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Chapter 1

Introduction

Long term response and stability of rock engineering structures such as tunnels, under-
ground openings, slopes and stone-made cultural assets have been receiving great
attention since early times. Furthermore, the stability of the room and pillar mines
during exploitation and after abandoning is also of great concern (Figure 1.1). There
are many causes affecting their long term response and stability, such as sustained
loading with or without additional loads resulting from various sources of blasting,
machine vibration and earthquakes, freezing and thawing, and weathering due to
physical and chemical actions of the percolating fluids.

Figure 1.1 Collapse of some underground openings involving time-dependent characteristics of rocks.
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2 Time-dependency in rock mechanics and rock engineering

Figure 1.2 Some nuclear power plants and underground nuclear waste disposal caverns.

The nuclear waste disposal projects in countries utilizing nuclear energy and/or
nuclear weapons require the consideration of a very long time span of at least 10,000
years for the assessment of response and stability of underground disposal facilities in
rock. Particularly, the nuclear waste disposal projects involve very complex interactions
of thermal, hydrological, diffusive and mechanical phenomena (Figure 1.2).

In Geo-science, it is well known that faults and the earth’s crust show creep-like
responses. Some case histories from San Andreas and North Anatolian fault are well
documented. The crustal deformation response before the 2003 Miyagi-Hokubu earth-
quake in Japan was very similar to what is observed in creep experiments (Figure 1.3).
There are also many experimental studies on the creep and relaxation behaviour of
crustal rocks under different temperature regimes. The creep test is an experiment car-
ried out under sustained loading condition. The load is generally applied in a step-like
fashion. For time dependent or rate-dependent characteristics of rocks, there are dif-
ferent methods such as rate-dependent experiments besides creep tests. In actual sense,
there are some correlations between these two different types of experiments.

This book is concerned with time-dependency in rock mechanics and rock
engineering, whose spectrum is very wide as mentioned above. While the term “time-
dependency’’ involves time-dependent behaviour/rate-dependent behaviour of rocks in
a conventional sense, this book attempts to cover the spectrum as much as possible
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Introduction 3

Figure 1.3 Examples of creep of rocks and faults and testing devices.

including coupled processes of thermal, hydrological and diffusions in rocks. This
book specifically deals with the following topics.

Chapter 2: As all rocks exhibit time-dependent behavior, the long term response
and stability of rock engineering structures are of great importance and the engineers
must know how to deal with this issue. This chapter covers many aspects of time/rate
dependency of rocks and associated engineering issues.

Chapter 3: Degradation of mechanical properties of soft rocks due to absorp-
tion and desorption of water as a result of cyclic drying-saturation process is another
important issue in rock mechanics and rock engineering in the long term. This process
involves moisture variation, which results in volumetric changes, causing their crack-
ing and decomposition. The scientists and engineers involved with rocks must know
this process and how to assess the performance of structures in such rocks in the long
term. This chapter describes the fundamentals of this phenomenon, its mechanical
modeling and some specific applications to actual problems.

Chapter 4: Heat transport in rocks is another important issue for dealing with the
long term performance of structures of great importance as well as geothermal field
exploitation. Furthermore, the understanding of mechanical property variations in
relation to temperature fluctuations and their effect on rock engineering structures are
also of great significance for rock engineers and scientists. This chapter is intended to
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4 Time-dependency in rock mechanics and rock engineering

cover the fundamental aspects of heat transport and its effect on the mechanical field.
There are different techniques to evaluate thermal properties of rocks. A very practical
procedure is proposed to evaluate thermal properties such as specific heat, thermal
conductivity and thermal diffusivity. Some specific examples of practical applications
are also presented.

Chapter 5: Seepage and cyclic variations of groundwater as free percolating fluid
in rock mass may eventually result in the failure of some rock engineering structures
in the short and long term. This requires an approach to couple the fundamental gov-
erning equations of thermal and mechanical fields. The understanding of this process
should be of great value for engineers how to assess and monitor their structures in the
long term. Besides the derivations of the fundamental governing equation, the theoret-
ical background of Darcy law for porous rocks and discontinuities is presented. The
theoretical background of transient pulse technique and its numerical representation
are presented for longitudinal and radial flow conditions. Several practical applica-
tions of seepage in rock mass in relation to some specific rock engineering structures
are presented.

Chapter 6: The nuclear-waste disposal issue in rock engineering is a very chal-
lenging problem for scientists and engineers of rocks and it involves very sophisticated
interaction of fundamental governing equations. Particularly the studies dealing with
radioactive waste disposal have been concerned with thermo-hydro-mechanical aspects
of the phenomenon as well as the diffusion phenomenon of the radioactive substances.
Since the diffusion phenomenon is quite important in the long term, a mechanical
model based on the mixture theory is described to couple thermal, hydrological and
diffusion fields in this chapter. In the presented model, Duffour and Soret effects, which
are mostly neglected in previous studies, are also considered to couple the thermal and
diffusion fields. Then a finite element formulation of the derived theoretical model is
given and a series of numerical analyses carried out for the simulation of laboratory
tests is presented. Furthermore, some parametric studies are performed to investigate
the coupling effects of Duffour and Soret effects on thermal and diffusion fields.

Chapter 7: The near-field disposal of nuclear wastes in rock is associated with
thermo-hydro-mechanical aspects of the phenomenon. While the heat is emitted from
the nuclear waste contained in canisters, the in-situ stress in rock mass and seepage of
ground water is of great significance for the stability of the waste disposal sites. This
chapter describes a thermo-hydro-mechanical model based on the mixture theory to
couple thermal, hydrological and mechanical fields. Then a finite element formulation
of the derived theoretical model is presented and a series of numerical analyses was
carried out for simulating some laboratory experiments of this phenomenon.

This book presents theoretical formulations, some experimental techniques,
numerical formulations and examples of applications. If this book is used as a text-
book for educational purposes, Chapters 2 to 5 may be used for both undergraduate
and graduate courses. Chapters 6 and 7 would be for graduate courses, particularly.

 



Chapter 2

Time-dependent (rate-dependent)
behaviour of rocks

2.1 INTRODUCTION

Long term response and stability of rock engineering structures such as tunnels, under-
ground openings, slopes and stone-made cultural assets have been receiving great
attention since early times. Furthermore, the stability of the room and pillar mines
during exploitation and after abandoning is also of great concern (Mottahed & Szeky,
1982; Doktan, 1983). There are many causes affecting their long term response and
stability such as sustained loading with or without additional loads resulting from
various sources of blasting, machine vibration and earthquakes, freezing and thawing,
weathering due to physical and chemical actions of the percolating fluids.

The nuclear waste disposal projects in countries utilizing nuclear energy and/or
nuclear weapons require the consideration of very long time span of at least 10,000
years for the assessment of response and stability of underground disposal facilities in
rock. Particularly, the nuclear waste disposal projects involve very complex interactions
of thermal, hydrological, diffusive and mechanical phenomena.

Most of cultural assets from previous civilizations are structures made of various
stones. The deterioration of these cultural assets due to natural causes is a serious
problem to be dealt with. In addition to atmospheric agents and percolating fluids,
long term sustained loading causes deformation and instability of those cultural assets.

In Geo-science, it is well known that faults and the earth’s crust show creep-
like responses. Some case histories from San Andreas and North Anatolian fault are
well documented. The crustal deformation response before the 2003 Miyagi-Hokubu
earthquake in Japan was very similar to what is observed in creep experiments. There
are also many experimental studies on the creep and relaxation behaviour of crustal
rocks under different temperature regimes.

Time-dependent behaviour of rocks has been experimentally studied since early
times (see the textbook by Jaeger & Cook (1979) and Cristescu & Hunsche (1998)
for details). The extensive experimental studies were performed on halides (rocksalt or
halite and potash) as they have been considered good sealing rocks for the containment
and disposal of nuclear wastes. The experiments were mainly carried on rock salts
subjected to creep loading conditions under different constant temperature regimes
(i.e. Wawersik, 1983; Hunsche, 1992). Almost all experiments were carried out under
compressive uniaxial and/or triaxial loading conditions. In some of experiments, the
healing process of rock salts was also studied.



6 Time-dependency in rock mechanics and rock engineering

Creep characteristics of rocks are very important for assessing the long term stabil-
ity of rock engineering structures. A series of experiments for the creep characteristics of
soft rocks was undertaken by the author at Tokai University and Toyota National Col-
lege of Technology using uniaxial compression, Brazilian creep and impression creep
testing methods. The author reports the results of experiments carried out on Oya tuff.
Then a series of numerical studies were carried out to investigate the stress-strain fields
induced in each type of experimental technique and their possible correlations. In the
final part of the report, several examples of the utilization of creep characteristics of
soft rocks for assessing the long term performance and stability of rock engineering
structures are presented and discussed.

For time dependent or rate-dependent characteristics of rocks, there are different
methods such as rate-dependent experiments besides creep tests. In actual sense, there
are some correlations between these two different types of experiments as discussed in
the work of Aydan & Nawrocki (1998).

2.2 CREEP BEHAVIOUR AND TESTING TECHNIQUES

The creep experiments are often used to determine the time-dependent strength and/or
time-dependent deformation modulus of rocks. It has often been stated that the creep of
rocks does not occur unless the load/stress level exceeds a certain threshold value, which
is sometimes defined as the long term strength of rocks (Ladanyi, 1974; Bieniawski,
1970). However, experiments carried on igneous rock (i.e. granite, gabbro etc.) beams
by Ito (1991) for three decades show that a creep response definitely occurs even
under very low stress levels. The threshold value suggested by Ladanyi (1993) may
be associated with the initiation of dilatancy of volumetric strain as illustrated in
Figure 2.1. The initiation of dilatancy generally corresponds to 40–60% of the stress
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Figure 2.1 Illustration of threshold value for dilation and experimental results for different rocks
(arranged from Aydan et al., 1993, 1994).
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level and the fracture propagation tends to become unstable when the applied stress
level exceeds 70–80% level of the ultimate deviatoric strength for given stress state
(Aydan et al., 1994; Hallbauer et al., 1973). Therefore, the behaviour below the
threshold generally corresponds to visco-elastic behaviour. Creep threshold according
to Ladanyi (1974) corresponds to an elasto-visco-plastic response and it should not be
possible to obtain visco-elastic properties directly from measured responses.

The creep responses terminating in failure are generally divided into three stages
as shown in Figure 2.2. These stages are defined as primary, secondary and tertiary
creep stages. The secondary stage appears to be a linear response in time (but in a real
sense, it is not a linear response). On the other hand, the tertiary stage is the stage
in which the strain response increases exponentially resulting in the failure of creep
behaviour. The modeling of this stage in the constitutive laws is an extremely difficult
aspect as it also depends upon the boundary conditions.

2.2.1 Laboratory creep testing devices

Apparatuses for creep tests can be of the cantilever type or the load/displacement-
controlled type. Although the details of each testing machine may differ, the features
of apparatuses for creep tests are described herein.

(a) Cantilever type testing device

The cantilever-type apparatus has been used in creep tests since early times (i.e. Serata
et al., 1968; Akagi, 1976; Farmer, 1983; Ito & Akagi, 2001) (Figure 2.3). It is in
practice the most stable apparatus for creep tests because the load level can easily
be kept constant with time. The greatest restrictions of this type apparatus are the
level of applicable load, which depends upon the length of the cantilever arm and its
oscillations during the application of the load. The cantilever-type apparatus utilizing
a multi-arm lever overcomes the load limit restrictions (Okada, 2005, 2006). The
oscillation is another technical problem to be dealt by the producers of the creep
devices. If the load increase is manually done through putting deadweights in some
creep testing devices, an utmost care must be undertaken during loading procedure in
order to prevent undesirable oscillations.

Figure 2.2 Strain and strain rate response of a creep experiment on Oya tuff (Japan).
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8 Time-dependency in rock mechanics and rock engineering

Figure 2.3 Examples of cantilever type creep apparatuses: (a) Single arm cantilever and (b) multi-lever.

Deformation and strain measurements can be taken in several ways. The simple
approach is to utilize a couple of LVDTs. When a triaxial creep experiment is carried
out, the LVDTs may be fixed onto the sample and inserted into the triaxial cham-
ber. In such a case, special precautions are necessary for the accurate measurement
of displacements. Strain gauges may be used; however, the strain gauges glued onto
samples are required to be capable of measuring strain over a long period of time
without any debonding. For lateral deformation or strain measurements, diametric or
circumferential sensors are used.

(b) Load/displacement controlled apparatus

Loading testing system is a servo-controlled testing machine that is capable of applying
high constant loads onto samples (Figure 2.4). The most critical aspect of this experi-
ment is to keep very high axial stresses acting on a sample constant, which will require
continuous monitoring of the load and its automatic adjustment (i.e. Peng, 1973). The
load applied onto samples is maintained to within ±1% of the specified load. The
deformation or strain measurements are measured in the same way as in the cantilever
type creep experiments. Vibration associated with the constant high-speed closed-loop
operation is a matter of concern.

There are also true triaxial testing apparatuses (loading is performed independently
in three directions on cubic or prismatic samples) to perform creep tests under true
triaxial stress conditions (Serata et al., 1968; Adachi et al., 1969). Three principal
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Figure 2.4 Load/displacement controlled apparatus (from Ishizuka et al., 1993).

stresses can be controlled independently in such triaxial testing apparatuses. New
technologies make such tests to be performed much easier.

Creep tests under direct shear stress condition on rocks, discontinuities and inter-
faces are also carried out using a servo-control loading system (i.e. Amadei & Curran,
1982; Aydan et al., 1994, 2016; Voegler et al., 1998; Larson & Wade, 2000).
Figure 2.5 shows the multi-purpose dynamic shear-testing machine with an ability
to perform creep tests on rocks, discontinuities and interfaces at the University of the
Ryukyus. The device was originally developed for conventional direct shear creep test
and cyclic shear tests and has been recently upgraded to perform dynamic shear testing
(Aydan et al., 1994, 2016).

2.2.2 Laboratory creep tests

(a) Uniaxial compression creep tests

Creep tests on Oya tuff carried out by Ito & Akagi (2001) under dry conditions are
plotted in Figure 2.7. As noted from Figure 2.6, some of responses terminate with
failure while the others become asymptotic to certain strain levels, depending on the
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Figure 2.5 Multi-purpose dynamic shear-testing machine with a capability to perform creep tests on
rocks, discontinuities and interfaces at the University of the Ryukyus.

Figure 2.6 Uniaxial compression creep response of Oya tuff under dry condition (modified from Ito &
Akagi 2001).

applied stress ratio (SR), which is defined as the ratio of applied stress to the short
term strength. The responses terminating in failure are generally divided into three
stages as shown in Figure 2.2. The transitions from the primary stage to the secondary
stage and from the secondary stage to the tertiary stage are generally determined from
the deviation of a linearly decreasing or increasing strain rate plotted in a logarithmic
time space. Generally, it should, however, be noted that strain data must be smoothed
before its interpretation. Direct derivation of strain data containing actual responses
as well as electronic noise may produce entirely different results.

When rocks have water absorption ability, their strength tends to decrease com-
pared with that under dry condition (i.e. Aydan, 1993; Aydan & Ulusay, 2002, 2013).
Particularly, the strength of soft rocks like tuffs decreases drastically and the strength
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Figure 2.7 Responses of initially dry later saturated tuff samples from Zelve (b5) during uniaxial
compression creep tests (arranged from Ito et al., 2008).

reduction is generally greater than 60%. In some cases, soft rocks may disintegrate
upon water absorption and the resulting strength reduction may be up to 100%. Sev-
eral researchers investigated the effect of saturation on uniaxial compression creep
tests (i.e. Ito et al., 2008; Okubo & Chu, 1994; Okubo et al., 2005; Aydan et al.,
2013). Figure 2.7 shows an example of creep response of a tuff sample from Zelve,
Cappadocia (Turkey). The sample was initially subjected to a creep loading at a level of
about 16% of its uniaxial compressive strength under dry conditions. The sample was
fully saturated 40 minutes after the start of the creep test. The stress ratio becomes
about 95% of the uniaxial compressive strength under saturated condition. As the
stress ratio increased, the sample failed about 190 minutes after the saturation. Creep
experiments carried out on tuff samples from Derinkuyu, Avanos and Ürgüp yielded
similar results (i.e. Aydan & Ulusay, 2013; Ulusay et al., 2013).

Effect of temperature on creep response of various rocks is investigated by various
researchers (i.e. Shibata et al., 2007; Okada, 2005, 2006; Cristescu & Hunsche, 1998;
Hunsche & Hampell, 1999). It is well known that the strength of rocks decreases
with temperature (i.e. Handin, 1966; Shimada, 1993; Hirth & Tullis, 1994; Brace &
Kohlstedt, 1980). Figure 2.8 shows plots of responses during uniaxial compression
creep tests on Oya tuff and its failure time determined at different temperatures. As
noted from the figure, the creep response is accelerated and the long term uniaxial
compression strength of Oya tuff decreases.

(b) Triaxial compression creep tests

Triaxial compression creep experiments are quite limited as compared with uniax-
ial compression creep experiments due to sophistication of equipments and costs.
Nevertheless, there were several attempts to conduct such tests (i.e. Serata et al., 1968;
Lockner & Byerlee, 1977; Waversik, 1983; Masuda et al., 1987; Okada, 2005; Ito
et al., 1999). Provided that friction angle is not rate-dependent, the stress ratios under
triaxial compression creep test are defined in an analogy to that in uniaxial compression
creep tests as:

SR = σ1 − σ3

2c cos φ + (σ1 + σ3)sin φ
(2.1)
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Figure 2.8 (a) Creep response of Oya tuff and (b) Relationship between stress ratio and failure time
at various temperatures (arranged from Shibata et al., 2007).

where c, φ, σ1 and σ3 are cohesion, friction angle and maximum applied and confin-
ing stresses, respectively. If friction angle is rate-dependent, the ratio of the applied
deviatoric stress to the deviatoric strength is used as stress ratio. However, the experi-
mental results confirm that the rate-dependency of friction angle is negligible according
to Aydan & Nawrocki (1998).

Figures 2.9 and 2.10 shows the creep response under a confining stress of 2 MPa
and the failure time of compression creep tests under both uniaxial and triaxial com-
pression environment. It is interesting to note that the overall tendency obtained in
triaxial creep tests is basically similar to those of uniaxial compression creep tests
irrespective of confining pressure.
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Figure 2.9 Creep response at confining pressure of 2 MPa.

Figure 2.10 Creep failure time of Oya tuff uniaxial and triaxial compression creep tests (arranged from
Ito et al., 1999; Shibata et al., 2007;Akai et al., 1979).

(c) Brazilian tensile creep tests

There are not many studies on tensile creep behaviour of rocks using Brazilian creep
tests. However, rock may be subjected to tensile stresses in nature such as cliffs with
toe erosion and roof layers above underground openings excavated in sedimentary
rocks. Aydan et al. (2011, 2013), Agan et al. (2013) and Ulusay et al. (2013) have
recently reported some Brazilian creep tests on tuff samples. The tensile strength of the
specimen is calculated using the well-known following formula:

σt = 2
π

P
Dt

(2.2)
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Figure 2.11 Brazilian creep response of SN1-W3 sample.

where P is the load at failure, D is the diameter of the test specimen (mm), t is the
thickness of the test specimen measured at its center (mm). The nominal strain of the
Brazilian tensile test sample can be given as (see Hondros, 1959; Jaeger & Cook, 1979;
for details)

εt = 2
[
1 − π

4
(1 − ν)

]σt

E
with εt = δ

D
(2.3)

where δ is diametrical displacement in loading direction.
If Poisson’s ratio of rock is unknown, it is reasonable to choose Poisson’s ratio

as 0.25. Thus, the formula given above can be simplified to the following form (i.e.
Aydan et al., 2011)

εt = 0.82
σt

E
(2.4)

Here we quote some experimental results from Ito et al. (2008) and Aydan et al.
(2011). The diameter of samples was 46 mm and their thickness ranged between 14
and 25 mm. All samples were subjected to creep loading level at a chosen period of
time under dry conditions. After reaching the ultimate loading level, the samples were
saturated. Figure 2.11 shows some of the measured response of a sample in Brazilian
creep experiments on Oya tuff. Oya tuff sample numbered SN1-W3 was tested under
fully saturated conditions at a stress ratio of 87%. As noted from the figures, acoustic
emission occurs at each load increase, simultaneously.

(d) Direct shear creep tests

Direct shear creep tests on rocks, discontinuities and interfaces are also quite rare.
Amadei & Curran (1982) performed direct shear creep tests on rock discontinuities.
The direct shear tests by Aydan et al. (1994, 2016), Voegler et al. (1998), Larson &
Wade (2000) may be counted in addition the initial tests performed by Amadei &
Curran (1982). We present the experimental results by Aydan et al. (1994) performed
on the interfaces and grouting material in rock anchor systems. Figure 2.12 shows
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Figure 2.12 Direct shear creep test on tendon-grout interface.

Figure 2.13 Responses of grouting material measured during direct shear creep test at various stress
ratios.

the direct shear creep experiment on tendon-grout interface under a normal stress of
2 MPa. The stress ratio was about 95%. The overall response is similar to those of
uniaxial and triaxial compression and Brazilian creep tests.

Figure 2.13 shows the creep responses of grouting material of rock anchor sys-
tems tested under direct shear condition. The initial instantaneous displacements
are subtracted from displacement response for each stress ratio. Similarly, the creep
displacement increases as the stress ratio becomes higher.

(e) Impression creep experiments

Impression creep experiments are relatively easy to perform and the capacity of load-
ing equipments is relatively small compared to conventional creep experiments. The
critical issue with this technique is the definition of strain and stress, which can be
associated with conventional creep experiments. There are several proposals on how
to correlate impression creep experiments to conventional creep experiments, which
are summarized in Table 2.1 (i.e. Hyde et al., 1996; Timoshenko & Goodier, 1970;
Sastry, 2005; Rassouli et al., 2010; Aydan et al., 2011). If applied load is assumed
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Table 2.1 Proposed correlations between impression creep experiments
and conventional uniaxial compression creep experiments.

Reference Stress Strain

Hyde et al., 1980 σ = ηp ε = 1
β

· δ

D

Timoshenko & Goodier, 1970 p ε = δ

D
= π (1 − ν2)

4E
p

Aydan et al., 2008 p ε = δ

D
= 1 + ν

2E
p

to be the same, all equations in Table 2.1 imply that corresponding strains would be
smaller so that plastic behaviour would occur at higher loading levels.

The loading in impression creep tests is achieved through dead weights and/or
hydraulic jacks. Figure 2.14 shows two examples of impression creep testing device.
Indenters may have different forms. Mousavi et al. (2008), Rassouli et al. (2010)
and Aydan et al. (2011, 2012, 2013) are probably first pioneers to utilize this index
technique in rock mechanics and rock engineering. Mousavi et al. (2008) and Rassouli
et al. (2010) utilized flat-ended cylindrical indenters. The preferable diameter was
3 mm. Aydan et al. (2008, 2011) also used an indenter having a diameter ranging from
1 to 3 mm. They concluded that the indenter with a diameter of 3 mm was preferable,
which are in accordance with the conclusion of Mousavi et al. (2008) and Rassouli et al.
(2010). Aydan et al. (2012, 2013) also utilized the indenter of the needle penetration
index test device (Aydan, 2012, 2013; Ulusay et al., 2013).

The experimental results are presented in this subsection using the device shown
in Figure 2.14(a) with a flat-ended indenter having a diameter of 3 mm. The device is
capable of inducing loads, which is 10 times the applied load at the end of the arm. The
device was equipped with a displacement transducer and an acoustic emission sensor.
However, electric potential measurement system could be included in the monitoring
system under dry condition. Figure 2.15 shows the results of an impression creep test
on Oya tuff sample denoted WEZ-4 under saturated condition. The saturated strength
of Oya tuff is about 40–50% of that under dry condition and yielding level is expected
to be more than 14 MPa. The response becomes stable following the applied nominal
pressure of 12.2 MPa. However, the sample fails when the applied pressure is 21 MPa.
The stress ratio is about 61% in view of the short term indentation tests.

An impression creep experiment carried out on rocksalt sample from Tuzköy in
Cappadocia region of Turkey. The short term and long term properties of this rocksalt
was investigated by Özkan et al. (2009) and Özşen et al. (2014) under uniaxial com-
pression creep test. The short term average uniaxial compressive strength of Tuzköy
rock salt is about 26.5 MPa. Figure 2.16 shows the response obtained from the impres-
sion creep test. The load level was gradually increased in steps up to 85 MPa. In the last
three steps, the amplitude of load was decreased to 28 MPa first and increased to des-
ignated level greater than the previous state. It was noted that the elastic recovery was
very small and the behaviour of rocksalt was almost visco-plastic. Upon unloading at
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Figure 2.14 Two examples of impression creep devices.

Figure 2.15 Impression creep response of saturated Oya tuff sample denoted WEZ-4.

Figure 2.16 Response of Tuzköy rocksalt during the impression creep test.
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Figure 2.17 Views of Tuzköy rocksalt sample during and after impression test.

the end of the test, a circular hole was observed as a result of permanent deformation.
Furthermore, some radial fractures around the hole were formed (Figure 2.17).

(f) Long term strength of rocks and correlation among various creep tests

The strength of rocks is generally assumed to be hardening type. However, it is
well known that the long term strength (σa(t)) of rocks decreases with time and it
is expressed in the following forms

Aydan et al. (1996)

σa(t)
σco

= α + (1 − α)e−b(t∗−1) (2.5)

Aydan & Nawrocki (1998)

σa(t)
σco

= 1 − b ln(t∗) (2.6)

Aydan et al. (2011) proposed the following function, which combines both functions
above

σa(t)
σco

= α + (1 − α)
t∗

1 + β(t∗ − 1)
(2.7)

where
α: The ultimate normalized strength of rock,
τ : The duration of short term strength (σco) test
b: empirical constant and

t∗ = t
τ

.
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Figure 2.18 Comparison of failure time of various creep experiments and empirical relations byAydan
et al. (1996, 2011) and Aydan & Nawrocki (1998).

Figure 2.18 compares the failure time of samples tested in Brazilian, impression
and uniaxial compression creep experiments under dry and saturated conditions. From
experimental results, it is very interesting to note that if the stress ratio remains same,
the failure time of dry and saturated samples are very close to each other. Furthermore,
the failure times of samples tested under uniaxial compression and Brazilian creep
experiments are also similar to those of impression creep experiments.

2.3 RATE-DEPENDENCY OF ROCKS AND TESTING

2.3.1 Low-rate testing of rocks

Samples obtained from Ürgüp and Avanos (Özkonak Underground City) are tested
under different strain rates at the rock mechanics laboratory of Nagoya University.
Some of tests results are shown in Figure 2.19. Tests on samples obtained from
Derinkuyu underground city are still continuing. As seen from the figure, it seems
that the strength and deformation modulus of Cappadocia tuffs decrease as the strain
rate imposed on the samples decreases. These results are quite similar to those reported
in rock mechanics literature (Aydan & Nawrocki, 1998). Nevertheless, further tests
with greater strain rate range are felt to be necessary in order to obtain conclusive
results.

2.3.2 High-rate testing of rocks

The Hopkinson Pressure Bar Testing technique was proposed by Hopkinson in 1914
as a way to measure stress pulse propagation in a metal bar (Figure 2.20). Kolsky
refined Hopkinson’s technique by using two Hopkinson bars in series, now known
as the split-Hopkinson bar, to measure stress and strain, incorporating advancements
in the cathode ray oscilloscopes in conjunction with electrical condenser units to record
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Figure 2.19 Stress-strain curves of Cappadocia tuffs under different strain rates.
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Figure 2.20 A simple illustration of split-Hopkinson Bar Technique.

the pressure wave propagation in the pressure bars. This method is used to deter-
mine dynamic properties of metals initially, and ceramics, polymers, concrete and
rocks later. There are several special setups of this technique for uniaxial compression,
tensile, torsion, Brazilian and triaxial compression tests of rocks. The most difficult
aspect of this technique is the determination of actual straining and stresses in samples
of rock.

Strains of incident bar and transmitter are measured to infer the strains and stresses
of samples (Figures 2.21 and 2.22). Strains of the incident bar consist of incident
strain pulse and reflected strain pulse while the strain of transmitted wave is termed
as transmitted strain pulse. Stresses acting at the interfaces of the sample with incident
bar and transmitter bar are given as

σI(t) = EA
As

(εI(t) + εR(t)) (2.8a)

σT (t) = EA
As

(εT (t)) (2.8b)
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Figure 2.21 Strain pulses measured in a marble sample (fromYavuz et al., 2013).

Figure 2.22 Stress pulses measured on a marble sample in a split-Hopkinson Bar experiment (from
Yavuz et al., 2013).

where E, A and As are elastic modulus and area of incident bar and area of sample.
Thus, the strain rate acting on sample is inferred from the following relation

ε̇ = Vp

Ls
(εI(t) − εR(t) − εT (t)) (2.9)
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Average strain and stress of sample in the direction of impact are given in the following
form

ε(t) = Vp

Ls

∫ t

0
(εI(t) − εR(t) − εT (t))dt (2.10a)

σ (t) = EA
2As

(εI(t) + εR(t) + εT (t)) (2.10b)

As the following relation holds among incident, reflected and transmitted strains from
the dynamic equilibrium equation

εI(t) + εR(t) = εT (t) (2.11)

The stress on sample is directly related to transmitted strain as follow

σ (t) = EA
As

εT (t) (2.12)

(a) Dynamic uniaxial compression test

The uniaxial compression experiments are generally carried out using cylindrical sam-
ples. The height of the sample is generally less than its diameter. In other words, such
an aspect ratio of height to diameter introduces shape effect into the experimental
results. Figure 2.23 shows dynamic strain-stress relations of various rocks reported by
Yavuz et al. (2013) with an aspect ratio of 0.6. As noted from the figure, strain-stress

Figure 2.23 Strain-stress relations obtained in split-Hopkinson bar tests (fromYavuz et al., 2013).
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relations exhibit elastic-strain hardening response. Nevertheless, it should be noted
such behaviour is also caused by the aspect ratio of samples.

(b) Dynamic tensile strength test (Brazilian, Notch, Slit)

Dynamic tensile strength of rocks are determined from either Brazilian Test, Semi-
circular Bend tests or Cracked-Chevron Notched Brazilian Test (Figure 2.24). Tensile
strength property is determined from well-known relations determined for static cases
while using the stresses determined from dynamic impact. Figure 2.25 shows two
example tensile strength testing of rocks reported by Cadoni et al. (2011)

Figure 2.24 Configuration used in determination of tensile strength.

Figure 2.25 Dynamic tensile stress results (from Cadoni et al., 2011).
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(c) Dynamic triaxial compression test

There are some attempts to determine the dynamic strength properties under confining
pressures. However, such experiments are difficult to perform and some complexities
exist in the determination of stress and strains components during the experiments.

2.4 CORRELATIONS BETWEEN RATE-DEPENDENT
AND CREEP TESTS

The definition of strain rate must be made in order to utilise creep test results. The
strain rate in a creep test generally varies with time and it is very difficult to make such
a definition. In this article, we will attempt to define it as the ratio of total strain to the
time at which the tertiary creep is activated as illustrated in Figure 2.26. Furthermore,
the deformation modulus or Young’s modulus is defined as the ratio of the applied axial
stress to the total strain at which tertiary creep is initiated as illustrated in Figure 2.6
also. Although these definitions are open to discussions, we herein attempt to re-assess
both creep tests and strain rate tests in the same framework by using them.

The variation of deformation modulus or Young’s modulus of Cappadocia tuffs
as a function of strain rate is shown in Figure 2.27. Experimental results are highly
scattered. The scattering is much more pronounced in the results of strain rate tests
as compared with those of creep tests. Three functions fitted to experimental results
as mean, lower and upper bounds are also shown in Figure 2.27. The deformation
moduli obtained from creep tests are somewhat smaller than those obtained from
strain rate tests. This might be due to the definition of strain rate employed in this
section.

Figure 2.26 Definition of apparent strain rate and deformation modulus in a creep test response.
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Next the variation of uniaxial compressive strength of Cappadocia tuff is inves-
tigated. The results obtained are shown in Figure 2.28. From this figure, it is also
possible to make similar statements for the uniaxial compressive strength as in the
case of the deformation modulus. Three empirical functions fitted to the experimental
results as mean, lower and upper bounds are also shown in Figure 2.22.

Aydan & Nawrocki (1998) stated that the strain rate does not have any remark-
able effect on the shape of yield function. This statement implies that the effect of
strain rate on the yield function can be determined under uniaxial loading conditions,
which simplifies the experimental procedure to a considerable extent. Taking this state-
ment into account, the well-known Mohr-Coulomb yield criterion is presented in the
following form:

f = σ1 − (qσ3 + σc(ε̇)) = 0 (2.13)

Figure 2.27 The variation of deformation modulus orYoung’s modulus as a function of strain rate.

Figure 2.28 The variation of uniaxial compressive strength as a function of strain rate.
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where

q = 1 + sin φ

1 − sin φ

φ: Friction angle
σc(ε̇): Uniaxial compressive strength
σ1: Maximum principal stress
σ3: Minimum principal stress

Using the empirical relation proposed for mean values shown in Figure 2.23, σc(ε̇)
for Cappadocia tuffs is given in the following form

σc(ε̇) = 9.8 + 0.42 ln ε̇ (2.14)

where ε̇ is strain rate and its unit is strain/min. The unit of uniaxial compressive
strength is MPa. Figures 2.29 and 2.30 shows the projections of this yield function in

Figure 2.29 Variation of yield function as a function of confining pressure at different strain rates.

Figure 2.30 Variation of yield function as a function of strain rate at different confining pressures.
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the spaces of axial stress-confining pressure and axial stress-strain rate while strain rate
and confining pressure are varied, respectively. Although the yield function is simple,
it is capable of taking into account the effect of the strain rate dependency of the yield
function of rocks.

2.5 CONSTITUTIVE MODELING

2.5.1 Uniaxial creep laws

Most of empirical creep laws have been developed for uniaxial loading. These creep
laws are generally concerned with the secondary stage, which is called the steady
state creep stage. In other words, this stage should be interpreted as visco-plastic
response rather than visco-elastic response as the creep rate depends upon the applied
stress level.

2.5.1.1 Empirical creep laws

(a) First stage: Transient creep stage

The following creep law was proposed for the first stage or transient stage of creep
behaviour:

εts = Bt1/β (2.15)

where B and β are empirical coefficients. Andrade (1910, 1914) suggested the value
of coefficient β is 3. The recent data on welded tuff by Ma & Daeman (2006) suggest
that it may range between 1.8–7.8.

