Mechanics

LEVEL- III

Learning Guide #01

Unit of Competence:	Perform Advanced	Engineering
---------------------	------------------	-------------

Detail Drafting

Module Title: Performing Advanced Engineering

Detail Drafting

Module Code:	XXX
LG Code:	XXX
TTLM Code:	XXXX

LO 1: Determine drawing Requirements

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 1 of 171

This learning guide is developed to provide you the necessary information regarding the following **content coverage** and topics:

- Checking and interpreting requirements and purpose of drawing
- Sourcing of required information from workshop manuals,
 - ✓ customer specifications,
 - \checkmark product suppliers, and
 - ✓ Designers or similar.
- planning Scope of drawing

This guide will also assist you to attain the learning outcome stated in the cover page. Specifically, **upon completion of this Learning Guide, you will be able to**:

- Check and interpret drawing Requirements and purposes from work order.
- Source required information from workshop manuals, customer specifications, product suppliers, and designers or similar.
- Plan scope of drawing including layout, additional required information and resources.

Learning Instructions:

- 1. Read the specific objectives of this Learning Guide.
- 2. Follow the instructions described below 3 to 6.
- 3. Read the information written in the information "Sheet 1, Sheet 2, and 3 Sheet"
- 4. Accomplish the "Self-check 1, Self-check t 2, and Self-check 3" in page -17, 21, and 25.

1. Introduction/ Overview of Drawing

A drawing is a graphic representation of an object, or a part of it, and is the result of creative thought by an engineer or technician. When one person sketches a rough map in giving direction to another, this is graphic communication. Graphic communication involves using visual materials to relate ideas. Drawings, photographs, slides, transparencies, and sketches are all forms of graphic communication.

A technical person can use the graphic language as powerful means of communication with others for conveying ideas on technical matters. However, for effective exchange of ideas with others, the engineer must have proficiency in (i) language, both written and oral, (ii) symbols associated with basic sciences and (iii) the graphic language. Engineering drawing is a suitable graphic language from which any trained person can visualize the required object. As an engineering drawing displays the exact picture of an object, it obviously conveys the same ideas to every trained eye. Hence, an engineer should posses good knowledge, not only in preparing a correct drawing but also to read the drawing correctly. This module is expected to meet these requirements. The study of machine drawing mainly involves learning to sketch machine parts and to make working and assembly drawings. This involves a study of those conventions in drawings that are widely adopted in engineering practice.

1.1. Classifications of Drawing

1.1.1. Machine Drawing

It is pertaining to machine parts or components. It is presented through a number of orthographic views, so that the size and shape of the component is fully understood. Part drawings and assembly drawings belong to this classification. An example of a machine drawing is given in Fig. 1.1.

1.1.2. Production Drawing

A production drawing, also referred to as working drawing, should furnish all the dimensions, limits and special finishing processes such as heat treatment, honing, lapping, surface finish, etc., to guide the craftsman on the shop floor in producing the component. The title should also mention the material used for the product, number of parts required for the assembled unit, etc. Since a craftsman will ordinarily make one component at a time, it is advisable to prepare the production drawing of each component on a separate sheet. However, in some cases the drawings of related components may be given on the same sheet. Figure 1.2 represents an example of a production drawing.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 4 of 171

Figure 1.2. Production Drawing

1.1.3. Part Drawing

Component or part drawing is a detailed drawing of a component to facilitate its manufacture. All the principles of orthographic projection and the technique of graphic representation must be followed to communicate the details in a part drawing. A part drawing with production details are rightly called as a production drawing or working drawing.

1.1.4. Assembly Drawing

A drawing that shows the various parts of a machine in their correct working locations is an assembly drawing (Fig. 1.3). There are several types of such drawings.

1.1.4.1. Design Assembly Drawing

When a machine is designed, an assembly drawing or a design layout is first drawn to clearly visualize the performance, shape and clearances of various parts comprising the machine.

1.1.4.2. Detailed Assembly Drawing

It is usually made for simple machines, comprising of a relatively smaller number of simple parts. All the dimensions and information necessary for the construction of such parts and for the assembly of the parts are given directly on the assembly drawing. Separate views of specific parts in enlargements, showing the fitting of parts together, may also be drawn in addition to the regular assembly drawing.

1.1.4.3. Sub - Assembly Drawing

Many assemblies such as an automobile, lathe, etc., are assembled with many preassembled components as well as individual parts. These pre-assembled units are known as sub-assemblies. A sub-assembly drawing is an assembly drawing of a group of related parts, that form a part in a more complicated machine. Examples of such drawings are: lathe tailstock, diesel engine fuel pump, carburetor, etc.

1.1.4.4.Installation Assembly Drawing

On this drawing, the location and dimensions of few important parts and overall dimensions of the assembled unit are indicated. This drawing provides useful information for assembling the machine, as this drawing reveals all parts of a machine in their correct working position.

1.1.4.5. Assembly Drawing for Catalogue

Special assembly drawings are prepared for company catalogues. These drawings show only the pertinent details and dimensions that would interest the potential

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 6 of 171
---------------------------	----------	--	-----------	---------------

buyer. Figure 1.4 shows a typical catalogue drawing, showing the overall and principal dimensions.

Figure1.4. Catalogue Drawing

1.1.4.6. Assembly Drawing for instruction manual

These drawings in the form of assembly drawings are to be used when a machine, shipped away in assembled condition, is knocked down in order to check all the parts before reassembly and installation elsewhere. These drawings have each component numbered on the job. Figure 1.5 shows a typical example of such a drawing.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 7 of 171

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 8 of 171

1.1.4.7. Exploded Assembly Drawing

In some cases, exploded pictorial views are supplied to meet instruction manual requirements. These drawings generally find a place in the parts list section of a company instruction manual. Figure 1.6 shows drawings of this type which may be easily understood even by those with less experience in the reading of drawings; because in these exploded views, the parts are positioned in the sequence of assembly, but separated from each other.

1.1.4.8. Machine Shop Drawing

Rough castings and forgings are sent to the machine shop for finishing operation (Fig. 1.8). Since the machinist is not interested in the dimensions and information of the previous stages, a machine shop drawing frequently gives only the information necessary for machining. Based on the same principle, one may have forge shop drawing, pattern shop drawing, sheet metal drawing, etc.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 9 of 171

Fig. 1.6 Exploded assembly drawing

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 10 of 171

Figure 1.7 Machine Shop Drawing

1.1.5. Sectional Drawing

1.1.6. Sectional View

An engineering drawing has the function of showing shape and size of an object clearly and completely. In certain cases, however, the representation in views is not sufficient. Many objects have internal shapes which are so complicated in nature that it is virtually impossible to show their true shape without employing numerous confusing hidden lines.

Figure 1.8. Sectional View

The solution of the problem is the use of one or more sectional views: One imagines the object cut by passing a cutting plane through it so that the internal shape is revealed. The purpose of a sectional view is to show the internal shape of an object. In this way, the dimensions of the internal shape can be applied to visible edges.

By passing a cutting plane (e.g. a saw or a knife) that portion of the object is removed which obstructs the view into the interior.

Ethiopian TVET Program STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 11 of 171
---	--	-----------	----------------

Figure1.9

(1) Drawing plane

(2) Cutting plane(3) Shading

To produce a section view a cutting plane is passed through the part (figure a). The cutting plane is removed and the two halves are drawn apart (figure b) exposing the interior detail. A section view obtained by passing the cutting plane fully through the object is called a full section. In the front view the cutting plane appears as a line called a cutting-plane line. The arrows at the ends of the cutting-plane line indicate the direction of sight for the section view. To obtain the section view the right half of the front view is only imagined to be removed. The cross-hatched areas of the section view are those portions that are in actual contact with the cutting plane.

A correct front view and section view are shown in figure (a) and figure (b). All visible edges and contours behind the cutting plane should be shown. Section views are used primarily to replace hidden lines so as a rule hidden lines should be omitted in section views (figure d).

A section-lined area is always completely bounded by a visible outline, never by a hidden line as in figure (e).

Section lines in a section view must be parallel and at the same angle and direction (figure f).

Figure: 1.10. (a) And (b) shows front view and section view

Shading with thin solid lines at an angle of 45 is the general hachure which is used irrespective of the material.

Figure 1. 11. Shading with thin solid lines (Hatching)

	-			-
Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 13 of 171

Material	Shading characterising the material
Metal	
Plastics, rubber, felt, leather, filler, material	
Wood (cross-grained wood, other wood)	
Glass and the like	
Reinforced concrete	
electrical windings	
Sintered materials	
Liquids	
Porcelain, marble, slate	

Table1.1. Shading Characterizing of material

Ethiopian TVET Program STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 14 of 171
---	--	-----------	----------------

1.1.6.1. Types of Sectional View

Type of section	Explanations	Applications	Principle
Full sectional view	Objects with intricate internal shapes. Symmetric or non–symmetric or prismatic or cylindrical.		
Half section	Objects with intricate internal and external shapes; usually symmetric, prismatic or cylindrical		
Partial section	An internal partial shape is to be made visible but a full section is not necessary. It would not show more. Cutting line indicated by arrows.		
Broken–out section	This section is used to show only a desired feature of the object. A full section is not necessary or not permitted (shafts, pins, rivets). The view must be shown completely because of other features of the object.		1

1 Drawing plane, 2 Cutting plane

Table1.2. Types of Sections

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 15 of 171
---------------------------	----------	--	-----------	----------------

To obtain a sectional view, a cutting plane is assumed to be passed through the part (a). This cuts the part in two halves.

The cutting plane is then removed, and the two halves are drawn apart, exposing the interior construction. In (b), the direction of sight is towards the left half. The section view will be in the position of a right side view.

Figure 1.12: Sectional View

Cutting Plane Line

- The cutting plane line is a thick dark line which uses one of the special patterns shown.
- The cutting plane line can be left out when it is obvious where it must lie from the appearance of the section itself

Figure 1.13: Cutting Plane Line

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 16 of 171
---------------------------	----------	--	-----------	----------------

Cutting Plane in Sectional Views

 The cutting plane is indicated in a view adjacent to the sectional view. In this view, the cutting plane appears edgewise as a line, called the cutting plane line.

Figure 1.14: Cutting plane lines

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 17 of 171

Self-Check-1 Choice Test

Test I: Multiple Choice Questions

Directions: Choose the correct Answer (each question have 2 pts)

- 1. It is pertaining to machine parts or components and also presented through a number of orthographic views, so that the size and shape of the component is fully understood.
 - a. Assembly Drawing b. Working Drawing c. Machine Drawing d. all
- **2.** ______ also referred to as working drawing, should furnish all the dimensions, limits and special finishing processes such as heat treatment, honing, lapping, surface finish, etc., to guide the craftsman on the shop floor in producing the component.
 - a. Sectional Drawing b. Production Drawing c. Assembly Drawing d. Machine Drawing
- 3. For effective exchange of ideas with others the engineer, must have proficiency in
 - a. Language, both written and oral.
 - b. Symbols associated with basic science
 - c. The graphic language
 - d. All of above
- 4. A drawing that shows the various parts of a machine in their correct working locations.
 - a. Detail Drawing
 - b. Assembly Drawing
 - c. Sectional Drawing
 - d. Production drawing
- 5. Which of shading Characterizing represents metal?

Note: Satisfactory rating –5 points and above Unsatisfactory – below 5 points

You can ask you teacher for the copy of the correct answers.

Name: _____

Answer Sheet

Date:			

Score = _____

Rating: _____

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 19 of 171

Information Sheet-2	Sourcing of required information from workshop manuals,
	customer specifications,

2.1. Introduction to Blue Print Reading

In many ways, learning to read a drawing is the same as learning to read a language. Blueprint is the common name of the copies taken from an original drawing, usually drawn on a tracing paper. The copies may be obtained by way of reprographic processes.

For blueprint reading and understanding the drawing, one must have a thorough knowledge of the principles of drawing and orthographic projections. The knowledge of various manufacturing processes and the sequence of operations required to obtain the finished shape, intended by the designer, also helps in interpreting the drawings.

In this content, the examples chosen help providing guidelines to enable trainee to understand the shape and size of a component in the case of component drawings, and also its location, in the case of assembly drawings. While reading the drawings, the details such as shape, size, through dimensions, notes and material to be used, and additional notes to the workman on machining, surface finish, tolerances, etc., are to be noted carefully.

2.1.1. Examples

2.1.2. Rear Tool Post

Rear tool post is generally used on capstan lathes, mainly for parting-off operations. It is fixed on the cross-slide in the slots, provided at the rear side of the lathe. Study the drawing shown in Fig.1 and answer the following:

- 1. What is the overall size of the tool post?
- 102mm × 70mm × 62mm
- 2. How many bolts are provided for fixing the tool, and what is the size of each bolt?

—3, M10

- 3. What type of tool can be used with it?
- Parting tool
- 4. What is the maximum height of the tool holder?
- 25mm
- 5. How many screws are provided to locate the tool?

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 20 of 171
Program	STEP-giz	Title: Mechanics L-3	July 2020	

- 6. What is the purpose of the threaded hole marked 'X'?
- For adjusting the tool height, by means of a screw
- 7. Explain the note—4 HOLES, M10.
- —There are three tapped holes in the body to clamp the tool in position by screws

And the fourth tapped hole is at the bottom of the base. The size of the tap is 10mm.

Figure1: Rear tool post

Ethiopian TVET Program STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 21 of 171
---	--	-----------	----------------

Self-Check-2	Multiple Choice

Test I: Multiple Choice Questions

Directions: Choose the correct Answer (each question have 3 pts)

- 1. ______ is the common name of the copies taken from an original drawing, usually drawn on a tracing paper. The copies may be obtained by way of reprographic processes.
 - a. Drawing b. Blue print c. detail drawing d. all
- 2. For blueprint reading and understanding the drawing, one must have a thorough knowledge of.
 - **a.** The principles of drawing
 - **b.** Orthographic projections
 - c. various manufacturing processes
 - d. All of the above

Note: Satisfactory rating -3 points ar	nd above
points	

Unsatisfactory – below 3

You can ask you teacher for the copy of the correct answers.

Name:	
1011101	

Answer Sheet

Date:

Score = _____

Rating: _____

Information Sheet-3

3.1. Introduction

The drawings prepared by any technical person must be clear, unmistakable in meaning and there should not be any scope for more than one interpretation, or else litigation may arise. In a number of dealings with contracts, the drawing is an official document and the success or failure of a structure depends on the clarity of details provided on the drawing. Thus, the drawings should not give any scope for misinterpretation even by accident. It would not have been possible to produce the machines/automobiles on a mass scale where a number of assemblies and sub-assemblies are involved, without clear, correct and accurate drawings. To achieve this, the technical person must gain a thorough knowledge of both the principles and conventional practice of drawing. If these are not achieved and or practiced, the drawings prepared by one may convey different meaning to others, causing unnecessary delays and expenses in production shops.

3.2. Items required for drawingDrawing boardFrench curvesDrawing sheet (element of title block)Drawing pencilsT- Square, Set SquaresEraserCompass,Drawing clip/pin/adhesive tapeDividerSharpenerScalesDuster, etcProtractor

Drawing Sheet Layout

Standard layouts of drawing sheets are specified by the various standards organizations. This is the layout of a typical sheet, showing the drawing frame, the microfilm camera alignment marks, a typical title block, parts list and revision table:

		<u>^</u>								-
		DO NOT	SCALE S	51 м	DES	CRIPTI	ON	DATE	APPO.	1
			L	^	H 12 W/	5 7	WHIT.	14-12-78	A.W.B.	4
										1
										1
										1
										1
4										Þ
7										
			г							4
				3						1
			F	2	47375	¥61	VE BODY		<u> </u>	4
			F	÷.	DRG or		DESCRIP	TION	DIT 1	6
	UNLES	SS OT MERWISE	DRN 1:1:78 JK	KL.	ARI NO.	[NAI	NE OF FIS	E M I		1
	IN MI	LLIMETRES.	CKD 2:1:78 MJ	쁢						1
	LINEJ	AR: CAST STEEL	ISSUED 4:2:78 PF	F P	्यत	1111	LE OF DW	16.)		4
	DR	AS 1100 AS MACHINED			A3	2	No	A24681	T 1 of 1	4
-		···· 0								-
nionian TVFT										
		CT program for R	emote Teachin	na					Page	e 23 of
Program	STEP-qiz			.9			2020		. ~8,	
	J	I litle: Mech	anics L-3		J	uv	2020			

Drawing Frames with No Filing Margin

Paper	Border width(MM)		Dimensions of	Drawing
size			frame(MM)	
	Left	Тор	Width	height
	&right	⊥		
A0	28	20	1133	801
A1	20	14	801	566
A2	14	10	566	400
A3	10	7	4003	283

Title Block

The title block is normally placed in the bottom right of the drawing frame, and it should contain the following information:

- the name of the company or organization
- the title of the drawing
- the drawing number, which is generally a unique filing identifier
- the scale
- the angle of projection used, either first or third, generally shown symbolically
- the signature or initials of the draftsman, checker, approving officer, and issuing officer, with the respective dates
- Other information as required.

Material or Parts List

If the drawing contains a number of parts, or if it is an assembly drawing, a tabulated parts list is attached to the bottom right of the drawing frame, just above the title block.

The parts list should give the following information:

- the part number
- the part name
- the quantity required
- material specifications
- the drawing number of each individual part
- other applicable information

When the parts list is very large a separate drawing sheet may be used for the parts list alone.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 24 of 171

Self-Check -3	Multiple Choice
	-

Test I: Multiple Choice Questions

Directions: Choose the correct Answer (each question have 2.pts)

- 1. What is the scope a Drawing?
 - a. Give information clear unmistakable in meaning
 - b. Give clarity of details provided on the drawing
 - c. Avoiding misinterpretation of drawing
 - d. All of above
- 2. Which information is contained in Title block?
 - a. the name of the company or organization
 - b. the title of the drawing
 - c. the drawing number,
 - d. the scale
 - e. the angle of projection used, either first or third
 - f. All of above
- 3. Which information is contained in Part list?
 - a. the part number
 - b. the part name
 - c. the quantity required
 - d. material specifications
 - e. the drawing number of each individual part
 - f. All of the above

Note: Satisfactory rating –4 points and above points

Unsatisfactory – below 4

You can ask you teacher for the copy of the correct answers.

Name:	

Answer Sheet

Date:	

Score =
Rating:

List of materials

- 1- BOOKS
- 2- Machine drawing, therd edition, DR.KL.Narayana, Dr. M.A. Veluswami
- 3- Text book of engineering drawing,K.VENKATA Reddy,second edition,BS.Pabilication
- 4. KHURMI R S AND GUPTA J. K (1979). A Text Book of Machine Design. ISN 81-

219-0501-x, Published by Scand and Company Itd

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 26 of 171

Mechanics

LEVEL III

Learning Guide#02

Unit of Compete	ence: Perform Advanced
	Engineering Detail Drafting
Module Title:	Performing Advanced Engineering
	Detail Drafting
Module Code:	XXX
LG Code:	XXX
TTLM Code:	XXX

LO 2: Prepare assembly, lay-out and Detail drawing

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 27 of 171

This learning guide is developed to provide you the necessary information regarding the following **content coverage** and topics:

- Determining drawing details and specifications
- Undertaking engineering calculations to determine all dimensions Including limits and fits ,geometric tolerance
- Inserting dimensions and geometric tolerances
- Using appropriate symbols for limits and fits, surface texture and geometric tolerances.
- Showing correct convention of parts based on ISO standard
- Producing drawing, auxiliary views, sections and assemblies in third angle projection.
- Producing all drawings in an acceptable ISO.
- Selecting Components, material and/or assemblies from manufacturing Catalogues.

This guide will also assist you to attain the learning outcome stated in the cover page. Specifically, **upon completion of this Learning Guide, you will be able to**:

- Determine drawing details and specifications
- Undertake engineering calculations to determine all dimensions Including limits and fits ,geometric tolerance
- Insert dimensions and geometric tolerances
- Use appropriate symbols for limits and fits, surface texture and geometric tolerances.
- Show correct convention of parts based on ISO standard
- Produce drawing, auxiliary views, sections and assemblies in third angle projection.
- Produce all drawings in an acceptable ISO.
- Select Components, material and/or assemblies from manufacturing Catalogues.

Learning Instructions:

- 1. Read the specific objectives of this Learning Guide.
- 2. Follow the instructions described below 3 to 6.
- Read the information written in the information "Sheet 1, Sheet 2, Sheet
 3, Sheet 4, sheet 5, sheet 6, sheet 7 and sheet 8"
- 4. Accomplish the "Self-check 1, Self-check 2, Self-check 3, Self-check 4, Sheet 5, Sheet 6, Sheet 7 and Sheet 8 " in page -31, 60,70 and 82,89, 103 and 127 respectively
- If you earned a satisfactory evaluation from the "Self-check" proceed to "Operation Sheet 1, Operation Sheet 2 and Operation Sheet 3, Operation 4, Operation 5 " in page -132,133,134,135, 136,137 and 138.
- 6. Do the "LAP test" in page 139 (if you are ready).

Information Sheet-2	Determining drawing details and specifications

2.1. Introduction to Production Drawing

A production drawing, also known as working drawing, supplies information and instructions for the manufacture or construction of machines or structures. A production drawing should provide all the dimensions, limits, special finishing processes, surface quality, etc.

The particulars of material, the number of components required for the assembly, etc., are given in the title block. The production drawing of a component should also indicate the sub-assembly or main assembly where it will be assembled. Since the working drawings may be sent to other companies to make or assemble the unit, the drawings should confirm with the standards followed in the country. For this reason, a production drawing becomes a legal document between the parties, in case of disputes in manufacturing. Working drawings may be classified into two groups: (i) detail or part drawings and (ii) assembly drawings.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 29 of 171

2.2. Types of Production Drawing

2.2.1. Detail Drawing or Part Drawing

A detail or part drawing is nothing but a production or component drawing, furnishing complete information for the construction or manufacture of the part. This information may be classified as:

1. **Shape description** This refers to the selection of number of views to describe the shape of the part. The part may be drawn in either pictorial or orthographic projection; the latter being used more frequently. Sectional views, auxiliary views and enlarged detailed views may be added to the drawing in order to provide a clear image of the part.

2. **Size description** Size and location of the shape features are shown by proper dimensioning. The manufacturing process will influence the selection of some dimensions, such as datum feature, tolerances, etc.

3. **Specifications**: This includes special notes, material, heat treatment, finish, general tolerances and number required. All this information is mostly located near the title block.

4. Additional information such as drawing number, scale, method of projection, date, names of the parts, the daughter's name, etc., come under additional information which is included in the title block. Since the craftsman will ordinarily make one component at a time, it is advisable to prepare the production drawing of each component, regardless of its size, on a separate sheet. Figures1 and 2 show the detailed drawings of a template jig and gear.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 30 of 171

Figure 1.1: Detail drawing of template jig

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 31 of 171

Figure 1.2: Detail Drawing of Gear

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 32 of 171
---------------------------	----------	--	-----------	----------------

Self-Check -1	Multiple Choice

Test I: Multiple Choice Questions

Directions: Choose the correct Answer (each question have 2 pts)

- ______ is nothing but a production or component drawing, furnishing complete information for the construction or manufacture of the part.
 a. detail or part drawing
 b. Assembly drawing
 c. Sub assembly drawing
 d. all
- 2. Which information included under detail or part drawing?
 - a. Shape description b. Size description c. Specifications
 - d. Additional Information such as drawing number, scale e. All of the above
- 3. _____ refers to the selection of number of views to describe the shape of the part.
 - a. Shape description b. Size description c. Specifications d. all

Note: Satisfactory rating –4 points and above Unsatisfactory – below 4 points

You can ask you teacher for the copy of the correct answers.

Name:

Answer Sheet

Score = _	
-----------	--

Rating: ____

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 33 of 171
---------------------------	----------	--	-----------	----------------

Information Sheet-3	Undertaking	engineering	calculations	to	determine	all
	dimensions li	ncluding limits	and fits , geor	netri	ic tolerance	

3.3. Introduction to Limits, geometric tolerance and Fits

The manufacture of interchangeable parts requires precision. Precision is the degree of accuracy to ensure the functioning of a part as intended. However, experience shows that it is impossible to make parts economically to the exact dimensions. This may be due to,

- (i) Inaccuracies of machines and tools,
- (ii) Inaccuracies in setting the work to the tool, and
- (iii) Error in measurement, etc.

The workman, therefore, has to be given some allowable margin so that he can produce a part, the dimensions of which will lie between two acceptable limits, a maximum and a minimum. The system in which a variation is accepted is called the limit system and the allowable deviations are called tolerances. The relationships between the mating parts are called fits. The study of limits, tolerances and fits is a must for technologists involved in production. The same must be reflected on production drawing, for guiding the craftsman on the shop floor.

3.4. Limits System

Following are some of the terms used in the limit system

3.4.1. Tolerance

The permissible variation of a size is called tolerance. It is the difference between the maximum and minimum permissible limits of the given size. If the variation is provided on one side of the basic size, it is termed as unilateral tolerance. Similarly, if the variation is provided on both sides of the basic size, it is known as bilateral tolerance.

International tolerance grade (IT) A set of tolerances that varies according to the basic size and provides a uniform level of accuracy within the grade. For example, the dimension 50H8 for a close-running fit, the IT grade is indicated by the numeral 8. (The letter H indicates the tolerance is on the hole for the 50 mm dimension). In all, there are 18 IT grades – IT01, IT0, and IT1 to IT16. See Figures 16 and 17 for IT grades related to machining processes and the practical use of the IT grades.

Ethiopian TVET	
Program	

Figure 1. International Tolerance Grades Related to Machining Processes

3.4.2. Limits

The two extreme permissible sizes between which the actual size is contained are called limits. The maximum size is called the upper limit and the minimum size is called the lower limit.

3.4.3. Deviation

It is the algebraic difference between a size (actual, maximum, etc.) and the corresponding basic size.

3.4.4. Fundamental deviation

The deviation closet to the basic size (This compares with the minimum allowance in the decimal-inch system.)

3.4.5. Upper Deviation

It is the algebraic difference between the maximum limit of the size and the corresponding

basic size.

Ethiopian TVET Program STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 35 of 171
---	--	-----------	----------------

Lower Deviation

It is the algebraic difference between the minimum limit of the size and the corresponding basic size.

3.4.6. Allowance

It is the dimensional difference between the maximum material limits of the mating parts, intentionally provided to obtain the desired class of fit. If the allowance is positive, it will result in minimum clearance between the mating parts and if the allowance is negative, it will result in maximum interference.

3.4.7. Basic Size

It is determined solely from design calculations. The theoretical size from which limits of size are derived by the application of allowances and tolerances. It is the size from which limits are determined for the size, shape, or location of the feature.

Figure 3. Diagram illustrating basic size deviations and tolerances

3.4.8. Actual size: the measured size of the finished part.

3.5. Tolerances

Great care and judgment must be exercised in deciding the tolerances which may be applied on various dimensions of a component. If tolerances are to be minimum, that is, if the accuracy requirements are severe, the cost of production increases. In fact, the actual specified tolerances dictate the method of manufacture. Hence, maximum possible tolerances must be recommended wherever possible.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 36 of 171
---------------------------	----------	--	-----------	----------------
3.5.1. Tolerance zone

The tolerances and its position in relation to basic size. It is established by a combination of the fundamental deviation indicated by a letter and the IT grade number. In the dimension 50H8, for the close-running fit, the H8 specifies the tolerance zone.

N.B: The following examples are taken from machine drawing book, written by DR.K.L. Narayana, Refers the tables 15.1, 15.2, 15.3, 15.4 and 15.6 to understand examples and try to see Appendix's.

