, let us consider a particular retail customer of our database.
We calibrate our model with the data of 2010 and create a forecast for the
year 2011. Figure 4.19 shows the real load of two weeks in 2011 versus
the deterministic forecast for that period. The deterministic forecast is the
expected load of every hour and is determined through analysis of similar
days in the historical data set. However, it does not include the risk of
deviation from the expected level, i.e. the stochastic fluctuation of the profile.
An example of this fluctuation can also be discovered in the plot, namely
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on the second Monday. There, one can easily detect the high negative spike
during the afternoon hours.
These fluctuations can not be predicted exactly (since they are stochastic)

but at least the risk can be assessed via Monte-Carlo simulation of many
different scenarios. The total forecast Ct includes both the expected load
and the stochastic part. Figure 4.20 shows two different load forecasts, each
of which including a different scenario of fluctuations from the mean load
level. Since the residual time series is a centered process, the mean time
series of several forecasts should again be close to the expected load.
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Figure 4.20.: Two forecast scenarios for the week of Apr. 11 to Apr. 24, 2011 for a
customer of the retail industry.

What can be seen here is that the scenarios are more volatile than the
deterministic forecast. Also, the second scenario includes a downward spike
on the Friday of the second week which is at least similar to that which we
talked about before.
We might also compare real and predicted demand in total: Figure 4.21

shows the real load of the customer for the whole year of 2011 at the top
and two forecast scenarios. There are different things to discover from a
visual perspective. On the one hand, the real load is quite homogenous with
an increasing level during the summer months. This is due to cooling of
food and drinks. On the other hand, the profile exhibits load peaks but they
seem to appear mostly in a positive form, i.e. peaks at the top of the profile.
The bottom level of load is even more homogenous without any significant
downwards peaks.
Obviously, the forecast assumes these characteristics. The higher level in

summer is generated through the deterministic part of the forecast. The
load peaks are produced by the grid load regression as well as the residual
time series. The concept of primarily positive peaks is well adapted as one
can see. If we would model the residual time series Rt as a white noise we
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Figure 4.21.: Real electricity load in 2011 (top) and two forecast scenarios (bottom).

would not obtain this structure, since a white noise process does not contain
any autocorrelation structure. Therefore, the negative peaks would be as
likely as the positive peaks.
Forecasting electricity demand for retail industry customers is compar-

atively easy since their load profiles are very homogenous. Therefore we
consider a three-shift operating customer as a further example.
In figure 4.22, one can clearly see the typical structure of a three-shift

operating weekly load profile. The load maintains a high base level during
the week and only decreases on weekends. Since the profile is more chaotic
and unpredictable, the fit of the expected load to the real load is not that
good anymore, but still satisfying. For example, the peak on the Friday of
the first week is not expected, hence it has to be covered by the stochastic
components of the model. By adding these to the expected load we again
get different forecast scenarios (bottom picture) which include the risk of
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Figure 4.22.: Top: Real load (left) and deterministic forecast (right). Bottom: Two
forecast scenarios. Both for the week of Apr. 11 to Apr. 24, 2011 for a
customer of the three-shift operating industry.

deviation from the expected load. The different scenarios seem to cover the
real load quite good, i.e. they include all eventualities.
The real load profile of the year 2011 and two different forecasts are

displayed in figure 4.23. The structure of that profile is very different from
the retail customer’s. It is well visible that there are two base load levels,
one during the weekdays and one on the weekends. Also, there is a period
of low load in April, this happens to be Easter weekend, and a period of low
load during Christmas holidays. These periods are well predictable since we
include dummy variables for public holidays as well as for a winter holiday
period in the similar-day regression. One can see that the forecast scenarios
exhibit the same periods of low demand.
In contrast, the drop of the demand to zero level at the beginning of

October was not predicted. The day of this event is October 3rd, the Day
of German Unity. Although it is a public holiday, historical data did not
indicate a total breakdown of electricity demand on that day. A possible
explanation would be a power outage in that region for a few quarter hours
or also a data error.
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Figure 4.23.: Real electricity load in 2011 (top) and two forecast scenarios (bottom).

