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PREFACE

This book covers diffusion of electromagnetic fields in magnetically nonlin-
ear conductors and electrically nonlinear superconductors. This diffusion
is described by nonlinear partial differential equations, and for this reason
it is termed “nonlinear” diffusion. Nonlinear diffusion has many qualita-
tive features that are not observed for linear diffusion, which explains why
the study of nonlinear diffusion of electromagnetic fields is of significant
theoretical interest. At the same time, the study of nonlinear diffusion is
very important in many practical applications. Indeed, analysis of electro-
magnetic field diffusion in magnetically nonlinear conductors is, in a way,
analysis of eddy currents in those conductors. The latter analysis is very
instrumental in such diverse applications as: design of electric machines,
transformers and actuators, induction heating, nondestructive testing, elec-
tromagnetic shielding, development of inductive writing heads for magnetic
recording, and design of magnetic components in power electronics. Ou the
other hand, the study of nonlinear diffusion of electromagnetic fields in
superconductors is instrumental for the analysis of magnetic hysteresis in
those superconductors as well as for the understanding of creep phenomena.

In spite of significant theoretical and practical interests, nonlinear diffusion
of electromagnetic fields has not been extensively studied, and currently no
book exists that covers this topic in depth. It is hoped that this book will
bridge this gap.

The book has the following salient and novel features.

o Extensive use of analytical techniques for the solution of nonlinear
partial differential equations, which describe electromagnetic field dif-
fusion in nonlinear media.

e Simple analytical formulas for surface impedances of nonlinear and
hysteretic media.

e Analytical analysis of nonlinear diffusion for linear, circular, and ellip-
tical polarizations of electromagnetic fields.

e Novel and extensive analysis of eddy current losses in steel laminations
for unidirectional and rotating magnetic fields.

xi
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e Preisach approach to the modeling of eddy current hysteresis and su-
perconducting hysteresis.

e Extensive analytical study of nonlinear diffusion in superconductors
with gradual resistive transitions (scalar and vectorial problems).

e Scalar potential formulations of nonlinear impedance boundary condi-
tions and their finite element implementations.

The book contains five chapters and one appendix.

Chapter 1 deals with the analytical study of electromagnetic field diffusion
in magnetically nonlinear conducting media in the case of linear polariza-
tion of magnetic fields. This diffusion is described by scalar nonlinear
partial differential equations of the parabolic type. Discussions start with
the case of abrupt magnetic transition (abrupt saturation) and proceed to
the case of gradual magnetic transition {gradual saturation). For the lat-
ter case, first self-similar analytical solutions are found, which reveal that
nonlinear diffusion occurs as an inward progress of almost rectangular pro-
files of magnetic flux density of variable height. These almost rectangular
profiles of magnetic flux density represent an intrinsic feature of nonlinear
diffusion in the case of sufficiently strong magnetic fields, and they occur
because magnetic permeability (or differential permeability) is increased as
the magnetic fields are attenuated. The analysis of the seH-similar sohitions
suggests the idea of rectangular profile approximation of actual magnetic
flux density profiles. This approximation is used to derive simple analytical
expressions for the surface inpedance. Chapter 1 also contains discussions
of the “standing™ mode of noulinear diffusion. applications of nonlinear dif-
fusion to circuit analysis, and the representation of eddy current hysteresis
in terms of the Preisach model. The last representation reveals the remark-
able fact that nonlinear (and dynamic) eddy current hysteresis can be fully
characterized by its step respouse.

In Chapter 2, diffusion of circularly and elliptically polarized electromag-
netic fields in magnetically nonlinear conducting media is discussed. This
diffusion is described by vector (rather than scalar) nonlinear partial dif-
ferential equations. which naturally raises the level of mathematical difficul-
ties. However. it is shown that these dificulties can be completely circum-
vented in the case of circular polarizations and isotropic media. Simple and
exact analytical solutions are obtained for the above case by using power
law approximations for magnetization curves. These solutions reveal the
retarkable fact that there is no generation of higher-order harmonics de-
spite nonlinear magnetic properties of conducting media. This is because of
the high degree of symmetry that exists in the case of circular polarizations
and isotropic media. Elliptical polarizations and anisotropic media are then
treated as perturbations of circular polarizations and isotropic media, re-
spectively. On the basis of this treatment, the perturbation technique is
developed and simple analytical solutions of perturbed problems are found.
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The chapter concludes with an extensive analysis of eddy current losses in
steel laminations caused by rotating magnetic fields.

Chapter 3 presents analysis of nonlinear diffusion of weak magnetic fields.
In the case of weak magnetic fields, magnetic permeability (or differential
permeability) is decreased as the magnetic fields are attenuated. As a
result, physical features of this nonlinear diffusion are quite different from
those in the case of strong magnetic fields. However, the same mathematical
machinery that has been developed in the first two chapters can be used for
the analysis of nonlinear diffusion of weak magnetic fields. As a result, many
formal arguments and derivations presented in Chapter 3 are in essence
slightly modified repetitions of what has been already discussed in the first
and second chapters. These arguments and derivations are presented (albeit
in concise form) for the sake of completeness of exposition.

Chapter 4 deals with nonlinear diffusion of electromagnetic fields in type-
IT superconductors. Phenomenologically, type-1I superconductors can be
treated as conductors with strongly nonlinear constitutive relations E(J).
These relations are usually approximated by sharp (ideal) resistive transi-
tions or by “power” laws (gradual resistive transitions). Discussions start
with the case of ideal resistive transitions and the critical state model for
superconducting hysteresis. It is shown that this model is a very particular
case of the Preisach model of hysteresis and, on this basis, it is strongly
advocated to use the Preisach model for the deseription of superconducting
hysteresis. For the case of gradual resistive transitions described by the
power laws, analysis of noulinear diffusion in superconductors has many
mathematical features in comunon with the analysis of noulinear diffusion
in magnetically nonlinear conductors. For this reason, the analytical tech-
niques that have been developed in the first two chapters are extensively
applied to the analysis of nonlinear diffusion in superconductors. Thus, our
discussion of this diffusion inevitably contains some repetitions; however,
it is deliberately more concise and it stresses the points that are distinct to
superconductors.

In Chapter 5, nonlinear impedance boundary conditions are introduced
and extensively used for the solution of nonlinear eddy current probleins.
These boundary conditions are based on the expressions for nonlinear sur-
face impedances derived in the previous chapters. The main emphasis in
this chapter is on scalar potential formulations of impedance boundary con-
ditions and their finite element implementations. However, the discussion
presented in the chapter is much broader than this. It encompasses such
related and important topics as: a general mathematical structure of 3-D
eddy current problems, calculation of source fields, analysis of eddy currents
in thin nonmagnetic conducting shells, derivations of easily computable es-
timates for eddy current losses, and analysis of thin magnetic shells subject
to static magnetic fields.
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Finally, Appendix A covers the basic facts related to the Preisach model of
hysteresis. This model is treated as a general mathematical tool that can
be used for the description of hysteresis of various physical origins. In this
way, the physical universality of the Preisach model is clearly revealed and
strongly emphasized.

In the book, no attempt is made to refer to all relevant publications. For
this reason, the reference lists given at the end of each chapter are not
exhaustive but rather suggestive. The presentation of the material in the
book is largely based on the author’s publications that have appeared over
the last thirty years.

In writing this book, I have been assisted by Mrs. Patricia Keehn who pa-
tiently, diligently and professionally typed several versions of the manuscript.
In preparation of the manuscript, [ have also been assisted by my stu-
dents Chung Tse and Michael Neely. I am very grateful to these individ-
uals for their invaluable help in my work on this book. The main part
of the book was written during my sabbatical leave at the Laboratory
for Physical Sciences at College Park, Maryland, and I am very thank-
ful to Dr. Thomas Beahn for the given opportunity. My work on this
book was strongly encouraged and supported by Dr. Oscar Manley and
Dr. Robert Price from the U.S. Department of Energy. 1 gratefully ac-
knowledge their encouragements as well as the financial support for my
rescarch on noulinear diffusion from the U.S. Departiment of Energy. Engi-
neering Research Program.
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CHAPTER 1

Diffusion of Electromagnetic
Fields in Magnetically Nonlinear
Conducting Media (Linear

Polarization)

1.1 STATEMENT OF THE PROBLEM

This chapter, as well as the next two chapters, will be concerned with
the penetration of electromagnetic fields in magnetically noulinear conduct-
ing media. This penetration process is described by the following Maxwell
cquations:

curl H = oE, (1.1)
OB(H)

arl B = ————. 1.2

cur 5t (1.2)

Here H and E are magnetic and electric fields. respectively: o is the condue-
tivity of media; and B(H) stands for a nonlinear (and possibly hysteretic)
constitutive relationship between magnetic flux density B and magnetic
field H.

In Eq. (1.1), displacement currents were disregarded. This is because
these currents are usually small in comparison with conduction currents
cE.

The above two equations can be reduced to one equation with respect
to the magnetic field:
0B(H)

ot

curl curl H = —o (1.3)

1
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By using the well-known expression for the curl curl-operator, the last equa-
tion can be written as follows:
OB(H)

~V?H + grad divH = Bt (1.4)

Expression (1.4) is a nonlinear vector partial differential equation. In gen-
eral, its solution is affected (and complicated) by a particular geometric
shape of magnetic conductor as well as by its nonlinear magnetic proper-
ties. To make the problem more or less analytically tractable, we consider
the case of normal penetration of a plane electromagnetic wave into a semi-
infinite magnetically nonlinear conducting half-space shown in Fig. 1.1.
Naturally, this is the simplest problem that can be posed for Eq. (1.4).
Nevertheless, the solution to this problem is of strong interest for the fol-
lowing two reasons. First, the solution to this problem will not depend on
a particular shape of magnetic conductor and, in this sense, it will reveal in
pure terms the effects of nonlinear properties of magnetic conductors on the
penetration process. Second and more important, the results obtained for
the plane wave normally penetrating in magnetically nonlinear condncting
half-space can be used for the derivation of nonlinear impedance bonndary
conditions. These boundary couditions can then be applied to the anal-
ysis of the penetration process i wagnetic conductors of complex shapes
provided that the penetration (“skin™) depth is small.