Example 1 Calculate the fundamental tolerance for a shaft of 100 mm and grade 7. The shaft size, 100 lies in the basic step, 80 to 120 mm and the geometrical mean is

 $D = \sqrt{80 \times 120} = 98 \text{ mm}$

The tolerance unit, $i = 0.45 \sqrt[3]{98} + 0.001 \times 98 = 2.172$ microns For grade 7, as per the Table 15.1A, the value of tolerance is, $16i = 16 \times 2.172 = 35$ microns

Example 2 Calculate the fundamental deviations for the shaft sizes given below : (a) 30 e8 (b) 50 g6 (c) 40 m6.

From Table 15.4, the deviations for shafts are obtained :

(a) The upper deviation es for the shaft e

$$= -11 D^{0.4}$$

The value for $D = \sqrt{18 \times 30} = 23.24$ mm.

Hence, es = -40 microns (tallies with the value in Table 15.2).

(b) The upper deviation es for the shaft g

$$= -2.5 D^{0.34}$$

The value for $D = \sqrt{30 \times 50} = 38.73$ mm.

Hence, es = -9 microns (tallies with the value in Table 15.2)

(c) The lower deviation ei for the shaft m

From the Table 15.1, the size 40 is in the range 30 and 50 and hence the mean diameter D, is 38.73 $\rm mm$

Tolerance unit $i = 0.45 \sqrt[3]{D} + 0.001 D$

= 1.58 microns

The fundamental tolerance for grade 7, from the Table 15.1 is 16i, *i.e.*, 25 microns. The fundamental tolerance for grade 6 is 10i or 16 microns.

Hence, ei = 25 (IT 7) - 16 (IT 6) = + 9 microns (tallies with the value in Table 15.2).

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 37 of 171
Program	STEP-giz	Title: Mechanics L-3	July 2020	Fage 57 Of

Example 3 Calculate the fundamental deviations for the hole sizes given below : (a) 40 D9 (b) 65 F8.

From Table 15.4, the deviations for holes also can be obtained (article 15.3.2.2). (a) The lower deviation EI for the hole D is given by

 $EI = +16 D^{0.44}$, where $D = \sqrt{30 \times 50} = 38.73 \text{ mm}$

Thus, EI = 80 microns (tallies with the value in Table 15.3).

(b) Lower deviation EI for the hole F

$$= +5.5 D^{0.41}$$
, where $D = \sqrt{50 \times 80}$

Hence, EI = 30 microns (tallies with the value in Table 15.3).

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 38 of 171

Example 4 A journal bearing consists of a bronze bush of diameter 100 mm fitted into a housing and a steel shaft of 50 mm diameter, running in the bush, with oil as lubricant. Determine the working dimensions of (a) bore of the housing, (b) bush and (c) shaft. Calculate the maximum and minimum interference or clearance.

Step 1: Select the nature of assembly or fit based on the function. Referring to Table 15.6, the fits to be employed are selected as below:

(a) for the bush and housing, H7/p6 (interference fit),

(b) for the shaft and bush, H7/f7 (normal running fit).

Step 2: Obtain the tolerances on the linear dimensions of the parts. From Table 15.1, the fundamental tolerances (IT) for different grades, based on the size are :

(a) for dia. 100 and grade 6 = 22 microns,

(b) for dia. 100 and grade 7 = 35 microns,

(c) for dia. 50 and grade 7 = 25 microns.

Step 3: Obtain the fundamental deviations based on the type of hole/shaft and thus the respective sizes. From Table 15.2,

(a) for a hole of type H (housing)

lower deviation, EI = 0.000upper deviation, ES = EI + IT = 0.035 mm +0.035Hence, dimension of the housing bore = $100^{+0.000}$ (b) for a shaft of type p (bush), lower deviation, ei = +0.037 (Table 15.2) upper deviation, es = ei + IT= 0.037 + 0.022 = 0.059 mm +0.059 $= 100^{+0.037}$ Hence, the outside size of the bush (c) for a hole of type H (bush), lower deviation, EI = 0.000upper deviation, ES = EI + IT= 0.025 mm +0.025 $= 50^{+0.000}$ Hence, the bore of the bush (d) for a shaft of type f, upper deviations, es = -0.025 (Table 15.2) lower deviation, ei = es - IT= -0.025 - 0.025= - 0.05 mm -0.025 $= 50^{-0.050}$ Hence, shaft dimension is

> Step 4: Calculate the interference/clearance (a) between the bush and housing : Maximum interference = 100.00 - 100.059 = -0.059 mm Minimum interference = 100.035 - 100.037 = -0.002 mm (b) between the bush and shaft : Maximum clearance = 50.025 - 49.050 = + 0.075 mm Minimum clearance = 50.000 - 49.075= + 0.025 mm

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 39 of 171
Program	STEP-giz	Title: Mechanics L-3	July 2020	Fage 59 01

Mating Parts

Mating parts are parts that fit together within a prescribed degree of accuracy (Figure 5). The upper piece is dimensioned with two measurements that indicate the upper and lower limits of the size. The notch is slightly larger, allowing the parts to be assembled with a clearance fit.

An example of mating cylindrical parts is shown in Figure 6. Part B of the figure illustrates the meaning of the tolerance dimensions. The size of the shaft can vary in diameter from 1.500" (its maximum size) to 1.498" (its minimum size). The difference between these limits on a single part is tolerance, 0.002" in this case. The dimensions of the hole in Part A are given with limits 0f 1.503" and 1.505", for a tolerance of 0.002" (the difference between the limits as illustrated in Part B).

Figure 5: Mating Part

Each of these mating parts has a tolerance of 0.003" (variation in size). The allowance between the assembled parts (tightest fit) is 0.002".

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 40 of 171

Figure 6. The allowance (tightest fit) between these assembled parts is +0.003". The maximum clearance is 0.007".

PREFERRED SIZES

The preferred basic sizes for computing tolerances are given in Table 1. Basic diameters should be selected from the first choice column since these are readily available stock sizes for round, square, and hexagonal products.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 41 of 171

Basie Size. mm		Basic Size. mm		Basic Size, mm	
First Choice	Second Choice	First Choice	Second Choice	First Choice	Second Choice
1		10		100	
	1.1		11		110
1.2		12		120	
	1.4		14		140
1.6		16		160	
	1.8		18		180
2		20		200	
	2.2		22		220
2.5		25		250	
	2.8		28		280
3		30		300	
	3.5		35		350
4		40		400	
	4.5		45		450
5		50		500	
	5.5		55		550
6		60		600	
	7		70		700
8		80		800	
	9		90		900
				1000	

Table1. Preferred Sizes

FITS BETWEEN MATING PARTS

"Fit is the general term used to signify the range of tightness or looseness that may result from the application of a specific combination of allowances and tolerances in mating parts" [ANSI Y14.5M-1982 (R1988)]. There are four general types of fits between parts.

Clearance fit occurs when two tolerance mating parts will always leave a space or clearance when assembled. The largest that shaft (A) can be manufactured is .999 and the smallest the hole can be is 1.000. The shaft will always be smallest than the hole.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 42 of 171

Allowance = smallest hole - largest shaft

Figure 7. Clearance fit

Interference fit occurs when two toleranced mating parts will always interfere when assembled. This fit type would be necessary to stretch the hole or shrink the shaft or to use force to press the shaft into the hole. For example this fit type can be used to fasten two parts together without the use of mechanical fasteners or adhesive.

Allowance = smallest hole - largest shaft

Figure 8. Interference fit

Transition fit occurs when two toleranced mating parts will sometimes be an interference fit and sometimes be a clearance fit when assembled.

Allowance = largest hole - smallest shaft

Allowance = smallest hole - largest shaft

Ethiopian TVET Program STEF	P-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 43 of 171
---------------------------------------	-------	--	-----------	----------------

Figure 9. Transition Fit

Line fit In which limits of size are so specified that a clearance or surface contact may result when mating parts are assembled.

BASIC HOLE SYSTEM

Standard reamers, broaches, and other standard tools are often used to produce holes, and standard plug gages are used to check the actual sizes. On the other hand, shafting can easily be machined to any size desired. Therefore, toleranced dimensions are commonly figured on the so-called *basic hole system*. In this system, *the minimum hole is taken as the basic size*, an allowance is assigned, and tolerances are applied on both sides of, and away from, this allowance.

In Figure 11(a) the minimum size of the hole, 0.500', is taken as the basic size. An allowance of 0.002" is decided on and subtracted from the basic hole size, giving the maximum shaft, 0.498". Tolerances of 0.002" and 0.003", respectively, are applied to the hole and shaft to obtain the maximum hole of 0.502" and the minimum shaft of 0.495". Thus, the minimum clearance between the parts becomes $0.500^{\circ} - 0.498^{\circ} = 0.002^{\circ}$ (smallest hole minus largest shaft), and the maximum clearance is $0.502^{\circ} - 0.495^{\circ} = 0.007^{\circ}$ (largest hole minus smallest shaft).

In the case of an interference fit, the maximum shaft size would be found by *adding the desired allowance* (maximum interference) to the basic hole size. In Figure 10(a) the basic size is 1.2500". The maximum interference decided on was 0.0019", which added to the basic size gives 1.2519", the largest shaft size.

The basic hole size can be changed to the basic shaft size by subtracting the allowance for a clearance fit, or adding it for an interference fit. The result is the largest shaft size, which is the new basic size.

Figure 11. Basic Hole and Basic Shaft Systems

BASIC SHAFT SYSTEM

In some branches of industry, such as textile machinery manufacturing, in which use is made of a great deal of cold-finished shafting, the basic shaft system is often used. The system should be used only when there is a reason for it. For example, it is advantageous when several parts having different fits, but one nominal size, are required on a single shaft. In this system, the maximum shaft is taken as the basic size, an allowance for each mating part is assigned, and tolerances are applied on both sides of, and away from, this allowance.

In Figure11 (b) the maximum size of the shaft, 0.500", is taken as the basic size. An allowance of 0.002" is decided on and added to the basic shaft size, giving the minimum hole, 0.502". Tolerances of 0.003" and 0.001", respectively, are applied to the hole and shaft to obtain the maximum hole, 0.505", and the minimum shaft, 0.499". Thus, the minimum clearance between the parts is 0.502" - 0.500" = 0.002" (smallest hole minus largest shaft), and the maximum clearance is 0.505" - 0.499" = 0.006" (largest hole minus smallest shaft).

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 45 of 171

In the case of an interference fit, the minimum hole size would be found by subtracting the desired allowance from the basic shaft size.

The basic shaft size may be changed to the basic hole size by adding the allowance for a clearance fit or by subtracting it for an interference fit. The result is the smallest hole size, which is the new basic size.

PREFERRED FITS

The symbols for either the hole-basis or shaft-basis preferred fits (clearance, transition, and interference) are given in Table 2. Fits should be selected from this table for mating parts were possible.

The values corresponding to the fits are found in Appendixes 7-10. Although second and third choice basic size diameters are possible, they must be calculated from the tables not included in this text. For the generally preferred hole-basis system, note that the ISO symbols ranges from H11/c11 (loose running) to H7/u6 (force fit.) For the shaft-basis system, the preferred symbols ranges from C11/h11 (loose fit) to U7/h6 (force fit.),

Assume that it is desired to use the symbols to specify the dimensions for a free-running fit (hole basis) for a proposed diameter of 48 mm. Since 48 mm is not listed as a preferred size in Table 1, the design is altered to use the acceptable 50 mm diameter. From the preferred fits description in Table 2, the free-running fit (hole basis) is H9/d9. To determine the upper and lower deviation limits of the hole as given in the preferred hole-basis table, Appendix 7, follow across from the basic size of 50 to H9 under "Free running." The limits for the hole are 50.000 and 50.062 mm. Then, the upper and lower limits of deviation for the shaft are found in the d9 column under "Free running." They are 49.920 and 49.858 mm, respectively. Limits for other fits are established in a similar manner.

The limits for the shaft basis dimensioning are determined similarly from the preferred shaft basis table in Appendix 9. See Figures 12 and 13 for acceptable methods of specifying tolerances by symbols and drawings. A single note for the mating parts (free-running fit, hole basis) would be \emptyset 50 H9/d9, Figure 20.

Ethiopian IVEI	
Program	

	ISO Symbol			
ALC: 100	Hole Basis	Shaft ^a Basis	Description	
ts	H11/e11	C11/h11	<i>Loose running</i> fit for wide commercial tolerances or allowances on external members.	Î
ance Fi	H9/d9	D9/h9	<i>Free running</i> fit not for use where accuracy is essential, but good for large temperature variations, high running speeds, or heavy journal pressures	
Clear	H8/f7	F8/h7	Close running fit for running on accurate machines and for accurate location at moderate speeds and journal pressures.	mee –
	H7/g6	G7/h6	<i>Sliding</i> fit not intended to run freely, but to move and turn freely and locate accurately.	cleara
n Fits	H7/h6	H7/h6	<i>Locational clearance</i> fit provides snug fit for locating stationary parts; but can be freely assembled and disassembled.	More
nsitio	H7/k6	K7/h6	<i>Locational transition</i> fit for accurate location, a compromise between clearance and interference.	0
Tra	H7/n6	N7/h6	<i>Locational transition</i> fit for more accurate location where greater interference is permissible.	erence
nce Fits	H7/p6	P7/h6	<i>Locational interference</i> fit for parts requiring rigidity and alignment with prime accuracy of location but without special bore pressure requirements.	re interf
ertere	H7/s6	S7/h6	<i>Medium drive</i> fit for ordinary steel parts or shrink fits on light sections, the tightest fit usable with cast iron.	— Mo
Inte	H7/u6	U7/h6	<i>Force</i> fit suitable for parts which can be highly stressed or for shrink fits where the heavy pressing forces required are impractical.	Ļ

Table 2. Preferred Fits

Figure13. Methods of Specifying Tolerances for Mating Parts

Ethiopian TVET Program STEP-gi	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 47 of 171
--	--	-----------	----------------

PREFERRED FITS-HOLE BASIS SYTEM Figure 14 illustrates the symbols used to show the combinations of fits that are possible when using the hole basis system. There is a clearance between the two parts at A, a transition fit at B, and an interference fit at C.

PREFERRED FITS-SHAFT BASIS SYSTEM Figure 15 illustrates the preferred fits based on the shaft basis system, where the largest shaft size is the basic diameter. Varying the size of the holes causes the variation in the fit between the parts. This results in a range of fits from a clearance fit of C11/h11 to an interference fit of U&/h6.

Figure 14. Types of fit (A) A clearance fit; (B) a transition fit where there can be interference or a clearance; and (C) an interference fit, where the parts must be forced together.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 48 of 171

Figure 15. The preferred fits for a shaft basis system. These fits correspond to those given in Table 2.

2.2. GEOMETRIC TOLERANCING

Geometric tolerances state the maximum allowable variations of a form or its position from the perfect geometry implied on a drawing. The term "geometric" refers to various forms, such as a plane, a cylinder, a cone, a square, a hexagon. Theoretically these are perfect forms, but, because it is impossible to produce perfect forms, it may be necessary to specify the amount of variation permitted. These tolerances specify either the diameter or the width of a tolerance within which a surface or the axis of a cylinder or a hole must be if the part is to meet the required accuracy for proper function and fit. When tolerances of form are not given on a drawing, it is customary to assume that, regardless of form variations, the part will fit and function satisfactorily.

Tolerances of form and position or location control such characteristics as straightness, flatness, parallelism, perpendicularity (squareness), concentricity, roundness, angular displacement, and so on.

Methods of indicating geometric tolerances by means of *geometric characteristic symbols*, as recommended by ANSI, rather than by traditional notes, are discussed and illustrated subsequently.

Ethiopian TVET Program STE	EP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 49 of 171
-------------------------------	--------	--	-----------	----------------

Characteristics	Symbols	
	Straightness	
	Flatness	
Form of single features	Circularity (roundness)	0
	Cylindricity	- AV
	Profile of any line	\cap
	Profile of any surface	
	Parallelism	//
Orientation of related features	Perpendicularity (squareness)	\perp
	Angularity	\leq
	Position	\oplus
Position of related features	Concentricity and coaxiality	\bigcirc
	Symmetry	=
	Run-out	1

Table 3. Geometric Characteristics and Modifying Symbols

FORM TOLERANCES FOR SINGLE FEATURES

STRAIGHTNESS TOLERANCE A straightness tolerance specifies a tolerance zone within which an axis or all points of the considered element must lie, Figure 14. Straightness is a condition where an element of a surface or an axis is a straight line.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 50 of 171

.... MEANS THIS

ROUNDNESS (CIRCULARITY) TOLERANCE

A roundness tolerance specifies a tolerance zone bounded by two concentric circles within which each circular element of the surface must lie, Figure 38. Roundness is a condition of a surface of revolution where, for a cone or cylinder, all points of the surface intersected by any plane perpendicular to a common axis are equidistant from that axis. For a sphere, all points of the surface intersected by any plane passing through a common center are equidistant from that center.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 51 of 171
---------------------------	----------	--	-----------	----------------

CYLINDRICITY TOLERANCE

A cylindricity tolerance specifies a tolerance zone bounded by two concentric cylinders within which the surface must lie, Figure 18. This tolerance applies to both circular and longitudinal elements of the entire surface. Cylindricity is the condition of a surface of revolution in which all points of the surface are equidistant from a common axis. When no tolerance of form is given, many possible shapes may exist within a tolerance zone, as illustrated in Figure 19

THIS ON THE DRAWING

CYLINDRICITY

.... MEANS THIS

The cylindrical surface must be within the specified tolerance of size and must lie between two concentric cylinders — one having a radius 0.25 larger than the other.

Figure 19. Acceptable Variations of Form – No Specified Tolerance of Form

PROFILE TOLERANCE

A profile tolerance specifies a uniform boundary or zone along the true profile within which all elements of the surface must lie, Figures 20. A profile is the outline of an object in a given plane (two-dimensional) figure. Profiles are formed by projecting a three-dimensional figure onto a plane or by taking cross sections through the figure with the resulting profile composed of such elements as straight lines, arcs, or other curved lines.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 52 of 171

Figure 20. Specifying Profile of a Surface All Around

FORM TOLERANCES FOR RELATED FEATURES

ANGULARITY TOLERANCE An angularity tolerance specifies a tolerance zone defined by two parallel planes at the specified basic angle (other than 90°) from a datum plane or axis within which the surface or the axis of the feature must lie, Figure 21.

PARALLELISM TOLERANCE

A parallelism tolerance specifies a tolerance zone defined by two parallel lines or lines parallel to datum plane or axis within which the surface or axis of the feature must lie, or the parallelism tolerance may specify a cylindrical tolerance zone parallel to a datum axis within which the axis of the feature must lie, Figures 22-24.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 53 of 171

THIS ON THE DRAWING

The feature axis must be within the specified tolerance of location and must lie between two planes 0.12 apart which are parallel to the datum plane, regardless of feature size.

The feature axis must be within the specified tolerance of location. Where the feature is at maximum material condition (10.00), the maximum parallelism tolerance is 0.05 diameter. Where the feature departs from its MMC size, an increase in the parallelism tolerance is allowed which is equal to the amount of such departure.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 54 of 171
---------------------------	----------	--	-----------	----------------

PERPENDICULARITY TOLERANCE

Perpendicularity is a condition of a surface, median plane, or axis at 90° to datum plane or axis. A perpendicularity tolerance specifies one of the following.

- A tolerance zone defined by two parallel planes perpendicular to a datum plane, datum axis, or axis within which the surface of the feature must lie, Figure 25.
- 2. A cylindrical tolerance zone perpendicular to a datum plane within which the axis of the feature must lie, Figure 24.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 55 of 171
---------------------------	----------	--	-----------	----------------

Figure 26 . Specifying Perpendicularity for an Axis, Pin, or Boss

CONCENTRICITY TOLERANCE Concentricity is a condition where the axes of all crosssectional elements of a feature's surface of revolution are common to the axis of a datum feature. A concentricity tolerance specifies a cylindrical tolerance zone whose axis coincides with a datum axis and within which all cross-sectional axes of the feature being controlled must lie, Figure 25.

Figure 27 . Specifying Concentricity

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 56 of 171

(Contd.)

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 57 of 171

(Contd.)

Table 3. Symbols representing the characteristics to be toleranced

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 58 of 171
---------------------------	----------	--	-----------	----------------

APPLICATION OF GEOMETRIC TOLERANCING

The use of various feature control symbols in lieu of notes for position and form tolerance dimensions as abstracted from ANSI Y14.5M-1982 (R1988) is illustrated in Figure 26.

Figure 26. Application of Symbols to Position and Form Tolerance Dimensions

2.3. Introduction to Surface Roughness

It is not possible to achieve in practice, a geometrically ideal surface of a component and hence, production drawings of components must also contain information about the permissible surface conditions. Machine components which have undergone machining operation, when inspected under magnification, will have some minute irregularities. The actual surface condition will depend upon the finishing process adopted. The properties and performance of machine components are affected by the degree of roughness of the various surfaces. The higher the smoothness of the surface, the better is the fatigue strength and corrosion resistance. Friction between mating parts is also reduced due to better surface finish.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 59 of 171
---------------------------	----------	--	-----------	----------------

Surface Roughness

The geometrical characteristics of a surface include,

- 1. Macro-deviations,
- 2. Surface waviness, and
- 3. Micro-irregularities.

The surface roughness is evaluated by the height, Rt and mean roughness index Ra of the micro-irregularities. Following are the definitions of the terms indicated in Fig. 26

Figure 27 Surface roughness

Actual Profile, A_f

It is the profile of the actual surface obtained by finishing operation.

Reference Profile, R_f

It is the profile to which the irregularities of the surface are referred to. It passes through the highest point of the actual profile.

Datum Profile, D_f

It is the profile, parallel to the reference profile. It passes through the lowest point B of the actual profile,

Mean Profile, M_f

It is that profile, within the sampling length chosen (L), such that the sum of the material filled areas enclosed above it by the actual profile is equal to the sum of the material-void areas enclosed below it by the profile.

Peak to Valley Height, Rt

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 60 of 171
---------------------------	----------	--	-----------	----------------

It is the distance from the datum profile to the reference profile

Mean Roughness Index, Ra

It is the arithmetic mean of the absolute values of the heights h_i between the actual and mean profiles. It is given by,

$$R_{a}=1/L\int_{x=0}^{x=L}\,|\,h_{i}|\,dx$$
 , where L is the sampling length

The surface roughness may be measured, using any one of the following :

- 1. Straight edge
- 2. Surface gauge
- 3. Optical flat
- 4. Tool maker's microscope
- 5. Profilometer
- 6. Profilograph
- 7. Talysurf

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 61 of 171

No	Manutacturing Process		210.0	\$2010		11		€ 3		9.9	7 .	2.2	g ,	8 8	2 3	8 3	B
1	Sand casting	<u> </u>	Ē	Ĩ	Ĺ	Ĺ	Ĺ	Ē			50				50		È
2	Permanent mould casting		\vdash					0.8	777	277	2777	6.3				\vdash	
3	Die casting		-					0.8		277	3.2						
4	High pressure casting					0.3	20	277	///	2							
5	Hot rolling								2.	Þ٧	////	222		////	50		
6	Forging								1.6	777	////	277	2777	28			
7	Extrusion				0.	he⊵	////				25						
8	Flame cutting, sawing & Chipping										6.3	277		277	////	100	
9	Radial cut-off sawing								122	7777	7777	6.3					
10	Hand grinding										6.3	777	////	25			
11	Disc grinding								1.6	2777		222		25			
12	Filing					0.25		////	777	277		277	////	25			
13	Planing								1.6	7777	7777	222	7777	2772	50		
14	Shaping								1.6	777	777	277	777	25			
15	Drilling								1.6	2777	7777	272	2	6			
16	Turning & Milling					0.3	20	777	777	////	////			25			
17	Boring						0.4	7777	777		////	6.3					
18	Reaming						0.4	777	777		3.2						
19	Broaching						0.4	777	777		3.2						
20	Hobbing						0.4	7///	777		3.2						
21	Surface grinding		0	083	22	////	////	777	777	277	25						
22	Cylindrical grinding		0	083	22	777	////	777	777		25						
23	Honing	0.	025	2111	277	777	////	0.4									
24	Lapping	b.012	777		777	20	.16										
25	Polishing		0.0	<u>4</u> E	777	20	.16										
26	Burnishing		0.0	4 E	777	7777	////	7777	0.8								
27	Super finishing	0.01	۶Ø	4777	7777	7777		.32									

Figure 28 Si	irtana roughnass	avnactad trom	Various	manutacturing	nrocaecae
			vanous	manulaciumi	processes

Ethiopian TVET Program STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 62 of 171
---	--	-----------	----------------

Self-Check -2	Written Test
	Written rest

Test I: Multiple Choice Questions

Directions: Choose the correct Answer (each question have 2.pts)

1. Why it is impossible to make parts economically to the exact

dimensions.

- a. Inaccuracies of machines and tools,
- b. Inaccuracies in setting the work to the tool,
- c. Error in measurement
- d. All
- 2. . It is the difference between the maximum and minimum permissible limits of the given size.

a. Tolerance b. Limit c. Deviation d. all

- 3. The theoretical size from which limits of size are derived by the application of allowances and tolerances
 - a. Upper deviation b. lower deviation c. basic size d. fits
- 4. Type of occurs when two toleranced mating parts will always interfere when assembled.
 - a. Interference fit b. Clearance fit c. Line fit d. transition fit

Note: Satisfactory rating –4 points and above Unsatisfactory – below 4 points

You can ask you teacher for the copy of the correct answers.

Name:			

Answer Sheet

Dale.			

Datas

Score =
Rating:

3.1. Introduction to Dimensioning

A drawing of a component, in addition to providing complete shape description, must also furnish information regarding the size description. These are provided through the distances between the surfaces, location of holes, nature of surface finish, type of material, etc. The expression of these features on a drawing, using lines, symbols, figures and notes is called dimensioning.

Dimension is a numerical value expressed in appropriate units of measurement and indicated on drawings, using lines, symbols, notes, etc., so that all features are completely defined

- **1.** As far as possible, dimensions should be placed outside the view.
- **2.** Dimensions should be taken from visible outlines rather than from hidden lines.
- **3.** Dimensioning to a centre line should be avoided except when the centre line passes through the centre of a hole.
- **4.** Each feature should be dimensioned once only on a drawing.
- **5.** Dimensions should be placed on the view or section that relates most clearly to the corresponding features.
- **6.** Each drawing should use the same unit for all dimensions, but without showing the unit symbol.
- **7.** No more dimensions than are necessary to define a part should be shown on a drawing.
- **8.** No features of a part should be defined by more than one dimension in any one direction.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 64 of 171

3.2. THREE RULES OF TOLERANCES

There are general rules of tolerance geometric features that should be followed in this type of dimensioning.

RULE 1 (INDIVISUAL FEATURE SIZE) When only a tolerance of size is specified on a part, the limits of size prescribed the amount of variation permitted in its geometric form. In Figure 1, you can see how the forms of the shaft and hole are permitted to vary within the tolerance of size indicated by the dimensions.

RULE 2 (TOLERANCES OF POSITION) When a tolerance of position is specified in a drawing. RFS, MMC, or LMC must be specified with respect to the tolerance, the datum, or both. You can see that the specification of symmetry of the part Figure 1 is based on a tolerance at RFS from a datum at RFS.

RULE 3 (ALL OTHER GEOMETRIC TOLERANCE) RFS applies for all other geometric tolerances for individual tolerances and datum references, if no modifying symbol is given in the feature control symbol. If a feature is to be at maximum material condition, MMC must be specified.