Lomnitz (1956, 1957) suggested the following empirical relation for the transient
creep stage:

εts = A ln(1 + αt) (2.16)

The following creep function is commonly adopted in later studies, which is modifi-
cation of Lomnitz law as follows:

εts = A + B log(t) + Ct (2.17)

(b) Secondary stage: Steady state creep

A power law is used for uniaxial steady state creep strain and it is known as
Norton’s law

ε = Aσ nt or ε̇ = Aσ n (2.18)

Typically n is about 4–5 but can range from a bit less than 2 to 8.
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Figure 2.31 Plot of the unified creep function.

As the steady state creep does not occur below a threshold value of applied stress
with respect to its short term strength, the equation above should be replaced by the
following function using McCauley brackets:

ε̇ = A
〈
σa

σct
− 1
〉n

(2.19)

where σct is the stress threshold to induce steady state creep response.

(c) Tertiary stage: Accelerated creep stage

Third stage creep (accelerated creep) is the final stage of the creep behaviour and it is
governed by the applied boundary conditions rather than being a material property.
In other words, it is a flow process. Griggs & Coles (1958) proposed the following
formula for the third stage creep

εts = A + Bt2 (2.20)

(d) Unified function for all stages

Aydan et al. (2003) proposed a creep function for all stages of creep response, which
had the following form (Figure 2.31):

εc = A(1 − e−t/τ1 ) + B(et/τ2 − 1) (2.21)

2.5.1.2 Simple rheological models for creep response

(a) Newton’s law

Newton’s law (Figure 2.32(b)) is linear and given in the following form

σ = ηε̇ (2.22)
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Figure 2.32 Simple rheological models.

If this law is integrated over the time, it takes the following form with a condition,
that is, ε = 0 at t = 0:

ε = σ

η
t (2.23)

If we assume that strain rate is given in the following form:

ε̇ = σ

η
(2.24)

The equation above can be written as

ε = ε̇t (2.25)

This has a similarity to the steady-state creep response mentioned in Section 2.4.1.

(b) Maxwell law

Substance in the Maxwell law (Figure 2.32(c)) is assumed to consist of elastic and
viscous components connected in a serious fashion. Therefore, total strain and its
derivative are given as

ε = εe + εv and ε̇ = ε̇e + ε̇v (2.26)

The constitutive relations for elastic and viscous responses are

εe = σ

E
and ε̇v = σ

η
(2.27)

If σ = σo for t ≥ 0 and ε = εo with εo = σo/E, the above function becomes

ε = σo

E
+ σo

η
t (2.28)

This equation also has a similarity to the steady-state creep response mentioned in
Section 2.4.1.

 

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315375151-3&iName=master.img-032.jpg&w=235&h=104


30 Time-dependency in rock mechanics and rock engineering

(c) Kelvin-Voigt law

Substance in Kelvin-Voigt law (Figure 2.32(d)) is assumed to be elastic and viscous
components connected in a parallel fashion. Therefore, total stress is given as

σ = Eε + ηε̇ (2.29)

If stress applied σo at t = 0 with ε = 0 and sustained thereafter, the following relation
is obtained

ε = σo

E
(1 − e−t/tr ) with tr = E

η
(2.30)

It is interesting to note that the above response would be similar to the transient creep
stage. Figure 2.33 shows the creep strain responses for different simple rheological
models.

(d) Generalized Kelvin model

The model (Figure 2.34(a)) has a Hooke element and Kelvin element connected in
series fashion. The total strain of the model is

ε = εh + εk (2.31)

The stress relations of each element are given as

εh = σ

Eh
and σ = Ekεk + ηε̇k (2.32)

Thus, one gets the following equation

σ = η

(
ε̇ − σ̇

Eh

)
+ Ek

(
ε − σ

Eh

)
(2.33)

Figure 2.33 Creep strain response of simple rheological models.

 

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315375151-3&iName=master.img-033.jpg&w=251&h=123


Time-dependent (rate-dependent) behaviour of rocks 31

If stress applied σo at t = 0 with ε = 0 and εe = σo/Eh and sustained thereafter, the
following relation is obtained

ε = σo

Eh
+ σo

Ek
(1 − e−t/tr ) with tr = η

Ek
(2.34)

As noted from this relation, instantaneous strain due to elastic response and transient
creep stage can be modeled.

(e) Zener model

Zener model (Figure 2.34(b)) is also known as the standard linear solid model and it
consist of a Hooke element and Maxwell element connected to each other in parallel
fashion.

Total stress may be given in the following form

σ = σh + σm (2.35)

The constitutive laws of Hooke and Maxwell elements are

σh = Ehε; ε = εs + εd; ε̇ = ε̇s + ε̇d; ε̇s = σ̇m

Em
; ε̇d = σm

ηm
(2.36)

Thus, one can easily get the following differential equation

dε

dt
+ 1

ηm
· EhEm

Eh + Em
ε = 1

Eh + Em

(
dσ

dt
+ Em

ηm
σ

)
(2.37)

Figure 2.34 More complex rheological models.
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If stress applied σo at t = 0 with and εo = σo/(Eh + Em) and sustained thereafter, the
following relation is obtained

ε = σo

Eh

[
1 − Em

Eh + Em
e−t/tr

]
with tr = ηm

Em + Eh

EmEh
(2.38)

The creep response to be determined from this model involves the instantaneous strain
and transient creep.

(f) Burgers model

Burgers model (Figure 2.34(c)) consists of Maxwell and Kelvin elements connected
to each other in a series fashion. The constitutive relations for each element can be
given as

ε̇m = σ̇

Em
+ σ

ηm
and σ = Ekεk + ηε̇k (2.39)

The total strain is given by

ε = εm + εk (2.40)

If stress applied σo at t = 0 with ε = 0 and εm = σo/Em and sustained thereafter, the
following relation is obtained

ε = σo

Em
+ σo

Ek
(1 − e−t/tk ) + σo

ηm
t with tk = ηk

Ek
(2.41)

As noted, this model can simulate the instantaneous strain due to elastic response and
transient and steady state creep stages. Figure 2.35 shows and compares the creep
strain responses for different more complex rheological models.

Figure 2.35 Creep responses from more complex rheological models.
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(g) Visco-plastic models

(1) Bingham model – elastic-perfectly visco-plastic model
Visco-plastic model of Bingham type assumes that the material behaves elastically
below the yield stress level and visco-plastic above the yield stress level given as:

ε = σ

E
if σ < σo (2.42)

ε = σ − σo

η
t + σ

E
if σ > σo (2.43)

The equation above corresponds to the perfectly visco-plastic material if σo corre-
sponds to yield threshold value of stress. Furthermore, the fluidity coefficient is
defined as

γ = 1
η

(2.44)

(2) Elastic-visco-plastic model of hardening type (Prezyna type)
Elastic-visco-plastic model of hardening type (Prezyna type) (Figure 2.36) assumes that
the material behaves elastically below the yield stress level and visco-plastic above the
yield stress level σY given as: The yield strength of visco-plastic material in relation to
the visco-plastic strain of hardening type can be written as

Y = σY + Hεvp (2.45)

Furthermore, total strain is assumed to be a sum of elastic strain and visco-plastic
strain as

ε = εe + εvp (2.46)

Figure 2.36 Elastic-visco-plastic model.
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Thus the stress-strain relations are given in the following form

σp = σ = Eε if σp < Y (2.47)

σp = σY + Hεvp if σp > Y (2.48)

Total stress at any time can be written as

σ = σp + σd (2.49)

Viscous component of stress is related to visco-plastic strain rate as follows

σd = Cp
dεvp

dt
(2.50)

Thus, one can obtain the following differential equation for visco-plastic response

σ = σY + Hεvp + Cp
dεvp

dt
(2.51)

Replacing the visco-plastic strain with the use of total strain and elastic strain in the
above equation, one can easily obtain the following relation

HEε + 1
Cp

E
dε

dt
= Hσ + E(σ − σY ) + 1

Cp

dσ

dt
(2.52)

Let us assume that a constant stress σ = σA is applied and kept constant (creep test).
The differential equation above is reduced to the following form:

dε

dt
+ H

E
ε = H

CpE
σA + 1

Cp
(σA − σY ) (2.53)

The solution of the differential equation above is obtained as follows

ε = Ce
− H

Cp
t + 1

E
σA + 1

H
(σA − σY ) (2.54)

when t = 0, ε = εe = σA/E.
The final form of the equation above becomes

ε = σA

E
+ (σA − σY )

H

(
1 − e

− H
Cp

t
)

(2.55)

Figure 2.37 shows the elastic-visco-plastic strain response for visco-plastic hardening
and Bingham type visco-plastic behaviours.

(3) Elasto-visco-plastic model of hardening type
Instead of using the elasticity model for linear (recoverable) response, some rheologi-
cal models described in previous section can be adopted. For non-linear (permanent)
response, the models described can be utilized. For example, if the linear response
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Figure 2.37 Responses obtained from elastic-visco-plastic models.

is modeled using the Kelvin-Voigt type model, the following relation would hold for
linear part (σ < σy)

εr = σ

E
and σ = Eεr + ηε̇r with ε = εr (2.56)

As for the non-linear (permanent) part σ ≥ σy, the following can be written

σ = σY + Hεp + Cp
dεp

dt
(2.57)

Total strain is assumed to consist of linear (recoverable) and non-linear (permanent)
components as given below

ε = εr + εp (2.58)

(h) Dynamic creep responses of Kelvin-Voigt type

Aydan (1994, 1997) presented a dynamic creep response of rocks or layers with the
use of Kelvin-Voigt model. Most of creep functions assume that the elastic response
takes instantaneously. Instead Aydan considered the dynamic equilibrium equations
and he suggested that the short–term dynamic loading response should yield the linear
viscosity characteristics of rocks.

(1) Visco-elastic layer subjected to instantaneous body force
The original derivation can be adopted and the final form of displacement response
at the top of the layer with a thickness L would take the following form for complex
roots of the characteristics of differential equation:

u(t) = ρg
L2

· 1
p2 + q2

[
1 − e−pt

(
cos qt + p

q
sin qt

)]
(2.59)
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Figure 2.38 Dynamic response of visco-elastic layer subjected to instantaneous body force.

where

p = 3η

2ρgL2
and q = 1

ρgL2

√
12EρL2 − 9η2

Figure 2.38 shows the dynamic and static responses of the layer subjected to
instantaneous body force.

(2) Uniaxial compression creep experiment
The details of the derivation of equations for strain-stress responses during a uniaxial
compression experiments are presented by Aydan (1997). The final forms of equations
for responses take the following forms for complex roots of the characteristics of the
differential equation:

(i) Linear load increase stage
(
0 ≤ t ≤ To; σ = σo

t
To

)

ε(t) = e−pt(C1 cos qt + C2 sin qt) + σo

ρL2To
· 1

(p2 + q2)2
[(p2 + q2)t + 2p] (2.60)

(ii) Load constant stage (t ≥ To; σ = σo)

ε(t) = e−pt(C1 cos qt + C2 sin qt) + σo

ρL2To
· 1

(p2 + q2)
(2.61)

where

p = η

2ρL2
and q = 1

2ρL2

√
4EρL2 − η2

L: height of sample; ρ: density; E: elastic modulus; η: viscosity modulus

Figure 2.39 shows the stress-strain responses of a sample under uniaxial compres-
sion condition. In the computations, the viscosity coefficient was varied. As noted

 

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315375151-3&iName=master.img-038.jpg&w=241&h=112


Time-dependent (rate-dependent) behaviour of rocks 37

Figure 2.39 Dynamic visco-elastic response during uniaxial creep experiments.

from the figure, when rock is purely elastic, the strain response would oscillate in
time. Therefore, the short term-dynamic response may be useful for characterizing the
transient viscous properties of rocks, particularly.

(3) Long term strength
The strength of rocks is assumed to be hardening type in the approaches described
above. However, it is well known that the long term strength (σa(t) of rocks decreases
with time and it is expressed in the following forms and they are compared in
Figure 2.40 for experimental data on Oya tuff:

Aydan et al. (1996)

σa(t)
σco

= 0.6 + 0.3e−0.03(t∗−1) (2.62)
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Figure 2.40 Comparison of uniaxial compression experimental data with empirical relations.

Aydan & Nawrocki (1998)

σa(t)
σco

= 1 − 0.1 ln(t∗) (2.63)

In this note another, the following function is proposed

σa(t)
σco

= 0.6 + 0.4
t∗

1 + 0.04(t∗ − 1)
(2.64)

where
α: The ultimate normalized strength of rock
τ : The duration of short term strength (σco) test
b: empirical constant and

t∗ = t
τ

.

2.5.2 Multi-dimensional constitutive laws

2.5.2.1 Linear constitutive laws

When rock or rock mass behaves linearly without any rate dependency, the simplest
constitutive law is Hooke’s law. This law is written in the following form:

σij = Dijklεkl (2.65)

where σij, εkl and Dijkl are stress, strain and elasticity tensors, respectively.
If material is homogenous and isotropic, Eq. (2.65) may be written as

σij = 2µεij + λδijεkk (2.66)
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where δij is Kronecker delta tensor. λ and µ are Lame coefficients, which are given in
terms of elasticity (Young’s) modulus (E) and Poisson’s ratio (ν) as

λ = Ev
(1 + ν)(1 − 2ν)

; µ = E
2(1 + ν)

(2.67)

When rock or rock mass behaves linearly with rate dependency, which may be called
visco-elasticity. One of simplest constitutive laws is Voigt-Kelvin Law, which may
written in the following form:

σij = Dijklεkl + Cijkl ε̇kl (2.68)

where ε̇kl and Cijkl are strain rate and viscosity tensors, respectively.
If material is homogenous and isotropic, Eq. (2.68) may be written in analogy to

Eq. (2.67) according to Aydan (1995) as

σij = 2µεij + λδijεkk + 2µ∗ε̇ij + λ∗δij ε̇kk (2.69)

Coefficients λ∗ and µ∗ may be called viscous Lame coefficients. There are different
visco-elasticity models as described in the previous section. The above constitutive
laws have to be replaced with their equivalents.

2.5.2.2 Non-linear behaviour (elasto-plasticity
and elasto-visco-plasticity)

(a) Elasto-plasticity

Every material in nature starts to yield after a certain stress or strain state and rock or
rock mass is a no exception. The terms used to describe the material behaviour such
as elasticity and visco-elasticity are replaced by the terms of elasto-plasticity or elasto-
visco-plasticity as soon as material behaviour deviates from linearity. The relation
between total stress and strain or strain rate can no longer be used and every relation
must be written in incremental form. For example, if the conventional plasticity models
were used, the elasto-plastic constitutive law between incremental stress and strain
tensors would take the following form:

�σij = Dep
ijkl�εkl (2.70)

where

Dep
ijkl =

⎛
⎜⎜⎝Dijkl −

Dijmn
∂F

∂σmn

∂G
∂σpr

Dprkl

h + ∂F
∂σmn

Dmnpr
∂G
∂σpr

⎞
⎟⎟⎠ (2.71)

The specific derivation of Eqs. (2.70) and (2.71) requires the followings

� Existence of a yield function (Mohr-Coulomb, Drucker-Prager etc.),
� Flow rule (existence of a plastic potential function),

 



40 Time-dependency in rock mechanics and rock engineering

� Prager’s consistency condition,
� Linear decomposition of incremental strain tensor into elastic and plastic compo-

nents, and
� Existence of Hooke’s law between incremental stress and elastic strains.

The plastic strain of metals is generally assumed to be independent of the volumet-
ric response and it is quite common to introduce the effective stress (σe) and effective
strain (εe) concepts as given below

σe =
√

3
2

s · s and εe = √
ep · ep (2.72)

where s and e are deviatoric stress and deviatoric strain tensors are given as follow

s = σ − tr(σ)
3

I and ep = εp − tr(εp)
3

I with tr(εp) = 0 (2.73)

It is interesting to note that the effective stress and strain would corresponds to those
at uniaxial state, that is,

σe = σ1 and εe = ε1 (2.74)

This is a very convenient conclusion that the non-linear response can be evaluated
under uniaxial state and can be easily extended to multi-dimensional state without any
triaxial testing. However, it should be noted that this is only valid when the volumetric
components are negligible in the overall mechanical behaviour.

(b) Elastic-visco-plasticity

These approaches assume that the materials are assumed to be elastic before yielding
and behave in a visco-plastic manner following yielding. In visco-plastic evaluations,
ep is replaced by evp.

(i) Power-type Model
When Norton type constitutive law is used for creep response, the visco-plastic
strain rate (evp = εvp) is expressed as follows:

dεvp

dt
=
(

σeq

σo

)n
∂σeq

∂σ
(2.75)

(ii) Perzyna-type
Perznya-type elastic-visco-plastic laws are used for representing non-linear rate
dependency involving plasticity.

dεvp

dt
= λs (2.76)
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where λ is proportionality coefficient and it is interpreted as fluidity coefficient.
This parameter is obtained from uniaxial creep experiments as

λ = ε̇c

σ
(2.77)

(d) Elasto-visco-plasticity

Another approach was proposed by Aydan & Nawrocki (1998), in which the material
behaviour is visco-elastic before yielding and becomes visco-plastic after yielding. The
derivation of this constitutive law involves the followings:

1) Yield function

F(σ, κp, κv) = f (σ) − K(κp, κv) = 0 (2.78)

It should be noted that the yield function is a function of permanent plastic and
viscous hardening parameters (Figure 3.9).

2) Flow rule

dεp = λ
∂G
∂σ

, dε̇p = λ̇
∂G
∂σ

+ λ
∂Ġ
∂σ

(2.79)

3) Prager’s consistency condition

dF = ∂F
∂σ

· dσ + ∂F
∂κp

∂κp

∂εp
· dεp + ∂F

∂κv

∂κv

∂ ε̇p
· dε̇p = 0 (2.80)

4) Linear decomposition of the strain increment (dε) and strain rate increment (dε̇)
into their reversible (dεr) and permanent components (dεp)

dε = dεr + dεp; dε̇ = dε̇r + dε̇p (2.81)

5) Incremental Kelvin-Voigt law

dσ = Drdεr + Crdε̇r (2.82)

where
σ: stress tensor
ε: strain tensor
K(κp, κv): hardening function
G: plastic potential
λ: proportionality coefficient
κp: plastic hardening parameter
κv: viscous hardening parameter
dεr: Reversible incremental strain tensor
dε̇r: Reversible incremental strain rate tensor
dεp: Permanent incremental strain tensor
dε̇p: Permanent incremental strain rate tensor
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Dr: Elasticity tensor
Cr: Viscosity tensor
(·) denotes dot product

In elastic-visco-plastic formulations of Perzyna type, the flow rule is assumed to
be of the following form

dε̇p = λ̇
∂G
∂σ

(2.83)

The flow rule above implies that any plastic straining is time-dependent. Aydan &
Nawrocki (1998) suggested the following form:

dε̇p = λ
∂Ġ
∂σ

(2.84)

This flow rule of Aydan & Nawrocki (1998) implies that the plastic potential function
shrinks (or expand) in time domain while keeping its original form in stress space
and the permanent strain increment consists of time-dependent and time independent
parts.

Substituting Eq. (2.84) in Eq. (2.80) and re-arranging the resulting equations yields
the following

dF = 1
hrp

∂F
∂σ

· dσ (2.85)

where hrp is called hardening modulus and given specifically as follows

hrp = −
[

∂F
∂κp

∂κp

∂εp
· ∂G

∂σ
+ ∂F

∂κv

∂κv

∂ ε̇p
· ∂Ġ

∂σ

]
(2.86)

Inserting the relations above into Eq. (2.80) and (2.81) yields the constitutive relations
between permanent strain increment and permanent strain rate increment and stress
increment as

dεp = 1
hrp

∂G
∂σ

(
∂F
∂σ

· dσ

)
= 1

hrp

(
∂G
∂σ

⊗ ∂F
∂σ

)
· dσ (2.87)

dε̇p = 1
hrp

∂Ġ
∂σ

(
∂F
∂σ

· dσ

)
= 1

hrp

(
∂Ġ
∂σ

⊗ ∂F
∂σ

)
· dσ (2.88)

where (⊗) denotes the tensor product. The inverse of the relations above cannot be
determined whether the plastic potential function is of associated or non-associated
type. Therefore the following technique is used to establish the relation between stress
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increment and strain and strain rate increments. Using relations given by (2.79), (2.80),
(2.87) and (2.88), one can write the followings:

dσ = Drdε − Dr 1
hrp

∂G
∂σ

(
∂F
∂σ

· dσ

)
+ Crdε̇ − Cr 1

hrp

∂Ġ
∂σ

(
∂F
∂σ

· dσ

)
(2.89)

Taking the dot products of the both sides of the expression above by ∂F/∂σ yields

∂F
∂σ

· dσ =
∂F
∂σ

· (Drdε) + ∂F
∂σ

· (Crdε̇)

1 + 1
hrp

∂F
∂σ

·
(

Dr ∂G
∂σ

)
+ 1

hrp

∂F
∂σ

·
(

Cr ∂Ġ
∂σ

) (2.90)

Substituting the equation above in Eq. (2.82) gives the incremental elasto-visco-plastic
constitutive law as

dσ = Drpdε + Crpdε̇ (2.91)

where

Drp = Dr −
Dr ∂G

∂σ
⊗ ∂F

∂σ
Dr

hrp + ∂F
∂σ

·
(

Dr ∂G
∂σ

)
+ ∂F

∂σ
·
(

Cr ∂Ġ
∂σ

) (2.92)

Crp = Cr −
Cr ∂Ġ

∂σ
⊗ ∂F

∂σ
Cr

hrp + ∂F
∂σ

·
(

Dr ∂G
∂σ

)
+ ∂F

∂σ
·
(

Cr ∂Ġ
∂σ

) (2.93)

Figure 2.41 illustrates the elasto-visco-plastic model for one-dimensional response.
Non-linear behaviour requires the existence of yield functions. These yield func-

tions are also called failure functions at the ultimate state when rocks rupture. For
two-dimensional case, it is common to use the Mohr-Coulomb yield criterion given by:

τ = c + σn tan φ or σ1 = σc + qσ3 (2.94)

where c, φ and σc are cohesion, friction angle and uniaxial compressive strength. σc

and q are related to cohesion and friction angle in the following form

σc = 2c cos φ

1 − sin φ
and q = 1 + sin φ

1 − sin φ
(2.95)
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Figure 2.41 The elasto-visco-plastic model for one-dimensional response.

Since the intermediate principal stress is indeterminate in Mohr-Coulomb criterion
and there is a corner-effect problem during the determination of incremental elasto-
plasticity tensor, the use of Drucker-Prager criterion is quite common in numerical
analyses, which is given by

αI1 +√J2 = k (2.96)

where

I1 = σ1 + σ2 + σ3; J2 = 1
6

((σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

Nevertheless, it is possible to relate the Drucker-Prager yield criterion with the Mohr-
Coulomb yield criterion. On π -plane, if the inner corners of the Mohr-Coulomb
yield surface are assumed to coincide the Drucker-Prager yield criterion, the following
relations may be derived

α = 2 sin φ√
3(3 + sin φ)

; k = 6c cos φ√
3(3 + sin φ)

(2.97)

In Rock Mechanics, one of recent yield criterion is Hoek-Brown’s criterion (1980),
which is written as

σ1 = σ3 +
√

mσcσ3 + sσ 2
c (2.98)

where m and s are some coefficients. While the value of s is 1 for intact rock, the
values of m and s change when they are used for rock mass. The value of m can be
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Figure 2.42 Comparison of various yield functions (from Aydan, 2008).

related to tensile strength and uniaxial compressive strength of rock requiring σ1 = 0
and σ3 = −σt as

m = σ 2
c − σ 2

t

σcσt
(2.99)

It must be noted this yield criterion cannot be applied to non-cohesive frictional
materials, that is σc = 0 or c = 0.

Aydan (1995) proposed a yield function for thermo-plasticity yielding of rock as
given by

σ1 = σ3 + [S∞ − (S∞ − σc)e−b1σ3 ]e−b2T (2.100)

where S∞ is ultimate deviatoric strength while coefficients b1, b2 are empirical con-
stants. Figure 2.42 compares the yield functions of Mohr-Coulomb, Hoek and Brown
and Aydan and Figure 2.43 shows the yield function of Aydan in the space of confining
pressure and temperature.

The parameters of yield function given above needs to be modified for time-
dependent behaviour as illustrated in Figure 2.44. As pointed by Aydan et al. (1994,
2010) and Aydan & Nawrocki (1998), the experimental results indicate that the time-
dependency of the friction angle of rocks is quite negligible. Therefore, the parameters
related to the cohesion of rocks may only be necessary to be correlated with time-
dependency. Empirical proposals given by Eq. (2.5) to (2.7) may be used for the
time-dependency of cohesion-related parameters. The function below is such an exam-
ple and was used by Aydan et al. (2010) for assessing the long term response of an
underground power house:

c(t)
co

= 1.0 − 0.0282 log(t∗) (2.101)
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Figure 2.43 3D view of Aydan’s yield function (from Aydan, 1995).

Figure 2.44 An illustration of long term variation of Mohr-Coulomb yield criterion.

where

co: cohesion obtained from short term experiment with a duration to,

t∗ = t
to

,

t: time.
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Figure 2.45 Geometrical illustration of various models.

2.6 CORRELATION BETWEEN COMPRESSION CREEP TESTS
AND IMPRESSION CREEP TESTS

Impression creep experiments are relatively easy to perform and the capacity of loading
equipment is relatively small compared to conventional creep experiments. Various
approaches on the relation between stress and strain states of impression experi-
ments and conventional compression experiments are summarized and discussed in
this section.

2.6.1 Empirical correlations

Hyde et al. (1996) suggested the following empirical relations between the strain mea-
sured in conventional creep tests and indenter with a rectangular flat end with the use
of finite element studies (Figure 2.45(a)):

σ = ηp and ε = δ

βd
(2.102)

They analysed various configurations using finite element technique and concluded
that η and β range between 0.43–0.47 and 1.9–2.0 for a stripe-like flat-end indenters,
respectively. Sun & Hyde (2009) suggests 0.892 and 0.448 for the values of η and β

for a circular flat-end indenter.

2.6.2 Analytical correlations

The stress and strain field induced in the impression experiments is close to the compres-
sion of the rock under a rigid indenter (Figure 4.1(b)). Timoshenko & Goodier (1951)
developed the following relation for a circular rigid indentation of elastic half-space
problem:

δ

D
= π

4
1 − ν2

E
p with p = 4F

πD2
(2.103)
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where F, ν and E are applied load, Poisson ratio and elastic modulus of rock. While the
displacement distribution is uniform beneath the indenter, the contact pressure induced
by the indenter would not be uniform. Jaeger & Cook (1969) discussed the initiation
of yielding due to compression and they suggested that the yielding stress level under
compression should correspond to one to two times the uniaxial compressive strength
of rock and the yielding would occur at a depth of the order of the radius of the
indenter.

Aydan et al. (2008) showed that the following relation should exist between
uniaxial compression stress-strain rate (σ − ε) and applied pressure (p) and nominal
strain of indenter with a cylindrical flat-end (εi = δ/D) with the use of spherical cavity
approach:

σ

ε
= 1 + ν

2
p
εi

(2.104)

where ν is Poisson’s ratio of rock and D is the diameter of the indenter. It should be
noted that radial stress and strain of impression experiments are analogous to stress-
strain of uniaxial stress state. As discussed by Aydan et al. (2008), there may be at
least two stress levels for initiating the yielding of rock beneath the indenter. The
first yield stress level would correspond to twice the tensile strength level of rock
and the other one would correspond to uniaxial compressive strength level. However,
the effect of tensile yielding is generally difficult to differentiate as the deformation
moduli before and after yielding in tension remains fairly the same. The overall defor-
mation modulus may change after yielding at in compression. The experiments also
indicate that the ultimate strength value (pu) cannot be greater that a stress level
given by

pu = 2
1 − sin φ

σc (2.105)

The equation above implies that the ultimate strength for a frictionless cohesive
medium would be twice its uniaxial strength or four times its cohesion. However,
it should be noted that this type equation implies that considerable yielding should
take place beneath the indenters. Aydan et al. (2008) developed following formulas
for three different situations of rock beneath the indenter (Figure 2.46):

Elastic behaviour (pi ≤ 2σt)

ua

a
= 1 + ν

2E
pi (2.106)

Radially ruptured (no tension) plastic behaviour (2σt < pi ≤ σc)

ua

a
= 1 + ν

2E
pt

Rt

a
+ pi

2E

(
1 − a

Rt

)
;

Rt

a
=
(

pi

pt

)1/2

; pt ≤ 2σt (2.107)
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RtRc
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No tension
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Elastic
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a

Figure 2.46 An illustration of zones formed beneath loading plate and notation.

Crushed Plastic Behaviour (pi > σc)

ua

a
=
[
1 + ν

2E
pt

Rt

a
+ pc

2E
Rc

a

(
1 − Rc

Rt

)](
pi

pc

)q/(q−1)

;
Rc

a
=
(

pi

pc

)q/2(q−1)

;
Rc

Rt
=
(

pt

pc

)1/2

(2.108)

Furthermore, the applied pressure is equal to radial pressure on the walls of spherical
body in view of the equivalence of work done by the pressure of the indenter to that
induced by the wall of spherical body on the surrounding medium as

pp = pi (2.109)

Assuming that the volume of hemispherical body beneath the indenter remains for a
given impression displacement (δ), the outward displacement (ua) of the hemispherical
cavity wall can be easily related to the impression displacement (δ) as follows

δ = 2ua (2.110)

2.6.3 Numerical studies on correlations between
experimental techniques

Finite element method is best suited for studying stress-strain responses of various
objects under different loading regimes. An axisymmetric finite element analysis of
cylindrical indenter with a diameter of 3 mm under elastic behaviour was carried
out (Figure 2.47(a)). The material properties on the indenter and rock are given in
Table 2.2. The applied pressure on the indenter was 10 kgf/cm2 (1 MPa) and the top
and side of the model were assumed to be free to move while the central vertical line
and bottom of the model can move vertically and radially, respectively.
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Figure 2.47 Finite element models for impression and uniaxial compression tests.

Table 2.2 Material properties used in finite element
analyses.

Material Elastic modulus (GPa) Poisson’s ratio

Indenter 200 0.30
Rock 10 0.25

Similarly, the uniaxial compression experiment was analysed using the axisymmet-
ric finite element method. The material properties used in the finite element analyses
are the same as those used in the simulation of the impression model. The specimen is
12 cm high and 5 cm in diameter (Figure 2.47(b)). The platen was assumed to be 1 cm
thick. One fourth of the sample is modelled using the symmetric characteristics of the
problem.

Figure 2.48 shows the computed deformed configuration, minimum principal
stress contours (tension is assumed to be positive) and maximum shear stress dis-
tribution. The minimum principal stress and maximum shear stress contours resemble
to pressure bulbs as expected. However the distributions are not uniform just below
the indenter. Nevertheless, the pressure bulbs become spherical beyond a distance
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Figure 2.48 Computed results from the axisymmetric finite element analysis for impression test.
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Figure 2.49 Computed FEM results for uniaxial compression experiments.

 

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315375151-3&iName=master.img-049.jpg&w=294&h=501


Time-dependent (rate-dependent) behaviour of rocks 53

Table 2.3 Computed average impression displacement.

Computed displacement
Model (mm)

FEM 1.815 × 10−4

Eq. (2.103) 2.209 × 10−4

Eq. (2.106) with Eq. (2.110) 1.875 × 10−4

equivalent to the radius of the indenter. Table 2.3 compares the computed average dis-
placement responses of the indenter from the finite element analysis and Eqs. (2.102)
and (2.106) with (2.110). As noted from Table 2.3, the finite element analysis yields
smaller displacement compared to the theoretical derivations. The reason for the dis-
crepancy is due to the differences in boundary conditions. While the domain is finite
in the FEM analysis, it is a half-space in the derivations of Eqs. (2.103) and (2.106).
Nevertheless, it is interesting to note that Eq. (2.106) yields reasonably close results to
those from the FEM, as the ratio of diameter and length of the domain is greater than
16 times the indenter radius.

Brazilian test is also carried out to infer the tensile strength of rocks under com-
pression loading. It is theoretically derived that the tensile strength of rocks can be
obtained. Tensile stress induced in a solid cylinder of rock is given by

σt = 2F
πDt

(2.111)

where F, D and t are applied load, diameter and thickness of rock sample, respectively.
The nominal strain of the Brazilian tensile test sample may be given as (see Hondros,
1959; Jaeger & Cook, 1979 for details)

εt = 2
[
1 − π

4
(1 − ν)

]σt

E
with εt = δ

D
(2.112)

For most rocks, the formula given above may be simplified to the following form

εt = 0.82
σt

E
(2.113)

A plane stress finite element analysis was carried out for the Brazilian test. The proper-
ties of rock were the same as those given in Table 2.2. The properties of the platen were
assumed to be those of the aluminium with an elastic modulus of 70 GPa. Uniform
compressive pressure with an intensity of 20 kgf/cm2 was applied on the platens and
boundary conditions are shown in Figure 2.50.

The maximum tensile stress occurs in the vicinity of the centre of the sample and
its value is 1.08 kgf/cm2. This is slightly greater than the theoretical estimation of
0.8 kgf/cm2. This is probably due to the slight difference in the application of load
boundary conditions. The radial displacement of the sample just below the platen is
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Figure 2.50 Finite element model for Brazilian tests.

about 0.001 mm, which is almost equal to that estimated from Eq. 2.113. Therefore,
it is possible to determine the elastic modulus besides the tensile strength of rocks.
Furthermore, the strain response in creep experiments should be similar to those of the
uniaxial compression creep experiments provided that deformability characteristics
remain the same under both tension and compression.

2.7 CREEP EXPERIMENTS ON OYA TUFF

2.7.1 Geology and stability problems of underground
quarries in Oya region

Furthermore, Oya tuff or Oya stone, which is one of the most popular building stone
materials in Japan, has been quarried in the Oya region, Utsunomiya, Japan. Over
200 underground quarries have been exploited for more than 120 years and some of
those are below residential zone. The Oya tuff that is quarried at a hilly region nearby
Oya town, Utsunomiya City, Tochighi Prefecture, Japan with an elevation of 200 m
(Figure 2.52). It belongs to Ashio belt and it is a Tertiary formation with the basement
rocks such as chert, sandstone of the Paleozoic era, and the Mesozoic era and covered
with the diluvium of the Quaternary period, the conglomerate layer and Kanto loam
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Figure 2.51 Computed FEM results for Brazilian tests.

layer. The Oya tuff was formed under marine environment about 20 million years ago
and has a porous structure and bluish-green pumice in splashed patterns together with
chunks of the clay mineral. Its clay mineral mainly consists of montmorillonite and
zeolite. Oya tuff is a soft rock and it can be easily excavated. However, it is easily
weathered and degraded. Especially the chunks of clay mineral in Oya tuff are easily
washed away.