4.4. Susceptibility to structural changes

The analysis of the forecasting results also revealed a weak point of the
model. The evaluation showed that the model performs well for customers
who’s consumption pattern can be characterized in terms of yearly, weekly
and daily seasonalities. It extracts these seasonalities from historical data
and pretends that the customers electricity demand follows a similar pattern
in the future.
As a consequence, the model is very susceptible to changes in the structure

of a customer’s consumption behavior. Structural changes include an increase
or decrease of mean level of load as well as changes of working times, for
example opening hours or the shift system.
Figure 4.24 shows the demand in the years 2010 and 2011 of a three-shift

operating customer from our database. Obviously, the average load level in
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Figure 4.24.: Total electricity demand for the years 2010 and 2011 of a customer in
the database.

the first five months of 2010 as well as in the last four months of 2011 is
much lower than it is in the other months. A possible explanation could be
a rising number of orders in 2010 which forced the enterprise to extend its
working capacities. Maybe they had to run some additional machines which
caused the increasing demand during July 2010 to August 2011.
The problem is that based on the analysis of historical data, assume the

year 2010 as data set, the model predicts the same seasonal behavior for the
next year. That is, comparatively low consumption in the first half and high
consumption in the second half of the year. Since it is the completely opposite
case for 2011, the deterministic forecast performs quite badly (figure 4.25).
It is unlikely that, for this particular customer, the increasing level of

load is a kind of seasonality which spreads over several years. Therefore,
extending the historical database to two or even more years would not have
fixed the high deviation of real and expected load. Without knowledge of
internal information these structural changes are barely predictable.
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Figure 4.25.: Real load (solid) and deterministic forecast Dt (dashed) for the week
of Apr. 11 to Apr. 24, 2011 for a three-shift operating customer. The
deterministic forecast does not fit well due to structural changes of the
customer’s consumption behavior.
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There are two possible solutions for handling and predicting changes in
the electricity demand level. The first one includes further cooperation with
the particular customer. Since some structural changes are predictable on
a medium-term horizon, the information of an expected behavior variation
could be included in the model. If the customer plans to expand his pro-
duction by a factor of 10% in the next year and the electricity demand can
be assumed to be directly dependent on the production, then this planned
change can be considered by the model. The second solution is to treat
demand changes as a stochastic component of the model. For instance, if we
expect the load level to change within ±5% in the forecasting horizon, we
can multiply each created scenario by a random factor, affecting the total
level of demand. With this method we are at least able to assume the risk
of changes in the consumption pattern from a Monte Carlo point of view.



5. Retail contract evaluation and pricing

An important application of medium-term load forecasting for specific in-
dustry customers is the evaluation and pricing of retail contracts. Retail
prices are directly deduced from the electricity prices at the wholesale market.
They normally consist of a basic price (we introduced the basic price in
equation 2.1), a risk premium and a sales margin. The risk premium depends
on several risk factors which are linked to the end customer’s consumption
behavior. Medium-term load forecasts are necessary to evaluate the risk of
a customer’s specific load profile respectively to determine the risk premium.
We will give a short overview on the idea of retail pricing and the role of
MTLF in this chapter. We refer to the work of Burger and Müller (2012)
which we also advise for further information on this topic.
As already stated, the retail price P (t) can be decomposed into

P (t) = B(t) +R(t) +M ,

where B(t) is the basic price (deduced from the wholesale market), R(t) is
the risk premium and M is the sales margin. The margin is established by
the supplier and can be seen as a fix part of the price. The basic price is
computed trough application of the hourly price forward curve (see Burger
and Müller (2012)) on the expected load.
A possible concept for the construction of a risk premium is the so-called

risk-adequate return on capital (RAROC). For a given contract, let

RAROC =
expected return
economic capital

!≥ μ

where μ is the hurdle rate. The economic capital is the allocated capital
which is necessary to cover the expenditures in worst cases. It can be
determined by adequate risk measures like the value-at-risk (VaR) via
Monte-Carlo simulation of the total costs of a retail contract.

K. Berk, Modeling and Forecasting Electricity Demand, BestMasters,
DOI 10.1007/978-3-658-08669-5_5, © Springer Fachmedien Wiesbaden 2015
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Assume we have a customer whose retail contract is to be priced for the
year 2011 based on consumption data of the prior year. In order to use the
RAROC approach we have to generate energy cost scenarios for that special
year. Simulation of the costs requires further effort:

• Forecasting the customer’s load.

• Forecasting the spot market prices.

• Forecasting the imbalance prices.