Figure 1. When only a tolerance of size is specified on a part, the limits prescribe the form of the part, as shown in these examples of shafts and holes with the same limits of tolerance.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 65 of 171

Figure 2. Tolerances of position should include a note of M, S, or L to indicate maximum material condition, regardless of feature size, or least material condition

Figure 3. Tolerance zones

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 66 of 171
---------------------------	----------	--	-----------	----------------

POSITIONAL TOLERANCES

Each dimension has a tolerance, either given directly or indicated on the completed drawing by a general note.

For example, Figure 3 (a) shows a hole located from two surfaces at right angles to each other. At shown at (b), the center may lie anywhere within a square tolerance zone, the sides of which are equal to the tolerances. Thus, the total variations along either diagonal of the square by the coordinate method of dimensioning will be 1.4 times greater than the indicated tolerance. Hence, a 0.014 diameter tolerance zone would increase the square tolerance zone area 57 percent without exceeding the tolerance permitted along the diagonal of the square tolerance zone.

Features located by toleranced angular and radial dimensions will have a wedge-shaped tolerance zone. See Figure 11.

If four holes are dimensioned with rectangular coordinates as in Figure 4 (a), acceptable patterns for the square tolerance zones for the holes are shown at (b) and (c). The locational tolerances are actually greater than indicated by the dimensions.

Feature control symbols are related to the feature by one of several methods illustrated in Figure 26. The following methods are preferred.

- 1. Adding the symbol to a note or dimension pertaining to the feature.
- 2. Running to a leader from the symbol to the feature.
- 3. Attaching the side, end, or corner of the symbol frame to an extension line from the feature.
- 4. Attaching the side or end of the symbol frame to the dimension line pertaining to the feature.

In Figure 4(a), hole A is selected as a datum, and the other three are located from it. The square tolerance zones for hole results from the tolerances on the two rectangular coordinate dimensions locating hole *a*.

The sizes of the tolerance zones for the other three holes result from the tolerances between the holes, while their locations will vary according to the actual location of the datum hole A. two of the many possible zone patterns are shown at (b) and (c).

Thus, with the dimensions shown at (a), it is difficult to say whether the resulting parts will actually fit the mating parts satisfactorily even though they conform to the tolerances shown on the drawing.

These disadvantages are overcame by giving exact theoretical locations by untoleranced dimensions and then specifying by a note how far actual positions may be displaced from these locations. This is called *true-position dimensioning*. It will be seen that the tolerance zone for each hole will be a circle, the size of the circle depending on the amount of variation permitted from "true position."

A true-position dimension denotes the theoretically exact position of a feature. The location of each feature such as a hole, slot, stud, and so on, is given by untoleranced basic dimensions identified by the enclosing frame or symbol. To prevent misunderstandings, true position should be established with respect to a datum.

In simple arrangements, the choice of a datum may be obvious and not require identification.

Figure 4. Tolerance zones

Positional tolerance is identified by a characteristic symbol directed to a feature, which establishes a circular tolerance zone, Figure 5.

Actually, the "circular tolerance zone" is a cylindrical tolerance zone (the diameter of which is equal to the positional tolerance and its length is equal to the length of the feature unless otherwise specified), and its axis must be within this cylinder, Figure 6.

The center line of the hole may coincide with the center line of the cylindrical tolerance zone (a), or it may be parallel to it but displaced so as to remain within the tolerance

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 68 of 171
---------------------------	----------	--	-----------	----------------

cylinder, (b), or it may be inclined while remaining within the tolerance cylinder, (c). In this last case, we see that the positional tolerance also defines the limits of squareness variation.

In terms of the cylindrical surface of the hole, the positional tolerance specification indicates that all elements on the hole surface must be on or outside a cylinder whose diameter is equal to the minimum diameter or the maximum diameter of the hole minus the positional tolerance (diameter, or twice the radius), with the center line of the cylinder located at true position, Figure 5.

Figure 6. Cylindrical Tolerance Zone

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 69 of 171
---------------------------	----------	--	-----------	----------------

Figure7. True Position Interpretation

The use of basic un tolerance dimensions to locate features at true position avoids one of the chief difficulties in toleranced – the accumulation of tolerances even in a chain of dimensions. Figure 8.

While features, such as holes and bosses, may vary in any direction from the trueposition axis, other features, such as slots, may vary on either side of a true-position plane, Figure 9.

Since un tolerance dimensions give the exact locations of the true positions, it is important to prevent the application of general tolerances to these. A note should be added to the drawing such as

GENERAL TOLERANCES DOES NOT APPLY TO BASIC

TRUE-POSITION DIMENSIONS.

Figure 8. No Tolerance Accumulation

Ethiopian TVET Program STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 70 of 171
---	--	-----------	----------------

Figure 9. Positional Tolerance for Symmetry

MAXIMUM MATERIAL CONDITION

Maximum material condition, usually abbreviated to MMC, means that a feature of a finished product contains the maximum amount of material permitted by the tolerance size dimensions shown for that feature. Thus, we have MMC when holes, slots, or other internal features are at minimum size, or when shafts, pads, bosses, and other external features are at their maximum size. We have MMC for both mating parts when the largest shaft is in the smallest hole and there is the least clearance between the parts.

TOLERANCES OF ANGLES

Bilateral tolerances are traditionally been given on angles, as illustrated in Figure 10. Consequently, the wedge-shaped tolerance zone increases as the distance from vertex of the angle increases. Thus, the tolerance had to be figured after considering the total displacement at the point farthest from the vertex of the angle before a tolerance could be specified that would not exceed the allowable displacement. The use of angular tolerances may be avoided by using gages. Taper turning is often handled by machining to fit a gage or by fitting to the mating part.

If an angular surface is located by a linear and an angular dimension, Figure 11 (a), the surface must lie within a tolerance zone as shown at (b). The angular zone will be wider as the distance from the vertex increases. In order to avoid the accumulation of tolerances, that is, to decrease the tolerance zone, the basic angle tolerance method of (c) is recommended. The angle is indicated as basic with the proper symbol and no angular tolerance is specified. The tolerance zone is now defined by two parallel planes, resulting in improved angular control, (d).

Figure 10. Tolerances of Angles

Ethiopian TVET Program STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 71 of 171
---	--	-----------	----------------

Figure11. Angular Tolerance Zones

	-		-	-
Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 72 of 171
Self-Check -3	Multiple choice			
---------------	-----------------			

Test I: Multiple Choice Questions

Directions: Choose the correct Answer (each question have 2.pts)

- **1.** _____ means that a feature of a finished product contains the maximum amount of material permitted by the toleranced size dimensions shown for that feature
 - a. Tolerance angle b. Maximum material condition (MMC) c. both are answers
- 2. Which of the following methods used to relate feature control symbols to the feature?
 - a. Adding the symbol to a note or dimension pertaining to the feature.
 - b. Running to a leader from the symbol to the feature.
 - c. Attaching the side, end, or corner of the symbol frame to an extension line from the feature.
 - d. Attaching the side or end of the symbol frame to the dimension line pertaining to the feature.
 - e. All of above
- 3. All figure correctly represent connection of tolerance frame with tolerance feature except

b

а

Ethiopian TVET
ProgramSTEP-gizCT program for Remote Teaching
Title: Mechanics L-3July 2020Page 73 of 171

Note: Satisfactory rating –4 points and above points

Unsatisfactory – below 4

You can ask you teacher for the copy of the correct answers.

Name: _____

Answer Sheet

Date: _____

Score = _	
Rating: _	

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 74 of 171

4.1. Symbols for limits and fits, surface texture and geometric tolerances

4.1.1. SYMBOLS FOR TOLERANCES OF POSITION AND FORM

Since traditional narrative notes for specifying tolerances of *position* (location) and *form* (shape) may be confusing or not clear, may require much of the space available on the drawing, and often may not be understood internationally, most multinational companies have adopted symbols for such specification. These ANSI symbols provide an accurate and concise means of specifying geometric characteristics and tolerances in a minimum of space, Table 1. Notes may supplement the symbols if the precise geometric requirements cannot be conveyed by the symbols. For construction details of the geometric tolerancing symbols, see Appendix 11.

Combinations of the various symbols and their meanings are given in Figure24. Applications of the symbols to a drawing are illustrated in Figure 26. application The geometric characteristic symbols plus the supplementary symbols are further explained and illustrated with material adapted from ANSI Y14.5M-1982 (R1988), as follows.

energenden - ner kilde	Type of Tolerance	Characteristic	Symbol
For individual features	Form	Straightness Flatness Circularity (roundness) Cylindricity	
For individual or related features	Profile	Profile of a line Profile of a surface	(Q
	Orientation	Angularity Perpendicularity Parallelism	✓ ⊥ //
For related features	Location	Position Concentricity	⊕ ©
	Runout	Circular runout Total runout	

Geometric characteristic symbols

Modifying symbols

Term	Symbol
At maximum material condition	Ø
Regardless of feature size	S
At least material condition	Õ
Projected tolerance zone	Ď
Diameter	ø
Spherical diameter	SØ
Radius	R
Spherical radius	SR
Reference	()
Are length	\sim

*Arrowhead(s) may be filled in.

Table1. Geometric Characteristics and Modifying Symbols

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 75 of 171
---------------------------	----------	--	-----------	----------------

Figure 1. Use of Symbols for Tolerance of Position and Form

BASIC DIMENSION SYMBOL The basic dimension is identified by the enclosing frame symbol, Figure 1(a). The basic dimension (size) is the value used to describe the theoretically exact size, shape, or location of the feature. It is the basis from which permissible variations are established by tolerances on other dimensions in notes, or in feature control frames.

DATUM IDENTIFYING SYMBOL The datum-identifying symbol consists of a frame containing a reference letter preceded and followed by a dash, Figure1 (b). A point, line, plane, cylinder, or other geometric form assumed to be exact for purposes of computation may serve as a datum from which the location or geometric relationship of features of a part may be established.

SUPPLEMENTARY SYMBOLS The symbols for MMC (maximum material condition, i.e., minimum hole diameter, maximum shaft diameter) and RFS (regardless of feature size – the tolerance applies to any size of the feature within its size tolerance and or the actual size of a datum feature) are illustrated in Figure 1 (c). The abbreviations MMC and RFS are also used in notes. See Table 3.

The symbol for diameter is used instead of the abbreviation DIA to indicate a diameter, and it precedes the specified tolerance in a feature control symbol, Figure 1(d). This symbol for diameter instead of the abbreviation DIA may be used on a drawing, and it should precede the dimension. For narrative notes, the abbreviation DIA is preferred.

COMBINED SYMBOLS- Individual symbols, datum reference letters, needed tolerances, and so on may be combined in a single frame, Figure 1 (e).

A position of form tolerance is given by a feature control symbol made up of a frame about the appropriate geometric characteristic symbol plus the allowable tolerance. A vertical line separates the symbol and the tolerance, Figure 1 (d). Where needed, the tolerance should be preceded by the symbol for diameter and followed by the symbol for MMC or RFS.

A tolerance of position or form related to a datum is so indicated in the feature control symbol by placing the datum reference letter following either the geometric characteristic symbol or the tolerance. Vertical lines separate the entries, and, where applicable, the datum reference letter entry includes the symbol for MMC or RFS. See Figure 1.

4.2. SURFACE ROUGHNESS, WAVINESS, AND LA

The modern demands of the automobile, the airplane, and other machines that can stand heavier loads and higher speeds with less friction and wear have increased the need for accurate control of surface quality by the designer regardless of the size of the feature. Simple finish marks are not adequate to specify surface finish on such parts.

Surface finish is intimately related to the functioning of a surface, and proper specification of finish of such surfaces as bearings and seals is necessary. Surface quality specifications should be used only where needed, since the cost of producing a finished surface becomes greater as the quality of the surface called for is increased. Generally, the ideal surface finish is the roughest one that will do the job satisfactorily.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 77 of 171

Figure 2. Surface Texture Symbols and Construction

The system of surface texture symbols recommended by ANSI for use on drawings, regardless of the system of the measurement used, is now broadly accepted by American industry. These symbols are used to define surface texture, roughness and lay. See Figure 2 for meaning and construction of these symbols. The basic surface texture symbol in Figure 2(a) indicates a finished or machined surface by any method just as does the general V symbol, Figure 4(a). Modifications to the basic surface texture symbol, Figure 2 (b) through (d), define restrictions on material removal for the finished surface. Where surface texture values other than roughness average (R_a) are specified, the symbol must be drawn with the horizontal extension as shown in (e). Construction details for the symbols are given in (f).

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 78 of 171

Figure 3. Application of Surface Texture Symbols and Surface Characteristics

Figure 4. Finish Marks

Applications of the surface texture symbols are given in Figure3 (a). Note that the symbols read from the bottom and/or the right side of the drawing and that they are not drawn at any angle or upside down.

Measurements for roughness and waviness, unless otherwise specified, apply in the direction that gives the maximum reading, usually across the lay. See Figure 3 (b). The recommended roughness height values are given in Table 3.

Millimeters (mm)	Inches (in.)	Millimeters (mm)	Inches (in.)
0.08	.003	2.5	.1
0.25	.010	8.0	.3
0.80	.030	25.0	1.0

 Table 2.
 Standard Roughness Sampling Length (Cutoff) Values

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 79 of 171
---------------------------	----------	--	-----------	----------------

Recommended values are in color.

Micro- meters ^a (µm)	Micro- inches (µin.)	Miero- meters ^a (µm)	Micro- inches (µin.)
0.012	0.5	1.25	50
0.025	1	1.60	63
0.050	2	2.0	80
0.075	3	2.5	100
0.10	4	3.2	125
0.125	5	4.0	180
0.15	6	5.0	200
0.20	8	6.3	250
0.25	10	8.0	320
0.32	13	10.0	400
0.40	16	12.5	500
0.50	20	15	600
0.63	25	20	800
0.80	32	25	1000
1.00	40	and the second second	

^aMicrometers are the same as thousand ths of a millimeter (1 μ m = 0.001 mm).

Millimeters (mm)	Inches (in.)	Millimeters (mm)	Inches (in.)
0.0005	.00002	0.025	.001
0.0008	.00003	0.05	.002
0.0012	.00005	0.08	.003
0.0020	.00008	0.12	.005
0.0025	.0001	0.20	.008
0.005	.0002	0.25	.010
0.008	.0003	0.38	.015
0.012	.0005	0.50	.020
0.020	.0008	0.80	.030

Table 3. Preferred Series Roughness Average Values (Ra)

Table 4.

When it is necessary to indicate the roughness-width cutoff values, the standard values to be used are listed in Table 4. If no value is specified, the 0.80 value is assumedWhen maximum waviness height values are required, the recommended values to be used are as given in Table 5.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 80 of 171

Millimeters (mm)	Inches (in.)	Millimeters (mm)	Inches (in.)
0.0005	.00002	0.025	.001
0.0008	.00003	0.05	.002
0.0012	.00005	0.08	.003
0.0020	.00008	0.12	.005
0.0025	.0001	0.20	.008
0.005	.0002	0.25	.010
0.008	.0003	0.38	.015
0.012	.0005	0.50	.020
0.020	.0008	0.80	.030

Table 5. Preferred Series Maximum W	Naviness Height Values
-------------------------------------	------------------------

When it is desired to indicate lay, the lay symbols in Figure 5 are added to the surface texture symbol as per the examples given. Selected applications of the surface texture values to the symbol are given and explained in Figure 6..

A typical range of surface roughness values may be obtained from various production methods is shown in Figure 7. Preferred roughness-height values are shown at the top of the chart.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 81 of 171

Lay Symbol	Meaning	Example Showing Direction of Tool Marks
	Lay approximately parallel to the line representing the sur- face to which the symbol is ap- plied.	
Ţ	Lay approximately perpendic- ular to the line representing the surface to which the symbol is applied.	
x	Lay angular in both directions to line representing the surface to which the symbol is applied.	
М	Lay multidirectional.	
С	Lay approximately circular relative to the center of the surface to which the symbol is applied.	
R	Lay approximately radial rela- tive to the center of the surface to which the symbol is applied.	
Р	Lay particulate, non-direc- tional, or protuberant.	

Figure 5. Lay Symbols

Ethiopian TVET Program STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 82 of 171
---	--	-----------	----------------

Figure 6.. Application of Surface Texture Values to Symbol

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 83 of 171

				Rough	ness A	verage,	Ra							
Micrometers (μm) Microinches (μin.)	50 (2000)	25 (1000)	12.5 (500)	6.3 (250)	3.2 (125)	1.6 (63)	0.80 (32)	0.40 (16)	0.20 (8)	0.10 (4)	0.05 (2)	0.02 (1)	25 0.0 (0.9	12 5)
Flame cutting Snagging Sawing Planing, shaping	N N N	Z Z Z Z Z Z Z Z Z Z			22		772 7772	-72						
Drilling Chemical milling Elect. discharge mach Milling		ZZ							-72					
Broaching Reaming Electron beam Laser Electrochemical Boring, turning Barrel finishing		z			22 22 22 22							~~~		
Electrolytic grinding Roller burnishing Grinding Honing				ZZ		ZZ Z						772		
Electro-polish Polishing Lapping Superfinishing						Z						777 777 777		
Sand casting Hot rolling Forging Perm mold casting	Z	222 27 27 27	27 27 27	77 77 72	 	77	77							
Investment casting Extruding Cold rolling, drawing Die casting			z		2 Z 2 Z 2 Z 2 Z 2 Z 2 Z				77					
KEY Average appl	ication t applicatio	n		I		I				i	1			

Figure 7. Surface Roughness Produced by Common Production Methods. The ranges shown are typical of the processes listed. Higher or lower values may be obtained under special conditions. \emptyset

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 84 of 171

Self-Check -4	Matching Questions
---------------	--------------------

Directions: Match the symbols in Column A with their meaning under Column B (2 points each)

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 85 of 171
---------------------------	----------	--	-----------	----------------

Information Sheet-5 Showing Correct Convention of parts based on ISO Standard

5.1. Conventional Representation

Certain draughting conventions are used to represent materials in section and machine elements in engineering drawings.

5.1.1. Materials

As a variety of materials are used for machine components in engineering applications, it is preferable to have different conventions of section lining to differentiate between various materials. The recommended conventions in use are shown in Fig 1.

5.1.2. Machines.

When the drawing of a component in its true projection involves a lot of time, its convention may be used to represent the actual component. Figure 2 shows typical examples of conventional representation of various machine components used in engineering drawing.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 86 of 171

Туре	Convention	Material
Metale		Steel, Cast Iron, Copper and its Alloys, Aluminium and its Alloys, etc.
Metals		Lead, Zinc, Tin, White-metal, etc.
Glass	<i>'\n '\n '\n</i>	Glass
Packing and Insulating material		Porcelain, Stoneware, Marble, Slate, etc.
		Asbestos, Fibre, Felt, Synthetic resin products, Paper, Cork, Linoleum, Rubber, Leather, Wax, Insulating and Filling materials, etc.
Liquids		Water, Oil, Petrol, Kerosene, etc.
Wood		Wood, Plywood, etc.
Concrete		A mixture of Cement, Sand and Gravel

Figure:1 Conventional representation of materials

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 87 of 171
---------------------------	----------	--	-----------	----------------

Title	Subject	Convention
Straight knurling		
Diamond knurling		- E
Square on shaft	●	
Holes on circular pitch		
Bearings	€₽€₽	
External screw threads (Detail)		+ CE
Internal screw threads (Detail)		
Screw threads (Assembly)		

Figure. 2. Conventional representation of machine components (Contd .)

Ethiopian TVET Program S7	TEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 88 of 171
-------------------------------------	---------	--	-----------	----------------

Title	Subject		с	onvention
Splined shafts			-	\bigcirc
		₽	-E	₹
Interrupted views		₽	-{	
Semi-elliptic leaf spring				
Semi-elliptic leaf spring with eyes	*		¢	
	Subject	Conv	ention	Diagrammatic Representation
Cylindrical compression spring	MMM M		M- M	-www-
Cylindrical tension spring				(W)

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 89 of 171

Title	Conve	ntion
Spur gear		\bigcirc
Bevel gear	×	
Worm wheel		
Worm		\bigcirc

Figure 4 Conventional representations of machine components

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 90 of 171

Test I:	Multiple Choice Qu	iestions		
Directic	ons: Choose the cor	rect Answer (each questio	n have 2. pts)
1.	F	or what mate	rial type this	conventional representation is used?
	a. Metal	b. Glass	c. wood	d. Concrete
2.		For what ma	aterial type th	is conventional representation is used
	a. Liquid	b. concrete	c. Wood	d. Metal

Multiple Choice

a. Bearing b. Internal screw threads c. External screw threads d. Bevel gear

Note: Satisfactory rating –4 points and above Unsatisfactory – below 4 points

You can ask you teacher for the copy of the correct answers.

Self-Check -5

Name:	Date:
Answer Sheet	

Rating:	

6.1. Producing Section Drawings

6.1.2. Examples

Figure 1 shows the isometric view of a machine block and (i) the sectional view from the front, (ii) the view from above and (iii) the sectional view from the left.

Figure 1 Machine Block

Ethiopian TVET Program S	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 92 of 171
-----------------------------	----------	--	-----------	----------------

Figure 2 shows the isometric view of a shaft support. Sectional view from the front, the view from above and the view from the right are also shown in the figure.

Figure 2. Shaft support

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 93 of 171
---------------------------	----------	--	-----------	----------------

Figure 3. Sliding Block

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching	July 2020	Ра
riogram	J	Title: Mechanics L-3	July 2020	

6.1.3. Auxiliary Section

Auxiliary sections may be used to supplement the principal views used in orthographic projections. A sectional view projected on an auxiliary plane, inclined to the principal planes of projection, shows the cross-sectional shapes of features such as arms, ribs and so on. In **Figure 4**, auxiliary cutting plane X-X is used to obtain the auxiliary section X-X.

Figure 4. Auxiliary Section

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 96 of 171

e 6. Auxiliary section view

6.2. Assembly Drawings

A machine is an assembly of various links or parts. It is necessary to understand the relation between the various parts of the unit for the purpose of design and production.

An assembly drawing is one which represents various parts of a machine in their working position. These drawings are classified as design assembly drawings, working assembly drawings, sub-assembly drawings, installation assembly drawings, etc. An assembly drawing made at the design stage while developing a machine is known as design assembly drawing. It is made to a larger scale so that the required changes or modifications may be thought of by the designer, keeping in view both the functional requirement and aesthetic appearance. Working assembly drawings are normally made for simple machines, comprising small number of parts. Each part is completely dimensioned to facilitate easy fabrication. A sub-assembly drawing is an assembly drawing of a group of related parts which form a part of a complicated machine. Thus, a number of such sub-assembly drawings are needed to make a complete unit. An installation assembly drawing reveals the relation between different units of a machine, giving location and dimensions of few important parts.

The final assembly drawings are prepared from design assembly drawings or from the working drawings (component drawings). The class-room exercises are designed to train the trainee to master fundamentals of machine drawing, such as principles of drawing,

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 97 of 171
---------------------------	----------	--	-----------	----------------

orthographic projections, etc. In addition, the trainee will understand the relation between the different parts of the components and working principles of the assembled unit. The following steps may be made use of to make an assembly drawing from component drawings:

1. Understand the purpose, principle of operation and field of application of the given machine. This will help in understanding the functional requirements of individual parts and their location.

2. Examine thoroughly, the external and internal features of the individual parts.

3. Choose a proper scale for the assembly drawing.

4. Estimate the overall dimensions of the views of the assembly drawing and make the outline blocks for each of the required view, leaving enough space between them, for indicating dimensions and adding required notes.

5. Draw the axes of symmetry for all the views of the assembly drawing.

6. Begin with the view from the front, by drawing first, the main parts of the machine and then adding the rest of the parts, in the sequence of assembly.

7. Project the other required views from the view from the front and complete the views.

8. Mark the location and overall dimensions and add the part numbers on the drawing.

- 9. Prepare the parts list.
- 10. Add the title block.

NOTE: It is not advisable to complete one view before commencing the other. The better Method is to develop all the required views simultaneously.

Examples

Stuffing Box

It is used to prevent loss of fluid such as steam, between sliding or turning parts of machine elements. In a steam engine, when the piston rod reciprocates through the cylinder cover; stuffing box provided in the cylinder cover, prevents leakage of steam from the cylinder. Figure 8 shows the various parts of a stuffing box. At the base of stuffing box body 1, a bush 3 is placed such that the bevelled edge of the bush is at the inner side of the body. Gland 2 is placed at the other end of the body and is connected to the main body by means of studs 4 and nuts 5. The space between the reciprocating rod and the bush and the gland is packed with a packing material such as mineral fibers, leather, rubber or cork.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 98 of 171

Parts list			
Part No.	Name	Matl	Qty
1	Body	CI	1
2	Gland	Brass	1
3	Bush	Brass	1
4	Stud	MS	2
5	Nut, M12	MS	2

Figure 7: Stuffing Box

Figure 8. Stuffing Box Assembly

Example 2

A machine vice is a work holding device, used in machines such as drilling, milling, etc. A Swiveling type machine vice permits swiveling about its vertical axis, so that the work may be clamped at any angular position required in the machining operation. T-bolts (not shown) are used through the base plate, to fix the vice to the machine table. Figure 10 shows the details of a swivel machine vice. It consists of the swivel body 1 which is fixed to the base plate 3 by two bolts 6. The heads of the bolts are so shaped, that they can slide freely in the circular T-slot of the base plate. The graduations marked in degrees on the flange of the base plate, facilitate setting of the swivel body at any desired angle. The swivel body has a fixed jaw at one end. The movable jaw 2 is mounted on the swivel body by the screw 4. After the screw is inserted fully, it is held in position by a nut and pin to prevent its axial motion. Thus, when the screw is turned, the movable jaw slides on the swivel body guide ways. Steel jaw plates 5 are fitted to jaws by machine screws.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 100 of 171

Figure 9: Machine Vice

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 101 of 171

Figure 10. Machine vice Assembly

Ethiopian TVET ProgramSTEP-gizCT program for Remote Teaching Title: Mechanics L-3Ju	July 2020	Page 102 of 171
---	-----------	--------------------

Self-Check -6	Multiple	Choice	
Test I: Multiple Choice Ques	tions		
<i>Directions:</i> Choose the correct Directions: Answer all the qu	ct Answer (each question ha lestions listed below. Use th	ve 3.pts) e Answer sheet provided in	the
next page:			
1. What is the use Auxilia	ry view?		
a. To show true size of	inclined surfaces		
b. To show true shape	of inclined surface		
c. a & b			
2 is one w	hich represents various par	ts of a machine in their wor	king
Position.			
a. Assembly Drawing	b. Auxiliary Drawing	C. Section Drawing D.	All

<i>Note:</i> Satisfactory rating –3 points and above points	Unsatisfactory – below 3
You can ask you teacher for the copy of the correct answers.	

Name: _____

Answer Sheet

•

Date: _____

Score = _____ Rating: _____

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 103 of 171
---------------------------	----------	--	-----------	--------------------

7.1. ISO standard Drawing

7.1.1. Types of Lines

When you are preparing drawings, you will use different types of lines to convey information. Line characteristics (Figure 1), such as widths, breaks in the line, and zigzags, have definite meanings.

The widths of the various lines on a drawing are very important in interpreting the drawing. An ISO standard specifies that three widths of line should be used: thin, medium, and thick. As a general rule, on ink drawings, these three line widths are proportioned 1:2:4, respectively. However, the actual width of each type of line should be governed by the size and type of drawing.

The width of lines in format features (that is, title blocks and revision blocks) should be a minimum of 0.015 inch (thin lines) and 0.030 inch (thick lines). To provide contrasting divisions between elements of the format, use thick lines for borderlines, outline of principal blocks, and main divisions of blocks. Use thin lines for minor divisions of title and revision blocks and bill of materials. Use medium line widths for letters and numbers.