Underground quarries are exploited using the room and pillar method. There were
15 large-scale collapses in Oya region since 1946 (Figure 2.53). Oya tuff contains
some swelling clay minerals (Table 2.4) and it is susceptible to swelling and shrinkage
(Figure 5.2). Free swelling strain of Oya tuff is generally less than 0.6%.
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Figure 2.52 Location and geological maps of Oya region (from Aydan et al., 2006).

2.7.2 Short term physical and mechanical
properties of Oya tuff

Depending upon sedimentation process, the internal structure of Oya tuff varies. There
are basically three different layers of Oya tuff in relation to its geological past. The
grain size of Oya tuff changes and the highest strength obtained for fine-grain Oya tuff
while lowest strength is obtained for coarse grain type of Oya tuff. Therefore, the scat-
tering of material properties is large as noted from Table 2.5. Furthermore, its strength
and deformability properties change in relation to water content (Figure 2.55). The
reduction of properties (φ) are fitted to the following function proposed by Aydan &
Ulusay (2002):

φ = φ0 − (φ100 − φ0)
S

S + β(100 − S)
(2.114)

where S is saturation ranging between 0 (dry) and 100 (fully saturated). φ0 and φ100 are
the normalized values of properties for the saturation values of 0 and 100, respectively.
β is an empirical constant. The value of β is 0.2 for properties shown in Figure 2.55.

A series of short term experiments on Oya tuff samples were carried out on
samples of Oya tuff, which are also used in creep experiments reported in this section.
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Figure 2.53 A view and pillar layout at a large-scale collapse of underground quarry in Oya region.

Table 2.4 XRD results from the samples of Oya tuff (from Aydan et al., 2006).

Whole Rock Clay fraction
Specimen
Number Quartz Opaque-CT Feldspar Dolomite Clay Smectite Kaolin Illite

Oya 7.3 29.5 4.9 – 33.3

The uniaxial compressive strength and Brazilian tensile strength of Oya tuff samples
are summarized in Table 2.6. Figure 2.56 and Figure 2.57 shows the multi-parameter
responses of Oya samples during a Brazilian test and a compression test. Figure 2.58
show the responses of during penetration experiments with an indenter having a diam-
eter of 3 mm under dry and saturated conditions together with estimated responses and
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Figure 2.54 Swelling and shrinkage responses of Oya tuff in relation to water content.

Table 2.5 Mechanical characteristics of dry tuffs of Oya
(from Aydan et al., 2006).

Parameter Oya

Dry unit weight (kN/m3) 13.5–15.7
Saturated unit weight (kN/m3) 17.0–17.6
Effective porosity (%) 23.4–32.0
Uniaxial compressive strength (MPa) 5.72–24.8
Tensile strength (MPa) 0.82–1.52
Elastic modulus (GPa) 0.90–3.00
Poisson’s ratio 0.25–0.30
Friction angle (◦) 27–39
P-wave velocity (km/s) 1.6–1.8
S-wave velocity (km/s)
Thermal conductivity coefficient (kcal/h m ◦C) 0.7–1.3
Thermal expansion coefficient (×10−6 1/◦C) 8.0
Hydraulic conductivity (×10−6 cm/s)
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Figure 2.55 Elastic modulus and uniaxial compressive strength reduction in relation to water content
variation (saturation).

Table 2.6 Short term properties of Oya tuff used in creep experiments.

Compressive strength Tensile Strength Elastic modulus
Condition (MPa) (MPa) (GPa)

Dry 5.89–9.51 0.71–0.94 0.7–1.63
Saturated 2.01–3.98 0.25–0.38 0.34–0.61

Figure 2.56 Multi-parameter response of Oya Tuff during a Brazilian test.

properties from the theory of Aydan et al. (2008) for penetration experiments. It is also
possible to determine the triaxial strength of rocks using the results of the Brazilian
tensile strength experiment and uniaxial compression experiments. Besides the Mohr-
Coulomb yield criterion, Aydan modified his criterion by relating its parameters to the
parameters of Mohr-Coulomb criterion for isothermal conditions as follows:

τ = c∞ − (c∞ − co)e−σn/b (2.115)
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Figure 2.57 Multi-parameter response of Oya Tuff during a uniaxial compression test.

Figure 2.58 Response of Oya Tuff during a penetration test.

where

b = σt

ln
(

c∞
c∞−co

)

Table 2.7 gives the parameters of Mohr-Coulomb and Aydan’s failure criteria.
Figure 2.59 compares the yield criterion for dry and saturated conditions.

2.7.3 Brazilian tensile creep experiments

A specially designed cantilever type device used for Brazilian creep tensile creep experi-
ments. This system induces loads on samples six times the load imposed at the cantilever
end. Diameter of samples is 46 mm and their thickness ranges between 14 and 25 mm.
The monitoring system involves the measurement of displacement, acoustic emission
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Table 2.7 Short term triaxial strength parameters of
Oya tuff used in creep experiments.

Dry Saturated

Parameter Lower Upper Lower Upper

co (MPa) 0.35 0.70 0.35 0.7
c∞ (MPa) 12.0 16.0 4.0 8.0
φ (◦) 51 55 51 55
b (MPa) 8.8 10.0 2.7 4.73

Figure 2.59 Illustration of shear strength of Oya-tuff under dry and saturated conditions.

counts and electrical potential. The monitoring system operates entirely on battery-
operated monitoring device. Therefore, the experimental set-up can be easily used
under in-situ conditions without any modifications provided that sufficient protec-
tion against vandalism by humans and/or nature is implemented. Table 2.8 gives the
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Table 2.8 Conditions and measured parameters of Brazilian creep experiments.

1st loading 2nd loading 3rd loading Loading period Failure time (min)
Sample No. (kPa) (kPa) (kPa) (min) under saturation

SN1-W3 125 168 335 4306 1278
WE4N-3 156 302 363 5448 6
VS5 82 163 245 11352 8472
SN5E-E 415 – – 1465 3
VL15-B1 135 224 269 4237 1579
VL15-B2 138 231 323 4023 35
WE1S-D 150 250 – 10066 8482 (no failure)
WEZ-3 227 247 269 22594 19594 (no failure)
EW4S-5 116 194 256 10500 8700 (no failure)

Figure 2.60 Brazilian creep response of SN1-W3 sample.

conditions and measured parameters of experiments. All samples were subjected creep
experiments up to a chosen period of time under dry conditions and then it was fully
saturated. Some creep experiments under dry condition were performed at Toyota
National College of Technology. Figures 2.60 to 2.68 shows the measured responses
of samples of Brazilian creep experiments.
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Figure 2.61 Brazilian creep response of WE4N-3 sample.

Figure 2.62 Brazilian creep response ofVS5 sample.

Figure 2.63 Brazilian creep response of SN5E-E sample.

2.7.4 Impressions creep experiments

The device shown in Figure 2.14 has been used for experiments reported in this
section. The diameter of the indenter is 3 mm and the device is of cantilever type
and it is capable of inducing 10 times the applied load at the end of the arm. The
device equipped with a displacement transducer and an acoustic emission sensor.

 

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315375151-3&iName=master.img-061.jpg&w=275&h=118
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315375151-3&iName=master.img-062.jpg&w=275&h=113
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315375151-3&iName=master.img-063.jpg&w=284&h=121


64 Time-dependency in rock mechanics and rock engineering

Figure 2.64 Brazilian creep response ofVL15-B1 sample.

Figure 2.65 Brazilian creep response ofVL15-B2 sample.

Figure 2.66 Brazilian creep response of WE1S-D sample.

The monitoring is entirely based on battery-operated loggers as used in Brazil-
ian creep experimental device. Figures 2.69–2.73 shows the responses mea-
sured in impression experiments. Table 2.9 gives the details of experimental
conditions.
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Figure 2.67 Brazilian creep response of WEZ-3 sample.

Figure 2.68 Brazilian creep response of EW4S-5 sample.

Figure 2.69 Impression creep response of EW4S-5 sample.

2.7.5 Uniaxial creep experiments

The device shown in Figure 2.6 has been used for experiments reported in this section.
The device is of cantilever type and it is capable of inducing loads up to 50 kN. The
device equipped with a displacement transducer. Load cell and an acoustic emission
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Figure 2.70 Impression creep responses of EW1N-4 sample.

sensor. Figure 2.74 shows the responses measured in uniaxial compression experiments
so far. Table 2.10 gives the details of experimental conditions.

2.7.6 Comparisons of experiments

Figure 2.75 compares the failure time of samples tested in Brazilian, impression and
uniaxial compression creep experiments under dry and saturated conditions. Although
it is difficult to compare the impression creep experiments, the stress ratio is obtained
by dividing the applied stress condition by 36 MPa. This is a first trial and a short term
penetration experiments under dry and saturated conditions are felt to be necessary for
better comparative results. From experimental results, it is very interesting to note that
if the stress ratio remains same, the failure time of dry and saturated samples are very
close to each other. Furthermore, the failure times of samples tested under uniaxial
compression and Brazilian creep experiments are also similar. These two important
conclusions have strong implications in practice. This comparison is still preliminary
and further comparisons of experimental results are needed.
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Figure 2.71 Impression creep responses of SN4-E sample.

2.8 APPLICATIONS OF THE LONG TERM RESPONSE AND
STABILITY OF ROCK ENGINEERING STRUCTURES

2.8.1 Abandoned room-pillar mines

One of the main parameters influencing the long term stability of abandoned mines is
the creep strength characteristic of rocks. A series of creep tests on sandstone samples
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Figure 2.72 Impression creep responses of WEZ-4 sample.

obtained from abandoned lignite mines of Mitake town in Gifu Prefecture of Japan
were carried out. The specific of the function (2.63) proposed by Aydan & Nawrocki
(1998) for the long term strength of rocks normalized by their short term strength
is adopted for the long term stability analyses of abandoned room and pillar mines
together with the use of RMR rock classification system (Aydan et al., 2005).

σcl

σcs
= 1 − 0.0397 ln

(
t
ts

)
(2.116)

 

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315375151-3&iName=master.img-072.jpg&w=254&h=406


Time-dependent (rate-dependent) behaviour of rocks 69

Figure 2.73 Impression creep response of SN3-D sample.

Table 2.9 Conditions and measured parameters of Impression creep experiments.

Sample 1st loading 2nd loading 3rd loading Loading Failure time (min)
No. (MPa) (MPa) (MPa) period (min) under saturation

EW3-4 14.14 28.28 35.35 80 80
EW1N-4 28.28 35.35 – 164 164
SN4-E-1 21.21 – – 3576 585
SN4-E-2 22.4 – – 20084 –
SN3-D 28.28 – – 40 40
WEZ-4-1 14.14 28.28 – 3664 440
WEZ-4-2 14.14 21.21 323 4023 1573
WEZ-4-3 14.14 – – 4200 –

Figure 2.74 Uniaxial creep responses of samples.
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Table 2.10 Conditions and measured parameters of uniaxial compression creep experiments.

Sample No. 1st loading (MPa) Loading period (min) Comment

VU3 6.62 100 failed
EW4S 4.2 2458 Terminated – no failure
WE1S 3.0 2130 Terminated – no failure

Figure 2.75 Comparison of failure time of Brazilian creep samples with that of uniaxial compression
creep experiments.

For the simplicity, we will use the tributary area approach for pillar stability and arching
approach for the stability of roof layers in developing our theoretical equations. The
tributary area is simple yet effective method to assess the overall stability of the pillars.
Let us assume that the geometry of a representative pillar and its overburden load can
be modeled as shown in Figure 2.76(a). From the assumed geometry, it is easy to show
that the average pillar stress is

σp = ρgH
At

Ap
or σp = σV

At

Ap
(2.117)

where
ρ: is unit weight of rock
g: is gravitational acceleration
H: Overburden
At: Area supported by pillar
Ap: Area of pillar
σV = ρgH

The long term strength of rock depends upon the level of the sustained loading
with respect to its strength in short term tests. Figure 2.76(b) shows the computed
results for the failure time of pillars with the consideration of long term strength of
pillars. From the results it is inferred that the failure time would be shorter if the
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Figure 2.76 Mechanical model and failure time of pillars of abandoned lignite mine.

Figure 2.77 Mechanical model and failure time of roof of abandoned lignite mine.

tributary area (excavation ratio) increases. This type of situations may be observed
when the abandoned mines are fully submerged. However, it should be noted that
the long term strength properties for saturated conditions should be used under such
situations. The range probably corresponds to the actual situation of the abandoned
mine that the author and his group have been investigating (Aydan et al., 2005). For
the lower bound strength range, the stability problems of pillars would occur after
57 years for a typical excavation ratio of 7. The recent collapses of abandoned lignite
mines in the town of Mitake confirm this conclusion.

The stability of roof layers can be checked against various forms of failure.
Although roof layers may crack due to bending stresses, their ultimate failure would be
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governed by arching phenomenon within the roof layers. If the fiber stress exceeds the
compressive strength at the crest of arch within roof layer, the roof layer will collapse.
Under such a condition, the following relation can be derived (i.e. Aydan, 1989):

σc = 2
3

ρgh
(

L
h

)2

(2.118)

where L and h are the span and thickness of roof layer, respectively. The effect of
degradation can be imposed on the thickness of roof layer while the effect of long term
strength can be imposed on the compressive strength of roof layers.

2.8.2 Abandoned room and pillar quarries of Oya tuff

The quarrying history of Oya tuff is more than 100 years and it became famous as a
building stone following its use in the construction of Imperial Hotel in Tokyo. The
mechanical excavation using chains started in 1952 and the size of quarries become
larger as a result. The first caving of the quarries occurred in 1946 and there were very
large scale caving (sinkholes from 1989 to 1991, which received wide coverage by the
mass media. As a result, Utsunomiya city started long term monitoring of abandoned
underground quarries. Furthermore, these events also resulted in the increased atten-
tion on the long term stability of Oya tuff underground quarries. The failure of an
underground quarry occurred in 1989 in Sakamoto district of Oya town. The diam-
eter of the sinkhole was about 65 m and the overburden thickness was 30 m and the
total depth of the sinkhole was 40 m. The approach explained in the previous section
can be directly used to back-analyse the sinkhole formation. The long term strength
of Aydan & Nawrocki (1998) given by Eq. (2.63) adopted for the back-analyses. The
short term strength of Oya tuff varies. However, it is assumed to be ranging between 6
and 8 MPa on the basis of experimental results described in this report. Furthermore,
coefficient b is taken as 0.0435. Figure 2.78(a) shows the effect of overburden on the
collapse time of the underground quarry. The failure time is about 30 years for an
overburden depth of 30 m with an excavation ratio of 4. However, the quarries should
be stable against the failure of pillar for shallow depths. Figure 2.78(b) shows the effect
of excavation ratio for overburden depth of 30 m. The computational results indicate
that the collapse time may range between 20–30 years for the given strength range and
chosen excavation ratios.

2.8.3 Man-made natural underground openings
in Cappadocia region

(a) Stability of openings to next to cliffs and in fairy chimneys

Based on the observations of the Aydan et al. (1997, 2008) at Göreme, Zelve, Ürgüp,
and Uçhisar and Ortahisar castles, most of the instabilities occur as a result of collapse
of toes of openings next to cliffs. In such failures, erosion of the toe by natural agents
and decrease in long term strength of the rock are the main causative factors. In
addition, instability problems were also observed in openings in fairy chimneys. In
the model representing an opening next to the cliff (Fig. 2.79a), it is assumed that
the pillar or wall at the valley side carries the half of the opening. Due to its conical
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Figure 2.78 The effect of overburden and excavation ratio on the failure time of collapsed region of
Sakamoto underground quarry in Oya town.

shape, a fairy chimney is considered as an axially symmetrical rock structure including
a circular opening at its center (Fig. 2.79a). Although the real stress distributions in
these openings are slightly different than those in these models, it is considered that the
approaches used will be helpful to assess the conditions of the instabilities investigated.
The time dependent safety factor (SF) of the wall next to the cliff and in fairy chimney
is written as follow.

SF = σcr(t)
γ H

Aw

At
(2.119)

where γ , σcr, H, At and Aw are unit weight, creep strength, overburden height, total
area supported and wall area. The area ratios for continuous wall next to cliff and in
cylindrical fairy chimney shown in Figure 6.4a specifically take the following forms,
respectively.

At

Aw
= 1 + w

2B
(2.120a)
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Figure 2.79 (a) Mechanical models and (b) safety factor variation with overburden and time for
openings next to cliffs and in fairy chimneys, respectively.

At

Aw
= 1

1 −
(

ri
r0

)2 (2.120b)

The creep strength (σcr) in terms of short term strength (σcs) is represented in the
following form for tuffs of Cappadocia region.

σcr = σcs

(
1 − 0.05 ln

(
t
τ

))
(2.121)

where: t and τ are time and short term test duration, respectively. The uniaxial com-
pressive strength of the rock mass is estimated from the equation of Aydan et al.
(2014):

σcm

σci
= RMQR

RMQR + β(100 − RMQR)
(2.122)
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The value of β in equation above can be taken as 6 on the basis of experimental data
from construction sites in Japan (Aydan & Kawamoto, 2000; Aydan et al., 2014).
Equation 2.122 can be adopted for the creep strength versus failure time function and
the safety of openings can be evaluated. Figure 2.79b shows the safety factor of the
openings next to cliffs and in fairy chimneys as a function of time and overburden for
strength properties of tuffs. It is clear from Figure 2.79b that openings next to cliffs
are more likely to fail in long term as compared with those of fairy chimneys.

(b) Long term stability of Derinkuyu underground city

In the elasto-visco-plastic analyses, the total strain of surrounding rock mass consists
of instantaneous strain due to excavation and creep strain.

εt = εe + εc (2.123)

The instantaneous strain field is obtained from the elastic or elasto-plastic behaviour
of rock mass. The creep strain is obtained from visco-elastic or visco-elasto-plastic
behaviour following the excavation. This mechanical model can be expressed for linear
behaviour in the following form

σ = Deε at the time of excavation (2.124)

σ = Dε + Cε̇ after the excavation (2.125)

This model is fundamentally very similar to the Generalized Kelvin Model or Zener
Model. In the finite element formulation of rock excavations, multi-dimensional forms
of Generalized Kelvin Model or Zener Model are used. If such a concept is formulated
using the finite element method, one can easily get the following form:

CU̇ + KU = F (2.126)

where

C =
∫
�

BTCBd�; K =
∫
�

BTDBd�; F =
∫
�

NTbd� +
∫
�

NTbd�

At time zero (excavation), the initial strain field is obtained using the multi-dimensional
elasticity tensors of either Zener or Generalized Kelvin Model and Eq. (2.38) is
integrated over the time domain using one of time-integrations schemes. When the
behaviour deviates from linear visco-elasticity behaviour, the visco-plastic schemes
can be implemented as described in a textbook by Oven & Hinton (1980).

The models described in previous section for one-dimensional situation can also
be extended to one-dimensional axi-symmetric situations. Figure 2.80 compares the
finite-element analysis based on the generalized Kelvin model with analytical results for
one-dimensional axi-symmetric situation for the shaft of Derinkuyu underground city.

A series of visco-elasto-plastic finite element analyses were carried out to assess the
short and long term stability of a vertical shaft and a hall at the 7th floor of Derinkuyu
Underground City (Aydan et al., 2008; Aydan & Ulusay, 2013). The vertical shaft is
still in operation and is used as one of the ventilation shafts connecting all floors of
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Figure 2.80 Comparison of analytical solutions with axisymmetric finite element solution.

Table 2.11 Physical and mechanical properties used in finite element analyses.

ρ λ0 µ0 λ µ λ∗ µ∗ φ

kN/m3 MPa MPa MPa GPa GPa year GPa year (◦)

18 121 121 69 69 0.242 0.138 22

Derinkuyu Underground City to the ground surface. The cross-section of the shaft is
circular. Therefore, the problem was treated as an axi-symmetric problem. The shaft
was taken as 37.5 m deep and the hall was at the depth of 40 m. The vertical stress was
assumed to be equivalent to the overburden and the lateral stress coefficient was taken
0.5 on the basis of initial in-situ stress predictions (Aydan et al., 1999; Watanabe et al.,
1999; Aydan & Ulusay, 2013). The Mohr-Coulomb yield function was replaced with
Drucker-Prager yield criterion by using the theoretical relations between two yield
criteria while taking into account the strain rate dependency. Relevant mechanical
properties used in the analyses are given in Table 2.11, which were determined from
short and long term laboratory tests on rock samples and in-situ characterization of
rock mass.

The analysis on the shaft showed that there should be no yielding occurring around
the shaft soon after the excavation. The computations were carried out up to 1500
years, which corresponds to the present time if this underground city was assumed
to be excavated 1500 years ago. Figure 2.81 shows the maximum shear stress dis-
tribution contours at the time of 1500 years following the excavation and also the
displacement and velocity responses of the shaft at the level of 36 m from the ground
surface. Computations also indicated that yielding of rock mass should not also occur
at the present time. Since the behaviour of surrounding rock mass is visco-elastic, the
deformation of the shaft should had been nearly converged to its final value and the
stress state in the surrounding rock mass should also be the same as that at the time of
excavation.
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Figure 2.81 Computed stress distributions and displacement and velocity responses of shaft wall at
36 m level using elasto-visco-plastic FEM.

Figure 2.82 Deformation and velocity responses of the hall at 7th floor of Derinkuyu underground city.

The second example is concerned with the hall at the 7th floor of Derinkuyu
Underground City. The hall has an arch shaped roof and its shape is close to horseshoe.
The width is about 4.5 m and 20 m long. Therefore, the problem was treated as a two
dimensional plain-strain problem. Although the hall has 3 pillars along the centre line,
they were neglected in computations as they had some thoroughgoing discontinuities.
The analysis showed that no yielding occurs soon after the excavation. The compu-
tations were carried out up to 1500 years, which corresponds to the present time.
Figure 2.82 shows the deformed configurations of the domain analysed 1500 years
after the excavation and the displacement and velocity response of the hall. Compu-
tations also indicated that yielding of rock mass should not occur until the present
time. Since the behaviour of surrounding rock mass is visco-elastic, the deformation
of the shaft should had been nearly converged to its final value and the stress state in
the surrounding rock mass should also be the same as that at the time of excavation.
Figure 2.83 shows the maximum shear stress state around the hall.
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Figure 2.83 Maximum shear stress distribution around the hall at 7th floor (1500 year elapsed after
the excavation).

2.8.4 Application to Tawarazaka tunnel

Since the deformation of the tunnel has been continuing for more than 1500 days
after the completion of excavation along this section, it was understood that some
investigations are necessary for the causes of time-dependent deformations. Addi-
tional laboratory tests and in-situ pressure-meter tests and borings were conducted
at certain locations along this section. Some swelling tests were also performed. The
swelling tests indicated that rocks in this section had no swelling potential. This was
unexpected.

(a) Simplified Time-dependent axi-symmetric analyses

Aydan et al. (1992, 1993, 1996) proposed some analytical solutions for predicting
the deformation response of tunnels in squeezing rocks. Using the concept proposed
by Ladanyi (1974), Aydan et al. (1996) considered the variation of long term proper-
ties of rocks with time and they called as the degradation of material properties. This
concept was adopted in the original model of Aydan et al. (1992, 1993) and it was
applied at a section of tunnel where the overburden was 280 m. The three different
long term strength values were chosen and deformation responses of the tunnel were
computed for each long term strength values. Figure 2.84 shows the computed defor-
mation responses with the measurements at three sections. As noted from the figure,
the deformation response of the tunnel implies remarkable visco-elastic behaviour. It
is also interesting to note that when the long term strength if 0.5 times the short term
strength, there is an abrupt variation of the deformation response as soon as rock
yields. This response is remarkably similar to those measured.
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Figure 2.84 Comparison of computed responses with measurements.

Table 2.12 Physical and mechanical properties used in finite element analyses.

ρ λ0 µ0 λ∗ µ∗ Kst Klt

kN/m3 MPa MPa MPa day MPa day αst αlt MPa MPa

22 275 254 3.96 3.65 1.51 0.9 0.19 0.16

(b) Elasto-visco-plastic finite element analyses

The same section of the Tawarazaka tunnel was analysed using the elasto-visco-plastic
finite element method (Aydan et al., 1995). The finite element analyses were also
concerned with the effect of support system. First, unsupported case is considered.
The overburden was assumed to be 280 m at the respective location. The physical
and mechanical characteristics of rock are given in Table 2.12. Figure 2.85 shows the
deformed configuration of surrounding rock around the tunnel at 2500 days after
excavation.

Figure 2.86 shows the finite element mesh for supported case in which bold lines
correspond to bolts, shotcrete and steel ribs. This support system was initially adopted
for supporting the tunnel through this section. Rockbolts and steel ribs and shotcrete
were represented by rockbolt element (Aydan, 1989), shotcrete element (Aydan et al.,
1990), respectively. Figure 2.87 shows the deformed configuration of surrounding rock
around the tunnel at 2500 days after excavation.

Figure 2.88 compares the time history of displacements in the centre of the floor
after excavation (note that displacements due to excavation were subtracted from
the figures) for supported and unsupported cases together with measurements at the
centre of the floor. While the time dependent deformation of the crown decreased
from 48.9 mm to 33.7 mm at 2500 days due to the effect of support pattern, no
remarkable difference was observed for the floor as shown in Figure 2.88. This was
thought to be due to the pattern of the support system since it was a non-closed
support ring.
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Figure 2.85 Computed deformed configuration.

Figure 2.86 Support system.
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Figure 2.87 Computed deformed configuration (with support) responses with measurements.

Figure 2.88 Comparison of computed.
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0 0.3 m

Disp. scale
0 0.3 m

Figure 2.89 Comparison of deformed configuration just after construction and 30 years.

2.8.5 Applications to underground power house

A pumped-storage scheme consists of two reservoirs and underground powerhouse and
it was constructed about 30 years ago. The upper reservoir consists of a 125 m high
rockfill-dam with a storage capacity of 5,780,000 m3. The lower reservoir has a gravity
dam with a height of 44 m. The underground powerhouse is 55 m long, 22 m wide and
39 m high and it has two turbines (Chubu Electric Power Co., 1979). The maximum
water level variation may reach 45 m in 12 hours at the full capacity. As it is expected
that the deformability and strength of every geomaterial have some time-dependent
characteristics, the time-dependent behaviour of the underground power house would
naturally occur following its construction. The time-dependency of cohesion (c) of rock
mass was assumed to obey the functional form given by Eq. (2.101) by considering
experimental results on the igneous rocks (Aydan & Nawrocki, 1998).

The elasto-visco-plastic finite element method described in previous section was
used to analyse the long term response of rock mass around the underground cavern.
Figures 2.89 and 2.90 shows the deformed configurations and plastic zone formation
around the cavern at the time of construction and after 30 years for the lateral stress
coefficient of 1.0, which was used in the initial design. Compared with the deformation
of the cavern shown in Figure 2.89(a), the deformation becomes larger. Furthermore,
a plastic zone develops in the vicinity of the sidewall, which was not observed during
the excavation step (Figure 2.90).
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0 100 m
Mesh scale
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0 100 m
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Figure 2.90 Comparison of plastic zone formation around the cavern just after and 30 years after the
construction.

Figure 2.91 Finite element mesh used in the back-analyses.

2.8.6 Applications to foundations

The final application involves a back-analysis of the constitutive law parameters of the
foundation rock of the pier 3P of the Akashi suspension bridge. The rock consists of
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Figure 2.92 Time response of applied load and measured displacement.

Figure 2.93 Back analysis of measured displacement by Kelvin model.

Figure 2.94 Comparison of measured and computed displacement.

Kobe tuff, which is a relatively soft-rock. The diameter of the foundation was 80 m and
its height was 80. Following the lowering of the caisson foundation to the sea bottom,
it was filled with concrete, which increased the load on the foundation. First the filling
of the inner ring was completed and the outer ring following with some time lag. The
deformation of the ground was measured during the filling stages. It was required
to obtain the time-dependent characteristics of foundation formation by considering
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Figure 2.95 Estimated creep displacement of the pier.

the loading associated with the construction procedure. The constitutive law of the
foundation rock was assumed to be of Kelvin type. The problem was considered to
be an axi-symmetric problem and the finite element mesh used in the back analyses is
shown in Figure 2.91. The elastic modulus and viscosity coefficient of Kelvin model of
foundation rock were 833 MPa and 3.3 GPa day, respectively (Figures 2.92 and 2.93).
Figure 6.94 compares the computed response with measured response for the loading
condition shown in the same figure. Figure 6.95 shows the displacement of the pier
for about 4 years. The expected creep displacement is about 108 mm.
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Chapter 3

Water migration in soft rocks
and its effects on the response
of rock structures

3.1 INTRODUCTION

It is well known that clay-bearing and some evaporate rocks cause various engineering
problems (Figure 3.1). Rocks such as mudstone, marl, siltstone, shale, tuff and weath-
ered igneous rocks can be classified as clay bearing rocks. Most clay minerals exhibit
volumetric variations when they absorb or desorb water. As a result, their physical and
mechanical properties vary with the amount of water contained in such geomaterials.

Figure 3.1 Examples of some engineering problems in rocks prone to water absorption/desorption.
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Various structural and environmental problems in geo-engineering are caused by such
volumetric variations. The mechanism associated with the mechanical weakening or
softening of such geo-materials is thought to be due to the variation of the distance
between sheets of clay minerals when clay fragments absorb or desorb water.

The slaking durability index test was proposed by Franklin & Chandra (1972)
and adopted as suggested method by ISRM as an index test of rocks for character-
ization purposes. However, such an index is insufficient for assessing the structural
behaviour and the stability of structures in/on geo-materials having minerals prone to
water absorption/desorption. An appropriate model definitely requires the informa-
tion on the moisture migration characteristics of geo-materials and the variations of
their physical and mechanical properties with the water content.

This chapter first describes a theoretical method to model the water-content migra-
tion in geomaterials. Then some experimental set-ups are presented to measure the
moisture migration and associated volumetric variations of geo-materials prone to
water absorption/desorption. Then, physical and mechanical of properties of soft rocks
are measured in relation to water content.

3.2 MODELING OF WATER ABSORPTION/DESORPTION
PROCESSES AND ASSOCIATED VOLUMETRIC CHANGES
IN ROCKS

Some rocks such as fine grain sandstone, mudstone and siltstone start to fracture
during losing their water content as is observed in many laboratory tests and in-situ.
The situation is similar to reverse problem of swelling problem. It is considered that
rock shrinks as it loses its water content. This consequently induces results in shrinkage
strain leading to fracturing of rock in tension. Therefore, a coupled formulation of the
problems is necessary.

3.2.1 Mechanical modeling

The water content variation in rock can be modeled as a diffusion problem. Thus the
governing equation is written as

dθ

dt
= −∇ · q + Q (3.1)

where θ , q, Q and t are water content, water content flux, water content source and
time, respectively. If water content migration obeys Fick’s law, the relation between
flux q and water content is written in the following form:

q = −k∇θ (3.2)

where k is water diffusion coefficient. If some water content is transported by the
ground water seepage or airflow in open space, this may be taken into account through
the material derivative operator in Eq. (3.1). However, it would be necessary to describe
or evaluate the seepage velocity or airflow.
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If the stress variations occur at slow rates, the equation of motion without inertial
term may be used in incremental form as given below:

∇ · σ̇ = 0 (3.3)

The simplest constitutive law for rock between stress and strain fields would be a
linear law, in which the properties of rocks may be related to the water content in the
following form (i.e. Aydan et al., 2004):

σ̇ = D(θ )ε̇e (3.4)

The volumetric strain variations associated with shrinkage (inversely swelling) may be
related to the strain field in the following form:

ε̇e = ε̇ − ε̇s (3.5)

3.2.2 Finite element modeling

The finite element form of water content migration takes the following form after some
manipulations of Eq. (3.1) and Eq. (3.2) through usual finite element procedures:

[M]{θ̇} + [H]{θ} = {Q} (3.6)

where

[M] =
∫

[N]T[N]dV ; [H] = k
∫

[B]T[B]dV ; {Q} =
∫

[N]
T{

qn
}
d�

Similarly, the finite element form of incremental equation of motion given by
Eq. (3.6) is obtained as follows:

[K]{U̇} = {Ḟ}
where

[K] =
∫
V

[B]T [D][B]dV ;
{
Ḟ
}= ∫

V

[B]T [D]{ės}dV +
∫
S

[
N
]T{

ṫ
}
dS

3.3 MOISTURE MIGRATION PROCESS
AND VOLUMETRIC CHANGES

Water migration in geomaterials takes place in two different forms, namely, molecular
diffusion and seepage. The seepage phenomenon involves the relative motion of water
with respect to solid phase and water is free to move within the solid skeleton if any
pressure gradient exists. Molecular diffusion is an interaction between water molecules
and solid phase and water is either absorbed to or desorbed from the solid phase. This
section is concerned with the development of a theoretical model for determining the
water content migration properties of geomaterials during drying or saturation tests.
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The details of this method are described and the results of its applications to actual
tests are presented in this section.

3.3.1 Drying testing procedure

Let us consider a sample with volume V dried in air with infinite volume as shown in
Figure 3.2 (Aydan, 2003a). Water contained Q in a geo-material sample may be given
in the following form

Q = ρwθwV (3.7)

where ρw, θw and V are water density, water content ratio and volume of sample,
respectively. Assuming that water density and sample volume remain constant, the
flux q of water content may be written in the following form

q = dQ
dt

= −ρwV
dθw

dt
(3.8)

Air is known to contain water molecules of 6 g/m3 when relative humidity is 100%.
When the relative humidity is less than 100%, water is lost from geomaterials to air.
If such a situation presents, the water lost from the sample to air may be given in the
following form using a concept similar to Newton’s cooling law in thermo-dynamics:

q = ρwAsh�θ = ρwAsh(θw − θa) (3.9)

Physical model(a)

(b)

q

na,qa,ra

na,qa,ra

n,qs,rs

n,qs,rs

Mechanical model

Figure 3.2 Physical and mechanical models for water migration during drying process.
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where h and As are water loss coefficient and surface area of sample. Requiring that
the water loss rate of sample should be equal to the water loss into air on the basis of
the mass conservation law, one can easily write the following relation

ρwAsh(θw − θa) = −ρwV
dθw

dt
(3.10)

The solution of differential equation (3.10) is easily obtained in the following form

θw = θa + Ce−αt (3.11)

where

α = h
As

V

The integration constant may be obtained from the initial condition, that is,

θw = θw0 at t = 0 (3.12)

as follows

C = θw0 − θa (3.13)

Thus the final expression takes the following form

θw = θa + (θw0 − θa)e−αt (3.14)

If the water content migration is considered as a diffusion process, Fick’s law in
one dimension may be written as follows:

q = ρwD
∂θw

∂x
(3.15)

Requiring that water loss rate given by Eq. (3.15) to be equal to that given by
Eq. (3.9) yield the following relation

D = h
V
As

(3.16)

If surface area As and volume V of sample are known, it is easy to determine
the water migration diffusion constant D from drying tests easily, provided that the
coefficient α and subsequently h are determined from experimental results fitted to
Eq. (3.14).