In the case of normal penetration of a plane electromagnetic wave, the
magnetic field can be represented in the form:

H(zt) =a,H,(z.1) +a,H,(z.1), (1.5)
where a, and a, are unit vectors directed along r and y Cartesian axes,

respectively.
It is apparent from (1.5) that

, 0*°H
VH = -, (1.6)
0z
div H = 0. (1.7)

By wusing expressions (1.6) and (1.7) in Eq. (1.4), the latter equation can
be appreciably simplified as follows:
J°H OB(H)
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Fig. 1.1

The last equation is a nonlinear vector diffusion equation. For this rea-
son, the penetration of electromagnetic fields in conducting media is often
termed as diffusion of electromagnetic ficlds. The penetration process has
indeed many physical features of diffusion. This is especially true in the
case of linear conducting media. It will be shown later in this chapter that
in the case of nonlinear media the diffusion (penctration) process may de-
viate from its conventional properties and exhibit some features of a wave
propagation process.

There are also essential differences between linear and nonlinear diffu-
siont of electromagnetic fields that can be directly ascertained from the very
form of Eq. (1.8). To do this, we consider magnetically linear conducting
media described by the constitutive equation:

B = uH, (1.9)

where p is the magnetic permeability of media.
By substituting expression (1.9) into (1.8), we end up with the lincar
vector diffusion equation:
0’H JH
— = MO —/——.
922~ Mot

This vector equation can be written as two scalar diffusion equations:

(1.10)

9’H, OH,

5.2 — Mo (1.11)
2 .

0°H, OH, (1.12)

82 M
which are completely decoupled (independent from one another). For this
reason, these two equations can be solved separately. As a result, the pen-
etration process of an arbitrarily polarized plane electromagnetic wave can
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be viewed as a superposition of two diffusion processes for linearly polarized
electromagnetic waves. This is not the case for nonlinear media. Indeed,
the nonlinear vector diffusion Eq. (1.8) can be written as the following two
scalar nonlinear equations:

0*H, _ _0B,(Hs H,)

822 ot ' (1.13)
2H,  OB,(H, H
=0 y(at 2 (1.14)

It is clear that the above scalar equations are coupled through nonlinear
constitutive relations By (H,, H,) and By (H,, Hy,). For this reason, these
equations cannot be solved separately. As a result, the case of arbitrary
polarization of electrotnagnetic waves is not reducible to the superposition
of two linear polarizations.

The previous discussion clearly reveals the main mathematical diffienl-
ties encountered in the analysis of nonlinear diffusion of plane electromag-
netic waves. These difficulties are related to the nonlinear nature of partial
differential Egs. (1.13)-(1.14) and their mathematical coupling. There is,
however, an additional difficulty of proper deseription of nonlinear and hys-
teretic magnetic properties of media. This is a challenging {and not com-
pletely solved) problemn of appropriate specification of constitutive relations
B.(H. H,)and B,(H,. H,). This difficulty is especially pronounced in the
case of hysteretic media.

In the view of the difficulties just described. we shall first consider the
simplest case when the plane wave is linearly polarized. In this case, the
magnetic field is coustrained to vary in time along one direction, which is
designated as the direction of y-axis. Thus, we have:

H(z.t) =a,H(z.t). (1.15)

It will also be assumed that the magnetic Hux density has the same direction
as H:
B =a,B(H). (1.10)
where B(H) is a scalar nonlinear (and hysteretic) relation.
By using expressions (1.15) and (1.16), the nonlinear veetor diffusion
Eq. (1.8} cau be reduced to the following scalar nonlinear diffusion equation:
0*H OB(H)

922 7 ot (1.17)

Analytical techniques for the solution of the above scalar equations will
be the main topic of our discussion in this chapter. In the next chapter,
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our focus will be on the analytical solution of nonlinear vector diffusion
Eq. (1.8) or coupled Egs. (1.13) (1.14). This will require the development
of different mathematical machinery than that used in this chapter.

1.2 NONLINEAR DIFFUSION IN THE CASE OF
ABRUPT (SHARP) MAGNETIC
TRANSITIONS

It has already been pointed out that the analytical solution of nonlin-
ear diffusion Eq. (1.17) encounters formidable mathematical difficulties. In
the past, these difficulties were fully circumvented only for the case of very
simple magnetic nonlinearities describing abrupt (sharp) magnetic transi-
tions. Such a transition for nonhysteretic media is shown in Fig. 1.2. It can
be mathematically represented by the following expression:

B(H) = B,, sign{H), (1.18)
where, as usual, sign(H) is defined by:

. I, ifH>0,
sign(H) = {—i. if H < 0. (1.19)

The development of the analytical technique for the solution of non-
linear diffusion problems with constitutive relation (1.18) can be traced
back to the landmark paper of W. Wolman and H. Kaden [21] published
more than sixty years ago. This techuique was afterwards independently
rediscovered and further extended by V. Arkad’ev [2] in Russia and by
W. MacLean [10], H.M. McCounell [17], and P. Agarwal {1] in the United
States. This technique is traditionally derived by using integral forms of
Maxwell’s equations (such as Ampére's Law and Faraday’s Law of electro-
magnetic induction) rather than by directly solving the nonlinear diffusion
Eq. (1.17). Below, we deviate from this tradition and give a simple deriva-
tion of this technique based upon the solution of Eq. (1.17). To this end, we
shall first modify this equation by introducing shifted magnetic flux density
of b(H) defined as follows:

b(H) = B(H) + By, = 2B,,,s(H). (1.20)
where s(H) is the unit step function

1, if H >0,
sUH) = {0, if H<0. (121)
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B

v
I

I

m

Fig. 1.2

In terms of b(H), the nonlinear diffusion Eq. (1.17) takes the forin:

O*H  Ob(H)
el (1.22)

We consider the solution of this equation for the following initial and bound-
ary conditions:

H(z.0) = 0. (1.23)
B(z.0)= -B,,  or  b(z.0) =0, (1.24)
H(0.t) = Hy(t) > 0. (1.25)

It is clear that magnetic Hux density B and shifted flux density b have
spatial distribntions as shown in Figs. 1.3 a and 1.3 b, respectively. Indeed,
as the magnetic field Hy(1) s increased at the boundary z = 0, this increase

b

2B

t
U

Z(0)

Fig. 1.3
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extends inside the media causing B and b to switch from —B,, to B,, and
from 0 to 2B,,, respectively. The distributions of B(z) and b(z) will be fully
described if we find the expression for the front z(t) in terms of Hy(t), B,
and o. Indeed, if zg(t) is known, then

B, if z < z(%),

Bz, 1) :{—Bm, £ 2 o). (1.26)
and
[ 2B, if z < z(t),
blzt) = {0, if 2> zo(t). (1.27)

To find z(t), we shall represent the nonlinear diffusion Eq. {1.22) as two
coupled first-order partial differential equations:

Oow

3, = —ob(H), (1.28)
o __ov .
dz Ot ‘

It is easy to see that partial differential Eqgs. (1.28) and (1.29) are formally
equivalent to Eq. (1.22). Indeed, by formally differentiating Eq. (1.28)
with respect to t and Eq. (1.29) with respect to z and then subtracting the
results, we arrive at Eq. (1.22). However, Eqgs. (1.28) and (1.29) have some
mathematical advantages over Eq. (1.22). First, Eq. (1.22) contains the
time derivative of the discontinuous function b(H) and. for this reason, this
equation is not rigorously defined (in a classical sense) for abrupt magnetic
transitions. Equations (1.28)} and (1.29) do not contain the derivative of
discontinuous functions and retain mathermatical sense for abrupt magnetic
transitions. Actually, a solution to nonlinear diffusion Eq. (1.22) can be
defined as a solution to coupled Egs. (1.28) and (1.29). Second and more
important, coupled Eqs. (1.28) and (1.29) are easy to solve. Indeed, from
the definition of 6(H). we have:

T S0, if 2 > zo(d). (1.30)

Jw {—QUBm, if z < zp(t).
Because function w(z,t) is defined by Egs. (1.28) and (1.29) up to a con-
stant, from expression (1.30) we find that w(z,t) is linear with respect to
z when 0 < z < zo(t) and it can be assumed to be equal to zero when
z > zo(t):

w(0,8)[1 — %(t)}, if z < zp(t),

0, if z > zp(t). (1.31)

(e = {
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It is clear from (1.31) that the slope of w(z, t) is equal to 7{(‘(’:) for 0 <

z < z(t). According to Eq. (1.30), the same slope is equal to —20B,,.
Thus:

w(0,t)
L =20R8,,, 1.32
zp(t) ( )
and
w(0,t) = 20B,,20(1). (1.33)

By using expression (1.32) in formula (1.31), we hind:

o Jw(Ot) = 20DB,,2, if 2 < z(t), .
w(z.t) = {0 if 2 > (). (1.34)
From the last relation, we obtain:
o ~ el (0, - -
Oulst) _ [ 00t < i, )
ot 0, if = > zy(t).

By substituting expression {1.35) into Fq. (1.29), we arrive at:
| {

(). (1.36)

OH { dw(0.f) e
0. zo(l)-

t) = ot
PE o (50 if

! "v’ ‘ /\\

[

This means that at every instant of time f{(z. 1) has a constant negative
slope with respect to = for 0 < = < zo(f) and the zero slope for z > zy(t).
The latter is consistent with the fact that H(z. 1) = 0 for 2 > zo(f). Thus:

o Hy(H{1 - T.(_)] if = <z (h). .
iz 1) = {(). [ if = > zy(t). (1.37)

By comparing expressions (1.36) and (1.37), we find:

}{()(f) (1'!”((),!)

3()(?) ({f ( ;8)
According to formula (1.33), we have:
dw(0, ) dzo(t)
- =208, ——. 3t
di 75 (1-39)
By substituting the last relation into (1.38), we obtain:
dz
Hot) = 20 Byzo(n) 22000, (1.40)

dt
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or
dz3(t
Ho(t) = aBst—t()A (1.41)

By integrating Eq. (1.41) and taking into account that z{0) = 0, we finally

arrive at:
¢ 1/2
20(t) = <M> . (1.42)

oB,,

Expression (1.42) together with (1.37) fully describe the solution of non-
linear diffusion Eq. (1.17) in the case of abrupt magnetic transitions. By
using this solution as well as the expressions

oH

I=-% Jj=0oF, (1.43)

we can derive the following formulas for the induced (eddy) current density
7 and electric field E:

Ho(O) i
{z,t) = zo(t) =
iz.8) {(), if z

IV IA
&
P
=

N aNa
—
—
&
S
=

Hu(t) . if 2 S Z()(t),
0, if 2z Z Z()(t).

At first, it may seem that formula (1.45) is in contradiction with the
continuity condition for tangential components of electric fields. However,
this continuity is valid only for stationary boundaries. In the case of moving
boundaries, the above continuity condition is replaced by (see J.A. Kong
(8)):

Fx (ET-E7)=(7-v)(B* —B").
where: P is a uuit normal to a moving boundary, v is its local velocity, while
Et,E7,B", and B~ are the vector values of clectric field and magnetic
flux density on two sides of the moving boundary, respectively.

