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Arq n te ka� tèlo èqon oudèn, oÔte aòdion oÔte �peiron.
Anything that has a beginning and an end cannot at the same time be
infinite and everlasting.

—Anaximander of Miletus, Ionia, GreeceKìsmon (tìnde), tän aÎtän �p�ntwn, oÖte ti jeÀn, oÖte �njr¸pwnâpo�hsen, �ll' ®n �eÈ kaÈ êstin kaÈ êstai pÜr �e�zwon, �ptìmenon mètrakaÈ �posbennÔmenon mètra.
This universe which is the same everywhere, and which no one god or
man has made, existed, exists, and will continue to exist as an eternal
source of energy set on fire by its own natural laws, and will dissipate
under its own laws.Ta p�nta re� ka� oÔdèn mènei.
Everything is in a state of flux and nothing is stationary.Potame� to� auto� emba�nomen te ka� ouk emba�nomen, e�men te ka� ouke�men.
Man cannot step into the same river twice, because neither the man nor
the river is the same.

—Herakleitos of Ephesus, Ionia, GreeceDì moi poÔ st¸ kai tan g�n kin�sw.
Give me a place to stand and I will move the Earth.

—Archimedes of Syracuse, Sicily, Greater Greece
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Conventions and Notation

In a definition or when a word is defined in the text, the concept defined
is italicized. Italics in the running text is also used for emphasis. The
definition of a word, phrase, or symbol is to be understood as an “if and
only if” statement. Lower-case letters such as x denote vectors, upper-case
letters such as A denote matrices, upper-case script letters such as S denote
sets, and lower-case Greek letters such as α denote scalars; however, there
are a few exceptions to this convention. The notation S1 ⊂ S2 means that
S1 is a proper subset of S2, whereas S1 ⊆ S2 means that either S1 is a
proper subset of S2 or S1 is equal to S2. Throughout the book we use two
basic types of mathematical statements, namely, existential and universal
statements. An existential statement has the form: there exists x ∈ X such
that a certain condition C is satisfied; whereas a universal statement has the
form: condition C holds for all x ∈ X . For universal statements we often
omit the words “for all” and write: condition C holds, x ∈ X . The notation
used in this book is fairly standard. The reader is urged to glance at the
notation below before starting to read the book.

Z set of integers
Z+, Z+, Z−, Z− set of nonnegative, positive, nonpositive, negative

integers
R set of real numbers
Rn×m set of n×m real matrices
Rn Rn×1 (real column vectors)
R+, R+, R−, R− set of nonnegative, positive, nonpositive, negative

real numbers
C set of complex numbers
Cn×m set of n×m complex matrices
Cn Cn×1 (complex column vectors)

C+, C+, C−, C− set of complex numbers with nonnegative,
positive, nonpositive, negative real parts

F, Fn, Fn×m R or C, Rn or Cn, Rn×m or Cn×m

CLHP, OLHP closed, open left half plane
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CRHP, ORHP closed, open right half plane


√
−1

R imaginary numbers
Re z, Im z real part; imaginary part of a complex number z
△
= equals by definition
Ø empty set
{ }, { }m set, multiset
∪, ∩ union, intersection
∈, 6∈ is an element of, is not an element of
⊆, ⊂ is a subset of, is a proper subset of
→ approaches
0, 0n×m, 0n zero matrix, n×m zero matrix, 0n×n

In, I n× n identity matrix
R(A), N (A) range space of A, null space of A
xi, x(i) ith component of vector x ∈ Rn

A(i,j) (i, j) entry of A
coli(A), rowi(A) ith column of A, ith row of A

diag[A(1,1), . . . , A(n,n)] diagonal matrix







A(1,1) 0
. . .

0 A(n,n)







block−diag[A1, . . . , Ak] block-diagonal matrix







A1 0
. . .

0 Ak






,

Ai ∈ Rni×mi , i = 1, . . . , k
AT transpose of A
Ā complex conjugate of A
A∗ ĀT

A−1 inverse of A
A† Moore-Penrose generalized inverse of A
A# group generalized inverse of A
A−T, A−∗ (AT)−1, (A∗)−1

tr A trace of A
det A determinant of A
rank A rank of A
Sn set of n× n symmetric matrices
Nn set of n× n nonnegative-definite matrices
Pn set of n× n positive-definite matrices
A ≥≥ 0 (A >> 0) A(i,j) ≥ 0 (A(i,j) > 0) for all i and j
A ≥≥ B (A >> B) A(i,j) ≥ B(i,j) (A(i,j) > B(i,j)), where A and B

are matrices with identical dimensions
A ≥ 0 (A > 0) nonnegative (respectively, positive) definite

matrix; that is, symmetric matrix with



CONVENTIONS AND NOTATION xvii

nonnegative (respectively, positive) eigenvalues
A ≥ B A−B ∈ Nn

A > B A−B ∈ Pn

Rn
+, R

n
+ {x ∈ Rn : x >> 0}, {x ∈ Rn : x ≥≥ 0}

⊗, ⊕ Kronecker product, Kronecker sum

x[k] x⊗ · · · ⊗ x (k times)
k

⊕ A A⊕A⊕ · · · ⊕A (k times)

N (k,n) {Ψ ∈ R1×nk

: Ψx[k] ≥ 0, x ∈ Rn}
vec column-stacking operator
spec(A) spectrum of A including multiplicity
ρ(A) spectral radius of A
α(A) spectral abscissa of A
|α| absolute value of α
σi(A) ith singular value of A
σmin(A), σmax(A) minimum, maximum singular value of A
‖ · ‖, ||| · ||| vector or matrix norm, vector or matrix operator

norm

‖x‖2 Euclidean norm of x (=
√
x∗x)

‖x‖p Hölder vector norms, [
∑n

i=1 |xi|p]1/p, 1 ≤ p <∞
‖x‖∞ maxi |x(i)|
‖A‖p Hölder matrix norms,

[

∑m
i=1

∑n
j=1 |A(i,j)|p

]1/p
,

1 ≤ p <∞
‖A‖∞ maxi,j |A(i,j)|
‖A‖σp [

∑r
i=1 σ

p
i (A)]

1/p
, 1 ≤ p <∞, r = rank A

‖A‖σ∞ σmax(A)
‖A‖s spectral norm of A (= σmax(A))

‖A‖F Frobenius matrix norm of A (= (tr AA∗)1/2)
‖A‖q,p induced matrix norm
λi(A) ith eigenvalue of A ∈ Rn×n

λmin(A), λmax(A) minimum, maximum eigenvalues of the
Hermitian matrix A

He A, Sh A 1
2 (A+A∗), 1

2(A−A∗)
E(i,j) elementary matrix with unity in the (i, j)

entry and zeros elsewhere
loge logarithm with base e = 2.71828 · · ·
ei vector with unity in the ith component and zeros

elsewhere
e [1, 1, . . . , 1]T

Lp Lebesgue space, 1 ≤ p ≤ ∞
L2 space of square-integrable Lebesgue measurable

functions on [0,∞)
L∞ space of bounded Lebesgue measurable functions
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on [0,∞)

|||f |||p,q {
∫∞
0 ‖f(t)‖p

qdt}1/p, 1 ≤ p <∞
|||f |||∞,q ess supt≥0 ‖f(t)‖q

〈f, g〉
∫∞
0 fT(t)g(t)dt

ℓp sequence space, 1 ≤ p ≤ ∞
ℓ2 space of square-summable sequences on Z+

ℓ∞ space of bounded sequences on Z+

Hp analytic function space
H2 Hardy space of real-rational transfer function

matrices square-integrable on the imaginary
axis (unit disk) with analytic continuation
in the right half plane (outside the unit disk)

H∞ Hardy space of real-rational transfer function
matrices bounded on the imaginary axis (unit
disk) with analytic continuation in
the right half plane (outside the unit disk)

ℜH2 real-rational subspace of H2

ℜH∞ real-rational subspace of H∞
[a, b] closed interval
(a, b) open interval
X × Y Cartesian product of X and Y
f : X → Y function f with domain X and codomain Y
∂f
∂xi

(x0) partial derivative of f with respect to xi at x0

f ′(x0) Fréchet derivative of f at x0

f (k)(x0) kth Fréchet derivative of f at x0

D+f(x0) upper right Dini derivative of f at x0

D+f(x0) lower right Dini derivative of f at x0

f−1(D) inverse image of the set D
f2 ◦ f1 composition of two functions;

(f2 ◦ f1)(·) = f2(f1(·))
L[z(t)] Laplace transform of z(·)
G(s) ∼

[

A B
C D

]

state space realization of transfer function

G(s) = C(sI −A)−1B +D

G(s)
min∼
[

A B
C D

]

minimal state space realization of G(s)

Bε(α) {x ∈ Rn : ‖x− α‖ < ε}
Bε[α] {x ∈ Rn : ‖x− α‖ ≤ ε}
X\Y {x ∈ X : x 6∈ Y} for sets X and Y
∂S boundary of the set S
◦
S interior of the set S
S closure of the set S
Sc or S∼ complement of the set S
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inf infimum; greatest lower bound
sup supremum; least upper bound
lim inf
n→∞

f(xn) limit inferior of f(xn);

lim inf
n→∞

f(xn) = sup
n

inf
k≥n

f(xk)

lim sup
n→∞

f(xn) limit superior of f(xn);

lim sup
n→∞

f(xn) = inf
n

sup
k≥n

f(xk)

min, max minimum, maximum
C0 continuous functions
Cr functions with r-continuous derivatives
C∞ infinitely differentiable functions
C[a, b] space of continuous functions
E expectation
a.e. almost everywhere
△ end of example

quod erat demonstrandum or end of proof





Preface

Dynamical system theory provides a paradigm for modeling and studying
phenomena that undergo spatial and temporal evolution. A dynamical
system consists of three elements—namely, a setting (called the state space)
in which the dynamical behavior takes place, such as a torus, topological
space, manifold, or locally compact metric space; a mathematical rule or
dynamic which specifies the evolution of the system over time; and an initial
condition or state from which the system starts at some initial time. Ever
since its inception, the basic questions concerning dynamical system theory
have involved qualitative solutions for the properties of a dynamical system;
questions such as: For a particular initial system state, does the dynamical
system have at least one solution? What are the asymptotic properties
of the system solutions? How are the system solutions dependent on the
system initial conditions? How are the system solutions dependent on the
form of the mathematical description of the dynamic of the system? How
do system solutions depend on system parameters? And how do system
solutions depend on the properties of the state space on which the system
is defined?

Even though qualitative properties of solutions to dynamical systems
were first pioneered by Henri Poincaré, mathematical dynamical system
theory can be traced back to Isaac Newton. Newton was the first to model
the motion of physical systems with differential equations. However, the
development of dynamical system theory is a natural outcome of a much
broader theme which is as old as science itself and can be traced back
to the great cosmic theorists of ancient Greece—namely, the universe is
in a constant state of flux (ta p�nta re�). Ancient Greek astronomers
and mathematicians such as Eudoxus, Ptolemy, and Archimedes were
the first to use abstract mathematical models and attach them to the
physical world. More importantly, using abstract thought and theoretical
calculations they were able to deduce something that is true about the
physical world. Newton’s greatest achievement, however, was the discovery
that the motion of the planets and moons of the solar system resulted from
a single fundamental source—the gravitational attraction of the heavenly
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bodies. As a consequence, Newtonian physics developed into the first field of
modern science—dynamical systems as a branch of mathematical physics—
wherein the circular, elliptical, and parabolic orbits of the heavenly bodies
of our solar system were no longer fundamental determinants of motion,
but rather approximations of the universal laws of the cosmos specified by
governing differential equations of motion.

In the past century, dynamical system theory quickly spread from the
study of astronomical bodies to modeling and studying numerous physical
phenomena occurring in nature involving changes over time, and it has
become one of the most important and fundamental fields of modern
science and engineering. The application of dynamical systems has crossed
interdisciplinary boundaries from chemistry to biochemistry to chemical
kinetics, from medicine to biology to population genetics, from economics
to sociology to psychology, and from physics to mechanics to engineering.
The increasingly complex nature of engineering systems requiring feedback
control to obtain a desired system behavior also gives rise to dynamical
systems. Feedback control theory involves the analysis and synthesis of a
feedback controller that manipulates system inputs to obtain a desired effect
on the output of the system in the face of system uncertainty and system
disturbances. Furthermore, since most physical and engineering systems are
inherently nonlinear, the resulting feedback dynamical system can exhibit a
very rich dynamical behavior.

One of the most important concepts in the study of dynamical system
theory and control theory is the concept of stability. Stability theory
concerns the behavior of the system trajectories of a dynamical system
when the system initial state is near an equilibrium state. Since exogenous
disturbances and system component uncertainty are always present in every
actual system, stability theory plays a central role in dynamical systems
and control. As in the study of dynamical system theory, the origins
of stability theory can be traced back to the study of idealizations of
astronomical problems involving persistent small oscillations (librations)
about a state of motion. One of the first modern treatments of stability
theory was given by Joseph-Louis Lagrange wherein he concluded that
for a conservative mechanical system an isolated minimum of the system
potential energy corresponds to a stable equilibrium system state. The most
complete stability analysis framework for dynamical systems was developed
by Aleksandr Lyapunov. Lyapunov’s method is based on construction of a
function of the system state coordinates that serves as a generalized norm
of the solution of the dynamical system. Its appeal comes from the fact
that conclusions about the behavior of the dynamical system can be drawn
without actually computing the system solution trajectories. As a result,
Lyapunov stability theory has become one of the cornerstones of systems
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and control theory.

Aleksandr Mikhailovich Lyapunov was born on the 6th of June, 1857
to the family of the prominent astronomer Mikhail Vasilyevich Lyapunov
in Yaroslavl, Russia. After completing the gymnasium (high school) in
Nizhny Novogorod where he was taught Greek, Latin, and basic science and
mathematics, in 1876 he entered the Physics and Mathematics Department
of Saint Petersburg University. Upon graduating from Saint Petersburg
University in 1880, he remained in the department of mechanics at the
university to prepare for his academic career which was greatly influenced
by Chebyshev. His master’s work concentrated on the problem of a
homogeneous, incompressible fluid mass held together by gravitational forces
of its particles and rotating about a fixed axis. Chebyshev posed the
question, Under what conditions will the motion of the fluid be stable and
what possible equilibrium forms can this stable rotating fluid take? This
famous question of the piriform body, which was of considerable importance
to cosmogony and had been studied by prominent mathematicians such
as Newton, MacLaurin, Jacobi, and Poincaré, was eventually settled by
Lyapunov in 1905.

After receiving his Master’s degree in applied mathematics in 1884
for his work On the Stability of Ellipsoidal Forms in the Equilibrium of a
Rotating Fluid, Lyapunov moved to Kharkov University as a Privatdozent
(private reader or lecturer) in mechanics where he continued his research
towards his doctoral thesis. In 1892 the Kharkov Mathematical Society
published Lyapunov’s seminal work on The General Problem of the Stability
of Motion which he defended as his doctoral thesis at Moscow State
University (Moskovskii Gosudarstvennii Universitet) later that year. His
paper “Sur le Problème General de la Stabilité du Mouvement” published
in the Annales de la Faculté des Sciences de l’Université de Toulouse in
1907 marks the beginning of modern stability theory in the West. In 1893
Lyapunov was appointed as a professor at Kharkov University and in 1902 he
returned to Saint Petersburg University as Chair of Applied Mathematics.
In 1900 he was elected as a corresponding member of the Russian Academy
of Sciences, and in 1901 as a full member of the Academy in the field of
applied mathematics.

Even though Lyapunov is predominantly known for his work on the
stability of equilibria and motion of mechanical systems with a finite number
of degrees of freedom in the dynamical systems and control community, his
scientific work includes fundamental contributions to stability of equilibrium
figures of rotating fluids; equilibrium figures of uniformly rotating fluids;
mathematical physics; probability theory; and theoretical mechanics. In all
these disciplines Lyapunov established a deep level of accuracy and rigor
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that resulted in fundamental and classical mathematical results. Lyapunov
tragically died on the 3rd of November, 1918 in Odessa, Russia (now
Ukraine) as a result of a voluntary act three days after the death of his
wife. His wish, which he had stated in an ante mortem note, was to be
buried with his wife.

The main objective of this book is to present and develop necessary
mathematical tools for stability analysis and control design of nonlinear
dynamical systems, with an emphasis on Lyapunov-based methods. This
book is intended to be useful to applied mathematicians, dynamical system
theorists, control theorists, and engineers. Since dynamical system theory
and Lyapunov stability theory lie at the heart of mathematical sciences
and engineering, researchers and graduate students in these fields who seek
a fundamental understanding of the rich behavior of nonlinear dynamical
systems and control will also find this textbook useful. The appropriate
background for this book is a first course in linear system theory and a first
course in advanced (multivariable) calculus.

After a brief introduction on dynamical systems in Chapter 1, a
systematic development of nonlinear ordinary differential equations is
given in Chapter 2. In Chapters 3 and 4, we present fundamental
stability theory as well as advanced stability theory for nonlinear dynamical
systems. Chapter 5 provides a treatment of classical dissipativity theory
and absolute stability theory. A detailed treatment of stability of feedback
interconnections, control Lyapunov functions, feedback linearization, zero
dynamics, and stability margins for nonlinear regulators is given in Chapter
6. Chapter 7 focuses on input-output stability and dissipativity theory.
In Chapter 8, we present the nonlinear optimal control problem, while
stability and optimality results for backstepping control problems are given
in Chapter 9. Chapters 10–12 provide novel extensions to disturbance
rejection and robust control of nonlinear dynamical systems. Finally,
Chapters 13 and 14 present discrete-time extensions of the aforementioned
topics.

The authors would like to thank Dennis S. Bernstein, Sanjay P. Bhat,
Tomohisa Hayakawa, V. Lakshmikantham, and Frank L. Lewis for their
constructive comments and feedback. In some parts of the book we have
relied on work we have done jointly with Chaouki T. Abdallah, Dennis
S. Bernstein, Sanjay P. Bhat, Jerry L. Fausz, Qing Hui, Vikram Kapila,
Alexander Leonessa, Sergey G. Nersesov, and David A. Wilson; it is a
pleasure to acknowledge their contributions. In addition, we thank Sanjay
P. Bhat, Tomohisa Hayakawa, Qing Hui, Vikram Kapila, and Sergey G.
Nersesov for graciously agreeing to read chapters of the book for clarity and
technical accuracy. We are also grateful to our students for their helpful
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comments, insightful suggestions, and corrections, all of which greatly
improved the exposition of the book.

The authors would also like to thank Paul Katinas for providing a
translation of Anaximander’s, Herakleitos’, and Archimedes’ statements qu-
oted in ancient Greek on page vii. In addition, we thank Paul for several
insightful and enlightening philosophical discussions on the ramifications
of these statements to cosmology, mathematics, science, and engineering.
Anaximander’s aphorism introduces for the first time the concepts of
beginning (arq n) and infinity (�peiron) which are central to the study
of cosmology and modern mathematics. A common misconception among
scholars has been that modern mathematicians and not ancient Greek
mathematicians were the first to be able to address notions of infinity in
a rigorous and precise manner. However, as has been recently discovered in
the Archimedes Palimpsest, Archimedes was the first to rigorously address
the science of infinity with infinitely large sets using precise mathematical
proofs in his work on The Method of Mechanical Theorems.

Heraklitos’ profound statements created the foundation for all physics
and metaphysics. His first statement marks the beginning of science and
postulates the big bang theory as the origin of the universe as well as the
heat death of the universe. He further postulates that the universe evolves
in accordance with its own laws which are the only unchangeable things
in the universe (i.e., universal conservation and nonconservation laws). His
second and third statements give the earliest perception of irreversibility of
nature and the universe along with time’s arrow. The idea that the universe
is in constant change (ta p�nta re�) and there is an underlying order to
this change—the Logos (Lìgo)—postulates the existence of entropy as a
physical property of matter permeating the whole of nature and the universe.
In addition, postulating that the fundamental uniform fact in nature is
constant change and everything both is and is not at the same time (e�mente ka� ouk e�men), as well as that energy is change and substance is change
(Màn oÝn fhsin eÙnai tä p�n diairetän �dia�reton, genhtän �gènhton, jnhtän�j�naton, lägon a�Àna, patèra u�än,. . . âst�n én p�nta eÙnai.), he arrives at a
precursor to the principle of relativity and the mass-energy equivalence.

Finally, Archimedes’ statement leads to the foundation of mathemat-
ical mechanics. His law of the lever—involving the earliest treatment of
a constrained mechanical system—associated with this statement led to
the idea of energy as the product of force and distance, to the concept
of the conservation of energy, and to the principle of virtual velocities.
In his treatise on The Method of Mechanical Theorems he established
the foundations of integral calculus using infinitesimals, as well as the
foundations of mathematical mechanics. In addition, in one of his problems
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he constructed the tangent at any given point for a spiral, establishing the
origins of differential calculus.

Among the greatest gifts of Greece to humankind and world civiliza-
tion are philosophy, mathematics, science, and engineering. Monumental
scholars in these disciplines inspired a deep love for creative work and an
unparalleled thirst for knowledge (gn¸sh). These modern minds in ancient
bodies stood out in bold relief as towering talents throughout the centuries,
paving the way for modern mathematics, science, and engineering. Consider,
for example, how intense Archimedes’ passion for study (melèth) must have
been. He was deeply immersed in his mathematics when he delivered his
legendary last words, Mh mou tou kÔklou t�ratte! (Do not disturb my
circles!), before being murdered by a Roman soldier. The golden age of
Greece, which set the standard for western civilization and whose glory
has transcended time itself, was superseded by the Roman imperialists
who brought nothing more than sterility to science and mathematics. The
derailment of the pursuit of abstract science and mathematics in favor of
practicality obfuscated scientific scholarship. This, along with religious
fundamentalism, plunged civilization into the dark ages. The intellectual
light (fw) that was gifted to the world by the ancient Greeks and provided
the pathway for unlocking the most intriguing mysteries of our world lay
idle for over one thousand years. It was not until the fall of Byzantium
to Ottoman tribes from Mongolia that caused Greek scholars to flee to
Florence, Venice, and Rome, sparking a revival in learning and humanism.
This renaissance or rebirth (anagènnhsh) led to the scientific revolution
which further led to the marvels of modern-day science and engineering.

Atlanta, Georgia, USA, October 2007, Wassim M. Haddad

Knoxville, Tennessee, USA, October 2007, VijaySekhar Chellaboina
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Chapter One

Introduction

A system is a combination of components or parts that is perceived as a
single entity. The parts making up the system may be clearly or vaguely
defined. These parts are related to each other through a particular set of
variables, called the states of the system, that completely determine the
behavior of the system at any given time. A dynamical system is a system
whose state changes with time. Specifically, the state of a dynamical system
can be regarded as an information storage or memory of past system events.
The set of (internal) states of a dynamical system must be sufficiently rich to
completely determine the behavior of the system for any future time. Hence,
the state of a dynamical system at a given time is uniquely determined by
the state of the system at the initial time and the present input to the
system. In other words, the state of a dynamical system in general depends
on both the present input to the system and the past history of the system.
Even though it is often assumed that the state of a dynamical system is
the least set of state variables needed to completely predict the effect of the
past upon the future of the system, this is often a convenient simplifying
assumption.

We regard a dynamical system G as a mathematical model structure
involving an input, state, and output that can capture the dynamical
description of a given class of physical systems. Specifically, at each moment
of time t ∈ T, where T denotes a time-ordered subset of the reals, the
dynamical system G receives an input u(t) (e.g., matter, energy, information)
and generates an output y(t). The values of the input are taken from
the fixed set U . Furthermore, over a time segment the input function
u : [t1, t2) → U is not arbitrary but belongs to the admissible input class U ,
that is, for every u(·) ∈ U and t ∈ T, u(t) ∈ U . The input class U depends
on the physical description of the system. In addition, each system output
y(t) belongs to the fixed set Y with y(·) ∈ Y over a given time segment,
where Y denotes an output space. In general, the output of G depends on
both the present input of G and the past history of G. Thus, the state,
and hence the output at some time t ∈ T, depends on both the initial state
x(t0) = x0 and the input segment u : [t0, t) → U . In other words, knowledge
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of both x0 and u ∈ U is necessary and sufficient to determine the present
and future state x(t) = s(t, t0, x0, u) of G.

In light of the above discussion, we view a dynamical system as a
precise mathematical object defined on a time set as a mapping between
vector spaces satisfying a set of axioms. A mathematical dynamical system
thus consists of the space of states D of the system together with a rule or
dynamic that determines the state of the system at a given future time from
a given present state. This is formalized by the following definition. For this
definition T = R for continuous-time systems and T = Z for discrete-time
systems.

Definition 1.1. A dynamical system G on D is the octuple (D,U , U,Y,
Y,T, s, h), where s : T × T × D × U → D and h : T × D × U → Y are such
that the following axioms hold:

i) (Continuity): For every t0 ∈ T, x0 ∈ D, and u ∈ U , s(·, t0, x0, u) is
continuous for all t ∈ T.

ii) (Consistency): For every x0 ∈ D, u ∈ U , and t0 ∈ T, s(t0, t0, x0, u) =
x0.

iii) (Determinism): For every t0 ∈ T and x0 ∈ D, s(t, t0, x0, u1) = s(t, t0,
x0, u2) for all t ∈ T and u1, u2 ∈ U satisfying u1(τ) = u2(τ), τ ∈ [t0, t].

iv) (Group property): s(t2, t0, x0, u) = s(t2, t1, s(t1, t0, x0, u), u) for all
t0, t1, t2 ∈ T, t0 ≤ t1 ≤ t2, x0 ∈ D, and u ∈ U .

v) (Read-out map): There exists y ∈ Y such that y(t) = h(t, s(t, t0, x0, u),
u(t)) for all x0 ∈ D, u ∈ U , t0 ∈ T, and t ∈ T.

We denote the dynamical system (D,U , U,Y, Y,T, s, h) by G and we
refer to the map s(·, t0, ·, u) as the flow or trajectory corresponding to x0 ∈ D,
t0 ∈ T, and u ∈ U ; and for a given trajectory s(t, t0, x0, u), t ∈ T, we refer
to t0 ∈ T as an initial time of G, x0 ∈ D as an initial condition of G, and
u ∈ U as an input to G. The dynamical system G is isolated if the input
space consists of one element only, that is, u(t) = u∗, and the dynamical
system is undisturbed if u∗ = 0. If G is isolated, then G is isolated from any
inputs and the environment is the only input acting on the system. This, for
example, would correspond to a conservative mechanical system wherein the
only external force acting on the system is gravity. In general, the output of
G depends on both the present input of G and the past history of G. Hence,
the output of the dynamical system at some time t ∈ T depends on the
state s(t, t0, x0, u) of G, which effectively serves as an information storage
(memory) of past history. Furthermore, the determinism axiom ensures that
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the state, and hence the output, before some time t ∈ T is not influenced by
the values of the output after time t. Thus, future inputs to G do not affect
past and present outputs of G. This is simply a statement of causality that
holds for all physical systems. The notion of a dynamical system as defined
in Definition 1.1 is far too general to develop useful practical deductions for
dynamical systems. This notion of a dynamical system is introduced here
to develop terminology and to introduce certain key concepts. As we will
see in the next chapter, under additional regularity conditions the flow of
a dynamical system describing the motion of the system as a function of
time can generate a differential equation on the state space, allowing for the
development of a large array of mathematical results leading to useful and
practical analysis and control synthesis tools.

Determining the rule or dynamic that defines the state of physical
and engineering systems at a given future time from a given present state
is one of the central problems of science and engineering. Once the flow
of a dynamical system describing the motion of the system starting from a
given initial state is given, dynamical system theory can be used to describe
the behavior of the system states over time for different initial conditions.
Throughout the centuries—from the great cosmic theorists of ancient Greece
to the present-day quest for a unified field theory—the most important
dynamical system is our universe. By using abstract mathematical models
and attaching them to the physical world, astronomers, mathematicians,
and physicists have used abstract thought to deduce something that is true
about the natural system of the cosmos.

The quest by scientists, such as Brahe, Kepler, Galileo, Newton,
Huygens, Euler, Lagrange, Laplace, and Maxwell, to understand the
regularities inherent in the distances of the planets from the sun and their
periods and velocities of revolution around the sun led to the science of
dynamical systems as a branch of mathematical physics. One of the most
basic issues in dynamical system theory that was spawned from the study
of mathematical models of our solar system is the stability of dynamical
systems. System stability involves the investigation of small deviations
from a system’s steady state of motion. In particular, a dynamical system
is stable if the system is allowed to perform persistent small oscillations
about a system equilibrium, or about a state of motion. Among the first
investigations of the stability of a given state of motion is by Isaac Newton.
In particular, in his Principia Mathematica [335] Newton investigated
whether a small perturbation would make a particle moving in a plane
around a center of attraction continue to move near the circle, or diverge
from it. Newton used his analysis to analyze the motion of the moon orbiting
the Earth.
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Numerous astronomers and mathematicians who followed made sig-
nificant contributions to dynamical stability theory in an effort to show
that the observed deviations of planets and satellites from fixed elliptical
orbits were in agreement with Newton’s principle of universal gravitation.
Notable contributions include the work of Torricelli [431], Euler [116],
Lagrange [252], Laplace [257], Dirichlet [106], Liouville [283], Maxwell [310],
and Routh [369]. The most complete contribution to the stability analysis
of dynamical systems was introduced in the late nineteenth century by the
Russian mathematician Aleksandr Mikhailovich Lyapunov in his seminal
work entitled The General Problem of the Stability of Motion [293–295].
Lyapunov’s direct method states that if a positive-definite function (now
called a Lyapunov function) of the state coordinates of a dynamical system
can be constructed for which its time rate of change following small
perturbations from the system equilibrium is always negative or zero, then
the system equilibrium state is stable. In other words, Lyapunov’s method is
based on the construction of a Lyapunov function that serves as a generalized
norm of the solution of a dynamical system. Its appeal comes from the fact
that stability properties of the system solutions are derived directly from the
governing dynamical system equations; hence the name, Lyapunov’s direct
method.

Dynamical system theory grew out of the desire to analyze the
mechanics of heavenly bodies and has become one of the most fundamental
fields of modern science as it provides the foundation for unlocking many
of the mysteries in nature and the universe that involve the evolution
of time. Dynamical system theory is used to study ecological systems,
geological systems, biological systems, economic systems, neural systems,
and physical systems (e.g., mechanics, thermodynamics, fluids, magnetic
fields, galaxies, etc.), to cite but a few examples. Dynamical system theory
has also played a crucial role in the analysis and control design of numerous
complex engineering systems. In particular, advances in feedback control
theory have been intricately coupled to progress in dynamical system theory,
and conversely, dynamical system theory has been greatly advanced by the
numerous challenges posed in the analysis and control design of increasingly
complex feedback control systems.

Since most physical and engineering systems are inherently nonlin-
ear, with system nonlinearities arising from numerous sources including,
for example, friction (e.g., Coulomb, hysteresis), gyroscopic effects (e.g.,
rotational motion), kinematic effects (e.g., backlash), input constraints (e.g.,
saturation, deadband), and geometric constraints, system nonlinearities
must be accounted for in system analysis and control design. Nonlinear
systems, however, can exhibit a very rich dynamical behavior, such as
multiple equilibria, limit cycles, bifurcations, jump resonance phenomena,
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and chaos, which can make general nonlinear system analysis and control
notoriously difficult. Lyapunov’s results provide a powerful framework
for analyzing the stability of nonlinear dynamical systems. Lyapunov-
based methods have also been used by control system designers to obtain
stabilizing feedback controllers for nonlinear systems. In particular, for
smooth feedback, Lyapunov-based methods were inspired by Jurdjevic and
Quinn [224], who give sufficient conditions for smooth stabilization based
on the ability to construct a Lyapunov function for the closed-loop system.
More recently, Artstein [13] introduced the notion of a control Lyapunov
function whose existence guarantees a feedback control law which globally
stabilizes a nonlinear dynamical system. Even though for certain classes of
nonlinear dynamical systems a universal construction of a feedback stabilizer
can be obtained using control Lyapunov functions [13, 406], there does not
exist a unified procedure for finding a Lyapunov function that will stabilize
the closed-loop system for general nonlinear systems. In light of this,
advances in Lyapunov-based methods have been developed for analysis and
control design for numerous classes of nonlinear dynamical systems. As a
consequence, Lyapunov’s direct method has become one of the cornerstones
of systems and control theory.

The main objective of this book is to present necessary mathematical
tools for stability analysis and control design of nonlinear systems, with an
emphasis on Lyapunov-based methods. The main contents of the book are
as follows. In Chapter 2, we provide a systematic development of nonlinear
ordinary differential equations, which is central to the study of nonlinear
dynamical system theory. Specifically, we develop qualitative solutions prop-
erties, existence of solutions, uniqueness of solutions, continuity of solutions,
and continuous dependence of solutions on system initial conditions for
nonlinear dynamical systems.

In Chapter 3, we develop stability theory for nonlinear dynamical
systems. Specifically, Lyapunov stability theorems are developed for
time-invariant nonlinear dynamical systems. Furthermore, invariant set
stability theorems, converse Lyapunov theorems, and Lyapunov instability
theorems are also considered. Finally, we present several systematic
approaches for constructing Lyapunov functions as well as stability of linear
systems and Lyapunov’s linearization method. Chapter 4 provides an
advanced treatment of stability theory including partial stability, stability
theory for time-varying systems, Lagrange stability, boundedness, ultimate
boundedness, input-to-state stability, finite-time stability, semistability, and
stability theorems via vector Lyapunov functions. In addition, Lyapunov
and asymptotic stability of sets as well as stability of periodic orbits are also
systematically addressed. In particular, local and global stability theorems
are given using lower semicontinuous Lyapunov functions. Furthermore,
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generalized invariant set theorems are derived wherein system trajectories
converge to a union of largest invariant sets contained on the boundary of
the intersections over finite intervals of the closure of generalized Lyapunov
level surfaces. These results provide transparent generalizations to standard
Lyapunov and invariant set theorems.

In Chapter 5, using generalized notions of system energy storage and
external energy supply, we present a systematic treatment of dissipativity
theory [456]. Dissipativity theory provides a fundamental framework
for the analysis and design of nonlinear dynamical systems using an
input, state, and output system description based on system-energy-related
considerations. As a direct application of dissipativity theory, absolute
stability theory involving the stability of a feedback system whose forward
path contains a dynamic linear time-invariant system and whose feedback
path contains a memoryless (possibly time-varying) nonlinearity is also
addressed. The Aizerman conjecture and the Luré problem, as well as the
circle and Popov criteria, are extensively developed.

Using the concepts of dissipativity theory, in Chapter 6 we present
feedback interconnection stability results for nonlinear dynamical systems.
General stability criteria are given for Lyapunov, asymptotic, and exponen-
tial stability of feedback dynamical systems. Using quadratic supply rates
corresponding to net system power and weighted input-output energy, we
specialize these results to the classical positivity and small gain theorems.
In addition, notions of a control Lyapunov function, feedback linearization,
zero dynamics, minimum-phase systems, and stability margins for nonlinear
feedback systems are also introduced. Finally, to address optimality issues
within nonlinear control-system design we consider an optimal control
problem in which a performance function is minimized over all possible
closed-loop system trajectories. The value of the performance function is
given by a solution to the Hamilton-Jacobi-Bellman equation. In Chapter
7, we provide a brief treatment of input-output stability and dissipativity
theory. In particular, we introduce input-output system models as well as Lp

stability. In addition, we develop connections between dissipativity theory
of input, state, and output systems, and input-output dissipativity theory.

In Chapter 8, we develop a unified framework to address the problem of
optimal nonlinear analysis and feedback control. Asymptotic stability of the
closed-loop nonlinear system is guaranteed by means of a Lyapunov function
which can clearly be seen to be the solution to the steady-state form of the
Hamilton-Jacobi-Bellman equation, and hence guarantees both stability and
optimality. The overall framework provides the foundation for extending
linear-quadratic controller synthesis to nonlinear-nonquadratic problems.
Guaranteed stability margins for nonlinear optimal and inverse optimal
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regulators that minimize a nonlinear-nonquadratic performance criterion
are also established. Using the optimal control framework of Chapter 8,
in Chapter 9, we give a unification between nonlinear-nonquadratic optimal
control and backstepping control. Backstepping control has received a great
deal of attention in the nonlinear control literature [247,395]. The popularity
of this control methodology is due in large part to the fact that it provides a
systematic procedure for finding a Lyapunov function for nonlinear closed-
loop cascade systems.

In Chapter 10, we develop an optimality-based framework to address
the problem of nonlinear-nonquadratic control for disturbance rejection of
nonlinear systems with bounded exogenous disturbances. Specifically, using
dissipativity theory with appropriate storage functions and supply rates
we transform the nonlinear disturbance rejection problem into an optimal
control problem by modifying a nonlinear-nonquadratic cost functional to
account for the exogenous disturbances. As a consequence, the resulting
solution to the modified optimal control problem guarantees disturbance
rejection for nonlinear systems with bounded input disturbances. Fur-
thermore, it is shown that the Lyapunov function guaranteeing closed-loop
stability is a solution to the steady-state Hamilton-Jacobi-Isaacs equation
for the controlled system. The overall framework generalizes the Hamilton-
Jacobi-Bellman conditions developed in Chapter 8 to address the design of
optimal controllers for nonlinear systems with exogenous disturbances.

In Chapter 11, we concentrate on developing a unified framework
to address the problem of optimal nonlinear robust control. As in the
disturbance rejection problem, we transform the given robust control
problem into an optimal control problem by properly modifying the cost
functional to account for the system uncertainty. As a consequence, the
resulting solution to the modified optimal control problem guarantees robust
stability and performance for a class of nonlinear uncertain systems. In
Chapter 12, we extend the framework developed in Chapter 11 to nonlinear
systems with nonlinear time-invariant real parameter uncertainty. Robust
stability of the closed-loop nonlinear system is guaranteed by means of a
parameter-dependent Lyapunov function composed of a fixed (parameter-
independent) and variable (parameter-dependent) part. The fixed part
of the Lyapunov function can be seen to be the solution to the steady-
state Hamilton-Jacobi-Bellman equation for the nominal system. Finally,
in Chapters 13 and 14 we give a condensed presentation of the continuous-
time analysis and control synthesis results developed in Chapters 2–12 for
discrete-time systems.
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Chapter Two

Dynamical Systems and Differential

Equations

2.1 Introduction

In this chapter, we provide a thorough treatment of some of the basic
results in nonlinear differential equations. The study of differential equations
in dynamical systems and control is of the highest importance since
differential equations arise in nearly all disciplines of science, engineering,
medicine, economics, biocenology, and demography. In as much as
differential equations are central to these fields, their study has additionally
led to the development of entire fields of abstract mathematics. In
particular, algebraic topology and group theory were developed to solve
problems in dynamical system theory, which was originally a branch of
differential equations. Fourier analysis was developed for analyzing the
heat equation, while topology and set theory were essential developments
for the study of convergence problems for differential equations. And of
course most recently control theory, whose strength has been its effective
use of differential equations, has significantly contributed to the theory
of differential equations. The study of differential equations is usually
divided into two parts; qualitative theory and quantitative theory. In
this chapter, we will focus almost exclusively on qualitative analysis of
differential equations. The notions of openness, convergence, continuity,
and compactness that we will use throughout this book will refer to the
topology generated on the n-dimensional Euclidean space Rn by the vector
norm ‖ · ‖.

As discussed in Chapter 1, a nonlinear dynamical system consists of a
set of possible states such that the knowledge of these states at some time
t = t0, together with the knowledge of an external input to the system for
t ≥ t0, completely determines the behavior of the dynamical system at any
time t ≥ t0. Hence, a dynamical system can generate a differential equation
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of the form

ẋ(t) = F (t, x(t), u(t)), x(t0) = x0, t ∈ [t0, t1], (2.1)

where x(t) ∈ D, t ∈ [t0, t1], is the state of the dynamical system, D is an
open subset of Rn with 0 ∈ D, u(t) ∈ U ⊆ Rm, t ∈ [t0, t1], is the input
or control signal to the system, and F : [t0, t1] × D × U → Rn is piecewise
continuous in t and continuous in x and u on [t0, t1] × D × U . The input
or control u is assumed to be a piecewise continuous function of time with
values in U , that is, u : [t0, t1] → U . Here, the time index t runs over the
set R+ = [0,∞), or sometimes the set R = (−∞,∞) of all reals. Even
though for physical dynamical systems t ∈ R+, on some occasions involving
the mathematical analysis of differential equations it becomes necessary to
assume that t ∈ R. In studying dynamical systems of the form (2.1), we can
distinguish between system analysis and system synthesis. Specifically, in
analyzing (2.1) we evaluate the behavior of the system for a specified fixed
input or control signal. Alternatively, synthesis refers to a design procedure
which yields a control input that achieves a desired behavior of the system
state. In this book we consider both the analysis and control synthesis
problems for nonlinear dynamical systems.

In the remainder of this section we provide several classifications of
(2.1) along with some definitions used throughout the book. First, we
refer to (2.1) as a nonlinear disturbed or controlled time-varying dynamical
system. Alternatively, in the case where u(t) ≡ 0, we let f(t, x) = F (t, x, 0)
so that (2.1) becomes

ẋ(t) = f(t, x(t)), x(t0) = x0, t ∈ [t0, t1], (2.2)

where f : [t0, t1] ×D → Rn is piecewise continuous in t and continuous in x
on [t0, t1] × D. In this case, we refer to (2.2) as a nonlinear undisturbed or
uncontrolled time-varying dynamical system. Note that if the input u(·) is
a priori uniquely specified, then defining f(t, x) = F (t, x, u(t)), (2.1) can be
written as (2.2). Hence, in this case, the distinction between a disturbed and
undisturbed system is not precise since an undisturbed system can describe
the case where u(t) ≡ 0 or the case when u(t) is specified over [t0, t1]. Note
that if u : [t0, t1] → U is piecewise continuous, then f(t, x) = F (t, x, u(t))
is also piecewise continuous in t over [t0, t1] for all x ∈ D. The following
definitions provide several classifications of the nonlinear dynamical system
(2.2). Analogous classifications also hold for (2.1).

Definition 2.1. Consider the nonlinear dynamical system (2.2). If
f(t, x) = f(t0, x) for all (t, x) ∈ [t0, t1] × D, then (2.2) is called a time-
invariant or autonomous dynamical system.

Definition 2.2. Consider the nonlinear dynamical system (2.2) with
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f : [t0,∞) × D → Rn. If there exists T > 0 such that f(t, x) = f(t+ T, x)
for all (t, x) ∈ [t0,∞)×D, then (2.2) is called a periodic dynamical system.
Furthermore, the minimum time T > 0 for which f(t, x) = f(t + T, x) is
called the period.

Definition 2.3. Consider the dynamical system (2.2) with D = Rn.
If f(t, x) = A(t)x, where A : [t0, t1] → Rn×n is piecewise continuous on
[t0, t1] and x ∈ Rn, then (2.2) is called a linear time-varying dynamical
system. If, alternatively, for all t ∈ [t0,∞) there exists T > 0 such that
A(t) = A(t + T ), then (2.2) is called a linear periodic dynamical system.
Finally, if f(t, x) = Ax, where A ∈ Rn×n and x ∈ Rn, then (2.2) is called a
linear autonomous dynamical system.

Next, we introduce the concept of an equilibrium point of a nonlinear
dynamical system.

Definition 2.4. Consider the nonlinear dynamical system (2.2) with
f : [t0,∞) × D → Rn. A point xe ∈ D is said to be an equilibrium point of
(2.2) at time te ∈ [t0,∞) if f(t, xe) = 0 for all t ≥ te.

Note that in the case of autonomous systems and periodic systems,
xe ∈ Rn is an equilibrium point at time te if and only if xe is an equilibrium
point at all times. Furthermore, if xe is an equilibrium point at time te, then
defining τ

△
= t− te and τ0

△
= t0 − te yields

ẋ(τ + te) = f(τ + te, x(τ + te)), x(τ0 + te) = x0, τ ∈ [τ0,∞), (2.3)

where ẋ(·) denotes differentiation with respect to τ , and hence xe is an
equilibrium point of (2.3) at τ = 0 since f(τ + te, xe) = 0 for all τ ≥ 0.
Hence, we assume without loss of generality that te = 0. Furthermore,
if f(·, ·) has at least one equilibrium point xe ∈ Rn then, without loss of
generality, we can assume that xe = 0 so that f(t, 0) = 0, t ≥ 0. To see this,

define xs
△
= x− xe and note that

ẋs(t) = ẋ(t) = f(t, x(t)) = f(t, xs(t) + xe)
△
= fs(t, xs(t)),

xs(t0) = x0 − xe, t ∈ [t0,∞). (2.4)

Now, the claim follows by noting that fs(t, 0) = f(t, xe) = 0, t ≥ t0. Similar
observations hold for the forced dynamical system (2.1) by noting that a
point xe ∈ Rn is an equilibrium point of (2.1) if and only if there exists
ue ∈ Rm such that F (t, xe, ue) = 0 for all t ≥ 0. Finally, we note that if
xe ∈ Rn is an equilibrium point of (2.2) and x(t0) = xe, then x(t) = xe,
t ≥ t0, is a solution (see Section 2.7) to (2.2).

Example 2.1. Consider the nonlinear dynamical system describing the
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motion of a simple pendulum with viscous damping given by

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (2.5)

ẋ2(t) = −cx2(t) − g
l sinx1(t), x2(0) = x20, (2.6)

where c > 0 is the viscous damping coefficient, g is the acceleration
due to gravity, and l is the length of the pendulum. Note that (2.5)
and (2.6) have the form of (2.2) with f(t, x) = f(x). Even though the
physical pendulum has two equilibrium points, namely, (0, 0) and (π, 0), the
mathematical model of the pendulum given by (2.5) and (2.6) has countably
infinitely many equilibrium points in R2 given by f(xe) = 0. In particular,
(x1e, x2e) = (nπ, 0), n = 0,±1,±2, . . .. △

Example 2.2. There are dynamical systems that have no equilibrium
points. In particular, consider the system

ẋ1(t) = α+ sin[x1(t) + x2(t)] + x1(t), x1(0) = x10, t ≥ 0, (2.7)

ẋ2(t) = α+ sin[x1(t) + x2(t)] − x1(t), x2(0) = x20, (2.8)

where α > 1. For this system there does not exist an xe = [x1e x2e]
T such

that f(xe) = 0. Hence, (2.7) and (2.8) does not possess any equilibrium
points in R2. △

As seen in Examples 2.1 and 2.2, the nonlinear algebraic equation
f(x) = 0 may have multiple solutions or no solutions. However, f(x) = 0
can also have a continuum of solutions. To see this, let f(x) = Ax, whereA ∈
Rn×n, which corresponds to the dynamics of a linear autonomous system.
Now, Ax = 0 has a unique solution xe = 0 if and only if det A 6= 0. However,
if det A = 0, then xe ∈ N (A)

△
= {x ∈ Rn : Ax = 0}, which corresponds

to a continuum of equilibria in Rn. This observation leads to the following
definition. For this definition we define the open ball Bε(xe)

△
= {x ∈ Rn :

‖x− xe‖ < ε}, where ‖ · ‖ denotes a vector norm in Rn (see Section 2.2).

Definition 2.5. An equilibrium point xe ∈ Rn of (2.2) is said to be an
isolated equilibrium point if there exists ε > 0 such that Bε(xe) contains no
equilibrium points other than xe.

The following proposition provides sufficient conditions for the exis-
tence of isolated equilibria of the dynamical system (2.2). For this result we
assume that f : [t0, t1] × D → Rn is continuously differentiable on D (see
Section 2.3) and we use the notions of vector norms as defined in Section
2.2.

Proposition 2.1. Consider the nonlinear dynamical system (2.2).
Assume f(t, ·) : D → Rn is continuously differentiable on D for every
t ∈ [t0, t1], f(t, xe) = 0, t ∈ [t0, t1], where xe ∈ Rn, and f(·, x) : [t0, t1] → Rn
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is piecewise continuous on [t0, t1] for every x ∈ D. If for every t ∈ [t0, t1],

A(t)
△
=
∂f

∂x
(t, x)

∣

∣

∣

∣

x=xe

(2.9)

is nonsingular, then xe is an isolated equilibrium point.

Proof. Let t ∈ [t0, t1]. Since det A(t) 6= 0, there exists ε > 0 such
that ‖A(t)x‖ ≥ ε‖x‖, x ∈ D (see Problem 2.1). Next, expanding f(t, x) via
a Taylor series expansion about the equilibrium point x = xe and using the
fact that f(t, xe) = 0 yields1

f(t, x) = f(t, xe) +
∂f

∂x
(t, xe)(x− xe) + O(t, x)

= A(t)(x− xe) + O(t, x). (2.10)

Now, since ∂f
∂x(t, x) is continuous on D it follows that lim‖x−xe‖→0

‖O(t,x)‖
‖x−xe‖ =

0. Hence, for every ε̂ > 0 there exists δ > 0 such that

‖O(t, x)‖ ≤ ε̂‖x− xe‖, ‖x− xe‖ < δ. (2.11)

Setting ε̂ = ε/2, using (2.11), and using the fact that ‖A(t)x‖ ≥ ε‖x‖,
x ∈ D, it follows that

‖f(t, x)‖ = ‖A(t)(x − xe) + O(t, x)‖
≥ ‖A(t)(x − xe)‖ − ‖O(t, x)‖
≥ ε

2‖x− xe‖, ‖x− xe‖ < δ, (2.12)

which implies that ‖f(t, x)‖ > 0 for all x ∈ Bδ(xe), x 6= xe.

Example 2.3. Consider the nonlinear dynamical system

ẋ1(t) = −x1(t) + 2x1(t)x2(t), x1(0) = x10, t ≥ 0, (2.13)

ẋ2(t) = −2x1(t)x2(t), x2(0) = x20. (2.14)

Note that with x = [x1, x2]
T, f(x) = 0 implies that xe = [x1e x2e]

T =
[0 x2e]

T, where x2e ∈ R, which shows that every point on the x2 axis is an
equilibrium point of (2.13) and (2.14). △

In the remainder of this chapter we address the problems of existence
and uniqueness of solutions to the nonlinear dynamical system (2.2) along
with continuous dependence of solutions on the system initial conditions
and system parameters. First, however, we review some basic definitions
and results on vector and matrix norms, topology and analysis, and vector
and Banach spaces.

1O(t, x) denotes the Landau order , which means that ‖O(t, x)‖/‖x − xe‖ is bounded as ‖x −
xe‖ → 0.
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2.2 Vector and Matrix Norms

In this section the concepts of vector and matrix norms are introduced.
Given a number α ∈ R, the absolute value |α| of α denotes the magnitude
of α while discarding the sign of α. For x ∈ Rn and A ∈ Rn×m we can
extend the definition of absolute value by replacing each component of x
and each entry of A by its absolute value, that is, by defining |x| ∈ Rn and
|A| ∈ Rn×m by

|x|(i) △
= |x(i)|, |A|(i,j) △

= |A(i,j)|
for all i = 1, . . . , n and j = 1, . . . ,m. For many applications it is more useful
to have a scalar measure of the magnitude of x or A. Vector and matrix
norms provide such measures.

Definition 2.6. A vector norm ‖ · ‖ on Rn is a function ‖ · ‖ : Rn → R

that satisfies the following axioms:

i) ‖x‖ ≥ 0, x ∈ Rn.

ii) ‖x‖ = 0 if and only if x = 0.

iii) ‖αx‖ = |α|‖x‖, α ∈ R, x ∈ Rn.

iv) ‖x+ y‖ ≤ ‖x‖ + ‖y‖, x, y ∈ Rn.

Condition iv) is known as the triangle inequality. It is important to
note that if there exists α ≥ 0 such that x = αy or y = αx, then iv) holds
as an equality. There are many different norms. The most useful class of
vector norms are the p-norms (also called Hölder norms).

Proposition 2.2. For 1 ≤ p ≤ ∞, ‖ · ‖p defined by

‖x‖p
△
=

[

n
∑

i=1

|x(i)|p
]1/p

, 1 ≤ p <∞,

‖x‖∞ △
= max

i=1,...,n
|x(i)|,

is a vector norm on Rn.

Proof. The only difficulty is in proving the triangle inequality, which
in this case is known as Minkowski’s inequality. If ‖x + y‖p = 0, then
obviously ‖x + y‖p ≤ ‖x‖p + ‖y‖p since ‖x‖p and ‖y‖p are nonnegative for
1 ≤ p ≤ ∞. Suppose ‖x + y‖p > 0. The cases p = 1 and p = ∞ are
immediate. Hence, assume 1 < p <∞ and note that

n
∑

i=1

|x(i) + y(i)|p ≤
n
∑

i=1

|x(i) + y(i)|p−1|x(i)| +
n
∑

i=1

|x(i) + y(i)|p−1|y(i)|. (2.15)
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Now, letting q = p/(p − 1) and applying Hölder’s inequality (2.18) to each
of the summations on the right-hand side of (2.15) yields

n
∑

i=1

|x(i) + y(i)|p

≤
(

n
∑

i=1

|x(i) + y(i)|(p−1)q

)1/q




(

n
∑

i=1

|x(i)|p
)1/p

+

(

n
∑

i=1

|y(i)|p
)1/p





=

(

n
∑

i=1

|x(i) + y(i)|p
)1/q





(

n
∑

i=1

|x(i)|p
)1/p

+

(

n
∑

i=1

|y(i)|p
)1/p



 . (2.16)

Next, dividing both sides of (2.16) by
(
∑n

i=1 |x(i) + y(i)|p
)1/q

and using the
fact that 1 − 1/q = 1/p we obtain

(

n
∑

i=1

|x(i) + y(i)|p
)1/p

≤
(

n
∑

i=1

|x(i)|p
)1/p

+

(

n
∑

i=1

|y(i)|p
)1/p

, (2.17)

which proves the result.

The notation ‖ · ‖p does not explicitly refer to the dimension of Rn to
which it is applied. We assume this is implied by context. In the case where
p = 1,

‖x‖1 =

n
∑

i=1

|x(i)|

is called the absolute sum norm; the case p = 2,

‖x‖2 =

[

n
∑

i=1

x2
(i)

]1/2

= (xTx)1/2

is called the Euclidean norm; and the case p = ∞,

‖x‖∞ = max
i=1,...,n

|x(i)|

is called the infinity norm.

The next result is known as Hölder’s inequality. For this result (and
henceforth) we interpret 1/∞ = 0.

Proposition 2.3. Let x, y ∈ Rn, and let 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞
satisfy 1/p + 1/q = 1. Then

|xTy| ≤ ‖x‖p‖y‖q. (2.18)

Proof. The cases p = 1,∞ and q = ∞, 1 are straightforward and are
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left as an exercise for the reader. Assume 1 < p < ∞ so that 1 < q < ∞.
For u ≥ 0, v ≥ 0, and α ∈ (0, 1) note that

uαv(1−α) ≤ αu+ (1 − α)v, (2.19)

with equality holding in (2.19) if and only if u = v. To see this, let f : R+ →
R be defined by f(z)

△
= zα −αz+α− 1 and note that f ′(z) = α(z(α−1) − 1).

Since α ∈ (0, 1) it follows that f ′(z) > 0 for all z ∈ (0, 1) and f ′(z) < 0 for
all z > 1. Now, it follows that for z ≥ 0, f(z) ≤ f(1) = 0 with equality
holding for z = 1. Hence, zα ≤ αz + 1 − α with equality holding for z = 1.
Taking z = u/v, v 6= 0, yields (2.19), while for v = 0 (2.19) is trivially
satisfied.

Now, for each i ∈ {1, . . . , n}, α = 1/p, and 1 − α = 1/q, on setting

u =

( |x(i)|
‖x‖p

)p

, v =

( |y(i)|
‖y‖q

)q

, (2.20)

(2.19) yields
|x(i)y(i)|
‖x‖p‖y‖q

≤ 1

p

( |x(i)|
‖x‖p

)p

+
1

q

( |y(i)|
‖y‖q

)q

. (2.21)

Summing over [1, n] yields

1

‖x‖p‖y‖q

n
∑

i=1

|x(i)y(i)| ≤
1

p
+

1

q
= 1, (2.22)

which proves (2.18).

The case p = q = 2 is known as the Cauchy-Schwarz inequality. Since
this result is important, we state it as a corollary.

Corollary 2.1. Let x, y ∈ Rn. Then

|xTy| ≤ ‖x‖2‖y‖2. (2.23)

Proof. Note that for x = 0 or y = 0 the inequality is immediate. Next,
note that for λ ∈ R,

(x− λy)T(x− λy) = xTx− 2λxTy + λ2yTy

= ‖x‖2
2 − 2λxTy + λ2‖y‖2

2

≥ 0, x, y ∈ Rn. (2.24)

Now, taking λ = xTy/‖y‖2
2 yields the result.

Two norms ‖ · ‖ and ‖ · ‖′ on Rn are equivalent if there exist positive
constants α, β such that

α‖x‖ ≤ ‖x‖′ ≤ β‖x‖, (2.25)
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for all x ∈ Rn. Note that (2.25) can be written as

1

β
‖x‖′ ≤ ‖x‖ ≤ 1

α
‖x‖′.

Hence, the word “equivalent” is justified. The next result shows that all
norms are equivalent in finite-dimensional spaces.

Theorem 2.1. If ‖ · ‖ and ‖ · ‖′ are vector norms on Rn, then ‖ · ‖ and
‖ · ‖′ are equivalent.

Proof. Let x, y ∈ Rn and note that

‖x− y‖ =

∥

∥

∥

∥

∥

n
∑

i=1

(xi − yi)ei

∥

∥

∥

∥

∥

≤
n
∑

i=1

|xi − yi|‖ei‖

≤ C‖x− y‖∞,
where C

△
= maxi=1,...,n ‖ei‖. Similarly, it can be shown that ‖x − y‖′ ≤

C ′‖x − y‖∞, where C ′ △
= maxi=1,...,n ‖ei‖′. Hence, it follows that ‖ · ‖ and

‖ · ‖′ are continuous on Rn with respect to ‖ · ‖∞.

Next, since {x ∈ Rn : ‖x‖∞ = 1} is a compact set (see Definition 2.14)
it follows from Weierstrass’ theorem (Theorem 2.13) that there exists α, β >
0 such that α = min{x∈Rn:‖x‖∞=1} ‖x‖ and β = max{x∈Rn:‖x‖∞=1} ‖x‖. Now
it follows that

α = min
{x∈Rn:‖x‖∞=1}

‖x‖ = min
{x∈Rn:‖x‖∞ 6=0}

‖x‖
‖x‖∞

≤ ‖x‖
‖x‖∞

, x 6= 0, (2.26)

and

β = max
{x∈Rn:‖x‖∞=1}

‖x‖ = max
{x∈Rn:‖x‖∞ 6=0}

‖x‖
‖x‖∞

≥ ‖x‖
‖x‖∞

, x 6= 0, (2.27)

which implies that

α‖x‖∞ ≤ ‖x‖ ≤ β‖x‖∞, x ∈ Rn. (2.28)

Similarly, it can be shown that

α′‖x‖∞ ≤ ‖x‖′ ≤ β′‖x‖∞, x ∈ Rn, (2.29)

where α′ = min{x∈Rn:‖x‖∞=1} ‖x‖′ and β′ = max{x∈Rn:‖x‖∞=1} ‖x‖′. Now it
follows from (2.28) and (2.29) that

α

β′
‖x‖′ ≤ ‖x‖ ≤ β

α′ ‖x‖
′, x ∈ Rn, (2.30)

which proves the equivalence of ‖ · ‖ and ‖ · ‖′.
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The notion of vector norms allows us to define a matrix norm by
viewing a matrix A ∈ Rn×m as a vector in Rnm, for example, as vec A,
where vec(·) denotes the column stacking operator.

Definition 2.7. A matrix norm ‖ · ‖ on Rn×m is a function ‖ · ‖ :
Rn×m → R that satisfies the following axioms:

i) ‖A‖ ≥ 0, A ∈ Rn×m.

ii) ‖A‖ = 0 if and only if A = 0.

iii) ‖αA‖ = |α|‖A‖, α ∈ R.

iv) ‖A+B‖ ≤ ‖A‖ + ‖B‖, A,B ∈ Rn×m.

If ‖ · ‖ is a vector norm on Rnm, then ‖ · ‖′ defined by ‖A‖′ = ‖vec A‖
is a matrix norm on Rn×m. For example, the p-norms can be extended to
matrices in this way. Hence, for A ∈ Rn×m define

‖A‖p
△
=





n
∑

i=1

m
∑

j=1

|A(i,j)|p




1/p

, 1 ≤ p <∞,

‖A‖∞ △
= max

i=1,...,n,j=1,...,m
|A(i,j)|.

Note that we use the same symbol ‖ · ‖p to denote the p-norm for both
vectors and matrices. This notation is consistent since if A ∈ Rn×1, then
‖A‖p coincides with the vector p-norm. Furthermore, if A ∈ Rn×m, then

‖A‖p = ‖vec A‖p. (2.31)

The matrix p-norms in the cases p = 1, 2,∞ are the most commonly
used. In particular, when p = 2 we write ‖A‖F

△
= ‖A‖2, where ‖·‖F is called

the Frobenius norm. Since ‖A‖2 = ‖vec A‖2, we have

‖A‖F = ‖A‖2 = ‖vec A‖2 = ‖vec A‖F. (2.32)

It is easy to see that ‖A‖F = (tr AAT)1/2 for all A ∈ Rn×m.

Let ‖ · ‖, ‖ · ‖′, and ‖ · ‖′′ denote matrix norms on Rn×l, Rn×m, and
Rm×l, respectively. We say (‖ · ‖, ‖ · ‖′, ‖ · ‖′′) is a submultiplicative triple of
matrix norms with constant δ > 0 if

‖AB‖ ≤ δ‖A‖′‖B‖′′, (2.33)

for all A ∈ Rn×m and B ∈ Rm×l. If δ = 1, then we may omit the phrase
“with constant 1.” If ‖ · ‖ is a norm on Rn×n and

‖AB‖ ≤ ‖A‖‖B‖, (2.34)
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for all A,B ∈ Rn×n, then we say that ‖ · ‖ is submultiplicative. That is,
a matrix norm ‖ · ‖ on Rn×n is submultiplicative if (‖ · ‖, ‖ · ‖, ‖ · ‖) is a
submultiplicative triple of matrix norms with constant 1. We see in (2.34)
with n = 2, for example, that ‖ · ‖p, 1 ≤ p ≤ 2, is submultiplicative. If a
submultiplicative matrix norm ‖ · ‖ on Rn×n satisfies ‖In‖ = 1, then we say
‖ · ‖ is normalized .

A special case of submultiplicative triples is the case in which B is a
vector, that is, l = 1. Hence, for A ∈ Rn×m and x ∈ Rm consider (setting
δ = 1)

‖Ax‖ ≤ ‖A‖′‖x‖′′, (2.35)

where ‖ · ‖, ‖ · ‖′, and ‖ · ‖′′ are norms on Rn, Rn×m, and Rm, respectively.
If n = m and ‖ · ‖ = ‖ · ‖′′, that is,

‖Ax‖ ≤ ‖A‖′‖x‖,

then we say that ‖ · ‖ and ‖ · ‖′ are compatible.

We now consider a very special class of matrix norms, namely, the
induced matrix norms wherein (2.35) holds as an equality.

Definition 2.8. Let ‖ · ‖ and ‖ · ‖′ be vector norms on Rm and Rn,
respectively. Then the function ‖ · ‖′′ : Rn×m → R defined by

‖A‖′′ = max
{x∈Rm: x6=0}

‖Ax‖′
‖x‖ (2.36)

is called an induced matrix norm.

It can be shown that (2.36) is equivalent to each of the expressions

‖A‖′′ = max
{x∈Rm: ‖x‖≤1}

‖Ax‖′, (2.37)

‖A‖′′ = max
{x∈Rm: ‖x‖=1}

‖Ax‖′. (2.38)

In this case, we say ‖·‖′′ is induced by ‖·‖ and ‖·‖′. If m = n and ‖·‖ = ‖·‖′,
then we say that ‖ · ‖′′ is induced by ‖ · ‖ and we call ‖ · ‖′′ an equi-induced
norm. It remains to be shown, however, that ‖ · ‖′′ defined by (2.36) is
indeed a matrix norm.

Theorem 2.2. Every induced matrix norm is a matrix norm.

Proof. Let ‖ · ‖ and ‖ · ‖′ be vector norms on Rm and Rn, respectively,
and let ‖ · ‖′′ : Rn×m → R be defined as in (2.36) or, equivalently, (2.38).
Clearly, ‖ · ‖′′ satisfies Axioms i)–iii) of Definition 2.7. To show that Axiom
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iv) holds, let A,B ∈ Rn×m and note that

‖A+B‖′′ = max
{x∈Rm: ‖x‖=1}

‖(A+B)x‖′

= max
{x∈Rm: ‖x‖=1}

‖Ax+Bx‖′

≤ max
{x∈Rm: ‖x‖=1}

(‖Ax‖′ + ‖Bx‖′)

≤ max
{x∈Rm: ‖x‖=1}

‖Ax‖′ + max
{x∈Rm: ‖x‖=1}

‖Bx‖′

= ‖A‖′′ + ‖B‖′′.

Hence, ‖ · ‖′′ : Rn×m → R is a matrix norm on Rn×m.

In the notation of (2.36),

‖A‖′′ = max
{x∈Rm: x6=0}

‖Ax‖′
‖x‖ ≥ ‖Ax‖′

‖x‖ , x 6= 0.

Hence,

‖Ax‖′ ≤ ‖A‖′′‖x‖.

In this case, (‖ · ‖′, ‖ · ‖′′, ‖ · ‖) is a submultiplicative triple. If m = n and
‖ · ‖ = ‖ · ‖′, then the induced norm ‖ · ‖′′ is compatible with ‖ · ‖. The next
result shows that submultiplicative triples of matrix norms can be obtained
from induced matrix norms.

Proposition 2.4. Let ‖ · ‖, ‖ · ‖′, and ‖ · ‖′′ denote vector norms on Rl,
Rm, and Rn, respectively. Let ‖ · ‖′′′ be the matrix norm on Rm×l induced
by ‖ · ‖ and ‖ · ‖′, let ‖ · ‖′′′′ be the matrix norm on Rn×m induced by ‖ · ‖′
and ‖ · ‖′′, and let ‖ · ‖′′′′′ be the matrix norm on Rn×l induced by ‖ · ‖ and
‖ · ‖′′. If A ∈ Rn×m and B ∈ Rm×l, then

‖AB‖′′′′′ ≤ ‖A‖′′′′‖B‖′′′. (2.39)

Proof. Note that for all x ∈ Rl and y ∈ Rm, ‖Bx‖′ ≤ ‖B‖′′‖x‖ and
‖Ay‖′′ ≤ ‖A‖′′′′‖y‖′. Hence, for all x ∈ Rl,

‖ABx‖′′ ≤ ‖A‖′′′′‖Bx‖′ ≤ ‖A‖′′′′‖B‖′′′‖x‖, (2.40)

which implies (2.39).

The following corollary to Proposition 2.4 is immediate.

Corollary 2.2. Every equi-induced matrix norm is a normalized
submultiplicative matrix norm.
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2.3 Set Theory and Topology

The notion of a norm on Rn discussed in the previous section provides the
basis for the development of some basic results in topology and analysis.
In this section, we restrict our attention to the Euclidean space Rn. If X
is a set , then x ∈ X denotes that x is an element of X . The notation
x 6∈ X denotes that x is not an element of X . A set may be specified by
listing its elements such as S = {x1, x2, x3} or, alternatively, a set may be
specified as consisting of all elements of set X having a certain property P .
In particular, S = {x ∈ X : P (x)}. The union of two sets is denoted by
X ∪ Y and consists of those elements that are in either X or Y. Hence,

X ∪ Y △
= {x : x ∈ X or x ∈ Y} = Y ∪ X .

The intersection of two sets X and Y is denoted by X ∩ Y and consists of
those elements that are common to both X and Y. Hence,

X ∩ Y = {x : x ∈ X , x ∈ Y}
= {x ∈ X , x ∈ Y}
= {x ∈ Y, x ∈ X}
= Y ∩ X .

The complement of a set X relative to another set Y is defined by
Y \ X △

= {x ∈ Y : x 6∈ X}, and consists of those elements of Y that are not
in X . When it is clear that the complement is with respect to a universal
set Y, that is, a fixed set from which we take elements and subsets, then
we write X∼ △

= Y \ X . If x ∈ X implies x ∈ Y, then X is contained in Y
or, equivalently, X is a subset of Y. In this case, we write X ⊆ Y. Clearly,
X = Y is equivalent to the validity of both X ⊆ Y and Y ⊆ X . If X ⊆ Y
and X 6= Y, then X is said to be a proper subset of Y, and is written as
X ⊂ Y. The set with no elements is called the empty set and is denoted
by Ø. Two sets X and Y are disjoint if their intersection is empty, that
is, X ∩ Y = Ø. Finally, a collection of pairwise disjoint subsets of a set X
whose union is equal to X is called a partition of X .

Example 2.4. Let X = (0, 3) and Y = [2, 4). Then X \ Y = (0, 2),
X ∪ Y = (0, 4), and X ∩ Y = [2, 3). With R as the universal set, Y∼ =
(−∞, 2)∪ [4,∞). Note that X ∩Y∼ = (0, 3) ∩ ((−∞, 2) ∪ [4,∞)) = (0, 2) =
X \ Y. △

The Cartesian product X1×X2×· · ·×Xn of n sets X1, . . . ,Xn is the set
consisting of ordered elements of the form (x1, x2, . . . , xn), where xi ∈ Xi,
i = 1, . . . , n. Hence,

X1 × · · · × Xn = {(x1, . . . , xn) : x1 ∈ X1, . . . , xn ∈ Xn}.



NonlinearBook10pt November 20, 2007

22 CHAPTER 2

We call xi ∈ Xi the ith element of the ordered set X1×· · ·×Xn. The definition
of the union, intersection, and product of sets can be extended from two
sets (or n sets in the case of products) to a finite or infinite collection of sets
{Si : i ∈ I}, where i runs over some set I of indices. We call {Si : i ∈ I}
an indexed family of sets. The definition of the union and intersection of a
collection of sets is

⋃

i∈I
Si

△
= {x : x ∈ Si for at least one i ∈ I},

⋂

i∈I
Si

△
= {x : x ∈ Si for every i ∈ I}.

If the collection is finite, the set of indices I is usually {1, . . . , n}, and if the
collection is countably infinite I is usually Z+, although there are occasional
exceptions to this.

To begin let ‖·‖ be a norm on Rn and define the open ball Bε(x) ⊂ Rn

with radius ε and center x by Bε(x)
△
= {y ∈ Rn : ‖x − y‖ < ε}. It is

important to note that Bε(x) is not necessarily an open sphere or an open
ball; its shape will depend on the norm chosen. For example, if x ∈ R2 and
‖ · ‖ = ‖ · ‖∞, then B1(0), for which the point x is the origin (0,0), is the
interior of the square max{|y1|, |y2|} < 1.

Definition 2.9. Let S ⊆ Rn. Then x ∈ S is an interior point of S if
there exists ε > 0 such that Bε(x) ⊆ S. The interior of S is the set

◦
S △

= {x ∈ S : x is an interior point of S}.
Finally, the set S is open if every element of S is an interior point, that is,

if S =
◦
S.

Note that
◦
S ⊆ S and every open ball is an open set.

Example 2.5. Let S △
= {(x1, x2) ∈ R2 : x2

1 + x2
2 < 1}. S is an open

set in R2 since given any x ∈ S, there exists ε > 0 such that Bε(0) ⊆ S. △

Definition 2.10. Let x ∈ Rn. A neighborhood of x is an open subset
N ⊆ Rn containing x.

In certain parts of the book we denote a neighborhood of x ∈ Rn by
Nε(x) to refer to Bε(x) (or an ε-neighborhood of x).

Definition 2.11. Let S ⊆ Rn. A vector x ∈ Rn is a closure point of S
if, for every ε > 0, the set S ∩ Bε(x) is not empty. A closure point of S is
an isolated point of S if there exists ε > 0 such that S ∩ Bε(x) = {x}. The
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closure of S is the set

S △
= {x ∈ Rn : x is a closure point of S}.

The set S is closed if every closure point of S is an element of S, that is,

S = S. Finally, the boundary of S is the set ∂S △
= S\

◦
S= S ∩ (Rn \ S).

A closure point is sometimes referred to as an adherent point or contact

point in the literature. Note that
◦
S ⊆ S ⊆ S. A closure point should be

carefully distinguished from an accumulation point.

Definition 2.12. Let S ⊆ Rn. A vector x ∈ Rn is an accumulation
point of S if, for every ε > 0, the set S ∩ (Bε(x) \{x}) is not empty. The set
of all accumulation points of S is called a derived set and is denoted by S ′.

Note that if S ⊂ Rn, then the vector x ∈ Rn is an accumulation point
of S if and only if every open ball centered at x contains a point of S distinct
from x or, equivalently, every open ball centered at x contains an infinite
number of points of S. Note that if x is an accumulation point of S, then x
is a closure point of S. Clearly, for every S ⊂ Rn, S = S ∪ S ′, and hence S
is closed if and only if S ′ ⊆ S. Thus, a set S ⊆ Rn is closed if and only if it
contains all of its accumulation points. An accumulation point is sometimes
referred to as a cluster point or limit point in the literature.

Example 2.6. Let S ⊂ R be given by S = (0, 1]. Note that every point
α ∈ [0, 1] is an accumulation point of S since every open ball (open interval
on R in this case) containing α will contain points of (0, 1] distinct from α.
Note that the accumulation point 0 is not an element of S. Since 0 is the
only accumulation point that does not belong to S, the closure of S is given
by S = S ∪ S ′ = (0, 1] ∪ [0, 1] = (0, 1] ∪ {0} = [0, 1]. Finally, note that the

boundary of S is ∂S = S\
◦
S= S ∩ (Rn \ S) = [0, 1] ∩ ((−∞, 0] ∪ [1,∞)) =

{0, 1}. △

Note that for a given set S ⊆ Rn, closure points can be isolated points
of S, which always belong to S, accumulation points of S belonging to S,
and accumulation points of S which do not belong to S. For example, let
S △

= {x ∈ R : 0 < x < 1, x = 2}. Clearly, x = 2 is an isolated closure point
of S, x = 0 and x = 1 are accumulation points, and hence, closure points of
S which do not belong to S, and every point x in the set {x ∈ R : 0 < x < 1}
is an accumulation point, and hence, a closure point of S belonging to S.

The next proposition shows that the complement of an open set is
closed and the complement of a closed set is open.

Proposition 2.5. Let S ⊆ Rn. Then S is closed if and only if Rn \ S
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is open.

Proof. S is closed if and only if, for every point x ∈ Rn \ S, there
exists ε > 0 such that Bε(x) ∩ S = Ø. This holds if and only if, for every
x ∈ Rn \ S, there exists an ε > 0 such that Bε(x) ⊂ Rn \ S, which is true if
and only if Rn \ S is open.

The empty set Ø and Rn are the only subsets of Rn that are both
open and closed. To see this, note that for every x ∈ Rn, every open ball
Bε(x) ⊂ Rn. Hence, every point in Rn is an interior point. Thus, Rn is
open. Alternatively, note that Ø has no points, and hence, every point of Ø
is an interior point of Ø. Hence, Ø is an open subset of Rn. The converse
follows immediately by noting that S ⊆ Rn is closed if and only if Rn \ S is
open (see Proposition 2.5). Alternatively, Rn is closed since it contains all
points, and hence, all accumulation points. The empty set is closed since it
has no accumulation points. Hence, ∂S = Ø if and only if S = Ø or S = Rn.
Finally, note that since

∂S = [
◦
S ∪

◦
(S∼)]∼,

∂S is always a closed set and is given by the elements in Rn that belong to

the set S but not
◦
S.

Example 2.7. Let X = {(x1, x2) ∈ R×R : −1 < x1 ≤ 1,−1 < x2 ≤ 1}.
Note that X is neither open nor closed since the boundary point (x1, x2) =
(1, 1) is contained in X and the boundary point (x1, x2) = (−1,−1) is not in
X . The closure of X is X = {(x1, x2) ∈ R×R : −1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1},
whereas the interior is

◦
X= {(x1, x2) ∈ R × R : −1 < x1 < 1,−1 < x2 < 1}.

The boundary of X is formed by the four segments {(x1, x2) ∈ R × R :
x1 = 1,−1 ≤ x2 ≤ 1}, {(x1, x2) ∈ R × R : x1 = −1,−1 ≤ x2 ≤ 1},
{(x1, x2) ∈ R × R : x2 = 1,−1 ≤ x1 ≤ 1}, and {(x1, x2) ∈ R × R : x2 =
−1,−1 ≤ x1 ≤ 1}, and hence, is given by the union of these four sets. △

Definition 2.13. Let S ⊆ Rn. Then Q ⊆ S is dense in S if S ⊆ Q.
The set Q is nowhere dense in S if S\Q is dense in S.

Definition 2.13 implies that if Q is dense in S, then every element of
S is a closure point of Q, or an element of Q, or both. If S is closed, then
Q ⊆ S is dense if and only if Q = S. Note that the set of rational numbers
Q is a dense subset of R, whereas the set of integers Z is a nowhere dense
subset of R.

Definition 2.14. Let S ⊂ Rn. Then S is bounded if there exists ε > 0
such that ‖x − y‖ < ε for all x, y ∈ S. Furthermore, S is compact if it is
closed and bounded.
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Definition 2.15. Let S ⊆ Rn. The set Q ⊆ S is open (respectively,
closed) relative to S if there exists an open (respectively, closed) set R ⊆ Rn

such that Q = S ∩ R.

Note that since S = S ∩ Rn, it follows that any set is open relative to
itself.

Example 2.8. Let Q = (0, 1] and S = (−1, 1]. Note that Q is open
relative to S. In particular, for all α > 1, (0, 1] = (−1, 1] ∩ (0, α). Similarly,
(0, 1] is closed relative to (0, 2) since (0, 1] = (0, 2) ∩ [α, 1] for all α < 0. △

A sequence of scalars {xn}∞n=0 ⊂ R is said to converge to a scalar x ∈ R

if for every ε > 0, there exists N = N(ε) such that |xn − x| < ε for every
n > N . If a sequence {xn}∞n=0 converges to some x ∈ R, we say x is the
limit of {xn}∞n=0, that is, limn→∞ xn = x. A sequence {xn}∞n=0 is a Cauchy
sequence if for every ε > 0, there exists N = N(ε) such that |xn − xm| < ε
for all n,m > N .

A scalar sequence {xn}∞n=0 ⊂ R is said to be bounded above (respec-
tively, bounded below) if there exists α ∈ R such that xn ≤ α (respectively,
xn ≥ α) for all n ∈ Z+. A scalar sequence {xn}∞n=0 is said to be
nonincreasing (respectively, nondecreasing) if xn+1 ≤ xn (respectively,
xn+1 ≥ xn) for all n ∈ Z+.

Example 2.9. Consider the sequence { 1
n}∞n=1 = {1, 1

2 ,
1
3 , . . .}. To see

that this sequence converges to x = 0, let ε > 0. In this case, |1/n − 0| =
|1/n| = 1/n < ε if and only if n > 1/ε. Hence, letting N = N(ε) > 1/ε, it
follows that |1/n − 0| < ε for every n > N . △

If a finite limit x ∈ R does not exist for a given scalar sequence, then
the sequence is said to be divergent . In particular, the sequence {n}∞n=0

diverges as n→ ∞. In addition, the sequence {(−1)n}∞n=0, though bounded,
is also divergent since it yields the oscillating sequence {−1, 1,−1, 1, . . .},
and hence does not converge to a finite limit.

The supremum of a nonempty set S ⊂ R of scalars, denoted by supS,
is defined to be the smallest scalar x such that x ≥ y for all y ∈ S. If no
such scalar exists, then supS △

= ∞. Similarly, the infimum of S, denoted by
inf S, is defined to be the largest scalar x such that x ≤ y for all y ∈ S. If no
such scalar exists, then inf S △

= −∞. Given a scalar sequence {xn}∞n=0 ⊂ R,
the supremum of the sequence, denoted by supn xn, is defined as sup{xn :
n = 1, 2, . . .}. Similarly, the infimum of the sequence, denoted by infn xn,
is defined as inf{xn : n = 1, 2, . . .}. Finally, given a sequence {xn}∞n=0, let
ym = inf{xn : n ≥ m} and zm = sup{xn : n ≥ m}. Since the sequences
{ym}∞m=0 and {zm}∞m=0 are nondecreasing and nonincreasing, respectively,
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it follows from Proposition 2.6 that if these sequences are bounded, then
they have finite limits. The limit of {ym}∞m=0 is denoted by lim infm→∞ xm

and is called the limit inferior of xm, and the limit of {zm}∞m=0 is denoted
by lim supm→∞ xm and is called the limit superior of xm. If {ym}∞m=0 and
{zm}∞m=0 are unbounded, then lim infm→∞ xm = −∞ and lim supm→∞ xm =
∞.

An equivalent definition for the limit superior of an infinite sequence
of real numbers {xn}∞n=0 is the existence of a real number S such that for
every ε > 0 there exists an integer N such that for all n > N , xn < S + ε,
and for every ε > 0 and M > 0 there exists an n > M such that xn > S− ε.
Then S is the limit superior of {xn}∞n=0. The limit inferior of xn is simply
lim infn→∞ xn = − lim supn→∞(−xn). Finally, note that {xn}∞n=0 converges
if and only if lim supn→∞ xn = lim infn→∞ xn = limn→∞ xn. (See Problem
2.18.)

Proposition 2.6. Let {xn}∞n=0 ⊂ R be a nonincreasing or nondecreas-
ing scalar sequence. If {xn}∞n=0 is bounded, then {xn}∞n=0 converges to a
finite real number.

Proof. Let {xn}∞n=0 ⊂ R be a nondecreasing scalar sequence that is

bounded above. Then, by the completeness axiom,2 the supremum α
△
=

sup{xn : n ∈ Z+} exists and is finite. Now, let ε > 0 and choose N ∈ Z+

such that α− ε < xN ≤ α. Since xN ≤ xn for n ≥ N and xn ≤ α for all n ∈
Z+, it follows that α−ε < xn ≤ α for all n ≥ N , and hence, limn→∞ xn = α.

If, alternatively, {xn}∞n=0 ⊂ R is nonincreasing with infimum β
△
= inf{xn :

n ∈ Z+}, then {−xn}∞n=0 is nondecreasing with supremum −β. Hence,
β = −(−β) = − limn→∞(−xn) = limn→∞ xn.

Example 2.10. Consider the scalar sequence S = { 1
n}∞n=1 ⊂ R.

Clearly, S is bounded below, and inf S = 0. However, 0 6∈ S. Alternatively,
supS = 1 and 1 ∈ S. Hence, the maximum element of the set S is attained
and is given by supS, whereas the minimum element of the set S does not
exist. Finally, note that lim infn→∞

1
n = lim supn→∞

1
n = limn→∞

1
n = 0. △

Norms can be used to define convergent sequences in Rn. For the
next definition, a sequence of vectors {x1, x2, . . .} is defined as an ordered
multiset with countably infinite elements.

Definition 2.16. A sequence of vectors {xn}∞n=0 ⊂ Rn converges to
x ∈ Rn if limn→∞ ‖x − xn‖ = 0. In this case, we write limn→∞ xn = x or,

2The completeness axiom states that every nonempty set S of real numbers which is bounded
above has a supremum, that is, there exists a real number α such that α = supS. As a consequence
of this axiom it follows that every nonempty set of real numbers which is bounded below has an
infimum.
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equivalently, xn → x as n → ∞. The sequence {xn}∞n=0 ⊂ Rn is called a
Cauchy sequence if, for every ε > 0, there exists an integer N = N(ε) such
that ‖xn − xm‖ < ε, whenever n,m > N .

Note that convergence guarantees that for every ε > 0, there exists
N = N(ε) such that ‖xn − x‖ < ε for all n > N . The next proposition
shows that if a sequence converges, its limit is unique.

Proposition 2.7. Let {xn}∞n=0 ⊂ Rn be a convergent sequence. Then
its limit is unique.

Proof. Suppose, ad absurdum, xn → x and xn → y as n → ∞, where
x 6= y. Then it follows from the triangle inequality for norms that

‖x− y‖ = ‖x− xn + xn − y‖ ≤ ‖x− xn‖ + ‖xn − y‖.

Hence, as n→ ∞, ‖x− y‖ → 0. Thus, x = y.

It is always possible to construct a subsequence from any sequence
by selecting arbitrary elements from that sequence. However, in this
construction the order of the terms must be preserved; that is, no interchange
of terms is permissible. More precisely, given a sequence {xn}∞n=1 ⊂ Rn and
a sequence of positive integers {nk}∞k=1 such that n1 < n2 < . . ., then the
sequence {xnk

}∞k=1 is a subsequence of {xn}∞n=1. Sequences in general do not
converge, but they often have subsequences that do. The next proposition
gives a characterization of a closure point in terms of sequences.

Proposition 2.8. Let D ⊆ Rn. Then x ∈ Rn is a closure point of D if
and only if there exists a sequence {xn}∞n=1 ⊆ D such that x = limn→∞ xn.

Proof. Let x ∈ Rn be a closure point of D. Then, for all n ∈ Z+,
there exists xn ∈ D such that ‖x − xn‖ < 1/n. Hence, xn → x as n → ∞.
Conversely, suppose {xn}∞n=1 ⊆ D is such that x = limn→∞ xn and let
ε > 0. Then, there exists k ∈ Z+ such that ‖x− xn‖ < ε for n > k. Thus,
xk+1 ∈ D ∩Bε(x), which implies that D ∩Bε(x) is not empty. Hence, x is a
closure point of D.

The following theorem is due to Bolzano and Weierstrass and forms
the cornerstone of mathematical analysis.

Theorem 2.3 (Bolzano-Weierstrass). Let S ⊂ Rn be a bounded set
that contains infinitely many points. Then there exists at least one point
p ∈ Rn that is an accumulation point of S.

Proof. See [371].
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The next result shows an equivalence between sequential compactness
and compactness; that is, every sequence in a compact set has a convergent
subsequence and conversely, every compact set is sequentially compact. This
result is known as the Bolzano-Lebesgue theorem.

Theorem 2.4 (Bolzano-Lebesgue). Let Dc ⊂ Rn. For every sequence
{xn}∞n=1 ⊆ Dc there exists a convergent subsequence {xnk

}∞k=1 ⊆ {xn}∞n=1

such that limk→∞ xnk
∈ Dc if and only if Dc is compact.

Proof. To show necessity, let Dc be compact, let {xn}∞n=1 ⊆ Dc, and
let Q = {x1, x2, . . .}. Note that Q is an infinite set contained in Dc. Now,
since Dc is bounded, Q is bounded, and hence, by the Bolzano-Weierstrass
theorem (Theorem 2.3), Q has an accumulation point x. Since Dc is closed,
x is also an accumulation point of Dc, and hence, x ∈ Dc. Thus, for each k ∈
Z+ we can find an nk > nk−1 such that xnk

∈ B1/k(x). Hence, limk→∞ xnk
=

x ∈ Dc.

To show sufficiency, assume that every sequence contained in Dc has a
convergent subsequence and suppose, ad absurdum, that Dc is not bounded.
Then there exists a sequence {xn}∞n=1 ⊆ Dc such that ‖xn‖ ≥ n, n ∈ Z+,
and there exists a convergent subsequence {xnk

}∞k=1 ⊆ {xn}∞n=1 such that
limk→∞ xnk

= x ∈ Dc. Now, for every k ∈ Z+ such that nk > 1 + ‖x‖,
‖xnk

− x‖ ≥ ‖xnk
‖ − ‖x‖ ≥ nk − ‖x‖ > 1,

which is a contradiction. Hence, Dc is bounded.

Next, suppose, ad absurdum, that Dc is not closed. Let {xn}∞n=1 ⊆
Dc be such that limn→∞ xn = x 6∈ Dc. By assumption, there exists a
subsequence {xnk

}∞k=1 ⊆ {xn}∞n=1 such that limk→∞ xnk
= y ∈ Dc. Now,

since limn→∞ xn = x it follows that for every ε > 0, there exists N ∈ Z+

such that ‖xn −x‖ < ε, n ≥ N . Furthermore, there exists k ∈ Z+ such that
nk ≥ N , which implies that ‖xnk

−x‖ < ε. Hence, limk→∞ xnk
= x. Now, it

follows from the uniqueness of limits of sequences (see Proposition 2.7) that
x = y, which is a contradiction. Hence, Dc is compact.

The next lemma is needed to show that a sequence in Rn converges if
and only if it is a Cauchy sequence.

Lemma 2.1. A Cauchy sequence in Rn is bounded.

Proof. Let {xn}∞n=0 ⊂ Rn be a Cauchy sequence and let N ∈ Z+ be
such that ‖xn − xN‖ < 1 for all n > N . Now, for n > N ,

‖xn‖ = ‖xn − xN + xN‖ ≤ ‖xn − xN‖ + ‖xN‖ < 1 + ‖xN‖, (2.41)

which proves the result.
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Theorem 2.5. Let {xn}∞n=0 ⊂ Rn. Then {xn}∞n=0 is convergent if and
only if {xn}∞n=0 is a Cauchy sequence.

Proof. Assume {xn}∞n=0 is convergent, and hence, xn → x as n → ∞
for some x ∈ Rn. Given ε > 0, let N ∈ Z+ be such that ‖xn − x‖ < ε/2
whenever n > N . Now, if m > N , then ‖xm − x‖ < ε/2. If n > N and
m > N it follows that

‖xn − xm‖ = ‖xn − x+ x− xm‖
≤ ‖xn − x‖ + ‖x− xm‖
<

ε

2
+
ε

2
= ε, (2.42)

which shows that {xn}∞n=0 is a Cauchy sequence. Conversely, assume that
{xn}∞n=0 is a Cauchy sequence. In this case, it follows from Lemma 2.1 that

S △
= {xn}∞n=0 is bounded, and hence, by the Bolzano-Weierstrass theorem

(Theorem 2.3), S has an accumulation point p ∈ Rn. Now, since {xn}∞n=0

is Cauchy, given ε > 0, there exists N such that ‖xn − xm‖ < ε/2 whenever
n,m > N . Since p is an accumulation point of S it follows that the open
ball Bε/2(p) contains a point xm with m > N . Hence, if m > N then it
follows that

‖xn − p‖ = ‖xn − xm + xm − p‖
≤ ‖xn − xm‖ + ‖xm − p‖
< ε/2 + ε/2

= ε, (2.43)

and hence, xn → p as n→ ∞.

It follows from Proposition 2.8 that the definition of convergence can
be used to characterize closed sets.

Proposition 2.9. Let D ⊆ Rn. Then D is closed if and only if every
convergent sequence {xn}∞n=0 ⊆ D has its limit point in D.

Proof. The result is a direct consequence of Proposition 2.8.

The next results show that the finite intersection and infinite union of
open sets is open, whereas the finite union and infinite intersection of closed
sets is closed.

Theorem 2.6. The following statements hold:

i) Let S1, . . . ,Sn be open subsets of Rn. Then S = S1 ∩ · · · ∩ Sn is an
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open set.

ii) Let {Si : i ∈ I} be an indexed family of open sets contained in Rn

with the index set I being finite or infinite. Then S =
⋃

i∈I Si is an
open set.

Proof. i) The result is obvious if S = Ø. Assume S 6= Ø, let x ∈ S,
and note that x ∈ Si for all i = 1, . . . , n. Since for all i = 1, . . . , n, Si is an
open set, there exists εi > 0, i = 1, . . . , n, such that Bεi

(x) ⊆ Si, i = 1, . . . , n.
Now, taking ε = min εi, it follows that Bε(x) ⊆ Si, i = 1, . . . , n, and hence,
Bε(x) ⊆ S, which proves S is open.

ii) Let x ∈ S and note that since S =
⋃

i∈I Si it follows that x ∈ Sj

for some j ∈ I. Since Sj is open, there exists ε > 0 such that Bε(x) ⊆ Sj,

which implies that Bε(x) ⊆ S. Thus, x ∈
◦
S, and hence, for every x ∈ S,

x ∈
◦
S; that is,

◦
S = S, which proves that S is open.

Theorem 2.7. The following statements hold:

i) Let S1, . . . ,Sn be closed subsets of Rn. Then S = S1 ∪ · · · ∪ Sn is a
closed set.

ii) Let {Si : i ∈ I} be an indexed family of closed sets contained in Rn

with the index set I being finite or infinite. Then S =
⋂

i∈I Si is a
closed set.

Proof. i) Let x ∈ Rn be an accumulation point of S. Then, for every
ε > 0, the set S ∩ (Bε(x) \ {x}) is not empty or, equivalently, there exists
a sequence {xn}∞n=1 ⊆ S such that x = limn→∞ xn. Now, since S is a finite
collection of closed sets, at least one, say S1, contains an infinite subsequence
{xnk

}∞k=1 ⊆ {xn}∞n=1 such that x = limk→∞ xnk
. (This follows from the fact

that if x = limn→∞ xn, then x = limk→∞ xnk
for every subsequence {xnk

}∞k=1
of {xn}∞n=1.) Then, x ∈ Rn is an accumulation point of S1, and, since S1 is
closed, x ∈ S1. Hence, x ∈ S.

ii) Let x ∈ Rn be an accumulation point of S so that, for every ε > 0,
the set S ∩ (Bε(x) \ {x}) is not empty. Then every open ball centered at
x contains an infinite number of points of S, and hence, since for every
i ∈ I, S ⊆ Si, contains an infinite number of points of Si. Hence, x is an
accumulation point of Si, and hence, x ∈ Si for each i ∈ I since the sets Si,
i ∈ I, are all closed. Thus, x ∈ S, and hence, S is closed.

Definition 2.17. Let S ⊆ Rn. Then S is connected if there do not
exist open sets O1 and O2 in Rn such that S ⊂ O1 ∪ O2, S ∩ O1 6= Ø,
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S ∩ O2 6= Ø, and S ∩ O1 ∩ O2 = Ø. S is arcwise connected if for every two
points x, y ∈ S there exists a continuous function g : [0, 1] → S such that
g(0) = x and g(1) = y. A connected component of the set S is a connected
subset of S that is not properly contained in any connected subset of S.

Note that S is connected if and only if it is not the union of two disjoint,
nonempty, relatively open subsets of S. Recall that S is a connected subset
of R if and only if S is either an interval or a single point. S is arcwise
connected if any two points in S can be joined by a continuous curve that
lies in S. Arcwise connectedness is an important notion in dynamical system
theory since the state of a dynamical system taking values in Rn is typically
a continuous function of time. Hence, in order to control the system state
from any point x ∈ D ⊆ Rn to any other point in D, the subset of the state
space D must be arcwise connected.

Example 2.11. The set of rational numbers Q ⊂ R is disconnected.
To see this, note that Q = X ∩ Y, where X = {x ∈ Q : x <

√
3} and

Y = {y ∈ Q : y >
√

3}. Since X = (−∞,
√

3) ∩ Q and Y = (
√

3,∞) ∩ Q,
X and Y are nonempty, disjoint, and open relative to Q. Hence, Q is
disconnected. △

Definition 2.18. Let S ⊆ Rn. Then S is convex if µx+ (1 − µ)y ∈ S
for all 0 ≤ µ ≤ 1 and x, y ∈ S. The convex hull of S, denoted by co S, is
the intersection of all convex sets containing S, that is, the smallest convex
set that contains S.

Proposition 2.10. Let Bε(x) ⊂ Rn. Then Bε(x) is convex.

Proof. Without loss of generality, consider the open ball with radius
1 and center 0, that is, B1(0) = {x ∈ Rn : ‖x‖ < 1}. Now, note that if
x0, y0 ∈ B1(0), then ‖x0‖ < 1 and ‖y0‖ < 1. Next, let µ ∈ [0, 1] and note
that

‖µx0 + (1 − µ)y0‖ ≤ ‖µx0‖ + ‖(1 − µ)y0‖
= µ‖x0‖ + (1 − µ)‖y0‖
< 1, x0, y0 ∈ B1(0). (2.44)

Hence, µx0 + (1 − µ)y0 ∈ B1(0) for all x0, y0 ∈ B1(0) and µ ∈ [0, 1].

Proposition 2.11. Let C ⊆ Rn be a convex set. Then C and
◦
C are

convex.

Proof. If C = Ø, then C is convex. Let x0, y0 ∈ C and choose µ =
(0, 1). Now, for a given ε > 0, let x, y ∈ C be such that ‖x − x0‖ < ε and
‖y−y0‖ < ε. In this case, ‖µx+(1−µ)y−µx0 − (1−µ)y0‖ < ε, and hence,
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‖z − z0‖ < ε, where z
△
= µx+ (1− µ)y and z0

△
= µx0 + (1− µ)y0, and z ∈ C.

Since ε > 0 is arbitrary, it follows that z0 is a closure point of C, and hence,
C is convex.

If
◦
C = Ø, then

◦
C is convex. Let x0, y0 ∈

◦
C and choose µ ∈ (0, 1). Since

x0, y0 ∈
◦
C, there exists ε > 0 such that Bε(x0) ⊂ C and Bε(y0) ∈ C. Now,

since z0 + u = µ(x0 + u) + (1 − µ)(y0 + u), it follows that z0 + u ∈ C for all

‖u‖ < ε. Hence, z0 is an interior point of C, and hence,
◦
C is convex.

Note that in the light of Proposition 2.11 the closed ball Bε(x) is also
convex. The next result shows that the intersection of an arbitrary number
of convex sets is convex.

Proposition 2.12. Let S be an arbitrary collection of convex sets.
Then Q =

⋂

C∈S C is convex.

Proof. If Q = Ø, then the result is immediate. Now, assume x1, x2 ∈
Q and choose µ ∈ [0, 1]. Then x1, x2 ∈ C for all C ∈ S, and since C is convex,
µx1 + (1 − µ)x2 ∈ C for all C ∈ S. Thus, µx1 + (1 − µ)x2 ∈ Q, and hence,
Q is convex.

2.4 Analysis in Rn

If X and Y are sets, then a function f(·) (or f) that maps X into Y is a
rule f : X → Y that assigns a unique element f(x) of Y to each element
x in X . Equivalently, a function f can be viewed as a subset F of X × Y
such that if (x1, y1) ∈ F , (x2, y2) ∈ F , and x1 = x2, then y1 = y2. This
connection is denoted by F = graph(f). The set X is called the domain
of f while the set Y is called the codomain of f . If X1 ⊆ X , then it is
convenient to define f(X1)

△
= {f(x) : x ∈ X1}. The set f(X ) is called the

range of f . If, in addition, Z is a set and g : Y → Z, then g ◦ f : X → Z
is defined by (g ◦ f)(x)

△
= g(f(x)). If x1, x2 ∈ X and f(x1) = f(x2) implies

that x1 = x2, then f is one-to-one (or injective); if f(X ) = Y, then f is
onto (or surjective). If f is one-to-one and onto then f is bijective. The
function IX : X → X defined by IX (x) = x, x ∈ X , is called the identity on
X . The function f : X → Y is called left invertible if there exists a function
g : Y → X (called a left inverse of f) such that g ◦ f = IX , while f is right
invertible if there exists a function h : Y → X (called a right inverse of f)
such that f ◦ h = IY . In addition, the function f : X → Y is invertible if
there exists f−1 : Y → X such that f−1 ◦ f = IX and f ◦ f−1 = IY .

A function f : X → Y is said to be into if and only if f(X ) ⊂ Y.
For example, if X = Y = Z, then f(x) = x2 is an into function since f(x)
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contains only integers that can be expressed as x2 for x ∈ Z, and hence,
f(X ) ⊂ Y = Z. Alternatively, if f(x) = 2x, then f is injective since for
every x1, x2 ∈ Z such that x1 6= x2, f(x1) 6= f(x2). For X = R and Y = R+,
the function f(x) = x2 is surjective since f(X ) = Y = R+. Finally, for
X = Y = Z, the function f(x) = −x is bijective since for every x1, x2 ∈ Z

such that x1 6= x2, f(x1) = −x1 6= f(x2) = −x2, and hence, f is injective.
In addition, since for every −x ∈ Z, x ∈ Z it follows that f(X ) = Y = Z,
and hence, f is also surjective.

Two functions f and g are equal, that is, f = g, if and only if they
have the same domain, the same codomain, and for all x in the common
domain, f(x) = g(x). For example, given f : R → R+ defined by f(x) = |x|
and g : R → R+ defined by g(x) =

√
x2, then f(x) = g(x) for all x ∈ R.

The notion of bijection is used to determine set equivalence. In
particular, given two sets X and Y we say that X and Y are equivalent ,
denoted as X ∼ Y, if and only if there exists a bijective mapping f : X → Y.
Since f is one-to-one and onto, it follows that there exists a one-to-one
correspondence between the elements of the equivalent sets X and Y. We
say a set X is finite if and only if X = Ø or X is equivalent to the set
{1, . . . , n} for some n ∈ Z+; otherwise X is infinite. If a set X is equivalent
to Z+, then X is called countably infinite (or denumerable). A set X is
countable if and only if it is either finite or countably infinite.

Example 2.12. The set Z of all integers is countable. In particular,
the function f : Z → Z+ defined by

f(n) =

{

2n+ 1, n ∈ Z+,
−2n, n ∈ Z−,

(2.45)

is bijective, and hence, Z is a countable set. The set E = {n ∈ Z+ :
n is even} of all positive even numbers is countable. Specifically, the
function f : Z+ → E defined by f(n) = 2n is bijective. Finally, the set
P = {2, 4, 8, . . . , 2n, . . .} of powers of 2 is countable as shown by the obvious
one-to-one correspondence of f : Z+ → P given by f(n) = 2n. △

Definition 2.19. Let D ⊆ Rn and f : D → Rn. Then the image of
X ⊂ D under f is the set

f(X ) = {y : y = f(x) for some x ∈ X}.
The inverse image of Y ⊂ Rn under f is the set

f−1(Y) = {x ∈ D : f(x) ∈ Y}.

Note that f−1(Y) may be empty even when Y 6= Ø. In particular, an
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inverse function f−1 does not exist for the function f : R → R+ defined by
y = f(x) = x2 since x = ±√

y, and hence, there always exist two image
points

√
y and −√

y for every y > 0. This violates the uniqueness property
of a function. However, f : R+ → R+ and g : R− → R+ defined by
y = f(x) = g(x) = x2, f−1 = R+ → R+ and g−1 : R+ → R− exist and are
given by x =

√
y and x = −√

y, respectively.

The next result summarizes some of the important properties of images
and inverse images of functions.

Theorem 2.8. Let X and Y be sets, let f : X → Y, let A, A1, and
A2 be subsets of X , and let B1 and B2 be subsets of Y. Then the following
statements hold:

i) If A1 ⊆ A, then f(A1) ⊆ f(A).

ii) f(A1 ∪ A2) = f(A1) ∪ f(A2).

iii) f−1(B1 ∪ B2) = f−1(B1) ∪ f−1(B2).

iv) f−1(B1 ∩ B2) = f−1(B1) ∩ f−1(B2).

Proof. i) Let y ∈ f(A1). In this case, there exists x ∈ A1 such that
y = f(x). Since A1 ⊆ A, x ∈ A. Hence, f(x) = y ∈ f(A), which proves
f(A1) ⊆ f(A).

ii) Let y ∈ f(A1 ∪ A2) and note that y = f(x), where x ∈ A1 or
x ∈ A2. Hence, y ∈ f(A1) or y ∈ f(A2) or, equivalently, y ∈ f(A1)∪ f(A2).
Conversely, let y ∈ f(A1) ∪ f(A2) and note that y = f(x), where x ∈ A1 or
x ∈ A2. Thus, x ∈ A1 ∪ A2, and hence, y = f(x) ∈ f(A1 ∪ A2).

iii) Let x ∈ f−1(B1 ∪ B2) and note that in this case f(x) ∈ B1 ∪
B2. Hence, f(x) ∈ B1 or f(x) ∈ B2. This implies that x ∈ f−1(B1) or
x ∈ f−1(B2) or, equivalently, x ∈ f−1(B1) ∪ f−1(B2). Conversely, let x ∈
f−1(B1) ∪ f−1(B2). In this case, x ∈ f−1(B1) or x ∈ f−1(B2), and hence,
f(x) ∈ B1 or f(x) ∈ B2. Thus, f(x) ∈ B1 ∪ B2, which implies that x ∈
f−1(B1 ∪ B2).

iv) Let x ∈ f−1(B1 ∩ B2) and note that in this case f(x) ∈ B1 ∩ B2.
Hence, f(x) ∈ B1 and f(x) ∈ B2. This implies that x ∈ f−1(B1) and
x ∈ f−1(B2) or, equivalently, x ∈ f−1(B1) ∩ f−1(B2). Conversely, let x ∈
f−1(B1) ∩ f−1(B2). In this case, x ∈ f−1(B1) and x ∈ f−1(B2), and hence,
f(x) ∈ B1 and f(x) ∈ B2. Thus, f(x) ∈ B1 ∩ B2, which implies that
x ∈ f−1(B1 ∩ B2).
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Note that in general the image of the intersection of two sets does not
necessarily equal the intersection of the images of the sets. However, this
statement is true if and only if f : X → Y is injective. (See Problem 2.26.)
Theorem 2.8 also holds for unions and intersections of an arbitrary number
(infinite or finite) of sets.

Theorem 2.9. Let X and Y be sets, let f : X → Y, let {Aα : α ∈ I}
be an indexed family of sets in X , and let {Bα : α ∈ J } be an indexed
family of sets in Y. Then the following statements hold:

i) f(
⋃

α∈I Aα) =
⋃

α∈I f(Aα).

ii) f−1(
⋃

α∈J Bα) =
⋃

α∈J f
−1(Bα).

iii) f−1(
⋂

α∈J Bα) =
⋂

α∈J f
−1(Bα).

Proof. The proof is similar to the proof of Theorem 2.8 and is left as
an exercise for the reader.

The next definition introduces the concept of convex functions defined
on convex sets.

Definition 2.20. Let C ⊆ Rn be a convex set and let f : C → R. Then
f is convex if

f(µx1 + (1 − µ)x2) ≤ µf(x1) + (1 − µ)f(x2), (2.46)

for all x1, x2 ∈ C and µ ∈ [0, 1]. f is strictly convex if inequality (2.46) is
strict for all x1, x2 ∈ C such that x1 6= x2 and µ ∈ (0, 1).

Definition 2.21. Let D ⊆ Rn and let f : D → R. For α ∈ R, the
set f−1(α)

△
= {x ∈ D : f(x) = α} is called the α-level set of f . The set

f−1((−∞, α])
△
= {x ∈ D : f(x) ≤ α} is called the α-sublevel set of f . For

β ∈ R, α ≤ β, the set f−1([α, β])
△
= {x ∈ D : α ≤ f(x) ≤ β} is called the

[α, β]-sublevel set of f .

Note that if f(x) = x2, then f−1(0) = {0}, and f−1(4) = {−2, 2},
whereas f−1((−∞, 4]) = [−2, 2]. The following proposition states that every
sublevel set of a convex function defined on a convex set is convex.

Proposition 2.13. Let C ⊆ Rn be convex and let f : C → R be convex.
Then f−1((−∞, α]), α ∈ R, is convex.

Proof. Let x1, x2 ∈ f−1((−∞, α]), α ∈ R, so that f(x1) ≤ α and
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f(x2) ≤ α. Since f is convex in C, it follows that

f(µx1 + (1 − µ)x2) ≤ µf(x1) + (1 − µ)f(x2) ≤ α, (2.47)

for all x1, x2 ∈ f−1((−∞, α]), α ∈ R, and µ ∈ [0, 1]. Hence, µx1+(1−µ)x2 ∈
f−1((−∞, α]), α ∈ R, and hence, f−1((−∞, α]), α ∈ R, is convex.

Definition 2.22. Let D ⊆ Rn and let f : D → R. The graph of f is
defined by

F △
= {(x, y) ∈ D × R : y = f(x)}.

The epigraph of f is defined by

E △
= {(x, y) ∈ D × R : y ≥ f(x)}.

Definition 2.23. Let D ⊂ Rn. Then D is a hyperplane if there exists
µ ∈ Rn, µ 6= 0, such that D = {x ∈ Rn : µTx = 0}.

The following two definitions introduce the notions of convergent
sequences of functions.

Definition 2.24. Let D ⊆ Rn, f : D → Rn, and fn : D → Rn,
n = 1, . . .. A sequence of functions {fn}∞n=0 converges to f if, for every
x ∈ D, limn→∞ ‖f(x) − fn(x)‖ = 0 or, equivalently, for every ε > 0, there
exists N = N(ε, x) such that ‖f(x) − fn(x)‖ < ε for all n ≥ N .

Definition 2.25. Let D ⊆ Rn, f : D → Rn, and fn : D → Rn,
n = 1, . . .. A sequence of functions {fn}∞n=0 converges uniformly to f if, for
every ε > 0, there exists N = N(ε) such that ‖f(x) − fn(x)‖ < ε for all
x ∈ D and n ≥ N .

Example 2.13. Consider the infinite sequence of functions {fn}∞n=1,
where fn : [0, 1] → R is given by fn(x) = xn. This sequence has the
form {x, x2, x3, . . .} and its limit depends on the value of x. In particular,
for 0 ≤ x < 1, the sequence converges to zero as n → ∞. For example, for
x = 1/2, {fn}∞n=1 = {1

2 ,
1
4 ,

1
8 , . . . ,

1
2n , . . .}, which converges to zero as n→ ∞.

For x = 1, however, {fn}∞n=1 = {1, 1, 1, . . .}, which converges to 1. Hence,
given ε > 0, there exists N = N(ε, x) such that |f(x)−xn| < ε for all n ≥ N
and 0 ≤ x ≤ 1, where f(x) = limn→∞ xn. Thus, the sequence converges
pointwise to f(x). However, the sequence does not converge uniformly to f .
To see this, note that for every x ∈ [0, 1) we have |f(x)−xn| = |0−xn| = xn.
Choosing x ≈ 1, we can ensure that xn > ε no matter how large N = N(ε) 6=
N(ε, x) is chosen. In particular, xn > ε implies that x > n

√
ε, and hence,

any x ∈ ( n
√
ε, 1) will yield |f(x) − xn| > ε, n ≥ N , for N = N(ε). Hence,

the sequence of functions fn(x) do not converge uniformly to f . See Figure
2.1. △
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Figure 2.1 Graphs for xn.

The next definition introduces the notion of monotonic functions
defined on an interval I ⊆ R.

Definition 2.26. Let I ⊆ R and let f : I → R. f is strictly increasing
on I if for every x, y ∈ I, x < y implies f(x) < f(y). f is increasing (or
nondecreasing) on I if for every x, y ∈ I, x < y implies f(x) ≤ f(y). f is
strictly decreasing on I if for every x, y ∈ I, x < y implies f(x) > f(y). f
is decreasing (or nonincreasing) on I if for every x, y ∈ I, x < y implies
f(x) ≥ f(y). f is monotonic on I if it is increasing on I or decreasing on I.

Note that if f is an increasing function, then −f is a decreasing
function. Hence, in many situations involving monotonic functions it suffices
to consider only the case of increasing or decreasing functions.

Definition 2.27. Let D ⊆ Rn and let f : D → Rn. f is bounded on D
if there exists α > 0 such that ‖f(x)‖ ≤ α for all x ∈ D.

The next theorem shows that if a monotone function on R is bounded,
then its limit exists and is finite.

Theorem 2.10 (Monotone Convergence Theorem). Let f : R → R

be decreasing (respectively, increasing) on R and assume that there exists
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γ ∈ R such that f(x) ≥ γ, x ∈ R (respectively, f(x) ≤ γ, x ∈ R). Then
limx→∞ f(x) exists.

Proof. Assume f is decreasing and bounded below, that is, there exists
γ ∈ R such that f(x) ≥ γ, x ∈ R. Let α = infx∈R f(x) and note that α ≥ γ
since f(x) ≥ γ, x ∈ R. It follows from the definition of infimum that for
every ε > 0 there exists xε ∈ R such that α ≤ f(xε) < α+ ε, which implies
that α ≤ f(x) < α + ε, x ≥ xε. Hence, for every ε > 0, there exists xε ∈ R

such that 0 ≤ f(x) − α < ε, x ≥ xε, which implies that limx→∞ f(x) = α.
The proof for the case where f is increasing and bounded above follows using
identical arguments and, hence, is omitted.

The next definition introduces the very important notion of continuity
of a function at a point. The notion of continuity allows one to deduce the
behavior of a function in a neighborhood of a given point by using knowledge
of the value of the function at that point.

Definition 2.28. Let D ⊆ Rn, f : D → Rn, and x ∈ D. Then f is
continuous at x ∈ D if, for every ε > 0, there exists δ = δ(ε, x) > 0 such that
‖f(x) − f(y)‖ < ε for all y ∈ D satisfying ‖x − y‖ < δ. f is discontinuous
at x if f is not continuous at x.

Definition 2.28 is equivalent to

f(Bδ(x)) ⊂ Bε(f(x)). (2.48)

In particular, for every open ball Bε(f(x)) there exists an open ball Bδ(x)
such that the points of Bδ(x) are mapped into Bε(f(x)). It follows from
(2.48) that

Bδ(x) ⊂ f−1(Bε(f(x))), (2.49)

that is, the open ball Bδ(x) of radius δ > 0 and center x lies in the subset
f−1(Bε(f(x))) of D. (See Figure 2.2.)

An equivalent statement for continuity at a point can be given in terms
of convergent sequences. Specifically, f : D → Rn is continuous at x if, for
every sequence {xn}∞n=1 ⊂ D such that limn→∞ xn = x, limn→∞ f(xn) =
f(x) or, equivalently, limn→∞ f(xn) = f(limn→∞ xn). To see the equivalence
between this definition and Definition 2.28, assume f is continuous at x0 so
that for every ε > 0 there exists δ > 0 such that ‖x − x0‖ < δ implies
‖f(x) − f(x0)‖ < ε, x ∈ D. Now, take any sequence {xn}∞n=1 ⊂ D which
converges to x0 ∈ D. Hence, for the given δ > 0, there exists an integer
N such that n > N implies ‖xn − x0‖ < δ. Since ‖f(x) − f(x0)‖ < ε
whenever x ∈ D and ‖x − x0‖ < δ, it follows that ‖f(xn) − f(x0)‖ < ε for
n > N , and hence, {f(xn)}∞n=1 converges to f(x0). This shows sufficiency.
To show necessity, assume for every sequence {xn}∞n=1 ⊂ D such that xn →
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Figure 2.2 Continuity of f : X → Y at x.

x0, f(xn) → f(x0) as n → ∞. Now, suppose, ad absurdum, for some
ε > 0 and every δ > 0 there exists x ∈ D such that ‖x − x0‖ < δ and
‖f(x)− f(x0)‖ ≥ ε. Choose δ = 1/n, n = 1, 2, . . .. This implies there exists
a corresponding sequence of points {xn}∞n=1 ⊂ D such that ‖xn −x0‖ < 1/n
and ‖f(xn) − f(x0)‖ ≥ ε. Clearly, the sequence {xn}∞n=1 converges to x0;
however, the sequence {f(xn)}∞n=1 does not converge to f(x0), leading to a
contradiction. This proves necessity.

The function f is said to be continuous on D if f is continuous at every
point x ∈ D. The next proposition establishes the fact that the continuous
image of a compact set is compact.

Proposition 2.14. Let Dc ⊂ Rm be a compact set and let f : Dc → Rn

be continuous on Dc. Then the image of Dc under f is compact.

Proof. Let {yn}∞n=1 be a sequence in the range of f . In this case, there
exists a corresponding sequence {xn}∞n=1 ⊂ Dc such that yn = f(xn). Since
Dc is compact, it follows from Theorem 2.4 that there exists a subsequence
{xnk

}∞k=1 ⊆ {xn}∞n=1 such that limk→∞ xnk
= x ∈ Dc. Now, since f is

continuous it follows that limk→∞ f(xnk
) = f(limk→∞ xnk

) = f(x) ∈ f(Dc).
Hence, {yn}∞n=1 has a convergent subsequence in f(Dc), and hence, by
Theorem 2.4, f(Dc) is compact.

It is important to note that the existence of δ in Definition 2.28 is in
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general dependent on both ε and x. In the case where δ is not a function of
the point x we have the stronger notion of uniform continuity over the set
D.

Definition 2.29. Let D ⊆ Rn and f : D → Rn. Then f is uniformly
continuous on D if, for every ε > 0, there exists δ = δ(ε) > 0 such that
‖f(x) − f(y)‖ < ε for all x, y ∈ D satisfying ‖x− y‖ < δ.

Note that if f : D → Rn is uniformly continuous on D, then f is
continuous at every x ∈ D. The converse of this statement, however, is not
true.

Example 2.14. The function f : (0,∞) → R defined by f(x) = 1/x
is continuous at every point in (0,∞) but is not uniformly continuous on
(0,∞). For example, let D = (0, 1). Clearly, f is continuous on D but not
uniformly continuous on D. To see this, let ε > 1 be such that 1/ε < δ, and
let x = 1/ε and y = 1/(ε+ 1). Note that x, y ∈ D. In this case,

|x− y| =

∣

∣

∣

∣

1

ε
− 1

ε+ 1

∣

∣

∣

∣

=
1

ε(ε+ 1)
<

1

ε
< δ.

However,
|f(x) − f(y)| = |ε− (ε+ 1)| = 1 > ε.

Hence, for these two points we have |f(x)− f(y)| > ε whenever |x− y| < δ,
contradicting the definition of uniform continuity. △

Example 2.15. The function f : D → R defined by f(x) = x2 is
uniformly continuous on D = (0, 1]. To see this, note that for all x, y ∈ D,

|f(x) − f(y)| = |x2 − y2| = |(x− y)(x+ y)| ≤ 2|x− y|.
If |x − y| < δ, then |f(x) − f(y)| < 2δ. Hence, given ε > 0, we need only
take δ = ε/2 to guarantee that |f(x) − f(y)| < ε for every x, y ∈ D such
that |x− y| < δ. Since δ is independent of x, this shows uniform continuity
on D. △

Example 2.16. The function f : D → R defined by f(x) = 1/(x2+1) is
uniformly continuous on D = [−1, 1]. To see this, note that for all x, y ∈ D,

|f(x) − f(y)| =

∣

∣

∣

∣

1

x2 + 1
− 1

y2 + 1

∣

∣

∣

∣

=

∣

∣

∣

∣

(y − x)(y + x)

(x2 + 1)(y2 + 1)

∣

∣

∣

∣

=
|y − x||y + x|
|x2 + 1||y2 + 1|

≤ |y − x||y + x|
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≤ (|y| + |x|)|y − x|
≤ 2|y − x|.

Hence, given ε > 0 we need only take δ = ε/2 to guarantee that |f(x) −
f(y)| < ε for every x, y ∈ D whenever |x − y| < δ. In particular, |f(x) −
f(y)| ≤ 2|x − y| < 2δ = ε. Since δ is independent of x, this shows uniform
continuity on D. △

Example 2.17. The signum function sgn : R → {−1, 0, 1} is defined as

sgn x
△
= x/|x|, x 6= 0, and sgn(0)

△
= 0. Since limx→0+ sgn(x) = 1 6= sgn(0),

the signum function is discontinuous at x = 0. △

Example 2.16 shows that if a continuous function is defined on a
compact set, then the function is uniformly continuous. In other words, for
compact sets, continuity implies uniform continuity. This fact is established
in the following proposition.

Proposition 2.15. Let Dc ⊂ Rm be a compact set and let f : Dc → Rn

be continuous on Dc. Then f is uniformly continuous on Dc.

Proof. Suppose, ad absurdum, that f is not uniformly continuous
on Dc. In this case, there exists ε > 0 for which no δ = δ(ε) > 0 exists
such that ‖f(x) − f(y)‖ < ε for all x, y ∈ Dc satisfying ‖x − y‖ < δ. In
particular, none of the δ’s given by δ = 1/2, 1/3, . . . , 1/n, . . . can be used.
Hence, for each n ∈ Z+, there exist xn, yn ∈ Dc such that ‖xn − yn‖ < 1/n
and ‖f(xn)− f(yn)‖ ≥ ε. Since Dc is compact, it follows from Theorem 2.4
that there exists a convergent subsequence {xnk

}∞k=1 ⊆ {xn}∞n=1 ⊆ Dc such
that

lim
k→∞

xnk
= x, x ∈ Dc. (2.50)

Now, using the fact that ‖xn−yn‖ < 1/n and ‖f(xn)−f(yn)‖ ≥ ε, it follows
that

lim
k→∞

(xnk
− ynk

) = 0. (2.51)

Next, subtracting (2.51) from (2.50) yields limk→∞ ynk
= x. Since f is

continuous it follows that

lim
k→∞

[f(xnk
) − f(ynk

)] = f(x) − f(x) = 0,

which implies that, for large enough k ∈ Z+, ‖f(xnk
) − f(ynk

)‖ < ε. This
leads to a contradiction.

Continuity can alternatively be characterized by the following propo-
sition.

Proposition 2.16. Let D ⊆ Rn and let f : D → Rn. Then f is
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continuous on D if and only if, for every open (respectively, closed) set
Q ⊆ Rn, the inverse image f−1(Q) ⊆ D of Q is open (respectively, closed)
relative to D.

Proof. Let f be continuous on D, let Q ⊆ Rn be open, and let x ∈
f−1(Q), that is, y

△
= f(x) ∈ Q. Since Q is open it follows that there exists

ε > 0 such that Bε(y) ⊆ Q, and since f is continuous at x it follows that
there exists δ > 0 such that f(x̂) ∈ Bε(y) for all x̂ ∈ Bδ(x) or, equivalently,
f(Bδ(x)) ⊆ Bε(y). Hence,

Bδ(x) ⊆ f−1(f(Bδ(x))) ⊆ f−1(Bε(y)) ⊆ f−1(Q),

which shows that f−1(Q) is open relative to D.

Conversely, assume that f−1(Q) is open relative to D for every open
Q ⊆ Rn. Let x ∈ D and let y = f(x). Since for every ε > 0, Bε(y) is
open in Rn it follows that f−1(Bε(y)) is open relative to D. Now, since
x ∈ f−1(Bε(y)), there exists δ > 0 such that Bδ(x) ⊆ f−1(Bε(y)), which
proves that f is continuous at x.

Finally, the proof of the statement f is continuous on D if and only if,
for every closed set Q ⊆ Rn, the inverse image f−1(Q) ⊆ D of Q is closed
relative to D is analogous to the proof given above and, hence, is omitted.

It follows from Proposition 2.16 that every level set and every sublevel
set of a continuous scalar-valued function is closed relative to the domain of
the function.

It is important to note that boundedness is not preserved by a
continuous mapping. For example, consider the continuous function f(x) =

1/x and consider the bounded set Q △
= (0, 1). Then f(Q) = (1,∞) is

not bounded. However, as shown in the next proposition, boundedness is
preserved under a uniformly continuous mapping.

Proposition 2.17. Let D ⊆ Rn, let Q ⊆ D be bounded, and let f :
D → Rn be uniformly continuous on Q. Then f(Q) is bounded.

Proof. Let ε > 0 be given. Since f is uniformly continuous on Q, there
exists δ > 0 such that ‖f(x)−f(y)‖ < ε for all x, y ∈ Q such that ‖x−y‖ < δ.

Now, since Q is bounded, there exists a finite subset Q̂ = {x1, . . . , xq}
of Q such that, for each x ∈ Q, there exists k ∈ {1, 2, . . . , q} such that
‖x− xk‖ < δ. Next, define

β
△
= max

1≤i,j≤q
‖f(xi) − f(xj)‖.
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Now, let x, y ∈ Q and xk, xl ∈ Q̂ be such that ‖x−xk‖ < δ and ‖y−xl‖ < δ.
Then,

‖f(x) − f(y)‖ ≤ ‖f(x) − f(xk)‖ + ‖f(xk) − f(xl)‖ + ‖f(xl) − f(y)‖
≤ 2ε + β.

Hence, f(Q) is bounded.

Even though the image of a bounded set under a continuous mapping
is not necessarily bounded, the image of a compact set under a continuous
function is compact. An identical statement is true for connected sets. For
details see Problem 2.54.

Example 2.18. Let D ⊂ R and let f : D → R be given by f(x) = 1/x.
For D = (1, 2), f is bounded on D since inf{1/x : 1 < x < 2} = 1/2 and
sup{1/x : 1 < x < 2} = 1. For D = [2,∞), f is also bounded on D since
inf{1/x : x ≥ 2} = 0 and sup{1/x : x ≥ 2} = 1/2. In this case, however,
the infimum of zero is not attained since the set {1/x : x ≥ 2} does not
contain zero. Finally, note that for D = (0, 1), f is not bounded on D since
sup{1/x : 0 < x < 1} = ∞. △

The next definition introduces the notion of lower semicontinuous and
upper semicontinuous functions at x ∈ D.

Definition 2.30. Let D ⊆ Rn, f : D → R, and x ∈ D. f is lower
semicontinuous at x ∈ D if for every sequence {xn}∞n=0 ⊂ D such that
limn→∞ xn = x, f(x) ≤ lim infn→∞ f(xn).

Note that a function f : D → R is lower semicontinuous at x ∈ D if
and only if for each α ∈ R the set {x ∈ D : f(x) > α} is open. Alternatively,
a bounded function f : D → R is lower semicontinuous at x ∈ D if and only
if for each ε > 0 there exists δ > 0 such that ‖x − y‖ < δ, y ∈ D, implies
f(x) − f(y) ≤ ε.

Definition 2.31. Let D ⊆ Rn, f : D → R, and x ∈ D. f is upper
semicontinuous at x ∈ D if for every sequence {xn}∞n=0 ⊂ D such that
limn→∞ xn = x, f(x) ≥ lim supn→∞ f(xn), or, equivalently, for each α ∈ R

the set {x ∈ D : f(x) < α} is open.

As in the case of continuous functions, a function f is said to be lower
(respectively, upper) semicontinuous on D if f is lower (respectively, upper)
semicontinuous at every point x ∈ D. Clearly, if f is both lower and upper
semicontinuous, then f is continuous. The function f(x) = −1 for x < 0
and f(x) = 1 for x ≥ 0 is upper semicontinuous at x = 0, but not lower
semicontinuous at x = 0. The floor function f(x) = ⌊x⌋, which returns the
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greatest integer less than or equal to a given x, is upper semicontinuous on
R. Similarly, the ceiling function f(x) = ⌈x⌉, which returns the smallest
integer greater than or equal to a given x, is lower semicontinuous on R.

Next, we present three key theorems due to Weierstrass involving
the existence of global minimizers and maximizers of lower and upper
semicontinuous functions on compact sets.

Theorem 2.11 (Weierstrass Theorem). Let Dc ⊂ Rn be compact and
let f : Dc → R be lower semicontinuous on Dc. Then there exists x∗ ∈ Dc

such that f(x∗) ≤ f(x), x ∈ Dc.

Proof. Let {xn}∞n=0 ⊂ Dc be a sequence such that limn→∞ f(xn) =
infx∈Dc

f(x). Since Dc is bounded, it follows from the Bolzano-Weierstrass
theorem (Theorem 2.3) that every sequence in Dc has at least one
accumulation point x∗. Now, since Dc is closed, x∗ ∈ Dc, and since f(·)
is lower semicontinuous on Dc, it follows that f(x∗) ≤ limn→∞ f(xn) =
infx∈Dc

f(x). Hence, f(x∗) = infx∈Dc
f(x).

Theorem 2.12. Let Dc ⊂ Rn be compact and let f : Dc → R be upper
semicontinuous on Dc. Then there exists x∗ ∈ Dc such that f(x∗) ≥ f(x),
x ∈ Dc.

Proof. The proof is identical to the proof of Theorem 2.11.

The following theorem combines Theorems 2.11 and 2.12 to show that
continuous functions on compact sets attain a minimum and maximum.

Theorem 2.13. Let Dc ⊂ Rn be compact and let f : Dc → R be
continuous on Dc. Then there exist xmin ∈ Dc and xmax ∈ Dc such that
f(xmin) ≤ f(x), x ∈ Dc, and f(xmax) ≥ f(x), x ∈ Dc.

Proof. Since f is continuous on Dc if and only if f is both lower and
upper semicontinuous on Dc, the result is a direct consequence of Theorems
2.11 and 2.12.

A slightly weaker notion of a continuous function on an interval I ⊂ R

is a piecewise continuous function on I, wherein the function is continuous
everywhere on an interval except possibly at a finite number of points in
every finite interval. For the next definition, recall that an interval is a
connected subset of R and for an interval I ⊆ R, the endpoints of I are the
boundary points of I that belong to I.

Definition 2.32. Let I ⊆ R and let f : I → Rn. Then f is piecewise
continuous on I if for every bounded subinterval I0 ⊂ I, f is continuous
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for all t ∈ I0 except at a finite number of points at which the left-side limit
f(t−)

△
= limh→0,h>0 f(t+h) and the right-side limit f(t+)

△
= limh→0,h>0 f(t−

h) exist. f is left continuous at t if f(t−) = f(t), and right continuous
at t if f(t+) = f(t). The function is left (respectively, right) piecewise
continuous if f is left (respectively, right) continuous at every point in the
interior of I and if I has a left endpoint t0, then f(t+0 ) = f(t0), while, if
I has a right endpoint tf , then f(t−f ) = f(tf). The function f : I → Rn is
piecewise continuously differentiable on I if f is piecewise continuous and
its first derivative exists and is piecewise continuous on each subinterval
Ik = {t : tk−1 < t < tk}, k = 1, . . . , n, of I, where tn = tf .

Note that a function f is piecewise continuous on [t0, t1] i) if it is
continuous on [t0, t1] at all but a finite number of points on (t0, t1); ii) if f
is discontinuous at t∗ ∈ (t0, t1), then the left and right limits of f(t) exist as
t approaches t∗ from the left and the right; and iii) if f is discontinuous at
t∗, then f(t∗) is equal to either the left or the right limit of f(t).

Example 2.19. Consider the function f : R → {0, 1} given by

f(x) =

{

1, x 6= 0,
0, x = 0.

(2.52)

Clearly, f is not continuous at x = 0. The left-side limit f(0−) and right-
side limit of f exist and satisfy f(0−) = f(0+) = 1. Hence, f is piecewise
continuous on R. However, f is neither left piecewise continuous nor right
piecewise continuous on R. △

Proposition 2.18. Let I ⊂ R be a compact interval and let f : I → Rn

be piecewise continuous on I. Then f(I) is bounded.

Proof. Since f is piecewise continuous on a compact interval I ⊆ R, by
definition, f is continuous on a finite number of intervals [t0, t1), (t1, t2), . . . ,
(tn−1, tn], where ∪n

k=1[tk−1, tk] = I. Furthermore, for every k ∈ {1, . . . , n},
the left-side and the right-side limits of f(t) exist as t approaches tk from

the left and the right. Hence, ηk
△
= supt∈(tk−1,tk) |f(t)| < ∞, which implies

that

|f(t)| ≤ max

{

max
k∈{1,...,n}

ηk, max
k∈{0,1,...,n}

f(tk)

}

,

proving that f(I) is bounded.

The next definition introduces the concept of Lipschitz continuity.

Definition 2.33. Let D ⊆ Rm and let f : D → Rn. Then f is Lipschitz
continuous at x0 ∈ D if there exists a Lipschitz constant L = L(x0) > 0 and
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a neighborhood N ⊂ D of x0 such that

‖f(x) − f(y)‖ ≤ L‖x− y‖, x, y ∈ N . (2.53)

f is Lipschitz continuous on D if f is Lipschitz continuous at every point in
D. f is uniformly Lipschitz continuous on D if there exists L > 0 such that

‖f(x) − f(y)‖ ≤ L‖x− y‖, x, y ∈ D. (2.54)

Finally, f is globally Lipschitz continuous if f is uniformly Lipschitz
continuous on D = Rm.

Note that a function can be Lipschitz continuous on D but not
uniformly Lipschitz continuous on D since the Lipschitz condition might
not hold for the same Lipschitz constant on D. For example, f(x) = x2

is Lipschitz continuous on R but not uniformly Lipschitz continuous on R.
However, if we restrict the domain to the closed interval [0, 1], then f(x) = x2

is uniformly Lipschitz continuous over [0, 1] with Lipschitz constant L = 2.
To see this, note that |x2−y2| = |x+y| |x−y| ≤ 2|x−y| for all x, y ∈ [0, 1].
For f : R → R the Lipschitz condition gives

|f(x) − f(y)|
|x− y| ≤ L, (2.55)

which implies that any line segment joining two arbitrary points on the graph
of f cannot have a slope greater than ±L. Hence, any function having an
infinite slope at a point x0 ∈ D is not Lipschitz continuous at x0. This of
course rules out all discontinuous functions from being Lipschitz continuous
at the point of discontinuity. Alternatively, if f is Lipschitz continuous at
a point x0 ∈ D, then f is clearly continuous at x0. The converse, however,
is not true. The same remarks hold for uniform Lipschitz continuity. In
particular, if f is uniformly Lipschitz continuous on D, then f is uniformly
continuous on D. Once again, the converse of this statement is not true.

Example 2.20. Consider the function f : R → R given by

f(x) =

{

x2 sin(1/x), x 6= 0,
0, x = 0.

(2.56)

For x 6= 0 and y = 0, it follows that

|f(x) − f(y)| = |f(x)|
= |x2 sin(1/x)|
≤ x2

≤ ρ|x|
= ρ|x− y|, |x| ≤ ρ. (2.57)
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Similarly, for x = 0 and y 6= 0, it follows that

|f(x) − f(y)| ≤ ρ|x− y|, |y| ≤ ρ. (2.58)

For x 6= 0 and y 6= 0, it follows that

|f(x) − f(y)| = |x2 sin(1/x) − y2 sin(1/y)|
= |(x2 − y2) sin(1/x) + y2(sin(1/x) − sin(1/y))|
≤ |(x2 − y2) sin(1/x)| + |y2(sin(1/x) − sin(1/y))|
≤ (|x+ y| + |y/x|)|x− y|.

Hence, f is Lipschitz continuous on R. △

In light of the above discussion we have the following propositions.

Proposition 2.19. Let D ⊆ Rm and f : D → Rn. If f is Lipschitz
continuous at x0 ∈ D, then f is continuous at x0.

Proof. Since f is Lipschitz continuous at x0 there exists L = L(x0) > 0
and a neighborhood N ⊂ D of x0 such that

‖f(x) − f(y)‖ ≤ L‖x− y‖, x, y ∈ N .

Now, for every ε > 0 let δ = δ(ε, x0) = ε/L. Hence, for all ‖x0 − y‖ < δ,
it follows that ‖f(x0) − f(y)‖ < Lδ = ε. The result is now immediate from
the definition of continuity.

The following result shows that uniform Lipschitz continuity implies
uniform continuity.

Proposition 2.20. Let D ⊆ Rn and let f : D → Rn. If f is uniformly
Lipschitz continuous on D, then f is uniformly continuous on D.

Proof. Since f is uniformly Lipschitz continuous on D it follows that
there exists L > 0 such that

‖f(x) − f(y)‖ ≤ L‖x− y‖, x, y ∈ D. (2.59)

Now, for a given ε > 0 let δ = ε/L. Hence, for all ‖x−y‖ < δ, it follows that
‖f(x)− f(y)‖ < Lδ = ε. The result is now immediate from the definition of
uniform continuity.

Lipschitz continuity is essentially a smoothness property almost
everywhere on D. Specifically, if f is continuously differentiable at x0 ∈ D,
then f is Lipschitz continuous at x0. The converse, however, is not true. A
simple counterexample is f(x) = |x|, x ∈ R, which is Lipschitz continuous at
x = 0 but not continuously differentiable at x = 0. Alternatively, if the (left
or right) derivative exists at some point x0, then it does not automatically
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imply that f is Lipschitz continuous at x0 since the existence of the derivative
of f at x0 does not automatically imply differentiability of f at x0. Of course,
if f ′(x) is continuously differentiable and bounded on D, then f is uniformly
Lipschitz continuous on D.

Next, we extend the above observations to vector-valued functions.
However, first we need the following definitions and results from mathemat-
ical analysis.

Definition 2.34. Let D ⊆ Rm be an open set. The function f : D →
Rn is differentiable at x0 ∈ D if there exists a linear transformationDf(x0) ∈
Rn×m satisfying

lim
‖h‖→0

‖f(x0 + h) − f(x0) −Df(x0)h‖
‖h‖ = 0, (2.60)

where x0 + h ∈ D and h 6= 0.

The linear transformation Df(x0) is called the derivative of f at x0.

We usually denote Df(x0) by ∂f
∂x(x0) or f ′(x0). A function f : Rm → Rn

is continuously differentiable at x0 if Df(x0) exists and is continuous at x0.
A function f is continuously differentiable on D ⊆ Rm if f is continuously
differentiable at all x ∈ D. A function f : Rm → Rn is differentiable on
Rm if f is differentiable at every point x ∈ Rm. If f is differentiable on
Rm, then f is continuous on Rm. To see this, let x0 ∈ Rm and assume f is
differentiable at x0. In this case, ‖f(x0 +h)−f(x0)‖/‖h‖ tends to a definite
limit Df(x0) as ‖h‖ → 0, and hence, ‖f(x0 + h) − f(x0)‖ → 0 as ‖h‖ → 0,
which implies that f is continuous at x0. However, not every continuous
function has a derivative at every point in D ⊆ Rm.

Example 2.21. Consider the function f : R → R given by f(x) = |x|.
Clearly, f is continuous at x = 0. However, for h > 0,

lim
h→0+

f(h) − f(0)

h
=
h− 0

h
= 1, (2.61)

whereas for h < 0,

lim
h→0−

f(h) − f(0)

h
=

−h− 0

h
= −1. (2.62)

Hence, f ′(0−) 6= f ′(0+), and hence, f is not differentiable at x = 0. △

Another important distinction is between differentiability and continu-
ous differentiability. In particular, if a function f is continuous on D and its
derivative exists at every point on D, then f is not necessarily continuously
differentiable on D. That is, it is not necessarily true that f ′ is continuous
on D.
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Example 2.22. Consider the function f : R → R given in Example
2.20. The derivative of f is given by

f ′(x) =

{

2x sin(1/x) − cos(1/x), x 6= 0,
0, x = 0,

(2.63)

and hence, f is differentiable everywhere on R. However, limx→0 f
′(x) does

not exist since f ′ is unbounded in every neighborhood of the origin. Thus, f ′

is not continuous at x = 0, and hence, although f is differentiable everywhere
on R, it is not continuously differentiable at x = 0. △

Definition 2.35. Let X and Y be open subsets of Rn and let f : X →
Y. Then f is a homeomorphism or a topological mapping of X onto Y if
f is a one-to-one continuous map with a continuous inverse. Furthermore,
X and Y are said to be homeomorphic or topologically equivalent . f is
a diffeomorphism of X onto Y if f is a homeomorphism and f and f−1

are continuously differentiable. In this case, X and Y are said to be
diffeomorphic.

Example 2.23. Consider the function f : (−1, 1) → R defined by
f(x) = tan(πx

2 ). Clearly, f is one-to-one and continuous on (−1, 1). The

inverse function f−1 : R → (−1, 1) given by x = 2
π tan−1 f(x) is also

continuous, and hence, f is a homeomorphism and (−1, 1) and R are
homeomorphic. △

If ‖h‖ in (2.60) is sufficiently small, then x+ h ∈ D, since D is open.
Hence, f(x+ h) is defined, f(x+h) ∈ Rn, and, since Df(x) : Rm → Rn is a
linear operator, Df(x)h ∈ Rn. The next proposition shows that the linear
transformation Df(x0) ∈ Rn×m satisfying (2.60) is unique.

Proposition 2.21. Let D and f : D → Rn be as in Definition 2.34 and
let x ∈ D. Then Df(x) : Rm → Rn satisfying (2.60) is unique.

Proof. Suppose, ad absurdum, that (2.60) holds with Df(x) = X and

Df(x) = Y , where X 6= Y . Define Z
△
= X − Y and note that

‖Zh‖ = ‖f(x+ h) − f(x) + Y h− f(x+ h) + f(x) −Xh‖
≤ ‖f(x+ h) − f(x) −Xh‖ + ‖ − f(x+ h) + f(x) + Y h‖
= ‖f(x+ h) − f(x) −Xh‖ + ‖f(x+ h) − f(x) − Y h‖,

which implies that ‖Zh‖/‖h‖ → 0 as ‖h‖ → 0. Now, for fixed h 6= 0,
it follows that ‖εZh‖/‖εh‖ → 0 as ε → 0, and hence, Zh = 0 for every
h ∈ Rm. Thus, Z = X − Y = 0, which leads to a contradiction.
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Note that (2.60) can be rewritten as

f(x+ h) − f(x) = f ′(x)h+ r(h), (2.64)

where the remainder r(h) satisfies

lim
‖h‖→0

‖r(h)‖
‖h‖ = 0. (2.65)

Hence, for a fixed x ∈ D ⊆ Rm and sufficiently small h, the left-hand side
of (2.64) is approximately equal to f ′(x)h. If f : D → Rn and D is as in
Definition 2.34, and if f is differentiable on D, then for every x ∈ D, f ′(x)
is a linear transformation on Rm into Rn. Note that if follows from (2.64)
that f is continuous at any point at which f is differentiable.

Next, we introduce the notion of a partial derivative of the function
f = [f1, . . . , fn]T : D → Rn. Let {e1, . . . , em} and {v1, . . . , vn} be normalized
bases of Rm and Rn, respectively. In this case,

f(x) =

n
∑

i=1

fi(x)vi, x ∈ D, (2.66)

or, equivalently, fi(x) = fT(x)vi, i = 1, . . . , n. Now, for x ∈ D and i =
1, . . . , n, j = 1, . . . ,m, define

Djfi(x)
△
= lim

ε→0

fi(x+ εej) − fi(x)

ε
, (2.67)

whenever the limit on the right-hand side exists. Hence, noting that fi(x) =
fi(x1, . . . , xm) it follows that Djfi(x) is the derivative of fi with respect
to xj, keeping the other variables fixed. We usually denote Djfi(x) by
∂fi

∂xj
and call ∂fi

∂xj
a partial derivative. The next theorem shows that if f

is differentiable at x ∈ D, then its partial derivatives exist at x, and they
completely determine f ′(x).

Theorem 2.14. Let D ⊆ Rm be open and f = [f1, . . . , fn]T : D → Rn,
and suppose f is differentiable at x ∈ D. Then Djfi(x), i = 1, . . . , n,
j = 1, . . . ,m, exist, and

f ′(x)ej =
n
∑

i=1

Djfi(x)vi, j = 1, . . . ,m. (2.68)

Proof. Let j ∈ {1, . . . ,m} and note that since f is differentiable at x,

f(x+ εej) − f(x) = f ′(x)(εej) + r(εej), (2.69)
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where ‖r(εej)‖/ε → 0 as ε→ 0. Since f ′(x) is linear it follows that

lim
ε→0

f(x+ εej) − f(x)

ε
= f ′(x)ej , (2.70)

or, equivalently,

lim
ε→0

n
∑

i=1

fi(x+ εej) − fi(x)

ε
vi = f ′(x)ej , (2.71)

where {e1, . . . , em} and {v1, . . . , vn} are normalized bases of Rm and Rn,
respectively. Now, since each quotient in (2.71) has a limit as ε → 0, it
follows that Djfi(x), i = 1, . . . , n, j = 1, . . . ,m, exist. Finally, (2.68) follows
from (2.71).

The next theorem gives necessary and sufficient conditions for a
function to be continuously differentiable on D ⊆ Rm.

Theorem 2.15. Let D ⊆ Rm be open and f = [f1, . . . , fn]T : D → Rn.

Then f is continuously differentiable on D if and only if ∂fi

∂xj
, i = 1, . . . , n,

j = 1, . . . ,m, exist and are continuous on D.

Proof. Assume f is continuously differentiable on D and note that
it follows from (2.68) that Djfi(x) = (f ′(x)ej)Tvi for all i = 1, . . . , n, j =
1, . . . ,m, and all x ∈ D, where {e1, . . . , em} and {v1, . . . , vn} are normalized
bases of Rm and Rn, respectively. Hence, for i = 1, . . . , n, j = 1, . . . ,m, and
x, y ∈ D,

Djfi(y) −Djfi(x) = [(f ′(y) − f ′(x))ej ]
Tvi. (2.72)

Now, using the Cauchy-Schwarz inequality and the fact that ‖vi‖ = ‖ej‖ = 1
it follows from (2.72) that for i = 1, . . . , n, j = 1, . . . ,m, and x, y ∈ D,

|Djfi(y) −Djfi(x)| = |[(f ′(y) − f ′(x))ej ]
Tvi|

≤ ‖[f ′(y) − f ′(x)]ej‖
≤ ‖f ′(y) − f ′(x)‖, (2.73)

which shows that Djfi(x), i = 1, . . . , n, j = 1, . . . ,m, is continuous on D.

To prove the converse, it suffices to consider the case where n = 1. Let
x ∈ D and ε > 0, and note that since D is open, there exists r > 0 such that
Br(x) ⊂ D. Now, it follows from the continuity of Djf(x), j = 1, . . . ,m,
that r can be chosen so that |Djf(y) − Djf(x)| < ε/m, y ∈ Br(x), and
j = 1, . . . ,m.

Next, let h =
∑m

j=1 ej be such that ‖h‖ < r and let uk = h1e1 + · · · +
hkek, k ∈ {1, . . . ,m}, with u0

△
= 0. Now, writing the difference f(x+ h) −
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f(x) as a telescoping sum yields

f(x+ h) − f(x) =
m
∑

j=1

[f(x+ uj) − f(x+ uj−1)]. (2.74)

Since ‖uk‖ < r for k ∈ {1, . . . ,m} and since Br(x) is convex, it follows that
{zj : zj = µj(x + uj−1) + (1 − µj)(x + uj), µj ∈ (0, 1)} ⊂ Br(x). Using
the mean value theorem from calculus and noting that uj = uj−1 + hjej , it
follows that the jth summand of (2.74) is equal to hjDjf(x+uj−1+µjhjej).
Hence, for j = 1, . . . ,m,

|hjDjf(x+ uj−1 + µjhjej) − hjDjf(x)| < |hj |ε/m.
Now, it follows from (2.74) that

∣

∣

∣

∣

∣

∣

f(x+ h) − f(x) −
m
∑

j=1

hjDjf(x)

∣

∣

∣

∣

∣

∣

≤ 1

m

m
∑

j=1

|hj |ε ≤ ‖h‖1ε (2.75)

for all h such that ‖h‖1 < r.

Equation (2.75) implies that f is differentiable at x and f ′(x) is a linear
map assigning the number

∑m
j=1 hjDjf(x) to the vector h =

∑m
j=1 hjej .

Now, since the gradient f ′(x) = [D1f(x), . . . ,Dmf(x)] and Djf(x), j =
1, . . . ,m, are continuous functions on D, it follows that f is continuously
differentiable on D.

In the case where f : Rn → R is continuously differentiable, ∂f
∂x =

f ′(x) = [ ∂f
∂x1

, . . . , ∂f
∂xn

] ∈ R1×n is called the gradient of f at x. Alternatively,

for a continuously differentiable function f : Rm → Rn, ∂f
∂x = f ′(x) ∈ Rn×m

is called the Jacobian of f at x and is given by

f ′(x) =













∂f1

∂x1
(x) ∂f1

∂x2
(x) · · · ∂f1

∂xm
(x)

∂f2

∂x1
(x) ∂f2

∂x2
(x)

...
...

...
. . .

...
∂fn

∂x1
(x) · · · · · · ∂fn

∂xm
(x)













. (2.76)

Higher-order derivatives f (r)(x0) of a function f : D → Rn are defined in a
similar way, and it can be shown that similar theorems to Theorem 2.15 hold
for a function to be r-times continuously differentiable on D. For details the
interested reader is referred to [373, p. 235].

Next, we present the chain rule for vector-valued functions. In
particular, let D ⊆ Rm, let f : D → Rn be continuously differentiable
at x0 ∈ D, and let g : f(D) → Rl, where f(D) is open and g is
continuously differentiable at f(x0). Then the function h : D → Rl given by
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h(x) = g(f(x)) is continuously differentiable at x0, and ∂h
∂x (x0) is given by

∂h

∂x
(x0) =

∂g

∂f
(f(x0))

∂f

∂x
(x0). (2.77)

Finally, we present three important results from mathematical analysis. The
proofs of these theorems can be found in any analysis or advanced calculus
textbook, and hence, are not given here.

Theorem 2.16 (Mean Value Theorem). Let D ⊆ Rn be open, let
f : D → Rm be continuously differentiable in D, and assume there exist
x, y ∈ D such that L △

= {z : z = µx+ (1 − µ)y, µ ∈ (0, 1)} ⊂ D. Then for
every v ∈ Rm there exists z ∈ L such that

vT[f(y) − f(x)] = vT[f ′(z)(y − x)]. (2.78)

Theorem 2.17 (Inverse Function Theorem). Let D ⊆ Rn be open,
let f : D → Rn be continuously differentiable on D, and assume there exists
x0 ∈ D such that det f ′(x0) 6= 0. Then there exists a neighborhood N of
f(x0) and a unique function g : N → D such that f(g(y)) = y for all y ∈ N .
Furthermore, the function g is continuously differentiable on N .

It follows from the inverse function theorem that if f : Rn → Rn is a
bijection with det f ′(x) = 0 for some x ∈ Rn, then f−1 is not differentiable
at f(x). To see this, assume, ad absurdum, that f−1 is differentiable at f(x)
and note that (f−1 ◦ f)(x) = x. Now, it follows from the chain rule (2.77)
that

∂f−1

∂f
(f(x))

∂f

∂x
(x) = Df−1(f(x)) ◦Df(x)

= D(f−1 ◦ f)(x)

= In, (2.79)

and hence, det Df−1(f(x)) det Df(x) = 1. This contradicts the fact that
det Df(x) = 0.

Theorem 2.18 (Implicit Function Theorem). Let D ⊆ Rn and Q ⊆
Rm be open, and let f : D ×Q → Rn. Suppose f(x0, y0) = 0 for (x0, y0) ∈
D×Q and suppose the Jacobian matrix ∂f

∂x (x0, y0) is nonsingular. Then there
exist neighborhoods U ⊂ D of x0 and V ⊂ Q of y0 such that f(x, y) = 0,
y ∈ V, has a unique solution x ∈ U . Moreover, there exists a continuously
differentiable function g : V → U at y = y0 such that x = g(y).

The implicit function theorem can be used to guarantee the existence
of a feedback controller that provides a characterization of an equilibrium
manifold. Specifically, consider the dynamical system (2.1) with F (t, x, u) =
F (x, u), where F : D × U → Rn and D ⊆ Rn and U ⊆ Rm. If there exists
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ue ∈ U such that F (xe, ue) = 0, then (xe, ue) is an equilibrium point of (2.1).
Since F is an implicit function, it follows that to find a feedback control law
to solve the implicit equation F (x, u) = 0 we require the existence of a
function φ : D → Rm such that the explicit equation u = φ(x) is satisfied.
If such a function exists, then F (x, φ(x)) = 0. Now, suppose there exists
(xe, ue) ∈ D×U such that F (xe, ue) = 0. If det∂F

∂u (xe, ue) 6= 0, then it follows
from the implicit function theorem that there exist open neighborhoods X
and U of xe and ue, respectively, such that, for each x ∈ X , there exists a
unique feedback control law φ : X → Rm such that i) φ(xe) = ue, ii) φ is
continuously differentiable in X , and iii) F (x, φ(x)) = 0 for all x ∈ X .

Next, using the above results we concretize our previous observations
on scalar Lipschitz continuous functions to vector-valued functions. Our first
result shows that continuous differentiability implies Lipschitz continuity.

Proposition 2.22. Let D ⊆ Rn be open and let f : D → Rn. If f is
continuously differentiable on D, then f is Lipschitz continuous on D.

Proof. Since D is open, for a given x0 ∈ D there exists ε > 0 such that
Bε(x0) ⊂ D. Now, since f ′(x) is continuous on D it follows from Theorem
2.13 that L = max‖x−x0‖≤ε ‖f ′(x)‖′ exists, where ‖ · ‖′ is the equi-induced
matrix norm generated by the vector norm ‖·‖. Next, for some x, y ∈ Bε(x0),
set z = y − x. Since Bε(x0) is a convex set, it follows that x+ µz ∈ Bε(x0),

µ ∈ [0, 1]. Now, define the function g : [0, 1] → Rn by g(µ)
△
= f(x + µz).

Using the chain rule, it follows that g′(µ) = f ′(x+ µz)z, and hence,

f(y) − f(x) = g(1) − g(0) =

∫ 1

0
g′(µ)dµ =

∫ 1

0
f ′(x+ µz)zdµ. (2.80)

Thus,

‖f(y) − f(x)‖ ≤
∫ 1

0
‖f ′(x+ µz)z‖dµ

≤
∫ 1

0
‖f ′(x+ µz)‖′‖z‖dµ

≤ L‖z‖
= L‖y − x‖, (2.81)

for all x, y ∈ Bε(x0).

The next result shows that if D is compact, then Lipschitz continuity
implies uniform Lipschitz continuity.

Proposition 2.23. Let D ⊆ Rn, let Dc ⊂ D be a compact set, and let
f : D → Rn. If f is Lipschitz continuous on D, then f is uniformly Lipschitz
continuous on Dc.
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Proof. Since f : D → Rn is continuous on the compact set Dc it
follows that α = maxx∈Dc

f(x) exists. Now, suppose, ad absurdum, that f
is not uniformly Lipschitz continuous on Dc. Then, for every L > 0, there
exists x, y ∈ Dc such that ‖f(y) − f(x)‖ > L‖y − x‖. In particular, there
exist sequences {xn}∞n=1 and {yn}∞n=1 ⊆ Dc such that

‖f(yn) − f(xn)‖ > n‖yn − xn‖, n ∈ Z+. (2.82)

Now, since Dc is a compact set, it follows from the Bolzano-Lebesgue
theorem (Theorem 2.4) that there exist subsequences {xnk

}∞k=1 and {ynk
}∞k=1

such that xnk
→ x∗ ∈ Dc and ynk

→ y∗ ∈ Dc as k → ∞. Since nk ∈ Z+, it
follows that

‖y∗ − x∗‖ = lim
k→∞

‖ynk
− xnk

‖ ≤ 1

nk
‖f(ynk

) − f(xnk
)‖ ≤ 2α

nk
, (2.83)

and hence, x∗ = y∗. Now, since f is Lipschitz continuous on D, there exists
a neighborhood N ⊂ D of x∗ and a Lipschitz constant L = L(x∗) > 0 such
that

‖f(y) − f(x)‖ ≤ L‖y − x‖, x, y ∈ N . (2.84)

Since xnk
→ x∗ and ynk

→ y∗ as k → ∞ it follows that for sufficiently large
n, xnk

and ynk
∈ N , and hence,

‖f(ynk
) − f(xnk

)‖ ≤ L‖ynk
− xnk

‖. (2.85)

For n ≥ L, (2.85) contradicts (2.82). Hence, f is uniformly Lipschitz
continuous on D.

The following proposition is a direct consequence of Proposition 2.22.

Proposition 2.24. Let D ⊆ Rn and let f : D → Rn be continuous on
D. If f ′ exists and is continuous on D, then f is Lipschitz continuous on D.

Proof. It follows from Theorem 2.15 that the existence and continuity
of f ′ on D implies that f is continuously differentiable on D. Now, the result
is a direct consequence of Proposition 2.22.

Proposition 2.25. Let D ⊆ Rn, C ⊂ D be a convex set, and let f :
D → Rn. Suppose f ′ exists and is continuous on D. If there exists L > 0
such that ‖f ′(x)‖ ≤ L for all x ∈ C, then f is uniformly Lipschitz continuous
on C.

Proof. It follows from Theorem 2.15 that the existence and continuity
of f ′ on D implies that f is continuously differentiable on D. Now, it follows
as in the proof of Proposition 2.22 with Bε(x0) replaced by C that

‖f(x) − f(y)‖ ≤ L‖x− y‖, x, y ∈ C,
which implies the result since L is independent of x and y.
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Finally, we provide necessary and sufficient conditions for a function
f to be globally Lipschitz continuous.

Proposition 2.26. Let f : Rn → Rn be continuously differentiable on
Rn. Then f is globally Lipschitz continuous if and only if there exists L > 0
such that ‖f ′(x)‖ ≤ L for all x ∈ Rn.

Proof. Sufficiency is a direct consequence of Proposition 2.25 with
C = Rn. To show necessity suppose f is globally Lipschitz continuous with
the Lipschitz constant L. Now, since f(·) is continuously differentiable on
Rn, it follows from Definition 2.34 and Theorem 2.15 that for every x ∈ Rn

and ε > 0, there exists δ > 0 such that
∥

∥

∥

∥

f(y) − f(x) − ∂f

∂x
(x)(y − x)

∥

∥

∥

∥

≤ ε‖y − x‖, y ∈ Bδ(x). (2.86)

Next, note that
∥

∥

∥

∥

∂f

∂x
(x)(y − x)

∥

∥

∥

∥

≤ ‖f(y) − f(x)‖ +

∥

∥

∥

∥

f(y) − f(x) − ∂f

∂x
(x)(y − x)

∥

∥

∥

∥

≤ (L+ ε)‖y − x‖, y ∈ Bδ(x), (2.87)

and hence,
∥

∥

∥

∥

∂f

∂x
(x)z

∥

∥

∥

∥

≤ (L+ ε)‖z‖, z ∈ Bδ(0). (2.88)

Thus,
∥

∥

∥

∥

∂f

∂x
(x)

∥

∥

∥

∥

= max
z∈Bδ(0)

‖∂f
∂x (x)z‖
‖z‖ ≤ (L+ ε), (2.89)

where ‖ · ‖ : Rn×n → R is the equi-induced matrix norm induced by the
vector norm ‖ · ‖ : Rn → R. Finally, since ε is arbitrary it follows that

‖∂f
∂x(x)‖ ≤ L, which proves the result.

Note that ‖f ′(x)‖ ≤ L, x ∈ Rn, is equivalent to saying that f ′ is
uniformly bounded , that is, the bound is independent of x in Rn.

2.5 Vector Spaces and Banach Spaces

In this section, we introduce concepts involving linear vector spaces, normed
linear spaces, and Banach spaces. First, however, we introduce the concepts
of binary operations, semigroups, groups, rings, and fields. Let V be a set
which may be finite or infinite. A binary operation ◦ takes any two elements
x, y ∈ V and transforms them to z = x ◦ y, not necessarily in V. A binary
operation ◦ is said to be closed if, for every x, y ∈ V, x ◦ y ∈ V. Hence, a
closed binary operation is a mapping φ : V×V → V defined by φ(x, y) = x◦y.
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An algebraic system (V, ◦) is a nonempty set V with the binary operation
◦ : V × V → V.

A semigroup (S, ◦) is a nonempty set S with associativity of the binary
operation ◦ such that S is closed. That is, x ◦ y ∈ S for all x, y ∈ S, and
x ◦ (y ◦ z) = (x ◦ y) ◦ z for all x, y, z ∈ S. A group (G, ◦) is a nonempty set G

with a binary operation ◦ such that i) G is closed under ◦, ii) ◦ is associative
in G, iii) there exists an identity element 1 ∈ G such that x ◦ 1 = x = 1 ◦ x
for all x ∈ G, and iv) for each x ∈ G, there exists a unique inverse x−1 ∈ G

such that x ◦ x−1 = 1 = x−1 ◦ x. An Abelian group is a group (G, ◦) with
commutativity of the binary operation, that is, x ◦ y = y ◦x for all x, y ∈ G.

A ring (R,+, ·) is a nonempty set R with the two binary operations
of addition (+) and multiplication (·) connected by distributive laws. That
is, x · (y + z) = x · y + x · z and (y + z) · x = y · x+ y · z for all x, y, z ∈ R.
Here we assume that (R,+) is an Abelian group with the identity element
denoted by 0 ∈ R and (R, ·) is a semigroup with respect to multiplication
with the identity element 1 ∈ R. Furthermore, 0 is referred to as the zero
element and the elements x ∈ R, x 6= 0, are referred to as nonzero elements.
Finally, a field F is a commutative ring with 1 ∈ F and with the nonzero
elements in F forming a group under the binary operation of multiplication.

For the following definition we let F denote a field. For example, F can
denote the field of real numbers, the field of complex numbers, the binary
field, the field of rational functions, etc.

Definition 2.36. A linear vector space (V,+, ·) over a field F is a set
V with the (addition and multiplication) operations + : V × V → V and
· : F × V → V such that the following axioms hold:

i) (Commutativity of addition): x+ y = y + x for all x, y ∈ V.

ii) (Associativity of addition): x+(y+ z) = (x+ y)+ z for all x, y, z ∈ V.

iii) (Existence of additive identity): For every x ∈ V, there exists a unique
element 0 ∈ V such that 0 + x = x+ 0 = x.

iv) (Existence of additive inverse): For every x ∈ V, there exists −x ∈ V
such that x+ (−x) = 0.

v) α(βx) = (αβ)x for all α, β ∈ F and x ∈ V.

vi) α(x+ y) = αx+ αy for all α ∈ F and x, y ∈ V.

vii) (α+ β)x = αx+ βx for all α, β ∈ F and x ∈ V.

viii) For every x ∈ V and the identity element 1 ∈ F, 1 · x = x.
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Henceforth, unless otherwise stated, we choose F = R. There are many
examples of linear vector spaces. As a first example note that the set Rn

constitutes a linear vector space with addition and scalar multiplication
defined in the usual way. In particular, for x = [x1, . . . , xn]T, y =
[y1, . . . , yn]T, and α ∈ R, with addition and scalar multiplication defined
as

x+ y
△
= [x1 + y1, . . . , xn + yn]T, (2.90)

αx
△
= [αx1, . . . , αxn]T, (2.91)

x, y satisfy Axioms i)–viii) of Definition 2.36, and hence, Rn is a real linear
vector space. As another example consider vector-valued functions f(·)
defined on [a, b], that is, f : [a, b] → Rn. Then the set of such functions
constitutes a linear vector space since αf(·) can be defined by

(αf)(t)
△
= αf(t), t ∈ [a, b], (2.92)

and (f + g)(·) can be defined by

(f + g)(t)
△
= f(t) + g(t), t ∈ [a, b], (2.93)

where addition and scalar multiplication in the right-hand side of (2.92) and
(2.93) are defined as in (2.90) and (2.91). Many different linear vector spaces
can be created by specifying which functions are allowed. For examples,
we may admit continuous functions, differentiable functions, or bounded
functions. Each of these cases gives a different vector space.

Definition 2.37. Let V be a linear vector space and let S ⊂ V. Then
S is a subspace if αx+ βy ∈ S for all x, y ∈ S and α, β ∈ F.

Example 2.24. Consider the subset of R2 given by H = {(x1, x2) ∈
R2 : x2 ≥ 0}. Note that H is not a subspace since H is not an additive
group, that is, H is not closed on taking negatives. However, the boundary
of H given by ∂H = {(x, 0) : x ∈ R} ⊂ R2 is a subspace of R2. △

Let {x1, . . . , xm} ⊂ Rn. Then the set of all vectors of the form α1x1+
· · ·+αmxm, where αi ∈ R, i = 1, . . . ,m, is a subspace of Rn. This subspace
is called the span of {x1, . . . , xm} and is denoted by span{x1, . . . , xm}.

Proposition 2.27. Let M and N be subspaces of a linear vector space
V. Then M∩N is a subspace of V.

Proof. Note that 0 ∈ M ∩ N since 0 ∈ M and 0 ∈ N . Hence,
M∩N 6= Ø. Now, if x, y ∈ M∩N , then x, y ∈ M and x, y ∈ N . Next, for
every α, β ∈ F the vector αx+ βy ∈ M and αx + βy ∈ N since M and N
are subspaces. Hence, αx+ βy ∈ M∩N .
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Definition 2.38. Let V be a linear vector space and let M ⊂ V and
N ⊂ V. Then M + N = {x + y ∈ V : x ∈ M, y ∈ N} is called the sum of
M and N .

Proposition 2.28. Let M and N be subspaces of a linear vector space
V. Then M + N is a subspace.

Proof. First, note that 0 ∈ M + N since 0 ∈ M and 0 ∈ N . Next,
let x, y ∈ M + N . In this case, there exist vectors u, v ∈ M and w, z ∈ N
such that x = u + w and y = v + z. Now, for every α, β ∈ F, αx + βy =
(αu+ βv) + (αw+ βz), and hence, αx+ βy ∈ M+N for all x, y ∈ M+N
and α, β ∈ F.

Next, we introduce the notion of distance for a linear vector space.
As seen in Section 2.2, since norms provide a natural measure of distance,
endowing a linear vector space with a norm gives a normed linear space.

Definition 2.39. A normed linear space over a field F is a linear vector
space X with a norm ||| · ||| : X → R such that the following axioms hold:

i) |||x||| ≥ 0, x ∈ X .

ii) |||x||| = 0 if and only if x = 0.

iii) |||αx||| = |α||||x|||, x ∈ X , α ∈ F.

iv) |||x+ y||| ≤ |||x||| + |||y|||, x, y ∈ X .

In Definition 2.39 the notation ||| · ||| is used to denote a vector or
matrix operator (function) norm as opposed to ‖ · ‖, which is used to denote
a vector or matrix norm. In the case where X = Rn or X = Cn, ||| · ||| should
be interpreted as ‖ · ‖. (The reason for this change in notation will become
clear later.)

We can create a normed function space by assigning a norm to a linear
vector space. For example, for f : [0,∞) → R define

|||f ||| = sup
t∈[0,∞)

|f(t)|, (2.94)

where we allow only continuous functions f(·). Then it can be easily verified
that the conditions in Definition 2.39 with the norm ||| · ||| are satisfied. It is
important to note that in general many different norms can be assigned to
the same linear space.

Example 2.25. Consider the linear vector space Rn with norm ‖ · ‖∞ :
Rn → R defined by ‖x‖∞ = maxi=1,...,n |x(i)|. Note that ‖ · ‖∞ satisfies
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Axioms i)–iii) of Definition 2.39 trivially. To show iv) let x = [x1, . . . , xn]T

and y = [y1, . . . , yn]T. Now,

‖x+ y‖∞ = max
i=1,...,n

|x(i) + y(i)| ≤ max
i=1,...,n

|x(i)|+ max
i=1,...,n

|y(i)| = ‖x‖∞ + ‖y‖∞,
(2.95)

and hence, iv) holds. Hence, the linear vector space Rn endowed with the
infinity norm is a normed linear space. In a similar fashion it can be shown
that Rn endowed with the absolute sum norm and the Euclidean norm are
normed linear spaces. △

In dynamical system theory, and in particular controlled dynamical
systems, the system input vector u(t) ∈ Rm, t ≥ 0, is often constrained to
lie in some compact set U ⊂ Rm. In addition, in certain applications, some
or all of the components of u(t) may be discontinuous with respect to t. In
this case, there might exist a finite or infinite number of times t where the
vector field F (·, ·), and hence, the derivative of the state vector ẋ in (2.1),
is discontinuous. To formally address such cases it is useful to quantify the
size of a set.

Let X be a normed vector space over Rm and let S ⊂ X . In addition,
let {Ai : i ∈ I} be a (possibly infinite) set of subsets such that S ⊆ ⋃i∈I Ai.
If, for each i ∈ I, Ai is an open set, then {Ai : i ∈ I} is called a cover
(or an open cover) of S. Furthermore, if {Ai : i ∈ I} = {A1, . . . ,An} is a
finite set, then {A1, . . . ,An} is called a finite cover of S.3 For a collection
S of bounded subsets of Rn, the measure µ : S → [0,∞) assigns to each set
in S a nonnegative number. (See [288] and Problem 2.71 for the properties
of µ(S).) A subset S ⊂ Rn is a set of measure zero if and only if for all
ε > 0, there exists a cover {A1,A2, . . .} of S, where Ai is an open (or
closed) n-dimensional symmetric polytope (or cube), such that the sum of
their volumes vol(Ai) is less than ε, that is,

∑∞
i=1 vol(Ai) < ε. Any finite or

countably infinite set of points in Rn has measure zero. A statement about
S ⊆ Rn holds almost everywhere (a.e.) in S if and only if the statement
holds for every element in S except for a subset of S with zero measure.

A measure on Rn is a natural generalization of the notion of length of
a line segment for n = 1, the area of a rectangle for n = 2, and the volume of
a parallelepiped for n = 3. In particular, for a closed interval I = [a, b], the
length ℓ(I) of the set I is given by ℓ(I) = b − a. Analogously, the volume
of an n-dimensional interval I = [a1, b1] × · · · × [an, bn] ⊂ Rn is given by
vol(I) = Πn

i=1(bi − ai). For n = 1, ℓ(I) = vol(I).

3If S ⊂ X , where X is a normed space, then S is compact if and only if every open cover of
S contains a finite subcollection of open sets that also covers S. In the case where S ⊂ Rn, this
definition is equivalent to the compactness definition given in Definition 2.14.
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Definition 2.40. Let S ⊆ Rn. The outer measure of S is defined by

µ∗(S) = inf
I

∑

Ij∈I
vol(Ij), (2.96)

where the infimum in (2.96) is taken over all countable collections I =
{Ij}∞j=1 of closed intervals such that S ⊂ ⋃∞

j=1 Ij .

Note that µ∗(Rn) = ∞ while µ∗(Ø) = 0.

Definition 2.41. Let S ⊆ Rn. S is Lebesgue measurable, or simply
measurable, if, for each ε > 0, there exists an open set Q ⊆ Rn such that
S ⊂ Q and

µ∗(Q\S) < ε. (2.97)

If S is measurable, then the Lebesgue measure (or measure) of S, denoted

by µ(S), is given by µ(S)
△
= µ∗(S).

It follows from Definition 2.41 that a measurable set can be approx-
imated arbitrarily closely, in terms of its outer measure, by open subsets
of Rn. Hence, every open set in Rn is measurable. More precisely, the
measurable sets of Rn are defined as the members of the smallest family of
sets of Rn containing all open, closed, and measure-zero sets of Rn, as well as
every difference, countable union, and countable intersection of its members.
Sets that are not measurable are exceptional and seldom encountered in
applications.

As noted in Section 2.4, if f : D → R is continuous on D ⊆ Rn, then
{x ∈ D : f(x) > α} is open for every α ∈ R. Using the notions of measurable
sets, one can define measurable functions as a generalization of continuous
functions.

Definition 2.42. Let D ⊆ Rn be measurable. The function f : D → R

is measurable on D if, for every α ∈ R, {x ∈ D : f(x) > α} is measurable.

It can be shown that a measurable function is continuous almost
everywhere in its domain of definition. On an interval I ⊂ R, a real-valued
function f : I → Rn is a measurable function on I if and only if it is the
pointwise limit, except for a set of measure zero, of a sequence of piecewise
constant functions on I. That is, if there exists a sequence of step functions
{sn}∞n=0 on I such that limn→∞ sn(x) = f(x) almost everywhere on I, then
f is a measurable function on I.

In the theory of Riemann integration, a piecewise continuous function
over the compact interval I = [a, b] ⊂ R, a continuous function over
the interval I, or a bounded function over the interval I with at most
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countable many discontinuities in every finite subinterval of I is integrable.
Specifically, we can ignore sets of measure zero points at which the function
is discontinuous since the value of the function can be altered arbitrarily
at these points without altering the value of the integral. That is, if
f : I ⊂ R → Rn and

∫ b

a
f(t)dt =

∫

I
f(t)dt (2.98)

exists and is finite, then
∫

I
f(t)dt =

∫

I\S
f(t)dt, (2.99)

where S ⊂ I = [a, b] has measure zero. If f : I → Rn and g : I → Rn are
equal almost everywhere in I, that is, f(t) = g(t) for all t ∈ I except on a
set of measure zero, then

∫

I
f(t)dt =

∫

I
g(t)dt. (2.100)

In light of the above discussion, the following theorem, due to
Lebesgue, presents necessary and sufficient conditions for Riemann inte-
grability of a bounded function.

Theorem 2.19. Let I ⊂ R be a compact interval and assume f : I →
Rn is bounded. Then f is Riemann integrable on I if and only if the set of
points at which f is discontinuous has zero measure.

It follows from Theorem 2.19 that a bounded function f on a compact
interval I is Riemann integrable on I if and only if f is continuous almost
everywhere on I.

Example 2.26. The functions f : R → {0, 1} and g : R → {0, 1}
defined by

f(x) =

{

1, x ∈ Z,
0, otherwise,

and

g(x) =

{

1, x ∈ Q,
0, otherwise,

where Q
△
= {x : x = p/q, p, q ∈ Z, q 6= 0}, are zero almost everywhere in

R. In addition, f(x) = g(x) almost everywhere in R. Since a set consisting
of a single point has measure zero (see Problem 2.72), it follows that every
countable subset of R has measure zero. In particular, the set of integers
Z and the set of rational numbers Q have measure zero. However, even
though Q is countable, it is not the set of discontinuities of g, whereas Z

is the set of discontinuities of f . Since Q is dense in R it follows that g is
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discontinuous at every point in R. Hence, it follows from Theorem 2.19 that
the Riemann integral of g does not exist on every compact interval of R,
whereas the Riemann integral of f does exist. △

As shown by Theorem 2.19, the concept of the Riemann integral
applies to piecewise continuous, continuous, and bounded functions with
at most countable many discontinuities over an interval I ⊂ R. However,
the Riemann integral of a general measurable function f , wherein f is
discontinuous everywhere or when f is defined on an abstract measurable
space (that is, an arbitrary set X equipped with a measure), cannot be
formed. For such functions, one has to use the more general notion of
Lebesgue integration [288]. The Lebesgue integral allows the integration of
more general (i.e., measurable) functions. In particular, for a function f
defined on a closed interval I ⊂ R, the Riemann integral of f is formed by
dividing I into subintervals, thereby grouping together neighboring points
of R. In contrast, the Lebesgue integral of f is formed by grouping together
points of R at which the function f takes neighboring values; that is, the
range of the function f rather than its domain is partitioned. Hence, the
Lebesgue integral is an extension of the Riemann integral in the sense that
whenever the Riemann integral exists its value is equal to the Lebesgue
integral.

For a given function f : D → R, where D ⊆ Rn, the Lebesgue integral
of f is denoted by

∫

D
f(x)dx. (2.101)

If f : D → R is measurable, where D ⊆ Rn is measurable, and if (2.101)
exists and is finite, then we say that f is Lebesgue integrable on D. In this
case, the set of integrable functions on D is denoted by

L(D)
△
=

{

f :

∫

D
f(x)dx <∞

}

. (2.102)

The following theorem gives necessary and sufficient conditions for Lebesgue
integrability.

Theorem 2.20. Let D be measurable and assume f : D → R is
measurable on D. Then f is Lebesgue integrable over D if and only if
|f | is Lebesgue integrable over D.

If (2.101) exists where D ⊆ Rn is measurable and f : D → R is
measurable on D, then

∣

∣

∣

∣

∫

D
f(x)dx

∣

∣

∣

∣

≤
∫

D
|f(x)|dx. (2.103)
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To see this, first note that, by Theorem 2.20, |f(x)|, x ∈ D, is Lebesgue
integrable over D. Next, let y =

∫

D f(x)dx and note that αy = |y|, where
|α| = 1. Now, since |αf | = |f |,
∣

∣

∣

∣

∫

D
f(x)dx

∣

∣

∣

∣

= α

∫

D
f(x)dx =

∫

D
αf(x)dx ≤

∫

D
|αf(x)|dx =

∫

D
|f(x)|dx,

which proves (2.103). Inequality (2.103) is known as the absolute value
theorem for integrals. In light of (2.103), the set of Lebesgue integrable
functions on D defined by (2.102) becomes

L(D) =

{

f : f is measurable and

∫

D
|f(x)|dx <∞

}

. (2.104)

Note that the measurability of f in (2.104) is included since it is possible
for |f | to be integrable but not measurable.

Finally, if D = I, where I is a measurable subset of R, f : I → R is
measurable on I, and f ∈ L(I), then

∫

I
f(t)dt =

∫

I\S
f(t)dt, (2.105)

where S ⊂ I has measure zero. Hence, the value of the integral over I is
not affected by removing the set S of measure zero from I. In addition, if
f(t) = g(t) almost everywhere in I, where g : I → R is measurable on I
and g ∈ L(I), then

∫

I
f(t)dt =

∫

I
g(t)dt. (2.106)

Analogous results hold for functions f and g defined on D ⊆ Rn.

Example 2.27. Consider the Dirichlet function g : [0, 1] → {0, 1}
defined in Example 2.26. Since the set of rational numbers Q is countable
and therefore has measure zero, it follows that g(x) = 0 almost everywhere
on [0, 1]. Since the function 0 is Riemann integrable on [0, 1], it is also
Lebesgue integrable on [0, 1]. Hence, by (2.106),

∫

[0,1]
g(x)dx =

∫ 1

0
0dx = 0,

and therefore g is Lebesgue integrable on [0, 1]. △

Next, we consider some special normed vector spaces. Specifically, we
consider the normed function space of all functions f : [0,∞) → Rn and
with norm defined by

|||f |||p,q
△
=

[
∫ ∞

0
‖f(t)‖p

qdt

]1/p

, 1 ≤ p <∞, (2.107)
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|||f |||∞,q
△
= sup

t∈[0,∞)
‖f(t)‖q. (2.108)

Here, the vector norm (q part) is the spatial norm; the p part is the temporal
norm. Note that the norm ||| · |||p,q satisfies Axioms i) and iii) of Definition
2.39. However, since there exist many nonzero functions f : [0,∞) → Rn

such that |||f |||p,q = 0, p ∈ [1,∞), it follows that Axiom ii) of Definition 2.39
can be violated with the norm ||| · |||p,q. Specifically, if f(·) is a function such
that it is zero almost everywhere or, equivalently, f(·) is zero everywhere on
[0,∞) except on a set of measure zero [288], then f(·) satisfies |||f |||p,q = 0.
To address such functions the concepts of Lebesgue measure and measurable
spaces [288] can be used with the integral in (2.107) denoting the Lebesgue
integral. In this case, the function ||| · |||p,q is a valid norm on the space
of measurable functions f : [0,∞) → Rn with the interpretation that if
|||f |||p,q = 0, then f(t) = 0 almost everywhere on [0,∞). We denote this
normed linear space by Lp or, equivalently, the set of measurable functions
such that |||f |||p,q <∞, q ∈ [1,∞], that is,

Lp
△
= {f : [0,∞) → Rn : f is measurable and |||f |||p,q <∞, q ∈ [1,∞]}.

In this case, |||f |||∞,q given by (2.108) is replaced by

|||f |||∞,q
△
= ess sup

t∈[0,∞)
‖f(t)‖q, (2.109)

where “ess” denotes essential.

Example 2.28. Let C[a, b] denote the set of continuous functions
mapping the bounded interval [a, b] into Rn. Furthermore, for f, g ∈ C[a, b]

and α ∈ R, let (f + g)(t)
△
= f(t) + g(t) and (αf)(t) = αf(t). Now, define

the norm ||| · ||| : Rn → R by |||f |||∞,q = maxt∈[a,b] ‖f(t)‖q. Note that since
f is defined on the bounded interval [a, b] and f is continuous, ||| · ||| is a
well-defined norm and is finite for every f(·) ∈ C[a, b]. Clearly, |||f |||∞,q ≥ 0
and is zero only for f(t) ≡ 0. To show that Axioms iii) and iv) of Definition
2.39 hold note that for f(·), g(·) ∈ C[a, b] it follows that

|||f + g|||∞,q = max
t∈[a,b]

‖f(t) + g(t)‖q

≤ max
t∈[a,b]

[‖f(t)‖q + ‖g(t)‖q ]

= |||f |||∞,q + |||g|||∞,q. (2.110)

Furthermore,

|||αf |||∞,q = max
t∈[a,b]

‖αf(t)‖q

= max
t∈[a,b]

|α|‖f(t)‖q

= |α| max
t∈[a,b]

‖f(t)‖q
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= |α||||f |||∞,q. (2.111)

Hence, C[a, b] endowed with the norm ||| · |||∞,q is a normed linear space. △

Note that in the above discussion we can also allow f : [0,∞) → Rn×m

in a similar way where the spatial norm is a matrix norm. Furthermore, in
the matrix case, we can define induced norms for linear operators G : Lp →
Lq of the form y(t) = G[u](t). One such induced norm |||G|||(q,s),(p,r) is defined
by

|||G|||(q,s),(p,r)
△
= sup

|||u|||p,r=1
|||G[u]|||q,s, (2.112)

which corresponds to an induced operator norm from an input signal u(t)
with p temporal norm and r spatial norm to an output signal y(t) with q
temporal norm and s spatial norm. For further details, see Chapter 7.

Some normed vector spaces are not large enough to permit limit
operations. In particular, if {fn}∞n=1 denotes a sequence of functions
belonging to a normed linear space such that limn→∞ |||f − fn||| = 0, then a
natural question is whether f is a member of the normed linear space. As an
example, consider the space of continuous functions on [0, 1] with the norm

defined by |||f ||| =
∫ 1
0 |f(t)|dt. Now, consider the sequence of continuous

functions

fn(t) =

{

1 − nt, t ∈ [0, 1/n),
0, t > 1/n,

(2.113)

and define f by

f(t) =

{

1, t = 0,
0, t > 0.

(2.114)

Then it can be easily seen that limn→∞ |||fn − f ||| = 0. However, the limit
f is not continuous, that is, f is not a member of the vector space. In
other words, our linear space was too small for the norm we defined on it.
In order to address the above observations we introduce the concept of a
Cauchy sequence.

Definition 2.43. A sequence {xn}∞n=1 in a normed linear space is called
a Cauchy sequence if, for every ε > 0, there exists an integer N = N(ε) such
that |||xn − xm||| < ε, whenever n,m > N .

Note that an equivalent condition for a Cauchy sequence is limn,m→∞
|||xn − xm||| = 0. Thus, the main difference between a convergent sequence
and a Cauchy sequence is that in the former case the terms in the sequence
approach a limit point, whereas in the latter case the terms in the sequence
approach each other. The following proposition shows that every convergent
sequence in a normed linear space is a Cauchy sequence.
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Proposition 2.29. Assume that the sequence {xn}∞n=1 converges in a
normed linear space. Then for every ε > 0 there exists an integer N such
that |||xn − xm||| < ε whenever n > N and m > N .

Proof. Let x = limn→∞ xn. Given ε > 0, letN be such that |||xn−x||| <
ε/2, whenever n > N . Now, if m > N , then |||xm − x||| < ε/2. If n > N and
m > N it follows from the triangle inequality that

|||xn − xm||| = |||xn − x+ x− xm||| ≤ |||xn − x||| + |||x− xm||| < ε

2
+
ε

2
= ε.

Hence, {xn}∞n=1 is a Cauchy sequence.

Even though every convergent sequence is Cauchy, the converse is not
necessarily true in a normed linear space. In particular, if the elements of
a sequence get closer to each other, that does not imply that the sequence
is convergent. However, there exist normed linear spaces where this is true.
These spaces are known as Banach spaces.

Definition 2.44. A normed linear space is called a complete space or
a Banach space if every Cauchy sequence converges to an element in the
space.

Example 2.29. Once again, we consider the set C[a, b] of continuous
functions mapping the bounded interval [a, b] into Rn addressed in Example
2.28. To show that C[a, b] is a Banach space let {fn}∞n=0 be a Cauchy
sequence in C[a, b]. Now, for every fixed t ∈ [a, b],

‖fn(t) − fm(t)‖q ≤ |||fn − fm|||∞,q → 0 as n,m→ ∞, (2.115)

and hence the real vectors {fn(t)}∞n=0 form a Cauchy sequence in Rn. Since
Rn with ‖ · ‖q, q ∈ [1,∞], is a complete space [373] it follows that there
exists f(t) such that fn(t) → f(t) as n → ∞. To show that the sequence
{fn}∞n=0 converges to f uniformly in t, let ε > 0 and choose N such that
|||fn−fm|||∞,q < ε/2 for all n,m > N . Now, let t ∈ [a, b] and let m > N such
that ‖fm(t) − f(t)‖q < ε/2. Next, it follows from the triangle inequality
that for all n > N ,

‖fn(t) − f(t)‖q = ‖fn(t) − fm(t) + fm(t) − f(t)‖q

≤ ‖fn(t) − fm(t)‖q + ‖fm(t) − f(t)‖q

≤ |||fn − fm|||∞,q + ‖fm(t) − f(t)‖q

< ε. (2.116)

Hence, since t ∈ [a, b] is arbitrary, it follows that {fn}∞n=0 converges to f
uniformly in t. Now, since fn(·) is continuous and convergence is uniform,
the limit function f(·) is also continuous.
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To see this, let t0 ∈ [a, b] be an arbitrary time in [a, b]. Since the
convergence of {fn}∞n=0 is uniform, given ε > 0, there exists sufficiently
large n such that

‖fn(t) − f(t)‖q < ε/3, t ∈ [a, b]. (2.117)

However, fn(t) is continuous at t0, and hence, there exists some δ > 0 such
that

‖fn(t) − fn(t0)‖q < ε/3 (2.118)

whenever |t− t0| < δ. Thus, if |t− t0| < δ, it follows that

‖f(t) − f(t0)‖q = ‖f(t) − fn(t) + fn(t) − fn(t0) + fn(t0) − f(t0)‖q

≤ ‖f(t) − fn(t)‖q + ‖fn(t) − fn(t0)‖q + ‖fn(t0) − f(t0)‖q

< ε/3 + ε/3 + ε/3

= ε, (2.119)

which shows that f is continuous at t0. Now, since t0 is an arbitrary point
in [a, b], it follows that f is continuous on [a, b]. Hence, since a sequence
of functions {fn}∞n=0 in C[a, b] converges to a function f(·) ∈ C[a, b] if and
only if {fn(t)}∞n=0 converges to f(t) uniformly on [a, b], it follows that C[a, b]
endowed with the norm ||| · |||∞,q is a Banach space. △

We close this section with a very important theorem from mathemat-
ical analysis needed to derive existence and uniqueness results for nonlinear
differential equations. The theorem is known as the contraction mapping
theorem or the Banach fixed point theorem. The following definition is
needed for this result.

Definition 2.45. Let V be a linear vector space and let T : V → V.
The point x∗ ∈ V is a fixed point of T (·) if T (x∗) = x∗.

Theorem 2.21 (Banach Fixed Point Theorem). Let X be a Banach
space with norm ||| · ||| : X → R and let T : X → X . Suppose there exists a
constant ρ ∈ [0, 1) such that

|||T (x) − T (y)||| ≤ ρ|||x− y|||, x, y ∈ X . (2.120)

Then there exists a unique x∗ ∈ X such that T (x∗) = x∗. Furthermore, for
each x0 ∈ X , the sequence {xn}∞n=0 ⊂ X defined by

xn+1 = T (xn) (2.121)

converges to x∗. Finally,

|||x∗ − xn||| ≤
ρn

1 − ρ
|||T (x0) − x0|||, n ≥ 0. (2.122)

Proof. Let x0 ∈ X be arbitrary and define the sequence {xn}∞n=0 by
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xn+1 = T (xn). Now, for each n ≥ 0 it follows from (2.120) that

|||xn+1 − xn||| = |||T (xn) − T (xn−1)|||
≤ ρ|||xn − xn−1|||
= ρ|||T (xn−1) − T (xn−2)|||
≤ ρ2|||xn−1 − xn−2|||
...

≤ ρn|||x1 − x0|||
= ρn|||T (x0) − x0|||. (2.123)

Next, let m = n+ r, r ≥ 0, be given. Then (2.123) implies that

|||xm − xn||| = |||xn+r − xn|||
= |||xn+r − xn+r−1 + xn+r−1 − xn+r−2 + · · · + xn+1 − xn|||
≤ |||xn+r − xn+r−1||| + |||xn+r−1 − xn+r−2||| + · · · + |||xn+1 − xn|||
≤ (ρn+r−1 + ρn+r−2 + · · · + ρn)|||x1 − x0|||

=
ρn(1 − ρr)

1 − ρ
|||T (x0) − x0|||. (2.124)

Now, since ρ < 1, ρn → 0 as n → ∞. Hence, given ε > 0 and choosing a
large enough N , it follows that |||xm − xn||| < ε for all m > n ≥ N . This
proves that the sequence {xn}∞n=0 is Cauchy. Furthermore, since X is a
Banach space, the sequence converges to an element x∗ ∈ X . Noting that
T (·) is a uniformly continuous function, it follows that

T (x∗) = T ( lim
n→∞

xn) = lim
n→∞

T (xn) = lim
n→∞

xn+1 = x∗, (2.125)

and hence, x∗ is a fixed point.

Next, suppose, ad absurdum, that x∗ is not unique. That is, suppose
there exists x ∈ X , x 6= x∗, such that T (x) = x. Then, it follows from
(2.120) that

|||x∗ − x||| = |||T (x∗) − T (x)||| ≤ ρ|||x∗ − x|||. (2.126)

Since ρ < 1, (2.126) holds only if |||x∗ − x||| = 0, and hence, x∗ = x leading
to a contradiction. Thus, x∗ is a unique fixed point.

Finally, to show (2.122), let r → ∞ in (2.124) and recall that ||| · ||| :
X → R is continuous on X (see Problem 2.86) so that

|||x∗ − xn||| = ||| lim
r→∞

xn+r − xn|||
= lim

r→∞
|||xn+r − xn|||

≤ lim
r→∞

ρn(1 − ρr)

1 − ρ
|||T (x0) − x0|||
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=
ρn

1 − ρ
|||T (x0) − x0|||, (2.127)

where the last inequality in (2.127) follows from the fact that ρ < 1.

It is important to note that it is not possible to replace (2.120) with
the weaker hypothesis

|||T (x) − T (y)||| < |||x− y|||, x, y ∈ X . (2.128)

See Problem 2.91. Finally, we give a slightly different version of Theorem
2.21 for the case where T maps a closed subset S of X into itself. This
version of the theorem is useful in applications.

Theorem 2.22. Let X be a Banach space with norm ||| · ||| : X → R,
let S be a closed subset of X , and let T : S → S. Suppose there exists a
constant ρ ∈ [0, 1) such that

|||T (x) − T (y)||| ≤ ρ|||x− y|||, x, y ∈ S. (2.129)

Then there exists a unique x∗ ∈ S such that T (x∗) = x∗. Furthermore, for
each x0 ∈ S, the sequence {xn}∞n=0 ⊂ S defined by xn+1 = T (xn) converges
to x∗. Finally,

|||x∗ − xn||| ≤
ρn

1 − ρ
|||T (x0) − x0|||, n ≥ 0. (2.130)

Proof. The fact that S is closed guarantees that x∗ ∈ S. Now, the
proof is identical to the proof of Theorem 2.21.

Finally, we present a key result connecting continuity and boundedness
of a linear operator defined on normed linear spaces. First, however, the
following definition is needed.

Definition 2.46. Let X and Y be normed linear spaces with norms
||| · ||| : X → R and ||| · |||′ : Y → R. A linear operator T : X → Y is bounded if
there exists α ≥ 0 such that |||Tx|||′ ≤ α|||x||| for all x ∈ X .

Theorem 2.23. Let X and Y be normed linear spaces with norms
||| · ||| : X → R and ||| · |||′ : Y → R, and let T : X → Y be a linear operator.
Then T is uniformly continuous on X if and only if T is bounded on X .

Proof. Assume T (·) is bounded. Since T (·) is a linear operator, it
follows that

|||T (x) − T (y)|||′ = |||Tx− Ty|||′ = |||T (x− y)|||′ ≤ α|||x− y|||
for all x, y ∈ X and some α ≥ 0. Now, choosing δ = ε/α, it follows that
given ε > 0 there exists δ = δ(ε) such that |||T (x)−T (y)|||′ < ε for all x, y ∈ X
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satisfying |||x− y||| < δ. Hence, T (·) is uniformly continuous on X .

Conversely, assume T (·) is uniformly continuous on X . Then T (·) is
continuous at x = 0. Hence, given ε > 0 there exists δ = δ(ε) such that
|||x||| ≤ ε implies |||T (x)|||′ = |||Tx|||′ ≤ δ. Next, for x ∈ X , x 6= 0, let y = βx,
where β = ε/|||x|||. Now, since |||y||| = |||βx||| = ε it follows that |||Ty|||′ ≤ δ.
Hence,

|||Ty|||′ = |||Tβx|||′ = β|||Tx|||′ = ε
|||Tx|||′
|||x||| ≤ δ,

which implies that

|||Tx|||′ ≤ δ

ε
|||x|||,

and hence, T (·) is bounded on X .

2.6 Dynamical Systems, Flows, and Vector Fields

As discussed in Chapter 1, a system is a combination of components or parts
which is perceived as a single entity. The parts making up the system are
typically clearly defined with a particular set of variables, called the states
of the system, that completely determine the behavior of the system at a
given time. Hence, a dynamical system consists of a set of possible states in
a given space, together with a rule that determines the present state of the
system in terms of past states. Thus, a dynamical system on D ⊆ Rn tells
us for a specific time t = t0 and state x in the space D where the system
state x will be at time t ≥ t0. In this book, we view a dynamical system
as a precise mathematical object defined on a time interval as a mapping
between vector spaces satisfying a set of axioms. For this definition D is an
open subset of Rn.

Definition 2.47. A dynamical system on D is the triple (D,R, s),
where s : R ×D → D is such that the following axioms hold:

i) (Continuity): s(·, ·) is continuous on D×R and for every t ∈ R, s(·, x)
is continuously differentiable on D.

ii) (Consistency): s(0, x0) = x0 for all x0 ∈ D.

iii) (Group property): s(τ, s(t, x0)) = s(t + τ, x0) for all x0 ∈ D and
t, τ ∈ R.

Henceforth, we denote the dynamical system (D,R, s) by G and we
refer to the map s(·, ·) as the flow or trajectory of G corresponding to x0 ∈ D,
and for a given s(t, x0), t ≥ 0, we refer to x0 ∈ D as an initial condition of G.
Given t ∈ R we denote the map s(t, ·) : D → D by st(x0) or st. Hence, for
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t ∈ R the set of mappings defined by st(x0) = s(t, x0) for every x0 ∈ D give
the flow of G. In particular, if D0 is a collection of initial conditions such
that D0 ⊂ D, then the flow st : D0 → D is nothing more than the motion of
all points x0 ∈ D0 or, equivalently, the image of D0 ⊂ D under the flow st,
that is, st(D0) ⊂ D (see Figure 2.3(a)). Alternatively, if the initial condition
x0 ∈ D is fixed and we let [α, β] ⊂ R, then the mapping s(·, x0) : [α, β] → D
defines the solution curve or trajectory of the dynamical system G. Hence,
the mapping s(·, x0) generates a graph in [α, β]×D identifying the trajectory
corresponding to motion along a curve C through the point x0 in a subset
D of the state space (see Figure 2.3(b)). Given x ∈ D we denote the map
s(·, x) : R → D by sx(t) or sx.

If we think of a dynamical system G as describing the motion of a fluid,
then the flow of G describes the motion of the entire fluid and is consistent
with an Eulerian description of the dynamical system wherein the motion
is analyzed over a continuous medium (control volume). Alternatively, the
trajectory of G describes the motion of an individual particle in the fluid
and is consistent with a Lagrangian formulation of the dynamical system
which describes the motion (position) of a particle as a function of time.











 









DD
D0

x0x0

st(x0)

st(D0)

s(·, x0)

C

(a) (b)

Figure 2.3 (a) Flow of a dynamical system. (b) Solution curve of a dynamical system.

In terms of the map st : D → D Axioms ii) and iii) can be equivalently
written as ii)

′
s0(x0) = x0 and iii)

′
(sτ ◦ st)(x0) = sτ (st(x0)) = st+τ (x0).

Note that it follows from i) and iii) that the map st : D → D is a continuous
function with a continuous inverse s−t. Thus, st with t ∈ R generates a one-
parameter family of homeomorphisms on D forming a commutative group
under composition. To see that st is one-to-one note that if s(t, y) = s(t, z),
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then y = z follows from

y = s(0, y)

= s(−t+ t, y)

= s(−t, s(t, y))
= s(−t, s(t, z))
= s(−t+ t, z)

= s(0, z)

= z. (2.131)

Also note that if y ∈ D, then st(x) = y for x = s(−t, y), and hence, st is
onto. Finally, to see that st has a continuous inverse we need only show that
s−t is the inverse of st. To see this, note that for any two flows st and sτ ,
st ◦ sτ = st+τ since, for every x ∈ D,

(st ◦ sτ )(x) = st(sτ (x)) = st(s(τ, x)) = s(t+ τ, x) = st+τ (x). (2.132)

In addition, note that for every x ∈ D, s0(x) = s(0, x) = x is the identity
operator on D. Hence, s−t ◦ st = st−t = s0, which establishes that s−t is the
inverse of st.

Since a dynamical system G involves the function s(·, ·) describing the
motion of x ∈ D for all t ∈ R, it generates a differential equation on D. In
particular, the function f : D → Rn given by

f(x)
△
=

d

dt
s(t, x)

∣

∣

∣

∣

t=0

(2.133)

defines a continuous vector field on D. For x ∈ D, f(x) belongs to Rn and
corresponds to the tangent vector to the curve st(x) at t = 0. Hence, for
st : D → D satisfying Axioms i)–iii) of Definition 2.47, letting x(t) = s(t, x0)
and defining f : D → Rn as in (2.133) it follows that

ẋ(t) = f(x(t)), x(0) = x0, t ∈ R. (2.134)

In this book, we use the notation s(t, x0), t ∈ R, and x(t), t ∈ R,
interchangeably to denote the solution of the nonlinear dynamical system
(2.134) with initial condition x(0) = x0. Even though for physical dynamical
systems t ≥ 0, in this chapter we allow t ∈ R in order to develop general
analysis results for (2.134) possessing reversible flows. In the later chapters
we consider dynamical systems on the semi-infinite interval [0,∞).

Example 2.30. In this example we analyze the solution curves and flow
of a linear system. Specifically, define s : [0,∞)×Rn → Rn by s(t, x) = eAtx,
where A ∈ Rn×n. Hence, st : Rn → Rn is represented by eAt ∈ Rn×n so that
st(x) = eAtx. Note that since e0n×n = In and eA(t+τ) = eAteAτ it follows
that s0(x0) = x0 and (sτ ◦ st)(x0) = sτ (st(x0)) = eAτeAtx0, and hence,
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Axioms ii) and iii) of Definition 2.47 are satisfied. Axiom i) is trivially
satisfied. Now, for a given time t, if x ∈ Rn the flow st(x) is the image
eAtx of x and is given by eAtx =

∑n
n=1 x(i)coli(e

At), where coli(e
At) denotes

the ith column of eAt. Hence, the flow is given by R(eAt)
△
= {y ∈ Rn :

y = eAtx for some x ∈ Rn} ⊆ Rn for each fixed time. Alternatively, given
x0 ∈ D, sx0 : [0,∞) → Rn defines the system trajectory. Hence, sx0(·) is
represented by eAtx0 : [0,∞) → Rn so that sx0 = eAtx0. Finally, to show
that s(t, x) = eAtx generates a linear differential equation on Rn note that
f(x) = d

dts(t, x)|t=0 = d
dte

Atx|t=0 = Ax. Hence, with x(t) = s(t, x0) it
follows that

ẋ(t) = Ax(t), x(0) = x0, t ≥ 0, (2.135)

which defines a linear, time-invariant dynamical system. △

2.7 Nonlinear Differential Equations

In Section 2.6 we saw that a nonlinear dynamical system G as defined
by Definition 2.47 gives rise to a nonlinear differential equation. In this
section, we present several general results on nonlinear dynamical systems
characterized by differential equations of the form

ẋ(t) = f(x(t)), x(t0) = x0, t ∈ Ix0
, (2.136)

where x(t) ∈ D, t ∈ Ix0
, D is an open subset of Rn with 0 ∈ D, f : D → Rn is

continuous on D, and Ix0
= (τmin, τmax) is the maximal interval of existence

for the solution x(·) of (2.136). A continuously differentiable function x :
Ix0

→ D is said to be a solution to (2.136) on the interval Ix0
⊆ R with

initial condition x(t0) = x0, if x(t) satisfies (2.136) for all t ∈ Ix0
. Unlike

linear differential equations, the existence and uniqueness of solutions of
(2.136) are not guaranteed. In addition, a solution may only exist on some
proper subinterval (τmin, τmax) ⊂ R (maximal interval of existence). Note
that if x(·) is a solution to (2.136) and f : D → Rn is continuous, then x(·)
satisfies the integral equation

x(t) = x0 +

∫ t

t0

f(x(s))ds, t ∈ Ix0
. (2.137)

Conversely, if x(·) is continuous on Ix0
and satisfies (2.137), then x(·) is

continuously differentiable on Ix0
and satisfies (2.136). Hence, (2.136) and

(2.137) are equivalent in the sense that x(·) is a solution to (2.136) if and
only if x(·) is a solution to (2.137).

Since the existence and uniqueness of solutions for nonlinear differen-
tial equations are not always guaranteed, in this and the next section we
address the following questions:
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i) Under what conditions does (2.136) have at least one solution for a
given x0 ∈ D?

ii) Under what conditions does (2.136) have a unique solution for a given
x0 ∈ D?

iii) What is the maximal interval of existence over which one or more
solutions to (2.136) exist?

iv) What is the sensitivity of the solutions to (2.136) to initial data and/or
parameter perturbations?

Before addressing each of the above questions, we present a series of
examples that demonstrate the need for providing conditions that guarantee
the existence and uniqueness of solutions to nonlinear differential equations.

Example 2.31. Consider the scalar nonlinear dynamical system

ẋ(t) = −sign(x(t)), x(0) = 0, t ≥ 0, (2.138)

where

sign(x)
△
=

{

1, x ≥ 0,
−1, x < 0.

(2.139)

Now, note that since d
dtx

2(t) = −2x(t)sign(x(t)) = −2|x(t)| ≤ 0, it follows
that x2(·) is a decreasing function of time. Hence, if x(0) = 0, then x(t) = 0
for all t ≥ 0, which implies ẋ(t) = 0, t ≥ 0. In this case, sign(0) = 0,
which leads to a contradiction. Hence, there does not exist a continuously
differentiable function x(·) that satisfies (2.138). Note that the function
f(x) = −sign(x) is not continuous at x = 0. △

Example 2.32. Consider the scalar nonlinear dynamical system

ẋ(t) = 3x2/3(t), x(0) = 0, t ≥ 0. (2.140)

This system has two solutions given by x(t) = t3 and x(t) = 0, t ≥ 0. Note
that the function f(x) = 3x2/3 is continuous at x = 0; however, it is not
Lipschitz continuous at x = 0. △

Example 2.33. Consider the scalar nonlinear dynamical system

ẋ(t) = x2(t), x(0) = 1, t ≥ 0. (2.141)

Using separation of variables, the solution to (2.141) is given by

x(t) =
1

1 − t
. (2.142)

The solution (2.142) is defined for t ∈ [0, 1) and becomes unbounded as
t → 1. The solution has a finite escape time and, hence, exists only locally
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(see Figure 2.4). Note that even though (2.142) has another branch defined
on the interval (1,∞), this branch is not considered part of the solution to
(2.141) since the initial time t0 = 0 6∈ (1,∞). Finally, note that f(x) = x2 is
continuous and Lipschitz continuous at x = 0. However, f(x) is not globally
Lipschitz continuous on R. △

x(t)

t
0 1

1

Figure 2.4 Solution exhibiting finite escape time.

Example 2.34. Consider the scalar nonlinear dynamical system

ẋ(t) =
√

|x(t)|, x(0) = 0, t ≥ 0. (2.143)

Clearly, x(t) = 0, t ≥ 0, as well as x(t) = 1
4t

2 are solutions to (2.143). In
fact, there are infinitely many solutions to (2.143), parameterized by the
arbitrary time T , and are given by (see Figure 2.5)

x(t) =

{

0, 0 ≤ t ≤ T,
(t−T )2

4 , t > T.
(2.144)

Note that the function f(x) =
√

|x| is continuous at x = 0; however, f(x)
is not Lipschitz continuous at x = 0. △

Examples 2.32–2.34 analyze nonlinear differential equations having
multiple solutions as well as finite escape time. However, the nonlinear
differential equation in Example 2.31 does not have a solution in the sense
of the definition given in this section. The question of existence of solutions
is fundamental in the study of dynamical systems. The following result
provides a sufficient condition for the existence of solutions of (2.136) over
an interval [t0, τ ] for sufficiently small τ ∈ (t0, t1).

Theorem 2.24 (Peano). Consider the nonlinear dynamical system
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x(t)

t
0 T 2T 3T

Figure 2.5 Multiple solutions.

(2.136). Assume f : D → Rn is continuous on D. Then for every x0 ∈ D and
t0 > 0 there exists τ > t0 such that (2.136) has a continuously differentiable
solution x : [t0, τ ] → Rn.

Proof. Let η > 0 be such that Bη(x0) ⊆ D and let M
△
= sup{‖f(x)‖ :

x ∈ Bη(x0)}. Now, let α, β > 0 be such that Mα ≤ β ≤ ε and let

S △
= {x(·) ∈ C[t0, τ ] : |||x− x0||| ≤ η, x(t0) = x0, t ∈ [t0, τ ]},

where τ
△
= t0 + α. Note that S is convex, closed, and bounded. Next, let

P : C[t0, τ ] → C[t0, τ ] be given by

(Px)(t)
△
= x0 +

∫ t

t0

f(x(s))ds, t ∈ [t0, τ ]. (2.145)

Now, it follows that

‖(Px)(t) − x0‖ =

∥

∥

∥

∥

∫ t

t0

f(x(s))ds

∥

∥

∥

∥

≤
∫ t

t0

‖f(x(s))‖dt

≤ M |t− t0|
≤ Mα
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≤ β, t ∈ [t0, τ ],

which implies that P (S) is bounded. Furthermore, since f is continuous on
D it follows that for every ε > 0, there exists δ > 0 such that

‖(Px)(t) − (Px̂)(t)‖ =

∥

∥

∥

∥

∫ t

t0

[f(x(s)) − f(x̂(s))]ds

∥

∥

∥

∥

≤
∫ t

t0

‖f(x(s)) − f(x̂(s))‖dt

≤ εα, t ∈ [t0, τ ], sup
t∈[t0,τ ]

‖x(t) − x̂(t)‖ < δ.

The result now is a direct consequence of the Schauder fixed point theorem
(see Problem 2.93) and the fact that x(t) = (Px)(t) is a solution to (2.136)
if and only if x(t) is a fixed point of P .

In order to guarantee the existence and uniqueness of solutions to
(2.136) we strengthen the hypothesis in Theorem 2.24. Specifically, we
assume that f is Lipschitz continuous on D. The following theorem gives
sufficient conditions for existence and uniqueness of solutions to (2.136). We
state the result for the right-hand limit; the result for the left-hand limit is
analogous.

Theorem 2.25. Consider the nonlinear dynamical system (2.136).
Assume that f : D → Rn is Lipschitz continuous on D. Then, for all
x0 ∈ D, there exists τ ∈ (t0, t1) such that (2.136) has a unique solution
x : [t0, τ ] → Rn over the interval [t0, τ ].

Proof. It follows from Theorem 2.24 that there exists τ > 0 and
x : [t0, τ ] → Rn such that x(·) is a continuous solution to (2.136). Now, let

(Px)(t)
△
= x0 +

∫ t

t0

f(x(s))ds, t ∈ [t0, τ ], (2.146)

so that x(t) = (Px)(t). Note that P : C[t0, τ ] → C[t0, τ ]. Furthermore, define

S △
= {x(·) ∈ C[t0, τ ] : |||x− x0||| ≤ r}, where r > 0 and x0 : C[t0, τ ] → C[t0, τ ]

is such that x0(t) = x0 for all t ∈ [t0, τ ]. Note that x(·) is a solution to
(2.136) over [t0, τ ] if and only if (Px)(·) = x(·), that is, x(·) is a fixed point
of P . Hence, using the fact that f : D → Rn is Lipschitz continuous on D
and ‖x(t) − x0‖ ≤ r, t ∈ [t0, τ ], it follows that, for each x(·) ∈ S and each
t ∈ [t0, τ ],

‖(Px)(t) − x0‖ =

∥

∥

∥

∥

∫ t

t0

f(x(s))ds

∥

∥

∥

∥

=

∥

∥

∥

∥

∫ t

t0

[f(x(s)) − f(x0) + f(x0)]ds

∥

∥

∥

∥
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≤
∫ t

t0

[‖f(x(s)) − f(x0)‖ + ‖f(x0)‖]ds

≤
∫ t

t0

[L‖x(s) − x0‖ + α]ds

≤
∫ t

t0

(Lr + α)ds

= (t− t0)(Lr + α)

≤ (τ − t0)(Lr + α), (2.147)

where L > 0 is the Lipschitz constant of f with respect to x on Br(x0) ⊂ D
and α = α(x0) = ‖f(x0)‖, and hence,

|||Px− x0||| = max
t∈[t0,τ ]

‖(Px)(t) − x0‖ ≤ (τ − t0)(Lr + α). (2.148)

Now, choosing τ − t0 ≤ r
Lr+α ensures that |||Px − x0||| ≤ r, and hence,

P : S → S.

To show that P : S → S is a contraction, let x(·) and y(·) ∈ S so that
x(t), y(t) ∈ Br(x0) for all t ∈ [t0, τ ]. Hence,

(Px)(t) − (Py)(t) =

∫ t

t0

[f(x(s)) − f(y(s))]ds, (2.149)

which implies

‖(Px)(t) − (Py)(t)‖ ≤
∫ t

t0

‖f(x(s)) − f(y(s))‖ds

≤
∫ t

t0

L‖x(s) − y(s)‖ds

≤ L|||x− y|||
∫ t

t0

ds

= L(t− t0)|||x− y|||
≤ ρ|||x− y|||,

where |||x − y||| = maxt∈[t0,τ ] ‖x(t) − y(t)‖ and L(t − t0) ≤ L(τ − t0) ≤ ρ.
Thus,

|||Px− Py||| = max
t∈[t0,τ ]

‖(Px)(t) − (Py)(t)‖ ≤ ρ|||x− y|||. (2.150)

Now, choosing (τ − t0) ≤ ρ/L and ρ < 1 ensures that P : S → S is a
contraction. Hence, it follows from Theorem 2.22 that for

τ − t0 ≤ min

{

t1 − t0,
r

Lr + α
,
ρ

L

}

,

(2.136) has a unique solution in S.
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Finally, we show that P has a unique fixed point in C[t, τ ]. Suppose
x(·) ∈ C[t0, τ ] satisfies (2.137). Then, x(0) = x0 ∈ Br(x0). Now, since x(·)
is continuous, it follows for sufficiently small t, x(t) ∈ Br(x0). Suppose, ad
absurdum, that there exists τ̂ ∈ (t0, τ) such that x(τ̂) 6∈ Br(x0), that is,
‖x(τ̂ ) − x0‖ > r. Since ‖x(t) − x0‖ is continuous in t and ‖x(0) − x0‖ = 0,
it follows that there exists τ∗ < τ̂ < τ such that ‖x(t) − x0‖ < r for all
t ∈ [t0, τ

∗) and ‖x(τ∗) − x0‖ = r. Now, for all t ≤ τ∗,

‖x(t) − x0‖ =

∥

∥

∥

∥

∫ t

t0

f(x(s))ds

∥

∥

∥

∥

=

∥

∥

∥

∥

∫ t

t0

[f(x(s)) − f(x0) + f(x0)]ds

∥

∥

∥

∥

≤
∫ t

t0

L‖x(s) − x0‖ds+ α(t− t0)

≤ (t− t0)(Lr + α)

≤ (τ∗ − t0)(Lr + α). (2.151)

Since, t ≤ τ∗ it follows that r = ‖x(τ∗) − x0‖ ≤ (τ∗ − t0)(Lr + α). Hence,
(τ∗ − t0) ≥ r

Lr+α ≥ τ − t0, which is a contradiction. Hence, if x(·) ∈ C[t0, τ ]

satisfies (2.136) such that τ − t0 ≤ min{t1 − t0,
r

Lr+α ,
ρ
L}, then x(·) ∈ S.

Thus, if x∗(·) is a fixed point of C[t0, τ ], then x∗ ∈ S, which shows that
(2.136) has a unique solution over the interval [t0, τ ].

The following corollary to Theorem 2.25 is immediate.

Corollary 2.3. Consider the nonlinear dynamical system (2.136).
Assume that f : D → Rn is continuously differentiable on D. Then, for
all x0 ∈ D, there exists τ ∈ (t0, t1) such that (2.136) has a unique solution
x : [t0, τ ] → Rn over the interval [t0, τ ].

Proof. The proof follows by noting that continuous differentiability
on D implies Lipschitz continuity on D.

Next, we state and prove a very important theorem regarding the
sensitivity of solutions of (2.136) to the system initial data and system
parameters. For this result we require a key lemma due to Gronwall that
converts an implicit bound to an explicit bound.

Lemma 2.2 (Gronwall Lemma). Assume there exists a continuous
function x : R → R such that

x(t) ≤ α+

∫ t

t0

βx(s)ds, t ≥ t0, (2.152)
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where α ∈ R and β ≥ 0. Then

x(t) ≤ αeβ(t−t0), t ≥ t0. (2.153)

Proof. Let α ∈ R and let

y(t) = α+

∫ t

t0

βx(s)ds, t ≥ t0. (2.154)

Now, it follows from (2.152) that x(t) ≤ y(t), t ≥ t0, and hence, using
(2.154),

ẏ(t) = βx(t) ≤ βy(t), y(t0) = α, t ≥ t0. (2.155)

Next, define z(t)
△
= ẏ(t) − βy(t) and note that (2.155) implies z(t) ≤ 0,

t ≥ t0. Hence,

y(t) = y(t0)e
β(t−t0) +

∫ t

t0

eβ(t−σ)z(σ)dσ,

which implies

y(t) ≤ y(t0)e
β(t−t0) = αeβ(t−t0), t ≥ t0.

The result is now immediate by noting that x(t) ≤ y(t), t ≥ t0.

Theorem 2.26. Consider the nonlinear dynamical system (2.136).
Assume that f : D → Rn is uniformly Lipschitz continuous on D.
Furthermore, let x(t) and y(t) be solutions to (2.136) with initial conditions
x(t0) = x0 and y(t0) = y0 over the closed interval [t0, t1]. Then, for
each ε > 0 and t ∈ [t0, t1], there exists δ = δ(ε, t − t0) > 0 such that if
‖x0 − y0‖ < δ, then ‖x(t) − y(t)‖ ≤ ε.

Proof. Note that x(t) and y(t), t ∈ [t0, t1], satisfy

x(t) = x0 +

∫ t

t0

f(x(s))ds, (2.156)

y(t) = y0 +

∫ t

t0

f(y(s))ds. (2.157)

Subtracting (2.157) from (2.156) yields

x(t) − y(t) = x0 − y0 +

∫ t

t0

[f(x(s)) − f(y(s))]ds. (2.158)

Now, (2.158) implies

‖x(t) − y(t)‖ ≤ ‖x0 − y0‖ +

∫ t

t0

‖f(x(s)) − f(y(s))‖ds

≤ ‖x0 − y0‖ + L

∫ t

t0

‖x(s) − y(s)‖ds, (2.159)



NonlinearBook10pt November 20, 2007

82 CHAPTER 2

where L > 0 is the Lipschitz constant of f . Using Lemma 2.2 it follows
that ‖x(t) − y(t)‖ ≤ ‖x0 − y0‖eL(t−t0), t ∈ [t0, t1]. Hence, for every ε > 0,
choosing δ = δ(ε, t − t0) = ε

eL(t−t0) yields the result.

Theorem 2.26 shows that the solution x(t), t ∈ [t0, t1], of (2.136)
depends continuously on the initial condition x(0) over a finite time interval.
This is not true in general over the semi-infinite interval [t0,∞). If this
were the case over the semi-infinite interval and δ(ε, t) could be chosen
independent of t, then continuous dependence of solutions uniformly in t
for all t ≥ 0 would imply Lyapunov stability of the solutions; a concept
introduced in Chapter 3. Furthermore, since Theorem 2.26 implies

‖x(t) − y(t)‖ ≤ ‖x0 − y0‖eL(t−t0), t ∈ [t0, t1], (2.160)

it follows that for each t ∈ [t0, t1],

lim
y0→x0

s(t, y0) = s(t, x0). (2.161)

In addition, (2.160) implies that this limit is uniform for all t ∈ [t0, t1].
It is important to note that Theorem 2.26 also holds for the case where
f : D → Rn is Lipschitz continuous on D. In this case, however, continuous
dependence on the initial conditions of s(t, y0) holds for s(·, ·) ∈ Q, where
Q = [t0, t1] × Nδ(x0) and Nδ(x0) ⊂ D. Finally, it is important to note
that Gronwall’s lemma can be used to give an alternative proof of Theorem
2.25. In particular, if, ad absurdum, we assume that x(t) and y(t) are two
solutions to (2.136) with initial conditions x(t0) = x0 and y(t0) = x0 over
the closed interval [t0, t1], then it follows from (2.160) that ‖x(t)−y(t)‖ ≤ 0,
t ∈ [t0, t1]. This of course implies that x(t) = y(t), t ∈ [t0, t1], establishing
uniqueness of solutions.

The next result presents a more general version of Theorem 2.26 in-
volving continuous dependence on initial conditions and system parameters.
For this result, consider the nonlinear dynamical system

ẋ(t) = f(x(t), λ), x(t0) = x0, t ∈ Ix0,λ, (2.162)

where x(t) ∈ D, t ∈ Ix0,λ, D is an open subset of Rn, λ ∈ Rm is a system
parameter vector, f : D × Rm → Rn is such that f(·, λ) is Lipschitz
continuous on D, f(x, ·) is uniformly Lipschitz continuous on Rm, and
Ix0,λ = (τmin, τmax) ⊂ R is the maximal interval of existence for the solution
x(·) of (2.162).

Theorem 2.27. Consider the nonlinear dynamical system (2.162).
Assume that f : D × Rm → Rn is such that for every λ ∈ Rm, f(·, λ)
is Lipschitz continuous on D and for every x ∈ D, f(x, ·) is globally
Lipschitz continuous on Rm. Furthermore, let x(t) and y(t) be solutions to
(2.162) with system parameters λ and µ, respectively, and initial conditions
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x(t0) = x0 and y(t0) = y0 over the closed interval [t0, t1]. Then, for each
ε > 0 and t ∈ [t0, t1], there exists δ = δ(ε, t−t0) > 0 such that if ‖x0−y0‖ < δ
and ‖λ− µ‖ < δ, then ‖x(t) − y(t)‖ ≤ ε.

Proof. The proof is a direct consequence of Theorem 2.26 with x0,
x, y0, and y replaced by [xT

0 λT]T, [xT λT]T, [yT
0 µT]T, and [yT µT]T,

respectively.

As in the case of Theorem 2.26, Theorem 2.27 implies that

‖s(t, x0, λ)−s(t, y0, µ)‖ ≤ (‖x0−y0‖+‖λ−µ‖)eL(t−t0), t ∈ [t0, t1], (2.163)

and hence,
lim

(y0,µ)→(x0,λ)
s(t, y0, µ) = s(t, x0, λ), (2.164)

uniformly for all t ∈ [t0, t1].

Next, we present a different kind of continuity of parameter result. In
particular, we show that given two dynamical systems

ẋ(t) = f(x(t)), x(t0) = x0, t ∈ [t0, t1], (2.165)

ẏ(t) = g(y(t)), y(t0) = y0, t ∈ [t0, t1], (2.166)

where f : D → Rn and g : D → Rn are both Lipschitz continuous on D,
and ‖f(x) − g(x)‖ ≤ ε, x ∈ D, the solutions to (2.165) and (2.166) with
‖x0 − y0‖ ≤ γ remain nearby over a finite time interval.

Theorem 2.28. Consider the nonlinear dynamical system (2.165) and
(2.166). Assume that f : D → Rn is uniformly Lipschitz continuous on D
with Lipschitz constant L and g : D → Rn is Lipschitz continuous on D.
Furthermore, suppose that

‖f(x) − g(x)‖ ≤ ε, x ∈ D. (2.167)

If x(t) and y(t) are solutions to (2.165) and (2.166) on some time interval
I ⊂ R with ‖x0 − y0‖ ≤ γ, then

‖x(t) − y(t)‖ ≤ γeL|t−t0| +
ε

L
(eL|t−t0| − 1). (2.168)

Proof. For t ∈ I it follows that

x(t) − y(t) = x0 − y0 +

∫ t

t0

[f(x(s)) − g(y(s))]ds. (2.169)

Now, (2.169) implies

‖x(t) − y(t)‖ ≤ ‖x0 − y0‖ +

∫ t

t0

‖f(x(s)) − g(y(s))‖ds
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≤ γ +

∫ t

t0

‖f(x(s)) − f(y(s)) + f(y(s)) − g(y(s))‖ds

≤ γ +

∫ t

t0

‖f(x(s)) − f(y(s))‖ds+

∫ t

t0

‖f(y(s)) − g(y(s))‖ds

≤ γ +

∫ t

t0

L‖x(s) − y(s)‖ds+

∫ t

t0

εds, t ∈ I. (2.170)

Next, defining q(t)
△
= ‖x(t) − y(t)‖, (2.170) implies

q(t) ≤ γ + L

∫ t

t0

[

q(s) +
ε

L

]

ds, t ∈ I, (2.171)

or, equivalently,

q(t) +
ε

L
≤ γ +

ε

L
+ L

∫ t

t0

[

q(s) +
ε

L

]

ds, t ∈ I. (2.172)

Now, using Gronwall’s lemma it follows that

q(t) +
ε

L
≤
( ε

L
+ γ
)

eL|t−t0|, t ∈ I, (2.173)

which implies (2.168).

Theorem 2.28 shows that, given two solutions to a dynamical system
with initial conditions that are close at the same value of time, these
solutions will remain close over the entire time interval I and not just at
the initial time. Furthermore, it is clear from (2.168) that bounds on the
initial condition errors and the solution errors grow exponentially in time,
with the Lipschitz constant L controlling the growth rate. In the study
of robustness, that is, sensitivity to system parameter variations, (2.168)
tells us that a solution to an approximate dynamical system will serve as
an approximate solution to the actual system over a finite time interval.
Furthermore, (2.168) clearly shows why the qualitative study of differential
equations is necessary and why numerical methods (which are approximate
by definition) are inherently fragile over long periods of time and can be
untrustworthy.

Finally, we close this section with a proposition that shows that the
solution of a nonlinear system satisfying a uniform Lipschitz continuity
condition is exponentially bounded from above and below.

Proposition 2.30. Consider the nonlinear dynamical system (2.136).
Assume f : D → Rn is uniformly Lipschitz continuous on D with Lipschitz
constant L and f(0) = 0. Then the solution x(t) of (2.136) over the closed
interval [t0, t1] satisfies

‖x0‖2e
−L|t−t0| ≤ ‖x(t)‖2 ≤ ‖x0‖2e

L|t−t0|, t ∈ [t0, t1]. (2.174)
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Proof. Since ‖x‖2
2 = xTx it follows that

d

dt
xT(t)x(t) = 2xT(t)ẋ(t) = 2xT(t)f(x(t)), t ∈ [t0, t1]. (2.175)

Now, since f(0) = 0 and f : D → Rn is uniformly Lipschitz continuous
on D it follows that ‖f(x)‖2 ≤ L‖x‖2. Hence, using the Cauchy-Schwarz
inequality it follows that
∣

∣

∣

∣

d

dt
xT(t)x(t)

∣

∣

∣

∣

≤ 2‖x(t)‖2‖f(x(t))‖2 ≤ 2L‖x(t)‖2
2, t ∈ [t0, t1]. (2.176)

Now, defining q(t)
△
= xT(t)x(t) and q0

△
= q(0) = xT

0 x0, it follows from (2.176)
that

−2Lq(t) ≤ q̇(t) ≤ 2Lq(t), t ∈ [t0, t1], (2.177)

which implies

−
∫ t

t0

2Lds ≤
∫ q

q0

dq

q
≤
∫ t

t0

2Lds. (2.178)

Hence,
q0e

−2L|t−t0| ≤ q(t) ≤ q0e
2L|t−t0|, t ∈ [t0, t1]. (2.179)

The result is now immediate by noting that q(t) = ‖x(t)‖2
2 and q0 = ‖x0‖2

2.

2.8 Extendability of Solutions

In Section 2.7 we showed that under the conditions of Lipschitz continuity on
D, the nonlinear dynamical system (2.136) is guaranteed to have a unique
solution over the closed interval [t0, τ ]. In this section, we consider the
question of whether it is possible to extend the solution x : [t0, τ ] → Rn

of (2.136) to a larger interval. This question can be intuitively answered
by noting that if (2.136) has a unique solution over [t0, τ ], then by re-
applying Theorem 2.25 with τ serving as the initial time and x(τ) as the
initial condition to (2.136), it follows that there exists a unique solution to
(2.136) over the interval [τ, τ1]. By iteratively repeating this process and
concatenating all solutions, it follows that there does not exist a largest
closed bounded interval over which (2.136) has a unique solution. Hence,
the solution will exist over the semiopen interval [t0, τmax). This implies
that the solution x(t) to (2.136) must approach the boundary of D, tend
to infinity, or both. For negative time, an identical argument for the left-
hand limit can be used to show that the maximal interval of existence for
a solution to (2.136) is (τmin, τmax) ⊆ R. Before summarizing the above
discussion we consider a simple example.

Example 2.35. Consider the scalar nonlinear dynamical system

ẋ(t) = 1 + x2(t), x(0) = 0, t ∈ R. (2.180)
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This system has a unique solution given by x(t) = tan t. Since x(t) → ±∞ as
t→ ±π/2, the maximal interval of existence of (2.180) is (−π/2, π/2) ⊂ R.

△

The following theorem shows that if a solution to (2.136) cannot be
extended, it must leave any given compact set of the state space.

Theorem 2.29. Consider the nonlinear dynamical system (2.136).
Assume f : D → Rn is Lipschitz continuous on D. Furthermore, let
x(t) denote the solution of (2.136) on the maximal interval of existence
Ix0

= (τmin, τmax) ⊂ R with τmax < ∞. Then given any compact set
Dc ⊂ D, there exist t1 ∈ (τmin, t0) and t2 ∈ (t0, τmax) such that x(t1) 6∈ Dc

and x(t2) 6∈ Dc.

Proof. Suppose, ad absurdum, that there does not exist t ∈ Ix0
such

that x(t) 6∈ Dc. Then, x(t) ∈ Dc, t ∈ (τmin, τmax). Since f : D → Rn is
continuous on Dc, it follows from Theorem 2.13 that there exists α > 0 such
that ‖f(x)‖ ≤ α for all x ∈ Dc. Next, let σ ∈ (t0, τmax) and note that for
τmin < t0 < t < τmax,

‖x(t) − x(t0)‖ =

∥

∥

∥

∥

∫ t

t0

f(x(s))ds

∥

∥

∥

∥

≤
∫ t

t0

‖f(x(s))‖ds

≤ α(t− t0), (2.181)

which shows that x(·) is uniformly continuous on Ix0
.

Now, since x(·) is uniformly continuous on Ix0
, it follows that

x(τmax) = x(σ) + lim
t→τmax

∫ t

σ
f(x(s))ds

= x(σ) +

∫ τmax

σ
f(x(s))ds. (2.182)

Thus,

x(t) = x(σ) +

∫ t

σ
f(x(s))ds, t ∈ [σ, τmax], (2.183)

which implies that ẋ(τmax) = f(x(τmax)), and hence, x(·) is (left) differ-
entiable at τmax. Hence, x : [σ, τmax] → Rn is a solution to (2.136).
Now, using Theorem 2.25 it follows that the solution x(t) to (2.136) can
be extended to the interval (τmin, τ

∗), τ∗ > τmax, which contradicts the
claim that Ix0

= (τmin, τmax) is the maximal interval of existence of (2.136).
Hence, there exists t2 ∈ (t0, τmax) such that x(t2) 6∈ Dc. The existence of
t1 ∈ (τmin, t0) such that x(t1) 6∈ Dc follows in a similar manner.
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As mentioned earlier, in most physical dynamical systems and espe-
cially feedback control systems we are more interested in the future behavior
of the system as opposed to the past. Hence, we give a version of Theorem
2.29 wherein t ∈ [0, τmax). This is sometimes referred to in the literature as
the right maximal interval of existence.

Theorem 2.30. Consider the nonlinear dynamical system (2.136).
Assume f : D → Rn is Lipschitz continuous on D. Furthermore, let
x(t) denote the solution to (2.136) on the maximal interval of existence
Ix0

= [0, τmax) with τmax < ∞. Then given any compact set Dc ⊂ D, there
exists t ∈ Ix0

such that x(t) 6∈ Dc.

Proof. The proof is virtually identical to the proof of Theorem 2.29
and, hence, is omitted.

The next result shows that if τmax < ∞ and if limt→τmax
x(t) exists,

then x(t) → ∂D as t→ τmax.

Corollary 2.4. Consider the nonlinear dynamical system (2.136).
Assume f : D → Rn is Lipschitz continuous on D. Furthermore, let x(t)
denote the solution to (2.136) on the maximal interval of existence [0, τmax)
with τmax <∞. If limt→τmax

x(t) exists, then limt→τmax
x(t) ∈ ∂D.

Proof. Assume limt→τmax
x(t) exists and is given by x∗. Then,

s(t, x0)
△
=

{

x(t), t ∈ [0, τmax),
x∗, t = τmax,

(2.184)

is continuous on [0, τmax]. Next, let

Dc
△
= {y ∈ Rn : y = s(t, x0) for some t ∈ [0, τmax]}. (2.185)

Since Dc is the image of the compact set [0, τmax] under the continuous map
s(τ, x0), Dc is a compact subset of D. Now, suppose, ad absurdum, that
x∗ ∈ D. Then Dc ⊂ D and by Theorem 2.30 there must exist t ∈ (0, τmax)
such that x(t) 6∈ Dc, which is a contradiction. Hence, x∗ 6∈ D. However,
since x(t) ∈ D for all t ∈ [0, τmax), it follows that x∗ = limt→τmax

x(t) ∈ D,
and hence, x∗ ∈ D \ D = ∂D.

Example 2.36. Consider the scalar nonlinear dynamical system

ẋ(t) = −[2x(t)]−1, x(0) = 1, t ≥ 0. (2.186)

This system has a solution given by x(t) =
√

1 − t on the maximal interval of
existence Ix0

= [0, 1). Note that on D = (0,∞), the function f(x) = −1/2x
is continuously differentiable. Now, noting that ∂D = {0}, it follows that
limt→1 x(t) = 0 ∈ ∂D. △
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An immediate and very important corollary to Theorem 2.30 is the
contrapositive statement of the theorem, which states that if a solution to
(2.136) lies entirely in a compact set, then τmax = ∞, and hence, there exists
a unique solution to (2.136) for all t ≥ 0.

Corollary 2.5. Consider the nonlinear dynamical system (2.136).
Assume f : D → Rn is Lipschitz continuous on D. Furthermore, let Dc ⊂ D
be compact and suppose for x0 ∈ Dc, the solution x : [0, τ ] → D lies entirely
in Dc. Then there exists a unique solution x : [0,∞) → D to (2.136) for all
t ≥ 0.

Proof. Let [0, τ) be the maximal interval of existence of (2.136) with
the solution x(t), t ∈ [0, τ), lying entirely in Dc. Then, by assumption
{y ∈ D : y = x(t) for some t ∈ [0, τ)} ⊂ Dc or, equivalently, x([0, τ)) ⊂ Dc.
Hence, it follows from Theorem 2.30 that τ = ∞.

2.9 Global Existence and Uniqueness of Solutions

In this section, we give sufficient conditions for global existence and
uniqueness of solutions over all time. First, however, we present a theorem
that strengthens the results of Theorem 2.26 on uniform convergence with
respect to initial conditions.

Theorem 2.31. Consider the nonlinear dynamical system (2.136).
Assume that f : D → Rn is Lipschitz continuous on D. Furthermore, let
x(t) denote a solution to (2.136) with initial condition x(t0) = x0 defined on
the closed interval [t0, t1]. Then there exists a neighborhood N ⊂ D of x0

and a constant L > 0 such that for all y(t0) = y0 ∈ N , there exists a unique
solution y(t) of (2.136) defined over the closed interval [t0, t1] satisfying

‖x(t) − y(t)‖ ≤ ‖x0 − y0‖eL|t−t0|, (2.187)

for all t ∈ [t0, t1]. Moreover,

lim
y0→x0

s(t, y0) = s(t, x0), (2.188)

uniformly for all t ∈ [t0, t1], where s(t, x0) denotes the solution to (2.136)
with initial condition x0.

Proof. Since [t0, t1] is compact and s(·, x0) is continuous on [t0, t1], it
follows that {x ∈ Rn : x = s(t, x0), t ∈ [t0, t1]} is a compact subset of D.
Now, since D is an open set, there exists ε > 0 such that the compact set

Dc = {x ∈ Rn : ‖x− s(t, x0)‖ ≤ ε, t ∈ [t0, t1]} ⊂ D.
Next, since by assumption f : D → Rn is Lipschitz continuous on D, it
follows from Proposition 2.23 that there exists L > 0 such that ‖f(y) −



NonlinearBook10pt November 20, 2007

DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS 89

f(x)‖ ≤ L‖y − x‖, x, y ∈ Dc. Let δ > 0 be such that δ ≤ ε and δ ≤
εe−L(t1−t0). Now, let y0 ∈ Nδ(x0) and let s(t, y0) be the solution to (2.136)
over the maximal interval of existence (τmin, τmax). Suppose, ad absurdum,
that τmax ≤ t1. Then it follows that s(t, y0) ∈ Dc for all t ∈ (τmin, τmax). To
see this, suppose, ad absurdum, that there exists τ ∈ (τmin, τmax) such that
s(t, x0) ∈ Dc for some t ∈ (τmin, τ ] and s(τ, y0) ∈ ∂Dc. In this case,

‖s(t, y0) − s(t, x0)‖ ≤ ‖y0 − x0‖ +

∫ t

t0

‖f(y(σ)) − f(x(σ))‖dσ

≤ ‖y0 − x0‖ + L

∫ t

t0

‖s(σ, y0) − s(σ, x0)‖dσ, (2.189)

for all t ∈ (τmin, τ ]. Now, since τ < τmax ≤ t1, it follows from Gronwall’s
lemma that

‖s(τ, y0) − s(τ, x0)‖ ≤ ‖y0 − x0‖eL|τ−t0| < δeL(τ−t0) ≤ ε. (2.190)

Hence, s(τ, y0) ∈
◦
Dc, which leads to a contradiction. Thus, s(t, y0) ∈ Dc

for all t ∈ (τmin, τmax). However, by Theorem 2.30, (τmin, τmax) cannot
be the maximal interval of existence of s(t, y0), leading to a contradiction.
Thus, t1 < τmax. Similarly, it can be shown that τmin < t0, and hence,
[t0, t1] ⊂ (τmin, τmax). Hence, for all y0 ∈ Nδ(x0), y(t) is the unique solution
to (2.136) defined over the closed interval [t0, t1].

Next, to show that s(t, y0) ∈ Dc for all t ∈ [t0, t1], suppose, ad
absurdum, that there exists τ ∈ [t0, t1) such that s(t, y0) ∈ Dc for all
t ∈ [t0, τ) and s(τ, y0) ∈ ∂Dc. Repeating the identical steps as above, it
can be shown that this leads to a contradiction, and hence, s(t, y0) ∈ Dc

for all t ∈ [t0, t1]. Now, a reapplication of Gronwall’s lemma over the closed
interval [t0, t1] yields

‖s(t, y0) − s(t, x0)‖ ≤ ‖y0 − x0‖eL|t−t0|, t ∈ [t0, t1]. (2.191)

Finally, (2.188) is now immediate.

The main difference between Theorem 2.26 and Theorem 2.31 is that
in Theorem 2.26 we assumed that both solutions to (2.136) are defined on
the same closed interval. Alternatively, Theorem 2.31 shows that solutions
to (2.136) that start nearby will be defined on the same interval and
remain nearby over a finite time. An extension of Theorem 2.31 involving
continuous dependence on initial conditions and system parameters can
be easily addressed as in Theorem 2.31. Hence, the following result is
immediate.

Theorem 2.32. Consider the nonlinear dynamical system (2.162).
Assume f : D×Rm → Rn is such that for every λ ∈ Rm, f(·, λ) is Lipschitz
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continuous on D and for every x ∈ D, f(x, ·) is Lipschitz continuous on Rm.
Furthermore, let x(t) denote a solution to (2.162) with system parameter λ
and initial condition x(t0) = x0 defined over the closed interval [t0, t1]. Then
there exist neighborhoods Nδ(x0) ⊂ D and Nδ(µ) ⊂ Rm, and a constant
L > 0 such that for all y(t0) = y0 ∈ Nδ(x0) and λ ∈ Nδ(µ) there exists a
unique solution y(t) of (2.162) defined over the closed interval [t0, t1] such
that

‖x(t) − y(t)‖ ≤ [‖x0 − y0‖ + ‖λ− µ‖]eL|t−t0|, (2.192)

for all t ∈ [t0, t1]. Moreover,

lim
(y0,µ)→(x0,λ)

s(t, y0, µ) = s(t, x0, λ), (2.193)

uniformly for all t ∈ [t0, t1], where s(t, x0, λ) denotes the solution to (2.162)
with initial condition x0 and parameters λ.

Next, we turn our attention to the question of global existence and
uniqueness of solutions to (2.136). For this result the following lemma is
needed.

Lemma 2.3. Let y : R → Rn be a continuously differentiable function
on (α, β). If

‖ẏ(t)‖ ≤ q(t), y(t0) = y0, t ∈ (α, β), (2.194)

then

‖y(t)‖ ≤ ‖y(t0)‖ +

∫ t

t0

q(s)ds, t ∈ (α, β). (2.195)

Proof. Note that for t ∈ (α, β),
∥

∥

∥

∥

∫ t

t0

ẏ(s)ds

∥

∥

∥

∥

≤
∫ t

t0

‖ẏ(s)‖ds ≤
∫ t

t0

q(s)ds, (2.196)

which implies

‖y(t) − y(t0)‖ ≤
∫ t

t0

q(s)ds, t ∈ (α, β).

Hence,

‖y(t)‖ = ‖y(t) − y(t0) + y(t0)‖ ≤ ‖y(t0)‖ +

∫ t

t0

q(s)ds,

for all t ∈ (α, β).

Theorem 2.33. Consider the nonlinear dynamical system (2.136).
Assume that f : Rn → Rn is globally Lipschitz continuous with Lipschitz
constant L. Then, for all x0 ∈ Rn, (2.136) has a unique solution x :
(−∞,∞) → Rn over all t ∈ R.
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Proof. Let x(t) be the solution to (2.136) on the maximal interval of
existence Ix0

= (τmin, τmax). Then it follows from the triangle inequality for
vector norms and the globally Lipschitz condition on f that

‖ẋ(t)‖ = ‖f(x(t))‖
= ‖f(x(t)) − f(x0) + f(x0)‖
≤ ‖f(x(t)) − f(x0)‖ + ‖f(x0)‖
≤ L‖x(t) − x0‖ + α, t ∈ (τmin, τmax), (2.197)

where α
△
= ‖f(x0)‖. Now, suppose, ad absurdum, that τmax < ∞. In

this case, it follows from Lemma 2.3, with y(t) = x(t) − x0 and q(t) =
L‖x(t) − x0‖ + α, that

‖x(t) − x0‖ ≤
∫ t

t0

[L‖x(s) − x0‖ + α]ds

≤ α(τmax − t0) + L

∫ t

t0

‖x(s) − x0‖ds, (2.198)

for all t ∈ (t0, τmax). Next, using Gronwall’s lemma (2.198) implies

‖x(t) − x0‖ ≤ α(τmax − t0)e
L(t−t0), t ∈ [t0, τmax), (2.199)

which further implies that the solution to (2.136) through the point x0 at
time t = t0 is contained in the compact set

Dc = {x ∈ Rn : ‖x− x0‖ ≤ α(τmax − t0)e
L(τmax−t0)} ⊂ Rn.

Hence, it follows from Theorem 2.30 that the supposition τmax < ∞ leads
to a contradiction. Thus, τmax = ∞. Similarly, it can be shown that τmin =
−∞. Hence, for all x0 ∈ Rn, (2.136) has a unique solution x(t) over all
t ∈ R, where uniqueness follows from Theorem 2.25.

Example 2.37. Consider the linear dynamical system

ẋ(t) = Ax(t), x(t0) = x0, t ∈ [t0, t1], (2.200)

where x(t) ∈ Rn, t ∈ [t0, t1], and A ∈ Rn×n. Since A is constant, ‖A‖ ≤ α,
where ‖ · ‖ : Rn×n → R is the equi-induced matrix norm induced by the
vector norm ‖ · ‖. Now, with f(x) = Ax it follows that

‖f(x) − f(y)‖ = ‖A(x− y)‖ ≤ ‖A‖‖x − y‖ ≤ α‖x− y‖, (2.201)

for all x, y ∈ Rn, and hence, (2.136) is globally Lipschitz on Rn. Hence, it
follows from Theorem 2.33 that linear systems have unique solutions over
all t ∈ R. △

The following corollary to Theorem 2.33 is immediate.

Corollary 2.6. Consider the nonlinear dynamical system (2.136).
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Assume that f : Rn → Rn is continuously differentiable and its derivative
is uniformly bounded on Rn. Then, for all x0 ∈ Rn, (2.136) has a unique
solution x : (−∞,∞) → Rn over all t ∈ R.

Proof. It follows from Proposition 2.26 that if f : Rn → Rn is
continuously differentiable on Rn and its derivative is uniformly bounded
on Rn, then f(·) is globally Lipschitz continuous. Existence and uniqueness
of solutions over R now follows from Theorem 2.33.

2.10 Flows and Dynamical Systems

As shown in Section 2.6, a dynamical system defines a continuous flow in the
state space. This flow is a one-parameter family of homeomorphisms and
is one possible mathematical expression of the behavior of the dynamical
system. In this section, we provide some additional properties of flows
defined by differential equations. In particular, we consider the nonlinear
dynamical system

ẋ(t) = f(x(t)), x(0) = x0, t ∈ Ix0
, (2.202)

where x(t) ∈ D, t ∈ Ix0
, D is an open subset of Rn, f : D → Rn is Lipschitz

continuous on D, and Ix0
= (τmin, τmax) ⊆ R is the maximal interval of

existence for the solution x(·) of (2.202). As in Section 2.6, for t ∈ Ix0
, the set

of mappings s : Ix0
×D → D defined by st(x0) = s(t, x0) will denote the flow

of (2.202). Furthermore, we define the set S △
= {(t, x0) ∈ R × D : t ∈ Ix0

}
so that s : S → D.

Theorem 2.34. Let s : S → D be the flow generated by (2.202) and
let x0 ∈ D. If t ∈ Ix0

and τ ∈ Ist(x0), then τ + t ∈ Ix0
and

st+τ (x0) = sτ (st(x0)). (2.203)

Proof. Let t ∈ Ix0
and let τ ∈ Ist(x0) be such that τ > 0. Furthermore,

let Ix0
= (τmin, τmax) and define the solution curves sx0 : (τmin, τ + t] → D

by

sx0(σ) =

{

s(σ, x0), τmin < σ ≤ t,
s(σ − t, st(x0)), t ≤ σ ≤ τ + t.

(2.204)

Clearly, sx0(σ) is the solution curve of (2.202) over the interval (τmin, τ + t]
with initial condition sx0(0) = x0. Hence, τ + t ∈ Ix0

. Furthermore, since
f : D → Rn is Lipschitz continuous on D it follows from the uniqueness
property of solutions that

st+τ (x0) = sx0(t+ τ) = s(τ, st(x0)) = sτ (st(x0)), (2.205)

which proves (2.203) for the case τ > 0. Next, in the case where τ = 0,
(2.203) is immediate. Finally, let τ < 0 and define the solution curve sx0 :
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[τ + t, τmax) → D by

sx0(σ) =

{

s(σ, x0), t ≤ σ < τmax,
s(σ − t, st(x0)), τ + t ≤ σ ≤ t.

(2.206)

Note that sx0(σ) is the solution curve of (2.206) over the interval [τ+t, τmax)
with initial condition sx0(0) = x0. Now, using an identical argument as
above shows (2.203).

Theorem 2.34 shows that sτ+t(x0) is defined for τ + t ∈ Ix0
if and only

if sτ (st(x0)) is defined for t ∈ Ix0
and τ ∈ Ist(x0).

Theorem 2.35. Let s : S → D be the flow generated by (2.202) and
let x0 ∈ D. Then S is an open subset of R×D and s : S → D is continuous
on S.

Proof. To show that S is open, let (t1, x0) ∈ S and t1 ≥ 0. In this
case, the solution x(t) = s(t, x0) to (2.202) is defined over [0, t1], and hence,
by Theorem 2.25, can be extended on [0, t1 + τ ] for some τ > 0. Hence,
repeating this argument for the left-side interval, s(t, x0) is defined over
[t1 − τ, t1 + τ ] for each x0 ∈ D.

Now, it follows from Theorem 2.31 that there exists δ > 0 and L > 0
such that for all y0 ∈ Bδ(x0), s(t, y0) is defined on [t1 − τ, t1 + τ ] × Dδ(x0)
and satisfies

‖s(t, y0) − s(t, x0)‖ ≤ ‖y0 − x0‖eL|t−t0|, t ∈ [t1 − τ, t1 − τ ]. (2.207)

Thus, (t1 − τ, t1 + τ) ×Dδ(x0) ⊂ S, and hence, S is open in R ×D.

To show that s : S → D is continuous at (t1, x0) note that since f :
D → Rn is Lipschitz continuous on D and Dc = s([t1−τ, t1−τ ]×Bδ(x0)) ⊂ D
is a compact set, it follows from Proposition 2.23 that f : D → Rn is
uniformly Lipschitz continuous on Dc. Next, let α = max{‖f(x)‖ : x ∈ Dc}
and let δ > 0 be such that δ < τ and Bδ(x0) ⊂ Dc. Furthermore, let y be
such that y ∈ Bδ(x0). Now, suppose |t∗ − t1| < δ and ‖y − x0‖ < δ. Then,

‖s(t∗y) − s(t1, x0)‖ = ‖s(t∗, y) − s(t∗, x0) + s(t∗, x0) − s(t1, x0)‖
≤ ‖s(t∗, y) − s(t∗, x0)‖ + ‖s(t∗, x0) − s(t1, x0)‖.

(2.208)

Since s(·, x0) is continuous in t, it follows that ‖s(t∗, x0)− s(t1, x0)‖ → 0 as
δ → 0. Alternatively, it follows from (2.207) that ‖s(t∗, y)−s(t∗, x0)‖ < δeLδ ,
and hence, ‖s(t∗, y) − s(t∗, x0)‖ → 0 as δ → 0. Hence, s(·, ·) is continuous
on S. An analogous proof holds for the case where t1 < 0.

Finally, we show that st : D → D is a one-to-one map and has a
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continuous inverse.

Theorem 2.36. Let st : D → D be the flow generated by (2.202) and
let x0 ∈ D. If (t, x0) ∈ S then there exists a neighborhood N of x0 such
that {t} × N ⊂ S. Furthermore, U = st(N ) ⊂ D is open, {−t} × U ⊂ S,
and

s−t(st(x)) = x, x ∈ N , (2.209)

st(s−t(y)) = y, y ∈ U. (2.210)

Proof. Let (t, x0) ∈ S. Using similar arguments as in the proof of
Theorem 2.35 it follows that there exists a neighborhood N of x0 and τ > 0
such that (t − τ, t + τ) × N ⊂ S, and hence, {t} × N ⊂ S. Next, to show
that st has a continuous inverse, let y = st(x) for x ∈ N and t ∈ Ix. Since
φ(τ) = s(τ + t, y) is a solution of (2.202) over the interval [−t, 0] with initial
condition φ(−t) = y, it follows that −t ∈ Iy. Hence, s−t is defined on
U = st(N ). Now, Theorem 2.35 yields s−t(st(x)) = s0(x) = x for all x ∈ N
and st(s−t(y)) = s0(y) = y for all y ∈ U . Finally, to show that U is open
let s−t : Umax → D, where Umax ⊃ U is such that R × Umax = S. Since S is
open, Umax is open. Furthermore, since, by Theorem 2.35, st is continuous
it follows that s−t : Umax → D is also continuous. Now, since the inverse
image of the open set N under the continuous map s−t is open, and since
this inverse image is U , that is, s−t(U) = N , it follows that U is open.

2.11 Time-Varying Nonlinear Dynamical Systems

In Section 2.6 we defined a dynamical system as a precise mathematical
object satisfying a set of axioms. A key implicit assumption in Definition
2.47 was that the solution curve of the dynamical system G remained
unchanged under translation of time. In many dynamical systems this
assumption does not hold, giving rise to time-varying or nonautonomous
differential equations. Even though this allows for a more general class of
dynamical systems, the fundamental theory developed in Sections 2.7–2.10
does not change significantly for the class of time-varying systems. In this
section, we outline the salient changes for time-varying dynamical systems
as compared to time-invariant dynamical systems. Since these results very
closely parallel the results on time-invariant systems, we present the most
important theorems needed for later developments. Furthermore, we leave
the proofs of these theorems as exercises for the reader. For the following
definition let D be an open subset of Rn.

Definition 2.48. A time-varying dynamical system on D is the triple
(D,R, s), where s : R × R ×D → D is such that the following axioms hold:
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i) (Continuity): s(t, t0, ·) is continuous and s(·, t0, x0) is continuously
differentiable in t for all x0 ∈ D and t, t0 ∈ R.

ii) (Consistency): For every x0 ∈ D and t0 ∈ R, s(t0, t0, x0) = x0.

iii) (Group property): s(t2, t0, x0) = s(t2, t1, s(t1, t0, x0)) for all t0, t1, t2 ∈
R and x0 ∈ D.

As for the time-invariant case, we denote the time-varying dynamical
system (D,R, s) by G. Note that if for every t0, t ∈ R such that t ≥ t0, and
τ ∈ R, x0 ∈ D, s(t + τ, t0 + τ, x0) = s(t, t0, x0), then the function s(·, ·, ·)
remains unchanged under time translation. Hence, without loss of generality
we can set t0 = 0. In this case, Definition 2.48 collapses to Definition 2.47
with s(t, 0, x0) = s(t, x0). As in the time-invariant case, since a time-varying
dynamical system involves the function s(·, ·, ·) describing the motion of
x ∈ D for all t ∈ R, it generates a time-varying differential equation on D.
In particular, the function f : R ×D → Rn given by

f(t, x)
△
= lim

τ→t

1

t− τ
[s(t, t0, x) − s(τ, t0, x)] (2.211)

defines a continuous vector field on D. Hence, the dynamical system G
defined by Definition 2.48 gives rise to the time-varying differential equation

ẋ(t) = f(t, x(t)), x(t0) = x0, t ∈ Ix0
. (2.212)

Existence and uniqueness of solutions, extendability of solutions, and
continuous dependence on initial conditions and system parameter theorems
can now be developed for (2.212) as in the case for time-invariant systems.
To see that these results will not significantly differ from the results already
developed note that by defining x1(τ)

△
= x(t) and x2(τ)

△
= t, where τ = t−t0,

the solution x(t), t ∈ Ix0
, to the nonlinear time-varying dynamical system

(2.212) can be equivalently characterized by the solution x1(τ), τ ∈ Ix0,t0 ,
to the nonlinear time-invariant system

ẋ1(τ) = f(x2(τ), x1(τ)), x1(0) = x0, τ ∈ Ix0,t0 , (2.213)

ẋ2(τ) = 1, x2(0) = t0, (2.214)

where ẋ1(·) and ẋ2(·) in (2.213) and (2.214) denote differentiation with
respect to τ . Next, we state the key results on the existence and
uniqueness of solutions for time-varying dynamical systems needed for later
developments. The proofs of these results are similar to the proofs given in
earlier sections and are left as exercises for the reader.

Theorem 2.37. Consider the nonlinear dynamical system (2.212).
Assume f(t, ·) : D → Rn is continuous on D for all t ∈ [t0, t1] and f(·, x) :
[t0, t1] → Rn is piecewise continuous on [t0, t1] for all x ∈ D. Then for every
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x0 ∈ D there exists τ > t0 such that (2.212) has a piecewise continuously
differentiable solution x : [t0, τ ] → Rn. Furthermore, if f(·, x) : [t0, t1] → Rn

is continuous on [t0, t1] for all x ∈ D, then x : [t0, τ ] → Rn is continuously
differentiable on [t0, τ ].

Theorem 2.38. Consider the nonlinear dynamical system (2.212).
Assume f(t, ·) : D → Rn is Lipschitz continuous on D for all t ∈ [t0, t1]
and f(·, x) : [t0, t1] → Rn is piecewise continuous on [t0, t1] for all x ∈ D.
Then, for every x0 ∈ D, there exists τ ∈ (t0, t1) such that (2.212) has a
unique solution x : [t0, τ ] → Rn over the interval [t0, τ ].

Theorem 2.39. Consider the nonlinear dynamical system (2.212).
Assume f(t, ·) : D → Rn is Lipschitz continuous on D for all t ∈ [t0, t1]
and f(·, x) : [t0, t1] → Rn is piecewise continuous on [t0, t1] for all x ∈ D.
Furthermore, let Dc ⊂ D be compact and suppose for x0 ∈ Dc every solution
x : [t0, τ ] → D lies entirely in Dc. Then there exists a unique solution
x : [t0,∞) → Rn to (2.212) for all t ≥ t0.

Theorem 2.40. Consider the nonlinear dynamical system (2.212).
Assume f(t, ·) : D → Rn is Lipschitz continuous on D for all t ∈ [t0, t1]
and f(·, x) : [t0, t1] → Rn is piecewise continuous on [t0, t1] for all x ∈ D. In
addition, assume there exists α = α(x0) such that maxt∈R ‖f(t, x0)‖ ≤ α.
Then, for all x0 ∈ Rn, (2.212) has a unique solution x : (−∞,∞) → Rn over
all t ∈ R.

If we assume that f(t, 0) = 0, t ∈ R, then the assumption ‖f(t, x0)‖ ≤
α in Theorem 2.40 follows as a direct consequence of Lipschitz continuity
condition on f(t, ·) : D → Rn and, hence, is automatic. To see this, note
that in this case Lipschitz continuity implies that ‖f(t, x0)‖ ≤ L‖x0‖. In
this book we will assume that f(·, ·) has at least one equilibrium point in D
so that, without loss of generality, f(t, 0) = 0, t ∈ R. However, as seen in
Example 2.2, there are systems that have no equilibrium points. For these
systems, the assumption ‖f(t, x0)‖ ≤ α in Theorem 2.40 is necessary.

2.12 Limit Points, Limit Sets, and Attractors

In this section, we introduce the notion of invariance with respect to the flow
st(x0) of a nonlinear dynamical system. Consider the nonlinear dynamical
system

ẋ(t) = f(x(t)), x(0) = x0, t ∈ R, (2.215)

where x(t) ∈ D, t ∈ R, D is an open subset of Rn, and f : D → Rn is
Lipschitz continuous on D. Recall that (2.215) defines a dynamical system
in the sense of Definition 2.47 with flow s : R × D → D. In addition, recall
that for x ∈ D, the map s(·, x) : R → D defines the solution curve or
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trajectory of (2.215) through the point x in D. Identifying s(·, x) with its
graph, the trajectory or orbit of a point x0 ∈ D is defined as the motion
along the curve

Ox0

△
= {x ∈ D : x = s(t, x0), t ∈ R}. (2.216)

For t ≥ 0, we define the positive orbit through the point x0 ∈ D as the
motion along the curve

O+
x0

△
= {x ∈ D : x = s(t, x0), t ≥ 0}. (2.217)

Similarly, the negative orbit through the point x0 ∈ D is defined as

O−
x0

△
= {x ∈ D : x = s(t, x0), t ≤ 0}. (2.218)

Hence, the orbit Ox of a point x ∈ D is given by O+
x ∪ O−

x = {s(t, x) : t ≥
0} ∪ {s(t, x) : t ≤ 0}.

Definition 2.49. A point p ∈ D is a positive limit point of the
trajectory s(·, x) of (2.215) if there exists a monotonic sequence {tn}∞n=0

of positive numbers, with tn → ∞ as n → ∞, such that s(tn, x) → p as
n → ∞. A point q ∈ D is a negative limit point of the trajectory s(·, x) of
(2.215) if there exists a monotonic sequence {tn}∞n=0 of negative numbers,
with tn → −∞ as n → ∞, such that s(tn, x) → q as n → ∞. The set of all
positive limit points of s(t, x), t ≥ 0, is the positive limit set ω(x) of s(·, x) of
(2.215). The set of all negative limit points of s(t, x), t ≤ 0, is the negative
limit set α(x) of s(·, x) of (2.215).

An equivalent definition of ω(x0) and α(x0) which is geometrically

easier to see is ω(x0) = ∩t≥0O+
x0 and α(x0) = ∩t≤0O−

x0 (see Problem 2.114).
In the literature, the positive limit set is often referred to as the ω-limit set
while the negative limit set is referred to as the α-limit set . Note that if
p ∈ D is a positive limit point of the trajectory s(·, x), then for all ε > 0
and finite time T > 0 there exists t > T such that ‖x(t) − p‖ < ε. This
follows from the fact that ‖x(t)− p‖ < ε for all ε > 0 and some t > T > 0 is
equivalent to the existence of a sequence {tn}∞n=0, with tn → ∞ as n → ∞,
such that x(tn) → p as n→ ∞. An analogous observation holds for negative
limit points.

Definition 2.50. A set M ⊂ D ⊆ Rn is a positively invariant set
with respect to the nonlinear dynamical system (2.215) if st(M) ⊆ M for

all t ≥ 0, where st(M)
△
= {st(x) : x ∈ M}. A set M ⊂ D ⊆ Rn is

a negatively invariant set with respect to the nonlinear dynamical system
(2.215) if st(M) ⊆ M for all t ≤ 0. A set M ⊆ D is an invariant set with
respect to the dynamical system (2.215) if st(M) = M for all t ∈ R.

In the case where t ≥ 0 in (2.215), note that a set M ⊆ D is a
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negatively invariant set with respect to the nonlinear dynamical system
(2.215) if, for every y ∈ M and every t ≥ 0, there exists x ∈ M such
that s(t, x) = y and s(τ, x) ∈ M for all τ ∈ [0, t]. Hence, if M is negatively
invariant, then M ⊆ st(M) for all t ≥ 0; the converse, however, is not
generally true. Furthermore, a set M ⊂ D is an invariant set with respect
to (2.215) (defined over t ≥ 0) if st(M) = M for all t ≥ 0. Note that a set
M is invariant if and only if M is positively and negatively invariant.

The following propositions give several properties of positively invari-
ant, negatively invariant, and invariant sets.

Proposition 2.31. Consider the nonlinear dynamical system G given
by (2.215). Let {Mi : i ∈ I} be a collection of positively invariant
(respectively, negatively invariant or invariant) sets with respect to G. Then
M =

⋂

i∈I Mi and N =
⋃

i∈I Mi are positively invariant (respectively,
negatively invariant or invariant) sets with respect to G.

Proof. Let the sets Mi be positively invariant. For every x ∈ N ,
it follows that x ∈ Mi for some i ∈ I. Since Mi is positively invariant,
s(t, x) ∈ Mi for all t ≥ 0. Thus, since Mi ⊆ N , s(t, x) ∈ N for all t ≥ 0,
and hence, N is positively invariant. Next, let x ∈ M. In this case, x ∈ Mi

for every i ∈ I and since each Mi is positively invariant, s(t, x) ∈ Mi for
each i ∈ I and each t ≥ 0. Hence, s(t, x) ∈ ⋂i∈I Mi = M for each t ≥ 0,
which proves positive invariance of M. The proofs for negative invariance
and invariance are analogous and are left as exercises for the reader.

Proposition 2.32. Consider the nonlinear dynamical system G given
by (2.215). Let M ⊂ D be a positively invariant (respectively, negatively
invariant or invariant) set with respect to G. Then M is positively invariant
(respectively, negatively invariant or invariant) with respect to G.

Proof. Let M be invariant and let x ∈ M and t ∈ R. In this case,
there exists a sequence {xn}∞n=0 ⊆ M such that xn → x as n→ ∞. Since M
is invariant, s(t, xn) ∈ M for each n. Furthermore, since s(t, xn) → s(t, x)
as n→ ∞ it follows that s(t, x) ∈ M, and hence, M is invariant. The proofs
of positive and negative invariance are identical and, hence, are omitted.

Proposition 2.33. Consider the nonlinear dynamical system G given
by (2.215). Then M ⊂ D is positively invariant with respect to G if and
only if D \M is negatively invariant with respect to G. Furthermore, M is
invariant with respect to G if and only if D \M is invariant with respect to
G.

Proof. Let M be positively invariant and suppose, ad absurdum, that
if x ∈ D \M and t ≤ 0, then s(t, x) 6∈ D \M. Hence, s(t, x) ∈ M and since
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−t ≥ 0, s(−t, s(t, x)) = s(−t+t, x) = s(0, x) = x ∈ M by positive invariance
of M. This contradiction shows that D \ M is negatively invariant. The
converse statement follows by retracing the steps above. Finally, the second
part of the theorem follows as a direct consequence from the first part.

Proposition 2.34. Consider the nonlinear dynamical system G given

by (2.215). Let M ⊂ D be invariant with respect to G. Then ∂M and
◦

M
are invariant with respect to G.

Proof. It follows from Proposition 2.33 that if M is invariant with
respect to G, then D \ M is invariant with respect to G. Hence, by

Proposition 2.32, M and D \M are invariant with respect to G. Now,

it follows from Propositions 2.31 and 2.33 that ∂M = M ∩ (D \M) and
◦

M= D \ (D \M) are invariant with respect to G.

The converse of Proposition 2.34 holds whenever M is open or closed.

To see this, note that if ∂M is invariant with respect to G, then
◦

M is
invariant with respect to G. This simple fact can be shown by a contradiction

argument. Specifically, suppose, ad absurdum, that there exist x ∈
◦

M and

t ∈ R such that s(t, x) 6∈
◦

M . Now, since the set Q △
= {y ∈ D : y = s(t, x), t ∈

[0, τ ]} is connected it follows that Q ∩ ∂M 6= Ø, where we have assumed
t ≥ 0 for convenience. Hence, there exists t∗ ∈ (0, t] such that s(t∗, x) ∈ ∂M.
However, in this case, x = s(−t∗, s(t∗, x)) = s(−t∗ + t∗, x) ∈ ∂M, which by

invariance of ∂M contradicts x ∈
◦

M . This shows that if ∂M is invariant

with respect to G, then
◦

M is invariant with respect to G. Thus, if M is

closed then M = ∂M∪
◦

M is invariant, whereas if M is open then M =
◦

M
is invariant. Similarly, it can be shown that if

◦
M is nonempty and invariant,

then M is also invariant whenever M is closed or open.

Proposition 2.35. Consider the nonlinear dynamical system G given
by (2.215). Let M ⊂ D be positively (respectively, negatively) invariant

with respect to G. Then
◦

M is positively (respectively, negatively) invariant
with respect to G.

Proof. Assume M is positively invariant. Then by Propositions 2.32

and 2.33 D \ M and D \M are negatively invariant. Hence,
◦

M= D \
(D \M) is positively invariant. The case where M is negatively invariant
follows using identical arguments.

Definition 2.51. The trajectory s(·, x) of (2.215) is bounded if there
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exists γ > 0 such that ‖s(t, x)‖ < γ, t ∈ R.

Next, we state and prove a key theorem involving positive limit sets.
An analogous result holds for negative limit sets and is left as an exercise
for the reader (see Problem 2.113). In the case where t ≥ 0, we refer to the
group property in Definition 2.47 as the semigroup property. Furthermore,
we use the notation x(t) → M ⊆ D as t→ ∞ to denote that x(t) approaches
M, that is, for each ε > 0 there exists T > 0 such that dist(x(t),M) < ε

for all t > T , where dist(p,M)
△
= infx∈M ‖p − x‖.

Theorem 2.41. Suppose the solution x(t) to (2.215) corresponding
to an initial condition x(0) = x0 is bounded for all t ≥ 0. Then the
positive limit set ω(x0) of x(t), t ≥ 0, is a nonempty, compact, invariant,
and connected set. Furthermore, x(t) → ω(x0) as t→ ∞.

Proof. Let x(t), t ≥ 0, or, equivalently, s(t, x0), t ≥ 0, denote
the solution to (2.215) corresponding to the initial condition x(0) = x0.
Next, since x(t) is bounded for all t ≥ 0, it follows from the Bolzano-
Weierstrass theorem (Theorem 2.3) that every sequence in the positive orbit

O+
x0

△
= {s(t, x) : t ∈ [0,∞)} has at least one accumulation point p ∈ D as

t → ∞, and hence, ω(x0) is nonempty. Next, let p ∈ ω(x0) so that there
exists an increasing unbounded sequence {tn}∞n=0, with t0 = 0, such that
limn→∞ x(tn) = p. Now, since x(tn) is uniformly bounded in n it follows that
the limit point p is bounded, which implies that ω(x0) is bounded. To show
that ω(x0) is closed let {pi}∞i=0 be a sequence contained in ω(x0) such that
limi→∞ pi = p. Now, since pi → p as i→ ∞ for every ε > 0, there exists an i
such that ‖p−pi‖ < ε/2. Next, since pi ∈ ω(x0), there exists t ≥ T , where T
is arbitrary and finite, such that ‖pi−x(t)‖ < ε/2. Now, since ‖p−pi‖ < ε/2
and ‖pi −x(t)‖ < ε/2 it follows that ‖p−x(t)‖ ≤ ‖pi −x(t)‖+ ‖p− pi‖ < ε,
and hence, p ∈ ω(x0). Thus, every accumulation point of ω(x0) is an element
of ω(x0) so that ω(x0) is closed. Hence, since ω(x0) is closed and bounded
it is compact.

To show positive invariance of ω(x0) let p ∈ ω(x0) so that there
exists an increasing unbounded sequence {tn}∞n=0 such that x(tn) → p
as n → ∞. Now, let s(tn, x0) denote the solution x(tn) of (2.215) with
initial condition x(0) = x0 and note that since f : D → Rn in (2.215) is
Lipschitz continuous on D, x(t), t ≥ 0, is the unique solution to (2.215) so
that by the semigroup property s(t + tn, x0) = s(t, s(tn, x0)) = s(t, x(tn)).
Now, since x(t), t ≥ 0, is continuous it follows that, for t + tn ≥ 0,
limn→∞ s(t + tn, x0) = limn→∞ s(t, x(tn)) = s(t, p), and hence, s(t, p) ∈
ω(x0). Hence, st(ω(x0)) ⊆ ω(x0), t ≥ 0, establishing positive invariance of
ω(x0).
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To show invariance of ω(x0) let y ∈ ω(x0) so that there exists an
increasing unbounded sequence {tn}∞n=0 such that s(tn, x0) → y as n→ ∞.
Next, let t ∈ [0,∞) and note that there exists N such that tn > t, n ≥
N . Hence, it follows from the semigroup property that s(t, s(tn − t, x0)) =
s(tn, x0) → y as n→ ∞. Now, it follows from the Bolzano-Lebesgue theorem
(Theorem 2.4) that there exists a subsequence {znk

}∞k=1 of the sequence
zn = s(tn − t, x0), n = N,N + 1, . . ., such that znk

→ z ∈ D as k → ∞ and,
by definition, z ∈ ω(x0). Next, it follows from the continuous dependence
property that limk→∞ s(t, znk

) = s(t, limk→∞ znk
), and hence, y = s(t, z),

which implies that ω(x0) ⊆ st(ω(x0)), t ∈ [0,∞). Now, using positive
invariance of ω(x0) it follows that st(ω(x0)) = ω(x0), t ≥ 0, establishing
invariance of the positive limit set ω(x0).

To show connectedness of ω(x0), suppose, ad absurdum, that ω(x0) is
not connected. In this case, there exist two nonempty closed sets P+

1 and
P+

2 such that P+
1 ∩ P+

2 = Ø and ω(x0) = P+
1 ∪ P+

2 . Since P+
1 and P+

2 are
closed and disjoint there exist two open sets S1 and S2 such that S1∩S2 = Ø,
P+

1 ⊂ S1, and P+
2 ⊂ S2. Next, since f : D → R is Lipschitz continuous on D

it follows that the solution x(t), t ≥ 0, to (2.215) is a continuous function of
t. Hence, there exist sequences {tn}∞n=0 and {τn}∞n=0 such that x(tn) ∈ S1,
x(τn) ∈ S2, and tn < τn < tn+1, which implies that there exists a sequence
{τn}∞n=0, with tn < τn < τn+1, such that x(τn) 6∈ S1 ∪S2. Next, since x(t) is
bounded for all t ≥ 0, it follows that x(τn) → p̂ 6∈ ω(x0) as n → ∞, leading
to a contradiction. Hence, ω(x0) is connected.

Finally, to show x(t) → ω(x0) as t → ∞, suppose, ad absurdum,
x(t) 6→ ω(x0) as t → ∞. In this case, there exists a sequence {tn}∞n=0, with
tn → ∞ as n→ ∞, such that

inf
p∈ω(x0)

‖x(tn) − p‖ > ε, n ∈ Z+. (2.219)

However, since x(t), t ≥ 0, is bounded, the bounded sequence {x(tn)}∞n=0

contains a convergent subsequence {x(t∗n)}∞n=0 such that x(t∗n) → p∗ ∈ ω(x0)
as n→ ∞, which contradicts (2.219). Hence, x(t) → ω(x0) as t→ ∞.

It is important to note that Theorem 2.41 holds for time-invariant
nonlinear dynamical systems (2.215) possessing unique solutions forward in
time with the solutions being continuous functions of the initial conditions.
More generally, letting s(·, x0) denote the solution of a dynamical system
with initial condition x(0) = x0, Theorem 2.41 holds if s(t + τ, x0) =
s(t, s(τ, x0)), t, τ ≥ 0, and s(·, x0) is a continuous function of x0 ∈
D. Of course, if f(·) is Lipschitz continuous on D then there exists a
unique solution to (2.215), and hence, the required semigroup property
s(t + τ, x0) = s(t, s(τ, x0)), t, τ ≥ 0, and the continuity of s(t, ·) on D,
t ≥ 0, hold. Alternatively, uniqueness of solutions in forward time along
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with the continuity of f(·) ensure that the solutions to (2.215) satisfy the
semigroup property and are continuous functions of the initial conditions
x0 ∈ D even when f(·) is not Lipschitz continuous on D (see [96, Theorem
4.3, p. 59]). More generally, f(·) need not be continuous. In particular, if
f(·) is discontinuous but bounded and x(·) is the unique solution to (2.215)
in the sense of Filippov [118], then the required semigroup property along
with the continuous dependence of solutions on initial conditions hold [118].

Note that Theorem 2.41 implies that if p ∈ D is an ω-limit point of
a trajectory s(·, x) of (2.215), then all other points of the trajectory s(·, p)
of (2.215) through the point p are also ω-limit points of s(·, x), that is, if
p ∈ ω(x) then O+

p ⊂ ω(x). Furthermore, since every equilibrium point
xe ∈ D of (2.215) satisfies s(t, xe) = xe for all t ∈ R, all equilibrium points
xe ∈ D of (2.215) are their own α- and ω-limit sets. If a trajectory of
(2.215) possesses a unique ω-limit point xe, then it follows from Theorem
2.41 that since ω(xe) is invariant with respect to the flow st of (2.215), xe

is an equilibrium point of (2.215).

Next, we establish an important property of limit sets with orbit
closures.

Theorem 2.42. Consider the nonlinear dynamical system G given by
(2.215) and let O+

x and O−
x denote, respectively, the positive and negative

orbits of G through the point x ∈ D. Then O+
x = O+

x ∪ ω(x) and O−
x =

O−
x ∪ α(x).

Proof. Recall that O+
x = {y ∈ D : y = s(t, x), t ≥ 0}. Now, it follows

from the definition of ω(x) that O+
x ⊇ O+

x ∪ ω(x). To show that O+
x ⊆

O+
x ∪ ω(x), let z ∈ O+

x . In this case, there exists a sequence {zn}∞n=0 ⊆ O+
x

such that zn → z as n→ ∞. Next, let zn = s(tn, x) for tn ∈ R+. Now, either
there exists a subsequence {tnk

}∞k=0 such that tnk
→ ∞ as k → ∞, in which

case z ∈ ω(x), or since R+ is closed it follows from the Bolzano-Lebesgue
theorem (Theorem 2.4) that there exists a subsequence {tnk

}∞k=0 such that

tnk
→ t ∈ R+. In the second case, s(tnk

, x) → s(t, x) ∈ O+
x as k → ∞,

and since s(tnk
, x) → z as k → ∞ it follows that z = s(t, x) ∈ O+

x . Hence,

O+
x ⊆ O+

x ∪ ω(x). The proof of O−
x = O−

x ∪ α(x) follows using identical
arguments.

The next definition introduces the notions of attracting sets and
attractors. For this definition recall that a neighborhood N of a set M ⊂ D
is defined as N △

= {x ∈ D : ‖x− y‖ < ε, y ∈ M} for some small ε > 0.

Definition 2.52. A closed invariant set M ⊂ D is an attracting set of
the dynamical system (2.215) if there exists a neighborhood N of M such
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that, for all x ∈ N , st(x) ∈ N for all t ≥ 0 and st(x) → M as t → ∞.
A set M ⊂ D is an attractor of the dynamical system (2.215) if M is an
attracting set of (2.215) and contains a dense orbit.

Example 2.38. Consider the nonlinear dynamical system

ẋ1(t) = −x2(t) + x1(t)[1 − x2
1(t) − x2

2(t)], x1(0) = x10, t ≥ 0, (2.220)

ẋ2(t) = x1(t) + x2(t)[1 − x2
1(t) − x2

2(t)], x2(0) = x20. (2.221)

Rewriting (2.220) and (2.221) in terms of the polar coordinates r =
√

x2
1 + x2

2 and θ = tan−1(x2/x1) as

ṙ(t) = r(t)[1 − r2(t)], r(0) = r0
△
=
√

x2
10 + x2

20, t ≥ 0, (2.222)

θ̇(t) = 1, θ(0) = θ0
△
= tan−1(x20/x10), (2.223)

it can be shown that the set of equilibria f−1(0) consists of the origin x =
[x1 x2]

T = 0. All solutions of the system starting from nonzero initial
conditions x(0) that are not on the unit circle C = {x ∈ R2 : x2

1 + x2
2 =

1} approach the unit circle. In particular, since ṙ > 0 for r ∈ (0, 1), all
solutions starting inside the unit circle spiral counterclockwise toward the
unit circle. Alternatively, since ṙ < 0 for r > 1, all solutions starting outside
the unit circle spiral inward counterclockwise (see Figure 2.6). Hence, all
solutions to (2.220) and (2.221) are bounded and converge to C. Note that
the counterclockwise flow on the unit circle characterizes a trajectory O+

x0

of (2.220) and (2.222) since ṙ = 0 on r = 1. Furthermore, O+
x0

is the ω-
limit set of every trajectory of (2.220) and (2.221) with the exception of the
equilibrium point x = 0. Clearly, O+

x0
is an attractor.