If samples behave linearly, water migration characteristics should remain the same
during swelling and drying processes. Recent technological developments have made it
quite easy to measure the weight of samples and the environmental conditions such as
temperature and humidity. Figure 3.3 shows an automatic weight and environmental
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Figure 3.3 The experimental set-up for measuring water content during drying.

Table 3.1 XRD results from the samples of Ürgüp (Kavak tuff) and Avanos.

Clay fraction
Specimen Clay
Number Percentage Smectite Kaolin Illite

UR-1 (Ürgüp) 74 83 14 3
UR-2 (Ürgüp) 60 67 25 8
AV-1 (Avanos) 94 84 13 3
AV-2 (Avanos) 82 95 5 T

T:Trace amount

conditions monitoring system developed for such tests. It is also possible to measure
the volumetric variations (shrinkage) during drying process using non-contact type
displacement transducers (i.e. laser transducers).

Physical and mechanical properties of materials can be measured using the con-
ventional testing machines such as wave velocity measurements, uniaxial compression
tests, elastic modulus. Tuff samples used in the tests were from Avanos, Ürgüp and
Derinkuyu of Cappadocia Region in Turkey and Oya in Japan. The samples from Cap-
padocia region are gathered from historical and modern underground rock structures.
They represent the rocks in which historical and modern underground structures were
excavated. These tuff samples bear various clay minerals as given in Table 3.1 (Temel,
2002; Aydan & Ulusay, 2003). As noted from the table, the clay content is quite high
in Avanos tuff and most of the clay minerals are smectite.
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Figure 3.4 Determination of constants for relative water content variation during drying of
Avanos tuff.

Figure 3.5 Determination of constants for Relative water content variation during drying of
Ürgüp tuff.

In drying experiments, the samples underwent swelling were dried in room with
an average temperature of 23◦C and relative humidity of 65–70. Figures 3.4, 3.5
and 3.6 show the drying test results for some tuff samples from Cappadocia region in
Turkey. As seen from the figures, it takes a longer time for the tuff sample from Avanos
compared with Ürgüp and Derinkuyu samples. Derinkuyu sample dries much rapidly
than the others. Each sample was subject to drying twice. Once again it is noted that
the drying period increases for Avanos tuff after each run while Derinkuyu tuff tends
to dry much rapidly in the second run. From these tests, it may be also possible to
determine the diffusion characteristics of each tuff.

 

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315375151-4&iName=master.img-003.jpg&w=194&h=166
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315375151-4&iName=master.img-004.jpg&w=191&h=163


94 Time-dependency in rock mechanics and rock engineering

Figure 3.6 Determination of constants for Relative water content variation during drying of
Derinkuyu tuff.

The theory derived in the previous section could be applied to the experimental
results shown in Figures 3.4, 3.5 and 3.6. To obtain the constants of water migration
model, Equation (3.14) may be re-written as follows:

ln
(

θw − θa

θw0 − θa

)
= −αt (3.17)

The plot of experimental results in the semi-logarithmic space first yields the
constant α, from which constant h and diffusion coefficient D can be computed
subsequently.

The results are shown in Figures 3.4, 3.5 and 3.6. The unit of parameters α, h and
D are 1/hr, cm/hr and cm2/hr, respectively. The computed values of parameters α, h
and D are also shown in the same figures.

3.3.2 Saturation testing technique

Initially dry samples can be subjected to saturation and water migration characteristics
may be obtained. The side of samples can be sealed and subjected to saturation from
the bottom. The top surface may be sealed and unsealed as illustrated in Figure 3.7.
Samples can be isolated against water migration from sides by sealing while the bottom
surface of the samples can be exposed to saturation by immersing in water up to a given
depth. There may be two conditions at the top surface, which could be either exposed
to air directly or sealed. When the top surface is sealed, the boundary value would
be changing with time. The water migration coefficient can be determined from the
solution of the following the diffusion equation:

∂θw

∂t
= D

∂2θw

∂x2
(3.18)
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Figure 3.7 Experimental set-ups: (a) top surface unsealed; (b) Top-surface sealed.

When the top surface is unsealed, the top boundary condition (x = H) is

θw = θa. (3.19)

On the other hand, if the top surface is sealed, the boundary condition is time
dependent and it can be estimated from the following condition

qx=H = q̂n(t) (3.20)

For some simple boundary conditions, the solution of partial differential Eq. (3.19)
can be easily obtained using the technique of separation of variables (i.e. Keryzig,
2011). In general case, it would be appropriate to solve it using finite difference
technique or finite element method (i.e. Aydan 2003, Section 3.2).

3.3.3 X-Ray Computed Tomography (CT) scanning technique

X-Ray Computed Tomography (CT) imaging technique can be used to visualize
water-absorption process of soft rocks samples. Furthermore, it is expected that such
evaluation may reveal the basic mechanism of water absorption or desorption in soft
rocks (Sato & Aydan, 2013).

X-Ray CT scanners can be used to investigate the internal structure of materials
and various processes without disturbance to samples (Ketcham & Carlson, 2001). The
device was a µ-focus X-ray CT Scanner System (TOSCANER-32300FPD) operated
by Kumamoto University (i.e. Sato et al., 2011a,b). This system has relatively higher
X-ray emission (230 keV/608 µA) and the minimum 4 µm focus distance is available.
X-ray CT scanner is the system to detect the density distribution in materials. However,
large density difference in a tomographic region cannot be correctly visualized. This
technique was used to investigate water absorption and diffusion processes in soft
rocks.
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Sato & Aydan (2013) investigated the water absorption process of some soft rocks
sampled from Turkey and Japan using the X-Ray CT scanning technique. As mentioned
in the introduction, this is a first attempt to evaluate the moisture migration process
in soft rocks using the X-Ray CT scanning technology. The process can be investi-
gated without any disturbance to samples, which makes this technique quite suitable
to visualize and quantify the absorption process of water by minerals or grains con-
stituting soft rocks. The water migration process in Cappadocia tuffs is quite rapid
compared to that of Asuwayama and Oya tuffs from Japan. Bazda limestone from
the Bazda antique quarries from south-west Turkey was also quite rapid. If numerical
simulations are carried out to simulate the absorption process visualized by the X-Ray
CT technique, this could also yield great significant information on the mechanism of
degradation process of rocks, which can be used for the preservation of antique struc-
tures as well as the assessment of long term stability of rock engineering structures
involving soft rocks.

(a) Experimental Set-up

The boundary condition shown in Figure 3.7(a) was used to investigate the water
absorption process. Samples were isolated against water migration from sides by seal-
ing and the bottom and top surfaces of the samples were exposed to water and air,
respectively. First CT scanning of dry samples was carried out. Then, samples exposed
to water from the bottom, and CT scanning of samples exposed to water migration
was measured at certain time intervals. The weight of samples was measured at each
time step and CT images were used to evaluate the water content variation in samples.
The differences in CT values of samples under dry state and exposed to water migra-
tion at a given time step were used to evaluate the water content variation of samples.
CT value differences ranged between 200 and 300. The ratio of CT value of water to
that of air is about 1000. Therefore, the measured CT value difference implies that the
specific density of samples increased by 0.2 to 0.3 times.

(b) Results and Discussions

The water absorption processes in five different soft rocks are measured using the
X-Ray CT scanning technique are described and results are discussed. Results are
presented as X-Ray CT scanning images and variation of CT values with height.

Asuwayama Tuff

Asuwayama tuff has been extracted from the Asuwayama hill in Fukui City and it is
commercially known as Shakutani stone. The UCS of this tuff is about 30 MPa and it
is dense. Figure 3.8 shows X-Ray CT scanning images and CT value distribution with
height at time intervals of 1 hr, 2, 3 and 4 hrs. As expected, water migrates upward
gradually. The water absorption front is clearly observed in CT scan images.

Oya Tuff
Oya tuff has been extracted from the Oya town of Utsunomiya City and it is com-
mercially known as Oya stone. The UCS of this tuff is about 10 MPa. Figure 3 shows
X-Ray CT scan images and CT value distribution with height at time intervals of
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Figure 3.8 X-Ray CT scan images and CT value distribution with height at different time intervals in
Asuwayama tuff sample.

1 hr, 2, 3 and 4 hrs. As expected, water migrates upward gradually. Although the
water absorption front is clearly observed in CT scanning images, the front is not
straight. This may be due to inclusions of highly absorptive nodules such as clays in
the sample.

Bazda Limestone
Bazda limestone has been extracted from Bazda antique quarries, which may be more
than 3000 years old, in the Tektek Mountains in the southwest of Turkey. The UCS of
this limestone is about 15 MPa and it is relatively dense. Figure 3.10 shows X-Ray CT
scan images and CT value distribution with height at time intervals of 1 hr, 2, 3 and
4 hrs. As expected, water migrates upward gradually and the water absorption front
migrates much more quickly compared to those of Oya and Asuwayama tuffs. The
water absorption front is clearly seen in CT scanning images.

Zelve Tuff
Zelve tuff is found in the Zelve Valley of Cappadocia region of Turkey. There are
many antique settlements in this valley, which are more than 1500 years old at least.
The UCS of this tuff is about 4–5 MPa under dry state. Figure 3.11 shows X-Ray CT
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Figure 3.9 X-Ray CT scan images and CT value distribution with height at different time intervals in
Oya tuff sample.

scan images and CT value distribution with height at time intervals of 1 hr, 2, 3 and
4 hrs. As expected, water migrates upward gradually and the water absorption front
migrates much more quickly compared to those of Oya and Asuwayama tuffs. The
water absorption front is clearly seen in CT scanning images.

3.4 SWELLING-SHRINKAGE PROCESS

3.4.1 Shrinkage process

Next, the water content migration characteristics and associated volumetric variations
were measured. For this purpose, an experimental device illustrated in Figure 3.12 was
used (Aydan et al., 2006). The experimental set-up consists of an automatic scale, an
electric current inductor, electrodes, isolators, laser displacement transducer, voltmeter,
rock sample, lap-top computers to monitor and to store the measured parameters
and temperature-humidity unit consisting of sensors and logger. Rock samples were
first fully soaked with water for a certain period of time. Then they were put on the
automatic scale and dried. During the drying process, the weight, length and voltage
changes of the sample were continuously measured. The temperature and humidity
changes of the drying place were also continuously monitored.
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Figure 3.10 X-Ray CT scan images and CT value distribution with height at different time intervals in
Bazda limestone sample.

Figure 3.13 shows temperature, humidity, shrinkage strain, weight change and
electrical resistivity variations on both fine grain sandstone and coarse grain sand-
stone samples in laboratory. While the weight change (water content) of coarse grain
sandstone was slightly larger than that of fine-grain sandstone, there was a remarkable
difference between the shrinkage strains of samples. The shrinkage strain of fine grain
sandstone was more than twice that of coarse grain sandstone.

Aydan et al. (2006) reported that the electrical resistivity of samples increases as
the samples lose their water content. It is considered that if the electrical resistivity of
surrounding rock could be measured continuously in-situ, it may be quite useful for
evaluating the water content variations and associated volumetric variations.

3.4.2 Swelling process

Swelling minerals in rocks may be broadly classified into the following groups:

• Clay minerals (montmorillonite, bentonite, smectite, corensite): Among the clay
minerals, montmorillonite exhibits the largest swelling potential. Under unstressed
state, the volumetric expansion varies from 40 to 200% (Özkol, 1965; Brekke,
1965; Pasamehmetoglu et al., 1993; Yesil et al., 1993).
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Figure 3.11 X-Ray CT scan images and CT value distribution with height at different time intervals in
Zelve tuff sample.

Figure 3.12 An illustration of the experimental set-up.
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Figure 3.13 Water-content migration tests and associated volumetric changes in laboratory.

• Evaporitic minerals (anhydrite, gypsum): The transformation of anhydrite into
gypsum results in a 60% volumetric expansion when it adsorbs water under
unstressed state. Volumetric decrease occurs when gypsum transforms into anhy-
drite as it losses its water content (Vardar & Fecker 1986; Zanbak & Arthur
1985).

The swelling potentials of minerals and rocks have been tested by several
researchers (i.e. Özkol, 1965; Brekke, 1965; Murayama & Yagi, 1966; Marsden
et al., 1992). The swelling potential of rocks commonly assumed to be a function of
a period of saturation and compressive volumetric stress (Wittke, 1990; Franklin &
Dusseault, 1989). However, the swelling potential must be related to the water content
instead of the period of saturation since the swelling depends upon the water content.

Aydan et al. (1993, 1994) undertook an experimental study to determine the
swelling potential of geo-materials proposed to model the mechanical effect of swelling
process of geo-materials in engineering problems. An experimental device developed
by Aydan (2003a) is used to determine the parameters of the swelling potential function
given below (Figures 3.14 and 3.15):

εsv = f (θ , σv) (3.21)

where εsv: swelling strain; σ v: volumetric stress (or pressure), θ : water content.
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Figure 3.14 Experimental set-up for measuring swelling and water content.

The swelling potential function above may be determined from a combination of
free-swelling test and compression test on a single sample, if the swelling potential
function is specifically chosen as given below:

εsv = A(1 − e−Bθ )e−Cσv (3.22)

where A, B, C are constants to be determined from tests. Since volumetric stress σ v

is nil during free-swelling tests, constants A and B can be easily determined from the
measured swelling strain and water content response together with a simple curve-
fitting procedure. By keeping the water content constant and applying compression
onto the specimen, constant C can be obtained from the volumetric stress and strain
response with the utilization of the curve-fitting procedure.

Displacement of specimens during the processes of free swelling and compression
was measured with laser displacement transducers. Furthermore, the water content
during the free-swelling process was measured through the variation of the level of the
water supply tank as illustrated in Figures 3.14 and 3.15a. In this procedure, one should
take care of minimizing the water loss from the system as a result of evaporation. If
the air of the testing environment is kept at the relative humidity of 100%, there will
be almost no water loss due to the evaporation.

In swelling experiments, the samples of bentonitic clay, which were initially oven-
dried, were fully submerged in tap water with a pH value of 7.6–7.8. The samples
were sealed in a manner so that no water-loss occurs during the swelling and compres-
sion processes. Figures 3.16 and 3.17 show the swelling and compression responses
measured during one of the experiments on a bentonitic clay buffer material.
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Figure 3.15 Drawing of the experimental setup shown in Figure 3.14.

Figure 3.16 Free-swelling response.
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Figure 3.17 Compression response.

Figure 3.18 A 3D view of swelling potential.

Figure 3.18 shows a 3D view of the swelling potential function determined from
responses shown in Figures 3.16 and 3.17.

3.5 MATERIAL PROPERTY CHANGES AND DEGRADATION

It is very well known that geomechanical properties of soft rocks with water absorption
characteristics are greatly influenced by the amount of water content. It is experimen-
tally shown that deformation modulus, uniaxial compressive and tensile strength of
soft rocks drastically decrease as reported in literature (i.e. Aydan, 2003; Aydan &
Ulusay 2003, 2013). It is also reported that even the geomechanical properties of
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Figure 3.19 Relation between dry unit weight and saturated unit weight.

very hard rocks may be influenced by the water content (i.e. Colback & Wiid, 1965;
Broch, 1979).

It is well known that the water content in rocks may influence the mechanical
properties of rocks. The effect of water content on some physical and mechanical
properties of Cappadocia and Oya tuffs is briefly described below.

The unit weight of rocks differs as its water content increases. Figure 3.19 shows
the relation between the dry unit weight and fully saturated unit weight of tuffs. This
relation may be approximated through the following relation based on the mixture
theory (i.e. Aydan 1992; Aydan et al., 1996):

γs = γd + nγw (3.23)

where γs, γd, γw and n are the unit weight of saturated and dry samples and water, and
volume fraction, respectively. In the figure, two lines are drawn with different volume
fraction ratios. Since the volume fraction of the samples varied between 0.13 and 0.30,
the fitted lines should be relevant to the experimental results.

The elastic wave velocity of rocks differs as its water content increases. The rela-
tions shown in Figure 3.20 can be obtained through the use of the mixture theory
together with parallel and series model concepts (i.e. Aydan, 1992; Aydan et al., 1996):

Parallel Model

Vpm

Vpd
= 1 + n · S

Vpw

Vd
(3.24)

Series Model

Vpm

Vd
= Vpw/Vpd

nS + Vpw/Vpd
(3.25)
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Figure 3.20 Relation between saturation and wave velocity.

Figure 3.21 Relation between saturation and uniaxial compressive strength.

where Vpm, Vpd, Vpw and S are the wave velocity of saturated and dry samples and
water, and saturation coefficient, respectively. In Figure 3.20 these two lines are
drawn for n = 0.3 and Vpw/Vpd = 1.2. The comparison of experimental results with
theoretical predictions indicates that both models may be appropriate.

Figure 3.21 shows the relation between the saturation (S) and normalized com-
pressive strength of Cappadocia tuffs by their uniaxial compressive strength at dry
state. The lines drawn in the figure are obtained from the following empirical relation:

σcw

σcd
= αo − (α0 − α100)

S
S + β(100 − S)

(3.26)

where σcw, σcd, α0, α100 and β are uniaxial compressive strength of sample containing
water, uniaxial compressive strength at dry state, empirical coefficients, respectively.
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Figure 3.22 Relation between saturation and elastic modulus.

In the same figure, the results for Oya tuff, which is a well known soft rock in Japan
are also plotted.

The elastic modulus of rocks differs as its water content increases. Figure 3.22
shows the relation between the saturation and normalized elastic modulus of
Cappadocia tuffs by their elastic modulus at dry state. The lines drawn in the figure
are obtained from Equation 3.27 for Ew/Ed which are

Ew

Ed
= ηo − (η0 − η100)

S
S + θ (100 − S)

(3.27)

where Ew, Ed, η0, η100 and θ are elastic modulus of sample containing water and elastic
modulus at dry state. The variations of physical and mechanical properties of the
Avanos tuff are larger than those for the tuffs from Oya, Ürgüp and Derinkuyu.

3.6 APPLICATIONS

3.6.1 Breakout formation in rocks due to moisture loss

The first analyses were concerned with the simulations of displacement, strain and
stress field around a circular borehole in a hydrostatic stress field. Specifically,
the effects of sandstone type and diameter of borehole were analyzed. Figure 3.23
shows the computed results for displacement, water content and stress fields for fine
and coarse grain sandstones for a borehole with a diameter of 200 mm under the
overburden of the adit at several time steps.

As the water migration characteristics of both fine and coarse sandstones were
same, the resulting water content migration distributions with time were same. How-
ever, displacement, strain and stress fields were entirely different for each sandstone
type. As the volumetric variation of fine grain sandstone as a function of water content
is much larger than that of coarse grain sandstone, the shrinkage of the borehole in
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Figure 3.23 Variations of computed water content, displacement, stress fields for fine and coarse grain
sandstones.

fine grain sandstone is larger than that in coarse grain sandstone. Consequently, radial
stress in the close vicinity of the borehole wall becomes tensile in fine grain sandstone.
This, in turn, implies that there would be fractures parallel to the borehole wall if the
tensile strength of rock were exceeded. Furthermore, such fractures would only occur
in the vicinity of boreholes in fine grain sandstone, as it is observationally noted in-situ.

The next computational example was concerned with a circular borehole under
two dimensional in-situ stress fields as shown in Figure 3.24. It is observed that the
bottom of the borehole was wet or covered with water in-situ. In order to take into
account this observation in computations, the boundary conditions for water content
migration field and displacement field were assumed as illustrated in Figure 3.24.
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BOUNDARY CONDITIONS FOR DISPLACEMENT FIELD

Figure 3.24 Assumed boundary conditions in computations.

The other properties were the same as those used in axisymmetric simulations. The
computed displacement field and associated yielding zone are shown in Figure 3.25.

As noted from the figure, the bottom of the borehole heaves and crown of the
borehole shrinks upward. In other words, the upper part of the borehole expands
outward due to water content loss. The displacement and stress fields of surrounding
rock are entirely different at the lower and upper parts of the borehole. As a result of
this fact, yielding occur only in the upper part of the borehole. This computational
result is in accordance with actual observations. The yielding zone is not depleted
in this computation. However, if the yielding zone were depleted in the computation
region, the process would repeat itself after depletion of the yielded zone each time.

3.6.2 Tunneling in swelling rocks

The example is associated with the simulations of tunnel excavations in swelling rocks.
A circular tunnel of 4 m in diameter was assumed to be situated in a hydrostatic state
of stress initially. Table 3.2 gives the properties of surrounding ground and constants
of swelling potential function. The deformation responses of tunnels in swelling rocks
are generally influenced by the following factors:

• Installation timing of lining,
• Rigidity of lining,
• Depth of tunnel, and
• Properties of lining material.
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Figure 3.25 Computed displacement field and yield zone.

A series of parametric studies was carried out to check the influences of the some
of the factors above on the water content, deformation of surrounding rock and tan-
gential stress in lining. In the following presentation, the results on the tangential
stress of the lining are only reported and discussed. By assuming that the initial in-situ
stress was 1.0 MPa, Figure 3.26 shows the tangential stress variation of the lining as
a function of time. The delay periods were set as 10 days, 20 days and 30 days. As
the period of delay increases, the lining stress becomes larger. This implies that the
variation of water content in rock must be prevented as quickly as possible. Other-
wise, the cracking of the lining is unavoidable since the lining stress increases with
the delay.

To see the effect of tunnel depth, the initial in-situ stress was varied from 1.00 MPa
to 1.25 MPa. The results of calculations are shown in Fig. 3.27. The volumetric stress
decreases as the tunnel becomes shallow. Consequently, if there is any water content
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Figure 3.26 Stress acting on tunnel lining for several delay time of installation.
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Figure 3.27 Stress acting on tunnel lining for several in-situ condition.

variation, a large deformation of surrounding ground occurs. As a result of that, the
tangential stress in the lining becomes larger as the depth becomes shallow as shown
in Figure 3.27.

Figure 3.28 shows the tangential stress variation of the lining as a function of
its thickness. Since the rigidity of lining increases as a result of larger thickness, the
resulting tangential stress in the lining becomes smaller. This example is qualitatively
in good agreement with observations in tunnelling in swelling ground.
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Figure 3.28 Stress acting on tunnel lining for several thickness of lining.

3.6.3 Evaluation of long term creep-like deformation
of rock slopes

A creep-like mass movement in the Gündoğdu district of Babadağ town in Denizli
(Turkey), where about 2000 people lived within the damaged houses, has been contin-
uing with a velocity of 4–14 cm/year since 1940s (Kumsar et al., 2015). The monitoring
data of pipe strain, groundwater level fluctuation and rainfall, and AE data showed
that slope movement accelerated during and after rainy seasons. Such movements
could not be evaluated by considering the effective stress variations as the variations
are quite small to induce such movements. Cyclic softening and hardening of stiff-
ness of the weakness zones prone to water absorption and desorption as a result of
rainfall may be one of the major causes. Kumsar et al. (2015) utilized that concept
to evaluate creep-like behaviour of the mass movement in the Gündoğdu district of
Babadağ town. In this section, the fundamentals of this concept are explained and its
applications are given.

3.6.3.1 Analytical model and its application

The simplified analytical model introduced in this section is based the theoretical model
developed by Aydan (1994, 1998). Momentum conservation law for infinitely small
element of a ground on a plane with an inclination of α for each respective direction
can be written in the following form (Figure 3.29)

x-direction

∂τ

∂y
= ∂p

∂x
− ρg sin α (3.28)
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Figure 3.29 Modelling of a layer subjected to shearing (from Aydan 1994, 1998).

y-direction

∂p
∂y

= ρg sin α (3.29)

where τ , p, ρ, g are shear stress, pressure, density and gravitational acceleration,
respectively. The variation of pressure along x-direction is given by

∂p
∂x

= ρg cos α
∂h
∂x

(3.30)

If shear stress related to shear strain is linearly as given in the following form

τ = Gγ ; γ = ∂u
∂y

one can easily obtain the solution given as

τ = ρg cos α

(
tan α − ∂h

∂x

)
(h − y) (3.31)

If the variation of ground surface height (h) is neglected, the resulting equation for
shear stress and displacement takes the following form

τ = ρg sin α(h − y); u = ρg sin α

G
y
(
h − y

2

)
(3.32)

As well known, the rainfall induces groundwater level fluctuations. However, these
fluctuations are not that high as presumed in many limiting equilibrium approaches
to analyze the failure of slopes. In other words, the whole body, which is prone to
fail, do not become fully saturated. However, the monitoring results indicate that
a certain thickness of layer becomes saturated. In view of experimental results, the
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Figure 3.30 Constitutive modelling of cyclic softening-hardening of marl layer.

deformation modulus would become smaller during saturation process and recover
its original value upon drying. The deformation modulus during saturation may be
assumed to be plastic deformation modulus (Gp) and the displacement induced during
saturation period may be viewed as plastic (irrecoverable) deformation (Figure 3.30).
With the use of this concept and the analytical model presented above, one can easily
derive the following equation for deformation induced by saturation as

us = ρg sin α

Gs
y
(
h −
(
t − y

2

))
(3.33)

where t is the thickness of saturated zone in a given cycle of saturation-drying. The
plastic deformation would be the difference between displacements induced under
saturated and dry states and it will take the following form:

up = ρg sin αy
(

1
Gs

− 1
Gd

)
·
(
h −
(
t − y

2

))
(3.34)

where Gd and Gs are shear modulus for dry and saturated states, respectively. Thus
the equivalent shear modulus can be written as and it is called as plastic deformation
modulus (Gp) in this study

Gp = GsGd

Gd − Gs
(3.35)

The time for saturation and drying of marls is very short (say, in hours). With
this observational fact and experimental results, the analysis presented is based the
day unit. Figure 3.31 compares the computed displacement and displacement mea-
sured at monitoring station No. 1 the Gündoğdu district of Babadağ town with the
consideration of thickness of the saturation zone. Despite some differences between
computed and measured responses, the analytical model can efficiently explain the
overall response of the landslide area of Gündoğdu district of Babadağ town.

 

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315375151-4&iName=master.img-029.jpg&w=335&h=126


Water migration in soft rocks and its effects on the response of rock structures 115

Figure 3.31 Comparison of measured and computed displacements.

Figure 3.32 Comparison of measured and computed displacements.

3.6.3.2 Semi-infinite multi-layer finite element model and its application

If the variation of thickness of the saturation zone is given, a finite element version of
analytical model given by Eqs. (3.26, 3.29) can be easily developed. The finite element
formulation of Eq. (3.28) may be written as:

[K]{U} = {F} (3.36)

where

[K] =
∫ yj

yi

[B]TG(θ )[B]dy; {F} = −ρg sin α

∫ yj

yi

[N]Tdy (3.37)

As shear modulus G(θ ) depends upon saturation, non-linear analysis is necessary.
To deal with this non-linearity, the behaviour of saturated layer would be quite similar
to elastic-perfectly plastic materials as illustrated in Figure 3.30. During the solution in
time-space, the thickness of the layer changes depending upon the amount of rainfall.
Figure 3.32 shows the computational results for the situation analysed in Figure 3.31.
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Figure 3.33 Measured results for pipe-strain meter installed in Gündoğdu district.

Figure 3.34 Computed displacement responses at selected time steps.

When computed results from analytical model and the finite element model are com-
pared with each other, one can easily notice that the results are almost the same. The
slight difference is related to the small error caused from the numerical discretization
by the finite element method.

Figure 3.33 shows the measured results for pipe-strain meter installed in Gündoğdu
district (Kumsar et al., 2015). As noted from the figure strain become larger at certain
depth. Figure 3.34 shows the horizontal displacement response above the fixed base.
It is interesting to notice that the overall behaviour from the finite element analysis
resembles to that measured by the pipe-strain meter. In other words, this model pre-
sented herein can clearly evaluate the creep-like deformation of the Gündoğdu district,
which could not be evaluated in classical sliding type analyses.

3.6.3.3 Implementation in discrete finite element method (DFEM)
and analyses

Aydan and his co-workers (Aydan et al., 1996; Aydan & Mamaghani 1996;
Mamaghani 1994, 1995, 1996) developed a finite element model to handle large
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deformations resulting from rigid-body like motions due to sliding or separation and
they named this method as discrete finite element method (DFEM). It consists of a
mechanical model to represent the deformable blocks and contact models that specify
the interaction among them. Small displacement theory is applied to the intact blocks
while blocks can take finite displacement. Blocks are polygons with an arbitrary num-
ber of sides, which are in contact with the neighbouring blocks, and are idealized as
a single or multiple finite elements. Block contacts are represented by a contact ele-
ment. The DFEM utilizes the updated Lagrangian scheme so that it is possible large
deformation of analysed domain resulting from rigid-body like motions of blocks.
The equations of motion employing the principle of virtual work and conventional
finite element discretization procedures are obtained for a typical finite element, in a
condensed form, as follows:

MÜ + CU + KU = F (3.38)

where,

M =
∫
�e

ρNTNd�; C =
∫
�e

BTDvBd�; K =
∫
�e

BTDvBd�; F =
∫
�e

NTbd� +
∫
�e

NTtd�

(3.39)

This equation can be solved using one of the well-known techniques utilized in
numerical analysis. If time domain is discretized, the final form of equation for a given
time step takes the following form:

[K]{U}n+1 = {F}n+1 (3.40)

If central difference technique is adopted, the specific form of the equation above
becomes:

[K] = 1
2�t

[M] + 1
2�t

[C] (3.41a)

{F}n+1 =
(

2
�t2

[M] − [K]
)

{U}n −
(

2
�t2

[M] − 2
2�t

[K]
)

{U}n−1 + {F}n (3.41b)

Assuming that contacts between two adjacent rock blocks has a certain thickness
related to their roughness, it is modeled as shown in Figure 3.35 and its strain, strain
rate are defined as follow:

σn = Fn

A
, εn = δn

h
, ε̇n = δ̇n

h
τs = Fs

A
, γs = δs

h
, γ̇s = δ̇s

h
(3.42)

Its finite element representation is illustrated in Figure 3.36.
There are three different approaches to deal with non-linear behaviour in numer-

ical analyses, namely, initial stiffness, secant method and tangential stiffness method.
The DFEM utilizes the initial stiffness or the secant technique (Figure 3.37). While
the secant method can be much closer to the actual response, the ill-conditioning
of global stiffness matrix may occur in very early steps of computation, the initial
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Figure 3.35 Mechanical modeling of contacts.

Figure 3.36 Finite element representation of a contact element.

Figure 3.37 An illustration of techniques to deal with non-linearity in numerical analyses.
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Figure 3.38 The flowchart of DFEM-CSH.

stiffness method yields much more numerically stable outputs. There are different ver-
sions of the DFEM, namely, hyperbolic, parabolic and pseudo-elliptic versions. While
the original version is programmed as of hyperbolic type, the pseudo-elliptic type
is more commonly used, as it is very difficult to have sufficient information on the
elasto-visco-plastic behaviour of contacts, particularly.

As discussed in the previous subsection, it is impossible to model creep-like ground
deformations at Gündoğdu district of Babadağ by classical sliding type models as
the failure process would take place in several seconds. On the other hand, ground
deformations have been taking place for decades in the district since the 1940s.

The fundamental concept described in Sub-Section 3.6.3.1 has been implemented
in the discrete finite element method (DFEM). This version includes cyclic softening
and hardening of contact zone and it is named as DFEM-CSH. The flowchart of the
implementation of the DFEM code for this particular situation is shown in Figure 3.38.

Figures 3.39 and 3.40 show the principal stresses, maximum shear stress contours
and deformed configurations for selected time steps for rainfall data starting from
May 2011 continuing into 2012. As yielding of the contact zones was not allowed,
the stress state remains the same while deformation of the body takes place upon each
cycle of saturation and drying. As noted from Figure 3.40, very large displacement of
the unstable zone does occur.

Figure 3.41 shows the response of three points at the rear, toe and middle-top
of the potentially unstable body. As noted from the figure, the displacements at each
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Figure 3.39 Computed principal stress and maximum shear stress contours.
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Figure 3.40 Deformed configurations of the analyzed domain at time steps 1 & 215 days.
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Figure 3.41 Displacement responses of three selected points in the analyzed domain.

Figure 3.42 Shows ground deformation at a given section for different time-steps.

point differ and it is not purely a rigid-body-like ground deformation. The maximum
ground deformation occurs at the middle top of about 150 mm for about 215 days.

Figure 3.42 shows horizontal ground deformation at a given section for different
time-steps. It is very interesting to notice that the overall ground deformation resembles
to those measured from pipe-strain gauge in the field shown in Figure 3.33.
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Chapter 4

Thermo-mechanical behaviour of rocks
and heat transport in rocks

4.1 INTRODUCTION

The heat flow through rock mass is of great importance in the utilisation of geothermal
energy as well as in the assessment of the thermal environment in radioactive waste
disposal. Thermal properties such as specific heat, heating or cooling coefficient and
thermal conductivity are important to assess the heat transport through solids. In the
first part of this chapter, the finite element presentation of the governing equations of
heat transport derived is presented. Then, the theory for a simple testing method for
thermal properties of solids is presented. In the final part, some applications of the
finite element method to the modelling of geothermal state of a specific hot spring and
faults are presented and compared with the actual measurements.