We introduced an adequate model for the medium-term load of a customer
in the last paragraph. Therefore the first point is easy to realize. The second
point is the modeling of spot prices. Electricity price forecasting is a well
known topic in energy economics. Since it is not the subject of this thesis
we refer to literature for further information. Burger et al. (2004) describe a
model for spot market price simulation using the grid load as an exogenous
factor. Wagner (2012) describes a similar model using only the residual grid
load (which denotes the grid load minus renewable production in this case)
as a factor. Imbalance prices belong to the balancing and reserve market (see
chapter 1) and they are determined by the associated transmission system
operator. They denote the costs of balancing the deviation of procured and
consumed energy. Usually, these prices differ from the actual spot market
price since they include penalty costs. Forecasting of imbalance prices can
be done by historical simulation.
We generate 1000 scenarios of each of the components and obtain an

electricity price distribution for the individual customer. The calculated
price depends on the buying strategy, of course. In this case, we simulated the
purchase of a baseload future to cover the expected mean hourly consumption,
the residual demand is purchased at the spot market. The resulting empirical
price distribution is displayed in figure 5.1. It shows the calculated energy
price in cent per kWh versus the absolute frequency of scenarios giving
that price. The dashed lines show the expected price K, the 99% VaR and
the real price. The real price is the price which would have been achieved
applying this particular buying strategy and it is calculated by using the
real consumption and real market data of 2011.
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Figure 5.1.: Empirical price distribution for an individual customer. Electricity price
in cent per kWh versus absolute frequency (1000 simulations). Expected
price, 99% VaR and real price.

We can apply the RAROC approach to this price distribution to obtain a
retail price. Following Burger and Müller (2012), the RAROC price (without
sales margin) is now given by

PRAROC = expected price+ hurdle rate · risk
= K + μ · (99% VaR−K) . (5.1)

Hence, the so established retail price is immediately connected to the
empirical price distribution. That means that a bad load forecast will have
a negative influence on the risk evaluation and therefore possibly result
in a loss for the supplier. The RAROC price contains a risk premium for
forecasting errors caused by the stochastic volatility of a load profile. It does
not include a risk premium for further risk factors like political, credit or
operational risks.
We tested the effects of changing the customer load forecasting method

5. Retail contract evaluation and pricing
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from a supplier’s point of view for the customers in our database. We
generated 1000 energy cost scenarios for the each of the following three
different load forecasting models.

1. Using a pure deterministic forecast

logCt = Dt .

2. Using the model
logCt = Dt + u(G∗

t ) + εt ,

where (εt)t is a white noise.

3. Using our model 4.1

logCt = Dt + u(G∗
t ) +Rt .

For each customer, model and scenario we calculated PRAROC (5.1) using
a hurdle rate of μ = 0.2. We furthermore computed the real price PREAL for
each customer using the load and market data of the year 2011. Afterwards,
we obtained the relative deviation τ of the real price from the RAROC price
via

τ =
PREAL − PRAROC

PRAROC
.

From a supplier’s point of view it is important to cover the risk of a portfolio
of customers. Therefore we calculated the mean relative deviation τ̃ for
the portfolio of 21 customers in our database. In fact, the results of our
analysis revealed that τ̃ > 0 for the first two models. The results are given
in table 5.1.

Table 5.1.: Mean relative deviation of real price from RAROC price for all customers
in our database.

Model 1 Model 2 Model 3

τ̃ 3.34% 0.91% -0.49%

To interpret this, the risk assessment of the first two models is not good
enough to cover the portfolio risk with the RAROC approach. Without sales
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margin, the simulated business results in a loss of 3.34% in case of model
1 and 0.91% in case of model 2 for the supplier. Only with application of
model 3, which is our one factor model of section 4.2, the portfolio risk could
be covered adequately.
It is obvious why the risk assessment of a pure deterministic forecast

(model 1) is bad. It represents the expected load and does not include
any stochastic fluctuations. The reason why model 2 underestimates the
risk is that the residual time series is modeled as a white noise. This is
inadequate for two special reasons: on the one hand we saw that the model
residuals follow a distribution which can not properly be described by a
normal distribution. On the other hand, the assumption of independence
of the residual time series is wrong, since it still exhibits autocorrelations.
These two factors result in an underestimation of risk. In fact, for 5 out of
the 21 customers in the portfolio (≈ 24%), the real price even exceeded the
99%-VaR generated with model 2.
In case of our model 3 the backtesting procedure works out well. The