Since the vector field (2.222) and (2.223) are Lipschitz continuous, the
solutions to (2.222) and (2.223) are unique and all solutions are defined on R.
The system trajectories of (2.222) and (2.223) are shown in Figure 2.6 and
consist of i) an equilibrium point corresponding to the origin, ii) a periodic
trajectory coinciding with the limit cycle C (see Definition 2.54), and iii)
spiraling trajectories passing through each point p = (r, θ) with r 6= 0 and
r 6= 1. For points p such that r ∈ (0, 1), ω(r, θ) = C and α(r, θ) = {0}.
For points p such that r > 1, ω(r, θ) = C and α(r, θ) = Ø. For points
p such that r = 1, ω(r, θ) = α(r, θ) = C. Hence, ω(r, θ) = C ∪ {0} and
α(r, θ) = C ∪ {0} ∪ Ø = C ∪ {0}, (r, θ) ∈ R × R. △

2.13 Periodic Orbits, Limit Cycles, and Poincaré-

Bendixson Theorems

In this section we discuss periodic orbits and limit cycles. In particular, we
present several key techniques for predicting the existence of periodic orbits
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Figure 2.6 Attractor for Example 2.38.

and limit cycles in nonlinear dynamical systems. Here we limit our attention
to planar (second-order) systems, whereas in Section 4.10 we address n-
dimensional periodic dynamical systems. Once again, we consider dynamical
systems of the form

ẋ(t) = f(x(t)), x(0) = x0, t ∈ R, (2.224)

where x(t) ∈ D, t ∈ R, D is an open subset of Rn, and f : D → Rn is
Lipschitz continuous on D. The following definition introduces the notion
of periodic solutions and periodic orbits for (2.224).

Definition 2.53. A solution s(t, x0) of (2.224) is periodic if there exists
a finite time T > 0 such that s(t+T, x0) = s(t, x0) for all t ∈ R. The minimal
T for which the solution s(t, x0) of (2.224) is periodic is called the period . A
set O ⊂ D is a periodic orbit of (2.224) if O = {x ∈ D : x = s(t, x0), t ∈ R}
for some periodic solution s(t, x0) of (2.224).

Note that for every x ∈ D, s(t, x) has a period T = 0; however, s(t, x)
need not be periodic. Furthermore, if xe ∈ D is an equilibrium point, then
every T ∈ R is a period of s(t, xe), and hence, s(t, xe) is periodic. The
next proposition gives a characterization of a periodic point of a nonlinear
dynamical system.
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Proposition 2.36. Consider the nonlinear dynamical system G given
by (2.224). Then x ∈ D is a periodic point of G if and only if there exists
T 6= 0 such that x = s(T, x).

Proof. Necessity is immediate. To show sufficiency let t ∈ R and note
that s(t, x) = s(t, s(T, x)) = s(t+ T, x), which proves the result.

The next theorem establishes an important relationship between
periodic points, ω-limit sets, and positive orbits.

Theorem 2.43. Consider the nonlinear dynamical system G given by
(2.224). Then x ∈ D is a periodic point of G if and only if O+

x = ω(x).

Proof. Let O+
x = ω(x). In this case, x ∈ ω(x) and since ω(x) is

invariant if follows that O+
x = ω(x) = Ox. Hence, s(τ, x) ∈ O+

x for each
τ < 0, and hence, there exists µ ≥ 0 such that s(τ, x) = s(µ, x). Now, it
follows from the group axiom that s(t, x) = s(t+µ−τ, x) for all t ∈ R, which
establishes that x is periodic with period T = µ − τ > 0. The converse is
immediate.

For finite-dimensional dynamical systems wherein D ⊆ Rn, it can be
shown that x ∈ D is a periodic point of G if and only if ω(x) = α(x) = Ox.
(See Problem 2.127.)

It is important to distinguish between trivial periodic orbits and
nontrivial periodic orbits or limit cycles. To see the distinction consider
the dynamical equations for the simple harmonic oscillator given by

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (2.225)

ẋ2(t) = −x1(t), x1(0) = x20, (2.226)

where the solution is characterized by

x1(t) = A cos(t− θ0), x2(t) = −A sin(t− θ0), (2.227)

where A =
√

x2
10 + x2

20 and θ0 = tan−1(x20

x10
). Note that the solution to

(2.225) and (2.226) is periodic for all initial conditions x10, x20 ∈ R. That
is, given any initial condition in the plane x1-x2, one can find a periodic
solution passing through this point. This is called a trivial periodic orbit.
This is in contrast to a nontrivial periodic orbit or limit cycle wherein a
dynamical system possesses an isolated periodic orbit, that is, there exists a
neighborhood of the periodic orbit that does not contain any other periodic
solution. To see this, consider once again (2.220) and (2.221) given in
Example 2.38. In particular, using separation of variables the solution to
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(2.220) and (2.221) is given by

r(t) =

[

1 +

(

1

A2
− 1

)

e−2t

]−1/2

, (2.228)

θ(t) = t+ θ0. (2.229)

Clearly, (2.228) shows that (2.220) and (2.221) has only one nontrivial
periodic solution corresponding to r = 1, that is, x2

10 + x2
20 = 1. In light

of the above observations we have the following definition for a nontrivial
periodic orbit or limit cycle.

Definition 2.54. Consider the nonlinear dynamical system (2.224). A
limit cycle of (2.224) is a closed curve4 Γ ⊂ Rn such that Γ is the positive
limit set of the positive orbit O+

x of (2.224) or the negative limit set of the
negative orbit O−

x of (2.224) for x 6∈ Γ.

Note that it follows from Definition 2.54 that a limit cycle is compact
and invariant. Furthermore, if a nontrivial periodic solution Γ is isolated
such that it is the positive limit set of the positive orbit O+

x of (2.224) or
the negative limit set of the negative orbit O−

x of (2.224) for x 6∈ Γ, then G
is a limit cycle.

Next, we present a key result due to Ivar Bendixson [39] that
guarantees the absence of limit cycles for planar systems. For this result,
we consider second-order nonlinear dynamical systems of the form

ẋ1(t) = f1(x1(t), x2(t)), x1(0) = x10, t ∈ R, (2.230)

ẋ2(t) = f2(x1(t), x2(t)), x2(0) = x20, (2.231)

where f1(x1, x2) and f2(x1, x2) are continuously differentiable. Furthermore,
define the divergence operator

∇f(x)
△
=
∂f1

∂x1
(x1, x2) +

∂f2

∂x2
(x1, x2). (2.232)

The following definition is required for the statement of Bendixson’s
theorem.

Definition 2.55. A subset D ⊆ R2 is simply connected if there exist
y ∈ D and a continuous function g : [0, 1] × D → D such that g(0, x) = x
and g(1, x) = y for all x ∈ D.

Theorem 2.44 (Bendixson’s Theorem). Consider the second-order
nonlinear dynamical system (2.230) and (2.231) with vector field f : D →
R2, where D is a simply connected region in R2 such that there are no

4Γ is a closed curve contained in Rn if there exists a continuous mapping γ : [0, 1] → Rn such
that γ(0) = γ(1), Γ = {γ(σ) : σ ∈ [0, 1]}, and Γ 6= {γ(0)}.
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equilibrium points of (2.230) and (2.231) in D. If there exists x ∈ D such
that ∇f(x) 6= 0 and ∇f(x) does not change sign in D, then (2.230) and
(2.231) has no periodic orbits lying entirely in D.

Proof. Suppose, ad absurdum, that Γ = {x ∈ D : x = x(t), 0 ≤ t ≤ T}
is a closed periodic orbit lying entirely in D. Then, for each x = (x1, x2) ∈ Γ,
f(x) is tangent to Γ, that is, f(x)·n(x) = 0 for all x ∈ Γ, where n(x) denotes
the outward normal vector to Γ at x (see Figure 2.7). Hence, it follows from
Green’s theorem that

∮

Γ
f(x) · n(x)dΓ =

∫ ∫

S
∇f(x)dS = 0, (2.233)

or, equivalently,
∮

Γ
(f2(x1, x2)dx1 − f1(x1, x2)dx2)

=

∫ ∫

S

(

∂f1

∂x1
(x1, x2) +

∂f2

∂x2
(x1, x2)

)

dx1dx2

= 0, (2.234)

where S is the area enclosed by Γ. Now, if there exists x ∈ D such that
∇f(x) 6= 0 and ∇f(x) does not change sign in S, then it follows from
the continuity of the divergence operator ∇f(x) in D that (2.233) is either
positive or negative, which leads to a contradiction. Hence, D contains no
periodic solutions of (2.230) and (2.231).

D

S

n(x)

f(x)

Γ

Figure 2.7 Visualization of sets and vector field used in the proof of Theorem 2.30.

Example 2.39. Consider the second-order nonlinear dynamical system

ẍ(t) + αẋ(t) + g(x(t)) = 0, x(0) = x0, ẋ(0) = ẋ0, t ≥ 0, (2.235)

where α 6= 0 and g : R → R is continuous and satisfies g(0) = 0. Note that
with x1 = x and x2 = ẋ, (2.235) can be equivalently written as

ẋ1(t) = x2(t), x1(0) = x0, t ≥ 0, (2.236)
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ẋ2(t) = −g(x1(t)) − αx2(t), x2(0) = ẋ0. (2.237)

Now, computing ∇f(x1, x2) yields

∇f(x1, x2) =
∂f1

∂x1
(x1, x2) +

∂f2

∂x2
(x1, x2) = −α 6= 0, (x1, x2) ∈ R × R.

(2.238)
Hence, it follows from Bendixson’s theorem that (2.235) has no limit cycles
in R2. It is interesting to note that for the special case where g(x) = −x+x3

and α > 0, (2.235) is known as Duffing’s equation. △

Example 2.40. Consider the van der Pol oscillator given by

ẍ(t)−ε[1−x2(t)]ẋ(t)+x(t) = 0, x(0) = x0, ẋ(0) = ẋ0, t ≥ 0, (2.239)

where ε > 0. Now, with x1 = x and x2 = ẋ, (2.239) can be equivalently
written as

ẋ1(t) = x2(t), x1(0) = x0, t ≥ 0, (2.240)

ẋ2(t) = −x1(t) + ε[1 − x2
1(t)]x2(t), x2(0) = ẋ0. (2.241)

Computing ∇f(x1, x2) yields

∇f(x1, x2) =
∂f1

∂x1
(x1, x2) +

∂f2

∂x2
(x1, x2) = ε(1 − x2

1). (2.242)

Hence, it follows from Bendixson’s theorem that if the van der Pol oscillator
were to possess a periodic solution it would have to intersect {(x1, x2) : x1 =
1} or {(x1, x2) : x1 = −1} or both sets. △

Example 2.41. Consider the linear dynamical system

ẋ(t) = Ax(t), x(0) = x0, t ≥ 0, (2.243)

where x(t) ∈ R2, t ≥ 0, and A ∈ R2×2. From linear system theory it
follows that a necessary and sufficient condition for the existence of periodic
solutions to (2.243) is Re λ = 0 and Im λ 6= 0, where λ ∈ spec(A). Recall
that the eigenvalues of A for a second-order linear system are given by

det(λI2 −A) = λ2 − tr Aλ+ det A = 0. (2.244)

Hence, (2.243) possesses periodic solutions if and only if tr A = 0 and
det A > 0. A contrapositive statement to the above yields that the absence
of periodic solutions will be guaranteed if and only if tr A 6= 0 or det A ≤ 0.
Using Bendixson’s theorem it follows that ∇f(x) = tr A, x ∈ R2. Requiring
tr A 6= 0 thus guarantees the absence of periodic solutions to second-order
linear systems. △

A more general criterion for ruling out closed orbits in a simply
connected region of R2 is due to Dulac.
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Theorem 2.45 (Dulac’s Theorem). Consider the second-order non-
linear dynamical system (2.230) and (2.231) with vector field f : D →
R2, where D is a simply connected region in R2 such that there are no
equilibrium points of (2.230) and (2.231) in D. If there exists x ∈ D and a
continuously differentiable function g : D → R such that ∇(g(x)f(x)) 6= 0
and ∇(g(x)f(x)) does not change sign in D, then (2.230) and (2.231) has
no closed orbits lying entirely in D.

Proof. The proof of this result is also based on Green’s theorem and
is virtually identical to the proof of Theorem 2.44.

Example 2.42. Consider the second-order nonlinear dynamical system

ẋ1(t) = x1(t)[2 − x1(t) − x2(t)], x1(0) = x10, t ≥ 0, (2.245)

ẋ2(t) = x2(t)[4x1(t) − x2
1(t) − 3], x2(0) = x20. (2.246)

To show that (2.245) and (2.246) has no closed orbits in the positive
orthant R2

+, consider the Dulac function g(x1, x2) = 1/x1x2. Computing
∇(g(x1, x2)f(x1, x2)) yields

∇(g(x1, x2)f(x1, x2)) =
∂

∂x1
(g(x1, x2)f1(x1, x2)) +

∂

∂x2
(g(x1, x2)f2(x1, x2))

=
∂

∂x1

(

2 − x1 − x2

x2

)

+
∂

∂x2

(

4x1 − x2
1 − 3

x1

)

= −1/x2

< 0, x1 > 0, x2 > 0. (2.247)

Since {(x1, x2) ∈ R × R : x1 > 0 and x2 > 0} is simply connected in R2

and g(·) is continuously differentiable it follows from Dulac’s theorem that
(2.245) and (2.246) has no closed orbits in R2

+. △

The next theorem is due to Henri Poincaré [358–360] and Ivar
Bendixson [39] and gives conditions for the existence of periodic orbits for
planar systems.

Theorem 2.46 (Poincaré-Bendixson Theorem). Consider the second-
order nonlinear dynamical system (2.230) and (2.231). Let O+

x0
be a positive

orbit of (2.230) and (2.231) with positive limit set ω(x0). If O+
x0

is contained
in a compact subset M of D ⊂ R2 and ω(x0) contains no equilibria of (2.230)
and (2.231), then ω(x0) is a periodic orbit of (2.230) and (2.231).

An analogous result is valid for negative orbits O−
x with negative limit

set α(x0). The proof of the Poincaré-Bendixson theorem is based on a series
of technical lemmas from algebraic topology involving positive limit sets for
two-dimensional systems and will not be given here. The interested reader
is referred to [349, 454] for the proof. Nevertheless, the result itself is quite
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intuitive. In particular, the theorem states that if a compact set M ⊂ R2 can
be constructed that does not contain any equilibrium points of (2.230) and
(2.231) and all limit points of (2.230) and (2.231) are contained in M, then
M must contain at least one periodic orbit. Of course, it is necessary to find
such a region M. One way to do this is to construct M such that M does
not contain any equilibria of (2.230) and (2.231) and is positively invariant.
In this case, O+

x ⊆ M for x ∈ M and since M is compact it contains all
its limit points, and hence, ω(x0) ⊆ M for x0 ∈ M. Hence, every compact,
nonempty positively invariant set M contains either an equilibrium point
or a periodic orbit. This result is stated as a theorem below.

Theorem 2.47. Consider the second-order nonlinear dynamical sys-
tem (2.230) and (2.231). Let M be a compact, positively invariant set with
respect to (2.230) and (2.231). Then M contains an equilibrium point or a
periodic orbit.

Proof. If x ∈ M, then ω(x) is a nonempty subset of M, that is,
ω(x) ⊂ M. The result now follows as a direct consequence of the Poincaré-
Bendixson theorem.

An identical result is true for compact, negatively invariant sets.

Example 2.43. To illustrate the Poincaré-Bendixson theorem we
consider once again the simple harmonic oscillator given by (2.225) and
(2.226). Now, letting V (x1, x2) = x2

1 + x2
2 it follows that V̇ (x1, x2) =

2x1ẋ1 + 2x2ẋ2 = 0. Hence, the system trajectories of (2.225) and (2.226)
cannot cross the α-level set of V , that is, V −1(α) = {(x1, x2) ∈ R2 :
V (x1, x2) = α}, for every α > 0. Now, define the [α, β]-sublevel set

M △
= V −1([α, β]) = {(x1, x2) ∈ R2 : α ≤ V (x) ≤ β}, where β > α > 0.

Note that M is compact and, since V̇ (x1, x2) = 0, positively invariant.
Hence, since M contains no equilibrium points it follows from the Poincaré-
Bendixson theorem that M contains a periodic orbit. △

Example 2.44. Once again, consider the nonlinear dynamical system
(2.220) and (2.221) given in Example 2.38. Letting V (x1, x2) = x2

1 + x2
2 it

follows that

V̇ (x1, x2) = 2x1ẋ1 + 2x2ẋ2

= −2x1x2 + 2x2
1(1 − x2

1 − x2
2) + 2x1x2 + 2x2

2(1 − x2
1 − x2

2)

= 2V (x1, x2)[1 − V (x1, x2)]. (2.248)

Note that V̇ (x1, x2) > 0 for V (x1, x2) < 1 and V̇ (x1, x2) < 0 for V (x1, x2) >
1. Hence, on the α-level set V −1(α), where 0 < α < 1, all the system
trajectories of (2.220) and (2.221) are moving out toward the circle x2

1 +
x2

2 = 1. Alternatively, on the β-level set V −1(β) for β > 1, all system
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trajectories of (2.220) and (2.221) are moving in toward the circle x2
1+x

2
2 = 1.

Hence, M = {(x1, x2) ∈ R2 : α ≤ V (x) ≤ β} is positively invariant.
Since M is compact and does not contain any equilibrium points, it follows
from the Poincaré-Bendixson theorem that M contains a periodic orbit.
Furthermore, since, for every 0 < α < 1 and β > 1, M contains a periodic
orbit it follows that C = {(x1, x2) ∈ R2 : x2

1 + x2
2 = 1} contains a periodic

orbit. △

2.14 Problems

Problem 2.1. Let A ∈ Rn×n be such that det A 6= 0. Show that there
exists ε > 0 such that ‖Ax‖ ≥ ε‖x‖, x ∈ Rn, where ‖ · ‖ is a vector norm on
Rn.

Problem 2.2. Let p ∈ [1,∞], p̄ = p/(p− 1), and let A ∈ Rm×n. Show
that:

i) ‖A‖2,2 = σmax(A).

ii) ‖A‖p,1 = maxi=1,...,n ‖coli(A)‖p.

iii) ‖A‖∞,p = maxi=1,...,m ‖rowi(A)‖p̄.

Problem 2.3. Using the results of Problem 2.2 show that for A ∈
Rm×n the following hold:

i) ‖A‖1,1 = maxi=1,...,n ‖coli(A)‖1.

ii) ‖A‖∞,∞ = maxi=1,...,m ‖rowi(A)‖1.

iii) ‖A‖∞,1 = max1,...,m ‖A‖∞.

iv) ‖A‖2,1 = d
1/2
max(ATA).

v) ‖A‖∞,2 = d
1/2
max(AAT).

In iv) and v) dmax(X)
△
= maxi=1,...,nX(i,i) for X ∈ Rn×n.

Problem 2.4 (Pythagorean Theorem). Let x, y ∈ Rn. Show that if
xTy = 0, then ‖x+ y‖2

2 = ‖x‖2
2 + ‖y‖2

2.

Problem 2.5. Show that Axiom iv) of Definition 2.6 holds as an
equality if and only if x, y ∈ Rn are linearly dependent.
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Problem 2.6. Show that the Euclidean norm satisfies Axioms i)–iv)
of Definition 2.6.

Problem 2.7. Show that equality holds in (2.18) if and only if |xTy| =
|x|T|y| and

|x| ◦ |y| = ‖y‖∞|x|, p = 1,

‖y‖1/p
q |x|{1/q} = ‖x‖1/q

p |y|{1/p}, 1 < p <∞,

|x| ◦ |y| = ‖x‖∞|y|, p = ∞,

where |z| ∈ Rn is a vector whose components are the absolute values of
z ∈ Rn, ◦ denotes the Hadamard product (i.e., component-by-component

product), and z{α}
△
= [zα

1 , . . . , z
α
n ]T.

Problem 2.8. Let S △
= {x ∈ R2 : −1 ≤ x1 < 1,−1 ≤ x2 < 1}. Obtain

the closure, interior, and boundary of S. Is S open? Is S closed?

Problem 2.9. Show that the union of a finite number of bounded sets
is bounded.

Problem 2.10. Let S ⊆ Rn. Show that x ∈ S if and only if Bε(x)∩S 6=
Ø for every ε > 0.

Problem 2.11. Show that the sequence {xn}∞n=1, where xn = (1 +
1/n)n, is a convergent sequence.

Problem 2.12. Let {xn}∞n=1 ⊂ R. For i) xn = (−1)n(1 + 1/n), ii)
xn = (−1)n, iii) xn = (−1)nn, and iv) xn = n2 sin2(nπ

2 ), compute the limit
inferior and limit superior of xn.

Problem 2.13. Consider the sequence of functions {fn}∞n=0, where fn :
R → R is given by fn(x) = 1/(1 + x2n). Show that the sequence {fn}∞n=0

exhibits point wise convergence on R.

Problem 2.14. Consider the sequence of functions {fn}∞n=1, where

fn(x) = ln(1 + x) = x − 1
2x

2 + 1
3x

3 − · · · + (−1)n−1

n xn + · · ·. Show that
this sequence converges for |x| < 1 and diverges for |x| > 1.

Problem 2.15. Consider the sequence of functions {fn}∞n=0, where fn :
[0, 1] → R is given by fn(x) =

∑∞
n=0

1
n!(x

2)n. Show that the sequence

{fn}∞n=1 converges uniformly to f(x) = ex
2

.

Problem 2.16. Consider the sequence of functions {fn}∞n=1, where fn :
[0, 1] → R is given by fn(x) = n2x(1 − x)n. Show that even though the
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sequence {fn}∞n=1 converges,

lim
n→∞

∫ 1

0
fn(x)dx 6=

∫ 1

0
lim

n→∞
fn(x)dx.

Problem 2.17. Construct an example of a convergent sequence of
differentiable functions {fn(x)}∞n=1 such that, for all x ∈ R, limn→∞ f ′n(x)
does not exist.

Problem 2.18. Let {xn}∞n=0 ⊂ R be a scalar sequence. Show that:

i) inf xn ≤ lim infn→∞ xn ≤ lim supn→∞ xn ≤ supxn.

ii) {xn}∞n=0 converges if and only if lim infn→∞ xn = lim supn→∞ xn =
limn→∞ xn.

iii) If lim supn→∞ xn (respectively, lim infn→∞ xn) is finite, then show that
lim supn→∞ xn (respectively, lim infn→∞ xn) is the largest (respec-
tively, smallest) limit point of {xn}∞n=0.

Problem 2.19. Explain why i) of Theorem 2.6 may not be true for
infinite intersections.

Problem 2.20. Let f : R → R and g : R → R be given by f(x) = x−1
and g(x) = sinx. Find the composite maps f ◦g and g◦f . Is the composition
of functions commutative?

Problem 2.21. Let X ⊆ R and Y ⊆ R, and let f : X → Y be given by
f(x) = sinx. What is the inverse image of Y under f if i) X = Y = R and
ii) X = [−π/2, π/2] and Y = R.

Problem 2.22. Let A ∈ Rn×n and define the map f : Rn×n → R

by f(A) = det A. Show that f is surjective. Is f bijective? What is
f−1(R \ {0})?

Problem 2.23. Let f : R → R be given by f(x) = x2 − 1. Find the
image of X under f , where X = [−1, 2] and X = R. Is f surjective, injective,
or bijective?

Problem 2.24. Let f : X → Y and let U ⊆ X be an open set. Prove
or refute that f(U) is open in Y.

Problem 2.25. Let X ⊆ Rn and Y ⊆ Rn, and let f : X → Y. Show
that f is injective if and only if f(Q) ∩ f(X \ Q) = Ø for all Q ⊆ X .

Problem 2.26. Let X and Y be sets, let A, A1, and A2 be subsets of
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X , and let B be a subset of Y. Show that the following statements hold:

i) f(A1 ∩ A2) ⊆ f(A1) ∩ f(A2).

ii) f−1(f(A)) ⊇ A.

iii) f(f−1(B)) ⊆ B.

iv) f(A1 ∩ A2) = f(A1) ∩ f(A2) if and only if f is injective.

v) f−1(f(A)) = A if and only if f is injective.

vi) f(f−1(B)) = B if and only if f is surjective.

Problem 2.27. Prove or refute that the union of convex sets is convex.

Problem 2.28. Let C ⊂ Rn and Q ⊂ Rn be convex sets. Show that:

i) αC = {x ∈ Rn : x = αy, y ∈ C} is convex, where α ∈ R.

ii) C + Q is convex.

Problem 2.29. Let ‖ · ‖ : Rn → R be a vector norm on Rn. Show that
‖ · ‖ is convex.

Problem 2.30. Let I be an index set, C ⊂ Rn be a convex set, and
fi : C → R be a convex function for each i ∈ I. Show that g : C → R ∪ {∞}
given by g(x) = supi∈I fi(x) is convex.

Problem 2.31. Let C ⊂ Rn be a convex set and let f : C → R be
continuously differentiable. Show that:

i) f is convex if and only if

f(y) ≥ f(x) + (y − x)Tf ′(x), x, y ∈ C. (2.249)

ii) If the inequality in (2.249) is strict whenever x 6= y, then f is strictly
convex.

Problem 2.32. Let C ⊂ Rn be a convex set, let f : C → R be two-times
continuously differentiable, and let P be an n× n symmetric matrix. Show
that:

i) If f ′′(x) ≥ 0, x ∈ C, then f is convex.

ii) If f ′′(x) > 0, x ∈ C, x 6= 0, then f is strictly convex.
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iii) If C = Rn and f is convex, then f ′′(x) ≥ 0, x ∈ C.

iv) f(x) = xTPx is convex if and only if P ≥ 0.

v) f(x) = xTPx is strictly convex if and only if P > 0.

Problem 2.33. Let f : Rn → Rn be continuously differentiable and let
α > 0. Show that if

[f ′(x) − f ′(y)]T(x− y) ≥ α‖x− y‖2, x, y ∈ Rn, (2.250)

then f is strictly convex. Furthermore, show that if f is two-times
continuously differentiable, then (2.250) is equivalent to f ′′(x) ≥ αIn, for
every x ∈ Rn.

Problem 2.34. Let C ⊂ Rn be a convex set and let f : C → R be a
convex function. Show that if x ∈ C is a local minimum of f , then x ∈ C is
also a global minimum of f . If, in addition, f is strictly convex, show that
there exists at most one global minimum of f .

Problem 2.35. Show that the function f : R → R given by

f(x) =

{

x2 sin( 1
x), x 6= 0,

0, x = 0,

is continuous at x = 0.

Problem 2.36. Show that the function f : R2 → R given by

f(x1, x2) =

{

x2
1x

2
2/(x

4
1 + x4

2), (x1, x2) 6= (0, 0),
0, (x1, x2) = (0, 0),

is discontinuous at (x1, x2) = (0, 0).

Problem 2.37. Show that the function f : R → R given by f(x) =
sin( 1

x), x 6= 0, and f(0) = α, α ∈ R, is discontinuous at x = 0.

Problem 2.38. Show that the function f : R2 → R given by

f(x1, x2) =

{

(x2
1 + x2)

4/(x2
1 + x2

2), (x1, x2) 6= (0, 0),
0, (x1, x2) = (0, 0),

is continuous at (x1, x2) = (0, 0).

Problem 2.39. Let f : Rm → Rn be given by f(x) = Ax, where
x ∈ Rm and A ∈ Rn×m. Show that f is continuous on Rm. Furthermore,
for m = n and det A 6= 0, show that f is a diffeomorphism.
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Problem 2.40. Let f : R → R be given by

f(x) =

{

x sin( 1
x), x 6= 0,

0, x = 0.

Show that f is not differentiable at x = 0.

Problem 2.41. Let f : [a, b] → R, where [a, b] ⊂ R, be such that
f is differentiable on (a, b) and f ′(x) > 0, x ∈ (a, b). Show that f−1 :
[f(a), f(b)] → R is differentiable on (f(a), f(b)).

Problem 2.42. Let f : (0,∞) → R be given by

f(x) =

{

1/x, 0 < x ≤ 1,
1/2, x > 1.

Show that f is left continuous, piecewise continuous, left piecewise continu-
ous, and upper semicontinuous on (0,∞).

Problem 2.43. Let f : R → R be given by

f(x) =

{

sin(1/x), x < 0,
0, x ≥ 0.

Show that f is right continuous on R. Is f piecewise continuous on R?

Problem 2.44. Let f : R → R be given by f(x) = |x|. Show that f is
continuous on R and differentiable at all x ∈ R, x 6= 0. Furthermore, show
that f is piecewise continuously differentiable on R. Does f ′(0) exist?

Problem 2.45. Let f : R → R and g : R → R be such that f and g
are Lipschitz continuous on R. Show that f + g, fg, and g ◦ f are Lipschitz
continuous on R.

Problem 2.46. Let ‖ · ‖ : Rn → R be a vector norm on Rn. Show that
‖ · ‖ is continuous on Rn. Is ‖ · ‖ uniformly continuous on Rn?

Problem 2.47. Let X ⊆ Rn, Y ⊆ Rm, and Z ⊆ Rp, and let f : X → Y
and g : Y → Z be continuous functions. Show that g ◦ f : X → Z is
continuous on X .

Problem 2.48. Let D ⊂ Rn and let ‖ · ‖ : D → R and ‖ · ‖′ : D → R be
vector norms on D. Show that if D is open (respectively, closed, bounded,
compact) under ‖·‖, then D is open (respectively, closed, bounded, compact)
under ‖ · ‖′.

Problem 2.49. A function f : Rm → Rn is called homogeneous
(respectively, positively homogeneous) of degree r if f(λx) = λrf(x) for
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all λ ∈ R (respectively, λ > 0). Show that if 0 < r < 1, then f is not
Lipschitz continuous at x = 0.

Problem 2.50. Let f : Rn → R. Then f is Hölder continuous with
exponent α > 0 at x ∈ Rn if there exist a constant k > 0 (called the Hölder
constant) and an open neighborhood D of x such that

|f(x) − f(y)| ≤ k‖x− y‖α, x ∈ D. (2.251)

f is simply said to be Hölder continuous at x if f is Hölder continuous at
x with some exponent α > 0. Show that Hölder continuity at x implies
continuity at x. In addition, show that if α > 1, then Hölder continuity at
x implies differentiability at x.

Problem 2.51. Let f : Rn → R be two-times continuously differen-
tiable on Bε(x) ⊂ Rn. Show that:

i) For all y ∈ Rn such that x+ y ∈ Bε(x),

f(x+ y) = f(x) + yTf ′(x) +
1

2
yT

[∫ 1

0

(∫ t

0
f ′′(x+ σy)dσ

)

dt

]

y.

(2.252)

ii) For all y ∈ Rn such that x + y ∈ Bε(x), there exists α ∈ [0, 1] such
that

f(x+ y) = f(x) + yTf ′(x) +
1

2
yTf ′′(x+ αy)y. (2.253)

iii) For all y ∈ Rn such that x+ y ∈ Bε(x),

f(x+ y) = f(x) + yTf ′(x) +
1

2
yTf ′′(x)y + O(‖y‖2). (2.254)

Problem 2.52. Let D ⊂ Rn be bounded, let ε > 0 be such that ‖x −
y‖ < ε for all x, y ∈ D, and let z ∈ D. Show that D ⊆ Bε(z).

Problem 2.53. Let C ⊆ Rn be a convex set and let f : C → R be a
convex function. Show that the [0, β]-sublevel set of f is convex.

Problem 2.54. Let D ⊆ Rm be a connected set and let f : D → Rn

be continuous. Show that the image of D under f is connected.

Problem 2.55. Let C ⊆ Rn be a convex set and let f : C → R be a

convex function. Show that f is continuous on
◦
C.

Problem 2.56. Show that every [α, β]-sublevel set of a continuous
function is closed.
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Problem 2.57. Show that every hyperplane is a subspace.

Problem 2.58. Let D ⊆ Rn and let f : D → Rn. Show that the
following statements are equivalent:

i) f is continuous.

ii) For all closed Q ⊆ Rn, the inverse image of Q under f is closed relative
to D.

Problem 2.59. Let D ⊆ Rm, let f : D → Rn be continuous on Q ⊆ D,
and assume that Q is bounded and ∂Q ⊆ D. Show that f is uniformly
continuous on Q.

Problem 2.60. Let f : (α, β) → R, where α, β ∈ R. Show that the
following statements hold:

i) If f is strictly convex, then f is continuous.

ii) If f is strictly increasing or strictly decreasing, then f is injective.

iii) If f is injective and strictly convex, then f is strictly increasing or
strictly decreasing.

Problem 2.61. Let f : [0,∞) → [0,∞). Assume that f is
differentiable, f ∈ L([0,∞)), and assume that there exists α ∈ [0,∞) such
that |f ′(x)| ≤ α for all x ∈ [0,∞). Show that limx→∞ f(x) = 0.

Problem 2.62. Let C ⊆ Rn be a convex set and f : C → Rn be
continuously differentiable. Furthermore, suppose 0 ∈ C and f(0) = 0.
Show that

f(x) =

∫ 1

0

∂f

∂x
(σx)xdσ, x ∈ C. (2.255)

Problem 2.63. Show that if f : Rn → Rn is Lipschitz continuous on
Bε(0) = {x ∈ Rn : ‖x‖ < ε} and f(0) = 0, then there exists L > 0 such
that ‖f(x)‖ ≤ L‖x‖ for all x ∈ Bε(0).

Problem 2.64. Let ‖ · ‖p and ‖ · ‖q, where p, q ∈ [1,∞], denote two
vector norms on Rn. Show that f : Rn → Rn is Lipschitz continuous under
‖ · ‖p if and only if f(·) is Lipschitz continuous under ‖ · ‖q.

Problem 2.65. Show that if f : D → Rn is continuously differentiable
at x0 ∈ D, then there exists δ > 0 and L > 0 such that ‖f(x) − f(x0)‖ <
L‖x− x0‖ for all x ∈ Bδ(x0).
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Problem 2.66. Let (C[0, T ], ||| · |||2,2) denote the space of continuous
functions f : [0, T ] → R with norm

|||f |||2,2 =

(∫ T

0
|f(t)|2dt

)1/2

.

Show that (C[0, T ], ||| · |||2,2) is not a Banach space. (Hint: Consider the
sequence of functions {fn}∞n=1 ⊂ C[0, T ], where fn(t) = t/(|t| + 1/n).)

Problem 2.67. Let X 6= Ø be a set. Show that F = {f : X → X}
is a semigroup with identity under operation of composition g ◦ f , where
f, g ∈ F .

Problem 2.68. Let Q = {x : x = p/q, p, q ∈ Z, q 6= 0}. Show that Q

is an Abelian group with respect to addition (+) on R, and Q \ {0} is an
Abelian group with respect to multiplication (·) on R.

Problem 2.69. Show that every subspace of Rn is closed.

Problem 2.70. Let x, y ∈ Rn and S ⊂ Rn. Then x and y are
orthogonal if xTy = 0. Furthermore, the orthogonal complement of S is
defined as S⊥ △

= {x ∈ Rn : xTy = 0, y ∈ S}. Show that if S1 and S2 are
subspaces of Rn with S1 ⊆ S2, then S⊥

2 ⊆ S⊥
1 .

Problem 2.71. Let S be a collection of bounded, measurable subsets
of R with measure µ : S → [0,∞). Show that the following statements hold:

i) µ(Ø) = 0.

ii) µ([a, b)) = µ([a, b]) = µ((a, b)) = µ((a, b]) = b− a.

iii) If S1,S2 ∈ S, then

µ(S1 ∪ S2) = µ(S1) + µ(S2) − µ(S1 ∩ S2).

iv) If {Si}∞i=1 ⊆ R is such that Si+1 ⊆ Si and Si ∈ S, then

µ

( ∞
⋂

i=1

Si

)

= µ( lim
i→∞

Si) = lim
i→∞

µ(Si).

v) If {Si}∞i=1 ⊆ R is such that Si ∩ Sj = Ø and Si ∈ S for i, j = 1, 2, . . . ,
i 6= j, then

µ

( ∞
⋃

i=1

Si

)

=
∞
∑

i=1

µ(Si).

Problem 2.72. Let S = {a}, where a ∈ R. Show that µ(S) = 0.
(Hint: Use the properties in Problem 2.71.)
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Problem 2.73. Let S =
⋃

i Si be a finite or countable union of sets in
Rn where µ(Si) = 0 for each i. Show that µ(S) = 0.

Problem 2.74. Show that the following statements hold:

i) If S1 ⊂ S2, then µ∗(S1) ≤ µ∗(S2).

ii) If S =
⋃∞

i=1 Si, then µ∗(S) ≤∑∞
i=1 µ

∗(Si).

iii) A countable union of measurable sets is measurable.

iv) Closed sets are measurable.

v) The complement of a measurable set is measurable.

vi) A countable intersection of measurable sets is measurable.

vii) Let {Si}∞i=1 ⊆ Rn be such that Si ∩ Sj = Ø for i, j = 1, 2, . . . , j, i 6= j,
and S =

⋃∞
i=1 Si. Then µ(S) =

∑∞
i=1 µ(Si).

Problem 2.75. Give a function that is Riemann integrable but not
Lebesgue integrable. (Hint: Consider improper integrals.)

Problem 2.76. Let D ⊆ Rn be measurable, and let f : D → R. Show
that the following statements are equivalent:

i) f is measurable.

ii) {x ∈ D : f(x) > α} is measurable for every α ∈ R.

iii) {x ∈ D : f(x) ≥ α} is measurable for every α ∈ R.

iv) {x ∈ D : f(x) < α} is measurable for every α ∈ R.

v) {x ∈ D : f(x) ≤ α} is measurable for every α ∈ R.

Problem 2.77. Let D ⊆ Rn be measurable, and let I be a dense subset
of R. Show that if {x ∈ D : f(x) > α} is measurable for all α ∈ I, then
f : D → R is measurable.

Problem 2.78. Let f : D → R and g : D → R be measurable, where
D ⊆ Rn is measurable. Show that the following statements hold:

i) (f + g) : D → R is measurable.

ii) fg : D → R is measurable.
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iii) If g(x) 6= 0 for almost all x ∈ D, then (f/g) : D\{x ∈ D : g(x) = 0} →
R is measurable.

iv) fp, where p ∈ Z+, is measurable.

Problem 2.79. Let {fn}∞n=1 be a sequence of measurable functions on
D ⊆ Rn. Show that the following statements hold:

i) supn fn(x) is measurable.

ii) infn fn(x) is measurable.

iii) lim supn→∞ fn(x) is measurable.

iv) lim infn→∞ fn(x) is measurable.

v) If limn→∞ fn(x) = f(x), then f(x) is measurable.

Problem 2.80. Prove or refute that the composition of two measurable
functions is measurable.

Problem 2.81 (Bounded Convergence Theorem). Let {fn}∞n=1 be a
sequence of measurable functions on D ⊂ Rn, where D is measurable with
µ(D) < ∞, such that limn→∞ fn = f almost everywhere on D. Assume
there exists α ≥ 0 such that |fn(x)| ≤ α for all x ∈ D and n ∈ Z+. Show
that f ∈ L(D) and

lim
n→∞

∫

D
fn(x)dx =

∫

D
f(x)dx.

Problem 2.82 (Monotone Convergence Theorem). Let {fn}∞n=1 be a
sequence of measurable functions on D ⊂ Rn such that fn+1(x) ≥ fn(x) for
all x ∈ D and n ∈ Z+. Assume that limn→∞ fn(x) = f almost everywhere
on D. Show that f ∈ L(D) and

lim
n→∞

∫

D
fn(x)dx =

∫

D
f(x)dx.

Problem 2.83 (Dominated Convergence Theorem). Let g ∈ L(D)
and let {fn}∞n=1 be a sequence of measurable functions on D such that
|fn(x)| ≤ g(x) for all x ∈ D. Assume that limn→∞ fn = f almost everywhere
on D. Show that f ∈ L(D) and

lim
n→∞

∫

D
fn(x)dx =

∫

D
f(x)dx.

Problem 2.84. Let X be a normed linear space with norm ||| · ||| : X →
R. Show that |||x||| − |||y||| ≤ |||x− y|||, x, y ∈ X .
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Problem 2.85. Show that every Cauchy sequence in a normed linear
space is bounded.

Problem 2.86. Let X be a normed linear space with norm ||| · ||| : X →
R. Show that ||| · ||| is uniformly continuous.

Problem 2.87. An inner product space is a linear vector space X with
associated field F and mapping < ·, · >: X ×X → F such that the following
axioms hold:

i) < x, x >≥ 0, x ∈ X .

ii) < x, x >= 0 if and only if x = 0.

iii) < x,αy >= α < x, y >, x, y ∈ X and α ∈ F.

iv) < x, y + z >=< x, y > + < x, z >, x, y, z ∈ X .

v) < x, y >= < y, x >, x, y ∈ X .

For ||| · ||| : X → R defined by |||x||| =< x, x >1/2 show that ||| · ||| is a norm
on X , and hence, X is a normed linear space. (Hint: First show that
| < x, y > | ≤ |||x||||||y|||, where x and y belong to the inner product space.)

Problem 2.88. Let X be an inner product space (see Problem 2.87)
with inner product < ·, · >: X × X → R. Show that for each y ∈ X , the
function mapping x into < x, y > is uniformly continuous.

Problem 2.89. A complete inner product space (see Problem 2.87)
with norm defined by the inner product is called a Hilbert space. Discuss
the Hilbert space Rn. What are the inner product and corresponding norm?

Problem 2.90. Let f : [0,∞) → Rn×m. Which matrix norm (as a
spatial norm) makes L2 a Hilbert space (see Problem 2.89)?

Problem 2.91. Let X = R and define T : R → R by T (x) = x −
tan−1(x) +π/2. Show that T (·) satisfies (2.128) but T has no fixed point in
R.

Problem 2.92. Let X be a Banach space with norm ||| · ||| : X → R,
let S be a subset of X , and let T : S → X . Suppose there exists a constant
ρ ∈ [0, 1) such that

|||T (x) − T (y)||| ≤ ρ|||x− y|||, x, y ∈ S, (2.256)
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and suppose there exists x0 ∈ S such that

B =

{

x ∈ X : |||x− x0||| ≤
|||T (x) − T (x0)|||

1 − ρ

}

⊂ S. (2.257)

Show that there exists unique x∗ ∈ S such that T (x∗) = x∗. Furthermore,
show that for each x0 ∈ S, the sequence {xn}∞n=0 ⊂ S defined by xn+1 =
T (xn) converges to x∗. Finally, show that

|||x∗ − xn||| ≤
ρn

1 − ρ
|||T (x0) − x0|||, n ≥ 0. (2.258)

Problem 2.93 (Schauder Fixed Point Theorem). Let C ⊆ Rn be a
nonempty, convex, and closed set, let f : C → C be continuous, and assume
f(C) is bounded. Show that there exists x ∈ C such that f(x) = x.

Problem 2.94 (Brouwer Fixed Point Theorem). Let C ⊆ Rn be a
nonempty, compact, and convex set, and let f : C → C be continuous. Show
that there exists x ∈ C such that f(x) = x.

Problem 2.95. Let X be a Banach space with norm ||| · |||′ : X → R, let
T : X → X , let I : X → X be the identity operator, and let |||T ||| < 1, where

|||T ||| △
= sup

x∈X , x6=0

|||Tx|||′
|||x|||′ .

Show that the range of I−T is X and (I−T )−1 exists and is bounded, and
satisfies

|||(I − T )−1||| ≤ 1

1 − |||T ||| .

Furthermore, show that

∞
∑

k=0

T k = (I − T )−1.

Problem 2.96. Consider the nonlinear dynamical system given by

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (2.259)

ẋ2(t) = −sgn[x1(t) + x2(t)], x2(0) = x20, (2.260)

where sgn(x)
△
= x/|x|, x 6= 0, and sgn(0)

△
= 0. Show that the dynamical

system (2.259) and (2.260) has a unique solution for all initial conditions.
Furthermore, show that the solution reaches the manifold {(x1, x2) ∈ R×R :
x1 + x2 = 0} in finite time and slides on the manifold towards the origin for
large values of time.
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Problem 2.97. Consider the scalar nonlinear dynamical system

ẋ(t) = f(x(t)), x(0) = 0, t ≥ 0, (2.261)

where

f(x)
△
=

{

−1 − x2, x ≥ 0,
1 + x2, x < 0.

(2.262)

Show that there does not exist a continuously differentiable function x(·)
satisfying (2.261).

Problem 2.98. Consider the nonlinear dynamical system (2.136) and
let s(t, x), t ≥ 0, denote the solution to (2.136) with initial condition x(0) =
x0. Show that if f : D → Rn is Lipschitz continuous on D, then for every
ε, T > 0, and x0 ∈ D, there exists δ(ε, T, x0) > 0 such that if ‖x0 − y‖ <
δ(ε, T, x0), y ∈ D, then ‖s(t, x0) − s(t, y)‖ < ε for all t ∈ [0, T ].

Problem 2.99. Let x : (α, β) → Rn be a continuously differentiable
function on (α, β). Show that d

dt‖x(t)‖2 ≤ ‖ẋ(t)‖2, t ∈ (α, β).

Problem 2.100. Consider the nonlinear dynamical system (2.136)
with f : D → Rn continuously differentiable on D. Let x1(t) and x2(t)
be two solutions of (2.136) over intervals I1 and I2, respectively. Show that
t0 ∈ I1 ∩ I2 and if I ⊂ I1 ∩ I2 is any open interval containing t0, show that
x1(t) = x2(t) for all t ∈ I.

Problem 2.101. Consider the nonlinear dynamical system (2.136).
Picard’s method of successive approximations is based on the fact that x(t) is
a solution to (2.136) if and only if x(t) is a solution to (2.137). In particular,
the successive approximations of the solution to (2.137) are given by the
sequence of functions

y0(t) = x0, (2.263)

yn+1(t) = x0 +

∫ t

t0

f(yn(s))ds, (2.264)

for n = 0, 1, . . .. Use Picard’s method of successive approximations to show
that successive approximations for the linear dynamical system

ẋ(t) = Ax(t), x(0) = x0, t ≥ 0, (2.265)

where x(t) ∈ Rn, t ≥ 0, and A ∈ Rn×n, converge to x(t) = eAtx0, t ≥ 0.

Problem 2.102. Prove Theorem 2.24 using Picard’s method of suc-
cessive approximations (see Problem 2.101).

Problem 2.103. Consider the nonlinear dynamical system (2.136).
Show that if limt→τmax

x(t) = x∗ exists and x∗ ∈ D, then τmax = ∞.
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Moreover, show that x∗ is an equilibrium point of (2.136).

Problem 2.104 (Gronwall-Bellman Lemma). Assume there exist
continuous functions α, x : R → R and β : R → R+ such that

x(t) ≤ α(t) +

∫ t

t0

β(s)x(s)ds, t ≥ t0. (2.266)

Show that

x(t) ≤ α(t) +

∫ t

t0

α(s)β(s)e
∫ t

s
β(τ)dτds, t ≥ t0. (2.267)

Furthermore, if α(t) ≡ α ∈ R, then show that

x(t) ≤ αe
∫ t

t0
β(s)ds, t ≥ t0. (2.268)

Finally, if, in addition, β(t) ≡ β ≥ 0 show that x(t), t ≥ t0, satisfies (2.153).

Problem 2.105. Consider the nonlinear dynamical system

ẋ(t) = f(x(t)), x(0) = x0, t ≥ 0, (2.269)

ẋ(t) = g(x(t)), x(0) = x0, t ≥ 0, (2.270)

where f, g : D → Rn are continuously differentiable functions on D. The
dynamical systems (2.269) and (2.270) are topologically equivalent on D if
there exists a homeomorphism H : D → D which maps trajectories of (2.269)
onto trajectories of (2.270) and preserves their orientation in time. Show
that the nonlinear dynamical system

ẋ(t) = f(x(t))[1 + ‖f(x(t))‖]−1, x(0) = x0, t ≥ 0, (2.271)

where f : D → Rn is continuously differentiable on D, has a unique solution
defined for all t ≥ 0. Moreover, show that (2.271) is topologically equivalent
to (2.269) on Rn.

Problem 2.106. Consider the nonlinear time-varying dynamical sys-
tem (2.211) where f(t, ·) : D → Rn is Lipschitz continuous on D for all
t ∈ [t0, t1] and f(·, x) : [t0, t1] → Rn is piecewise continuous on [t0, t1] for all
x ∈ D. Furthermore, assume there exist constants α, β ∈ R such that

‖f(t, x)‖ ≤ α+ β‖x‖, (t, x) ∈ [0,∞) ×D. (2.272)

Show that the solution x(t), t ∈ Ix0
, to (2.211) satisfies

‖x(t)‖ ≤ ‖x0‖eβ(t−t0) +
α

β
[eβ(t−t0) − 1], t ∈ Ix0

, (2.273)

and hence, cannot exhibit finite escape time.
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Problem 2.107 (Comparison Principle). Consider the scalar nonlin-
ear dynamical system

ẋ(t) = f(t, x(t)), x(t0) = x0, t ≥ t0, (2.274)

where f(t, ·) : D → R is Lipschitz continuous on D for all t ∈ [t0, t1] and
f(·, x) : [t0, t1] → R is continuous on [t0, t1] for all x ∈ D. Let v : [t0, t1] → D
be such that

v̇(t) ≤ f(t, v(t)), v(t0) ≤ x0, t ≥ t0. (2.275)

Show that v(t) ≤ x(t) for all t ∈ [t0, t1].

Problem 2.108. Prove Theorem 2.25 using Picard’s method of suc-
cessive approximations (see Problem 2.101).

Problem 2.109. Prove Theorem 2.37.

Problem 2.110. Prove Theorem 2.38.

Problem 2.111. Prove Theorem 2.39.

Problem 2.112. Consider the nonlinear dynamical system (2.136).
Let f : D → Rn be continuously differentiable on D and let s : S → D
be the flow generated by (2.136) and S △

= {(t, x0) ∈ R×D : t ∈ Ix0
}. Show

that s : S → D is continuously differentiable on S.

Problem 2.113. Show that if the solution x(t) to (2.136) correspond-
ing to an initial condition x(0) = x0 is bounded for all t ≤ 0, then the
negative limit set α(x0) of x(t), t ≤ 0, is a nonempty, compact, invariant,
and connected set. Furthermore, show that x(t) → α(x0) as t→ −∞.

Problem 2.114. Consider the nonlinear dynamical system (2.136) and
let s(t, x), t ≥ 0, denote the solution to (2.136) with the initial condition
x(0) = x. Show that the positive limit set of (2.136) is given by ω(x0) =

∩t≥0 O+
x , where O+

x
△
= {s(t, x) : t ∈ [0,∞)} denotes the positive orbit of

(2.136).

Problem 2.115. Consider the nonlinear dynamical system (2.136).
Let R ⊂ D and let M be the largest invariant set in R. Show that:

i) M is the union of all motions defined on (−∞,∞) that remain in R
for all t ∈ R.

ii) x ∈ M if and only if Ix = (−∞,∞) and s(t, x) ∈ R for all t ∈ R.

iii) If R is compact, then M is compact.
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Problem 2.116. Consider the nonlinear dynamical system G given by
(2.215). Show that M ⊂ D is invariant with respect to G if and only if M
is positively and negatively invariant with respect to G.

Problem 2.117. Consider the nonlinear dynamical system G given by
(2.215) with maximum interval of existence Ix0

= R for all x0 ∈ Rn. Show
that the sets D and Ø are positively and negatively invariant with respect
to G.

Problem 2.118. Consider the nonlinear dynamical system G given by
(2.215). Show that for every x ∈ D, Ox, O+

x , and O−
x are, respectively,

invariant, positively invariant, and negatively invariant with respect to G.

Problem 2.119. Consider the nonlinear dynamical system G given by
(2.215), let M ⊂ D, and let Ox(M) = ∪{Ox : x ∈ M}. Show that M is
invariant, positively invariant, or negatively invariant with respect to G if
and only if, respectively, Ox(M) ⊆ M, O+

x (M) ⊆ M, or O−
x (M) ⊆ M.

Problem 2.120. Consider the nonlinear dynamical system G given by
(2.215) and let M ⊂ D. Show that M is invariant, positively invariant, or
negatively invariant with respect to G if and only if, respectively, each of the
connected components of M is invariant, positively invariant, or negatively
invariant with respect to G.

Problem 2.121. Consider the nonlinear dynamical system G given by
(2.215). Show that if x ∈ D is such that x = s(t, x) for some t ∈ R, then
x = s(nt, x) for all n ∈ Z.

Problem 2.122. Consider the nonlinear dynamical system G given by
(2.215). Let x ∈ D. Show that the following statements are equivalent:

i) x is an equilibrium point.

ii) {x} = Ox.

iii) {x} = O+
x .

iv) {x} = O−
x .

v) {x} = {y ∈ D : y = s(t, x), t ∈ [a, b]} for a < b.

vi) There exists a sequence {tn}∞n=0, with tn > 0 and tn → 0 as n → ∞,
such that x = s(tn, x) for each n.

(Hint: Use Problem 2.121 to establish the equivalence of i) with vi).)
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Problem 2.123. Consider the nonlinear dynamical system G given by
(2.215). Show that if x 6= s(t, x) for some x ∈ D and t ∈ R, then there
exists open neighborhoods U of x and V of s(t, x) such that V = {s(t, y) :
y ∈ U and t ∈ {t}} and U ∩ V = Ø.

Problem 2.124. Consider the nonlinear dynamical system G given by
(2.215) with t ≥ 0. Show that x ∈ D is an equilibrium point of G if and only
if every neighborhood of x contains a positive orbit.

Problem 2.125. Consider the nonlinear dynamical system G given by
(2.215). Show that the set of all equilibrium points x ∈ D of G is closed.

Problem 2.126. Consider the nonlinear dynamical system G given by
(2.215). Show that for every x ∈ D:

i) ω(x) =
⋂{O+

y : y ∈ O+
x } =

⋂{O+
xn : n ∈ Z}.

ii) ω(x) = ω(s(t, x)) for t ∈ R.

Problem 2.127. Consider the nonlinear dynamical system G given by
(2.215). Show that x ∈ D is a periodic point of G if and only if ω(x) =
α(x) = Ox.

Problem 2.128. Consider the nonlinear dynamical system

ẋ1(t) = x2(t) + x1(t)x
2
2(t), x1(0) = x10, t ≥ 0, (2.276)

ẋ2(t) = −x1(t) + x2
1(t)x2(t), x2(0) = x20. (2.277)

Show that the linearization of (2.276) and (2.277) at (x1, x2) = (0, 0)
possesses a continuum of periodic solutions whereas (2.276) and (2.277) has
no periodic solutions.

Problem 2.129. Consider the nonlinear dynamical system given by
(2.220) and (2.221) in Example 2.38. Show that the divergence ∇f(x) < 0
in the annular region D = {x ∈ R2 : 2/3 < x2

1 + x2
2 < 2} and yet as shown

in Example 2.38, (2.220) and (2.221) possesses a limit cycle in D. Why does
this contradict Bendixson’s theorem?

Problem 2.130. Consider the second-order nonlinear mechanical sys-
tem consisting of a unit mass with a nonlinear spring and a nonlinear damper
given by

ẍ(t) + f(ẋ(t)) + g(x(t)) = 0, x(0) = x0, ẋ(0) = ẋ0, t ≥ 0, (2.278)

where f(·) is the damping force exerted by the damper and g(·) is
the restoring force of the nonlinear spring. Suppose f(·) and g(·) are
continuously differentiable.
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i) Show that this system has no periodic solutions if f ′(ẋ) 6= 0 for all
ẋ ∈ R. What does this mean physically?

ii) Use the Poincaré-Bendixson theorem to show that the undamped
nonlinear mechanical system (f(ẋ) ≡ 0) always has a continuum of
periodic solutions if xg(x) > 0, x 6= 0.

Problem 2.131. Consider the nonlinear dynamical system

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (2.279)

ẋ2(t) = x1(t) − x3
1(t) − αx2(t) + x2

1(t)x2(t), x2(0) = x20, (2.280)

where α > 0. Does (2.279) and (2.280) possess a periodic solution?

Problem 2.132. Show that if ∇f(x) = 0 for all x ∈ D, where f : R2 →
R2, then Bendixson’s theorem implies that there may be a trivial periodic
orbit in D but there is no limit cycle in D.

Problem 2.133. Consider the nonlinear dynamical system

ẋ1(t) = x2(t) cos x1(t), x1(0) = x10, t ≥ 0, (2.281)

ẋ2(t) = sinx1(t), x2(0) = x20. (2.282)

Show that (2.281) and (2.282) does not possess a limit cycle.

Problem 2.134. Consider the nonlinear dynamical system

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (2.283)

ẋ2(t) = −x1(t) − x2(t) + x2
1(t) + x2

2(t), x2(0) = x20. (2.284)

Use Dulac’s theorem to show that (2.283) and (2.284) does not possess a
periodic solution. (Hint: Use the Dulac function g(x1, x2) = e−2x1 .)

Problem 2.135. Consider the nonlinear dynamical system

ẋ1(t) = x1(t) − x2
1(t) − x1(t)x2(t), x1(0) = x10, t ≥ 0, (2.285)

ẋ2(t) = x2(t) − x2
2(t) − x1(t)x2(t), x2(0) = x20. (2.286)

Use Dulac’s theorem to show that (2.285) and (2.286) does not possess a
periodic solution in the nonnegative orthant R2

+. (Hint: Use the Dulac
function g(x1, x2) = 1/x1x2, x1 6= 0 and x2 6= 0.)

Problem 2.136. Consider the second-order nonlinear dynamical sys-
tem (2.230) and (2.231) with vector field f : D → R2, where D is not a
simply connected region in R2. Show that in this case Dulac’s theorem is
no longer valid.

Problem 2.137. Consider Dulac’s theorem with D being topologically
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equivalent to an annulus, that is, D has exactly one hole in it. Show that in
this case (2.230) and (2.231) possesses at most one closed orbit in D. (Hint:
Use Green’s theorem.)

Problem 2.138. Prove Dulac’s theorem.

Problem 2.139. Consider the nonlinear dynamical system

ẋ1(t) = x1(t) − x2(t) − x3
1(t), x1(0) = x10, t ≥ 0, (2.287)

ẋ2(t) = x1(t) + x2(t) − x3
2(t), x2(0) = x20. (2.288)

Use the Poincaré-Bendixson theorem to show that (2.287) and (2.288) has
a periodic orbit.

Problem 2.140. Consider the nonlinear dynamical system

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (2.289)

ẋ2(t) = −x1(t) + x2(t)[1 − x2
1(t) − x2

2(t)], x2(0) = x20. (2.290)

Use the Poincaré-Bendixson theorem to show that (2.289) and (2.290) has a
unique limit cycle. Furthermore, show that every trajectory of (2.289) and
(2.290), except for the equilibrium point, approaches this limit cycle.

Problem 2.141. Consider the nonlinear dynamical system

ẋ1(t) = −x2(t) + x1(t)[1 − x2
1(t) − x2

2(t)], x1(0) = x10, t ≥ 0, (2.291)

ẋ2(t) = x1(t) + x2(t)[1 − x2
1(t) − x2

2(t)], x2(0) = x20 (2.292)

ẋ3(t) = αx3(t), x3(0) = x30, (2.293)

where α ∈ R. Use the Poincaré-Bendixson theorem to show that (2.291)–
(2.293) has a periodic orbit.

Problem 2.142. Consider the nonlinear dynamical system

ẋ1(t) = x2(t) + αx1(t)[β
2 − x1(t) − x2

2(t)]
γ , x1(0) = x10, t ≥ 0, (2.294)

ẋ2(t) = −x1(t) + αx2(t)[β
2 − x1(t) − x2

2(t)]
γ , x2(0) = x20, (2.295)

where α, β ∈ R and γ ≥ 1. For γ = 1, find the solution of (2.294) and
(2.295). Does (2.294) and (2.295) exhibit periodic solutions for γ = 1?
Repeat the problem for γ = 2.

Problem 2.143. Consider the nonlinear dynamical system

ẋ1(t) = x1(t) + x2(t) − x1(t)[|x1(t)| + |x2(t)|], x1(0) = x10, t ≥ 0, (2.296)

ẋ2(t) = −2x1(t) + x2(t) − x2(t)[|x1(t)| + |x2(t)|], x2(0) = x20. (2.297)

Use the Poincaré-Bendixson theorem to show that (2.296) and (2.297) has
a periodic orbit.
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Problem 2.144. Consider the nonlinear dynamical system

ṙ(t) = r(t)[1 − r2(t)] + µr(t) cos θ(t), r(0) = r0, t ≥ 0, (2.298)

θ̇(t) = 1, θ(0) = θ0. (2.299)

As shown in Example 2.38, when µ = 0 (2.298) and (2.299) possesses a
stable limit cycle. Show that a closed orbit still exists for sufficiently small
µ > 0.

Problem 2.145. Consider the nonlinear dynamical system

ẋ1(t) = x1(t) − x2(t) − x1(t)[x
2
1(t) + 5x2

2(t)], x1(0) = x10, t ≥ 0,

(2.300)

ẋ2(t) = x1(t) + x2(t) − x2(t)[x
2
1(t) + 5x2

2(t)], x2(0) = x20. (2.301)

Use the Poincaré-Bendixson theorem to show that (2.300) and (2.301) has
a periodic orbit. (Hint: Rewrite the system in polar coordinates using
rṙ = x1ẋ1 + x2ẋ2 and θ̇ = (x1ẋ2 − x2ẋ1)/r

2.)

Problem 2.146. Consider the nonlinear dynamical system

ẋ1(t) = x1(t) − x2(t) − x3
1(t), x1(0) = x10, t ≥ 0, (2.302)

ẋ2(t) = x1(t) + x2(t) − x3
2(t), x2(0) = x20. (2.303)

Use the Poincaré-Bendixson theorem to show that (2.302) and (2.303) has
a periodic orbit.

Problem 2.147. Consider the nonlinear dynamical system

ẋ1(t) = x1(t)[1 − 4x2
1(t) − x2

2(t)] − 1
2x2(t)[1 + x1(t)], x1(0) = x10, t ≥ 0,

(2.304)

ẋ2(t) = x2(t)[1 − 4x2
1(t) − x2

2(t)] + 2x1(t)[1 + x1(t)], x2(0) = x20. (2.305)

Use the Poincaré-Bendixson theorem to show that all trajectories of (2.304)

and (2.305) approach the ellipse E △
= {(x1, x2) ∈ R2 : 4x2

1 + x2
2 = 1} as

t→ ∞.

Problem 2.148. Consider the nonlinear dynamical system

ẋ1(t) = −x1(t) − x2(t) + x1(t)[x
2
1(t) + 2x2

2(t)], x1(0) = x10, t ≥ 0,

(2.306)

ẋ2(t) = x1(t) − x2(t) + x2(t)[x
2
1(t) + 2x2

2(t)], x2(0) = x20. (2.307)

Use the Poincaré-Bendixson theorem to show that (2.306) and (2.307) has
a periodic orbit.

Problem 2.149. Consider the second-order dynamical system (2.230)
and (2.231). Let V : D ⊆ R2 → R be conserved along the flow of (2.230)
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and (2.231), that is,

V̇ (x1, x2) =
∂V

∂x1
f1(x1, x2) +

∂V

∂x2
f2(x1, x2) = 0. (2.308)

Show that if V is not constant on any open set U ⊂ D, then (2.230) and
(2.231) does not possess any limit cycle.

Problem 2.150 (Isocline Method). The method of isoclines is a
technique for generating solution curves in the two-dimensional state space
(that is, the phase plane) for various initial conditions. In particular,
given the second-order nonlinear dynamical system (2.230) and (2.231), and
assuming f1(x1, x2) 6= 0, it follows that the slope of the system trajectories
of (2.230) and (2.231) in the phase plane passing through a point (x1, x2) is
given by

dx2

dx1
=
f2(x1, x2)

f1(x1, x2)
= s(x1, x2). (2.309)

Isoclines correspond to curves x2 = g(x1) in the phase plane on which the
slope s(x1, x2) = c, where c is a constant. These curves can be obtained by
solving the equation

f2(x1, x2) = cf1(x1, x2). (2.310)

A family of phase plane trajectories corresponding to various initial condi-
tions is called a phase portrait of (2.230) and (2.231). If the slope at points
(x1, x2) and (x1,−x2) is such that s(x1, x2) = −s(x1,−x2), then the phase
portrait is symmetric about the x1-axis. Similarly, if s(x1, x2) = −s(−x1,
x2), then the phase portrait is symmetric about the x2-axis. Finally, if
s(x1, x2) = s(−x1,−x2), then the phase portrait is symmetric about the
origin. Using the method of isoclines, sketch the phase portraits of the
following dynamical systems.

ẍ(t) + x3(t) − x(t) = 0, x(0) = x0, ẋ(0) = ẋ0, t ≥ 0, (2.311)

ẍ(t) + sinx(t) = 0, x(0) = x0, ẋ(0) = ẋ0, t ≥ 0, (2.312)

ẍ(t) − 0.2[1 − x2(t)]ẋ(t) + x(t) = 0, x(0) = x0, ẋ(0) = ẋ0, t ≥ 0,

(2.313)

ẍ(t) + 1
2 ẋ(t) + 2x(t) + x2(t) = 0, x(0) = x0, ẋ(0) = ẋ0, t ≥ 0.

(2.314)

Verify your sketches by simulations.

Problem 2.151. Consider the nonlinear Lienard system given by

ẍ(t) + f(x(t))ẋ(t) + g(x(t)) = 0, x(0) = x0, ẋ(0) = ẋ0, t ≥ 0. (2.315)

Suppose that f and g satisfy the following conditions:

i) f(x) and g(x) are continuously differentiable for all x ∈ R.
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ii) g(−x) = −g(x) for all x ∈ R.

iii) xg(x) > 0, x ∈ R, x 6= 0.

iv) f(−x) = f(x) for all x ∈ R.

v) F (x) =
∫ x
0 f(σ)dσ is such that F (0) = 0, F ′(0) < 0, F (·) has a single

positive zero at x = a, and F (x) → ∞ for x ≥ a as x→ ∞.

Show that (2.315) has a unique, stable limit cycle.

2.15 Notes and References

The qualitative analysis of differential equations was first developed by Henri
Poincaré [358–360] with further developments given by Birkhoff [60,61]. The
material on existence, uniqueness, and continuity of solutions with respect to
system initial conditions of nonlinear differential equations is standard and
can be found in most textbooks on differential equations. Notable textbooks
include those by Hartman [185], Coddington and Levinson [96], Hirsch and
Smale [196], Agarwal and Lakshmikantham [4], Lefschetz [264], Nemytskii
and Stepanov [333], Hale [179], and Miller and Michel [315]. The topics on
matrix analysis are also standard and can be found in Bellman [37], Horn
and Johnson [201,202], Lancaster and Tismenetsky [256], Gantmacher [132],
Stewart and Sun [417], and Bernstein [45]. For a thorough presentation
on advanced calculus and mathematical analysis the reader is referred to
Rudin [373], Royden [371], Apostol [12], Graves [139], Edwards [114], Naylor
and Sell [332], Fleming [120], Munkres [323], Hoffman [198], and Bartle
[30]. See also Halmos [182] and Luenberger [288]. Finally, the study of the
existence and absence of periodic orbits in nonlinear dynamical systems was
fathered by Poincaré [358–360] and further developed by Bendixson [39].
For a modern treatment of these results, see Hirsch and Smale [196], Hale
and Kocak [180], Wiggins [454], and Perko [349].
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Chapter Three

Stability Theory for Nonlinear

Dynamical Systems

3.1 Introduction

One of the most basic issues in system theory is stability of dynamical
systems. System stability is characterized by analyzing the response of a
dynamical system to small perturbations in the system states. Specifically,
an equilibrium point of a dynamical system is said to be stable if, for
sufficiently small values of initial disturbances, the perturbed motion
remains in an arbitrarily prescribed small region of the state space. More
precisely, stability is equivalent to continuity of solutions as a function
of the system initial conditions over a neighborhood of the equilibrium
point uniformly in time. If, in addition, all solutions of the dynamical
system approach the equilibrium point for large values of time, then the
equilibrium point is said to be asymptotically stable. The most complete
contribution to the stability analysis of nonlinear dynamical systems was
introduced in the late nineteenth century by the Russian mathematician
A. M. Lyapunov in his seminal work entitled The General Problem of
the Stability of Motion [293–295]. Lyapunov’s results which include the
direct and indirect methods, along with the Barbashin-Krasovskii-LaSalle
invariance principle [23, 245, 258, 260], provide a powerful framework for
analyzing the stability of nonlinear dynamical systems as well as designing
feedback controllers that guarantee closed-loop system stability.

Lyapunov’s direct method states that if a continuously differentiable
positive-definite function of the states of a given dynamical system can be
constructed for which its time rate of change due to perturbations in a
neighborhood of the system’s equilibrium is always negative or zero, then
the system’s equilibrium point is stable or, equivalently, Lyapunov stable.
Alternatively, if the time rate of change of the positive-definite function
is strictly negative, then the system’s equilibrium point is asymptotically
stable. Unlike Lyapunov’s direct method, which can provide global stability
conclusions for an equilibrium point for a nonlinear dynamical system,
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Lyapunov’s indirect method draws conclusions about local stability of the
equilibrium point by examining the stability of the linearized nonlinear
system about the equilibrium point in question. Since the analysis and
controller design frameworks presented in this book are predominantly based
on Lyapunov stability theory, in this chapter we present the main Lyapunov
stability results needed for developing these frameworks.

3.2 Lyapunov Stability Theory

In this section, we develop the fundamental results of Lyapunov stability
theory. We begin by considering the general nonlinear autonomous
dynamical system

ẋ(t) = f(x(t)), x(0) = x0, t ∈ Ix0
, (3.1)

where x(t) ∈ D ⊆ Rn, t ∈ Ix0
, is the system state vector, D is an open set

with 0 ∈ D, f : D → Rn is continuous on D, and Ix0
= [0, τx0

), 0 ≤ τx0
≤ ∞.

We assume that for every initial condition x(0) ∈ D and every τx0
> 0, the

dynamical system (3.1) possesses a unique solution x : [0, τx0
) → D on the

interval [0, τx0
). We denote the solution to (3.1) with initial condition x(0) =

x0 by s(·, x0), so that the flow of the dynamical system (3.1) given by the
map s : [0, τx0

) × D → D is continuous in x and continuously differentiable
in t and satisfies the consistency property s(0, x0) = x0 and the semigroup
property s(τ, s(t, x0)) = s(t + τ, x0), for all x0 ∈ D and t, τ ∈ [0, τx0

) such
that t+ τ ∈ [0, τx0

). Unless otherwise stated, we assume f(0) = 0 and f(·)
is Lipschitz continuous on D. The following definition introduces several
types of stability corresponding to the zero solution x(t) ≡ 0 of (3.1) for
Ix0

= [0,∞).

Definition 3.1. i) The zero solution x(t) ≡ 0 to (3.1) is Lyapunov
stable if, for all ε > 0, there exists δ = δ(ε) > 0 such that if ‖x(0)‖ < δ, then
‖x(t)‖ < ε, t ≥ 0 (see Figure 3.1).

ii) The zero solution x(t) ≡ 0 to (3.1) is (locally) asymptotically stable
if it is Lyapunov stable and there exists δ > 0 such that if ‖x(0)‖ < δ, then
limt→∞ x(t) = 0 (see Figure 3.2).

iii) The zero solution x(t) ≡ 0 to (3.1) is (locally) exponentially stable
if there exist positive constants α, β, and δ such that if ‖x(0)‖ < δ, then
‖x(t)‖ ≤ α‖x(0)‖e−βt, t ≥ 0.

iv) The zero solution x(t) ≡ 0 to (3.1) is globally asymptotically stable
if it is Lyapunov stable and for all x(0) ∈ Rn, limt→∞ x(t) = 0.

v) The zero solution x(t) ≡ 0 to (3.1) is globally exponentially stable



NonlinearBook10pt November 20, 2007

STABILITY THEORY FOR NONLINEAR SYSTEMS 137

if there exist positive constants α and β such that ‖x(t)‖ ≤ α‖x(0)‖e−βt,
t ≥ 0, for all x(0) ∈ Rn.

vi) Finally, the zero solution x(t) ≡ 0 to (3.1) is unstable if it is not
Lyapunov stable.

"� " � t
t0

Figure 3.1 Lyapunov stability of an equilibrium point.

"� " � t
t0

Figure 3.2 Asymptotic stability of an equilibrium point.

Figure 3.3 shows the asymptotic stability, Lyapunov stability, and
instability notions of an equilibrium point. Clearly, exponential stability
implies asymptotic stability and asymptotic stability implies Lyapunov
stability. The following result, known as Lyapunov’s direct method, gives
sufficient conditions for Lyapunov, asymptotic, and exponential stability of a
nonlinear dynamical system. For this result, let V : D → R be a continuously
differentiable function with derivative along the trajectories of (3.1) given

by V̇ (x)
△
= V ′(x)f(x). Note that V̇ (x) is dependent on the system dynamics

(3.1). Since, using the chain rule, V̇ (x) = d
dtV (s(t, x))

∣

∣

t=0
= V ′(x)f(x)

it follows that if V̇ (x) is negative, then V (x) decreases along the solution
s(t, x0) of (3.1) through x0 ∈ D at t = 0.

Theorem 3.1 (Lyapunov’s Theorem). Consider the nonlinear dynam-
ical system (3.1) and assume that there exists a continuously differentiable
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Lyapunov Stable

Unstable

Asymptotically

Stable

0
x0

δ

∂Bε(0)

Bε(0)

∂DD

ε

Bδ(0)

Figure 3.3 Asymptotically stable, Lyapunov stable, and unstable equilibrium point.

function V : D → R such that

V (0) = 0, (3.2)

V (x) > 0, x ∈ D, x 6= 0, (3.3)

V ′(x)f(x) ≤ 0, x ∈ D. (3.4)

Then the zero solution x(t) ≡ 0 to (3.1) is Lyapunov stable. If, in addition,

V ′(x)f(x) < 0, x ∈ D, x 6= 0, (3.5)

then the zero solution x(t) ≡ 0 to (3.1) is asymptotically stable. Finally, if
there exist scalars α, β, ε > 0, and p ≥ 1, such that V : D → R satisfies

α‖x‖p ≤ V (x) ≤ β‖x‖p, x ∈ D, (3.6)

V ′(x)f(x) ≤ −εV (x), x ∈ D, (3.7)

then the zero solution x(t) ≡ 0 to (3.1) is exponentially stable.

Proof. Let ε > 0 be such that Bε(0) ⊆ D. Since ∂Bε(0) is compact
and V (x), x ∈ D, is continuous, it follows that V (∂Bε(0)) is compact (see

Proposition 2.14), and hence, by Theorem 2.13, α
△
= minx∈∂Bε(0) V (x) exists.

Note α > 0 since 0 6∈ ∂Bε(0) and V (x) > 0, x ∈ D, x 6= 0. Next, let



NonlinearBook10pt November 20, 2007

STABILITY THEORY FOR NONLINEAR SYSTEMS 139

β ∈ (0, α) and define Dβ to be the arcwise connected component of {x ∈ D :
V (x) ≤ β} containing the origin; that is, Dβ is the set of all x ∈ D such
that there exists a continuous function ψ : [0, 1] → D such that ψ(0) = x,
ψ(1) = 0, and V (ψ(µ)) ≤ β, for all µ ∈ [0, 1].1 Note that Dβ ⊂ Bε(0)
(see Figure 3.4). To see this, suppose, ad absurdum, that Dβ 6⊂ Bε(0). In
this case, there exists a point p ∈ Dβ such that p ∈ ∂Bε(0), and hence,

V (p) ≥ α > β, which is a contradiction. Now, since V̇ (x)
△
= V ′(x)f(x) ≤ 0,

x ∈ Dβ, it follows that V (x(t)) is a nonincreasing function of time, and
hence, V (x(t)) ≤ V (x(0)) ≤ β, t ≥ 0. Hence, Dβ is a positively invariant
set with respect to (3.1). Furthermore, since Dβ is compact, it follows from
Corollary 2.5 that for all x(0) ∈ Dβ, (3.1) has a unique solution defined for
all t ≥ 0.

" �0
D" D�B" B�

Figure 3.4 Visualization of sets used in the proof of Theorem 3.1.

Next, since V (·) is continuous and V (0) = 0, there exists δ = δ(ε) ∈
(0, ε) such that V (x) < β, x ∈ Bδ(0). Now, let x(t), t ≥ 0, satisfy (3.1) with
‖x(0)‖ < δ. Since, Bδ(0) ⊂ Dβ ⊂ Bε(0) ⊆ D and V ′(x)f(x) ≤ 0, x ∈ D, it
follows that

V (x(t)) − V (x(0)) =

∫ t

0
V ′(x(s))f(x(s))ds ≤ 0, t ≥ 0,

and hence, for all x(0) ∈ Bδ(0),

V (x(t)) ≤ V (x(0)) < β, t ≥ 0.

Now, since V (x) ≥ α, x ∈ ∂Bε(0), and β ∈ (0, α), it follows that x(t) 6∈
∂Bε(0), t ≥ 0. Hence, for all ε > 0 there exists δ = δ(ε) > 0 such that if
‖x(0)‖ < δ, then ‖x(t)‖ < ε, t ≥ 0, which proves Lyapunov stability of the
zero solution x(t) ≡ 0 to (3.1).

1Unless otherwise stated, in the remainder of the book we assume that sets of the form Dβ =
{x ∈ D : V (x) ≤ β} correspond to the arcwise connected component of {x ∈ D : V (x) ≤ β}
containing the origin. This minor abuse of notation considerably simplifies the presentation.
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To prove asymptotic stability of the zero solution x(t) ≡ 0 to (3.1)
suppose that V ′(x)f(x) < 0, x ∈ D, x 6= 0, and x(0) ∈ Bδ(0). Then it
follows that x(t) ∈ Bε(0), t ≥ 0. However, V (x(t)), t ≥ 0, is decreasing and
bounded from below by zero. Now, ad absurdum, suppose x(t), t ≥ 0, does
not converge to zero. This implies that V (x(t)), t ≥ 0, is lower bounded,
that is, there exists L > 0 such that V (x(t)) ≥ L > 0, t ≥ 0. Hence, by
continuity of V (·) there exists δ′ > 0 such that V (x) < L for x ∈ Bδ′(0),

which further implies that x(t) 6∈ Bδ′(0) for all t ≥ 0. Next, define L1
△
=

minδ′≤‖x‖≤ε −V ′(x)f(x). Now, (3.5) implies −V ′(x)f(x) ≥ L1, δ
′ ≤ ‖x‖ ≤ ε

or, equivalently,

V (x(t)) − V (x(0)) =

∫ t

0
V ′(x(s))f(x(s))ds ≤ −L1t,

and hence, for all x(0) ∈ Bδ(0),

V (x(t)) ≤ V (x(0)) − L1t.

Letting t > V (x(0))−L
L1

, it follows that V (x(t)) < L, which is a contradiction.
Hence, x(t) → 0 as t → ∞, establishing asymptotic stability.

Finally, to prove exponential stability of the zero solution x(t) ≡ 0 to
(3.1) note that (3.7) implies

V (x(t)) ≤ V (x(0))e−εt, t ≥ 0. (3.8)

Now, since by assumption V (x(0)) ≤ β‖x(0)‖p and α‖x(t)‖p ≤ V (x(t)), it
follows that

α‖x(t)‖p ≤ β‖x(0)‖pe−εt, t ≥ 0, (3.9)

which implies that

‖x(t)‖ ≤
(

β

α

)1/p

‖x(0)‖e(−ε/p)t, t ≥ 0, (3.10)

establishing exponential stability.

If xe 6= 0 is an equilibrium point of (3.1), then Theorem 3.1 holds with
V (0) = 0 and x 6= 0 replaced by V (xe) = 0 and x 6= xe (see Problem 3.39
for details). A continuously differentiable function V (·) satisfying (3.2) and
(3.3) is called a Lyapunov function candidate for the nonlinear dynamical
system (3.1). If, additionally, V (·) satisfies (3.4), V (·) is called a Lyapunov
function for the nonlinear dynamical system (3.1).

In light of conditions (3.2)–(3.5), V (·) can be regarded as a generalized
energy function for the nonlinear dynamical system (3.1). In particular,
viewing the Lyapunov level surfaces V (x) = α, for sufficiently small
constants α > 0, as constant energy surfaces covering the neighborhood
Dβ ⊂ Bε(0), where V (x0) = β, of the nonlinear dynamical system (3.1), it
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follows from Theorem 3.1 that requiring the Lyapunov derivative V̇ (x)
△
=

V ′(x)f(x) to be negative, the system trajectories of (3.1) move from one
energy surface to an inner, or lower, energy surface. Of course, if condition
(3.4) is satisfied, the system trajectories will approach the origin and remain
within a ball of radius ε > 0 of the origin for every system initial condition
lying inside a constant energy surface contained in the ball of radius ε.
Alternatively, if condition (3.5) is satisfied, then the system’s energy surfaces
shrink to zero so that the system trajectory approaches zero asymptotically
(see Figure 3.5).

For planar (R2) systems the Lyapunov function provides the following
interpretation. For a given solution s(t, x0) of (3.1) to cross the constant
energy surface V (x) = β, where β = V (x0), the angle between the outward
normal of the gradient vector V (x0) and the derivative of s(t, x0) at t = t0
must be greater than π/2, that is, V̇ (x0) = V ′(x0)f(x0) < 0. For this to
occur at all points, we require V̇ (x) = V ′(x)f(x) < 0, x ∈ Dβ . Hence,
V (s(t, x0)) is a decreasing function of time. This of course implies that
V̇ (s(t, x)) along the solution s(t, x0) of (3.1) must be negative in Dβ .

V (x) = �3V (x) = �2V (x) = �1x1x2

V (x) V (x) = �1V (x) = �2V (x) = �3 x(t) x1
x2

(a) (b)
Figure 3.5 (a) Typical Lyapunov function candidate. (b) Constant Lyapunov energy

surfaces. For both figures α1 < α2 < α3.

Example 3.1. Consider the nonlinear dynamical system representing
a rigid spacecraft given by

ẋ1(t) = I23x2(t)x3(t), x1(0) = x10, t ≥ 0, (3.11)

ẋ2(t) = I31x3(t)x1(t), x2(0) = x20, (3.12)

ẋ3(t) = I12x1(t)x2(t), x3(0) = x30, (3.13)

where I23 = (I2 − I3)/I1, I31 = (I3 − I1)/I2, I12 = (I1 − I2)/I3, and I1,
I2, and I3 are the principal moments of inertia of the spacecraft such that
I1 > I2 > I3 > 0. To examine the stability of this system consider the
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Lyapunov function candidate V (x1, x2, x3) = 1
2(α1x

2
1 +α2x

2
2 +α3x

2
3), where

α1, α2, α3 > 0. Now, the Lyapunov derivative is given by

V̇ (x1, x2, x3) = α1x1ẋ1 +α2x2ẋ2 +α3x3ẋ3 = x1x2x3(α1I23 +α2I31 +α3I12).
(3.14)

Since I31 < 0 it follows that there exist α1, α2, α3 > 0 such that α1I23 +
α2I31 + α3I12 = 0. In this case, V̇ (x1, x2, x3) = 0, and hence, the zero
solution to (3.11)–(3.13) is Lyapunov stable. Show that the zero solution to
(3.11)–(3.13) is Lyapunov stable without the constraint I1 > I2 > I3 > 0 so
long as I1, I2, I3 > 0. △

Example 3.2. Consider the nonlinear dynamical system describing the
motion of a simple pendulum with viscous damping given by

θ̈(t) + θ̇(t) + g
l sin θ(t) = 0, θ(0) = θ0, θ̇(0) = θ̇0, t ≥ 0, (3.15)

where g is the acceleration due to gravity and l is the length of the pendulum.
To analyze the stability of this system consider the Lyapunov function
candidate

V (θ, θ̇) = 1
2 θ̇

2 + 1
2(θ + θ̇)2 + 2g

l (1 − cos θ). (3.16)

Now, the Lyapunov derivative is given by

V̇ (θ, θ̇) = θ̇θ̈ + (θ + θ̇)(θ̇ + θ̈) + 2g
l θ̇ sin θ = −(θ̇2 + g

l θ sin θ), (3.17)

which is locally negative definite, and hence, the simple pendulum with
viscous damping is locally asymptotically stable. Show that the energy
Lyapunov function V (θ, θ̇) = 1

2 θ̇
2 + g

l (1 − cos θ) fails to show that the
Lyapunov derivative is strictly decreasing and, hence, cannot be used in
conjunction with Theorem 3.1 to establish asymptotic stability of (3.15).△

Theorem 3.1 can be used to provide an estimate of the domain of
attraction for the nonlinear dynamical system (3.1); that is, finding an
open connected set D0 in Rn containing the origin with the property that
every trajectory starting in D0 converges to the origin as time approaches
infinity. It is important to note here that (3.3) and (3.5) are not sufficient to
guarantee that every solution that starts in D will remain in D for all time.
However, if (3.3) and (3.5) hold, then every invariant set of the nonlinear
dynamical system (3.1) contained in D is also contained in the domain of
attraction D0 of (3.1). As shown in the proof of Theorem 3.1 if there exists
a Lyapunov function V : D → R such that (3.2), (3.3), and (3.5) hold, and
if Dβ = {x ∈ D : V (x) ≤ β} is bounded, then Dβ is a positively invariant set
with respect to (3.1) and every system trajectory starting in Dβ converges
to the origin as time approaches infinity. Hence, Dβ is an estimate of the
domain of attraction. The question is then how large can we take β > 0 such
that Dβ remains bounded? Since V (·) is continuous and positive definite,
there always exists a small enough β > 0 such that the Lyapunov level
surface V (x) ≡ β is bounded, and hence, Dβ is bounded since Dβ ⊂ Bε(0)



NonlinearBook10pt November 20, 2007

STABILITY THEORY FOR NONLINEAR SYSTEMS 143

for some ε > 0. However, depending on the structure of V (·), as β increases
the Lyapunov level surface V (x) = β can be unbounded, and hence, Dβ

becomes unbounded. For Dβ ⊂ Bε(0), β must satisfy β < inf‖x‖≥ε V (x).
Hence, if β < γ, where

γ = lim
ε→∞

inf
‖x‖≥ε

V (x) <∞ (3.18)

and γ > 0, then Dβ is guaranteed to be bounded.

Next, we give a precise definition for the domain, or region, of
attraction of the zero solution x(t) ≡ 0 of the nonlinear dynamical system
(3.1).

Definition 3.2. Suppose the zero solution x(t) ≡ 0 to (3.1) is
asymptotically stable. Then the domain of attraction D0 ⊆ D of (3.1) is
given by

D0
△
= {x0 ∈ D : if x(0) = x0, then limt→∞ x(t) = 0}. (3.19)

As discussed above, the motivation for constructing the domain of
attraction of a nonlinear dynamical system follows from the fact that there
is no guarantee that a system trajectory starting in a subset D of the state
space will remain in D even though the Lyapunov derivative is negative
in D, that is, the system trajectories move from one energy level to an
inner energy level (see Figure 3.6). The problem of constructing the domain
of attraction for locally stable nonlinear dynamical systems has received
considerable attention in the literature [102, 174, 178, 285, 314, 443, 481].
Since, however, constructing the actual domain of attraction of a nonlinear
dynamical system is system trajectory dependent, most of the techniques
proposed in the literature provide a guaranteed subset of the domain of
attraction.

To estimate a subset of the domain of attraction of the dynamical
system (3.1) assume there exists a continuously differentiable function V :
D → R such that (3.2), (3.3), and (3.5) are satisfied. Next, let Dβ be the
connected component of {x ∈ D : V (x) ≤ β} containing the origin. Note
that every trajectory starting in Dβ will move to an inner energy surface
and, hence, cannot escape Dβ. Hence, Dβ is an estimate of the domain of
attraction of the nonlinear dynamical system (3.1). Now, to maximize this
estimate of the domain of attraction we maximize β such that Dβ ⊆ D.

Hence, define VΓ
△
= sup{β > 0 : Dβ ⊆ D} so that

DA
△
= {x ∈ D : V (x) ≤ VΓ}, (3.20)

is a subset of the domain of attraction for (3.1) since V̇ (x) < 0 for all
x ∈ DA \ {0} ⊆ D \ {0}.
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V (x) = �3V (x) = �2V (x) = �1
x1

x2 x(t)

Figure 3.6 Visualization of the radial unboundedness requirement; α1 < α2 < α3.

The above discussion raises an interesting question; namely, under
what conditions will the domain of attraction correspond to the entire state
space Rn? Of course, this corresponds to the case where the trajectory
s(t, x0) of (3.1) approaches the origin as t → ∞ for all x0 ∈ Rn or,
equivalently, the dynamical system is globally asymptotically stable. It
follows from the proof of Theorem 3.1 that global asymptotic stability will
hold if every point x ∈ Rn is contained in the compact set Dβ for some
β > 0. Clearly, in this case we require D = Rn and that for every β > 0, Dβ

is bounded, that is, for every β > 0 there exists r > 0 such that if x ∈ Dβ,
then x ∈ Br(0) or, equivalently, V (x) > β for all x 6∈ Br(0). This condition
ensuring that Dβ is bounded for all β > 0 is implied by

V (x) → ∞ as ‖x‖ → ∞. (3.21)

A function V (·) satisfying (3.21) is called proper or radially unbounded.

Next, we state the global Lyapunov stability theorem where the
domain of attraction of (3.1) is the entire state space.

Theorem 3.2. Consider the nonlinear dynamical system (3.1) and
assume there exists a continuously differentiable function V : Rn → R such
that

V (0) = 0, (3.22)

V (x) > 0, x ∈ Rn, x 6= 0, (3.23)

V ′(x)f(x) < 0, x ∈ Rn, x 6= 0, (3.24)

V (x) → ∞ as ‖x‖ → ∞. (3.25)
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Then the zero solution x(t) ≡ 0 to (3.1) is globally asymptotically stable. If,
alternatively, there exist scalars α, β, ε > 0, and p ≥ 1, such that V : Rn → R

satisfies

α‖x‖p ≤ V (x) ≤ β‖x‖p, x ∈ Rn (3.26)

V ′(x)f(x) ≤ −εV (x), x ∈ Rn, (3.27)

then the zero solution x(t) ≡ 0 to (3.1) is globally exponentially stable.

Proof. Let x(0) ∈ Rn, and let β
△
= V (x0). Now, the radial

unboundedness condition (3.25) implies that there exists ε > 0 such that
V (x) > β for all x ∈ Rn such that ‖x‖ ≥ ε. Hence, it follows from (3.24)
that V (x(t)) ≤ V (x0) = β, t ≥ 0, which implies that x(t) ∈ Bε(0), t ≥ 0.
Now, the proof follows as in the proof of Theorem 3.1.

The following example adopted from [178] shows the motivation for
the radial unboundedness condition in ensuring global asymptotic stability.

Example 3.3. Consider the nonlinear dynamical system

ẋ1(t) = − 6x1(t)

[1 + x2
1(t)]

2
+ 2x2(t), x1(0) = x10, t ≥ 0, (3.28)

ẋ2(t) = −2[x1(t) + x2(t)]

[1 + x2
1(t)]

2
, x2(0) = x20. (3.29)

To examine the stability of this system, consider the Lyapunov function
candidate V (x1, x2) = x2

1/(1 + x2
1) + x2

2. Note that V (0, 0) = 0 and
V (x1, x2) > 0, (x1, x2) ∈ R × R, (x1, x2) 6= (0, 0); however, V (x1, x2) is
not radially unbounded. The Lyapunov derivative V̇ (x1, x2) is given by

V̇ (x1, x2) =

[

2x1(1 + x2
1) − 2x3

1

(1 + x2
1)

2

]

ẋ1 + 2x2ẋ2

=
2x1

(1 + x2
1)

2

[

− 6x1

(1 + x2
1)

2
+ 2x2

]

− 4x2(x1 + x2)

(1 + x2
1)

2

= − 12x2
1

(1 + x2
1)

4
− 4x2

2

(1 + x2
1)

2

< 0, (x1, x2) ∈ R × R, (x1, x2) 6= (0, 0). (3.30)

Clearly, the Lyapunov derivative is negative definite in all of R2,
and hence, the zero solution (x1(t), x2(t)) ≡ (0, 0) to (3.28) and (3.29)
is asymptotically stable. However, to show that (3.28) and (3.29) is not
globally asymptotically stable, consider the hyperbola x2 = 2/(x1 −

√
2) in
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the x1-x2 plane. Now, on the hyperbola, ẋ2/ẋ1 is given by

ẋ2

ẋ1

∣

∣

∣

∣

x2=
2

x1−
√

2

=
−2(x1 + x2)

−6x1 + 2x2(1 + x2
1)

2

∣

∣

∣

∣

x2=
2

x1−
√

2

= − 1

2x2
1 + 2

√
2x1 + 1

,

(3.31)
whereas the slope of the hyperbola is given by

dx2

dx1
= − 2

(x1 −
√

2)2
= − 1

1
2x

2
1 −

√
2x1 + 1

. (3.32)

Next, for x1 >
√

2, it follows from (3.31) and (3.32) that

2x2
1 + 2

√
2x1 + 1 >

1

2
x2

1 −
√

2x1 + 1,

and hence,
ẋ2

ẋ1

∣

∣

∣

∣

x2=
2

x1−
√

2

>
dx2

dx1
, (3.33)

for x1 >
√

2. Furthermore, note that for x1 >
√

2,

ẋ1|x2=
2

x1−
√

2

= − 6x1

(1 + x2
1)

2
+

4

x1 −
√

2

=
4 + 6

√
2x1 + 2x2

1 + 4x4
1

(1 + x2
1)

2(x1 −
√

2)

> 0. (3.34)

Since on the hyperbola ẋ1 > 0 for x1 >
√

2, it follows that the
trajectories of (3.28) and (3.29) cannot cut the branch of the hyperbola
lying in the first quadrant in the x1-x2 plane, and in the direction toward
the x1-x2 axes (see Figure 3.7). Hence, since trajectories starting to the right
of the hyperbola cannot reach the origin, it follows that the zero solution
(x1(t), x2(t)) ≡ (0, 0) to (3.28) and (3.29) is not globally asymptotically
stable. △

The radial unboundedness condition (3.25) ensures that the constant
energy surfaces V (x) = α, α > 0, are hypersurfaces, and hence, since the
system trajectories move from one energy surface to an inner energy surface,
the system trajectories cannot drift away from the system equilibrium.

Example 3.4. Consider the nonlinear dynamical system

ẋ1(t) = −x1(t) + x3
2(t), x1(0) = x10, t ≥ 0, (3.35)

ẋ2(t) = −x1(t) − x2(t), x2(0) = x20. (3.36)

To examine the stability of this system, consider the Lyapunov function
candidate V (x1, x2) = 1

2x
2
1 + 1

4x
4
2, which is positive definite and radially
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Figure 3.7 Level sets and an unbounded trajectory for Example 3.3.

unbounded in R2. Now, the Lyapunov derivative is given by

V̇ (x1, x2) = x1ẋ1 + x3
2ẋ2 = −x2

1 − x4
2 < 0, (x1, x2) 6= (0, 0), (3.37)

which implies that the zero solution (x1(t), x2(t)) ≡ (0, 0) to (3.35) and
(3.36) is globally asymptotically stable. Is this system globally exponentially
stable? △

3.3 Invariant Set Stability Theorems

In this section, we introduce the Barbashin-Krasovskii-LaSalle invariance
principle to relax one of the conditions on the Lyapunov function V (·) in the
theorems given in Section 3.2. In particular, the strict negative-definiteness
condition on the Lyapunov derivative can be relaxed while ensuring system
asymptotic stability. Specifically, if a continuously differentiable function
defined on a compact invariant set with respect to the nonlinear dynamical
system (3.1) can be constructed whose derivative along the system’s
trajectories is negative semidefinite and no system trajectories can stay
indefinitely at points where the function’s derivative vanishes, then the
system’s equilibrium point is asymptotically stable. This result follows
from the Barbashin-Krasovskii-LaSalle invariance principle for nonlinear
dynamical systems, which we now state and prove.

Theorem 3.3 (Barbashin-Krasovskii-LaSalle Theorem). Consider the
nonlinear dynamical system (3.1), assume that Dc ⊂ D is a compact
positively invariant set with respect to (3.1), and assume there exists a
continuously differentiable function V : Dc → R such that V ′(x)f(x) ≤
0, x ∈ Dc. Let R △

= {x ∈ Dc : V ′(x)f(x) = 0} and let M be the largest
invariant set contained in R. If x(0) ∈ Dc, then x(t) → M as t→ ∞.
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Proof. Let x(t), t ≥ 0, be a solution to (3.1) with x(0) ∈ Dc. Since
V ′(x)f(x) ≤ 0, x ∈ Dc, it follows that

V (x(t)) − V (x(τ)) =

∫ t

τ
V ′(x(s))f(x(s))ds ≤ 0, t ≥ τ,

and hence, V (x(t)) ≤ V (x(τ)), t ≥ τ , which implies that V (x(t)) is a
nonincreasing function of t. Next, since V (·) is continuous on the compact
set Dc, there exists β ∈ R such that V (x) ≥ β, x ∈ Dc. Hence,

γx0

△
= limt→∞ V (x(t)) exists. Now, for all p ∈ ω(x0) there exists an

increasing unbounded sequence {tn}∞n=0, with t0 = 0, such that x(tn) → p
as n → ∞. Since V (x), x ∈ Dc, is continuous, V (p) = V (limn→∞ x(tn)) =
limn→∞ V (x(tn)) = γx0

, and hence, V (x) = γx0
on ω(x0). Now, since Dc

is compact and positively invariant it follows that x(t), t ≥ 0, is bounded,
and hence, it follows from Theorem 2.41 that ω(x0) is a nonempty, compact
invariant set. Hence, it follows that V ′(x)f(x) = 0 on ω(x0) and thus
ω(x0) ⊂ M ⊂ R ⊂ Dc. Finally, since x(t) → ω(x0) as t → ∞, it follows
that x(t) → M as t→ ∞.

The construction of V (·) in Theorem 3.3 can be used to guarantee
the existence of the compact positively invariant set Dc. Specifically, if
Dβ = {x ∈ D : V (x) ≤ β}, where β > 0, is bounded and V̇ (x) ≤ 0,
x ∈ Dβ , then we can always take Dc = Dβ. As discussed in Section 3.1,
if V (·) is positive definite, then Dβ is bounded for sufficiently small β > 0.
Alternatively, if V (·) is radially unbounded, then Dβ is bounded for every
β > 0 irrespective of whether V (·) is positive definite or not.

Example 3.5. The Barbashin-Krasovskii-LaSalle invariant set theo-
rem can be used to examine the stability of limit cycles. To see this, consider
the nonlinear dynamical system

ẋ1(t) = 4x2
1(t)x2(t) − g1(x1(t))[x

2
1(t) + 2x2

2(t) − 4], x1(0) = x10, t ≥ 0,

(3.38)

ẋ2(t) = −2x3
1(t) − g2(x2(t))[x

2
1(t) + 2x2

2(t) − 4], x2(0) = x20, (3.39)

where x1g1(x1) > 0, x1 6= 0, x2g2(x2) > 0, x2 6= 0, g1(0) = 0, and g2(0) = 0.

Now, note that the set defined by the ellipse E △
= {(x1, x2) ∈ R × R :

x2
1 + 2x2

2 − 4 = 0} is invariant since

d

dt
[x2

1(t) + 2x2
2(t) − 4] = −[2x1(t)g1(x1(t)) + 4x2(t)g2(x2(t))]

·[x2
1(t) + 2x2

2(t) − 4]

= 0, t ≥ 0, (3.40)

and hence, if (x1(0), x2(0)) ∈ E , then (x1(t), x2(t)) ∈ E , t ≥ 0. The motion
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on E is characterized by either of the equations

ẋ1(t) = 4x2
1(t)x2(t), (3.41)

ẋ2(t) = −2x3
1(t), (3.42)

which shows that E is a limit cycle for (3.38) and (3.39) where the state
vector moves clockwise.

To examine whether this limit cycle is attractive, define the function
V : R2 → R representing a measure of the distance to the limit cycle by
V (x1, x2) = (x2

1 + 2x2
2 − 4)2 and note that V (0, 0) = 16. Next, let β > 0 and

define

Dc
△
= {(x1, x2) ∈ R × R : V (x1, x2) ≤ β}
= {(x1, x2) ∈ R × R : (x2

1 + 2x2
2 − 4)2 ≤ β}. (3.43)

Now, note that

V̇ (x1, x2) = 2(x2
1 + 2x2

2 − 4)
d

dt
(x2

1 + 2x2
2 − 4)

= −2(x2
1 + 2x2

2 − 4)2[2x1g1(x1) + 4x2g2(x2)]

≤ 0, (x1, x2) ∈ Dc. (3.44)

Next, defining R △
= {(x1, x2) ∈ R × R : V̇ (x1, x2) = 0} it follows that

the largest invariant set M ⊆ R is given by

M = {(0, 0)} ∪ {(x1, x2) ∈ R × R : x2
1 + 2x2

2 − 4 = 0}. (3.45)

Hence, it follows from Theorem 3.3 that all system trajectories starting
in Dc go to (0, 0) or E . However, for β < 16, since V (0, 0) = 16 and
V (1, 0) = 9 < 16, it follows that (0, 0) 6∈ Dc and (0, 0) corresponds to a
local maximum of V (x1, x2). Hence, (0, 0) is unstable. (Can this result
be obtained by Lyapunov’s indirect method? See Theorem 3.19.) Thus, if
(x1(0), x2(0)) ∈ Dc, then (x1(t), x2(t)) → E as t→ ∞, establishing that the
limit cycle characterized by E is attractive. △

Next, using Theorem 3.3 we provide a generalization of Theorem 3.1
for local asymptotic stability of a nonlinear dynamical system.

Corollary 3.1. Consider the nonlinear dynamical system (3.1), assume
that Dc ⊂ D is a compact positively invariant set with respect to (3.1)

such that 0 ∈
◦
Dc, and assume that there exists a continuously differentiable

function V : Dc → R such that V (0) = 0, V (x) > 0, x 6= 0, and V ′(x)f(x) ≤
0, x ∈ Dc. Furthermore, assume that the set R △

= {x ∈ Dc: V
′(x)f(x) = 0}

contains no invariant set other than the set {0}. Then the zero solution
x(t) ≡ 0 to (3.1) is asymptotically stable and Dc is a subset of the domain
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of attraction of (3.1).

Proof. Lyapunov stability of the zero solution x(t) ≡ 0 to (3.1) follows
from Theorem 3.1 since V ′(x)f(x) ≤ 0, x ∈ Dc. Now, it follows from
Theorem 3.3 that if x0 ∈ Dc, then ω(x0) ⊆ M, where M denotes the
largest invariant set contained in R, which implies that M = {0}. Hence,
x(t) → M = {0} as t → ∞, establishing asymptotic stability of the zero
solution x(t) ≡ 0 to (3.1).

Example 3.6. To see the utility of Corollary 3.1, consider the nonlinear
dynamical system describing the notion of a simple pendulum given in
Example 3.2. To examine the stability of this system consider the more
natural energy Lyapunov function candidate given by

V (θ, θ̇) = 1
2 θ̇

2 + g
l (1 − cos θ), (3.46)

with Lyapunov derivative

V̇ (θ, θ̇) = θ̇θ̈ + g
l θ̇ sin θ = −θ̇2 ≤ 0, (θ, θ̇) ∈ R × R, (3.47)

establishing Lyapunov stability of the zero solution (θ(t), θ̇(t)) ≡ (0, 0).

Next, let β > 0 be such that Dc
△
= {(θ, θ̇) : V (θ, θ̇) ≤ β} is compact. Note

that Dc is positively invariant. Now, to show asymptotic stability for this
system let R △

= {(θ, θ̇) ∈ R × R : V̇ (θ, θ̇) = 0} = {(θ, θ̇) ∈ R × R : θ̇ = 0}
and note that V̇ (θ, θ̇) < 0 everywhere except on the line θ̇ = 0, where
V̇ (θ, θ̇) = 0. Now, let M be the largest invariant set contained in R and note
that (0, 0) ∈ M ⊂ R since (0, 0) is an equilibrium point. Furthermore, note
that for the system to guarantee the condition V̇ (θ, θ̇) = 0, the trajectory of
the system must lie on the line θ̇ = 0. Since θ̇(t) ≡ 0 implies θ̈(t) ≡ 0 which,
using (3.15), further implies sin θ(t) ≡ 0, it follows that, for θ ∈ (−π, π),
M = {(0, 0)} is the largest invariant set contained in R, and hence, by
Corollary 3.1, (θ(t), θ̇(t)) → (0, 0) as t → ∞, establishing local asymptotic
stability. △

Example 3.7. Corollary 3.1 can also be used to characterize the
domain of attraction of a nonlinear dynamical system. To see this, consider
the nonlinear dynamical system

ẋ1(t) = x1(t)[x
2
1(t) + x2

2(t) − 1] − x2(t), x1(0) = x10, t ≥ 0, (3.48)

ẋ2(t) = x1(t) + x2(t)[x
2
1(t) + x2

2(t) − 1], x2(0) = x20, (3.49)

with Lyapunov function candidate V (x1, x2) = x2
1 +x2

2. Now, the Lyapunov
derivative is given by

V̇ (x1, x2) = 2x1ẋ1 + 2x2ẋ2 = 2(x2
1 + x2

2)(x
2
1 + x2

2 − 1), (3.50)

which is strictly negative if 0 < x2
1 + x2

2 < 1. Next, define Dβ
△
= {(x1, x2) ∈

R × R : x2
1 + x2

2 ≤ β}, where β ∈ (0, 1), and note that R △
= {(x1, x2) ∈
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Dβ : V̇ (x1, x2) = 0} = {(0, 0)} = M. Now, it follows from Corollary 3.1
that the zero solution (x1(t), x2(t)) ≡ (0, 0) to (3.48) and (3.49) is locally
asymptotically stable with Dβ being a subset of the domain of attraction for

every β ∈ (0, 1). Hence, Dc
△
= {(x1, x2) ∈ R × R : x2

1 + x2
2 < 1} is contained

in the domain of attraction of (3.48) and (3.49). △

In Theorem 3.3 and Corollary 3.1 we explicitly assumed that there
exists a compact invariant set Dc ⊂ D of (3.1). Next, we provide a result
that does not require the explicit assumption of the existence of a compact
invariant Dc.

Theorem 3.4. Consider the nonlinear dynamical system (3.1) and
assume that there exists a continuously differentiable function V : Rn → R

such that

V (0) = 0, (3.51)

V (x) > 0, x ∈ Rn, x 6= 0, (3.52)

V ′(x)f(x) ≤ 0, x ∈ Rn. (3.53)

Let R △
= {x ∈ Rn:V ′(x)f(x) = 0} and let M be the largest invariant set

contained in R. Then all solutions x(t), t ≥ 0, of (3.1) that are bounded
approach M as t→ ∞.

Proof. Let x ∈ Rn be such that trajectory s(t, x), t ≥ 0, of (3.1) is

bounded. Now, with Dc = O+
x , it follows from Theorem 3.3 that s(t, x) →

M as t→ ∞.

Next, we present the global invariant set theorem for guaranteeing
global asymptotic stability of a nonlinear dynamical system.

Theorem 3.5. Consider the nonlinear dynamical system (3.1) and
assume there exists a continuously differentiable function V : Rn → R such
that

V (0) = 0, (3.54)

V (x) > 0, x ∈ Rn, x 6= 0, (3.55)

V ′(x)f(x) ≤ 0, x ∈ Rn, (3.56)

V (x) → ∞ as ‖x‖ → ∞. (3.57)

Furthermore, assume that the set R △
= {x ∈ Rn: V ′(x)f(x) = 0} contains

no invariant set other than the set {0}. Then the zero solution x(t) ≡ 0 to
(3.1) is globally asymptotically stable.

Proof. Since (3.54)–(3.56) hold, it follows from Theorem 3.1 that
the zero solution x(t) ≡ 0 to (3.1) is Lyapunov stable while the radial
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unboundedness condition (3.57) implies that all solutions to (3.1) are
bounded. Now, Theorem 3.4 implies that x(t) → M as t → ∞. However,
since R contains no invariant set other than the set {0}, the set M is {0},
and hence, global asymptotic stability is immediate.

Theorems 3.3, 3.4, and 3.5 are known as invariant set theorems.
Since for local asymptotic stability V (x) is defined on a compact positively
invariant set Dc, Dc provides an estimate of the domain of attraction for the
nonlinear dynamical system (3.1) which is not necessarily of the form given
by (3.20). Finally, unlike Lyapunov’s theorem, the Barbashin-Krasovskii-
LaSalle invariant set theorem relaxes the strict negative-definiteness condi-
tion on the Lyapunov derivative V̇ (x), x ∈ Dc, for both local and global
asymptotic stability.

3.4 Construction of Lyapunov Functions

As shown in Sections 3.2 and 3.3 the key requirement in applying Lyapunov’s
direct method and the Barbashin-Krasovskii-LaSalle invariance principle
for examining the stability of nonlinear systems is the construction of a
Lyapunov function. For certain systems, especially ones that have physical
energy interpretations, constructing a system Lyapunov function can be
straightforward. In other cases, however, that can be a difficult task. In this
section, we present four systematic approaches for constructing Lyapunov
functions; namely, the variable gradient, Krasovskii’s, Zubov’s, and the
Energy-Casimir methods.

The variable gradient method assumes a certain form for the gradient
of an unknown Lyapunov function and then by integrating the assumed
gradient one can often arrive at a Lyapunov function. To see this, let V :

D → R be a continuously differentiable function and let g(x) =
(

∂V
∂x

)T
.

Now, the derivative of V (x) along the trajectories of (3.1) is given by

V̇ (x) =

n
∑

i=1

∂V

∂xi
ẋi

=
n
∑

i=1

∂V

∂xi
fi(x)

=
[

∂V
∂x1

, ∂V
∂x2

, . . . , ∂V
∂xn

]











f1(x)
f2(x)

...
fn(x)











=
∂V

∂x
f(x)
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= gT(x)f(x). (3.58)

Next, construct g(x) such that g(x) is a gradient for a positive-definite
function and V̇ (x) = gT(x)f(x) < 0, x ∈ D, x 6= 0. Specifically, it follows
from (3.58) that the function V (x) can be computed from the line integral

V (x) =

∫ x

0
gT(s)ds =

∫ x

0

n
∑

i=1

gi(s)dsi. (3.59)

Recall that the line integral of a gradient vector g : Rn → Rn is path
independent [12, Theorem 10-37], and hence, the integration in (3.59) can
be taken along any path joining the origin to x ∈ Rn. Choosing a path made
up of line segments parallel to the coordinate axes, (3.59) becomes

V (x) =

∫ x1

0
g1(s1, 0, . . . , 0)ds1 +

∫ x2

0
g2(x1, s2, . . . , 0)ds2

+ · · · +
∫ xn

0
gn(x1, x2, . . . , xn−1, sn)dsn. (3.60)

Alternatively, using the transformation s = σx, where σ ∈ [0, 1], (3.59) can
be rewritten as

V (x) =

∫ 1

0
gT(σx)xdσ =

∫ 1

0

n
∑

i=1

gi(σx)xidσ. (3.61)

The following result shows that g(x) is a gradient of a real-valued
function V : Rn → R if and only if the Jacobian matrix ∂g/∂x is symmetric.

Proposition 3.1. The function g : Rn → Rn is the gradient vector of
a scalar-valued function V : Rn → R if and only if

∂gi

∂xj
=
∂gj

∂xi
, i, j = 1, . . . , n. (3.62)

Proof. If gT(x) = ∂V
∂x , then gi(x) = ∂V

∂xi
. Since ∂gi

∂xj
= ∂2V

∂xj∂xi
= ∂gj

∂xi
,

i, j = 1, . . . , n, necessity is immediate. To show sufficiency, assume ∂gi

∂xj
=

∂gj

∂xi
, i, j = 1, . . . , n, and define V (x) as the line integral

V (x) =

∫ 1

0
gT(σx)xdσ =

∫ 1

0

n
∑

j=1

gj(σx)xjdσ. (3.63)

Hence,

∂V

∂xi
=

∫ 1

0

n
∑

j=1

∂gj

∂xi
(σx)xjσdσ +

∫ 1

0
gi(σx)dσ
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=

∫ 1

0

n
∑

j=1

∂gi

∂xj
(σx)xjσdσ +

∫ 1

0
gi(σx)dσ

=

∫ 1

0

d(σgi(σx))

dσ
dσ

= gi(x), i = 1, . . . , n, (3.64)

which implies that gT(x) = ∂V
∂x .

Choosing g(x) such that gT(x)f(x) < 0, x ∈ D, x 6= 0, it follows from
Proposition 3.1 that V (x) can be computed from the line integral

V (x) =

∫ 1

0
gT(σx)xdσ =

∫ 1

0

n
∑

j=1

gj(σx)xjdσ. (3.65)

Once arriving at V (x), x ∈ D, it is important to check whether V (·) is
positive definite.

Example 3.8. Consider the nonlinear dynamical system

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (3.66)

ẋ2(t) = −[x1(t) + x2(t)] − sin(x1(t) + x2(t)), x2(0) = x20. (3.67)

To construct a Lyapunov function for (3.66) and (3.67) let g(x) = [a11x1 +
a12x2, a21x1 + a22x2]

T and let a12 = a21 = β so that the symmetry
requirement (3.62) holds. Now,

V̇ (x) = gT(x)f(x)

= (a11x1 + βx2)x2 − (βx1 + a22x2)[(x1 + x2) + sin(x1 + x2)]. (3.68)

Taking a11 = 2β, a22 = β, and β > 0 it follows that

V̇ (x) = −βx2
1 − β(x1 + x2) sin(x1 + x2) < 0, (x1, x2) ∈ D, (3.69)

where D △
= {(x1, x2) : |x1 + x2| < π}. Hence,

V (x) =

∫ 1

0
[g1(σx1, σx2)x1 + g2(σx1, σx2)x2]dσ

=

∫ 1

0
β[2x2

1 + 2x1x2 + x2
2]σdσ

= βx2
1 + βx1x2 + 1

2βx
2
2. (3.70)

Note that V (0, 0) = 0 and V (x1, x2) = 1
2βx

2
1 + 1

2β(x1 + x2)
2 > 0, (x1, x2) ∈

R×R, (x1, x2) 6= (0, 0), and hence, V (x), x ∈ D, is a Lyapunov function for
(3.66) and (3.67). △

Next, we present Krasovskii’s method for constructing a Lyapunov
function for a given nonlinear system. First, however, the following
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proposition is needed.

Proposition 3.2. Let f, g : Rn → Rn be continuously differentiable
functions such that f(0) = 0. Then for every x ∈ Rn there exists α ∈ [0, 1]
such that

gT(x)f(x) = gT(x)
∂f

∂x
(αx)x. (3.71)

Proof. Let p ∈ Rn and note that it follows from the mean value
theorem (Theorem 2.16) that for every x ∈ Rn there exists α ∈ [0, 1] such
that

gT(p)f(x) = gT(p)[f(x) − f(0)]

= gT(p)

[

∂f

∂x
(αx)x

]

.

Hence, there exists α ∈ [0, 1] such that

gT(p)f(p) = gT(p)

[

∂f

∂x
(αp)p

]

. (3.72)

Now, since p is arbitrary, the result follows.

Theorem 3.6 (Krasovskii’s Theorem). Let x(t) ≡ 0 be an equilibrium
point for the nonlinear dynamical system

ẋ(t) = f(x(t)), x(0) = x0, t ≥ 0, (3.73)

where f : D → Rn is continuously differentiable and D is an open set
with 0 ∈ D. Assume there exist positive definite matrices P ∈ Rn×n and
R ∈ Rn×n such that

[

∂f

∂x
(x)

]T

P + P

[

∂f

∂x
(x)

]

≤ −R, x ∈ D, x 6= 0. (3.74)

Then, the zero solution x(t) ≡ 0 to (3.73) is a unique asymptotically stable
equilibrium with Lyapunov function V (x) = fT(x)Pf(x). If, in addition,
D = Rn, then the zero solution x(t) ≡ 0 to (3.73) is a unique globally
asymptotically stable equilibrium.

Proof. Suppose, ad absurdum, that there exists xe ∈ D such that
xe 6= 0 and f(xe) = 0. In this case, it follows from Proposition 3.2 that for

every xe ∈ D there exists α ∈ [0, 1] such that xT
e Pf(xe) = xT

e P
∂f
∂x(αxe)xe.

Hence,

xT
e

{

[

∂f

∂x
(αxe)

]T

P + P

[

∂f

∂x
(αxe)

]

}

xe = 0, (3.75)

which contradicts (3.74). Hence, there does not exist xe ∈ D, xe 6= 0, such
that f(xe) = 0. Next, note that V (x) = fT(x)Pf(x) ≥ λmin(P )‖f(x)‖2

2 ≥ 0,
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x ∈ D, which implies that V (x) = 0 if and only if f(x) = 0 or, equivalently,
V (x) = 0 if and only if x = 0. Hence, V (x) = fT(x)Pf(x) > 0, x ∈ D,
x 6= 0. Next, computing the derivative of V (x) along the trajectories of
(3.73) and using (3.74) yields

V̇ (x) = V ′(x)f(x)

= 2fT(x)P
∂f(x)

∂x
f(x)

= fT(x)

{

[

∂f

∂x
(x)

]T

P + P

[

∂f

∂x
(x)

]

}

f(x)

≤ −fT(x)Rf(x)

≤ −λmin(R)‖f(x)‖2
2

≤ 0, x ∈ D. (3.76)

Now, since f(x) = 0 if and only if x = 0, it follows that V̇ (x) < 0,
x ∈ D, x 6= 0, which proves that the zero solution x(t) ≡ 0 to (3.73) is
a unique asymptotically stable equilibrium with Lyapunov function V (x) =
fT(x)Pf(x).

Finally, in the case where D = Rn we need only show that V (x) → ∞
as ‖x‖ → ∞. Note that it follows from Proposition 3.2 that for every x ∈ Rn

and some α ∈ (0, 1),

xTPf(x) = xTP
∂f

∂x
(αx)x

= 1
2x

T

{

[

∂f

∂x
(αx)

]T

P + P

[

∂f

∂x
(αx)

]

}

x

≤ −1
2x

TRx

≤ −1
2λmin(R)‖x‖2

2, x ∈ Rn, (3.77)

which implies

|xTPf(x)|
‖x‖2

2

≥ 1
2λmin(R), x ∈ Rn, x 6= 0. (3.78)

Hence, since |xTPf(x)| ≤ λmax(P )‖x‖‖f(x)‖, x ∈ Rn, it follows from (3.78)

that ‖f(x)‖ ≥ λmin(R)
2λmax(P )‖x‖, which implies that V (x) → ∞ as ‖x‖ → ∞.

The result now is immediate by repeating the steps of the first part of the
proof.

Example 3.9. Consider the nonlinear dynamical system

ẋ1(t) = −3x1(t) + x2(t), x1(0) = x10, t ≥ 0, (3.79)

ẋ2(t) = x1(t) − x2(t) − x3
2(t), x2(0) = x20. (3.80)
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Note that (0, 0) is the only equilibrium point of (3.79) and (3.80). Next,
computing

∂f

∂x
=

[

∂f1(x)
∂x1

∂f1(x)
∂x2

∂f2(x)
∂x1

∂f2(x)
∂x2

]

=

[

−3 1
1 −1 − 3x2

2

]

, (3.81)

it can easily be shown that (3.74) holds with P = I2 and R = I2 so that
all the conditions of Theorem 3.6 are satisfied. Hence, the zero solution
(x1(t), x2(t)) ≡ (0, 0) to (3.79) and (3.80) is globally asymptotically stable
with Lyapunov function V (x) = fT(x)Pf(x) = fT(x)f(x) = (−3x1+x2)

2+
(x1 − x2 − x3

2)
2. △

Next, we present Zubov’s method for constructing Lyapunov functions
for nonlinear systems. Unlike the variable gradient method and Krasovskii’s
method, Zubov’s method additionally characterizes a domain of attraction
for a given nonlinear system.

Theorem 3.7 (Zubov’s Theorem). Consider the nonlinear dynamical
system (3.1) with f(0) = 0. Let D ⊂ Rn be bounded and assume there exist
a continuously differentiable function V : D → R and a continuous function
h : Rn → R such that V (0) = 0, h(0) = 0, and

0 < V (x) < 1, x ∈ D, x 6= 0, (3.82)

V (x) → 1 as x→ ∂D, (3.83)

h(x) > 0, x ∈ Rn, x 6= 0, (3.84)

V ′(x)f(x) = −h(x)[1 − V (x)]. (3.85)

Then, the zero solution x(t) ≡ 0 to (3.1) is asymptotically stable with
domain of attraction D.

Proof. It follows from (3.82), (3.84), and (3.85) that in a neighborhood
Bε(0) of the origin V (x) > 0 and V̇ (x) < 0, x ∈ Bε(0). Hence, the origin
is locally asymptotically stable. Now, to show that D is the domain of
attraction we need to show that x(0) ∈ D implies x(t) → 0 as t → ∞ and
x(0) 6∈ D implies x(t) 6→ 0 as t → ∞. Let x(0) ∈ D. Then, by (3.82),
V (x(0)) < 1. Next, let β > 0 be such that V (x(0)) ≤ β < 1 and define

Dβ
△
= {x ∈ D : V (x) ≤ β}. Note that Dβ ⊂ D and Dβ is bounded since

limx→∂D V (x) = 1 and β < 1. Furthermore, since V̇ (x) < 0, x ∈ Dβ, it
follows that Dβ is a positively invariant set. Now, using (3.82) it follows

that V̇ (x) = 0, x ∈ D, implies that h(x) = 0, x ∈ D, which further implies
x = 0. Hence, it follows from Theorem 3.3 that x(t) → 0 as t→ ∞.

Next, let x(0) 6∈ D and assume, ad absurdum, that x(t) → 0 as t→ ∞.
In this case, x(t) → D for some t ≥ 0. Hence, there exist finite times t1
and t2 such that x(t1) ∈ ∂D and x(t) ∈ D for all t ∈ (t1, t2]. Next, define
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W (x)
△
= 1 − V (x) and note that Ẇ (x) = h(x)W (x) or, equivalently,

∫ W (x(t))

W0

dw

w
=

∫ t

t0

h(x(s))ds, (3.86)

where W0
△
= W (x(t0)). Integrating (3.86) and rearranging terms yields

1 − V (x(t0)) = [1 − V (x(t))]e
−
∫

t

t0
h(x(s))ds

. (3.87)

Now, taking t = t2, letting t0 → t1, and using (3.83) it follows that

limt0→t1 [1−V (x(t0))] = 0 and limt0→t1 [1−V (x(t2))]e
−
∫

t

t0
h(x(s))ds

> 0, which
is a contradiction. Hence, for x(0) 6∈ D, x(t) 6→ 0 as t→ ∞.

Note that in the case where D is unbounded or D = Rn, (3.83) becomes
V (x) → 1 as ‖x‖ → ∞. In latter case, the conditions of Theorem 3.7, with
(3.83) replaced by V (x) → 1 as ‖x‖ → ∞, guarantee that the zero solution
x(t) ≡ 0 to (3.1) is globally asymptotically stable.

Example 3.10. Consider the second-order nonlinear dynamical system
adopted from [178] given by

ẋ1(t) = −f1(x1(t)) + f2(x2(t)), x1(0) = x10, t ≥ 0, (3.88)

ẋ2(t) = −f3(x1(t)), x2(0) = x20, (3.89)

where fi(0) = 0, σfi(σ) > 0, σ ∈ (−ai, bi), for i = 1, 2, 3, a1 = a3, b1 = b3,
and

∫ y
0 fi(s)ds → ∞ as y → −ai or y → bi, for i = 2, 3. Next, let h(x) =

f1(x1)f3(x1) and let V (x) be of the form V (x) = 1 − V1(x1)V2(x2), where
Vi : R → R, Vi(0) = 1, i = 1, 2. Now, it follows from (3.85) that

[V ′
1(x1) + f3(x1)V1(x1)]V2(x2)f1(x1)

+[V ′
2(x2)V1(x1)f3(x1) − V ′

1(x1)V2(x2)f2(x1)] = 0, (3.90)

which can be satisfied by setting V ′
1(x1) = −f3(x1)V1(x1) and V ′

2(x2) =
−f2(x2)V2(x2). Hence, (3.85) holds with

V (x) = 1 − e−[
∫

x1
0

f3(s)ds+
∫

x2
0

f2(s)ds]. (3.91)

Note that (3.91) satisfies V (0) = 0, (3.82), and (3.83) for all x ∈ D =
{x ∈ R2 : −ai < xi < bi}, i = 1, 2. Furthermore, it can be easily shown that
V̇ (x) = −f1(x1)f3(x1)[1 − V (x)] ≤ 0, which proves Lyapunov stability of
(3.88) and (3.89). To show asymptotic stability note that V̇ (x) = 0 implies
f1(x1)f3(x1) = 0, which further implies x1 = 0. Furthermore, x1(t) ≡ 0
implies f2(x2(t)) ≡ 0, which further implies x2(t) ≡ 0. Hence, with Dc = D,
it follows from Theorem 3.3 that the zero solution (x1(t), x2(t)) ≡ (0, 0) to
(3.88) and (3.89) is asymptotically stable with domain of attraction D. △

Finally, we present the energy-Casimir method for constructing Lya-



NonlinearBook10pt November 20, 2007

STABILITY THEORY FOR NONLINEAR SYSTEMS 159

punov functions for nonlinear dynamical systems. This method exploits the
existence of dynamical invariants, or integrals of motion, called Casimir
functions of the nonlinear dynamical system (3.1). In particular, a function
C : D → R is an integral of motion of (3.1) if it is conserved along the flow of
(3.1), that is, C ′(x)f(x) = 0. For the statement of our next result let r ≥ 2
and let Ci : D → R, i = 1, . . . , r, be two-times continuously differentiable
Casimir functions. Furthermore, define

E(x)
△
=

r
∑

i=1

µiCi(x), (3.92)

for µi ∈ R, i = 1, . . . , r.

Theorem 3.8 (Energy-Casimir Theorem). Consider the nonlinear
dynamical system (3.1) where f : D → Rn is Lipschitz continuous on D. Let
xe ∈ D be an equilibrium point of (3.1) and let Ci : D → R, i = 1, . . . , r, be
Casimir functions of (3.1). Assume that the vectors Ci

′(xe), i = 2, . . . , r, are
linearly independent, and suppose there exists µ = [µ1, µ2, . . . , µr]

T ∈ Rr

such that µ1 6= 0, E′(xe) = 0, and xTE′′(xe)x > 0, x ∈ M, where

M △
= {x ∈ D : Ci

′(xe)x = 0, i = 2, . . . , r}. Then, there exists α ≥ 0
such that

E′′(xe) + α
r
∑

i=2

(

∂Ci

∂x
(xe)

)T(∂Ci

∂x
(xe)

)

> 0. (3.93)

Furthermore, the equilibrium solution x(t) ≡ xe of (3.1) is Lyapunov stable
with Lyapunov function

V (x) = E(x) − E(xe) +
α

2

r
∑

i=2

[Ci(x) − Ci(xe)]
2. (3.94)

Proof. Note that

V̇ (x) = V ′(x)f(x)

= E′(x)f(x) + α
r
∑

i=2

[Ci(x) − Ci(xe)]Ci
′(x)f(x)

=

r
∑

i=1

µiCi
′(x)f(x) + α

r
∑

i=2

[Ci(x) − Ci(xe)]Ci
′(x)f(x)

= 0, x ∈ D. (3.95)

Now, it need only be shown that V (xe) = 0 and V (x) > 0, x ∈ D, x 6= xe.
Clearly, V (xe) = 0. Furthermore,

V ′(x) = E′(x) + α

r
∑

i=2

[Ci(x) − Ci(xe)]Ci
′(x), (3.96)
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and hence, V ′(xe) = 0.

Next, note that

V ′′(x) = E′′(x) + α

r
∑

i=2

{

[Ci
′(x)]TCi

′(x) + [Ci(x) −Ci(xe)]Ci
′′(x)

}

, (3.97)

and hence,

V ′′(xe) = E′′(xe) + α

r
∑

i=2

(

∂Ci

∂x
(xe)

)T(∂Ci

∂x
(xe)

)

. (3.98)

Now, to show the existence of α satisfying (3.93), note that since Ci
′(xe)x =

0, i = 2, . . . , r, x ∈ M, it follows that there exists an invertible matrix
S ∈ Rn×n such that [0, Ir−1]Sx = 0, x ∈ M, and [In−(r−1), 0]Sx = 0,
x ∈ Mc [288]. Hence, for xe ∈ D,

E′′(xe) = ST

[

E1 E12

ET
12 E2

]

S (3.99)

and
r
∑

i=2

(

∂Ci

∂x
(xe)

)T(∂Ci

∂x
(xe)

)

= ST

[

0 0
0 N

]

S, (3.100)

where E1 ∈ R(n−r+1)×(n−r+1), E12 ∈ R(n−r+1)×(r−1), E2 ∈ R(r−1)×(r−1), and
N ∈ R(r−1)×(r−1) are symmetric, and E1 and N are positive definite. Next,
substituting (3.99) and (3.100) into (3.98) yields

V ′′(xe) = ST

[

E1 E12

ET
12 E2 + αN

]

S
△
= STQS. (3.101)

Now, choosing α ≥ 0 such that Q > 0, (3.93) is satisfied, and hence,
V ′′(xe) > 0. Since V (·) is two-times continuously differentiable, it follows
that (see Problem 3.2) V (x), x ∈ D, is positive definite in the neighborhood
of xe.

It is clear from Theorem 3.8 that the existence of energy-Casimir
functions for (3.1) can be used to construct Lyapunov functions for (3.1).
In particular, suppose we can construct a function H : D → R such that
Ḣ(x) = 0 along the trajectories of the nonlinear dynamical system (3.1). If
C1, . . . , Cr are Casimir functions for (3.1), then

d

dt
[H + E(C1, . . . , Cr)](x(t)) ≡ 0 (3.102)

for every function E : Rr → R. Hence, even if H is not positive definite at
the equilibrium xe ∈ D, the function V (x) = H(x) + E(C1(x), . . . , Cr(x))
can be made positive definite at xe ∈ D by properly choosing E so that
V (x) is a Lyapunov function for (3.1).
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Example 3.11. This example is adopted from [450] and considers the
nonlinear dynamical system representing a rigid spacecraft given by (3.11)–
(3.13) in Example 3.1. To show that the equilibrium solution x(t) ≡ xe,
where xe = [0, 0, x3e]

T, to (3.11)–(3.13) is Lyapunov stable note that

C1(x) = 1
2(I1x

2
1 + I2x

2
2 + I3x

2
3), (3.103)

C2(x) = 1
2(I2

1x
2
1 + I2

2x
2
2 + I2

3x
2
3), (3.104)

are Casimir functions for (3.11)–(3.13). Now, letting E(x) = µ1C1(x) +
µ2C2(x) it follows that E′(xe) = 0 and xTE′′(xe)x > 0, x ∈ M, x 6= 0, are
satisfied with µ1 = −I3 and µ2 = 1. Next, using

V (x1, x2, x3) = E(x1, x2, x3)−E(0, 0, x3e)+
α
2 [C2(x1, x2, x3)−C2(0, 0, x3e)]

2,
(3.105)

it follows that Q in (3.101) is given by

Q =





I1(I1 − I3) 0 0
0 I2(I2 − I3) 0
0 0 αI4

3x
2
3e



 . (3.106)

Note that Q > 0 for every α > 0. Hence, it follows from Theorem 3.8 that
the equilibrium solution x(t) ≡ xe to (3.11)–(3.13) is Lyapunov stable with
Lyapunov function (3.105). △

3.5 Converse Lyapunov Theorems

In the previous sections the existence of a Lyapunov function is assumed
while stability properties of a nonlinear dynamical system are deduced. This
raises the question of whether or not there always exists a Lyapunov function
for a Lyapunov stable and an asymptotically stable nonlinear dynamical
system. A number of results concerning the existence of continuously
differentiable Lyapunov functions for Lyapunov stable and asymptotically
stable time-varying nonlinear systems known as converse Lyapunov theorems
address this problem [178, 298, 306, 307, 445, 474]. However, unlike converse
theorems for time-varying systems where the existence of a continuously
differentiable Lyapunov function for a Lyapunov stable system is ensured,
in the time-invariant case Lyapunov stability does not in general imply
the existence of a continuously differentiable or even a continuous time-
independent Lyapunov function (see Example 4.15). For further discussion
on this often overlooked fact the interested reader is referred to [134, 178].
However, the existence of a lower semicontinuous Lyapunov function for
a Lyapunov stable system is guaranteed (see Section 4.8). As shown
below, however, there always exists a continuously differentiable time-
independent Lyapunov function for asymptotically stable, time-invariant
nonlinear dynamical systems. In order to state and prove the converse
Lyapunov theorems we need several definitions and one key lemma.
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Definition 3.3. A continuous function γ : [0, a) → [0,∞), where a ∈
(0,∞], is of class K if it is strictly increasing and γ(0) = 0. A continuous
function γ : [0,∞) → [0,∞) is of class K∞ if it is strictly increasing, γ(0) =
0, and γ(s) → ∞ as s → ∞. A continuous function γ : [0,∞) → [0,∞)
is of class L if it is strictly decreasing and γ(s) → 0 as s → ∞. Finally, a
continuous function γ : [0, a) × [0,∞) → [0,∞) is of class KL if, for each
fixed s, γ(r, s) is of class K with respect to r and, for each fixed r, γ(r, s) is
of class L with respect to s.

The following key lemma due to Massera [306] is needed for the main
result of this section.

Lemma 3.1 (Massera’s Lemma). Let σ : [0,∞) → [0,∞) be a class
L function and let λ be a given positive scalar. Then there exists an
infinitely differentiable function γ : [0,∞) → [0,∞) such that γ(·), γ′(·) ∈ K,
∫∞
0 γ[σ(t)]dt <∞, and

∫∞
0 γ′[σ(t)]eλtdt <∞.

Proof. Since σ(·) is strictly decreasing there exists an unbounded
sequence {tn}∞n=1 such that

σ(tn) ≤ 1

n+ 1
, n = 1, 2, . . . .

Now, define η : R+ → R+ by

η(t)
△
=

{
(

t1
t

)p
, 0 < t ≤ t1,

(n+1)tn+1−ntn−t
n(n+1)(tn+1−tn) , tn ≤ t ≤ tn+1, n = 1, 2, . . . ,

where p > t21
2(t2−t1)

. Note that η(·) is strictly decreasing, σ(t) < η(t), t ∈
[t1,∞), and limt→0,t>0 η(t) = ∞. Since η(·) is an infinitely differentiable
function except at a countable number of values of t, it can be approximated
by an infinitely differentiable function on [0,∞). Next, it can be shown that
η−1(·) is a strictly decreasing function such that lims→0,s>0 η

−1(s) = ∞ and
lims→∞ η−1(s) = 0. Now, let µ : R+ → R+ be such that µ(0) = 0 and
µ(s) = e−(λ+1)η−1(s), s > 0. Note that µ(·) is infinitely differentiable on
(0,∞) and µ(·) is strictly increasing, which implies that µ(·) is a class K
function.

Next, define γ : [0,∞) → [0,∞) by

γ(r)
△
=

∫ r

0
µ(s)ds.

Note that γ(·) and γ′(·) = µ(·) are class K functions. Furthermore, note
that

∫ ∞

0
γ′[σ(t)]eλtdt =

∫ t1

0
µ[σ(t)]eλtdt+

∫ ∞

t1

µ[σ(t)]eλtdt
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<

∫ t1

0
µ[σ(t)]eλtdt+

∫ ∞

t1

µ[η(t)]eλtdt

=

∫ t1

0
µ[σ(t)]eλtdt+

∫ ∞

t1

e−tdt

< ∞.

Next, since for all t ≥ t1 and s ∈ (0, η(t)], t ≤ η−1(s), it follows that

∫ η(t)

0
µ(s)ds =

∫ η(t)

0
e−(λ+1)η−1(s)ds

≤
∫ η(t)

0
e−(λ+1)tds

= e−(λ+1)tη(t)

≤ e−(λ+1)t.

Hence,

∫ ∞

t1

γ[σ(t)]dt =

∫ ∞

t1

∫ σ(t)

0
µ(s)dsdt

<

∫ ∞

t1

∫ η(t)

0
µ(s)dsdt

≤
∫ ∞

t1

e−(λ+1)tdt

< ∞.

Now, the result follows from the fact that
∫∞
0 γ[σ(t)]dt < ∞ if and only if

∫∞
t1
γ[σ(t)]dt <∞.

Theorem 3.9. Assume that the zero solution x(t) ≡ 0 to (3.1) is
asymptotically stable, f : D → Rn is continuously differentiable, and let
δ > 0 be such that Bδ(0) ⊂ D is contained in the domain of attraction of
(3.1). Then there exists a continuously differentiable function V : Bδ(0) → R

such that V (0) = 0, V (x) > 0, x ∈ Bδ(0), x 6= 0, and V ′(x)f(x) < 0,
x ∈ Bδ(0), x 6= 0.

Proof. Since the zero solution x(t) ≡ 0 to (3.1) is, by assumption,
asymptotically stable it follows that (see Problem 3.76) there exist class
K and L functions α(·) and β(·), respectively, such that if ‖x0‖ < δ then
‖x(t)‖ ≤ α(‖x0‖)β(t), t ≥ 0, where ‖ · ‖ is the Euclidean norm. Next,
let x ∈ Bδ(0) and let s(t, x) denote the solution to (3.1) with the initial
condition x(0) = x so that for all ‖x‖ < δ, ‖s(t, x)‖ ≤ α(‖x‖)β(t), t ≥ 0.
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Furthermore, note that s(t, x) = x+
∫ t
0 f(s(τ, x))dτ , which implies that

∂s(t, x)

∂x
= I +

∫ t

0
f ′(s(τ, x))

∂s(τ, x)

∂x
dτ. (3.107)

Hence,
∥

∥

∥

∥

∂s(t, x)

∂x

∥

∥

∥

∥

≤ 1 +

∫ t

0
λ

∥

∥

∥

∥

∂s(τ, x)

∂x

∥

∥

∥

∥

dτ, (3.108)

where λ
△
= maxx∈Bδ(0) ‖f ′(x)‖. Furthermore, it follows from Lemma 2.2

that ‖∂s(t,x)
∂x ‖ ≤ eλt. Now, it follows from Lemma 3.1 that there exists an

infinitely differentiable function γ(·) such that γ(·) and γ′(·) are class K
functions,

∫∞
0 γ(α(δ)β(t))dt < ∞, and

∫∞
0 γ′(α(δ)β(t))eλtdt < ∞. Since

‖s(t, x)‖ ≤ α(‖x‖)β(t) ≤ α(δ)β(t), t ≥ 0, it follows that the function

V (x) =

∫ ∞

0
γ(‖s(t, x)‖)dt (3.109)

is well defined on Bδ(0). Furthermore, note that V (0) = 0.

Next, since f(·) in (3.1) is uniformly Lipschitz continuous on Bδ(0) it
follows from Proposition 2.30 that

V (x) =

∫ ∞

0
γ(‖s(t, x)‖)dt ≥

∫ ∞

0
γ(‖x‖e−Lt)dt,

where L denotes the Lipschitz constant of f(·) on Bδ(0), which implies that

V (x) > 0, x ∈ D0, x 6= 0. Now, note that since ‖s(t, x)‖ =
√

sT(t, x)s(t, x),

V ′(x) =

∫ ∞

0
γ′(‖s(t, x)‖) s

T(t, x)

‖s(t, x)‖
∂s(t, x)

∂x
dt, (3.110)

and hence,

‖V ′(x)‖ ≤
∫ ∞

0
γ′(‖s(t, x)‖)

∥

∥

∥

∥

∂s(t, x)

∂x

∥

∥

∥

∥

dt

≤
∫ ∞

0
γ′(α(δ)β(t))eλtdt

< ∞, x ∈ Bδ(0), (3.111)

which proves that V ′(·) is bounded. Now, (3.110) implies that V ′(·) is
continuous, and hence, V (·) is continuously differentiable.

Finally, note that since f(·) is Lipschitz continuous on D the trajectory
s(t, x), t ≥ 0, is unique, and hence,

V (s(t, x)) =

∫ ∞

0
γ(‖s(τ, s(t, x))‖)dτ

=

∫ ∞

0
γ(‖s(τ + t, x)‖)dτ
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=

∫ ∞

t
γ(‖s(τ, x)‖)dτ, (3.112)

which implies that V̇ (s(t, x)) = −γ(‖s(t, x)‖) < 0, s(t, x) 6= 0. The result
is now immediate by noting that V ′(x)f(x) = V̇ (s(0, x)) = −γ(‖x‖) < 0,
x ∈ Bδ(0), x 6= 0.

The next result gives a converse Lyapunov theorem for exponential
stability.

Theorem 3.10. Assume that the zero solution x(t) ≡ 0 to (3.1) is
exponentially stable, f : D → Rn is continuously differentiable, and let
δ > 0 be such that Bδ(0) ⊂ D is contained in the domain of attraction
of (3.1). Then, for every p > 1, there exists a continuously differentiable
function V : D → R and scalars α, β, and ε > 0 such that

α‖x‖p ≤ V (x) ≤ β‖x‖p, x ∈ Bδ(0), (3.113)

V ′(x)f(x) ≤ −εV (x), x ∈ Bδ(0). (3.114)

Proof. Since the zero solution x(t) ≡ 0 to (3.1) is, by assumption,
exponentially stable it follows that there exist positive scalars α1 and β1

such that if ‖x0‖ < δ, then ‖x(t)‖ ≤ α1‖x0‖e−β1t, t ≥ 0. Next, let x ∈
Bδ(0) and let s(t, x), t ≥ 0, denote the solution to (3.1) with the initial
condition x(0) = x so that for all ‖x‖ < δ, ‖s(t, x)‖ ≤ α1‖x‖e−β1t, t ≥ 0.
Now, using identical arguments as in the proof of Theorem 3.9 it follows
that for α(δ) = α1, β(t) = e−β1t, γ(σ) = σp, and (p − 1)β1 > λ, where
λ = maxx∈Bδ(0) ‖f ′(x)‖,

∫ ∞

0
αp

1e
−β1ptdt < ∞ (3.115)

and
∫ ∞

0
pαp−1

1 e−β1(p−1)teλtdt < ∞. (3.116)

Hence,

V (x) =

∫ ∞

0
‖s(t, x)‖pdt (3.117)

is a continuously differentiable Lyapunov function candidate for (3.1).

To show that (3.113) holds, note that

V (x) =

∫ ∞

0
‖s(t, x)‖pdt

≤
∫ ∞

0
αp

1‖x‖pe−β1ptdt
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=
αp

1

pβ1
‖x‖p, x ∈ D, (3.118)

which proves the upper bound in (3.113). Next, since ‖f ′(x)‖ ≤ λ, x ∈
Bδ(0), and f(·) is uniformly Lipschitz continuous on Bδ(0) with Lipschitz
constant L = λ it follows that

‖f(s(t, x))‖ ≤ λ‖s(t, x)‖ ≤ λα1‖x‖e−β1t ≤ λα1‖x‖, t ≥ 0. (3.119)

Hence,

s(t, x) = x+

∫ t

0
f(s(τ, x))dτ (3.120)

implies

‖s(t, x)‖ ≥ ‖x‖ − ‖x‖λα1t

≥ ‖x‖
2
, t ∈ [0, 1

2λα1
]. (3.121)

Thus, it follows from (3.117) that

V (x) ≥
∫

1
2λα1

0

‖x‖p

2p
dt =

1

2p+1λα1
‖x‖p, x ∈ Bδ(0), (3.122)

which proves the lower bound in (3.113).

Finally, to show (3.114) note that with γ(σ) = σp it follows as in the
proof of Theorem 3.9 that V̇ (x) = −γ(‖x‖) = −‖x‖p. Now, the result is
immediate from (3.113) by noting that

V̇ (x) = −‖x‖p ≤ − 1
βV (x), x ∈ Bδ(0), (3.123)

which proves (3.114).

Next, we present a corollary to Theorem 3.10 that shows that p in
Theorem 3.10 can be taken to be equal to 2 without loss of generality.

Corollary 3.2. Assume that the zero solution x(t) ≡ 0 to (3.1) is
exponentially stable, f : D → Rn is continuously differentiable, and let
δ > 0 be such that Bδ(0) ⊂ D is contained in the domain of attraction of
(3.1). Then there exists a continuously differentiable function V : D → R

and scalars α, β, and ε > 0 such that

α‖x‖2 ≤ V (x) ≤ β‖x‖2, x ∈ Bδ(0), (3.124)

V ′(x)f(x) ≤ −εV (x), x ∈ Bδ(0). (3.125)

Proof. The proof is a direct consequence of Theorem 3.10 with p = 2.
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Finally, we present a converse theorem for global exponential stability.

Theorem 3.11. If the zero solution x(t) ≡ 0 to (3.1) is globally
exponentially stable and f : Rn → Rn is continuously differentiable and
globally Lipschitz, then there exists a continuously differentiable function
V : D → R and scalars α, β, and ε > 0, such that

α‖x‖2 ≤ V (x) ≤ β‖x‖2, x ∈ Rn, (3.126)

V ′(x)f(x) ≤ −εV (x), x ∈ Rn. (3.127)

Proof. By Proposition 2.26 f(·) is globally Lipschitz if and only if
‖f ′(x)‖ ≤ λ, x ∈ Rn. Now, the proof is identical to the proof of Theorem
3.10 by replacing Bδ(0) by Rn and p = 2.

Finally, it is important to note that even though we assumed that the
vector field f is continuously differentiable in order to establish converse
Lyapunov theorems for asymptotic stability, these results also hold for
vector fields that are locally Lipschitz continuous as well as continuous. In
particular, Massera [307] proved a converse theorem involving the existence
of a smooth (i.e., infinitely differentiable) Lyapunov function for locally
Lipschitz continuous vector fields. In addition, Kurzweil [250] proved the
existence of a smooth Lyapunov function for asymptotic stability under
the assumption of f only being continuous. The proofs of these results,
however, are considerably more involved than the converse proofs given in
this section and involve concepts not introduced in this book. For further
details, see [250,460].

3.6 Lyapunov Instability Theorems

In the preceding sections we established sufficient conditions for Lyapunov
and asymptotic stability of nonlinear dynamical systems. In this section, we
provide three key instability theorems based on Lyapunov’s direct method
for proving that the zero solution x(t) ≡ 0 to (3.1) is unstable. The main
utility of these instability theorems are when Lyapunov’s indirect method
(see Theorem 3.19) fails to provide any information about the stability of a
nonlinear dynamical system.

Theorem 3.12 (Lyapunov’s First Instability Theorem). Consider the
nonlinear dynamical system (3.1). Assume that there exist a continuously
differentiable function V : D → R and a scalar ε > 0 such that

V (0) = 0, (3.128)

V ′(x)f(x) > 0, x ∈ Bε(0), x 6= 0. (3.129)

Furthermore, assume that for every sufficiently small δ > 0 there exists
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x0 ∈ D such that ‖x0‖ < δ and V (x0) > 0. Then, the zero solution x(t) ≡ 0
to (3.1) is unstable.

Proof. Suppose, ad absurdum, that there exists δ > 0 such that if
x0 ∈ Bδ(0), then x(t) ∈ Bε(0), t ≥ 0. By assumption, there exists x0 ∈ D
such that V (x0) = c > 0 and ‖x0‖ < δ. In this case, it follows from (3.129)
that V ′(x(t))f(x(t)) ≥ 0, t ≥ 0, and hence, V (x(t)) ≥ c > 0, t ≥ 0. Thus,
on the trajectory, V ′(x(t))f(x(t)) > 0, t ≥ 0, where x(t), t ≥ 0, denotes the

solution of (3.1) with initial condition x0. Now, consider the set S △
= {y ∈

Rn : y = x(t), t ≥ 0} and note that S is compact. Since V ′(x(t))f(x(t)) > 0,
t ≥ 0, it follows that there exists d = miny∈S V

′(y)f(y) > 0. Next, since

V (·) is continuous on Bε(0) it follows that there exists α > 0 such that
V (x) ≤ α, x ∈ Bε(0) ∩ S. Hence, it follows that

α ≥ V (x(t)) = V (x(t1)) +

∫ t

t1

V ′(x(s))f(x(s))ds ≥ c+ (t− t1)d, t ≥ t1.

(3.130)
Since the right-hand side of (3.130) is unbounded it follows that there exists
t ≥ t1 such that α < c + (t − t1)d, which contradicts (3.130). Hence, there
does not exist δ > 0 such that if x0 ∈ Bδ(0), then x(t) ∈ Bε(0), t ≥ 0. Thus,
the zero solution x(t) ≡ 0 to (3.1) is unstable.

It is interesting to note that the function V (·) in Theorem 3.12 can be
positive as well as negative in D. However, V (·) is required to be positive
for some points x0 6= 0 arbitrarily close to the origin of the nonlinear
dynamical system. A more restrictive version of Theorem 3.12 is the case
where V : D → R is positive definite for all x ∈ Bε(0). In this case, the
zero solution x(t) ≡ 0 to (3.1) is completely unstable in the sense that there
exists ε > 0 such that every trajectory starting in Bε(0), other than the
trivial trajectory, eventually leaves Bε(0). Similar remarks hold for the next
instability theorem.

Example 3.12. Consider the nonlinear dynamical system

ẋ1(t) = −x1(t) + x6
2(t), x1(0) = x10, t ≥ 0, (3.131)

ẋ2(t) = x3
2(t) + x6

1(t), x2(0) = x20. (3.132)

To examine the stability of this system consider the function V (x1, x2) =
−1

6x
6
1+ 1

4x
4
2. Note that on the line x1 = 0, V (x1, x2) > 0 at points arbitrarily

close to the origin. Evaluating V̇ (x1, x2) yields

V̇ (x1, x2) = −x5
1ẋ1 + x3

2ẋ2 = x6
1 + x6

2 − x5
1x

6
2 + x3

2x
6
1. (3.133)

Now, there exist a neighborhood N of the origin and δ ∈ (0, 1) such that
| − x5

1x
6
2 + x3

2x
6
1| ≤ δ(x6

1 + x6
2), (x1, x2) ∈ N , which implies that V̇ (x1, x2) ≥

(1−δ)(x6
1 +x6

2) > 0, (x1, x2) ∈ N . Hence, it follows from Theorem 3.12 that
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the zero solution (x1(t), x2(t)) ≡ (0, 0) to (3.131) and (3.132) is unstable.△

Theorem 3.13 (Lyapunov’s Second Instability Theorem). Consider
the nonlinear dynamical system (3.1). Assume that there exist a continu-
ously differentiable function V : D → R, a function W : D → R, and scalars
ε, λ > 0, such that

V (0) = 0, (3.134)

W (x) ≥ 0, x ∈ Bε(0), (3.135)

V ′(x)f(x) = λV (x) +W (x). (3.136)

Furthermore, assume that for every sufficiently small δ > 0 there exists
x0 ∈ D such that ‖x0‖ < δ and V (x0) > 0. Then the zero solution x(t) ≡ 0
to (3.1) is unstable.

Proof. Suppose ad absurdum, that there exists δ > 0 such that if
x0 ∈ Bδ(0), then x(t) ∈ Bε(0), t ≥ 0. By assumption, there exists x0 ∈ Bδ(0)
such that V (x0) > 0. It follows from (3.135) and (3.136) that

V ′(x)f(x) ≥ λV (x), x ∈ Bε(0),

or, equivalently,

V ′(x)f(x) − λV (x) ≥ 0, x ∈ Bε(0). (3.137)

Next, forming e−λt (3.137), t ≥ 0, yields

e−λtV ′(x(t))f(x(t)) − λe−λtV (x(t)) ≥ 0, t ≥ 0, (3.138)

and hence,
d

dt
[e−λtV (x(t))] ≥ 0, t ≥ 0, (3.139)

where x(t), t ≥ 0, denotes the solution to (3.1) with initial condition x0.
Integrating both sides of (3.139) yields e−λtV (x(t))−V (x(0)) ≥ 0, t ≥ 0, and
hence, V (x(t)) ≥ eλtV (x(0)), t ≥ 0. Thus, since V (x0) > 0, x(t) 6∈ Bε(0) as
t → ∞, which is a contradiction. Hence, the zero solution x(t) ≡ 0 to (3.1)
is unstable since there does not exist δ > 0 such that if x0 ∈ Bδ(0), then
x(t) ∈ Bε(0), t ≥ 0.

Example 3.13. Consider the nonlinear dynamical system

ẋ1(t) = x1(t) + 2x2(t) + x1(t)x
2
2(t), x1(0) = x10, t ≥ 0, (3.140)

ẋ2(t) = 2x1(t) + x2(t) − x2
1(t)x2(t), x2(0) = x20. (3.141)

To examine the stability of this system consider the function V (x1, x2) =
x2

1 − x2
2. Note that on the line x2 = 0, V (x1, x2) > 0 at points arbitrarily

close to the origin. Evaluating V̇ (x1, x2) yields

V̇ (x1, x2) = 2x1ẋ1 − 2x2ẋ2
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= 2x2
1 − 2x2

2 + 4x2
1x

2
2

= 2V (x1, x2) + 4x2
1x

2
2. (3.142)

Now, with W (x1, x2)
△
= 4x2

1x
2
2 ≥ 0, (x1, x2) ∈ R × R, it follows that

the conditions of Theorem 3.13 are satisfied, and hence, the zero solution
(x1(t), x2(t)) ≡ (0, 0) to (3.140) and (3.141) is unstable. △

The final instability theorem is due to Chetaev [92] and is appropri-
ately known as Chetaev’s instability theorem.

Theorem 3.14 (Chetaev’s Instability Theorem). Consider the non-
linear dynamical system (3.1) and assume that there exist a continuously
differentiable function V : D → R, a scalar ε > 0, and an open set Q ⊆ Bε(0)
such that

V (x) > 0, x ∈ Q, (3.143)

sup
x∈Q

V (x) < ∞, (3.144)

0 ∈ ∂Q, (3.145)

V (x) = 0, x ∈ ∂Q ∩ Bε(0), (3.146)

V ′(x)f(x) > 0, x ∈ Q. (3.147)

Then the zero solution x(t) ≡ 0 to (3.1) is unstable.

Proof. Let x0 ∈ Q and suppose, ad absurdum, that there exists a
closed set P such that x(t) ∈ P ⊂ Q ⊆ Bε(0), t ≥ 0. Hence, it follows from
(3.147) that

V (x(t)) = V (x(0)) +

∫ t

0
V̇ (x(s))ds

= V (x(0)) +

∫ t

0
V ′(x(s))f(x(s))ds

≥ V (x(0)) + αt,

where α = minx∈P V ′(x)f(x) > 0, which implies that V (x(t)) → ∞ as
t → ∞, contradicting (3.144). Thus, there exists T > 0 such that either
x(T ) ∈ ∂Q or x(t) → ∂Q as t → ∞. First, consider the case in which
x(T ) ∈ ∂Q. In this case, since (3.147) implies that V (x(t)), t ≥ 0, is strictly
increasing for all x(t) ∈ Q it follows that V (x(T )) > 0. Hence, since V (x) =
0, x ∈ ∂Q ∩ Bε(0), it follows that x(T ) 6∈ ∂Q ∩ Bε(0), which implies that
x(T ) ∈ ∂Q\Bε(0). Next, since ∂Q = Q ∩ ∂Q and Q ⊆ Bε(0) it follows that
∂Q\Bε(0) = (Q ∩ ∂Q)\Bε(0) ⊆ (Bε(0) ∩ ∂Q)\Bε(0) = ∂Q ∩ ∂Bε(0). Hence,
x(T ) ∈ ∂Bε(0). Similarly, if x(t) → ∂Q as t → ∞, then x(t) → ∂Bε(0) as
t → ∞. Thus, there does not exist δ > 0 such that if x0 ∈ Bδ(0), then
x(t) ∈ Bε(0), t ≥ 0. Hence, the zero solution x(t) ≡ 0 to (3.1) is unstable.
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Unlike Theorems 3.12 and 3.13 requiring that V (·) and V̇ (·) satisfy
certain conditions at all points in a neighborhood of D, Chetaev’s instability
theorem requires that V (·) and V̇ (·) satisfy certain conditions in a subregion
Q of D.

Example 3.14. Consider the nonlinear dynamical system

ẋ1(t) = x3
1(t) + x2(t)x

2
1(t), x1(0) = x10, t ≥ 0, (3.148)

ẋ2(t) = −x2(t) + x2
1(t), x2(0) = x20. (3.149)

To examine the stability of this system consider the function V (x1, x2) =
1
2x

2
1 − 1

2x
2
2 and the open set Q △

= {(x1, x2) ∈ Bε(0) : x1 > x2 > −x1}. Note
that V (x1, x2) > 0, (x1, x2) ∈ Q, and V (x1, x2) = 0, x ∈ ∂Q ∩ Bε(0), where
Bε(0) is a sufficiently small neighborhood of the origin. Next, evaluating
V̇ (x1, x2) yields

V̇ (x1, x2) = x1ẋ1 − x2ẋ2 = x4
1 − x2(x

2
1 − x3

1) + x2
2. (3.150)

Now, there exist a neighborhood N of the origin and δ ∈ [0, 1) such that

V̇ (x1, x2) ≥ x4
1 − (1 + δ)|x2|x2

1 + x2
2, (x1, x2) ∈ N (3.151)

which shows that V̇ (x1, x2) > 0, (x1, x2) ∈ Q ∩ N . Hence, it follows from
Theorem 3.14 that the zero solution (x1(t), x2(t)) ≡ (0, 0) to (3.148) and
(3.149) is unstable. △

3.7 Stability of Linear Systems and Lyapunov’s

Linearization Method

In this section, we consider linear time-invariant dynamical systems of the
form

ẋ(t) = Ax(t), x(0) = x0, t ≥ 0, (3.152)

where x(t) ∈ Rn, t ≥ 0, and A ∈ Rn×n. Note that the equilibrium solution
x(t) ≡ xe to (3.152) corresponds to xe ∈ N (A), and hence, every point in
the null space of A is an equilibrium point for the linear dynamical system
(3.152). In the case where det A 6= 0, A has a trivial null space, and hence,
xe = 0. To examine the stability of (3.152) recall that the solution to (3.152)
is given by x(t) = eAtx(0), t ≥ 0. The structure of eAt can be understood by
considering the Jordan form of A. In particular, it follows from the Jordan
decomposition [201] that A = SJS−1, where S ∈ Cn×n is a nonsingular
matrix and J = block−diag[J1, . . . , Jm] is the Jordan form of A. Hence,
eAt = SeJtS−1, where eJt = block−diag[eJ1t, . . . , eJmt]. The structure of eJt

can thus be determined by considering each Jordan block Ji. Recall that Ji

is of the form Ji = λiIni
+Nni

, where, for i ∈ {1, . . . ,m}, ni is the order of
the ith Jordan block, λi ∈ spec(A), and Nni

is an ni × ni nilpotent matrix
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which has ones on the superdiagonal and zeros elsewhere. By convention,
N1

△
= 01×1. Also note that Nni

ni
= 0.

Now, since λiIni
and Nni

commute, it follows that

eJit = e(λiIni
+Nni

)t = eλiIni
teNni

t = eλiteNni
t. (3.153)

Furthermore, since Nni
ni

= 0, it follows that eNni
t is a finite sum of powers

of Nni
t. Specifically,

eNni
t = Ini

+Nni
t+ 1

2N
2
ni
t2 + · · · + [(ni − 1)]!]−1Nni−1

ni
tni−1

=













1 t t2

2 · · · tni−1

(ni−1)!

0 1 t tni−2

(ni−2)!
...

...
0 · · · · · · 1













. (3.154)

Hence,

eAt = SeJtS−1 =

m
∑

i=1

ni
∑

j=1

tj−1eλitpij(A), (3.155)

where m is the number of distinct eigenvalues of A and pij(A) are constant
matrices. The following theorem gives necessary and sufficient conditions
for Lyapunov stability as well as global asymptotic stability of (3.152).

Theorem 3.15. Consider the linear dynamical system (3.152). The
zero solution x(t) ≡ 0 to (3.152) is Lyapunov stable if and only if for every
λ ∈ spec(A), either Re λ < 0, or both Re λ = 0 and λ is semisimple.
Alternatively, the zero solution x(t) ≡ 0 to (3.152) is globally asymptotically
stable if and only if Re λ < 0.

Proof. Since x(t) = eAtx(0), t ≥ 0, it follows that the zero solution
to (3.152) is Lyapunov stable if and only if there exists α > 0 such that
‖eAt‖ < α, t ≥ 0. Now, it follows from (3.155) that eAt, t ≥ 0, is bounded
if and only if either Re λ < 0, or both Re λ = 0 and λ is semisimple.
Alternatively, asymptotic stability is immediate since it follows from (3.155)
that eAt → 0 as t → ∞ if and only if Re λ < 0. Finally, since x(t), t ≥ 0,
depends linearly on x(0), asymptotic stability is global.

Theorem 3.15 gives necessary and sufficient conditions for Lyapunov
and asymptotic stability for the zero solution x(t) ≡ 0 of the linear system
(3.152) by examining the eigenvalues of A. In this book we say A is Lyapunov
stable if and only if every eigenvalue of A has nonpositive real part and
every eigenvalue of A with zero real part is semisimple. In addition, we
say A is asymptotically stable or Hurwitz if and only if every eigenvalue of
A has negative real part. Lyapunov’s stability theorem can also be used
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to develop necessary and sufficient conditions for the stability of the zero
solution x(t) ≡ 0 to (3.152). In particular, to apply Theorem 3.1 to (3.152),
consider the Lyapunov function candidate V (x) = xTPx, where x ∈ Rn and
P ∈ Rn×n is positive definite. Next, note that

V̇ (x) = V ′(x)f(x) = 2xTPAx = xT(ATP + PA)x. (3.156)

Now, (3.4) will be satisfied if there exists a nonnegative-definite matrix R ∈
Rn×n such that ATP +PA = −R so that V ′(x)f(x) = −xTRx ≤ 0, x ∈ Rn.
Hence, we wish to determine the existence of a positive-definite matrix P
satisfying

0 = ATP + PA+R. (3.157)

Equation (3.157) is appropriately called a Lyapunov equation. The next
result addresses existence and uniqueness of solutions for the Lyapunov
equation (3.157).

Lemma 3.2. Let A ∈ Rn×n. Then there exists a unique matrix P ∈
Rn×n satisfying (3.157) if and only if

λi(A) + λj(A) 6= 0, i, j = 1, . . . , n, (3.158)

where λk(A) ∈ spec(A), k = 1, . . . , n.

Proof. Rewriting (3.157) as

vec(ATP ) + vec(PA) = −vec(R), (3.159)

where vec: Rn×n → Rn2

denotes the column stacking operator, and using
the identities vec(XY Z) = (ZT ⊗X)vec Y and I ⊗X + Y T ⊗ I = Y T ⊕X
[45, pp. 249 and 251], it follows that (AT ⊕ AT)vec P = −vec R. Hence,
there exists a unique solution P ∈ Rn×n satisfying (3.157) if and only if
det(AT⊕AT) 6= 0. Now, the result follows from the fact that spec(X⊕Y ) =
{λ+ µ : λ ∈ spec(X), µ ∈ spec(Y )} [45, p. 251].

It follows from Lemma 3.2 that if for some R ∈ Rn×n, (3.157) does not
have a unique solution, then the zero solution x(t) ≡ 0 to (3.152) is not an
asymptotically stable equilibrium. The following theorem gives necessary
and sufficient conditions for global asymptotic stability of (3.152) in terms
of the solution of the Lyapunov equation (3.157).

Theorem 3.16. Consider the linear dynamical system (3.152). The
zero solution x(t) ≡ 0 to (3.152) is globally asymptotically stable if and
only if for every positive-definite matrix R ∈ Rn×n there exists a unique
positive-definite matrix P ∈ Rn×n satisfying (3.157).

Proof. Sufficiency follows from Theorem 3.1 by noting that if there
exists a positive-definite matrix P ∈ Rn×n and a positive-definite matrix R ∈
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Rn×n such that (3.157) holds, then global asymptotic stability is immediate
with Lyapunov function V (x) = xTPx. To show necessity, suppose A is
asymptotically stable, that is, Re λ < 0, λ ∈ spec(A), and define

P
△
=

∫ ∞

0
eA

TtReAtdt. (3.160)

Note that the integral in (3.160) is well defined since the integrand involves
a sum of terms of the from tj−1eλit, where Re λi < 0, and i = 1, . . . ,m,
j = 1, . . . , ni. Next, note that

ATP + PA =

∫ ∞

0
ATeA

TtReAtdt+

∫ ∞

0
eA

TtReAtAdt

=

∫ ∞

0

d

dt
(eA

TtReAt)dt

= eA
TtReAt

∣

∣

∣

∞

0

= −R, (3.161)

which shows that there exists a matrix P ∈ Rn×n satisfying (3.157).

To show P > 0, let C ∈ Rp×n be such that R = CTC and note that
for x ∈ Rn,

xTPx =

∫ ∞

0
xTeA

TtCTCeAtxdt

=

∫ ∞

0
‖CeAtx‖2

2dt, (3.162)

which shows that P = PT and P ≥ 0. Now, suppose, ad absurdum, that P is
not positive definite. Then, there exists x ∈ Rn, x 6= 0, such that xTPx = 0,
which implies that CeAtx = 0 for all t ≥ 0. For t = 0 it follows that Cx = 0,
which implies CTCx = 0, and hence, x = 0, which is a contradiction. Hence,
P > 0.

Finally, uniqueness of P follows from Lemma 3.2. Alternatively,
suppose, ad absurdum, that there exist two solutions P1 and P2 to (3.157).
Then

0 = ATP1 + P1A+R, (3.163)

0 = ATP2 + P2A+R. (3.164)

Subtracting (3.164) from (3.163) yields

0 = AT(P1 − P2) + (P1 − P2)A. (3.165)

Next, forming eA
Tt[(3.165)]eAt, t ≥ 0, yields

0 = eA
Tt[AT(P1 − P2) + (P1 − P2)A]eAt
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=
d

dt
eA

Tt(P1 − P2)e
At, t ≥ 0, (3.166)

which further implies

0 =

∫ ∞

0

d

dt
eA

Tt(P1 − P2)e
Atdt

= eA
Tt(P1 − P2)e

At
∣

∣

∣

∞

0

= −(P1 − P2). (3.167)

This leads to the contradiction P1 = P2, and hence, there exists a unique
solution P ∈ Rn×n satisfying (3.157).

To apply Theorem 3.16 we choose any positive-definite matrix R ∈
Rn×n and solve the Lyapunov equation for P ∈ Rn×n. If (3.157) has no
solution or has multiple solutions, then the zero solution x(t) ≡ 0 to (3.152)
is not asymptotically stable. Alternatively, if P is a unique positive-definite
solution to (3.157), then the zero solution x(t) ≡ 0 to (3.152) is globally
asymptotically stable.

Next, we use the Barbashin-Krasovskii-LaSalle invariant set theorem
to weaken the conditions in Theorem 3.16.

Theorem 3.17. Consider the linear dynamical system (3.152). Let
R = CTC, where C ∈ Rl×n, and assume (A,C) is observable. Then the zero
solution x(t) ≡ 0 to (3.152) is globally asymptotically stable if and only if
there exists a unique positive-definite matrix P ∈ Rn×n satisfying

0 = ATP + PA+ CTC. (3.168)

Proof. To show sufficiency, consider the Lyapunov function candidate
V (x) = xTPx, where x ∈ Rn and P satisfies (3.168). Thus, the correspon-
ding Lyapunov derivative is given by

V ′(x)f(x) = 2xTPAx = xT(ATP + PA)x = −xTCTCx ≤ 0, x ∈ Rn,
(3.169)

which proves Lyapunov stability. Next, note that V ′(x)f(x) = 0 if and only

if Cx = 0. Let R △
= {x ∈ Rn : V ′(x)f(x) = 0} = {x ∈ Rn : Cx = 0}. Now,

let M denote the largest invariant set contained in R and note that since
Cx = 0 it follows that for all x ∈ M, Cẋ = 0, Cẍ = 0, . . . , Cx(n−1) = 0, and
hence, for all x ∈ M, Cx = 0, CAx = 0, . . . , CAn−1x = 0 or, equivalently,
Ox = 0, where O denotes the observability matrix. Next, since (A,C) is
observable it follows that Ox = 0 if and only if x = 0, and hence, M =
{0}. Now, it follows from Theorem 3.3 that x(t) → M = {0} as t → ∞,
establishing asymptotic stability. Furthermore, global asymptotic stability
is a direct consequence of the fact that V (x) → ∞ as ‖x‖ → ∞.
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To show necessity, suppose A is asymptotically stable. Then existence
and uniqueness of a nonnegative-definite P ∈ Rn×n satisfying (3.168) follows
as in the proof of Theorem 3.16. To show P > 0, suppose, ad absurdum,
that P is not positive definite. Then there exists x ∈ Rn, x 6= 0, such that
xTPx = 0, which, by (3.162), implies CeAtx = 0 for all t ≥ 0. Next, let
g(t) = CeAtx and note that g(t) = 0, ġ(t) = 0, g̈(t) = 0, . . ., g(n−1)(t) =
0, t ≥ 0, or, equivalently, CeAtx = 0, CAeAtx = 0, CA2eAtx = 0,. . . ,
CAn−1eAtx = 0, t ≥ 0. Now, for t = 0, it follows that Ox = 0, which, since
(A,C) is observable, implies that x = 0 and, hence, leads to a contradiction.
Hence, P > 0.

Finally, we give necessary and sufficient conditions for Lyapunov
stability of the zero solution x(t) ≡ 0 to (3.152) in terms of the existence of
a positive-definite solution to the Lyapunov equation (3.157).

Theorem 3.18. Consider the linear dynamical system (3.152). The
zero solution x(t) ≡ 0 to (3.152) is Lyapunov stable if and only if there
exists a positive-definite matrix P ∈ Rn×n and a nonnegative-definite matrix
R ∈ Rn×n such that (3.157) holds.

Proof. Sufficiency is immediate from Theorem 3.1 with the Lyapunov
function candidate V (x) = xTPx. To show necessity note that if the zero
solution x(t) ≡ 0 to (3.152) is Lyapunov stable, then it follows from Theorem
3.15 that Re λ < 0, or Re λ = 0 and λ is semisimple, where λ ∈ spec(A).
Hence, it follows from the real Jordan decomposition [201] that A = SJS−1,
where S ∈ Rn×n is a nonsingular matrix and J = block−diag[J1, J2, . . . , Jm]
is the real Jordan form of A. Now, without loss of generality, assume that J1,
J2, . . ., Jr correspond to Jordan blocks of A with Re λ < 0, and Jr+1, . . . , Jm

correspond to Jordan blocks of A with Re λ = 0 and λ semisimple. Next,
it follows from Theorem 3.16 that there exists a positive-definite matrix P1

such that JT
a P1+P1Ja < 0, where Ja

△
= block−diag[J1, . . . , Jr]. Furthermore,

since Jr+1, . . . , Jm correspond to Jordan blocks of A with Re λ = 0 and λ
semisimple, it follows that Js = block−diag[Jr+1, . . . , Jm] is skew-symmetric,
and hence, JT

s +Js = 0, which implies that there exists a nonnegative-definite

matrix R̂ ∈ Rn×n such that

0 = JTP̂ + P̂ J + R̂, (3.170)

where P̂ = block−diag[P1, I]. Now, forming S−T(3.170)S−1 yields (3.157)

with P = S−TP̂S−1 and R = S−TR̂S−1.

Next, using the results of Section 3.2 and this section we provide a
key result on linearization of nonlinear systems. Specifically, we present
Lyapunov’s indirect method to draw conclusions about local stability of an
equilibrium point of a nonlinear system by examining the stability of the
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linearization of the nonlinear system about the equilibrium point in question.
We begin by considering (3.1) with f(0) = 0 and assume that f : D → Rn

is continuously differentiable. Next, expanding f(x) via a Taylor expansion
about the equilibrium point x = 0 it follows that (3.1) can be written as

ẋ(t) = f(0) +
∂f

∂x

∣

∣

∣

∣

x=0

x(t) + g(x(t)), x(0) = x0, t ≥ 0, (3.171)

where g(x)
△
= f(x) − ∂f

∂x

∣

∣

∣

x=0
x. Note that since ∂f

∂x is continuous it follows

that lim‖x‖→0
‖g(x)‖
‖x‖ = 0. This shows that in a small neighborhood of the

origin a nonlinear system can be approximated by its linearization about
the origin. The following theorem known as Lyapunov’s indirect method
gives sufficient conditions for stability of an equilibrium point of a nonlinear
system by examining the equilibrium point of the linearized system.

Theorem 3.19 (Lyapunov’s Indirect Theorem). Let x(t) ≡ 0 be an
equilibrium point for the nonlinear dynamical system

ẋ(t) = f(x(t)), x(0) = x0, t ≥ 0, (3.172)

where f : D → Rn is continuously differentiable and D is an open set with
0 ∈ D. Furthermore, let

A =
∂f

∂x

∣

∣

∣

∣

x=0

.

Then the following statements hold:

i) If Re λ < 0, where λ ∈ spec(A), then the zero solution x(t) ≡ 0 to
(3.172) is exponentially stable.

ii) If there exists λ ∈ spec(A) such that Re λ > 0, then the zero solution
x(t) ≡ 0 to (3.172) is unstable.

Proof. i) If Re λ < 0, λ ∈ spec(A), A is asymptotically stable, and
hence, it follows from Theorem 3.16 that there exists a unique positive-
definite matrix P ∈ Rn×n satisfying (3.157). Next, choose the Lyapunov
function candidate V (x) = xTPx for the nonlinear system (3.172) and note
that the Lyapunov derivative along the system trajectories of (3.172) is given
by

V̇ (x) = V ′(x)f(x)

= 2xTP [Ax+ g(x)]

= xT(ATP + PA)x+ 2xTPg(x)

= −xTRx+ 2xTPg(x), x ∈ D. (3.173)
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Now, noting −xTRx ≤ −λmin(R)‖x‖2
2 and using the Cauchy-Schwarz

inequality it follows that

V̇ (x) ≤ −λmin(R)‖x‖2
2 + 2λmax(P )‖x‖2‖g(x)‖2, x ∈ D. (3.174)

Next, since g(x), x ∈ D, is such that lim‖x‖2→0
‖g(x)‖2

‖x‖2
= 0 it follows that for

every γ > 0, there exists ε > 0 such that ‖g(x)‖2 < γ‖x‖2 for all x ∈ Bε(0).
Hence, (3.174) implies

V̇ (x) < −[λmin(R) − 2γλmax(P )]‖x‖2
2, x ∈ Bε(0). (3.175)

Now, choosing γ ≤ λmin(R)/2λmax(P ) it follows that V̇ (x) < 0, x ∈ Bε(0),
x 6= 0, which proves local asymptotic stability. To show local exponential
stability it need only be noted that λmin(P )‖x‖2

2 ≤ V (x) ≤ λmax(P )‖x‖2
2.

ii) First, assume that A is such that (3.158) holds. Hence, it follows
from Lemma 3.2 that

ATP + PA = In (3.176)

has a unique solution with P ∈ Rn×n. By assumption, there exists λ ∈
spec(A) such that Re λ > 0. Next, assume that the remaining eigenvalues λ
of A are such that Re λ < 0; that is, the eigenvalues of A cluster into a group
of eigenvalues in the open right half plane and a group of eigenvalues in the
open left half plane. Now, it follows from the real Jordan decomposition
[201] that A = SJS−1, where S ∈ Rn×n is a nonsingular matrix and J =
block−diag[J1, J2, . . . , Jm] is the real Jordan form of A. Now, without loss
of generality, let J = block−diag[J+, J−], where J+ corresponds to a block
diagonal matrix having Jordan blocks with Re λ > 0 and J− corresponds to a
block diagonal matrix having Jordan blocks with Re λ < 0. Next, since −J+

and J− are asymptotically stable, it follows from Theorem 3.16 that there
exist positive-definite matrices P+ and P− such that −JT

+P+−P+J++I = 0
and JT

−P− + P−J− + I = 0, which implies that

0 = JTP̂ + P̂ J + I, (3.177)

where P̂ = block−diag[−P+, P−]. Now, forming S−T(3.170)S−1 yields

(3.176) with P = S−TP̂S−1. Hence, the solution P to (3.176) has at least
one positive eigenvalue. Now, using identical arguments as in i) it can be
shown that for every sufficiently small δ > 0 there exists x0 ∈ D such that
‖x0‖ < δ, V (x0) > 0, and V ′(x)f(x) > 0, x ∈ Bε(0), x 6= 0, where ε > 0 and
V (x) = xTPx. Hence, it follows from Theorem 3.12 that the zero solution
x(t) ≡ 0 to (3.172) is unstable. The proof of the case in which there do
not exist λ ∈ spec(A) such that Re λ < 0 follows identically with J = J+.
Finally, in the case where some of the eigenvalues of A lie on the ω-axis with
at least one eigenvalue in the right half plane, the proof follows by shifting
the imaginary axis and using the fact that the eigenvalues of a matrix are
continuous with respect to the entries of the matrix.
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Theorem 3.19 gives a straightforward procedure for examining the
stability of a nonlinear system by examining the stability of the linearized
system. Furthermore, it follows from the proof of Theorem 3.19 that if the
linearized system is asymptotically stable, then we can always construct
a quadratic Lyapunov function that guarantees local exponential stability
of the nonlinear system. To maximize the domain of attraction with a
quadratic Lyapunov function it is also clear from the proof of Theorem 3.19
that the larger the ratio λmin(R)/λmax(P ) the larger the possible choice of ε.
Finally, it should be noted that if xe 6= 0 is an equilibrium point of (3.172),

then Theorem 3.19 holds with A = ∂f
∂x

∣

∣

∣

x=0
replaced by A = ∂f

∂x

∣

∣

∣

x=xe

.

Example 3.15. Consider the dynamical system given in Example 3.2
describing the motion of a simple pendulum with viscous damping given by

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (3.178)

ẋ2(t) = −g
l

sinx1(t) − x2(t), x2(0) = x20. (3.179)

This model has countably infinitely many equilibrium points in R2 given by
(x1e, x2e) = (nπ, 0), n = 0,±1,±2, . . .. Here, we examine the stability of the
physical equilibria given by (0, 0) and (π, 0) using Lyapunov’s linearization

method. For (3.178) and (3.179) the Jacobian matrix ∂f
∂x is given by

∂f

∂x
=

[

∂f1

∂x1

∂f1

∂x2
∂f2

∂x1

∂f2

∂x2

]

=

[

0 1
− g

l cos x1 −1

]

. (3.180)

Note that

A1 =
∂f

∂x

∣

∣

∣

∣

x=(0,0)

=

[

0 1
− g

l −1

]

, A2 =
∂f

∂x

∣

∣

∣

∣

x=(π,0)

=

[

0 1
g
l −1

]

.

(3.181)
Furthermore, since tr A1 < 0, det A1 > 0, tr A2 < 0, and det A2 < 0,
it follows from Theorem 3.19 that the zero solution (x1(t), x2(t)) ≡ (0, 0)
to (3.178) and (3.179) is locally exponentially stable while the solution
(x1(t), x2(t)) ≡ (π, 0) to (3.178) and (3.179) is unstable. △

Example 3.16. Consider the Van der Pol oscillator given by

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (3.182)

ẋ2(t) = −µ(1 − x2
1(t))x2(t) − x1(t), x2(0) = x20, (3.183)

where µ ∈ R. Note that (3.182) and (3.183) has a unique equilibrium at

(x1e, x2e) = (0, 0). Furthermore, the Jacobian matrix ∂f
∂x evaluated at (0, 0)

is given by

A =
∂f

∂x

∣

∣

∣

∣

x=(0,0)

=

[

0 1
−1 −µ

]

. (3.184)
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Now, it follows from Theorem 3.19 that if µ < 0, then the zero solution
(x1(t), x2(t)) ≡ (0, 0) to (3.182) and (3.183) is unstable and if µ > 0, then
the zero solution (x1(t), x2(t)) ≡ (0, 0) to (3.182) and (3.183) is locally
exponentially stable. △

Finally, we apply Lyapunov’s indirect method to the stabilization of a
nonlinear dynamical system. Specifically, consider the nonlinear controlled
system

ẋ(t) = F (x(t), u(t)), x(0) = x0, t ≥ 0, (3.185)

where x(t) ∈ Rn, u(t) ∈ Rm, t ≥ 0, and F : Rn × Rm → Rn. Here, we seek
feedback controllers of the form u(t) = φ(x(t)), where φ : Rn → Rm and
φ(0) = 0, so that the zero solution x(t) ≡ 0 of the closed-loop system given
by

ẋ(t) = F (x(t), φ(x(t))), x(0) = x0, t ≥ 0, (3.186)

is asymptotically stable.

Theorem 3.20. Consider the nonlinear controlled system (3.185)
where F : Rn × Rm → Rn is continuously differentiable and F (0, 0) = 0.
Furthermore, define

A
△
=
∂F

∂x

∣

∣

∣

∣

(x,u)=(0,0)

, B
△
=
∂F

∂u

∣

∣

∣

∣

(x,u)=(0,0)

, (3.187)

and assume (A,B) is stabilizable. Then, there exists a matrix K ∈ Rm×n

such that spec(A + BK) ⊂ C−. In addition, with the linear control law
u(t) = Kx(t), the zero solution x(t) ≡ 0 of the closed-loop nonlinear system

ẋ(t) = F (x(t),Kx(t)), x(0) = x0, t ≥ 0, (3.188)

is locally exponentially stable.

Proof. First, note that the closed-loop system (3.188) has the form

ẋ(t) = F (x(t),Kx(t)) = f(x(t)), x(0) = x0, t ≥ 0. (3.189)

Next, it follows that

∂f

∂x

∣

∣

∣

∣

x=0

=

[

∂F

∂x
(x,Kx) +

∂F

∂u
(x,Kx)K

]∣

∣

∣

∣

x=0

= A+BK, (3.190)

and hence, since (A,B) is stabilizable, K can be chosen so that A + BK
is asymptotically stable. Now, the result is a direct consequence of i) of
Theorem 3.19.

It follows from Theorem 3.20 that if the linearization of (3.185) is
stabilizable, that is, (A,B) is stabilizable, then we can always construct
a Lyapunov function for the nonlinear closed-loop system (3.186). In
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particular, since there exists K ∈ Rm×n such that A+BK is asymptotically
stable, then for every R > 0 the Lyapunov equation

0 = (A+BK)TP + P (A+BK) +R, (3.191)

is guaranteed to have a unique positive-definite solution by Theorem 3.16.
Hence, the quadratic Lyapunov function V (x) = xTPx is a Lyapunov
function for the closed-loop nonlinear system (3.186) that guarantees local
asymptotic stability.

A similar approach can be used to design dynamic output feedback
controllers for the nonlinear system (3.185). Specifically, consider the
nonlinear dynamical system

ẋ(t) = F (x(t), u(t)), x(0) = x0, t ≥ 0, (3.192)

y(t) = h(x(t), u(t)), (3.193)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl, t ≥ 0, F : Rn × Rm → Rn is such
that F (0, 0) = 0, and h : Rn × Rm → Rl is such that h(0, 0) = 0. Next,
linearizing (3.192) and (3.193) about x = 0 and u = 0 yields

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0, (3.194)

y(t) = Cx(t) +Du(t), (3.195)

where A and B are given by (3.187) and

C
△
=
∂h

∂x

∣

∣

∣

∣

(x,u)=(0,0)

, D
△
=
∂h

∂u

∣

∣

∣

∣

(x,u)=(0,0)

. (3.196)

Assuming (A,B) is stabilizable and (A,C) is detectable, then we can design
a full-order dynamic compensator of the form

ẋc(t) = Acxc(t) +Bcy(t), xc(0) = xc0, t ≥ 0, (3.197)

u(t) = Ccxc(t), (3.198)

where xc(t) ∈ Rn, t ≥ 0, Ac ∈ Rn×n, Bc ∈ Rn×l, and Cc ∈ Rm×n, such that
with Ac = A+BCc −BcC −BcDCc,

Ã =

[

A BCc

BcC Ac +BcDCc

]

(3.199)

is asymptotically stable. The asymptotic stability of Ã follows from the
fact that (A,B) is stabilizable and (A,C) is detectable, and hence, there
exist Bc ∈ Rn×l and Cc ∈ Rm×n such that A + BCc and A − BcC are
asymptotically stable.

Now, applying the controller (3.197) and (3.198) to the nonlinear
system (3.192) and (3.193) gives the closed-loop system

ẋ(t) = F (x(t), Ccxc(t)), x(0) = x0, t ≥ 0, (3.200)
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ẋc(t) = Acxc(t) +Bch(x,Ccxc(t)), xc(0) = xc0. (3.201)

Note that since F (0, 0) = 0 and h(0, 0) = 0, (x, xc) = (0, 0) is an equilibrium
point of (3.200) and (3.201). Furthermore, linearizing (3.200) and (3.201)
about x = 0 and xc = 0 yields

˙̃x(t) = Ãx̃(t), x̃(0) = x̃0, t ≥ 0, (3.202)

where x̃
△
= [xT, xT

c ]T and Ã is given by (3.199). Hence, choosing the
compensator triple (Ac, Bc, Cc) such that the zero solution x̃(t) ≡ 0 to
(3.202) is asymptotically stable, it follows from Theorem 3.19 that the
nonlinear closed-loop system (3.200) and (3.201) is locally exponentially
stable. Furthermore, a Lyapunov function guaranteeing local exponential
stability of (3.200) and (3.201) is given by V (x̃) = x̃TP̃ x̃, where P̃ is the
2n× 2n positive definite solution to the Lyapunov equation

0 = ÃTP̃ + P̃ Ã+ R̃, (3.203)

where R̃ is any 2n× 2n positive-definite matrix.

3.8 Problems

Problem 3.1. Give an example of a function that is positive definite
but not radially unbounded. Alternatively, given an example of a function
that is radially unbounded but not positive definite.

Problem 3.2. Let V : D ⊆ Rn → R be such that V (·) is two-times
continuously differentiable, V (0) = 0, V ′(0) = 0, and V ′′(0) > 0. Show that
there exists an open set D0 ⊂ D such that 0 ∈ D0 and V (x) > 0, x ∈ D0,
x 6= 0.

Problem 3.3. Let V : Rn → R be such that V (·) is continuously
differentiable, V (0) = 0, V (x) > 0, x ∈ D ⊂ Rn, x 6= 0, and ‖V ′(x)‖ > 0,
x ∈ Rn, x 6= 0. Show that V (·) is globally positive definite with a unique
global minimum at x = 0.

Problem 3.4. Consider the dynamical system (3.1) with f(x) = Ax,
where A ∈ Rn×n. Show that the following statements are equivalent:

i) The zero solution x(t) ≡ 0 to (3.1) is Lyapunov stable.

ii) For every initial condition x0 ∈ Rn, x(t), t ≥ 0, is bounded.

iii) If λ ∈ spec(A), then either Re λ < 0, or both Re λ = 0 and λ is
semisimple.

iv) There exists α > 0 such that ‖eAt‖ < α, t ≥ 0.
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Problem 3.5. Consider the dynamical system (3.1) with f(x) = Ax,
where A ∈ Rn×n. Show that the following statements are equivalent:

i) The zero solution x(t) ≡ 0 to (3.1) is globally asymptotically stable.

ii) For every initial condition x0 ∈ Rn, limt→∞ x(t) = 0.

iii) If λ ∈ spec(A), then Re λ < 0.

iv) limt→∞ eAt = 0.

Problem 3.6. Consider the dynamical system (3.1) with f(x) = Ax,
where A ∈ Rn×n. Show that if there exist a positive-definite matrix P ∈
Rn×n and a scalar α > 0 such that

0 = (A+ αIn)TP + P (A+ αIn) +R, (3.204)

where R is a positive-definite matrix, then the eigenvalues of A have real
part less than −α.

Problem 3.7. Let A ∈ Rn×n. A is essentially nonnegative if A(i,j) ≥ 0,
i, j = 1, . . . , n, i 6= j. Consider the dynamical system (3.1) with f(x) = Ax,
where A ∈ Rn×n. Show that R

n
+ is an invariant set with respect to (3.1) if

and only if A is essentially nonnegative.

Problem 3.8. The nonlinear dynamical system (3.1) is nonnegative if
for every x(0) ∈ R

n
+, the solution x(t), t ≥ 0, to (3.1) is nonnegative, that

is, x(t) ≥≥ 0, t ≥ 0. The equilibrium solution x(t) ≡ xe of a nonnegative
dynamical system is Lyapunov stable if, for every ε > 0, there exists δ =
δ(ε) > 0 such that if x0 ∈ Bδ(xe) ∩ R

n
+, then x(t) ∈ Bε(xe) ∩ R

n
+, t ≥ 0.

The equilibrium solution x(t) ≡ xe of a nonnegative dynamical system is
asymptotically stable if it is Lyapunov stable and there exists δ > 0 such
that if x0 ∈ Bδ(xe) ∩ R

n
+, then limt→∞ x(t) = xe. Consider the dynamical

system (3.1) with f(x) = Ax, where A ∈ Rn×n is essentially nonnegative
(see Problem 3.7). Show that the following statements hold:

i) If there exist vectors p, r ∈ Rn such that p >> 0 and r ≥≥ 0 satisfy

0 = ATp+ r, (3.205)

then A is Lyapunov stable.

ii) If there exist vectors p, r ∈ Rn such that p ≥≥ 0 and r ≥≥ 0 satisfy
(3.205) and (A, rT) is observable, then p >> 0 and A is asymptotically
stable.

Furthermore, show that the following statements are equivalent:
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iii) A is asymptotically stable.

iv) There exist vectors p, r ∈ Rn such that p >> 0 and r >> 0 satisfy
(3.205).

v) There exist vectors p, r ∈ Rn such that p ≥≥ 0 and r >> 0 satisfy
(3.205).

vi) For every r ∈ Rn such that r >> 0, there exists p ∈ Rn such that
p >> 0 satisfies (3.205).

(Hint: Use the Lyapunov function candidate V (x) = pTx in your analysis
and show that the Lyapunov stability theorem of Section 3.2 and the
invariant set theorems of Section 3.3 can be used directly for nonnegative
systems with the required sufficient conditions verified on R

n
+.)

Problem 3.9. Consider the nonlinear dynamical system

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (3.206)

ẋ2(t) = −k sinx1(t), x2(0) = x20, (3.207)

where k > 0. Show that the zero solution (x1(t), x2(t)) ≡ (0, 0) to (3.206)
and (3.207) is Lyapunov stable.

Problem 3.10. Consider the nonlinear dynamical system

ẋ1(t) = x2(t) + αx1(t)[x
2
1(t) + x2

2(t)], x1(0) = x10, t ≥ 0, (3.208)

ẋ2(t) = −x1(t) + αx2(t)[x
2
1(t) + x2

2(t)], x2(0) = x20, (3.209)

where α < 0. Show that the zero solution (x1(t), x2(t)) ≡ (0, 0) to (3.208)
and (3.209) is globally asymptotically stable.

Problem 3.11. Consider the nonlinear dynamical system

ẋ1(t) = [x1(t) − α2x2(t)][x
2
1(t) + x2

2(t) − 1], x1(0) = x10, t ≥ 0, (3.210)

ẋ2(t) = [α1x1(t) + x2(t)][x
2
1(t) + x2

2(t) − 1], x2(0) = x20, (3.211)

where α1 > 0 and α2 > 0. Show that the zero solution (x1(t), x2(t)) ≡ (0, 0)
to (3.210) and (3.211) is asymptotically stable. Is the result global? If not,
give a characterization for the domain of attraction.

Problem 3.12. Consider the nonlinear dynamical system

ẋ1(t) = −2x1(t) − x2
2(t), x1(0) = x10, t ≥ 0, (3.212)

ẋ2(t) = −x2
1(t) − x2(t), x2(0) = x20. (3.213)

Using the quadratic Lyapunov function candidate V (x1, x2) = x2
1 + x2

2
show that the zero solution (x1(t), x2(t)) ≡ (0, 0) to (3.212) and (3.213)
is asymptotically stable. Find the maximum domain of attraction DA for
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(3.212) and (3.213) predicated on V (x1, x2). Plot DA in the x1-x2 plane and
show the region where V̇ (x1, x2) < 0, (x1, x2) ∈ R × R.

Problem 3.13. Consider the nonlinear system

ẍ(t) + g(x(t)) = 0, x(0) = x0, ẋ(0) = ẋ0, t ≥ 0, (3.214)

where xg(x) > 0, x 6= 0, and g(0) = 0. Using x1 = x and x2 = ẋ show
that the trajectories of (3.214) satisfy V (x1, x2) = k2, where V (x1, x2) =
1
2x

2
2 +

∫ x1

0 g(s)ds and k is a constant, and the origin is Lyapunov stable.

Plot sample trajectories for the cases i) g(x) = x, ii) g(x) = 1
2x, and iii)

g(x) = x, x > 0, and g(x) = 1
2x, x < 0.

Problem 3.14. Show that the rigid spacecraft dynamical system in
Example 3.1 is at an equilibrium if and only if at least two of the quantities
(x1, x2, x3) are equal to zero, and hence, the set of equilibria consists of the
union of the x1, x2, and x3 axes. Furthermore, show that equilibria of the
form (x1e, 0, 0), x1e 6= 0, and (0, 0, x3e), x3e 6= 0, are Lyapunov stable while
equilibria of the form (0, x2e, 0), x2e 6= 0, are unstable. What does this
result imply in regards to the spacecraft spinning about its major, minor,
and intermediate axes?

Problem 3.15. Consider the controlled rigid spacecraft given by

ẋ1(t) = I23x2(t)x3(t) + u1(t), x1(0) = x10, t ≥ 0, (3.215)

ẋ2(t) = I31x3(t)x1(t) + u2(t), x2(0) = x20, (3.216)

ẋ3(t) = I12x1(t)x2(t) + u3(t), x3(0) = x30, (3.217)

where I23 = (I2 − I3)/I1, I31 = (I3 − I1)/I2, I12 = (I1 − I2)/I3, and I1,
I2, and I3 are the principal moments of inertia of the spacecraft such that
I1 > I2 > I3 > 0. Assume that the attitude control torques u1, u2, and
u3 are given by u1(t) = α1x1(t), u2(t) = α2x2(t), and u3(t) = α3x3(t).
Using Lyapunov’s direct method determine sufficient conditions on α1, α2,
and α3 such that the zero solution x(t) ≡ 0 to (3.215)–(3.217) is globally
asymptotically stable.

Problem 3.16. Consider the controlled rigid spacecraft given in Prob-
lem 3.15 with the bang-bang control law

ui(t) = fi(xi)
△
= Uisgn(xi) =

{

Ui, xi > 0
−Ui, xi < 0,

(3.218)

where Ui > 0, i = 1, 2, 3. Show that the feedback control law (3.218) globally
stabilizes the zero solution (x1(t), x2(t), x3(t)) ≡ (0, 0, 0) to (3.215)–(3.217).
Furthermore, show that the trajectories of the controlled spacecraft reach
the origin in finite time T ≤ ‖L(x0)‖2/U , where L(x0) is the initial angular
momentum vector of the rigid spacecraft and U = min{U1, U2, U3}.
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Problem 3.17. Consider the controlled linearized approximation of
the attitude motion of a satellite given by

I1θ̈(t)+3ω2(I2−I3)θ(t) = u(t), θ(0) = θ10, θ̇(0) = θ20, t ≥ 0, (3.219)

where I1, I2, and I3 are the moments of inertia of the satellite about the
pitch, roll, and yaw axis, respectively; ω is the satellite orbiting angular
rate; and θ is the pitch plane angular deviation from the local gravitational
vertical. Show that the nonlinear control torque u = −f(αθ+ βθ̇), where f
is continuous, f(0) = 0, and zf(z) > 0, z ∈ R, z 6= 0, can render the zero
solution (θ(t), θ̇(t) ≡ (0, 0) to (3.219) asymptotically stable. To analyze the
stability of the closed-loop system use the Lyapunov function candidate

V (θ, θ̇) =
1

2
(θ2 + θ̇2) + b

∫ αθ+βθ̇

0
f(σ)dσ, (3.220)

where α, β, a, and b are parameters to be chosen. Can the feedback control
law u = −f(βθ̇) asymptotically stabilize (3.219)? Under what conditions
on f(·) will the origin be globally asymptotically stable?

Problem 3.18. Consider the nonlinear Lienard system given by

ẍ(t) + f(x(t))ẋ(t) + g(x(t)) = 0, x(0) = x0, ẋ(0) = ẋ0, t ≥ 0, (3.221)

where g(0) = 0 and f and g are continuously differentiable, and define
F (x) =

∫ x
0 f(s)ds. Show that the system can be written as

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (3.222)

ẋ2(t) = −f(x1(t))x2(t) − g(x1(t)), x2(0) = x20, (3.223)

or, equivalently,

ẋ1(t) = x2(t) − F (x1(t)), x1(0) = x10, t ≥ 0, (3.224)

ẋ2(t) = −g(x1(t)), x2(0) = x20. (3.225)

Analyze the stability of both forms using the Lyapunov function candidates

V (x1, x2) = 1
2x

2
2 +

∫ x1

0
g(s)ds (3.226)

and

V (x1, x2) = 1
2 [x2 + F (x1)]

2 +

∫ x1

0
g(s)ds. (3.227)

Make sure you specify under what conditions (3.226) and (3.227) are valid
Lyapunov function candidates.

Problem 3.19. Consider the second-order nonlinear mechanical sys-
tem consisting of a unit mass with a nonlinear spring and a nonlinear damper
given by

ẍ(t) + f(ẋ(t)) + g(x(t)) = 0, x(0) = x0, ẋ(0) = ẋ0, t ≥ 0, (3.228)
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where f(·) is the force due to friction and g(·) is the restoring force of the
nonlinear spring. Suppose that f(·) and g(·) are continuous and f(0) = 0
and g(0) = 0. In addition, suppose there exists ε > 0 such that zf(z) > 0,
z ∈ Bε(0), z 6= 0, and zg(z) > 0, z ∈ Bε(0), z 6= 0.

i) Show that the origin is an equilibrium point.

ii) Show that the zero solution (x(t), ẋ(t)) ≡ (0, 0) to (3.228) is asymp-
totically stable.

iii) Is the zero solution (x(t), ẋ(t)) ≡ (0, 0) to (3.228) globally asymptot-
ically stable? If not, give conditions on f(·) and g(·) that guarantee
global asymptotic stability.

(Hint: Select as your Lyapunov function V (x, ẋ) the total mechanical energy
in the system and show that the α-sublevel set of V (x, ẋ) is bounded for
every α > 0. Clearly state any necessary assumptions needed to show this.)

Problem 3.20. Consider the nonlinear dynamical system

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (3.229)

ẋ2(t) = x3(t), x2(0) = x20, (3.230)

ẋ3(t) = −f(x1(t)) − g(x2(t)) − ax3(t), x3(0) = x30, (3.231)

where f(0) = g(0) = 0 and f , g are continuously differentiable functions.
Show that the zero solution (x1(t), x2(t), x3(t)) = (0, 0, 0) to (3.229)–(3.231)
is globally asymptotically stable if i) a > 0, ii) f(x1)/x1 ≥ ε1 > 0, x1 6= 0,
and iii) ag(x2)/x2 − f ′(x1) ≥ ε2 > 0, x1 ∈ R, x2 6= 0. (Hint: Use the
Lyapunov function candidate V (x1, x2, x3) = aF (x1) + f(x1)x2 + G(x2) +
1
2(ax2 +x3)

2, where F (x1) =
∫ x1

0 f(s)ds and G(x2) =
∫ x2

0 g(s)ds, to analyze
(3.229)–(3.231).)

Problem 3.21. Consider the nonlinear dynamical system

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (3.232)

ẋ2(t) = x3(t), x2(0) = x20, (3.233)

ẋ3(t) = −f(x2(t))x3(t) − ax2(t) − bx1(t), x3(0) = x30, (3.234)

where a > 0, b > 0, and f is continuous. Determine conditions on the
damping function f(·) so that the zero solution (x1(t), x2(t), x3(t)) ≡ (0, 0, 0)
to (3.232)–(3.234) is globally asymptotically stable. (Hint: Consider the
Lyapunov function candidate

V (x1, x2, x3) =
1

2
(bx1 + ax2)

2 +
a

2
x2

3 + bx2x3 + b

∫ x2

0
f(σ)σdσ, (3.235)

and show that (3.235) is a valid candidate.)



NonlinearBook10pt November 20, 2007

188 CHAPTER 3

Problem 3.22. Consider the nonlinear dynamical system

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (3.236)

ẋ2(t) = −2βx1(t) − 3x2
1(t) − αx2(t), x2(0) = x20, (3.237)

where α > 0 and β > 0. Show that (xe1, xe2) = (0, 0) and (xe1, xe2) =
(−2

3β, 0) are equilibrium points of (3.236) and (3.237). Using the function

V (x1, x2) = βx2
1 + x3

1 + 1
2x

2
2 show that the region V (x1, x2) <

4
27β

3 is the
union of two components Q1 and Q2, where Q1 is a bounded component
containing the origin to the right of (−2

3β, 0) and Q2 is an unbounded

component to the left of (−2
3β, 0). Finally, show that every solution starting

in Q1 approaches the origin and hence Q1 is the domain of attraction of the
equilibrium point (0, 0), and every solution starting in Q2 approaches infinity
and hence (−2

3β, 0) is unstable. Is the equilibrium point (0, 0) asymptotically
stable?

Problem 3.23. Consider the nonlinear dynamical system

ẋ1(t) = −x1(t) + x2
2(t), x1(0) = x10, t ≥ 0, (3.238)

ẋ2(t) = −2x2(t) + 3x2
1(t), x2(0) = x20. (3.239)

Using the Lyapunov function candidate V (x1, x2) = 1
2x

2
1+ 1

4x
2
2 show that the

zero solution (x1(t), x2(t)) ≡ (0, 0) to (3.238) and (3.239) is asymptotically
stable and determine the largest ellipse contained in the domain of attraction
of (3.238) and (3.239).

Problem 3.24. Consider the nonlinear dynamical system

ẋ1(t) = x2(t) − x1(t)f(x1(t), x2(t)), x1(0) = x10, t ≥ 0, (3.240)

ẋ2(t) = −x1(t) − x2(t)f(x1(t), x2(t)), x2(0) = x20, (3.241)

where f : R2 → R is continuously differentiable and f(0, 0) = 0. Using
Lyapunov’s theorem obtain conditions on f(x1, x2) such that the zero
solution (x1(t), x2(t)) ≡ (0, 0) to (3.240) and (3.241) is Lyapunov stable,
asymptotically stable, and unstable.

Problem 3.25. Consider the nonlinear dynamical system

ẋ1(t) = −x1(t) + 2x3
2(t) − 2x4

2(t), x1(0) = x10, t ≥ 0, (3.242)

ẋ2(t) = −x1(t) − x2(t) + x1(t)x2(t), x2(0) = x20. (3.243)

Analyze the stability of the zero solution (x1(t), x2(t)) ≡ (0, 0) to (3.242)
and (3.243) using the Lyapunov function candidate V (x1, x2) = xp

1 + αxq
2,

where α, p, and q are parameters to be chosen.

Problem 3.26. Consider the nonlinear dynamical system

ẋ1(t) = −x1(t) + 4x2(t), x1(0) = x10, t ≥ 0, (3.244)
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ẋ2(t) = −x1(t) − x3
2(t), x2(0) = x20. (3.245)

Analyze the stability of the zero solution (x1(t), x2(t)) ≡ (0, 0) to (3.244)
and (3.245) using the Lyapunov function candidate V (x1, x2) = x2

1 + αx2
2,

where α > 0 is a parameter to be chosen.

Problem 3.27. Consider the nonlinear dynamical system

ẋ1(t) = x2(t) − x3
1(t), x1(0) = x10, t ≥ 0, (3.246)

ẋ2(t) = −x1(t) − x3
2(t), x2(0) = x20. (3.247)

Analyze the stability of the zero solution (x1(t), x2(t)) ≡ (0, 0) to (3.246)
and (3.247) using the Lyapunov function candidate V (x1, x2) = αx2

1 + βx2
2,

where α > 0 and β > 0 are parameters to be chosen.

Problem 3.28. Consider the nonlinear dynamical system

ẍ(t) + |x2(t) − 1|x3(t) + x(t) − sin

(

πx(t)

2

)

= 0,

x(0) = x0, ẋ(0) = ẋ0, t ≥ 0. (3.248)

Show that (xe1, ẋe1) = (1, 0), (xe2, ẋe2) = (−1, 0), and (xe3, ẋe3) = (0, 0) are
equilibrium points of (3.248). Use Lyapunov’s method to investigate the
stability of each of these equilibrium points.

Problem 3.29. Consider the scalar uncertain system

ẋ(t) = αx(t) + u(t), x(0) = x0, t ≥ 0, (3.249)

where α is an unknown constant parameter. Show that the adaptive
controller u(t) = −k(t)x(t) with update law

k̇(t) = γx2(t), k(0) = k0, t ≥ 0, (3.250)

where γ > 0, guarantees that the equilibrium solution (x(t), k(t)) = (0, k∗),
where k∗ > α, of the closed-loop system (3.249) and (3.250) is Lyapunov
stable and limt→∞ x(t) = 0 for all x0 ∈ R. (Hint: Consider the Lyapunov
function candidate V (x, k) = 1

2x
2 + 1

2γ (k − k∗)2.)

Problem 3.30. Consider the nonlinear dynamical system

ẋ1(t) = −x2(t) + x1(t)[x
2
1(t) + x2

2(t) − 1], x1(0) = x10, t ≥ 0, (3.251)

ẋ2(t) = x1(t) + x2(t)[x
2
1(t) + x2

2(t) − 1], x2(0) = x20. (3.252)

Is the zero solution (x1(t), x2(t)) ≡ (0, 0) to (3.251) and (3.252) asymptoti-
cally stable? Is the zero solution (x1(t), x2(t)) ≡ (0, 0) to (3.251) and (3.252)
globally asymptotically stable?
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Problem 3.31. Consider the nonlinear dynamical system

ẋ1(t) = −x1(t) + g(x3(t)), x1(0) = x10, t ≥ 0, (3.253)

ẋ2(t) = −g(x3(t)), x2(0) = x20, (3.254)

ẋ3(t) = −αx1(t) + βx2(t) − γg(x3(t)), x3(0) = x30, (3.255)

where α, β, γ > 0 and g is continuously differentiable and satisfies g(0) = 0
and xg(x) > 0, 0 < |x| < σ, σ > 0. Show that the origin (0, 0, 0) is an
isolated equilibrium point of (3.253)–(3.255). Using the Lyapunov function
candidate

V (x1, x2, x3) = 1
2αx

2
1 + 1

2βx
2
2 +

∫ x3

0
g(s)ds, (3.256)

show that the zero solution (x1(t), x2(t), x3(t)) ≡ (0, 0, 0) to (3.253)–(3.255)
is asymptotically stable. If g is such that xg(x) > 0 for all x ∈ R, x 6= 0,
is the zero solution (x1(t), x2(t), x3(t)) ≡ (0, 0, 0) globally asymptotically
stable?

Problem 3.32. Consider the nonlinear port-controlled Hamiltonian sy-
stem given by

ẋ(t) = [J (x(t)) −R(x(t))]

(

∂H
∂x

(x(t))

)T

+G(x(t))u(t), x(0) = x0, t ≥ 0,

(3.257)

y(t) = GT(x(t))

(

∂H
∂x

(x(t))

)T

, (3.258)

where x(t) ∈ D ⊆ Rn, D is an open set with 0 ∈ D, u(t) ∈ U ⊆ Rm,
y(t) ∈ Y ⊆ Rm, H : D → R is a continuously differentiable lower bounded
Hamiltonian (energy) function, J : D → Rn×n is a skew-symmetric function,
R : D → Rn×n is a nonnegative-definite dissipation function, and G : D →
Rn×m.

i) Show that the zero solution x(t) ≡ 0 of the uncontrolled (u(t) ≡ 0)
system (3.257) is Lyapunov stable.

ii) With u(t) = −Ky(t), where K is a positive-definite gain matrix, show
that the zero solution x(t) ≡ 0 to (3.257) is asymptotically stable.
Here, assume that the only solution of

ẋ(t) = J (x(t))

(

∂H
∂x

(x(t))

)T

(3.259)

that can stay in the set
{

x ∈ D : R(x)

(

∂H
∂x

(x)

)T

= 0

}

(3.260)
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is the trivial solution x(t) ≡ 0.

iii) Under what conditions will the origin be globally asymptotically
stable?

Problem 3.33. Consider the controlled nonlinear dynamical system
given by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, t ≥ 0, (3.261)

u(t) = φ(x(t)), (3.262)

where x(t) ∈ D ⊆ Rn, u(t) ∈ U ⊆ Rm, t ≥ 0, f : D → Rn, G : D → Rn×m,
and φ : D → Rm. Assume that f(0) = 0, φ(0) = 0, and f(·), G(·), and φ(·)
are continuously differentiable. Furthermore, let the controller u = φ(x) be
given by

u = φ(x) = −αR−1
2 (x)GT(x)

(

∂V

∂x

)T

, (3.263)

where α ∈ R and V : D → R is continuously differentiable, V (0) = 0,
V (x) > 0, x ∈ D, x 6= 0, and ∂V

∂x satisfies the Hamilton-Jacobi-Bellman
equation

0 =
∂V

∂x
f(x) + L(x) − 1

4

∂V

∂x
G(x)R−1

2 (x)GT(x)

(

∂V

∂x

)T

, x ∈ D, (3.264)

where L : D → R and R2 : D → Rm×m is a positive-definite matrix-valued
function.

i) Show that if L(x) > 0, x ∈ D, x 6= 0, and α ≥ 1
4 , then the zero solution

x(t) ≡ 0 of the closed-loop system (3.261) and (3.263) is asymptotically
stable.

ii) Show that if L(x) ≥ 0, x ∈ D, α > 1
4 , and the only solution ẋ = f(x)

that can stay identically in the set {x ∈ D : L(x) = 0} is the trivial
solution x(t) ≡ 0, then the zero solution x(t) ≡ 0 of the closed-loop
system (3.261) and (3.263) is asymptotically stable.

iii) Under what conditions will the origin be globally asymptotically
stable?

Problem 3.34. Consider the nonlinear dynamical system

ẋ1(t) =
x2

1(t)[x2(t) − x1(t)] + x5
2(t)

[x2
1(t) + x2

2(t)][1 + [x2
1(t) + x2

2(t)]
2]
, x1(0) = x10, t ≥ 0, (3.265)

ẋ2(t) =
x2

2(t)[x2(t) − 2x1(t)]

[x2
1(t) + x2

2(t)][1 + [x2
1(t) + x2

2(t)]
2]
, x2(0) = x20. (3.266)
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Show that even though limt→∞(x1(t), x2(t)) = 0, the zero solution (x1(t),
x2(t)) ≡ (0, 0) to (3.265) and (3.266) is unstable.

Problem 3.35. Consider the nonlinear dynamical system

ẋ1(t) = [x1(t) − x2(t)][1 − a2x2
1(t) − b2x2

2(t)], x1(0) = x10, t ≥ 0, (3.267)

ẋ2(t) = [x1(t) + x2(t)][1 − a2x2
1(t) − b2x2

2(t)], x2(0) = x20. (3.268)

Analyze the stability of (3.267) and (3.268) using the Lyapunov function
candidate

V (x1, x2) = x2
1 + x2

2.

Is the ellipse E = {(x1, x2) ∈ R × R : a2x2
1 + b2x2

2 = 1} a limit cycle or a
continuum of equilibrium points?

Problem 3.36. Consider the nonlinear dynamical system

ẋ1(t) = x2(t) − x7
1(t)[x

4
1(t) + 2x2

2(t) − 10], x1(0) = x10, t ≥ 0, (3.269)

ẋ2(t) = −x3
1(t) − 3x5

2(t)[x
4
1(t) + 2x2

2(t) − 10], x2(0) = x20. (3.270)

i) Show that the set defined by E △
= {(x1, x2) ∈ R×R : x4

1+2x2
2−10 = 0}

is invariant.

ii) What is the motion on E characterized by? Is this a limit cycle or a
continuum of equilibrium points?

iii) Examine the stability of E using the Barbashin-Krasovskii-LaSalle
theorem.

Problem 3.37. Consider the nonlinear dynamical system

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (3.271)

ẋ2(t) = −x1(t) + x2(t)[1 − x2
1(t) − x2

2(t)], x2(0) = x20. (3.272)

i) Show that the set defined by E △
= {(x1, x2) ∈ R ×R : x2

1 + x2
2 − 1 = 0}

is invariant.

ii) What is the motion on E characterized by? Is this a limit cycle or a
continuum of equilibrium points?

iii) Examine the stability of E using the Barbashin-Krasovskii-LaSalle
theorem.

Problem 3.38. Consider the nonlinear dynamical system (3.1) and
assume that there exist a continuously differentiable function V : Rn → R

and positive scalars α, β such that

V (0) = 0, (3.273)
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V (x) > 0, x ∈ Rn, x 6= 0, (3.274)

V (x) → ∞ as ‖x‖ → ∞, (3.275)

V ′(x(t))f(x(t)) ≤ αe−βt, t ≥ 0. (3.276)

Show that x(t), t ≥ 0, is bounded.

Problem 3.39. Consider the nonlinear dynamical system (3.1) with
f(xe) = 0. Show that if there exists a continuously differentiable function
V : D → R such that

V (xe) = 0, (3.277)

V (x) > 0, x ∈ D, x 6= xe, (3.278)

V ′(x)f(x) ≤ 0, x ∈ D, (3.279)

then the equilibrium solution x(t) ≡ xe to (3.1) is Lyapunov stable. If, in
addition,

V ′(x)f(x) < 0, x ∈ D, x 6= xe, (3.280)

show that the equilibrium solution x(t) ≡ xe to (3.1) is asymptotically stable.
Finally, show that if there exist scalars α, β, ε > 0, and p ≥ 1 such that
V : D → R satisfies

α‖x− xe‖p ≤ V (x) ≤ β‖x− xe‖p, x ∈ D, (3.281)

V ′(x)f(x) ≤ −εV (x), x ∈ D, (3.282)

then the equilibrium solution x(t) ≡ xe to (3.1) is exponentially stable.

Problem 3.40. Consider the nonlinear dynamical system (3.1), as-
sume Dc ⊂ D is a compact invariant set with respect to (3.1), and assume
there exists a continuously differentiable function V : Dc → R such that
V ′(x)f(x) ≤ 0, x ∈ Dc. Furthermore, suppose that the largest invariant set

M contained in R △
= {x ∈ Dc : V ′(x)f(x) = 0} consists of a finite collection

of isolated points. Show that limt→∞ x(t) exists and is equal to one of the
isolated points contained in M.

Problem 3.41. Consider the nonlinear dynamical system

ẋ1(t) = −x1(t)|x2(t)|α, x1(0) = x10, t ≥ 0, (3.283)

ẋ2(t) = −x2(t)|x1(t)|β , x2(0) = x20, (3.284)

where α > 0 and β > 0. Show that limt→∞(x1(t), x2(t)) exists and is equal
to one of the points (0, a), (0,−a), (a, 0), or (−a, 0), where a ∈ R.

Problem 3.42. A dynamical system on D ⊆ Rn is the triple (D,
[0,∞), s), where s : [0,∞) × D → D is such that the following axioms
hold:
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i) (Continuity): s(·, ·) is jointly continuous on [0,∞) ×D.

ii) (Consistency): For every x0 ∈ D, s(0, x0) = x0.

iii) (Semigroup property): s(τ, s(t, x0)) = s(t + τ, x0) for all x0 ∈ D and
t, τ ∈ [0,∞).

Let G denote the dynamical system (D, [0,∞), s) and let s(t, x0), t ≥ 0,
denote the trajectory of G corresponding to the initial condition x0 ∈ D.
Furthermore, let Dc ⊂ D be a compact invariant set with respect to G and
define V −1(γ)

△
= {x ∈ Dc : V (x) = γ}, where γ ∈ R and V : Dc → R is a

continuous function. Show that if V (s(t, x0)) ≤ V (s(τ, x0)), for all 0 ≤ τ ≤ t

and x0 ∈ Dc, then s(t, x0) → M △
= ∪γ∈R Mγ as t → ∞, where Mγ denotes

the largest invariant set (with respect to the dynamical system G) contained
in V −1(γ).

Problem 3.43. Consider the nonlinear dynamical system (3.1) where
f : D → Rn is continuous and (3.1) possesses unique solutions in forward
time; that is, if the solutions agree at some time t0, then they agree at any
time t ≥ t0. The zero solution x(t) ≡ 0 to (3.1) is finite-time stable if the
origin is Lyapunov stable and there exists an open neighborhood N ⊆ D
of the origin and a function T : N \ {0} → (0,∞), called a settling-time
function, such that for every x0 ∈ N \ {0}, s(·, x0) : [0, T (x0)) → N \ {0}
and s(t, x0) → 0 as t → T (x0). The zero solution x(t) ≡ 0 is globally
finite-time stable if it is finite-time stable with D = N = Rn. Show that if
there exist a continuously differentiable function V : D → R, positive scalars
α ∈ (0, 1) and β > 0, and an open neighborhood N ⊆ D of the origin such
that

V (0) = 0, (3.285)

V (x) > 0, x ∈ D, x 6= 0, (3.286)

V̇ (x) ≤ −βV (x)α, x ∈ N \ {0}, (3.287)

then the zero solution to (3.1) is finite-time stable. Furthermore, show that
T : N \ {0} → (0,∞) is continuous on N and

T (x0) ≤
1

β(1 − α)
V (x)1−α, x ∈ N . (3.288)

Finally, show that if D = Rn, V (x) → ∞ as ‖x‖ → ∞, and (3.287) is
satisfied on Rn \ {0}, then the zero solution x(t) ≡ 0 to (3.1) is globally
finite-time stable. (Hint: Use the comparison principle (see Problem 2.107)
to construct a comparison system whose solution is finite-time stable and
relate this finite-time stability property to the stability property of (3.1).)

Problem 3.44. Consider the nonlinear dynamical system (3.1). An
equilibrium point x ∈ D is semistable if x ∈ D is Lyapunov stable and there
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exists δ > 0 such that if x0 ∈ Bδ(x), then limt→∞ s(t, x0) exists and s(t, x0),
t ≥ 0, converges to a Lyapunov stable equilibrium point. The nonlinear
dynamical system (3.1) is semistable if every equilibrium point of (3.1) is
semistable. Suppose the orbit Ox of (3.1) is bounded for all x ∈ D and
assume that there exists a continuously differentiable function V : D → R

such that

V ′(x)f(x) ≤ 0, x ∈ D. (3.289)

Let M denote the largest invariant set contained in R △
= {x ∈ D : V ′(x)f(x)

= 0}. Show that if M ⊆ {x ∈ D : f(x) = 0 and x is Lyapunov stable},
then (3.1) is semistable. (Hint: First show that if the positive orbit
O+

x of (3.1) contains a Lyapunov stable equilibrium point y, then y =
limt→∞ s(t, x) for all x ∈ Dc, where Dc ⊆ D is a positively invariant set
with respect to (3.1).)

Problem 3.45. Consider the dynamical system (3.1) with f(x) = Ax,
where A ∈ Rn. Show that if there exists n × n matrices P ≥ 0 and R ≥ 0
such that

0 = ATP + PA+R, (3.290)

N





















R
RA
...

RAn−1





















= N (A), (3.291)

then the zero solution x(t) ≡ 0 to (3.1) is semistable (see Problem 3.44).
(Hint: First show that N (P ) ⊆ N (A) ⊆ N (R) and N (A) ∩R(A) = {0}.)

Problem 3.46. Consider the dynamical system (3.1) with f(x) = Ax,
where A ∈ Rn×n. Using the results of Problem 3.44 show that the following
statements are equivalent:

i) The zero solution x(t) ≡ 0 to (3.1) is semistable.

ii) For every initial condition x0 ∈ Rn, limt→∞ x(t) exists.

iii) If λ ∈ spec(A), then either Re λ < 0, or both λ = 0 and λ is
semisimple.

iv) limt→∞ eAt exists.

Problem 3.47. Consider the nonlinear dynamical system

ẋ1(t) = −2x1(t), x1(0) = x10, t ≥ 0, (3.292)

ẋ2(t) = −2x2(t) + 2x1(t)x
2
2, x2(0) = x20. (3.293)



NonlinearBook10pt November 20, 2007

196 CHAPTER 3

Use the variable gradient method to construct a Lyapunov function for
(3.292) and (3.293). Is the zero solution (x1(t), x2(t)) ≡ (0, 0) to (3.292)
and (3.293) globally asymptotically stable?

Problem 3.48. Consider the nonlinear dynamical system

ẋ1(t) =
−6x1(t)

[1 + x2
2(t)]

2
+ 2x2(t), x1(0) = x10, t ≥ 0, (3.294)

ẋ2(t) = −2x1(t) −
2x2(t)

[1 + x2
1(t)]

2
, x2(0) = x20. (3.295)

Use the variable gradient method to construct a Lyapunov function for
(3.294) and (3.295). Is the zero solution (x1(t), x2(t)) ≡ (0, 0) to (3.294)
and (3.295) globally asymptotically stable?

Problem 3.49. Consider the nonlinear dynamical system

ẋ1(t) = −x1(t) + x2
1(t), x1(0) = x10, t ≥ 0, (3.296)

ẋ2(t) = −x2(t) + x2
3(t), x2(0) = x20, (3.297)

ẋ3(t) = αx3(t) − x2
1(t), x3(0) = x30. (3.298)

Using Lyapunov’s indirect method, investigate the stability of the zero
solution (x1(t), x2(t), x3(t)) ≡ (0, 0, 0) to (3.296)–(3.298) for α > 0, α < 0,
and α = 0.

Problem 3.50. Consider the nonlinear Lienard system given in Prob-
lem 3.18 with g(x) = x and f(0) > 0. Use Lyapunov’s indirect theorem
(Theorem 3.19) to draw conclusions about the local stability of the zero
solution (x(t), ẋ(t)) ≡ (0, 0) to (3.221).

Problem 3.51. Consider the nonlinear dynamical system

ẋ1(t) = f1(x1(t)) + f2(x2(t)), x1(0) = x10, t ≥ 0, (3.299)

ẋ2(t) = x1(t) + ax2(t), x2(0) = x20, (3.300)

where f1(0) = f2(0) = 0, a ∈ R, and f1, f2 are continuously differentiable
functions. Using Krasovskii’s theorem (Theorem 3.6) find conditions on
f ′1(x1) and f ′2(x2) for all (x1, x2) ∈ R × R such that V (x1, x2) = f2

1 (x1) +
f2
2 (x2) serves as a Lyapunov function for (3.299) and (3.300).

Problem 3.52. Prove i) of Theorem 3.19 using Krasovskii’s theorem
(Theorem 3.6).

Problem 3.53. Consider the nonlinear dynamical system (3.1) with
f(x) = A(x)x, whereA : Rn → Rn×n is a continuous matrix-valued function.
Show that if there exist positive definite matrices P ∈ Rn×n and R ∈ Rn×n
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such that
0 = AT(x)P + PA(x) +R, x ∈ Rn, x 6= 0, (3.301)

then the zero solution x(t) ≡ 0 to (3.1) is globally asymptotically stable.
Furthermore, prove or refute that if, for each x ∈ Rn, all of the eigenvalues
of A(x) lie in the open left half complex plane, then the zero solution x(t) ≡ 0
to (3.1) is globally asymptotically stable.

Problem 3.54. Consider the scalar nonlinear system

ẋ(t) = x3(t) − x(t), x(0) = 0, t ≥ 0. (3.302)

Using Zubov’s method construct a Lyapunov function for (3.302) and
provide a characterization for the domain of attraction of the zero solution
x(t) ≡ 0 to (3.302).

Problem 3.55. Consider the nonlinear dynamical system representing
a rigid spacecraft given by (3.11)–(3.13) in Example 3.1. Use the energy-
Casimir method to show that the equilibrium solution x(t) ≡ xe, where
xe = [x1e, 0, 0]T, to (3.11)–(3.13) is Lyapunov stable.

Problem 3.56. Consider the controlled rigid spacecraft given by
(3.215) –(3.217) in Problem 3.15 with u1(t) ≡ 0 and u2(t) ≡ 0. Show

that with u3(t) = −k I1I2

I3
x1(t)x2(t), where k > c and c

△
= (I1 − I2)/(I1I2),

the closed-loop system can be written as

ż1(t) = a0az2(t)z3(t), z1(0) = z10, t ≥ 0, (3.303)

ż2(t) = a0bz3(t)z1(t), z2(0) = z20, (3.304)

ż3(t) = cz1(t)z2(t), z3(0) = z30, (3.305)

where z1 = I1x1, z2 = I2x2, z3 = (c/(c − k))I3x3, a0
△
= (c − k)/c < 0,

a
△
= (I2 − I3)/(I2I3), and b

△
= (I3 − I1)/(I3I1). Furthermore, use the energy-

Casimir method to show that the equilibrium solution z(t) ≡ ze, where
ze = [0, z2e, 0]T and z2e = I2x2e, to (3.303)–(3.305) is Lyapunov stable.

(Hint: Show that C1(z) = 1
2(z2

1

I1
+ z2

2

I2
+ a0

z2
3

I3
) and C2(z) = 1

2 (z2
1 + z2

2 + a0z
2
3)

are Casimir functions for (3.303)–(3.305).)

Problem 3.57. In the spread of epidemics in large populations the
basic susceptible-infected-removed (SIR) model has been proposed in the
literature. In particular, the model of a SIR epidemic is given by

ẋ1(t) = − λ
N x1(t)x2(t) − µx1(t) + u, x1(0) = x10, t ≥ 0, (3.306)

ẋ2(t) = λ
N x1(t)x2(t) − (γ + µ)x2(t), x2(0) = x20, (3.307)

ẋ3(t) = γx2(t) − µx3(t), x3(0) = x30, (3.308)

where x1 denotes the number of susceptibles, x2 denotes the number of
infectives, x3 denotes the number of immunes, µ > 0 is the death rate
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coefficient, N is a constant denoting the total size of the population, that is,
x1(t) + x2(t) + x3(t) = N , u is the rate of recruitment of new members into
the susceptible pool and is assumed to be a constant that just makes up for
the deaths, that is, u = µN , γ > 0 is a rate constant for recovery, and λ > 0
is the mean constant rate per person for contacts that transmit the disease.
For α ≤ 1 and α > 1, where α

△
= λ/(γ+µ), compute all equilibria of (3.306)–

(3.308). Using Lyapunov’s linearization method, analyze the stability of
these equilibria. Repeat the above analysis for the case corresponding to a
zero death rate, that is, µ = 0. (Hint: Note that since x1(t)+x2(t)+x3(t) =
N , (3.308) is superfluous and need not be considered in the analysis.)

Problem 3.58. Consider the model of two populations which interact
in a predator-prey relationship given by the Lotka-Volterra equations

ẋ1(t) = αx1(t) − βx1(t)x2(t), x1(0) = x10, t ≥ 0, (3.309)

ẋ2(t) = −γx2(t) + δx1(t)x2(t), x2(0) = x20, (3.310)

where α, β, γ, δ > 0, x1 denotes the number of prey, and x2 denotes the
number of predators. Compute all equilibria of (3.309) and (3.310). Analyze
the stability of these equilibria. (Hint: In the case where Lyapunov’s
linearization method provides no stability information use the Lyapunov
function candidate V (x) = E(x)−E(xe), where E(x) = δx1+βx2−γ lnx1−
α lnx2. Make sure you justify that V (x), x ∈ R2, is a valid Lyapunov
function candidate.)

Problem 3.59. Consider the nonlinear dynamical system (3.1). Show
that if the zero solution x(t) ≡ 0 to (3.1) is asymptotically stable and
f : D → Rn is continuously differentiable, then V : D → R satisfying
the conditions of Theorem 3.9 additionally satisfies ‖V ′(x)‖ ≤ ν(‖x‖),
x ∈ Bδ(0), where ν : [0, δ] → [0,∞) is a class K function.

Problem 3.60. Consider the nonlinear dynamical system (3.1). Show
that if the zero solution x(t) ≡ 0 to (3.1) is exponentially stable and f : D →
Rn is continuously differentiable, then V : D → R satisfying the conditions
of Theorem 3.10 additionally satisfies ‖V ′(x)‖ ≤ ν‖x‖p−1, x ∈ Bδ(0), where
ν > 0. Can p = 2 without loss of generality? Justify your answer.

Problem 3.61. Let f = [f1, . . . , fn]T : D → Rn, where D is an
open subset of Rn that contains R

n
+. Then f is essentially nonnegative if

fi(x) ≥ 0, for all i = 1, . . . , n, and x ∈ R
n
+ such that xi = 0, where xi

denotes the ith component of x. Consider the nonlinear dynamical system
(3.1). Show that the following statements hold:

i) Suppose R
n
+ ⊂ D. Then R

n
+ is an invariant set with respect to (3.1) if

and only if f : D → Rn is essentially nonnegative.
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ii) Suppose f(0) = 0 and f : D → Rn is essentially nonnegative and

continuously differentiable on R
n
+. Then A

△
= ∂f

∂x

∣

∣

∣

x=0
is essentially

nonnegative (see Problem 3.7).

iii) If f(x) = Ax, where A ∈ Rn×n, then f is essentially nonnegative if
and only if A is essentially nonnegative.

Problem 3.62. Let f : [0,∞) → R. Show that if f(·) ∈ L2 ∩ L∞ and
ḟ(·) is bounded, then limt→∞ f(t) = 0.

Problem 3.63. Consider the nonlinear gradient dynamical system giv-
en by

ẋ(t) = −
[

∂V

∂x
(x(t))

]T

, x(0) = x0, t ≥ 0, (3.311)

where x ∈ D ⊆ Rn and V : D → R is a two-times continuously differentiable
function. Show that:

i) V̇ (x) ≤ 0, x ∈ D, and V̇ (x) = 0 if and only if x is an equilibrium point
of (3.311).

ii) Let Dc
△
= {x ∈ Rn : V (x) ≤ c} be compact for every c > 0 and let

x0 ∈ Dc. Then there exists a unique solution to (3.311) that is defined
for all t ≥ 0.

iii) Let ∂V
∂x = 0 for a finite number of points p1, . . . , pq. Then for every

solution x(t), t ≥ 0, of (3.311), limt→∞ x(t) = pi, i ∈ {1, . . . , q}.

iv) If xe ∈ D is an isolated minimizer of V (·), then xe is an asymptotically
stable equilibrium point of (3.311).

Problem 3.64. Consider the nonlinear dynamical system

ẋ1(t) = f1(x1(t), x2(t)), x1(0) = x10, t ≥ 0, (3.312)

ẋ2(t) = f2(x1(t), x2(t)), x2(0) = x20, (3.313)

where f1(·, ·) and f2(·, ·) are continuously differentiable functions. Show
that a necessary condition for (3.312) and (3.313) to be a gradient system

(see Problem 3.63) is ∂f1

∂x2
= ∂f2

∂x1
. Is this condition also sufficient? For

f1(x1, x2) = x2 + 2x1x2 and f2(x1, x2) = x1 +x2
1 −x2

2 show that (3.312) and
(3.313) is a gradient system and find its potential function V (x1, x2).

Problem 3.65. Consider the nonlinear functional dynamical system

ẋ(t) = f(x(t), x(t− τd)), x(θ) = φ(θ), −τd ≤ θ ≤ 0, (3.314)
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where x ∈ Rn, f : Rn × Rn → Rn is Lipschitz continuous and satisfies
f(0, 0) = 0, and φ ∈ C([−τd, 0],Rn), where C([−τd, 0],Rn) is a Banach
space of continuous functions mapping the interval [−τd, 0] into Rn with
topology of uniform convergence and designated norm given by |||φ||| =
sup−τd≤θ≤0 ‖φ(θ)‖. Let φ : [−τd, 0] → Rn be a continuous vector-
valued function specifying the initial state of the system. Furthermore, let
xt ∈ C([−τd, 0],Rn) defined by xt(θ)

△
= x(t + θ), θ ∈ [−τd, 0], denote the

(infinite-dimensional) state of (3.314) at time t corresponding to the piece
of trajectories x between t − τd and t or, equivalently, the element xt in
the space of continuous functions defined on the interval [−τd, 0] and taking
values in Rn. The zero solution xt ≡ 0 of (3.314) is Lyapunov stable if, for
all ε > 0, there exists δ > 0 such that ‖φ(θ)‖ < δ, θ ∈ [−τd, 0], implies
‖x(t, φ(θ))‖ < ε for t ≥ 0, where x(t, φ(θ)) denotes the solution to (3.314).
The zero solution xt ≡ 0 of (3.314) is asymptotically stable if it is Lyapunov
stable and there exists δ > 0 such that ‖φ(θ)‖ < δ, θ ∈ [−τd, 0], implies
that limt→∞ ‖x(t, φ(θ))‖ = 0. Show that if there exists a continuously
differentiable Lyapunov functional V : C([−τd, 0],Rn) → R such that

α(‖ψ(0)‖) ≤ V (ψ), (3.315)

V̇ (ψ) ≤ 0, (3.316)

where ψ ∈ C([−τd, 0],Rn), α(·) is a class K∞ function, and V̇ (ψ)
△
= limh→0

[V (xh(ψ)) − V (ψ)], then the zero solution xt ≡ 0 to (3.314) is Lyapunov
stable. If, in addition, there exists a class K∞ function γ(·) such that

V̇ (ψ) ≤ −γ(‖ψ(0)‖), (3.317)

show that the zero solution xt ≡ 0 to (3.314) is asymptotically stable.

Problem 3.66. A mapping T : D → Rn is a diffeomorphism on
D ⊆ Rn if it is invertible on D, that is, there exists a function T −1(x)
such that T −1(T (x)) = x, x ∈ D, and T (x) and T −1(x) are continuously
differentiable. Consider the nonlinear dynamical system (3.1) and let
T : Rn → Rn be a diffeomorphism in the neighborhood of the origin such
that z = T (x) and T (0) = 0. Show that the zero solution z(t) ≡ 0

of the transformed nonlinear system ż(t) = f̂(z(t)), z(0) = z0, where

f̂(z) = ∂T (x)
∂x f(x)

∣

∣

∣

x=T −1(z)
, is Lyapunov stable (respectively, asymptotically

stable) if and only if the zero solution x(t) ≡ 0 to (3.1) is Lyapunov stable
(respectively, asymptotically stable).

Problem 3.67. Consider the nonlinear dynamical system

ẋ(t) = f(x(t)), x(0) = x0, t ≥ 0, (3.318)

where f : D ⊆ Rn → R is continuously differentiable with 0 ∈ D. Assume
there exist continuous model validity functions wi : Rn → R, i = 1, . . . , r,
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such that (3.318) can be represented by

ẋ(t) =
r
∑

i=1

wi(x(t))Aix(t), (3.319)

where wi(x) > 0, i = 1, . . . , r, and Ai = ∂f
∂x

∣

∣

∣

x=xi

. Show that if there exists

a single positive-definite matrix P ∈ Rn×n satisfying

AT
i P + PAi < 0, i = 1, . . . , r, (3.320)

then the zero solution x(t) ≡ 0 to (3.318) is globally asymptotically stable.

Problem 3.68. Show that Theorem 3.7 also holds in the case where
(3.85) is replaced by

V ′(x)f(x)

[1 − V (x)][1 + ‖f(x)‖2]1/2
< 0, x ∈ D. (3.321)

Problem 3.69 (Convergence Lemma). Let V : [0,∞) → R be a
continuously differentiable function such that

V̇ (t) + αV (t) ≤ 0, t ≥ 0, (3.322)

where α ∈ R. Show that V (t) ≤ V (0)e−αt, t ≥ 0.

Problem 3.70. Consider the nonlinear dynamical system given in
Example 3.7. Show that if ‖x(0)‖2

2 < 1, then ‖x(t)‖2
2 < αe−2t, t ≥ 0,

α > 0. Alternatively, show that if ‖x(0)‖2
2 > 1, then ‖x(t)‖ tends to infinity

in finite time. (Hint: Use the convergence lemma of Problem 3.69.)

Problem 3.71. Let γ1 : [0, a) → [0,∞) and γ2 : [0, a) → [0,∞) be
class K functions, γ3 : [0,∞) → [0,∞) and γ4 : [0,∞) → [0,∞) be class K∞
functions, and β : [0, a) × [0,∞) → [0,∞) be a class KL function. Show
that the following statements hold:

i) γ1(σ1 + σ2) ≤ γ1(2σ1) + γ1(2σ2) for all σ1, σ2 ∈ [0, a).

ii) γ−1 : [0, γ1(a)) → [0,∞) and γ−1(·) ∈ K.

iii) γ−1
3 : [0,∞) → [0,∞) and γ−1

3 (·) ∈ K∞.

iv) γ1 ◦ γ2 ∈ K.

v) γ3 ◦ γ4 ∈ K∞.

vi) γ1(β(γ2(·), ·)) ∈ KL.
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Problem 3.72. Let V : D ⊆ Rn → R be a continuous function such
that V (0) = 0, V (x) > 0, x ∈ D, x 6= 0. Show that there exist class K
functions α(·) and β(·) defined on [0, ε] such that

α(‖x‖) ≤ V (x) ≤ β(‖x‖), x ∈ Bε(0), (3.323)

where Bε(0)
△
= {x ∈ D : ‖x‖ < ε}. Furthermore, show that if D = Rn and

V (x) → ∞ as ‖x‖ → ∞, then α(·) and β(·) can be chosen to be class K∞
and (3.323) holds for all x ∈ Rn.

Problem 3.73. Show that if the zero solution x(t) ≡ 0 of the nonlinear
dynamical system (3.1) is asymptotically stable with Lyapunov function
V (x), x ∈ D, then there exist class K functions α(·), β(·), and γ(·) defined
on [0, ε] such that

α(‖x‖) ≤ V (x) ≤ β(‖x‖), x ∈ Bε(0), (3.324)

V ′(x)f(x) ≤ −γ(‖x‖) < 0, x ∈ Bε(0), x 6= 0. (3.325)

Problem 3.74. Suppose the zero solution x(t) ≡ 0 to (3.1) is
asymptotically stable. Show that the domain of attraction D0 of (3.1) is
an open, connected invariant set.

Problem 3.75. Show that the zero solution x(t) ≡ 0 to (3.1) is
Lyapunov stable if and only if there exist δ > 0 and a class K function
α(·) such that if ‖x0‖ < δ, then ‖x(t)‖ ≤ α(‖x0‖), t ≥ 0.

Problem 3.76. Show that the zero solution x(t) ≡ 0 to (3.1) is
asymptotically stable (respectively, globally asymptotically stable) if and
only if there exist δ > 0 and class K and L functions α(·) and β(·),
respectively, such that if ‖x0‖ < δ (respectively, x0 ∈ Rn), then ‖x(t)‖ ≤
α(‖x0‖)β(t), t ≥ 0.

Problem 3.77. Show that the zero solution x(t) ≡ 0 to (3.1) with
f(x) = Ax, where A ∈ Rn×n, is asymptotically stable if and only if it is
exponentially stable.

Problem 3.78. Consider the nonlinear dynamical system

ẋ1(t) = x1(t) + x2(t) + x1(t)x
4
2(t), x1(0) = x10, t ≥ 0, (3.326)

ẋ2(t) = x1(t) + x2(t) − x2
1(t)x2(t), x2(0) = x20. (3.327)

Show that the zero solution (x1(t), x2(t)) ≡ (0, 0) to (3.326) and (3.327) is
unstable.

Problem 3.79. Consider the nonlinear dynamical system

ẋ1(t) = x1(t) − x2(t) + x1(t)x2(t), x1(0) = x10, t ≥ 0, (3.328)
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ẋ2(t) = −x2(t) − x2
2(t), x2(0) = x20. (3.329)

Show that the zero solution (x1(t), x2(t)) ≡ (0, 0) to (3.328) and (3.329) is
unstable. (Hint: Consider the function V (x1, x2) = (2x1 − x2)

2 − x2
2.)

Problem 3.80. Consider the nonlinear dynamical system

ẋ1(t) = αx2(t), x1(0) = x10, t ≥ 0, (3.330)

ẋ2(t) = −βx1(t) + µ[γ − x4
1(t)]

5x7
2(t), x2(0) = x20, (3.331)

where α, β, γ, and µ are positive constants. Use Theorem 3.12 to show that
the zero solution (x1(t), x2(t)) ≡ (0, 0) to (3.330) and (3.331) is unstable.
(Hint: Use Bendixson’s theorem to show that no limit cycles exist in the
simply connected region −γ1/4 < x1 < γ1/4.)

Problem 3.81. Consider the nonlinear dynamical system

ẋ1(t) = x1(t) + x2(t), x1(0) = x10, t ≥ 0, (3.332)

ẋ2(t) = x1(t) − x2(t) + x1(t)x2(t), x2(0) = x20. (3.333)

Use Chetaev’s instability theorem to show that the zero solution (x1(t),
x2(t)) ≡ (0, 0) to (3.332) and (3.333) is unstable. (Hint: Consider the
function V (x1, x2) = x1x2 and the subregion Q = {(x1, x2) ∈ R2 : x1 >
0, x2 > 0, and x2

1 + x2
2 < 1}.)

Problem 3.82. Consider the nonlinear dynamical system

ẋ1(t) = x3
1(t) + x1(t)x2(t), x1(0) = x10, t ≥ 0, (3.334)

ẋ2(t) = −x1(t) + x2
2(t) + x1(t)x2(t) − x3

1(t), x2(0) = x20. (3.335)

Using Chetaev’s instability theorem show that the zero solution (x1(t), x2(t))
≡ (0, 0) to (3.334) and (3.335) is unstable. (Hint: Consider the function
V (x1, x2) = 1

4x
4
1 − 1

2x
2
2.)

Problem 3.83. Consider the nonlinear controlled dynamical system

ẋ1(t) = x1(t)x2(t), x1(0) = x10, t ≥ 0, (3.336)

ẋ2(t) = x2
1(t) + u(t), x2(0) = x20. (3.337)

Show that there does not exist a linear feedback control law (that is, u(t) =
−k1x1(t) − k2x2(t)) that renders the zero solution (x1(t), x2(t)) ≡ (0, 0) to
(3.336) and (3.337) locally asymptotically stable. (Hint: First try using
Lyapunov’s indirect method. If this fails to yield any information, use
Chetaev’s instability theorem with function V (x1, x2) = 1

2(x2
1 − x2

2).)

Problem 3.84. Consider the nonlinear dynamical system

ẋ1(t) = 2x1(t) + x2(t) + x2
1(t), x1(0) = x10, t ≥ 0, (3.338)

ẋ2(t) = x1(t) − x2(t) + x1(t)x2(t), x2(0) = x20. (3.339)
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Use Chetaev’s instability theorem to show that the zero solution (x1(t),
x2(t)) ≡ (0, 0) to (3.338) and (3.339) is unstable. (Hint: Consider the
function V (x1, x2) = x1x2 and the subregion Q = {(x1, x2) ∈ R2 : x1 >
0, x2 > 0, and x2

1 + x2
2 < 1}.)

Problem 3.85. Use Chetaev’s instability theorem to show that the
rigid spacecraft dynamical system spinning about its intermediate axis
considered in Problem 3.14 is unstable. (Hint: Translate the system
coordinates so that the equilibrium (0, x2e, 0), x2e 6= 0, becomes the
origin. Then use the function V (x1, x2, x3) = x1x3 and the subregion
Q = {(x1, x2 − x2e, x3) ∈ Bε/2(0) : x1 > 0, x3 > 0}.)

Problem 3.86. Prove Theorem 3.12 using Chetaev’s instability theo-
rem. (Hint: Consider the subregion Q = {x ∈ Bε(0) : V (x) > 0}, where
Bε(0) ⊂ D.)

Problem 3.87. Prove Theorem 3.13 using Chetaev’s instability theo-
rem.

3.9 Notes and References

The original work on Lyapunov stability theory is due to the Russian
mathematician Aleksandr Mikhailovich Lyapunov [293]; it was translated
into French in 1907 [294] and English in 1992 [295]. Lyapunov stability
theory is extensively developed in the classical textbooks by Hahn [178],
Krasovskii [245], LaSalle and Lefschetz [260], and Yoshizawa [474]. A more
modern textbook treatment is given by Vidyasagar [445] and Khalil [235].
See also the papers by Kalman and Bertram [228] and LaSalle [258]. The
invariant set stability theorems are due to Barbashin and Krasovskii [23,245]
and LaSalle [258]. These theorems were first proved by Barbashin and
Krasovskii [23] for autonomous systems, and by Krasovskii [245] for periodic
systems. The invariant set theorem for autonomous systems was later
rediscovered by LaSalle [258]. In the western literature the invariant set
theorem is often incorrectly referred to as LaSalle’s theorem. The systematic
construction of Lyapunov functions was originally studied by Krasovskii
[245] and Zubov [481]. The earliest result on stability using integrals of
motion is due to Routh [370] with a Lyapunov function foundation given by
Rouche, Habets, and Laloy [368]. A tutorial exposition of these results is
given by Wan, Coppola, and Bernstein [450]. The treatment here is adopted
from Wan, Coppola, and Bernstein [450]. Converse Lyapunov theorems
are due to Persidskii [350], Malkin [298], and Massera [306, 307]. For an
excellent textbook treatment see Vidyasagar [445]. The Lyapunov instability
theorems can be found in Chetaev [92] and Vidyasagar [445].
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Finally, the concept of semistability introduced in Problem 3.44 is due
to Bhat and Bernstein [54] for nonlinear systems and Campbell and Rose [81]
for linear systems. See also Bernstein and Bhat [46]. Finite-time stability
as introduced in Problem 3.43 is due to Bhat and Bernstein [55]. Stability
theory for functional retarded systems as introduced in Problem 3.65 is due
to Krasovskii [245] with an excellent textbook treatment given by Hale and
Lunel [181].
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Chapter Four

Advanced Stability Theory

4.1 Introduction

In Chapter 3, we developed the basic concepts and mathematical tools for
Lyapunov stability theory. In this chapter, we present several generalizations
and extensions of Lyapunov stability theory. In particular, partial stability
theorems are presented and derived, wherein stability with respect to
part of the system state is addressed. In addition, we present stability
theorems for time-varying nonlinear dynamical systems as a special case of
partial stability. Lagrange stability, boundedness, ultimate boundedness,
input-to-state stability, finite-time stability, and semistability notions are
also presented. Finally, advanced stability theorems involving generalized
Lyapunov functions, stability of sets, stability of periodic orbits, and
stability theorems via vector Lyapunov functions are also established.

4.2 Partial Stability of Nonlinear Dynamical Systems

In many engineering applications, partial stability, that is, stability with
respect to part of the system’s states, is often necessary. In particular,
partial stability arises in the study of electromagnetics [482], inertial
navigation systems [403], spacecraft stabilization via gimballed gyroscopes
and/or flywheels [448], combustion systems [16], vibrations in rotating
machinery [289], and biocenology [368], to cite but a few examples. For
example, in the field of biocenology involving Lotka-Volterra predator-prey
models of population dynamics with age structure, if some of the species
preyed upon are left alone, then the corresponding population increases
without bound while a subset of the prey species remains stable [368,
pp. 260–269]. The need to consider partial stability in the aforementioned
systems arises from the fact that stability notions involve equilibrium
coordinates as well as a hyperplane of coordinates that is closed but not
compact. Hence, partial stability involves motion lying in a subspace instead
of an equilibrium point.
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rl

A

B

θ Motor

Figure 4.1 Slider-crank mechanism.

Additionally, partial stabilization, that is, closed-loop stability with
respect to part of the closed-loop system’s state, also arises in many
engineering applications [289, 448]. Specifically, in spacecraft stabilization
via gimballed gyroscopes asymptotic stability of an equilibrium position
of the spacecraft is sought while requiring Lyapunov stability of the axis
of the gyroscope relative to the spacecraft [448]. Alternatively, in the
control of rotating machinery with mass imbalance, spin stabilization about
a nonprincipal axis of inertia requires motion stabilization with respect
to a subspace instead of the origin [289]. Perhaps the most common
application where partial stabilization is necessary is adaptive control,
wherein asymptotic stability of the closed-loop plant states is guaranteed
without necessarily achieving parameter error convergence.

To further demonstrate the utility and need for partial stability theory,
we consider two simple examples. Specifically, consider the equation of
motion for the slider-crank mechanism shown in Figure 4.1 given by [44,199]

m(θ(t))θ̈(t) + c(θ(t))θ̇2(t) = u(t), θ(0) = θ0, θ̇(0) = θ̇0, t ≥ 0, (4.1)

where

m(θ) = mBr
2 +mAr

2

(

sin θ +
r cos θ sin θ

√

l2 − r2 sin2 θ

)2

, (4.2)

c(θ) = mAr
2

(

sin θ +
r cos θ sin θ

√

l2 − r2 sin2 θ

)

·
[

cos θ + r
l2(1 − 2 sin2 θ) + r2 sin4 θ

(l2 − r2 sin2 θ)3/2

]

, (4.3)

and mA and mB are point masses, r and l are the lengths of the rods, and
u(·) is the control torque applied by the motor. Now, suppose we choose
the feedback control law u = φ(θ, θ̇) so that the angular velocity of the
crank is constant, that is, θ̇(t) → Ω as t → ∞, where Ω > 0. This implies
that θ(t) ≈ Ωt → ∞ as t → ∞. Furthermore, since m(θ) and c(θ) are
functions of θ we cannot ignore the angular position θ. Hence, since θ does
not converge, it is clear that (4.1) is unstable in the standard sense but
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partially asymptotically stable with respect to θ̇ (see Definition 4.1).

Our next example involves a nonlinear system originally studied as
a simplified model of a dual-spin spacecraft to investigate the resonance
capture phenomenon [365] and more recently was studied to investigate
the utility of a rotational/translational proof-mass actuator for stabilizing
translational motion [73]. The system (see Figure 4.2) involves an eccentric
rotational inertia on a translational oscillator giving rise to nonlinear
coupling between the undamped oscillator and the rotational rigid body
mode. The oscillator cart of mass M is connected to a fixed support via
a linear spring of stiffness k. The cart is constrained to one-dimensional
motion and the rotational proof-mass actuator consists of a mass m and
mass moment of inertia I located at a distance e from the cart’s center of
mass. Letting q, q̇, θ, and θ̇ denote the translational position and velocity of
the cart and the angular position and velocity of the rotational proof mass,
respectively, the dynamic equations of motion are given by

M

I
k

m

x

θ

Figure 4.2 Rotational/translational proof-mass actuator.

(M +m)q̈(t) +me[θ̈(t) cos θ(t) − θ̇2(t) sin θ(t)] + kq(t) = 0, (4.4)

(I +me2)θ̈(t) +meq̈(t) cos θ(t) = 0, (4.5)

where t ≥ 0, q(0) = q0, q̇(0) = q̇0, θ(0) = θ0, and θ̇(0) = θ̇0.
Note that since the motion is constrained to the horizontal plane, the
gravitational forces are not considered in the dynamic analysis. Analyzing
(4.4) and (4.5) (see Example 4.1 for details), it follows that the zero
solution (q(t), q̇(t), θ(t), θ̇(t)) ≡ (0, 0, 0, 0) to (4.4) and (4.5) is unstable in
the standard sense but partially Lyapunov stable with respect to q, q̇, and θ̇
(see Definition 4.1). Once again, standard Lyapunov stability theory cannot
be used to arrive at this result since the angular position θ of the rotational
proof mass cannot be ignored from (4.4) and (4.5) and θ(t) → ∞ as t→ ∞.

Another application of partial stability theory is the extra flexibility
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it provides in constructing Lyapunov functions for nonlinear dynamical
systems. Specifically, generalizing Lyapunov’s stability theorem to include
partial stability weakens the hypotheses on the Lyapunov function (see
Theorem 4.1) thus enlarging the class of allowable functions that can be
used in analyzing system stability. Perhaps the clearest example of this is the
Lagrange-Dirichlet stability problem [368] involving the conservative Euler-
Lagrange system with a nonnegative-definite kinetic energy function T and
a positive-definite potential function U . In this case, the Lagrange-Dirichlet
energy function V = T + U is only nonnegative definite and, hence, cannot
be used as a Lyapunov function candidate to analyze the stability of the
system using standard Lyapunov theory. However, the Lagrange-Dirichlet
energy function can be used as a valid Lyapunov function within partial
stability theory to guarantee Lyapunov stability of the Lagrange-Dirichlet
problem (see Example 4.2).

In this section, we present partial stability theorems for nonlinear dy-
namical systems. Specifically, consider the nonlinear autonomous dynamical
system

ẋ1(t) = f1(x1(t), x2(t)), x1(0) = x10, t ∈ Ix0
, (4.6)

ẋ2(t) = f2(x1(t), x2(t)), x2(0) = x20, (4.7)

where x1 ∈ D, D ⊆ Rn1 is an open set such that 0 ∈ D, x2 ∈ Rn2 , f1 :
D × Rn2 → Rn1 is such that, for every x2 ∈ Rn2 , f1(0, x2) = 0 and f1(·, x2)
is locally Lipschitz in x1, f2 : D×Rn2 → Rn2 is such that, for every x1 ∈ D,
f2(x1, ·) is locally Lipschitz in x2, and Ix0

△
= [0, τx0

), 0 < τx0
≤ ∞, is the

maximal interval of existence for the solution (x1(t), x2(t)), t ∈ Ix0
, to (4.6)

and (4.7). Note that under the above assumptions the solution (x1(t), x2(t))
to (4.6) and (4.7) exists and is unique over Ix0

. The following definition
introduces eight types of partial stability, that is, stability with respect to
x1, for the nonlinear dynamical system (4.6) and (4.7).

Definition 4.1. i) The nonlinear dynamical system (4.6) and (4.7) is
Lyapunov stable with respect to x1 if, for every ε > 0 and x20 ∈ Rn2 , there
exists δ = δ(ε, x20) > 0 such that ‖x10‖ < δ implies that ‖x1(t)‖ < ε for all
t ≥ 0 (see Figure 4.3(a)).

ii) The nonlinear dynamical system (4.6) and (4.7) is Lyapunov stable
with respect to x1 uniformly in x20 if, for every ε > 0, there exists δ =
δ(ε) > 0 such that ‖x10‖ < δ implies that ‖x1(t)‖ < ε for all t ≥ 0 and for
all x20 ∈ Rn2 .

iii) The nonlinear dynamical system (4.6) and (4.7) is asymptotically
stable with respect to x1 if it is Lyapunov stable with respect to x1 and, for
every x20 ∈ Rn2 , there exists δ = δ(x20) > 0 such that ‖x10‖ < δ implies
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‖x10‖ = δ

‖x10‖ = ε

x(t)y1

y2

z

‖x10‖ = δ

‖x10‖ = ε

x(t)y1

y2

z

(a) (b)

Figure 4.3 (a) Partial Lyapunov stability with respect to x1. (b) Partial asymptotic
stability with respect to x1. x1 = [y1 y2]

T, x2 = z, and x = [xT
1 x2]

T.

that limt→∞ x1(t) = 0 (see Figure 4.3(b)).

iv) The nonlinear dynamical system (4.6) and (4.7) is asymptotically
stable with respect to x1 uniformly in x20 if it is Lyapunov stable with respect
to x1 uniformly in x20 and there exists δ > 0 such that ‖x10‖ < δ implies
that limt→∞ x1(t) = 0 uniformly in x10 and x20 for all x20 ∈ Rn2 .

v) The nonlinear dynamical system (4.6) and (4.7) is globally asymp-
totically stable with respect to x1 if it is Lyapunov stable with respect to x1

and limt→∞ x1(t) = 0 for all x10 ∈ Rn1 and x20 ∈ Rn2 .

vi) The nonlinear dynamical system (4.6) and (4.7) is globally asymp-
totically stable with respect to x1 uniformly in x20 if it is Lyapunov stable
with respect to x1 uniformly in x20 and limt→∞ x1(t) = 0 uniformly in x10

and x20 for all x10 ∈ Rn1 and x20 ∈ Rn2 .

vii) The nonlinear dynamical system (4.6) and (4.7) is exponentially
stable with respect to x1 uniformly in x20 if there exist scalars α, β, δ > 0 such
that ‖x10‖ < δ implies that ‖x1(t)‖ ≤ α‖x10‖e−βt, t ≥ 0, for all x20 ∈ Rn2 .

viii) The nonlinear dynamical system (4.6) and (4.7) is globally
exponentially stable with respect to x1 uniformly in x20 if there exist scalars
α, β > 0 such that ‖x1(t)‖ ≤ α‖x10‖e−βt, t ≥ 0, for all x10 ∈ Rn1 and
x20 ∈ Rn2 .

Next, we present sufficient conditions for partial stability of the
nonlinear dynamical system (4.6) and (4.7). For the following result define

V̇ (x1, x2)
△
= V ′(x1, x2)f(x1, x2), where f(x1, x2)

△
= [fT

1 (x1, x2) f
T
2 (x1, x2)]

T,



NonlinearBook10pt November 20, 2007

212 CHAPTER 4

for a given continuously differentiable function V : D × Rn2 → R.
Furthermore, we assume that the solution (x1(t), x2(t)) to (4.6) and (4.7)
exists and is unique for all t ≥ 0. It is important to note that unlike standard
theory (see Corollary 2.5) the existence of a Lyapunov function V (x1, x2)
satisfying the conditions in Theorem 4.1 below is not sufficient to ensure
that all solutions of (4.6) and (4.7) starting in D × Rn2 can be extended to
infinity, since none of the states of (4.6) and (4.7) serve as an independent
variable. We do note, however, that Lipschitz continuity of f1(·, ·) and f2(·, ·)
provides a sufficient condition for the existence and uniqueness of solutions
to (4.6) and (4.7) over a forward time interval.

Theorem 4.1. Consider the nonlinear dynamical system (4.6) and
(4.7). Then the following statements hold:

i) If there exist a continuously differentiable function V : D × Rn2 → R

and a class K function α(·) such that

V (0, x2) = 0, x2 ∈ Rn2 , (4.8)

α(‖x1‖) ≤ V (x1, x2), (x1, x2) ∈ D × Rn2 , (4.9)

V̇ (x1, x2) ≤ 0, (x1, x2) ∈ D × Rn2 , (4.10)

then the nonlinear dynamical system given by (4.6) and (4.7) is
Lyapunov stable with respect to x1.

ii) If there exist a continuously differentiable function V : D × Rn2 → R

and class K functions α(·), β(·) satisfying (4.9), (4.10), and

V (x1, x2) ≤ β(‖x1‖), (x1, x2) ∈ D × Rn2 , (4.11)

then the nonlinear dynamical system given by (4.6) and (4.7) is
Lyapunov stable with respect to x1 uniformly in x20.

iii) If there exist continuously differentiable functions V : D × Rn2 → R

and W : D× Rn2 → R, and class K functions α(·), β(·), and γ(·) such
that Ẇ (x1(·), x2(·)) is bounded from below or above, (4.8) and (4.9)
hold, and

W (0, x2) = 0, x2 ∈ Rn2 , (4.12)

β(‖x1‖) ≤ W (x1, x2), (x1, x2) ∈ D × Rn2 , (4.13)

V̇ (x1, x2) ≤ −γ(W (x1, x2)), (x1, x2) ∈ D × Rn2 , (4.14)

then the nonlinear dynamical system given by (4.6) and (4.7) is
asymptotically stable with respect to x1.

iv) If there exist a continuously differentiable function V : D × Rn2 → R

and class K functions α(·), β(·), γ(·) satisfying (4.9), (4.11), and

V̇ (x1, x2) ≤ −γ(‖x1‖), (x1, x2) ∈ D × Rn2 , (4.15)
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then the nonlinear dynamical system given by (4.6) and (4.7) is
asymptotically stable with respect to x1 uniformly in x20.

v) If D = Rn1 and there exist continuously differentiable functions V :
Rn1 × Rn2 → R and W : Rn1 × Rn2 → R, class K functions β(·), γ(·),
and a class K∞ function α(·) such that Ẇ (x1(·), x2(·)) is bounded
from below or above, and (4.8), (4.9), and (4.12)–(4.14) hold, then
the nonlinear dynamical system given by (4.6) and (4.7) is globally
asymptotically stable with respect to x1.

vi) If D = Rn1 and there exist a continuously differentiable function
V : Rn1 × Rn2 → R, a class K function γ(·), and class K∞ functions
α(·), β(·) satisfying (4.9), (4.11), and (4.15), then the nonlinear
dynamical system given by (4.6) and (4.7) is globally asymptotically
stable with respect to x1 uniformly in x20.

vii) If there exist a continuously differentiable function V : D × Rn2 → R

and positive constants α, β, γ, p ≥ 1 satisfying

α‖x1‖p ≤ V (x1, x2) ≤ β‖x1‖p, (x1, x2) ∈ D × Rn2 , (4.16)

V̇ (x1, x2) ≤ −γ‖x1‖p, (x1, x2) ∈ D × Rn2 , (4.17)

then the nonlinear dynamical system given by (4.6) and (4.7) is
exponentially stable with respect to x1 uniformly in x20.

viii) If D = Rn1 and there exist a continuously differentiable function V :
Rn1 × Rn2 → R and positive constants α, β, γ, p ≥ 1 satisfying (4.16)
and (4.17), then the nonlinear dynamical system given by (4.6) and
(4.7) is globally exponentially stable with respect to x1 uniformly in
x20.

Proof. i) Let x20 ∈ Rn2 , let ε > 0 be such that Bε(0)
△
= {x1 ∈

Rn1 : ‖x1‖ < ε} ⊂ D, define η
△
= α(ε), and define Dη

△
= {x1 ∈ Bε(0) :

V (x1, x20) < η}. Since V (·, ·) is continuous and V (0, x20) = 0 it follows that
Dη is nonempty and there exists δ = δ(ε, x20) > 0 such that V (x1, x20) < η,

x1 ∈ Bδ(0). Hence, Bδ(0) ⊆ Dη. Next, since V̇ (x1, x2) ≤ 0 it follows
that V (x1(t), x2(t)) is a nonincreasing function of time, and hence, for every
x10 ∈ Bδ(0) ⊆ Dη it follows that

α(‖x1(t)‖) ≤ V (x1(t), x2(t)) ≤ V (x10, x20) < η = α(ε).

Thus, for every x10 ∈ Bδ(0) ⊆ Dη, x1(t) ∈ Bε(0), t ≥ 0, establishing
Lyapunov stability with respect to x1.

ii) Let ε > 0 and let Bε(0) and η be given as in the proof of i). Now,
let δ = δ(ε) > 0 be such that β(δ) = α(ε). Then it follows from (4.11) that
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for all (x10, x20) ∈ Bδ(0) × Rn2 ,

α(‖x1(t)‖) ≤ V (x1(t), x2(t)) ≤ V (x10, x20) < β(δ) = α(ε),

and hence, x1(t) ∈ Bε(0), t ≥ 0.

iii) Lyapunov stability follows from i). To show asymptotic stability
suppose, ad absurdum, that W (x1(t), x2(t)) 9 0 as t → ∞ or, equivalently,
lim supt→∞W (x1(t), x2(t)) > 0. In addition, suppose lim inft→∞W (x1(t),
x2(t)) > 0, which implies that there exist constants T > 0 and k > 0
such that W (x1(t), x2(t)) ≥ k, t ≥ T . Then it follows from (4.14) that
V (x1(t), x2(t)) → −∞ as t → ∞, which contradicts (4.9), and hence,
lim inft→∞W (x1(t), x2(t)) = 0. Now, since lim supt→∞W (x1(t), x2(t)) > 0
and lim inft→∞ W (x1(t), x2(t)) = 0 it follows that there exist two increasing
sequences {ti}∞i=0 and {t′i}∞i=0, and a constant k > 0 such that ti < t′i < ti+1,
i = 0, 1, . . ., ti → ∞ as i→ ∞, and

W (x1(ti), x2(ti)) =
k

2
< W (x1(t), x2(t)) < k = W (x1(t

′
i), x2(t

′
i)),

ti < t < t′i, i = 0, 1, . . . . (4.18)

Furthermore, since Ẇ (x1(·), x2(·)) is upper (respectively, lower) bounded
there exists η > 0 (respectively, η < 0) such that Ẇ (x1(t), x2(t)) ≤ η, t ≥ 0
(respectively, Ẇ (x1(t), x2(t)) ≥ η, t ≥ 0). In the case where Ẇ (x1(·), x2(·))
is upper bounded it follows from (4.18) that t′i − ti ≥ k

2η , i = 1, 2, . . ., and

hence,
∫ t′i
ti
γ(W (x1(t), x2(t)))dt ≥ γ(k

2 ) k
2η . Now, using (4.14), it follows that

V (x1(t
′
n), x2(t

′
n)) = V (x10, x20) +

∫ t1

0
V̇ (x1(t), x2(t))dt

+
n
∑

i=1

∫ t′i

ti

V̇ (x1(t), x2(t))dt

+

n−1
∑

i=1

∫ ti+1

t′i

V̇ (x1(t), x2(t))dt

≤ V (x10, x20) +

n
∑

i=1

∫ t′i

ti

V̇ (x1(t), x2(t))dt

≤ V (x10, x20) −
n
∑

i=1

∫ t′i

ti

γ(W (x1(t), x2(t)))dt

≤ V (x10, x20) − nγ
(k

2

) k

2η
. (4.19)

Hence, for sufficiently large n the right-hand side of (4.19) becomes negative,
which contradicts (4.9). The case where Ẇ (x1(·), x2(·)) is lower bounded
leads to a similar contradiction using identical arguments. Thus, in either
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case, W (x1(t), x2(t)) → 0 as t → ∞, and hence, it follows from (4.13) that
x1(t) → 0 as t → ∞, proving asymptotic stability of (4.6) and (4.7) with
respect to x1.

iv) Lyapunov stability uniformly in x20 follows from ii). Next, let
ε > 0 and δ = δ(ε) > 0 be such that for every x10 ∈ Bδ(0), x1(t) ∈ Bε(0),
t ≥ 0, (the existence of such a (δ, ε) pair follows from uniform Lyapunov
stability), and assume that (4.15) holds. Since (4.15) implies (4.10) it follows
that for every x10 ∈ Bδ(0), V (x1(t), x2(t)) is a nonincreasing function of
time and, since V (·, ·) is bounded from below, it follows from the monotone
convergence theorem (Theorem 2.10) that there exists L ≥ 0 such that
limt→∞ V (x1(t), x2(t)) = L. Now, suppose that for some x10 ∈ Bδ(0), ad

absurdum, L > 0 so that DL
△
= {x1 ∈ Bε(0) : V (x1, x2) ≤ L for all x2 ∈ Rn2}

is nonempty and x1(t) 6∈ DL, t ≥ 0. Thus, as in the proof of i), there exists

δ̂ > 0 such that Bδ̂(0) ⊂ DL. Hence, it follows from (4.15) that for the given
x10 ∈ Bδ(0) \ DL and t ≥ 0,

V (x1(t), x2(t)) = V (x10, x20) +

∫ t

0
V̇ (x1(s), x2(s))ds

≤ V (x10, x20) −
∫ t

0
γ(‖x1(s)‖)ds

≤ V (x10, x20) − γ(δ̂)t.

Letting t > V (x10,x20)−L

γ(δ̂)
, it follows that V (x1(t), x2(t)) < L, which is a

contradiction. Hence, L = 0, and, since x10 ∈ Bδ(0) was chosen arbitrarily,
it follows that V (x1(t), x2(t)) → 0 as t → ∞ for all x10 ∈ Bδ(0). Now,
since V (x1(t), x2(t)) ≥ α(‖x1(t)‖) ≥ 0, it follows that α(‖x1(t)‖) → 0
or, equivalently, x1(t) → 0 t → ∞, establishing asymptotic stability with
respect to x1 uniformly in x20.

v) Let δ > 0 be such that ‖x10‖ < δ. Since α(·) is a class K∞ function,
it follows that there exists ε > 0 such that V (x10, x20) < α(ε). Now, (4.14)
implies that V (x1(t), x2(t)) is a nonincreasing function of time, and hence,
it follows from (4.9) that α(‖x1(t)‖) ≤ V (x1(t), x2(t)) ≤ V (x10, x20) < α(ε),
t ≥ 0. Hence, x1(t) ∈ Bε(0), t ≥ 0. Now, the proof follows as in the proof of
iii).

vi) Let δ > 0 be such that ‖x10‖ < δ. Since α(·) is a class K∞ function,
it follows that there exists ε > 0 such that β(δ) ≤ α(ε). Now, (4.15) implies
that V (x1(t), x2(t)) is a nonincreasing function of time, and hence, it follows
from (4.11) that α(‖x1(t)‖) ≤ V (x1(t), x2(t)) ≤ V (x10, x20) < β(δ) ≤ α(ε),
t ≥ 0. Hence, x1(t) ∈ Bε(0), t ≥ 0. Now, the proof follows as in the proof of
iv).
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vii) Let ε > 0 and Bε(0) be given as in the proof of i) and let η
△
= αεp

and δ =
(

η
β

)1/p
. Now, (4.17) implies that V̇ (x1, x2) ≤ 0, and hence, as in

the proof of ii), it follows that for all (x10, x20) ∈ Bδ(0)×Rn2 , x1(t) ∈ Bε(0),
t ≥ 0. Furthermore, it follows from (4.16) and (4.17) that for all t ≥ 0 and
(x10, x20) ∈ Bδ(0) × Rn2 ,

V̇ (x1(t), x2(t)) ≤ −γ‖x1(t)‖p ≤ −γ
β
V (x1(t), x2(t)),

which implies that

V (x1(t), x2(t)) ≤ V (x10, x20)e
− γ

β
t.

It now follows from (4.16) that

α‖x1(t)‖p ≤ V (x1(t), x2(t)) ≤ V (x10, x20)e
− γ

β
t ≤ β‖x10‖pe−

γ

β
t, t ≥ 0,

and hence,

‖x1(t)‖ ≤
(

β

α

)1/p

‖x10‖e−
γ

βp
t, t ≥ 0,

establishing exponential stability with respect to x1 uniformly in x20.

viii) The proof follows as in vi) and vii).

By setting n1 = n and n2 = 0, Theorem 4.1 specializes to the case
of nonlinear autonomous systems of the form ẋ1(t) = f1(x1(t)). In this
case, Lyapunov (respectively, asymptotic) stability with respect to x1 and
Lyapunov (respectively, asymptotic) stability with respect to x1 uniformly
in x20 are equivalent to the classical Lyapunov (respectively, asymptotic)
stability of nonlinear autonomous systems presented in Section 3.2. In
particular, note that it follows from Problems 3.75 and 3.76 that there exists
a continuously differentiable function V : D → R such that (4.9), (4.11), and
(4.15) hold if and only if V (0) = 0, V (x1) > 0, x1 6= 0, V ′(x1)f1(x1) < 0,
x1 6= 0. In addition, if D = Rn1 and there exist class K∞ functions α(·), β(·)
and a continuously differentiable function V (·) such that (4.9), (4.11), and
(4.15) hold if and only if V (0) = 0, V (x1) > 0, x1 6= 0, V ′(x1)f1(x1) < 0,
x1 6= 0, and V (x1) → ∞ as ‖x1‖ → ∞. Hence, in this case, Theorem
4.1 collapses to the classical Lyapunov stability theorem for autonomous
systems given in Section 3.2.

It is important to note that there is a key difference between the
partial stability definitions given in Definition 4.1 and the definitions of
partial stability given in [374, 448]. In particular, the partial stability
definitions given in [374, 448] require that both the initial conditions x10

and x20 lie in a neighborhood of the origin, whereas in Definition 4.1 x20

can be arbitrary. As will be seen in the next section, this difference allows
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us to unify autonomous partial stability theory with time-varying stability
theory. Lyapunov (respectively, asymptotic) stability with respect to x1

given in Definition 4.1 is referred to in [448] as x1-stability (respectively, x1-
asymptotic stability) for large x2 while Lyapunov (respectively, asymptotic)
stability with respect to x1 uniformly in x20 given in Definition 4.1 is referred
to in [448] as x1-stability (respectively, x1-asymptotic stability) with respect
to the whole of x2. Note that if a nonlinear dynamical system is Lyapunov
(respectively, asymptotically) stable with respect to x1 in the sense of
Definition 4.1, then the system is x1-stable (respectively, x1-asymptotically
stable) in the sense of the definition given in [374, 448]. Furthermore, if
there exist a continuously differentiable function V : D × Rn2 → R and a
class K function α(·) (respectively, class K functions β(·) and γ(·)) such
that V (0, 0) = 0 and (4.9) and (4.10) (respectively, (4.9), (4.11), and
(4.15)) hold, then the nonlinear dynamical system (4.6) and (4.7) is x1-
stable (respectively, uniformly asymptotically x1-stable with respect to x20)
in the sense of the definition given in [448]. It is important to note that
the condition V (0, x2) = 0, x2 ∈ Rn2 , allows us to prove partial stability
in the sense of Definition 4.1. Finally, an additional difference between our
formulation of the partial stability problem and the partial stability problem
considered in [374, 448] is in the treatment of the equilibrium of (4.6) and
(4.7). Specifically, in our formulation, we require the partial equilibrium
condition f1(0, x2) = 0 for every x2 ∈ Rn2 , whereas in [374,448], the authors
require the equilibrium condition f1(0, 0) = 0 and f2(0, 0) = 0.

Example 4.1. In this example, we use Theorem 4.1 to show that
the rotational/translational proof-mass model (4.4) and (4.5) is partially
Lyapunov stable with respect to q, q̇, and θ̇. To show this, let x1 = q,
x2 = q̇, x3 = θ, x4 = θ̇ and consider the Lyapunov function candidate

V (x1, x2, x3, x4) = 1
2 [kx2

1 + (M +m)x2
2 + (I +me2)x2

4 + 2mex2x4 cos x3].
(4.20)

Note that V (x1, x2, x3, x4) = 1
2kx

2
1 + 1

2 x̃
TP (x3)x̃, where x̃ = [x2 x4]

T and

P (x3) =

[

M +m me cos x3

me cos x3 I +me2

]

. (4.21)

Since

2λmin(P (x3)) = M +m+ I +me2

−
√

(M +m− I −me2)2 + 4m2e2 cos2 x3, (4.22)

2λmax(P (x3)) = M +m+ I +me2

+
√

(M +m− I −me2)2 + 4m2e2 cos2 x3, (4.23)

it follows that αminI2 ≤ 2P (x3) ≤ αmaxI2, x3 ∈ R, where

αmin
△
= M +m+ I +me2 −

√

(M +m− I −me2)2 + 4m2e2, (4.24)
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Figure 4.4 Spherical pendulum.

αmax
△
= M +m+ I +me2 +

√

(M +m− I −me2)2 + 4m2e2. (4.25)

Hence, it follows that 1
2x

2
1 + αmin

4 (x2
2 + x2

4) ≤ V (x1, x2, x3, x4) ≤ 1
2x

2
1 +

αmax

4 (x2
2 + x2

4), which implies that V (·) satisfies (4.9) and (4.11). Now,

since V̇ (x1, x2, x3, x4) = 0, it follows from ii) of Theorem 4.1 that (4.4) and
(4.5) is Lyapunov stable with respect to x1, x2, and x4 uniformly in x30.
Furthermore, since the system involves a nonlinear coupling of an undamped
oscillator with a rotational rigid body mode it follows that x3(t) does not
converge as t→ ∞. △

Example 4.2. In this example, we apply Theorem 4.1 to a Lagrange-
Dirichlet problem involving a conservative Euler-Lagrange system with
a nonnegative-definite kinetic energy function T and a positive-definite
potential function U . Specifically, we consider the motion of the spherical
pendulum shown in Figure 4.4, where θ denotes the angular position of the
pendulum with respect to vertical z-axis, φ denotes the angular position of
the pendulum in the x-y plane, m denotes the mass of the pendulum, L
denotes the length of the pendulum, k denotes the torsional spring stiffness,
and g denotes the gravitational acceleration. Defining q

△
= [θ φ]T to be the

generalized system positions and q̇
△
= [θ̇ φ̇]T to be the generalized system

velocities, it follows that the governing equations of motion are given by the
Euler-Lagrange equation

d

dt

(

∂L
∂q̇

(q(t), q̇(t))

)

−
(

∂L
∂q

(q(t), q̇(t))

)

= 0, q(0) = q0, q̇(0) = q̇0, t ≥ 0,

(4.26)

where L(q, q̇) = T (q, q̇) − U(q) denotes the system Lagrangian, T (q, q̇)
△
=

1
2m[(Lθ̇)2 + (φ̇L sin θ)2] denotes the system kinetic energy, and U(q)

△
=

mgL(1 − cos θ) + 1
2kφ

2 denotes the system potential energy. Equivalently,
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(4.26) can be rewritten as

θ̈(t) − sin θ(t) cos θ(t)φ̇2(t) + (g/L) sin θ(t) = 0,

θ(0) = θ0, θ̇(0) = θ̇0, t ≥ 0, (4.27)

sin2 θ(t)φ̈(t) + 2 sin θ(t) cos θ(t)φ̇(t)θ̇(t) + (k/mL2)φ(t) = 0,

φ(0) = φ0, φ̇(0) = φ̇0. (4.28)

Next, consider the Lagrange-Dirichlet energy function V (q, q̇) = T (q,
q̇) + U(q) and note that since the system kinetic energy function T (q, q̇)
is not positive definite in q̇ at θ such that sin θ = 0, the function V (q, q̇)
cannot be used as a Lyapunov function candidate to analyze the stability
of the system using standard Lyapunov theory. However, the Lagrange-
Dirichlet energy function V (q, q̇) can be used as a valid Lyapunov function
within partial stability theory to guarantee partial Lyapunov stability with
respect to [θ φ θ̇]T. Specifically, let x1 = [θ φ θ̇]T, let x2 = φ̇, and let
α(s) = max{mgL(1 − cos(s), 1

2ks
2, 1

2mL
2s2} and ‖x1‖ = max{|θ|, |φ|, |θ̇|}.