For our problem, the last boundary condition yields

dzy(t)

E(z(t)) = 2B, T

N

which, according to formula (1.40), leads to

Ho(t)

E(z(t)) = cz0(l)
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The last formula is consistent with Eq. (1.45).

Spatial distributions of H(z,t) and j(z,t) are shown in Figs. 1.4 a and
1.4 b, respectively. It is clear that positive rectangular fronts of B, j, E and
linear front of H move inside the medium as long as Hy(t) remains positive.
As soon as Hy(t) reaches zero value and then becomes negative, the above
motion is terminated and rectangular B- and j-fronts and linear H-fronts of
opposite polarity are formed and continuously move inside the conducting
medium. By using literally the same line of reasoning as before, it can be
shown that the same expression (1.42) is valid for a new zero front, z{t),
with only one correction: a minus sign appears in front of the integral.

Now, we can consider the important case when the magnetic field at
the boundary is sinusoidal:

Hy(t) = Hp, sinwt. (1.46)

It is clear that, during the positive half-cycle, the positive rectangular fronts
of B propagate inside the medium (see Fig. 1.5 a). This inward motion of
z(T(t) is terminated at t = % During the negative half-cycle, the negative
rectangular front of B is formed and it moves inside the medium (see Fig. 1.5
bh). At t =T, this inward motion of z; () completely wipes out the positive
rectangular wave of B. During subsequent cycles. the situation repeats
itself.

Next, we want to find the relation between electric and magnetic fields
at the boundary z = 0. We consider only the positive half-cycle; for the
negative half-cycle this relation remains the same. By combining formulas
(1.45) and (1.42), we obtain:

12
_ _ Ho(t) _ B
Eo(t) = E(0.4) = azo(t) Ho(®) (o](: H()(T)dT) . (1.47)
HA j‘l
H () i)
Vd >
z(t) z(t)
a) b)

Fig. 1.4
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AB AB
B, Bnt---
Z . 20 7D,
B¢ ——— -B,
(0<t<]) (Z<t<T)
Fig. 1.5a Fig. 1.5b

By substituting (1.46) into (1.47), performing integration, and introducing
the notation
_ B (1.48)
/Lrn - H k] -

sinwt
= Hp / 1.49
\/1 — coswt ( )

Thus, we can see that the electric field, E()( t). at the boundary is not purely
sinusoidal and contains higher-order harmonics. This generation of higher-
order harmouics can be attributed to the nonlinear magnetic properties
of the conducting media. It is interesting to point out that this is not
always the case, and it will be shown in the next chapter that for circular
polarization of electromagnetic fields there is no generation of higher-order
harmonics despite the nonlinearity of media.

we arrive at

By using expression (1.49), we can find the first harmonic E(()”(t) of
the electric field at the boundary

E(()I) = Homy [ LHm {acoswt + bsinwt), (1.50)

where coeflicients a and b are given by the following integrals:

T
4 2 sinwt t 2 [T si 5
a2 sinwt cosw g 2 sin cos ¢ dc, (1.51)
T Jy V1-—coswt T Jy vV1—rcos(
4 (7  sinfwt 2 T sin?¢

b= dc, (1.52)

T o \/1—cosw 7 Jo V1-—cos(

By performing integration in (1.51) and (1.52), we arrive at

42 2
ao vz, 82 (1.53)
3 3w
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Expression (1.50) can also be written in the following form:

EV(#) = Va2 1 b2H,, 2R sin(wt + ). (1.54)
[¢2

According to (1.53), we find

J—

a? + b2 = 1.34, tan g = ; = 0.5, (1.55)
)

which leads to the expression

EMy = (1.34), ) 22 |, sin(wt + 26°). (1.56)
a

The last formula can be rewritten in the phasor form

k= (1 ;M‘“’ '*> Hy. (1.57)
a

where the svymbol = 7 7 s used for the notation of phasors. while j = /1.
The last expression can he represented in terms of surface impedance

Iu = nHy. (1.58)

where

[__.__ - . — e
. W,“m A
no= 131,22 R (1.59)
T

Tt is instructive to recall that i the case of linear condueting media the
surface impedance is given by

0 - \ﬁ_/’;(..z (1.60)
o

By using expressions (1.42), (1.46), and (1.48). the penetration depth zq (g)
of an clectromagnetic ficld in magnetically nonlinear conducting media can
be found:

B WD) o)

[ 2 W
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The last expression has the same “appearance” as the classical formula for
the penetration depth, §, in linear conducting media:

d= ——2— (1.62)
wo

However, in spite of formal similarities, there are two essential differences
between formulas (1.61} and (1.62). First, formula (1.61) gives a complete
penetration depth: there is no time-varying electromagnetic field beyond
20 ( ) that is, for z > zqg ( ) On the other hand, formula {1.62) gives a
distance at which the electromagnetic field is attenuated only to e~ ! times
its value at the boundary. Second, in formula (1.62) p is constant and
the penetration depth is field independent, while in expression (1.61) up,
is inversely proportional to H,, (see (1.48)), which makes the penetration
depth field dependent. The last remark is also valid as far as comparison
of expressions (1.59) and (1.60) for surface impedances is concerned. In
the case of linear conducting media, the surface impedance (1.60) is field
independent, while for inagnetically nonlinear conducting media the surface
impedance (1.59) is a function of Hy,.

It is also important to stress that the surface impedance for nonlinear
conducting media is defined as the ratio of first harmonic phasors of electric
and magnetic fields. For this reason, the value of the surface impedance
may depend on the boundary conditions for H. To illustrate this fact as
well as to appreciate the range of possible variations of 77, consider the case
when the magnetic field at the boundary varies with time as follows:

How (sinwt — %sin 2wt), HO0<t

Hy(t) =< 4 Ists
”_g(smwt + 3 sm2wt) if % <t<T.

T
2 (1.63)

Here, 1.3 is the maximum value of sinwt + % sin 2wt; consequently, H,,, has
the meaning of the peak value of Hy(t).

This boundary condition is chosen because it leads to the sinusoidal
electric field Ey(t) at the boundary. To demonstrate this. we substitute
(1.63) into (1.42) and after integration we obtain:

E) =/ %Bn: {1 Fcoswt), (1.64)

where the superscripts “+7 and “ 7 correspond to positive and negative
half-cycles, respectively.

Now, by using expressions (1.63) and (1.64) in formula (1.45) and
taking into account the definition (1.48) of u,,, we end up with:

Whm

Ey(t)=1.24,/—" H,, sinwt. (1.65)
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Next, in order to find the surface impedance 7 that corresponds to the
boundary condition (1.63), we determine the first harmonice H((, () of

f[()(t)I

H
H(()l)(t) = ﬁ(a(:()swt + bsinwt), (1.66)
where coeflicients a and b are given by the following integrals:

2 [T Holt

= = / J.Bi(—2 coswtdt, (1.67)
1 J U m
2 (T Holt

b= T ./() 1.3 }(])7(”—)— sinwidt. (1.68)

By substituting expression (1.63) into formulas (1.67) and (1.68) and by
performing integration, we obtain:

4
P - (1.69)

By using these values of a and b, we transform expression (1.66) as follows:

i, .
11((,1)(1) S sin{wt - ). (1.70)
where - S -
1
tg = =020 o= 20 (1.71)
I

Now. by transforming expressions (1.65) and (1.70) into phasor forms, we
compute the surface nnpedance:

E Wity s
= e =T [ (1.72)
I8 7

By cmploying expression (1.64). we can find the penetration depth. = (é)

in the case of sinusoidal variation of the electrie field on the boundary:

w(1/2) = \/157 (1.73)

Wy,

Comparison of expressions (1.59) and (1.61) with expressions (1.72) and
(1.73) is suggestive of to what extent the surface impedance and the pen-
etration depth may depend on a particular time variation of the magnetic
ficld on the boundary.
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The results of the previous analysis can be extended to the practically
important case of magnetically nonlinear conducting laminations (plates).
Such laminations are used in many applications. For instance, steel lamina-
tions are stacked together to form magnetic cores of transformers, electric
machines, and various actuators. Laminated permalloy heads as well as
thin film heads are widely used in magnetic recording. In all these de-
signs, magnetic laminations are employed for flux-guiding purposes. For
this reason, it is desirable that cross-sections of magnetic laminations are
utilized effectively. To check this, distributions of magnetic flux density
over lamination cross-sections can be computed by using the previously
derived expressions. Indeed, during an initial stage of positive half-cycle,
magnetic fields penetrate from both sides of the laminations in the same
way as in the case of semi-infinite half-space (see Fig. 1.6 a). The motion
of the positive front z§ (t) can be determined by using formula (1.42) if the
magnetic field Hy(t) on the boundary of the lamination is known. This is
usually the case when the current through the coil, which creates the mag-
netic flux, is known. When the voltage applied to the coil is known, then
the boundary value Ey(t) of the electric field can be determined. By using
Ey(t), the motion of the zero front can be found according to the formula:

dzt (¢
Ey(t) = 23,,,2—;). (1.74)

fB

.
|
|
|

(ty<t<])
b)

B
T
\
!
|

Fig. 1.6
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which leads to
1 1
B 213171 Jo
We note that formmla (1.74) is easily derived from expressions (1.36), (1.39),
and (1.43).
At the instant of time ta when

z () Ey(r)dr. (1.75)

A

5 (1.76)

3(; (ta) =

{where A is the lamination thickness). the two positive fronts are merged
together (see Fig. 1.6 b) and the distribution of magnetic Hux density over
o lamination cross-section is uniform. It remains this way during the rest of
the positive half-cycle. With the conunencement of the negative half-cycle,
negative fronts of magnetic flux density are formed and they penctrate
from both sides of the lamination (see Fig. 1.6 ¢). At the instant of time
T4 1A these negative fronts are merged together (see Fig. 1.6 d) and the
distribution of magnetic flux density remains aniform during the rest of the
negative half-cycele. At snbsequent eveles. the situation repeats itself. It
is clear from the above discussion that the Lunination cross-section will be
cectively ntilized if 5 is snbstantially smadler than 7/2. The validity of
this fact can be evaluated for every particnlar case by using formnla (1.76)
Aong with expression (142} or (1.75).