RORAC price covers the portfolio risk and provides a total profit of 0.49%
excluding sales margin and possibly other risk premiums. This result shows
that our one factor load forecasting model provides a good risk assessment
for retail pricing purposes. Furthermore, comparison with the results of the
two “slimmed down” models sort of justifies our model choice.
The empirical price forecasting routine is not only valuable for suppliers

but also for end customers. It allows transparent evaluation of a customer’s
retail contract and the risk of his consumption pattern. It provides the
customer with a fair retail price. Comparing this price (eventually added by
fix energy price components like taxes and levy) to the actual contract price,
he can determine the sales margin of the supplier. These considerations
yield a basis for contract negotiations.
Summarized, we can conclude that adequate load forecasting models for

end customers are indispensable for suppliers. They can however also be a
powerful tool for the customers themselves.

5. Retail contract evaluation and pricing



6. MATLAB implementation

The results of this thesis, i.e. the whole model building results as well as plots
and graphs were obtained with the software package MATLAB (MathWorks
(2013)). In the course of the development of this work, a lot of functions were
written to obtain the required results. Furthermore, we created a graphical
user interface (GUI) for the sake of handling simplicity. In the end we
developed a software which is able to use a given database of customer load
data for different sectors to run a complete model building procedure and
apply the chosen model to create load forecasts. In the meantime, the user
can follow the procedure visually and decide whether or not the forecasting
model is adequate.
This chapter gives a short overview on the final version of the software.

Some of the core functions of the program are already provided by MATLAB
(compatible toolboxes assumed) and are roughly described in section B. The
graphical user interface is shown in figure 6.1.

Input

The GUI exhibits some input panels and checkboxes which can be changed
before the start of the application.

• File selection: The two drop down panels allow the user to choose a
business sector and a particular customer/file for which the model building
procedure should be done. One could also choose the option “All files” to
execute the application for all customers of the specific sector’s database.

• Outlier cleaning settings: The lag of the running median which is used
for outlier cleaning can be set here.

• Model building settings: The user can set the number of parameters
p, P, q,Q and the season s for the SARIMA model building process. Fur-
thermore he can decide if the application should run a model identification

K. Berk, Modeling and Forecasting Electricity Demand, BestMasters,
DOI 10.1007/978-3-658-08669-5_6, © Springer Fachmedien Wiesbaden 2015
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procedure for all SARIMA models with lower or equal order and determine
the best model via information criteria (which can be chosen out of AIC,
AICC and BIC), or if it should build a model with that exact number of
parameters. Note that the program will do an ordinary ARMA model
building if the season s is set to zero.

• Parameter import: Since the model identification and estimation pro-
cess is CPU-intensive, the user can decide whether the results of a prior
model building procedure should be imported or not. Every time the
program finishes a model building it saves all results and parameters for
that customer (or for the residual grid load).

• (De)activate pausing: If the user wants to, the application pauses right
after every new graphic so he can analyze the single steps and results of
the procedure.

Operational sequence

After choosing a file and setting up parameters, the algorithm can be started
by pressing the respective button. The main function will now execute several
routines which together form the whole model building and forecasting
process. The sequence of routines which is called at every execution of the
application is roughly described below:

1. Data import: When the procedure starts, all relevant data is loaded in
a first step. That is market data, grid load data and customer data. The
database is described in section 4.1.

2. Outlier detection and cleaning: Removal of outliers in both the
customer’s load and the grid load time series.

3. Detrending data: Computation of the deterministic load Dt for the
customer and DG

t for the grid load.

4. Grid load regression: Linear regression between residual grid load and
detrended customer demand. ML estimation of regression coefficients.

5. Computation of residual time series: Obtain the empirical residual
time series.
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6. Model estimation: Identify an adequate SARIMA model and estimate
parameters for the residual time series and the residual grid load.

7. Model validation: Check the chosen models through inspection of
the ACF and PACF of the model innovations. Also, fit a student’s
t-distribution to the innovations and determine distribution parameters.

8. Forecasting: Combine all results to create load forecasts. Eventually
compare the forecasted scenarios with real load (backtesting).