Now, note that α(·) is a class K function and V (x1, x2) = V (q, q̇) ≥ α(‖x1‖).
Furthermore, note that V (0, x2) = 0, x2 ∈ R, and V̇ (x1, x2) = 0. Now, it
follows from i) of Theorem 4.1 that the Euler-Lagrange system given by
(4.27) and (4.28) is partially Lyapunov stable with respect to x1. Finally, it
can be easily shown via simulations that the Euler-Lagrange system given
by (4.27) and (4.28) is not Lyapunov stable in the standard sense. △

Another important application of partial stability theory is the
unification it provides between time-invariant stability theory and stability
theory for time-varying systems. To see this, consider the time-varying
nonlinear dynamical system given by

ẋ(t) = f(t, x(t)), x(t0) = x0, t ≥ t0, (4.29)

where x(t) ∈ Rn, t ≥ t0, and f : [t0, t1)×Rn → Rn. Now, define x1(τ)
△
= x(t)

and x2(τ)
△
= t, where τ

△
= t − t0, and note that the solution x(t), t ≥ t0,

to the nonlinear time-varying dynamical system (4.29) can be equivalently
characterized by the solution x1(τ), τ ≥ 0, to the nonlinear autonomous
dynamical system

ẋ1(τ) = f(x2(τ), x1(τ)), x1(0) = x0, τ ≥ 0, (4.30)

ẋ2(τ) = 1, x2(0) = t0, (4.31)

where ẋ1(·) and ẋ2(·) denote differentiation with respect to τ . However,
in this case, stability results for time-invariant systems do not apply to
the augmented system (4.30) and (4.31) since one of the states, namely, the
state x2 representing time, is unbounded. However, writing the time-varying
nonlinear system (4.29) as (4.30) and (4.31), it is clear that partial stability
theory provides a natural formulation for addressing stability theory for
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autonomous and nonautonomous systems within a unified framework. The
following example demonstrates the utility of Theorem 4.1 to the stability
of time-varying systems.

Example 4.3. Consider the spring-mass-damper system with time-
varying damping coefficient given by

q̈(t) + c(t)q̇(t) + kq(t) = 0, q(0) = q0, q̇(0) = q̇0, t ≥ 0. (4.32)

This is an interesting system to analyze since physical intuition would lead
one to surmise that if c(t) ≥ α > 0, t ≥ 0, then the zero solution (q(t), q̇(t)) ≡
(0, 0) to (4.32) is asymptotically stable since we have constant dissipation of
energy. However, this is not the case. A simple counterexample (see [424]) is
c(t) = 2+et, k = 1, with q(0) = 2 and q̇(0) = −1, which gives q(t) = 1+e−t,
t ≥ 0, and hence, q(t) → 1 as t → ∞. This is due to the fact that damping
increases so fast that the system halts at q = 1.

To analyze (4.32) using Theorem 4.1, we consider c(t) = 3 + sin t and
k > 1. Now, (4.32) can be equivalently written as

ż1(t) = z2(t), z1(0) = q0, t ≥ 0, (4.33)

ż2(t) = −kz1(t) − c(t)z2(t), z2(0) = q̇0, (4.34)

where z1
△
= q and z2

△
= q̇. Next, let n1 = 2, n2 = 1, x1 = [z1, z2]

T,
x2 = t, f1(x1, x2) = [xT

1 v, −xT
1 h(x2)]

T, and f2(x1, x2) = 1, where h(x2) =
[k, c(x2)]

T and v = [0, 1]T. Now, the solution (z1(t), z2(t)), t ≥ 0, to the
nonlinear time-varying dynamical system (4.33) and (4.34) is equivalently
characterized by the solution x1(t), t ≥ 0, to the nonlinear autonomous
dynamical system

ẋ1(t) = f1(x1(t), x2(t)), x1(0) = [q0, q̇0]
T, t ≥ 0, (4.35)

ẋ2(t) = 1, x2(0) = 0. (4.36)

To examine the stability of this system, consider the Lyapunov
function candidate V (x1, x2) = xT

1 P (x2)x1, where

P (x2) =

[

k + 3 + sin(x2) 1
1 1

]

.

Note that since

xT
1 P1x1 ≤ V (x1, x2) ≤ xT

1 P2x1, (x1, x2) ∈ R2 × R, (4.37)

where

P1 =

[

k + 2 1
1 1

]

, P2 =

[

k + 4 1
1 1

]

,
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it follows that V (x1, x2) satisfies (4.16) with D = R2 and p = 2. Next, since

V̇ (x1, x2) = −2xT
1 [R+R1(x2)]x1

≤ −2xT
1Rx1

≤ −min{k − 1, 1}‖x1‖2
2, (4.38)

where R = diag[k − 1, 1] > 0 and R1(x2) = diag[1 − 1
2 cos(x2), 1 + sin(x2)],

it follows from v) and vi) of Theorem 4.1 that the dynamical system (4.35)
and (4.36) is globally exponentially stable with respect to x1 uniformly in
x20. △

In the case of time-invariant systems the Barbashin-Krasovskii-LaSalle
invariance theorem (Theorem 3.3) shows that bounded system trajectories
of a nonlinear dynamical system approach the largest invariant set M
characterized by the set of all points in a compact set D of the state
space where the Lyapunov derivative identically vanishes. In the case of
partially stable systems, however, it is not generally clear how to define
the set M since V̇ (x1, x2) is a function of both x1 and x2. However, if
V̇ (x1, x2) ≤ −W (x1) ≤ 0, where W : D → R is continuous and nonnegative
definite, then a set R ⊃ M can be defined as the set of points where W (x1)
identically vanishes, that is, R = {x1 ∈ D : W (x1) = 0}. In this case, as
shown in the next theorem, the partial system trajectories x1(t) approach
R as t tends to infinity. For this result, the following lemma, known as
Barbalat’s lemma, is necessary.

Lemma 4.1 (Barbalat’s Lemma). Let σ : [0,∞) → R be a uniformly

continuous function and suppose that limt→∞
∫ t
0 σ(s)ds exists and is finite.

Then, limt→∞ σ(t) = 0.

Proof. Suppose, ad absurdum, that lim supt→∞ |σ(t)| > 0 and let α1 ∈
R be such that 0 < α1 < lim supt→∞ |σ(t)|. In this case, for every T1 > 0,
there exists t′1 ≥ T1 such that |σ(t′1)| ≥ α1. Next, since σ : [0,∞) → R is
uniformly continuous, it follows that there exists α2 = α2(α1) > 0 such that
|σ(t+ τ) − σ(t)| < α1/2 for all t ≥ 0 and τ ∈ [0, α2]. Hence,

|σ(t)| = |σ(t) − σ(t′1) + σ(t′1)|
≥ |σ(t′1)| − |σ(t) − σ(t′1)|
> α1/2, t ∈ [t′1, t

′
1 + α2]. (4.39)

Now, since σ : [0,∞) → R is continuous and |σ(t)| > α1/2 > 0, t ∈ [t′1, t
′
1 +

α2], it follows that the sign of σ(t) is constant over t ∈ [t′1, t
′
1 + α2]. Hence,

∣

∣

∣

∣

∣

∫ t′1+α2

t′1

σ(t)dt

∣

∣

∣

∣

∣

=

∫ t′1+α2

t′1

|σ(t)|dt > 1
2α1α2. (4.40)

Now, repeating the above argument it can be shown that there exists a
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sequence {t′i}∞i=1 such that t′i + α2 ≤ t′i+1, i = 1, 2, . . ., and
∫ t′i+α2

t′i
|σ(t)dt >

1
2α1α2, i = 1, 2, . . .. Hence,

∫ ∞

0
|σ(t)|dt ≥

∞
∑

i=1

∫ t′i+α2

t′i

|σ(t)|dt > α1

∞
∑

i=1

α2 = ∞, (4.41)

which is a contradiction.

Theorem 4.2. Consider the nonlinear dynamical system (4.6) and
(4.7), and assume D × Rn2 is a positively invariant set with respect to
(4.6) and (4.7) where f1(·, x2) is Lipschitz continuous in x1, uniformly
in x2. Furthermore, assume there exist functions V : D × Rn2 → R,
W,W1,W2 : D → R such that V (·, ·) is continuously differentiable, W1(·)
and W2(·) are continuous and positive definite, W (·) is continuous and
nonnegative definite, and, for all (x1, x2) ∈ D × Rn2 ,

W1(x1) ≤ V (x1, x2) ≤W2(x1), (4.42)

V̇ (x1, x2) ≤ −W (x1). (4.43)

Then there exists D0 ⊆ D such that for all (x10, x20) ∈ D0 × Rn2 , x1(t) →
R △

= {x1 ∈ D : W (x1) = 0} as t→ ∞. If, in addition, D = Rn1 and W1(·) is

radially unbounded, then for all (x10, x20) ∈ Rn1 × Rn2 , x1(t) → R △
= {x1 ∈

Rn1 : W (x1) = 0} as t → ∞.

Proof. Assume (4.42) and (4.43) hold. Then it follows from Theorem
4.1 that the nonlinear dynamical system given by (4.6) and (4.7) is Lyapunov
stable with respect to x1 uniformly in x20. Let ε > 0 be such that Bε(0) ⊂ D
and let δ = δ(ε) > 0 be such that if x10 ∈ Bδ(0), then x1(t) ∈ Bε(0),
t ≥ 0. Now, since V (x1(t), x2(t)) is nonincreasing and bounded from below
by zero, it follows from the monotone convergence theorem (Theorem 2.10)
that limt→∞ V (x1(t), x2(t)) exists and is finite. Hence, since for every t ≥ 0,
∫ t

0
W (x1(τ))dτ ≤ −

∫ t

0
V̇ (x1(τ), x2(τ))dτ = V (x10, x20) − V (x1(t), x2(t)),

it follows that limt→∞
∫ t
0 W (x1(τ))dτ exists and is finite.

Next, since by (4.42) ‖x1(t)‖ ≤ ε, t ≥ 0, and, for every x2 ∈ Rn2 ,
f1(·, x2) is Lipschitz continuous on D uniformly in x2, it follows that

‖x1(t2) − x1(t1)‖ =

∥

∥

∥

∥

∫ t2

t1

f1(x1(τ), x2(τ))dτ

∥

∥

∥

∥

≤ L1

∫ t2

t1

‖x1(τ)‖dτ

≤ L1ε(t2 − t1), t2 ≥ t1, (4.44)
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where L1 is the Lipschitz constant of f1(·, ·) on {x1 ∈ D : ‖x1‖ ≤ ε}. Now,
for every ε̂ > 0, letting δ = δ(ε̂) = ε̂

L1ε
yields

‖x1(t2) − x1(t1)‖ < ε̂, t2 − t1 ≤ δ,

which shows that x1(·) is uniformly continuous. Next, since x1(·) is
uniformly continuous and W (·) is continuous on a compact set Bε(0), it
follows that W (x1(t)) is uniformly continuous at every t ≥ 0. Now, it
follows from Barbalat’s lemma (Lemma 4.1) that W (x1(t)) → 0 as t → ∞.
Finally, if, in addition, D = Rn1 and W1(·) is radially unbounded, then, as
in the proof of iv) of Theorem 4.1, for every x10 ∈ Rn1 there exists ε, δ > 0
such that x10 ∈ Bδ(0) and x1(t) ∈ Bε(0), t ≥ 0. Now, the proof follows by
repeating the above arguments.

Theorem 4.2 shows that the partial system trajectories x1(t) approach
R as t tends to infinity. However, since the positive limit set of the partial
trajectory x1(t) is a subset of R, Theorem 4.2 is a weaker result than the
standard invariance principle wherein one would conclude that the partial
trajectory x1(t) approaches the largest invariant set M contained in R. This
is not true in general for partially stable systems since the positive limit set of
a partial trajectory x1(t), t ≥ 0, is not an invariant set. However, in the case
where f1(·, x2) is periodic, almost periodic, or asymptotically independent of
x2, then an invariance principle for partially stable systems can be derived.
This result is left as an exercise for the reader.

Next, we state two converse theorems for partial stability. The proofs
of these theorems are virtually identical to the proofs of the converse
theorems given in Section 3.5 and are left as exercises for the reader.

Theorem 4.3. Assume that the nonlinear dynamical system (4.6) and
(4.7) is asymptotically stable with respect to x1 uniformly in x20 and f1 :
D×Rn2 → Rn1 and f2 : D×Rn2 → Rn2 are continuously differentiable. Let
δ > 0 be such that Bδ(0) ⊂ D and x10 ∈ Bδ(0) implies that limt→∞ x1(t) = 0

uniformly in x10 and x20 for all x20 ∈ Rn2 , and assume ∂f
∂x1

is bounded on
Bδ(0) uniformly in x2. Then there exist a continuously differentiable function
V : Bδ(0) × Rn2 → R and class K functions α(·), β(·), and γ(·) such that

α(‖x1‖) ≤ V (x1, x2) ≤ β(‖x1‖), (x1, x2) ∈ Bδ(0) × Rn2 , (4.45)

V̇ (x1, x2) ≤ −γ(‖x1‖), (x1, x2) ∈ Bδ(0) × Rn2 . (4.46)

Theorem 4.4. Assume that the nonlinear dynamical system (4.6) and
(4.7) is exponentially stable with respect to x1 uniformly in x20 and f1 : D×
Rn2 → Rn1 and f2 : D×Rn2 → Rn2 are continuously differentiable. Let δ > 0
be such that Bδ(0) ⊂ D and x10 ∈ Bδ(0) implies that ‖x1(t)‖ ≤ α‖x10‖e−βt

for some α, β > 0 and for all t ≥ 0 and x20 ∈ Rn2 , and assume ∂f
∂x1

is bounded
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on Bδ(0) uniformly in x2. Then, for every p > 1, there exist a continuously
differentiable function V : Bδ(0)×Rn2 → R and positive constants α, β, and
γ such that

α‖x1‖p ≤ V (x1, x2) ≤ β‖x1‖p, (x1, x2) ∈ Bδ(0) × Rn2 , (4.47)

V̇ (x1, x2) ≤ −γ‖x1‖p, (x1, x2) ∈ Bδ(0) × Rn2 . (4.48)

Finally, we close this section by addressing a partial stability notion
wherein both initial conditions x10 and x20 lie in a neighborhood of the
origin. For this result we modify Definition 4.1 to reflect the fact that the
entire initial state x0 = [xT

10, x
T
20]

T lies in the neighborhood of the origin so
that ‖x10‖ < δ is replaced by ‖x0‖ < δ in the definition. Furthermore, for
this result we assume f1 : D × Rn2 → Rn1 and f2 : D × Rn2 → Rn2 are such
that f1(0, 0) = 0 and f2(0, 0) = 0.

Theorem 4.5. Consider the nonlinear dynamical system (4.6) and
(4.7). Then the following statements hold:

i) If there exist a continuously differentiable function V : D × Rn2 → R

and a class K function α(·) such that V (0, 0) = 0,

α(‖x1‖) ≤ V (x1, x2), (x1, x2) ∈ D × Rn2 , (4.49)

V̇ (x1, x2) ≤ 0, (x1, x2) ∈ D × Rn2 , (4.50)

then the nonlinear dynamical system given by (4.6) and (4.7) is
Lyapunov stable with respect to x1.

ii) If there exist a continuously differentiable function V : D × Rn2 → R

and class K functions α(·), β(·) satisfying (4.49), (4.50), and

V (x1, x2) ≤ β(‖x‖), (x1, x2) ∈ D × Rn2 , (4.51)

where x
△
= [xT

1 , x
T
2 ]T, then the nonlinear dynamical system given by

(4.6) and (4.7) is Lyapunov stable with respect to x1 uniformly in x20.

iii) If there exist continuously differentiable functions V : D × Rn2 → R

and W : D× Rn2 → R, and class K functions α(·), β(·), and γ(·) such
that Ẇ (x1(·), x2(·)) is bounded from below or above, (4.49) holds, and

β(‖x‖) ≤ W (x1, x2), (x1, x2) ∈ D × Rn2 , (4.52)

V̇ (x1, x2) ≤ −γ(W (x1, x2)), (x1, x2) ∈ D × Rn2 , (4.53)

then the nonlinear dynamical system given by (4.6) and (4.7) is
asymptotically stable with respect to x1.

iv) If there exist a continuously differentiable function V : D × Rn2 → R

and class K functions α(·), β(·), γ(·) satisfying (4.49), (4.51), and

V̇ (x1, x2) ≤ −γ(‖x‖), (x1, x2) ∈ D × Rn2 , (4.54)
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then the nonlinear dynamical system given by (4.6) and (4.7) is
asymptotically stable with respect to x1 uniformly in x20.

v) If D = Rn1 and there exist continuously differentiable functions V :
Rn1 × Rn2 → R and W : Rn1 × Rn2 → R, class K functions β(·), γ(·),
and a class K∞ function α(·) such that Ẇ (x1(·), x2(·)) is bounded from
below or above, and (4.49), (4.52), and (4.53) hold, then the nonlinear
dynamical system given by (4.6) and (4.7) is globally asymptotically
stable with respect to x1.

vi) If D = Rn1 and there exist a continuously differentiable function
V : Rn1 × Rn2 → R, a class K function γ(·), and class K∞ functions
α(·), β(·) satisfying (4.49), (4.51), and (4.54), then the nonlinear
dynamical system given by (4.6) and (4.7) is globally asymptotically
stable with respect to x1 uniformly in x20.

vii) If there exist a continuously differentiable function V : D × Rn2 → R

and positive constants α, β, γ, p ≥ 1 satisfying

α‖x1‖p ≤ V (x1, x2) ≤ β‖x‖p, (x1, x2) ∈ D × Rn2 , (4.55)

V̇ (x1, x2) ≤ −γ‖x‖p, (x1, x2) ∈ D × Rn2 , (4.56)

then the nonlinear dynamical system given by (4.6) and (4.7) is
exponentially stable with respect to x1 uniformly in x20.

viii) If D = Rn1 and there exist a continuously differentiable function V :
Rn1 × Rn2 → R and positive constants α, β, γ, p ≥ 1 satisfying (4.55)
and (4.56), then the nonlinear dynamical system given by (4.6) and
(4.7) is globally exponentially stable with respect to x1 uniformly in
x20.

Proof. The proof is virtually identical to the proof of Theorem 4.1
and is left as an exercise for the reader.

4.3 Stability Theory for Nonlinear Time-Varying Systems

In this section, we use the results of Section 4.2 to extend Lyapunov’s direct
method to nonlinear time-varying systems, thereby providing a unification
between partial stability theory for autonomous systems and stability theory
for time-varying systems. Specifically, we consider the nonlinear time-
varying dynamical system

ẋ(t) = f(t, x(t)), x(t0) = x0, t ≥ t0, (4.57)

where x(t) ∈ D, t ≥ t0, D ⊆ Rn such that 0 ∈ D, f : [t0, t1) × D → Rn is
such that f(·, ·) is jointly continuous in t and x, and for every t ∈ [t0, t1),
f(t, 0) = 0 and f(t, ·) is locally Lipschitz in x uniformly in t for all t in
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compact subsets of [0,∞). Note that under the above assumptions the
solution x(t), t ≥ t0, to (4.57) exists and is unique over the interval [t0, t1).
The following definition provides eight types of stability for the nonlinear
time-varying dynamical system (4.57).

Definition 4.2. i) The nonlinear time-varying dynamical system (4.57)
is Lyapunov stable if, for every ε > 0 and t0 ∈ [0,∞), there exists δ =
δ(ε, t0) > 0 such that ‖x0‖ < δ implies that ‖x(t)‖ < ε for all t ≥ t0.

ii) The nonlinear time-varying dynamical system (4.57) is uniformly
Lyapunov stable if, for every ε > 0, there exists δ = δ(ε) > 0 such that
‖x0‖ < δ implies that ‖x(t)‖ < ε for all t ≥ t0 and for all t0 ∈ [0,∞).

iii) The nonlinear time-varying dynamical system (4.57) is asymptot-
ically stable if it is Lyapunov stable and for every t0 ∈ [0,∞), there exists
δ = δ(t0) > 0 such that ‖x0‖ < δ implies that limt→∞ x(t) = 0.

iv) The nonlinear time-varying dynamical system (4.57) is uniformly
asymptotically stable if it is uniformly Lyapunov stable and there exists δ > 0
such that ‖x0‖ < δ implies that limt→∞ x(t) = 0 uniformly in t0 and x0 for
all t0 ∈ [0,∞).

v) The nonlinear time-varying dynamical system (4.57) is globally
asymptotically stable if it is Lyapunov stable and limt→∞ x(t) = 0 for all
x0 ∈ Rn and t0 ∈ [0,∞).

vi) The nonlinear time-varying dynamical system (4.57) is globally
uniformly asymptotically stable if it is uniformly Lyapunov stable and
limt→∞ x(t) = 0 uniformly in t0 and x0 for all x0 ∈ Rn and t0 ∈ [0,∞).

vii) The nonlinear time-varying dynamical system (4.57) is (uniformly)
exponentially stable if there exist scalars α, β, δ > 0 such that ‖x0‖ < δ
implies that ‖x(t)‖ ≤ α‖x0‖e−βt, t ≥ t0 and t0 ∈ [0,∞).

viii) The nonlinear time-varying dynamical system (4.57) is globally
(uniformly) exponentially stable if there exist scalars α, β > 0 such that
‖x(t)‖ ≤ α‖x0‖e−βt, t ≥ t0, for all x0 ∈ Rn and t0 ∈ [0,∞).

Note that uniform asymptotic stability is equivalent to uniform
Lyapunov stability and the existence of δ > 0 such that, for every ε > 0,
there exists T = T (ε) > 0 such that ‖x0‖ < δ and t0 ≥ 0 implies that
‖x(t)‖ < ε for all t ≥ t0 + T (ε). That is, for every initial condition in a ball
of radius δ at time t = t0, the graph of the solution of (4.57) is guaranteed
to be inside a given cylinder for all t > t0 + T (ε) (see Figure 4.5). Uniform
Lyapunov stability and uniform asymptotic stability can be additionally
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characterized by class K and class KL functions. For details, see Problems
4.5 and 4.6.

εδ

t

x1

x2

t0 t0 + T (ε)

Figure 4.5 Uniform asymptotic stability.

Example 4.4. To elucidate the difference between Lyapunov stability
and uniform Lyapunov stability consider the scalar linear dynamical system
adopted from [307] given by

ẋ(t) = (6t sin t− 2t)x(t), x(t0) = x0, t ≥ t0. (4.58)

The solution of (4.58) is given by

x(t) = x(t0)e
∫

t

t0
(6s sin s−2s)ds

= x(t0)e
[6 sin t−6t cos t−t2−6 sin t0+6t0 cos t0+t20]. (4.59)

Clearly, for every fixed t0, the term −t2 in (4.59) will eventually dominate,
which shows that the exponential term in (4.59) is bounded by a constant
σ(t0) dependent on t0 for all t ≥ t0. Hence, |x(t)| < |x(t0)|σ(t0), t ≥ t0.
Now, given ε > 0, we can choose δ = δ(ε, t0) = ε/σ(t0), which shows that
|x(t0)| < δ implies |x(t)| < ε, t ≥ t0, and hence, the zero solution x(t) ≡ 0
to (4.58) is Lyapunov stable.

Next, suppose t0 takes the successive values t0 = 2nπ, n = 0, 1, 2, . . .,
and x(t) is evaluated π seconds later for each n. In this case,

x(t0 + π) = x(t0)e
[(4n+1)(6−π)π], (4.60)
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which implies that, for x(t0) 6= 0,

x(t0 + π)

x(t0)
= e[(4n+1)(6−π)π] → ∞ as n→ ∞. (4.61)

Since σ(t0) ≥ e[(4n+1)(6−π)π] it follows that σ(t0) → ∞ as n → ∞. Thus,
given ε > 0, for stability we need δ = ε/σ(t0) → 0 as t0 → ∞, which shows
that we cannot choose δ independent of t0 to satisfy the requirement for
uniform Lyapunov stability. △

Next, using Theorem 4.1 we present sufficient conditions for stability
of the nonlinear time-varying dynamical system (4.57). For the following
result define

V̇ (t, x)
△
=
∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x),

for a given continuously differentiable function V : [0,∞) ×D → R.

Theorem 4.6. Consider the time-varying dynamical system given by
(4.57). Then the following statements hold:

i) If there exist a continuously differentiable function V : [0,∞)×D → R

and a class K function α(·) such that

V (t, 0) = 0, t ∈ [0,∞), (4.62)

α(‖x‖) ≤ V (t, x), (t, x) ∈ [0,∞) ×D, (4.63)

V̇ (t, x) ≤ 0, (t, x) ∈ [0,∞) ×D, (4.64)

then the nonlinear time-varying dynamical system given by (4.57) is
Lyapunov stable.

ii) If there exist a continuously differentiable function V : [0,∞)×D → R

and class K functions α(·), β(·) satisfying (4.63), (4.64), and

V (t, x) ≤ β(‖x‖), (t, x) ∈ [0,∞) ×D, (4.65)

then the nonlinear time-varying dynamical system given by (4.57) is
uniformly Lyapunov stable.

iii) If there exist continuously differentiable functions V : [0,∞)×D → R

and W : [0,∞) × D → R, and class K functions α(·), β(·), and γ(·)
such that Ẇ (·, x(·)) is bounded from below or above, (4.62) and (4.63)
hold, and

W (t, 0) = 0, t ∈ [0,∞), (4.66)

β(‖x‖) ≤ W (t, x), (t, x) ∈ [0,∞) ×D, (4.67)

V̇ (t, x) ≤ −γ(W (t, x)), (t, x) ∈ [0,∞) ×D, (4.68)

then the zero solution x(t) ≡ 0 to (4.57) is asymptotically stable.
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iv) If there exist a continuously differentiable function V : [0,∞)×D → R

and class K functions α(·), β(·), γ(·) satisfying (4.63), (4.65), and

V̇ (t, x) ≤ −γ(‖x‖), (t, x) ∈ [0,∞) ×D, (4.69)

then the nonlinear time-varying dynamical system given by (4.57) is
uniformly asymptotically stable.

v) If D = Rn and there exist continuously differentiable functions V :
[0,∞)×D → R and W : [0,∞)×D → R, class K functions β(·), γ(·),
and a class K∞ function α(·) such that Ẇ (·, x(·)) is bounded from
below or above, and (4.62), (4.63), and (4.66)–(4.68) hold, then the
zero solution x(t) ≡ 0 to (4.57) is globally asymptotically stable.

vi) If D = Rn and there exist a continuously differentiable function V :
[0,∞)×Rn → R, a class K function γ(·), class K∞ functions α(·), β(·)
satisfying (4.63), (4.65), and (4.69), then the nonlinear time-varying
dynamical system given by (4.57) is globally uniformly asymptotically
stable.

vii) If there exist a continuously differentiable function V : [0,∞)×D → R

and positive constants α, β, γ, p such that p ≥ 1 and

α‖x‖p ≤ V (t, x) ≤ β‖x‖p, (t, x) ∈ [0,∞) ×D, (4.70)

V̇ (t, x) ≤ −γ‖x‖p, (t, x) ∈ [0,∞) ×D, (4.71)

then the nonlinear time-varying dynamical system given by (4.57) is
(uniformly) exponentially stable.

viii) If D = Rn and there exist a continuously differentiable function V :
[0,∞)×Rn → R and positive constants α, β, γ, p ≥ 1 satisfying (4.70)
and (4.71), then the nonlinear time-varying dynamical system given
by (4.57) is globally (uniformly) exponentially stable.

Proof. First note that, requiring the existence of a Lyapunov function
V : [0,∞)×D → R satisfying the conditions above, it follows from Theorem
2.39 that there exists a unique solution to (4.57) for all t ≥ t0. Next, let
n1 = n, n2 = 1, x1(t− t0) = x(t), x2(t− t0) = t, f1(x1, x2) = f(x2, x1), and
f2(x1, x2) = 1. Now, note that with τ = t−t0, the solution x(t), t ≥ t0, to the
nonlinear time-varying dynamical system (4.57) is equivalently characterized
by the solution x1(τ), τ ≥ 0, to the nonlinear autonomous dynamical system

ẋ1(τ) = f1(x1(τ), x2(τ)), x1(0) = x0, τ ≥ 0,

ẋ2(τ) = 1, x2(0) = t0,

where ẋ1(·) and ẋ2(·) denote differentiation with respect to τ . Furthermore,
note that since f(t, 0) = 0, t ≥ 0, it follows that f1(0, x2) = 0, for every
x2 ∈ Rn2 . Now, the result is a direct consequence of Theorem 4.1.
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It is important to note that (4.63) along with (4.69) are not sufficient
to guarantee asymptotic stability of a nonlinear time-varying dynamical
system. This is shown by the following counterexample adopted from [306].

Example 4.5. Consider the scalar nonlinear dynamical system given
by

ẋ(t) =
ġ(t)

g(t)
x(t), x(0) = x0, t ≥ 0, (4.72)

where

g(t) =
∞
∑

n=1

1

1 + n4(t− n)2
, t ≥ 0. (4.73)

Note that it can be shown that for every t ≥ 0, g(t) is well defined and
g(t) > 0, t ≥ 0, and hence, the right-hand side of (4.72) is well defined.

Furthermore, note that the solution to (4.72) is given by x(t) = g(t)
g(0)x0.

Next, note that for all m ∈ Z+,

g(m) =
∞
∑

n=1

1

1 + n4(m− n)2
> 1.

Now, let t ∈ [0,∞) and let n1, n2 ∈ Z+ be such that n1 ≤ t ≤ n2. In this
case, for all n ∈ Z+ \ {n1, n2},

1

1 + n4(t− n)2
≤ 1

n4

and
1

1 + n4
i (t− ni)2

≤ 1, i = 1, 2.

Hence, it follows that

g(t) < 2 +

∞
∑

n=1

1

n4
<

10

3
, t ≥ 0, (4.74)

which implies that |||g|||∞ < 10/3.

Next, note that
∫ ∞

0
g(t)dt =

∫ ∞

0

∞
∑

n=1

1

1 + n4(t− n)2
dt

=
∞
∑

n=1

∫ ∞

0

1

1 + n4(t− n)2
dt

=

∞
∑

n=1

∫ ∞

−n3

1

n2(1 + t2)
dt
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<

∞
∑

n=1

∫ ∞

−∞

1

n2(1 + t2)
dt

=

∞
∑

n=1

π

n2

< 2π,

which implies that |||g|||1 <∞. Furthermore, note that
∫ ∞

0
g2(t)dt ≤ |||g|||∞

∫ ∞

0
g(t)dt = |||g|||∞|||g|||1 <

20π

3
.

Now, consider the Lyapunov function candidate

V (t, x) =
x2

g2(t)

[

γ2 +

∫ ∞

t
g2(s)ds

]

, (4.75)

and note that V (t, 0) = 0, t ≥ 0. Since g(t) ≤ γ, t ≥ 0,

V (t, x) ≥ γ2 x2

g2(t)

≥ x2, t ∈ [0,∞) x ∈ R,

and since
∫∞
0 g2(t)dt < 20π/3, V (t, x) is a well-defined function. Now, it

is easy to verify that V̇ (t, x) = −x2. Hence, V (t, x) satisfies (4.62), (4.63),
and (4.69), which implies that the zero solution x(t) ≡ 0 is Lyapunov stable.
However, since limt→∞ g(t) 6= 0 (since g(m) > 1, m ∈ Z+) it follows that
the zero solution x(t) ≡ 0 to (4.72) is not asymptotically stable. △

In light of Theorem 4.6 it follows that Theorem 4.1 can be trivially
extended to address partial stability for time-varying dynamical systems.
Specifically, consider the nonlinear time-varying dynamical system

ẋ1(t) = f1(t, x1(t), x2(t)), x1(t0) = x10, t ≥ t0, (4.76)

ẋ2(t) = f2(t, x1(t), x2(t)), x2(t0) = x20, (4.77)

where x1 ∈ D, x2 ∈ Rn2 , f1 : [t0, t1)×D×Rn2 → Rn1 is such that, for every
t ∈ [t0, t1) and x2 ∈ Rn2 , f1(t, 0, x2) = 0 and f1(t, ·, x2) is locally Lipschitz in
x1, and f2 : [t0, t1)×D×Rn2 → Rn2 is such that, for every x1 ∈ D, f2(·, x1, ·)
is locally Lipschitz in x2. Next, let x̂1(t− t0) = x1(t), x̂2(t− t0) = [xT

2 (t) t]T,

f̂1(x̂1, x̂2) = f1(t, x1, x2), and f̂2(x̂1, x̂2) = [fT
2 (t, x1, x2) 1]T. Now, note that

with τ = t − t0, the solution (x1(t), x2(t)), t ≥ t0, to the nonlinear time-
varying dynamical system (4.76) and (4.77) is equivalently characterized by
the solution (x̂1(τ), x̂2(τ)), τ ≥ 0, to the nonlinear autonomous dynamical
system

˙̂x1(τ) = f̂1(x̂1(τ), x̂2(τ)), x̂1(0) = x10, τ ≥ 0, (4.78)

˙̂x2(τ) = f̂2(x̂1(τ), x̂2(τ)), x̂2(0) = [xT
20 t0]

T, (4.79)
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where ˙̂x1(·) and ˙̂x2(·) denote differentiation with respect to τ . Hence,
Theorem 4.1 can be used to derive sufficient conditions for partial stability
results for the nonlinear time-varying dynamical systems of the form (4.76)
and (4.77). Of course, in this case it is important to note that partial
stability may be uniform with respect to either or both of x20 and t0.

Using Theorems 4.1 and 4.6 we present some insight on the complexity
of analyzing stability of linear, time-varying systems. Specifically, let
f(t, x) = A(t)x, where A : [0,∞) → Rn×n is continuous, so that (4.57)
becomes

ẋ(t) = A(t)x(t), x(t0) = x0, t ≥ t0. (4.80)

Now, in order to analyze the stability of (4.80), let n1 = n, n2 = 1, x1(t −
t0) = x(t), x2(t − t0) = t, f1(x1, x2) = A(t)x, and f2(x1, x2) = 1. Hence,
the solution x(t), t ≥ t0, to (4.80) can be equivalently characterized by the
solution x1(τ), τ ≥ 0, to the nonlinear autonomous dynamical system

ẋ1(τ) = A(x2(τ))x1(τ), x1(0) = x0, τ ≥ 0, (4.81)

ẋ2(τ) = 1, x2(0) = t0, (4.82)

where ẋ1(·) and ẋ2(·) denote differentiation with respect to τ . It is clear
from (4.81) and (4.82) that in spite of the fact that (4.80) is a linear system,
its solutions are inherently characterized by a nonlinear system of the form
(4.81) and (4.82).

Example 4.6. Consider the linear time-varying dynamical system

ẋ1(t) = −x1(t) − e−tx2(t), x1(0) = x10, t ≥ 0, (4.83)

ẋ2(t) = x1(t) − x2(t), x2(0) = x20. (4.84)

To examine stability of this system, consider the Lyapunov function
candidate V (t, x) = x2

1 + (1 + e−t)x2
2. Note that since

x2
1 + x2

2 ≤ V (t, x) ≤ x2
1 + 2x2

2, (x1, x2) ∈ R × R, t ≥ 0, (4.85)

it follows that V (t, x) is positive definite, radially unbounded and satisfies
(4.63) and (4.65). Next, since

V̇ (t, x) = −2x2
1 + 2x1x2 − 2x2

2 − 3e−tx2
2

≤ −2x2
1 + 2x1x2 − 2x2

2

= −xTRx

≤ −λmin(R)‖x‖2
2, (4.86)

where

R =

[

2 −1
−1 2

]

> 0

and x = [x1 x2]
T, it follows from vi) and vii) of Theorem 4.6 with p = 2

that the zero solution (x1(t), x2(t)) ≡ (0, 0) to (4.83) and (4.84) is globally
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exponentially stable. △

Example 4.7. It is important to note that it is not always necessary to
construct a time-varying Lyapunov function to show stability for a nonlinear
time-varying dynamical system. In particular, consider the nonlinear time-
varying dynamical system

ẋ1(t) = −x3
1(t) + (sinωt)x2(t), x1(0) = x10, t ≥ 0, (4.87)

ẋ2(t) = −(sinωt)x1(t) − x3
2(t), x2(0) = x20. (4.88)

To show that the origin is globally uniformly asymptotically stable, consider
the time-invariant Lyapunov function candidate V (x) = 1

2(x2
1+x2

2). Clearly,
V (x), x ∈ R2, is positive definite and radially unbounded. Furthermore,

V̇ (x) = x1[−x3
1 + (sinωt)x2] + x2[−(sinωt)x1 − x3

2]

= −x4
1 − x4

2

< 0, (x1, x2) ∈ R × R, (x1, x2) 6= (0, 0), (4.89)

which shows that the zero solution (x1(t), x2(t)) ≡ (0, 0) to (4.87) and (4.88)
is globally uniformly asymptotically stable. △

Example 4.8. Consider the linear time-varying dynamical system

ẋ(t) = A(t)x(t), x(t0) = x0, t ≥ t0, (4.90)

where A : [0,∞) → Rn×n is continuous. To examine the stability of
this system, consider the quadratic Lyapunov function candidate V (t, x) =
xTP (t)x, where P : [0,∞) → Rn×n is a continuously differentiable,
uniformly bounded, and positive-definite matrix function (that is, P (t) is
positive definite for every t ≥ t0) satisfying

−Ṗ (t) = AT(t)P (t) + P (t)A(t) +R(t), (4.91)

where R(·) is continuous such that R(t) ≥ γIn > 0, γ > 0, for all t ≥
t0. Now, since P (·) is continuously differentiable, uniformly bounded, and
positive definite it follows that there exist α, β > 0 such that

0 < αIn ≤ P (t) ≤ βIn, t ≥ t0, (4.92)

and hence,
α‖x‖2

2 ≤ V (t, x) ≤ β‖x‖2
2. (4.93)

Thus, V (t, x) is positive definite and radially unbounded. Next, since

V̇ (t, x) = xTṖ (t)x+ 2xTP (t)A(t)x

= xT[Ṗ (t) +AT(t)P (t) + P (t)A(t)]x

= −xTR(t)x

≤ −γ‖x‖2
2, (4.94)
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it follows from vi) and vii) of Theorem 4.6 with p = 2 that the zero solution
x(t) ≡ 0 to (4.90) is globally exponentially stable. Hence, a sufficient
condition for global exponential stability for a linear time-varying system is
the existence of a continuously differentiable, bounded, and positive-definite
matrix function P : [0,∞) → Rn×n satisfying (4.91). △

In Chapter 3 it was shown that for time-invariant dynamical systems
the invariance principle can be used to relax the strict negative-definiteness
condition on the Lyapunov derivative while still ensuring asymptotic
stability of the origin by showing that the set R where the Lyapunov
derivative vanishes contains no invariant set other than the origin. For time-
varying systems, there does not exist an analogous result for establishing
uniform asymptotic stability since, in general, positive limit sets for time-
varying systems are not invariant. However, the following theorem provides
a similar, albeit weaker, result for time-varying systems.

Theorem 4.7 (LaSalle-Yoshizawa Theorem). Consider the time-
varying dynamical system (4.57) and assume [0,∞) × D is a positively
invariant set with respect to (4.57) where f(t, ·) is Lipschitz in x, uniformly
in t. Furthermore, assume there exist functions V : [0,∞) × D → R and
W,W1,W2 : D → R such that V (·, ·) is continuously differentiable, W1(·)
and W2(·) are continuous and positive definite, W (·) is continuous and
nonnegative definite, and, for all (t, x) ∈ [0,∞) ×D,

W1(x) ≤ V (t, x) ≤W2(x), (4.95)

V̇ (t, x) ≤ −W (x). (4.96)

Then there exists D0 ⊆ D such that for all (t0, x0) ∈ [0,∞) × D0, x(t) →
R △

= {x ∈ D : W (x) = 0} as t → ∞. If, in addition, D = Rn and W1(·) is

radially unbounded, then for all (t0, x0) ∈ [0,∞) × Rn, x(t) → R △
= {x ∈

Rn : W (x) = 0} as t→ ∞.

Proof. The proof is a direct consequence of Theorem 4.2 with n1 = n,
n2 = 1, x1(t− t0) = x(t), x2(t− t0) = t, f1(x1, x2) = f(t, x), f2(x1, x2) = 1,
and V (x1, x2) = V (t, x).

If W is a homeomorphism and W−1(0) = {0}, then Theorem 4.7
establishes attraction to the origin. Alternatively, if, in place of (4.96),
V̇ (t, x) ≤ 0, (t, x) ∈ [0,∞) × D, and the integral of V̇ (t, x) satisfies the
inequality

∫ t+ε

t
V̇ (τ, s(τ, t, x))dτ ≤ −αV (t, x), (4.97)

where α ∈ (0, 1), for all t ≥ 0 and x ∈ D, and some ε > 0, then uniform
asymptotic stability of the zero solution x(t) ≡ 0 to (4.57) can be established.
This result is left as an exercise for the reader.
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Next, we provide two converse theorems for stability of time-varying
systems.

Theorem 4.8. Assume that the nonlinear time-varying dynamical
system (4.57) is uniformly asymptotically stable and f : [0,∞)×D → Rn is
continuously differentiable. Let δ > 0 be such that Bδ(0) ⊂ D is contained

in the domain of attraction of (4.57) and assume ∂f
∂x is bounded on Bδ(0)

uniformly in t. Then there exist a continuously differentiable function
V : [0,∞) × Bδ(0) → R and class K functions α(·), β(·), and γ(·) such
that

α(‖x‖) ≤ V (t, x) ≤ β(‖x‖), (t, x) ∈ [0,∞) × Bδ(0), (4.98)

V̇ (t, x) ≤ −γ(‖x‖), (t, x) ∈ [0,∞) × Bδ(0). (4.99)

Proof. The proof is a direct consequence of Theorem 4.3 with n1 = n,
n2 = 1, x1(t− t0) = x(t), x2(t− t0) = t, f1(x1, x2) = f(t, x), f2(x1, x2) = 1,
and V (x1, x2) = V (t, x).

Theorem 4.9. Assume that the nonlinear time-varying dynamical
system (4.57) is (uniformly) exponentially stable and f : [0,∞) × D → Rn

is continuously differentiable. Let δ > 0 be such that Bδ(0) ⊂ D is

contained in the domain of attraction of (4.57) and assume ∂f
∂x is bounded

on Bδ(0) uniformly in t. Then, for every p > 1, there exist a continuously
differentiable function V : [0,∞) × Bδ(0) → R and positive constants α, β,
and γ such that

α‖x‖p ≤ V (t, x) ≤ β‖x‖p, (t, x) ∈ [0,∞) × Bδ(0), (4.100)

V̇ (t, x) ≤ −γ‖x‖p, (t, x) ∈ [0,∞) × Bδ(0). (4.101)

Proof. The proof is a direct consequence of Theorem 4.4 with n1 = n,
n2 = 1, x1(t− t0) = x(t), x2(t− t0) = t, f1(x1, x2) = f(t, x), f2(x1, x2) = 1,
and V (x1, x2) = V (t, x).

Finally, we state Lyapunov’s and Chetaev’s instability theorems for
time-varying systems. The proofs of these results are virtually identical
to the proofs of their time-invariant counterparts given in Section 3.6, and
hence, are left as an exercise for the reader.

Theorem 4.10. Consider the nonlinear dynamical system (4.57).
Assume that there exist a continuously differentiable function V : [0,∞) ×
D → R and class K functions β(·) and γ(·) such that

V (t, 0) = 0, t ∈ [0,∞), (4.102)

V (t, x) ≤ β(‖x‖), (t, x) ∈ [0,∞) ×D, (4.103)
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V̇ (t, x) ≥ γ(‖x‖), (t, x) ∈ [0,∞) ×D. (4.104)

Furthermore, assume that for every sufficiently small δ > 0 there exist a
time t0 ≥ 0 and x0 ∈ D such that ‖x0‖ < δ and V (t0, x0) > 0. Then the
zero solution x(t) ≡ 0 to (4.57) is unstable.

Theorem 4.11. Consider the nonlinear dynamical system (4.57).
Assume that there exist a continuously differentiable function V : [0,∞) ×
D → R, a class K function β(·), a function W : [0,∞) × D → R, a time
t0 ≥ 0, and scalars ε, λ > 0 such that

V (t0, 0) = 0, (4.105)

V (t, x) ≤ β(‖x‖), (t, x) ∈ [0,∞) ×D, (4.106)

W (t, x) ≥ 0, (t, x) ∈ [0,∞) × Bε(0), (4.107)

V̇ (t, x) ≥ λV (t, x) +W (t, x). (4.108)

Furthermore, assume that for every sufficiently small δ > 0 there exists
x0 ∈ D such that ‖x0‖ < δ and V (t0, x0) > 0. Then the zero solution
x(t) ≡ 0 to (4.57) is unstable.

Theorem 4.12. Consider the nonlinear dynamical system (4.57).
Assume that there exist a continuously differentiable function V : [0,∞) ×
D → R, a class K function γ(·), a scalar ε > 0, and an open set Q ⊆ Bε(0)
such that

V (t, x) > 0, (t, x) ∈ [0,∞) ×Q (4.109)

sup
t≥0

sup
x∈Q

V (t, x) < ∞, (4.110)

0 ∈ ∂Q, (4.111)

V (t, x) = 0, (t, x) ∈ [0,∞) × (∂Q ∩ Bε(0)), (4.112)

V̇ (t, x) ≥ γ(‖x‖), (t, x) ∈ [0,∞) ×Q. (4.113)

Then the zero solution x(t) ≡ 0 to (4.57) is unstable.

4.4 Lagrange Stability, Boundedness, and Ultimate Boundedness

In the previous sections we introduced the concepts of stability and
partial stability for nonlinear dynamical systems. In certain engineering
applications, however, it is more natural to ascertain whether for every
system initial condition in a ball of radius δ the solution of the nonlinear
dynamical system is bounded. This leads to the notions of Lagrange stability,
boundedness, and ultimate boundedness. These notions are closely related
to what is known in the literature as practical stability . In this section, we
present Lyapunov-like theorems for boundedness and ultimate boundedness
of nonlinear dynamical systems.
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Definition 4.3. i) The nonlinear dynamical system (4.6) and (4.7) is
Lagrange stable with respect to x1 if, for every x10 ∈ D and x20 ∈ Rn2 , there
exists ε = ε(x10, x20) > 0 such that ‖x1(t)‖ < ε, t ≥ 0.

ii) The nonlinear dynamical system (4.6) and (4.7) is bounded with
respect to x1 uniformly in x2 if there exists γ > 0 such that, for every
δ ∈ (0, γ), there exists ε = ε(δ) > 0 such that ‖x10‖ < δ implies ‖x1(t)‖ < ε,
t ≥ 0. The nonlinear dynamical system (4.6) and (4.7) is globally bounded
with respect to x1 uniformly in x2 if, for every δ ∈ (0,∞), there exists
ε = ε(δ) > 0 such that ‖x10‖ < δ implies ‖x1(t)‖ < ε, t ≥ 0.

iii) The nonlinear dynamical system (4.6) and (4.7) is ultimately boun-
ded with respect to x1 uniformly in x2 with bound ε if there exists γ > 0 such
that, for every δ ∈ (0, γ), there exists T = T (δ, ε) > 0 such that ‖x10‖ < δ
implies ‖x1(t)‖ < ε, t ≥ T . The nonlinear dynamical system (4.6) and (4.7)
is globally ultimately bounded with respect to x1 uniformly in x2 with bound
ε if, for every δ ∈ (0,∞), there exists T = T (δ, ε) > 0 such that ‖x10‖ < δ
implies ‖x1(t)‖ < ε, t ≥ T .

Note that if a nonlinear dynamical system is globally bounded with
respect to x1 uniformly in x2, then it is Lagrange stable with respect to
x1. Alternatively, if a nonlinear dynamical system is (globally) bounded
with respect to x1 uniformly in x2, then there exists ε > 0 such that it
is (globally) ultimately bounded with respect to x1 uniformly in x2 with a
bound ε. Conversely, if a nonlinear dynamical system is (globally) ultimately
bounded with respect to x1 uniformly in x2 with a bound ε, then it is
(globally) bounded with respect to x1 uniformly in x2. The following results
present Lyapunov-like theorems for boundedness and ultimate boundedness.
For these results define V̇ (x1, x2)

△
= V ′(x1, x2)f(x1, x2), where f(x1, x2)

△
=

[fT
1 (x1, x2), f

T
2 (x1, x2)]

T and V : D × Rn2 → R is a given continuously
differentiable function.

Theorem 4.13. Consider the nonlinear dynamical system (4.6) and
(4.7). Assume that there exist a continuously differentiable function V :
D × Rn2 → R and class K functions α(·), β(·) such that

α(‖x1‖) ≤ V (x1, x2) ≤ β(‖x1‖), x1 ∈ D, x2 ∈ Rn2 , (4.114)

V̇ (x1, x2) ≤ 0, x1 ∈ D, ‖x1‖ ≥ µ, x2 ∈ Rn2 , (4.115)

where µ > 0 is such that Bα−1(η)(0) ⊂ D for some η ≥ β(µ). Then the
nonlinear dynamical system (4.6) and (4.7) is bounded with respect to x1

uniformly in x2. Furthermore, for every δ ∈ (0, γ), x10 ∈ Bδ(0) implies that
‖x1(t)‖ ≤ ε, t ≥ 0, where

ε = ε(δ)
△
=

{

α−1(β(δ)), δ ∈ (µ, γ),
α−1(η), δ ∈ (0, µ],

(4.116)
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and γ
△
= sup{r > 0 : Bα−1(β(r))(0) ⊂ D}. If, in addition, D = Rn1 and

α(·) is a class K∞ function, then the nonlinear dynamical system (4.6) and
(4.7) is globally bounded with respect to x1 uniformly in x2 and for every
x10 ∈ Rn1 , ‖x1(t)‖ ≤ ε, t ≥ 0, where ε is given by (4.116) with δ = ‖x10‖.

Proof. First, let δ ∈ (0, µ] and assume ‖x10‖ ≤ δ. If ‖x1(t)‖ ≤ µ,
t ≥ 0, then it follows from (4.114) that ‖x1(t)‖ ≤ µ ≤ α−1(β(µ)) ≤ α−1(η),
t ≥ 0. Alternatively, if there exists T > 0 such that ‖x1(T )‖ > µ, then
it follows from the continuity of x1(·) that there exists τ < T such that
‖x1(τ)‖ = µ and ‖x1(t)‖ ≥ µ, t ∈ [τ, T ]. Hence, it follows from (4.114) and
(4.115) that

α(‖x1(T )‖) ≤ V (x1(T ), x2(T )) ≤ V (x1(τ), x2(τ)) ≤ β(µ) ≤ η,

which implies that ‖x1(T )‖ ≤ α−1(η). Next, let δ ∈ (µ, γ) and assume
x10 ∈ Bδ(0) and ‖x10‖ > µ. Now, for every t̂ > 0 such that ‖x1(t)‖ ≥ µ,
t ∈ [0, t̂], it follows from (4.114) and (4.115) that

α(‖x1(t)‖) ≤ V (x1(t), x2(t)) ≤ V (x10, x20) ≤ β(δ), t ≥ 0,

which implies that ‖x1(t)‖ ≤ α−1(β(δ)), t ∈ [0, t̂]. Next, if there exists
T > 0 such that ‖x1(T )‖ ≤ µ, then it follows as in the proof of the first
case that ‖x1(t)‖ ≤ α−1(η), t ≥ T . Hence, if x10 ∈ Bδ(0) \ Bµ(0), then
‖x1(t)‖ ≤ α−1(β(δ)), t ≥ 0. Finally, if D = Rn1 and α(·) is a class K∞
function it follows that β(·) is a class K∞ function, and hence, γ = ∞.
Hence, the nonlinear dynamical system (4.6) and (4.7) is globally bounded
with respect to x1 uniformly in x2.

Theorem 4.14. Consider the nonlinear dynamical system (4.6) and
(4.7). Assume that there exist a continuously differentiable function V :
D × Rn2 → R and class K functions α(·), β(·) such that (4.114) holds.
Furthermore, assume that there exists a continuous function W : D → R

such that W (x1) > 0, ‖x1‖ > µ, and

V̇ (x1, x2) ≤ −W (x1), x1 ∈ D, ‖x1‖ > µ, x2 ∈ Rn2 , (4.117)

where µ > 0 is such that Bα−1(η)(0) ⊂ D for some η > β(µ). Then the
nonlinear dynamical system (4.6) and (4.7) is ultimately bounded with

respect to x1 uniformly in x2 with bound ε
△
= α−1(η). Furthermore,

lim supt→∞ ‖x1(t)‖ ≤ α−1(β(µ)). If, in addition, D = Rn1 and α(·) is a
class K∞ function, then the nonlinear dynamical system (4.6) and (4.7) is
globally ultimately bounded with respect to x1 uniformly in x2 with bound
ε.

Proof. First, let δ ∈ (0, µ] and assume ‖x10‖ ≤ δ. As in the proof of
Theorem 4.13, it follows that ‖x1(t)‖ ≤ α−1(η) = ε, t ≥ 0. Next, let δ ∈
(µ, γ), where γ

△
= sup{r > 0 : Bα−1(β(r))(0) ⊂ D} and assume x10 ∈ Bδ(0)
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and ‖x10‖ > µ. In this case, it follows from Theorem 4.13 that ‖x1(t)‖ ≤
α−1(β(δ)), t ≥ 0. Suppose, ad absurdum, that ‖x1(t)‖ ≥ β−1(η), t ≥ 0,

or, equivalently, x1(t) ∈ O △
= Bα−1(β(δ))(0) \ Bβ−1(η)(0), t ≥ 0. Since O is

compact and W (·) is continuous and W (x1) > 0, ‖x1‖ ≥ β−1(η) > µ, it

follows from Theorem 2.13 that k
△
= minx1∈OW (x1) > 0 exists. Hence, it

follows from (4.117) that

V (x1(t), x2(t)) ≤ V (x10, x20) − kt, t ≥ 0, (4.118)

which implies that

α(‖x1(t)‖) ≤ β(‖x10‖) − kt ≤ β(δ) − kt, t ≥ 0. (4.119)

Now, letting t > β(δ)/k it follows that α(‖x1(t)‖) < 0, which is a contradic-
tion. Hence, there exists T = T (δ, η) > 0 such that ‖x1(T )‖ < β−1(η). Thus,
it follows from Theorem 4.13 that ‖x1(t)‖ ≤ α−1(β(β−1(η))) = α−1(η),
t ≥ T , which proves that the nonlinear dynamical system (4.6) and (4.7)
is ultimately bounded with respect to x1 uniformly in x2 with bound
ε = α−1(η). Furthermore, lim supt→∞ ‖x1(t)‖ ≤ α−1(β(µ)). Finally, if
D = Rn1 and α(·) is a class K∞ function it follows that β(·) is a class K∞
function, and hence, γ = ∞. Hence, the nonlinear dynamical system (4.6)
and (4.7) is globally ultimately bounded with respect to x1 uniformly in x2

with bound ε.

Next, we specialize Theorems 4.13 and 4.14 to nonlinear time-varying
dynamical systems. The following definition is needed for these results.

Definition 4.4. i) The nonlinear time-varying dynamical system (4.57)
is Lagrange stable if, for every x0 ∈ Rn and t0 ∈ R, there exists ε =
ε(t0, x0) > 0 such that ‖x(t)‖ < ε, t ≥ t0.

ii) The nonlinear time-varying dynamical system (4.57) is uniformly
bounded if there exists γ > 0 such that, for every δ ∈ (0, γ), there exists
ε = ε(δ) > 0 such that ‖x0‖ < δ implies ‖x(t)‖ < ε, t ≥ t0. The nonlinear
time-varying dynamical system (4.57) is globally uniformly bounded if, for
every δ ∈ (0,∞), there exists ε = ε(δ) > 0 such that ‖x0‖ < δ implies
‖x(t)‖ < ε, t ≥ t0.

iii) The nonlinear time-varying dynamical system (4.57) is uniformly
ultimately bounded with bound ε if there exists γ > 0 such that, for every δ ∈
(0, γ), there exists T = T (δ, ε) > 0 such that ‖x0‖ < δ implies ‖x(t)‖ < ε,
t ≥ t0 + T . The nonlinear time-varying dynamical system (4.57) is globally
uniformly ultimately bounded with bound ε if, for every δ ∈ (0,∞), there
exists T = T (δ, ε) > 0 such that ‖x0‖ < δ implies ‖x(t)‖ < ε, t ≥ t0 + T .
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For the following result define

V̇ (t, x)
△
=
∂V

∂t
+
∂V

∂x
(t, x)f(t, x),

where V : R ×D → R is a given continuously differentiable function.

Corollary 4.1. Consider the nonlinear time-varying dynamical system
(4.57). Assume that there exist a continuously differentiable function V :
R ×D → R and class K functions α(·), β(·) such that

α(‖x‖) ≤ V (t, x) ≤ β(‖x‖), x ∈ D, t ∈ R, (4.120)

V̇ (t, x) ≤ 0, x ∈ D, ‖x‖ ≥ µ, t ∈ R, (4.121)

where µ > 0 is such that Bα−1(η)(0) ⊂ D for some η ≥ β(µ). Then the
nonlinear time-varying dynamical system (4.57) is uniformly bounded. If,
in addition, D = Rn and α(·) is a class K∞ function, then the nonlinear
time-varying dynamical system (4.57) is globally uniformly bounded.

Proof. The result is a direct consequence of Theorem 4.13. Specifi-
cally, let n1 = n, n2 = 1, x1(t−t0) = x(t), x2(t−t0) = t, f1(x1, x2) = f(t, x),
and f2(x1, x2) = 1. Now, note that with τ = t − t0, the solution x(t),
t ≥ t0, to the nonlinear time-varying dynamical system (4.57) is equivalently
characterized by the solution x1(τ), τ ≥ 0, to the nonlinear autonomous
dynamical system

ẋ1(τ) = f1(x1(τ), x2(τ)), x1(0) = x0, τ ≥ 0,

ẋ2(τ) = 1, x2(0) = t0,

where ẋ1(·) and ẋ2(·) denote differentiation with respect to τ . Now, the
result is a direct consequence of Theorem 4.13.

Corollary 4.2. Consider the nonlinear time-varying dynamical system
(4.57). Assume that there exist a continuously differentiable function V : R×
D → R and class K functions α(·), β(·) such that (4.120) holds. Furthermore,
assume that there exists a continuous functionW : D → R such thatW (x) >
0, ‖x‖ > µ, and

V̇ (t, x) ≤ −W (x), x ∈ D, ‖x‖ > µ, t ∈ R, (4.122)

where µ > 0 is such that Bα−1(η)(0) ⊂ D for some η > β(µ). Then
the nonlinear time-varying dynamical system (4.57) is uniformly ultimately

bounded with bound ε
△
= α−1(η). Furthermore, lim supt→∞ ‖x(t)‖ ≤

α−1(β(µ)). If, in addition, D = Rn and α(·) is a class K∞ function, then
the nonlinear time-varying dynamical system (4.57) is globally uniformly
ultimately bounded with bound ε.

Proof. The proof is a direct consequence of Theorem 4.14 using similar
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arguments as in the proof of Corollary 4.1 and, hence, is omitted.

Finally, we specialize Corollaries 4.1 and 4.2 to nonlinear time-
invariant dynamical systems. For these results we need the following
specialization of Definition 4.4.

Definition 4.5. i) The nonlinear dynamical system (3.1) is Lagrange
stable if, for every x0 ∈ Rn, there exists ε = ε(x0) > 0 such that ‖x(t)‖ < ε,
t ≥ 0.

ii) The nonlinear dynamical system (3.1) is bounded if there exists
γ > 0 such that, for every δ ∈ (0, γ), there exists ε = ε(δ) > 0 such that
‖x0‖ < δ implies ‖x(t)‖ < ε, t ≥ 0. The nonlinear dynamical system (3.1)
is globally bounded if, for every δ ∈ (0,∞), there exists ε = ε(δ) > 0 such
that ‖x0‖ < δ implies ‖x(t)‖ < ε, t ≥ 0.

iii) The nonlinear dynamical system (3.1) is ultimately bounded with
bound ε if there exists γ > 0 such that, for every δ ∈ (0, γ), there exists
T = T (δ, ε) > 0 such that ‖x0‖ < δ implies ‖x(t)‖ < ε, t ≥ T . The
nonlinear dynamical system (3.1) is globally ultimately bounded with bound
ε if, for every δ ∈ (0,∞), there exists T = T (δ, ε) > 0 such that ‖x0‖ < δ
implies ‖x(t)‖ < ε, t ≥ T .

Corollary 4.3. Consider the nonlinear dynamical system (3.1). As-
sume that there exist a continuously differentiable function V : D → R and
class K functions α(·) and β(·) such that

α(‖x‖) ≤ V (x) ≤ β(‖x‖), x ∈ D, (4.123)

V ′(x)f(x) ≤ 0, x ∈ D, ‖x‖ ≥ µ, (4.124)

where µ > 0 is such that Bα−1(η)(0) ⊂ D for some η ≥ β(µ). Then the
nonlinear dynamical system (3.1) is bounded. If, in addition, D = Rn and
V (x) → ∞ as ‖x‖ → ∞, then the nonlinear dynamical system (3.1) is
globally bounded.

Proof. The result is a direct consequence of Corollary 4.1.

Corollary 4.4. Consider the nonlinear dynamical system (3.1). As-
sume that there exist a continuously differentiable function V : D → R and
class K functions α(·) and β(·) such that (4.123) holds and

V ′(x)f(x) < 0, x ∈ D, ‖x‖ > µ, (4.125)

where µ > 0 is such that Bα−1(η)(0) ⊂ D for some η > β(µ). Then the

nonlinear dynamical system (3.1) is ultimately bounded with bound ε
△
=

α−1(η). Furthermore, lim supt→∞ ‖x(t)‖ ≤ α−1(β(µ)). If, in addition, D =
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Rn and V (x) → ∞ as ‖x‖ → ∞, then the nonlinear dynamical system (3.1)
is globally ultimately bounded with bound ε.

Proof. The proof is a direct consequence of Corollary 4.2.

Corollaries 4.3 and 4.4 present Lyapunov-like theorems for bounded-
ness and ultimate boundedness of a nonlinear dynamical system. To further
elucidate these results, consider the nonlinear dynamical system (3.1) and
assume that there exist a positive-definite, radially unbounded, continuously
differentiable function V : Rn → R and scalar µ > 0 such that

V̇ (x) ≤ 0, x ∈ Rn, ‖x‖ ≥ µ, t ≥ 0. (4.126)

Furthermore, let α(·) and β(·) be class K∞ functions such that

α(‖x‖) ≤ V (x) ≤ β(‖x‖), x ∈ Rn. (4.127)

In this case, it can be shown that the set Dµ
△
= {x ∈ Rn : V (x) ≤ β(µ)}

is positively invariant. To see this, suppose, ad absurdum, that there exists
a trajectory x(t), t ≥ 0, such that x(0) ∈ Dµ and x(T ) 6∈ Dµ for some
T > 0. Now, note that if x ∈ Bµ(0), then V (x) ≤ β(‖x‖) ≤ β(µ). Next,
since x(t), t ≥ 0, is continuous it follows that there exists t̂ > 0 such that
V (x(t̂)) = β(µ) and x(t) 6∈ Dµ, t ∈ (t̂, T ], and hence, ‖x(t)‖ > µ, t ∈ (t̂, T ].
Now, it follows from (4.126) that

β(µ) < V (x(T )) = V (x(t̂)) +

∫ T

t̂
V̇ (x(t))dt ≤ V (x(t̂) = β(µ),

which is a contradiction. Hence, if x(0) ∈ Dµ, then x(t) ∈ Dµ, t ≥ 0.

Similarly, for δ > µ, if x(0) ∈ Bδ(0), then it can be shown that x(t) ∈ Dδ
△
=

{x ∈ Rn : V (x) ≤ β(δ)}. Next, if x ∈ Dδ, then α(‖x‖) ≤ V (x) ≤ β(δ),

which implies that x ∈ Bε(0), where ε
△
= α−1(β(δ)). Hence, if x(0) ∈ Bδ(0),

then x(t) ∈ Bε(0), t ≥ 0 (see Figure 4.6).

If (4.126) is replaced by

V̇ (x) < 0, x ∈ Rn, ‖x‖ > µ, t ≥ 0, (4.128)

then, using identical arguments as above, it can be shown that if x(0) ∈
Bδ(0), then x(t) ∈ Dδ(0), t ≥ 0. Furthermore, it can be shown that for

every η > µ, the trajectory starting in Bδ(0) enters Dη
△
= {x ∈ Rn : V (x) ≤

β(η)} in finite time. Hence, the trajectory either enters Dµ in finite time
or approaches Dµ as t→ ∞, which, since Dµ is positively invariant, implies

that the trajectory ultimately enters Bε(0), where ε
△
= α−1(β(µ)) (see Figure

4.7).
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Bε(0) Dδ

Bδ(0)

x0

Dµ

Bµ(0)

Figure 4.6 Visualizations of the sets Bµ(0) ⊂ Dµ ⊂ Bδ(0) ⊂ Dδ ⊂ Dε and a bounded
trajectory.

Example 4.9. Consider the nonlinear dynamical system

ẋ1(t) = −x1(t) + x2
2(t), x1(0) = x10, t ≥ 0, (4.129)

ẋ2(t) = −x2(t) + u, x2(0) = x20, (4.130)

where u ∈ R. To show that (4.129) and (4.130) is globally bounded consider
the radially unbounded, positive definite function V (x1, x2) = 1

2x
2
1 + k

4x
4
2,

k > 0, and note that

V̇ (x1, x2) = −x1(−x1 + x2
2) + kx3

2(−x2 + u)

= −x2
1 + x1x

2
2 − k(1 − ε)x4

2 − kεx4
2 + kx3

2u, ε ∈ (0, 1),

≤ −x2
1 + x1x

2
2 − k(1 − ε)x4

2, |x2| ≥ |u|
ε ,

≤ −
[

x1 x2
2

]

R1

[

x1

x2
2

]

, |x2| ≥ |u|
ε , (4.131)

where

R1 =

[

1 −1/2
−1/2 k(1 − ε)

]

.

Now, choosing k ≥ 1/4(1−ε) ensures that R1 ≥ 0, and hence, V̇ (x1, x2) ≤ 0,

|x2| ≥ |u|
ε .

Next, for |x2| ≤ |u|
ε , it follows that

V̇ (x1, x2) ≤ −x2
1 + x1x

2
2 − kx4

2 + k|u|4/ε3
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Bε(0)

Dδ

Bδ(0)

x0

Dµ

Bµ(0)

Figure 4.7 Visualizations of the sets Bµ(0) ⊂ Dµ ⊂ Bε(0) ⊂ Bδ(0) ⊂ Dδ and an ultimate
bounded trajectory.

= −(1 − ε)x2
1 + x1x

2
2 − kx4

2 − εx2
1 + k|u|4/ε3

≤ −
[

x1 x2
2

]

R2

[

x1

x2
2

]

, |x1| ≥ k1/2 |u|2
ε2 , (4.132)

where

R2 =

[

1 − ε −1/2
−1/2 k

]

.

Note that with k ≥ 1/4(1− ε), R2 ≥ 0, and hence, V̇ (x1, x2) ≤ 0, |x2| ≤ |u|
ε .

Next, let δ = min{λmin(R1), λmin(R2)} and note that (4.131) and (4.132)
imply V̇ (x1, x2) ≤ −δ(x2

1 + x4
2), ‖x‖∞ ≥ k1/2|u|2/ε2, and hence, it follows

from Corollary 4.3 that (4.129) and (4.130) is globally bounded.

Next, to show that (4.129) and (4.130) is globally ultimately bounded,
choose k > 1/4(1 − ε) so that δ > 0. Now, with W (x) = δ(x2

1 + x4
2),

α(θ) = min‖x‖∞= θ V (x), β(θ) = max‖x‖∞= θ V (x), and η > β(k1/2|u|2/ε2),
it follows from Corollary 4.4 that (4.129) and (4.130) is globally ultimately
bounded with bound α−1(η). Next, note that α(θ) = min{1

2θ
2, k

2θ
4} and

β(θ) = 1
2θ

2 + k
2θ

4, which implies that

α−1(β(k1/2|u|2/ε2)) = max{γ1/2(|u|), (γ(|u|)/k)1/4},

where γ(|u|) △
= k|u|4

ε4 + k3|u|8
ε8 . Now, it follows from Corollary 4.4 that

lim supt→∞ ‖x(t)‖∞ ≤ max{γ1/2(|u|), (γ(|u|)/k)1/4}, which implies that,
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with u = 0, the zero solution (x1(t), x2(t)) ≡ 0 to (4.129) and (4.130) is
globally attractive, that is, limt→∞(x1(t), x2(t)) = (0, 0) for all (x10, x20) ∈
R2. △

4.5 Input-to-State Stability

In the previous sections we examined the stability and boundedness of
undisturbed dynamical systems. In this section, we introduce the notion
of input-to-state stability involving the stability of disturbed nonlinear
dynamical systems. In particular, we consider nonlinear dynamical systems
of the form

ẋ(t) = F (x(t), u(t)), x(0) = x0, t ≥ 0, (4.133)

where x(t) ∈ Rn, t ≥ 0, u(t) ∈ Rm, t ≥ 0, and F : Rn × Rm → Rn is
Lipschitz continuous on Rn ×Rm. The input u is assumed to be a piecewise
continuous function of time with values in Rm, that is, u : [0,∞) → Rm.
Now, suppose that (4.133) with u(t) ≡ 0 is globally asymptotically stable,
then we are interested in whether a bounded input u(t), t ≥ 0, implies that
the state x(t), t ≥ 0, is bounded. This is precisely the notion of input-to-
state stability.

For the linear dynamical system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0, (4.134)

where A is Hurwitz, it follows that

x(t) = eAtx(0) +

∫ t

0
eA(t−τ)Bu(τ)dτ. (4.135)

Using the fact that for an asymptotically stable matrix A ∈ Rn×n, ‖eAt‖ ≤
γe−βt, t ≥ 0, where ‖ · ‖ is a submultiplicative matrix norm, γ > 0, and

0 < β < −α(A), where α(A)
△
= max{Re λ : λ ∈ spec(A)}, it follows that

‖x(t)‖ ≤ γe−βt‖x0‖ +

∫ t

0
γe−β(t−τ)‖B‖‖u(τ)‖dτ

≤ γe−βt‖x0‖ +
γ

β
‖B‖ sup

0≤τ≤t
‖u(τ)‖, (4.136)

which shows that if u(t), t ≥ 0, is bounded, then x(t), t ≥ 0, is also
bounded. Note that in the case where x0 = 0, the state response is
proportional to the input bound. However, for nonlinear asymptotically
stable dynamical systems a bounded input does not necessarily imply that
the state is bounded. To see this, consider

ẋ(t) = −x(t) + x2(t)u(t), x(0) = x0, t ≥ 0, (4.137)

which is globally asymptotically stable for u(t) ≡ 0. However, in the case
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where x(0) = 2 and u(t) ≡ 1, the solution to (4.137) is given by x(t) =
1/(1−0.5et), which is unbounded and, in fact, possesses a finite escape time.
In light of the above, we introduce the notion of input-to-state stability for
nonlinear dynamical systems.

Definition 4.6. A nonlinear dynamical system given by (4.133) is said
to be input-to-state stable if for every x0 ∈ Rn and every continuous and
bounded input u(t) ∈ Rm, t ≥ 0, the solution x(t), t ≥ 0, of (4.133) exists
and satisfies

‖x(t)‖ ≤ η(‖x0‖, t) + γ

(

sup
0≤τ≤t

‖u(τ)‖
)

, t ≥ 0, (4.138)

where η(s, t), s > 0, is a class KL function and γ(s), s > 0, is a class K
function.

The input-to-state inequality (4.138) guarantees that for a bounded
input u(t) ∈ Rm, t ≥ 0, the state x(t), t ≥ 0, is bounded. In particular,
as t increases, the state x(t), t ≥ 0, is bounded by a class K function of
supt≥0 ‖u(t)‖. In the case where u(t) ≡ 0, (4.138) reduces to

‖x(t)‖ ≤ η(‖x(t0)‖, t), (4.139)

and hence, input-to-state stability implies that the zero solution x(t) ≡ 0
of (4.133) (with u(t) ≡ 0) is globally asymptotically stable. Additionally,
(4.138) implies that if limt→∞ u(t) = 0, then limt→∞ x(t) = 0. To see this,
let µ > 0 be such that γ(µ) ≤ ε/2 for a given ε > 0. Since limt→∞ u(t) = 0,
it follows that there exists t1 > 0 such that ‖u(t)‖ ≤ µ, t ≥ t1. Now, since
x(t), t ≥ 0, is bounded, it follows that

‖x(t)‖ ≤ η(‖x(t1)‖, t− t1) + γ(µ) ≤ η(δ, t − t1) + ε/2, t ≥ t1, (4.140)

for some δ > 0. Since η(δ, t−t1) → 0 as t→ ∞, there exists t2 > 0 such that
η(δ, t) ≤ ε/2, t ≥ t2. Thus, it follows from (4.140) that ‖x(t)‖ ≤ ε, t ≥ τ ,
where τ = max(t1, t2), which implies that limt→∞ x(t) = 0. The following
theorem gives necessary and sufficient conditions for input-to-state stability
of a nonlinear dynamical system.

Theorem 4.15. The nonlinear dynamical system (4.133) is input-to-
state stable if and only if there exist a continuously differentiable radially
unbounded, positive-definite function V : Rn → R and continuous functions
γ1, γ2 ∈ K such that for every u ∈ Rm,

V ′(x)F (x, u) ≤ −γ1(‖x‖), ‖x‖ ≥ γ2(‖u‖). (4.141)

Proof. Assume (4.141) holds and let u(·) be such that u(t) ∈ Rm,
t ≥ 0. With f(t, x) = F (x, u), V (t, x) = V (x), W (x) = γ1(‖x‖), and

µ = γ2(|||u|||), where |||u||| △
= supt∈[0,∞) ‖u(t)‖, it follows from Corollary 4.2



NonlinearBook10pt November 20, 2007

ADVANCED STABILITY THEORY 247

that there exists t1 > 0 such that

‖x(t)‖ ≤ γ(|||u|||), t ≥ t1, (4.142)

where γ = α−1 ◦β ◦γ2 and where α(·), β(·) are class K∞ functions such that
α(‖x‖) ≤ V (x) ≤ β(‖x‖), x ∈ Rn (see Problem 3.72). Next, without loss of
generality, let t1 > 0 be such that ‖x(t)‖ ≥ γ2(|||u|||), t ≤ t1. Thus,

dV (x(t))

dt
= V ′(x)F (x, u(t))|x=x(t)

≤ −γ1(‖x(t)‖)
≤ −γ1 ◦ β−1(V (x(t)), a.e. t ≤ t1. (4.143)

Note that (4.143) guarantees that x(t) is defined for all t ≥ 0. Furthermore,
it follows from the comparison principle (see Problem 2.107) that (4.143)
implies that there exists a class KL function η̂ such that V (x(t)) ≤
η̂(V (x0), t), t ≤ t2. Hence,

‖x(t)‖ ≤ η(‖x0‖, t), t ≤ t1, (4.144)

where η(s, t) = α−1η̂(β(s), t). Now, it follows from (4.142) and (4.144) that
‖x(t)‖ ≤ η(‖x0‖, t)+γ(|||u|||), t ≥ 0. Since x0 and u(·) are arbitrary, it follows
that (4.133) is input-to-state stable.

Necessity is considerably more involved and requires concepts not
introduced in this book. For details, see [409].

The next result provides sufficient conditions for input-to-state stabil-
ity as an immediate consequence of the converse global exponential stability
theorem.

Proposition 4.1. Consider the nonlinear dynamical system (4.133)
where F : Rn×Rm → Rn is continuously differentiable and globally Lipschitz
continuous on Rn × Rm. If the zero solution x(t) ≡ 0 of the undisturbed
(u(t) ≡ 0) system (4.133) is globally exponentially stable, then (4.133) is
input-to-state stable.

Proof. Since the zero solution x(t) ≡ 0 of the undisturbed (u(t) ≡ 0)
system (4.133) is globally exponentially stable, it follows from Theorem
3.11 that there exist a continuously differentiable positive-definite function
V : Rn → R and scalars α, β, and ε > 0 such that

α‖x‖2 ≤ V (x) ≤ β‖x‖2, x ∈ Rn, (4.145)

V ′(x)F (x, 0) ≤ −εV (x), x ∈ Rn. (4.146)

Next, using the fact that ‖V ′(x)‖ ≤ ν‖x‖, x ∈ Rn, ν > 0, (see Problem 3.60)
and the global Lipschitz continuity of F (·, ·) on Rn×Rm, for every u ∈ Rm, it
follows that the derivative of V (x) along the trajectories of (4.133) through
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x ∈ Rn at t = 0 is given by

V̇ (x) = V ′(x)F (x, u)

= V ′(x)F (x, 0) + V ′(x)[F (x, u) − F (x, 0)]

≤ −εα‖x‖2 + νL‖x‖‖u‖, (4.147)

where L > 0 denotes the Lipschitz constant of F (x, ·). Rewriting (4.147) as

V̇ (x) ≤ −εα(1 − µ)‖x‖2 − εαµ‖x‖2 + νL‖x‖‖u‖, (4.148)

where µ ∈ (0, 1), it follows that

V̇ (x) ≤ −εα(1 − µ)‖x‖2, ‖x‖ ≥ νL

αεµ
‖u‖. (4.149)

Now, the result is a direct consequence of Theorem 4.15 with γ1(σ) = εα(1−
µ)σ2 and γ2(σ) = νL

αεµσ.

Example 4.10. Consider the nonlinear dynamical system

ẋ1(t) = −x1(t) + x2
2(t), x1(0) = x10, t ≥ 0, (4.150)

ẋ2(t) = −x2(t) + u(t), x2(0) = x20. (4.151)

To show that (4.150) and (4.151) is input-to-state stable consider the radially
unbounded, positive definite function V (x1, x2) = 1

2x
2
1 + α

4 x
4
2, α > 0, and

note that

V̇ (x1, x2) = x1(−x1 + x2
2) + αx3

2(−x2 + u)

= −x2
1 + x1x

2
2 − α(1 − ε)x4

2 − αεx4
2 + αx3

2u, ε ∈ (0, 1),

≤ −x2
1 + x1x

2
2 − α(1 − ε)x4

2, |x2| ≥ |u|
ε ,

≤ −
[

x1 x2
2

]

R1

[

x1

x2
2

]

, |x2| ≥ |u|
ε , (4.152)

where

R1 =

[

1 −1/2
−1/2 α(1 − ε)

]

.

Now, choosing α > 1/4(1−ε) ensures that R1 > 0, and hence, V̇ (x1, x2) < 0,

|x2| ≥ |u|
ε . Next, for |x2| ≤ |u|

ε , it follows that

V̇ (x1, x2) ≤ −x2
1 + x1x

2
2 − αx4

2 + α|u|4/ε3
= −(1 − ε)x2

1 + x1x
2
2 − αx4

2 − εx2
1 + α|u|4/ε3

≤ −
[

x1 x2
2

]

R2

[

x1

x2
2

]

, |x1| ≥ α1/2 |u|2
ε2 , (4.153)

where

R2 =

[

1 − ε −1/2
−1/2 α

]

.
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Note that with α > 1/4(1− ε), R2 > 0, and hence, V̇ (x1, x2) < 0, |x2| ≤ |u|
ε .

Next, let δ = min{λmin(R1), λmin(R2)} and let γ2(s) = α1/2s2

ε2 , s ≥ 0. Note

that γ2 ∈ K∞. Now, (4.152) and (4.153) imply V̇ (x1, x2) ≤ −δ(x2
1 + x4

2),
‖x‖∞ ≥ γ2(‖u‖), and hence, it follows from Theorem 4.15 that (4.150) and
(4.151) is input-to-state stable. △

The following propositions address stability of cascade and intercon-
nected dynamical systems. Here, we provide the global versions of these
propositions; the local cases are identical except for restricting the domain
of analysis.

Proposition 4.2. Consider the nonlinear cascade dynamical system

ẋ1(t) = f1(x1(t), x2(t)), x1(0) = x10, t ≥ 0, (4.154)

ẋ2(t) = f2(x2(t)), x2(0) = x20, (4.155)

where f1 : Rn1×Rn2 → Rn1 and f2 : Rn2 → Rn2 are Lipschitz continuous and
satisfy f1(0, 0) = 0 and f2(0) = 0. If (4.154), with x2 viewed as the input,
is input-to-state stable and the zero solution x2(t) ≡ 0 to (4.155) is globally
asymptotically stable, then the zero solution (x1(t), x2(t)) ≡ (0, 0) of the
cascade dynamical system (4.154) and (4.155) is globally asymptotically
stable.

Proof. Since (4.154) is input-to-state stable and the zero solution
x2(t) ≡ 0 of (4.155) is globally asymptotically stable it follows that there
exist KL functions η1(·, ·) and η2(·, ·) and a class K function γ(·) such that

‖x1(t)‖ ≤ η1(‖x1(s)‖, t− s) + γ

(

sup
s≤τ≤t

‖x2(τ)‖
)

, (4.156)

‖x2(t)‖ ≤ η2(‖x2(s)‖, t− s), (4.157)

where t ≥ s ≥ 0. Setting s = t/2 in (4.157) yields

‖x1(t)‖ ≤ η1(‖x1(t/2)‖, t/2) + γ

(

sup
t/2≤τ≤t

‖x2(τ)‖
)

. (4.158)

Next, setting s = 0 and replacing t by t/2 in (4.156) yields

‖x1(t/2)‖ ≤ η1(‖x1(0)‖, t/2) + γ

(

sup
0≤τ≤t/2

‖x2(τ)‖
)

. (4.159)

Now, using (4.157), it follows that

sup
0≤τ≤t/2

‖x2(τ)‖ ≤ η2(‖x2(0)‖, 0), (4.160)

sup
t/2≤τ≤t

‖x2(τ)‖ ≤ η2(‖x2(0)‖, t/2). (4.161)
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Next, substituting (4.159)–(4.161) into (4.158) and using the fact that
‖x1(0)‖ ≤ ‖x(0)‖, ‖x2(0)‖ ≤ ‖x(0)‖, and ‖x(t)‖ ≤ ‖x1(t)‖ + ‖x2(t)‖, t ≥ 0,

where x(t)
△
= [xT

1 (t), xT
2 (t)]T, it follows that

‖x(t)‖ ≤ η(‖x(0)‖, t), (4.162)

where

η(r, s) = η1(η1(r, s/2) + γ(η2(r, 0)), s/2) + γ(η2(r, s/2)) + η2(r, s). (4.163)

Finally, since η(·, t) is a strictly increasing function with η(0, t) = 0 and
η(r, ·) is a decreasing function of time such that limt→∞ η(r, t) = 0, r > 0,
it follows that the zero solution x(t) ≡ 0 of the interconnected dynamical
system (4.154) and (4.155) is globally asymptotically stable.

Proposition 4.3. Consider the nonlinear interconnected dynamical sy-
stem

ẋ1(t) = f1(x1(t), x2(t)), x1(0) = x10, t ≥ 0, (4.164)

ẋ2(t) = f2(x1(t), x2(t)), x2(0) = x20, (4.165)

where f1 : Rn1 × Rn2 → Rn1 is such that, for every x2 ∈ Rn2 , f1(·, x2)
is Lipschitz continuous in x1, and f2 : Rn1 × Rn2 → Rn2 is such that
for every x1 ∈ Rn1 , f2(x1, ·) is Lipschitz continuous in x2. If (4.165) is
input-to-state stable with x1 viewed as the input and (4.164) and (4.165) is
globally asymptotically stable with respect to x1 uniformly in x20, then the
zero solution (x1(t), x2(t)) ≡ (0, 0) of the interconnected dynamical system
(4.164) and (4.165) is globally asymptotically stable.

Proof. Since (4.165) is input-to-state stable with x1 viewed as the
input and (4.164) and (4.165) is globally asymptotically stable with respect
to x1 uniformly in x20, it follows that there exist class KL functions η1(·, ·)
and η2(·, ·) and a class K function γ(·) (see Problem 4.6) such that

‖x1(t)‖ ≤ η1(‖x1(s)‖, t− s), (4.166)

‖x2(t)‖ ≤ η2(‖x2(s)‖, t− s) + γ

(

sup
s≤τ≤t

‖x1(τ)‖
)

, (4.167)

where t ≥ s ≥ 0. Setting s = t/2 in (4.167) yields

‖x2(t)‖ ≤ η2(‖x2(t/2)‖, t/2) + γ

(

sup
t/2≤τ≤t

‖x1(τ)‖
)

. (4.168)

Next, setting s = 0 and replacing t by t/2 in (4.167) yields

‖x2(t/2)‖ ≤ η2(‖x2(0)‖, t/2) + γ

(

sup
0≤τ≤t/2

‖x1(τ)‖
)

. (4.169)
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Now, using (4.166), it follows that

sup
0≤τ≤t/2

‖x1(τ)‖ ≤ η1(‖x1(0)‖, 0), (4.170)

sup
t/2≤τ≤t

‖x1(τ)‖ ≤ η1(‖x1(0)‖, t/2). (4.171)

Next, substituting (4.169)–(4.171) into (4.168) and using the fact that
‖x1(0)‖ ≤ ‖x(0)‖, ‖x2(0)‖ ≤ ‖x(0)‖, and ‖x(t)‖ ≤ ‖x1(t)‖ + ‖x2(t)‖, t ≥ 0,

where x(t)
△
= [xT

1 (t), xT
2 (t)]T, it follows that

‖x(t)‖ ≤ η(‖x(0)‖, t), (4.172)

where

η(r, s) = η1(r, s) + η2(η2(r, s/2) + γ(η1(r, 0)), s/2) + γ(η1(r, s/2)). (4.173)

Finally, since η(·, t) is a strictly increasing function with η(0, t) = 0 and
η(r, ·) is a decreasing function such that limt→∞ η(r, t) = 0, r > 0, it follows
that the zero solution x(t) ≡ 0 of the interconnected dynamical system
(4.164) and (4.165) is globally asymptotically stable.

Example 4.11. To illustrate the utility of Proposition 4.2 for feedback
stabilization, consider the nonlinear system with a linear input subsystem

ẋ(t) = f(x(t)) +G(x(t))x̂(t), x(0) = x0, t ≥ 0, (4.174)
˙̂x(t) = Ax̂(t) +Bu(t), x̂(0) = x̂0, (4.175)

where x ∈ Rn, x̂ ∈ Rn̂, f : Rn → Rn and satisfies f(0) = 0, G : Rn → Rn×n̂,
u ∈ Rm, A ∈ Rn̂×n̂, B ∈ Rn̂×m, and (A,B) is controllable. Furthermore,
assume (4.174) is input-to-state stable with x̂ viewed as the input. Now,
since (A,B) is controllable, there exists K ∈ Rm×n̂ such that with u = Kx̂,
(4.175) is asymptotically stable, that is, the zero solution of ˙̂x(t) = (A +
BK)x̂(t), x̂(0) = x̂0, t ≥ 0, is globally asymptotically stable. Hence, it
follows from Proposition 4.2 that the zero solution (x(t), x̂(t)) ≡ (0, 0) of the
cascade connection (4.174) and (4.175) is globally asymptotically stable. △

Finally, we present a proposition on ultimate boundedness of intercon-
nected systems.

Proposition 4.4. Consider the nonlinear interconnected dynamical sy-
stem (4.164) and (4.165). If (4.165) is input-to-state stable with x1 viewed as
the input and (4.164) and (4.165) is ultimately bounded with respect to x1

uniformly in x20, then the solution (x1(t), x2(t)), t ≥ 0, of the interconnected
dynamical system (4.164) and (4.165) is ultimately bounded.

Proof. Let δ > 0. Since (4.164) and (4.165) is ultimately bounded with
respect to x1 (uniformly in x20), for every ‖x10‖ < δ, there exist positive
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constants δ, ε and T = T (δ, ε) such that if ‖x0‖ < δ, then ‖x1(t)‖ < ε,
t ≥ T . Furthermore, since (4.165) is input-to-state stable with x1 viewed as
the input, it follows that x2(T ) is finite, and hence, there exist a class KL
function η(·, ·) and a class K function γ(·) such that

‖x2(t)‖ ≤ η(‖x2(T )‖, t− T ) + γ

(

sup
T≤τ≤t

‖x1(τ)‖
)

≤ η(‖x2(T )‖, t− T ) + γ(ε)

≤ η(‖x2(T )‖, 0) + γ(ε), t ≥ T, (4.176)

which proves that the solution (x1(t), x2(t)), t ≥ 0, to (4.164) and (4.165) is
ultimately bounded.

4.6 Finite-Time Stability of Nonlinear Dynamical Systems

The notions of asymptotic and exponential stability in dynamical system
theory imply convergence of the system trajectories to an equilibrium state
over the infinite horizon. In many applications, however, it is desirable that
a dynamical system possesses the property that trajectories that converge
to a Lyapunov stable equilibrium state must do so in finite time rather
than merely asymptotically. The stability theorems presented in Chapter
3 involve system dynamics with Lipschitz continuous vector fields, which
implies uniqueness of system solutions in forward and backward times.
Hence, convergence to an equilibrium state is achieved over an infinite time
interval. In order to achieve convergence in finite time, the system dynamics
need to be non-Lipschitzian, giving rise to nonuniqueness of solutions in
backward time. Uniqueness of solutions in forward time, however, can be
preserved in the case of finite-time convergence. Sufficient conditions that
ensure uniqueness of solutions in forward time in the absence of Lipschitz
continuity are given in [4, 118, 232, 474]. In addition, it is shown in [96,
Theorem 4.3, p. 59] that uniqueness of solutions in forward time along
with continuity of the system dynamics ensure that the system solutions are
continuous functions of the system initial conditions even when the dynamics
are not Lipschitz continuous.

In this section, we develop Lyapunov and converse Lyapunov theorems
for finite-time stability of autonomous systems. Specifically, consider the
nonlinear dynamical system given by

ẋ(t) = f(x(t)), x(t0) = x0, t ∈ Ix0
, (4.177)

where x(t) ∈ D ⊆ Rn, t ∈ Ix0
, is the system state vector, Ix0

is the maximal
interval of existence of a solution x(t) of (4.177), D is an open set, 0 ∈ D,
f(0) = 0, and f(·) is continuous on D. We assume that (4.177) possesses
unique solutions in forward time for all initial conditions except possibly the
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origin in the following sense. For every x ∈ D\{0} there exists τx > 0 such
that, if y1 : [0, τ1) → D and y2 : [0, τ2) → D are two solutions of (4.177) with
y1(0) = y2(0) = x, then τx ≤ min{τ1, τ2} and y1(t) = y2(t) for all t ∈ [0, τx).
Without loss of generality, we assume that for each x, τx is chosen to be the
largest such number in R+. Sufficient conditions for forward uniqueness in
the absence of Lipschitz continuity can be found in [4, 118,232,474].

The next result presents the classical comparison principle for nonlin-
ear dynamical systems.

Theorem 4.16. Consider the nonlinear dynamical system (4.177).
Assume there exists a continuously differentiable function V : D → R such
that

V ′(x)f(x) ≤ w(V (x)), x ∈ D, (4.178)

where w : R → R is a continuous function and

ż(t) = w(z(t)), z(t0) = z0, t ∈ Iz0
, (4.179)

has a unique solution z(t), t ∈ Iz0
. If [t0, t0 + τ ] ⊆ Ix0

∩ Iz0
is a compact

interval and V (x0) ≤ z0, z0 ∈ R, then V (x(t)) ≤ z(t), t ∈ [t0, t0 + τ ].

Proof. Consider the family of dynamical systems given by

ż(t) = w(z(t)) +
1

n
, z(t0) = z0, (4.180)

where n ∈ Z+ and t ∈ Iz0,n, and denote the solution to (4.180) by s(n)(t, z0),
t ∈ Iz0,n. Now, it follows from [98, p. 17, Theorem 3] that there exists a
compact interval [t0, t0 + τ ] ⊆ Ix0

∩ Iz0
such that s(n)(t, z0), t ∈ [t0, t0 + τ ],

is defined for all sufficiently large n. Furthermore, it follows from Lemma
3.1 of [179] that s(n)(t, z0) → z(t) as n → ∞ uniformly on [t0, t0 + τ ],
where z(t), t ∈ Iz0

, is a solution to (4.179). Next, we show that V (x(t)) ≤
s(n)(t, z0), n > m, t ∈ [t0, t0 + τ ], where m is sufficiently large so that
s(n)(t, z0) is well defined on [t0, t0 + τ ] for all n > m. Note that at t = t0,
V (x0) = V (x(t0)) ≤ z0 = s(n)(t0, z0). Now, suppose, ad absurdum, that
there exist t1, t2 ∈ [t0, t0 + τ ] such that V (x(t)) > s(n)(t, z0), t ∈ (t1, t2],
and V (x(t1)) = s(n)(t1, z0) for some n > m. Since V (·) is continuously
differentiable, it follows that

V̇ (x(t1)) ≥ ṡ(n)(t1, z0)

= w(s(n)(t1, z0)) +
1

n

= w(V (x(t1))) +
1

n
> w(V (x(t1))), (4.181)

which is a contradiction. Thus, V (x(t)) ≤ s(n)(t, z0), t ∈ [t0, t0 + τ ], n > m.
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Since s(n)(t, z0) → z(t) uniformly on [t0, t0 + τ ], this proves the result.

The next definition introduces the notion of finite-time stability. For
this definition and the remainder of the section we assume, without loss of
generality, that t0 = 0.

Definition 4.7. Consider the nonlinear dynamical system (4.177). The
zero solution x(t) ≡ 0 to (4.177) is finite-time stable if there exist an open
neighborhood N ⊆ D of the origin and a function T : N\{0} → (0,∞),
called the settling-time function, such that the following statements hold:

i) Finite-time convergence. For every x ∈ N\{0}, sx(t) is defined on
[0, T (x)), sx(t) ∈ N\{0} for all t ∈ [0, T (x)), and limt→T (x) s(x, t) = 0.

ii) Lyapunov stability. For every ε > 0 there exists δ > 0 such that
Bδ(0) ⊂ N and for every x ∈ Bδ(0)\{0}, s(t, x) ∈ Bε(0) for all t ∈
[0, T (x)).

The zero solution x(t) ≡ 0 of (4.177) is globally finite-time stable if it is
finite-time stable with N = D = Rn.

Note that if the zero solution x(t) ≡ 0 to (4.177) is finite-time stable,
then it is asymptotically stable, and hence, finite-time stability is a stronger
notion than asymptotic stability. Next, we show that if the zero solution
x(t) ≡ 0 to (4.177) is finite-time stable, then (4.177) has a unique solution
s(·, ·) defined on R+×N for every initial condition in an open neighborhood
of the origin, including the origin, and s(t, x) = 0 for all t ≥ T (x), x ∈ N ,

where T (0)
△
= 0.

Proposition 4.5. Consider the nonlinear dynamical system (4.177).
Assume that the zero solution x(t) ≡ 0 to (4.177) is finite-time stable and
let N ⊆ D and T : N\{0} → (0,∞) be as in Definition 4.7. Then, s(·, ·) is
a unique solution of (4.177) and is defined on R+ × N , and s(t, x) = 0 for
all t ≥ T (x), x ∈ N , where T (0) , 0.

Proof. It follows from Lyapunov stability of the origin that x(t) ≡ 0
is the unique solution x(·) of (4.177) satisfying x(0) = 0. This proves that
R+×{0} is contained in the domain of the definition of s(·, ·) and s0(t) ≡ 0.

Next, let N ⊆ D and T (·) be as in Definition 4.7, and let x0 ∈ N\{0}.
Define

x(t)
△
=

{

s(t, x0), 0 ≤ t ≤ T (x0),
0, T (x0) ≤ t.

(4.182)
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Note that by construction, x(·) is continuously differentiable on R+\{T (x0)}
and satisfies (4.177) on R+\{T (x0)}. Furthermore, since f(·) is continuous,

lim
t→T (x0)−

ẋ(t) = lim
t→T (x0)−

f(x(t)) = 0 = lim
t→T (x0)+

ẋ(t), (4.183)

and hence, x(·) is continuously differentiable at T (x0) and x(·) satisfies
(4.177). Hence, x(·) is a solution of (4.177) on R+.

To show uniqueness, assume y(·) is a solution of (4.177) on R+

satisfying y(0) = x0. In this case, x(·) and y(·) agree on [0, T (x0)),
and by continuity, x(·) and y(·) must also agree on [0, T (x0)], and hence,
y(T (x0)) = 0. Now, Lyapunov stability implies that y(t) = 0 for t > T (x),
which proves uniqueness. Finally, by definition, sx0(t) = x(t), and hence,
sx0(·) is defined on R+ and satisfies sx0(t) = 0 on [T (x0),∞) for every
x0 ∈ N . This proves the result.

It follows from Proposition 4.5 that if the zero solution x(t) ≡ 0 to
(4.177) is finite-time stable, then the solutions of (4.177) define a continuous
global semiflow on N ; that is, s : R+ × N → N is jointly continuous and
satisfies s(0, x) = x and s(t, s(τ, x)) = s(t + τ, x) for every x ∈ N and
t, τ ∈ R+. Furthermore, s(·, ·) satisfies s(T (x) + t, x) = 0 for all x ∈ N and
t ∈ R+. Finally, it also follows from Proposition 4.5 that we can extend T (·)
to all of N by defining T (0) , 0. It is easy to see from Definition 4.7 that

T (x) = inf{t ∈ R+ : s(t, x) = 0}, x ∈ N . (4.184)

The following example adopted from [55] presents a finite-time stable
system with a continuous but non-Lipschitzian vector field.

Example 4.12. Consider the scalar nonlinear dynamical system given
by

ẋ(t) = −k sign(x(t))|x(t)|α, x(0) = x0, t ≥ 0, (4.185)

where x0 ∈ R, sign(x)
△
= x

|x| , x 6= 0, sign(0)
△
= 0, k > 0, and α ∈ (0, 1). The

right-hand side of (4.185) is continuous everywhere and locally Lipschitz
everywhere except the origin. Hence, every initial condition in R\{0} has
a unique solution in forward time on a sufficiently small time interval. The
solution to (4.185) is obtained by direct integration and is given by

s(t, x0)

=











sign(x0)
[

|x0|1−α − k(1 − α)t
]

1

1−α , t < 1
k(1−α) |x0|1−α, x0 6= 0,

0, t ≥ 1
k(1−α) |x0|1−α, x0 6= 0,

0, t ≥ 0, x0 = 0.

(4.186)
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It is clear from (4.186) that i) in Definition 4.7 is satisfied with N = D = R

and with the settling-time function T : R → R+ given by

T (x0) =
1

k(1 − α)
|x0|1−α, x0 ∈ R. (4.187)

Lyapunov stability follows by considering the Lyapunov function V (x) = x2,
x ∈ R. Thus, the zero solution x(t) ≡ 0 to (4.185) is globally finite-time
stable. △

The next proposition shows that the settling-time function of a finite-
time stable system is continuous on N if and only if it is continuous at the
origin.

Proposition 4.6. Consider the nonlinear dynamical system (4.177).
Assume that the zero solution x(t) ≡ 0 to (4.177) is finite-time stable, let
N ⊆ D be as in Definition 4.7, and let T : N → R+ be the settling-time
function. Then T (·) is continuous on N if and only if T (·) is continuous at
x = 0.

Proof. Necessity is immediate. To show sufficiency, suppose T (·) is
continuous at x = 0, let y ∈ N , and consider the sequence {yn}∞n=0 in N
converging to y. Let τ− = lim infn→∞ T (yn) and τ+ = lim supn→∞ T (yn).
Note that τ−, τ+ ∈ R+ and

τ− ≤ τ+. (4.188)

Next, let {y+
m}∞m=0 be a subsequence of {yn}∞n=0 such that T (y+

m) → τ+

as m→ ∞. The sequence {T (y), y+
m}∞m=0 converges in R+ ×N to (T (y), y).

Now, it follows from continuity and s(T (x) + t, x) = 0 for all x ∈ N and
t ∈ R+ that s(T (y), y+

m) → s(T (y), y) = 0 as m→ ∞. Since, by assumption,
T (·) is continuous at x = 0, T (s(T (y), y+

m)) → T (0) = 0 as m → ∞. Next,
using (4.184), the semigroup property s(t, s(τ, x)) = s(t+ τ, x), x ∈ N and
t, τ ∈ R+, and s(T (x) + t, x) = 0, x ∈ N and t, τ ∈ R+, it follows that

T (s(t, x)) = max{T (x) − t, 0}. (4.189)

Now, with t = T (y) and x = y+
m, it follows from (4.189) that max{T (y+

m) −
T (y), 0} → 0 as m→ ∞. Hence, max{τ+ − T (y), 0} = 0, that is,

τ+ ≤ T (y). (4.190)

Finally, let {y−m}∞m=0 be a subsequence of {ym}∞n=0 such that T (y−m) →
τ− as m → ∞. Now, it follows from (4.188) and (4.190) that τ− ∈ R+,
and hence, the sequence {T (y−m), y−m}∞m=0 converges in R+ × N to (τ−, y).
Since s(·, ·) is jointly continuous, it follows that s(T (y−m), y−m) → s(τ−, y) as
m → ∞. Now, s(T (x) + t, x) = 0 for all x ∈ N and t ∈ R+ implies that
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s(T (y−m), y−m) = 0 for each m. Hence, s(τ−, y) = 0 and, by (4.184),

T (y) ≤ τ−. (4.191)

Now, it follows from (4.188), (4.190), and (4.191) that τ− = τ+ = T (y), and
hence, T (yn) → T (y) as n → ∞, which proves that T (·) is continuous on
N .

Next, we present sufficient conditions for finite-time stability using a
Lyapunov function involving a scalar differential inequality.

Theorem 4.17. Consider the nonlinear dynamical system (4.177).
Assume there exist a continuously differentiable function V : D → R+,
real numbers c > 0 and α ∈ (0, 1), and a neighborhood M ⊆ D of the origin
such that

V (0) = 0, (4.192)

V (x) > 0, x ∈ M\{0}, (4.193)

V ′(x)f(x) ≤ −c(V (x))α, x ∈ M\{0}. (4.194)

Then the zero solution x(t) ≡ 0 to (4.177) is finite-time stable. Moreover,
there exist an open neighborhood N of the origin and a settling-time function
T : N → [0,∞) such that

T (x0) ≤
1

c(1 − α)
(V (x0))

1−α, x0 ∈ N , (4.195)

and T (·) is continuous on N . If, in addition, D = Rn, V (·) is radially
unbounded, and (4.194) holds on Rn, then the zero solution x(t) ≡ 0 to
(4.177) is globally finite-time stable.

Proof. Since V (·) is positive definite and V̇ (·) takes negative values
on M\{0}, it follows that x(t) ≡ 0 is the unique solution of (4.177) for t ≥ 0
satisfying x(0) = 0 [4, Section 3.15], [474, Theorem 1.2, p. 5]. Thus, for
every initial condition in D, (4.177) has a unique solution in forward time.

Let V ⊆ M be a bounded open set such that 0 ∈ V and V ⊂ D.
Then ∂V is compact and 0 6∈ ∂V. Now, it follows from Weierstrass’ theorem
(Theorem 2.13) that the continuous function V (·) attains a minimum on
∂V and since V (·) is positive definite, minx∈∂V V (x) > 0. Let 0 < β <

minx∈∂V V (x) and Dβ
△
= {x ∈ V : V (x) ≤ β}. It follows from (4.194)

that Dβ ⊂ M is positively invariant with respect to (4.177). Furthermore,
it follows from (4.194), the positive definiteness of V (·), and standard
Lyapunov arguments that, for every ε > 0, there exists δ > 0 such that
Bδ(0) ⊂ Dβ ⊂ M and

‖x(t)‖ ≤ ε, ‖x0‖ < δ, t ∈ Ix0
. (4.196)
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Moreover, since the solution x(t) to (4.177) is bounded for all t ∈ Ix0
, it can

be extended on the semi-infinite interval [0,∞), and hence, x(t) is defined
for all t ≥ 0. Furthermore, it follows from Theorem 4.16, with w(y) = −cyα

and z(t) = s(t, V (x0)), where α ∈ (0, 1), that

V (x(t)) ≤ s(t, V (x0)), x0 ∈ Bδ(0), t ∈ [0,∞), (4.197)

where s(·, ·) is given by (4.186) with k = c. Now, it follows from (4.186),
(4.197), and the positive definiteness of V (·) that

x(t) = 0, t ≥ 1

c(1 − α)
(V (x0))

1−α, x0 ∈ Bδ(0), (4.198)

which implies finite-time convergence of the trajectories of (4.177) for all
x0 ∈ Bδ(0). This along with (4.196) implies finite-time stability of the zero

solution x(t) ≡ 0 to (4.177) with N △
= Bδ(0).

Since s(0, x) = x and s(·, ·) is continuous, inf{t ∈ R+ : s(t, x) = 0} > 0,
x ∈ N\{0}. Furthermore, it follows from (4.198) that inf{t ∈ R+ : s(t, x) =
0} < ∞, x ∈ N . Now, defining T : N → R+ by using (4.184), (4.195) is
immediate from (4.198). Finally, the right-hand side of (4.195) is continuous
at the origin, and hence, by Proposition 4.6, continuous on N .

Finally, if D = Rn and V (·) is radially unbounded, then global finite-
time stability follows using standard arguments.

Example 4.13. Consider the nonlinear dynamical system G given by

ẋ(t) = −(x(t))
1

3 − (x(t))
1

5 , x(0) = x0, t ≥ 0, (4.199)

where x ∈ R. For this system, we show that the zero solution x(t) ≡ 0 to

(4.199) is globally finite-time stable. To see this, consider V (x) = x
4

3 and

let D = R. Then, V̇ (x) = −4
3(x

2

3 + x
8

15 ) ≤ −4
3x

2

3 = −4
3(V (x))

1

2 for all
x ∈ R. Hence, it follows from Theorem 4.17 that the zero solution x(t) ≡ 0
to (4.199) is globally finite-time stable. Figure 4.8 shows the state trajectory
versus time of G with x0 = 1. △

Finally, we present a converse theorem for finite-time stability in the
case where the settling-time function is continuous. For the statement of
this result, define

V̇ (x) , lim
h→0+

1

h
[V (s(h, x)) − V (x)], x ∈ D, (4.200)

for a given continuous function V : D → R and for every x ∈ D such that
the limit in (4.200) exists.

Theorem 4.18. Let α ∈ (0, 1) and let N be as in Definition 4.7. If the
zero solution x(t) ≡ 0 to (4.177) is finite-time stable and the settling-time
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Figure 4.8 State trajectory versus time for Example 4.13.

function T (·) is continuous at x = 0, then there exist a continuous function
V : N → R and a scalar c > 0 such that V (0) = 0, V (x) > 0, x ∈ N , x 6= 0,
and V̇ (x) ≤ −c(V (x))α, x ∈ N .

Proof. First, it follows from Proposition 4.6 that the settling-time
function T : N → R+ is continuous. Next, define V : N → R+ by

V (x) = (T (x))
1

1−α . Note that V (·) is continuous and positive definite and,
by s(T (x) + t, x) = 0 for all x ∈ N and t ∈ R+, V̇ (0) = 0. Now, (4.189)
implies that V (sx(t)) is continuously differentiable on [0, T (x)), and hence,
(4.200) yields

V̇ (x) = − 1

1 − α
(T (x))

α

1−α = − 1

1 − α
(V (x))α. (4.201)

Hence, V̇ (·) is continuous and negative definite on N and satisfies V̇ (x) +
c(V (x))α = 0 for all x ∈ N with c = 1

1−α .

4.7 Semistability of Nonlinear Dynamical Systems

In this section, we develop a stability analysis framework for systems having
a continuum of equilibria. Since every neighborhood of a nonisolated
equilibrium contains another equilibrium, a nonisolated equilibrium cannot
be asymptotically stable. Hence, asymptotic stability is not the appropriate
notion of stability for systems having a continuum of equilibria. Two
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notions that are of particular relevance to such systems are convergence and
semistability . Convergence is the property whereby every system solution
converges to a limit point that may depend on the system initial condition.
Semistability is the additional requirement that all solutions converge to
limit points that are Lyapunov stable. Semistability for an equilibrium thus
implies Lyapunov stability, and is implied by asymptotic stability.

It is important to note that semistability is not merely equivalent to
asymptotic stability of the set of equilibria. Indeed, it is possible for a
trajectory to converge to the set of equilibria without converging to any
one equilibrium point (see Problem 4.32). Conversely, semistability does
not imply that the equilibrium set is asymptotically stable in any accepted
sense. This is because stability of sets (see Section 4.9) is defined in terms
of distance (especially in case of noncompact sets), and it is possible to
construct examples in which the dynamical system is semistable, but the
domain of semistability (see Definition 4.9) contains no ε-neighborhood
(defined in terms of the distance) of the (noncompact) equilibrium set, thus
ruling out asymptotic stability of the equilibrium set. Hence, semistability
and set stability of the equilibrium set are independent notions.

The dependence of the limiting state on the initial state is seen
in numerous dynamical systems including compartmental systems [220]
which arise in chemical kinetics [47], biomedical [219], environmental [338],
economic [40], power [400], and thermodynamic systems [167]. For these
systems, every trajectory that starts in a neighborhood of a Lyapunov stable
equilibrium converges to a (possibly different) Lyapunov stable equilibrium,
and hence these systems are semistable. Semistability is especially pertinent
to networks of dynamic agents which exhibit convergence to a state of
consensus in which the agents agree on certain quantities of interest [208].
Semistability was first introduced in [81] for linear systems, and applied
to matrix second-order systems in [46]. References [57] and [56] consider
semistability of nonlinear systems, and give several stability results for
systems having a continuum of equilibria based on nontangency and arc
length of trajectories, respectively.

In this section, we develop necessary and sufficient conditions for
semistability. Specifically, we consider nonlinear dynamical systems G of
the form

ẋ(t) = f(x(t)), x(0) = x0, t ∈ Ix0
, (4.202)

where x(t) ∈ D ⊆ Rn, t ∈ Ix0
, is the system state vector, D is an open set,

f : D → Rn is Lipschitz continuous on D, f−1(0) , {x ∈ D : f(x) = 0}
is nonempty, and Ix0

= [0, τx0
), 0 ≤ τx0

≤ ∞, is the maximal interval of
existence for the solution x(·) of (4.202). Here, we assume that for every
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initial condition x0 ∈ D, (4.202) has a unique solution defined on [0,∞),
and hence, the solutions of (4.202) define a continuous global semiflow on
D. We say that the dynamical system (4.202) is convergent with respect to
the closed set Dc ⊆ D if limt→∞ s(t, x) exists for every x ∈ Dc.

The following proposition gives a sufficient condition for a trajectory
of (4.202) to converge to a limit. For this result, Dc ⊆ D denotes a positively
invariant set with respect to (4.202) so that the orbit Ox of (4.202) is
contained in Dc for all x ∈ Dc.

Proposition 4.7. Consider the nonlinear dynamical system (4.202)
and let x ∈ Dc. If the positive orbit O+

x of (4.202) contains a Lyapunov
stable equilibrium point y, then y = limt→∞ s(t, x), that is, O+

x = {y}.

Proof. Suppose y ∈ O+
x is Lyapunov stable and let Nε ⊆ Dc be

an open neighborhood of y. Since y is Lyapunov stable, there exists an
open neighborhood Nδ ⊂ Dc of y such that st(Nδ) ⊆ Nε for every t ≥ 0.
Now, since y ∈ O+

x , it follows that there exists τ ≥ 0 such that s(τ, x) ∈ Nδ.
Hence, s(t+τ, x) = st(s(τ, x)) ∈ st(Nδ) ⊆ Nε for every t > 0. Since Nε ⊆ Dc

is arbitrary, it follows that y = limt→∞ s(t, x). Thus, limn→∞ s(tn, x) = y
for every sequence {tn}∞n=1, and hence, O+

x = {y}.

The following definitions and key proposition are necessary for the
main results of this section.

Definition 4.8. An equilibrium point x ∈ D of (4.202) is Lyapunov
stable if for every open subset Nε of D containing x, there exists an open
subset Nδ of D containing x such that st(Nδ) ⊂ Nε for all t ≥ 0. An
equilibrium point x ∈ D of (4.202) is semistable if it is Lyapunov stable
and there exists an open subset Q of D containing x such that for all
initial conditions in Q, the trajectory of (4.202) converges to a Lyapunov
stable equilibrium point, that is, limt→∞ s(t, x) = y, where y ∈ D is a
Lyapunov stable equilibrium point of (4.202) and x ∈ Q. If, in addition,
Q = D = Rn, then an equilibrium point x ∈ D of (4.202) is a globally
semistable equilibrium. The system (4.202) is said to be Lyapunov stable if
every equilibrium point of (4.202) is Lyapunov stable. The system (4.202)
is said to be semistable if every equilibrium point of (4.202) is semistable.
Finally, (4.202) is said to be globally semistable if (4.202) is semistable and
Q = D = Rn.

Definition 4.9. The domain of semistability is the set of points x0 ∈ D
such that if x(t) is a solution to (4.202) with x(0) = x0, t ≥ 0, then x(t)
converges to a Lyapunov stable equilibrium point in D.

Note that if (4.202) is semistable, then its domain of semistability
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contains the set of equilibria in its interior. Next, we present alternative
equivalent characterizations of semistability of (4.202).

Proposition 4.8. Consider the nonlinear dynamical system G given by
(4.202). Then the following statements are equivalent:

i) G is semistable.

ii) For each xe ∈ f−1(0), there exist class K and L functions α(·) and
β(·), respectively, and δ = δ(xe) > 0, such that if ‖x0 − xe‖ < δ, then
‖x(t)−xe‖ ≤ α(‖x0 −xe‖), t ≥ 0, and dist(x(t), f−1(0)) ≤ β(t), t ≥ 0.

iii) For each xe ∈ f−1(0), there exist class K functions α1(·) and α2(·), a
class L function β(·), and δ = δ(xe) > 0, such that if ‖x0 − xe‖ < δ,
then dist(x(t), f−1(0)) ≤ α1(‖x(t) − xe‖)β(t) ≤ α2(‖x0 − xe‖)β(t),
t ≥ 0.

Proof. To show that i) implies ii), suppose (4.202) is semistable and
let xe ∈ f−1(0). It follows from Problem 3.75 that there exists δ = δ(xe) > 0
and a class K function α(·) such that if ‖x0 − xe‖ ≤ δ, then ‖x(t) − xe‖ ≤
α(‖x0 − xe‖), t ≥ 0. Without loss of generality, we may assume that δ

is such that Bδ(xe) is contained in the domain of semistability of (4.202).

Hence, for every x0 ∈ Bδ(xe), limt→∞ x(t) = x∗ ∈ f−1(0) and, consequently,
limt→∞ dist(x(t), f−1(0)) = 0.

For each ε > 0 and x0 ∈ Bδ(xe), define Tx0
(ε) to be the infimum

of T with the property that dist(x(t), f−1(0)) < ε for all t ≥ T , that is,

Tx0
(ε) , inf{T : dist(x(t), f−1(0)) < ε, t ≥ T}. For each x0 ∈ Bδ(xe), the

function Tx0
(ε) is nonnegative and nonincreasing in ε, and Tx0

(ε) = 0 for
sufficiently large ε.

Next, let T (ε) , sup{Tx0
(ε) : x0 ∈ Bδ(xe)}. We claim that T

is well defined. To show this, consider ε > 0 and x0 ∈ Bδ(xe). Since
dist(s(t, x0), f

−1(0)) < ε for every t > Tx0
(ε), it follows from the continuity

of s that, for every η > 0, there exists an open neighborhood U of x0 such
that dist(s(t, z), f−1(0)) < ε for every z ∈ U . Hence, lim supz→x0

Tz(ε) ≤
Tx0

(ε) implying that the function x0 7→ Tx0
(ε) is upper semicontinuous

at the arbitrarily chosen point x0, and hence on Bδ(xe). Since an upper
semicontinuous function defined on a compact set achieves its supremum,
it follows that T (ε) is well defined. The function T (·) is the pointwise
supremum of a collection of nonnegative and nonincreasing functions, and
is hence nonnegative and nonincreasing. Moreover, T (ε) = 0 for every

ε > max{α(‖x0 − xe‖) : x0 ∈ Bδ(xe)}.
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Let ψ(ε) , 2
ε

∫ ε
ε/2 T (σ)dσ + 1

ε ≥ T (ε) + 1
ε . The function ψ(ε) is

positive, continuous, strictly decreasing, and ψ(ε) → 0 as ε → ∞. Choose
β(·) = ψ−1(·). Then β(·) is positive, continuous, strictly decreasing, and
β(σ) → 0 as σ → ∞. Furthermore, T (β(σ)) < ψ(β(σ)) = σ. Hence,
dist(x(t), f−1(0)) ≤ β(t), t ≥ 0.

Next, to show that ii) implies iii), suppose ii) holds and let xe ∈
f−1(0). Then it follows from Problem 3.75 that xe is Lyapunov stable.
Choosing x0 sufficiently close to xe, it follows from the inequality ‖x(t) −
xe‖ ≤ α(‖x0 − xe‖), t ≥ 0, that trajectories of (4.202) starting sufficiently
close to xe are bounded, and hence, the positive limit set of (4.202) is
nonempty. Since limt→∞ dist(x(t), f−1(0)) = 0, it follows that the positive
limit set is contained in f−1(0). Now, since every point in f−1(0) is
Lyapunov stable, it follows from Proposition 4.7 that limt→∞ x(t) = x∗,
where x∗ ∈ f−1(0) is Lyapunov stable. If x∗ = xe, then it follows using

similar arguments as above that there exists a class L function β̂(·) such that

dist(x(t), f−1(0)) ≤ ‖x(t)− xe‖ ≤ β̂(t) for every x0 satisfying ‖x0 − xe‖ < δ

and t ≥ 0. Hence, dist(x(t), f−1(0)) ≤
√

‖x(t) − xe‖
√

β̂(t), t ≥ 0. Next,

consider the case where x∗ 6= xe and let α1(·) be a class K function. In this
case, note that limt→∞ dist(x(t), f−1(0))/α1(‖x(t)− xe‖) = 0, and hence, it
follows using similar arguments as above that there exists a class L function
β(·) such that dist(x(t), f−1(0)) ≤ α1(‖x(t) − xe‖)β(t), t ≥ 0. Finally,
note that α1 ◦ α is of class K (by Problem 3.71), and hence, iii) follows
immediately.

Finally, to show that iii) implies i), suppose iii) holds and let xe ∈
f−1(0). Then it follows that α1(‖x(t) − xe‖) ≤ α2(‖x(0) − xe‖), t ≥ 0, that
is, ‖x(t)− xe‖ ≤ α(‖x(0)− xe‖), where t ≥ 0 and α = α−1

1 ◦ α2 is of class K
(by Problem 3.71). It now follows from Problem 3.75 that xe is Lyapunov
stable. Since xe was chosen arbitrarily, it follows that every equilibrium point
is Lyapunov stable. Furthermore, limt→∞ dist(x(t), f−1(0)) = 0. Choosing
x0 sufficiently close to xe, it follows from the inequality ‖x(t)−xe‖ ≤ α(‖x0−
xe‖), t ≥ 0, that trajectories of (4.202) starting sufficiently close to xe are
bounded, and hence, the positive limit set of (4.202) is nonempty. Since
every point in f−1(0) is Lyapunov stable, it follows from Proposition 4.7
that limt→∞ x(t) = x∗, where x∗ ∈ f−1(0) is Lyapunov stable. Hence, by
definition, (4.202) is semistable.

Next, we present a sufficient condition for semistability.

Theorem 4.19. Consider the nonlinear dynamical system (4.202). Let
Q be an open neighborhood of f−1(0) and assume that there exists a
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continuously differentiable function V : Q → R such that

V ′(x)f(x) < 0, x ∈ Q\f−1(0). (4.203)

If (4.202) is Lyapunov stable, then (4.202) is semistable.

Proof. Since (4.202) is Lyapunov stable by assumption, for every
z ∈ f−1(0), there exists an open neighborhood Vz of z such that s([0,∞) ×
Vz) is bounded and contained in Q. The set V ,

⋃

z∈f−1(0) Vz is an open

neighborhood of f−1(0) contained in Q. Consider x ∈ V so that there
exists z ∈ f−1(0) such that x ∈ Vz and s(t, x) ∈ Vz, t ≥ 0. Since Vz is
bounded it follows that the positive limit set of x is nonempty and invariant.
Furthermore, it follows from (4.203) that V̇ (s(t, x)) ≤ 0, t ≥ 0, and hence,
it follows from Theorem 3.3 that s(t, x) → M as t → ∞, where M is the
largest invariant set contained in the set R = {y ∈ Vz : V ′(y)f(y) = 0}.
Note that R = f−1(0) is invariant, and hence, M = R, which implies
that limt→∞ dist(s(t, x), f−1(0)) = 0. Finally, since every point in f−1(0) is
Lyapunov stable, it follows from Proposition 4.7 that limt→∞ s(t, x) = x∗,
where x∗ ∈ f−1(0) is Lyapunov stable. Hence, by definition, (4.202) is
semistable.

Next, we present a slightly more general theorem for semistability
wherein we do not assume that all points in V̇ −1(0) are Lyapunov stable but
rather we assume that all points in the largest invariant subset of V̇ −1(0)
are Lyapunov stable.

Theorem 4.20. Consider the nonlinear dynamical system (4.202) and
let Q be an open neighborhood of f−1(0). Suppose the orbit Ox of (4.202)
is bounded for all x ∈ Q and assume that there exists a continuously
differentiable function V : Q → R such that

V ′(x)f(x) ≤ 0, x ∈ Q. (4.204)

If every point in the largest invariant subset M of {x ∈ Q : V ′(x)f(x) = 0}
is Lyapunov stable, then (4.202) is semistable.

Proof. Since every solution of (4.202) is bounded, it follows from
the hypotheses on V (·) that, for every x ∈ Q, the positive limit set ω(x)
of (4.202) is nonempty and contained in the largest invariant subset M
of {x ∈ Q : V ′(x)f(x) = 0}. Since every point in M is a Lyapunov stable
equilibrium, it follows from Proposition 4.7 that ω(x) contains a single point
for every x ∈ Q and limt→∞ s(t, x) exists for every x ∈ Q. Now, since
limt→∞ s(t, x) ∈ M is Lyapunov stable for every x ∈ Q, semistability is
immediate.
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Example 4.14. Consider the nonlinear dynamical system given by

ẋ1(t) = σ12(x2(t)) − σ21(x1(t)), x1(0) = x10, t ≥ 0, (4.205)

ẋ2(t) = σ21(x1(t)) − σ12(x2(t)), x2(0) = x20, (4.206)

where x1, x2 ∈ R, σij(·), i, j = 1, 2, i 6= j, are Lipschitz continuous, σ12(x2)−
σ21(x1) = 0 if and only if x1 = x2, and (x1 − x2)(σ12(x2) − σ21(x1)) ≤ 0,
x1, x2 ∈ R. Note that f−1(0) = {(x1, x2) ∈ R2 : x1 = x2 = α,α ∈ R}. To
show that (4.205) and (4.206) is semistable, consider the Lyapunov function
candidate V (x1, x2) = 1

2(x1−α)2 + 1
2(x2−α)2, where α ∈ R. Now, it follows

that

V̇ (x1, x2) = (x1 − α)[σ12(x2) − σ21(x1)] + (x2 − α)[σ21(x1) − σ12(x2)]

= x1[σ12(x2) − σ21(x1)] + x2[σ21(x1) − σ12(x2)]

= (x1 − x2)[σ12(x2) − σ21(x1)]

≤ 0, (x1, x2) ∈ R × R, (4.207)

which implies that x1 = x2 = α is Lyapunov stable.

Next, let R , {(x1, x2) ∈ R2 : V̇ (x1, x2) = 0} = {(x1, x2) ∈ R2 :
x1 = x2 = α,α ∈ R}. Since R consists of equilibrium points, it follows that
M = R. Hence, for every x1(0), x2(0) ∈ R, (x1(t), x2(t)) → M as t → ∞.
Hence, it follows from Theorem 4.20 that x1 = x2 = α is semistable for all
α ∈ R. △

Finally, we provide a converse Lyapunov theorem for semistability. For
this result, recall that for a given continuous function V : D → R, the upper
right Dini derivative of V along the solution of (4.202) is defined by

V̇ (s(t, x)) , lim sup
h→0+

1

h
[V (s(t+ h, x)) − V (s(t, x))]. (4.208)

It is easy to see that V̇ (xe) = 0 for every xe ∈ f−1(0). Also note that it
follows from (4.208) that V̇ (x) = V̇ (s(0, x)).

Theorem 4.21. Consider the nonlinear dynamical system (4.202).
Suppose (4.202) is semistable with the domain of semistability D0. Then
there exist a continuous nonnegative function V : D0 → R+ and a
class K function α(·) such that i) V (x) = 0, x ∈ f−1(0), ii) V (x) ≥
α(dist(x, f−1(0))), x ∈ D0, and iii) V̇ (x) < 0, x ∈ D0\f−1(0).

Proof. Define the function V : D0 → R+ by

V (x) , sup
t≥0

{

1 + 2t

1 + t
dist(s(t, x), f−1(0))

}

, x ∈ D0. (4.209)

Note that V (·) is well defined since (4.202) is semistable. Clearly, i) holds.
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Furthermore, since V (x) ≥ dist(x, f−1(0)), x ∈ D0, it follows that ii) holds.

To show that V (·) is continuous on D0\f−1(0), define T : D0\f−1(0) →
[0,∞) by T (z) , inf{h : dist(s(t, z), f−1(0)) < dist(z, f−1(0))/2 for all t ≥
h > 0}, and denote

Wε , {x ∈ D0 : dist(s(t, x), f−1(0)) < ε, t ≥ 0}. (4.210)

Note that Wε ⊃ f−1(0) is open and positively invariant, and contains an
open neighborhood of f−1(0). Consider z ∈ D0\f−1(0) and define λ ,

dist(z, f−1(0)) > 0. Then it follows from semistability of (4.202) that there
exists h > 0 such that s(h, z) ∈ Wλ/2. Consequently, s(h + t, z) ∈ Wλ/2

for all t ≥ 0, and hence, it follows that T (z) is well defined. Since Wλ/2

is open, there exists a neighborhood Bσ(s(T (z), z)) ⊂ Wλ/2. Hence, N ,

s−T (z)(Bσ(s(T (z), z))) is a neighborhood of z and N ⊂ D0. Choose η > 0
such that η < λ/2 and Bη(z) ⊂ N . Then, for every t > T (z) and y ∈ Bη(z),
[(1 + 2t)/(1 + t)]dist(s(t, y), f−1(0)) ≤ 2dist(s(t, y), f−1(0)) ≤ λ. Therefore,
for each y ∈ Bη(z),

V (z) − V (y) = sup
t≥0

{

1 + 2t

1 + t
dist(s(t, z), f−1(0))

}

− sup
t≥0

{

1 + 2t

1 + t
dist(s(t, y), f−1(0))

}

= sup
0≤t≤T (z)

{

1 + 2t

1 + t
dist(s(t, z), f−1(0))

}

− sup
0≤t≤T (z)

{

1 + 2t

1 + t
dist(s(t, y), f−1(0))

}

.

(4.211)

Hence,

|V (z) − V (y)|

≤ sup
0≤t≤T (z)

∣

∣

∣

∣

1 + 2t

1 + t

(

dist(s(t, z), f−1(0)) − dist(s(t, y), f−1(0))
)

∣

∣

∣

∣

≤ 2 sup
0≤t≤T (z)

∣

∣dist(s(t, z), f−1(0)) − dist(s(t, y), f−1(0))
∣

∣

≤ 2 sup
0≤t≤T (z)

dist(s(t, z), s(t, y)), z ∈ D0\f−1(0), y ∈ Bη(z).

(4.212)

Now, it follows from continuous dependence of solutions s(·, ·) on system
initial conditions (Theorem 2.26) and (4.212) that V (·) is continuous on
D0\f−1(0).
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To show that V (·) is continuous on f−1(0), consider xe ∈ f−1(0).
Let {xn}∞n=1 be a sequence in D0\f−1(0) that converges to xe. Since xe is
Lyapunov stable, it follows that x(t) ≡ xe is the unique solution to (4.202)
with x0 = xe. By continuous dependence of solutions s(·, ·) on system initial
conditions (Theorem 2.26), s(t, xn) → s(t, xe) = xe as n→ ∞, t ≥ 0.

Let ε > 0 and note that it follows from ii) of Proposition 4.8 that there
exists δ = δ(xe) > 0 such that for every solution of (4.202) in Bδ(xe) there

exists T̂ = T̂ (xe, ε) > 0 such that st(Bδ(xe)) ⊂ Wε for all t ≥ T̂ . Next, note
that there exists a positive integer N1 such that xn ∈ Bδ(xe) for all n ≥ N1.
Now, it follows from (4.209) that

V (xn) ≤ 2 sup
0≤t≤T̂

dist(s(t, xn), f−1(0)) + 2ε, n ≥ N1. (4.213)

Next, it follows from Lemma 3.1 of Chapter I of [179] that s(·, xn) converges

to s(·, xe) uniformly on [0, T̂ ]. Hence,

lim
n→∞

sup
0≤t≤T̂

dist(s(t, xn), f−1(0)) = sup
0≤t≤T̂

dist( lim
n→∞

s(t, xn), f−1(0))

= sup
0≤t≤T̂

dist(xe, f
−1(0))

= 0, (4.214)

which implies that there exists a positive integer N2 = N2(xe, ε) ≥ N1 such
that sup0≤t≤T̂ dist(s(t, xn), f−1(0)) < ε for all n ≥ N2. Combining (4.213)

with the above result yields V (xn) < 4ε for all n ≥ N2, which implies that
limn→∞ V (xn) = 0 = V (xe).

Next, we show that V (x(t)) is strictly decreasing along the solution of
(4.202) on D\f−1(0). Note that for every x ∈ D0\f−1(0) and 0 < h ≤ 1/2
such that s(h, x) ∈ D0\f−1(0), it follows from the definition of T (·) that
V (s(h, x)) is reached at some time t̂ such that 0 ≤ t̂ ≤ T (x). Hence,

V (s(h, x)) = dist(s(t̂+ h, x), f−1(0))
1 + 2t̂

1 + t̂

= dist(s(t̂+ h, x), f−1(0))
1 + 2t̂+ 2h

1 + t̂+ h

[

1 − h

(1 + 2t̂+ 2h)(1 + t̂)

]

≤ V (x)

[

1 − h

2(1 + T (x))2

]

, (4.215)

which implies that V̇ (x) ≤ −1
2V (x)(1 + T (x))−2 < 0, x ∈ D0\f−1(0), and

hence, iii) holds.

It is important to note that a converse Lyapunov theorem for
semistability involving a smooth (i.e., infinitely differentiable) Lyapunov
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function for dynamical systems with continuous vector fields can also be
established. For details, see [209].

4.8 Generalized Lyapunov Theorems

Lyapunov’s results, along with the Barbashin-Krasovskii-LaSalle invariance
principle, provide a powerful framework for analyzing the stability of
nonlinear dynamical systems as well as designing feedback controllers that
guarantee closed-loop system stability. In particular, as discussed in
Sections 3.2 and 3.3, Lyapunov’s direct method can provide local and global
stability conclusions of an equilibrium point of a nonlinear dynamical system
if a continuously differentiable positive-definite function of the nonlinear
system states (Lyapunov function) can be constructed for which its time
rate of change due to perturbations in a neighborhood of the system’s
equilibrium is always negative or zero, with strict negative-definiteness en-
suring asymptotic stability. Alternatively, using the Barbashin-Krasovskii-
LaSalle invariance principle the strict negative-definiteness condition on the
Lyapunov derivative can be relaxed while ensuring asymptotic stability. In
particular, if a continuously differentiable function defined on a compact
invariant set with respect to the nonlinear dynamical system can be
constructed whose derivative along the system’s trajectories is negative
semidefinite, and no system trajectories can stay indefinitely at points where
the function’s derivative identically vanishes, then the system’s equilibrium
is asymptotically stable.

Most Lyapunov stability and invariant set theorems presented in the
literature require that the Lyapunov function candidate for a nonlinear
dynamical system be a continuously differentiable function with a negative-
definite derivative (see [178, 228, 235, 260, 445, 474] and the numerous
references therein). This is due to the fact that the majority of the
dynamical systems considered are systems possessing continuous motions,
and hence, Lyapunov theorems provide stability conditions that do not
require knowledge of the system trajectories. However, in light of the
increasingly complex nature of dynamical systems such as biological systems
[284], hybrid systems [473], sampled-data systems [176], discrete-event
systems [346], gain scheduled systems [271,299,348], constrained mechanical
systems [18], and impulsive systems [20], system discontinuities arise
naturally. Even though standard Lyapunov theory is applicable for systems
with discontinuous system dynamics and continuous motions, it might be
simpler to construct discontinuous “Lyapunov” functions to establish system
stability. For example, in gain scheduling control it is not uncommon to
use several different controllers designed over several fixed operating points
covering the system’s operating range and to switch between them over
this range. Even though for each operating range one can construct a
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continuously differentiable Lyapunov function, to show closed-loop system
stability over the whole system operating envelope for a given switching
control strategy, a generalized Lyapunov function involving combinations of
the Lyapunov functions for each operating range can be constructed [269–
271, 299, 348]. However, in this case, it can be shown that the generalized
Lyapunov function is nonsmooth and noncontinuous [269–271,299,348].

In this section, we develop generalized Lyapunov and invariant set the-
orems for nonlinear dynamical systems wherein all regularity assumptions on
the Lyapunov function and the system dynamics are removed. In particular,
local and global stability theorems are presented using generalized Lyapunov
functions that are lower semicontinuous. Furthermore, generalized invariant
set theorems are derived wherein system trajectories converge to a union
of largest invariant sets contained in intersections over finite intervals of
the closure of generalized Lyapunov level surfaces. In the case where the
generalized Lyapunov function is taken to be a continuously differentiable
function, the results collapse to the standard Lyapunov stability and
invariant set theorems presented earlier. Lower semicontinuous Lyapunov
functions have been considered in [15] in the context of viability theory and
differential inclusions. However, the present formulation provides invariant
set stability theorem generalizations not considered in [15].

To present the main results of this section recall that a continuous
function x : Ix0

→ D is said to be a solution to (3.1) on the interval Ix0
⊆ R

if x(t) satisfies (3.1) for all t ∈ Ix0
. Furthermore, unless otherwise stated,

in this section we do not assume any regularity conditions on the system
dynamics f(·). However, we do assume that f(·) is such that the solution
x(t), t ≥ 0, to (3.1) is well defined on the time interval Ix0

= [0,∞). That
is, we assume that for every y ∈ D there exists a unique solution x(·) of
(3.1) defined on [0,∞) satisfying x(0) = y. Furthermore, we assume that
all the solutions x(t), t ≥ 0, to (3.1) are continuous functions of the initial
conditions x0 ∈ D.

The following result presents sufficient conditions for Lyapunov and
asymptotic stability of a nonlinear dynamical system, wherein the assump-
tion of continuous differentiability on the Lyapunov function with a negative-
definite derivative is relaxed.

Theorem 4.22. Consider the nonlinear dynamical system (3.1) and
let x(t), t ≥ 0, denote the solution to (3.1). Assume that there exists a
lower semicontinuous function V : D → R such that V (·) is continuous at
the origin and

V (0) = 0, (4.216)

V (x) > 0, x ∈ D, x 6= 0, (4.217)
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V (x(t)) ≤ V (x(τ)), 0 ≤ τ ≤ t. (4.218)

Then the zero solution x(t) ≡ 0 to (3.1) is Lyapunov stable. If, in addition,
there exists an increasing unbounded sequence {tn}∞n=0, with t0 = 0, such
that

V (x(tn+1)) < V (x(tn)), n = 0, 1, . . . , (4.219)

then the zero solution x(t) ≡ 0 to (3.1) is asymptotically stable.

Proof. To show Lyapunov stability, let ε > 0 be such that Bε(0) ⊆ D.
Since ∂Bε(0) is compact and V (x), x ∈ D, is lower semicontinuous it follows
from Theorem 2.11 that there exists α = minx∈∂Bε(0)V (x). Note that α > 0
since 0 6∈ ∂Bε(0) and V (x) > 0, x ∈ D, x 6= 0. Next, since V (0) = 0 and V (·)
is continuous at the origin it follows that there exists δ ∈ (0, ε] such that
V (x) < α, x ∈ Bδ(0). Now, it follows from (4.218) that for all x(0) ∈ Bδ(0),

V (x(t)) ≤ V (x(0)) < α, t ≥ 0,

which, since V (x) ≥ α, x ∈ ∂Bε(0), implies that x(t) 6∈ ∂Bε(0), t ≥ 0.
Hence, for all ε > 0 such that Bε(0) ⊆ D there exists δ > 0 such that if
‖x(0)‖ < δ, then ‖x(t)‖ < ε, t ≥ 0, which proves Lyapunov stability.

To prove asymptotic stability let x0 ∈ Bδ(0) and suppose there exists
an increasing unbounded sequence {tn}∞n=0, with t0 = 0, such that (4.219)
holds. Then it follows that x(t) ∈ Bε(0), t ≥ 0, and hence, it follows from
Theorem 2.41 that the positive limit set ω(x0) of x(t), t ≥ 0, is a nonempty,
compact, invariant connected set. Furthermore, x(t) → ω(x0) as t → ∞.
Now, since V (x(t)), t ≥ 0, is nonincreasing and bounded from below by zero

it follows that β
△
= limt→∞ V (x(t)) ≥ 0 is well defined. Furthermore, since

V (·) is lower semicontinuous it can be shown that V (y) ≤ β, y ∈ ω(x0),
and hence, since V (·) is nonnegative, β = 0 if and only if ω(x0) = {0} or,
equivalently, x(t) → 0 as t → ∞. Now, suppose, ad absurdum, that x(t),
t ≥ 0, does not converge to zero or, equivalently, β > 0. Furthermore, let
y ∈ ω(x0) and let {τn}∞n=0 be an increasing unbounded sequence such that
limn→∞ x(τn) = y. Since {V (x(τn))}∞n=0 is a lower bounded nonincreasing
sequence, limn→∞ V (x(τn)) exists and is equal to β. Hence, y 6= 0, which

implies that 0 6∈ ω(x0). Next, let γ
△
= minx∈ω(x0) V (x) > 0 and let xγ ∈

ω(x0) be such that V (xγ) = γ. Now, since ω(x0) is an invariant set it follows
that for all x(0) ∈ ω(x0), x(t) ∈ ω(x0), t ≥ 0, and hence, V (x(t)) ≥ γ, t ≥ 0.
However, since for all x0 ∈ D there exists an increasing unbounded sequence
{tn}∞n=1 such that (4.219) holds, it follows that if x(0) = xγ ∈ ω(x0), there
exists t > 0 such that V (x(t)) < V (x(0)) = γ, which is a contradiction.
Hence, x(t) → 0 as t → ∞, establishing asymptotic stability.

A lower semicontinuous function V (·), with V (·) being continuous at
the origin, satisfying (4.216) and (4.217) is called a generalized Lyapunov
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function candidate for the nonlinear dynamical system (3.1). If, additionally,
V (·) satisfies (4.218), V (·) is called a generalized Lyapunov function for
the nonlinear dynamical system (3.1). Note that if the function V (·) is
continuously differentiable on D in Theorem 4.22 and V ′(x)f(x) ≤ 0, x ∈ D
(respectively, V ′(x)f(x) < 0, x ∈ D, x 6= 0), then V (x(t)) is a nonincreasing
function of time (respectively, there exists an increasing unbounded sequence
{tn}∞n=0, with t0 = 0, such that V (x(tn+1)) < V (x(tn)), n = 0, 1, . . .). In
this case, Theorem 4.22 specializes to Theorem 3.1.

Next, we provide a partial converse to Theorem 3.1. Specifically, we
show that if the nonlinear dynamical system (3.1) is Lyapunov stable, then
there exists a generalized Lyapunov function for (3.1).

Theorem 4.23. Consider the nonlinear dynamical system (3.1) and
let s(t, x0), t ≥ 0, denote the solution to (3.1) with initial condition x0.
Assume that the zero solution x(t) ≡ 0 to (3.1) is Lyapunov stable. Then
there exists a lower semicontinuous function V : D0 → R, where D0 ⊆ D,

such that 0 ∈
◦
D0, V (·) is continuous at the origin, and

V (0) = 0, (4.220)

V (x) > 0, x ∈ D0, x 6= 0, (4.221)

V (s(t, x)) ≤ V (s(τ, x)), 0 ≤ τ ≤ t, x ∈ D0. (4.222)

Proof. Let ε > 0. Since the zero solution x(t) ≡ 0 to (3.1) is Lyapunov
stable it follows that there exists δ > 0 such that if x0 ∈ Bδ(0), then s(t, x0) ∈
Bε(0), t ≥ 0. Now, let D0 = {y ∈ Bε(0) : there exists t ≥ 0 and x0 ∈ Bδ(0)
such that y = s(t, x0)}, that is, D0 = ∪t≥0st(Bδ(0)). Note that D0 ⊆ Bε(0),

D0 is positively invariant, and Bδ(0) ⊆ D0. Hence, 0 ∈
◦
D0. Next, define

V (x)
△
= supt≥0 ‖s(t, x)‖, x ∈ D0, and since D0 is positively invariant and

bounded it follows that V (·) is well defined on D0. Now, x = 0 implies
s(t, x) ≡ 0, and hence, V (0) = 0. Furthermore, V (x) ≥ ‖s(0, x)‖ = ‖x‖ > 0,
x ∈ D0, x 6= 0.

Next, since f(·) in (3.1) is such that for every x ∈ D0, s(t, x), t ≥ 0,
is the unique solution to (3.1), it follows that s(t, x) = s(t − τ, s(τ, x)),
0 ≤ τ ≤ t. Hence, for every t, τ ≥ 0, such that t ≥ τ ,

V (s(τ, x)) = sup
θ≥0

‖s(θ, s(τ, x))‖

= sup
θ≥0

‖s(τ + θ, x)‖

≥ sup
θ≥t−τ

‖s(τ + θ, x)‖
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= sup
θ≥t−τ

‖s(θ − (t− τ), s(t, x))‖

= sup
θ≥0

‖s(θ, s(t, x))‖

= V (s(t, x)), (4.223)

which proves (4.222). Next, since the zero solution x(t) ≡ 0 to (3.1) is

Lyapunov stable it follows that for every ε̂ > 0 there exists δ̂ > 0 such that
if x0 ∈ Bδ̂(0), then s(t, x0) ∈ Bε̂/2(0), t ≥ 0, which implies that V (x0) =

supt≥0 ‖s(t, x0)‖ ≤ ε̂/2. Hence, for every ε̂ > 0 there exists δ̂ > 0 such that
if x0 ∈ Bδ̂(0), then V (x0) < ε̂, establishing that V (·) is continuous at the
origin.

Finally, to show that V (·) is lower semicontinuous everywhere on D0,
let x ∈ D0 and let ε̂ > 0, and note that since V (x) = supt≥0 ‖s(t, x)‖ there
exists T = T (x, ε̂) > 0 such that V (x) − ‖s(T, x)‖ < ε̂. Now, consider
a sequence {xi}∞i=1 ∈ D0 such that xi → x as i → ∞. Next, since by
assumption s(t, ·) is continuous for every t ≥ 0 and ‖ · ‖ : D0 → R is
continuous, it follows that ‖s(T, x)‖ = limi→∞ ‖s(T, xi)‖. Next, note that
‖s(T, xi)‖ ≤ supt≥0 ‖s(t, xi)‖, i = 1, 2, . . ., and hence,

lim inf
i→∞

sup
t≥0

‖s(t, xi)‖ ≥ lim inf
i→∞

‖s(T, xi)‖ = lim
i→∞

‖s(T, xi)‖, i = 1, 2, . . . ,

which implies that

V (x) < ‖s(T, x)‖ + ε̂

= lim
i→∞

‖s(T, xi)‖ + ε̂

≤ lim inf
i→∞

sup
t≥0

‖s(t, xi)‖ + ε̂

= lim inf
i→∞

V (xi) + ε̂. (4.224)

Now, since ε̂ > 0 is arbitrary, (4.224) implies that V (x) ≤ lim infi→∞ V (xi).
Thus, since {xi}∞i=1 is an arbitrary sequence converging to x, it follows that
V (·) is lower semicontinuous on D0.

In the following example we show that there exist Lyapunov stable
systems with continuously differentiable vector fields that do not posses
continuous Lyapunov functions.

Example 4.15. Consider the scalar nonlinear dynamical system

ẋ(t) = x4(t) sin2

(

1

x(t)

)

, x(0) = x0, t ≥ 0. (4.225)

Note that the set of equilibria for the dynamical system (4.225) is charac-
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terized by

E △
= {0} ∪

{±1

π
,
±1

2π
,
±1

3π
, . . .

}

.

Next, let ε > 0 and let δ = 1
nπ > 0, where n ∈ {1, 2, . . .}, such that

1
nπ < ε. Now, for every x0 ∈ [0, δ), since ẋ(t) ≥ 0, t ≥ 0, it follows that
x(t) ≥ x0, t ≥ 0. Furthermore, since there exists at least one equilibrium
point xe ∈ [x0, δ] it follows that 0 ≤ x(t) ≤ xe ≤ δ < ε, t ≥ 0. Similarly, for
every x0 ∈ (−δ, 0], since ẋ(t) ≥ 0, t ≥ 0, it follows that x(t) ≥ −δ, t ≥ 0,
and since there exists at least one equilibrium point xe ∈ [x0, 0], it follows
that −ε < −δ < x0 ≤ x(t) ≤ xe ≤ 0, t ≥ 0. Hence, for every ε > 0 there
exists δ > 0 such that if |x0| < δ, then |x(t)| < ε or, equivalently, the zero
solution x(t) ≡ 0 to (4.225) is Lyapunov stable.

Next, we show that there does not exist a continuous Lyapunov
function that proves Lyapunov stability of the zero solution x(t) ≡ 0 to
(4.225). To see this, let D ⊂ R be an open interval such that 0 ∈ D
and suppose, ad absurdum, there exists a continuous function V : D → R

such that V (0) = 0, V (x) > 0, x ∈ D, x 6= 0, and V (x(t)), t ≥ 0, is
a nonincreasing function of time. Now, let n ∈ {1, 2, . . .} be such that
1

nπ ∈ D. Next, note that, for every x0 ∈ ( 1
(n+1)π ,

1
nπ ), x(t) → 1

nπ as t → ∞.

Now, since V (x(t)), t ≥ 0, is nonincreasing and V (·) is continuous on D
it follows that V (x0) ≥ limt→∞ V (x(t)) = V (limt→∞ x(t)) = V ( 1

nπ ) > 0.

Hence, since x0 ∈ ( 1
(n+1)π ,

1
nπ ) is arbitrary it follows from the continuity of

V (·) that V ( 1
(n+1)π ) ≥ V ( 1

nπ ) > 0. Repeating these arguments iteratively it

follows that

V ( 1
Nπ ) ≥ V ( 1

nπ ), N ∈ {n+ 1, n + 2, . . .},

and hence, it follows from the continuity of V (·) that

V (0) = V

(

lim
N→∞

1
Nπ

)

= lim
N→∞

V ( 1
Nπ )

≥ V ( 1
nπ )

> 0,

which is a contradiction. Hence, there does not exist a continuous Lyapunov
function that proves Lyapunov stability of the zero solution x(t) ≡ 0 to
(4.225). △

Next, we generalize the invariant set stability theorems of Section 3.3
to the case in which the function V (·) is lower semicontinuous. For the
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remainder of the results of this section we define the notation

Rγ
△
=
⋂

c>γ

V −1([γ, c]), (4.226)

for arbitrary V : D ⊆ Rn → R and γ ∈ R, and let Mγ denote the largest
invariant set (with respect to (3.1)) contained in Rγ .

Theorem 4.24. Consider the nonlinear dynamical system (3.1), let
x(t), t ≥ 0, denote the solution to (3.1), and let Dc ⊂ D be a compact
invariant set with respect to (3.1). Assume that there exists a lower
semicontinuous function V : Dc → R such that V (x(t)) ≤ V (x(τ)),

0 ≤ τ ≤ t, for all x0 ∈ Dc. If x0 ∈ Dc, then x(t) → M △
= ∪γ∈R Mγ as

t→ ∞.

Proof. Let x(t), t ≥ 0, be the solution to (3.1) with x0 ∈ Dc. Since
V (·) is lower semicontinuous on the compact set Dc, there exists β ∈ R

such that V (x) ≥ β, x ∈ Dc. Hence, since V (x(t)), t ≥ 0, is nonincreasing,

γx0

△
= limt→∞ V (x(t)), x0 ∈ Dc, exists. Now, for every p ∈ ω(x0) there

exists an increasing unbounded sequence {tn}∞n=0, with t0 = 0, such that
x(tn) → p as n → ∞. Next, since V (x(tn)), n ≥ 0, is nonincreasing
it follows that for all N ≥ 0, γx0

≤ V (x(tn)) ≤ V (x(tN )), n ≥ N , or,
equivalently, since Dc is invariant, x(tn) ∈ V −1([γx0

, V (x(tN ))]), n ≥ N .

Now, since limn→∞ x(tn) = p it follows that p ∈ V −1([γx0
, V (x(tn))]), n ≥ 0.

Furthermore, since limn→∞ V (x(tn)) = γx0
it follows that for every c > γx0

,
there exists n ≥ 0 such that γx0

≤ V (x(tn)) ≤ c, which implies that for

every c > γx0
, p ∈ V −1([γx0

, c]). Hence, p ∈ Rγx0
, which implies that

ω(x0) ⊆ Rγx0
. Now, since Dc is compact and invariant it follows that the

solution x(t), t ≥ 0, to (3.1) is bounded for all x0 ∈ Dc, and hence, it follows
from Theorem 2.41 that ω(x0) is a nonempty compact invariant set which
further implies that ω(x0) is a subset of the largest invariant set contained
in Rγx0

, that is, ω(x0) ⊆ Mγx0
. Hence, for all x0 ∈ Dc, ω(x0) ⊆ M. Finally,

since x(t) → ω(x0) as t→ ∞ it follows that x(t) → M as t→ ∞.

If in Theorem 4.24 M contains no invariant set other than the set
{0}, then the zero solution x(t) ≡ 0 to (3.1) is attractive and Dc is a subset
of the domain of attraction. Furthermore, note that if V : Dc → R is a
lower semicontinuous function such that all the conditions of Theorem 4.24
are satisfied, then for every x0 ∈ Dc there exists γx0

≤ V (x0) such that
ω(x0) ⊆ Mγx0

⊆ M. In addition, since V −1([γ, c]) = {x ∈ Dc : V (x) ≥
γ} ∩ {x ∈ Dc : V (x) ≤ c} and {x ∈ Dc : V (x) ≤ c} is a closed set, it follows

that R̂γ,c ⊂ {x ∈ Dc : V (x) < γ}, where R̂γ,c
△
= V −1([γ, c]) \ V −1([γ, c]),
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c > γ, for a fixed γ ∈ R. Hence,

Rγ =
⋂

c>γ

(

V −1([γ, c]) ∪ R̂γ,c

)

= V −1(γ) ∪ R̂γ ,

where R̂γ
△
= ∩c>γ R̂γ,c, is such that V (x) < γ, x ∈ R̂γ . Finally, if V (·) is

continuous, then R̂γ,c = Ø, γ ∈ R, c > γ, and hence, Rγ = V −1(γ).

It is important to note that as in standard Lyapunov and invariant
set theorems involving continuously differentiable functions, Theorem 4.24
allows one to characterize the invariant set M without knowledge of the
system trajectories x(t), t ≥ 0. Similar remarks hold for Theorems 4.25–
4.27 given below.

Example 4.16. To illustrate the utility of Theorem 4.24 consider the
simple scalar nonlinear dynamical system given by

ẋ(t) = −x(t)(x(t) − 1)(x(t) + 2), x(0) = x0, t ≥ 0, (4.227)

with generalized Lyapunov function candidate

V (x) =

{

(x+ 2)2, x < 0,
(x− 1)2, x ≥ 0.

Now, note that for all x ∈ R,

V̇ (x)
△
= D+V (x)[−x(x− 1)(x+ 2)] =

{

−2x(x− 1)(x + 2)2, x < 0,
−2x(x− 1)2(x+ 2), x ≥ 0,

≤ 0,

which implies that V (x(t)), t ≥ 0, is nonincreasing along the system
trajectories. Next, note that Rγ = V −1(γ), γ ∈ R \ {4}, and R4 =
V −1(4) ∪ {0}. Since the only invariant sets in Rγ , γ ∈ R, for the dynamical
system (4.227) are the equilibrium points xe1 = −2, xe2 = 0, xe3 = 1, it
follows that Mγ = Ø, γ 6∈ {0, 1, 4}, M0 = {−2, 1}, M1 = {0}, and
M4 = {0}, which implies that M = {−2, 0, 1}. Hence, it follows from
Theorem 4.24 that for every x0 ∈ R the solution to (4.227) approaches the
invariant set M = {−2, 0, 1} as t→ ∞ which can be easily verified. △

The following corollary to Theorem 4.24 presents sufficient conditions
that guarantee local asymptotic stability of the nonlinear dynamical system
(3.1).

Corollary 4.5. Consider the nonlinear dynamical system (3.1), let x(t),

t ≥ 0, denote the solution to (3.1), and let Dc ⊂ D with 0 ∈
◦
Dc be a

compact invariant set with respect to (3.1). Assume that there exists a
lower semicontinuous positive-definite function V : Dc → R such that V (·)
is continuous at the origin and V (x(t)) ≤ V (x(τ)), 0 ≤ τ ≤ t, for all x0 ∈ Dc.

Furthermore, assume that M △
= ∪γ≥0 Mγ contains no invariant set other
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than the set {0}. Then the zero solution x(t) ≡ 0 to (3.1) is asymptotically
stable and Dc is a subset of the domain of attraction of (3.1).

Proof. The result follows as a direct consequence of Theorems 4.22
and 4.24.

Next, we specialize Theorem 4.24 to the Barbashin-Krasovskii-LaSalle
invariant set theorem wherein V (·) is a continuously differentiable function.

Corollary 4.6. Consider the nonlinear dynamical system (3.1), assume
that Dc ⊂ D is a compact invariant set with respect to (3.1), and assume
that there exists a continuously differentiable function V : Dc → R such
that V ′(x)f(x) ≤ 0, x ∈ Dc. Let R △

= {x ∈ Dc : V ′(x)f(x) = 0} and let M
be the largest invariant set contained in R. If x0 ∈ Dc, then x(t) → M as
t→ ∞.

Proof. The result follows from Theorem 4.24. Specifically, since
V ′(x)f(x) ≤ 0, x ∈ Dc, it follows that

V (x(t)) − V (x(τ)) =

∫ t

τ
V ′(x(s))f(x(s))ds ≤ 0, t ≥ τ,

and hence, V (x(t)) ≤ V (x(τ)), t ≥ τ . Now, since V (·) is continuously
differentiable it follows that Rγ = V −1(γ), γ ∈ R. In this case, it follows
from Theorem 4.24 that for every x0 ∈ Dc there exists γx0

∈ R such that
ω(x0) ⊆ Mγx0

, where Mγx0
is the largest invariant set contained in Rγx0

=

V −1(γx0
), which implies that V (x) = γx0

, x ∈ ω(x0). Hence, since Mγx0

is an invariant set it follows that for all x(0) ∈ Mγx0
, x(t) ∈ Mγx0

, t ≥ 0,

and thus, V̇ (x(0))
△
= dV (x(t))

dt

∣

∣

∣

t=0
= V ′(x(0))f(x(0)) = 0, which implies the

Mγx0
is contained in M which is the largest invariant set contained in R.

Hence, since x(t) → ω(x0) ⊆ M as t → ∞, it follows that x(t) → M as
t→ ∞.

Next, we sharpen the results of Theorem 4.24 by providing a refined
construction of the invariant set M. In particular, we show that the
system trajectories converge to a union of largest invariant sets contained in
intersections over the largest limit value of V (·) at the origin of the closure
of generalized Lyapunov surfaces. First, however, the following key lemma
is needed.

Lemma 4.2. Let Q ⊆ Rn, let V : Q → R, and let γ0
△
= lim supx→0

V (x). If 0 ∈ Rγ for some γ ∈ R, then γ ≤ γ0.

Proof. If 0 ∈ Rγ for γ ∈ R, then there exists a sequence {xn}∞n=0 ⊂ Rγ

such that limn→∞ xn = 0. Now, since γ0 = lim supx→0 V (x), it follows
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that lim supn→∞ V (xn) ≤ γ0. Next, note that xn ∈ V −1([γ, c]), c > γ,
n = 0, 1, . . ., which implies that V (xn) ≥ γ, n = 0, 1, . . .. Thus, using the
fact that lim supn→∞ V (xn) ≤ γ0 it follows that γ ≤ γ0.

Note that if in Lemma 4.2 V (·) is continuous at the origin, then γ0 =
V (0).

Theorem 4.25. Consider the nonlinear dynamical system (3.1), let

x(t), t ≥ 0, denote the solution to (3.1), and let Dc ⊂ D with 0 ∈
◦
Dc be

a compact invariant set with respect to (3.1). Assume that there exists
a lower semicontinuous positive-definite function V : Dc → R such that
V (x(t)) ≤ V (x(τ)), 0 ≤ τ ≤ t, for all x0 ∈ Dc. Furthermore, assume that
for all x0 ∈ Dc, x0 6= 0, there exists an increasing unbounded sequence
{tn}∞n=0, with t0 = 0, such that

V (x(tn+1)) < V (x(tn)), n = 0, 1, . . . . (4.228)

If x0 ∈ Dc, then x(t) → M̂ △
= ∪γ∈G Mγ as t → ∞, where G △

= {γ ∈ [0, γ0] :

0 ∈ Rγ} and γ0
△
= lim supx→0 V (x). If, in addition, V (·) is continuous at

the origin, then the zero solution x(t) ≡ 0 to (3.1) is locally asymptotically
stable and Dc is a subset of the domain of attraction.

Proof. It follows from Theorem 4.24 and the fact that V (·) is
positive definite that, for every x0 ∈ Dc, there exists γx0

≥ 0 such that
ω(x0) ⊆ Mγx0

⊆ Rγx0
. Furthermore, since all solutions x(t), t ≥ 0, to

(3.1) are bounded, it follows from Theorem 2.41 that ω(x0) is a nonempty,
compact, invariant set. Now, ad absurdum, suppose 0 6∈ ω(x0). Since V (·) is

lower semicontinuous it follows from Theorem 2.11 that α
△
= minx∈ω(x0) V (x)

exists. Furthermore, there exists x̂ ∈ ω(x0) such that V (x̂) = α. Now,
with x(0) = x̂ 6= 0 it follows from (4.228) that there exists an increasing
unbounded sequence {tn}∞n=0, with t0 = 0, such that V (x(tn+1)) < V (x(tn)),
n = 0, 1, . . ., which implies that there exists t > 0 such that V (x(t)) < α,
and hence, x(t) 6∈ ω(x0), contradicting the fact that ω(x0) is an invariant set.
Hence, 0 ∈ ω(x0) ⊆ Rγx0

, which, using Lemma 4.2, implies that γx0
≤ γ0

for all x0 ∈ Dc, and which further implies that ω(x0) ⊆ M̂. Now, since

x(t) → ω(x0) ⊆ M̂ as t→ ∞ it follows that x(t) → M̂ as t→ ∞.

Finally, if V (·) is continuous at the origin then Lyapunov stability
follows from Theorem 4.22. Furthermore, in this case, γ0 = V (0) = 0,

which implies that M̂ ≡ {0}. Hence, x(t) → 0 as t → ∞ for all x0 ∈
Dc, establishing local asymptotic stability with a subset of the domain of
attraction given by Dc.

In all the above results we explicitly assumed that there exists a
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compact invariant set Dc ⊂ D of (3.1). Next, we provide a result that
does not require the existence of such a compact invariant Dc.

Theorem 4.26. Consider the nonlinear dynamical system (3.1) and
let x(t), t ≥ 0, denote the solution to (3.1). Assume that there exists a
lower semicontinuous function V : Rn → R such that

V (0) = 0, (4.229)

V (x) > 0, x ∈ Rn, x 6= 0, (4.230)

V (x(t)) ≤ V (x(τ)), 0 ≤ τ ≤ t. (4.231)

Then all solutions x(t), t ≥ 0, to (3.1) that are bounded approach M △
=

∪γ≥0 Mγ as t → ∞. If, in addition, for all x0 ∈ Rn, x0 6= 0, there exists an
increasing unbounded sequence {tn}∞n=0, with t0 = 0, such that

V (x(tn+1)) < V (x(tn)), n = 0, 1, . . . , (4.232)

then all solutions x(t), t ≥ 0, to (3.1) that are bounded approach M̂ △
=

∪γ∈G Mγ , where G △
= {γ ∈ [0, γ0] : 0 ∈ Rγ} and γ0

△
= lim supx→0 V (x).

Proof. Let x0 ∈ Rn be such that the trajectory x(t), t ≥ 0, is bounded.
Now, the proof is a direct consequence of Theorems 4.24 and 4.25 with

Dc = O+
x0 .

Next, we present a generalized global invariant set theorem for
guaranteeing global attraction and global asymptotic stability of a nonlinear
dynamical system.

Theorem 4.27. Consider the nonlinear dynamical system (3.1) with
D = Rn and let x(t), t ≥ 0, denote the solution to (3.1). Assume that there
exists a lower semicontinuous function V : Rn → R such that

V (0) = 0, (4.233)

V (x) > 0, x ∈ Rn, x 6= 0, (4.234)

V (x(t)) ≤ V (x(τ)), 0 ≤ τ ≤ t, (4.235)

V (x) → ∞ as ‖x‖ → ∞. (4.236)

Then for all x0 ∈ Rn, x(t) → M △
= ∪γ≥0 Mγ as t → ∞. If, in addition, for

all x0 ∈ Rn, x0 6= 0, there exists an increasing unbounded sequence {tn}∞n=0,
with t0 = 0, such that

V (x(tn+1)) < V (x(tn)), n = 0, 1, . . . , (4.237)

then x(t) → M̂ △
= ∪γ∈G Mγ as t → ∞, where G △

= {γ ∈ [0, γ0] : 0 ∈ Rγ}
and γ0

△
= lim supx→0 V (x). Finally, if V (·) is continuous at the origin, then

the zero solution x(t) ≡ 0 to (3.1) is globally asymptotically stable.
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Proof. Note that since V (x) → ∞ as ‖x‖ → ∞ it follows that for
every β > 0 there exists r > 0 such that V (x) > β for all x 6∈ Br(0) or,
equivalently, V −1([0, β]) ⊆ Br(0), which implies that V −1([0, β]) is bounded

for all β > 0. Hence, for all x0 ∈ Rn, V −1([0, βx0
]) is bounded, where βx0

△
=

V (x0). Furthermore, since V (·) is a positive-definite lower semicontinuous
function it follows that V −1([0, βx0

]) is closed, and since V (x(t)), t ≥ 0, is
nonincreasing it follows that V −1([0, βx0

]) is an invariant set. Hence, for
every x0 ∈ Rn, V −1([0, βx0

]) is a compact invariant set. Now, with Dc =
V −1([0, βx0

]) it follows from Theorem 4.24 that there exists 0 ≤ γx0
≤ βx0

such that ω(x0) ⊆ Mγx0
⊆ Rγx0

, which implies that x(t) → M as t → ∞.
If, in addition, for all x0 ∈ Rn, x0 6= 0, there exists an increasing unbounded
sequence {tn}∞n=0, with t0 = 0, such that (4.237) holds, then it follows from

Theorem 4.25 that x(t) → M̂ as t→ ∞.

Finally, if V (·) is continuous at the origin, then Lyapunov stability
follows from Theorem 4.22. Furthermore, in this case, γ0 = V (0) = 0, which

implies that M̂ ≡ {0}. Hence, x(t) → 0 as t → ∞, establishing global
asymptotic stability.

If in Theorems 4.25 and 4.27 the function V (·) is continuously
differentiable on Dc and Rn, respectively, and V ′(x)f(x) < 0, x ∈ Rn,
x 6= 0, then every increasing unbounded sequence {tn}∞n=0, with t0 = 0, is
such that V (x(tn+1)) < V (x(tn)), n = 0, 1, . . .. In this case Theorems 4.25
and 4.27 specialize to the standard Lyapunov stability theorems for local
and global asymptotic stability, respectively, presented in Section 3.2.

Example 4.17. To illustrate the generalized stability theorems pre-
sented in this section we consider the stability analysis of a nonlinear
dynamical system given by

ẋ1(t) = σ(x1(t)) + u(t), x1(0) = x10, t ≥ 0, (4.238)

ẋ2(t) = σ(x2(t)) + u(t), x2(0) = x20, (4.239)

ẋ3(t) = σ(x3(t)) + u(t), x3(0) = x30, (4.240)

where σ : R → R is given by σ(y) = −3my2 − y3, m > 0, and

u =

{

0, x ∈ DI ,
−σ(αm), x 6∈ DI ,

(4.241)

where x
△
= [x1 x2 x3]

T, α > 1, and DI
△
= {x ∈ R3 : x1 ≥ 0, x2 ≥ 0, x3 ≥

0}. Next, consider the radially unbounded generalized Lyapunov function
candidate given by

V (x) =

{

1
3

∑3
i=1 x

2
i , x ∈ DI ,

∑3
i=1(xi − αm)2, x 6∈ DI ,

(4.242)
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and note that V (x) is continuous on R3 \ ∂DI .

Next, note that for i = {1, 2, 3},

q−i
△
= lim

xi→0−
V (x) = α2m2 +

3
∑

j=1, 6=i

(xi − αm)2,

q+i
△
= lim

xi→0+
V (x) =

3
∑

j=1, 6=i

1
3x

2
i , qi

△
= V (x)|xi=0 =

3
∑

j=1, 6=i

1
3x

2
i ,

and hence, q+i − qi = 0 and q−i − qi = 2
3

∑3
j=1, 6=i(xi − 3

2αm)2, which

implies that V (x) is lower semicontinuous on ∂DI , and hence, V (·) is lower
semicontinuous on R3. Now, note that

V̇ (x)
△
= D+V (x)f(x)

=

{

−2
3

∑3
i=1 xi(3mx

2
i + x3

i ), x ∈ DI ,

−2
∑3

i=1(xi − αm)[3m(xi − αm)2 + x3
i − α3m3], x 6∈ DI ,

=







−2
3

∑3
i=1 xi(3mx

2
i + x3

i ), x ∈ DI ,

−2
∑3

i=1(xi − αm)2[(xi + m(α+3)
2 )2 + 3m2

4 (α+ 3)(α − 1)],
x 6∈ DI ,

(4.243)

where f : R3 → R3 denotes the right-hand side of (4.238)–(4.240). Next,
(4.243) implies that V (x(t)), t ≥ 0, is nonincreasing along the system
trajectories. Furthermore, since V̇ (x) < 0, x ∈ R3, x 6= 0, it follows that for
all (x10, x20, x30) ∈ R3 \ {0} there exists an increasing unbounded sequence
{tn}∞n=0, with t0 = 0, such that V (x(tj+1)) < V (x(tj)), j = 0, 1, . . ., so
that all the conditions of Theorem 4.27 are satisfied. Hence, it follows from
Theorem 4.27 that x(t) → M̂ as t → ∞, where M̂ is defined as in Theorem
4.27 with G = {0, 3α2m2} and γ0 = lim supx→0 V (x) = 3α2m2.

Next, note that R0 = {0} and

R3α2m2 =

{

x ∈ DI :

3
∑

i=1

x2
i = 9α2m2

}

∪ {0}. (4.244)

Now, it follows that Mγ = {0}, γ ∈ G = {0, 3α2m2}, which implies that

M̂ = {0}. Hence, it follows from Theorem 4.27 that x(t) → 0 as t → ∞.
Finally, it can be shown that the nonlinear dynamical system (4.238)–(4.240)
is Lyapunov stable so that the asymptotic stability can be established. △

Next, we remove the lower semicontinuity assumption on the function
V (·) and show that the zero solution x(t) ≡ 0 to (3.1) is asymptotically
stable if there simply exists an increasing unbounded sequence {tn}∞n=0, with
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t0 = 0, such that for T ≥ tn+1 − tn > 0, n ∈ Z+, and all x(0) ∈ D,
V (x(T )) − V (x(0)) ≤ −γ(‖x(0)‖) < 0, where γ(·) is a class K function.
However, for the remainder of the results of this section we assume that f(·)
is Lipschitz continuous on D with maximum Lipschitz constant L > 0 over
D. The following lemma is needed for this result.

Lemma 4.3. Consider the nonlinear dynamical system (3.1). Assume
f : D → Rn is Lipschitz continuous on D with maximum Lipschitz constant
L > 0 over D. If x0 ∈ Bδ(0), δ = εe−LT , where ε > 0 and T > 0, then
x(t) ∈ Bε(0) for all t ∈ [0, T ].

Proof. It follows from (3.1) that

x(t) = x(0) +

∫ t

0
f(x(s))ds, t ≥ 0. (4.245)

Now, using the fact that f : D → Rn is Lipschitz continuous on D, it follows
that

‖x(t)‖ ≤ ‖x0‖ +

∫ t

0
‖f(x(s))‖ds, t ≥ 0

≤ ‖x0‖ +

∫ t

0
L‖x(s)‖ds, (4.246)

where L > 0 is the maximum Lipschitz constant over D. Using Lemma 2.2,
(4.246) implies

‖x(t)‖ ≤ ‖x0‖eLt, t ≥ 0. (4.247)

Next, let x0 ∈ Bδ(0) ⊂ Bε(0) and let τ > 0 be such that x(t) ∈ Bε(0),
t ∈ [0, τ), and ‖x(τ)‖ = ε. In this case, it follows from (4.247) with t = τ
that ‖x(τ)‖ ≤ ‖x0‖eLτ . Now, since by assumption ‖x(τ)‖ = ε, ‖x0‖ < δ,
and δ = εe−LT , it follows that ε < εeL(τ−T ), and hence, τ > T . Hence, since
x(t) ∈ Bε(0), t ∈ [0, τ), and τ > T it follows that x(t) ∈ Bε(0), t ∈ [0, T ].

Theorem 4.28. Consider the nonlinear dynamical system (3.1) and
let x(t), t ≥ 0, denote the solution to (3.1). Assume there exist a function
V : D → R, an increasing unbounded sequence {tn}∞n=0, with t0 = 0, and
T > 0 such that 0 < tn+1 − tn ≤ T , n = 0, 1, . . . , and

α(‖x‖) ≤ V (x) ≤ β(‖x‖), x ∈ D, (4.248)

V (x(tn+1)) − V (x(tn)) ≤ 0, x(tn) ∈ D, n = 0, 1, . . . , (4.249)

where α(·) and β(·) are class K functions defined on [0, ε) for all ε > 0. Then
the zero solution x(t) ≡ 0 to (3.1) is Lyapunov stable. If, in addition, there
exists a class K function γ(·) defined on [0,∞) such that

V (x(tn+1)) − V (x(tn)) ≤ −γ(‖x(tn)‖) < 0, x(tn) ∈ D, n = 0, 1, . . . ,
(4.250)
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then the zero solution x(t) ≡ 0 to (3.1) is asymptotically stable.

Proof. To show Lyapunov stability, define δ
△
= εe−LT and define

η
△
= β−1(α(δ)), where L denotes the maximum Lipschitz constant over

D for the nonlinear dynamical system (3.1). Now, for all x0 ∈ Bη(0) it
follows that β(‖x0‖) < α(δ), and hence, (4.248) implies V (x0) < α(δ). Next,
(4.249) implies that V (x(t1)) ≤ V (x0) < α(δ), and hence, (4.248) implies
α(‖x(t1)‖) ≤ V (x(t1)) < α(δ) so that x(t1) ∈ Bδ(0). Now, using (4.249)
with n = 2 it follows that V (x(t2)) ≤ V (x(t1)) < α(δ), and hence, repeating
this procedure, x(tn) ∈ Bδ(0), n = 0, 1, . . .. Since {tn}∞n=0 is an increasing
sequence with t0 = 0 and tn → ∞ as n→ ∞, there exists an integer n̂ such
that tn̂ ≤ t ≤ tn̂+1, t ≥ 0. Now, using the fact that x(tn) ∈ Bδ(0), it follows
that ‖x(tn̂)‖ < δ = εe−LT . Hence, Lemma 4.3 implies that ‖x(t)‖ < ε,
t ≥ 0, and hence, for all ε > 0 there exists η = β−1(α(δ)) > 0 such that if
‖x(0)‖ < η, then ‖x(t)‖ < ε, t ≥ 0, which proves Lyapunov stability.

To show asymptotic stability, let 0 < η̂ < η(ε) = β−1(α(εe−LT )) and
let x0 ∈ Bη̂(0) so that V (x0) ≤ β(‖x0‖) < β(η̂). Now, suppose, ad absurdum,
that ‖x(tn)‖ ≥ l > 0, n = 0, 1, . . .. In this case, it follows from (4.250) that

V (x(tn+1)) − V (x(tn)) ≤ −γ(‖x(tn)‖) ≤ −γ(l), n = 0, 1, . . . ,

and hence, V (x(tn+1)) − V (x0) ≤ −(n + 1)γ(l), n = 0, 1, . . .. Now, since
0 ≤ α(‖x‖) ≤ V (x), x ∈ D, it follows that

0 ≤ V (x(tn+1)) ≤ V (x0) − (n+ 1)γ(l) < β(η̂) − (n+ 1)γ(l),

for all x0 ∈ Bη̂(0) and n = 0, 1, . . .. Since β(·) and γ(·) are class K functions
it follows that there exists an integer n̂ such that β(η̂) − (n̂ + 1)γ(l) < 0,
which leads to a contradiction, and hence, ‖x(tn̂)‖ < l. Thus, it follows from

(4.248) that V (x(tn̂)) ≤ β(‖x(tn̂)‖) < β(l). Next, define l̂
△
= α−1(β(l)) so

that V (x(tn̂)) < β(l) = α(l̂). Now, it follows from (4.248) and (4.250) that

α(‖x(tn∗)‖) ≤ V (x(tn∗)) < α(l̂), n∗ ≥ n̂, and hence, ‖x(tn∗)‖ < l̂. Letting
t ≥ tn̂ and choosing n∗ ≥ n̂ such that tn∗ ≤ t ≤ tn∗+1, it follows from

Lemma 4.3 that x(t) ∈ Bε̂(0), ε̂
△
= l̂e−LT , t ≥ tn̂. Hence, for x0 ∈ Bη̂(0),

0 < η̂ < η(ε), there exists tn̂ such that x(t) ∈ Bε̂(0), ε̂ > 0, t > tn̂. Now,
letting n̂ → ∞ so that tn̂ → ∞, it follows that ε̂ → 0, and hence, x(t) → 0
as t→ ∞, which proves asymptotic stability.

The results of this section provide sufficient conditions for Lyapunov
and asymptotic stability of the nonlinear dynamical system (3.1) with no
regularity assumptions on the function V (·). It is important to note that
even though the stability conditions appearing in Theorems 4.24–4.27 are
system trajectory dependent, the invariant set M can be characterized
without knowledge of the system trajectories. Furthermore, as shown in
Example 4.16, these theorems allow for a systematic way of constructing
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system Lyapunov functions by piecing together a collection of functions.
Alternatively, V (·) in Theorem 4.28 is not required to be continuous,
differentiable, or decreasing. In the case where V (·) is continuously
differentiable, condition (4.250) implies that the time derivative of V (·) along
the trajectories of the nonlinear dynamical system (3.1) may have negative
and positive values. This allows the consideration of Lyapunov function
candidates for proving asymptotic stability for nonlinear dynamical systems
that might otherwise be excluded as valid Lyapunov function candidates
using classical Lyapunov stability theory.

4.9 Lyapunov and Asymptotic Stability of Sets

In this section, we extend the results of Section 4.8 to address stability and
attraction of dynamical systems with respect to compact positively invariant
sets. These results are used in the next section to provide necessary and
sufficient conditions for stability of periodic orbits and limit cycles. We
begin by considering the nonlinear dynamical system

ẋ(t) = f(x(t)), x(0) = x0, t ∈ Ix0
, (4.251)

where x(t) ∈ D ⊆ Rn, t ∈ Ix0
, is the system state vector, D is an open

set, f : D → Rn, and Ix0
= [0, τx0

), 0 < τx0
≤ ∞, is the maximal interval

of existence for the solution x(·) of (4.251). We assume that the dynamics
f(·) are such that the solution s(t, x0) to (4.251) is unique for every initial
condition in D and jointly continuous in t and x0. A sufficient condition
ensuring this is Lipschitz continuity of f(·). Furthermore, we assume that
all solutions to (4.251) are bounded over Ix0

, and hence, by Corollary 2.5
can be extended to infinity. The following definition introduces three types
of stability notions as well as attraction of (4.251) with respect to a compact
positively invariant set for Ix0

= [0,∞).

Definition 4.10. Let D0 ⊂ D be a compact positively invariant set
for the nonlinear dynamical system (4.251). D0 is Lyapunov stable if, for
every open neighborhood O1 ⊆ D of D0, there exists an open neighborhood
O2 ⊆ O1 of D0 such that x(t) ∈ O1, t ≥ 0, for all x0 ∈ O2. Equivalently,
D0 is Lyapunov stable if, for all ε > 0, there exists δ = δ(ε) > 0 such that if
dist(x0,D0) < δ, then dist(s(t, x0),D0) < ε, t ≥ 0. D0 is attractive if there
exists an open neighborhood O3 ⊆ D of D0 such that ω(x0) ⊆ D0 for all
x0 ∈ O3. D0 is asymptotically stable if it is Lyapunov stable and attractive.
Equivalently, D0 is asymptotically stable if D0 is Lyapunov stable and there
exists ε > 0 such that if dist(x0,D0) < ε, then dist(s(t, x0),D0) → 0 as
t → ∞. D0 is globally asymptotically stable if it is Lyapunov stable and
ω(x0) ⊆ D0 for all x0 ∈ Rn. Finally, D0 is unstable if it is not Lyapunov
stable.
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Next, we give a set theoretic definition involving the domain, or region,
of attraction of the compact positively invariant set D0 of (4.251).

Definition 4.11. Suppose the compact positively invariant set D0 ⊂ D
of (4.251) is attractive. Then the domain of attraction DA of D0 is defined
as

DA
△
= {x0 ∈ D : ω(x0) ⊆ D0}. (4.252)

The following result gives sufficient conditions for Lyapunov and
asymptotic stability of a compact positively invariant set with respect to
the nonlinear dynamical system (4.251).

Theorem 4.29. Consider the nonlinear dynamical system (4.251), let
D0 be a compact positively invariant set with respect to (4.251) such that
D0 ⊂ D, and let x(t), t ≥ 0, denote the solution to (4.251) with x0 ∈ D.
Assume that there exists a lower semicontinuous function V : D → R such
that V (·) is continuous on D0 and

V (x) = 0, x ∈ D0, (4.253)

V (x) > 0, x ∈ D, x 6∈ D0, (4.254)

V (x(t)) ≤ V (x(τ)), 0 ≤ τ ≤ t. (4.255)

Then D0 is Lyapunov stable. If, in addition, for all x0 ∈ D, x0 6∈ D0, there
exists an increasing unbounded sequence {tn}∞n=0, with t0 = 0, such that

V (x(tn+1)) < V (x(tn)), n = 0, 1, . . . , (4.256)

then D0 is asymptotically stable.

Proof. Let O1 ⊆ D be a bounded open neighborhood of D0. Since
∂O1 is compact and V (x), x ∈ D, is lower semicontinuous, it follows from
Theorem 2.11 that there exists α = minx∈∂O1

V (x). Note that α > 0 since
D0 ∩ ∂O1 = Ø and V (x) > 0, x ∈ D, x 6∈ D0. Next, using the facts that
V (x) = 0, x ∈ D0, and V (·) is continuous on D0, it follows that the set

O2
△
= {x ∈ O1 : V (x) < α}◦ is not empty. Now, it follows from (4.255) that

for all x(0) ∈ O2,

V (x(t)) ≤ V (x(0)) < α, t ≥ 0,

which, since V (x) ≥ α, x ∈ ∂O1, implies that x(t) 6∈ ∂O1, t ≥ 0. Hence, for
every open neighborhood O1 ⊆ D of D0, there exists an open neighborhood
O2 ⊆ O1 of D0 such that, if x(0) ∈ O2, then x(t) ∈ O1, t ≥ 0, which proves
Lyapunov stability of the compact positively invariant set D0 of (4.251).

To prove asymptotic stability let x0 ∈ O2 and suppose there exists
an increasing unbounded sequence {tn}∞n=0, with t0 = 0, such that (4.256)
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holds. Then it follows that x(t) ∈ O1, t ≥ 0, and hence, it follows from
Theorem 2.41 that the positive limit set ω(x0) of x(t), t ≥ 0, is a nonempty,
compact, invariant, and connected set. Furthermore, x(t) → ω(x0) as t →
∞. Now, since V (x(t)), t ≥ 0, is nonincreasing and bounded from below by

zero it follows that β
△
= limt→∞ V (x(t)) ≥ 0 is well defined. Furthermore,

since V (·) is lower semicontinuous it can be shown that V (y) ≤ β, y ∈ ω(x0),
and hence, since V (·) is nonnegative, β = 0 if and only if ω(x0) = D0 or,
equivalently, x(t) → D0 as t → ∞. Now, suppose, ad absurdum, that
x(t), t ≥ 0, does not converge to D0 or, equivalently, β > 0. Furthermore,
let y ∈ ω(x0) and let {τn}∞n=0 be an increasing unbounded sequence such that
limn→∞ x(τn) = y. Since {V (x(τn))}∞n=0 is a lower bounded nonincreasing
sequence, limn→∞ V (x(τn)) exists and is equal to β. Hence, y 6∈ D0 and
since y ∈ ω(x0) is arbitrary, it follows that ω(x0) ∩ D0 = Ø. Next, let

γ
△
= minx∈ω(x0) V (x) > 0 and let xγ ∈ ω(x0) be such that V (xγ) = γ.

Now, since ω(x0) is an invariant set it follows that for all x(0) ∈ ω(x0),
x(t) ∈ ω(x0), t ≥ 0, and hence, V (x(t)) ≥ γ, t ≥ 0. However, since for all
x(0) ∈ D, x(0) 6∈ D0, there exists an increasing unbounded sequence {tn}∞n=1

such that (4.256) holds, it follows that if x(0) = xγ ∈ ω(x0), there exists
t > 0 such that V (x(t)) < V (x(0)) = γ, which is a contradiction. Hence,
ω(x0) ⊆ D0 and x(t) → D0 as t→ ∞, establishing asymptotic stability.

Note that in the case where the function V (·) is continuously
differentiable on D in Theorem 4.29, it follows that V (x(t)) ≤ V (x(τ)), for

all t ≥ τ ≥ 0, is equivalent to V̇ (x)
△
= V ′(x)f(x) ≤ 0, x ∈ D. Furthermore,

if V̇ (x) = V ′(x)f(x) < 0, x ∈ D, x 6∈ D0, then every increasing unbounded
sequence {tn}∞n=0, with t0 = 0, is such that V (x(tn+1)) < V (x(tn)), n =
0, 1, . . .. Hence, the following corollary to Theorem 4.29 is immediate.

Corollary 4.7. Consider the nonlinear dynamical system (4.251) and
let D0 be a compact positively invariant set with respect to (4.251) such that
D0 ⊂ D. Assume that there exists a continuously differentiable function
V : D → R such that

V (x) = 0, x ∈ D0, (4.257)

V (x) > 0, x ∈ D, x 6∈ D0, (4.258)

V ′(x)f(x) ≤ 0, x ∈ D. (4.259)

Then D0 is Lyapunov stable. If, in addition,

V ′(x)f(x) < 0, x ∈ D, x 6∈ D0, (4.260)

then D0 is asymptotically stable.

The following theorem provides a converse to Theorem 4.29. For this
result define the notation Dr

△
= {x ∈ D : dist(x,D0) < r}, r > 0, to denote

an r open neighborhood of D0.
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Theorem 4.30. Consider the nonlinear dynamical system (4.251). If
D0 is Lyapunov stable, then there exist Da ⊆ D and a lower semicontinuous,

positive-definite (on Da \ D0) function V : Da → R such that D0 ⊂
◦
Da, V (·)

is continuous on D0, and

V (s(t, x)) ≤ V (s(τ, x)), 0 ≤ τ ≤ t, x ∈ Da. (4.261)

If D0 is asymptotically stable, then there exists a continuous, positive-
definite function V : Da → R such that inequality (4.261) is strictly satisfied.

Proof. Let ε > 0. Since D0 is Lyapunov stable it follows that there
exists δ = δ(ε) > 0 such that if x0 ∈ Dδ, then s(t, x0) ∈ Dε, t ≥ 0. Now,

let Da
△
= {y ∈ Dε : there exists t ≥ 0 and x0 ∈ Dδ such that y = s(t, x0)}.

Note that Da ⊆ Dε, Da is a positively invariant set, and Dδ ⊆ Da. Hence,

D0 ⊂
◦
Da. Next, define V (x)

△
= supt≥0 dist(s(t, x),D0), x ∈ Da, and since Da

is positively invariant and bounded it follows that V (·) is well defined on Da.
Now, since D0 is invariant, x ∈ D0 implies V (x) = 0, x ∈ D0. Furthermore,
V (x) ≥ dist(s(0, x),D0) > 0, x ∈ Da, x 6∈ D0.

Next, since f(·) in (4.251) is such that for every x ∈ Da, s(t, x), t ≥ 0,
is the unique solution to (4.251), it follows that s(t, x) = s(t−τ, s(τ, x)), 0 ≤
τ ≤ t. Hence, for every t, τ ≥ 0, such that t ≥ τ ,

V (s(τ, x)) = sup
θ≥0

dist(s(θ, s(τ, x)),D0)

= sup
θ≥0

dist(s(τ + θ, x),D0)

≥ sup
θ≥t−τ

dist(s(τ + θ, x),D0)

= sup
θ≥t−τ

dist(s(θ − (t− τ), s(t, x)),D0)

= sup
θ≥0

dist(s(θ, s(t, x)),D0)

= V (s(t, x)), (4.262)

which proves (4.261). Next, let pD0
∈ D0. Since D0 is Lyapunov stable

it follows that for every ε̂ > 0 there exists δ̂ = δ̂(ε) > 0 such that if
x0 ∈ Bδ̂(pD0

), then s(t, x0) ∈ Dε̂/2, t ≥ 0, which implies that V (x0) =

supt≥0 dist(s(t, x0),D0) ≤ ε̂
2 . Hence, for every point pD0

∈ D0 and ε̂ > 0

there exists δ̂ = δ̂(ε̂) such that if x0 ∈ Bδ̂(pD0
), then V (x0) < ε̂, establishing

that V (·) is continuous on D0.

Finally, to show that V (·) is lower semicontinuous everywhere on Da,

let x ∈ Da, let ε̂ > 0, and note that since V (x)
△
= supt≥0 dist(s(t, x),D0),

there exists T = T (x, ε̂) > 0 such that V (x) − dist(s(T, x),D0) < ε̂. Now,
consider a sequence {xi}∞i=1 ∈ Da such that xi → x as i → ∞. Next, since



NonlinearBook10pt November 20, 2007

ADVANCED STABILITY THEORY 287

s(t, ·) is continuous for every t ≥ 0 and dist(·,D0) : Da → R is continuous,
it follows that dist(s(T, x),D0) = limi→∞ dist(s(T, xi),D0). Next, note that
dist(s(T, xi),D0) ≤ supt≥0dist(s(t, x0),D0), i = 1, 2, . . ., and hence,

lim inf
i→∞

sup
t≥0

dist(s(t, xi),D0) ≥ lim inf
i→∞

dist(s(T, xi),D0)

= lim
i→∞

dist(s(T, xi),D0), i = 1, 2, . . . ,

which implies that

V (x) < dist(s(T, x),D0) + ε̂

= lim
i→∞

dist(s(T, xi),D0) + ε̂

≤ lim inf
i→∞

sup
t≥0

dist(s(t, xi),D0) + ε̂

= lim inf
i→∞

V (xi) + ε̂. (4.263)

Now, since ε̂ > 0 is arbitrary, (4.263) implies that V (x) ≤ lim infi→∞ V (xi).
Thus, since {xi}∞i=1 is an arbitrary sequence converging to x, it follows that
V (·) is lower semicontinuous on Da.

To show the existence of a continuous, positive-definite, strictly
decreasing function along the system trajectories of (4.251) in the case where
D0 is asymptotically stable, consider the function V : DA → R given by

V (x)
△
=

∫ ∞

0
sup
t≥0

dist(s(t, s(σ, x)),D0)e
−σdσ, x ∈ DA, (4.264)

where DA ⊆ Da is a domain of attraction of D0. Since D0 is asymptotically
stable, it follows that V̂ (x)

△
= supt≥0 dist(s(t, x),D0), x ∈ DA, is continuous

on DA (see [58, p. 67]), which implies that V (·) is continuous on DA and
positive definite on DA \ D0. Next, suppose, ad absurdum, that

V (s(t, x)) = V (s(τ, x)), (4.265)

for some 0 ≤ τ < t and x ∈ DA. Now, since V̂ (·) is positive definite (on

Da \ D0) and (4.261) holds for V̂ (·), (4.265) implies that V̂ (s(σ + t, x)) =

V̂ (s(σ + τ, x)) for all σ ≥ 0. However, since D0 is asymptotically stable
it follows that dist(s(t, x),D0) → 0 as t → ∞ for x ∈ DA, and hence, for
sufficiently large σ∗ > 0, dist(s(σ∗+ t, x),D0) < dist(s(σ∗+τ, x),D0). Thus,

V̂ (s(σ∗ + t, x)) < V̂ (s(σ∗ + τ, x)), which leads to a contradiction. Hence,
inequality (4.261) is strictly satisfied for V (·) which completes the proof.

Next, we generalize the Barbashin-Krasovskii-LaSalle invariant set
theorems to the case in which the function V (·) is lower semicontinuous.
In particular, we show that the system trajectories converge to a union of
largest invariant sets contained on the boundary of the intersections over
finite intervals of the closure of generalized Lyapunov level surfaces. For the
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remainder of the results of this section define the notation

Rγ
△
=
⋂

c>γ

V −1([γ, c]), (4.266)

for arbitrary V : D ⊆ Rn → R and γ ∈ R, and let Mγ denote the largest
invariant set (with respect to (4.251)) contained in Rγ .

Theorem 4.31. Consider the nonlinear dynamical system (4.251), let
Dc and D0 be compact positively invariant sets with respect to (4.251) such
that D0 ⊂ Dc ⊂ D, and let x(t), t ≥ 0, denote the solution to (4.251)
corresponding to x0 ∈ Dc. Assume that there exists a lower semicontinuous
function V : Dc → R such that

V (x) = 0, x ∈ D0, (4.267)

V (x) > 0, x ∈ Dc, x 6∈ D0, (4.268)

V (x(t)) ≤ V (x(τ)), 0 ≤ τ ≤ t. (4.269)

Furthermore, assume that for all x0 ∈ Dc, x0 6∈ D0, there exists an increasing
unbounded sequence {tn}∞n=0, with t0 = 0, such that

V (x(tn+1)) < V (x(tn)), n = 0, 1, . . . . (4.270)

Then, either Mγ ⊂ R̂γ
△
= Rγ \ V −1(γ), or Mγ = Ø, γ > 0. Furthermore,

if x0 ∈ Dc, then x(t) → M̂ △
= ∪γ∈G Mγ as t → ∞, where G △

= {γ ≥ 0 :

Rγ ∩ D0 6= Ø}. If, in addition, D0 ⊂
◦
Dc and V (·) is continuous on D0,

then D0 is locally asymptotically stable and Dc is a subset of the domain of
attraction.

Proof. Since Dc is a compact positively invariant set, it follows that for
all x0 ∈ Dc, the forward solution x(t), t ≥ 0, to (4.251) is bounded. Hence,
it follows from Theorem 2.41 that, for all x0 ∈ Dc, ω(x0) is a nonempty,
compact, connected invariant set. Next, it follows from Theorem 4.24 and
the fact that V (·) is positive definite (with respect to Dc \ D0), that for
every x0 ∈ Dc there exists γx0

≥ 0 such that ω(x0) ⊆ Mγx0
⊆ Rγx0

. Now,

given x(0) ∈ V −1(γx0
), γx0

> 0, (4.270) implies that there exists t1 > 0
such that V (x(t1)) < γx0

and x(t1) 6∈ V −1(γx0
). Hence, V −1(γx0

) ⊂ Rγx0

does not contain any invariant set. Alternatively, if x(0) ∈ R̂γx0
, then

V (x(0)) < γx0
and (4.270) implies that x(t) 6∈ V −1(γx0

), t ≥ 0. Hence,

any invariant set contained in Rγx0
is a subset of R̂γx0

, which implies that

Mγx0
⊂ R̂γx0

, γx0
> 0. If γ̂ > 0 is such that γ̂ 6= γx0

for all x0 ∈ Dc,
then there does not exist x0 ∈ Dc such that ω(x0) ⊆ Rγ̂ , and hence, Mγ̂ =
Ø. Now, ad absurdum, suppose D0 ∩ ω(x0) = Ø. Since V (·) is lower
semicontinuous it follows from Theorem 2.11 that there exists x̂ ∈ ω(x0)
such that α = V (x̂) ≤ V (x), x ∈ ω(x0). Now, with x(0) = x̂ 6∈ D0 it follows
from (4.270) that there exists an increasing unbounded sequence {tn}∞n=0,
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with t0 = 0, such that V (x(tn+1)) < V (x(tn)), n = 0, 1, . . ., which implies
that there exists t > 0 such that V (x(t)) < α, and hence, x(t) 6∈ ω(x0),
contradicting the fact that ω(x0) is an invariant set. Hence, there exists
q ∈ D0 such that q ∈ ω(x0) ⊆ Rγx0

, which implies that Rγx0
∩ D0 6= Ø.

Thus, γx0
∈ G for all x0 ∈ Dc, which further implies that ω(x0) ⊆ M̂. Now,

since x(t) → ω(x0) ⊆ M̂ as t→ ∞ it follows that x(t) → M̂ as t→ ∞.

If V (·) is continuous on D0 ⊂
◦
Dc, then Lyapunov stability of the com-

pact positively invariant set D0 follows from Theorem 4.29. Furthermore,
from the continuity of V (·) on D0 and the fact that V (x) = 0 for all x ∈ D0,

it follows that G = {0} and M̂ ≡ M0. Hence, ω(x0) ⊆ D0 for all x0 ∈ Dc,
establishing local asymptotic stability of the compact positively invariant
set D0 of (4.251) with a subset of the domain of attraction given by Dc.

Finally, we present a generalized global invariant set theorem for
guaranteeing global attraction and global asymptotic stability of a compact
positively invariant set of a nonlinear dynamical system.

Theorem 4.32. Consider the nonlinear dynamical system (4.251) with
D = Rn and let x(t), t ≥ 0, denote the solution to (4.251) corresponding
to x0 ∈ Rn. Assume that there exists a compact positively invariant set D0

with respect to (4.251) and a lower semicontinuous function V : Rn → R

such that

V (x) = 0, x ∈ D0, (4.271)

V (x) > 0, x ∈ Rn, x 6∈ D0, (4.272)

V (x(t)) ≤ V (x(τ)), 0 ≤ τ ≤ t, (4.273)

V (x) → ∞ as ‖x‖ → ∞. (4.274)

Then for all x0 ∈ Rn, x(t) → M △
= ∪γ≥0 Mγ , as t → ∞. If, in addition,

for all x0 ∈ Rn, x0 6∈ D0, there exists an increasing unbounded sequence
{tn}∞n=0, with t0 = 0, such that

V (x(tn+1)) < V (x(tn)), n = 0, 1, . . . , (4.275)

then, either Mγ ⊂ R̂γ
△
= Rγ \ V −1(γ), or Mγ = Ø, γ > 0. Furthermore,

x(t) → M̂ △
= ∪γ∈G Mγ as t → ∞, where G △

= {γ ≥ 0 : Rγ ∩ D0 6= Ø}.
Finally, if V (·) is continuous on D0 then the compact positively invariant
set D0 of (4.251) is globally asymptotically stable.

Proof. Note that since V (x) → ∞ as ‖x‖ → ∞ it follows that for every
β > 0 there exists r > 0 such that V (x)>β for all ‖x‖>r or, equivalently,
V −1([0, β]) ⊆ {x : ‖x‖ ≤ r}, which implies that V −1([0, β]) is bounded for

all β > 0. Hence, for all x0 ∈ Rn, V −1([0, βx0
]) is bounded, where βx0

△
=
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V (x0). Furthermore, since V (·) is a positive-definite lower semicontinuous
function, it follows that V −1([0, βx0

]) is closed and, since V (x(t)), t ≥ 0, is
nonincreasing, V −1([0, βx0

]) is positively invariant. Hence, for every x0 ∈
Rn, V −1([0, βx0

]) is a compact positively invariant set. Now, with Dc =
V −1([0, βx0

]) it follows from Theorem 4.24 that there exists γx0
∈ [0, βx0

]

such that ω(x0) ⊆ Mγx0
⊂ R̂γx0

, which implies that x(t) → M as t → ∞.
If, in addition, for all x0 ∈ Rn, x0 6∈ D0, there exists an increasing unbounded
sequence {tn}∞n=0, with t0 = 0, such that (4.275) holds, then it follows from

Theorem 4.31 that x(t) → M̂ as t→ ∞.

Finally, if V (·) is continuous on D0 then Lyapunov stability follows as
in the proof of Theorem 4.31. Furthermore, in this case, G = {0}, which

implies that M̂ = M0. Hence, ω(x0) ⊆ D0, establishing global asymptotic
stability of the compact positively invariant set D0 of (4.251).

4.10 Poincaré Maps and Stability of Periodic Orbits

Poincaré’s theorem [358] provides a powerful tool in analyzing the stability
properties of periodic orbits and limit cycles of n-dimensional dynamical
systems in the case where the trajectory of the system can be relatively easily
integrated. Specifically, Poincaré’s theorem provides necessary and sufficient
conditions for stability of periodic orbits based on the stability properties of a
fixed point of a discrete-time dynamical system constructed from a Poincaré
return map. In particular, for a given candidate periodic trajectory, an (n−
1)-dimensional hyperplane is constructed that is transversal to the periodic
trajectory and which defines the Poincaré return map. Trajectories starting
on the hyperplane which are sufficiently close to a point on the periodic
orbit will intersect the hyperplane after a time approximately equal to the
period of the periodic orbit. This mapping traces the system trajectory
from a point on the hyperplane to its next corresponding intersection with
the hyperplane. Hence, the Poincaré return map can be used to establish
a relationship between the stability properties of a dynamical system with
periodic solutions and the stability properties of an equilibrium point of
an (n − 1)-dimensional discrete-time system. In this section, using the
notions of Lyapunov and asymptotic stability of sets developed in Section
4.9, we construct lower semicontinuous Lyapunov functions to provide a
Lyapunov function proof of Poincaré’s theorem. To begin, we introduce
the notions of Lyapunov and asymptotic stability of a periodic orbit of the
nonlinear dynamical system (4.251). For this definition recall the definitions
of periodic solutions and periodic orbits of (4.251) given in Definition 2.53.

Definition 4.12. A periodic orbit O of (4.251) is Lyapunov stable if,
for all ε > 0, there exists δ = δ(ε) > 0 such that if dist(x0,O) < δ, then
dist(s(t, x0),O) < ε, t ≥ 0. A periodic orbit O of (4.251) is asymptotically
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stable if it is Lyapunov stable and there exists δ > 0 such that if dist(x0,O) <
δ, then dist(s(t, x0),O) → 0 as t→ ∞.

To proceed, we assume that for the point p ∈ D, the dynamical system
(4.251) has a periodic solution s(t, p), t ≥ 0, with period T > 0 that generates

the periodic orbit O △
= {x ∈ D : x = s(t, p), 0 ≤ t ≤ T}. Note that

O is a compact invariant set. Furthermore, we assume that there exists
a continuously differentiable function X : D → R such that the (n − 1)-

dimensional hyperplane defined by H △
= {x ∈ D : X (x) = 0} contains the

point x = p and X ′(p) 6= 0. In addition, we assume that the hyperplane
H is not tangent to the periodic orbit O at x = p, that is, X ′(p)f(p) 6= 0.
Next, define the local section S ⊂ H such that p ∈ S, X ′(x) 6= 0, x ∈ S, and
no trajectory of (4.251) starting in S is tangent to H, that is, X ′(x)f(x) 6=
0, x ∈ S. Note that a trajectory s(t, p) will intersect S at p in T seconds.
Furthermore, let

U △
= {x ∈ S : there exists τ̂ > 0 such that s(τ̂ , x) ∈ S

and s(t, x) 6∈ S, 0 < t < τ̂}, (4.276)

and let τ : U → R+ be defined by

τ(x)
△
= {τ̂ > 0 : s(τ̂ , x) ∈ S and s(t, x) 6∈ S, 0 < t < τ̂}. (4.277)

Finally, define the Poincaré return map P : U → S by

P (x)
△
= s(τ(x), x), x ∈ U . (4.278)

Figure 4.9 gives a visualization of the Poincaré return map construction.

Next, define D1
△
= {x ∈ D : there exists τ(x) > 0 such that s(τ(x),

x) ∈ S} and note that, for every x ∈ O, there exists δ = δ(x) > 0 such

that Bδ(x) ⊂ D1, and hence, O ⊂
◦
D1. Similarly, define Oα

△
= {x ∈ D1 :

s(τ(x), x) ∈ Sα} and Uα
△
= {x ∈ Sα : s(τ(x), x) ∈ Sα}, where Sα

△
= Bα(p)∩S,

α > 0, and O ⊂
◦
Oα ⊆ D1. The function τ : D1 → R+ defines the minimum

time required for the trajectory s(t, x), x ∈ D1, to return to the local section
S. Note that τ(x) > 0, x ∈ U . The following lemma shows that τ(·) is

continuous on
◦
D1 \H.

Lemma 4.4. Consider the nonlinear dynamical system (4.251). As-

sume that the point p ∈ D1 generates the periodic orbit O △
= {x ∈ D1 : x =

s(t, p), 0 ≤ t ≤ T}, where s(t, p), t ≥ 0, is the periodic solution with period

T ≡ τ(p). Then the function τ :
◦
D1→ R+ is continuous on

◦
D1 \H.

Proof. Let ε > 0 and x ∈
◦
D1 \H. Note that x∗

△
= s(τ(x), x) ∈ S, and

hence, X ′(x∗) 6= 0 and X ′(x∗)f(x∗) 6= 0. Now, since s(·, x) is continuous in
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Figure 4.9 Visualization of the Poincaré return map.

t, [0, t1] is a compact interval it follows from the definition of τ(·) that there
exists t̂ > 0 such that for every t1 ∈ (t̂, τ(x)),

σ(t1)
△
= inf

0≤t≤t1
dist(s(t, x),S) > 0. (4.279)

Next, for sufficiently small ε̂ > 0, define t2
△
= τ(x) + ε̂

2 and x2
△
= s(t2, x).

Since X ′(x∗) 6= 0 and X ′(x∗)f(x∗) 6= 0, it follows that dist(x2,S) > 0. Now,

define t1
△
= τ(x) − ε̂

2 . Then it follows from the continuous dependence of
solutions to (4.251) in time and initial data that there exists δ > 0 such
that for all y ∈ Bδ(x), supt̂≤t≤t2

‖s(t, y) − s(t, x)‖ < min{dist(x2,S), σ(t1)}.
Hence, for all y ∈ Bδ(x), it follows that t1 < τ(y) < t2. Now, taking
ε̂ < ε, it follows that |τ(y)− τ(x)| < ε, establishing the continuity of τ(·) at

x ∈
◦
D1 \H.

Finally, define the discrete-time dynamical system given by

z(k + 1) = P (z(k)), z(0) ∈ U , k ∈ Z+. (4.280)

Clearly x = p is a fixed point of (4.280) since T = τ(p), and hence, p = P (p).
Since Poincaré’s theorem provides necessary and sufficient conditions for
stability of periodic orbits based on the stability properties of a fixed
point of the discrete-time dynamical system (4.280), stability notions of
discrete-time systems are required. Chapter 13 develops stability theory
for discrete-time systems. Rather than embarking on a lengthy discussion
of discrete-time stability theory, here we give two key necessary results
for developing Poincaré’s theorem. For these results, the definitions of
Lyapunov and asymptotic stability of a discrete-time system are analogous
to their continuous-time counterparts and are given in Chapter 13 (see
Definition 13.1). First, we note that if ρ(P ′(z(p))) < 1, where ρ(·)
denotes the spectral radius, then the fixed point x = p of the nonlinear
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discrete-time dynamical system (4.280) is asymptotically stable. This is
Lyapunov’s indirect method for nonlinear discrete-time systems. For details,
see Problem 13.10. Second, the following theorem is a direct application of
the standard discrete-time Lyapunov stability theorem (see Theorems 13.2
and 13.6) for general nonlinear dynamical systems to the dynamical system
(4.280).

Theorem 4.33. The equilibrium solution z(k) ≡ p to (4.280) is
Lyapunov (respectively, asymptotically) stable if and only if there exist
a scalar α > 0 and a lower semicontinuous (respectively, continuous)
function V : Sα → R such that V (·) is continuous at x = p, V (p) = 0,
V (x) > 0, x ∈ Sα, x 6= p, and V (P (x)) − V (x) ≤ 0, x ∈ Uα (respectively,
V (P (x)) − V (x) < 0, x ∈ Uα, x 6= p).

Next, we present Poincaré’s stability theorem.

Theorem 4.34. Consider the nonlinear dynamical system (4.251) with
the Poincaré map defined by (4.278). Assume that the point p ∈ D generates

the periodic orbit O △
= {x ∈ D : x = s(t, p), 0 ≤ t ≤ T}, where s(t, p), t ≥ 0,

is the periodic solution with period T ≡ τ(p). Then the following statements
hold:

i) p ∈ D is a Lyapunov stable fixed point of (4.280) if and only if the
periodic orbit O generated by p is Lyapunov stable.

ii) p ∈ D is an asymptotically stable fixed point of (4.280) if and only if
the periodic orbit O generated by p is asymptotically stable.

Proof. i) To show necessity, assume that x = p is a Lyapunov stable
fixed point of (4.280). Then it follows from Theorem 4.33 that for sufficiently
small α > 0 there exists a lower semicontinuous function Vd : Sα → R such
that Vd(·) is continuous at x = p, Vd(p) = 0, Vd(x) > 0, x ∈ Sα, x 6= p, and
Vd(P (x))−Vd(x) ≤ 0, x ∈ Uα. Next, define a function V : Oα → R such that
V (x) = Vd(s(τ(x), x)), x ∈ Oα. It follows from the definition of τ(·), Lemma
4.4, and the joint continuity of solutions of (4.251) that V (·) is a lower
semicontinuous function on Oα and V (x) = 0, x ∈ O, V (x) > 0, x ∈ Oα\O,

where O ⊂
◦
Oα. Alternatively, it follows from the Lyapunov stability of the

fixed point x = p of (4.280) that for ε > 0 such that Bε(p) ∩ S ⊂ Uα,
there exists δ = δ(ε) > 0 such that z(k) ∈ Bε(p) ∩ S, k ∈ Z+, for all

z(0) ∈ Bδ(p) ∩ S, where z(k) ∈ N satisfies (4.280). Now, define Oδ
△
= {x ∈

Oα : s(τ(x), x) ∈ Bδ(p) ∩ S} and note that O ⊂
◦
Oδ. Hence, V (s(t, x)) ≤

V (s(τ, x)), 0 ≤ τ ≤ t, for every x ∈ Oδ ⊆ Oα. Now, to show that V (·) is
continuous on O let pO ∈ O be such that pO 6= p and consider any arbitrary
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sequence {xn}∞n=0 ∈ Oα such that limn→∞ xn = pO. Then, since τ(·) is
continuous on D1 \ H, it follows that limn→∞ τ(xn) = τ(pO) and, by joint
continuity of solutions of (4.251), s(τ(xn), xn) → s(τ(pO), pO) = p as n →
∞. Now, since Vd(·) is continuous at x = p, it follows that limn→∞ V (xn) =
limn→∞ Vd(s(τ(xn), xn)) = Vd(p) = 0, which, since {xn}∞n=0 is arbitrary,
implies continuity of V (·) at any point pO ∈ O, pO 6= p.

Next, we show the continuity of V (·) at x = p. Note, that V (·) is
not necessarily continuous at every point of S but x = p. Consider any
arbitrary sequence {xn}∞n=0 ∈ Oα such that limn→∞ xn = p. For this
sequence we have one of the following three cases: either limn→∞ τ(xn) = 0,
limn→∞ τ(xn) = T , or there exist subsequences {xnk

}∞k=0 and {xnm
}∞m=0

such that {xnk
}∞k=0 ∪ {xnm

}∞m=0 = {xn}∞n=0, xnk
→ p, τ(xnk

) → 0, as
k → ∞, and xnm

→ p, τ(xnm
) → T , as m → ∞. We assume the latter

case, since the analysis for the first two cases follows immediately from the
arguments for pO ∈ O, pO 6= p, presented above. The characterization
of both subsequences and joint continuity of solutions of (4.251) yield
s(τ(xnk

), xnk
) → s(0, p) = p and s(τ(xnm

), xnm
) → s(T, p) = p, as k → ∞,

and m → ∞, respectively. Now, since Vd(·) is continuous at x = p, it
follows that limk→∞ V (xnk

) = limk→∞ Vd(s(τ(xnk
), xnk

)) = Vd(p) = 0 and
limm→∞ V (xnm

) = limm→∞ Vd(s(τ(xnm
), xnm

)) = Vd(p) = 0, and thus,
limn→∞ V (xn) = V (p) = 0, which implies that V (·) is continuous at x = p,
and hence, V (·) is continuous on O. Finally, since all the assumptions of
Theorem 4.29 hold, the periodic orbit O is Lyapunov stable.

To show sufficiency, assume that the periodic orbit O generated by the
point p ∈ D is Lyapunov stable. Then it follows from the Theorem 4.30 that
there exists a lower semicontinuous, positive-definite (on Da \ O) function
V : Da → R such that (4.261) is satisfied. Now, for sufficiently small α > 0,
construct a function Vd : Sα → R such that Vd(x) = V (x), x ∈ Sα. Thus,
in this case the sufficient conditions of Theorem 4.33 are satisfied for Vd(·),
which implies that the point x = p is a Lyapunov stable fixed point of
(4.280).

ii) To show necessity, assume that x = p is an asymptotically stable
fixed point of (4.280). Then it follows from Theorem 4.33 that there exists
a continuous function Vd : Sα → R such that Vd(p) = 0, Vd(x) > 0, x ∈
Sα, x 6= p, and Vd(P (x)) − Vd(x) < 0, x ∈ Uα, x 6= p. Next, as in i),
construct the lower semicontinuous function V : Oα → R such that V (x) =
Vd(s(τ(x), x)), x ∈ Oα, V (x) = 0, x ∈ O, V (x) > 0, x ∈ Oα, x 6∈ O,
V (s(t, x)) ≤ V (s(τ, x)), 0 ≤ τ ≤ t, for every x ∈ Oδ ⊆ Oα, and V (·)
is continuous on O. Furthermore, for every x ∈ Oδ define an increasing
unbounded sequence {tn}∞n=0 such that t0 = 0 and tk = τ(z(k − 1)), k =
1, 2, . . ., where z(·) satisfies (4.280) with z(0) = x. Then it follows from
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the definition of the function V (·) that V (s(tn+1, x)) < V (s(tn, x)), n ∈ Z+,
establishing that all the conditions of the Theorem 4.29 hold, and hence,
the periodic orbit O is asymptotically stable.

To show sufficiency, assume that the periodic orbit O generated by
the point p ∈ D is asymptotically stable. Then it follows from the Theorem
4.30 that there exists a continuous, positive-definite (on Da \ O) function
V : Da → R such that (4.261) is strictly satisfied. Now, for sufficiently small
α > 0, construct a function Vd : Sα → R such that Vd(x) = V (x), x ∈ Sα.
Thus, the sufficient conditions of Theorem 4.33 are satisfied for Vd(·) which
implies that the point x = p is an asymptotically stable fixed point of (4.280).

Theorem 4.34 is a restatement of the classical Poincaré theorem.
However, in proving necessary and sufficient conditions for Lyapunov
and asymptotic stability of the periodic orbit O, we constructed explicit
Lyapunov functions in the proof of Theorem 4.34. Specifically, in order to
show necessity of Poincaré’s theorem via Lyapunov’s second method we
constructed the lower semicontinuous (respectively, continuous), positive
definite (on Oα \ O) Lyapunov function

V (x) = Vd(s(τ(x), x)), x ∈ Oα, (4.281)

where the existence of the lower semicontinuous (respectively, continuous),
positive definite (on Sα \ p) function Vd : Sα → R is guaranteed by the
Lyapunov (respectively, asymptotic) stability of a fixed point p ∈ D of
(4.280). Alternatively, in the proof of sufficiency, Lyapunov (respectively,
asymptotic) stability of the periodic orbit O implies the existence of the
lower semicontinuous (respectively, continuous), positive definite (on Da\O)
Lyapunov function given by

V (x) = sup
t≥0

dist(s(t, x),O), x ∈ Da, (4.282)

and

V (x) =

∫ ∞

0
sup
t≥0

dist(s(t, s(τ, x)),O)e−τ dτ, x ∈ DA, (4.283)

respectively. Using the Lyapunov function Vd(x) = V (x), x ∈ Sα, we showed
the stability of a fixed point p ∈ D of (4.280).

Theorem 4.34 presents necessary and sufficient conditions for Lya-
punov and asymptotic stability of a periodic orbit of the nonlinear dynamical
system (4.251) based on the stability properties of a fixed point of the n-
dimensional discrete-time dynamical system (4.280) involving the Poincaré
map (4.278). Next, we present a classical corollary to Poincaré’s theorem
that allows us to analyze the stability of periodic orbits by replacing the
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nth-order nonlinear dynamical system by an (n − 1)th-order discrete-time
system. To present this result assume, without loss of generality, that
∂X (x)
∂xn

6= 0, x ∈ Sα, where x = [x1, . . . , xn]T and α > 0 is sufficiently small.
Then it follows from the implicit function theorem (see Theorem 2.18) that
xn = g(x1, . . . , xn−1), where g(·) is a continuously differentiable function at

xr
△
= [x1, . . . , xn−1]

T such that [xT
r , g(xr)]

T ∈ Sα. Note that in this case

P : Uα → Sα in (4.280) is given by P (x)
△
= [P1(x), · · ·, Pn(x)]T, where

Pn(xr, g(xr)) = g(P1(xr, g(xr)), . . . , Pn−1(xr, g(xr))). (4.284)

Hence, we can reduce the n-dimensional discrete-time system (4.280) to the
(n− 1)-dimensional discrete-time system given by

zr(k + 1) = Pr(zr(k)), k ∈ Z+, (4.285)

where zr ∈ Rn−1, [zT
r (·), g(zr(·))]T ∈ Sα, and

Pr(xr)
△
=

[

P1(xr, g(xr))
...

Pn−1(xr, g(xr))

]

. (4.286)

Note that it follows from (4.284) and (4.286) that p
△
= [pT

r , g(pr)]
T ∈ Sα

is a fixed point of (4.280) if and only if pr is a fixed point of (4.285). To

present the following result define Srα
△
= {xr ∈ Rn−1 : [xT

r , g(xr)]
T ∈ Sα}

and Urα
△
= {xr ∈ Srα : [xT

r , g(xr)]
T ∈ Uα}.

Corollary 4.8. Consider the nonlinear dynamical system (4.251) with

the Poincaré return map defined by (4.278). Assume that ∂X (x)
∂xn

6= 0, x ∈ Sα,

and the point p ∈ Sα generates the periodic orbit O △
= {x ∈ D : x =

s(t, p), 0 ≤ t ≤ T}, where s(t, p), t ≥ 0, is the periodic solution with the
period T = τ(p) such that s(τ(p), p) = p. Then the following statements
hold:

i) For p = [pT
r , g(pr)]

T ∈ Sα, pr is a Lyapunov stable fixed point of (4.285)
if and only if the periodic orbit O is Lyapunov stable.

ii) For p = [pT
r , g(pr)]

T ∈ Sα, pr is an asymptotically stable fixed point of
(4.285) if and only if the periodic orbit O is asymptotically stable.

Proof. i) To show necessity, assume that pr ∈ Srα is a Lyapunov
stable fixed point of (4.285). Then it follows from Theorem 4.33 that
there exists a lower semicontinuous function Vr : Srα → R such that
Vr(·) is continuous at pr, Vr(pr) = 0, Vr(xr) > 0, xr 6= pr, xr ∈ Srα,
and Vr(Pr(xr)) − Vr(xr) ≤ 0, xr ∈ Urα. Define V : Sα → R such that
V (x) = Vr(xr), xr ∈ Srα. To show that V (·) is continuous at p ∈ Sα,
consider an arbitrary sequence {xk}∞k=1 such that xk ∈ Sα and xk → p
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as k → ∞. Then, xrk → pr as k → ∞ and, since Vr(·) is continuous
at pr, limk→∞ V (xk) = limk→∞ Vr(xrk) = Vr(pr) = V (p). Hence, V (·) is
continuous at p ∈ Sα. Similarly, for the sequence defined above V (x) =
Vr(xr) ≤ lim infk→∞ Vr(xrk) = lim infk→∞ V (xk), x ∈ Sα, which implies
that V (·) is lower semicontinuous. Next, note that V (p) = Vr(pr) = 0
and suppose, ad absurdum, that there exists x 6= p such that x ∈ Sα and
V (x) = 0. Then, Vr(xr) = 0 and xr = pr, which implies that xn = g(pr) and
x = p, leading to a contradiction. Hence, V (x) > 0, x 6= p, x ∈ Sα. Next,
note that

V (P (x)) − V (x) = Vr(P1(x), . . . , Pn−1(x)) − Vr(xr)

= Vr(P1(xr, g(xr)), . . . , Pn−1(xr, g(xr))) − Vr(xr)

= Vr(Pr(xr)) − Vr(xr)

≤ 0, x ∈ Uα, (4.287)

and hence, by Theorem 4.33 the point p ∈ Sα is a Lyapunov stable fixed
point of (4.280). Finally, Lyapunov stability of the periodic orbit O follows
from Theorem 4.34.

To show sufficiency, assume that the periodic orbit O is Lyapunov
stable. Then, it follows from Theorem 4.34 that the point p ∈ Sα is a
Lyapunov stable fixed point of (4.280). Hence, it follows from Theorem
4.33 that there exists a lower semicontinuous function V : Sα → R such
that V (·) is continuous at p ∈ Sα, V (p) = 0, V (x) > 0, x 6= p, x ∈ Sα,
and V (P (x)) − V (x) ≤ 0, x ∈ Uα. Next, define Vr : Srα → R such that
Vr(xr) = V (xr, g(xr)). The proofs of continuity of Vr(·) at pr ∈ Srα and lower
semicontinuity of Vr(·) follow similarly as in the proof of necessity. Next, note
that Vr(pr) = V (pr, g(pr)) = V (p) = 0 and suppose, ad absurdum, that there
exists xr 6= pr such that xr ∈ Srα and Vr(xr) = 0. Then, V (xr, g(xr)) = 0 and
x = [xT

r , g(xr)]
T = p, which implies that xr = pr, leading to a contradiction.

Hence, Vr(xr) > 0, xr 6= pr, xr ∈ Srα. Finally, using (4.284), it follows that

Vr(Pr(xr)) − Vr(xr) = V (Pr(xr), g(Pr(xr))) − V (xr, g(xr))

= V (Pr(xr), Pn(xr, g(xr))) − V (x)

= V (P (x)) − V (x)

≤ 0, xr ∈ Urα, (4.288)

and hence, by Theorem 4.33 the point pr ∈ Srα is a Lyapunov stable fixed
point of (4.285).

ii) The proof is analogous to that of i) and, hence, is omitted.

Example 4.18. Once again consider the nonlinear dynamical system
(2.220) and (2.221) given in Example 2.38 or, equivalently, in polar
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coordinates,

ṙ(t) = r(t)
[

1 − r2(t)
]

, r(0) = r0, t ≥ 0, (4.289)

θ̇(t) = 1, θ(0) = θ0. (4.290)

As shown in Example 2.38, the unit circle r = 1 is a periodic orbit for
(4.289) and (4.290). Using separation of variables the solution to (4.289)
and (4.290) is given by

r(t) =

[

1 +

(

1

r20
− 1

)

e−2t

]−1/2

, (4.291)

θ(t) = θ0 + t. (4.292)

Note that if S is the ray θ = θ0 through the origin of the x1-x2 plane, that
is, S = {(r, θ) : θ = θ0 and r > 0}, then S is perpendicular to the periodic
orbit O and the trajectory passing through the point (r0, θ0) ∈ S ∩ O at
t = 0 intersects the ray θ = θ0 again at T = 2π (see Figure 4.10). Thus, the
Poincaré map is given by

P (r) =

[

1 +

(

1

r2
− 1

)

e−4π

]−1/2

. (4.293)

x2

x1

r0
P (r0)

θ0

0 1

O

Figure 4.10 Poincaré map for Example 4.18.

Since (4.293) is a one-dimensional map, no reduction procedure is
necessary and Corollary 4.8 can be used directly. Since P (1) = 1, r = 1
is a fixed point. Now, with z = r we examine the stability of the discrete-
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time system

z(k + 1) =

[

1 +

(

1

z2(k)
− 1

)

e−4π

]−1/2

, z(0) ∈ Bδ(1), (4.294)

where δ > 0 is sufficiently small. Specifically, evaluating P ′(z) yields

P ′(z) = e−4πz−3

[

1 +

(

1

z2
− 1

)

e−4π

]−3/2

, (4.295)

and hence, P ′(1) = e−4π < 1. Thus, it follows from Corollary 4.8 that the
periodic orbit O = {(x1, x2) ∈ R×R : x2

1 +x2
2 = 1} is asymptotically stable.

△

Example 4.19. Consider the nonlinear dynamical system

ẋ1(t) = −x2(t) + x1(t)
[

1 − x2
1(t) − x2

2(t)
]

, x1(0) = x10, t ≥ 0, (4.296)

ẋ2(t) = x1(t) + x2(t)
[

1 − x2
1(t) − x2

2(t)
]

, x2(0) = x20, (4.297)

ẋ3(t) = −x3(t), x3(0) = x30. (4.298)

It can easily be shown that x(t) = [x1(t), x2(t), x3(t)]
T = [cos t, sin t, 0]T is a

periodic solution of (4.296)–(4.298) with period T = 2π (see Problem 2.141).
To examine the stability of this periodic solution we rewrite (4.296)–(4.298)

in terms of the cylindrical coordinates r =
√

x2
1 + x2

2, θ = tan−1
(

x2

x1

)

, and

ẑ = x3 as

ṙ(t) = r(t)[1 − r2(t)], r(0) = r0, t ≥ 0, (4.299)

θ̇(t) = 1, θ(0) = θ0, (4.300)
˙̂z(t) = −ẑ(t), ẑ(0) = ẑ0. (4.301)

Note that the solution to (4.299) and (4.300) are given by (4.298) and
(4.299), respectively, and the solution to (4.301) is given by ẑ(t) = ẑ0e

−t.
Furthermore, since the periodic orbit of (4.296)–(4.298) lies in the x1-x2

plane we take S = {(r, θ, ẑ) : θ = θ0, r > 0, and ẑ ∈ R}. Note that S is
perpendicular to the periodic orbit and the trajectory passing through the
point (r0, θ0, ẑ0) ∈ S ∩ O at t = 0 intersects the plane again at T = 2π.
Thus, the Poincaré map is given by

P (r, ẑ) =

[

(

1 +
(

1
r2 − 1

)

e−4π
)−1/2

ẑe−2π

]

. (4.302)

Clearly, P (1, 0) = (1, 0), and hence, [1, 0]T is a fixed point. Now, with
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z1 = r and z2 = ẑ we examine the stability of the discrete-time system

[

z1(k + 1)

z2(k + 1)

]

=





(

1 +
(

1
z2
1(k) − 1

)

e−4π
)−1/2

z2(k)e
−2π



 ,

[z1(0), z2(0)]
T ∈ Bδ([1, 0]

T), (4.303)

where δ > 0 is sufficiently small. Specifically, evaluating P ′(z) yields

P ′(z1, z2) =





e−4πz−3
1

(

1 +
(

1
z2
1
− 1
)

e−4π
)−3/2

0

0 e−2π



 (4.304)

so that ρ(P ′(1, 0)) = e−2π < 1. Hence, it follows from Corollary 4.8 that
the periodic orbit O = {(x1, x2, x3) ∈ R3 : x2

1 + x2
2 = 1 and x3 = 0} is

asymptotically stable. △

4.11 Stability Theory via Vector Lyapunov Functions

In this section, we introduce the notion of vector Lyapunov functions
for stability analysis of nonlinear dynamical systems. The use of vector
Lyapunov functions in dynamical system theory offers a very flexible
framework since each component of the vector Lyapunov function can satisfy
less rigid requirements as compared to a single scalar Lyapunov function.
Specifically, since for many nonlinear dynamical systems constructing a
system Lyapunov function can be a difficult task, weakening the hypothesis
on the Lyapunov function enlarges the class of Lyapunov functions that can
be used for analyzing system stability. Moreover, in certain applications,
such as the analysis of large-scale nonlinear dynamical systems, several
Lyapunov functions arise naturally from the stability properties of each
individual subsystem. To develop the theory of vector Lyapunov functions,
we first introduce some results on vector differential inequalities and the
vector comparison principle. The following definition introduces the notion
of class W functions involving quasimonotone increasing functions.

Definition 4.13. A function w = [w1, . . . , wq]
T : Rq → Rq is of class

W if wi(z
′) ≤ wi(z

′′), i = 1, . . . , q, for all z′, z′′ ∈ Rq such that z′j ≤ z′′j , z
′
i =

z′′i , j = 1, . . . , q, i 6= j, where zi denotes the ith component of z.

If w(·) ∈ W we say that w satisfies the Kamke condition. Note that
if w(z) = Wz, where W ∈ Rq×q, then the function w(·) is of class W if and
only if W is essentially nonnegative, that is, all the off-diagonal entries of
the matrix function W are nonnegative. Furthermore, note that it follows
from Definition 4.13 that any scalar (q = 1) function w(z) is of class W.
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Next, we introduce the notion of class Wd functions involving nonde-
creasing functions.

Definition 4.14. A function w = [w1, . . . , wq]
T : Rq → Rq is of class

Wd if w(z′) ≤≤ w(z′′) for all z′, z′′ ∈ Rq such that z′ ≤≤ z′′.

Note that if w(·) ∈ Wd, then w(·) ∈ W. Next, we consider the
nonlinear comparison system given by

ż(t) = w(z(t)), z(t0) = z0, t ∈ Iz0
, (4.305)

where z(t) ∈ Q ⊆ Rq, t ∈ Iz0
, is the comparison system state vector, Iz0

⊆
T ⊆ R+ is the maximal interval of existence of a solution z(t) of (4.305), Q
is an open set, 0 ∈ Q, and w : Q → Rq. We assume that w(·) satisfies the
Lipschitz condition

‖w(z′) −w(z′′)‖ ≤ L‖z′ − z′′‖, (4.306)

for all z′, z′′ ∈ Bδ(z0), where δ > 0 and L > 0 is a Lipschitz constant. Hence,
it follows from Theorem 2.25 that there exists τ > 0 such that (4.305) has
a unique solution over the time interval [t0, t0 + τ ].

Theorem 4.35. Consider the nonlinear comparison system (4.305).
Assume that the function w : Q → Rq is continuous and w(·) is of class W. If
there exists a continuously differentiable vector function V = [v1, . . . , vq]

T :
Iz0

→ Q such that

V̇ (t) << w(V (t)), t ∈ Iz0
, (4.307)

then V (t0) << z0, z0 ∈ Q, implies

V (t) << z(t), t ∈ Iz0
, (4.308)

where z(t), t ∈ Iz0
, is the solution to (4.305).

Proof. Since V (t), t ∈ Iz0
, is continuous it follows that for sufficiently

small τ > 0,

V (t) << z(t), t ∈ [t0, t0 + τ ]. (4.309)

Now, suppose, ad absurdum, that inequality (4.308) does not hold on the
entire interval Iz0

. Then there exists t̂ ∈ Iz0
such that V (t) << z(t), t ∈

[t0, t̂), and for at least one i ∈ {1, . . . , q},

vi(t̂) = zi(t̂) (4.310)

and

vj(t̂) ≤ zj(t̂), j 6= i, j = 1, . . . , q. (4.311)
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Since w(·) ∈ W, it follows from (4.307), (4.310), and (4.311) that

v̇i(t̂) < wi(V (t̂)) ≤ wi(z(t̂)) = żi(t̂), (4.312)

which, along with (4.310), implies that for sufficiently small τ̂ > 0, vi(t) >
zi(t), t ∈ [t̂ − τ̂ , t̂). This contradicts the fact that V (t) << z(t), t ∈ [t0, t̂),
and establishes (4.308).

Next, we present a stronger version of Theorem 4.35 where the strict
inequalities are replaced by soft inequalities.

Theorem 4.36. Consider the nonlinear comparison system (4.305).
Assume that the function w : Q → Rq is continuous and w(·) is of class
W. Let z(t), t ∈ Iz0

, be the solution to (4.305) and [t0, t0 + τ ] ⊆ Iz0
be a

compact interval. If there exists a continuously differentiable vector function
V : [t0, t0 + τ ] → Q such that

V̇ (t) ≤≤ w(V (t)), t ∈ [t0, t0 + τ ], (4.313)

then V (t0) ≤≤ z0, z0 ∈ Q, implies

V (t) ≤≤ z(t), t ∈ [t0, t0 + τ ]. (4.314)

Proof. Consider the family of comparison systems given by

ż(t) = w(z(t)) + ε
ne, z(t0) = z0 + ε

ne, (4.315)

where ε > 0, n ∈ Z+, and t ∈ Iz0+
ε

n
e, and let the solution to (4.315) be

denoted by s(n)(t, z0 + ε
ne), t ∈ Iz0+

ε

n
e. Now, it follows from Theorem 3

of [98, p. 17] that s(n)(t, z0 + ε
ne), t ∈ [t0, t0 +τ ], is defined for all sufficiently

large n. Moreover, it follows from Theorem 4.35 that

V (t) << s(n)(t, z0 + ε
ne) << s(m)(t, z0 + ε

me), n > m, t ∈ [t0, t0 + τ ],

(4.316)

for all sufficiently large m ∈ Z+. Since the functions s(n)(t, z0 + ε
ne), t ∈

[t0, t0 + τ ], n ∈ Z+, are continuous in t, decreasing in n, and bounded from
below, it follows that the sequence of functions s(n)(·, z0 + ε

ne) converges
uniformly on the compact interval [t0, t0 +τ ] as n→ ∞, that is, there exists
a continuous function ẑ : [t0, t0 + τ ] → Q such that

s(n)(t, z0 + ε
ne) → ẑ(t), n→ ∞, (4.317)

uniformly on [t0, t0 + τ ]. Hence, it follows from (4.316) and (4.317) that

V (t) ≤≤ ẑ(t), t ∈ [t0, t0 + τ ]. (4.318)
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Next, note that it follows from (4.315) that

s(n)(t, z0 + ε
ne) = z0 + ε

ne +

∫ t

t0

w(s(n)(σ, z0 + ε
ne))dσ,

t ∈ [t0, t0 + τ ], (4.319)

which implies that ẑ(t0) = z0 and, since w(·) is continuous, w(s(n)(t, z0 +
ε
ne)) → w(ẑ(t)) as n→ ∞ uniformly on [t0, t0 + τ ]. Hence, taking the limit
as n→ ∞ on both sides of (4.319) yields

ẑ(t) = z0 +

∫ t

t0

w(ẑ(σ))dσ, t ∈ [t0, t0 + τ ], (4.320)

which implies that ẑ(t) is the solution to (4.305) on the interval [t0, t0 +
τ ]. Hence, by uniqueness of solutions of (4.305) we obtain that ẑ(t) =
z(t), [t0, t0 + τ ]. This, along with (4.318), proves the result.

Next, consider the nonlinear dynamical system given by

ẋ(t) = f(x(t)), x(t0) = x0, t ∈ Ix0
, (4.321)

where x(t) ∈ D ⊆ Rn, t ∈ Ix0
, is the system state vector, Ix0

is the maximal
interval of existence of a solution x(t) of (4.321), D is an open set, 0 ∈
D, and f(·) is Lipschitz continuous on D. The following result is a direct
consequence of Theorem 4.36.

Corollary 4.9. Consider the nonlinear dynamical system (4.321).
Assume there exists a continuously differentiable vector function V : D →
Q ⊆ Rq such that

V ′(x)f(x) ≤≤ w(V (x)), x ∈ D, (4.322)

where w : Q → Rq is a continuous function, w(·) ∈ W, and

ż(t) = w(z(t)), z(t0) = z0, t ∈ Iz0
, (4.323)

has a unique solution z(t), t ∈ Iz0
. If [t0, t0 + τ ] ⊆ Ix0

∩ Iz0
is a compact

interval, then V (x0) ≤≤ z0, z0 ∈ Q, implies V (x(t)) ≤≤ z(t), t ∈ [t0, t0+τ ].

Proof. For every x0 ∈ D, the solution x(t), t ∈ Ix0
, to (4.321) is a well

defined function of time. Hence, define η(t) , V (x(t)), t ∈ Ix0
, and note

that (4.322) implies

η̇(t) ≤≤ w(η(t)), t ∈ Ix0
. (4.324)

Moreover, if [t0, t0 +τ ] ⊆ Ix0
∩Iz0

is a compact interval, then it follows from
Theorem 4.36, with V (x0) = η(t0) ≤≤ z0, that V (x(t)) = η(t) ≤≤ z(t), t ∈
[t0, t0 + τ ], which establishes the result.

If in (4.321) f : Rn → Rn is globally Lipschitz continuous, then (4.321)
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has a unique solution x(t) for all t ≥ t0. A more restrictive sufficient
condition for global existence and uniqueness of solutions to (4.321) is
continuous differentiability of f : Rn → Rn and uniform boundedness of
f ′(x) on Rn. Note that if the solutions to (4.321) and (4.323) are globally
defined for all x0 ∈ D and z0 ∈ Q, then the result of Corollary 4.9 holds
for every arbitrarily large but compact interval [t0, t0 + τ ] ⊂ R+. For the
remainder of this section we assume that the solutions to the systems (4.321)
and (4.323) are defined for all t ≥ t0.

Consider the nonlinear comparison system given by

ż(t) = w(z(t)), z(t0) = z0, t ≥ t0, (4.325)

and the nonlinear dynamical system given by

ẋ(t) = f(x(t)), x(t0) = x0, t ≥ t0, (4.326)

where z0 ∈ Q ⊆ R
q
+, x0 ∈ D ⊆ Rn, w : Q → Rq is continuous, w(·) ∈ W,

w(0) = 0, f : D → Rn is Lipschitz continuous on D, and f(0) = 0. Note
that since w(·) ∈ W and w(0) = 0, then for every z ∈ Q ∩ R

q
+ such that

zi = 0 it follows that wi(z) ≥ 0, i = 1, . . . , q, which implies that for every
z0 ∈ Q ∩ R

q
+ the solution z(t), t ≥ t0, remains in R

q
+ (see Problem 3.61).

Theorem 4.37. Consider the nonlinear dynamical system (4.326).
Assume that there exist a continuously differentiable vector function V :
D → Q ∩ R

q
+ and a positive vector p ∈ R

q
+ such that V (0) = 0, the scalar

function v : D → R+ defined by v(x) , pTV (x), x ∈ D, is such that
v(x) > 0, x 6= 0, and

V ′(x)f(x) ≤≤ w(V (x)), x ∈ D, (4.327)

where w : Q → Rq is continuous, w(·) ∈ W, and w(0) = 0. Then the
following statements hold:

i) If the zero solution z(t) ≡ 0 to (4.325) is Lyapunov stable, then the
zero solution x(t) ≡ 0 to (4.326) is Lyapunov stable.

ii) If the zero solution z(t) ≡ 0 to (4.325) is asymptotically stable, then
the zero solution x(t) ≡ 0 to (4.326) is asymptotically stable.

iii) If D = Rn, Q = Rq, v : Rn → R+ is radially unbounded, and the zero
solution z(t) ≡ 0 to (4.325) is globally asymptotically stable, then the
zero solution x(t) ≡ 0 to (4.326) is globally asymptotically stable.

iv) If there exist constants ν ≥ 1, α > 0, and β > 0 such that v : D → R+

satisfies

α‖x‖ν ≤ v(x) ≤ β‖x‖ν , x ∈ D, (4.328)
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and the zero solution z(t) ≡ 0 to (4.325) is exponentially stable, then
the zero solution x(t) ≡ 0 to (4.326) is exponentially stable.

v) If D = Rn, Q = Rq, there exist constants ν ≥ 1, α > 0, and β > 0 such
that v : Rn → R+ satisfies (4.328), and the zero solution z(t) ≡ 0 to
(4.325) is globally exponentially stable, then the zero solution x(t) ≡ 0
to (4.326) is globally exponentially stable.

Proof. Assume that there exist a continuously differentiable vector
function V : D → Q ∩ R

q
+ and a positive vector p ∈ R

q
+ such that v(x) =

pTV (x), x ∈ D, is positive definite, that is, v(0) = 0 and v(x) > 0, x 6=
0. Note that since v(x) = pTV (x) ≤ maxi=1,...,q{pi}eTV (x), x ∈ D, the
function eTV (x), x ∈ D, is also positive definite. Thus, there exist r > 0
and class K functions α, β : [0, r] → R+ such that Br(0) ⊂ D and

α(‖x‖) ≤ eTV (x) ≤ β(‖x‖), x ∈ Br(0). (4.329)

i) Let ε > 0 and choose 0 < ε̂ < min{ε, r}. It follows from Lyapunov
stability of the nonlinear comparison system (4.325) that there exists µ =
µ(ε̂) = µ(ε) > 0 such that if ‖z0‖1 < µ, where ‖ · ‖1 denotes the absolute
sum norm, then ‖z(t)‖1 < α(ε̂), t ≥ t0. Now, choose z0 = V (x0) ≥≥ 0, x0 ∈
D. Since V (x), x ∈ D, is continuous, the function eTV (x), x ∈ D, is also
continuous. Hence, for µ = µ(ε̂) > 0 there exists δ = δ(µ(ε̂)) = δ(ε) > 0
such that δ < ε̂, and if ‖x0‖ < δ, then eTV (x0) = eTz0 = ‖z0‖1 < µ,
which implies that ‖z(t)‖1 < α(ε̂), t ≥ t0. Now, with z0 = V (x0) ≥≥ 0,
x0 ∈ D, and the assumption that w(·) ∈ W, x ∈ D, it follows from (4.327)
and Corollary 4.9 that 0 ≤≤ V (x(t)) ≤≤ z(t) on any compact interval
[t0, t0 + τ ], and hence, eTz(t) = ‖z(t)‖1, t ∈ [t0, t0 + τ ]. Let τ > t0 be such
that x(t) ∈ Br(0), t ∈ [t0, t0 + τ ], for all x0 ∈ Bδ(0). Thus, using (4.329), if
‖x0‖ < δ, then

α(‖x(t)‖) ≤ eTV (x(t)) ≤ eTz(t) < α(ε̂), t ∈ [t0, t0 + τ ], (4.330)

which implies ‖x(t)‖ < ε̂ < ε, t ∈ [t0, t0 + τ ]. Now, suppose, ad absurdum,
that for some x0 ∈ Bδ(0) there exists t̂ > t0 + τ such that ‖x(t̂)‖ = ε̂. Then,
for z0 = V (x0) and the compact interval [t0, t̂] it follows from (4.327) and
Corollary 4.9 that V (x(t̂)) ≤≤ z(t̂), which implies that α(ε̂) = α(‖x(t̂)‖) ≤
eTV (x(t̂)) ≤ eTz(t̂) < α(ε̂). This is a contradiction, and hence, for a given
ε > 0 there exists δ = δ(ε) > 0 such that for all x0 ∈ Bδ(0), ‖x(t)‖ < ε, t ≥
t0, which implies Lyapunov stability of the zero solution x(t) ≡ 0 to (4.326).

ii) It follows from i) and the asymptotic stability of the nonlinear
comparison system (4.325) that the zero solution to (4.326) is Lyapunov
stable and there exists µ > 0 such that if ‖z0‖1 < µ, then limt→∞ z(t) = 0
for every x0 ∈ D. As in i), choose z0 = V (x0) ≥≥ 0, x0 ∈ D. It follows
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from Lyapunov stability of the zero solution to (4.326) and the continuity of
V : D → Q ∩ R

q
+ that there exists δ = δ(µ) > 0 such that if ‖x0‖ < δ, then

‖x(t)‖ < r, t ≥ t0, and eTV (x0) = eTz0 = ‖z0‖1 < µ. Thus, by asymptotic
stability of (4.325) for every arbitrary ε > 0 there exists T = T (ε) > t0 such
that ‖z(t)‖1 < α(ε), t ≥ T . Thus, it follows from (4.327) and Corollary 4.9
that 0 ≤≤ V (x(t)) ≤≤ z(t) on any compact interval [t0, T + τ ], and hence,
eTz(t) = ‖z(t)‖1, t ∈ [t0, T + τ ], and, by (4.329),

α(‖x(t)‖) ≤ eTV (x(t)) ≤ eTz(t) < α(ε), t ∈ [T, T + τ ]. (4.331)

Now, suppose, ad absurdum, that for some x0 ∈ Bδ(0), limt→∞ x(t) 6= 0,
that is, there exists a sequence {tk}∞k=1, with tk → ∞ as k → ∞, such that

‖x(tk)‖ ≥ ε̂, k ∈ Z+, for some 0 < ε̂ < r. Choose ε = ε̂ and the interval
[T, T + τ ] such that at least one tk ∈ [T, T + τ ]. Then it follows from
(4.331) that α(ε) ≤ α(‖x(tk)‖) < α(ε), which is a contradiction. Hence,
there exists δ > 0 such that for all x0 ∈ Bδ(0), limt→∞ x(t) = 0 which, along
with Lyapunov stability, implies asymptotic stability of the zero solution
x(t) ≡ 0 to (4.326).

iii) Suppose D = Rn, Q = Rq, v : Rn → R+ is a radially
unbounded function, and the nonlinear comparison system (4.325) is globally
asymptotically stable. In this case, for V : Rn → R

q
+ the inequality (4.329)

holds for all x ∈ Rn, where the functions α, β : R+ → R+ are of class K∞.
Furthermore, Lyapunov stability of the zero solution x(t) ≡ 0 to (4.326)
follows from i). Next, for every x0 ∈ Rn and z0 = V (x0) ∈ R

q
+, identical

arguments as in ii) can be used to show that limt→∞ x(t) = 0, which proves
global asymptotic stability of the zero solution x(t) ≡ 0 to (4.326).

iv) Suppose (4.328) holds. Since p ∈ R
q
+, then

α̂‖x‖ν ≤ eTV (x) ≤ β̂‖x‖ν , x ∈ D, (4.332)

where α̂ , α/maxi=1,...,q{pi} and β̂ , β/mini=1,...,q{pi}. It follows from the
exponential stability of the nonlinear comparison system (4.325) that there
exist positive constants γ, µ, and η such that if ‖z0‖1 < µ, then

‖z(t)‖1 ≤ γ‖z0‖1e
−η(t−t0), t ≥ t0, (4.333)

for all x0 ∈ D. Let x0 ∈ D and z0 = V (x0) ≥≥ 0. By continuity of
V : D → Q ∩ R

q
+, there exists δ = δ(µ) > 0 such that for all x0 ∈ Bδ(0),

eTV (x0) = eTz0 = ‖z0‖1 < µ. Furthermore, it follows from (4.327), (4.332),
(4.333), and Corollary 4.9 that, for all x0 ∈ Bδ(0), the inequality

α̂‖x(t)‖ν ≤ eTV (x(t)) ≤ eTz(t) ≤ γ‖z0‖1e
−η(t−t0) ≤ γβ̂‖x0‖νe−η(t−t0)

(4.334)

holds on any compact interval [t0, t0+τ ]. This in turn implies that, for every
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x0 ∈ Bδ(0),

‖x(t)‖ ≤
(

γβ̂

α̂

)
1

ν

‖x0‖e−
η

ν
(t−t0), t ∈ [t0, t0 + τ ]. (4.335)

Now, suppose, ad absurdum, that for some x0 ∈ Bδ(0) there exists t̂ > t0 + τ

such that ‖x(t̂)‖ >
(

γβ̂
α̂

)
1

ν ‖x0‖e−
η

ν
(t̂−t0). Then for the compact interval

[t0, t̂], it follows from (4.335) that ‖x(t̂)‖ ≤
(

γβ̂
α̂

) 1

ν ‖x0‖e−
η

ν
(t̂−t0), which is

a contradiction. Thus, inequality (4.335) holds for all t ≥ t0, establishing
exponential stability of the zero solution x(t) ≡ 0 to (4.326).

v) The proof is identical to the proof of iv).

If V : D → Q∩R
q
+ satisfies the conditions of Theorem 4.37 we say that

V (x), x ∈ D, is a vector Lyapunov function. Note that for stability analysis
each component of a vector Lyapunov function need not be positive definite
with a negative-definite or negative-semidefinite time derivative along the
trajectories of (4.326). This provides more flexibility in searching for a
vector Lyapunov function as compared to a scalar Lyapunov function for
addressing the stability of nonlinear dynamical systems.

Example 4.20. Consider the nonlinear dynamical system given by

ẋ1(t) = −x1(t) − x2
1(t)x

3
2(t), x1(0) = x10, t ≥ 0, (4.336)

ẋ2(t) = −x3
2(t) + x2

1(t)x
2
2(t), x2(0) = x20. (4.337)

Note that Lyapunov’s indirect method fails to yield any information on the
stability of the zero solution x(t)

△
= [x1(t), x2(t)]

T ≡ 0 of (4.336) and (4.337).
To examine the stability of (4.336) and (4.337) consider the vector Lyapunov
function candidate V (x) = [v1(x), v2(x)]

T, x ∈ R2, with v1(x) = 1
2x

2
1 and

v2(x) = 1
4x

4
2. Clearly, V (0) = 0 and eTV (x), x ∈ R2, is a positive-definite

function. Next, consider the domain D △
= {x ∈ R2 : |x1| ≤ 1, |x2| ≤ c2},

where c2 > 0, and note that

v̇1(x(t)) = x1(t)(−x1(t) − x2
1(t)x

3
2(t))

≤ −x2
1(t) + |x3

1(t)x
3
2(t)|

≤ (−2 + 2c32)v1(x(t)), (4.338)

v̇2(x(t)) = x3
2(t)(−x3

2(t) + x2
1(t)x

2
2(t))

≤ −x6
2(t) + |x2

1(t)x
5
2(t)|

≤ 2c52v1(x(t)) − 8v
3

2

2 (x(t)), (4.339)



NonlinearBook10pt November 20, 2007

308 CHAPTER 4

for all x(t) ∈ D, t ≥ 0. Thus, the comparison system (4.325) is given by

ż1(t) = (−2 + 2c32)z1(t), z1(0) = z10, t ≥ 0, (4.340)

ż2(t) = 2c52z1(t) − 8z
3

2

2 (t), z2(0) = z20, (4.341)

where (z10, z20) ∈ R+×R+. Note that w(z)
△
= [(−2+2c32)z1, 2c

5
2z1−8z

3

2

2 ]T ∈
W, where z

△
= [z1, z2]

T.

Next, to show stability of the zero solution z(t) ≡ 0 to the comparison
system, consider the linear Lyapunov function candidate v(z) = z1 + z2, z ∈
R

2
+ (see Problem 3.8). Clearly, v(0) = 0 and v(z) > 0, z ∈ R

2
+ \ {0}.

Moreover,

v̇(z(t)) = 2(−1 + c32 + c52)z1(t) − 8z
3

2

2 (t), t ≥ 0. (4.342)

In order to ensure asymptotic stability of the zero solution z(t) ≡ 0, it
suffices to take c2 = 0.83. In this case, it follows from Theorem 4.37 that
the zero solution x(t) ≡ 0 to (4.336) and (4.337) is asymptotically stable. △

Next, we present a convergence result via vector Lyapunov functions
that allows us to establish asymptotic stability of the nonlinear dynamical
system (4.326).

Theorem 4.38. Consider the nonlinear dynamical system (4.326),
assume that there exist a continuously differentiable vector function V =
[v1, . . . , vq]

T : D → Q∩R
q
+ and a positive vector p ∈ R

q
+ such that V (0) = 0,

the scalar function v : D → R+ defined by v(x) , pTV (x), x ∈ D, is such
that v(x) > 0, x 6= 0, and

V ′(x)f(x) ≤≤ w(V (x)), x ∈ D, (4.343)

where w : Q → Rq is continuous, w(·) ∈ W, and w(0) = 0, such that the
nonlinear comparison system (4.325) is Lyapunov stable. Let Ri , {x ∈
D : v′i(x)f(x)−wi(V (x)) = 0}, i = 1, . . . , q. Then there exists Dc ⊂ D such

that x(t) → R , ∩q
i=1Ri as t → ∞ for all x(t0) = x0 ∈ Dc. Moreover,

if R contains no trajectory other than the trivial trajectory, then the zero
solution x(t) ≡ 0 to (4.326) is asymptotically stable.

Proof. Since the nonlinear comparison system (4.325) is Lyapunov

stable, it follows that there exists δ̂ > 0 such that, if ‖z0‖1 < δ̂, then the
system trajectories z(t), t ≥ t0, of (4.325) are bounded. Furthermore, since

V (x), x ∈ D, is continuous, it follows that there exists δ1 = δ1(δ̂) > 0 such

that eTV (x0) < δ̂ for all x0 ∈ Bδ1
(0). In addition, it follows from Theorem

4.37 that the zero solution x(t) ≡ 0 to (4.326) is Lyapunov stable, and hence,

for a given ε > 0 such that Bε(0) ⊂
◦
D, there exists δ2 = δ2(ε) > 0 such that,
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if x0 ∈ Bδ2
(0), then x(t) ∈ Bε(0), t ≥ t0, where x(t), t ≥ t0, is the solution

to (4.326). Choose δ = min{δ1, δ2} and define Dc , Bδ(0) ⊂ D. Then for
every x0 ∈ Dc and z0 = V (x0), it follows that x(t) ∈ Bε(0), t ≥ t0, and
z(t), t ≥ t0, is bounded.

Next, consider the function

Wi(t) , vi(x(t)) −
∫ t

t0

wi(V (x(s)))ds, t ≥ t0, x ∈ D, i = 1, . . . , q.

It follows from (4.343) that

Ẇi(t) = v′i(x(t))f(x(t)) − wi(V (x(t))) ≤ 0, t ≥ t0, x0 ∈ D, (4.344)

which implies that Wi(t), i ∈ {1, . . . , q}, is a nonincreasing function of
time, and hence, limt→∞Wi(t), i ∈ {1, . . . , q}, exists. Moreover, Wi(t0) =
vi(x(t0)) < ∞, i ∈ {1, . . . , q}. Now suppose, ad absurdum, that for
some initial condition x(t0) = x0 ∈ Dc, limt→∞Wi(t) = −∞ for some
i ∈ {1, . . . , q}. Since the function vi(x), x ∈ D, is continuous on the compact

set Bε(0), it follows that vi(x(t)), t ≥ t0, is uniformly bounded, and hence,

limt→∞
∫ t
t0
wi(V (x(s)))ds = ∞. Now, it follows from (4.343) and Corollary

4.9 that V (x(t)) ≤≤ z(t), t ≥ t0, for z(t0) = V (x(t0)). Note that since
x0 ∈ Dc it follows that z(t), t ≥ t0, is bounded. Furthermore, since w(·) ∈ W
it follows that

vi(x(t)) ≤ vi(x(t0)) +

∫ t

t0

wi(V (x(s)))ds ≤ zi(t0) +

∫ t

t0

wi(z(s))ds = zi(t)

for all t ≥ t0. Since z(t) and vi(x(t)) are bounded for all t ≥ t0 it follows

that there exists M > 0 such that |
∫ t
t0
wi(V (x(s)))ds| < M, t ≥ t0. This is

a contradiction, and hence, limt→∞Wi(t), i ∈ {1, . . . , q}, exists and is finite
for every x0 ∈ Dc. Thus, for every x0 ∈ Dc, it follows that

∫ t

t0

Ẇi(s)ds =

∫ t

t0

[v′i(x(s))f(x(s)) − wi(V (x(s)))]ds

= Wi(t) −Wi(t0), t ≥ t0, (4.345)

and hence, limt→∞
∫ t
t0

[v′i(x(s))f(x(s))−wi(V (x(s)))]ds, i ∈ {1, . . . , q}, exists
and is finite.

Next, since f(·) is Lipschitz continuous on D and x(t) ∈ Bε(0) for all
x0 ∈ Dc and t ≥ t0 it follows that

‖x(t2) − x(t1)‖ =

∥

∥

∥

∥

∫ t2

t1

f(x(s))ds

∥

∥

∥

∥

≤ L

∫ t2

t1

‖x(s)‖ds
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≤ Lε(t2 − t1), t2 ≥ t1 ≥ t0, (4.346)

where L is the Lipschitz constant on Dc. Thus, it follows from (4.346)
that for every γ > 0 there exists µ = µ(γ) = γ

Lε such that ‖x(t2)− x(t1)‖ <
γ, |t2−t1| < µ, which shows that x(t), t ≥ t0, is uniformly continuous. Next,
since x(t) is uniformly continuous and v′i(x)f(x) − wi(V (x)), x ∈ D, i ∈
{1, . . . , q}, is continuous, it follows that v′i(x)f(x) − wi(V (x)) is uniformly
continuous on Bε(0), and hence, v′i(x(t))f(x(t))−wi(V (x(t))), i ∈ {1, . . . , q},
is uniformly continuous at every t ≥ t0. Hence, it follows from Barbalat’s
lemma (Lemma 4.1) that v′i(x(t))f(x(t))−wi(V (x(t))) → 0 as t→ ∞ for all
x0 ∈ Dc and i ∈ {1, . . . , q}. Repeating the above analysis for all i = 1, . . . , q,
it follows that x(t) → R = ∩q

i=1Ri for all x0 ∈ Dc. Finally, if R contains
no trajectory other than the trivial trajectory, then R = {0}, and hence,
x(t) → 0 as t→ ∞ for all x0 ∈ Dc, which proves asymptotic stability of the
zero solution x(t) ≡ 0 to (4.326).

Note that R = ∩q
i=1Ri 6= Ø since 0 ∈ R. Furthermore, recall that for

every bounded solution x(t), t ≥ t0, to (4.326) with initial condition x(t0) =
x0, the positive limit set ω(x0) of (4.326) is a nonempty, compact, invariant,
and connected set with x(t) → ω(x0) as t → ∞. If q = 1 and w(V (x)) ≡ 0,
then it can be shown that the Lyapunov derivative V̇ (x) vanishes on the
positive limit set ω(x0), x0 ∈ Dc, so that ω(x0) ∈ R. Moreover, since ω(x0)
is a positively invariant set with respect to (4.326), it follows that for all
x0 ∈ Dc, the trajectory of (4.326) converges to the largest invariant set M
contained in R. In this case, Theorem 4.38 specializes to Theorem 3.3.

If for some k ∈ {1, . . . , q}, wk(V (x)) ≡ 0 and v′k(x)f(x) < 0, x ∈
D, x 6= 0, then R = Rk = {0}. In this case, it follows from Theorem 4.38
that the zero solution x(t) ≡ 0 to (4.326) is asymptotically stable. Note
that even though for k ∈ {1, . . . , q} the time derivative v̇k(x), x ∈ D, is
negative definite, the function vk(x), x ∈ D, can be nonnegative definite, in
contrast to classical Lyapunov stability theory, to ensure asymptotic stability
of (4.326).

Next, we present a converse Lyapunov theorem that establishes
the existence of a vector Lyapunov function for an asymptotically stable
nonlinear dynamical system.

Theorem 4.39. Consider the nonlinear dynamical system (4.326).
Assume that f : D → Rn is continuously differentiable, the zero solution
x(t) ≡ 0 to (4.326) is asymptotically stable, and let δ > 0 be such that
Bδ(0) ⊂ D is contained in the domain of attraction of (4.326). Then
there exist a continuously differentiable componentwise positive-definite
vector function V = [v1, . . . , vq]

T : Bδ(0) → R
q
+ and a continuous function

w = [w1, . . . , wq]
T : R

q
+ → Rq such that V (0) = 0, w(·) ∈ W, w(0) = 0,
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V ′(x)f(x) ≤≤ w(V (x)), x ∈ Bδ(0), and the zero solution z(t) ≡ 0 to

ż(t) = w(z(t)), z(t0) = z0, t ≥ t0, (4.347)

where z0 ∈ R
q
+, is asymptotically stable.

Proof. Since the zero solution x(t) ≡ 0 to (4.326) is asymptotically
stable it follows from Theorem 3.9 that there exist a continuously differen-
tiable positive definite function ṽ : Bδ(0) → R+ and class K functions α(·),
β(·), and γ(·) such that

α(‖x‖) ≤ ṽ(x) ≤ β(‖x‖), x ∈ Bδ(0), (4.348)

ṽ′(x)f(x) ≤ −γ(‖x‖), x ∈ Bδ(0). (4.349)

Furthermore, it follows from (4.348) and (4.349) that

ṽ′(x)f(x) ≤ −γ ◦ β−1(ṽ(x)), x ∈ Bδ(0), (4.350)

where “◦” denotes the composition operator and β−1 : [0, β(δ)] → R+ is the
inverse function of β(·), and hence, β−1(·) and γ◦β−1(·) are class K functions.
Next, define V = [v1, . . . , vq]

T : Bδ(0) → R
q
+ such that vi(x) , ṽ(x), x ∈

Bδ(0), i = 1, . . . , q. Then it follows that V (0) = 0 and V ′(x)f(x) ≤≤
w(V (x)), x ∈ Bδ(0), where w = [w1, . . . , wq]

T : R
q
+ → Rq is such that

wi(V (x)) = −γ ◦ β−1(vi(x)), x ∈ Bδ(0). Note that w(·) ∈ W and w(0) = 0.
To show that the zero solution z(t) ≡ 0 to (4.347) is asymptotically stable,
consider the Lyapunov function candidate v̂(z) , eTz, z ∈ R

q
+. Note that

v̂(0) = 0, v̂(z) > 0, z ∈ R
q
+, z 6= 0, and ˙̂v(z) = −∑q

i=1 γ ◦ β−1(zi) < 0, z ∈
R

q
+, z 6= 0. Thus, the zero solution z(t) ≡ 0 to (4.347) is asymptotically

stable.

Next, we provide a time-varying extension of Theorem 4.37. In
particular, we consider the nonlinear time-varying dynamical system

ẋ(t) = f(t, x(t)), x(t0) = x0, t ≥ t0, (4.351)

where x(t) ∈ D ⊆ Rn, 0 ∈ D, f : [t0,∞) × D → Rn is such that f(·, ·) is
jointly continuous in t and x, for every t ∈ [t0,∞), f(t, 0) = 0, and f(t, ·) is
locally Lipschitz in x uniformly in t for all t in compact subsets of [0,∞).

Theorem 4.40. Consider the nonlinear time-varying dynamical sys-
tem (4.351). Assume that there exist a continuously differentiable vector
function V : [0,∞) × D → Q ∩ R

q
+, a positive vector p ∈ R

q
+, and class K

functions α, β : [0, r] → R+ such that V (t, 0) = 0, t ∈ [0,∞), the scalar

function v : [0,∞) × D → R+ defined by v(t, x)
△
= pTV (t, x), (t, x) ∈

[0,∞) ×D, is such that

α(‖x‖) ≤ v(t, x) ≤ β(‖x‖), (t, x) ∈ [0,∞) × Br(0), Br(0) ⊆ D, (4.352)
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and

∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) ≤≤ w(t, V (t, x)), (t, x) ∈ [0,∞) ×D, (4.353)

where w : [0,∞) ×Q → Rq is continuous, w(t, ·) ∈ W, and w(t, 0) = 0, t ∈
[0,∞). Then the stability properties of the zero solution z(t) ≡ 0 to

ż(t) = w(t, z(t)), z(t0) = z0, t ≥ t0, (4.354)

where z0 ∈ Q∩R
q
+, imply the corresponding stability properties of the zero

solution x(t) ≡ 0 to (4.351). That is, if the zero solution z(t) ≡ 0 to (4.354)
is uniformly Lyapunov (respectively, uniformly asymptotically) stable, then
the zero solution x(t) ≡ 0 to (4.351) is uniformly Lyapunov (respectively,
uniformly asymptotically) stable. If, in addition, D = Rn, Q = Rq, and
α(·), β(·) are class K∞ functions, then global uniform asymptotic stability
of the zero solution z(t) ≡ 0 to (4.354) implies global uniform asymptotic
stability of the zero solution x(t) ≡ 0 to (4.351). Moreover, if there exist
constants ν ≥ 1, α > 0, and β > 0 such that v : [0,∞) ×D → R+ satisfies

α‖x‖ν ≤ v(t, x) ≤ β‖x‖ν , (t, x) ∈ [0,∞) ×D, (4.355)

then exponential stability of the zero solution z(t) ≡ 0 to (4.354) implies
exponential stability of the zero solution x(t) ≡ 0 to (4.351). Finally, if
D = Rn, Q = Rq, there exist constants ν ≥ 1, α > 0, and β > 0 such that
v : [0,∞) × Rn → R+ satisfies (4.355), then global exponential stability of
the zero solution z(t) ≡ 0 to (4.354) implies global exponential stability of
the zero solution x(t) ≡ 0 to (4.351).

Proof. The proof is similar to the proof of Theorem 4.37 and is left
as an exercise for the reader.

Finally, to elucidate how to use the vector Lyapunov function frame-
work to address the problem of control design for nonlinear dynamical
systems consider the controlled nonlinear dynamical system given by

ẋ(t) = F (x(t), u(t)), x(t0) = x0, t ≥ t0, (4.356)

where x0 ∈ D, D ⊆ Rn is an open set, 0 ∈ D, u(t) ∈ U ⊆ Rm is the control
input, U is the set of all admissible control inputs, F : D × U → Rn is
Lipschitz continuous for all (x, u) ∈ D × U , and F (0, 0) = 0. Moreover,
assume that for every x0 ∈ D and u(t) ∈ U , t ≥ t0, the solution x(t) to
(4.356) is unique and defined for all t ≥ t0. Now, assume there exist a
continuously differentiable vector function V : D → Q ∩ R

q
+ and a positive

vector p ∈ R
q
+ such that V (0) = 0, v(x)

△
= pTV (x), x ∈ D, is positive

definite, and

V ′(x)F (x, u) ≤≤ w(V (x), u), x ∈ D, u ∈ U, (4.357)

where w : Q × U → Rq is continuous. Furthermore, define the feedback
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control law φ : Q → U given by u = φ(V (x)), x ∈ D, so that φ(0) = 0 and
(4.356) is given by

ẋ(t) = F (x(t), φ(V (x(t)))), x(t0) = x0, t ≥ t0. (4.358)

Now, if φ(·) is such that the zero solution z(t) ≡ 0 to

ż(t) = w̃(z(t)), z(t0) = z0, t ≥ t0, (4.359)

where w̃(z)
△
= w(z, φ(z)), z ∈ Q, w̃(·) ∈ W, w̃(0) = 0, z0 ∈ Q ∩ R

q
+, is

asymptotically stable then the zero solution x(t) ≡ 0 of the closed-loop
system (4.358) is asymptotically stable.

4.12 Problems

Problem 4.1. Consider the nonlinear dynamical system

ẋ1(t) = f1(x1(t), x2(t)), x1(0) = x10, t ≥ 0, (4.360)

ẋ2(t) = f2(x1(t), x2(t)), x2(0) = x20, (4.361)

where x1 ∈ Rn1 , x2 ∈ Rn2 , f1 : Rn1 × Rn2 → Rn1 is Lipschitz continuous
on Rn1 × Rn2 and satisfies f1(0, x2) = 0 for all x2 ∈ Rn2 , and f2 : Rn1 ×
Rn2 → Rn2 is Lipschitz continuous on Rn1 × Rn2 . Show that if there exists
a continuously differentiable function V : Rn1 → R such that

V (0) = 0, (4.362)

V (x1) > 0, x1 ∈ Rn, x1 6= 0, (4.363)

V ′(x1)f1(x1, x2) ≤ 0, (x1, x2) ∈ Rn1 × Rn2 , (4.364)

then the system (4.360) and (4.361) is Lyapunov stable with respect to x1.
If, in addition, there exists a class K∞ function γ : [0,∞) → [0,∞) such
that

V ′(x1)f1(x1, x2) ≤ −γ(‖x1‖), (x1, x2) ∈ Rn1 × Rn2 , (4.365)

show that (4.360) and (4.361) is asymptotically stable with respect to x1.
Finally, if V (·) is radially unbounded and satisfies (4.362), (4.363), and
(4.365) show that (4.360) and (4.361) is globally asymptotically stable with
respect to x1.

Problem 4.2. Consider the nonlinear dynamical system representing
a rigid spacecraft given by

ẋ1(t) = I23x2(t)x3(t) + α1x1(t), x1(0) = x10, t ≥ 0, (4.366)

ẋ2(t) = I31x3(t)x1(t) + α2x2(t), x2(0) = x20, (4.367)

ẋ3(t) = I12x1(t)x2(t), x3(0) = x30, (4.368)

where I23 = (I2 − I3)/I1, I31 = (I3 − I1)/I2, I12 = (I1 − I2)/I3, I1, I2,
and I3 are the principal moments of inertia of the spacecraft such that
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I1 > I2 > I3 > 0, and α1 < 0 and α2 < 0 reflect dissipation in the x1 and
x2 coordinates of the spacecraft. Show that (4.366)–(4.368) is exponentially
stable with respect to (x1, x2) uniformly in x30. (Hint: Use the Lyapunov
function candidate V (x1, x2, x3) = 1

2(−I31x2
1 + I23x

2
2).)

Problem 4.3. Analyze the partial stability conditions given in Prob-
lem 4.1 and Theorem 4.1 and comment on their interrelationship. Are the
conditions equivalent? Is one set of conditions implied by the other? Are
the partial stability conditions in Problem 4.1 and Theorem 4.1 a special
case of the stability conditions with respect to compact positively invariant
sets discussed in Section 4.9? Explain your answers.

Problem 4.4. Consider the nonlinear dynamical system

ẋ1(t) = α1x1(t) − βx1(t)x2(t) cos x3(t), x1(0) = x10, t ≥ 0, (4.369)

ẋ2(t) = α2x2(t) + βx2
1(t) cos x3(t), x2(0) = x20, (4.370)

ẋ3(t) = 2θ1 − θ2 − β
(

x2
1(t)

x2(t)
− 2x2(t)

)

sinx3(t), x3(0) = x30, (4.371)

representing a time-averaged, two-mode thermoacoustic combustion model
where α1 < 0, α2 < 0, and β, θ1, θ2 ∈ R. Show that (4.369)–(4.371) is
globally asymptotically stable with respect to [x1 x2]

T. (Hint: Use Problem
4.1 with the partial Lyapunov function candidate V (x1, x2) = 1

2x
2
1 + 1

2x
2
2.)

Problem 4.5. Show that the zero solution x(t) ≡ 0 to (4.57) is
uniformly Lyapunov stable if and only if there exists a class K function α(·)
and a positive constant δ, independent of t0, such that ‖x(t)‖ ≤ α(‖x(t0)‖)
for all t ≥ t0 and ‖x(t0)‖ < δ.

Problem 4.6. Show that the zero solution x(t) ≡ 0 to (4.57) is
uniformly asymptotically stable if and only if there exists a class KL
function β(·, ·) and a positive constant δ, independent of t0, such that
‖x(t)‖ ≤ β(‖x(t0)‖, t − t0) for all t ≥ t0 and ‖x(t0)‖ < δ. Additionally,
show that if x(t0) ∈ Rn, then the above equivalence holds for global uniform
asymptotic stability.

Problem 4.7. Consider the scalar linear equation

ẋ(t) = − 1

t+ 1
x(t), x(t0) = x0, t ≥ t0. (4.372)

Show that the zero solution x(t) ≡ 0 to (4.372) is uniformly Lyapunov stable
and globally asymptotically stable, but not uniformly asymptotically stable.

Problem 4.8. Consider the linear dynamical system

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (4.373)
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ẋ2(t) = −x2(t) − e−tx1(t), x2(0) = x20. (4.374)

Show that the zero solution (x1(t), x2(t)) ≡ (0, 0) to (4.373) and (4.374) is
Lyapunov stable.

Problem 4.9. Consider the linear dynamical system

ẋ1(t) = −a(t)x1(t) − bx2(t), x1(0) = x10, t ≥ 0, (4.375)

ẋ2(t) = bx1(t) − c(t)x2(t), x2(0) = x20, (4.376)

where b ∈ R, a(t) ≥ α > 0, t ≥ 0, and c(t) ≥ β > 0, t ≥ 0. Show that
the zero solution (x1(t), x2(t)) ≡ (0, 0) to (4.375) and (4.376) is globally
exponentially stable.

Problem 4.10. Consider the damped Mathieu equation given by

ẍ(t) + ẋ(t) + (2 + sin t)x(t) = 0, x(0) = x0, ẋ(0) = ẋ0, t ≥ 0. (4.377)

Show that the zero solution (x(t), ẋ(t)) ≡ (0, 0) to (4.377) is uniformly
Lyapunov stable.

Problem 4.11. Consider the spring-mass-damper system with a time-
varying damping coefficient given by

ẍ(t) + b(t)ẋ(t) + kx(t) = 0, x(0) = x0, ẋ(0) = ẋ0, t ≥ 0, (4.378)

where b(t) is such that

b(t) > α > 0, ḃ(t) ≤ β < 2k, t ≥ 0. (4.379)

Assuming b(t) is upper bounded, show that the zero solution (x(t), ẋ(t)) ≡
(0, 0) to (4.378) is uniformly asymptotically stable. Are either or both of
the conditions in (4.379) necessary to establish uniform asymptotic stability?
(Hint: Consider the Lyapunov function candidate V (t, x) = 1

2(ẋ + αx)2 +
1
2γ(t)x

2, where 0 < α <
√
k and γ(t) = k − α2 + αb(t).)

Problem 4.12. Consider the nonlinear dynamical system

ẋ1(t) = α(t)x2(t) + β(t)x1(t)[x
2
1(t) + x2

2(t)], x1(0) = x10, t ≥ 0, (4.380)

ẋ2(t) = −α(t)x1(t) + β(t)x2(t)[x
2
1(t) + x2

2(t)], x2(0) = x20, (4.381)

where α(·) and β(·) are continuous functions. Analyze the stability of the
zero solution (x1(t), x2(t)) ≡ (0, 0) to (4.380) and (4.381) using Lyapunov’s
direct method.

Problem 4.13. Consider the nonlinear dynamical system

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (4.382)

ẋ2(t) = − sinx1(t) − a(t)x2(t), x2(0) = x20, (4.383)
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where a(·) is continuously differentiable and satisfies 0 < α < a(t) ≤ β <∞,
t ≥ 0, and α̇(t) ≤ γ < 2, t ≥ 0. Show that the zero solution (x1(t), x2(t)) ≡
(0, 0) to (4.382) and (4.383) is uniformly asymptotically stable. (Hint:
Consider the Lyapunov function candidate

V (t, x) =
1

2
(α sinx1 + x2)

2 + [1 + αa(t) − α2](1 − cosx1), (4.384)

and show that (4.384) is a valid candidate.)

Problem 4.14. Consider the nonlinear dynamical system

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (4.385)

ẋ2(t) = −a(t)x2(t) − e−tx1(t), x2(0) = x20, (4.386)

where a(·) is a continuous function. Analyze the stability of the zero solution
(x1(t), x2(t)) ≡ (0, 0) to (4.385) and (4.386) by using the Lyapunov function
candidate V (t, x1, x2) = x2

1 + etx2
2.

Problem 4.15. Show that if V : [0,∞)×D ⊆ Rn → R is continuously
differentiable, lower bounded, V̇ (t, x) ≤ 0, t ∈ [0,∞) × D, and V̇ (t, x) is
uniformly continuous in time, then V̇ (t, x) → 0 as t → ∞. (Hint: Use
Barbalat’s lemma to prove the result.)

Problem 4.16. Consider the dynamical system

ẋ1(t) = −x1(t) + x2(t)w(t), x1(0) = x10, t ≥ 0, (4.387)

ẋ2(t) = −x1(t)w(t), x2(0) = x20, (4.388)

where w(t), t ≥ 0, is a bounded continuous disturbance. Show that x1(t) →
0 as t → ∞ and x2(t), t ≥ 0, is bounded. (Hint: Use the result in Problem
4.15.)

Problem 4.17. Consider the time-varying nonlinear dynamical system
(4.57). Show that if there exist a continuously differentiable function V :
[0,∞) ×D → R and class K functions α(·) and γ(·) such that

V (t, 0) = 0, t ∈ [0,∞), (4.389)

α(‖x‖) ≤ V (t, x), (t, x) ∈ [0,∞) ×D, (4.390)

V̇ (t, x) ≤ −γ(V (t, x)), (t, x) ∈ [0,∞) ×D, (4.391)

then the zero solution x(t) ≡ 0 to (4.57) is asymptotically stable. If, in
addition, D = Rn and α(·) is a class K∞ function, show that the zero
solution x(t) ≡ 0 to (4.57) is globally asymptotically stable.

Problem 4.18. Consider the time-varying nonlinear dynamical system
(4.57). Show that if there exist continuously differentiable functions V :
[0,∞) × D → R and W : D → R, and class K functions α(·) and γ(·) such
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that W (0) = 0, W (x) > 0, x ∈ D, x 6= 0, Ẇ (x(·)) is bounded from below or
above, and

V (t, 0) = 0, t ∈ [0,∞), (4.392)

α(‖x‖) ≤ V (t, x), (t, x) ∈ [0,∞) ×D, (4.393)

V̇ (t, x) ≤ −γ(W (x)), (t, x) ∈ [0,∞) ×D, (4.394)

then the zero solution x(t) ≡ 0 to (4.57) is asymptotically stable. If, in
addition, D = Rn and α(·) is a class K∞ function show that the zero solution
x(t) ≡ 0 to (4.57) is globally asymptotically stable.