The ;l.ll;llyli(‘;.\l technique just presented can be generalized to the case

when abrupt magnetic transitions are described by a rectangular hysteres
loop as shown in Fig., 1.7, Agaiu. we begin with the case when the initial
value of the magnetice field throughont conducting media is equal to zero,
while the initial value of magnetic flux density is cqual to 13,0 Suppose
the magnetic field Hy(t) at the boundary is increased.  Until this field
reaches the coercive value, I1,., nothing happens. As soon as Hy (1) exceeds
the coercive value H., the rectangular front of magnetic Hux density is
formed and it moves inside the medinm. To compute the zero front zy(f),
we introduce the shifted magnetic field iz, f):

hizt) = H(z.t) - H., (1.77)
and rewrite the nonlinear diffusion Eq. (1.22) as follows:

d*h db(h)
oh_ o 1.78
o= " ot (1.7%)

Now, by literally repeating the same line of reasoning as before, we can
derive the following expression for zo{f):
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B

4

B

m

m
Fig. 1.7
" 1/2
.]l ho(T)dT
) =" — | - (1.79)
Here ¢ is the time when
[[1)(f(-) — }{[-\ (18())

while g (#) is the boundary value of the magnetic feld, h(0.1). As far as the
distributions of h(z, ). j(z. £). and F{z ) are concerned, the same formulas
(1.37). (1.44), and (1.45) are valid, however, Hy(t) in these formulas must
be replaced by hy(t).

The propagation of the positive rectangular front of magnetic lux den-
sity will continne until the magnetic field at the boundary is reduced hack
to its coercive valne H,. (or Ag(t) is reduced to zero). As the magnetic field
at the boundary is reduced from H,. to — H, nothing happens and induced
eddy currents and electrie ficlds are equal to zero. As soon as the magnetic
field on the boundary is reduced below — H,., the negative front of magnetic
fux density is formed and it moves inside the medium. The motion of this
negative front. can be determined by using the same formula (1.79) with the
following corrections: (a) the minus sign appears in front of the integral in
(1.79), (b) ho(7) is defined as Ho(t) + H,, and {¢) the time ¢, is determined
from the equation Hy(t.) = —H.,..

Next, consider the example when the magnetic field at the bowndary
is sinusoidal and given by expression (1.46). We want to find the surface
impedance 1. To this end, we shall first find the electric field Ey(¢) at the
boundary. It is clear from the previous discussion that

Eot) =0, if0o<t<t,., (1.81)

t l i H. (1.82)
¢ T — Ares —_— |, &
o S H,”

where
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1/2
B, . T
EO(t) = hO(t) Tt ., ., s if te <t< - — te, (183)
qu. ho(r)dr 2
and T T
Eo(t) = 0, if5—~tc§t§ 3 (1.84)

Similar expressions can be written for the negative half-cycle.
By substituting formula (1.46) into (1.83), by performing integration
and taking into account the definition of h(t), i, and t., we derive

Jw sinwt — sinwt
E()(t) =H, Fm < > . (185)
o \Jcoswt, — coswt — (wt — wie) sinwt,

The first harmonic of Fq(t) can be written in the form (1.50), where coef-
ficients a and b are determined by the following integrals:

= . W [
" 2 / (sin ¢ — sin ) cos dC ‘ (1.86)
T J¢ \/C()s (o —cosC —{C ~¢)sind,.
(o - o r
b= 2 (sin¢ — sin ) sin (d¢ ‘ (1.87)
7 /e VeosGe —cosC — (¢~ ¢)sin (.
and ”
(. = arcsin (Hn)) . {1.88)

In terms of a and b, the surface impedance 7 is given by

7= va*+b? ﬂéﬂe”’. (1.89)

where "
tan g = 5 (1.90)

By using formulas {1.86) and (1.87), the values of Va2 + b2, tanp, and ¢
have been computed as functions of (.. The results of the computations
are shown in Figs. 1.8 a, 1.8 b, and 1.8 ¢. By using these figures, the
dependence of surface impedance 7 on the coercivity H. can be evaluated.
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1.3 MODEL PROBLEM FOR GRADUAL
MAGNETIC TRANSITIONS

In Section 1.2, nonlinear diffusion of electromagnetic fields in conduct-
ing media with abrupt magnetic transitions was discussed and simple an-
alytical solutions were derived. However, these solutions do not allow one
to understand how actual gradual magnetic transitions (or actual shapes of
hysteresis loops) may affect the diffusion process. For this reason, the an-
alytical study of nonlinear diffusion of electromagnetic fields in conducting
media with gradual (and more or less realistic) magnetic transitions is an
important problem. Next, an attempt will be made to solve this problem
for the case of hysteresis loops that are exemplified by Fig. 1.9. These hys-
teresis loops are characterized by the property that their ascending (and
descending) branches can be subdivided into two distinet parts: part I of
slow increase of magnetic flux density B from — B, to — B, and part IT of
steep increase of B from — B, to By,. Such hysteresis loops are typical for
most ferromagnetic materials in the case of sufficiently large values of H,,
and they are encountered in many applications.

To attempt the analytical solution of nonlinear diffusion Eq. (1.17), we
adopt a “Hat-power™ approximation of a hysteresis loop shown in Fig. 1.9.
This approximation is illustrated in Fig. 1.10 and it is analytically described
by the following equations:

B=-B,. it -H, <H<H, (1.91)
B+ B, = [k(H - H,.)]Tl', if H. < H < H,, (1.92)
in the case of the ascending brauch, and
B=18B,, if -H <H<H,, (1.93)
By — B=[-k(H+H)|*, if -H, <H<-H, (1.94)

in the case of the descending branch. Inn other words, part 1 of the ascending

Fig. 1.9
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branch is approximated by a “flat” straight line parallel to the H-axis, while
part I is approximated by the “power” expression (1.92).

In the above formulas, coefficient k coordinates the dimensions of both
sides of expressions (1.92) and (1.94), while the exponent n is a measure
of the sharpness of magnetic transition. It is important to note that in
applications the exponent n is usually larger than 7 (n > 7). This fact
is essential and it will be used in our subsequent discussions in order to
simplify relevant analytical expressions and to achieve some universality
in the final form of the solution to the nonlinear diffusion equation. By
introducing the “shifted” magnetic field h and magnetic fux density b

h=H-H,_, b=B+ B, {1.95)
expression (1.92) can be rewritten as follows:
b’l'l
h=—. 1.96
. (1.96)

Next, we shall consider the following “model” problem. It will be assumed
that at time ¢ = 0 the magnetic flux density B is equal to —B,,, throughout
the conducting half-space:

B(z,0) = — By,. (1.97)

It will also be assumed that the magnetic flux density at the boundary of
the conducting half-space is monotonically increased with time as follows:

B(0,t) = =B +ct’,  (p>0) (1.98)

By using the nonlinear diffusion Eq. (1.17) as well as expressions (1.95)
and (1.96), the stated model problem can be reduced to the following ini-
tial boundary value problem: find the solution of the nonlinear diffusion
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equation
9% ob
= ko— 1.
822~ "ot (1.99)
subject to the following initial and boundary conditions:
b{(z,0) =0, {(1.100)
b(0,t) = ctP. (1.101)

It is worthwhile to mention that these boundary conditions are chosen for
the following two reasons. First, it will be demonstrated that it is possible
to find simple analytical solutions for these boundary conditions. Second,
these boundary conditions describe a broad class of monotonically increas-
ing functions as p varies from 0 to oo (see Fig. 1.11). It will be shown in the
sequel that for all these monotonically increasing boundary conditions the
distribution (profile) of the magnetic flux density as a function of z remains
practically the same. This observation will suggest using the same profile of
magnetic flux density for arbitrary monotonically increasing (between — By,
and B,,) boundary conditions. This, in turn, will lead to very general and
simple analytical solutions, which can then be extended to periodic in time
boundary conditions.

Next, we shall show that the initial boundary value problem (1.99)
(1.101) has an exact aud very simple analytical solution in the case when
p = ”LI. This solution describes a wave of magnetic flux density that
moves inside the conducting medium with constant velocity v. To find this
solution, we look for b(z, t) in the form:

b(z,t) = p(z — vt). (1.102)

By introducing the variable

C=2z—ut, (1.103)

b(0,t) 4

p<l

Fig. 1.11
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we have:
b(z,t) = ¢({). (1.104)

Now, we reduce the nonlinear partial differential Eq. (1.99) to the ordinary
differential equation with respect to ¢(¢). To this end, we note that

82b" dZ(Pn
0b dy

By substituting expressions (1.105) and (1.106) into nonlinear diffusion Eq.
(1.99), we arrive at:

dQLpn d(p
; kov— =0. 1.107
ac? + kov aC ( )
By integrating Eq. (1.107), we obtain:
d T
d@c + kovp = Cy, (1.108)

where C| is an integration constant. From formula (1.102) and initial con-
dition (1.100), for t = 0 we have:

b(z,0) = ©(¢) =0, (¢ >0), (1.109)
de™ _ dy"(z) _
> i 0. (1.110)

Thus, ¢ and %% must be equal to zero simultaneously. This is only possible
if

C: =0, (1.111)
which leads to
d—(pz+kav =0 (1.112)
i @ =0. .
The last equation can be rewritten as follows:
d
mp"_ld—? = —kovyp. (1.113)

By separating the variables, we obtain:

n -2
_ =24, — dC. 1
b dp=dC (1.114)
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By integrating the last expression, we arrive at
7 (’977 -1
n—1 kov

=+ Cy, (1.115)

where (' is an integration constant.
From formulas (1.100), (1.101), (1.103), and (1.104) we find that at
z=0and t = 0 we have:

¢ =0, 2(0) = 0. (1.116)

According to cqualitics (1.116), we conclnde that the integration constant
(% in Eq. (1.115) is equal to zero:

Cy=0. (1.117)

Consequently,

n—1
o' = D kou(-0), (1.118)
n
which leads to
" ] ',T'l_\ e
b(z.1) = < /\‘(71'> (ot — ). (1.119)
n

b(ot) = it ('1 -l) o (1.120)

— 1 ) I
¢ = (”»-“‘]\'U'{'2> . (112])
n

It is apparent from the solution (1.120) that this solution corresponds to

where

the following bonndary condition:
bo(t) = b(0.1) = ¢t 7. (1.122)

Now, we shall use the physical reasoning to demonstrate that formula
(1.120) gives the right expression for b(z,¢) only for = < ot, whercas for
= z vt the magnetic flux density should be equal to zero. Indeed, sinee the
magnetic flux density by(¢) on the boundary of conducting media is non-
negative and bz, 1) is assumed to be equal to zero at + = 0 throughout the
media, the magnetic flux density should remain nonnegative at all instants
of time everywhere within the media. In addition, since the clectromagnetic



1.3 Model Problem for Gradual Magnetic Transitions 25

field is attenuated in the conducting media, b(z,t) should be a monotoni-
cally decreasing function of 2 at any ¢. This means that if b(z,t) reaches
zero at some point zg it should remain equal to zero for z > zy. From the
last fact and formula (1.120), we conclude that the correct expression for
the magnetic flux density is

L 2\ T .
bz, t) = {(c]t"“ (1-3)"", ?io -E Zté 2 (1.123)
, if z > ot

It is also worthwhile to note that the second line on the right-hand side of
expression (1.123) guarantees the zero initial condition for b(z,t). Without
it, the solution given by expression (1.120) or (1.119) does not satisfy the
zero initial condition. This is another (mathematical) reason behind the
formula (1.123).