You cannot control the width of lines drawn with a pencil as well as the width of lines drawn with pen and ink. However, pencil lines should be opaque and of uniform width throughout their length. Cutting plane and viewing plane lines should be the thickest lines on the drawing. Lines used for outlines and other visible lines should be differentiated from hidden,

Extension, dimension, or center lines.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 104 of 171
---------------------------	----------	--	-----------	--------------------

		LINE STANDARDS		
Name	Convention	Description and Application	Example	
Center Lines 1		Thin lines made up of long and short dashes alternately spaced and consistent in length. Used to indicate symmetry about an axis and location of centers.	\$	
Visible Lines		Heavy unbroken lines Used to indicate visible edges of an object	\bigcirc	
Hidden Lines		Medium lines with short evenly spaced dashes Used to indicate concealed edges		
Extension Lines		Thin unbroken lines Used to indicate extent of dimensions		
Dimension Lines	‡ ↓	Thin lines terminated with arrow heads at each end Used to indicate distance measured		
Leader	1	Thin line terminated with arrowhead or dot at one end Used to indicate a part, dimension or other reference	The source	
Break (Long)	-~~-	Thin, solid ruled lines with freehand zigzags Used to reduce size of drawing required to delineate object and reduce detail	\geq	
Break (Short)	~~	Thick, solid free hand lines Used to indicate a short break		
Phantom or Datum Line		Medium series of one long dash and two short dases evenly spaced ending with long dash Used to indicate alternate position of parts, repeated detail or to indicate a datum plane	ſ	
Stitch Line		Medium line of short dases evenly spaced and labeled Used to indicate stitching or sewing		
Cutting or Viewing Plane Viewing Plane Optional	F 7	Thick solid lines with arrowhead to indicate direction in which section or plane is viewed or taken	r	
Cutting Plane for Complex or Offset Views	~	Thick short dashes Used to show offset with arrowheads to show direction viewed		

Figure 1. Line characteristics and Conventions

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 105 of 171
---------------------------	----------	--	-----------	--------------------

Construction Lines

Usually the first lines that you will draw are construction lines. Use these same lines to lay out your drafting sheet; you will also use them to lay out the rest of your drawing. Line weight for construction lines is not important since they will not appear on your finished drawing. Construction lines should be heavy enough to see, but light enough to erase easily; use a 4H to 6H pencil with a sharp, conical point. With the exception of light lettering guidelines, you must erase or darken all construction lines before a drawing is reproduced.

Center Lines

Use center lines (Figure 2) to indicate the center of a circle, arc, or any symmetrical object. Compose center lines with long and short dashes, alternately and evenly spaced, with a long dash at each end. Extend center lines at least 1/4 inch outside the object. At intersecting points, draw center lines as short dashes. You may draw a very short center line as a single dash if there is no possibility of confusing it with other lines. You can also use center lines to indicate the travel of a moving center.

Figure 2. Use of Center line

Visible Lines

Draw the visible edge lines (Figure 3) of the View as solid, thick lines. The visible edge lines include not only the outlines of the view, but Lines defining edges that are visible within the View.

Ethiopian TVET	CT program for Remote Teaching	July 2020	Page 106 of
Program STEP-giz	Title: Mechanics L-3		171

Figure 3. Use of visible edge line

Hidden Lines

Draw hidden edge lines (Figure 4) with short dashes and use them to show hidden features of an object. Begin a hidden line with a dash in contact with the line from which it starts, except when it is the continuation of an unbroken line.

Figure 4. Hidden edge line

To prevent confusion in the interpretation of hidden edge lines, you must apply certain standard techniques in drawing these lines. A hidden edge line that is supposed to join a visible or another hidden line must actually contact the line, as shown in the upper views of Figure 5; the lower views show the incorrect procedure.

An intersection between a hidden edge line and a visible edge line is illustrated in Figure 6. Obviously, on the object itself the hidden edge line must be below the visible edge line. Indicate this face by drawing the hidden edge line as shown in the left view of Figure 6. If you drew it as indicated in the right view, the hidden edge line would appear to be above, rather than beneath, the visible edge line.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 107 of 171

Figure 5 Correct and incorrect procedures for drawing adjoining lines.

Figure 6 Correct and incorrect procedures for drawing a hidden edge line that intersects a visible edge line.

Extension Line

Use extension lines (Figure 7) to extend dimensions beyond the outline of a view so that they can be read easily. Start these thin, unbroken lines about 1/16 inch from the outline of the object and extend them about 1/8 inch beyond the outermost dimension line. Draw extension lines parallel to each other and perpendicular to the distance you are showing. In unusual cases, you may draw the extension lines at other angles as long as their meaning is clear. As far as practical, avoid drawing extension lines directly to the outline of an object. When extension lines must cross each other, break them as shown in Figure 8.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 108 of 171
---------------------------	----------	--	-----------	--------------------

Figure 8. Breaking extension lines and leaders at points of intersections.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 109 of 171

Dimensions

Insert a dimension line, terminating at either end in a long, pointed arrowhead (Figure 9), between each pair of extension lines. You will draw a dimension line as a thin line with a break to provide a space for the dimension numerals (except in architectural and structural drafting). Occasionally, when you need to indicate the radius of an arc, you will draw an arrow only the end of the line that touches the arc. The other end, without an arrow, terminates at the point used as the center in drawing the arc. The arrowhead on a dimension or leader line is an important detail of a drawing. If you draw these arrowheads sloppily and varied in size, your drawing will not look finished and professional. The size of the arrowhead used on a drawing may vary with the size of the drawing, but all arrowheads on a single drawing should be the same size, except occasionally when space is very restricted. The arrowheads you will use on Navy drawings are usually solid, or filled in, and are between 1/8 and 1/4 inch long, with the length about three times the spread.

Figure 9. Method of drawing an arrowhead

With a little practice, you can learn to make good arrowheads freehand. Referring to Figure 9, first define the length of the arrowhead with a short stroke as shown at A. Then draw the sides of the arrowhead as indicated at B and C. Finally, fill in the area enclosed by the lines, as shown at D.

Leaders

Use leaders to connect numbers, references, or notes to the appropriate surfaces or lines on the drawing (Figure 10). From any suitable portion of the reference, note, or number, draw a short line parallel to the lettering. From this line, draw the remainder of the leader at an angle (dog leg) to an arrowhead or dot. In this way, the leader will not be confused with other lines of the drawing. If the reference is to a line, always terminate the leader at this line with an arrowhead. However, a reference to a surface terminates with a dot within the outline of that surface.

	-		-	
Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 110 of 171

Phantom Lines

You will use phantom lines most frequently to indicate a moving part's alternate position, as shown in the left-hand view of Figure 11. Draw the part in one position in full lines and in the alternate position in phantom lines. You will also use phantom lines to indicate a break when the nature of the object makes the use of the conventional type of break unfeasible. The right hand view of Figure 11 shows an example of using of phantom lines. Datum

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 111 of 171
---------------------------	----------	--	-----------	--------------------

Figure 11 — Use of phantom lines.

Datum Lines Use a datum line to indicate a line or plane of reference, such as the plane from which an elevation is measured. Datum lines consist of one long dash and two short dashes equally spaced. Datum lines differ from phantom lines only in the way they are used.

Viewing or Cutting Plane Lines Use viewing plane lines to indicate the plane or planes from which a surface or several surfaces are viewed. Cutting plane lines indicate a plane or planes in which a sectional view is taken. Section views give a clearer view of interior or hidden features of an object that cannot be clearly observed in conventional outside views. Obtain a section view by cutting away part of an object to show the shape and construction at the cutting plane. Notice the cutting plane line AA in Figure 12, view A; it shows where the imaginary cut has been made. The single view in Figure 12, view B, helps you to visualize the cutting plane. The arrows point in the direction in which you are to look at the sectional view. In Figure 12, view C, a front view shows how the object looks when cut it in half. The orthographic section view of Figure 12, view A. Notice how much easier it is to read and understand.

Figure 12 Action of Cutting plane

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 112 of 171
---------------------------	----------	--	-----------	--------------------

Note that hidden lines behind the plane of projection are omitted in the sectional view. These lines are omitted by general custom, because the elimination of hidden lines is the basic reason for making a sectional view. However, lines that would be visible behind the plane projection must be included in the section view.

Cutting plane lines, together with arrows and letters, make up the cutting plane indications. Placing arrows at the end of the cutting plane lines indicates the direction to view the sections. The cutting plane may be a single continuous plane, or it may be offset if the detail can be shown to better advantage. On simple views, indicate the cutting plane as shown in Figure 12, view A. On large, complex views or when the cutting planes are offset, indicate them as shown in Figure 13.

Identify all cutting plane indications with reference letters placed at the arrowhead points. When a change in direction of the cutting plane is not clear, you should place reference letters at each change of direction. When more than one sectional view appears on a drawing, alphabetically letter the cutting plane indications.

Include the letters that are part of the cutting plane indication as part of the title; for example, section A-A, section B-B, if the single alphabet is exhausted, multiples of letters may be used. You may abbreviate the word section, if desired. Place the title directly under the section drawing.

Figure 13. Use of an offset section

Section Lines

Sometimes you can best convey the technical information in a drawing by a view that represents the object as it would look if part of it were cut away. A view of this kind is called a

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 113 of 171
---------------------------	----------	--	-----------	--------------------

section. The upper view of Figure 14 shows a plan view of a pipe sleeve. The lower view is a section, showing the pipe sleeve as it would look, viewed from one side, if you cut it exactly in half vertically. The surface of the imaginary cut is crosshatched with lines called section lines. According to the section lining shall be composed of uniformly spaced lines at an angle of 45 degrees to the baseline of the section. On adjacent parts, the lines shall be drawn in opposite directions. On a third part, adjacent to two other parts, the section lining shall be drawn at an angle of 30 to 60 degrees. You can use the cross-hatching shown in Figure 14 on any drawing of parts made of only one material (like machine parts, for example, which are generally made of metal). The cross-hatching is the symbol for metals and may be used for a section drawing of any type of material.

Figure 14. Drawing of a plan view and a full section

7.1.2. Order of Priority of coinciding

When two or more lines of different types coincide, the following order of priority should be observed:

- Visible outlines and edges
- Hidden outlines and edges
- Cutting planes
- Centre lines and lines of symmetry
- Centroidal lines
- Projection lines

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 114 of 171
---------------------------	----------	--	-----------	--------------------

7.2. Application of lines

Line	Description	Concert And Konstrant
Lane	Description	General Applications
Α	Continuous thick	A1 Visible outlines
в	Continuous thin (straight or curved)	 B1 Imaginary lines of intersection B2 Dimension lines B3 Projection lines B4 Leader lines B5 Hatching lines B6 Outlines of revolved sections in place B7 Short centre lines
c	Continuous thin, free-hand	C1 Limits of partial or interrupted views and sections, if the limit is not a chain thin
▫──∕──∕──	Continuous thin (straight) with zigzags	D1 Line (see Fig. 2.5)
E——————	Dashed thick	E1 Hidden outlines
G	Chain thin	G1 Centre lines G2 Lines of symmetry G3 Trajectories
н г	Chain thin, thick at ends and changes of direction	H1 Cutting planes
J L	Chain thick	J1 Indication of lines or surfaces to which a special requirement applies
κ	Chain thin, double-dashed	 K1 Outlines of adjacent parts K2 Alternative and extreme positions of movable parts K3 Centroidal lines

Table 2. Application of Line

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 115 of 171
---------------------------	----------	--	-----------	--------------------

Ela 2 E Applications of lines

Figure 15. Application of Lines

Drawing Template and Title block

Drawing Templates

Drawing templates are a key component of the drawing system. They specify styles and layers available for such items as lines and hatched regions, in addition to specifying default properties for the current drawing elements.

Included are several predefined drawing templates conforming to ANSI English, ANSI Metric, and ISO drawing border standards. However, these templates contain only a minimum of defined named styles. If desired, you can specify an existing template to be used as a default each time a new drawing is created, or you can define a custom drawing environment as a new template.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 116 of 171
---------------------------	----------	--	-----------	--------------------

Standard layouts of drawing sheets are specified by the various standards organizations.

This is the layout of a typical sheet, showing the drawing frame, the microfilm camera alignment marks, a typical title block, parts list and revision table:

Figure 16. Title Block

ISO Standard Paper Sizes

The ISO 216 paper sizing system is used in most of the world, replacing traditional paper sheet sizes such as the 8.5 by 11 inch size familiar in the U.S

In brief, international paper sizes are in three series, designated A*n*, B*n*, and C*n*. Increasing the number *n* by 1 halves the area of the sheet, so that, for example, an A5 sheet is an A4 sheet cut in half. The basic sheet A0 has an area of 1 square meter, so an A4 sheet (the standard size for business letters) has an area of 1/16 square meter. The ratio between the height and width of a sheet is always the square root of 2 (about 1.414).

Ethiopian TVET Program S	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 117 of 171
-----------------------------	----------	--	-----------	-----------------

The area of a B*n* sheet is the area of the A*n* sheet multiplied by the square root of 2, so a B5 sheet, for example, is intermediate in size between an A4 and an A5 sheet. The C*n* size, intended mostly for envelopes, has an area equal to the fourth root of 2 (about 1.189) times the area of the A*n* sheet, which means that an A*n* sheet fits nicely, unfolded, in a C*n* envelope.

Format	Width [m]	Height [m]
An	2 ^{-1/4-n/2}	2 ^{1/4-n/2}
Bn	2 ^{-n/2}	2 ^{1/2-n/2}
Cn	2 ^{-1/8-n/2}	2 ^{3/8-n/2}

The dimensions of the sheets are computed from these formulas:

With round off, the dimensions (in millimeters) are as follows:

A Series Formats		B Series Formats		C Series Formats	
4A0	1682 × 2378	-	-	-	-
2A0	1189 × 1682	-	-	-	-
A0	<mark>841 × 118</mark> 9	B0	1000 × 1414	C0	917 × 1297
A1	594 × 841	B1	707 × 1000	C1	648 × 917
A2	420 × 594	B2	500 × 707	C2	458 × 648
A3	297 × 420	B3	353 × 500	C3	324 × 458
A4	210 × 297	B4	250 × 353	C4	229 × 324
A5	148 × 210	B5	176 × 250	C5	162 × 229
A6	105 × 148	B6	125 × 176	C6	114 × 162
A7	74 × 105	B7	88 × 125	C7	81 × 114
A8	52 × 74	B8	62 × 88	C8	57 × 81
A9	37 × 52	B9	44 × 62	C9	40 × 57
A10	26 × 37	B10	31 × 44	C10	28 × 40

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 118 of 171

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 119 of 171
---------------------------	----------	--	-----------	--------------------

Figure 18 .North American paper sizes

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 120 of 171
---------------------------	----------	--	-----------	--------------------

Figure 19. Above is an example of a standard sheet with notation of its parts.

Ethiopian TVET Program STEP-	jiz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 121 of 171
--	-----	--	-----------	--------------------

Figure 20 . Above is an example of a standard sheet with notation on its dimension

REVISION		
DESCRIPTION	DATE	APPROVE
	I	'

The process of **zoning** in a drawing is referring to finding the location of a specific part, usually used in an assembly drawing where there are many parts. This process is kind like reading a map. A drawing may be divided up into a grid using letters and numbers. When zoning is used it is located inside the drawing frame.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 122 of 171
---------------------------	----------	--	-----------	--------------------

Zoning allows easy references to various parts of the drawing by referencing a coordinate such as **C7**.

3		
REVISION		
DESCRITPTION	DATE	APPROVED
	I	I
	REVISION DESCRITPTION	3 REVISION DESCRITPTION DATE

The **revision block** or sometimes called the change block. This is record of changes made to the original drawing. Drawing revision are made to improve the design, reduce cost, clarify instruction, change dimension, correct errors, etc. A typical revision block may contain: Zone location, Revision number or letter, Description of change, The date the revision was made, The person approving the revision. All modifications to the drawing should be documented here.

A Material list or Parts list or sometimes called a bill of materials. This list is used primarily on assembly type drawings that show more than a single part. Some of the more common Materials list May contain such things as the: Item number, The quantity of items required, Description of the part, And other information.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 123 of 171

GENERAL TOLERANCE					
	COMPANY	NAME/ADDRESS:			
	PARTS L	IST (OR LIST OF M	(ATERIAL)		

Some important information that may be contained in the **title block** are: Company name, Part name, Who the drawing was drawn by, who the drawing was approved by, scale of the drawing, Drawing number, what is the revision number, how many sheet's it took to create this drawing

Title Blocks

The Title block is a boxed area containing general information about the part in the drawing. The main purpose of the title block is that it contains important text information about the part such as company name, drawing number, part number and other pertinent information. Different companies may have some what different formats for their title blocks, but most of the time the title block is located in the lower right corner of the drawing sheet.

Drawing

Title

Blocks

Standards

BS ISO 7200 Technical Drawings- Title Blocks identifies the title block requirements to be used on engineering drawings.... The drawing sheet size should be in accordance with "BS EN ISO 5457 TD-Sizes and layout of drawing sheets".

Notes

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 124 of 171
---------------------------	----------	--	-----------	--------------------

A title block is the form on which the actual drawing is a section. The title block includes the border and the various sections for providing quality, administrative and technical information. The importance of the title block cannot be minimized as it includes all the information which enables the drawing to be interpreted, identified and archived.

The title should include sufficient information to identify the type of drawing e.g. general arrangement, or detail. It should also clearly describe in a precise way what the drawing portrays

The notes below relate to the title boxes included on in the title block to convey the necessary information. The standard drawing sizes and layouts are described elsewhere.

The basic requirements for a title block located at the bottom right hand corner of a drawing are

- 1. The registration or ID number
- 2. The drawing title
- 3. The Legal Owner of the Drawing

These items should be written in a rectangle which is at the most 170mm wide.

The tile block should also include boxes for the legal signatures of the originator and other persons involved production of the drawing to the required quality.

In other forms of title block , the title block contains the following information:

- the name of the company or organization
- the title of the drawing
- the drawing number, which is generally a unique filing identifier
- the scale
- the angle of projection used, either first or third, generally shown symbolically
- the signature or initials of the draftsman, checker, approving officer, and issuing officer, with the respective dates
- other information as required

The drawing should also include a symbol identifying the projection. The main scale and thelineardimensionunitsifotherthan"mm".

Mechanical drawings should list the standards use for: indicating the surface texture: welds: general tolerances and geometric tolerances, as notes referring directly the the relevant standards or a general note referring to the BS 8888. (BS 8888 lists all of the relevant standards.) BS 8888 should really only be referenced if the drawing is in full accordance.

The drawing title block should indicate the date of the first revision. In separate boxes to the title block the current revision with an outline description of the revision should be indicated.

On completion of each drawing revision an additional revision box should be completed thus providing a detailed history of the drawing

Typical Title Box

13			14		15		16	
	RevNo	Revi	ision note			Date	Signature	Checked
	Α	SECTION ON A-A DELETED					RBoodroe	AllOher

Sheet Frames

It is standard practice for a drawing frame to be printed on each sheet, defining a margin around the outside of drawing area.

Drawing frames are standardized for each size of paper as per the following table:

Ethiopian TVET Program STI	'EP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 126 of 171
--------------------------------------	---------	--	-----------	--------------------

Drawing Frames with No Filing Margin

Paper Size	Border Wi	dth (mm)	Dimensions of Drawing Frame (mm)			
	Left & Right	Top & Bottom	Width	Height		
A0	28	20	1133	801		
A1	20	14	801	566		
A2	14	10	566	400		
A3	10	7	4003	283		
A4	7	5	283	200		

Ethiopian TVET	CT program for Remote Teaching	July 2020	Page 127 of
Program STEP-giz	Title: Mechanics L-3		171

Self-Check -7	Multiple Choice
Test I: Multiple Choice	luestions

Directions: Choose the correct Answer (each question have 2.pts)

Directions: Answer all the questions listed below. Use the Answer sheet provided in the next page:

- 1. When center line, Projection line, Hidden outlines and cutting planes, are coincide, which line takes the Priority?
 - a. Visible Line b. Center line c. Projection line d. Hidden line
- 2. _____ type of line most frequently used to indicate a moving part's alternate position
 - a. Center line b. Phantom line d. Hidden line c. visible line
- . All figure shows correct intersection between a hidden edge line and a visible 3. edge line except

Note: Satisfactory rating 4 points and above

Unsatisfactory – below 4 point

You can ask you teacher for the copy of the correct answers.

Δης	wer Sheet
	Score =
	Rating:
Name:	Date:

Ethiopian TVET	CT program for Remote Teaching	July 2020	Page 128 of
Program STEP-giz	Title: Mechanics L-3		171

	Selecting	Components,	material	from	manufacturing
Information Sheet-8	Catalogue	S			

8.1. Introduction to Material Selection

Manufacturing Catalogues are a complete list of mechanical components, materials and items, typically arranged in alphabetical or symmetric order.

Design of an engineering component involves three interrelated problem.

- Selecting a material,
- Specifying a shape
- Choosing a manufacturing process

Getting this selection right the first time by selecting the optimal combination your design has enormous benefits to any engineering-based business. It leads to lower product costs, faster time-to-market, a reduction in the number of in-service failures and, sometimes, significant advantages relative to your competition.

When we talk about choosing materials for a component, we take into account many different factors. These factors can be broken down into the following areas.

Material Properties

The expected level of performance from the material

Material Cost and Availability

Material must be priced appropriately (not cheap but right) Material must be available (better to have multiple sources)

Processing

Must consider how to make the part, for example:

Casting

Machining

Welding

Environment

The effect that the service environment has on the part

The effect the part has on the environment

The effect that processing has on the environment

Now clearly these issues are inter-linked in some fashion. For example, cost is a direct result of how difficult a material is to obtain and to machine. And the effect of the environment on the material is clearly related to the material properties.

Ethiopian TVET Program S	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 129 of 171
-----------------------------	----------	--	-----------	--------------------

So if we really want to use a novel or unusual material, the choice must be made early in the design process. Then we can do the detailed design work using the correct material properties.

Consider the example of wooden airplanes and metal-framed airplanes. If we were to design an airplane of either material we will have to make the choice early. The end designs are quite different. So, the material choice can radically alter the final design. But the possibility also exists that it may not. After all what is the real difference between a 1045 and a 1035 carbon steel?

Kinds of Materials (What kind of materials can I use?)

Metals (Iron, Aluminum Copper, Magnesium)

Composites

Ceramics (Glass, Semi-conductors, structural ceramics (SiN, SiC), Refractory Composites Polymers Rubber, Plastics, Liquids and Gases

Metal properties tend to be well understood and metals are somewhat forgiving materials. We can make small mistakes (sometimes big ones) and get away with a poor design as a result of metal's forgiving nature. We see ceramics and composites all around us, but they tend to be used in special applications because of fabrication costs. This however, is changing. Plastics are among the most common modern material choices. In large volume production, plastics are inexpensive. In small volume productions, plastics can be an extremely expensive choice due to high tooling costs.

Material Properties

We are most concerned with characteristics such as

Mechanical Properties

Strength (Yield Strength, Ultimate tensile Strength, Shear strength, Ductility, Hardness , density etc.)

You can get good information on particular materials from Standards handbooks, such as the ASM's Books on Metals. You can obtain information on gases and liquids from CRC's Handbooks. And the best place to get information on plastics and composites is from the manufacturer.

The choice of a material is frequently the result of several compromises. For example, the technical appraisal of an alloy will generally be a compromise between corrosion resistance

and several other properties such as strength and weld ability. And the final selection may come down to a compromise between technical and economic factors. In identifying a material, approach the task in three stages:

List the material requirements for the design. Use the list of characteristics given above to help you in defining ALL the critical requirements. Rank the requirements in importance to the design's success.*

Select and evaluate candidate materials. By researching the various handbooks and resources, attempt to rank your candidate materials as to how well they meet the requirements. Use a decision table to identify the best choices.

Choose the most economical material. Research material costs and production costs based upon your anticipated production run. Choose the least expensive of your best choice candidate materials.

The four basic Steps Selecting Appropriate Materials

- **1) Translation**: express design requirements as constraints and objectives
- 2) Screening: eliminate materials that cannot do the job
- **3) Ranking:** find materials that best do the job
- 4) Supporting Info: Select, then verify with any supporting materials handbooks, expert systems, web, etc.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 131 of 171
---------------------------	----------	--	-----------	--------------------

Self-Check -8 Multiple Choice

Test I: Multiple Choice Questions

Directions: Choose the correct Answer (each question have **2.pts**) **Directions:** Answer all the questions listed below. Use the Answer sheet provided in the

next page:

1.						Which	problems	are
			,			10		

encountered in design of an engineering component?

a. Selecting a material, b. specifying a shape,

C. choosing a manufacturing process d. All of above

- 2. _____ are a complete list of mechanical components, materials and items, typically arranged in alphabetical or symmetric order.
- a. Manufacturing Catalogue b. BOM (bill of material) c. manufacturing Process d.all
- 3. What are basic Steps in Selecting Appropriate Materials?
 - a. Translation b. screening c. ranking d. supporting info e. all

Note: Satisfactory rating – 4 points Unsatisfactory - below 4 points

You can ask you teacher for the copy of the correct answers.

Answer Sheet

Score = _____

Rating: _____

Name: _____

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 132 of 171
---------------------------	----------	--	-----------	--------------------

1. Calculate the maximum and minimum limits for both the shaft and hole in the following; using the tables in Appendix for tolerances and name the type of fit obtained:

(a) 45H8/d7	(b) 180H7/n6	(c) 120H7/s6
(d) 40G7/h6	(e) 35 C11/h10	

- 2. The dimensions of a shaft and a hole are given below: Shaft, Basic size = 60mm and given as 60 - 0.020 Hole, Basic size = 60mm and given as 60 - 0.005 Find out:

 (a) Tolerance of shaft
 (b) Tolerance of hole
 (c) Maximum allowance
 (d) Minimum allowance
 - (e) Type of fit
- 3. A 30mm diameter hole is made on a turret lathe to the limits, 30.035 and 30.00. The following two grades of shafts are used to fit in the hole:

(a) Φ 29.955mm and 29.925mm,
(b) φ 30.055mm and 30.050mm.

Calculate the maximum tolerance, clearance and indicate the type of fit in each case by a sketch.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 133 of 171
---------------------------	----------	--	-----------	--------------------

1. By means of neat sketches and explanatory notes, interpret the meaning of the geometrical tolerances shown in Figure 1.

2. Explain the meaning of the geometrical tolerances indicated in microns, for the machine tool

Components shown in Figure 2.

Figure 2

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 134 of 171
---------------------------	----------	--	-----------	--------------------

1. Identify (i) Functional, (ii) Non-functional and (iii) Auxiliary dimensions in Figure below.

Dimension Methods

- **Step 1.** As far as possible, dimensions should be placed outside the view.
- Step 2. Dimensions should be taken from visible outlines
- **Step 3**. Dimensioning to a centre line should be avoided except when the centre line passes through the centre of a hole.
- **Step 4** Each feature should be dimensioned once only on a drawing.
- **Step 5.** Dimensions should be placed on the view or section that relates most clearly to the corresponding features.
- **Step 6**. Each drawing should use the same unit for all dimensions, but without showing the unit symbol.
- **Step 7.** No more dimensions than are necessary to define a part should be shown on a drawing.
- **Step 9.** No features of a part should be defined by more than one dimension in any one direction.