Problem 4.19. Prove Theorem 4.10.

Problem 4.20. Prove Theorem 4.11.

Problem 4.21. Prove Theorem 4.12.

Problem 4.22. Consider the nonlinear dynamical system

ẋ1(t) = −ax3
1(t) + bx2(t), x1(0) = x10, t ≥ 0, (4.395)

ẋ2(t) = −cx3
2(t), x2(0) = x20, (4.396)

where a, b, c > 0. Use Proposition 4.2 to show that the zero solution
(x1(t), x2(t)) ≡ (0, 0) of (4.395) and (4.396) is globally asymptotically stable.

Problem 4.23. Consider the nonlinear dynamical system

ẋ1(t) = −x2
1(t) − 2x3

1(t) + x2(t), x1(0) = x10, t ≥ 0, (4.397)

ẋ2(t) = −x3
2(t), x2(0) = x20. (4.398)

Use Proposition 4.2 to show that the zero solution (x1(t), x2(t)) ≡ (0, 0) is
globally asymptotically stable.

Problem 4.24. Consider the nonlinear dynamical system

ẋ1(t) = −x2
1 + 1

2x
2
1(t)x2(t), x1(0) = x10, t ≥ 0, (4.399)

ẋ2(t) = −1
2x

3
1(t) − x2(t) + 1

2u(t), x2(0) = x20. (4.400)

Show that (4.399) and (4.400) is input-to-state stable.

Problem 4.25. Consider the nonlinear perturbed dynamical system

ẋ(t) = f(t, x(t)) + g(t, x(t)), x(t0) = x0, t ≥ t0, (4.401)

where x(t) ∈ D, t ≥ 0, D ⊆ R such that 0 ∈ D, f(t, ·) : D → Rn and
g(t, ·) : D → Rn are Lipschitz continuous on D for all t ∈ [0,∞), and f(·, x) :
[0,∞) → Rn and g(·, x) : [0,∞) → Rn are piecewise continuous on [0,∞).
Assume that the zero solution x(t) ≡ 0 to the nominal system (4.401), that
is, (4.401) with g(t, x) ≡ 0, is exponentially stable. Furthermore, assume
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there exists a continuously differentiable function V : [0,∞) × D → R such
that the conditions of Corollary 4.2 are satisfied for D = {x ∈ Rn : ‖x‖ < ε}.
Finally, suppose g(t, x) satisfies

‖g(t, x)‖ ≤ δ <
α1

α2

√

α3

α4
µε, (t, x) ∈ [0,∞) ×D, (4.402)

where α1, α2, α3, α4, and µ are positive constants with µ < 1. Show that,

for all ‖x(t0)‖ <
√

α3

α4
ε,

‖x(t)‖ ≤ σ‖x(t0)‖e−γ(t−t0), t ≤ t < t0 + T, (4.403)

and
‖x(t)‖ ≤ β, t ≥ t0 + T, (4.404)

where T > 0 is a finite time, σ
△
=
√

α3

α4
, γ

△
= (1−µ)α1

2α4
, and β

△
= α2

α1

δ
µ

√

α3

α4
.

Problem 4.26. Consider the nonlinear dynamical system (4.177) with
D = {x ∈ R : |x| < 1} and f : D → R given by

f(x) =

{

−x(ln |x|)2, x ∈ D\{0},
0, x = 0.

(4.405)

Show that this system is finite-time stable with settling-time function

T (x) =

{ − 1
ln |x| , x ∈ D\{0},
0, x = 0.

(4.406)

Problem 4.27. Consider the nonlinear time-varying dynamical system
(4.57) where f(·, ·) is continuous on [0,∞) ×D and (4.57) possesses unique
solutions in forward time for all x0 ∈ D and t0 ∈ [0,∞). The zero solution
x(t) ≡ 0 to (4.57) is finite-time stable if the origin is Lyapunov stable and
there exists an open neighborhood N ⊆ D of the origin and a function
T : [0,∞) × N\{0} → (0,∞), called a settling-time function, such that for
every x0 ∈ N\{0}, s(·, t0, x0) : [t0, T (t0, x0)) → N\{0} and s(t, t0, x0) → 0
as t→ T (t0, x0). The zero solution to (4.57) is uniformly finite-time stable if
the origin is uniformly Lyapunov stable and s(t, t0, x0) → 0 as t→ T (t0, x0)
for every x0 ∈ N\{0}. The zero solution is globally uniformly finite-time
stable if it is uniformly finite-time stable with D = N = Rn. Show that the
following statements hold:

i) If there exist a continuously differentiable function V : [0,∞)×D → R,
class K function α(·), a continuous function c : [0,∞) → R+ with
c(t) > 0 for almost all t ∈ [0,∞), a real number λ ∈ (0, 1), and an
open neighborhood M ⊆ D of the origin such that

V (t, 0) = 0, t ∈ [0,∞), (4.407)
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α(‖x‖) ≤ V (t, x), x ∈ M, t ∈ [0,∞), (4.408)

V̇ (t, x) ≤ −c(t)(V (t, x))λ, x ∈ M, t ∈ [0,∞), (4.409)

then the zero solution x(t) ≡ 0 to (4.57) is finite-time stable.

ii) If there exist a continuously differentiable function V : [0,∞)×D → R,
class K functions α(·) and β(·), a continuous function c : [0,∞) → R+

with c(t) > 0 for almost all t ∈ [0,∞), a real number λ ∈ (0, 1), and an
open neighborhood M ⊆ D of the origin such that (4.408) and (4.409)
hold, and

V (t, x) ≤ β(‖x‖), x ∈ M, t ∈ [0,∞), (4.410)

then the zero solution x(t) ≡ 0 to (4.57) is uniformly finite-time stable.

iii) If D = M = Rn and there exist a continuously differentiable function
V : [0,∞) × D → R, class K∞ functions α(·) and β(·), a continuous
function c : [0,∞) → R+ with c(t) > 0 for almost all t ∈ [0,∞), a
real number λ ∈ (0, 1), and an open neighborhood M ⊆ D of the
origin such that (4.408)–(4.410) hold, then the zero solution x(t) ≡ 0
to (4.57) is globally uniformly finite-time stable.

Problem 4.28. Consider the nonlinear time-varying dynamical system
(4.57). Assume that the zero solution x(t) ≡ 0 to (4.57) is finite-time
stable and let N ⊆ D and T : [0,∞) × N\{0} → (0,∞) be defined
as in Problem 4.27. Show that, for every t0 ∈ [0,∞) and x0 ∈ N ,
there exists a unique solution s(t, t0, x0), t ≥ t0, to (4.57) such that
s(t, t0, x0) ∈ N , t ∈ [t0, T (t0, x0)), and s(t, t0, x0) = 0 for all t ≥ T (t0, x0),

where T (t0, 0)
△
= t0.

Problem 4.29. Consider the nonlinear time-varying dynamical system
(4.57). Assume that the zero solution x(t) ≡ 0 to (4.57) is finite-time stable
and let N ⊆ D and T : [0,∞) ×N\{0} → (0,∞) be defined as in Problem
4.27. Show that the following statements hold:

i) If t0 ∈ [0,∞), t ≥ t0, and x ∈ N , then the settling-time function
T (t, s(t, t0, x0)) = max{T (t0, x), t}.

ii) T (·, ·) is jointly continuous on [0,∞) × N if and only if T (·, ·) is
continuous at (t, 0) for all t ≥ 0.

Problem 4.30. Consider the nonlinear time-varying dynamical system
(4.57). Let λ ∈ (0, 1), let N be as in Problem 4.27, and assume that there
exists a class K function µ : [0, r] → [0,∞), where r > 0, such that Br(0) ⊆
N and

‖f(t, x)‖ ≤ µ(‖x‖), t ∈ [0,∞), x ∈ Br(0). (4.411)
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Show that if the zero solution x(t) ≡ 0 to (4.57) is uniformly finite-time
stable and the settling-time function T (·, ·) is continuous at (t, 0) for all
t ≥ 0, then there exist a class K function α(·), a positive constant c > 0, a
continuous function V : [0,∞) × N → R, and a neighborhood M ⊆ N of
the origin such that

α(‖x‖) ≤ V (t, x), (t, x) ∈ [0,∞) ×M, (4.412)

V̇ (t, x) ≤ −c(V (t, x))λ, (t, x) ∈ [0,∞) ×M. (4.413)

(Hint: Consider the Lyapunov function candidate V (t, x) = [T (t, x)−t] 1

1−λ .)

Problem 4.31. Consider the nonlinear time-varying dynamical system
(4.57) and assume f(t, ·) is Lipschitz continuous in x on D uniformly in t for
all t in compact subsets of [0,∞). Furthermore, assume that the Lipschitz
constant of f(t, ·) is bounded for all t ≥ 0 with maximum Lipschitz constant
L > 0 over D. Show that if there exist a function V : [0,∞) × D → R and
a finite time T > 0 such that

α(‖x‖) ≤ V (t, x) ≤ β(‖x‖), (t, x) ∈ [0,∞) ×D, (4.414)

V (t+ T, x(t+ T )) − V (t, x) ≤ −γ(‖x‖) < 0, (t, x) ∈ [0,∞) ×D, (4.415)

where α(·), β(·), and γ(·) are class K functions, then the zero solution x(t) ≡
0 to (4.57) is uniformly asymptotically stable. (Hint: Show that (4.415)
implies that there exists an increasing unbounded sequence {tn}∞n=0, with
t0 = 0, such that T ≥ tn+1 − tn > 0, n = 0, 1, . . ., and

V (tn+1, x(tn+1)) − V (tn, x(tn)) ≤ −γ(‖x(tn)‖), x(tn) ∈ D, n = 0, 1, . . . .
(4.416)

Here, the function V (·, ·) does not satisfy any regularity assumptions.)

Problem 4.32. Consider the nonlinear dynamical system in polar
coordinates given by

ṙ(t) = −r(t)sign[r2(t) − 1]|r2(t) − 1|α, r(0) = r0, t ≥ 0, (4.417)

θ̇(t) = −sign[r2(t) − 1]|r2(t) − 1|β , θ(0) = θ0, (4.418)

where α, β ∈ R. Show that the set of equilibria of (4.417) and (4.418) consists
of the origin (r, θ) = (0, 0) and the unit circle C = {(r, θ) ∈ R×R : r2 = 1}.
In addition, show that all solutions of (4.417) and (4.418) starting from
nonzero initial conditions that are not on the unit circle C approach the
unit circle, and hence, all solutions are bounded, and, for every choice of α
and β, all solutions converge to the set of equilibria. However, show that if
α ≥ β+1, then the dynamical system (4.417) and (4.418) is not convergent.
(Hint: Use (4.417) and (4.418) to obtain dr

dθ = r|r2 − 1|α−β .)

Problem 4.33. Consider the nonlinear dynamical system

ẋ1(t) = −4x2(t) + x1(t)[1 − 1
4x

2
1(t) − x2

2(t)], x1(0) = x10, t ≥ 0, (4.419)
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ẋ2(t) = x1(t) + x2(t)[1 − 1
4x

2
1(t) − x2

2(t)], x2(0) = x20. (4.420)

Show that (4.419) and (4.420) has a limit cycle that lies in the ellipse E =
{(x1, x2) ∈ R2 : 1

2x
2
1 +x2

2 = 1}. Using Poincaré maps, examine the stability
of this limit cycle.

Problem 4.34. Consider the nonlinear dynamical system

ẋ1(t) = x1(t) − 4x2(t) − 1
4x

3
1(t) − x1(t)x

2
2(t), x1(0) = x10, t ≥ 0, (4.421)

ẋ2(t) = x1(t) + x2(t) − 1
4x

2
1(t)x2(t) − x3

2(t), x2(0) = x20, (4.422)

ẋ3(t) = x3(t), x3(0) = x30. (4.423)

Show that (4.421)–(4.423) has a periodic orbit given by x(t) = [2 cos 2t,
2 sin 2t, 0]T. Using Poincaré maps examine the stability of this orbit.

Problem 4.35. Consider the nonlinear dynamical system

ẋ1(t) = −x2(t) + x1(t)x
2
3(t), x1(0) = x10, t ≥ 0, (4.424)

ẋ2(t) = x1(t) + x2(t)x
2
3(t), x2(0) = x20, (4.425)

ẋ3(t) = −x3(t)[x
2
1(t) + x2

2(t)], x3(0) = x30. (4.426)

Show that (4.424)–(4.426) has a periodic orbit given by x(t) = [cos t, sin t,
0]T. Using Poincaré maps examine the stability of this orbit. (Hint: Use
V (x1, x2, x3) = x2

1 +x2
2 +x2

3 to show that the trajectories of (4.424)–(4.426)
lie on spheres x2

1 + x2
2 + x2

3 = k2, k ∈ R.)

Problem 4.36. Consider the nonlinear dynamical system

ẋ1(t) = −2x2(t) + 4x1[4 − 4x2
1(t) − x2

2(t) + x3(t)], x1(0) = x10, t ≥ 0,

(4.427)

ẋ2(t) = 8x1(t) + 4x2(t)[4 − 4x2
1(t) − x2

2(t) + x3(t)], x2(0) = x20, (4.428)

ẋ3(t) = x3(t)[x1(t) − 16], x3(0) = x30. (4.429)

Show that (4.427)–(4.429) has a periodic orbit given by x(t) = [cos 4t,
2 sin 4t, 0]T. Using Poincaré maps examine the stability of this orbit.

Problem 4.37. Consider the nonlinear dynamical system

ẋ1(t) = −x1(t) + x1(t)[1 − x2
1(t) − x2

2(t)][16 − x2
1(t) − x2

2(t)],

x1(0) = x10, t ≥ 0, (4.430)

ẋ2(t) = x1(t) + x2(t)[1 − x2
1(t) − x2

2(t)][16 − x2
1(t) − x2

2(t)],

x2(0) = x20, (4.431)

ẋ3(t) = x3(t), x3(0) = x30. (4.432)

Show that (4.430)–(4.432) has two periodic orbits. Using Poincaré maps
examine the stability of these orbits.
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Problem 4.38. Prove Theorem 4.40.

Problem 4.39. Consider the nonlinear dynamical system (4.177).
Assume that there exist a continuously differentiable vector function V :
D → Q ∩ R

q
+, where Q ⊂ Rq and 0 ∈ Q, and a positive vector p ∈ R

q
+ such

that V (0) = 0, the scalar function pTV (x), x ∈ D, is positive definite, and

V ′(x)f(x) ≤≤ w(V (x)), x ∈ D, (4.433)

where w : Q → Rq is continuous, w(·) ∈ W, and w(0) = 0. In addition,
assume that the vector comparison system

ż(t) = w(z(t)), z(0) = z0, t ∈ Iz0
, (4.434)

has a unique solution in forward time z(t), t ∈ Iz0
, and there exist a

continuously differentiable function v : Q → R, real numbers c > 0 and
α ∈ (0, 1), and a neighborhood M ⊆ Q of the origin such that v(·) is
positive definite and

v′(z)w(z) ≤ −c(v(z))α, z ∈ M. (4.435)

Show that the zero solution x(t) ≡ 0 to (4.177) is finite-time stable.
Moreover, if N is as in Definition 4.7 and T : N → [0,∞) is the settling-time
function, show that

T (x0) ≤
1

c(1 − α)
(v(V (x0)))

1−α, x0 ∈ N , (4.436)

and T (·) is continuous on N . Finally, show that if D = Rn, v(·) is radially
unbounded, and (4.433) and (4.435) hold on Rn, then the zero solution
x(t) ≡ 0 to (4.177) is globally finite-time stable.

Problem 4.40. Consider the nonlinear dynamical system (4.177).
Assume there exist a continuously differentiable vector function V : D →
Q ∩ R

q
+, where Q ⊂ Rq and 0 ∈ Q, and a positive vector p ∈ R

q
+ such that

V (0) = 0, the scalar function pTV (x), x ∈ D, is positive definite, and

V ′(x)f(x) ≤≤W (V (x)){α}, x ∈ D, (4.437)

where α ∈ (0, 1), W ∈ Rq×q is essentially nonnegative (see Problem 3.7) and
Hurwitz, and (V (x)){α} , [(V1(x))

α, . . . , (Vq(x))
α]T. Show that the zero

solution x(t) ≡ 0 to (4.177) is finite-time stable. (Hint: Use Problems 3.8
and 4.39.)

4.13 Notes and References

The concept of partial stability is due to Rumyantsev [374] with a thorough
treatment given by Vorotnikov [448]. See also Rouche, Habets, and Laloy
[368] and Chellaboina and Haddad [87]. The concept of input-to-state
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stability was introduced by Sontag [405] with key results given in Sontag
[407] and Sontag and Wang [409]. A rigorous foundation for the theory
of finite-time stability was first given by Bhat and Bernstein [55]. The
presentation here is adopted from Bhat and Bernstein [55]. Semistability
was first introduced by Campbell and Rose [81] for linear systems, and
applied to matrix second-order system by Bernstein and Bhat [46]. Bhat
and Bernstein [54,56,57] also consider semistability of nonlinear systems, and
give several stability results for systems having a continuum of equilibria
based on nontangency and arc length of trajectories. Semistability was
also addressed by Hui, Haddad, and Bhat [209] for consensus protocols in
nonlinear dynamical networks.

The generalized Lyapunov and invariant set theorems predicated on
lower semicontinuous Lyapunov functions presented in Section 4.8 are due
to Chellaboina, Leonessa, and Haddad [91] while Theorem 4.28 is due to
Aeyels and Peuteman [3]. Lyapunov and asymptotic stability of sets were
first introduced by Zubov [481] and further developed by Yoshizawa [474]
and Bhatia and Szegö [58]. The treatment here is adopted from Leonessa,
Haddad, and Chellaboina [272,273]. Poincaré maps and stability of periodic
orbits are due to Poincaré [358] with a Lyapunov function proof given
by Haddad, Nersesov, and Chellaboina [175]. Vector Lyapunov functions
were first introduced by Bellman [38] and Matrosov [308] with further
developments given by Lakshmikantham, Matrosov, and Sivasundaram [255]
and Nersesov and Haddad [334]. See also Siljak [400,402], Lakshmikantham
and Leela [253], and Lakshmikantham, Leela, and Martynyuk [254].
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Chapter Five

Dissipativity Theory for Nonlinear

Dynamical Systems

5.1 Introduction

In control engineering, dissipativity theory provides a fundamental frame-
work for the analysis and control design of dynamical systems using an
input, state, and output system description based on system-energy-related
considerations. The notion of energy here refers to abstract energy notions
for which a physical system energy interpretation is not necessary. The
dissipation hypothesis on dynamical systems results in a fundamental
constraint on their dynamic behavior, wherein a dissipative dynamical
system can deliver only a fraction of its energy to its surroundings and can
store only a fraction of the work done to it. Many of the great landmarks
of feedback control theory are associated with dissipativity theory. In
particular, dissipativity theory provides the foundation for absolute stability
theory which in turn forms the basis of the Luré problem, as well as the
circle and Popov criteria, which are extensively developed in the classical
monographs of Aizerman and Gantmacher [5], Lefschetz [265], and Popov
[364]. Since absolute stability theory concerns the stability of a dynamical
system for classes of feedback nonlinearities which, as noted in [147, 148],
can readily be interpreted as an uncertainty model, it is not surprising that
absolute stability theory (and, hence, dissipativity theory) also forms the
basis of modern-day robust stability analysis and synthesis [147,151,172].

The key foundation in developing dissipativity theory for general
nonlinear dynamical systems was presented by J. C. Willems [456, 457] in
his seminal two-part paper on dissipative dynamical systems. In particular,
Willems [456] introduced the definition of dissipativity for general dynamical
systems in terms of a dissipation inequality involving a generalized system
power input, or supply rate, and a generalized energy function, or storage
function. The dissipation inequality implies that the increase in generalized
system energy over a given time interval cannot exceed the generalized
energy supply delivered to the system during this time interval. The
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set of all possible system storage functions is convex and every system
storage function is bounded from below by the available system storage and
bounded from above by the required supply. The available storage is the
amount of internal generalized stored energy which can be extracted from
the dynamical system and the required supply is the amount of generalized
energy which can be delivered to the dynamical system to transfer it from
a state of minimum potential to a given state. Hence, as noted above,
a dissipative dynamical system can deliver only a fraction of its stored
generalized energy to its surroundings and can store only a fraction of
generalized work done to it.

Dissipativity theory is a system theoretic concept that provides a
powerful framework for the analysis and control design of dynamical systems
based on generalized energy considerations. In particular, dissipativity
theory exploits the notion that numerous physical dynamical systems have
certain input-output system properties related to conservation, dissipation,
and transport of mass and energy. Such conservation laws are prevalent
in dynamical systems such as mechanical systems, fluid systems, elec-
tromechanical systems, electrical systems, combustion systems, structural
systems, biological systems, physiological systems, biomedical systems,
ecological systems, economic systems, as well as feedback control systems.
On the level of analysis, dissipativity can involve conditions on system
parameters that render an input, state, output system dissipative. Or,
alternatively, analyzing system stability robustness by viewing a dynamical
system as an interconnection of dissipative dynamical subsystems. On the
synthesis level, dissipativity can be used to design feedback controllers that
add dissipation and guarantee stability robustness allowing stabilization to
be understood in physical terms.

To elucidate the notion of dissipativity of an input, state, and
output system, consider the single-degree-of-freedom spring-mass-damper
mechanical system given by

Mẍ(t) + Cẋ(t) +Kx(t) = u(t), x(0) = x0, ẋ(0) = ẋ0, t ≥ 0, (5.1)

where M > 0 is the system mass, C ≥ 0 is the system damping constant,
K ≥ 0 is the system stiffness, x(t), t ≥ 0, is the position of the mass M , and
u(t), t ≥ 0, is an external force acting on the mass M . The energy of this
system is given by

Vs(x, ẋ) = 1
2Mẋ2 + 1

2Kx
2. (5.2)

Now, assuming that the measured output of this system is the system
velocity, that is, y(t) = ẋ(t), it follows that the time rate of change of
the system energy along the system trajectories is given by

V̇s(x, ẋ) = Mẍẋ+Kxẋ = uy −Cẋ2. (5.3)
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Integrating (5.3) over the time interval [0, T ], it follows that

Vs(x(T ), ẋ(T )) = Vs(x(0), ẋ(0)) +

∫ T

0
u(t)y(t)dt−

∫ T

0
Cẋ2(t)dt, (5.4)

which shows that the system energy at time t = T is equal to the initial
energy stored in the system plus the energy supplied to the system via
the external force u minus the energy dissipated by the system damper.
Equivalently, it follows from (5.3) that the rate of change in the system
energy, or system power, is equal to the external supplied system power
through the input port u minus the internal system power dissipated by the
viscous damper.

Note that in the case where the external input force u is zero and C =
0, that is, no system supply or dissipation is present, (5.3) or, equivalently,
(5.4) shows that the system energy is constant. Furthermore, note that since
C ≥ 0 and V (x(T ), ẋ(T )) ≥ 0, T ≥ 0, it follows from (5.4) that

∫ T

0
u(t)y(t)dt ≥ −Vs(x0, ẋ0), (5.5)

or, equivalently,

−
∫ T

0
u(t)y(t)dt ≤ Vs(x0, ẋ0). (5.6)

Equation (5.6) shows that the energy that can be extracted from the system
through its input-output ports is less than or equal to the initial energy
stored in the system. As will be seen in this chapter, this is precisely the
notion of dissipativity.

Since, as discussed in Chapter 3, Lyapunov functions can be viewed
as generalizations of energy functions for nonlinear dynamical systems,
the notion of dissipativity, with appropriate storage functions and supply
rates, can be used to construct Lyapunov functions for nonlinear feedback
systems by appropriately combining storage functions for each subsystem.
Even though the original work on dissipative dynamical systems was
formulated in the state space setting, describing the system dynamics
in terms of continuous flows on appropriate manifolds, an input-output
formulation for dissipative dynamical systems extending the notions of
passivity [476], nonexpansivity [477], and conicity [377,476] was presented in
[188,191,320]. In this chapter, we introduce precise mathematical definitions
for dissipativity as well as develop a general framework for characterizing
system dissipativity in terms of system storage functions and supply rates.
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5.2 Dissipative and Exponentially Dissipative Dynamical Systems

In this section, we introduce the definition of dissipativity for general
dynamical systems in terms of an inequality involving generalized system
power input, or supply rate, and a generalized energy function, or storage
function. In Chapters 2–4, we considered closed dynamical systems wherein
each system trajectory is determined by the system initial conditions and
driven by the internal dynamics of the system without any influence from
the environment. Alternatively, in this chapter we consider open dynamical
systems wherein the system interaction with the environment is explicitly
taken into account through the system inputs and outputs. Specifically, the
environment acts on the dynamical system through the system inputs, and
the dynamical system reacts through the system outputs.

We begin by considering nonlinear dynamical systems G of the form

ẋ(t) = F (x(t), u(t)), x(t0) = x0, t ≥ t0, (5.7)

y(t) = H(x(t), u(t)), (5.8)

where x(t) ∈ D ⊆ Rn, D is an open set with 0 ∈ D, u(t) ∈ U ⊆ Rm, y(t) ∈
Y ⊆ Rl, F : D×U → Rn, and H : D×U → Y . For the dynamical system G
given by (5.7) and (5.8) defined on the state space D ⊆ Rn, U and Y define
an input and output space, respectively, consisting of continuous bounded
U -valued and Y -valued functions on the semi-infinite interval [0,∞). The set
U contains the set of input values, that is, for every u(·) ∈ U and t ∈ [0,∞),
u(t) ∈ U . The set Y contains the set of output values, that is, for every
y(·) ∈ Y and t ∈ [0,∞), y(t) ∈ Y . The spaces U and Y are assumed to be
closed under the shift operator, that is, if u(·) ∈ U (respectively, y(·) ∈ Y),

then the function defined by uT
△
= u(t + T ) (respectively, yT

△
= y(t + T ))

is contained in U (respectively, Y) for all T ≥ 0. We assume that F (·, ·)
and H(·, ·) are continuously differentiable mappings in (x, u) and F (·, ·) has
at least one equilibrium so that, without loss of generality, F (0, 0) = 0 and
H(0, 0) = 0. Furthermore, for the nonlinear dynamical system G we assume
that the required properties for the existence and uniqueness of solutions
are satisfied, that is, u(·) satisfies sufficient regularity conditions such that
the system (5.7) has a unique solution forward and backward in time. For
the dynamical system G given by (5.7) and (5.8), a function r : U × Y → R

such that r(0, 0) = 0 is called a supply rate if r(u, y) is locally integrable
for all input-output pairs satisfying (5.7) and (5.8), that is, for all input-
output pairs u(·) ∈ U and y(·) ∈ Y satisfying (5.7) and (5.8), r(·, ·) satisfies
∫ t2
t1

|r(u(s), y(s))|ds <∞, t1, t2 ≥ 0.

Definition 5.1. A dynamical system G of the form (5.7) and (5.8) is
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dissipative with respect to the supply rate r(u, y) if the dissipation inequality

0 ≤
∫ t

t0

r(u(s), y(s))ds (5.9)

is satisfied for all t ≥ t0 and all u(·) ∈ U with x(t0) = 0 along the trajectories
of G. A dynamical system G of the form (5.7) and (5.8) is exponentially
dissipative with respect to the supply rate r(u, y) if there exists a constant
ε > 0 such that the exponential dissipation inequality

0 ≤
∫ t

t0

eεsr(u(s), y(s))ds (5.10)

is satisfied for all t ≥ t0 and all u(·) ∈ U with x(t0) = 0 along the trajectories
of G. A dynamical system G of the form (5.7) and (5.8) is lossless with respect
to the supply rate r(u, y) if G is dissipative with respect to the supply rate
r(u, y) and the dissipation inequality (5.9) is satisfied as an equality for all
t ≥ t0 and all u(·) ∈ U with x(t0) = x(t) = 0 along the trajectories of G.

In the following we shall use either 0 or t0 to denote the initial time
for G. Next, define the available storage Va(x0) of the nonlinear dynamical
system G by

Va(x0)
△
= − inf

u(·), T≥0

∫ T

0
r(u(t), y(t))dt

= sup
u(·), T≥0

[

−
∫ T

0
r(u(t), y(t))dt

]

, (5.11)

where x(t), t ≥ 0, is the solution to (5.7) with x(0) = x0 and admissible input
u(·) ∈ U . The supremum in (5.11) is taken over all admissible inputs u(·),
all time t ≥ 0, and all system trajectories with initial value x(0) = x0 and
terminal value left free. Note that Va(x) ≥ 0 for all x ∈ D since Va(x) is the
supremum over a set of numbers containing the zero element (T = 0). When
the final state is not free but rather constrained to x(t) = 0 corresponding
to the equilibrium of the uncontrolled system, then Va(x0) corresponds to
the virtual available storage. For details, see Problem 5.3. It follows from
(5.11) that the available storage of a nonlinear dynamical system G is the
maximum amount of storage, or generalized stored energy, which can be
extracted from the nonlinear dynamical system G at any time T . Similarly,
define the available exponential storage Va(x0) of the nonlinear dynamical
system G by

Va(x0)
△
= − inf

u(·), T≥0

∫ T

0
eεtr(u(t), y(t))dt, (5.12)

where x(t), t ≥ 0, is the solution to (5.7) with x(0) = x0 and admissible
input u(·) ∈ U . Note that if we define the available exponential storage as
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the time-varying function

V̂a(x0, t0) = − inf
u(·), T≥t0

∫ T

t0

eεtr(u(t), y(t))dt, (5.13)

where x(t), t ≥ t0, is the solution to (5.7) with x(t0) = x0 and admissible
input u(·), it follows that, since G is time invariant,

V̂a(x0, t0) = −eεt0 inf
u(·), T≥0

∫ T

0
eεtr(u(t), y(t))dt = eεt0Va(x0). (5.14)

Hence, an alternative expression for the available exponential storage
function Va(x0) is given by

Va(x0) = −e−εt0 inf
u(·), T≥t0

∫ T

t0

eεtr(u(t), y(t))dt. (5.15)

V̂a(x0, t0) given by (5.13) defines the available storage function for nonsta-
tionary (time-varying) dynamical systems [191,456]. As shown above, in the

case of exponentially dissipative systems, V̂a(x0, t0) = eεt0Va(x0).

Next, we show that the available storage (respectively, available
exponential storage) is finite and zero at the origin if and only if G is
dissipative (respectively, exponentially dissipative). For this result we
require three more definitions.

Definition 5.2. A nonlinear dynamical system G is completely reach-
able if for all x0 ∈ D ⊆ Rn there exist a finite time ti < t0 and a square
integrable input u(t) defined on [ti, t0] such that the state x(t), t ≥ ti, can be
driven from x(ti) = 0 to x(t0) = x0. G is completely null controllable if for all
x0 ∈ D ⊆ Rn there exist a finite time tf > t0 and a square integrable input
u(t) defined on [t0, tf ] such that x(t), t ≥ t0, can be driven from x(t0) = x0

to x(tf) = 0.

Definition 5.3. Consider the nonlinear dynamical system G given by
(5.7) and (5.8). A continuous, nonnegative-definite function Vs : D → R

satisfying Vs(0) = 0 and

Vs(x(t)) ≤ Vs(x(t0)) +

∫ t

t0

r(u(s), y(s))ds, t ≥ t0, (5.16)

for all t0, t ≥ 0, where x(t), t ≥ t0, is the solution of (5.7) with u(·) ∈ U , is
called a storage function for G.

Inequality (5.16) is known as the dissipation inequality and reflects
the fact that some of the supplied generalized energy to the open dynamical
system G is stored, and some is dissipated. The dissipated generalized energy
is nonnegative and is given by the difference of what is supplied and what
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is stored. In addition, the amount of generalized stored energy is a function
of the state of the dynamical system.

Definition 5.4. Consider the nonlinear dynamical system G given by
(5.7) and (5.8). A continuous, nonnegative-definite function Vs : D → R

satisfying Vs(0) = 0 and

eεtVs(x(t)) ≤ eεt0Vs(x(t0)) +

∫ t

t0

eεsr(u(s), y(s))ds, t ≥ t0, (5.17)

for all t0, t ≥ 0, where x(t), t ≥ t0, is the solution of (5.7) with u(·) ∈ U , is
called an exponential storage function for G.

Theorem 5.1. Consider the nonlinear dynamical system G given by
(5.7) and (5.8), and assume that G is completely reachable. Then G
is dissipative (respectively, exponentially dissipative) with respect to the
supply rate r(u, y) if and only if the available system storage Va(x0) given
by (5.11) (respectively, the available exponential storage Va(x) given by
(5.12)) is finite for all x0 ∈ D and Va(0) = 0. Moreover, if Va(0) = 0
and Va(x0) is finite for all x0 ∈ D, then Va(x), x ∈ D, is a storage
function (respectively, exponential storage function) for G. Finally, all
storage functions (respectively, exponential storage functions) Vs(x), x ∈ D,
for G satisfy

0 ≤ Va(x) ≤ Vs(x), x ∈ D. (5.18)

Proof. Suppose Va(0) = 0 and Va(x0), x0 ∈ D, is finite. Now, it
follows from (5.11) (with T = 0) that Va(x0) ≥ 0, x0 ∈ D. Next, let x(t),
t ≥ t0, satisfy (5.7) with admissible input u(t), t ∈ [t0, T ]. Since −Va(x0),
x0 ∈ D, is given by the infimum over all admissible inputs u(·) in (5.11), it
follows that for all admissible inputs u(·) ∈ U and T > t0,

−Va(x(t0)) ≤
∫ T

t0

r(u(t), y(t))dt

=

∫ tf

t0

r(u(t), y(t))dt+

∫ T

tf

r(u(t), y(t))dt,

which implies

−Va(x(t0)) −
∫ tf

t0

r(u(t), y(t))dt ≤
∫ T

tf

r(u(t), y(t))dt.

Hence,

Va(x(t0)) +

∫ tf

t0

r(u(t), y(t))dt ≥ − inf
u(·), T≥tf

∫ T

tf

r(u(t), y(t))dt

= Va(x(tf))
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≥ 0, (5.19)

which implies that
∫ tf

t0

r(u(t), y(t))dt ≥ −Va(x(t0)). (5.20)

Hence, since by assumption Va(0) = 0, G is dissipative with respect to the
supply rate r(u, y). Furthermore, Va(x), x ∈ D, is a storage function for G.

Conversely, suppose G is dissipative with respect to the supply rate
r(u, y). Since G is completely reachable it follows that for every x0 ∈ D
such that x(t0) = x0, there exist t̂ ≤ t < t0 and an admissible input u(·) ∈
U defined on [t̂, t0] such that x(t̂) = 0 and x(t0) = x0. Now, since G is
dissipative with respect to the supply rate and x(t̂) = 0 it follows that

∫ T

t̂
r(u(t), y(t))dt ≥ 0, T > t̂,

or, equivalently,

∫ T

t0

r(u(t), y(t))dt ≥ −
∫ t0

t̂
r(u(t), y(t))dt, T > t0,

which implies that there exists a function W : D → R such that

∫ T

t0

r(u(t), y(t))dt ≥W (x0) > −∞, T > t0. (5.21)

Now, it follows from (5.21) that for all x ∈ D,

Va(x) = − inf
u(·), T≥t0

∫ T

t0

r(u(t), y(t))dt

≤ −W (x), (5.22)

and hence, the available storage Va(x) < ∞, x ∈ D. Furthermore, with
x(t0) = 0, it follows that for all admissible u(t), t ≥ t0,

∫ T

t0

r(u(t), y(t))dt ≥ 0, T ≥ t0, (5.23)

which implies that

sup
u(·), T≥t0

[

−
∫ T

t0

r(u(t), y(t))dt

]

≤ 0, (5.24)

or, equivalently, Va(x(t0)) = Va(0) ≤ 0. However, since Va(x) ≥ 0, x ∈ D, it
follows that Va(0) = 0.
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Moreover, if Va(x) is finite for all x ∈ D, it follows from (5.19) that
Va(x), x ∈ D, is a storage function for G. Next, if Vs(x), x ∈ D, is a storage
function, then it follows that, for all T > 0 and x0 ∈ D,

Vs(x0) ≥ Vs(x(T )) −
∫ T

0
r(u(t), y(t))dt

≥ −
∫ T

0
r(u(t), y(t))dt,

which implies

Vs(x0) ≥ − inf
u(·), T≥0

∫ T

0
r(u(t), y(t))dt

= Va(x0),

yielding (5.18).

Finally, the proof for the exponentially dissipative case follows an
identical construction and, hence, is omitted.

Theorem 5.1 presents necessary and sufficient conditions for the
existence of an available storage function for a nonlinear dynamical system
G. The following result presents sufficient conditions for guaranteeing that
the system storage function is a continuous function. First, however, the
following definition is needed.

Definition 5.5. Consider the nonlinear dynamical system G given by
(5.7) and (5.8) and let x̂ ∈ Rn and û ∈ Rm be such that x(t) ≡ x̂ and
u(t) ≡ û, t ≥ 0, satisfy (5.7). G is locally controllable at x̂ if, for every T > 0
and ε > 0, the set of points that can be reached from and to x̂ in finite time
T using admissible inputs u : [0, T ] → U , satisfying ‖u(t)− û‖ < ε, contains
a neighborhood of x̂.

Consider the linearization of (5.7) at x = x̂ and u = û given by

ẋ(t) = A(x(t) − x̂) +B(u(t) − û), x(t0) = x0, t ≥ 0, (5.25)

where A = ∂F
∂x

∣

∣

x=x̂,u=û
and B = ∂F

∂u

∣

∣

x=x̂,u=û
. Now, it follows from

Proposition 3.3 of [336] that if the pair (A,B) is controllable, then (5.7)
is locally controllable.

Theorem 5.2. Consider the nonlinear dynamical system G given by
(5.7) and (5.8), and assume that G is completely reachable. Furthermore,
assume that for every x̂ ∈ D, there exists û ∈ Rm such that x(t) ≡ x̂ and
u(t) ≡ û, t ≥ 0, satisfy (5.7), and G is locally controllable at every x̂ ∈ D. If
G is dissipative (respectively, exponentially dissipative) with respect to the
supply rate r(u, y), then every storage function (respectively, exponential
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storage function) Vs(x), x ∈ D, is continuous on D.

Proof. Let x̂ ∈ D and û ∈ Rm be such that x(t) ≡ x̂ and u(t) ≡ û,
t ≥ 0, satisfy (5.7). Now, let δ > 0 and note that it follows from the
continuity of F (·, ·) that there exist T > 0 and ε > 0 such that for every
u : [0, T ) → U and ‖u(t)− û‖ < ε, ‖x(t)− x̂‖ < δ, t ∈ [0, T ), where u(·) ∈ U
and x(t), t ∈ [0, T ), denotes the solution to (5.7) with the initial condition
x̂. Furthermore, it follows from the local controllability assumption that for
every T̂ ∈ (0, T ], there exists a strictly increasing, continuous function γ :

R → R such that γ(0) = 0, and for every x0 ∈ D such that ‖x0 − x̂‖ ≤ γ(T̂ ),

there exists t̂ ∈ [0, T̂ ) and an input u : [0, T̂ ] → Rm such that ‖u(t)− û‖ < ε,
t ∈ [0, t̂), and x(t̂) = x0. Hence, there exists β > 0 such that for every
x0 ∈ D such that ‖x0 − x̂‖ ≤ β, there exists t̂ ∈ [0, γ−1(‖x0 − x̂‖)] and input
u : [0, t̂] → Rm such that ‖u(t) − û‖ < ε, t ∈ [0, t̂], and x(t̂) = x0.

Next, since r(·, ·) is locally integrable for all input-output pairs
satisfying (5.7) and (5.8), it follows that there exists M ∈ (0,∞) such that

sup
‖x−x̂‖<δ,‖u−û‖<ε

|r(u, y)| = M, (5.26)

and hence, it follows that
∣

∣

∣

∣

∣

∫ t̂

0
r(u(s), y(s))ds

∣

∣

∣

∣

∣

≤
∫ t̂

0
|r(u(s), y(s))| ds

≤ Mt̂

≤ Mγ−1(‖x0 − x̂‖). (5.27)

Now, if Vs(·) is a storage function of G, then

Vs(x(t̂)) ≤ Vs(x̂) +

∫ t̂

0
r(u(s), y(s))ds, (5.28)

or, equivalently,

−
∫ t̂

0
r(u(s), y(s))ds ≤ Vs(x̂) − Vs(x(t̂)). (5.29)

If Vs(x̂) ≤ Vs(x(t̂)), then combining (5.27) and (5.29) yields

|Vs(x̂) − Vs(x(t̂))| ≤Mγ−1(‖x0 − x̂‖). (5.30)

Alternatively, if Vs(x(t̂)) ≥ Vs(x̂), then (5.30) can be derived by reversing
the roles of x̂ and x(t̂). Hence, since γ(·) is continuous and x(t̂) is arbitrary,
it follows that Vs(·) is continuous on D.

Finally, the proof for the exponentially dissipative case follows an
identical construction and, hence, is omitted.
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The following corollary to Theorem 5.1 shows that the nonlinear
dynamical system G is dissipative (respectively, exponentially dissipative)
with respect to the supply rate r(·, ·) if and only if there exists a continuous
storage function (respectively, exponential storage function) Vs(·) satisfying
(5.16) (respectively, (5.17)).

Corollary 5.1. Consider the nonlinear dynamical system G given by
(5.7) and (5.8) and assume that G is completely reachable. Furthermore,
assume that, for every x̂ ∈ D, there exists û ∈ Rm such that x(t) ≡ x̂
and u(t) ≡ û, t ≥ t0, satisfy (5.7), and G is locally controllable at every
x̂ ∈ D. Then G is dissipative (respectively, exponentially dissipative) with
respect to the supply rate r(u, y) if and only if there exists a continuous
storage function (respectively, exponential storage function) Vs(x), x ∈ D,
satisfying (5.16) (respectively, (5.17)).

Proof. The result is immediate from Theorems 5.1 and 5.2 with
Vs(x) = Va(x).

In this book, we assume that G is locally controllable at every
x̂ ∈ D and, for every x̂ ∈ D, there exists û ∈ Rm such that x(t) ≡ x̂
and u(t) ≡ û, t ≥ t0, satisfy (5.7), and hence, all storage functions of
G are continuous on D. The following theorem provides conditions for
guaranteeing that all storage functions (respectively, exponential storage
functions) of a given dissipative (respectively, exponentially dissipative)
nonlinear dynamical system are positive definite. For this result we require
the following definition.

Definition 5.6. A nonlinear dynamical system G is zero-state observ-
able if u(t) ≡ 0 and y(t) ≡ 0 implies x(t) ≡ 0.

Theorem 5.3. Consider the nonlinear dynamical system G given by
(5.7) and (5.8), and assume that G is completely reachable and zero-
state observable. Furthermore, assume that G is dissipative (respectively,
exponentially dissipative) with respect to the supply rate r(u, y) and there
exists a function κ : Y → U such that κ(0) = 0 and r(κ(y), y) < 0, y 6= 0.
Then all the storage functions (respectively, exponential storage functions)
Vs(x), x ∈ D, for G are positive definite, that is, Vs(0) = 0 and Vs(x) > 0,
x ∈ D, x 6= 0.

Proof. It follows from Theorem 5.1 that the available storage Va(x),
x ∈ D, is a storage function for G. Next, suppose there exists x ∈ D such
that Va(x) = 0, which implies that r(u(t), y(t)) = 0 almost everywhere t ≥ 0,
for all admissible inputs u(·) ∈ U . Since there exists a function κ : Y → U
such that κ(0) = 0 and r(κ(y), y) < 0, y 6= 0, it follows that y(t) = 0
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almost everywhere t ≥ 0. Now, since G is zero-state observable it follows
that x = 0, and hence, Va(x) = 0 if and only if x = 0. The result now
follows from (5.18). Finally, the proof for the exponentially dissipative case
is identical.

If Vs(·) is continuously differentiable in Corollary 5.1, then an equiv-
alent statement for the dissipativeness of G with respect to the supply rate
r(u, y) is

V̇s(x(t)) ≤ r(u(t), y(t)), t ≥ 0, (5.31)

or, equivalently, V̇s(x) ≤ r(u, y), where V̇s(x) = d
dtV (s(t, x, u))

∣

∣

t=0
denotes

the total derivative of Vs(x) along the state trajectories s(t, x, u) of (5.7)
through x ∈ D with u(·) ∈ U at t = 0. Alternatively, an equivalent statement
for exponential dissipativeness of G with respect to the supply rate r(u, y)
is

V̇s(x(t)) + εVs(x(t)) ≤ r(u(t), y(t)), t ≥ 0. (5.32)

Furthermore, a system G with storage function Vs(·) is strictly dissipative
with respect to the supply rate r(u, y) if and only if

Vs(x(t)) < Vs(x(t0)) +

∫ t

t0

r(u(s), y(s))ds, t > t0. (5.33)

Note that exponential dissipativity implies strict dissipativity; however, the
converse is not necessarily true.

Next, we introduce the concept of a required supply of a nonlinear
dynamical system. Specifically, define the required supply Vr(x0) of the
nonlinear dynamical system G by

Vr(x0) = inf
u(·), T≥0

∫ 0

−T
r(u(t), y(t))dt, (5.34)

where x(t), t ≥ −T , is the solution to (5.7) with x(−T ) = 0 and x(0) = x0.
The infimum in (5.34) is taken over all system trajectories starting from
x(−T ) = 0 and time t = −T and ending at x(0) = x0 at time t = 0, and all
times t ≥ 0 or, equivalently, over all admissible inputs u(·) which drive the
dynamical system G from the origin to x0 over the time interval [−T, 0]. If
the system is not reachable from the origin, then we define Vr(x0) = ∞. It
follows from (5.34) that the required supply of a nonlinear dynamical system
is the minimum amount of generalized energy that has to be delivered to
the dynamical system in order to transfer it from an initial state x(−T ) = 0
to a given state x(0) = x0. Similarly, define the required exponential supply
of the nonlinear dynamical system G by

Vr(x0) = inf
u(·), T≥0

∫ 0

−T
eεtr(u(t), y(t))dt, (5.35)
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where x(t), t ≥ −T , is the solution to (5.7) with x(−T ) = 0 and x(0) = x0.
Note that since, with x(0) = 0, the infimum in (5.34) is zero it follows that
Vr(0) = 0.

Next, using the notion of a required supply, we show that all storage
functions are bounded from above by the required supply and bounded from
below by the available storage, and hence, a dissipative dynamical system
can deliver to its surroundings only a fraction of its generalized stored energy
and can store only a fraction of the generalized work done to it.

Theorem 5.4. Consider the nonlinear dynamical system G given by
(5.7) and (5.8), and assume that G is completely reachable. Then G
is dissipative (respectively, exponentially dissipative) with respect to the
supply rate r(u, y) if and only if 0 ≤ Vr(x) < ∞, x ∈ D. Moreover, if Vr(x)
is finite and nonnegative for all x ∈ D, then Vr(x), x ∈ D, is a storage
function (respectively, exponential storage function) for G. Finally, all
storage functions (respectively, exponential storage functions) Vs(x), x ∈ D,
for G satisfy

0 ≤ Va(x) ≤ Vs(x) ≤ Vr(x) <∞, x ∈ D. (5.36)

Proof. Suppose 0 ≤ Vr(x) < ∞, x ∈ D. Next, let x(t), t ∈ R, satisfy
(5.7) and (5.8) with admissible inputs u(t), t ∈ R, and x(0) = x0. Since
Vr(x), x ∈ D, is given by the infimum over all admissible inputs u(·) ∈ U and
T > 0 in (5.34), it follows that for all admissible inputs u(·) and −T ≤ t ≤ 0,

Vr(x0) ≤
∫ 0

−T
r(u(t), y(t))dt =

∫ t

−T
r(u(s), y(s))ds+

∫ 0

t
r(u(s), y(s))ds,

and hence,

Vr(x0) ≤ inf
u(·), T≥0

[
∫ t

−T
r(u(s), y(s))ds

]

+

∫ 0

t
r(u(s), y(s))ds

= Vr(x(t)) +

∫ 0

t
r(u(s), y(s))ds, (5.37)

which shows that Vr(x), x ∈ D, is a storage function for G, and hence,
Corollary 5.1 implies that G is dissipative.

Conversely, suppose G is dissipative with respect to the supply rate
r(u, y) and let x0 ∈ D. Since G is completely reachable it follows that there
exist T > 0 and u(t), t ∈ [−T, 0], such that x(−T ) = 0 and x(0) = x0.
Hence, since G is dissipative with respect to the supply rate r(u, y) it follows
that, for all T ≥ 0,

0 ≤
∫ 0

−T
r(u(t), y(t))dt, (5.38)
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and hence,

0 ≤ inf
u(·), T≥0

[∫ 0

−T
r(u(t), y(t))dt

]

, (5.39)

which implies that
0 ≤ Vr(x0) <∞, x0 ∈ D. (5.40)

Next, if Vs(·) is a storage function for G, then it follows from Theorem
5.1 that

0 ≤ Va(x) ≤ Vs(x), x ∈ D. (5.41)

Furthermore, for all T ≥ 0 such that x(T ) = 0 it follows that

Vs(x0) ≤ Vs(0) +

∫ 0

−T
r(u(t), y(t))dt, (5.42)

and hence,

Vs(x0) ≤ inf
u(·), T≥0

[
∫ 0

−T
r(u(t), y(t))dt

]

= Vr(x0) <∞,

which implies (5.36).

Finally, the proof for the exponentially dissipative case follows a similar
construction and, hence, is omitted.

As a direct consequence of Theorems 5.1 and 5.4, we show that the
set of all possible storage functions of a dynamical system forms a convex
set parameterized by the system available storage and the system required
supply. An identical result holds for exponential storage functions.

Proposition 5.1. Consider the nonlinear dynamical system G given
by (5.7) and (5.8) with available storage Va(x), x ∈ D, and required supply
Vr(x), x ∈ D, and assume G is completely reachable. Then for every α ∈
[0, 1],

Vs(x) = αVa(x) + (1 − α)Vr(x), x ∈ D, (5.43)

is a storage function for G.

Proof. The result is a direct consequence of the dissipation inequality
(5.16) by noting that if Va(x) and Vr(x) satisfy (5.16), then Vs(x) satisfies
(5.16).

In light of Theorems 5.1 and 5.4 we have the following result on lossless
dynamical systems.

Theorem 5.5. Consider the nonlinear dynamical system G given by
(5.7) and (5.8), and assume G is completely reachable to and from the origin.
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Then G is lossless with respect to the supply rate r(u, y) if and only if there
exists a continuous storage function Vs(x), x ∈ D, satisfying (5.16) as an
equality. Furthermore, if G is lossless with respect to the supply rate r(u, y),
then Va(x) = Vr(x), and hence, the storage function Vs(x), x ∈ D, is unique
and is given by

Vs(x0) = −
∫ T+

0
r(u(t), y(t))dt =

∫ 0

−T−

r(u(t), y(t))dt, (5.44)

where x(t), t ≥ 0, is the solution to (5.7) with admissible u(·) ∈ U and
x(0) = x0, x0 ∈ D, for every T−, T+ > 0 such that x(−T−) = 0 and
x(T+) = 0.

Proof. Suppose G is lossless with respect to the supply rate r(u, y).
Since G is completely reachable to and from the origin it follows that, for
every x0 ∈ D, there exist T−, T+ > 0, and u(t) ∈ U , t ∈ [−T−, T+], such
that x(−T−) = 0, x(T+) = 0, and x(0) = x0. Now, it follows that

0 =

∫ T+

−T−

r(u(t), y(t))dt

=

∫ 0

−T−

r(u(t), y(t))dt+

∫ T+

0
r(u(t), y(t))dt

≥ inf
u(·), T≥0

∫ 0

−T
r(u(t), y(t))dt+ inf

u(·), T≥0

∫ T

0
r(u(t), y(t))dt

= Vr(x0) − Va(x0), (5.45)

which implies that Vr(x0) ≤ Va(x0), x0 ∈ D. However, since by definition G
is dissipative with respect to the supply rate r(u, y) it follows from Theorem
5.4 that Va(x0) ≤ Vr(x0), x0 ∈ D, and hence, every storage function Vs(x0),
x0 ∈ D, satisfies Va(x0) = Vs(x0) = Vr(x0). Furthermore, it follows that the
inequality in (5.45) is indeed an equality, which implies (5.44).

Next, let t0, t, T ≥ 0 be such that t0 < t < T , x(T ) = 0. Hence, it
follows from (5.44) that

0 = Vs(x(t0)) +

∫ T

t0

r(u(s), y(s))ds

= Vs(x(t0)) +

∫ t

t0

r(u(s), y(s))ds +

∫ T

t
r(u(s), y(s))ds

= Vs(x(t0)) +

∫ t

t0

r(u(s), y(s))ds − Vs(x(t)),

which implies that (5.16) is satisfied as an equality.

Conversely, if there exists a storage function Vs(x), x ∈ D, satisfying
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(5.16) as an equality, it follows from Corollary 5.1 that G is dissipative with
respect to the supply rate r(u, y). Furthermore, for every u(·) ∈ U , t ≥ 0,
and x(t0) = x(t) = 0, it follows from (5.16) (with an equality) that

∫ t

t0

r(u(s), y(s))ds = 0,

which implies that G is lossless with respect to the supply rate r(u, y).

Example 5.1. Consider the integrator scalar system

ẋ(t) = u(t), x(0) = x0, t ≥ 0, (5.46)

y(t) = x(t). (5.47)

To show that an integrator is the simplest storage element note that with
Vs(x) = 1

2x
2 and r(u, y) = uy it follows that V̇s(x(t)) = u(t)y(t), t ≥ 0,

and hence,
∫ t
0 u(s)y(s)ds = 0 for all t ≥ 0 with x(0) = x(t) = 0. Hence,

(5.46) and (5.47) is lossless with respect to the supply rate r(u, y) = uy.
Furthermore, the available storage for (5.46) and (5.47) is given by

Va(x0) = sup
u(·), T≥0

[

−
∫ T

0
u(t)y(t)dt

]

≥
∫ ∞

0
y2(t)dt = x2

0

∫ ∞

0
e−2tdt = 1

2x
2
0,

(5.48)
where the above inequality follows by choosing u = −y and T = ∞. Now,
since Vs(x0) ≥ Va(x0), it follows that Va(x0) = 1

2x
2
0. △

5.3 Lagrangian and Hamiltonian Dynamical Systems

In this section, we show that two of the fundamental dynamical system
formulations of analytical mechanics, namely, Lagrangian and Hamiltonian
dynamical systems, can be formulated as special cases of dissipative
dynamical system theory. In particular, we show that conservation of energy,
internal system interaction, and interaction with the environment through
input-output ports, inherent in Lagrangian and Hamiltonian dynamical
system formulations, can be captured as a special case of dissipative
dynamical system theory with appropriate storage functions and supply
rates corresponding to physical system energy and supplied system power,
respectively.

To begin, consider the governing equations of motion of an n degree-
of-freedom dynamical system given by the Euler-Lagrange equation

d

dt

[

∂L
∂q̇

(q, q̇)

]T

−
[

∂L
∂q

(q, q̇)

]T

= u, (5.49)

where q ∈ Rn represents the generalized system positions, q̇ ∈ Rn represents
the generalized system velocities, L : Rn × Rn → R denotes the system
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Lagrangian given by L(q, q̇) = T (q, q̇)−V (q), where T : Rn ×Rn → R is the
system kinetic energy and V : Rn → R is the system potential energy, and
u ∈ Rn is the vector of generalized forces acting on the system. Furthermore,
let H : Rn ×Rn → R denote the Legendre transformation of the Lagrangian
function L(q, q̇) with respect to the generalized velocity q̇ defined by

H(q, p)
△
= q̇Tp− L(q, q̇)

∣

∣

q̇=Φ−1(p)
. (5.50)

Here p denotes the vector of generalized momenta given by

p(q, q̇) =

[

∂L
∂q̇

(q, q̇)

]T

(5.51)

and Φ : Rn → Rn is a bijective map from the generalized velocities q̇ to
the generalized momenta p. Now, if H(q, p) is lower bounded, then we can
always shift H(q, p) so that, with minor abuse of notation, H(q, p) ≥ 0,
(q, p) ∈ Rn × Rn, and H(0, 0) = 0.

In this case, using (5.49) and the fact that

d

dt
[L(q, q̇)] =

∂L
∂q

(q, q̇)q̇ +
∂L
∂q̇

(q, q̇)q̈, (5.52)

it follows that

uTq̇ =

{

d

dt

[

∂L
∂q̇

(q, q̇)

]

− ∂L
∂q

(q, q̇)

}

q̇

=
d

dt
[p(q, q̇)]Tq̇ − ∂L

∂q
(q, q̇)q̇

=
d

dt
[pT(q, q̇)q̇] − pT(q, q̇)q̈ +

∂L
∂q̇

(q, q̇)q̈ − d

dt
L(q, q̇)

=
d

dt
[pT(q, q̇)q̇ − L(q, q̇)]

=
d

dt
H(q, p). (5.53)

Hence, with Vs(q, q̇) = H(q, p(q, q̇)) and y = q̇, it follows from Theorem 5.5
that the Euler-Lagrange system (5.49) is lossless with respect to the supply
rate r(u, y) = uTy. This gives a power balance equation that states that the
increase in system energy H(q, p) is equal to the supplied work due to the
generalized force u.

Alternatively, if the n degree-of-freedom dynamical system possesses
internal dissipation, then the Euler-Lagrange equation takes the form

d

dt

[

∂L
∂q̇

(q, q̇)

]T

−
[

∂L
∂q

(q, q̇)

]T

+

[

∂R
∂q̇

(q̇)

]T

= u, (5.54)

where R : Rn → R represents the Rayleigh dissipation function satisfying
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∂R
∂q̇ (q̇)q̇ ≥ 0, q̇ ∈ Rn. In this case, using (5.52) and (5.54), it follows that

uTq̇ =

{

d

dt

[

∂L
∂q̇

(q, q̇)

]

− ∂L
∂q

(q, q̇) +
∂R
∂q̇

(q̇)

}

q̇

=
d

dt
[p(q, q̇)]Tq̇ − ∂L

∂q
(q, q̇)q̇ +

∂R
∂q̇

(q̇)q̇

=
d

dt
[pT(q, q̇)q̇] − pT(q, q̇)q̈ +

∂L
∂q̇

(q, q̇)q̈ − d

dt
L(q, q̇) +

∂R
∂q̇

(q̇)q̇

=
d

dt
[pT(q, q̇)q̇ − L(q, q̇)] +

∂R
∂q̇

(q̇)q̇

=
d

dt
H(q, p) +

∂R
∂q̇

(q̇)q̇, (5.55)

or, equivalently, integrating over the interval [0, T ],

H(q(T ), p(T )) = H(q(0), p(0)) +

∫ T

0
uT(s)q̇(s)ds−

∫ T

0

∂R
∂q̇

(q̇(s))q̇(s)ds.

(5.56)
Equation (5.56) shows that the system energy at time t = T is equal to the
initial energy stored in the system plus the energy supplied to the system via
the external force u minus the internal energy dissipated. Since ∂R

∂q̇ (q̇)q̇ ≥ 0,

q̇ ∈ Rn, it follows from (5.56) and Corollary 5.1 that the Euler-Lagrange
system (5.54) is dissipative with respect to the supply rate r(u, y) = uTy,
where y = q̇, and with storage function Vs(q, q̇) = H(q, p(q, q̇)).

Next, we compute the available storage and the required supply for
the Euler-Lagrange dynamical system (5.54). Specifically, using (5.11) and
the fact that the map between the generalized velocities to the generalized
momenta is bijective we obtain

Va(q0, q̇0)

= sup
u(·), T≥0

[

−
∫ T

0
uT(t)q̇(t)dt

]

= sup
u(·), T≥0

{

−
∫ T

0

[

d

dt
H(q(t), p(t)) +

∂R
∂q̇

(q̇(t))q̇(t)

]

dt

}

= sup
u(·), T≥0

[

−H(q(T ), p(T )) + H(q(0), p(0)) −
∫ T

0

∂R
∂q̇

(q̇(t))q̇(t)dt

]

≤ H(q(0), p(0)). (5.57)

Note that in the case where ∂R
∂q̇ (q̇) ≡ 0 it follows that Va(q0, q̇0) = H(q(0),

p(0)), which shows that the available storage is simply the total initial system
energy.
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Alternatively, using (5.34) we obtain

Vr(q0, q̇0)

= inf
u(·), T≥0

∫ 0

−T
uT(t)q̇(t)dt

= inf
u(·), T≥0

{∫ 0

−T

[

d

dt
H(q(t), p(t)) +

∂R
∂q̇

(q̇(t))q̇(t)

]

dt

}

= inf
u(·), T≥0

[

H(q(0), p(0)) −H(q(−T ), p(−T )) +

∫ 0

−T

∂R
∂q̇

(q̇(t))q̇(t)dt

]

≥ H(q(0), p(0)), (5.58)

where (q(−T ), p(−T )) = (0, 0). Hence, Va(q0, q̇0) ≤ H(q(0), p(0)) ≤ Vr(q0,
q̇0). Note that in the case where ∂R

∂q̇ (q̇) ≡ 0, it follows from (5.58) that

Vr(q0, q̇0) = H(q(0), p(0)) −H(q(−T ), p(−T )) = H(q(0), p(0)), (5.59)

and hence, Vr(q0, q̇0) = Va(q0, q̇0) = H(q(0), p(0)).

Next, we transform the Euler-Lagrange equations to the Hamiltonian
equations of motion. These equations provide a fundamental structure of
the mathematical description of numerous physical dynamical systems by
capturing energy conservation as well as internal interconnection structural
properties of physical dynamical systems. To reduce the Euler-Lagrange
equations (5.54) to a Hamiltonian system of equations consider the Legendre
transformation H(q, p) given by (5.50) of the Lagrangian function L(q, q̇),
called the Hamiltonian function, and the vector of generalized momenta
given by (5.51). Now, it follows from (5.50), (5.51), and (5.54) that

d

dt
p(q, q̇) =

d

dt

[

∂L
∂q̇

(q, q̇)

]T

=

[

∂L
∂q

(q, q̇)

]T

−
[

∂R
∂q̇

(q̇)

]T

+ u

= −
[

∂H
∂q

(q, p)

]T

−
[

∂R
∂q̇

(q̇)

]T

+ u. (5.60)

Assuming that the Rayleigh dissipation function R : Rn → R is
quadratic, that is, R(q̇) = 1

2 q̇
TDq̇, where D is a nonnegative-definite system

dissipation matrix, (5.60) implies

ṗ = −
(

∂H
∂q

(q, p)

)T

−Dq̇ + u. (5.61)
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Next, it follows from (5.50) that

q̇ =

(

∂H
∂p

(q, p)

)T

. (5.62)

Hence, (5.61) and (5.62) can be equivalently written as

ẋ(t) = [J −R]

(

∂H
∂x

(x(t))

)T

+Gu(t), x(0) = x0, t ≥ 0, (5.63)

where x = [qT, pT]T and

J △
=

[

0n In
−In 0n

]

, R △
=

[

0 0
0 D

]

, G
△
=

[

0
In

]

. (5.64)

The dynamical system (5.63) with outputs y(t) = GT(x(t))
(

∂H
∂x (x(t))

)T
is

called a Hamiltonian dynamical system.

The Hamiltonian dynamical system (5.63) can be further generalized
to what is commonly referred to as port-controlled Hamiltonian dynamical
systems described in local coordinates x ∈ D ⊆ Rn. In particular, port-
controlled Hamiltonian dynamical systems are given by

ẋ(t) = [J (x(t)) −R(x(t))]

(

∂H
∂x

(x(t))

)T

+G(x(t))u(t),

x(0) = x0, t ≥ 0, (5.65)

y(t) = GT(x(t))

(

∂H
∂x

(x(t))

)T

, (5.66)

where x(t) ∈ D ⊆ Rn, D is an open set with 0 ∈ D, u(t) ∈ U ⊆ Rm, y(t) ∈
Y ⊆ Rl, H : D → R is a continuously differentiable Hamiltonian function for
the system (5.65) and (5.66), J : D → Rn×n is such that J (x) = −J T(x),

R : D → Sn is such that R(x) ≥ 0, x ∈ D, [J (x) −R(x)]
(

∂H
∂x (x)

)T
,

x ∈ D, is Lipschitz continuous on D, and G : D → Rn×m. The skew-
symmetric matrix function J (x), x ∈ D, captures the internal system
interconnection structure, the input matrix function G(x), x ∈ D, captures
interconnections with the environment, and the symmetric nonnegative-
definite matrix function R(x), x ∈ D, captures system dissipation. Note,
that the inputs and outputs are dual (conjugated) variables. Here, we
assume that u(·) is restricted to the class of admissible inputs consisting
of measurable functions such that u(t) ∈ U for all t ≥ 0.

Assuming that the Hamiltonian energy function H(·) is lower bounded,
it can be shown that port-controlled Hamiltonian systems provide an energy
balance in terms of the stored or accumulated energy, supplied system
energy, and dissipated energy. Specifically, computing the rate of change
of the Hamiltonian along the system state trajectories x(t), t ≥ 0, yields the
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energy conservation equation

Ḣ(x(t)) = uT(t)y(t) − ∂H
∂x

(x(t))R(x(t))

(

∂H
∂x

(x(t))

)T

, t ≥ 0, (5.67)

which shows that the rate of change in energy, or power, is equal to the
system power input minus the internal system power dissipated. Note that
(5.67) can be equivalently written as

H(x(t)) −H(x(0)) =

∫ t

0
uT(s)y(s)ds

−
∫ t

0

∂H
∂x

(x(s))R(x(s))

(

∂H
∂x

(x(s))

)T

ds. (5.68)

Equation (5.68) shows that the stored or accumulated system energy is equal
to the energy supplied to the system via the external input u minus the
energy dissipated over the time interval [0, t]. Since R(x) is nonnegative
definite for all x ∈ D, it follows from (5.68) that

−
∫ t

0
uT(s)y(s)ds ≤ H(x(0)), (5.69)

which shows that the energy that can be extracted from the port-controlled
Hamiltonian system through the input-output ports is less than or equal to
the initial energy stored in the system. Hence, port-controlled Hamiltonian
systems are dissipative with respect to the (power) supply rate r(u, y) =
uTy. Furthermore, note that in the case where no system dissipation is
present, that is, R(x) ≡ 0, then port-controlled dynamical systems are
lossless with respect to the supply rate r(u, y) = uTy.

Finally, we exploit the skew-symmetric structure of the internal
interconnection matrix function J (x), x ∈ D, of (5.65) to establish the
existence of Casimir functions for port-controlled Hamiltonian systems.
Specifically, let C : D → R be such that

∂C

∂x
(x)[J (x) −R(x)] = 0, x ∈ D. (5.70)

In this case, it follows that

Ċ(x) =
∂C

∂x
(x)[J (x) −R(x)]

(

∂H
∂x

(x)

)

+
∂C

∂x
(x)G(x)u

=
∂C

∂x
(x)G(x)u. (5.71)

Now, if u(t) ≡ 0 or ∂C
∂x (x)G(x) = 0, x ∈ D, then C : D → R is conserved

along the flow of (5.65) irrespective of the form of the system Hamiltonian.
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Note that (5.70) is also implied by the stronger conditions

∂C

∂x
(x)J (x) = 0, x ∈ D, (5.72)

∂C

∂x
(x)R(x) = 0, x ∈ D. (5.73)

In addition, since J (x) = −J T(x) and R(x) = RT(x), (5.72) and (5.73)
imply

[J (x) −R(x)]

(

∂C

∂x
(x)

)T

= 0, x ∈ D. (5.74)

Now, using the fact that the sum of a skew-symmetric matrix and a
symmetric matrix is zero if and only if the individual matrices are zero, it
follows that (5.72) and (5.73) hold if and only if (5.70) and (5.74) hold. Next,
assuming u(t) ≡ 0, it follows from (5.71) that the α-level set of C(x) given
by C−1(α) = {x ∈ D : C(x) = α}, where α ∈ R, is invariant with respect
to the port-controlled Hamiltonian system (5.65). Hence, if the system
Hamiltonian H(·) is not positive definite at an equilibrium point xe ∈ D,
then, constructing a shaped Hamiltonian Hs(x) = H(x)+Hc(C(x)) such that
Hs(x) is positive definite at xe by properly choosing Hc, it follows that Hs(x)
serves as a Lyapunov function candidate for (5.65) with u(t) ≡ 0. Theorem
3.8 can be used to construct such a shaped Hamiltonian. Now, (5.62) and
(5.74) imply that Ḣs(x) ≤ 0, x ∈ D, establishing Lyapunov stability of
(5.65). More generally, in an identical fashion as above one can construct
r independent two-times continuously differentiable Casimir functions and
use Theorem 3.8 to construct shaped Hamiltonians as Lyapunov functions
for (5.65) with u(t) ≡ 0.

5.4 Extended Kalman-Yakubovich-Popov Conditions for

Nonlinear Dynamical Systems

In this section, we show that dissipativeness, exponential dissipativeness,
and losslessness of nonlinear affine dynamical systems G of the form

ẋ(t) = f(x(t)) +G(x(t))u(t), x(t0) = x0, t ≥ t0, (5.75)

y(t) = h(x(t)) + J(x(t))u(t), (5.76)

where x(t) ∈ D ⊆ Rn, D is an open set with 0 ∈ D, u(t) ∈ U ⊆ Rm,
y(t) ∈ Y ⊆ Rl, f : D → Rn, G : D → Rn×m, h : D → Y , and J :
D → Rl×m, can be characterized in terms of the system functions f(·), G(·),
h(·), and J(·). We assume that f(·), G(·), h(·), and J(·) are continuously
differentiable mappings and f(·) has at least one equilibrium so that, without
loss of generality, f(0) = 0 and h(0) = 0. Furthermore, for the nonlinear
dynamical system G we assume that the required properties for the existence
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and uniqueness of solutions in forward and backward time are satisfied. For
the following result we consider the special case of dissipative systems with
quadratic supply rates [457]. Specifically, set D = Rn, U = Rm, Y =
Rl, let Q ∈ Sl, R ∈ Sm, and S ∈ Rl×m be given, and assume r(u, y) =
yTQy+2yTSu+uTRu. Furthermore, we assume that there exists a function
κ : Rl → Rm such that κ(0) = 0 and r(κ(y), y) < 0, y 6= 0, and the available
storage Va(x), x ∈ Rn, for G is a continuously differentiable function.

Theorem 5.6. Let Q ∈ Sl, S ∈ Rl×m, R ∈ Sm, and let G be zero-state
observable and completely reachable. G is dissipative with respect to the
quadratic supply rate r(u, y) = yTQy +2yTSu + uTRu if and only if there
exist functions Vs : Rn → R, ℓ : Rn → Rp, and W : Rn → Rp×m such that
Vs(·) is continuously differentiable and positive definite, Vs(0) = 0, and, for
all x ∈ Rn,

0 = V ′
s (x)f(x) − hT(x)Qh(x) + ℓT(x)ℓ(x), (5.77)

0 = 1
2V

′
s (x)G(x) − hT(x)(QJ(x) + S) + ℓT(x)W(x), (5.78)

0 = R+ STJ(x) + JT(x)S + JT(x)QJ(x) −WT(x)W(x). (5.79)

If, alternatively,

N (x)
△
= R+ STJ(x) + JT(x)S + JT(x)QJ(x) > 0, x ∈ Rn, (5.80)

then G is dissipative with respect to the quadratic supply rate r(u, y) =
yTQy +2yTSu+uTRu if and only if there exists a continuously differentiable
function Vs : Rn → R such that Vs(·) is positive definite, Vs(0) = 0, and, for
all x ∈ Rn,

0 ≥ V ′
s (x)f(x) − hT(x)Qh(x) + [12V

′
s (x)G(x) − hT(x)(QJ(x) + S)]

·N−1(x)[12V
′
s (x)G(x) − hT(x)(QJ(x) + S)]T. (5.81)

Proof. First, suppose that there exist functions Vs : Rn → R, ℓ : Rn →
Rp, and W : Rn → Rp×m such that Vs(·) is continuously differentiable and
positive definite, and (5.77)–(5.79) are satisfied. Then for every admissible
input u(·) ∈ U , t1, t2 ∈ R, t2 ≥ t1 ≥ 0, it follows from (5.77)–(5.79) that
∫ t2

t1

r(u, y)dt =

∫ t2

t1

[

yTQy + 2yTSu+ uTRu
]

dt

=

∫ t2

t1

[

hT(x)Qh(x) + 2hT(x)(S +QJ(x))u

+uT(JT(x)QJ(x) + STJ(x) + JT(x)S +R)u
]

dt

=

∫ t2

t1

[

V ′
s (x)(f(x) +G(x)u) + ℓT(x)ℓ(x) + 2ℓT(x)W(x)u

+uTWT(x)W(x)u
]

dt
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=

∫ t2

t1

[

V̇s(x) + [ℓ(x) + W(x)u]T[ℓ(x) + W(x)u]
]

dt

≥ Vs(x(t2)) − Vs(x(t1)),

where x(t), t ≥ 0, satisfies (5.75) and V̇s(·) denotes the total derivative of
the storage function along the trajectories x(t), t ≥ 0, of (5.75). Now, the
result is immediate from Corollary 5.1.

Conversely, suppose that G is dissipative with respect to a quadratic
supply rate r(u, y). Now, it follows from Theorem 5.1 that the available
storage Va(x) of G is finite for all x ∈ Rn, Va(0) = 0, and

Va(x(t2)) ≤ Va(x(t1)) +

∫ t2

t1

r(u(t), y(t))dt, t2 ≥ t1, (5.82)

for all admissible u(·) ∈ U . Dividing (5.82) by t2 − t1 and letting t2 → t1 it
follows that

V̇a(x(t)) ≤ r(u(t), y(t)), t ≥ 0, (5.83)

where x(t), t ≥ 0, satisfies (5.75) and V̇a(x(t))
△
= V ′

a(x(t))(f(x(t)) +G(x(t))
·u(t)) denotes the total derivative of the available storage function along the
trajectories x(t), t ≥ 0. Now, with t = 0, it follows from (5.83) that

V ′
a(x0)(f(x0) +G(x0)u) ≤ r(u, y(0)), u ∈ Rm. (5.84)

Next, let d : Rn × Rm → R be such that

d(x, u)
△
= −V̇a(x) + r(u, y) = −V ′

a(x)(f(x) +G(x)u) + r(u, h(x) + J(x)u).
(5.85)

Now, it follows from (5.83) that d(x, u) ≥ 0, x ∈ Rn, u ∈ Rm. Furthermore,
note that d(x, u) given by (5.85) is quadratic in u, and hence, there exist
functions ℓ : Rn → R and W : Rn → Rp×m such that

d(x, u) = [ℓ(x) + W(x)u]T[ℓ(x) + W(x)u]

= −V ′
a(x)(f(x) +G(x)u) + r(u, h(x) + J(x)u)

= −V ′
a(x)(f(x) +G(x)u) + (h(x) + J(x)u)TQ(h(x) + J(x)u)

+2(h(x) + J(x)u)TSu+ uTRu.

Now, equating coefficients of equal powers yields (5.77)–(5.79) with Vs(x) =
Va(x) and the positive definiteness of Vs(x), x ∈ Rn, follows from Theorem
5.3.

Finally, to show (5.81) note that (5.77)–(5.79) can be equivalently
written as
[

A(x) B(x)
BT(x) C(x)

]

= −
[

ℓT(x)
WT(x)

]

[

ℓ(x) W(x)
]

≤ 0, x ∈ Rn, (5.86)
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where A(x)
△
= V ′

s (x)f(x)−hT(x)Qh(x), B(x)
△
= 1

2V
′
s (x)G(x)−hT(x)(QJ(x)

+S), and C(x)
△
= −(R + STJ(x) + JT(x)S + JT(x)QJ(x)). Now, for all

invertible T ∈ R(m+1)×(m+1) (5.86) holds if and only if T T(5.86)T holds.
Hence, the equivalence of (5.77)–(5.79) to (5.81) in the case when (5.80)
holds follows from the (1,1) block of T T(5.86)T , where

T △
=

[

1 0
−C−1(x)BT(x) I

]

.

This completes the proof.

Note that the assumption of complete reachability in Theorem 5.6 is
needed to establish the existence of a nonnegative-definite storage function
Vs(·) while zero-state observability ensures that Vs(·) is positive definite. In
the case where the existence of a continuously differentiable positive-definite
storage function Vs(·) is assumed for G, then G is dissipative with respect to
the quadratic supply rate r(u, y) with storage function Vs(·) if and only if
(5.77)–(5.79) are satisfied.

Next, we provide necessary and sufficient conditions for exponential
dissipativeness with respect to quadratic supply rates. Here, once again we
assume that there exists a function κ : Rl → Rm such that κ(0) = 0 and
r(κ(y), y) < 0, y 6= 0, and the available exponential storage Va(x), x ∈ Rn,
for G is a continuously differentiable function.

Theorem 5.7. Let Q ∈ Sl, S ∈ Rl×m, R ∈ Sm, and let G be zero-state
observable and completely reachable. G is exponentially dissipative with
respect to the quadratic supply rate r(u, y) = yTQy +2yTSu+uTRu if and
only if there exist functions Vs : Rn → R, ℓ : Rn → Rp, and W : Rn → Rp×m

and a scalar ε > 0 such that Vs(·) is continuously differentiable and positive
definite, Vs(0) = 0, and, for all x ∈ Rn,

0 = V ′
s (x)f(x) + εVs(x) − hT(x)Qh(x) + ℓT(x)ℓ(x), (5.87)

0 = 1
2V

′
s (x)G(x) − hT(x)(QJ(x) + S) + ℓT(x)W(x), (5.88)

0 = R+ STJ(x) + JT(x)S + JT(x)QJ(x) −WT(x)W(x). (5.89)

If, alternatively, N (x) > 0, x ∈ Rn, then G is exponentially dissipative with
respect to the quadratic supply rate r(u, y) = yTQy +2yTSu+uTRu if and
only if there exists a continuously differentiable function Vs : Rn → R and
a scalar ε > 0 such that Vs(·) is positive definite, Vs(0) = 0, and, for all
x ∈ Rn,

0 ≥ V ′
s (x)f(x) + εVs(x) − hT(x)Qh(x) + [12V

′
s (x)G(x) − hT(x)(QJ(x) + S)]

·N−1(x)[12V
′
s (x)G(x) − hT(x)(QJ(x) + S)]T. (5.90)
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Proof. The proof is analogous to the proof of Theorem 5.6.

Finally, we provide necessary and sufficient conditions for the case
where G given by (5.75) and (5.76) is lossless with respect to a quadratic
supply rate r(u, y).

Theorem 5.8. Let Q ∈ Sl, S ∈ Rl×m, R ∈ Sm, and let G be zero-
state observable and completely reachable. G is lossless with respect to the
quadratic supply rate r(u, y) = yTQy + 2yTSu+ uTRu if and only if there
exists a function Vs : Rn → R such that Vs(·) is continuously differentiable
and positive definite, Vs(0) = 0, and, for all x ∈ Rn,

0 = V ′
s (x)f(x) − hT(x)Qh(x), (5.91)

0 = 1
2V

′
s (x)G(x) − hT(x)(QJ(x) + S), (5.92)

0 = R+ STJ(x) + JT(x)S + JT(x)QJ(x). (5.93)

Proof. The proof is analogous to the proof of Theorem 5.6.

For particular examples of dynamical systems with force inputs and
velocity outputs we can associate the storage function with the stored or
available energy in the system and the supply rate with the net flow of energy
or power into the system. However, as discussed in [320, 456], the concepts
of supply rates and storage functions also apply to more general systems for
which a physical energy interpretation is no longer valid. Specifically, using
(5.77)–(5.79) it follows that

∫ t

t0

r(u(s), y(s)ds = Vs(x(t)) − Vs(x(t0))

+

∫ t

t0

[ℓ(x(s)) + W(x(s))u(s)]T[ℓ(x(s)) + W(x(s))u(s)]ds, (5.94)

which can be interpreted as a generalized energy balance equation, where
Vs(x(t)) − Vs(x(t0)) is the stored or accumulated generalized energy of the
system and the second path-dependent term on the right corresponds to the
dissipated generalized energy of the system. Rewriting (5.94) as

V̇s(x) = r(u, y) − [ℓ(x) + W(x)u]T[ℓ(x) + W(x)u], (5.95)

yields a generalized energy conservation equation which shows that the rate
of change in generalized system energy, or generalized power, is equal to
the external generalized system power input minus the internal generalized
system power dissipated.

Note that if G with a continuously differentiable positive-definite
storage function is dissipative with respect to the quadratic supply rate
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r(u, y) = yTQy+ 2yTSu+ uTRu, and if Q ≤ 0 and u(t) ≡ 0, then it follows
that

V̇s(x(t)) ≤ yT(t)Qy(t) ≤ 0, t ≥ 0. (5.96)

Hence, the zero solution x(t) ≡ 0 of the undisturbed (u(t) ≡ 0) nonlinear
system (5.75) is Lyapunov stable. Alternatively, if G with a continuously
differentiable positive-definite storage function is exponentially dissipative
with respect to the quadratic supply rate r(u, y) = yTQy+ 2yTSu+ uTRu,
and if Q ≤ 0 and u(t) ≡ 0, then it follows that

V̇s(x(t)) ≤ −εVs(x(t)) + yT(t)Qy(t) ≤ −εVs(x(t)), t ≥ 0. (5.97)

Hence, the zero solution x(t) ≡ 0 of the undisturbed (u(t) ≡ 0) nonlinear
system (5.75) is asymptotically stable. If, in addition, there exist scalars
α, β > 0 and p ≥ 1 such that

α‖x‖p ≤ Vs(x) ≤ β‖x‖p, x ∈ Rn, (5.98)

then the zero solution x(t) ≡ 0 of the undisturbed (u(t) ≡ 0) nonlinear
dynamical system (5.75) is exponentially stable.

Next, we provide several definitions of nonlinear dynamical systems
which are dissipative or exponentially dissipative with respect to supply
rates of a specific form.

Definition 5.7. A dynamical system G of the form (5.7) and (5.8)
with m = l is passive if G is dissipative with respect to the supply rate
r(u, y) = 2uTy.

Definition 5.8. A dynamical system G of the form (5.7) and (5.8) with
m = l is strictly passive if G is strictly dissipative with respect to the supply
rate r(u, y) = 2uTy.

Definition 5.9. A dynamical system G of the form (5.7) and (5.8) is
input strict passive if there exists ε > 0 such that G is dissipative with
respect to the supply rate r(u, y) = 2uTy − εuTu.

Definition 5.10. A dynamical system G of the form (5.7) and (5.8)
is output strict passive if there exists ε > 0 such that G is dissipative with
respect to the supply rate r(u, y) = 2uTy − εyTy.

Definition 5.11. A dynamical system G of the form (5.7) and (5.8) is
input-output strict passive if there exist ε, ε̂ > 0 such that G is dissipative
with respect to the supply rate r(u, y) = 2uTy − εuTu− ε̂yTy.

Definition 5.12. A dynamical system G of the form (5.7) and (5.8)
is nonexpansive if G is dissipative with respect to the supply rate r(u, y) =
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γ2uTu− yTy, where γ > 0 is given.

Definition 5.13. A dynamical system G of the form (5.7) and (5.8)
with m = l is exponentially passive if G is exponentially dissipative with
respect to the supply rate r(u, y) = 2uTy.

Definition 5.14. A dynamical system G of the form (5.7) and (5.8) is
exponentially nonexpansive if G is exponentially dissipative with respect to
the supply rate r(u, y) = γ2uTu− yTy, where γ > 0 is given.

In light of the above definitions the following result is immediate.

Proposition 5.2. Consider the nonlinear dynamical system G given by
(5.7) and (5.8). Then the following statements hold:

i) If G is passive with a continuously differentiable positive-definite
storage function Vs(·), then the zero solution x(t) ≡ 0 of the
undisturbed (u(t) ≡ 0) system G is Lyapunov stable.

ii) If G is exponentially passive with a continuously differentiable positive-
definite storage function Vs(·), then the zero solution x(t) ≡ 0 of
the undisturbed (u(t) ≡ 0) system G is asymptotically stable. If,
in addition, Vs(·) satisfies (5.98), then the zero solution x(t) ≡ 0 of the
undisturbed (u(t) ≡ 0) system G is exponentially stable.

iii) If G is zero-state observable and nonexpansive with a continuously
differentiable positive-definite storage function Vs(·), then the zero
solution x(t) ≡ 0 of the undisturbed (u(t) ≡ 0) system G is
asymptotically stable.

iv) If G is exponentially nonexpansive with a continuously differentiable
positive-definite storage function Vs(·), then the zero solution x(t) ≡ 0
of the undisturbed (u(t) ≡ 0) system G is asymptotically stable. If, in
addition, Vs(·) satisfies (5.98), then the zero solution x(t) ≡ 0 of the
undisturbed (u(t) ≡ 0) system G is exponentially stable.

v) If G is strictly passive with a continuously differentiable positive-
definite storage function Vs(·), then the zero solution x(t) ≡ 0 of the
undisturbed (u(t) ≡ 0) system G is asymptotically stable.

vi) If G is input strict passive with a continuously differentiable positive-
definite storage function Vs(·), then the zero solution x(t) ≡ 0 of the
undisturbed (u(t) ≡ 0) system G is Lyapunov stable.

vii) If G is zero-state observable and output strict passive with a contin-
uously differentiable positive-definite storage function Vs(·), then the
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zero solution x(t) ≡ 0 of the undisturbed (u(t) ≡ 0) system G is
asymptotically stable.

viii) If G is zero-state observable and input-output passive with a contin-
uously differentiable positive-definite storage function Vs(·), then the
zero solution x(t) ≡ 0 of the undisturbed (u(t) ≡ 0) system G is
asymptotically stable.

ix) If G is output strict passive with a continuously differentiable positive-
definite storage function Vs(·), then G is nonexpansive.

x) If G is input strict passive and nonexpansive with a continuously
differentiable positive-definite storage function Vs(·), then G is input-
output strict passive.

Proof. Statements i)–viii) are immediate and follow from (5.31)–
(5.33) using Lyapunov and invariant set stability arguments. To show ix),
note that if G is output strict passive with a continuously differentiable
positive-definite storage function Vs(·) it follows that, for ε > 0,

V̇s(x) ≤ 2uTy − εyTy

= − 1
2ε(2u− εy)T(2u− εy) + 2

εu
Tu− ε

2y
Ty

≤ 2
εu

Tu− ε
2y

Ty, (5.99)

which implies that G is nonexpansive. Finally, to show x), it follows that if
G is input strict passive and nonexpansive with a continuously differentiable
positive-definite storage function Vs(·) it follows that

V̇s(x) ≤ 2uTy − εuTu, ε > 0, (5.100)

and
V̇s(x) ≤ γ2uTu− yTy, γ > 0, (5.101)

which implies that for all α > 0,

(1 + α)V̇s(x) ≤ 2uTy − ε̂uTu− αyTy, (5.102)

where ε̂ = ε − αγ2. Now, the result is immediate by choosing α > 0 such
that ε̂ > 0.

Example 5.2. Consider the matrix second-order nonlinear dynamical
system of an n-link robot given by [342]

M(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) + g(q(t)) = u(t),

q(0) = q0, q̇(0) = q̇0, t ≥ 0, (5.103)

y(t) = q̇(t), (5.104)

where q, q̇, q̈ ∈ Rn represent generalized position, velocity, and acceleration
coordinates, respectively, u ∈ Rn is a force input, y = q̇ ∈ Rn is a velocity
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measurement, M(q) is a positive-definite inertia matrix function for all q ∈
Rn, C(q, q̇) is an n×nmatrix function accounting for centrifugal and Coriolis
forces and has the property that d

dtM(q(t))−2C(q(t), q̇(t)) is skew-symmetric
for all q, q̇ ∈ Rn, and g(q) is an n-dimensional vector accounting for gravity

forces and is given by g(q) =
[

∂V (q)
∂q

]T
, where V (q) is the system potential.

Here, we assume V (0) = 0, V (q) is positive definite, and g(q) = 0 has an
isolated root at q = 0.

To show that (5.103) and (5.104) is lossless, consider the energy storage
function Vs(q, q̇) = q̇TM(q)q̇ + 2V (q). Now,

V̇s(q, q̇) = 2q̇TM(q)q̈ + q̇TṀ(q)q̇ + 2
∂V (q)

∂q
q̇

= 2q̇T[u− C(q, q̇)q̇ − g(q)] + q̇TṀ(q)q̇ + 2gT(q)q̇

= 2yTu, (5.105)

and hence, the system is lossless. Alternatively, with u = −Kpq̇ + v, where
Kp is a positive-definite matrix, it follows that

V̇s(q, q̇) = 2yTv − 2yTKpy, (5.106)

and hence, the input-output map from v to y is output strict passive. Note
that in the case where v = 0, V̇s(q, q̇) = −2q̇TKpq̇ ≤ 0, and hence, R △

=

{(q, q̇) : V̇s(q, q̇) = 0} = {(q, q̇) : q̇ = 0}. Now, since q̇(t) ≡ 0 it follows
that q̈(t) ≡ 0 which, using (5.103), implies g(q(t)) ≡ 0, and hence, q(t) ≡ 0.
Thus, M = {(0, 0)} is the largest invariant set contained in R so that
the zero solution (q(t), q̇(t)) ≡ (0, 0) is asymptotically stable. Finally, we
note that if V (q) is radially unbounded, then global asymptotic stability is
ensured. △

Example 5.3. Consider the nonlinear mass-spring-damper dynamical
system

mẍ(t) + x2(t)ẋ3(t) + x7(t) = 2u(t), x(0) = x0, ẋ(0) = ẋ0, t ≥ 0, (5.107)

y(t) = ẋ(t). (5.108)

To show that (5.107) and (5.108) is passive consider the energy storage
function Vs(x, ẋ) = 1

2mẋ
2 + 1

8x
8. Now, V̇s(x, ẋ) = 2ẋu − x2ẋ4 ≤ 2yu, and

hence, (5.107) and (5.108) is passive. △

Example 5.4. Consider the nonlinear dynamical system

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (5.109)

ẋ2(t) = −g(x1(t)) − ax1(t) + u(t), x2(0) = x20, (5.110)

y(t) = bx1(t) + x2(t), (5.111)
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where 0 < b < a, x1g(x1) > 0, x1 ∈ R, x1 6= 0, and g(0) = 0. To examine
the passivity of (5.109)–(5.111) we consider the storage function

Vs(x1, x2) = α
2 [βa2x2

1 + 2βax1x2 + x2
2] + α

∫ x1

0
g(σ)dσ, (5.112)

where α > 0 and β ∈ (0, 1). Note that Vs(x1, x2) is positive definite and
radially unbounded. Now, computing V̇s(x1, x2) yields

V̇s(x1, x2) = α[βa2x1 + βax2 + g(x1)]x2 + α(βax1 + x2)[−g(x1) − ax2 + u]

= −αβax1g(x1) + α(β − 1)ax2
2 + α(βax1 + x2)u. (5.113)

Setting α = 1 and β = b/a < 1 if follows that

V̇s(x1, x2) = uy − bx1g(x1) − (a− b)x2
2, (5.114)

which shows that (5.109)–(5.111) is strictly passive. △

The following results present the nonlinear versions of the Kalman-
Yakubovich-Popov positive real lemma and the bounded real lemma.

Corollary 5.2. Let G be zero-state observable and completely reach-
able. G is passive if and only if there exist functions Vs : Rn → R,
ℓ : Rn → Rp, and W : Rn → Rp×m such that Vs(·) is continuously
differentiable and positive definite, Vs(0) = 0, and, for all x ∈ Rn,

0 = V ′
s (x)f(x) + ℓT(x)ℓ(x), (5.115)

0 = 1
2V

′
s (x)G(x) − hT(x) + ℓT(x)W(x), (5.116)

0 = J(x) + JT(x) −WT(x)W(x). (5.117)

If, alternatively,
J(x) + JT(x) > 0, x ∈ Rn, (5.118)

then G is passive if and only if there exists a continuously differentiable
function Vs : Rn → R such that Vs(·) is positive definite, Vs(0) = 0, and, for
all x ∈ Rn,

0 ≥ V ′
s (x)f(x) + [12V

′
s (x)G(x) − hT(x)]

·[J(x) + JT(x)]−1[12V
′
s (x)G(x) − hT(x)]T. (5.119)

Proof. The result is a direct consequence of Theorem 5.6 with l = m,
Q = 0, S = Im, and R = 0. Specifically, with κ(y) = −y it follows that
r(κ(y), y) = −2yTy < 0, y 6= 0, so that all the assumptions of Theorem 5.6
are satisfied.

Example 5.5. Consider the nonlinear controlled Lienard system

ẍ(t) + f̂(x(t))ẋ(t) + g(x(t)) = u(t), x(0) = x0, ẋ(0) = ẋ0, t ≥ 0,
(5.120)
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with output y(t) = 1
2 ẋ(t) or, equivalently,

ẋ1(t) = x2(t) − F (x1(t)), x1(0) = x10, t ≥ 0, (5.121)

ẋ2(t) = −g(x1(t)) + u(t), x2(0) = x20, (5.122)

y(t) = 1
2x2(t), (5.123)

where x1 = x, x2 = ẋ + F (x), F (x1) =
∫ x1

0 f̂(s)ds, f̂(0) = g(0) = 0, and f̂
and g are continuously differentiable. To examine the passivity of (5.121)–
(5.123) we consider the energy function

Vs(x1, x2) = 1
2x

2
2 +

∫ x1

0
g(s)ds, (5.124)

where x1g(x1) ≥ 0, x1 ∈ R, so that Vs(x1, x2) ≥ 0, (x1, x2) ∈ R × R,
is a candidate storage function. Now, we use Corollary 5.2 to determine
conditions on g(x1) and F (x1) that guarantee (5.121)–(5.123) is passive.
Note that (5.121)–(5.123) can be written in the state space form (5.75) and
(5.76) with x = [x1, x2]

T, f(x) = [x2 − F (x1), −g(x1)]
T, G(x) = [0, 1]T,

h(x) = 1
2x2, and J(x) = 0. Now, using (5.115) it follows that

0 =
[

g(x1) x2

]

[

x2 − F (x1)
−g(x1)

]

+ ℓT(x)ℓ(x), (5.125)

which requires that g(x1)F (x1) ≥ 0. If f̂(x1) ≥ 0, x1 ∈ R, then x1F (x1) ≥ 0,
x1 ∈ R. Furthermore, since x1 and g(x1) have the same sign it follows that
g(x1)F (x1) ≥ 0, x1 ∈ R. Next, note that (5.116) is automatically satisfied
since

0 = 1
2

[

g(x1) x2

]

[

0
1

]

− 1
2x2. (5.126)

Hence, if f̂(x1) ≥ 0, x1 ∈ R, then the controlled Lienard system (5.121)–
(5.123) is passive. △

Corollary 5.3. Let G be zero-state observable and completely reach-
able. G is nonexpansive if and only if there exist functions Vs : Rn → R,
ℓ : Rn → Rp, and W : Rn → Rp×m such that Vs(·) is continuously
differentiable and positive definite, Vs(0) = 0, and, for all x ∈ Rn,

0 = V ′
s (x)f(x) + hT(x)h(x) + ℓT(x)ℓ(x), (5.127)

0 = 1
2V

′
s (x)G(x) + hT(x)J(x) + ℓT(x)W(x), (5.128)

0 = γ2Im − JT(x)J(x) −WT(x)W(x), (5.129)

where γ > 0. If, alternatively,

γ2Im − JT(x)J(x) > 0, x ∈ Rn, (5.130)

then G is nonexpansive if and only if there exists a continuously differentiable
function Vs : Rn → R such that Vs(·) is positive definite, Vs(0) = 0, and, for
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all x ∈ Rn,

0 ≥ V ′
s (x)f(x) + hT(x)h(x) + [12V

′
s (x)G(x) + hT(x)J(x)]

·[γ2Im − JT(x)J(x)]−1[12V
′
s (x)G(x) + hT(x)J(x)]T. (5.131)

Proof. The result is a direct consequence of Theorem 5.6 with Q =
−Il, S = 0, and R = γ2Im. Specifically, with κ(y) = − 1

2γ y it follows that

r(κ(y), y) = −3
4y

Ty < 0, y 6= 0, so that all the assumptions of Theorem 5.6
are satisfied.

Example 5.6. Consider the nonlinear controlled dynamical system

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (5.132)

ẋ2(t) = −a sinx1(t) − bx2(t) + u(t), x2(0) = x20, (5.133)

y(t) = x2(t), (5.134)

where a, b > 0. Note that (5.132)–(5.134) can be written in the state space
form (5.75) and (5.76) with x = [x1, x2]

T, f(x) = [x2, −a sinx1 − bx2]
T,

G(x) = [0, 1]T, h(x) = x2, and J(x) = 0. To examine the nonexpansivity of
(5.132)–(5.134) we consider the storage function Vs(x) = a(1− cos x1)+ 1

2x
2
2

satisfying Vs(x) ≥ 0, x ∈ R2. Now, using Corollary 5.3 it follows from
(5.131) that

0 ≥
[

a sinx1 x2

]

[

x2

−a sinx1 − bx2

]

+ h2(x)

+ 1
4γ2

[

a sinx1 x2

]

[

0
1

]

[

0 1
]

[

a sinx1

x2

]

, (5.135)

or, equivalently,
0 ≥ (1 − b)h2(x) + 1

4γ2h
2(x). (5.136)

Hence, (5.136) is satisfied if γ ≥ 1
2
√

b−1
. △

Finally, the following results present the nonlinear versions of the
Kalman-Yakubovich-Popov strict positive real lemma and strict bounded real
lemma for exponentially passive and exponentially nonexpansive systems,
respectively.

Corollary 5.4. Let G be zero-state observable and completely reach-
able. G is exponentially passive if and only if there exist functions Vs : Rn →
R, ℓ : Rn → Rp, and W : Rn → Rp×m and a scalar ε > 0 such that Vs(·)
is continuously differentiable and positive definite, Vs(0) = 0, and, for all
x ∈ Rn,

0 = V ′
s (x)f(x) + εVs(x) + ℓT(x)ℓ(x), (5.137)

0 = 1
2V

′
s (x)G(x) − hT(x) + ℓT(x)W(x), (5.138)
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0 = J(x) + JT(x) −WT(x)W(x). (5.139)

If, alternatively, (5.118) holds, then G is exponentially passive if and only if
there exist a continuously differentiable function Vs : Rn → R and a scalar
ε > 0 such that Vs(·) is positive definite, Vs(0) = 0, and, for all x ∈ Rn,

0 ≥ V ′
s (x)f(x) + εVs(x) + [12V

′
s (x)G(x) − hT(x)]

·[J(x) + JT(x)]−1[12V
′
s (x)G(x) − hT(x)]T. (5.140)

Proof. The result is a direct consequence of Theorem 5.7 with l = m,
Q = 0, S = Im, and R = 0. Specifically, with κ(y) = −y it follows that
r(κ(y), y) = −2yTy < 0, y 6= 0, so that all the assumptions of Theorem 5.7
are satisfied.

Corollary 5.5. Let G be zero-state observable and completely reach-
able. G is exponentially nonexpansive if and only if there exist functions
Vs : Rn → R, ℓ : Rn → Rp, and W : Rn → Rp×m and a scalar ε > 0 such
that Vs(·) is continuously differentiable and positive definite, Vs(0) = 0, and,
for all x ∈ Rn,

0 = V ′
s (x)f(x) + εVs(x) + hT(x)h(x) + ℓT(x)ℓ(x), (5.141)

0 = 1
2V

′
s (x)G(x) + hT(x)J(x) + ℓT(x)W(x), (5.142)

0 = γ2Im − JT(x)J(x) −WT(x)W(x), (5.143)

where γ > 0. If, alternatively, (5.130) holds, then G is exponentially
nonexpansive if and only if there exist a continuously differentiable function
Vs : Rn → R and a scalar ε > 0 such that Vs(·) is positive definite, Vs(0) = 0,
and, for all x ∈ Rn,

0 ≥ V ′
s (x)f(x) + εVs(x) + hT(x)h(x) + [12V

′
s (x)G(x) + hT(x)J(x)]

·[γ2Im − JT(x)J(x)]−1[12V
′
s (x)G(x) + hT(x)J(x)]T. (5.144)

Proof. The result is a direct consequence of Theorem 5.7 with Q =
−Il, S = 0, and R = γ2Im. Specifically, with κ(y) = − 1

2γ y it follows that

r(κ(y), y) = −3
4y

Ty < 0, y 6= 0, so that all the assumptions of Theorem 5.7
are satisfied.

5.5 Linearization of Dissipative Dynamical Systems

In this section, we present several key results on linearization of dissipative,
exponentially dissipative, passive, exponentially passive, nonexpansive, and
exponentially nonexpansive dynamical systems. For these results, we assume
that there exists a function κ : Rl → Rm such that κ(0) = 0 and r(κ(y), y) <
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0, y 6= 0, and the available storage function (respectively, exponentially
storage function) Va(x), x ∈ Rn, is a smooth function.

Theorem 5.9. Let Q ∈ Sl, S ∈ Rl×m, R ∈ Sm, and suppose G given
by (5.75) and (5.76) is completely reachable and dissipative with respect to
the quadratic supply rate r(u, y) = yTQy + 2yTSu + uTRu. Then, there
exist matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P nonnegative
definite, such that

0 = ATP + PA− CTQC + LTL, (5.145)

0 = PB − CT(QD + S) + LTW, (5.146)

0 = R+ STD +DTS +DTQD −WTW, (5.147)

where

A =
∂f

∂x

∣

∣

∣

∣

x=0

, B = G(0), C =
∂h

∂x

∣

∣

∣

∣

x=0

, D = J(0). (5.148)

If, in addition, (A,C) is observable, then P > 0.

Proof. First note that since G is completely reachable and dissipative
with respect to a quadratic supply rate there exist functions Vs : Rn → R,
ℓ : Rn → Rp, and W : Rn → Rp×m, with Vs(·) nonnegative definite, such
that (5.77)–(5.79) are satisfied. Now, expanding Vs(·) via a Taylor series
expansion about x = 0 and using the fact that Vs(·) is nonnegative definite
and Vs(0) = 0 it follows that there exists a nonnegative-definite matrix
P ∈ Rn×n such that

Vs(x) = xTPx+ Vsr(x),

where Vsr : Rn → R contains the higher-order terms of Vs(x).

Next, let f(x) = Ax+fr(x), ℓ(x) = Lx+ℓr(x), and h(x) = Cx+hr(x),
where fr(x), ℓr(x), and hr(x) contain the nonlinear terms of f(x), ℓ(x),
and h(x), respectively, and let G(x) = B + Gr(x), J(x) = D + Jr(x), and

W(x) = W +Wr(x), where W
△
= W(0) and Gr(x), Jr(x), and Wr(x) contain

the nonconstant terms of G(x), J(x), and W(x), respectively. Using the
above expressions (5.77) and (5.78) can be written as

0 = xT(ATP + PA− CTQC + LTL)x+ γ(x), (5.149)

0 = xT(PB − CT(QD + S) + LTW ) + Γ(x), (5.150)

where

γ(x)
△
= V ′

sr(x)f(x) + ℓTr (x)ℓr(x) + 2xT(Pfr(x) − CTQhr(x) + LTℓr(x))

−hT
r (x)Qhr(x),

Γ(x)
△
= 1

2V
′
sr(x)G(x) − hT

r (x)(QJ(x) + S) − xTCTQJr(x) + xTPGr(x)

+xTLTWr(x) + ℓTr (x)W.
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Now, viewing (5.149) and (5.150) as the Taylor series expansion of (5.77)
and (5.78), respectively, about x = 0, and noting that

lim
‖x‖→0

|γ(x)|
‖x‖2

= 0, lim
‖x‖→0

‖Γ(x)‖
‖x‖ = 0,

where ‖ · ‖ denotes the Euclidean vector norm, it follows that P satisfies
(5.145) and (5.146). Now, (5.147) follows from (5.79) by setting x = 0.

Next, it follows from Theorem 5.6 and (5.145)–(5.147) that the linear
system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0,

y(t) = Cx(t) +Du(t),

with a storage function Vs(x) = xTPx is dissipative with respect to the
quadratic supply rate r(u, y). Now, the positive definiteness of P follows
from Theorem 5.3.

The following corollaries are immediate from Theorem 5.9 and provide
linearization results for passive and nonexpansive dynamical systems,
respectively.

Corollary 5.6. Suppose the nonlinear dynamical system G given by
(5.75) and (5.76) is completely reachable and passive. Then there exist
matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P nonnegative definite,
such that

0 = ATP + PA+ LTL, (5.151)

0 = PB − CT + LTW, (5.152)

0 = D +DT −WTW, (5.153)

where A, B, C, and D are given by (5.148). If, in addition, (A,C) is
observable, then P > 0.

Corollary 5.7. Suppose the nonlinear dynamical system G given by
(5.75) and (5.76) is completely reachable and nonexpansive. Then there
exist matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P nonnegative
definite, such that

0 = ATP + PA+ CTC + LTL, (5.154)

0 = PB + CTD + LTW, (5.155)

0 = γ2Im −DTD −WTW, (5.156)

where A, B, C, and D are given by (5.148) and γ > 0. If, in addition, (A,C)
is observable, then P > 0.
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Next, we present a linearization theorem for exponentially dissipative
systems.

Theorem 5.10. Let Q ∈ Sl, S ∈ Rl×m, R ∈ Sm, and suppose G given
by (5.75) and (5.76) is completely reachable and exponentially dissipative
with respect to the quadratic supply rate r(u, y) = yTQy+ 2yTSu+ uTRu.
Then, there exist matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P
nonnegative definite, and a scalar ε > 0 such that

0 = ATP + PA+ εP − CTQC + LTL, (5.157)

0 = PB − CT(QD + S) + LTW, (5.158)

0 = R+ STD +DTS +DTQD −WTW, (5.159)

where A, B, C, and D are given by (5.148). If, in addition, (A,C) is
observable, then P > 0.

Proof. The proof is analogous to the proof of Theorem 5.9.

Linearization results for exponentially passive and exponentially non-
expansive dynamical systems follow immediately from Theorem 5.10.

5.6 Positive Real and Bounded Real Dynamical Systems

In this section, we specialize the results of Section 5.4 to the case of linear
systems and provide connections to the frequency domain versions of passiv-
ity, exponential passivity, nonexpansivity, and exponential nonexpansivity.
Specifically, we consider linear systems

G = G(s) ∼
[

A B
C D

]

with a state space representation

ẋ(t) = Ax(t) +Bu(t), x(0) = 0, t ≥ 0, (5.160)

y(t) = Cx(t) +Du(t), (5.161)

where x ∈ Rn, u ∈ Rm, y ∈ Rl, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, and
D ∈ Rl×m. To present the main results of this section we first give several
key definitions.

Definition 5.15. A function p : C → C of the form

p(s) = αns
n + αn−1s

n−1 + · · · + α1s+ α0, (5.162)

where α0, . . . , αn are real numbers, is called a polynomial . If the leading
coefficient αn is nonzero, then the degree of p(s), denoted by deg p(s), is n,
whereas if p(s) = 0, then deg p(s) = −∞. If αn = 1, then p(s) is monic.
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Definition 5.16. A function f : C → C is analytic at a point z0 ∈ C if,
for every ε > 0, there exists δ > 0 such that f ′(z) exists for all z ∈ Bδ(z0). f
is said to be analytic in C if f is analytic at each point in C. f(s) is a rational
function if there exist polynomials n(s) and d(s) such that f(s) = n(s)/d(s).
f(s) is called strictly proper (respectively, proper) if deg n(s) < deg d(s)
(respectively, deg n(s) ≤ deg d(s)). The relative degree of f(s) denoted by

r, is r
△
= deg d(s) − deg n(s).

Definition 5.17. An l×m matrix transfer function G(s) is a rational
transfer function if every entry of G(s) is a rational function. G(s) is
strictly proper (respectively, proper) if every entry of G(s) is strictly proper
(respectively, proper).

In this book all transfer functions are assumed to be rational proper
transfer functions.

Definition 5.18. A square transfer function G(s) is positive real if i) all
the entries of G(s) are analytic in Re[s] > 0 and ii) He G(s) ≥ 0, Re[s] > 0.
A square transfer function G(s) is strictly positive real if there exists ε > 0
such that G(s − ε) is positive real. Finally, a square transfer function G(s)
is strongly positive real if it is strictly positive real and D +DT > 0, where
D

△
= G(∞).

Definition 5.19. A transfer function G(s) is bounded real if i) all the
entries of G(s) are analytic in Re[s] > 0 and ii) γ2Im − G∗(s)G(s) ≥ 0,
Re[s] > 0, where γ > 0. A transfer function G(s) is strictly bounded real if
there exists ε > 0 such that G(s − ε) is bounded real. Finally, a transfer
function G(s) is strongly bounded real if it is strictly bounded real and γ2Im−
DTD > 0, where D

△
= G(∞).

It is interesting to note that ii) in Definition 5.19 implies that G(s)
is analytic in Re[s] ≥ 0, and hence, a bounded real transfer function is
asymptotically stable. To see this, note that γ2Im−G∗(s)G(s) ≥ 0, Re[s] >
0, implies that

[γ2Im −G∗(s)G(s)](i,i) = γ2 −
m
∑

j=1

|G(j,i)(s)|2 ≥ 0, Re[s] > 0, (5.163)

and hence, |G(i,j)(s)| is bounded by γ2 at every point in Re[s] > 0. Hence,
G(i,j)(s) cannot possess a pole in Re[s] = 0 since in this case |G(i,j)(s)|
would take on arbitrary large values in Re[s] > 0 in the vicinity of this
pole. Hence, G(ω) = limσ→0,σ>0 G(σ+ ω) exists for all ω ∈ R and γ2Im −
G∗(ω)G(ω) ≥ 0, ω ∈ R. Now, since G∗(ω)G(ω) ≤ γ2Im, ω ∈ R, is
equivalent to supω∈R σmax[G(ω)] ≤ γ, it follows that G(s) is bounded real if
and only if G(s) is asymptotically stable and |||G(s)|||∞ ≤ γ. Similarly, it can



NonlinearBook10pt November 20, 2007

DISSIPATIVITY THEORY FOR NONLINEAR SYSTEMS 363

be shown that strict bounded realness is equivalent to G(s) asymptotically
stable and G∗(ω)G(ω) < γ2Im, ω ∈ R, or, equivalently, |||G(s)|||∞ < γ.

Alternatively, for a positive real transfer function it follows from ii) of
Definition 5.19, using a limiting argument, that He G(ω) ≥ 0 for all ω ∈ R

such that ω is not a pole of any entry of G(s). However, unlike bounded
real transfer functions, there are positive real transfer functions possessing
poles on the ω axis. A simple example is G(s) = 1/s which is analytic in
Re[s] > 0 and He G(s) = 2Re[s]/|s|2 > 0, Re[s] > 0. Hence, He G(ω) ≥ 0,
ω ∈ R, does not provide a frequency domain test for positive realness. In
the case where G(s) is analytic in Re[s] > 0 and He G(ω) ≥ 0 holds for all
ω ∈ R for which ω is not a pole of any entry of G(s), one might surmise that
G(s) is positive real. Once again this is not true. A simple counterexample
is G(s) = −1/s which is analytic in Re[s] > 0 and satisfies He G(ω) = 0,
ω ∈ R. However, He G(s) ≥ 0, Re[s] > 0, is not satisfied. The following
theorem gives a frequency domain test for positive realness.

Theorem 5.11. Let G(s) be a square, real rational transfer function.
G(s) is positive real if and only if the following conditions hold:

i) No entry of G(s) has a pole in Re[s] > 0.

ii) He G(ω) ≥ 0 for all ω ∈ R, with ω not a pole of any entry of G(s).

iii) If ω̂ is a pole of any entry of G(s) it is at most a simple pole, and

the residue matrix G0
△
= lims→ω̂(s − ω̂)G(s) is nonnegative-definite

Hermitian. Alternatively, if the limit G∞
△
= limω→∞G(ω)/ω exists,

then G∞ is nonnegative-definite Hermitian.

Proof. The proof follows from the maximum modulus theorem of
complex variable theory by forming a Nyquist-type closed contour Γ in
Re[s] > 0 and analyzing the function f(s) = x∗G(s)x, x ∈ Cm, on Γ.
For details see [11].

Next, we present the key results of this section for characterizing
positive realness, strict positive realness, bounded realness, and strict
bounded realness of a linear dynamical system in terms of the system
matrices A, B, C, and D. First, however, we present a key theorem due to
Parseval.

Theorem 5.12 (Parseval’s Theorem). Let u : [0,∞) → Rm and y :
[0,∞) → Rl be in Lp, p ∈ [0,∞), and let u(s) and y(s) denote their Laplace
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transforms, respectively. Then
∫ ∞

0
uT(t)y(t)dt =

1

2π

∫ ∞

−∞
u∗(ω)y(ω)dω. (5.164)

Proof. Since y(·) ∈ Lp, p ∈ [0,∞), it follows that the inverse Fourier
transform of y(t) is given by

y(t) =
1

2π

∫ ∞

−∞
y(ω)eωtdω. (5.165)

Now, for all s ∈ C, Re[s] ≥ 0,
∫ ∞

0
[uT(τ)y(τ)]e−sτ dτ =

∫ ∞

0
e−sτuT(τ)

[

1
2π

∫ ∞

−∞
y(ω)eωτdω

]

dτ

=
1

2π

∫ ∞

−∞

[
∫ ∞

0
uT(τ)e−(s−ω)τdτ

]

y(ω)dω

=
1

2π

∫ ∞

−∞
uT(s− ω)y(ω)dω. (5.166)

Setting s = 0 yields (5.164).

Theorem 5.13 (Positive Real Lemma). Consider the linear dynamical
system

G(s)
min∼
[

A B
C D

]

with input u(·) ∈ U and output y(·) ∈ Y. Then the following statements are
equivalent:

i) G(s) is positive real.

ii)
∫ T
0 uT(t)y(t)dt ≥ 0, T ≥ 0.

iii) There exist matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P
positive definite, such that

0 = ATP + PA+ LTL, (5.167)

0 = PB − CT + LTW, (5.168)

0 = D +DT −WTW. (5.169)

If, alternatively, D +DT > 0, then G(s) is positive real if and only if there
exists an n× n positive-definite matrix P such that

0 ≥ ATP + PA+ (BTP − C)T(D +DT)−1(BTP − C). (5.170)
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Proof. First, we show that i) implies ii). SupposeG(s) is positive real.
Then it follows from Parseval’s theorem that, for all T ≥ 0 and truncated
input function

uT (t) =

{

u(t), 0 ≤ t ≤ T,
0, t < 0, t > T,

(5.171)

∫ T

0
yT(t)u(t)dt =

∫ ∞

−∞
yT(t)uT (t)dt

=
1

2π

∫ ∞

−∞
y∗(ω)uT (ω)dω

=
1

4π

∫ ∞

−∞
u∗T (ω)[G(ω) +G∗(ω)]uT (ω)dω

≥ 0,

which implies that G(s) is passive.

Next, we show that ii) implies iii). If G(s) is passive, then it follows
from Corollary 5.6 with f(x) = Ax, G(x) = B, h(x) = Cx, J(x) = D, that
there exist matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P positive
definite, such that (5.167)–(5.169) are satisfied.

Next, to show that iii) implies i), note that if there exist matrices
P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P positive definite, such that
(5.167)–(5.169) are satisfied, then, for all Re[s] > 0,

G(s) +G∗(s)

= C(sIn −A)−1B +D +BT(s∗In −A)−TCT +DT

= WTW + (BTP +WTL)(sIn −A)−1B

+BT(s∗In −A)−T(PB + LTW )

= WTW +WTL(sIn −A)−1B +BT(s∗In −A)−TLTW

+BT(s∗In −A)−T[(s∗In −A)TP + P (sIn −A)](sIn −A)−1B

= WTW +WTL(sIn −A)−1B +BT(s∗In −A)−TLTW

+BT(s∗In −A)−T[LTL+ 2Re[s]P ](sIn −A)−1B

≥ [W + L(sIn −A)−1B]∗[W + L(sIn −A)−1B]

≥ 0.

To show analyticity of the entries of G(s) in Re[s] > 0 note that an entry
of G(s) will have a pole at s = λ only if λ ∈ spec(A). Now, it follows from
(5.167) and the fact that P > 0 that all eigenvalues of A have nonpositive
real parts. Hence, G(s) is analytic in Re[s] > 0, which implies that G(s)
is positive real. Finally, (5.170) follows from (5.119) with the linearization
given above.
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Theorem 5.14 (Strict Positive Real Lemma). Consider the linear
dynamical system

G(s)
min∼
[

A B
C D

]

with input u(·) ∈ U and output y(·) ∈ Y. Then the following statements are
equivalent:

i) G(s) is strictly positive real.

ii)
∫ T
0 eεtuT(t)y(t)dt ≥ 0, T ≥ 0 ε > 0.

iii) There exist matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P
positive definite, and a scalar ε > 0 such that

0 = ATP + PA+ εP + LTL, (5.172)

0 = PB − CT + LTW, (5.173)

0 = D +DT −WTW. (5.174)

Furthermore, G(s) is strongly positive real if and only if there exist n × n
positive-definite matrices P and R such that

0 = ATP + PA+ (BTP − C)T(D +DT)−1(BTP −C) +R. (5.175)

Proof. The equivalence of i) and iii) is a direct consequence of
Theorem 5.13 by noting that G(s) is strictly positive real if and only if
there exists ε > 0 such that

G(s− ε/2)
min∼
[

A+ 1
2εIn B
C D

]

is positive real. The fact that iii) implies ii) follows from Corollary 5.4 with
f(x) = Ax, G(x) = B, h(x) = Cx, J(x) = D, Vs(x) = xTPx, ℓ(x) =
Lx, and W(x) = W . To show that ii) implies iii), note that if G(s) is
exponentially passive, then it follows from Theorem 5.10 with f(x) = Ax,
G(x) = B, h(x) = Cx, J(x) = D, Q = 0, S = Im, and R = 0, that
there exist matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P positive
definite, such that (5.172)–(5.174) are satisfied.

Finally, with the linearization given above, it follows from (5.140) that
G(s) is strongly positive real if and only if there exist a scalar ε > 0 and a
positive-definite matrix P ∈ Rn×n such that

0 ≥ ATP + PA+ εP + (BTP − C)T(D +DT)−1(BTP − C). (5.176)

Now, if there exist a scalar ε > 0 and a positive-definite matrix P ∈ Rn×n

such that (5.176) is satisfied, then there exists an n × n positive-definite
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matrix R such that (5.175) is satisfied. Conversely, if there exists an n ×
n positive-definite matrix R such that (5.175) is satisfied then, with ε =
σmin(R)/σmax(P ), (5.175) implies (5.176). Hence, G(s) is strongly positive
real if and only if there exist n× n positive-definite matrices P and R such
that (5.175) is satisfied.

Next, we present analogous results for bounded real systems.

Theorem 5.15 (Bounded Real Lemma). Consider the linear dynam-
ical system

G(s)
min∼
[

A B
C D

]

with input u(·) ∈ U and output y(·) ∈ Y. Then the following statements are
equivalent:

i) G(s) is bounded real.

ii)
∫ T
0 yT(t)y(t)dt ≤ γ2

∫ T
0 uT(t)u(t)dt, T ≥ 0, γ > 0.

iii) There exist matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P
positive definite, such that

0 = ATP + PA+ CTC + LTL, (5.177)

0 = PB + CTD + LTW, (5.178)

0 = γ2Im −DTD −WTW. (5.179)

If, alternatively, γ2Im −DTD > 0, then G(s) is bounded real if and only if
there exists an n× n positive-definite matrix P such that

0 ≥ ATP + PA+CTC + (BTP +DTC)T(γ2Im −DTD)−1(BTP +DTC).
(5.180)

Proof. First, we show that i) implies ii). Suppose G(s) is bounded
real. Then it follows from Parseval’s theorem that, for all T ≥ 0 and
truncated input function uT (·) given by (5.171),

∫ T

0
yT(t)y(t)dt =

∫ ∞

−∞
yT(t)y(t)dt

=
1

2π

∫ ∞

−∞
y∗(ω)y(ω)dω

=
1

2π

∫ ∞

−∞
u∗T (ω)G∗(ω)G(ω)uT (ω)dω

≤ γ2

2π

∫ ∞

−∞
u∗T (ω)uT (ω)dω
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= γ2

∫ T

0
uT(t)u(t)dt,

which implies that G(s) is nonexpansive.

Next, we show that ii) implies iii). If G(s) is nonexpansive, then
it follows from Corollary 5.7 with f(x) = Ax, G(x) = B, h(x) = Cx,
J(x) = D, that there exist matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m,
with P positive definite, such that (5.177)–(5.179) are satisfied.

Now, to show that iii) implies i), note that if there exist matrices
P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P positive definite, such that
(5.177)–(5.179) are satisfied, then, for all Re[s] ≥ 0,

γ2Im −G∗(s)G(s)

= γ2Im − [C(sIn −A)−1B +D]∗[C(sIn −A)−1B +D]

= [γ2Im −DTD] − [C(sIn −A)−1B]∗[C(sIn −A)−1B]

−[C(sIn −A)−1B]∗D −DT[C(sIn −A)−1B]

= WTW + [BTP +WTL](sIn −A)−1B +BT(sIn −A)−∗

·[PB + LTW ] −BT(sIn −A)−∗CTC(sIn −A)−1B

= WTW +WTL(sIn −A)−1B +BT(sIn −A)−∗LTW

−BT(sIn −A)−∗CTC(sIn −A)−1B

+BT(sIn −A)−∗[(sIn −A)∗P + P (sIn −A)](sIn −A)−1B

= WTW +WTL(sIn −A)−1B +BT(sIn −A)−∗LTW

+BT(sIn −A)−∗LTL(sIn −A)−1B

+2Re[s]BT(sIn −A)−∗P (sIn −A)−1B

≥ [W + L(sIn −A)−1B]∗[W + L(sIn −A)−1B]

≥ 0.

To show analyticity of the entries of G(s) in Re[s] ≥ 0 note that it follows
from (5.177) and the fact that P > 0 and (A,C) is observable that all
the eigenvalues of A have negative real parts. Hence, G(s) is analytic in
Re[s] ≥ 0, which implies that G(s) is bounded real. Finally, (5.180) follows
from (5.131) with the linearization given above.

Theorem 5.16 (Strict Bounded Real Lemma). Consider the linear
dynamical system

G(s)
min∼
[

A B
C D

]

with input u(·) ∈ U and output y(·) ∈ Y. Then the following statements are
equivalent:
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i) G(s) is strictly bounded real.

ii)
∫ T
0 eεtyT(t)y(t)dt ≤ γ2

∫ T
0 eεtuT(t)u(t)dt, T ≥ 0, γ > 0, ε > 0.

iii) There exist matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P
positive definite, such that

0 = ATP + PA+ εP +CTC + LTL, (5.181)

0 = PB + CTD + LTW, (5.182)

0 = γ2Im −DTD −WTW. (5.183)

Furthermore, G(s) is strongly bounded real if and only if there exist n× n
positive-definite matrices P and R such that

0 = ATP +PA+CTC+(BTP+DTC)T(γ2Im−DTD)−1(BTP+DTC)+R.
(5.184)

Proof. The equivalence of i) and iii) is a direct consequence of
Theorem 5.15 by noting that G(s) is strictly bounded real if and only if
there exists ε > 0 such that

G(s − ε/2)
min∼
[

A+ 1
2εIn B
C D

]

is bounded real. The fact that iii) implies ii) follows from Corollary 5.5
with f(x) = Ax, G(x) = B, h(x) = Cx, J(x) = D, Vs(x) = xTPx, ℓ(x) =
Lx, and W(x) = W . To show that ii) implies iii), note that if G(s) is
exponentially nonexpansive, then it follows from Theorem 5.10 with f(x) =
Ax, G(x) = B, h(x) = Cx, J(x) = D, Q = −Ip, S = 0, and R = γ2Im, that
there exist matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P positive
definite, such that (5.181)–(5.183) are satisfied.

Finally, with the linearization given above, it follows from (5.144) that
G(s) is strongly bounded real if and only if there exist a scalar ε > 0 and a
positive-definite matrix P ∈ Rn×n such that

0 ≥ ATP + PA+ εP + (BTP −C)T(D +DT)−1(BTP − C). (5.185)

Now, if there exist a scalar ε > 0 and a positive-definite matrix P ∈ Rn×n

such that (5.185) is satisfied, then there exists an n × n positive-definite
matrix R such that (5.184) is satisfied. Conversely, if there exists an n ×
n positive-definite matrix R such that (5.184) is satisfied then, with ε =
σmin(R)/σmax(P ), (5.184) implies (5.185). Hence, G(s) is strongly bounded
real if and only if there exist n× n positive-definite matrices P and R such
that (5.184) is satisfied.

As noted earlier, strict bounded realness is equivalent to G(s) asymp-
totically stable and G∗(ω)G(ω) < γ2Im, ω ∈ R. However, as in the positive
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real case, the frequency domain test for strict positive realness is subtle and
does not simply involve checking He G(ω) > 0, ω ∈ R. To see this, consider
the transfer function

G(s) =
s+ (α+ β)

(s+ α)(s + β)
, (5.186)

where α, β > 0. Noting that

He G(ω) =
αβ(α + β)

(ω2 + α2)(ω2 + β2)
, (5.187)

it follows that He G(ω) > 0, ω ∈ R. Now, it can be easily shown, using the
definition of positive realness, that G(s) is positive real. However, for ε > 0
it follows that

He G(ω − ε) =
−εω2 + (α− ε)(β − ε)(α + β − ε)

(ω2 + (α− ε)2)(ω2 − (β − ε)2)
, (5.188)

which, for sufficiently large ω, is negative, and hence, G(s−ε) is not positive
real. Hence, even though He G(ω) > 0, ω ∈ R, G(s) is not strictly positive
real. In light of the above, we characterize necessary and sufficient conditions
for a transfer function to be strictly positive real in terms of a frequency
domain test. For the statement of the next result recall that a rational
transfer function G(s) is nonsingular if and only if det G(s) is not the zero
polynomial. Equivalently, det G(s) is not zero if and only if the normal
rank of G(s) ∈ Cm×m over the field of rational functions of s is m, that is,

nrank G(s)
△
= maxs∈C rankCG(s) = m.

Theorem 5.17. Let

G(s) ∼
[

A B
C D

]

be an m×m rational transfer function and suppose that G(s) is not singular.
Then, G(s) is strictly positive real if and only if the following conditions hold:

i) No entry of G(s) has a pole in Re[s] ≥ 0.

ii) He G(ω) > 0 for all ω ∈ R.

iii) Either D+DT > 0 or bothD+DT ≥ 0 and limω→∞ ω2QT[He G(ω)]Q
> 0 for every Q ∈ Rm×(m−q), where q = rank(D + DT), such that
QT(D +DT)Q = 0.

Proof. Suppose i)–iii) hold. Let ε > 0 and note that

G(s− ε) = C((s− ε)I −A)−1B +D

= C(sI −A)(sI −A)−1(sI − (A+ εI))−1B +D

= C(sI −A)−1(sI − (A+ εI) + εI)(sI − (A+ εI))−1B +D
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= G(s) + εGε(s), (5.189)

where Gε(s)
△
= C(sI − A)−1(sI − (A + εI))−1B. Since A is Hurwitz, sI −

A is nonsingular for all s = ω and there exists ε̂ such that sI − (A +

εI) is nonsingular for all ε ∈ [0, ε̂] and for all s = ω. Hence, f(ω, ε)
△
=

maxi |λi[He Gε(ω)]| is finite for all ε ∈ [0, ε̂] and for all ω ∈ R. Since
limω→∞ f(ω, ε) = 0 for all ε ∈ [0, ε̂], it follows that there exists k1 > 0 such
that f(ω, ε) < k1 for all ε ∈ [0, ε̂] and for all ω ∈ R, and hence, −k1Im ≤
He Gε(σ) ≤ k1Im for all ε ∈ [0, ε̂] and for all s = ω. Now, if D +DT > 0,
and since He G(ω) > 0 for all ω ∈ R and limω→∞ He G(ω) = D+DT > 0,
it follows that there exists k2 > 0 such that He G(ω) ≥ k2Im > 0, ω ∈ R.
Choosing 0 < ε < min{ε̂, k2

k1
}, it follows that

He G(s− ε) = He G(s) + εHe Gε(s) ≥ k2Im − εk1Im > 0, (5.190)

for all s = ω. Hence, G(s− ε) is positive real, and thus, by definition, G(s)
is strictly positive real.

Alternatively, if det(D +DT) = 0, it follows from iii) that He G(ω)
has q eigenvalues λ(ω) satisfying limω→∞ λ(ω) > 0 and m − q eigenvalues
satisfying limω→∞ λ(ω) = 0 and limω→∞ ω2λ(ω) > 0. Hence, there exists
k3 > 0 for some ω̂ > 0 such that ω2λmin[He G(ω)] ≥ k3 for all |ω| ≥ ω̂.
Furthermore, since limω→∞ ω2Gε(ω) exists and −k1Im ≤ He Gε(ω) ≤
k1Im for all ω ∈ R and ε ∈ [0, ε̂], it follows that there exist k4 > 0 and
ω∗ > 0 such that −k4Im ≤ He Gε(ω) ≤ k4Im for all |ω| ≥ ω∗ and ε ∈ [0, ε̂].
Hence,

ω2He(ω − ε) = ω2He G(ω) + ω2εHe Gε(ω) ≥ k3Im − εk4Im,

|ω| ≥ ωm, (5.191)

where ωm = max{ω̂, ω∗}. Since He G(ω) > 0, ω ∈ R, it follows that
λmin[He G(ω)] ≥ k5 > 0 for all ω ∈ [−ωm, ωm]. Hence, using the fact that
−k1Im ≤ He Gε(ω) ≤ k1Im for all ω ∈ R it follows that He G(ω − ε) ≥
k5 − εk1 for all |ω| ≤ ωm. Now, taking 0 < ε < min{k3

k4
, k5

k1
}, it follows that

He G(ω − ε) > 0, ω ∈ R. Hence, G(s − ε) is positive real, and hence, G(s)
is strictly positive real.

Conversely, suppose G(s) is strictly positive real and let ε > 0 be such
that G(s − ε) is positive real. Note that G(s) is asymptotically stable and
positive real. Hence, He G(ω) ≥ 0, ω ∈ R, and He G(∞) = D +DT ≥ 0.
Now, let (A,B,C,D) be a minimal realization of G(s). Using Theorem 5.14,
it follows from (5.172)–(5.173) that

G(s) +G∗(s) = D +DT + C(sI −A)−1B +BT(s∗I −A)−TCT

= WTW + (WTL+BTP )(sI −A)−1B

+BT(s∗I −A)−T(PB + LTW )
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= WTW +WTL(sI −A)−1B +BT(s∗I −A)−TLTW

+BT(s∗I −A)−T[(s∗ + s)P −ATP − PA](sI −A)−1B

= WTW + +WTL(sI −A)−1B +BT(s∗I −A)−TLTW

+BT(s∗I −A)−T(LTL+ εP )(sI −A)−1B

+(s∗ + s)BT(s∗I −A)−TP (sI −A)−1B

= [W + L(sI −A)−1B]∗[W + L(sI −A)−1B]

+(2Re[s] + ε)BT(s∗I −A)−TP (sI −A)−1B. (5.192)

Now, suppose, ad absurdum, that He G(ω) is not positive definite
for all ω ∈ R. Then, for some ω = ω̂ there exists x ∈ Cm, x 6= 0,
such that x∗[He G(ω)]x = 0. In this case, it follows from (5.192) that
Bx = 0 and Wx = 0. Hence, x∗[He G(s)]x = 0 for all s ∈ C, and hence,
det[He G(s)] ≡ 0, which leads to a contradiction. Thus, He G(ω) > 0,
ω ∈ R. Now, if He G(∞) = D + DT > 0 the result is immediate.
Alternatively, let Q ∈ Rm×(m−q) be a full row rank matrix such that
QT(D +DT)Q = QTWTWQ = 0. Hence, WQ = 0 and by (5.192),

QT[He G(ω)]Q = QTBT(ωI −A)−∗[LTL+ εP ](ωI −A)−1BQ. (5.193)

Now, since He G(ω) > 0, ω ∈ R, and Q is full row rank it follows that BQ
is full column rank. Using (5.193) it follows that

lim
ω→∞

ω2QT[He G(ω)]Q = QTBT(LTL+ εP )BQ > 0, (5.194)

which proves the result.

Note that if D+DT = 0 then we can take Q = Im in Theorem 5.17. It
follows from Theorem 5.17 that a necessary and sufficient frequency domain
test for a scalar strictly positive real system is Re G(ω) > 0, ω ∈ R, if
D > 0, and Re G(ω) > 0, ω ∈ R, and limω→∞ ω2Re G(ω) > 0 if D = 0.

5.7 Absolute Stability Theory

Absolute stability theory guarantees stability of feedback systems whose
forward path contains a dynamic linear time-invariant system and whose
feedback path contains a memoryless (possibly time-varying) nonlinearity
(see Figure 5.1). These stability criteria are generally stated in terms of the
linear system and apply to every element of specified class of nonlinearities.
Hence, absolute stability theory provides sufficient conditions for robust
stability with a given class of uncertain elements.

The literature on absolute stability is extensive. Two of the most
fundamental results concerning the stability of feedback systems with memo-
ryless nonlinearities are the circle criterion, which includes the positivity and
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r = 0 u y+�
Figure 5.1 Feedback system with a static nonlinearity.

small gain theorems as special cases, and the Popov criterion. A convenient
way of distinguishing these results is to focus on the allowable class of
feedback nonlinearities. Specifically, the small gain, positivity, and circle
theorems guarantee stability for arbitrarily time-varying nonlinearities,
whereas the Popov criterion does not. This is not surprising since as will
be shown the Lyapunov function upon which the small gain, positivity, and
circle theorems are based is a fixed quadratic Lyapunov function, which
permits arbitrary time variation of the nonlinearity. Alternatively, the
Popov criterion is based on a Luré-Postnikov Lyapunov function which
explicitly depends on the feedback nonlinearity thereby restricting its
allowable time variation.

In this section, we present the absolute stability problem for feedback
systems with time-varying memoryless input nonlinearities. Specifically, the
forward path of the dynamical system is described by

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0, (5.195)

y(t) = Cx(t) +Du(t), (5.196)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl, and the feedback interconnection is
given by

u(t) = −σ(y(t), t), (5.197)

where

σ(·, ·) ∈ Φ
△
= {σ : Rl × R+ → Rm : σ(0, ·) = 0, [σ(y, t) −M1y]

T[σ(y, t)

−M2y] ≤ 0, y ∈ Rl, a.e. t ≥ 0, and σ(y, ·) is Lebesgue

measurable for all y ∈ Rl}, (5.198)

where M1,M2 ∈ Rm×l. We say that σ(·, ·) belongs to the sector [M1,M2]
if and only if σ(·, ·) ∈ Φ. Note that in the single-input, single-output case
m = l = 1, the sector condition characterizing Φ is equivalent to

M1y
2 ≤ σ(y, t)y ≤M2y

2, y ∈ R, a.e. t ≥ 0. (5.199)
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In this case, for each t ∈ R+, the graph of σ(y, t) lies in between two straight
lines of slopes M1 and M2, respectively (see Figure 5.2).�(y; t)

yM1yM2y

Figure 5.2 Sector-bounded nonlinearity σ(y, t).

Now, the absolute stability problem, also known as the Luré problem,
can be stated as follows. Given the dynamical system (5.195) and (5.196)
where (A,B,C) is minimal and given M1, M2 ∈ Rm×l, derive conditions
involving only the forward path (5.195) and (5.196) and the sector bounds
M1, M2, such that the zero solution x(t) ≡ 0 of the feedback interconnection
(5.195)–(5.197) is globally uniformly asymptotically stable for all σ(·, ·) ∈ Φ.

In an attempt to solve the absolute stability problem by examining the
stability of all linear time-invariant systems within the family of nonlinear
time-varying systems, in 1949 the Russian mathematician M. A. Aizerman
made the following conjecture.

Conjecture 5.1 (Aizerman’s Conjecture). Consider the nonlinear
dynamical system (5.195)–(5.197) with σ(y, t) = σ(y) ∈ Φ, D = 0, and
m = l = 1. If the zero solution x(t) ≡ 0 to (5.195)–(5.197) with σ(y) = Fy,
where F ∈ [M1,M2], is asymptotically stable, then the zero solution x(t) ≡ 0
to (5.195)–(5.197) is globally asymptotically stable for all σ(·) ∈ Φ.

This conjecture is false. Motivated by Aizerman’s conjecture, in 1957
R. E. Kalman made a refinement to this conjecture.

Conjecture 5.2 (Kalman’s Conjecture). Consider the nonlinear dy-
namical system (5.195)–(5.197) with σ(y, t) = σ(y), D = 0, and m = l = 1.
Furthermore, assume σ : R → R is such that M1 ≤ σ′(y) ≤M2 for all y ∈ R.
If the zero solution x(t) ≡ 0 to (5.195)–(5.197) with σ(y) = Fy, where
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F ∈ [M1,M2], is asymptotically stable, then the zero solution x(t) ≡ 0 to
(5.195)–(5.197) is globally asymptotically stable for all σ : R → R such that
M1 ≤ σ′(y) ≤M2.

Note that since σ : R → R in Kalman’s conjecture is such that
M1 ≤ σ′(y) ≤ M2, it follows from the mean value theorem that σ(·) ∈
Φ. The converse, of course, is not necessarily true. Hence, Kalman’s
conjecture considers a refined class of feedback nonlinearities as compared
to Aizerman’s conjecture. Nevertheless, Kalman’s conjecture is also false.
However, it is important to note that if the zero solution x(t) ≡ 0 to (5.195)–
(5.197) with σ(y) = Fy, where F ∈ [M1,M2], is asymptotically stable, then
the zero solution x(t) ≡ 0 to (5.195)–(5.197) is locally asymptotically stable
for all σ : R → R such that M1 ≤ σ′(y) ≤ M2. This follows as a direct
consequence of Lyapunov’s indirect method.

5.8 The Positivity Theorem and the Circle Criterion

In this section, we present sufficient conditions for an absolute stability
problem involving a dynamical system with memoryless, time-varying
feedback nonlinearities. In the case where m = l = 1, these sufficient
conditions involve inclusion/exclusion of the Nyquist plot of (5.195) and
(5.197) in/from a disk region that encompasses the critical point, and
hence, ensures stability. Appropriately, this result is known as the circle
criterion or circle theorem. First, we present the simplest version of the circle
criterion known as the positivity theorem involving a half-plane exclusion
of the Nyquist plot of (5.195) and (5.196). For this result we assume that
σ(·, ·) ∈ Φpr, where

Φpr
△
= {σ : Rl × R+ → Rm : σ(0, ·) = 0, σT(y, t)[σ(y, t) −My] ≤ 0, y ∈ Rl,

a.e. t ≥ 0, and σ(y, ·) is Lebesgue measurable for all y ∈ Rl},
(5.200)

where M ∈ Rm×l.

Theorem 5.18 (Positivity Theorem). Consider the nonlinear dynam-
ical system (5.195)–(5.197). Suppose

G(s) ∼
[

A B
C D

]

is minimal and Im +MG(s) is strictly positive real. Then the zero solution
x(t) ≡ 0 of the negative feedback interconnection of (5.195)–(5.197) is
globally exponentially stable for all σ(·, ·) ∈ Φpr.
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Proof. First note that the negative feedback interconnection of
(5.195)–(5.197) has the state space representation

ẋ(t) = Ax(t) −Bσ(y(t), t), x(0) = x0, t ≥ 0, (5.201)

y(t) = Cx(t) −Dσ(y(t), t). (5.202)

Now, it follows from Theorem 5.14 that since Im +MG(s) is strictly positive
real and minimal, there exist matrices P ∈ Rn×n, L ∈ Rp×n, andW ∈ Rp×m,
with P positive definite, and a scalar ε > 0 such that

0 = ATP + PA+ εP + LTL, (5.203)

0 = BTP −MC +WTL, (5.204)

0 = (I +MD) + (I +MD)T −WTW. (5.205)

Next, consider the Lyapunov function candidate V (x) = xTPx, where
P satisfies (5.203)–(5.205). The corresponding Lyapunov derivative is given
by

V̇ (x) = V ′(x)[Ax−Bσ(y, t)]

= 2xTP [Ax−Bσ(y, t)]

= xT(ATP + PA)x− 2σT(y, t)BTPx

= −xT(εP + LTL)x− σT(y, t)BTPx− xTPBσ(y, t). (5.206)

Now, adding and subtracting 2σT(y, t)(Im +MD)σ(y, t) and 2σT(y, t)MCx
to and from (5.206) yields

V̇ (x) = −εxTPx− xTLTLx− σT(y, t)(BTP −MC)x− xT(BTP −MC)T

·σ(y, t) − σT(y, t)[(Im +MD) + (Im +MD)T]σ(y, t) + 2σT(y, t)

·[σ(y, t) −M(Cx−Dσ(y, t))], (5.207)

or, equivalently,

V̇ (x) = −εxTPx− [Lx−Wσ(y, t)]T[Lx−Wσ(y, t)]

+2σT(y, t)[σ(y, t) −My]. (5.208)

Since σT(y, t)[σ(y, t) − My] ≤ 0 for all t ≥ 0 and σ(·, ·) ∈ Φpr, it

follows that V̇ (x) ≤ −εV (x), x ∈ Rn, which shows that the zero solution
x(t) ≡ 0 of the negative feedback interconnection of (5.195)–(5.197) is
globally exponentially stable for all σ(·, ·) ∈ Φpr.

In the single-input, single-output case, the frequency domain condition
in Theorem 5.18 has an interesting geometric interpretation in the Nyquist
plane. Specifically, setting G(ω) = x+ y and requiring that 1 +MG(s) be
strictly positive real if follows that

x = Re G(ω) > − 1
M , ω ∈ R, (5.209)
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which is equivalent to the graphical condition that the Nyquist plot of G(ω)
lies to the right of the vertical line defined by Re[s] = −1/M .

Example 5.7. Consider the linear dynamical system G(s) = 1
s(s+1)2

with a saturation feedback nonlinearity belonging to the sector [0,M ] shown
in Figure 5.3. Note that limω→0 |G(ω)| = ∞, limω→0 ∠G(ω) = −90◦,1s(s+ 1)2 y

y�(y)
r = 0 +�

Figure 5.3 Feedback connection with saturation nonlinearity.

limω→∞ |G(ω)| = 0, and limω→∞ ∠G(ω) = −270◦. Furthermore, the real
axis crossing of the Nyquist plot of G(ω) corresponds to ω = 1 rad/sec, and
hence, Re[G(ω)]|ω=1 = −1/2. Also note that Re[G(ω)]|ω=0 = −2. Hence,
the Nyquist plot of G(ω) lies to the right of the vertical line Re[s] = −2 (see
Figure 5.4). Thus, it follows from the positivity theorem that the system is
globally exponentially stable for all nonlinearities in the sector [0, 0.5]. △ImG

ReG�12�2
Figure 5.4 Nyquist plot for Example 5.7.

The positivity theorem applies to the case where the time-varying
feedback nonlinearity belongs to the sector Φpr. Since in this case σ(y, t) ≡ 0
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is an admissible feedback nonlinearity, it is clear that a necessary condition
for guaranteeing absolute stability is that A be Hurwitz. Next, using loop
shifting techniques, we consider the more general case where the feedback
nonlinearity belongs to the general sector Φ. In this case, the restriction on
A being Hurwitz can be removed. To consider double sector nonlinearities
characterized by Φ note that if σ(·, ·) ∈ Φ, then the shifted nonlinearity

σs(y, t)
△
= σ(y, t) − M1(y) belongs to Φpr with M

△
= M2 − M1. Hence,

transforming the forward path from G(s) to Gs(s)
△
= (I + G(s)M1)

−1G(s)
with feedback nonlinearity σs(·, ·) ∈ Φpr gives an equivalent representation
to the dynamical system G(s) with feedback nonlinearity σ(·, ·) ∈ Φ. This
equivalence is shown in Figure 5.5. Thus, the following result is a direct
consequence of Theorem 5.18.

G(s)
�(�; �)

+� G(s)M1M1�(�; �)
++ ��

+�
Figure 5.5 Equivalence via loop shifting.

Corollary 5.8 (Circle Theorem). Consider the nonlinear dynamical
system (5.195)–(5.197). Suppose

G(s) ∼
[

A B
C D

]

is minimal, det[Im + M1G(s)] 6= 0, Re[s] ≥ 0, and [Im + M2G(s)][Im +
M1G(s)]−1 is strictly positive real. Then, the zero solution x(t) ≡ 0
of the negative feedback interconnection of (5.195)–(5.197) is globally
exponentially stable for all σ(·, ·) ∈ Φ.

Proof. It need only be shown that the transformed system satisfies
the hypotheses of Theorem 5.18. First, it follows from simple algebraic
manipulations that [I + M2G(s)][I + M1G(s)]−1 = I + (M2 − M1)(I +
G(s)M1)

−1G(s) = I+MGs(s). Hence, by assumption, I+MGs(s) is strictly
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positive real. In addition, the realization of I +MGs(s) is given by

I +MGs(s) ∼
[

A−B(I +M1D)−1M1C B(I +M1D)−1

M(I +DM1)
−1C I +M(I +DM1)

−1D

]

,

(5.210)
which is minimal if (A,B,C) is minimal. Hence, all the conditions of
Theorem 5.18 are satisfied for the transformed system Gs(s) with feedback
nonlinearities σs(·, ·) ∈ Φpr.

Corollary 5.8 is known as the multivariable circle theorem or circle
criterion. Note that in the case where M1 = 0, Corollary 5.8 specializes to
Theorem 5.18. Alternatively, in the case where M1 = −γ−1I and M2 =
γ−1I, where γ > 0, Corollary 5.8 reduces to the classical small gain theorem
which states that if G is gain bounded, that is, |||G(s)|||∞ < γ, then the
zero solution of the feedback interconnection of G with a gain bounded
nonlinearity ‖σ(y, t)‖2 ≤ γ−1‖y‖2, y ∈ Rl, almost everywhere t ≥ 0, is
uniformly asymptotically stable. To see this, first note that in the case
where M1 = −γ−1I and M2 = γ−1I, Φ specializes to

Φbr
△
= {σ : Rl × R+ → Rm : σ(0, ·) = 0, ‖σ(y, t)‖2 ≤ γ−1‖y‖2, y ∈ Rl,

a.e. t ≥ 0, and σ(y, ·) is Lebesgue measurable for all y ∈ Rl}.
(5.211)

Furthermore, the strict positive real condition in Corollary 5.8 implies

[I + γ−1G(ω)][I − γ−1G(ω)]−1 + [I − γ−1G∗(ω)]−1[I + γ−1G∗(ω)] > 0,

ω ∈ R, (5.212)

or, equivalently, forming [I − γ−1G∗(ω)](5.212)[I − γ−1G(ω)] yields

G∗(ω)G(ω) < γ2I, ω ∈ R,

λ1/2
max[G

∗(ω)G(ω)] < γ, ω ∈ R,

σmax[G(ω)] < γ, ω ∈ R,

sup
ω∈R

σmax[G(ω)] < γ,

|||G(s)|||∞ < γ. (5.213)

In the scalar case, the circle criterion provides a very interesting and
elegant graphical interpretation in terms of an inclusion/exclusion of the
Nyquist plot of G(s) in/from a disk region in the Nyquist plane. To arrive
at this result, let M1 6= 0, M2 6= 0, and M1 < M2, and note that setting
G(ω) = x + y, the strict positive real condition in Corollary 5.8 implies
that

Re

[

G(ω)

1 +M1G(ω)

]

+
1

M2 −M1
> 0, ω ∈ R, (5.214)
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or, equivalently,

(1 +M2x)(1 +M1x) +M1M2y
2

(1 +M1x)2 +M2
1 y

2
> 0, ω ∈ R. (5.215)

Next, suppose A in the realization of G(s) has ν eigenvalues with
positive real parts. Then, it follows from the Nyquist criterion [445] that
Gs(s) is asymptotically stable if and only if the number of counterclockwise
encirclements of the −1/M1 +0 point of the image of the clockwise Nyquist
contour Γ under the mapping G(s) equals the number of unstable poles of
the loop gain transfer function M1G(s). Hence, it follows from Corollary
5.8 that the zero solution x(t) ≡ 0 of the negative feedback interconnection
of (5.195)–(5.197) is globally exponentially stable for all σ(·, ·) ∈ Φ if the
Nyquist plot of G(s) does not intersect the point −1/M1 + 0 and encircles
it ν times counterclockwise, and (5.214) holds. However, (5.214) holds if
and only if

(x+ 1/M1)(x+ 1/M2) + y2 > 0, ω ∈ R, (5.216)

for M1M2 > 0, and if and only if

(x+ 1/M1)(x+ 1/M2) + y2 < 0, ω ∈ R, (5.217)

for M1M2 < 0. Hence, (5.214) holds if and only if for all ω ∈ R, G(ω)
lies outside the disk D(M1,M2) centered at (M1 +M2)/(2M1M2 + 0) with
radius (M2 −M1)/2|M2M1| in the case where M1M2 > 0, and lies in the
interior of the disk D(M1,M2) in the case where M1M2 < 0. In the former
case, if the Nyquist plot does not enter the disk D(M1,M2) and encircles
the point −1/M1 + 0 ν times counterclockwise, then the Nyquist plot must
encircle the disk D(M1,M2) ν times and vice versa. In light of the above
the following theorem is immediate.

Theorem 5.19 (Circle Criterion). Consider the nonlinear dynamical
system (5.195)–(5.197) with m = l = 1 and σ(·, ·) ∈ Φ. Furthermore,
suppose A has ν eigenvalues with positive real parts. Then, the zero
solution x(t) ≡ 0 of the negative feedback interconnection of (5.195)–(5.197)
is globally exponentially stable for all σ(·, ·) ∈ Φ if one of the following
conditions is satisfied, as appropriate:

i) If 0 < M1 < M2, the Nyquist plot of G(ω) does not enter the disk
D(M1,M2) and encircles it ν times counterclockwise.

ii) If 0 = M1 < M2, A is Hurwitz, and the Nyquist plot of G(ω) lies in
the half plane {s ∈ C : Re[s] > −1/M2}.

iii) If M1 < 0 < M2, A is Hurwitz, and the Nyquist plot of G(ω) lies in
the interior of the disk D(M1,M2).
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iv) If M1 < M2 ≤ 0, replace G(·) by −G(·), M1 by −M2, M2 by −M1,
and apply i) or ii) as appropriate.

It is interesting to note that if M1 = M2, then the critical disk
D(M1,M2) collapses to the critical point −1/M1 + 0, and hence, the circle
criterion reduces to the sufficiency portion of the Nyquist criterion. Figure
5.6 shows the five different cases addressed in Theorem 5.19 along with the
associated forbidden regions in the Nyquist plane.

Example 5.8. Consider the linear dynamical system

G(s) =
s+ 1

s(0.1s + 1)2(s − 1)

with feedback nonlinearity shown in Figure 5.7. The Nyquist plot of G(ω)
is shown in Figure 5.8. Since G(s) has one pole in the open right half
plane we use i) of the circle criterion. Specifically, we need to construct a
disk D(M1,M2) such that the Nyquist plot does not enter D(M1,M2) and
encircles it once counterclockwise. Inspecting the Nyquist plot of G(ω)
shows that the disk D(1.85, 3.34) is encircled once in the counterclockwise
direction by the left lobe of the Nyquist plot. Hence, we conclude that the
system is exponentially stable for the nonlinearity shown in Figure 5.7 with
slopes M1 = 1.85 and M2 = 3.34. △

5.9 The Popov Criterion

In this section, we present another absolute stability criterion known as
the Popov criterion. Although often discussed in juxtaposition with the
circle criterion, the Popov criterion is fundamentally distinct from the circle
criterion in regard to its Lyapunov function foundation. Whereas the small
gain, positivity, and circle results are based upon fixed quadratic Lyapunov
functions, the Popov result is based upon a Lyapunov function that is a
function of the sector-bounded nonlinearity. In particular, in the single-input
single-output case, the Popov criterion is based upon the Luré-Postnikov
Lyapunov function having the form

V (x) = xTPx+N

∫ y

0
σ(s)ds, (5.218)

where P > 0, N > 0, y = Cx, and σ(·) is a scalar memoryless time-invariant
nonlinearity belonging to the sector [0,M ]. Thus, in effect, the Popov result
guarantees stability by means of a family of Lyapunov functions and, hence,
does not in general apply to time-varying nonlinearities.

To present the multivariable Popov criterion, consider the dynamical
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Figure 5.6 Sector nonlinearities and forbidden Nyquist regions.
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Figure 5.7 Feedback connection with multislope nonlinearity.

system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0, (5.219)

y(t) = Cx(t), (5.220)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rm, with feedback nonlinearity

u(t) = −σ(y(t)), (5.221)

where

σ(·) ∈ ΦP
△
= {σ : Rm → Rm : σ(0) = 0, σT(y)[σ(y) −My] ≤ 0, y ∈ Rm,

and σ(y) = [σ1(y1), σ2(y2), . . . , σm(ym)]T}, (5.222)

where M ∈ Rm×m and M > 0. Note that the components of σ are assumed
to be decoupled. If M = diag[M1, . . . ,Mm], Mi > 0, i = 1, . . . ,m, then the
sector condition characterizing ΦP is implied by the scalar sector conditions

0 ≤ σi(yi)yi ≤Miy
2
i , yi ∈ R, i = 1, . . . ,m, (5.223)

where yi ∈ R denotes the ith component of y ∈ Rm.

Theorem 5.20 (Popov Criterion). Consider the nonlinear dynamical
system (5.219)–(5.221). Suppose

G(s) ∼
[

A B
C 0

]

is minimal, and assume there exists N = diag[N1,N2, . . . ,Nm], Ni ≥ 0,
i = 1, . . . ,m, such that Im +M(Im + Ns)G(s) is strictly positive real and
det(Im + λN) 6= 0, where M = diag[M1,M2, . . . ,Mm] > 0 and λ ∈ spec(A).
Then, the zero solution x(t) ≡ 0 of the negative feedback interconnection of
(5.219)–(5.221) is globally asymptotically stable for all σ(·) ∈ ΦP.

Proof. First note that the negative feedback interconnection of
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Figure 5.8 Nyquist plot for Example 5.8.

(5.219)–(5.221) has the state space representation

ẋ(t) = Ax(t) −Bσ(y(t)), x(0) = x0, t ≥ 0, (5.224)

y(t) = Cx(t). (5.225)

Next, noting that (I + Ns)G(s) has a differentiation effect on the plant
transfer function G(s) it follows that the realization of Im +M(I+Ns)G(s)
is given by

Im +M(I +Ns)G(s) ∼
[

A B
MC +MNCA Im +MNCB

]

. (5.226)

Since det(Im + λN) 6= 0, λ ∈ spec(A), it follows that the realization given
in (5.226) is minimal. To see this, note that (A,B) is controllable by
assumption. To show that (A,MC+MNCA) is observable or, equivalently,
(A,C + NCA) is observable since M > 0, assume, ad absurdum, that
(A,C + NCA) is not observable. In this case, since det(Im + λN) 6= 0,
λ ∈ spec(A), it follows that there exists η ∈ Cm, η 6= 0, such that
Aη = λη and Cη = 0, which implies that (A,C) is not observable, and
hence, contradicts the minimality assumption of G(s).

Next, it follows from Theorem 5.14 that if Im + M(Im + Ns)G(s) is
strictly positive real, then there exists matrices P ∈ Rn×n, L ∈ Rp×n, and
W ∈ Rp×m, with P positive definite, and a scalar ε > 0 such that

0 = ATP + PA+ εP + LTL, (5.227)
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0 = BTP − (MC +MNCA) +WTL, (5.228)

0 = (Im +MNCB) + (Im +MNCB)T −WTW. (5.229)

Now, consider the Luré-Postnikov Lyapunov function candidate

V (x) = xTPx+ 2
m
∑

i=1

∫ yi

0
σi(s)MiNids, (5.230)

where P satisfies (5.227)–(5.229). Note that since P is positive definite and
σ(·) ∈ ΦP, V (x) is positive definite for all nonzero x ∈ Rn.

Using Leibnitz’s integral rule,1 the corresponding Lyapunov derivative
of V (·) is given by

V̇ (x) = 2xTP [Ax−Bσ(y)] + 2
m
∑

i=1

σi(yi)MiNiẏi, (5.231)

or, equivalently, using (5.227),

V̇ (x) = −xT(εP + LTL)x− 2σT(y)BTPx+ 2σT(y)MNẏ. (5.232)

Next, since ẏ = Cẋ = CAx− CBσ(y), (5.232) becomes

V̇ (x) = −εxTPx− xTLTLx− σT(y)(BTP −MNCA)x

−xT(BTP −MNCA)Tσ(y) − σT(y)[MNCB +BTCTNM ]σ(y).

(5.233)

Adding and subtracting 2σT(y)MCx and 2σT(y)σ(y) to and from (5.233)
and using (5.228) and (5.229) yields

V̇ (x) = −εxTPx−[Lx−Wσ(y)]T[Lx−Wσ(y)]+2σT(y)[σ(y)−My]. (5.234)

Since σT(y)[σ(y) −My] ≤ 0 for all σ(·) ∈ ΦP, it follows that V̇ (x) < 0,
x ∈ Rn, x 6= 0, which shows that the zero solution x(t) ≡ 0 of the negative
feedback interconnection (5.219)–(5.221) is globally asymptotically stable
for all σ(·) ∈ ΦP

As in the positivity case, the Popov criterion also has an interesting
geometric interpretation in the Nyquist plane and in a modified plane called
the Popov plane. To see this, let m = 1, set G(ω) = x + y, and require
that 1 +M(1 +Ns)G(s) be strictly positive real. In this case, we obtain

ωy <
1

N
x+

1

NM
, ω ∈ R. (5.235)

1Recall that for f : R2 → R, g : R → R, and h : R → R, Leibnitz’s integral rule is

d

dt

∫ h(t)

g(t)
f(t, s)ds =

∫ h(t)

g(t)

∂

∂t
f(t, s)ds + f(t, h(t))

dh(t)

dt
− f(t, g(t))

dg(t)

dt
,

whenever the above integrals exist.
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In the Nyquist plane, (5.235) requires the Nyquist plot at each ω ∈ R

be to the right of a rotating line that is a linear function of ω ∈ R.
Alternatively, (5.235) is a frequency domain stability criterion with a
graphical interpretation in a modified Nyquist plane, known as the Popov
plane involving Re G and ωIm G, in terms of a fixed straight line (Popov
line) with real axis intercept −1/M and slope 1/N (see Figure 5.9). It is

ω Im G

Re G− 1
M

Popov slope = − 1
N

Popov line

Figure 5.9 Popov plot.

interesting to note that, unlike the Nyquist plot, the Popov plot is an odd
plot, and hence, we need only consider ω ∈ [0,∞) in generating the plot.
Furthermore, setting N = 0 the Popov criterion collapses to the positivity
theorem. Finally, we note that as for the positivity theorem, the restriction
on A being asymptotically stable can be removed using the loop sifting
techniques as discussed in Section 5.8. However, in this case the resulting
frequency domain stability conditions do not provide a simple graphical test
as in the case of the single sector Popov criterion. See [331] and Problem
5.59 for further details.

Example 5.9. Consider the linear dynamical system with the satura-
tion feedback nonlinearity addressed in Example 5.7. Figure 5.10 shows the
Popov plot of G(ω). Note that the Popov plot lies to the right of any line
of slope 1/N ≤ 0.5 that intersects the real axis to the left of −1/M = −0.5.
Hence, the maximum possible value of M is 2, which is substantially less
conservative than the result arrived at by the positivity theorem in Example
5.7. △

The strict positive real conditions appearing in Theorem 5.20 can be
written as Im + MZ(s)G(s), where Z(s) = ZP(s)

△
= Im + Ns is known as

the stability Popov multiplier . Further refinements of the absolute stability
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Figure 5.10 Popov plot for Example 5.9.

Popov criterion can be developed by considering extended Luré-Postnikov
Lyapunov functions. Specifically, absolute stability criteria can be derived
that extend the Popov criterion for sector-bounded, time-invariant nonlinear
functions to monotonic and odd monotonic nonlinearities. In particular,
suitable positive real stability multipliers Z(s) can be constructed as driving-
point impedances of passive electrical networks involving resistor-inductor
(RL), resistor-capacitor (RC), and inductor-capacitor (LC) combinations
which exhibit interlacing pole-zero patterns on the negative real axis and
imaginary axis [71, 328, 330, 479]. These stability multipliers effectively
place less restrictive conditions on the linear part of the system and more
restrictive conditions on the allowable class of feedback nonlinearities. In
addition, the stability criteria for these refined class of nonlinearities are
predicated on extended Luré-Postnikov Lyapunov functions involving real
signals obtained by passing the system outputs (y = Cx) through a parallel
bank of decoupled low pass filters with specified time constants and positive
gains corresponding to the RL, RC, and LC networks. However, as a result
of the more involved multiplier construction, the resulting frequency domain
conditions do not provide a simple graphical test involving fixed shapes in
the Nyquist and Popov planes as in the case of the circle and Popov criteria.
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5.10 Problems

Problem 5.1. Let H(s) ∈ Cm×m. Suppose |||H(s)|||∞ ≤ γ, where γ >
0, and det[I − γ−1H(s)] 6= 0, Re[s] ≥ 0. Show that

G(s) = [I + γ−1H(s)][I − γ−1H(s)]−1, (5.236)

is positive real. Conversely, show that if G(s) ∈ Cm×m is positive real, then

γ−1H(s) = [G(s) − I][G(s) + I]−1, (5.237)

is bounded real (i.e., |||H(s)|||∞ ≤ γ).

Problem 5.2. Consider the nonlinear dynamical system G given by
(5.75) and (5.76). Show that:

i) If G is dissipative with respect to the supply rate r(u, y) = uTy−εyTy,
where ε > 0, then αG is dissipative with respect to the supply rate
r(u, y) = 1√

α
uTy − ε

αy
Ty, where α > 0. Here, αG denotes a nonlinear

system with output yα =
√
αy, where y is the output of G.

ii) If G is dissipative with respect to the supply rate r(u, y) = uTy−εuTu,
where ε > 0, then αG is dissipative with respect to the supply rate
r(u, y) =

√
αuTy − αεuTu, where α > 0.

Problem 5.3. The nonlinear dynamical system G given by (5.7) and
(5.8) is cyclo-dissipative (respectively, exponentially cyclo-dissipative) with
respect to the supply rate r(u, y) if (5.9) (respectively, (5.10)) is satisfied for
all t ≥ t0 and all u(·) ∈ U with x(t0) = x(t) = 0. In this case, Va(x0)
given by (5.11) (respectively, (5.12)) is called the virtual available storage
(respectively, virtual available exponential storage) of G. Show that G is
cyclo-dissipative (respectively, exponentially cyclo-dissipative) with respect
to the supply rate r(u, y) if and only if Va(x) is finite for all x0 ∈ D and
Va(0) = 0.

Problem 5.4. A function Vs : D → R is a virtual storage function
(respectively, virtual exponential storage function) of the nonlinear dynam-
ical system G given by (5.7) and (5.8) if it satisfies Vs(0) = 0 and (5.16)
(respectively, (5.17)). Show that if the virtual available storage (respectively,
virtual available exponential storage) Va(x0) is finite for all x0 ∈ D and
Va(0) = 0, then Va(·) is a virtual storage function (respectively, virtual
exponential storage function) for G. Furthermore, show that every virtual
storage function (respectively, virtual exponential storage function) Vs(·) for
G satisfies Va(x) ≤ Vs(x), x ∈ D.

Problem 5.5. The nonlinear dynamical system G given by (5.7) and
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(5.8) is cyclo-lossless with respect to the supply rate r(u, y) if (5.9) is satisfied
as an equality for all t ≥ t0 and all u(·) ∈ U with x(t0) = x(t) = 0. Assume G
is completely reachable to and from the origin. Show that G is cyclo-lossless
with respect to the supply rate r(u, y) if and only if there exists a virtual
storage function Vs(x), x ∈ D, satisfying (5.16) as an equality. Furthermore,
show that if G is cyclo-lossless with respect to the supply rate r(u, y), then
the virtual storage function Vs(x), x ∈ D, is unique and is given by (5.44)
where x(t), t ≥ 0, is the solution to (5.7) with admissible u(·) ∈ U , t ≥ 0,
x(−T ) = 0, x(T ) = 0, and x(0) = x0, x0 ∈ D.

Problem 5.6. Let Q ∈ Sl, S ∈ Rl×m, R ∈ Sm, and let G given
by (5.75) and (5.76) be zero-state observable and completely reachable.
Furthermore, assume that all virtual storage functions (see Problem 5.4)
of G are continuously differentiable. Show that G is cyclo-dissipative (see
Problem 5.3) with respect to the quadratic supply rate r(u, y) = yTQy
+2yTSu+ uTRu if and only if there exist functions Vs : Rn → R, ℓ : Rn →
Rp, and W : Rn → Rp×m such that Vs(·) is continuously differentiable,
Vs(0) = 0, and, for all x ∈ Rn, (5.77)–(5.79) hold.

Problem 5.7. Let Q ∈ Sl, S ∈ Rl×m, R ∈ Sm, and let G given by (5.75)
and (5.76) be zero-state observable and completely reachable. Furthermore,
assume that all virtual exponential storage functions (see Problem 5.4)
of G are continuously differentiable. Show that G is exponentially cyclo-
dissipative (see Problem 5.3) with respect to the quadratic supply rate
r(u, y) = yTQy +2yTSu + uTRu if and only if there exist functions
Vs : Rn → R, ℓ : Rn → Rp, W : Rn → Rp×m, and a scalar ε > 0 such
that Vs(·) is continuously differentiable, Vs(0) = 0, and, for all x ∈ Rn,
(5.87)–(5.89) hold.

Problem 5.8. Consider the nonlinear dynamical system G given by
(5.7) and (5.8). Define the minimum input energy of G by

Ve(x0) = inf
u(·), T≥0

∫ T

0
r(u(t), y(t))dt, (5.238)

where x(t), t ≥ 0, is the solution to (5.7) with x(0) = 0 and x(T ) = x0. The
infimum in (5.238) is taken over all time t ≥ 0 and all admissible inputs u(·)
which drive G from x(0) = 0 to x(T ) = x0. It follows from (5.238) that the
minimum input energy is the minimum energy it takes to drive G from the
origin to a given state x0. Assuming G is completely reachable, show that
Va(x0) + Ve(x0) = Vr(x0).

Problem 5.9. The nonlinear dynamical system (5.75) and (5.76) is
nonnegative if for every x(0) ∈ R

n
+ and u(t) ≥≥ 0, t ≥ 0, the solution

x(t), t ≥ 0, to (5.75) and the output y(t), t ≥ 0, are nonnegative, that is,
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x(t) ≥≥ 0, t ≥ 0, and y(t) ≥≥ 0, t ≥ 0. Consider the nonlinear dynamical
system G given by (5.75) and (5.76). Show that if f : D → Rn is essentially
nonnegative (see Problem 3.8), h(x) ≥≥ 0, G(x) ≥≥ 0, and J(x) ≥≥ 0,
x ∈ R

n
+, then G is nonnegative.

Problem 5.10. Let q ∈ Rl and r ∈ Rm. Consider the nonlinear
nonnegative dynamical system G given by (5.75) and (5.76) where f : D →
Rn is essentially nonnegative (see Problem 3.8), G(x) ≥≥ 0, h(x) ≥≥ 0, and
J(x) ≥≥ 0, x ∈ R

n
+. Show that G is exponentially dissipative (respectively,

dissipative) with respect to the supply rate s(u, y) = qTy + rTu if and only
if there exist functions Vs : R

n
+ → R+, ℓ : R

n
+ → R+, and W : R

n
+ → R

m
+ ,

and a scalar ε > 0 (respectively, ε = 0) such that Vs(·) is continuously
differentiable and nonnegative definite, Vs(0) = 0, and for all x ∈ R

n
+,

0 = V ′
s (x)f(x) + εVs(x) − qTh(x) + ℓ(x), (5.239)

0 = V ′
s (x)G(x) − qTJ(x) − rT + WT(x). (5.240)

(Hint: The definition of dissipativity and exponential dissipativity should
be modified to reflect the fact that x0 ∈ R

n
+, and u(t), t ≥ 0, and y(t), t ≥ 0,

are nonnegative.)

Problem 5.11. Let q ∈ Rl and r ∈ Rm and consider the nonlinear
nonnegative dynamical system G (see Problem 5.9) given by (5.75) and (5.76)
where f : D → Rn is essentially nonnegative (see Problem 3.8), G(x) ≥≥ 0,
h(x) ≥≥ 0, and J(x) ≥≥ 0, x ∈ R

n
+. Suppose G is exponentially dissipative

(respectively, dissipative) with respect to the supply rate s(u, y) = qTy+rTu.
Show that there exist p ∈ R

n
+, l ∈ R

n
+, and w ∈ R

m
+ , and a scalar ε > 0

(respectively, ε = 0) such that

0 = ATp+ εp− CTq + l, (5.241)

0 = BTp−DTq − r + w, (5.242)

where

A =
∂f

∂x

∣

∣

∣

∣

x=0

, B = G(0), C =
∂h

∂x

∣

∣

∣

∣

x=0

, D = J(0). (5.243)

If, in addition, (A,C) is observable, show that p >> 0.

Problem 5.12. Let q ∈ Rl and r ∈ Rm. Consider the nonnegative
dynamical system G (see Problem 5.9) given by (5.160) and (5.161) where
A is essentially nonnegative (see Problem 3.7), B ≥≥ 0, C ≥≥ 0, and
D ≥≥ 0. Show that G is exponentially dissipative (respectively, dissipative)
with respect to the supply rate s(u, y) = qTy+ rTu if and only if there exist
p ∈ R

n
+, l ∈ R

n
+, and w ∈ R

m
+ , and a scalar ε > 0 (respectively, ε = 0) such
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that

0 = ATp+ εp− CTq + l, (5.244)

0 = BTp−DTq − r + w. (5.245)

(Hint: Use Problems 5.10 and 5.11 to show this result.)

Problem 5.13. Consider the controlled rigid spacecraft given in
Problem 3.15. Show that this system is a port-controlled Hamiltonian
dynamical system. What does the output have to be in this case?

Problem 5.14. Consider the dynamical system

G(s)
min∼
[

A B
C D

]

with input u(·) ∈ U and output y(·) ∈ Y. Let Q ∈ Rl×l, R ∈ Rm×m, and
S ∈ Rl×m be such that Q and R are symmetric. Show that the following
statements are equivalent:

i) G∗(s)QG(s) +G∗(s)S + STG(s) +R ≥ 0, Re [s] > 0.

ii)
∫ T
0 [yT(t)Qy(t) + 2yT(t)Su(t) + uT(t)Ru(t)]dt ≥ 0, T ≥ 0.

iii) There exist matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P
positive definite, such that (5.145)–(5.147) are satisfied.

If, alternatively, R + STD +DTS +DTQD > 0, show that i) holds if and
only if there exists an n× n positive-definite matrix P such that

0 ≥ ATP + PA− CTQC + [BTP − (QD + S)TC]T(R + STD +DTS

+DTQD)−1[BTP − (QD + S)TC]. (5.246)

Problem 5.15. Consider the dynamical system

G(s)
min∼
[

A B
C D

]

.

Let Q ∈ Rl×l, R ∈ Rm×m, and S ∈ Rl×m be such that Q and R are
symmetric, Q > 0, and R < STQ−1S. Show that the following statements
are equivalent:

i) G∗(s)QG(s) +G∗(s)S + STG(s) +R ≥ 0, Re [s] > 0.

ii) L1/2[Q1/2G(s) +Q−1/2S]−1 is bounded real, where L
△
= STQ−1S −R.

iii) [QG(s) + S −Q1/2L1/2][QG(s) + S +Q1/2L1/2]−1Q is positive real.
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Problem 5.16. Consider the dynamical system

G(s)
min∼
[

A B
C D

]

.

Let Q ∈ Rl×l, R ∈ Rm×m, and S ∈ Rl×m be such that Q and R are
symmetric, Q > 0, and R + STQ−1S > 0. Show that the following
statements are equivalent:

i) −G∗(s)QG(s) +G∗(s)S + STG(s) +R ≥ 0, Re [s] > 0.

ii) [Q1/2G(s) −Q−1/2S]L−1/2 is bounded real, where L
△
= R+ STQ−1S.

iii) −[QG(s) − S −Q1/2L1/2][QG(s) − S +Q1/2L1/2]−1Q is positive real.

Problem 5.17. Consider the dynamical system

G(s)
min∼
[

A B
C D

]

,

let Q ∈ Rl×l, R ∈ Rm×m, and S ∈ Rl×m be such that Q and R are
symmetric, det R 6= 0, and either one of the following assumptions is
satisfied:

i) A has no eigenvalues on the ω-axis.

ii) Q is sign definite, that is, Q ≥ 0 or Q ≤ 0, (A,B) has no uncontrollable
eigenvalues on the ω-axis, and (A,C) has no unobservable eigenvalues
on the ω-axis.

Show that the following statements are equivalent:

i) G∗(ω̂)QG(ω̂) +G∗(ω̂)S + STG(ω̂) +R is singular for some ω̂ ∈ R.

ii) The Hamiltonian matrix

H =

[

A − BR̂−1(QD + S)TC −BR̂−1BT

−[CQCT − CT(QD + S)R̂−1(QD + S)TC] −[A − BR̂−1(QD + S)TC]T

]

,

(5.247)

where R̂ = R+ STD +DTS +DTQD, has no eigenvalues at ω̂.

Problem 5.18. Consider the dynamical system

G(s)
min∼
[

A B
C D

]

,

let Q ∈ Rl×l, R ∈ Rm×m, and S ∈ Rl×m be such that Q and R are
symmetric, R > 0, and either one of the assumptions i) or ii) of Problem
5.17 is satisfied. Show that the following statements are equivalent:
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i) G∗(ω)QG(ω) +G∗(ω)S + STG(ω) +R > 0, ω ∈ R.

ii) The Hamiltonian matrix (5.247) has no eigenvalue on the ω-axis.

If, in addition, (A,B) is stabilizable show that:

iii) There exists a unique P = PT such that

0 = [A−BR̂−1(QD + S)TC]TP + P [A−BR̂−1(QD + S)TC]

+PBR̂−1BTP − CTQC + CT(QD + S)R̂−1(QD + S)TC,

(5.248)

and spec(A − BR̂−1(QD + S)TC + BR̂−1BTP ) ⊂ C−, where R̂
△
=

R+ STD +DTS +DTQD, if and only if i) holds.

Finally, show that the following statements are also equivalent:

iv) G∗(ω)QG(ω) +G∗(ω)S + STG(ω)R ≥ 0, ω ∈ R.

v) There exists a unique P = PT such that (5.248) holds and spec(A −
BR̂−1(QD + S)TC +BR̂−1BTP ) ⊂ C−.

Problem 5.19. Let γ > 0,

G(s) ∼
[

A B
C D

]

∈ RH∞,

and define

H △
=

[

A+BR̂−1DTC BR̂−1BT

−CT(I +DR̂−1DT)C −(A+BR̂−1DTC)T

]

, (5.249)

where R̂
△
= γ2Im−DTD. Show that the following statements are equivalent:

i) |||G(s)|||∞ < γ.

ii) σmax(D) < γ and H has no eigenvalues on the ω-axis.

iii) There exists P ≥ 0 such that

0 = ATP +PA+CTC+ (BTP +DTC)TR̂−1(BTP +DTC). (5.250)

If, in addition, (A,C) is observable show that P > 0.
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Problem 5.20. Let α ∈ (0, π], let G(s) be a scalar transfer function,
and let q, r ∈ R be such that q, r < 0 and qr = cos2 α. Show that if

qG∗(ω)G(ω) +G(ω) +G∗(ω) + r ≥ 0, ω ∈ R, (5.251)

then ∠G(ω) ∈ [−α,α], ω ∈ R.

Problem 5.21. Let α ∈ (0, π] and let

G(s) ∼
[

A B
C D

]

be a scalar transfer function, where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, and
D ∈ R. Show that if there exist a scalar µ > 0 and matrices P ∈ Sn,
L ∈ Rp×n, and W ∈ Rp×1 such that

0 = ATP + PA+ µCTC + LTL, (5.252)

0 = BTP + (µD − λ)C +WTL, (5.253)

0 = 2D − µD2 − 1
µ cos2 α−WTW, (5.254)

then ∠G(ω) ∈ [−α,α], ω ∈ R.

Problem 5.22. Prove Theorem 5.7.

Problem 5.23. Prove Theorem 5.8.

Problem 5.24. Prove Theorem 5.10.

Problem 5.25. Consider the dynamical system G given by (5.75) and
(5.76) with f(x) = Ax, G(x) = B, h(x) = Cx, and J(x) ≡ 0. Assume G is
passive. Show that G is stabilizable if and only if G is detectable.

Problem 5.26. Consider the dynamical system G given by (5.75) and
(5.76) with f(x) = Ax, G(x) = B, h(x) = Cx, and J(x) = D. Assume G is
minimal and passive with storage function Vs(x), x ∈ Rn. Show that there
exists a constant ε > 0 such that Vs(x) > ε‖x‖2 + infx∈Rn Vs(x), x ∈ Rn.

Problem 5.27. Consider the dynamical system G given by (5.75) and
(5.76) with f(x) = Ax, G(x) = B, h(x) = Cx, and J(x) = D. Show
that if G is passive, then the available storage is given by Va(x) = xTPx,
where P = limε→0 Pε and where Pε is the nonnegative-definite solution to
the Riccati equation

0 = ATPε + PεA+ (BTPε − C)T(D +DT + εI)−1(BTPε − C). (5.255)

Problem 5.28. Consider the dynamical system G given by (5.75) and
(5.76) with f(x) = Ax, G(x) = B, h(x) = Cx, and J(x) = D. Assume G
is minimal and passive. Show that the available storage is given by Va(x) =
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xTP−x and the required supply is given by Vr(x) = xTP+x, where P−
and P+ are the minimal and maximal solutions to (5.255), respectively.
Furthermore, show that there exist α > 0 and β > 0 such that

α‖x‖2 ≤ Va(x) ≤ Vs(x) ≤ Vr(x) ≤ β‖x‖2, x ∈ Rn. (5.256)

Problem 5.29. Consider the nonlinear dynamical system G given by
(5.75) and (5.76), and assume that G is zero-state observable and completely
reachable. Show that if G is input strict passive, then det J(x) 6= 0, x ∈ Rn,
and hence, G has relative degree zero.

Problem 5.30. Give a complete proof of Theorem 5.11.

Problem 5.31. Let G(s) be a real rational matrix transfer function
with input u(·) ∈ U and output y(·) ∈ Y. Show that G(s) is lossless with
respect to the supply rate r(u, y) = 2uTy if and only if He G(ω) = 0 for all
ω ∈ R, with ω not a pole of any entry of G(s), and if ω is a pole of any
entry of G(s) it is at most a simple pole and the residue matrix (Theorem
5.11) at ω is nonnegative definite Hermitian. Alternatively, show that G(s)
is lossless with respect to supply rate r(u, y) = γ2uTu − yTy, γ > 0, if and
only if γ2I −G∗(ω)G(ω) = 0 for all ω ∈ R.

Problem 5.32. Let

G(s)
min∼
[

A B
C D

]

be positive real with D+DT > 0, and let P , L, and W , with P > 0, satisfy
(5.151)–(5.153). Show that

G−1(s)
min∼
[

Â B̂

Ĉ D̂

]

,

where Â = A − BD−1C, B̂ = BD−1, Ĉ = −D−1C, and D̂ = D−1, is also
positive real, and P satisfies

0 = ÂTP + PÂ+ L̂TL̂, (5.257)

0 = PB̂ − ĈT + L̂TŴ , (5.258)

0 = D̂ + D̂T − ŴTŴ , (5.259)

where L̂ = L−WD−1C and Ŵ = WD−1.

Problem 5.33. Let

G(s)
min∼
[

A B
C 0

]

be a positive real transfer function. G(s) is a self-dual realization if A+AT ≤
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0 and B = CT. Show that a self-dual realization can be obtained from the
change of coordinates z = P 1/2x, where P satisfies (5.151) and (5.152), and
x is the internal state of the realization of G(s).

Problem 5.34. Consider the linear dynamical system

G(s)
min∼
[

A B
C D

]

with input u(·) ∈ U and output y(·) ∈ Y. Assume that A is asymptotically
stable. Show that the following statements are equivalent:

i) There exists ε > 0 such that G(ω) +G∗(ω) ≥ εI for all ω ∈ R.

ii) There exists γ > 0 and a function β : Rn → R, β(0) = 0, such that for
all T ≥ 0,

∫ T

0
uT(t)y(t)dt ≥ β(x0) + γ2

∫ T

0
uT(t)u(t)dt. (5.260)

iii) There exists ε > 0 such that G(ω− ε) +G∗(ω− ε) ≥ 0 for all ω ∈ R.

iv) G(ω) +G∗(ω) > 0, for all ω ∈ R, and

lim
ω→∞

ω2[G(ω) +G∗(ω)] > 0. (5.261)

Problem 5.35. Consider the controlled nonlinear oscillator given by
the undamped Duffing equation

ẍ(t) + (2 + x2(t))x(t) = u(t), x(0) = x0, ẋ(0) = ẋ0, t ≥ 0, (5.262)

y(t) = ẋ(t). (5.263)

Show that the input-output map from u to y is lossless with respect to the
supply rate r(u, y) = uy.

Problem 5.36. Consider the controlled nonlinear damped oscillator
given by

ẍ(t) + η(x(t), ẋ(t))[ẋ(t) + x(t)] = u(t), x(0) = x0, ẋ(0) = ẋ0, t ≥ 0,

(5.264)

y(t) = x(t) + ẋ(t), (5.265)

where η(x, ẋ) = 2 + (x+ ẋ)2. Show that the input-output map from u to y
is exponentially passive.

Problem 5.37. Consider the controlled nonlinear system

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (5.266)

ẋ2(t) = −(1 + x2
1(t))x2(t) − x3

1(t) + x1(t)u(t), x2(0) = x20, (5.267)
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y(t) = x1(t)x2(t). (5.268)

Show that the input-output map from u to y is nonexpansive with γ ≥ 1.
(Hint: Use the storage function Vs(x1, x2) = αx4

1 + βx2
2, where α, β > 0 are

parameters to be chosen.)

Problem 5.38. Consider the linear dynamical system

ẋ(t) = −x(t) + u(t), x(0) = x0, t ≥ 0, (5.269)

y(t) = x(t) + u(t). (5.270)

Show that (5.269) and (5.270) is passive. Find Vs(x), Va(x), and Vr(x) for
(5.269) and (5.270).

Problem 5.39. Consider the controlled linear system

ẋ(t) = −x(t) + u(t), x(0) = x0, t ≥ 0, (5.271)

y(t) = x(t). (5.272)

Show that (5.271) and (5.272) is nonexpansive with γ ≥ 1.

Problem 5.40. Consider the scalar dynamical system

ẋ(t) = −x(t) + 2u(t), x(0) = x0, t ≥ 0, (5.273)

y(t) = tan−1(x(t)). (5.274)

Show that (5.273) and (5.274) is output strict passive.

Problem 5.41. Consider the nonlinear dynamical system in polar
coordinates given by

ṙ(t) = r(t)(r2(t) − 1)(r2(t) − 4) + r(t)(r2(t) − 4)u(t),

r(0) = r0, t ≥ 0, (5.275)

θ̇(t) = 1, θ(0) = θ0, (5.276)

y(t) = r2(t) − 1. (5.277)

Show that the set Dc = {(r, θ) ∈ R × R : r = 1} is invariant under the
uncontrolled (i.e., u(t) ≡ 0) dynamics and Dc is asymptotically stable. In
addition, show that the largest domain of attraction (with respect to Dc) of
the uncontrolled system (5.275) and (5.276) is given by DA = {(r, θ) ∈ R ×
R : 0 < r < 2}. Finally, show that (5.275)–(5.277) is nonexpansive with γ ≥
1. (Hint: Use the storage function Vs(r, θ) = −1

4 ln r2 − 3
4 ln(4 − r2) + 3

4 ln 3
with (r, θ) = (1, 0) being the equilibrium solution of (5.275) and (5.276).)

Problem 5.42. Consider the nonlinear dynamical system

ẋ(t) = x(t) + u(t), x(0) = x0, t ≥ 0, (5.278)
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y(t) = − αx(t)

1 + x4(t)
, (5.279)

where α > 0. Show that Vs(x) = α(π
2 − tan−1(x2)) satisfies the dissipation

inequality (5.16) with r(u, y) = 2uy and yet the zero solution x(t) ≡ 0 of
the undisturbed system (5.278) is unstable. Why does this contradict i) of
Proposition 5.2?

Problem 5.43. Consider the nonlinear dynamical system G given by
(5.75) and (5.76), and assume G is completely reachable and zero state
observable. Furthermore, assume G is passive and J(x)+JT(x) > 0, x ∈ Rn.
Show that Va(x) and Vr(x) satisfy

0 = V ′(x)f(x) + [12V
′(x)G(x) − hT(x)]

·[J(x) + JT(x)]−1[12V
′(x)G(x) − hT(x)]T, x ∈ Rn, (5.280)

where V (·) is positive definite and V (0) = 0. (Hint: First show that
∫ t

t0

2uT(s)y(s)ds = V (x(t)) − V (x(t0)) +

+

∫ t

t0

[

1 uT(s)
]

[

A(x(s)) B(x(s))
BT(x(s)) C(x(s))

] [

1
u(s)

]

ds,

where A(x)
△
= −V ′(x)f(x), B(x)

△
= hT(x)− 1

2V
′(x)G(x), and C(x)

△
= J(x)+

JT(x).)

Problem 5.44. Consider the nonlinear time-varying dynamical system
G given by

ẋ(t) = f(t, x(t)) +G(t, x(t))u(t), x(t0) = x0, t ≥ t0, (5.281)

y(t) = h(t, x(t)) + J(t, x(t))u(t), (5.282)

where x(t) ∈ D ⊆ Rn, D is an open set with 0 ∈ D, u(t) ∈ U ⊆ Rm, y(t) ∈
Y ⊆ Rl, f : [t0,∞)×D → Rn, G : [t0,∞)×D → Rn×m, h : [t0,∞)×D → Y ,
and J : [t0,∞) × D → Rl×m. Here, assume that f(·, ·), G(·, ·), h(·, ·), and
J(·, ·) are piecewise continuous in t and continuously differentiable in x on
[t0,∞) × D. The available storage and required supply for nonlinear time-
varying dynamical systems are defined as

Va(t0, x0)
△
= − inf

u(·), T≥t0

∫ T

t0

r(u(t), y(t))dt (5.283)

and

Vr(t0, x0)
△
= inf

u(·), T≥t0

∫ T

t0

r(u(t), y(t))dt. (5.284)

Assuming that G is completely reachable and Va(t, x) and Vr(t, x) are
continuously differentiable on [0,∞) × D, show that G is passive if and
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only if there exists an almost everywhere continuously differentiable function
Vs : [0,∞) ×D → R such that Vs(t, x) ≥ 0, (t, x) ∈ [0,∞) × D, Vs(t, 0) = 0,
t ∈ [0,∞), and for all (t, x) ∈ [0,∞) ×D,
[

∂Vs(t,x)
∂x f(t, x) + ∂Vs(t,x)

∂t
1
2

∂Vs(t,x)
∂x G(t, x) − hT(t, x)

1
2G

T(t, x)∂V T
s (t,x)
∂x − h(t, x) −(J(t, x) + JT(t, x))

]

≤ 0. (5.285)

Problem 5.45. Consider the nonlinear dynamical system G given by
(5.7) and (5.8). Assume that G is passive with a two-times continuously
differentiable storage function Vs(·). Show that

V ′
s (x)F (x, 0) ≤ 0, x ∈ D, (5.286)

1
2V

′
s (x)G(x, 0) = HT(x, 0), x ∈ Q, (5.287)

n
∑

i=1

∂2Fi

∂u2
(x, 0)

∂Vs

∂xi
≤ ∂H

∂u
(x, 0) +

(

∂H

∂u
(x, 0)

)T

, x ∈ Q, (5.288)

where Q = {x ∈ D : V ′
s (x)F (x, 0) = 0} and Fi(x, u) denotes the ith

component of F (x, u).

Problem 5.46. Consider the governing equations of motion of an n-
degree-of-freedom dynamical system given by the Euler-Lagrange equation

d

dt

[

∂L
∂q̇

(q, q̇)

]T

−
[

∂L
∂q

(q, q̇)

]T

= u, (5.289)

where q ∈ Rn represents the generalized system positions, q̇ ∈ Rn represents
the generalized system velocities, L : Rn × Rn → R denotes the system
Lagrangian given by L(q, q̇) = T (q, q̇)−V (q), where T : Rn ×Rn → R is the
system kinetic energy and V : Rn → R is the system potential energy, and
u ∈ Rn is the vector of generalized forces acting on the system.

i) Show that the Euler-Lagrange equation can be equivalently character-
ized by the state equations

q̇ =

[

∂H
∂p

(q, p)

]T

, (5.290)

ṗ = −
[

∂H
∂q

(q, p)

]T

+ u, (5.291)

where p ∈ Rn represents the system generalized momenta and H :
Rn×Rn → R denotes the Legendre transformation given by H(q, p) =
q̇Tp− L(q, q̇).

ii) Show that the rate of change in system energy is equal to the external
power input, that is,

d

dt
H(q, p) = q̇Tu, (5.292)



NonlinearBook10pt November 20, 2007

400 CHAPTER 5

and hence, H(q, p) is a storage function for (5.290) and (5.291).

iii) Show that if V (q) is bounded from below, then the system input-
output map from generalized forces u to generalized velocities q̇ is
lossless, that is,

0 =

∫ T

0
q̇T(t)u(t)dt, (5.293)

for all T ≥ 0 with (q(0), q̇(0)) = (q(T ), q̇(T )) = (0, 0).

iv) For dynamical n degree-of-freedom systems with internal dissipation
the Euler-Lagrange equations (5.289) take the form

d

dt

[

∂L
∂q̇

(q, q̇)

]T

−
[

∂L
∂q

(q, q̇)

]T

+

[

∂R
∂q̇

(q̇)

]T

= u, (5.294)

where R : Rn → R represents the Rayleigh dissipation function
satisfying ∂R

∂q̇ (q̇)q̇ ≥ 0, q̇ ∈ Rn. Show that in this case (5.292) becomes

d

dt
H(q, p) = −∂R

∂q̇
(q̇)q̇ + uTq̇, (5.295)

and the system input-output map from generalized forces u to
generalized velocities q̇ is passive, that is,

0 ≤
∫ T

0
q̇T(t)u(t)dt, (5.296)

for all T ≥ 0 with (q(0), q̇(0)) = (0, 0).

v) Show that if (5.294) is fully damped, that is, there exists ε > 0 such
that ∂R

∂q̇ (q̇)q̇ ≥ εq̇Tq̇, q̇ ∈ Rn, then (5.294) is output strict passive.

vi) Show that (5.294) can be interpreted as the negative feedback
interconnection of two passive systems G1 and G2 with input-output

pairs (û, q̇) and (q̇, ∂R
∂q̇ ), respectively, where û = u−

(

∂R
∂q̇

)T
.

vii) Characterize the system dynamics for G1 and G2 in vi).

viii) Show that the zero solution to (5.289) or, equivalently, (5.290) and
(5.291) is asymptotically stable if u = −Kdq̇, where Kd ∈ Rn×n and
satisfies Kd +KT

d > 0.

ix) Show that with u = −Kdq̇ + û, where Kd ∈ Rn×n and satisfies Kd +
KT

d > 0, the input-output map from û to q̇ is output strict passive.

x) Show that if T (q, q̇) = 1
2 q̇

TM(q)q̇, where M(q) > 0, q ∈ Rn, is the
system inertia matrix function, then (5.289) becomes

M(q)q̈ + C(q, q̇)q̇ + g(q) = u, (5.297)
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where g(q) =
[

∂V
∂q (q)

]T
and C(q, q̇)(i,j) =

∑n
k=1 γijk(q)q̇k, where i, j =

1, . . . , n and

γijk(q) =
1

2

(

∂M(j,k)(q)

∂qi
+
∂M(k,i)(q)

∂qj
−
∂M(i,j)(q)

∂qk

)

. (5.298)

xi) Show that d
dtM(q) − 2C(q, q̇) is skew-symmetric for every q, q̇ ∈ Rn.

xii) Show that d
dtM(q) − 2C(q, q̇) is skew-symmetric if and only if

d

dt
M(q) = C(q, q̇) + CT(q, q̇).

xiii) Show that the available storage of the dynamical system (5.297) is
bounded above by 1

2 q̇(0)
TM(q(0))q̇(0) + V (q(0)).

xiv) Show that the required supply of the dynamical system (5.297) is
bounded below by 1

2 q̇(0)
TM(q(0))q̇(0) + V (q(0)).

xv) For C(q, q̇) ≡ 0 show that the available storage and the required supply
of (5.297) are equal and is given by 1

2 q̇(0)
TM(q(0))q̇(0) + V (q(0)).

Problem 5.47. Consider the governing equations of motion of an n-
degree-of-freedom dynamical system given by Hamiltonian system

q̇ =

[

∂H
∂p

(q, p)

]T

, (5.299)

ṗ = −
[

∂H
∂q

(q, p)

]T

+G(q)u, (5.300)

y = GT(q)

[

∂H
∂p

(q, p)

]T

, (5.301)

where q ∈ Rn, p ∈ Rn, and H : Rn × Rn → R are as in Problem 5.46,
and u ∈ Rm, y ∈ Rm, and G : Rn → Rn×m. Show that if (5.299)–(5.301)
is zero-state observable, then the zero solution of (5.299) and (5.300), with
u = −y, is asymptotically stable.

Problem 5.48. Consider the port-controlled Hamiltonian system

ẋ(t) = J (x(t))

[

∂H
∂x

(x(t))

]T

+G(x(t))u(t), x(0) = x0, t ≥ 0, (5.302)

y(t) = GT(x(t))

[

∂H
∂x

(x(t))

]T

(5.303)

where x ∈ D ⊆ Rn, u, y ∈ Rm, H : D → R, G : D → Rn×m, and J :
D → Rn×n and satisfies J (x) = −J T(x). Show that if (5.302) and (5.303)
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is zero-state observable, then the zero solution x(t) ≡ 0 to (5.302), with
u = −y, is asymptotically stable.

Problem 5.49. Consider the rotational/translational nonlinear dyna-
mical system shown in Figure 5.11 with oscillator cart mass M , linear spring
stiffness k, rotational mass m, mass moment of inertia I located a distance
e from the center of mass of the cart, and input torque N . Assume that the
motion is constrained to the horizontal plane.

i) Using the Euler-Lagrange equations given by (5.289) show that the
governing nonlinear dynamic equations of motion are given by

(M +m)q̈ + kq = −me(θ̈ cos θ − θ̇2 sin θ), (5.304)

(I +me2)θ̈ = −meq̈ cos θ +N, (5.305)

where q, q̇, θ, and θ̇ denote, respectively, the translational position
and velocity of the cart and the angular position and velocity of the
rotational mass.

M

I
k

m
θ

N

Figure 5.11 Rotational/translational nonlinear dynamical system.

ii) Show that with output y = θ̇ and input u = N the system is passive
but not zero-state observable.

iii) Show that with u = −kθθ + û, where kθ > 0, the new system with
output y = θ̇ and input û is passive and zero-state observable with
positive-definite storage function

Vs(q, q̇, θ, θ̇) = 1
2 [kq2 + (M +m)q̇2 + kθθ

2 + (I+me2)θ̇2 + 2meq̇θ̇ cos θ].
(5.306)

Problem 5.50. Consider the linear matrix second-order dynamical
system given by

Mq̈(t) + Cq̇(t) +Kq(t) = Bu(t), q(0) = q0, q̇(0) = q̇0, t ≥ 0, (5.307)

y(t) = BTq̇(t), (5.308)
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where q, q̇, q̈ ∈ Rn represent generalized position, velocity, and acceleration
coordinates, respectively, u ∈ Rm is a force input, y ∈ Rm is a velocity
measurement, M , C, and K are inertia, damping, and stiffness matrices,
respectively, and B ∈ Rn×m is determined by the location of the system
input-output topology. Assume that M > 0, C ≥ 0, and K ≥ 0.

i) Show that the input-output map from force inputs u to the velocity
measurements y, with q0 = 0 and q̇0 = 0, is given by y(s) = G(s)u(s),
where

G(s) ∼





[

0 I
−M−1K −M−1C

] [

0
M−1B

]

[

0 BT
]

0



 . (5.309)

ii) Show that G(s) is positive real.

iii) Show that (5.167)–(5.169) hold with

P =

[

K 0
0 M

]

, L =
[

0
√

2C1/2
]

, W = 0.

iv) Construct a Lyapunov function to show that if C ≥ 0 and K > 0, then
(5.307) with u(t) ≡ 0 is Lyapunov stable.

v) Construct a Lyapunov function to show that if C > 0 and K ≥ 0, then
(5.307) with u(t) ≡ 0 is semistable (see Problem 3.44).

vi) Construct a Lyapunov function to show that if C > 0 and K > 0, then
(5.307) with u(t) ≡ 0 is asymptotically stable.

vii) Construct a Lyapunov function to show that if K > 0, C ≥ 0, and
rank[C KM−1C · · · (KM−1)n−1C] = n, then (5.307) with u(t) ≡ 0 is
asymptotically stable.

viii) Show that if C in (5.307) is replaced by C + G, where G = −GT

captures system gyroscopic effects, and C > 0, K > 0, then (5.307)
with u(t) ≡ 0 remains asymptotically stable.

ix) Show that with q0 = 0 and q̇0 = 0, uTy ≥ 0.

Problem 5.51. Consider the nonlinear dynamical system representing
a controlled rigid spacecraft given by

ẋ1(t) = I23x2(t)x3(t) + 1
I1
u1(t), x1(0) = x10, t ≥ 0, (5.310)

ẋ2(t) = I31x3(t)x1(t) + 1
I2
u2(t), x2(0) = x20, (5.311)

ẋ3(t) = I12x1(t)x2(t) + 1
I3
u3(t), x3(0) = x30, (5.312)

where I23 = (I2 − I3)/I1, I31 = (I3 − I1)/I2, I12 = (I1 − I2)/I3, and I1, I2,
and I3 are the principal moments of inertia of the spacecraft. Show that the
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input-output map from u = [u1, u2, u3]
T to y = x = [x1, x2, x3]

T is lossless
with respect to the supply rate r(u, y) = 2uTy. Furthermore, show that the
zero solution x(t) ≡ 0 to (5.310)–(5.312) is globally asymptotically stable if
u = −Kx, where K ∈ R3×3 and satisfies K +KT > 0. Alternatively, show
that if u = −φ(x) and satisfies xTφ(x) > 0, x 6= 0, then the zero solution
x(t) ≡ 0 to (5.310)–(5.312) is also globally asymptotically stable. Finally, if
φ : R3 → R3 is such that φ(x) = [φ1(x1), φ2(x2), φ3(x3)]

T, how would you
pick φi(xi), i = 1, 2, 3, so as to maximize the decay rate of the Lyapunov
function candidate V (x) = I1x

2
1 + I2x

2
2 + I3x

2
3?

Problem 5.52. Consider a thermodynamic system at a uniform
temperature. The first law of thermodynamics states that during any cycle
that a system undergoes, the cyclic integral of the heat is proportional to
the cyclic integral of the work, that is,

J
∮

dQ =

∮

dW, (5.313)

where
∮

dQ represents the net heat transfer during the cycle and
∮

dW
represents the net work during the cycle. J is a proportionality factor,
which depends on the units used for work and heat. Here, assume SI units
so that J = 1. The second law of thermodynamics states that the transfer
of heat from a lower temperature level (source) to a higher temperature level
(sink) requires the input of additional work or energy, or, using Clausius’
inequality,

∮

dQ

T
≤ 0, (5.314)

where
∮ dQ

T represents the system entropy and T represents the absolute
system temperature. Writing the first and second laws as rate equations
and assuming that every admissible system input and every initial system
state yield locally integrable work and heat generation functions, show
that the first and second laws of thermodynamics can be formulated using
cyclo-dissipative system theoretic notions with appropriate virtual storage
functions and supply rates (see Problems 5.3–5.5). Use the convention that
the work done by the system and the heat delivered to the system are
positive.

Problem 5.53. Let α, β ∈ R be such that α ≤ β and let σ : R → R

with σ(0) = 0. Show that the following statements are equivalent:

i) α ≤ σ(u)/u ≤ β, u ∈ R, u 6= 0.

ii) αu2 ≤ σ(u)u ≤ βu2, u ∈ R.

iii) (σ(u) − αu)(σ(u) − βu) ≤ 0, u ∈ R.
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iv) |σ(u) − cu|2 ≤ r2|u|2, u ∈ R, where c
△
= 1

2(α+ β) and r
△
= 1

2(α− β).

Problem 5.54. Consider the damped Mathieu equation

ẍ(t)+2µẋ(t)+(µ2+a2−q cosωt)x(t) = 0, x(0) = x0, ẋ(0) = ẋ0, t ≥ 0,
(5.315)

where q, µ, a > 0. Use the circle criterion to obtain sufficient conditions
in terms of q, µ, and a such that the zero solution x(t) ≡ 0 to (5.315) is
globally exponentially stable. For which values of ω does your result hold?
Is stability guaranteed if (cosωt)x(t) is replaced by σ(x, t), where σ(·, ·)
is a memoryless time-varying nonlinearity belonging to the sector [−1, 1]?
Explain your answer.

Problem 5.55. Consider the absolute stability problem with forward
dynamics given by G(s) = 1

(s+1)(s+2)(s+3) . Use the circle criterion to

determine the largest range [M1,M2] such that the feedback system is
globally exponentially stable for all memoryless, time-varying nonlinearities
σ(·, ·) belonging to the sector [M1,M2]. Repeat your analysis for G(s) =

1
(s−1)(s+1)2 .

Problem 5.56. Consider the feedback system shown in Figure 5.3 with
G(s) = 1

(s+1)3 . Use the positivity and Popov theorems to determine the

maximum allowable slope M on the saturation nonlinearity such that the
feedback system is globally (uniformly) asymptotically stable. Repeat your
analysis for G(s) = s+3

s2+7s+10 .

Problem 5.57. Consider the damped Matheiu equation

ẍ(t) + aẋ(t) + (A+B cos t)x(t) = 0, x(0) = x0, ẋ(0) = ẋ0, t ≥ 0,
(5.316)

where a > 0. Give sufficient conditions such that the zero solution to (5.316)
is asymptotically stable. Show that this condition determines a region in
the (A,B) plane which is bounded by straight lines and a parabola. (Hint:
Use Corollary 5.8 to obtain sufficient conditions for exponential stability.)

Problem 5.58 (Shifted Popov Criterion). Consider the controllable
and observable dynamical system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0, (5.317)

y(t) = Cx(t), (5.318)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rm, with feedback nonlinearity

u(t) = −σ(y(t)), (5.319)
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where

σ(·) ∈ Φ
△
= {σ : Rm → Rm : σ(0) = 0, [σ(y) −M1y]

T[σ(y) −M2y] ≤ 0,

y ∈ Rm, and σ(y) = [σ1(y1), σ2(y2), . . . , σm(ym)]T},
M1 = diag[M1,M 2, . . . ,Mm], M2 = diag[M 1,M 2, . . . ,Mm], andM2−M1 >
0. Show that if there exists N = diag[N1,N2, . . . ,Nm], Ni ≥ 0, i = 1, . . . ,m,
such that Im +(M2−M1)(Im +Ns)(Im +G(s)M1)

−1G(s) is strictly positive
real and det(Im +λN) 6= 0, where G(s) = C(sIn −A)−1B and λ ∈ spec(A),
then the feedback interconnection (5.317)–(5.319) is asymptotically stable
for all σ(·) ∈ Φ. (Hint: Use the shifted Luré-Postnikov Lyapunov function
candidate

V (x) = xTPx+ 2

m
∑

i=1

∫ yi

0
[σi(s) −M is]Nids, (5.320)

where yi ∈ R denotes the ith component of y ∈ Rm, and state under what
conditions this is a valid Lyapunov function.)

Problem 5.59 (Off-Axis Circle Criterion). Show that in the case whe-
re m = 1 the frequency domain condition for the shifted Popov criterion
given in Problem 5.58 involves a frequency domain test in the Nyquist plane
in terms of a family of frequency-dependent off-axis circles. In addition,
show that the circle centers vary as a function of the phase of the Popov
multiplier, but each circle has the same real axis intercepts. Give the real
axis intercepts and the centers of the circles.

Problem 5.60 (Parabola Criterion). Show that in the case where m =
1 and M1M2 > 0, the frequency domain condition for the shifted Popov
criterion given in Problem 5.58 can be shown to provide a frequency domain
test in the Popov plane in terms of a fixed parabola. Give the real axis
intercepts of the parabola and show that the parabola will be tangent to
straight lines drawn through the crossings of the real axis intercepts with
slopes ±1/N .

Problem 5.61. Consider the nonlinear dynamical system G given by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, t ≥ 0, (5.321)

y(t) = h(x(t)) + J(x(t))u(t), (5.322)

u(t) = −σ(y(t), t), (5.323)

where x ∈ Rn, u, y ∈ Rm, f : Rn → Rn, G : Rn → Rn×m, h : Rn → Rm,
J : Rn → Rm×m, and σ(·, ·) ∈ Φprg, where

Φprg
△
= {σ : Rm × R+ → Rm : σ(0, ·) = 0, σT(y, t)y ≥ 0, y ∈ Rm, a.e.

t ≥ 0, and σ(y, ·) is Lebesgue measurable for all y ∈ Rm}.
Furthermore, suppose that G is zero-state observable and exponentially
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passive with a continuously differentiable, radially unbounded storage
function Vs(·). Show that the negative feedback interconnection of (5.321)–
(5.323) is globally uniformly asymptotically stable for all σ(·, ·) ∈ Φprg.

Problem 5.62. Consider the nonlinear dynamical system G given by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, t ≥ 0, (5.324)

y(t) = h(x(t)) + J(x(t))u(t), (5.325)

u(t) = σ(y(t), t), (5.326)

where x ∈ Rn, u ∈ Rm, y ∈ Rl, f : Rn → Rn, G : Rn → Rn×m,
h : Rn → Rl, J : Rn → Rl×m, and σ(·, ·) ∈ Φbr. Furthermore, suppose
that G is zero-state observable and exponentially nonexpansive with a
continuously differentiable, radially unbounded storage function Vs(·). Show
that the feedback interconnection of (5.324)–(5.326) is globally uniformly
asymptotically stable for all σ(·, ·) ∈ Φbr.

Problem 5.63. Consider the nonlinear dynamical system G given by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, t ≥ 0, (5.327)

y(t) = h(x(t)) + J(x(t))u(t), (5.328)

u(t) = −σ(y(t), t), (5.329)

where x ∈ Rn, u, y ∈ Rm, f : Rn → Rn, G : Rn → Rn×m, h : Rn →
Rm, J : Rn → Rm×m, and σ(·, ·) ∈ Φpr. Furthermore, suppose that G
is zero-state observable and exponentially dissipative with respect to the
supply rate r(u, y) = uTu + uTMy and with a continuously differentiable,
radially unbounded storage function Vs(·), where M = MT ∈ Rm×m. Show
that the feedback interconnection of (5.327)–(5.329) is globally uniformly
asymptotically stable for all σ(·, ·) ∈ Φpr. How would you modify r(u, y) to
address σ(·, ·) ∈ Φ?

Problem 5.64. Consider the nonlinear dynamical system G given by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, t ≥ 0, (5.330)

y(t) = h(x(t)), (5.331)

u(t) = −σ(y(t)), (5.332)

where x ∈ Rn, u, y ∈ Rm, f : Rn → Rn, G : Rn → Rn×m, h : Rn → Rm,
and σ(·) ∈ ΦP. Furthermore, suppose that G is zero-state observable and
exponentially dissipative with respect to the supply rate r(u, y) = 2uTy +
uTMy + ẏTNu and with a continuously differentiable, radially unbounded
storage function Vs(·), where M is positive definite and N is a nonnegative-
definite diagonal matrix. In addition, suppose that y(t) +Nẏ(t) 6= 0, t ≥ 0,
for u(t) ≡ 0. Show that the negative feedback interconnection of (5.327)–
(5.329) is globally asymptotically stable for all σ(·) ∈ ΦP. (Hint: To address
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ẏ in the supply rate r(u, y) form an augmented system with output ŷ =
[yT ẏT]T and construct a supply rate of the form r(u, ŷ).)

Problem 5.65. Consider the nonnegative dynamical system G (see
Problem 5.9) given by (5.160) and (5.161) and assume that (A,C) is
observable and G is exponentially dissipative with respect to the supply rate
s(u, y) = eTu − eTMy, where M >> 0. Show that the positive feedback
interconnection of G and σ(·, ·) is globally uniformly asymptotically stable
for all σ(·, ·) ∈ Φ, where

Φ
△
= {σ : R+ × R

l
+ → R

m
+ : σ(·, 0) = 0, 0 ≤≤ σ(t, y) ≤≤My, y ∈ R

l
+,

a.e. t ≥ 0, and σ(·, y) is Lebesgue measurable for all y ∈ R
l
+},
(5.333)

M >> 0, and M ∈ Rm×l. (Hint: Use Problem 5.11 to show that if G is
exponentially dissipative with respect to the supply rate s(u, y) = eTu −
eTMy, then there exists p ∈ Rn

+, l ∈ R
n
+, and w ∈ R

m
+ , and a scalar ε > 0

such that

0 = ATp+ εp+ CTMTe + l, (5.334)

0 = BTp+DTMTe − e + w. (5.335)

Now, use the Lyapunov function candidate V (x) = pTx.)

5.11 Notes and References

The original work on dissipative dynamical systems is due to J. C.
Willems [456, 457]. Lagrangian and Hamiltonian dynamical systems arose
from Euler’s variational calculus and are due to the fundamental work of
Joseph-Louis Lagrange [251] on analytical mechanics and William Rowan
Hamilton’s work on least action [183], developed in the eighteenth and
nineteenth centuries, respectively. Port-controlled Hamiltonian systems
were introduced by Maschke, van der Schaft, and Breedveld [305] and
Maschke and van der Schaft [303, 304]. See also van der Schaft [441].
Theorem 5.6 presenting necessary and sufficient conditions for dissipativity
with respect to quadratic supply rates is due to Hill and Moylan [188]. The
concepts of exponential dissipativity, exponential passivity, and exponential
nonexpansivity are due to Chellaboina and Haddad [88]. The concepts
of input strict passivity, output strict passivity, and input-output strict
passivity are also due to Hill and Moylan [189]. The classical concepts
of passivity and nonexpansivity can be found in Popov [362, 364], Zames
[476, 477], Sandberg [389], and Desoer and Vidyasagar [104]. Positive real
and bounded real transfer functions are discussed in Anderson [7, 8] and
Anderson and Vongpanitlerd [11]. The Kalman-Yakubovich-Popov lemma,
also known as the positive real lemma, was discovered independently by
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Kalman [226] and Yakubovich [468]. For an excellent treatment of the
positive real lemma and the bounded real lemma see Anderson [7, 8] and
Anderson and Vongpanitlerd [11]. The linearization results for dissipative
and exponential dissipative dynamical systems are due to Haddad and
Chellaboina [158] and Chellaboina and Haddad [88].

The absolute stability problem was first formulated in 1944 by A. I.
Luré and V. N. Postnikov [292]. In particular, sufficient conditions for
absolute stability in terms of a set of quadratic equations were derived using
a Lyapunov function containing a quadratic plus an integral term involving
the feedback nonlinearity [290,291]. This approach was further developed in
a series of papers by Yakubovich [467], Malkin [297], and Rozenvasser [372].
The frequency domain approach to absolute stability was first developed by
the Rumanian mathematician Vasile-Mikhai Popov [361]. Yakubovich was
the first to show that the Luré-Postnikov Lyapunov function is necessary
for proving the Popov criterion [468]. Ever since Popov derived a frequency
domain condition for absolute stability, considerable effort by numerous
researchers was devoted in deriving similar criteria for absolute stability
[5, 64, 65, 67, 70, 71, 94, 326, 328–331, 361, 362, 364, 425, 427, 458, 476, 479].
The circle criterion evolved from this activity and was first derived by
Bongiorno [64], with a Lyapunov function proof first given by Narendra
and Goldwyn [327]. An extensive development of absolute stability theory
is given in the classical monographs of Aizerman and Gantmacher [5],
Lefschetz [265], Popov [364], and Narendra and Taylor [331].
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Chapter Six

Stability and Optimality of Feedback

Dynamical Systems

6.1 Introduction

In this chapter, we use the stability and dissipativity results developed
in Chapters 3–5 to develop stability and optimality results for feedback
dynamical systems. Specifically, general stability criteria are given for
Lyapunov, asymptotic, and exponential stability of feedback dynamical
systems. Furthermore, energy-based controllers for port-controlled Hamil-
tonian systems are established using passivity theory. In particular,
constructive sufficient conditions for feedback stabilization are derived that
provide a shaped energy function for the closed-loop system, while preserving
the Hamiltonian structure at the closed-loop system level. In addition,
relative stability margins are also derived for nonlinear regulators, and sector
and disk margins are introduced as a generalization of classical gain and
phase margins. The notion of a control Lyapunov function is also introduced,
and it is shown that the existence of a smooth control Lyapunov function
implies smooth (almost everywhere) stabilizability of a controlled nonlinear
dynamical system. Next, a nonlinear control problem involving a notion
of optimality with respect to a nonlinear-nonquadratic cost functional is
introduced. Finally, we close the chapter by introducing the notions of
feedback linearization, zero dynamics, and minimum-phase systems.

6.2 Feedback Interconnections of Dissipative Dynamical Systems

In this section, we consider feedback interconnections of dissipative dynam-
ical systems. Specifically, using the notion of dissipative and exponentially
dissipative dynamical systems, with appropriate storage functions and
supply rates, we construct Lyapunov functions for interconnected dynamical
systems by appropriately combining storage functions for each subsystem.
The feedback system can be nonlinear and either dynamic or static. In
the dynamic case, for generality, we allow the nonlinear feedback system
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(compensator) to be of fixed dimension nc that may be less than the plant
order n.

We begin by considering the nonlinear dynamical system G given by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, t ≥ 0, (6.1)

y(t) = h(x(t)) + J(x(t))u(t), (6.2)

where x ∈ Rn, u ∈ Rm, y ∈ Rl, f : Rn → Rn satisfies f(0) = 0, G :
Rn → Rn×m, h : Rn → Rl satisfies h(0) = 0, and J : Rn → Rl×m, with the
nonlinear feedback system Gc given by

ẋc(t) = fc(xc(t)) +Gc(uc(t), xc(t))uc(t), xc(0) = xc0, t ≥ 0, (6.3)

yc(t) = hc(uc(t), xc(t)) + Jc(uc(t), xc(t))uc(t), (6.4)

where xc ∈ Rnc , uc ∈ Rl, yc ∈ Rm, fc : Rnc → Rnc satisfies fc(0) = 0,
Gc : Rl × Rnc → Rnc×l, hc : Rl × Rnc → Rm satisfies hc(0, 0) = 0, and
Jc : Rl × Rnc → Rm×l. We assume that f(·), G(·), h(·), J(·), fc(·), Gc(·),
hc(·, ·), and Jc(·, ·) are continuous mappings and the required properties for
the existence and uniqueness of solutions of the feedback interconnection of
G and Gc are satisfied. Note that with the negative feedback interconnection
given by Figure 6.1, uc = y and yc = −u. Here and henceforth in the book

G

Gc
�

-

+

–

Figure 6.1 Feedback interconnection of G and Gc.

we assume that the negative feedback interconnection of G and Gc is well
posed, that is, det[Im + Jc(y, xc)J(x)] 6= 0 for all y, x, and xc.

The following results give sufficient conditions for Lyapunov, asymp-
totic, and exponential stability of the feedback interconnection given by
Figure 6.1.

Theorem 6.1. Consider the closed-loop system consisting of the
nonlinear dynamical systems G and Gc with input-output pairs (u, y) and
(uc, yc), respectively, and with uc = y and yc = −u. Assume G and Gc are
zero-state observable and dissipative with respect to the supply rates r(u, y)
and rc(uc, yc) and with continuously differentiable, radially unbounded
storage functions Vs(·) and Vsc(·), respectively, such that Vs(0) = 0 and
Vsc(0) = 0. Furthermore, assume there exists a scalar σ > 0 such that
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r(u, y) + σrc(uc, yc) ≤ 0. Then the following statements hold:

i) The negative feedback interconnection of G and Gc is Lyapunov stable.

ii) If Gc is exponentially dissipative with respect to supply rate rc(uc, yc)
and rank[Gc(uc, 0)] = m, uc ∈ Rl, then the negative feedback
interconnection of G and Gc is globally asymptotically stable.

iii) If G and Gc are exponentially dissipative with respect to supply rates
r(u, y) and rc(uc, yc), respectively, and Vs(·) and Vsc(·) are such that
there exist constants α,αc, β, and βc > 0 such that

α‖x‖2 ≤ Vs(x) ≤ β‖x‖2, x ∈ Rn, (6.5)

αc‖xc‖2 ≤ Vsc(xc) ≤ βc‖xc‖2, xc ∈ Rnc , (6.6)

then the negative feedback interconnection of G and Gc is globally
exponentially stable.

Proof. i) Consider the Lyapunov function candidate V (x, xc) = Vs(x)
+σVsc(xc). Now, the corresponding Lyapunov derivative is given by

V̇ (x, xc) = V̇s(x)+σV̇sc(xc) ≤ r(u, y)+σrc(uc, yc) ≤ 0, (x, xc) ∈ Rn×Rnc ,

which implies that the negative feedback interconnection of G and Gc is
Lyapunov stable.

ii) If Gc is exponentially dissipative it follows that for some scalar
εc > 0,

V̇ (x, xc) = V̇s(x) + σV̇sc(xc)

≤ −σεcVsc(xc) + r(u, y) + σrc(uc, yc)

≤ −σεcVsc(xc), (x, xc) ∈ Rn × Rnc .

Next, let R △
= {(x, xc) ∈ Rn × Rnc : V̇ (x, xc) = 0} and, since Vsc(xc)

is positive definite, note that V̇ (x, xc) = 0 only if xc = 0. Now, since
rank[Gc(uc, 0)] = m, uc ∈ Rl, it follows that on every invariant set M
contained in R, uc(t) = y(t) ≡ 0, and hence, by (6.4), u(t) ≡ 0 so that ẋ(t) =
f(x(t)). Now, since G is zero-state observable it follows that M = {(0, 0)}
is the largest invariant set contained in R. Hence, it follows from Theorem
3.5 that (x(t), xc(t)) → M = {(0, 0)} as t → ∞. Now, global asymptotic
stability of the negative feedback interconnection of G and Gc follows from
the fact that Vs(·) and Vsc(·) are, by assumption, radially unbounded.

iii) Finally, if G and Gc are exponentially dissipative it follows that

V̇ (x, xc) = V̇s(x) + σV̇sc(xc)

≤ −εVs(x) − σεcVsc(xc) + r(u, y) + σrc(uc, yc)
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≤ −min{ε, εc}V (x, xc), (x, xc) ∈ Rn × Rnc ,

which implies that the negative feedback interconnection of G and Gc is
globally exponentially stable.

The next result presents Lyapunov, asymptotic, and exponential
stability of dissipative feedback systems with quadratic supply rates.

Theorem 6.2. Let Q ∈ Sl, S ∈ Rl×m, R ∈ Sm, Qc ∈ Sm, Sc ∈ Rm×l,
and Rc ∈ Sl. Consider the closed-loop system consisting of the nonlinear
dynamical systems G given by (6.1) and (6.2) and Gc given by (6.3) and
(6.4), and assume G and Gc are zero-state observable. Furthermore, assume
G is dissipative with respect to the quadratic supply rate r(u, y) = yTQy +
2yTSu + uTRu and has a continuously differentiable, radially unbounded
storage function Vs(·), and Gc is dissipative with respect to the quadratic
supply rate rc(uc, yc) = yT

c Qcyc +2yT
c Scuc +uT

c Rcuc and has a continuously
differentiable, radially unbounded storage function Vsc(·). Finally, assume
there exists σ > 0 such that

Q̂
△
=

[

Q+ σRc −S + σST
c

−ST + σSc R+ σQc

]

≤ 0. (6.7)

Then the following statements hold:

i) The negative feedback interconnection of G and Gc is Lyapunov stable.

ii) If Gc is exponentially dissipative with respect to supply rate rc(uc, yc)
and rank[Gc(uc, 0)] = m, uc ∈ Rl, then the negative feedback
interconnection of G and Gc is globally asymptotically stable.

iii) If G and Gc are exponentially dissipative with respect to supply rates
r(u, y) and rc(uc, yc) and there exist constants α, β, αc, and βc > 0 such
that (6.5) and (6.6) hold, then the negative feedback interconnection
of G and Gc is globally exponentially stable.

iv) If Q̂ < 0, then the negative feedback interconnection of G and Gc is
globally asymptotically stable.

Proof. Statements i)–iii) are a direct consequence of Theorem 6.1 by
noting that

r(u, y) + σrc(uc, yc) =

[

y
yc

]T

Q̂

[

y
yc

]

,

and hence, r(u, y) + σrc(uc, yc) ≤ 0.

To show iv) consider the Lyapunov function candidate V (x, xc) =
Vs(x) + σVsc(xc). Noting that uc = y and yc = −u it follows that the
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corresponding Lyapunov derivative is given by

V̇ (x, xc) = V̇s(x) + σV̇sc(xc)

≤ r(u, y) + σrc(uc, yc)

= yTQy + 2yTSu+ uTRu+ σ(yT
c Qcyc + 2yT

c Scuc + uT
c Rcuc)

=

[

y
yc

]T

Q̂

[

y
yc

]

≤ 0, (x, xc) ∈ Rn × Rnc ,

which implies that the negative feedback interconnection of G and Gc is
Lyapunov stable. Next, let R △

= {(x, xc) ∈ Rn × Rnc : V̇ (x, xc) = 0} and
note that V̇ (x, xc) = 0 if and only if (y, yc) = (0, 0). Now, since G and Gc

are zero-state observable it follows that M = {(0, 0)} is the largest invariant
set contained in R. Hence, it follows from Theorem 3.5 that (x(t), xc(t)) →
M = {(0, 0)} as t → ∞. Finally, global asymptotic stability follows from
the fact that Vs(·) and Vsc(·) are, by assumption, radially unbounded, and
hence, V (x, xc) → ∞ as ‖(x, xc)‖ → ∞.

The following two corollaries are a direct consequence of Theorem
6.2. For both results note that if a nonlinear dynamical system G is
dissipative (respectively, exponentially dissipative) with respect to a supply
rate r(u, y) = uTy − εuTu − ε̂yTy, where ε, ε̂ ≥ 0, then with κ(y) = ky,
where k ∈ R is such that k(1 − εk) < ε̂, r(u, y) = [k(1 − εk) − ε̂]yTy < 0,
y 6= 0. Hence, if G is zero-state observable it follows from Theorem 5.6 that
all storage functions (respectively, exponential storage functions) of G are
positive definite. For the next result, we assume that all storage functions
of G and Gc are continuously differentiable.

Corollary 6.1. Consider the closed-loop system consisting of the
nonlinear dynamical systems G given by (6.1) and (6.2) and Gc given by
(6.3) and (6.4), and assume G and Gc are zero-state observable. Then the
following statements hold:

i) If G is passive, Gc is exponentially passive, and rank[Gc(uc, 0)] = m,
uc ∈ Rl, then the negative feedback interconnection of G and Gc is
asymptotically stable.

ii) If G and Gc are exponentially passive with storage functions Vs(·) and
Vsc(·), respectively, such that (6.5) and (6.6) hold, then the negative
feedback interconnection of G and Gc is exponentially stable.

iii) If G is nonexpansive with gain γ > 0, Gc is exponentially nonexpansive
with gain γc > 0, rank[Gc(uc, 0)] = m, uc ∈ Rl, and γγc ≤ 1, then
the negative feedback interconnection of G and Gc is asymptotically
stable.
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iv) If G and Gc are exponentially nonexpansive with storage functions Vs(·)
and Vsc(·), respectively, such that (6.5) and (6.6) hold, and with gains
γ > 0 and γc > 0, respectively, such that γγc ≤ 1, then the negative
feedback interconnection of G and Gc is exponentially stable.

v) If G is passive and Gc is input-output strict passive, then the negative
feedback interconnection of G and Gc is asymptotically stable.

vi) If G and Gc are input strict passive, then the negative feedback
interconnection of G and Gc is asymptotically stable.

vii) If G and Gc are output strict passive, then the negative feedback
interconnection of G and Gc is asymptotically stable.

Proof. The proof is a direct consequence of Theorem 6.2. Specifically,
i) and ii) follow from Theorem 6.2 with Q = Qc = 0, S = Sc = Im, and
R = Rc = 0, while iii) and iv) follow from Theorem 6.2 with Q = −Il,
S = 0, R = γ2Im, Qc = −Ilc , Sc = 0, and Rc = γ2

c Imc
. Statement v) follows

from Theorem 6.2 with Q = 0, S = Im, R = 0, Qc = −ε̂Im, Sc = Im, and
Rc = −εIm, where ε, ε̂ > 0. Statement vi) follows from Theorem 6.2 with
Q = 0, S = Im, R = −εIm, Qc = 0, Sc = Im, and Rc = −ε̂Im, where
ε, ε̂ > 0. Finally, vii) follows from Theorem 6.2 with Q = −εIm, S = Im,
R = 0, Qc = −ε̂Im, Sc = Im, and Rc = 0, where ε, ε̂ > 0.

Example 6.1. Consider the nonlinear dynamical system

ẋ(t) = Ax(t) −Bφ(Cx(t)), x(0) = x0, t ≥ 0, (6.8)

where x(t) ∈ Rn, t ≥ 0, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, (A,C) is
observable, and φ(·) ∈ ΦP, where

ΦP
△
= {φ : Rm → Rm : φ(0) = 0, φ(y) = [φ1(y1), . . . , φm(ym)]T, y ∈ Rm,

φi(yi)yi > 0, yi 6= 0, i = 1, . . . ,m}. (6.9)

Note that (6.8) can be rewritten as a negative feedback interconnection of a
linear dynamical system given by the transfer function G(s) = C(sI−A)−1B
and a memoryless feedback time-invariant nonlinearity φ(·) (see Figure 6.2
(a)). Equivalently, we can rewrite the above feedback interconnection as a
negative feedback interconnection of a linear dynamical system given by the
transfer function G̃(s) and a nonlinear dynamical system Gφ (see Figure 6.2
(b)), where

G̃(s)
△
= (M +Ns)G(s) ∼

[

A B
MC +NCA NCB

]

, (6.10)

M,N ∈ Rm×m, M,N > 0 are diagonal, and Gφ is given by

˙̂x(t) = −MN−1x̂(t) +N−1û(t), x̂(0) = 0, t ≥ 0, (6.11)
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ŷ(t) = φ(x̂(t)), (6.12)

where x̂(t), û(t), ŷ(t) ∈ Rm, t ≥ 0, and û(t) = (MC +NCA)x(t).

Now, consider the function V̂ : Rm → Rm given by

V̂ (x̂) = 2

m
∑

i=1

∫ x̂i

0
N(i,i)φi(σ)dσ, (6.13)

and note that V̂ (x̂) > 0, x̂ ∈ Rm, x̂ 6= 0, V̂ (0) = 0, and

˙̂
V (x̂(t)) = 2

m
∑

i=1

N(i,i)φ(x̂i(t)) ˙̂xi(t)

= 2 ˙̂x
T
(t)Nφ(x̂(t))

= −2x̂T(t)Mφ(x̂(t)) + 2ûT(t)φ(x̂(t))

≤ 2ûT(t)ŷ(t), t ≥ 0, (6.14)

which implies that V̂ (x̂) is a storage function for Gφ, and hence, Gφ is a
passive dynamical system. Now, it follows from i) of Corollary 6.1 that
if G̃(s) is strictly positive real, then the negative feedback interconnection
of G̃(s) and Gφ is asymptotically stable or, equivalently, the zero solution
x(t) ≡ 0 to (6.8) is asymptotically stable for all φ ∈ ΦP. Hence, it follows
from Theorem 5.14 that G̃(s) is strictly positive real if and only if there
exist matrices P ∈ Rn×n, P > 0, L ∈ Rp×n, and W ∈ Rp×m, with P
positive definite, and a scalar ε > 0 such that

0 = ATP + PA+ εP + LTL, (6.15)

0 = BTP −MC −NCA+WTL, (6.16)

0 = NCB +BTCTN −WTW. (6.17)

Now, V (x, x̂) = xTPx+ V̂ (x̂) or, equivalently,

V (x) = xTPx+ 2

m
∑

i=1

∫ yi

0
N(i,i)φi(σ)dσ, (6.18)

since û = y, is a Lyapunov function for (6.8). △

Example 6.2. Consider the controlled undamped Duffing equation
given by

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (6.19)

ẋ2(t) = −[2 + x2
1(t)]x1(t) + u(t), x2(0) = x20, (6.20)

y(t) = x2(t). (6.21)

Defining x = [x1, x2]
T, (6.19)–(6.21) can be written in state space form

(6.1) and (6.2) with f(x) = [x2, −(2+x2
1)x1]

T, G(x) = [0, 1]T, h(x) = x2,
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G(s)

φ(·)

u y

− G(s) M + Ns

φ(·) (M + Ns)−1

u ûy

G̃(s)

Gφ

−

(a) (b)

Figure 6.2 Feedback interconnection representation of an uncertain system.

and J(x) = 0. With Vs(x) = x2
1 + 1

4x
4
1 + 1

2x
2
2, ℓ(x) ≡ 0, and W(x) ≡

0, it follows from Corollary 5.2 that (6.19)–(6.21) is passive. Now, using
Corollary 6.1 we can design a reduced-order linear dynamic compensator to
asymptotically stabilize (6.19) and (6.20). Specifically, it follows from i) of
Corollary 6.1 that if Gc given by (6.3) and (6.4) is exponentially passive with
rank[Gc(0)] = 1, then the negative feedback interconnection of G given by
(6.19)–(6.21) and Gc is asymptotically stable. Here, we construct a reduced-
order linear dynamic compensator Gc given by (6.3) and (6.4) with fc(xc) =
−10xc, Gc(xc) = 5, hc(xc) = 6xc, and Jc(xc) ≡ 0. Note that with Vs(xc) =
3
5x

2
c , ε = 20, ℓ(xc) ≡ 0, and W(xc) ≡ 0, it follows from Corollary 5.4

that Gc is exponentially passive. Hence, Corollary 6.1 guarantees that the
negative feedback interconnection of G and Gc is globally asymptotically
stable. Figures 6.3 and 6.4 compare the time responses of the position x1

and velocity x2, respectively, for the open-loop and closed-loop systems for
an initial condition [x10, x20]

T = [1, 0.5]T. Figure 6.5 compares the control
effort versus time and Figure 6.6 gives the phase portraits of the open-loop
and closed-loop systems. △

Corollary 6.2. Consider the closed-loop system consisting of the
nonlinear dynamical systems G given by (6.1) and (6.2) and Gc given by
(6.3) and (6.4). Let a, b, ac, bc, δ ∈ R be such that b > 0, 0 < a + b,
0 < 2δ < b − a, ac = a + δ, and bc = b + δ, let M ∈ Rm×m be positive
definite, and assume G and Gc are zero-state observable. If G is dissipative
with respect to the supply rate r(u, y) = uTMy + ab

a+by
TMy + 1

a+bu
TMu

and has a continuously differentiable radially unbounded storage function,
and Gc is dissipative with respect to the supply rate rc(uc, yc) = uT

c Myc −
1

ac+bc
yT
c Myc − acbc

ac+bc
uT

c Muc and has a continuously differentiable radially
unbounded storage function, then the negative feedback interconnection of
G and Gc is globally asymptotically stable.
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Figure 6.3 Position versus time.
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Figure 6.4 Velocity versus time.

Proof. The proof is a direct consequence of Theorem 6.2 with
Q = ab

a+bM , S = 1
2M , R = 1

a+bM , Qc = − 1
ac+bc

M , Sc = 1
2M , and
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Figure 6.5 Control effort versus time.

Rc = − acbc

ac+bc
M . Specifically, let σ > 0 be such that

σ

(

δ2

(a+ b)2
− 1

4

)

+
1

4
> 0.

In this case, Q̂ given by (6.7) satisfies

Q̂ =

[

( ab
a+b − σacbc

ac+bc
)M σ−1

2 M
σ−1

2 M ( 1
a+b − σ

ac+bc
)M

]

< 0,

so that all the conditions of Theorem 6.2 are satisfied.

6.3 Energy-Based Feedback Control

In this section, an energy-based control framework for port-controlled
Hamiltonian systems is established. Specifically, we develop a controller
design methodology that achieves stabilization via system passivation. In
particular, the interconnection and damping matrix functions of the port-
controlled Hamiltonian system are shaped so that the physical (Hamil-
tonian) system structure is preserved at the closed-loop level and the
closed-loop energy function is equal to the difference between the physical
energy of the system and the energy supplied by the controller. Since the
Hamiltonian structure is preserved at the closed-loop level, the passivity-
based controller is robust with respect to unmodeled passive dynamics.
Furthermore, passivity-based control architectures are extremely appealing
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Figure 6.6 Phase portrait.

since the control action has a clear physical energy interpretation which can
considerably simplify controller implementation.

We begin by considering the port-controlled Hamiltonian system given
by

ẋ(t) = [J (x(t)) −R(x(t))]

(

∂H
∂x

(x(t))

)T

+G(x(t))u(t),

x(0) = x0, t ≥ 0, (6.22)

y(t) = GT(x(t))

(

∂H
∂x

(x(t))

)T

, (6.23)

where x(t) ∈ D ⊆ Rn, D is an open set, u(t) ∈ U ⊆ Rm, y(t) ∈ Y ⊆ Rl,
H : D → R is a continuously differentiable Hamiltonian function for the
system (6.22) and (6.23), J : D → Rn×n is such that J (x) = −J T(x),

R : D → Sn is such that R(x) ≥ 0, x ∈ D, [J (x) −R(x)]
(

∂H
∂x (x)

)T
, x ∈ D,

is Lipschitz continuous on D, and G : D → Rn×m. To address the energy-
based feedback control problem let φ : D → U . If u(t) = φ(x(t)), t ≥ 0, then
u(·) is a feedback control. Next, we provide constructive sufficient conditions
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for energy-based feedback control of port-controlled Hamiltonian systems.
Specifically, we seek feedback controllers u(t) = φ(x(t)), t ≥ 0, where φ :
D → U , such that the closed-loop system has the form

ẋ(t) = [J (x(t)) −R(x(t))]

(

∂H
∂x

(x(t))

)T

+G(x(t))φ(x(t))

= [Js(x(t)) −Rs(x(t))]

(

∂Hs

∂x
(x(t))

)T

, x(0) = x0, t ≥ 0, (6.24)

where Hs : D → R is a shaped Hamiltonian function for the closed-loop
system (6.24), Js : D → Rn×n is a shaped interconnection matrix function
for the closed-loop system and satisfies Js(x) = −J T

s (x), and Rs : D → Sn is
a shaped dissipation matrix function for the closed-loop system and satisfies
Rs(x) ≥ 0, x ∈ D.

Theorem 6.3. Consider the nonlinear port-controlled Hamiltonian sy-
stem given by (6.22). Assume there exist functions φ : D → U , Hs, Hc : D →
R, Js, Ja : D → Rn×n, Rs, Ra : D → Rn×n such that Hs(x) = H(x)+Hc(x)
is continuously differentiable, Js(x) = J (x) + Ja(x), Js(x) = −J T

s (x),
Rs(x) = R(x) + Ra(x), Rs(x) = RT

s (x) ≥ 0, x ∈ D, and

∂Hc

∂x
(xe) = −∂H

∂x
(xe), xe ∈ D, (6.25)

∂2Hc

∂x2
(xe) > −∂

2H
∂x2

(xe), xe ∈ D, (6.26)

[Js(x) −Rs(x)]

(

∂Hc

∂x
(x)

)T

= − [Ja(x) −Ra(x)]

(

∂H
∂x

(x)

)T

+G(x)φ(x), x ∈ D. (6.27)

Then the equilibrium solution x(t) ≡ xe of the closed-loop system (6.24) is
Lyapunov stable. If, in addition, Dc ⊆ D is a compact positively invariant
set with respect to (6.24) and the largest invariant set contained in R △

=

{x ∈ Dc : ∂Hs

∂x (x)Rs(x)
(

∂Hs

∂x (x)
)T

= 0} is M = {xe}, then the equilibrium
solution x(t) ≡ xe of the closed-loop system (6.24) is locally asymptotically
stable and Dc is a subset of the domain of attraction of (6.24).

Proof. Condition (6.27) implies that with feedback controller u(t) =
φ(x(t)) the closed-loop system (6.22) has a Hamiltonian structure given
by (6.24). Furthermore, it follows from (6.25) and (6.26) that the energy
function Hs(·) has a local minimum at x = xe. Hence, x = xe is an
equilibrium point of the closed-loop system. Next, consider the Lyapunov
function candidate for the closed-loop system (6.24) given by V (x) =
Hs(x)−Hs(xe). Now, the corresponding Lyapunov derivative of V (x) along
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the closed-loop state trajectories x(t), t ≥ 0, is given by

V̇ (x(t)) = Ḣs(x(t)) = −∂Hs

∂x
(x(t))Rs(x(t))

(

∂Hs

∂x
(x(t))

)T

≤ 0, t ≥ 0.

(6.28)
Thus, it follows from Theorem 3.1 that the equilibrium solution x(t) ≡ xe

of (6.24) is Lyapunov stable. Asymptotic stability of the closed-loop system
follows immediately from Corollary 3.1.

Theorem 6.3 presents constructive sufficient conditions for feedback
stabilization that preserve the physical Hamiltonian structure at the closed-
loop level while providing a shaped Hamiltonian energy function as a
Lyapunov function for the closed-loop system. These sufficient conditions
consist of a partial differential equation parameterized by the auxiliary
energy function Hc, the auxiliary interconnection matrix function Ja, and
auxiliary dissipation matrix functions Ra, and whose solution characterizes
the set of all desired shaped energy functions that can be assigned while
preserving the system Hamiltonian structure at the closed-loop level. To
apply Theorem 6.3, we fix the structure of the interconnection Js(·) and
dissipation Rs(·) matrix functions and solve for the closed-loop energy
function Hs(·). Although in this case solving (6.27) appears formidable,
it is in fact quite tractable since the partial differential equation (6.27)
is parameterized via the interconnection and dissipation matrix functions
which can be chosen by the control designer to satisfy system physical
constraints. Alternatively, we can fix the shaped Hamiltonian Hs and solve
for the interconnection and dissipation matrix functions. In this case, we
do not need to solve a partial differential equation but rather an algebraic
equation.

If rank G(x) = m and rank[G(x) b(x)] = rankG(x) = m, where

b(x) = [Js(x) −Rs(x)]

(

∂Hc

∂x
(x)

)T

+ [Ja(x) −Ra(x)]

(

∂H
∂x

(x)

)T

, (6.29)

then an explicit expression for the stabilizing feedback controller satisfying
(6.27) is given by φ(x) = (GT(x)G(x))−1GT(x)b(x), x ∈ D. Alternatively,
if rank[G(x) b(x)] = rankG(x) < m, x ∈ D, then the feedback controller
φ(x) = G†(x)b(x)+[Im−G†(x)G(x)]z, x ∈ D, where (·)† denotes the Moore-
Penrose generalized inverse and z ∈ Rm, satisfies (6.27).

Under certain conditions on the system dissipation, the energy-based
controller given by Theorem 6.3 provides an energy balance of the controlled

system. To see this, let Ra(x) ≡ 0 and R(x)
(

∂Hc

∂x (x)
)T

= 0, x ∈ D. In this
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case, the closed-loop dynamics are given by

ẋ(t) = [Js(x(t)) −R(x(t))]

(

∂Hs

∂x
(x(t))

)T

, x(0) = x0, t ≥ 0. (6.30)

Along the trajectories x(t), t ≥ 0, it follows that

Ḣs(x(t))

= −∂Hs

∂x
(x(t))R(x(t))

(

∂Hs

∂x
(x(t))

)T

= −
(

∂H
∂x

(x(t)) +
∂Hc

∂x
(x(t))

)

R(x(t))

(

∂H
∂x

(x(t)) +
∂Hc

∂x
(x(t))

)T

= −∂H
∂x

(x(t))R(x(t))

(

∂H
∂x

(x(t))

)T

, t ≥ 0, (6.31)

or, equivalently using (5.67),

Ḣs(x(t)) = Ḣ(x(t)) − uT(t)y(t), t ≥ 0. (6.32)

Now, integrating (6.32) yields

Hs(x(t)) = H(x(t)) −
∫ t

t̂
uT(s)y(s)ds+ κ, 0 ≤ t̂ ≤ t, (6.33)

where κ
△
= Hs(x(t̂)) − H(x(t̂)), which shows that the closed-loop energy

function Hs(·) is equal to the difference between the physical energy H(·) of
the system and the energy supplied by the controller modulo the constant
κ.

Example 6.3. Consider the inverted pendulum shown in Figure 6.7,
where m = 1kg and L = 1m. The system is governed by the dynamic
equation of motion

θ̈(t) − g sin θ(t) = u(t), θ(0) = θ0, θ̇(0) = θ̇0, t ≥ 0, (6.34)

where g denotes the gravitational acceleration and u(·) is a (thruster) control
force. Defining x1 = θ and x2 = θ̇, we can rewrite the equation of motion
in state space form (6.22) with x

△
= [x1, x2]

T,

J (x) =

[

0 1
−1 0

]

, R(x) = 0, G(x) =

[

0
−1

]

, (6.35)

D = R2, and Hamiltonian function H(·) corresponding to the total energy

in the system given by H(x) = x2
2

2 + g cos x1.

Next, to stabilize the equilibrium point xe = [θe, 0]
T we assign the

shaped Hamiltonian Hs(x) = x2
2

2 + 1
2(x1 − θe)

2 function for the closed-loop
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Figure 6.7 Inverted pendulum.

system. Furthermore, we set

Ja(x) = 0, Ra(x) =

[

0 0
0 1

]

, x ∈ D. (6.36)

In this case, it follows from (6.27) that the feedback controller is given by
u = φ(x) = x2+(x1−θe)+g sinx1, x ∈ D. Next, note that Ḣs(x) = −x2

2 ≤ 0,

x ∈ D. Hence, R △
= {x ∈ D : Ḣs = 0} = {x ∈ D : x2 = 0}. Finally, since for

every x ∈ R, ẋ2 6= 0 if and only x1 6= θe, it follows that the largest invariant
set contained in R is given by M = {xe}, and hence, the equilibrium solution
x(t) ≡ [θe, 0]

T is asymptotically stable. With θe = 15o, Figure 6.8 shows the
phase portrait of the port-controlled Hamiltonian system. Figure 6.9 shows
the control force versus time and the shaped Hamiltonian versus time. △

Example 6.4. Consider the two-mass, two-spring system shown in
Figure 6.10. A control force û(·) acts on mass 2 with the goal to stabilize
the position of the second mass. The system dynamics, with state variables
defined in Figure 6.10, are given by

m1q̈1(t) + (k1 + k2)q1(t) − k2q2(t) = 0,

q1(0) = q01, q̇1(0) = q̇01, t ≥ 0, (6.37)

m2q̈2(t) − k2q1(t) + k2q2(t) = û(t),

q2(0) = q02, q̇2(0) = q̇02. (6.38)

Defining x1 = q1, x2 = q̇1, x3 = q2, and x4 = q̇2, we can rewrite (6.37)
and (6.38) in state space form (6.22) with x = [x1, x2, x3, x4]

T, R(x) = 0,
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Figure 6.8 Phase portrait of the inverted pendulum.

G(x) = [0, 0, 0, 1]T, u = û
m2

,

J (x) =









0 1
m1

0 0

− 1
m1

0 0 0

0 0 0 1
m2

0 0 − 1
m2

0









, (6.39)

D = {x ∈ R4 : x1 ≥ 0, x3 ≥ 0}, and Hamiltonian function H(·)
corresponding to the total energy in the system given by H(x) = m1x2

2

2 +
m2x2

4

2 + k1x2
1

2 + k2(x3−x1)2

2 .

Next, to stabilize the equilibrium point xe = [x1e, 0, x3e, 0]T, where
x1e = k2

(k1+k2)
x3e, with steady-state control value of uc ss = k1k2

m2(k1+k2)
x3e,

we assign the shaped Hamiltonian function Hs(x) = m1x2
2

2 + m2x2
4

2 + k1x2
1

2 +
k2(x3−x1)2

2 − k1k2

(k1+k2)
x3ex3 for the closed-loop system. Furthermore, we set

Ja(x) ≡ 0 and

Ra(x) =









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

m2









, x ∈ D. (6.40)

In this case, it follows from (6.27) that the feedback controller is given by
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Figure 6.9 Control force and shaped Hamiltonian versus time.



m1 m2

k1
k2

q1(t) q2(t)

û(t)

Figure 6.10 Two-mass, two-spring system.

u = φ(x) = k1k2

m2(k1+k2)
x3e − x4, x ∈ D. Next, note that Ḣs(x) = −m2x

2
4 ≤

0, x ∈ D. Hence, R △
= {x ∈ D : Ḣs = 0} = {x ∈ D : x4 = 0}. Now, if

M ⊆ R is the largest invariant set contained in R, then for every x0 ∈ M,
x4(t) ≡ 0, which implies that x1(t)−x3(t)+ k1

k1+k2
x3e = 0 and ẋ3(t) = 0, t ≥

0. In this case, it follows that ẋ1(t) = 0, and hence, ẋ2(t) = 0, t ≥ 0. Hence,
the only point that belongs to M is xe = [ k2

(k1+k2)
x3e, 0, x3e, 0]T, which

implies that xe is an asymptotically stable equilibrium point of the closed-
loop system. With m1 = 1.5 kg, m2 = 0.8 kg, k1 = 0.1N/m, k2 = 0.3N/m,
L = 0.4m, and x3e = 3m, Figure 6.11 shows the phase portrait of x2 versus
x4 of the port-controlled Hamiltonian system. Figures 6.12 and 6.13 show,
respectively, the positions and velocities of the masses versus time. Finally,
Figure 6.14 shows the control force versus time and the shaped Hamiltonian
versus time. △

Next, we consider energy-based dynamic control for port-controlled
Hamiltonian systems wherein energy shaping is achieved by combining the
physical energy of the plant and the emulated energy of the controller.
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Figure 6.11 Phase portrait of x2 versus x4.

This approach has been extensively studied by Ortega et al. [340, 341] to
design Euler-Lagrange controllers for potential energy shaping of mechanical
systems.

We begin by considering the port-controlled Hamiltonian system G
given by (6.22) and (6.23) with m = l. Furthermore, we consider the port-
controlled Hamiltonian feedback control system Gc given by

ẋc(t) = [Jc(xc(t)) −Rc(xc(t))]

(

∂Hc

∂xc
(xc(t))

)T

+Gc(xc(t))uc(t),

xc(0) = xc0, t ≥ 0, (6.41)

yc(t) = GT
c (xc(t))

(

∂Hc

∂xc
(xc(t))

)T

, (6.42)

where xc(t) ∈ Rnc , uc(t) ∈ Uc ⊆ Rmc , yc(t) ∈ Yc ⊆ Rlc , mc = lc, Hc : Rnc →
R is a continuously differentiable Hamiltonian function of the feedback
control system Gc, Jc : Rnc → Rnc×nc is such that Jc(xc) = −J T

c (xc), Rc :

Rnc → Snc is such that Rc(xc) ≥ 0, xc ∈ Rnc , [Jc(xc) −Rc(xc)]
(

∂Hc

∂xc
(xc)

)T
,

xc ∈ Rnc , is Lipschitz continuous on Rnc , Gc : Rnc → Rnc×mc , mc = l, and
lc = m. Here, we assume that uc(·) is restricted to the class of admissible
inputs consisting of measurable functions such that uc(t) ∈ Uc for all t ≥ 0.
Note that with the feedback interconnection given by Figure 6.1, uc = y and
yc = −u. Hence, the closed-loop dynamics can be written in Hamiltonian
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Figure 6.12 Mass positions versus time.

form given by

˙̃x(t) =

([

J (x(t)) −G(x(t))GT
c (xc(t))

Gc(xc(t))G
T(x(t)) Jc(xc(t))

]

−
[

R(x(t)) 0
0 Rc(xc(t))

])





(

∂H
∂x (x(t))

)T

(

∂Hc

∂xc
(xc(t))

)T



 ,

x̃(0) = x̃0, t ≥ 0, (6.43)

where x̃
△
= [xT, xT

c ]T.

It can be seen from (6.43) that by relating the controller state
variables xc to the plant state variables x, one can shape the Hamiltonian
function H(·) + Hc(·) so as to preserve the Hamiltonian structure under
dynamic feedback for part of the closed-loop system associated with
the plant dynamics. Since the closed-loop dynamical system (6.43) is
Hamiltonian involving skew-symmetric interconnection matrix function
terms and nonnegative-definite dissipation matrix function terms, we can
establish the existence of energy-Casimir functions [63,441] (i.e., dynamical
invariants) that are independent of the closed-loop Hamiltonian and relate
the controller states to the plant states. Since, as shown in Section 3.4,
energy-Casimir functions are composed of integrals of motion, it follows
that these functions are constant along the trajectories of the closed-loop
system (6.43). Furthermore, since the controller Hamiltonian Hc(·) can



NonlinearBook10pt November 20, 2007

430 CHAPTER 6

0 5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

1

2

Time

V
el

oc
ity

 o
f m

as
s 

1

0 5 10 15 20 25 30 35 40 45 50
−2

−1

0

1

2

Time

V
el

oc
ity

 o
f m

as
s 

2

Figure 6.13 Mass velocities versus time.

be assigned, the energy-Casimir method can be used to construct suitable
Lyapunov functions for the closed-loop system.

To proceed, consider the candidate vector energy-Casimir function E :
D×Rnc → Rnc , where E(·, ·) is continuously differentiable and has the form

E(x, xc) = xc − F (x), (x, xc) ∈ D × Rnc , (6.44)

where F : D → Rnc is a continuously differentiable function. To ensure that
the candidate vector energy-Casimir function E(·, ·) is constant along the
trajectories of (6.43) we require that

Ė(x(t), xc(t)) = ẋc(t) −
∂F

∂x
(x(t))ẋ(t) = 0, t ≥ 0. (6.45)

Now, we can arrive at a set of sufficient conditions which guarantee that
(6.45) holds. Specifically, it follows from (6.43) that (6.45) can be rewritten
as

Ė(x(t), xc(t)) =

[

[

Gc(xc)G
T(x) − ∂F

∂x (x)(J (x) −R(x))
]T

[

Jc(xc) −Rc(xc) + ∂F
∂x (x)G(x)GT

c (xc)
]T

]T

·





(

∂H
∂x (x(t))

)T

(

∂Hc

∂xc
(xc(t))

)T



 . (6.46)
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Figure 6.14 Control signal and shaped Hamiltonian versus time.

Hence, a set of sufficient conditions such that (6.45) holds is given by

Gc(xc)G
T(x) − ∂F

∂x
(x)(J (x) −R(x)) = 0, (x, xc) ∈ D × Rnc , (6.47)

Jc(xc) −Rc(xc) +
∂F

∂x
(x)G(x)GT

c (xc) = 0, (x, xc) ∈ D × Rnc . (6.48)

The following proposition summarizes the above results.

Proposition 6.1. Consider the feedback interconnection of the port-
controlled Hamiltonian systems G and Gc given by (6.22) and (6.23), and
(6.41) and (6.42), respectively. If there exists a continuously differentiable
function F : D → Rnc such that for all (x, xc) ∈ D × Rnc ,

∂F

∂x
(x)J (x)

(

∂F

∂x
(x)

)T

− Jc(xc) = 0, (6.49)

Rc(xc) = 0, (6.50)

R(x)

(

∂F

∂x
(x)

)T

= 0, (6.51)

∂F

∂x
(x)J (x) −Gc(xc)G

T(x) = 0, (6.52)

then
E(x̃(t)) = xc(t) − F (x(t)) = c, t ≥ 0, (6.53)

where c ∈ Rnc and x̃(t) = [xT(t), xT
c (t)]T satisfies (6.43).
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Proof. Postmultiplying (6.47) by
(

∂F
∂x (x)

)T
, it follows from (6.47) and

(6.48) that

∂F

∂x
(x)[J (x) −R(x)]

(

∂F

∂x
(x)

)T

= Jc(xc) + Rc(xc), (x, xc) ∈ D × Rnc .

(6.54)
Next, using the fact that the sum of a skew-symmetric and symmetric matrix
is zero if and only if the individual matrices are zero, it follows that (6.54)
is equivalent to

∂F

∂x
(x)J (x)

(

∂F

∂x
(x)

)T

−Jc(xc) = 0, (x, xc) ∈ D × Rnc , (6.55)

Rc(xc) +
∂F

∂x
(x)R(x)

(

∂F

∂x
(x)

)T

= 0, (x, xc) ∈ D × Rnc . (6.56)

Now, since R(x) ≥ 0, x ∈ D, and Rc(xc) ≥ 0, x ∈ Rnc , it follows that (6.55)
and (6.56) are equivalent to (6.49)–(6.51). Hence, it follows that (6.47) can
be rewritten as (6.52). The equivalence between (6.47)–(6.48) and (6.49)–
(6.52) proves the result.

Note that conditions (6.49)–(6.52) are necessary and sufficient for
(6.47)–(6.48) to hold, which, in turn, provide sufficient conditions for
guaranteeing that the vector energy-Casimir function E(·, ·) is constant
along the trajectories of the closed-loop system (6.43). The constant
vector c ∈ Rnc in (6.53) depends on the initial conditions for the plant
and controller states. If conditions (6.49)–(6.52) are satisfied, then the
controller state variables along the trajectories of the closed-loop system
given by (6.43) can be represented in terms of the plant state variables as
xc(t) = F (x(t)) + c, t ≥ 0, x(t) ∈ D, c ∈ Rnc . In this case, it follows that
the closed-loop system associated with the plant dynamics is given by

ẋ(t) = [J (x(t)) −R(x(t))]

(

∂H
∂x

(x(t))

)T

−G(x(t))GT
c (xc(t))

(

∂Hc

∂xc
(xc(t))

)T

= [J (x(t)) −R(x(t))]

(

∂H
∂x

(x(t)) +
∂Hc

∂xc
(xc(t))

∂F

∂x
(x(t))

)T

= [J (x(t)) −R(x(t))]

(

∂Hs

∂x
(x(t))

)T

, x(0) = x0, t ≥ 0, (6.57)

where Hs(x) = H(x) + Hc(F (x) + c), x ∈ D, is the shaped Hamiltonian
function for the closed-loop system (6.57).

Next, we use the existence of the vector energy-Casimir function to
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construct stabilizing dynamic controllers that guarantee that the closed-
loop system associated with the plant dynamics preserves the Hamiltonian
structure without the need for solving a set of partial differential equations.

Theorem 6.4. Consider the feedback interconnection of the port-
cont-rolled Hamiltonian systems G and Gc given by (6.22) and (6.23), and
(6.41) and (6.42), respectively. Assume that there exists a continuously
differentiable function F : D → Rnc such that conditions (6.49)–(6.52)
hold for all (x, xc) ∈ D × Rnc , and assume that the Hamiltonian function
Hc : Rnc → R of the feedback controller Gc is such that Hs : D → R is given
by Hs(x) = H(x) + Hc(F (x) + c), x ∈ D. If

∂Hc

∂x
(F (xe) + c) = −∂H

∂x
(xe), xe ∈ D, (6.58)

∂2Hc

∂x2
(F (xe) + c) > −∂

2H
∂x2

(xe), xe ∈ D, (6.59)

then the equilibrium solution x(t) ≡ xe of the system (6.57) is Lyapunov
stable. If, in addition, Dc ⊆ D is a compact positively invariant set with
respect to (6.57) and the largest invariant set contained in R △

= {x ∈ Dc :
∂Hs

∂x (x)R(x)
(

∂Hs

∂x (x)
)T

= 0} is M = {xe}, then the equilibrium solution
x(t) ≡ xe of the closed-loop system (6.57) is locally asymptotically stable.

Proof. Conditions (6.49)–(6.52) imply that the closed-loop dynamics
of the port-controlled Hamiltonian system G and the controller Gc associated
with the plant states can be written in the form given by (6.57). Now,
using identical arguments as in the proof of Theorem 6.3, conditions (6.58)
and (6.59) guarantee the existence of the Lyapunov function candidate
V (x) = Hs(x) −Hs(xe), x ∈ D, which guarantees Lyapunov stability of the
equilibrium solution x(t) ≡ xe of the closed-loop system (6.57). Asymptotic
stability of x(t) ≡ xe follows from Corollary 3.1.

As in the static controller case, the dynamic controller given by
Theorem 6.4 also provides an energy balance interpretation over the
trajectories of the controlled system. To see this, note that since by (6.50),
Rc(xc) = 0, xc ∈ Rnc , it follows that the controller Hamiltonian Hc(·)
satisfies

Ḣc(F (x(t)) + c) = yT
c (t)y(t) = −uT(t)y(t), t ≥ 0. (6.60)

Now, it follows that

Ḣs(x(t)) = Ḣ(x(t)) + Ḣc(F (x(t)) + c)

= Ḣ(x(t)) − uT(t)y(t), t ≥ 0, (6.61)

which yields (6.33).
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6.4 Stability Margins for Nonlinear Feedback Regulators

To develop relative stability margins for nonlinear regulators consider the
nonlinear dynamical system G given by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, t ≥ 0, (6.62)

y(t) = −φ(x(t)), (6.63)

where φ : Rn → Rm is such that G is asymptotically stable with u = −y.
Furthermore, assume that the system G is zero-state observable. Next,
we define the relative stability margins for G given by (6.62) and (6.63).

Specifically, let uc
△
= −y, yc

△
= u, and consider the negative feedback

interconnection u = ∆(−y) of G and ∆(·) given in Figure 6.15, where
∆(·) is either a linear operator ∆(uc) = ∆uc, a nonlinear static operator
∆(uc) = σ(uc), or a dynamic nonlinear operator ∆(·) with input uc and
output yc. Furthermore, we assume that in the nominal case ∆(·) = I(·) so
that the nominal closed-loop system is asymptotically stable.

∆(·) G- -−

Figure 6.15 Multiplicative input uncertainty of G and input operator ∆(·).

Definition 6.1. Let α, β ∈ R be such that 0 < α ≤ 1 ≤ β < ∞.
Then the nonlinear dynamical system G given by (6.62) and (6.63) is said to
have a gain margin (α, β) if the negative feedback interconnection of G and
∆(uc) = ∆uc is globally asymptotically stable for all ∆ = diag[k1, . . . , km],
where ki ∈ (α, β), i = 1, . . . ,m.

Definition 6.2. Let α, β ∈ R be such that 0 < α ≤ 1 ≤ β < ∞.
Then the nonlinear dynamical system G given by (6.62) and (6.63) is said
to have a sector margin (α, β) if the negative feedback interconnection of
G and ∆(uc) = σ(uc) is globally asymptotically stable for all nonlinearities
σ : Rm → Rm such that σ(0) = 0, σ(uc) = [σ1(uc1), . . . , σm(ucm)]T, and
αu2

ci < σi(uci)uci < βu2
ci, for all uci 6= 0, i = 1, . . . ,m.

Definition 6.3. Let α, β ∈ R be such that 0 < α ≤ 1 ≤ β < ∞. Then
the nonlinear dynamical system G given by (6.62) and (6.63) is said to have
a disk margin (α, β) if the negative feedback interconnection of G and ∆(·)
is globally asymptotically stable for all dynamic operators ∆(·) such that
∆(·) is zero-state observable and dissipative with respect to the supply rate
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r(uc, yc) = uT
c yc − 1

α̂+β̂
yT
c yc − α̂β̂

α̂+β̂
uT

c uc, where α̂ = α + δ, β̂ = β − δ, and

δ ∈ R such that 0 < 2δ < β − α.

Definition 6.4. Let α, β ∈ R be such that 0 < α ≤ 1 ≤ β < ∞. Then
the nonlinear dynamical system G given by (6.62) and (6.63) is said to have
a structured disk margin (α, β) if the negative feedback interconnection of G
and ∆(·) is globally asymptotically stable for all dynamic operators ∆(·) such
that ∆(·) is zero-state observable, ∆(uc) = diag[δ1(uc1), . . . , δm(ucm)], and
δi(·), i = 1, . . . ,m, is dissipative with respect to the supply rate r(uci, yci) =

uciyci − 1
α̂+β̂

y2
ci − α̂β̂

α̂+β̂
u2

ci, where α̂ = α+ δ, β̂ = β − δ, and δ ∈ R such that

0 < 2δ < β − α.

Note that if G has a disk margin (or structured disk margin) (α, β),
then G has gain and sector margins (α, β). To see this, let ∆(uc) = σ(uc),
where σ : Rm → Rm is such that σ(0) = 0 and

σ(uc) = [σ1(uc1), . . . , σm(ucm)]T.

Now, if ∆(uc) is dissipative with respect to the supply rate r(uc, yc) =

uT
c yc − 1

α̂+β̂
yT
c yc − α̂β̂

α̂+β̂
uT

c uc, then σ(·) satisfies

0 ≤ σT(uc)uc − 1
α̂+β̂

σT(uc)σ(uc) − α̂β̂

α̂+β̂
uT

c uc, (6.64)

or, equivalently,

0 ≥
m
∑

i=1

(σi(uci) − α̂uci)(σi(uci) − β̂uci). (6.65)

Hence, if G has a disk margin (α, β), then G has a sector margin (α, β).
Similarly, if ∆(·) is a linear operator such that ∆(uc) = ∆uc, where ∆ =
diag[k1, . . . , km], and ∆(uc) is dissipative with respect to the supply rate

r(uc, uc) = uT
c yc − 1

α̂+β̂
yT
c yc − α̂β̂

α̂+β̂
uT

c uc, it follows that

0 ≥
m
∑

i=1

(ki − α̂)(ki − β̂). (6.66)

Thus, if G has a disk margin (α, β), then G has a gain margin (α, β). Finally,
letting β → ∞ in Definition 6.3 we recover the definition of disk margins
given in [395].

In the case where ∆(·) is a dynamic operator we assume that ∆(·) can
be characterized as (6.3) and (6.4) where xc denotes the internal state of
the operator ∆(·), uc denotes the input, and yc denotes the output of the
operator. If ∆(·) is a single-input/single-output, linear dynamic operator it
follows from Parseval’s theorem that if ∆(·) is dissipative with respect to
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the supply rate r(uc, yc) = uT
c yc − 1

α̂+β̂
yT
c yc − α̂β̂

α̂+β̂
uT

c uc, then

|∆(ω)|2 − (α̂+ β̂)Re ∆(jω) + α̂β̂ < 0. (6.67)

In this case, it can be easily shown that if G has a disk margin of (α, β),

then G has a gain margin (α, β) and a phase margin ϕ, where cos(ϕ) = αβ
α+β .

Hence, the concept of the disk margin for nonlinear systems provides a
nonlinear hybrid analog to the concepts of gain and phase margins of linear
systems.

The following results provide algebraic sufficient conditions that
guarantee disk margins for the nonlinear dynamical system G given by (6.62)
and (6.63).

Theorem 6.5. Consider the nonlinear dynamical system G given by
(6.62) and (6.63). Let α, β ∈ R be such that 0 < α ≤ 1 ≤ β < ∞. Suppose
there exist a positive-definite diagonal matrix Z ∈ Rm×m and functions
Vs : Rn → R, ℓ : Rn → Rp, and W : Rn → Rp×m such that Vs(·) is
continuously differentiable, Vs(0) = 0, Vs(x) > 0, x ∈ Rn, x 6= 0, and for all
x ∈ Rn,

0 = V ′
s (x)f(x) − αβ

α+βφ
T(x)Zφ(x) + ℓT(x)ℓ(x), (6.68)

0 = V ′
s (x)G(x) + φT(x)Z + 2ℓT(x)W(x), (6.69)

0 = 1
α+βZ −WT(x)W(x). (6.70)

Then the nonlinear system G has a structured disk margin (α, β). Alterna-
tively, if (6.68)–(6.70) are satisfied with Z = Im, then the nonlinear system
G has a disk margin (α, β).

Proof. With h(x) = −φ(x), J(x) ≡ 0, Q = αβ
α+βZ, R = 1

α+βZ,

and S = 1
2Z, it follows from Theorem 5.6 that the nonlinear system G is

dissipative with respect to the supply rate r(u, y) = uTZy + αβ
α+β y

TZy +
1

α+βu
TZu. Next, let ∆(·) be zero-state observable and let ∆(uc) =

diag[δ1(uc1), . . . , δm(ucm)] be such that δi(·), i = 1, . . . ,m, is dissipative

with respect to the supply rate r(uci, yci) = uciyci − 1
α̂+β̂

y2
ci − α̂β̂

α̂+β̂
u2

ci, where

α̂ = α + δ, β̂ = β − δ, and δ ∈ R is such that 0 < 2δ < β − α. Now,
noting that in this case ∆(·) is dissipative with respect to the supply rate

r(uc, yc) = uT
c Zyc − 1

α̂+β̂
yT
c Zyc − α̂β̂

α̂+β̂
uT

c Zuc, it follows from Definition 6.4

and Corollary 6.2 that the nonlinear system G has a structured disk margin
(α, β). Finally, if (6.68)–(6.70) are satisfied with Z = Im, then it follows
from Theorem 5.6 that the nonlinear system G is dissipative with respect
to the supply rate r(u, y) = uTy + αβ

α+β y
Ty + 1

α+βu
Tu. Hence, it follows

from Definition 6.3 and Corollary 6.2 that the nonlinear system G has a disk
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margin (α, β).

Corollary 6.3. Consider the nonlinear dynamical system G given by
(6.62) and (6.63). Let α, β ∈ R be such that 0 < α ≤ 1 ≤ β < ∞. Suppose
there exist a positive-definite diagonal matrix Z ∈ Rm×m and a continuously
differentiable function Vs : Rn → R such that Vs(0) = 0, Vs(x) > 0, x ∈ Rn,
x 6= 0, and for all x ∈ Rn,

0 ≥ V ′
s (x)f(x) − αβ

α+βφ
T(x)Zφ(x)

+α+β
4 [φT(x)Z + V ′

s (x)G(x)]Z−1[φT(x)Z + V ′
s (x)G(x)]T. (6.71)

Then the nonlinear system G has a structured disk margin (α, β). Alterna-
tively, if (6.71) is satisfied with Z = Im, then the nonlinear system G has a
disk margin (α, β).

Proof. It follows from Theorem 5.6 that (6.68)–(6.70) are equivalent
to (6.71). Now, the result is a direct consequence of Theorem 6.5.

The following theorem gives the nonlinear version of the results of
[316].

Theorem 6.6. Consider the nonlinear dynamical system G given by
(6.62) and (6.63). Let α, β ∈ R be such that 0 < α ≤ 1 ≤ β < ∞. Suppose
there exist a positive-definite diagonal matrix Z ∈ Rm×m, a continuously
differentiable function V : Rn → R, and a scalar q > 0 such that V (0) = 0,
V (x) > 0, x ∈ Rn, x 6= 0, and for all x ∈ Rn,

0 ≥ V ′(x)f(x) − αβ
q(α+β)2V

′(x)G(x)Z−1GT(x)V ′T(x). (6.72)

Then, with φ(x) = − 1
q(α+β)Z

−1GT(x)V ′T(x), the nonlinear system G has

a structured disk margin (α, β). Alternatively, if (6.72) is satisfied with
Z = Im, then the nonlinear system G has a disk margin (α, β).

Proof. The result is a direct consequence of Corollary 6.3 with Vs(x) =
1

q(α+β)V (x). Specifically, since φ(x) = − 1
q(α+β)Z

−1GT(x)V ′T(x) = −Z−1

·GT(x)V ′T
s (x), it follows from (6.72) that for all x ∈ Rn,

0 ≥ V ′(x)f(x) − αβ
q(α+β)2V

′(x)G(x)Z−1GT(x)V ′T(x)

= q(α+ β)
(

V ′
s (x)f(x) − αβ

α+βφ
T(x)Zφ(x)

)

= q(α+ β)
(

V ′
s (x)f(x) − αβ

α+βφ
T(x)Zφ(x)

+α+β
4 (φ(x)TZ + V ′

s (x)G(x))Z−1(φT(x)Z + V ′
s (x)G(x))T

)

,

which implies (6.71), so that the conditions of Corollary 6.3 are satisfied.
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6.5 Control Lyapunov Functions

In this section, we consider a feedback control problem and introduce the
notion of control Lyapunov functions. Furthermore, using the concept of
control Lyapunov functions we provide necessary and sufficient conditions
for nonlinear system stabilization.

Consider the nonlinear controlled dynamical system given by

ẋ(t) = F (x(t), u(t)), x(t0) = x0, t ≥ 0, (6.73)

where x(t) ∈ D ⊆ Rn, t ≥ 0, is the state vector, D is an open set with
0 ∈ D, u(t) ∈ U ⊆ Rm is the control input, and F : D × U → Rn satisfies
F (0, 0) = 0. We assume that the control input u(·) in (6.73) is restricted
to the class of admissible controls U consisting of measurable functions u(·)
such that u(t) ∈ U for all t ≥ 0, where the constraint set U is given with
0 ∈ U . A measurable mapping φ : D → U satisfying φ(0) = 0 is called a
control law. Furthermore, if u(t) = φ(x(t)), where φ is a control law and
x(t), t ≥ 0, satisfies (6.73), then u(·) is called a feedback control law. We
assume that the mapping φ : D → U satisfies sufficient regularity conditions
such that the resulting closed-loop system

ẋ(t) = F (x(t), φ(x(t)), x(0) = x0, t ≥ 0, (6.74)

has a unique solution forward in time. Specifically, we assume that F (·, ·) is
Lipschitz continuous in a neighborhood of the origin in D × U .

The following two definitions are required for stating the results of this
section.

Definition 6.5. Let φ : D → U be a mapping on D\{0} with φ(0) = 0.
Then (6.73) is feedback asymptotically stabilizable if the zero solution x(t) ≡
0 of the closed-loop system (6.74) is asymptotically stable.

Definition 6.6. Consider the controlled nonlinear dynamical system
given by (6.73). A continuously differentiable positive-definite function V :
D → R satisfying

inf
u∈U

V ′(x)F (x, u) < 0, x ∈ D, x 6= 0, (6.75)

is called a control Lyapunov function.

Note that, if (6.75) holds, then there exists a feedback control law
φ : D → U such that V ′(x)F (x, φ(x)) < 0, x ∈ D, x 6= 0, and hence,
Theorem 3.1 implies that if there exists a control Lyapunov function for
the nonlinear dynamical system (6.73), then there exists a feedback control
law φ(x) such that the zero solution x(t) ≡ 0 of the closed-loop nonlinear
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dynamical system (6.73) is asymptotically stable. Conversely, if there exists
a feedback control law u = φ(x) such that the zero solution x(t) ≡ 0 of the
nonlinear dynamical system (6.73) is asymptotically stable, then it follows
from Theorem 3.9 that there exists a continuously differentiable positive-
definite function V : D → R such that V ′(x)F (x, φ(x)) < 0, x ∈ D, x 6= 0,
or, equivalently, there exists a control Lyapunov function for the nonlinear
dynamical system (6.73). Hence, a given nonlinear dynamical system of
the form (6.73) is feedback asymptotically stabilizable if and only if there
exists a control Lyapunov function satisfying (6.75). Finally, in the case
where D = Rn and U = Rm the zero solution x(t) ≡ 0 to (6.73) is globally
asymptotically stabilizable if and only if V (x) → ∞ as ‖x‖ → ∞.

Next, we consider the special case of nonlinear affine systems in the
control and construct state feedback controllers that globally asymptotically
stabilize the zero solution of the nonlinear dynamical system under the
assumption that the system has a radially unbounded control Lyapunov
function. Specifically, we consider nonlinear affine systems of the form

ẋ(t) = f(x(t)) +G(x(t))u(t), x(t0) = x0, t ≥ 0, (6.76)

where f : Rn → Rn satisfies f(0) = 0 and G : Rn → Rn×m, and f(·) and
G(·) are smooth functions (at least continuously differentiable mappings).

Theorem 6.7. Consider the controlled nonlinear system given by
(6.76). Then a continuously differentiable positive-definite, radially un-
bounded function V : Rn → R is a control Lyapunov function of (6.76)
if and only if

V ′(x)f(x) < 0, x ∈ R, (6.77)

where R △
= {x ∈ Rn, x 6= 0 : V ′(x)G(x) = 0}.

Proof. The proof is a direct consequence of the definition of a control
Lyapunov function by noting that for systems of the form (6.76),

inf
u∈Rm

V ′(x)[f(x) +G(x)u] = −∞, x 6∈ R, x 6= 0.

Hence, (6.75) is equivalent to (6.77), which proves the result.

Example 6.5. Consider the nonlinear controlled system

ẋ1(t) = −x3
1(t) + x2(t)e

x1(t) cos(x2(t)), x1(0) = x10, t ≥ 0, (6.78)

x2(t) = x5
1(t) sin(x2(t)) + u(t), x2(0) = x20. (6.79)

To show that V (x1, x2) = 1
2x

2
1 + 1

2x
2
2 is a control Lyapunov function for

(6.78) and (6.79) note that

inf
u∈U

V ′(x1, x2)F (x1, x2, u) = inf
u∈U

[−x4
1 + x1x2e

x1 cos(x2)
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+x2u+ x2x
5
1 sin(x2)]

=

{

−x4
1, x2 = 0,

−∞, x2 6= 0,

where F (x1, x2, u) denotes the right-hand-side of (6.78) and (6.79). Thus,
V (x1, x2) = 1

2x
2
1 + 1

2x
2
2 is a control Lyapunov function, and hence, (6.78)

and (6.79) is globally asymptotically stabilizable. In particular, it is easily
verifiable that the feedback control law

u(t) = −x2(t) − x1(t)e
x1(t) cos(x2(t)) − x5

1(t) sin(x2(t)) (6.80)

globally stabilizes (6.78) and (6.79). △

It follows from Theorem 6.7 that the zero solution x(t) ≡ 0 of a
nonlinear affine system of the form (6.76) is globally feedback asymptotically
stabilizable if and only if there exists a continuously differentiable positive-
definite, radially unbounded function V : Rn → R satisfying (6.77). Hence,
Theorem 6.7 provides necessary and sufficient conditions for nonlinear
system stabilization.

Next, using Theorem 6.7 we construct an explicit feedback control
law that is a function of the control Lyapunov function V (·). Specifically,
consider the feedback control law given by

φ(x) =







−
(

c0 +
α(x)+

√
α2(x)+(βT(x)β(x))2

βT(x)β(x)

)

β(x), β(x) 6= 0,

0, β(x) = 0,
(6.81)

where α(x)
△
= V ′(x)f(x), β(x)

△
= GT(x)V ′T(x), and c0 ≥ 0. In this case,

the control Lyapunov function V (·) of (6.76) is a Lyapunov function for the
closed-loop system (6.76) with u = φ(x), where φ(x) is given by (6.81). In
particular, the control Lyapunov derivative V̇ (·) along the trajectories of the
nonlinear system (6.76) with u = φ(x) given by (6.81) is given by

V̇ (x)
△
= V ′(x)[f(x) +G(x)φ(x)]

= α(x) + βT(x)φ(x)

=

{

−c0βT(x)β(x) −
√

α2(x) + (βT(x)β(x))2, β(x) 6= 0,
α(x), β(x) = 0,

< 0, x ∈ Rn, x 6= 0, (6.82)

which implies that V (·) is a Lyapunov function for the closed-loop system
(6.76) guaranteeing global asymptotic stability with u = φ(x) given by
(6.81).