Solution (1.123) is illustrated in Fig. 1.12 where profiles of magnetic
flux density b(z,t) are shown for different instants of time. It is clear from
this figure as well as from expression (1.123) that there exists a zero front
zo(t) of clectromagnetic field that moves with constant velocity v:

zo(t) = ot (1.124)
The value of this velocity depends on electric and magnetic properties of

the conducting media as well as on the value of coefficient ¢ in the boundary
condition (1.122). Indeed, from expression (1.121) we derive

v= W(T (1.125)
b
A (t<t)
t,
t
* * >Z
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The existence of zero fronts of electromagnetic fields is typical for wave
propagation problems, however, it is unusual for diffusion problems. This
is because displacement currents are neglected in derivations of diffusion
equations. For this reason, we should expect the infinite velocity of prop-
agation of zero front. To illustrate and highlight the last point, consider
a stepwise change of magnetic flux density at the boundary of conducting
half-space with linear magnetic and electric properties. It can be shown (or
found in the literature) that in this case the diffusion of the magnetic field
in the conducting media is described by the formula:
2By [

B(z,t) = N e da, (1.126)

where

VHOZ
u= N (1.127)
while By is a “step” value of magnetic flux density at the boundary.

It is apparent from formulas (1.126) and (1.127) that the magnetic flux
density differs from zero at any (however small) instant of time t and at
any (however remote) point 2. This suggests that the zero front velocity is
infinite. This fact is illustrated in Fig. 1.13 where distributions {profiles) of
B(z,t) are shown at various instauts of time.

Now, the question can be posed why in the case of magnetically non-
linear media the zero front velocity is finite. The answer is that the finite
velocity of the zero front appears as a result of idealization introduced by
the “power” approximation (1.92) or (1.96). This approximation leads to
the infinite growth of differential magnetic permeability pg = % as h ap-
proaches zero. This infinite growth of pg causes the complete attenuation of

ba
_ (t<tl<tll)

\/
N

Fig. 1.13
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the magnetic field at some finite distance zp(t). The actual profile of b(z, 1),
schematically shown in Fig. 1.14, has a “tail” I of small values of magnetic
flux density &(z,t}, which asymptotically approaches zero. This tail ap-
pears because in actual materials the above-mentioned steep growth of py
is moderated for small values of h. This tail is usually of no practical sig-
nificance and can be neglected. As a result, the zero front velocity attains
the physical meaning of the velocity of the inward progress of the bulk part
(part 11) of the magnetic flux density profile.

The exact analytical solution (1.123) of the initial boundary value prob-
lem (1.99) (1.101) has been found for a very specific boundary condition
(1.122). However, it is clear from the previous discussion that the phe-
nomenon of finite velocity of zero front is not related to a specific bound-
ary condition but rather it is caused by the idealization introduced by the
“power” approximation (1.92). Thus, it can be concluded that the finite
velocity of zero front exists for any boundary condition (1.101), that is, for
any p. The specific nature of the boundary condition (1.123) reveals itself
in the constant velocity of the zero front. For other boundary conditions of
the type (1.101), this velocity will vary with time.

1.4 SOLUTION OF THE MODEL PROBLEM
(SELF-SIMILAR SOLUTIONS)

In the previous section, we found the exact analytical solution (1.123)
of the nonlinear diffusion Eq. (1.99) by reducing this partial differential
equation to the ordinary differential Eq. (1.107). This reduction was per-
formed for the particular value of p, namely p = ﬁ It turns out that
the model problem (1.99)-(1.101) can be reduced to the boundary value
problem for a certain ordinary differential equation for any value of p in

(1.101). This can be achieved through dimensional analysis.
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The notation [a] will be used for the dimension of a physical quantity
a. From formulas (1.99) and (1.101), we find the following dimensional
relations:

b _ i
[2]2 = [K][ ][t]’ (1.128)
(b] = [e][e]”. (1.129)

By substituting relation (1.129) into formula (1.128), we obtain

[(3] n [f] np
(2]

R Gl ‘
= [k][o] e (1.130)

From the last expression we conclude that the ratio

[Pkl
T

(1.131)

is dimensionless. By using this observation, we introduce the following
dimensionless variable:

“~

- 1.132
\/kkln—l(.nAlrm ( )

£

where |
pln— 1)+ 1
m o= p(_n__)_ (1.133)
2
By nsing this variable £, we shall look for the solution of the initial boundary
value problem (1.99) (1.101) in the following form:

b(z. 1) = ct? f(E), (1.134)

where f(€) is some dimensionless function of variable €.

The main idea that we shall pursue here is to reduce the initial bound-
ary value problem (1.99) (1.101) to the boundary value problem for some
ordinary differential equation with respect to function f(£). To this end,
we shall first evaluate the derivatives involved in the partial differential
Eq. (1.99).

From (1.134) and (1.132), we derive

b _ df d¢
e, i ,'17_____ . ;(r
it pet? 7 f(E) + ct TR (1.135)
51 -
Q = pet? " F(E) — ot? i 4 (1.136)

ot ‘/kfl(j:l(‘nfltmﬂ-l ([_E
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which leads to

ab df

= =ctP! — 1

G = °C ( f (&) 7n£d£) (1.137)
Next, we obtain

b (z,t) = ctP™ 1 (€), (1.138)

which yields

PV ST [ dE .

5,2 = ¢ 124 Ve () . (1.139)

By invoking the formula (1.132), we find

d§ ‘ _ ko
dz) T e iplem

(‘)an ko.(.tpwl d‘)fn‘

which leads to
(1.140)

922 " gz
By substituting formulas (1.137) and (1.140) in the Eq. (1.99), we arrive at
the following differential equation for f(£)
dzfn f
—— +m&-— - pf =0 1.14}
e 3 i pf= ( )
By using expressions (1.132) and (1.134), we can easily conclude that b(z, 1)
given by (1.134) will satisfy the initial and boundary conditions (1.100) and
(1.101), respectively, if the funcrtion f(€) satishies the boundary conditions:

floy =1, (1.142)

floo) = 0. (1.143)

Thus, the initial boundary value problem (1.99) (1.101) is reduced to the
boundary value problem (1.141) (1.143) for the nonlinear ordinary differ-
ential Eq. (1.141). This nonlinear equation has somne interesting properties.
For instance, we shall prove that if f(€) is a solution to Eq. (1.141), then
the function

F(E) = A7 () (1.144)

is also a solution to the same equation for any constant A.
To establish that, we introduce a new variable:

C=X, £=-. (1.145)
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Then, we find

dF 2 (lf d( n-s df .
— = AT T — = AT — 1.14
dé (lC df dC ( 6)
Similarly,
2]“77 2 12 n 2 , 2 £n
AT A S I ar A (1.147)
dg? d¢? dé d¢?
By using the last two formulas, we derive
.ZFn dF
(1({52 + 7715— —pk =
e dA T w4 C df 2
AT S AT T s - AT = 1.148
T P AT g PIQ) (1.148)
. d‘an f
AT 2L &
' ( e m( i 11)

Thus, we proved that the function £(£) given by expression (1.144) is indeed
a solution to Eq. (1.141). This fact can be utilized as follows.  Suppose
we can find some solution f(€) to Eq. (1.141) that satisfies the boundary
condition (1.143). but does not satisfy the boundary condition (1.142):

f(0) =q#1 (1.149)
Then, by using
A==q 70, (1.150)
we observe that the function
- 1 . n_ 1
F(§) = ;1'/((1 =) (1.151)

will be the solution to Eqg. (1.141), that satisties the boundary condition
(1.143) and, in addition,

F(0) = %f(()) = 1. (1.152)

This demonstrates that we can first find a solution to Eq. (1.141) satisfying
the boundary condition (1.143), and then, by using the transformation
(1.144). we can always map this solution into the solution that satisfies the
boundary condition (1.142) as well. We shall illustrate this fact by deriving
the solution (1.123) from the previous section by using formulas (1.132),
(1.134), and Eq. (1.141). In the case of the solution (1.123), we have

1

p=—— and m =1, (1.153)
n—1
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which leads to the following form of Eq. (1.141):

a2 df 1,
R P = 0. (1.154)

The last equation can be rewritten as follows:

den df_
de +EE’_(1_§)

d 1
g,

i - (1.155)

We shall look for the solution of the above equation in the form:

&) = {gfl_é)a’ gg;fg b (1.156)

where a and « are some unknown constant and exponent, while the second
line of the right-hand side of formula (1.156) underlines the fact that a
solution in the form (1.134) has a finite velocity of zero front.

By substituting (1.156) into (1.155), we obtain

an(an — 1)a™(1 - €)*"7? —aa(l - £)*~! =

_aa(1-§)<'+n(i1(1fg)“. (1.157)

It can be easily observed that the right-hand side and the left-hand side of
expression (1.157) will be equal to zero if a and a are given by the following
formulas:

(1.158)

a= ("”)ﬁ. (1.159)

n

Thus, we have found a solution to Eq. (1.141), which satisfies the boundary
condition (1.143). However, this solution does not satisfy the boundary con-
dition (1.142). This can be corrected by using the transformation (1.144)

with A = a“7 . This leads to the following solution:

‘e (1-/2teymT, ifo<e<, /2, (
- 1.160
¢ 0, ife> /2 )

which satisfies both boundary conditions (1.142) and (1.143).



32 Chapter 1 Diffusion of Electromagnetic Fields

By substituting expression (1.160) into formula (1.134) and by taking
into account (1.132) and (1.153), we end up with

S P e
b(z.z,):{fft“‘ (1=3)"" 12”5~i't- (1.161)
0, if z > wt,

I n n o) 4
0= E;—Tkn:( . (1102)

The last two expressions are identical to the previously found solution
(1.123) and (1.125).