4.2 MECHANICAL MODELING HEAT TRANSPORT IN ROCKS

The well known governing equation of energy conservation in porous media takes the
following form:

ρc
∂T
∂t

= −∇ · (k∇T
)+ σ · ε̇ + Qh (4.1)

The incremental form of the equation of motion is given by Eq. (4.2),

∇ · σ̇ = 0 (4.2)

The well-known equation of strain component induced by temperature variation
is given by the following equation:

ε̇T = λ�TI (4.3)

where I is the Kronecker Delta tensor. The constitutive law in terms of net-strain is
generally written in the following incremental form:

σ̇ = D(ε̇ − ε̇T ) (4.4)
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4.3 NUMERICAL MODELING OF THERMO-MECHANICAL
RESPONSES OF ROCKS

If one follows the conventional form of formulation based on the finite element method,
governing equations (4.1) and (4.2) can be obtained as shown in the next subsections:

4.3.1 Weak form formulation

By taking a volumetric integration of Eq. (4.1) together with a variation δT on the
temperature field and no heat production source, the weak form of Eq. (4.1) is easily
obtained as∫

V
ρcδT

∂T
∂t

dV +
∫

V
∇δT · k∇TdV =

∫
Sq

δTĥdS +
∫

V
δT · ĖdV (4.5)

where Ė = σ · ε̇. The above equation is subjected to the following boundary conditions
Temperature boundary

T = T0 on ST (4.6)

Heat flux boundary

−(k∇T) · n = ĥ on Sh (4.7)

Since Eq. (4.5) holds for whole domain, it must also hold for sub-domains such
as finite elements. Let us assume that the temperature field of a typical finite element
can be interpolated through the following relation

T = [N]{χ} (4.8)

where [N] is shape function. The dot product defined in mathematics is represented
in the finite element method as follows:

α · β = δ ⇒ {α}T{β} = δ (4.9)

With the use of above relations, the finite element form of Eq. (4.5) becomes

[M]e{χ̇}e + [K]e{χ}e = {Y}e (4.10)

where

[M]e =
∫

V
ρc[N]T [N]dV ; [K]e =

∫
V

λT [B]T [B]dV ;

{Y}e =
∫
S

[N]T ĥdS+
∫
V

[N]T ĖdV

[M]
{
Ẋ
}+ [K]{X} = {Y} (4.11)
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4.3.2 Discretization in time domain

Since Eq. (4.10) holds for any time, one may write the following for time step (m + θ ) as

[M]
{
Ẋ
}

(m+θ)
+ [K]{X}(m+θ) = {Y}(m+θ) (4.12)

The Taylor expansion of variable {X} for time step (m + θ ) may be easily written as

{X}m = {X}(m+θ)−θ = {X}(m+θ) − ∂{X}(m+θ)

∂t
θ�t
1! + 02 (4.13)

{X}m+1 = {X}(m+θ)+(1−θ) = {X}(m+θ) + ∂{X}(m+θ)

∂t
(1 − θ) �t

1! + 02 (4.14)

Multiplying Eq. (4.13) by (1 − θ ) and Eq. (4.14) by θ and summing up the resulting
equations yield

{X}(m+θ) = θ{X}m+1 + (1 − θ) {X}m (4.15)

Furthermore, subtracting Eq. (4.14) from Eq. (4.15) results in

{
Ẋ
}

(m+θ)
= {X}(m+1) − {X}m

�t
(4.16)

Similarly {Y}(m+θ) is obtained as

{Y}(m+θ) = θ{Y}m+1 + (1 − θ) {Y}m (4.17)

With the relations above, Eq. (4.12) may be re-written as

[C∗]{X}m+1 = {Y∗}
m+1 (4.18)

where

[C∗] =
[

1
�t

[M] + θ [K]
]

(4.19)

{
Y∗}

m+1 =
[

1
�t

[M] − (1 − θ) [K]
]
{X}m + θ{Y}m+1 + (1 − θ) {Y}m (4.20)

Summing up the above equations over the whole domain results in the following

[M]{Ṫ} + [K]{T} = {R} (4.21)

[K]{U̇} = {Ḟ} (4.22)
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where

[M] = S
∫

V
[N]T [N]dV ; [K] = T

∫
V

[B]T [B]dV ; [B] = ∇[N];

{R} =
∫

�

[N]qnd� +
∫

V
[N]QdV

[K] =
∫

V
[B]T [D][B]dV ; {Ḟ} =

∫
V

[B]T [D]{ε̇T}dV

4.4 THERMAL PROPERTIES OF ROCKS AND THEIR
MEASUREMENTS

Thermal properties such as specific heat, heating or cooling coefficient and thermal
conductivity are important to assess the heat transport through solids as noted from
Eq. (4.1). There are many techniques to measure thermal properties such as specific
heat coefficient, thermal conductivity, thermal diffusion and thermal expansion coeffi-
cient. The details of such techniques can be found in various publications and textbooks
(i.e. Clark, 1966; Somerton, 1992; Jumikis, 1993; Popov et al., 2016). Specific heat
coefficient is commonly measured using the calorimeter tests.

The earlier and common technique for thermal conductivity measurement is the
divided bar technique (Birch, 1950) based on the steady-state heat flow assumption
and it is illustrated in Figure 4.1. This technique utilizes reference materials with well-
known thermal properties.

There are also techniques for measuring thermal conductivity utilizing transient
heat flow (i.e. Carslaw & Jaeger, 1959; Popov et al., 1999, 2016; Sass et al., 1984).

Figure 4.1 The key components of a divided-bar apparatus (from Popov et al., 2016).
a – pivot point, b – brass disks, c – reference material, d – rock specimen, e – hot plate,
f – cold plate, g – heat source (concealed Peltier device), h – heat sink, i – holes for the
insertion of temperature sensors, j – thermal insulation.
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These techniques utilize line or plane sources and temperature variations are measured
by either contact sensor or infrared camera. These techniques utilize the analytical
solutions developed by Carslaw & Jaeger (1959).

An experimental technique using a device similar a calorimeter type apparatus
is described in this section in order to measure thermal properties of rock materials
from a single experiment and its applications are given. Let us consider a solid (s) is
enveloped by fluid (i.e. water (w)) as illustrated in Figure 4.2. It is assumed that solid
and fluid have different thermal properties and temperature.

4.4.1 Definition of fundamental parameters

For theoretical modeling, the following parameters are defined as follow:

Q: heat; ρ: density; k: thermal conductivity: c: specific heat coefficient; T: temperature;
m: mass; h: cooling coefficient; V : volume; As: surface area of solid; λ: thermal
expansion coefficient.

The heat of a body is given in the following form

Q = m · c · T = ρV · c · T (4.23)

Its unit is Joule (J = N · m).

Physical Model

Thermo-mechanical Model

(a)

(b)

q

nw,cw,rw,Tw

nw,cw,rw,Tw

ns,cs,rs,Ts

ns,cs,rs,Ts

Figure 4.2 An illustration of physical and thermo-mechanical model.
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Assuming that mass and specific heat coefficient are constant, the heat rate (heat
flux) is given in the following form

dQ
dt

= q = m · c · dT
dt

(4.24)

Newton cooling law is written in the following form

q = h · As · �T (4.25)

where �T: temperature difference between solid and enveloping fluid and its unit is
Watt (W = J/s).

4.4.2 Physical model of experimental set-up

In this particular model, the temperature of surrounding fluid is assumed to be higher
than the solid enveloped by the fluid. Furthermore, there is no heat flow from system
outward. In other words it is thermally isolated. The heat flux from fluid can be given as

qw = −ρw · cw · Vw
dTw

dt
(4.26)

The heat from fluid into solid should be equal with the use of Newton Cooling
law as written below

−ρw · cwVw
∂Tw

∂t
= h · As(Tw − Ts) (4.27)

Similarly, the heat change of solid should be equal to that supplied from fluid as
given by

ρs · cs · Vs
∂Ts

∂t
= h · As(Tw − Ts) (4.28)

It should be noted that the sign of heat flux is +. Re-writing Eq. (4.27) yields the
following:

Ts = Tw + ρwcwvw

h · AS
· ∂Tw

∂t
(4.29)

If the derivation of Eq. (4.29) with respect to time is inserted into Eq. (4.25), one
easily gets the following

∂2Tw

∂t2
+ α

∂Tw

∂t
= 0 (4.30)

where

α = h · As
ρw · cw · Vw + ρs · cs · Vs

ρw · cw · Vw · ρs · cs · Vs
(4.31)
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The solution of Eq. (4.30) would be obtained as follows:

Tw = C1 + C2e−αt (4.32)

Integral coefficients C1 and C2 of Eq. (4.32) are obtained from the following
conditions:

Tw = Ti at t = 0 and T1 = Tf at t = ∞ (4.33)

as

C1 = Tf ; C2 = Ti − Tf (4.34)

Using Integral constants given by Eq. (4.34), Eq. (4.32) becomes

Tw = Tf + (Ti − Tf
)

e−αt;
∂Tw

∂t
= −α(Ti − Tf )e−αt (4.35)

The average temperature of solid is obtained by inserting Eq. (4.36) into
Eq. (4.30) as

Ts = Tf − ρw · cw · Vw

ρs · Cs · Vs
(Ti − Tf )e−αt (4.36)

As Ts = To at time t = 0, Eq. (4.36) can be re-written as

Tf − To

Ti − Tf
= ρw · cw · Vw

ρs · cs · Vs
(4.37)

Inserting Eq. (4.37) into Eq. (4.35) yields

Ts = Tf − (Tf − To
)

e−αt (4.38)

The temperature difference between solid and enveloping fluid can be obtained
from Eqs. (4.35) and (4.38) as

�Tws = (Tw − Ts) = (Ti − To) e−αt (4.39)

Therefore, if the values of To, Tf , Ti, ρw, ρs, Vw, Vs, cw are known, the specific heat
coefficient of solid can be easily obtained. For example, the specific heat coefficient
of water is 4.1783–4.2174 J/g/K for a temperature range of 0–90◦C. As the thermal
properties of water remain almost constant for the given temperature range, the water
would be used as fluid in the experimental set-up. After obtaining the specific heat
coefficient, the coefficient α is obtained from Eq. (4.35), (4.38) or (4.39) using the
curve fitting technique to experimental response. Then using the value of coefficient
α, the value of cooling coefficient is obtained from Eq. (4.31).
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For determining the thermal conductivity coefficient (k), the following approach
is used. Fourier law may be written for one-dimensional situation can be written as

q = −kA
∂T
∂x

(4.40)

Assuming the specimen has a length (L) and using the Newton’s cooling law we
may write the following relationship:

hA�T = kA
�T
L

(4.41)

Eq. (4.41) can be re-written and the following relation holds between cooling
coefficient and thermal conductivity

k = h · L (4.42)

The characteristics length of a solid sample can be obtained from the volume of
the solid from the following relationship:

L = 3
√

Vs (4.43)

Linear thermal expansion coefficient (λ) is defined as:

λ = 1
L

· dL
dT

(4.44)

where L: length of sample. dL
dT is the variation of length of sample with respect to

temperature variation and It is determined under the unstrained condition or 100 gf
load on the sample. If the variation of length of sample at the equilibrium state with
respect to the initial length before the commencement of the experiment is measured,
it would be straightforward to obtain linear expansion coefficient. Similarly width
or diametrical changes can be also measured and thermal expansion coefficients can
be evaluated from the variation of side length or diameter for given temperature
difference.

4.4.3 Experimental procedure

The technique described in this sub-section is unique and quite practical considering
the labourship in other techniques.

The device for determining the thermal properties of geo-materials consists of
a thermostat cell equipped with temperature sensors. The fundamental features of
this device are illustrated in Figure 4.3 and its picture is given in Figure 4.4. In the
experiments, the temperature of sample, water, air and thermostat are measured. The
method utilizes the thermal properties of water, whose properties remain to be the same
up to 90 ◦C, to infer the thermal properties of geo-material substances. If the continuous
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Figure 4.3 Illustration of experimental set-up.

Figure 4.4 A view of the experimental set-up.
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measurements of temperatures are available, one can easily infer the thermal properties
from the following equations as follows:

Specific heat of geo-material

cs = ρw · cw · Vw

ρs · Vs

Ti − Tf

Tf − To
(4.45)

where
ρw : density of water
cw : specific heat coefficient of water
Vw : Volume of water
ρs : density of sample
cs : specific heat coefficient of sample
Vs : Volume of sample
Ti : initial temperature of water
To : initial temperature of sample
Tf : equilibrium temperature

Heat conduction coefficient (α) is obtained from fitting experimental results to the
following equation

�Tws = (Tw − Ts) = (Ti − To) e−αt (4.46)

If heat conduction coefficient (α) is determined, then Newton’s cooling coefficient
is determined from the following equation

h = α

As
· ρw · cw · Vw · ρs · cs · Vs

ρw · cw · Vw + ρs · cs · Vs
(4.47)

Finally, thermal conductivity coefficient is obtained from the following equation

k = h · L (4.48)

where L is the characteristics sample side length
If the sample temperature can be measured, it will be very easy to determine

the specific heat coefficient of sample and subsequent properties. This is possible for
granular materials since the temperature sensor can be embedded in the center of
samples. However, it is quite difficult to determine the equilibrium temperature Tf for
solid samples. Therefore, the following procedure is followed for this purpose:

Step 1: Determine the heat conduction coefficient (α)
Step 2: Plot the following equation in time space

Ts = Tw − (Ti − To)e−αt (4.49)

Step 3: Determine the peak value from Eq. (4.4) and assign it as equilibrium
temperature Tf .

Step 4: Then proceed to determine the rest of thermal properties using the procedure
described above.
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Figure 4.5 Application of the procedure to Inada granite sample.

Figure 4.5 shows the application of the method to a cylindrical Inada granite
sample. The temperature of the sample at the top was also measured. As noted from
the figure, the sample temperature at the top of sample achieves the peak value before
the computed response. Since the temperature of the sample averaged over the total
volume of the sample in the proposed temperature, the computed sample temperature
achieves its peak value later than that at the top surface of the sample.

4.5 APPLICATIONS

4.5.1 Temperature evolution in rock due to hydration
of adjacent concrete lining

Concrete linings of various thicknesses are usually constructed for acquiring dry work-
ing conditions in structures such as shafts, tunnels etc. throughout their service life as
well as for their stability. If such structures are excavated through water bearing strata,
the permeability of the concrete linings becomes very important as it governs the water
inflow into the openings. Although concrete itself may be regarded as an impermeable
material practically from the engineering point of view, the water inflow through lin-
ings would be mostly due to cracks which may exist in those. The cracks which are
often observed on sites may result from various causes such as ground and/or water
pressures and thermal stresses developing during the hydration process, etc. As these
cracks will cause various undesirable problems such as water pumping particularly in
deep shafts and/or tunnels below the ground water table and even instability, counter
measures against the occurrence of those should be undertaken.

In this section, two specific examples on the evolution of temperature distribu-
tions with time in concrete linings of shafts and tunnels and the surrounding medium
are described. The first example is associated with the temperature evolution in the
concrete lining of Muna Tunnels in Saudi Arabia during its hydration process. A phys-
ical model set-up of the concrete lining and surrounding rock was prepared in the
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Figure 4.6 A physical model set-up of the concrete lining and surrounding rock of Muna Tunnels.

Table 4.1 Thermo-physical properties of materials used in simulations.

k c ρ α

Material (kcal/m hr ◦C) (kcal/kg ◦C) (kg/m3) (m2/hr)

Shutter 0.1022 0.668 510 0.0003
Concrete 3.187 0.22 2300 0.0062
Rock 2.28 0.146 2500 0.0062

laboratory as shown in Figure 4.6 (Aydan et al., 1986). The model was 1000 mm long
and 200 mm high and 200 mm wide. The surrounding rock was granite sampled from
the Muna tunnels and 9 temperature sensors were embedded in concrete and rock as
shown in Figure 4.6. The heat production of the concrete mix was measured and used
as input data. Table 4.1 gives thermo-physical properties of materials of the physical
model used in numerical simulations. Figure 4.7 compares the computed temperature
distributions in concrete and surrounding rock at chosen time intervals. The maximum
temperature rise occurs 12 hours after the casting of the concrete and temperature of
concrete and surrounding rock tend to decrease as time goes by.

The next example is concerned with the temperature distribution of concrete lin-
ings of the 1000 m deep shafts of North Selby Mine, Yorkshire, UK (Aydan, 1989).
The shafts were to be excavated through a thick water-bearing sandstone formation.
As the sandstone formation was a major source in the area, it was decided to adopt the
ground freezing method to prevent water inflow into the shafts during construction.
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Figure 4.7 Comparison of measured and computed temperature distributions during the hydration
process of concrete.

Figure 4.8 Heat generation function of the concrete mix used in North Selby Mine Shaft.

The frozen collar of rock extends up to 280 m below the ground surface at the deepest
location. When thick concrete linings cast against frozen ground it is customary to sup-
plement an additional 150 mm thickness to the lining to account into the incomplete
hydration process of concrete. As the shafts were very deep, the thickness of concrete
linings were increased. At certain locations, this thickness was more than 1300 mm. An
experimental program was undertaken to measure temperature variations, strains in
linings and water and ground pressures during and after construction. The objectives
were to check the hydration process of concrete linings cast against frozen sandstone
and thermal cracking problem in thick concrete linings cast against frozen or unfrozen
rock masses.

A series of experiments on heat generation rate of cement, which was a rapid-
hardening type, and thermo-mechanical properties of concrete and rock were under-
taken. Figure 4.8 shows the heat generation function of the concrete mix. Table 4.2
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Table 4.2 Thermo-physical properties of materials.

k c ρ α

Material (kcal/m hr ◦C) (kcal/kg ◦C) (kg/m3) (m2/hr)

Shutter 32 0.153 7800 0.0267
Concrete 2.088 0.22 2300 0.0033
Rock 1.728 0.257 2171 0.0025

Figure 4.9 Instrumentation of the concrete lining and surrounding rock the shaft of the North Selby
Mine.

Figure 4.10 Comparison of measured and computed temperature distributions in concrete lining
during its hydration process.

gives thermo-mechanical properties of the shutter, concrete lining and rock mass.
The inner diameter of a typical lined shaft was 7315 mm and the concrete was poured
against the strata in 6 m lengths. Taking into account the fact, the problem is modelled
as an axisymmetric problem in finite element analysis. A computation was carried
out for concrete lining where its thickness was 1355 mm and it was instrumented
(Figure 4.9). Figure 4.10 shows the calculated and measured results at gauges 1, 2, 3
and 4. The finite element analysis predicted a maximum temperature of 46◦ near the
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Figure 4.11 Displacement responses together with variation of temperature during the period
between 2001 and 2002.

Table 4.3 Thermo-hydro-mechanical properties of surrounding rock mass.

Unit weight Elastic Modulus Poisson’s Thermal Diffusivity Thermal Expansion
(kN/m3) (GPa) ratio (m2/day) Coefficient (1/◦C)

26 5–10 0.25 0.1 1.0 × 10−5

middle of the lining at 30 hrs following the concrete placement while the actual one
was order of 50◦ and occurred 29.4 hrs after the placement. The difference may be
attributed to the local variation of the amount of cement and local non-uniformity of
temperature in concrete mixture. Nevertheless, It may be said the both results are in
good agreement with each other. However, the measured temperature curves of gauges
1, 2 and 3 are not so smooth as the calculated ones, particularly in the first 12 hours.
This was considered to be due to sudden increases and decreases in heat generation
rate of cement paste in the initial stages of hydration process. The experimental and
calculated results furthermore indicated that the temperature distribution of the con-
crete lining remained above the freezing temperature for about 5 days which was a
sufficient period of time for the completion of the hydration period of the concrete.

4.5.2 Underground cavern in rock

Aydan et al. (2012) reported the temperature and humidity measurements in the cavern
and at the entrance of the powerhouse since 2006 (Figure 4.11). The temperatures are
different in the cavern and the yearlong variation is within 8–10 degrees. The daily
variation ranges between 2–3 degrees. However, the variation at the entrance is quite
large and the yearlong variation is about 30–32 degrees while the daily variation is
around 8–12 degrees. The flow of water through the turbines of the powerhouse also
has some effect on the temperature field in the close vicinity of the turbines.

In the first series of the thermo-mechanical finite element analyses, the cavern
was modelled as a one-dimensional axisymmetric cavity with the use of parameters
given in Table 4.3 and equivalent area. The cavern was subjected to ±10◦ yearlong
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Figure 4.12 Computed results for one-dimensional axisymmetric thermo-mechanical finite element
analysis.

sinusoidal temperature variation. This thermal environment is probably the extremist
case of the temperature variation in the cavern. Figure 4.12 shows the computed results.
The tangential stress variation in the close vicinity of the cavern is the highest and its
value is about 0.4 MPa. This implies that the rock mass adjacent to the cavern wall
will be subjected to ±0.4 MPa thermal stress cycles. The amplitude of these cycles
disappears when the distance from the cavern wall becomes three times the cavern
radius.

Two-dimensional finite element analyses were carried out with the application of
the same temperature variation on the cavern surface (Figures 4.13, 4.14 and 4.15).
Figure 4.13 shows responses of stresses and displacements for RHS and LHS walls and
crown.

Figure 4.14 shows temperature distribution, principal stresses and maximum shear
stress distributions. The results shown in these figures are basically similar to the one-
dimensional axisymmetric finite element analyses in terms of amplitudes. Nevertheless,
the effect of cavern geometry on stress and displacement responses is noted.

Figure 4.15 compares measured displacements with computed displacements at
spring lines of cavern walls. As noted from the figure, the responses and ampli-
tudes of computed displacements with time are quite similar to those of the measured
displacements.
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Figure 4.13 Stress and displacement variations at selected points around the cavern.

Figure 4.14 Temperature, principal stresses and maximum shear stress distributions (two-dimensional
analyses).

 

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315375151-5&iName=master.img-012.jpg&w=363&h=122
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315375151-5&iName=master.img-013.jpg&w=364&h=336


140 Time-dependency in rock mechanics and rock engineering

Figure 4.15 Comparison of computed results for two-dimensional thermo-mechanical finite element
analysis with measured displacement at the spring-line of the cavern.

Figure 4.16 Fault model.

4.5.3 Temperature distribution in the vicinity
of geological active faults

As a first case, the geological fault is assumed to be sandwiched between two non-
conductive rock slabs and closed form solutions are derived for temperature rises within
the fault. Then a more general case considered such that a seismic energy release takes
place within the fault, and adjacent rock is conductive. The solution of the governing
equation for this case is solved with the use of the finite element method. Several
examples were solved by considering some hypothetical energy release functions and
their implications are discussed.

If a geological fault and its close vicinity may be simplified to a one-dimensional
situation as shown in Figure 4.16 by assuming that mechanical energy release is due
to purely by shearing with no heat production source. Thus, Eq. (4.1) may be reduced
to the following form:

ρc
∂T
∂t

= −∇q + τ γ̇ (4.50)
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Let us assume that the heat flux obeys to Fourier’s law, which is given by

q = −k
∂T
∂x

(4.51)

Inserting Eq. (4.51) into Eq. (4.50) yields the following equation

ρc
∂T
∂t

= k
∂2T
∂x2

+ τ γ̇ (4.52)

The solution of the above equation will yield the temperature variation with time.
The energy release during earthquakes is very complex phenomenon. Nevertheless,

some simple forms relevant for the overall behaviour may be assumed in order to have
some insight to the phenomenon. Two energy release rate functions of the following
form are assumed as given below:

Ė = τ γ̇ = Ate− t
θ (4.53)

Ė = τ γ̇ = A∗e− t
θ∗ (4.54)

Constants A and A∗ depend on the shear stress and shear strain rate history with
time and fault thickness. Constants θ and θ∗ are time history constants. For a situation
illustrated in Figure 4.15, constants A and A∗ will take the following forms:

For Eq. (4.53) A = τouf

hθ2
(4.54)

For Eq. (4.54) A∗ = τouf

hθ∗ (4.55)

where uf , h are final relative displacement and thickness of the fault. τo is the shear
stress acting on the fault and it is assumed to be constant during the motion.

Two specific situations are analysed, namely:

• Creeping Fault
• Fault with hill-shaped seismic energy release rate

In the case of creeping fault, the energy release rate is almost constant with time.
The geometry of the fault is assumed to be one-dimensional as shown in Figure 4.17.
Figures 4.18 and 4.19 show the computed temperature differences at selected locations
with time and temperature difference distribution throughout the whole domain at
selected time steps. In the computations, the energy release rate is assumed to be taking
place within the fault zone only. The increase of temperature difference is parabolic and
they keep increasing as time goes by. Nevertheless, the temperature difference increases
are about 1/10 of those of the fault sandwiched between non-conductive rock mass
slabs.

Figures 4.20 and 4.21 show the computed temperature differences at selected loca-
tions with time and temperature difference distribution throughout the whole domain
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Figure 4.17 Faulting models and energy release types.

Figure 4.18 Temperature difference variations for a fault sandwiched between conductive rock mass
slabs for creeping condition.

Figure 4.19 Temperature distributions at different time steps for a fault sandwiched between
conductive rock mass slabs for creeping condition.
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Figure 4.20 Temperature difference variations for a fault sandwiched between conductive rock mass
slabs for hill-shaped energy release function.

Figure 4.21 Temperature distributions at different time steps for a fault sandwiched between
conductive rock mass slabs for hill-shaped energy release function.

at selected time steps for a fault with a hill-like energy release rate. In the computa-
tions, the energy release rate is assumed to be taking place within the fault zone only.
The increase of temperature difference is parabolic. Temperature difference increases
first and then they tend to decay in a similar manner to the assumed seismic energy
release rate function. This situation will be probably quite similar to the actual situ-
ation in nature. The temperature difference increases are about 1/10 of those of the
fault sandwiched between non-conductive rock mass slabs. These results indicate that
the observation of ground temperatures may be very valuable source of information
in the predictions of earthquakes. Because of atmospheric temperature measurements
near the ground surface may be quite problematic in interpreting the observations.
However, the observation of hot-spring temperature, which reflects the actual ground
temperature, may be very good tool for such measurements without any deep boring.
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Chapter 5

Hydromechanics of rocks and rock
engineering structures

5.1 INTRODUCTION

The effect of water is of great importance for assessing the mechanical response of
geotechnical engineering structures during and after construction. It is well known that
groundwater causes various stability problems for rock engineering structures. Some
of well known examples are shown in Figure 5.1. The overtopping of the reservoir
water in the Vaiont dam was caused by a landslide and resulted in heavy casualties
down-stream. The failure of the foundation of the Malpasset dam also caused severe

Figure 5.1 Examples of seepage through rock mass and some associated problems.
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casualties on the downstream side of the dam. The excavation of tunnels causes the
ground subsidence besides local stabilities within the tunnels. The ground above the
Nakayama Tunnel in Japan subsided more than 1.5 m during the reduction of ground
water level to deal with heavy water-inflow into the tunnel.

It is well known that ground water adversely affects the stability of excavations
as well as the working conditions (Aydan & Ersen, 1983). In recent years, studies on
the disposal of radioactive wastes in rockmass have been increasing in the countries
where a great proportion of energy production is based on nuclear power plants. In
case of any accidence during disposing these wastes in rock mass, the transportation of
the radioactive wastes to the ecological environment strictly depends upon the seepage
characteristics of rock mass (Brace et al., 1968; Gale, 1990; Tsang & Witherspoon,
1981). Furthermore, the productivity of wells in petroleum industry also depends upon
the seepage characteristics of rock mass.

To consider the mechanical effect of water on soils, Terzaghi (1925) introduced
the concept of the effective stress. This concept was later also used for rocks. On the
other hand, Biot (1942) introduced a general effective stress law which incorporates
the volumetric porosity n and the ratio of the volumetric stiffness of solid Ks and that
of the bulk K. Although this law is a more general one and it is the basis of the mixture
theory for porous media, Terzaghi’s effective law is widely accepted in geotechnical
engineering as it is very simple and it does not involve any deformability characteristics
of the solid and fluid phases.

Rock mass in nature is generally fractured. As a result, they contain numerous
discontinuities, which may be very important in the stability of rock engineering struc-
tures and mass transport through the rock mass. The same effective stress laws have
been also extended to the rock discontinuities (Byerlee, 1967). However, there are very
few experimental studies to check the applicability and validity of the effective stress
laws for rock discontinuities.

This chapter explain fundamental aspects on the hydromechanics of rocks and how
to solve the fundamentals of governing equations and present several applications in
practice.

5.2 FUNDAMENTAL EQUATION OF FLUID FLOW
IN POROUS MEDIA

The mass conservation law for fluid flowing through the pores within rock may be
given in the following form with the use of the mixture theory and assuming that a
coordinate system fixed to the solid phase (i.e. Aydan, 2000a,b):

∂(φρf )
∂t

= −∇ · (φqf ) (5.1)

where ∇ = ∂
∂xi

ei, i = 1, 3; ρf : fluid density, φ: porosity, qf : fluid flux.
One may write the following relation for fluid flux in terms of relative velocity vr

of fluid and the velocity vs of solid phase as

φqf = ρf (vr + φvs) (5.2)
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Let us assume that the flow of fluid obeys the Darcy’s law. Thus we have the following

vr = −k
η

∇p (5.3)

where k is permeability, η is viscosity of fluid. Inserting Eqs. (5.3) and (5.2) into
Eq. (5.1) yields the following

∂(φρf )
∂t

= ∇ ·
(

ρf

(
k
η

∇p − −φvs

))
(5.4)

The material derivative operator according to Eulerian description may be written
as (Eringen, 1980):

ds

dt
= ∂

∂t
+ vs · ∇( ) (5.5)

Introducing this operator into Eq. (5.4), we have the following relation

dsφ

dt
+ φ

ρf

dsρf

dt
= ∇ ·

(
k
η

∇p
)

− 1
ρf

∇ · (φvs) (5.6)

The following constitutive relations are assumed to hold among porosity, fluid
and solid densities and pressure (i.e. Zimmerman et al., 1986)

dsφ

dt
= (Cb − (1 + φ)Cs)

dsp
dt

;
1
ρf

dsρf

dt
= Cf

dsp
dt

(5.7)

If the velocity of solid phase is assumed to be small so that it can be neglected,
Eq. (5.6) takes the following form with the use of Eq. (5.7):

β
∂p
∂t

= ∇ · (∇p) (5.8)

where

β = [(Cb − Cs) + φ(Cf − Cs)
]η
k

(5.9)

5.2.1 Special form of governing equation

Eq. (5.8) can be re-written for one-dimensional longitudinal flow as:

β
∂p
∂t

= ∂2p
∂x2

(5.10)

Similarly Eq. (5.8) can be also written for axi-symmetric radial flow as:

β
∂p
∂t

= 1
r

∂

∂r

(
r
∂p
∂r

)
(5.11)
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5.2.2 Governing equations of fluid in reservoirs attached
to sample

Using the mass conservation law and the constitutive relation between pressure and
fluid density, the velocities v1, v2 of fluid contained in reservoirs numbered (1) and (2)
and attached to the ends of a sample can be written as:

v1 = −Cf V1
∂p1

∂t
, v2 = −Cf V2

∂p2

∂t
(5.12)

where V1 and V2 are volumes of reservoirs, and p1 and p2 are pressures acting on fluid
reservoirs.

5.3 PERMEABILITY CHARACTERISTICS OF ROCKS
AND DISCONTINUITIES

To measure the seepage characteristics of rock masses, numerous methods are pro-
posed, and the preference to select an appropriate method is generally associated with
the expected permeability values of rock masses (Aydan et al., 1997b). When the
expected permeability of rock mass is relatively large, constant head or falling head
permeability tests, which are widely used in soil mechanics, are employed. On the
other hand, the transient pulse test proposed by Brace et al. (1968) is used when the
permeability of rock masses is relatively small. The permeability is obtained from time-
pressure difference relation observed in this test. Aydan et al. (1997b) extended this
method to axi-symmetric radial flow tests. The compressibility of solid and fluid phases
of samples is not taken into account in interpreting the test results in this method. It is
natural to expect that the permeability values may be different if the compressibility of
the samples is taken into account. There are two kinds of laboratory tests available for
measuring permeability of rock specimen, namely, steady-state and non-steady state
flow tests.

5.3.1 Some considerations on Darcy law for rocks
and discontinuities

Darcy law (given in Eq. (5.3)) is generally used as a constitutive model for the fluid
flow through porous rock and rock discontinuities together with the assumption of
laminar flow. A brief description of Darcy’s law is presented in this sub-section.

Darcy performed a series of experiments on a sand column in 1856. From these
experiments, he found out that the volume discharge rate Q is directly proportional to
the head drop h2 − h1 and to the cross-sectional area A, but it is inversely proportional
to the length difference l2 − l1. Calling the proportionality constant K as the hydraulic
conductivity, Darcy’s law is written:

Q = −KA
h2 − h1

l2 − l1
(5.13)

The negative sign signifies that groundwater flows in the direction of head loss.
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Darcy’s law is now widely accepted and used in modelling fluid flow in porous
or fractured media. It is elaborated and written in a differential form which is given
below for one-dimensional case as:

v = −K
∂h
∂x

(5.14)

This law is analogous to Fourier’s law in heat flow presented in Chapter 4. Darcy’s
law is theoretically derived for tube-like pores and slit-like discontinuities in this
subsection (Aydan et al., 1997a; Aydan & Üçpırtı, 1997).

(a) Darcy law for rock with cylindrical pores

Equilibrium equation for x-direction is given as

∑
Fx = pπ [(r + �r)2 − r2] − (p + �p)π [(r + �r)2 − r2] (5.15)

+(τ + �τ )2π (r + �r)�x − τ2πr�x = 0

Re-arranging the resulting expression and taking the limit and omitting the second
order components yields:

dp
dx

− dτ

dr
− τ

r
= 0 (5.16)

Assuming that the flow is laminar and a linear relationship holds between shear
stress and strain rate γ̇ as:

τ = ηγ̇ , γ̇ = du̇
dr

= dv
dr

, v = u̇ = du
dt

(5.17)

Now, let us insert the above relation into Eq. (5.16), we have the following partial
differential equation:

dp
dx

− η
d2v
dr2

− η

r
dv
dr

= 0 (5.18)

Integrating the above partial differential equation for r-direction yields the
following

v = 1
η

dp
dx

r2

4
+ C1 ln r + C2 (5.19)

Introducing the following boundary conditions as:

v = v0 at r = D
2

τ = 0 at r = 0
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yields the integration constants C1 and C2 as:

C1 = 0, C2 = v0 − 1
η

dp
dx

D2

16

where D is diameter of pore. If velocity v0 is given in the following form

v0 = −α
1
η

dp
dx

D2

16
(5.20)

integration coefficient C2 can be obtained as follows

C2 = −(1 + α)
1
η

dp
dx

D2

16

The flow rate q passing through the discontinuity for a unit time is:

q =
∫ 2π

0

∫ y= D
2

r=0
vrdrdθ (5.21)

The explicit form of q is obtained as

q = −π

η

D4

128
dp
dx

(5.22)

If the flow rate q is re-defined in terms of an average velocity v̄ over the pore
area as

q = −v̄π
D2

4
(5.23)

we have the following expression

v̄ = −(1 + α)
1
η

D2

32
dp
dx

(5.24)

This relation is known as Hagen-Poiseuille for α = 0. In an analogy to the Darcy
law, we can re-write the above expression as

v̄ = −k
η

dp
dx

(5.25)

where

k = (1 + α)
D2

32
or k = (1 + α)

a2

8
; a = D

2
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Figure 5.2 Geometrical models for Darcy law.