Each single step of the procedure is documented visually inside the axes of
the GUI. For example, the user can inspect the autocorrelations of the model
residuals during the operation and therefore detect unsatisfying results early.
Note that stage 6 of the sequence is by far the most CPU-intensive function

of the whole application. That is due to the fact that a model identification
routine for SARIMA models of order (p, 0, q)× (P, 0, Q) or lower requires
estimation of (p+ 1)(q + 1)(P + 1)(Q+ 1) models. Hence for fixed q, P,Q,
increasing the maximum autoregressive order p by 1 means estimation of
(q+ 1)(P + 1)(Q+ 1) additional models. Also, the computation time for the
estimation of a single model naturally increases with higher model orders.
Therefore we recommend to use orders of 4 or less for the non seasonal
parameters and orders of 3 or less for the seasonal parameters.

Output

The output of the application can be divided into the categories graphics,
tables, variables and forecasts. Graphics include all visual results of the
whole procedure, starting with the load profiles of database customers and
ending with forecast scenarios. The tables include the numerical results,
e.g. the ADF-test statistics and decisions, the BIC model identification
results and the estimated SARIMA parameters. The plots are printed as
Encapsulated PostScript (.eps), the tables are saved as Comma-separated
values (.csv). The variables are saved as .mat files (MATLAB variables)
and contain all model building results at once. This is important since the
identification and estimation process takes the majority of computation time
of the application. For several executions it is therefore useful to save the
results and load them later. Finally, forecast scenarios (a default number of
5 per customer) are saved for further analysis.

6. MATLAB implementation
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Summary

The developed application provides an automated load forecasting procedure.
With nothing more than a customer’s electricity demand time series, it
performs a complete model building and forecasting routine automatically
(applying the one factor model introduced in 4.2). Since the program was
initially developed to provide the results for this thesis, it is limited to a
certain degree. That means for example, the format of customer data in the
database is restricted to the format that we used. The algorithm also works
with only three business sectors so far. However, it could be easily extended
in the course of future work. So far it provides the desired results and fulfills
its main purpose, the model building for business customers.
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Figure 6.1.: Graphical user interface of the developed automated load forecasting
application.

6. MATLAB implementation



7. Conclusion and outlook

In the course of this thesis, we introduced a possible model for medium-term
forecasting of electricity demand for industrial end customers. We give a
short summary of the most important results in this chapter and indicate
potential enhancements or directions of further research as well.
In the first two chapters, we described the cornerstones of energy economy

in enterprises and pointed out the paramount importance of adequate load
forecasting models for energy management from both the supplier’s and the
customer’s point of view.
After we established the mathematical background in chapter 3, we fol-

lowed with the introduction of a one factor medium-term load forecasting
model for industrial end customers in chapter 4. This model is the major
result of this thesis. It is constructed out of three main components which is
a deterministic component, a function of the residual grid load and a residual
time series, respectively. The deterministic component is established through
a similar-day approach, hence it covers the characteristic seasonalities of
historic customer load profiles. That is specifically a daily, weekly and yearly
seasonality. We furthermore choose a linear robust regression approach
for the function of the residual grid load, which is the exogenous factor in
our model. The grid load exhibits similar seasonal characteristics to those
from end customers but it additionally maps economical features up to a
certain extent. Using the residual grid load as a regressor we are able to
model the impacts of significant economical changes on the customers load.
The last component of the model is the residual time series. Our analysis
revealed that the residuals still exhibit significant autocorrelations and slight
seasonalities. We cope with this fact through an adequate seasonal ARIMA
model, while the actual model order depends on the respective business
sector of the customer.
We applied the model to a historical portfolio of customers and compared

the so created forecasts to the real consumption. Furthermore, we described
a possible application of our model for the purpose of risk-adequate pricing of

K. Berk, Modeling and Forecasting Electricity Demand, BestMasters,
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retail power contracts (chapter 5). In a backtesting procedure, we evaluated
the risk-adjusted prices determined with our model and with two weakened
models. The results revealed that our model gave the best performance
and covered the portfolio risk of the present database properly. Hence we
provided evidence for the reliability of the model.
We also discussed a weak point of the load forecasting model. If the

consumption behavior of a particular customer shows significant structural
changes over the years, i.e. the load pattern varies, the goodness-of-fit of the
model decreases substantially. These changes could be caused by switching
the shift system, longer opening hours or an increased order situation for
example. Similar problems occur for load profiles which show random events
like a sudden drop of demand and thereafter constantly remain at that
level for several hours. This phenomenon can be observed for paper mills,
for example, and it can hardly be modeled with conventional time series
techniques. A possible solution approach would be the application of so-
called “Regime-Switching” models. These are non-linear time series models
which are able to simulate abrupt changes in consumption behavior.
Summarized, we can state that we developed an adequate medium-term

load forecasting model for business customers with which we are able to
generate reliable simulation results. We also designed a repeatable algorithm
for an automated model identification, estimation and forecasting routine
and combined these procedures in an easy to use software with a graphical
interface.