Since f(·) and G(·) are smooth it follows that α(x) and β(x), x ∈ Rn,
are smooth functions, and hence, φ(x) given by (6.81) is smooth for all
x ∈ Rn if either β(x) 6= 0 or α(x) < 0. Hence, the feedback control law
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given by (6.81) is smooth everywhere except for the origin. The following
result provides necessary and sufficient conditions under which the feedback
control law given by (6.81) is guaranteed to be continuous and Lipschitz
continuous at the origin in addition to being smooth everywhere else.

Theorem 6.8. Consider the nonlinear dynamical system G given by
(6.76) with a radially unbounded control Lyapunov function V : Rn → R.
Then the following statements hold:

i) The control law φ(x) given by (6.81) is continuous at x = 0 if and only
if for every ε > 0, there exists δ > 0 such that for all 0 < ‖x‖ < δ,
there exists u ∈ Rm such that ‖u‖ < ε and α(x) + βT(x)u < 0.

ii) There exists a stabilizing control law φ̂(x) such that α(x)+βT(x)φ̂(x)

< 0, x ∈ Rn, x 6= 0, and φ̂(x) is Lipschitz continuous at x = 0 if and
only if the control law φ(x) given by (6.81) is Lipschitz continuous at
x = 0.

Proof. Necessity of i) is trivial with u = φ(x). Conversely, assume
that, for every ε > 0, there exists δ > 0 such that for all 0 < ‖x‖ < δ, there
exists u ∈ Rm such that ‖u‖ < ε and α(x) + βT(x)u < 0. In this case, since
‖u‖ < ε it follows from the Cauchy-Schwarz inequality that α(x) < ε‖β(x)‖.
Furthermore, since V (·) is continuously differentiable and G(·) is continuous

it follows that there exists δ̂ > 0 such that for all 0 < ‖x‖ < δ̂, ‖β(x)‖ < ε.

Hence, for all 0 < ‖x‖ < δmin, where δmin
△
= min{δ, δ̂}, it follows that

α(x) < ε‖β(x)‖ and ‖β(x)‖ < ε. Furthermore, if β(x) = 0, then ‖φ(x)‖ = 0,
and if β(x) 6= 0, then it follows from (6.81) that

‖φ(x)‖ ≤ c0‖β(x)‖ +
|α(x) +

√

α2(x) + (βT(x)β(x))2|
‖β(x)‖

≤ 2α(x) + (c0 + 1)‖β(x)‖2

‖β(x)‖
≤ (c0 + 3)ε, 0 < ‖x‖ < δmin, α(x) > 0,

and

‖φ(x)‖ ≤ c0‖β(x)‖ +
α(x) +

√

α2(x) + (βT(x)β(x))2

‖β(x)‖

≤ c0‖β(x)‖ +
βT(x)β(x)

‖β(x)‖
= (c0 + 1)‖β(x)‖ < (c0 + 1)ε, 0 < ‖x‖ < δmin, α(x) ≤ 0.

Hence, it follows that for every ε̂
△
= (c0 + 3)ε > 0, there exists δmin > 0 such

that for all ‖x‖ < δmin, ‖φ(x)‖ < ε̂, which implies that φ(·) is continuous at



NonlinearBook10pt November 20, 2007

442 CHAPTER 6

the origin.

Next, to show necessity of ii) assume that there exists a stabilizing

control φ̂(x) such that α(x) + βT(x)φ̂(x) < 0, x ∈ Rn, x 6= 0, and φ̂(x) is

Lipschitz continuous at x = 0 with a Lipschitz constant L̂; that is, there
exists δ > 0 such that for all x ∈ Bδ(0), ‖φ̂(x)‖ ≤ L̂‖x‖. Now, since V (·)
is continuous and V ′(0) = 0, it follows that there exists K > 0 such that
‖β(x)‖ ≤ K‖x‖, x ∈ Bδ(0). Hence,

‖φ(x)‖ ≤ c0‖β(x)‖ +
|α(x) +

√

α2(x) + (βT(x)β(x))2|
‖β(x)‖

≤ 2α(x) + (c0 + 1)‖β(x)‖2

‖β(x)‖
≤ 2‖φ̂(x)‖ + ‖β(x)‖
≤ (2L̂+ (c0 + 1)K)‖x‖, x ∈ Bδ(0), α(x) > 0,

and

‖φ(x)‖ ≤ c0‖β(x)‖ +
α(x) +

√

α2(x) + (βT(x)β(x))2

‖β(x)‖

≤ c0‖β(x)‖ +
βT(x)β(x)

‖β(x)‖
= (c0 + 1)‖β(x)‖
< (c0 + 1)K‖x‖, x ∈ Bδ(0), α(x) ≤ 0,

which implies that for all x ∈ Bδ(0), ‖φ(x)‖ ≤ L‖x‖, where L
△
= 2L̂ +

(c0 + 1)K, and hence, φ(·) is Lipschitz continuous. Finally, sufficiency of ii)

follows immediately with φ̂(x) = φ(x).

6.6 Optimal Control and the Hamilton-Jacobi-Bellman Equation

In this section, we consider a control problem involving a notion of optimality
with respect to a nonlinear-nonquadratic cost functional. Specifically, we
consider the following optimal control problem.

Optimal Control Problem. Consider the nonlinear controlled
system given by

ẋ(t) = F (x(t), u(t), t), x(t0) = x0, x(tf) = xf , u(t) ∈ U, t ≥ t0,
(6.83)

where x(t) ∈ D ⊆ Rn, t ≥ 0, is the state vector, D is an open set with 0 ∈ D,
u(t) ∈ U ⊆ Rm, t ≥ 0, is the control input, x(t0) = x0 is given, x(tf) = xf is
fixed, and F : D×U ×R → Rn satisfies F (0, 0, ·) = 0. We assume that u(·)
is restricted to the class of admissible controls U consisting of measurable
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functions u(·) such that u(t) ∈ U for all t ≥ 0, where the constraint set
U is given with 0 ∈ U . Furthermore, we assume that F (·, ·, ·) is Lipschitz
continuous in a neighborhood of the origin in D × U × R. Then determine
the control input u(t) ∈ U , t ∈ [t0, tf ], such that the cost functional

J(x0, u(·), t0) =

∫ tf

t0

L(x(t), u(t), t)dt, (6.84)

is minimized, where L : D × U × R → R is given.

To solve the optimal control problem we present Bellman’s principle
of optimality, which provides necessary and sufficient conditions, for a given
control u(t) ∈ U , t ≥ 0, for minimizing the cost functional (6.84).

Lemma 6.1. Let u∗(·) ∈ U be an optimal control that generates the
trajectory x(t), t ∈ [t0, tf ], with x(t0) = x0. Then the trajectory x(·) from
(t0, x0) to (tf , xf) is optimal if and only if for all t1, t2 ∈ [t0, tf ], the portion
of the trajectory x(·) going from (t1, x(t1)) to (t2, x(t2)) optimizes the same
cost functional over [t1, t2], where x(t1) = x1 is a point on the optimal
trajectory generated by u∗(·).

Proof. Let u∗(·) ∈ U solve the optimal control problem and let x(t),
t ∈ [t0, tf ], be the solution to (6.83) generated by u∗(·). Next, suppose, ad
absurdum, that there exist t1 ≥ t0, t2 ≤ tf , and û(t), t ∈ [t1, t2], such that

∫ t2

t1

L(x̂(t), û(t), t)dt <

∫ t2

t1

L(x(t), u∗(t), t)dt,

where x̂(t) solves (6.83) for all t ∈ [t1, t2] with u(t) = û(t), x̂(t1) = x(t1),
and x̂(t2) = x(t2). Now, define

u0(t)
△
=







u∗(t), t ∈ [t0, t1),
û(t), t ∈ [t1, t2],
u∗(t), t ∈ (t2, tf ].

Then,

J(x0, u0(·), t0) =

∫ tf

t0

L(x(t), u0(t), t)dt

=

∫ t1

t0

L(x(t), u∗(t), t)dt+

∫ t2

t1

L(x̂(t), û(t), t)dt

+

∫ tf

t2

L(x(t), u∗(t), t)dt

<

∫ t1

t0

L(x(t), u∗(t), t)dt+

∫ t2

t1

L(x(t), u∗(t), t)dt
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+

∫ tf

t2

L(x(t), u∗(t), t)dt

= J(x0, u
∗(·), t0),

which is a contradiction.

Conversely, if u∗(·) minimizes J(·, ·, ·) over [t1, t2] for all t1 ≥ t0 and
t2 ≤ tf , then it minimizes J(·, ·, ·) over [t0, tf ].

Lemma 6.1 states that u∗(·) solves the optimal control problem over
the time interval [t0, tf ] if and only if u∗(·) solves the optimal control
problem over every subset of the time interval [t0, tf ]. Next, let u∗(·) ∈ U
solve the optimal control problem and define the optimal cost J∗(x0, t0)

△
=

J(x0, u
∗(·), t0). Furthermore, define, for p ∈ Rn, the Hamiltonian H(x, u,

p, t)
△
= L(x, u, t)+pTF (x, u, t). With these definitions we have the following

result.

Theorem 6.9. Let J∗(x, t) denote the minimal cost for the optimal
control problem with x0 = x and t0 = t, and assume that J∗(·, ·) is
continuously differentiable in x. Then

0 =
∂J∗(x(t), t)

∂t
+ min

u(t)∈U
H(x(t), u(t), p(x(t), t), t), (6.85)

where p(x(t), t)
△
=
(

∂J∗(x(t),t)
∂x

)T
. Furthermore, if u∗(·) solves the optimal

control problem, then

0 =
∂J∗(x(t), t)

∂t
+H(x(t), u∗(t), p(x(t), t), t). (6.86)

Proof. It follows from Lemma 6.1 that, for all t1 ≥ t,

J∗(x(t), t) = min
u(·)∈U

∫ tf

t
L(x(s), u(s), s)ds

= min
u(·)∈U

{
∫ t1

t
L(x(s), u(s), s)ds +

∫ tf

t1

L(x(s), u(s), s)ds

}

= min
u(·)∈U

{∫ t1

t
L(x(s), u(s), s)ds + J∗(x(t1), t1)

}

,

or, equivalently,

0 = min
u(·)∈U

{

1

t1 − t
(J∗(x(t1), t1) − J∗(x(t), t))

+
1

t1 − t

∫ t1

t
L(x(s), u(s), s)ds

}

.
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Now, letting t1 → t yields

0 = min
u(t)∈U

{

dJ∗(x(t), t)
dt

+ L(x(t), u(t), t)

}

. (6.87)

Next, noting that

dJ∗(x(t), t)
dt

=
∂J∗(x(t), t)

∂t
+
∂J∗(x(t), t)

∂x
F (x(t), u(t), t),

(6.87) yields

0 = min
u∈U

{

∂J∗(x, t)
∂t

+
∂J∗(x, t)

∂x
F (x, u, t) + L(x, u, t)

}

, x ∈ D,

which is equivalent to (6.85). Finally, (6.86) can be proved in a similar
manner by replacing u(·) with u∗(·), where u∗(·) is the optimal control.

Next, we provide the converse result to Theorem 6.9.

Theorem 6.10. Suppose there exists a continuously differentiable fun-
ction V : D×R → R and an optimal control u∗(·) such that V (x(tf), tf) = 0,

0 =
∂V (x, t)

∂t
+H

(

x, u∗(t),

(

∂V (x, t)

∂x

)T

, t

)

, x ∈ D, t ≥ 0, (6.88)

and

H

(

x, u∗(t),

(

∂V (x, t)

∂x

)T

, t

)

≤ H

(

x, u(t),

(

∂V (x, t)

∂x

)T

, t

)

,

x ∈ D, u(t) ∈ U, t ≥ 0. (6.89)

Then u∗(·) solves the optimal control problem, that is,

J∗(x0, t0) = J(x0, u
∗(·), t0) ≤ J(x0, u(·), t0), u(·) ∈ U , (6.90)

and
J∗(x0, t0) = V (x0, t0). (6.91)

Proof. Let x(t), t ≥ 0, satisfy (6.83) and, for all t ∈ [t0, tf ], define

V̇ (x(t), t)
△
=
∂V (x(t), t)

∂t
+
∂V (x(t), t)

∂x
F (x(t), u(t), t). (6.92)

Then, with u(·) = u∗(·), it follows from (6.88) that

0 = V̇ (x(t), t) + L(x(t), u∗(t), t).

Now, integrating over [t0, tf ] and noting that V (xf , tf) = 0 yields

V (x0, t0) =

∫ tf

t0

L(x(t), u∗(t), t)dt = J(x0, u
∗(·), t0) = J∗(x0, t0).
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Next, for all u(·) ∈ U it follows from (6.88) and (6.92) that

J(x0, u(·), t)

=

∫ tf

t0

L(x(t), u(t), t)dt

=

∫ tf

t0

{

−V̇ (x(t), t) + L(x(t), u(t), t) +
∂V (x(t), t)

∂t

+
∂V (x(t), t)

∂x
F (x(t), u(t), t)

}

dt

=

∫ tf

t0

{

−V̇ (x(t), t) +
∂V (x(t), t)

∂t
+H

(

x, u(t),

(

∂V (x, t)

∂x

)T

, t

)}

dt

≥
∫ tf

t0

{

−V̇ (x(t), t) +
∂V (x(t), t)

∂t
+H

(

x, u∗(t),

(

∂V (x, t)

∂x

)T

, t

)}

dt

=

∫ tf

t0

−V̇ (x(t), t)dt

= V (x0, t0)

= J∗(x0, t0),

which completes the proof.

Note that (6.88) and (6.89) imply

0 =
∂V (x(t), t)

∂t
+ min

u(t)∈U
H

(

x, u(t),

(

∂V (x, t)

∂x

)T

, t

)

, (6.93)

which is known as the Hamilton-Jacobi-Bellman equation. It follows from
Theorems 6.9 and 6.10 that the Hamilton-Jacobi-Bellman equation provides
necessary and sufficient conditions for characterizing the optimal control
for time-varying nonlinear dynamical systems over a finite time interval or
the infinite horizon. In the infinite-horizon, time-invariant case, V (·) is
independent of t so that the Hamilton-Jacobi-Bellman equation reduces to
the time-invariant partial differential equation

0 = min
u∈U

H(x, u, V ′T(x)), x ∈ D. (6.94)

Example 6.6. Consider the controlled nonlinear scalar system

ẋ(t) = x2(t) + u(t), x(0) = x0, t ≥ 0, (6.95)

with performance functional

J(x0, u(·)) =

∫ ∞

0
[x2(t) + u2(t)]dt. (6.96)
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To obtain the optimal control u∗(t), t ≥ 0, that minimizes (6.96) we use
Theorem 6.10. Specifically, for (6.95) and (6.96) the Hamiltonian is given
by H(x, u, V ′(x)) = x2 + u2 + V ′(x)[x2 + u]. Now, if follows from (6.90)
that the optimal control is given by ∂H

∂u = 2u + V ′(x) = 0 or, equivalently,

u = −1
2V

′(x). Next, using (6.88) with u∗ = −1
2V

′(x) it follows that

0 = x2 + V ′(x)x2 − 1
4 [V ′(x)]2. (6.97)

Solving (6.97) as a quadratic equation gives V ′(x) = 2x2+2x
√
x2 + 1, which

implies, with V (0) = 0, V (x) = 2
3(x3 + (x2 + 1)3/2 − 1). Hence, the optimal

control is given by u∗(t) = −1
2V

′(x(t)) = −x2(t) − x(t)
√

x2(t) + 1.

6.7 Feedback Linearization, Zero Dynamics, and Minimum-

Phase Systems

Recent work involving differential geometric methods [75, 212, 336] has
made the design of controllers for certain classes of nonlinear systems more
methodical. Such frameworks include the concepts of zero dynamics and
feedback linearization. Even though the nonlinear stabilization frameworks
presented in this book are based on Lyapunov theory, in certain cases
feedback linearization simplifies the construction of Lyapunov functions
for nonlinear systems. Here, we present a brief introduction to feedback
linearization needed to develop some of the results in this book. For an
excellent treatment on this subject, the interested reader is referred to [212].

In this section, we consider square (i.e., m = l) nonlinear dynamical
systems G of the form

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, t ≥ 0, (6.98)

y(t) = h(x(t)), (6.99)

where x ∈ Rn, u, y ∈ Rm, f : Rn → Rn, G : Rn → Rn×m, and
h : Rn → Rm. We assume that f(·), G(·), and h(·) are smooth, that is,
infinitely differentiable mappings, and f(·) has at least one equilibrium so
that, without loss of generality, f(0) = 0 and h(0) = 0. Furthermore, for the
nonlinear dynamical system G we assume that the required properties for
the existence and uniqueness of solutions are satisfied, that is, u(·) satisfies
sufficient regularity conditions such that the system (6.98) has a unique
solution forward in time.

The controlled nonlinear system (6.98) is feedback linearizable [210,419]
if there exist a global invertible state transformation T : Rn → Rn and a
nonlinear feedback control law u = α(x) + β(x)v, where α : Rn → Rm

and β : Rn → Rm×m satisfies det β(x) 6= 0, x ∈ Rn, that transforms
(6.98) into a linear controllable companion form. In this case, standard
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linear control design techniques can be used to synthesize stabilizing linear
feedback controllers for the linearized system. Since the original nonlinear
system and the feedback linearized system are feedback equivalent, that is,
the two systems exhibit the same input-state behavior [17, 69], the linear
control law can be transformed through the nonlinear feedback and the
state transformation to yield a stabilizing nonlinear controller for the original
nonlinear system.

To elucidate the above discussion consider the nonlinear dynamical
system (6.98) and suppose there exist an invertible state transformation
T : Rn → Rn such that z = T (x) T (0) = 0, and a nonlinear feedback
control law u = α(x) + β(x)v, where α : Rn → Rm and β : Rn → Rm×m

satisfies detβ(x) 6= 0, x ∈ Rn, that transforms (6.98) into

ż(t) = Az(t) +Bβ−1(x)[u(t) − α(x(t))], z(0) = z0, t ≥ 0, (6.100)

where A ∈ Rn×n, B ∈ Rn×m, and (A,B) is controllable. Furthermore,
let P ∈ Rn×n be a positive-definite matrix satisfying the algebraic Riccati
equation

0 = ATP + PA+R1 − PBR−1
2 BTP, (6.101)

where R1 > 0 and R2 > 0. Now, the function V (x) = T T(x)PT (x) = zTPz
satisfies

inf
u∈U

V ′(x)[f(x) +G(x)u]

= inf
u∈U

[

zT(ATP + PA)z + 2zTPBβ−1(x)[u− α(x)]
]

= inf
u∈U

[

−zTR1z + zTPB[R−1
2 BTPz + 2β−1(x)u

−2β−1(x)α(x)]
]

=

{

−zTR1z, zTPB = 0,
−∞, zTPB 6= 0,

(6.102)

and hence, V (·) is a control Lyapunov function for (6.100). Hence, it follows
from the results of Section 6.5 that (6.100) is globally stabilizable. In
particular, one such feedback controller is given by (6.81) with x replaced by
z, and hence, a globally stabilizing feedback nonlinear controller for (6.98)
is given by u = φ(T (x)).

The above discussion raises an interesting question, namely, under
what conditions does there exist an invertible state transformation and a
nonlinear control that feedback linearizes (6.98)? To present necessary and
sufficient conditions for feedback linearization of the nonlinear system (6.98)
the following definitions are needed. For the first definition, a k-dimensional
vector field f1(x), f2(x), . . . , fk(x), defined on an open subsetD, is a mapping
that assigns a k-dimensional vector to each point x of D.
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Definition 6.7. A k-dimensional distribution D(·) on D is a mapping
that assigns, to each x ∈ D, a k-dimensional subspace D(x) of Rn such
that there exist smooth vector fields f1(x), f2(x), . . ., fk(x), x ∈ D, with
{f1(x), f2(x), . . . , fk(x)}, x ∈ D, forming a linearly independent set and
D(x) = span{f1(x), f2(x), . . . , fk(x)}, x ∈ D.

Definition 6.8. Let f,G : Rn → Rn be continuously differentiable
functions. The Lie bracket of f and G is defined as

[f(x), G(x)] = adfG(x)
△
=
∂G

∂x
f(x) − ∂f

∂x
G(x).

Furthermore, the zeroth-order and higher-order Lie brackets are defined as,
respectively,

ad0
fG(x)

△
= G(x), adk

fG(x)
△
= [f(x), adk−1

f G(x)],

where k ≥ 1. Finally, define the Lie derivative of a scalar function V (x)
along the vector field of f(x) by

LfV (x)
△
=
∂V (x)

∂x
f(x),

and define the zeroth-order and higher-order Lie derivatives, respectively, by

L0
fV (x)

△
= V (x), Lk

fV (x)
△
= Lf (Lk−1

f V (x)),

where k ≥ 1.

Definition 6.9. The distribution D(x), x ∈ D, is involutive if [fi(x),
fj(x)] ∈ D(x), for all fi(x), fj(x) ∈ D(x), and i 6= j, i, j = 1, . . . , k, where
D(x) = span{f1(x), . . . , fk(x)}, x ∈ D.

Example 6.7. Let D = R4 and D(x) = span{f1(x), f2(x)}, where

f1(x) =









x1

1
0
x3









, f2(x) =









−ex2

0
0
0









. (6.103)

To show that D(x) is involutive note that ∂f2

∂x f1(x) − ∂f1

∂x f2(x) = 0, which
shows that rank[f1(x), f2(x), [f1(x), f2(x)]] = 2, x ∈ D. △

For the statement of the next theorem define the distribution

Di(x)
△
= span{adk

fGj(x), k = 0, 1, . . . , i, j = 1, 2, . . . ,m},
for 0 ≤ i ≤ n− 1, where Gj(x) denotes the jth column of G(x).

Theorem 6.11 ([210]). Suppose rank G(0) = m. Then (6.98) is
feedback linearizable if and only if the following statements hold:
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i) For each i ∈ {0, . . . , n − 1}, the distribution Di(x) has a constant
dimension in a neighborhood of the origin.

ii) For each i ∈ {0, . . . , n − 2}, the distribution Di(x) is involutive in a
neighborhood of the origin.

Example 6.8. The dynamics of an undamped single-link manipulator
with flexible joints are given by (6.98) where ([415])

f(x) =









x2

−α sin(x1) − β(x1 − x3)
x4

γ(x1 − x3)









, G(x) =









0
0
0
δ









, (6.104)

and where α, β, γ, δ > 0. The undisturbed system has an equilibrium at
x = 0. To show that this system is feedback linearizable we compute the
distribution Di(x) for each 0 ≤ i ≤ 3 and check conditions i) and ii) of
Theorem 6.11. Specifically, it can be easily shown that at x = 0

adfG(0) =









0
0
−δ
0









, ad2
fG(0) =









0
βδ
0

−γδ









, ad3
fG(0) =









−βδ
0
γδ
0









.

Now, since det[G(0), adfG(0), ad2
fG(0), ad3

fG(0)] = β2γ4 for all x ∈ R4

it follows that Di(x), 0 ≤ i ≤ 3, has constant dimension at x = 0.
Furthermore, since adi

fG(0), 0 ≤ i ≤ 3, are constant, it follows that the

span{G(0), adfG(0), ad2
fG(0)} is involutive. Hence, it follows from Theorem

6.11 that the system is feedback linearizable. △

The zero dynamics of the nonlinear system (6.98) and (6.99) are the
dynamics of the system subject to the constraint that the output y(t), t ≥ 0,
is identically zero. The system (6.98) and (6.99) is said to be minimum
phase if its zero dynamics are asymptotically stable, while the system is said
to be critically minimum phase if its zero dynamics are Lyapunov stable.
Furthermore, (6.98) and (6.99) is said to have relative degree {r1, r2, . . . , rm}
at a point x0, if there exists a neighborhood D0 of x0 such that, for all x ∈ D0,

LGi
Lk

fhj(x) = 0, 0 ≤ k < rj − 1, 1 ≤ i, j ≤ m,

and the matrix

L(x)
△
=







LG1
Lr1−1

f h1(x) · · · LGm
Lr1−1

f h1(x)
...

. . .
...

LG1
Lrm−1

f hm(x) · · · LGm
Lrm−1

f hm(x)







is nonsingular. In the above notation, Lfhj(x)
△
= h′j(x)f(x), j ∈ {1, . . . ,m}

and Lk
fhj(x)

△
= Lf (Lk−1

f hj(x)), 2 ≤ k < rj −1, 1 ≤ j ≤ m, where L0
fhj(x)

△
=
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hj(x), Gi, i = 1, . . . ,m, are the smooth column vector fields of G, and hj,
j = 1, . . . ,m, are the smooth components of h. In the case where the relative
degree {r1, r2, . . . , rm} = {1, 1, . . . , 1},

L(x) = LGh(x)
△
=







LG1
h1(x) · · · LGm

h1(x)
...

. . .
...

LG1
hm(x) · · · LGm

hm(x)






,

which is nonsingular for all x ∈ D0.

Example 6.9. Consider the controlled Van der Pol oscillator

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (6.105)

ẋ2(t) = −x1(t) + ε(1 − x2
1(t))x2(t) + u(t), x2(0) = x20, (6.106)

y(t) = x2(t), (6.107)

where ε > 0. Note that (6.105)–(6.107) can be written in the state space
form (6.98) and (6.99) with x = [x1, x2]

T, f(x) = [x2, −x1 + ε(1−x2
1)x2]

T,
G(x) = [0, 1]T, and h(x) = x2. Now, computing LGh(x) = ∂h

∂xG(x) =

[0, 1][0, 1]T = 1, and hence, the system has a relative degree 1 in R2. Next,
setting y(t) = x2(t) = 0, t ≥ 0, it follows that the zero dynamics given by
ẋ1(t) = 0, t ≥ 0, are not asymptotically stable, and hence, the system is not
minimum phase. However, the system is critically minimum phase. △

For the nonlinear system ẋ = f(x), x ∈ Rn, we say that f is complete
if f is an infinitely differentiable function defined on a manifold M ⊂ Rn

and the flow of f is defined on the whole Cartesian product R × M.
Furthermore, recall (see Definition 2.35) that a mapping T : D ⊆ Rn → Rn

is a diffeomorphism on D if T (x) is invertible on D and T (x) and T −1(x),
x ∈ D, are continuously differentiable. For nonlinear affine systems of
the form (6.98) and (6.99), conditions for the existence of globally defined
diffeomorphisms transforming (6.98) and (6.99) into several kinds of normal
forms are given in [76]. Here, we only consider relative degree {1, 1, . . . , 1}
systems with complete and involutive vector fields G(LGh)

−1. The following
result is used later in the book.

Lemma 6.2 ([76]). Assume (6.98) and (6.99) is minimum phase with
relative degree {1, 1, . . . , 1}. If the vector field G(LGh)

−1 is complete and
involutive, then there exists a global diffeomorphism T : Rn → Rn, an
infinitely differentiable function f0 : Rn−m → Rn−m, and an infinitely
differentiable function r : Rn−m × Rm → R(n−m)×m such that, in the
coordinates

[

y
z

]

△
= T (x), (6.108)
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(6.98) is equivalent to
[

ẏ
ż

]

=

[

Lfh(x)
f0(z) + r(z, y)y

]

+

[

LGh(x)
0

]

u. (6.109)

As discussed in Section 5.2, dissipativity can be helpful in constructing
Lyapunov functions for nonlinear dynamical systems. Next, using the results
in this section, we present necessary and sufficient conditions for rendering a
system passive and strictly passive via feedback. Specifically, suppose (6.98)
and (6.99) is stabilizable. Then, we construct a feedback transformation

u = α(x) + β(x)v, (6.110)

where det β(x) 6= 0, x ∈ Rn, such that

ẋ(t) = f(x(t)) +G(x(t))α(x(t)) +G(x(t))β(x(t))v(t), x(0) = x0, t ≥ 0,

(6.111)

y(t) = h(x(t)), (6.112)

is passive. Now, since (6.111) and (6.112) is rendered passive via (6.110)
or, equivalently, (6.98) and (6.99) is feedback passive, v = −φ(y), where
φ : Rm → Rm is such that yTφ(x) > 0, y 6= 0, stabilizes (6.111) and (6.112).

First, we show that if (6.98) and (6.99) is passive, then (6.98) and
(6.99) has relative degree {1, 1, . . . , 1} at x = 0.

Lemma 6.3. Assume (6.98) and (6.99) is passive with a two-times
continuously differentiable storage function Vs : Rn → R. Suppose
rank G(0) = rank ∂h

∂x(0) = m. Then (6.98) and (6.99) has relative degree
{1, 1, . . . , 1} at x = 0.

Proof. Since (6.98) and (6.99) is passive with a two-times continuously
differentiable storage function Vs : Rn → R it follows from (5.116) of
Corollary 5.2 with J(x) ≡ 0 that

1
2G

T(x)V ′T
s (x) = h(x). (6.113)

Now, differentiating both sides of (6.113) with respect to x yields

1
2

∂

∂x
[GT(x)V ′T

s (x)] =
∂h

∂x
(x). (6.114)

Forming (6.114)G(x), it follows that

1
2

∂

∂x
[GT(x)V ′T

s (x)]G(x) =
∂h

∂x
(x)G(x). (6.115)

Now, noting that at x = 0, V ′
s (0) = 0 and Vs

′′(0) is nonnegative definite, it
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follows from (6.115) that

1
2G

T(0)Vs
′′(0)G(0) = LGh(0). (6.116)

Since Vs
′′(0) ≥ 0 it follows from the Schur decomposition that there exists

M such that 1
2Vs

′′(0) = MTM . Hence, LGh(0) = GT(0)MTMG(0). Next,

evaluating (6.114) at x = 0 it follows that ∂h
∂x (0) = GT(0)MTM . Now, since

rank G(0) = rank ∂h
∂x (0) = m it follows that rank MG(0) = m, and hence,

LGh(0) is nonsingular. The result is now immediate from the definition of
relative degree.

Next, we show that if (6.98) and (6.99) is passive, then the zero
dynamics of (6.98) and (6.99) are Lyapunov stable. Since, as discussed
in Section 3.5, a Lyapunov stable time-invariant system does not ensure
the existence of a continuously differentiable time-independent Lyapunov
function, we require the following definition.

Definition 6.10. The system (6.98) and (6.99) is weakly minimum
phase if its zero dynamics, evolving on the smooth (n − m)-dimensional

submanifold Z △
= {x ∈ Rn : h(x) = 0} described by ż = f0(z), are Lyapunov

stable and there exists a continuously differentiable positive-definite function
V0 : Rn−m → R such that V0(0) = 0 and V ′

0(z)f0(z) ≤ 0, z ∈ Z.

Lemma 6.4. Assume (6.98) and (6.99) is passive (respectively, strictly
passive) with a continuously differentiable positive-definite storage function
Vs : Rn → R. Then (6.98) and (6.99) is weakly minimum phase (respectively,
minimum phase).

Proof. Since (6.98) and (6.99) is passive with a continuously
differentiable positive-definite storage function Vs : Rn → R it follows from
(5.116) of Corollary 5.2 with J(x) ≡ 0 that

1
2V

′
s (x)G(x) = hT(x). (6.117)

Next, since by definition the zero dynamics of the nonlinear system (6.98)
and (6.99) are the dynamics subject to the external constraint y(t) =
h(x(t)) ≡ 0, it follows from (6.117) that V ′

s (x)G(x) = 0, x ∈ Rn. Now,
using the above two facts it follows that

V̇s(x) = V ′
s (x)[f(x) +G(x)u] = V ′

s (x)f(x) ≤ 2uTy = 0,

which shows that V̇s(x) ≤ 0, x ∈ Rn, along the submanifold h(x) ≡ 0. Thus,
the zero dynamics of (6.98) and (6.99) are Lyapunov stable, and hence,
(6.98) and (6.99) is weakly minimum phase. Finally, if (6.98) and (6.99) is
strictly passive, then V̇s(x) < 2uTy, and hence, it follows from (6.118) that
V̇s(x) < 0, x ∈ Rn, x 6= 0, along the submanifold h(x) ≡ 0. Thus, the zero
dynamics of (6.98) and (6.99) are asymptotically stable, and hence, (6.98)
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and (6.99) is minimum phase.

Next, we present the main result of this section which gives necessary
and sufficient conditions for rendering a nonlinear system feedback passive.

Theorem 6.12. Consider the nonlinear dynamical system G given
by (6.98) and (6.99). Suppose the vector field G(LGh)

−1 is complete
and involutive. Then the system (6.98) and (6.99) is feedback passive
(respectively, feedback strictly passive) with a two-times continuously
differentiable positive-definite storage function Vs : Rn → R if and only
if (6.98) and (6.99) has relative degree {1, 1, . . . , 1} at x = 0 and is weakly
minimum phase (respectively, minimum phase).

Proof. For both cases necessity is a direct consequence of Lemmas 6.3
and 6.4. Specifically, if G is feedback passive (respectively, feedback strictly
passive), then there exist functions α : Rn → Rm and β : Rn → Rm×m such
that det β(x) 6= 0, x ∈ Rn, and with u = α(x) +β(x)v the nonlinear system
(6.111) and (6.112) is passive (respectively, strictly passive). That is,

ẋ(t) = f̃(x(t)) + G̃(x(t))v, x(0) = x0, t ≥ 0, (6.118)

y(t) = h(x(t)), (6.119)

is passive (respectively, strictly passive), where f̃(x)
△
= f(x)+G(x)α(x) and

G̃(x)
△
= G(x)β(x).

Next, noting that G̃(LG̃h)
−1 = G(LGh)

−1 it follows that rank G̃(0) =

rank ∂h
∂x(0) = m, and hence, by Lemmas 6.3 and 6.4 it follows that the

nonlinear system (6.118) and (6.119) has relative degree {1, 1, . . . , 1} at
x = 0 and is weakly minimum phase (respectively, minimum phase).
Now, it follows from Lemma 6.2 that there exists a global diffeomorphism
T : Rn → Rn, an infinitely differentiable function f0 : Rn−m → Rn−m, and
an infinitely differentiable function r : Rn−m × Rm → R(n−m)×m such that,
in the coordinates

[

y
z

]

△
= T (x), (6.120)

(6.98) is equivalent to
[

ẏ
ż

]

=

[

Lf̃h(x)

f0(z) + r(z, y)y

]

+

[

LG̃h(x)
0

]

v

=

[

Lfh(x)
f0(z) + r(z, y)y

]

+

[

LGh(x)
0

]

u. (6.121)

The result now follows immediately from the structure of (6.121) by noting
that relative degree and zero dynamics are invariant under a static state
feedback transformation.
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Conversely, assume (6.98) and (6.99) has relative degree {1, 1, . . . , 1}
at x = 0 and is weakly minimum phase. In this case, it follows from Lemma
6.2 that (6.98) and (6.99) can be equivalently written as

ẏ(t) = Lfh(x(t)) + LGh(x(t))u(t), y(0) = y0, t ≥ 0, (6.122)

ż(t) = f0(z(t)) + r(z(t), y(t))y(t), z(0) = z0. (6.123)

Now, since by assumption (6.98) and (6.99) or, equivalently, (6.122) and
(6.123), is weakly minimum phase there exists a continuously differentiable
positive-definite function V0(z), z ∈ Rn−m, such that

V ′
0(z)f0(z) ≤ 0, z ∈ Rn−m. (6.124)

Hence,
V̇0(z) = V ′

0(z)[f0(z) + r(z, y)y] ≤ V ′
0(z)r(z, y)y.

Next, using the state feedback transformation

u(z, y) = 1
2(LGh(x))

−1[−Lfh(x) − rT(z, y)V ′T
0 (z) + v],

and the positive-definite function

Vs(z, y) = V0(z) + yTy,

it follows that V̇s(z, y) ≤ 2yTv, which shows that (6.98) and (6.99) is
feedback passive.

Finally, the proof of the equivalence between feedback strict passivity
and relative degree {1, 1, . . . , 1} at x = 0 and minimum phase is identical
with (6.124) replaced by

V ′
0(z)f0(z) < 0, z ∈ Rn−m, z 6= 0,

since in this case the zero dynamics ż = f0(z) are asymptotically stable.

To specialize Theorem 6.12 to linear dynamical systems let f(x) = Ax,
G(x) = B, and h(x) = Cx so that

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0, (6.125)

y(t) = Cx(t). (6.126)

Now, with rank B = m, it follows from Theorem 6.12 and Theorem 5.13 that
(6.125) and (6.126) is feedback equivalent to a passive linear system with a
quadratic positive-definite storage function Vs(·) if and only if det(CB) 6= 0
and (6.125) and (6.126) is weakly minimum phase. Since a minimal linear
passive system is equivalent to a positive real system with a quadratic
positive-definite storage function, it follows that any minimal linear system
is feedback positive real if and only if det(CB) 6= 0 and (6.125) and (6.126)
is weakly minimum phase.
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Next, we present sufficient conditions for which a given block cascade
system is feedback equivalent to a passive system. Specifically, consider the
nonlinear block cascade system

ẋ(t) = f(x(t)) +G(x(t))y(t), x(0) = x0, t ≥ 0, (6.127)

˙̂x(t) = f̂(x̂(t)) + Ĝ(x̂(t))u(t), x̂(0) = x̂0, (6.128)

y(t) = h(x̂(t)), (6.129)

where x ∈ Rn, x̂ ∈ Rq, u, y ∈ Rm, f : Rn → Rn satisfies f(0) = 0, G : Rn →
Rn×m, f̂ : Rq → Rq satisfies f̂(0) = 0, Ĝ : Rq → Rq×m, and h : Rq → Rm

satisfies h(0) = 0.

Theorem 6.13. Consider the block cascade system (6.127)–(6.129).
Assume that the input subsystem (6.128) and (6.129) is passive (respectively,
strictly passive) with a continuously differentiable positive-definite storage
function Vs : Rq → R, and suppose the zero solution x(t) ≡ 0 to (6.127)
with y(t) ≡ 0 is globally asymptotically stable. Then (6.127)–(6.129) is
feedback equivalent to a passive (respectively, strictly passive) system with a
continuously differentiable positive-definite storage function V : Rn+q → R.

Proof. Since the zero solution x(t) ≡ 0 to (6.127) with y(t) ≡ 0 is
globally asymptotically stable it follows from Theorem 3.9 that there exists
a continuously differentiable positive-definite function Vsub : Rn → R such
that Vsub(0) = 0 and Vsub(x)f(x) < 0, x ∈ Rn, x 6= 0. Next, note that
(6.127)–(6.129) can be equivalently written as

˙̃x(t) = f̃(x̃(t)) + G̃(x̃(t))u(t), x̃(0) = x̃0, t ≥ 0, (6.130)

y(t) = h̃(x̃(t)), (6.131)

where

x̃
△
=

[

x
x̂

]

, f̃(x̃)
△
=

[

f(x) +G(x)y

f̂(x̂)

]

,

G̃(x̃)
△
=

[

0

Ĝ(x̂)

]

, h̃(x̃)
△
= h(x̂).

Now, let
V (x, x̂) = Vsub(x) + Vs(x̂)

and note that since (6.128) and (6.129) is passive with a continuously
differentiable positive-definite storage function Vs : Rn → R, it follows from
(5.116) of Corollary 5.2 with J(x) ≡ 0 that

hT(x̂) = 1
2V

′
s (x̂)Ĝ(x̂) = 1

2V
′(x̃)G̃(x̃) = h̃T(x̃). (6.132)

Next, let u = α(x̃) + v and note that

V ′(x̃)[f̃(x̃) + G̃(x̃)α(x̃)] = V ′
sub(x)f(x) + V ′

subG(x)h(x̂)
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+V ′
s (x̂)f̂(x̂) + 2hT(x̂)α(x̃).

Now, choosing α(x̃) = −1
2V

′T
sub(x)G

T(x) it follows that

V ′(x̃)[f̃(x̃) + G̃(x̃)α(x̃)] = V ′
sub(x)f(x) + V ′

s (x̂)f̂(x̂) ≤ 0, (x, x̂) ∈ Rn × Rq,
(6.133)

which, with (6.132), shows that (6.127)–(6.129) is rendered passive with
u = α(x̃) + v. To show strict feedback passivity, it need only be noted

that if (6.128) and (6.129) is strictly feedback passive, then V ′
s (x̂)f̂(x̂) < 0,

x̂ ∈ Rq, x̂ 6= 0, and hence, (6.133) holds with a strict inequality.

Finally, it is important to note that since exponential passivity implies
strict passivity, the results in this section also hold for exponentially passive
systems.

6.8 Problems

Problem 6.1. Consider the nonlinear zero-state observable dissipative
dynamical system G with inputs ui, outputs yi, i = 1, . . . ,m, and internal
states x interconnected with m dissipative dynamical subsystems Gi, i =
1, . . . ,m, given by

ẋi(t) = fi(xi(t)) +Gi(xi(t))yi(t), xi(0) = x0i, t ≥ 0, (6.134)

−ui(t) = h(xi(t)) + Ji(xi(t))yi(t). (6.135)

Let ri(−ui, yi) and Vsi(xi) denote the storage functions and supply rates of
the Gith subsystem, respectively, and define the overall subsystem supply
rate R(u, y)

△
=
∑m

i=1 γiri(−ui, yi), where u = [u1, . . . , um]T, y = [y1, . . . ,
ym]T, and γi > 0, i = 1, . . . ,m. Show that if there exists a positive-definite
storage function VG(·) such that V̇G(x) ≤ −R(u, y), then the zero solution
(x(t), x1(t), . . . , xm(t)) ≡ (0, 0, . . . , 0) of the interconnected system G with
the subsystems Gi, i = 1, . . . ,m, is Lyapunov stable.

Problem 6.2. Let

G(s)
min∼
[

A B
C 0

]

, Gc(s)
min∼
[

Ac Bc

Cc 0

]

be asymptotically stable transfer functions. If G(s) and Gc(s) are bounded
real, show that the feedback interconnection of G(s) and Gc(s) is Lyapunov
stable, that is, the linear system with dynamics matrix

Ã
△
=

[

A BCc

BcC Ac

]

is Lyapunov stable. If, alternatively, Gc(s) is strictly bounded real, then
show that Ã is asymptotically stable.
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Problem 6.3. Let

G(s)
min∼
[

A B
C 0

]

, Gc(s)
min∼
[

Ac Bc

Cc 0

]

be Lyapunov stable transfer functions. If G(s) and Gc(s) are positive
real, show that the negative feedback interconnection of G(s) and Gc(s)
is Lyapunov stable, that is, the linear system with dynamics matrix

Ã
△
=

[

A −BCc

BcC Ac

]

is Lyapunov stable. If, alternatively, Gc(s) is strictly positive real, then
show that Ã is asymptotically stable.

Problem 6.4. Consider two nonlinear dynamical systems G1 and G2

with input-output pairs (u1, y1) and (u2, y2), respectively. Assume G1 and
G2 are passive. Show that:

i) The parallel interconnection of G1 and G2 is passive.

ii) The negative feedback interconnection of G1 and G2 is passive.

Problem 6.5. Consider two nonlinear dynamical system G1 and G2

with input-output pairs (u1, y1) and (u2, y2), respectively. Assume G1 and
G2 are nonexpansive with gains γ1 > 0 and γ2 > 0, respectively. Show that
the cascade interconnection of G1 and G2 is nonexpansive with gain γ1γ2.

Problem 6.6. Consider the two nonlinear dynamical systems G1 and
G2 with input-output pairs (u1, y1) and (u2, y2), respectively. Show that:

i) If G1 and G2 are input strict passive, then the parallel interconnection
of G1 and G2 is input strict passive.

ii) If G1 and G2 are output strict passive, then the parallel interconnection
of G1 and G2 is output strict passive.

iii) If G1 and G2 are strictly passive, then the parallel interconnection of
G1 and G2 is strictly passive.

Problem 6.7. Consider the closed-loop dynamical system consisting
of the nonlinear system G given by (6.1) and (6.2), and the nonlinear
compensator Gc given by (6.3) and (6.4). Show that if there exist functions
Vs : Rn → R, Vsc : Rnc → R, ℓ : Rn → Rp, ℓc : Rnc → Rpc , W : Rn → Rp×m,
and Wc : Rm × Rnc → Rpc×m, such that Vs(·) and Vsc(·) are continuously
differentiable and positive definite, Vs(0) = 0, Vsc(0) = 0, Vs(x) → ∞ as
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‖x‖ → ∞, Vsc(xc) → ∞ as ‖xc‖ → ∞, and

0 > V ′
s (x)f(x) + ℓT(x)ℓ(x), x ∈ Rn, x 6= 0, (6.136)

0 = 1
2V

′
s (x)G(x) − hT(x) + ℓT(x)W(x), (6.137)

0 = J(x) + JT(x) −WT(x)W(x), (6.138)

0 > V ′
sc(xc)fc(xc) + ℓTc (xc)ℓc(xc), xc ∈ Rnc , xc 6= 0, (6.139)

0 = 1
2V

′
sc(xsc)Gc(uc, xc) − hT

c (uc, xc) + ℓTc (xc)Wc(uc, xc), (6.140)

0 = Jc(uc, xc) + JT
c (uc, xc) −WT

c (uc, xc)Wc(uc, xc), (6.141)

then the negative feedback interconnection of G and Gc is globally asymp-
totically stable.

Problem 6.8. Consider the controlled undamped oscillator

ẍ(t) + k
mx(t) = u(t), x(0) = x0, ẋ(0) = ẋ0, t ≥ 0, (6.142)

y(t) = ẋ(t), (6.143)

where m,k > 0. Show that the dynamic compensator

ẋc(t) = Acxc(t) +Bcy(t), xc(0) = xc0, t ≥ 0, (6.144)

−u(t) = Ccxc(t) +Dcy(t), (6.145)

where

Ac =

[

0 1
−ka/ma −ca/ma

]

, Bc =

[

0
1

]

,

Cc =
[

−caka/ma ka − c2a/ma

]

, Dc = ca,

emulating a dynamic (ma, ka, ca) absorber with ma, ka, ca > 0 guarantees
that the closed-loop system (6.142)–(6.145) is asymptotically stable.

Problem 6.9. Consider the nonlinear dynamical system

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (6.146)

ẋ2(t) = −x1(t) − f(x2(t)) + u(t), x2(0) = x20, (6.147)

y(t) = x2(t) + u(t), (6.148)

where zf(z) > 0, z ∈ R, z 6= 0, and f(0) = 0. Show that the linear dynamic
compensator

ẋc1(t) = xc2(t), xc1(0) = xc10, t ≥ 0, (6.149)

ẋc2(t) = −xc1(t) +
1

4
xc2(t) + y(t), xc2(0) = xc20, (6.150)

u(t) = −xc2(t), (6.151)

guarantees global stability of the closed-loop system (6.146)–(6.151).
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Problem 6.10. Consider the rotational/translational nonlinear dy-
namical system G given in Problem 5.49 and the nonlinear controller Gc

given by

ẋc(t) = fc(xc(t)) +Gc(xc(t), y(t))y(t), xc(0) = xc0, t ≥ 0, (6.152)

−Nc(t) = hc(xc(t), y(t)) + Jc(xc(t), y(t))y(t), (6.153)

where xc = [θ θc θ̇c]
T,

fc(xc) =







0

θ̇c
− sin(θc−θ)

mce2
c

− g sin θc

ec






, Gc(xc, y) =





1
0
0



 ,

hc(xc, y) = κ sin(θ − θc), Jc(xc, y) =
αtanh(γy)

y
,

α, γ, κ, ec,mc > 0, and y = θ̇. Show that the closed-loop system consisting
of G and Gc with N(t) = −mgl sin θ(t) − Nc(t) is globally asymptotically
stable.

Problem 6.11. Let εc, δc > 0 be such that εcδc < 1. Consider the
nonlinear dynamical system G given by (6.1) and (6.2) and the nonlinear
controller Gc given by

ẋc(t) = [Ac − P−1M(uc(t), xc(t)]xc(t) + (1 − 2εcδc)

·[Bc +N(uc(t), xc(t))]uc(t), xc(0) = xc0, t ≥ 0, (6.154)

yc(t) = [Cc +NT(uc(t), xc(t))P ]xc(t) + δcuc(t), (6.155)

where Ac ∈ Rnc×nc , Bc ∈ Rnc×m, Cc ∈ Rm×nc , N : Rm ×Rnc → Rnc×m, and
P ∈ Rnc×nc , with P > 0, satisfying

0 > AT
c P + PAc, (6.156)

Cc = BT
c P, (6.157)

and

M(uc, xc)
△
= εc[Cc +NT(uc(t), xc(t))P ]T[Cc +NT(uc(t), xc(t))P ],

(uc, xc) ∈ Rm × Rnc . (6.158)

Show that if G is passive and zero-state observable, then the negative
feedback interconnection of G and Gc is globally asymptotically stable.

Problem 6.12. Show that if in Problem 6.11 G is strictly passive,
M(uc, xc) is an arbitrary nonnegative-definite function, and δc = 0, then
the negative feedback interconnection of G and Gc is globally asymptotically
stable.
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Problem 6.13. Consider the square linear dynamical system

G(s) ∼
[

A B
C D

]

.

Let R1 ∈ Rn×n and R2 ∈ Rm×m, with R1 and R2 positive definite, be such
that

R1 > CT[R2 − (D +DT)]C, (6.159)

R2 > D +DT. (6.160)

Show that the linear dynamic controller

Gc(s) ∼
[

A−BR−1
2 [C +BTP −DR−1

2 BTP ] BR−1
2

R−1
2 BTP 0

]

, (6.161)

where P > 0 satisfies

0 = ATP + PA+R1 − PBR−1
2 BTP, (6.162)

is strictly positive real. Alternatively, show that if D = 0, G(s) is positive
real, and R1 satisfies

R1 = LTL+ CTR2C, (6.163)

where L satisfies (5.151), then the dynamic controller

Gc(s) ∼
[

A− 2BR−1
2 C BR−1

2

R−1
2 C 0

]

(6.164)

is strictly positive real.

Problem 6.14. Consider the nonlinear dynamical system G given by
(6.1) and (6.2) with J(x) ≡ 0 and rank[G(0)] = m, and the nonlinear
controller Gc given by (6.3) and (6.4) with Jc(x) ≡ 0. Assume that G is
completely reachable, zero-state observable, and exponentially passive with
continuously differentiable radially unbounded, positive-definite storage
function Vs : Rn → R. Suppose there exists a continuously differentiable
positive-definite function V : Rn → R such that V (x) → ∞ as ‖x‖ → ∞,
and

0 = V ′(x)f(x) + L1(x) − 1
4V

′(x)G(x)R−1
2 GT(x)V ′T(x), x ∈ Rn, (6.165)

where L1 : Rn → R is given by L1(x) = ℓT(x)ℓ(x)+ εVs(x)+hT(x)R−1
2 h(x),

R2 > 0, and ε and ℓ(·) satisfy (5.137). Show that with

fc(xc) = f(xc) − 2G(xc)R
−1
2 h(xc), (6.166)

Gc(xc) = G(xc)R
−1
2 (6.167)

hc(xc) = R−1
2 h(xc), (6.168)

the negative feedback interconnection of G and Gc is globally asymptotically
stable.
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Problem 6.15. Consider the linear matrix second-order dynamical
system in energy coordinates given by

[

ẋ1(t)
ẋ2(t)

]

=

[

0 Ω
−Ω −2ηΩ

] [

x1(t)
x2(t)

]

+

[

0
b

]

u(t),

[

x1(0)
x2(0)

]

=

[

x10

x20

]

, t ≥ 0, (6.169)

y(t) = bTx2(t), (6.170)

where x1 ∈ Rn, x2 ∈ Rn, u, y,∈ R, Ω = diag[ω1, . . . , ωn], ωi > 0, i =
1, . . . , n, η = diag[η1, . . . , ηn], ηi > 0, i = 1, . . . , n, and b ∈ Rn. Show that
the nonlinear dynamic compensator

ẋc(t) =

([

0 Ωc

−Ωc −2ηcΩc

]

+ 2α[0 eT]xcS

)

xc(t)

+κ

[

0
e

]

y2(t), xc(0) = xc0, t ≥ 0, (6.171)

u(t) = −κ([0 eT]xc(t))y(t), (6.172)

where xc ∈ R2nc , nc ≤ n, κ > 0, α > 0, eT = [1, 1, . . . , 1] ∈ R1×nc , S = −ST,
Ωc = diag[ωc1, . . . , ωcn], ωci > 0, i = 1, . . . , n, and ηc = diag[ηc1, . . . , ηcn],
ηci > 0, i = 1, . . . , n, guarantees asymptotic stability of the closed-loop
system (6.169)–(6.172).

Problem 6.16. Consider the nonlinear dynamical system G given by
(6.1) and (6.2) and the nonlinear controller Gc given by

ẋc(t) = (Ac + S)xc(t) +Bc diag(y(t))y(t), xc(0) = xc0, t ≥ 0, (6.173)

u(t) = − diag(y(t))BT
c xc(t), (6.174)

where Ac ∈ Rnc×nc , Bc ∈ Rnc×m, S ∈ Rnc×nc is skew symmetric, and diag(y)
is a diagonal matrix whose entries on the diagonal are the components of y.
Show that if G is passive and zero-state observable and the triple (Ac, Bc, B

T
c )

is strictly positive real and self-dual (see Problem 5.33), then the negative
feedback interconnection of G and Gc is asymptotically stable.

Problem 6.17. Consider the nonlinear controlled oscillator given in
Problem 5.35. Using Corollary 6.1 design a nonlinear reduced-order dynamic
compensator that asymptotically stabilizes the closed-loop system. Compare
your results with the static linear controller u = −R−1

2 y, where R2 = 1, for
the initial condition [x1(0), x2(0)]

T = [1, 0.5]T.

Problem 6.18. Consider the controlled nonlinear damped oscillator
given in Problem 5.36. Using Corollary 6.1 and Problem 6.13 design a
nonlinear full-order dynamic compensator that asymptotically stabilizes the
closed-loop system. Compare the open-loop and closed-loop responses for
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the initial condition [x1(0), x2(0)]
T = [0, 1]T and R2 = 0.01.

Problem 6.19. Let q ∈ Rl, r ∈ Rm, qc ∈ Rlc , and rc ∈ Rmc . Consider
the nonlinear nonnegative dynamical systems G and Gc (see Problem 5.9)
given by (6.1) and (6.2), and (6.3) and (6.4), respectively, where f : D →
Rn is essentially nonnegative (see Problem 3.7), G(x) ≥≥ 0, h(x) ≥≥ 0,
J(x) ≥≥ 0, x ∈ R

n
+, fc : Rnc → Rnc is essentially nonnegative, Gc(uc, xc) =

Gc(xc) ≥≥ 0, hc(uc, xc) = hc(xc) ≥≥ 0, xc ∈ R
nc

+ , and Jc(uc, xc) ≡ 0.
Assume that G is dissipative with respect to the linear supply rate s(u, y) =
qTy + rTu and with a continuously differentiable positive-definite storage
function Vs(·), and assume that Gc is dissipative with respect to the linear
supply rate sc(uc, yc) = qTc yc + rTc uc and with a continuously differentiable
positive-definite storage function Vsc(·). Show that the following statements
hold:

i) If there exists a scalar σ > 0 such that q+σrc ≤≤ 0 and r+σqc ≤≤ 0,
then the positive feedback interconnection of G and Gc is Lyapunov
stable.

ii) If G and Gc are zero-state observable and there exists a scalar σ > 0
such that q + σrc << 0 and r + σqc << 0, then the positive feedback
interconnection of G and Gc is asymptotically stable.

iii) If G is zero-state observable, rank Gc(0) = mc, Gc is exponentially
dissipative with respect to the supply rate sc(uc, yc) = qTc yc + rTc uc,
and there exists a scalar σ > 0 such that q + σrc ≤≤ 0 and r +
σqc ≤≤ 0, then the positive feedback interconnection of G and Gc is
asymptotically stable.

iv) If G is exponentially dissipative with respect to the supply rate s(u, y)
= qTy+rTu, Gc is exponentially dissipative with respect to the supply
rate sc(uc, yc) = qTc yc + rTc uc, and there exists a scalar σ > 0 such
that q + σrc ≤≤ 0 and r + σqc ≤≤ 0, then the positive feedback
interconnection of G and Gc is asymptotically stable.

(Hint: First show that the positive feedback interconnection of G and Gc

gives a nonnegative closed-loop system.)

Problem 6.20. Consider the dynamical system G given by (6.62) and
(6.63) with f(x) = Ax, G(x) = B, φ(x) = Kx, where A ∈ Rn×n, B ∈
Rn×1, and K ∈ R1×n. Suppose that G has gain margin (α, β) and let
L(ω) = −K(ωIn−A)−1B denote the loop gain of (6.62) and (6.63). Using
a Nyquist sketch show that the maximum amount by which the loop gain
can be increased before instability is β, that is, the upward gain margin is β.
Show the maximum amount by which the loop gain can be decreased before
instability is (1 − α)100, that is, the gain reduction tolerance is (1− α)100.
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Finally, show that the maximum angle by which the loop gain can lag before

instability is φ = cos−1
(

αβ+1
α+β

)

.

Problem 6.21. Consider the linear dynamical system

G(s)
min∼
[

A B
C D

]

.

Show that if G(s) has a disk margin (α, β), then [I + βG(s)][I + αG(s)]−1

is positive real.

Problem 6.22. Consider the linear dynamical system

G(s)
min∼
[

A B
C D

]

with input u(·) ∈ U and output y(·) ∈ Y. Show that G(s) is dissipative with
respect to the supply rate r(u, y) = uTy + αyTy, 0 < α < 1, if and only if
G(s) has a disk margin (α,∞).

Problem 6.23. Consider the linear dynamical system

G(s)
min∼
[

A B
C D

]

with input u(·) ∈ U and output y(·) ∈ Y. Show that G(s) is dissipative with
respect to the supply rate r(u, y) = uTy + 1

βu
Tu, β > 1, if and only if G(s)

has a disk margin (0, β).

Problem 6.24. Consider the nonlinear controlled system (6.73). Show
that if Condition (6.75) is satisfied, then there exists a feedback control law
φ : D → U , in general discontinuous, such that V ′(x)F (x, φ(x)) < 0, x ∈ D,
x 6= 0.

Problem 6.25. A smooth system of the form (6.76) with f(0) =
0 is a Jurdjevic-Quinn (J-Q) type system if there exists a continuously
differentiable positive-definite radially unbounded function V : Rn → R

such that:

i) V ′(x)f(x) ≤ 0, x ∈ Rn.

ii) W △
= {x ∈ Rn : Lk+1

f V (x) = Lk
fLGi

V (x) = 0, k = 0, 1, . . . , i = 1, . . . ,

m}
= {0}.

Show that u = −[V ′(x)G(x)]T is a globally stabilizing controller for a J-Q
type system.
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Problem 6.26. Show that for scalar stabilizable systems V (x) = 1
2x

2

is always a control Lyapunov function. Using this fact, obtain a stabilizing
controller for the dynamical system considered in Example 6.6 using the
control Lyapunov function approach and compare this controller to the
optimal Hamilton-Jacobi-Bellman controller.

Problem 6.27. Consider the nonlinear dynamical system (6.76).
Assume there exists a continuously differentiable function V : D → R+

such that V (·) is positive definite and

V ′(x)f(x) ≤ −c(V (x))α, x ∈ R, (6.175)

where c > 0, α ∈ (0, 1), and R , {x ∈ Rn, x 6= 0 : V ′(x)G(x) = 0}.
Show that the zero solution x(t) ≡ 0 to (6.76) with the feedback controller
u = φ(x), x ∈ Rn, given by

φ(x) =






−
(

c0 +
(α(x)−w(V (x)))+

√
(α(x)−w(V (x)))2+(βT(x)β(x))2

βT(x)β(x)

)

β(x), β(x) 6= 0,

0, β(x) = 0,

(6.176)

where c0 > 0, α(x) , V ′(x)f(x), x ∈ Rn, β(x) , GT(x)V ′T(x), x ∈ Rn, and
w(V (x)) , −c(V (x))α, x ∈ Rn, is finite-time stable with the settling-time
function T (x0) ≤ 1

c(1−α)(V (x0))
1−α, x0 ∈ Rn. Furthermore, show that V (·)

is a control Lyapunov function.

Problem 6.28. Consider the system (6.83) and (6.84) with F (x, u, t) =
Ax + Bu and L(x, u, t) = xTR1x + uTR2u, where A ∈ Rn×n, B ∈ Rn×m,
R1 ∈ Rn×n, and R2 ∈ Rm×m, such that R1 ≥ 0, R2 > 0. Show that the
optimal control law characterized by the Hamilton-Jacobi-Bellman equation
(6.93) is given by

u(t) = −R−1
2 BTP (t)x(t), (6.177)

where

−Ṗ (t) = ATP (t)+P (t)A+R1−P (t)BR−1
2 BTP (t), P (tf) = 0. (6.178)

Problem 6.29. Consider the nonlinear dynamical system

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, t ≥ 0, (6.179)

with performance functional

J(x0, u(·)) =

∫ ∞

0
[L1(x(t)) + uT(t)R2(x(t))u(t)]dt, (6.180)

where x ∈ Rn, u ∈ Rm, f : Rn → Rn satisfies f(0) = 0, G : Rn → Rn×m,
L1 : Rn → R is such that L1(x) > 0, x ∈ Rn, x 6= 0, and R2 : Rn → Rm×m



NonlinearBook10pt November 20, 2007

466 CHAPTER 6

is such that R2(x) > 0, x ∈ Rn. Show that the optimal control u = φ(x)
characterized by the Hamilton-Jacobi-Bellman equation (6.93) is given by

φ(x) = −1
2R

−1
2 (x)GT(x)V ′T(x), (6.181)

where V (0) = 0 and

0 = L1(x) + V ′(x)f(x) − 1
4V

′(x)G(x)R−1
2 (x)GT(x)V ′T(x), x ∈ Rn.

(6.182)
Also show that (6.181) is a stabilizing feedback control law.

Problem 6.30. Consider the nonlinear dynamical system (6.76). Show
that the feedback control law (6.81) is an optimal stabilizing control law
minimizing the performance functional

J = 1
2

∫ ∞

0
[2α(x(t)) − q(x(t))βT(x(t))β(x(t)) + q−1(x(t))uT(t)u(t)]dt,

(6.183)
where

q(x)
△
=

{

c0 +
α(x)+

√
α2(x)+(βT(x)β(x))2

βT(x)β(x)
, β(x) 6= 0,

c0, β(x) = 0,
(6.184)

and c0 > 0.

Problem 6.31. Consider the nonlinear dynamical system given by
(6.76). Show that whenever the control Lyapunov function V satisfying
(6.77) has the same level sets as the value function V ∗ satisfying the
Hamilton-Jacobi-Bellman equation (6.182), the feedback control law (6.81)
reduces to the optimal control law given by (6.181).

Problem 6.32. Consider the nonlinear dynamical system

ẋ(t) = F (x(t), u(t), t), x(t0) = x0, x(tf) = xf , t ≥ t0, (6.185)

where x(t) ∈ D ⊆ Rn, t ∈ [t0, tf ], x(t0) = x0 is given, x(tf) = xf is fixed, and
u(t) ∈ U ⊆ Rm, t ∈ [t0, tf ], with performance functional

J(x0, u(·), t0) =

∫ tf

t0

L(x(t), u(t), t)dt. (6.186)

Let J∗(x, t) and u∗(t), t ∈ [t0, tf ], denote the minimal cost and optimal
control, respectively, for the optimal control problem given by (6.185) and
(6.186) and assume that J∗(·, ·) is two-times continuously differentiable.
Show that

ṗ(x(t), t) = −
[

∂

∂x
H(x(t), u∗(t), p(x(t), t), t)

]T

,
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p(x(tf), tf) =

[

∂

∂x
J∗(x(tf), tf)

]T

, (6.187)

where p(x(t), t) =
(

∂
∂xJ

∗(x(t), t)
)T

and H(x, u, p(x, t), t) = L(x, u, t)+pT(x,
t)F (x, u, t).

Problem 6.33. Consider an n-degree-of-freedom dynamical system
with action integral

J =

∫ tf

t0

L(q(t), q̇(t))dt, (6.188)

where q ∈ Rn denotes generalized system positions, q̇ ∈ Rn denotes
generalized system velocities, L : Rn × Rn → R denotes the system
Lagrangian given by L(q, q̇) = T (q, q̇) − V (q), where T : Rn × Rn → R

is the system kinetic energy and V : Rn → R is the system potential energy.
Hamilton’s principle of least action states that among the set of all smooth
kinematically possible paths that a dynamical system may move between
two fixed end points over a specified time interval, the only dynamically
possible system paths are those that render J stationary to all variations
in the shape of the paths. Use the Hamilton-Jacobi-Bellman equation to
show that Hamilton’s principle for an n-degree-of-freedom dynamical system
implies

d

dt

[

∂L
∂q̇

(q, q̇)

]T

−
[

∂L
∂q

(q, q̇)

]T

= 0. (6.189)

Problem 6.34. Consider the nonlinear dynamical system

ẋ1(t) = x2
1(t)x2(t), x1(0) = x10, t ≥ 0, (6.190)

ẋ2(t) = u(t), x2(0) = x20, (6.191)

y(t) = x2(t). (6.192)

Show that (6.190)–(6.192) is weakly minimum phase and u = x3
1 + v

renders (6.190)–(6.192) passive. In addition, show that the output feedback
controller v = −y globally stabilizes (6.190)–(6.192).

Problem 6.35. Consider the nonlinear dynamical system

ẋ1(t) = −x3
1(t) + x2(t), x1(0) = x10, t ≥ 0, (6.193)

ẋ2(t) = x1(t) + u(t), x2(0) = x20, (6.194)

y(t) = x2(t). (6.195)

Show that (6.193)–(6.195) has relative degree 1 and is minimum phase. Can
this system be rendered passive via a static output feedback controller?

Problem 6.36. Consider the nonlinear dynamical system G given by
(6.98) and (6.99) with u, y ∈ R. Show that if G has relative degree r at a
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point x0, then the vectors { ∂
∂xh(x),

∂
∂x [Lfh(x)], . . . ,

∂
∂x [Lr−1

f h(x)]} at x = x0

are linearly independent.

Problem 6.37. Consider the nonlinear dynamical system G given by
(6.98) and (6.99). Show that if G is input strictly passive, then G has relative
degree zero.

Problem 6.38. Show that every minimum phase system of the form
(6.98) and (6.99) with relative degree {1, 1, . . . , 1} and complete vector field
G(LGh)

−1 is feedback equivalent to a J-Q type system (see Problem 6.25).

Problem 6.39. Let

G(s) ∼
[

A B
C 0

]

be an m × m rational transfer function and suppose q ∈ C is not a pole
of G(s). q is a transmission zero of G(s) if rank G(q) < nrank G(s),

where nrank G(s)
△
= maxs∈C rank G(s). Show that if ż = A0z denotes the

zero dynamics of G(s) and G(s) is minimum phase and has relative degree
{1, 1, . . . , 1}, then the eigenvalues of A0 are the transmission zeros of G(s).

Problem 6.40. Consider the nonlinear dynamical system G given by
(6.98) and (6.99). Show that if G is feedback linearizable, then the solutions
to the partial differential equations

0 = LGj
Lk

fhi(x), 0 ≤ k ≤ ri − 2, 1 ≤ j ≤ m,

exist, where Gj , j = 1, . . . ,m, are the smooth column vector fields of G,
hi, i = 1, . . . ,m, are the smooth components of h, r1 + r2 + · · · + rm = n,
and ri is the smallest integer such that at least one of the inputs ui appears
in dri

dtri
hi(x). Also show that in the case where f(x) = Ax, A ∈ Rn×n,

G(x) = B, B ∈ Rn×1, h(x) = Cx, C ∈ R1×n, the integers r1, . . . , rm,
reduce to a single integer corresponding to the relative degree of the transfer
function G(s) = C(sI −A)−1B.

Problem 6.41. Consider the dynamical system (6.98) and (6.99) with
f(x) = Ax, G(x) = B, and h(x) = Cx, where A ∈ Rn×n, B ∈ Rn×m, and
C ∈ Rl×n. Show that in this case Condition i) of Theorem 6.11 reduces to

rank[B AB · · · An−1B] = n.

Problem 6.42. Consider the nonlinear dynamical system (6.98). Show
that (6.98) is feedback linearizable at x0 ∈ Rn only if the linearized system
is controllable at x0 ∈ Rn.

Problem 6.43. Let f , f1, f2, g, g1, g2 : Rn → R be continuously
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differentiable vector fields, let h : Rn → R, and let α1 and α2 be real
constants. Show that:

i) [α1f1(x) + α2f2(x), g1(x)] = α1[f1(x), g1(x)] + α2[f2(x), g1(x)].

ii) [f1(x), α1g1(x) + α2g2(x)] = α1[f1(x), g1(x)] + α2[f1(x), g2(x)].

iii) [f(x), g(x)] = −[g(x), f(x)].

iv) L[f,g]h(x) = LfLgh(x) − LgLfh(x).

Problem 6.44. Let T : D → Rn. Show that if T ′(x) is invertible at
x = x0 ∈ D, then there exists a neighborhood N of x0 such that T (x) is a
diffeomorphism for all x ∈ N .

Problem 6.45. T : Rn → Rn is a global diffeomorphism if it is a
diffeomorphism on Rn and T (Rn) = Rn. Show that T (·) is a global
diffeomorphism if and only if T ′(x) is invertible for all x ∈ Rn and
lim‖x‖→∞ ‖T (x)‖ = 0.

Problem 6.46. Consider the controlled Van der Pol oscillator (6.105)
and (6.106) given in Example 6.9 with (6.107) replaced by y(t) = x1(t).
Calculate the relative degree of this system. Is this system minimum phase?
Is this system feedback linearizable?

Problem 6.47. Consider the nonlinear dynamical system

ẋ1(t) = x2
1(t) + x2(t), x1(0) = x10, t ≥ 0, (6.196)

ẋ2(t) = u(t), x2(0) = x20. (6.197)

Using Theorem 6.11 show that (6.196) and (6.197) is feedback linearizable.
Furthermore, using the diffeomorphism T (x) = [x1 x

2
1 + x2]

T, where x =
[x1 x2]

T, construct a stabilizing nonlinear controller that cancels out all
nonlinearities in the system. Alternatively, construct a globally stabilizing
controller based on the control Lyapunov function V (x) = T T(x)PT (x),
where P > 0 satisfies (6.101). Compare the state response and the control
effort versus time of both designs.

6.9 Notes and References

For a treatment of feedback interconnections of dissipative systems, see Pop-
ov [364], Zames [476,477], Desoer and Vidyasagar [104], Willems [456,457],
and Hill and Moylan [189]. Stability of feedback interconnections involving
dissipative and exponentially dissipative systems was first introduced by
Chellaboina and Haddad [88]. The treatment of stability for nonlinear
dissipative feedback systems is adopted from Hill and Moylan [189] and
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Chellaboina and Haddad [88]. Energy-based controllers for port-controlled
Hamiltonian systems were first developed by Maschke, Ortega, and van
der Schaft [301] and Maschke, Ortega, van der Schaft, and Escobar [302].
The treatment here is adopted from Ortega, van der Schaft, Maschke, and
Escobar [343]. Gain and sector margins for nonlinear systems are motivated
by work on Nyquist stability theory and absolute stability theory and
can be found in Luré [291], Popov [364], Narendra and Taylor [331], and
Safonov [377]. An operator approach is given by Zames [476, 477] while a
state space approach can be found in Hill and Moylan [188,189]. The concept
of disk margins can be found in the monograph by Sepulchre, Janković, and
Kokotović [395].

The concept of control Lyapunov functions is due to Artstein [13],
while the constructive feedback control law based on the control Lyapunov
function given in Section 6.5 is due to Sontag [406] and is known as Sontag’s
universal formula. The principle of optimality is due to Bellman [36]. The
Hamilton-Jacobi-Bellman equation was developed by Bellman [36] and can
be viewed as an extension of Jacobi’s work on conjugate points in fields of
extremals and Hamilton’s work on least action in mechanical systems; both
of which were developed in the nineteenth century. For a modern textbook
treatment see Kirk [239] and Bryson and Ho [72].

For a thorough textbook treatment of feedback linearization, zero
dynamics, and minimum-phase systems the reader is referred to Isidori [212]
and Nijmeijer and van der Schaft [336]. One of the first contributions to
solving nonlinear control problems using differential geometric methods is
due to Brockett [68]. The feedback linearization problem was first posed by
Brockett [69] and solved by Su [419] in the single-input case and by Hunt,
Su, and Meyer [210] in the multi-input case. The definitions in Section
6.7 are adopted from Isidori [212]. For an excellent treatment on zero
dynamics and minimum-phase systems see Byrnes and Isidori [74–76] and
Saberi, Kokotović, and Sussmann [376]. The concepts of feedback passivity
equivalence and global stabilization of minimum phase systems are due to
Kokotović and Sussmann [241] for linear systems and Byrnes, Isidori, and
Willems [77] for nonlinear systems.
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Chapter Seven

Input-Output Stability and Dissipativity

7.1 Introduction

As mentioned in Chapter 1, the main objective of this book is to present the
necessary mathematical tools for stability and control design of nonlinear
dynamical systems, with an emphasis on Lyapunov-based methods. For
completeness of exposition, in this chapter we digress from our main
objective to present an alternative approach to the mathematical modeling
of nonlinear dynamical systems based on input-output notions. In contrast
to the input, state, and output setting for nonlinear dynamical systems
presented in the preceding chapters, an input-output representation of a
dynamical system relates the output of the system directly to the input
via an input-output mapping with no knowledge of the internal state of
the system. There are numerous situations where an input-output system
description is appropriate. These include, for example, intelligent machines
such as computer hardware and signal processors, as well as computer
software algorithm execution.

The principal advantage of the input-output modeling approach to
dynamical systems is that it addresses infinite-dimensional systems almost as
easily as finite-dimensional systems. This is also the case for continuous-time
and discrete-time systems. In addition, the input-output approach leads
to more powerful and general results. However, in most physical systems
the output of the system also depends on the system’s initial conditions.
In addition, an input-output system description cannot deal with physical
system interconnections. Hence, dynamical systems modeling predicated
on state space models, wherein an internal state model is used to describe
the system dynamics using physical laws and system interconnections, is of
fundamental importance in the description of physical dynamical systems.

Input-output system descriptions can be traced back to the work
of Heaviside on impedance circuit descriptions and the cybernetic force-
response systems view of Wiener. This input-output systems approach led
to the concept of input-output stability which was pioneered by Sandberg
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[387, 388, 390] and Zames [476, 477]. In this chapter, we introduce input-
output systems descriptions and define the concept of input-output Lp

stability. In addition, we introduce the concepts of input-output finite-
gain, dissipativity, passivity, and nonexpansivity. Furthermore, we develop
connections between input-output stability and Lyapunov stability theory.
Finally, we develop explicit formulas for induced convolution operator norms
for linear input-output dynamical systems.

7.2 Input-Output Stability

In this section, we introduce the definition of input-output stability for
general operator dynamical systems. Let U and Y define an input and
an output spaces, respectively, consisting of continuous bounded U -valued
and Y -valued functions on the semi-infinite interval [0,∞), where U ⊆ Rm

and Y ⊆ Rl. The set U contains the set of input values, that is, for every
u(·) ∈ U and t ∈ [0,∞), u(t) ∈ U . The set Y contains the set of output
values, that is, for every y(·) ∈ Y and t ∈ [0,∞), y(t) ∈ Y . The spaces
U and Y are assumed to be closed under the shift operator, that is, if
u(·) ∈ U (respectively, y(·) ∈ Y), then the function defined by usT

△
= u(t+T )

(respectively, ysT
△
= y(t+T )) is contained in U (respectively, Y) for all T ≥ 0.

In this chapter, we consider operator dynamical systems G : U →
Y. For example, G may denote a linear, time-invariant, finite-dimensional
dynamical system given by the transfer function

G(s) ∼
[

A B
C D

]

or, equivalently,

y(t) = G[u](t)
△
=

∫ t

0
H(t− τ)u(τ)dτ +Du(t), t ≥ 0, (7.1)

where H(t)
△
= CeAtB is the impulse response matrix function. For

notational convenience, we denote the functional dependence of y ∈ Y on
u ∈ U given by (7.1) as y = G[u]. Similarly, consider a nonlinear dynamical
system described by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(t0) = 0, t ≥ t0, (7.2)

y(t) = h(x(t)) + J(x(t))u(t), (7.3)

where x(t) ∈ D ⊆ Rn, D is an open set with 0 ∈ D, u(t) ∈ U ⊆ Rm, y(t) ∈
Y ⊆ Rl, f : D → Rn, G : D → Rn×m, h : D → Y , and J : D → Rl×m. The
mapping from u(·) to y(·) is also an operator dynamical system. However,
in this case, it is not possible in general to provide an explicit expression for
the operator G[u].



NonlinearBook10pt November 20, 2007

INPUT-OUTPUT STABILITY AND DISSIPATIVITY 473

In this book, we restrict our attention to causal operator dynamical
systems. In order to provide the definition for causality we need the following
definition.

Definition 7.1. Let u(·) ∈ U . Then for all T ∈ [0,∞), the function
uT (·) defined by

uT (t)
△
=

{

u(t), 0 ≤ t ≤ T,
0, T < t,

is called the truncation of u(·) on the interval [0, T ].

Definition 7.2. An operator dynamical system G : U → Y is said to
be causal if for every T ∈ [0,∞) and u(·) ∈ U ,

yT = (G[u])T = (G[uT ])T .

Note that if u(·) ∈ U , then uT (·) ∈ U , and hence, G[uT ] is well defined.
Furthermore, for operator dynamical systems described by (7.1) or (7.2)
and (7.3) it is easy to show that the G is a causal system. The following
proposition is now immediate.

Proposition 7.1. Let G : U → Y. G is causal if and only if for every
pair u, v ∈ U and for every T > 0 such that uT = vT , (G[u])T = (G[v])T .

Proof. Suppose G is causal and let u, v ∈ U be such that uT = vT for
some T > 0. Then, it follows that

(G[u])T = (G[uT ])T = (G[vT ])T = (G[v])T ,

where the first and last equalities follow from the causality of G. Conversely,
suppose for every pair u, v ∈ U and for every T > 0 such that uT = vT , G
satisfies (G[u])T = (G[v])T . Let u ∈ U and v = uT for some T > 0. Noting
that uT = vT and (G[u])T = (G[v])T = (G[uT ])T , the causality of G follows.

Next, we define the notion of input-output stability. First, however, we
restrict the input and output to belong to normed linear spaces. Specifically,
let u(·) ∈ U be measurable1 and define the Lm

p -norm as

|||u|||p △
=

[
∫ ∞

0
‖u(t)‖pdt

]1/p

, (7.4)

where p ∈ [1,∞) and ‖·‖ denotes the Euclidean vector norm defined on Rm.

1A function u : [0,∞) → Rm is measurable if it is the pointwise limit, except for a set of
Lebesgue measure zero, of a sequence of piecewise constant functions on [0,∞).
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Furthermore, define the Lm
∞-norm as

|||u|||∞ △
= ess sup

t≥0
‖u(t)‖. (7.5)

Now, for every p ∈ [1,∞], define the Lebesgue normed space2 Lm
p as

Lm
p

△
= {u(·) ∈ U : |||u|||p <∞} . (7.6)

The notion of input-output stability involves operator dynamical
systems that map Lm

p to Ll
p. Note that, in general, for an arbitrary operator

dynamical system G : U → Y, y = G[u] need not belong to Ll
p. In order

to define input-output stability, we refer to an operator dynamical system
G : U → Y as well behaved if for every u(·) ∈ Lm

p , G[u] is measurable.
Furthermore, define the extended Lm

p space by

Lm
pe

△
=
{

u(·) ∈ U : uT ∈ Lm
p for every T > 0

}

.

Note that the set Lm
pe consists of all measurable functions whose truncations

belong to Lm
p . Hence, an operator dynamical system is well behaved if and

only if G : Lm
pe → Ll

pe.

Definition 7.3. Let G : Lm
pe → Ll

pe. G is Lp-stable if G[u] ∈ Ll
p for

every u ∈ Lm
p . G is Lp-stable with finite gain γ if there exist γ, β > 0 such

that
|||G[u]|||p ≤ γ|||u|||p + β, u ∈ Lm

p . (7.7)

G is Lp-stable with finite gain and zero bias if there exists γ > 0 such that

|||G[u]|||p ≤ γ|||u|||p, u ∈ Lm
p . (7.8)

Note that if G is Lp-stable with finite gain and zero bias, then G is
Lp-stable with finite gain, and if G is Lp-stable with finite gain, then G is
Lp-stable. Furthermore, note that if G is causal, then (7.7) is equivalent to

|||(G[u])T |||p ≤ γ|||uT |||p + β, T > 0, u ∈ Lm
p , (7.9)

and (7.8) is equivalent to

|||(G[u])T |||p ≤ γ|||uT |||p, T > 0, u ∈ Lm
p . (7.10)

Example 7.1. Consider the scalar linear dynamical system given by

ẋ(t) = x(t) + u(t), x(0) = 0, t ≥ 0, (7.11)

y(t) = x(t), (7.12)

2For p ∈ [1,∞), the Lebesgue normed space Lm
p consists of all real-valued measurable functions

u : [0,∞) → Rm for which ‖u‖p is Lebesgue integrable with norm defined by (7.4). For p = ∞,
the Lebesgue normed space Lm

∞
consists of all Lebesgue measurable functions on [0,∞) which are

bounded, except possibly on a set of measure zero.
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where x(t), u(t), and y(t) ∈ R. Now, it follows that

y(t) = x(t) =

∫ t

0
et−τu(τ)dτ,

which implies that for all u(·) ∈ L2e, y(·) ∈ L2e. Next, let u(t) = e−t so that
u(·) ∈ L2. In this case,

y(t) =

∫ t

0
et−τe−τdτ = sinh t,

which implies that y(·) 6∈ L2. Hence, G given by (7.11) and (7.12) is not
L2-stable. Note that the zero solution to (7.11) is unstable. △

Example 7.2. In this example, let Gi : L∞e → L∞e, i = 1, 2, 3, be
given by

G1[u](t) = u2(t),

G2[u](t) = u(t) + 1,

G3[u](t) = loge(1 + u2(t)).

It is clear that G1 is L∞-stable. However, note that there does not exist
constants γ and β (with p = ∞) such that (7.7) holds which implies that
G1 is not L∞-stable with finite gain. Next, since |||G2[u]|||∞ ≤ |||u|||∞ + 1 it
follows that G2 is L∞-stable with finite gain but not L∞-stable with finite
gain and zero bias. Finally, since |||G3[u]|||∞ ≤

√
2|||u|||∞ it follows that G3 is

L∞-stable with finite gain and zero bias. △

Example 7.3. Consider the scalar operator dynamical system G given
by the mapping

y(t) = G[u](t) =

∫ t

0
eα(t−τ)u(τ)dτ, t ≥ 0,

where α ∈ R. Let u(·) ∈ L∞e, let T > 0, and note that for all t ≤ T ,

|y(t)| ≤
∫ t

0
eα(t−τ)|u(τ)|dτ

≤ |||uT |||∞
∫ t

0
eα(t−τ)dτ

=
eαt − 1

α
|||uT |||∞

≤ e|α|T − 1

|α| |||uT |||∞,

which implies that |||yT |||∞ ≤ e|α|T−1
|α| |||uT |||∞, establishing that G : L∞e →

L∞e.
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Now, let α < 0 and let u(·) ∈ L∞. In this case, it follows that for all
t > 0,

|y(t)| ≤ |||u|||∞
∫ t

0
eα(t−τ)dτ

=
eαt − 1

α
|||u|||∞

≤ 1

|α| |||u|||∞,

which implies that G is L∞-stable with finite gain and zero bias for all α < 0.

Finally, let α > 0 and let u(t) ≡ 1 so that u(·) ∈ L∞. In this case,
y(t) = eαt−1

α , which implies that y(·) 6∈ L∞. Hence, G is not L∞-stable for
all α > 0. △

7.3 The Small Gain Theorem

In this section, we consider feedback interconnections of input-output
stable systems and provide sufficient conditions for input-output stability of
interconnected systems. Specifically, let G1 : Lm

pe → Ll
pe and G2 : Ll

pe → Lm
pe,

and consider the negative feedback interconnection given in Figure 7.1 where
(u1, u2) ∈ Lm

pe × Ll
pe and (y1, y2) ∈ Ll

pe × Lm
pe are the input and the output

signals of the closed-loop system, respectively, and e1
△
= u1 − y2 ∈ Lm

pe and

e2
△
= u2 + y1 ∈ Ll

pe are the inputs to G1 and G2, respectively. Note that
y1 = G1[e1] = G1[u1 − y2] and y2 = G2[e2] = G2[u2 + y1]. Hence,

[

y1

y2

]

=

[

G1[u1 − y2]
G2[u2 + y1]

]

(7.13)

and
[

u1

u2

]

=

[

e1 + G2[e2]
e2 − G1[e1]

]

. (7.14)

In general, there may not exist a mapping G̃ : Lm
pe × Ll

pe → Ll
pe × Lm

pe

such that y = G̃[u], where y
△
= [yT

1 , y
T
2 ]T and u

△
= [uT

1 , u
T
2 ]T, and (7.13) holds.

In this chapter, we restrict G1 and G2 such that there exists a mapping
G̃ : Lm

pe ×Ll
pe → Ll

pe ×Lm
pe such that y = G̃[u] and (7.13) holds. In this case,

the feedback interconnection given in Figure 7.1 is well defined. Note that
such a G̃ exists if and only if there exists a mapping Ĝ : Lm

pe×Ll
pe → Ll

pe×Lm
pe

such that e = Ĝ[u], where e
△
= [eT1 , e

T
2 ]T, and (7.14) holds.

Definition 7.4. Let the feedback interconnection of G1 and G2 given
in Figure 7.1 be well defined and let G̃ : Lm

pe ×Ll
pe → Ll

pe ×Lm
pe be such that
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Figure 7.1 Feedback interconnection of G1 and G2.

y = G̃[u] and (7.13) holds. Then the feedback interconnection of G1 and
G2 given in Figure 7.1 is, respectively, Lp-stable, Lp-stable with finite gain,

and Lp-stable with finite gain and zero bias if G̃ is Lp-stable, Lp-stable with
finite gain, and Lp-stable with finite gain and zero bias.

The following result, known as small gain theorem provides a sufficient
condition for Lp-stability of the feedback interconnection given by Figure 7.1.

Theorem 7.1. Let G1 : Lm
pe → Ll

pe and G2 : Ll
pe → Lm

pe be causal
operator dynamical systems such that the feedback interconnection given
by Figure 7.1 is well defined. If G1 is Lp-stable with finite gain γ1 and
G2 is Lp-stable with finite gain γ2 such that γ1γ2 < 1, then the feedback
interconnection of G1 and G2 given in Figure 7.1 is Lp-stable.

Proof. Since G1 and G2 are causal and Lp-stable with finite gains γ1

and γ2, respectively, it follows that there exist β1, β2 > 0 such that for every
T > 0, e1 ∈ Lm

pe, and e2 ∈ Ll
pe,

|||(G1[e1])T |||p ≤ γ1|||e1T |||p + β1, (7.15)

|||(G2[e2])T |||p ≤ γ2|||e2T |||p + β2. (7.16)

Hence, it follows that

|||e1T |||p ≤ |||u1T |||p + |||(G2[e2])T |||p
≤ |||u1T |||p + γ2|||e2T |||p + β2, (7.17)

and

|||e2T |||p ≤ |||u2T |||p + |||(G1[e1])T |||p
≤ |||u2T |||p + γ1|||e1T |||p + β1. (7.18)
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Now, combining (7.17) and (7.18) yields

|||e1T |||p ≤ |||u1T |||p + β2 + γ2 (|||u2T |||p + γ1|||e1T |||p + β1) , (7.19)

|||e2T |||p ≤ |||u2T |||p + β1 + γ1 (|||u1T |||p + γ2|||e2T |||p + β2) , (7.20)

and hence,

|||e1T |||p ≤ 1

1 − γ1γ2
(|||u1T |||p + γ2|||u2T |||p + β2 + γ2β1) , (7.21)

|||e2T |||p ≤ 1

1 − γ1γ2
(|||u2T |||p + γ1|||u1T |||p + β1 + γ1β2) . (7.22)

Next, since y1 = G1[e1] and y2 = G2[e2] it follows from (7.15), (7.16), (7.21),
and (7.22) that

|||y1T |||p ≤ γ1

1 − γ1γ2
(|||u1T |||p + γ2|||u2T |||p + β2 + γ2β1) + β1, (7.23)

|||y2T |||p ≤ γ2

1 − γ1γ2
(|||u2T |||p + γ1|||u1T |||p + β1 + γ1β2) + β2. (7.24)

Now, the result follows from the fact that G1 and G2 are causal dynamical
systems.

7.4 Input-Output Dissipativity Theory

In this section, we introduce the concept of dissipative systems within the
context of operator dynamical systems. In order to do this, we restrict our
attention to operator dynamical systems that map Lm

2e to Ll
2e. Note that

Lm
2 -space is a Hilbert space (see Problem 2.89) with the inner product

〈u, y〉 △
=

∫ ∞

0
uT(t)y(t)dt, u(·), y(·) ∈ Lm

2 . (7.25)

For u, y ∈ Lm
2e define 〈u, y〉T △

= 〈uT , yT 〉. The following definition introduces
the notion of dissipativity for operator dynamical systems.

Definition 7.5. Let G : Lm
2e → Ll

2e be a causal operator dynamical
system and let Q ∈ Sl, R ∈ Sm, and S ∈ Rl×m. G is (Q,R, S)-dissipative if
for every T > 0 and for every u ∈ Lm

2e,

〈y,Qy〉T + 2〈y, Su〉T + 〈u,Ru〉T ≥ 0, (7.26)

where y = G[u]. G is passive if for every T > 0 and for every u ∈ Lm
2e,

2〈y, u〉T ≥ 0. G is input strict passive if there exists ε > 0 such that for
every T > 0 and for every u ∈ Lm

2e, 2〈y, u〉T − ε〈u, u〉T ≥ 0. G is output
strict passive if there exists ε > 0 such that for every T > 0 and for every
u ∈ Lm

2e, 2〈y, u〉T − ε〈y, y〉T ≥ 0. G is input-output strict passive if there
exist ε1, ε2 > 0 such that for every T > 0 and for every u ∈ Lm

2e, 2〈y, u〉T −
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ε1〈y, y〉 − ε2〈u, u〉T ≥ 0. Finally, G is nonexpansive with gain γ > 0 if for
every T > 0 and for every u ∈ Lm

2e, 〈y, y〉T − γ2〈u, u〉T ≤ 0.

The following result connects (Q,R, S)-dissipativity with L2-stability.

Theorem 7.2. Let G : Lm
2e → Ll

2e be a causal operator dynamical
system and let Q ∈ Sl, R ∈ Sm, and S ∈ Rl×m be such that Q < 0. If G is
(Q,R, S)-dissipative, then G is L2-stable.

Proof. Let M
△
= −Q and let λ > 0 be such that λIm + R > 0 and

M − 1
λSS

T ≥ εIl for some ε > 0. (The existence of such a scalar λ can be
easily established.) Since G is (Q,R, S)-dissipative it follows that for every
T > 0 and u ∈ Lm

2 ,

〈y,My〉T ≤ 2〈y, Su〉T + 〈u,Ru〉T
=

1

λ
〈STy, STy〉T + λ〈u, u〉T − 〈 1√

λ
STy −

√
λu,

1√
λ
STy −

√
λu〉T

+〈u,Ru〉T
≤ 1

λ
〈STy, STy〉T + 〈u, (R + λIm)u〉T , (7.27)

which implies that

ε〈y, y〉T ≤ 〈y, (M − 1

λ
SST)y〉T

≤ 〈u, (R + λIm)u〉T
≤ (λ+ λmax(R))〈u, u〉T . (7.28)

The result now follows immediately by noting that 〈y, y〉T = |||yT |||2.

Corollary 7.1. Let G : Lm
2e → Ll

2e be a causal operator dynamical
system. Then the following statements hold:

i) If G is output strict passive, then G is L2-stable.

ii) If G is input-output strict passive, then G is L2-stable.

iii) If G is nonexpansive with gain γ > 0, then G is L2-stable.

Proof. The proof is a direct consequence of Theorem 7.2 with i)
Q = −εIl, R = 0, and S = Il, ii) Q = −ε1Il, R = −ε2Il, and S = Il, and
iii) Q = Il, R = −γ2Il, and S = 0.

Next, we provide a sufficient condition for input-output stability of a
feedback interconnection of two dissipative dynamical systems G1 and G2.
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Theorem 7.3. Let G1 : Lm
2e → Ll

2e and G2 : Ll
2e → Lm

2e be causal
operator dynamical systems such that the feedback interconnection given
by Figure 7.1 is well defined. Furthermore, let Q1, R2 ∈ Sl, Q2, R1 ∈ Sm,
and S1, S

T
2 ∈ Rl×m be such that there exists a scalar σ > 0 such that

Q̂
△
=

[

Q1 + σR2 −S1 + σST
2

−ST
1 + σS2 R1 + σQ2

]

< 0.

If G1 is (Q1, R1, S1)-dissipative and G2 is (Q2, R2, S2)-dissipative, then the
feedback interconnection of G1 and G2 given in Figure 7.1 is L2-stable.

Proof. Since G1 is (Q1, R1, S1)-dissipative and G2 is (Q2, R2, S2)-
dissipative it follows that for every T > 0, e1 ∈ Lm

2e, and e2 ∈ Ll
2e,

〈y1, Q1y1〉T + 2〈y1, S1e1〉T + 〈e1, R1e1〉T ≥ 0 (7.29)

and
σ〈y2, Q2y2〉T + 2σ〈y2, S2e2〉T + σ〈e2, R2e2〉T ≥ 0. (7.30)

Now, using e1 = u1 − y2 and e2 = u2 + y1, and combining (7.29) and (7.30)
yields

〈y, Q̂y〉T + 2〈y, Ŝu〉T + 〈u, R̂u〉T ≥ 0, (7.31)

where u
△
= [uT

1 , u
T
2 ]T, y

△
= [yT

1 , y
T
2 ]T, and

R̂
△
=

[

R1 0
0 σR2

]

, Ŝ
△
=

[

S1 −σR2

−R1 σS2

]

.

The result now is an immediate consequence of Theorem 7.2.

Corollary 7.2. Let G1 : Lm
2e → Ll

2e and G2 : Ll
2e → Lm

2e be causal
operator dynamical systems such that the feedback interconnection given
by Figure 7.1 is well defined. Then the following statements hold:

i) If G1 is input-output strict passive and G2 is passive, then the feedback
interconnection of G1 and G2 given in Figure 7.1 is L2-stable.

ii) If G1 and G2 are input strict passive, then feedback interconnection of
G1 and G2 given in Figure 7.1 is L2-stable.

iii) If G1 and G2 are output strict passive, then the feedback interconnec-
tion of G1 and G2 given in Figure 7.1 is L2-stable.

iv) If G1 is input strict passive and L2-stable with finite gain and G2 is
passive, then the feedback interconnection of G1 and G2 given in Figure
7.1 is L2-stable.

v) If G1 is nonexpansive with gain γ1 and G2 is nonexpansive with gain
γ2 such that γ1γ2 < 1, then the feedback interconnection of G1 and G2

given in Figure 7.1 is L2-stable.
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Proof. i) The proof follows from Theorem 7.3 with l = m, σ = 1,
Q1 = −ε1Im, R1 = −ε2Im, S1 = Im, Q2 = 0, R2 = 0, and S2 = Im for some
ε1, ε2 > 0.

ii) The proof follows from Theorem 7.3 with l = m, σ = 1, Q1 = 0,
R1 = −ε1Im, S1 = Im, Q2 = 0, R2 = −ε2Im, and S2 = Im for some
ε1, ε2 > 0.

iii) The proof follows from Theorem 7.3 with l = m, σ = 1, Q1 =
−ε1Im, R1 = 0, S1 = Im, Q2 = −ε2Im, R2 = 0, and S2 = Im for some
ε1, ε2 > 0.

iv) Note that if G1 is input strict passive and L2-stable with finite
gain, then there exist scalars ε > 0 and γ > 0 such that for every T > 0 and
e1 ∈ Lm

2e,
2〈y1, e1〉T − ε〈e1, e1〉T ≥ 0 (7.32)

and
−〈y1, y1〉T + γ〈e1, e1〉T ≥ 0. (7.33)

Now, let σ > 0 be such that σγ < ε. Adding (7.32) to σ(7.33) yields

−σ〈y1, y1〉T + 2〈y1, e1〉T − (ε− σγ)〈e1, e1〉T ≥ 0,

which shows that G1 is input-output strict passive. The result now follows
from i).

v) Since γ1γ2 < 1 there exists ε > 0 such that (γ1 + ε)γ2 < 1. The
result now follows from Theorem 7.3 with σ = γ1 +ε, Q1 = −Il, R1 = γ2

1Im,
S1 = 0, Q2 = −Im, R2 = γ2

2Il, and S2 = 0.

7.5 Input-Output Operator Dissipativity Theory

In this section, we extend the concept of dissipative systems introduced in
Section 7.4. Once again, we restrict our attention to operator dynamical
systems that map Lm

2e to Ll
2e. The following definition introduces the notion

of operator dissipativity for operator dynamical systems.

Definition 7.6. Let G : Lm
2e → Ll

2e be a causal operator dynamical
system and let Q : Ll

2e → Ll
2e, R : Lm

2e → Lm
2e, and S : Lm

2e → Ll
2e be

causal operators such that Q and R are self-adjoint.3 G is (Q,R, S)-operator
dissipative if for every T > 0 and for every u ∈ Lm

2e,

〈y,Qy〉T + 2〈y, Su〉T + 〈u,Ru〉T ≥ 0, (7.34)

3Given an operator X : Lp
2e → Lq

2e, the operator X ∗ : Lq
2e → Lp

2e is the adjoint operator of X
if for every u ∈ Lp

2e and y ∈ Lq
2e, 〈y,Xu〉 = 〈X ∗y, u〉. An operator X : Lp

2e → Lp
2e is self-adjoint

if for every u ∈ Lp
2e and y ∈ Lq

2e, 〈y,Xu〉 = 〈Xy, u〉, that is, if X = X ∗.
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where y = G[u].

The following result connects (Q,R, S)-operator dissipativity with L2-
stability.

Theorem 7.4. Let G : Lm
2e → Ll

2e be a causal operator dynamical
system and let Q : Ll

2e → Ll
2e, R : Lm

2e → Lm
2e, and S : Lm

2e → Ll
2e be causal

operators such that Q, R, and SS∗ are bounded, that is, there exist positive
scalars q, r, and s such that 〈y,Qy〉 ≤ q〈y, y〉, y ∈ Ll

2e, 〈u,Ru〉 ≤ r〈u, u〉,
u ∈ Lm

2e, 〈y, SS∗y〉 = 〈S∗y, S∗y〉 ≤ s〈y, y〉, y ∈ Ll
2e, Q and R are self-adjoint,

and there exists ε > 0 such that 〈y,Qy〉 < −ε〈y, y〉. If G is (Q,R, S)-operator
dissipative, then G is L2-stable.

Proof. Let M
△
= −Q and let λ > 0 be such that λ < s/ε. Since G is

(Q,R, S)-operator dissipative it follows that for every T > 0 and u ∈ Lm
2 ,

ε〈y, y〉T ≤ 〈y,My〉T
≤ 2〈y, Su〉T + 〈u,Ru〉T
=

1

λ
〈S∗y, S∗y〉T + λ〈u, u〉T − 〈 1√

λ
S∗y −

√
λu,

1√
λ
S∗y −

√
λu〉T

+〈u,Ru〉T
≤ 1

λ
〈S∗y, S∗y〉T + (r + λ)〈u, u〉T

≤ s

λ
〈y, y〉T + (r + λ)〈u, u〉T , (7.35)

which implies that

〈y, y〉T ≤ λ(λ+ r)

ελ− s
〈u, u〉T . (7.36)

The result now follows immediately by noting that 〈y, y〉T = |||yT |||2.

Next, we provide a sufficient condition for input-output stability of a
feedback interconnection of two operator dissipative dynamical systems G1

and G2.

Theorem 7.5. Let G1 : Lm
2e → Ll

2e and G2 : Ll
2e → Lm

2e be causal
operator dynamical systems such that the feedback interconnection given
by Figure 7.1 is well defined. Furthermore, let Q1, R2 : Ll

2e → Ll
2e, Q2, R1 :

Lm
2e → Lm

2e, and S1, S
∗
2 : Lm

2e → Ll
2e be bounded causal operators such that

there exist scalar σ, ε > 0 and

Q̂
△
=

[

Q1 + σR2 −S1 + σS∗
2

−S∗
1 + σS2 R1 + σQ2

]

satisfies 〈y, Q̂y〉 ≤ −ε〈y, y〉, y ∈ Ll+m
2e . If G1 is (Q1, R1, S1)-operator
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dissipative and G2 is (Q2, R2, S2)-operator dissipative, then feedback inter-
connection of G1 and G2 given in Figure 7.1 is L2-stable.

Proof. Since G1 is (Q1, R1, S1)-operator dissipative and G2 is (Q2, R2,
S2)-operator dissipative it follows that for every T > 0, e1 ∈ Lm

2e, and
e2 ∈ Ll

2e,
〈y1, Q1y1〉T + 2〈y1, S1e1〉T + 〈e1, R1e1〉T ≥ 0 (7.37)

and
σ〈y2, Q2y2〉T + 2σ〈y2, S2e2〉T + σ〈e2, R2e2〉T ≥ 0. (7.38)

Now, using e1 = u1 − y2 and e2 = u2 + y1, and combining (7.37) and (7.38)
yields

〈y, Q̂y〉T + 2〈y, Ŝu〉T + 〈u, R̂u〉T ≥ 0, (7.39)

where u
△
= [uT

1 , u
T
2 ]T, y

△
= [yT

1 , y
T
2 ]T, and

R̂
△
=

[

R1 0
0 σR2

]

, Ŝ
△
=

[

S1 −σR2

−R1 σS2

]

.

The result now is an immediate consequence of Theorem 7.4.

7.6 Connections Between Input-Output Stability and

Lyapunov Stability

In this section, we provide connections between input-output stability and
Lyapunov stability. Since Lyapunov stability theory deals with state space
dynamical systems we begin by considering nonlinear dynamical systems G
of the form

ẋ(t) = F (x(t), u(t)), x(t0) = x0, t ≥ t0, (7.40)

y(t) = H(x(t), u(t)), (7.41)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl, F : Rn × Rm → Rn, and H :
Rn × Rm → Rl. For the dynamical system G given by (7.40) and (7.41)
defined on the state space Rn, Rm and Rl define an input and output space,
respectively, consisting of continuous bounded functions on the semi-infinite
interval [0,∞). The input and output spaces U and Y are assumed to be
closed under the shift operator, that is, if u(·) ∈ U (respectively, y(·) ∈ Y),

then the function defined by uT
△
= u(t + T ) (respectively, yT

△
= y(t + T ))

is contained in U (respectively, Y) for all T ≥ 0. We assume that F (·, ·)
and H(·, ·) are continuously differentiable mappings in (x, u) and F (·, ·) has
at least one equilibrium so that, without loss of generality, F (0, 0) = 0 and
H(0, 0) = 0.

Theorem 7.6. Consider the nonlinear dynamical system G given by
(7.40) and (7.41). Assume that there exist a continuously differentiable
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function V : Rn → [0,∞) and positive scalars α, β, γ1, γ2 such that

α‖x‖2 ≤ V (x) ≤ β‖x‖2, x ∈ Rn, (7.42)

V ′(x)F (x, 0) ≤ −γ1‖x‖2, x ∈ Rn, (7.43)

‖V ′(x)‖ ≤ γ2‖x‖, x ∈ Rn. (7.44)

Furthermore, assume that there exist positive scalars L, η1, and η2 such that

‖F (x, u) − F (x, 0)‖ ≤ L‖u‖, (x, u) ∈ Rn × Rm, (7.45)

‖H(x, u)‖ ≤ η1‖x‖ + η2‖u‖, (x, u) ∈ Rn × Rm. (7.46)

Then, for every x0 ∈ Rn and p ∈ [1,∞], G is Lp-stable with finite gain.

Proof. It follows from (7.43)–(7.45) that

V ′(x)F (x, u) = V ′(x)F (x, 0) + V ′(x)[F (x, u) − F (x, 0)]

≤ −γ1‖x‖2 + γ2L‖x‖‖u‖, x ∈ Rn, u ∈ Rm. (7.47)

Now, let u ∈ Lm
p and let x(t), t ≥ 0, denote the solution to (7.40) with

x(0) = 0 and define W (t)
△
=
√

V (x(t)), t ≥ 0. First, consider the case in
which W (t) 6= 0, t > 0. In this case, it follows from (7.42) and (7.47) that

2W (t)Ẇ (t) = V̇ (x(t))

= V ′(x(t))F (x(t), u(t))

≤ −γ1‖x(t)‖2 + γ2L‖x(t)‖‖u(t)‖
≤ −γ1

β V (x(t)) + γ2L√
α
V 1/2(x(t))‖u(t)‖

= −γ1

β W
2(t) + γ2L√

α
W (t)‖u(t)‖, t > 0, (7.48)

which implies that

Ẇ (t) + γ1

2βW (t) ≤ γ2L
2
√

α
‖u(t)‖, t > 0. (7.49)

Now, multiplying (7.49) by e
γ1t
2β , t ≥ 0, yields

d

dt

[

e
γ1t
2β W (t)

]

≤ e
γ1t
2β γ2L

2
√

α
‖u(t)‖, t > 0. (7.50)

Next, since W (0) = V 1/2(x(0)) = 0, integrating (7.50) yields

W (t) ≤ γ2L
2
√

α

∫ t

0
e
− γ1

2β (t−τ)‖u(τ)‖dτ, t > 0. (7.51)

Now, it follows from (7.51) that there exists a constant γ > 0 such that
|||W |||p ≤ γ|||u|||p and, since ‖x(t)‖ ≤ 1√

α
W (t), t ≥ 0, it follows that x(·) ∈ Ln

p .

The result is now a direct consequence of (7.46). The case in whichW (t) = 0,
t ≥ 0, is a straightforward extension of the proof above sinceW (t) = 0, t ≥ 0,
if and only if x(t) = 0, t ≥ 0.
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7.7 Induced Convolution Operator Norms of Linear

Dynamical Systems

In the remainder of this chapter, we consider the dynamical system

ẋ(t) = Ax(t) +Bu(t), x(0) = 0, t ≥ 0, (7.52)

y(t) = Cx(t), (7.53)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl, t ∈ [0,∞), A ∈ Rn×n is
asymptotically stable, B ∈ Rn×m, and C ∈ Rl×n. Here, u(·) is an input
signal belonging to the class Lp of input signals and y(·) is an output signal
belonging to the class Lr of output signals, where the notation Lp and
Lr denote the set of functions in Lm

p and Ll
r. In applications, (7.52) and

(7.53) may denote a control system in closed-loop configuration where the
objective is to determine the “size” of the output y(·) for a disturbance u(·).
In the remainder of this chapter, we develop explicit formulas for convolution
operator norms and their bounds induced by various norms on several classes
of input-output signal pairs. These results generalize established induced
convolution operator norms for linear dynamical systems.

If the input-output signals are constrained to be finite-energy signals so
that u, y ∈ L2 then the equi-induced (that is, the domain and range spaces of
the convolution operator are assigned the same temporal and spatial norms)
signal norm is the H∞ system norm [121,478] given by

|||G|||(2,2),(2,2)
△
= sup

u(·)∈L2

|||y|||2,2

|||u|||2,2
= sup

ω∈R

σmax[H(ω)], (7.54)

where the notation ||| · |||p,q denotes a signal norm with p temporal norm
and q spatial norm, σmax(·) denotes maximum singular value, G denotes the
convolution operator of (7.52) and (7.53), and H(s) = C(sI −A)−1B is the
corresponding transfer function. Hence, the H∞ system norm captures the
supremum system energy gain.

Alternatively, if the input-output signals are constrained to be boun-
ded amplitude signals so that u, y ∈ L∞, then the equi-induced signal norm

|||G|||(∞,∞),(∞,∞)
△
= sup

u(·)∈L∞

|||y|||∞,∞
|||u|||∞,∞

, (7.55)

is the L1 system norm4 [101, 444]. Thus, the L1 system norm captures the
worst-case amplification from input disturbance signals to output signals,
where the signal size is taken to be the supremum over time of the signal’s
peak value pointwise in time [101,444].

4In the single-input/single-output case, it is well known that the induced norm (7.55)
corresponds to the L1 norm of the impulse response matrix function [101,444].
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Mixed input-output signals have also been considered. For example,
if u ∈ L2 and y ∈ L∞ then the resulting induced operator norm is ( [461])

|||G|||(∞,2),(2,2)
△
= sup

u(·)∈L2

|||y|||∞,2

|||u|||2,2
= λmax(CQC

T), (7.56)

where λmax(·) denotes the maximum eigenvalue and Q is the unique n × n
nonnegative-definite solution to the Lyapunov equation

0 = AQ+QAT +BBT. (7.57)

Hence, |||G|||(∞,2),(2,2) provides a worst-case measure of amplitude errors due
to finite energy input signals. Alternatively, if the input and output signal
norms are chosen as ||| · |||2,2 and ||| · |||∞,∞, respectively, then the resulting
induced operator norm is ( [461])

|||G|||(∞,∞),(2,2)
△
= sup

u(·)∈L2

|||y|||∞,∞
|||u|||2,2

= dmax(CQC
T), (7.58)

where dmax(·) denotes the maximum diagonal entry. Hence, |||G|||(∞,∞),(2,2)

provides a worst-case peak excursion response due to finite energy distur-
bances.

It is clear from the above discussion that operator norms induced by
classes of input-output signal pairs can be used to capture disturbance
rejection performance objectives for controlled dynamical systems. In
particular, H∞ control theory [121, 478] has been developed to address
the problem of disturbance rejection for systems with bounded energy L2

signal norms on the disturbance and performance variables. Since the
induced H∞ transfer function norm (7.54) corresponds to the worst-case
disturbance attenuation, for systems with L2 disturbances which possess
significant power within arbitrarily small bandwidths, H∞ theory is clearly
appropriate. Alternatively, to address pointwise in time the worst-case peak
amplitude response due to bounded amplitude persistent L∞ disturbances,
L1 theory is appropriate [101, 444]. The problem of finding a stabilizing
controller such that the closed-loop system gain from |||·|||2,2 to |||·|||∞,q, where
q = 2 or ∞, is below a specified level is solved in [367, 463]. In addition to
the disturbance rejection problem, another application of induced operator
norms is the problem of actuator amplitude and rate saturation [90, 105].
In particular, since the convolution operator norm |||G|||(∞,∞),(2,2) given
by (7.58) captures the worst-case peak amplitude response due to finite
energy disturbances, defining the output (performance) variables y to
correspond to the actuator amplitude and actuator rate signals, it follows
that |||G|||(∞,∞),(2,2) bounds actuator amplitude and actuator rate excursion.
Furthermore, since uncertain signals can also be used to model uncertainty
in a system, the treatment of certain classes of uncertain disturbances also
enable the development of controllers that are robust with respect to input-
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output uncertainty blocks [101,104].

In the papers [461, 462], Wilson developed explicit formulas for
convolution operator norms induced by several classes of input-output signal
pairs. In the remainder of this chapter we extend the results of [461,462] to
a larger class of input-output signal pairs and provide explicit formulas for
induced convolution operator norms and operator norm bounds for linear
dynamical systems. These results generalize several well-known induced
convolution operator norm results in the literature including results on
L∞ equi-induced norms (L1 operator norms) and L1 equi-induced norms
(resource norms). In cases where the induced convolution operator norm
expressions are not finitely computable, we provide finitely computable norm
bounds.

To develop induced convolution operator norms for linear systems, we
first introduce some notation, definitions, and several key lemmas. Let ‖ · ‖′

and ‖ · ‖′′
denote vector norms on Rn and Rm, respectively, where m,n ≥ 1.

Then ‖ · ‖ : Rm×n → R defined by

‖A‖ △
= max

‖x‖′=1
‖Ax‖′′

is the matrix norm induced by ‖·‖′
and ‖·‖′′

. If ‖·‖′
= ‖·‖p and ‖·‖′′

= ‖·‖q,
where p, q ∈ [1,∞], then the matrix norm on Rm×n induced by ‖ · ‖p and
‖ · ‖q is denoted by ‖ · ‖q,p. Let ‖ · ‖ denote a vector norm on Rm. Then the
dual norm ‖ · ‖D of ‖ · ‖ is defined by

‖y‖D
△
= max

‖x‖=1
|yTx|,

where y ∈ Rm [417]. Note that ‖ · ‖DD = ‖ · ‖ [417]. Furthermore, if
p, q ∈ [1,∞] satisfy 1/p + 1/q = 1, then ‖ · ‖pD = ‖ · ‖q [417]. For p ∈ [1,∞]
we denote the conjugate variable q ∈ [1,∞] satisfying 1/p + 1/q = 1 by
p̄ = p/(p− 1).

Let ‖·‖ denote a vector norm on Rn. Then ‖·‖ is absolute if ‖x‖ = ‖|x|‖
for all x ∈ Rn. Furthermore, ‖ · ‖ is monotone if ‖x‖ ≤ ‖y‖ for all x, y ∈ Rn

such that |x| ≤≤ |y|. Note that ‖ · ‖ is absolute if and only if ‖ · ‖ is
monotone [201, p. 285].

Lemma 7.1. Let p ∈ [1,∞] and let A ∈ Rm×n. Then

‖A‖2,2 = σmax(A), (7.59)

‖A‖p,1 = max
i=1,...,n

‖coli(A)‖p, (7.60)

and
‖A‖∞,p = max

i=1,...,m
‖rowi(A)‖p̄. (7.61)
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Proof. Expression (7.59) is standard; see [417] for a proof. To show
(7.60), note that, for all x ∈ Rn,

‖Ax‖p =

∥

∥

∥

∥

∥

n
∑

i=1

xicoli(A)

∥

∥

∥

∥

∥

p

≤
n
∑

i=1

|xi|‖coli(A)‖p ≤ max
i=1,...,n

‖coli(A)‖p‖x‖1,

and hence, ‖A‖p,1 ≤ maxi=1,...,n ‖coli(A)‖p. Next, let j ∈ {1, . . . , n} be such
that ‖colj(A)‖p = maxi=1,...,n ‖coli(A)‖p. Now, since ‖ej‖1 = 1, it follows
that ‖Aej‖p = ‖colj(A)‖p, which implies ‖A‖p,1 ≥ maxi=1,...,n ‖coli(A)‖p,
and hence, (7.60) holds.

Finally, to show (7.61) note that, for all x ∈ Rn, it follows from
Hölder’s inequality that

‖Ax‖∞ = max
i=1,...,m

|rowi(A)x| ≤ max
i=1,...,m

‖rowi(A)‖p̄‖x‖p,

which implies that ‖A‖∞,p ≤ maxi=1,...,m ‖rowi(A)‖p̄. Next, let j ∈ {1, . . . ,
n} be such that ‖rowj(A)‖p̄ = maxi=1,...,m ‖rowi(A)‖p̄ and let x be such that
|rowj(A)x| = ‖rowj(A)‖p̄‖x‖p. Hence, ‖Ax‖∞ = maxi=1,...,m |rowi(A)x| ≥
|rowj(A)x| = ‖rowj(A)‖p̄‖x‖p, which implies that ‖A‖∞,p ≥ maxi=1,...,m

‖rowi(A)‖p̄, and hence, (7.61) holds.

Note that (7.60) and (7.61) generalize the well-known expressions
‖A‖1,1 = maxi=1,...,n ‖coli(A)‖1 [201], ‖A‖∞,∞ = maxi=1,...,m ‖rowi(A)‖1

[201], and ‖A‖∞,1 = ‖A‖∞ [225]. Furthermore, since maxi=1,...,n ‖coli(A)‖2

= d
1/2
max(ATA) and

max
i=1,...,m

‖rowi(A)‖2 = d1/2
max(AA

T),

it follows from (7.60) with p = 2 that ‖A‖2,1 = d
1/2
max(ATA) and from (7.61)

with p = 2 that ‖A‖∞,2 = d
1/2
max(AAT).

Lemma 7.2. Let ‖ · ‖′
and ‖ · ‖′′

denote absolute vector norms on Rn

and Rm, respectively, and let ‖ · ‖ : Rm×n → R be the matrix norm induced
by ‖ · ‖′

and ‖ · ‖′′
. Then the following statements hold:

i) Let A ∈ Rm×n be such that A ≥≥ 0. Then there exists x ∈ Rn such
that x ≥≥ 0, ‖x‖′

= 1, and ‖A‖ = ‖Ax‖′′
.

ii) Let A,B ∈ Rm×n be such that 0 ≤≤ A ≤≤ B. Then ‖A‖ ≤ ‖B‖.

Proof. To prove i) let y ∈ Rn be such that ‖y‖′
= 1 and ‖A‖ = ‖Ay‖′′

.
Now, since ‖ · ‖′

and ‖ · ‖′′
are absolute (and hence monotone) vector norms

it follows that

‖A‖ = ‖Ay‖′′ ≤ ‖A|y|‖′′ ≤ ‖A‖‖|y|‖′
= ‖A‖‖y‖′

= ‖A‖,
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which implies that ‖A‖ = ‖A|y|‖′′
, and hence, i) follows with x = |y|.

Next, to prove ii) let x ∈ Rn be such that x ≥≥ 0, ‖x‖′
= 1, and

‖A‖ = ‖Ax‖′′
(existence of such an x follows from i)). Hence, since ‖ · ‖′′

is
an absolute vector norm and Ax ≤≤ Bx it follows that

‖A‖ = ‖Ax‖′′ ≤ ‖Bx‖′′ ≤ ‖B‖,
which implies ii).

The following result generalizes Hölder’s inequality to mixed-signal
norms.

Lemma 7.3. Let p, r ∈ [1,∞], and let f ∈ Lp and g ∈ Lp̄. Then

〈f, g〉 ≤ |||f |||p,r|||g|||p̄,r̄. (7.62)

Finally, the following two results are needed for the results given in
Section 7.8.

Lemma 7.4 ([461]). Let p ∈ [1,∞) and r ∈ [1,∞], and let f ∈ Lp.
Then

|||f |||p,r = sup
g ∈G

〈f, g〉, (7.63)

where G
△
= {g ∈ Lp̄ : |||g|||p̄,r̄ ≤ 1}.

Lemma 7.5 ([461]). Let p ∈ [1,∞), r ∈ [1,∞], and f : [0,∞) ×
[0,∞) → Rn be such that f(t, ·) is integrable for almost all t ∈ [0,∞),

f(·, τ) ∈ Lp for almost all τ ∈ [0,∞), and g ∈ L1, where g(τ)
△
= [
∫∞
0

‖f(t, τ)‖p
rdt]

1/p. Then

|||y|||p,r ≤
∫ ∞

0
g(τ)dτ, (7.64)

where

y(t) =

∫ ∞

0
f(t, τ)dτ, t ≥ 0. (7.65)

7.8 Induced Convolution Operator Norms of Linear Dynamical

Systems and Lp Stability

In this section, we develop induced convolution operator norms. For the
system (7.52) and (7.53), let G : R → Rl×m denote the impulse response
function

G(t)
△
=

{

0, t < 0,
CeAtB, t ≥ 0.

(7.66)
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Next, let G : Lp → Lq denote the convolution operator

y(t) = G[u](t) = (G ∗ u)(t) △
=

∫ ∞

0
G(t− τ)u(τ)dτ, (7.67)

and define the induced norm |||G|||(q,s),(p,r) as

|||G|||(q,s),(p,r)
△
= sup

|||u|||p,r=1
|||G ∗ u|||q,s. (7.68)

First, note that if the induced norm |||G|||(p,s),(p,r) is bounded for p, r, s ∈
[1,∞], then G is Lp-stable with finite gain. The following result presents a
sufficient condition for Lp stability of G.

Proposition 7.2. Consider the linear dynamical system given by (7.52)
and (7.53) where A is Hurwitz. Then, for every p ∈ [1,∞], G is Lp-stable
with finite gain.

Proof. Since A is Hurwitz it follows that there exist positive definite
matrices P ∈ Rn×n and R ∈ Rn×n such that

0 = ATP + PA+R.

Now, the result is a direct consequence of Theorem 7.6. Specifically, with
F (x, u) = Ax + Bu, H(x, u) = Cx, V (x) = xTPx, α = σmin(P ), β =
σmax(P ), γ1 = σmin(R), γ2 = 2σmax(P ), L = σmax(B), η1 = σmax(C), and
η2 = 0, all the conditions of Theorem 7.6 are satisfied.

Note that if (A,B) is controllable and (A,C) is observable, then the
converse of Proposition 7.2 is also true (see, for example [445]). In the
remainder of the chapter we provide several explicit expressions for induced
norms of G.

The following lemma provides an explicit expression for |||G|||(∞,∞),(r,r)

for the case in which G is a single-input/single-output operator.

Lemma 7.6. Let r ∈ [1,∞] and let l = m = 1. Then G : Lr → L∞,
there exists u ∈ Lr such that limt→∞(G ∗ u)(t) = |||G|||r̄,r̄|||u|||r,r, and

|||G|||(∞,∞),(r,r) = |||G|||r̄,r̄. (7.69)

Proof. For r = 1 and r = ∞, (7.69) is standard; see [461] and [104,
pp. 23-24], respectively. Next, let r ∈ (1,∞) and note for all t ≥ 0, it follows
from Lemma 7.3 with p = r that

|y(t)| =

∣

∣

∣

∣

∫ ∞

0
G(t− τ)u(τ)dτ

∣

∣

∣

∣
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≤
[∫ ∞

0
|G(t− τ)|r̄dτ

]1/r̄

|||u|||r,r

=

[
∫ t

0
|G(τ)|r̄dτ

]1/r̄

|||u|||r,r
≤ |||G|||r̄,r̄|||u|||r,r

which implies
|||G|||(∞,∞),(r,r) ≤ |||G|||r̄,r̄. (7.70)

Next, let T > 0 and let u(·) be such that u(t) = sgn(G(T − t))|G(T −
t)|1/(r−1), t ≥ 0, where sgn(·) denotes the signum function. Now, since

|||u|||r,r =
[∫∞

0 |G(T − t)|r̄dt
]1/r

, it follows that

|y(T )| =

∣

∣

∣

∣

∫ ∞

0
G(T − τ)u(τ)dτ

∣

∣

∣

∣

=

∫ ∞

0
|G(T − τ)|r̄dτ

=

[∫ ∞

0
|G(T − τ)|r̄dτ

]1/r̄

|||u|||r,r

=

[∫ T

0
|G(τ)|r̄dτ

]1/r̄

|||u|||r,r.

Hence,
|||y|||∞,∞ ≥ lim

T→∞
|y(T )| = |||G|||r̄,r̄|||u|||r,r,

which, with (7.70), proves the result.

Note that it follows from Lemma 7.6 that there exists u ∈ Lr such
that limt→∞(G ∗ u)(t) = |||G|||r̄,r̄|||u|||r,r.

Next, define P ∈ Rm×m and Q ∈ Rl×l by

P △
=

∫ ∞

0
GT(t)G(t)dt, Q △

=

∫ ∞

0
G(t)GT(t)dt. (7.71)

Note that P = BTPB and Q = CQCT, where the observability and
controllability Gramians P and Q, respectively, are the unique n × n
nonnegative-definite solutions to the Lyapunov equations

0 = ATP + PA+ CTC, 0 = AQ+QAT +BBT. (7.72)

Furthermore, let G[p,q] denote the l × m matrix whose (i, j)th entry is
|||G(i,j)|||(p,p),(q,q).

Theorem 7.7. The following statements hold:
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i) G : L2 → L2, and

|||G|||(2,2),(2,2) = sup
ω∈R

σmax(H(ω)). (7.73)

ii) Let r ∈ [1,∞]. Then G : L1 → L2, and

|||G|||(2,2),(1,r) = ‖P1/2‖2,r. (7.74)

iii) Let p ∈ [1,∞]. Then G : L2 → L∞, and

|||G|||(∞,p),(2,2) = ‖Q1/2‖2,p̄. (7.75)

iv) Let p, r ∈ [1,∞]. Then G : L1 → L∞, and

|||G|||(∞,p),(1,r) = sup
t≥0

‖G(t)‖p,r. (7.76)

v) Let r ∈ [1,∞]. Then G : Lr → L∞, and

|||G|||(∞,∞),(r,r) = max
i=1,...,l

‖rowi(G[r̄,r̄])‖r̄. (7.77)

vi) Let p ∈ [1,∞]. Then G : L1 → Lp, and

|||G|||(p,p),(1,1) = max
j=1,...,m

‖colj(G[p,p])‖p. (7.78)

Proof. i) It follows from Theorem 5.12 that

|||y|||22,2 =

∫ ∞

0
yT(t)y(t)dt

=
1

2π

∫ ∞

−∞
y∗(ω)y(ω)dω

=
1

2π

∫ ∞

−∞
u∗(ω)H∗(ω)H(ω)u(ω)dω

≤ sup
ω∈R

σmax(H(ω))
1

2π

∫ ∞

−∞
u∗(ω)u(ω)dω

= sup
ω∈R

σmax(H(ω))|||u|||22,2,

which implies that

|||G|||(2,2),(2,2) ≤ sup
ω∈R

σmax(H(ω)).

Next, let γ
△
= |||G|||(2,2),(2,2) and note that since G is causal, for every

u ∈ L2 and for every T > 0, |||yT |||2,2 ≤ γ|||uT |||2,2 or, equivalently,
∫ T

0
yT(t)y(t)dt ≤ γ2

∫ T

0
uT(t)u(t)dt, T ≥ 0.
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Hence, it follows from Theorem 5.15 that H(s) is bounded real (with gain
γ), that is,

sup
ω∈R

σmax(H(ω)) ≤ γ = |||G|||(2,2),(2,2),

which implies that

|||G|||(2,2),(2,2) = sup
ω∈R

σmax(H(ω)).

ii) It follows from Lemma 7.5 that

|||y|||2,2 ≤
∫ ∞

0
|||G(t− τ)u(τ)|||2,2dτ

=

∫ ∞

0

{∫ ∞

0
uT(τ)GT(t− τ)G(t− τ)u(τ)dt

}1/2

dτ

=

∫ ∞

0
‖P1/2u(τ)‖2dτ

≤
∫ ∞

0
‖P1/2‖2,r‖u(τ)‖rdτ

= ‖P1/2‖2,r|||u|||1,r,

which implies that |||G|||(2,2),(1,r) ≤ ‖P1/2‖2,r.

Next, let uk(·) = ûvk(·), k = 1, 2, . . ., where û ∈ Rd is such that
‖û‖r = 1, ‖P1/2û‖2 = ‖P1/2‖2,r‖û‖r, and measurable vk : [0,∞) → R is
such that |||vk|||1,1 = 1 and, as k → ∞, vk(·) → δ(·), where δ(·) is the Dirac
delta function. Note that |||uk|||1,r = 1, k = 1, 2, . . ., and yk(t) → G(t)û,

t ≥ 0, as k → ∞, where yk(t)
△
= (G ∗ uk)(t). Hence,

|||G|||(2,2),(1,r) ≥ lim
k→∞

|||yk|||2,2

=

{∫ ∞

0
‖G(t)û‖2

2dt

}1/2

=

{∫ ∞

0
ûTGT(t)G(t)ûdt

}1/2

= (ûTPû)1/2

= ‖P1/2û‖2

= ‖P1/2‖2,r,

which implies that |||G|||(2,2),(1,r) = ‖P1/2‖2,r.
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iii) With p = r = 2 it follows from Lemma 7.3 that for all t ≥ 0,

‖y(t)‖p =

∥

∥

∥

∥

∫ ∞

0
G(t− τ)u(τ)dτ

∥

∥

∥

∥

p

= max
{û∈Rn: ‖û‖p̄=1}

∫ ∞

0
ûTG(t− τ)u(τ)dτ

≤ max
{û∈Rn: ‖û‖p̄=1}

[
∫ ∞

0
‖G(t− τ)û‖2

2dτ

]1/2

|||u|||2,2

= max
{û∈Rn: ‖û‖p̄=1}

[

ûT

∫ t

0
G(τ)GT(τ)dτ û

]1/2

|||u|||2,2

≤ max
{û∈Rn: ‖û‖p̄=1}

(ûTQû)1/2|||u|||2,2

= ‖Q1/2‖2,p̄|||u|||2,2,

which implies that |||y|||∞,p ≤ ‖Q1/2‖2,p̄|||u|||2,2 for all y ∈ L∞ and u ∈ L2, and

hence, |||G|||(∞,p),(2,2) ≤ ‖Q1/2‖2,p̄.

Next, let û ∈ Rd be such that ‖û‖p̄ = 1 and ‖Q1/2û‖2 = ‖Q1/2‖2,p̄,
and let T > 0 and

u(t) =
1

‖Q1/2‖2,p̄
GT(T − t)û,

so that |||u|||2,2 ≤ 1. Now, since ‖ · ‖pD = ‖ · ‖p̄, it follows that

|||y|||∞,p = sup
t≥0

‖y(t)‖p

= sup
t≥0

max
{ŷ∈Rn:‖ŷ‖p̄=1}

ŷTy(t)

≥ sup
t≥0

ûTy(t)

=
1

‖Q1/2‖2,p̄
sup
t≥0

∫ ∞

0
ûTG(T − τ)GT(T − τ)ûdτ

=
1

‖Q1/2‖2,p̄
sup
t≥0

∫ T

0
ûTG(τ)GT(τ)ûdτ,

which implies that, for every T > 0, there exists u ∈ L2 such that |||u|||2,2 ≤ 1
and

|||y|||∞,p ≥ 1

‖Q1/2‖2,p̄
sup
t≥0

∫ T

0
ûTG(τ)GT(τ)ûdτ,

or, equivalently,

|||G|||(∞,p),(2,2) ≥ sup
T>0

1

‖Q1/2‖2,p̄
sup
t≥0

∫ T

0
ûTG(τ)GT(τ)ûdτ
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=
1

‖Q1/2‖2,p̄
sup
t≥0

∫ ∞

0
ûTG(τ)GT(τ)ûdτ

=
1

‖Q1/2‖2,p̄
ûTQû

= ‖Q1/2‖2,p̄,

which further implies that |||G|||(∞,p),(2,2) = ‖Q1/2‖2,p̄.

iv) Note that for all t ≥ 0,

‖y(t)‖p ≤
∫ ∞

0
‖G(t − τ)u(τ)‖pdτ

≤
∫ ∞

0
‖G(t − τ)‖p,r‖u(τ)‖rdτ

≤ sup
t≥0

‖G(t)‖p,r

∫ ∞

0
‖u(τ)‖rdτ

≤ sup
t≥0

‖G(t)‖p,r|||u|||1,r,

which implies that |||G|||(∞,p),(1,r) ≤ supt≥0 ‖G(t)‖p,r.

Next, let ε > 0 and t0 ∈ [0,∞) be such that ‖G(t0)‖p,r > supt≥0

‖G(t)‖p,r − ε. In addition, let uk(·) = vk(·)û, k = 1, 2, . . ., where û ∈ Rn

is such that ‖û‖r = 1, ‖G(t0)û‖p = ‖G(t0)‖p,r‖û‖r, and measurable vk :
[0,∞) → R is such that |||vk|||1,1 = 1 and, as k → ∞, vk(·) → δ(·), where δ(·)
is the Dirac delta function. In this case, note that |||uk|||1,r = 1, k = 1, 2, . . .,

and yk(t) → G(t)û, t ≥ 0, as k → ∞, where yk(t)
△
= (G ∗ uk)(t). Hence,

|||G|||(∞,p),(1,r) ≥ lim
k→∞

sup
t≥0

‖yk(t)‖p

= sup
t≥0

‖G(t)û‖p

≥ ‖G(t0)û‖p

= ‖G(t0)‖p,r

> sup
t≥0

‖G(t)‖p,r − ε,

which implies that

sup
t≥0

‖G(t)‖p,r − ε < |||G|||(∞,p),(1,r) ≤ sup
t≥0

‖G(t)‖p,r, ε > 0,

and hence, (7.76) holds.

v) Note that for all u ∈ Lr and y ∈ L∞ it follows that |||u|||r,r = ‖ū‖r

and |||y|||∞,∞ = ‖ȳ‖∞, where ū ∈ Rm and ȳ ∈ Rl with ūi = |||ui|||r,r, i =
1, . . . ,m, and ȳi = |||yi|||∞,∞, i = 1, . . . , l. Next, it follows from Lemma 7.6
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that |||G(i,j)|||(∞,∞),(r,r) = |||G(i,j)|||r̄,r̄, and hence,

|||yi|||∞,∞ = |||
m
∑

j=1

G(i,j) ∗ uj|||∞,∞

≤
m
∑

j=1

|||G(i,j) ∗ uj |||∞,∞

≤
m
∑

j=1

|||G(i,j)|||r̄,r̄|||uj |||r,r

≤ ‖rowi(G[r̄,r̄])‖r̄‖ū‖r

≤ max
i=1,...,l

‖rowi(G[r̄,r̄])‖r̄‖ū‖r,

which implies that |||y|||∞,∞ = ‖ȳ‖∞ ≤ maxi=1,...,l ‖rowi(G[r̄,r̄])‖r̄|||u|||r,r, and
hence,

|||G|||(∞,∞),(r,r) ≤ max
i=1,...,l

‖rowi(G[r̄,r̄])‖r̄. (7.79)

Next, let I ∈ {1, . . . , l} be such that ‖rowI(G[r̄,r̄])‖r̄ = maxi=1,...,l

‖rowi(G[r̄,r̄])‖r̄. Now, let û ∈ Rm be such that ‖û‖r = 1, let rowI(G[r̄,r̄])û =
‖rowI(G[r̄,r̄])‖r̄, and let uj ∈ Lr, j = 1, . . . ,m, be such that |||uj |||r,r = ûj

and limt→∞(G(I,j) ∗ uj)(t) = |||G(I,j)|||r̄,r̄|||uj |||r,r. Note that existence of such
a uj(·) follows from Lemma 7.6. Now,

|||y|||∞,∞ ≥ |||yI |||∞,∞
≥ lim

t→∞
|yI(t)|

= lim
t→∞

|
m
∑

j=1

(G(I,j) ∗ uj)(t)|

=
m
∑

j=1

|||G(I,j)|||r̄,r̄|||uj |||r,r

= rowI(G[r̄,r̄])ū

= ‖rowI(G[r̄,r̄])‖r̄,

which, with (7.79), implies (7.77).

vi) For p = ∞, (7.78) is a direct consequence of iv) or v). Now,
let p ∈ [1,∞) and note that it follows from Lemma 7.4 that |||y|||p,p =
sup{ŷ∈Lp̄: |||ŷ|||p̄,p̄=1}〈y, ŷ〉. Hence, with p = r = 1 it follows from Lemma
7.3 that

|||y|||p,p = sup
|||ŷ|||p̄,p̄=1

∫ ∞

0
yT(t)ŷ(t)dt
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= sup
|||ŷ|||p̄,p̄=1

∫ ∞

0

(
∫ ∞

0
uT(τ)GT(t− τ)dτ

)

ŷ(t)dt

= sup
|||ŷ|||p̄,p̄=1

∫ ∞

0
uT(τ)

(∫ ∞

0
GT(t− τ)ŷ(t)dt

)

dτ

= sup
|||ŷ|||p̄,p̄=1

〈u, û〉

≤ |||u|||1,1 sup
|||ŷ|||p̄,p̄=1

|||û|||∞,∞,

where û(t)
△
=
∫∞
0 GT(τ − t)ŷ(τ)dτ . Now, with r = p̄, it follows from v) that

|||G|||(p,p),(1,1) ≤ sup
|||ŷ|||p̄,p̄=1

|||û|||∞,∞ = max
j=1,...,m

‖colj(G[p,p])‖p. (7.80)

Next, let J ∈ {1, . . . ,m} be such that ‖colJ(G[p,p])‖p = maxj=1,...,m

‖colj(G[p,p])‖p and let uk(·) △
= vk(·)eJ , k = 1, 2, . . ., where vk : [0,∞) → R is

a measurable function such that |||vk|||1,1 = 1 and, as k → ∞, vk(·) → δ(·),
where δ(·) is the Dirac delta function. In this case note that |||uk|||1,1 = 1, k =

1, 2, . . ., and yk(t) → colJ(G(t)), t ≥ 0, as k → ∞, where yk(t)
△
= (G ∗uk)(t).

Hence,

|||G|||(p,p),(1,1) ≥ lim
k→∞

|||yk|||p,p

= |||colJ(G)|||p,p

= ‖colJ(G[p,p])‖p

= max
j=1,...,m

‖colj(G[p,p])‖p,

which, with (7.80), implies (7.78).

The following corollary specializes Theorem 7.7 to the results given
in [461,462] and [104, p. 26].

Corollary 7.3. The following statements hold:

i) G : L1 → L2, |||G|||(2,2),(1,2) = σ
1/2
max(P), and |||G|||(2,2),(1,1) = d

1/2
max(P).

ii) G : L2 → L∞, |||G|||(∞,2),(2,2) = σ
1/2
max(Q), and |||G|||(∞,∞),(2,2) = d

1/2
max(Q).

iii) G : L1 → L∞, |||G|||(∞,∞),(1,1) = supt≥0 ‖G(t)‖∞, and |||G|||(∞,2),(1,2) =
supt≥0 σmax(G(t)).

iv) G : L∞ → L∞, and |||G|||(∞,∞),(∞,∞) = maxi=1,...,l ‖rowi(G[1,1])‖1.

v) G : L1 → L1, and |||G|||(1,1),(1,1) = maxj=1,...,m ‖colj(G[1,1])‖1.
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Recall that the H2 norm of the system (7.52) and (7.53) is given by
|||G|||H2

= ‖P1/2‖F = ‖Q1/2‖F. Hence, using the fact that ‖ · ‖F = σmax(·) for
rank-one matrices, it follows from i) of Corollary 7.3 that if B (and hence
P) is a rank-one matrix then |||G|||H2

= |||G|||(2,2),(1,2). Similarly, it follows
from iii) of Corollary 7.3 that if C (and hence Q) is a rank-one matrix then
|||G|||H2

= |||G|||(∞,2),(2,2). Hence, in the single-input/multi-output and multi-
input/single-output cases the H2 norm of a dynamical system is induced. In
the multi-input/multi-output case, however, the H2 norm does not appear
to be induced. For related details see [84].

Theorem 7.7 also applies to the more general case where G is a
noncausal, time-invariant operator. In this case, the input-output spaces
Lp and Lr are defined for t ∈ (−∞,∞), H(ω) is the Fourier transform of
G(t), and the lower limit in the integrals defining P and Q is replaced by
−∞.

An alternative characterization of input-output properties is the
Hankel norm which provides a mapping from past inputs u(t), t ∈ (−∞, 0],
to future outputs y(t), t ∈ [0,∞) [136, 461]. For causal dynamical systems
the Hankel operator Γ : Lp(−∞, 0] → Lq is defined by

y(t) = (Γ ∗ u)(t) △
=

∫ ∞

0
G(t+ τ)u(−τ)dτ, t ∈ [0,∞), (7.81)

where Lp(−∞, 0] denotes the set of functions in Lp on the time interval
(−∞, 0], and the induced Hankel norm |||Γ|||(q,s),(p,r) is defined by

|||Γ|||(q,s),(p,r)
△
= sup

|||u|||p,r=1
|||Γ ∗ u|||q,s. (7.82)

Proposition 7.3. The following statements hold:

i) Γ : L2(−∞, 0] → L2, and

|||Γ|||(2,2),(2,2) = λ1/2
max(PQ). (7.83)

ii) Let r ∈ [1,∞]. Then Γ : L1(−∞, 0] → L2, and

|||Γ|||(2,2),(1,r) = ‖P1/2‖2,r. (7.84)

iii) Let p ∈ [1,∞]. Then Γ : L2(−∞, 0] → L∞, and

|||Γ|||(∞,p),(2,2) = ‖Q1/2‖2,p̄. (7.85)

iv) Let p, r ∈ [1,∞]. Then Γ : L1(−∞, 0] → L∞, and

|||Γ|||(∞,p),(1,r) = sup
t≥0

‖G(t)‖p,r. (7.86)
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v) Let r ∈ [1,∞]. Then Γ : Lr(−∞, 0] → L∞, and

|||Γ|||(∞,∞),(r,r) = max
i=1,...,l

‖rowi(G[r̄,r̄])‖r̄. (7.87)

vi) Let p ∈ [1,∞]. Then Γ : L1(−∞, 0] → Lp, and

|||Γ|||(p,p),(1,1) = max
j=1,...,m

‖colj(G[p,p])‖p. (7.88)

Proof. The proof of i) is standard; see [136] for a proof. The proof
of ii)–vi) is similar to that of ii)–vi) of Theorem 7.7 with appropriate
modifications to the time interval for the input space.

7.9 Finitely Computable Upper Bounds for |||G|||(∞,p),(1,r)

In this section, we obtain a finitely computable upper bound for (7.76). To
do this we assume that there exist HL(s),HR(s) ∈ RH2 such that H(s) =
HL(s)HR(s), where H(s) ∈ RH2 denotes the Laplace transform of G(t).
Note that such a factorization exists only if H(s) has relative degree two.
Furthermore, note that the above factorization exists if and only if there
exist linear, time-invariant asymptotically stable dynamical systems with
impulse response functions GL : R → Rl×ml and GR : R → Rml×m such
that GL(t) = 0 and GR(t) = 0, t < 0, and

G(t) =

∫ ∞

0
GL(t− τ)GR(τ)dτ, t ≥ 0. (7.89)

Next, let GL : L2 → L∞ and GR : L1 → L2 denote the convolution operators
of GL and GR, respectively, and define PR ∈ Rm×m and QL ∈ Rl×l by

PR
△
=

∫ ∞

0
GT

R(t)GR(t)dt, QL
△
=

∫ ∞

0
GL(t)GT

L(t)dt. (7.90)

Finally, let GL(t) = CLeALtBL, t ≥ 0, and GR(t) = CReARtBR, t ≥ 0,
where AL ∈ Rnl×nl , BL ∈ Rnl×ml , CL ∈ Rl×nl, AR ∈ Rnr×nr, BR ∈ Rnr×m,
and CR ∈ Rml×nr , and let PR ∈ Rnr×nr and QL ∈ Rnl×nl be the unique,
nonnegative-definite solutions to the Lyapunov equations

0 = AT
RPR + PRAR + CT

RCR, 0 = ALQL +QLA
T
L +BLB

T
L . (7.91)

Note that PR = BT
RPRBR and QL = CLQLCT

L .

Proposition 7.4. Let p, r ∈ [1,∞]. If there exist GL : R → Rl×ml and
GR : R → Rml×m such that (7.89) holds, then

|||G|||(∞,p),(1,r) ≤ ‖Q1/2
L ‖2,p̄‖P1/2

R ‖2,r. (7.92)
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Proof. Note that y(t) = (GL ∗ (GR ∗ u))(t). Now, since GL : L2 → L∞
and GR : L1 → L2 it follows from Theorem 7.7 that

|||y|||∞,p ≤ ‖Q1/2
L ‖2,p̄|||GR ∗ u|||2,2 ≤ ‖Q1/2

L ‖2,p̄‖P1/2
R ‖2,r|||u|||1,r,

which implies (7.92).

The following corollary of Proposition 7.4 provides finitely computable
bounds for the mixed-induced signal norm (7.76).

Corollary 7.4. Let PR and QL be given by (7.90). Then the following
inequalities hold:

i) |||G|||(∞,∞),(1,1) ≤ d
1/2
max(QL)d

1/2
max(PR).

ii) |||G|||(∞,2),(1,2) ≤ σ
1/2
max(QL)σ

1/2
max(PR).

iii) |||G|||(∞,∞),(1,2) ≤ d
1/2
max(QL)σ

1/2
max(PR).

iv) |||G|||(∞,2),(1,1) ≤ σ
1/2
max(QL)d

1/2
max(PR).

Proof. The results follow from Theorem 7.7 and Proposition 7.4.

7.10 Upper Bounds for L1 Operator Norms

In this section, we provide upper bounds for the L1 operator norm
|||G|||(∞,p),(∞,r). For α > 0, define the shifted impulse response function

Gα : R → Rl×m by

Gα(t)
△
=

{

0 t < 0,

Ce(A+ α

2
I)tB, t ≥ 0,

(7.93)

and let Gα denote its convolution operator

y(t) = (Gα ∗ u)(t) △
=

∫ ∞

0
Gα(t− τ)u(τ)dτ. (7.94)

Furthermore, for some of the results in this section we assume there
exist HLα

(s),HRα
(s) ∈ RH2 such that Hα(s) = HLα

(s)HRα
(s), where

Hα(s) ∈ RH2 denotes the Laplace transform of Gα(t). Note that the
above factorization exists if and only if there exist linear time-invariant
asymptotically stable dynamical systems with impulse response functions
GLα

: R → Rl×ml and GRα
: R → Rml×m such that GLα

(t) = 0 and
GRα

(t) = 0, t < 0, and

Gα(t) =

∫ ∞

0
GLα

(t− τ)GRα
(τ)dτ, t ≥ 0. (7.95)
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Next, let GLα
: L2 → L∞ and GRα

: L1 → L2 denote the convolution
operators of GLα

and GRα
, respectively, and define PRα

∈ Rm×m and QLα
∈

Rl×l by

PRα

△
=

∫ ∞

0
GT

Rα
(t)GRα

(t)dt, QLα

△
=

∫ ∞

0
GLα

(t)GT
Lα

(t)dt. (7.96)

Theorem 7.8. Let α > 0 be such that A+ α
2 I is asymptotically stable

and let Qα ∈ Rn×n be the unique, nonnegative-definite solution to the
Lyapunov equation

0 = AQα +QαA
T + αQα +BBT. (7.97)

Furthermore, let p, r ∈ [1,∞]. Then G : L∞ → L∞,

|||G|||(∞,p),(∞,2) ≤
1√
α
|||Gα|||(∞,p),(2,2) =

1√
α
‖(CQαC

T)1/2‖2,p̄, (7.98)

and

|||G|||(∞,p),(∞,r) ≤
2

α
|||Gα|||(∞,p),(1,r) =

2

α
sup
t≥0

‖Gα(t)‖p,r. (7.99)

In addition, if there exist GLα
: R → Rl×ml and GRα

: R → Rml×m such
that (7.95) holds, then

|||G|||(∞,p),(∞,r) ≤
2

α
|||Gα|||(∞,p),(1,r) ≤

2

α
‖Q1/2

Lα
‖2,p̄‖P1/2

Rα
‖2,r. (7.100)

Proof. Let T > 0, u ∈ L∞, and define

uT (t)
△
=

{

e
α

2
(t−T )u(t), 0 ≤ t ≤ T,

0, t > T.
(7.101)

Now, note that

|||uT |||22,2 =

∫ ∞

0
‖uT (t)‖2

2dt

=

∫ T

0
eα(t−T )‖u(t)‖2

2dt

≤ |||u|||2∞,2

∫ T

0
eα(t−T )dt

=
1

α
|||u|||2∞,2,

or, equivalently, |||uT |||2,2 ≤ 1√
α
|||u|||∞,2. Next, define yT (t)

△
= e

α

2
(t−T )y(t) and,

since G(t) = 0, t < 0, note that

yT (t) =

∫ ∞

0
e

α

2
(t−T )G(t− τ)u(τ)dτ
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=

∫ ∞

0
e

α

2
(t−τ)G(t− τ)e

α

2
(τ−T )u(τ)dτ

=

∫ ∞

0
Gα(t− τ)uT (τ)dτ

= (Gα ∗ uT )(t).

Next, it follows from (7.75) that

‖yT (t)‖p ≤ |||Gα|||(∞,p),(2,2)|||uT |||2,2 ≤ 1√
α
|||Gα|||(∞,p),(2,2)|||u|||∞,2.

Now, noting that y(T ) = yT (T ) it follows that

‖y(T )‖p ≤ 1√
α
|||Gα|||(∞,p),(2,2)|||u|||∞,2, T ≥ 0,

which implies (7.98).

Let T > 0, u ∈ L∞, and let uT (·) be given by (7.101). Then

|||uT |||1,r =

∫ ∞

0
‖uT (t)‖rdt

=

∫ T

0
e

α

2
(t−T )‖u(t)‖rdt

≤ |||u|||∞,r

∫ T

0
e

α

2
(t−T )dt

=
2

α
|||u|||∞,r.

Now, it follows from (7.76) that

‖yT (t)‖p ≤ |||Gα|||(∞,p),(1,r)|||uT |||1,r ≤ 2

α
|||Gα|||(∞,p),(1,r)|||u|||∞,r.

Hence, since y(T ) = yT (T ),

‖y(T )‖p ≤ 2

α
|||Gα|||(∞,p),(1,r)|||u|||∞,r, T ≥ 0,

which implies (7.99). Finally, (7.100) follows from (7.99) and Proposition
7.4.

Next we specialize Theorem 7.8 to Euclidean and infinity norms.

Corollary 7.5. Let α > 0 be such that A+ α
2 I is asymptotically stable,

let Gα(·) be given by (7.93), and let Qα ∈ Rn×n be the unique, nonnegative-
definite solution to (7.97). Then the following statements hold:
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i)

|||G|||(∞,2),(∞,2) ≤ 1√
α
|||Gα|||(∞,2),(2,2) =

1√
α
σ1/2

max(CQαC
T). (7.102)

Furthermore, if there exist GLα
: R → Rl×ml and GRα

: R → Rml×m

such that (7.95) holds, then

|||G|||(∞,2),(∞,2) ≤ 2

α
|||Gα|||(∞,2),(1,2) ≤

2

α
σ1/2

max(QLα
)σ1/2

max(PRα
).

(7.103)

ii)

|||G|||(∞,∞),(∞,2) ≤ 1√
α
|||Gα|||(∞,∞),(2,2) =

1√
α

d1/2
max(CQαC

T).

(7.104)

Furthermore, if there exist GLα
: R → Rl×ml and GRα

: R → Rml×m

such that (7.95) holds, then

|||G|||(∞,∞),(∞,2) ≤ 2

α
|||Gα|||(∞,∞),(1,2) ≤

2

α
d1/2

max(QL)σ1/2
max(PR).

(7.105)

Proof. The proof is a direct consequence of Lemma 7.1 and Theorem
7.8.

Using set theoretic arguments involving closed convex sets and support
functions, the L1 norm bound in (7.102) was given by Schweppe [393].
Within the context of L∞ equi-induced norms, this L1 norm bound is
referred to as the star-norm in [324, 423]. The expression given by (7.103)
provides an alternative finitely computable bound for the L∞ equi-induced
norm.

A summary of the results of Sections 7.8–7.10 is given in Table 7.1.

Next, we present an example to provide comparisons between the
bounds (7.98)–(7.100) given in Theorem 7.8 for |||G|||(∞,p),(∞,r), p, r ∈ [1,∞].

Example 7.4. Consider the system (7.52) and (7.53) with

A =

[

−1 0
1 −1

]

, B =

[

1
0

]

, C =
[

0 1
]

,

so that G(t) = te−t, t ≥ 0. Since G is a convolution operator for a single-
input/single-output system it follows that |||G|||(∞,∞),(∞,∞) = |||G|||(∞,p),(∞,r),
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Table 7.1 Summary of induced operator norms for p, r ∈ [1,∞].

Input Output Induced Norm Upper Bound

||| · |||2,2 ||| · |||2,2 sup
ω∈R

σmax(H(ω))

||| · |||1,r ||| · |||2,2 ‖P1/2‖2,r

||| · |||2,2 ||| · |||∞,p ‖Q1/2‖2,p̄

||| · |||1,r ||| · |||∞,p sup
t≥0

‖G(t)‖p,r ‖Q1/2
L ‖2,p̄‖P1/2

R ‖2,r

||| · |||r,r ||| · |||∞,∞ max
i=1,...,l

‖rowi(G[r̄,r̄])‖r̄

||| · |||1,1 ||| · |||p,p max
j=1,...,m

‖colj(G[p,p])‖p

||| · |||∞,2 ||| · |||∞,p
1√
α
‖CQαC

T‖2,p̄

||| · |||∞,r ||| · |||∞,p
2
α sup

t≥0
‖Gα(t)‖p,r

||| · |||∞,r ||| · |||∞,p
2
α‖Q

1/2
Lα

‖2,p̄‖P1/2
Rα

‖2,r

p, r ∈ [1,∞]. Hence, it follows from Lemma 7.6 with r = ∞ that

|||G|||(∞,∞),(∞,∞) =

∫ ∞

0
|G(t)|dt =

∫ ∞

0
te−tdt = 1.

Now, with p = 2, it follows from (7.98) that

|||G|||(∞,∞),(∞,∞) ≤
1√
α
|||Gα|||(∞,2),(2,2)

for all 0 < α < 2. Noting that

|||Gα|||2(∞,2),(2,2) =

∫ ∞

0
G2

α(t)dt =

∫ ∞

0
t2e−(2−α)tdt =

2

(2 − α)3
,

it follows that

|||G|||(∞,∞),(∞,∞) ≤ inf
0<α<2

2
√

α(2 − α)3
=

√

32

27
≈ 1.0887.

Next, using (7.99) to bound |||G|||(∞,∞),(∞,∞) yields

|||G|||(∞,∞),(∞,∞) ≤
2

α
sup
t≥0

Gα(t) =
4

α(2 − α)
e−1, 0 < α < 2,

which implies

|||G|||(∞,∞),(∞,∞) ≤ inf
0<α<2

4

α(2 − α)
e−1 = 4e−1 ≈ 1.4715.

Finally, we compare (7.100) to (7.98) and (7.99). Since Hα(s) = 1
(s+1−α

2 )2
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it follows from (7.100) with HLα
(s) = HRα

(s) = 1
s+1−α

2
that

|||G|||(∞,∞),(∞,∞) ≤
2

α
|||GLα

|||(∞,2),(2,2)|||GRα
|||(2,2),(1,2).

Hence,

|||G|||(∞,∞),(∞,∞) ≤
2

α

∫ ∞

0
e−(2−α)tdt =

2

α(2 − α)
, 0 < α < 2,

which implies

|||G|||(∞,∞),(∞,∞) ≤ inf
0<α<2

2

α(2 − α)
= 2.

△

7.11 Problems

Problem 7.1. For each of the following functions fi : [0,∞) → R,
i = 1, . . . , 7, state whether fi ∈ L1, fi ∈ L2, and fi ∈ L∞.

i) f1(t) = 1.

ii) f2(t) = 1
1+t .

iii) f3(t) = 1+t1/4

t1/4(1+t) .

iv) f4(t) = e−t.

v) f5(t) = 1+t1/4

t1/4(1+t2) .

vi) f6(t) = 1+t1/2

t1/2(1+t2) .

vii) f7(t) = sin t.

Problem 7.2. Let f : [0,∞) → R. Show that if
∫ t
0 |f(s)|ds converges,

then
∫ t
0 f(s)ds converges.

Problem 7.3. Let f : [0,∞) → R and let f ∈ L1. Show that
limt→∞ f(t) exists.

Problem 7.4. Let f : [0,∞) → R. Show that if f ∈ L2 and ḟ ∈ L2

then f ∈ L∞ and limt→∞ f(t) = 0.

Problem 7.5. Let f : [0,∞) → R. Show that if f ∈ L1 and ḟ ∈ L1,
then limt→∞ f(t) = 0.
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Problem 7.6. Let f : [0,∞) → R. Show that if ḟ ∈ L∞, then f is
uniformly continuous on R.

Problem 7.7. Let f : [0,∞) → R. Show that if f ∈ L2 and f is
Lipschitz continuous on R, then limt→∞ f(t) = 0.

Problem 7.8. Let f : [0,∞) → R and p ∈ [1,∞]. Show that if f ∈ Lp

and f is uniformly continuous on R, then limt→∞ f(t) = 0.

Problem 7.9. Let f1 : [0,∞) → R and f2 : [0,∞) → R. Show that if
f1 ∈ L2 and f2 ∈ L2, then f1 + f2 ∈ L2.

Problem 7.10. Let f : [0,∞) → R be continuously differentiable and
square integrable on [0,∞). Furthermore, assume ḟ is bounded on [0,∞).
Show that limt→∞ f(t) = 0.

Problem 7.11. Let f : [0,∞) → R be continuously differentiable on
[0,∞). Prove or refute that if limt→∞ ḟ(t) = 0, then limt→∞ f(t) exists.
Conversely, prove or refute that if limt→∞ f(t) exists, then limt→∞ ḟ(t) = 0.

Problem 7.12. Consider the linear dynamical system given by

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0, (7.106)

y(t) = Cx(t), (7.107)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl, t ≥ 0, and A is Hurwitz. Show
that if u(·) ∈ L2, then x(·) ∈ L2 ∩ L∞, ẋ(·) ∈ L2, and limt→∞ x(t) = 0.
Furthermore, show that if u(·) ∈ Lp, then y(·) ∈ Lp ∩ L∞ and ẏ(·) ∈ Lp for
p = 1, 2, and ∞. In addition, for p = 1 and 2, show that limt→∞ y(t) = 0.

Problem 7.13. Consider the operator dynamical system G : Lpe → Lpe

given by

y(t) = G[u](t) =

∫ ∞

0
h(t, τ)u(τ)dτ. (7.108)

Show that G is causal if and only if h(t, τ) = 0 whenever t < τ .

Problem 7.14 (Minkowski’s Inequality). Let p ∈ [1,∞] and suppose
that f, g ∈ Lp. Show that f + g ∈ Lp and |||f + g|||p ≤ |||f |||p + |||g|||p.

Problem 7.15. Show that for each p ∈ [1,∞], the pair (Lp, ‖ · ‖p) is a
normed linear space. Furthermore, show that (Lp, ‖ · ‖p) is a Banach space.
(Hint: Use Minkowski’s inequality.)

Problem 7.16 (Hölder’s Inequality). Let p, q ∈ [1,∞] be such that
1/p+1/q = 1. Suppose f ∈ Lp and g ∈ Lq. Show that h : [0,∞ → R defined
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by h(t)
△
= f(t)g(t) belongs to L1. In addition, show that |||fg|||1 ≤ |||f |||p|||g|||q.

Problem 7.17. Consider the nonlinear feedback system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0, (7.109)

y(t) = Cx(t), (7.110)

u(t) = r(t) − σ(t, y(t)), (7.111)

where x(t) ∈ Rn, u(t) ∈ Rn, y(t) ∈ Rl, r(t) ∈ Rm, and σ : R+ × Rl → Rm

satisfies σ(t, 0) = 0, t ≥ 0. Show that if σ(·, ·) is globally Lipschitz continuous
on Rl and the zero solution x(t) ≡ 0 of the undisturbed system (7.109) is
globally exponentially stable, then (7.109) is Lp-stable for all p ∈ [1,∞].
Conversely, show that if (7.109) and (7.110) is minimal and (7.109) is L2

stable, then limt→∞ x(t) = 0 for all x0 ∈ Rn and u(t) ≡ 0.

Problem 7.18. Consider the feedback system shown in Figure 7.1
where G1 is a linear single-input, single-output time-invariant dynamical
system with transfer function G(s) ∈ H∞ and G2 is a memoryless time-
varying nonlinearity σ(·, ·) ∈ Φbr. Show that if |||G(s)|||∞ < γ, where γ > 0,
then the feedback interconnection of G1 and G2 is L2-stable with finite gain
and zero bias.

Problem 7.19 (Circle Criterion). Consider the feedback system shown
in Figure 7.1 where G1 is a linear single-input, single-output time-invariant
dynamical system with transfer function G(s) ∈ H∞ and G2 is a memoryless
time-varying nonlinearity σ(·, ·) ∈ Φ. Show that if |||Gs(s)|||∞ < r−1, where

Gs(s)
△
= G(s)/(1 + cG(s)), c

△
= (M1 +M2)/2, and r

△
= (M2 −M1)/2, then

the feedback interconnection of G1 and G2 is L2-stable with finite gain and
zero bias. Connect this result to Theorem 5.19.

Problem 7.20 (Popov Criterion). Consider the feedback system
shown in Figure 7.1 where G1 is a strictly proper linear single-input, single-
output time-invariant dynamical system with transfer function G(s) ∈ H∞
and G2 is a memoryless time-invariant nonlinearity σ(·) ∈ ΦP. Assume that
sG(s) ∈ H∞. Show that if there exists N ≥ 0 such that

β
△
= inf

ω∈R

Re[(1 + ωN)G(ω)] +
1

M
> 0, (7.112)

then there exists γ > 0 such that

|||yi||| ≤ γ(|||u1|||2 + |||u2|||2 + |||u̇2|||2), i = 1, 2. (7.113)

Problem 7.21. Consider the nonlinear dynamical system (7.40) and
(7.41) where F (·, ·) is Lipschitz continuous in (x, u), H(·, ·) is continuous,
F (0, 0) = 0, and H(0, 0) = 0. Assume there exists a continuously
differentiable function V : Rn → R such that V (0) = 0, V (x) > 0, x ∈ Rn,
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x 6= 0, V (x) → ∞ as ‖x‖ → ∞, and

V ′(x)F (x, u) ≤ −W (x) + φ(u), (x, u) ∈ Rn × Rm, (7.114)

where W (x) is continuous on Rn, W (x) > 0, x ∈ Rn, x 6= 0, W (x) → ∞ as
‖x‖ → ∞, φ(·) is continuous on Rn, and φ(0) = 0. Show that in this case
(7.40) and (7.41) is L∞-stable.

Problem 7.22. Consider the nonlinear dynamical system (7.2) and
(7.3) where f(·) is Lipschitz continuous on Rn, G(·), h(·), and J(·) are
continuous on Rn, and f(0) = 0 and h(0) = 0. Let γ > 0 and assume there
exists a continuously differentiable function V : Rn → R such that V (·) is
positive definite, V (0) = 0, and, for all x ∈ Rn,

0 ≥ V ′(x)f(x) + hT(x)h(x) + [12V
′(x)G(x) + hT(x)J(x)]

·[γ2Im − JT(x)J(x)]−1[12V
′(x)G(x) + hT(x)J(x)]T. (7.115)

Show that in this case, for each x0 ∈ Rn, (7.2) and (7.3) is L2-stable and
the L2 gain is less than or equal to γ.

Problem 7.23. Consider the finite gain operator dynamical systems
G1 : Lm

pe → Ll
pe and G1 : Ll

pe → Lq
pe. Show that G2 ◦ G1 is a finite gain

operator dynamical system.

Problem 7.24. Let Gi : Lmi

2e → Lli
2e, i = 1, . . . , q, be a collection of

causal operator dynamical systems that are (Qi, Ri, Si)-dissipative for each

i ∈ {1, . . . , q}. Define the input vector u
△
= [uT

1 , . . . , u
T
q ]T, the output vector

y
△
= [yT

1 , . . . , y
T
q ]T, and the system interconnection by

u = v −Hy, (7.116)

where H ∈ R(m1+···+mq)×(l1+···+lq) and v ∈ L(m1+···+mq)
2e . In addition, define

Q = diag[Q1, . . . , Qq], R = diag[R1, . . . , Rq], and S = diag[S1, . . . , Sq]. Show
that if

Q̂ = Q+HTRH − SH −HTST < 0, (7.117)

then the interconnected system with input v and output y is finite-gain
L2-stable.

Problem 7.25. For discrete-time nonlinear operator dynamical sys-
tems the input and output spaces are spaces of sequences, denoted by ℓmp
and ℓlp, respectively. In particular, ℓnp is the set of sequences such that

|||f |||p,q <∞, q ∈ [1,∞], where f : Z+ → Rn, that is,

ℓnp
△
= {f : Z+ → Rn : |||f |||p,q <∞, q ∈ [1,∞]},
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where

|||f |||p,q
△
=

[ ∞
∑

k=0

‖f(k)‖p
q

]1/p

, 1 ≤ p <∞, (7.118)

|||f |||∞,q
△
= sup

k∈Z+

‖f(k)‖q. (7.119)

Show that the main results of this chapter including the small gain theorem
and the (Q,R, S)-dissipativity theorem go through unchanged for discrete-
time nonlinear operator dynamical systems.

7.12 Notes and References

Input-output system theory can be traced back to Norbert Wiener. In
the late 1950s, Wiener used Volterra integral series to represent input-
output maps of nonlinear dynamical systems [453]. The foundations of
input-output stability theory were developed by Sandberg [387, 388, 390]
and Zames [476, 477]. An excellent textbook treatment of input-output
stability of feedback systems is given by Desoer and Vidyasagar [104]. Input-
output dissipativity theory is due to Moylan and Hill [322], and Hill and
Moylan [192]. Connections between input-output stability and Lyapunov
stability theory were developed by Willems [455], Hill and Moylan [190], and
Vidyasagar and Vannelli [446]. Finally, the induced convolution operator
norms of linear dynamical systems presented in Sections 7.8–7.10 are due to
Chellaboina, Haddad, Bernstein, and Wilson [89].
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Chapter Eight

Optimal Nonlinear Feedback Control

8.1 Introduction

Under certain conditions nonlinear controllers offer significant advantages
over linear controllers. In particular, if the plant dynamics and/or system
measurements are nonlinear [34, 212, 398, 452], the plant/measurement
disturbances are either nonadditive or non-Gaussian, the performance
measure considered in nonquadratic [14, 33, 133, 244, 275, 366, 384, 391, 399,
411,429], the plant model is uncertain [24,28,99,142,268,351], or the control
signals/state amplitudes are constrained [62, 125, 234, 375], then nonlinear
controllers yield better performance than the best linear controllers. In a
paper by Bernstein [43] the current status of continuous-time, nonlinear-
nonquadratic problems was presented in a simplified and tutorial manner.
The basic underlying ideas of the results in [43] are based on the fact
that the steady-state solution of the Hamilton-Jacobi-Bellman equation is
a Lyapunov function for the nonlinear system and thus guaranteeing both
stability and optimality [217].

Building on the results of [43], in this chapter, we present a framework
for analyzing and designing feedback controllers for nonlinear systems.
Specifically, we consider a feedback control problem over an infinite horizon
involving a nonlinear-nonquadratic performance functional. The perfor-
mance functional can be evaluated in closed form as long as the nonlinear-
nonquadratic cost functional considered is related in a specific way to an
underlying Lyapunov function that guarantees asymptotic stability of the
nonlinear closed-loop system. This Lyapunov function is shown to be the
solution of the steady-state Hamilton-Jacobi-Bellman equation. The overall
framework provides the foundation for extending linear-quadratic control to
nonlinear-nonquadratic problems.
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8.2 Stability Analysis of Nonlinear Systems

In this section, we present sufficient conditions for stability and performance
for a given nonlinear system with a nonlinear-nonquadratic performance
functional. For the class of nonlinear systems considered we assume that
the required properties for the existence and uniqueness of solutions are
satisfied. For the following result, let D ⊆ Rn be an open set, assume 0 ∈ D,
let L : D → R, and let f : D → Rn be such that f(0) = 0.

Theorem 8.1. Consider the nonlinear dynamical system

ẋ(t) = f(x(t)), x(0) = x0, t ≥ 0, (8.1)

with nonlinear-nonquadratic performance functional

J(x0)
△
=

∫ ∞

0
L(x(t)) dt. (8.2)

Furthermore, assume that there exists a continuously differentiable function
V : D → R such that

V (0) = 0, (8.3)

V (x) > 0, x ∈ D, x 6= 0, (8.4)

V ′(x)f(x) < 0, x ∈ D, x 6= 0, (8.5)

L(x) + V ′(x)f(x) = 0, x ∈ D. (8.6)

Then the zero solution x(t) ≡ 0 to (8.1) is locally asymptotically stable and
there exists a neighborhood of the origin D0 ⊆ D such that

J(x0) = V (x0), x0 ∈ D0. (8.7)

Finally, if D = Rn and

V (x) → ∞ as ‖x‖ → ∞, (8.8)

then the zero solution x(t) ≡ 0 to (8.1) is globally asymptotically stable.

Proof. Let x(t), t ≥ 0, satisfy (8.1). Then it follows from (8.5) that

V̇ (x(t)) = V ′(x(t))f(x(t)) < 0, t ≥ 0, x(t) 6= 0. (8.9)

Thus, from (8.3), (8.4), and (8.9) it follows from Theorem 3.1 that V (·)
is a Lyapunov function for the nonlinear dynamical system (8.1), which
proves local asymptotic stability of the zero solution x(t) ≡ 0 to (8.1).
Consequently, x(t) → 0 as t→ ∞ for all initial conditions x0 ∈ D0 for some
neighborhood of the origin D0 ⊆ D. Now, since

0 = −V̇ (x(t)) + V ′(x(t))f(x(t)), t ≥ 0,

it follows from (8.6) that

L(x(t)) = −V̇ (x(t)) + L(x(t)) + V ′(x(t))f(x(t)) = −V̇ (x(t)).
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Now, integrating over [0, t] yields

∫ t

0
L(x(s))ds = −V (x(t)) + V (x0).

Letting t → ∞ and noting that V (x(t)) → 0 for all x0 ∈ D0 yields
J(x0) = V (x0). Finally, for D = Rn global asymptotic stability is a direct
consequence of the radially unbounded condition (8.8) on V (·).

It is important to note that if (8.6) holds, then (8.5) is equivalent to
L(x) > 0, x ∈ D, x 6= 0. Next, we specialize Theorem 8.1 to linear systems.
For this result let A ∈ Rn×n and let R ∈ Rn×n be a positive-definite matrix.

Corollary 8.1. Consider the linear dynamical system

ẋ(t) = Ax(t), x(0) = x0, t ≥ 0, (8.10)

with quadratic performance functional

J(x0)
△
=

∫ ∞

0
xT(t)Rx(t)dt. (8.11)

Furthermore, assume that there exists a positive-definite matrix P ∈ Rn×n

such that

0 = ATP + PA+R. (8.12)

Then, the zero solution x(t) ≡ 0 to (8.10) is globally asymptotically stable
and

J(x0) = xT
0 Px0, x0 ∈ Rn. (8.13)

Proof. The result is a direct consequence of Theorem 8.1 with f(x) =
Ax, L(x) = xTRx, V (x) = xTPx, and D = Rn. Specifically, conditions
(8.3) and (8.4) are trivially satisfied. Now, V ′(x)f(x) = xT(ATP + PA)x,
and hence, it follows from (8.12) that L(x)+V ′(x)f(x) = 0, x ∈ Rn, so that
all the conditions of Theorem 8.1 are satisfied. Finally, since V (·) is radially
unbounded, the zero solution x(t) ≡ 0 to (8.10) is globally asymptotically
stable.

It follows from Corollary 8.1 that Theorem 8.1 is an extension of the
H2 analysis framework to nonlinear systems. Recall that the H2 Hardy
space consists of complex matrix-valued functions G(s) ∈ Cl×m that are
analytic in the open right half plane and satisfy

sup
η>0

1

2π

∫ ∞

−∞
‖G(η + ω)‖2

Fdω <∞. (8.14)
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The norm of an H2 function G(s) is defined by

|||G|||2 △
=

[

1

2π

∫ ∞

−∞
‖G(ω)‖2

Fdω

]1/2

. (8.15)

Alternatively, using Parseval’s theorem we can express the H2 norm as an
L2 norm of the impulse response H(t) = 1

2π

∫∞
−∞G(ω)eωtdω. In particular,

the L2 norm of the matrix-valued impulse response function H(t) ∈ Rl×m,
t ≥ 0, is defined by

|||H|||2 △
=

[∫ ∞

0
‖H(t)‖2

Fdt

]1/2

. (8.16)

Now, letting R = ETE and defining the free response z(t)
△
= Ex(t) =

EeAtx0, t ≥ 0, it follows that the performance functional (8.11) can be
written as

J(x0) =

∫ ∞

0
zT(t)z(t)dt

=

∫ ∞

0
xT

0 e
ATtETEeAtx0dt

= xT
0 Px0

=

∫ ∞

0
‖H(t)‖2

Fdt

=
1

2π

∫ ∞

−∞
‖G(ω)‖2

Fdω

= |||G|||22, (8.17)

where H(t) = EeAtx0 and

G(s) ∼
[

A x0

E 0

]

.

Alternatively, assuming x0x
T
0 has an expected value V , that is, E[x0x

T
0 ]

= V , where E denotes expectation, and letting V = DDT, it follows that
the averaged performance functional is given by

E[J(x0)] = E[xT
0 Px0] = tr DTPD = |||G|||22, (8.18)

where P satisfies (8.12) and

G(s) ∼
[

A D
E 0

]

.

Next, we specialize Theorem 8.1 to linear and nonlinear systems with
multilinear cost functionals. First, however, we give several definitions
involving multilinear functions and a key lemma establishing the existence
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and uniqueness of specific multilinear forms. A scalar function ψ : Rn → R

is q-multilinear if q is a positive integer and ψ(x) is a linear combination
of terms of the form xi1

1 x
i2
2 · · · xin

n , where ij is a nonnegative integer for
j = 1, . . . , n, and i1 + i2 + · · ·+ in = q. Furthermore, a q-multilinear function
ψ(·) is nonnegative definite (respectively, positive definite) if ψ(x) ≥ 0 for
all x ∈ Rn (respectively, ψ(x) > 0 for all nonzero x ∈ Rn). Note that if q is
odd then ψ(x) cannot be positive definite. If ψ(·) is a q-multilinear function,
then ψ(·) can be represented by means of Kronecker products, that is, ψ(x)
is given by ψ(x) = Ψx[q], where Ψ ∈ R1×nq

.

The following lemma due to Bernstein [43] is needed for several of
the main results of this book. For this result define the spectral abscissa of
A ∈ Rn×n by

α(A)
△
= max{Re λ : λ ∈ spec(A)}.

We say that the matrix A ∈ Rn×n is Hurwitz if and only if α(A) < 0.

Lemma 8.1. Let A ∈ Rn×n be Hurwitz and let h : Rn → R be a
q-multilinear function. Then there exists a unique q-multilinear function
g : Rn → R such that

0 = g′(x)Ax+ h(x), x ∈ Rn. (8.19)

Furthermore, if h(x) is nonnegative (respectively, positive) definite, then
g(x) is nonnegative (respectively, positive) definite.

Proof. Let h(x) = Ψx[q] and define g(x)
△
= Γx[q], where Γ

△
= −Ψ(

q

⊕
A)−1. Note that

q

⊕ A is invertible since A is Hurwitz. Now, note that for
all x ∈ Rn,

g′(x)Ax = Γ
d

dx
(x[q])Ax

= Γ (x⊗ · · · ⊗ I + x⊗ · · · ⊗ I ⊗ x+ · · · + I ⊗ · · · ⊗ x)Ax

= Γ (x⊗ · · · ⊗Ax+ x⊗ · · · ⊗Ax⊗ x+ · · · +Ax⊗ · · · ⊗ x)

= Γ (I ⊗ · · · ⊗A+ I ⊗ · · · ⊗A⊗ I + · · · +A⊗ I · · · ⊗ I)x[q]

= Γ (A⊕A⊕ · · · ⊕A) x[q]

= Γ(
q

⊕ A)x[q]

= −Ψx[q]

= −h(x).

To prove uniqueness, suppose that ĝ(x) = Γ̂x[q] satisfies (8.19). Then
it follows that

Γ(
q

⊕ A)x[q] = Γ̂(
q

⊕ A)x[q].
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Since
q

⊕ A is Hurwitz and e(
q

⊕A)t = (eAt)[q], it follows that, for all x ∈ Rn,

Γx[q] = Γ(
q

⊕ A)(
q

⊕ A)−1x[q]

= −Γ(
q

⊕ A)

∫ ∞

0
e(

q

⊕A)tx[q]dt

= −Γ(
q

⊕ A)

∫ ∞

0
(eAt)[q]x[q]dt

= −Γ(
q

⊕ A)

∫ ∞

0
(eAtx)[q]dt

= −Γ̂(
q

⊕ A)

∫ ∞

0
(eAtx)[q]dt

= Γ̂x[q],

which shows that g(x) = ĝ(x), x ∈ Rn.

Finally, if h(x) is nonnegative definite, then it follows that for all
x ∈ Rn,

g(x) = −Ψ(
q

⊕ A)−1x[q] = Ψ

∫ ∞

0
e(

q

⊕A)tx[q]dt = Ψ

∫ ∞

0
(eAtx)[q]dt ≥ 0.

If, in addition, x 6= 0, then eAtx 6= 0, t ≥ 0. Hence, if h(x) is positive
definite, then g(x) is positive definite.

Next, assume A is Hurwitz, let P be given by (8.12), and consider the
case in which L(·), f(·), and V (·) are given by

L(x) = xTRx+ h(x), (8.20)

f(x) = Ax+N(x), (8.21)

V (x) = xTPx+ g(x), (8.22)

where h : D → R and g : D → R are nonquadratic, and N : D → Rn is
nonlinear. In this case, (8.6) holds if and only if

0 = xTRx+h(x)+xT(ATP+PA)x+2xTPN(x)+g′(x)(Ax+N(x)), x ∈ D,
(8.23)

or, equivalently,

0 = xT(ATP + PA+R)x+ g′(x)(Ax +N(x)) + h(x) + 2xTPN(x), x ∈ D.
(8.24)

Since A is Hurwitz, we can choose P to satisfy (8.12) as in the linear-
quadratic H2 case. Now, suppose N(x) ≡ 0 and let P satisfy (8.12). Then
(8.24) specializes to

0 = g′(x)Ax+ h(x), x ∈ D. (8.25)

Next, given h(·), we determine the existence of a function g(·) satisfying
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(8.25). Here, we focus our attention on multilinear functionals for which
(8.25) holds with D = Rn. Specifically, let h(x) be a nonnegative-definite
q-multilinear function, where q is necessarily even. Furthermore, let g(x) be
the nonnegative-definite q-multilinear function given by Lemma 8.1. Then,
since g′(x)Ax ≤ 0, x ∈ Rn, it follows that xTPx + g(x) is a Lyapunov
function for (8.10). Hence, Lemma 8.1 can be used to generate Lyapunov
functions of specific multilinear structures.

To demonstrate the above discussion suppose h(x) in (8.20) is of the
more general form given by

h(x) =

r
∑

ν=2

h2ν(x), (8.26)

where, for ν = 2, 3, . . . , r, h2ν : Rn → R is a nonnegative-definite 2ν-multilin-
ear function. Now, using Lemma 8.1, it follows that there exists a nonnegati-
ve-definite 2ν-multilinear function g2ν : Rn → R satisfying

0 = g′2ν(x)Ax+ h2ν(x), x ∈ Rn, ν = 2, 3, . . . , r. (8.27)

Defining g(x)
△
=
∑r

ν=2 g2ν(x) and summing (8.27) over ν yields (8.25). Since
(8.6) is satisfied with L(x) and V (x) given by (8.20) and (8.22), respectively,
(8.7) implies that

J(x0) = xT
0 Px0 + g(x0). (8.28)

To illustrate condition (8.25) with quartic Lyapunov functions let

V (x) = xTPx+ (xTMx)2, (8.29)

where P satisfies (8.12) and assume M is an n×n symmetric matin. In this
case, g(x) = (xTMx)2 is a nonnegative-definite 4-multilinear function and
(8.25) yields

h(x) = −2(xTMx)xT(ATM +MA)x. (8.30)

Now, letting M satisfy

0 = ATM +MA+ R̂, (8.31)

where R̂ is an n × n symmetric matrix, it follows from (8.30) that h(x)
satisfying (8.25) is of the form

h(x) = 2(xTMx)(xTR̂x). (8.32)

If R̂ is nonnegative definite, then M is nonnegative definite, and hence, h(x)
is a nonnegative-definite 4-multilinear function. Thus, if V (x) is a quartic
Lyapunov function of the form given by (8.29), and L(x) is given by

L(x) = xTRx+ 2(xTMx)(xTR̂x), (8.33)
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where M satisfies (8.31), then condition (8.25), and hence, (8.6), is satisfied.
The following proposition generalizes the above results to general polynomial
cost functionals.

Proposition 8.1. Let A ∈ Rn×n be Hurwitz, R ∈ Rn×n, R > 0, and
R̂q ∈ Rn×n, R̂q ≥ 0, q = 2, . . . , r. Consider the linear system (8.10) with
performance functional

J(x0)
△
=

∫ ∞

0







xT(t)Rx(t) +
r
∑

q=2

[

(xT(t)R̂qx(t))(x
T(t)Mqx(t))

q−1
]







dt,

(8.34)

where Mq ∈ Rn×n, Mq ≥ 0, q = 2, . . . , r, satisfy

0 = ATMq +MqA+ R̂q. (8.35)

Furthermore, assume there exists a positive-definite matrix P ∈ Rn×n such
that

0 = ATP + PA+R. (8.36)

Then the zero solution x(t) ≡ 0 to (8.10) is globally asymptotically stable
and

J(x0) = xT
0 Px0 +

r
∑

q=2

1
q (xT

0 Mqx0)
q, x0 ∈ Rn. (8.37)

Proof. The result is a direct consequence of Theorem 8.1 with f(x) =

Ax, L(x) = xTRx+
∑r

q=2[(x
TR̂qx)(x

TMqx)
q−1], V (x) = xTPx+

∑r
q=2

1
q (xT

Mqx)
q, and D = Rn. Specifically, conditions (8.3) and (8.4) are trivially

satisfied. Now,

V ′(x)f(x) = xT(ATP + PA)x+

r
∑

q=2

(xTMqx)
q−1xT(AT,Mq +MqA)x,

and hence, it follows from (8.35) and (8.36) that L(x) + V ′(x)f(x) = 0,
x ∈ Rn, so that all the conditions of Theorem 8.1 are satisfied. Finally,
since V (·) is radially unbounded (8.10) is globally asymptotically stable.

Proposition 8.1 requires the solutions of r − 1 Lyapunov equations
in (8.35) to obtain a closed-form expression for the nonlinear-nonquadratic

cost functional (8.34). However, if R̂q = R̂2, q = 3, . . . , r, then Mq = M2,
q = 3, . . . , r, satisfies (8.35). In this case, the solution of only one Lyapunov
equation in (8.35) is required.
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8.3 Optimal Nonlinear Control

In this section, we consider a control problem involving a notion of optimality
with respect to a nonlinear-nonquadratic cost functional. The optimal
feedback controllers are derived as a direct consequence of Theorem 8.1.
To address the optimal control problem let D ⊆ Rn be an open set and let
U ⊆ Rm, where 0 ∈ D and 0 ∈ U . Furthermore, let F : D×U → Rn be such
that F (0, 0) = 0. Next, consider the controlled nonlinear dynamical system
G given by

ẋ(t) = F (x(t), u(t)), x(0) = x0, t ≥ 0, (8.38)

where u(·) is restricted to the class of admissible controls consisting of
measurable function u(·) such that u(t) ∈ U for all t ≥ 0, where the
constraint set U is given. We assume 0 ∈ U . Given a control law φ(·)
and a feedback control u(t) = φ(x(t)), the closed-loop system shown in the
Figure 8.1 has the form

ẋ(t) = F (x(t), φ(x(t))), x(0) = x0, t ≥ 0. (8.39)

G

φ(x) �

-

Figure 8.1 Nonlinear closed-loop feedback system.

Next, we present a main theorem due to Bernstein [43] for characteriz-
ing feedback controllers that guarantee stability and minimize a nonlinear-
nonquadratic performance functional. For the statement of this result let
L : D × U → R and define the set of regulation controllers by

S(x0)
△
= {u(·) : u(·) is admissible and x(·) given by (8.38)

satisfies x(t) → 0 as t→ ∞}.

Theorem 8.2. Consider the nonlinear controlled dynamical system
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(8.38) with performance functional

J(x0, u(·)) △
=

∫ ∞

0
L(x(t), u(t))dt, (8.40)

where u(·) is an admissible control. Assume that there exists a continuously
differentiable function V : D → R and a control law φ : D → U such that

V (0) = 0, (8.41)

V (x) > 0, x ∈ D, x 6= 0, (8.42)

φ(0) = 0, (8.43)

V ′(x)F (x, φ(x)) < 0, x ∈ D, x 6= 0, (8.44)

H(x, φ(x)) = 0, x ∈ D, (8.45)

H(x, u) ≥ 0, x ∈ D, u ∈ U, (8.46)

where
H(x, u)

△
= L(x, u) + V ′(x)F (x, u). (8.47)

Then, with the feedback control u(·) = φ(x(·)), the zero solution x(t) ≡ 0
of the closed-loop system (8.39) is locally asymptotically stable and there
exists a neighborhood of the origin D0 ⊆ D such that

J(x0, φ(x(·))) = V (x0), x0 ∈ D0. (8.48)

In addition, if x0 ∈ D0 then the feedback control u(·) = φ(x(·)) minimizes
J(x0, u(·)) in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)). (8.49)

Finally, if D = Rn, U = Rm, and

V (x) → ∞ as ‖x‖ → ∞, (8.50)

then the zero solution x(t) ≡ 0 of the closed-loop system (8.39) is globally
asymptotically stable.

Proof. Local and global asymptotic stability are a direct consequence
of (8.41)–(8.44) and (8.50) by applying Theorem 8.1 to the closed-loop
system (8.39). Furthermore, using (8.45), condition (8.48) is a restatement
of (8.7) as applied to the closed-loop system. Next, let x0 ∈ D0, let
u(·) ∈ S(x0), and let x(t), t ≥ 0, be the solution of (8.38). Then it follows
that

0 = −V̇ (x(t)) + V ′(x(t))F (x(t), u(t)).

Hence,

L(x(t), u(t)) = −V̇ (x(t)) + L(x(t), u(t)) + V ′(x(t))F (x(t), u(t))

= −V̇ (x(t)) +H(x(t), u(t)).
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Now, using (8.46) and the fact that u(.) ∈ S(x0), it follows that

J(x0, u(·)) =

∫ ∞

0
[−V̇ (x(t)) +H(x(t), u(t))]dt

= − lim
t→∞

V (x(t)) + V (x0) +

∫ ∞

0
H(x(t), u(t))dt

= V (x0) +

∫ ∞

0
H(x(t), u(t))dt

≥ V (x0)

= J(x0, φ(x(·)),
which yields (8.49).

Note that (8.45) is the steady-state Hamilton-Jacobi-Bellman equation
for the nonlinear system F (·, ·) with the cost J(x0, u(·)). Furthermore,
conditions (8.45) and (8.46) guarantee optimality with respect to the set
of admissible stabilizing controllers S(x0). However, it is important to note
that an explicit characterization of S(x0) is not required. In addition, the
optimal stabilizing feedback control law u = φ(x) is independent of the initial
condition x0. Finally, in order to ensure asymptotic stability of the closed-
loop system (8.38), Theorem 8.2 requires that V (·) satisfy (8.41), (8.42),
and (8.44), which implies that V (·) is a Lyapunov function for the closed-
loop system (8.38). However, for optimality V (·) need not satisfy (8.42) and
(8.44). Specifically, if V (·) is a continuously differentiable function such that
(8.41) is satisfied and φ(·) ∈ S(x0), then (8.45) and (8.46) imply (8.48) and
(8.49).

Next, we specialize Theorem 8.2 to linear systems and provide
connections to the optimal linear-quadratic regulator problem. For the
following result let A ∈ Rn×n, B ∈ Rn×m, R1 ∈ Pn, and R2 ∈ Pm be
given.

Corollary 8.2. Consider the linear controlled dynamical system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0, (8.51)

with quadratic performance functional

J(x0, u(·)) △
=

∫ ∞

0
[xT(t)R1x(t) + uT(t)R2u(t)]dt, (8.52)

where u(·) is an admissible control. Furthermore, assume that there exists
a positive-definite matrix P ∈ Rn×n such that

0 = ATP + PA+R1 − PBR−1
2 BTP. (8.53)

Then, with the feedback control u = φ(x)
△
= −R−1

2 BTPx, the zero solution
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x(t) ≡ 0 to (8.51) is globally asymptotically stable and

J(x0, φ(x(·))) = xT
0 Px0, x0 ∈ Rn. (8.54)

Furthermore,
J(x0, φ(x(·))) = min

u(·)∈S(x0)
J(x0, u(·)), (8.55)

where S(x0) is the set of regulation controllers for (8.51) and x0 ∈ Rn.

Proof. The result is a direct consequence of Theorem 8.2 with F (x, u)
= Ax+Bu, L(x, u) = xTR1x+uTR2u, V (x) = xTPx, D = Rn, and U = Rm.
Specifically, conditions (8.41) and (8.42) are trivially satisfied. Next, it
follows from (8.53) that H(x, φ(x)) = 0, and hence, V ′(x)F (x, φ(x)) < 0
for all x ∈ Rn and x 6= 0. Thus, H(x, u) = H(x, u) − H(x, φ(x)) = [u −
φ(x)]TR2[u−φ(x)] ≥ 0 so that all the conditions of Theorem 8.2 are satisfied.
Finally, since V (·) is radially unbounded the zero solution x(t) ≡ 0 to (8.51)
with u(t) = φ(x(t)) = −R−1

2 BTPx(t) is globally asymptotically stable.

The optimal feedback control law φ(x) in Corollary 8.2 is derived using
the properties of H(x, u) as defined in Theorem 8.2. Specifically, since
H(x, u) = xTR1x + uTR2u + xT(ATP + PA)x + 2xTPBu it follows that
∂2H
∂u2 = R2 > 0. Now, ∂H

∂u = 2R2u + 2BTPx = 0 gives the unique global
minimum of H(x, u). Hence, since φ(x) minimizes H(x, u) it follows that
φ(x) satisfies ∂H

∂u = 0 or, equivalently, φ(x) = −R−1
2 BTPx.

8.4 Inverse Optimal Control for Nonlinear Affine Systems

In this section, we specialize Theorem 8.2 to affine systems. Specifically, we
construct nonlinear feedback controllers using an optimal control framework
that minimizes a nonlinear-nonquadratic performance criterion. This is
accomplished by choosing the controller such that the time derivative of
the Lyapunov function is negative along the closed-loop system trajectories
while providing sufficient conditions for the existence of asymptotically
stabilizing solutions to the Hamilton-Jacobi-Bellman equation. Thus, these
results provide a family of globally stabilizing controllers parameterized by
the cost functional that is minimized.

The controllers obtained in this section are predicated on an inverse
optimal control problem [10,127,135,186,217,218,227, 317,320,321,449]. In
particular, to avoid the complexity in solving the steady-state Hamilton-
Jacobi-Bellman equation we do not attempt to minimize a given cost
functional, but rather, we parameterize a family of stabilizing controllers
that minimize some derived cost functional that provides flexibility in
specifying the control law. The performance integrand is shown to explicitly
depend on the nonlinear system dynamics, the Lyapunov function of the
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closed-loop system, and the stabilizing feedback control law, wherein the
coupling is introduced via the Hamilton-Jacobi-Bellman equation. Hence,
by varying parameters in the Lyapunov function and the performance
integrand, the proposed framework can be used to characterize a class of
globally stabilizing controllers that can meet closed-loop system response
constraints.

Consider the nonlinear affine system given by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, t ≥ 0, (8.56)

where f : Rn → Rn satisfies f(0) = 0, G : Rn → Rn×m, D = Rn, and
U = Rm. Furthermore, we consider performance integrands L(x, u) of the
form

L(x, u) = L1(x) + L2(x)u+ uTR2(x)u, (8.57)

where L1 : Rn → R, L2 : Rn → R1×m, and R2 : Rn → Pm so that (8.40)
becomes

J(x0, u(·)) =

∫ ∞

0
[L1(x(t)) + L2(x(t))u(t) + uT(t)R2(x(t))u(t)]dt. (8.58)

Theorem 8.3. Consider the nonlinear controlled affine system (8.56)
with performance functional (8.58). Assume that there exists a continuously
differentiable function V : Rn → R and a function L2 : Rn → R1×m such
that

V (0) = 0, (8.59)

L2(0) = 0, (8.60)

V (x) > 0, x ∈ Rn, x 6= 0, (8.61)

V ′(x)[f(x) − 1
2G(x)R−1

2 (x)LT
2 (x)

−1
2G(x)R−1

2 (x)GT(x)V ′T(x)] < 0, x ∈ Rn, x 6= 0, (8.62)

and
V (x) → ∞ as ‖x‖ → ∞. (8.63)

Then the zero solution x(t) ≡ 0 of the closed-loop system

ẋ(t) = f(x(t)) +G(x(t))φ(x(t)), x(0) = x0, t ≥ 0, (8.64)

is globally asymptotically stable with the feedback control law

φ(x) = −1
2R

−1
2 (x)[GT(x)V ′T(x) + LT

2 (x)], (8.65)

and the performance functional (8.58), with

L1(x) = φT(x)R2(x)φ(x) − V ′(x)f(x), (8.66)

is minimized in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)), x0 ∈ Rn. (8.67)
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Finally,
J(x0, φ(x(·))) = V (x0), x0 ∈ Rn. (8.68)

Proof. The result is a direct consequence of Theorem 8.2 with D = Rn,
U = Rm, F (x, u) = f(x)+G(x)u, and L(x, u) = L1(x)+L2(x)u+uTR2(x)u.
Specifically, with (8.57) the Hamiltonian has the form

H(x, u) = L1(x) + L2(x)u+ uTR2(x)u+ V ′(x)(f(x) +G(x)u).

Now, the feedback control law (8.65) is obtained by setting ∂H
∂u = 0.

With (8.65), it follows that (8.59), (8.61), (8.62), and (8.63) imply (8.41),
(8.42), (8.44), and (8.51), respectively. Next, since V (·) is continuously
differentiable and x = 0 is a local minimum of V (·), it follows that V ′(0) = 0,
and hence, since by assumption L2(0) = 0, it follows that φ(0) = 0,
which implies (8.43). Next, with L1(x) given by (8.66) and φ(x) given
by (8.65) and (8.45) holds. Finally, since H(x, u) = H(x, u) −H(x, φ(x)) =
[u − φ(x)]TR2(x)[u − φ(x)] and R2(x) is positive definite for all x ∈ Rn,
condition (8.46) holds. The result now follows as a direct consequence of
Theorem 8.2.

Note that (8.62) is equivalent to

V̇ (x)
△
= V ′(x)[f(x) +G(x)φ(x)] < 0, x ∈ Rn, x 6= 0, (8.69)

with φ(x) given by (8.65). Furthermore, conditions (8.59), (8.61), and (8.69)
ensure that V (·) is a Lyapunov function for the closed-loop system (8.64).
As discussed in [449], it is important to recognize that the function L2(x),
which appears in the integrand of the performance functional (8.57) is an
arbitrary function of x ∈ Rn subject to conditions (8.60) and (8.62). Thus,
L2(x) provides flexibility in choosing the control law. This flexibility will
be used in the following chapter to connect this inverse optimal control
framework to backstepping control methods [247].

As noted in [449], with L1(x) given by (8.66) and φ(x) given by (8.65),
L(x, u) can be expressed as

L(x, u) = uTR2(x)u− φT(x)R2(x)φ(x) + L2(x)(u− φ(x))

−V ′(x)[f(x) +G(x)φ(x)]

=
[

u+ 1
2R

−1
2 (x)LT

2 (x)
]T
R2(x)

[

u+ 1
2R

−1
2 (x)LT

2 (x)
]

− V ′(x)[f(x)

+G(x)φ(x)] − 1
4V

′(x)G(x)R−1
2 (x)GT(x)V ′T(x). (8.70)

Since R2(x) > 0, x ∈ Rn, the first term on the right-hand side of (8.70) is
nonnegative, while (8.69) implies that the second term is also nonnegative.
Thus, it follows that

L(x, u) ≥ −1
4V

′(x)G(x)R−1
2 (x)GT(x)V ′T(x), (8.71)
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which shows that L(x, u) may be negative. As a result, there may exist a
control input u for which the performance functional J(x0, u) is negative.
However, if the control u is a regulation controller, that is, u ∈ S(x0), then
it follows from (8.67) and (8.68) that

J(x0, u(·)) ≥ V (x0) ≥ 0, x0 ∈ Rn, u(·) ∈ S(x0). (8.72)

Furthermore, in this case, substituting u = φ(x) into (8.70) yields

L(x, φ(x)) = −V ′(x)[f(x) +G(x)φ(x)], (8.73)

which, by (8.69), is positive.

Example 8.1. To illustrate the utility of Theorem 8.3 we consider a
simple example originally studied in [75] involving the two-state nonlinear
controlled system given by

ẋ1(t) = x2
2(t) − x5

1(t), x1(0) = x10, t ≥ 0, (8.74)

ẋ2(t) = x2
1(t) + u(t), x2(0) = x20. (8.75)

To construct an inverse optimal globally stabilizing control law for (8.74)
and (8.75) let V (x) be a quadratic Lyapunov function of the form

V (x) = p1x
2
1 + p2x

2
2, (8.76)

where x
△
= [x1 x2]

T, p1 > 0, and p2 > 0, and let L(x, u) = L1(x) +L2(x)u+
R2u

2, where R2 > 0. Now, L2(x) = 2R2(
p1

p2
x1x2 +x2

1) satisfies (8.62) so that

the inverse optimal control law (8.65) is given by

φ(x) = −p1

p2
x1x2 − x2

1 − p2

R2
x2. (8.77)

In this case, the performance functional (8.58), with

L1(x) = R2[
p1

p2
x1x2 + x2

1 + p2

R2
x2]

2 − [2p1x1(x
2
2 − x5

1) + 2p2x
2
1x2], (8.78)

is minimized in the sense of (8.67). Furthermore, since V (x) given by (8.76)
is radially unbounded and

V̇ (x) = −2p1x
6
1 − 2 p2

2

R2
x2

2 < 0, x ∈ R2, x 6= 0, (8.79)

the feedback control law (8.77) is globally stabilizing. △

Example 8.2. This example is adopted from [449] and considers the
global stabilization of the Lorentz equations. These equations were proposed
by Lorentz [286] to model fluid convection and can exhibit chaotic motion.
To construct inverse optimal controllers for the controlled Lorentz dynamical
system consider the system

ẋ1(t) = −σx1(t) + σx2(t), x1(0) = x10, t ≥ 0, (8.80)

ẋ2(t) = rx1(t) − x2(t) − x1(t)x3(t) + u(t), x2(0) = x20, (8.81)

ẋ3(t) = x1(t)x2(t) − bx3(t), x3(0) = x30, (8.82)
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where σ, r, b > 0. Note that (8.80)–(8.82) can be written in the form of
(8.56) with

f(x) =





−σx1 + σx2

rx1 − x2 − x1x3

x1x2 − bx3



 , G(x) =





0
1
0



 .

In order to design an inverse optimal control law for the controlled
Lorentz dynamical system (8.80)–(8.82) consider the quadratic Lyapunov
function candidate given by

V (x) = p1x
2
1 + p2x

2
2 + p3x

2
3, (8.83)

where x
△
= [x1, x2, x3]

T and p1, p2, p3 > 0. Now, letting p2 = p3 and
L(x, u) = L1(x) + L2(x)u+R2u

2, where R2 > 0, it follows that

L2(x) = R2

p2
(2p1σ + 2p2r)x1 − 2p2x2, (8.84)

satisfies (8.62); that is,

V̇ (x) = V ′(x)[f(x) − 1
2G(x)R−1

2 LT
2 (x) − 1

2G(x)R−1
2 GT(x)V ′T(x)]

= −2(σp1x
2
1 + p2x

2
2 + p2bx

2
3)

< 0, x ∈ R3, x 6= 0.

Hence, the output feedback control law φ(x) = −(p1

p2
σ+ r)x1 given by (8.65)

globally stabilizes the controlled Lorentz dynamical system (8.80)–(8.82).
Furthermore, the performance functional (8.58), with

L1(x) = [2σp1+R2(
p1

p2
σ+r)2]x2

1−2(p1σ+p2r)x1x2+2p2x
2
2+2p2bx

2
3, (8.85)

is minimized in the sense of (8.67). △

Next, we specialize Theorem 8.3 to linear systems controlled by
nonlinear controllers that minimize a polynomial cost functional. For the
following result let R1 ∈ Pn, R2 ∈ Pm, and R̂q ∈ Nn, q = 2, . . . , r, be given,

where r is a positive integer, and define S
△
= BR−1

2 BT.

Corollary 8.3. Consider the linear controlled dynamical system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0, (8.86)

where u(·) is admissible. Assume that there exist P ∈ Pn and Mq ∈ Nn,
q = 2, . . . , r, such that

0 = ATP + PA+R1 − PSP, (8.87)

and

0 = (A− SP )TMq +Mq(A− SP ) + R̂q, q = 2, . . . , r. (8.88)
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Then the zero solution x(t) ≡ 0 of the closed-loop system

ẋ(t) = Ax(t) +Bφ(x(t)), x(0) = x0, t ≥ 0, (8.89)

is globally asymptotically stable with the feedback control law

φ(x) = −R−1
2 BT



P +

r
∑

q=2

(xTMqx)
q−1Mq



x, (8.90)

and the performance functional (8.58) with R2(x) = R2, L2(x) = 0, and

L1(x) = xT

(

R1 +

r
∑

q=2

(xTMqx)
q−1R̂q +

[ r
∑

q=2

(xTMqx)
q−1Mq

]T

S

·
[ r
∑

q=2

(xTMqx)
q−1Mq

]

)

x, (8.91)

is minimized in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)), x0 ∈ Rn. (8.92)

Finally,

J(x0, φ(x(·))) = xT
0 Px0 +

r
∑

q=2

1
q (xT

0 Mqx0)
q, x0 ∈ Rn. (8.93)

Proof. The result is a direct consequence of Theorem 8.3 with f(x) =
Ax, G(x) = B, L2(x) = 0, R2(x) = R2, and

V (x) = xTPx+
r
∑

q=2

1

q
(xTMqx)

q.

Specifically, (8.59)–(8.61) and (8.63) are trivially satisfied. Next, it follows
from (8.87), (8.88), and (8.90) that

V ′(x)[f(x) − 1
2G(x)R−1

2 (x)GT(x)V ′T(x)] =

−xTR1x−
r
∑

q=2

(xTMqx)
q−1xTRqx− φT(x)R2φ(x)

−xT





r
∑

q=2

(xTMqx)
q−1Mq





T

S





r
∑

q=2

(xTMqx)
q−1Mq



x,

which implies (8.62), so that all the conditions of Theorem 8.3 are satisfied.
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Corollary 8.3 generalizes the deterministic version of the stochastic
nonlinear-nonquadratic optimal control problem considered in [411] to
polynomial performance criteria. Specifically, unlike the results of [411],
Corollary 8.3 is not limited to sixth-order cost functionals and cubic
nonlinear controllers since it addresses a polynomial performance criterion
of an arbitrary even order. Corollary 8.3 requires the solutions of r − 1
modified Riccati equations in (8.88) to obtain the optimal controller (8.90).

However, if R̂q = R̂2, q = 3, . . . , r, then Mq = M2, q = 3, . . . , r, satisfies
(8.88). In this case, we require the solution of one modified Riccati equation
in (8.88). Finally, it is important to note that the derived performance
functional weighs the state variables by arbitrary even powers. Furthermore,
J(x0, u(·)) has the form

J(x0, u(.)) =

∫ ∞

0

[

xT(R1 +

r
∑

q=2

(xTMqx)
q−1R̂q)x+ uTR2u

+φT
NL(x)R2φNL(x)

]

dt,

where φNL(x) is the nonlinear part of the optimal feedback control

φ(x) = φL(x) + φNL(x),

where φL(x)
△
= −R−1

2 BTPx and φNL(x)
△
= −R−1

2 BT
∑r

q=2(x
TMqx)

q−1Mqx.

Next, we specialize Theorem 8.3 to linear systems controlled by
nonlinear controllers that minimize a multilinear cost functional. For the
following result recall the definition of S and let R1 ∈ Pn, R2 ∈ Pm, and
R̂2q ∈ N (2q,n), q = 2, . . . , r, be given, where r is a given integer.

Corollary 8.4. Consider the linear controlled dynamical system (8.86).

Assume that there exist P ∈ Pn and P̂q ∈ N (2q,n), q = 2, . . . , r, such that

0 = ATP + PA+R1 − PSP (8.94)

and
0 = P̂q[

2q

⊕ (A− SP )] + R̂2q, q = 2, . . . , r. (8.95)

Then the zero solution x(t) ≡ 0 of the closed-loop system (8.89) is globally
asymptotically stable with the feedback control law

φ(x) = −R−1
2 BT(Px+ 1

2g
′T(x)), (8.96)

where g(x)
△
=
∑r

q=2 P̂qx
[2q] and the performance functional (8.58) withR2(x)

= R2, L2(x) = 0, and

L1(x) = xTR1x+

r
∑

q=2

R̂2qx
[2q] + 1

4g
′(x)Sg′T(x), (8.97)
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is minimized in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)), x0 ∈ Rn. (8.98)

Finally,

J(x0, φ(x(·))) = xT
0 Px0 +

r
∑

q=2

P̂qx
[2q]
0 , x0 ∈ Rn. (8.99)

Proof. The result is a direct consequence of Theorem 8.3 with f(x) =

Ax, G(x) = B, L2(x) = 0, R2(x) = R2, and V (x) = xTPx +
∑r

q=2 P̂qx
[2q]
0 .

Specifically, (8.59)–(8.61) and (8.63) are trivially satisfied. Next, it follows
from (8.94)–(8.96) that

V ′(x)[f(x) − 1
2G(x)R−1

2 (x)GT(x)V ′T(x)] = −xTR1x−
r
∑

q=2

R̂2qx
[2q]

−φT(x)R2φ(x) − 1
4g

′(x)Sg′T(x),

which implies (8.62) so that all the conditions of Theorem 8.3 are satisfied.

Note that since g′(x)(A−SP )x =
∑r

q=2 P̂q[
2q

⊕ (A−SP )]x[2q] it follows

that (8.95) can be equivalently written as

0 = g′(x)(A − SP )x+
r
∑

q=2

R̂2qx
[2q],

for all x ∈ Rn, and hence, it follows from Lemma 8.1 that there exists a
unique P̂q ∈ N (2q,n) such that (8.95) is satisfied.

8.5 Gain, Sector, and Disk Margins of Nonlinear-Nonquadratic

Optimal Regulators

The gain and phase margins of state feedback linear-quadratic optimal
regulators are well known [10, 227, 379, 466]. In particular, in terms of
classical control relative stability notions, these controllers possess at least a
±60◦ phase margin, infinite gain margin, and 50 percent gain reduction
for each control channel. Alternatively, in terms of absolute stability
theory [10] these controllers guarantee sector margins in that the closed-
loop system will remain asymptotically stable in the face of a memoryless
static input nonlinearity each of whose components is contained in the conic
sector (1

2 ,∞). In both cases, these results hold if the integrand of the
quadratic performance criterion is chosen to be a quadratic nonnegative-
definite function of the state and a quadratic positive-definite function of the
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control with a diagonal weighting matrix. Gain and phase margins of state
feedback linear-quadratic optimal regulators involving cross-weighting terms
in the quadratic performance criterion were obtained in [95]. Specifically,
the authors in [95] provide explicit connections between relative stability
margins and the selection of the state, control, and cross-weighting matrices.
However, unlike the standard linear-quadratic case, no sector margin
guarantees were shown in the linear-quadratic problem with cross-weighting
terms.

The problem of guaranteed sector margins for state feedback nonlinear-
nonquadratic inverse optimal regulators has also been considered in the
literature [127, 217, 320, 321]. Specifically, nonlinear Hamilton-Jacobi-
Bellman inverse optimal controllers that minimize a meaningful (in the
terminology of [127, 395]) nonlinear-nonquadratic performance criterion
involving a nonlinear-nonquadratic, nonnegative-definite function of the
state and a quadratic positive-definite function of the feedback control are
shown to possess sector margin guarantees to component decoupled input
nonlinearities in the conic sector (1

2 ,∞). These results have been recently
extended in [395] to disk margin guarantees where asymptotic stability of
the closed-loop system is guaranteed in the face of a dissipative dynamic
input operator.

In the remainder of this chapter we derive stability margins for the
optimal and inverse optimal nonlinear regulators presented in Sections 8.3
and 8.4. Specifically, gain, sector, and disk margin guarantees are obtained
for nonlinear dynamical systems controlled by nonlinear optimal and inverse
optimal Hamilton-Jacobi-Bellman controllers that minimize a nonlinear-
nonquadratic performance criterion with cross-weighting terms. In the case
where the cross-weighting term in the performance criterion is deleted our
results recover the gain, sector, and disk margins of [395]. Alternatively,
retaining the cross-terms in the performance criterion and specializing the
nonlinear-nonquadratic problem to a linear-quadratic problem our results
recover the gain and phase margins of [95]. Finally, we note that even though
the inclusion of cross-weighting terms in the performance criterion is shown
to degrade gain, sector, and disk margins, the extra flexibility provided by
the cross-weighting terms makes it possible to guarantee optimal and inverse
optimal nonlinear controllers that may be far superior in terms of transient
performance over meaningful inverse optimal controllers.

In this section, we start by deriving guaranteed gain, sector, and disk
margins for nonlinear optimal and inverse optimal regulators that minimize
a nonlinear-nonquadratic performance criterion. Specifically, sufficient
conditions that guarantee gain, sector, and disk margins are given in terms
of the state, control, and cross-weighting nonlinear-nonquadratic weighting
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functions. In particular, we consider the nonlinear system given by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, t ≥ 0, (8.100)

y(t) = −φ(x(t)), (8.101)

where φ : Rn → Rm, with a nonquadratic performance criterion

J(x0, u(·)) =

∫ ∞

0
[L1(x(t)) + L2(x(t))u(t) + uT(t)R2(x(t))u(t)]dt, (8.102)

where L1 : Rn → R, L2 : Rn → R1×m, and R2 : Rn → Rm×m are given such
that R2(x) > 0, x ∈ Rn, and L2(0) = 0. In this case, the optimal nonlinear
feedback controller u = φ(x) that minimizes the nonlinear-nonquadratic
performance criterion (8.102) is given by the following result.

Theorem 8.4. Consider the nonlinear dynamical system (8.100) and
(8.101) with performance functional (8.102). Assume that there exists a
continuously differentiable function V : Rn → R such that

V (0) = 0, (8.103)

V (x) > 0, x ∈ Rn, x 6= 0, (8.104)

L2(0) = 0, (8.105)

V ′(x)[f(x) − 1
2G(x)R−1

2 (x)LT
2 (x)

−1
2G(x)R−1

2 (x)GT(x)V ′T(x)] < 0, x ∈ Rn, x 6= 0, (8.106)

0 = L1(x) + V ′(x)f(x) − 1
4 [V ′(x)G(x) + L2(x)]

·R−1
2 (x)[V ′(x)G(x) + L2(x)]

T, x ∈ Rn, (8.107)

and
V (x) → ∞ as ‖x‖ → ∞. (8.108)

Then the zero solution x(t) ≡ 0 of the closed-loop system

ẋ(t) = f(x(t)) +G(x(t))φ(x(t)), x(0) = x0, t ≥ 0, (8.109)

is globally asymptotically stable with the feedback control law

φ(x) = −1
2R

−1
2 (x)[V ′(x)G(x) + L2(x)]

T, (8.110)

and the performance functional (8.102) is minimized in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)), x0 ∈ Rn. (8.111)

Finally,
J(x0, φ(x(·))) = V (x0), x0 ∈ Rn. (8.112)

Proof. The proof is identical to the proof of Theorem 8.3.
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Example 8.3. Consider the nonlinear dynamical system

ẋ1(t) = x1(t) + x1(t)x
2
2(t), x1(0) = x10, t ≥ 0, (8.113)

ẋ2(t) = −x2(t) + x1(t)u(t), x2(0) = x20, (8.114)

with performance functional

J(x10, x20, u(·)) =

∫ ∞

0
[2x2

1(t) + 2x2
2(t) + 1

2u
2(t)]dt. (8.115)

To design an optimal control law φ(x1, x2) that minimizes (8.115) we use
Theorem 8.4 with x = [x1, x2]

T, f(x) = [−x1 + x1x
2
2, −x2]

T, G(x) =
[0, x1]

T, L1(x) = 2xTx, L2(x) = 0, and R2(x) = 1
2 . In particular, it follows

from (8.107) that

0 = V ′(x)

[

−x1 + x1x
2
2

−x2

]

− 1
2V

′(x))

[

0 0
0 x2

1

]

V ′T(x)+2(x2
1+x2

2), (8.116)

which implies that V ′(x) = [2x1, 2x2]. Furthermore, since V (0) = 0,
V (x) = x2

1 + x2
2. Hence, the optimal feedback control law is given by

φ(x) = −1
2R

−1
2 (x)GT(x)V ′T(x) = −2x1x2. Finally, note that (8.106) implies

[

2x1 2x2

]

[

−x1 + x1x
2
2

−x2

]

− 2x2
1x2 = −2(x2

1 + x2
2) < 0, (8.117)

for all (x1, x2) 6= (0, 0), and hence, φ(x1, x2) = −2x1x2 is a global stabilizer
for (8.113) and (8.114). △

The following key lemma is needed for developing the main result of
this section.

Lemma 8.2. Consider the nonlinear dynamical system G given by
(8.100) and (8.101) where φ(x) is a stabilizing feedback control law given by
(8.110) and where V (x), x ∈ Rn, satisfies

0 = V ′(x)f(x) +L1(x)− 1
4 [V ′(x)G(x) +L2(x)]R

−1
2 (x)[V ′(x)G(x) +L2(x)]

T.
(8.118)

Furthermore, suppose there exists θ ∈ R such that 0 < θ < 1 and

(1 − θ2)L1(x) − 1
4L2(x)R

−1
2 (x)LT

2 (x) ≥ 0, x ∈ Rn. (8.119)

Then for all u(·) ∈ U and t1, t2 ≥ 0, t1 < t2, the solution x(t), t ≥ 0, to
(8.100) satisfies

V (x(t2)) ≤
∫ t2

t1

{

[u(t) + y(t)]TR2(x(t))[u(t) + y(t)]

−θ2uT(t)R2(x(t))u(t)
}

dt+ V (x(t1)). (8.120)

Proof. Note that it follows from (8.118) and (8.119) that for all x ∈ Rn
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and u ∈ Rm,

θ2uTR2(x)u ≤ θ2uTR2(x)u+

[

1

2
√

1 − θ2
L2(x)R

−1
2 (x) +

√

1 − θ2uT

]

·R2(x)

[

1

2
√

1 − θ2
L2(x)R

−1
2 (x) +

√

1 − θ2uT

]T

= uTR2(x)u+
1

4(1 − θ2)
L2(x)R

−1
2 (x)LT

2 (x) + L2(x)u

≤ uTR2(x)u+ L2(x)u+ L1(x)

= uTR2(x)u+ L2(x)u− V ′(x)f(x) + φT(x)R2(x)φ(x)

= [u+ y]TR2(x)[u + y] − V ′(x)[f(x) +G(x)u],

which implies that, for all u(·) ∈ U and t ≥ 0,

θ2uT(t)R2(x(t))u(t) ≤ [u(t) + y(t)]TR2(x(t))[u(t) + y(t)] − V̇ (x(t)).

Now, integrating over [t1, t2] yields (8.120).

Next, we present disk margins for the nonlinear-nonquadratic optimal
regulator given by Theorem 8.4. First, we consider the case in which R2(x),
x ∈ Rn, is a constant diagonal matrix.

Theorem 8.5. Consider the nonlinear dynamical system G given by
(8.100) and (8.101) where φ(x) is a stabilizing feedback control law given
by (8.110) and where V (x), x ∈ Rn, satisfies (8.107). If R2(x) ≡
diag[r1, . . . , rm], where ri > 0, i = 1, . . . ,m, and there exists θ ∈ R such
that 0 < θ < 1 and (8.119) is satisfied, then the nonlinear system G has
a structured disk margin ( 1

1+θ ,
1

1−θ ). If, in addition, R2(x) ≡ I and there
exists θ ∈ R such that 0 < θ < 1 and (8.119) is satisfied, then the nonlinear
system G has a disk margin ( 1

1+θ ,
1

1−θ ).

Proof. Note that for all u(·) ∈ U and t1, t2 ≥ 0, t1 < t2, it follows
from Lemma 8.2 that the solution x(t), t ≥ 0, to (8.100) satisfies

V (x(t2)) − V (x(t1)) ≤
∫ t2

t1

{

[u(t) + y(t)]TR2[u(t) + y(t)]

−θ2uT(t)R2u(t)
}

dt.

Hence, with the storage function Vs(x) = 1
2V (x), G is dissipative with respect

to the supply rate r(u, y) = uTR2y + 1−θ2

2 uTR2u+ yTR2y. Now, the result
is a direct consequence of Corollary 6.2 and Definitions 6.4 and 6.3 with
α = 1

1+θ and β = 1
1−θ .

Next, we consider the case in which R2(x), x ∈ Rn, is not a diagonal
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constant matrix. For the following result define

γ
△
= sup

x∈Rn

σmax(R2(x)), γ
△
= inf

x∈Rn
σmin(R2(x)), (8.121)

where R2(x) is such that γ <∞ and γ > 0.

Theorem 8.6. Consider the nonlinear dynamical system G given by
(8.100) and (8.101) where φ(x) is a stabilizing feedback control law given by
(8.110) and where V (x), x ∈ Rn, satisfies (8.107). If there exists θ ∈ R such
that 0 < θ < 1 and (8.119) is satisfied, then the nonlinear system G has a

disk margin ( 1
1+ηθ ,

1
1−ηθ ), where η

△
=
√

γ/γ.

Proof. Note that for all u(·) ∈ U and t1, t2 ≥ 0, t1 < t2, it follows
from Lemma 8.2 that the solution x(t), t ≥ 0, to (8.100) satisfies

V (x(t2)) − V (x(t1)) ≤
∫ t2

t1

{

[u(t) + y(t)]TR2(x(t))[u(t) + y(t)]

−θ2uT(t)R2(x(t))u(t)
}

dt,

which implies that

V (x(t2)) − V (x(t1)) ≤
∫ t2

t1

{

γ[u(t) + y(t)]T[u(t) + y(t)] − γθ2uT(t)u(t)
}

dt.

Hence, with the storage function Vs(x) = 1
2γV (x), G is dissipative with

respect to the supply rate r(u, y) = uTy+ 1−η2θ2

2 uTu+yTy. Now, the result

is a direct consequence of Corollary 6.2 and Definition 6.3 with α = 1
1+ηθ

and β = 1
1−ηθ .

Next, we provide an alternative result that guarantees sector and gain
margins for the case in which R2(x), x ∈ Rn, is diagonal.

Theorem 8.7. Consider the nonlinear dynamical system G given by
(8.100) and (8.101) where φ(x) is a stabilizing feedback control law given
by (8.110) and where V (x), x ∈ Rn, satisfies (8.107). Furthermore, let
R2(x) = diag [r1(x), . . . , rm(x)], where ri : Rn → R, ri(x) > 0, i = 1, . . . ,m.
If G is zero-state observable and there exists θ ∈ R such that 0 < θ < 1 and

(1 − θ2)L1(x) − 1
4L2(x)R

−1
2 (x)LT

2 (x) ≥ 0, x ∈ Rn, (8.122)

then the nonlinear system G has a sector (and, hence, gain) margin ( 1
1+θ ,

1
1−θ ).

Proof. Let ∆(−y) = σ(−y), where σ : Rm → Rm is a static
nonlinearity such that σ(0) = 0, σ(v) = [σ1(v1), . . . , σm(vm)]T, and αv2

i <
σi(vi)vi < βv2

i , for all vi 6= 0, i = 1, . . . ,m, where α = 1
1+θ and β = 1

1−θ ;
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or, equivalently, (σi(vi)−αvi)(σi(vi)− βvi) < 0, for all vi 6= 0, i = 1, . . . ,m.
In this case, the closed-loop system (8.100) and (8.101) with u = σ(−y) is
given by

ẋ(t) = f(x(t)) +G(x(t))σ(φ(x(t))), x(0) = x0, t ≥ 0. (8.123)

Next, consider the Lyapunov function candidate V (x), x ∈ Rn, satisfying
(8.107) and let V̇ (x) denote the Lyapunov derivative along the trajectories
of the closed-loop system (8.123). Now, it follows from (8.107) and (8.122)
that

V̇ (x) = V ′(x)f(x) + V ′(x)G(x)σ(φ(x))

≤ V ′(x)f(x) + V ′(x)G(x)σ(φ(x)) + L1(x)

− 1
4(1−θ2)L2(x)R

−1
2 (x)LT

2 (x)

+(1 − θ2)
[

σ(φ(x)) + 1
2(1−θ2)R

−1
2 (x)LT

2 (x)
]T
R2(x)

·
[

σ(φ(x)) + 1
2(1−θ2)R

−1
2 (x)LT

2 (x)
]

= V ′(x)f(x) + L1(x) + V ′(x)G(x)σ(φ(x))

+(1 − θ2)σT(φ(x))R2(x)σ(φ(x)) + L2(x)σ(φ(x))

= φT(x)R2(x)φ(x) − 2φT(x)R2(x)σ(φ(x))

+(1 − θ2)σT(φ(x))R2(x)σ(φ(x))

=
m
∑

i=1

ri(x)(
1
βσi(−yi) + yi)(

1
ασi(−yi) + yi)

= 1
αβ

m
∑

i=1

ri(x) (σi(−yi) + αyi) (σi(−yi) + βyi)

≤ 0,

which implies that the closed-loop system (8.123) is Lyapunov stable.

Next, let R △
= {x ∈ Rn : V̇ (x) = 0} and note that V̇ (x) = 0 if

and only if y = 0. Now, since G is zero-state observable it follows that
M △

= {x ∈ Rn : x = 0} is the largest invariant set contained in R. Hence,
it follows from Theorem 3.5 that x(t) → M = {0} as t → ∞. Thus, the
closed-loop system (8.123) is globally asymptotically stable for all σ(·) such
that αv2

i < σi(vi)vi < βv2
i , vi 6= 0, i = 1, . . . ,m, which implies that the

nonlinear system G given by (8.100) and (8.101) has sector (and, hence,
gain) margins (α, β).

Note that in the case where R2(x), x ∈ Rn, is diagonal, Theorem 8.7
guarantees larger gain and sector margins to the gain and sector margin
guarantees provided by Theorem 8.6. However, Theorem 8.7 does not
provide disk margin guarantees.
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8.6 Inverse Optimality of Nonlinear Regulators

In this section, we give sufficient conditions that guarantee that a given
nonlinear feedback controller has prespecified disk, sector, and gain margins.
First, we present the following generalization of the results given in [321].

Proposition 8.2. Let θ ∈ (0, 1) and let R2 ∈ Rm×m be a positive-
definite matrix. Consider the nonlinear dynamical system G given by (8.100)
and (8.101), where φ(x) is a stabilizing feedback control law. Then there
exist functions V : Rn → R, L1 : Rn → R, and L2 : Rn → R1×m such that
φ(x) = −1

2R
−1
2 [V ′(x)G(x) + L2(x)]

T, V (·) is continuously differentiable,
V (0) = 0, V (x) > 0, x ∈ Rn, x 6= 0, and for all x ∈ Rn,

0 = V ′(x)f(x) + L1(x) − [V ′(x)G(x) + L2(x)]R
−1
2 [V ′(x)G(x) + L2(x)]

T,

(8.124)

0 ≤ (1 − θ2)L1(x) − 1
4L2(x)R

−1
2 LT

2 (x), (8.125)

if and only if, for all u(·) ∈ U and t1, t2 ≥ 0, t1 < t2, there exists V : Rn → R

such that V (0) = 0, V (x) > 0, x ∈ Rn, x 6= 0, and the solution x(t), t ≥ 0,
to (8.100) satisfies

V (x(t2)) ≤
∫ t2

t1

{

[u(t) + y(t)]TR2[u(t) + y(t)] − θ2uT(t)R2u(t)
}

dt

+V (x(t1)). (8.126)

Proof. If there exist functions V : Rn → R, L1 : Rn → R, and
L2 : Rn → R1×m such that φ(x) = −R−1

2 [V ′(x)G(x) + L2(x)]
T and (8.124)

and (8.125) are satisfied, then it follows from Lemma 8.2 that (8.126) is
satisfied. Conversely, if for all t1, t2 ≥ 0, t1 < t2, and u(·) ∈ U the solution
x(t), t ≥ 0, to (8.100) satisfies (8.126), then with Q = R2, S = R2, and
R = (1 − θ2)R2, it follows from (5.81) of Theorem 5.6 that

0 ≥ V ′(x)f(x) − φT(x)R2φ(x) + 1
4(1−θ2) [2φ

T(x)R2 + V ′(x)G(x)]

·R−1
2 [2φT(x)R2 + V ′(x)G(x)]T, x ∈ Rn.

The result now follows with L1(x) = −V ′(x)f(x) + φT(x)R2φ(x) and L2(x)
= −[2φT(x)R2 + V ′(x)G(x)].

Note that if (8.124) and (8.125) are satisfied then it follows from
Theorem 8.4 that the feedback control law φ(x) = −R−1

2 [V ′(x)G(x) +
L2(x)]

T minimizes the cost functional (8.58). Hence, Proposition 8.2
provides necessary and sufficient conditions for optimality of a given
stabilizing feedback control law with prespecified disk margin guarantees.
The following result presents specific disk margin guarantees for inverse
optimal controllers.
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Theorem 8.8. Let θ ∈ (0, 1) be given. Consider the nonlinear
dynamical system G given by (8.100) and (8.101) where φ(x) is a stabilizing
feedback control law. Assume that there exist functions V : Rn → R and
R2 : Rn → Rm×m such that V (·) is continuously differentiable, R2(x) > 0,
x ∈ Rn, and

V (0) = 0, (8.127)

V (x) > 0, x ∈ Rn, x 6= 0, (8.128)

V ′(x)[f(x) +G(x)φ(x)] < 0, x ∈ Rn, x 6= 0, (8.129)

V ′(x)f(x) − φT(x)R−1
2 (x)φ(x) + 1

1−θ2

(

φT(x) + 1
2V

′(x)G(x)R−1
2 (x)

)

·R2(x)
(

φT(x) + 1
2V

′(x)G(x)R−1
2 (x)

)T ≤ 0, x ∈ Rn, (8.130)

and

V (x) → ∞ as ‖x‖ → ∞. (8.131)

Then the nonlinear dynamical system G has a disk margin ( 1
1+ηθ ,

1
1−ηθ ),

where η =
√

γ/γ and γ and γ are given by (8.121). Furthermore, with the

feedback control law φ(x) the performance functional

J(x0, u(·)) =

∫ ∞

0
[−V ′(x(t))(f(x(t)) +G(x(t))u(t))

+(φ(x(t)) − u(t))TR2(x(t))(φ(x(t)) − u(t))]dt (8.132)

is minimized in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)), x0 ∈ Rn. (8.133)

Proof. The result is a direct consequence of Theorems 8.4 and 8.6
with L1(x) = −V ′(x)f(x)+φT(x)R2(x)φ(x) and L2(x) = −(2φT(x)R2(x)+
V ′(x)G(x)). Specifically, in this case, all the conditions of Theorem 8.4 are
trivially satisfied. Furthermore, note that (8.130) is equivalent to (8.119).
The result is now immediate.

The next result provides sufficient conditions that guarantee that a
given nonlinear feedback controller has prespecified gain and sector margins.

Theorem 8.9. Let θ ∈ (0, 1) be given. Consider the nonlinear dynami-
cal system G given by (8.100) and (8.101) where φ(x) is a stabilizing feedback
control law. Assume there exist functions R2(x) = diag[r1(x), . . . , rm(x)],
where ri : Rn → R, ri(x) > 0, i = 1, . . . ,m, and V : Rn → R such that
V (·) is continuously differentiable and satisfies (8.127)–(8.131). Then the
nonlinear dynamical system G has a disk margin ( 1

1+θ ,
1

1−θ ). Furthermore,
with the feedback control law φ(x) the performance functional (8.132) is
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minimized in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)), x0 ∈ Rn. (8.134)

Proof. The result is a direct consequence of Theorems 8.4 and 8.7
with the proof being identical to the proof of Theorem 8.8.

8.7 Linear-Quadratic Optimal Regulators

In this section, we specialize Theorems 8.5 and 8.6 to the case of linear
systems. Specifically, consider the stabilizable linear system given by

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0, (8.135)

y(t) = −Kx(t), (8.136)

where A ∈ Rn×n, B ∈ Rn×m, and K ∈ Rm×n, and assume that (A,K)
is detectable and the linear system (8.135) and (8.136) is asymptotically
stable with the feedback u = −y or, equivalently, A + BK is Hurwitz.
Furthermore, assume that K is an optimal regulator which minimizes the
quadratic performance functional given by

J(x0, u(·)) =

∫ ∞

0
[xT(t)R1x(t) + 2xT(t)R12u(t) + uT(t)R2u(t)]dt, (8.137)

where R1 ∈ Rn×n, R12 ∈ Rn×m, and R2 ∈ Rm×m are such that R2 > 0,
R1−R12R

−1
2 RT

12 ≥ 0, and (A,R1) is observable. In this case, it follows from
Theorem 8.4 with f(x) = Ax, G(x) = B, L1(x) = xTR1x, L2(x) = 2xTR12,
R2(x) = R2, φ(x) = Kx, and V (x) = xTPx that the optimal control law
K is given by K = −R−1

2 (BTP + R12), where P > 0 is the solution to the
algebraic regulator Riccati equation given by

0 = (A−BR−1
2 RT

12)
TP+P (A−BR−1

2 RT
12)+R1−R12R

−1
2 RT

12−PBR−1
2 BTP.
(8.138)

The following results provide guarantees of disk, sector, and gain margins
for the linear system (8.135) and (8.136).

Corollary 8.5. Consider the linear dynamical system (8.135) and
(8.136) with performance functional (8.137) and let σ2

max(R12) < σmin(R1)
·σmin(R2). Then, with K = −R−1

2 (BTP +R12), where P > 0 satisfies
(8.138), the linear system (8.135) and (8.136) has disk margin (and, hence,
sector and gain margins) ( 1

1+ηθ ,
1

1−ηθ ), where

η =
σmin(R2)

σmax(R2)
, θ =

(

1 − σ2
max(R12)

σmin(R1)σmin(R2)

)1/2

. (8.139)
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Proof. The result is a direct consequence of Theorem 8.6 with f(x) =
Ax, G(x) = B, φ(x) = Kx, V (x) = xTPx, L1(x) = xTR1x, and L2(x) =
2xTR12. Specifically, note that (8.138) is equivalent to (8.107). Now, with
θ given by (8.139), it follows that (1 − θ2)R1 −R12R

−1
2 RT

12 ≥ 0, and hence,
(8.122) is satisfied so that all the conditions of Theorem 8.6 are satisfied.

Corollary 8.6. Consider the linear dynamical system (8.135) and
(8.136) with performance functional (8.137) and let σ2

max(R12) < σmin(R1)
·σmin(R2), where R2 is diagonal. Then, with K = −R−1

2 (BTP +R12), where
P > 0 satisfies (8.138), the linear system (8.135) and (8.136) has structured
disk margin (and, hence, gain and sector) margin ( 1

1+θ ,
1

1−θ ), where

θ =

(

1 − σ2
max(R12)

σmin(R1)σmin(R2)

)1/2

. (8.140)

Proof. The result is a direct consequence of Theorem 8.5 with f(x) =
Ax, G(x) = B, φ(x) = Kx, V (x) = xTPx, L1(x) = xTR1x, and L2(x) =
2xTR12. Specifically, note that (8.138) is equivalent to (8.107). Now, with
θ given by (8.140), it follows that (1 − θ2)R1 −R12R

−1
2 RT

12 ≥ 0, and hence,
(8.122) is satisfied so that all the conditions of Theorem 8.5 are satisfied.

The gain margins obtained in Corollary 8.6 are precisely the gain
margins given in [95] for linear-quadratic optimal regulators with cross-
weighting terms in the performance criterion. Furthermore, since Corollary
8.6 guarantees structured disk margins of ( 1

1+θ ,
1

1−θ ), it follows that the
linear system has a phase margin φ given by (see Problem 6.20)

cos(φ) = 1 − θ2

2
, (8.141)

or, equivalently,

sin

(

φ

2

)

=
θ

2
. (8.142)

In the case where R12 = 0 it follows from (8.140) that θ = 1, and hence,
Corollary 8.6 guarantees a phase margin of ±60◦ in each input-output
channel. In addition, requiring that R1 ≥ 0, it follows from Corollary 8.6
that the linear system given by (8.135) and (8.136) has a gain and sector
margin of (1

2 ,∞).

Finally, we specialize Proposition 8.2 to the case of linear systems
to provide necessary and sufficient conditions for optimality of a given
stabilizing linear feedback control law.

Proposition 8.3. Let θ ∈ (0, 1) and let R2 ∈ Rm×m be a positive-
definite matrix. Consider the linear system given by (8.135) and (8.136)
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where K ∈ Rm×n is such that A + BK is Hurwitz. Then the following
statements are equivalent:

i) There exist matrices P,R1 ∈ Rn×n, and R12 ∈ Rn×m such that K =
−R−1

2 (BTP + RT
12), P is positive definite, R1 is nonnegative definite,

and

0 = ATP + PA+R1 − (PB +R12)R
−1
2 (PB +R12)

T, (8.143)

0 ≤ (1 − θ2)R1 −R12R
−1
2 RT

12. (8.144)

ii) The transfer function θR
1/2
2 [I −G(s)]−1R

−1/2
2 is bounded real, where

G(s)
△
= K(sI −A)−1B.

iii) The transfer function R2[(1+ θ)I−G(s)][(1− θ)I−G(s)]−1 is positive
real.

Proof. The result follows from Proposition 8.2 with f(x) = Ax,
G(x) = B, φ(x) = Kx, L1(x) = R1, L2(x) = 2xTR12, and V (x) = xTPx.
Specifically, it follows from Proposition 8.2 that K, P , R1, R12, and
R2 satisfy (8.143) and (8.144) if and only if the linear system (8.135)
and (8.136) is dissipative with respect to the supply rate r(u, y) = [u +
y]TR2[u+ y]− θ2uTR2u. Now, it follows from Problem 5.14 that the linear
system (8.135) and (8.136) is dissipative with respect to the supply rate
r(u, y) = [u+y]TR2[u+y]−θ2uTR2u if and only if G∗(s)R2G(s)−G∗(s)R2−
R2G(s) + (1 − θ2)R2 ≥ 0, Re[s] > 0. The result now follows as a direct
consequence of Problem 5.15.

8.8 Stability Margins, Meaningful Inverse Optimality, and

Control Lyapunov Functions

In this section, we specialize the results of Section 8.5 to the case where
L(x, u) is nonnegative for all (x, u) ∈ Rn × Rm. In the terminology of
[128,395] this corresponds to a meaningful cost functional . Here, we assume
L2(x) ≡ 0 and L1(x) ≥ 0, x ∈ Rn. In this case, we show that for every
nonlinear dynamical system for which a control Lyapunov function can be
constructed there exists an inverse optimal feedback control law with sector
and gain margins of (1

2 ,∞). The first result specializes Theorem 8.4 to the
case in which L2(x) ≡ 0.

Theorem 8.10. Consider the nonlinear dynamical system (8.100) with
performance functional (8.102) with L2(x) ≡ 0 and L1(x) ≥ 0, x ∈ Rn.
Assume there exists a continuously differentiable function V : Rn → R such
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that

V (0) = 0, (8.145)

V (x) > 0, x ∈ Rn, x 6= 0, (8.146)

0 = L1(x) + V ′(x)f(x) − 1
4V

′(x)G(x)R−1
2 (x)GT(x)V ′T(x), x ∈ Rn,

(8.147)

and
V (x) → ∞ as ‖x‖ → ∞. (8.148)

Furthermore, assume that the system (8.100) and (8.101) is zero-state
observable with y = L1(x). Then the zero solution x(t) ≡ 0 of the closed-
loop system

ẋ(t) = f(x(t)) +G(x(t))φ(x(t)), x(0) = x0, t ≥ 0, (8.149)

is globally asymptotically stable with the feedback control law

φ(x) = −1
2R

−1
2 (x)GT(x)V ′T(x), (8.150)

and the performance functional (8.102) is minimized in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)), x0 ∈ Rn. (8.151)

Finally,
J(x0, φ(x(·))) = V (x0), x0 ∈ Rn. (8.152)

Proof. The proof is similar to the proof of Theorem 8.3.

Next, we show that for a given nonlinear dynamical system G given
by (8.100) and (8.101), there exists an equivalence between optimality and
passivity. For the following result we assume that for a given nonlinear
system (8.100), if there exists a feedback control law φ(x) such that it
minimizes the performance functional (8.102) with R2(x) ≡ I, L2(x) ≡ 0,
and L1(x) ≥ 0, x ∈ Rn, then there exists a continuously differentiable
positive-definite function V (x), x ∈ Rn, such that (8.147) is satisfied.

Theorem 8.11. Consider the nonlinear dynamical system G given by
(8.100) and (8.101). The feedback control law u = φ(x) is optimal with
respect to a performance functional (8.102) with R2(x) ≡ I, L2(x) ≡ 0,
and L1(x) ≥ 0, x ∈ Rn, if and only if the nonlinear system G is dissipative
with respect to the supply rate r(u, y) = yTy+2uTy and has a continuously
differentiable positive-definite, radially unbounded storage function V (x),
x ∈ Rn.

Proof. If the control law φ(x) is optimal with respect to a performance
functional (8.102) with R2(x) ≡ I, L2(x) ≡ 0, and L1(x) ≥ 0, x ∈ Rn,
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then, by assumption, there exists a continuously differentiable positive-
definite function V (x) such that (8.147) is satisfied. Hence, it follows from
Proposition 8.2 that the solution x(t), t ≥ 0, to (8.100) satisfies

V (x(t2)) ≤
∫ t2

t1

{

[u(t) + y(t)]T[u(t) + y(t)] − uT(t)u(t)
}

dt+ V (x(t1)),

0 ≤ t1 ≤ t2,

which implies that G is dissipative with respect to the supply rate r(u, y) =
yTy + 2uTy.

Conversely, if G is dissipative with respect to the supply rate r(u, y) =
yTy + 2uTy and has a continuously differentiable positive-definite storage
function, then, with h(x) = −φ(x), J(x) ≡ 0, Q = I, R = 0, and S = 2I,
it follows from Theorem 5.6 that there exists a function ℓ : Rn → Rp such
that φ(x) = −1

2G
T(x)V ′T(x) and, for all x ∈ Rn,

0 = V ′(x)f(x) − 1
4V

′(x)G(x)GT(x)V ′T(x) + ℓT(x)ℓ(x).

Now, the result follows from Theorem 8.10 with L1(x) = ℓT(x)ℓ(x).

Example 8.4. Consider the nonlinear scalar dynamical system dis-
cussed in Example 6.6 given by

ẋ(t) = x2(t) + u(t), x(0) = x0, t ≥ 0. (8.153)

Recall that the optimal controller φ(x) = −x2 − x
√
x2 + 1 minimizes the

cost functional J(x0, u(·)) =
∫∞
0 [x2(t) + u2(t)]dt. Furthermore, recall that

V (x) = 2
3(x3 + (x2 + 1)3/2 − 1) satisfies the Hamilton-Jacobi-Bellman

equation. Now, it follows from Theorem 8.11 that (8.153) is dissipative
with respect to the supply rate r(u, y) = y2 + 2uy, where y = −φ(x) =
x2+x

√
x2 + 1. To show this consider the storage function Vs(x) = V (x) and

note that V̇s(x) = V ′(x)(x2 + u) = 2(x2 + x
√
x2 + 1)(x2 + u) = 2(yx2 + yu).

Now, noting that 2x4 + 2x3
√
x2 + 1 ≤ (x2 + x

√
x2 + 1)2 it follows that

2yx2 ≤ y2, and hence, V̇s(x) ≤ y2 + 2uy. △

The next result gives disk and structured disk margins for the
nonlinear dynamical system G given by (8.100) and (8.101).

Corollary 8.7. Consider the nonlinear dynamical system G given by
(8.100) and (8.101) where φ(x) is a stabilizing feedback control law given
by (8.110) with L2(x) ≡ 0 and where V (x), x ∈ Rn, satisfies (8.107).
Furthermore, assume R2(x) = diag[r1, . . . , rm], where ri > 0, i = 1, . . . ,m,
and L1(x) ≥ 0, x ∈ Rn. Then the nonlinear dynamical system G has
a structured disk margin (1

2 ,∞). If, in addition, R2(x) ≡ Im, then the

nonlinear system G has a disk margin (1
2 ,∞)
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Proof. The result is a direct consequence of Theorem 8.5. Specifically,
if L1(x) ≥ 0, x ∈ Rn, and L2(x) ≡ 0, then (8.119) is trivially satisfied for all
θ ∈ (0, 1). Now, the result follows immediately by letting θ → 1.

Next, we provide sector and gain margins for the nonlinear dynamical
system G given by (8.100) and (8.101).

Corollary 8.8. Consider the nonlinear dynamical system G given by
(8.100) and (8.101) where φ(x) is a stabilizing feedback control law given
by (8.65) with L2(x) ≡ 0 and where V (x), x ∈ Rn, satisfies (8.107).
Furthermore, assume R2(x) = diag[r1(x), . . . , rm(x)], where ri : Rn → R,
ri(x) > 0, i = 1, . . . ,m, and L1(x) ≥ 0, x ∈ Rn. Then the nonlinear
dynamical system G has a sector (and, hence, gain) margin (1

2 ,∞).

Proof. The result is a direct consequence of Theorem 8.7. Specifically,
if L1(x) ≥ 0, x ∈ Rn, and L2(x) ≡ 0 then (8.119) is trivially satisfied for all
θ ∈ (0, 1). Now, the result follows immediately by letting θ → 1.

Finally, we show that given a control Lyapunov function for a
controlled nonlinear system, the feedback control law given by (6.81)
guarantees sector and gain margins of (1

2 ,∞).

Theorem 8.12. Consider the nonlinear dynamical system G given
by (8.100) and let the continuously differentiable positive-definite, radially
unbounded function V : Rn → R be a control Lyapunov function of (8.100),
that is,

V ′(x)f(x) < 0, x ∈ R, (8.154)

where R △
= {x ∈ Rn : x 6= 0, V ′(x)G(x) = 0}. Then with the feedback

stabilizing control law given by

φ(x) =







−
(

c0 +
α(x)+

√
α2(x)+(βT(x)β(x))2

βT(x)β(x)

)

β(x), β(x) 6= 0,

0, β(x) = 0,
(8.155)

where α(x)
△
= V ′(x)f(x), β(x)

△
= GT(x)V ′T(x), and c0 > 0, the nonlinear

dynamical system G given by (8.100) and (8.101) has a sector (and, hence,
gain) margin (1

2 ,∞). Furthermore, with the feedback control law u = φ(x)
the performance functional

J(x0, u(·)) =

∫ ∞

0
[α(x(t)) − γ(x(t))

2 βT(x(t))β(x(t)) + 1
2γ(x(t))u

T(t)u(t)]dt,

(8.156)
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where

γ(x)
△
=







(

c0 +
α(x)+

√
α2(x)+(βT(x)β(x))2

βT(x)β(x)

)

, β(x) 6= 0,

c0, β(x) = 0,
(8.157)

is minimized in the sense that

J(x0, φ(x(·))) = min
u∈S(x0)

J(x0, u(·)), x0 ∈ Rn. (8.158)

Proof. The result is a direct consequence of Corollary 8.7 and Theorem

8.10 with R2(x) = 1
2γ(x)Im and L1(x) = −α(x)+ γ(x)

2 βT(x)β(x). Specifically,

it follows from (8.157) that R2(x) > 0, x ∈ Rn, and

L1(x) = −α(x) + γ(x)
2 βT(x)β(x)

=

{

1
2

(

c0β
T(x)β(x) − α(x) +

√

α2(x) + (βT(x)β(x))2
)

, β(x) 6= 0,

−α(x), β(x) = 0.

(8.159)

Now, it follows from (8.159) that L1(x) ≥ 0, β(x) 6= 0, and, since V (·) is
a control Lyapunov function of (8.100), it follows from Theorem 6.7 that
L1(x) = −α(x) ≥ 0, for all x ∈ R = {x ∈ Rn : x 6= 0, β(x) = 0}. Hence,
(8.159) yields L1(x) ≥ 0, x ∈ Rn, so that all conditions of Corollary 8.7 are
satisfied.

Theorem 8.12 shows that given a nonlinear system for which a control
Lyapunov function can be constructed, the feedback control law given by
(8.155) is inverse optimal with respect to a meaningful cost functional and
has a sector (and, hence, gain) margin (1

2 ,∞).

Example 8.5. In this example, we demonstrate the extra flexibility
provided by inverse optimal controllers with performance criteria involving
cross-weighting terms over inverse optimal controllers with meaningful cost
functionals. Specifically, we consider the controlled Lorentz dynamical
system discussed in Example 8.2. Our objective is to design and compare
inverse optimal and meaningful inverse optimal controllers that stabilize the
origin of the Lorentz equations (8.80)–(8.82). In particular, we compare the
guaranteed gain and sector margins to input saturation-type nonlinearities
and the transient performance in terms of maximum overshoot of both
designs. Recall that the control law φ(x) = −(p1

p2
σ + r)x1 stabilizes the

nonlinear system (8.80)–(8.82) while minimizing the performance functional
(8.102) with L1(x) given by (8.85) and L2(x) given by (8.84). In this case,
(8.119) becomes

(1 − θ2)[x̂TQx̂+ 2p2bx
2
3] − x̂TyyTx̂ ≥ 0, (8.160)
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where x̂
△
= [x1, x2]

T,

Q
△
= R2

[

2σp1 +R2(
p1

p2
σ + r)2 −(p1σ + p2r)

−(p1σ + p2r) 2p2

]

, (8.161)

and
y

△
=
[

R2(
p1

p2
σ + r) −p2

]T
. (8.162)

Since 2p2bx
2
3 is nonnegative for all θ ∈ (0, 1) it follows that (8.160) is

equivalent to (1− θ2)Q ≥ yyT, which implies that, if Q is invertible, (8.119)
is satisfied for all θ ∈ (0, 1) such that 1−θ2 ≥ yTQ−1y. Hence, the maximum
possible θ such that (8.119) holds is given by

θ =
√

1 − yTQ−1y. (8.163)

Now, it follows from Theorem 8.6 that for all p1, p2, R2 > 0, such that
det Q 6= 0, with φ(x) given above the nonlinear system (8.80)–(8.82) has
disk margins of ( 1

1+θ ,
1

1−θ ), where θ is given by (8.163). Furthermore, for
given p1, p2, and R2 > 0 these disk margins are the maximum possible disk
margins that are guaranteed by Theorem 8.6. Next, we vary p1, p2, and
R2 such that θ given by (8.163) is maximized. It can be shown that the
maximum is achieved at p1

p2
= r

σ and p2

R2
= 0 so that

θmax =
1√
r + 1

. (8.164)

In this case, the control law φ(x) is given by φ(x) = −2rx1.

Next, using the control Lyapunov function V (x) = p1x
2
1 +p2x

2
2 +p2x

2
3,

where p1, p2 > 0 are such that p1

p2
= r

σ , we design a meaningful inverse

optimal controller using the feedback controller given by (8.155). Using
the initial conditions (x10, x20, x30) = (−20,−20, 30), the data parameters
σ = 10, r = 15, b = 8/3, and design parameters p1 = 1.5 and p2 = 1
the inverse optimal controller φ(x) = −2rx1 and the meaningful inverse
optimal controller given by (8.155) were used to compare closed-loop system
performance. First, we note that the downside disk and sector margins of
the inverse optimal controller are 0.8 while the meaningful inverse optimal
controller guarantees the standard 0.5 downside sector margin with no disk
margin guarantees. Hence, both controllers have guaranteed robustness
sector margins to actuator saturation nonlinearities with, as expected, the
meaningful inverse optimal controller having a slightly larger guarantee.
However, as shown in Figures 8.2 and 8.3, the inverse optimal controller with
a cross-weighting term in the performance functional has better transient
performance in terms of peak overshoot over the meaningful inverse optimal
controller. (We note that the controlled third state is not shown since it
is virtually identical for both designs.) Finally, Figure 8.4 compares the
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control effort versus time for both controllers. △
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Figure 8.2 First state versus time.
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Figure 8.3 Second state versus time.
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Figure 8.4 Control effort versus time.

8.9 Problems

Problem 8.1. Show that every 2nth-order positive definite polynomial
function of the form V (x) =

∑n
q=1(x

TPqx)
q, where P1 > 0 and Pq ≥ 0,

q = 2, . . . , n, can be written as a q-multilinear function where q is even. Can
every multilinear function be written as a polynomial function?

Problem 8.2. Let A ∈ Rn×n. Show that e(
q

⊕A) = (eA)[q]. If, in
addition, det A 6= 0, show

∫ t

0
e(

q

⊕As)ds = (
q

⊕ A)−1[e(
q

⊕At) − Inq ]. (8.165)

Finally, if α(A) < 0, show

∫ ∞

0
e(

q

⊕As)ds = −(
q

⊕ A)−1. (8.166)

Problem 8.3. Consider the nonlinear dynamical system (8.38) and let
V : D → R be a continuously differentiable function satisfying (8.41) and
(8.42). Then we say that the feedback control law φ : D → Ω is optimal
with respect to V if

V ′(x)F (x, φ(x)) ≤ V ′(x)F (x, u), x ∈ D, u ∈ Ω. (8.167)
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Now, consider the linear controlled system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0, (8.168)

where x ∈ Rn and u ∈ Ω
△
= {u ∈ Rm : ‖u‖p ≤ 1}, where p = 1, 2,∞.

Assume A is Hurwitz and define V (x) = xTPx, where P ∈ Rn×n is the
unique positive-definite solution to

0 = ATP + PA+R, (8.169)

for a given n×n positive-definite matrix R. Furthermore, let V (x) = xTPx
be the Lyapunov function for the closed-loop system (8.168) with u = φ(x).
For each value of p ∈ {1, 2,∞}, construct a feedback control law u = φ(x)
that is optimal with respect to V (·) or, equivalently, gives a maximum time
decay rate of V (x).

Problem 8.4. Consider the algebraic Riccati equation (8.53) with R1

= ET
1 E1 ≥ 0. Show that the following statements are equivalent:

i) (A,B) is stabilizable and (A,E1) is detectable.

ii) There exists a nonnegative-definite solution P satisfying (8.53) and
A−BR−1

2 BTP is Hurwitz.

In addition, show that the following statements hold:

iii) If (A,E1) is detectable, then P is the only nonnegative-definite solution
to (8.53).

iv) If R1 > 0, then P > 0.

Problem 8.5. Consider the linear controlled system (8.51) with quad-
ratic performance functional (8.52) and R2 = Im. Show that if (A,B) is
controllable, −A is Hurwitz, and R1 = 0, then

P =

[∫ ∞

0
e−AtBBTe−ATtdt

]−1

(8.170)

is a positive-definite solution to (8.53).

Problem 8.6. Consider the linear controlled system (8.51). Let R1 ∈
Pn, R2 ∈ Pm, α > 0, and assume there exists a positive-definite matrix
P ∈ Rn×n such that

0 = (A+ αIn)TP + P (A+ αIn) +R1 − PBR−1
2 BTP. (8.171)

Show that the linear controlled system (8.51) with feedback control law

u(t) = −R−1
2 BTPx(t), (8.172)
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has the property that all the eigenvalues of the closed-loop system have
real part less than −α. Finally, show that the stabilizing controller (8.172)
minimizes

J(x0, u(·)) =

∫ ∞

0
e2αt[xT(t)R1x(t) + uT(t)R2u(t)]dt. (8.173)

Problem 8.7. Consider the nonlinear dynamical system G given by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, t ≥ 0, (8.174)

y(t) = h(x(t)), (8.175)

where x ∈ Rn, u, y ∈ Rm, f : Rn → Rn satisfies f(0) = 0, G : Rn → Rn×m,
and h : Rn → Rm satisfies h(0) = 0. Assume that G is passive, zero-
state observable, and completely reachable with a continuously differentiable
radially unbounded storage function Vs : Rn → R. Furthermore, let
V : Rn → R be a continuously differentiable function such that V (0) = 0,
V (x) > 0, x ∈ Rn, x 6= 0, V (x) → ∞ as ‖x‖ → ∞, and

0 = L1(x) + V ′(x)f(x) − 1
4V

′(x)G(x)R−1
2 GT(x)V ′T(x), x ∈ Rn, (8.176)

where L1(x) = ℓT(x)ℓ(x) + hT(x)R−1
2 h(x) and ℓ(·) satisfies (5.115). Show

that the output feedback controller u(t) = −R−1
2 y(t), where R2 > 0,

asymptotically stabilizes (8.174) and minimizes the performance criterion

J(x0, u(·)) =

∫ ∞

0
[ℓT(x(t))ℓ(x(t)) + hT(x(t))R−1

2 h(x(t)) + uT(t)R2u(t)]dt,

(8.177)
in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)), x0 ∈ Rn. (8.178)

Furthermore, show that J(x0, φ(x(·))) = V (x0), x0 ∈ Rn.

Problem 8.8. Consider the nonlinear oscillator

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (8.179)

ẋ2(t) = −x1(t) + x2(t)sinh(x2
1(t) + x2

2(t)) + u(t), x2(0) = x20. (8.180)

Find a globally stabilizing feedback controller u(t) = φ(x(t)) that minimizes

J(x10, x20, u(·)) =

∫ ∞

0
[x2

2(t) + u2(t)]dt. (8.181)

Compare the state response and the control effort of the optimal controller to
the feedback linearizing control law uFL(t) = −x2(t)[1+sinh(x2

1(t)+x2
2(t))].

Problem 8.9. Consider the nonlinear oscillator

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (8.182)
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ẋ2(t) = −ex2(t)[x1(t)+
1
2x2(t)] + 1

2x2(t)e
4x1(t)+3x2(t) + e2x1(t)+2x2(t)u(t),

x2(0) = x20. (8.183)

Find a stabilizing feedback controller u(t) = φ(x(t)) that minimizes

J(x10, x20, u(·)) =

∫ ∞

0
[x2

2(t) + u2(t)]dt. (8.184)

Is your controller a global stabilizer?

Problem 8.10. Consider the nonlinear dynamical system

ẋ1(t) = −x3
1(t) + x1(t)x

2
2(t), x1(0) = x10, t ≥ 0, (8.185)

ẋ2(t) = −x2(t) + x2
1(t)u(t), x2(0) = x20. (8.186)

Find a stabilizing feedback controller u(t) = φ(x(t)) that minimizes

J(x10, x20, u(·)) =

∫ ∞

0
[2x2

1(t) + 2x2
2(t) + 1

2u
2(t)]dt. (8.187)

Problem 8.11. Show that in the case where 0 < r ≤ 1, the
uncontrolled (u(t) ≡ 0) Lorentz dynamical system (8.80)–(8.82) has only

one equilibrium state, namely, xe1
△
= (0, 0, 0)T. Alternatively, show that

in the case where r > 1, the uncontrolled Lorentz dynamical system
(8.80)–(8.82) has three equilibrium states, namely, xe1, xe2

△
= (
√

b(r − 1),
√

b(r − 1), r − 1)T, and xe3
△
= (−

√

b(r − 1),−
√

b(r − 1), r − 1)T. Finally,
show that if r ≤ 1, xe1 is a locally asymptotically stable equilibrium point
while if r > 1, xe1 is unstable. What can you say about the stability of xe2

and xe3?

Problem 8.12. Using Theorem 8.3 construct a globally asymptotically
stabilizing control law for the equilibrium state xe

△
= (
√

b(r − 1),
√

b(r − 1),
r − 1)T, r > 1, of the controlled Lorentz dynamical system (8.80)–(8.82).

Problem 8.13. Consider the nonlinear controlled system (8.56) with
performance functional (8.58). Assume there exists a continuously differ-
entiable function V : Rn → R and a function L2 : Rn → R1×m such that
(8.59)–(8.61) and (8.63) hold, and

V ′(x)fs(x) ≤ 0, x ∈ Rn, (8.188)

W △
= {x ∈ Rn : Lk+1

fs
V (x) = Lk

fs
LGi

V (x) = 0, k = 0, 1, . . . , i = 1, . . . ,m}
= {0}, (8.189)

where fs(x)
△
= f(x) − 1

2G(x)R−1
2 (x)LT

2 (x). Show that, with the feedback
control law (8.65), the zero solution x(t) ≡ 0 of the closed-loop system (8.64)
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is globally asymptotically stable, and the performance functional (8.58) with
L1(x) given by (8.66) is minimized in the sense that (8.67) and (8.68) hold.

Problem 8.14. Assume the controlled system (8.56) with output
y(t) = h(x(t)), where h : Rn → Rm, is minimum phase with relative
degree {1, 1, . . . , 1} and complete and involutive vector field G(LGh)

−1.
Furthermore, let

V (x) = V0(z) + yTPy, (8.190)

LT
2 (x) = R2(x)[LGh(x)]

−1[P−1rT(z, y)

(

∂V0(z)

∂z

)T

+ 2Lfh(x)],

(8.191)

where V0 : Rn−m → R is a continuously differentiable positive-definite
function such that V0(0) = 0, V ′

0(z)f0(z) < 0, z ∈ Z △
= {x ∈ Rn : h(x) = 0},

and ż = f0(z), and where P is an arbitrary m×m positive-definite matrix
and r(z, y) is defined as in Lemma 6.2. Show that the feedback control law

φ(x) = −1
2 [LGh(x)]

−1[P−1rT(z, y)

(

∂V0(z)

∂z

)T

+ 2Lfh(x)]

−R−1
2 (x)[LGh(x)]

TPh(x), (8.192)

globally asymptotically stabilizes (8.56) and minimizes the performance
functional (8.58) with L1(x) given by (8.66) in the sense that (8.67) and
(8.68) hold.

Problem 8.15. Consider the nonlinear dynamical system representing
a controlled rigid spacecraft with one torque input given by

ẋ1(t) = I23x2(t)x3(t) + b1

I1
u(t), x1(0) = x10, t ≥ 0, (8.193)

ẋ2(t) = I31x3(t)x1(t) + b2

I2
u(t), x2(0) = x20, (8.194)

ẋ3(t) = I12x1(t)x2(t) + b2

I3
u(t), x3(0) = x30, (8.195)

where I23 = (I2−I3)/I1, I31 = (I3−I1)/I2, I12 = (I1−I2)/I3, and I1, I2, and
I3 are principal moments of inertia of the spacecraft. Using Problem 8.13
with V (x) = 1

2(I1x
2
1 + I2x

2
2 + I3x

2
3) and L2(x) = 0, where x = [x1 x2 x3]

T,
construct a globally stabilizing controller for (8.193)–(8.195).

Problem 8.16. Consider the nonlinear dynamical system

ẋ1(t) = u1(t), x1(0) = x10, t ≥ 0, (8.196)

ẋ2(t) = u2(t), x2(0) = x20, (8.197)

ẋ3(t) = x1(t)x2(t), x3(0) = x30, (8.198)

representing a controlled rigid spacecraft with two actuators along the
principal axes and whose uncontrolled principal axis is not an axis of
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symmetry. Using Problem 8.14 with

y1(t) = x1(t) + αxk
3(t), (8.199)

y2(t) = x2(t) + βxk+1
3 (t), (8.200)

where k is a positive integer and α, β are arbitrary real numbers, construct
a globally stabilizing controller for (8.196)–(8.198).

Problem 8.17. Prove Theorem 8.10.

Problem 8.18. Consider the port-controlled Hamiltonian system given
by (6.22) with performance functional (8.58). Assume that there exist
functions Hs, Hc : D → R, Js, Ja : D → Rn×n, Rs, Ra : D → Rn×n such
that Hs(x) = H(x) + Hc(x) is continuously differentiable, Js(x) = J (x) +
Ja(x), Js(x) = −J T

s (x), Rs(x) = R(x)+Ra(x), Rs(x) = RT
s (x) ≥ 0, x ∈ D,

condition (6.25) is satisfied, and

∂2Hs

∂x2
(x) > 0, x ∈ D, (8.201)

[Js(x) − Rs(x) +
1

2
G(x)R−1

2 (x)GT(x)]

(

∂Hc

∂x
(x)

)T

= [− [Ja(x) −Ra(x)]

− 1

2
G(x)R−1

2 (x)GT(x)]

(

∂H
∂x

(x)

)T

− 1

2
G(x)R−1

2 (x)LT
2 (x), x ∈ D.

(8.202)

Show that the equilibrium solution x(t) ≡ xe of the closed-loop system given
by (6.24) is Lyapunov stable with the feedback control law

φ(x) = −1

2
R−1

2 (x)

(

GT(x)

(

∂Hs

∂x
(x)

)T

+ LT
2 (x)

)

, x ∈ D. (8.203)

If, in addition, Dc ⊆ D is a compact positively invariant set with respect
to (6.24) and the largest invariant set contained in R △

= {x ∈ Dc :
∂Hs

∂x (x)Rs(x)
(

∂Hs

∂x (x)
)T

= 0} is M = {xe}, show that the equilibrium
solution x(t) ≡ xe of the closed-loop system (6.24) is locally asymptotically
stable. Moreover, show that the performance functional (8.58), with

L1(x) = φT(x)R2(x)φ(x) − ∂Hs

∂x
(x) [J (x) −R(x)]

(

∂H
∂x

(x)

)T

, (8.204)

is minimized in the sense that

J(x0, φ(x(·))) = min
u(·)∈C(x0)

J(x0, u(·)), x0 ∈ Dc, (8.205)

and J(x0, φ(x(·))) = Hs(x0) −Hs(xe), x0 ∈ Dc.
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Problem 8.19. Consider the nonlinear dynamical system G given
by (8.100) and assume that G is a J-Q type system (see Problem 6.25)
so that there exists a continuously differentiable positive-definite, radially
unbounded function V : Rn → R satisfying i) and ii) of Problem 6.25. Show
that with the feedback stabilizing control law

φ(x) = −κ[V ′(x)G(x)]T, κ > 0, (8.206)

the nonlinear system (8.100) and (8.101) has a disk margin (0,∞). Further-
more, with the feedback control law u = φ(x), show that the performance
functional

J(x0, u(·)) =

∫ ∞

0

{

κ
2 [V ′(x(t))G(x(t))][V ′(x(t))G(x(t))]T

−V ′(x(t))f(x(t)) + 2
κu

T(t)u(t)
}

dt, (8.207)

is minimized in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)), x0 ∈ Rn. (8.208)

Problem 8.20. Consider the nonlinear dynamical system G given by
(8.100) and let V : Rn → R be a continuously differentiable positive-definite,
radially unbounded control Lyapunov function for (8.100). Let φ : Rn → Rm

satisfy

‖φ(x)‖ = min{‖u‖ : V ′(x)[f(x) +G(x)u] ≤ −σ(x), u ∈ Rm}, x ∈ Rn,
(8.209)

where ‖ · ‖ denotes the Euclidean norm, σ : Rn → R is a continuous

positive-definite function such that V ′(x)f(x) ≤ −σ(x), x ∈ R △
= {x ∈

Rn : V ′(x)G(x) = 0}. Show that the control law φ(x) given by (8.209) is
globally stabilizing and inverse optimal with respect to the cost functional

J(x0, u(·)) =

∫ ∞

0
[L1(x(t)) + uT(t)R2(x(t))u(t)]dt, (8.210)

where L1(x) ≥ 0 and R2(x) > 0, x ∈ Rn. If, in addition,

σ(x) =
√

α2(x) + q(x)βT(x)β(x),

where α(x)
△
= V ′(x)f(x), β(x)

△
= V ′(x)G(x), and q : Rn → R is a

nonnegative function, show that the control law φ(x) given by (8.209)
specializes to

φ(x) =

{

−α(x)+
√

α2(x)+q(x)βT(x)β(x)

βT(x)β(x)
β(x), β(x) 6= 0,

0, β(x) = 0.
(8.211)

Finally, let κ : R → R be a continuously differentiable class K function and
let V̂ : Rn → R be a continuously differentiable positive-definite, radially
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unbounded function such that V (x) = κ(V̂ (x)) and

0 = V̂ ′(x)f(x) + q(x) − 1
4 V̂

′(x)G(x)GT(x)V̂ ′T(x). (8.212)

Show that the control law u = φ(x) given by (8.211) minimizes the cost
functional

J(x0, u(·)) =

∫ ∞

0
[q(x(t)) + uT(t)u(t)]dt. (8.213)

Problem 8.21. Consider the port-controlled Hamiltonian system

ẋ(t) = J (x(t))

[

∂H
∂x

(x(t))

]T

+G(x(t))u(t), x(0) = x0, t ≥ 0, (8.214)

y(t) = GT(x(t))

[

∂H
∂x

(x(t))

]T

, (8.215)

where x ∈ Rn, u, y ∈ Rm, H : D → R, G : Rn → Rn×m, and J : Rn →
Rn×n satisfies J (x) = −J T(x). Assume that (8.214) and (8.215) is zero-

state observable. Show that the feedback control law φ(x) = −GT(x)
[

∂H
∂x

]T

asymptotically stabilizes (8.214) and minimizes the performance functional

J(x0, u(·)) = 1
2

∫ ∞

0
[yT(t)y(t) + uT(t)u(t)]dt. (8.216)

8.10 Notes and References

The results in Sections 8.2 and 8.3 on stability analysis and optimal control
of nonlinear systems are due to Bernstein [43]. In particular, Bernstein [43]
gives an excellent review of the nonlinear-nonquadratic control problem in
a simplified and tutorial manner. Polynomial forms in the performance
criterion were developed by Speyer [411] while multilinear forms were
addressed by Bass and Webber [33]. A treatment of nonlinear-nonquadratic
optimal control is also given by Jacobson [217]. The inverse optimal control
problem has been studied by numerous authors including Kalman [227],
Moylan and Anderson [321], Moylan [320], Molinari [317], Jacobson [217],
Anderson and Moore [10], Wan and Bernstein [449], and more recently by
Freeman and Kokotovic [127,128]. The presentation here parallels that given
by Wan and Bernstein [449].

The equivalence between optimality and passivity is due to Kalman
[227] for linear systems and Moylan [320] for nonlinear systems. Gain,
sector, and disk margins of nonlinear-nonquadratic optimal regulators
with performance measures involving cross-weighting terms are due to
Chellaboina and Haddad [85]. An excellent treatment on meaningful inverse
optimality is given by Freeman and Kokotović [128] and Sepulchre, Janković,
and Kokotović [395].



NonlinearBook10pt November 20, 2007

OPTIMAL NONLINEAR FEEDBACK CONTROL 555

Finally, the concept of optimality with respect to a Lyapunov function
introduced in Problem 8.3 is due to Bernstein [43] while the inverse optimal
controller for J-Q type systems introduced in Problem 8.13 and the inverse
optimal controller for the minimum phase system introduced in Problem
8.14 is due to Wan and Bernstein [449]. The concept of the pointwise
control minimization for generating control Lyapunov functions introduced
in Problem 8.20 is due to Freeman and Primbs [129].
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Chapter Nine

Inverse Optimal Control and Integrator

Backstepping

9.1 Introduction

Control system designers have usually resorted to Lyapunov methods [445]
in order to obtain stabilizing controllers for nonlinear systems. In particular,
for smooth feedback, Lyapunov-based methods were inspired by Jurdjevic
and Quinn [224] who give sufficient conditions for smooth stabilization based
on the ability of constructing a Lyapunov function for the closed-loop system
[434]. Unfortunately, however, there does not exist a unified procedure for
finding a Lyapunov function candidate that will stabilize the closed-loop
system for general nonlinear systems. Recent work involving differential
geometric methods [212, 336] has made the design of controllers for certain
classes of nonlinear systems more methodical. Such frameworks include the
concepts of zero dynamics and feedback linearization and require that the
system zero dynamics are asymptotically stable, ensuring the existence of
globally defined diffeomorphisms to transform the nonlinear system into a
normal form [212,336]. These techniques, however, usually rely on canceling
out system nonlinearities using feedback and may therefore lead to inefficient
designs since feedback linearizing controllers may generate unnecessarily
large control effort to cancel beneficial system nonlinearities.

Backstepping control has recently received a great deal of attention in
the nonlinear control literature [222, 230, 246, 249, 392]. The popularity of
this control methodology can be explained in a large part due to the fact
that it provides a framework for designing stabilizing nonlinear controllers
for a large class of nonlinear dynamical cascade systems. This framework
guarantees stability by providing a systematic procedure for finding a
Lyapunov function for the closed-loop system and choosing the control such
that the time derivative of the Lyapunov function along the trajectories of
the closed-loop dynamical system is negative. Furthermore, the controller is
obtained in such a way that the nonlinearities of the dynamical system,
which may be useful in reaching performance objectives, need not be
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canceled as in state or output feedback linearization techniques. Using this
framework, the control system designer has a significant amount of freedom
in designing the controller to address specific performance objectives while
guaranteeing closed-loop stability.

In [126,127] optimal pointwise min-norm state tracking controllers are
obtained for feedback linearizable systems by computing pointwise solutions
of a static quadratic programming problem. A trade-off between control
effort and tracking error is automatically taken into account in designing
these controllers. The optimality of this control design method relies on
the fact that every Lyapunov function solves the Hamilton-Jacobi-Bellman
equation associated with a cost functional. However, this theory does
not present a natural extension to the larger class of systems for which
recursive backstepping is applicable. In particular, it is noted in [247] that
for recursive control schemes such as backstepping, optimization of partial
cost functionals at each step will by no means result in overall optimization.
Backstepping does, however, utilize a Lyapunov function for the overall
system based on stabilizing functions (virtual controls) which are defined
at each recursion step. This Lyapunov function can be used to derive a
performance criterion for which the overall control, consisting of the control
law obtained at the final and intermediate steps, is optimal.

In this chapter, we extend the optimality-based nonlinear control fra-
mework developed in Chapter 8 to cascade and block cascade systems for
which the backstepping control design methodology is applicable. The key
motivation for developing an optimal and inverse optimal nonlinear back-
stepping control theory is that it provides a family of candidate backstepping
controllers parameterized by the cost functional that is minimized. In order
to address the optimality-based backstepping nonlinear control problem
we use the nonlinear-nonquadratic optimal control framework developed in
Chapter 8 to show that a particular controller derived via backstepping
methods corresponds to the solution of an optimal control problem that
minimizes an inverse nonlinear-nonquadratic performance criterion. This is
accomplished by choosing the controller such that the Lyapunov derivative is
negative along the closed-loop system trajectories while providing sufficient
conditions for the existence of asymptotically stabilizing solutions to the
Hamilton-Jacobi-Bellman equation. Thus, our results allow us to derive
globally asymptotically stabilizing backstepping controllers for nonlinear
systems that minimize a derived nonlinear-nonquadratic performance func-
tional.
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9.2 Cascade and Block Cascade Control Design

In this section, we consider the nonlinear cascade system

ẋ(t) = f(x(t)) +G(x(t))x̂(t), x(0) = x0, t ≥ 0, (9.1)
˙̂x(t) = u(t), x̂(0) = x̂0, (9.2)

where x ∈ Rn, x̂ ∈ Rm, f : Rn → Rn satisfies f(0) = 0, and G : Rn → Rm.
Here, we seek a globally stabilizing feedback controller for (9.1) and (9.2). To
introduce the integrator backstepping approach note that (9.1) and (9.2) can
be viewed as a cascade connection of two dynamical subsystems, as shown
in Figure 9.1(a). Specifically, the first subsystem is (9.1) with input x̂ and
the second subsystem consists of m integrators. Next, we assume that there
exists a continuously differentiable function α : Rn → Rm such that the zero
solution x(t) ≡ 0 of the first subsystem (9.1) is asymptotically stable with x̂
replaced by α(x). In this case, it follows from Theorem 3.9 that there exists
a continuously differentiable positive-definite function Vsub : Rn → R such
that

V ′
sub(x)[f(x) +G(x)α(x)] < 0, x ∈ Rn, x 6= 0. (9.3)

Next, adding and subtracting G(x)α(x), x ∈ Rn, to and from (9.1)
yields the equivalent dynamical system

ẋ(t) = f(x(t)) +G(x(t))α(x(t)) +G(x(t))[x̂(t) − α(x(t))],

x(0) = x0, t ≥ 0, (9.4)
˙̂x(t) = u(t), x̂(0) = x̂0, (9.5)

shown in Figure 9.1(b). Introducing the change of variables z(t)
△
= x̂(t) −

α(x(t)) yields

ẋ(t) = f(x(t)) +G(x(t))α(x(t)) +G(x(t))z(t), x(0) = x0, t ≥ 0, (9.6)

ż(t) = u(t) − α̇(x(t)), z(0) = z0. (9.7)

As shown in Figure 9.1(c), transforming (9.1) and (9.2) to (9.6) and (9.7)
can be viewed as “backstepping” −α(x) through the integrator subsystem.

Now, with v(t)
△
= u(t) − α̇(x(t)), (9.6) and (9.7) reduces to

ẋ(t) = f(x(t)) +G(x(t))α(x(t)) +G(x(t))z(t), x(0) = x0, t ≥ 0, (9.8)

ż(t) = v(t), z(0) = z0, (9.9)

which, when z(t) is bounded and z(t) → 0 as t → ∞, is an asymptotically
stable cascade system (see Proposition 4.2).

Exploiting this feature, we can stabilize the overall system by consid-
ering the Lyapunov function candidate

V (x, x̂) = Vsub(x) + (x̂− α(x))TP (x̂− α(x)), (9.10)
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Figure 9.1 Visualization of integrator backstepping.

where P ∈ Rm×m is an arbitrary positive-definite matrix. In this case, the
Lyapunov derivative is given by

V̇ (x, x̂) = V ′
sub(x)[f(x) +G(x)α(x)] + V ′

sub(x)G(x)z + 2zTPv. (9.11)

Letting v = −1
2P

−1GT(x)V ′T
sub(x) − kz, where k > 0, yields

V̇ (x, x̂) = V ′
sub(x)[f(x) +G(x)α(x)] − k(x̂− α(x))TP (x̂− α(x))

< 0, (x, x̂) ∈ Rn × Rm, (x, x̂) 6= (0, 0). (9.12)

Hence, the control law

u = v + α̇(x)

= −k(x̂− α(x)) − 1
2P

−1GT(x)V ′T
sub(x) + α′(x)[f(x) +G(x)x̂)], (9.13)

stabilizes the nonlinear cascade system (9.1) and (9.2). Using the above
results the following proposition is immediate.
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Proposition 9.1. Consider the nonlinear cascade system (9.1) and
(9.2). Assume that there exist a continuously differentiable function α :
Rn → Rm and a continuously differentiable radially unbounded function
Vsub : Rn → R such that

α(0) = 0, (9.14)

Vsub(0) = 0 (9.15)

Vsub(x) > 0, x ∈ Rn, x 6= 0, (9.16)

V ′
sub(x)[f(x) +G(x)α(x)] < 0, x ∈ Rn, x 6= 0. (9.17)

Then, the zero solution (x(t), x̂(t)) ≡ (0, 0) of the cascade system (9.1) and
(9.2) is globally asymptotically stable with the feedback control law (9.13).

Example 9.1. Consider the nonlinear cascade system

ẋ1(t) = −3
2x

2
1(t) − 1

2x
3
1(t) − x2(t), x1(0) = x10, t ≥ 0, (9.18)

ẋ2(t) = u(t), x2(0) = x20. (9.19)

Here, we seek a globally stabilizing controller for (9.18) and (9.19) using
the integrator backstepping approach. Note that (9.18) and (9.19) has the
correct form for the application of Proposition 9.1 where (9.18) makes up the
nonlinear subsystem and x2 is the integrator state. Specifically, (9.18) and
(9.19) can be written in the form of (9.1) and (9.2) where x = x1, x̂ = x2,
and

f(x) = −3
2x

2 − 1
2x

3, G(x) = −1.