This is known as the actual permeability of the pores. Let us assume that the ratio
(porosity) n of the area of pores over the total area is given by (Figure 5.2a)

n = 1
At

N∑
i=1

π
D2

i

4
or n = NπD2

4At
(5.26)

Then, the apparent permeability ka is related to the actual permeability as

ka = nk (5.27)

(b) Darcy law for slit-like discontinuities

For x-direction, force equilibrium equation for fluid can be given as follows (Fig-
ure 5.2b):

∑
Fx = p(x)�y − p(x+�x)�Y + τ(y+�y)�x − τ(y)�x = 0 (5.28)

where p is pressure and τ is shear stress. Eq. (5.28) takes the following partial
differential form by taking Taylor expansions of p and τ as:

dp
dx

− dτ

dy
= 0 (5.29)

Assuming that flow is laminar and the relation between shear stress τ and shear
strain rate γ̇ is linear:

τ = ηγ̇ , γ̇ = du̇
dy

= dv
dy

, v = u̇ = du
dt

(5.30)
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where η is viscosity and u̇ is deformation rate. Substituting the above relations into
Eq. (5.29) yields the following partial differential equation:

dp
dx

− η
d2v
dy2

= 0 (5.31)

Integrating the equation above for y-direction yields the following expression for
flow velocity v

v = 1
η

dp
dx

y2

2
+ C1y + C2 (5.32)

Introducing the following boundary conditions in Eq. (5.32)

v = vo at y = h
2

, τ = 0 at y = 0

yields the integration constants C1 and C2 as:

C1 = 0, C2 = vo − 1
η

dp
dx

h2

8
(5.33)

where h is the aperture of discontinuity. If it is assumed that the following relation
exists for vo

vo = −α
1
η

dp
dx

h2

8
(5.34)

then, the integration constant C2 can be written as:

C2 = −(1 + α)
1
η

dp
dx

h2

8
(5.35)

Total flow rate vt through the discontinuity at a given time is:

vt = 2
∫ y= h

2

y=0
vdy (5.36)

The explicit form of vt is obtained as:

vt = −(1 + α)
1
η

h3

12
dp
dx

(5.37)

For α = 0, the above equation is well known as a “cubic law’’ equation in ground-
water hydrology (Snow, 1968) and it is introduced to the field of geomechanics by
Polubarinova-Kochina in 1962. Let us re-define the flow rate vt in terms of an average
velocity v̄ and the discontinuity aperture h as

vt = v̄h (5.38)
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Inserting this equation into Eq. (2.26) yields the following:

v̄ = −1
η

h2

12
dp
dx

(5.39)

In an analogy to the Darcy law, the above equation may be re-written as:

v̄ = −kd

η

dp
dx

(5.40)

where

kd = (1 + α)
h2

12

kd in the above equation is called permeability of discontinuity. If discontinuity porosity
nd is defined as the ratio of total area

∑N
i = 1 Ai

d of discontinuities to total area At

(Figure 5.2b):

nd = 1
At

N∑
i=1

Ai
d (5.41)

the following relation between apparent permeability kda and actual permeability kd

is obtained as:

kda = ndkd (5.42)

5.3.2 Transient pulse test

In this sub-section, the finite element formulations of transient pulse tests for longitudi-
nal and radial flow conditions are presented. Furthermore, the final forms of analytical
solutions for the same tests are given.

(a) Longitudinal flow (figure 5.3)

For incremental variation δp, the integral form of Eq. (5.10) can be written as:

∫ b

x=a
δpβ

∂p
∂t

dx =
∫ b

x=a
δp

∂2p
∂x2

dx (5.43)

Applying integration by parts to the equation above yields the weak form of the
governing equation as

∫ b

x=a
δpβ

∂p
∂t

dx +
∫ b

x=a

∂δp
∂x

∂p
∂x

dx = δpt̂
∣∣∣b
x=a

, t̂ = ∂p
∂x

n (5.44)
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Figure 5.3 Longitudinal transient pulse test model.

Let us assume that the domain is discretized into M elements. Since Eq. (5.44) is
valid for the total domain, it must also hold element-wise. Let us further assume that
pressure in an element is interpolated as given below:

p = NiPi + NjPj or p = [N]{P(t)} (5.45)

where

[N] = [Ni Nj
]
, {P}T = {Pi Pj

}
, Ni = xj − x

L
, Nj = x − xi

L
, L = xj − xi

Thus Eq. (5.44) can be written for a typical element with the use of Eq. (5.45) as

∫ xj

x=xi

β[N]T [N]
{
Ṗ
}
dx +

∫ xj

x=xi

[B]T [B]{P}dx = [N]T{t̂}∣∣∣xj

x=xi

(5.46)

where

Bi = −1
L

, Bj = 1
L

The equation above may be re-written as:

[M]e{Ṗ}e + [K]e{P}e = {F}e (5.47)

where

[M]e = β

∫ xj

x=xi

[N]T [N]dx, [K]e =
∫

[B]T [B]dx, {F}e = [N]T t̂
∣∣∣xj

x=xi
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Eq. (5.47) given for a typical element may be transformed to the equation below
for the total domain as

[M]
{
Ṗ
}+ [K]{P} = {F} (5.48)

With the use of the θ method, Eq. (5.48) takes the following form for time step
tn+1 as

[M∗]{P}n+1 = {F∗}
n+1 (5.49)

where

[M∗] =
(

1
�t

[M] + θ [K]
)

,

{
F∗}

n =
(

1
�t

[M] − (1 − θ )[K]
)

{P}n + θ{F}n+1 + (1 − θ ){F}n

As understood from Eq. (5.12), the boundary conditions to solve Eq. (5.49) will
vary with time. With use of Darcy’s law, the velocities at the ends of a sample must
be continuous in relation with those of the reservoirs. Therefore, one may write the
followings:

q1 = −k
η

1
A

(
∂p
∂x

n
)

x=a
, q2 = −k

η

1
A

(
∂p
∂x

n
)

x=b
(5.50)

where A is sample cross section, and nx=a = −1, nx=b = 1. From the Taylor expansion
of Eq. (5.12) for time step tn for the both ends of the sample, one can obtain the
followings:

Pn+1
1 = Pn

1 − �t
Cf V1

q1, Pn+1
2 = Pn

2 − �t
Cf V2

q2 (5.51)

Thus the boundary conditions of Eq. (5.50), which change with time, can be
replaced with the equivalent boundary conditions given by Eq. (5.51) and the resulting
simultaneous equation system can be solved.

Aydan et al. (1997a,b) and Aydan & Üçpırtı (1997) solved Eqs. (5.10) and (5.12)
using the method of elimination (Kreyszig, 1983) instead of the Laplace transformation
technique employed by Brace et al. (1968) and derived the following equation for
permeability of rocks:

k = ηcf L

A
V1V2

V1 + V2
ln
(

�po

�p
V2

V1 + V2

)
1
t

(5.52)

where �p = p1 − pf , �po = pi − po. When gas is used as a permeatation fluid, p1 and
p2 are replaced with U1 (=p2

1) and U2 (=p2
2), and permeability can be calculated using

the same relation given above.
If the volume of reservoir 2 (V2) is much greater than the volume of reservoir 1

(V1), (V2 >> V1) (for instance, outer side of specimen is open to air) p0 ve pf given in
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Figure 5.4 Radial transient pulse test model.

the above equation will be equal to atmospheric pressure (pa). For this particular case,
Eq. (5.52) takes the following form:

k = ηcf LV1

A
ln
(

pi − pa

p1 − pa

)
1
t

(5.53)

(b) Radial flow

The finite element formulation of Eq. (5.11) for radial flow (Figure 5.4) can be obtained
in a similar manner. Since the formulation would be the same except the specific forms
of matrices and vectors, which will be different as a result of the geometry of the
domain, it is not presented herein.

The transient pulse method is also extended to radial flow by Aydan et al. (1997b).
The details of their method is given elsewhere (Aydan et al., 1997). This method is fun-
damentally very similar to that for longitudinal flow (Figure 5.4). The only differences
are associated with the pressure gradient and surface area at inner and outer radius. If
one replaces those given in Eqs. (5.52) and (5.53) with their corresponding relations
for radial flow, similar equations will be obtained. Finally, one can use the following
equation to compute permeability

k = ηcf
V2r2V1r1 ln (r2/r1)
V2r2Ap1 + V1r1Ap2

ln
(

�po

�p
V2r2Ap1

V2r2Ap1 + V1r1Ap2

)
1
t

(5.54)

When gas is used as a permeatation fluid, p1 and p2 are replaced with U1 (= p2
1)

and U2 (= p2
2), and permeability can be calculated using the same relation given above.

If the volume of reservoir 2 (V2) is much greater than the volume of reservoir 1
(V1), (V2 > > V1) (for instance, outer side of specimen is open to air) p0 ve pf given in

 

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315375151-6&iName=master.img-003.jpg&w=227&h=164


Hydromechanics of rocks and rock engineering structures 157

Figure 5.5 Illustration of longitudinal falling head test.

the above equation will be equal to atmospheric pressure (pa). For this particular case,
Eq. (5.54) becomes

k = ηcf
V1r1 ln (r2/r1)

Ap1

ln
(

pi − pa

p1 − pa

)
1
t

(5.55)

5.3.3 Falling head tests

When rock is quite permeable, falling head tests, which utilize dead weight of fluid,
are also used for determining permeability of rocks and discontinuities. In this sub-
section, analytical solutions for falling head tests for longitudinal flow and radial flow
conditions are derived.

(a) Longitudinal falling head test method

Experimental set-up used for this kind test is shown in Figure 5.5 (Aydan et al., 1997b).
As seen from the Figure two manometers having cross sections a are assumed to be
attached to the both ends of the sample. During a test, the change of pressure and
velocity of flow can be measured through these manometers. The level h2 of water
at the lower tank is assumed to be constant in the following formulation. When an
experiment starts, flow rate inside the pipe can be given as:

vp = −a
∂h1

∂t
(5.56)

where h1 is the level of water inside the manometer (1). At a given time, flow rate
through the cross-section area A) of the specimen is given by

vt = v̄A (5.57)
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It is assumed that flow rate through the specimen should be equal to the flow
rate of the pipe. Then, the pressure gradient in specimen can be given in the following
form:

∂p
∂x

≈ −ρg
(h1 − h2)

L
(5.58)

where ρ is density, g is gravitational acceleration. Substituting Eq. (5.58) together with
Eq. (5.40) into Eq. (5.57), and equalizing the resulting equation to Eq. (5.56) yields
the following differential equation for the change of water height h1:

∂h1

h1 − h2
= −kAρg

Laη
∂t (5.59)

where L is sample length. Solution of the above differential equation is:

h1 = h2 + Ce−αt (5.60)

where

α = kA
La

ρg
η

If initial conditions are given by

h1 = h10 at t = 0

where h10 is water height at manometer 1 at t = 0. Thus the integration coefficient C
is obtained as follows

C = h10 − h2 (5.61)

Inserting the above integration coefficient in Eq. (5.60) yields the following

−αt = ln
(

�h
�ho

)
(5.62)

where

�h = h1 − h2, �ho = h10 − h2

If α is substituted into the above equation, the following expression for perme-
ability is obtained

k = La
A

ln
(

h10−h2
h1−h2

)
t

η

ρg
(5.63)
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Figure 5.6 Illustration of radial free-fall test.

(b) Radial falling head test method

Experimental set-up used for this kind test is shown in Figure 5.6 (Aydan et al., 1997b).
As seen from the figure a manometer is placed on the top of the cylindrical hole drilled
in the middle of test specimen. The cross-section area of this manometer is denoted
by Ah. During the test, the change of pressure and velocity of flow can be measured
through this manometer. The level h2 of water at the outer container is assumed to be
constant. When the experiment starts, flow rate inside the manometer can be given as:

q = −ρgAh
∂h1

∂t
(5.64)

where h1 is the level of water inside the manometer. At a given time, the flow rate
through a cross-section area of hole (Ap) inside test specimen is given by

vt = v̄Ap (5.65)

It is assumed that flow rate through the hole perimetry should be equal to the flow
rate of the pipe. The pressure gradient in specimen may be given in the following form:

∂p
∂r

≈ − ∂

∂r
(ρg(h1 − h2)) = −ρg

∂(h1 − h2)
∂r

= −ρg
(h1 − h2)
r ln (ro/ri)

(5.66)

Substituting Eq. (5.66) into Eq. (5.65), and equalizing the resulting equation to
Eq. (5.64) yields the following differential equation for the change of water height h1:

∂h1

h1 − h2
= −k

η

Ap

Ah

1
ri ln (ro/ri)

∂t (5.67)
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Solution of the above differential equation is:

h1 = h2 + Ce−αt (5.68)

where

α = k
ri ln(ro/ri)

Ap

Ah

1
η

Introducing the following initial conditions

h1 = h10 at t = 0

yields the integration constant C as:

C = h10 − h2 (5.69)

If integration constant is inserted into Eq. (5.68), the following equation is
obtained:

−αt = ln
(

h1 − h2

h10 − h2

)
(5.70)

If α is substituted into the above equation, the following expression for perme-
ability is obtained

k = ηri ln
(

ro

ri

)
Ah

Ap
ln
(

h10 − h2

h1 − h2

)
1
t

(5.71)

5.4 SOME SPECIFIC SIMULATIONS AND APPLICATIONS
TO ACTUAL EXPERIMENTS

5.4.1 Some specific simulations

In the first part of this section, the following two cases are analysed using the finite
element method presented in the preceding section:

• Case 1: The compressibility of rock and fluid are constant, and porosity is variable
• Case 2: The compressibility of rock is variable, and the compressibility of fluid

and porosity are constant

(a) The effect of porosity

In order to investigate the effect of porosity, the compressibility of solid phase and
fluid phase is assumed to be constant while porosity is varied. The effect of variation
of porosity enters the equation system through constant β. Bulk compressibility Cb is
generally obtained from experiments. We can also make estimation from the limiting
values of the bulk compressibility from the compressibility of a sample when porosity
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Figure 5.7 Variation of pressure difference with time (porosity φ = 0.01).

Figure 5.8 Variation of pressure difference with time (porosity φ = 0.20).

has values of 0 and 1. When the porosity has a value of 0, the bulk compressibility
must be equal to that of solid phase. On the other hand, when the porosity has a
value of 1, then the bulk compressibility must be equal to that of fluid phase. From
these requirements it simply implies that the bulk compressibility is twice that of solid
phase. In each computation, the value of constant β is computed using this requirement.
Figures 5.7 and 5.8 show computed results.

In the same figures, relations used in interpreting transient pulse tests are also
included for comparisons. As seen from these figures, the computed relations become
markedly different from the conventionally used relations as the value of porosity
increases. From this observation it can be said the relations used in interpreting
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Figure 5.9 Variation of pressure difference with time (compressibility of solid phase Cs = 0.1 GPa−1).

Figure 5.10 Variation of pressure difference with time (compressibility of solid phase Cs = 0.2 GPa−1).

transient pulse test results may be only valid when porosity is very small. Otherwise,
the estimated permeability values will be greater than the actual ones.

(b) The effect of compressibility of solid phase

In order to investigate the effect of the compressibility of solid phase, the compressibil-
ity of fluid phase and porosity are assumed to be constant while the compressibility of
solid phase is varied. The value of constant β is computed using the procedure described
in the previous case. Figures 5.9 and 5.10 show computed results. In the same figures,
relations used in interpreting transient pulse tests are also included for comparisons.
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Figure 5.11 Variation of pressure difference with time (compressibility of solid phase Cs = 0.00 GPa−1).

As also seen from these figures, the computed relations become markedly different from
the conventionally used relations as the value of solid phase compressibility increases.
From this observation it can also be said the relations used in interpreting transient
pulse test results are only valid when porosity and the compressibility of solid phase
are very small. Otherwise, the estimated permeability values will be greater than the
actual ones.

In the next series of computations, the effect of the rigidity of solid phase is inves-
tigated when and the value of porosity is small. The compressibility of solid phase was
assumed to have the values of 0.0 and 0.02 and the value of porosity was taken as 0.01.
The value of constant β is computed using the procedure described in the previous case.
Figures 5.11 and 5.12 show computed results. In the same figures, relations used in
interpreting transient pulse tests are also included for comparisons. As also seen from
these figures, the computed relations become very close to the conventionally used
relations as the solid phase becomes rigid.

5.4.2 Applications to actual permeability tests

Figure 5.13 shows pressure responses of Reservoirs 1 & 2 in a transient pulse test on
a sandstone sample. Despite some scattering of pressure responses the variations of
reservoir pressures tend to decrease with time and become asymptotic to a stabilizing
pressure. The permeability of the sandstone sample was 3.1 × 10−12 m2.

Üçpırtı & Aydan (1997) and Üçpırtı et al. (1992) reported transient pulse type
experiments on halite rock sample and halite-concrete interface as a part of an exper-
imental study on the permeability of interface between sealing plug and surrounding
rock in the safe disposal of nuclear wastes. In experiments, the permeability of rock and
interfaces with or without a polyethylene membrane is measured under various load-
ing conditions to simulate possible stress state in-situ. From this experimental study,
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Figure 5.12 Variation of pressure difference with time (compressibility of solid phase Cs = 0.02 GPa−1).

Figure 5.13 Pressure responses of a sandstone sample in a transient pulse test.

it is concluded that the membrane could be very effective in reducing the permeability
of the interface which is the most likely path of flow within the system.

An in-situ application of the falling-head radial flow experiment for permeabil-
ity (hydraulic conductivity) measurements was carried out at Gündoğdu district of
Babadağ town in Denizli province of Turkey by Aydan et al. (2003). The ground in the
permeability and infiltration site consists of intercalated marl and loosely cemented
sandstone (Figure 5.14). Three boreholes with a diameter of 90 mm were drilled and
they were separated from each other by a distance of about 1050 mm. Thus the hor-
izontal distance between the boreholes were about 10 times the borehole diameter.
The depth of boreholes numbered SK-1, SK-2, SK-3 was 1260, 1300 and 1420 mm,
respectively. The boreholes were equipped with water pressure sensors and the water
pressure was measured during a test using a WE7000 (YOKOGAWA) data acquisition
system and data were stored onto a laptop computer.
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Figure 5.14 A view of intercalated marl and loosely cemented sandstone at test site and sketch
of in-situ permeability test.

Four permeability tests at two boreholes were carried out simultaneously. For this
particular problem there are several semi-empirical formulas to compute the hydraulic
conductivity of ground. One of the formula is purposed by Barron et al. (1970), which
has the following form

k = 2.3a log10

[
H1

4H2
· 1

t2 − t1

]
(5.72)

where H1, H2 and a are water heads at time t1 and t2 (t2 > t1 and H1 > H2) and radius
of the borehole.

The problem of permeability tests in this particular case may be contemplated as an
axi-symmetric problem and the governing equation for radial flow takes the following
form:

∂h
∂t

= −k
1
r

(
r
∂h
∂r

)
(5.73)

where h is water head and r is radial distance. Finite Element Method was adopted to
solve Eq. (5.73). The finite element formulation of Eq. (5.73) and its solution follows
the same procedure as used in the transient pulse method experiments. Figure 5.15 com-
pares the computational results with measured data together with estimated response
from the analytical solution for falling-head tests. The computed hydraulic conductiv-
ity coefficients according to Barron’s formula and FEM are given Table 5.1. As seen
from Table 5.1 and Figure 5.15, the computed and measured results are very close to
each other.

Permeability experiments were carried out on granite samples containing 1 and
2 discontinuity planes using falling-head experimental technique. The discontinuity
spacing was 200 mm. The inner diameter of the hole in the center of the specimen
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Figure 5.15 Comparison of measured water head variation with those estimated from FEM and
falling-head test formula.

Table 5.1 Inferred hydraulic conductivities of tests (from Kumsar et al.,2016).

Hydraulic Conductivity (cm/s) Hydraulic Conductivity (cm/s)
Test No (Barron’s formula) (FEM)

Test 1–1 5.482 × 10−4 6.815 × 10−4

Test 1–2 1.250 × 10−3 1.356 × 10−3

Test 2–1 3.523 × 10−4 2.521 × 10−4

Test 2–2 5.000 × 10−4 6.560 × 10−4

Test 3–1 3.584 × 10−4 2.568 × 10−4

Test 3–2 5.701 × 10−4 7.640 × 10−4

Test 4–1 3.523 × 10−4 2.503 × 10−4

Test 4–2 4.710 × 10−4 4.936 × 10−4

Test 5 4.727 × 10−4 4.831 × 10−4

Test 6 6.686 × 10−4 4.942 × 10−4

was 64 mm. The side length of the granite blocks was 200 mm. Figure 5.16 shows the
measured response of water-head in the central borehole with time. The water head
was almost nil after a certain period of time (30–50 seconds). The value of coefficient
α given by Eq. (5.68) ranged between 1/10–1/12 seconds after the curve-fitting to the
experimental data.

Figure 5.17 shows the measured response of water-head in the central borehole
with time for the sample having two discontinuity planes with the spacing of 200 mm.
The water head was almost nil after a certain period of time (30–50 seconds). The
value of coefficient αgiven by Eq. (5.68) ranged between 1/11–1/12 seconds after the
curve-fitting to the experimental data. The value of the constant (α) was quite similar
to the sample having a single discontinuity.

If the total water flow is assumed to be through the discontinuity plane/planes, the
hydraulic aperture of the discontinuity plane can be obtained from a similar formula-
tion given in Sub-sections 5.3.1 and 5.3.3 with due consideration of the axi-symmetry
condition of the experiments (see Aydan et al., 1997a,b for details).
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Figure 5.16 Experimental water head variations with time having a single discontinuity plane in a granite
block.

Figure 5.17 Experimental water head variations with time having two discontinuity planes in a granite
block.

5.5 MECHANICAL COUPLING EFFECT OF GROUNDWATER
ON ROCKS AND DISCONTINUITIES

5.5.1 Theoretical formulation

Terzaghi (1925) has proposed an effective stress law which is defined as:

σ ′
ij = σij − pδij (5.74)

where σij is the total stress tensor and p is the fluid pressure (compression is assumed
positive), and δij is Kronecker delta. This concept is later also used for rocks. On the
other hand, Biot (1942) introduced a parameter α which is related to the volumetric
porosity n and the ratio of volumetric stiffness Ks of solid and that of the bulk as:

σ ′
ij = σij − αpδij (5.75)
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Figure 5.18 Effective stress model for discontinuities.

where

α = 1 − K
Ks

Bulk modulus K can be related to the modulus Ks of solid, the modulus Kf of fluid
and volumetric porosity n by using various averaging methods. These approaches are
summarised in an article by Karaca et al. (1995) using the micro-structure models of
Aydan et al. (1992). Results obtained from different averaging methods imply that the
value of α can range from 0 to 1, depending upon parameters Ks, Kf and n. It seems
that Terzaghi-type effective stress law is a special case among various models.

Terzaghi’s and Biot’s model were also extended to account the mechanical effect
of water on discontinuities in rock masses. Byerlee (1967) was the first to suggest an
effective stress model by employing a Terzaghi-type effective stress concept. The stress
tensor and volumetric porosity n are replaced by normal stress σn and the ratio η of
the non-contact area Anc to the total area At between the discontinuity walls in the
following forms (Figure 5.18):

σ ′
n = σn − αp, η = Anc

At
, α =

(
1 − Ef

Es

)
Ef ≈ Kf

3
(5.76)

Similarly, the value of α can have a value ranging from 0 to 1, depending upon the
chosen mechanical model. The value of α has a large variation and its value is still not
well-understood. In the literature, it is very rare to see any discussion about this matter
and many people seems to follow the approach proposed by either Terzaghi or Biot.

5.5.2 Theoretical modelling of tilting tests

Biot suggested a genious yet simple experimental set-up, which is known as the Beer-
Can experiment to investigate the mechanical effect of water on the sliding resistance
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Figure 5.19 Mechanical model for prismatic block.

of rock discontinuities (quoted in an article by Hubbert & Rubey 1959). The author
devised experimental set-ups which are slightly modified from the original experimen-
tal set-up suggested by Biot. Theoretical formulations for tilting tests on rectangular
prismatic blocks and wedges are presented herein.

(a) Theoretical formulations of tilting test set-up for rectangular prismatic blocks

Let us consider a prismatic block put on plane β, submerged in a fluid (Figure 5.19).
Force equilibrium equations for the block can be written as∑

Fs = Wt sin β + Usu − Usl − S = 0 (5.77a)

∑
Fn = N + αUb − Wt cos β − Ut = 0 (5.77b)

where

Wt = (1 − n)Wbr + nWbw, Wbw = γwhLB,

Usl = γw
H3 + H4

2
hB, Usu = γw

H1 + H2

2
hB,

Ut = γw
H1 + H3

2
LB, Ub = γw

H3 + H4

2
hB,

Let us also assume that the block at a limiting equilibrium state such that

S = µsN, µs = tan φs, (5.78)

Using the above relations, the following relations can be obtained:

µs = Wt sin β − Usl + Usu

Wt cos β − αUb + Ut
(5.79)

 

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315375151-6&iName=master.img-018.jpg&w=135&h=139


170 Time-dependency in rock mechanics and rock engineering

This expression can be further reduced to the following form using the geometry
and above relations as:

µs = (1 − n)(Wbr − Wbw) sin β[
Wt − 1+3α

4 Wbw
]

cos β + (α − 1)γwHLB
(5.80)

where H is the depth of the center of the block.
If we follow Terzaghi’s approach, that is, α = 1, the above expression reduces to

the following form for a rectangular prismatic block:

µs = tan β (5.81)

Under dry condition, one can easily obtain the following relation using a similar
kind formulation:

µd = tan β (5.82)

If the friction angles obtained from tilting tests under dry and submerged con-
ditions are same, that is µd = µs, then it will imply that the effective stress law of
Terzaghi-type should hold for rock discontinuities.

(b) Theoretical formulations of tilting test set-up for wedge blocks

Let us consider a wedge-like block as shown in Figure 5.20. Force equilibrium
equations for each respective direction can be given by

∑
Fs = W sin ψ − Us cos ψ + Ut sin ψ − S = 0 (5.83a)

Figure 5.20 Mechanical model for wedge block.
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Fn = W cos ψ + Us sin ψ + Ut cos ψ − N − αUb = 0 (5.83b)

∑
Ft = −(N1 + αUb1) cos ω1 + (N2 + αUb2) cos ω2 = 0 (5.83c)

where N + αUb = (N1 + αUb1) sin ω1 + (N2 + αUb2) sin ω2, ψ is intersection angle.
W = (1 − n)Wbr + nWbw. Note that In Eqns. 5.83b and 5.83c, shear force compo-
nents perpendicular to intersection line on planes ω1 and ω2 are neglected since the
motion of block perpendicular to the intersection line direction is negligible.

Let us assume that the failure planes have no cohesion and obey the simple failure
criterion as given below:

T = (N1 + N2)µ; µ = tan φ (5.84)

and introducing a safety factor as:

SF = T
S

(5.85)

With the use of Eqs. (5.83) and (5.84), the above expression yields the following:

SF = [(W cos ψ + Us sin ψ + Ut cos ψ) · λ − αU∗
b]

W sin ψ − Us cos ψ + Ut sin ψ
µ (5.86)

where U∗
b = Ub1 + Ub2. λ is termed as the wedge factor given by (Kovari & Fritz, 1975)

λ = cos ω1 + cos ω2

sin (ω1 + ω2)

Assuming that Us, Ut, Ub1, Ub2 = 0, which corresponds to dry case, together with
SF = 1 yields the apparent friction angle φ∗ due to the geometric configuration of the
wedge is obtained as:

φ∗
d = tan−1(λ tan φ) (5.87)

The maximum wedging effect is obtained when ω1 = ω2 = ω.
If α is chosen as 1, which corresponds to Terzaghi type effective stress law, and the

geometry of the block is considered, the resulting equation takes the following form

φ∗
s = tan−1(λ tan φ) (5.88)

This implies that if Terzaghi type effective stress holds, the apparent friction angle
of the wedge should be the same both under dry and submerged conditions unless there
is a chemical reaction between rock and water along sliding planes.
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Figure 5.21 Experimental setup under submerged condition.

5.5.3 Tilting experiments

An experimental set-up was designed as shown in Figure 5.21. The device consists of
a tilting apparatus with an inclinometer and a mountable water tank. The tests on dis-
continuities are carried out by mating walls of prismatic rock blocks and model wedges
with fixed base blocks of the same material under dry and submerged conditions.

(a) Tests on rectangular prismatic blocks

During some tests, the water head is varied since the Biot-type formulation depends
upon the water head H, porosity n of intact rock, and the coefficient α. The discon-
tinuities tested were either artificially made or natural. Figure 5.22 shows the effect
of water H on various kind discontinuities. As seen from the plots, the friction angle
under submerged condition seems not to be influenced by the variation of water head
at all. The maximum variation is restricted to 2−3%. It is also interesting to note
that there is not any remarkable change in the friction angle under fully submerged
condition.

Figure 5.23 shows the plots of a number of test results on artificial and natural
discontinuities in various kinds of rock. The Figure is a plot of dry friction angles
versus to those under fully submerged conditions. It is interesting to note that the
experimental results are either on or both sides of the line for α = 1. The maximum
variation on both sides of the line is limited to ±3%.

5.5.4 Tests on wedge blocks

Six special moulds were prepared to cast model wedges. For each wedge config-
uration, three wedge blocks were prepared. Each base block had dimensions of

 

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315375151-6&iName=master.img-020.jpg&w=247&h=189


Hydromechanics of rocks and rock engineering structures 173

Figure 5.22 Effect of water head on the friction angle of discontinuities.

140 × 140 × 260 mm and made of mortar (Kumsar et al., 1997). The cement used
in mortar was rapid hardening type and samples were cured for about 7 days in a
room with a constant temperature. In addition, several mortar slabs were cast to mea-
sure the friction angle of sliding planes. The mean friction angle of sliding planes was
35◦ with a standard deviation of ±2◦.

The model wedge blocks were all stable when they were set on their base blocks.
A tilting device was used to cause the sliding of wedge blocks. The intersection angle
of blocks were increased until the sliding of the block occurs. For each wedge block
three tests were carried out.
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Figure 5.23 Relationship between dry and submerged friction angles of discontinuities.

Figure 5.24 Comparison of apparent friction angle with theoretical predictions.

Tests results together with theoretical predictions for friction angles of 33◦, 35◦
and 37◦ by assuming that α = 1 are shown in Figure 5.24. For each wedge geometry,
9 experimental results are plotted in this figure. As seen from this figure, the experimen-
tal results closely follow the theoretical curves, although some scattering exists. This
scattering was considered to have been caused by the use of fine sand in mortar which
results in some stick-slip behaviour of sliding planes and a variation of the frictional
characteristics of the planes due to penetration of sand particles into the base block.

(b) Direct shear tests

Direct shear tests on discontinuities of granitic rock with polished surfaces were carried
out to see the mechanical effect of water on the shear resistances of rock discontinuities
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Figure 5.25 Experimental set-up for direct shear tests.

Figure 5.26 Direct shear test results on discontinuities of granitic rocks.

by using an experimental set-up as shown in Figure 5.25. Tests were carried out on dry
samples and submerged samples by varying the water head and plotted in Figure 5.26
using Terzaghi’s effective normal stress as σn′ = σn − p. As seen from the figure, tests
results seem to confirm the validity of the effective stress definition of Terzaghi-type
for rock discontinuities.

Additional direct shear tests were also performed on discontinuities of rubber
material with flat and undulating surfaces of sinusoidal-type. Figure 5.27 shows the
experimental results by using Terzaghi’s effective stress law. Once again, these tests
results also confirm the validity of the above conclusions.

 

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315375151-6&iName=master.img-024.jpg&w=232&h=145
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315375151-6&iName=master.img-025.jpg&w=175&h=209


176 Time-dependency in rock mechanics and rock engineering

Figure 5.27 Direct shear test results on discontinuities of rubber material.

Experimental results presented in this sub-section seem to confirm that the
Terzaghi-type effective stress is also applicable to throughgoing discontinuities. How-
ever, this conclusion is valid provided that the discontinuity surfaces are not affected
by water absorption of minerals constituting adjacent rock blocks.

5.6 MODELING STRUCTURES IN ROCKS SUBJECTED
TO GROUND-WATER FLUCTUATIONS

5.6.1 Theoretical and finite element modeling

The first analysis was concerned with the effect of the underground water on ground
water table variation in rock mass. The fundamental governing equation (Eq. 5.8) of
seepage in porous media takes the following form:

n
Kf

∂p
∂t

= −∇ ·
(

k
η

∇p
)

(5.89)

where n, Kf , k, η and p are porosity, fluid compressibility, permeability and pore
pressure respectively. Pore pressure is related to water head in the following form

p = ρf gh (5.90)

where ρf , g and h are fluid density, gravity and water head, respectively. Using
Eq. (5.90) in Eq. (5.89), one can easily get the following equation

S
∂h
∂t

= −k∇ · ∇h (5.91)
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Figure 5.28 The boundary and initial conditions of one-dimensional finite element model for seepage
analysis.

where S is storage coefficient. Using the concept of Biot (1946), effective stress is
generally written in the following form:

σ ′ = σ − αpI (5.92)

where α is Biot coefficient. When Terzaghi’s effective stress concept is adopted, its
value becomes 1.

The equation of motion can be written in incremental form in the following form:

∇ · σ̇ = 0 (5.93)

If one follows the conventional form of formulation based on the finite element
method, governing equations (5.91) and (5.93) takes the following form:

[M]{Ḣ} + [G]{H} = {R} (5.94)

[K]{U̇} = {Ḟ} (5.95)

where

[M] = S
∫

V
[L]T [L]dV ; [G] = k

∫
V

[A]T [A]dV ; [A] = ∇[L];

{R} =
∫

�

[L]qnd� +
∫

V
[L]QdV ; [K] =

∫
V

[B]T [D][B]dV ; {Ḟ} =
∫

V
[B]T{Ṗ}dV

5.6.2 Applications to pumped storage power house project

The problem is first treated as a one-dimensional problem with an emphasis on water
head variation. The water heads at upper and lower reservoirs were changed as shown
in Figure 5.28. The powerhouse was considered as a sink source and the initial water
head condition was assigned using Dupuit’s formula (i.e. Verruijt, 1982). Figures 5.29
and 5.30 show the water head variations at selected points at chosen time steps for the
underground powerhouse with impermeable lining or no lining, respectively. When
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Figure 5.29 Variation of water head at selected points or time (impermeable lining).