Figure 3.1

2. The drawings in Figure. 2 are not dimensioned properly. Correct them according to standards.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 135 of 171
---------------------------	----------	--	-----------	--------------------

Figure 3.2

Ethiopian TVET Program ST	EP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 136 of 171
-------------------------------------	--------	--	-----------	--------------------

For isometric drawing shown in figure 4.1. Draw

- (i) the sectional view from the front,
- (ii) the view from above
- (iii) the sectional view from the left.
- (iv) The auxiliary section view in third angle projection.

Steps to draw auxiliary view

Step 1. Construct an axis parallel to front View

Step 2. Make an auxiliary plane having the same gap with axis

Step 3. Project the primary auxiliary view from the inclined surface of an object

Step 4. Project the complete auxiliary of an object by projecting non parallel surfaces of an object including hidden surfaces

Figure 4.1

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 137 of 171
---------------------------	----------	--	-----------	--------------------

Operation	Sheet 5
-----------	---------

Produce Assembly Drawing

Assemble the components of the C-clamp shown in Figure. and draw, (i) sectional view from the front and (ii) view from the right.

- Step 1. Study functional requirements of each component and their inter relationship
- **Step 2** Study carefully the views of each component in the detail drawing and decide the relative location of each part for the proper functioning of the machine.
- **Step 3** Decide the mating dimensions between two components which are required to be Assembled.
- **Step 4** Prepare free-hand sketch of the main view or an important view
- **Step 5** Select a suitable scale for the entire assembly drawing.
- **Step 6** Lay out the views of the assembly drawing so that it becomes easier to understand.
- **Step 7.** Prepare the bill of materials.
- **Step 8.** Show overall dimensions.
- Step 9. Draw the section-lines according to the convention
- Step 10. Show required fits and tolerances between the two mating components

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching	July 2020	Page 138 of 171
Fiogram	STEI -giz	Title: Mechanics L-3	July 2020	1/1

Figure 5.1

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 139 of 171
---------------------------	----------	--	-----------	--------------------

Practical Demonstration Test

Name: _____ Date: _____

Time started: _____

Time finished: _____

Instructions: Given necessary templates, tools and materials you are required to perform the following tasks within 8-12 hours.

Task 1: Assemble the components of Lathe machine tail-stock

Task 2: Draw the Sectional View and Auxiliary view

Task 3 Insert appropriate dimensions

Figure 6: Lathe Tail Stock

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 140 of 171

- 1. BOOKS
- 2. Machine drawing, therd edition, DR.KL.Narayana, Dr. M.A. Veluswami
- 3 Text book of engineering drawing,K.VENKATA Reddy,second edition,BS.Pabilication
- 4. KHURMI R S AND GUPTA J. K (1979). A Text Book of Machine Design. ISN 81-

219-0501-x, Published by Scand and Company Itd

Ethiopian TVET Program STE	EP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 141 of 171
--------------------------------------	--------	--	-----------	--------------------

Mechanics

LEVEL III

Learning Guide#03

Unit of Competence:	Perform	Advanced	Engineering
----------------------------	---------	----------	-------------

Detail Drafting

Module Title: Performing Advanced Engineering

Detail Drafting

Module code:	XXX		
LG Code:	XXX		
TTLM Code:	XXX		

LO 3: Quality Assure Drawing

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 142 of 171

This learning guide is developed to provide you the necessary information regarding the following **content coverage** and topics:

- Checking drawings.
- Checking assembly/fabrication drawings.
- Issuing, filing and storing drawings

This guide will also assist you to attain the learning outcome stated in the cover page. Specifically, **upon completion of this Learning Guide, you will be able to**:

- Check drawings in Conformance with the specification.
- Check assembly/fabrication drawings.
- Issue, file and store drawings

Learning Instructions:

- 1. Read the specific objectives of this Learning Guide.
- 2. Follow the instructions described below 3 to 6.
- 3. Read the information written in the information "Sheet 1, Sheet 2, and Sheet 3".
- 4. Accomplish the "Self-check 1, Self-check t 2, and Self-check 3 " in page -146, 149, and 154 respectively.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 143 of 171
---------------------------	----------	--	-----------	--------------------

3.1. Introduction to Checking Drawings

The following list should be used as a basis for checking drawing:

Clarity - is the drawing clear in its intent and has sufficient information been shown.

Accuracy - is the drawing to scale, Are dimensions, levels are correct?

If any product information is used, is it the latest information? Available from the latest catalogue?

Consistency -Is the drawing with other drawings in the same setDrafting -Have the requirements of the drawing been met?Check each component to ensure compliance with the specifications

Quality Control is the process of checking the accuracy of calculations and consistency of the drawings, detecting and correcting design omissions and errors prior to finalizing design plans and verifying the specifications for the load-carrying members are adequate for the service and strength loads. to document the Quality Control process.

Figure 1: Detail Title Block

Quality Assurance is the process of reviewing the quality control process for use and effectiveness at preventing mistakes and ensuring compliance.

Ethiopian TVET	CT program for Remote Teaching	July 2020	Page 144 of
Program STEP-giz	Title: Mechanics L-3		171
Self-Check -1	Multiple Choice		
---------------	-----------------		

Test I: Multiple Choice Questions

Directions: Choose the correct Answer (each question have **2.pts**) **Directions:** Answer all the questions listed below. Use the Answer sheet provided in the

1. Among the following lists which one is used as a basis for checking drawing?

a. Clarity b. Accuracy c. Consistency d. Drafting e. all

2._____ is the process of reviewing the quality control process for use and Effectiveness at preventing mistakes and ensuring compliance.

a. Quality Assurance b. Quality control c.TQM d. all

3. ______ is the process of checking the accuracy of calculations and

Consistency?

a. TQM b. Quality control c. Quality Assurance d. All

Note: Satisfactory rating –3 points and above points

Unsatisfactory – below 3

You can ask you teacher for the copy of the correct answers.

Score =	
Rating:	

Date:

Name: _____

Answer Sheet

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 145 of 171
---------------------------	----------	--	-----------	--------------------

2.1. Introduction to Assembly Drawing

A drawing which displays the parts of a machine or a machine unit assembled in their relative working positions is known as assembly drawing. The assembly drawing would be such that it should satisfy: (i) Manufacturing requirements (ii) Operational requirements (iii) Maintenance requirements

2.2. Norms to be observed in preparing assembly drawings

(i) **Selection of views**: The main or important view which is usually in section should show all the individual parts and their relative locations. Additional views are shown only when they add necessary information.

(ii) **Sectioning:** The parts should be sectioned according to the requirements (i.e. halfsection or partial section) to show important assembly details. Code of the BIS (SP: 46-1988) for general engineering drawings must be observed

(iii) **Dotted lines**: The dotted lines should be omit from the assembly drawing when a proper section is taken. If the view of a part is drawn by the half-section, then in un section portion of the view, the dotted lines may be drawn to clarify details of the part.

(iv) **Dimensions:** The overall dimensions and centre-to centre distances showing the relationship of parts to the machine as a whole, are sometimes shown.

(V) **Detailed dimensions** are given on working assembly drawings when the detailed drawings are not prepared.

Bill of materials: Each part of the machine is identified on assembly drawing by the leader line and number, which are used in the detail drawing and in the bill of material. The height of the number may be approximately 5 mm and encircled by 9 mm diameter. Leader lines are drawn radially touching the respective parts. The bill of materials also shows the following:

- (a) Number of parts
- (e) Method of projection

(f) Shop processes

- (b) Material of parts
- (g) Name of the company
- (c) Standard norm to
- Standard component
- d) Scale
- (h) Designed by, drawn by and checked by

- Study functional requirements of each component and their inter relationship. Learn the actual working of a machine.
- 2. Study carefully the views of each component in the detail drawing and decide the relative location of each part for the proper functioning of the machine.
- 3. Decide the mating dimensions between two components which are required to be assembled.
- 4. Prepare free-hand sketch of the main view or an important view
- 5. Select a suitable scale for the entire assembly drawing.
- 6. Lay out the views of the assembly drawing so that it becomes easier to understand.
- 7. Prepare the bill of materials.

Label each component by the leader-line and number it.

- 8. Show overall dimensions.
- 9. Draw the section-lines according to the convention
- 10. Show required fits and tolerances between the two mating components.

Design for Assembly steps

- 1. Minimize part count
- 2. parts with self-locating features
- 3. parts with self-fastening features
- 4. Minimize reorientation of parts during assembly
- 5. parts for recovery, handling, & insertion
- 6. Emphasize 'Top-Down' assemblies
- 7. Standardize parts...minimum use of fasteners.
- 8. base part to locate other components
- 9. Design for component symmetry for insertion

	Self-Check -2 Multiple Choice				
Test I:	Multiple Choice Ques	tions			
Directio Directi	ons: Choose the corrections: Answer all the qu	ct Answer (each question have 2.pts) uestions listed below. Use the Answer	sheet provided in the		
1.	The	assembly drawing would be satisfying	J?		
ä	a. Manufacturing requi	rements b. Operational requirement	s c. Maintenance		
	Requirements	d. All			
2.	Whi	ch of Norms to be observed in prepari	ng assembly drawings		
	a. Sectioning b. Dir	nensions c. Bill of materials d. De	etailed dimensions e. All		
3.	Whi	ch of the following are steps of Design	for Assembly?		
	a. Minimize part coun	t b. Parts with self-locating features	c. Emphasize 'Top-		
	Down' assemblies	d. Minimum use of fasteners	e. All		

Note: Satisfactory rating –4 points and above **Unsatisfactory – below 4** points

You can ask you teacher for the copy of the correct answers.

Score =
Rating:

Name: _____

Date: _____

Answer Sheet

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 148 of 171
---------------------------	----------	--	-----------	--------------------

Information Sheet 3

3.1. INTRODUCTION

By itself, any single paper item or book would seem easy to store and simple to preserve. However, most collections present challenges based simply on their size and the number of items they contain. When combined with considerations about storage space, storage methods, and shelving, the challenges of storing one item among many become complex.

Storage and handling methods have a direct impact on the useful life of drawings and the accessibility of information. Damage to drawings can be avoided by preventing overcrowded, careless, or haphazard storage conditions. Chemically unstable and improperly fitting shelving and storage enclosures accelerate the deterioration of drawing they are intended to protect. Normal use causes wear, but inexpert and rough handling can quickly lead to extensive damage to drawings requiring expensive repair or replacement. The longevity of drawings can be extended significantly by putting into practice the guidelines discussed here.

Photocopying or Scanning Bound Volumes drawing are often unnecessarily damaged during copying photocopy machines and flatbed scanners encourage pressing the binding flat in order to get a good image. Overhear scanners are better for public use because they allow a book page to be copied with the drawing open less than 180 degrees.

Copying or scanning of drawings is done by staff members (if the materials are particularly fragile). If materials are stable and an overhead scanner is available, researchers can be trained to make their own copies. Digital cameras can also be used with the proper policies in place. For guidance in using digital cameras in special collections and archives, see "Capture and Release": Digital Cameras in the Reading Room at http://www.oclc.org/research/publications/ library/2010/2010-05.pdf.

Issuing Drawings

Issuing is the process of moving drawing from storage or rooms to drawing production. The correct quantity of drawing must be issued to meet estimated guest demand. This process must be carefully controlled to minimize product misuse.

Importance of effective issuing should there be some relationship between the quantity of drawing and the quantity of drawing removed from storage areas?

1.1. Filing and handling Approved drawing/ blueprints

The method of folding prints depends upon the type and size of the filling cabinet and the loc ation of the identifying marks on the prints. It is best to place identifying marks at the point of prints when you file them vertically (upright), and at the bottom right corner when you file them flat. In some cases, construction prints are stored in rolls.

Blueprints are valuable permanent records. However, if you expect to keep them as permanent records, you must handle them with care. Here are a few simple rules that will help.

Ethiopian TVET	CT program for Remote Teaching	July 2020	Page 149 of
Program STEP-giz	Title: Mechanics L-3		171

- Keep prints out of strong sunlight; they fade.
- Do not allow prints to become wet or smudged with oil or grease. Those substances seldom dry out completely, and the prints can become unreadable.
- Do not make pencil or crayon notations on a print without proper authority. If you are instructed to mark a print, use a proper colored pencil and make the markings a permanent part of the print. Yellow is a good color to use on a print with a blue background (blueprint).
- Keep prints stored in their proper place. If you receive prints that are not properly folded, refold them correctly.

With this article, we will review various types and methods of Blueprint Storage and Large Document Storage. We'll provide points for you to consider before making a purchase of any Blueprint Storage Box, Blueprint Storage Cabinet, Blueprint Storage Bags, or Blueprint Storage Rack. We understand that storing your Blueprints safely and securely is important, and that you want to have them organized for quick and easy reference and retrieval. When seeking Blueprint/hard copy of completed drawing Storage Solutions, you must first start by considering how many sheets and plan sets you have that you want to store. And, then consider how your collection will grow in the future. Will you have some storage solutions that offer quick retrieval but less protection? For example; a Blueprint Mobile Stand (also known as a Blueprint Stands, Blueprint Racks, and Hanging Stands) that is located near the people that use the plans the most. Basic starting points to consider when seeking to organize your Blueprint Storage would be: do you want flat storage, rolled storage, permanent storage, or locked storage. Rolling up drawings takes time, but it does allow for them to be stood up on end beside a workers desk. Corrugated Upright Roll Files and Wire Upright Roll Files offer quick access to rolled drawings right beside workers desk.

Something else you should consider is the investment in blueprints you or your company has. Some prints from CAD files that were printed on a CAD Plotter can be reproduced (printed again and again) easily, even if you have a disaster such as a fire. As long as the drawing data is backed up by your computer network administrator, you should be fine. But, what if your drawings have notes, or have been hand-drawn, or what if they were the only available original drawings. Your drawings may have many hours invested in them and as a result make the documents become very valuable and not easily replaced. Many Universities and Plants have the problem of having only originals that are available and once these documents are gone, they are lost forever. In these cases, we recommend a secured Plan Room with fire suppression (possibly not of the water type since water would ruin your documents. We recommend learn more about fire suppression systems which is outside the scope of this document), and we recommend Steel Flat Files that secure the drawings and add a level of protection. Some Blueprint Cabinets even offer fire protection as one of their features. You would need to read more about what each cabinet has to offer and how these levels of protection work.

In summary, we have touched on various points of which you should consider before you

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 150 of 171
---------------------------	----------	--	-----------	--------------------

make a purchase of a Blueprint Storage Solution. We would even recommend possibly getting a meeting together within your company to discuss what each user would want.

STORING

There are several blueprint storage options to organize maps, plan drawings and other large format documents. Drafting Steals offers an entire line of storage options. Use Safco & Mayline Cabinets to safely store a vast number of maps, blue prints and other papers flat in minimal space. At the job site organize and quickly retrieve plans off racks and remove out of tubes and upright files. Protection of plans during transportation is important; we have blue print bags and document protectors to help protect valuable drawings. We have organized storage option in categories to make it easier to navigate. If you run into a problem, can't figure out what you need, don't hesitate to email or call us.

2.3. Storing Documents

As a document storage company, Ardington Archives have built up over 20 years experience managing our client's archive and storage requirements. We work closely with our clients to ensure best working practices and therefore provide guidance on storing documents prior to depositing at our facilities. Below are the 10 top tips for storing documents on site:

- 1. Store documents in a stable environment. Paper will deteriorate if kept in places which are too humid, too hot, too light and which allow uncontrolled access to pests (e.g. insects) and pollutants. In practice, typically bad places in which documents are often stored include basements (too humid and a danger of pests) or lofts (too hot in summer, too light and a danger of pests).
- 2. Ensure documents are stored securely against theft. Three key elements are involved in protecting your documents against theft:
 - 1. The physical security of the building: use good quality locks and metal doors, put bars on any windows, maintain an up to date alarm system, regularly check the building for any weaknesses or possible points of unauthorized entry.
 - 2. Controlling who is allowed into the document store: specify who is authorized to enter it and on what basis, monitor compliance with this, and do not allow visitors to have unsupervised access to the store.
- 3. **Maintaining confidentiality** regarding the location, identity and content of the document store or, to put it simply, do not draw attention to the fact that particular documents are kept in a particular place.
- Keep documents away from the risk of fire. Storing documents in any place which is (a) liable to become very hot at certain times, or (b) exposed to direct sunlight, carries with it a risk of fire. Lofts with large plastic skylights are particularly dangerous in this regard.
- Do not allow food to be consumed or stored in the same space as your documents. Food and documents don't mix. The presence of even tiny traces of food will attract, sustain and promote the proliferation of pests such as insects and rodents which are more than capable of doing serious damage to your records.
- Catalogue the contents of each archive box. Cataloguing the contents of each box in which you are storing documents is undeniably a tedious task. However, having in

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 151 of 171
---------------------------	----------	--	-----------	--------------------

your possession a proper index to the contents of your boxes allows you to find particular documents quickly and will save you from the tedious task of opening up box after box to find that one file or document you just know is 'in there somewhere'.

- Create a searchable storage space. If you simply stack 100 boxes in a room without troubling to sort them into different locations or categories, you are likely to experience trouble finding individual boxes in the future. The best approach is to label boxes individually and catalogue the contents on a searchable index.
- Label **boxes properly.** Even if you have properly catalogued each box, it is still important to ensure that each has on it a clear, prominent and sufficiently descriptive label, which identifies the box within your catalogue.
- Allow **sufficient access space in the document store.** Space is always at a premium in any company, so it is always tempting to cram as much in as possible. However, while all 'dead space' should be filled, it is important to remember to leave enough space in the right places so that the boxes can be accessed without unnecessary loss of time and without compromising applicable regulations (particularly those pertaining to health and safety and fire safety).
- Use strong boxes. Flimsy boxes tend to be cheap, which is certainly a point in their favors, however they also have a tendency to collapse, tear or burst either when being moved or over a long period of storage. The consequences of this can include loss or damage to documents. More typically, they sag and collapse when stored in stacks over a long period, with the result that the contents have to be re boxed in sturdier boxes a lab our and materials expense that could have been avoided.
- Do not over fill boxes. When filling up an archive box with documents and files, it is always tempting to try to jam as much in as possible and then shove the lid on. The result is usually an unsightly bulge at the top. This can be ignored of course up to the point when you try to stack the boxes. You then find that the stacks are horribly unstable because the surfaces of the boxes on which each box stands are not flat. It is also important not to under fill boxes unless they are of particularly strong build since the unfilled (and therefore unsupported) top section of each box may collapse under the weight of the boxes stacked above it.
- CATALOG this article provides guidelines on managing architectural drawings, to help non-specialist archivists who have responsibility for these 'non-traditional' archives. The article gives advice on appraisal, sorting and cataloguing of drawings, based on the experience of a number of specialists working in dedicated architectural archives in the UK and abroad. Useful cataloguing terms are provided and defined, including expressions used to describe the purpose of specific kinds of drawing. The article is illustrated by three case studies, demonstrating appropriate levels of cataloguing for different types of drawing. Reference is also made to British and international cataloguing standards. Future collecting is considered too, specifically the collecting of architectural records in electronic formats.

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 152 of 171

Self-Check -3	Multiple Choice
---------------	-----------------

Test I: Multiple Choice Questions

Directions: Choose the correct Answer (each question have **2.pts**) **Directions:** Answer all the questions listed below. Use the Answer sheet provided in the

- 1. Which one is not included in the methods of storing the drawing files?
 - a. The drawing must stored by their type
 - b. The drawing must stored by their size
 - c. The drawing must stored marked
 - d. None
- 2. _____ is the process of moving drawing from storage or rooms to drawing production.
 - a. Issuing b. Catalog c. documenting d. All
- 3. Which of the following rules for keeping drawing?
 - a. Do not allow prints to become wet or smudged with oil or grease
 - b. Keep prints out of strong sunlight; they fade
 - c. Do not make pencil or crayon notations on a print without proper authority
 - d. Keep prints stored in their proper place
 - e. All

Note: Satisfactory rating –4 points and above Unsatisfactory – below 4 points

You can ask you teacher for the copy of the correct answers.

Name [.]		

Answer Sheet

Date:

Score = _	
Rating: _	

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 153 of 171
---------------------------	----------	--	-----------	--------------------

List of Reference Materials

BOOKS

Machine drawing, therd edition, DR.KL.Narayana, Dr. M.A. Veluswami

Text book of engineering drawing,K.VENKATA Reddy,second edition,BS.Pabilication

KHURMI R S AND GUPTA J. K (1979). A Text Book of Machine Design. ISN 81-

219-0501-x, Published by Scand and Company Itd

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 154 of 171
---------------------------	----------	--	-----------	--------------------

Running and Sliding Fits^{*a*}—American National Standard

- RC 1 Close sliding fits are intended for the accurate location of parts which must assemble without perceptible play.
- RC 2 *Sliding fits* are intended for accurate location, but with greater maximum clearance than class RC 1. Parts made to this fit move and turn easily but are not intended to run freely, and in the larger sizes may seize with small temperature changes.
- RC 3 Precision running fits are about the closest fits which can be expected to run freely, and are intended for precision work at slow speeds and light journal pressures, but are not suitable where appreciable temperature differences are likely to be encountered.
- RC 4 Close running fits are intended chiefly for running fits on accurate machinery with moderate surface speeds and journal pressures, where accurate location and minimum play are desired.

Basic hole system. Limits are in thousandths of an inch. See §14.8.

Limits for hole and shaft are applied algebraically to the basic size to obtain the limits of size for the parts. Data in **boldface** are in accordance with ABC agreements.

Symbols H5, g5, etc., are hole and shaft designations used in ABC System.

a. 18 1		Class RC	2 1		Class RC	2	. : 10	Class RC	3	0	lass RC	4
Nominal	s of	Star	ndard	s of	Star	ndard	s of	Sta	ndard	s of	Stan	dard
Size Range,	ance	Lir	nits	ance	Lir	nits	ance	Li	mits	ance	Lin	hits
Over To	Limit	Hole	Shaft	Limit	Hole	Shaft	Limit	Hole	Shaft	Limit	Hole	Shaft
	Clear	H5	g4	Clear	H6	g5	Clear	H7	f6	Clear	H8	f7
0 - 0.12	0.1	+0.2	-0.1	0.1	+0.25	-0.1	0.3	+0.4	-0.3	0.3	+0.6	-0.3
	0.45	-0	-0.25	0.55	-0	-0.3	0.95	-0	-0.55	1.3	-0	-0.7
0.12- 0.24	0.15	+0.2	-0.15	0.15	+0.3	-0.15	0.4	+0.5	-0.4	0.4	+0.7	-0.4
	0.5	-0	-0.3	0.65	-0	-0.35	1.12	-0	-0.7	1.6	-0	-0.9
0.24- 0.40	0.2	+0.25	-0.2	0.2	+0.4	-0.2	0.5	+0.6	-0.5	0.5	+0.9	-0.5
	0.6	-0	-0.35	0.85	-0	-0.45	1.5	-0	-0.9	2.0	-0	-1.1
0.40- 0.71	0.25	+0.3	-0.25	0.25	+0.4	-0.25	0.6	+0.7	-0.6	0.6	+1.0	-0.6
	0.75	-0	-0.45	0.95	-0	-0.55	1.7	-0	-1.0	2.3	-0	-1.3
0.71- 1.19	0.3	+0.4	-0.3	0.3	+0.5	-0.3	0.8	+0.8	-0.8	0.8	+1.2	-0.8
	0.95	-0	-0.55	1.2	-0	-0.7	2.1	-0	-1.3	2.8	-0	-1.6
1.19- 1.97	0.4	+0.4	-0.4	0.4	+0.6	-0.4	1.0	+1.0	-1.0	1.0	+1.6	-1.0
	1.1	-0	-0.7	1.4	-0	-0.8	2.6	-0	-1.6	3.6	-0	-2.0
1.97- 3.15	0.4	+0.5	-0.4	0.4	+0.7	-0.4	1.2	+1.2	-1.2	1.2	+1.8	-1.2
	1.2	-0	-0.7	1.6	-0	-0.9	3.1	-0	-1.9	4.2	-0	-2.4
3.15- 4.73	0.5	+0.6	-0.5	0.5	+0.9	-0.5	1.4	+1.4	-1.4	1.4	+2.2	-1.4
	1.5	-0	-0.9	2.0	-0	-1.1	3.7	-0	-2.3	5.0	-0	-2.8
4.73- 7.09	0.6	+0.7	-0.6	0.6	+1.0	-0.6	1.6	+1.6	-1.6	1.6	+2.5	-1.6
	1.8	-0	-1.1	2.3	-0	-1.3	4.2	-0	-2.6	5.7	-0	-3.2
7.09- 9.85	0.6	+0.8	-0.6	0.6	+1.2	-0.6	2.0	+1.8	-2.0	2.0	+2.8	-2.0
	2.0	-0	-1.2	2.6	-0	-1.4	5.0	-0	-3.2	6.6	-0	-3.8
9.85-12.41	0.8	+0.9	-0.8	0.8	+1.2	-0.8	2.5	+2.0	-2.5	2.5	+3.0	-2.5
	2.3	-0	-1.4	2.9	-0	-1.7	5.7	-0	-3.7	7.5	-0	-4.5
12.41-15.75	1.0	+1.0	-1.0	1.0	+1.4	-1.0	3.0	+2.2	-3.0	3.0	+3.5	- 3.0
	2.7	-0	-1.7	3.4	-0	-2.0	6.6	-0	-4.4	8.7	-0	- 5.2

*From ANSI B4.1-1967 (R1987). For larger diameters, see the standard.

Running and Sliding Fits^a—American National Standard (continued)

Medium running fits are intended for higher running speeds, or heavy journal pressures, or both.

RC 5) RC 6) RC 7 Free running fits are intended for use where accuracy is not essential, or where large temperature variations are likely to be encountered, or under both these conditions.