To apply Proposition 9.1 we require a stabilizing feedback for the
subsystem (9.18) and a corresponding Lyapunov function Vsub(x) such that
(9.14)–(9.17) are satisfied. For the nonlinear subsystem (9.18) we choose the
Lyapunov function candidate

Vsub(x) = x2
1 (9.20)

and the stabilizing feedback control

α(x) = −3
2x

2. (9.21)

It is straightforward to show that (9.20) and (9.21) satisfy conditions (9.14)–
(9.17) of Proposition 9.1. Now, it follows from Proposition 9.1 that the
control law given by (9.13), that is,

u = −k(x2 + 3
2x

2
1) + P−1x1 + 3x1(

3
2x

2
1 + 1

2x
3
1 + x2), (9.22)

where k and P are positive constants, is a globally stabilizing feedback
control law for the overall system (9.18) and (9.19). △

Example 9.2. Consider the nonlinear cascade system

ẋ1(t) = −σ
2x1(t)[

1
4x

2
1(t) + 2x2(t) + x2

2(t)], x1(0) = x10, t ≥ 0, (9.23)
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ẋ2(t) = −3
2x

2
2(t) − 1

2x
3
2(t) − 3

4x
2
1(t)(1 + x2(t)) − x3(t), x2(0) = x30,

(9.24)

ẋ3(t) = u(t), x3(0) = x30, (9.25)

where σ > 0. Once again, we seek a globally stabilizing controller for (9.23)–
(9.25) using Proposition 9.1. Note that (9.23)–(9.25) has the correct form
for the application of Proposition 9.1 where (9.23) and (9.24) make up the
nonlinear subsystem and x3 is the integrator state. Specifically, (9.23)–(9.25)
can be written in the form of (9.1) and (9.2) where x = [x1 x2]

T, x̂ = x3,
and

f(x) =

[

σ
2x1(

1
4x

2
1 + 2x2 + x2

2)
−3

2x
2
2 − 1

2x
3
2 − 3

4x
2
1(1 + x2)

]

, G(x) =

[

0
−1

]

.

To apply Proposition 9.1 we require a stabilizing feedback for the
subsystem (9.23) and (9.24) and a corresponding Lyapunov function Vsub(x)
such that (9.14)–(9.17) are satisfied. For the nonlinear subsystem (9.23) and
(9.24) we choose the Lyapunov function candidate

Vsub(x) = εx4
1 + x2

2, (9.26)

where ε > 0, and the stabilizing feedback control

α(x) = −(2εσx4
1 + 3

2x
2
2 + 3

4x
2
1). (9.27)

It is straightforward to show that (9.26) and (9.27) satisfy conditions (9.14)–
(9.17) of Proposition 9.1. Now, it follows from Proposition 9.1 that the
control law given by (9.13), that is,

u = −k(x3 − α(x)) + P−1x2 + α′(x)[f(x) +G(x)x3], (9.28)

where k and P are positive constants, is a globally stabilizing feedback
control law for the overall system (9.23)–(9.25). △

Next, we consider the application of backstepping control design to
more general block cascade systems of the form

ẋ(t) = f(x(t)) +G(x(t))x̂(t), x(0) = x0, t ≥ 0, (9.29)

˙̂x(t) = f̂(x(t), x̂(t)) + Ĝ(x(t), x̂(t))u(t), x̂(0) = x̂0, (9.30)

where the subsystem (9.29) is as (9.1) and x̂ ∈ Rm, f̂ : Rn × Rm → Rm

satisfies f̂(0, 0) = 0, and Ĝ : Rn×Rm → Rm×m. Now, suppose det Ĝ(x, x̂) 6=
0, (x, x̂) ∈ Rn × Rm, and suppose there exists a continuously differentiable
function α : Rn → Rm such that the zero solution x(t) ≡ 0 of (9.29) is
asymptotically stable with x̂ replaced by α(x). In this case, it follows from
Theorem 3.9 that there exists a continuously differentiable positive-definite
function Vsub : Rn → R such that (9.17) holds. Now, once again using the
Lyapunov function candidate given by (9.10) for the overall system (9.29)
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and (9.30), it follows that

V̇ (x, x̂) = V ′
sub(x)[f(x) +G(x)α(x)] + V ′

sub(x)G(x)[x̂ − α(x)]

+2[x̂− α(x)]TP
{

f̂(x, x̂) + Ĝ(x, x̂)u− α′(x)[f(x) +G(x)x̂]
}

.

(9.31)

Now, choosing

u = Ĝ−1(x, x̂)

{

α′(x)[f(x) +G(x)x̂] − 1
2P

−1GT(x)V ′T
sub(x) − f̂(x, x̂)

−k(x̂− α(x))

}

, (9.32)

where k > 0, it follows that (9.12) is satisfied, and hence, (9.32) stabilizes
the block cascade system (9.29) and (9.30). If, in addition, Vsub(·) is radially
unbounded, (9.32) is a global stabilizer.

Using the backstepping formulation discussed above, it follows that a
recursive formulation of this approach can be used to stabilize strict-feedback
nonlinear smooth systems of the form

ẋ(t) = f(x(t)) +G(x(t))x̂1(t), x(0) = x0, t ≥ 0, (9.33)

˙̂x1(t) = f̂1(x(t), x̂1(t)) + Ĝ1(x(t), x̂1(t))x̂2(t), x̂1(0) = x̂01
, (9.34)

˙̂x2(t) = f̂2(x(t), x̂1(t), x̂2(t)) + Ĝ2(x(t), x̂1(t), x̂2(t))x̂3(t),

x̂3(0) = x̂02
, (9.35)

...
˙̂xm(t) = f̂m(x(t), x̂1(t), . . . , x̂m(t)) + Ĝm(x(t), x̂1(t), . . . , x̂m(t))u(t),

x̂m(0) = x̂0m
, (9.36)

where x ∈ Rn, f : Rn → Rn satisfies f(0) = 0, G : Rn → Rm, x̂i ∈ R,

i = 1, . . . ,m, f̂i : Rn × Ri → R satisfies f̂i(0) = 0, i = 1, . . . ,m, and

Ĝi : Rn × Ri → R, i = 1, . . . ,m. Specifically, assuming Ĝi(x, x̂1, . . . , x̂i) 6=
0, 1 ≤ i ≤ m, and assuming the there exists an m-times continuously
differentiable function α : Rn → R such that the first subsystem (9.33) is
asymptotically stable with x̂1 replaced by α(x), a recursive backstepping
procedure can be used to stabilize (9.33)–(9.36).

In particular, considering the system

ẋ(t) = f(x(t)) +G(x(t))x̂1(t), x(0) = x0, t ≥ 0, (9.37)

˙̂x1(t) = f̂1(x(t), x̂1(t)) + Ĝ1(x(t), x̂1(t))x̂2(t), x̂1(0) = x̂01
, (9.38)

it follows from (9.29)–(9.32), with x̂ = x̂1, u = x̂2, f̂(x, x̂) = f̂1(x, x̂1), and
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Ĝ(x, x̂) = Ĝ1(x, x̂1), that the feedback control law

α1(x, x̂1) = Ĝ−1
1 (x, x̂1)

{

α′(x)[f(x) +G(x)x̂1] − 1
2P

−1
1 GT(x)V ′T

sub(x)

−f̂1(x, x̂1) − k1(x̂1 − α(x))

}

, k1 > 0, (9.39)

asymptotically stabilizes (9.37) and (9.38) with Lyapunov function

V1(x, x̂1) = Vsub(x) + P1(x̂1 − α(x))2, (9.40)

where Vsub(x) is such that (9.3) holds. Next, considering the system

ẋ(t) = f(x(t)) + Ĝ(x(t))x̂1(t), x(0) = x0, t ≥ 0, (9.41)

˙̂x1(t) = f̂1(x(t), x̂1(t)) + Ĝ1(x(t), x̂1(t))x̂2(t), x̂1(0) = x̂01
, (9.42)

˙̂x2(t) = f̂2(x(t), x̂1(t), x̂2(t)) + Ĝ2(x(t), x̂1(t), x̂2(t))x̂3(t), x̂3(0) = x̂02
,

(9.43)

it follows from (9.29)–(9.32), with x =
[

xT x̂T
1

]T
, x̂ = x̂2, u = x̂3,

f(x) =

[

f(x) +G(x)x̂1

f̂1(x, x̂1)

]

, G(x) =

[

0
G1(x, x̂1)

]

,

f̂(x, x̂) = f̂2(x, x̂1, x̂2), and Ĝ(x, x̂) = Ĝ2(x, x̂1, x̂2), that the feedback
control law

α2(x, x̂1, x̂2) = G−1
2 (x, x̂1, x̂2)

{[

∂α1(x, x̂1)

∂x

]T

[f(x) +G(x)x̂1]

+

[

∂(x, x̂1)α1

∂x̂1

]T

[f̂1(x, x̂1) +G1(x, x̂1)x̂2]

−1
2P

−1
2 G1(x, x̂1)

∂V1(x, x̂1)

∂x̂1

−f̂2(x, x̂1) − k2[x̂2 − α1(x, x̂1)]

}

, k2 > 0, (9.44)

asymptotically stabilizes (9.41)–(9.43) with Lyapunov function

V2(x, x̂1, x̂2) = V1(x, x̂1) + P2(x̂2 − α1(x, x̂1))
2. (9.45)

Repeating this procedure m-times, an overall state feedback controller of
the form u = αm(x, x̂1, . . . , x̂m) with Lyapunov function Vm(x, x̂1, . . . , x̂m)
can be obtained for the strict-feedback nonlinear system (9.34)–(9.36).

Example 9.3. To demonstrate the recursive backstepping procedure
discussed above consider the nonlinear dynamical system

ẋ1(t) = x4
1(t) − x5

1(t) + x2(t), x1(0) = x10, t ≥ 0, (9.46)

ẋ2(t) = x3(t), x2(0) = x20, (9.47)
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ẋ3(t) = u(t), x3(0) = x30. (9.48)

We start by considering the system

ẋ1(t) = x4
1(t) − x5

1(t) + x2(t), x1(0) = x10, t ≥ 0, (9.49)

ẋ2(t) = x3(t), x2(0) = x20, (9.50)

which has the form of (9.1) and (9.2) with x = x1, x̂ = x2, u = x3, f(x1) =
x4

1 − x5
1, and G(x) = 1. To apply Proposition 9.1 we require a stabilizing

feedback for the subsystem (9.49) and a corresponding Lyapunov function
Vsub(x1) such that (9.14)–(9.17) are satisfied. For the nonlinear subsystem
(9.49) we choose the Lyapunov function candidate Vsub(x1) = 1

2x
2
1 and the

stabilizing feedback control α(x1) = −x4
1 −x1. It is straightforward to show

that Vsub(x1) and α(x1) given above satisfy the conditions of Proposition
9.1. Hence, it follows from Proposition 9.1 that

x3 = −(x2 + x4
1 + x1) − x1 − (4x3

1 + 1)(x4
1 − x5

1 + x2) (9.51)

is a globally stabilizing feedback control law for (9.49) and (9.50) with
Lyapunov function

V1(x1, x2) = Vsub(x1) + 1
2(x2 + x4

1 + x1)
2. (9.52)

Next, we view (9.46)–(9.48) as (9.1) and (9.2) with x = [x1 x2]
T,

x̂ = x3, f(x1, x2) = [x4
1 − x5

1 + x2 0]T, and G(x1, x2) = [0 1]T. Now, with

α1(x1, x2) = −(x2 + x4
1 + x1) − x1 − (4x3

1 + 1)(x4
1 − x5

1 + x2), (9.53)

and V1(x1, x2) given by (9.52) it follows that all the conditions of Proposition
9.1 are satisfied. Hence, it follows from Proposition 9.1 that

u = −(x3 − α1(x1, x2)) −GT(x1, x2)V
T
1 (x1, x2) + α′

1(x1, x2)

·[f(x1, x2) +G(x1, x2)x3] (9.54)

globally stabilizes (9.46)–(9.49) with Lyapunov function

V (x1, x2, x3) = V1(x1, x2) + 1
2(x3 − α1(x1, x2))

2. (9.55)

△

As shown in this section, backstepping control provides a systematic
procedure for finding a Lyapunov function for cascade and block cascade
systems while choosing a stabilizing feedback control law. Since the control
designer has a significant amount of freedom in designing the controller,
it is natural to ask the question: Does there exist analytical measures of
performance or notions of optimality for backstepping controllers? This
question is addressed in the remainder of this chapter.
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9.3 Optimal Integrator Backstepping Controllers

In this section, we develop an optimality-based framework for backstepping
controllers. The key motivation for developing an optimal nonlinear back-
stepping control theory is that it provides a family of candidate backstepping
controllers parameterized by the cost functional that is minimized. In order
to address the optimality-based backstepping nonlinear control problem
we use the nonlinear-nonquadratic optimal control framework developed in
Chapter 8. For our first result, define

L(x, x̂, u)
△
= L1(x, x̂) + L2(x, x̂)u+ uTR2(x, x̂)u, (9.56)

where L1 : Rn ×Rm → R, L2 : Rn ×Rm → R1×m, and R2 : Rn ×Rm → Pm,
and define

S(x0, x̂0)
△
= {u(·) : u(·) ∈ U and (x(·), x̂(·)) given by

(9.1) and (9.2) satisfies (x(t), x̂(t)) → 0 as t→ ∞} .

Theorem 9.1. Consider the nonlinear cascade system (9.1) and (9.2)
with performance functional

J(x0, x̂0, u(·)) △
=

∫ ∞

0
L(x(t), x̂(t), u(t))dt, (9.57)

where u(·) is admissible, (x(t), x̂(t)), t ≥ 0, satisfies (9.1) and (9.2),
and L(x, x̂, u) is given by (9.56). Assume that there exist continuously
differentiable functions α : Rn → Rm and Vsub : Rn → R such that

α(0) = 0, (9.58)

Vsub(0) = 0, (9.59)

Vsub(x) > 0, x ∈ Rn, x 6= 0, (9.60)

V ′
sub(x)[f(x) +G(x)α(x)] < 0, x ∈ Rn, x 6= 0. (9.61)

Furthermore, let L2 : Rn × Rm → R1×m be such that L2(0, 0) = 0 and

(x̂− α(x))T
{

GT(x)V ′T
sub(x) − 2P̂

[

α′(x)(f(x) +G(x)x̂)

+R−1
2 (x, x̂)[P̂ (x̂− α(x)) + 1

2L
T
2 (x, x̂)]

]

}

< 0, (x, x̂) ∈ Rn × Rm, x̂ 6= α(x),

(9.62)

where P̂ ∈ Rm×m is an arbitrary positive-definite matrix. Then the zero
solution (x(t), x̂(t)) ≡ (0, 0) of the cascade system (9.1) and (9.2) is globally
asymptotically stable with the feedback control law

u = φ(x, x̂) = −R−1
2 (x, x̂)P̂ [x̂− α(x)] − 1

2R
−1
2 (x, x̂)LT

2 (x, x̂). (9.63)



NonlinearBook10pt November 20, 2007

OPTIMAL INTEGRATOR BACKSTEPPING CONTROL 567

Furthermore,

J(x0, x̂0, φ(x(·), x̂(·))) = V (x0, x̂0), (x0, x̂0) ∈ Rn × Rm, (9.64)

where
V (x, x̂) = Vsub(x) + [x̂− α(x)]TP̂ [x̂− α(x)], (9.65)

and the performance functional (9.57), with

L1(x, x̂) = φT(x, x̂)R2(x, x̂)φ(x, x̂) − V ′
sub(x)[f(x) +G(x)x̂]

+2[x̂− α(x)]TP̂α′(x)[f(x) +G(x)x̂], (9.66)

is minimized in the sense that

J(x0, x̂0, φ(x(·), x̂(·))) = min
u(·)∈S(x0,x̂0)

J(x0, x̂0, u(·)). (9.67)

Proof. The result follows as a direct consequence of Theorem 8.3
applied to the system

˙̃x(t) = f̃(x̃(t)) + G̃(x̃(t))u(t), x̃(0) = x̃0, t ≥ 0, (9.68)

where

x̃ =

[

x
x̂

]

, f̃(x̃) =

[

f(x) +G(x)x̂
0

]

, G̃(x̃) =

[

0
Im

]

.

Specifically, conditions (8.59)–(8.62) are trivially satisfied by (9.58)–(9.62)
and (9.65). Next, using (9.63) and (9.68), φ(x, x̂) can be written as

φ(x̃) = −1
2R

−1
2 (x̃)[LT

2 (x̃) + G̃T(x̃)V ′T(x̃)] (9.69)

so that (8.65) is satisfied. Finally, using (9.65) and (9.68) it follows that
(9.66) or, equivalently,

L1(x̃) = φT(x̃)R2(x̃)φ(x̃) − V ′(x̃)f̃(x̃), (9.70)

satisfies (8.66).

Note that the only restrictions on the choice of L2(·, ·) are the
conditions L2(0, 0) = 0 and (9.62) which must be satisfied. Therefore, a
significant amount of freedom with regard to the form of the controller
is available to the control designer. Furthermore, since L2(x, x̂) appears
explicitly in both the feedback control law φ(x, x̂) and the cost functional
J(x0, x̂0, u), it ties together the particular choice of control and the form
of the performance criterion for which the control is optimal. A particular
choice of L2(x, x̂) satisfying condition (9.62) is given by

L2(x, x̂) =
[

V ′
sub(x)G(x)P̂−1 − 2[f(x) +G(x)x̂]Tα′T(x)

]

R2(x, x̂). (9.71)

In this case, for u(t) ∈ R, t ≥ 0, the feedback control law given by (9.63)
specializes to the integrator backstepping controller given by Lemma 2.8
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of [247] by setting P̂ = 1
2Im and R2(x, x̂) = 1/c.

The next result provides inverse optimal controllers for cascade
systems with guaranteed sector margins.

Theorem 9.2. Consider the nonlinear cascade system (9.1) and (9.2).
Assume that there exist continuously differentiable functions α : Rn → Rm

and Vsub : Rn → R such that

α(0) = 0, (9.72)

Vsub(0) = 0, (9.73)

Vsub(x) > 0, x ∈ Rn, x 6= 0, (9.74)

V ′
sub(x)[f(x) +G(x)α(x)] < 0, x ∈ Rn, x 6= 0. (9.75)

Then, with the feedback stabilizing control law given by

φ(x, x̂) =

{

−(c0 + ρ(x, x̂))β(x, x̂), x̂ 6= α(x),
0, x̂ = α(x),

(9.76)

where β(x, x̂)
△
= 2P̂ (x̂− α(x)), µ(x, x̂)

△
= 2α′(x)[f(x) +G(x)x̂] − P̂−1GT(x)

·V ′T
sub(x), P̂ ∈ Pm,

ρ(x, x̂)
△
=

√

(βT(x, x̂)µ(x, x̂))2 + (βT(x, x̂)β(x, x̂))2 − βT(x, x̂)µ(x, x̂)

βT(x, x̂)β(x, x̂)
,

and c0 > 0, the cascade system (9.1) and (9.2) has a sector (and, hence, gain)
margin (1

2 ,∞). Furthermore, with the feedback control law u = φ(x, x̂) the
performance functional

J(x0, x̂0, u(·)) =

∫ ∞

0
[βT(x(t), x̂(t))µ(x(t), x̂(t)) − V ′

sub(x)[f(x)

+G(x)α(x)] − η(x(t),x̂(t))
2 βT(x(t), x̂(t))β(x(t), x̂(t))

+ 1
2η(x(t),x̂(t))u

T(t)u(t)]dt, (9.77)

where

η(x, x̂)
△
=

{

c0 + ρ(x, x̂), x̂ 6= α(x),
c0, x̂ = α(x),

(9.78)

is minimized in the sense that

J(x0, x̂0, φ(x(·))) = min
u(·)∈S(x0,x̂0)

J(x0, x̂0, u(·)), (x0, x̂0) ∈ Rn × Rm.

(9.79)

Proof. The result is a direct consequence of Corollary 8.8 and Theorem
8.10 with R2(x, x̂) = 1

2η(x,x̂)Im and L1(x) = βT(x, x̂)µ(x, x̂)−V ′
sub(x)[f(x)+

G(x)α(x)] + η(x,x̂)
2 βT(x, x̂)β(x, x̂). Specifically, it follows from (9.78) that
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R2(x, x̂) > 0, x ∈ Rn, x̂ ∈ Rm, and

L1(x, x̂) = βT(x, x̂)µ(x, x̂) − V ′
sub(x)[f(x) +G(x)α(x)]

+η(x,x̂)
2 βT(x, x̂)β(x, x̂)

=







−V ′
sub(x)[f(x) +G(x)α(x)]

+1
2β

T(x, x̂)β(x, x̂)(c0 + ρ(x, x̂)), β(x) 6= 0,
−V ′

sub(x)[f(x) +G(x)α(x)], β(x) = 0.
(9.80)

Now, it follows from (9.75) and (9.80) that L1(x, x̂) ≥ 0, (x, x̂) ∈ Rn × Rm,
so that all conditions of Corollary 8.8 are satisfied.

9.4 Optimal Linear Block Backstepping Controllers

In this section, we generalize the results of Section 9.2 to cascade systems
where the input subsystem is characterized by a linear time-invariant system.
Specifically, we consider a nonlinear system with a linear square input
subsystem having the form

ẋ(t) = f(x(t)) +G(x(t))y(t), x(0) = x0, t ≥ 0, (9.81)
˙̂x(t) = Ax̂(t) +Bu(t), x̂(0) = x̂0, (9.82)

y(t) = Cx̂(t), (9.83)

where x̂ ∈ Rq, u, y ∈ Rm, A ∈ Rq×q, B ∈ Rq×m, and C ∈ Rm×q.

First, we consider the case in which the linear input subsystem (9.82)
is feedback strict positive real, that is, there exist matrices K ∈ Rm×q,
P̂ ∈ Pq, and Q̂ ∈ Nq such that

0 = (A+BK)TP̂ + P̂ (A+BK) + Q̂, (9.84)

0 = BTP̂ − C. (9.85)

Recall that it follows from Theorem 6.12 that the input subsystem (9.82)
and (9.83) is feedback strict positive real if and only if det(CB) 6= 0 and
(9.82) and (9.83) is minimum phase.

Theorem 9.3. Consider the nonlinear cascade system (9.81)–(9.83)
with performance functional (9.57) where L(x, x̂, u) is given by (9.56).
Assume that the triple (A,B,C) is feedback strict positive real and the
nonlinear subsystem (9.81) has a globally stable equilibrium at x = 0 with
y = 0 and Lyapunov function Vsub : Rn → R so that

V ′
sub(x)f(x) < 0, x ∈ Rn, x 6= 0. (9.86)

Furthermore, let L2 : Rn × Rq → R1×m be such that L2(0, 0) = 0 and

yT[GT(x)V ′T
sub(x) −R−1

2 (x, x̂)LT
2 (x, x̂) − 2Kx̂] ≤ 0, (x, x̂) ∈ Rn × Rq.

(9.87)
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Then the zero solution (x(t), x̂(t)) ≡ (0, 0) of the cascade system (9.81)–
(9.83) is globally asymptotically stable with the feedback control law

u = φ(x, x̂) = −1
2R

−1
2 (x, x̂)[2BTP̂ x̂+ LT

2 (x, x̂)], (9.88)

where P̂ ∈ Pq satisfies (9.84) and (9.85). Furthermore,

J(x0, x̂0, φ(x(·), x̂(·))) = V (x0, x̂0), (x0, x̂0) ∈ Rn × Rq, (9.89)

where
V (x, x̂) = Vsub(x) + x̂TP̂ x̂, (9.90)

and the performance functional (9.57), with

L1(x, x̂) = φT(x, x̂)R2(x, x̂)φ(x, x̂) + x̂TP̂B(2Kx̂−GT(x)V ′T
sub(x))

+x̂TQ̂x̂− V ′
sub(x)f(x), (9.91)

is minimized in the sense that

J(x0, x̂0, φ(x(·), x̂(·)) = min
u(·)∈S(x0,x̂0)

J(x0, x̂0, u(·)), (x0, x̂0) ∈ Rn × Rq.

(9.92)

Proof. The result follows as a direct consequence of Theorem 8.3
applied to the system

˙̃x(t) = f̃(x̃(t)) + G̃(x̃(t))u(t), x̃(0) = x̃0, t ≥ 0, (9.93)

where

x̃ =

[

x
x̂

]

, f̃(x̃) =

[

f(x) +G(x)y
Ax̂

]

, G̃(x̃) =

[

0
B

]

.

Specifically, conditions (8.59)–(8.62) are trivially satisfied by (9.86), (9.87)
and (9.90). Next, using (9.88) and (9.93), φ(x, x̂) can be written as

φ(x̃) = −1
2R

−1
2 (x̃)[LT

2 (x̃) + G̃T(x̃)V ′T(x̃)] (9.94)

so that (8.65) is satisfied. Finally, using (9.90) and (9.93) it follows that
(9.91) or, equivalently,

L1(x̃) = φT(x̃)R2(x̃)φ(x̃) − V ′(x̃)f̃(x̃) (9.95)

satisfies (8.66).

A particular choice of L2(x, x̂) satisfying condition (9.87) is given by

L2(x, x̂) =
(

V ′
sub(x)G(x) − 2x̂TKT

)

R2(x, x̂). (9.96)

In this case, the feedback control φ(x, x̂) is given by

φ(x, x̂) = Kx̂−R−1
2 (x, x̂)BTP̂ x̂− 1

2G
T(x)V ′T

sub(x). (9.97)
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Alternatively, choosing L2(x, x̂) satisfying condition (9.87) by

L2(x, x̂) = V ′
sub(x)G(x)R2(x, x̂) − 2x̂T(KTR2(x, x̂) + P̂B), (9.98)

the feedback control φ(x, x̂) given by (9.88) specializes to

φ(x, x̂) = Kx̂− 1
2G

T(x)V ′T
sub(x). (9.99)

In the case where m = 1, (9.99) specializes to the control law obtained in
Lemma 2.13 of [247].

Next, we consider a class of systems in which the subsystem (9.81) is
assumed to be globally stabilizable at x = 0 through y instead of having a
globally asymptotically stable equilibrium at x = 0 with y = 0.

Theorem 9.4. Consider the nonlinear cascade system (9.81)–(9.83)
with performance functional

J(x0, x̂0, u) =

∫ ∞

0
L(x(t), x̂(t), u(t))dt, (9.100)

where L(x, x̂, u) is given by

L(x, x̂, u) = L1(x, x̂) + L2(x, x̂)(CAx̂+ CBu)

+(CAx̂+ CBu)TR2(x, x̂)(CAx̂+ CBu), (9.101)

where u ∈ Rm, L1 : Rn×Rq → R, L2 : Rn×Rq → R1×m satisfies L2(0, 0) = 0,
and R2 : Rn×Rq → Pm. Assume that there exist continuously differentiable
functions α : Rn → Rm and Vsub : Rn → R such that

α(0) = 0, (9.102)

Vsub(0) = 0, (9.103)

Vsub(x) > 0, x ∈ Rn, x 6= 0, (9.104)

V ′
sub(x)[f(x) +G(x)α(x)] < 0, x ∈ Rn, x 6= 0. (9.105)

Furthermore, let L2(x, x̂) satisfy

(y − α(x))T
{

GT(x)V ′T
sub(x) − 2P̂

[

α′(x)(f(x) +G(x)y)

+R−1
2 (x, x̂)[P̂ (y − α(x)) + 1

2L
T
2 (x, x̂)]

]

}

< 0, (x, y) ∈ Rn × Rm, y 6= α(x),

(9.106)

where P̂ ∈ Rm×m is an arbitrary positive-definite matrix, and assume
that the linear subsystem (9.82) is minimum phase and has relative degree
{1, 1, . . . , 1}. Then the zero solution (x(t), x̂(t)) ≡ (0, 0) of the cascade
system (9.81)–(9.83) is globally asymptotically stable with the feedback
control law

u = (CB)−1(v − CAx̂), (9.107)
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where

v = φ(x, x̂) = −R−1
2 (x, x̂)P̂ (y − α(x)) − 1

2R
−1
2 (x, x̂)LT

2 (x, x̂). (9.108)

Furthermore,

J(x0, x̂0, (CB)−1(φ(x, x̂) − CAx̂)) = V (x0, Cx̂0), (x0, x̂0) ∈ Rn × Rq,
(9.109)

where
V (x, y) = Vsub(x) + [y − α(x)]TP̂ [y − α(x)], (9.110)

and the performance functional (9.100), with

L1(x, x̂) = φT(x, x̂)R2(x, x̂)φ(x, x̂) − V ′
sub(x)(f(x) +G(x)y)

+2(y − α(x))TP̂α′(x)(f(x) +G(x)y), (9.111)

is minimized in the sense that

J(x0, x̂0, (CB)−1(φ(x, x̂) − CAx̂)) = min
u(·)∈S(x0,x̂0)

J(x0, x̂0, u(·)),

(x0, x̂0) ∈ Rn × Rq. (9.112)

Proof. Since the linear input subsystem (9.82) and (9.83) has
relative degree {1, 1, . . . , 1}, it follows from Lemma 6.2 that there exists
a nonsingular transformation matrix T ∈ Rq×q such that, in the coordinates

[

y
z

]

△
= T x̂, (9.113)

the linear differential equation (9.82) is equivalent to the normal form

ẏ(t) = CAx̂(t) + CBu(t), y(0) = Cx̂0, t ≥ 0, (9.114)

ż(t) = A0z(t) +B0y(t), z(0) = z0, (9.115)

where A0 ∈ R(q−m)×(q−m) and B0 ∈ R(q−m)×m. Furthermore, the
eigenvalues of A0 are the transmission zeros of the transfer function matrix
H(s) = C(sI − A)−1B of the linear input subsystem (9.82) and (9.83)
(see Problem 6.39). Next, applying the feedback transformation (9.107)
to (9.114) yields the transformed cascade system

ẋ(t) = f(x(t)) +G(x(t))y(t), x(0) = x0, t ≥ 0, (9.116)

ẏ(t) = v(t), y(0) = Cx̂0, (9.117)

ż(t) = A0z(t) +B0y(t), z(0) = z0. (9.118)

Initially ignoring the zero dynamics (9.118), it follows from Theorem
9.1, with x̂ replaced by y and u replaced by v, that the equilibrium x = 0,
y = 0 of (9.116) and (9.117) with the feedback control law v = φ(x, x̂), where
φ(x, x̂) is given by (9.108), is globally asymptotically stable. Now, since
the linear subsystem (9.82) is minimum phase, A0 is Hurwitz. Since the
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zero solution y(t) ≡ 0 to (9.117) can be made asymptotically stable, y(t) is
bounded and limt→∞ y(t) = 0. Hence, the zero solution z(t) ≡ 0 to (9.118) is
globally asymptotically stable. Furthermore, since x̂ = T−1[yT zT]T, global
asymptotic stability of the zero solution (y(t), z(t)) ≡ (0, 0) to (9.117) and
(9.118) implies global asymptotic stability of the zero solution x̂(t) ≡ 0 to
(9.82).

Next, with (9.116), (9.117), (9.101), and (9.110), the Hamiltonian has
the form

H(x, x̂, u) = L1(x, x̂) + L2(x, x̂)(CAx̂+ CBu)

+(CAx̂+ CBu)TR2(x, x̂)(CAx̂+ CBu)

+V ′
sub(x)(f(x) +G(x)y)

+2(y − α(x))TP̂ [CAx̂+ CBu− α′(x)(f(x) +G(x)y)].

(9.119)

Now, the feedback control law (9.107) is obtained by setting ∂H
∂u = 0. Using

L2(0, 0) = 0 it follows that φ(0, 0) = 0, which proves (8.43). Next, with
L1(x, x̂) given by (9.111) it follows that (8.46) holds. Finally, since

H(x, x̂, u) = [v − φ(x, x̂)]TR2(x, x̂)[v − φ(x, x̂)],

and R2(x, x̂) > 0, (x, x̂) ∈ Rn × Rq, (8.45) holds. The result now follows as
a direct consequence of Theorem 8.3.

A particular choice of L2(x, x̂) satisfying condition (9.106) is given by

L2(x, x̂) =
[

P̂−1GT(x)V ′T
sub(x) − 2α′(x)(f(x) +G(x)y)

]T
R2(x, x̂). (9.120)

In this case, for u(t) ∈ R, t ≥ 0, the control law given by (9.107) specializes
to the linear block backstepping controller obtained in Lemma 2.23 of [247]

by setting P̂ = 1
2Im and R2(x, x̂) = 1/c.

9.5 Optimal Nonlinear Block Backstepping Controllers

In this section, we generalize the results of Section 9.4 to the case where the
input subsystem (9.82) and (9.83) is nonlinear. Specifically, consider the
nonlinear cascade system

ẋ(t) = f(x(t)) +G(x(t))y(t), x(0) = x0, t ≥ 0, (9.121)

˙̂x(t) = f̂(x̂(t)) + Ĝ(x̂(t))u(t), x̂(0) = x̂0, (9.122)

y(t) = h(x̂(t)), (9.123)

where x̂ ∈ Rq, u, y ∈ Rm, f̂ : Rq → Rq satisfies f̂(0, 0) = 0, Ĝ : Rq → Rq×m,
and h : Rq → Rm satisfies h(0) = 0.
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First, we consider the case in which the input subsystem (9.122) and
(9.123) is feedback strictly passive. Specifically, we assume there exists a
positive-definite storage function Vs : Rq → R and a function k : Rq → Rm

such that

0 > V ′
s (x̂)(f̂(x̂) + Ĝ(x̂)k(x̂)), x̂ ∈ Rq, x̂ 6= 0, (9.124)

0 = 1
2Ĝ

T(x̂)V ′T
s (x̂) − h(x̂). (9.125)

Recall that it follows from Theorem 6.12 that the nonlinear input subsystem
(9.122) and (9.123) is feedback strictly passive if and only if (9.122) and
(9.123) has relative degree {1, 1, . . . , 1} at x = 0 and is minimum phase.

Theorem 9.5. Consider the nonlinear cascade system (9.121)–(9.123)
with performance functional (9.57) where L(x, x̂, u) is given by (9.56).
Assume that the input subsystem (9.122) and (9.123) is feedback strictly
passive with positive-definite storage function Vs : Rq → R satisfying (9.124)
and (9.125) and the subsystem (9.121) has a globally stable equilibrium at
x = 0 with y = 0 and Lyapunov function Vsub : Rn → R so that

V ′
sub(x)f(x) < 0, x ∈ Rn, x 6= 0. (9.126)

Furthermore, let L2 : Rn × Rq → R1×m be such that L2(0, 0) = 0 and

yT[GT(x)V ′T
sub(x) −R−1

2 (x, x̂)LT
2 (x, x̂) − 2k(x̂)] ≤ 0, (x, x̂) ∈ Rn × Rq.

(9.127)
Then the zero solution (x(t), x̂(t)) ≡ (0, 0) of the cascade system (9.121)–
(9.123) is globally asymptotically stable with the feedback control law

u = φ(x, x̂) = −1
2R

−1
2 (x, x̂)[ĜT(x̂)V ′T

s (x̂) + LT
2 (x, x̂)]. (9.128)

Furthermore,

J(x0, x̂0, φ(x(·), x̂(·))) = V (x0, x̂0), (x0, x̂0) ∈ Rn × Rq, (9.129)

where
V (x, x̂) = Vsub(x) + Vs(x̂), (9.130)

and the performance functional (9.57), with

L1(x, x̂) = φT(x, x̂)R2(x, x̂)φ(x, x̂) + V ′
s (x̂)Ĝ(x̂)(k(x̂) − 1

2G
T(x)V ′T

sub(x))

−V ′
s (x̂)(f̂(x̂) + Ĝ(x̂)k(x̂)) − V ′

sub(x)f(x), (9.131)

is minimized in the sense that

J(x0, x̂0, φ(x(·), x̂(·))) = min
u(·)∈S(x0,x̂0)

J(x0, x̂0, u(·)), (x0, x̂0) ∈ Rn × Rq.

(9.132)

Proof. The result follows as a direct consequence of Theorem 8.3
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applied to the system

˙̃x(t) = f̃(x̃(t)) + G̃(x̃(t))u(t), x̃(0) = x̃0, t ≥ 0, (9.133)

where

x̃ =

[

x
x̂

]

, f̃(x̃) =

[

f(x) +G(x)y

f̂(x̂)

]

, G̃(x̃) =

[

0

Ĝ(x̂)

]

.

Specifically, conditions (8.59)–(8.62) are trivially satisfied by (9.126), (9.127),
and (9.130). Next, using (9.128) and (9.133), φ(x, x̂) can be written as

φ(x̃) = −1
2R

−1
2 (x̃)(LT

2 (x̃) + G̃T(x̃)V ′T(x̃)) (9.134)

so that (8.65) is satisfied. Finally, using (9.130) and (9.133) it follows that
(9.131) or, equivalently,

L1(x̃) = φT(x̃)R2(x̃)φ(x̃) − V ′(x̃)f̃(x̃) (9.135)

satisfies (8.66).

A particular choice of L2(x, x̂) satisfying condition (9.127) is given by

L2(x, x̂) =
(

V ′
sub(x)G(x) − 2kT(x̂)

)

R2(x, x̂). (9.136)

In this case, the feedback control φ(x, x̂) is given by

φ(x, x̂) = k(x̂) − 1
2

(

R−1
2 (x, x̂)ĜT(x̂)V ′T

s (x̂) +GT(x)V ′T
sub(x)

)

. (9.137)

Alternatively, choosing L2(x, x̂) satisfying condition (9.127) by

L2(x, x̂) = V ′
sub(x)G(x)R2(x, x̂) − 2kT(x̂)R2(x, x̂) + V ′

s (x̂)Ĝ(x̂), (9.138)

the feedback control φ(x, x̂) given by (9.128) specializes to

φ(x, x̂) = k(x̂) − 1
2G

T(x)V ′T
sub(x). (9.139)

In the case where m = 1, (9.139) specializes to the control law obtained in
Lemma 2.17 of [247].

Next, we consider a class of systems given by (9.121)–(9.123) in which
the subsystem (9.121) is assumed to be globally stabilizable at x = 0 through
y instead of having a globally asymptotically stable equilibrium at x = 0
with y = 0. Furthermore, we assume that the zero dynamics of a nonlinear
system are asymptotically stable with respect to the signals by which they
are driven. Thus, the following result is a nonlinear analog to Theorem 9.4.
Here, we assume that the vector field Ĝ(LĜĥ)

−1 is complete and involutive.

Theorem 9.6. Consider the nonlinear cascade system (9.121)–(9.123)
with performance functional (9.100) where L(x, x̂, u) is given by

L(x, x̂, u) = L1(x, x̂) + L2(x, x̂)(h′(x̂)f̂(x̂) + h′(x̂)Ĝ(x̂)u) + (h′(x̂)f̂(x̂)
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+h′(x̂)Ĝ(x̂)u)TR2(x, x̂)(h′(x̂)f̂(x̂) + h′(x̂)Ĝ(x̂)u), (9.140)

where u ∈ Rm, L1 : Rn×Rq → R, L2 : Rn×Rq → R1×m satisfies L2(0, 0) = 0,
and R2 : Rn×Rq → Pm. Assume that there exist continuously differentiable
functions α : Rn → Rm and Vsub : Rn → R such that

α(0) = 0, (9.141)

Vsub(0) = 0, (9.142)

Vsub(x) > 0, x ∈ Rn, x 6= 0, (9.143)

V ′
sub(x)[f(x) +G(x)α(x)] < 0, x ∈ Rn, x 6= 0. (9.144)

Furthermore, let L2(x, x̂) satisfy

(y − α(x))T
{

GT(x)V ′T
sub(x) − 2P̂

[

α′(x)(f(x) +G(x)y)

+R−1
2 (x, x̂)[P̂ (y − α(x)) + 1

2L
T
2 (x, x̂)]

]

}

< 0, (x, y) ∈ Rn × Rm, y 6= α(x),

(9.145)

where P̂ ∈ Rm×m is an arbitrary positive-definite matrix, and assume that
(9.122) and (9.123) has constant relative degree {1, 1, . . . , 1} globally defined
uniformly in x with input-to-state stable zero dynamics. Then the zero
solution (x(t), x̂(t)) ≡ (0, 0) of the cascade system (9.121)–(9.123) is globally
asymptotically stable with the feedback control law

u = (h′(x̂)Ĝ(x̂))−1[v − h′(x̂)f̂(x̂)], (9.146)

where

v = φ(x, x̂) = −R−1
2 (x, x̂)P̂ (y − α(x)) − 1

2R
−1
2 (x, x̂)LT

2 (x, x̂). (9.147)

Furthermore,

J(x0, x̂0, (h
′(x̂)Ĝ(x̂))−1(φ(x, x̂) − h′(x̂)f̂(x̂))) = V (x0, h(x̂0)),

(x0, x̂0) ∈ Rn × Rq, (9.148)

where
V (x, y) = Vsub(x) + [y − α(x)]TP̂ [y − α(x)], (9.149)

and the performance functional (9.140), with

L1(x, x̂) = φT(x, x̂)R2(x, x̂)φ(x, x̂) − V ′
sub(x)(f(x) +G(x)y)

+2(y − α(x))TP̂α′(x)(f(x) +G(x)y), (9.150)

is minimized in the sense that

J(x0, x̂0, (h
′(x̂)Ĝ(x̂))−1(φ(x, x̂) − h′(x̂)f̂(x̂)))

= min
u(·)∈S(x0,x̂0)

J(x0, x̂0, u(·)), (x0, x̂0) ∈ Rn × Rq.

(9.151)
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Proof. Since the nonlinear subsystem (9.122) and (9.123) has relative
degree {1, 1, . . . , 1}, it follows from Lemma 6.2 that there exists a global
diffeomorphism T : Rq → Rq such that, in the coordinates

[

y
z

]

△
= T (x̂), (9.152)

the nonlinear differential equation (9.122) is equivalent to the normal form

ẏ(t) = h′(x̂(t))[f̂(x̂(t)) + Ĝ(x̂(t))u(t)], y(0) = h(x̂0), t ≥ 0, (9.153)

ż(t) = f0(z(t)) + r(z(t), y(t))y(t), z(0) = z0, (9.154)

where f0 : R(q−m) → R(q−m) and r : R(q−m) × Rm → R(q−m)×m. Next,
applying the linearizing feedback transformation (9.146) to (9.153) yields
the transformed cascade system

ẋ(t) = f(x(t)) +G(x(t))y(t), x(0) = x0, t ≥ 0, (9.155)

ẏ(t) = v(t), y(0) = h(x̂0), (9.156)

ż(t) = f0(z(t)) + r(z(t), y(t))y(t), z(0) = z0. (9.157)

Initially ignoring the zero dynamics (9.157), it follows from Theorem
9.1, with x̂ replaced by y and u replaced by v, that the equilibrium x = 0,
y = 0 with the feedback control law v = φ(x, y), where φ(x, y) is given by
(9.147), is asymptotically stable. Now, since the zero dynamics subsystem
(9.157) is input-to-state stable and the zero solution y(t) ≡ 0 to (9.156)
can be made asymptotically stable, y(t) is bounded and limt→∞ y(t) = 0.
Hence, it follows from Proposition 4.2 that the zero solution z(t) ≡ 0 to
(9.157) is globally asymptotically stable. Furthermore, since x̂ = T −1(y, z),
global asymptotic stability of the zero solution (y(t), z(t)) ≡ (0, 0) to (9.156)
and (9.157) implies global asymptotic stability of the zero solution x̂(t) ≡ 0
to (9.122).

Next, with (9.155), (9.156), (9.140), and (9.149), the Hamiltonian has
the form

H(x, x̂, u) = L1(x, x̂) + L2(x, x̂)(h
′(x̂)f̂(x̂) + h′(x̂)Ĝ(x̂)u) + (h′(x̂)f̂(x̂)

+h′(x̂)Ĝ(x̂)u)TR2(x, x̂)(h′(x̂)f̂(x̂) + h′(x̂)Ĝ(x̂)u)

+V ′
sub(x)(f(x) +G(x)y) + 2(y − α(x))TP̂ [h′(x̂)f̂(x̂)

+h′(x̂)Ĝ(x̂)u− α′(x)(f(x) +G(x)y)]. (9.158)

Now, the feedback control law (9.146) is obtained by setting ∂H
∂u = 0. Using

L2(0, 0) = 0 it follows that φ(0, 0) = 0, which proves (8.43). Next, with
L1(x, x̂) given by (9.150) it follows that (8.46) holds. Finally, since

H(x, x̂, u) = [v − φ(x, x̂)]TR2(x, x̂)[v − φ(x, x̂)],
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and R2(x, x̂) > 0, (x, x̂) ∈ Rn × Rq, (8.45) holds. The result now follows as
a direct consequence of Theorem 8.2.

A particular choice of L2(x, x̂) satisfying condition (9.145) is given by

L2(x, x̂) =
[

P̂−1GT(x)V ′T
sub(x) − 2α′(x)(f(x) +G(x)y)

]T
R2(x, x̂). (9.159)

In this case, for u(t) ∈ R, t ≥ 0, the control law given by (9.146) specializes
to the nonlinear backstepping controller obtained in Lemma 2.25 of [247] by

setting P̂ = 1
2Im and R2(x, x̂) = 1/c.

Finally, we consider nonlinear cascade systems of the form

ẋ(t) = f(x(t)) +G(x(t))y(t), x(0) = x0, t ≥ 0, (9.160)

ẏ(t) = h′(x̂(t))f̂(x̂(t)) + h′(x̂(t))Ĝ(x̂(t))u(t), x̂(0) = x̂0, (9.161)

ż(t) = f0(z(t)) + r(y(t), z(t))y(t), z(0) = z0, (9.162)

where the zero solution z(t) ≡ 0 to (9.162) is asymptotically stable,

[yT, zT]
△
= T (x̂), and T (·) is given by (9.152). The system (9.160)–(9.162)

can be viewed as the normal form equivalent of (9.121)–(9.123), where the
input subsystem (9.122) and (9.123) is minimum phase with relative degree
{1, 1, . . . , 1}, obtained by applying the global diffeomorphism (9.152). In
this case, the stability assumption on (9.162) is implied by the minimum
phase assumption on (9.122) and (9.123). For the cascade nonlinear system
(9.160)–(9.162), we consider the performance functional

J(x0, h(x̂0), z0, u) =

∫ ∞

0
L(x(t), y(t), z(t), u(t))dt, (9.163)

where

L(x, y, z, u) = L1(x, y, z) + L2(x, y, z)u + uTR2(x, y, z)u. (9.164)

Furthermore, define

Vc(y, z)
△
=

∫ ∞

0
V ′

0(z̄(s))r(ȳ(s), z̄(s))ȳ(s)ds, (9.165)

where ȳ(τ) and z̄(τ), τ ≥ 0, are solutions of (9.160) and (9.161), respectively,
with initial conditions ȳ(0) = y and z̄(0) = z, and V0(z) is a Lyapunov
function for the asymptotically stable (by assumption) subsystem (9.162).
Note that the time derivative of Vc(y, z) along the trajectories of y and z is
given by V̇c(y, z) = −V ′

0(z)r(y, z)y.

Theorem 9.7. Consider the nonlinear cascade system (9.160)–(9.162)
with performance functional (9.163), where L(x, y, z, u) is given by (9.164)
and where u ∈ Rm, L1(x, y, z) : Rn×Rm×Rq−m → R, L2(x, y, z) : Rn×Rm×
Rq−m → R1×m satisfies L2(0, 0, 0) = 0, and R2 : Rn × Rm × Rq−m → Pm.



NonlinearBook10pt November 20, 2007

OPTIMAL INTEGRATOR BACKSTEPPING CONTROL 579

Assume that there exist continuously differentiable functions α : Rn → Rm

and Vsub : Rn → R such that

α(0) = 0, (9.166)

Vsub(0) = 0, (9.167)

Vsub(x) > 0, x ∈ Rn, x 6= 0, (9.168)

V ′
sub(x)[f(x) +G(x)α(x)] < 0, x ∈ Rn, x 6= 0. (9.169)

Furthermore, let L2(x, y, z) satisfy

(y − α(x))T
{

GT(x)V ′T
sub(x) + 2P̂

[

h′(x̂)f̂(x̂) − α′(x)(f(x) +G(x)y)

−h′(x̂)Ĝ(x̂)R−1
2 (x, y, z)((h′(x̂)Ĝ(x̂))TP̂ (y − α(x)) + 1

2L
T
2 (x, y, z))

]

}

< 0,

(x, y, z) ∈ Rn × Rm × Rq−m, y 6= α(x), (9.170)

where P̂ ∈ Rm×m is an arbitrary positive-definite matrix, assume that the
zero solution z(t) ≡ 0 to (9.162) with y = 0 is globally asymptotically stable
with Lyapunov function V0(z), assume there exist continuously differentiable
functions γ1, γ2 ∈ K∞ such that

‖r(y, z)‖ ≤ γ1(‖y‖) + γ2(‖y‖)‖z‖, (9.171)

and assume there exist k, c > 0 such that ‖z‖ > c implies
∥

∥

∥

∥

∂V0(z)

∂z

∥

∥

∥

∥

‖z‖ ≤ kV0(z). (9.172)

Then the zero solution (x(t), y(t), z(t)) ≡ (0, 0, 0) of the cascade system
(9.160)–(9.162) is globally asymptotically stable with the feedback control
law u = φ(x, y, z), where

φ(x, y, z) = −R−1
2 (x, y, z)(h′(x̂)Ĝ(x̂))TP̂ (y − α(x))

−1
2R

−1
2 (x, y, z)LT

2 (x, y, z). (9.173)

Furthermore,

J(x0, h(x̂0), z0, φ(·, ·, ·)) = V (x0, h(x̂0), z0), (x0, x̂0, z0) ∈ Rn × Rq × Rq−m,
(9.174)

where

V (x, y, z) = Vsub(x) + (y − α(x))TP̂ (y − α(x)) + Vc(y, z) + V0(z), (9.175)

and the performance functional (9.163), with

L1(x, y, z) = φT(x, y, z)R2(x, y, z)φ(x, y, z) − V ′
sub(x)(f(x) +G(x)y)

−V ′
0(z)f0(z) + (y − α′(x))T[α′(x)(f(x) +G(x)y) − h′(x̂)f̂(x̂)],

(9.176)
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is minimized in the sense that

J(x0, h(x̂0), z0, φ(x, y, z)) = min
u(·)∈S(x0,x̂0,z0)

J(x0, h(x̂0), z0, u(·)),

(x0, x̂0, z0) ∈ Rn × Rq × Rq−m. (9.177)

Proof. Since the subsystem (9.162) has an asymptotically stable
equilibrium at z(t) = 0, t ≥ 0, it follows from Theorem 3.9 that there
exists a continuously differentiable positive-definite function V0(z) such that

V ′
0(z)f0(z) < 0, z ∈ Rq−m, z 6= 0. (9.178)

Next, since r(y, z) and V0(z) satisfy (9.171) and (9.172), Vsub(x) satisfies

(9.167) and (9.168), and, with P̂ > 0, it follows that the Lyapunov function
candidate (9.175) is positive definite (see Problem 9.7). The result now
follows as a direct consequence of Theorem 8.3 applied to the system

˙̃x(t) = f̃(x̃(t)) + G̃(x̃(t))u(t), x̃(0) = x̃0, t ≥ 0, (9.179)

where

x̃ =





x
y
z



 , f̃(x̃) =





f(x) +G(x)y

h′(x̂)f̂(x̂)
f0(z) + r(y, z)y



 , G̃(x̃) =





0

h′(x̂)Ĝ(x̂)
0



 .

Specifically, conditions (8.59)–(8.62) are satisfied by L2(0, 0, 0) = 0, (9.166)–
(9.170) and (9.175). Next, using (9.173) and (9.179), φ(x, y, z) can be
written as

φ(x̃) = −1
2R

−1
2 (x̃)[LT

2 (x̃) + G̃T(x̃)V ′T(x̃)] (9.180)

so that (8.65) is satisfied. Finally, using (9.175) and (9.179) it follows that
(9.176) or, equivalently,

L1(x̃) = φT(x̃)R2(x̃)φ(x̃) − V ′(x̃)f̃(x̃) (9.181)

satisfies (8.66).

Assumption (9.171) requires that r(y, z) of (9.162) has, at most, a
linear growth in z. While this unavoidably narrows the class of admissible
nonlinear systems which can be considered, it is not restrictive when the
input subsystem (9.161) and (9.162) is linear so that the zero dynamics
subsystem has the form (9.115). In this case, r(y, z) = B0, where B0

is a constant matrix, and hence, (9.171) is automatically satisfied. More
generally, assumption (9.172) is satisfied by Lyapunov functions involving
positive definite, radially unbounded polynomial functions of z (see Problem
9.8). Finally, a choice of L2(x, y, z) satisfying condition (9.170) is given by

L2(x, y, z) = 2[h′(x̂)f̂(x̂) + 1
2 P̂

−1GT(x)V ′T
sub(x)

−α′(x)(f(x) +G(x)y)]T(h′(x̂)Ĝ(x̂))−TR2(x, y, z). (9.182)
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9.6 Rotating Stall and Surge Control for Axial

Compression Systems

The desire to develop an integrated control system design methodology
for advanced propulsion systems has led to significant activity in mod-
eling and control of flow compression systems in recent years (see, for
example, [2, 19, 35, 103, 140, 141, 143, 248, 249, 277, 318, 319, 345, 451] and the
numerous references therein). Two predominant aerodynamic instabilities
in compression systems are rotating stall and surge. Rotating stall
is an inherently three-dimensional1 local compression system oscillation
which is characterized by regions of flow that rotate at a fraction of the
compressor rotor speed while surge is a one-dimensional axisymmetric global
compression system oscillation, which involves axial flow oscillations and in
some cases even axial flow reversal, which can damage engine components
and cause flameout to occur.

Rotating stall and surge arise due to perturbations in stable system
operating conditions involving steady, axisymmetric flow and can severely
limit compressor performance. The transition from stable compressor
operating conditions to rotating stall and surge is shown in Figure 9.2
representing a schematic of a compressor characteristic map where the

Flow

P
re

s
s
u

re

Closing throttle

Rotating
Stall

Surge

Figure 9.2 Schematic of compressor characteristic map for a typical compression system
(−−−−stable equilibria, −−− unstable equilibria).

1When analyzing high hub-to-tip ratio compressors, rotating stall can be approximated as a
two-dimensional compression system oscillation.
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abscissa corresponds to the circumferentially averaged mass flow through
the compressor and the ordinate corresponds to the normalized total-
to-static pressure rise in the compressor. For maximum compressor
performance, operating conditions require that the pressure rise in the
compressor correspond to the maximum pressure operating point on the
stable axisymmetric branch for a given throttle opening. Here, we
distinguish between compressor performance (pressure rise) and compressor
efficiency (specific power consumption) where, depending on how the
compressor is designed, the most efficient operating point may be to the
right of the peak of the compressor characteristic map. In practice, however,
compression system uncertainties and compression system disturbances can
perturb the operating point into an unstable region driving the system to
a stalled stable equilibrium, a stable limit cycle (surge), or both. In the
case of rotating stall, an attempt to recover to a high pressure operating
point by increasing the flow through the throttle traps the system within a
flow range corresponding to two stable operating conditions involving steady
axisymmetric flow and rotating stall resulting in severe hysteresis.

To avoid rotating stall and surge, traditionally system designers allow
for a safety margin (rotating stall or surge margin) in compression system
operation. However, to account for compression system uncertainties such
as system modeling errors, in-service changes due to aging, etc., and
compression system disturbances such as compressor speed fluctuations,
combustion noise, etc., operating at or below the rotating stall/surge margin
significantly reduces the efficiency of the compression system. In contrast,
active control can enhance stable compression system operation to achieve
peak compressor performance. However, compression system uncertainty
and compression system disturbances are often significant and the need for
robust disturbance rejection control is severe.

In order to develop control system design methodologies for compres-
sion systems, reliable models capturing the intricate physical phenomena
of rotating stall and surge are necessary. A fundamental development in
compression system modeling for low speed axial compressors is the Moore-
Greitzer model given in [319]. Specifically, utilizing a one-mode expansion of
the disturbance velocity potential in the compression system and assuming
a nonlinear (cubic) characteristic for the compressor performance map, the
authors in [319] develop a low-order, three-state nonlinear model involving
the mean flow in the compressor, the pressure rise, and the amplitude
of rotating stall. Starting from infinitesimal perturbations in the flow
field the model captures the development of rotating stall and surge.
In particular, the model predicts the experimentally verified subcritical
pitchfork bifurcation at the onset of rotating stall [311]. Extensions to the
Moore-Greitzer model that include blade row time lags and viscous transport
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terms have been reported in [187] and [1,2, 451], respectively.

In this section, we apply the inverse optimal backstepping control
framework to the control of rotating stall and surge in jet engine compression
systems. To capture poststall transients in axial flow compression systems
we use the one-mode Galerkin approximation model for the nonlinear partial
differential equation characterizing the disturbance velocity potential at
the compressor inlet proposed by Moore and Greitzer [319]. Specifically,
we consider the basic compression system shown in Figure 9.3 consisting
of an inlet duct, a compressor, an outlet duct, a plenum, and a control
throttle. We assume that the plenum dimensions are large as compared to
the compressor-duct dimensions so that the fluid velocity and acceleration
in the plenum are negligible. In this case, the pressure in the plenum is
spatially uniform. Furthermore, we assume that the flow is controlled by
a throttle at the plenum exit. Finally, we assume a low-speed compression
system with oscillation frequencies much lower than the acoustic resonance
frequencies so that the flow can be considered incompressible. However, we
do assume that the gas in the plenum is compressible, and therefore acts as
a gas spring.

& %
' $

- -pT pTAC pS, VP

� -lT

Compressor�
�
�
�
���

Plenum�
���

Throttle
A
AAU

Figure 9.3 Compressor system geometry.

Invoking a momentum balance across the compression system, con-
servation of mass in the plenum, and using a Galerkin projection based
on a one-mode circumferential spatial harmonic approximation for the non-
axisymmetric flow disturbances yields [319]

Ȧ(t) =
σ

3π

∫ 2π

0
ΨC(Φ(t) +A(t) sin θ) sin θ dθ, A(0) = A0, t ≥ 0, (9.183)

Φ̇(t) = −Ψ(t) +
1

2π

∫ 2π

0
ΨC(Φ(t) +A(t) sin θ) dθ, Φ(0) = Φ0, (9.184)

Ψ̇(t) =
1

β2
(Φ(t) − ΦT(t)), Ψ(0) = Ψ0, (9.185)
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where Φ is the circumferentially averaged axial mass flow in the compressor,
Ψ is the total-to-static pressure rise, A is the normalized stall cell amplitude
of angular variation capturing a measure of nonuniformity in the flow, ΦT is
the mass flow through the throttle, σ, β are positive constant parameters,
and ΨC(·) is a given compressor pressure-flow map. The compliance
coefficient β is a function of the compressor rotor speed and plenum size.
For large values of β a surge limit cycle can occur, while rotating stall can
occur for any value of β.

Now, assuming that the compressor pressure-flow map ΨC(·) is
analytic, the integral terms in (9.183)–(9.185) can be expressed in terms
of an infinite Taylor series expansion about the circumferentially averaged
flow to give

Ȧ(t) =
2σ

3

∞
∑

k=1

1

k!(k − 1)!

d2k−1ΨC(ξ)

dξ2k−1

∣

∣

∣

∣

ξ=Φ(t)

(

A(t)

2

)2k−1

,

A(0) = A0, t ≥ 0, (9.186)

Φ̇(t) = −Ψ(t) +
∞
∑

k=0

1

(k!)2
d2kΨC(ξ)

dξ2k

∣

∣

∣

∣

ξ=Φ(t)

(

A(t)

2

)2k

, Φ(0) = Φ0,

(9.187)

Ψ̇(t) =
1

β2
(Φ(t) − ΦT(t)), Ψ(0) = Ψ0. (9.188)

The specific compressor pressure-flow performance map ΨC which was
considered in [319] is

ΨC(Φ) = ΨC0 + 1 + 3
2Φ − 1

2Φ3, (9.189)

where ΨC0 is a constant parameter. In this case, (9.186)–(9.188) become

Ȧ(t) = σ
2A(t)(1 − Φ2(t) − 1

4A
2(t)), A(0) = A0, t ≥ 0, (9.190)

Φ̇(t) = −Ψ(t) + ΨC(Φ(t)) − 3
4Φ(t)A2(t), Φ(0) = Φ0, (9.191)

Ψ̇(t) = 1
β2 (Φ(t) − ΦT(t)), Ψ(0) = Ψ0. (9.192)

Next, define the control variable

u
△
= 1

β2 (ΦT − Φ) (9.193)

so that for fixed values of flow through the throttle, ΦT(t) ≡ ΦTeq, (9.190)–
(9.192) have an equilibrium point given by

(Aeq,Φeq,Ψeq) = (0,ΦTeq,ΨC(Φeq)). (9.194)

Defining the shifted state variables x1
△
= A, x2

△
= Φ − Φeq, and x3

△
= Ψ −

Ψeq, so that for a given equilibrium point on the axisymmetric branch of
the compressor characteristic pressure-flow map the system equilibrium is
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translated to the origin, it follows that the translated nonlinear system is
given by

ẋ1(t) = σ
2x1(t)(1 − (x2(t) + λ)2 − 1

4x
2
1(t)), x1(0) = x10, t ≥ 0, (9.195)

ẋ2(t) = −1
2x

3
2 − 3

2λx
2
2 − 3

2(λ2 − 1 + 1
2x

2
1)x2 − 3

4λx
2
1 − x3, x2(0) = x20,

(9.196)

ẋ3(t) = −u(t), x3(0) = x30, (9.197)

where λ
△
= ΦTeq and u = 1

β2 (ΦT − λ− x2).

Our objective is to stabilize the equilibrium (A(t) = 0, Φ(t) = 1,
Ψ(t) = ΨCO +2) by controlling the throttle mass flow ΦT which is related to
the throttle opening γthrot by ΦT = γthrot

√
Ψ [247]. To translate the desired

equilibrium to the origin we apply the linear transformation Φs
△
= Φ−1 and

Ψs
△
= Ψ − ΨCO − 2. Furthermore, in this case,

u = 1
β2 (ΦT − 1 − Φs), (9.198)

and hence, with λ = 1, (9.195)–(9.197) yield the transformed nonlinear
system

Ȧ(t) = −σ
2A(t)[14A

2(t) + 2Φs(t) + Φ2
s (t)], A(0) = A0, t ≥ 0, (9.199)

Φ̇s(t) = −3
2Φ2

s (t) − 1
2Φ3

s (t) − 3
4A

2(t)[1 + Φs(t)] − Ψs(t), Φs(0) = Φs0 ,

(9.200)

Ψ̇s(t) = −u(t), Ψs(0) = Ψs0 . (9.201)

Note that (9.199)–(9.201) has the correct form for the application of
Theorem 9.1 where (9.199) and (9.200) make up the nonlinear subsystem
and Ψs is the integrator state. Specifically, (9.199)–(9.201) can be written
in the form of (9.1) and (9.2) where x = [A Φs]

T, x̂ = Ψs, and

f(A,Φs) =

[

−σ
2A(1

4A
2 + 2Φs + Φ2

s )
−Φs(

3
2Φs + 1

2Φ2
s + 3

4A
2) − 3

4A
2

]

, G(A,Φs) =

[

0
−1

]

.

To apply Theorem 9.1 we require a stabilizing feedback for the
subsystem (9.199) and (9.200) and a corresponding Lyapunov function
Vsub(A,Φs) such that (9.59) and (9.60) are satisfied. For the nonlinear
subsystem (9.199) and (9.200) we choose the Lyapunov function candidate

Vsub(A,Φs) = εA4 + Φ2
s , (9.202)

where ε > 0, and the stabilizing feedback control

α(A,Φs) = c1Φs − 3
2Φ2

s − 3
4A

2 − 2εσA4, (9.203)

where c1 ≥ 0. It is straightforward to show that (9.202) and (9.203) satisfy
conditions (9.59)–(9.61) of Theorem 9.1.
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Applying Theorem 9.1 to the system (9.199)–(9.201) yields the family
of control laws

u = −φ(A,Φs,Ψs) = R−1
2

[

P̂ (Ψs − α(A,Φs)) + 1
2L2(A,Φs,Ψs)

]

, (9.204)

with Lyapunov function

V (A,Φs,Ψs) = εA4 + Φ2
s + P̂ [Ψs − α(A,Φs)]

2, (9.205)

where R2 > 0 and P̂ > 0. Furthermore, the performance functional
minimized by the control law (9.204) has the form

J(A0,Φs0 ,Ψs0 , u) =

∫ ∞

0
[L1(A(t),Φs(t),Ψs(t))

+L2(A(t),Φs(t),Ψs(t))u(t) +R2u
2(t)]dt, (9.206)

where

L1(A,Φs,Ψs)
△
= R2φ

2(A,Φs,Ψs) − V ′
sub(A,Φs)[f(A,Φs) +G(A,Φs)Ψs]

+2[Ψs − α(A,Φs)]P̂ α
′(A,Φs)[f(A,Φs) +G(A,Φs)Ψs].

(9.207)

Now L2(A,Φs,Ψs) must be chosen to satisfy condition (9.62) or, equivalently,

(Ψs − α(A,Φs))

{

− 2Φs − 2P̂
[

α′(A,Φs)(f(A,Φs) + G(A,Φs)Ψs)

+R−1
2 [P̂ (Ψs − α(A,Φs)) + 1

2L2(A,Φs,Ψs)]
]

}

< 0. (9.208)

A particular admissible choice for L2(A,Φs,Ψs) satisfying (9.208) is
given by

L2(A,Φs,Ψs) = −2R2{P̂−1Φs + α′(A,Φs)[f(A,Φs) +G(A,Φs)Ψs]

−c3A2[Ψs − α(A,Φs)]}, (9.209)

where c3 ≥ 0. For this choice of L2(A,Φs,Ψs) the feedback control (9.204)
becomes

−φ(A,Φs,Ψs) = R−1
2 P̂ [Ψs − α(A,Φs)] − P̂−1Φs − α′(A,Φs)[f(A,Φs)

+G(A,Φs)Ψs] + c3A
2(Ψs − α(A,Φs)), (9.210)

so that (9.208) satisfies

−2R−1
2 P̂ 2(Ψs − α(A,Φs))

2 − c3P̂A
2(Ψs − α(A,Φs))

2 < 0,

(A,Φs,Ψs) 6= (0, 0, 0). (9.211)

Note that instead of using L2(A,Φs,Ψs) to simply cancel the indefinite
terms in (9.208), we have also added an extra term in which the stall cell
squared amplitude A2 is multiplied by the tracking error Ψs−α(A,Φs) and a



NonlinearBook10pt November 20, 2007

OPTIMAL INTEGRATOR BACKSTEPPING CONTROL 587

nonnegative constant c3. This illustrates the flexibility available in choosing
L2(A,Φs,Ψs) in the control law. In the special case P̂ = 1

2 , ε = 0, c3 = 0,
and R2 = 1/c2 this control law specializes to the controller given in [247].
However, when ε vanishes the positive definiteness of the Lyapunov function
(9.205) over the whole state space is destroyed, and hence, the optimality
claims of Theorem 9.1 cannot be made for the controller given in [247].

Whereas by varying ε, c3, and P̂ in the control law (9.210), we can generate
a family of controllers which guarantee global asymptotic stability and global
optimality with respect to the performance functional (9.206).

Using the initial conditions A0 = 0.5, Φs0 = 0, Ψs0 = 0, and parameter

values ΨC0 = 0.72, σ = 3.6, β = 0.356, with P̂ = 2.5, R2 = 1, ε = 0.0625,
and c3 = 0.25 the inverse optimal control law (9.210) and the controller
given in [247] (with c1 = c2 = 1) were used to compare the closed-loop
system response. The squared stall cell amplitude responses for the two
controllers are compared in Figure 9.4, the compressor flow and pressure
rise responses are compared in Figures 9.5 and 9.6, and the control efforts
are compared in Figures 9.7 and 9.8. In Figure 9.9 a phase portrait is
given comparing the overall system state trajectories for the two controllers.
This comparison illustrates that the present framework allows the control
designer to improve both the state response and the control effort using the
state weights of the Lyapunov function, P̂ and ε, and the control weight
of the performance functional, R2. Furthermore, the trade-off between
achievable state response and allowable control effort is characterized by the
performance functional (9.206). Finally, Figure 9.10 shows the compressor
pressure-flow performance map parameterized as a function of the throttle
opening which constitutes a coexistent set of stable and unstable equilibria.
The controlled globally stable equilibrium point (0, 1, 2.72) corresponds to
the maximum pressure performance for the given compressor speed.

9.7 Surge Control for Centrifugal Compressors

While the literature on modeling and control of compression systems
predominantly focuses on axial flow compression systems, the research
literature on centrifugal flow compression systems is rather limited in
comparison. Notable exceptions include [21,113,119,138,184,223,357] which
address modeling and control of centrifugal compressors. In contrast to axial
flow compression systems involving the aerodynamic instabilities of rotating
stall and surge, a common feature of [21, 113, 119, 138, 184, 223, 357] is the
realization that surge (and deep surge) is the predominant aerodynamic
instability arising in centrifugal compression systems.

To address the problem of nonlinear stabilization for centrifugal
compression systems we consider the basic centrifugal compression system
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Figure 9.4 Squared stall cell amplitude versus time.
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Figure 9.5 Compressor flow versus time.

shown in Figure 9.11, consisting of a short inlet duct, a compressor, an
outlet duct, a plenum, an exit duct, and a control throttle. We assume
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Figure 9.6 Pressure rise versus time.

that the plenum dimensions are large as compared to the compressor-duct
dimensions so that the fluid velocity and acceleration in the plenum are
negligible. In this case, the pressure in the plenum is spatially uniform.
Furthermore, we assume that the flow is controlled by a throttle at the
plenum exit. In addition, we assume a low-speed compression system with
oscillation frequencies much lower than the acoustic resonance frequencies
so that the flow can be considered incompressible. However, we do assume
that the gas in the plenum is compressible and acts as a gas spring. Finally,
we assume isentropic process dynamics in the plenum and negligible gas
angular momentum in the compressor passages as compared to the impeller
angular momentum.

To address the problem of nonlinear stabilization for centrifugal
compression systems we use the three-state lumped parameter model
for surge in centrifugal flow compression systems developed in [119, 138,
278]. Specifically, pressure and mass flow compression system dynamics
are developed using principles of conservation of mass and momentum.
Furthermore, in order to account for the influence of speed transients on
the compression surge dynamics, turbocharger spool dynamics are also
considered.

Using continuity it follows that mass conservation in the plenum is
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given by

Ψ̇(t) = a(Φ(t) − γthrot

√

Ψ(t)), Ψ(0) = Ψ0, t ≥ 0, (9.212)
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where Φ is the nondimensional mass flow rate at the plenum entrance, Ψ
is the total-to-static pressure ratio, γthrot is a parameter proportional to
the throttle opening, and a is a nondimensional parameter related to the
compressor dimensions.
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Next, using a momentum balance with the assumption of incompress-
ible flow, using the fact that the change in angular momentum of the fluid is
equal to the compressor torque, assuming isentropic process dynamics with
constant specific heat, and assuming an absence of prewhirl at the rotor
inlet, it follows that [107,193,309]

Φ̇(t) = b(Ψc(Φ(t),Ω(t)) − Ψ(t)), Φ(0) = Φ0, t ≥ 0, (9.213)

where Ω is the nondimensional angular velocity of compressor spool, Ψc(Φ,
Ω) is the compressor characteristic pressure-flow/angular velocity map given
by

Ψc(Φ,Ω)
△
=
(

1 + ηc(Φ,Ω)σdΩ2
)

γsh
γsh−1 − 1, (9.214)

where γsh is the specific heat ratio and ηc(Φ,Ω) is the isentropic efficiency
given by ([278])

ηc(Φ,Ω)
△
=

σΩ2

σΩ2 + 1
2(f1Ω − f2Φ)2 + 1

2(σΩ − f3Φ)2 + Φ2(f4 + f5)
. (9.215)

Here, σ is the slip factor and b, d, fi, i = 1, . . . , 5, are nondimensional
parameters related to the compressor dimensions, the sound velocity in
the plenum, the inducer and rotor geometry, and the friction coefficients,
respectively.

It is important to note that the compressor characteristic map given by
(9.214) holds for the case where the flow through the compressor is positive.
In the case of deep surge involving negative mass flow, it is assumed that
the pressure rise in the compressor is proportional to the square of the mass
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flow so that [184]

Ψc(Φ,Ω) = µΦ2 + Ψc0
(Φ,Ω), Φ < 0, (9.216)

where µ is a constant and

Ψc0
(Φ,Ω)

△
= ΨC(Φ,Ω)

∣

∣

∣

∣

Φ=0

= (1 + σηc0dΩ
2)

γsh
γsh−1 − 1, (9.217)

where

ηc0

△
= ηC(Φ,Ω)|Φ=0 =

2σ

σ2 + 2σ + f2
1

. (9.218)

It is shown in [278] that ηcmax
is constant for all spool speeds.

This indicates that the compressor achieves the same maximum isentropic
efficiency at each maximum pressure point for all spool speeds. However,
since these points are critically stable, active control is needed to guarantee
stable compression system operation for peak compressor performance.
Figure 9.12 shows a typical family of compressor characteristic maps for
different spool speeds along with the corresponding constant isentropic
efficiency lines. The stone wall depicted in Figure 9.12 corresponds to choked
flow at a given cross-section of the compression system [138,278].
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Figure 9.12 Compressor characteristic maps and efficiency lines for different spool speeds.

Finally, using conservation of angular momentum in the turbocharger
spool it follows that the nondimensional spool dynamics are given by

Ω̇(t) = c(τ(t) − σΦ(t)Ω(t)), Ω(0) = Ω0, t ≥ 0, (9.219)
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where τ(·) is the nondimensional driving torque and c is a nondimensional
parameter related to the spool mass moment of inertia.

Next, we apply the inverse optimal backstepping control framework to
control surge in centrifugal compression systems. First, we note that with
control inputs u1

△
= γthrot

√
Ψ and u2

△
= τ it follows from (9.212), (9.213),

and (9.219), that a state space model for the centrifugal compressor is given
by

Ψ̇(t) = a(Φ(t) − u1(t)), Ψ(0) = Ψ0, t ≥ 0, (9.220)

Φ̇(t) = b(Ψc(Φ(t),Ω(t)) − Ψ(t)), Φ(0) = Φ0, (9.221)

Ω̇(t) = c(u2(t) − σΦ(t)Ω(t)), Ω(0) = Ω0. (9.222)

Note that for fixed values of the control inputs u1 and u2, (9.220), (9.221)
and (9.222) give an equilibrium point (Ψeq,Φeq,Ωeq), where (Ψeq,Φeq,Ωeq)
is given by

(Ψeq,Φeq,Ωeq) =

(

Ψc(Φeq,Ωeq), u1eq,
u2eq

σΦeq

)

. (9.223)

Defining the shifted state variables x1
△
= Ψ − Ψeq, x2

△
= Φ − Φeq, and

x3
△
= Ω − Ωeq, so that for a given equilibrium point on the compressor

characteristic map the system equilibrium is translated to the origin, and
defining the shifted controls ũ1

△
= u1 − u1eq and ũ2

△
= u2 − u2eq, it follows

that the translated nonlinear system is given by

ẋ1(t) = a(x2(t) − ũ1(t)), x1(0) = x10, t ≥ 0, (9.224)

ẋ2(t) = b(ΨCeq(x2(t), x3(t)) − x1(t)), x2(0) = x20, (9.225)

ẋ3(t) = c(ũ2(t) − f(x2(t), x3(t))), x3(0) = x30, (9.226)

where

ΨCeq(x2, x3)
△
= Ψc(Φeq + x2,Ωeq + x3) − Ψc(Φeq,Ωeq), (9.227)

f(x2, x3)
△
= σ(Φeqx3 + Ωeqx2) + σx2x3. (9.228)

Now, setting

û = x2 − ũ1, (9.229)

ũ2 = −k3x3 + f(x2, x3), (9.230)

where k3 > 0, and substituting (9.229) and (9.230) into (9.224)–(9.226)
yields

ẋ1(t) = aû(t), x1(0) = x10, t ≥ 0, (9.231)

ẋ2(t) = b(ΨCeq(x2(t), x3(t)) − x1(t)), x2(0) = x20, (9.232)

ẋ3(t) = −k3cx3(t), x3(0) = x30. (9.233)

Note that (9.231)–(9.233) has the correct form for the application of
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Theorem 9.1 where (9.232) and (9.233) make up the nonlinear subsystem
and x1 is the integrator state. Specifically, (9.231)–(9.233) can be written
in the form of (9.1) and (9.2) where x = [x2 x3]

T, x̂ = x1, and

f(x2, x3) =

[

bΨCeq(x2, x3)
−k3cx3

]

, G(x2, x3) =

[

−b
0

]

.

To apply Theorem 9.1 we require a stabilizing feedback for the
subsystem (9.232) and (9.233) and a corresponding Lyapunov function
Vsub(x2, x3) such that (9.59) and (9.60) are satisfied. For the nonlinear
subsystem (9.232) and (9.233) we choose the Lyapunov function candidate

Vsub(x2, x3) = 1
2α2x

2
2 + 1

2α3x
2
3, (9.234)

where α2, α3 > 0, and the stabilizing feedback control

α(x2, x3) = ΨCeq(x2, x3) + k2x2, (9.235)

where k2 > 0. It is straightforward to show that (9.234) and (9.235) satisfy
conditions (9.59)–(9.61) of Theorem 9.1.

Applying Theorem 9.1 to the system (9.231)–(9.233) yields the family
of control laws

u = φ(x1, x2, x3) = −R−1
2

[

P̂ (x1 − α(x2, x3)) + 1
2L2(x1, x2, x3)

]

, (9.236)

with Lyapunov function

V (x1, x2, x3) = P̂ [x1 − α(x2, x3)]
2 + 1

2α2x
2
2 + 1

2α3x
2
3, (9.237)

where R2 > 0 and P̂ > 0. Furthermore, the performance functional
minimized by the control law (9.236) has the form

J(x10, x20, x30, û) =

∫ ∞

0
[L1(x1(t), x2(t), x3(t))

+L2(x1(t), x2(t), x3(t))û(t) +R2û
2(t)]dt, (9.238)

where

L1(x1, x2, x3)
△
= R2φ

2(x1, x2, x3) − V ′
sub(x2, x3)[f(x2, x3) +G(x2, x3)x1]

+2[x1 − α(x2, x3)]P̂ α
′(x2, x3)[f(x2, x3) +G(x2, x3)x1].

(9.239)

Now, L2(x1, x2, x3) must be chosen to satisfy condition (9.62) or, equiva-
lently,

(x1 − α(x2, x3))

{

− 2x1 − 2P̂
[

α′(x2, x3)(f(x2, x3) + G(x2, x3)x1)

+R−1
2 [P̂ (x1 − α(x2, x3) + 1

2L
T
2 (x1, x2, x3)]

]

}

< 0. (9.240)
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A particular admissible choice for L2(x1, x2, x3) satisfying (9.240) is
given by

L2(x1, x2, x3) = − α1

k1a

[

b(k2 + Ψceq,x2
(x2, x3))(ΨCeq(x2, x3) − x1)

−k3cΨceq,x3
(x2, x3)x3 + α2

α1
bx2

]

, (9.241)

where α1
△
= 2P̂ and k1

△
= R−1

2 P̂ . For this choice of L2(x1, x2, x3) the feedback
control (9.236) becomes

φ(x1, x2, x3) = −k1(x1 − ΨCeq(x2, x3) − k2x2)

+
1

a

[

b(k2 + Ψceq,x2
(x2, x3))(ΨCeq(x2, x3) − x1)

−k3cΨceq,x3
(x2, x3)x3 +

α2

α1
bx2

]

, (9.242)

where

Ψceq,x2(x2, x3)
△
=
∂ΨCeq(x2, x3)

∂x2

=
∂Ψc(x2, x3)

∂x2

∣

∣

∣

∣

∣

(x2,x3)=(Φeq+x2, Ωeq+x3)

=
γshσdx

2

3

γsh − 1
[Ψc(Φeq + x2,Ωeq + x3) + 1]

1
γsh

∂ηc(x2, x3)

∂x2

∣

∣

∣

∣

∣

(x2,x3)=(Φeq+x2, Ωeq+x3)

,

Ψceq,x3(x2, x3)
△
=
∂Ψceq(x2, x3)

∂x3

=
∂Ψc(x2, x3)

∂x3

∣

∣

∣

∣

∣

(x2,x3)=(Φeq+x2, Ωeq+x3)

=
γshσd

γsh − 1
[Ψc(Φeq + x2,Ωeq + x3) + 1]

1
γsh

∂
[

x2

3
ηc(x2, x3)

]

∂x3

∣

∣

∣

∣

∣

(x2,x3)=(Φeq+x2, Ωeq+x3)

,

and where

∂ηc(x2, x3)

∂x2

=
σx2

3
(f2(x3f1 − x2f2) + f3(σx3 − x2f3) − 2x2(f4 + f5))

(σx2

3
+ 1

2
(x3f1 − x2f2)2 + 1

2
(σx3 − x2f3)2 + x2

2
(f4 + f5))2

,

∂[x2

3
ηc(x2, x3)]

∂x3

=
σx3

3
(2σx2

3
+(x3f1−2x2f2)(x3f1−x2f2)+(σx3−2x2f3)(σx3−x2f3)+4x2

2
(f4+f5))

(σx2

3
+ 1

2
(x3f1 − x2f2)2 + 1

2
(σx3 − x2f3)2 + x2

2
(f4 + f5))2

,

so that (9.241) satisfies

−α1k1a(x1 − ΨCeq(x2, x3) − k2x2)
2 < 0, (x1, x2, x3) 6= (0, 0, 0). (9.243)
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In this case, the overall nonlinear controller

ũ
△
=

[

ũ1

ũ2

]

=

[

x2 − û
−k3x3 + f(x2, x3)

]

, (9.244)

guarantees that the closed-loop system (9.224)–(9.226) is globally asymp-
totically stable.

Next, with (a, b, c, d, e) = (9.37, 310.81, 6.97, 0.38, 0.7), (f1, f2, f3, f4,
f5) = (0.44, 1.07, 2.18, 0.17, 0.12), γsh = 1.4, µ = 3, and σ = 0.9, we design
inverse optimal controllers for the three-state centrifugal compressor model
discussed above. Since the torque dynamics given by (9.219) is for forward
mass flow in the compressor, and since the compressor may enter deep surge,
there is a need to derive an expression for the compressor torque for negative
mass flow. Hence, assuming that a centrifugal compressor in reverse flow
can be viewed as a throttling device and, hence, can be approximated as a
turbine, it follows that [119]

Ω̇(t) = c(u2(t) − σ|Φ(t)|Ω(t)), Ω(0) = Ω0, t ≥ 0. (9.245)

Using the initial conditions (Ψ0, Φ0, Ω0) = (0.188, 0.141, 0.394) and
the design parameters (α1, α2, α3) = (1, 0.1, 1) and (k1, k2, k3) = (1, 3, 1),
the closed-loop system response is compared to the open-loop response
when the compression system is taken from an operating speed of 20,000
rpm to 25,000 rpm. Figure 9.13 shows the pressure-flow phase portrait of
the state trajectories when the system is taken from an operating speed
of 20,000 rpm to 25,000 rpm. The pressure rise, mass flow, and spool
speed variations for the open-loop and controlled system are shown in
Figure 9.14, 9.15, and 9.16, respectively. Figures 9.17 and 9.18 shows
the control effort versus time. This comparison illustrates that open-loop
control drives the compression system into deep surge, while the proposed
globally stabilizing controller drives the system to the desired equilibrium
point (Ψeq, Φeq, Ωeq) = (0.304, 0.176, 0.493).

9.8 Problems

Problem 9.1. Consider the nonlinear dynamical system

ẋ1(t) = 1 + x2(t) + [x1(t) − 1]3, x1(0) = x10, t ≥ 0, (9.246)

ẋ2(t) = x1(t) + u(t), x2(0) = x20. (9.247)

Using backstepping, find a globally stabilizing feedback controller u(t) =
φ(x(t)) for (9.246) and (9.247).

Problem 9.2. Consider the nonlinear dynamical system

ẋ1(t) = x2
1(t) − x5

1(t) + x2(t), x1(0) = x10, t ≥ 0, (9.248)
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Figure 9.13 Controlled and uncontrolled phase portrait of pressure-flow state trajectories
from 20,000 rpm to 25,000 rpm.
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Figure 9.14 Pressure rise versus time.

ẋ2(t) = x3(t), x2(0) = x20, (9.249)

ẋ3(t) = u(t), x3(0) = x30. (9.250)
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Figure 9.15 Mass flow versus time.
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Figure 9.16 Compressor spool speed versus time.

Using backstepping, find a globally stabilizing feedback controller u(t) =
φ(x(t)) for (9.248)–(9.250).
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Figure 9.17 Driving torque versus time.

Problem 9.3. Consider the nonlinear dynamical system

ẋ1(t) = x2(t) − x3
1(t), x1(0) = x10, t ≥ 0, (9.251)

ẋ2(t) = u(t), x2(0) = x20. (9.252)

Using backstepping, find a stabilizing controller u(t) = φ(x(t)) for (9.251)
and (9.252).

Problem 9.4. Consider the nonlinear dynamical system

ẋ1(t) = cosx1(t) − x3
1(t) + x2(t), x1(0) = x10, t ≥ 0, (9.253)

ẋ2(t) = u(t), x2(0) = x20. (9.254)

Using backstepping, find a globally stabilizing controller u(t) = φ(x(t)) for
(9.253) and (9.254).

Problem 9.5. Consider the nonlinear dynamical system

ẋ1(t) = −x1(t) + x2(t)x
2
1(t), x1(0) = x10, t ≥ 0, (9.255)

ẋ2(t) = u(t), x2(0) = x20. (9.256)

Using backstepping, find a globally stabilizing controller u(t) = φ(x(t)) for
(9.255) and (9.256).

Problem 9.6. Consider the nonlinear dynamical system

ẋ1(t) = −x3
1(t) − [αx2(t) + βx3(t)]x

3
1(t), x1(0) = x10, t ≥ 0, (9.257)
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Figure 9.18 Throttle opening versus time.

ẋ2(t) = x3(t), x2(0) = x20, (9.258)

ẋ3(t) = u(t), x3(0) = x30, (9.259)

where αβ ≥ 0. Using backstepping, find a stabilizing controller u(t) =
φ(x(t)) for (9.257)–(9.259). Can the system be globally stabilized if αβ < 0?

Problem 9.7. Consider the nonlinear cascade system (9.160)–(9.162).
Show that if (9.171) and (9.172) are satisfied then the following statements
hold:

i) Vc(y, z) given by (9.165) exists and is continuous in Rm × Rq−m.

ii) V (x, y, z) given by (9.175) is positive definite in Rn × Rm × Rq−m.

iii) V (x, y, z) given by (9.175) is radially unbounded.

Problem 9.8. Show that if V : Rq−m → R is a radially unbounded,
nonnegative-definite polynomial function, then condition (9.172) is satisfied.

Problem 9.9. Consider the three-state parameterized Moore-Greitzer
model given by (9.195)–(9.197). Show that the linearized system is
linearly stabilizable for λ > 1, while for λ = 1, corresponding to the
maximum pressure rise equilibrium point, the linearized system is not
linearly stabilizable.
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Problem 9.10. Show that if ΨC(·) in (9.183) and (9.184) is analytic,
then the integral terms in (9.183) and (9.184) can be expressed in terms of
an infinite Taylor expansion about the circumferentially average flow Φ(·)
to give (9.186) and (9.187).

Problem 9.11. To address only surge instabilities in axial flow
compressor systems we restrict the three-state Moore-Greitzer model given
by (9.199)–(9.201) to the invariant manifold where the rotating stall
amplitude is zero, to obtain a two-state surge model. In this case,

Φ̇s(t) = −3
2Φ2

s (t) − 1
2Φ3

s (t) − Ψs(t), Φs(0) = Φs0, t ≥ 0, (9.260)

Ψ̇s(t) = −u(t), Ψs(0) = Ψs0, (9.261)

where Φs is the shifted axial average mass flow in the compressor, Ψs

is the shifted total-to-static pressure rise, and u is the control input.
Using Theorem 9.1, design a globally stabilizing controller for this system.
Compare the state response and control effort to the feedback linearizing
controller given by

u = φFL(Φs,Ψs) = −100Φs+(5−3Φs−1.5Φ2
s )(Ψs+1.5Φ2

s +0.15Φ3
s ). (9.262)

9.9 Notes and References

Integrator backstepping for cascade and block cascade systems can be traced
back to the works of Tsinias [433], Koditschek [240], Byrnes and Isidori [75],
and Sontag and Sussmann [408]. Block cascade integrator backstepping
via passivity notions was developed by Kokotović and Sussmann [241]
and extended to nonlinear block cascade systems by Ortega [339] and
Byrnes, Isidori, and Willems [77]. Further extensions were reported in
Lozano, Brogliato, and Landau [287]. Recursive backstepping designs were
reported in Saberi, Kokotović, and Sussmann [376] and Kanellakopoulos,
Kokotović, and Morse [231]. For a textbook treatment of recursive integrator
backstepping design see Krstić, Kanellakopoulos, and Kokotović [247].

The optimality and inverse optimality framework of integrator back-
stepping presented in Sections 9.3–9.5 were adopted from Haddad, Fausz,
Chellaboina, and Abdallah [169]. Optimality issues for backstepping-like
designs are also presented in Kolesnikov [242]. The Lyapunov function
involving cross-terms in Section 9.5 and Problem 9.7 was introduced by
Sepulchre, Janković, and Kokotović [395].
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Chapter Ten

Disturbance Rejection Control for

Nonlinear Dynamical Systems

10.1 Introduction

One of the fundamental problems in the analysis and feedback control design
of linear systems is the ability of the control system to reject uncertain
exogenous disturbances. To this end, H∞ control theory has been developed
to address the problem of disturbance rejection for linear systems with
bounded energy (square-integrable) L2 signal norms on the disturbances
and performance variables [121, 122, 478]. Since in this case the induced
H∞ transfer function norm corresponds to the worst-case disturbance
attenuation, for systems with poorly modeled disturbances which possess
significant power within arbitrarily small bandwidths H∞ theory is clearly
appropriate. For linear finite-dimensional, time-invariant systems the H∞
control design problem has been thoroughly investigated in recent years (see,
for example, [111, 237, 353, 355] and the numerous references therein). In
particular, the H∞ control design problem was formulated in the state space
setting and was shown to correspond to a two-person zero-sum differential
game problem, wherein the existence of an H∞ (sub)optimal controller is
equivalent to the existence of a solution to an algebraic Riccati equation
arising in quadratic differential game theory [31,32,296].

Alternatively, the H∞ analysis and synthesis control problem can
also be formulated and solved in the state space setting using the notion
of dissipativity theory [11]. In particular, using the bounded real Riccati
equation it follows that the H∞ norm of a (closed-loop) linear system is less
than a prespecified positive number γ if and only if the (closed-loop) linear
system is nonexpansive with respect to an appropriate quadratic supply rate
involving the systems weighted input energy and output energy. Riccati-
equation-based results for the mixed-norm H2/H∞ problem [49, 112, 238]
have also been developed using dissipativity notions to allow the trade-
off between systems with stochastic white noise disturbance models (H2)
possessing a fixed covariance (power spectral density) and deterministic
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bounded energy disturbance models. As in the pure H∞ case, the mixed-
norm H2/H∞ problem can be compared to a game-theoretic framework
involving a Nash differential game problem [279].

Using a nonlinear game-theoretic framework the authors in [22, 31]
replace the algebraic Riccati equation arising in linear H∞ theory with
a particular Hamilton-Jacobi-Bellman equation (the Isaacs equation) to
obtain a nonlinear equivalent to the H∞ analysis and synthesis control
problem. Sufficient conditions for the existence of stabilizing solutions of the
Isaacs equation are given in [438–440] in terms of the existence of a linear
(sub)optimal H∞ controller for the linearized (about a given equilibrium
point) nonlinear controlled system. In parallel research, the authors in
[213–216] use nonlinear dissipativity theory [77,188,189,191,320,456,457] for
nonlinear affine systems with appropriate storage functions and quadratic
supply rates to obtain nonexpansive (gain bounded) closed-loop systems.

Although a nonlinear equivalent to H∞ analysis and synthesis has been
developed it is important to note that the methods and results discussed
in [22,31,213–216,438–440] are independent of optimality considerations. In
this chapter, we develop an optimality-based theory for disturbance rejection
for nonlinear systems with bounded exogenous disturbances. The key
motivation for developing an optimal and inverse optimal nonlinear control
theory that additionally guarantees disturbance rejection is that it provides
a class of candidate disturbance rejection controllers parameterized by the
cost functional that is minimized. In the case of linear systems, optimality-
based theories have proven extremely successful in numerous applications.
Specifically, to fully address the trade-offs between H2 and H∞ performance,
the optimality-based linear-quadratic control problem was merged with H∞
methods to address the mixed-norm H2/H∞ control problem [49,238].

In order to address the optimality-based disturbance rejection non-
linear control problem we extend the nonlinear-nonquadratic, continuous-
time controller analysis and synthesis framework presented in Chapter 8.
Specifically, using nonlinear dissipativity theory with appropriate storage
functions and supply rates we transform the nonlinear disturbance rejection
problem into an optimal control problem. This is accomplished by properly
modifying the cost functional to account for exogenous disturbances so that
the solution of the modified optimal nonlinear control problem serves as the
solution to the disturbance rejection problem.

The framework guarantees that the closed-loop nonlinear input-output
map is dissipative with respect to general supply rates. Specializing to
quadratic supply rates involving net system energy flow and weighted input
and output energy, the results guarantee passive and nonexpansive (gain
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bounded) closed-loop input-output maps, respectively. In the special case
where the controlled system is linear the results, with appropriate quadratic
supply rates, specialize to the mixed-norm H2/H∞ framework developed
in [49] and the mixed H2/positivity framework developed in [146,151].

The main focus of this chapter is a methodology for designing optimal
nonlinear controllers which guarantee disturbance rejection and minimize
a (derived) performance functional that serves as an upper bound to a
nonlinear-nonquadratic cost functional. In particular, the performance
bound can be evaluated in closed form as long as the nonlinear-nonquadratic
cost functional considered is related in a specific way to an underlying
Lyapunov function that guarantees stability. This Lyapunov function
is shown to be the solution to the steady-state form of the Hamilton-
Jacobi-Isaacs equation for the controlled system and plays a key role
in constructing the optimal nonlinear disturbance rejection control law.
Furthermore, since the nonlinear-nonquadratic cost functional is closely
related to the structure of the Lyapunov function the proposed framework
provides a class of feedback stabilizing controllers that minimize a derived
performance functional. Hence, the overall framework provides for a
generalization of the Hamilton-Jacobi-Isaacs conditions for addressing the
design of optimal and inverse optimal controllers for nonlinear systems with
exogenous disturbances.

A key feature of the present chapter is that since the necessary and
sufficient Hamilton-Jacobi-Isaacs optimality conditions are obtained for a
modified nonlinear-nonquadratic performance functional rather than the
original performance functional, globally optimal controllers are guaranteed
to provide disturbance rejection. Of course, since the approach allows us to
construct globally optimal controllers that minimize a given Hamiltonian,
the resulting disturbance rejection controllers provide the best worst-case
performance over the class of admissible input disturbances.

10.2 Nonlinear Dissipative Dynamical Systems with

Bounded Disturbances

In this chapter, we consider nonlinear dynamical systems G of the form

ẋ(t) = f(x(t)) + J1(x(t))w(t), x(0) = x0, t ≥ 0, (10.1)

z(t) = h(x(t)) + J2(x(t))w(t), (10.2)

where x ∈ Rn, w ∈ Rd, z ∈ Rp, f : Rn → Rn, J1 : Rn → Rn×d, h :
Rn → Rp, and J2 : Rn → Rp×d. We assume that f(·), J1(·), h(·), and
J2(·) are continuous mappings and f(·) has at least one equilibrium so that,
without loss of generality, f(0) = 0 and h(0) = 0. Furthermore, for the
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nonlinear system G we assume that the required properties for the existence
and uniqueness of solutions are satisfied, that is, w(·) satisfies sufficient
regularity conditions such that (10.1) has a unique solution forward in time.

In this section, we present sufficient conditions for dissipativity for a
class of nonlinear systems with bounded energy and bounded amplitude
disturbances. In addition, we consider the problem of evaluating a
performance bound for a nonlinear-nonquadratic cost functional. The cost
bound is evaluated in closed form by relating the cost functional to an
underlying Lyapunov function that guarantees asymptotic stability of the
nonlinear system. Here, we restrict our attention to time-invariant, infinite-
horizon systems. For the following result presenting sufficient conditions
under which a nonlinear system is dissipative with respect to the supply
rate r(z,w), let D ⊂ Rn be an open set, assume 0 ∈ D, let f : D → Rn be
such that f(0) = 0, h : D → Rp be such that h(0) = 0, J1 : D → Rn×d, and
J2 : D → Rp×d. Finally, let W ⊂ Rd and let r : Rp × Rd → R be a given
function.

Lemma 10.1. Consider the nonlinear dynamical system

ẋ(t) = f(x(t)) + J1(x(t))w(t), x(0) = x0, w(·) ∈ L2, t ≥ 0, (10.3)

z(t) = h(x(t)) + J2(x(t))w(t). (10.4)

Furthermore, assume that there exist functions Γ : D → R and V : D → R,
where V (·) is continuously differentiable, such that

V (0) = 0, (10.5)

V (x) ≥ 0, x ∈ D, (10.6)

V ′(x)J1(x)w ≤ r(z,w) + Γ(x), x ∈ D, w ∈ Rd, (10.7)

V ′(x)f(x) + Γ(x) ≤ 0, x ∈ D. (10.8)

Then the solution x(t), t ≥ 0, of (10.3) satisfies

V (x(T )) ≤
∫ T

0
r(z(t), w(t))dt + V (x0), w(·) ∈ L2, T ≥ 0. (10.9)

Proof. Let x(t), t ≥ 0, satisfy (10.3) and let w(·) ∈ L2. Then it follows
from (10.7) and (10.8) that

V̇ (x(t))
△
=

dV (x(t))

dt
= V ′(x(t))[f(x(t)) + J1(x(t))w(t)]

≤ V ′(x(t))f(x(t)) + Γ(x(t)) + r(z(t), w(t))

≤ r(z(t), w(t)), t ≥ 0. (10.10)
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Now, integrating over [0, T ] yields

V (x(T )) − V (x0) ≤
∫ T

0
r(z(t), w(t))dt, w(·) ∈ L2, T ≥ 0,

which proves the result.

For the next result let L : D → R be given.

Theorem 10.1. Consider the nonlinear dynamical system given by
(10.3) and (10.4) with performance functional

J(x0)
△
=

∫ ∞

0
L(x(t))dt, (10.11)

where x(t), t ≥ 0, solves (10.3) with w(t) ≡ 0. Assume that there exist
functions Γ : D → R and V : D → R, where V (·) is continuously
differentiable, such that L(x) + Γ(x) ≥ 0, x ∈ D,

V (0) = 0, (10.12)

V (x) > 0, x ∈ D, x 6= 0, (10.13)

V ′(x)f(x) < 0, x ∈ D, x 6= 0, (10.14)

V ′(x)J1(x)w ≤ r(z,w) + L(x) + Γ(x), x ∈ D, w ∈ W,

(10.15)

L(x) + V ′(x)f(x) + Γ(x) = 0, x ∈ D. (10.16)

Then the zero solution x(t) ≡ 0 of the undisturbed (w(t) ≡ 0) system (10.3)
is locally asymptotically stable and there exists a neighborhood D0 ⊆ D of
the origin such that if Γ(x) ≥ 0, x ∈ D, then

J(x0) ≤ J (x0) = V (x0), x0 ∈ D0, (10.17)

where

J (x0)
△
=

∫ ∞

0
[L(x(t)) + Γ(x(t))]dt (10.18)

and where x(t), t ≥ 0, is a solution to (10.3) with w(t) ≡ 0. Furthermore,
the solution x(t), t ≥ 0, to (10.3) satisfies the dissipativity constraint

∫ T

0
r(z(t), w(t))dt + V (x0) ≥ 0, w(·) ∈ L2, T ≥ 0. (10.19)

Finally, if D = Rn, w(t) ≡ 0, and

V (x) → ∞ as ‖x‖ → ∞, (10.20)

then the zero solution x(t) ≡ 0 to (10.3) is globally asymptotically stable.
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Proof. Let x(t), t ≥ 0, satisfy (10.3). Then

V̇ (x(t))
△
=

d

dt
V (x(t)) = V ′(x(t))(f(x(t)) + J1(x)w(t)), t ≥ 0. (10.21)

Hence, with w(t) ≡ 0, it follows from (10.14) that

V̇ (x(t)) < 0, t ≥ 0, x(t) 6= 0. (10.22)

Thus, from (10.12), (10.13), and (10.22) it follows that V (·) is a Lyapunov
function for (10.3), which proves local asymptotic stability of the zero
solution x(t) ≡ 0 of (10.3) with w(t) ≡ 0. Consequently, x(t) → 0 as
t → ∞ for all initial conditions x0 ∈ D0 for some neighborhood D0 ⊆ D of
the origin.

Next, if Γ(x) ≥ 0, x ∈ D, and w(t) ≡ 0, (10.16) implies

L(x(t)) = −V̇ (x(t)) + L(x(t)) + V ′(x(t))f(x(t))

≤ −V̇ (x(t)) + L(x(t)) + V ′(x(t))f(x(t)) + Γ(x(t))

= −V̇ (x(t)).

Now, integrating over [0, t) yields
∫ t

0
L(x(s))ds ≤ −V (x(t)) + V (x0).

Letting t → ∞ and noting that V (x(t)) → 0 for all x0 ∈ D0 yields J(x0) ≤
V (x0).

Next, let x(t), t ≥ 0, satisfy (10.3) with w(t) ≡ 0. Then, with
L(x) replaced by L(x) + Γ(x) and J(x0) replaced by J (x0), it follows from
Theorem 8.1 that J (x0) = V (x0). Finally, since L(x) + Γ(x) ≥ 0, x ∈ D,
it follows that (10.12)–(10.16) implies (10.5)–(10.9), and hence, with Γ(x)
replaced by L(x) + Γ(x), Lemma 10.1 yields

V (x(T )) ≤
∫ T

0
r(z(t), w(t))dt + V (x0), w(·) ∈ L2, T ≥ 0.

Now, (10.19) follows by noting that V (x(T )) ≥ 0, T ≥ 0. Finally, for D = Rn

global asymptotic stability of the zero solution x(t) ≡ 0 of the undisturbed
(w(t) ≡ 0) system (10.3) is a direct consequence of the radially unbounded
condition (10.20) on V (x).

10.3 Specialization to Dissipative Systems with Quadratic

Supply Rates

In this section, we consider the special case in which r(z,w) is a quadratic

functional. Specifically, let h : D → Rp, J2 : D → Rp×d, Q̂ ∈ Sp, Ŝ ∈ Rp×d,
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R̂ ∈ Sd, and
r(z,w) = zTQ̂z + 2zTŜw + wTR̂w, (10.23)

such that

N(x)
△
= JT

2 (x)Q̂J2(x) + JT
2 (x)Ŝ + ŜTJ2(x) + R̂ > 0, x ∈ D.

Furthermore, let L(x) ≥ 0, x ∈ D. Then

Γ(x) =
[

1
2J

T
1 (x)V ′T(x) − JT

2 (x)Q̂h(x) − ŜTh(x)
]T
N−1(x)

·
[

1
2J

T
1 (x)V ′T(x) − JT

2 (x)Q̂h(x) − ŜTh(x)
]

− hT(x)Q̂h(x)

satisfies (10.15) since in this case

L(x) + Γ(x) − V ′(x)J1(x)w + r(z,w)

= L(x) +
[

1
2J

T
1 (x)V ′T(x) − JT

2 (x)Q̂h(x) − ŜT(x)h(x) −N(x)w
]T

·N−1(x)
[

1
2J

T
1 (x)V ′T(x) − JT

2 (x)Q̂h(x) − ŜT(x)h(x) −N(x)w
]

≥ 0. (10.24)

Corollary 10.1. Let γ > 0 and L(x) ≥ 0, x ∈ D, and consider the
nonlinear dynamical system given by (10.3) and (10.4) with performance
functional

J(x0)
△
=

∫ ∞

0
L(x(t))dt, (10.25)

where x(t), t ≥ 0, solves (10.3) with w(t) ≡ 0. Assume that there exists a
continuously differentiable function V : D → R such that

V (0) = 0, (10.26)

V (x) > 0, x ∈ D, x 6= 0, (10.27)

V ′(x)f(x) < 0, x ∈ D, x 6= 0, (10.28)

L(x) + V ′(x)f(x) + Γ(x) = 0, x ∈ D, (10.29)

where

Γ(x) =
[

1
2J

T
1 (x)V ′T(x) + JT

2 (x)h(x)
]T
[

γ2I − JT
2 (x)J2(x)

]−1

·
[

1
2J

T
1 (x)V ′T(x) + JT

2 (x)h(x)
]

+ hT(x)h(x). (10.30)

Then the zero solution x(t) ≡ 0 of the undisturbed (w(t) ≡ 0) system (10.3)
is locally asymptotically stable and there exists a neighborhood D0 ⊆ D of
the origin such that

J(x0) ≤ J (x0) = V (x0), x0 ∈ D0, (10.31)

where

J (x0)
△
=

∫ ∞

0
[L(x(t)) + Γ(x(t))]dt (10.32)
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and where x(t), t ≥ 0, solves (10.3) with w(t) ≡ 0. Furthermore, the solution
x(t), t ≥ 0, of (10.3) satisfies the nonexpansivity constraint
∫ T

0
zT(t)z(t)dt ≤ γ2

∫ T

0
wT(t)w(t)dt+ V (x0), w(·) ∈ L2, T ≥ 0.

(10.33)
Finally, if D = Rn, w(t) ≡ 0, and

V (x) → ∞ as ‖x‖ → ∞, (10.34)

then the zero solution x(t) ≡ 0 to (10.3) is globally asymptotically stable.

Proof. With Q̂ = −Ip, Ŝ = 0, and R̂ = γ2Id, it follows from (10.24)
that Γ(x) given by (10.30) satisfies (10.15). The result now follows as a
direct consequence of Theorem 10.1.

Note that if L(x) = hT(x)h(x) in Corollary 10.1, then Γ(x) can be
chosen as

Γ(x) =
[

1
2J

T
1 (x)V ′T(x) + JT

2 (x)h(x)
]T
[

γ2I − JT
2 (x)J2(x)

]−1

·
[

1
2J

T
1 (x)V ′T(x) + JT

2 (x)h(x)
]

.

Example 10.1. Consider the nonlinear dynamical system

ẋ1(t) = −x2(t), x1(0) = x10, t ≥ 0, (10.35)

ẋ2(t) = x1(t) − x2(t)tanh(x2
2(t) − x2

3(t)) + x2(t)w(t), x2(0) = x20,

(10.36)

ẋ3(t) = x3(t)tanh(x2
2 − x2

3(t)) − x3(t)w(t), x3(0) = x30, (10.37)

z(t) = x2
2(t) − x2

3(t). (10.38)

To show that (10.35)–(10.38) is nonexpansive with gain less than or equal
to 1, note that (10.35)–(10.38) can be written in the state space form (10.3)
and (10.4) with x = [x1 x2 x3]

T,

f(x) =





−x2

x1 − x2tanh(x2
2 − x2

3)
x3tanh(x2

2 − x2
3)



 , J1(x) =





0
x2

−x3



 , h(x) = x2
2 − x2

3,

(10.39)
and J2(x) = 0. Now, with V (x) = 1

2x
Tx it follows that

V ′(x)f(x) =
[

x1 x2 x3

]





−x2

x1 − x2tanh(x2
2 − x2

3)
x3tanh(x2

2 − x2
3)





= −(x2
2 − x2

3)tanh(x2
2 − x2

3)

= −h(x)tanh(h(x)) (10.40)
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and

V ′(x)J1(x) =
[

x1 x2 x3

]





0
x2

−x3



 = h(x). (10.41)

Next, let D △
= {x ∈ R3 : |x2

2 − x2
3| ≤ 1}. In this case, it can easily be

shown that all conditions of Corollary 10.1 are satisfied with γ = 1 and
L(x) = hT(x)h(x), and hence, the nonlinear dynamical system (10.35)–
(10.38) is nonexpansive with gain less than or equal to 1. △

The framework presented in Corollary 10.1 is an extension of the
mixed-norm H2/H∞ framework of Bernstein and Haddad [49] to nonlinear
dynamical systems. Specifically, setting f(x) = Ax, J1(x) = D, h(x) = Ex,
J2(x) = 0, L(x) = xTRx, and V (x) = xTPx, where A ∈ Rn×n, D ∈ Rn×d,

E ∈ Rp×n, R
△
= ETE > 0, and P ∈ Pn satisfies

0 = ATP + PA+ γ−2PDDTP +R, (10.42)

it follows from Corollary 10.1, with L(x) = hT(x)h(x) = xTRx, Γ(x) =
γ−2xTPDDTPx, and x0 = 0, that

∫ T

0
xT(t)Rx(t)dt ≤ γ2

∫ T

0
wT(t)w(t)dt, T ≥ 0, w(·) ∈ L2,

(10.43)
or, equivalently, the H∞ norm of

G(s) ∼
[

A D
E 0

]

satisfies
|||G|||∞ △

= sup
ω∈R

σmax(G(ω)) ≤ γ. (10.44)

Now, (10.31) implies
∫ ∞

0
xT(t)Rx(t)dt ≤

∫ ∞

0
xT(t)(R + γ−2PDDTP )x(t)dt

=

∫ ∞

0
xT

0 e
ATt(R + γ−2PDDTP )eAtx0dt,

where x(t), t ≥ 0, solves (10.3) with w(t) ≡ 0.

As is common practice [274], to eliminate the explicit dependence of
J(x0) on the initial condition x0 we assume x0x

T
0 has expected value V , that

is, E[x0x
T
0 ] = V , where E denotes expectation. Invoking this step leads to

E

[
∫ ∞

0
xT(t)Rx(t)dt

]

= E

[
∫ ∞

0
xT

0 e
ATtReAtx0dt

]

= E[xT
0 P̂ x0] = tr P̂ V,

where
0 = ATP̂ + P̂A+R
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and

E

[∫ ∞

0
xT(t)(R + γ−2PDDTP )x(t)dt

]

= E

[
∫ ∞

0
xT

0 e
ATt(R + γ−2PDDTP )eAtx0dt

]

= E
[

xT
0 Px0

]

= tr PV,

where P satisfies (10.42). Hence, |||G|||22 = tr P̂ V ≤ tr PV , which implies
that J (x0) given by (10.32) provides an upper bound to the H2 norm of
G(s).

Corollary 10.2. Let L(x) ≥ 0, x ∈ D, p = d, and consider the
nonlinear dynamical system given by (10.3) and (10.4) with performance
functional

J(x0)
△
=

∫ ∞

0
L(x(t))dt, (10.45)

where x(t), t ≥ 0, solves (10.3) with w(t) ≡ 0. Assume that there exists a
continuously differentiable function V : D → R such that

V (0) = 0, (10.46)

V (x) > 0, x ∈ D, x 6= 0, (10.47)

V ′(x)f(x) < 0, x ∈ D, x 6= 0, (10.48)

L(x) + V ′(x)f(x) + Γ(x) = 0, x ∈ D, (10.49)

where

Γ(x) =
[

1
2J

T
1 (x)V ′T(x) − h(x)

]T
[

J2(x) + JT
2 (x)

]−1

·
[

1
2J

T
1 (x)V ′T(x) − h(x)

]

. (10.50)

Then the zero solution x(t) ≡ 0 of the undisturbed (w(t) ≡ 0) system (10.3)
is locally asymptotically stable and there exists a neighborhood D0 ⊆ D of
the origin such that

J(x0) ≤ J (x0) = V (x0), x0 ∈ D0, (10.51)

where

J (x0)
△
=

∫ ∞

0
[L(x(t)) + Γ(x(t))]dt (10.52)

and where x(t), t ≥ 0, solves (10.3) with w(t) ≡ 0. Furthermore, the solution
x(t), t ≥ 0, of (10.3) satisfies the passivity constraint

∫ T

0
2zT(t)w(t)dt+ V (x0) ≥ 0, w(·) ∈ L2, T ≥ 0. (10.53)
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Finally, if D = Rn, w(t) ≡ 0, and

V (x) → ∞ as ‖x‖ → ∞, (10.54)

then the zero solution x(t) ≡ 0 to (10.3) is globally asymptotically stable.

Proof. With Q̂ = 0, Ŝ = Id, and R̂ = 0, it follows from (10.24) that
Γ(x) given by (10.50) satisfies (10.15). The result now follows as a direct
consequence of Theorem 10.1.

The framework presented in Corollary 10.2 is an extension of the
H2/positivity framework of Haddad and Bernstein [146, 151] to nonlinear
dynamical systems. Specifically, setting f(x) = Ax, J1(x) = D, h(x) = Ex,
J2(x) = E∞, L(x) = xTRx, V (x) = xTPx, and Γ(x) = xT[DTP−E]T(E∞+
ET

∞)−1[DTP − E]x, where A ∈ Rn×n, D ∈ Rn×d, E ∈ Rd×n, E∞ ∈ Rd×d,
R ∈ Pn, and P ∈ Pn satisfies

0 = ATP + PA+ (DTP −E)T(E∞ + ET
∞)−1(DTP − E) +R, (10.55)

it follows from Corollary 10.2, with x0 = 0, that
∫ T

0
2wT(t)z(t)dt ≥ 0, w(·) ∈ L2, T ≥ 0, (10.56)

or, equivalently,

G∞(s) +G∗
∞(s) ≥ 0, Re[s] > 0, (10.57)

where

G∞(s) ∼
[

A D
E E∞

]

.

Now, using similar arguments as in the H∞ case, (10.51) implies that

tr P̂ V = E

[∫ ∞

0
xT(t)Rx(t)dt

]

≤ E

[
∫ ∞

0
xT(t)[R+ (DTP − E)T(E∞ + ET

∞)−1(DTP − E)]x(t)dt

]

,

or, equivalently, since

E

[
∫ ∞

0
xT(t)[R + (DTP − E)T(E∞ + ET

∞)−1(DTP − E)]x(t)dt

]

= E

[∫ ∞

0
xT

0 e
ATt[R+ (DTP − E)T(E∞ + ET

∞)−1(DTP −E)]eAtx0dt

]

= E [xT
0 Px0]

= tr PV,
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|||G|||22 = tr P̂ V ≤ tr PV . Hence, J (x0) given by (10.52) provides an upper
bound to the H2 norm of G(s).

Next, define the subset of square-integrable bounded disturbances

Wβ
△
= {w(·) ∈ L2 :

∫ ∞

0
wT(t)w(t)dt ≤ β}, (10.58)

where β > 0. Furthermore, let L : D → R be given such that L(x) ≥ 0,
x ∈ D.

Theorem 10.2. Let γ > 0 and consider the nonlinear dynamical
system (10.3) with performance functional (10.11). Assume that there exists
a continuously differentiable function V : D → R such that

V (0) = 0, (10.59)

V (x) > 0, x ∈ D, x 6= 0, (10.60)

V ′(x)f(x) < 0, x ∈ D, x 6= 0, (10.61)

L(x) + V ′(x)f(x) +
β

4γ
V ′(x)J1(x)J

T
1 (x)V ′T(x) = 0, x ∈ D. (10.62)

Then then the zero solution x(t) ≡ 0 of the undisturbed (w(t) ≡ 0) system
(10.3) is locally asymptotically stable and there exists a neighborhood D0 ⊆
D of the origin such that

J(x0) ≤ J (x0) = V (x0), x0 ∈ D0, (10.63)

where

J (x0)
△
=

∫ ∞

0
[L(x(t)) + Γ(x(t))]dt, (10.64)

Γ(x) =
β

4γ
V ′(x)J1(x)J

T
1 (x)V ′T(x), (10.65)

and where x(t), t ≥ 0, solves (10.3) with w(t) ≡ 0. Furthermore, if x0 = 0
then the solution x(t), t ≥ 0, of (10.3) satisfies

V (x(T )) ≤ γ, w(·) ∈ L2, T ≥ 0. (10.66)

Finally, if D = Rn, w(t) ≡ 0, and

V (x) → ∞ as ‖x‖ → ∞, (10.67)

then the zero solution x(t) ≡ 0 to (10.3) is globally asymptotically stable.

Proof. The proofs for local and global asymptotic stability and the
performance bound (10.63) are identical to the proofs of local and global
asymptotic stability given in Theorem 10.1 and the performance bound
(10.17). Next, with r(z,w) = γ

βw
Tw and Γ(x) given by (10.65) it follows
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from Lemma 10.1 that

V (x(T )) ≤ γ

β

∫ T

0
wT(t)w(t)dt, w(·) ∈ L2, T ≥ 0,

which yields (10.66).

10.4 A Riccati Equation Characterization for

Mixed H2/L1 Performance

In this section, we consider the dynamical system (10.1) and (10.2) with
f(x) = Ax, J1(x) = D, h(x) = Ex, and J2(x) = E∞, where A ∈ Rn×n,
D ∈ Rn×d, E ∈ Rp×n, E∞ ∈ Rp×d, and where A is asymptotically stable so
that

ẋ(t) = Ax(t) +Dw(t), x(0) = 0, w(·) ∈ L2, t ≥ 0, (10.68)

z(t) = Ex(t) + E∞w(t), (10.69)

where Ŵ consists of unit-peak input signals defined by

Ŵ △
= {w(·) : wT(t)w(t) ≤ 1, t ≥ 0}. (10.70)

The following result provides an upper bound to the L1 norm [104] (L∞ equi-
induced norm) of the convolution operator G of the linear, time-invariant
system (10.68) and (10.69) given by

|||G|||1 △
= sup

w(·)∈L2

{

sup
t≥0

‖z(t)‖
}

,

where ‖ · ‖ denotes the Euclidean vector norm. From an input-output
point of view the L1 norm captures the worst-case amplification from input
disturbance signals to output signals, where the signal size is taken to be
the supremum over time of the signal’s pointwise-in-time Euclidean norm.

Theorem 10.3. Let α > 0 and consider the linear dynamical system
(10.68) and (10.69). Then

|||G|||1 ≤ σ1/2
max(EP

−1ET) + σ1/2
max(E∞E

T
∞), (10.71)

where P > 0 satisfies

0 ≥ ATP + PA+ αP +
1

α
PDDTP. (10.72)

Proof. Let T ≥ 0 and consider the shifted linear dynamical system

˙̃x(t) = Aαx̃(t) +Dv(t), x̃(0) = 0, t ≥ 0, (10.73)

z(t) = e−
α

2
(t−T )(Ex̃(t) +E∞v(t)), (10.74)
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whereAα
△
= A+α

2 I, α > 0, x̃(t)
△
= e

α

2
(t−T )x(t), and v(t)

△
= e

α

2
(t−T )w(t). Note

that (10.73) and (10.74) are equivalent to (10.68) and (10.69). Furthermore,

note that if w(·) ∈ Ŵ then v(·) ∈ V, where V △
= {v(·) :

∫ T
0 vT(t)v(t)dt ≤ 1

α}.
Hence,

|||G|||21 ≤ sup
T≥0

sup
v(·)∈V

‖z(T )‖2.

Next, with f(x) = Aαx̃(t), J1(x) = D, V (x) = x̃TPx̃, W = V, β = 1
α ,

γ = 1, and L(x) = x̃TRx̃, where R ∈ Rn×n is an arbitrary positive-definite
matrix, it follows from Theorem 10.2 that if there exists P > 0 such that

0 = AT
αP + PAα +

1

α
PDDTP +R, (10.75)

then
x̃T(T )Px̃(T ) ≤ 1,

and hence, for all v(·) ∈ V,

‖z(T )‖ = ‖Ex̃(T ) + E∞w(T )‖ ≤ σ1/2
max(EP

−1ET) + σ1/2
max(E∞E

T
∞).

The result is now immediate by noting that (10.75) is equivalent to (10.72).

Note that we can replace the Riccati inequality (10.72) by the Riccati
equation

0 = ATP + PA+ αP +
1

α
PDDTP (10.76)

in Theorem 10.3. In this case, if (A,D) is controllable and Aα is
asymptotically stable, then there exists a positive-definite solution satisfying
(10.76). In particular,

P =

[
∫ ∞

0
eAαtDDTeA

T
α tdt

]−1

. (10.77)

Now, letting Q = αP−1 in Theorem 10.3 yields

|||G|||1 ≤ 1

α
σ1/2

max(EQET) + σ1/2
max(E∞E

T
∞), (10.78)

where Q > 0 satisfies

0 ≥ AQ + QAT + αQ +DDT. (10.79)

Furthermore, it is interesting to note that in the case where E∞ = 0 the
solution Q to (10.79) satisfies the bound

Q ≤ Q, (10.80)

where Q satisfies
0 = AQ+QAT +DDT, (10.81)
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and hence,
|||G|||22 = tr EQET ≤ tr EQET. (10.82)

Thus, (10.79) can be used to provide a trade-off between H2 and mixed
H2/L1 performance. For further details see [157].

10.5 Nonlinear-Nonquadratic Controllers for Systems with

Bounded Disturbances

In this section, we consider a control problem involving a notion of optimality
with respect to an auxiliary cost which guarantees a bound on the worst-case
value of a nonlinear-nonquadratic cost functional over a prescribed set of
bounded input disturbances. The optimal feedback controllers are derived
as a direct consequence of Theorem 10.1 and provide a generalization of
the Hamilton-Jacobi-Bellman conditions for time-invariant, infinite-horizon
problems for addressing nonlinear feedback controllers for nonlinear systems
with bounded energy disturbances that additionally minimize a nonlinear-
nonquadratic cost functional.

To address the optimal control problem let D ⊂ Rn be an open set
and let U ⊂ Rm, where 0 ∈ D and 0 ∈ U . Furthermore, let W ⊂ Rd and
let r : Rp × Rd → R be a given function. Next, consider the controlled
dynamical system

ẋ(t) = F (x(t), u(t)) + J1(x(t))w(t) x(0) = x0, w(·) ∈ L2, t ≥ 0,
(10.83)

with performance variables

z(t) = h(x(t), u(t)) + J2(x(t))w(t), (10.84)

where F : Rn×Rm → Rn satisfies F (0, 0) = 0, J1 : Rn → Rd, h : Rn×Rm →
Rp satisfies h(0, 0) = 0, J2 : Rn → Rp×d, and the control u(·) is restricted to
the class of admissible controls consisting of measurable functions u(·) ∈ U
such that u(t) ∈ U for all t ≥ 0, where the control constraint set U is given.
We assume 0 ∈ U . Given a control law φ(·) and a feedback control law
u(t) = φ(x(t)), the closed-loop system shown in Figure 10.1 has the form

ẋ(t) = F (x(t), φ(x(t))) + J1(x(t))w(t), x(0) = x0, t ≥ 0, (10.85)

z(t) = h(x(t), φ(x(t))) + J2(x(t))w(t). (10.86)

We assume that the mapping φ : D → U satisfies sufficient regularity
conditions such that the resulting closed-loop system (10.85) has a unique
solution forward in time.

Next, we present an extension of Theorem 8.2 for characterizing
feedback controllers that guarantee stability, minimize an auxiliary perfor-
mance functional, and guarantee that the input-output map of the closed-
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Figure 10.1 Disturbed nonlinear closed-loop feedback system.

loop system is dissipative, nonexpansive, or passive for bounded input
disturbances. For the statement of these results let L : D × U → R and
define the set of regulation controllers for the nonlinear system with w(t) ≡ 0
by

S(x0)
△
= {u(·) : u(·) is admissible and x(·) given by (10.83)

satisfies x(t) → 0 as t→ ∞ with w(t) ≡ 0}.

Theorem 10.4. Consider the nonlinear controlled dynamical system
(10.83) and (10.84) with performance functional

J(x0, u(·)) △
=

∫ ∞

0
L(x(t), u(t))dt, (10.87)

where u(·) is an admissible control. Assume that there exist a continuously
differentiable function V : D → R, a function Γ : D × U → R, and control
law φ : D → U such that

V (0) = 0, (10.88)

V (x) > 0, x ∈ D, x 6= 0, (10.89)

φ(0) = 0, (10.90)

V ′(x)F (x, φ(x)) < 0, x ∈ D, x 6= 0, (10.91)

V ′(x)J1(x)w ≤ r(z,w) + L(x, φ(x)) + Γ(x, φ(x)), x ∈ D, w ∈ W,

(10.92)

H(x, φ(x)) = 0, x ∈ D, (10.93)

H(x, u) ≥ 0, x ∈ D, u ∈ U, (10.94)

where
H(x, u)

△
= V ′(x)F (x, u) + L(x, u) + Γ(x, u). (10.95)

Then, with the feedback control u(·) = φ(x(·)), there exists a neighborhood
D0 ⊆ D of the origin such that if x0 ∈ D0 and w(t) ≡ 0, the zero solution
x(t) ≡ 0 of the closed-loop system (10.85) is locally asymptotically stable.
If, in addition, Γ(x, φ(x)) ≥ 0, x ∈ D, then

J(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = V (x0), (10.96)
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where

J (x0, u(·)) △
=

∫ ∞

0
[L(x(t), u(t)) + Γ(x(t), u(t))]dt (10.97)

and where u(·) is admissible and x(t), t ≥ 0, solves (10.83) with w(t) ≡ 0.
In addition, if x0 ∈ D0 then the feedback control u(·) = φ(x(·)) minimizes
J (x0, u(·)) in the sense that

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)). (10.98)

Furthermore, the solution x(t), t ≥ 0, of (10.85) satisfies the dissipativity
constraint

∫ T

0
r(z(t), w(t)) + V (x0) ≥ 0, w(·) ∈ L2, T ≥ 0. (10.99)

Finally, if D = Rn, U = Rm, w(t) ≡ 0, and

V (x) → ∞ as ‖x‖ → ∞, (10.100)

then the zero solution x(t) ≡ 0 of the closed-loop system (10.85) is globally
asymptotically stable.

Proof. Local and global asymptotic stability is a direct consequence of
(10.88)–(10.91) by applying Theorem 10.1 to the closed-loop system (10.85).
Furthermore, using (10.93), the performance bound (10.96) is a restatement
of (10.17) as applied to the closed-loop system. Next, let u(·) ∈ S(x0) and
let x(t), t ≥ 0, be the solution of (10.83) with w(t) ≡ 0. Then (10.98)
follows from Theorem 8.2 with L(x, u) replaced by L(x, u) + Γ(x, u) and
J(x0, u(·)) replaced by J (x0, u(·)). Finally, using (10.92), condition (10.99)
is a restatement of (10.19) as applied to the closed-loop system.

Next, we specialize Theorem 10.4 to linear systems with bounded
energy disturbances and provide connections to the mixed-norm H2/H∞
and mixed H2/positivity frameworks developed in [49] and [146, 420],
respectively. Specifically, we consider the case in which F (x, u) = Ax+Bu,
J1(x) = D, h(x, u) = E1x + E2u, and J2(x) = E∞, where A ∈ Rn×n,
B ∈ Rn×m, D ∈ Rn×d, E1 ∈ Rp×n, E2 ∈ Rp×m, and E∞ ∈ Rp×d. First,
we consider the mixed-norm H2/H∞ case where r(z,w) = γ2wTw − zTz,

and where γ > 0 is given. For the following result define R1
△
= ET

1 E1 > 0,

R2
△
= ET

2 E2 > 0, S
△
= BR−1

2 BT, and assume E∞ = 0 and R12
△
= ET

1 E2 = 0.

Corollary 10.3. Consider the linear controlled system

ẋ(t) = Ax(t) +Bu(t) +Dw(t), x(0) = x0, w(·) ∈ L2, t ≥ 0, (10.101)

z(t) = E1x(t) + E2u(t), (10.102)
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with performance functional

J(x0, u(·)) =

∫ ∞

0
[xT(t)R1x(t) + uTR2u(t)]dt, (10.103)

where u(·) is admissible. Assume that there exists a positive-definite matrix
P ∈ Rn×n such that

0 = ATP + PA+R1 + γ−2PDDTP − PSP, (10.104)

where γ > 0. Then, with the feedback control law u = φ(x) = −R−1
2 BTPx,

the zero solution x(t) ≡ 0 of the undisturbed (w(t) ≡ 0) system (10.101) is
globally asymptotically stable for all x0 ∈ Rn and

J(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = xT
0 Px0, (10.105)

where

J (x0, u(·)) =

∫ ∞

0
[xT(t)(R1 +γ−2PDDTP )x(t)+uT(t)R2u(t)]dt, (10.106)

and where u(·) is admissible and x(t), t ≥ 0, solves (10.101) with w(t) ≡ 0.
Furthermore,

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)), (10.107)

where S(x0) is the set of regulation controllers for the system (10.101) with
w(t) ≡ 0 and x0 ∈ Rn. Finally, if x0 = 0 then, with u = φ(x), the solution
x(t), t ≥ 0, of (10.101) satisfies the nonexpansivity constraint

∫ T

0
z(t)Tz(t)dt ≤ γ2

∫ T

0
w(t)Tw(t)dt, w(·) ∈ L2, T ≥ 0, (10.108)

or, equivalently, |||G̃(s)|||∞ ≤ γ, where

G̃(s) ∼
[

A+BK D
E1 +E2K 0

]

and K
△
= −R−1

2 BTP .

Proof. The result is a direct consequence of Theorem 10.4 with
F (x, u) = Ax + Bu, J1(x) = D, L(x, u) = xTR1x + uTR2u, V (x) =
xTPx, Γ(x, u) = γ−2xTPDDTPx, D = Rn, and U = Rm. Specifically,
conditions (10.88)–(10.91) are trivially satisfied. Now, forming xT(10.104)x
it follows that, after some algebraic manipulations, V ′(x)J1(x)w ≤ r(z,w)+
L(x, φ(x), w) + Γ(x, φ(x), w), for all x ∈ D and w ∈ W. Furthermore,
it follows from (10.104) that H(x, φ(x)) = 0 and H(x, u) = H(x, u) −
H(x, φ(x)) = [u− φ(x)]TR2[u− φ(x)] ≥ 0 so that all conditions of Theorem
10.4 are satisfied. Finally, since V (·) is radially unbounded, (10.101), with
u(t) = φ(x(t)) = −R−1

2 BTPx(t), is globally asymptotically stable.
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In the case where U = Rm the feedback control u = φ(x) is globally
optimal since it minimizes H(x, u) and satisfies (10.93). Specifically, setting

∂

∂u
H(x, u) = 0, (10.109)

yields the feedback control

φ(x) = −R−1
2 BTPx. (10.110)

Now, since

∂2

∂u2
H(x, u) = R2 > 0, (10.111)

it follows that for all x ∈ Rn the feedback control given by (10.110) minimizes
H(x, u). In particular, the optimal feedback control law φ(x) in Corollary
10.3 is derived using the properties of H(x, u) as defined in Theorem 10.4.
Specifically, since H(x, u) = xT(ATP+PA+R1+γ−2PDDTP )x+uTR2u+
2xTPBu it follows that ∂2H/∂u2 > 0. Now, ∂H/∂u = 2R2u+ 2BTPx = 0
gives the unique global minimum of H(x, u). Hence, since φ(x) minimizes
H(x, u) it follows that φ(x) satisfies ∂H/∂u = 0 or, equivalently, R2φ(x) +
BTPx = 0 so that φ(x) is given by (10.110). Similar remarks hold for the
controllers developed in Corollary 10.4 and Section 10.8.

Next, we specialize Theorem 10.4 to provide connections to the mixed
H2/positivity framework developed in [146, 420]. Specifically, we consider
the case where p = d and r(z,w) = 2wTz. For the following result

define R0
△
= (E∞ + ET

∞)−1, R2s
△
= R2 + ET

2 R0E2, R1s
△
= ET

1 (I + R0)E1 −
ET

1 R0E2R
−1
2s E

T
2 R0E1, Bs

△
= B −DR0E2, As

△
= A − (BsR

−1
2s E

T
2 +D)R0E1,

and Ss
△
= BsR

−1
2s B

T
s . Furthermore, assume that ET

1 E1 > 0 and ET
2 E2 > 0.

Note that using Schur complements it can be shown that R1s > 0.

Corollary 10.4. Consider the linear dynamical system (10.101) with
performance variables

z(t) = E1x(t) + E2u(t) + E∞w(t) (10.112)

and performance functional (10.103). Assume that there exists a positive-
definite matrix P ∈ Rn×n such that

0 = AT
s P + PAs +R1s + PDR0D

TP − PSsP. (10.113)

Then, with the feedback control law u = φ(x) = −R−1
2s (BT

s P + ET
2 R0E1)x,

the zero solution x(t) ≡ 0 of the undisturbed (w(t) ≡ 0) system (10.101) is
globally asymptotically stable for all x0 ∈ Rn and

J(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = xT
0 Px0, (10.114)
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where

J (x0, u(·)) =

∫ ∞

0
[xT(t)(R1 + (DTP − E1)

TR0(D
TP − E1))x(t)

+uT(t)R2su(t) − 2xT(t)(DTP − E1)
TR0E2u(t)]dt

(10.115)

and where u(·) is admissible and x(t), t ≥ 0, solves (10.101) with w(t) ≡ 0.
Furthermore,

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)), (10.116)

where S(x0) is the set of regulation controllers for the system (10.101) with
w(t) ≡ 0 and x0 ∈ Rn. Finally, if x0 = 0, then, with u = φ(x), the solution
x(t), t ≥ 0, of (10.101) satisfies the passivity constraint

∫ T

0
2wT(t)z(t) ≥ 0, w(·) ∈ L2, T ≥ 0, (10.117)

or, equivalently, G̃∞(s) + G̃∗
∞(s) ≥ 0, Re[s] > 0, where

G̃∞(s) ∼
[

A+BK D
E1 + E2K E∞

]

and K = −R−1
2s (BT

s P + ET
2 R0E1).

Proof. The result is a direct consequence of Theorem 10.4 with
F (x, u) = Ax+ Bu, J1(x) = D, L(x, u) = xTR1x+ uTR2u, V (x) = xTPx,
Γ(x, u) = [(DTP − E1)x − E2u]

TR0[(D
TP − E1)x − E2u], D = Rn, and

U = Rm. Specifically, conditions (10.88)–(10.91) are trivially satisfied. Now,
forming xT(10.113)x it follows that, after some algebraic manipulations,
V ′(x)J1(x)w ≤ r(z,w) + L(x, φ(x), w) + Γ(x, φ(x), w), for all x ∈ D and
w ∈ W. Furthermore, it follows from (10.113) that H(x, φ(x)) = 0 and
H(x, u) = H(x, u) − H(x, φ(x)) = [u − φ(x)]TR2s[u − φ(x)] ≥ 0 so that
all conditions of Theorem 10.4 are satisfied. Finally, since V (x) is radially
unbounded, (10.101), with u(t) = φ(x(t)) = −R−1

2s (BT
s P + ET

2 R0E1)x(t), is
globally asymptotically stable.

10.6 Optimal and Inverse Optimal Control for Affine Systems

with L2 Disturbances

In this section, we specialize Theorem 10.4 to affine (in the control) systems
of the form

ẋ(t) = f(x(t)) +G(x(t))u(t) + J1(x(t))w(t), x(0) = x0, w(·) ∈ L2, t ≥ 0,
(10.118)
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with performance variables

z(t) = h(x(t)) + J(x(t))u(t), (10.119)

where f : Rn → Rn satisfies f(0) = 0, G : Rn → Rn×m, J : Rn → Rp×m,
h : Rn → Rp satisfies h(0) = 0, D = Rn, and U = Rm. First, we consider
the nonexpansivity case so that the supply rate r(z,w) is given by r(z,w) =
γ2wTw−zTz, where γ > 0. For the following result, we consider performance
integrands L(x, u) of the form

L(x, u) = [h(x) + J(x)u]T[h(x) + J(x)u], (10.120)

where JT(x)J(x) > 0, x ∈ Rn, so that (10.87) becomes

J(x0, u(·)) =

∫ ∞

0
[h(x(t)) + J(x(t))u(t)]T[h(x(t)) + J(x(t))u(t)]dt.

(10.121)

Corollary 10.5. Consider the nonlinear controlled dynamical system
(10.118) and (10.119) with performance functional (10.121). Assume that
there exists a continuously differentiable function V : Rn → R such that

V (0) = 0, (10.122)

V (x) > 0, x ∈ Rn, x 6= 0, (10.123)

V ′(x)[f(x) − 1
2G(x)R−1

2 (x)(V ′(x)G(x) + 2hT(x)J(x))T] < 0,

x ∈ Rn, x 6= 0, (10.124)

0 = V ′(x)f(x) + hT(x)h(x) + 1
4γ2V

′(x)J1(x)J
T
1 (x)V ′T(x)

−1
4 [V ′(x)G(x) + 2hT(x)J(x)]R−1

2 (x)[V ′(x)G(x) + 2hT(x)J(x)]T, x ∈ Rn,

(10.125)

and
V (x) → ∞ as ‖x‖ → ∞, (10.126)

where γ > 0 and R2(x)
△
= JT(x)J(x). Then the zero solution x(t) ≡ 0 of

the undisturbed (w(t) ≡ 0) closed-loop system

ẋ(t) = f(x(t)) +G(x(t))φ(x(t)), x(0) = x0, t ≥ 0, (10.127)

is globally asymptotically stable with feedback control law

φ(x) = −1
2R

−1
2 (x)[V ′(x)G(x) + 2hT(x)J(x)]T. (10.128)

Furthermore, the performance functional (10.121) satisfies

J(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = V (x0), (10.129)

where

J (x0, u(·)) △
=

∫ ∞

0
[L(x(t), u(t)) + Γ(x(t), u(t))]dt, (10.130)
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Γ(x, u) = 1
4γ2V

′(x)J1(x)J
T
1 (x)V ′T(x). (10.131)

In addition, the performance functional (10.130) is minimized in the sense
that

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)). (10.132)

Finally, with u(·) = φ(x(·)), the solution x(t), t ≥ 0, of the closed-loop
system (10.118) satisfies the nonexpansivity constraint
∫ T

0
zT(t)z(t)dt ≤ γ2

∫ T

0
wT(t)w(t)dt+ V (x0), T ≥ 0, w(·) ∈ L2.

(10.133)

Proof. The result is a direct consequence of Theorem 10.4 with
F (x, u) = f(x)+G(x)u, z = h(x)+J(x)u, L(x, u) = [h(x)+J(x)u]T[h(x)+
J(x)u], J2(x) = 0, Γ(x, u) given by (10.131), D = Rn, and U = Rm.
Specifically, with (10.120) and (10.131), the Hamiltonian has the form

H(x, u) = [h(x) + J(x)u]T[h(x) + J(x)u] + V ′(x)(f(x) +G(x)u)

+ 1
4γ2V

′(x)J1(x)J
T
1 (x)V ′T(x).

Now, the feedback control law (10.128) is obtained by setting ∂H
∂u = 0.

With (10.128), it follows that (10.122)–(10.124) imply (10.88), (10.89), and
(10.91). Next, since V (·) is continuously differentiable and x = 0 is a local
minimum of V (·), it follows that V ′(0) = 0, and hence, since by assumption
h(0) = 0, it follows that φ(0) = 0, which proves (10.90). Next, with φ(x)
given by (10.128), it follows from (10.125) that (10.93) holds. Finally, since
H(x, u) = H(x, u) − H(x, φ(x)) = [u − φ(x)]TR2(x)[u − φ(x)], and R2(x)
is positive definite for all x ∈ Rn, condition (10.94) holds. The result now
follows as a direct consequence of Theorem 10.4.

Next, we consider performance integrands L(x, u) of the form

L(x, u) = L1(x) + L2(x)u+ uTR2(x)u, (10.134)

where L1 : Rn → R, L2 : Rn → R1×m, and R2 : Rn → Pm so that (10.87)
becomes

J(x0, u(·)) =

∫ ∞

0
[L1(x(t)) + L2(x(t))u(t) + uT(t)R2(x)u(t)]dt. (10.135)

Corollary 10.6. Consider the nonlinear controlled dynamical system
(10.118) and (10.119) with performance functional (10.135). Assume that
there exist a continuously differentiable function V : Rn → R and a function
L2 : Rn → R1×m such that

V (0) = 0, (10.136)

L2(0) = 0, (10.137)
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V (x) > 0, x ∈ Rn, x 6= 0, (10.138)

V ′(x)[f(x) − 1
2G(x)R−1

2a (x)(LT
2 (x) +GT(x)V ′T(x) + 2JT(x)h(x))]

+Γ(x, φ(x)) < 0, x ∈ Rn, x 6= 0, (10.139)

and
V (x) → ∞ as ‖x‖ → ∞, (10.140)

whereR2a(x)
△
= R2(x)+J

T(x)J(x), φ(x) = −1
2R

−1
2a (x)[LT

2 (x)+GT(x)V ′T(x)

+2JT(x)h(x)], and

Γ(x, u) = 1
4γ2V

′(x)J1(x)J
T
1 (x)V ′T(x) + [h(x) + J(x)u]T[h(x) + J(x)u],

(10.141)

where γ > 0, u(·) is admissible, and x(t), t ≥ 0, solves (10.118) with w(t) ≡
0. Then the zero solution x(t) ≡ 0 of the undisturbed (w(t) ≡ 0) closed-loop
system

ẋ(t) = f(x(t)) +G(x(t))φ(x(t)), x(0) = x0, t ≥ 0, (10.142)

is globally asymptotically stable with feedback control law

φ(x) = −1
2R

−1
2a (x)[LT

2 (x) +GT(x)V ′T(x) + 2JT(x)h(x)]. (10.143)

Furthermore, the performance functional (10.135) satisfies

J(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = V (x0), (10.144)

where

J (x0, u(·)) △
=

∫ ∞

0
[L(x(t), u(t)) + Γ(x(t), u(t))]dt. (10.145)

In addition, the performance functional (10.145), with

L1(x) = φT(x)R2a(x)φ(x) − V ′(x)f(x) − hT(x)h(x)

− 1
4γ2V

′(x)J1(x)J
T
1 (x)V ′T(x), (10.146)

is minimized in the sense that

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)). (10.147)

Finally, with u(·) = φ(x(·)), the solution x(t), t ≥ 0, of the closed-loop
system (10.118) satisfies the nonexpansivity constraint
∫ T

0
zT(t)z(t)dt ≤ γ2

∫ T

0
wT(t)w(t)dt+ V (x0), w(·) ∈ L2, T ≥ 0.

(10.148)

Proof. The result is a direct consequence of Theorem 10.4 with
F (x, u) = f(x) + G(x)u, z = h(x) + J(x)u, L(x, u) = L1(x) + L2(x)u +
uTR2(x)u, J2(x) = 0, Γ(x, u) given by (10.141), D = Rn, and U = Rm.
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Specifically, with (10.118), (10.134), and (10.141), the Hamiltonian has the
form

H(x, u) = L1(x) + L2(x)u+ uTR2(x)u+ V ′(x)(f(x) +G(x)u)

+ 1
4γ2V

′(x)J1(x)J
T
1 (x)V ′T(x) + [h(x) + J(x)u]T[h(x) + J(x)u].

Now, the proof follows as the proof of Corollary 10.5.

Note that since Γ(x, φ(x)) ≥ 0, x ∈ Rn, (10.139) implies that

V̇ (x)
△
= V ′(x)[f(x) +G(x)φ(x)] < 0, x ∈ Rn, x 6= 0, (10.149)

with φ(x) given by (10.143). Furthermore, (10.136), (10.138), and (10.149)
ensure that V (·) is a Lyapunov function for the undisturbed closed-loop
system (10.142). In addition, with L1(x) given by (10.146) and φ(x) given
by (10.143), L(x, u) + Γ(x, u) can be expressed as

L(x, u) + Γ(x, u)

= [u− φ(x)]TR2a(x)[u− φ(x)] − V ′(x)[f(x) +G(x)u]

= [u+ 1
2R

−1
2a (x)(LT

2 (x) + 2JT(x)h(x)]TR2a(x)

[u+ 1
2R

−1
2a (x)(LT

2 (x) + 2JT(x)h(x)]

−V ′(x)[f(x) +G(x)φ(x)] − 1
4V

′(x)G(x)R−1
2a (x)GT(x)V ′T(x).

(10.150)

Since R2a(x) ≥ R2(x) > 0 for all x ∈ Rn the first term of the right-hand
side of (10.150) is nonnegative, while (10.149) implies that the second term
is nonnegative. Thus, we have

L(x, u) + Γ(x, u) ≥ −1
4V

′(x)G(x)R−1
2a (x)GT(x)V ′T(x), (10.151)

which shows that L(x, u) + Γ(x, u) may be negative. As a result, there
may exist a control input u for which the auxiliary performance functional
J (x0, u) is negative. However, if the disturbance rejection control u is a
regulation controller, that is, u ∈ S(x0), then it follows from (10.144) and
(10.147) that

J (x0, u(·)) ≥ V (x0) ≥ 0, x0 ∈ Rn, u(·) ∈ S(x0).

Furthermore, in this case substituting u = φ(x) into (10.150) yields

L(x, φ(x)) + Γ(x, φ(x)) = −V ′(x)[f(x) +G(x)φ(x)],

which, by (10.149), is positive.

Next, we specialize Theorem 10.4 to the passivity case. Specifically,
we consider the case where p = d and r(z,w) = 2zTw. For the following
result we consider performance variables

z(t) = h(x(t)) + J(x(t))u(t) + J2(x(t))w(t), (10.152)
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where J : Rn → Rp×m, J2 : Rn → Rp×p satisfies J2(x) + JT
2 (x) > 0, x ∈ Rn,

and h : Rn → Rp satisfies h(0) = 0. Furthermore, we consider performance
integrands L(x, u) of the form given by (10.134).

Corollary 10.7. Consider the nonlinear controlled dynamical system
(10.118) and (10.152) with performance functional (10.135). Assume that
there exist a continuously differentiable function V : Rn → R and a function
L2 : Rn → R1×m such that

V (0) = 0, (10.153)

L2(0) = 0, (10.154)

V (x) > 0, x ∈ Rn, x 6= 0, (10.155)

V ′(x)[f(x) − 1
2G(x)R−1

2a (x)(LT
2 (x) + JT(x)R0(x)[2h(x) − JT

1 (x)V ′T(x)])]

+Γ(x, φ(x)) < 0, x ∈ Rn, x 6= 0, (10.156)

and
V (x) → ∞ as ‖x‖ → ∞, (10.157)

where R0(x)
△
= (J2(x) + JT

2 (x))−1, R2a(x)
△
= R2(x) + JT(x)R0(x)J(x),

φ(x) = −1
2R

−1
2a (x)[GT(x)V ′T(x) + LT

2 (x) + JT(x)R0(x)(2h(x)

−JT
1 (x)V ′T(x))],

and

Γ(x, u) =
[

1
2J

T
1 (x)V ′T(x) − (h(x) + J(x)u)

]T
R0(x)

·
[

1
2J

T
1 (x)V ′T(x) − (h(x) + J(x)u)

]

, (10.158)

where u(·) is admissible, and x(t), t ≥ 0, solves (10.118) with w(t) ≡ 0.
Then the zero solution x(t) ≡ 0 of the undisturbed (w(t) ≡ 0) closed-loop
system (10.142) is globally asymptotically stable with feedback control law
φ(x). Furthermore, the performance functional (10.135) satisfies

J(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = V (x0), (10.159)

where

J (x0, u(·)) △
=

∫ ∞

0
[L(x(t), u(t)) + Γ(x(t), u(t))]dt. (10.160)

In addition, the performance functional (10.160), with

L1(x) = φT(x)R2a(x)φ(x) − V ′(x)f(x) − [12J
T
1 (x)V ′T(x) − h(x)]TR0(x)

·[12JT
1 (x)V ′T(x) − h(x)]hT(x)h(x) − 1

4γ2V
′(x)J1(x)J

T
1 (x)V ′T(x),

(10.161)

is minimized in the sense that

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)). (10.162)
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Finally, with u(·) = φ(x(·)), the solution x(t), t ≥ 0, of the closed-loop
system (10.118) satisfies the positivity constraint

∫ T

0
2zT(t)w(t)dt+ V (x0) ≥ 0, w(·) ∈ L2, T ≥ 0. (10.163)

Proof. The result is a direct consequence of Theorem 10.4 with
F (x, u) = f(x) + G(x)u, z = h(x) + J(x)u + J2(x)w, L(x, u) = L1(x) +
L2(x)u + uTR2(x)u, J2(x) = 0, Γ(x, u) given by (10.158), D = Rn, and
U = Rm. Specifically, with (10.134) and (10.158), the Hamiltonian has the
form

H(x, u) = L1(x) + L2(x)u+ uTR2(x)u+ V ′(x)(f(x) +G(x)u) + Γ(x, u).

The proof now follows as in the proof of Corollary 10.5.

10.7 Stability Margins, Meaningful Inverse Optimality, and

Nonexpansive Control Lyapunov Functions

In this section, we specialize the results of Section 10.6 to the case where
L(x, u) is nonnegative for all (x, u) ∈ Rn × Rm. Here, we assume L2(x) ≡ 0
and L1(x) = hT(x)h(x), x ∈ Rn. We begin by specializing Corollary 10.5 to
affine systems of the form (10.118) with performance variables (10.119) and

we assume hT(x)J(x) ≡ 0 and R2(x)
△
= JT(x)J(x) > 0, x ∈ Rn, so that the

performance functional (10.121) becomes

J(x0, u(·)) =

∫ ∞

0
[L1(x(t)) + uT(t)R2(x(t))u(t)]dt. (10.164)

Corollary 10.8. Consider the nonlinear controlled dynamical system
(10.118) and (10.119) with performance functional (10.164). Assume that
there exists a continuously differentiable function V : Rn → R such that

V (0) = 0, (10.165)

V (x) > 0, x ∈ Rn, x 6= 0, (10.166)

0 = V ′(x)f(x) + hT(x)h(x) + 1
4γ2V

′(x)J1(x)J
T
1 (x)V ′T(x)

−1
4V

′(x)G(x)R−1
2 (x)GT(x)V ′T(x), x ∈ Rn, (10.167)

and
V (x) → ∞ as ‖x‖ → ∞, (10.168)

where γ > 0. Furthermore, assume that the system (10.118) and (10.119)
is zero-state observable. Then the zero solution x(t) ≡ 0 of the undisturbed
(w(t) ≡ 0) closed-loop system

ẋ(t) = f(x(t)) +G(x(t))φ(x(t)), x(0) = x0, t ≥ 0, (10.169)
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is globally asymptotically stable with feedback control law

φ(x) = −1
2R

−1
2 (x)GT(x)V ′T(x). (10.170)

Furthermore, the performance functional (10.164) satisfies

J(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = V (x0), (10.171)

where

J (x0, u(·)) △
=

∫ ∞

0
[L(x(t), u(t)) + Γ(x(t), u(t))]dt, (10.172)

Γ(x, u) = 1
4γ2V

′(x)J1(x)J
T
1 (x)V ′T(x), (10.173)

and γ > 0. In addition, the performance functional (10.172) is minimized
in the sense that

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)). (10.174)

Finally, with u(·) = φ(x(·)), the solution x(t), t ≥ 0, of the closed-loop
system (10.118) satisfies the nonexpansivity constraint
∫ T

0
zT(t)z(t)dt ≤ γ2

∫ T

0
wT(t)w(t)dt+ V (x0), w(·) ∈ L2, T ≥ 0.

(10.175)

Proof. The result follows as a direct consequence of Corollary 10.5.

Next, we provide sector and gain margins for the nonlinear dynamical
system G given by (10.118) and (10.119). To consider relative stability mar-
gins for nonlinear nonexpansive regulators consider the nonlinear dynamical
system given by (10.118) and (10.119), along with the output

y(t) = −φ(x(t)), (10.176)

where φ(·) is such that the input-output map from w to z is nonexpansive
with u = φ(x). Furthermore, assume that (10.118) and (10.176) is zero-state
observable. For the next result define

η
△
=

infx∈Rn σmin(J1(x)J
T
1 (x))

supx∈Rn σmax(G(x)R−1
2 (x)GT(x))

. (10.177)

Theorem 10.5. Let γ > 0 and ρ ∈ (0, 1]. Consider the nonlinear
dynamical system G given by (10.118) and (10.119) where φ(x) is a
nonexpansive feedback control law given by (10.170) and where V (x),
x ∈ Rn, satisfies

V (0) = 0, (10.178)

V (x) > 0, x ∈ Rn, x 6= 0, (10.179)
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0 = V ′(x)f(x) + hT(x)h(x) + 1
4γ2V ′(x)J1(x)J

T
1 (x)V ′T(x)

−1
4V

′(x)G(x)R−1
2 GT(x)V ′T(x), x ∈ Rn. (10.180)

Furthermore, assume R2(x) = diag[r1(x), . . . , rm(x)], where ri : Rn → R,
ri(x) > 0, i = 1, . . . ,m. Then the undisturbed (w(t) ≡ 0) nonlinear system
G has a sector (and, hence, gain) margin (α

2 ,∞), where

α
△
= 1 − η(1 − ρ2)

γ2
.

Finally, with u = σ(φ(x)), the solution x(t), t ≥ 0, of the closed-loop system
(10.118) satisfies the nonexpansivity constraint
∫ T

0
zT(t)z(t)dt ≤ (γ/ρ)2

∫ T

0
wT(t)w(t)dt + V (x0), w(·) ∈ L2, T ≥ 0,

(10.181)
where σ : Rm → Rm is such that σ(0) = 0 and for every uc ∈ Rm, σ(uc) =
[σ1(uc1), . . . , σm(ucm)]T and αu2

ci < 2σi(uci)uci, uci 6= 0, i = 1, . . . ,m.

Proof. With u = σ(φ(x)), the closed-loop system (10.118) and
(10.176) is given by

ẋ(t) = f(x(t)) +G(x(t))σ(φ(x(t)) + J1(x(t))w(t),

x(0) = x0, w(·) ∈ L2, t ≥ 0. (10.182)

Next, consider the Lyapunov function candidate V (x), x ∈ Rn, satisfying
(10.180) and let V̇ (x) denote the Lyapunov derivative along the trajectories
of the closed-loop system (10.182). Now, it follows from (10.180) that for
all w ∈ Rd,

V̇ (x) = V ′(x)f(x) + V ′(x)G(x)σ(φ(x)) + V ′(x)J1(x)w

≤ φT(x)R2(x)φ(x) + V ′(x)G(x)σ(φ(x)) + V ′(x)J1(x)w

− 1
4γ2V

′(x)J1(x)J
T
1 (x)V ′T(x) − hT(x)h(x)

≤ αφT(x)R2(x)φ(x) + V ′(x)G(x)σ(φ(x)) + V ′(x)J1(x)w

−hT(x)h(x) − ρ2

4γ2V
′(x)J1(x)J

T
1 (x)V ′T(x)

≤
m
∑

i=1

ri(x)yi(αyi + 2σi(−yi)) + (γ/ρ)2wTw − zTz

≤ (γ/ρ)2wTw − zTz,

which proves the nonexpansivity property. The proof of sector (and, hence,
gain) margin guarantees is similar to the proof of Theorem 8.7 and, hence,
is omitted.

The following specialization of Theorem 10.5 to linear dynamical
systems is immediate.
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Corollary 10.9. Let γ > 0 and ρ ∈ (0, 1]. Consider the linear
dynamical system G given by (10.101) and (10.102) and let P ∈ Pn satisfy
(10.104). Furthermore, assume R2 = diag[r1, . . . , rm], where ri > 0,
i = 1, . . . ,m. Then with the nonexpansive feedback control law φ(x) =
−R−1

2 BTPx, the undisturbed (w(t) ≡ 0) linear dynamical system G has a
sector (and, hence, gain) margin (α

2 ,∞), where

α
△
= 1 − η(1 − ρ2)

γ2
.

Finally, with u = σ(φ(x)), the solution x(t), t ≥ 0, of the closed-loop system
satisfies the nonexpansivity constraint

∫ T

0
zT(t)z(t)dt ≤ (γ/ρ)2

∫ T

0
wT(t)w(t)dt+ V (x0), w(·) ∈ L2, T ≥ 0,

(10.183)
where σ : Rm → Rm is such that σ(0) = 0 and for every uc ∈ Rm, σ(uc) =
[σ1(uc1), . . . , σm(ucm)]T and αu2

ci < 2σi(uci)uci, uci 6= 0, i = 1, . . . ,m.

Next, we introduce the notion of nonexpansive control Lyapunov
functions for the nonlinear dynamical system (10.118) and (10.119).

Definition 10.1. Consider the controlled nonlinear dynamical system
given by (10.118) and (10.119). A continuously differentiable positive-
definite function V : Rn → R satisfying

V ′(x)f(x) + hT(x)h(x) +
1

4γ2
V ′(x)J1(x)J

T
1 (x)V ′T(x) < 0, x ∈ R,

(10.184)

where R △
= {x ∈ Rn : x 6= 0 : V ′(x)G(x) = 0}, is called a nonexpansive

control Lyapunov function.

Finally, we show that for every nonlinear dynamical system for which
a nonexpansive control Lyapunov function can be constructed there exists
an inverse optimal nonexpansive feedback control law with sector and gain
margin guarantees of at least (α

2 ,∞).

Theorem 10.6. Let γ > 0 and ρ ∈ (0, 1]. Consider the nonlinear
dynamical system G given by (10.118) and (10.119), and let the continuously
differentiable positive-definite, radially unbounded function V : Rn → R be
a nonexpansive control Lyapunov function of (10.118) and (10.119), that is,

V ′(x)f(x) + hT(x)h(x) +
1

4γ2
V ′(x)J1(x)J

T
1 (x)V ′T(x) < 0, x ∈ R,

(10.185)

where R △
= {x ∈ Rn : x 6= 0 : V ′(x)G(x) = 0}. Then, with the feedback
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control law given by

φ(x) =







−
(

c0 +
α(x)+

√
α2(x)+(βT(x)β(x))2

βT(x)β(x)

)

β(x), β(x) 6= 0,

0, β(x) = 0,
(10.186)

where α(x)
△
= V ′(x)f(x) + hT(x)h(x) + 1

4γ2V ′(x)J1(x)J
T
1 (x)V ′T(x), β(x)

△
=

GT(x)V ′T(x), and c0 > 0, the nonlinear system G given by (10.118) and
(10.119) has a sector (and, hence, gain) margin (α

2 ,∞), where

α
△
= 1 − η(1 − ρ2)

γ2
.

Finally, with u = σ(φ(x)), the solution x(t), t ≥ 0, of the closed-loop system
(10.118) satisfies the nonexpansivity constraint

∫ T

0
zT(t)z(t)dt ≤ (γ/ρ)2

∫ T

0
wT(t)w(t)dt + V (x0), w(·) ∈ L2, T ≥ 0,

(10.187)
where σ : Rm → Rm is such that σ(0) = 0 and for every uc ∈ Rm, σ(uc) =
[σ1(uc1), . . . , σm(ucm)]T and αu2

ci < 2σi(uci)uci, uci 6= 0, i = 1, . . . ,m.

Proof. The result is a direct consequence of Corollary 10.8 and

Theorem 10.5 with R2(x) = 1
2η(x)Im and L1(x) = −α(x) + η(x)

2 βT(x)β(x),

where

η(x) =







−
(

c0 +
α(x)+

√
α2(x)+(βT(x)β(x))2

βT(x)β(x)

)

, β(x) 6= 0,

0, β(x) = 0.
(10.188)

Specifically, note that R2(x) > 0, x ∈ Rn, and

L1(x) = −α(x) + η(x)
2 βT(x)β(x) (10.189)

=























−1
2

(

c0β
T(x)β(x) − α(x)

+
√

α2(x) + (βT(x)β(x))2
)

, β(x) 6= 0,

−α(x), β(x) = 0.

Now, it follows from (10.189) that L1(x) ≥ 0, β(x) 6= 0, and since V (·)
is a nonexpansive control Lyapunov function of (10.118), it follows that
L1(x) = −α(x) ≥ 0, for all x ∈ R. Hence, (10.189) yields L1(x) ≥ 0,
x ∈ Rn, so that all the conditions of Corollary 10.9 are satisfied.
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10.8 Nonlinear Controllers with Multilinear and Polynomial

Performance Criteria

In this section, we specialize the results of Section 10.5 to linear systems con-
trolled by nonlinear controllers that minimize a multilinear cost functional.
Specifically, we consider the linear system (10.101) controlled by nonlinear
controllers. First, we consider the case in which r(z,w) = γ2wTw − zTz,
where γ > 0. Recall the definitions of S, R1, and R2 and let ℓ : Rn → R

be a multilinear function such that ℓ(x) ≥ 0, x ∈ Rn. Furthermore, assume
that γ−2DDT ≤ S, where γ > 0 is given.

Proposition 10.1. Consider the linear dynamical system (10.101) and
(10.102) and assume that there exist a positive-definite matrix P ∈ Rn×n

and a function p : Rn → R such that p(x) ≥ 0, x ∈ Rn,

0 = ATP + PA+R1 + γ−2PDDTP − PSP, (10.190)

and
0 = p′(x)[A− (S − γ−2DDT)P ]x+ ℓ(x), (10.191)

where γ > 0. Then the zero solution x(t) ≡ 0 of the undisturbed (w(t) ≡
0) system (10.101) is globally asymptotically stable for all x0 ∈ Rn with

the feedback control law u = φ(x) = −R−1
2 BT(Px + 1

2p
′T(x)), and the

performance functional (10.135) with R2(x) ≡ R2, L2(x) ≡ 0, and

L1(x) = xTR1x+ ℓ(x) + 1
4p

′(x)(S − γ−2DDT)p′T(x), (10.192)

satisfies

J(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = xT
0 Px0 + p(x0), (10.193)

where

J (x0, u(·)) =

∫ ∞

0
[L(x(t), u(t)) + Γ(x(t), u(t))]dt (10.194)

and where u(·) is admissible, x(t), t ≥ 0, solves (10.101) with w(t) ≡ 0, and

Γ(x, u) = γ−2[Px+ 1
2p

′T(x)]TDDT[Px+ 1
2p

′T(x)]. (10.195)

Furthermore,
J (x0, φ(x(·))) = min

u(·)∈S(x0)
J (x0, u(·)), (10.196)

where S(x0) is the set of regulation controllers for the system (10.101) with
w(t) ≡ 0 and x0 ∈ Rn. Finally, with u = φ(x), the solution x(t), t ≥ 0, of
(10.101) satisfies the nonexpansivity constraint
∫ T

0
zT(t)z(t)dt ≤ γ2

∫ T

0
w(t)Tw(t)dt+ V (x0), w(·) ∈ L2, T ≥ 0.

(10.197)



NonlinearBook10pt November 20, 2007

634 CHAPTER 10

Proof. The result is a direct consequence of Theorem 10.4 with
F (x, u) = Ax + Bu, J1(x) = D, L(x, u) = xTR1x + 1

2p
′(x)(S − γ−2DDT)

p′T(x) + ℓ(x) + uTR2u, V (x) = xTPx + p(x), D = Rn, and U = Rm.
Specifically, conditions (10.88)–(10.91) are trivially satisfied. Now, forming
xT(10.190)x + (10.191) it follows that, after some algebraic manipulations,
V ′(x)J1(x)w ≤ r(z,w) +L(x, φ(x), w) + Γ(x, φ(x), w) for all x ∈ D and w ∈
W. Furthermore, it follows from (10.190) and (10.191) that H(x, φ(x)) = 0
and H(x, u) = H(x, u) −H(x, φ(x)) = [u − φ(x)]TR2[u− φ(x)] ≥ 0 so that
all conditions of Theorem 10.4 are satisfied. Finally, since V (·) is radially

unbounded, (10.101), with u(t) = φ(x(t)) = −R−1
2 (BTPx(t) + 1

2p
′T(x(t))),

is globally asymptotically stable.

Since A − (S − γ−2DDT)P is Hurwitz and ℓ(x), x ∈ Rn, is a
nonnegative multilinear function, it follows from Lemma 8.1 that there exists
a nonnegative p(x), x ∈ Rn, such that (10.191) is satisfied. Proposition 10.1
generalizes the classical results of Bass and Webber [33] to optimal control
of nonlinear systems with bounded energy disturbances. As discussed in
Chapter 8 the performance functional (10.192) is a derived performance
functional in the sense that it cannot be arbitrarily specified. However,
this performance functional does weigh the state variables by arbitrary even
powers. Furthermore, (10.192) has the form

J(x0, u(·)) =

∫ ∞

0

[

xTR1x+ ℓ(x) + uTR2u− 1
4γ

−2p′(x)DDTp′T(x)

+φT
NL(x)R2φNL(x)

]

dt,

where φNL(x)
△
= −1

2R
−1
2 BTp′T(x) is the nonlinear part of the optimal

feedback control
φ(x) = φL(x) + φNL(x),

where φL(x)
△
= −R−1

2 BTPx.

If p(x) is a polynomial function of the form p(x) =
∑r

k=2
1
k (xTMkx)

k,

then it follows from (10.191) that ℓ(x) =
∑r

k=2(x
TMkx)

k−1xTR̂kx, where

Mk, R̂k ∈ Nn, k = 2, . . . , r, and Mk satisfies

0 = [A−(S−γ−2DDTP )]TMk+Mk[A−(S−γ−2DDTP )]+R̂k, k = 2, . . . , r,
(10.198)

where P satisfies (10.190). In this case, the optimal control law φ(x) is given
by

φ(x) = −R−1
2 BT

(

Px+
r
∑

k=2

(xTMkx)
k−1Mkx

)

,

the corresponding Lyapunov function guaranteeing closed-loop stability is
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given by

V (x) = xTPx+
r
∑

k=2

1

k
(xTMkx)

k,

and L(x, u) given by (10.192) becomes

L(x, u) = xT

(

R1 +
r
∑

k=2

(xTMkx)
k−1R̂k

)

x

+

(

r
∑

k=2

(xTMkx)
k−1Mkx

)T

(S − γ−2DDT)

·
(

r
∑

k=2

(xTMkx)
k−1Mkx

)

+ uTR2u.

Furthermore, if R̂k = R̂2, k = 3, . . . , r, then Mk = M2, k = 3, . . . , r, satisfies
(10.198). In this case, we require the solution of only one modified Riccati
equation in (10.198). Proposition 10.1 generalizes the deterministic version
of the stochastic nonlinear-nonquadratic optimal control problem considered
in [411] to the disturbance rejection setting. Furthermore, unlike the results
of [411], this result is not limited to sixth-order cost functionals and cubic
nonlinear controllers since it addresses a polynomial nonlinear performance
criterion.

Next, we consider the linear system (10.101) controlled by nonlinear
controllers where r(z,w) = 2zTw. For the statement of the next result
recall the definitions of R0, Ss, R1s, R2s, As, Bs and let ℓ : Rn → R be a
multilinear function such that ℓ(x) ≥ 0, x ∈ Rn. Furthermore, assume that
DR0D

T ≤ Ss and p = d.

Proposition 10.2. Consider the linear dynamical system (10.101) and
(10.112) and assume that there exist a positive-definite matrix P ∈ Rn×n

and a function p : Rn → R such that p(x) ≥ 0, x ∈ Rn,

0 = AT
s P + PAs +R1s + PDR0D

TP − PSsP, (10.199)

and

0 = p′(x)[As − (Ss −DR0D
T)P ]x+ ℓ(x). (10.200)

Then the zero solution x(t) ≡ 0 of the undisturbed (w(t) ≡ 0) system
(10.101) is globally asymptotically stable for all x0 ∈ Rn with the feedback

control law u = φ(x) = −R−1
2s (BT

s (Px + 1
2p

′T(x)) + ET
2 R0E1x), and the

performance functional (10.135) with R2(x) ≡ R2, L2(x) ≡ 0, and

L1(x) = xTR1x+ ℓ(x) + 1
4p

′(x)(Ss −DR0D
T)p′T(x), (10.201)
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satisfies

J(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = xT
0 Px0 + p(x0), (10.202)

where

J (x0, u(·)) =

∫ ∞

0
[L(x(t), u(t)) + Γ(x(t), u(t))]dt (10.203)

and where u(·) is admissible, x(t), t ≥ 0, solves (10.101) with w(t) ≡ 0, and

Γ(x, u) = [DT(Px+ 1
2p

′T(x)) −E1x− E2u]
TR0

·[DT(Px+ 1
2p

′T(x)) − E1x− E2u]. (10.204)

Furthermore,
J (x0, φ(x(·))) = min

u(·)∈S(x0)
J (x0, u(·)), (10.205)

where S(x0) is the set of regulation controllers for the system (10.101) with
w(t) ≡ 0 and x0 ∈ Rn. Finally, with u = φ(x), the solution x(t), t ≥ 0, of
(10.101) satisfies the passivity constraint

∫ T

0
2wT(t)z(t) + V (x0) ≥ 0, w(·) ∈ L2, T ≥ 0. (10.206)

Proof. The result is a direct consequence of Theorem 10.4 with
F (x, u) = Ax + Bu, J1(x) = D, L(x, u) = xTR1x + 1

2p
′(x)(Ss − DR0D

T)

p′T(x) +ℓ(x) + uTR2u, V (x) = xTPx + p(x), D = Rn, and U = Rm.
Specifically, conditions (10.88)–(10.91) are trivially satisfied. Now, forming
xT(10.199)x + (10.200), it follows that, after some algebraic manipulations,
V ′(x)J1(x)w ≤ r(z,w) +L(x, φ(x), w) + Γ(x, φ(x), w) for all x ∈ D and w ∈
W. Furthermore, it follows from (10.199) and (10.200) that H(x, φ(x)) = 0
and H(x, u) = H(x, u) −H(x, φ(x)) = [u− φ(x)]TR2s[u− φ(x)] ≥ 0 so that
all conditions of Theorem 10.4 are satisfied. Finally, since V (·) is radially

unbounded, (10.101), with u(t) = φ(x(t)) = −R−1
2s (BT

s (Px(t)+ 1
2p

′T(x(t)))+

ET
2 R0E1x(t)), is globally asymptotically stable.

Since As − (Ss − DR0D
T)P is Hurwitz and ℓ(x), x ∈ Rn, is a

nonnegative multilinear function, it follows from Lemma 8.1 that there exists
a nonnegative p(x), x ∈ Rn, such that (10.200) is satisfied.

Finally, if p(x), x ∈ Rn, is a polynomial function of the form
∑r

k=2
1
k

(xTMkx)
k, then it follows from (10.200) that ℓ(x) =

∑r
k=2(x

TMkx)
k−1xT

·R̂kx, where Mk, R̂k ∈ Nn, k = 2, . . . , r, and Mk satisfies

0 = [As−(Ss−DR0D
TP )]TMk+Mk[As−(Ss−DR0D

TP )]+R̂k, k = 2, . . . , r,
(10.207)
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and where P satisfies (10.199). In this case, the optimal control law φ(x) is
given by

φ(x) = −R−1
2s

[

BT
s

(

Px+

r
∑

k=2

(xTMkx)
k−1Mkx

)

+ ET
2 R0E1x

]

,

the corresponding Lyapunov function guaranteeing closed-loop stability is
given by

V (x) = xTPx+

r
∑

k=2

1

k
(xTMkx)

k,

and L(x, u) given by (10.201) becomes

L(x, u) = xT

(

R1 +
r
∑

k=2

(xTMkx)
k−1R̂k

)

x+ uTR2u

+

(

r
∑

k=2

(xTMkx)
k−1Mkx

)T

(Ss −D0R0D
T)

·
(

r
∑

k=2

(xTMkx)
k−1Mkx

)

.

10.9 Problems

Problem 10.1. Consider the linear dynamical system given by (10.68)
and (10.69), where A is Hurwitz. Show that if (A,D) is controllable and
Aα = A + α

2 In, α > 0, then the solution to the Riccati equation (10.76) is
given by (10.77).

Problem 10.2. Let X ∈ Rn×n be a nonnegative-definite matrix. Show
that limq→∞[tr (In ◦X)q]1/q = dmax(X) and limq→∞[tr Xq]1/q = λmax(X),
where ◦ denotes the Hadamard product (i.e., entry-by-entry product),
dmax(X) denotes the maximum diagonal entry of X, and λmax(X) denotes
the maximum eigenvalue of X. Also show that dmax(X) ≤ λmax(X) ≤
tr(X). Use the above results to obtain differentiable bounds for |||G|||1 given
by (10.78).

Problem 10.3. Consider the linear time-invariant system given by
(10.68) and (10.69). Assume A is Hurwitz. Show that

sup
ω∈R

σmax(G(ω)) = sup
w(·)∈L2

|||z|||2,2

|||w|||2,2
, (10.208)

where G(s) = E(sI −A)−1D + E∞.
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Problem 10.4. Consider the linear dynamical system

G(s) ∼
[

A D
E 0

]

,

where G ∈ RH∞. Define the entropy of G at infinity by

I(G, γ)
△
= lim

s0→∞

[

− γ
2

2π

∫ ∞

−∞
ln
∣

∣det(Im − γ−2G∗(ω)G(ω))
∣

∣

[

s20
s20 + ω2

]

dω

]

,

(10.209)
and assume there exists a positive-definite matrix P ∈ Rn×n satisfying

0 = ATP + PA+ γ−2PDDTP + ETE, (10.210)

where γ > 0. Show that the following statements hold:

i) The transfer function G satisfies |||G|||∞ ≤ γ.

ii) If |||G|||∞ < γ, then I(G, γ) ≤ tr DTPD.

iii) The H2 norm of G satisfies |||G|||2 ≤ I(G, γ).

iv) All real symmetric solutions to (10.210) are nonnegative definite.

v) There exists a (unique) minimal solution to (10.210) in the class of
real symmetric solutions.

vi) P is the minimal solution to (10.210) if and only if α(A+γ−2DDTP ) <
0.

vii) |||G|||∞ < γ if and only if A + γ−2DDTP is Hurwitz, where P is the
minimal solution to (10.210).

viii) If P is the minimal solution to (10.210) and |||G|||∞ < γ, then I(G, γ) =
tr DTPD.

Problem 10.5. Consider the nonlinear dynamical system G given by
(10.3) and (10.4) with J2(x) ≡ 0 and p = d. Show that if there exists a
continuously differentiable, positive-definite function W : D → R such that

W ′(x)f(x) ≤ −δhT(x)h(x), δ > 0, (10.211)

W ′(x)J1(x) = hT(x), (10.212)

then the nonlinear system G is nonexpansive with gain 1/δ.

Problem 10.6. A nonlinear dynamical system G given by (10.1) and
(10.2) is said to be input-to-output stable if for every x0 ∈ Rn and every
continuous bounded input w(t) ∈ Rd, t ≥ 0, the solution x(t), t ≥ 0, to
(10.1) exists and the output satisfies

‖z(t)‖ ≤ η(‖x0‖, t) + γ

(

sup
0≤τ≤t

‖w(τ)‖
)

, t ≥ 0, (10.213)
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where η(s, t), s > 0, is a class KL function and γ(s), s > 0, is a class K
function. Show that if G is input-to-state stable, then G is input-to-output
stable. Alternatively, show that if

‖h(x) + J2(x)w‖ ≤ α1(‖x‖) + α2(‖w‖), (10.214)

where α1(·) and α2(·) are class K functions, then G is input-to-output stable.

Problem 10.7. Consider the linear dynamical system with state delay
given by

ẋ(t) = Ax(t) +Adx(t− τd), x(θ) = φ(θ), −τd ≤ θ ≤ 0, (10.215)

where x(t) ∈ Rn, A ∈ Rn×n, Ad ∈ Rn×n, and φ : [−τd, 0] → Rn is a
continuous vector-valued function specifying the initial state of the system.
Let R > 0 and suppose there exist an n× n positive-definite matrix P and
a scalar α > 0 such that

o = ATP + PA+ α2Im + α−2PAdA
T
dP +R. (10.216)

Show that the zero solution xt ≡ 0 to (10.215) is globally asymptotically
stable (in the sense of Problem 3.65) for all τd ≥ 0. Furthermore, show that

this problem can be formulated as a feedback involving the operator ∆x(t)
△
=

x(t−τd) satisfying the nonexpansivity constraint ‖∆x(t)‖2 ≤ ‖x(t)‖2. (Hint:
Use the Lyapunov-Krasovskii functional candidate given by

V (ψ) = ψT(0)Pψ(0) + α2

∫ 0

−τd

ψT(θ)ψ(θ)dθ, ψ ∈ C([−τd, 0],Rn).)

(10.217)

Problem 10.8. Consider the linear controlled system with state delay
given by

ẋ(t) = Ax(t) +Adx(t− τd) +Bu(t), x(θ) = φ̂(θ), −τd ≤ θ ≤ 0,

(10.218)

where x(t) ∈ Rn, u(t) ∈ Rm, A,Ad ∈ Rn×n, B ∈ Rn×m, and φ̂ : [−τd, 0] →
Rn is a continuous vector-valued function specifying the initial state of the
system. Let α > 0, R1 > 0, and R2 > 0. Show that the zero solution xt ≡ 0
to (10.218) is globally asymptotically stable (in the sense of Problem 3.65)
for all τd ≥ 0 with the feedback control φ(x) = −R−1

2 BTPx, where P > 0
satisfies

0 = ATP + PA+R1 + α2In + α−2PAdA
T
dP − PBR−1

2 BTP. (10.219)

Problem 10.9. Consider the nonlinear controlled system with state
delay given by

ẋ(t) = Ax(t) + fd(x(t− τd)) +Bu(t), x(θ) = φ̂(θ), −τd ≤ θ ≤ 0,
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(10.220)

where x(t) ∈ Rn, u(t) ∈ Rm, A ∈ Rn×n, B ∈ Rn×m, fd : Rn → Rn satisfies

fd(0) = 0, and φ̂ : [−τd, 0] → Rn is a continuous vector-valued function
specifying the initial state of the system. Let α > 0, R1 > 0, R2 > 0, and
assume that ‖fd(x)‖ ≤ γ‖x‖2, x ∈ Rn. Show that the zero solution xt ≡ 0
to (10.218) is globally asymptotically stable (in the sense of Problem 3.65)
for all τd ≥ 0 with the feedback control φ(x) = −R−1

2 BTPx, where P > 0
satisfies

0 = ATP + PA+R1 + α−2P 2 − 2PBR−1
2 BTP. (10.221)

(Hint: Use the Lyapunov-Krasovskii functional candidate given by

V (ψ) = ψT(0)Pψ(0) + α2

∫ 0

−τd

fT
d (ψ(θ))fd(ψ(θ))dθ, ψ ∈ C([−τd, 0],Rn).)

(10.222)

Problem 10.10. Consider the nonlinear scalar dynamical system

ẋ(t) = −x3(t) + u(t) + x(t)w(t), x(0) = x0, t ≥ 0, (10.223)

where x(t), u(t) ∈ R and w(t) ∈ W = [−1, 1]. Find a stabilizing feedback
controller u(t) = φ(x(t)) that minimizes

J(x0, u(·)) =

∫ ∞

0
[x2(t) + u2(t)]dt. (10.224)

Compare your controller to the feedback linearization controller uFL(t) =
x3(t) − 2x(t) by plotting u(t) versus x(t).

Problem 10.11. Consider the port-controlled Hamiltonian system giv-
en in Problem 8.21. Find an asymptotically stabilizing feedback control

law of the form u = φ(x) = −α(γ)GT(x)
[

∂H
∂x (x)

]T
, where α(γ) > 0 and

α(γ)
[

∂H
∂x (x)

]

satisfies the Hamilton-Jacobi-Bellman equation.

Problem 10.12. Consider the nonlinear dynamical system G given by

ẋ(t) = f(x(t)) +G(x(t))u(t) + J1(x(t))w(t), x(0) = x0, w(·) ∈ L2, t ≥ 0,

(10.225)

y(t) = h(x(t)), (10.226)

with performance variables

z(t) = E1∞(x(t)) + E2∞u(t), (10.227)

where x ∈ Rn, u, y ∈ Rm, w ∈ Rd, z ∈ Rp, f : Rn → Rn satisfies f(0) = 0,
G : Rn → Rn×m, J1 : Rn → Rn×d, h : Rn → Rm satisfies h(0) = 0,

E1∞ : Rn → Rp, E2∞ ∈ Rp×m, R2
△
= ET

2∞E2∞ > 0, and ET
2∞E1∞(x) = 0,
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x ∈ Rn. Assume that, with w(t) ≡ 0, (10.225) and (10.226) is passive, zero-
state observable, and completely reachable with a continuously differentiable
radially unbounded storage function Vs : Rn → R. Furthermore, let
V : Rn → R be a continuously differentiable function such that V (0) = 0,
V (x) > 0, x ∈ Rn, x 6= 0, V (x) → ∞ as ‖x‖ → ∞, and

0 = L1(x) + V ′(x)f(x) − 1
4V

′(x)G(x)R−1
2 GT(x)V ′T(x)

+ 1
4γ2V

′(x)J1(x)J
T
1 (x)V ′T(x), x ∈ Rn, (10.228)

where γ > 0, L1(x) = ℓT(x)ℓ(x) + hT(x)R−1
2 h(x) − 1

4γ2V ′
s (x)J1(x)J

T
1 (x)

·V ′T
s (x) ≥ 0, and ℓ(·) satisfies (5.145). Show that the output feedback

controller u(t) = −R−1
2 y(t) asymptotically stabilizes the undisturbed

(w(t) ≡ 0) nonlinear system (10.225) and minimizes the performance
criterion

J (x0, u(·)) =

∫ ∞

0
[ℓT(x(t))ℓ(x(t)) + yT(t)R−1

2 y(t) + uT(t)R−1
2 u(t)]dt,

(10.229)
where x(t), t ≥ 0, solves (10.225) with w(t) ≡ 0, in the sense that

J (x0, φ(y(·))) = min
u(·)∈S(x0)

J (x0, u(·)), x0 ∈ Rn. (10.230)

Furthermore, show that with u(t) = −R−1
2 y(t), the solution x(t), t ≥ 0, of

the closed-loop system (10.225) satisfies the nonexpansivity constraint
∫ T

0
zT(t)z(t)dt ≤ γ2

∫ T

0
wT(x)w(t)dt + V (x0), w(·) ∈ L2, T ≥ 0.

(10.231)

Problem 10.13. Consider the nonlinear cascade dynamical system

ẋ(t) = f(x(t)) +G(x(t))x̂(t) + J1(x)w(t), x(0) = x0, w(·) ∈ L2, t ≥ 0,

(10.232)
˙̂x(t) = u(t) + J3(x̂)w(t), x̂(0) = x̂0, (10.233)

z(t) = h(x(t), x̂(t)) + J(x(t), x̂(t))u(t), (10.234)

with performance functional

J(x0, x̂0, u(·)) △
=

∫ ∞

0
L(x(t), x̂(t), u(t))dt, (10.235)

where u(·) is admissible and (x(t), x̂(t)), t ≥ 0, solves (10.232) and (10.233)
and where

L(x, x̂, u)
△
= L1(x, x̂) + L2(x, x̂)u+ uTR2(x, x̂)u, (10.236)

where L1 : Rn ×Rm → R, L2 : Rn ×Rm → R1×m, and R2 : Rn ×Rm → Pm.
Assume there exist continuously differentiable functions α : Rn → Rm and
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Vsub : Rn → R such that for all x ∈ Rn and x̂ ∈ Rm,

α(0) = 0, (10.237)

Vsub(0) = 0, (10.238)

Vsub(x) > 0, x 6= 0, (10.239)

V ′
sub(x)[f(x) +G(x)α(x)] + 1

4γ2V
′
sub(x)J1(x)J

T
1 (x)V ′T

sub(x) < 0, x 6= 0,

(10.240)

where R2a(x, x̂)
△
= R2(x, x̂) + JT(x, x̂)J(x, x̂) and γ > 0. Furthermore,

assume that there exist a function L2 : Rn×Rm → R1×m such that L2(0, 0) =

0 and a positive-definite matrix P̂ ∈ Rm×m such that, for all x ∈ Rn and
x̂ ∈ Rm,

2(x̂− α(x))TP̂

[

1
2 P̂

−1GT(x)V ′T
sub(x) − α′(x)(f(x) +G(x)x̂)

−1
2R

−1
2a (x, x̂){2P̂ (x̂− α(x)) + LT

2 (x, x̂) + 2JT(x, x̂)h(x, x̂)}
+ 1

2γ2 { − α′(x)J1(x)J
T
1 (x)V ′T

sub(x)

+[α′(x)J1(x)J
T
1 (x)α′T(x) + J3(x̂)JT

3 (x̂)]P̂ (x̂− α(x))}
]

+[h(x, x̂) + J(x, x̂)φ(x, x̂)]T[h(x, x̂) + J(x, x̂)φ(x, x̂)] < 0, x̂ 6= α(x),

(10.241)

where φ(x, x̂) = −1
2R

−1
2a (x, x̂)[LT

2 (x, x̂) + 2P̂ (x̂ − α(x)) + 2JT(x, x̂)h(x, x̂)].
Show that, with the feedback control law

φ(x, x̂) = −1
2R

−1
2a (x, x̂)[LT

2 (x, x̂) + 2P̂ (x̂− α(x)) + 2JT(x, x̂)h(x, x̂)],

(10.242)

the zero solution (x(t), x̂(t)) ≡ (0, 0) of the undisturbed (w(t) ≡ 0) cascade
system

ẋ(t) = f(x(t)) +G(x(t))x̂(t), x(0) = x0, t ≥ 0, (10.243)
˙̂x(t) = φ(x(t), x̂(t)), x̂(0) = x̂0, (10.244)

is globally asymptotically stable. Furthermore, show that

J(x0, x̂0, φ(x, x̂)) ≤ J (x0, x̂0, φ(x, x̂)) = V (x0, x̂0), (x0, x̂0) ∈ Rn × Rm,

(10.245)

where

J (x0, x̂0, u(·)) △
=

∫ ∞

0
[L(x(t), x̂(t), u(t)) + Γ(x(t), x̂(t), u(t))]dt, (10.246)

V (x, x̂) = Vsub(x) + (x̂− α(x))TP̂ (x̂− α(x)), (10.247)
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and

Γ(x, x̂, u) = 1
4γ2V

′(x, x̂)J1(x, x̂)JT
1 (x, x̂)V ′T(x, x̂)

+[h(x, x̂) + J(x, x̂)u]T[h(x, x̂) + J(x, x̂)u], (10.248)

where J1(x, x̂)
△
= [JT

1 (x), JT
3 (x̂)]T and (x(t), x̂(t)), t ≥ 0, solves (10.232) and

(10.233) with w(t) ≡ 0. In addition, show that the performance functional
(10.246), with

L1(x, x̂) = φT(x, x̂)R2a(x, x̂)φ(x, x̂) + 2(x̂− α(x))TP̂α′(x)(f(x) +G(x)x̂)

−V ′
sub(x)(f(x) +G(x)x̂) − hT(x, x̂)h(x, x̂)

− 1
4γ2V

′(x, x̂)J1(x, x̂)J
T
1 (x, x̂)V ′T(x, x̂), (10.249)

is minimized in the sense that

J (x0, x̂0, φ(x(·))) = min
u(·)∈S(x0,x̂0)

J (x0, x̂0, u(·)), (10.250)

where S(x0, x̂0) is the set of regulation controllers for the nonlinear system
(10.232) and (10.233) with w(t) ≡ 0. With u(·) = φ(x(·), x̂(·)), show that
the solution (x(t), x̂(t)), t ≥ 0, of the cascade system (10.232) and (10.233)
satisfies the nonexpansivity constraint

∫ T

0
zT(t)z(t)dt ≤ γ2

∫ T

0
wT(t)w(t)dt + V (x0, x̂0), w(·) ∈ L2 T ≥ 0.

(10.251)
Finally, for J(x, x̂) ≡ 0 and h(x, x̂) = E(x, x̂)(x̂−α(x), where E : Rn×Rm →
Rp×m, show that a particular choice satisfying (10.241) is given by

L2(x, x̂) = 2[12V
′
sub(x)G(x)P̂−1 − [f(x) +G(x)x̂]Tα′T(x)

− 1
2γ2 {V ′

sub(x)J1(x)J
T
1 (x)α′T(x)

−(x̂− α(x))TP̂ [α′(x)J1(x)J
T
1 (x)α′T(x) + J3(x̂)J

T
3 (x̂)]}

+1
2(x̂− α(x))TET(x, x̂)E(x, x̂)P̂−1]R2(x, x̂). (10.252)

yielding the feedback control

φ(x, x̂) = −R−1
2 (x, x̂)P̂ (x̂− α(x)) − 1

2

[

P̂−1ET(x, x̂)E(x, x̂) (x̂− α(x))

+P̂−1GT(x)V ′T
sub(x)

]

+ α′(x)[f(x) +G(x)x̂]

+ 1
2γ2

{

α′(x)J1(x)J
T
1 (x)V ′T

sub(x)

−
[

α′(x)J1(x)J
T
1 (x)α′T(x) + J3(x̂)J

T
3 (x̂)

]

P̂ (x̂− α(x))
}

.

Problem 10.14. Consider the nonlinear dynamical system (10.232)–
(10.234) with J(x, x̂) ≡ 0. Assume that there exist continuously differen-
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tiable functions α : Rn → Rm and Vsub : Rn → R such that

α(0) = 0, (10.253)

Vsub(0) = 0, (10.254)

Vsub(x) > 0, x ∈ Rn, x 6= 0, (10.255)

V ′
sub(x)[f(x) +G(x)α(x)] + 1

4γ2V ′
sub(x)J1(x)J

T
1 (x)V ′T

sub(x) < 0,

x ∈ Rn, x 6= 0, (10.256)

and let h(x, x̂) = E(x, x̂)(x̂ − α(x)), where E : Rn × Rm → Rp×m. Show
that, with the feedback stabilizing control law given by

φ(x, x̂) =

{

−(c0 + ρ(x, x̂))β(x, x̂), x̂ 6= α(x),
0, x̂ = α(x),

(10.257)

where β(x, x̂)
△
= 2P̂ (x̂− α(x)),

ρ(x, x̂)
△
=

√

(βT(x, x̂)µ(x, x̂))2 + (βT(x, x̂)β(x, x̂))2 − βT(x, x̂)µ(x, x̂)

βT(x, x̂)β(x, x̂)
,

µ(x, x̂)
△
= 2α′(x)[f(x)+G(x)x̂]−P̂−1GT(x)V ′T

sub(x), P̂ ∈ Pm, and c0 > 0, the
cascade system (10.232) and (10.233) has a sector (and, hence, gain) margin

(α
2 ,∞), where ρ ∈ [0, 1] and α = 1 − η(1−ρ2)

γ2 . Finally, with u = σ(φ(x, x̂)),

show that the solution (x(t), x̂(t)), t ≥ 0, of the closed-loop system (10.232)
and (10.233) satisfies the nonexpansivity constraint

∫ T

0
zT(t)z(t)dt ≤ (γ/ρ)2

∫ T

0
wT(t)w(t)dt + V (x0), w(·) ∈ L2, T ≥ 0,

(10.258)
where σ : Rm → Rm is such that σ(0) = 0 and for every uc ∈ Rm, σ(uc) =
[σ1(uc1), . . . , σm(ucm)]T and αu2

ci < 2σi(uci)uci, uci 6= 0, i = 1, . . . ,m.

Problem 10.15. Consider the nonlinear cascade dynamical system

ẋ(t) = f(x(t)) +G(x(t))y(t) + J1(x)w(t), x(0) = x0, w(·) ∈ L2, t ≥ 0,

(10.259)

˙̂x(t) = f̂(x̂) + Ĝ(x̂)u(t) + J3(x̂)w(t), x̂(0) = x̂0, (10.260)

y(t) = ĥ(x̂), (10.261)

z(t) = h(x(t), x̂(t)) + J(x(t), x̂(t))u(t), (10.262)

with performance functional (10.235) where L(x, x̂, u) is given by (10.236)
and J1(x)J

T
3 (x̂) ≡ 0. Assume that the input subsystem (10.260) and

(10.261) is feedback strictly passive such that there exist a positive-definite
storage function Vs(x̂) and a function k : Rq → Rm satisfying

0 > V ′
s (x̂)

[

f̂(x̂) + Ĝ(x̂)k(x̂)
]

, x̂ ∈ Rq, x̂ 6= 0, (10.263)
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0 = ĜT(x̂)V ′T
s (x̂) − ĥ(x̂), (10.264)

and the subsystem (10.259) has a globally stable equilibrium at x = 0 with
y = 0 and Lyapunov function Vsub(x) so that

V ′
sub(x)f(x) < 0, x ∈ Rn, x 6= 0. (10.265)

Furthermore, assume that there exists a function L2 : Rn×Rq → R1×m such
that L2(0, 0) = 0 and

V ′
sub(x)f(x) + 1

4γ2V
′
sub(x)J1(x)J

T
1 (x)V ′T

sub(x) < 0, x ∈ Rn, x 6= 0,

yT[GT(x)V ′T
sub(x) − 1

2R
−1
2a (x, x̂){L2(x, x̂)

+V ′
s (x̂)Ĝ(x̂) + 2hT(x, x̂)J(x, x̂)}T − k(x̂)]

+[h(x, x̂) + J(x, x̂)φ(x, x̂)]T[h(x, x̂) + J(x, x̂)φ(x, x̂)]

+ 1
4γ2V

′
s (x̂)J3(x̂)J

T
3 (x̂)V ′T

s (x̂) ≤ 0, (x, x̂) ∈ Rn × Rm, (10.266)

where R2a(x, x̂)
△
= R2(x, x̂) + JT(x, x̂)J(x, x̂), φ(x, x̂) = −1

2R
−1
2a (x, x̂)[L2(x,

x̂)+V ′
s (x̂)Ĝ(x̂)+2hT(x, x̂)J(x, x̂)]T, and γ > 0. Show that the zero solution

(x(t), x̂(t)) ≡ (0, 0) of the undisturbed (w(t) ≡ 0) cascade system

ẋ(t) = f(x(t)) +G(x(t))y(t), x(0) = x0, t ≥ 0, (10.267)

˙̂x(t) = f̂(x̂) + Ĝ(x̂)φ(x(t), x̂(t)), x̂(0) = x̂0, (10.268)

y(t) = ĥ(x̂), (10.269)

is globally asymptotically stable with the feedback control law

φ(x, x̂) = −1
2R

−1
2a (x, x̂)[L2(x, x̂) + V ′

s (x̂)Ĝ(x̂) + 2hT(x, x̂)J(x, x̂)]T.

(10.270)

Furthermore, show that the performance functional (10.235) satisfies

J(x0, x̂0, φ(x, x̂)) ≤ J (x0, x̂0, φ(x, x̂)) = V (x0, x̂0), (x0, x̂0) ∈ Rn × Rm,

(10.271)

where

J (x0, x̂0, u(·)) △
=

∫ ∞

0
[L(x(t), x̂(t), u(t)) + Γ(x(t), x̂(t), u(t))]dt, (10.272)

V (x, x̂) = Vsub(x) + Vs(x̂), (10.273)

and

Γ(x, x̂, u) = 1
4γ2V

′(x, x̂)J1(x, x̂)JT
1 (x, x̂)V ′T(x, x̂)

+[h(x, x̂) + J(x, x̂)u]T[h(x, x̂) + J(x, x̂)u], (10.274)

where J1(x, x̂)
△
= [JT

1 (x), JT
3 (x̂)]T and (x(t), x̂(t)), t ≥ 0, solves (10.259) and

(10.260) with w(t) ≡ 0. In addition, show that the performance functional
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(10.272), with

L1(x, x̂)

= φT(x, x̂)R2a(x, x̂)φ(x, x̂) − V ′
s (x̂)f̂(x̂) − V ′

sub(x)(f(x) +G(x)ĥ(x̂))

−hT(x, x̂)h(x, x̂) − 1
4γ2V

′(x, x̂)J1(x, x̂)J
T
1 (x, x̂)V ′T(x, x̂), (10.275)

is minimized in the sense that

J (x0, x̂0, φ(x(·))) = min
u(·)∈S(x0,x̂0)

J (x0, x̂0, u(·)). (10.276)

With u(·) = φ(x(·), x̂(·)), show that the solution (x(t), x̂(t)), t ≥ 0, of the
cascade system (10.259) and (10.260) satisfies the nonexpansivity constraint
∫ T

0
zT(t)z(t)dt ≤ γ2

∫ T

0
wT(t)w(t)dt+ V (x0, x̂0), w(·) ∈ L2, T ≥ 0.

(10.277)

Finally, for J(x, x̂) ≡ 0, h(x, x̂) = E(x, x̂)ĥ(x), and J3(x) = Ĝ(x̂), where
E : Rn × Rq → Rp×m, show that a particular choice satisfying (10.266) is
given by

L2(x, x̂) = 2[GT(x)V ′T
sub(x) + 1

4γ2 ĥ(x̂)

+ET(x, x̂)E(x, x̂)ĥ(x̂) − k(x̂)]TR2(x, x̂),

yielding a feedback control law

φ(x, x̂) = k(x̂) − 1
2R

−1
2 (x, x̂)ĜT(x̂)V ′T

s (x̂) − V ′
sub(x)G(x) − 1

4γ2 ĥ(x̂)

−ET(x, x̂)E(x, x̂)ĥ(x̂).

10.10 Notes and References

The disturbance rejection problem for analysis and feedback control design
can be traced back to the 1960s and early 1970s with the work of Cruz
[100] and Frank [124] giving a textbook treatment on the subject. During
this period, the role of differential game theory was also recognized as a
framework for disturbance rejection control; see for example Dorato and
Drenick [108], Witsenhausen [464], and Salmon [385]. In the 1980s the
disturbance rejection problem was formulated in the frequency domain by
the pioneering work of Zames [478] using H∞ theory.

For linear multivariable systems, the H∞ disturbance rejection control
problem was formulated in the frequency domain by Francis, Helton, and
Zames [123], Chang and Pearson [82], Francis and Doyle [122], Francis [121],
and Safonov, Jonckheere, Verma, and Limebeer [383]. A state-space Riccati
equation approach to the H∞ control problem was given by Petersen [353],
Glover and Doyle [137], and Doyle, Glover, Khargonekar, and Francis [111].
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See also Khargonekar, Petersen, and Rotea [236]. The mixed-norm H2/H∞
control problem was first formulated by Bernstein and Haddad [49] and
Haddad and Bernstein [144].

A nonlinear game-theoretic framework for the “nonlinear” H∞ control
problem is given by Ball and Helton [22] with a textbook treatment
given in Basar and Bernhard [31]. In parallel research, Isidori [213, 214],
Isidori and Astolfi [215, 216], and van der Schaft [438–441] addressed the
“nonlinear” H∞ control problem using dissipativity theory. The optimality-
based nonlinear disturbance rejection framework presented in this chapter
is adopted from Haddad and Chellaboina [159] and Haddad, Chellaboina,
and Fausz [163].
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Chapter Eleven

Robust Control for Nonlinear Uncertain

Systems

11.1 Introduction

Unavoidable discrepancies between system models and real-world systems
can result in degradation of control-system performance including instability
[109, 410]. Thus, it is not surprising that one of the fundamental problems
in feedback control design is the ability of the control system to guarantee
robustness with respect to system uncertainties in the design model.
Although the theory of linear robust control is highly mature, nonlinear
robust control techniques remain relatively undeveloped. Traditionally,
Lyapunov function theory along with Hamilton-Jacobi-Bellman theory have
been instrumental in advancing nonlinear control theory by addressing
control system stability and optimality. Unfortunately, however, there does
not exist a unified procedure for finding Lyapunov function candidates that
will stabilize closed-loop nonlinear systems. Furthermore, computational
methods for establishing the existence of solutions to Hamilton-Jacobi-
Bellman equations involving highly complex nonlinear partial differential
equations have not been developed to a level comparable to the existence of
solutions of Riccati equations arising in linear optimal control problems.
These problems are further exacerbated when addressing robustness in
uncertain nonlinear systems.

Differential geometric methods [212,336,445] have made the design of
controllers for certain classes of nonlinear systems more methodical. These
methods are predicated on feedback linearization, or dynamic inversion,
wherein state feedback along with coordinate transformations are used to
transform a class of nonlinear systems to a linear time-invariant system. In
this case, the resulting linear system can be stabilized using standard linear-
quadratic design techniques. However, a serious drawback of all feedback
linearization techniques is the failure to account for system uncertainty since
exact cancelation of the nonlinear dynamics via feedback is required, and
hence, an exact knowledge of the dynamics is assumed resulting in non-
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robust designs. To see this, consider the scalar nonlinear system

ẋ(t) = x2(t) + u(t), x(0) = x0, t ≥ 0. (11.1)

Clearly, a feedback linearizing control law for this system is given by uFL =
−x2 − x resulting in the globally asymptotically stable closed-loop system
ẋ(t) = −x(t). Now, suppose that (11.1) possesses an input uncertainty so
that (11.1) is not valid. Rather, in place of (11.1) a more accurate model is
given by

ẋ(t) = x2(t) + (1 + ε)u(t), x(0) = x0, t ≥ 0, (11.2)

where ε 6= 0. Using the feedback linearizing control law uFL = −x2 − x on
the actual model yields

ẋ(t) = −(1 + ε)x(t) − εx2(t), x(0) = x0, t ≥ 0. (11.3)

It can be easily shown that for every ε 6= 0 there exists an initial condition
such that the solution to (11.3) has a finite escape time.

Even though robustness frameworks to parametric uncertainty via
feedback linearization techniques involving a two stage design consisting
of nominal feedback linearization followed by additional state feedback
designed to guarantee robustness have been developed [386,404,413,414], the
fact that such approaches do not directly account for system uncertainties
can result in severe robustness problems with respect to nonlinear errors
internal to the system dynamics. Furthermore, restrictive matching
conditions are imposed to the structure of the uncertainty in order to address
general feedback linearizable systems [412]. Finally, these techniques often
lead to inefficient designs since feedback linearizing controllers may generate
unnecessarily large control effort to cancel beneficial system nonlinearities
[127,247].

In this chapter, we extend the framework presented in Chapter 8
to develop an optimality-based framework for addressing the problem of
nonlinear-nonquadratic optimal control for uncertain nonlinear systems
with structured parametric uncertainty. Specifically, using a Lyapunov
bounding framework, the robust nonlinear control problem is transformed
into an optimal control problem by modifying a nonlinear-nonquadratic cost
functional to account for system uncertainty. Furthermore, it is shown that
the Lyapunov function guaranteeing closed-loop robust stability is a solution
to the steady-state Hamilton-Jacobi-Bellman equation for the controlled
nominal system.

The main focus of this chapter is to develop a methodology for
designing nonlinear controllers which provide both robust stability and
robust performance over a prescribed range of system uncertainty. The
present framework extends the guaranteed cost control approach [50, 83]



NonlinearBook10pt November 20, 2007

ROBUST NONLINEAR CONTROL 651

to nonlinear systems by utilizing a performance bound to provide robust
performance in addition to robust stability. In particular, the performance
bound can be evaluated in closed form as long as the nonlinear-nonquadratic
cost functional considered is related in a specific way to an underlying
Lyapunov function that guarantees robust stability over a prescribed
uncertainty set. This Lyapunov function is shown to be the solution to the
steady-state form of the Hamilton-Jacobi-Bellman equation for the nominal
system and plays a key role in constructing the optimal nonlinear robust
control law. Hence, the overall framework provides for a generalization of
the Hamilton-Jacobi-Bellman conditions for addressing the design of robust
optimal controllers for nonlinear uncertain systems.

A key feature of the present framework is that since the necessary and
sufficient Hamilton-Jacobi-Bellman optimality conditions are obtained for
a modified nonlinear-nonquadratic performance functional rather than the
original performance functional, globally optimal controllers are guaranteed
to provide both robust stability and performance. Of course, since our
approach allows us to construct globally optimal controllers that minimize
a given Hamiltonian, the resulting robust nonlinear controllers provide the
best worst-case performance over the robust stability range.

11.2 Robust Stability Analysis of Nonlinear Uncertain Systems

In this section, we present sufficient conditions for robust stability for a
class of nonlinear uncertain systems. Specifically, we extend the analysis
framework of Chapter 8 in order to address robust stability of a class of
nonlinear uncertain systems. In the present framework we consider the
problem of evaluating a performance bound for a nonlinear-nonquadratic
cost functional depending upon a class of nonlinear uncertain systems. It
turns out that the cost bound can be evaluated in closed form as long as
the cost functional is related in a specific way to an underlying Lyapunov
function that guarantees robust stability over a prescribed uncertainty set.
Hence, the overall framework provides for robust stability and performance
where robust performance here refers to a guaranteed bound on the worst-
case value of a nonlinear-nonquadratic cost criterion over a prescribed
uncertainty set.

Once again we restrict our attention to time-invariant infinite horizon
systems. Furthermore, for the class of nonlinear uncertain systems consid-
ered we assume that the required properties for the existence and uniqueness
of solutions are satisfied. For the following result, let D ⊂ Rn be an open
set, assume 0 ∈ D, let L : D → R, and let F ⊂ {f : D → Rn : f(0) = 0}
denote the class of uncertain nonlinear systems with f0(·) ∈ F defining the
nominal nonlinear system. Within the context of robustness analysis, it is
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assumed that the zero solution x(t) ≡ 0 of the nominal nonlinear dynamical
system ẋ(t) = f0(x(t)), x(0) = x0, is asymptotically stable.

Theorem 11.1. Consider the nonlinear uncertain dynamical system

ẋ(t) = f(x(t)), x(0) = x0, t ≥ 0, (11.4)

where f(·) ∈ F , with performance functional

Jf (x0)
△
=

∫ ∞

0
L(x(t))dt. (11.5)

Furthermore, assume that there exist functions Γ : D → R and V : D → R,
where V (·) is a continuously differentiable function, such that

V (0) = 0, (11.6)

V (x) > 0, x ∈ D, x 6= 0, (11.7)

V ′(x)f(x) ≤ V ′(x)f0(x) + Γ(x), x ∈ D, f(·) ∈ F ,
(11.8)

V ′(x)f0(x) + Γ(x) < 0, x ∈ D, x 6= 0, (11.9)

L(x) + V ′(x)f0(x) + Γ(x) = 0, x ∈ D, (11.10)

where f0(·) ∈ F defines the nominal nonlinear system. Then there exists
a neighborhood of the origin D0 ⊆ D such that if x0 ∈ D0, then the zero
solution x(t) ≡ 0 to (11.4) is locally asymptotically stable for all f(·) ∈ F ,
and

sup
f(·)∈F

Jf (x0) ≤ J (x0) = V (x0), (11.11)

where

J (x0)
△
=

∫ ∞

0
[L(x(t)) + Γ(x(t))]dt, (11.12)

and where x(t), t ≥ 0, is the solution to (11.4) with f(x(t)) = f0(x(t)).
Finally, if D = Rn and

V (x) → ∞ as ‖x‖ → ∞, (11.13)

then the zero solution x(t) ≡ 0 to (11.4) is globally asymptotically stable
for all f(·) ∈ F .

Proof. Let f(·) ∈ F and x(t), t ≥ 0, satisfy (11.4). Then

V̇ (x(t))
△
=

d

dt
V (x(t)) = V ′(x(t))f(x(t)), t ≥ 0. (11.14)

Hence, it follows from (11.8) and (11.9) that

V̇ (x(t)) < 0, t ≥ 0, x(t) 6= 0. (11.15)

Thus, from (11.6), (11.7), and (11.15) it follows that V (·) is a Lyapunov
function for (11.4), which proves local asymptotic stability of the zero
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solution x(t) ≡ 0 to (11.4) for all f(·) ∈ F . Consequently, x(t) → 0 as
t→ ∞ for all initial conditions x0 ∈ D0 for some neighborhood of the origin
D0 ⊆ D. Now, (11.14) implies that

0 = −V̇ (x(t)) + V ′(x(t))f(x(t)), t ≥ 0,

and hence, using (11.8) and (11.10),

L(x(t)) = −V̇ (x(t)) + L(x(t)) + V ′(x(t))f(x(t))

≤ −V̇ (x(t)) + L(x(t)) + V ′(x(t))f0(x(t)) + Γ(x(t))

= −V̇ (x(t)).

Now, integrating over [0, t) yields
∫ t

0
L(x(s))ds ≤ −V (x(t)) + V (x0).

Letting t→ ∞ and noting that V (x(t)) → 0 for all x0 ∈ D0 yields Jf (x0) ≤
V (x0).

Next, let x(t), t ≥ 0, satisfy (11.4) with f(x(t)) = f0(x(t)). Then,
with L(x) replaced by L(x) + Γ(x) and J(x0) replaced by J (x0) it follows
from Theorem 8.1 that J (x0) = V (x0). Finally, for D = Rn and for all
f(·) ∈ F , global asymptotic stability of the zero solution x(t) ≡ 0 to (11.4)
is a direct consequence of the radially unbounded condition (11.13) on V (x),
x ∈ Rn.

Theorem 11.1 is an extension of Theorem 8.1. Note that conditions
(11.6) and (11.7) ensure that V (x) is a Lyapunov function candidate for
the nonlinear uncertain system (11.4). Conditions (11.8) and (11.9) imply
V̇ (x(t)) < 0, t ≥ 0, for x(·) satisfying (11.4) for all f(·) ∈ F , and hence,
V (·) is a Lyapunov function guaranteeing robust stability of the nonlinear
uncertain system (11.4). It is important to note that condition (11.9)
is a verifiable condition since it is independent of the uncertain system
parameters f(·) ∈ F . To apply Theorem 11.1 we specify a bounding function
Γ(·) for the uncertain set F such that Γ(·) bounds F (see Propositions 11.1
and 11.2). Also note that if F consists of only the nominal nonlinear system
f0(·), then Γ(x) ≡ 0 satisfies (11.8), and hence, Jf0

(x0) = J (x0). In this
case, Theorem 11.1 specializes to Theorem 8.1. The key feature of Theorem
11.1 is that it provides sufficient conditions for robust stability of a class
of nonlinear uncertain systems f(·) ∈ F . Furthermore, an upper bound to
the nonlinear-nonquadratic performance functional is given in terms of a
Lyapunov function which can be interpreted in terms of an auxiliary cost
defined for the nominal system in the spirit of [48,50,51].

If Γ(·) bounds F then clearly Γ(·) bounds the convex hull of F . Hence,
only convex uncertainty sets F need be considered. Next, we use the obvious
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fact that if Γ1(·) bounds F1 and Γ2(·) bounds F2, then Γ1(·) + Γ2(·) bounds
F1 + F2. Hence, if F can be decomposed additively then it suffices to
bound each component separately. Finally, if Γ(·) bounds F and there exists
Γ̃ : D → R such that Γ(x) ≤ Γ̃(x) for all x ∈ Rn, then Γ̃(·) bounds F . That
is any overbound Γ̃(·) for Γ(·) also bounds F . Of course, it is quite possible
that an overbound Γ̃(·) for Γ(·) may actually bound a set F̃ that is larger
than the “original” uncertainty set F .

Next, we specialize Theorem 11.1 to nonlinear uncertain systems of
the form

ẋ(t) = f0(x(t)) + ∆f(x(t)), x(0) = x0, t ≥ 0, (11.16)

where f0 : D → Rn satisfies f0(0) = 0 and f0 + ∆f ∈ F . Here, F is such
that

F ⊂ {f0 + ∆f : D → Rn : ∆f ∈ ∆}, (11.17)

where ∆ is a given nonlinear uncertainty set of nonlinear perturbations ∆f
of the nominal system dynamics f0(·) ∈ F . Since F ⊂ {f : D → Rn :
f(0) = 0} it follows that ∆f(0) = 0 for all ∆f ∈ ∆.

Corollary 11.1. Consider the nonlinear uncertain dynamical system
(11.16) with performance functional (11.5). Furthermore, assume that there
exist functions Γ : D → R and V : D → R, where V (·) is a continuously
differentiable function, such that (11.6) and (11.7) hold and

V ′(x)∆f(x) ≤ Γ(x), x ∈ D, ∆f(·) ∈ ∆, (11.18)

V ′(x)f0(x) + Γ(x) < 0, x ∈ D, x 6= 0, (11.19)

L(x) + V ′(x)f0(x) + Γ(x) = 0, x ∈ D. (11.20)

Then the zero solution x(t) ≡ 0 to (11.16) is locally asymptotically stable
for all ∆f(·) ∈ ∆ and there exists a neighborhood of the origin D0 ⊆ D
such that the performance functional (11.5) satisfies

sup
∆f(·)∈∆

J∆f (x0) ≤ J (x0) = V (x0), x0 ∈ D0, (11.21)

where

J (x0) =

∫ ∞

0
[L(x(t)) + Γ(x(t))]dt, (11.22)

and where x(t), t ≥ 0, is the solution to (11.16) with ∆f(x) ≡ 0. Finally, if
D = Rn, and V (x), x ∈ Rn, satisfies (11.13), then the zero solution x(t) ≡ 0
to (11.16) is globally asymptotically stable for all ∆f (·) ∈ ∆.

Proof. The result is a direct consequence of Theorem 11.1 with f(x) =
f0(x) + ∆f(x). Specifically, in this case, it follows from (11.18) and (11.19)
that V ′(x)f(x) ≤ V ′(x)f0(x) + Γ(x) for all x ∈ D and ∆f(·) ∈ ∆. Hence,
all the conditions of Theorem 11.1 are satisfied.
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There are many alternative definitions for the bound Γ(·). To illustrate
some of these alternatives consider the nonlinear uncertain dynamical system
(11.16) and assume the uncertainty set F to be of the form

F = {f0 + ∆f : Rn → Rn : ∆f(x) = Gδ(x)δ(hδ(x)), x ∈ Rn, δ(·) ∈ ∆},
(11.23)

where

∆ = {δ : Rpδ → Rmδ : δ(0) = 0, δT(y)δ(y) ≤ mT(y)m(y), y ∈ Rpδ},
(11.24)

Gδ : Rn → Rn×mδ and hδ : Rn → Rpδ satisfying hδ(0) = 0 are fixed functions
denoting the structure of the uncertainty, δ : Rpδ → Rmδ is an uncertain
function, and m : Rpδ → Rmδ is a given function such that m(0) = 0. The
special case m(y) = γ−1y, where γ > 0, is worth noting. Specifically, in this
case, (11.24) specializes to

∆ = {δ : Rpδ → Rmδ : δ(0) = 0, δT(y)δ(y) ≤ γ−2yTy, y ∈ Rpδ}, (11.25)

which corresponds to a nonlinear small gain-type norm bounded uncertainty
characterization. For the structure of F as specified by (11.23) and ∆ given
by (11.24), the bounding function Γ(·) satisfying (11.18) can now be given
a concrete form.

Proposition 11.1. The function

Γ(x) = 1
4V

′(x)Gδ(x)G
T
δ (x)V ′T(x) +mT(hδ(x))m(hδ(x)) (11.26)

satisfies (11.18) with F given by (11.23) and ∆ given by (11.24).

Proof. Note that

0 ≤ [δT(hδ(x)) − 1
2V

′(x)Gδ(x)][δ
T(hδ(x)) − 1

2V
′(x)Gδ(x)]

T

= δT(hδ(x))δ(hδ(x)) + 1
4V

′(x)Gδ(x)G
T
δ (x)V ′T(x) − V ′(x)Gδ(x)δ(hδ(x))

≤ mT(hδ(x))m(hδ(x)) + 1
4V

′(x)Gδ(x)G
T
δ (x)V ′T(x) − V ′(x)Gδ(x)δ(hδ(x))

= Γ(x) − V ′(x)∆f(x),

which proves (11.18) with F given by (11.23) and ∆ given by (11.24).

Alternatively, consider the nonlinear uncertain dynamical system given
by (11.16) and assume the uncertainty set F is given by (11.23) with ∆ given
by

∆ = {δ : Rpδ → Rmδ : δ(0) = 0, [δ(y) −m1(y)]
T[δ(y) −m2(y)] ≤ 0,

y ∈ Rpδ}, (11.27)

wherem1,m2 : Rpδ → Rmδ are given functions such thatm1(0) = 0, m2(0) =
0, and mT

1 (y)m2(y) ≤ 0, y ∈ Rpδ . For the structure of F as specified
by (11.23) with ∆ given by (11.27), the bounding function Γ(·) satisfying
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(11.18) can now be given a concrete form. For this result define m(y)
△
=

m2(y) −m1(y).

Proposition 11.2. The function

Γ(x) = 1
4 [m(hδ(x)) +GT

δ (x)V ′T(x)]T[m(hδ(x)) +GT
δ (x)V ′T(x)]

+V ′(x)Gδ(x)m1(hδ(x)) (11.28)

satisfies (11.18) with F given by (11.23) and ∆ given by (11.27).

Proof. Note that

0 ≤ [12m(hδ(x)) + 1
2G

T
δ (x)V ′T(x) − (δ(hδ(x)) −m1(hδ(x)))]

T

·[12m(hδ(x)) + 1
2G

T
δ (x)V ′T(x) − (δ(hδ(x)) −m1(hδ(x)))]

= [δ(hδ(x)) −m1(hδ(x))]
T[δ(hδ(x)) −m2(hδ(x))] − V ′(x)Gδ(x)δ(hδ(x))

+1
4 [m(hδ(x)) +GT

δ (x)V ′T(x)]T[m(hδ(x)) +GT
δ (x)V ′T(x)]

+V ′(x)Gδ(x)m1(hδ(x))

≤ Γ(x) − V ′(x)∆f(x),

which proves (11.18) with F given by (11.23) and ∆ given by (11.27).

Finally, consider the nonlinear uncertain dynamical system (11.16) and
assume the uncertainty set F is given by (11.23) with ∆ given by

∆ = {δ : Rpδ → Rmδ : δ(0) = 0, δT(y)Qδ(y) + 2δT(y)Sy + yTRy ≤ 0,

y ∈ Rpδ}, (11.29)

where Q ∈ Pmδ , −R ∈ Npδ , and S ∈ Rmδ×pδ . For this uncertainty
characterization, the bounding function Γ(·) satisfying (11.18) can now be
given a concrete form.

Proposition 11.3. The function

Γ(x) = [12V
′(x)Gδ(x) − hT

δ (x)ST]Q−1[12V
′(x)Gδ(x) − hT

δ (x)ST]T

−hT
δ (x)Rhδ(x) (11.30)

satisfies (11.18) with F given by (11.23) and ∆ given by (11.29).

Proof. Note that

0 ≤ [Q1/2δ(hδ(x)) +Q−1/2(Shδ(x) − 1
2G

T
δ (x)V ′T(x))]T

·[Q1/2δ(hδ(x)) +Q−1/2(Shδ(x) − 1
2G

T
δ (x)V ′T(x))]

= δT(hδ(x))Qδ(hδ(x)) + 2δT(hδ(x))Shδ(x) − V ′(x)Gδ(x)δ(hδ(x))

+[12V
′(x)Gδ(x) − hT

δ (x)ST]Q−1[12V
′(x)Gδ(x) − hT

δ (x)ST]T

= δT(hδ(x))Qδ(hδ(x)) + 2δT(hδ(x))Shδ(x) + hT
δ (x)Rhδ(x)
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−V ′(x)∆f(x) + Γ(x)

≤ Γ(x) − V ′(x)∆f(x),

which proves (11.18) with F given by (11.23) and ∆ given by (11.29).

Example 11.1. Consider the nonlinear uncertain dynamical system
given by

ẋ1(t) = x2(t) + δ1x1(t) cos(x2(t) + δ2) + δ3x2(t) sin(δ4x1(t)x2(t)),

x1(0) = x10, t ≥ 0, (11.31)

ẋ2(t) = x1(t) sin(x2(t)), x2(0) = x20, (11.32)

where δ1 ∈ [−1, 1], δ2 ∈ [−5, 50], δ3 ∈ [0, 1], and δ4 ∈ [−50, 0]. Now, with
x = [x1, x2]

T, f0(x) = [x2, x1 sinx2]
T, Gδ(x) = [1, 0]T, hδ(x) = x,

and δ(x) = δ1x1 cos(x2 + δ2) + δ3x2 sin(δ4x1x2), (11.31) and (11.31) can be
written in the form of (11.16) with F given by (11.23). Furthermore, since
δ2(x) ≤ x2

1 + x2
2 it follows that δ(·) ∈ ∆, where ∆ is given by (11.24) with

m(x) =
√

x2
1 + x2

2. △

Example 11.2. Consider the nonlinear uncertain matrix second-order
dynamical system of an n-link robot discussed in Example 5.2 given by

M(q(t))q̈(t) +W (q(t), q̇(t)) = 0, q(0) = q0, q̇(0) = q̇0, t ≥ 0, (11.33)

where q, q̇, q̈ ∈ Rn represent generalized position, velocity, and acceleration
coordinates, respectively, M(q) is a positive-definite inertia matrix function
for all q ∈ Rn, and W (q, q̇) is a vector function lumping the centrifugal and
Coriolis forces, dissipation forces due to friction, and gravitational forces.
Here, we assume that M1(q) ≤ M(q) ≤ M2(q), where M1(q) > 0, q ∈
Rn, and ‖W (q, q̇)‖2 ≤ w(q, q̇). Now, with x = [xT

1 , x
T
2 ]T, where x1 = q

and x2 = q̇, f0(x) = [xT
2 , 0]T, Gδ(x) = [0, In]T, hδ(x) = x, and δ(x) =

M−1(x1)W (x1, x2), (11.33) can be written in the form of (11.16) with F
given by (11.23). Furthermore, since ‖δ(x)‖2 = ‖M−1(x1)W (x1, x2)‖2 ≤
σmax(M

−1(x1))‖W (x1, x2)‖2 ≤ σ−1
max(M1(x1))w(x1, x2) it follows that δ(·) ∈

∆, where ∆ is given by (11.24) with ‖m(x)‖2 = σ−1
max(M1(x1))w(x1, x2). △

Example 11.3. Consider the nonlinear uncertain dynamical system
given by

ẋ1(t) = x2(t) + x2
1(t), x1(0) = x10, t ≥ 0, (11.34)

ẋ2(t) = x3
1(t) + δx2(t)[0.55 + 0.44δ cos(x2(t))], x2(0) = x20, (11.35)

where δ ∈ [−1, 1]. Now, with x = [x1, x2]
T, f0(x) = [x2 +x2

1, x
3
1]

T, Gδ(x) =
[0, 1]T, hδ(x) = x2, and δ(x2) = δx2(0.55+0.44δ cos(x2), (11.34) and (11.35)
can be written in the form of (11.16) with F given by (11.23). Furthermore,
since δ2x2

2(0.55 + 0.44δ cos(x2))
2 + 0.1x2

2 ≤ 1.1δx2
2(0.55 + 0.44δ cos(x2)) it

follows that δ(·) ∈ ∆, where ∆ is given by (11.27) with m1(x2) = 0.1x2 and
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m2(x2) = x2. △

We now combine the results of Corollary 11.1 and Propositions 11.1–
11.3 to obtain a series of conditions guaranteeing robust stability and
performance for the nonlinear uncertain system (11.16).

Proposition 11.4. Consider the nonlinear uncertain system (11.16).
Let L(x) > 0, x ∈ Rn, and suppose there exists a continuously differentiable
radially unbounded function V : Rn → R such that (11.6) and (11.7) hold
and

0 = V ′(x)f0(x) + 1
4V

′(x)Gδ(x)G
T
δ (x)V ′T(x) +mT(hδ(x))m(hδ(x))

+L(x), x ∈ Rn. (11.36)

Then the zero solution x(t) ≡ 0 to (11.16) is globally asymptotically stable
for all ∆f(·) ∈ ∆ with ∆ given by (11.24), and the performance functional
(11.5) satisfies

sup
∆f(·)∈∆

J∆f (x0) ≤ J (x0) = V (x0), (11.37)

where

J (x0) =

∫ ∞

0
[L(x(t)) + 1

4V
′(x(t))Gδ(x(t))G

T
δ (x(t))V ′T(x(t))

+mT(hδ(x(t)))m(hδ(x(t)))]dt, (11.38)

and x(t), t ≥ 0, is the solution of (11.16) with ∆f (x) ≡ 0.

Proposition 11.5. Consider the nonlinear uncertain system (11.16).
Let L(x) > 0, x ∈ Rn, and suppose there exists a continuously differentiable
radially unbounded function V : Rn → R such that (11.6) and (11.7) hold
and

0 = V ′(x)f0(x) + 1
4 [m(hδ(x)) +GT

δ (x)V ′T(x)]T[m(hδ(x)) +GT
δ (x)V ′T(x)]

+V ′(x)Gδ(x)m1(hδ(x)) + L(x), x ∈ Rn. (11.39)

Then the zero solution x(t) ≡ 0 to (11.16) is globally asymptotically stable
for all ∆f(·) ∈ ∆ with ∆ given by (11.27), and the performance functional
(11.5) satisfies

sup
∆f(·)∈∆

J∆f (x0) ≤ J (x0) = V (x0), (11.40)

where

J (x0) =

∫ ∞

0
[L(x(t)) + 1

4 [m(hδ(x(t))) +GT
δ (x(t))V ′T(x(t))]T

·[m(hδ(x(t))) +GT
δ (x(t))V ′T(x(t))]

+V ′(x(t))Gδ(x(t))m1(hδ(x(t)))]dt, (11.41)

and x(t), t ≥ 0, is the solution of (11.16) with ∆f (x) ≡ 0.
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Proposition 11.6. Consider the nonlinear uncertain system (11.16).
Let L(x) > 0, x ∈ Rn, and suppose there exists a continuously differentiable
radially unbounded function V : Rn → R such that (11.6) and (11.7) hold
and

0 = V ′(x)f0(x) + [12V
′(x)Gδ(x) − hT

δ (x)ST]Q−1[12V
′(x)Gδ(x) − hT

δ (x)ST]T

−hT
δ (x)Rhδ(x) + L(x), x ∈ Rn. (11.42)

Then the zero solution x(t) ≡ 0 to (11.16) is globally asymptotically stable
for all ∆f(·) ∈ ∆ with ∆ given by (11.29), and the performance functional
(11.5) satisfies

sup
∆f(·)∈∆

J∆f (x0) ≤ J (x0) = V (x0), (11.43)

where

J (x0) =

∫ ∞

0
[L(x(t)) + [12V

′(x(t))Gδ(x(t)) − hT
δ (x(t))ST]Q−1

·[12V ′(x(t))Gδ(x(t)) − hT
δ (x(t))ST]T

−hT
δ (x(t))Rhδ(x(t))]dt, (11.44)

and x(t), t ≥ 0, is the solution of (11.16) with ∆f (x) ≡ 0.

Example 11.4. Consider the nonlinear uncertain system

ẋ(t) = Ax(t) +B0δ(y(t)), x(0) = x0, t ≥ 0, (11.45)

y(t) = C0x(t), (11.46)

where A ∈ Rn×n, B0 ∈ Rn×mδ , C0 ∈ Rpδ×n, and δ(y) ∈ ∆ with ∆ given by
(11.25). To obtain sufficient conditions for robust stability for the nonlinear
uncertain system (11.45) and (11.46) we use Proposition 11.4 with L(x) =
xTRx, where R > 0, m(hδ(x)) = γ−1y = γ−1C0x, and V (x) = xTPx, where
P > 0. In this case, (11.36) yields

0 = ATP + PA+ PB0B
T
0 P + γ−2CT

0 C0 +R, (11.47)

or, equivalently,

0 = ATP + PA+ γ−2PB0B
T
0 P + CT

0 C0 +R. (11.48)

Now, it follows from Proposition 11.4 that if there exists a positive-definite
P ∈ Rn×n satisfying (11.48), then the zero solution x(t) ≡ 0 to (11.45) is
globally asymptotically stable for all δ(·) ∈ ∆, where ∆ is given by (11.25).

Alternatively, suppose δ(y) ∈ ∆, where ∆ is given by (11.27) with
m1(t) = M1y and m2(y) = M2y, where M1,M2 ∈ Rmδ×mδ are symmetric

matrices such thatM
△
= M2−M1. In this case, to obtain sufficient conditions

for robust stability for the nonlinear uncertain system (11.45) and (11.46) we
use Proposition 11.5 with L(x) = xTRx, where R > 0, m(hδ(x)) = My =



NonlinearBook10pt November 20, 2007

660 CHAPTER 11

MC0x, m1(hδ(x)) = M1y = M1C0x, and V (x) = xTPx, where P > 0. In
this case, (11.39) yields

0 = (A+B0M1C0)
TP + P (A+B0M1C0)

+(1
2MC0 +BT

0 P )T(1
2MC0 +BT

0 P ) +R. (11.49)

Now, it follows from Proposition 11.5 that if there exists a positive-definite
P ∈ Rn×n satisfying (11.49), then the zero solution to (11.45) is globally
asymptotically stable for all δ(·) ∈ ∆, where ∆ is given by (11.27) with
m1(y) = M1y and m2(y) = M2y. △

The following corollary specializes Theorem 11.1 to a class of linear
uncertain systems which connects the framework of Theorem 11.1 to
the quadratic Lyapunov bounding (Ω-bound) framework of Bernstein and
Haddad [50]. Specifically, in this case, we consider F to be the set of
uncertain linear systems given by

F = {(A + ∆A)x : x ∈ Rn, A ∈ Rn×n,∆A ∈ ∆A},
where ∆A ⊂ Rn×n is a given bounded uncertainty set of uncertain
perturbations ∆A of the nominal asymptotically stable system matrix A
such that 0 ∈ ∆A.

Corollary 11.2. Let R ∈ Pn. Consider the linear uncertain dynamical
system

ẋ(t) = (A+ ∆A)x(t), x(0) = x0, t ≥ 0, (11.50)

with performance functional

J∆A(x0)
△
=

∫ ∞

0
xT(t)Rx(t)dt, (11.51)

where ∆A ∈ ∆A. Let Ω : N ⊆ Sn → Nn be such that

∆ATP + P∆A ≤ Ω(P ), ∆A ∈ ∆A, P ∈ N . (11.52)

Furthermore, suppose there exist P ∈ Pn satisfying

0 = ATP + PA+ Ω(P ) +R. (11.53)

Then the zero solution x(t) ≡ 0 to (11.50) is globally asymptotically stable
for all ∆A ∈ ∆A, and

sup
∆A∈∆A

J∆A(x0) ≤ J (x0) = xT
0 Px0, x0 ∈ Rn, (11.54)

where

J (x0)
△
=

∫ ∞

0
xT(t)(Ω(P ) +R)x(t)dt, (11.55)

and where x(t), t ≥ 0, solves (11.50) with ∆A = 0.
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Proof. The result is a direct consequence of Theorem 11.1 with f(x) =
(A + ∆A)x, f0(x) = Ax, L(x) = xTRx, V (x) = xTPx, Γ(x) = xTΩ(P )x,
and D = Rn. Specifically, conditions (11.6) and (11.7) are trivially satisfied.
Now, V ′(x)f(x) = xT(ATP + PA)x + xT(∆ATP + P∆A)x, and hence,
it follows from (11.52) that V ′(x)f(x) ≤ V ′(x)f0(x) + Γ(x) = xT(ATP +
PA+ Ω(P ))x, for all ∆A ∈ ∆A. Furthermore, it follows from (11.53) that
L(x)+V ′(x)f0(x)+Γ(x) = 0, and hence, V ′(x)f0(x)+Γ(x) < 0 for all x 6= 0,
so that all the conditions of Theorem 11.1 are satisfied. Finally, since V (x),
x ∈ Rn, is radially unbounded, (11.50) is globally asymptotically stable for
all ∆A ∈ ∆A.

Corollary 11.2 is the deterministic version of Theorem 4.1 of [50]
involving quadratic Lyapunov bounds for addressing robust stability and
performance analysis of linear uncertain systems. For convenience we shall
say that Ω(·) bounds ∆A if (11.52) is satisfied. To apply Corollary 11.2,
we first specify a function Ω(·) and an uncertainty set ∆A such that Ω(·)
bounds ∆A. If the existence of a positive-definite solution P to (11.53) can be
determined analytically or numerically, then robust stability is guaranteed
and the performance bound (11.54) can be computed. We can then enlarge
∆A, modify Ω(·), and again attempt to solve (11.53). If, however, a
positive-definite solution to (11.53) cannot be determined, then ∆A must be
decreased in size until (11.53) is solvable. For example, Ω(·) can be replaced
by εΩ(·) to bound ε∆A, where ε > 1 enlarges ∆A and ε < 1 shrinks ∆A.
Of course, the actual range of uncertainty that can be bounded depends on
the nominal matrix A, the function Ω(·), and the structure of ∆A.

Since the ordering induced by the cone of nonnegative-definite matrices
is only a partial ordering, it should not be expected that there exists an
operator Ω(·) satisfying (11.52), which is a least upper bound. Next, we
illustrate two bounding functions for two different uncertainty characteriza-
tions. Specifically, we assign explicit structure to the uncertainty set ∆A

and the bound Ω(·) satisfying (11.52). First, we assume that the uncertainty
set ∆A to be of the form

∆A =

{

∆A ∈ Rn×n : ∆A =

p
∑

i=1

δiAi,

p
∑

i=1

δ2i
α2

i

≤ 1

}

, (11.56)

where for i = 1, . . . , p, Ai is a fixed matrix denoting the structure of the
parametric uncertainty; αi is a given positive number; and δi is an uncertain
parameter. Note that the uncertain parameters δi are assumed to lie in a
specified ellipsoidal region in Rp. For the structure ∆A as specified by
(11.56), the bound Ω(·) satisfying (11.52) can now be given a concrete form.
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Proposition 11.7. Let α > 0 and N = Nn. Then the function

Ω(P ) = αP + α−1
p
∑

i=1

α2
iA

T
i PAi (11.57)

satisfies (11.52) with ∆A given by (11.56).

Proof. Note that

0 ≤
p
∑

i=1

[(α1/2δi

αi
)In − ( α1

α1/2 )Ai]
TP [(α1/2δi

αi
)In − ( α1

α1/2 )Ai]

= α

p
∑

i=1

( δ2
i

α2
i
)P + α−1

p
∑

i=1

α2
iA

T
i PAi −

p
∑

i=1

δi(A
T
i P + PAi),

which, since
∑p

i=1 δ
2
i /α

2
i ≤ 1, proves (11.52) with ∆A given by (11.56).

Note that ∆A given by (11.56) includes repeated parameters without
loss of generality. For example, if δ1 = δ2 then discard δ2 and replace A1 by
A1 +A2. Furthermore, ∆A includes real full block uncertainty. For example
if

∆A =

[

δ1 δ2
δ3 δ4

]

,

then ∆A =
∑4

i=1 δiAi, where

A1 =

[

1 0
0 0

]

,

and likewise for A2, A3, and A4. Finally, for i = 1, . . . , p, letting Ai = BiCi,
where Bi ∈ Rn×qi, Ci ∈ Rqi×n, and qi ≤ n, and defining B0

△
= [B1 · · ·Bp]

and C0
△
= [CT

1 · · ·CT
p ]T, ∆A can be written as

∆A =

{

∆A ∈ Rn×n : ∆A = B0∆C0, ∆ = block−diag[δ1Iq1
, . . . , δpIqp

],

p
∑

i=1

δ2
i

α2
i
≤ 1, i = 1, . . . , p

}

. (11.58)

Since an uncertainty set of the form (11.58) can always be written in the
form of (11.56) by partitioning B0 and C0 as above and defining Ai = BiCi,
i = 1, . . . , p, robust stability of A+∆A for all ∆A ∈ ∆A is equivalent to the
robust stability of the feedback interconnection of G(s)

△
= C0(sI − A)−1B0

and ∆ given in (11.58).

Next, assume the uncertainty set ∆A to be of the form

∆A = {∆A ∈ Rn×n : ∆A = B0FC0, F
TF ≤ N}, (11.59)
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where B0 ∈ Rn×r and C0 ∈ Rs×n are fixed matrices denoting the structure
of the uncertainty, F ∈ Rr×s is an uncertain matrix, and N ∈ Ns is a given
uncertainty bound. The special case N = γ−2Is, where γ > 0, is worth
noting. Specifically, in this case, (11.59) specializes to

∆A = {∆A ∈ Rn×n : ∆A = B0FC0, σmax(F ) ≤ γ−1}, (11.60)

which corresponds to a small gain norm bounded uncertainty characteriza-
tion. For this uncertainty characterization, the bound Ω(·) satisfying (11.52)
can now be given a concrete form.

Proposition 11.8. Let α > 0. Then the function

Ω(P ) = αPB0B
T
0 P + α−1CT

0 NC0 (11.61)

satisfies (11.52) with ∆A given by (11.59).

Proof. Note that

0 ≤ [α1/2BT
0 P − α−1/2FC0]

T[α1/2BT
0 P − α−1/2FC0]

= αPB0B
T
0 P + α−1CT

0 F
TFC0 − (CT

0 F
TBT

0 P + PB0FC0)

≤ αPB0B
T
0 P + α−1CT

0 NC0 − (∆ATP + P∆A)

= Ω(P ) − (∆ATP + P∆A),

which proves (11.52) with ∆A given by (11.59).

Finally, assume the uncertainty set ∆A to be of the form

∆A = {∆A ∈ Rn×n : ∆A = B0FC0, F
TQF + FTS + STF +R ≤ 0},

(11.62)
where B0 ∈ Rn×r and C0 ∈ Rs×n are fixed matrices denoting the structure
of the uncertainty, F ∈ Rr×s is an uncertain matrix, Q ∈ Pr, S ∈ Rr×s, and
−R ∈ Ns. For this uncertainty characterization, the bound Ω(·) satisfying
(11.52) can now be given a concrete form.

Proposition 11.9. The function

Ω(P ) = [BT
0 P − SC0]

TQ−1[BT
0 P − SC0] − CT

0 RC0 (11.63)

satisfies (11.52) with ∆A given by (11.62).

Proof. Note that

0 ≤ [Q1/2FC0 +Q−1/2(SC0 −BT
0 P )]T[Q1/2FC0 +Q−1/2(SC0 −BT

0 P )]

= CT
0 (FTQF + FTS + STF )C0 − PB0FC0 − CT

0 F
TBT

0 P

+[BT
0 P − SC0]

TQ−1[BT
0 P − SC0]

= CT
0 (FTQF + FTS + STF +R)C0

−(∆ATP + P∆A) + Ω(P )
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≤ Ω(P ) − (∆ATP + P∆A),

which proves (11.52) with ∆A given by (11.62).

As in the nonlinear case, we now combine the results of Corollary 11.2
and Propositions 11.7–11.9 to obtain a series of conditions guaranteeing
robust stability and performance for the linear uncertain system (11.50).

Proposition 11.10. Consider the linear uncertain system (11.50). Let
R ∈ Pn, α, α1, . . . , αp > 0, and suppose there exists P ∈ Pn satisfying

0 = AT
αP + PAα +

p
∑

i=1

α2
i

α A
T
i PAi +R, (11.64)

where Aα = A+ 1
2αI. Then A+∆A is asymptotically stable for all ∆A ∈ ∆A

given by (11.56), and

sup
∆A∈∆A

J∆A(x0) ≤ xT
0 Px0, x0 ∈ Rn. (11.65)

Proposition 11.11. Consider the linear uncertain system (11.50). Let
R ∈ Pn, α > 0, N ∈ Nn, and suppose there exists P ∈ Pn satisfying

0 = ATP + PA+ αPB0B
T
0 P + α−1CT

0 NC0 +R. (11.66)

Then A + ∆A is asymptotically stable for all ∆A ∈ ∆A given by (11.59),
and

sup
∆A∈∆A

J∆A(x0) ≤ xT
0 Px0, x0 ∈ Rn. (11.67)

Proposition 11.12. Consider the linear uncertain system (11.50). Let

R̂ ∈ Pn, Q ∈ Pr, S ∈ Rr×s, and −R ∈ Ns, and suppose there exists P ∈ Pn

satisfying

0 = ATP + PA+ [BT
0 P − SC0]

TQ−1[BT
0 P − SC0] − CT

0 RC0 + R̂. (11.68)

Then A + ∆A is asymptotically stable for all ∆A ∈ ∆A given by (11.62),
and

sup
∆A∈∆A

J∆A(x0) ≤ xT
0 Px0, x0 ∈ Rn. (11.69)

We conclude this section with several observations. First, note that
sup∆A∈∆A

J∆A(x0) provides a worst-case characterization of the H2 norm
of the uncertain system (11.50) with an averaged free response. Specifically,
since A+ ∆A is asymptotically stable for all ∆A ∈ ∆A it follows that

sup
∆A∈∆A

E[J∆A(x0)] = sup
∆A∈∆A

E

[∫ ∞

0
xT(t)Rx(t)dt

]
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= sup
∆A∈∆A

E

[
∫ T

0
xT

0 e
(A+∆A)TtRe(A+∆A)tx0dt

]

= sup
∆A∈∆A

E[xT
0 P∆Ax0]

= sup
∆A∈∆A

tr P∆AV, (11.70)

where
0 = (A+ ∆A)TP∆A + P∆A(A+ ∆A) +R (11.71)

and V = E[x0x
T
0 ]. Now, since A is asymptotically stable,

E[J (x0)] = E

[∫ ∞

0
xT(t)(Ω(P ) +R)x(t)dt

]

= E

[∫ ∞

0
xT

0 e
ATt(Ω(P ) +R)eAtx0dt

]

= E[xT
0 Px0]

= tr PV, (11.72)

where P satisfies (11.53). Hence, it follows from (11.54) that J (x0), x0 ∈ Rn,
provides an upper bound to the worst case, over the uncertainty set ∆A, of
the H2 norm of

G∆A(s) ∼
[

A+ ∆A x0

E 0

]

,

where E is such that R = ETE.

Example 11.5. Consider the linear uncertain dynamical system given
by (11.50) and (11.51) with n = 1, A < 0, R > 0, V = E[x2

0] > 0, A1 = 1,
and ∆A = {∆A : |∆A| ≤ α1}. Note that for α1 < −A, P∆A = R/2(|A| −
∆A) and J∆A(x0) = Rx2

0/2(|A| − α1), where this worst-case performance is
achieved for ∆A = α1. Solving (11.64) with α = α1 yields P = R/2(|A| −
α1), which is a nonconservative result for both robust stability and robust
performance. To apply (11.66), set α1 =

√
N and B0 = C0 = 1. Choosing

α = 2α1(|A|−α)NR again yields the nonconservative result P = R/2(|A|−
α1). △

Example 11.6. Consider the linear uncertain dynamical system given
by (11.50) and (11.51) with n = 2, A = −I2, R = I2, V = E[x0x

T
0 ] = I2,

and ∆A = {∆A : ∆A = δ1A1, |δ1| ≤ α1}, where

A1 =

[

0 1
0 0

]

. (11.73)

Clearly, this perturbation is a nondestabilizing perturbation since A + ∆A
remains asymptotically stable for all values of δ1 since ∆A does not affect
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the nominal poles. Furthermore, note that

P∆A =

[

1
2

δ1

4
δ1

4
δ2
1

4 + 1
2

]

(11.74)

and E[J∆A(x0)] = 1
4α

2
1 + 1, where this worst case is achieved for δ1 = α1. In

this case, (11.64) has the solution

P =

[

(2 − αα1)
−1 0

0 (2 − αα1)
−1 + α−1α1(2 − αα1)

−2

]

, (11.75)

which is positive definite for all α1 so long as α < 2/α1. Hence, (11.64) is
nonconservative with respect to robust stability. For robust performance,

E[J (x0)] = tr PV = 2(2 − αα1)
−1 + α−1α1(2 − αα1)

−2, (11.76)

can be shown to be an upper bound for 1
4δ

2
1 + 1. Choosing, for example,

α = α−1
1 yields tr PV = α2

1 + 2. △

11.3 A Dissipative Systems Perspective on Robust Stability

Although the Lyapunov-function-based robust analysis framework discussed
in Section 11.2 applies to problems in which the nominal nonlinear system
dynamics f0(·) are perturbed by an uncertain function ∆f(·) ∈ ∆, a
reinterpretation of these results yield standard nonlinear system theoretic
criteria when viewed from the terminals of the uncertain parts of the system.
For example, the bounding function

Γ(x) = 1
4V

′(x)Gδ(x)G
T
δ (x)V ′T(x) +mT(hδ(x))m(hδ(x))

in Proposition 11.1 forms the basis of nonlinear H∞ theory while the
bounding function

Γ(x) = 1
4 [m(hδ(x)) +GT

δ (x)V ′T(x)]T[m(hδ(x)) +GT
δ (x)V ′T(x)]

+V ′(x)Gδ(x)m1(hδ(x))

in Proposition 11.2 forms the basis for nonlinear passivity and dissipativity
theory. In particular, every operator δ(·) ∈ ∆, where ∆ is given by (11.25),
is dissipative with respect to the supply rate r(y, u0) = yTy−γ2uT

0 u0, where
u0 = δ(y).

Now, it follows from the results in Section 6.2 that the zero solution
x(t) ≡ 0 of the nonlinear uncertain system (11.16) is globally asymptotically
stable for all δ(·) ∈ ∆ if the nonlinear system G given by

ẋ(t) = f0(x) +Gδ(x)u0(t), x(0) = x0, t ≥ 0, (11.77)

y(t) = hδ(x(t)), (11.78)
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is dissipative with respect to the supply rate r(u0, y) = γ2uT
0 u0 − yTy.

Hence, it follows from Corollary 5.3 that a sufficient condition for robust
stability of (11.16) is the existence of functions ℓ(·), W(·), and a continuously
differentiable radially unbounded storage function V (·) such that

0 = V ′(x)f0(x) + hT
δ (x)hδ(x) + ℓT(x)ℓ(x), (11.79)

0 = 1
2V

′(x)Gδ(x) + ℓT(x)W(x), (11.80)

0 = γ2I −WT(x)W(x), (11.81)

or, equivalently,

0 ≥ V ′(x)f0(x) + 1
4γ

−2V ′(x)Gδ(x)G
T
δ (x)V ′T(x) + hT

δ (x)hδ(x), x ∈ Rn,

(11.82)

which is identical to (11.36) with m(y) = γ−1y and L1(x) ≥ 0, x ∈ Rn, for
the uncertainty structure ∆ given by (11.24).

Similarly, every operator δ(·) ∈ ∆, where ∆ is given by (11.27) with
m1(y) = M1y, m2(y) = M2y, and M1,M2 ∈ Sm such that M1M2 +M2M1 ≤
0, is dissipative with respect to the supply rate r(y, u0) = −(u0−M1y)

T(u0−
M2y), where u0 = δ(y). Now, it follows from the results in Section 6.2
that the zero solution x(t) ≡ 0 of the nonlinear uncertain system (11.16)
is globally asymptotically stable for all δ(·) ∈ ∆ if the nonlinear system G
given by (11.77) and (11.78) is dissipative with respect to the supply rate
r(u0, y) = (u0 − M1y)

T(u0 − M2y). Hence, it follows from Theorem 5.6
that a sufficient condition for robust stability of (11.16) is the existence of
functions ℓ(·), W(x) and a continuously differentiable radially unbounded
storage function V (·) such that

0 = V ′(x)f0(x) − hT
δ (x)M1M2hδ(x) + ℓT(x)ℓ(x), (11.83)

0 = 1
2V

′(x)Gδ(x) − hT
δ (x)(M1 +M2) + ℓT(x)W(x), (11.84)

0 = I −WT(x)W(x), (11.85)

or, equivalently,

0 ≥ V ′(x)f0(x) + 1
4 [Mhδ(x) +GT

δ (x)V ′T(x)]T

·[Mhδ(x) +GT
δ (x)V ′T(x)] + V ′(x)Gδ(x)M1hδ(x), x ∈ Rn,

(11.86)

where M
△
= M2 − M1, which is identical to (11.39) with m1(y) = M1y,

m2(y) = M2y, and L1(x) ≥ 0, x ∈ Rn, for the uncertainty structure ∆ given
by (11.27). The above exposition demonstrates that dissipativity theory and
nonlinear robustness theory are derivable from the same principles and are
part of the same mathematical framework.
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To see this for linear Ω-bound theory, rewrite (11.50) as

ẋ(t) = Ax(t) + ∆Ax(t), x(0) = x0, t ≥ 0. (11.87)

Next, rewrite (11.87) as a negative feedback interconnection of a nominal
system and an uncertain operator given by

ẋ(t) = Ax(t) − u(t), x(0) = x0, t ≥ 0, (11.88)

y(t) = x(t), uc(t) = y(t), (11.89)

yc(t) = ∆Auc(t), u(t) = −yc(t), (11.90)

or, equivalently, as a negative feedback interconnection given in Figure 11.1
where

G = G(s) ∼
[

A −In
In 0

]

and Gc = ∆A.

G(s)

∆A

6

�

-

+

–

Figure 11.1 Feedback interconnection of G(s) and ∆A.

The following two propositions show that Ω-bound theory for robust
stability analysis is indeed a special case of dissipativity theory.

Proposition 11.13. Let ∆A ∈ ∆A denote a linear operator ∆A :
Rn → Rn with input uc and output yc. Let Ω : Sn → Sn be such that for
every P ∈ Sn,

∆ATP + P∆A ≤ Ω(P ). (11.91)

Then the linear operator ∆A(·) is dissipative with respect to the supply rate
rc(uc, yc) = uT

c Ω(P )uc − 2yT
c Puc.

Proof. The proof is a direct consequence of (11.91) by noting that yc =
∆Auc, and hence, for every uc ∈ Rn, rc(uc, yc) = uT

c Ω(P )uc − 2yT
c Puc ≥ 0.
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Proposition 11.14. Let

G(s) ∼
[

A −In
In 0

]

and assume that there exists P = PT > 0 such that

0 > ATP + PA+ Ω(P ). (11.92)

Then the linear dynamical system given by the transfer function G(s) with
input u and output y is exponentially dissipative with respect to the supply
rate r(u, y) = −yTΩ(P )y − 2yTPu.

Proof. It follows from (11.92) that there exists a scalar ε > 0 such
that 0 ≥ ATP +PA+ εP + Ω(P ). The result now follows immediately from
Theorem 6.2 with B = −In, C = In, D = 0, Q = −Ω(P ), R = 0, S = −P ,
W = 0, and L = (−ATP − PA− εP − Ω(P ))1/2.

In light of Propositions 11.13 and 11.14, it follows from Theorem 6.2,
with G = G(s), Gc = ∆A(·), Q = −Rc = −Ω(P ), R = Qc = 0, S =
Sc = −P , and σ = 1, that if (11.91) and (11.92) hold, then A + ∆A is
asymptotically stable for all ∆A ∈ ∆A. This of course establishes that Ω-
bound theory for robust stability analysis is a special case of dissipativity
theory. This exposition thus demonstrates that all (parameter-independent)
guaranteed cost bounds developed in the literature including the bounded
real bound [11, 147, 337, 356], the positive real bound [8, 147], the shifted
bounded real bound [435], the shifted positive real bound [435], the implicit
small gain bound [161], the absolute value bound [83], the linear bound
[41,50,221,243], the inverse bound [50], the double commutator bound [436],
the shifted linear bound [53], and the shifted inverse bound [53] are a special
case of dissipativity theory.

11.4 Robust Optimal Control for Nonlinear Uncertain Systems

In this section, we consider a control problem for nonlinear uncertain
dynamical systems involving a notion of optimality with respect to an
auxiliary cost which guarantees a bound on the worst-case value of a
nonlinear-nonquadratic cost criterion over a prescribed uncertainty set. The
optimal robust feedback controllers are derived as a direct consequence of
Theorem 11.1 and provide a generalization of the Hamilton-Jacobi-Bellman
conditions for time-invariant, infinite-horizon problems for addressing robust
feedback controllers of nonlinear uncertain systems. To address the robust
optimal control problem let D ⊂ Rn be an open set and let U ⊂ Rm, where
0 ∈ D and 0 ∈ U . Furthermore, let F ⊂ {F : D × U → Rn : F (0, 0) = 0}.
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Next, consider the controlled uncertain dynamical system

ẋ(t) = F (x(t), u(t)), x(0) = x0, t ≥ 0, (11.93)

where F (·, ·) ∈ F and the control u(·) is restricted to the class of admissible
controls consisting of measurable functions u(·) such that u(t) ∈ U for all
t ≥ 0, where the control constraint set U is given. We assume 0 ∈ U . Given
a control law φ(·) and a feedback control law u(t) = φ(x(t)), the closed-loop
system has the form

ẋ(t) = F (x(t), φ(x(t))), x(0) = x0, t ≥ 0, (11.94)

for all F (·, ·) ∈ F .

Next, we present a generalization of Theorem 8.2 for characterizing
robust feedback controllers that guarantee robust stability over a class
of nonlinear uncertain systems and minimize an auxiliary performance
functional. For the statement of this result let L : D × U → R and define
the set of regulation controllers for the nominal nonlinear system F0(·, ·) by

S(x0)
△
= {u(·) : u(·) is admissible and x(·) given by (11.93)

satisfies x(t) → 0 as t→ ∞ with F (·, ·) = F0(·, ·)}.

Theorem 11.2. Consider the nonlinear uncertain controlled system
(11.93) with performance functional

JF (x0, u(·)) △
=

∫ ∞

0
L(x(t), u(t))dt, (11.95)

where F (·, ·) ∈ F and u(·) is an admissible control. Assume that there exist
functions V : D → R, Γ : D × U → R, and control law φ : D → U , where
V (·) is a continuously differentiable function, such that

V (0) = 0, (11.96)

V (x) > 0, x ∈ D, x 6= 0, (11.97)

φ(0) = 0, (11.98)

V ′(x)F (x, φ(x)) ≤ V ′(x)F0(x, φ(x)) + Γ(x, φ(x)), x ∈ D, F (·, ·) ∈ F ,
(11.99)

V ′(x)F0(x, φ(x)) + Γ(x, φ(x)) < 0, x ∈ D, x 6= 0, (11.100)

H(x, φ(x)) = 0, x ∈ D, (11.101)

H(x, u) ≥ 0, x ∈ D, u ∈ U, (11.102)

where F0(·, ·) ∈ F defines the nominal system and

H(x, u)
△
= L(x, u) + V ′(x)F0(x, u) + Γ(x, u). (11.103)

Then, with the feedback control u(·) = φ(x(·)), the zero solution x(t) ≡
0 of the closed-loop system (11.94) is locally asymptotically stable for all
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F (·, .) ∈ F and there exists a neighborhood of the origin D0 ⊆ D such that

sup
F (·,·)∈F

JF (x0, φ(x(·))) ≤ J (x0, φ(x(·))) = V (x0), x0 ∈ D0, (11.104)

where

J (x0, u(·)) △
=

∫ ∞

0
[L(x(t), u(t)) + Γ(x(t), u(t))]dt, (11.105)

and where u(·) is admissible and x(t), t ≥ 0, solves (11.93) with F (x(t), u(t))
= F0(x(t), u(t)). In addition, if x0 ∈ D0 then the feedback control u(·) =
φ(x(·)) minimizes J (x0, u(·)) in the sense that

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)). (11.106)

Finally, if D = Rn and

V (x) → ∞ as ‖x‖ → ∞, (11.107)

then the zero solution x(t) ≡ 0 of the closed-loop system (11.94) is globally
asymptotically stable for all F (·) ∈ F .

Proof. Local and global asymptotic stability are a direct consequence
of (11.96)–(11.100) by applying Theorem 11.1 to the closed-loop system
(11.94). Furthermore, using (11.101), condition (11.104) is a restatement of
(11.11) as applied to the closed-loop system (11.94). Next, let u(·) ∈ S(x0)
and let x(·) be the solution of (11.93) with F (·, ·) = F0(·, ·). Then (11.106)
follows from Theorem 8.2 with L(x, u) replaced by L(x, u) + Γ(x, u) and
J(x0, u(·)) replaced by J (x0, u(·)).

Note that conditions (11.101) and (11.102) correspond to the steady-
state Hamilton-Jacobi-Bellman conditions for the nominal nonlinear system
F0(·, ·) with the auxiliary cost of J (x0, u(·)). If F consists of only the
nominal nonlinear closed-loop system F0(·, ·), then Γ(x, u) = 0 for all x ∈ D
and u ∈ U satisfies (11.99), and hence, JF (x0, u(·)) = J (x0, u(·)). In this
case, Theorem 11.2 specializes to Theorem 8.2.

Next, we specialize Theorem 11.2 to linear uncertain systems and pro-
vide connections to the quadratic Lyapunov bounding synthesis framework
developed in [48, 51]. Specifically, we consider F to be the set of uncertain
linear systems given by

F = {(A + ∆A)x+ (B + ∆B)u : x ∈ Rn, A ∈ Rn×n, B ∈ Rn×m,

(∆A,∆B) ∈ ∆A × ∆B}, (11.108)

where ∆A ⊂ Rn×n and ∆B ⊂ Rn×m are given bounded uncertainty sets of
the uncertain perturbations (∆A,∆B) of the nominal system (A,B) such
that (0, 0) ∈ ∆A × ∆B . For the following result let R1 ∈ Pn and R2 ∈ Pm
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be given.

Corollary 11.3. Consider the linear uncertain controlled system

ẋ(t) = (A+ ∆A)x(t) + (B + ∆B)u(t), x(0) = x0, t ≥ 0, (11.109)

with performance functional

J∆Ã(x0, u(·)) △
=

∫ ∞

0
[xT(t)R1x(t) + uT(t)R2u(t)]dt, (11.110)

where u(·) is admissible and (∆A,∆B) ∈ ∆A × ∆B . Furthermore, assume
there exist P ∈ Pn, Ωxx : Pn → Nn, Ωxu : Pn → Rn×m, and Ωuu : Pn → Nm

such that

∆ATP + P∆A− P∆B(R2 + Ωuu(P ))−1(BTP + ΩT
xu(P ))

−(BTP + ΩT
xu(P ))T(R2 + Ωuu(P ))−1∆BTP ≤ Ωxx(P )

−Ωxu(P )(R2 + Ωuu(P ))−1(BTP + ΩT
xu(P ))

−(BTP + ΩT
xu(P ))T(R2 + Ωuu(P ))−1ΩT

xu(P )

+(BTP + ΩT
xu(P ))T(R2 + Ωuu(P ))−1Ωuu(P )(R2 + Ωuu(P ))−1

·(BTP + ΩT
xu(P )), (∆A,∆B) ∈ ∆A × ∆B, (11.111)

and

0 = ATP + PA+R1 + Ωxx(P )

−(BTP + ΩT
xu(P ))T(R2 + Ωuu(P ))−1(BTP + ΩT

xu(P )). (11.112)

Then, with the feedback control u = φ(x) = −(R2 + Ωuu(P ))−1(BTP +
ΩT

xu(P ))x, the zero solution x(t) ≡ 0 to (11.109) is globally asymptotically
stable for all x0 ∈ Rn and (∆A,∆B) ∈ ∆A × ∆B , and

sup
(∆A,∆B)∈∆A×∆B

J∆Ã(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = xT
0 Px0, (11.113)

where

J (x0, u(·)) △
=

∫ ∞

0
[xT(t)R1x(t) + uT(t)R2u(t) + xT(t)Ωxx(P )x(t)

+2xT(t)Ωxu(P )u(t) + uT(t)Ωuu(P )u(t)]dt, (11.114)

and where u(·) is admissible and x(t), t ≥ 0, solves (11.109) with
(∆A,∆B) = (0, 0). Furthermore,

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)), (11.115)

where S(x0) is the set of regulation controllers for the nominal system and
x0 ∈ Rn.

Proof. The result is a direct consequence of Theorem 11.2 with
F (x, u) = (A+∆A)x+(B+∆B)u, F0(x, u) = Ax+Bu, L(x, u) = xTR1x+
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uTR2u, V (x) = xTPx, Γ(x, u) = xTΩxx(P )x + 2xTΩxu(P )u + uTΩuu(P )u,
D = Rn, and U = Rm. Specifically, conditions (11.96) and (11.97) are
trivially satisfied. Now, forming xT(11.111)x it follows that, after some
algebraic manipulation, V ′(x)F (x, φ(x)) ≤ V ′(x)F0(x, φ(x)) + Γ(x, φ(x)),
for all (∆A,∆B) ∈ ∆A × ∆B . Furthermore, it follows from (11.112)
that H(x, φ(x)) = 0, and hence, V ′(x)F0(x, φ(x)) + Γ(x, φ(x)) < 0 for
all x 6= 0. Thus, H(x, u) = H(x, u) − H(x, φ(x)) = [u − φ(x)]T(R2 +
Ωuu(P ))[u−φ(x)] ≥ 0 so that all the conditions of Theorem 11.2 are satisfied.
Finally, since V (·) is radially unbounded, (11.109), with u(t) = φ(x(t)) =
−(R2 +Ωuu(P ))−1(BTP +ΩT

xu(P ))x(t), is globally asymptotically stable for
all (∆A,∆B) ∈ ∆A × ∆B .

Note that in the case where U = Rm the robust feedback control
u = φ(x) is globally optimal since it minimizesH(x, u) and satisfies (11.101).
Specifically, setting

∂

∂u
H(x, u) = 0, (11.116)

yields the robust feedback control

φ(x) = −(R2 + Ωuu(P ))−1(BTP + ΩT
xu(P ))x. (11.117)

Now, since
∂2

∂u2
H(x, u) = R2 + Ωuu(P ) > 0, (11.118)

it follows that for all x ∈ Rn the robust feedback control given by (11.117)
minimizes H(x, u). In particular, the optimal feedback control law φ(x)
in Corollary 11.3 is derived using the properties of H(x, u) as defined in
Theorem 11.2. Specifically, sinceH(x, u) = xT(ATP+PA+R1+Ωxx(P ))x+
uT(R2 +Ωuu)u+2xT(BTP +ΩT

xu(P ))Tu it follows that ∂2H/∂u2 > 0. Now,
∂H/∂u = 2(R2 +Ωuu(P ))u+2(BTP +ΩT

xu(P ))x = 0 gives the unique global
minimum of H(x, u). Hence, since φ(x) minimizes H(x, u) it follows that
φ(x) satisfies ∂H/∂u = 0 or, equivalently, (R2 + Ωuu(P ))φ(x) + (BTP +
ΩT

xu(P ))x = 0 so that φ(x) is given by (11.117). Similar remarks hold for
the nonlinear robust controllers developed in Sections 11.4 and 11.5.

In order to make explicit connections with linear robust control, we
now assign explicit structure to the sets ∆A and ∆B and the bounding
functions Ωxx(·), Ωxu(·), and Ωuu(·). First, the uncertainty set ∆A ×∆B is
assumed to be of the form

∆A × ∆B
△
=

{

(∆A,∆B) : ∆A =

p
∑

i=1

δiAi, ∆B =

p
∑

i=1

δiBi,

p
∑

i=1

δ2i
α2

i

≤ 1

}

,

(11.119)
where for i = 1, . . . , p : Ai ∈ Rn×n and Bi ∈ Rn×m are fixed matrices
denoting the structure of the parametric uncertainty, αi is a given positive
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number, and δi is an uncertain real parameter. As discussed in Section
11.2 the uncertain parameters δi are assumed to lie in a specified ellipsoidal
region in Rp [50,51]. In this case, let

Ωxx(P ) =

p
∑

i=1

α2
i

α
AT

i PAi + αP,

Ωxu(P ) =

p
∑

i=1

α2
i

α
AT

i PBi,

Ωuu(P ) =

p
∑

i=1

α2
i

α
BT

i PBi,

where α is an arbitrary positive scalar. Next, for notational convenience

define R2s
△
= R2 +

∑p
i=1

α2
i

α B
T
i PBi and Ps

△
= BTP +

∑p
i=1

α2
i

α B
T
i PAi. Now,

note that

0 ≤
p
∑

i=1

[

αi

α
1

2

P
1

2 (Ai −BiR
−1
2s Ps) −

δiα
1

2

αi
P

1

2

]T

·
[

αi

α
1

2

P
1

2 (Ai −BiR
−1
2s Ps) −

δiα
1

2

αi
P

1

2

]

,

or, equivalently,

p
∑

i=1

δi[(Ai −BiR
−1
2s Ps)

TP + P (Ai −BiR
−1
2s Ps)]

≤
p
∑

i=1

α2
i

α
(Ai −BiR

−1
2s Ps)

TP (Ai −BiR
−1
2s Ps) +

δ2i α

α2
i

P,

which, since
∑p

i=1
δ2

i

α2
i
≤ 1, implies

p
∑

i=1

δi[(Ai −BiR
−1
2s Ps)

TP + P (Ai −BiR
−1
2s Ps)]

≤
p
∑

i=1

α2
i

α
(Ai −BiR

−1
2s Ps)

TP (Ai −BiR
−1
2s Ps) + αP,

and hence, (11.111) holds. Furthermore, (11.112) specializes to

0 = AT
αP + PAα +R1 +

p
∑

i=1

α2
i

α
AT

i PAi − PT
s R

−1
2s Ps, (11.120)

where Aα
△
= A + α

2 In, and the optimal robust feedback law is given by

φ(x) = −R−1
2s Psx. This corresponds to the results obtained in [41,243].
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Alternatively, we can choose

Ωxx(P ) =

p
∑

i=1

α2
i

α
(Ai −BiR

−1
2 BTP )TP (Ai −BiR

−1
2 BTP ) + αP,

Ωxu(P ) = 0,

Ωuu(P ) = 0.

In this case, note that

0 ≤
p
∑

i=1

[

αi

α
1

2

P
1

2 (Ai −BiR
−1
2 BTP ) − δiα

1

2

αi
P

1

2

]T

·
[

αi

α
1

2

P
1

2 (Ai −BiR
−1
2 BTP ) − δiα

1

2

αi
P

1

2

]

,

or, equivalently,

p
∑

i=1

δi[(Ai −BiR
−1
2 BTP )TP + P (Ai −BiR

−1
2 BTP )]

≤
p
∑

i=1

α2
i

α
(Ai −BiR

−1
2 BTP )TP (Ai −BiR

−1
2 BTP ) +

δ2i α

α2
i

P,

which, since
∑p

i=1
δ2

i

α2
i
≤ 1, implies

p
∑

i=1

δi[(Ai −BiR
−1
2 BTP )TP + P (Ai −BiR

−1
2 BTP )]

≤
p
∑

i=1

α2
i

α
(Ai −BiR

−1
2 BTP )TP (Ai −BiR

−1
2 BTP ) + αP,

and hence, (11.111) holds. Furthermore, (11.112) specializes to

0 = AT
αP + PAα +R1 +

p
∑

i=1

α2
i

α
(Ai −BiR

−1
2 BTP )TP (Ai −BiR

−1
2 BTP ),

(11.121)
and the optimal robust feedback law is given by φ(x) = −R−1

2 BTPx.
The robustified Riccati equation (11.121) does not appear to have been
considered in the literature for the uncertainty structure given by (11.119).

Next, we consider the uncertainty set ∆A × ∆B given by

∆A × ∆B
△
= {(∆A,∆B) : ∆A = B0FC0, ∆B = B0FD0, F

TF ≤ N},
(11.122)

where B0 ∈ Rn×r, C0 ∈ Rs×n, and D0 ∈ Rr×m are fixed matrices denoting
the structure of the uncertainty, F ∈ Rr×s is an uncertain matrix, and
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N ∈ Ns is a given uncertainty bound [48]. In this case, let

Ωxx(P ) = CT
0 NC0 + PB0B

T
0 P,

Ωxu(P ) = CT
0 ND0,

Ωuu(P ) = DT
0 ND0.

Next, for notational convenience define R2a
△
= R2 + DT

0 ND0 and Pa
△
=

BTP +DT
0 NC0. Now, note that

0 ≤
[

FC0 − FD0R
−1
2a Pa −BT

0 P

]T[

FC0 − FD0R
−1
2a Pa −BT

0 P

]

,

or, equivalently,

[FC0 − FD0R
−1
2a Pa]

TBT
0 P + PB0[FC0 − FD0R

−1
2a Pa]

≤ [C0 −D0R
−1
2a Pa]

TFTF [C0 −D0R
−1
2a Pa] + PB0B

T
0 P,

which, since FTF ≤ N , implies

[FC0 − FD0R
−1
2a Pa]

TBT
0 P + PB0[FC0 − FD0R

−1
2a Pa]

≤ [C0 −D0R
−1
2a Pa]

TN [C0 −D0R
−1
2a Pa] + PB0B

T
0 P,

and hence, (11.111) holds. Furthermore, (11.112) specializes to

0 = ATP + PA+R1 + CT
0 NC0 + PB0B

T
0 P − PT

a R
−1
2a Pa, (11.123)

and the optimal robust feedback law is given by φ(x) = −R−1
2a Pax. This

corresponds to the results obtained in [41,354,356,480].

Alternatively, we can choose

Ωxx(P ) = [C0 −D0R
−1
2 BTP ]TN [C0 −D0R

−1
2 BTP ] + PB0B

T
0 P,

Ωxu(P ) = 0,

Ωuu(P ) = 0.

In this case, note that

0 ≤
[

FC0 − FD0R
−1
2 BTP −BT

0 P

]T[

FC0 − FD0R
−1
2 BTP −BT

0 P

]

,

or, equivalently,

[FC0 − FD0R
−1
2 BTP ]BT

0 P + PB0[FC0 − FD0R
−1
2 BTP ]

≤ [C0 −D0R
−1
2 BTP ]TFTF [C0 −D0R

−1
2 BTP ] + PB0B

T
0 P,

which, since FTF ≤ N , implies

[FC0 − FD0R
−1
2 BTP ]BT

0 P + PB0[FC0 − FD0R
−1
2 BTP ]

≤ [C0 −D0R
−1
2 BTP ]TN [C0 −D0R

−1
2 BTP ] + PB0B

T
0 P,
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and hence, (11.111) holds. Furthermore, (11.112) becomes

0 = ATP + PA+R1 − PSP + [C0 −D0R
−1
2 BTP ]TN [C0 −D0R

−1
2 BTP ]

+PB0B
T
0 P, (11.124)

where S
△
= BR−1

2 BT, and the optimal robust feedback law is given by

φ(x) = −R−1
2 BTPx.

The robustified Riccati equation (11.124) does not appear to have been
considered in the literature for the uncertainty structure given by (11.122).

11.5 Optimal and Inverse Optimal Robust Control for Nonlinear

Uncertain Affine Systems

In this section, we specialize Theorem 11.2 to affine (in the control) uncertain
systems having the form (see Figure 11.2)

ẋ(t) = f0(x(t))+∆f(x(t))+[G0(x(t)) + ∆G(x(t))] u(t), x(0) = x0, t ≥ 0,
(11.125)

where f0 : Rn → Rn satisfies f0(0) = 0, G0 : Rn → Rn×m, D = Rn, U = Rm,

F = {f0(x) + ∆f(x) + [G0(x) + ∆G(x)]u : x ∈ Rn, u ∈ Rm, (∆f,∆G) ∈
∆f × ∆G}, ∆f(·) ∈ ∆f ⊂ {∆f : Rn → Rn : ∆f(0) = 0},

and
∆G ∈ ∆G ⊂ {∆G : Rn → Rn×m}.

In this section, no explicit structure is assumed for the elements of ∆f and
∆G. In Section 11.6 the structure of variations in ∆f and ∆G will be
specified. Furthermore, we consider performance integrands L(x, u) of the
form

L(x, u) = L1(x) + L2(x)u+ uTR2(x)u, (11.126)

where L1 : Rn → R, L2 : Rn → R1×m, and R2 : Rn → Pm so that (11.95)
becomes

J(x0, u(·)) =

∫ ∞

0
[L1(x(t)) + L2(x(t))u(t) + uT(t)R2(x)u(t)]dt. (11.127)

Corollary 11.4. Consider the nonlinear uncertain controlled affine
system (11.125) with performance functional (11.127). Assume that there
exist a continuously differentiable function V : Rn → R and functions
L2 : Rn → R1×m, Γxx : Rn → R, Γxu : Rn → R1×m, and Γuu : Rn → Nm

such that

V (0) = 0, (11.128)

L2(0) = 0, (11.129)
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φ(x)
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∆G
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-
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�

Figure 11.2 Uncertain nonlinear feedback system.

Γxu(0) = 0, (11.130)

V (x) > 0, x ∈ Rn, x 6= 0, (11.131)

V ′(x)
(

∆f(x) − 1
2∆G(x)R−1

2a (x)Va(x)
)

≤ Γxx(x) − 1
2Γxu(x)R−1

2a (x)Va(x)

+1
4V

T
a (x)R−1

2a (x)Γuu(x)R−1
2a (x)Va(x), (∆f,∆G) ∈ ∆f × ∆G,

(11.132)

V ′(x)[f0(x) − 1
2G0(x)R

−1
2a (x)Va(x)] + Γxx(x) − 1

2Γxu(x)R−1
2a (x)Va(x)

+1
4V

T
a (x)R−1

2a (x)Γuu(x)R−1
2a (x)Va(x) < 0, x ∈ Rn, x 6= 0,

(11.133)

and
V (x) → ∞ as ‖x‖ → ∞, (11.134)

where R2a(x)
△
= R2(x)+Γuu(x) and Va(x)

△
= [L2(x)+Γxu(x)+V ′(x)G0(x)]

T.
Then the zero solution x(t) ≡ 0 of the nonlinear uncertain system (11.125)
is globally asymptotically stable for all (∆f,∆G) ∈ ∆f × ∆G with the
feedback control law

φ(x) = −1
2R

−1
2a (x)Va(x), (11.135)

and the performance functional (11.127) satisfies

sup
(∆f,∆G)∈∆f×∆G

J(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = V (x0), (11.136)

where

J (x0, u(·)) △
=

∫ ∞

0
[L(x(t), u(t)) + Γ(x(t), u(t))]dt, (11.137)

and
Γ(x, u) = Γxx(x) + Γxu(x)u+ uTΓuu(x)u, (11.138)
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where u(·) is admissible, and x(t), t ≥ 0, solves (11.125) with (∆f,∆G) =
(0, 0). In addition, the performance functional (11.137), with

L1(x) = φT(x)R2a(x)φ(x) − V ′(x)f0(x) − Γxx(x), (11.139)

is minimized in the sense that

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)). (11.140)

Proof. The result is a direct consequence of Theorem 11.2 with
D = Rn, U = Rm, F0(x, u) = f0(x) + G0(x)u, F (x, u) = f0(x) + ∆f(x) +
[G0(x) + ∆G(x)]u, F = {f0(x) + ∆f(x) + [G0(x) + ∆G(x)]u : x ∈ Rn, u ∈
Rm, (∆f,∆G) ∈ ∆f ×∆G}, L(x, u) given by (11.126), and Γ(x, u) given by
(11.138). Specifically, with (11.125), (11.126), and (11.138), the Hamiltonian
has the form

H(x, u) = L1(x) + L2(x)u+ uTR2(x)u+ V ′(x)(f0(x) +G0(x)u)

+Γxx(x) + Γxu(x)u+ uTΓuu(x)u.

Now, the feedback control law (11.135) is obtained by setting ∂H
∂u = 0. With

(11.135), it follows that (11.132) and (11.133) imply (11.99), and (11.100),
respectively. Next, since V (·) is continuously differentiable and x = 0 is
a local minimum of V (·), it follows that V ′(0) = 0, and hence, since by
assumption L2(0) = 0 and Γxu(0) = 0, it follows that φ(0) = 0, which proves
(11.98). Next, with L1(x) given by (11.139) and φ(x) given by (11.135) it
follows that (11.101) holds. Finally, since H(x, u) = H(x, u)−H(x, φ(x)) =
[u − φ(x)]TR2a(x)[u − φ(x)] and R2a(x) is positive definite for all x ∈ Rn,
condition (11.102) holds. The result now follows as a direct consequence of
Theorem 11.2.

Note that (11.133) implies

V̇ (x)
△
= V ′(x)[f0(x) + ∆f(x) + (G0(x) + ∆G(x))φ(x)] < 0,

x ∈ Rn, x 6= 0, (∆f,∆G) ∈ ∆f × ∆G, (11.141)

with φ(x) given by (11.135). Furthermore, (11.128), (11.131), and (11.141)
ensure that V (x) is a Lyapunov function guaranteeing robust stability of
the closed-loop system for all (∆f,∆G) ∈ ∆f × ∆G. As noted in Chapter
9, it is important to recognize that the function L2(x) which appears in the
integrand of the performance functional (11.127) is an arbitrary function
of x subject to conditions (11.129), (11.132), and (11.133). Thus, L2(x)
provides flexibility in choosing the control law.