Figure 5.30 Variation of water head at selected points or time (no lining).

the lining is impermeable the water head variation reaches steady state after about
300 days and the variation of the water head in rock mass due to the variation of
water level of reservoirs is limited to 60–70 m from the intakes/outlets. There is almost
no change on the water head in the vicinity of the powerhouse. When the cavern is
unlined, the water head variations are much smaller and they are limited to 60–70 m
from the intakes/outlets. However, the steady state is achieved after about 400 days.

Next computation was carried using a two-dimensional coupled seepage analyses
and the mesh used is shown in Figure 5.31. The water head variations were assumed
to be the same as those in the previous case and the cavern was unlined. Figure 5.32
shows the water head distribution and displacement vectors when the water is drawn
from upper reservoir. As noted from the figure, the rock mass below the upper reservoir
rebounds while the rock mass below the lower reservoir subsides. However, when the
upper reservoir is re-filled, it tends to return its original state while the rock mass below
the lower reservoir rebounds as seen in Figure 5.33. This process repeats itself as the
water levels of reservoirs are cyclically varied. The large variations of water heads in
rock mass occur in the close vicinity of the reservoirs and their effect is quite negligible
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Figure 5.31 Finite element mesh for coupled hydro-mechanical analyses.
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Figure 5.32 Computed responses for 45 m water level decrease of the upper reservoir.
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Figure 5.33 Computed responses for 45 m refill of the upper reservoir.

around the cavern. This conclusion is quite similar to that from the one-dimensional
finite element analyses. These results further imply that there is no need to take into
account the effective stress changes around the caverns of the pumped storage schemes
in long term. Nevertheless, they may have important implications on the slopes of the
reservoirs due to large variations of effective stresses.
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Chapter 6

Thermo-hydro-diffusion behaviour
of rocks

6.1 INTRODUCTION

The coupled problems are commonly encountered in geo-science and geo-engineering.
The safe disposal of nuclear wastes, petroleum and geothermal exploitations are some
of examples for such problems in geo-engineering. Similar problems are also encoun-
tered in earthquake prediction studies in geo-science. The radioactive nuclear waste
disposal particularly receives great attention and one may find many studies in lit-
erature. Most of these studies on radioactive nuclear waste disposal are based on
thermo-hydro-mechanical concepts and it is very rare to see any study, which includes
diffusion phenomena of radioactive substances. Therefore, a mechanical model, which
includes 4 different aspects, should be the most appropriate approach for radioactive
waste disposal. Although the variation of stress field around the disposal site may
be of great concern for cavity stability in very near field, its effect is expected to be
quite limited after back-filling the excavated space in long term. In this article, the
mechanical effect is omitted in the coupling model presented herein and a theoretical
formulation, based on the mixture theory is described for the thermo-hydro-diffusion
phenomena. In the theoretical formulation, Duffour and Soret effects are considered
for coupling the thermal and diffusion fields with each other. Then, a finite element
formulation of the coupled model is presented and it is used for numerical analysis of
some laboratory tests and compared with experimental results. Furthermore, a series
of parametric numerical analyses are performed to investigate

a) Simulation of solute transport in rock under laboratory conditions,
b) Temperature field of geo-thermal fields under forced seepage
c) Non-isothermal advective moisture transport through buffer materials, and

Parametric studies on the consideration of Duffour and Soret laws in purely
coupled hydro-thermo-diffusion problems.

6.2 MECHANICAL MODELING

The mechanical modeling of thermo-hydro-diffusion phenomena is based on the mix-
ture theory (Trusdell & Toupin, 1960; Eringen & Ingram, 1965). Figure 6.1 illustrates
how three fields are coupled. Following the principles of the mixture theory, and some
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Figure 6.1 Coupling model.
[C,p]: Effect of Diffusion on Seepage (density variation)
[p,C]: Effect of Seepage on Diffusion (Advection of Concentration due to fluid flow)
[T,p]: Effect of Heat Flow on Seepage (Density variation due to Temperature variation)
[p,T]: Effect of Seepage on Heat flow (Advection of Temperature due to fluid flow)
[T,C]: Effect of Heat Flow on Concentration (Duffour effect)
[C,T]: Effect of Diffusion on thermal field (Soret effect)

appropriate constitutive relations, one can easily derive that the fundamental equations
for each field as follows (Aydan, 2001).

6.2.1 Fundamental equations

The mechanical modelling of thermo-hydro-diffusion phenomena is based on the mix-
ture theory (Trusdell & Toupin, 1960; Eringen & Ingram, 1965). Figure 6.1 illustrates
how three fields are coupled.

Following the principles of the mixture theory, one can easily derive that the
fundamental equations for each field are as follows (Aydan, 2001a,b; Bear, 1988):

Seepage field

1 − n
ρs

∂ρs

∂t
+ n

ρf

∂ρf

∂t
+ 1

ρs
∇ · {qs} + 1

ρf
∇ · {qf } = 0 (6.1)

where qs = (1 − n) ρsvs and qf = nρf vf .

Diffusion field

∂C
∂t

+ vs · ∇{(1 − n)Cs} + vf · ∇ (nCf
)= −∇ · {f} (6.2)

where C = (1 − n) Cs + nCf and f = (1 − n)fs + nff .

Thermal field

(1 − n) ρs
dsUs

dt
+ nρf

df Uf

dt
= ∇ · h + Q (6.3)

where h = (1 − n)hs + nhf and Q = (1 − n) Qs + nQf .
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6.2.2 Constitutive laws

Seepage field

D’Arcy law is usually used to relate the relative average fluid velocity vr to pressure in
the following form

vr = n(vf − vs) = −k
η

∇p (6.4)

where k is permeability and η is viscosity coefficient of fluid. If fluid density is assumed
to be a function of p, T, C, its variation may be written in the following form

1
ρf

∂ρf

∂t
= 1

Kf

∂p
∂t

− βfT
∂T
∂t

− βfC
∂Cf

∂t
(6.5)

where Kf is fluid compressibility, βfT is thermal expansion coefficient and βfC is
diffusive expansion coefficient.

Diffusion field

Fick’s law is often employed as a constitutive law for diffusion problems. This law
is extended by associating concentration flux fs of solid phase with gradients of
temperature and concentration as given below:

fs = −DsT∇Ts − DsC∇Cs (6.6)

where DsT is thermal diffusivity of solid phase and DsC is Dufour’s coefficient (Bear,
1988). Similarly, one may also write the following relation for fluid phase.

ff = −DfT∇Tf − DfC∇Cf (6.7)

If Ts = Tf = T and Cs = Cf = C, the average concentration flux f takes the follow-
ing form

f = −DT∇T − DC∇C (6.8)

where

DT = (1 − n)DsT + nDfT and DC = (1 − n)DsC + nDfC.

DC is average diffusion coefficient, DsC and DfC are the diffusion coefficient of
solid phase and fluid phase, respectively.

Thermal field

Fourier’s law is well known as a constitutive law for associating heat flux to tempera-
ture gradient. This law is also expanded by associating heat flux hs with temperature
and concentration gradients as

hs = −λsT∇Ts − λsC∇Cs (6.9)

 



184 Time-dependency in rock mechanics and rock engineering

where λsT is thermal conductivity coefficient and λsC is Soret’s coefficient of solid
phase. Similarly the following relation can be written for fluid phase.

hf = −λfT∇Tf − λfC∇Cf (6.10)

where λfT is thermal conductivity coefficient and λfC is Soret’s coefficient of fluid phase.
If Ts = Tf = T and Cs = Cf = C, then average heat flux h takes the following form.

h = −λT∇T − λC∇C (6.11)

where λT = (1 − n)λsT + nλfT and λC = (1 − n)λsC + nλfC. λT is average conductivity
coefficient. λsT and λfT are conductivity of solid and fluid phases, respectively.

6.2.3 Simplified form of fundamental equations

Seepage field

If the density variation of solid phase and the porosity variation of skeleton are
negligible, Eq. (6.1) may be re-written together with D’Arcy’s law as:

n
(

1
Kf

∂p
∂t

− βfT
∂T
∂t

− βfC
∂C
∂t

)
= −∇ ·

(
k
η

∇p
)

(6.12)

Diffusion field

Eq. (6.2) may take the following form together with the use of Eq. (6.8)

∂C
∂t

= ∇ · (DC∇C + DT∇T) − vr · ∇C (6.13)

The second term on the right-hand side is the advective term.

Thermal field

Internal energies of solid and fluid phases may be related to temperature field with the
use of specific heat coefficients cs and cf as

Solid Phase

∂Us

∂t
= ∂Us

∂T
∂T
∂t

= cs
∂T
∂t

(6.14)

Fluid Phase

∂Uf

∂t
= ∂Uf

∂T
∂T
∂t

= cf
∂T
∂t

(6.15)

With the use of equations above, Eq. (6.11) and vs = 0, Eq. (6.3) becomes

ρc
∂T
∂t

= ∇ · (λT∇T + λC∇C) − ρf cf vr · ∇T (6.16)

where ρc = (1 − n)ρscs + nρf cf .
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6.3 FINITE ELEMENT FORMULATION

6.3.1 Weak forms of fundamental equations

Seepage field

The governing equation of seepage field is assumed to be subjected to the following
boundary conditions

Pressure boundary condition

p = p0 on Sp (6.17)

Fluid flux boundary

−(nρf
k
η

∇p) · n = q̂ on Sq (6.18)

Taking a variation on pressure field δp and integrating by parts, one gets the weak
form of Eq. (6.12) as

n
(∫

V
δp

n
Kf

∂p
∂t

dV −
∫

V
δpβfT

∂T
∂t

dV −
∫

V
δpβfC

∂C
∂t

dV
)

+
∫

V
∇(δp) · k

η
∇pdV =

∫
Sq

δpq̂dS (6.19)

Diffusion field

The diffusion equation is assumed to be subjected to the following boundary conditions

Concentration boundary

C = C0 on SC (6.20)

Concentration flux boundary

−(DC∇C + DCT∇T) · n = f̂ on Sf (6.21)

Taking a variation δC and applying the integration by parts to Eq. (6.13), we have
the weak form of Eq. (6.13) as

∫
V

δC
∂C
∂t

dV +
∫

V
∇δC · DC∇CdV +

∫
V

∇δC · DC∇TdV

+
∫

V
δCvr∇CdV =

∫
Sq

δCf̂ dS (6.22)
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Thermal field

Eq. (6.16) is assumed to be subjected to the following boundary conditions

Temperature boundary

T = T0 on ST (6.23)

Heat flux boundary

−(λT∇T + λTC∇C) · n = ĥ on Sh (6.24)

Taking a variation δT on temperature field and applying the integration by parts
to the first term of Eq. (6.16), one easily gets its weak form as:

∫
V

δTρc
∂T
∂t

dV +
∫

V
∇δT · λT∇TdV +

∫
V

∇δT · λTC∇CdV

+
∫

V
δTρf cf vr · ∇TdV =

∫
Sq

δTĥdS (6.25)

6.3.2 Discretization of weak forms

6.3.2.1 Discretization in physical space

Pressure, concentration and temperature variables are interpolated in a typical finite
element with the use of shape functions as given below:

p = [N]{P}, C = [N]{φ}, T = [N]{χ} (6.26)

Inserting these relations into each respective weak form and after some manipula-
tions, one easily gets the following equation system for each field as

Seepage field

[M]PP{Ṗ} + [M]PC{φ̇} + [M]PT{χ̇} + [K]PP{P} = {Q}P (6.27)

where

[M]PP =
∫

V

n
Kf

[N]T [N]dV ; [M]PC = −
∫

V
nβfC[N]T [N]dV ;

[M]PT = −
∫

V
nβfT [N]T [N]dV ; [K]PP = −

∫
V

k
η

[B]T [B]dV ;

{Q}P =
∫
Sq

NTq̂dS
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Diffusion field

[M]CC{φ̇} + [K]CC{φ} + [K]CT{χ} = {Q}C (6.28)

where

[M]CC =
∫

V
[N]T [N]dV ;

[K]CC =
∫

V
DC[B]T [B]dV−

∫
V

k
η

[N]T ([B]{P})T{B}dV[K]CT =
∫

V
DCT [B]T [B]dV ;

{Q}C =
∫
Sf

NT f̂ dS

Thermal field

[M]TT{χ̇} + [K]TT{χ} + [K]TC{φ} = {Q}T (6.29)

where

[M]TT =
∫

V
ρc[N]T [N]dV

[K]TT =
∫

V
λT [B]T [B]dV−

∫
V

ρf cf
k
η

[N]T ([B]{P})T [B]dV

[K]TC =
∫

V
λTC[B]T [B]dV ; {Q}T =

∫
Sh

NTĥdS

Finally the following simultaneous equation system is obtained for whole
domain as

[M]
{
Ẋ
}+ [K]{X} = {Y} (6.30)

where

[M] =
⎡
⎣ [M]PP [M]PC [M]PT

[0] [M]CC [0]
[0] [0] [M]TT

⎤
⎦; [K] =

⎡
⎣ [K]PP [0] [0]

[0] [K]CC [K]CT

[0] [K]TC [K]TT

⎤
⎦

{Ẋ} =
⎧⎨
⎩

Ṗ
φ̇

χ̇

⎫⎬
⎭; {X} =

⎧⎨
⎩

P
φ

χ

⎫⎬
⎭; {Y} =

⎧⎨
⎩

{Q}P

{Q}C

{Q}T

⎫⎬
⎭
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6.3.2.2 Discretization in time domain

Although there are several techniques for discretization in time domain, θ -method is
chosen herein. Since Eq. (6.30) holds at any time, one may easily write the following
relation for a time step (m + θ ) as

[M]{Ẋ}(m+θ ) + [K]{X}(m+θ ) = {Y}(m+θ ) (6.31)

With the use of Taylor expansions of variables and after some manipulations as
described in Chapter 4, Eq. (6.31) takes the following form:

[C∗]{X}m+1 = {Y∗}m+1 (6.32)

where

[C∗] =
[

1
�t

[C] + θ [K]
]
;

{
Y∗}

m+1 =
[

1
�t

[C] − (1 − θ) [K]
]
{X}m + θ{Y}m+1 + (1 − θ) {Y}m

It should be noted that matrices [K]CC and [K]TT contains unknown variable vector
{P}. Therefore, the resulting equation system is non-linear. However, if time step is suf-
ficiently small, it can be linearized with the use of variable {P} of the previous time step.

6.4 EXAMPLES AND DISCUSSIONS

The first example is concerned with the simulation of diffusion-seepage tests on a
sandstone sample carried out by Igarashi & Tanaka (1998) under isothermal condition.
The pressure gradient in the sample was set to 260 MPa/m. Figure 6.2 shows pressure
distribution through the sample at different time steps. Since the pressure distribution
attains the steady state in a short period of time, this implies that the diffusion takes

Figure 6.2 Pressure distributions in a sandstone sample.
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place under constant fluid velocity field through the sample. Material properties used
in the analyses are given in Table 6.1. The computations were carried out for two
different situations, specifically,

1) Advection + Conduction and
2) Conduction only.

Figure 6.3 compares the breakdown curves for computed two situations with the
experimental one. In the analyses, the effect of diffusion on seepage field is neglected.
As seen from the figure, the best fit to the experimental response was obtained from
the computation for the advection + conduction situation while much longer period
of time is required for conductive diffusion. This fact simply implies that if the diffu-
sion coefficient, which is obtained from a conductive diffusion model under different
pressure gradients, will differ from each other.

The method presented in the previous sections is applied to analyze the temper-
ature distribution measured at Armutlu hot springs in the NW Turkey. Pfister et al.
(1997) were carried out some measurements. They used some models based on the
steady state equation of heat transport with advective upward flow to interpret the
temperature measurements. For the interpretation of the temperature distribution, an
upward velocity of 0.5 m/year was assumed at a depth of 150 m. However, the general
temperature profiles of rock mass and nearby thermal spring channels may be different

Table 6.1 Material properties used in analyses.

Fick’s diffusion coefficient of solid (m2/day) 5.1 × 10−5

Fick’s diffusion coefficient of fluid (m2/day) 2.1 × 10−4

Porosity (%) 16
Permeability (m2) 3.1 × 10−12

Sample length (mm) 50
Sample diameter (mm) 50

Figure 6.3 Comparison of computed breakdown curves with the experimental curves.
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Table 6.2 Properties of materials used in numerical analyses.

Parameter Schists Diabase Air

Thermal conductivity of solid (m1K−1) 2.7 0.54 –
Thermal conductivity of fluid (Wm−1K−1) 0.6 0.6 0.026
Density of solid (kgm−3) 2600 2600 –
Density of fluid (kgm−3) 1000 1000 1.2
Specific heat of solid (kJkg−1K−1) 0.89 0.89 –
Specific heat of fluid (kJkg−1K−1) 4.187 4.187 1.0
Porosity (%) 10 10 100
Heat production rate (Wm−3) 1.6 × 10−6 1.6 × 10−6 –

Figure 6.4 Variation of temperatures of some selected points with time.

since the upward fluid velocity could vary due to the permeability rock masses. Three
different situations are considered, specifically:

CASE 1: no advection
CASE 2: advection with an upward fluid velocity of 30 mm/year, and
CASE 3: advection with an upward fluid velocity of 100 mm/year.

CASE 1 corresponds to purely conductive heat transport while CASE 2 and CASE 3
to the advective heat transport. In the analyses, an air element next to the ground
surface is introduced since the temperature of the surface of rock may not be the same
as that of surrounding air (Aydan et al., 1985). The parameters used in numerical
analyses are given in Table 6.2. The thermal properties of micaschists and calcerous
schist are assumed to be the same while the thermal conductivity of diabase was taken
0.2 times that of schists. This value is less than the value reported by Pfister et al.
(1997). Since the initial temperature distribution was unknown, the whole domain
was initially set to 76◦C and the computations were carried out for 25000 years.
Figure 6.4 shows the time history of the temperatures of some selected points. As noted
from the figure, the temperature becomes almost steady after 7000 years. To compare
temperature distributions for three cases, the temperature profiles at 25000 years are
selected as the steady state temperature of the vicinity of the well at Armutlu. The
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Figure 6.5 Comparison of computed temperature profiles with measured temperatures.

temperature profile for CASE 1 closely predicts the lower bound values of measured
temperature profile. On the other hand, the temperature profile for CASE 2 predicts
the upper bound values of the measured profile. The actual situation in the vicinity
of the Armutlu hot spring may be just in between two predictions (Figure 6.5). The
temperature profile for CASE 3 is very close to the temperature profile of hot water in
the well, although the profile near the ground surface is a bit different from the actual
measurements. Nevertheless, such a situation may be simulated if the rock material is
replaced with steel and water in order to simulate the effect of the metal casing of the
drill-hole. Furthermore, it should be noted that the upward fluid velocity should be
much less than that reported by Pfister et al. (1997).

The next example is concerned with moisture transport through a buffer mate-
rial for radioactive waste disposal under different ambient temperatures, reported by
Kanno et al. (1999). Recently Basha & Selvadurai (1998) theoretically solved this
problem as a spherically symmetric problem.

Kanno et al. (1999) used bentonite as a buffer material in their tests and the
ambient temperature was varied from 25◦ to 60◦C. They determined Fick’s diffusion
coefficient of bentonite for moisture transport using a conductive diffusion model.
Figure 6.6 shows a simulation of moisture concentration distributions through the
sample at different time steps, carried out at an ambient temperature of 25◦C. They
found that the diffusion coefficients obtained for different ambient temperatures differ
from each other.

With the experimental finding of Kanno et al. (1999) in mind, a series of para-
metric studies were carried out. Specifically the following four cases were considered
in parametric studies:

CASE 1: Dufour coefficient and Soret coefficient are nil (thermal and diffusion fields
are uncoupled)

CASE 2: Dufour coefficient is not nil, but Soret coefficient is nil
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Figure 6.6 Comparison of computed moisture concentration distributions through the sample with
experimental distributions at different time steps.

Table 6.3 Material properties used in numerical analyses.

Parameter CASE 1 CASE 4

Solid’s thermal conductivity (Wm−1K−1) 0.277 0.277
Fluid’s thermal conductivity (Wm−1K−1) 0.600 0.600
Dufour’s coefficient of solid (Wcm−1kg−1) 0 72
Dufour’s coefficient of fluid (Wcm−1kg−1) 0 72
Soret’s coefficient of solid (cm2kg s−1K−1) 0 3.6 × 10−5

Soret’s coefficient of solid (cm2kg s−1K−1) 0 3.6 × 10−5

Solid’s density (kg m−3) 1600 1600
Fluid’s density (kg m−3) 1000 1000
Solid’s specific heat (kJ kg−1K−1) 5.0 5.0
Fluid’s specific heat (kJ kg−1K−1) 1.0 1.0
Fick’s diffusion coefficient of solid (cm2/s) 6.1 × 10−3 6.1 × 10−3

Porosity (%) 46.3 46.3

CASE 3: Dufour coefficient is nil, but Soret coefficient is not nil
CASE 4: Dufour coefficient and Soret coefficient are not nil (fully coupled)

Material properties used in analyses are given in Table 6.3 and computed results
are shown in Figures 6.7–6.8 for CASE 1 and CASE 4 only. For all cases, temperature
distributions through the sample become uniform and the effect of diffusion field on
temperature distributions are not observed. CASE 4 is probably the closest situation to
actual situations. Particularly, the effects of Duffour coefficient and Soret coefficient
are quite remarkable. However, there are almost no experimental results reported on
these coefficients to confirm the findings from computations. Therefore, it may be
stated that re-assessment of existing experiments with the consideration of Duffour
coefficient and Soret coefficient is urgently necessary.
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Figure 6.7 Comparison of computed relative concentration versus time curves for CASE 1 and CASE 4.

Figure 6.8 Comparison of computed relative concentration distributions at different time steps for
CASE 1 and CASE 4.

6.5 CONCLUDING REMARKS

In this chapter, a new mechanical model for fully coupled thermo-hydro-diffusion phe-
nomena in geo-science and geo-engineering on the basis of mixture theory and its finite
element representation are presented. The validity of this model is checked through
some experiments, which correspond to its special forms. From these comparisons,
some shortcomings of determination of Fickian diffusion coefficients from conduc-
tive diffusion models are pointed out. Parametric studies on the effect of Duffour and
Soret coefficients which are generally neglected in diffusion models indicated that these
coefficients must be taken into account in numerical analyses. Such considerations can
explain the dependency of Fickian diffusion coefficient on ambient temperature and
fluid velocity. Furthermore, there is an urgent experimental necessity to obtain the
actual values of Duffour and Soret coefficients for a meaningful assessment of fully
coupled thermo-hydro-diffusion phenomena.
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Chapter 7

Thermo-hydro-mechanical behaviour
of rocks

7.1 INTRODUCTION

As mentioned in Chapter 6, the coupled problems are commonly encountered in
geo-science and geo-engineering and the safe disposal of nuclear wastes, petroleum and
geothermal exploitations are some of examples for such problems in geo-engineering.
Similar problems may also be encountered in earthquake prediction studies in geo-
science. The radioactive nuclear waste disposal particularly receives great attention in
the field of geoengineering. Rock masses in nature contain pores within the intact rock
and discontinuities with apertures of different sizes. One of the approaches to deal
with such rock masses is to treat them as multiphase materials.

The theory of elastic wave propagation in a fluid-saturated porous solid was first
developed by Biot in 1956 after his study on three dimensional consolidation (1941)
in which he had established the equations governing the interaction of the solid and
fluid media for quasi-static phenomena. Although Biot’s wave propagation theory was
based on intuitive ideas and phenomenological concepts, it is still essentially valid and
widely used.

Truesdell & Toupin (1960) had introduced the theory of mixtures, which also has
been elaborated by many others (i.e. Müller, 1968; Eringen & Ingram, 1965). New
theories on the subject have been developed by various researchers besides those based
on the theory of mixtures (i.e. Aydan et al., 1995, 1996; Jones, 1975; Bakhvalov &
Panasenko, 1984). The theory of mixtures describes the behaviour of multiphase media
by considering the effects of interaction between the constituents that make up the
whole system. Finite deformation and constitutive relations have been formulated by
several authors (i.e. Green & Naghdi, 1967; Morland, 1971; Garg, 1971; Prevost,
1979). Garg & Nur (1973) formulated the constitutive relations for the saturated-
porous solid with the mixture theory principles.

In the first part of this chapter, the formulation of coupled thermo-hydro-
mechanical behaviour of rock masses is presented using the mixture theory as
illustrated in Figure 7.1. Then some practical applications are presented in the rest
of the chapter.

7.2 MECHANICAL MODELING BASED ON MIXTURE THEORY

The basics of the mixture theorem lies on the idea of describing the behaviour of the
mixture as a whole by considering each single constitute as a continuum for which
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Figure 7.1 Coupling concept of thermo-hydro-mechanics behaviour of rocks.
[u, p]: stress field acts on seepage field through porosity change (pore deformation)
[p, u]: Seepage field acts on the stress field though volumetric strain of rock skeleton and
effective stress concept
[T, p]:Temperature variation effects of seepage field through property variation and thermal
expansion of pore fluid (convection)
[p,T]: Seepage field acts as the convection on thermal field
[T, u]: Energy field act on stress field though volumetric strain change
[T, u]: Stress field acts on thermal field through mechanical work

the constitutive relations and the kinematic relations are expressed by taking the
interactions between the constituents into account (such as diffusion, dissociation,
and chemical reactions). In this process, every constituent keeps its own identity, but
they are diffused through the material, such that every region, however small on the
macroscopic scale, contains some of each constituent.

Truesdell (1969) states the three main metaphysical principles of the theory as
quoted below

1 All properties of the mixture must be mathematical consequences of properties of
the constituents.

2 So as to describe the motion of a constituent, we may in imagination isolate it
from the rest of the mixture provided we allow properly for the actions of the
other constituents upon it.

3 The motion of the mixture is governed by the same equations as a single body.

7.2.1 Preliminaries

The motion of a mixture with 2 constituents is described by 2 equations in Eulerian
(spatial) terms as,

x = �(α)(x(α), t) (α = 1, 2) (7.1)

where the functions �(α) are assumed to be sufficiently smooth.
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The mass of constituent s(α) per unit volume of the mixture is called its partial den-
sity which is denoted by ρ(α) = ρ(α)(x, t). The total mass per unit volume of composite
ρ(x, t) is given by

ρ =
∑

α

ρ(α) (7.2)

Partial mass densities can be written in terms of effective mass densities as

ρ(α) = n(α)ρα (7.3)

where ρα is the effective mass density for the constitute s(α). The effective density can
be thought to be the amount of mass of s(α) in a unit volume occupied by s(α) only. The
n(α) term appearing in the equation is a concentration factor representing the fraction
of s(α) in the mixture.

The velocity field v(α) defined in the material description (Lagrangian description)
is given by

v(α) = ∂�
(α)

∂t
(7.4)

While the spatial (or Eulerian) description of the motion is given by

v(α) = v(α)(x, t) (7.5)

Total mass flow should be equal to the sum of the individual mass flows. This
requirement leads us to introduce the mean or barycentric velocity v of the mixture in
the relation stated below as

ρv =
∑

α

ρ(α)v(α) (7.6)

Then, the velocity of the constituent s(α) relative to the mean velocity field can be
expressed as

w(α) = v(α) − v (7.7)

Using the relation (7.6) we can write

∑
α

ραw(α) = 0 (7.8)

The relative velocity w(α) is called the diffusion velocity of the constituent s(α).
The material time derivatives D(α)/Dt, D/Dt are given for arbitrary scalar and

vector functions ψ(x, t) and u(x, t) as

D(α)ψ

Dt
= ∂ψ

∂t
+ v(α) · grad ψ ,

Dψ

Dt
= ∂ψ

∂t
+ v · grad ψ (7.9a)

 



198 Time-dependency in rock mechanics and rock engineering

D(α)u
Dt

= ∂u
∂t

+ (grad u)v(α),
Du
Dt

= ∂u
∂t

+ (grad u)v (7.9b)

The derivative D(α)/Dt follows the motion of the constituent s(α) and the derivative
D/Dt follows the mean motion of the mixture. For each α, β (α = 1, 2, β = 1, 2) we
can write

D(α)ψ

Dt
= D(β)ψ

Dt
+ (v(α) − v(β)) · grad ψ = Dψ

Dt
+ u · grad ψ (7.10a)

D(α)w
Dt

= D(β)w
Dt

+ (grad w)(v(α) − v(β)) = Dw
Dt

+ (grad w)u(α) (7.10b)

By using the relations (7.3), (7.10) and the material derivative definitions (7.9), it
follows that

∑
α

ρ(α) D(α)ψ

Dt
= ρ

Dψ

Dt
,
∑

α

ρ(α) D(α)u
Dt

= ρ
Du
Dt

(7.11)

7.2.2 Definitions of thermo-hydro-mechanical quantities
for fluid-saturated porous media

On the basis of the principles of mixture theory equations governing the behaviour of
the coupled fluid-saturated porous solid system are derived herein. The superscripts
(s) and (f ) will be employed referring to solid and fluid phases respectively, which
correspond to α = 1 and α = 2 in the general mixture theorem expressions.

(a) Partial and total densities and mass fluxes

According to (7.2), the total mass density of the bulk material in terms of the partial
mass densities of solid and fluid will be

ρ = ρ(s) + ρ(f ) (7.12)

Denoting the material porosity by n, by the relation (7.2), the partial densities of
solid and fluid in terms of the material mass densities ρs and ρf can be expressed as

ρ(s) = (1 − n)ρs (7.13a)

ρ(f ) = nρf (7.13b)

Total and partial mass fluxes are related to each other as follow

q = q(s) + q(f ) (7.14)

where

q(s) = (1 − n)ρsvs and q(f ) = nρf vf .
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(b) Partial and total stress tensors

The total stress σ acting on the continuum region under consideration can be regarded
as the summation of the partial stresses

σ =
∑

α

σ(α) (7.15)

where σ(α) can be expressed in terms of the effective stress σα and the area fraction
n(α) as

σ(α) = n(α)σα (7.16)

Therefore the total stress σ acting on the two phase bulk material can be expressed
in terms of partial effective stress acting on the solid skeleton and on the fluid

σ = σ(s) + σ(f ) = (1 − n)σs + nσf (7.17)

Let us denote the partial effective stress on the solid skeleton as given below

σ ′
ij = (1 − n)(σ s

ij + pδij) (7.18)

and let us denote the effective partial stress on the fluid as

σf = −p, pij = −pδij (7.19)

The negative sign is due to the fluid pressure being always compressive. Then
equation (7.17) can be written in the form given below as

σij = (1 − n)σ s
ij − npδij = σ ′

ij − pδij or σ = σ′ − p (7.20)

where p is interpreted as the total pore fluid pressure acting on the fluid parts of a face
on any section of the bulk material.

(c) Heat

Total temperature and heat flux vector of the bulk material are given in the following
form (see Sub-section 6.2.1)

T = (1 − n)Ts + nTf (7.21)

h = (1 − n)hs + nhf (7.22)

Similarly, total energy production is related to those of the solid and fluid phases
as follow

Q = (1 − n)Qs + nQf (7.23)
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7.2.3 Mass conservation law for two-phase materials

The mass of a constituent is not necessarily conserved due to the occurrence of chemical
reactions between the constituents. Then the balance of mass for the constituent s(α) is
postulated as

d
dt

∫
R
ρ(α)dV +

∫
∂R

ρ(α)v(α) · ndA =
∫

R
m(α)dV (7.24)

where m(α) is the density of mass production for the constituent s(α) arising from all
the other constituents. The unit outward normal to the surface ∂R is denoted by n.
It is assumed that, for the mixture as a whole the total mass is conserved. Then the
balance of mass for the mixture can be written as

d
dt

∫
R

∑
α

ρ(α)dV +
∫

∂R

∑
α

ρ(α)v(α) · ndA = 0 (7.25)

Note that summation of the density of mass production of all the constituents in
the mixture should satisfy

∑
α

m(α) = 0 (7.26)

Assuming no chemical reactions occurring between the solid and the fluid, the
balance of mass for the solid phase and the fluid phase can be written as

d
dt

∫
R
ρ(s)dV +

∫
∂R

ρ(s)v(s) · ndA = 0 (7.27a)

d
dt

∫
R
ρ(f )dV +

∫
∂R

ρ(f )v(f ) · ndA = 0 (7.27b)

On using the Gauss’ divergence theorem and converting the surface integrals into
volume integrals and assuming the integrands are continuous on the region R in the
Eq. (7.27), we can write

∂ρ(s)

∂t
+ v(s) · ∇ρ(s) + ρ(s)∇ · v(s) = 0 (7.28a)

∂ρ(f )

∂t
+ v(f ) · ∇ρ(f ) + ρ(f )∇ · v(f ) = 0 (7.28b)

Then, the balance of mass expression for the bulk material is written as

D(s)ρ(s)

Dt
+ D(f )ρ(f )

Dt
+ ρ(s)∇ · v(s) + ρ(f )∇ · v(f ) = 0 (7.29)
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More specifically, Equation (7.29) can be re-written after some manipulations as

1 − n
ρs

∂ρs

∂t
+ n

ρf

∂ρf

∂t
+ 1

ρs
∇ · qs + 1

ρf
∇ · qf = 0 (7.30)

7.2.4 The equations of momentum balance

The forces acting on the constituent s(α) are

1 Body forces (such as gravity forces)
2 The force exerted by the mixture outside the region R on the constituent s(α).

The vector field t(α)(n, x, t) defined on ∂R which is measured per unit area of ∂R
is called the critical stress vector (traction) and accounts for the effect of the mixture
outside the region R upon the constituent s(α). In the momentum balance of the con-
stituent s(α), the momentum supplied to s(α) due to chemical reactions with the other
constituents and the momentum transfer due to other interaction effects such as the
relative motion of the constituents have to be taken into consideration.