RC 8) Loose running fits are intended for use where wide commercial tolerances may be necessary, together with an RC 9) allowance, on the external member.

	c	Class RC	5	0	Class RC	6		Class R	C 7	C	lass RC	8		Class RC	9
Nominal Size Range, inches	s of ance	Star Lir	ndard nits	s of ance	Star Lin	ndard nits	s of ance	Sta Li	ndard mits	s of ance	Star Lir	ndard mits	s of ance	Star Lin	idard nits
Over To	Limit Clear	Hole H8	Shaft e7	Limit Clear	Hole H9	Shaft e8	Limit Clear	Hole H9	Shaft d8	Limit Clear	Hole H10	Shaft c9	Limit	Hole H11	Shaft
0 - 0.12	0.6	+0.6	-0.6	0.6	+1.0	-0.6	1.0	+1.0	- 1.0	2.5	+1.6	- 2.5	4.0	+ 2.5	- 4.0
	1.6	-0	-1.0	2.2	-0	-1.2	2.6	-0	- 1.6	5.1	-0	- 3.5	8.1	- 0	- 5.6
0.12- 0.24	0.8	+0.7	-0.8	0.8	+1.2	-0.8	1.2	+1.2	- 1.2	2.8	+1.8	- 2.8	4.5	+ 3.0	- 4.5
	2.0	-0	-1.3	2.7	-0	-1.5	3.1	-0	- 1.9	5.8	-0	- 4.0	9.0	- 0	- 6.0
0.24- 0.40	1.0	+0.9	- 1.0	1.0	+1.4	- 1.0	1.6	+1.4	- 1.6	3.0	+2.2	- 3.0	5.0	+ 3.5	- 5.0
	2.5	-0	- 1.6	3.3	-0	- 1.9	3.9	-0	- 2.5	6.6	-0	- 4.4	10.7	- 0	- 7.2
0.40- 0.71	1.2	+1.0	- 1.2	1.2	+1.6	-1.2	2.0	+1.6	- 2.0	3.5	+2.8	- 3.5	6.0	+ 4.0	- 6.0
	2.9	-0	- 1.9	3.8	-0	-2.2	4.6	-0	- 3.0	7.9	-0	- 5.1	12.8	- 0	- 8.8
0.71- 1.19	1.6	+1.2	- 1.6	1.6	+2.0	-1.6	2.5	+2.0	- 2.5	4.5	+ 3.5	- 4.5	7.0	+ 5.0	- 7.0
	3.6	-0	- 2.4	4.8	-0	-2.8	5.7	-0	- 3.7	10.0	- 0	- 6.5	15.5	- 0	-10.5
1.19- 1.97	2.0	+1.6	- 2.0	2.0	+2.5	- 2.0	3.0	+2.5	- 3.0	5.0	+4.0	- 5.0	8.0	+ 6.0	- 8.0
	4.6	-0	- 3.0	6.1	-0	- 3.6	7.1	-0	- 4.6	11.5	-0	- 7.5	18.0	- 0	-12.0
1.97- 3.15	2.5	+1.8	- 2.5	2.5	+ 3.0	- 2.5	4.0	+ 3.0	- 4.0	6.0	+4.5	- 6.0	9.0	+ 7.0	- 9.0
	5.5	-0	- 3.7	7.3	- 0	- 4.3	8.8	- 0	- 5.8	13.5	-0	- 9.0	20.5	- 0	-13.5
3.15- 4.73	3.0	+2.2	- 3.0	3.0	+ 3.5	- 3.0	5.0	+ 3.5	- 5.0	7.0	+5.0	- 7.0	10.0	+ 9.0	- 10.0
	6.6	-0	- 4.4	8.7	-0	- 5.2	10.7	- 0	- 7.2	15.5	-0	- 10.5	24.0	- 0	- 15.0
4.73- 7.09	3.5	+2.5	- 3.5	3.5	+4.0	- 3.5	6.0	+4.0	- 6.0	8.0	+6.0	- 8.0	12.0	+ 10.0	-12.0
	7.6	-0	- 5.1	10.0	-0	- 6.0	12.5	-0	- 8.5	• 18.0	-0	- 12.0	28.0	- 0	-18.0
7.09- 9.85	4.0	+ 2.8	- 4.0	4.0	+4.5	- 4.0	7.0	+4.5	- 7.0	10.0	+7.0	- 10.0	15.0	+ 12.0	- 15.0
	8.6	- 0	- 5.8	11.3	-0	- 6.8	14.3	-0	- 9.8	21.5	-0	- 14.5	34.0	- 0	- 22.0
9.85-12.41	5.0	+ 3.0	- 5.0	5.0	+ 5.0	- 5.0	8.0	+ 5.0	- 8.0	12.0	+8.0	- 12.0	18.0	+ 12.0	- 18.0
	10.0	- 0	- 7.0	13.0	- 0	- 8.0	16.0	- 0	- 11.0	25.0	-0	- 17.0	38.0	- 0	- 26.0
12.41-15.75	6.0	+ 3.5	-6.0	6.0	+6.0	-6.0	10.0	+6.0	-10.0	14.0	+9.0	- 14.0	22.0	+ 14.0	-22.0
	11.7	- 0	-8.2	15.5	-0	-9.5	19.5	-0	13.5	29.0	-0	- 20.0	45.0	- 0	-31.0

*From ANSI B4.1-1967 (R1987). For larger diameters, see the standard.

Locational clearance fits are intended for parts which are normally stationary, but which can be freely assembled or disassembled. They run from snug fits for parts requiring accuracy of location, through the medium clearance fits for parts such as spigots, to the looser fastener fits where freedom of assembly is of prime importance.

LC

Basic hole system. Limits are in thousandths of an inch. See §14.8. Limits for hole and shaft are applied algebraically to the basic size to obtain the limits of size for the parts. Data in **boldface** are in accordance with ABC agreements. Symbols H6, h5, etc., are hole and shaft designations used in ABC System.

	~	Class LC	1		Class LC	2		Class LC	3		class LC 4	-		Class LC	5
Nominal Size Range, inches	to s eone	Stan Lim	Idard	ance s of	Star Lir	ndard mits	ance ance	Stan Lim	idard nits	ance s of	Stanc	dard iits	s of sone	Star Lin	idard nits
Over To	Limit Clear	Hole H6	Shaft h5	Limit Clear	Hole H7	Shaft h6	Limit Clear	Hole H8	Shaft h7	Limit	Hole H10	Shaft h9	Limits Clear	Hole H7	Shaft g6
0 - 0.12	0 0.45	+0.25 -0	+0 -0.2	0 0.65	+ 0.4 - 0	+0 -0.25	0 1	+ 0.6 - 0	+ 0 - 0.4	0 2.6	+ 1.6 - 0	+0 -1.0	0.1 0.75	+ 0.4 - 0	-0.1 -0.35
0.12- 0.24	0 0.5	+ 0.3	+0 -0.2	0 0.8	+ 0.5	+0 -0.3	0 1.2	+0.7 -0	+0 -0.5	0 3.0	+ 1.8 - 0	+0 -1.2	0.15 0.95	+ 0.5	-0.15 -0.45
0.24- 0.40	0 0.65	+ 0.4 - 0	+0 -0.25	0 1.0	+ 0.6 - 0	+0 -0.4	0 1.5	+ 0.9 - 0	+ 0 - 0.6	0 3.6	+ 2.2 - 0	+ 0 - 1.4	0.2 1.2	+ 0.6	-0.2 -0.6
0.40- 0.71	0 0.7	+ 0.4 - 0	+0 -0.3	0 1.1	+ 0.7 - 0	+0 -0.4	0 1.7	+ 1.0 - 0	+0 -0.7	0 4.4	+ 2.8 - 0	+0 -1.6	0.25 1.35	+0.7 -0	-0.25
0.71- 1.19	0 0.9	+ 0.5 - 0	+0 -0.4	0 1.3	+ 0.8 - 0	+0 -0.5	0	+ 1.2 - 0	+0 -0.8	0 5.5	+ 3.5 - 0	+0 -2.0	0.3 1.6	+ 0.8	-0.3 -0.8
1.19- 1.97	0 1.0	+ 0.6 - 0	+0 -0.4	0 1.6	+ 1.0 - 0	+0 -0.6	0 2.6	+ 1.6 - 0	+ 0 - 1	0 6.5	+ 4.0 - 0	+0 -2.5	0.4 2.0	+ 1.0 - 0	-0.4 -1.0
1.97- 3.15	0 1.2	+0.7 -0	+0 -0.5	0 1.9	+1.2 -0	+0 -0.7	0 %	+ 1.8 - 0	+0 -1.2	0 7.5	+ 4.5 - 0	0 + 1 1 + 0	0.4 2.3	+ 1.2 - 0	-0.4 -1.1
3.15- 4.73	0 1.5	+ 0.9	+0 -0.6	0 2.3	+ 1.4 - 0	0+ 0.0-	0 3.6	+ 2.2 - 0	+0 -1.4	0 8.5	+ 5.0 - 0	+0 -3.5	0.5 2.8	+ 1.4 - 0	-0.5 -1.4
4.73- 7.09	0 1.7	+ 1.0 - 0	+0 -0.7	0 2.6	+1.6 -0	+0 -1.0	0 4.1	+ 2.5 - 0	+0 -1.6	0 01	+ 6.0 - 0	+ + + + + + + + + + + + + + + + + + +	0.6 3.2	+ 1.6 - 0	-0.6 -1.6
7.09- 9.85	0 2.0	+1.2 -0	+0 -0.8	0 3.0	+ 1.8 - 0	+0 -1.2	0 4.6	+ 2.8 - 0	+0 -1.8	0 11.5	+ 7.0 - 0	+ 0 - 4.5	0.6 3.6	+ 1.8 - 0	-0.6 -1.8
9.85-12.41	0 2.1	+ 1.2 - 0	+ 0 - 0.9	0 3.2	+ 2.0 - 0	+0 -1.2	5 0	+ 3.0 - 0	+0 -2.0	0 13	+ 8.0 - 0	- + 0	0.7 3.9	+2.0 -0	-0.7 -1.9
12.41-15.75	0 2.4	+ 1.4 - 0	+0 -1.0	0 3.6	+2.2 -0	+ 0 - 1.4	0 5.7	+ 3.5 - 0	+0 -2.2	0 15	+ 9.0 - 0	0 + +	0.7 4.3	+2.2 -0	-0.7 -2.1

Clearance Locational Fits^a—American National Standard

APPENDIX 2

11	dard nits	Shaft	- 5 -11	- 6 -13	- 7 -16	- 8 -18	- 10 - 22	- 12 - 28	- 14 - 32	- 16 - 38	- 18 - 43	- 22 - 50	- 28 - 58	- 30 - 65	
ass LC	Stan Lirr	Hole H13	9 + 9 +	7 + 7 - 0	6 0 + 1	+ 10 - 0	+ 12 - 0	+ 16 - 0	+ 18 - 0	+ 22 - 0	+ 25 - 0	+ 28 - 0	- 0 + 30	+ 35	
Cla	fo ef sone	timiJ IsəlƏ	5 17	6 20	7 25	8 8	10 34	12 44	14 50	16 60	18 68	22 78	88 58	30 100	
10	idard nits	Shaft	+ - 8 -	- 4.5 - 9.5	- 5 -11	- 6 -13	- 7 -15	- 8 -18	- 10 - 22	- 11 - 25	- 12 - 28	- 16 - 34	- 20 - 40	- 22 - 44	
lass LC	Stan Lin	Hole H12	+ + 0	0 2 + 1	90 + I	7 + 7 - 0 - 0	8 0 + 1	+ 10 - 0	+ 12 - 0	+ 14 - 0	+ 16 - 0	+ 18 - 0	+ 20 - 0	+22 - 0	
G	fo ef sone	timiJ Slear	4 12	4.5 14.5	5 17	6 20	7 23	28 28	10 34	11 39	12 44	16 52	20 60	22 66	
6	dard iits	Shaft c10	- 2.5 - 4.1	- 2.8 - 4.6	- 3.0 - 5.2	- 3.5 - 6.3	- 4.5 - 8.0	- 1 - 1	- 6 -10.5	- 7 -12	- 8 -14	- 10 - 17	- 12 - 20	- 14 - 23	
Class LC	Stand	Hole H11	+ 2.5 - 0	+ 3.0 - 0	+ 3.5 - 0	+ 4 .0 - 0	+ 5.0 - 0	9 0 + 1	× + 7 − 0	6 0 + I	+ 10 - 0	+ 12 - 0	+12 - 0	+ 14 - 0	
	fo et sone	timiJ Ns9IO	2.5 6.6	2.8 7.6	3.0 8.7	3.5 10.3	4.5 13.0	5 15	6 17.5	7 21	8 24	10 29	12 32	14 37	
8	ndard nits	Shaft d9	- 1.0 - 2.0	- 1.2 - 2.4	- 1.6 - 3.0	- 2.0 - 3.6	- 2.5 - 4.5	- 3.0 - 5.5	- 4.0 - 7.0	- 5.0 - 8.5	- 6 -10	- 7 -11.5	- 7 - 12	- 8 -14	
lass LC	Star Lir	Hole H10	+ 1.6 - 0	+ 1.8 - 0	+2.2 -0	+ 2.8 - 0	+ 3.5 - 0	+ 4.0 - 0	+ 4.5 - 0	+ 5.0 - 0	9 + 0 + 1	+ 7 - 0	8 + 1	6 + 0 -	
0	to si eonce	timiJ IsəlƏ	1.0 3.6	1.2 4.2	1.6 5.2	2.0 6.4	2.5 8.0	3.0 9.5	4.0	5.0 13.5	6 16	7 18.5	7 20	23	
7	dard nits	Shaft e9	- 0.6 - 1.6	- 0.8 - 2.0	- 1.0 - 2.4	- 1.2 - 2.8	- 1.6 - 3.6	- 2.0 - 4.5	- 2.5 - 5.5	- 3.0 - 6.5	- 3.5 - 7.5	- 4.0 - 8.5	- 4.5 - 9.5	- 5 -11	
lass LC	Stan Lin	Hole H10	+1.6 -0	+1.8 -0	+2.2 -0	+ 2.8 - 0	+ 3.5 - 0	+ 4.0 - 0	+4.5 -0	+ 5.0 - 0	+ 6.0 - 0	+ 7.0 - 0	+ 8.0	+ 9 .0 - 0	e standard.
0	fo ef sone	timiJ nsəlƏ	0.6 3.2	0.8 3.8	1.0 4.6	1.2 5.6	1.6 7.1	2.0 8.5	2.5 10.0	3.0	3.5 13.5	4.0 15.5	4.5 17.5	5.0 20.0	rs, see the
9	dard nits	Shaft f8	-0.3 -0.9	-0.4 -1.1	-0.5 -1.4	-0.6 -1.6	-0.8 -2.0	-1.0 -2.6	-1.2 -3.0	-1.4 -3.6	-1.6 -4.1	-2.0 -4.8	-2.2 -5.2	-2.5 -6.0	er diamete
ass LC (Stanc	Hole H9	+ 1.0 - 0	+ 1.2 - 0	+ 1.4 - 0	+ 1.6 - 0	+2.0 -0	+ 2.5 - 0	+ 3.0 - 0	+ 3.5 - 0	+ 4.0	+ 4.5 - 0	+ 5.0 - 0	+ 6.0 - 0	7). For larg
G	fo si ance	timiJ IsəlƏ	0.3 1.9	0.4 2.3	0.5 2.8	0.6 3.2	0.8 4.0	1.0 5.1	1.2 6.0	1.4 7.1	1.6 8.1	2.0 9.3	2.2 10.2	2.5 12.0	67 (R198)
	Nominal Size Range, inches	Over To	0 - 0.12	0.12- 0.24	0.24- 0.40	0.40- 0.71	0.71- 1.19	1.19- 1.97	1.97- 3.15	3.15- 4.73	4.73- 7.09	7.09- 9.85	9.85-12.41	12.41-15.75	From ANSI B4.1-19

Clearance Locational Fits^{*a*}—American National Standard (continued)

Transition fits are a compromise between clearance and interference fits, for application where accuracy of location is important, but either a small amount of clearance or interference is permissible.

Basic hole system. Limits are in thousandths of an inch. See §14.8. Limits for hole and shaft are applied algebraically to the basic size to obtain the limits of size for the mating parts. Data in **boldface** are in accordance with ABC agreements.

	S	lass LT	1	0	Class LT	2	0	lass LT	e	Ū	lass LT	4	0	lass LT	5	0	lass LT	9
Nominal Size Range, inches	i	Star Lir	nits	i	Star Lin	nits	i	Stan Lim	dard iits	i	Stan Lin	dard iits	i	Star Lin	nits	i	Star Lir	ndard
Over To	Fit	Hole H7	Shaft js6	Fit	Hole H8	Shaft js7	FIT	Hole H7	Shaft k6	H	Hole H8	Shaft k7	Fit	Hole H7	Shaft n6	Ŧ	Hole H7	Shaft n7
0 - 0.12	- 0.10 + 0.50	+ 0.4 - 0	+0.10 -0.10	- 0.2 + 0.8	+ 0.6 - 0	+0.2 -0.2							-0.5 +0.15	+ 0.4 - 0	+0.5 +0.25	- 0.65 + 0.15	+ 0.4 - 0	+ 0.65 + 0.25
0.12- 0.24	-0.15 +0.65	+ 0.5	+0.15 -0.15	-0.25 +0.95	+0.7 -0	+0.25 -0.25							- 0.6 + 0.2	+ 0.5	+0.6	- 0.8 + 0.2	+ 0.5	+ 0.8
0.24- 0.40	- 0.2 + 0.8	+ 0.6	+ 0.2 - 0.2	- 0.3 + 1.2	+ 0.9 - 0	+0.3	- 0.5 + 0.5	+ 0.6 - 0	+ 0.5 + 0.1	- 0.7 + 0.8	+ 0.9 - 0	+0.7 +0.1	- 0.8 + 0.2	+ 0.6	+ 0.8 + 0.4	- 1.0 + 0.2	+ 0.6	+ 1.0 + 0.4
0.40- 0.71	- 0.2 + 0.9	+0.7 -0	+0.2 -0.2	-0.35 + 1.35	+ 1.0 - 0	+0.35	- 0.5 + 0.6	+0.7 -0	+ 0.5 + 0.1	- 0.8 + 0.9	+ 1.0 - 0	+0.8	- 0.9 + 0.2	+0.7 -0	+0.9	- 1.2 + 0.2	+ 0.7 - 0	+ 1.2 + 0.5
0.71- 1.19	- 0.25 + 1.05	+ 0.8	+ 0.25 - 0.25	- 0.4 + 1.6	+ 1.2 - 0	+ 0.4 - 0.4	- 0.6 + 0.7	+ 0.8	+ 0.6 + 0.1	- 0.9 + 1.1	+ 1.2 - 0	+ 0.9 + 0.1	- 1.1 + 0.2	+ 0.8	+ 1.1 + 0.6	- 1.4 + 0.2	+ 0.8	+ 1.4 + 0.6
1.19- 1.97	- 0.3 + 1.3	+ 1.0 - 0	+0.3	- 0.5 + 2.1	+ 1.6 - 0	+ 0.5	- 0.7 + 0.9	+ 1.0 - 0	+ 0.7 + 0.1	- 1.1 + 1.5	+ 1.6 - 0	+ 1.1 + 0.1	- 1.3 + 0.3	+ 1.0 - 0	+1.3+0.7	-1.7 +0.3	+ 1.0 - 0	+1.7 +0.7
1.97- 3.15	- 0.3 + 1.5	+ 1.2 - 0	+ 0.3	- 0.6 + 2.4	+ 1.8 - 0	+ 0.6	- 0.8 + 1.1	+ 1.2 - 0	+ 0.8 + 0.1	- 1.3 + 1.7	+ 1.8 - 0	+ 1.3 + 0.1	- 1.5 + 0.4	+ 1.2 - 0	+ 1.5 + 0.8	- 2.0 + 0.4	+ 1.2 - 0	+ 2.0
3.15- 4.73	- 0.4 + 1.8	+ 1.4 - 0	+ 0.4 - 0.4	- 0.7 + 2.9	+ 2.2 - 0	+0.7 -0.7	- 1.0 + 1.3	+ 1.4 - 0	+ 1.0 + 0.1	- 1.5 + 2.1	+ 2.2 - 0	+ 1.5 + 0.1	- 1.9 + 0.4	+ 1.4 - 0	+1.9	- 2.4 + 0.4	+ 1.4 - 0	+ 2.4 + 1.0
4.73- 7.09	- 0.5 + 2.1	+ 1.6 - 0	+ 0.5	- 0.8 + 3.3	+ 2.5 - 0	+ 0.8 - 0.8	- 1.1 + 1.5	+ 1.6 - 0	+ 1.1 + 0.1	- 1.7 + 2.4	+ 2.5 - 0	+ 1.7 + 0.1	-2.2 +0.4	+ 1.6 - 0	+2.2 +1.2	- 2.8 + 0.4	+ 1.6 - 0	+ 2.8 + 1.2
7.09- 9.85	- 0.6 + 2.4	+ 1.8 - 0	+ 0.6	- 0.9 + 3.7	+ 2.8 - 0	+ 0.9 - 0.9	- 1.4 + 1.6	+ 1.8 - 0	+ 1.4 + 0.2	- 2.0 + 2.6	+ 2.8 - 0	+ 2.0 + 0.2	-2.6 +0.4	+ 1.8 - 0	+ 2.6 + 1.4	- 3.2 + 0.4	+ 1.8 - 0	+ 3.2 + 1.4
9.85-12.41	- 0.6 + 2.6	+ 2.0	+ 0.6	- 1.0 + 4.0	+ 3.0	+ 1.0	- 1.4 + 1.8	+ 2.0	+ 1.4 + 0.2	-2.2 +2.8	+ 3.0	+ 2.2 + 0.2	-2.6 +0.6	+ 2.0 - 0	+ 2.6 + 1.4	- 3.4 + 0.6	+ 2.0 - 0	+ 3.4 + 1.4
12.41-15.75	-0.7 +2.9	+ 2.2	+0.7	- 1.0 + 4.5	+ 3.5	+1.0	- 1.6 + 2.0	+2.2	+ 1.6	- 2.4 + 3.3	+ 3.5	+2.4	- 3.0	+2.2	+ 3.0	- 3.8	+ 2.2	+ 3.8 + 1.6

APPENDIX 3

Transition Locational Fits^a—American National Standard 10 10 mm mm mm mm mm

5

Interference Locational Fits^{*a*}—American National Standard

LN Locational interference fits are used where accuracy of location is of prime importance, and for parts requiring rigidity and alignment with no special requirements for bore pressure. Such fits are not intended for parts designed to transmit frictional loads from one part to another by virtue of the tightness of fit, as these conditions are covered by force fits.

Basic hole system. Limits are in thousandths of an inch. See §14.8.

Limits for hole and shaft are applied algebraically to the basic size to obtain the limits of size for the parts. Data in **boldface** are in accordance with ABC agreements.

Symbols H7, p6, etc., are hole and shaft designations used in ABC System.

		Class LN	1		Class LN	2		Class LN	3
Nominal Size Range, inches	, of erence	Star Lin	ndard nits	s of erence	Star Lir	ndard mits	s of erence	Star Lir	ndard nits
Over To	Limits	Hole	Shaft	Limits	Hole	Shaft	Limits	Hole	Shaft
	Interfe	H6	n5	Interfo	H7	p6	Interfe	H7	r6
0 - 0.12	0	+0.25	+0.45	0	+0.4	+0.65	0.1	+0.4	+0.75
	0.45	-0	+0.25	0.65	-0	+0.4	0.75	-0	+0.5
0.12- 0.24	0	+0.3	+0.5	0	+0.5	+ 0.8	0.1	+0.5	+ 0.9
	0.5	-0	+0.3	0.8	-0	+ 0.5	0.9	0	+ 0.6
0.24- 0.40	0	+0.4	+ 0.65	0	+0.6	+ 1.0	0.2	+0.6	+1.2
	0.65	-0	+ 0.4	1.0	-0	+ 0.6	1.2	-0	+0.8
0.40- 0.71	0	+0.4	+0.8	0	+0.7	+1.1	0.3	+0.7	+1.4
	0.8	-0	+0.4	1.1	-0	+0.7	1.4	-0	+1.0
0.71- 1.19	0	+0.5	+1.0	0	+ 0.8	+1.3	0.4	+0.8	+1.7
	1.0	-0	+0.5	1.3	- 0	+0.8	1.7	-0	+1.2
1.19- 1.97	0	+0.6	+1.1	0	+1.0	+1.6	0.4	+1.0	+2.0
	1.1	-0	+0.6	1.6	-0	+1.0	2.0	-0	+1.4
1.97- 3.15	0.1	+0.7	+1.3	0.2	+1.2	+2.1	0.4	+1.2	+2.3
	1.3	-0	+0.7	2.1	-0	+1.4	2.3	-0	+1.6
3.15- 4.73	0.1	+0.9	+1.6	0.2	+1.4	+ 2.5	0.6	+1.4	+2.9
	1.6	-0	+1.0	2.5	-0	+ 1.6	2.9	-0	+2.0
4.73- 7.09	0.2	+1.0	+1.9	0.2	+1.6	+ 2.8	0.9	+1.6	+ 3.5
	1.9	-0	+1.2	2.8	-0	+ 1.8	3.5	-0	+ 2.5
7.09- 9.85	0.2	+1.2	+2.2	0.2	+1.8	+ 3.2	1.2	+1.8	+4.2
	2.2	-0	+1.4	3.2	-0	+ 2.0	4.2	-0	+3.0
9.85-12.41	0.2	+1.2	+2.3	0.2	+2.0	+3.4	1.5	+2.0	+4.7
	2.3	-0	+1.4	3.4	-0	+2.2	4.7	-0	+3.5

^aFrom ANSI B4.1–1967 (R1987). For larger diameters, see the standard.

Light drive fits are those requiring light assembly pressures, and produce more or less permanent assemblies. They are suitable for thin sections or long fits, or in cast-iron external members. FN 1

- Medium drive fits are suitable for ordinary steel parts, or for shrink fits on light sections. They are about the tightest fits that can be used with high-grade cast-iron external members. FN 2
 - Heavy drive fits are suitable for heavier steel parts or for shrink fits in medium sections.
 - Force fits are suitable for parts which can be highly stressed, or for shrink fits where the heavy pressing forces required are impractical. FN 3 FN 5 FN 5
- Basic hole system. Limits are in thousandths of an inch. See §14.8.

Limits for hole and shaft are applied algebraically to the basic size to obtain the limits of size for the parts. Data in **boldface** are in accordance with ABC agreements.

			-			-			-					
5	dard iits	Shaft x7	+ 1.3 + 0.9	.+ 1.7 + 1.2	+ 2.0 + 1.4	+ 2.3 + 1.6	+ 2.5 + 1.8	+ 3.0 + 2.2	+ 3.3 + 2.5	+ 4.0				
Class FN 1 Class FN 2 Class FN 3 Class FN 4 Class FN 5	Stan Lirr	Hole H8	+ 0.6 - 0	+0.7 -0	+0.9 -0	+1.0 -0	+1.0 -0	+1.2 -0	+1.2 -0	+1.6 -0				
	of of	Limits Interfe	0.3 1.3	0.5 1.7	0.5 2.0	0.6 2.3	0.8 2.5	1.0 3.0	1.3 3.3	1.4				
4	ndard nits	Shaft u6	+ 0.95 + 0.7	+ 1.2 + 0.9	+ 1.6 + 1.2	+ 1.8 + 1.4	+ 1.8 + 1.4	+ 2.1 + 1.6	+ 2.3 + 1.8	+ 3.1 + 2.5				
Class FN	Star Lir	Hole H7	+0.4 -0	+0.5	+0.6 -0	+0.7 -0	+0.7	+0.8	+0.8 -0	+1.0				
Class FN 1 Class FN 2 Class FN 3 Class FN 4 Class FN 5	of srence	Limits Interfe	0.3 0.95	0.4 1.2	0.6 1.6	0.7 1.8	0.7 1.8	0.8 2.1	1.0 2.3	1.5 3.1				
e	dard its	Shaft t6	8 .4				1.4		+ 2.1 + 1.6	+ 2.6 + 2.0				
Class FN 1 Class FN 2 Class FN 3 Class FN 4 Class FN 5	Stand	Hole H7							+ 0.8	+1.0				
	of of	ztimits Interfe							0.8 2.1	1.0				
	dard iits	Shaft s6	+0.85 +0.6	+ 1.0 + 0.7	+1.4 +1.0	+1.6 +1.2	+1.6 +1.2	+1.9 +1.4	+1.9 +1.4	+2.4 +1.8				
	Stan Lin	Limit Limit Hole		+0.5 -0	+0.6 -0	+0.7 -0	+0.7 -0	+0.8 -0	+0.8 -0	+1.0				
	of of	ztimiJ Interfe	0.2 0.85	0.2 1.0	0.4 1.4	0.5 1.6	0.5 1.6	0.6 1.9	0.6 1.9	0.8				
	lard its	Shaft	+0.5 +0.3	+0.6 +0.4	+0.75 +0.5	+0.8 +0.5	+0.9 +0.6	+1.1 +0.7	+1.2 +0.8	+1.3 +0.9				
Class FN 1	Standar Limits	Standar Limits	Standa Limits	Standar Limits	Standa Limit	Hole H6	+ 0.25 - 0	+ 0.3 - 0	+ 0.4 - 0	+ 0.4 - 0	+ 0. 4 - 0	+ 0.5 - 0	+0.5 -0	+ 0.6
Class FN 1	ot of	Limits Interfe	0.05 0.5	0.1 0.6	0.1 0.75	0.1 0.8	0.2 0.9	0.2 1.1	0.3 1.2	0.3 1.3				
	Nominal Size Range, inches	Over To	0 - 0.12	0.12- 0.24	0.24- 0.40	0.40- 0.56	0.56- 0.71	0.71- 0.95	0.95- 1.19	1.19- 1.58				
						Contraction and the second								

Force and Shrink Fits^a—American National Standard

^aANSI B4.1-1967 (R1987).