With L1(x) given by (11.139) and φ(x) given by (11.135), L(x, u) +
Γ(x, u) can be expressed as

L(x, u) + Γ(x, u) = [u− φ(x)]TR2a(x)[u− φ(x)] − V ′(x)[f0(x) +G0(x)u]
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=
[

u+ 1
2R

−1
2a (x)(L2(x) + Γxu(x))T

]T
R2a(x)

·
[

u+ 1
2R

−1
2a (x)(L2(x) + Γxu(x))T

]

−V ′(x)[f0(x) +G0(x)φ(x)]

−1
4V

′(x)G0(x)R
−1
2a (x)GT

0 (x)V ′T(x). (11.142)

Since R2a(x) ≥ R2(x) > 0 for all x ∈ Rn the first term of the right-hand
side of (11.142) is nonnegative, while (11.141) implies that the second term
is nonnegative. Thus, we have

L(x, u) + Γ(x, u) ≥ −1
4V

′(x)G0(x)R
−1
2a (x)GT

0 (x)V ′T(x), (11.143)

which shows that L(x, u) + Γ(x, u) may be negative. As a result, there
may exist a control input u for which the auxiliary performance functional
J (x0, u) is negative. Note, however, if the control is a stabilizing feedback
control, that is, u ∈ S(x0), then it follows from (11.136) and (11.140) that

J (x0, u(·)) ≥ V (x0) ≥ 0, x0 ∈ Rn, u(·) ∈ S(x0).

Furthermore, in this case, substituting u = φ(x) into (11.142) yields

L(x, φ(x)) + Γ(x, φ(x)) = −V ′(x)[f0(x) +G0(x)φ(x)],

which, by (11.141), is positive.

11.6 Nonlinear Guaranteed Cost Control

Having established the theoretical basis for our approach, we now assign
explicit structure to the set ∆f × ∆G and the bounding functions Γxx(x),
Γxu(x), and Γuu(x), x ∈ Rn. Even though both ∆f (x) and ∆G(x), x ∈ Rn,
uncertainties can be considered, for simplicity of exposition we assume that
∆G(x) = 0, x ∈ Rn (see Problem 11.26 for the case where ∆G(x) 6= 0,
x ∈ Rn). The uncertainty set F is assumed to be of the form given by
(11.23) with ∆ given by (11.24).

Proposition 11.15. Consider the nonlinear uncertain controlled sys-
tem (11.125) with performance functional (11.127). Assume that there
exist a continuously differentiable function V : Rn → R and function
L2 : Rn → R1×m such that (11.128)–(11.131) are satisfied,

V ′(x)[f0(x) − 1
2G0(x)R

−1
2 (x)Va(x)] + 1

4V
′(x)Gδ(x)G

T
δ (x)V ′T(x)

+mT(hδ(x))m(hδ(x)) < 0, x ∈ Rn, x 6= 0, (11.144)

and
V (x) → ∞ as ‖x‖ → ∞, (11.145)

where Va(x)
△
= [L2(x) + V ′(x)G0(x)]

T. Then the zero solution x(t) ≡ 0 of
the nonlinear uncertain system (11.125) is globally asymptotically stable for
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all δ(·) ∈ ∆, where ∆ is given by (11.24), with the feedback control law

φ(x) = −1
2R

−1
2 (x)Va(x). (11.146)

Furthermore, the performance functional (11.127) satisfies

sup
δ(·)∈∆

J(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = V (x0), (11.147)

where

J (x0, u(·)) △
=

∫ ∞

0
[L1(x) + L2(x)u+ uTR2(x)u+ 1

4V
′(x)Gδ(x)G

T
δ (x)V ′T(x)

+mT(hδ(x))m(hδ(x))]dt, (11.148)

where u(·) is admissible and x(t), t ≥ 0, solves (11.125) with δ(hδ(x)) ≡ 0.
In addition, the performance functional (11.148), with

L1(x) = φT(x)R2(x)φ(x) − V ′(x)f0(x) − 1
4V

′(x)Gδ(x)G
T
δ (x)V ′T(x)

−mT(hδ(x))m(hδ(x)), (11.149)

is minimized in the sense that

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)). (11.150)

Proof. The result is direct consequence of Corollary 11.4 with ∆f =
∆, ∆ given by (11.24), ∆G = 0, Γxx(x) = 1

4V
′(x)Gδ(x)G

T
δ (x)V ′T(x) +

mT(hδ(x))m(hδ(x)), Γxu(x) = 0, and Γuu(x) = 0. Specifically, (11.128)–
(11.131) are satisfied by assumption and (11.144) implies (11.133). Next, if
δ(·) ∈ ∆ it follows that

V ′(x)∆f(x) − Γxx(x) = V ′(x)Gδ(x)δ(hδ(x)) − 1
4V

′(x)Gδ(x)G
T
δ (x)V ′T(x)

−mT(hδ(x))m(hδ(x))

≤ −[12G
T
δ (x)V ′T(x) − δ(hδ(x))]

T

·[12GT
δ (x)V ′T(x) − δ(hδ(x))]

≤ 0,

which implies (11.132). The result now follows as a direct consequence of
Corollary 11.4.

We now assign a different structure to the uncertainty set ∆ and the
bounding functions Γxx(x), Γxu(x), and Γuu(x). Specifically, the uncertainty
set ∆ is assumed to be of the form given by (11.27).

Proposition 11.16. Consider the nonlinear uncertain controlled sys-
tem (11.125) with performance functional (11.127). Assume that there
exist a continuously differentiable function V : Rn → R and function
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L2 : Rn → R1×m such that (11.128)–(11.131) are satisfied,

V ′(x)[f0(x) − 1
2G0(x)R

−1
2 (x)Va(x)] + 1

4 [m(hδ(x)) +GT
δ (x)V ′T(x)]T

·[m(hδ(x)) +GT
δ (x)V ′T(x)] + V ′(x)Gδ(x)m1(hδ(x)) < 0, x ∈ Rn, x 6= 0,

(11.151)

and
V (x) → ∞ as ‖x‖ → ∞, (11.152)

where Va(x)
△
= [L2(x) + V ′(x)G0(x)]

T. Then the zero solution x(t) ≡ 0 of
the nonlinear uncertain system (11.125) is globally asymptotically stable for
all δ(·) ∈ ∆, where ∆ is given by (11.27), with the feedback control law

φ(x) = −1
2R

−1
2 (x)Va(x). (11.153)

Furthermore, the performance functional (11.127) satisfies

sup
δ(·)∈∆

J(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = V (x0), (11.154)

where

J (x0, u(·)) △
=

∫ ∞

0

[

L1(x) + L2(x)u+ uTR2(x)u

+1
4 [m(hδ(x)) +GT

δ (x)V ′T(x)]T[m(hδ(x)) +GT
δ (x)V ′T(x)]

+V ′(x)Gδ(x)m1(hδ(x))

]

dt, (11.155)

where u(·) is admissible, and x(t), t ≥ 0, solves (11.125) with δ(hδ(x)) ≡ 0.
In addition, the performance functional (11.155), with

L1(x) = φT(x)R2(x)φ(x) − V ′(x)f0(x) − V ′(x)Gδ(x)m1(hδ(x))

−1
4 [m(hδ(x)) +GT

δ (x)V ′T(x)]T[m(hδ(x)) +GT
δ (x)V ′T(x)],

(11.156)

is minimized in the sense that

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)). (11.157)

Proof. The result is direct consequence of Corollary 11.4 with
∆f = ∆, ∆ given by (11.27), ∆G = 0, Γxx(x) = 1

4 [m(hδ(x)) +

GT
δ (x)V ′T(x)]T[m(hδ(x))+GT

δ (x)V ′T(x)]+V ′(x)Gδ(x)m1(hδ(x)), Γxu(x) =
0, and Γuu(x) = 0. Specifically, (11.128)–(11.131) are satisfied by
assumption and (11.151) implies (11.133). Next, if δ(·) ∈ ∆ it follows that

V ′(x)∆f(x) − Γxx(x)

≤ −[δ(hδ(x)) −m1(hδ(x))]
T[δ(hδ(x)) −m2(hδ(x))]

+V ′(x)Gδ(x)δ(hδ(x))
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−1
4 [m(hδ(x)) +GT

δ (x)V ′T(x)]T[m(hδ(x)) +GT
δ (x)V ′T(x)]

−V ′(x)Gδ(x)m1(hδ(x))

= −[12m(hδ(x)) + 1
2G

T
δ (x)V ′T(x) − (δ(hδ(x) −m1(hδ(x)))]

T

·[12m(hδ(x)) + 1
2G

T
δ (x)V ′T(x) − (δ(hδ(x) −m1(hδ(x)))]

≤ 0,

which implies (11.132). The result now follows as a direct consequence of
Corollary 11.4.

11.7 Stability Margins, Meaningful Inverse Optimality, and

Robust Control Lyapunov Functions

In this section, we specialize the results of Section 11.5 to the case where
L(x, u) is nonnegative for all (x, u) ∈ Rn × Rm. Here, we assume that
L2(x) ≡ 0 and L1(x) ≥ 0, x ∈ Rn. We begin by specializing Corollary
11.4 to the case where L2(x) ≡ 0. In this case, the performance functional
(11.127) becomes

J(x0, u(·)) =

∫ ∞

0
[L1(x(t)) + uT(t)R2(x(t))u(t)]dt. (11.158)

For simplicity of exposition we assume ∆G(x) ≡ 0, Γxu(x) ≡ 0, and
Γuu(x) ≡ 0.

Corollary 11.5. Consider the nonlinear controlled dynamical system
(11.125) with performance functional (11.158). Assume that there exist a
continuously differentiable function V : Rn → R and a function Γxx : Rn →
R such that

V (0) = 0, (11.159)

V (x) > 0, x ∈ Rn, x 6= 0, (11.160)

V ′(x)∆f(x) ≤ Γxx(x), ∆f(·) ∈ ∆, (11.161)

0 = V ′(x)f0(x) + L1(x) − 1
4V

′(x)G(x)R−1
2 (x)GT(x)V ′T(x) + Γxx(x),

x ∈ Rn, (11.162)

and
V (x) → ∞ as ‖x‖ → ∞. (11.163)

Furthermore, assume that the system (11.125), with output y = L1(x), is
zero-state observable. Then the zero solution x(t) ≡ 0 of the uncertain
closed-loop system

ẋ(t) = f0(x(t)) + ∆f(x) +G(x(t))φ(x(t)), x(0) = x0, t ≥ 0,
(11.164)
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is globally asymptotically stable for all ∆f (·) ∈ ∆ with feedback control law

φ(x) = −1
2R

−1
2 (x)GT(x)V ′T(x). (11.165)

Furthermore, the performance functional (11.158) satisfies

J(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = V (x0), (11.166)

where

J (x0, u(·)) △
=

∫ ∞

0
[L(x(t), u(t)) + Γxx(x(t))]dt. (11.167)

In addition, the performance functional (11.167) is minimized in the sense
that

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)). (11.168)

Proof. The result follows as a direct consequence of Corollary 11.4.

Next, we provide sector and gain margins for the nonlinear dynamical
system G given by (11.125). To consider relative stability margins for
nonlinear robust regulators consider the nonlinear dynamical system given
by (11.125) along with the output

y(t) = −φ(x(t)), (11.169)

where φ(·) is such that G is robustly stable for all ∆f(·) ∈ ∆ with u = φ(x).
Furthermore, assume that (11.125) and (11.169) is zero-state observable.

Theorem 11.3. Consider the nonlinear dynamical system G given by
(11.125) and (11.169), where φ(x) is a feedback control law given by (11.165)
and where V (x), x ∈ Rn, satisfies (11.159)–(11.162). Furthermore, assume
R2(x) = diag[r1(x), . . . , rm(x)], where ri : Rn → R, ri(x) > 0, i = 1, . . . ,m.
Then the nonlinear system G has a sector (and, hence, gain) margin (1

2 ,∞).

Proof. Let ∆(uc) = σ(uc), where σ : Rm → Rm is a static nonlinearity
such that σ(0) = 0, σ(uc) = [σ1(uc1), . . . , σm(ucm)]T, and 1

2u
2
ci < σi(uci)uci,

for all uci 6= 0, i = 1, . . . ,m. In this case, the closed-loop system (11.125)
and (11.169) with u = −σ(y) is given by

ẋ(t) = f0(x(t)) + ∆f(x(t)) +G(x(t))σ(φ(x(t))),

x(0) = x0, ∆f(·) ∈ ∆, t ≥ 0. (11.170)

Next, consider the Lyapunov function candidate V (x), x ∈ Rn, satisfying
(11.162) and let V̇ (x) denote the Lyapunov derivative along with the
trajectories of the closed-loop system (11.170). Now, it follows from (11.161)
and (11.162) that for all ∆f (·) ∈ ∆,

V̇ (x) = V ′(x)f0(x) + V ′(x)∆f(x) + V ′(x)G(x)σ(φ(x))

≤ φT(x)R−1
2 (x)φ(x) + V ′(x)G(x)σ(φ(x)) + V ′(x)∆f(x)
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−L1(x) − Γxx(x)

≤ φT(x)R−1
2 (x)φ(x) + V ′(x)G(x)σ(φ(x))

≤
m
∑

i=1

ri(x)yi(yi + 2σi(−yi)),

which implies the result.

The following result specializes Theorem 11.3 to linear uncertain
systems.

Corollary 11.6. Consider the uncertain linear dynamical system G
given by (11.109) and (11.169) with ∆B ≡ 0, where φ(x) = −(R2 +
Ωuu(P ))−1(BTP + ΩT

xu(P ))x and where P ∈ Pn, satisfies (11.111) and
(11.112). Furthermore, assume R2 = diag[r1, . . . , rm], where ri > 0,
i = 1, . . . ,m. Then the linear system G has a sector (and, hence, gain)
margin (1

2 ,∞).

Next, we introduce the notion of robust control Lyapunov functions
for the nonlinear dynamical system (11.125).

Definition 11.1. Consider the controlled nonlinear dynamical system
given by (11.125). A continuously differentiable positive-definite function
V : Rn → R satisfying

V ′(x)f0(x) + Γxx(x) < 0, x ∈ R, (11.171)

where R △
= {x ∈ Rn : x 6= 0 : V ′(x)G(x) = 0}, is called a robust control

Lyapunov function.

Finally, we show that for every nonlinear dynamical system for which a
robust control Lyapunov function can be constructed there exists an inverse
optimal robust feedback control law with sector and gain margin (1

2 ,∞).

Theorem 11.4. Consider the nonlinear dynamical system G given by
(11.125) and let the continuously differentiable positive-definite, radially
unbounded function V : Rn → R be a robust control Lyapunov function
of (11.125), that is,

V ′(x)f0(x) + Γxx(x) < 0, x ∈ R, (11.172)

where R △
= {x ∈ Rn : x 6= 0 : V ′(x)G(x) = 0}. Then, with the feedback

control law given by

φ(x) =







−
(

c0 +
α(x)+

√
α2(x)+(βT(x)β(x))2

βT(x)β(x)

)

β(x), β(x) 6= 0,

0, β(x) = 0,
(11.173)
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where α(x)
△
= V ′(x)f0(x) + Γxx(x), β(x)

△
= GT(x)V ′T(x), and c0 > 0, the

nonlinear system G given by (11.125) has a sector (and, hence, gain) margin
(1
2 ,∞).

Proof. The result is a direct consequence of Corollary 11.5 and

Theorem 11.3 with R2(x) = 1
2η(x)Im and L1(x) = −α(x) + η(x)

2 βT(x)β(x),

where

η(x) =







−
(

c0 +
α(x)+

√
α2(x)+(βT(x)β(x))2

βT(x)β(x)

)

, β(x) 6= 0,

0, β(x) = 0.
(11.174)

Specifically, note that R2(x) > 0, x ∈ Rn, and

L1(x) = −α(x) + η(x)
2 βT(x)β(x)

=











−1
2

(

c0β
T(x)β(x) − α(x)

+
√

α2(x) + (βT(x)β(x))2
)

, β(x) 6= 0,

−α(x), β(x) = 0.

(11.175)

Now, it follows from (11.175) that L1(x) ≥ 0, β(x) 6= 0, and since V (·)
is a robust control Lyapunov function of (11.125), it follows that L1(x) =
−α(x) ≥ 0, for all x ∈ R. Hence, (11.175) yields L1(x) ≥ 0, x ∈ Rn, so that
all the conditions of Corollary 11.5 are satisfied.

11.8 Robust Nonlinear Controllers with Polynomial

Performance Criteria

In this section, we specialize the results of Section 11.5 to linear systems con-
trolled by nonlinear controllers that minimize a polynomial cost functional.
Specifically, assume F to be the set of uncertain systems given by

F = {(A+ ∆A)x+Bu : x ∈ Rn, u ∈ Rm, A ∈ Rn×n, B ∈ Rn×m,∆A ∈ ∆A},
(11.176)

where ∆A ⊂ Rn×n is a given bounded uncertainty set of the uncertain
perturbation ∆A of the nominal system A such that 0 ∈ ∆A. For simplicity
of exposition here and in the remainder of the chapter we assume ∆B = 0.
For the following result recall the definition of S and let R1 ∈ Pn, R2 ∈ Pm,
and R̂k ∈ Nn, k = 2, . . . , r, be given where r is a positive integer.

Theorem 11.5. Consider the linear uncertain controlled system

ẋ(t) = (A+ ∆A)x(t) +Bu(t), x(0) = x0, t ≥ 0, (11.177)

where u(·) ∈ U is admissible and ∆A ∈ ∆A. Assume there exists Ω : Pn →
Nn such that

∆ATP + P∆A ≤ Ω(P ), ∆A ∈ ∆A, P ∈ Pn, (11.178)
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and there exist P ∈ Pn and Mk ∈ Nn, k = 2, . . . , r, such that

0 = ATP + PA+R1 + Ω(P ) − PSP, (11.179)

and

0 = (A− SP )TMk +Mk(A− SP ) + R̂k + Ω(Mk), k = 2, . . . , r. (11.180)

Then, with the feedback control law

u = φ(x) = −R−1
2 BT

(

P +
r
∑

k=2

(xTMkx)
k−1Mk

)

x,

the zero solution x(t) ≡ 0 of the uncertain system (11.177) is globally
asymptotically stable for all x0 ∈ Rn and ∆A ∈ ∆A, and the performance
functional (11.127) satisfies

sup
∆A∈∆A

J∆A(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = xT
0 Px0 +

r
∑

k=2

1

k
(xT

0 Mkx0)
k,

(11.181)
where

J (x0, u(·)) △
=

∫ ∞

0
[L(x, u) + Γ(x, u)]dt, (11.182)

and where u(·) is admissible, and x(t), t ≥ 0, solves (11.177) with ∆A = 0,
and

Γ(x, u) = xT(Ω(P ) +
r
∑

k=2

(xTMkx)
k−1Ω(Mk))x,

where u(·) is admissible and ∆A ∈ ∆A. In addition, the performance
functional (11.127), with R2(x) = R2, L2(x) = 0, and

L1(x) = xT

(

R1 +

r
∑

k=2

(xTMkx)
k−1R̂k +

[

r
∑

k=2

(xTMkx)
k−1Mk

]T

·S
[

r
∑

k=2

(xTMkx)
k−1Mk

])

x,

is minimized in the sense that

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)), (11.183)

where S(x0) is the set of regulation controllers for the nominal system and
x0 ∈ Rn.

Proof. The result is a direct consequence of Corollary 11.4 with
f0(x) = Ax, G0(x) = B, ∆f(x) = ∆Ax, ∆G(x) = 0, ∆ = ∆A,
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and V (x) = xTPx+
∑r

k=2
1
k (xTMkx)

k. Specifically, conditions (11.128)–
(11.162) are trivially satisfied. Now, it follows from (11.178) that

0 ≥ xT(∆ATP + P∆A− Ω(P ))x

+

r
∑

k=2

(xTMkx)
k−1xT(∆ATMk +Mk∆A− Ω(Mk))x,

x ∈ Rn, which implies (11.133) for all ∆A ∈ ∆A so that all the conditions
of Corollary 11.4 are satisfied.

Theorem 11.5 generalizes the deterministic version of the stochastic
nonlinear-nonquadratic optimal control problem considered in [411] to the
robustness setting. Furthermore, unlike the results of [411], Theorem 11.5
is not limited to sixth order cost functionals and cubic nonlinear controllers
since it addresses a polynomial nonlinear performance criterion. Theorem
11.5 requires the solutions of r − 1 modified Riccati equations in (11.180)

to obtain the optimal robust controller. However, if R̂k = R̂2, k = 3, . . . , r,
then Mk = M2, k = 3, . . . , r, satisfies (11.180). In this case, we require the
solution of one modified Riccati equation in (11.180). This special case is
considered in Propositions 11.17 and 11.18 below.

As discussed in Chapter 9, the performance functional (11.182) is a
derived performance functional in the sense that it cannot be arbitrarily
specified. However, this performance functional does weight the state
variables by arbitrary even powers. Furthermore, (11.182) has the form

J∆A(x0, u(·)) =

∫ ∞

0

[

xT(R1 +

r
∑

k=2

(xTMkx)
k−1R̂k)x+ uTR2u

+φT
NL(x)R2φNL(x)

]

dt,

where φNL(x) is the nonlinear part of the optimal feedback control

φ(x) = φL(x) + φNL(x),

where φL(x)
△
= −R−1

2 BTPx and φNL(x)
△
= −R−1

2 BT
∑r

k=2(x
TMkx)

k−1Mkx.

Next, we consider the special case in which r = 2. In this case, note
that if there exist P ∈ Pn and M2 ∈ Nn such that

0 = ATP + PA+R1 + Ω(P ) − PSP

and
0 = (A− SP )TM2 +M2(A− SP ) + R̂2 + Ω(M2),

then (11.177), with the performance functional

J∆A(x0, u(·)) =

∫ ∞

0
[xTR1x+ uTR2u+ (xTM2x)(x

TR̂2x)
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+(xTM2x)
2(xTM2SM2x)]dt,

is globally asymptotically stable for all x0 ∈ Rn and ∆A ∈ ∆A with the
feedback control law u = φ(x) = −R−1

2 BT
(

P + (xTM2x)M2

)

x.

Finally, using the explicit uncertainty characterizations given by
(11.121) and (11.122) (with ∆B = 0) we present two specializations of
Theorem 11.5.

Proposition 11.17. Consider the linear uncertain controlled system

ẋ(t) = (A+ ∆A)x(t) +Bu(t), x(0) = x0, t ≥ 0, (11.184)

where u(·) ∈ U is admissible and ∆A ∈ ∆A , where ∆A is given by (11.121).
Assume that there exist P ∈ Pn and M2 ∈ Nn such that

0 = AT
αP + PAα +R1 +

p
∑

i=1

α2
i

α
AT

i PAi − PSP, (11.185)

0 = (Aα − SP )TM2 +M2(Aα − SP ) +

p
∑

i=1

α2
i

α
AT

i M2Ai + R̂2. (11.186)

Then, with the feedback control

u = φ(x) = −R−1
2 BT

(

P +

r
∑

k=2

(xTM2x)
k−1M2

)

x,

the zero solution x(t) ≡ 0 to the uncertain system (11.184) is globally
asymptotically stable for all x0 ∈ Rn and ∆A ∈ ∆A, and the performance
functional (11.127) satisfies

sup
∆A∈∆A

J∆A(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = xT
0 Px0 +

r
∑

k=2

1

k
(xT

0M2x0)
k,

(11.187)
where

J (x0, u(·)) △
=

∫ ∞

0
[L(x, u) + Γ(x, u)]dt, (11.188)

and where u(·) is admissible, and x(t), t ≥ 0, solves (11.184) with ∆A = 0
and

Γ(x, u) = xT

[

p
∑

i=1

α2
i

α
AT

i PAi + αP

+

r
∑

k=2

(xTM2x)
k−1

(

p
∑

i=1

α2
i

α
AT

i M2Ai + αM2

)]

x.

In addition, the performance functional (11.127), with R2(x) = R2, L2(x) =
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0, and

L1(x) = xT



R1 +

r
∑

k=2

(xTM2x)
k−1R̂2 +

(

r
∑

k=2

(xTM2x)
k−1

)2

M2SM2



x,

(11.189)
is minimized in the sense that

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)), (11.190)

where S(x0) is the set of regulation controllers for the nominal system and
x0 ∈ Rn.

Proof. It need only be noted that ∆ATP +P∆A ≤∑p
i=1

α2
i

α A
T
i PAi +

αP for all ∆A ∈ ∆A and P ∈ Pn. The result now is a direct consequence

of Theorem 11.5 with Ω(P ) =
∑p

i=1
α2

i

α A
T
i PAi + αP .

Proposition 11.18. Consider the linear uncertain controlled system

ẋ(t) = (A+ ∆A)x(t) +Bu(t), x(0) = x0, t ≥ 0, (11.191)

where u(·) ∈ U is admissible and ∆A ∈ ∆A, where ∆A is given by (11.122).
Assume that there exist P ∈ Pn and M2 ∈ Nn such that

0 = ATP + PA+R1 + CT
0 NC0 + PB0B

T
0 P − PSP, (11.192)

0 = (A− SP )TM2 +M2(A− SP ) + R̂2 +CT
0 NC0 +M2B0B

T
0 M2.

(11.193)

Then, with the feedback control

u = φ(x) = −R−1
2 BT

(

P +

r
∑

k=2

(xTM2x)
k−1M2

)

x,

the zero solution x(t) ≡ 0 to the uncertain system (11.191) is globally
asymptotically stable for all x0 ∈ Rn and ∆A ∈ ∆A, and the performance
functional (11.127) satisfies

sup
∆A∈∆A

J∆A(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = xT
0 Px0 +

r
∑

k=2

1

k
(xT

0M2x0)
k,

(11.194)
where

J (x0, u(·)) △
=

∫ ∞

0
[L(x, u) + Γ(x, u)]dt, (11.195)

and where u(·) is admissible, and x(t), t ≥ 0, solves (11.191) with ∆A = 0
and

Γ(x, u) = xT
[

CT
0 NC0 + PB0B

T
0 P
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+

r
∑

k=2

(xTM2x)
k−1(CT

0 NC0 +M2B0B
T
0 M2)

]

x.

In addition, the performance functional (11.127), with R2(x) = R2, L2(x) =
0, and

L1(x) = xT



R1 +
r
∑

k=2

(xTM2x)
k−1R̂2 +

(

r
∑

k=2

(xTM2x)
k−1

)2

M2SM2



x,

(11.196)
is minimized in the sense that

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)), (11.197)

where S(x0) is the set of regulation controllers for the nominal system and
x0 ∈ Rn.

Proof. It need only be noted that ∆ATP+P∆A ≤ CT
0 NC0+PB0B

T
0 P

for all ∆A ∈ ∆A and P ∈ Pn. The result now is a direct consequence of
Theorem 11.5 with Ω(P ) = CT

0 NC0 + PB0B
T
0 P .

Propositions 11.17 and 11.18 are generalizations of results given in
[48,50] to nonlinear polynomial performance criteria.

Example 11.7. Consider the three-mass, two-spring system shown in
Figure 11.3 with m1 = m2 = m3 = 1 and uncertain spring stiffnesses k1

and k2. A control force acts on mass 2. The nominal dynamics, with state
variables defined in Figure 11.3, are given by

A =

















0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−k1nom k1nom 0 0 0 0
k1nom −(k1nom + k2nom) k2nom 0 0 0

0 k2nom −k2nom 0 0 0

















, B =

















0
0
0
0
1
0

















.

(11.198)

The actual spring stiffnesses can be written as ki = kinom + ∆ki, where
kinom = 1, i = 1, 2, so that the actual dynamics of the system are given by
Aactual = A+

∑2
i=1 ∆kiAi, where

A1 =

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1 1 0 0 0 0
1 −1 0 0 0 0
0 0 0 0 0 0

















, A2 =

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 1 0 0 0
0 1 −1 0 0 0

















.
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m1 m2 m3

x1 x2 x3

u

k1 k2

Figure 11.3 Three-mass oscillator.

Choosing the performance variables

z
△
= E1x+ E2u,

where

E1 =

[

0 0 1 0 0 0
0 0 0 0 0 1

]

, E2 =

[

0
1

]

,

expresses the desire to regulate the displacement and velocity of mass 3.
Furthermore, let the design parameters R1 = ET

1 E1 and R2 = ρET
2 E2,

where ρ = 0.001. For the nonlinear control design, the additional design
parameter R̂2 in (11.186) is taken as R̂2 = 10 · R1. The design goal of this
problem is to achieve good nominal performance and demonstrate robust
stability and performance for perturbed spring stiffness values in the range
0.75 ≤ ki ≤ 1.25, i = 1, 2.

Figures 11.4 and 11.5 compares the linear LQR controller to the
nonlinear Speyer [411] controller (Proposition 11.17 with ∆A = 0 and
r = 2) for the nominal plant subject to an initial displacement of mass
1. Note that the nonlinear controller achieves better performance in the
sense of state trajectory regulation for each of the states. This is primarily
due to the relatively large initial displacement of mass 1 which allowed the
nonlinear part of the control to initially have a significant impact on the
response causing the position of mass 1 to approach zero faster than the
linear controller design. The action of the nonlinear part of the controller
also reduced the overshoot since the nonlinear control contribution becomes
greater as the position deviates farther from the equilibrium thus causing
the mass to recover quicker.

Next, using Proposition 11.17 (with r = 2) a robustified nonlinear con-
troller was designed for the uncertain system with multivariable uncertainty
in the stiffness values. This controller is compared to the robustified linear
LQR controller given by (11.120), the Speyer [411] nonlinear controller, and
the LQR controller. Figures 11.6 and 11.7 shows the state responses for these
designs for ∆k1 = −0.25 and ∆k2 = 0.25. Note that the robust nonlinear
controller outperforms all other controllers in the sense of worst-case state
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Figure 11.4 Comparison of LQR and Speyer controllers for the nominal system: Position
of mass 1.

trajectory regulation. △

Example 11.8. Consider the pitch axis longitudinal dynamics model
of the F-16 fighter aircraft system given in [394] for nominal flight conditions
at 3000 ft and Mach number of 0.6. The nominal model is given by





ẋ1(t)
ẋ2(t)
ẋ3(t)



 =





0 1.00 0
0 −0.87 43.22
0 0.99 −1.34









x1(t)
x2(t)
x3(t)





+





0 0
−17.25 −1.58
−0.17 −0.25





[

u1(t)
u2(t)

]

, (11.199)

where x1 is the pitch angle, x2 is the pitch rate, x3 is the angle of attack, u1

is the elevator deflection, and u2 is the flaperon deflection. Here, we consider
uncertainty in the (2,2) and (3,3) entries of the dynamics matrix. Using the
uncertainty structure given by (11.122), the actual dynamics are given by
Aactual = A+B0FC0, where

B0 =





0 0
1 0
0 1



 , F =

[

f1 0
0 f2

]

, C0 =

[

0 1 0
0 0 1

]

.

Using Proposition 11.18, with R1 = 3 ·I3, R2 = 0.001 ·I2, R̂2 = 10 ·R1,
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Figure 11.5 Comparison of LQR and Speyer controllers for the nominal system: Position
of mass 3.

|f1| ≤ 1, |f2| ≤ 5, and r = 2, a robustified nonlinear controller was designed
for the uncertain system. This controller is compared with the robustified
linear controller given by (11.123), the Speyer [411] nonlinear controller, and
the LQR controller. Figures 11.8 and 11.9 shows that for the case where f1 =
−1 and f2 = 5 the LQR controller destabilizes the system while the nominal
Speyer [411] controller maintains Lyapunov stability. This demonstrates
the inherent robustness of the nominal (nonrobustified) nonlinear control
in comparison to the nominal linear control. Furthermore, for the same
uncertainty range Figures 11.10 and 11.11 shows the state response for the
robustified nonlinear controller (Proposition 11.18) and the robustified linear
controller obtained via (11.123). △

11.9 Robust Nonlinear Controllers with Multilinear

Performance Criteria

In this section, we specialize the results of Section 11.5 to linear uncertain
systems controlled by nonlinear controllers that minimize a multilinear cost
functional. Specifically, we assume F to be the set of uncertain linear
systems given by (11.176). For the following result recall the definition

of S and let R1 ∈ Pn, R2 ∈ Pm, and R̂2ν ∈ N (2ν,n), ν = 2, . . . , r, be given
where r is a given integer.
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Figure 11.6 Comparison of LQR, Speyer, robust LQR, and robust nonlinear controllers
for the uncertain system: Position of mass 1.

Theorem 11.6. Consider the linear uncertain controlled system

ẋ(t) = (A+ ∆A)x(t) +Bu, x(0) = x0, t ≥ 0, (11.200)

where u(·) ∈ U is admissible and ∆A ∈ ∆A. Assume there exist Ω : Nn →
Nn, P ∈ Pn, Ω̂ν : N (2ν,n) → N (2ν,n), and P̂ν ∈ N (2ν,n), ν = 2, . . . , r, such
that

∆ATP + P∆A ≤ Ω(P ), ∆A ∈ ∆A, (11.201)

Ω̂ν(P̂ν) − P̂ν(
2ν

⊕ ∆A) ∈ N (2ν,n), ∆A ∈ ∆A, ν = 2, . . . , r, (11.202)

0 = ATP + PA+R1 − PSP + Ω(P ), (11.203)

and

0 = P̂ν [
2ν

⊕ (A− SP )] + R̂2ν + Ω̂ν(P̂ν), ν = 2, . . . , r. (11.204)

Then, with the feedback control u = φ(x) = −R−1
2 BT(Px+ 1

2g
′T(x)), where

g(x)
△
=
∑r

ν=2 P̂νx
[2ν], the zero solution x(t) ≡ 0 of the uncertain system

(11.200) is globally asymptotically stable for all x0 ∈ Rn and ∆A ∈ ∆A,
and the performance functional (11.127) satisfies

sup
∆A∈∆A

J∆A(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = xT
0 Px0 +

r
∑

ν=2

P̂νx
[2ν]
0 , (11.205)
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Figure 11.7 Comparison of LQR, Speyer, robust LQR, and robust nonlinear controllers
for the uncertain system: Position of mass 3.

where

J (x0, u(·)) △
=

∫ ∞

0
[L(x, u) + Γ(x, u)]dt, (11.206)

and where u(·) is admissible, and x(t), t ≥ 0, solves (11.200) with ∆A = 0
and

Γ(x, u) = xTΩ(P )x+

r
∑

ν=2

Ω̂ν(P̂ν)x[2ν],

where u(·) is admissible and ∆A ∈ ∆A. In addition, the performance
functional (11.127), with R2(x) = R2, L2(x) = 0, and

L1(x) = xTR1x+

r
∑

ν=2

R̂2νx
[2ν] +

1

4
g′(x)Sg′T(x)

is minimized in the sense that

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)), (11.207)

where S(x0) is the set of regulation controllers for the nominal system and
x0 ∈ Rn.

Proof. The result is a direct consequence of Corollary 11.4 with
f0(x) = Ax, G0(x) = B, ∆f(x) = ∆Ax, ∆G(x) = 0, ∆f = ∆A, and

V (x) = xTPx+
∑r

ν=2 P̂νx
[2ν]. Specifically, conditions (11.128)–(11.162) are



NonlinearBook10pt November 20, 2007

ROBUST NONLINEAR CONTROL 697

LQR   
Speyer

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

time (sec)

a
n
g
le

 o
f 
a
tt
a
c
k
 (

ra
d
)

Figure 11.8 Comparison of LQR and Speyer controllers for the uncertain system: Angle
of attack.

trivially satisfied. Now, it follows from (11.201) and (11.202) that

xT(∆ATP + P∆A− Ω(P ))x+
r
∑

ν=2

[P̂ν(
2ν

⊕ ∆A) − Ω̂ν(P̂ν)]x[2ν] ≤ 0, x ∈ Rn,

which implies (11.133) for all ∆A ∈ ∆A so that all the conditions of
Corollary 11.4 are satisfied.

Note that since g′(x)(A−SP )x =
∑r

ν=2 P̂ν [
2ν

⊕ (A−SP )]x[2ν] it follows
that (11.204) can be equivalently written as

0 = g′(x)(A− SP )x+
r
∑

ν=2

[R̂2ν + Ω̂ν(P̂ν)]x[2ν],

for all x ∈ Rn, and hence, it follows from Lemma 8.1 that there exists a
unique P̂ν ∈ N (2ν,n) such that (11.204) is satisfied. Theorem 11.6 generalizes
the classical results of Bass and Webber [33] to robust nonlinear optimal
control.
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Figure 11.9 Comparison of LQR and Speyer controllers for the uncertain system: Pitch
rate.

11.10 Problems

Problem 11.1. Consider the linear oscillator

q̈(t) + 2ζωnq̇(t) + ω2
nq(t) = 0, q(0) = q0, q̇(0) = q̇0, t ≥ 0, (11.208)

where q, q̇, q̈ ∈ R, and ζ ∈ [ζl, ζu] and ωn denote the damping ratio and
natural frequency, respectively, with ζl and ζu denoting the lower and upper
bounds on ζ. Using x(t) = [q(t), q̇(t)]T, represent (11.208) as (11.50) with
∆A given by (11.56).

Problem 11.2. Consider the linear matrix second-order uncertain
dynamical system given by

Mq̈(t) + (C0 + ∆C)q̇(t) + (K0 + ∆K)q(t) = 0, q(0) = q0, q̇(0) = q̇0, t ≥ 0,
(11.209)

where q, q̇, q̈ ∈ Rn, M0, C0, and K0 denote generalized inertia, damping,
and stiffness matrices, respectively, and ∆C and ∆K denote damping and
stiffness uncertainty such that σmax(∆C) ≤ γ−1

d and σmax(∆K) ≤ γ−1
s .

Using x(t) = [q(t), q̇(t)]T, represent (11.209) as (11.50) with ∆A given by
(11.27).
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Figure 11.10 Comparison of robust LQR and robust nonlinear controllers for the
uncertain system: Angle of attack.

Problem 11.3. Consider the uncertainty characterizations

∆1
△
= {∆A ∈ Rn×n : ∆A =

p
∑

i=1

δiAi, |δi| ≤ γ, i = 1, . . . , p}, (11.210)

∆2
△
= {∆A ∈ Rn×n : ∆A = B0FC0, σmax(F ) ≤ γ}, (11.211)

where for i = 1, . . . , p, Ai ∈ Rn×n, B0 ∈ Rn×s, and C0 ∈ Rs×n are given, and
γ > 0. Show that ∆1 is equivalent to ∆2 in the sense that an uncertainty
set ∆1 can always be written in the form of ∆2 and vice versa.

Problem 11.4. Consider the linear uncertain system (11.50) where
∆A ∈ ∆A and ∆A is given by

∆A
△
= {∆A ∈ Rn×n : ∆A =

p
∑

i=1

δiAi, |δi| ≤ γi, i = 1, . . . , p}. (11.212)

Show that the function

Ω(P ) =

p
∑

i=1

γi|AT
i P + PAi|, (11.213)

where |S| denotes (S2)1/2 for S ∈ Sn and (·)1/2 denotes the (unique)
nonnegative-definite square root, satisfies (11.52) with ∆A given by (11.212).
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Figure 11.11 Comparison of robust LQR and robust nonlinear controllers for the
uncertain system: Pitch rate.

Problem 11.5. Let f : R → R and define (with a minor abuse of

notation) f : Sn → Sn by f(S)
△
= Uf(D)UT, where S = UDUT, U is

orthogonal, D is real diagonal, and f(D) is the diagonal matrix obtained
by applying f to each diagonal entry of D . Consider the linear uncertain
system (11.50) where ∆A ∈ ∆A and ∆A is given by (11.212). Let fi : R →
R, i = 1, . . . , p, be such that fi(x) ≥ |x|, x ∈ R. Show that the function

Ω(P ) =

p
∑

i=1

γifi(A
T
i P + PAi) (11.214)

is an overbound for Ω(·) given by (11.213) and, hence, satisfies (11.52) with
∆A given by (11.212). (Hint: Note if f(x) = |x|, then f(S) = (S2)1/2,
where (·)1/2 denotes the (unique) nonnegative-definite square root.)

Problem 11.6. Consider the linear uncertain system (11.50) where
∆A ∈ ∆A and ∆A is given by (11.212). Let β1, . . . , βp be arbitrary positive
constants. Show that the function

Ω(P ) = 1
4

p
∑

i=1

γiβiIm +

p
∑

i=1

( γi

βi
)(AT

i P + PAi)
2 (11.215)

is an overbound for Ω(·) given by (11.213) and, hence, satisfies (11.52) with
∆A given by (11.212).
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Problem 11.7. Let ∆A given by (11.212) be defined by the positive
constants γ1, . . . , γp and let ∆A given by (11.56) be characterized by αi =
(

αγi

βi

)1/2
, i = 1, . . . , p, where α

△
=
∑p

i=1 γiβi and β1, . . . , βp are arbitrary

positive constants. Show that the ellipse E △
= {(δ1, . . . , δp) :

∑p
i=1

δ2
i

α2
i
≤ 1}

circumscribes the rectangle R △
= {(δ1, . . . , δp) : |δi| ≤ γi, i = 1, . . . , p}, and

hence, ∆A given by (11.56) contains ∆A given by (11.212).

Problem 11.8. Consider the linear uncertain system (11.50) where
∆A ∈ ∆A and ∆A is given by (11.56). Let α be an arbitrary positive
constant. Show that the function

Ω(P ) = α
4 In + α−1

p
∑

i=1

α2
i (A

T
i P + PAi)

2 (11.216)

satisfies (11.52) with ∆A given by (11.56).

Problem 11.9. Consider the linear uncertain system (11.50) where
∆A ∈ ∆A and ∆A is given by (11.56). Let α be an arbitrary positive
constant. Show that for P > 0 the function

Ω(P ) = α
2P + α−1

2

p
∑

i=1

α2
i [A

2T
i P +AT

i PAi + PAiP
−1AT

i P + PA2
i ] (11.217)

satisfies (11.52) with ∆A given by (11.56).

Problem 11.10. Consider the linear uncertain system (11.50) where
∆A ∈ ∆A and ∆A is given by

∆A
△
= {∆A ∈ Rn×n : ∆A =

p
∑

i=1

δiAi, |δi| ≤ γ−1, i = 1, . . . , p}, (11.218)

where γ > 0. For i = 1, . . . , p, let αi ∈ R, βi > 0, Si ∈ Rn×n and define
Zi

△
= [(Si + ST

i )2]1/2 and Îi
△
= [Si A

T
i ][Si A

T
i ]†. Show that the function

Ω(P ) =

p
∑

i=1

[γ−2(αiSi + βiA
T
i P )T(αiSi + βiA

T
i P ) + γ−1β−1

i |αi|Zi + β2
i Îi

(11.219)

satisfies (11.52) with ∆A given by (11.218). (Hint: First show that Îi =

ÎT
i = Î2

i , ÎiSi = Si, and AiÎi = Ai.)

Problem 11.11. Consider the linear uncertain system (11.50) where
∆A ∈ ∆A and ∆A is given by (11.56). Let α be an arbitrary positive
constant and for each P ∈ Pn, let P1 ∈ Rn×m and P2 ∈ Rm×n satisfy
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P = P1P2. Show that the function

Ω(P )
△
= αPT

2 P2 + α−1
p
∑

i=1

α2
iA

T
i P1P

T
1 Ai (11.220)

satisfies (11.52) with ∆A given by (11.56). Using (11.220) show that the
functions

Ω(P )
△
= αIn + α−1

p
∑

i=1

α2
iA

T
i P

2Ai (11.221)

and

Ω(P )
△
= αP 2 + α−1

p
∑

i=1

α2
iA

T
i Ai, (11.222)

also satisfy (11.52) with ∆A given by (11.56).

Problem 11.12. Consider the linear uncertain system (11.50) where
∆A ∈ ∆A and ∆A is given by (11.210). Let α > 0, Ni ∈ Sn, i = 1, . . . , p,

and define N △
= {P ∈ Pn : P − Ni ≥ 0, i = 1, . . . , p}. Show that the

function

Ω(P ) =

p
∑

i=1

[α(P −Ni) + γ2

α A
T
i (P −Ni)Ai + γ|AT

i Ni +NiAi|], (11.223)

where |S| denotes (S2)1/2, satisfies (11.52) with ∆ given by (11.210).

Problem 11.13. Consider the linear uncertain system (11.50) where
∆A ∈ ∆A and ∆A is given by (11.210). Let α > 0, V1i, V2i ∈ Rn×n, Ni ∈ Sn,

i = 1, . . . , p, and define N △
= {P ∈ Pn : (P −Ni) > 0}, i = 1, . . . , p. Show

that the function

Ω(P ) =

p
∑

i=1

[α(P −Ni) + γ
2 |AT

i (V1i + V T
2i ) + (V2i + V T

1i )Ai|]

+ γ
4α [AT

i (P − V1i) + (P − V2i)Ai](P −Ni)
−1

·[AT
i (P − V1i) + (P − V2i)Ai]

T, (11.224)

where |S| denotes (S2)1/2, satisfies (11.52) with ∆A given by (11.210).

Problem 11.14. Consider the linear uncertain system (11.50) where
∆A ∈ ∆A and ∆A is given by (11.59). Show that if there exists P ∈ Pn

satisfying

0 = ATP + PA+ γ−2PB0B
T
0 P +CT

0 C0 +R, (11.225)

where γ > 0 and R > 0, then A + ∆A is asymptotically stable for all
∆A ∈ ∆A. Furthermore, show that there exists P ∈ Pn satisfying (11.225)
if and only if |||C0(sI −A)−1B0|||∞ < γ.
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Problem 11.15. Consider the linear uncertain controlled system
(11.109) with ∆B = 0, ∆A ∈ ∆A, where ∆A is given by (11.218), and
performance functional (11.110). For i = 1, . . . , p, let αi ∈ R, βi > 0,

Si ∈ Rn×n and define Zi
△
= [(Si + ST

i )2]1/2 and Îi
△
= [Si A

T
i ][Si A

T
i ]†. Show

that the zero solution x(t) ≡ 0 to (11.109) is globally asymptotically stable
for all ∆A ∈ ∆A with the feedback control φ(x) = −R−1

2 BTPx, where
P > 0 satisfies

0 = AT
sγP + PAsγ +R1 +

p
∑

i=1

[γ−2(α2
iS

T
i Si + β2

i PAiA
T
i P ) + γ−1β−1

i |αi|Zi

+β2
i Îi] − PBR−1

2 BTP, (11.226)

and Asγ
△
= A+ γ2

i

∑p
i=1 αiβiAiSi.

Problem 11.16. Show that if R ∈ Pn and

A △
= Aα ⊕Aα +

p
∑

i=1

α2
i

α Ai ⊗Ai

is Hurwitz, then there exists a unique P ∈ Rn×n satisfying (11.64) and
P > 0. Conversely, show that if for all R ∈ Pn there exists P > 0 satisfying
(11.64), then A, Aα, and A are Hurwitz. (Hint: Use the exponential product

formula eAt = limk→∞{exp[ 1
k (Aα ⊕Aα)t]exp[ 1

k

∑p
i=1

α2
i

α (Ai ⊗Ai)]}.)

Problem 11.17. Let ∆A be given by (11.56) and let ∆̂A ⊆ ∆A, where

∆̂A is defined as in (11.56) with αi replaced by α̂i ∈ [0, αi], i = 1, . . . , p.

Furthermore, let R ∈ Pn, assume A △
= Aα⊕Aα +

∑p
i=1

α2
i

α Ai⊗Ai is Hurwitz,

and let P ∈ Pn satisfy (11.64). Show that there exists P̂ ∈ Pn satisfying

0 = AT
α P̂ + P̂Aα + α−1

p
∑

i=1

α̂2
iA

T
i P̂Ai +R, (11.227)

and P̂ ≤ P .

Problem 11.18. Show that if
∥

∥

∥

∥

∥

(A⊕A)−1

(

αIn2 + α−1
p
∑

i=1

α2
iAi ⊗Ai

)∥

∥

∥

∥

∥

< 1, (11.228)

where ‖ · ‖ denotes an arbitrary submultiplicative norm on Rn2

, then for all
R ∈ Pn there exists P ∈ Pn satisfying (11.64).

Problem 11.19. Let κ, β > 0 satisfy ‖eAt‖ ≤ κe−βt, t ≥ 0, where
A is Hurwitz and ‖ · ‖ denotes an arbitrary submultiplicative norm that is
monotonic on Nn. Show that if R ∈ Pn and 4α‖B0B

T
0 ‖ ‖α−1CT

0 NC0 +R‖ <
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ρ2, where ρ
△
= 2β/κ, then there exists P ∈ Pn satisfying (11.68).

Problem 11.20. Consider the linear uncertain system (11.50) where
∆A ∈ ∆A and ∆A is given by

∆A
△
= {∆A ∈ Rn×n : ∆A = B0FC0, F ∈ ∆bs}, (11.229)

where ∆bs denotes the set of block-diagonal matrices with possibly repeated
blocks defined by

∆bs
△
= {F ∈ Rs×s : F = block−diag[Il1 ⊗ F1, Il2 ⊗ F2, . . . , Ilp ⊗ Fp],

Fi ∈ Rsi×si , i = 1, . . . , p}, (11.230)

and the dimension si of each block and the number of repetitions li of each
block are given such that

∑p
i=1 lisi = s. Furthermore, define the set of

constant scaling matrices D by

D △
= {D ∈ Rs×s : D > 0, DF = FD, F ∈ ∆bs}. (11.231)

Show that if there exists P ∈ Pn satisfying

0 = ATP + PA+ γ−2PB0D
−2BT

0 P + CT
0 D

2C0 +R, (11.232)

where γ > 0 and R > 0, then A + ∆A is asymptotically stable for all
∆A ∈ ∆γ

△
= {F ∈ ∆bs : σmax(F ) ≤ γ−1}. Furthermore, show that there

exists P ∈ Pn satisfying (11.232) if and only if |||DG(s)D−1|||∞ < γ, where
G(s) = C0(sI −A)−1B0.

Problem 11.21. Consider the linear uncertain system (11.50) and
(11.51) with n = 2,

A =

[

−ν ω
−ω −ν

]

, ν > 0, ω ≥ 0, (11.233)

V = E[x0x
T
0 ] = I2, R = I2, and ∆A = {∆A : ∆A = δ1A1, |δ1| ≤ α1},

where

A1 =

[

0 1
−1 0

]

. (11.234)

Show that (11.53) with Ω(P ) given by (11.213) or (11.219) is nonconservative
with respect to robust stability and performance. Alternatively, show that
(11.213) and (11.217) give extremely conservative predictions, especially
when ν is small.

Problem 11.22. Consider the linear dynamical system with state
delay given by

ẋ(t) = Ax(t) +Adx(t− τd), x(θ) = φ(θ), −τd ≤ θ ≤ 0, (11.235)

where x(t) ∈ Rn, A,Ad ∈ Rn×n, and φ : [−τd, 0] → Rn is a continuous
vector-valued function specifying the initial state of the system. Show that
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the zero solution xt ≡ 0 to (11.235) is globally asymptotically stable (in the
sense of Problem 3.65) for all τd ≥ 0 if |||DG(s)D−1|||∞ < 1, where D is a
positive-definite matrix and

G(s) ∼
[

A Ad

I 0

]

.

Furthermore, show that this problem can be represented as a feedback prob-
lem involving an uncertain diagonal operator ∆(s) satisfying |||∆(s)|||∞ ≤ 1.

Problem 11.23. Let D ⊆ Rn, f : D → Rn such that f(0) = 0, G :
D → Rn×m, and R1 ∈ Pn. Consider the nonlinear uncertain system

ẋ(t) = f(x(t)) +G(x(t))δ(x(t)) +G(x(t))u(t), x(0) = x0, t ≥ 0,
(11.236)

with performance functional

Jδ(x0, u(·)) △
=

∫ ∞

0
xT(t)R1x(t)dt, (11.237)

where u(·) is an admissible control and δ(·) ∈ ∆δ
△
= {δ : D → Rm : δ(0) =

0, δT(x)R2δ(x) ≤ δ2max(x), x ∈ D}, where R2 ∈ Pm and δmax : D → R such
that δ(0) = 0 are given. Assume that there exist a continuously differentiable
function V : D → R and a control law φ(·) such that (11.96)–(11.98) hold
and

xTR1x+ V ′(x)(f(x) +G(x)φ(x)) + δ2max(x) + φT(x)R2φ(x) = 0, x ∈ D.
(11.238)

Show that there exists a neighborhood of the origin D0 ⊆ D such that if
x0 ∈ D0, then the closed-loop system of (11.236) with the feedback control

law φ(x)
△
= −1

2R
−1
2 GT(x)V ′T(x) is locally asymptotically stable for all δ(·) ∈

∆δ, and

sup
δ(·)∈∆δ

Jδ(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = V (x0), (11.239)

where

J (x0, u(·)) △
=

∫ ∞

0
[xT(t)R1x(t) + uT(t)R2u(t) + δ2max(x(t))]dt, (11.240)

and where u(·) is admissible and x(t), t ≥ 0 solves (11.236) with δ(x) ≡ 0.
Furthermore, if x0 ∈ D0, show that

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)), (11.241)

where S(x0) is the set of regulation controllers for the nominal system

ẋ(t) = f(x(t)) +G(x(t))u(t). (11.242)
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Problem 11.24. Let D ⊆ Rn, f0 : D → Rn such that f0(0) = 0,
Gδ : D → Rn×mδ , G : D → Rn×m, R1 ∈ Pn, and R2 ∈ Pm. Consider the
nonlinear uncertain system

ẋ(t) = f0(x(t)) +Gδ(x(t))δ(x(t)) +G(x(t))u(t), x(0) = x0, t ≥ 0,
(11.243)

with performance functional

Jδ(x0, u(·)) △
=

∫ ∞

0
[xT(t)R1x(t) + uT(t)R2u(t)]dt, (11.244)

where u(·) is admissible control and δ(·) ∈ ∆γ
△
= {δ : D → Rmδ : δ(0) =

0, δT(x)R2δ(x) ≤ δ2max(x), ‖R1/2
2 G†(x)Gδ(x)δ(x)‖2

2 ≤ γ2
max(x), x ∈ D},

where δmax, γmax : D → R such that δmax(0) = 0, γmax(0) = 0, are given.
Assume that there exist a continuously differentiable function V : D → R

and control laws φ1(·), φ2(·) such that φ1(0) = 0, φ2(0) = 0, (11.96) and
(11.97) hold, and

0 = xTR1x+ V ′(x)[f0(x) +G(x)φ1(x) + (In −G(x)G†(x))Gδ(x)φ2(x)]

+δ2max(x) + γ2
max(x) + φT

1 R2φ1(x) + φT
2 R̂2φ2(x), x ∈ D, (11.245)

where R̂2 = ρR2, ρ > 0, 2ρ2‖φ2(x)‖2
2 ≤ λ2

min(R1)‖x‖2
2, x ∈ D, and

λmin(R1) < ρ. Show that there exits a neighborhood of the origin D0 ⊆ D
such that if x0 ∈ D0, then the closed-loop system (11.243) with feedback
control law u = φ1(x) = −1

2R
−1
2 GT(x)V ′T(x) is locally asymptotically stable

for all δ(·) ∈ ∆δ, and

sup
δ(·)∈∆δ

Jδ(x0, φ1(x(·)) ≤ J (x0, φ1(·), φ2(·)) = V (x0), (11.246)

where

J (x0, u1(·), u2(·)) △
=

∫ ∞

0
[xT(t)R1x(t) + uT

1 R2u1(t) + uT
2 (t)R̂2u2(t)

+ρ2δ2max(x(t)) + γmax(x(t))]dt, (11.247)

and where u1(·), u2(·) are admissible and x(t), t ≥ 0, solves

ẋ(t) = f0(x(t)) +G(x(t))u1(t) + [In −G(x(t))G†(x(t))]Gδ(x(t))u2(t),

x(0) = x0, t ≥ 0. (11.248)

(Hint: Decompose the uncertainty Gδ(x)δ(x) into the sum of a matched
component and an unmatched component by projecting Gδ(x)δ(x) onto the
range of G(x), that is,

Gδ(x)δ(x) = G(x)G†(x)Gδ(x)δ(x)− (In −G(x)G†(x))Gδ(x)δ(x).) (11.249)

Problem 11.25. Show that the robust stability and performance
conditions given in Problem 11.24 still hold if G(x(t))u(t) in (11.243) is
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replaced by G(x(t))(u(t)+Jδ (x(t))u(t)), where Jδ : D → Rm×m is uncertain
and satisfies Jδ(x) ≥ 0, x ∈ D.

Problem 11.26. Consider the nonlinear uncertain dynamical system
(11.125) and let (∆f,∆G) ∈ ∆f × ∆G, where ∆f × ∆G is given by

∆f × ∆G
△
= {(∆f,∆G) : ∆f(x) = Gδ(x)∆(x)hδ(x),

∆G(x) = Gδ(x)∆(x)Jδ(x), x ∈ Rn, ∆(·) ∈ ∆},
where ∆ satisfies

∆ = {∆ : Rn → Rmδ×pδ : ∆T(x)∆(x) ≤MT(x)M(x), x ∈ Rn}, (11.250)

and where Gδ : Rn → Rn×mδ , hδ : Rn → Rpδ , and Jδ : Rn → Rpδ×m are
fixed functions denoting the structure of the uncertainty, ∆ : Rn → Rmδ×pδ

is an uncertain matrix function, and M : Rn → Rmδ×pδ is a given matrix
function. Show that condition (11.162) is satisfied with

Γxx(x) = 1
4V

′(x)Gδ(x)g
T
δ (x)V ′T(x) + hT

δ (x)MT(x)M(x)hδ(x),

(11.251)

Γxu(x) = 2hT
δ (x)MT(x)M(x)Jδ(x), (11.252)

Γuu(x) = JT
δ (x)MT(x)M(x)Jδ(x), (11.253)

and the robust stabilizing control law (11.146) is given by

φ(x) = −1
2R

−1
2a (x)[L2(x) + V ′(x)G0(x) + 2hT

δ (x)MT(x)M(x)Jδ(x)]
T,

(11.254)

where R2a(x)
△
= R2(x) + JT

δ (x)MT(x)M(x)Jδ(x).

Problem 11.27. Consider the nonlinear uncertain disturbed system

ẋ(t) = Ax(t) + ∆f(x(t)) +Dw(t), x(0) = x0, t ≥ 0, (11.255)

z(t) = Ex(t), (11.256)

where x ∈ Rn, z ∈ Rp, w(·) ∈ L2, ∆f(·) ∈ ∆f , where

∆f
△
= {∆f : Rn → Rn : ∆f(x) = B0δ(C0x), x ∈ Rn, δ(·) ∈ ∆}, (11.257)

and

∆
△
= {δ : Rl0 → Rm0 : δ(0) = 0, ‖δ(y0)‖2 ≤ γ−1‖y0‖2, y0 = C0x ∈ Rl0},

(11.258)
where B0 ∈ Rn×m0 and C0 ∈ Rl0×n are fixed matrices denoting the structure
of the uncertainty, δ(·) is an uncertain function, and γ > 0. Show that if
there exist n × n matrices P > 0 and R > 0, and scalars γ > 0 and γd > 0
such that

0 = ATP + PA+ γ−2
d PDDTP + γ−2PB0B

T
0 P + CT

0 C0 +R, (11.259)
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then the zero solution x(t) ≡ 0 of the undisturbed (w(t) ≡ 0) system (11.255)
is globally asymptotically stable for all ∆f (·) ∈ ∆f . Furthermore, show
that the solution x(t), t ≥ 0, of the disturbed system (11.255) satisfies the
disturbance rejection constraint
∫ T

0
zT(s)z(s)ds < γ2

d

∫ T

0
wT(s)w(s)ds+ xT

0 Px0, w(·) ∈ L2, T ≥ 0.

(11.260)

Problem 11.28. Consider the nonlinear uncertain cascade system

ẋ(t) = f0(x(t)) + ∆f(x) +G0(x(t))x̂(t),

x(0) = x0, f0 + ∆f(·) ∈ F , t ≥ 0, (11.261)
˙̂x(t) = u(t), x̂(0) = x̂0, (11.262)

where F satisfies (11.23) and ∆ in (11.23) satisfies (11.24) with performance
functional

J(x0, x̂0, u(·)) △
=

∫ ∞

0
L(x(t), x̂(t), u(t))dt, (11.263)

where u(·) is admissible and (x(t), x̂(t)), t ≥ 0, solves (11.261) and (11.262)
and where

L(x, x̂, u)
△
= L1(x, x̂) + L2(x, x̂)u+ uTR2(x, x̂)u, (11.264)

where L1 : Rn ×Rm → R, L2 : Rn ×Rm → R1×m, and R2 : Rn ×Rm → Pm.
Assume there exist continuously differentiable functions α : Rn → Rm and
Vsub : Rn → R such that

α(0) = 0, (11.265)

Vsub(0) = 0, (11.266)

Vsub(x) > 0, x ∈ Rn, x 6= 0, (11.267)

V ′
sub(x)[f0(x) +G0(x)α(x)] + 1

4V
′
sub(x)Gδ(x)G

T
δ (x)V ′T

sub(x)

+mT(hδ(x))m(hδ(x)) < 0, x ∈ Rn, x 6= 0. (11.268)

Furthermore, let L2 : Rn × Rm → R1×m and P̂ ∈ Rm×m, P̂ > 0, be such
that L2(0, 0) = 0 and

(x̂− α(x))TP̂

[

P̂−1GT
0 (x)V ′T

sub(x) − 2α′(x)(f0(x) +G0(x)x̂)

−R−1
2 (x, x̂)[2P̂ (x̂− α(x)) + LT

2 (x, x̂)] − α′(x)Gδ(x)G
T
δ (x)V ′T

sub(x)

+α′(x)Gδ(x)G
T
δ (x)α′T(x)P̂ (x̂− α(x))

]

< 0, (x, x̂) ∈ Rn × Rm, x̂ 6= α(x).

(11.269)

Show that the zero solution (x(t), x̂(t)) ≡ (0, 0) of the nonlinear uncertain
cascade system (11.261) and (11.262) is globally asymptotically stable for
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all δ(·) ∈ ∆, where ∆ is given by (11.24), with feedback control law

φ(x, x̂) = −R−1
2 (x, x̂)[12L

T
2 (x, x̂) + P̂ (x̂− α(x))]. (11.270)

Furthermore, show that the performance functional (11.263) satisfies

sup
δ(·)∈∆

J(x0, x̂0, φ(x, x̂))≤J (x0, x̂0, φ(x, x̂))=V (x0, x̂0), (x0, x̂0) ∈ Rn × Rm,

where

J (x0, x̂0, u(·)) △
=

∫ ∞

0
[L1(x, x̂) + L2(x, x̂)u+ uTR2(x, x̂)u

+mT(hδ(x))m(hδ(x))

+1
4 [V ′

sub(x) − 2(x̂− α(x))TP̂α′(x)]Gδ(x)

·GT
δ (x)[V ′

sub(x) − 2(x̂− α(x))TP̂α′(x)]T]dt,

(11.271)

where u(·) is admissible, and (x(t), x̂(t)), t ≥ 0, solves (11.261) and (11.262)
with δ(hδ(x)) ≡ 0. In addition, show that the performance functional
(11.271), with

L1(x, x̂) = φT(x, x̂)R2(x, x̂)φ(x, x̂) − [V ′
sub(x) − 2(x̂− α(x))P̂ α′(x)]

·((f0(x) +G0(x)x̂)) − 1
4 [V ′

sub(x) − 2(x̂− α(x))TP̂α′(x)]Gδ(x)

·GT
δ (x)[V ′

sub(x) − 2(x̂− α(x))TP̂α′(x)]T −mT(hδ(x))m(hδ(x)),

(11.272)

is minimized in the sense that

J (x0, x̂0, φ(x(·))) = min
u(·)∈S(x0,x̂0)

J (x0, x̂0, u(·)), (11.273)

where S(x0, x̂0) is the set of regulation controllers for the nonlinear system
(11.261) and (11.262) with ∆f(x) ≡ 0 by

S(x0, x̂0)
△
= {u(·) : u(·) is admissible and (x(·), x̂(·)) given by (11.261) and

(11.262) satisfies (x(t), x̂(t)) → 0 as t→ ∞ with ∆f(x) ≡ 0}.
Finally, show that a particular choice of L2(x, x̂) satisfying (11.269) is given
by

L2(x, x̂) =

{

V ′
sub(x)G0(x)P̂

−1 − 2[f0(x) +G0(x)x̂)]Tα′T(x)

−V ′
sub(x)Gδ(x)G

T
δ (x)α′T(x)

+(x̂− α(x))TP̂α′(x)Gδ(x)G
T
δ (x)α′T(x)

}

R2(x, x̂), (11.274)

yielding the feedback control law

φ(x, x̂) = −[R−1
2 (x, x̂) + 1

2α
′(x)Gδ(x)g

T
δ (x)α′T(x)]P̂ (x̂− α(x))
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+α′(x)[f0(x) +G0(x)x̂] + 1
2 [α′(x)Gδ(x)g

T
δ (x)

−P̂−1GT
0 (x)]V ′T

sub(x). (11.275)

Problem 11.29. Consider the nonlinear uncertain cascade system
(11.261) and (11.262) where F satisfies (11.23) and ∆ in (11.23) satisfies
(11.27), with performance functional (11.263). Assume there exist contin-
uously differentiable functions α : Rn → Rm and Vsub : Rn → R such that
(11.265)–(11.267) are satisfied and

V ′
sub(x)[f0(x) +G0(x)α(x)] + V ′

sub(x)Gδ(x)m1(hδ(x))

+1
4 [m(hδ(x)) +GT

δ (x)V ′T
sub(x)]T[m(hδ(x)) +GT

δ (x)V ′T
sub(x)] < 0, x 6= 0.

(11.276)

Furthermore, let L2 : Rn × Rm → R1×m and P̂ ∈ Rm×m, P̂ > 0, be such
that L2(0, 0) = 0 and

(x̂− α(x))TP̂

[

P̂−1GT
0 (x)V ′T

sub(x) − 2α′(x)(f0(x)+G0(x)x̂)

−R−1
2 (x, x̂)[2P̂ (x̂− α(x))] + LT

2 (x, x̂)

−α′(x)Gδ(x)[m1(hδ(x)) +m2(hδ(x)) +GT
δ (x)V ′T

sub(x)]

+α′(x)Gδ(x)G
T
δ (x)α′T(x)P̂ (x̂− α(x))

]

< 0, (x, x̂) ∈ Rn × Rm, x̂ 6= α(x).

(11.277)

Show that the zero solution (x(t), x̂(t)) ≡ (0, 0) of the nonlinear uncertain
cascade system (11.261) and (11.262) is globally asymptotically stable for
all δ(·) ∈ ∆, where ∆ is given by (11.27), with feedback control law

φ(x, x̂) = −R−1
2 (x, x̂)[12L

T
2 (x, x̂) + P̂ (x̂− α(x))]. (11.278)

Furthermore, show that the performance functional (11.263) satisfies

sup
δ(·)∈∆

J(x0, x̂0, φ(x, x̂)) ≤ J (x0, x̂0φ(x, x̂))

= V (x0, x̂0), (x0, x̂0) ∈ Rn × Rm, (11.279)

where

J (x0, x̂0, u(·)) △
=

∫ ∞

0

[

L1(x, x̂) + L2(x, x̂)u+ uTR2(x, x̂)u

+

{

[V ′
sub(x) − 2(x̂− α(x))TP̂α′(x)]Gδ(x)m1(hδ(x))

+1
4 [m(hδ(x)) +GT

δ (x){V ′T
sub(x) − 2α′T(x)P (x̂− α(x))}]T

·[m(hδ(x)) +GT
δ (x){V ′T

sub(x) − 2α′T(x)P (x̂− α(x))}]
}]

dt, (11.280)
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where u(·) is admissible, and (x(t), x̂(t)), t ≥ 0, solves (11.261) and (11.262)
with δ(hδ(x)) ≡ 0. In addition, show that the performance functional
(11.280), with

L1(x, x̂) = φT(x, x̂)R2(x, x̂)φ(x, x̂)

−[V ′
sub(x) − 2(x̂− α(x))P̂ α′(x)](f0(x) +G0(x)x̂)

−1
4 [m(hδ(x)) +GT

δ (x){V ′T
sub(x) − 2α′T(x)P (x̂− α(x))}]T

·[m(hδ(x)) +GT
δ (x){V ′T

sub(x) − 2α′T(x)P (x̂ − α(x))}]
−[V ′

sub(x) − 2(x̂− α(x))TP̂α′(x)]Gδ(x)m1(hδ(x)), (11.281)

is minimized in the sense that

J (x0, x̂0, φ(x(·))) = min
u(·)∈S(x0,x̂0)

J (x0, x̂0, u(·)). (11.282)

Problem 11.30. Consider the nonlinear uncertain block cascade sys-
tem

ẋ(t) = f0(x(t)) + ∆f(x(t)) +G(x(t))y(t), x(0) = x0, t ≥ 0, (11.283)

˙̂x(t) = f̂0(x̂(t)) + ∆f̂(x̂(t)) + Ĝ(x̂(t))u(t), x̂(0) = x̂0, (11.284)

y(t) = h(x̂(t)), (11.285)

where (11.128) has been augmented by a nonlinear input subsystem with

∆G(x) ≡ 0, x̂ ∈ Rq, f̂ : Rq → Rq satisfies f̂0(0) = 0, h : Rq → Rm satisfies

h(0) = 0, Ĝ : Rq → Rq×m, and f̂0(·)+∆f̂(·) ∈ F̂ , where F̂ is assumed to have
the same form as F defined by (11.23). Assume that the input subsystem

(11.284) and (11.285) is feedback strictly passive for all f̂0(·) + ∆f̂(·) ∈ F̂
such that there exist a positive-definite storage function Vs : Rq → R and
functions Γs : Rq → R and k : Rq → Rm such that

0 ≥ V ′
s (x̂)∆f̂(x̂) − Γs(x̂), f̂0(·) + ∆f̂(·) ∈ F̂ , (11.286)

0 > V ′
s (x̂)f̂0(x̂) + V ′

s (x̂)Ĝ(x̂)k(x̂) + Γs(x̂), x̂ ∈ Rn, x̂ 6= 0, (11.287)

0 = 1
2Ĝ

T(x̂)V ′T
s (x̂) − h(x̂). (11.288)

Also, assume that the subsystem (11.283) has a globally stable equilibrium
at x = 0 with y = 0 for all ∆f(·) ∈ ∆ and Lyapunov function Vsub(x),
x ∈ Rn, so that

V ′
sub(x)∆f(x) ≤ Γsub(x), ∆f(·) ∈ ∆, (11.289)

V ′
sub(x)f0(x) + Γsub(x) < 0, x 6= 0, (11.290)

where Γsub : Rn → R such that Γsub(0) = 0. Furthermore, assume there
exists a function L2 : Rn × Rq → R1×m such that

L2(0, 0) = 0, (11.291)

hT(x̂)

{

GT(x̂)V ′T
sub(x) − 1

2R
−1
2 (x, x̂)LT

2 (x, x̂) − k(x̂)

}

≤ 0. (11.292)
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Show that the zero solution (x(t), x̂(t)) ≡ (0, 0) of the nonlinear uncertain
block cascade system (11.283)–(11.285) is globally asymptotically stable for

all (f0 + ∆f, f̂0 + ∆f̂) ∈ F × F̂ with the feedback control law

φ(x, x̂) = −1
2R

−1
2 (x, x̂)

[

LT
2 (x, x̂) + h(x̂)

]

. (11.293)

Furthermore, show that the performance functional (11.263) satisfies

J(x0, x̂0, φ(x(·), x̂(·))) ≤ J (x0, x̂0, φ(x(·), x̂(·))) = Vsub(x0) + V̂ (x̂0),
(11.294)

where

J (x0, x̂0, u)
△
=

∫ ∞

0

[

L1(x, x̂)+L2(x, x̂)u+uTR2(x, x̂)u+Γsub(x)+Γs(x̂)

]

dt,

(11.295)
where u(·) is admissible and (x(t), x̂(t)), t ≥ 0, solves (11.283) and (11.284)

with (∆f(x),∆f̂(x̂) ≡ (0, 0). In addition, show that the performance
functional (11.295) with

L1(x, x̂) = φT(x, x̂)R2(x, x̂)φ(x, x̂) − V ′
sub(x)[f0(x) +G(x)h(x̂)]

−V ′
s (x̂)f̂0(x̂) − Γsub(x) − Γs(x̂), (11.296)

is minimized in the sense that

J (x0, x̂0, φ(x(·), x̂(·))) = min
u(·)∈S(x0,x̂0)

J (x0, x̂0, u(·)). (11.297)

Problem 11.31. Consider the controlled nonlinear dynamical system

ẋ(t) = F (x(t), σ(u(t))), x(0) = x0, t ≥ 0, (11.298)

where u(·) ∈ U is an admissible input such that u(t) ∈ U , t ≥ 0, where the
control constraint set U is given such that 0 ∈ U and σ(·) ∈ M ⊂ {σ : U →
Rm : σ(0) = 0} denotes an input nonlinearity. Furthermore, consider the
performance functional

J(x0, u(·)) △
=

∫ ∞

0
L(x(t), u(t))dt, (11.299)

where L : D×U → R. Assume there exist functions V : D → R, Γ : D×U →
R, and control law φ : D → U , where V (·) is a continuously differentiable
function, such that

V (0) = 0, (11.300)

V (x) > 0, x ∈ D, x 6= 0, (11.301)

φ(0) = 0, (11.302)

V ′(x)F (x, σ(φ(x))) ≤ V ′(x)F (x, σ0(φ(x))) + Γ(x, φ(x)), x ∈ D, σ(·) ∈ M,

(11.303)

V ′(x)F (x, σ0(φ(x))) + Γ(x, φ(x)) < 0, x ∈ D, x 6= 0, (11.304)
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H(x, φ(x)) = 0, x ∈ D, (11.305)

H(x, u) ≥ 0, x ∈ D, u ∈ U, (11.306)

where σ0(·) ∈ M is a given nominal input nonlinearity and

H(x, u) , L(x, u) + V ′(x)F (x, σ0(u)) + Γ(x, u). (11.307)

Show that, with the feedback control u(·) = φ(x(·)), there exists a
neighborhood D0 ⊆ D of the origin such that if x0 ∈ D0, the zero solution
x(t) ≡ 0 of the closed-loop system

ẋ(t) = F (x(t), σ(φ(x(t)))), x(0) = x0, t ≥ 0, (11.308)

is locally asymptotically stable for all σ(.) ∈ M. Furthermore, show that

sup
σ(·)∈M

J(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = V (x0), (11.309)

where

J (x0, u(·)) △
=

∫ ∞

0
[L(x(t), u(t)) + Γ(x(t), u(t))]dt, (11.310)

and where u(·) is admissible and x(t), t ≥ 0, solves (11.298) with σ(u(t)) =
σ0(u(t)). In addition, if x0 ∈ D0 then show that the feedback control u(·) =
φ(x(·)) minimizes J (x0, u(·)) in the sense that

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)), (11.311)

where

S(x0)
△
= {u(·) : u(·) is admissible and x(·) given by (11.298)

satisfies x(t) → 0 as t→ ∞ with σ(·) = σ0(·)}.
Finally, if D = Rn, U = Rm, and

V (x) → ∞ as ‖x‖ → ∞,

show that the solution x(t) = 0, t ≥ 0, of the closed-loop system (11.308) is
globally asymptotically stable.

Problem 11.32. Consider the controlled nonlinear dynamical system

ẋ(t) = f(x(t)) +G(x(t))σ(u(t)), x(0) = x0, t ≥ 0, (11.312)

where f : Rn → Rn satisfies f(0) = 0, G : Rn → Rn×m, D = Rn, and

σ(·) ∈ M △
= {σ : Rm → Rm : σ(0) = 0,

[σ(u) −M1u]
T[σ(u) −M2u] ≤ 0, u ∈ Rm}, (11.313)

where M1,M2 ∈ Rm×m are given diagonal matrices such that M
△
= M2−M1

is positive definite, and u(t) ∈ Rm for all t ≥ 0. Furthermore, consider the
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performance functional

J(x0, u(·)) =

∫ ∞

0
[L1(x(t)) +L2(x(t))u(t) + uT(t)R2(x(t))u(t)]dt, (11.314)

where L1 : Rn → R, L2 : Rn → R1×m, and R2 : Rn → Pm. Assume there
exist a continuously differentiable function V : Rn → R and a function
L2 : Rn → R1×m such that

V (0) = 0, (11.315)

L2(0) = 0, (11.316)

V (x) > 0, x ∈ Rn, x 6= 0, (11.317)

V ′(x)[f(x) − 1
2G(x)M1R

−1
2a (x)Va(x)]

+1
4 [−1

2MR−1
2a (x)Va(x) +GT(x)V ′T(x)]T

·[−1
2MR−1

2a (x)Va(x) +GT(x)V ′T(x)] < 0, x ∈ Rn, x 6= 0, (11.318)

and
V (x) → ∞ as ‖x‖ → ∞, (11.319)

where R2a(x)
△
= R2(x) + 1

4M
TM and Va(x)

△
= [L2(x) + 1

2V
′(x)G(x)(M1 +

M2)]
T. Show that, with the feedback control law

φ(x) = −1
2R

−1
2a (x)Va(x), (11.320)

the zero solution x(t) ≡ 0 of the nonlinear system (11.312) is globally
asymptotically stable for all σ(·) ∈ M. Furthermore, show that the
performance functional (11.314) satisfies

sup
σ(·)∈M

J(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = V (x0), (11.321)

where

J (x0, u(·)) △
=

∫ ∞

0
[L1(x) + L2(x)u+ uTR2(x)u+ 1

4 [Mu+GT(x)V ′T(x)]T

·[Mu+GT(x)V ′T(x)]dt, (11.322)

where u(·) is admissible, and x(t), t ≥ 0, solves (11.312) with σ(u) = M1u.
In addition, show that the performance functional (11.322), with

L1(x) = φT(x)R2a(x)φ(x) − V ′(x)f(x) − 1
4V

′(x)G(x)GT(x)V ′T(x),

(11.323)

is minimized in the sense that

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)), (11.324)

where

S(x0)
△
= {u(·) : u(·) is admissible and x(·) given by (11.312)
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satisfies x(t) → 0 as t→ ∞ with σ(u) = M1u}.

Problem 11.33. Consider the controlled dynamical system

ẋ(t) = Ax(t) +Bσ(u(t)), x(0) = x0, t ≥ 0, (11.325)

where A ∈ Rn×n, B ∈ Rn×m, and σ(·) ∈ M, where M is given by (11.313),
and u(t) ∈ Rm for all t ≥ 0, with performance functional

J(x0, u(·)) =

∫ ∞

0
[xT(t)R1x(t) + 2xT(t)R12u(t) + uT(t)R2u(t)]dt, (11.326)

where R1 ∈ Rn×n, R12 ∈ Rn×m, and R2 ∈ Rm×m such that R1 > 0, R2 > 0,
and R1 − R12R

−1
2 RT

12 ≥ 0. Assume there exists an n × n positive-definite
matrix P satisfying

0 = ATP + PA+R1 + PBBTP − PT
a R

−1
2a Pa, (11.327)

and let K be given by
K = −R−1

2a Pa, (11.328)

where Pa
△
= 1

2 (M1+M2)B
TP+RT

12 and R2a
△
= R2+

1
4M

TM . Show that, with
u = Kx, the zero solution x(t) ≡ 0 to (11.325) is globally asymptotically
stable for all σ(·) ∈ M. If, in addition, σ(·) ∈ Mb, where

Mb
△
= {σ : Rm → Rm : M1i

u2
i ≤ σi(u)ui ≤M2i

u2
i ,

ui ≤ ui ≤ ui, i = 1, ...,m}, (11.329)

where ui < 0 and ui > 0, i = 1, . . . ,m, are given, then show that the zero
solution x(t) ≡ 0 to (11.325) with u = Kx is locally asymptotically stable,
and

DA
△
= {x ∈ B : xTPx ≤ VΓ}, (11.330)

where B △
=
⋂m

i=1 Bi, Bi
△
= {x ∈ Rn : ui ≤ φi(x) ≤ ui} and

VΓ = min

{

min
i=1,...,m

u2
i

rowi(K)P−1rowT
i (K)

, min
i=1,...,m

u2
i

rowi(K)P−1rowT
i (K)

}

,

(11.331)
is a subset of the domain of attraction for (11.325). Furthermore, show that
the performance functional (11.326) satisfies

sup
σ(·)∈M

J(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = V (x0), (11.332)

where

J (x0, u(·)) △
=

∫ ∞

0
[xTR1x+ 2xTR12u+ uTR2u+ (1

2Mu+BTPx)T

·(1
2Mu+BTPx)]dt, (11.333)

where u(·) is admissible, and x(t), t ≥ 0, solves (11.325) with σ(u) = M1u.
In addition, show that the performance functional (11.333) is minimized in
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the sense that
J (x0, φ(x(·))) = min

u(·)∈S(x0)
J (x0, u(·)), (11.334)

where

S(x0)
△
= {u(·) : u(·) is admissible and x(·) given by (11.325)

satisfies x(t) → 0 as t→ ∞ with σ(u) = M1u}.

11.11 Notes and References

Quadratic Lyapunov functions form the basis for linear-quadratic control
theory and have provided one of the principal tools for robust analysis and
synthesis [25–27,29,41,59,83,99,115,131,194,195,200,233,237,243,266,267,
300,312,313,337,347,352,356,401,416,430,442,447,471,472,480]. Among the
earliest Lyapunov function frameworks for linear robust control were those
developed by Michael and Merriam [313], Chang and Peng [83], Horisberger
and Belanger [200], Vinkler and Wood [447], and Leitmann [266, 267]. In
contrast to the above cited literature, the work of Chang and Peng [83]
additionally addressed bounds on worst-case quadratic performance within
full-state feedback control design. Extensions of the guaranteed cost control
approach of Chang and Peng to full- and reduced-order dynamic control were
addressed by Bernstein [42], Bernstein and Haddad [48,51], and Haddad and
Bernstein [146]. A systematic treatment of quadratic Lyapunov bounds is
given by Bernstein and Haddad [50]. More recent results involving shifted
quadratic guaranteed cost bounds for robust stability and performance are
developed by Haddad, Chellaboina, and Bernstein [161], and Bernstein and
Osburn [53].

Connections between absolute stability theory and robust control were
first noted by Popov [363] where the notion of hyperstability was used
to describe nonlinear robustness implicit in the inequalities of Lyapunov
stability theory. The input-output functional analysis approach to absolute
stability theory was identified by Zames [476] as a way of capturing
system uncertainty. A more modern treatment of the connections of
absolute stability and stability robustness was given by Safonov [377] using
topological separation of graphs of feedback operators. More recently,
explicit connections between absolute stability theory and robust stability
and performance were given by Haddad and Bernstein [147, 148, 151]
and Haddad, How, Hall, and Bernstein [172] using fixed and parameter-
dependent Lyapunov functions.

Even though the theory of nonlinear robust control for nonlinear uncer-
tain systems with parametric uncertainty remains relatively undeveloped in
comparison to linear robust control, notable exceptions include the work of
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Spong [412], Basar and Bernhard [31], van der Schaft [438,439,441], Freeman
and Kokotović [128], Haddad, Chellaboina, and Fausz [164], and Haddad,
Chellaboina, Fausz, and Leonessa [166]. The nonlinear-nonquadratic robust
control framework presented in this chapter is adopted from Haddad,
Chellaboina, and Fausz [164] and Haddad, Chellaboina, Fausz, and Leonessa
[166].
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Chapter Twelve

Structured Parametric Uncertainty

and Parameter-Dependent

Lyapunov Functions

12.1 Introduction

The analysis and synthesis of robust feedback controllers entails a fun-
damental distinction between parametric and nonparametric uncertainty.
Parametric uncertainty refers to plant uncertainty that is modeled as
constant real parameters, whereas nonparametric uncertainty refers to
uncertain transfer function gains that may be modeled as complex frequency-
dependent quantities or nonlinear dynamic operators. In the time domain,
nonparametric uncertainty is manifested as uncertain real parameters that
may be time varying.

The distinction between parametric and nonparametric uncertainty
is critical to the achievable performance of feedback control systems. For
example, in the problem of vibration suppression for flexible structures,
if stiffness matrix uncertainty is modeled as nonparametric uncertainty,
then perturbations to the damping matrix will inadvertently be allowed.
Predictions of stability and performance for given feedback gains will con-
sequently be extremely conservative, thus limiting achievable performance
[52]. Alternatively, this problem can be viewed by considering the classical
analysis of Hill’s equation (e.g., the Mathieu equation) which shows that
time-varying parameter variations can destabilize a system even when the
parameter variations are confined to a region in which constant variations
are nondestabilizing. Consequently, a feedback controller designed for time-
varying parameter variations will unnecessarily sacrifice performance when
the uncertain real parameters are actually constant.

To further illuminate the above discussion consider the nonlinear
uncertain system

ẋ(t) = f0(x(t)) + ∆f(x(t)), x(0) = x0, t ≥ 0, (12.1)
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where x(t) ∈ Rn is the system state vector, f0 : Rn → Rn satisfies f0(0) = 0,
and ∆f(·) ∈ ∆ ⊂ {∆f : Rn → Rn : ∆f(0) = 0}, where ∆ is a set of system
perturbations. To determine whether the zero solution x(t) ≡ 0 to (12.1)
remains stable, one can construct functions V : Rn → R and Γ : Rn → R,
where V (·) is continuously differentiable, such that V (0) = 0, V (x) > 0,
x ∈ Rn, x 6= 0, V (x) → ∞ as ‖x‖ → ∞,

V ′(x)∆f(x) ≤ Γ(x), x ∈ Rn, ∆f(·) ∈ ∆, (12.2)

V ′(x)f0(x) + Γ(x) < 0, x ∈ Rn, x 6= 0, (12.3)

L(x) + V ′(x)f0(x) + Γ(x) = 0, x ∈ Rn, (12.4)

where L : Rn → R and satisfies L(x) > 0, x ∈ Rn, x 6= 0. Now, it follows
from Corollary 11.1 that the zero solution x(t) ≡ 0 to (12.1) is globally
asymptotically stable for all ∆f(·) ∈ ∆, and the performance functional

J∆f (x0) =

∫ ∞

0
L(x(t))dt, (12.5)

satisfies the bound sup∆f(·)∈∆ J∆f (x0) ≤ V (x0), x0 ∈ Rn.

As shown in Section 11.3, although the Lyapunov-function-based
framework discussed above applies to problems in which f(x) is perturbed
by an uncertain function ∆f(x), a reinterpretation of these bounds yields
standard nonlinear system theoretic criteria. For example, the bounding
function (11.26) forms the basis for nonlinear nonexpansivity theory while
the bounding function (11.28) forms the basis for nonlinear passivity theory.
Although not immediately evident, a defect of the above framework is
the fact that stability is guaranteed even if ∆f is an explicit function of
t. This observation follows from the fact that the Lyapunov derivative
V̇ (x(t))

△
= V ′(x(t))[f(x(t)) + ∆f(t, x(t))] need only be negative for each

fixed value of time t. Although this feature is desirable if ∆f is time-
varying, as discussed above, it leads to conservatism when ∆f is actually
time invariant. This defect, however, can be remedied as in the linear robust
control literature [145, 147, 151] by utilizing an alternative approach based
upon parameter-dependent Lyapunov functions. The idea behind parameter-
dependent Lyapunov functions is to allow the Lyapunov function to be a
function of the uncertainty ∆f . In the usual case, V (x) is a fixed function,
whereas a parameter-dependent Lyapunov function represents a family of
Lyapunov functions.

To demonstrate parameter-dependent Lyapunov functions for robust
analysis of nonlinear systems in a manner consistent with the above
discussion, consider the Lyapunov function

V (x) = VI(x) + V∆f (x), (12.6)

where V : Rn → R satisfies the above conditions with (12.2)–(12.4) replaced
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by

V ′
I (x)∆f(x) ≤ Γ(x) − V ′

∆f (x)(f0(x) + ∆f(x)), x ∈ Rn, ∆f(·) ∈ ∆,

(12.7)

V ′
I (x)f0(x) + Γ(x) < 0, x ∈ Rn, x 6= 0, (12.8)

0 = L(x) + V ′
I (x)f0(x) + Γ(x), x ∈ Rn, (12.9)

respectively. In contrast to the framework developed in Chapter 11, the
bounding function Γ(·) is not assumed to satisfy (12.2) and (12.3) but rather
(12.7) and (12.8). Note that if V∆f (x) is identically zero, then (12.7) and
(12.8) specialize to (12.2) and (12.3). The idea behind this framework is that
only the fixed part of the Lyapunov function VI(x) is a solution to the steady-
state Hamilton-Jacobi-Bellman equation for the nominal system, while the
overall Lyapunov function V (x) is needed to establish robust stability.

For practical purposes the form of the parameter-dependent Lyapunov
function V (x) given by (12.6) is useful since the presence of ∆f within
(12.6) restricts the allowable time-varying uncertain parameters. That is,

if ∆f(t, x(t)) were permitted, then terms involving ∂∆f(t,x)
∂t would arise and

potentially subvert the negative definiteness of V̇ (x).

In this chapter, we extend the framework developed in Chapter 11
to address the problem of optimal nonlinear-nonquadratic robust feedback
control via parameter-dependent Lyapunov functions. Specifically, we
transform a robust nonlinear control problem into an optimal control
problem. This is accomplished by properly modifying the cost functional
to account for system uncertainty so that the solution of the modified
optimal nonlinear control problem serves as the solution to the robust
control problem. The present framework generalizes the linear guaranteed
cost control approach via parameter-dependent Lyapunov functions for
addressing robust stability and performance [145,147,151,172] to nonlinear
uncertain systems with nonlinear-nonquadratic performance functionals.

The main contribution of this chapter is a methodology for designing
nonlinear controllers that provide both robust stability and robust per-
formance over a prescribed range of nonlinear time-invariant, structured
real parameter system uncertainty. The present framework is an extension
of the parameter-dependent Lyapunov function approach developed in
[145, 147, 151, 162] to nonlinear systems by utilizing a performance bound
to provide robust performance in addition to robust stability. In particular,
the performance bound can be evaluated in closed form as long as the
nonlinear-nonquadratic cost functional considered is related in a specific way
to the parameter-independent part of an underlying parameter-dependent
Lyapunov function that is composed of a fixed (parameter-independent) and
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a variable (parameter-dependent) part that guarantees robust stability over
a prescribed nonlinear time-invariant, real parameter uncertainty set. The
fixed part of the Lyapunov function is shown to be the solution to the steady-
state form of the Hamilton-Jacobi-Bellman equation for the nominal system
and plays a key role in constructing the optimal nonlinear robust control
law.

12.2 Linear Uncertain Systems and the Structured Singular Value

For completeness, in this section we redirect our attention to the problem
of robust stability of linear systems with structured real and complex
parameter uncertainty. A general framework for this problem is provided
by mixed-µ theory [117] as a refinement of the complex structured singular
value. The ability of the structured singular value to account for complex,
real, and mixed uncertainty provides a powerful framework for robust
stability and performance problems in both analysis and synthesis (see
[110,117,344,381,475] and the references therein). Since exact computation
of the structured singular value is, in general, an intractable problem, the
development of practically implementable bounds remains a high priority
in robust control research. Recent work in this area includes upper and
lower bounds for mixed uncertainty [117, 150, 153, 160, 263, 475] as well as
LMI-based computational techniques [66,130].

An alternative approach to developing bounds for the structured
singular value is to specialize absolute stability criteria for sector-bounded
nonlinearities to the case of linear uncertainty. This approach, which
has been explored by Chiang and Safonov [93], Haddad and Bernstein
[145, 147, 148, 150, 151], How and Hall [206], and Haddad et al. [172],
demonstrates the direct applicability of the classical theory of absolute
stability to the modern structured singular value framework. In particular,
the rich theory of multiplier-based absolute stability criteria due to Luré and
Postnikov [5, 265, 331, 364], Popov [362], Yakubovich [469, 470], Zames and
Falb [479], and numerous others can be seen to have a close, fundamental
relationship with recently developed structured singular value bounds.

We start by stating and proving an absolute stability criterion for
multivariable systems with generalized positive real frequency-dependent
stability multipliers. This criterion involves a square nominal transfer
function G(s) in a negative feedback interconnection with a complex, square,
uncertain matrix ∆ as shown in Figure 12.1. Specifically, we consider the
set of block-diagonal matrices with possibly repeated blocks defined by

∆bs
△
= {∆ ∈ Cm×m : ∆ = block−diag[Il1 ⊗ ∆1, Il2 ⊗ ∆2, . . . , Ilr+c

⊗ ∆r+c],

∆i ∈ Rmi×mi , i = 1, . . . , r; ∆i ∈ Cmi×mi , i = r + 1, . . . , r + c},
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∆

G(s)

�

? -h-(+)
(–)

Figure 12.1 Interconnection of transfer function G(s) with uncertain matrix ∆.

(12.10)

where the dimension mi and the number of repetitions li of each block are
given and r + c ≥ 1. Furthermore, define the subset ∆ ⊆ ∆bs consisting of
sector-bounded matrices

∆
△
= {∆ = ∆∗ ∈ ∆bs : M1 ≤ ∆ ≤M2}, (12.11)

where M1,M2 ∈ ∆bs are Hermitian matrices such that M
△
= M2 −M1 is

positive definite. Note that M1 and M2 are elements of ∆.

To prove the multivariable absolute stability criterion for sector-
bounded uncertain matrices, define the sets D and N of Hermitian
frequency-dependent scaling matrix functions by

D △
= {D : R → Cm×m : D(ω) ≥ 0,D(ω)∆ = ∆D(ω), ω ∈ R,∆ ∈ ∆bs},

(12.12)

and

N △
= {N : R → Cm×m : N(ω) = N∗(ω),N(ω)∆ = ∆N(ω),

ω ∈ R,∆ ∈ ∆bs}. (12.13)

Furthermore, define the set Z of complex multiplier matrix functions by

Z △
= {Z : R → Cm×m : Z(ω) = D(ω) − N(ω),D(·) ∈ D,N(·) ∈ N}.

(12.14)
Note that if Z(·) ∈ Z, D(·) ∈ D, and N(·) ∈ N , then Z(ω) = D(ω) −
N(ω) if and only if D(ω) = HeZ(ω) and N(ω) = ShZ(ω). Hence,
since D(ω) ≥ 0, ω ∈ R ∪ ∞, Z(·) ∈ Z consists of arbitrary generalized
positive real functions [9]. For ∆ ∈ ∆bs, D and N are given by

D = {D : R → Cm×m : D = block−diag[D1 ⊗ Im1
,D2 ⊗ Im2

, . . . ,
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Dr+c ⊗ Imr+c
], 0 ≤ Di ∈ Cli×li , i = 1, . . . , r + c}, (12.15)

N = {N : R → Cm×m : N = block−diag[N1 ⊗ Im1
,N2 ⊗ Im2

, . . . ,

Nr+c ⊗ Imr+c
],Ni = N∗

i ∈ Cli×li ,Ni ⊗ ∆i = Ni ⊗ ∆i, i = 1, . . . , r + c}.
(12.16)

Although the condition D(ω)∆ = ∆D(ω) in D arises in complex
and mixed-µ analysis [117], the condition N(ω)∆ = ∆N(ω) in N has no
counterpart in [117]. As shown in [153] this condition generalizes mixed-µ
analysis to address nondiagonal real matrices which are not considered in
standard mixed-µ theory. The condition N(ω)∆ = ∆N(ω) is an extension
of the condition used in [145] for Popov controller synthesis with constant
real matrix uncertainty.

Next, we introduce the following key lemma.

Lemma 12.1. Let Z(·) ∈ Z, let ω ∈ R ∪ ∞, and suppose det(I +
G(ω)M1) 6= 0. If

He [Z(ω)(M−1 + (I +G(ω)M1)
−1G(ω))] > 0, (12.17)

then det (I +G(ω)∆) 6= 0 for all ∆ ∈ ∆.

Proof. For notational convenience we write D for D(ω) and N for
N(ω). Suppose that there exists ∆ ∈ ∆ such that det (I + G(ω)∆) = 0.
Then there exists x ∈ Cm, x 6= 0, such that (I + ∆G(ω))x = 0. Hence,
−x = ∆G(ω)x and −x∗ = x∗G∗(ω)∆.

Since M1 ≤ ∆ ≤M2, it follows that

(∆ −M1)M
−1(∆ −M1) − (∆ −M1) ≤ 0,

or, equivalently,

He[∆M−1∆ − 2∆M−1M1 +M1M
−1M1 − ∆ +M1] ≤ 0. (12.18)

Now, since D(·) ∈ D and M1,M2 ∈ ∆ it follows that DM1 = M1D and
DM−1 = M−1D. Next, forming D(12.18) yields

He[∆DM−1∆ − 2∆DM−1M1 +M1DM
−1M1 − ∆D +DM1] ≤ 0. (12.19)

Furthermore, forming x∗G∗(ω)(12.19)G(ω)x yields

x∗He[DM−1 + 2DM−1M1G(ω) +G∗(ω)M1DM
−1M1G(ω)

+DG(ω) +G∗(ω)DM1G(ω)]x ≤ 0. (12.20)

Next, note that He [Z(ω)(M−1 + (I + G(ω)M1)
−1G(ω))] > 0 is
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equivalent to

He[Z(ω)(M−1 +G(ω)(I +M1G(ω))−1)] > 0.

Now, premultiplying and postmultiplying the above inequality by I +
G∗(ω)M1 and I +M1G(ω) yields

He[(I +G∗(ω)M1)Z(ω)(M−1 +M−1M1G(ω) +G(ω))] > 0. (12.21)

Since N(·) ∈ N and M1,M2 ∈ ∆ it follows that NM1 = M1N and NM2 =
M2N . Thus, NM = MN , and hence, NM−1 = M−1N . Using these
relations (12.21) simplifies to

He[DM−1 + 2DM−1M1G(ω) +G∗(ω)M1DM
−1M1G(ω) +DG(ω)

+G∗(ω)DM1G(ω)] > He[NG(ω)]. (12.22)

Now, forming x∗(12.22)x yields

x∗He[DM−1 + 2DM−1M1G(ω) +G∗(ω)M1DM
−1M1G(ω)

+DG(ω) +G∗(ω)DM1G(ω)]x

> He[x∗NG(ω)x]

= −x∗G∗(ω)He[∆N ]G(ω)x.

Since N(·) ∈ N , it follows that He[∆N ] = 
2(∆N −N∆) = 0, and hence,

x∗He[DM−1 + 2DM−1M1G(ω) +G∗(ω)M1DM
−1M1G(ω)

+DG(ω) +G∗(ω)DM1G(ω)]x > 0,

which contradicts (12.20). Consequently, det (I +G(ω)∆) 6= 0 for all ∆ ∈
∆.

For the next result we assume that the feedback interconnection of
G(s) and ∆ is well posed, that is, det[I +G(∞)∆] 6= 0 for all ∆ ∈ ∆.

Theorem 12.1. Suppose Gs(s)
△
= (I + G(s)M1)

−1G(s) is asymptoti-
cally stable. If there exists Z(·) ∈ Z such that

He [Z(s)(M−1 +Gs(s))] > 0, (12.23)

for all s = ω, ω ∈ R ∪ ∞, then the negative feedback interconnection of
G(s) and ∆ is asymptotically stable for all ∆ ∈ ∆.

Proof. Let ∆ ∈ ∆ and

G(s) ∼
[

A B
C D

]

be minimal so that the negative feedback interconnection of G(s) and ∆ is
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given by

(I +G(s)∆)−1G(s) ∼
[

A−B∆(I +D∆)−1C B −B∆(I +D∆)−1D
(I +D∆)−1C (I +D∆)−1D

]

.

Suppose that, ad absurdum, (I+G(s)∆)−1G(s) is not asymptotically stable
so that A − B∆(I + D∆)−1C is not Hurwitz. Since by assumption Gs(s)
is asymptotically stable it follows that A−BM1(I +DM1)

−1C is Hurwitz.
Hence, there exists ε ∈ (0, 1) such that A − B∆ε(I + D∆ε)

−1C has an

eigenvalue ω̂ on the imaginary axis, where ∆ε
△
= ε∆ + (1 − ε)M1.

Next, note that

det(I +G(ω̂)∆ε)

= det[I + C(ω̂I −A)−1B∆ε +D∆ε]

= det(I +D∆ε)
−1det[I + (I +D∆ε)

−1C(ω̂I −A)−1B∆ε]

= det(I +D∆ε)
−1det(ω̂I −A)−1det[ω̂I − (A−B∆ε(I +D∆ε)

−1C]

= 0.

However, since ∆ε ∈ ∆ and det(I+G(ω̂)M1) 6= 0, Lemma 12.1 with ω = ω̂
implies that det(I +G(ω̂)∆ε) 6= 0, which is a contradiction.

Next, we specialize Theorem 12.1 to the case of norm-bounded
uncertainty in order to draw connections with the structured singular value
for real and complex block-structured uncertainty. Letting M1 = −γ−1I and
M2 = γ−1I, where γ > 0, it follows that M = 2γ−1I so that M−1 = 1

2γI.
The set ∆ thus becomes

∆γ = {∆ ∈ ∆bs : −γ−1I ≤ ∆ ≤ γ−1I}.
Now, ∆ ∈ ∆γ if and only if σmax(∆) ≤ γ−1. Therefore, ∆γ is given by

∆γ = {∆ ∈ ∆bs : σmax(∆) ≤ γ−1}.
Alternatively, one can also consider the case where there may exist ∆ ∈ ∆γ

such that ∆ 6= ∆∗ and still arrive at ∆ ∈ ∆γ for the case where M1 =
−γ−1I and M2 = γ−1I. In this case, it can be shown that Lemma 12.1
also holds (see Problem 12.2). For the remainder of this section we consider
uncertainties ∆ ∈ ∆γ such that ∆ 6= ∆∗.

Now, we consider a special case of the sets ∆bs, D, and N where
∆ ∈ ∆bs. In particular, let ∆bs be the set of block-structured matrices with
possibly repeated real scalar entries, complex scalar entries, and complex
blocks given by

∆bs = {∆ ∈ Cm×m : ∆=block−diag[δr1Il1 , . . . , δ
r
rIlr ; δ

c
r+1Ilr+1

, . . . , δcr+qIlr+q
;

∆C
r+q+1, . . . ,∆

C
r+c], δ

r
i ∈ R, i = 1, . . . , r; δci ∈ C, i = r + 1, . . . , r + q;
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∆C
i ∈ Cm̂i×m̂i , i = r + q + 1, . . . , r + c}. (12.24)

Then D and N are the sets of frequency-dependent positive-definite and
Hermitian matrices, respectively, given by

D = {D : R → Cm×m : D = block−diag[D1, . . . ,Dr+q, dr+q+1Im̂r+q+1
, . . . ,

dr+cIm̂r+c
], 0 < Di ∈ Cli×li , i = 1, . . . , r + q; 0 < di ∈ R,

i = r + q + 1, . . . , r + c}, (12.25)

N = {N : R → Cm×m : N = block−diag[N1, . . . ,Nr, 0r+1, . . . , 0r+c],

Ni = N∗
i ∈ Cli×li , i = 1, . . . , r}. (12.26)

Note that this special case is equivalent to the mixed-µ set considered in
[117]. Furthermore, with D(·) ∈ D and N(·) ∈ N given by (12.25) and
(12.26), respectively, the compatibility conditions required in D and N are
automatically satisfied for ∆bs given by (12.24).

Alternatively, let ∆bs be given by (12.24) with the additional con-
straint that the complex blocks possess internal matrix structure. Then D
and N are given by

D = {D : R → Cm×m : D = block−diag[D1, . . . ,Dr+c], 0 < Di ∈ Cli×li ,

i = 1 . . . r + c;Di∆
C
i = ∆C

i Di, i = r + q + 1, . . . , r + c},
N = {N : R → Cm×m : N = block−diag[N1, . . . ,Nr, 0r+1, . . . , 0r+q,

Nr+q+1, . . . ,Nr+c], Ni = N∗
i ∈ Cli×li , i = 1, . . . , r + c;

Ni∆
C
i = ∆C

i
∗
Ni, i = r + q + 1, . . . , r + c}.

For example, if ∆C
i = ∆C

i
∗ ∈ ∆bs then we can choose Di = diI, di ∈ R and

Ni = niI, ni ∈ R, i = r + q + 1, . . . , r + c.

Next, we present a key lemma which is important in connecting the
absolute stability criterion given in Theorem 12.1 to the mixed-µ upper
bounds.

Proposition 12.1. Let Z(·) ∈ Z,D(·) ∈ D,N(·) ∈ N , and ω ∈ R ∪∞.
Then the following statements are equivalent:

i) He [Z(ω)(1
2γI +Gs(ω))] > 0.

ii) G∗(ω)DG(ω) + γ(NG(ω) −G∗(ω)N) − γ2D < 0.

Proof. Note that He [Z(ω)(1
2γI +Gs(ω))] > 0 is equivalent to

(D − N)(1
2γI +G(ω)(I − γ−1G(ω))−1)

+(1
2γI + (I − γ−1G∗(ω))−1G∗(ω))(D + N) > 0.
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Now, premultiplying and postmultiplying the above inequality by I −
γ−1G∗(ω) and I − γ−1G(ω), respectively, we obtain

G∗(ω)D(I − γ−1G(ω)) − (I − γ−1G∗(ω))NG(ω)

+G∗(ω)N(I − γ−1G(ω)) + γ(I − γ−1G∗(ω))D(I − γ−1G(ω))

+(I − γ−1G∗(ω))DG(ω) > 0,

which, upon collecting terms, further simplifies to

γD − γ−1G∗(ω)DG(ω) − (NG(ω) −G∗(ω)N) > 0,

which is equivalent to (ii).

We now obtain upper bounds for the structured singular value for real
and complex multiple-block structured uncertainty. These bounds are based
upon the absolute stability criterion of Theorem 12.1 for norm-bounded,
block-structured uncertain matrices. The structured singular value [117] of
a complex matrix G(ω) for mixed real and complex uncertainty is defined

by µ(G(ω))
△
= 0 if det(I +G(ω)∆) 6= 0, ∆ ∈ ∆bs, and

µ(G(ω))
△
=

(

min
∆∈∆bs

{σmax(∆) : det (I +G(ω)∆) = 0}
)−1

, (12.27)

otherwise. Hence, a necessary and sufficient condition for robust stability
of the feedback interconnection of G(s) and ∆ is given by the following
theorem. For the statement of this result we assume that the feedback
interconnection of G(s) and ∆ is well posed for all ∆ ∈ ∆γ .

Theorem 12.2. Let γ > 0 and suppose G(s) is asymptotically stable.
Then the negative feedback interconnection of G(s) and ∆ is asymptotically
stable for all ∆ ∈ ∆γ if and only if

µ(G(ω)) < γ, ω ∈ R ∪∞. (12.28)

Proof. Let

G(s) ∼
[

A B
C D

]

,

where A is Hurwitz, and suppose the negative feedback interconnection of
G(s) and ∆ given by

(I +G(s)∆)−1G(s) ∼
[

A−B∆(I +D∆)−1C B −B∆(I +D∆)−1D
(I +D∆)−1C (I +D∆)−1D

]

is asymptotically stable for all ∆ ∈ ∆γ . Next, note that, for all ∆ ∈ ∆γ

and ω ∈ R ∪∞
det[I +G(ω)∆]

= det[I + (C(ωI −A)−1B +D)∆]
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= det(I +D∆)det[I + (ωI −A)−1B∆(I +D∆)−1C]

= det(I +D∆)det(ωI −A)−1det[ωI − (A−B∆(I +D∆)−1C)]

6= 0.

Hence, by definition µ(G(ω)) < γ for all ω ∈ R ∪∞.

Conversely, suppose µ(G(ω)) < γ for all ω ∈ R ∪∞ and assume that

G(s) ∼
[

A B
C D

]

is minimal. Then, by assumption, det(I +G(∞)∆) = det(I +D∆) 6= 0 for
all ∆ ∈ ∆γ . Now, ad absurdum, suppose there exists ∆ ∈ ∆γ such that
(I + G(s)∆)−1G(s) is not asymptotically stable, and hence, A − B∆(I +
D∆)−1C is not Hurwitz. Since G(s) is assumed to be asymptotically stable
it follows that A is Hurwitz, and hence, there exists ε ∈ (0, 1) such that
A− εB∆(I + εD∆)−1C has an imaginary eigenvalue ω̂. Hence,

det[I + εG(ω̂)∆]

= det(I + εD∆)det(ω̂I −A)−1det[ω̂I − (A− εB∆(I + εD∆)−1C)]

= 0.

However, since ε∆ ∈ ∆γ it follows from the definition of µ(G(ω)) that
det[I + εG(ω̂)∆] 6= 0, which is a contradiction.

Next, define µ(G(ω)) by

µ(G(ω))
△
= inf{γ > 0 : there exists Z(·) ∈ Z such that

He [Z(ω)(1
2γI +Gs(ω))] > 0}, (12.29)

or, equivalently, using Proposition 12.1

µ(G(ω)) = inf{γ > 0 : there exist D(·) ∈ D and N(·) ∈ N such that

G∗(ω)DG(ω) + γ(NG(ω) −G∗(ω)N) − γ2D < 0}.
(12.30)

To show that µ(G(ω)) is an upper bound to µ(G(ω)), we require the
following immediate result.

Lemma 12.2. Let ω ∈ R ∪∞. If there exists Z(·) ∈ Z such that

He[Z(ω)(1
2γI +Gs(ω))] > 0, (12.31)

then γ ≥ µ(G(ω)) and det(I + G(ω)∆) 6= 0 for all ∆ ∈ ∆γ . Conversely,
if γ > µ(G(ω)) then there exists Z(·) ∈ Z such that (12.31) holds and
det (I +G(ω)∆) 6= 0 for all ∆ ∈ ∆γ .

Proof. Suppose there exists Z(·) ∈ Z such that (12.31) holds. Since



NonlinearBook10pt November 20, 2007

730 CHAPTER 12

µ(G(ω)) is the infimum over all γ such that there exists Z(·) ∈ Z and (12.31)
holds, it follows that γ ≥ µ(G(ω)). Conversely, suppose that γ > µ(G(ω)).
Then there exists γ̂ satisfying µ(G(ω)) ≤ γ̂ < γ and Z(·) ∈ Z such that
He [Z(ω)(1

2 γ̂I+Gs(ω))] > 0. Now, using the fact thatD(ω) = HeZ(ω) ≥
0, it follows that

He [Z(ω)(1
2γI +Gs(ω))] = 1

2(γ − γ̂)HeZ(ω) + He [Z(ω)(1
2 γ̂I +Gs(ω))]

> 0.

Finally, applying Lemma 12.1 with M−1 = 1
2γI and ∆ = ∆γ , it follows

that det (I +G(ω)∆) 6= 0 for all ∆ ∈ ∆γ .

Theorem 12.3. Let ω ∈ R ∪ ∞ and let G(ω) be a complex matrix.
Then

µ(G(ω)) ≤ µ(G(ω)). (12.32)

Proof. Suppose,ad absurdum, that µ(G(ω)) < µ(G(ω)) and let γ > 0
satisfy µ(G(ω)) < γ ≤ µ(G(ω)). Then, from the definition of µ(G(ω))
it follows that min∆∈∆bs

{σmax(∆) : det(I + G(ω)∆) = 0} ≤ γ−1. It thus
follows that there exists ∆ ∈ ∆γ such that det (I +G(ω)∆) = 0. However,
using Lemma 12.2 we know if µ(G(ω)) < γ, then det (I +G(ω)∆) 6= 0 for
all ∆ ∈ ∆γ , which is a contradiction. Hence, µ(G(ω)) ≤ µ(G(ω)).

Next, in order to provide a systematic comparison of mixed-µ bounds
for a fixed, internally block-structured uncertainty set ∆bs define µi(G(ω))
by

µi(G(ω))
△
= inf{γ > 0 : there exist D(·) ∈ Di and N(·) ∈ Ni such that

G∗(ω)DG(ω) + γ(NG(ω) −G∗(ω)N) − γ2D < 0}, (12.33)

where Di, Ni correspond to the pairs of frequency-dependent scaling matrix
sets tailored to a fixed uncertainty structure ∆bs. The following result is
immediate.

Proposition 12.2. Let G(ω) be a complex matrix and let Di,Ni and
Dj,Nj be frequency-dependent scaling matrix sets associated with a fixed
uncertainty structure ∆bs. Suppose Dj ⊆ Di and Nj ⊆ Ni. Then

µi(G(ω)) ≤ µj(G(ω)). (12.34)

Proof. Suppose, ad absurdum, µj(G(ω)) < µi(G(ω)) and let some
γ > 0 satisfy µj(G(ω)) < γ ≤ µi(G(ω)). Then by definition of µj(G(ω))
there existD(·) ∈ Dj andN(·) ∈ Nj such thatG∗(ω)DG(ω)+γ(NG(ω)−
G∗(ω)N) − γ2D < 0. Now, since Dj ⊆ Di and Nj ⊆ Ni, it follows that
D(·) ∈ Di and N(·) ∈ Ni, and hence, µi(G(ω) < γ, which is a contradiction.
Hence, µi(G(ω)) ≤ µj(G(ω)).
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Finally, note that in the complex uncertainty case, that is, r = 0, we
take D > 0 and N = 0 so that the complex-µ upper bound [110] given by

µ(G(ω)) =

inf{γ > 0 : there exists D(·) ∈ D such that G∗(ω)DG(ω) − γ2D < 0},
or, equivalently,

µ(G(ω)) = inf
D(·)∈D

σmax(D
1

2G(ω)D− 1

2 ) (12.35)

is recovered. In this case, the upper bound can be computed via a convex
optimization problem [396].

12.3 Robust Stability Analysis of Nonlinear Uncertain Systems

via Parameter-Dependent Lyapunov Functions

In this section, we present sufficient conditions for robust stability for a
class of nonlinear uncertain systems. Specifically, we extend the framework
of Chapter 11 in order to address stability of a class of nonlinear systems
with time-invariant structured uncertainty. Here, we restrict our attention
to time-invariant infinite-horizon systems. Once again, for the class
of nonlinear uncertain systems considered we assume that the required
properties for the existence and uniqueness of solutions are satisfied. For the
following result, let D ⊂ Rn be an open set, assume 0 ∈ D, let L : D → R,
and let F ⊂ {f : D → Rn : f(0) = 0} denote the class of uncertain nonlinear
systems with f0(·) ∈ F defining the nominal nonlinear system.

Theorem 12.4. Consider the nonlinear uncertain dynamical system

ẋ(t) = f(x(t)), x(0) = x0, t ≥ 0, (12.36)

where f(·) ∈ F , with performance functional

Jf (x0)
△
=

∫ ∞

0
L(x(t))dt. (12.37)

Furthermore, assume there exist functions Γ : D → R and VI, V∆f , V : D →
R, where VI(·) and V∆f (·) are continuously differentiable functions such that
VI(x) + V∆f (x) = V (x) for all x ∈ D and

V (0) = 0, (12.38)

V (x) > 0, x ∈ D, x 6= 0, (12.39)

V ′(x)f(x) ≤ V ′
I (x)f0(x) + Γ(x), x ∈ D, f(·) ∈ F ,

(12.40)

V ′
I (x)f0(x) + Γ(x) < 0, x ∈ D, x 6= 0, (12.41)

L(x) + V ′
I (x)f0(x) + Γ(x) = 0, x ∈ D, (12.42)
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where f0(·) ∈ F defines the nominal nonlinear system. Then the zero
solution x(t) ≡ 0 to (12.36) is locally asymptotically stable for all f(·) ∈ F ,
and there exists a neighborhood of the origin D0 ⊆ D such that

Jf (x0) ≤ J (x0) = V (x0), f(·) ∈ F , x0 ∈ D0, (12.43)

where

J (x0)
△
=

∫ ∞

0
[L(x(t)) + Γ(x(t)) − V ′

∆f (x(t))f0(x(t))]dt, (12.44)

and where x(t), t ≥ 0, is the solution to (12.36) with f(x(t)) = f0(x(t)).
Finally, if D = Rn and

V (x) → ∞ as ‖x‖ → ∞, (12.45)

then the zero solution x(t) ≡ 0 to (12.36) is globally asymptotically stable
for all f(·) ∈ F .

Proof. Let f(·) ∈ F and x(t), t ≥ 0, satisfy (12.36). Then

V̇ (x(t))
△
=

d

dt
V (x(t)) = V ′(x(t))f(x(t)), t ≥ 0. (12.46)

Hence, it follows from (12.40) and (12.41) that

V̇ (x(t)) < 0, t ≥ 0, x(t) 6= 0. (12.47)

Thus, from (12.38), (12.39), and (12.47) it follows that V (·) is a Lyapunov
function for (12.36), which proves local asymptotic stability of the zero
solution x(t) ≡ 0 to (12.36) for all f(·) ∈ F . Consequently, x(t) → 0 as
t→ ∞ for all initial conditions x0 ∈ D0 for some neighborhood of the origin
D0 ⊂ D. Now, (12.46) implies that

0 = −V̇ (x(t)) + V ′(x(t))f(x(t)), t ≥ 0,

and hence, using (12.40) and (12.42),

L(x(t)) = −V̇ (x(t)) + L(x(t)) + V ′(x(t))f(x(t))

≤ −V̇ (x(t)) + L(x(t)) + V ′
I (x(t))f0(x(t)) + Γ(x(t))

= −V̇ (x(t)).

Now, integrating over [0, t) yields
∫ t

0
L(x(s))ds ≤ −V (x(t)) + V (x0).

Letting t→ ∞ and noting that V (x(t)) → 0 for all x0 ∈ D0 yields Jf (x0) ≤
V (x0).

Next, let x(t), t ≥ 0, satisfy (12.36) with f(x(t)) = f0(x(t)). Then it
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follows from (12.42) that

L(x(t)) + Γ(x(t)) − V ′
∆f (x(t))f0(x(t)) = −V̇ (x(t)) + L(x(t))

+V ′
I (x(t))f0(x(t)) + Γ(x(t))

= −V̇ (x(t)).

Integrating over [0, t) yields
∫ t

0
[L(x(s)) + Γ(x(s)) − V ′

∆f (s)f0(x(t))]ds = −V (x(t)) + V (x0).

Now, letting t → ∞ yields J (x0) = V (x0). Finally, for D = Rn global
asymptotic stability of the solution x(t) = 0, t ≥ 0, for all f(·) ∈ F is a
direct consequence of the radially unbounded condition (12.45) on V (x).

Theorem 12.4 is an extension of Theorem 8.1. Specifically, if V∆f (x) =
0 and F consists of only the nominal nonlinear system f0(·), then Γ(x) = 0
for all x ∈ D satisfies (12.40), and hence, Jf0

(x0) = J(x0). In this case,
Theorem 12.4 specializes to Theorem 8.1. Alternatively, setting V∆f (x) = 0
and allowing f(·) ∈ F we recover Theorem 11.1.

Next, we specialize Theorem 12.4 to nonlinear uncertain systems of
the form

ẋ(t) = f0(x(t)) + ∆f(x(t)), x(0) = x0, t ≥ 0, (12.48)

where f0 : D → Rn satisfies f0(0) = 0 and f0 + ∆f ∈ F . Here, F is such
that

F ⊂ {f0 + ∆f : D → Rn : ∆f ∈ ∆}, (12.49)

where ∆ is a given nonlinear uncertainty set of nonlinear perturbations ∆f
of the nominal system dynamics f0(·) ∈ F . Since F ⊂ {f : D → Rn :
f(0) = 0} it follows that ∆f(0) = 0 for all ∆f ∈ ∆.

Corollary 12.1. Consider the dynamical system given by (12.48) where
∆f(·) ∈ ∆, with performance functional (12.37). Furthermore, assume there
exist functions Γ : Rn → R and VI, V∆f , V : Rn → R, where VI(·) and V∆f (·)
are continuously differentiable functions such that VI(x) + V∆f (x) = V (x)
for all x ∈ Rn and

V (0) = 0, (12.50)

V (x) > 0, x ∈ Rn, x 6= 0, (12.51)

V ′
I (x)∆f(x) ≤ Γ(x) − V ′

∆f (x)(f0(x) + ∆f(x)), x ∈ Rn, ∆f(·) ∈ ∆,

(12.52)

V ′
I (x)f0(x) + Γ(x) < 0, x ∈ Rn, x 6= 0, (12.53)

L(x) + V ′
I (x)f0(x) + Γ(x) = 0, x ∈ Rn, (12.54)
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and
V (x) → ∞ as ‖x‖ → ∞. (12.55)

Then the zero solution x(t) ≡ 0 to (12.48) is globally asymptotically stable
for all ∆f(·) ∈ ∆, and

J∆f (x0) ≤ J (x0) = V (x0), ∆f(·) ∈ ∆, (12.56)

where

J (x0)
△
=

∫ ∞

0
[L(x(t)) + Γ(x(t)) − V ′

∆f (x(t))f0(x(t))]dt, (12.57)

and where x(t), t ≥ 0, is the solution to (12.48) with ∆f(x) ≡ 0.

Proof. The result is a direct consequence of Theorem 12.4 with f(x) =
f0(x) + ∆f(x).

Having established the theoretical basis of our approach, we now assign
explicit structure to the set ∆ and the bounding function Γ(·). Specifically,
the uncertainty set ∆ is assumed to be of the form

F = {f0(x)+∆f(x) : ∆f(x) = Gδ(x)δ(hδ(x)), x ∈ Rn, δ(·) ∈ ∆}, (12.58)

where ∆ satisfies

∆ = {δ(·) ∈ ∆bs : [δ(y) −m1(y)]
T[δ(y) −m2(y)] ≤ 0, y ∈ Rpδ}, (12.59)

and where m1(·),m2(·) ∈ ∆bs are such that mT
1 (y)m2(y) ≤ 0, y ∈ Rpδ ,

Gδ : Rn → Rn×mδ , hδ : Rmδ → Rmδ is continuously differentiable and
satisfies hδ(0) = 0, and

∆bs ⊂
{

δ : Rmδ → Rmδ : δ(0) = 0, δ(·) is continuously differentiable, and

dδ(y)

dy
=

[

dδ(y)

dy

]T
}

. (12.60)

For the structure of ∆ as specified by (12.58), the bounding function
Γ(·) satisfying (12.52) can now be given a concrete form. For the following
result define the set of compatible scaling matrices Hp and Ns by

Hp
△
= {H ∈ Pmδ : Hδ(y) = δ(Hy), y ∈ Rmδ , δ(·) ∈ ∆bs, }, (12.61)

Ns
△
= {N ∈ Smδ : Nδ(y) = δ(Ny), N(δ(y) −m1(y)) ≥ 0, y ∈ Rmδ ,

δ(·) ∈ ∆bs, }. (12.62)

Furthermore, define h̃(x)
△
= H[m1(hδ(x)) + m2(hδ(x))] + Nh′δ(x)f0(x) and

R0(x)
△
= 2H −Nh′δ(x)Gδ(x) −GT

δ (x)h′Tδ (x)N .
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Proposition 12.3. Let H ∈ Hp and N ∈ Ns be such that R0(x) > 0,
x ∈ Rn. Then the functions

Γ(x) = 1
2 [V ′

I (x)Gδ(x) + h̃T(x)]R−1
0 (x)[V ′

I (x)Gδ(x) + h̃T(x)]T

−mT
1 (hδ(x))Hm2(hδ(x)), (12.63)

V∆f (x) =

∫ hδ(x)

0
δT(y)Ndy, (12.64)

satisfy (12.52) with F given by (12.58) and ∆ given by (12.59).

Proof. First, note that if H ∈ Hp then it follows that

[δ(y) −m1(y)]
TH[δ(y) −m2(y)] ≤ 0, y ∈ Rmδ , δ(·) ∈ ∆bs.

Next, since δT(y)N is a gradient vector of a real-value function the line

integral V∆f (x) =
∫ hδ(x)
0 δT(y)Ndy is well defined, and hence, V ′

∆f (x) =

δT(hδ(x))Nh
′
δ(x). Now,

0 ≤ 1
2 [V ′

I (x)Gδ(x) + h̃T(x) −R0(x)δ(hδ(x))]R
−1
0 (x)

·[V ′
I (x)Gδ(x) + h̃T(x) −R0(x)δ(hδ(x))]

T

= Γ(x) +mT
1 (hδ(x))Hm2(hδ(x)) − V ′

I (x)Gδ(x)δ(hδ(x))

−h̃T(x)δ(hδ(x)) + 1
2δ

T(hδ(x))R0(x)δ(hδ(x))

= Γ(x) − V ′
I (x)∆f(x) − δT(hδ(x))Nh

′
δ(x)[f0(x) +Gδ(x)δ(hδ(x))]

+[δ(hδ(x)) −m1(hδ(x))]
TH[δ(hδ(x)) −m2(hδ(x))]

≤ Γ(x) − V ′
I (x)∆f(x) − V ′

∆f (x)[f0(x) +Gδ(x)δ(hδ(x))],

which proves (12.52) with F given by (12.58) and ∆ given by (12.59).

Next, consider the nonlinear uncertain dynamical system (12.48) and
assume that the uncertainty set ∆ is given by (12.58) with ∆ given by

∆ = {δ(·) ∈ ∆bs : δT(y)Qδ(y) + 2δT(y)Sy+ yTRy ≤ 0, y ∈ Rpδ}, (12.65)

where Q ∈ Pmδ , −R ∈ Npδ , and S ∈ Rmδ×pδ . For this uncertainty
characterization, the bounding function Γ(·) satisfying (12.52) can be given a

concrete form. For the following result define h̃(x)
△
= Nh′δ(x)f0(x)−2Shδ(x)

and R0
△
= 2Q−Nh′δ(x)Gδ(x) −GT

δ (x)h′Tδ (x)N .

Proposition 12.4. Let N ∈ Ns be such that R0(x) > 0, x ∈ Rn. Then
the functions

Γ(x) = 1
2 [V ′

I (x)Gδ(x) + h̃T(x)]R−1
0 [V ′

I (x)Gδ(x) + h̃T(x)]T

−hT
δ (x)Rhδ(x), (12.66)

V∆f (x) =

∫ hδ(x)

0
δT(y)Ndy, (12.67)
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satisfy (12.52) with F given by (12.58) and ∆ given by (12.65).

Proof. Since δT(y)N is a gradient vector of a real-value function the

line integral V∆f (x) =
∫ hδ(x)
0 δT(y)Ndy is well defined, and hence, V ′

∆f (x) =

δT(hδ(x))Nh
′
δ(x). Now,

0 ≤ 1
2 [V ′

I (x)Gδ(x) + h̃T(x) −R0(x)δ(hδ(x))]R
−1
0 (x)

·[V ′
I (x)Gδ(x) + h̃T(x) −R0(x)δ(hδ(x))]

T

= Γ(x) + hT
δ (x)Rhδ(x) − V ′

I (x)Gδ(x)δ(hδ(x))

−h̃T(x)δ(hδ(x)) + 1
2δ

T(hδ(x))R0(x)δ(hδ(x))

= Γ(x) − V ′
I (x)∆f(x) − δT(hδ(x))Nh

′
δ(x)[f0(x) +Gδ(x)δ(hδ(x))]

+δT(hδ(x))Qδ(hδ(x)) + 2δT(hδ(x))Shδ(x) + hT
δ (x)Rhδ(x)

≤ Γ(x) − V ′
I (x)∆f(x) − V ′

∆f (x)[f0(x) +Gδ(x)δ(hδ(x))],

which proves (12.52) with F given by (12.58) and ∆ given by (12.65).

We now combine the results of Corollary 12.1 and Propositions 12.3
and 12.4 to obtain conditions guaranteeing robust stability and performance
for the nonlinear system (12.48). For the statement of the next result

define h̃(x)
△
= H[m1(hδ(x)) + m2(hδ(x))] + Nh′δ(x)f0(x) and R0(x)

△
=

2H −Nh′δ(x)Gδ(x) −GT
δ (x)h′Tδ (x)N .

Proposition 12.5. Consider the nonlinear uncertain system (12.48).
Let L(x) > 0, x ∈ Rn, let H ∈ Hp, let N ∈ Ns, and let R0(x) > 0, x ∈ Rn.
Assume that there exists a continuously differentiable function VI : Rn → R

such that VI(0) = 0, VI(x) > 0, x ∈ Rn, x 6= 0, VI(x) → ∞ as ‖x‖ → ∞, and

0 = V ′
I (x)f0(x) + 1

2 [V ′
I (x)Gδ(x) + h̃(x)]R−1

0 (x)[V ′
I (x)Gδ(x) + h̃(x)]T

−mT
1 (hδ(x))Hm2(hδ(x)) + L(x), x ∈ Rn. (12.68)

Then the zero solution x(t) ≡ 0 to (12.48) is globally asymptotically stable
for all ∆f(·) ∈ ∆, with ∆ given by (12.59), and

J∆f (x0) ≤ J (x0) = V (x0), ∆f(·) ∈ ∆, (12.69)

where V (x) = VI(x) + V∆f (x) with V∆f (x) =
∫ hδ(x)
0 δT(y)Ndy, and

J (x0)
△
=

∫ ∞

0
[L(x(t)) + Γ(x(t)) − V ′

∆f (x(t))f0(x(t))]dt, (12.70)

and where Γ(x) is given by (12.63) and x(t), t ≥ 0, is the solution to (12.48)
with ∆f(x) ≡ 0.

For the following result define h̃(x)
△
= Nh′δ(x)f0(x) − 2Shδ(x) and

R0
△
= 2Q−Nh′δ(x)Gδ(x) −GT

δ (x)h′Tδ (x)N .
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Proposition 12.6. Consider the nonlinear uncertain system (12.48).
Let L(x) > 0, x ∈ Rn, let N ∈ Ns, and let R0(x) > 0, x ∈ Rn. Assume that
there exists a continuously differentiable function VI : Rn → R such that
VI(0) = 0, VI(x) > 0, x ∈ Rn, x 6= 0, VI(x) → ∞ as ‖x‖ → ∞, and

0 = V ′
I (x)f0(x) + 1

2 [V ′
I (x)Gδ(x) + h̃(x)]R−1

0 (x)[V ′
I (x)Gδ(x) + h̃(x)]T

−hT
δ (x)Rhδ(x) + L(x), x ∈ Rn. (12.71)

Then the zero solution x(t) ≡ 0 to (12.48) is globally asymptotically stable
for all ∆f(·) ∈ ∆, with ∆ given by (12.65), and

J∆f (x0) ≤ J (x0) = V (x0), ∆f(·) ∈ ∆, (12.72)

where V (x) = VI(x) + V∆f (x) with V∆f (x) =
∫ hδ(x)
0 δT(y)Ndy, and

J (x0)
△
=

∫ ∞

0
[L(x(t)) + Γ(x(t)) − V ′

∆f (x(t))f0(x(t))]dt, (12.73)

and where Γ(x) is given by (12.66) and x(t), t ≥ 0, is the solution to (12.48)
with ∆f(x) ≡ 0.

The following corollary specializes Theorem 12.4 to a class of linear
uncertain systems which connects the framework of Theorem 12.4 to
the parameter-dependent Lyapunov bounding framework of Haddad and
Bernstein [145,151]. Specifically, in this case we consider ∆ to be the set of
uncertain linear systems given by

F = {(A+ ∆A)x : x ∈ Rn, A ∈ Rn×n, ∆A ∈ ∆A},

where ∆A ⊂ Rn×n is a given bounded uncertainty set of uncertain
perturbations ∆A of the nominal system matrix A such that 0 ∈ ∆A.

Corollary 12.2. Let R ∈ Pn. Consider the linear uncertain dynamical
system

ẋ(t) = (A+ ∆A)x(t), x(0) = x0, t ≥ 0, (12.74)

with performance functional

J∆A(x0)
△
=

∫ ∞

0
xT(t)Rx(t)dt, (12.75)

where ∆A ∈ ∆A. Let Ω0 : N ⊆ Sn → Sn and P0 : ∆A → Sn be such that

∆ATP + P∆A ≤ Ω0(P ) − [(A+ ∆A)TP0(∆A) + P0(∆A)(A+ ∆A)],

∆A ∈ ∆A, P ∈ N . (12.76)

Furthermore, suppose there exists P ∈ Pn satisfying

0 = ATP + PA+ Ω0(P ) +R (12.77)
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and such that P +P0(∆A) ∈ Pn, ∆A ∈ ∆A. Then the zero solution x(t) ≡ 0
to (12.74) is globally asymptotically stable for all ∆A ∈ ∆A, and

sup
∆A∈∆A

J∆A(x0) ≤ sup
∆A∈∆A

J (x0) = xT
0 Px0 + sup

∆A∈∆A

xT
0 P0(∆A)x0, x0 ∈ Rn,

(12.78)
where

J (x0)
△
=

∫ ∞

0
xT(t)[R + Ω0(P ) −ATP0(∆A) − P0(∆A)A]x(t)dt, (12.79)

and where x(t), t ≥ 0, solves (12.74) with ∆A = 0. If, in addition, there
exists P 0 ∈ Sn such that P0(∆A) ≤ P 0, ∆A ∈ ∆A, then

sup
∆A∈∆A

J∆A(x0) ≤ xT
0 (P + P 0)x0. (12.80)

Proof. The result is a direct consequence of Theorem 12.4 with
f(x) = (A + ∆A)x, f0(x) = Ax, L(x) = xTRx, VI(x) = xTPx,
V∆f (x) = xTP0(∆A)x, Γ(x) = xTΩ0(P )x, and D = Rn. Specifically,
conditions (12.38) and (12.39) are trivially satisfied. Now, V ′(x)f(x) =
xT[(A + ∆A)T(P + P0(∆A)) + (P + P0(∆A))(A + ∆A)]x, and hence, it
follows from (12.76) that V ′(x)f(x) ≤ V ′

I (x)f0(x) + Γ(x) = xT(ATP +
PA+ Ω0(P ))x, for all ∆A ∈ ∆A. Furthermore, it follows from (12.77) that
L(x) + V ′

I (x)f0(x) + Γ(x) = 0, and hence, V ′
I (x)f0(x) + Γ(x) < 0 for all

x 6= 0, so that all the conditions of Theorem 12.4 are satisfied. Finally, since
V (x) is radially unbounded (12.74) is globally asymptotically stable for all
∆A ∈ ∆A.

Corollary 12.2 is the deterministic version of Theorem 3.1 of [151]
involving parameter-dependent Lyapunov functions for addressing robust
stability and performance analysis of linear uncertain systems with constant
real parameter uncertainty.

Next, we illustrate two bounding functions for two different uncer-
tainty characterizations. Specifically, we assign explicit structure to the
uncertainty set ∆ and the function Ω0(·) and P0(·) satisfying (12.76). First,
we assume that the uncertainty set ∆A is of the form

∆A = {∆A : ∆A = B0FC0, F ∈ ∆} (12.81)

where ∆ satisfies

∆ ⊂ ∆bs = {F ∈ Ss : M1 ≤ F ≤M2}, (12.82)

and where B0 ∈ Rn×s, C0 ∈ Rs×n, are fixed matrices denoting the structure
of the uncertainty, F ∈ Ss is a symmetric uncertainty matrix, and M1,M2 ∈
∆bs are uncertainty bounds such that M

△
= M2−M1 ∈ Ps. Note that ∆ may

be equal to ∆bs, although, for generality, ∆ may be a specified proper subset
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of ∆bs. For example, ∆bs may consist of block-structured matrices F =
block−diag[Iℓ1 ⊗ F1, . . . , Iℓr

⊗ Fr]. Note that if F = block−diag[F1, . . . , Fr],
M1 = block−diag[M11, . . . ,M1r], and M2 = block−diag[M21, . . . ,M2r], then
M1i ≤ Fi ≤ M2i, i = 1, . . . , r. Furthermore, we assume that 0 ∈ ∆ and
M1,M2 ∈ ∆. Finally, we define the sets Hp, Ns, and Nnd such that the
product of every matrix in Hp and Ns and every matrix in ∆bs is symmetric
and the product of every matrix in Nnd and F −M1, where F ∈ ∆bs, is
nonnegative definite by

Hp
△
= {H ∈ Ps : FH = HF, F ∈ ∆bs},

Ns
△
= {N ∈ Ss : FN = NF, F ∈ ∆bs},

and
Nnd

△
= {N ∈ Ns : (F −M1)N ≥ 0, F ∈ ∆bs}.

The condition FN = NF , F ∈ ∆bs, is analogous to the commuting
assumption between the D-scales and ∆ uncertainty blocks in µ-analysis
which accounts for structure in the uncertainty ∆. For the statement
of the next result define C̃

△
= 1

2 [H(M1 + M2)C0 + NC0A] and R0
△
=

H − 1
2 [NC0B0 −BT

0 C
T
0 N ].

Proposition 12.7. Let M1,M2 ∈ Ss, H ∈ Hp, N ∈ Ns, and R0 > 0.
Then the functions

Ω0(P ) = [C̃ +BT
0 P ]TR−1

0 [C̃ +BT
0 P ] − 1

2C
T
0 (M1HM2 +M2HM1)C0,

(12.83)

P0(F ) = CT
0 FNC0, (12.84)

satisfy (12.76) with ∆ given by (12.82).

Proof. The proof is a direct consequence of Proposition 12.4.

An alternative to Proposition 12.7 is given below. For the statement
of the next result define C̃

△
= HC0 + NC0(A + B0M1C0), R0

△
= (HM−1 −

NC0B0) + (HM−1 −NC0B0)
T, and Fs

△
= F −M1.

Proposition 12.8. Let M1,M2 ∈ Ss, H ∈ Hp, N ∈ Ns, and R0 > 0.
Then the functions

Ω0(P ) = [C̃ +BT
0 P ]TR−1

0 [C̃ +BT
0 P ] + PB0M1C0 + CT

0 M1B
T
0 P,

(12.85)

P0(F ) = CT
0 FsNC0, (12.86)

satisfy (12.76) with ∆ given by (12.82).

Proof. Since R0 > 0 and by Problem 12.1 Fs − FsM
−1Fs ≥ 0, it
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follows that

0 ≤ [C̃ +BT
0 P −R0FsC0]

TR−1
0 [C̃ +BT

0 P −R0FsC0]

+2CT
0 H[Fs − FsM

−1Fs]C0

= Ω0(P ) − PB0M1C0 − CT
0 M1B

T
0 P − [C̃ +BT

0 P ]TFsC0

−CT
0 Fs[C̃ +BT

0 P ] + CT
0 FsR0FsC0

+2CT
0 H[Fs − FsM

−1Fs]C0

= Ω0(P ) −ATCT
0 NFsC0 − CT

0 M1B
T
0 C

T
0 NFsC0 − PB0FC0

−CT
0 FsNC0A− CT

0 FsNC0B0M1C0 − CT
0 FB

T
0 P

−CT
0 FsNC0B0FsC0 − CT

0 FsB
T
0 C

T
0 NFsC0

= Ω0(P ) − [(A+ ∆A)TP0(F ) + P0(F )(A + ∆A)] − [∆ATP + P∆A],

which proves (12.76) with ∆ given by (12.82).

Next, assume the uncertainty set ∆ to be of the form

∆ ⊂ ∆bs = {F ∈ Rm×p : FTQF + FTS + STF +R ≤ 0}, (12.87)

where Q ∈ Pm, S ∈ Rm×p, and −R ∈ Np. For the statement of the next
result define

Ns
△
= {N ∈ Rp×m : FTN = NTF ≥ 0, F ∈ ∆bs},

C̃
△
= NC0A− SC0, and R0

△
= Q−NC0B0 −BT

0 C
T
0 N

T.

Proposition 12.9. Let N ∈ Ns and let R0 > 0. Then the functions

Ω0(P ) = [C̃ +BT
0 P ]TR−1

0 [C̃ +BT
0 P ] − CT

0 RC0, (12.88)

P0(F ) = CT
0 F

TNC0, (12.89)

satisfy (12.76) with ∆ given by (12.89).

Proof. Since R0 > 0 it follows that

0 ≤ [C̃ +BT
0 P −R0FC0]

TR−1
0 [C̃ +BT

0 P −R0FC0]

= C̃TR−1
0 C̃ − C̃TFC0 − CT

0 F
TC̃ + CT

0 F
TR0FC0

= Ω0(P ) + CT
0 RC0 −ATCT

0 N
TFC0 −CT

0 S
TFC0 − PB0FC0

−CT
0 F

TNC0A− CT
0 F

TSC0 − CT
0 F

TBT
0 P + CT

0 F
TQFC0

−CT
0 F

TNB0FC0 − CT
0 F

TBT
0 C

T
0 N

TC0

= Ω(P ) − [(A+ ∆A)TP0(F ) + P0(F )(A + ∆A)] − [∆ATP + P∆A]

+CT
0 [FTQF + FTS + STF +R]C0

= Ω(P ) − [(A+ ∆A)TP0(F ) + P0(F )(A + ∆A)] − [∆ATP + P∆A],

which proves (12.76) with ∆ given by (12.89).
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As in the nonlinear case, we now combine the results of Corollary 12.2
and Propositions 12.8 and 12.9 to obtain conditions guaranteeing robust
stability and performance for the linear system (12.74). For the statement

of the next result define C̃
△
= HC0 +NC0(A0 + B0M1C0), R0

△
= (HM−1 −

NC0B0) + (HM−1 −NC0B0)
T, and Fs

△
= F −M1.

Proposition 12.10. Consider the linear uncertain system (12.74). Let
R ∈ Pn, M1,M2 ∈ Sm, H ∈ Hp, N ∈ Nnd, and R0 > 0. Furthermore,
suppose there exists a P ∈ Pn satisfying

0 = (A+B0M1C0)
TP +P (A+B0M1C0) + [C̃ +BT

0 P ]TR−1
0 [C̃ +BT

0 P ] +R.
(12.90)

Then A + ∆A is asymptotically stable for all ∆A ∈ ∆A with ∆ given by
(12.82), and

sup
∆A∈∆A

J∆A(x0) ≤ xTPx+ sup
∆A∈∆

xT
0 C

T
0 FsNC0x0 ≤ xT

0 (P +P 0)x0, x0 ∈ Rn,

(12.91)
where P 0 ∈ Sn is such that FsN ≤ P 0 for all Fs ∈ ∆.

For the statement of the next result define C̃
△
= NC0A − SC0 and

R0
△
= Q−NC0B0 −BT

0 C
T
0 N

T.

Proposition 12.11. Consider the linear uncertain system (12.74). Let

R̂ ∈ Pn, N ∈ Nnd, and R0 > 0. Furthermore, suppose there exists a P ∈ Pn

satisfying

0 = ATP + PA+ [C̃ +BT
0 P ]TR−1

0 [C̃ +BT
0 P ] − CT

0 RC0 + R̂. (12.92)

Then A + ∆A is asymptotically stable for all ∆A ∈ ∆A with ∆ given by
(12.89), and

sup
∆A∈∆A

J∆A(x0) ≤ xTPx+ sup
∆A∈∆

xT
0 C

T
0 F

TNC0x0 ≤ xT
0 (P+P 0)x0, x0 ∈ Rn,

(12.93)
where P 0 ∈ Sn is such that FsN ≤ P 0 for all Fs ∈ ∆.

Next, we use Theorem 12.2 and Corollary 12.2 to provide robust sta-
bility analysis tests for linear uncertain systems with structured uncertainty
via an algebraic Riccati equation. Consider the linear uncertain dynamical
system (12.74) with ∆A = B0FC0, where B0 ∈ Rn×p, C0 ∈ Rp×n denote the
structure of the uncertainty, and F ∈ ∆bs ⊆ Rp×p is the uncertain matrix.
Here, ∆bs is assumed to be the of the form

∆bs = {F ∈ Rp×p : F = FT, F = block−diag[δ1Il1 , . . . , δrIlr ;∆r+1, . . . ,

∆r+q], δi ∈ R, i = 1, . . . , r; ∆i ∈ Rpi×pi , i = r + 1, . . . , r + q},
(12.94)
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where the integers li, i = 1, . . . , r, pi, i = r + 1, . . . , r + q, are such that
∑r

i=1 li +
∑r+q

i=r+1 pi = p. The following result provides a necessary and
sufficient condition for robust stability of the feedback interconnection of
G(s)

△
= C0(sI −A)−1B0 and F for all F ∈ ∆γ , where

∆γ = {F ∈ ∆ : σmax(F ) ≤ γ−1}, (12.95)

and where γ > 0.

Theorem 12.5. Let γ > 0 and suppose A is Hurwitz. Then A+B0FC0

is Hurwitz for all F ∈ ∆γ if and only if

µ(G(ω)) < γ, ω ∈ R ∪∞. (12.96)

Proof. The result is a direct consequence of Theorem 12.2 with G(s) =
C0(sI −A)−1B0 and ∆ = F .

Next, we use Corollary 12.2 to provide an upper bound to the
structured singular value via an algebraic Riccati equation. For the following
result the set of compatible scaling matrices Hp and Ns are given by

Hp = {H ∈ Pm : HF = FH, F ∈ ∆γ}, (12.97)

Ns = {N ∈ Sm : FN = NF, FN ≥ γ−1N, F ∈ ∆γ}, (12.98)

and R0 and C̃ are given by

R0 = γH−NC0B0−CT
0 B

T
0 N, C̃ = HC0+NC0(A−γ−1B0C0). (12.99)

Theorem 12.6. Let γ > 0, R ∈ Pn, H ∈ Hp, N ∈ Ns, and R0 >
0. Consider the linear uncertain dynamical system (12.74) where ∆A =
B0FC0, F ∈ ∆γ , with performance functional (12.75). Furthermore, assume
there exist P ∈ Pn such that

0 = (A−γ−1B0C0)
TP +P (A−γ−1B0C0)+(C̃+BT

0 P )TR−1
0 (C̃+BT

0 P )+R.
(12.100)

Then the zero solution x(t) ≡ 0 to (12.74) is globally asymptotically stable
for all F ∈ ∆γ , and hence,

µ(G(ω)) < γ, ω ∈ R ∪∞. (12.101)

Furthermore,

sup
F∈∆γ

JF (x0) ≤ sup
F∈∆γ

J (x0) = xT
0 Px0 + sup

F∈∆γ

xT
0 P0(F )x0, x0 ∈ Rn,

(12.102)
where

J (x0)
△
=

∫ ∞

0
xT(t)(R + Ω0(P ) −ATP0(F ) − P0(F )A)x(t)dt, (12.103)
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P0(F )
△
= CT

0 (F − γ−1I)NC0, and x(t), t ≥ 0, solves (12.74) with F = 0. If,
in addition, there exists P 0 ∈ Sn such that P0(F ) ≤ P 0, F ∈ ∆γ , then

sup
F∈∆γ

JF (x0) ≤ xT
0 (P + P 0)x0. (12.104)

Proof. The result is a direct consequence of Corollary 12.2 and
Theorem 12.5.

Setting N = 0 and H = I in (12.100) yields

0 = ATP + PA+ γ−1PB0B
T
0 P + γ−1CT

0 C0 +R, (12.105)

or, equivalently,

0 = ATP + PA+ γ−2PB0B
T
0 P + CT

0 C0 +R. (12.106)

If only robust stability is of interest, then the weighting matrix R need not
have physical significance. In this case, one can set R = εI, where ε > 0
is arbitrarily small. Hence, it follows from the results of Chapter 10 that
if there exists a P ∈ Pn such that (12.106) is satisfied, then |||G|||∞ ≤ γ,
where G(s) = C0(sI − A)−1B0. Thus, it follows from Theorem 12.6 that
µ(G(ω)) ≤ |||G|||∞.

12.4 Robust Optimal Control for Nonlinear Systems via

Parameter-Dependent Lyapunov Functions

In this section, we consider a control problem involving a notion of optimality
with respect to an auxiliary cost which guarantees a bound on the worst-
case value of a nonlinear-nonquadratic cost criterion over a prescribed
uncertainty set. The optimal robust feedback controllers are derived as a
direct consequence of Theorem 12.4. To address the robust optimal control
problem let D ⊂ Rn be an open set and let U ⊂ Rm, where 0 ∈ D and 0 ∈ U .
Furthermore, let F ⊂ {F : D × U → Rn : F (0, 0) = 0}. Next, consider the
controlled uncertain system

ẋ(t) = F (x(t), u(t)), x(0) = x0, t ≥ 0, (12.107)

where F (·, ·) ∈ F and the control u(·) is restricted to the class of admissible
controls consisting of measurable functions u(·) such that u(t) ∈ U for all
t ≥ 0, where the control constraint set U is given. We assume 0 ∈ U . Given
a control law φ(·) and a feedback control u(t) = φ(x(t)), the closed-loop
system has the form

ẋ(t) = F (x(t), φ(x(t))), x(0) = x0, t ≥ 0, (12.108)

for all F (·, ·) ∈ F .
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Next, we present an extension of Theorem 11.2 for characterizing
robust feedback controllers that guarantee robust stability over a class
of nonlinear uncertain systems and minimize an auxiliary performance
functional. For the statement of this result let L : D × U → R and define
the set of regulation controllers for the nominal nonlinear system F0(·, ·) by

S(x0)
△
= {u(·) : u(·) is admissible and x(·) given by (12.107)

satisfies x(t) → 0 as t→ ∞ with F (·, ·) = F0(·, ·)}.

Theorem 12.7. Consider the nonlinear uncertain controlled system
(12.107) with performance functional

JF (x0, u(·)) △
=

∫ ∞

0
L(x(t), u(t))dt, (12.109)

where F (·, ·) ∈ F and u(·) is an admissible control. Assume there exist
functions VI, V∆f , V : D → R, Γ : D × U → R, and control law φ : D → U ,
where VI(·) and V∆f (·) are continuously differentiable functions such that
VI(x) + V∆f (x) = V (x) for all x ∈ D and

V (0) = 0, (12.110)

V (x) > 0, x ∈ D, x 6= 0, (12.111)

φ(0) = 0, (12.112)

V ′(x)F (x, φ(x)) ≤ V ′
I (x)F0(x, φ(x)) + Γ(x, φ(x)), x ∈ D, F (·, ·) ∈ F ,

(12.113)

V ′
I (x)F0(x, φ(x)) + Γ(x, φ(x)) < 0, x ∈ D, x 6= 0, (12.114)

H(x, φ(x)) = 0, x ∈ D, (12.115)

H(x, u) ≥ 0, x ∈ D, u ∈ U, (12.116)

where F0(·, ·) ∈ F defines the nominal system and

H(x, u)
△
= L(x, u) + V ′

I (x)F0(x, u) + Γ(x, u). (12.117)

Then, with the feedback control u(·) = φ(x(·)), there exists a neighborhood
of the origin D0 ⊆ D such that if x0 ∈ D0, the zero solution x(t) ≡ 0
of the closed-loop system (12.108) is locally asymptotically stable for all
F (·, ·) ∈ F . Furthermore,

JF (x0, φ(x(·))) ≤ J (x0, φ(x(·))) = V (x0), F (·, ·) ∈ F , (12.118)

where

J (x0, u(·)) △
=

∫ ∞

0
[L(x(t), u(t)) + Γ(x(t), u(t)) − V ′

∆f (x(t))F0(x(t), u(t))]dt,

(12.119)
and where u(·) is admissible and x(t), t ≥ 0, solves (12.107) with
F (x(t), u(t)) = F0(x(t), u(t)). In addition, if x0 ∈ D0 then the feedback
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control u(·) = φ(x(·)) minimizes J (x0, u(·)) in the sense that

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)). (12.120)

Finally, if D = Rn, U = Rm, and

V (x) → ∞ as ‖x‖ → ∞, (12.121)

then the zero solution x(t) ≡ 0 of the closed-loop system (12.108) is globally
asymptotically stable for all F (·) ∈ F .

Proof. Local and global asymptotic stability are a direct consequence
of (12.110)–(12.114) and (12.121) by applying Theorem 12.4 to the closed-
loop system (12.108). Furthermore, using (12.115), condition (12.118) is
a restatement of (12.43) as applied to the closed-loop system. Next, let
u(·) ∈ S(x0) and let x(·) be the solution of (12.107) with F (·, ·) = F0(·, ·).
Then it follows that

0 = −V̇ (x(t)) + V ′(x(t))F0(x(t), u(t)).

Hence

L(x(t), u(t)) + Γ(x(t), u(t))

= −V̇ (x(t)) + L(x(t), u(t)) + V ′(x(t))F0(x(t), u(t)) + Γ(x(t), u(t))

= −V̇ (x(t)) +H(x(t), u(t)) + V ′
∆f (x(t))F0(x(t), u(t)).

Now, using (12.117) and (12.119) and the fact that u(·) ∈ S(x0), it follows
that

J (x0, u(·)) =

∫ ∞

0
[−V̇ (x(t)) +H(x(t), u(t))]dt

= − lim
t→∞

V (x(t)) + V (x0) +

∫ ∞

0
H(x(t), u(t))dt

= V (x0) +

∫ ∞

0
H(x(t), u(t))dt

≥ V (x0)

= J (x0, φ(x(·)),
which yields (12.120).

If V∆f (x) = 0 and F consists of only the nominal nonlinear closed-loop
system F0(·, ·), then Γ(x, u) = 0 for all x ∈ D and u ∈ U satisfies (12.113),
and hence, Jf (x0, u(·)) = J(x0, u(·)). In this case, Theorem 12.7 specializes
to Theorem 8.2. Alternatively, setting V∆f (x) = 0 and allowing F (·, ·) ∈ F ,
Theorem 12.7 specializes to Theorem 11.2.

Next, we specialize Theorem 12.7 to linear uncertain systems and pro-
vide connections to the parameter-dependent Lyapunov bounding synthesis
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framework developed by Haddad and Bernstein [145, 151]. Specifically, in
this case we consider F to be the set of uncertain linear systems given by

F = {(A+ ∆A)x+Bu : x ∈ Rn, A ∈ Rn×n, B ∈ Rn×m,∆A ∈ ∆A},
where ∆A ⊂ Rn×n is a given bounded uncertainty set of the uncertain
perturbation ∆A of the nominal system A such that 0 ∈ ∆A. For the
following result let R1 ∈ Pn and R2 ∈ Pm be given.

Corollary 12.3. Consider the linear uncertain controlled dynamical
system

ẋ(t) = (A+ ∆A)x(t) +Bu(t), x(0) = x0, t ≥ 0, (12.122)

with performance functional

J∆A(x0, u(·)) △
=

∫ ∞

0
[xT(t)R1x(t) + uT(t)R2u(t)]dt, (12.123)

where u(·) is admissible and ∆A ∈ ∆A. Furthermore, assume there exist
P ∈ Pn, Ωxx : Pn → Nn, Ωxu : Pn → Rn×m, Ωuu : Pn → Nm, and P0 : ∆A →
Sn such that

∆ATP + P∆A ≤ Ωxx(P ) − [(A+ ∆A−BR−1
2a Pa)

TP0(∆A)

+P0(∆A)(A + ∆A−BR−1
2a Pa)] − PT

a R
−1
2a ΩT

xu(P )

−Ωxu(P )R−1
2a Pa + PT

a R
−1
2a Ωuu(P )R−1

2a Pa, (12.124)

and
0 = ATP + PA+R1 + Ωxx(P ) − PT

a R
−1
2a Pa, (12.125)

where R2a
△
= R2 +Ωuu(P ) and Pa

△
= BTP +ΩT

xu(P ). Then the zero solution
x(t) ≡ 0 to (12.122) is globally asymptotically stable for all x0 ∈ Rn and

∆A ∈ ∆A, with the feedback control u = φ(x)
△
= −R−1

2a Pax, and

sup
∆A∈∆A

J∆A(x0, φ(x(·))) ≤ sup
∆A∈∆A

J (x0, φ(x(·)))

= xT
0 Px0 + sup

∆A∈∆A

xT
0 P0(∆A)x0, (12.126)

where

J (x0, u(·)) △
=

∫ ∞

0
[xT(t)(R1 + Ωxx(P ) −ATP0(∆A) − P0(∆A)A)x(t)

+uT(t)R2u(t)]dt, (12.127)

and where u(·) is admissible and x(t), t ≥ 0, solves (12.122) with ∆A = 0.
Furthermore,

J (x0, φ(x(·)) = min
u(·)∈S(x0)

J (x0, u(·)), (12.128)

where S(x0) is the set of regulation controllers for the nominal system and
x0 ∈ Rn. If, in addition, there exists P 0 ∈ Sn such that P0(∆A) ≤ P 0,
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∆A ∈ ∆A, then

sup
∆A∈∆A

J∆A(x0, φ(x(·))) ≤ xT
0 (P + P 0)x0. (12.129)

Proof. The result is a direct consequence of Theorem 12.7 with
F (x, u) = (A+∆A)x+(B+∆B)u, F0(x, u) = Ax+Bu, L(x, u) = xTR1x+
uTR2u, VI(x) = xTPx, V∆f (x) = xTP0(∆A)x, Γ(x, u) = xTΩxx(P )x +
2xTΩxu(P )u + uTΩuu(P )u, D = Rn, and U = Rm. Specifically, conditions
(12.110) and (12.111) are trivially satisfied. Now, forming xT(12.124)x
it follows that, after some algebraic manipulation, V ′(x)F (x, φ(x)) ≤
V ′

I (x)F0(x, φ(x))+Γ(x, φ(x)), for all ∆A ∈ ∆A. Furthermore, it follows from
(12.125) that H(x, φ(x)) = 0, and hence, V ′

I (x)F0(x, φ(x)) + Γ(x, φ(x)) < 0
for all x 6= 0. Thus, H(x, u) = H(x, u) −H(x, φ(x)) = [u − φ(x)]TR2a[u −
φ(x)] ≥ 0 so that all the conditions of Theorem 12.7 are satisfied.
Finally, since V (x) is radially unbounded (12.122), with u(t) = φ(x(t)) =
−R−1

2a Pax(t), is globally asymptotically stable for all ∆A ∈ ∆A.

The optimal feedback control law φ(x) in Corollary 12.3 is derived
using the properties of H(x, u) as defined in Theorem 12.7. Specifically,
since H(x, u) = xT(ATP + PA + R1 + Ωxx(P ))x + uTR2au + 2xTPT

a u it
follows that ∂2H/∂u2 = R2a > 0. Now, ∂H/∂u = 2R2au + 2Pax = 0 gives
the unique global minimum of H(x, u). Hence, since φ(x) minimizes H(x, u)
it follows that φ(x) satisfies ∂H/∂u = 0 or, equivalently, φ(x) = −R−1

2a Pax.

In order to make explicit connections with linear robust control, we
now assign explicit structure to the set ∆A and the bounding functions
Ωxx(·), Ωxu(·), and Ωuu(·). Specifically, the uncertainty set ∆A is assumed
to be of the form

∆A
△
= {∆A : ∆A = B0FC0, F ∈ ∆}, (12.130)

where ∆ satisfies

∆ ⊆ ∆bs = {F ∈ Rs×s : M1 ≤ F ≤M2},
and where B0 ∈ Rn×s, C0 ∈ Rs×n, are fixed matrices denoting the structure
of the uncertainty, F ∈ Ss is a symmetric uncertain matrix, and M1,M2 ∈ Ss

are the uncertainty bounds such that M
△
= M2 −M1 ∈ Ps.

Next, let

Ωxx(P ) = (C̃ +BT
0 P )TR−1

0 (C̃ +BT
0 P ) +CT

0 M1B
T
0 P + PB0M1C0,

Ωxu(P ) = (C̃ +BT
0 P )TR−1

0 NC0B,

Ωuu(P ) = BTCT
0 N

TR−1
0 NC0B,

where C̃
△
= HC0 + NC0(A + B0M1C0) and R0

△
= (HM−1 − NC0B0) +
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(HM−1 − NC0B0)
T. Furthermore, let P0(F ) = CT

0 FsNC0, where Fs
△
=

F −M1. Now, note that for all H ∈ Hp and N ∈ Ns,

0 ≤ [(C̃ +BT
0 P −BR−1

2a Pa) −R0FsC0]
TR−1

0 [(C̃ +BT
0 P −BR−1

2a Pa)

−R0FsC0] + 2CT
0 (Fs − FsM

−1Fs)C0,

which further implies

0 ≤ Ωxx(P ) − PT
a R

−1
2a ΩT

xu(P ) − ΩT
xu(P )R−1

2a Pa + PT
a R

−1
2a Ωuu(P )R−1

2a Pa

−ATCT
0 N

TFsC0 − CT
0 FsNC0A−CT

0 M1B
T
0 C

T
0 N

TFsC0

−CT
0 FsNC0B0M1C0 + PT

a R
−1
2a B

TCT
0 N

TFsC0 + CT
0 FsNC0BR

−1
2a Pa

−CT
0 FB

T
0 P − PB0FC0 − CT

0 FsNC0B0FsC0 − CT
0 FsB

T
0 C

T
0 N

TFsC0

= Ωxx(P ) − [(A+ ∆A−BR−1
2a Pa)

TP0(F ) + P0(F )(A+ ∆A−BR−1
2a Pa)]

−PT
a R

−1
2a ΩT

xu(P ) − Ωxu(P )R−1
2a Pa + PT

a R
−1
2a Ωuu(P )R−1

2a Pa

−(∆ATP + P∆A), (12.131)

and hence, (12.124) holds. Furthermore, (12.125) specializes to

0 = AT
PP + PAP +R1 + C̃TR−1

0 C̃ + PB0R
−1
0 BT

0 P − PT
a R

−1
2a Pa, (12.132)

whereAP
△
= A+B0M1C0+BR

−1
0 C̃ and Pa andR2a specialize to Pa = BTP+

BTCT
0 N

TR−1
0 (C̃+BT

0 P ) and R2a = R2+B
TCT

0 N
TR−1

0 NC0B, respectively.
In this case, the optimal feedback law is given by φ(x) = −R−1

2a Pax. This
corresponds to the results obtained by Haddad and Bernstein [145,151] for
full-state feedback control.

12.5 Robust Control for Nonlinear Uncertain Affine Systems

In this section, we specialize Theorem 12.7 to affine (in the control) uncertain
systems of the form

ẋ(t) = f0(x(t))+∆f(x(t))+G0(x(t))u(t), x(0) = x0, t ≥ 0, (12.133)

where f0 : Rn → Rn satisfies f0(0) = 0, G0 : Rn → Rn×m, D = Rn, U = Rm,
and ∆f ∈ ∆. Furthermore, we consider performance integrands L(x, u) of
the form

L(x, u) = L1(x) + uTR2(x)u, (12.134)

where L1 : Rn → R and R2 : Rn → Pm so that (12.109) becomes

J(x0, u(·)) =

∫ ∞

0
[L1(x(t)) + uT(t)R2(x)u(t)]dt. (12.135)

Corollary 12.4. Consider the nonlinear uncertain controlled affine
system (12.133) with performance functional (12.135). Assume there exist
functions VI, V∆f , V : Rn → R, Γxx : Rn → R, Γxu : Rn → R1×m, and



NonlinearBook10pt November 20, 2007

STRUCTURED PARAMETRIC UNCERTAINTY 749

Γuu : Rn → Nm, where VI(·), V∆f (·) are continuously differentiable such
that VI(x) + V∆f (x) = V (x), x ∈ Rn, and

V (0) = 0, (12.136)

Γxu(0) = 0, (12.137)

V (x) > 0, x ∈ Rn, x 6= 0, (12.138)

V ′(x)∆f(x) − V ′
∆f (x)[f0(x) − 1

2G(x)R−1
2a (x)Va(x)] ≤ Γxx(x)

−1
2Γxu(x)R−1

2a (x)Va(x) + 1
4V

T
a (x)R−1

2a (x)Γuu(x)R−1
2a (x)Va(x), ∆f(·) ∈ ∆,

(12.139)

V ′
I (x)[f0(x) − 1

2G(x)R−1
2a (x)Va(x)] + Γxx(x) − 1

2Γxu(x)R−1
2a (x)Va(x)

+1
4V

T
a (x)R−1

2a (x)Γuu(x)R−1
2a (x)Va(x) < 0, x ∈ Rn, x 6= 0, (12.140)

and
V (x) → ∞ as ‖x‖ → ∞, (12.141)

where R2a(x)
△
= R2(x) + Γuu(x) and Va(x)

△
= [Γxu(x) + V ′

I (x)G(x)]T. Then
the zero solution x(t) ≡ 0 of the nonlinear uncertain system (12.133) is
globally asymptotically stable for all ∆f (·) ∈ ∆ with the feedback control
law

φ(x) = −1
2R

−1
2a (x)Va(x), (12.142)

and the performance functional (12.135) satisfies

sup
∆f∈∆

J(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = V (x0), (12.143)

where

J (x0, u(·)) △
=

∫ ∞

0
[L(x(t), u(t)) + Γ(x(t), u(t))

−V ′
∆f (x(t))(f0(x(t)) +G(x(t))u(t))]dt, (12.144)

and
Γ(x, u) = Γxx(x) + Γxu(x)u+ uTΓuu(x)u, (12.145)

where u(·) is admissible, and x(t), t ≥ 0, solves (12.133) with ∆f(x) = 0.
In addition, the performance functional (12.144), with

L1(x) = φT(x)R2a(x)φ(x) − V ′
I (x)f0(x) − Γxx(x), (12.146)

is minimized in the sense that

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)). (12.147)

Proof. The result is a direct consequence of Theorem 12.7 with D =
Rn, U = Rm, F0(x, u) = f0(x) +G0(x)u, F (x, u) = f0(x) + ∆f(x) +G(x)u,
L(x, u) given by (12.134), and Γ(x, u) given by (12.145). Specifically, with
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(12.133), (12.134), and (12.145), the Hamiltonian has the form

H(x, u) = L1(x) + uTR2(x)u+ V ′
I (x)(f0(x) +G(x)u)

+Γxx(x) + Γxu(x)u+ uTΓuu(x)u.

Now, the proof follows as in the proof of Corollary 11.4.

12.6 Robust Nonlinear Controllers with Polynomial

Performance Criteria

In this section, we specialize the results of Section 12.4 to linear uncertain
systems controlled by nonlinear controllers that minimize a polynomial cost
functional. Specifically, assume F to be the set of uncertain systems given
by

F = {(A+ ∆A)x+Bu : x ∈ Rn, u ∈ Rm, A ∈ Rn×n, B ∈ Rn×m,∆A ∈ ∆A},
where ∆A ⊂ Rn×n is a given bounded uncertainty set of the uncertain
perturbation ∆A of the nominal system A such that 0 ∈ ∆A. For the
following result let R1 ∈ Pn, R2 ∈ Pm, and R̂k ∈ Nn, k = 2, . . . , r, be given
where r is a positive integer.

Theorem 12.8. Consider the linear uncertain controlled system

ẋ(t) = (A+ ∆A)x(t) +Bu(t), x(0) = x0, t ≥ 0, (12.148)

where u(·) is admissible and ∆A ∈ ∆A. Assume there exist functions Ω :
Nn → Nn, Ωxx : Pn → Nn, Ωxu : Pn → Rn×m, Ωuu : Pn → Nm, and
P0 : ∆A → Sn, such that

∆ATP + P∆A ≤ Ω(P ), ∆A ∈ ∆A, P ∈ Nn, (12.149)

and assume there exist P ∈ Pn and Yk ∈ Nn, k = 2, . . . , r, such that

∆ATP + P∆A ≤ Ωxx(P ) − [(A+ ∆A−BR−1
2a Pa)

TP0(∆A)

+P0(∆A)(A + ∆A−BR−1
2a Pa)] − PT

a R
−1
2a ΩT

xu(P )

−Ωxu(P )R−1
2a Pa + PT

a R
−1
2a Ωuu(P )R−1

2a Pa, (12.150)

0 = ATP + PA+R1 + Ωxx(P ) − PT
a R

−1
2a Pa, (12.151)

and

0 = (A−BR−1
2a Pa)

TYk + Yk(A−BR−1
2a Pa) + R̂k + Ω(Yk), k = 2, . . . , r.

(12.152)
Then, with the feedback control law

u = φ(x)
△
= −R−1

2a

(

Pa +

r
∑

k=2

(xTYkx)
k−1BTYk

)

x,
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the zero solution of the uncertain system (12.148) is globally asymptotically
stable for all x0 ∈ Rn and ∆A ∈ ∆A, and the performance functional
(12.144) satisfies

J∆A(x0, φ(x(·))) ≤ J (x0, φ(x(·)))

= xT
0 (P + P0(∆A))x0 +

r
∑

k=2

1
k (xT

0 Ykx0)
k, ∆A ∈ ∆A,

(12.153)

where

J (x0, u(·)) △
=

∫ ∞

0
[L(x, u) + Γ(x, u)− xT(t)(ATP0(∆A) +P0(∆A)A)x(t)]dt,

(12.154)
and where u(·) is admissible, and x(t), t ≥ 0, solves (12.148) with ∆A = 0
and

Γ(x, u) = xT

(

Ωxx(P ) +

r
∑

k=2

(xTYkx)
k−1Ω(Yk)

)

x

+2xTΩxu(P )u+ uTΩuu(P )u,

where u(·) is admissible and ∆A ∈ ∆A. In addition, the performance
functional (12.144), with R2(x) = R2 and

L1(x) = xT

(

R1 +

r
∑

k=2

(xTYkx)
k−1R̂k +

[

r
∑

k=2

(xTYkx)
k−1BTYk

]T

R−1
2a

·
[

r
∑

k=2

(xTYkx)
k−1BTYk

])

x,

is minimized in the sense that

J (x0, φ(x(·)) = min
u(·)∈S(x0)

J (x0, u(·)), (12.155)

where S(x0) is the set of regulation controllers for the nominal system and
x0 ∈ Rn.

Proof. The result is a direct consequence of Corollary 12.4 with
f0(x) = Ax, ∆f(x) = ∆Ax, G0(x) = B, VI(x) = xTPx+

∑r
k=2(

1
k )(xTYkx)

k,

and V∆f (x) = xTP0(∆A)x.

The Lyapunov function that establishes robust stability in Theorem
12.8 is given by

V (x) = xTPx+

r
∑

k=2

1
k (xTYkx)

k + xTP0(∆A)x
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and, hence, is explicitly dependent on the uncertain parameters ∆A. In the
terminology of [145,151], this is a parameter-dependent Lyapunov function.
As discussed in Section 12.1 and [145, 151] the ability of such Lyapunov
functions to guarantee stability with respect to time-varying parameter
variations is curtailed, thus reducing conservatism with respect to constant
real parameter uncertainty.

Theorem 12.8 requires the solutions of r−1 modified Riccati equations
in (12.152) to obtain the optimal robust controller. However, if R̂k = R̂2,
k = 3, . . . , r, then Yk = Y2, k = 3, . . . , r, satisfies (12.152). In this case,
we require the solution of one modified Riccati equation in (12.152). This
special case is considered in Corollary 12.5 below.

As in Chapters 10 and 11 the performance functional can be written
as

J∆A(x0, u(·)) =
∫ ∞

0

[

xT(R1 +
r
∑

k=2

(xTYkx)
k−1R̂k)x+ uTR2u+ φT

NL(x)R2aφNL(x)

]

dt,

where φNL(x) is the nonlinear part of the optimal feedback control

φ(x) = φL(x) + φNL(x),

where φL(x)
△
= −R−1

2a Pax and φNL
△
= −R−1

2a B
T
∑r

k=2(x
TYkx)

k−1Ykx.

Next, we consider the special case in which r = 2. In this case, note
that if there exist P ∈ Pn and Y2 ∈ Nn such that

0 = ATP + PA+R1 + Ωxx(P ) − PaR
−1
2a Pa

and
0 = (A−BR−1

2a Pa)
TY2 + Y2(A−BR−1

2a Pa) + R̂2 + Ω(Y2),

then (12.148), with the performance functional

J∆A(x0, u(·)) =

∫ ∞

0
[xTR1x+ uTR2u+ (xTY2x)(x

TR̂2x)

+(xTY2x)
2(xTY2BR

−1
2a B

TY2x)]dt,

is globally asymptotically stable for all x0 ∈ Rn with the feedback control
law u = φ(x) = −R−1

2a (Pa + (xTY2x)B
TY2)x.

Finally, using the uncertainty characterization given by (12.130) we
present a specialization of Theorem 12.8.

Corollary 12.5. Consider the uncertain controlled system

ẋ(t) = (A+ ∆A)x(t) +Bu(t), x(0) = x0, t ≥ 0, (12.156)
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where u(·) is admissible and ∆A ∈ ∆A, where ∆A is given by (12.130).
Assume H ∈ Hp and N ∈ Nnd and suppose there exist P ∈ Pn and Y2 ∈ Nn

such that

0 = AT
PP + PAP +R1 + C̃TR−1

0 C̃ + PB0R
−1
0 BT

0 P − PT
a R

−1
2a Pa, (12.157)

0 = (AY2
−BR−1

2a Pa)
TY2 + Y2(AY2

−BR−1
2a Pa) + R̂2 + 1

2C
T
0 MC0

+1
2Y2B0MB0Y2, (12.158)

where AY2

△
= A + 1

2B0(M1 + M2)C0. Then, with the feedback control law

u = φ(x) = −R−1
2 BT(P +

∑r
k=2(x

TY2x)
k−1Y2)x, the zero solution x(t) ≡ 0

of the uncertain system (12.156) is globally asymptotically stable for all
x0 ∈ Rn and ∆A ∈ ∆A, and the performance functional (12.144) satisfies

J∆A(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = xT
0 (P + P0(∆A))x0

+
r
∑

k=2

1
k (xT

0 Ykx0)
k, ∆A ∈ ∆A, (12.159)

where

J (x0, u(·)) △
=

∫ ∞

0
[L(x, u) + Γ(x, u)− xT(t)(ATP0(∆A) +P0(∆A)A)x(t)]dt,

(12.160)
and where u(·) is admissible, and x(t), t ≥ 0, solves (12.156) with ∆A = 0
and

Γ(x, u) = xT

[

(C̃ +BT
0 P )TR−1

0 (C̃ +BT
0 P )

+1
2

r
∑

k=2

(xTY2x)
k−1(C0 +BT

0 Y2)
TM(C0 +BT

0 Y2)

]

x

+2xTBTCT
0 N

TR−1
0 (C̃ +BT

0 P )u+ uTBT
0 C

T
0 N

TR−1
0 NC0Bu.

In addition, the performance functional (12.144), with R2(x) = R2 and

L1(x) =

xT



R1 +

r
∑

k=2

(xTY2x)
k−1R̂2 +

(

r
∑

k=2

(xTY2x)
k−1

)2

Y2BR
−1
2a B

TY2



x,

is minimized in the sense that

J (x0, φ(x(·)) = min
u(·)∈S(x0)

J (x0, u(·)), (12.161)

where S(x0) is the set of regulation controllers for the nominal system and
x0 ∈ Rn.

Proof. The result is a direct consequence of Theorem 12.8 with
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Ωxx(P ) = (C̃+BT
0 P )TR−1

0 (C̃+BT
0 P )+CT

0 M1B
T
0 P +PB0M1C0, Ωxu(P ) =

BTCT
0 N

TR−1
0 (C̃ +BT

0 P ), Ωuu(P ) = BTCT
0 N

TR−1
0 NC0B, Ω(Y2) = 1

2(C0 +

BT
0 Y2)

TM(C0+BT
0 Y2)+C

T
0 M1B

T
0 Y2+Y2B0M1C0, and P0(F ) = CT

0 FsNC0.
In this case, as was shown in (12.131) and (12.150) holds. Furthermore, for
all ∆A ∈ ∆A it follows that

0 ≤ 1
2 [(C0 +BT

0 Y2) − 2M−1FsC0]
TM [(C0 +BT

0 Y2) − 2M−1FsC0]

+2CT
0 [Fs − FsM

−1Fs]C0

= Ω(Y2) − CT
0 FB

T
0 Y2 − Y2B0FC0

= Ω(Y2) − [∆ATY2 + Y2∆A],

and hence, (12.149) holds. The result now follows as a direct consequence
of Theorem 12.8.

12.7 Robust Nonlinear Controllers with Multilinear

Performance Criteria

In this section, we specialize the results of Section 12.5 to linear uncertain
systems controlled by nonlinear controllers that minimize a multilinear cost
functional. Specifically, we assume F to be the set of uncertain linear
systems given by

F = {(A+ ∆A)x+Bu : x ∈ Rn, u ∈ Rm, A ∈ Rn×n, B ∈ Rn×m,∆A ∈ ∆A},
where ∆A ⊂ Rn×n is a given bounded uncertainty set of the uncertain
perturbation ∆A of the nominal system A such that 0 ∈ ∆A. For the
following let R1 ∈ Pn, R2 ∈ Pm, and R̂2ν ∈ N (2ν,n), ν = 2, . . . , r, be given
where r is a given integer.

Theorem 12.9. Consider the uncertain controlled system

ẋ(t) = (A+ ∆A)x(t) +Bu(t), x(0) = x0, t ≥ 0, (12.162)

where u(·) is admissible and ∆A ∈ ∆A. Assume there exist Ωxx : Nn → Nn,

Ωxu : Nn → Rn×m, Ωuu : Nn → Nm, P0 : ∆A → Sn, P ∈ Pn, Ω̂ν : N (2ν,n) →
N (2ν,n), and P̂ν ∈ N (2ν,n), ν = 2, . . . , r, such that

∆ATP + P∆A ≤ Ωxx(P ) − [(A+ ∆A−BR−1
2a Pa)

TP0(∆A) + P0(∆A)

·(A+ ∆A−BR−1
2a Pa)] − PT

a R
−1
2a ΩT

xu(P ) (12.163)

−Ωxu(P )R−1
2a Pa + PT

a R
−1
2a Ωuu(P )R−1

2a Pa, ∆A ∈ ∆A,

Ω̂ν(P̂ν) − P̂ν(
2ν

⊕ ∆A) ∈ N (2ν,n), ∆A ∈ ∆A, ν = 2, . . . , r, (12.164)

0 = ATP + PA+R1 + Ωxx(P ) − PT
a R

−1
2a Pa, (12.165)

and

0 = P̂ν [
2ν

⊕ (A−BR−1
2a Pa)] + R̂2ν + Ω̂ν(P̂ν), ν = 2, . . . , r. (12.166)
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Then, with the feedback control law u = φ(x)
△
= −R−1

2a (Pax + 1
2B

Tg′T(x)),

where g(x) =
∑r

ν=2 P̂νx
[2ν], the zero solution x(t) ≡ 0 of the uncertain

system (12.162) is globally asymptotically stable for all x0 ∈ Rn and ∆A ∈
∆A, and the performance functional (12.144) satisfies

J∆A(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = xT
0 (P + P0(∆A)x0 +

r
∑

k=2

P̂νx
[2ν]
0 ,

∆A ∈ ∆A, (12.167)

where

J (x0, u(·)) △
=

∫ ∞

0
[L(x, u) + Γ(x, u)− xT(t)(ATP0(∆A) +P0(∆A)A)x(t)]dt,

(12.168)
and where u(·) is admissible, and x(t), t ≥ 0, solves (12.162) with ∆A = 0
and

Γ(x, u) = xTΩxx(P )x+ 2xTΩxu(P )u+ uTΩuu(P )u+

r
∑

ν=2

Ω̂ν(P̂ν)x[2ν],

where u(·) is admissible, ∆A ∈ ∆A. In addition, the performance functional
(12.144), with R2(x) = R2 and

L(x, u) = xTR1x+

r
∑

ν=2

R̂2νx
[2ν] + 1

4g
′(x)BR−1

2a B
Tg′T(x)

is minimized in the sense that

J (x0, φ(x(·)) = min
u(·)∈S(x0)

J (x0, u(·)), (12.169)

where S(x0) is the set of regulation controllers for the nominal system and
x0 ∈ Rn.

Proof. The result is a direct consequence of Corollary 12.4 with
f0(x) = Ax, ∆f(x) = ∆Ax, G0(x) = B, VI(x) = xTPx +

∑r
ν=2 P̂νx

[2ν],
and V∆f (x) = xTP0(∆A)x.

12.8 Problems

Problem 12.1. Consider the subset ∆ ⊆ ∆bs consisting of sector-
bounded matrices

∆
△
= {∆ ∈ ∆bs : 2(∆−M1)

∗(M2−M1)
−1(∆−M1) ≤ (∆−M1)+(∆−M1)

∗},
(12.170)

where M1,M2 ∈ ∆bs are Hermitian matrices such that M
△
= M2 −M1 is

positive definite. Let ∆ ∈ ∆bs. Show that the following statements are
equivalent:
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i) ∆ ∈ ∆.

ii)

[

He ∆ −M1 ∆∗ −M1

∆ −M1 M

]

≥ 0.

iii)

[

He ∆ −M1 ∆ −M1

∆∗ −M1 M

]

≥ 0.

iv)

[

He ∆ −M Sh ∆
−Sh ∆ M2 − He ∆

]

≥ 0.

If, in addition, det(M2 − He ∆) 6= 0, show that

v) M1 −Sh ∆(M2 −He ∆)−1Sh ∆ ≤ He ∆ ≤M2, is equivalent to i)–iv).

Furthermore, show that if ∆ ∈ ∆, then the following statements hold:

vi) M1 ≤ He ∆ ≤M2.

vii) σmax(∆) ≤ σmax(M) + σmax(M1).

Finally, show that ∆ ∈ ∆ if and only if ∆∗ ∈ ∆ and in the case ∆ = ∆∗ for
all ∆ ∈ ∆ then ∆ ∈ ∆ if and only if M1 ≤ ∆ ≤M2.

Problem 12.2. Let Z(·) ∈ Z, let ω ∈ R ∪ ∞, and suppose det(I +
G(ω)M1) 6= 0. Show that if (12.17) holds, then det(I + G(ω)∆) 6= 0 for
all ∆ ∈ ∆, where ∆ is given by (12.170).

Problem 12.3. Consider ∆bs given by (12.24) with r = 0. Let
G(ω) ∈ Cm×m be such that G(ω)∆ = ∆G(ω) for all ∆ ∈ ∆bs. Show
that µ(G(ω) = ρ(G(ω)), where ρ(·) denotes the spectral radius.

Problem 12.4. Let G(ω) ∈ Cm×m. Show that

ρ(G(ω)) = inf
D∈D

σmax(DG(ω)D−1),

where D △
= {D ∈ Cm×m : det D 6= 0}. Using this result show that for

∆bs = {∆ ∈ Cm×m : ∆ = δIm, δ ∈ C}, µ(G(ω)) given by (12.29) is
nonconservative.

Problem 12.5. Let G(ω) ∈ Cm×m be such that G(ω) ≥ 0, ω ∈ R.
Show that µ(G(ω)) = infD∈D σmax(DG(ω)D−1) for every D.
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Problem 12.6. Let ω ∈ R and define

ρR(G(ω))
△
=

{

max{|λ| : λ ∈ spec(G(ω)) ∩ R}, if spec(G(ω)) ∩ R 6= Ø,
0, otherwise.

Show that ρR(G(ω)) ≤ µ(G(ω)). Furthermore, show that if r = 0 in ∆bs,
then ρ(G(ω)) ≤ µ(G(ω)).

Problem 12.7. Let ∆ ∈ ∆bs, where

∆bs = {∆ ∈ Rm×m : ∆ = diag[δ1, δ2, . . . , δm], δi ∈ R, i = 1, . . . ,m}.
(12.171)

Define the frequency-dependent scaling matrix functions in D and N corre-
sponding to small gain (Dsg, Nsg), Popov (DP, NP) [151, 172], monotonic
(DRC, NRC) [172, 328, 331], odd-monotonic (DRLC, NRLC) [172, 328, 331],
generalized odd-monotonic (DGRLC, NGRLC) [425, 428], and LC multipliers
(DLC, NLC) [71], respectively, by

Dsg
△
= {D ∈ Rm×m : D = I},

Nsg
△
= {N ∈ Rm×m : N = 0},

DP
△
= {D ∈ Rm×m : D = diag(αi0), 0 < αi0 ∈ R, i = 1, . . . ,m},

NP
△
= {N : R → Rm×m : N(ω) = diag(−ωβi0), βi0 ∈ R, i = 1, . . . ,m},

DRC
△
= {D : R → Rm×m : D(ω) = DP + diag

(

∑mi1

j=1 αij(1 − αijηij

βij(ω2+η2
ij)

)

)

,

0 ≤ αij , βij , ηij ∈ R, ηijβij − αij ≤ 0,

i = 1, . . . ,m; j = 1, . . . ,mi1 ,DP ∈ DP},

NRC
△
= {N : R → Rm×m : N(ω) = NP(ω) + diag

(

∑mi1

j=1 −
α2

ijω

βij(ω2+η2
ij)

)

,

0 ≤ αij , βij , ηij ∈ R, ηijβij − αij ≤ 0,

i = 1, . . . ,m; j = 1, . . . ,mi1 ,NP(·) ∈ NP},

DRLC
△
= {D : R → Rm×m : D(ω) = diag

(

∑mi2

j=mi1+1 αij(1 + αijηij

βij(ω2+η2
ij)

)

)

+DRC(ω), 0 ≤ αij , βij , ηij ∈ R,

i = 1, . . . ,m; j = mi1 + 1, . . . ,mi2 ,DRC(·) ∈ DRC},

NRLC
△
= {N : R → Rm×m : N(ω) = diag

(

∑mi2

j=mi1+1
α2

ijω

βij(ω2+η2
ij)

)

,

+NRC(ω), 0 ≤ αij , βij , ηij ∈ R,

i = 1, . . . ,m; j = mi1 + 1, . . . ,mi2 ,NRC(·) ∈ NRC},
DGRLC

△
= {D : R → Rm×m : D(ω) = DRLC(ω)
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+ diag

(

∑mi3

j=mi2+1 αij
ω4+ω2(aijλij−bij−ηij)+bijηij

(ηij−ω2)2+λ2
ijω2

)

,

aij ∈ R, 0 ≤ αij , βij , ηij ∈ R, aijλij − bij − ηij ≥ 0,

i = 1, . . . ,m; j = mi2 + 1, . . . ,mi3 ,DRLC(·) ∈ DRLC},
NGRLC

△
= {N : R → Rm×m : N(ω) = NRLC(ω)

+ diag

(

∑mi3

j=mi2+1 −ωαij
ω2(aij−λij)+(aijηij−λijbij)

(ηij−ω2)2+λ2
ijω

2

)

,

aij ∈ R, 0 ≤ αij , βij , ηij ∈ R, aijλij − bij − ηij ≥ 0,

i = 1, . . . ,m; j = mi2 + 1, . . . ,mi3 ,NRLC(·) ∈ NRLC},
DLC

△
= {D ∈ Rm×m : D = 0},

NLC
△
= {N : R → Rm×m : N(ω) = diag(∓ω±1 Π(α2

i−ω2)
Π(β2

i −ω2) ),

αi, βi ∈ R, βi 6= 0, i = 1, . . . ,m}.

Show that for G(ω)) ∈ Cm×m

µ(G(ω)) ≤ µ(G(ω)) ≤ µGRLC(G(ω)) ≤ µRLC(G(ω))

≤ µRC(G(ω)) ≤ µP(G(ω)) ≤ µsg(G(ω)), (12.172)

where µi(G(ω)), for i = GRLC, RLC, P, and sg, corresponds to µ bounds
predicated on fixed frequency-dependent scaling functions Di and Ni. What
can you say about µLC(G(ω)) with respect to the above ordering?

Problem 12.8. Let β > 0, G(ω) ∈ Cm×m, D(·) ∈ D, N(·) ∈ N , and
define

X (D,N, β)
△
= G∗(ω)DG(ω) + (NG(ω) −G∗(ω)N) − βD,

Φ(D,N)
△
= inf{η > 0 : X (D,N, η) < 0}.

Show that there exist D(·) ∈ D and N(·) ∈ N such that Φ(D,N) < η if and
only if X (D,N, η) < 0.

Problem 12.9. A functional f on a vector space H is quasiconvex if,
for all α ∈ [0, 1] and H, Ĥ ∈ H, f(αH + (1 − α)Ĥ) ≤ max{f(H), f(Ĥ)}.
Show that Φ(D,N) defined by (12.173) is quasiconvex on D ×N .

Problem 12.10. Consider the linear uncertain system (12.74) where
∆A ∈ ∆A and ∆A is given by

∆A
△
= {∆A ∈ Rn×n : ∆A = B0FC0, M1 ≤ F ≤M2}. (12.173)

Let X ∈ Rp×p and Y ∈ Nn be such that

B0X
T(F −M1)C0 + CT

0 (F −M1)XB
T
0 ≤ Y, (12.174)
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and let H ∈ Hp and N ∈ Ns be such that

R0
△
= [HM−1 −NC0B0] + [HM−1 −NC0B0]

T > 0, (12.175)

where M
△
= M2 −M1. Show that the functions

Ω0(P ) = [HC0 +NC0(A+B0M1C0) +BT
0 P −XBT

0 ]TR−1
0 [HC0 +NC0(A

+B0M1C0) +BT
0 P −XBT

0 ] + PB0M1C0 + CT
0 M1B

T
0 P + Y,

(12.176)

P0(F ) = CT
0 (F −M1)NC0, (12.177)

satisfy (12.76) with ∆A given by (12.173). Furthermore, show that

Y = B0X
TMXBT

0 + CT
0 MC0, (12.178)

satisfies (12.174) for all X ∈ Rp×p and F ∈ Sp such that M1 ≤ F ≤ M2.
Finally, for the special case of diagonal uncertainty F show that Y =
B0X

TXBT
0 + CT

0 M
2C0 also satisfies (12.174).

Problem 12.11. Consider the linear uncertain system (12.74) where
∆A ∈ ∆A and ∆A is given by (12.173). Let X ∈ Rp×p, Y ∈ Nn, and
H ∈ Hp be such that

B0X
T(F −M1)HC0 +CT

0 H(F −M1)XB
T
0 ≤ Y, (12.179)

and let N ∈ Ns be such that (12.175) holds. Show that the functions

Ω0(P ) = [HC0 +NC0(A+B0M1C0) +H−1BT
0 P −XBT

0 ]TR−1
0 [HC0

+NC0(A+B0M1C0) +H−1BT
0 P −XBT

0 ]

+PB0M1C0 +CT
0 M1B

T
0 P + Y, (12.180)

P0(F ) = CT
0 (F −M1)NC0, (12.181)

satisfy (12.76) with ∆A given by (12.173).

Problem 12.12. Consider the linear uncertain system (12.122) with
∆A ∈ ∆A, where ∆A is given by (12.173), and the performance functional
(12.123). Let H ∈ Hp and N ∈ Nnd be such that (12.175) holds, and let
X ∈ Rp×p and Y ∈ Nn be such that (12.174) is satisfied. Show that the
zero solution x(t) ≡ 0 to (12.122) is globally asymptotically stable for all
∆A ∈ ∆A with the feedback control φ(x) = −R−1

2a Pax, where

R2a
△
= R2 +BTCT

0 NR
−1
0 NC0B,

Pa
△
= BTP +BTCT

0 NR
−1
0 [HC0 +NC0(A+B0M1C0) +BT

0 P −XBT
0 ],

and P > 0 satisfies

0 = AT
PP + PAP +R1 + Y + [HC0 +NC0(A+B0M1C0) −XBT

0 ]TR−1
0

·[HC0 +NC0(A+B0M1C0) −XBT
0 ] + PB0R

−1
0 BT

0 P − PT
a R

−1
2a Pa,
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where AP
△
= A+B0M1C0 +B0R

−1
0 [HC0 +NC0(A+B0M1C0) −XBT

0 ].

Problem 12.13. Consider the linear dynamical system with state
delay given by

ẋ(t) = Ax(t) +Adx(t− τd), x(θ) = φ(θ), −τd ≤ θ ≤ 0, (12.182)

where x(t) ∈ Rn, A ∈ Rn×n, Ad ∈ Rn×n, and φ : [−τd, 0] → Rn is a
continuous vector-valued function specifying the initial state of the system.
Show that the zero solution xt ≡ 0 to (12.182) is globally asymptotically
stable (in the sense of Problem 3.65) for all τd ∈ [0, τ ] if |||DG(s)D−1|||∞ < 1,
where

G(s) ∼





A+QAd τQ (In −Q)Ad

AdA 0 A2
d

In 0 0



 ,

D = diag(D1,D2), D1 > 0, D2 > 0, and Q ∈ Rn×n. Show that the result
also holds if G(s) is replaced by

G(s) ∼





A+Ad τAd τAd

A 0 0
Ad 0 0



 .

Finally, show that in both cases the problem can be represented as a
feedback problem involving an uncertain block-structured operator ∆(s) =
diag(∆1(s),∆2(s)) satisfying |||∆i(s)|||∞ ≤ 1, i = 1, 2.

12.9 Notes and References

The efficacy of parameter-dependent Lyapunov functions for nonconser-
vatively addressing real parameter uncertainty was first conjectured by
Narendra [325] and later rigorously proven by Thathachar and Srinath
[426]. Specifically, Thathachar and Srinath [426] constructed a parameter-
dependent Lyapunov function for proving necessary and sufficient conditions
for robust stability of a linear time-invariant system with a single constant
uncertainty. The proof of this fundamental result stemmed from absolute
stability theory [5, 64, 65, 67, 70, 71, 94, 326, 328–331, 361, 362, 364, 425, 427,
428, 458, 477, 479] and was based on the fact that if the uncertain system
is robustly stable, then there always exists a plant-dependent inductor-
capacitor multiplier such that the tandem connection of the nominal plant
and multiplier is positive real. For further details on this fact see Narendra
and Taylor [331] and How and Haddad [204]. Building on the wealth of
knowledge of absolute stability theory, Haddad and Bernstein [147–149,151,
152] unified and extended classical absolute stability theory for linear time-
invariant dynamical systems with loop nonlinearities to address the modern-
day robust analysis and synthesis problem via parameter-dependent Lya-
punov functions. Potential advantages of parameter-dependent Lyapunov
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functions over “fixed” Lyapunov functions were also discussed by Barmish
and DeMarco [27] and Leal and Gibson [261].

Connections between absolute stability theory and mixed-µ bounds for
real parameter uncertainty were first reported by Haddad, How, Hall, and
Bernstein [170–172] and How and Hall [206], with further extensions given
by Safonov and Chiang [381] and Haddad, Bernstein, and Chellaboina [153].
A direct benefit of this unification resulted in new machinery for mixed-µ
controller synthesis by providing an alternative to the standard multiplier-
controller iteration and curve-fitting procedure [97,203,205,207,381].

Wong [465] was the first to consider the robustness problem with
structured uncertainty, laying down the framework for multivariable stability
and µ theory. Doyle [110] was the first to introduce the term structured
singular value. Building on the work of Wong [465], Safonov and Athans
[380] and Safonov [378] addressed stability margins of diagonally perturbed
multivariable feedback systems and introduced the notion of excess stability
margin; the reciprocal of the structured singular value. The mixed-µ bounds
for diagonal real parameters are due to Fan, Tits, and Doyle [117] while
the mixed-µ bounds for real and complex multiple-block uncertainty with
internal matrix structure are due to Haddad, Bernstein, and Chellaboina
[153]. For a complete historical perspective on the structured singular value
the reader is referred to the editorial by Safonov and Fan [382].

Finally, the presentation of the structured singular value in this
chapter is adopted from Haddad, Bernstein, and Chellaboina [153], while the
presentation of the robust nonlinear-nonquadratic feedback control problem
via parameter-dependent Lyapunov functions is adopted from Haddad and
Chellaboina [156].
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Chapter Thirteen

Stability and Dissipativity Theory for

Discrete-Time Nonlinear

Dynamical Systems

13.1 Introduction

In the first twelve chapters of this book we presented a thorough treatment
of nonlinear analysis and control for continuous-time dynamical systems
using a Lyapunov and dissipative dynamical systems approach. In the next
two chapters we give a condensed review of the same theory for discrete-
time systems. Since the theory for nonlinear discrete-time dynamical
systems closely parallels the theory of nonlinear continuous-time dynamical
systems, many of the results are similar. Hence, the contents in this and
the next chapter are brief, except in those cases where the discrete-time
results deviate markedly from their continuous-time counterparts. Even
though many of the proofs are similar to the continuous-time proofs, for
completeness of exposition we provide a self-contained treatment of the
fundamental discrete-time results.

13.2 Discrete-Time Lyapunov Stability Theory

We begin by considering the general discrete-time nonlinear dynamical
system

x(k + 1) = f(x(k)), x(0) = x0, k ∈ Z+, (13.1)

where x(k) ∈ D ⊆ Rn, k ∈ Z+, is the system state vector, D is an open
set, 0 ∈ D, f : D → D, and f(0) = 0. We assume that f(·) is continuous
on D. Furthermore, we denote the solution to (13.1) with initial condition
x(0) = x0 by s(·, x0), so that the map of the dynamical system given by
s : Z+ × D → D is continuous on D and satisfies the consistency property
s(0, x0) = x0 and the semigroup property s(κ, s(k, x0)) = s(k + κ, x0), for
all x0 ∈ D and k, κ ∈ Z+. For this and the next chapter we use the notation
s(k, x0), k ∈ Z+, and x(k), k ∈ Z+, interchangeably as the solution of the
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nonlinear discrete-time system (13.1) with initial condition x(0) = x0.

Unlike continuous-time dynamical systems, establishing existence and
uniqueness of solutions for discrete-time dynamical systems is straightfor-
ward. To see this, consider the discrete-time dynamical system (13.1) and let
I+

x0
⊆ Z+ be the maximal interval of existence for the solution x(·) of (13.1).

Now, to construct a solution to (13.1) we can construct the solution sequence
or discrete trajectory x(k) = s(k, x0) iteratively by setting x(0) = x0 and
using f(·) to define x(k) recursively by x(k + 1) = f(x(k)). Specifically,

s(0, x0) = x0

s(1, x0) = f(s(0, x0)) = f(x0)

s(2, x0) = f(s(1, x0))

...

s(k, x0) = f(s(k − 1, x0)). (13.2)

If f(·) is continuous, it follows that f(s(k − 1, ·) is also continuous since it
is constructed as a composition of continuous functions. Hence, s(k, ·) is
continuous. If f(·) is such that f : Rn → Rn, this iterative process can be
continued indefinitely, and hence, a solution to (13.1) exists for all k ≥ 0.
Alternatively, if f(·) is such that f : D → Rn, the solution may cease to exist
at some point if f(·) maps x(k) into some point x(k+1) outside the domain
of f(·). In this case, the solution sequence x(k) = s(k, x0) will be defined
on the maximal interval of existence x(k), k ∈ I+

x0
⊂ Z+. Furthermore, note

that the solution sequence x(k), k ∈ I+
x0

, is uniquely defined for a given x0

if f(·) is a continuous function. That is, any other solution sequence y(k)
starting from x0 at k = 0 will take exactly the same values as x(k) and can
be continued to the same interval as x(k). It is important to note that if
k ∈ Z+, uniqueness of solutions backward in time need not necessarily hold.
This is due to the fact that (k, x0) = f−1(s(k+ 1, x0)), k ∈ Z+, and there is
no guarantee that f(·) is invertible for all k ∈ Z+. However, if f : D → D
is a homeomorphism for all k ∈ Z+, then the solution sequence is unique
for all k ∈ Z. Identical arguments can be used to establish existence and
uniqueness of solutions for time-varying discrete-time systems. In light of
the above discussion the following theorem is immediate.

Theorem 13.1. Consider the nonlinear dynamical system (13.1).
Assume that f : D → D is continuous on D. Then for every x0 ∈ D,
there exists I+

x0
⊆ Z+ such that (13.1) has a unique solution x : I+

x0
→ Rn.

Moreover, for each k ∈ I+
x0

, the solution s(k, ·) is continuous. If, in addition,
f(·) is a homeomorphism of D onto Rn, then the solution x : Ix0

→ Rn is
unique in all Ix0

∈ Z and s(k, ·) is continuous for all k ∈ Ix0
. Finally, if

D = Rn, then Ix0
= Z.
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An equilibrium point of (13.1) is a point x ∈ D satisfying f(x) = x or,
equivalently, s(k, x) = x for all k ∈ Z+. Unless otherwise stated, we assume
f(0) = 0 for Ix0

= Z+. The following definition introduces several types
of stability corresponding to the zero solution x(k) ≡ 0 of the discrete-time
system (13.1) for Ix0

= Z+.

Definition 13.1. i) The zero solution x(k) ≡ 0 to (13.1) is Lyapunov
stable if for all ε > 0 there exists δ = δ(ε) > 0 such that if ‖x(0)‖ < δ, then
‖x(k)‖ < ε, k ∈ Z+.

ii) The zero solution x(k) ≡ 0 to (13.1) is asymptotically stable if it
is Lyapunov stable and there exists δ > 0 such that if ‖x(0)‖ < δ, then
limk→∞ x(k) = 0.

iii) The zero solution x(k) ≡ 0 to (13.1) is geometrically stable if there
exist positive constants α, β > 1, and δ such that if ‖x(0)‖ < δ, then
‖x(k)‖ ≤ α‖x(0)‖β−k , k ∈ Z+.

iv) The zero solution x(k) ≡ 0 to (13.1) is globally asymptotically stable
if it is Lyapunov stable and for all x(0) ∈ Rn, limk→∞ x(k) = 0.

v) The zero solution x(k) ≡ 0 to (13.1) is globally geometrically stable if
there exist positive constants α and β > 1 such that ‖x(k)‖ ≤ α‖x(0)‖β−k ,
k ∈ Z+, for all x(0) ∈ Rn.

vi) Finally, the zero solution x(k) ≡ 0 to (13.1) is unstable if it is not
Lyapunov stable.

The following result, known as Lyapunov’s direct method, gives
sufficient conditions for Lyapunov and asymptotic stability of a discrete-
time nonlinear dynamical system.

Theorem 13.2. Consider the discrete-time nonlinear dynamical sys-
tem (13.1) and assume that there exists a continuous function V : D → R

such that

V (0) = 0, (13.3)

V (x) > 0, x ∈ D, x 6= 0, (13.4)

V (f(x)) − V (x) ≤ 0, x ∈ D. (13.5)

Then the zero solution x(k) ≡ 0 to (13.1) is Lyapunov stable. If, in addition,

V (f(x)) − V (x) < 0, x ∈ D, x 6= 0, (13.6)

then the zero solution x(k) ≡ 0 to (13.1) is asymptotically stable.
Alternatively, if there exist scalars α, β > 0, ρ > 1, and p ≥ 1, such that
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V : D → R satisfies

α‖x‖p ≤ V (x) ≤ β‖x‖p, x ∈ D, (13.7)

ρV (f(x)) ≤ V (x), x ∈ D, (13.8)

then the zero solution x(k) ≡ 0 to (13.1) is geometrically stable. Finally, if
D = Rn and V (·) is such that

V (x) → ∞ as ‖x‖ → ∞ (13.9)

then (13.6) implies (respectively, (13.7) and (13.8) imply) that the zero
solution x(k) ≡ 0 to (13.1) is globally asymptotically (respectively, globally
geometrically) stable.

Proof. Let ε > 0 be such that Bε(0) ⊆ D. Since Bε(0) is compact and
f(x), x ∈ D, is continuous, it follows that

η
△
= max

{

ε, max
x∈Bε(0)

‖f(x)‖
}

(13.10)

exists. Next, let α
△
= minx∈D: ε≤‖x‖≤η V (x). Note α > 0 since 0 6∈ ∂Bε(0)

and V (x) > 0, x ∈ D, x 6= 0. Next, let β ∈ (0, α) and define Dβ
△
= {x ∈

Bε(0) : V (x) ≤ β}. Now, for every x ∈ Dβ , it follows from (13.5) that
V (f(x)) ≤ V (x) ≤ β, and hence, it follows from (13.10) that ‖f(x)‖ ≤ η,
x ∈ Dβ. Next, suppose, ad absurdum, that there exists x ∈ Dβ such that
‖f(x)‖ ≥ ε. This implies V (x) ≥ α, which is a contradiction. Hence, for
every x ∈ Dβ, it follows that f(x) ∈ Bε(0) ⊂ Dβ, which implies that Dβ is
a positively invariant set (see Definition 13.4) with respect to (13.1). Next,
since V (·) is continuous and V (0) = 0, there exists δ = δ(ε) ∈ (0, ε) such
that V (x) < β, x ∈ Bδ(0). Now, let x(k), k ∈ Z+, satisfy (13.1). Since
Bδ(0) ⊂ Dβ ⊂ Bε(0) ⊆ D and Dβ is positively invariant with respect to

(13.1) it follows that for all x(0) ∈ Bδ(0), x(k) ∈ Bε(0), k ∈ Z+. Hence,
for all ε > 0 there exists δ = δ(ε) > 0 such that if ‖x(0)‖ < δ, then
‖x(k)‖ < ε, k ∈ Z+, which proves Lyapunov stability.

To prove asymptotic stability suppose that V (f(x)) < V (x), x ∈ D,
x 6= 0, and x(0) ∈ Bδ(0). Then it follows that x(k) ∈ Bε(0), k ∈ Z+.
However, V (x(k)), k ∈ Z+, is decreasing and bounded from below by zero.
Now, suppose, ad absurdum, that x(k), k ∈ Z+, does not converge to zero.
This implies that V (x(k)), k ∈ Z+, is lower bounded by a positive number,
that is, there exists L > 0 such that V (x(k)) ≥ L > 0, k ∈ Z+. Hence,
by continuity of V (x), x ∈ D, there exists δ′ > 0 such that V (x) < L for
x ∈ Bδ′(0), which further implies that x(k) 6∈ Bδ′(0), k ∈ Z+. Next, let

L1
△
= min

δ′≤‖x‖≤ε [V (x) − V (f(x))]. Now, (13.6) implies V (x) − V (f(x)) ≥ L1,
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δ′ ≤ ‖x‖ ≤ ε, or, equivalently,

V (x(k)) − V (x(0)) =

k−1
∑

i=0

[V (f(x(i))) − V (x(i))] ≤ −L1k,

and hence, for all x(0) ∈ Bδ(0),

V (x(k)) ≤ V (x(0)) − L1k.

Letting k > V (x(0))−L
L1

, it follows that V (x(k)) < L, which is a contradiction.
Hence, x(k) → 0 as k → ∞, establishing asymptotic stability.

Next, to show geometric stability note that (13.8) implies

V (x(k)) ≤ V (x(0))ρ−k, k ∈ Z+. (13.11)

Now, since V (x(0)) ≤ β‖x(0)‖p and α‖x(k)‖p ≤ V (x(k)) it follows that

α‖x(k)‖p ≤ β‖x(0)‖pρ−k, k ∈ Z+, (13.12)

which implies that

‖x(k)‖ ≤
(

β

α

)1/p

‖x(0)‖(ρ1/p)−k, (13.13)

establishing geometric stability.

Finally, to prove global asymptotic and geometric stability, let x0 ∈ Rn

and β
△
= V (x0). Now, the radial unboundedness condition (13.9) implies

that there exists ε > 0 such that V (x) ≥ β for ‖x‖ ≥ ε, x ∈ Rn. Hence,
it follows from (13.6) that V (x(k)) ≤ V (x(0)) = β, k ∈ Z+, which implies
that x(k) ∈ Bε(0), k ∈ Z+. Now, the proof follows as in the proof of the
local results.

A continuous function V (·) satisfying (13.3) and (13.4) is called a
Lyapunov function candidate for the discrete-time nonlinear dynamical
system (13.1). If, additionally, V (·) satisfies (13.5), V (·) is called a Lyapunov
function for the discrete-time nonlinear dynamical system (13.1). Next, we
give a key definition involving the domain, or region, of attraction of the zero
solution x(k) ≡ 0 of the discrete-time nonlinear dynamical system (13.1).

Definition 13.2. Suppose the zero solution x(k) ≡ 0 to (13.1) is
asymptotically stable. Then the domain of attraction D0 of (13.1) is given
by

D0
△
= {x0 ∈ D : if x(0) = x0, then limk→∞ x(k) = 0}. (13.14)

As in the continuous-time case, constructing the actual domain of
attraction of a discrete-time nonlinear dynamical system is system trajectory
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dependent. To estimate a subset of the domain of attraction of the
dynamical system (13.1) assume there exists a continuous function V :
D → R such that (13.3), (13.4), and (13.6) are satisfied. Next, let

Dβ
△
= {x ∈ D : V (x) ≤ β}. Note that Dβ ⊆ D and every trajectory

starting in Dβ will move to an inner energy surface, and hence, cannot
escape Dβ. Hence, Dβ is an estimate of the domain of attraction of the
nonlinear dynamical system (13.1). Now, to maximize this estimate of the
domain of attraction we maximize β such that Dβ ⊆ D. Hence, define

VΓ
△
= max{β > 0 : Dβ ⊆ D} so that

DA
△
= {x ∈ D : V (x) ≤ VΓ}, (13.15)

is a subset of the domain of attraction for (13.1) since ∆V (x)
△
= V (f(x)) −

V (x) < 0 for all x ∈ DA\{0} ⊆ D\{0}.

13.3 Discrete-Time Invariant Set Stability Theorems

In this section, we use the discrete-time Barbashin-Krasovskii-LaSalle
invariance principle to relax one of the conditions on the Lyapunov function
V (·) in the theorems given in Section 13.2. In particular, the strict negative-
definiteness condition on the Lyapunov difference can be relaxed while
ensuring system asymptotic stability. To state the main results of this
section several definitions and a key lemma analogous to the ones given
in Section 2.12 are needed.

Definition 13.3. The trajectory x(k), k ∈ Z+, of (13.1) is bounded if
there exists γ > 0 such that ‖x(k)‖ < γ, k ∈ Z+.

Definition 13.4. A set M ⊂ D ⊆ Rn is a positively invariant set for
the nonlinear dynamical system (13.1) if sk(M) ⊆ M, for all k ∈ Z+, where

sk(M)
△
= {sk(x) : x ∈ M}. A set M ⊆ D ⊆ Rn is an invariant set for the

dynamical system (13.1) if sk(M) = M for all k ∈ Z+.

Definition 13.5. A point p ∈ D is a positive limit point of the
trajectory x(k), k ∈ Z+, of (13.1) if there exists a monotonic sequence
{kn}∞n=0 of nonnegative numbers, with kn → ∞ as n → ∞, such that
x(kn) → p as n→ ∞. The set of all positive limit points of x(k), k ∈ Z+, is
the positive limit set ω(x0) of x(k), k ∈ Z+.

Note that if p ∈ D is a positive limit point of the trajectory x(·), then
for all ε > 0 and finite K ∈ Z+ there exists k > K such that ‖x(k)−p‖ < ε.
This follows from the fact that ‖x(k) − p‖ < ε for all ε > 0 and some
k > K > 0 is equivalent to the existence of a sequence of integers {kn}∞n=0,
with kn → ∞ as n→ ∞, such that x(kn) → p as n→ ∞.



NonlinearBook10pt November 20, 2007

DISCRETE-TIME THEORY 769

Next, we state and prove a key lemma involving positive limit sets for
discrete-time systems.

Lemma 13.1. Suppose the solution x(k) to (13.1) corresponding to
an initial condition x(0) = x0 is bounded for all k ∈ Z+. Then the positive
limit set ω(x0) of x(k), k ∈ Z+, is a nonempty, compact, invariant set.
Furthermore, x(k) → ω(x0) as t→ ∞.

Proof. Let x(k), k ∈ Z+, denote the solution to (13.1) corresponding
to the initial condition x(0) = x0. Next, since x(k) is bounded for all k ∈ Z+,
it follows from the Bolzano-Weierstrass theorem (Theorem 2.3) that every

sequence in the positive orbit O+
x0

△
= {s(k, x0) : k ∈ Z+} has at least

one accumulation point p ∈ D as k → ∞, and hence, ω(x0) is nonempty.
Next, let p ∈ ω(x0) so that there exists an increasing unbounded sequence
{kn}∞n=0, with k0 = 0, such that limn→∞ x(kn) = p. Now, since x(kn) is
uniformly bounded in n it follows that the limit point p is bounded, which
implies that ω(x0) is bounded. To show that ω(x0) is closed let {pi}∞i=0 be a
sequence contained in ω(x0) such that limi→∞ pi = p. Now, since pi → p as
i → ∞ for every ε > 0, there exists i such that ‖p − pi‖ < ε/2. Next, since
pi ∈ ω(x0), there exists k ≥ K, where K ∈ Z+ is arbitrary and finite, such
that ‖pi − x(k)‖ < ε/2. Now, since ‖p − pi‖ < ε/2 and ‖pi − x(k)‖ < ε/2,
k ≥ K, it follows that ‖p − x(k)‖ ≤ ‖pi − x(k)‖ + ‖p − pi‖ < ε. Thus,
p ∈ ω(x0). Hence, every accumulation point of ω(x0) is an element of
ω(x0) so that ω(x0) is closed. Thus, since ω(x0) is closed and bounded it is
compact.

To show positive invariance of ω(x0) let p ∈ ω(x0) so that there exists
an increasing sequence {kn}∞n=0 such that x(kn) → p as n → ∞. Now, let
s(kn, x0) denote the solution x(kn) of (13.1) with initial condition x(0) = x0

and note that since f : D → D in (13.1) is continuous, x(k), k ∈ Z+, is the
unique solution to (13.1) so that s(k+kn, x0) = s(k, s(kn, x0)) = s(k, x(kn)).
Now, since s(k, x0), k ∈ Z+, is continuous with respect to x0, it follows that,
for k + kn ≥ 0, limn→∞ s(k + kn, x0) = limn→∞ s(k, x(kn)) = s(k, p), and
hence, s(k, p) ∈ ω(x0). Hence, sk(ω(x0)) ⊆ ω(x0), k ∈ Z+, establishing
positive invariance of ω(x0).

To show invariance of ω(x0) let y ∈ ω(x0) so that there exists
an increasing unbounded sequence {kn}∞n=0 such that s(kn, x0) → y as
n → ∞. Next, let k ∈ Z+ and note that there exists N such that
kn > k, n ≥ N . Hence, it follows from the semigroup property that
s(k, s(kn − k, x0)) = s(kn, x0) → y as n → ∞. Now, it follows from the
Bolzano-Lebesgue theorem (Theorem 2.4) that there exists a subsequence
zni

of the sequence zn = s(kn − k, x0), n = N,N + 1, . . ., such that
zni

→ z ∈ D and, by definition, z ∈ ω(x0). Next, it follows from the
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continuous dependence property that limi→∞ s(k, zni
) = s(k, limi→∞ zni

),
and hence, y = s(t, z), which implies that ω(x0) ⊆ sk(ω(x0)), k ∈ Z+. Now,
using positive invariance of ω(x0) it follows that sk(ω(x0)) = ω(x0), k ∈ Z+,
establishing invariance of the positive limit set ω(x0).

Finally, to show x(k) → ω(x0) as k → ∞, suppose, ad absurdum, that
x(k) 6→ ω(x0) as k → ∞. In this case, there exists a sequence {kn}∞n=0, with
kn → ∞ as n→ ∞, such that

inf
p∈ω(x0)

‖x(kn) − p‖ > ε, n ∈ Z+. (13.16)

However, since x(k), k ∈ Z+, is bounded, the bounded sequence {x(kn)}∞n=0
contains a convergent subsequence {x(k∗n)}∞n=0 such that x(k∗n) → p∗ ∈ ω(x0)
as n→ ∞, which contradicts (13.16). Hence, x(k) → ω(x0) as k → ∞.

Next, we present a discrete-time version of the Barbashin-Krasovskii-
LaSalle invariance principle.

Theorem 13.3. Consider the discrete-time nonlinear dynamical sys-
tem (13.1), assume Dc is a compact invariant set with respect to (13.1),
and assume that there exists a continuous function V : Dc → R such that
V (f(x)) − V (x) ≤ 0, x ∈ Dc. Let R △

= {x ∈ Dc : V (f(x)) = V (x)} and
let M denote the largest invariant set contained in R. If x(0) ∈ Dc, then
x(k) → M as k → ∞.

Proof. Let x(k), k ∈ Z+, be a solution to (13.1) with x(0) ∈ Dc. Since
V (f(x)) ≤ V (x), x ∈ Dc, it follows that

V (x(k)) − V (x(κ)) =
k−1
∑

i=κ

[V (f(x(i))) − V (x(i))] ≤ 0, k − 1 ≥ κ,

and hence, V (x(k)) ≤ V (x(κ)), k − 1 ≥ κ, which implies that V (x(k))
is a nonincreasing function of k. Next, since V (x) is continuous on the
compact set Dc, there exists L ≥ 0 such that V (x) ≥ L, x ∈ Dc. Hence,

γx0

△
= limk→∞ V (x(k)) exists. Now, for all p ∈ ω(x0) there exists an

increasing unbounded sequence {kn}∞n=0, with k0 = 0, such that x(kn) → p
as n → ∞. Since V (x), x ∈ D, is continuous, V (p) = V (limn→∞ x(kn)) =
limn→∞ V (x(kn)) = γx0

, and hence, V (x) = α on ω(x0). Now, since Dc

is compact and invariant it follows that x(k), k ∈ Z+, is bounded, and
hence, it follows from Lemma 13.1 that ω(x0) is a nonempty, compact
invariant set. Hence, it follows that V (f(x)) = V (x) on ω(x0), and hence,
ω(x0) ⊂ M ⊂ R ⊂ Dc. Finally, since x(k) → ω(x0) as k → ∞ it follows
that x(k) → M as k → ∞.

Now, using Theorem 13.3 we provide a generalization of Theorem 13.2
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for local asymptotic stability of a nonlinear dynamical system.

Corollary 13.1. Consider the nonlinear dynamical system (13.1),

assume Dc is a compact invariant set with respect to (13.1) such that 0 ∈
◦
Dc,

and assume that there exists a continuous function V : Dc → R such that
V (0) = 0, V (x) > 0, x 6= 0, and V (f(x)) − V (x) ≤ 0, x ∈ Dc. Furthermore,

assume that the set R △
= {x ∈ Dc: V (f(x)) = V (x)} contains no invariant

set other than the set {0}. Then the zero solution x(k) ≡ 0 to (13.1) is
asymptotically stable and Dc is a subset of the domain of attraction of
(13.1).

Proof. The result is a direct consequence of Theorem 13.3.

In Theorem 13.3 and Corollary 13.1 we explicitly assumed that there
exists a compact invariant set Dc ⊂ D of (13.1). Next, we provide a result
that does not require the existence of a compact invariant set Dc.

Theorem 13.4. Consider the nonlinear dynamical system (13.1) and
assume that there exists a continuous function V : Rn → R such that

V (0) = 0, (13.17)

V (x) > 0, x ∈ Rn, x 6= 0, (13.18)

V (f(x)) − V (x) ≤ 0, x ∈ Rn. (13.19)

Let R △
= {x ∈ Rn:V (f(x)) = V (x)} and let M be the largest invariant set

contained in R. Then all solutions x(k), k ∈ Z+, to (13.1) that are bounded
approach M as k → ∞.

Proof. Let x ∈ Rn be such that trajectory s(k, x), k ∈ Z+, of (13.1) is

bounded. Now, with Dc = O+
x , it follows from Theorem 13.3 that s(k, x) →

M as k → ∞.

Next, we present the global invariant set theorem for guaranteeing
global asymptotic stability of a discrete-time nonlinear dynamical system.

Theorem 13.5. Consider the nonlinear dynamical system (13.1) and
assume that there exists a continuous function V : Rn → R such that

V (0) = 0 (13.20)

V (x) > 0, x ∈ Rn, x 6= 0, (13.21)

V (f(x)) − V (x) ≤ 0, x ∈ Rn, (13.22)

V (x) → ∞ as ‖x‖ → ∞. (13.23)

Furthermore, assume that the set R △
= {x ∈ Rn: V (f(x)) = V (x)} contains

no invariant set other than the set {0}. Then the zero solution x(k) ≡ 0 to
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(13.1) is globally asymptotically stable.

Proof. Since (13.20)–(13.22) hold, it follows from Theorem 13.2 that
the zero solution x(k) ≡ 0 to (13.1) is Lyapunov stable while the radial
unboundedness condition (13.23) implies that all solutions to (13.1) are
bounded. Now, Theorem 13.4 implies that x(k) → M as k → ∞. However,
since R contains no invariant set other than the set {0}, the set M is {0},
and hence, global asymptotic stability is immediate.

13.4 Converse Lyapunov Theorems for Discrete-Time Systems

In the previous sections the existence of a Lyapunov function is assumed
while stability properties of a discrete-time nonlinear dynamical system are
deduced. As in the continuous-time case, the existence of a lower semi-
continuous and continuous time-invariant Lyapunov function for Lyapunov
stable and asymptotically stable, respectively, discrete-time systems can be
established. In order to state and prove the converse Lyapunov theorems
for discrete-time systems the following key lemma is needed.

Lemma 13.2. Let σ : Z+ → Z+ be a class L function. Then there
exists a continuous class K function γ : Z+ → Z+ such that

∑∞
k=0 γ[σ(k)] <

∞.

Proof. The proof is similar to the proof of Lemma 3.1 and, hence, is
omitted.

Theorem 13.6. Assume that the zero solution x(k) ≡ 0 to (13.1) is
Lyapunov (respectively, asymptotically) stable and f : D → D is continuous.

Then there exist a set D0 ⊆ D with 0 ∈
◦
D0 and a lower semi-continuous

(respectively, continuous) function V : D0 → Rn such that V (·) is continuous
at the origin, V (0) = 0, V (x) > 0, x ∈ D0, x 6= 0, and V (f(x)) ≤ V (x),
x ∈ D0 (respectively, V (f(x)) − V (x) < 0, x ∈ D0, x 6= 0).

Proof. Let ε > 0. Since the zero solution x(k) ≡ 0 to (13.1)
is Lyapunov stable it follows that there exists δ > 0 such that if x0 ∈
Bδ(0), then s(k, x0) ∈ Bε(0), k ∈ Z+. Now, let D0 = {y ∈ Bε(0) :
there exist k ∈ Z+ and x0 ∈ Bδ(0) such that y = s(k, x0)}, that is, D0 =
sk(Bδ(0)). Note that D0 ⊆ Bε(0), D0 is positively invariant, and Bδ(0) ⊆ D0.

Hence, 0 ∈
◦
D0. Next, define V (x)

△
= supk∈Z+

‖s(k, x)‖, x ∈ D0, and since

D0 is positively invariant and bounded it follows that V (·) is well defined
on D0. Now, x = 0 implies s(k, x) ≡ 0, and hence, V (0) = 0. Furthermore,
V (x) ≥ ‖s(0, x)‖ = ‖x‖ > 0, x ∈ D0, x 6= 0.
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Next, since f(·) in (13.1) is continuous, it follows that for every x ∈ D0,
s(k, x), k ∈ Z+, is the unique solution to (13.1) so that s(k, x) = s(k −
κ, s(κ, x)), 0 ≤ κ ≤ k, which implies that for every k, κ ∈ Z+, such that
k ≥ κ,

V (s(κ, x)) = sup
θ∈Z+

‖s(θ, s(κ, x))‖

= sup
θ∈Z+

‖s(κ+ θ, x)‖

≥ sup
θ≥k−κ

‖s(κ+ θ, x)‖

= sup
θ≥k−κ

‖s(θ − (k − κ), s(k, x))‖

= sup
θ∈Z+

‖s(θ, s(k, x))‖

= V (s(k, x)), (13.24)

which proves that V (f(x)) − V (x) = V (s(1, x)) − V (s(0, x)) ≤ 0.

Next, since the zero solution x(k) ≡ 0 to (13.1) is Lyapunov stable it

follows that for every ε̂ > 0 there exists δ̂ > 0 such that if x0 ∈ Bδ̂(0), then

s(k, x0) ∈ Bε̂/2(0), k ∈ Z+, which implies that V (x0) = supk∈Z+
‖s(k, x0)‖ ≤

ε̂/2. Hence, for every ε̂ > 0 there exists δ̂ > 0 such that if x0 ∈ Bδ̂(0), then
V (x0) < ε̂, establishing that V (·) is continuous at the origin. Finally, to
show that V (·) is lower semicontinuous everywhere on D0, let x ∈ D0 and
let ε̂ > 0, and since V (x) = supk∈Z+

‖s(k, x)‖ there exists K = K(x, ε̂) > 0

such that V (x)−‖s(K,x)‖ < ε̂. Now, consider a sequence {xi}∞i=1 ∈ D0 such
that xi → x as i → ∞. Next, since f(·) in (13.1) is continuous, it follows
that for every k ∈ Z+, s(k, ·) is continuous. Hence, since ‖ · ‖ : D0 → R is
continuous, ‖s(K,x)‖ = limi→∞ ‖s(K,xi)‖, which implies that

V (x) < ‖s(K,x)‖ + ε̂

= lim
i→∞

‖s(K,xi)‖ + ε̂

≤ lim inf
i→∞

sup
k∈Z+

‖s(k, xi)‖ + ε̂

= lim inf
i→∞

V (xi) + ε̂, (13.25)

which, since ε̂ > 0 is arbitrary, further implies that V (x) ≤ lim infi→∞
V (xi). Thus, since {xi}∞i=1 is arbitrary sequence converging to x, it follows
that V (·) is lower semicontinuous on D0.

Next, assume that the zero solution x(k) ≡ 0 to (13.1) is asymptot-
ically stable. It follows that (see Problem 3.76) there exist class K and L
functions α(·) and β(·), respectively, such that if ‖x0‖ < δ, for some δ > 0,
then ‖x(k)‖ ≤ α(‖x0‖)β(k), k ∈ Z+. Next, let x ∈ Bδ(0) and let s(k, x)
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denote the solution to (13.1) with the initial condition x(0) = x so that for
all ‖x‖ < δ, ‖s(k, x)‖ ≤ α(‖x‖)β(k), k ∈ Z+. Now, it follows from Lemma
13.2 that there exists a continuous class K function γ : R+ → R+ such that
∑∞

k=0 γ(α(δ)β(k)) < ∞. Since ‖s(k, x)‖ ≤ α(‖x‖)β(k) ≤ α(δ)β(k), k ∈ Z+,
it follows that the function

V (x) =

∞
∑

k=0

γ(‖s(k, x)‖),

is well defined on D. Furthermore, note that V (0) = 0. Next, note that
V (x) =

∑∞
k=0 γ( ‖s(k, x)‖) > 0, x ∈ D, x 6= 0. Finally, note that since f(·)

is continuous the trajectory s(k, x), k ∈ Z+, is unique, and hence,

V (s(k, x)) =
∞
∑

κ=0

γ(‖s(κ, s(k, x))‖)

=

∞
∑

κ=0

γ(‖s(κ + k, x)‖)

=
∞
∑

κ=k

γ(‖s(κ, x)‖),

which implies that V (f(x))−V (x) = V (s(1, x))−V (s(0, x)) = −γ(‖x‖) < 0,
x ∈ D0, x 6= 0. The result is now immediate by noting that V : D → R

defined above is continuous.

The next result gives a converse Lyapunov theorem for geometric
stability.

Theorem 13.7. Assume that the zero solution x(k) ≡ 0 to (13.1) is
geometrically stable and f : D → D is continuous. Then, for every p > 1,

there exist a set D0 ⊆ D with 0 ∈
◦
D0, a continuous function V : D0 → R,

and scalars α, β > 0, β > α, and ρ > 1 such that

α‖x‖p ≤ V (x) ≤ β‖x‖p, x ∈ D0, (13.26)

ρV (f(x)) ≤ V (x), x ∈ D0. (13.27)

Proof. Since the zero solution x(k) ≡ 0 to (13.1) is, by assumption,
geometrically stable it follows that there exist scalars α1 ≥ 1, β1 > 1,
and δ > 0 such that if ‖x0‖ < δ, then ‖x(k)‖ ≤ α1‖x0‖β−k

1 , k ∈ Z+.
Next, let x ∈ Bδ(0) and let s(k, x) denote the solution to (13.1) with the
initial condition x(0) = x so that for all ‖x‖ < δ, ‖s(k, x)‖ ≤ α1‖x‖β−k

1 ,
k ∈ Z+. Now, using identical arguments as in Theorem 13.6 it follows that
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for α(δ) = α1, β(k) = β−k
1 , γ(σ) = σp,

∞
∑

k=0

αp
1β

−pk
1 < ∞. (13.28)

Hence,

V (x) =

∞
∑

k=0

‖s(k, x)‖p (13.29)

is a continuous Lyapunov function candidate for (13.1).

To show that (13.26) holds note that

V (x) =
∞
∑

k=0

‖s(k, x)‖p

≤
∞
∑

k=0

αp
1‖x‖pβ−pk

1

=
αp

1β
p
1

βp
1 − 1

‖x‖p, x ∈ D, (13.30)

which proves the upper bound in (13.26) with β = αp
1βp

1

βp
1−1 > 1. Next,

V (x) =
∞
∑

k=0

‖s(k, x)‖p ≥ ‖s(0, x)‖p = ‖x‖p, x ∈ D0, (13.31)

which proves the lower bound in (13.26) with α = 1.

Finally, to show (13.27) note that with γ(σ) = σp it follows from
Theorem 13.6 that V (f(x))− V (x) = −γ(‖x‖) = −‖x‖p. Now, the result is
immediate from (13.26) by noting that

V (f(x)) = V (x) − ‖x‖p ≤ (1 − 1
β )V (x), x ∈ D0, (13.32)

which proves (13.27) with ρ = β
β−1 .

Next, we present a corollary to Theorem 13.7 that shows that p in
Theorem 13.7 can be taken to be equal to 2 without loss of generality.

Corollary 13.2. Assume that the zero solution x(k) ≡ 0 to (13.1) is
geometrically stable and f : D → D is continuous. Then there exist a set

D0 ⊆ D with 0 ∈
◦
D0, a continuous function V : D → R, and scalars α,

β > 1, and ρ > 1, such that

α‖x‖2 ≤ V (x) ≤ β‖x‖2, x ∈ D0, (13.33)

ρV (f(x)) ≤ V (x), x ∈ D0. (13.34)
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Proof. The proof is a direct consequence of Theorem 13.7 with p = 2.

Finally, we present a converse theorem for global geometric stability.

Theorem 13.8. Assume that the zero solution x(k) ≡ 0 to (13.1) is
globally geometrically stable and f : Rn → Rn is continuous. Then there
exist a continuous function V : Rn → R and scalars α, β > 1, and ρ > 1,
such that

α‖x‖2 ≤ V (x) ≤ β‖x‖2, x ∈ Rn, (13.35)

ρV (f(x)) ≤ V (x), x ∈ Rn. (13.36)

Proof. The proof is identical to the proof of Theorem 13.7 by replacing
D0 with Rn and setting p = 2.

13.5 Partial Stability of Discrete-Time Nonlinear

Dynamical Systems

In this section, we present partial stability theorems for discrete-time
nonlinear dynamical systems. Specifically, consider the discrete-time
nonlinear autonomous dynamical system

x1(k + 1) = f1(x1(k), x2(k)), x1(0) = x10, k ∈ Z+, (13.37)

x2(k + 1) = f2(x1(k), x2(k)), x2(0) = x20, (13.38)

where x1 ∈ D ⊆ Rn1 , D is an open set with 0 ∈ D, x2 ∈ Rn2 , f1 : D ×
Rn2 → Rn1 is continuous and for every x2 ∈ Rn2 , f1(0, x2) = 0, and f2 :
D × Rn2 → Rn2 is continuous. Note that under the above assumptions the
solution (x1(k), x2(k)) to (13.37) and (13.38) exists and is unique over Z+.
The following definition introduces eight types of partial stability, that is,
stability with respect to x1, for the nonlinear dynamical system (13.37) and
(13.38).

Definition 13.6. i) The nonlinear dynamical system (13.37) and
(13.38) is Lyapunov stable with respect to x1 if, for every ε > 0 and x20 ∈ Rn2 ,
there exists δ = δ(ε, x20) > 0 such that ‖x10‖ < δ implies that ‖x1(k)‖ < ε
for all k ∈ Z+.

ii) The nonlinear dynamical system (13.37) and (13.38) is Lyapunov
stable with respect to x1 uniformly in x20 if, for every ε > 0, there exists
δ = δ(ε) > 0 such that ‖x10‖ < δ implies that ‖x1(k)‖ < ε for all k ∈ Z+

and for all x20 ∈ Rn2 .

iii) The nonlinear dynamical system (13.37) and (13.38) is asymptoti-
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cally stable with respect to x1 if it is Lyapunov stable with respect to x1 and,
for every x20 ∈ Rn2 , there exists δ = δ(x20) > 0 such that ‖x10‖ < δ implies
that limk→∞ x1(k) = 0.

iv) The nonlinear dynamical system (13.37) and (13.38) is asymptoti-
cally stable with respect to x1 uniformly in x20 if it is Lyapunov stable with
respect to x1 uniformly in x20 and there exists δ > 0 such that ‖x10‖ < δ
implies that limk→∞ x1(k) = 0 uniformly in x10 and x20 for all x20 ∈ Rn2 .

v) The nonlinear dynamical system (13.37) and (13.38) is globally
asymptotically stable with respect to x1 it is Lyapunov stable with respect
to x1 and limk→∞ x1(k) = 0 for all x10 ∈ Rn1 and x20 ∈ Rn2 .

vi) The nonlinear dynamical system (13.37) and (13.38) is globally
asymptotically stable with respect to x1 uniformly in x20 if it is Lyapunov
stable with respect to x1 uniformly in x20 and limk→∞ x1(k) = 0 uniformly
in x10 and x20 for all x10 ∈ Rn1 and x20 ∈ Rn2 .

vii) The nonlinear dynamical system (13.37) and (13.38) is geometri-
cally stable with respect to x1 uniformly in x20 if there exist scalars α, β > 1,
and δ > 0 such that ‖x10‖ < δ implies that ‖x1(k)‖ ≤ α‖x10‖β−k, k ∈ Z+,
for all x20 ∈ Rn2 .

viii) The nonlinear dynamical system (13.37) and (13.38) is globally
geometrically stable with respect to x1 uniformly in x20 if there exist scalars
α, β > 1 such that ‖x1(k)‖ ≤ α‖x10‖β−k, k ∈ Z+, for all x10 ∈ Rn1 and
x20 ∈ Rn2 .

Next, we present sufficient conditions for partial stability of the
nonlinear dynamical system (13.37) and (13.38). For the following re-

sult define ∆V (x1, x2)
△
= V (f(x1, x2)) − V (x1, x2), where f(x1, x2)

△
=

[fT
1 (x1, x2) f

T
2 (x1, x2)]

T, for a given continuous function V : D × Rn2 → R.

Theorem 13.9. Consider the nonlinear dynamical system (13.37) and
(13.38). Then the following statements hold:

i) If there exist a continuous function V : D × Rn2 → R and a class K
function α(·) such that

V (0, x2) = 0, x2 ∈ Rn2 , (13.39)

α(‖x1‖) ≤ V (x1, x2), (x1, x2) ∈ D × Rn2 , (13.40)

V (f(x1, x2)) ≤ V (x1, x2), (x1, x2) ∈ D × Rn2 , (13.41)

then the nonlinear dynamical system given by (13.37) and (13.38) is
Lyapunov stable with respect to x1.
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ii) If there exist a continuous function V : D × Rn2 → R and class K
functions α(·), β(·) satisfying (13.40), (13.41), and

V (x1, x2) ≤ β(‖x1‖), (x1, x2) ∈ D × Rn2 , (13.42)

then the nonlinear dynamical system given by (13.37) and (13.38) is
Lyapunov stable with respect to x1 uniformly in x20.

iii) If there exist a continuous function V : D × Rn2 → R and class K
functions α(·) and γ(·) satisfying (13.39), (13.40), and

∆V (x1, x2) ≤ −γ(‖x1‖), (x1, x2) ∈ D × Rn2 , (13.43)

then the nonlinear dynamical system given by (13.37) and (13.38) is
asymptotically stable with respect to x1.

iv) If there exist a continuous function V : D × Rn2 → R and class K
functions α(·), β(·), γ(·) satisfying (13.40), (13.42), and

∆V (x1, x2) ≤ −γ(‖x1‖), (x1, x2) ∈ D × Rn2 , (13.44)

then the nonlinear dynamical system given by (13.37) and (13.38) is
asymptotically stable with respect to x1 uniformly in x20.

v) If D = Rn1 and there exist a continuous function V : Rn1 × Rn2 → R,
a class K function γ(·), and a class K∞ function α(·) satisfying (13.40)
and (13.43), then the nonlinear dynamical system given by (13.37) and
(13.38) is globally asymptotically stable with respect to x1.

vi) If D = Rn1 and there exist a continuous function V : Rn1 × Rn2 → R,
a class K function γ(·), and class K∞ functions α(·), β(·) satisfying
(13.40), (13.42), and (13.44), then the nonlinear dynamical system
given by (13.37) and (13.38) is globally asymptotically stable with
respect to x1 uniformly in x20.

vii) If there exist a continuous function V : D × Rn2 → R and positive
constants α, β, γ, p such that γ < β, p ≥ 1, and

α‖x1‖p ≤ V (x1, x2) ≤ β‖x1‖p, (x1, x2) ∈ D × Rn2 ,(13.45)

∆V (x1, x2) ≤ −γ‖x1‖p, (x1, x2) ∈ D × Rn2 ,(13.46)

then the nonlinear dynamical system given by (13.37) and (13.38) is
geometrically stable with respect to x1 uniformly in x20.

viii) If D = Rn1 and there exist a continuous function V : Rn1 × Rn2 →
R and positive constants α, β, γ, p such that p ≥ 1 and (13.45) and
(13.46) hold, then the nonlinear dynamical system given by (13.37) and
(13.38) is globally geometrically stable with respect to x1 uniformly in
x20.



NonlinearBook10pt November 20, 2007

DISCRETE-TIME THEORY 779

Proof. i) Let x20 ∈ Rn2 , let ε > 0 be such that Bε(0)
△
= {x1 ∈ Rn1 :

‖x1‖ < ε} ⊂ D, define η
△
= α(ε), and define Dη

△
= {x1 ∈ Bε(0) : V (x1, x20) <

η}. Since V (·, ·) is continuous and V (0, x20) = 0, x20 ∈ Rn2 , there exists
δ = δ(ε, x20) > 0 such that V (x1, x20) < η, x1 ∈ Bδ(0). Hence Bδ(0) ⊂ Dη.
Next, since ∆V (x1, x2) ≤ 0 it follows that V (x1(k), x2(k)) is a nonincreasing
function of k, and hence, for every x10 ∈ Bδ(0) it follows that

α(‖x1(k)‖) ≤ V (x1(k), x2(k)) ≤ V (x10, x20) < η = α(ε).

Thus, for every x10 ∈ Bδ(0), x1(k) ∈ Bε(0), k ∈ Z+, establishing Lyapunov
stability with respect to x1.

ii) Let ε > 0 and let Bε(0) and η be given as in the proof of i). Now,
let δ = δ(ε) > 0 be such that β(δ) = α(ε). Hence, it follows from (13.42)
that for all (x10, x20) ∈ Bδ(0) × Rn2 ,

α(‖x1(k)‖) ≤ V (x1(k), x2(k)) ≤ V (x10, x20) < β(δ) = α(ε),

and hence, x1(k) ∈ Bε(0), k ∈ Z+.

iii) Lyapunov stability follows from i). To show asymptotic stability
suppose, ad absurdum, that ‖x1(k)‖ 9 0 as k → ∞ or, equivalently,
lim supk→∞ ‖x1(k)‖ > 0. In addition, suppose lim infk→∞ ‖x1(k)‖ > 0,
which implies that there exist constants K > 0 and θ > 0 such that
‖x1(k)‖ ≥ θ, k ≥ K. Then it follows from (13.43) that V (x1(k), x2(k)) →
−∞ as k → ∞, which contradicts (13.40), and hence, lim infk→∞ ‖x1(k)‖ =
0. Now, since lim supk→∞ ‖x1(k)‖ > 0 and lim infk→∞ ‖x1(k)‖ = 0 it follows
that there exist an increasing sequence {ki}∞i=1 and a constant θ > 0 such
that

θ < ‖x1(ki)‖, i = 1, 2, . . . . (13.47)

Hence,
∑n

i=1 γ(‖x1(ki)‖) > nγ(θ). Now, using (13.43), it follows that

V (x1(kn), x2(kn)) = V (x10, x20) +

kn
∑

k=1

∆V (x1(k), x2(k))

≤ V (x10, x20) +
n
∑

i=1

∆V (x1(ki), x2(ki))

≤ V (x10, x20) −
n
∑

i=1

γ(‖x1(ki)‖)

≤ V (x10, x20) − nγ(θ). (13.48)

Hence, for large enough n the right-hand side of (13.48) becomes negative,
which contradicts (13.40). Hence, x1(k) → 0 as k → ∞, proving asymptotic
stability of (13.37) and (13.38) with respect to x1.



NonlinearBook10pt November 20, 2007

780 CHAPTER 13

iv) Lyapunov stability uniformly in x20 follows from ii). Next, let
ε > 0 and δ = δ(ε) > 0 be such that for every x10 ∈ Bδ(0), x1(k) ∈ Bε(0),
k ∈ Z+, (the existence of such a (δ, ε) pair follows from uniform Lyapunov
stability) and assume that (13.44) holds. Since (13.44) implies (13.41)
it follows that for every x10 ∈ Bδ(0), V (x1(k), x2(k)) is a nonincreasing
function of time and, since V (·, ·) is bounded from below, it follows from
the monotone convergence theorem (Theorem 2.10) that there exists L ≥ 0
such that limk→∞ V (x1(k), x2(k)) = L. Now, suppose for some x10 ∈ Bδ(0),

ad absurdum, that L > 0 so that DL
△
= {x1 ∈ Bε(0) : V (x1, x2) ≤

L for all x2 ∈ Rn2} is nonempty and x1(k) 6∈ DL, k ∈ Z+. Thus, as in

the proof of i), there exists δ̂ > 0 such that Bδ̂(0) ⊂ DL. Hence, it follows

from (13.44) that for the given x10 ∈ Bδ(0)\DL and k ∈ Z+,

V (x1(k), x2(k)) = V (x10, x20) +
k−1
∑

i=0

∆V (x1(i), x2(i))

≤ V (x10, x20) −
k−1
∑

i=0

γ(‖x1(i)‖)

≤ V (x10, x20) − γ(δ̂)k.

Letting k > V (x10,x20)−L

γ(δ̂)
, it follows that V (x1(k), x2(k)) < L, which is a

contradiction. Hence, L = 0, and, since x0 ∈ Bδ(0) was chosen arbitrarily,
it follows that V (x1(k), x2(k)) → 0 as k → ∞ for all x10 ∈ Bδ(0). Now,
since V (x1(k), x2(k)) ≥ α(‖x1(k)‖) ≥ 0 it follows that α(‖x1(k)‖) → 0
or, equivalently, x1(k) → 0 k → ∞, establishing asymptotic stability with
respect to x1 uniformly in x20.

v) Let δ > 0 be such that ‖x10‖ < δ. Since α(·) is a class K∞ function,
it follows that there exists ε > 0 such that V (x10, x20) < α(ε). Now, (13.43)
implies that V (x1(k), x2(k)) is a nonincreasing function of time, and hence,
it follows that α(‖x1(k)‖) ≤ V (x1(k), x2(k)) ≤ V (x10, x20) < α(ε), k ∈ Z+.
Hence, x1(k) ∈ Bε(0), k ∈ Z+. Now, the proof follows as in the proof of iii).

vi) Let δ > 0 be such that ‖x10‖ < δ. Since α(·) is a class K∞ function
it follows that there exists ε > 0 such that β(δ) ≤ α(ε). Now, (13.44)
implies that V (x1(k), x2(k)) is a nonincreasing function of time, and hence,
it follows from (13.42) that α(‖x1(k)‖) ≤ V (x1(k), x2(k)) ≤ V (x10, x20) <
β(δ) < α(ε), k ∈ Z+. Hence, x1(k) ∈ Bε(0), k ∈ Z+. Now, the proof follows
as in the proof of iv).

vii) Let ε > 0 be given as in the proof of i) and let η
△
= αε and

δ = η
β . Now, (13.46) implies that ∆V (x1, x2) ≤ 0, and hence, it follows that

V (x1(k), x2(k)) is a nonincreasing function of time. Hence, as in the proof
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of ii), it follows that for all (x10, x20) ∈ Bδ(0)×Rn2 , x1(k) ∈ Bε(0), k ∈ Z+.
Furthermore, it follows from (13.45) and (13.46) that for all k ∈ Z+ and
(x10, x20) ∈ Bδ × Rn2 ,

∆V (x1(k), x2(k)) ≤ −γ‖x1(k)‖p ≤ −γ
β
V (x1(k), x2(k)),

which implies that

V (x1(k), x2(k)) ≤ V (x10, x20)(1 − γ
β )k.

It now follows from (13.45) that

α‖x1(k)‖p ≤ V (x1(k), x2(k))

≤ V (x10, x20)(1 − γ
β )k

≤ β‖x10‖p(1 − γ
β )k, k ∈ Z+,

and hence,

‖x1(k)‖ ≤
(

β

α

)1/p

‖x10‖(1 − γ
β )k, k ∈ Z+,

establishing geometric stability with respect to x1 uniformly in x20.

viii) The proof follows as in vi) and vii).

By setting n1 = n and n2 = 0, Theorem 13.9 specializes to the case
of nonlinear autonomous systems of the form x1(k) = f1(x1(k)). In this
case, Lyapunov (respectively, asymptotic) stability with respect to x1 and
Lyapunov (respectively, asymptotic) stability with respect to x1 uniformly
in x20 are equivalent to the classical Lyapunov (respectively, asymptotic)
stability of nonlinear autonomous systems presented in Section 13.2. In
particular, note that it follows from Problems 3.75 and 3.76 that there exists
a continuous function V : D → R such that (13.40), (13.42), and (13.44) hold
if and only if V (0) = 0, V (x1) > 0, x1 6= 0, and V (f1(x1)) < V (x1), x1 6= 0.
In addition, if D = Rn1 and there exist class K∞ functions α(·), β(·) and
a continuously differentiable function V (·) such that (13.40), (13.42), and
(13.44) hold if and only if V (0) = 0, V (x1) > 0, x1 6= 0, V (f1(x1)) < V (x1),
x1 6= 0, and V (x1) → ∞ as ‖x1‖ → ∞. Hence, in this case, Theorem
13.9 collapses to the classical Lyapunov stability theorem for autonomous
systems given in Section 13.2.

In the case of time-invariant systems the Barbashin-Krasovskii-LaSalle
invariance theorem (Theorem 13.3) shows that bounded system trajectories
of a nonlinear dynamical system approach the largest invariant set M
characterized by the set of all points in a compact set D of the state
space where the Lyapunov derivative identically vanishes. In the case of
partially stable systems, however, it is not generally clear on how to define
the set M since ∆V (x1, x2) is a function of both x1 and x2. However,
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if ∆V (x1, x2) ≤ −W (x1) ≤ 0, where W : D → R is continuous and
nonnegative definite, then a set R ⊃ M can be defined as the set of points
where W (x1) identically vanishes, that is, R = {x1 ∈ D : W (x1) = 0}.
In this case, as shown in the next theorem, the partial system trajectories
x1(k) approach R as k tends to infinity. For this result, the following lemma
is necessary.

Lemma 13.3. Let σ : Z+ → R+ and suppose that
∑∞

k=0 σ(k) exists
and is finite. Then, limk→∞ σ(k) = 0.

Proof. Suppose, ad absurdum, that lim supk→∞ σ(k) > 0 and let
α1 ∈ R be such that 0 < α1 < lim supk→∞ σ(k). In this case, for every
K1 > 0, there exists k1 ≥ K1 such that σ(k1) ≥ α1. Next, let K2 > k1

and using a similar argument as above it follows that there exists k2 ≥ K2

such that σ(k2) ≥ α1. Hence, there exists an increasing unbounded sequence
{ki}∞i=1 such that σ(ki) ≥ α1, and hence,

∑∞
i=1 σ(ki) ≥

∑∞
i=1 α1 = ∞, which

is a contradiction.

Theorem 13.10. Consider the nonlinear dynamical system given by
(13.37) and (13.38) and assume D × Rn2 is a positively invariant set with
respect to (13.37) and (13.38). Furthermore, assume there exist functions
V : D × Rn2 → R, W,W1,W2 : D → R such that V (·, ·) is continuous,
W1(·) and W2(·) are continuous and positive definite, W (·) is continuous
and nonnegative definite, and, for all (x1, x2) ∈ D × Rn2 ,

W1(x1) ≤ V (x1, x2) ≤W2(x1), (13.49)

∆V (x1, x2) ≤ −W (x1). (13.50)

Then there exists D0 ⊆ D such that for all (x10, x20) ∈ D0 × Rn2 , x1(k) →
R △

= {x1 ∈ D : W (x1) = 0} as k → ∞. If, in addition, D = Rn1 and W1(·)
is radially unbounded, then for all (x10, x20) ∈ Rn1 × Rn2 , x1(k) → R △

=
{x1 ∈ Rn1 : W (x1) = 0} as k → ∞.

Proof. Assume (13.49) and (13.50) hold. Then it follows from
Theorem 13.9 that the nonlinear dynamical system given by (13.37) and
(13.38) is Lyapunov stable with respect to x1 uniformly in x20. Let ε > 0
be such that Bε(0) ⊂ D and let δ = δ(ε) > 0 be such that if x10 ∈ Bδ(0),
then x1(k) ∈ Bε(0), k ∈ Z+. Now, since V (x1(k), x2(k)) is monotonically
nonincreasing and bounded from below by zero, it follows from the monotone
convergence theorem (Theorem 2.10) that limk→∞ V (x1(k), x2(k)) exists
and is finite. Hence, since for every k ∈ Z+,

k−1
∑

κ=0

W (x1(κ)) ≤ −
k−1
∑

κ=0

∆V (x1(κ), x2(κ)) = V (x10, x20) − V (x1(k), x2(k)),
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it follows that
∑∞

κ=0W (x1(κ)) exists and is finite. Hence, it follows from
Lemma 13.3 that W (x1(k)) → 0 as k → ∞. Finally, if, in addition, D = Rn1

and W1(·) is radially unbounded, then, as in the proof of iv) of Theorem
13.9, for every x10 ∈ Rn1 there exist ε, δ > 0 such that x10 ∈ Bδ(0) and
x1(k) ∈ Bε(0), k ∈ Z+. Now, the proof follows by repeating the above
arguments.

Theorem 13.10 shows that the partial system trajectories x1(k)
approach R as k tends to infinity. However, since the positive limit set
of the partial trajectory x1(k) is a subset of R, Theorem 13.10 is a weaker
result than the standard invariance principle, wherein one would conclude
that the partial trajectory x1(k) approaches the largest invariant set M
contained in R. This is not true in general for partially stable systems since
the positive limit set of a partial trajectory x1(k), k ∈ Z+, is not an invariant
set.

13.6 Stability Theory for Discrete-Time Nonlinear

Time-Varying Systems

In this section, we use the results of Section 13.5 to extend Lyapunov’s direct
method to nonlinear time-varying systems thereby providing a unification
between partial stability theory for autonomous systems and stability theory
for time-varying systems. Specifically, we consider the nonlinear time-
varying dynamical system

x(k + 1) = f(k, x(k)), x(k0) = x0, k ≥ k0, (13.51)

where x(k) ∈ D, k ≥ k0, D ⊆ Rn is an open set such that 0 ∈ D,
f : {k0, . . . , k1} × D → Rn is such that f(·, ·) is continuous and, for every
k ∈ {k0, . . . , k1}, f(k, 0) = 0. Note that under the above assumptions the
solution x(k), k ≥ k0, to (13.51) exists and is unique over the interval
{k0, . . . , k1}. The following definition provides eight types of stability for
the nonlinear time-varying dynamical system (13.51).

Definition 13.7. i) The nonlinear time-varying dynamical system
(13.51) is Lyapunov stable if, for every ε > 0 and k0 ∈ Z+, there exists
δ = δ(ε, k0) > 0 such that ‖x0‖ < δ implies that ‖x(k)‖ < ε for all k ≥ k0.

ii) The nonlinear time-varying dynamical system (13.51) is uniformly
Lyapunov stable if, for every ε > 0, there exists δ = δ(ε) > 0 such that
‖x0‖ < δ implies that ‖x(k)‖ < ε for all k ≥ k0 and for all k0 ∈ Z+.

iii) The nonlinear time-varying dynamical system (13.51) is asymp-
totically stable if it is Lyapunov stable and, for every k0 ∈ Z+, there exists
δ = δ(k0) > 0 such that ‖x0‖ < δ implies that limk→∞ x(k) = 0.
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iv) The nonlinear time-varying dynamical system (13.51) is uniformly
asymptotically stable if it is uniformly Lyapunov stable and there exists δ > 0
such that ‖x0‖ < δ implies that limk→∞ x(k) = 0 uniformly in k0 and x0 for
all k0 ∈ Z+.

v) The nonlinear time-varying dynamical system (13.51) is globally
asymptotically stable if it is Lyapunov stable and limk→∞ x(k) = 0 for all
x0 ∈ Rn and k0 ∈ Z+.

vi) The nonlinear time-varying dynamical system (13.51) is globally
uniformly asymptotically stable if it is uniformly Lyapunov stable and
limk→∞ x(k) = 0 uniformly in k0 and x0 for all x0 ∈ Rn and k0 ∈ Z+.

vii) The nonlinear time-varying dynamical system (13.51) is (uni-
formly) geometrically stable if there exist scalars α, δ > 0 and β > 1, such
that ‖x0‖ < δ implies that ‖x(k)‖ ≤ α‖x0‖β−k, k ≥ k0 and k0 ∈ Z+.

viii) The nonlinear time-varying dynamical system (13.51) is globally
(uniformly) geometrically stable if there exist scalars α > 0 and β > 1, such
that ‖x(k)‖ ≤ α‖x0‖β−k, k ≥ k0, for all x0 ∈ Rn and k0 ∈ Z+.

Next, using Theorem 13.9 we present sufficient conditions for stability
of the nonlinear time-varying dynamical system (13.51). For the following
result define

∆V (k, x)
△
= V (k + 1, f(k, x)) − V (k, x)

for a given continuous function V : Z+ ×D → R.

Theorem 13.11. Consider the nonlinear time-varying dynamical sys-
tem (13.51). Then the following statements hold:

i) If there exist a continuous function V : Z+ × D → R and a class K
function α(·) such that

V (k, 0) = 0, k ∈ Z+, (13.52)

α(‖x‖) ≤ V (k, x), (k, x) ∈ Z+ ×D, (13.53)

∆V (k, x) ≤ 0, (k, x) ∈ Z+ ×D, (13.54)

then the nonlinear time-varying dynamical system given by (13.51) is
Lyapunov stable.

ii) If there exist a continuous function V : Z+ × D → R and class K
functions α(·), β(·) satisfying (13.53) and (13.54), and

V (k, x) ≤ β(‖x‖), (k, x) ∈ Z+ ×D, (13.55)
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then the nonlinear time-varying dynamical system given by (13.51) is
uniformly Lyapunov stable.

iii) If there exist a continuous function V : Z+ × D → R and class K
functions α(·), γ(·) satisfying (13.53) and

∆V (k, x) ≤ −γ(‖x‖), (k, x) ∈ Z+ ×D, (13.56)

then the nonlinear time-varying dynamical system given by (13.51) is
asymptotically stable.

iv) If there exist a continuous function V : Z+ × D → R and class K
functions α(·), β(·), γ(·) satisfying (13.53), (13.55), and

∆V (k, x) ≤ −γ(‖x‖), (k, x) ∈ Z+ ×D, (13.57)

then the nonlinear time-varying dynamical system given by (13.51) is
uniformly asymptotically stable.

v) If D = Rn and there exist a continuous function V : Z+ × Rn → R,
a class K function γ(·), class K∞ functions α(·) satisfying (13.53) and
(13.56), then the nonlinear time-varying dynamical system given by
(13.51) is globally asymptotically stable.

vi) If D = Rn and there exist a continuous function V : Z+ × Rn → R, a
class K function γ(·), class K∞ functions α(·), β(·) satisfying (13.53),
(13.55), and (13.57), then the nonlinear time-varying dynamical
system given by (13.51) is globally uniformly asymptotically stable.

vii) If there exist a continuous function V : Z+ × D → R and positive
constants α, β, γ, p such that p ≥ 1 and

α‖x‖p ≤ V (k, x) ≤ β‖x‖p, (k, x) ∈ Z+ ×D, (13.58)

∆V (k, x) ≤ −γ‖x‖p, (k, x) ∈ Z+ ×D, (13.59)

then the nonlinear time-varying dynamical system given by (13.51) is
(uniformly) geometrically stable.

viii) If D = Rn and there exist a continuous function V : Z+ × Rn →
R and positive constants α, β, γ, p such that p ≥ 1 and (13.58) and
(13.59) hold, then the nonlinear time-varying dynamical system given
by (13.51) is globally (uniformly) geometrically stable.

Proof. Let n1 = n, n2 = 1, x1(k − k0) = x(k), x2(k − k0) = k,
f1(x1, x2) = f(k, x), and f2(x1, x2) = x2+1. Now, note that with κ = k−k0,
the solution x(k), k ≥ k0, to the nonlinear time-varying dynamical system
(13.51) is equivalently characterized by the solution x1(κ), κ ≥ 0, to the
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nonlinear autonomous dynamical system

x1(κ+ 1) = f1(x1(κ), x2(κ)), x1(0) = x0, κ ≥ 0,

x2(κ+ 1) = x2(κ) + 1, x2(0) = k0.

Now, the result is a direct consequence of Theorem 13.9.

13.7 Lagrange Stability, Boundedness, and

Ultimate Boundedness

In this section, we introduce the notions of Lagrange stability, bounded-
ness, and ultimate boundedness and present Lyapunov-like theorems for
boundedness and ultimate boundedness of nonlinear discrete-time dynamical
systems.

Definition 13.8. i) The nonlinear dynamical system (13.37) and
(13.38) is Lagrange stable with respect to x1 if, for every x10 ∈ D and
x20 ∈ Rn2 , there exists ε = ε(x10, x20) > 0 such that ‖x1(k)‖ < ε, k ∈ Z+.

ii) The nonlinear dynamical system (13.37) and (13.38) is bounded
with respect to x1 uniformly in x2 if there exists γ > 0 such that, for every
δ ∈ (0, γ), there exists ε = ε(δ) > 0 such that ‖x10‖ < δ implies ‖x1(k)‖ < ε,
k ∈ Z+. The nonlinear dynamical system (13.37) and (13.38) is globally
bounded with respect to x1 uniformly in x2 if, for every δ ∈ (0,∞), there
exists ε = ε(δ) > 0 such that ‖x10‖ < δ implies ‖x1(k)‖ < ε, k ∈ Z+.

iii) The nonlinear dynamical system (13.37) and (13.38) is ultimately
bounded with respect to x1 uniformly in x2 with bound ε if there exists γ > 0
such that, for every δ ∈ (0, γ), there exists K = K(δ, ε) > 0 such that
‖x10‖ < δ implies ‖x1(k)‖ < ε, k ≥ K. The nonlinear dynamical system
(13.37) and (13.38) is globally ultimately bounded with respect to x1 uniformly
in x2 with bound ε if, for every δ ∈ (0,∞), there exists K = K(δ, ε) > 0
such that ‖x10‖ < δ implies ‖x1(k)‖ < ε, k ≥ K.

The following results present Lyapunov-like theorems for bounded-
ness and ultimate boundedness. For these results define ∆V (x1, x2)

△
=

V (f(x1, x2)) − V (x1, x2), where f(x1, x2)
△
= [fT

1 (x1, x2) f
T
2 (x1, x2)]

T and
V : D × Rn2 → R is a continuous function.

Theorem 13.12. Consider the nonlinear dynamical system (13.37) and
(13.38). Assume there exist a continuous function V : D × Rn2 → R and
class K functions α(·), β(·) such that

α(‖x1‖) ≤ V (x1, x2) ≤ β(‖x1‖), x1 ∈ D, x2 ∈ Rn2 , (13.60)

∆V (x1, x2) ≤ 0, x1 ∈ D, ‖x1‖ ≥ µ, x2 ∈ Rn2 , (13.61)
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where µ > 0 is such that Bα−1(β(µ))(0) ⊂ D. Furthermore, assume that
sup(x1,x2)∈Bµ(0)×Rn2

V (f(x1, x2)) exists. Then the nonlinear dynamical

system (13.37) and (13.38) is bounded with respect to x1 uniformly in x2.
Furthermore, for every δ ∈ (0, γ), x10 ∈ Bδ(0) implies that ‖x1(k)‖ ≤ ε,
k ∈ Z+, where

ε = ε(δ)
△
= α−1(max{η, β(δ)}), (13.62)

η ≥ max{β(µ), sup(x1,x2)∈Bµ(0)×Rn2
V (f(x1, x2))}, and γ

△
= sup{r > 0 :

Bα−1(β(r))(0) ⊂ D}. If, in addition, D = Rn1 and α(·) is a class K∞ function,
then the nonlinear dynamical system (13.37) and (13.38) is globally bounded
with respect to x1 uniformly in x2 and for every x10 ∈ Rn1 , ‖x1(k)‖ ≤ ε,
k ∈ Z+, where ε is given by (13.62) with δ = ‖x10‖.

Proof. First, let δ ∈ (0, µ] and assume ‖x10‖ ≤ δ. If ‖x1(k)‖ ≤ µ,
k ∈ Z+, then it follows from (13.60) that ‖x1(k)‖ ≤ µ ≤ α−1(β(µ)) ≤
α−1(η), k ∈ Z+. Alternatively, if there exists K > 0 such that ‖x1(K)‖ >
µ, then, since ‖x1(0)‖ ≤ µ, it follows that there exists κ ≤ K such that
‖x1(κ − 1)‖ ≤ µ and ‖x1(k)‖ > µ, k ∈ {κ, . . . ,K}. Hence, it follows from
(13.60) and (13.61) that

α(‖x1(K)‖) ≤ V (x1(K), x2(K))

≤ V (x1(κ), x2(κ))

= V (f(x1(κ− 1), x2(κ− 1)))

≤ η,

which implies that ‖x1(K)‖ ≤ α−1(η). Next, let δ ∈ (µ, γ) and assume

x10 ∈ Bδ(0) and ‖x10‖ > µ. Now, for every k̂ > 0 such that ‖x1(k)‖ ≥ µ,

k ∈ {0, . . . , k̂}, it follows from (13.60) and (13.61) that

α(‖x1(k)‖) ≤ V (x1(k), x2(k)) ≤ V (x10, x20) ≤ β(δ),

which implies that ‖x1(k)‖ ≤ α−1(β(δ)), k ∈ {0, . . . , k̂}. Next, if there
exists K > 0 such that ‖x1(K)‖ ≤ µ, then it follows as in the proof of
the first case that ‖x1(k)‖ ≤ α−1(η), k ≥ K. Hence, if x10 ∈ Bδ(0), then
‖x1(k)‖ ≤ α−1(max{η, β(δ)}), k ∈ Z+. Finally, if D = Rn1 and α(·) is a
class K∞ function it follows that β(·) is a class K∞ function, and hence,
γ = ∞. Hence, the nonlinear dynamical system (13.37) and (13.38) is
globally bounded with respect to x1 uniformly in x2.

Theorem 13.13. Consider the nonlinear dynamical system (13.37) and
(13.38). Assume there exist a continuous function V : D × Rn2 → R and
class K functions α(·), β(·) such that (13.60) holds. Furthermore, assume
that there exists a continuous function W : D → R such that W (x1) > 0,
‖x1‖ > µ, and

∆V (x1, x2) ≤ −W (x1), x1 ∈ D, ‖x1‖ > µ, x2 ∈ Rn2 , (13.63)
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where µ > 0 is such that Bα−1(β(µ))(0) ⊂ D. Finally, assume that

sup
(x1,x2)∈Bµ(0)×Rn2

V (f(x1, x2))

exists. Then the nonlinear dynamical system (13.37) and (13.38) is ulti-

mately bounded with respect to x1 uniformly in x2 with bound ε
△
= α−1(η),

where η > max{β(µ), sup(x1,x2)∈Bµ(0)×Rn2
V (f(x1, x2))}. Furthermore,

lim supk→∞ ‖x1(k)‖ ≤ α−1(η). If, in addition, D = Rn and α(·) is a class
K∞ function, then the nonlinear dynamical system (13.37) and (13.38) is
globally ultimately bounded with respect to x1 uniformly in x2 with bound
ε.

Proof. First, let δ ∈ (0, µ] and assume ‖x10‖ ≤ δ. As in the proof of
Theorem 13.12, it follows that ‖x1(k)‖ ≤ α−1(η) = ε, k ∈ Z+. Next, let δ ∈
(µ, γ), where γ

△
= sup{r > 0 : Bα−1(β(r))(0) ⊂ D} and assume x10 ∈ Bδ(0)

and ‖x10‖ > µ. In this case, it follows from Theorem 13.12 that ‖x1(k)‖ ≤
α−1(max{η, β(δ)}), k ∈ Z+. Suppose, ad absurdum, that ‖x1(k)‖ ≥ β−1(η),

k ∈ Z+, or, equivalently, x1(k) ∈ O △
= Bα−1(max{η,β(δ)})(0)\Bβ−1(η)(0), k ∈

Z+. Since O is compact and W (·) is continuous and W (x1) > 0, ‖x1‖ ≥
β−1(η) > µ, it follows from Theorem 2.13 that θ

△
= minx1∈OW (x1) > 0

exists. Hence, it follows from (13.63) that

V (x1(k), x2(k)) ≤ V (x10, x20) − kθ, k ∈ Z+, (13.64)

which implies that

α(‖x1(k)‖) ≤ β(‖x10‖) − kθ ≤ β(δ) − kθ, k ∈ Z+. (13.65)

Now, letting k > β(δ)/θ it follows that α(‖x1(k)‖) < 0, which is a
contradiction. Hence, there exists K = K(δ, η) > 0 such that ‖x1(K)‖ <
β−1(η). Thus, it follows from Theorem 13.12 that ‖x1(k)‖ ≤ α−1(η),
k ≥ K, which proves that the nonlinear dynamical system (13.37) and
(13.38) is ultimately bounded with respect to x1 uniformly in x2 with
bound ε = α−1(η). Furthermore, lim supk→∞ ‖x1(k)‖ ≤ α−1(η). Finally, if
D = Rn1 and α(·) is a class K∞ function it follows that β(·) is a class K∞
function, and hence, γ = ∞. Hence, the nonlinear dynamical system (13.37)
and (13.38) is globally ultimately bounded with respect to x1 uniformly in
x2 with bound ε.

Corollary 13.3. Consider the nonlinear dynamical system (13.37) and
(13.38). Assume there exist a continuous function V : D × Rn2 → R and
class K functions α(·), β(·) such that (13.60) holds. Furthermore, assume
that there exists a class K function γ : D → R such that

∆V (x1, x2) ≤ −γ(‖x1‖) + γ(µ), x1 ∈ D, x2 ∈ Rn2 , (13.66)

where µ > 0 is such that Bα−1(β(µ))(0) ⊂ D. Then the nonlinear
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dynamical system (13.37) and (13.38) is ultimately bounded with respect

to x1 uniformly in x2 with bound ε
△
= α−1(η), where η = β(µ) + γ(µ).

Furthermore, lim supk→∞ ‖x1(k)‖ ≤ α−1(η). If, in addition, D = Rn and
α(·) is a class K∞ function, then the nonlinear dynamical system (13.37)
and (13.38) is globally ultimately bounded with respect to x1 uniformly in
x2 with bound ε.

Proof. The result is a direct consequence of Theorem 13.13 with
W (x1) = γ(‖x1‖) − γ(µ) and η = β(µ) + γ(µ). Specifically, it follows from
(13.66) that for every (x1, x2) ∈ D × Rn2 , ‖x1‖ ≤ µ,

V (f(x1, x2)) ≤ V (x1, x2) − γ(‖x1‖) + γ(µ)

≤ β(‖x1‖) − γ(‖x1‖) + γ(µ)

≤ β(µ) + γ(µ).

Hence, it follows that

sup
(x1,x2)∈Bµ(0)×Rn2

V (f(x1, x2)) ≤ β(µ) + γ(µ).

Finally, note that β(µ) ≤ β(µ) + γ(µ), and hence,

η ≥ max

{

β(µ), sup
(x1,x2)∈Bµ(0)×Rn2

V (f(x1, x2))

}

satisfying all the conditions of Theorem 13.13.

Next, we specialize Theorems 13.12 and 13.13 to nonlinear time-
varying dynamical systems. The following definition is needed for these
results.

Definition 13.9. i) The nonlinear time-varying dynamical system
(13.51) is Lagrange stable if, for every x0 ∈ Rn and k0 ∈ Z, there exists
ε = ε(k0, x0) > 0 such that ‖x(k)‖ < ε, k ≥ k0.

ii) The nonlinear time-varying dynamical system (13.51) is uniformly
bounded if there exists γ > 0 such that, for every δ ∈ (0, γ), there exists
ε = ε(δ) > 0 such that ‖x0‖ < δ implies ‖x(k)‖ < ε, k ≥ k0. The nonlinear
time-varying dynamical system (13.51) is globally uniformly bounded if, for
every δ ∈ (0,∞), there exists ε = ε(δ) > 0 such that ‖x0‖ < δ implies
‖x(k)‖ < ε, k ≥ k0.

iii) The nonlinear time-varying dynamical system (13.51) is uniformly
ultimately bounded with bound ε if there exists γ > 0 such that, for every δ ∈
(0, γ), there exists K = K(δ, ε) > 0 such that ‖x0‖ < δ implies ‖x(k)‖ < ε,
k ≥ k0+K. The nonlinear time-varying dynamical system (13.51) is globally
uniformly ultimately bounded with bound ε if, for every δ ∈ (0,∞), there
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exists K = K(δ, ε) > 0 such that ‖x0‖ < δ implies ‖x(k)‖ < ε, k ≥ k0 +K.

For the following result define

∆V (k, x)
△
= V (k + 1, f(k, x)) − V (k, x),

where V : R ×D → R is a given continuous function.

Corollary 13.4. Consider the nonlinear time-varying dynamical sys-
tem (13.51). Assume there exist a continuous function V : R ×D → R and
class K functions α(·), β(·) such that

α(‖x‖) ≤ V (k, x) ≤ β(‖x‖), x ∈ D, k ∈ Z, (13.67)

∆V (k, x) ≤ 0, x ∈ D, ‖x‖ ≥ µ, k ∈ Z, (13.68)

where µ > 0 is such that Bα−1(β(µ))(0) ⊂ D. Furthermore, assume
that sup(k,x)∈Z×Bµ(0) V (k, f(k, x)) exists. Then the nonlinear time-varying

dynamical system (13.51) is uniformly bounded. If, in addition, D = Rn

and α(·) is a class K∞ function, then the nonlinear time-varying dynamical
system (13.51) is globally uniformly bounded.

Proof. The result is a direct consequence of Theorem 13.12. Specif-
ically, let n1 = n, n2 = 1, x1(k − k0) = x(k), x2(k − k0) = k, f1(x1, x2) =
f(k, x), and f2(x1, x2) = x2+1. Now, note that with κ = k−k0, the solution
x(k), k ≥ k0, to the nonlinear time-varying dynamical system (13.51) is
equivalently characterized by the solution x1(κ), κ ≥ 0, to the nonlinear
autonomous dynamical system

x1(κ+ 1) = f1(x1(κ), x2(κ)), x1(0) = x0, κ ≥ 0,

x2(κ+ 1) = x2(κ) + 1, x2(0) = k0.

Now, the result is a direct consequence of Theorem 13.12.

Corollary 13.5. Consider the nonlinear time-varying dynamical sys-
tem (13.51). Assume there exist a continuous function V : R ×D → R and
class K functions α(·), β(·) such that (13.67) holds. Furthermore, assume
that there exists a continuous function W : D → R such that W (x) > 0,
‖x‖ > µ, and

∆V (k, x) ≤ −W (x), x ∈ D, ‖x‖ > µ, k ∈ Z, (13.69)

where µ > 0 is such that Bα−1(β(µ))(0) ⊂ D. Finally, assume that
sup(k,x)∈Z×Bµ(0) V (k, f(k, x)) exists. Then the nonlinear time-varying dy-

namical system (13.51) is uniformly ultimately bounded with bound ε
△
=

α−1(η) where η ≥ max{β(µ), sup(k,x)∈Z×Bµ(0)
V (k, f(k, x))}. Furthermore,

lim supk→∞ ‖x(k)‖ ≤ α−1(η). If, in addition, D = Rn and α(·) is a class
K∞ function, then the nonlinear time-varying dynamical system (13.51) is
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globally uniformly ultimately bounded with bound ε.

Proof. The result is a direct consequence of Theorem 13.13 using
similar arguments as in the proof of Corollary 13.4 and, hence, is omitted.

Finally, we specialize Corollaries 13.4 and 13.5 to nonlinear time-
invariant dynamical systems. For these results we need the following
specialization of Definition 13.9.

Definition 13.10. i) The nonlinear dynamical system (13.1) is La-
grange stable if, for every x0 ∈ Rn, there exists ε = ε(x0) > 0 such that
‖x(k)‖ < ε, k ∈ Z+.

ii) The nonlinear dynamical system (13.1) is bounded if there exists
γ > 0 such that, for every δ ∈ (0, γ), there exists ε = ε(δ) > 0 such that
‖x0‖ < δ implies ‖x(k)‖ < ε, k ∈ Z+. The nonlinear dynamical system
(13.1) is globally bounded if, for every δ ∈ (0,∞), there exists ε = ε(δ) > 0
such that ‖x0‖ < δ implies ‖x(k)‖ < ε, k ∈ Z+.

iii) The nonlinear dynamical system (13.1) is ultimately bounded with
bound ε if there exists γ > 0 such that, for every δ ∈ (0, γ), there exists
K = K(δ, ε) > 0 such that ‖x0‖ < δ implies ‖x(k)‖ < ε, k ≥ K. The
nonlinear dynamical system (13.1) is globally ultimately bounded with bound
ε if, for every δ ∈ (0,∞), there exists K = K(δ, ε) > 0 such that ‖x0‖ < δ
implies ‖x(k)‖ < ε, k ≥ K.

Corollary 13.6. Consider the nonlinear dynamical system (13.1).
Assume there exist a continuous function V : D → R and class K functions
α(·) and β(·) such that

α(‖x‖) ≤ V (x) ≤ β(‖x‖), x ∈ D, (13.70)

V (f(x)) ≤ V (x), x ∈ D, ‖x‖ ≥ µ, (13.71)

where µ > 0 is such that Bα−1(η)(0) ⊂ D, with η ≥ β(µ). Then the nonlinear
dynamical system (13.1) is bounded. If, in addition, D = Rn and V (x) →
∞ as ‖x‖ → ∞, then the nonlinear dynamical system (13.1) is globally
bounded.

Proof. The result is a direct consequence of Corollary 13.4.

Corollary 13.7. Consider the nonlinear dynamical system (13.1).
Assume there exist a continuous function V : R × D → R and class K
functions α(·) and β(·) such that (13.70) holds and

V (f(x)) < V (x), x ∈ D, ‖x‖ > µ, (13.72)
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where µ > 0 is such that Bα−1(η)(0) ⊂ D with η > β(µ). Then the nonlinear

dynamical system (13.1) is ultimately bounded with bound ε
△
= α−1(η).

Furthermore, lim supk→∞ ‖x(k)‖ ≤ α−1(η). If, in addition, D = Rn and
V (x) → ∞ as ‖x‖ → ∞, then the nonlinear dynamical system (13.1) is
globally ultimately bounded with bound ε.

Proof. The result is a direct consequence of Corollary 13.5.

13.8 Stability Theory via Vector Lyapunov Functions

In this section, we consider the method of vector Lyapunov functions for
stability analysis of discrete-time nonlinear dynamical systems. To develop
the theory of vector Lyapunov functions, we first introduce some results
on vector difference inequalities and the vector comparison principle for
discrete-time systems. Specifically, consider the discrete-time nonlinear
dynamical system given by

z(k + 1) = w(z(k)), z(k0) = z0, k ∈ Iz0
, (13.73)

where z(k) ∈ Q ⊆ Rq, k ∈ Iz0
, is the system state vector, Iz0

⊆ T ⊆ Z is
the maximal interval of existence of a solution z(k) to (13.73), Q is an open
set, 0 ∈ Q, and w : Q → Rq is a continuous function on Q.