Next, we proceed to the analytical solution of the boundary value
problem (1.141) {1.142) with respect to the function f(£) for arbitrary
positive value of p (that is for arbitrary value of m). We shall look for this

where

solution in the form:

e {u,(l I+ ai(l =& +ax(l &% +..], ifosE<.
f(&) = e
0. if g > 1.
(1.163)
Here, as hefore, the second line of the right-hand side guarantees that a
sohition i the form (1.1314) has a finite velocity of zero front as it must.
The factor a(l — &) in (1.163) deseribes the asymptotic hehavior of
J{&) near its zero value. It can be conjectured on the physical gronnds that
this asyviptotic behavior should be the same as in the case of the exact
solution (1.160), that is, v = ”—_1_—-{. This is because the asymptotic hehavior
of b(z.t) near its zero value should not depend on a particular boundary
condition (a particular value of p). but rather it should be determined by the
properties of media. that is, by the rate of increase of differential magnetic
permeability gy as b(z.#) approached zero. This fact can be supported by
the following mathematical arguments. Suppose that

F(&) ~a(l =€), (1.164)

where

0 <<l {1.165)

and sign “~" means asymptotic equality, that is the equality up to terms
of higher order of smallness with respect to (1 - &),
We transform Eq. {1.141) to the form:

d?fr df af i
_Tf‘; +m(—1€ -m(l - OE -pf =0 (1.166)
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By substituting expression (1.164) into the last equation, we obtain

an(an ~ 1)a™(1 - €)*" "% —maa(l - €)1+

maa(l — £)* —pa(l — £)* ~ 0. (1.167)

According to formula (1.165), the second term in the last expression goes
to infinity as ¢ approaches 1. Thus, the asymptotic equality can only be
valid if the first two terms are cancelled out. This leads to

on~2=q-1, (1.168)
which yields
1
= 1.16
a=-"7 (1.169)
and
an(an — 1)a™ = mac. (1.170)

By substituting expression (1.169) into (1.170), we find:

mn = 1)) (1.171)

a=| -

By using the established formula (1.169), we can rewrite expression (1.163)
as follows:

f(&) =
{(L(l —f)”l—‘[l +a(l =& +ay(l-6%+..). ifo<e<, (1.172)
0, ife>1.
To find the unknown cocflicients ay,a,, ..., we shall Hrst evaluate the
derivatives of f for 0 <& < 1.
df —a 2on .
= = 1-& 7 [l +a(1 -8 +ay(1-86%+...
Tl 1( [ 1 3 2 J (1.173)
+a(l=&)7T[—a; —2ay(1 — &) — ...
d‘an na" 2w )
d€2 = m(1—£)” '{l*f“(L](l ‘6)4—(12(1-*5) +]
2
-2 a L' (1= )T T [ a1 =8 +az(l - 2+ 7
X [—a1—2a2(1—§);...}+ (1174>

n(n— 1)a™(1— &) Tl + ay(l - &) + ap(l — €2+ .. )" 2
x [~ar - 2ax(1 =€) — .. '+

na™(1 — &) Tl +a (1 —€) +ax(l —&%+ .. ot

x [2a9 + .. ..
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By substituting formulas (1.172), (1.173), and (1.174) into Eq. (1.141) writ-
ten in the form (1.166), we find:

ﬁ““ 5)H[1+(11(1*§)+a2(175)2+m]",
2,.n
2n ‘L-(l — &) M+a(1 -6 +ay(1-8%+.. ]!

n -
x {—ay —2a,(1 - &) — .. ]+

nn - 1Da"(1 =67 T[14a1(l =€) +ay(1—&%+.. "2
X [—a; — 2a2(1 - &) - ...]2+

na" (L= &7 Tl +ar(1-€) +ax(1 -6 +.. " (1.175)
[2(12 + .. .]--
—f—'f—tl-(l ST (- O+ a1 -7+ |+

i

ma(l — &7 T[--a; — 2a2(1 - &) — .. ]+
L 6)”"""[ ca (=€) bl €+ -

ma{l — )7 T [—a; — 2ax(1 —€) — .. ]—-

pa(l = &7 [+ a(l - &) +ap(l - &)+ .. ] =0.

By collecting in formula (1.175) all terms with (1 - {)7_";1‘ and by equating
them to zero, we find:

na' ma 0 (1.176)
n-1)% n-1 S
which yields:
e
@ = [T(—"—-—l} . (1.177)
n

This is the same expression as (1.171), which has been previously derived
from asymptotic analysis. Next, by collecting in formula (1.175) all terms
1 . .
with (1 — €)% 7 and by equating them to zero, we obtain:
ntan 2na” ma ma

=ay + -y - a; —rmaay + -
(n—1)? n—1 7 — 1 n—1

—pa=10. (1.178)

By dividing the last expression by a, we find:

na" ! 2n?a™" ma, m
o 1)2(11 + - — (L1 - + o1 P 0. (1.179)
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By using formula (1.177) in (1.179), we arrive at:

mn m p(n—1)—m
2 - - = - 1.180
a1<n_l+ am— — m) 1 (1.180)

which leads to the following final expression:

a = %. (1.181)

By collecting in formula (1.175) all terms with (1 — £)7-7 and by equating
them to zero, after somewhat lengthy and tedious calculations (which are
omitted here) we derive:

14+ 0.5a;[(2n — 1)(3n — 2) — 4n)

En D) . (1.182)

a9 = —a

The above calculations can be continued and higher-order terms in (1.172)
can be determined.

In the particular case of p = ﬁ from formulas (1.133), (1.177),
(1.181}, and (1.182) we find:

1

g\ 7T
a:(n ) , a; =0, a, =0, ..., (1.183)

i

which coincides with the previously derived analytical solution (1.155),
(1.158), and (1.159).

Solution (1.172) satisfies the boundary condition (1.143), however, it
does not satisfy the boundary condition {1.142). This can be corrected by
using transformation (1.144) with

n—1

A=la(l+ar+az+..)]7 . (1.184)

This leads to the following solution of the boundary value problem (1.141)
(1.143):

e (-2 +e (1A% 4. .
f& = { (1-A¢) ptlal 204 S A SL (1)
0, A6 > 1.

It is clear from (1.181) and (1.182) that a; and az depend on n and p.
However, it is possible to derive inequalities for these coeflicients expressed
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only in terins of n. To do this, we invoke the definition (1.133) of m and
use it in the expression (1.181):

pn-1)—-1 1
a; = = —
: 2[p(n - 1) 1+ n(n-1) 2n(n-—1) (1.186)
(e — 1)+ Un(n—1)
From the last formula we derive:
[ar] < L (1.187)
a e .
t= 2n(n — 1)
By using incquality (1.187) in formula (1.182), we obtain:
206 . .
) a at[(2n—1)(Bn —2) —4n
<y 4 L L i<
3(2n — 1) 6(2n —1) (1.188)
- 1 . 1 (61— 2)(n — 1) o
= On{n - 1)2n —-1)  3n*(n 1)? 6n - 3 '
which leads to the following inequality:
las) < 1 b ! (1.189)
2l = 6(n — 1)(2n — Dn  8nén - 1) o
It has been stressed in the previous section that the exponent n in the

"

“power”™ approximation {(1.96) is usually larger than 7. By using this fact,
froni inequalities (1.187) and (1.189) we derive:

lar] < 0,012, Jay| < 0.00075. (1.190)

The above estimates suggest the following simplification of formula (1.184)

and solution (1.185):
" mn — 1
A=ua ¢ _\/?,(”__) (1.191)
n

(1 /g N Pt
fe) - 3 v (1.192)
0. i€ > ﬁ;ﬁf{-

By substituting the last expression into formula (1.134) and taking into
account definition (1.132) of £, we end up with the following analytical
solution for the model problem:
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byt = { P = )T, 0 <z <arm, (1.193)
' if z > dt™,

k)

where

d= (—"—Cn;> (1.194)

kom(n — 1)

In the conclusion of this section, it is relevant to point out that solutions of
the mode] problem exhibit an interesting property. It is clear from formu-
las (1.132) and (1.134) that z-profiles of magnetic flux density at various
instants of time can be obtained from one another by dilation (or contrac-
tion) along b- and z-axes. In other words, those z-profiles remain simi-
lar to one another. This explains why solutions of the type (1.134) and
(1.132) are called self-similar solutions. The property of self-similarity is
closely related to the choice of “power” approximation (1.96) and boundary
conditions (1.101) that makes the problem susceptible to the dimensional
analysis. The intrinsic property of the self-similar solutions is that they are
dimensionally deficient. This property allowed us to reduce the nonlinear
partial differential Eq. (1.99) to the ordinary differential Eq. (1.141). Tt is
also clear that the self-similar solutions are invariant under certain scal-
ing transformations. For this reason, they are often called group-invariant
solutions.

The self-similar solutions discussed in this section have been derived
by using dimensioual analysis. For this reason, they are regarded as self-
simnilar solutions of the first kind. There are, however, self-similar solutions
that cannot be obtained by using dimensional analysis alone. These so-
lutions contain additional parameters, which are called anomalous dimen-
sions. These arc self-similar solutions of the second kind, and they are
physically significant because they describe intermediate asymptotics [3].
The interesting treatiment of these solutions by using the machinery of the
renormalization group is presented in the book [7].

The self-similar solutions for nonlinecar diffusion Eq. (1.99) were first
studied by Ya. Zeldovich and A. Kompaneyets [21] for the radiative heat
conduction problem and by G. Barenblatt [4] for problems of gas flow in
porous media. The discussion presented in this section closely parallels in
some respects the work of G. Bareublatt.

1.5 GENERALIZATION OF SELF-SIMILAR
SOLUTIONS

A brief examination of the obtained self-similar solutions (1.193) leads
to the following observation: Profiles of magnetic flux density b(z,t) as
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b (ty<ty<ty)
T t

ty

‘ — z
24t) 7 74t

Fig. 1.15

functions of z remain approximately the same (see Fig. 1.15 as well as
formula (1.193)) for wide-ranging variations of the boundary conditions
(1.101) (see Fig. 1.11). For typical values of n{n > 7), those profiles are
very close to rectangular ones. That insensitivity of self-similar solutions
profiles to a particular boundary condition suggests that actual profiles of
magnetic flux density will be close to rectangular ones for any monotonically
increasing boundary conditions b(t) = H{0.1). Thus. we arrive at the
following generalization of self-similar solutions (1.193).

The actual profiles of magnetic flux density b(z,¢) are approximated
by rectangular ones with the height equal to the instantancous boundary
value by (1):

N _ bolt). B0 < 2 < 2(1)
l bz f) = {(). if = ; :U(_f). (1.195)

This generalization is ustrated by Fig. 1.16.

by
b, t,)
byt,)t
by(t,)

t3

4

= -2
Zty) z(t,) Z(ty)

Fig. 1.16



1.5 Generalization of Self-Similar Solutions 39

We recall that rectangular profiles of magnetic flux density were en-
countered in Section 1.2 when we discussed nonlinear diffusion in media
with abrupt magnetic transitions. For those transitions, rectangular pro-
files of magnetic flux density can be attributed to abrupt magnetic satura-
tion. The self-similar solutions (1.193) found in the previous section show
that b-profiles are close to rectangular ones even if media are not saturated.
Rectangular-like shapes of b-profiles can be explained as follows. In the
process of diffusion, magnetic field h is attenuated as z is increased. The
attenuation of h results in the increase in magnetic permeability (defined as
w= % = kh%_l). This increase, at first, compensates for the decrease in h
and leads to more or less “flat” values of b. When values of z are sufficiently
close to zg, the very fast attenuation of A cannot be compensated for by
the increase in y and this results in the precipitous drop in magnetic flux
density b.