]	Fore	e an	d Sh	rink	Fits	^a —A	meri	ican	Nati	onal	Stan	darc	l (co	ntin	ued)
5	dard	Shaft	+ 5.0	+ 6.2	+ 7.2	+ 8.4	+ 9.4	+11.6	+ 13.6	+ 13.6	+ 15.8	+17.8	+ 17.8	+ 20.0	+ 22.0	+ 24.2
	nits	x7	+ 4.0	+ 5.0	+ 6.0	+ 7.0	+ 8.0	+10.0	+ 12.0	+ 12.0	+ 14.0	+16.0	+ 16.0	+ 18.0	+ 20.0	+ 22.0
Class FN	Stan Lin	Hole H8	+1.6 -0	+ 1.8 - 0	+1.8 -0	+2.2 -0	+2.2 - 0	+ 2.5 _0	+ 2.5 - 0	+2.5 -0	+2.8 -0	+ 2.8 - 0	+2.8 -0	+ 3.0 - 0	+ 3.0 - 0	+ 3.5
	of	Limits	2.4	3.2	4.2	4.8	5.8	7.5	9.5	9.5	11.2	13.2	13.2	15.0	17.0	18.5
	of	Interfe	5.0	6.2	7.2	8.4	9.4	11.6	13.6	13.6	15.8	17.8	17.8	20.0	22.0	24.2
4	ndard	Shaft	+ 3.4	+ 4.2	+ 4.7	+ 5.9	+ + 6.9	+ 8.0	+ 8.0	+ 9.0	+ 10.2	+ 11.2	+ 13.2	+ 13.2	+ 15.2	+ 17.4
	mits	u6	+ 2.8	+ 3.5	+ 4.0	+ 5.0	+ 6.0	+ 7.0	+ 7.0	+ 8.0	+ 9.0	+ 10.0	+ 12.0	+ 12.0	+ 14.0	+ 16.0
Class FN	-Sta	Hole	+1.0	+1.2	+1.2	+ 1.4	+ 1.4	+ 1.6	+1.6	+ 1.6	+1.8	+ 1.8	+ 1.8	+2.0	+2.0	+ 2.2
	Li	H7	-0	-0	-0	- 0	- 0	- 0	-0	- 0	-0	- 0	- 0	-0	-0	- 0
	of	Limits	1.8	2.3	2.8	3.6	4.6	5.4	5.4	6.4	7.2	8.2	10.2	10.0	12.0	13.8
	of	Interfe	3.4	4.2	4.7	5.9	6.9	8.0	8.0	9.0	10.2	11.2	13.2	13.2	15.2	17.4
3	dard iits	Shaft t6	+ 2.8 + 2.2	+ 3.2 + 2.5	+ 3.7 + 3.0	+ 4.4 + 3.5	+ 4.9 + 4.0	+ 6.0 + 5.0	+ 6.0	+ 7.0 + 6.0	+ 8.2 + 7.0	+ 8.2 + 7.0	+ 9.2 + 8.0	+ 10.2 + 9.0	+ 10.2 + 9.0	+ 11.4 + 10.0
Class FN	Stano	Hole H7	+1.0 -0	+1.2 -0	+1.2 -0	+1.4 -0	+ 1.4 - 0	+ 1.6 - 0	+1.6 -0	+ 1.6 - 0	+1.8 -0	+ 1.8 - 0	+1.8 -0	+2.0 -0	+2.0 -0	+2.2 -0
	of	Limits	1.2	1.3	1.8	2.1	2.6	3.4	3.4	4.4	5.2	5.2	6.2	7.0	7.0	7.8
	rence	Interfe	2.8	3.2	3.7	4.4	4.9	6.0	6.0	7.0	8.2	8.2	9.2	10.2	10.2	11.4
2	nits	Shaft s6	+2.4 +1.8	+2.7 +2.0	+2.9 +2.2	+ 3.7 + 2.8	+ 3.9 + 3.0	+ 4.5 + 3.5	+ 5.0 + 4.0	+ 5.5 + 4.5	+6.2 +5.0	+ 6.2 + 5.0	+7.2 +6.0	+7.2 +6.0	+8.2 +7.0	+ 9.4 7 8.0
Class FN	Star	Hole	+1.0	+1.2	+1.2	+1.4	+ 1.4	+ 1.6	+ 1.6	+1.6	+1.8	+ 1.8	+ 1.8	+2.0	+2.0	+ 2.2
	Lir	H7	-0	-0	-0	-0	- 0	-0	- 0	-0	-0	- 0	- 0	-0	-0	- 0
	of	Limits	0.8	0.8	1.0	1.4	1.6	1.9	2.4	2.9	3.2	3.2	4.2	4.0	5.0	5.8
	srence	Interfe	2.4	2.7	2.9	3.7	3.9	4.5	5.0	5.5	6.2	6.2	7.2	7.2	8.2	9.4
1	dard nits	Shaft	+1.4 +1.0	+1.8 +1.3	+1.9 +1.4	+2.4 +1.8	+2.6 +2.0	+2.9 +2.2	+3.2 +2.5	+ 3.5 + 2.8	+ 3.8 + 3.0	+4.3 +3.5	+4.3 +3.5	+4.9 +4.0	+4.9 +4.0	+5.5 +4.5
Class FN	Stan	Hole	+ 0.6	+ 0.7	+0.7	+ 0.9	+ 0.9	+ 1.0	+ 1.0	+ 1.0	+ 1.2	+1.2	+1.2	+1.2	+1.2	+1.4
	Lin	H6	- 0	- 0	-0	- 0	- 0	- 0	- 0	- 0	- 0	-0	-0	-0	-0	-0
	of	Limits	0.4	0.6	0.7	0.9	1.1	1.2	1.5	1.8	1.8	2.3	2.3	2.8	2.8	3.1
	rence	Interfe	1.4	1.8	1.9	2.4	2.6	2.9	3.2	3.5	3.8	4.3	4.3	4.9	4.9	5.5
	Nominal Size Range, inches	Over To	1.58- 1.97	1.97- 2.56	2.56- 3.15	3.15- 3.94	3.94- 4.73	4.73- 5.52	5.52- 6.30	6.30- 7.09	7.09- 7.88	7.88- 8.86	8.86- 9.85	9.85-11.03	11.03-12.41	12.41-13.98

*From ANSI B4.1-1967 (R1987). For larger diameters, see the standard.

Ethiopian TVET Program

Bat	sic sizes									Toleranc	e grades ^t								
Over	Up to and Including	101	Щ	E	112	113	П4	IT5	IT6	111	118	бĽ	IT10	IL	П12	Ш3	Ш4	IT15	П16
0	ŝ	0.0003	0.0005	0.0008	0.0012	0.002	0.003	0.004	0.006	0100	0.014	0.025	0.040	0.060	0100	0.140	0.250	0.400	0.600
ŝ	9	0.0004	0.0006	0.001	0.0015	0.0025	0.004	0.005	0.008	0.012	0.018	0.030	0.048	0.075	0.120	0.180	0.300	0.480	0.750
9	10	0.0004	0.0006	0.001	0.0015	0.0025	0.004	0.006	600.0	0.015	0.022	0.036	0.058	060.0	0.150	0.220	0.360	0.580	0.900
10	18	0.0005	0.0008	0.0012	0.002	0.003	0.005	0.008	0.011	0.018	0.027	0.043	0.070	0.110	0.180	0.270	0.430	0.700	1.100
18	8	0.0006	0.001	0.0015	0.0025	0.004	0.006	600.0	0.013	0.021	0.033	0.052	0.084	0.130	0.210	0.330	0.520	0.840	1.300
g	20	0.0006	0.001	0.0015	0.0025	0.004	0.007	0.011	0.016	0.025	0.039	0.062	0.100	0.160	0.250	0.390	0.620	1.000	1.600
50	80	0.0008	0.0012	0.002	0.003	0.005	0.008	0.013	0.019	0.030	0.046	0.074	0.120	0.190	0.300	0.460	0.740	1.200	1.900
8	120	0.001	0.0015	0.0025	0.004	0.006	0.010	0.015	0.022	0.035	0.054	0.087	0.140	0.220	0.350	0.540	0.870	1.400	2.200
120	180	0.0012	0.002	0.0035	0.005	0.008	0.012	0.018	0.025	0.040	0.063	0.100	0.160	0.250	0.400	0.630	1.000	1.600	2.500
180	250	0.002	0.003	0.0045	0.007	0.010	0.014	0.020	0.029	0.046	0.072	0.115	0.185	0.290	0.460	0.720	1.150	1.850	2.900
250	315	0.0025	0.004	0.006	0.008	0.012	0.016	0.023	0.032	0.052	0.081	0.130	0.210	0.320	0.520	0.810	1.300	2.100	3.200
315	400	0.003	0.005	0.007	600.0	0.013	0.018	0.025	0.036	0.057	0.089	0.140	0.230	0.360	0.570	0.890	1.400	2.300	3.600
400	500	0.004	0.006	0.008	0.010	0.015	0.020	0.027	0.040	0.063	0.097	0.155	0.250	0.400	0.630	0.970	1.550	2.500	4.000
500	630	0.0045	0.006	600.0	0.011	0.016	0.022	0:030	0.044	0.070	0.110	0.175	0.280	0.440	0.700	1.100	1.750	2.800	4.400
630	800	0.005	0.007	0.010	0.013	0.018	0.025	0.035	0.050	0.080	0.125	0.200	0.320	0.500	0.800	1.250	2.000	3.200	5.000
800	1000	0.0055	0.008	0.011	0.015	0.021	0.029	0.040	0.056	060.0	0.140	0.230	0.360	0.560	006.0	1.400	2.300	3.600	5.600
1000	1250	0.0065	600.0	0.013	0.018	0.024	0.034	0.046	0.066	0.105	0.165	0.260	0.420	0.660	1.050	1.650	2.600	4.200	6.600
1250	1600	0.008	0.011	0.015	0.021	0.029	0.040	0.054	0.078	0.125	0.195	0.310	0.500	0.780	1.250	1.950	3.100	5.000	7.800
1600	2000	600.0	0.013	0.018	0.025	0.035	0.048	0.065	0.092	0.150	0.230	0.370	0.600	0.920	1.500	2.300	3.700	6.000	9.200
2000	2500	0.011	0.015	0.022	0:030	0.041	0.057	0.077	0.110	0.175	0.280	0.440	0.700	1.100	1.750	2.800	4.400	7.000	11.000
2500	3150	0.013	0.018	0.026	0.036	0.050	0.069	0.093	0.135	0.210	0.330	0.540	0.860	1.350	2.100	3.300	5.400	8.600	13.500
*From #	NNSI B4.2-1	978 (R198-	. ,		-			i											
TT Valu	IT13 × 10,	ice grades l etc.	larger man	II I to can D	e calculatec	1 gnisu ya t	ne tormuli	s: II 1/ =	'01 × 11										

APPENDIX 6 International Tolerance Grades^a

Dimensions are in millimeters.

Ethiopian TVET Program

Preferred Metric Hole Basis Clearance Fi	ts ^a —
American National Standard	

nce	Eit	0.016 0.000	0.016	0.016	0.016	0.016	0.016 0.000	0.020 0.000	0.020 0.000	0.020 0.000	0.024 0.000	0.024 0.000	0.029 0.000	0.029 0.000	0.034 0.000	0.034 0.000	0.034 0.000	
onal Cleara	Shaft h6	1.000 0.994	1.200 1.194	1.600 1.594	2.000 1.994	2.500 2.494	3.000 2.994	4.000 3.992	5.000 4.992	6.000 5.992	8.000 7.991	10.000 9.991	12.000 11.989	16.000 15.989	20.000 19.987	25.000 24.987	30.000 29.987	
Locati	Hole H7	1.010 1.000	1.210	1.610 1.600	2.010 2.000	2.510 2.500	3.010 3.000	4.012 4.000	5.012 5.000	6.012 6.000	8.015 8.000	10.015 10.000	12.018 12.000	16.018 16.000	20.021 20.000	25.021 25.000	30.021 30.000	
	Fit	0.018 0.002	0.018	0.018	0.018 0.002	0.018 0.002	0.018 0.002	0.02 4 0.00 4	0.024 0.004	0.024 0.004	0.029 0.005	0.029 0.005	0.035 0.006	0.035 0.006	0.041	0.041	0.041 0.007	
Sliding	Shaft g6	0.998 0.992	1.198 1.192	1.598 1.592	1.998 1.992	2.498 2.492	2.998 2.992	3.996 3.988	4.996 4.988	5.996 5.988	7.995 7.986	9.995 9.986	11.994 11.983	15.994 15.983	19.993 19.980	24.993 24.980	29.993 29.980	
	Hole H7	1.010 1.000	1.210 1.200	1:610 1.600	2.010 2.000	2.510 2.500	3.010 3.000	4.012 4.000	5.012 5.000	6.012 6.000	8.015 8.000	10.015 10.000	12.018 12.000	16.018 16.000	20.021 20.000	25.021 25.000	30.021 30.000	
	Ŀŧ	0.030 0.006	0.030 0.036	0.030	0.030	0.030	0.030 0.006	0.040 0.010	0.040	0.040 0.010	0.050 0.013	0.050 0.013	0.061 0.016	0.061 0.016	0.074 0.020	0.074 0.020	0.074 0.020	
se Running	f7	0.994 0.984	1.194 1.184	1.594 1.584	1.994 1.984	2.494 2.484	2.994 2.984	3.990 3.978	4.990 4.978	5.990 5.978	7.987 7.972	9.987 9.972	11.984 11.966	15.984 15.966	19.980 19.959	24.980 24.959	29.980 29.959	
ö	Hole H8	1.014 1.000	1.214 1.200	1.614 1.600	2.014 2.000	2.514 2.500	3.014 3.000	4.018 4.000	5.018 5.000	6.018 6.000	8.022 8.000	10.022 10.000	12.027 12.000	16.027 16.000	20.033 20.000	25.033 25.000	30.033 30.000	
	Ŀţ	0.070 0.020	0.070 0.020	0.070 0.020	0.070 0.020	0.070 0.020	0.070 0.020	0.090	0.090	0.090	0.112 0.040	0.112 0.040	0.136 0.050	0.136 0.050	0.169 0.065	0.169 0.065	0.169 0.065	
e Running	Shaft d9	0.980 0.955	1.180 1.155	1.580 1.555	1.980 1.955	2.480 2.455	2.980 2.955	3.970 3.940	4.970 4.940	5.970 5.940	7.960 7.924	9.960 9.924	11.950 11.907	15.950 15.907	19.935 19.883	24.935 24.883	29.935 29.883	e Table 14.2
Fre	Hole H9	1.025 1.000	1.225 1.200	1.625 1.600	2.025 2.000	2.525 2.500	3.025 3.000	4.030 4.000	5.030 5.000	6.030 6.000	8.036 8.000	10.036 10.000	12.043 12.000	16.043 16.000	20.052 20.000	25.052 25.000	30.052 30.000	ferred fits, se
	Fit	0.180 0.060	0.180 0.060	0.180 0.060	0.180 0.060	0.180 0.060	0.180 0.060	0.220 0.070	0.220 0.070	0.220 0.070	0.260 0.080	0.260 0.080	0.315 0.095	0.315 0.095	0.370 0.110	0.370 0.110	0.370 0.110	iption of pre-
se Running	Shaft c11	0.940 0.880	1.140 1.080	1.540 1.480	1.940 1.880	2.440 2.380	2.940 2.880	3.930 3.855	4.930 4.855	5.930 5.855	7.920 7.830	9.920 9.830	11.905 11.795	15.905 15.795	19.890 19.760	24.890 24.760	29.890 29.760	4). For desci
Loc	Hole H11	1.060 1.060	1.260 1.200	1.660 1.600	2.060 2.000	2.560 2.500	3.060 3.000	4.075 4.000	5.075 5.000	6.075 6.000	8.090 8.000	10.090 10.000	12.110 12.000	16.110 16.000	20.130 20.000	25.130 25.000	30.130 30.000	1978 (R198
		Max Min	Max Min	Min	Max Min	Max Min	Max Min	Max Min	Max Min	Max Min	Max Min	Max Min	Max Min	Max Min	Max Min	Max Min	Max Min	SI B4.2-
	Basic Size	-	1.2	1.6	2	2.5	e	4	5	9	ø	10	12	16	20	25	30	From AN

Dimensions are in millimeters.

Preferred Metric Hole Basis Clearance Fits^{*a*}— American National Standard (continued)

ce	Fit	0.041	0.000	0.049	0.049	0.057	0.057	0.065	0.075	0.075	0.084 0.000	0.003	0.103	
onal Clearan	Shaft h6	40.000 39.984	50.000 49.984	60.000 59.981	80.000 79.981	100.000 99.978	120.000 119.978	160.000 159.975	200.000 199.971	250.000 249.971	300.000 299.968	400.000 399.964	500.000 499.960	
Locati	Hole H7	40.025 40.000	50.025 50.000	60.030 60.000	80.030 80.000	100.035 100.000	120.035 120.000	160.040 160.000	200.046 200.000	250.046 250.000	300.052 300.000	400.057 400.000	500.063 500.000	
	Fit	0.050 0.009	0.050	0.059	0.059	0.069 0.012	0.069 0.012	0.079 0.014	0.090 0.015	0.090 0.015	0.101 0.017	0.111	0.123 0.020	
Sliding	Shaft g6	39.991 39.975	49.991 49.975	59.990 59.971	79.990 179.971	99.988 99.966	119.988 119.966	159.986 159.961	199.985 199.956	249.985 249.956	299.983 299.951	399.982 399.946	499.980 499.940	
	Hole H7	40.025 40.000	50.025 50.000	60.030 60.000	80.030 80.000	100.035 100.000	120.035 120.000	160.000 160.000	200.046 200.000	250.046 250.000	300.052 300.000	400.057 400.000	500.063 500.000	
	Fit	0.089 0.025	0.089 0.025	0.106 0.030	0.106 0.030	0.125 0.036	0.125 0.036	0.146 0.043	0.168 0.050	0.168 0.050	0.189 0.056	0.208 0.062	0.228 0.068	
se Running	Shaft f7	39.975 39.950	49.975 49.950	59.970 59.940	79.970 79.940	99.964 99.929	119.964 119.929	159.957 159.917	199.950 199.904	249.950 249.904	299.944 299.892	399.938 399.881	499.932 499.869	
CIC	Hole H8	40.039 40.000	50.039 50.000	60.046 60.000	80.046 80.000	100.054 100.000	120.054 120.000	160.063 160.000	200.072 200.000	250.072 250.000	300.081 300.000	400.089 400.000	500.097 500.000	
	Fit	0.204 0.080	0.204 0.080	0.248 0.100	0.248 0.100	0.294 0.120	0.294 0.120	0.345 0.145	0.400 0.170	0.400 0.170	0.450 0.190	0.490	0.540 0.230	N
ee Running	Shaft d9	39.920 39.858	49.920 49.858	59.900 59.826	79.900	99.880 99.793	119.880	159.855	199.830	249.830 249.715	299.810 299.680	399.790 399.650	499.770 499.615	see Table 14.
F	Hole H9	40.062 40.000	50.062 50.000	60.074 60.000	80.074 80.000	100.087	120.087 120.000	160.100 160.000	200.115	250.115 250.000	300.130 300.000	400.140 400.000	500.155 500.000	referred fits,
	Fit	0.440 0.120	0.450	0.520 0.140	0.530 0.150	0.610 0.170	0.620 0.180	0.710 0.210	0.820 0.240	0.860 0.280	0.970 0.330	1.120 0.400	1.280 0.480	ription of p
se Running	Shaft c11	39.880 39.720	49.870 49.710	59.860 59.670	79.950 79.660	99.830 99.610	119.820 119.600	159.790 159.540	199.760 199.470	249.720 249.430	299.670 299.350	399.600 399.240	499.520 499.120	84). For desc
Loc	Hole H11	40.160 40.000	50.160 50.000	60.190 60.000	80.190 80.000	100.220 100.000	120.220 120.000	160.250 160.000	200.290 200.000	250.290 250.000	300.320 300.000	400.360 400.000	500.400 500.000	-1978 (R19
		Max Min	Max Min	Max Min	Max Min	Max Min	Max Min	Max Min	Max Min	Max Min	Max Min	Max Min	Max Min	VSI B4.2
	Basic Size	40	50	60	80	100	120	160	200	250	300	400	500	From Al

Dimensions are in millimeters.

Ethiopian TVET Program

		Locatic	onal Tran	ISN.	Loc	ational Tra	nsn.	Lo	cational Int	terf.	ž	edium Driv	e		Force	
Basic Size	H	7	Shaft k6	Ŀt	Hole H7	Shaft n6	Fit	Hole H7	Shaft p6	Ξt	Hole H7	Shaft s6	Ŀ	Hole H7	Shaft u6	Ħ
1	Max 1.0 Min 1.0	010	1.006	0.010 -0.006	1.010	1.010	0.006 - 0.010	1.010 1.000	1.012 1.006	0.004 - 0.012	1.010 1.000	1.020 1.014	- 0.004 - 0.020	1.010 1.000	1.024 1.018	- 0.008 - 0.024
1.2	Max 1.2 Min 1.2	210	1.206	0.010 - 0.006	1.210	1.210	0.006 - 0.010	1.210	1.212 1.206	0.004 - 0.012	1.210	1.220 1.214	- 0.004	1.210	1.224 1.218	- 0.008 - 0.024
1.6	Max 1.6 Min 1.6	510	1.606	0.010 - 0.006	1.610 1.600	1.610	0.006 - 0.010	1.610	1.612 1.606	0.004 - 0.012	1.610	1.620 1.614	- 0.004	1.610	1.624 1.618	- 0.008 - 0.024
2	Max 2.0 Min 2.0	000	2.006	0.010 - 0.006	2.010	2.010 2.004	0.006 - 0.010	2.010 2.000	2.012 2.006	0.004 - 0.012	2.010 2.000	2.020 2.014	- 0.004 - 0.020	2.010 2.000	2.024 2.018	- 0.008 - 0.024
2.5	Max 2.5 Min 2.5	510	2.506	0.010 - 0.006	2.510	2.510	0.006 - 0.010	2.510 2.500	2.512 2.506	0.004 - 0.012	2.510 2.500	2.520 2.514	0.004 0.020	2.510 2.500	2.524 2.518	- 0.008 - 0.024
6	Max 3.0 Min 3.0	000	3.006	0.010 - 0.006	3.010 3.000	3.010 3.004	0.006 - 0.010	3.010	3.012 3.006	0.004 - 0.012	3.010 3.000	3.020 3.014	- 0.004 - 0.020	3.010 3.000	3.024 3.018	- 0.008 - 0.024
4	Max 4.(000	4.009 4.001	0.011 - 0.009	4.012 4.000	4.016 4.008	0.004 - 0.016	4.012 4.000	4.020 4.012	0.000 - 0.020	4.012 4.000	4.027 4.019	- 0.007 - 0.027	4.012 4.000	4.031 4.023	- 0.011 - 0.031
2	Max 5.0 Min 5.0	000	5.009	0.011 - 0.009	5.012 5.000	5.016 5.008	0.004 - 0.016	5.012 5.000	5.020 5.012	0.000 - 0.020	5.012 5.000	5.027 5.019	- 0.007 - 0.027	5.012 5.000	5.031 5.023	- 0.011 - 0.031
9	Max 6.0	000	6.009	0.011 - 0.009	6.012 6.000	6.016 6.008	0.004 - 0.016	6.012 6.000	6.020 6.012	0.000 - 0.020	6.012 6.000	6.027 6.019	- 0.007 - 0.027	6.012 6.000	6.031 6.023	- 0.011 - 0.031
∞	Max 8.0 Min 8.0	000	8.010 8.001	0.014	8.015	8.019 8.010	0.005	8.015	8.024 8.015	0.000 - 0.024	8.015 8.000	8.032 8.023	-0.008	8.015 8.000	8.037 8.028	- 0.013 - 0.037
10	Max 10.0 Min 10.0	015 1(000 1(0.010	0.014	10.015	10.019	0.005 - 0.019	10.015	10.024	0.000 - 0.024	10.015	10.032 10.023	-0.008	10.015	10.037 10.028	-0.013
12	Max 12.0 Min 12.0	11 000 12	2.012	0.017 -0.012	12.018	12.023	0.006 - 0.023	12.018 12.000	12.029 12.018	0.000 - 0.029	12.018 12.000	12.039 12.028	-0.010 -0.039	12.018 12.000	12.044 12.033	- 0.015
16	Max 16.0 Min 16.0	000 16	6.012 6.001	0.017 - 0.012	16.018 16.000	16.023 16.012	0.006 - 0.023	16.018 16.000	16.029 16.018	0.000 - 0.029	16.018 16.000	16.039 16.028	-0.010	16.018 16.000	16.044 16.033	- 0.015 - 0.044
20	Max 20.0 Min 20.0	00 20 20 20 20 20 20 20 20 20 20 20 20 2	0.002	0.019 - 0.015	20.021 20.000	20.028 20.015	0.006 - 0.028	20.021 20.000	20.035 20.022	- 0.001	20.021 20.000	20.048	-0.014 -0.048	20.021 20.000	20.054 20.041	- 0.020 - 0.054
25	Max 25.0 Min 25.0	021 25 000 25	5.015 5.002	0.019 - 0.015	25.021 25.000	25.028 25.015	0.006 - 0.028	25.021 25.000	25.035 25.022	- 0.001	25.021 25.000	25.048 25.035	-0.014 -0.048	25.021 25.000	25.061 25.048	- 0.027 - 0.061
30	Max 30.0 Min 30.0	00 30 30	0.015	0.019 -0.015	30.021	30.028	0.006 - 0.028	30.021 30.000	30.035 30.022	- 0.001	30.021 30.000	30.048 30.035	-0.014 -0.048	30.021	30.061 30.048	- 0.027 - 0.061
From ANS	184.2-197	8. For det	scription o	of preferred f	fits, see Tab	le 14.2.										

APPENDIX 8 Preferred Metric Hole Basis Transition and Interference Fits^a— American National Standard

Dimensions are in millimeters.