Theorem 13.14. Consider the discrete-time nonlinear dynamical sys-
tem (13.73). Assume that the function w : Q → Rq is continuous and w(·)
is of class Wd. If there exists a continuous vector function V : Iz0

→ Q such
that

V (k + 1) − V (k) ≤≤ w(V (k)), k ∈ Iz0
, (13.74)

then

V (k0) ≤≤ z0, z0 ∈ Q, (13.75)

implies

V (k) ≤≤ z(k), k ∈ Iz0
, (13.76)

where z(k), k ∈ Iz0
, is the solution to (13.73).

Proof. It follows from (13.73), (13.74), (13.75), and the fact that
w(·) ∈ Wd that

V (k0 + 1) = V (k0) + V (k0 + 1) − V (k0)

≤≤ V (k0) + w(V (k0))

≤≤ z0 + w(z0)

= z(k0 + 1).
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Hence, V (k0 + 1) ≤≤ z(k0 + 1). Recursively repeating this procedure for all
ki ∈ Iz0

yields (13.76).

Next, consider the discrete-time nonlinear dynamical system given by

x(k + 1) = f(x(k)), x(k0) = x0, k ∈ Ix0
, (13.77)

where x(k) ∈ D ⊆ Rn, k ∈ Ix0
, is the system state vector, Ix0

⊂ Z is the
maximal interval of existence of a solution x(k) to (13.77), D is an open set,
0 ∈ D, and f(·) is continuous on D. The following result is a direct corollary
of Theorem 13.14.

Corollary 13.8. Consider the discrete-time nonlinear dynamical sys-
tem (13.77). Assume there exists a continuous vector function V : D →
Q ⊆ Rq such that

V (f(x)) − V (x) ≤≤ w(V (x)), x ∈ D, (13.78)

where w : Q → Rq is a continuous function, w(·) ∈ Wd, and the equation

z(k + 1) = w(z(k)), z(k0) = z0, k ∈ Iz0
, (13.79)

has a unique solution z(k), k ∈ Iz0
. If {k0, . . . , k0 + τ} ⊆ Ix0

∩ Iz0
, then

V (x0) ≤≤ z0, z0 ∈ Q, (13.80)

implies

V (x(k)) ≤≤ z(k), k ∈ {k0, . . . , k0 + τ}. (13.81)

Proof. For every x0 ∈ D, the solution x(k), k ∈ Ix0
, to (13.77) is well

defined. With η(k)
△
= V (x(k)), k ∈ Ix0

, it follows from (13.78) that

η(k + 1) − η(k) ≤≤ w(η(k)), k ∈ Ix0
. (13.82)

Moreover, if {k0, . . . , k0 +τ} ⊆ Ix0
∩Iz0

, then it follows from Theorem 13.14
that V (x0) = η(k0) ≤≤ z0 implies

V (x(k)) = η(k) ≤≤ z(k), k ∈ {k0, . . . , k0 + τ}, (13.83)

which establishes the result.

Note that if the solutions to (13.77) and (13.79) are globally defined
for all x0 ∈ D and z0 ∈ Q, then the result of Corollary 13.8 holds for every
k ≥ k0. For the remainder of this section we assume that the solutions to
the systems (13.77) and (13.79) are defined for all k ≥ k0. Furthermore,
consider the comparison discrete-time nonlinear dynamical system given by

z(k + 1) = w(z(k)), z(k0) = z0, k ≥ k0, (13.84)
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and the nonlinear dynamical system

x(k + 1) = f(x(k)), x(k0) = x0, (13.85)

where z0 ∈ Q ⊆ R
q
+, 0 ∈ Q, x0 ∈ D, w : Q → Rq is continuous, w(·) ∈ Wd,

w(0) = 0, f : D → D is continuous on D, and f(0) = 0. Note that since
w(·) ∈ Wd and w(0) = 0, then for every x ∈ D and z ∈ Q ∩ R

q
+ it follows

that w(z) ≥≥ 0, which implies that for every z0 ∈ Q ∩ R
q
+ the solution

z(k), k ≥ k0, remains in R
q
+ (see Problem 13.17).

Theorem 13.15. Consider the discrete-time nonlinear dynamical sys-
tem (13.77). Assume that there exist a continuous function V : D → Q∩ R

q
+

and a positive vector p ∈ R
q
+ such that V (0) = 0, the scalar function

v : D → R+ defined by v(x) , pTV (x), x ∈ D, is such that v(x) > 0, x 6= 0,
and

V (f(x)) − V (x) ≤≤ w(V (x)), x ∈ D, (13.86)

where w : Q → Rq is continuous, w(·) ∈ Wd, and w(0) = 0. Then the
following statements hold:

i) If the zero solution z(k) ≡ 0 to (13.84) is Lyapunov stable, then the
zero solution x(k) ≡ 0 to (13.77) is Lyapunov stable.

ii) If the zero solution z(k) ≡ 0 to (13.84) is asymptotically stable,
then the zero solution x(k) ≡ 0 to (13.77) is asymptotically stable.

iii) If D = Rn, Q = Rq, v : Rn → R+ is positive definite and
radially unbounded, and the zero solution z(k) ≡ 0 to (13.84) is globally
asymptotically stable, then the zero solution x(k) ≡ 0 to (13.77) is globally
asymptotically stable.

iv) If there exist constants ν ≥ 1, α > 0, and β > 0 such that v : D →
R+ satisfies

α‖x‖ν ≤ v(x) ≤ β‖x‖ν , x ∈ D, (13.87)

and the zero solution z(k) ≡ 0 to (13.84) is geometrically stable, then the
zero solution x(k) ≡ 0 to (13.77) is geometrically stable.

v) If D = Rn, Q = Rq, there exist constants ν ≥ 1, α > 0, and β > 0
such that v : D → R+ satisfies (13.87), and the zero solution z(k) ≡ 0 to
(13.84) is globally geometrically stable, then the zero solution x(k) ≡ 0 to
(13.77) is globally geometrically stable.

Proof. Assume there exist a continuous function V : D → Q ∩ R
q
+

and a positive vector p ∈ R
q
+ such that v(x) = pTV (x), x ∈ D, is positive
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definite, that is, v(0) = 0, v(x) > 0, x 6= 0. Note that v(x) = pTV (x) ≤
maxi=1,...,q{pi}eTV (x), x ∈ D, and hence, the function eTV (x), x ∈ D,
is also positive definite. Thus, there exist r > 0 and class K functions
α, β : [0, r] → R+ such that Br(0) ⊂ D and

α(‖x‖) ≤ eTV (x) ≤ β(‖x‖), x ∈ Br(0). (13.88)

i) Let ε > 0 and choose 0 < ε̂ < min{ε, r}. It follows from Lyapunov
stability of the nonlinear comparison system (13.84) that there exists µ =
µ(ε̂) = µ(ε) > 0 such that if ‖z0‖1 < µ and z0 ∈ R

q
+, then ‖z(k)‖1 < α(ε̂)

and z(k) ∈ R
q
+, k ≥ k0, for every x0 ∈ D. Now, choose z0 = V (x0) ≥≥ 0,

x0 ∈ D. Since V (x), x ∈ D, is continuous, the function eTV (x), x ∈ D, is
also continuous. Hence, for µ = µ(ε̂) > 0 there exists δ = δ(µ(ε̂)) = δ(ε) > 0
such that δ < ε̂ and if ‖x0‖ < δ, then eTV (x0) = eTz0 < µ, which implies
that eTz(k) = ‖z(k)‖1 < α(ε̂), k ≥ k0. Now, with z0 = V (x0) ≥≥ 0, x0 ∈
D, and the assumption that w(·) ∈ Wd, it follows from (13.86) and Corollary
13.8 that 0 ≤≤ V (x(k)) ≤≤ z(k) on any compact interval {k0, . . . , k0 + τ},
and hence, eTz(k) = ‖z(k)‖1, k ∈ {k0, . . . , k0 + τ}. Let τ > k0 be such that
z(k) ∈ Br(0), k ∈ {k0, . . . , k0 + τ}, for all x0 ∈ Br(0). Thus, using (13.88),
if ‖x0‖ < δ, then

α(‖x(k)‖) ≤ eTV (x(k)) ≤ eTz(k) < α(ε̂), k ≥ k0, (13.89)

which implies ‖x(k)‖ < ε̂ < ε, k ≥ k0. Now, suppose, ad absurdum,

that for some x0 ∈ Bδ(0) there exists k̂ > k0 + τ such that ‖x(k̂)‖ = ε̂.

Then, for z0 = V (x0) and the compact interval {k0, . . . , k̂} it follows from

(13.86) and Corollary 13.8 that V (x(k̂)) ≤≤ z(k̂), which implies that

α(ε̂) = α(‖x(k̂)‖) ≤ eTV (x(k̂)) ≤ eTz(k̂) < α(ε̂). This is a contradiction,
and hence, for a given ε > 0 there exists δ = δ(ε) > 0 such that for all
x0 ∈ Bδ(0), ‖x(k)‖ < ε, k ≥ k0, which implies Lyapunov stability of the
zero solution x(k) ≡ 0 to (13.77).

ii) It follows from i) and the asymptotic stability of the nonlinear
comparison system (13.84) that the zero solution to (13.77) is Lyapunov
stable and there exists µ > 0 such that if ‖z0‖1 < µ and z0 ∈ R

q
+, then

limk→∞ z(k) = 0 for every x0 ∈ D. As in i), choose z0 = V (x0) ≥≥ 0, x0 ∈
D. It follows from Lyapunov stability of the zero solution to (13.77) and
the continuity of V : D → Q ∩ R

q
+ that there exists δ = δ(µ) > 0 such that

if ‖x0‖ < δ, then ‖x(k)‖ < r, k ≥ k0, and eTV (x0) = eTz0 = ‖z0‖1 < µ.
Thus, by asymptotic stability of (13.84), for every ε > 0 there exists K =
K(ε) > k0 such that eTz(k) = ‖z(k)‖1 < α(ε), k ≥ K. Thus, it follows
from (13.86) and Corollary 13.8 that V (x(k)) ≤≤ z(k), k ≥ K, and hence,
by (13.88),

α(‖x(k)‖) ≤ eTV (x(k)) ≤ eTz(k) < α(ε), k ≥ K. (13.90)
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Now, suppose, ad absurdum, that for some x0 ∈ Bδ(0), limk→∞ x(k) 6= 0,
that is, there exists a sequence {kn}∞n=1, with kn → ∞ as n→ ∞, such that
‖x(kn)‖ ≥ ε̂, n ∈ Z+, for some 0 < ε̂ < r. Choose ε = ε̂ and the interval
{k, . . . , k+τ} such that at least one kn ∈ {k, . . . , k+τ}. Then it follows from
(13.89) that α(ε) ≤ α(‖x(kn)‖) < α(ε), which is a contradiction. Hence,
there exists δ > 0 such that for all x0 ∈ Bδ(0), limk→∞ x(k) = 0 which, along
with Lyapunov stability, implies asymptotic stability of the zero solution
x(k) ≡ 0 to (13.77).

iii) Suppose D = Rn, Q = Rq, v : Rn → R+ is a positive definite,
radially unbounded function, and the nonlinear comparison system (13.84) is
globally asymptotically stable. In this case, for V : Rn → R

q
+ the inequality

(13.88) holds for all x ∈ Rn where the functions α, β : R+ → R+ are of
class K∞. Furthermore, Lyapunov stability of the zero solution x(k) ≡ 0 to
(13.77) follows from i). Next, for every x0 ∈ Rn and z0 = V (x0) ∈ R

q
+ the

identical arguments as in ii) can be used to show that limk→∞ x(k) = 0,
which proves global asymptotic stability of the zero solution x(k) ≡ 0 to
(13.77).

iv) Suppose (13.87) holds. Since p ∈ R
q
+, then

α̂‖x‖ν ≤ eTV (x) ≤ β̂‖x‖ν , x ∈ D, (13.91)

where α̂ , α/maxi=1,...,q{pi} and β̂ , β/mini=1,...,q{pi}. It follows from the
geometric stability of the nonlinear comparison system (13.84) that there
exist positive constants γ, µ, and η > 1 such that if ‖z0‖1 < µ and z0 ∈ R

q
+,

then z(k) ∈ R
q
+, k ≥ k0, and

‖z(k)‖1 ≤ γ‖z0‖1η
−(k−k0), k ≥ k0, (13.92)

for all x0 ∈ D. Choose z0 = V (x0) ≥≥ 0, x0 ∈ D. By continuity of
V : D → Q ∩ R

q
+, there exists δ = δ(µ) > 0 such that for all x0 ∈ Bδ(0),

eTV (x0) = eTz0 = ‖z0‖1 < µ. Furthermore, it follows from (13.91) and
(13.92), and Corollary 13.8 that for all x0 ∈ Bδ(0),

α̂‖x(k)‖ν ≤ eTV (x(k)) ≤ eTz(k) ≤ γ‖z0‖1η
−(k−k0) ≤ γβ̂‖x0‖νη−(k−k0),

k ≥ k0. (13.93)

This in turn implies that for every x0 ∈ Bδ(0),

‖x(k)‖ ≤
(γβ̂

α̂

)
1

ν ‖x0‖η−
k−k0

ν , k ≥ k0, (13.94)

which establishes geometric stability of the zero solution x(k) ≡ 0 to (13.77).

v) The proof is identical to the proof of iv).

If V : D → Q ∩ R
q
+ satisfies the conditions of Theorem 13.15 we say
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that V (x), x ∈ D is a vector Lyapunov function. Note that for stability
analysis each component of a vector Lyapunov function need not be positive
definite, nor does it need to have a negative definite time difference along
the trajectories of (13.85). This provides more flexibility in searching for
a vector Lyapunov function as compared to a scalar Lyapunov function for
addressing the stability of discrete-time nonlinear dynamical systems.

Finally, we provide a time-varying extension of Theorem 13.15. In
particular, we consider the discrete-time nonlinear time-varying dynamical
system

x(k + 1) = f(k, x(k)), x(k0) = x0, k ≥ k0, (13.95)

where x(k) ∈ D ⊆ Rn, 0 ∈ D, f : {k0, . . . , k1}×D → D is such that f(·, ·) is
continuous, and, for every k ∈ {k0, . . . , k1}, f(k, 0) = 0.

Theorem 13.16. Consider the discrete-time nonlinear time-varying
dynamical system (13.95). Assume that there exist a continuous vector
function V : Z+ × D → Q ∩ R

q
+, a positive vector p ∈ R

q
+, and class

K functions α, β : [0, r] → R+ such that V (k, 0) = 0, k ∈ Z+, the scalar

function v : Z+ ×D → R+ defined by v(k, x)
△
= pTV (k, x), (k, x) ∈ Z+ ×D,

is such that

α(‖x‖) ≤ v(k, x) ≤ β(‖x‖), (k, x) ∈ Z+ × Br(0), Br(0) ⊆ D, (13.96)

and

V (k + 1, f(x)) − V (k, x) ≤≤ w(k, V (k, x)), x ∈ D, k ∈ Z+, (13.97)

where w : Z+ × Q → Rq is continuous, w(k, ·) ∈ Wd, and w(k, 0) = 0, k ∈
Z+. Then the stability properties of the zero solution z(k) ≡ 0 to

z(k + 1) = w(k, z(k)), z(k0) = z0, k ≥ k0, (13.98)

where z0 ∈ Q ∩ R
q
+, imply the corresponding stability properties of the zero

solution x(k) ≡ 0 to (13.95). That is, if the zero solution z(k) ≡ 0 to (13.98)
is uniformly Lyapunov (respectively, uniformly asymptotically) stable, then
the zero solution x(k) ≡ 0 to (13.95) is uniformly Lyapunov (respectively,
uniformly asymptotically) stable. If, in addition, D = Rn, Q = Rq, and
α(·), β(·) are class K∞ functions, then global uniform asymptotic stability
of the zero solution z(k) ≡ 0 to (13.98) implies global uniform asymptotic
stability of the zero solution x(k) ≡ 0 to (13.95). Moreover, if there exist
constants ν ≥ 1, α > 0, and β > 0 such that v : Z+ ×D → R+ satisfies

α‖x‖ν ≤ v(k, x) ≤ β‖x‖ν , (k, x) ∈ Z+ ×D, (13.99)

then geometric stability of the zero solution z(k) ≡ 0 to (13.98) implies
geometric stability of the zero solution x(k) ≡ 0 to (13.95). Finally, if
D = Rn, Q = Rq, then there exist constants ν ≥ 1, α > 0, and β > 0 such
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that v : Z+ × Rn → R+ satisfies (13.99), then global geometric stability of
the zero solution z(k) ≡ 0 to (13.98) implies global geometric stability of
the zero solution x(k) ≡ 0 to (13.95).

Proof. The proof is similar to the proof of Theorem 13.15 and is left
as an exercise for the reader.

13.9 Dissipative and Geometrically Dissipative Discrete-Time

Dynamical Systems

In this section, we consider the discrete-time nonlinear dynamical systems
G of the form

x(k + 1) = F (x(k), u(k)), x(k0) = x0, k ≥ k0, (13.100)

y(k) = H(x(k), u(k)), (13.101)

where x ∈ D ⊆ Rn, D is open with 0 ∈ D, u(k) ∈ U ⊆ Rm, y(k) ∈ Y ⊆ Rl,
F : D × U → Rn, and H : D × U → Y . We assume that F (·, ·) and H(·, ·)
are continuous mappings and F (·, ·) has at least one equilibrium so that,
without loss of generality, F (0, 0) = 0 and H(0, 0) = 0. Note that since all
input-output pairs u(·) ∈ U , y(·) ∈ Y, of the discrete-time dynamical system
G are defined on Z+, the supply rate r : U × Y → R satisfying r(0, 0) = 0 is
locally summable for all input-output pairs satisfying (13.100) and (13.101),

that is,
∑k2

k=k1
|r(u(k), y(k))| <∞, k1, k2 ∈ Z+.

Definition 13.11. A nonlinear discrete-time dynamical system G of
the form (13.100) and (13.101) is dissipative with respect to the supply rate
r(u, y) if the dissipation inequality

0 ≤
k−1
∑

i=k0

r(u(i), y(i)) (13.102)

is satisfied for all k − 1 ≥ k0 and all u(·) ∈ U with x(k0) = 0 along the
trajectories of G. A discrete-time dynamical system G of the form (13.100)
and (13.101) is geometrically dissipative with respect to the supply rate r(u, y)
if there exists a constant ρ > 1 such that the geometric dissipation inequality

0 ≤
k−1
∑

i=k0

ρi+1r(u(i), y(i)) (13.103)

is satisfied for all k − 1 ≥ k0 and all u(·) ∈ U with x(k0) = 0 along the
trajectories of G. A dynamical system G of the form (13.100) and (13.101)
is lossless with respect to the supply rate r(u, y) if G is dissipative with respect
to the supply rate r(u, y) and the dissipation inequality (13.102) is satisfied
as an equality for all k − 1 ≥ k0 and all u(·) ∈ U with x(k0) = x(k) = 0
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along the trajectories of G.

Next, define the available storage Va(x0) of the discrete-time nonlinear
dynamical system G by

Va(x0)
△
= − inf

u(·), K≥0

K−1
∑

k=0

r(u(k), y(k))

= sup
u(·), K≥0

[

−
K−1
∑

k=0

r(u(k), y(k))

]

, (13.104)

where x(k), k ≥ k0, is the solution to (13.100) with admissible input u(·) ∈
U . Note that Va(x) ≥ 0 for all x ∈ D since Va(x) is the supremum over a
set of numbers containing the zero element (K = 1). Similarly, define the
available geometric storage Va(x0) of the nonlinear dynamical system G by

Va(x0)
△
= − inf

u(·), K≥0

K−1
∑

k=0

ρk+1r(u(k), y(k)), (13.105)

where x(k), k ∈ Z+, is the solution to (13.100) with x(0) = x0 and admissible
input u(·) ∈ U . Note that if we define the available geometric storage as the
time-varying function

V̂a(x0, k0) = − inf
u(·), K≥k0

K−1
∑

k=k0

ρk+1r(u(k), y(k)), (13.106)

where x(k), k ≥ k0, is the solution to (13.100) with x(k0) = x0 and
admissible input u(·) ∈ U , it follows that, since G is time invariant,

V̂a(x0, k0) = −ρk0 inf
u(·), K≥0

K−1
∑

k=0

ρk+1r(u(k), y(k)) = ρk0Va(x0). (13.107)

Hence, an alternative expression for the available geometric storage function
Va(x0) is given by

Va(x0) = −ρ−k0 inf
u(·), K≥k0

K−1
∑

k=k0

ρk+1r(u(k), y(k)). (13.108)

Next, we show that the available storage is finite and zero at the origin
if and only if G is dissipative. For this result we require the following three
definitions.

Definition 13.12. A nonlinear dynamical system G is completely
reachable if for all x0 ∈ D ⊆ Rn there exist a ki < k0 and a square summable
input u(k) defined on [ki, k0] such that the state x(k), k ≥ ki, can be driven
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from x(ki) = 0 to x(k0) = x0. G is completely null controllable if for all
x0 ∈ D ⊆ Rn there exist a finite time kf > k0 and a square summable input
u(k) defined on [k0, kf ] such that x(k), k ≥ k0, can be driven from x(k0) = x0

to x(kf) = 0.

Definition 13.13. Consider the discrete-time nonlinear dynamical
system G given by (13.100) and (13.101). A continuous nonnegative-definite
function Vs : D → R satisfying Vs(0) = 0 and

Vs(x(k)) ≤ Vs(x(k0)) +
k−1
∑

i=k0

r(u(i), y(i)), k − 1 ≥ k0, (13.109)

for all k0, k ∈ Z+, where x(k), k ∈ Z+, is the solution of (13.100) with
u(·) ∈ U , is called a storage function for G.

Definition 13.14. Consider the discrete-time nonlinear dynamical
system G given by (13.100) and (13.101). A continuous nonnegative-definite
function Vs : D → R satisfying Vs(0) = 0 and

ρkVs(x(k)) ≤ ρk0Vs(x(k0)) +

k−1
∑

i=k0

ρi+1r(u(i), y(i)), k− 1 ≥ k0, (13.110)

for all k0, k ∈ Z+, where x(k), k ≥ k0, is the solution of (13.100) with
u(·) ∈ U , is called an geometric storage function for G.

Theorem 13.17. Consider the discrete-time nonlinear dynamical sys-
tem G given by (13.100) and (13.101), and assume that G is completely
reachable. Then G is dissipative (respectively, geometrically dissipative)
with respect to the supply rate r(u, y) if and only if the available system
storage Va(x0) given by (13.104) (respectively, the available geometric
storage Va(x) given by (13.105)) is finite for all x0 ∈ D and Va(0) = 0.
Moreover, if Va(0) = 0 and Va(x0) is finite for all x0 ∈ D, then Va(x),
x ∈ D, is a storage function (respectively, geometric storage function) for
G. Finally, all storage functions (respectively, geometric storage functions)
Vs(x), x ∈ D, for G satisfy

0 ≤ Va(x) ≤ Vs(x), x ∈ D. (13.111)

Proof. Suppose Va(x0), x0 ∈ D, is finite. Now, it follows from (13.104)
(with K = 1) that Va(x0) ≥ 0, x0 ∈ D. Next, let x(k), k ≥ k0, satisfy
(13.100) with admissible input u(k), k ∈ [k0,K−1]. Since −Va(x0), x0 ∈ D,
is given by the infimum over all admissible inputs u(·) ∈ U in (13.104), it
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follows that for all admissible inputs u(·) ∈ U and K − 1 ≥ k0,

−Va(x(k0)) ≤
K−1
∑

k=k0

r(u(k), y(k))

=

kf−1
∑

k=k0

r(u(k), y(k)) +

K−1
∑

k=kf

r(u(k), y(k)),

which implies

−Va(x(k0)) −
kf−1
∑

k=k0

r(u(k), y(k)) ≤
K−1
∑

k=kf

r(u(k), y(k)).

Hence,

Va(x(k0)) +

kf−1
∑

k=k0

r(u(k), y(k)) ≥ − inf
u(·), K≥kf

K−1
∑

k=kf

r(u(k), y(k))

= Va(x(kf))

≥ 0, (13.112)

which implies that

kf−1
∑

k=k0

r(u(k), y(k)) ≥ −Va(x(k0)). (13.113)

Hence, since by assumption Va(0) = 0, G is dissipative with respect to the
supply rate r(u, y). Furthermore, Va(x), x ∈ D, is a storage function for G.

Conversely, suppose that G is dissipative with respect to the supply
rate r(u, y). Since G is completely reachable it follows that for every x0 ∈ Rn

such that x(k0) = x0, there exist k̂ ≤ k < k0 and an admissible input

u(·) ∈ U defined on [k̂, k0] such that x(k̂) = 0 and x(k0) = x0. Furthermore,

since G is dissipative with respect to the supply rate r(u, y) and x(k̂) = 0 it
follows that

K−1
∑

k=k̂

r(u(k), y(k)) ≥ 0, K − 1 ≥ k̂, (13.114)

or, equivalently,

K−1
∑

k=k0

r(u(k), y(k)) ≥ −
k0−1
∑

k=k̂

r(u(k), y(k), K − 1 ≥ k0, (13.115)
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which implies that there exists a function W : Rn → R such that

K−1
∑

k=k0

r(u(k), y(k)) ≥W (x0) > −∞, K − 1 ≥ k0. (13.116)

Now, it follows from (13.116) that for all x ∈ Rn,

Va(x) = − inf
u(·), K≥0

K−1
∑

k=0

r(u(k), y(k))

≤ −W (x), (13.117)

and hence, the available storage Va(x) < ∞, x ∈ D. Furthermore, with
x(k0) = 0 and for all admissible u(k), k ≥ k0,

K−1
∑

k=k0

r(u(k), y(k)) ≥ 0, K − 1 ≥ k0, (13.118)

which implies that

sup
u(·), K≥k0



−
K−1
∑

k=k0

r(u(k), y(k))



 ≤ 0, (13.119)

or, equivalently, Va(x(k0)) = Va(0) ≤ 0. However, since Va(x) ≥ 0, x ∈ D, it
follows that Va(0) = 0.

Moreover, if Va(x) is finite for all x ∈ D, it follows from (13.112) that
Va(x), x ∈ Rn, is a storage function for G. Next, if Vs(x), x ∈ D, is a storage
function then it follows that, for all K − 1 ≥ 0 and x0 ∈ D,

Vs(x0) ≥ Vs(x(K)) −
K−1
∑

k=0

r(u(k), y(k))

≥ −
K−1
∑

k=0

r(u(k), y(k)),

which implies

Vs(x0) ≥ − inf
u(·), K≥0

K−1
∑

k=0

r(u(k), y(k))

= Va(x0).

Finally, the proof for the geometrically dissipative case follows an
identical construction and, hence, is omitted.
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For the remainder of this chapter, we assume that all storage
functions of G are continuous on D. Now, the following corollary is
immediate from Theorem 13.17 and shows that a system G is dissipative
(respectively, geometrically dissipative) with respect to the supply rate
r(·, ·) if and only if there exists a continuous storage function Vs(·)
satisfying (13.109) (respectively, a continuous geometric storage function
Vs(·) satisfying (13.110)).

Corollary 13.9. Consider the discrete-time nonlinear dynamical sys-
tem G given by (13.100) and (13.101) and assume that G is completely
reachable. Then G is dissipative (respectively, geometrically dissipative)
with respect to supply rate r(·, ·) if and only if there exists a continuous
storage function (respectively, geometric storage function) Vs(x), x ∈ D,
satisfying (13.109) (respectively, (13.110)).

Proof. The result is immediate from Theorem 13.17 with Vs(x) =
Va(x).

The following theorem provides conditions for guaranteeing that all
storage functions (respectively, geometric storage functions) of a given
discrete-time dissipative (respectively, geometrically dissipative) nonlinear
dynamical system are positive definite. For this result we require the
following definition.

Definition 13.15. A dynamical system G is zero-state observable if
u(k) ≡ 0 and y(k) ≡ 0 implies x(k) ≡ 0.

Theorem 13.18. Consider the discrete-time nonlinear dynamical sys-
tem G given by (13.100) and (13.101), and assume that G is completely
reachable and zero-state observable. Furthermore, assume that G is
dissipative (respectively, geometrically dissipative) with respect to supply
rate r(u, y) and there exists a function κ : Y → U such that κ(0) = 0 and
r(κ(y), y) < 0, y 6= 0. Then all the storage functions (respectively, geometric
storage functions) Vs(x), x ∈ D, for G are positive definite, that is, Vs(0) = 0
and Vs(x) > 0, x ∈ D, x 6= 0.

Proof. It follows from Theorem 13.17 that the available storage Va(x),
x ∈ D, is a storage function for G. Next, suppose there exists x ∈ D
such that Va(x) = 0, which implies that r(u(k), y(k)) = 0, k ∈ Z+, for all
admissible inputs u(·) ∈ U . Since there exists a function κ : Y → U such
that r(κ(y), y) < 0, y 6= 0, it follows that y(k) = 0, k ∈ Z+. Now, since G
is zero-state observable it follows that x = 0, and hence, Va(x) = 0 if and
only if x = 0. The result now follows from (13.111). Finally, the proof for
the geometrically dissipative case is identical and, hence, is omitted.
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An equivalent statement for dissipativity of G with respect to the
supply rate r(u, y) is

∆Vs(x(k)) ≤ r(u(k), y(k)), k ∈ Z+, (13.120)

where ∆Vs(x(k))
△
= V (x(k + 1)) − V (x(k)). Alternatively, an equivalent

statement for geometric dissipativity of G with respect to the supply rate
r(u, y) is

ρVs(x(k + 1)) − Vs(x(k)) ≤ ρr(u(k), y(k)), k ∈ Z+. (13.121)

Furthermore, a system G with storage function Vs(·) is strictly dissipative
with respect to the supply rate r(u, y) if and only if

Vs(x(k)) < Vs(x(k0)) +

k−1
∑

i=k0

r(u(i), y(i)), k − 1 ≥ k0. (13.122)

Note that geometric dissipativity implies strict dissipativity, however, the
converse is not necessarily true.

Next, we introduce the concept of a required supply of a discrete-time
nonlinear dynamical system. Specifically, define the required supply Vr(x0)
of the discrete-time nonlinear dynamical system G by

Vr(x0) = inf
u(·), K≥1

−1
∑

k=−K

r(u(k), y(k)), (13.123)

where x(k), k ≥ −K, is the solution to (13.100) with x(−K) = 0 and
x(0) = x0. It follows from (13.123) that the required supply of a nonlinear
dynamical system is the minimum amount of generalized energy that has to
be delivered to the dynamical system in order to transfer it from an initial
state x(−K) = 0 to a given state x(0) = x0. Similarly, define the required
geometric supply of the nonlinear dynamical system G by

Vr(x0) = inf
u(·), K≥1

−1
∑

k=−K

ρk+1r(u(k), y(k)), (13.124)

where x(k), k ≥ −K, is the solution to (13.100) with x(−K) = 0 and
x(0) = x0. Note that since, with x(0) = 0, the infimum in (13.123) is zero
it follows that Vr(0) = 0.

Next, using the notion of a required supply, we show that all storage
functions are bounded from above by the required supply and bounded
from below by the available storage, and hence, a dissipative discrete-time
dynamical system can deliver to its surroundings only a fraction of its stored
generalized energy and can store only a fraction of the generalized work done
to it.
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Theorem 13.19. Consider the discrete-time nonlinear dynamical sys-
tem G given by (13.100) and (13.101), and assume that G is completely
reachable. Then G is dissipative (respectively, geometrically dissipative)
with respect to the supply rate r(u, y) if and only if 0 ≤ Vr(x) <∞, x ∈ D.
Moreover, if Vr(x) is finite and nonnegative for all x ∈ D, then Vr(x), x ∈ D,
is a storage function (respectively, geometric storage function) for G. Finally,
all storage functions (respectively, geometric storage functions) Vs(x), x ∈ D,
for G satisfy

0 ≤ Va(x) ≤ Vs(x) ≤ Vr(x) <∞, x ∈ D. (13.125)

Proof. Suppose 0 ≤ Vr(x) <∞, x ∈ D. Next, let x(k), k ∈ Z+, satisfy
(13.100) and (13.101) with admissible inputs u(·) ∈ U and x(0) = x0. Since
Vr(x), x ∈ D, is given by the infimum over all admissible inputs u(·) ∈ U
and K > 0 in (13.123), it follows that for all admissible inputs u(k) and
k ∈ [−K, 0],

Vr(x0) ≤
−1
∑

i=−K

r(u(i), y(i)) =

k−1
∑

i=−K

r(u(i), y(i)) +

−1
∑

i=k

r(u(i), y(i)),

and hence,

Vr(x0) ≤ inf
u(·), K≥1

[

k−1
∑

i=−K

r(u(i), y(i))

]

+

−1
∑

i=k

r(u(i), y(i))

= Vr(x(k)) +

−1
∑

i=k

r(u(i), y(i)), (13.126)

which shows that Vr(x), x ∈ D, is a storage function for G, and hence, G is
dissipative.

Conversely, suppose G is dissipative with respect to the supply rate
r(u, y) and let x0 ∈ D. Since G is completely reachable it follows that there
exist K > 0 and u(k), k ∈ [−K, 0], such that x(−K) = 0 and x(0) = x0.
Hence, since G is dissipative with respect to the supply rate r(u, y) it follows
that, for all K ≥ 1,

0 ≤
−1
∑

k=−K

r(u(k), y(k)), (13.127)

and hence,

0 ≤ inf
u(·), K≥1

[ −1
∑

k=−K

r(u(k), y(k))

]

, (13.128)

which implies that
0 ≤ Vr(x0) <∞, x0 ∈ D. (13.129)
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Next, if Vs(·) is a storage function for G, then it follows from Theorem
13.17 that

0 ≤ Va(x) ≤ Vs(x), x ∈ D. (13.130)

Furthermore, for all K ≥ 1 such that x(−K) = 0 it follows that

Vs(x0) ≤ Vs(0) +

−1
∑

k=−K

r(u(k), y(k)), (13.131)

and hence,

Vs(x0) ≤ inf
u(·), K≥1

[ −1
∑

k=−K

r(u(k), y(k))

]

= Vr(x0) <∞, (13.132)

which implies (13.125).

Finally, the proof for the geometrically dissipative case follows a similar
construction and, hence, is omitted.

In the light of Theorems 13.17 and 13.19 the following result on lossless
discrete-time dynamical systems is immediate.

Theorem 13.20. Consider the discrete-time nonlinear dynamical sys-
tem G given by (13.100) and (13.101) and assume G is completely reachable
to and from the origin. Then G is lossless with respect to the supply rate
r(u, y) if and only if there exists a continuous storage function Vs(x), x ∈ D,
satisfying (13.109) as an equality. Furthermore, if G is lossless with respect to
the supply rate r(u, y), then Va(x) = Vr(x), and hence, the storage function
Vs(x), x ∈ D, is unique and is given by

Vs(x0) = −
K+−1
∑

k=0

r(u(k), y(k)) =
−1
∑

k=−K−

r(u(k), y(k)), (13.133)

where x(k), k ∈ Z+, is the solution to (13.100) with admissible u(·) ∈ U
and x(0) = x0, x0 ∈ D, for every K−,K+ > 0 such that x(−K−) = 0 and
x(K+) = 0.

Proof. Suppose G is lossless with respect to the supply rate r(u, y).
Since G is completely reachable to and from the origin it follows that, for
every x0 ∈ D, there exist K−,K+ > 0 and u(k) ∈ U , k ∈ [−K−,K+], such
that x(−K−) = 0, x(K+) = 0, and x(0) = x0. Now, it follows that

0 =

K+−1
∑

k=−K−

r(u(k), y(k))
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=

−1
∑

k=−K−

r(u(k), y(k)) +

K+−1
∑

k=0

r(u(k), y(k))

≥ inf
u(·), K≥1

−1
∑

k=−K

r(u(k), y(k)) + inf
u(·), K≥1

K−1
∑

k=0

r(u(k), y(k))

= Vr(x0) − Va(x0), (13.134)

which implies that Vr(x0) ≤ Va(x0), x0 ∈ D. However, since by definition G
is dissipative with respect to the supply rate r(u, y) it follows from Theorem
13.19 that Va(x0) ≤ Vr(x0), x0 ∈ D, and hence, every storage function
Vs(x0), x0 ∈ D, satisfies Va(x0) = Vs(x0) = Vr(x0). Furthermore, it follows
that the inequality in (13.134) is indeed an equality, which implies (13.133).

Next, let k0, k,K − 1 ≥ 0 be such that k0 < k < K, x(K) = 0. Hence,
it follows from (13.133) that

0 = Vs(x(k0)) +

K−1
∑

k̂=k0

r(u(k̂), y(k̂))

= Vs(x(k0)) +
k−1
∑

k̂=k0

r(u(k̂), y(k̂)) +
K−1
∑

k̂=k

r(u(k̂), y(k̂))

= Vs(x(k0)) +

K−1
∑

k̂=k0

r(u(k̂), y(k̂)) − Vs(x(k)),

which implies that (13.109) is satisfied as an equality.

Conversely, if there exists a storage function Vs(x), x ∈ D, satisfying
(13.109) as an equality, it follows from Corollary 13.9 that G is dissipative
with respect to the supply rate r(u, y). Furthermore, for every u(k) ∈ U ,
k ∈ Z+, and x(k0) = x(k) = 0, it follows from (13.109) (with an equality)
that

k−1
∑

k̂=k0

r(u(k̂), y(k̂)) = 0,

which implies that G is lossless with respect to the supply rate r(u, y).

13.10 Extended Kalman-Yakubovich-Popov Conditions for

Discrete-Time Dynamical Systems

In this section, we show that dissipativity, geometric dissipativity, and
losslessness of a discrete-time nonlinear affine dynamical system G of the
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form

x(k + 1) = f(x(k)) +G(x(k))u(k), x(k0) = x0, k ≥ k0, (13.135)

y(k) = h(x(k)) + J(x(k))u(k), (13.136)

where x ∈ D ⊆ Rn, D is an open set with 0 ∈ D, u(k) ∈ U ⊆ Rm,
y(k) ∈ Y ⊆ Rl, f : D → Rn, G : D → Rn×m, h : D → Rl, and J : D → Rl×m,
can be characterized in terms of the system functions f(·), G(·), h(·), and
J(·). Here, we assume that f(·), G(·), h(·), and J(·) are continuous mappings
and f(·) has at least one equilibrium so that, without loss of generality,
f(0) = 0 and h(0) = 0. For the following result we consider the special case
of dissipative systems with quadratic supply rates. Specifically, set D = Rn,
U = Rm, Y = Rl, let Q ∈ Sl, R ∈ Sm, and S ∈ Rl×m be given, and assume
r(u, y) = yTQy+2yTSu+uTRu. Furthermore, we assume that there exists
a function κ : Rl → Rm such that κ(0) = 0 and r(κ(y), y) < 0, y 6= 0.

Theorem 13.21. Let Q ∈ Sl, S ∈ Rl×m, and R ∈ Sm. If there exist
functions Vs : Rn → R, P1u : Rn → R1×m, P2u : Rn → Nm, ℓ : Rn → Rp,
and W : Rn → Rp×m such that Vs(·) is continuous and positive definite,
Vs(0) = 0,

Vs(f(x) +G(x)u) = Vs(f(x)) + P1u(x)u+ uTP2u(x)u, x ∈ Rn, u ∈ Rm,
(13.137)

and, for all x ∈ Rn,

0 = Vs(f(x)) − Vs(x) − hT(x)Qh(x) + ℓT(x)ℓ(x), (13.138)

0 = 1
2P1u(x) − hT(x)(QJ(x) + S) + ℓT(x)W(x), (13.139)

0 = R+ STJ(x) + JT(x)S + JT(x)QJ(x) − P2u(x) −WT(x)W(x),

(13.140)

then G is dissipative with respect to the quadratic supply rate r(u, y) =
yTQy +2yTSu+ uTRu. If, alternatively, there exist functions Vs : Rn → R,
P1u : Rn → R1×m, and P2u : Rn → Nm such that Vs(·) is continuous and
positive definite, and, for all x ∈ Rn, (13.137) holds and

N (x)
△
= R+ STJ(x) + JT(x)S + JT(x)QJ(x) − P2u(x) > 0, (13.141)

0 ≥ Vs(f(x)) − Vs(x) − hT(x)Qh(x) + [12P1u(x) − hT(x)(QJ(x) + S)]

·N−1(x)[12P1u(x) − hT(x)(QJ(x) + S)]T, (13.142)

then G is dissipative with respect to quadratic supply rate r(u, y) = yTQy
+2yTSu+ uTRu.

Proof. Suppose that there exist functions Vs : Rn → R, ℓ : Rn → Rp,
and W : Rn → Rp×m such that Vs(·) is continuous and positive definite,
and (13.137)–(13.140) are satisfied. Then, for every u ∈ Rm and x ∈ Rn, it
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follows from (13.137)–(13.140) that

r(u, y) = yTQy + 2yTSu+ uTRu

= hT(x)Qh(x) + 2hT(x)(S +QJ(x))u+ uT(JT(x)QJ(x)

+STJ(x) + JT(x)S +R)u

= Vs(f(x)) − Vs(x) + P1u(x)u+ ℓT(x)ℓ(x) + 2ℓT(x)W(x)u

+uTP2u(x)u+ uTWT(x)W(x)u

= ∆Vs(x) + [ℓ(x) + W(x)u]T[ℓ(x) + W(x)u],

and hence, for every admissible u(·) ∈ U , k1, k2 ∈ Z+, k2 − 1 ≥ k1,

k2−1
∑

k=k1

r(u(k), y(k)) ≥ Vs(x(k2)) − Vs(x(k1)),

where x(k), k ∈ Z+, satisfies (13.135) and ∆Vs(·) denotes the total difference
of the storage function along the trajectories x(k), k ∈ Z+ of (13.135). Now,
the result is immediate from Corollary 13.9.

To show (13.142) note that (13.138)–(13.140) can be equivalently
written as

[

A(x) B(x)
BT(x) C(x)

]

= −
[

ℓT(x)
WT(x)

]

[

ℓ(x) W(x)
]

≤ 0, x ∈ Rn,

(13.143)

where A(x)
△
= Vs(f(x)) − Vs(x) − hT(x)Qh(x), B(x)

△
= 1

2P1u(x) −
hT(x)(QJ(x) + S), and C(x)

△
= −N (x). Now, for all invertible T ∈

R(m+1)×(m+1) (13.143) holds if and only if T T(13.143)T holds. Hence, the
equivalence of (13.138)–(13.140) to (13.142) in the case when (13.141) holds
follows from the (1,1) block of T T(13.143)T , where

T △
=

[

1 0
−C−1(x)BT(x) In

]

.

This completes the proof.

Next, we provide sufficient conditions for geometric dissipativity with
respect to quadratic supply rates.

Theorem 13.22. Let Q ∈ Sl, S ∈ Rl×m, and R ∈ Sm. If there exist
functions Vs : Rn → R, P1u : Rn → R1×m, P2u : Rn → Nm, ℓ : Rn → Rp,
and W : Rn → Rp×m, and a scalar ρ > 1, such that Vs(·) is continuous and
positive definite, Vs(0) = 0, and, for all x ∈ Rn, (13.137) holds and

0 = Vs(f(x)) − 1
ρVs(x) − hT(x)Qh(x) + ℓT(x)ℓ(x), (13.144)

0 = 1
2P1u(x) − hT(x)(QJ(x) + S) + ℓT(x)W(x), (13.145)
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0 = R+ STJ(x) + JT(x)S + JT(x)QJ(x) − P2u(x) −WT(x)W(x),

(13.146)

then G is geometrically dissipative with respect to the quadratic supply rate
r(u, y) = yTQy +2yTSu + uTRu. If, alternatively, there exist functions
Vs : Rn → R, P1u : Rn → R1×m, and P2u : Rn → Nm, and a scalar
ρ > 1, such that Vs(·) is continuous and positive definite and, for all x ∈ Rn,
(13.137) holds and

0 < N (x), (13.147)

0 ≥ Vs(f(x)) − 1
ρVs(x) − hT(x)Qh(x) + [12P1u(x) − hT(x)(QJ(x) + S)]

·N (x)−1[12P1u(x) − hT(x)(QJ(x) + S)]T, (13.148)

then G is geometrically dissipative with respect to the quadratic supply rate
r(u, y) = yTQy +2yTSu+ uTRu.

Proof. The proof is analogous to the proof of Theorem 13.21.

Next, we provide necessary and sufficient conditions for the case where
G is lossless with respect to the quadratic supply rate r(u, y).

Theorem 13.23. Assume G is zero-state observable and completely
reachable. Let Q ∈ Sl, S ∈ Rl×m, and R ∈ Sm. Then G is lossless with
respect to the quadratic supply rate r(u, y) = yTQy +2yTSu+uTRu if and
only if there exist functions Vs : Rn → R, P1u : Rn → R1×m, P2u : Rn → Nm,
ℓ : Rn → Rp, and W : Rn → Rp×m such that Vs(·) is continuous and positive
definite, Vs(0) = 0, and, for all x ∈ Rn, (13.137) holds and

0 = Vs(f(x)) − Vs(x) − hT(x)Qh(x), (13.149)

0 = 1
2P1u(x) − hT(x)(QJ(x) + S), (13.150)

0 = R+ STJ(x) + JT(x)S + JT(x)QJ(x) − P2u(x), (13.151)

If, in addition, Vs(·) is two-times continuously differentiable then

P1u(x) = V ′
s (f(x))G(x), (13.152)

P2u(x) = 1
2G

T(x)V ′′
s (f(x))G(x). (13.153)

Proof. Sufficiency follows as in the proof of Theorem 13.21. To show
necessity, suppose that G is lossless with respect to the quadratic supply rate
r(u, y). Then, it follows that there exists a continuous function Vs : Rn → Rn

such that

Vs(f(x) +G(x)u) = Vs(x) + r(u, y),

= Vs(x) + yTQy + 2yTSu+ uTRu

= Vs(x) + hT(x)Qh(x) + 2hT(x)(QJ(x) + S)u
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+uT(R+ STJ(x) + JT(x)S + JT(x)QJ(x))u,

x ∈ Rn, u ∈ Rm. (13.154)

Since the right-hand-side of (13.154) is quadratic in u it follows that
Vs(f(x)+G(x)u) is quadratic in u, and hence, there exist P1u : Rn → R1×m

and P2u : Rn → Nm such that

Vs(f(x) +G(x)u) = Vs(f(x)) + P1u(x)u+ uTP2u(x)u, x ∈ Rn, u ∈ Rm.
(13.155)

Now, using (13.155) and equating coefficients of equal powers in (13.154)
yields (13.149)–(13.151). Finally, if Vs(·) is two-times continuously differen-
tiable, applying a Taylor series expansion on (13.155) about u = 0 yields
(13.152) and (13.153).

Note that if G is dissipative with respect to the quadratic supply rate
r(u, y) = yTQy+2yTSu+uTRu with a continuous positive-definite radially
unbounded storage function Vs(·), and if Q ≤ 0 and u(k) ≡ 0, then it follows
that

∆Vs(x(k)) ≤ yT(k)Qy(k) ≤ 0, k ∈ Z+. (13.156)

Hence, the zero solution x(k) ≡ 0 of the undisturbed (u(k) ≡ 0) nonlinear
system (13.135) is Lyapunov stable. Alternatively, if G with a continuous
positive-definite radially unbounded storage function, is geometrically dissi-
pative with respect to the quadratic supply rate r(u, y) = yTQy+ 2yTSu+
uTRu, and if Q ≤ 0 and u(k) ≡ 0, then it follows that

Vs(f(x(k))) − Vs(x(k)) ≤ −ρ−1
ρ Vs(x(k)) + yT(k)Qy(k)

≤ −ρ−1
ρ Vs(x(k)), k ∈ Z+. (13.157)

Hence, the zero solution x(k) ≡ 0 of the undisturbed (u(k) ≡ 0) nonlinear
system (13.135) is asymptotically stable. If, in addition, there exist scalars
α, β > 0 and p ≥ 1, such that

α‖x‖p ≤ Vs(x) ≤ β‖x‖p, x ∈ Rn, (13.158)

then the zero solution x(k) ≡ 0 of the undisturbed (u(k) ≡ 0) nonlinear
dynamical system (13.135) is geometrically stable.

The following results present the discrete-time nonlinear versions of
the Kalman-Yakubovich-Popov positive real lemma and the bounded real
lemma.

Corollary 13.10. If there exist functions Vs : Rn → R, P1u : Rn →
R1×m, P2u : Rn → Nm, ℓ : Rn → Rp, and W : Rn → Rp×m such that Vs(·)
is continuous and positive definite, Vs(0) = 0, and, for all x ∈ Rn, (13.137)
holds and

0 = Vs(f(x)) − Vs(x) + ℓT(x)ℓ(x), (13.159)
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0 = 1
2P1u(x) − hT(x) + ℓT(x)W(x), (13.160)

0 = J(x) + JT(x) − P2u(x) −WT(x)W(x), (13.161)

then G is passive. If, alternatively, there exist functions Vs : Rn → R,
P1u : Rn → R1×m, and P2u : Rn → Nm, such that Vs(·) is continuous and
positive definite and, for all x ∈ Rn, (13.137) holds and

0 < J(x) + JT(x) − P2u(x), (13.162)

0 ≥ Vs(f(x)) − Vs(x) + [12P1u(x) − hT(x)]

·[J(x) + JT(x) − P2u(x)]−1[12P1u(x) − hT(x)]T, (13.163)

then G is passive.

Proof. The result is a direct consequence of Theorem 13.21 with l = m,
Q = 0, S = Im, and R = 0.

Corollary 13.11. If there exist functions Vs : Rn → R, P1u : Rn →
R1×m, P2u : Rn → Nm, ℓ : Rn → Rp, and W : Rn → Rp×m such that Vs(·)
is continuous and positive definite, Vs(0) = 0, and, for all x ∈ Rn, (13.137)
holds and

0 = Vs(f(x)) − Vs(x) + hT(x)h(x) + ℓT(x)ℓ(x), (13.164)

0 = 1
2P1u(x) + hT(x)J(x) + ℓT(x)W(x), (13.165)

0 = γ2Im − JT(x)J(x) − P2u(x) −WT(x)W(x), (13.166)

where γ > 0, then G is nonexpansive. If, alternatively, there exist functions
Vs : Rn → R, P1u : Rn → R1×m, and P2u : Rn → Nm, such that Vs(·) is
continuous and positive definite, Vs(0) = 0, and, for all x ∈ Rn, (13.137)
holds and

0 < γ2Im − JT(x)J(x) − P2u(x), (13.167)

0 ≥ Vs(f(x)) − Vs(x) + hT(x)h(x) + [12P1u(x) + hT(x)J(x)]

·[γ2Im − JT(x)J(x) − P2u(x)]−1[12P1u(x) + hT(x)J(x)]T, (13.168)

then G is nonexpansive.

Proof. The result is a direct consequence of Theorem 13.21 with
Q = −Il, S = 0, and R = γ2Im.

The following results present the discrete-time nonlinear versions of the
Kalman-Yakubovich-Popov strict positive real lemma and strict bounded
real lemma for geometrically passive and geometrically nonexpansive sys-
tems, respectively.

Corollary 13.12. If there exist functions Vs : Rn → R, P1u : Rn →
R1×m, P2u : Rn → Nm, ℓ : Rn → Rp, and W : Rn → Rp×m, and a scalar



NonlinearBook10pt November 20, 2007

DISCRETE-TIME THEORY 813

ρ > 1, such that Vs(·) is continuous and positive definite, Vs(0) = 0, and, for
all x ∈ Rn, (13.137) holds and

0 = Vs(f(x)) − 1
ρVs(x) + ℓT(x)ℓ(x), (13.169)

0 = 1
2P1u(x) − hT(x) + ℓT(x)W(x), (13.170)

0 = J(x) + JT(x) − P2u(x) −WT(x)W(x), (13.171)

then G is geometrically passive. If, alternatively, there exist functions Vs :
Rn → R, P1u : Rn → R1×m, and P2u : Rn → Nm, and a scalar ρ > 1, such
that Vs(·) is continuous and positive definite and, for all x ∈ Rn, (13.137)
holds and

0 < J(x) + JT(x) − P2u(x), (13.172)

0 ≥ Vs(f(x)) − 1
ρVs(x) + [12P1u(x) − hT(x)]

·[J(x) + JT(x) − P2u(x)]−1[12P1u(x) − hT(x)]T, (13.173)

then G is geometrically passive.

Proof. The result is a direct consequence of Theorem 13.22 with l = m,
Q = 0, S = Im, and R = 0.

Corollary 13.13. If there exist functions Vs : Rn → R, P1u : Rn →
R1×m, P2u : Rn → Nm, ℓ : Rn → Rp, and W : Rn → Rp×m, and a scalar
ρ > 1, such that Vs(·) is continuous and positive definite, Vs(0) = 0, and, for
all x ∈ Rn, (13.137) holds and

0 = Vs(f(x)) − 1
ρVs(x) + hT(x)h(x) + ℓT(x)ℓ(x), (13.174)

0 = 1
2P1u(x) + hT(x)J(x) + ℓT(x)W(x), (13.175)

0 = γ2Im − JT(x)J(x) − P2u(x) −WT(x)W(x), (13.176)

where γ > 0, then G is geometrically nonexpansive. If, alternatively, there
exist functions Vs : Rn → R, P1u : Rn → R1×m, and P2u : Rn → Nm, and a
scalar ρ > 1, such that Vs(·) is continuous and positive definite, Vs(0) = 0,
and, for all x ∈ Rn, (13.137) holds and

0 < γ2Im − JT(x)J(x) − P2u(x), (13.177)

0 ≥ Vs(f(x)) − 1
ρVs(x) + hT(x)h(x) + [12P1u(x) + hT(x)J(x)]

·[γ2Im − JT(x)J(x) − P2u(x)]−1[12P1u(x) + hT(x)J(x)]T, (13.178)

then G is geometrically nonexpansive.

Proof. The result is a direct consequence of Theorem 13.22 with
Q = −Il, S = 0, and R = γ2Im.

Finally, we close this section by noting that Proposition 5.2, with
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appropriate modifications, is also valid for discrete-time systems.

13.11 Linearization of Dissipative Dynamical Systems

In this section, we present several key results on linearization of dissipative,
geometrically dissipative, passive, geometrically passive, nonexpansive, and
geometrically nonexpansive systems. For these results, we assume that there
exists a function κ : Rl → Rm such that κ(0) = 0 and r(κ(y), y) < 0,
y 6= 0, and the available storage function (respectively, geometrically storage
function) Va(x), x ∈ Rn, is a three-times continuously differentiable function.

Theorem 13.24. Let Q ∈ Sl, S ∈ Rl×m, R ∈ Sm, and suppose G given
by (13.135) and (13.136) is completely reachable and dissipative with respect
to the quadratic supply rate r(u, y) = yTQy + 2yTSu+ uTRu. Then, there
exist matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P nonnegative
definite, such that

P = ATPA− CTQC + LTL, (13.179)

0 = ATPB − CT(QD + S) + LTW, (13.180)

0 = R+ STD +DTS +DTQD −BTPB −WTW, (13.181)

where

A =
∂f

∂x

∣

∣

∣

∣

x=0

, B = G(0), C =
∂h

∂x

∣

∣

∣

∣

x=0

, D = J(0). (13.182)

If, in addition, (A,C) is observable, then P > 0.

Proof. First note that since G is dissipative with respect to a quadratic
supply rate there exists a continuous nonnegative function Vs : Rn → R such
that

Vs(f(x) +G(x)u) − Vs(x) ≤ r(u, y), x ∈ Rn, u ∈ Rm. (13.183)

Next, it follows from (13.183) that there exists a three-times continuously
differentiable function d : Rn × Rm → R such that d(x, u) ≥ 0, d(0, 0) = 0,
and

0 = Vs(f(x) +G(x)u) − Vs(x) − r(u, h(x) + J(x)u) + d(x, u). (13.184)

Now, expanding Vs(·) and d(·, ·) via a Taylor series expansion about x = 0
and u = 0, and using the fact that Vs(·) and d(·, ·) are nonnegative definite
and Vs(0) = 0, d(0, 0) = 0, it follows that there exist matrices P ∈ Rn×n,
L ∈ Rp×n, and W ∈ Rp×m, with P nonnegative definite, such that

Vs(x) = xTPx+ Vsr(x), (13.185)

d(x, u) = (Lx+Wu)T(Lx+Wu) + dsr(x, u), (13.186)
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where Vsr : Rn → R and dsr : Rn × Rm → R contain higher-order terms of
Vs(·), d(·, ·), respectively.

Next, let f(x) = Ax+ fr(x) and h(x) = Cx+ hr(x), where fr(x) and
hr(x) contain nonlinear terms of f(x) and h(x), respectively, and let G(x) =
B+Gr(x) and J(x) = D+Jr(x), where Gr(x) and Jr(x) contain nonconstant
terms of G(x) and J(x), respectively. Using (13.185) and (13.186), (13.184)
can be written as

0 = (Ax+Bu)TP (Ax+Bu) − xTPx− (xTCTQCx+ 2xTCTQDu

+uTDTQDu+ 2xTCTSu+ 2uTDTSu+ uTRu)

+(Lx+Wu)T(Lx+Wu) + δ(x, u), (13.187)

where δ(x, u) is such that

lim
‖x‖2+‖u‖2→0

δ(x, u)

‖x‖2 + ‖u‖2
= 0.

Now, viewing (13.187) as the Taylor series expansion of (13.184) about x = 0
and u = 0 it follows that for all x ∈ Rn and u ∈ Rm,

0 = xT(ATPA− P − CTQC + LTL)x

+2xT(ATPB − CTS − CTQD + LTW )u

+uT(WTW −DTQD −DTS − STD −R+BTPB)u. (13.188)

Now, equating coefficients of equal powers in (13.188) yields (13.179)–
(13.181).

Finally, to show that P > 0 in the case where (A,C) is observable, note
that it follows from Theorem 13.21 and (13.179)–(13.181) that the linearized
system G with storage function Vs(x) = xTPx is dissipative with respect to
the quadratic supply rate r(u, y). Now, the positive definiteness of P follows
from Theorem 13.18.

The following corollaries are immediate from Theorem 13.24 and pro-
vide linearization results for passive and nonexpansive systems, respectively.

Corollary 13.14. Suppose the nonlinear dynamical system G given by
(13.135) and (13.136) is completely reachable and passive. Then there exist
matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P nonnegative definite,
such that

P = ATPA+ LTL, (13.189)

0 = ATPB − CT + LTW, (13.190)

0 = D +DT −BTPB −WTW, (13.191)

where A, B, C, and D are given by (13.182). If, in addition, (A,C) is
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observable, then P > 0.

Corollary 13.15. Suppose the nonlinear dynamical system G given by
(13.135) and (13.136) is completely reachable and nonexpansive. Then there
exist matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P nonnegative
definite, such that

P = ATPA+ CTC + LTL, (13.192)

0 = ATPB + CTD + LTW, (13.193)

0 = γ2Im −DTD −BTPB −WTW, (13.194)

where A, B, C, and D are given by (13.182) and γ > 0. If, in addition,
(A,C) is observable, then P > 0.

Next, we present a key linearization theorem for geometrically dissi-
pative systems.

Theorem 13.25. Let Q ∈ Sl, S ∈ Rl×m, R ∈ Sm, and suppose G
given by (13.135) and (13.136) is completely reachable and geometrically
dissipative with respect to the quadratic supply rate r(u, y) = yTQy +
2yTSu + uTRu. Then, there exist matrices P ∈ Rn×n, L ∈ Rp×n, and
W ∈ Rp×m, with P nonnegative definite, and a scalar ρ > 1, such that

1
ρP = ATPA− CTQC + LTL, (13.195)

0 = ATPB − CT(QD + S) + LTW, (13.196)

0 = R+ STD +DTS +DTQD −BTPB −WTW, (13.197)

where A, B, C, and D are given by (13.182). If, in addition, (A,C) is
observable, then P > 0.

Proof. The proof is analogous to the proof of Theorem 13.24.

Linearization results for geometrically passive systems and geometri-
cally nonexpansive systems follow immediately from Theorem 13.25.

13.12 Positive Real and Bounded Real Discrete-Time

Dynamical Systems

In this section, we specialize the results of Section 13.10 to the case of linear
discrete-time systems and provide connections to the frequency domain
versions of passivity, geometric passivity, nonexpansivity, and geometric
nonexpansivity. Specifically, we consider linear systems

G = G(z) ∼
[

A B
C D

]
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with a state space representation

x(k + 1) = Ax(k) +Bu(k), x(0) = 0, k ∈ Z+, (13.198)

y(k) = Cx(k) +Du(k), (13.199)

where x ∈ Rn, u ∈ Rm, y ∈ Rl, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, and
D ∈ Rl×m. To present the main results of this section we first give several
key definitions.

Definition 13.16. A square transfer function G(z) is positive real if i)
all the entries of G(z) are analytic in |z| > 1 and ii) He G(z) ≥ 0, |z| > 1.
A square transfer function G(z) is strictly positive real if there exists ρ > 1
such that G(z/ρ) is positive real.

Definition 13.17. A transfer function G(z) is bounded real if i) all the
entries of G(z) are analytic in |z| > 1 and ii) γ2Im−G∗(z)G(z) ≥ 0, |z| > 1,
where γ > 0. A transfer function G(z) is strictly bounded real if there exists
ρ > 1 such that G(z/ρ) is bounded real.

As in the continuous case, note that ii) in Definition 13.17 implies that
G(z) is analytic in |z| ≥ 1, and hence, a bounded real transfer function is
asymptotically stable. To see this, note that γ2Im −G∗(z)G(z) ≥ 0, |z| > 1,
implies that

[γ2Im −G∗(z)G(z)](i,i) = γ2 −
m
∑

j=1

|G(j,i)(z)|2 ≥ 0, |z| > 1, (13.200)

and hence, |G(i,j)(z)| is bounded by γ2 at every point in |z| > 1. Hence,
G(i,j)(z) cannot possess a pole in |z| = 1 since in this case, |G(i,j)(z)|
would take on arbitrary large values in |z| > 1 in the vicinity of this
pole. Hence, G(eθ) = limσ→1,σ>1 G(σeθ) exists for all θ ∈ [0, 2π] and
γ2Im − G∗(eθ)G(eθ) ≥ 0, θ ∈ [0, 2π]. Now, since G∗(eθ)G(eθ) ≤ γ2Im,
θ ∈ [0, 2π], is equivalent to supθ∈[0,2π] σmax[G(eθ)] ≤ γ, it follows that G(z)
is bounded real if and only ifG(z) is asymptotically stable and |||G(z)|||∞ ≤ γ.
Similarly, it can be shown that strict bounded realness is equivalent to
G(z) asymptotically stable and G∗(eθ)G(eθ) < γ2Im, θ ∈ [0, 2π], or,
equivalently, |||G(z)|||∞ < γ.

The following theorem gives a frequency domain test for positive
realness.

Theorem 13.26. Let G(z) be a square, real rational transfer function.
G(z) is positive real if and only if the following conditions hold:

i) No entry of G(z) has a pole in |z| > 1.
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ii) He G(eθ) ≥ 0 for all θ ∈ [0, 2π], with eθ not a pole of any entry of
G(z).

iii) If eθ̂ is a pole of any entry of G(z) it is at most a simple pole, and the

residue matrix G0
△
= limz→eθ̂(z − eθ̂)G(z) is nonnegative definite.

Proof. The proof follows from the maximum modulus theorem of
complex variable theory by forming a Nyquist-type closed contour Γ in |z| >
1 and analyzing the function f(z) = x∗G(z−1)x, x ∈ Cm, on Γ. For details
see [197].

Now, we present the key results of this section for characterizing
positive realness, strict positive realness, bounded realness, and strict
bounded realness of a linear discrete-time dynamical system in terms of
the system matrices A, B, C, and D.

Theorem 13.27 (Positive Real Lemma). Consider the dynamical
system

G(z)
min∼
[

A B
C D

]

with input u(·) ∈ U and output y(·) ∈ Y. Then the following statements are
equivalent:

i) G(z) is positive real.

ii)
∑K−1

k=0 uT(k)y(k) ≥ 0, K − 1 ≥ 0.

iii) There exist matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P
positive definite, such that

P = ATPA+ LTL, (13.201)

0 = ATPB − CT + LTW, (13.202)

0 = D +DT −BTPB −WTW. (13.203)

If, alternatively, D+DT−BTPB > 0, then G(z) is positive real if and only
if there exists an n× n positive-definite matrix P such that

P ≥ ATPA+ (BTPA− C)T(D +DT −BTPB)−1(BTPA− C). (13.204)

Proof. First, we show that i) implies ii). Suppose G(z) is positive
real. Then it follows from Parseval’s theorem (see Problem 13.24) that, for
all K − 1 ≥ 0, and the truncated input function

uK(k) =

{

u(k), k = {0, 1, . . . ,K − 1},
0, otherwise,

(13.205)
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K−1
∑

k=0

yT(k)u(k) =

∞
∑

k=−∞
yT(k)uK(k)

=
1

2π

∫ π

−π
y∗(eθ)uK(eθ)dθ

=
1

4π

∫ π

−π
u∗K(eθ)[G(eθ) +G∗(eθ)]uK(eθ)dθ

≥ 0,

which implies that G(z) is passive.

Next, we show that ii) implies iii). If G(z) is passive, then it follows
from Corollary 13.14 with f(x) = Ax, G(x) = B, h(x) = Cx, J(x) = D,
that there exist matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P
positive definite, such that (13.201)–(13.203) are satisfied.

Next, to show that iii) implies i), note that if there exist matrices
P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P positive definite, such that
(13.201)–(13.203) are satisfied, then, for all |z| > 1,

G(z) +G∗(z)

= C(zIn −A)−1B +D +BT(z∗In −A)−TCT +DT

= WTW +BTPB + (BTPA+WTL)(zIn −A)−1B

+BT(z∗In −A)−T(ATPB + LTW )

= WTW +WTL(zIn −A)−1B +BT(z∗In −A)−TLTW

+BT(z∗In −A)−T[(z∗In −A)TP (zIn −A) + (z∗In −A)TPA

+ATP (zIn −A)](zIn −A)−1B

= WTW +WTL(zIn −A)−1B +BT(z∗In −A)−TLTW

+BT(z∗In −A)−T[LTL+ (|z| − 1)P ](zIn −A)−1B

≥ [W + L(zIn −A)−1B]∗[W + L(zIn −A)−1B]

≥ 0.

To show analyticity of the entries of G(z) in |z| > 1 note that an entry of
G(z) will have a pole at z = λ only if λ ∈ spec(A). Now, it follows from
(13.201) and the fact that P > 0 that all eigenvalues of A have magnitude
less than or equal to unity. Hence, G(z) is analytic in |z| > 1, which implies
that G(z) is positive real. Finally, (13.204) follows from (13.163) with the
linearization given above.

Theorem 13.28 (Strict Positive Real Lemma). Consider the dynam-
ical system

G(z)
min∼
[

A B
C D

]
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with input u(·) ∈ U and output y(·) ∈ Y. Then the following statements are
equivalent:

i) G(z) is strictly positive real.

ii)
∑K−1

k=0 ρk+1uT(k)y(k) ≥ 0, K − 1 ≥ 0.

iii) There exist matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P
positive definite, and a scalar ρ > 1 such that

1
ρP = ATPA+ LTL, (13.206)

0 = ATPB − CT + LTW, (13.207)

0 = D +DT −BTPB −WTW. (13.208)

If, alternatively, D +DT −BTPB > 0, then G(z) is strictly positive real if
and only if there exist n× n positive-definite matrices P and R such that

1
ρP = ATPA+(BTPA−C)T(D+DT−BTPB)−1(BTPA−C)+R. (13.209)

Proof. The equivalence of i) and iii) is a direct consequence of
Theorem 13.27 by noting that G(z) is strictly positive real if and only if
there exists ρ > 1 such that

G(z/
√
ρ)

min∼
[ √

ρA
√
ρB

C D

]

is positive real. The fact that iii) implies ii) follows from Corollary 13.12
with f(x) = Ax, G(x) = B, h(x) = Cx, J(x) = D, Vs(x) = xTPx, ℓ(x) =
Lx, and W(x) = W . To show that ii) implies iii), note that if G(z) is
geometrically passive, then it follows from Theorem 13.25 with f(x) = Ax,
G(x) = B, h(x) = Cx, J(x) = D, Q = 0, S = Im, and R = 0, that
there exist matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P positive
definite, and a scalar ρ > 1 such that (13.206)–(13.208) are satisfied.

Finally, with the linearization given above, it follows from (13.173)
that if D +DT −BTPB > 0, then G(z) is strictly positive real if and only
if there exist a scalar ρ > 1 and a positive-definite matrix P ∈ Rn×n such
that

1
ρP ≥ ATPA+ (BTPA−C)T(D+DT −BTPB)−1(BTPA−C). (13.210)

Now, if there exist a scalar ρ > 1 and a positive-definite matrix P ∈ Rn×n

such that (13.210) is satisfied, then there exists an n × n positive-definite
matrix R such that (13.209) is satisfied. Conversely, if D+DT−BTPB > 0
and there exists an n × n positive-definite matrix R such that (13.209) is
satisfied, then, with ρ = σmin(R)/σmax(P ), (13.209) implies (13.210). Hence,
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if D + DT − BTPB > 0, then G(z) is strictly positive real if and only if
there exist n × n positive-definite matrices P and R such that (13.209) is
satisfied.

Next, we present analogous results for bounded real systems.

Theorem 13.29 (Bounded Real Lemma). Consider the dynamical
system

G(z)
min∼
[

A B
C D

]

with input u(·) ∈ U and output y(·) ∈ Y. Then the following statements are
equivalent:

i) G(z) is bounded real.

ii)
∑K−1

k=0 yT(k)y(k) ≤ γ2
∑K−1

k=0 uT(k)u(k), K − 1 ≥ 0, γ > 0.

iii) There exist matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P
positive definite, such that

P = ATPA+ CTC + LTL, (13.211)

0 = ATPB + CTD + LTW, (13.212)

0 = γ2Im −DTD −BTPB −WTW. (13.213)

If, alternatively, γ2Im − DTD − BTPB > 0, then G(z) is bounded real if
and only if there exists an n× n positive-definite matrix P such that

P ≥ ATPA+ CTC + (BTPA+DTC)T(γ2Im −DTD −BTPB)−1

·(BTPA+DTC). (13.214)

Proof. First, we show that i) implies ii). Suppose G(z) is bounded
real. Then it follows from Parseval’s theorem (see Problem 13.24) that, for
all K − 1 ≥ 0, and the truncated input function uK(·) given by (13.205),

K−1
∑

k=0

yT(k)y(k) =

∞
∑

k=−∞
yT(k)y(k)

=
1

2π

∫ π

−π
y∗(eθ)y(eθ)dθ

=
1

2π

∫ π

−π
u∗K(eθ)G∗(eθ)G(eθ)uK(eθ)dθ

≤ γ2

2π

∫ π

−π
u∗K(eθ)uK(eθ)dθ
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= γ2
K−1
∑

k=0

uT(k)u(k),

which implies that G(z) is nonexpansive.

Next, we show that ii) implies iii). If G(z) is nonexpansive, then
it follows from Corollary 13.15 with f(x) = Ax, G(x) = B, h(x) = Cx,
J(x) = D, that there exist matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m,
with P positive definite, such that (13.211)–(13.213) are satisfied.

Now, to show that iii) implies i), note that if there exist matrices
P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P positive definite, such that
(13.211)–(13.213) are satisfied, then, for all |z| ≥ 1,

γ2Im −G∗(z)G(z)

= γ2Im − [C(zIn −A)−1B +D]∗[C(zIn −A)−1B +D]

= [γ2Im −DTD] − [C(zIn −A)−1B]∗[C(zIn −A)−1B]

−[C(zIn −A)−1B]∗D −DT[C(zIn −A)−1B]

= WTW +BTPB + [BTPA+WTL](zIn −A)−1B +BT(zIn

−A)−∗[ATPB + LTW ] −BT(zIn −A)−∗CTC(zIn −A)−1B

= WTW +BTPB +WTL(zIn −A)−1B +BT(zIn −A)−∗LTW

−BT(zIn −A)−∗CTC(zIn −A)−1B

+BT(zIn −A)−∗[(zIn −A)∗PA+ATP (zIn −A)](zIn −A)−1B

= WTW +WTL(zIn −A)−1B +BT(zIn −A)−∗LTW

+BT(zIn −A)−∗LTL(zIn −A)−1B

+(|z| − 1)BT(zIn −A)−∗P (zIn −A)−1B

≥ [W + L(zIn −A)−1B]∗[W + L(zIn −A)−1B]

≥ 0.

To show analyticity of the entries of G(z) in |z| ≥ 1 note that it follows
from (13.211) and the fact that P > 0 and (A,C) is observable that all
the eigenvalues of A lie inside the unit disk. Hence, G(z) is analytic in
|z| ≥ 1, which implies that G(z) is bounded real. Finally, (13.214) follows
from (13.168) with the linearization given above.

Theorem 13.30 (Strict Bounded Real Lemma). Consider the dy-
namical system

G(z)
min∼
[

A B
C D

]

with input u(·) ∈ U and output y(·) ∈ Y. Then the following statements are
equivalent:
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i) G(z) is strictly bounded real.

ii)
∑K−1

k=0 ρk+1yT(k)y(k) ≤ γ2
∑K−1

k=0 ρk+1uT(k)u(k), K − 1 ≥ 0, γ >
0.

iii) There exist matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P
positive definite, and a scalar ρ > 1 such that

1
ρP = ATPA+ CTC + LTL, (13.215)

0 = ATPB + CTD + LTW, (13.216)

0 = γ2Im −DTD −BTPB −WTW. (13.217)

If, alternatively, γ2Im − DTD − BTPB > 0, then G(z) is strictly positive
real if and only if there exist n× n positive-definite matrices P and R such
that

1
ρP = ATPA+ CTC + (BTPA+DTC)T(γ2Im −DTD −BTPB)−1

·(BTPA+DTC) +R. (13.218)

Proof. The equivalence of i) and iii) is a direct consequence of
Theorem 13.29 by noting that G(z) is strictly bounded real if and only
if there exists ρ > 1 such that

G(z/
√
ρ)

min∼
[ √

ρA
√
ρB

C D

]

is bounded real. The fact that iii) implies ii) follows from Corollary 13.13
with f(x) = Ax, G(x) = B, h(x) = Cx, J(x) = D, Vs(x) = xTPx, ℓ(x) =
Lx, and W(x) = W . To show that ii) implies iii), note that if G(z) is
geometrically nonexpansive, then it follows from Theorem 13.25 with f(x) =
Ax, G(x) = B, h(x) = Cx, J(x) = D, Q = −Ip, S = 0, and R = γ2Im, that
there exist matrices P ∈ Rn×n, L ∈ Rp×n, and W ∈ Rp×m, with P positive
definite, such that (13.215)–(13.217) are satisfied.

Finally, with the linearization given above, it follows from (13.178)
that if γ2Im −DTD−BTPB > 0, then G(z) is strictly bounded real if and
only if there exist a scalar ε > 0 and a positive-definite matrix P ∈ Rn×n

such that

P ≥ ρATPA+(ρBTPA−C)T(D+DT−ρBTPB)−1(ρBTPA−C). (13.219)

Now, if there exist a scalar ρ > 1 and a positive-definite matrix P ∈ Rn×n

such that (13.219) is satisfied, then there exists an n × n positive-definite
matrix R such that (13.218) is satisfied. Conversely, if γ2Im − DTD −
BTPB > 0 and there exists an n × n positive-definite matrix R such that
(13.218) is satisfied, then, with ε = σmin(R)/σmax(P ), (13.218) implies
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(13.219). Hence, if γ2Im−DTD−BTPB > 0, then G(z) is strictly bounded
real if and only if there exist n× n positive-definite matrices P and R such
that (13.218) is satisfied.

The following result characterizes necessary and sufficient conditions
for a transfer function to be strictly positive real in terms of a frequency
domain test.

Theorem 13.31. Let

G(z) ∼
[

A B
C D

]

be an m×m transfer function and suppose that G(z) is not singular. Then,
G(z) is strictly positive real if and only if the following conditions hold:

i) No entry of G(z) has a pole in |z| ≥ 1.

ii) He G(eθ) > 0 for all θ ∈ [0, 2π].

Proof. Suppose i) and ii) hold. Let ρ > 1 and note that

G(z
ρ ) = C(z

ρI −A)−1B +D

= C(zI −A)−1(zI −A)(z
ρI −A)−1B +D

= C(zI −A)−1(z
ρI −A+ ρ−1

ρ zI))(z
ρI −A)−1B +D

= G(z) + ρ−1
ρ Gρ(z), (13.220)

where Gρ(z)
△
= zC(zI − A)−1(z

ρI − A)−1B. Since A is Schur, zI − A is

nonsingular for all z = eθ and there exists ρ̂ such that z
ρI−A is nonsingular

for all ρ ∈ [1, ρ̂] and for all z = eθ. Hence, f(θ, ρ)
△
= maxi |λi[He Gρ(e

θ)]|
is finite for all ρ ∈ [1, ρ̂] and for all θ ∈ [0, 2π]. Since f(θ, ·) is continuous it
follows that there exists k1 > 0 such that f(θ, ρ) < k1 for all ρ ∈ [1, ρ̂] and
for all θ ∈ [0, 2π], so that −k1Im ≤ He Gρ(z) ≤ k1Im for all ρ ∈ [1, ρ̂] and
for all z = eθ. Now, since He G(eθ) > 0 for all θ ∈ [0, 2π], it follows that
there exists k2 > 0 such that He G(θ) ≥ k2Im > 0, θ ∈ [0, 2π]. Choosing
1 < ρ < min{ρ̂, k1

k1−k2
}, it follows that

He G(z
ρ ) = He G(z) +

ρ− 1

ρ
He Gρ(z) ≥ k2Im − ρ− 1

ρ
k1Im > 0, (13.221)

for all z = eθ. Hence, G(z
ρ ) is positive real, and hence, by definition, G(z)

is strictly positive real.

Conversely, suppose G(z) is strictly positive real and let ρ > 1 be
such that G(z

ρ ) is positive real. Note that G(z) is asymptotically stable
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and positive real. Hence, He G(eθ) ≥ 0, θ ∈ [0, 2π]. Now, let (A,B,C,D)
be a minimal realization of G(z). Using Theorem 13.28, it follows from
(13.206)–(13.207) that

G(z) +G∗(z)

= C(zIn −A)−1B +D +BT(z∗In −A)−TCT +DT

= WTW +BTPB + (BTPA+WTL)(zIn −A)−1B

+BT(z∗In −A)−T(ATPB + LTW )

= WTW +WTL(zIn −A)−1B +BT(z∗In −A)−TLTW

+BT(z∗In −A)−T[(z∗In −A)TP (zIn −A) + (z∗In −A)TPA

+ATP (zIn −A)](zIn −A)−1B

= WTW +WTL(zIn −A)−1B +BT(z∗In −A)−TLTW

+BT(z∗In −A)−T[LTL+ (|z| − 1
ρ)P ](zIn −A)−1B. (13.222)

Now, suppose, ad absurdum, that He G(eθ) is not positive definite for all

θ ∈ [0, 2π]. Then, for some θ = θ̂ there exists x ∈ Cm, x 6= 0, such that
x∗[He G(eθ)]x = 0. In this case, it follows from (13.222) that Bx = 0 and
Wx = 0. Hence, x∗[He G(z)]x = 0 for all z ∈ C, and hence, det[He G(z)] ≡
0, which leads to a contradiction. Thus, He G(eθ) > 0, θ ∈ [0, 2π], which
proves the result.

13.13 Feedback Interconnections of Dissipative

Dynamical Systems

In this section, we consider feedback interconnections of dissipative dynam-
ical systems. Specifically, using the notion of dissipative and geometrically
dissipative dynamical systems, with appropriate storage functions and
supply rates, we construct Lyapunov functions for interconnected dynamical
systems by appropriately combining storage functions for each subsystem.
We begin by considering the nonlinear discrete-time dynamical system G
given by

x(k + 1) = f(x(k)) +G(x(k))u(k), x(0) = x0, k ∈ Z+, (13.223)

y(k) = h(x(k)) + J(x(k))u(k), (13.224)

where x ∈ Rn, u ∈ Rm, y ∈ Rl, f : Rn → Rn satisfies f(0) = 0, G :
Rn → Rn×m, h : Rn → Rl satisfies h(0) = 0, and J : Rn → Rl×m, with the
nonlinear feedback system Gc given by

xc(k + 1) = fc(xc(k)) +Gc(uc(k), xc(k))uc(k), xc(0) = xc0, k ∈ Z+,

(13.225)

yc(k) = hc(uc(k), xc(k)) + Jc(uc(k), xc(k))uc(k), (13.226)
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where xc ∈ Rnc , uc ∈ Rl, yc ∈ Rm, fc : Rnc → Rnc satisfies fc(0) = 0,
Gc : Rl × Rnc → Rnc×l, hc : Rl × Rnc → Rm satisfies hc(0) = 0, and
Jc : Rl × Rnc → Rm×l. Note that with the feedback interconnection given
by Figure 13.1, uc = y and yc = −u. The following results give sufficient
conditions for Lyapunov, asymptotic, and geometric stability of the feedback
interconnection given by Figure 13.1. For these results we assume that the
negative feedback interconnection of G and Gc is well posed.

G

Gc
�

-

+

–

Figure 13.1 Feedback interconnection of G and Gc.

Theorem 13.32. Consider the closed-loop system consisting of the
nonlinear dynamical systems G given by (13.223) and (13.224) and Gc

given by (13.225) and (13.226) with input-output pairs (u, y) and (uc, yc),
respectively, and with uc = y and yc = −u. Assume G and Gc are zero
state observable and dissipative with respect to the supply rates r(u, y)
and rc(uc, yc) and with continuous positive definite radially unbounded
storage functions Vs(·) and Vsc(·), respectively, such that Vs(0) = 0 and
Vsc(0) = 0. Furthermore, assume there exists a scalar σ > 0 such that
r(u, y) + σrc(uc, yc) ≤ 0. Then the following statements hold:

i) The negative feedback interconnection of G and Gc is Lyapunov stable.

ii) If Gc is geometrically dissipative with respect to supply rate rc(uc, yc)
and rank[Gc(uc, 0)] = m, uc ∈ Rl, then the negative feedback
interconnection of G and Gc is globally asymptotically stable.

iii) If G and Gc are geometrically dissipative with respect to supply rates
r(u, y) and rc(uc, yc), respectively, Vs(·) and Vsc(·) are such that there
exist constants α,αc, β, βc > 0 such that

α‖x‖2 ≤ Vs(x) ≤ β‖x‖2, x ∈ Rn, (13.227)

αc‖xc‖2 ≤ Vsc(xc) ≤ βc‖xc‖2, xc ∈ Rnc , (13.228)

then the negative feedback interconnection of G and Gc is globally
geometrically stable.
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Proof. i) Consider the Lyapunov function candidate V (x, xc) =
Vs(x) + σVsc(xc). Now, the corresponding Lyapunov difference is given by

∆V (x, xc) = ∆Vs(x) + σ∆Vsc(xc) ≤ r(u, y) + σrc(uc, yc) ≤ 0,

(x, xc) ∈ Rn × Rnc ,

which implies that the negative feedback interconnection of G and Gc is
Lyapunov stable.

ii) Next, consider the Lyapunov function candidate V (x, xc) = Vs(x)+
σVsc(xc). If Gc is geometrically dissipative it follows that for some scalar
ρc > 1,

∆V (x, xc) = ∆Vs(x) + σ∆Vsc(xc)

≤ −σρc − 1

ρc
Vsc(xc) + r(u, y) + σrc(uc, yc)

≤ −σρc − 1

ρc
Vsc(xc), (x, xc) ∈ Rn × Rnc .

Next, let R △
= {(x, xc) ∈ Rn × Rnc : ∆V (x, xc) = 0} and, since Vsc(xc)

is positive definite, note that ∆V (x, xc) = 0 only if xc = 0. Now, since
rank[Gc(uc, 0)] = m, uc ∈ Rl, it follows that on every invariant set M
contained in R, uc(k) = y(k) ≡ 0, and hence, x(k + 1) = f(x(k)). Now,
since G is zero-state observable it follows that M = {(0, 0)} is the largest
invariant set contained in R. Hence, it follows from Theorem 13.5 that
(x(k), xc(k)) → M = {0, 0} as k → ∞. Now, global asymptotic stability of
the negative feedback interconnection of G and Gc follows from the fact that
Vs(·) and Vsc(·) are, by assumption, radially unbounded.

iii) Finally, consider the Lyapunov function candidate V (x, xc) =
Vs(x) + σVsc(xc). Since G and Gc are geometrically dissipative it follows
that

∆V (x, xc) = ∆Vs(x) + σ∆Vsc(xc)

≤ −ρ− 1

ρ
Vs(x) − σ

ρc − 1

ρc
Vsc(xc) + r(u, y) + σrc(uc, yc)

≤ −min

{

ρ− 1

ρ
,
ρc − 1

ρc

}

V (x, xc), (x, xc) ∈ Rn × Rnc ,

which implies that the negative feedback interconnection of G and Gc is
globally geometrically stable.

The next result presents Lyapunov, asymptotic, and geometric stabil-
ity of dissipative feedback systems with quadratic supply rates.

Theorem 13.33. Let Q ∈ Sl, S ∈ Rl×m, R ∈ Sl, Qc ∈ Sm, Sc ∈ Rm×l,
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and Rc ∈ Sl. Consider the closed-loop system consisting of the nonlinear
dynamical systems G given by (13.223) and (13.224), and Gc given by
(13.225) and (13.226), and assume G and Gc are zero-state observable.
Furthermore, assume G is dissipative with respect to the quadratic supply
rate r(u, y) = yTQy + 2yTSu + uTRu and has a continuous radially
unbounded storage function Vs(·) and Gc is dissipative with respect to the
quadratic supply rate rc(uc, yc) = yT

c Qcyc + 2yT
c Scuc + uT

c Rcuc and has a
continuous radially unbounded storage function Vsc(·). Finally, assume there
exists σ > 0 such that

Q̂
△
=

[

Q+ σRc −S + σST
c

−ST + σSc R+ σQc

]

≤ 0. (13.229)

Then the following statements hold:

i) The negative feedback interconnection of G and Gc is Lyapunov stable.

ii) If Gc is geometrically dissipative with respect to supply rate rc(uc, yc)
and rank[Gc(uc, 0)] = m, uc ∈ Rl, then the negative feedback
interconnection of G and Gc is globally asymptotically stable.

iii) If G and Gc are geometrically dissipative with respect to supply
rates r(u, y) and rc(uc, yc) and there exist constants α, β, αc, βc > 0
such that (13.227) and (13.228) hold, then the negative feedback
interconnection of G and Gc is globally geometrically stable.

iv) If Q̂ < 0, then the negative feedback interconnection of G and Gc is
globally asymptotically stable.

Proof. Statements i)–iii) are a direct consequence of Theorem 13.32
by noting

r(u, y) + σrc(uc, yc) =

[

y
yc

]T

Q̂

[

y
yc

]

,

and hence, r(u, y) + σrc(uc, yc) ≤ 0.

To show iv) consider the Lyapunov function candidate V (x, xc) =
Vs(x) + σVsc(xc). Now, the corresponding Lyapunov difference is given by

∆V (x, xc) = ∆Vs(x) + σ∆Vsc(xc)

≤ r(u, y) + σrc(uc, yc)

= yTQy + 2yTSu+ uTRu+ σ(yT
c Qcyc + 2yT

c Scuc + uT
c Rcuc)

=

[

y
yc

]T

Q̂

[

y
yc

]

≤ 0,
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which implies that the negative feedback interconnection of G and Gc is
Lyapunov stable. Now, the proof of global asymptotic stability of the closed-
loop system is identical to that of the continuous-time case given in Theorem
6.2 and, hence, is omitted.

The following corollaries are a direct consequence of Theorem 13.33.
For both results note that if a nonlinear dynamical system G is dissipative
(respectively, geometrically dissipative) with respect to a supply rate
r(u, y) = uTy − εuTu − ε̂yTy, where ε, ε̂ ≥ 0, then with κ(y) = ky, where
k ∈ R is such that k(1 − εk) < ε̂, r(u, y) = [k(1 − εk) − ε̂]yTy < 0, y 6= 0.
Hence, if G is zero-state observable it follows from Theorem 13.21 that all
storage functions (respectively, geometrically storage functions) of G are
positive definite. For the next result, we assume that all storage functions
of G and Gc are continuous.

Corollary 13.16. Consider the closed-loop system consisting of the
nonlinear dynamical systems G given by (13.223) and (13.224) and Gc given
by (13.225) and (13.226), and assume G and Gc are zero-state observable.
Then the following statements hold:

i) If G is passive, Gc is geometrically passive, and rank[Gc(uc, 0)] = m,
uc ∈ Rl, then the negative feedback interconnection of G and Gc is
asymptotically stable.

ii) If G and Gc are geometrically passive with storage functions Vs(·) and
Vsc(·), respectively, such that (13.227) and (13.228) hold, then the
negative feedback interconnection of G and Gc is geometrically stable.

iii) If G is nonexpansive with gain γ > 0, Gc is geometrically nonexpansive
with gain γc > 0, rank[Gc(uc, 0)] = m, and γγc ≤ 1, then the negative
feedback interconnection of G and Gc is asymptotically stable.

iv) If G and Gc are geometrically nonexpansive with storage functions
Vs(·) and Vsc(·), respectively, such that (13.227) and (13.228) hold,
with gains γ > 0 and γc > 0, respectively, such that γγc ≤ 1, then the
negative feedback interconnection of G and Gc is geometrically stable.

v) If G is passive and Gc is input-output strict passive then the negative
feedback interconnection of G and Gc is asymptotically stable.

vi) If G and Gc are input strict passive then the negative feedback
interconnection of G and Gc is asymptotically stable.

vii) If G and Gc are output strict passive then the negative feedback
interconnection of G and Gc is asymptotically stable.
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Proof. The proof is a direct consequence of Theorem 13.33. Specifi-
cally, i) and ii) follow from Theorem 13.33 with Q = Qc = 0, S = Sc = Im,
and R = Rc = 0, while iii) and iv) follow from Theorem 13.33 with Q = −Il,
S = 0, R = γ2Im, Qc = −Ilc , Sc = 0, and Rc = γ2

c Imc
. Statement v) follows

from Theorem 13.33 with Q = 0, S = Im, R = 0, Qc = −ε̂Im, Sc = Im,
and Rc = −εIm, where ε, ε̂ > 0. Statement vi) follows from Theorem 13.33
with Q = 0, S = Im, R = −εIm, Qc = 0, Sc = 1

2Im, and Rc = −ε̂Im, where
ε, ε̂ > 0. Finally, vii) follows from Theorem 13.33 with Q = −εIm, S = Im,
R = 0, Qc = −ε̂Im, Sc = Im, and Rc = 0, where ε, ε̂ > 0.

Corollary 13.17. Consider the closed-loop system consisting of the
nonlinear dynamical systems G given by (13.223) and (13.224), and Gc given
by (13.225) and (13.226). Let a, b, ac, bc, δ ∈ R be such that b > 0, 0 < a+b,
0 < 2δ < b−a, ac = a+δ, and bc = b+δ, let M ∈ Rm×m be positive definite,
and assume G and Gc are zero-state observable. If G is dissipative with
respect to the supply rate r(u, y) = uTMy+ ab

a+by
TMy+ 1

a+bu
TMu and has

a continuous radially unbounded storage function and Gc is dissipative with
respect to the supply rate rc(uc, yc) = uT

c Myc − 1
ac+bc

yT
c Myc − acbc

ac+bc
uT

c Muc

and has a continuous radially unbounded storage function, then the negative
feedback interconnection of G and Gc is globally asymptotically stable.

Proof. The proof is identical to that of the continuous-time case given
in Corollary 6.2 and, hence, is omitted.

13.14 Stability Margins of Discrete Regulators

In this section, we develop sufficient conditions for gain, sector, and
disk margin guarantees for discrete-time nonlinear systems controlled by
nonlinear feedback regulators. To consider relative stability margins for
nonlinear discrete-time regulators consider the nonlinear system G given by

x(k + 1) = f(x(k)) +G(x(k))u(k), x(0) = x0, k ∈ Z+, (13.230)

y(k) = −φ(x(k)), (13.231)

where φ : Rn → Rm is such that G is asymptotically stable with u = −y.
Furthermore, assume that the system G is zero-state observable. The
following results provide algebraic sufficient conditions that guarantee disk
margins for the nonlinear dynamical system G given by (13.230) and
(13.231).

Theorem 13.34. Consider the nonlinear dynamical system G given by
(13.230) and (13.231). Let α, β ∈ R be such that 0 < α ≤ 1 ≤ β < ∞.
Suppose there exists a positive-definite diagonal matrix Z ∈ Rm×m and
there exist functions Vs : Rn → R, P1u : Rn → R1×m, P2u : Rn → Nm,
ℓ : Rn → Rp, and W : Rn → Rp×m such that Vs(·) is continuous, Vs(0) = 0,
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Vs(x) > 0, x ∈ Rn, x 6= 0, and for all x ∈ Rn, (13.137) holds and

0 = Vs(f(x)) − Vs(x) − αβ
α+βφ

T(x)Zφ(x) + ℓT(x)ℓ(x), (13.232)

0 = P1u(x) + φT(x)Z + 2ℓT(x)W(x), (13.233)

0 = 1
α+βZ − P2u(x) −WT(x)W(x). (13.234)

Then the nonlinear system G has a structured disk margin (α, β). Alter-
natively, if (13.232)–(13.234) are satisfied with Z = Im, then the nonlinear
system G has a disk margin (α, β).

Proof. The proof is identical to that of the continuous-time case given
in Theorem 6.5 and, hence, is omitted.

Corollary 13.18. Consider the nonlinear system G given by (13.230)
and (13.231). Let α, β ∈ R be such that 0 < α ≤ 1 ≤ β <∞. Suppose there
exist a positive-definite diagonal matrix Z ∈ Rm×m, functions P1u : Rn →
R1×m, P2u : Rn → Nm, and a continuous function Vs : Rn → R such that
Vs(0) = 0, Vs(x) > 0, x ∈ Rn, x 6= 0, and for all x ∈ Rn, (13.137) holds and

0 < 1
α+βZ − P2u(x), (13.235)

0 ≥ Vs(f(x)) − Vs(x) − αβ
α+βφ

T(x)Zφ(x)

+1
4(φT(x)Z + P1u(x))( 1

α+βZ − P2u(x))−1(φT(x)Z + P1u(x))T.

(13.236)

Then the nonlinear system G has a structured disk margin (α, β). Alterna-
tively, if (13.235) and (13.236) are satisfied with Z = Im, then the nonlinear
system G has a disk margin (α, β).

Proof. It follows from Theorem 13.21 that (13.232)–(13.234) are
equivalent to (13.236). Now, the result is a direct consequence of Theorem
13.34.

The following theorem gives the nonlinear version of the results of
[262].

Theorem 13.35. Consider the nonlinear dynamical system G given
by (13.230) and (13.231). Let α, β ∈ R be such that 0 < α ≤ 1 ≤ β <
∞. Suppose there exist a positive-definite diagonal matrix Z ∈ Rm×m, a
continuous function V : Rn → R, P̂1u : Rn → R1×m, P̂2u : Rn → Nm, and a
scalar q > 0, and for all x ∈ Rn, (13.137) holds and

0 < qI − P̂2u(x), (13.237)

0 ≥ V (f(x)) − V (x) − αβ
q(α+β)2 P̂1u(x)Z−1P̂T

1u(x). (13.238)
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Then, with φ(x) = − 1
q(α+β)Z

−1GT(x)V ′T(x), the nonlinear system G has

a structured disk margin (α, β). Alternatively, if (13.238) is satisfied with
Z = Im, then the nonlinear system G has a disk margin (α, β).

Proof. The result is a direct consequence of Corollary 13.18 with
Vs(x) = 1

q(α+β)V (x), P1u(x) = 1
q(α+β) P̂1u(x), and P2u(x) = 1

q(α+β) P̂2u(x).

Specifically, since φ(x) = −Z−1GT(x) ·P̂1u(x) it follows from (13.238) that
for all x ∈ Rn,

0 ≥ V (f(x)) − V (x) − αβ
q(α+β)2P1u(x)PT

1u(x)

= q(α+ β)
(

Vs(f(x)) − Vs(x) − αβ
α+βφ

T(x)φ(x)
)

= q(α+ β)
(

Vs(f(x)) − Vs(x) − αβ
α+βφ

T(x)φ(x)

+1
4(φ(x) + P̂T

1u(x))T( 1
α+β I − P̂2u(x))−1(φ(x) + P̂T

1u(x))
)

,

which implies (13.236), so that all the conditions of Corollary 13.18 are
satisfied.

13.15 Control Lyapunov Functions for Discrete-Time Systems

In this section, we consider a feedback control problem and introduce the
notion of control Lyapunov functions for discrete-time systems. Consider
the controlled discrete-time nonlinear dynamical system given by

x(k + 1) = F (x(k), u(k)), x(t0) = x0, k ∈ Z+, (13.239)

where x(k) ∈ D ⊆ Rn, k ∈ Z+, is the state vector, D is an open set
with 0 ∈ D, u(k) ∈ U ⊆ Rm is the control input, and F : D × U → Rn

satisfies F (0, 0) = 0. We assume that the control input u(·) ∈ U in (13.239)
is restricted to the class of admissible controls consisting of measurable
functions u(·) ∈ U such that u(k) ∈ U for all k ∈ Z+, where the constraint
set U is given with 0 ∈ U . A mapping φ : D → U satisfying φ(0) = 0 is
called a control law. Furthermore, if u(k) = φ(x(k)), where φ is a control
law and x(k), k ∈ Z+, satisfies (13.239), then u(·) ∈ U is called a feedback
control law. With u(k) = φ(x(k)) the closed-loop system is given by

x(k + 1) = F (x(k), φ(x(k)), x(0) = x0, k ∈ Z+. (13.240)

The following two definitions are required for stating the results of this
section.

Definition 13.18. Let φ : D → U be a mapping on D\{0} with φ(0) =
0. Then (13.239) is feedback asymptotically stabilizable if the zero solution
x(k) ≡ 0 of the closed-loop system (13.240) is asymptotically stable.
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Definition 13.19. Consider the controlled discrete-time nonlinear
dynamical system given by (13.239). A continuous positive-definite function
V : D → R satisfying

inf
u∈U

V (F (x, u)) < V (x), x ∈ D, x 6= 0, (13.241)

is called a control Lyapunov function.

Note that it follows from (13.241) that there exists a feedback control
law φ : D → U such that V (F (x, φ(x)))−V (x) < 0, x ∈ D, x 6= 0, and hence,
Theorem 13.2 implies that if there exists a control Lyapunov function for the
nonlinear dynamical system (13.239), then there exists a feedback control
law φ(x) such that the zero solution x(k) ≡ 0 of the closed-loop nonlinear
dynamical system (13.239) is asymptotically stable. Conversely, if there
exists a feedback control law u = φ(x) such that the zero solution x(k) ≡ 0
of the nonlinear dynamical system (13.239) is asymptotically stable, then it
follows from Theorem 13.6 that there exists a continuous positive-definite
function V : D → R such that V (F (x, φ(x))) − V (x) < 0, x ∈ D, x 6= 0,
or, equivalently, there exists a control Lyapunov function for the nonlinear
dynamical system (13.239). Hence, a given nonlinear dynamical system of
the form (13.239) is feedback asymptotically stabilizable if and only if there
exists a control Lyapunov function satisfying (13.241). Finally, in the case
where D = Rn and U = Rm the zero solution x(k) ≡ 0 to (13.239) is globally
asymptotically stabilizable if and only if V (x) → ∞ as ‖x‖ → ∞.

Next, we consider the special case of nonlinear affine systems in the
control and construct state feedback controllers that globally asymptotically
stabilize the zero solution of the nonlinear dynamical system under the
assumption that the system has a radially unbounded control Lyapunov
function. Specifically, we consider nonlinear affine systems of the form

x(k + 1) = f(x(k)) +G(x(k))u(k), x(t0) = x0, k ∈ Z+, (13.242)

where f : Rn → Rn is continuous and satisfies f(0) = 0, and G : Rn → Rn×m

is continuous. For the nonlinear system G we assume that there exists a
two-times continuously differentiable control Lyapunov function V (x) and
there exist functions P1u : Rn → R1×m and P2u : Rn → Nm such that
V (f(x) + G(x)u) = V (f(x)) + P1u(x)u + uTP2u(x)u, x ∈ Rn, u ∈ Rm.
Furthermore, we assume that

∂2V

∂x2

∣

∣

∣

∣

x=f(x)

> 0.

In this case, it can be shown using a Taylor series expansion about x =

f(x) that P1u(x) = V ′(f(x))G(x), P2u(x) = GT(x) ∂2V
∂x2

∣

∣

∣

x=f(x)
G(x), and
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rank[P2u(x) PT
1u(x)] = rank P2u(x), x ∈ Rn. Next, note that the function

Γ(x)
△
= V (f(x) +G(x)u) − V (x) = V (f(x)) + P1u(x)u+ uTP2u(x)u− V (x)

is a convex function since ∂2Γ
∂u2 ≥ 0, u ∈ Rm, and hence, Γ(x) has a global

minimum. Now, setting ∂Γ
∂u = 0 it follows that u = −1

2P
†
2u(x)PT

1u(x). Hence,

infu∈Rm Γ(x) = V (f(x)) − V (x) − 1
4P1u(x)P †

2u(x)PT
1u(x), which implies that

V (x) is a control Lyapunov function for G if and only if

V (f(x)) − V (x) − 1
4P1u(x)P †

2u(x)PT
1u(x) < 0, x ∈ Rn, x 6= 0. (13.243)

In this case, a stabilizing feedback control law is given by φ(x) =

−1
2P

†
2u(x)PT

1u(x).

13.16 Problems

Problem 13.1. Consider the dynamical system (13.1) with f(x) = Ax,
where A ∈ Rn×n. Show that the following statements are equivalent:

i) The zero solution x(k) ≡ 0 to (13.1) is Lyapunov stable.

ii) For every initial condition x0 ∈ Rn, x(k) is bounded for all k ∈ Z+.

iii) If λ ∈ spec(A), then either |λ| < 1, or both |λ| = 1 and λ is semisimple.

iv) There exists α > 0 such that ‖Ak‖ < α, k ∈ Z+.

Problem 13.2. Consider the dynamical system (13.1) with f(x) = Ax,
where A ∈ Rn×n. Show that the following statements are equivalent:

i) The zero solution x(k) ≡ 0 to (13.1) is globally asymptotically stable.

ii) For every initial condition x0 ∈ Rn, limk→∞ x(k) = 0.

iii) If λ ∈ spec(A), then |λ| < 1.

iv) limk→∞Ak = 0.

Problem 13.3. Show that the zero solution x(k) ≡ 0 to (13.1) with
f(x) = Ax, where A ∈ Rn×n, is asymptotically stable if and only if it is
geometrically stable.

Problem 13.4. Consider the dynamical system (13.1) with f(x) = Ax,
where A ∈ Rn×n. Show that A is asymptotically stable if and only if there
exists a positive-definite matrix P ∈ Rn×n that satisfies the discrete-time
Lyapunov equation

P = ATPA+R, (13.244)
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where R ∈ Rn×n is a positive-definite matrix. Furthermore, show if A is
asymptotically stable, then P is the unique solution to (13.244) and is given
by

P =

∞
∑

k=0

AkTRAk. (13.245)

Problem 13.5. Consider the dynamical system (13.1) with f(x) =
Ax, where A ∈ Rn×n Let R = CTC, where C ∈ Rl×n, and assume
(A,C) is observable. Show if there exists a positive-definite matrix P ∈
Rn×n satisfying the discrete-time Lyapunov equation (13.244), then A is
asymptotically stable.

Problem 13.6. Let D0 ⊂ D be a compact positively invariant set
for the nonlinear dynamical system (13.1). Show that if there exists a
continuous function V : D → R such that

V (x) = 0, x ∈ D0, (13.246)

V (x) > 0, x ∈ D, x 6∈ D0, (13.247)

V (f(x)) − V (x) ≤ 0, x ∈ D, (13.248)

then D0 is Lyapunov stable (see Section 4.9). If, in addition,

V (f(x)) − V (x) < 0, x ∈ D, x 6∈ D0, (13.249)

show that D0 is asymptotically stable (see Section 4.9). Finally, if D = Rn

and V (x) → ∞ as ‖x‖ → ∞ show that D0 is globally asymptotically stable
(see Section 4.9).

Problem 13.7. Consider the nonlinear dynamical system (13.1) and
recall the definition of a semistable equilibrium point x ∈ D (see Problem
3.44). Suppose the orbit Ox of (13.1) is bounded for all x ∈ D and assume
that there exists a continuous function V : D → R such that

V (f(x)) − V (x) ≤ 0, x ∈ D. (13.250)

Furthermore, let M denote the largest invariant set contained in R △
=

{x ∈ D : V (f(x)) − V (x) = 0}. Show that if M ⊆ {x ∈ D : f(x) =
x and x is Lyapunov stable}, then (13.1) is semistable.

Problem 13.8. Consider the dynamical system (13.1) with f(x) = Ax,
where A ∈ Rn×n. Using the results of Problem 13.7 show that the following
statements are equivalent:

i) The zero solution x(k) ≡ 0 to (13.1) is semistable.

ii) For every initial condition x0 ∈ Rn, limk→∞ x(k) exists.
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iii) If λ ∈ spec(A), then either |λ| < 1, or both λ = 1 and λ is semisimple.

iv) limk→∞Ak exists.

Problem 13.9. Consider the dynamical system (13.1) with f(x) = Ax,
where A ∈ Rn×n. Show that if there exist n× n matrices P ≥ 0 and R ≥ 0
such that

P = ATPA+R, (13.251)

N





















R
R(A− In)

...
R(A− In)n−1





















= N (A− In), (13.252)

then the zero solution x(t) ≡ 0 to (13.1) is semistable (see Problem 13.8).
(Hint: First show that N (P ) ⊆ N (A− In) ⊆ N (R) and N (A− In)∩R(A−
In) = {0}.)

Problem 13.10 (Lyapunov’s Indirect Method). Let x(k) ≡ 0 be an
equilibrium point for the nonlinear dynamical system

x(k + 1) = f(x(k)), x(0) = x0, k ∈ Z+, (13.253)

where f : D → D is continuously differentiable and D is an open set with
0 ∈ D. Furthermore, let

A =
∂f

∂x
(x)

∣

∣

∣

∣

x=0

.

Show that:

i) If |λ| < 1, where λ ∈ spec(A), then the origin of the nonlinear
dynamical system (13.253) is asymptotically stable.

ii) If there exists λ ∈ spec(A) such that |λ| > 1, where λ ∈ spec(A), then
the origin of the nonlinear dynamical system (13.253) is unstable.

Problem 13.11. Let A ∈ Rn×n. A is nonnegative if A(i,j) ≥ 0, i, j =
1, . . . , n. Consider the dynamical system (13.1) with f(x) = Ax, where
A ∈ Rn×n. Show that R

n
+ is an invariant set with respect to (13.1) if and

only if A is nonnegative.

Problem 13.12. Consider the nonlinear dynamical system

x1(k + 1) =
αx2(k)

1 + x2
1(k)

, x1(0) = x10, k ∈ Z+, (13.254)

x2(k + 1) =
βx1(k)

1 + x2
2(k)

, x2(0) = x20. (13.255)
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Analyze the stability of the zero solution (x1(k), x2(k)) ≡ (0, 0) to (13.254)
and (13.255) using the Lyapunov function candidate V (x1, x2) = x2

1 +x2
2 for

i) α2 < 1 and β2 < 1, ii) α2 ≤ 1, β2 ≤ 1, and α2 +β2 < 2, iii) α2 = β2 = 1,
and iv) α2 > 1 and β2 > 1.

Problem 13.13. The nonlinear dynamical system (13.1) is nonneg-
ative if for every x(0) ∈ R

n
+, the solution x(k), k ∈ Z+, to (13.1) is

nonnegative, that is, x(k) ≥≥ 0, k ∈ Z+. The equilibrium solution x(k) ≡ xe

of the nonnegative dynamical system (13.1) is Lyapunov stable if for every
ε > 0 there exists δ = δ(ε) > 0 such that if x0 ∈ Bδ(xe) ∩ R

n
+, then

x(k) ∈ Bε(xe) ∩ R
n
+, k ∈ Z+. The equilibrium solution x(k) ≡ xe of

the nonnegative dynamical system (13.1) is asymptotically stable if it is
Lyapunov stable and there exists δ > 0 such that if x0 ∈ Bδ(xe) ∩ R

n
+, then

limk→∞ x(k) = xe. Consider the dynamical system (13.1) with f(x) = Ax,
whereA ∈ Rn×n is nonnegative (see Problem 13.11). Show that the following
statements hold:

i) If there exist vectors p, r ∈ Rn such that p >> 0 and r ≥≥ 0 satisfy

p = ATp+ r, (13.256)

then A is Lyapunov stable.

ii) If there exist vectors p, r ∈ Rn such that p ≥≥ 0 and r ≥≥ 0
satisfy (13.256) and (A, rT) is observable, then p >> 0 and A is
asymptotically stable.

Furthermore, show that the following statements are equivalent:

iii) A is asymptotically stable.

iv) There exist vectors p, r ∈ Rn such that p >> 0 and r >> 0 satisfy
(13.256).

v) There exist vectors p, r ∈ Rn such that p ≥≥ 0 and r >> 0 satisfy
(13.256).

vi) For every r ∈ Rn such that r >> 0, there exists p ∈ Rn such that
p >> 0 satisfies (13.256).

(Hint: Use the Lyapunov function candidate V (x) = pTx in your analysis
and show that the Lyapunov stability theorems of Section 13.2 and the
invariant set theorem of Section 13.3 can be used directly for nonnegative
systems with the required sufficient conditions verified in R

n
+.)
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Problem 13.14. Prove Lemma 13.2.

Problem 13.15. Prove Theorem 13.22.

Problem 13.16. Prove Theorem 13.25.

Problem 13.17. Let f = [f1, . . . , fn]T : D → D, where D is an open
subset of Rn that contains R

n
+. Then f is nonnegative if fi(x) ≥ 0, for all

i = 1, . . . , n, and x ∈ R
n
+. Consider the nonlinear dynamical system (13.1).

Show that the following statements hold:

i) Suppose R
n
+ ⊂ D. Then R

n
+ is an invariant set with respect to (13.1)

if and only if f : D → D is nonnegative.

ii) Suppose f(0) = 0 and f : D → D is nonnegative and continuously

differentiable on R
n
+. Then A

△
= ∂f

∂x(x)
∣

∣

∣

x=0
is nonnegative (see Problem

13.11).

iii) If f(x) = Ax, where A ∈ Rn×n, then f is nonnegative if and only if A
is nonnegative.

Problem 13.18. Consider a discrete epidemic model involving two
distinct populations where infected members of one population can transmit
a disease to a susceptible in the other population. Letting xi denote the
infected fraction of the ith population and (1 − xi) denote the fraction of
susceptibles, the epidemic model can be characterized as

x1(k + 1) = a1x2(k)[1 − x1(k)] + (1 − b1)x1(k), x1(0) = x10, k ∈ Z+,

(13.257)

x2(k + 1) = a2x1(k)[1 − x2(k)] + (1 − b2)x2(k), x2(0) = x20, (13.258)

where ai ∈ (0, 1) and bi ∈ (0, 1) for i = 1, 2. Characterize all the equilibria of
(13.257) and (13.258). Using the Lyapunov function candidate V (x) = pTx,
where x = [x1, x2]

T and p ∈ R2
+, analyze the stability of the equilibria

of (13.257) and (13.258). Make sure to justify that V (x) = pTx is a valid
Lyapunov function. (Hint: See Problem 13.17.)

Problem 13.19. The nonlinear dynamical system G given by (13.135)
and (13.136) is nonnegative if for every x(0) ∈ R

n
+ and u(k) ≥≥ 0, k ∈ Z+,

the solution x(k), k ∈ Z+, to (13.100) and the output y(k), k ∈ Z+, are
nonnegative, that is, x(k) ≥≥ 0, k ∈ Z+, and y(k) ≥≥ 0, k ∈ Z+. Consider
the nonlinear dynamical system G given by (13.135) and (13.136). Show that
if f : D → Rn is nonnegative (see Problem 13.17), G(x) ≥≥ 0, h(x) ≥≥ 0,
and J(x) ≥≥ 0, x ∈ R

n
+, then G is nonnegative.
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Problem 13.20. Let q ∈ Rl and r ∈ Rm. Consider the nonlinear
nonnegative dynamical system G (see Problem 13.19) given by (13.135) and
(13.136) where f : D → Rn is nonnegative (see Problem 13.17), G(x) ≥≥ 0,
h(x) ≥≥ 0, and J(x) ≥≥ 0, x ∈ R

n
+. Show that if there exist functions

Vs : R
n
+ → R+, ℓ : R

n
+ → R+, W : R

n
+ → R

m
+ , P1u : Rn → R1×m, and a scalar

ρ > 1 (respectively, ρ = 1) such that Vs(·) is continuous and nonnegative
definite, Vs(0) = 0,

Vs(f(x) +G(x)u) = Vs(f(x)) + P1u(x)u, x ∈ R
n
+, u ∈ R

m
+ , (13.259)

and, for all x ∈ R
n
+,

0 = Vs(f(x)) − 1

ρ
Vs(x) − qTh(x) + ℓ(x), (13.260)

0 = P1u(x) − qTJ(x) − rT + WT(x), (13.261)

then G is geometrically dissipative (respectively, dissipative) with respect to
the supply rate s(u, y) = qTy + rTu. (Hint: The definition of dissipativity
and geometric dissipativity should be modified to reflect the fact that x0 ∈
R

n
+, and u(k), k ∈ Z+, and y(k), k ∈ Z+, are nonnegative.)

Problem 13.21. Let q ∈ Rl and r ∈ Rm. Consider the nonlinear
nonnegative dynamical system G (see Problem 13.19) given by (13.135) and
(13.136) where f : D → Rn is nonnegative (see Problem 13.17), G(x) ≥≥ 0,
h(x) ≥≥ 0, and J(x) ≥≥ 0, x ∈ R

n
+. Show that G is lossless with respect

to the supply rate s(u, y) = qTy + rTu , u ∈ R
m
+ , if and only if there exist

functions Vs : R
n
+ → R+ and P1u : Rn → R1×m such that Vs(·) is continuous,

Vs(0) = 0, and for all x ∈ R
n
+, (13.259) holds and

0 = Vs(f(x)) − Vs(x) − qTh(x), (13.262)

0 = P1u(x) − qTJ(x) − rT. (13.263)

If, in addition, Vs(·) is continuously differentiable show that

P1u(x) = V ′
s (f(x))G(x). (13.264)

Problem 13.22. Let q ∈ Rl and r ∈ Rm and assume G given by
(13.135) and (13.136) is such that f : D → Rn is nonnegative (see Problem
13.17), G(x) ≥≥ 0, h(x) ≥≥ 0, and J(x) ≥≥ 0, x ∈ R

n
+. Suppose G

is geometrically dissipative (respectively, dissipative) with respect to the
supply rate s(u, y) = qTy+ rTu. Show that there exist p ∈ R

n
+, l ∈ R

n
+, and

w ∈ R
m
+ and a scalar ρ > 1 (respectively, ρ = 1) such that

0 = ATp− 1

ρ
p−CTq + l, (13.265)

0 = BTp−DTq − r + w, (13.266)
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where

A =
∂f

∂x

∣

∣

∣

∣

x=0

, B = G(0), C =
∂h

∂x

∣

∣

∣

∣

x=0

, D = J(0). (13.267)

If, in addition, (A,C) is observable, show that p >> 0.

Problem 13.23. Let q ∈ Rl and r ∈ Rm. Consider the nonnegative
dynamical system G given by (13.198) and (13.199) where A ≥≥ 0, B ≥≥ 0,
C ≥≥ 0, andD ≥≥ 0. Show that G is geometrically dissipative (respectively,
dissipative) with respect to the supply rate s(u, y) = qTy + rTu if and only
if there exist p ∈ R

n
+, l ∈ R

n
+, and w ∈ R

m
+ , and a scalar ρ > 1 (respectively,

ρ = 1) such that

0 = ATp− 1

ρ
p− CTq + l, (13.268)

0 = BTp−DTq − r + w. (13.269)

(Hint: Use Problems 13.21 and 13.22 to show the result.)

Problem 13.24 (Parseval’s Theorem). Let u : Z+ → Rm and
y : Z+ → Rl be in ℓp, p ∈ [0,∞), and let u(z) and y(z) denote their Z-
transforms, respectively. Show that

∞
∑

k=0

uT(k)y(k) =
1

2π

∫ π

−π
u∗(eθ)y(eθ)dθ. (13.270)

Problem 13.25 (Positivity Theorem). Consider the controllable and
observable system

x(k + 1) = Ax(k) +Bu(k), x(0) = x0, k ∈ Z+, (13.271)

y(k) = Cx(k) +Du(k), (13.272)

u(k) = −σ(y(k), k), (13.273)

where x ∈ Rn, u, y ∈ Rm, and

σ(·, ·) ∈ Φpr
△
= {σ : Rm × Z+ → Rm : σ(0, ·) = 0,

σT(y, k)y ≥ 0, y ∈ Rm, k ∈ Z+}.
Furthermore, suppose

G(z) ∼
[

A B
C D

]

is strictly positive real. Show that the negative feedback interconnection of
(13.271)–(13.273) is globally uniformly asymptotically stable for all σ(·, ·) ∈
Φpr.

Problem 13.26 (Small Gain Theorem). Consider the controllable and
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observable system

x(k + 1) = Ax(k) +Bu(k), x(0) = x0, k ∈ Z+, (13.274)

y(k) = Cx(k) +Du(k), (13.275)

u(k) = σ(y(k), k), (13.276)

where x ∈ Rn, u ∈ Rm, y ∈ Rl, and

σ(·, ·) ∈ Φbr
△
= {σ : Rl × Z+ → Rm : σ(0, ·) = 0, ‖σ(y, k)‖2 ≤ γ−1‖y‖2,

y ∈ Rm, k ∈ Z+},
and where γ > 0. Furthermore, suppose

G(z) ∼
[

A B
C D

]

is strictly positive real. Show that the negative feedback interconnection of
(13.274)–(13.276) is globally uniformly asymptotically stable for all σ(·, ·) ∈
Φbr.

Problem 13.27 (Circle Criterion). Consider the controllable and
observable system

x(k + 1) = Ax(k) +Bu(k), x(0) = x0, k ∈ Z+, (13.277)

y(k) = Cx(k) +Du(k), (13.278)

u(k) = −σ(y(k), k), (13.279)

where x ∈ Rn, u ∈ Rm, y ∈ Rl, and

σ(·, ·) ∈ Φc
△
= {σ : Rl × Z+ → Rm : σ(0, ·) = 0,

[σ(y, k) −M1y]
T[σ(y, k) −M2y] ≤ 0, y ∈ Rm, k ∈ Z+},

and where M1,M2 ∈ Rm×l. Furthermore, suppose [I + M2G(z)][I +
M1G(z)]−1 is strictly positive real, where

G(z) ∼
[

A B
C D

]

and det[I + M1G(x)] 6= 0, |z| ≥ 1. Show that the negative feedback
interconnection of (13.277)–(13.279) is globally uniformly asymptotically
stable for all σ(·, ·) ∈ Φc.

Problem 13.28 (Szegö Criterion). Consider the controllable and
observable system

x(k + 1) = Ax(k) +Bu(k), x(0) = x0, k ∈ Z+, (13.280)

y(k) = Cx(k), (13.281)

u(k) = −σ(y(k)), (13.282)
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where x ∈ Rn, u, y ∈ Rm, and

σ(·) ∈ ΦS
△
= {σ : Rm → Rm : σ(0) = 0, σT(y)[M−1σ(y) − y] ≤ 0, y ∈ Rm,

σ(y) = [σ1(y1), σ2(y2), . . . , σm(ym)]T, and

0 <
σi(ν) − σi(ν̂)

ν − ν̂
< µi, ν, ν̂ ∈ R, i = 1, . . . ,m},

and where M ∈ Rm×m is a positive-definite matrix and ν 6= ν̂. Furthermore,
suppose there exists a positive-definite diagonal matrix N such that M−1 +
[I + (z − 1)N ]G(z) − 1

2 |z − 1|2G∗(z)µNG(z) is strictly positive real, where

G(z) ∼
[

A B
C 0

]

and µ = diag[µ1, µ2, . . . , µm]. Show that the negative feedback interconnec-
tion (13.280)–(13.282) is globally asymptotically stable for all σ(·) ∈ ΦS.

Problem 13.29. Show that the results of Problems 6.4–6.6 also hold
in the case where G1 and G2 are discrete-time dynamical systems.

Problem 13.30. Consider the nonnegative dynamical system G (see
Problem 13.19) given by (13.198) and (13.199), and assume that (A,C) is
observable and G is geometrically dissipative with respect to the supply
rate s(u, y) = eTu − eTMy, where M >> 0. Show that the positive
feedback interconnection of G and σ(·, ·) is globally asymptotically stable
for all σ(·, ·) ∈ Φ, where

Φ
△
= {σ : Z+ × R

l
+ → R

m
+ : σ(·, 0) = 0, 0 ≤≤ σ(k, y) ≤≤My,

y ∈ R
l
+, k ∈ Z+}, (13.283)

M >> 0, and M ∈ Rm×l. (Hint: Use Problem 13.23 to show that if G is
geometrically dissipative with respect to the supply rate s(u, y) = eTu −
eTMy, then there exist p ∈ R

n
+, l ∈ R

n
+, and w ∈ R

m
+ , and a scalar ρ > 1

such that

0 = ATp− 1

ρ
p+ CTMTe + l, (13.284)

0 = BTp+DTMTe − e + w. (13.285)

Now, use the Lyapunov function candidate V (x) = pTx.)

Problem 13.31. Let q ∈ Rl, r ∈ Rm, qc ∈ Rlc , and rc ∈ Rmc . Consider
the nonlinear nonnegative dynamical systems G and Gc (see Problem 13.19)
given by (13.135) and (13.136), and (13.225) and (13.226), respectively,
where f : D → Rn is nonnegative, G(x) ≥≥ 0, h(x) ≥≥ 0, J(x) ≥≥ 0,
x ∈ R

n
+, fc : Rnc → Rnc is nonnegative, Gc(uc, xc) = Gc(xc) ≥≥ 0,

hc(uc, xc) = hc(xc) ≥≥ 0, xc ∈ R
nc

+ , and Jc(uc, xc) ≡ 0. Assume that G
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is dissipative with respect to the linear supply rate s(u, y) = qTy+ rTu and
with a continuous positive-definite storage function Vs(·), and assume that Gc

is dissipative with respect to the linear supply rate sc(uc, yc) = qTc yc + rTc uc

and with a continuous positive-definite storage function Vsc(·). Show that
the following statements hold:

i) If there exists a scalar σ > 0 such that q+σrc ≤≤ 0 and r+σqc ≤≤ 0,
then the positive feedback interconnection of G and Gc is Lyapunov
stable.

ii) If G and Gc are zero-state observable and there exists a scalar σ > 0
such that q + σrc << 0 and r + σqc << 0, then the positive feedback
interconnection of G and Gc is asymptotically stable.

iii) If G is zero-state observable, rank Gc(0) = mc, Gc is geometrically
dissipative with respect to the supply rate sc(uc, yc) = qTc yc + rTc uc,
and there exists a scalar σ > 0 such that q + σrc ≤≤ 0 and r +
σqc ≤≤ 0, then the positive feedback interconnection of G and Gc is
asymptotically stable.

iv) If G is geometrically dissipative with respect to the supply rate
s(u, y) = qTy + rTu, Gc is geometrically dissipative with respect to
the supply rate sc(uc, yc) = qTc yc + rTc uc, and there exists a scalar
σ > 0 such that q + σrc ≤≤ 0 and r + σqc ≤≤ 0, then the positive
feedback interconnection of G and Gc is asymptotically stable.

(Hint: First show that the positive feedback interconnection of G and Gc

gives a nonnegative closed-loop system.)

13.17 Notes and References

In comparison to the stability theory of continuous-time dynamical systems,
there is very little literature on the stability theory of discrete-time systems.
This is due to the fact that discrete-time stability theory very closely
parallels continuous-time stability theory and is often presented as a footnote
to the continuous-time theory. Among the earliest papers on discrete-
time stability theory is due to Li [276]. A self-contained summary of
the application of Lyapunov stability theory to discrete-time systems is
given by Hahn [177]. See also Kalman and Bertram [229]. The invariance
principle and the invariant set theorems for discrete-time systems is due
to LaSalle; see for example [259]. Nonlinear discrete-time extensions
of passivity and losslessness are due to Byrnes and Lin [78] and Lin
and Byrnes [281, 282]. Extended Kalman-Yakubovich-Popov equations for
nonlinear discrete-time dissipative systems are given in Chellaboina and
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Haddad [86]. The concepts of geometric dissipativity, geometric passivity,
and geometric nonexpansivity are a discrete-time analog of exponential
dissipativity introduced by Chellaboina and Haddad [88] for continuous-
time systems. The discrete-time positive real and bounded real lemmas
for single-input, single-output systems are due to Szegö and Kalman [422]
and Szegö [421], respectively. Multivariable generalizations are given in Hitz
and Anderson [197] and Vaidyanathan [437]. A textbook treatment of linear
discrete-time passivity is given by Cains [80].

Gain, sector, and disk margins for nonlinear discrete-time systems are
due to Chellaboina and Haddad [86] and can be viewed as a generalization
of the work by Lee and Lee [262] on gain and phase margins for discrete-
time linear systems. Finally, the concept of discrete-time control Lyapunov
functions introduced in this chapter is a generalization of the single-input,
discrete-time control Lyapunov function introduced by Amicucci, Monaco,
and Normand-Cyrot [6] to multi-input systems.
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Chapter Fourteen

Discrete-Time Optimal Nonlinear

Feedback Control

14.1 Introduction

Since most physical processes evolve naturally in continuous time, it is not
surprising that the bulk of nonlinear control theory has been developed
for continuous-time systems. Nevertheless, it is the overwhelming trend
to implement controllers digitally. Despite this fact, the development of
nonlinear control theory for discrete-time systems has lagged its continuous-
time counterpart. This is in part due to the fact that concepts such as
zero dynamics, normal forms, and minimum phase are much more intricate
for discrete-time systems. For example, in contrast to the continuous-time
case, technicalities involving passivity analysis tools needed to prove global
stability via smooth feedback controllers [282] as well as system relative
degree requirements [78] are more involved in the discrete-time case.

In this chapter, we extend the framework developed in Chapters
8–11 to address the problem of optimal discrete-time nonlinear analysis
and feedback control with nonlinear-nonquadratic performance criteria.
Specifically, we consider discrete-time autonomous nonlinear regulation
in feedback control problems on an infinite horizon involving nonlinear-
nonquadratic performance functionals. As in the continuous-time case,
the performance functional can be evaluated in closed form as long as the
nonlinear-nonquadratic cost functional considered is related in a specific way
to an underlying Lyapunov function that guarantees asymptotic stability
of the nonlinear closed-loop system. This Lyapunov function is shown to
be the solution of the discrete-time steady-state Bellman equation arising
from the principle of optimality in dynamic programming and plays a
key role in constructing the optimal nonlinear control law. The overall
framework provides the foundation for extending discrete-time, linear-
quadratic synthesis to nonlinear-nonquadratic problems.
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14.2 Optimal Control and the Bellman Equation

In this section, we consider a discrete-time control problem involving
a notion of optimality with respect to a nonlinear-nonquadratic cost
functional. Specifically, we consider the following optimal control problem.

Optimal Control Problem. Consider the nonlinear controlled
system given by

x(k + 1) = F (x(k), u(k), k), x(k0) = x0, x(kf) = xf , u(k) ∈ U, k ≥ k0,
(14.1)

where x(k) ∈ D ⊆ Rn, k ∈ Z+, is the state vector, D is an open set with
0 ∈ D, u(k) ∈ U ⊆ Rm, k ∈ Z+, is the control input, x(k0) = x0 is given,
x(kf) = xf is fixed, and F : D × U × R → Rn satisfies F (0, 0, ·) = 0. We
assume that u(·) is restricted to the class of admissible controls U consisting
of measurable functions u(·) such that u(k) ∈ U for all k ∈ Z+, where the
constraint set U is given with 0 ∈ U . Furthermore, we assume that F (·, ·, ·)
is continuous. Then determine the control input u(k) ∈ U , k ∈ [k0, kf ], such
that the cost functional

J(x0, u(·), k0) =

kf
∑

k=k0

L(x(k), u(k), k), (14.2)

is minimized, where L : D × U × R → R is given.

To solve the optimal control problem we present Bellman’s principle
of optimality which provides necessary and sufficient conditions, for a given
control u(k) ∈ U , k ∈ Z+, to minimize the cost functional (14.2).

Lemma 14.1. Let u∗(·) ∈ U be an optimal control that generates the
trajectory x(k), k ∈ [k0, kf ], with x(k0) = x0. Then the trajectory x(·)
from (k0, x0) to (kf , xf) is optimal if and only if for all k1, k2 ∈ [k0, kf ], the
portion of the trajectory x(·) going from (k1, x(k1)) to (k2, x(k2)) optimizes
the same cost functional over [k1, k2], where x(k1) = x1 is a point on the
optimal trajectory generated by u∗(·).

Proof. Let u∗(·) ∈ U solve the optimal control problem and let x(k),
k ∈ [k0, kf ], be the solution to (14.1) generated by u∗(·). Next, suppose, ad
absurdum, that there exist k1 ≥ k0, k2 ≤ kf , and û(k), k ∈ [k1, k2], such that

k2
∑

k=k1

L(x̂(k), û(k), k) <

k2
∑

k=k1

L(x(k), u∗(k), k),

where x̂(k) solves (14.1) for all k ∈ [k1, k2] with u(k) = û(k), x̂(k1) = x(k1),
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and x̂(k2) = x(k2). Now, define

u0(k)
△
=







u∗(k), k ∈ [k0, k1),
û(k), k ∈ [k1, k2],
u∗(k), k ∈ (k2, kf ].

Then,

J(x0, u0(·), k0)

=
kf
∑

k=k0

L(x(k), u0(k), k)

=
k1
∑

k=k0

L(x(k), u∗(k), k) +
k2
∑

k=k1

L(x̂(k), û(k), k) +
kf
∑

k=k2

L(x(k), u∗(k), k)

<
k1
∑

k=k0

L(x(k), u∗(k), k) +
k2
∑

k=k1

L(x(k), u∗(k), k) +
kf
∑

k=k2

L(x(k), u∗(k), k)

= J(x0, u(·), k0),

which is a contradiction.

Conversely, if u∗(·) minimizes J(·, ·, ·) over [k1, k2] for all k1 ≥ k0 and
k2 ≤ kf , then it minimizes J(·, ·, ·) over [k0, kf ].

Lemma 14.1 states that u∗(·) solves the optimal control problem over
the time interval [k0, kf ] if and only if u∗(·) solves the optimal control
problem over every subset of the time interval [k0, kf ]. Next, let u∗(k),
k ∈ [k0, kf ], solve the optimal control problem and define the optimal cost

J∗(x0, k0)
△
= J(x0, u

∗(·), k0). Furthermore, define, for p : Rn ×Z+ → [0,∞),

the Hamiltonian H(x, u, p(x, k), k)
△
= L(x, u, k)+p(F (x, u, k), k+1)−p(x, k).

With these definitions we have the following result.

Theorem 14.1. Let J∗(x, k) denote the minimal cost for the optimal
control problem with x0 = x and k0 = k. Then

0 = min
u(k)∈U

H(x(k), u(k), J∗(x(k), k), k). (14.3)

Furthermore, if u∗(·) solves the optimal control problem, then

0 = H(x(k), u∗(k), J∗(x(k), k), k). (14.4)

Proof. It follows from Lemma 14.1 that, for all kf ≥ k + 1,

J∗(x(k), k) = min
u(·)∈U

kf
∑

i=k

L(x(i), u(i), i)
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= min
u(·)∈U

{

L(x(k), u(k), k) +

kf
∑

i=k+1

L(x(i), u(i), i)

}

= min
u(k)∈U

{L(x(k), u(k), k) + J∗(x(k + 1), k + 1)} ,

or, equivalently,

0 = min
u(k)∈U

{(J∗(x(k + 1), k + 1) − J∗(x(k), k)) + L(x(k), u(k), k)} ,

which yields (14.3). Finally, (14.4) can be proved in a similar manner by
replacing u(·) with u∗(·), where u∗(·) is the optimal control.

Next, we provide the converse result to Theorem 14.1.

Theorem 14.2. Suppose there exist a continuous function V : D×R →
R and an optimal control u∗(·) such that V (x(kf + 1), kf + 1) = 0,

0 = H(x, u∗(k), V (x(k), k), k), x ∈ D, k ∈ Z+, (14.5)

and

H(x, u∗(k), V (x(k), k), k) ≤ H(x, u(k), V (x(k), k), k),

x ∈ D, u(k) ∈ U, k ∈ Z+. (14.6)

Then u∗(·) solves the optimal control problem, that is,

J∗(x0, k0) = J(x0, u
∗(·), k0) ≤ J(x0, u(·), k0), u(·) ∈ U , (14.7)

and
J∗(x0, k0) = V (x0, k0). (14.8)

Proof. Let x(k), k ∈ Z+, satisfy (14.1) and, for all k ∈ [k0, kf + 1],
define

∆V (x(k), k)
△
= V (F (x(k), u(k)), k + 1), k) − V (x(k), k). (14.9)

Then, with u(·) = u∗(·), it follows from (14.5) that

0 = ∆V (x(k), k) + L(x(k), u∗(k), k).

Now, summing over [k0, kf ] and noting that V (x(kf + 1), kf + 1) = 0 yields

V (x0, k0) =

kf
∑

k=k0

L(x(k), u∗(k), k) = J(x0, u
∗(·), k0) = J∗(x0, k0).

Next, for all u(·) ∈ U it follows from (14.5) and (14.9) that

J(x0, u(·), k) =

kf
∑

k=k0

L(x(k), u(k), k)
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=

kf
∑

k=k0

{−∆V (x(k), k) + L(x(k), u(k), k)

+V (F (x(k), u(k), k), k) − V (x(k), k)}

=

kf
∑

k=k0

{−∆V (x(k), k) +H(x(k), u(k), V (x(k), k), k)}

≥
kf
∑

k=k0

{−∆V (x(k), k) +H(x(k), u∗(k), V (x(k), k), k)}

=

kf
∑

k=k0

−∆V (x(k), k)

= V (x0, k0)

= J∗(x0, k0),

which completes the proof.

Note that (14.5) and (14.6) imply

0 = min
u(k)∈U

H(x(k), u(k), V (x(k), k), k), (14.10)

which is known as the Bellman equation. It follows from Theorems 14.1 and
14.2 that the Bellman equation provides necessary and sufficient conditions
for characterizing the optimal control for time-varying nonlinear dynamical
systems over a finite time interval or the infinite horizon. In the infinite-
horizon, time-invariant case, V (·) is independent of k so that the Bellman
equation reduces to the time-invariant equation

0 = min
u∈U

H(x, u, V (x)), x ∈ D. (14.11)

14.3 Stability Analysis of Discrete-Time Nonlinear Systems

In this section, we present sufficient conditions for stability of nonlinear
discrete-time systems. In particular, we consider the problem of evaluating a
nonlinear-nonquadratic performance functional depending upon a nonlinear
discrete-time difference equation. As in the continuous-time case, it is shown
that the cost functional can be evaluated in closed form as long as the cost
functional is related in a specific way to an underlying Lyapunov function
that guarantees stability. Here, we restrict our attention to time-invariant
infinite horizon systems. For the following result, let D ⊂ Rn be an open
set, assume 0 ∈ D, let L : D → R, and let f : D → D be such that f(0) = 0.

Theorem 14.3. Consider the nonlinear discrete-time dynamical sys-
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tem
x(k + 1) = f(x(k)), x(0) = x0, k ∈ Z+, (14.12)

with nonlinear-nonquadratic performance functional

J(x0)
△
=

∞
∑

k=0

L(x(k)). (14.13)

Furthermore, assume there exists a continuous function V : D → R such
that

V (0) = 0, (14.14)

V (x) > 0, x ∈ D, x 6= 0, (14.15)

V (f(x)) − V (x) < 0, x ∈ D, x 6= 0, (14.16)

L(x) + V (f(x)) − V (x) = 0, x ∈ D. (14.17)

Then then the zero solution x(k) ≡ 0 to (14.12) is a locally asymptotically
stable and there exists a neighborhood of the origin D0 ⊆ D such that

J(x0) = V (x0), x0 ∈ D0. (14.18)

Finally, if D = Rn and

V (x) → ∞ as ‖x‖ → ∞, (14.19)

then the zero solution x(k) ≡ 0 to (14.12) is globally asymptotically stable.

Proof. Let x(k), k ∈ Z+, satisfy (14.12). Then it follows from (14.16)
that

∆V (x(k)) = V (f(x(k)) − V (x(k)) < 0, k ∈ Z+, x(k) 6= 0. (14.20)

Thus, from (14.14), (14.15), and (14.20) it follows that V (·) is a Lyapunov
function for (14.12), which proves local asymptotic stability of the zero
solution x(k) ≡ 0 to (14.12). Consequently, x(k) → 0 as k → ∞ for all
initial conditions x0 ∈ D0 for some neighborhood of the origin D0 ⊆ D.
Now, since

0 = −∆V (x(k)) + V (f(x(k))) − V (x(k)), k ∈ Z+,

it follows from (14.17) that

L(x(k)) = −∆V (x(k)) + L(x(k)) + V (f(x(k))) − V (x(k)) = −∆V (x(k)).

Now, summing over [0,N ] yields

N
∑

k=0

L(x(k)) = −V (x(N)) + V (x0).

Letting N → ∞ and noting that V (x(N)) → 0 for all x0 ∈ D0 yields
J(x0) = V (x0). Finally, for D = Rn global asymptotic stability is a direct
consequence of the radially unbounded condition (14.19) on V (x).
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Note that if (14.17) holds, then (14.16) is equivalent to L(x) > 0, x ∈
D, x 6= 0. Theorem 14.3 is the discrete-time analog to Theorem 8.1. The key
feature of Theorem 14.3 is that it provides sufficient conditions for stability of
discrete-time nonlinear systems. Furthermore, the nonlinear-nonquadratic
performance functional is given in terms of an underlying Lyapunov function
that guarantees asymptotic stability.

The following corollary specializes Theorem 14.3 to discrete-time linear
systems.

Corollary 14.1. Let A ∈ Rn×n and R ∈ Pn. Consider the linear system

x(k + 1) = Ax(k), x(0) = x0, k ∈ Z+, (14.21)

with performance functional

J(x0)
△
=

∞
∑

k=0

xT(k)Rx(k). (14.22)

Furthermore, assume there exists P ∈ Pn such that

P = ATPA+R. (14.23)

Then the zero solution x(k) ≡ 0 to (14.21) is globally asymptotically stable
and

J(x0) = xT
0 Px0. (14.24)

Proof. The result is a direct consequence of Theorem 14.3 with
f(x) = Ax, L(x) = xTRx, V (x) = xTPx, and D = Rn. Specifically,
conditions (14.14) and (14.15) are trivially satisfied. Now, V (f(x))−V (x) =
xT(ATPA− P )x, and hence, it follows from (14.23) that L(x) + V (f(x))−
V (x) = 0 so that all the conditions of Theorem 14.3 are satisfied. Finally,
since V (x) is radially unbounded, the zero solution x(k) ≡ 0 to (14.21) is
globally asymptotically stable.

It follows from Corollary 14.1 that Theorem 14.3 is an extension of the
discrete-time H2 analysis framework to nonlinear systems. Recall that the
H2 Hardy space consists of complex matrix-valued functions G(z) ∈ Cl×m

that are analytic outside the unit disk and satisfy

sup
η>0

1

2π

∫ π

−π
‖G(eη+θ)‖2

Fdθ <∞. (14.25)

The norm of an H2 function G(z) is defined by

|||G|||2 △
=

[

1

2π

∫ π

−π
‖G(eθ)‖2

Fdθ

]1/2

. (14.26)
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Alternatively, using Parseval’s theorem (see Problem 13.24) we can ex-
press the H2 norm as an ℓ2 norm of the impulse response H(k) =
1
2π

∫ π
−π G(eθ)eθkdθ. In particular, the ℓ2 norm of the matrix-valued impulse

response function H(k) ∈ Rl×m, k ∈ Z+, is defined by

|||H|||2 △
=

[ ∞
∑

k=0

‖H(k)‖2
F

]1/2

. (14.27)

Now, letting R = ETE and defining the free response z(k)
△
= Ex(k) =

EAkx0, k ∈ Z+, it follows that the performance functional (14.22) can be
written as

J(x0) =

∞
∑

k=0

zT(k)z(k)

=

∞
∑

k=0

xT
0A

kT
ETEAkx0

= xT
0 Px0

=
∞
∑

k=0

‖H(k)‖2
F

=
1

2π

∫ π

−π
‖G(eθ)‖2

Fdθ

= |||G|||22, (14.28)

where H(k) = EAkx0 and

G(z) ∼
[

A x0

E 0

]

.

Alternatively, assuming x0x
T
0 has an expected value V , that is,

E[x0x
T
0 ] = V , where E denotes expectation, and letting V = DDT, it follows

that the averaged performance functional is given by

E[J(x0)] = E[xT
0 Px0] = tr DTPD = |||G|||22, (14.29)

where P satisfies (14.23) and

G(z) ∼
[

A D
E 0

]

.

Next, we specialize Theorem 14.3 to linear and nonlinear systems with
multilinear cost functionals. The following lemma is needed. For this result
define the spectral radius of A ∈ Rn×n by

ρ(A)
△
= max{|λ| : λ ∈ spec A}.
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We say that the matrix A ∈ Rn×n is Schur if and only if ρ(A) < 1.

Lemma 14.2. Let A ∈ Rn×n be Schur and let h : Rn → R be a
q-multilinear function. Then there exists a unique q-multilinear function
g : Rn → R such that

0 = g(Ax) − g(x) + h(x), x ∈ Rn. (14.30)

Furthermore, if h(x), x ∈ Rn, is nonnegative (respectively, positive) definite,
then g(x), x ∈ Rn, is nonnegative (respectively, positive) definite.

Proof. Let h(x) = Ψx[q] and define g(x)
△
= Γx[q], where Γ

△
= −Ψ(A[q]−

I
[q]
n )−1. Note that A[q] − I

[q]
n is invertible since A, and hence, A[q] is Schur.

Now, note that for all x ∈ Rn,

g(Ax) − g(x) = Γ((Ax)[q] − x[q])

= Γ(A[k]x[q] − x[q])

= Γ(A[q] − I [q]
n )x[q]

= −Ψx[q] = −h(x).

To prove uniqueness, suppose that ĝ(x) = Γ̂x[q] also satisfies (14.30).
Then it follows that

Γ(A[q] − I [q]
n )x[q] = Γ̂(A[q] − I [q]

n )x[q], x ∈ Rn.

Since A[q] is Schur and (A[q])j = (Aj)[q], it follows that, for all x ∈ Rn,

Γx[q] = Γ(A[q] − I [q]
n )(A[q] − I [q]

n )−1x[q]

= −Γ(A[q] − I [q]
n )

∞
∑

j=1

(A[q])jx[q]

= −Γ(A[q] − I [q]
n )

∞
∑

j=1

(Aj)[q]x[q]

= −
∞
∑

j=1

Γ(A[q] − I [q]
n )(Ajx)[q]

= −
∞
∑

j=1

Γ̂(A[q] − I [q]
n )(Ajx)[q]

= Γ̂x[q],

which shows that g(x) = ĝ(x), x ∈ Rn.

Finally, if h(x), x ∈ Rn, is nonnegative definite, then it follows that,
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for all x ∈ Rn,

g(x) = −Ψ(A[q] − I [q]
n )−1x[q]

= Ψ
∞
∑

j=1

(A[q])jx[q]

= Ψ

∞
∑

j=1

(Aj)[q]x[q]

=
∞
∑

j=1

Ψ(Ajx)[q]

≥ 0.

If, in addition, h(x), x ∈ Rn, is positive definite, then g(x), x ∈ Rn, is
positive definite.

Next, assume A is Schur, let P be given by (14.23), and consider the
case in which L(·), f(·), and V (·) are given by

L(x) = xTRx+ h(x), (14.31)

f(x) = Ax+N(x), (14.32)

V (x) = xTPx+ g(x), (14.33)

where h : D → R and g : D → R are nonquadratic and N : D → Rn is
nonlinear. In this case, (14.17) holds if and only if

0 = xTRx+ h(x) + xTATPAx+NT(x)PN(x) + 2xTATPN(x) − xTPx

+ g(Ax +N(x)) − g(x), x ∈ D, (14.34)

or, equivalently,

0 = xT(ATPA− P +R)x+ g(Ax +N(x)) − g(x) + h(x) +NT(x)PN(x)

+2xTATPN(x), x ∈ D. (14.35)

If A is Schur, then we can choose P to satisfy (14.23) as in the linear-
quadratic case. Now, suppose N(x) ≡ 0 and let P satisfy (14.23). Then
(14.35) specializes to

0 = g(Ax) − g(x) + h(x), x ∈ D. (14.36)

Next, given h(·), we determine the existence of a function g(·) satisfying
(14.36). To this end, we focus our attention on multilinear functions for
which (14.36) holds with D = Rn.

Consider the linear system (14.21) and let h(x), x ∈ Rn, be a positive-
definite q-multilinear function, where q is necessarily even. Furthermore, let
g(x), x ∈ Rn, be the positive-definite q-multilinear function given by Lemma
14.2. Then, since g(Ax) − g(x) < 0, x ∈ Rn, x 6= 0, it follows that g(x) is a
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Lyapunov function for (14.21). Hence, Lemma 14.2 can be used to generate
Lyapunov functions of specific structure.

Suppose now that h(x) in (14.31) is of the more general form

h(x) =

r
∑

ν=2

h2ν(x), (14.37)

where, for ν = 2, . . . , r, h2ν : Rn → R is a nonnegative-definite 2ν-
multilinear function. Now, using Lemma 14.2, let g2ν : Rn → R be the
nonnegative-definite 2ν-multilinear functions satisfying

0 = g2ν(Ax) − g2ν(x) + h2ν(x), x ∈ Rn, ν = 2, . . . , r, (14.38)

and define

g(x)
△
=

r
∑

ν=2

g2ν(x). (14.39)

Now, summing (14.38) over ν yields (14.30). Since (14.17) is satisfied with
L(x) and V (x) given by (14.31) and (14.33), respectively, (14.18) implies
that

J(x0) = xT
0 Px0 + g(x0). (14.40)

As another illustration of condition (14.30), suppose that V (x) is
constrained to be of the form

V (x) = xTPx+ (xTMx)2, (14.41)

where P satisfies (14.23) and M is an n×n symmetric matrix. In this case,
g(x) = (xTMx)2 is a nonnegative-definite 4-multilinear function. Then
(14.30) yields

h(x) = −(xT(ATMA+M)x)(xT(ATMA−M)x). (14.42)

If R̂ is an n× n symmetric matrix and M is chosen to satisfy

M = ATMA+ R̂, (14.43)

then (14.42) implies that h(x) satisfying (14.30) is of the form

h(x) = (xT(ATMA+M)x)(xTR̂x). (14.44)

Note that if R̂ is nonnegative definite, then M is also nonnegative definite,
and hence, h(x) is a nonnegative-definite 4-multilinear function. Thus, if
V (x) is of the form (14.41), and L(x) is given by

L(x) = xTRx+ (xT(ATMA+M)x)(xTR̂x), (14.45)

where M and R̂ satisfy (14.43), then condition (14.30), and hence, (14.17) is
satisfied. The following proposition generalizes the above results to general
polynomial functionals.
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Proposition 14.1. Let A ∈ Rn×n be Schur, R ∈ Pn, and R̂q ∈ Nn,
q = 2, . . . , r. Consider the linear system (14.21) with performance functional

J(x0)
△
=

∞
∑

k=0

xT(k)Rx(k) +
r
∑

q=2

[

(xT(k)R̂qx(k))

q
∑

j=1

(xT(k)Mqx(k))
j−1

·(xT(k)ATMqAx(k))
q−j

]

. (14.46)

Furthermore, assume that there exist P ∈ Pn and Mq ∈ Nn, q = 2, . . . , r,
such that

P = ATPA+R, (14.47)

Mq = ATMqA+ R̂q, q = 2, . . . , r. (14.48)

Then the zero solution x(k) ≡ 0 to (14.21) is globally asymptotically stable
and

J(x0) = xT
0 Px0 +

r
∑

q=2

(xT
0Mqx0)

q. (14.49)

Proof. The result is direct consequence of Theorem 14.3 with f(x) =

Ax, L(x) = xTRx +
∑r

q=2

[

(xTR̂qx)
∑q

j=1(x
TMqx)

j−1(xTATMqAx)
q−j
]

,

V (x) = xTPx +
∑r

q=2(x
T Mqx)

q, and D = Rn. Specifically, conditions

(14.14) and (14.15) are trivially satisfied. Now,

V (f(x)) − V (x) = xT(ATPA− P )x+
r
∑

q=2

[

xT(ATMqA−Mq)x

·
q
∑

j=1

(xTMqx)
j−1(xTATMqAx)

q−j

]

,

and hence, it follows from (14.47) and (14.48) that L(x)+V (f(x))−V (x) = 0
so that all the conditions of Theorem 14.3 are satisfied. Finally, since V (x)
is radially unbounded (14.21) is globally asymptotically stable.

Proposition 14.1 requires the solutions of r− 1 Lyapunov equations in
(14.48) to obtain the nonquadratic cost. However, if R̂q = R̂2, q = 3, . . . , r,
then Mq = M2, q = 3, . . . , r, satisfies (14.48). In this case, we require the
solution of one Lyapunov equation in (14.48).

14.4 Optimal Discrete-Time Nonlinear Control

In this section, we consider the discrete-time control problem involving
a notion of optimality with respect to a nonlinear-nonquadratic cost
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criterion. The optimal feedback controllers are derived as a direct con-
sequence of Theorem 14.3 and provide a discrete-time analog of the
continuous-time Hamilton-Jacobi-Bellman conditions for time-invariant,
infinite-horizon problems for addressing optimal controllers addressed in
Section 8.3. To address the discrete-time optimal control problem let
D ⊂ Rn be an open set and let U ⊆ Rm, where 0 ∈ D and 0 ∈ U , and
let F : D × U → Rn such that F (0, 0) = 0. Next, consider the controlled
system

x(k + 1) = F (x(k), u(k)), x(0) = x0, k ∈ Z+, (14.50)

where the control u(·) is restricted to the class of admissible controls
consisting of measurable functions u(·) such that u(k) ∈ U for all k ∈ Z+

where the control constraint set U is given. Given a control law φ(·) and a
feedback control law u(k) = φ(x(k)), the closed-loop system has the form

x(k + 1) = F (x(k), φ(x(k))), x(0) = x0, k ∈ Z+. (14.51)

Next, we present a key theorem for characterizing discrete-time
feedback controllers that guarantee stability for a nonlinear discrete-time
system and minimize a nonlinear-nonquadratic performance functional. For
the statement of this result let L : D×U → R and define the set of regulation
controllers for the nonlinear system F (·, ·) by

S(x0)
△
= {u(·) : u(·) is admissible and x(·) given by (14.50)

satisfies x(k) → 0 as k → ∞}.

Theorem 14.4. Consider the nonlinear controlled system (14.50) with
performance functional

J(x0, u(·)) △
=

∞
∑

k=0

L(x(k), u(k)), (14.52)

where u(·) is an admissible control. Assume that there exist a continuous
function V : D → R and control law φ : D → U such that

V (0) = 0, (14.53)

V (x) > 0, x ∈ D, x 6= 0, (14.54)

φ(0) = 0, (14.55)

V (F (x, φ(x))) − V (x) < 0, x ∈ D, x 6= 0, (14.56)

H(x, φ(x)) = 0, x ∈ D, (14.57)

H(x, u) ≥ 0, x ∈ D, u ∈ U, (14.58)

where
H(x, u)

△
= L(x, u) + V (f(x, u)) − V (x). (14.59)
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Then, with the feedback control u(·) = φ(x(·)), the zero solution x(k) ≡ 0
of the closed-loop system (14.51) is locally asymptotically stable and there
exists a neighborhood of the origin D0 ⊆ D such that

J(x0, φ(x(·))) = V (x0), x0 ∈ D0. (14.60)

In addition, if x0 ∈ D0 then the feedback control u(·) = φ(x(·)) minimizes
J(x0, u(·)) in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)). (14.61)

Finally, if D = Rn and

V (x) → ∞ as ‖x‖ → ∞, (14.62)

then the zero solution x(k) ≡ of the closed-loop system (14.51) is globally
asymptotically stable.

Proof. Local and global asymptotic stability is a direct consequence
of (14.53)–(14.56) and (14.62) by applying Theorem 14.3 to the closed-
loop system (14.51). Furthermore, using (14.57), condition (14.60) is a
restatement of (14.18) as applied to the closed-loop system. Next, let
x0 ∈ D0, let u(·) ∈ S(x0), and let x(·) be the solution of (14.50). Then
it follows that

0 = −∆V (x(k)) + V (F (x(k), u(k))) − V (x(k)).

Hence,

L(x(k), u(k)) = −∆V (x(k)) + L(x(k), u(k)) + V (F (x(k), u(k))) − V (x(k))

= −∆V (x(k)) +H(x(k), u(k)).

Now, using (14.59) and the fact that u(·) ∈ S(x0), it follows that

J(x0, u(·)) =
∞
∑

k=0

[−∆V (x(k)) +H(x(k), u(k))]

= − lim
k→∞

V (x(k)) + V (x0) +
∞
∑

k=0

H(x(k), u(k))

= V (x0) +

∞
∑

k=0

H(x(k), u(k))

≥ V (x0)

= J(x0, φ(x(·)),
which yields (14.61).

Next, we specialize Theorem 14.4 to discrete-time linear systems and
provide connections to the discrete-time, linear-quadratic-regulator problem.



NonlinearBook10pt November 20, 2007

DISCRETE-TIME NONLINEAR CONTROL 859

For the following result let A ∈ Rn×n, B ∈ Rn×m, R1 ∈ Pn, and R2 ∈ Pm

be given.

Corollary 14.2. Consider the discrete-time linear controlled system

x(k + 1) = Ax(k) +Bu(k), x(0) = x0, k ∈ Z+, (14.63)

with performance functional

J(x0, u(·)) △
=

∞
∑

k=0

[xT(k)R1x(k) + uT(k)R2u(k)], (14.64)

where u(·) is an admissible control. Furthermore, assume that there exists
a positive-definite matrix P ∈ Rn×n such that

P = ATPA+R1 −ATPB(R2 +BTPB)−1BTPA. (14.65)

Then, with the feedback control u = φ(x)
△
= −(R2 +BTPB)−1BTPAx, the

zero solution x(k) ≡ 0 to (14.63) is globally asymptotically stable and

J(x0, φ(x(·))) = xT
0 Px0. (14.66)

Furthermore,

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)), (14.67)

where S(x0) is the set of regulation controllers for (14.63) and x0 ∈ Rn.

Proof. The result is a direct consequence of Theorem 14.4 with
F (x, u) = Ax + Bu, L(x, u) = xTR1x + uTR2u, V (x) = xTPx, D = Rn,
and U = Rm. Specifically, conditions (14.53) and (14.54) are trivially
satisfied. Next, it follows from (14.65) that H(x, φ(x)) = 0, and hence,
V (F (x, φ(x))) − V (x) < 0 for all x 6= 0. Thus, H(x, u) = H(x, u) −
H(x, φ(x)) = [u − φ(x)]T(R2 + BTPB)[u − φ(x)] ≥ 0 so that all the
conditions of Theorem 14.4 are satisfied. Finally, since V (x) is radially
unbounded the solution x(k) = 0, k ∈ Z+, of (14.63) with u(k) = φ(x(k)) =
−(R2 +BTPB)−1BTPAx(k), is globally asymptotically stable.

The optimal feedback control law φ(x) in Corollary 14.2 is derived
using the properties ofH(x, u) as defined in Theorem 14.4. Specifically, since
H(x, u) = xTR1x+uTR2u+(Ax+Bu)TP (Ax+Bu)−xTPx it follows that
∂2H/∂u2 = R2+BTPB > 0. Now, ∂H/∂u = 2(R2+BTPB)u+2BTPAx =
0 gives the unique global minimum of H(x, u). Hence, since φ(x) minimizes
H(x, u) it follows that φ(x) satisfies ∂H/∂u = 0 or, equivalently, φ(x) =
−(R2 +BTPB)−1BTPAx.
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14.5 Inverse Optimal Control for Nonlinear Affine Systems

In this section, we specialize Theorem 14.4 to affine systems. As in the
continuous-time case, in order to avoid the complexity in solving the Bellman
equation, we consider an inverse optimal control problem. Consider the
discrete-time nonlinear system given by

x(k + 1) = f(x(k)) +G(x(k))u(k), x(0) = x0, k ∈ Z+, (14.68)

where f : Rn → Rn satisfies f(0) = 0, G : Rn → Rn×m, D = Rn, and
U = Rm. Furthermore, we consider performance summands L(x, u) of the
form

L(x, u) = L1(x) + L2(x)u+ uTR2(x)u, (14.69)

where L1 : Rn → R, L2 : Rn → R1×m, and R2 : Rn → Pm so that (14.52)
becomes

J(x0, u(·)) =
∞
∑

k=0

[L1(x(k)) + L2(x(k))u(k) + uT(k)R2(x)u(k)]. (14.70)

Theorem 14.5. Consider the discrete-time nonlinear controlled affine
system (14.68) with performance functional (14.70). Assume that there
exist functions V : Rn → R, L2 : Rn → R1×m, P12 : Rn → R1×m, and a
nonnegative-definite function P2 : Rn → Nm such that V (·) is continuous,

L2(0) = 0, (14.71)

P12(0) = 0, (14.72)

V (0) = 0, (14.73)

V (x) > 0, x ∈ Rn, x 6= 0, (14.74)

V [f(x) − 1
2G(x)(R2(x) + P2(x))

−1LT
2 (x)] − V (x) < 0, x ∈ Rn, x 6= 0,

(14.75)

V (f(x) +G(x)u) = V (f(x)) + P12(x)u+ uTP2(x)u, x ∈ Rn, u ∈ Rm,

(14.76)

and
V (x) → ∞ as ‖x‖ → ∞. (14.77)

Then the zero solution x(k) ≡ 0 of the closed-loop system

x(k + 1) = f(x(k)) +G(x(k))φ(x(k)), x(0) = x0, k ∈ Z+, (14.78)

is globally asymptotically stable with the feedback control law

φ(x) = −1
2(R2(x) + P2(x))

−1[L2(x) + P12(x)]
T, (14.79)

and the performance functional (14.70), with

L1(x) = φT(x)(R2(x) + P2(x))φ(x) − V (f(x)) + V (x), (14.80)
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is minimized in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)), x0 ∈ Rn. (14.81)

Finally,
J(x0, φ(x(·))) = V (x0), x0 ∈ Rn. (14.82)

Proof. The result is a direct consequence of Theorem 14.4 with
F (x, u) = f(x)+G(x)u, L(x, u) = L1(x)+L2(x)u+uTR2(x)u, D = Rn, and
U = Rm. Specifically, with (14.68), (14.69), and (14.76) the Hamiltonian
(14.59) has the form

H(x, u) = L1(x)+V (f(x))+[L2(x)+P12(x)]u+uT(R2(x)+P2(x))u−V (x).
(14.83)

Now, the feedback control law (14.79) is obtained by setting ∂H(x,u)
∂u = 0.

With (14.79), it follows that (14.71)–(14.75) imply (14.53)–(14.56). Next,
with L1(x) given by (14.80) and φ(x) given by (14.79) and (14.57) holds.
Finally, since

H(x, u) = H(x, u) −H(x, φ(x)) = (u− φ(x))T(R2(x) + P2(x))(u − φ(x)),
(14.84)

and R2(x) + P2(x) > 0, x ∈ Rn, condition (14.58) holds. The result now
follows as a direct consequence of Theorem 14.4.

Note that (14.75) is equivalent to

∆V (x)
△
= V (f(x) +G(x)φ(x)) − V (x) < 0, x ∈ Rn, x 6= 0, (14.85)

with φ(x) given by (14.79). Furthermore, conditions (14.73), (14.74), and
(14.85) ensure that V (x) is a Lyapunov function for the closed-loop system
(14.78). Furthermore, as in the continuous-time case, it is important to
recognize that the function L2(x) which appears in the summand of the
performance functional (14.69) is an arbitrary function of x ∈ Rn subject to
conditions (14.71) and (14.75). Thus, L2(x) provides flexibility in choosing
the control law.

With L1(x) given by (14.80) and φ(x) given by (14.79), L(x, u) can be
expressed as

L(x, u)

= (u− φ(x))T(R2(x) + P2(x))(u − φ(x)) − V (f(x) +G(x)u) + V (x)

= [u+ 1
2(R2(x) + P2(x))

−1LT
2 (x)]T(R2(x) + P2(x))[u+ 1

2(R2(x)

+P2(x))
−1LT

2 (x)] − [V (f(x) +G(x)φ(x)) − V (x)] + φT(x)P2(x)φ(x)

−1
4P12(x)(R2(x) + P2(x))P

T
12(x) − uTP2(x)u. (14.86)

Since R2(x) + P2(x) ≥ R2(x) > 0 for all x ∈ Rn the first and third terms
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of the right-hand side of (14.86) are nonnegative, while (14.85) implies that
the second term is nonnegative. Thus, we have

L(x, u) ≥ −1
4P12(x)(R2(x) + P2(x))P

T
12(x) − uTP2(x)u, (14.87)

which shows that L(x, u) may be negative. As a result, there may exist a
control input u for which the performance functional (14.70) is negative.
However, if the control u is a regulation controller, that is, u ∈ S(x0), then
it follows from (14.81) and (14.82) that

J(x0, u) ≥ V (x0) ≥ 0, x0 ∈ Rn, u(·) ∈ S(x0). (14.88)

Furthermore, in this case substituting u = φ(x) into (14.86) yields

L(x, φ(x)) = −[V (f(x) +G(x)φ(x)) − V (x)], (14.89)

which, by (14.85), is positive.

Next, we specialize Theorem 14.5 to the case of quadratic Lyapunov
functions.

Corollary 14.3. Consider the discrete-time nonlinear controlled affine
system (14.68) with performance functional (14.70). Assume that there exist
a function L2 : Rn → R1×m and a positive-definite matrix P ∈ Pm such that

L2(0) = 0, (14.90)

V [f(x) − 1
2G(x)R̂−1

2 (x)(L2(x) + fT(x)PG(x))T] − V (x) < 0,

x ∈ Rn, x 6= 0, (14.91)

where
V (x) = xTPx (14.92)

and R̂2(x)
△
= R2(x) + GT(x)PG(x). Then the zero solution x(k) ≡ 0 of

the closed-loop system (14.78) is globally asymptotically stable with the
feedback control law

φ(x) = −1
2R̂

−1
2 (x)

[

L2(x) + 2fT(x)PG(x)
]T
, (14.93)

and the performance functional (14.70), with

L1(x) = φT(x)R̂2(x)φ(x) − fT(x)Pf(x) + xTPx, (14.94)

is minimized in the sense that

J(x0, φ(x(·))) = min
u∈S(x0)

J(x0, u(·)), x0 ∈ Rn. (14.95)

Finally,
J(x0, φ(x(·))) = V (x0), x0 ∈ Rn. (14.96)

Proof. The result is a direct consequence of Theorem 14.5 with V (x) =
xTPx, P12(x) = 2fT(x)PG(x), and P2(x) = GT(x)PG(x). Specifically,
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conditions (14.73), (14.74), (14.76), and (14.77) are trivially satisfied by
(14.92). Next, conditions (14.90) and (14.91) imply (14.71) and (14.75).
Now, (14.93) and (14.94) are immediate from Theorem 14.5.

14.6 Gain, Sector, and Disk Margins of Discrete-Time

Optimal Regulators

Gain and phase margins of continuous-time state feedback linear-quadratic
optimal regulators were extensively discussed in Chapter 8. In particular, in
terms of classical control relative stability notions, these controllers possess
at least a ±60◦ phase margin, infinite gain margin, and 50 percent gain
reduction for each control channel. Alternatively, in terms of absolute
stability theory [10] these controllers guarantee sector margins in that
the closed-loop system will remain asymptotically stable in the face of a
memoryless static input nonlinearity contained in the conic sector (1

2 ,∞).
In contrast, the stability margins of discrete-time linear-quadratic optimal
regulators are not as well known and depend on the open-loop and closed-
loop poles of the discrete-time dynamical system [397,459].

Synthesis techniques for discrete-time linear state feedback control
laws guaranteeing that the closed-loop system possesses prespecified sec-
tor, gain, and phase margins were developed in [262]. However, un-
like continuous-time nonlinear-nonquadratic inverse optimal state feedback
regulators possessing guaranteed sector and disk margins to component
decoupled input nonlinearities in the conic sector (1

2 ,∞) [321] and dissipative
dynamic input operators [395], sector and disk margin guarantees for
discrete-time nonlinear-nonquadratic regulators have not been addressed in
the literature.

In this section, we develop sufficient conditions for gain, sector, and
disk margin guarantees for discrete-time nonlinear systems controlled by
optimal and inverse optimal nonlinear regulators that minimize a nonlinear-
nonquadratic performance criterion involving a nonlinear-nonquadratic fun-
ction of the state and a quadratic function of the feedback control. In
the case where we specialize our results to the linear-quadratic case, we
recover the classical discrete-time linear-quadratic optimal regulator gain
and phase margin guarantees obtained in [262, 459]. Specifically, we derive
the relative stability margins for a discrete-time nonlinear optimal regulator
that minimizes a nonlinear-nonquadratic performance criterion involving a
nonlinear-nonquadratic function of the state and a quadratic function of the
feedback control.
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Consider the nonlinear system given by

x(k + 1) = f(x(k)) +G(x(k))u(k), x(0) = x0, k ∈ Z+, (14.97)

y(k) = −φ(x(k)), (14.98)

where φ : Rn → Rm, with a nonlinear-nonquadratic performance criterion

J(x0, u(·)) △
=

∞
∑

k=0

[L1(x(k)) + uT(k)R2(x(k))u(k)], (14.99)

where L1 : Rn → R and R2 : Rn → Rm×m are given such that L1(x) ≥ 0 and
R2(x) > 0, x ∈ Rn. In this case, the optimal nonlinear feedback controller
u = φ(x) that minimizes the nonlinear-nonquadratic performance criterion
(14.99) is given by the following result.

Theorem 14.6. Consider the nonlinear system (14.97) with perfor-
mance functional (14.99). Assume there exist functions V : Rn → R,
P1u : Rn → R1×m, and P2u : Rn → Nm, with V (·) continuous such that
(14.73), (14.74), and (14.76) are satisfied and

V (f(x) − 1
2G(x)(R2(x) + P2u(x))−1PT

1u(x)) − V (x) < 0, x ∈ Rn, x 6= 0,

(14.100)

0 = L1(x) + V (f(x)) − V (x) − 1
4P1u(x)(R2(x) + P2u(x))−1PT

1u(x), x ∈ Rn,

(14.101)

and
V (x) → ∞ as ‖x‖ → ∞. (14.102)

Then the zero solution x(k) ≡ 0 of the closed-loop system

x(k+1) = f(x(k))+G(x(k))φ(x(k)), x(0) = x0, k ∈ Z+, (14.103)

is globally asymptotically stable with the feedback control law

φ(x) = −1
2(R2(x) + P2u(x))−1PT

1u(x), (14.104)

and the performance functional (14.99) is minimized in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)), x0 ∈ Rn. (14.105)

Finally,
J(x0, φ(x(·))) = V (x0), x0 ∈ Rn. (14.106)

Proof. The proof is identical to the proof of Theorem 14.5.

The following key lemma is needed for developing the main result of
this section.
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Lemma 14.3. Consider the nonlinear system G given by (14.97) and
(14.98), where φ(x) is a stabilizing feedback control law given by (14.104)
and where V (x), P1u(x), and P2u(x) satisfy (14.73), (14.74), (14.76),
(14.100), and (14.101). Then for all u(·) ∈ U and k1, k2 ∈ Z+, k1 < k2,
the solution x(k), k ∈ Z+, of the closed-loop system (14.103) satisfies

V (x(k2)) ≤
k2−1
∑

k=k1

[

(u(k) + y(k))T(R2(x(k)) + P2u(x(k)))(u(k) + y(k))

−uT(k)R2(x(k))u(k)
]

+ V (x(k1)). (14.107)

Proof. Note that it follows from (14.101) that for all u(·) ∈ U and
k ∈ Z+,

uT(k)R2(x(k))u(k)

≤ L1(x(k)) + uT(k)R2(x(k))u(k)

= −V (f(x(k)) + V (x(k)) + 1
4P1u(x)(R2(x) + P2u(x))−1PT

1u(x)

+uT(k)R2(x(k))u(k)

= −V (f(x(k)) +G(x(k))u(k)) + V (x(k))

+1
4P1u(x)(R2(x) + P2u(x))−1PT

1u(x) + uT(k)R2(x(k))u(k)

+P1u(x(k))u(k) + uT(k)P2u(x(k))u(k)

= −V (f(x(k)) +G(x(k))u(k)) + V (x(k))

+(u(k) + y(k))T(R2(x(k)) + P2u(x(k)))(u(k) + y(k))

= −V (x(k + 1)) + V (x(k)) + (u(k) + y(k))T(R2(x(k))

+P2u(x(k)))(u(k) + y(k)).

Now, summing over [k1, k2] yields (14.107).

Note that with R2(x) ≡ I condition (14.107) is precisely the discrete-
time counterpart of the return difference condition given by (8.120) for
continuous-time systems. However, as shown in Theorem 8.5, in the
continuous-time case a feedback law φ(x) satisfying the return difference
condition is equivalent to the fact that a continuous-time nonlinear affine
system with input u and output y = −φ(x) is dissipative with respect to
the quadratic supply rate [u+ y]T[u+ y]− uTu. Hence, using the nonlinear
Kalman-Yakubovich-Popov lemma one can show that a feedback control
law φ(x) satisfies the return difference inequality if and only if φ(x) is
optimal with respect to a performance criterion involving a nonnegative-
definite weighting function on the state. Alternatively, in the discrete-time
case (14.107) is not equivalent to the dissipativity property of (14.97) and
(14.98) due to the presence of P2u(x). However, as will be shown below,
(14.107) does imply that G is dissipative with respect to a quadratic supply
rate.
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Now, we present our main result, which provides disk margins for the
nonlinear-nonquadratic optimal regulator given by Theorem 14.6. For the
following result define

γ
△
= sup

x∈Rn

σmax(R2(x) + P2u(x)), γ
△
= inf

x∈Rn
σmin(R2(x)). (14.108)

Theorem 14.7. Consider the nonlinear system G given by (14.97) and
(14.98) where φ(x) is a stabilizing feedback control law given by (14.104) and
where V (x), P1u(x), and P2u(x) satisfy (14.73), (14.74), (14.76), (14.100),
and (14.101). Then the nonlinear system G has a disk margin ( 1

1+θ ,
1

1−θ ),

where θ
△
=
√

γ/γ.

Proof. Note that for all u(·) ∈ U and k1, k2 ∈ Z+, k1 < k2, it follows
from Lemma 14.3 that the solution x(k), k ∈ Z+, of the closed-loop system
(14.103) satisfies

V (x(k2)) − V (x(k1)) ≤
k2−1
∑

k=k1

[

(u(k) + y(k))T(R2(x(k))

+P2u(x(k)))(u(k) + y(k)) − uT(k)R2(x(k))u(k)
]

,

which implies that

V (x(k2)) − V (x(k1)) ≤
k2−1
∑

k=k1

[γ(u(k) + y(k))T(u(k) + y(k)) − γuT(k)u(k)].

Hence, with the storage function Vs(x) = 1
2γV (x), G is dissipative with

respect to supply rate r(u, y) = uTy + (1−θ2)
2 uTu + 1

2y
Ty. Now, the result

follows immediately from Corollary 13.17 and Definition 6.3 with α = 1
1+θ

and β = 1
1−θ .

14.7 Linear-Quadratic Optimal Regulators

In this section, we specialize Theorem 14.7 to the case of linear discrete-time
systems. Specifically, consider the stabilizable linear system given by

x(k + 1) = Ax(k) +Bu(k), x(0) = x0, k ∈ Z+, (14.109)

y(k) = −Kx(k), (14.110)

where A ∈ Rn×n, B ∈ Rn×m, and K ∈ Rm×n, and assume that (A,K)
is detectable and the linear system (14.109) and (14.110) is asymptotically
stable with the feedback u = −y. Furthermore, assume that K is an optimal
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regulator which minimizes the quadratic performance functional given by

J(x0, u(·)) =

∞
∑

k=0

[xT(k)R1x(k) + uT(k)R2u(k)], (14.111)

whereR1 ∈ Rn×n and R2 ∈ Rm×m are such thatR1 ≥ 0, R2 > 0, and (A,R1)
is observable. In this case, it follows from Theorem 14.6 with f(x) = Ax,
G(x) = B, L1(x) = xTR1x, R2(x) = R2, φ(x) = Kx, and V (x) = xTPx
that the optimal control law K is given by K = −(R2 + BTPB)−1BTPA,
where P > 0 is the solution to the discrete-time algebraic regulator Riccati
equation given by

P = ATPA+R1 −ATPB(R2 +BTPB)−1BTPA. (14.112)

The following result provides guarantees of gain and sector margins for the
linear system (14.109) and (14.110).

Corollary 14.4. Consider the linear system (14.109) and (14.110) with
performance functional (14.111). Then, with K = −(R2 +BTPB)−1BTPA,
where P > 0 solves (14.112), the linear system (14.109) and (14.110) has
sector (and, hence, gain) margin ( 1

1+θ ,
1

1−θ ), where

θ =

(

σmin(R2)

σmax(R2 +BTPB)

)1/2

. (14.113)

Proof. The result is a direct consequence of Theorem 14.7 with f(x) =
Ax, G(x) = B, φ(x) = Kx, V (x) = xTPx, and L1(x) = xTR1x. Specifically,
(14.73), (14.74), and (14.76) are trivially satisfied and note that (14.112) is
equivalent to (14.101). Finally, since (A,R1) is observable (14.112) implies
(14.100) so that all the conditions of Theorem 14.7 are satisfied.

Note that for single-input systems

θ2 =
R2

R2 +BTPB

= 1 − (R2 +BTPB)−1BTPB

= det(I −B(R2 +BTPB)−1BTP )

=
det(A−B(R2 +BTPB)−1BTPA)

detA

=
det(A+BK)

detA
,

whereK = −(R2+B
TPB)−1BTPA. In this case, the gain margins obtained

in Corollary 14.4 are precisely the gain margins given in [459] for discrete-
time linear-quadratic optimal regulators.
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The following result specializes Lemma 13.35 to discrete-time linear
systems and recovers Theorem 1 of [262].

Corollary 14.5. Consider the linear system (14.109) and (14.110) and
let α, β ∈ R be such that 0 ≤ α < 1 < β < ∞. Suppose there exist a
positive-definite matrix P ∈ Rn×n and a scalar q > 0 such that

0 < 2qI −BTPB, (14.114)

0 ≥ ATPA− P − 2αβ
q(α+β)2A

TPBBTPA. (14.115)

Then, with K = − 1
q(α+β)B

TPA, the linear system (14.109) and (14.110)

has a disk margin (α, β).

Proof. The result is a direct consequence of Theorem 13.35 with
f(x) = Ax, G(x) = B, φ(x) = Kx, Vs(x) = xTPx, P1u(x) = 2xTATPB,
P2u(x) = BTPB, and Z = 2qI.

Note that since the controller in Corollary 14.5 guarantees a disk
margin of (α, β) it also guarantees sector and gain margins of (α, β) and
phase margin φ given by (see Problem 6.20)

cos(φ) =
1 + αβ

α+ β
. (14.116)

14.8 Stability Margins, Meaningful Inverse Optimality, and

Control Lyapunov Functions

In this section, we give sufficient conditions that guarantee that a given
nonlinear feedback controller of a specific form is inverse optimal and has
certain disk, sector, and gain margins.

Theorem 14.8. Consider the nonlinear system G given by (14.97) and
(14.98). Assume there exist functions V : Rn → R, P1u : Rn → R1×m,
P2u : Rn → Nm, and γ : Rn → R such that V (·) is continuous and satisfies
(14.73), (14.74), (14.76), and for all x ∈ Rn,

0 > V (f(x) − 1
2γ

−1(x)G(x)PT
1u(x)) − V (x), x 6= 0, (14.117)

0 < γ(x)I − P2u(x), (14.118)

0 ≥ V (f(x)) − V (x) − 1
4γ

−1(x)P1u(x)PT
1u(x), (14.119)

and

V (x) → ∞ as ‖x‖ → ∞. (14.120)

Then, with the feedback control law φ(x) = −1
2γ

−1(x)PT
1u(x), the nonlinear
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system G has a disk margin ( 1
1+θ ,

1
1−θ ), where

θ =

(

infx∈Rn σmin(γ(x)I − P2u(x))

supx∈Rn γ(x)

)1/2

. (14.121)

Furthermore, with the feedback control law φ(x) the performance functional

J(x0, u(·)) =

∞
∑

k=0

[−V (f(x(k)) +G(x(k))u(k)) + V (x(k))

+γ(x(k))(u(k) − φ(x(k)))T(u(k) − φ(x(k)))
]

, (14.122)

is minimized in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)), x0 ∈ Rn. (14.123)

Proof. The result is direct consequence of Theorem 14.6 and Theorem
14.7 with R2(x) = γ(x)I − P2u(x) and L1(x) = −V (f(x)) + V (x) +
γ(x)φT(x)φ(x).

Example 14.1. Consider the discrete-time nonlinear system given by

x1(k + 1) = 1
2x1(k), x1(0) = x10, k ∈ Z+, (14.124)

x2(k + 1) = 1
2x

2
1(k) + u(k), x2(0) = x20, (14.125)

y(k) = 2(x2
1(k) + u(k)). (14.126)

With x = [x1, x2]
T, f(x) = [12x1,

1
2x

2
1]

T, G(x) = [0, 1]T, h(x) = 2x2
1,

J(x) = 2, Vs(x) = x4
1 + 4x2

2, P̂1u(x) = 4x2
1, P̂2u(x) = 4, ℓ(x) = [14x

2
1, 2x2]

T,
W(x) = 0, Q = R = 0, and S = I2, it follows from Theorem 13.21 that
the discrete-time nonlinear system G is passive, that is, G is dissipative with
respect to the supply rate r(u, y) = 2yu. Specifically, note that Vs(0) = 0,
Vs(x) > 0, x 6= 0, and

Vs(f(x) +G(x)u) = 17
16x

4
1 + 4x2

1u+ 4u2

= Vs(f(x)) + P̂1u(x)u+ P̂2u(x)u2, (14.127)

so that (13.137) is satisfied. Now, (13.138)–(13.140) can be easily verified
to show the passivity of the discrete-time system G.

Next, with V (x) = x4
1 + 4x2

2, P1u(x) = 4x2
1, P2u(x) = 4, L1(x) =

1
8x

4
1 + 4x2

2, and R2(x) = 60, it follows from Theorem 14.7 that the feedback

control law φ(x) = −1
2(R2(x) + P2u(x))−1PT

1u(x) = − 1
32x

2
1 minimizes the

performance functional (14.99) in the sense of (14.105). Furthermore, it
follows that θ =

√

15/16, and hence, the nonlinear system G has a disk
margin (0.5081, 31.4919). Finally, by choosing γ(x) to be a constant such
that γ(x) > 4, a whole class of inverse optimal controllers can be constructed
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using Theorem 14.8. In particular, setting γ(x) to be very large we can
obtain an inverse optimal controller that has a disk margin ( 1

1+θ ,
1

1−θ ), where
θ is arbitrarily close to 1 so as to maximize disk margin guarantees. △

Next, we give sufficient conditions that guarantee that a given
nonlinear feedback controller of a specific form is inverse optimal and has
prespecified stability margins.

Corollary 14.6. Consider the nonlinear system G given by (14.97) and
(14.98). Let θ ∈ (0, 1) and assume there exist functions V : Rn → R,
P1u : Rn → R1×m, P2u : Rn → Nm, and a scalar q > 0 such that V (·) is
continuous and satisfies (14.73), (14.74), and (14.76), and for all x ∈ Rn,

0 > V (f(x) − 1−θ2

2q G(x)PT
1u(x)) − V (x), x 6= 0, (14.128)

0 < qI − P2u(x), (14.129)

0 ≥ V (f(x)) − V (x) − 1−θ2

4q P1u(x)PT
1u(x), (14.130)

and
V (x) → ∞ as ‖x‖ → ∞. (14.131)

Then, with the feedback control law φ(x) = −1−θ2

2q PT
1u(x), the nonlinear

system G has a disk margin ( 1
1+θ ,

1
1−θ ). Furthermore, with the feedback

control law φ(x) the performance functional

J(x0, u(·)) =
∞
∑

k=0

[−V (f(x(k)) +G(x(k))u(k)) + V (x(k))

+ q
1−θ2 (u(k) − φ(x(k)))T(u(k) − φ(x(k)))

]

, (14.132)

is minimized in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)), x0 ∈ Rn. (14.133)

Proof. The result is a direct consequence of Theorem 14.8 with γ(x) =
q

1−θ2 I. Specifically, since θ ∈ (0, 1), (14.129) implies (14.118) so that all the
conditions of Theorem 14.8 are satisfied.

Note that (14.129) implies 0 < q
1−θ2 I − P2u(x), x ∈ Rn and θ ∈ (0, 1).

Hence, if there exist functions V : Rn → R, P1u : Rn → R1×m, P2u : Rn →
Nm, and a scalar q > 0 such that (14.73), (14.74), (14.76) and (14.128)–
(14.130) are satisfied, then it follows from Theorem 14.8 with γ(x) = q

1−θ2

that the nonlinear system G has a disk margin of ( 1
1+θ̂

, 1
1−θ̂

), where

θ̂
△
=

(

1 − 1−θ2

q sup
x∈Rn

σmin(P2u(x))

)1/2

.
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In this case, since 0 < qI −P2u(x), x ∈ Rn, it follows that θ ≤ θ̂ so that the
disk margins provided by Theorem 14.8 are always greater than or equal
to the disk margins provided by Corollary 14.6. However, in the latter
case considerable numerical simplification in computing the disk margins is
achieved in comparison to Theorem 14.8.

The following result specializes Corollary 14.6 to discrete-time linear
systems and recovers Theorem 3 of [262].

Corollary 14.7. Consider the linear system (14.109) and (14.110), and
let θ ∈ R be such that 0 < θ < 1. Suppose there exist a positive-definite
matrix P ∈ Rn×n, a nonnegative-definite matrix R1 ∈ Rn×n, and a scalar
q > 0 such that

0 < 2qI −BTPB, (14.134)

0 = ATPA− P +R1 − 1−θ2

2q ATPBBTPA. (14.135)

If (A,R1) is observable then, with K = −1−θ2

2q BTPA, the linear system

(14.109) and (14.110) has a disk margin ( 1
1+θ ,

1
1−θ ). In addition, with the

feedback control law φ(x) = Kx, the performance functional

J(x0, u(·)) =
∞
∑

k=0

[

xT(k)R1x(k) + uT(k)( 2q
1−θ2 I −BTPB)u(k)

]

, (14.136)

is minimized in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)), x0 ∈ Rn. (14.137)

Proof. The result is a direct consequence of Corollary 14.6 with f(x) =
Ax, G(x) = B, φ(x) = Kx, V (x) = xTPx, P1u(x) = 2xTATPB, P2u(x) =
BTPB, and q replaced by 2q.

Next, since φ(x) given by (13.243) has no a priori guarantees of
stability margins we use Theorem 14.8 to obtain a feedback control law
that has stability margins. Let γ(x) = σmax(P2u(x))+η(x), where η(x) > 0,
x ∈ Rn, so that γ(x)I > P2u(x). In this case, it follows from Theorem 14.8
that if γ(·), V (·), and P1u(·) satisfy (14.119) then the feedback control law
φ(x) = −1

2γ
−1(x)PT

1u(x) is inverse optimal with respect to the performance
functional (14.122) and the nonlinear system G possesses certain disk
margins. Next, note that (14.119) is equivalent to

P1u(x)P †
2u(x)PT

1u(x) − γ−1(x)P1u(x)PT
1u(x) ≤ ε(x), x ∈ Rn, (14.138)

where ε(x)
△
= 4(V (x) − V (f(x))) + P1u(x)P †

2u(x)PT
1u(x) > 0, x 6= 0, since

V (x) is a control Lyapunov function. Note that (14.138) can equivalently
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be written as

η(x)(P1u(x)P †
2u(x)PT

1u(x) − ε(x)) ≤ P1u(x)PT
1u(x)

−σmax(P2u(x))(P1u(x)P †
2u(x)PT

1u(x) − ε(x)). (14.139)

Now, if P1u(x)P †
2u(x)PT

1u(x) − ε(x) < 0, then η(x) can be chosen to be an

arbitrary positive-definite function. However, if P1u(x)P †
2u(x)PT

1u(x)−ε(x) >
0, then there may not exist a function η(x) such that (14.139) is satisfied,
which implies that the control laws obtained by using the above control
Lyapunov function do not possess any disk margins. This is in contrast to
the continuous-time case where it was shown in Section 8.8 that if there
exists a control Lyapunov function, then there always exist feedback control
laws that have guaranteed sector and gain margins of (1

2 ,∞).

In order to demonstrate the above observations consider the linear
discrete-time system given by

[

x1(k + 1)
x2(k + 1)

]

=

[

2 0
0 2

] [

x1(k)
x2(k)

]

+

[

1 0
0 0.1

] [

u1(k)
u2(k)

]

,

[

x1(0)
x2(0)

]

=

[

x10

x20

]

, (14.140)

with control Lyapunov function candidate V (x) = xTx, where x
△
= [x1, x2]

T.
In this case, f(x) = 2x, G(x) = diag[1, 0.1], u = [u1, u2]

T, P1u(x) =
[4x1, 0.4x2]

T, and P2u(x) = diag[1, 0.01]. Hence,

V (f(x)) − V (x) − 1
4P1u(x)P †

2u(x)PT
1u(x) = −xTx < 0, x ∈ R2, x 6= 0,

which shows that V (x) = xTx is a control Lyapunov function for (14.140).
In this case, (14.139) becomes

η(x)[12x2
1 + 12x2

2] ≤ 4x2
1 − 11.84x2

2. (14.141)

Now, taking x = [1, 1]T, (14.141) is equivalent to

η(x) ≤ −0.326 < 0, (14.142)

which shows that it is not possible to construct η(x) > 0 such that (14.139)
is satisfied.

14.9 Nonlinear Discrete-Time Dynamical Systems with

Bounded Disturbances

In this and the next two sections we extend the analysis results of Chapter
10 to discrete-time dynamical systems. Specifically, we present sufficient
conditions for dissipativity for a class of nonlinear discrete-time systems
with bounded energy and bounded amplitude disturbances. In addition, we
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consider the problem of evaluating a performance bound for a nonlinear-
nonquadratic cost functional. The cost bound is evaluated in closed form
by relating the cost functional to an underlying Lyapunov function that
guarantees asymptotic stability of the nonlinear system. For the following
result, let D ⊂ Rn be an open set, assume 0 ∈ D, let f : D → D be such
that f(0) = 0, h : D → Rp be such that h(0) = 0, J1 : D → Rn×d, and
J2 : D → Rp×d. Finally, let W ⊂ Rd and let r : Rp × Rd → R be a given
function.

Lemma 14.4. Consider the nonlinear discrete-time system

x(k + 1) = f(x(k)) + J1(x(k))w(k), x(0) = x0, k ∈ Z+, w(·) ∈ ℓ2,

(14.143)

z(k) = h(x(k)) + J2(x(k))w(k). (14.144)

Furthermore, assume there exist functions Γ : D → R, P1w : D → R1×d,
P2w : D → Nd, and V : D → R such that V (·) is continuous and

P1w(0) = 0, (14.145)

V (0) = 0, (14.146)

V (x) ≥ 0, x ∈ D, (14.147)

P1w(x)w + wTP2w(x)w ≤ r(z,w) + Γ(x), x ∈ D, w ∈ W, (14.148)

V (f(x) + J1(x)w) = V (f(x)) + P1w(x)w + wTP2w(x)w,

x ∈ D, w ∈ W, (14.149)

V (f(x)) − V (x) + Γ(x) ≤ 0, x ∈ D. (14.150)

Then the solution x(k), k ∈ Z+, of (14.143) satisfies

V (x(k + 1)) ≤
k
∑

i=0

r(z(i), w(i)) + V (x0), w(·) ∈ ℓ2, k ∈ Z+.

(14.151)

Proof. Let x(k), k ∈ Z+, satisfy (14.143) and let w(·) ∈ ℓ2. Then it
follows from (14.148), (14.149) and (14.150) that for all k ∈ Z+,

∆V (x(k))
△
= V (x(k + 1)) − V (x(k))

= V (f(x(k)) + J1(x(k))w(k)) − V (x(k))

= V (f(x(k))) + P1w(x(k))w(k) + wT(k)P2w(x(k))w(k) − V (x(k))

= V (f(x(k))) − V (x(k)) + Γ(x(k)) + P1w(x(k))w(k)

+wT(k)P2w(x(k))w(k) − Γ(x(k))

≤ r(z(k), w(k)), k ∈ Z+ (14.152)
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Now, summing over [0, k] yields

V (x(k + 1)) − V (x0) ≤
k
∑

i=0

r(z(i), w(i)), k ∈ Z+,

which proves the result.

For the next result let L : D → R be given.

Theorem 14.9. Consider the nonlinear system given by (14.143) and
(14.144) with performance functional

J(x0)
△
=

∞
∑

k=0

L(x(k)), (14.153)

where x(k), k ∈ Z+, solves (14.143) with w(k) ≡ 0. Assume there exist
functions Γ : D → R, P1w : D → R1×d, P2w : D → Nd, and V : D → R such
that V (·) is continuous and

P1w(0) = 0, (14.154)

V (0) = 0, (14.155)

V (x) > 0, x ∈ D, x 6= 0, (14.156)

P1w(x)w + wTP2w(x)w ≤ r(z,w) + L(x) + Γ(x), x ∈ D, w ∈ W,

(14.157)

V (f(x)) − V (x) < 0, x ∈ D, x 6= 0, (14.158)

V (f(x) + J1(x)w) = V (f(x)) + P1w(x)w + wTP2w(x)w,

x ∈ D, w ∈ W, (14.159)

L(x) + V (f(x)) − V (x) + Γ(x) = 0, x ∈ D. (14.160)

Then the zero solution x(k) ≡ 0 of the undisturbed (w(k) ≡ 0) system
(14.143) is locally asymptotically stable and there exists a neighborhood
D0 ⊆ D of the origin such that if Γ(x) ≥ 0, x ∈ D, then

J(x0) ≤ J (x0) = V (x0), x0 ∈ D0, (14.161)

where

J (x0)
△
=

∞
∑

k=0

[L(x(k)) + Γ(x(k))] (14.162)

and where x(k), k ∈ Z+, is a solution to (14.143) with w(k) ≡ 0.
Furthermore, the solution x(k), k ∈ Z+, to (14.143) satisfies the dissipativity
constraint

k
∑

i=0

r(z(i), w(i)) + V (x0) ≥ 0, w(·) ∈ ℓ2, k ∈ Z+. (14.163)
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Finally, if D = Rn, w(k) ≡ 0, and

V (x) → ∞ as ‖x‖ → ∞, (14.164)

then the solution x(k) = 0, k ∈ Z+, of (14.143) is globally asymptotically
stable.

Proof. Let x(k), k ∈ Z+, satisfy (14.143). Then

∆V (x(k))
△
= V (x(k + 1)) − V (x(k))

= V (f(x(k))) − V (x(k)) + P1w(x(k))w(k)

+wT(k)P2w(x(k))w(k), k ∈ Z+. (14.165)

Hence, with w(k) ≡ 0, it follows from (14.158) that

∆V (x(k)) < 0, k ∈ Z+, x(k) 6= 0. (14.166)

Thus, from (14.154), (14.156), and (14.166) it follows that V (·) is a Lyapunov
function for (14.143), which proves local asymptotic stability of the solution
x(k) ≡ 0 with w(k) ≡ 0. Consequently, x(k) → 0 as k → ∞ for all initial
conditions x0 ∈ D0 for some neighborhood D0 ⊆ D of the origin.

Next, if Γ(x) ≥ 0, x ∈ D, and w(k) ≡ 0, (14.160) implies

L(x(k)) = −∆V (x(k)) + L(x(k)) + V (f(x(k))) − V (x(k))

≤ −∆V (x(k)) + L(x(k)) + V (f(x(k))) − V (x(k)) + Γ(x(k))

= −∆V (x(k)).

Now, summing over [0, k] yields

k
∑

i=0

L(x(i)) ≤ −V (x(k + 1)) + V (x0).

Letting k → ∞ and noting that V (x(k)) → 0 as k → ∞ for all x0 ∈ D0

yields J(x0) ≤ V (x0).

Next, let x(k), k ∈ Z+, satisfy (14.143) with w(k) ≡ 0. Then it follows
from (14.160) that

L(x(k)) + Γ(x(k))

= −∆V (x(k)) + L(x(k)) + V (f(x(k))) − V (x(k)) + Γ(x(k))

= −∆V (x(k)).

Summing over [0, k] yields

k
∑

i=0

[L(x(i)) + Γ(x(i))] = −V (x(k + 1)) + V (x0).



NonlinearBook10pt November 20, 2007

876 CHAPTER 14

Now, letting k → ∞ yields J (x0) = V (x0). Finally, it follows that
(14.154), (14.155), (14.157), (14.159), and (14.160) imply (14.145)–(14.150),
and hence, with Γ(x) replaced by L(x) + Γ(x), Lemma 14.4 yields

V (x(k + 1)) ≤
k
∑

i=0

r(z(i), w(i)) + V (x0), w(·) ∈ ℓ2, k ∈ Z+.

Now, (14.163) follows by noting that V (x(k + 1)) ≥ 0, k ∈ Z+. Finally, for
D = Rn global asymptotic stability of the solution x(k) = 0, k ∈ Z+, is a
direct consequence of the radially unbounded condition (14.164) on V (x),
x ∈ Rn.

14.10 Specialization to Dissipative Systems with Quadratic

Supply Rates

In this section, we consider the special case in which r(z,w) is a quadratic

functional. Specifically, let h : D → Rp, J2 : D → Rp×d, Q̂ ∈ Sp, Ŝ ∈ Rp×d,
R̂ ∈ Sd, and

r(z,w) = zTQ̂z + 2zTŜw + wTR̂w, (14.167)

such that

N(x)
△
= JT

2 (x)Q̂J2(x) + JT
2 (x)Ŝ + ŜTJ2(x) + R̂ > P2w(x), x ∈ D.

Furthermore, let L(x) ≥ 0, x ∈ D. Then

Γ(x) =
[

1
2P

T
1w(x) − JT

2 (x)Q̂h(x) − ŜTh(x)
]T

(N(x) − P2w(x))−1

·
[

1
2P

T
1w(x) − JT

2 (x)Q̂h(x) − ŜTh(x)
]

− hT(x)Q̂h(x),

satisfies (14.157) since in this case

L(x) + Γ(x) + r(z,w) − P1w(x)w − wTP2w(x)w

= L(x) + [ 12P
T
1w(x) − JT

2 (x)Q̂(x)h(x) − ŜT(x)h(x)

−(N(x) − P2w(x))w]T(N(x) − P2w(x))−1[ 12P
T
1w(x)

−JT
2 (x)Q̂(x)h(x) − ŜT(x)h(x) − (N(x) − P2w(x))w]

≥ 0. (14.168)

Corollary 14.8. Let L(x) ≥ 0, x ∈ D, and consider the nonlinear
system given by (14.143) and (14.144) with performance functional

J(x0)
△
=

∞
∑

k=0

L(x(k)), (14.169)

where x(k), k ∈ Z+, solves (14.143) with w(k) ≡ 0. Assume there exist
functions P1w : D → R1×d, P2w : D → Nd, and V : D → R such that V (·) is
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continuous and

P1w(0) = 0, (14.170)

V (0) = 0, (14.171)

V (x) > 0, x ∈ D, x 6= 0, (14.172)

V (f(x)) − V (x) < 0, x ∈ D, x 6= 0, (14.173)

V (f(x) + J1(x)w) = V (f(x)) + P1w(x)w + wTP2w(x)w,

x ∈ D, w ∈ W, (14.174)

γ2Id − JT
2 (x)J2(x) − P2w(x) > 0, x ∈ D, (14.175)

L(x) + V (f(x)) − V (x) + Γ(x) = 0, x ∈ D, (14.176)

where γ > 0 and

Γ(x) =
[

1
2P

T
1w(x) + JT

2 (x)h(x)
]T [

γ2Id − JT
2 (x)J2(x) − P2w(x)

]−1

·
[

1
2P

T
1w(x) + JT

2 (x)h(x)
]

+ hT(x)h(x). (14.177)

Then the zero solution x(k) ≡ 0 to the undisturbed (w(k) ≡ 0) system
(14.143) is locally asymptotically stable and there exists a neighborhood
D0 ⊆ D of the origin such that

J(x0) ≤ J (x0) = V (x0), x0 ∈ D0, (14.178)

where

J (x0)
△
=

∞
∑

k=0

[L(x(k)) + Γ(x(k))] (14.179)

and where x(k), k ∈ Z+, solves (14.143) with w(k) ≡ 0. Furthermore, the
solution x(k), k ∈ Z+, of (14.143) satisfies the nonexpansivity constraint

k
∑

i=0

zT(i)z(i) ≤ γ2
k
∑

i=0

wT(i)w(i) + V (x0), w(·) ∈ ℓ2, k ∈ Z+.

(14.180)
Finally, if D = Rn, w(k) ≡ 0, and

V (x) → ∞ as ‖x‖ → ∞, (14.181)

then the solution x(k) = 0, k ∈ Z+, of (14.143) is globally asymptotically
stable.

Proof. With Q̂ = −Ip, Ŝ = 0, and R̂ = γ2Id, it follows from (14.168)
that Γ(x) given by (14.177) satisfies (14.157). The result now follows as a
direct consequence of Theorem 14.9.

Note that if L(x) = hT(x)h(x) in Corollary 14.8 then Γ(x) can be
chosen as

Γ(x) =
[

1
2P

T
1w(x) + JT

2 (x)h(x)
]T [

γ2Id − JT
2 (x)J2(x) − P2w(x)

]−1
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·
[

1
2P

T
1w(x) + JT

2 (x)h(x)
]

.

The framework presented in Corollary 14.8 is an extension of the
mixed-norm H2/H∞ framework of Haddad et al. [154] to nonlinear systems.
Specifically, letting f(x) = Ax, J1(x) = D, h(x) = Ex, J2(x) = 0,
L(x) = xTRx, and V (x) = xTPx, where A ∈ Rn×n, D ∈ Rn×d, E ∈ Rp×n,

R
△
= ETE > 0, and P ∈ Pn satisfies

P = ATPA+ATPD(γ2Id −DTPD)−1DTPA+R, (14.182)

it follows from Corollary 14.8 with L(x) = hT(x)h(x) = xTRx, Γ(x) =
xTATPD(γ2Id −DTPD)−1DTPAx, where γ2Id −DTPD > 0, and x0 = 0
that

k
∑

i=0

xT(i)Rx(i) ≤ γ2
k
∑

i=0

wT(i)w(i), w(·) ∈ ℓ2, k ∈ Z+, (14.183)

or, equivalently, the H∞ norm of

G(z) ∼
[

A D
E 0

]

satisfies
|||G|||∞ △

= sup
θ∈[0,2π]

σmax(G(eθ)) ≤ γ, (14.184)

where σmax(·) denotes the maximum singular value. Now, (14.178) implies

∞
∑

k=0

xT(k)Rx(k) ≤
∞
∑

k=0

xT(k)[R +ATPD(γ2Id −DTPD)−1DTPA]x(k)

=

∞
∑

k=0

xT
0 (Ak)T[R+ATPD(γ2Id −DTPD)−1DTPA]Akx0,

where x(k), k ∈ Z+, solves (14.143) with w(k) ≡ 0.

To eliminate the explicit dependence on the initial condition x0 we
assume x0x

T
0 has expected value V , that is, E[x0x

T
0 ] = V , where E denotes

expectation. Invoking this step leads to

E

[ ∞
∑

k=0

xT(k)Rx(k)

]

= E

[ ∞
∑

k=0

xT
0 (Ak)TRAkx0

]

= E[xT
0 P̂ x0] = tr P̂ V,

where
P̂ = ATP̂A+R

and

E

[ ∞
∑

k=0

xT(k)(R +ATPD(γ2Id −DTPD)−1DTPA)x(k)

]
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= E

[ ∞
∑

k=0

xT
0 (Ak)T[R+ATPD(γ2Id −DTPD)−1DTPA]Akx0

]

= E[xT
0 Px0]

= tr PV, (14.185)

where P satisfies (14.182). Hence, |||G|||22 = tr P̂ V ≤ tr PV , which implies
that J (x0) given by (14.179) provides an upper bound to the H2 norm of
G(z).

Corollary 14.9. Let L(x) ≥ 0, x ∈ D, p = d, and consider the
nonlinear system given by (14.143) and (14.144) with performance functional

J(x0)
△
=

∞
∑

k=0

L(x(k)), (14.186)

where x(k), k ∈ Z+, solves (14.143) with w(k) ≡ 0. Assume there exist
functions P1w : D → R1×d, P2w : D → Nd, and V : D → R such that V (·) is
continuous and

P1w(0) = 0, (14.187)

V (0) = 0, (14.188)

V (x) > 0, x ∈ D, x 6= 0, (14.189)

V (f(x)) − V (x) < 0, x ∈ D, x 6= 0, (14.190)

V (f(x) + J1(x)w) = V (f(x)) + P1w(x)w + wTP2w(x)w,

x ∈ D, w ∈ W, (14.191)

J2(x) + JT
2 (x) − P2w(x) > 0, x ∈ D, (14.192)

L(x) + V (f(x)) − V (x) + Γ(x) = 0, x ∈ D, (14.193)

where

Γ(x) =
[

1
2P

T
1w(x) − h(x)

]T [
J2(x) + JT

2 (x) − P2w(x)
]−1 [1

2P
T
1w(x) − h(x)

]

.
(14.194)

Then the zero solution x(t) ≡ 0 of the undisturbed (w(k) ≡ 0) system
(14.143) is locally asymptotically stable and there exists a neighborhood
D0 ⊆ D of the origin such that

J(x0) ≤ J (x0) = V (x0), x0 ∈ D0, (14.195)

where

J (x0)
△
=

∞
∑

k=0

[L(x(k)) + Γ(x(k))] (14.196)

and where x(k), k ∈ Z+, solves (14.143) with w(k) ≡ 0. Furthermore, the
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solution x(k), k ∈ Z+, of (14.143) satisfies the passivity constraint

2
k
∑

i=0

zT(i)w(i) + V (x0) ≥ 0, w(·) ∈ ℓ2, k ∈ Z+. (14.197)

Finally, if D = Rn, w(k) ≡ 0, and

V (x) → ∞ as ‖x‖ → ∞, (14.198)

then the solution x(k) = 0, k ∈ Z+, of (14.143) is globally asymptotically
stable.

Proof. With Q̂ = 0, Ŝ = I, and R̂ = 0, it follows from (14.168) that
Γ(x) given by (14.194) satisfies (14.157). The result now follows as a direct
consequence of Theorem 14.9.

The framework presented in Corollary 14.9 is an extension of the
continuous-time H2/positivity framework of Haddad and Bernstein [146] to
nonlinear discrete-time systems. Specifically, letting f(x) = Ax, J1(x) =
D, h(x) = Ex, J2(x) = E∞, L(x) = xTRx, V (x) = xTPx, and
Γ(x) = xT(DTPA − E)T(E∞ + ET

∞ − DTPD)−1(DTPA − E)x, where
E∞ + ET

∞ − DTPD > 0 and where A ∈ Rn×n, D ∈ Rn×d, E ∈ Rd×n,
E∞ ∈ Sd, R ∈ Pn, and P ∈ Pn satisfies

P = ATPA+ (DTPA−E)T(E∞ + ET
∞ −DTPD)−1(DTPA− E) +R,

(14.199)
it follows from Corollary 14.9, with x0 = 0, that

k
∑

i=0

2wT(i)z(i) ≥ 0, w(·) ∈ ℓ2, k ∈ Z+, (14.200)

or, equivalently,
G∞(z) +G∗

∞(z) ≥ 0, |z| > 1, (14.201)

where

G∞(z) ∼
[

A D
E E∞

]

.

Now, using similar arguments as in the H∞ case, (14.195) implies

tr P̂ V = E

[ ∞
∑

k=0

xT(k)Rx(k)

]

≤ E

[ ∞
∑

k=0

xT(k)[R + (DTPA− E)T(E∞ +ET
∞ −DTPD)−1

·(DTPA−E)]x(k)

]

,
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or, equivalently, since

E

[ ∞
∑

k=0

xT(k)[R + (DTPA− E)T(E∞ + ET
∞ −DTPD)−1

·(DTPA− E)]x(k)

]

= E

[ ∞
∑

k=0

xT
0 (Ak)T[R+ (DTPA− E)T(E∞ + ET

∞ −DTPD)−1

·(DTPA− E)]Akx0

]

= E[xT
0 Px0]

= tr PV,

where P satisfies (14.199). Hence, |||G|||22 = tr P̂ V ≤ tr PV , which implies
that J (x0) given by (14.196) provides an upper bound to the H2 norm of
G(z).

Next, define the subset of square-summable bounded disturbances

Wβ
△
=

{

w(·) ∈ ℓ2 :

∞
∑

i=0

wT(i)w(i) ≤ β

}

, (14.202)

where β > 0. Furthermore, let L : D → R be given such that L(x) ≥ 0,
x ∈ D.

Theorem 14.10. Let γ > 0, L(x) ≥ 0, x ∈ D, and consider the
nonlinear system (14.143) with performance functional (14.153). Assume
that there exist functions P1w : D → R1×d, P2w : D → Nd, and V : D → R

such that V (·) is continuous and

P1w(0) = 0, (14.203)

V (0) = 0, (14.204)

V (x) > 0, x ∈ D, x 6= 0, (14.205)

V (f(x)) − V (x) < 0, x ∈ D, x 6= 0, (14.206)

V (f(x) + J1(x)w) = V (f(x)) + P1w(x)w + wTP2w(x)w, x ∈ D, w ∈ W,

(14.207)
γ
β Id − P2w(x) > 0, x ∈ D, (14.208)

L(x)+V (f(x))−V (x)+ 1
4P1w(x)

(

γ

β
Id − P2w(x)

)−1

PT
1w(x) = 0, x ∈ D.

(14.209)



NonlinearBook10pt November 20, 2007

882 CHAPTER 14

Then the zero solution x(k) ≡ 0 of the undisturbed (w(k) ≡ 0) system
(14.143) is locally asymptotically stable and there exists a neighborhood
D0 ⊆ D of the origin such that

J(x0) ≤ J (x0) = V (x0), x0 ∈ D0, (14.210)

where

J (x0)
△
=

∞
∑

k=0

[L(x(k)) + Γ(x(k))], (14.211)

Γ(x) = 1
4P1w(x)

(

γ

β
Id − P2w(x)

)−1

PT
1w(x), (14.212)

and where x(k), k ∈ Z+, solves (14.143) with w(k) ≡ 0. Furthermore, if
x0 = 0 then the solution x(k), k ∈ Z+, of (14.143) satisfies

V (x(k)) ≤ γ, w(·) ∈ Wβ, k ∈ Z+. (14.213)

Finally, if D = Rn, w(k) ≡ 0, and

V (x) → ∞ as ‖x‖ → ∞, (14.214)

then the solution x(k) = 0, k ∈ Z+, of (14.143) is globally asymptotically
stable.

Proof. The proofs for local and global asymptotic stability and the
performance bound (14.210) are identical to the proofs of local and global
asymptotic stability given in Theorem 14.9 and the performance bound
(14.161). Next, with r(z,w) = γ

βw
Tw and Γ(x) given by (14.212), it follows

from Lemma 14.4 that

V (x(k)) ≤ γ

β

k−1
∑

i=0

wT(i)w(i), k > 0, w(·) ∈ ℓ2, k ∈ Z+,

which yields (14.213).

14.11 A Riccati Equation Characterization for

Mixed H2/ℓ1 Performance

In this section, we consider the dynamical system (14.143) and (14.144)
with f(x) = Ax, J1(x) = D, h(x) = Ex, and J2(x) = E∞, where A ∈ Rn×n,
D ∈ Rn×d, E ∈ Rp×n, E∞ ∈ Rp×d, and A is asymptotically stable so that

x(k + 1) = Ax(k) +Dw(k), x(0) = 0, k ∈ Z+, w(·) ∈ Ŵ , (14.215)

z(k) = Ex(k) + E∞w(k), (14.216)

where Ŵ consists of unit-peak input signals defined by

Ŵ △
=
{

w(·) : wT(k)w(k) ≤ 1, k ∈ Z+

}

. (14.217)
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The following result provides an upper bound to the ℓ1 norm (ℓ∞ equi-
induced norm) of the convolution operator G of the linear time-invariant
system (14.215) and (14.216) given by

|||G|||1 △
= sup

w(·)∈Ŵ

{

sup
k∈Z+

‖z(k)‖
}

,

where ‖ · ‖ denotes the Euclidean vector norm.

Theorem 14.11. Let α > 1 and consider the linear system (14.215)
and (14.216). Then

|||G|||1 ≤ σ
1

2
max(EP

−1ET) + σ
1

2
max(E∞E

T
∞), (14.218)

where P > 0 satisfies

(α− 1)Id − αDTPD > 0, (14.219)

P ≥ αATPA+ α2ATPD
[

(α− 1)Id − αDTPD
]−1

DTPA. (14.220)

Proof. Let N > 0, N ∈ Z+, and consider the dilated linear system

x̃(k + 1) = Aαx̃(k) +Dαv(k), x̃(0) = 0, k ∈ Z+, (14.221)

z(k) = α− k−N

2 (Ex̃(k) + E∞v(k)), (14.222)

where Aα
△
=

√
αA, Dα

△
=

√
αD, x̃(k)

△
= α

k−N

2 x(k), and v(k)
△
=

α
k−N

2 w(k). Note that (14.221) and (14.222) are equivalent to (14.215)

and (14.216). Furthermore, note that if w(·) ∈ Ŵ then v(·) ∈ V, where

V △
=
{

v(·) :
∑N−1

k=0 v
T(k)v(k) ≤ 1

α−1

}

. Hence,

|||G|||1 ≤ sup
N≥0

sup
v(·)∈V

‖z(N)‖.

Next, with f(x) = Aαx̃(k), J1(x) = Dα, V (x) = x̃TPx̃, P1w(x) =
2x̃TAT

αPDα, P2w(x) = DT
αPDα, W = V, β = 1

α−1 , γ = 1, and L(x) =

x̃TRx̃, where R ∈ Rn×n is an arbitrary positive-definite matrix, it follows
from Theorem 14.10 that if there exists P > 0 such that

P = αATPA+ α2ATPD
[

(α− 1)Id − αDTPD
]−1

DTPA+R, (14.223)

then
x̃T(N)Px̃(N) ≤ 1,

and hence, since x(N) = x̃(N), for all v(·) ∈ V,

‖z(N)‖ = ‖Ex(N) + E∞w(N)‖ ≤ σ
1

2
max(EP

−1ET) + σ
1

2
max(E∞E

T
∞).

The result is now immediate by noting that (14.223) is equivalent to (14.220).
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Note that the Riccati inequality (14.220) is equivalent to the linear
matrix inequality

[

P 0
0 (α− 1)Id

]

≥ α

[

AT

DT

]

P
[

A D
]

, (14.224)

or, equivalently,
[

P 0
0 (α− 1)Id

]

≥ α

[

A D
0 0

]T [
P 0
0 (α− 1)Id

] [

A D
0 0

]

. (14.225)

Next, since α > 1, using Schur complements, (14.225) is equivalent to
[

P−1 0
0 1

(α−1)Id

]

≥ α

[

A D
0 0

] [

P−1 0
0 1

(α−1)Id

] [

A D
0 0

]T

. (14.226)

Now, letting Q = P−1 in (14.226) yields

Q ≥ αAQAT +
α

α− 1
DDT. (14.227)

Hence, Theorem 14.11 yields

|||G|||1 ≤ σ
1

2
max(EQET) + σ

1

2
max(E∞E

T
∞), (14.228)

where Q satisfies (14.227). It is interesting to note that in the case where
E∞ = 0 the solution Q to (14.227) satisfies the bound

Q ≤ Q, (14.229)

where Q satisfies
Q = AQAT +DDT, (14.230)

and hence,
|||G|||22 = tr EQET ≤ tr EQET. (14.231)

Thus, (14.227) can be used to provide a trade-off between H2 and mixed
H2/ℓ1 performance. For further details see [157].

14.12 Robust Stability Analysis of Nonlinear Uncertain

Discrete-Time Systems

In this section, we extend the analysis results of Chapter 11 to discrete-
time uncertain dynamical systems. Specifically, we consider the problem of
evaluating a performance bound for a nonlinear-nonquadratic cost functional
depending upon a class of nonlinear uncertain systems. As in the continuous-
time case, the cost bound can be evaluated in closed form as long as the cost
functional is related in a specific way to an underlying Lyapunov function
that guarantees robust stability over a prescribed uncertainty set. Hence,
the overall framework provides for robust stability and performance where
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robust performance here refers to a guaranteed bound on the worst-case
value of a nonlinear-nonquadratic cost criterion over a prescribed uncertainty
set. For the following result, let D ∈ Rn be an open set, assume 0 ∈ D, let
L : D → R, and let F ⊂ {f : D → D : f(0) = 0} denote the class of
uncertain nonlinear systems with f0(·) ∈ F defining the nominal nonlinear
system.

Theorem 14.12. Consider the nonlinear uncertain system

x(k + 1) = f(x(k)), x(0) = x0, k ∈ Z+, (14.232)

where f(·) ∈ F , with performance functional

J(x0)
△
=

∞
∑

k=0

L(x(k)). (14.233)

Assume there exist functions Γ : D → R and V : D → R such that V (·) is
continuous and

V (0) = 0, (14.234)

V (x) > 0, x ∈ D, x 6= 0, (14.235)

V (f(x)) ≤ V (f0(x)) + Γ(x), x ∈ D, f(·) ∈ F ,
(14.236)

V (f0(x)) − V (x) + Γ(x) < 0, x ∈ D, x 6= 0, (14.237)

L(x) + V (f0(x)) − V (x) + Γ(x) = 0, x ∈ D, (14.238)

where f0(·) ∈ F defines the nominal nonlinear system. Then the zero
solution x(k) ≡ 0 of (14.232) is locally asymptotically stable for all f(·) ∈ F
and there exists a neighborhood D0 ⊆ D of the origin such that the
performance functional (14.233) satisfies

sup
f(·)∈F

J(x0) ≤ J (x0) = V (x0), x0 ∈ D0, (14.239)

where

J (x0)
△
=

∞
∑

k=0

[L(x(k)) + Γ(x(k))], (14.240)

and where x(k), k ∈ Z+, is the solution to (14.232) with f(x(k)) = f0(x(k)).
Finally, if D = Rn, and

V (x) → ∞ as ‖x‖ → ∞, (14.241)

then the zero solution x(k) = 0, k ∈ Z+, of (14.232) is globally
asymptotically stable.
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Proof. Let f(·) ∈ F and x(k), k ∈ Z+, satisfy (14.232). Then

∆V (x(k))
△
= V (x(k + 1)) − V (x(k)) = V (f(x(k))) − V (x(k)), k ∈ Z+.

(14.242)
Hence, from (14.236) and (14.237), it follows that

∆V (x(k)) < 0, k ∈ Z+, x(k) 6= 0. (14.243)

Thus, from (14.234) and (14.235), and (14.243) it follows that V (·) is a
Lyapunov function for (14.244), which proves local asymptotic stability of
the zero solution x(k) ≡ 0 for all f(·) ∈ F . Consequently, x(k) → 0 as
k → ∞ for all initial conditions x0 ∈ D0 for some neighborhood D0 ⊆ D of
the origin.

Next, (14.242) implies that

0 = −∆V (x(k)) + V (f(x(k))) − V (x(k)), k ∈ Z+,

and hence, using (14.236) and (14.238),

L(x(k)) = −∆V (x(k)) + L(x(k)) + V (f(x(k))) − V (x(k))

≤ −∆V (x(k)) + L(x(k)) + V (f0(x(k))) − V (x(k)) + Γ(x(k))

= −∆V (x(k)).

Now, summing over [0, k] yields

k
∑

i=0

L(x(i)) ≤ −V (x(k + 1)) + V (x0).

Letting k → ∞ and noting that V (x(k)) → 0 as k → ∞ for all x0 ∈ D0 and
f(·) ∈ F yields J(x0) ≤ V (x0).

Next, let x(k), k ∈ Z+, satisfy (14.232) with f(x(k)) = f0(x(k)). Then,
it follows from (14.238) that

L(x(k)) + Γ(x(k))

= −∆V (x(k)) + L(x(k)) + V (f0(x(k))) − V (x(k)) + Γ(x(k))

= −∆V (x(k)).

Summing over [0, k] yields

k
∑

i=0

[L(x(i)) + Γ(x(i))] = −V (x(k + 1)) + V (x0).

Now, letting k → ∞ yields J (x0) = V (x0). Finally, for D = Rn global
asymptotic stability of the zero solution x(k) = 0, k ∈ Z+, is a direct
consequence of the radially unbounded condition (14.241) on V (x), x ∈ Rn.
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Next, we specialize Theorem 14.12 to nonlinear uncertain systems of
the form

x(k + 1) = f0(x(k)) + ∆f(x(k)), x(0) = x0, k ∈ Z+, (14.244)

where f0 : D → Rn is such that f0(0) = 0, and f0 + ∆f ∈ F . Here, F is
such that

F ⊂ {f0 + ∆f : D → D : ∆f ∈ ∆},
where ∆ is a given nonlinear uncertainty set of nonlinear perturbations ∆f
of the nominal system dynamics f0(·) ∈ F . Since F ⊂ {f : D → D : f(0) =
0} it follows that ∆f(0) = 0.

Corollary 14.10. Consider the nonlinear uncertain system given by
(14.244) with performance functional (14.233). Assume there exist functions
Γ : D → R, P1f : D → R1×n, P2f : D → Nn, and V : D → R such that V (·)
is continuous, (14.234), (14.235), (14.237), and (14.238) hold and

P1f (0) = 0, (14.245)

∆fT(x)PT
1f (x) + P1f (x)∆f(x) + ∆fT(x)P2f (x)∆f(x) ≤ Γ(x),

x ∈ D, ∆f(·) ∈ ∆, (14.246)

V (f0(x) + ∆f(x)) = V (f0(x)) + ∆fT(x)PT
1f (x) + P1f (x)∆f(x)

+∆fT(x)P2f (x)∆f(x), x ∈ D, ∆f(·) ∈ ∆. (14.247)

Then then the zero solution x(k) ≡ 0 of (14.244) is locally asymptotically
stable for all ∆f(·) ∈ ∆ and there exists a neighborhood D0 ⊆ D of the
origin such that the performance functional (14.233) satisfies

sup
∆f(·)∈∆

J(x0) ≤ J (x0) = V (x0), x0 ∈ D0, (14.248)

where

J (x0)
△
=

∞
∑

k=0

[L(x(k)) + Γ(x(k))], (14.249)

where x(k), k ∈ Z+, solves (14.244) with ∆f(k) ≡ 0. Finally, if D = Rn,
and V (x), x ∈ Rn, satisfies (14.241), then the solution x(k) = 0, k ∈ Z+, of
(14.244) is globally asymptotically stable for all ∆f (·) ∈ ∆.

Proof. The result is a direct consequence of Theorem 14.12 with
f(x) = f0(x) + ∆f(x) and V (f(x)) given by (14.247). Specifically, in this
case it follows from (14.246) and (14.247) that V (f(x)) ≤ V (f0(x)) + Γ(x)
for all x ∈ Rn and ∆f(·) ∈ ∆. Hence, all conditions of Theorem 14.12 are
satisfied.

Having established the theoretical basis to our approach, we now give
a concrete structure for the bounding function Γ(x) for the structure F as
specified by (11.23) with ∆ satisfying (11.24) and (11.27), respectively.



NonlinearBook10pt November 20, 2007

888 CHAPTER 14

Proposition 14.2. Let P1f : Rn → R1×n be such that P1f (0) = 0 and
let P2f : Rn → Nn be such that

Imδ
− gT

δ (x)P2f (x)gδ(x) > 0, x ∈ Rn. (14.250)

Then the function

Γ(x) = P1f (x)gδ(x)[Imδ
− gT

δ (x)P2f (x)gδ(x)]
−1gT

δ (x)PT
1f (x)

+mT(hδ(x))m(hδ(x)) (14.251)

satisfies (14.246) with F given by (11.23) and ∆ given by (11.24).

Proof. Note that for all x ∈ D,

0 ≤ {[P1f (x)gδ(x) − δT(hδ(x))][Imδ
− gT

δ (x)P2f (x)gδ(x)]}
·[Imδ

− gT
δ (x)P2f (x)gδ(x)]

−1{[Imδ
− gT

δ (x)P2f (x)gδ(x)]

·[P1f (x)gδ(x) − δT(hδ(x))]
T}

= P1f (x)(gδ(x)[Imδ
− gT

δ (x)P2f (x)gδ(x)]
−1gT

δ (x)PT
1f (x)

−P1f (x)gδ(x)δ(hδ(x)) − δT(hδ(x))g
T
δ (x)PT

1f (x)

+δT(hδ(x))δ(hδ(x)) − δT(hδ(x))g
T
δ (x)P2f (x)gδ(x)δ(hδ(x)

≤ Γ(x) − [∆fT(x)PT
1f (x) + P1f (x)∆f(x) + ∆fT(x)P2f (x)∆f(x)],

which proves (14.246) with F given by (11.23) and ∆ given by (11.27).

Proposition 14.3. Let P1f : Rn → R1×n be such that P1f (0) = 0 and
let P1f : Rn → Nn be such that

2Imδ
− gT

δ (x)P2f (x)gδ(x) > 0, x ∈ Rn. (14.252)

Then the function

Γ(x) = [P1f (x)gδ(x) +m1(hδ(x)) +m2(hδ(x))][2Imδ
− gT

δ (x)P2f (x)gδ(x)]
−1

·[P1f (x)gδ(x) +m1(hδ(x)) +m2(hδ(x))]
T +mT

1 (hδ(x))m2(hδ(x))

+mT
2 (hδ(x))m1(hδ(x)) (14.253)

satisfies (14.246) with F given by (11.23) with ∆ given by (11.27).

Proof. The proof is identical to that of Proposition 14.2 and, hence,
is left as an exercise for the reader.

We now combine the results of Corollary 14.10 and Propositions 14.2
and 14.3 to obtain a series of sufficient conditions guaranteeing robust
stability and performance for the nonlinear uncertain discrete-time system
(14.244).

Proposition 14.4. Consider the nonlinear uncertain system (14.244).
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Let L(x) > 0, x ∈ Rn, and suppose there exist functions P1f : Rn → R1×n,
P2f : Rn → Nn, and a continuous radially unbounded function V : Rn → R

such that (14.234), (14.235), and (14.247) hold and

V (x) = V (f0(x)) + P1f (x)gδ(x)[Imδ
− gT

δ (x)P2f (x)gδ(x)]
−1gT

δ (x)PT
1f (x)

+mT(hδ(x))m(hδ(x)) + L(x), x ∈ Rn. (14.254)

Then the zero solution x(t) ≡ 0 to (14.244) is globally asymptotically stable
for all ∆f(·) ∈ ∆ with ∆ given by (11.24), and the performance function
(14.233) satisfies

sup
∆f(·)∈∆

J(x0) ≤ J (x0) = V (x0), (14.255)

where

J (x0)
△
=

∞
∑

k=0

[L(x(k)) + P1f (x(k))gδ(x(k))[Imδ
− gT

δ (x(k))P2f (x(k))gδ(x(k))]
−1

·gT
δ (x(k))PT

1f (x(k)) +mT(hδ(x(k)))m(hδ(x(k))), (14.256)

where x(k), k ∈ Z+, is the solution to (14.244) with ∆f(x) ≡ 0.

Proposition 14.5. Consider the nonlinear uncertain system (14.244).
Let L(x) > 0, x ∈ Rn, and suppose there exist functions P1f : Rn → R1×n,
P2f : Rn → Nn, and a continuous radially unbounded function V : Rn → R

such that (14.234), (14.235), and (14.247) hold and

V (x) = V (f0(x)) + [P1f (x)gδ(x) +m1(hδ(x)) +m2(hδ(x))][2Imδ

−gT
δ (x)P2f (x)gδ(x)]

−1[P1f (x)gδ(x) +m1(hδ(x)) +m2(hδ(x))]
T

+mT
1 (hδ(x))m2(hδ(x)) +mT

2 (hδ(x))m1(hδ(x)) + L(x), x ∈ Rn.

(14.257)

Then the zero solution x(t) ≡ 0 to (14.244) is globally asymptotically stable
for all ∆f(·) ∈ ∆ with ∆ given by (11.27), and the performance function
(14.233) satisfies

sup
∆f(·)∈∆

J(x0) ≤ J (x0) = V (x0), (14.258)

where

J (x0)
△
=

∞
∑

k=0

[L(x(k)) + [P1f (x(k))gδ(x(k)) +m1(hδ(x(k))) +m2(hδ(x(k)))]

·[2Imδ
− gT

δ (x(k))P2f (x(k))gδ(x(k))]
−1[P1f (x(k))gδ(x(k))

+m1(hδ(x(k))) +m2(hδ(x(k)))]
T +mT

1 (hδ(x(k)))m2(hδ(x(k)))

+mT
2 (hδ(x(k)))m1(hδ(x(k))), (14.259)

where x(k), k ∈ Z+, is the solution to (14.244) with ∆f(x) ≡ 0.
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The following corollary specializes Theorem 14.12 to linear uncertain
systems and connects the framework of Theorem 14.12 to the quadratic
Lyapunov bounding framework of Haddad et al. [148]. Specifically, in this
case we consider F to be the set of uncertain linear systems given by

F = {(A + ∆A)x : x ∈ Rn, A ∈ Rn×n,∆A ∈ ∆A},
where ∆A ⊂ Rn×n is a given bounded uncertainty set of uncertain
perturbations ∆A of the nominal system matrix such that 0 ∈ ∆A. For
the statement of this result let R ∈ Pn.

Corollary 14.11. Consider the linear uncertain system

x(k + 1) = (A+ ∆A)x(k), x(0) = x0, k ∈ Z+, (14.260)

with performance functional

J∆A
(x0)

△
=

∞
∑

k=0

xT(k)Rx(k). (14.261)

where ∆A ∈ ∆A. Let Ω : N ⊆ Sn → Nn be such that

ATP∆A+∆ATPA+∆ATP∆A ≤ Ω(P ), ∆A ∈ ∆A, P ∈ N . (14.262)

Furthermore, suppose there exists P ∈ Pn satisfying

P = ATPA+ Ω(P ) +R. (14.263)

Then the zero solution x(k) ≡ 0 of (14.260) is globally asymptotically stable
for all ∆A ∈ ∆A, and

sup
∆A∈∆A

J∆A
(x0) ≤ J (x0) = xT

0 Px0, x0 ∈ Rn, (14.264)

where

J (x0) =
∞
∑

k=0

xT(k)[R + Ω(P )]x(k), (14.265)

and where x(k), k ∈ Z+, solves (14.260) with ∆A = 0.

Proof. The result is a direct consequence of Theorem 14.12 with
f(x) = (A + ∆A)x, f0(x) = Ax,L(x) = xTRx, V (x) = xTPx,Γ(x) =
xTΩ(P )x, and D = Rn. Specifically, conditions (14.234) and (14.235)
are trivially satisfied. Now, V (f(x)) = xTATPAx + xT(∆ATP + P∆A +
∆ATP∆A)x, and hence, it follows from (14.262) that V (f(x)) ≤ V (f0(x))+
Γ(x) = xT(ATPA + Ω(P ))x, for all x ∈ Rn and ∆A ∈ ∆A. Furthermore,
it follows from (14.263) that L(x) + V (f0(x)) − V (x) + Γ(x) = 0, x ∈ Rn,
and hence, V (f0(x)) − V (x) + Γ(x) < 0, for all x ∈ Rn, x 6= 0, so that all
conditions of Theorem 14.12 are satisfied. Finally, since V (x) is radially
unbounded the zero solution x(k) ≡ 0 of (14.260) is globally asymptotically
stable for all ∆A ∈ ∆A.
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Corollary 14.11 is the deterministic version of Theorem 4.1 of [173]
involving quadratic Lyapunov bounds for addressing robust stability and
performance analysis of linear uncertain discrete-time systems. To demon-
strate the applicability of Corollary 14.11 consider the uncertain system
(14.260) with ∆A given by (11.59). For this uncertainty characterization
the bound Ω(·) satisfying (14.262) can now be given a concrete form.

Proposition 14.6. Let M ⊆ Sn denote the set of P ∈ Pn such that

M △
= {P ∈ Nn : Imδ

−BT
0 PB0 > 0}. (14.266)

Then the function

Ω(P ) = ATPB0(Imδ
−BT

0 PB0)
−1BT

0 PA+CT
0 NC0 (14.267)

satisfies (14.262) with ∆A given by (11.59).

Proof. The proof is a direct consequence of Proposition 14.2 with
P1f (x) = xTATP , P2f (x) = P , and m(hδ(x) = N1/2C0x.

Finally, as in the nonlinear case, we now combine the results of
Corollary 14.11 and Proposition 14.6 to obtain a sufficient condition for
guaranteeing robust stability and performance for the uncertain discrete-
time system (14.260).

Proposition 14.7. Consider the linear uncertain system (14.260). Let
R ∈ Pm, N ∈ Nn, and suppose there exists P ∈ M satisfying

P = ATPA+ATPB0(Imδ
−BT

0 PB0)
−1BT

0 PA+ CT
0 NC0 +R. (14.268)

Then A + ∆A is asymptotically stable for all ∆A ∈ ∆A given by (11.59),
and

sup
∆A∈∆A

J∆A(x0) ≤ xT
0 Px0, x0 ∈ Rn. (14.269)

14.13 Problems

Problem 14.1. Consider the system (14.1) and (14.2) with F (x, u, k)
= Ax+Bu and L(x, u, k) = xTR1x+ uTR2u, where A ∈ Rn×n, B ∈ Rn×m,
R1 ∈ Rn×n, and R2 ∈ Rm×m, such that R1 ≥ 0 and R2 > 0. Show that the
optimal control law characterized by the Bellman equation (14.10) is given
by

u(k) = −[R2 +BTP (k + 1)B]−1BTP (k + 1)Ax(k), (14.270)

where P (kf + 1) = 0 and

P (k) = ATP (k+1)A+R1−ATP (k+1)B[R2+BTP (k+1)B]−1BTP (k+1)A.
(14.271)
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Problem 14.2. Consider the cascade system

x(k + 1) = f(x(k)) +G(x(k))y(k), x(0) = x0, k ∈ Z+, (14.272)

x̂(k + 1) = Ax̂(k) +Bu(k), x̂(0) = x̂0, (14.273)

y(k) = Cx̂(k) +Du(k), (14.274)

where x̂ ∈ Rq, u, y ∈ Rm, A ∈ Rq×q, B ∈ Rq×m, C ∈ Rm×q, and D ∈ Rm×m,
with performance functional

J(x0, x̂0, u) =
∞
∑

k=0

L(x(k), x̂(k), u(k)), (14.275)

where (x(k), x̂(k)), k ∈ Z+, solves (14.272) and (14.273), and L(x, x̂, u) is
given by (14.276) and where

L(x, x̂, u)
△
= L1(x, x̂) + L2(x, x̂)u+ uTR2(x)u. (14.276)

Assume that (A,B,C,D) is strict feedback positive real, that is, there exist

a scalar ρ > 1 and matrices P̂ ∈ Pq, L ∈ Rl×q, W ∈ Rl×m, and K ∈ Rm×q

such that

1
ρ P̂ = (A + BK)TP̂ (A+BK) + LTL, (14.277)

BTP̂ (A+BK) = C +DK −WTL, (14.278)

D +DT = BTP̂B +WTW, (14.279)

and the nonlinear subsystem (14.272) has a globally stable equilibrium at
x(k) = 0, k ∈ Z+, and Lyapunov function Vsub(x) so that

Vsub(f(x)) < Vsub(x), x ∈ Rn, x 6= 0. (14.280)

Furthermore, assume there exist functions L2 : Rn × Rq → R1×m, P12 :
Rn → R1×m, and P2 : Rn → Nm such that

L2(0, 0) = 0, (14.281)

P12(0) = 0, (14.282)

Vsub(f(x) +G(x)y) = Vsub(f(x)) + P12(x)y + yTP2(x)y, (14.283)

yT{PT
12(x) + P2(x)Cx̂− 2Kx̂− (Im + 1

2P2(x)D)R−1
2 (x)

·[2(BTP̂A+DTP2(x)C)x̂+ LT
2 (x, x̂) +DTPT

12(x)]} ≤ 0,

(x, x̂) ∈ Rn × Rq, (14.284)

where R2(x)
△
= R2(x) + BTP̂B + DTP2(x)D and P̂ , K satisfy (14.277)–

(14.279). Show that the zero solution (x(k), x̂(k)) ≡ (0, 0) of the cascade
system (14.272) and (14.273) is globally asymptotically stable with the
feedback control law u = φ(x, x̂), where

φ(x, x̂) = −1
2R

−1
2 (x)[2(BTP̂A+DTP2(x)C)x̂+ LT

2 (x, x̂) +DTPT
12(x)].
(14.285)



NonlinearBook10pt November 20, 2007

DISCRETE-TIME NONLINEAR CONTROL 893

Furthermore, show that for (x0, x̂0) ∈ Rn × Rm,

J(x0, x̂0, φ(x(·), x̂(·))) = V (x0, x̂0), (14.286)

where
V (x, x̂) = Vsub(x) + x̂TP̂ x̂, (14.287)

and the performance functional (14.275), with

L1(x, x̂) = φT(x, x̂)R2(x)φ(x, x̂) + Vsub(x)

−Vsub(f(x) +G(x)Cx̂) + x̂T(P̂ −ATP̂A)x̂, (14.288)

is minimized in the sense that

J(x0, x̂0, φ(x(·), x̂(·))) = min
u∈S(x0,x̂0)

J(x0, x̂0, u(·)), (14.289)

where

S(x0, x̂0)
△
= {u(·) : u(·) ∈ U and (x(·), x̂(·)) given by

(14.272) and (14.273) satisfies (x(k), x̂(k)) → 0 as k → ∞}.

Problem 14.3. Consider the cascade system

x(k + 1) = f(x(k)) +G(x(k))y(k), x(0) = x0, k ∈ Z+, (14.290)

x̂(k + 1) = f̂(x̂(k)) + ĝ(x̂(k))u(k), x̂(0) = x̂0, (14.291)

y(k) = h(x̂(k)) + J(x̂(k))u(k), (14.292)

where x̂ ∈ Rq, u, y ∈ Rm, f̂ : Rq → Rq satisfies f̂(0) = 0, ĝ : Rq → Rq×m,
h : Rq → Rm satisfies h(0) = 0, and J : Rq → Rm×m, with performance
functional (14.275) where (x(k), x̂(k)), k ∈ Z+, solves (14.290) and (14.291),
and L(x, x̂, u) is given by (14.276). Assume that the input subsystem
(14.291) and (14.292) is feedback strictly passive and assume the subsystem
(14.290) has a globally stable equilibrium at x(k) = 0, k ∈ Z+, and
Lyapunov function Vsub(x) so that

Vsub(f(x)) < Vsub(x), x ∈ Rn, x 6= 0. (14.293)

Furthermore, assume there exist functions L2 : Rn × Rq → R1×m, P12 :
Rn → R1×m, and P2 : Rn → Nm such that

L2(0, 0) = 0, (14.294)

P12(0) = 0, (14.295)

Vsub(f(x) +G(x)y) = Vsub(f(x)) + P12(x)y + yTP2(x)y, (14.296)

yT

{

PT
12(x) + P2(x)h(x̂) − 2k(x̂) − (Im + 1

2P2(x)J(x̂))R−1
2a (x, x̂)[P̂T

12(x̂)

+2JT(x̂)P2(x)h(x̂) + LT
2 (x, x̂) + JT(x̂)PT

12(x)]

}

≤ 0, (x, x̂) ∈ Rn × Rq,

(14.297)
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where R2a(x, x̂)
△
= R2(x, x̂) + P̂2(x̂) + JT(x̂)P2(x)J(x̂) and k(x̂) satisfies

0 > Vs(f̂(x̂) + ĝ(x̂)k(x̂)) − Vs(x̂) + lT(x̂)l(x̂), x̂ 6= 0, (14.298)

0 = 1
2 P̂

T
12(x̂) + WT(x̂)l(x̂) − (h(x̂) + J(x̂)k(x̂)) + P̂2(x̂)k(x̂), (14.299)

0 = P̂2(x̂) + WT(x̂)W(x̂) − (J(x̂) + JT(x̂)). (14.300)

Show that the zero solution (x(k), x̂(k)) ≡ (0, 0) of the cascade system
(14.290) and (14.291) is globally asymptotically stable with the feedback
control law u = φ(x, x̂), where

φ(x, x̂) = −1
2R

−1
2a (x, x̂)[P̂T

12(x̂) + 2JT(x̂)P2(x)h(x̂) + LT
2 (x, x̂)

+JT(x̂)PT
12(x)]. (14.301)

Furthermore, show that for (x0, x̂0) ∈ Rn × Rm,

J(x0, x̂0, φ(x(·), x̂(·))) = V (x0, x̂0), (14.302)

where
V (x, x̂) = Vsub(x) + Vs(x̂), (14.303)

and the performance functional (14.275), with

L1(x, x̂) = φT(x, x̂)R2a(x, x̂)φ(x, x̂) + Vsub(x)

−Vsub(f(x) +G(x)h(x̂)) + Vs(x̂) − Vs(f̂(x̂)), (14.304)

is minimized in the sense that

J(x0, x̂0, φ(x(·), x̂(·))) = min
u∈S(x0,x̂0)

J(x0, x̂0, u(·)). (14.305)

Problem 14.4. Consider the discrete-time linear dynamical system

G(z) ∼
[

A D
E 0

]

,

where G ∈ RH∞. Define the discrete entropy of G at infinity by

I(G, γ)
△
= −γ2

2π

∫ π

−π
ln
∣

∣

∣
det(Im − γ−2G∗(eθ)G(eθ))

∣

∣

∣
dθ, (14.306)

and assume there exists a positive-definite matrix P ∈ Rn×n satisfying

P = ATPA+ATPD(γ2I −DTPD)−1DTPA+ ETE, (14.307)

where γ > 0. Show that the following statements hold:

i) The transfer function G satisfies |||G|||∞ ≤ γ.

ii) If |||G|||∞ < γ, then I(G, γ) ≤ −ln det(γ2I −DTPD).

iii) The H2 norm of G satisfies |||G|||2 ≤ I(G, γ).

iv) All real symmetric solutions to (14.307) are nonnegative definite.
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v) There exists a (unique) minimal solution to (14.307) in the class of
real symmetric solutions.

vi) P is the minimal solution to (14.307) if and only if ρ(A + D(γ2I −
DTPD)−1DTPA) < 1.

vii) |||G|||∞ < γ if and only if A+D(γ2I−DTPD)−1DTPA is Schur, where
P is the minimal solution to (14.307).

viii) If P is the minimal solution to (14.307) and |||G|||∞ < γ, then I(G, γ) =
−ln det(γ2I −DTPD).

Problem 14.5. Consider the controlled nonlinear dynamical system

x(k + 1) = F (x(k), u(k)) + J1(x(k))w(k), x(0) = x0, w(·) ∈ ℓ2, k ∈ Z+,

(14.308)

z(k) = h(x(k), u(k)) + J2(x(k))w(k), (14.309)

with performance functional

J(x0, u(·)) △
=

∞
∑

k=0

L(x(k), u(k)), (14.310)

where F : D × U → Rn is continuous and satisfies F (0, 0) = 0, J1 : D →
Rn×d, h : D × U → Rp satisfies h(0, 0) = 0, J2 : D → Rp×d, L : D × U → R,
and u(·) ∈ U is an admissible control. Assume there exist functions V : D →
R, Γ : D × U → R, P1w : D × U → R1×d, P2w : D × U → Nd, and a control
law φ : D → U such that V (·) is continuous and

P1w(0, 0) = 0, (14.311)

V (0) = 0, (14.312)

V (x) > 0, x ∈ D, x 6= 0, (14.313)

φ(0) = 0, (14.314)

V (F (x, φ(x))) − V (x) < 0, x ∈ D, x 6= 0, (14.315)

P1w(x, φ(x))w + wTP2w(x, φ(x))w ≤ r(z,w) + L(x, φ(x)) + Γ(x, φ(x)),

x ∈ D, w ∈ W, (14.316)

V (F (x, u) + J1(x)w) = V (F (x, u)) + P1w(x, u)w

+wTP2w(x, u)w,

x ∈ D, u ∈ U, w ∈ W, (14.317)

H(x, φ(x)) = 0, x ∈ D, (14.318)

H(x, u) ≥ 0, x ∈ D, u ∈ U, (14.319)

where

H(x, u)
△
= V (F (x, u)) − V (x) + L(x, u) + Γ(x, u). (14.320)
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Show, with the feedback control u(·) = φ(x(·)), that there exists a
neighborhood D0 ⊆ D of the origin such that if x0 ∈ D0 and w(k) ≡ 0, the
solution zero x(k) ≡ 0 of the closed-loop system is locally asymptotically
stable. If, in addition, Γ(x, φ(x)) ≥ 0, x ∈ D, then show

J(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = V (x0), (14.321)

where

J (x0, u(·)) △
=

∞
∑

k=0

[L(x(k), u(k)) + Γ(x(k), u(k))] (14.322)

and where u(·) is admissible and x(k), k ∈ Z+, solves (14.308) with w(k) ≡ 0.
Furthermore, if x0 ∈ D0 show that the feedback control u(·) = φ(x(·))
minimizes J (x0, u(·)) in the sense that

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)), (14.323)

where S(x0) is the set of regulation controllers for the system (14.308) with
w(k) ≡ 0 and x0 ∈ D. Finally, show that the solution x(k), k ∈ Z+, of
(14.308) satisfies the dissipativity constraint

k
∑

i=0

r(z(i), w(i)) + V (x0) ≥ 0, w(·) ∈ ℓ2, k ∈ Z+. (14.324)

Problem 14.6. Consider the linear discrete-time system

x(k + 1) = Ax(k) +Bu(k) +Dw(k), x(0) = x0, k ∈ Z+, w(·) ∈ ℓ2,

(14.325)

z(k) = E1x(k) + E2u(k), (14.326)

with performance functional

J(x0, u(·)) =

∞
∑

k=0

[xT(k)R1x(k) + uT(k)R2u(k)], (14.327)

where A ∈ Rn×n, B ∈ Rn×m, D ∈ Rn×d, E1 ∈ Rp×n, E2 ∈ Rp×m, R1
△
=

ET
1 E1 > 0, R2

△
= ET

2 E2 > 0, and u(·) is admissible. Assume there exists
P ∈ Pn such that

P = ATPA+R1 +ATPD(γ2Id −DTPD)−1DTPA− PT
a R

−1
2a Pa, (14.328)

where γ > 0 and

R2a
△
= R2 +BTPB +BTPD(γ2Id −DTPD)−1DTPB,

Pa
△
= BTPA+BTPD(γ2Id −DTPD)−1DTPA.

Show that, with the feedback control law u = φ(x) = −R−1
2a Pax, the closed-

loop undisturbed (w(k) ≡ 0) system (14.325) is globally asymptotically
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stable for all x0 ∈ Rn. Furthermore, show

J(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = xT
0 Px0, (14.329)

where

J (x0, u(·)) =
∞
∑

k=0

[(DTP (Ax(k) +Bu(k)))T(γ2Id −DTPD)−1(DTP (Ax(k)

+Bu(k))) + xT(k)R1x(k) + uT(k)R2u(k)], (14.330)

and where u(·) is admissible and x(k), k ∈ Z+, solves (14.325) with w(k) ≡
0. In addition, show

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)), (14.331)

where S(x0) is the set of regulation controllers for the system (14.325) with
w(k) ≡ 0 and x0 ∈ Rn. Finally, if x0 = 0 show that, with u = φ(x), the
solution x(k), k ∈ Z+, of (14.325) satisfies the nonexpansivity constraint

k
∑

i=0

zT(i)z(i) ≤ γ2
k
∑

i=0

wT(i)w(i), w(·) ∈ ℓ2, k ∈ Z+, (14.332)

or, equivalently, |||G̃(z)|||∞ ≤ γ, where K
△
= −R−1

2a Pa and

G̃(z) ∼
[

A+BK D
E1 + E2K 0

]

.

Problem 14.7. Let p = d and consider the linear system (14.325) with
performance variables

z(k) = E1x(k) + E2u(k) + E∞w(k), (14.333)

and performance functional (14.327). Assume there exists P ∈ Pn such that

P = ATPA+R1 +(DTPA−E1)
TR−1

0 (DTPA−E1)−PT
s R

−1
2s Ps, (14.334)

where

R0
△
= E∞ + ET

∞ −DTPD,

R2s
△
= BTPB +R2 + (DTPB − E2)

TR−1
0 (DTPB − E2),

Ps
△
= BTPA+ (DTPB − E2)

TR−1
0 (DTPA− E1).

Show that, with the feedback control law u = φ(x) = −R−1
2s Psx, the closed-

loop undisturbed (w(k) ≡ 0) system (14.325) is globally asymptotically
stable for all x0 ∈ Rn. Furthermore, show

J(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = xT
0 Px0, (14.335)

where

J (x0, u(·))
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=

∞
∑

k=0

[xT(k)(R1 + (DTPA− E1)
TR−1

0 (DTPA− E1))x(k) + uT(k)

·(R2s −BTPB)u(k) + 2xT(k)(DTPA− E1)
TR−1

0 (DTPB − E2)u(k)],

(14.336)

and where u(·) is admissible and x(k), k ∈ Z+, solves (14.325) with w(k) ≡
0. In addition, show

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)), (14.337)

where S(x0) is the set of regulation controllers for the system (14.325) with
w(k) ≡ 0 and x0 ∈ Rn. Finally, if x0 = 0 show that, with u = φ(x), the
solution x(k), k ∈ Z+, of (14.325) satisfies the passivity constraint

k
∑

i=0

2zT(i)w(i) ≥ 0, w(·) ∈ ℓ2, k ∈ Z+, (14.338)

or, equivalently, G̃∞(z) + G̃∗
∞(z) ≥ 0, |z| > 1, where K = −R−1

2s Ps and

G̃∞(z) ∼
[

A+BK D
E1 + E2K E∞

]

.

Problem 14.8. Consider the controlled uncertain dynamical system

x(k + 1) = F (x(k), u(k)), x(0) = x0, k ∈ Z+, (14.339)

with performance functional

J(x0, u(·)) △
=

∞
∑

k=0

L(x(k), u(k)), (14.340)

where F (·, ·) ∈ F ⊂ {F : D×U → Rn : F (0, 0) = 0}, F denotes the class of
uncertain closed-loop systems with F0(·, ·) ∈ F defining the nominal closed-
loop system, L : D×U → R, and u(·) is an admissible control. Assume there
exist functions V : D → R, Γ : D × U → R, and a control law φ : D → U
such that V (·) is continuous and

V (0) = 0, (14.341)

V (x) > 0, x ∈ D, x 6= 0, (14.342)

φ(0) = 0, (14.343)

V (F (x, φ(x))) ≤ V (F0(x, φ(x))) + Γ(x, φ(x)), x ∈ D, F (·, ·) ∈ F ,
(14.344)

V (F0(x, φ(x))) − V (x) + Γ(x, φ(x)) < 0, x ∈ D, x 6= 0, (14.345)

H(x, φ(x)) = 0, x ∈ D, (14.346)

H(x, u) ≥ 0, x ∈ D, u ∈ U, (14.347)
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where

H(x, u)
△
= L(x, u) + V (F0(x, u)) − V (x) + Γ(x, u). (14.348)

Show that, with the feedback control u(·) = φ(x(·)), there exists a
neighborhood D0 ⊆ D of the origin such that if x0 ∈ D0, the zero solution
x(k) ≡ 0 of the closed-loop system is locally asymptotically stable for all
F (·, ·) ∈ F . Furthermore, show

sup
F (·,·)∈F

J(x0, φ(x(·))) ≤ J (x0, φ(x(·))) = V (x0), (14.349)

where

J (x0, u(·)) △
=

∞
∑

k=0

[L(x(k), u(k)) + Γ(x(k), u(k))], (14.350)

and where u(·) is admissible and x(k), k ∈ Z+, solves (14.339) with
F (x(k), u(k)) = F0(x(k), u(k)). In addition, if x0 ∈ D0 show that the
feedback control u(·) = φ(x(·)) minimizes J (x0, u(·)) in the sense that

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)), (14.351)

where S(x0) is the set of regulation controllers for (14.339) with F (·, ·) =
F0(·, ·).

14.14 Notes and References

The principle of optimality is due to Bellman [36]. The Bellman equation was
developed by Richard E. Bellman [36] in the late 1950s and is the functional
equation of dynamic programming. For a modern textbook treatment, see
Kirk [239] and Bryson and Ho [72].

The results in Sections 11.2–11.6 on stability analysis and optimal
and inverse optimal control of nonlinear discrete-time systems are due
to Haddad and Chellaboina [155] and Haddad, Chellaboina, Fausz, and
Abdallah [165]. In particular, [155,165] give an overview of the discrete-time,
nonlinear-nonquadratic control problem with polynomial and multilinear
cost functionals. A brief treatment of nonlinear-nonquadratic discrete-
time optimal control is also given by Jacobson [217]. For a treatment
on stabilization of discrete-time nonlinear systems see Tsinias [432] and
Byrnes, Lin, and Ghosh [79]. Gain, sector, and disk margins of nonlinear-
nonquadratic optimal regulators are due to Chellaboina and Haddad [86].
The original work on gain and phase margins of linear-quadratic discrete-
time optimal regulators is due to Willems and van de Voorde [459] and
Shaked [397]. Later extensions were presented by Lee and Lee [262]. The
discrete-time nonlinear disturbance rejection framework using dissipativity,
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passivity, and nonexpansivity concepts presented in Sections 11.10–11.12 is
due to Haddad, Chellaboina, and Wu [168]. See also Lin and Byrnes [280].
The linear discrete-time mixed-norm H2/H∞ problem was formulated by
Haddad, Bernstein, and Mustafa [154]. A state space approach to linear
discrete-time H∞ can be found in Stoorvogel [418] and Iglesias and Glover
[211].

Finally, the stability analysis of nonlinear uncertain discrete-time
systems presented in Section 14.12 is a generalization of the linear discrete-
time guaranteed cost control framework developed by Haddad, Huang, and
Bernstein [173] and Haddad and Bernstein [148,149].
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[360] H. Poincaré, “Sur les Proprietes des Fonctions Definies par les

Equations aux Differences Partielles,” in Oeuvres, vol. 1. Paris:

Gauthier-Villars, 1929.

[361] V. M. Popov, “Absolute Stability of Nonlinear Systems of Automatic

Control,” Automatika Telemekhanika, vol. 22, pp. 961–978, 1961.

[362] V. M. Popov, “Absolute Stability of Nonlinear Systems of Automatic

Control,” Autom. Remote Control, vol. 22, pp. 857–875, 1962.

[363] V. M. Popov, “Hyperstability and Optimality of Automatic Systems

with Several Control Functions,” Rev. Electrotech. Energie Acad. Rep.

Pop. Rom., vol. 9, 1964.

[364] V. M. Popov, Hyperstability of Control Systems. New York: Springer,

1973.

[365] R. H. Rand, R. J. Kinsey, and D. L. Mingori, “Dynamics of Spinup

Through Resonance,” Int. J. Non-Linear Mech., vol. 27, pp. 489–502,

1992.

[366] Z. V. Rekasius, “Suboptimal Design of Intentionally Nonlinear

Controllers,” IEEE Trans. Autom. Control, vol. 9, pp. 380–386, 1964.

[367] M. A. Rotea, “The Generalized H2 Control Problem,” Automatica,

vol. 29, pp. 373–385, 1993.

[368] N. Rouche, P. Habets, and M. Laloy, Stability Theory by Liapunov’s

Direct Method. New York: Springer, 1977.

[369] E. J. Routh, A Treatise on the Stability of a Given State of Motion.

London: Macmillan, 1877.

[370] E. J. Routh, The Advanced Part of a Treatise on the Dynamics of a

System of Rigid Bodies. New York: Dover, 1955.

[371] H. L. Royden, Real Analysis. New York: Macmillan, 1988.



NonlinearBook10pt November 20, 2007

930 BIBLIOGRAPHY

[372] E. N. Rozenvasser, “On the Construction of a Lyapunov Function for

a Class of Nonlinear Systems,” Tzevestia Akad. Nauk SSSR, OTN,

vol. 2, 1960.

[373] W. Rudin, Principles of Mathematical Analysis, 3rd edition. New

York: McGraw-Hill, 1976.

[374] V. V. Rumyantsev, “On the Stability of Motion with Respect to Part

of the variables,” Vestn. Mosk. Unive. Ser. Mat. Mekh. Fiz. Astron.

Khim., vol. 4, pp. 9–16, 1957.

[375] E. P. Ryan, “Optimal Feedback Control of Saturating Systems,” Int.

J. Control, vol. 35, pp. 531–534, 1982.
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absolute stability theory,

372
absolute sum norm, 15
absolute value theorem

for integrals, 64
accumulation point, 23
action integral, 467
adaptive controller, 189
adherent point, 23
Aizerman conjecture, 374
algebraic system, 57
almost everywhere, 60
analysis, 10
analytic function, 362
arcwise connected set, 31
asymptotically stable,

136
discrete-time system,

765, 783
funcitional dynamical

system, 200
periodic orbit, 291
time-varying system,

226
asymptotically stable

matrix, 172
asymptotically stable set,

283

asymptotically stable
with respect to x1,
210

asymptotically stable
with respect to x1

uniformly in x20, 211
attracting set, 102
attractive set, 283
attractor, 103
autonomous dynamical

system, 10
available exponential

storage, 329
available geometric

storage, 799
available storage, 329

discrete-time system,
799

time-varying systems,
398
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system, 581

B

backstepping control, 557
Banach fixed point

theorem, 68
Banach space, 67
Barbalat lemma, 221
Barbashin-Krasovskii-

LaSalle theorem,
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discrete-time system,
770

Bellman equation, 849

Bellman principle of
optimality, 443

discrete-time system,
846

Bendixson theorem, 106
bijective map, 32
binary operation, 56
block cascade system,

456, 562
block structured

uncertainty, 728
Bolzano-Lebesgue

theorem, 28
Bolzano-Weierstass

theorem, 27
boundary, 23
bounded, 241

discrete-time system,
791

bounded convergence
theorem, 121

bounded function, 37
bounded operator, 70
bounded real lemma, 367

discrete-time system,
821

nonlinear systems, 355
bounded real transfer

function, 362
discrete-time system,

817
bounded sequence, 25
bounded set, 24
bounded trajectory, 99

discrete-time system,
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bounded with respect to
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discrete-time system,
786

boundedness, 236
discrete-time system,

786
Brouwer fixed point

theorem, 123

C

Cartesian product, 21
Casimir functions, 159
Cauchy sequence, 25

normed linear space, 66
vectors, 27

Cauchy-Schwarz
inequality, 16

causal operator, 473
causality, 3
ceiling function, 44
centrifugal flow

compression system,
587

chain rule, 52
Chetaev instability

theorem, 170
circle criterion, 380

discrete-time system,
841

operator form, 507
circle theorem, 378
class K function, 162
class KL function, 162
class K∞ function, 162
class L function, 162
closed curve, 106
closed dynamical system,

328
closed set, 23
closure, 23
closure point, 22
cluster point, 23
codomain, 32
compact set, 24, 60
comparison principle,

126, 253

compatible norms, 19
complement, 21
complete space, 67
complete vector field, 451
completely null

controllable, 330
discrete-time system,

800

completely reachable, 330
discrete-time system,

799
completeness axiom, 26
complex multiplier

functions, 723
complex uncertainty, 722,

731
complex-µ, 731
connected component, 31
connected set, 30
construction of Lyapunov

functions, 152
contact point, 23
continuous function, 38
continuously

differentiable
function, 48

control Lyapunov
function, 438

discrete-time system,
833

controlled dynamical
system, 10

convergence lemma, 201
convergent sequence, 25

of functions, 36
convergent system, 261
converse Lyapunov

theorems, 161
asymptotic stability,

163
discrete-time system,

772
exponential stability,

165
finite-time stability, 258
partial stability, 223
semistability, 265

time-varying systems,
235

converse vector Lyapunov
theorem, 310

convex function, 35
convex hull, 31
convex set, 31
convolution operator, 490
countable set, 33
countably infinite set, 33
cover, 60
critically minimum

phase, 450
cyclo-dissipative, 388
cyclo-lossless, 389

D

decreasing function, 37
dense set, 24
denumerable set, 33
derived set, 23
diffeomorphic sets, 49
diffeomorphism, 49
differentiable function, 48
Dirichlet function, 64
discontinuous function,

38
discrete entropy, 894
discrete trajectory, 764
discrete-time Riccati

equation, 867
disjoint sets, 21
disk margin, 434
dissipation inequality,

325, 329, 330
discrete-time system,

798
dissipative system, 329

discrete-time system,
798

dissipativity and robust
stability, 666

dissipativity theory, 325
distribution, 449
disturbance rejection

discrete-time system,
872
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control, 603, 617

multilinear
performance criteria,
633

polynomial
performance criteria,
633

disturbed dynamical
system, 10

divergence operator, 106
divergent sequence, 25
domain, 32
domain of attraction, 143

discrete-time system,
767

set, 284
domain of semistability,

261
dominated convergence

theorem, 121
dual norm, 487
Duffing equation, 108,

417
Dulac theorem, 109
dynamic, 2
dynamical invariants, 159
dynamical system, 1, 2,

71

E

element of a set, 21
empty set, 21
energy function, 140
energy-based control, 420
energy-Casimir method,

158
energy-Casimir theorem,

159
entropy, 638
equi-induced norm, 19
equilibrium point, 11

discrete-time system,
765

equivalent norms, 16
equivalent sets, 33

essentially nonnegative
matrix, 183

essentially nonnegative
vector field, 198

Euclidean norm, 15
Euler-Lagrange equation,

340
with dissipation, 341

exponential storage
function, 331

exponentially
cyclo-dissipative, 388

exponentially dissipative
system, 329

exponentially
nonexpansive, 352

exponentially passive,
352

exponentially stable, 136
time-varying system,

226
exponentially stable with

respect to x1

uniformly in x20, 211
extendability of

solutions, 85
extended Lm

p
space, 474

F

feedback equivalent
systems, 448

feedback interconnections
of dissipative
systems, 411

discrete-time system,
825

feedback linearizable, 447
feedback linearizable

system, 449
feedback passive, 452
field, 57
finite cover, 60
finite escape time, 75
finite set, 33
finite-time convergence,

254
finite-time stability, 252

finite-time stable, 194,
254

time-varying systems,
318

first law of
thermodynamics, 404

fixed point, 68
floor function, 43
flow, 72
frequency-dependent

scaling, 723
Frobenius norm, 18
function, 32
functional dynamical

system, 199

G

gain margin, 434
generalized energy

balance equation, 350
generalized global

invariant set theorem,
289

generalized invariant set
theorem, 288

generalized Lyapunov
function, 271

generalized Lyapunov
function candidate,
271

generalized Lyapunov
surfaces, 276

generalized Lyapunov
theorem

for sets, 284
generalized Lyapunov

theorems, 268
generalized momenta,

341
generalized power

balance equation, 350
geometric dissipation

inequality, 798
geometric storage

function, 800
geometrically dissipative

system, 798
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geometrically stable, 765,
784

global diffeomorphism,
469

global existence of
solutions, 88

global invariant set
theorem, 151

globally asymptotically
stable, 136

discrete-time system,
765, 784

time-varying system,
226

globally asymptotically
stable set, 283

globally asymptotically
stable with respect to
x1, 211

globally asymptotically
stable with respect to
x1 uniformly in x20,
211

globally bounded, 241
discrete-time system,

791
globally bounded with

respect to x1

uniformly in x2, 237
discrete-time system,

786
globally exponentially

stable, 136
time-varying system,

226
globally exponentially

stable with respect to
x1 uniformly in x20,
211

globally finite-time
stable, 194, 254

globally geometrically
stable, 784

discrete-time system,
765

globally Lipschitz
continuous function,
46

globally semistable
equilibrium, 261

globally semistable
system, 261

globally ultimately
bounded with bound
ε, 241

discrete-time system,
791

globally ultimately
bounded with respect
to x1 uniformly in x2

with bound ε, 237
discrete-time system,

786
globally uniformly

asymptotically stable
discrete-time system,

784
time-varying system,

226
globally uniformly

bounded, 239
discrete-time system,

789
globally uniformly

finite-time stable
time-varying systems,

318
globally uniformly

ultimately bounded
with bound ε, 239

discrete-time system,
789

gradient, 52
gradient dynamical

system, 199
graph, 36
Gronwall lemma, 80
Gronwall-Bellman

lemma, 125
group, 57

H

H2 Hardy space, 513
discrete-time system,

851

H2 norm, 514
discrete-time system,

852
H2/positivity analysis,

613
H∞ control theory, 603
H∞ norm, 485
Hamilton principle of

least action, 467
Hamilton-Jacobi-Bellman

equation, 191, 446,
521

nominal system, 671
Hamilton-Jacobi-Isaacs

equation, 605
Hamiltonian dynamical

system, 340, 344
Hamiltonian function,

343
Hankel norm, 498
higher-order Lie brackets,

449
higher-order Lie

derivative, 449
Hilbert space, 122
Hölder constant, 117
Hölder continuous

function, 117
Hölder inequality, 15

for functions, 506
Hölder norms, 14
homeomorphic sets, 49
homeomorphism, 49
homogeneous function,

116
Hurwitz matrix, 172, 515
hyperplane, 36

I

identity function, 32
image, 33
implicit function

theorem, 53
impulse response matrix

function, 472
increasing function, 37
indexed family of sets, 22
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induced convolution
operator norms, 489

induced matrix norm, 19

infimum, 25
infinite set, 33
infinity norm, 15
injective map, 32

inner product space, 122
input strict passive, 351
input-output

dissipativity, 478
input-output operator

dissipativity, 481
input-output stability,

472

input-output stability
and Lyapunov
stability, 483

input-output strict
passive, 351

input-to-output stable,
638

input-to-state stability,
245

input-to-state stable, 246
instability theorems

time-varying systems,
235

integral equation, 74
integrals of motion, 159
integrator backstepping,

559
interior, 22
interior point, 22

intersection, 21
invariant set, 97

discrete-time system,
768

invariant set stability
theorems, 147

discrete-time system,
768

inverse function theorem,
53

inverse image, 33
inverse optimal control,

522

discrete-time system,
860

inverse optimality of
nonlinear regulators,
536

invertible function, 32
involutive distribution,

449
Isaacs equation, 604
isocline method, 132
isolated equilibrium

point, 12
isolated point, 22
isolated system, 2

J

Jacobian, 52
Jordan decomposition,

171
Jordan form, 171
Jurdjevic-Quinn system,

464

K

Kalman conjecture, 374
Kalman-Yakubovich-

Popov
equations

nonlinear discrete-time
systems, 807

nonlinear systems, 346
Kamke condition, 300
Krasovskii method, 154
Krasovskii theorem, 155

L

L1 norm, 485, 500
Lp space, 65
ℓp space, 508
Lm

p
-norm, 473

Lp-stable, 474
Lp-stable with finite

gain, 474
Lp-stable with finite gain

and zero bias, 474

Lm

∞
-norm, 474

Lagrange stability, 236
discrete-time system,

786
Lagrange stable, 239, 241

discrete-time system,
789, 791

Lagrange stable with
respect to x1, 237

discrete-time system,
786

Lagrange-Dirichlet
problem, 218

Lagrange-Dirichlet
stability problem, 210

Lagrangian, 341
Lagrangian dynamical

system, 340
Landau order, 13
LaSalle-Yoshizawa

theotem, 234
Lebesgue integrable, 63
Lebesgue integral, 65
Lebesgue integration, 63
Lebesgue measurable set,

61
Lebesgue measure, 61, 65
Lebesgue normed space,

474
left continuous function,

45
left invertible function,

32
left piecewise continuous

function, 45
Legendre transformation,

341
Leibnitz integral rule,

385
Lie bracket, 449
Lie derivative, 449
Lienard system, 132, 186
limit cycle, 106
limit inferior, 26
limit point, 23
limit superior, 26
linear autonomous

system, 11
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linear periodic system, 11
linear time-varying

system, 11
linear vector space, 57
linearization of

dissipative
discrete-time systems,
814

linearization of
dissipative systems,
358

Lipschitz constant, 45
Lipschitz continuous

function, 45
locally controllable, 333
loop gain, 463
Lorentz equations, 525
lossless system, 329

discrete-time system,
798

Lotka-Volterra equations,
198

lower semicontinuous
function, 43

Luré problem, 374
Luré-Postnikov

Lyapunov function,
373

Lyapunov and
asymptotic stability
of sets, 283

Lyapunov equation, 173
Lyapunov first instability

theorem, 167
Lyapunov function, 140

discrete-time system,
767

Lyapunov function
candidate, 140

discrete-time system,
767

Lyapunov functional, 200
Lyapunov indirect

method
discrete-time system,

836
stabilization, 180

Lyapunov indirect

theorem, 177
Lyapunov instability

theorems, 167
Lyapunov level surfaces,

140
Lyapunov second

instability theorem,
169

Lyapunov stability
theory, 136

Lyapunov stable, 136
discrete-time system,

765, 783
functional dynamical

system, 200
periodic orbit, 290
time-varying system,

226
Lyapunov stable matrix,

172
Lyapunov stable set, 283
Lyapunov stable with

respect to x1, 210
Lyapunov stable with

respect to x1

uniformly in x20, 210
Lyapunov theorem, 137

discrete-time system,
765

finite-time stability, 257
linear systems, 173
partial stability, 212
semistability, 263
time-varying discrete

systems, 784
time-varying systems,

228
Lyapunov-Krasovskii

functional, 639

M

Massera lemma, 162
Mathieu equation, 315,

405
matrix norm, 18
maximal interval of

existence, 74

mean value theorem, 53
meaningful cost

functional, 540
measurable function, 61
measurable set, 61
measurable space, 63
measure, 60
measure of a set, 61
minimum input energy,

389
minimum phase, 450
Minkowski inequality, 14

for functions, 506
mixed H2/ℓ1 problem,

882
mixed H2/positivity

synthesis, 621
mixed H2/L1 problem,

615
mixed-µ analysis, 724
mixed-µ theory, 722
mixed-norm H2/H∞

problem, 603
mixed-norm H2/H∞

synthesis, 619
mixed-norm H2/H∞

analysis, 611
monotone convergence

theorem, 37
for integrals, 121

monotone norm, 487
monotonic function, 37
multilinear function, 515

N

Nash differential game
problem, 604

negative limit point, 97
negative limit set, 97
negative orbit, 97
negatively invariant set,

97
neighborhood, 22
nondecreasing functions,

301
nonexpansive, 351
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nonexpansive control
Lyapunov functions,
631

nonnegative dynamical
system, 183

nonnegative matrix, 836
nonnegative vector field,

837
nonparametric

uncertainty, 719
nonsingular transfer

function, 370
normal rank, 370
normalized norm, 19
normed linear space, 59
nowhere dense set, 24

O

ω-limit set, 97
off-axis circle criterion,

406
one-to-one map, 32
onto map, 32
open ball, 22
open cover, 60
open dynamical system,

328
open set, 22
optimal block

backstepping control
linear systems, 569
nonlinear systems, 573

optimal control, 511
multilinear

performance criteria,
528

polynomial
performance criteria,
526

optimal control for linear
discrete-time system,
866

optimal control problem,
442

discrete-time system,
846

optimal discrete-time
nonlinear control, 856

optimal integrator
backstepping control,
566

optimal linear control,
538

optimal nonlinear
control, 519

orbit, 97
ordered elements, 21
orthogonal complement,

119
orthogonal vectors, 119
outer measure, 60
output strict passive, 351

P

p-norms, 14
parabola criterion, 406
parameter-dependent

Lyapunov bounds,
737

parameter-dependent
Lyapunov function,
720

parametric uncertainty,
719

Parseval theorem, 363
Parseval’s theorem

discrete-time system,
840

partial derivative, 50
partial stability, 207
partial stabilization, 208
partial stabiltiy

discrete-time system,
776

partition of a set, 21
passive, 351
Peano theorem, 76
period, 11, 104
periodic dynamical

system, 11
periodic orbit, 104
periodic solution, 104
phase plane, 132

phase portrait, 132
Picard method of

successive
approximations, 124

piecewise continuous
function, 44

piecewise continuously
differentiable
function, 45

Poincaré-Bendixson
theorem, 109

Poincaré return map, 291
Poincaré stability

theorem, 293
polynomial function, 361
Popov criterion, 383

operator form, 507
Popov line, 386
Popov plane, 385
Popov plot, 386
port-controlled

Hamiltonian system,
190, 344, 421

positive limit point, 97
discrete-time system,

768
positive limit set, 97

discrete-time system,
768

positive orbit, 97
positive real lemma

discrete-time system,
818

nonlinear systems, 355
positive real transfer

function, 362
discrete-time system,

817
positively homogeneous

function, 116
positively invariant set,

97
discrete-time system,

768
positivity theorem, 375

discrete-time system,
840

practical stability, 236
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proper function, 362
proper subset, 21
Pythagorean theorem,

111

Q

quadratic Lyapunov
bounds, 660

quasiconvex function, 758
quasimonotone functions,

300

R

radially unbounded
function, 144

range, 32
rational function, 362
rational transfer

function, 362
Rayleigh dissipation

function, 341
real Jordan

decomposition, 176
real Jordan form, 176
relative degree, 450
remainder, 50
required exponential

supply, 336
required geometric

supply, 804
required supply, 336

discrete-time system,
804

time-varying systems,
398

residue matrix, 363
resource norms, 487
reversible flows, 73
Riccati equation, 538,

548
Riemann integration, 61
right continuous

function, 45
right invertible function,

32

right maximal interval of
existence, 87

right piecewise
continuous function,
45

ring, 57
robust control

multilinear
performance criteria,
694, 754

polynomial
performance criteria,
686

via
parameter-dependent
Lyapunov functions,
743

robust control Lyapunov
function, 685

robust optimal control,
669

robust performance, 650,
651

robust stability, 372, 650,
651

discrete-time system,
884

parameter-dependent
Lyapunov functions,
731

rotating stall, 581

S

Schauder fixed point
theorem, 123

Schur matrix, 853
second law of

thermodynamics, 404
sector condition, 373
sector margin, 434
self-dual realization, 395
semigroup, 57
semistability, 260
semistable, 194

discrete-time system,
835

semistable equilibrium,
261

semistable system, 261
sequence of scalars, 25
sequence of vectors, 26
set, 21
set of measure zero, 60
set theory, 21
settling-time function,

194, 254
shaped Hamiltonian, 346,

432
shaped Hamiltonian

function, 422
shifted Luré-Postnikov

Lyapunov function,
406

shifted Popov criterion,
405

simply connected set, 106
small gain theorem, 379,

476, 477
discrete-time system,

840
small gain-type

uncertainty, 655
solution curve, 72
solution of a differential

equation, 74
solution sequence, 764
spatial norm, 65
spectral abscissa, 515
spectral radius, 852
spool dynamics, 593
stability margins, 434

discrete-time system,
830, 863

stability margins for
nonlinear regulators,
529

stability multipliers, 387
stability of periodic

orbits, 290
stability Popov

multiplier, 386
stability theory

time-varying systems,
225
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star-norm, 503
state, 1
storage function, 330

discrete-time system,
800

strict bounded real
lemma, 368

nonlinear systems, 357
strict positive real

lemma, 365
discrete-time system,

819
nonlinear systems, 357

strict-feedback system,
563

strictly bounded real
lemma

discrete-time system,
822

strictly bounded real
transfer function, 362

discrete-time system,
817

strictly convex function,
35

strictly decreasing
function, 37

strictly dissipative, 336
strictly increasing

function, 37
strictly passive, 351
strictly positive real

transfer function, 362
discrete-time system,

817
strictly proper function,

362
strictly proper transfer

function, 362
strongly bounded real

transfer function, 362
strongly positive real

transfer function, 362
structured disk margin,

435
structured uncertainty,

722
submultiplicative norm,

19
submultiplicative triple,

18
subsequence, 27
subset, 21
subspace, 58
sum of sets, 59
supply rate, 328

discrete-time system,
798

supremum, 25
surge, 581

deep surge, 587
surjective map, 32
susceptible-infected-

removed model,
197

synthesis, 10
system, 1
Szegö criterion, 841

T

temporal norm, 65
time-invariant dynamical

system, 10
time-varying dynamical

system, 94
topological mapping, 49
topologically equivalent

sets, 49
topologically equivalent

systems, 125
trajectory, 72
transmission zero, 468
triangle inequality, 14

U

ultimate boundedness,
236

discrete-time system,
786

ultimately bounded with
bound ε, 241

discrete-time system,
791

ultimately bounded with
respect to x1

uniformly in x2 with
bound ε, 237

discrete-time system,
786

uncontrolled dynamical
system, 10

undisturbed dynamical
system, 10

undisturbed system, 2
uniform convergence, 36
uniformly asymptotically

stable
discrete-time system,

784
time-varying system,

226
uniformly bounded, 239

discrete-time system,
789

uniformly bounded
function, 56

uniformly continuous
function, 40

uniformly finite-time
stable

time-varying systems,
318

uniformly Lipschitz
continuous function,
46

uniformly Lyapunov
stable

discrete-time system,
783

time-varying system,
226

uniformly ultimately
bounded with bound
ε, 239

discrete-time system,
789

union, 21
universal set, 21
unstable, 137

discrete-time system,
765
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unstable set, 283
update law, 189
upper right Dini

derivative, 265
upper semicontinuous

function, 43

V

van der Pol oscillator,
108

variable gradient
method, 152

vector comparison
principle, 302

vector energy-Casimir
function, 430

vector field, 73

for time-varying
systems, 95

vector Lyapunov
function, 307

vector Lyapunov
theorem, 304

discrete-time system,
794

time-varying discrete
systems, 797

time-varying systems,
311

vector norm, 14
virtual available

exponential storage,
388

virtual available storage,
329, 388

virtual exponential
storage function, 388

virtual storage function,
388

W

Weierstrass theorem, 44
worst-case H2 norm, 664

Z

zero dynamics, 450
zero-state observable, 335

discrete-time system,
803

Zubov method, 157
Zubov theorem, 157
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