Next, we shall derive the expression for the zero front zy(t) of b(z,1)
in (1.195). To this end, we shall write the nonlinear diffusion Eq. (1.99) in
the form .

% = (T%t). (1.196)
and split this equation into two first-order partial differential equations
(compare with Section 1.2):

M pt). (1.197)
Jz
Oh ow
e — (
= (1.198)

By using the rectangular profile approximation (1.195), Eq. (1.97) can be
rewritten as follows:
Ow [ —abe(t), if 0 <z < z(t),
0z N 0, if = Z Z()(t).

From the last formula we couclude that at every instant of time function
w(z,t) has a constant negative slope with respect to z for 0 < z < ()
and the zero slope for z > z4(¢). Thus, we have:

w(z,t) = {w((),t) {1 - m} , 1§0
if =

k]

(1.199)

e
INA
I

o(t), (1.200)

IV IA
%

o{t).
w(0,8)

It is clear from relation (1.200) that the slope of w(z,t) is equal to — ()

for z < z¢(t). Ou the other hand, according to Eq. (1.199), the same slope

is equal to —abg(t). Consequently,
w(0,t)
29 (t)

= oby(t), (1.201)
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and
w(, 1) = aby(t)zo(t). (1.202)

By substituting the last expression into formula (1.200), we obtain

- _ Ob()(t)Z()(l) - ab()(t)z, if 0 S z < Z()(t) P
w(z, t) = {0‘ if 2 > 2(t). (1.203)

By using relation (1.203) in Eq. (1.198), we end up with

Oh _ [ o dlbo(t)ze(0) + o= Pyt 0 < 2 < z(t), (1.204)
Dz 0. if z > 20(t).

According to the second line of Eq. (1.204), we have:

0 g
ho(t) = (0,t) = — / T/V—L([:, (1.205)
Jo

According to the first line of Eq. (1.204) and formula (1.205), we find:

d s (1) dbol(t 0

at [h()( )w)(’)] — - 5 m (1.206)

ho(t) = azp(t)—
By using simple caleulus, we can transform the last formula as follows:

/'rn( ) = ff’n( )= (,)ﬁm( ) + 0:6(1) dh“(t)~

dt 2 dt

(1.207)

whicll, in turn, can be rewritten as follows:

’jf {b()( )~()(f\)}

’),()(f) = (1208)

dt 2

By integrating the last equation and by taking into account that z4(0) = 0,
we finally arrive at the following important formula:

o(t) = {MWT} - (1.209)

(Tl)()(l‘.)

The last formula can also be derived by using the first moment. relation for
nonlinear diffusion Eq. (1.196). Indeed, let ws mmltiply Eq. (1.196) by =
and integrate from 0 to zo(#):

zu() )Z} za(t) . !
/ JaA T P / ;Ql(u. (1.210)
0 0 ot

dz2
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By integrating twice by parts in the left-hand side of Eq. (1.210) and by
taking into account that

Oh
(.0 =0, hlzolt),t) =0, (1211)
we obtain
zo(t)  g2p
z dz = h(0,t) = ho(t). 1.212
| Gz = 500 = ho(t) (1212)
We remark here that the first equality in (1.211) comes from the fact that
the electric field is equal to zero at z = zg(¢) and % = % =—ok.

By using the formula of differentiation of integral dependent on pa-
rameter, we obtain

d :U(t) ‘ z(,(t) b dZ()(t)
— b(z,t)dz = z—d t)b t),t . 1.213
& [ et = [T - s0blan. 0 B50 21
Since
from formula (1.213), we derive
o (L) ob d 2o (L)
—dz = — 2b(z.t)dz. 1.215
/0 ot T @ ), (. t)dz (1.215)

By substituting expressions (1.212) and (1.215) into formula (1.210), we
arrive at the following first moment equation:

of (L)
/ ho(T)dT =0 / zb(z,t)dz. (1.216)
Jo Jo

By using the rectangular profile approximation (1.195) in formula (1.216),
we obtain

t
/ h()(T)dT = Ub()(t) (1217)
JO

2
which again leads to formula (1.209).

The “rectangular profile” approximation just discussed is very suitable
for the derivation of time periodic (steady state) solutions of nonlinear dif-
fusion problems. Consider periodic time variations of magnetic field Hy(t)
at the boundary of magnetically nonlinear conducting half-space. Suppose
that at time tg initial condition B(z,ty) = —B, is in effect. Furthermore,
suppose that magnetic field Ho(t) is increased from H. to H,, during the
time interval tg < ¢t < t,,, then it is decreased from H,, to H. during the
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time interval t,,, <t < g, and finally it is decreased from H. to —H, during
the time interval t, < t < % + tg, where T is a period of Hy(t). As the
maguetic field Hy(t) is increased from H, to H,,, the rectangular profile of
magnetic flux density is formed and it moves inside the conducting media.
The front z¢(t) of this profile can be found by using formula (1.209), which
can be rewritten in terms of Hy(t) and By(t) as follows (see expression
(1.95)):

2 [ [Ho(r) — HoJdr]? N
20(t) = o (Bo(t) ¥ Bo) . (1.218)

When the magnetic field at the boundary reaches the value of H,,, the
height of the rectangular profile becomes equal to B,,. As the magnetic
field at the boundary is decreased from Hy,, to H.., the inward progress of the
rectangular profile is continned and its height remains the same and equal
to I3,,. The latter is in accordance with the “flat-power” approximation of
hysteresis loops (see Fig. 1.9). The frout, zy(t). of the rectangular profile
can now he found by replacing £3(¢) in formmla (1.218) by B,,,. which leads
to

(MR

N
Hy(T) — H.dr
2(f) = Lultole) - He] : (1.219)
”]}m

As the magnetie field at the boundary is further reduced from H. to —H,.,
nothing happens. This means that the rectangular profile of magnetic flux
density remains still because induced eddy currents and eleetrie ficlds are
equal to zero.

As the maguoetic field at the boundary is reduced from -H,. to —H,,
and then increased from —H,, to H,. during the time interval ¢ + é <t <
to + T the rectangular profile of “negative™ polarity is formed and it moves
inside the conducting media. Its inward progress is fully analogous to the
progress of the rectangular profile of “positive”™ polarity described above
for the thme interval g <t <ty + % The front, z4(t). of the rectangular
profile of "negative” polarity can be determined by using the formula

¥

2 A[f“+“L (Ho(7) + H.\dT
zo(ty = | - ,7(1]3(]“) N . (1.220)

During subsequent cycles, the situation repeats itself.
In formulas (1.218) (1.220) for the front zo(t), magnetic field Hy(¢)
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and magnetic flux density Bg(t) at the boundary are related by the “flat-
power” approximation of the hysteresis loop. Thus, if Hy(t) is known, then,
by using formulas (1.91)-(1.94), we can find Bg(t), which, in turn, can be
used for calculations of z5(t).

The rectangular profile approximation can be further extended to make
it directly applicable to actual hysteresis loops of the type shown in Fig. 1.9.
In this extension, it is assumed that as the magnetic field at the boundary
is increased from H, to H,,, the rectangular profile of magnetic flux density
is formed and moves inside the media. This assumption is supported by the
derived self-similar solutions and their “rectangular profile” approximation.
As the magnetic field at the boundary is decreased from H,, to —H,, it is
assumed that the profile of magnetic flux density retains its rectangular
shape as well as its inward progress (see Fig. 1.17a). That assumption is
justified by the fact that the magnetic flux density varies slightly as the
magnetic field varies from H,, to —H,.. This prevents appreciable deforma-
tions of magnetic flux density profiles. Actually, this profile deformation
may even improve the resemblance of actual magnetic flux density profiles
to rectangular ones. Indecd, when the magnetic ficld at the boundary is
increased from H,. to H,,, the boundary values of magnetic flux density are
larger than those within the media and a “flat” part of magnetic flux den-
sity profile exhibits some small “downward” slope. As the magnetic field
at the boundary is decreased from H,, to —H., the magnetic Hux density
at the boundary is reduced faster than within the conducting media, and
this may result in the Hattening out of the above “downward” slope and in
better resemblance of actual profiles to rectangular ones.

Diffusion of rectangular profiles of magnetic flux density of opposite
polarity occurs in a similar way during the next half-period. This is shown
in Fig. 1.17 b.

The front, zy(t), of the rectangular profiles can be determined by using
formulas (1.218) and {1.220). However, in these formulas Ho(7) and By(r)
are now related through the actual shapes of hysteresis loops rather than
by their “flat-power” approximations. This is justified on the grounds that
the derivation of formulas (1.218) and (1.220) was based on general non-
linear diffusion Eq. (1.196) and the “rectangular” profile assumption. This
derivation did not use the “flat-power” approximation of hysteresis loops.
The last approximation was instrumental in the derivation of self-similar
solutions and, in this way, it paved the road for the notion of rectangular
profiles of magnetic flux density. Now, the “flat-power” approximation of
hysteresis loops can be passed into oblivion.

The described model of nonlinear diffusion implies that at every point
of conducting media the magnetic field and magnetic flux density are re-
lated by the same hysteresis loop as at the boundary. This is a natural
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consequence of rectangular profile approximation.  In veality, at ditferent
points of conducting media the maguetic tield and magnetic Hux density
are related by different hysteresis loops. However, because actual profiles
of magnetic Hiux density are elose to rectangular ones, these hysteresis loops
are almost. the same as the loop at the boundary. This is true everywhere
within the conducting media except for a very narrow region where the
precipitous drop in the magnetic flux density oceurs.