A. Appendix

Normal distribution

Definition A.1:
A random variable X follows a Normal distribution with parameters μ

and σ2

(X ∼ N (μ, σ2)) if its density is of the form

f(x) =
1√
2πσ2

exp

(
−1

2

(
x− μ

σ

)2
)

.

A computation efficient method of generating normal distributed numbers
is the Box-Muller method, introduced by Box and Muller (1958).

Student’s t-distribution

Definition A.2:
Let X be a random variable and

fn(x) =
Γ
(
n+1
2

)
Γ
(
n
2

)√
nπ

(
1 +

x2

n

)−n+1
2

be the probability density of X, while n > 0 and with Γ(·) being the gamma
function. Then we say that X follows a student’s t-distribution with n

degrees of freedom.

Devroye (1986) present algorithms to generate random, t-distributed
numbers.
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A.1. Regression results for linear function u(G∗
t )

Table A.1.: Estimated correlation coefficients (in %) and parameters (multiplied by
105) for robust regression of residual grid load and residual customer log
demand for all customers in dataset, cumulated profiles and mean values
per sector.
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A.2. SARIMA parameters for residual time series Rt

Table A.2.: Estimated SARIMA(3, 0, 3) × (0, 0, 2) parameters for the different retail
industry load profiles. Additionally, parameters for the cumulated load
profile and the mean over all profiles (excluding cumulated load).

Prof. φ1 φ2 φ3 θ1 θ2 θ3 Θ1 Θ2

Ret. 1 1.72 -1.5 0.65 -1.2 0.93 -0.23 -0.83 -0.17
Ret. 2 1.46 -1.07 0.37 -0.74 0.59 0.14 -0.95 -0.04
Ret. 3 0.63 0.94 -0.59 -0.12 -0.89 0.16 -0.96 -0.03
Ret. 4 1.53 -0.6 0.05 -1.01 0.19 -0.01 -0.99 -0.01
Ret. 5 0.3 0.09 0.36 0.4 0.28 -0.07 -0.94 -0.06
Ret. 6 1.86 -1.16 0.26 -1.53 0.77 -0.1 -1 0
Ret. 7 0.24 0.51 0.09 0.19 -0.35 -0.15 -0.94 -0.06
Ret. 8 0.27 0.12 0.34 0.08 0.07 -0.24 -0.95 -0.05
Ret. 9 -0.18 0.46 0.36 0.74 0.09 -0.15 -0.98 -0.02
Ret. 10 1.19 -0.37 0.08 -0.8 0.09 0.05 -0.96 -0.04
Cum. 1.67 -0.98 0.28 -1.11 0.49 -0.07 -0.94 -0.06
Mean 0.9 -0.26 0.2 -0.4 0.18 -0.06 -0.95 -0.05

Table A.3.: Estimated SARIMA(2, 0, 0) × (2, 0, 2) parameters for the different three-
shift operating industry load profiles. Additionally, parameters for the
cumulated load profile and the mean over all profiles (excluding cumu-
lated load).

Prof. φ1 φ2 Φ1 Φ2 Θ1 Θ2

3Sh. 1 1.09 -0.16 0.03 -0.01 -0.99 0.01
3Sh. 2 1.12 -0.21 -0.97 -0.1 -0.03 -0.85
3Sh. 3 1.01 -0.14 -0.93 -0.05 -0.02 -0.83
3Sh. 4 1.02 -0.1 -0.18 -0.03 -0.71 -0.19
3Sh. 5 0.69 0.21 -0.94 -0.02 -0.04 -0.88
3Sh. 6 0.97 -0.06 -0.85 0.04 -0.03 -0.82
3Sh. 7 1.03 -0.07 -0.91 0 -0.02 -0.86
3Sh. 8 0.9 -0.01 -0.9 -0.03 -0.04 -0.81
Cum. 1.02 -0.1 -0.98 -0.09 0.06 -0.8
Mean 0.98 -0.07 -0.71 -0.03 -0.23 -0.65

Table A.4.: Estimated SARIMA(4, 0, 4)×(1, 0, 1) parameters for the different two-shift
operating industry load profiles. Additionally, parameters for the cumu-
lated load profile and the mean over all profiles (excluding cumulated
load).