According to the above discussion the equation of linear momentum balance for
the constituent s(α) can be expressed as

d
dt

∫
R
ρ(α)v(α)dV +

∫
∂R

ρ(α)v(α)(v(α) · n)dA −
∫

R
m(α)J(α)dV

=
∫

R
(b(α) + ψ(α))dV +

∫
∂R

t(α)dA (7.31)

where

b(α) : the external body force acting on s(α) measured per unit mass of s(α).
J(α) : accounts for the effect of the momentum supplied to s(α) due to chemical

reactions and has the dimension of velocity
ψ(α) : diffusive force exerted on s(α) by the other constituents

Considering that the overall mass is conserved for the mixture and regarding the
force ψ(α) as an internal effect, the balance of linear momentum for the mixture can
be expressed as

d
dt

∫
R

∑
α

ρ(α)v(α)dV +
∫

∂R

∑
α

ρ(α)v(α)(v(α) · n)dA

=
∫

R

∑
α

b(α)dV +
∫

∂R

∑
α

t(α)dA (7.32)

Now let us consider the 2 phase mixture of fluid-saturated porous solid with the
same assumptions and considerations used in the expression of mass balance. The
balance of linear momentum for the solid phase and the fluid phase can be written as

d
dt

∫
R
ρ(s)v(s)dV +

∫
∂R

ρ(s)v(s)(v(s) · n)dA =
∫

R
(ψ(s) + b(s))dV +

∫
∂R

t(s)dA (7.33a)
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d
dt

∫
R
ρ(f )v(f )dV +

∫
∂R

ρ(f )v(f )(v(f ) · n)dA =
∫

R
(ψ(f ) + b(f ))dV +

∫
∂R

t(f )dA (7.33b)

On using Gauss’ divergence theorem and assuming the integrands are continuous
on region R, we can write (7.33) as

ρ(s)
(

∂v(s)

∂t
+ v(s) · ∇v(s)

)
= ψ(s) + ∇ · σ(s) + b(s) (7.34a)

ρ(f )

(
∂v(f )

∂t
+ v(f ) · ∇v(f )

)
= ψ(f ) + ∇ · σ(f ) + b(f ) (7.34b)

where t(s) = σ(s) · n and t(f ) = σ(f ) · n.
With ψ(s) = − ψ(f ), balance of linear momentum for the bulk material, then can be

written as

(1 − n)ρs dv(s)

dt
+ nρf dv(f )

dt
== ∇ · σ + b (7.35)

where

dv(s)

dt
= ∂vs

∂t
+ vs · ∇vs dv(f )

dt
= ∂vf

∂t
+ vf · ∇vf

σ = σ(s) + σ(f ) = σ′ − p; b = b(s) + b(f ) = (1 − n)bs + nbf

For fluid phase, the final expression is

∇ · σ(f ) + nbf = nρf v̇(f ) + η

k
w or −∇ · (np) + nbf = nρf v̇(f ) + η

k
w (7.36)

where w = vf − vs. As it can be noticed easily, the equations of motion we have derived
for the bulk material as a whole and for the pore fluid are the same as the equations
of motion proposed by Biot (1942), intuitively.

7.2.5 Energy conservation law

Let us consider the 2 phase mixture of fluid-saturated porous solid with the same
assumptions and considerations used in the expression of energy conservation. The
conservation of energy for the solid phase and the fluid phase can be written as

Solid phase

d
dt

∫
R
ρ(s)U(s)dV = −

∫
R

∇ · h(s)dV +
∫

R
σ(s) : (∇vs)dV +

∫
R

Q(s)dV +
∫

R
ηsf dV (7.37a)

Fluid phase

d
dt

∫
R
ρ(f )U(f )dV = −

∫
R

∇ · h(f )dV +
∫

R
σ(f ) : (∇vf )dV +

∫
R

Q(f )dV +
∫

R
ηfsdV (7.37b)
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Summing Eqs. (7.37a) and (7.37b) together with ηsf = −ηfs, the energy conserva-
tion law for the bulk material takes the following form

(1 − n) ρs dUs

dt
+ nρf dUf

dt
= ∇ · h + (1 − n)σs:∇vs + nσf :∇vf + Q (7.38)

where h = (1 − n)hs + nhf and Q = (1 − n) Qs + nQf .

7.2.6 Constitutive laws

(a) Mechanical field

The constitutive law between effective stress and effective strain tensors are given in
the following form using Hooke’s law

σ′ = D : ε′ (7.39)

where

ε′ = ε − εP − εT − εo

ε = 1
2

(∇u + (∇u)T) ,
D is elasticity tensor,
εP is volumetric strain due pore pressure,
εT is volumetric thermal strain due to temperature

variation,
εo is volumetric strain due to chemical actions or

electrical attractions.

They are given specifically as follow:

εP = − 1
3Ks

pI, εT = βs

3
(T − To)I (7.40)

where Ks and βs are bulk stiffness and thermal expansion coefficients. The strain due to
chemical reaction/electrical attraction would be omitted in this chapter. Nevertheless,
it could be envisaged similar to that described in Chapter 3.

(b) Seepage field

Due to the relative motion of the fluid with respect to the solid skeleton, the fluid flow
is considered to undergo a Darcy type of resistance. The relative flow of the fluid with
respect to solid in terms of volume per unit area of the bulk medium is expressed as

w = n(vf − vs) (7.41)
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Darcy law is usually used to relate the relative average fluid velocity to pressure in
the following form

w = n(vf − vs) = − k

ρ
f
og

(∇p + ρf g∇ζ ) (7.42)

where k is hydraulic conductivity and ρ
f
o is initial density, g is gravitational acceleration

and ς = ςo − z.

(c) Thermal field

Fourier’s law is well known as a constitutive law for associating heat flux to tempera-
ture gradient as used in Chapter 6. This law is also expanded by associating heat flux
hs with temperature gradient as

hs = −λs∇Ts (7.43)

where λs is thermal conductivity coefficient of solid phase. Similarly the following
relation can be written for fluid phase.

hf = −λf ∇Tf (7.44)

where λf is thermal conductivity coefficient of fluid phase. If Ts = Tf = T, then average
heat flux h takes the following form.

h = −λT∇T (7.45)

where
λT = (1 − n)λs + nλf . λT is average conductivity coefficient.

(d) Dependency of density and viscosity of fluid phase to pressure and temperature
variations

The variation of density of fluid phase is assumed to be linearly dependent on the
variation of temperature and pressure changes as given below (Seiki, 1994; Seiki et al.,
1996):

ρf = ρf
o

(
1 − βf (T − To) + 1

Kf
(p − po)

)
(7.46)

The viscosity of the fluid phase (i.e. water) depends upon the temperature varia-
tions. Huyakorn & Pinder (1983) suggested the following relation for the variation of
viscosity of water

η = 239.4 × 10248.37/(T+131.15) × 10−6 (7.47)

Unit is (g/cm/sec).

 



Thermo-hydro-mechanical behaviour of rocks 205

(e) Relation for time derivatives of density of solid and fluid phases

Time derivatives of density of solid and fluid phases in relation to effective stress, fluid
pressure and temperature fields are given in the following form:

∂ρs

∂t
= − ρs

3Ks (1 − n)

∂σ̄′

∂t
+ ρs

Ks

∂p
∂t

− ρsβs
∂T
∂t

(7.48)

∂ρf

∂t
= ρ

f
o

Kf

∂p
∂t

− ρ
f
0βf

∂T
∂t

(7.49)

σ̄′ is average effective stress and it is given as

σ′ = trσ′ (7.50)

Furthermore, the time derivative volumetric strain of solid phase is given as

∇ · vs = ε̇s = trε̇ (7.51)

7.2.7 Final governing equations

Seepage field

The final form of seepage field can be obtained through the utilization of Eqs. (7.30),
and 7.48 to 7.51 as{

trε̇ − 1
3Ks

tr(D:ε̇)
}

+
(

1 − n
Ks

+ n
Kf

− 1
9K2

s
tr(D:I)

)
∂p
∂t

+
{
−(1 − n)βs − nβf + βs

9Ks
tr(D:I)

}
∂T
∂t

− ∇ ·
{

η0

η

k

ρ
f
og

(∇p + ρf g∇ς )

}
= 0 (7.52)

Mechanical field

Final form of the governing equation for mechanical field takes the following form
using Eqs. 7.35, 7.39 and 7.40 and neglecting the inertia components as

∇ ·
(

D:ε +
(

p
3Ks

− βs

3
(T − To)

)
D:I
)

+ ∇p + (1 − n) bs + nbf = 0 (7.53)

Thermal field

Internal energies of solid and fluid phases may be related to temperature field with the
use of specific heat coefficients cs and cf as defined in Chapter 6

Solid Phase

∂Us

∂t
= ∂Us

∂T
∂T
∂t

= cs
∂T
∂t

(7.54)
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Fluid Phase

∂Uf

∂t
= ∂Uf

∂T
∂T
∂t

= cf
∂T
∂t

(7.55)

With the use of equations above, Eq. (7.43–7.45), Eq. (7.38) becomes

{(1 − n)ρsCs + nρf Cf }∂T
∂t

+ {(1 − n)ρsCsvs + nρf Cf vf } · ∇T − ∇ · (λ∇T) = 0 (7.56)

The term (nvf · ∇T) associated with fluid flow and it may be related to Darcy’s
law as

nvf · ∇T ∼= n(vf − vs) · ∇T = −η0

η

k

ρ
f
og

(∇p + ρf g∇ς ) · ∇T (7.57)

7.3 FINITE ELEMENT FORMULATION

The formulation would basically follow the same procedures as described in previous
Chapters 4, 5 and 6. Therefore, some manipulations are omitted in this section

7.3.1 Weak forms of fundamental equations

(a) Seepage field

The governing equation of seepage field is assumed to be subjected to the following
boundary conditions

Pressure boundary condition

p = p0 on Sp (7.58)

Fluid flux boundary

−
(

η0

η

k

ρ
f
og

(∇p + ρf g∇ς )

)
· n = q̂H on Sq (7.59)

Taking a variation on pressure field δp and integrating by parts, one gets the weak
form of Eq. (7.52) as∫

V
δp
{

trε̇ − 1
3Ks

tr (D:ε̇)
}

dV +
∫

V
δp
(

1 − n
Ks

+ n
Kf

− 1
9K2

s
tr(D:I)

)
∂p
∂t

dV

+
∫

V
δp
{
− (1 − n) βs − nβf + βs

9Ks
tr(D:I)

}
∂T
∂t

dV

+
∫

V
∇δp·
{

η0

η

k

ρ0
f g

(∇p + ρf g∇ς
)}

dV +
∫

Sq

δpq̂HdS = 0 (7.60)
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(b) Thermal field

Eq. (7.56) is assumed to be subjected to the following boundary conditions

Temperature boundary

T = T0 on ST (7.61)

Heat flux boundary

−
(

λT∇T + η0

η

k

ρ
f
og

(∇p + ρf g∇ς )T

)
· n = q̂T + γ (T − T) on Sh (7.62)

Taking a variation δT on temperature field and applying the integration by parts
to the first term of Eq. (7.56), one easily gets its weak form as:∫

V
δT
{
(1 − n) ρsCs + nρf Cf

}∂T
∂t

dV +
∫

V
∇δT· (λ∇T) dV

+
∫

V
∇δT ·

{
ρf Cf

η0

η

k

ρ
f
og

(∇p + ρf g∇ς )

}
TdV +

∫
SS

δTq̂TdS

+
∫

Sm

δTγ (T − T)dS = 0 (7.63)

(c) Mechanical field

Eq. (7.53) is assumed to be subjected to the following boundary conditions

Displacement boundary

u̇ = u̇0 on Sp (7.64)

Traction Boundary

(σ̇′ − ṗ) · n = ˙̂t on St (7.65)

Taking a variation δu on displacement field and applying the integration by parts
to the first term of Eq. (7.53), one easily gets its weak form as:∫

St

δu · ˙̂tdS −
∫

V
δε ·
(

D:ε̇ +
(

ṗ
3Ks

− βs

3
Ṫ
)

D:I − ṗI
)

dV

+
∫

V
δu · nρf

og
(

−βf Ṫ + ṗ
Ks

)
dV = 0 (7.66)

7.3.2 Discretization of weak forms

7.3.2.1 Discretization in physical space

Pressure, displacement and temperature variables are interpolated in a typical finite
element with the use of shape functions. It should be noted that the order of shape
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Figure 7.2 Illustration of number of nodes of elements associated with physical discretization.

functions would be different for displacement, temperature and pressure variables.
The shape function of displacement field should be one order higher as compared
with those for temperature and pressure field (See Appendix for a specific example
and discussions). Figure 7.2 illustrates such concept for nine (N) and four-noded (M)
isoparametric elements.

Inserting these relations into each respective weak form and after some manipula-
tions, one easily gets the following equation system for each field as

[C]PU{U̇} + [C]PP{Ṗ} + [C]PT{Ṫ} + [K]PP{P} = {Q} (7.67a)

[C]UU{U} + [C]UT{T} + [C]UP{P} = {Ḟ} (7.67b)

[C]TT{Ṫ} + [K]TT{T} = {S} (7.67c)

where

[C]PP =
(

1 − n
Ks

+ n
Kf

)∫
V

[M]T[M]dV +
∫

V

1
9K2

s
[M]T [L]T

1 [D][L]1[M]dV

[C]PU =
∫

V

{
1

3Ks
[M]T [L]T

1 [D][B] − [M]T [L]T
1 [B]
}

dV

[C]PT =
∫

V
((1 − n)βs − nβf )[M]T[M]dV −

∫
V

βs

9Ks
[M]T[L]T

1 [D][L]1[M]dV

[K]PP =
∫

V

η0

η

1

ρ
f
og

[A]T ([M]{η}−1){k}[A]dV

{Q} ==
∫

Sq

[M]Tq̂HdS +
∫

V

η0

ρ
f
og

[A]T([M]{η}−1){η}([M]{ρf })g[A]{ζ }dV

[C]UP =
∫

V

{
1

3Ks
[B]T [D][L]T

1 [M] − [B]T [L]T
1 [M]

}
dV −

∫
V

n
ρ

f
og

Kf
[N]T [L]2[M]dV
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[C]UU =
∫

V
[B]T [D][B]dV

[C]UT =
∫

V

{
βs

3
[B]T [D][L]T

1 [M]
}

dV −
∫

V
nρf

ogβf [N]T [L]2[M]dV

{Ḟ} =
∫

St

[N]T{˙̂t}dS

[K]TT =
∫

V
[A]T([M]{ρf }Cf ηo([M]{η}−1)

k

ρ
f
og

([A]{P} + ([M]{ρf })g[A]{ζ })[M]dV

+
∫

V
λ[A]T[A]dV +

∫
Sh

γ [M]T [M]dV

S = −
∫

SS

[M]T{q̂T}dS +
∫

Sh

γ [M]T{T}dS

[A] = ∇[M]; [B] = ∇[N]; [L]T
1 = [1 1 1]; [L]T

2 = [0 0 −1]

{P}, {U}, {T}, {ς}, {ρ}f and {η} are vectors of variables of nodal pressure, displace-
ment, temperature, height from reference plane and density of fluid.

The relation above can be re-written in a compact form as follows

⎡
⎢⎣

CPP CPU CPT

CUP CUU CUT

0 0 CTT

⎤
⎥⎦
⎧⎪⎨
⎪⎩

Ṗ

U̇

Ṫ

⎫⎪⎬
⎪⎭+
⎡
⎢⎣

KPP 0 0

0 0 0

0 0 KTT

⎤
⎥⎦
⎧⎪⎨
⎪⎩

P

U

T

⎫⎪⎬
⎪⎭=

⎧⎪⎨
⎪⎩

Q

Ḟ

S

⎫⎪⎬
⎪⎭ (7.68a)

or

[C]
{
Ẋ
}+ [K]{X} = {Y} (7.68b)

7.3.2.2 Discretization in time domain

Similar to the approaches described in Chapters 4 to 6, if θ -method is chosen for
discretization in time domain Eq. (7.68) takes the following form:

[H∗]{X}m+1 = {Y∗}m+1 (7.69)

where

[H∗] =
[

1
�t

[C] + θ [K]
]
;

{Y∗}m+1 =
[

1
�t

[C] − (1 − θ )[K]
]
{X}m + θ{Y}m+1 + (1 − θ) {Y}m
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It should be noted that matrices [K]TT contains unknown variable vector {P}.
Therefore, the resulting equation system is non-linear. However, if time step is suffi-
ciently small, it can be linearized with the use of variable {P} of the previous time step.

7.4 EXAMPLES AND DISCUSSIONS

7.4.1 Example of buried heat source in fully saturated
shallow rock mass

The first application of the theory and its numerical method presented in the pre-
vious sections involves the displacement, porepressure and temperature responses
of saturated rock mass to a buried heat source at depth of about 4.8m below the
ground as illustrated in Figure 7.3 (Chen, 1991; Chen et al., 1991). The heat source is

Figure 7.3 Finite element mesh and initial and boundary conditions.
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100 KCal/m3 constant with time. Material properties used in the finite element analyses
are given in Table 7.1.

Figures 7.4 to 7.6 show the computed responses as a function of depth at different
time steps while Figures 7.7 to 7.9 show the responses of selected points as a function of
time. The temperature starts to increase and it is highest at the vicinity of heat source.
On the other hand, pore pressure distribution decreases as time increases. As for the
displacement response, the displacement is largest at the ground surface and decreases
as depth increases.

Results of the computed responses of temperature, pore pressure and displacement
at selected nodes indicates that temperature tends to increase to that under steady state
and pore pressure disappears as time increases. The displacements rapidly increase and
tend to converge to that under steady state condition of heat field.

Table 7.1 Material properties used in computations.

Parameter Unit Value

Density of solid kN/m3 25.0
Density of fluid kN/m3 10.0
Bulk modulus of solid N/m2 7.1 × 109

Bulk modulus of fluid N/m2 2.3 × 109

Thermal Conductivity of solid kW/mK 0.2
Thermal Conductivity of fluid kW/mK 1.0
Thermal expansion coefficient of solid 1/◦C 0.900 × 10−6

Thermal expansion coefficient of fluid 1/◦C 6.300 × 10−5

Specific heat of solid kJ/mK 14
Specific heat of fluid kJ/mK 4
Elastic Modulus MPa 6000
Poisson’s ratio 0.280
Porosity 0.2
Hydraulic conductivity m/day 1.86 × 10−6

Figure 7.4 Distribution of temperature with depth at various time steps.
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Figure 7.5 Distribution of pore pressure with depth at various time steps.

Figure 7.6 Distribution of displacement with depth at various time steps.

Figure 7.7 Variation of temperature at selected nodes with time.
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Figure 7.8 Variation of pore pressure at selected nodes with time.

Figure 7.9 Variation of displacement at selected nodes with time.

7.4.2 Analyses of shallow and deep underground waste
disposal repositories

Numerical analyses based on the simulations by Seiki (1994) and Seiki et al. (1966)
are presented for shallow and deep underground, which includes a heat source, to
clarify its effect on surrounding. It is also shown that Boussinesq’s approximation can
represent free convection.

Governing equations derived in previous section were discretized in physical space
by applying Galerkin-type FEM, together with the use of 4-noded iso-parametric
elements for pressure (p) and temperature (T) and 9-noded iso-parametric element
for displacement (u). Then time discretization was carried out for time derivative
by applying θ -method. We chose the backward difference method (θ = 1.0). To ver-
ify the numerical code, numerical analyses for coupling between heat, stress and
seepage fields were carried out and it was found that numerical results agreed well
with theoretical and experimental results.

In this sub-section, two examples are solved and their implications are discussed.
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Figure 7.10 Finite element mesh and boundary conditions used in computations.

7.5 ANALYSIS FOR ACTUAL GROUND

In the first example, a shallow ground consisting of soft porous rock mass was ana-
lyzed. The second example was concerned with the same problem at great depth.
Finally, the applicability of Boussinesq approximation (Rayleigh, 1962), which is often
used on fluid mechanics, is considered in the coupled behaviour of rock mass.

a) Analysis for shallow ground of soft rock with a heat source

If there is a heat source underground, underground water or seepage flow induced by
free convection may accelerate the diffusion of substance. Assuming that heat source
with high temperature was placed in the porous ground, computations were carried
out for the following two cases:

Case A: Heat transport induced by heat conduction only and
Case B: Heat transport induced by heat conduction and free convection.

The finite element mesh shown in Figure 7.10 was used. Material parameters are
given in Table 7.2. To investigate the long term effect to the ground caused by the
heat transport, the analysis was performed till 35,000 days or about 100 years, and
time step was 25 days. Furthermore, the ground surface was set as a heat transmission
boundary.

The deformations by numerical analysis are shown in Fig. 7.11 for Case A and
Fig. 7.12 for Case B. These figures indicate that the displacement for Case B is larger
than that for Case A. Particularly, the displacement at the point on the ground surface
shows that the uplift displacement for Case B at 35,000 days was about three times
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Table 7.2 Material properties used in computations.

Parameter Unit Value

Density of solid t/m3 2.167
Density of fluid t/m3 1.000
Bulk modulus of solid N/m2 9.807 × 1033

Bulk modulus of fluid N/m2 2.002 × 109

Thermal Conductivity of solid N/◦C/day 1.808 × 105

Thermal Conductivity of fluid N/◦C/day 4.972 × 104

Thermal expansion coefficient of solid 1/◦C 5.000 × 10−6

Thermal expansion coefficient of fluid 1/◦C 5.000 × 10−4

Specific heat of solid m2/s2/◦C 1.046 × 103

Specific heat of fluid m2/s2/◦C 1.000 × 103

Elastic Modulus t/m2 1.000 × 103

Poisson’s ratio 0.330
Porosity 0.444
Hydraulic conductivity m/day 8.640 × 10−5

350 days

35,000 days

Displ.scale
0 0.005

m

Displ.scale
0 0.005

m

Figure 7.11 Deformation (Case A: considering heat conduction only).

larger than that for Case A (Fig. 7.13). In addition, since the ground surface was a heat
transmission boundary, uplift stops when heat emitted from the heat source becomes
equal to heat dissipated from the ground surface.

Fig. 7.15 shows the relations between temperature at point e and elapsed time
for two cases, which are almost the same. Fig. 7.16 shows the distribution of excess
pore pressure. Result for Case A shows that the excess pore pressure has a peak value
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350 days

35,000 days
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Figure 7.12 Deformation (Case B: considering heat conduction and convection).

Figure 7.13 Relation between displacement at the surface and elapsed time.

immediately after applying the heat source, which was caused by the expansion of
ground around the heat source and disperses. On the other hand, computed excess pore
pressure for Case B increases immediately after heating and reaches an equilibrium state
with time. Comparing Fig. 7.15 and Fig. 7.17, it is clear that the ground displacement
is greatly influenced by excess pore pressure induced by free convection.

 

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315375151-8&iName=master.img-012.jpg&w=250&h=182


Thermo-hydro-mechanical behaviour of rocks 217

Figure 7.14 Relation between underground temperature and elapsed time.

Figure 7.15 Relation between excess pore pressure of underground and elapsed time.

Distributions of flow velocity are shown in Fig. 7.16 for Case A and in Fig. 7.17 for
Case B. The result for Case A (Fig. 7.16) indicates that the seepage flow in association
with excess pore pressure occurs and, its velocity gets smaller as time progresses. On
the other hand, the result for Case B (Fig. 7.17) indicates water flows from heat source
towards the ground surface tends to return to the heat source as it cools down. As seen
from the figure, the convection cell gets bigger and the velocity or seepage flow gets
larger around the heat source.

In case of underground disposal of a contaminant, which generates heat, the long
term migration of the seepage flow induced by free convection cannot be neglected.
This is shown in the next example.
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Figure 7.16 Fluid velocity distribution (Case A: considering heat conductivity only).
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Figure 7.17 Distribution of fluid velocity (Case B: considering heat conduction and convection).
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Table 7.3 Material properties used in computations different from
Table 7.1.

Elastic Modulus t/m2 1.000 × 106

Porosity 0.100
Hydraulic conductivity m/day 8.640 × 10−5

Figure 7.18 Relation between excess pore pressure and elapsed time.

b) Analysis for rockmass with a heat source at great depth

Assuming that a heat source was located in rock mass at great depth (i.e. 1,000 m),
a series of analyses was performed. The finite element mesh was the same as the
previous one shown in Fig. 7.10. Boundary conditions were set as follows: Uniformly
distributed load, which was equivalent to the overburden stress, was applied on the
upper boundary and lateral displacement was restrained at both vertical sides. The
upper side was also impermeable boundary. Temperature for initial state and at two
sides of the mesh was set as 40◦C. Temperature of a heat source was set as 100◦C. The
material properties different from those given in Table 7.2 are given in Table 7.3. The
time step was also the same as that of the previous case.

In this example, energy transport was assumed to take place through both
conduction and convection term. The following two cases were analyzed.

Case C: Boussinesq approximation and the change of water density induced by tem-
perature change is considered,

Case D: Pressure dependence is added to Boussinesq approximation.

Excess pore pressure vs. elapsed time, displacement vs. elapse time and tempera-
ture vs. elapsed are shown in Fig 7.18, 7.19, and Fig. 7.20 for two cases respectively.
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Figure 7.19 Relation between underground displacement and elapsed time.

Figure 7.20 Relation between underground temperature and elapsed time.

No significant differences between the results for two cases were observed. The results
also show that Boussinesq approximation can be used in the analysis of coupled
behaviour of rock mass for deep disposal projects Furthermore, it is shown that
although water density, generally speaking is sensitive to temperature change, it is
not very sensitive to pressure or pore pressure change (Bear, 1972).
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7.6 CONCLUDING REMARKS

In this chapter, a mixture theory for coupled thermo-hydro-mechanical is presented
and its finite element discretization is given. Then, a series of analyses for investigating
the coupled behaviour of ground at shallow and great depth were carried out and the
following conclusions are drawn:

1) Considering heat transport by convection does not influence temperature distri-
butions and no significant difference in temperature distributions were observed.

2) In case of considering heat conduction only, immediately after heating excess pore
pressure gets a peak value. Simultaneously seepage flow occurs in the direction
of dispersion and this flow gets smaller as time goes by.

3) In case of considering both heat conduction and convection excess pore pressure
first developed due to convection. Then, its effect around the heat source gets
larger with time. As a result, circulating flow occurs around the heat source and
its velocity gradually gets faster.

4) As the seepage velocity caused by free convection is extremely slow, heat trans-
mission flow does not occur. For this reason, heat transport induced by free
convection is not of great significance.

5) Considering free convection, uplift displacement of ground surface is three times
larger than the displacement considering heat conduction only. These results
indicate that the effect of free convection could not be neglected.

6) Boussinesq approximation is also applicable to analysis of rock mass at great
depth. Water density change is mainly caused by temperature change.

APPENDIX

In this Appendix, the effect of the order of shape functions is briefly investigated for a
one-dimensional consolidations problem. Specifically the settlement and pore pressure
variation in ground by considering is investigated for two conditions

Condition 1: The order of interpolation function of displacement field is higher than
that for pore pressure

Condition 2: The order of interpolation functions for pressure and displacement field
are the same.

Figures A.1 and A.2 show the variation of settlement and pore pressure at some selected
nodes for the given properties shown in the figures. The displacement field was inter-
polated a quadratic shape function while the pressure was approximated by linear
function for Condition 1. As for Condition 2, the interpolation functions for dis-
placement and pore pressure were the same and linear. When computed responses are
compared with each other, there is almost no difference among the computed response
for both conditions. Theoretically the order of the displacement field should be higher
than the pore pressure. Nevertheless, the computations imply that the differences are
negligible. If such a conclusion is valid, this fact would be quite useful in the generation
of finite element meshes.
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Figure A.1 Settlement of several selected points.

Figure A.2 Pore pressure of several selected points.
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Chapter 8

Conclusions

The book covered a great variety of time-dependency topics in rock mechanics
and rock engineering. As pointed out in the first chapter, this book includes a
wide spectrum of time dependency topics in addition to the conventional concept
of time-dependent behavior/rate-dependent behavior of rocks. The topics involved
time-dependent behaviour of rocks, water diffusion and seepage through rocks,
hydro-mechanical, thermo-mechanical, thermo-hydro-diffusion and thermo-hydro-
mechanical phenomena of rocks and their applications. The fundamental procedure to
explain each topic generally followed the order of theoretical formulation, experiments
and practical applications.

In Chapter 2, first a brief summary of past studies is presented. Then, experimen-
tal techniques for determining the time-dependent characteristics of rocks including
various constitutive models and actual experiments under various environmental con-
ditions are described. In the final part of this chapter, several practical examples of
applications to actual rock engineering structures including theoretical and numerical
formulations are given with the purpose of illustrating how important it is to consider
the time/rate dependency of rocks in the field of rock mechanics and rock engineering.

In Chapter 3, a theoretical method to model the water-content migration in geo-
materials is described and some experimental set-ups are presented to measure the
moisture migration and associated volumetric variations of geo-materials prone to
water absorption/desorption. Furthermore, the experimental results are presented to
show how the water content affects the physical and mechanical of properties of soft
rocks, which are prone to absorption/desorption of water in their microscopic struc-
ture. The use of X-Ray scanning technique to visualize the water migration process in
such rocks is explained as a non-destructive testing technique in rock mechanics. The
final part of this chapter covers some important applications of the water migration
phenomenon and associated issues in some specific engineering problems such as the
effect of swelling/shrinkage of soft rocks on the collapse of underground openings or
pressures on tunnel linings and how to evaluate the long-term creep-like response of
slope stability problems due to water migration, which results in volumetric changes,
causing their cracking and decomposition.

In Chapter 4, first the governing equation for heat transport in rocks and their
finite element formulation are presented. Then, a brief summary for the determination
of thermal properties of rocks together with an experimental technique based all-
in-one concept is given. Then, temperature variations in concrete linings adjacent to
rock under different thermal environment and associated thermal stress and behaviour
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of underground openings subjected to fluctuating thermal boundary conditions are
evaluated. In the final example of applications, temperature variations in rock in the
close vicinity of faults subjected to various energy release conditions are obtained and
their implications discussed in practice.

In Chapter 5, the fundamental governing equations for modeling percolating fluid
in rock mass and its mechanical effect are first derived using the mixture theory. Then,
the theoretical formulation of Darcy’s law used as a constitutive law for water perco-
lation through pores of rocks and discontinuities in rock mass is presented, and the
theoretical background of experimental techniques including transient pulse technique
and its numerical representation are given and used to simulate some experimental
results. Furthermore, some formulations and discussions are presented for evaluating
the coupling effect of water on the mechanical field. In the final part of this chapter, a
pumped storage hydro-electric power house together with its surrounding rock mass
and upper and lower reservoirs is analyzed using the finite element method to illustrate
the effect of fluctuating water levels in reservoirs on the hydro-mechanical response of
surrounding rock mass.

In Chapter 6, a theoretical formulation based on the mixture theory is described
for the thermo-hydro-diffusion phenomena. In the theoretical formulation, Duffour
and Soret effects are considered for coupling the thermal and diffusion fields with
each other and a finite element formulation of the coupled model is presented. Then
numerical analyses of some laboratory tests are carried out and compared with exper-
imental results. In addition, a series of parametric numerical analyses are performed
to investigate

a) Simulation of solute transport in rock under laboratory conditions,
b) Temperature field of geo-thermal fields under forced seepage
c) Non-isothermal advective moisture transport through buffer materials, and
d) Parametric studies on the consideration of Duffour and Soret laws through a

purely coupled hydro-thermo-diffusion formulation.

In Chapter 7, the formulation of coupled thermo-hydro-mechanical behaviour of
rock masses and its finite element representation are first presented using the mixture
theory. Two different examples of applications of the theory and its numerical repre-
sentation of the coupled thermo-hydro-mechanical phenomenon are given. The first
application involved the evaluation of displacement, pore pressure and temperature
responses of saturated rock mass to a buried heat source at a very shallow depth below
the ground surface. The second example of applications involved numerical analyses
of heat source on the response of rock mass for shallow and deep underground condi-
tions. In these numerical analyses, Boussinesq’s approximation is used to consider the
effect of free convection.

This book presented theoretical formulations, some experimental techniques,
numerical formulations and examples of applications for a wide range of topics on time
dependency in rock mechanics and rock engineering. Although this book is intended to
provide a concise and advanced representation of time-dependency topics in a unified
manner, it can be used a textbook for educational purposes. Chapters 2 to 5 should
be appropriate for both undergraduate and graduate courses while Chapters 6 and 7
would be appropriate for graduate courses.
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Aydan, Ö., Ulusay, R., Yüzer, E. & Erdoğan, M. (1999) Man-made structures in Cap-
padocia, Turkey and their implications in rock mechanics and rock engineering.
ISRM News Journal, 6 (1), 63–73.

Aydan, Ö., Sakamoto, A., Yamada, N., Sugiura, K. & Kawamoto, T. (2005a)
The characteristics of soft rocks and their effects on the long term stability of
abandoned room and pillar lignite mines. In: Post Mining 2005, Nancy.

Aydan, Ö., Daido, M., Tano, H., Tokashiki, N. & Ohkubo, K. (2005b) A real-time
multi-parameter monitoring system for assessing the stability of tunnels during
excavation. In: ITA Conference, Istanbul. pp. 1253–1259.

Aydan, Ö., Sakamoto, A., Yamada, N., Sugiura, K. & Kawamoto, T. (2005c) A
real time monitoring system for the assessment of stability and performance of
abandoned room and pillar lignite mines. In: Post Mining 2005, Nancy.

Aydan, Ö., Seiki, T., Ito, T., Ulusay, R. & Yüzer, E. (2006) A comparative study on
engineering properties of tuffs from Cappadocia of Turkey and Oya of Japan. In:
Symposium on Modern Applications of Engineering Geology. Denizli, Turkish
National Group of Engineering. pp. 425–433.
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Ulusay, R., Aydan, Ö., Geniş, M. & Tano, H. (2013) Stability assessment of
Avanos underground congress centre (Cappadocia, Turkey) in soft tuffs through
an integrated scheme of rock engineering methods. Rock Mechanics and Rock
Engineering, 46, 1303–1321.

THERMO-MECHANICAL BEHAVIOR OF ROCKS AND HEAT
TRANSPORT IN ROCKS

Aydan, Ö. (1994) Thermo-mechanical performance of thick concrete linings cast
against frozen rock mass during the hydration of cement. In: International Con-
ference on Computational Methods in Structural and Geotechnical Engineering,
Hong Kong. pp. 441–446.

Aydan, Ö. & Ersen, A. (1983) Ground-water freezing method and its application (in
Turkish). Madencilik, 22 (2), 33–44.

Aydan, Ö., Uehara, F. & Kawamoto, T. (2012) Numerical study of the long-term
performance of an underground powerhouse subjected to varying initial stress
states, cyclic water heads, and temperature variations. International Journal of
Geomechanics, ASCE, 12 (1), 14–26.

Aydan Ö., Ersen, A., Ichikawa, Y. & Kawamoto, T. (1985) Temperature and thermal
stress distributions in mass concrete shaft and tunnel linings during the hydration
of concrete (in Turkish). In: The 9th Mining Science and Technology Congress of
Turkey, Ankara. pp. 355–368.
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