Preferred Metric Shaft Basis Clearance Fits^{*a*}— American National Standard (continued)

ce	ŧ	0.041	0.041	0.049	0.049	0.057	0.057	0.065	0.000	0.075	0.084	00000	0.103	
onal Clearan	Shaft h6	40.000 39.984	50.000 49.984	60.000 59.981	80.000 79.981	100.000 99.978	120.000 119.978	160.000 159.975	200.000 199.971	250.000 249.971	300.000 299.968	400.000 399.964	500.000 499.960	
Locati	Hole H7	40.025 40.000	50.025 50.000	60.030 60.000	80.030 80.000	100.035 100.000	120.035 120.000	160.040 160.000	200.046 200.000	250.046 250.000	300.052 300.000	400.057 400.000	500.063 500.000	
	E	0.050	0.050	0.059	0.059	0.069	0.069	0.079 0.014	0.090 0.015	0.090	0.101	0.111	0.123 5.020	
Sliding	Shaft h6	40.000 39.984	50.000 49.984	60.000 59.981	80.000 79.981	100.000 99.978	120.000 119.978	160.000 159.975	200.000 199.971	250.000 249.971	300.000 299.968	400.000 399.964	500.000 499.960	
	Hole G7	40.034 40.009	50.034 50.009	60.040 60.010	80.040 80.010	100.047 100.012	120.047 120.012	160.054 160.014	200.061 200.015	250.061 250.015	300.069 300.017	400.075 400.018	500.083 500.020	
	Æ	0.089 0.025	0.089 0.025	0.106	0.106	0.125 0.036	0.125 0.036	0.146 0.043	0.168	0.168	0.189 0.056	0.208 0.062	0.228 0.068	
se Running	Shaft h7	40.000 39.975	50.000 49.975	60.000 59.970	80.000 79.970	100.000 99.965	120.000 119.965	160.000 159.960	200.000 199.954	250.000 249.954	300.000 299.948	400.000 399.943	500.000 499.937	
ຮ	Hole F8	40.064 40.025	50.064 50.025	60.076 60.030	80.076 80.030	100.090 100.036	120.090 120.036	160.106 160.043	200.122 200.050	250.122 250.050	300.137 300.056	400.151 400.062	500.165 500.068	
	E	0.204 0.080	0.204 0.080	0.248 0.100	0.248 0.100	0.294 0.120	0.294 0.120	0.345 0.145	0.400 0.170	0.400 0.170	0.450	0.490 0.210	0.540 0.230	
ee Running	Shaft h9	40.000 39.938	50.000 49.938	60.000 59.926	80.000 79.926	100.000 99.913	120.000	160.000 159.900	200.000 199.885	250.000 249.885	300.000 299.870	400.000 399.860	500.000 499.845	14.2.
Ŀ	Hole D9	40.142 40.080	50.142 50.080	60.174 60.100	80.174 80.100	100.207 100.120	120.207 120.120	160.245 160.145	200.285 200.170	250.285 250.170	300.320 300.190	400.350 400.210	500.385 500.230	fits, see Table
	Eit	0.440 0.120	0.450 0.130	0.520 0.140	0.530 0.150	0.610 0.170	0.620 0.180	0.710 0.210	0.820 0.240	0.860 0.280	0.970 0.330	1.120 0.400	1.280 0.480	preferred
se Running	Shaft h11	40.000 39.840	50.000 49.840	60.000 59.810	80.000 79.810	100.000 99.780	120.000 119.780	160.000 159.750	200.000 199.710	250.000 249.710	300.000 299.680	400.000 399.640	500.000 499.600	lescription of
Lot	Hole C11	40.280 40.120	50.290 50.130	60.330 60.140	80.340 80.150	100.390 100.170	120.400 120.180	160.460 160.210	200.530 200.240	250.570 250.280	300.650 300.330	400.760 400.400	500.880 500.480	2-1978. For d
	asic lize	Max Min	Max Min	Max Min	Max Min	Max	Max	Max	Max Min	Max	Max	Max	Max Min	NSI B.42
	ω. W	40	50	60	80	100	120	160	200	250	300	400	200	From A

Dimensions are in millimeters.

Ethiopian TVET Program

Hole Shaft Hole Shaft Hole Shaft Hole Shaft Ft Mole 10 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 11 0.90 </th <th>Loc</th> <th>ational Tra</th> <th>nsn.</th> <th>Loc</th> <th>ational Tra</th> <th>nsn.</th> <th>Lo</th> <th>cational Int</th> <th>terf.</th> <th>2</th> <th>ledium Driv</th> <th>e</th> <th></th> <th>Force</th> <th></th>	Loc	ational Tra	nsn.	Loc	ational Tra	nsn.	Lo	cational Int	terf.	2	ledium Driv	e		Force	
100010000006100600941000000611361100-0.006034511300113001136113411341134113411341134113411300113611361136113611361136113811341130011364-0016115661594-0024115615361536153615361130011934-0016115661594100111361136113611371130011934-001611566119441594-0024113611371130011934-00161196611966119661196113611371130011934-00161196611964119661196119611361130111934-001621962194201621962003248113012193420001193421932001219620372481130121934200121942101219620072196237113022100121942001219420062196200724811301249220012944200121962007296329311302500120142994200129442003294420031130250012014294620042006294620032943113025001 <th>Hole K7</th> <th>Shaft h6</th> <th>Fit</th> <th>Hole N7</th> <th>Shaft h6</th> <th>Fit</th> <th>Hole P7</th> <th>Shaft h6</th> <th>Fit</th> <th>Hole S7</th> <th>Shaft h6</th> <th>Fit</th> <th>Hole U7</th> <th>Shaft h6</th> <th>Fit</th>	Hole K7	Shaft h6	Fit	Hole N7	Shaft h6	Fit	Hole P7	Shaft h6	Fit	Hole S7	Shaft h6	Fit	Hole U7	Shaft h6	Fit
	1.000 0.990	1.000 0.994	0.006 - 0.010	0.996 0.986	1.000 0.994	0.002 - 0.014	0.994 0.984	1.000 0.994	0.000 - 0.016	0.986 0.976	1.000 0.994	- 0.008 - 0.024	0.982 0.972	1.000 0.994	- 0.012 - 0.028
1500 1500 0.006 1596 1504 -0.006 1596 1594 -0.006 1596 1594 -0.006 1596 1594 -0.006 1596 1594 -0.006 1596 1594 -0.006 1596 1594 -0.004 1596 1594 -0.004 1596 1594 -0.004 1596 1594 -0.004 1596 1594 -0.004 1596 1594 -0.004 1596 1594 1576 1597 15024 1572 2500 2006 2966 2904 2004 2002 2596 2994 2000 2966 2903 2003 2004 2008 2482 2494 2003 2906 2903 <t< th=""><th>1.200</th><th>1.200</th><th>0.006 - 0.010</th><th>1.196 1.186</th><th>1.200</th><th>0.002 - 0.014</th><th>1.194 1.184</th><th>1.200</th><th>0.000 - 0.016</th><th>1.186 1.176</th><th>1.200</th><th>- 0.008 - 0.024</th><th>1.182 1.172</th><th>1.200</th><th>- 0.012 - 0.028</th></t<>	1.200	1.200	0.006 - 0.010	1.196 1.186	1.200	0.002 - 0.014	1.194 1.184	1.200	0.000 - 0.016	1.186 1.176	1.200	- 0.008 - 0.024	1.182 1.172	1.200	- 0.012 - 0.028
200020001996200000061996200019941994199419941994199419941975249024942001194619461946194619461946199410022485248224902494200102496249420012496249420012486248229003000390229940010229963000000229962994200239013992-001029963000000129962994200229855003500000113996400000043922400000002986290350035000001139964000000439224000000039854000496159915992-000959965000000059955000000059955903590359915991-001679935992-00107995599359935000796359915991-001079969991-001079959991-0024799559915991-001079959991-001079959991-002559915090001179959991-001079959991-00255991-001079919991-001079959991-002579535991-00107991<	1.600	1.600	0.006 - 0.010	1.596	1.600	0.002 - 0.014	1.594 1.584	1.600	0.000 - 0.016	1.586 1.576	1.600	- 0.008 - 0.024	1.582 1.572	1.600	- 0.012 - 0.028
2500 2500 0006 2496 2500 0006 2496 2500 -0008 2472 3000 3000 0006 2496 2001 2496 2000 2494 -0008 2472 3000 3000 0006 2996 3000 0006 2994 2001 2972 -0016 2974 -0023 2972 -0023 3972 -0026 3972 -0027 3973 3992 -0027 3973 3993 <	2.000 1.990	2.000	0.006 - 0.010	1.996 1.986	2.000	0.002 - 0.014	1.994 1.984	2.000	0.000 - 0.016	1.986 1.976	2.000 1.994	- 0.008 - 0.024	1.982 1.972	2.000	- 0.012 - 0.028
3000 3000 0006 2996 3000 0006 2996 3000 0008 2994 2001 2994 2003 2994 2004 2994 2001 2994 2003 2994 2001 2994 20010 2994 2001 2994 2001 2994 2001 2994 2001 2994 2003 3992 -0000 3985 4000 -0001 3995 2002 -0007 3981 3992 -0007 3981 3992 -0007 3981 3992 -0007 3981 3992 -0007 3981 3992 -0007 3981 3992 -0007 3981 3992 -0007 3981 3992 -0007 3981 3992 -0007 3981 3992 -0007 3981 3992 -0007 3991 3992 -0007 3991 3992 -0007 3991 3991 3992 2002 2007 3992 2002 2007 2007 2007 2007 2007	 2.500 2.490	2.500 2.494	0.006 - 0.010	2.496 2.486	2.500 2.494	0.002 - 0.014	2.494 2.484	2.500 2.494	0.000 - 0.016	2.486 2.476	2.500 2.494	- 0.008 - 0.024	2.482 2.472	2.500 2.494	- 0.012 - 0.028
4.0034.0000.0113.9954.0000.0003.9954.0000.0003.9953.992-0.0073.9695.0035.0000.0114.9965.0000.0044.9925.0000.0004.9955.000-0.0074.9914.9914.9925.0000.0114.9965.0000.0044.9925.0000.0004.9955.000-0.0074.9955.9915.9920.0015.9966.0000.0045.9926.0000.0005.9855.000-0.0073.9615.9915.9910.0117.9968.0000.0147.9910.0107.9938.000-0.0077.9787.9907.991-0.0107.9917.991-0.0107.991-0.0127.9838.000-0.0077.9787.9909.9919.9919.9919.9919.9919.9919.991-0.0247.9839.991-0.0237.9787.9909.9919.00111.96111.9699.9919.9919.991-0.0247.9839.991-0.0267.99310.0069.9919.9919.9919.9919.9919.9919.9919.9939.991-0.0269.99311.98811.9889.9919.00111.9899.9919.0009.9939.9939.9939.99311.98811.98811.9899.00111.98912.0000.00011.99312.0009.9939.993 <td> 3.000 2.990</td> <td>3.000 2.994</td> <td>0.006 - 0.010</td> <td>2.996 2.986</td> <td>3.000 2.994</td> <td>0.002 - 0.014</td> <td>2.994 2.984</td> <td>3.000 2.994</td> <td>0.000 - 0.016</td> <td>2.986 2.976</td> <td>3.000 2.994</td> <td>- 0.008 - 0.024</td> <td>2.982 2.972</td> <td>3.000 2.994</td> <td>- 0.012 - 0.028</td>	 3.000 2.990	3.000 2.994	0.006 - 0.010	2.996 2.986	3.000 2.994	0.002 - 0.014	2.994 2.984	3.000 2.994	0.000 - 0.016	2.986 2.976	3.000 2.994	- 0.008 - 0.024	2.982 2.972	3.000 2.994	- 0.012 - 0.028
5003500000114.9965.0000.00044.9925.0000.00074.9855.000-0.0074.9656.0036.00000115.9966.0000.0045.9826.0000.0005.9856.000-0.0075.9815.9915.9915.9966.0000.0045.9826.0000.0005.9856.000-0.0075.9815.9915.9966.0000.0147.9968.0000.00147.9968.000-0.0077.9837.9917.991-0.0107.9917.991-0.0247.9938.000-0.0077.9787.9939.990999110.0000.0149.996999110.0009.99310.0009.9939.99111.00511.0000.0119.9919.90110.0009.9939.99110.0009.9939.99111.200611.99011.99111.99111.99111.99111.9999.9919.9919.99311.200611.99910.0000.01715.9919.90110.00011.97911.97911.50811.99611.97711.989-0.02315.97111.989-0.02419.99611.98815.900-0.01211.99111.99910.00011.97911.97911.97411.98815.900-0.01211.99111.99910.00011.99710.99311.96611.98815.900-0.01211.99111.9991	 4.003 3.991	4.000 3.992	0.011 - 0.009	3.996 3.984	4.000 3.992	0.004 - 0.016	3.992 3.980	4.000 3.992	0.000 - 0.020	3.985 3.973	4.000 3.992	- 0.007 - 0.027	3.981 3.969	4.000	- 0.011 - 0.031
6003 6000 0011 5.996 6000 0.0006 5.992 6.000 5.992 6.000 5.992 6.000 5.992 6.000 5.992 5.992 5.992 5.992 5.992 5.992 5.992 5.992 5.992 5.992 5.992 5.992 5.992 5.992 5.992 5.992 5.992 5.992 5.993 5.993 5.993 5.993 5.993 5.993 7.991 7.991 7.991 7.991 7.993 7.993 7.991 7.993 7.	 5.003 4.991	5.000 4.992	0.011 - 0.009	4.996 4.984	5.000 4.992	0.004 - 0.016	4.992 4.980	5.000 4.992	0.000 - 0.020	4.985 4.973	5.000 4.992	- 0.007 - 0.027	4.981 4.969	5.000 4.992	- 0.011 - 0.031
8.0058.0000.0147.9968.0000.0057.9918.0000.0007.9687.991-0.0027.9767.9907.991-0.0197.9767.991-0.0247.9687.991-0.0327.9639.99110.0009.99110.0009.99110.0009.9919.991-0.0249.98310.000-0.0329.9769.991-0.0109.991-0.0199.991-0.0199.991-0.01211.99212.000-0.0329.9639.991-0.01011.99512.0000.00611.989-0.02311.97111.989-0.03211.97511.98811.989-0.01211.97711.989-0.02311.97111.989-0.02911.96111.98915.06615.0800.01715.99516.0000.00011.989-0.02911.96111.98915.98815.989-0.02315.98916.0000.00015.989-0.03915.97115.98815.989-0.01215.98916.0000.00019.99320.00019.96515.98815.989-0.02315.989-0.02315.989-0.03915.97615.98815.989-0.01219.99320.0000.00619.987-0.03519.96715.98815.989-0.01219.987-0.02819.987-0.03519.96719.96719.98619.987-0.01219.987-0.02819.987-0.035 <th> 6.003 5.991</th> <th>6.000 5.992</th> <th>0.011 - 0.009</th> <th>5.996 5.984</th> <th>6.000 5.992</th> <th>0.004 - 0.016</th> <th>5.992 5.980</th> <th>6.000 5.992</th> <th>0.000 - 0.020</th> <th>5.985 5.973</th> <th>6.000 5.992</th> <th>- 0.007 - 0.027</th> <th>5.981 5.969</th> <th>6.000 5.992</th> <th>- 0.011 - 0.031</th>	 6.003 5.991	6.000 5.992	0.011 - 0.009	5.996 5.984	6.000 5.992	0.004 - 0.016	5.992 5.980	6.000 5.992	0.000 - 0.020	5.985 5.973	6.000 5.992	- 0.007 - 0.027	5.981 5.969	6.000 5.992	- 0.011 - 0.031
10.005 10.000 0.014 9.996 10.000 9.931 10.000 9.933 10.000 9.933 9.901 9.976 9.976 9.991 -0.032 9.936 9.991 -0.032 9.963 9.991 -0.032 9.963 9.991 -0.032 9.963 9.991 -0.032 9.963 9.991 -0.032 9.963 9.991 -0.032 9.963 9.991 -0.032 9.963 9.963 11.974 11.974 11.973 11.974 11.975 9.961 11.961 11.979 12.000 -0.010 11.974 11.975 9.963 12.000 0.0010 11.974 11.975 11.975 11.974 11.975 11.976 <th>8.005</th> <th>8.000 7.991</th> <th>0.014 - 0.010</th> <th>7.996 7.981</th> <th>8.000 7.991</th> <th>0.005 - 0.019</th> <th>7.991</th> <th>8.000 7.991</th> <th>0.000 - 0.024</th> <th>7.983 7.968</th> <th>8.000</th> <th>- 0.008 - 0.032</th> <th>7.978 7.963</th> <th>8.000</th> <th>- 0.013 - 0.037</th>	8.005	8.000 7.991	0.014 - 0.010	7.996 7.981	8.000 7.991	0.005 - 0.019	7.991	8.000 7.991	0.000 - 0.024	7.983 7.968	8.000	- 0.008 - 0.032	7.978 7.963	8.000	- 0.013 - 0.037
12.006 12.000 0.017 11.995 12.000 0.000 11.976 11.979 12.000 -0.010 11.976 11.1988 11.989 -0.012 11.977 11.989 -0.029 11.961 11.989 -0.039 11.976 15.086 16.000 0.017 15.995 16.000 0.000 15.979 16.000 -0.013 15.977 15.988 15.989 -0.012 15.977 15.989 16.000 0.000 15.979 16.000 -0.010 15.974 15.988 15.989 -0.012 15.977 15.989 -0.023 15.971 15.989 -0.039 15.966 20.000 0.019 19.937 19.987 -0.028 19.987 -0.035 19.967 19.967 19.985 19.987 -0.015 19.987 -0.028 19.987 -0.035 19.967 19.967 25.000 0.019 24.932 24.986 25.000 -0.035 24.952 24.987 -0.048	 10.005 9.990	10.000 9.991	0.014 - 0.010	9.996 9.981	10.000 9.991	0.005 - 0.019	9.976 9.976	10.000 9.991	0.000 - 0.024	9.983 9.968	10.000 9.991	- 0.008 - 0.032	9.978 9.963	10.000 9.991	- 0.013 - 0.037
16.006 16.000 0.0017 15.995 16.000 0.0010 15.979 16.000 -0.010 15.975 15.988 15.989 -0.012 15.997 15.989 -0.023 15.971 15.989 -0.029 15.961 15.989 -0.039 15.955 20.006 20.000 0.019 19.993 20.000 19.986 20.001 19.973 20.000 -0.014 19.967 19.985 19.987 -0.028 19.986 20.000 -0.015 19.973 20.000 -0.014 19.967 25.006 25.000 0.019 24.997 -0.028 19.986 25.000 -0.011 24.977 25.000 -0.014 29.967 25.006 20.015 24.987 -0.028 24.965 24.987 -0.035 24.957 -0.048 19.946 25.006 0.019 29.933 30.000 0.0068 24.986 26.000 -0.014 24.939 30.006 30.000 0.016 29.986 <t< th=""><th> 12.006 11.988</th><th>12.000 11.989</th><th>0.017 - 0.012</th><th>11.995</th><th>12.000</th><th>0.006 - 0.023</th><th>11.989</th><th>12.000 11.989</th><th>0.000 - 0.029</th><th>11.979</th><th>12.000 11.989</th><th>- 0.010 - 0.039</th><th>11.974 11.956</th><th>12.000</th><th>- 0.015 - 0.044</th></t<>	 12.006 11.988	12.000 11.989	0.017 - 0.012	11.995	12.000	0.006 - 0.023	11.989	12.000 11.989	0.000 - 0.029	11.979	12.000 11.989	- 0.010 - 0.039	11.974 11.956	12.000	- 0.015 - 0.044
20.006 20.000 0.019 19.93 20.000 0.0016 19.965 19.965 19.967 -0.011 19.973 20.000 -0.014 19.967 -0.014 19.967 -0.014 19.967 -0.014 19.967 -0.014 19.967 -0.014 19.967 -0.014 19.967 -0.014 19.967 -0.014 19.967 -0.014 19.967 -0.014 19.967 -0.014 19.967 -0.014 19.967 -0.014 19.967 -0.014 19.967 -0.014 19.946 19.946 25.000 -0.014 24.967 -0.048 19.946 24.966 24.967 -0.028 24.965 24.967 -0.014 24.966 24.967 -0.014 24.966 24.966 24.966 24.966 24.966 24.966 24.967 -0.014 24.966 24.966 24.966 24.966 24.966 24.966 24.966 24.966 24.966 24.966 24.966 24.966 24.966 24.966 24.966 24.966 24.966 24.966 <td> 16.006 15.988</td> <td>16.000 15.989</td> <td>0.017 - 0.012</td> <td>15.995 15.977</td> <td>16.000 15.989</td> <td>0.006 - 0.023</td> <td>15.989 15.971</td> <td>16.000 15.989</td> <td>0.000 - 0.029</td> <td>15.979 15.961</td> <td>16.000 15.989</td> <td>- 0.010 - 0.039</td> <td>15.974 15.956</td> <td>16.000 15.989</td> <td>- 0.015 - 0.044</td>	 16.006 15.988	16.000 15.989	0.017 - 0.012	15.995 15.977	16.000 15.989	0.006 - 0.023	15.989 15.971	16.000 15.989	0.000 - 0.029	15.979 15.961	16.000 15.989	- 0.010 - 0.039	15.974 15.956	16.000 15.989	- 0.015 - 0.044
25.006 25.000 0.019 24.933 25.000 0.0016 24.986 25.000 -0.001 24.973 25.000 -0.014 24.960 24.985 24.987 -0.035 24.987 -0.035 24.987 -0.014 24.937 25.000 -0.014 24.930 24.936 24.936 24.955 24.957 24.937 26.038 24.939 24.939 24.937 20.048 24.939 24.939 24.939 24.939 24.939 24.939 24.939 24.939 24.939 24.939 24.939 24.939 24.939 24.939 24.939 24.939 26.000 -0.014 29.939 29.000 -0.014 29.939 29.000 -0.014 29.956 29.960 -0.014 29.960 29.960 -0.014 29.960 29.960 -0.014 29.960 20.000 -0.014 29.960 29.960 -0.014 29.960 29.960 -0.014 29.960 29.960 -0.014 29.960 29.960 -0.014 29.960 29.960	 20.006 19.985	20.000 19.987	0.019 - 0.015	19.993 19.972	20.000 19.987	0.006 - 0.028	19.986 19.965	20.000 19.987	- 0.001 - 0.035	19.973 19.952	20.000 19.987	- 0.014 - 0.048	19.967 19.946	20.000	- 0.020 - 0.054
30.006 30.000 0.019 29.993 30.000 0.006 29.986 30.000 -0.001 29.973 30.000 -0.014 29.960 20.960 20.960	 25.006 24.985	25.000 24.987	0.019 - 0.015	24.993 24.972	25.000 24.987	0.006 - 0.028	24.986 24.965	25.000 24.987	- 0.001 - 0.035	24.973 24.952	25.000 24.987	- 0.014 - 0.048	24.960 24.939	25.000 24.987	- 0.027 - 0.061
100:07 0100 100:07 100:0	 30.006 29.985	30.000 29.987	0.019 - 0.015	29.993 29.972	30.000 29.987	0.006 - 0.028	29.986 29.965	30.000 29.987	- 0.001 - 0.035	29.973 29.952	30.000 29.987	- 0.014 - 0.048	29.960 29.939	30.000 29.987	- 0.027 - 0.061

Preferred Metric Shaft Basis Transition and Interference Fits^a— American National Standard

Dimensions are in millimeters.

														-
	Ĕ	- 0.035 - 0.076	- 0.045 - 0.086	- 0.057 - 0.106	-0.072 -0.121	0.089 0.146	-0.109 -0.166	- 0.150 - 0.215	- 0.190 - 0.265	-0.238 -0.313	- 0.298 - 0.382	- 0.378 - 0.471	- 0.477 - 0.580	
Force	Shaft h6	40.000 39.984	50.000 49.984	60.000 59.981	80.000 79.981	100.000 99.978	120.000 119.978	160.000 159.975	200.000 199.971	250.000 249.971	300.000 299.968	400.000 399.964	500.000 499.960	
	Hole U7	39.949 39.924	49.939 49.914	59.924 59.894	909.97 79.879	99.889 99.854	119.869 119.834	159.825 159.785	199.781 199.735	249.733 249.687	299.670 299.618	399.586 399.529	499.483 499.420	
0	ĿĬ	- 0.018 - 0.059	-0.018 -0.059	- 0.023 - 0.072	- 0.029 - 0.078	- 0.036 - 0.093	- 0.044 - 0.101	-0.060 -0.125	- 0.076 - 0.151	- 0.094 - 0.169	-0.118 -0.202	_0.151 _0.244	-0.189 -0.292	
edium Drive	Shaft h6	40.000 39.984	50.000 49.984	60.000 59.981	80.000 79.981	100.000 99.978	120.000 119.978	160.000 159.975	200.000 199.971	250.000 249.971	300.000 299.968	400.000 399.964	500.000 499.960	
W	Hole S7	39.966 39.941	49.966 49.941	59.958 59.928	79.952 79.922	99.942 99.907	119.934 119.899	159.915 159.875	199.895 199.849	249.877 249.831	299.850 299.798	399.813 399.756	499.771 499.708	
rf.	Fit	- 0.001 - 0.042	- 0.001 - 0.042	- 0.002 - 0.051	- 0.002 - 0.051	- 0.002 - 0.059	- 0.002 - 0.059	- 0.003 - 0.0 6 8	- 0.004 - 0.079	- 0.004 - 0.079	- 0.004 - 0.088	- 0.005 - 0.098	- 0.005 - 0.108	
ational Inte	Shaft h6	40.000 39.984	50.000 49.984	60.000 59.981	80.000 79.981	100.000 99.978	120.000 119.978	160.000 159.975	200.000 199.971	250.000 249.971	300.000 299.968	400.000 399.964	500.000 499.960	
Loc	Hole P7	39.983 39.958	49.983 49.958	59.979 59.949	79.979 79.949	99.976 99.941	119.976 119.941	159.972 159.932	199.967 199.921	249.967 249.921	299.964 299.912	399.959 399.902	499.955 499.892	
.USI	Fit	0.008 - 0.033	0.008 - 0.033	0.010 - 0.039	0.010 - 0.039	0.012 - 0.045	0.012 - 0.045	0.013 - 0.052	0.015 - 0.060	0.015 - 0.060	0.018 - 0.066	0.020 - 0.073	0.023 0.080	14.2.
ational Trar	Shaft h6	40.000 39.984	50.000 49.984	60.000 59.981	80.000 79.981	100.000 99.978	120.000 199.978	160.000 159.975	200.000 199.971	250.000 249.971	300.000 299.968	400.000 399.964	500.000 499.960	, see Table 1
Loc	Hole N7	39.992 39.967	49.992 49.967	59.961 59.961	79.961 79.961	99.990 99.955	119.990 119.955	159.988 159.948	199.986 199.940	249.986 249.940	299.986 299.934	399.984 399.927	499.983 499.920	preferred fits
.usi	Fit	0.023 - 0.018	0.023 - 0.018	0.028 - 0.021	0.028 - 0.021	0.032 - 0.025	0.032 - 0.025	0.037 - 0.028	0.042 - 0.033	0.042 - 0.033	0.048 0.036	0.053 - 0.040	0.058 0.045	escription of
ational Trar	Shaft h6	40.000 39.984	50.000 49.984	60.000 59.981	80.000 79.981	100.000 99.978	120.000 119.978	160.000 159.975	200.000 199.971	250.000 249.971	300.000 299.968	400.000 399.964	500.000 499.960	1984). For de
Loc	Hole K7	40.007 39.982	50.007 49.982	60.009 59.979	600.08	100.010 99.975	120.010 119.975	160.012 159.972	200.013 199.967	250.013 249.967	300.016 299.964	400.017 399.960	500.018 499.955	2—1978 (R1
	e sic	Max Min	Max	Max	Max Min	Max Min	Max Min	Max Min	Max Min	Max Min	Max Min	Max Min	Max Min	ISI B4.
	Ba: Siz	40	50	60	80	100	120	160	200	250	300	400	500	From AN

Preferred Metric Basis Transition and Interference Fits^a— American National Standard (continued)

Dimensions are in millimeters.

Ethiopian TVET Program

Form and Proportion of Geometric Tolerancing Symbols^{*a*}

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 170 of 171

Revised By

Name: Mr. Kidu G/Cherkos

Qualification: MSc. Degree in Manufacturing Engineering

FTI, Addis-Ababa, Ethiopia

E-mail: kidmech2000@gmail.com

Phone: +251913830830

Ethiopian TVET Program	STEP-giz	CT program for Remote Teaching Title: Mechanics L-3	July 2020	Page 171 of 171