Prof. φ1 φ2 φ3 φ4 Φ1 θ1 θ2 θ3 θ4 Θ1

2Sh. 1 -0.33 0.05 0.36 0.38 0.09 1.38 1.16 0.6 0.08 -0.98
2Sh. 2 0.97 -0.2 -0.42 0.52 0.08 0.08 0.16 0.58 0.11 -1
2Sh. 3 -0.37 0.13 0.41 0.29 0.08 1.5 1.25 0.6 0.1 -0.98
Cum. -0.43 0.05 0.44 0.4 0.05 1.55 1.39 0.72 0.11 -0.97
Mean 0.09 -0.01 0.12 0.39 0.08 0.98 0.85 0.6 0.1 -0.98
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A.3. Similar-day regression parameters

The similar-day dummy regression parameters for the grid load and the
cumulated industry profiles per sector are given in the subsequent tables.
One can notice that the regression parameter β9 is always zero. This is
due to the fact that the corresponding dummy ϑ9 indicates a bridge day on
monday, which did not exist in the year 2010.
It also appears that β10 = 0 for the three sectors and β11 = 0 for the grid

load. For this reason, one might consider to use a fewer number of dummy
variables. However, we found that for some load profiles in the database,
these regression parameters differ significantly from zero. Therefore we kept
the original selection of dummy variables.



A.3. Similar-day regression parameters 103

Table A.5.: Dummy regression parameters for grid load, Hrs 1 to 12
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Table A.6.: Dummy regression parameters for grid load, Hrs 13 to 24
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Table A.7.: Dummy regression parameters for retail industry (cumulated profiles),
Hrs 1 to 12
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Table A.8.: Dummy regression parameters for retail industry (cumulated profiles),
Hrs 13 to 24
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H
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6

H
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H
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H
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0
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3
0
.0
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.0
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.0
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0
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.0
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.0

1
0
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.0

5
0
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Table A.9.: Dummy regression parameters for three shift operating industry (cumu-
lated profiles), Hrs 1 to 12
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Table A.10.: Dummy regression parameters for three shift operating industry (cumu-
lated profiles), Hrs 13 to 24

V
a
r

H
r1

3
H

r1
4

H
r1

5
H

r1
6

H
r1

7
H

r1
8

H
r1

9
H
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H
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Table A.11.: Dummy regression parameters for two shift operating industry (cumu-
lated profiles), Hrs 1 to 12
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Table A.12.: Dummy regression parameters for two shift operating industry (cumu-
lated profiles), Hrs 13 to 24
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B. Software

The model identification and estimation process and other calculations were
implemented in MATLAB. This is a commercial software package provided by
MathWorks. There are many toolboxes available which include mathematical
routines of many fields. For this work, we used the provided functions if
available. We will shortly describe them below. Detailed information can be
found at MathWorks (2013).

• regress: Performs a multiple linear regression of variables on a set of
explaining variables. The coefficients are obtained via ordinary least
squares regression. The output includes coefficients, confidence bounds,
model residuals and regression statistics.

• adftest: Unit root test (Augmented Dickey-Fuller) as described in sec-
tion 3.5.

• autocorr: Computes the sample autocorrelation function and confidence
bounds of a stochastic time series.

• parcorr: Computes the sample partial autocorrelation function and
confidence bounds of a stochastic time series.

• arima: Creates a linear time series model. Includes ordinary ARMA
models, non-stationary ARIMA models as well as SARIMA models.

• estimate: Estimates ML parameters of a time series model of the arima
class.

• infer: Infers residuals and conditional variances of a univariate ARIMA
model fit to certain data. Also returns log-likelihood function if wanted.

• fitdist: Fits a probability distribution to a data vector and creates a
probability distribution object. Available distributions are, for example,
normal and student’s t-distribution.
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• truncate: Truncates a probability distribution object.

• random: Generates random numbers following a certain distribution.
Standard distributions as well as probability distribution objects can be
used.

• filter: Applies a linear filter to a series of shocks.

Some of these functions require the Econometrics toolbox (2012a or
later), which is not part of the standard version of MATLAB.
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