Next, we shall derive the impedance-type relation between electrie ficld
Eo(t) and magnetic tield Ho(f) at the bonmdary of conducting media. To
this end. we consider the half-cvele #y <08 <) + % and recall that

. ‘ 1 OH 1 oh

By using expression (1,204) in the last formmula, we find:

d
H()(’) =

SIGRIOIE (1.222)

By taking into account that

])()(fv) = B()(f) + ]3( }),()(f) = []()(f) - H(.. (]223)
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and by using formula (1.209), from the last expression we derive

1

d 9 L P
E()(t) = ;l_f. [;(B()(f) + B,_) / (H(](T) — PIC)(IT . (1224)
2 Jty
Now, we introduce the following functions:
Hy(t) - H,.
Fu(t) = 7”(11),7” : (1.225)
Bo(t) + B, A
Fu(t) = —‘3(—;———-—. (1.226)

It is assmned that magnetic field Ho(¢) at the boundary is known. Then,
by using the actual shape of the hysteresis loop, we can find By(#). Next,
by employing the last two formmlas, the functions fir(#) and fi(¢) can be
figured out. Thus, it will be assutned in the subsequent discussion that
functions fy; () and fi(t) are known. By using the definitions (1.225) and
(1.226) of these functions as well as the following definition of magnetic
perincability i,

[},,, e
pon(Hoi) = T (1.227)
the formula(1.224) can be transformed as follows:
—_ I
. ftn d T, ! B N
Eot) = Hy ) — = (2fn(t) [ fulr)dr| . (1.228)
o dt i,
Next, we shall scale the time ¢ by using the formula
2nt
v= 2 =t (1.229)
where 5
w
W= — 1.230
o= (1.230)

is the frequency of the fundamental (first) harmonic of Hy(t), which is
periodic (but may or mway not be sinusoidal).

By using the scaling defined by (1.229), formula (1.228) can be further
trausformed as follows:

Wit 1 ; 7 / ‘ :
Eﬂ(tl) = Hm,\/_/l_ ‘ {Zf}i(t/) fl’l (T )(IT/] , (12‘;1)

o dt
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where we use the following notations:

fe(t) = fz <H> . fut) = fu (g) . (1.232)

w

By introducing the function

d ; ' 7 ' ni
= W[Zf;;(t/) Fu(r"dr'z, (1.233)

Ji!

St

E()(t/) =H,, —(T_ f[«;(l‘./). (1234]

Formulas (1.234) and (1.233) constitute one of the most mportant results
of this chapter. These formulas represent a nonlinear impedance-type rela-
tion between tangential components of electric and magnetic fields at the
boundary of conducting media. This relation is nonlinear because g, is a
function of ff,,. Formulas (1.234) and (1.233) are very general in nature.
They are valid for arbitrary periodic (not only sinusoidal) boundary con-
dition Hy(t) with ouly one restriction: the total eyele 77 can be subdivided
into half-cycles of monotonic vartations of Hog(4). Another distinct feature
of the above inpedance-type relation is that it directly relates the tinme vari-
ations of Fy(#') to the time variations of Hy(#') as well as to actual shapes
of hysteresis loops. The latter is accomplished through function f,,»(t’).

To illustrate how formmlas (1.234) and (1.233) can be used in caleula-
tions, consider a particular case when

Ho(t) = H,, sinwt. (1.235)

In this case, we will be interested in the first harmonic of Fy(t), which can
he written as follows:

h’((]l)(f') = Hm\/;lﬁ(u,('ost/ + bsint'), (1.236)
o
where coeflicients a and b are given by the formulas
92 e,
= — / fr(t") cost'dt’, (1.237)
T Jo

8]

2 Ty,
b= — / fe()sint'dt’. (1.238)
T Ju
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To simplify the calculations, we assume that H, <« H,,, which is typical in
many applications. Because time ¢, is determined by the equation Hy(tg) =
H,, from the last inequality and formula (1.235) we conclude that t; ~ 0.
We shall also adopt the following power approximations:

1

Hy(t) — H.\ "

Bo(t) + B = (B + B) (TR ZHNT oy (1.239)
H, - H,

for the “steep” part of hysteresis loop traced when Hy(t) is increased from

H, to H,,, and

Ho(t) + H.

ny
e ) L (m>1),  (1.240)
m C

B, — Bg(t) = (B — Be) (1 -
for the “flat” part of hysteresis loop traced when H is reduced from H,, to
—H..

By using approximations (1.239) and (1.240) and the assumption H, <
H,,, from formulas (1.225), (1.226), (1.232), and (1.235), we derive:

’

¢ t ’
- t' .
fu(r)dr’ = / sin7/dr’ =1 — cost’ = 2(sin 5)2, (1.241)
t 0
Felt) = (1+ )(sint)#. ifo<t <, 1.242)
2
Fot) = (1+x) = (1 - )1 —sint)™, if g <t <, (1.243)
where
B,
X= 3 (1.244)

is the “squareness” factor.

By substituting expression (1.241), (1.242), and (1.243) into formula
(1.233) and then plugging the result of substitution into formulas (1.237)
and (1.238), after integration by parts we derive:

4| [® 1 st
b= —— / (1+ x)2(sint’)7" sin 5 cost'dt’+
m
¢ / (1.245)
T i t
/ [(1+x)—(1—-x)(1 —sint’)™]? sin 5 cos t'dt'} ,
b
4 4| [2 ; t
a=——/2x+ — {/ (14 x)2(sint')27 sin — sin ¢'dt’ +
T T | Jo 2
(1.246)

" '
(1+x)—(1—x)(1- sint')”‘]% sin %Sint'dt'jl.

B
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Formula (1.236) can be represented in the phasor form
ElY = nH,, (1.247)

where the surface impedance 7 is given by

- Va+ bQ,/“J“’m ie, (1.248)

a
tanp = b (1.249)

By using formulas (1.245) and (1.246), we can compute tan ¢ and vVa? + b?
for various values of y,n, and ny. In this way, we can evaluate to what
extent the surface impedance depends on a particular shape of hysteresis
loop. Computations show that the surface inpedance is not very sensitive
to variations of n and n;. whereas variations of v may appreciably affect
the surface impodnn(‘v especially the value of tan . The results of calenla-
tions of tan o and va? + % as functions of y are shown in Fig. 1.18 a and
1.18 b. respectively. These caleulations have been performed for n = 10
and ny = 4. It is apparent from Fig. 1.18 a that tan e varies from 0.5 to
0.71. There is an extensive body of experimental data published in Russian
literature 18], which snggests that tan o varies between 0.5 and 0.69. Thus.
our computational results are consistent with these experimental data.

The curves shown in Figs. 1,18 a and 1.18 b can be fairly accurately
approximated by the following expressions:

tang = 1.01 — 0.53\.

Va?z +b% =~ 1.16 + 0.19y.

This leads to the following simple formula for the surface impedance:

= (116 4 0,19y ) y [ 2Lzt et (1010530 (1.250)
g

In the last formula. the dependence of the surface impedance 7 on
the shape of the hysteresis loop is represented by the two parameters only:
“squareness” of the loop y and magunetic permeability ji,,,.

Next, consider the penetration depth, 4. in the case of boundary con-
dition (1.235). This depth can be defined as follows:

il

7
(5 = Z()(§ + f()).
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By using formula (1.209) and expressions (1.223) and taking into account
that H. <« H,,,tg = 0, and Bo(g + to) = B., we derive

§= {ﬁf;g%;z)ﬁz} : (1.251)

By using boundary condition (1.235) and the definition (1.244) of the
“squareness” factor y, we obtain

|

5 — H, fo% sinwrdr ] 1959
= 0B . (1.252)

By performing integration in formula (1.252) and recalling that p,, = g_,,l.’
we finally arrive at

(1.253)

tan ¢

Fig. 1.18 a
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a+h
[}

Fig. 1.18 b

As in the case of surface impedance, we can observe that the dependence
of penctration depth 8 on the shape of the hysteresis loop is represented by
two parameters only: “squareness” of the loop x and magnetic permeability
fim. The latter is a nonlinear function of H,,, which is determined by a main
magnetization curve that passes through vertices of symmetric hysteresis
loops. This makes the penetration depth field dependent.

The previous analysis can be casily extended to the lmportant case
of magnetically nonlinear conducting laminations. Indeed, during initial
stages of positive half-cycles, nonlinear diffusion of magnetic fields at both
sides of laminations occurs in the same way as in the case of conducting
half-space (see Fig. 1.19 a). The motion of front z4(t) can be calculated by
using formula (1.209). At the instant of time ta such that

zo(ta) = % (1.254)
B B
'y ’
801:—"»[-———7-—{[
A A e i -z
2 2
Bo.:l-L_L_ﬁ {f_
a) b)

Fig. 1.19
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two rectangular fronts are merged together and the distribution of magnetic
flux density over a lamination cross-section is uniform. It remains this way
until the commencement of negative half-cycle (see the same Fig. 1.19 a).
During negative half-cycles, the situation reverses itself (see Fig. 1.19 b).
It is apparent from this discussion that in the case of gradual magnetic
transitions eddy currents are being induced all the time, whereas in the case
of abrupt magnetic transitions eddy currents are limited in time and only
induced during initial stages of half-cycles, that is, before the rectangular
fronts merge.

1.6 STANDING MODE OF NONLINEAR
DIFFUSION

We have seen that in the case of abrupt magnetic transitions magnetic
flux density profiles are rectangular ones, while in the case of gradual mag-
netic transitions actual profiles of magnetic flux density are close to (and
can be approximated by) rectangular ones. There is, however, an impor-
tant difference between these two cases. In the case of abrupt transition,
rectangular profiles have heights that are constant with time, whereas in
the case of gradual transitions profile heights vary with time. This differ-
cnce is best illuninated by a “standing” mode of nonlinear diffusion, which
may occur in the case of gradual transitions and which is not possible in
the case of abrupt transitions.

In the case of the “standing”™ mode of nonlinear diffusion, the magnetic
flux density bo(t) at the boundary is increased with time, whereas the front,
zo(t), does not change with time. To find how by(¢) should vary with time
for that mode to be realized, we assume that by time £; a rectangular front
is already formed and that

20(t) = z9g = coust for t > ¢,. (1.255)

By using the last condition in formula (1.209), we obtain

o 2
/ ho(r)dr = égabo(t) for t > ;. (1.256)
Jo

By differentiating both sides of the last expression with respect to time, we

find

220 db
ho(t) = 20720 1.25
(t) = L2 (1.257)
which leads to b 5

ho  z§o
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By integrating both sides of formula (1.258), we have
/~f db() _ 2 (f ¢ ) (1 2:‘())
) h() = Z(,Z)U L 1)- Ll

To evaluate the integral in formula (1.259), a relation between by and hy
should be employed.  To be specific and for the sake of computational
simplicity, a “power” approximation (sce (1.96))

}l“ = (12[)(])

is adopted below, By substituting relation (1.260) into formula (1.259),
after integration we obtain

DY) b)) = Z(L_Ag:%‘;ﬁ, (1.261)
The last formula leads to the following expression:
= “l“k,i}ﬁ-él‘—”]f'“ e
which can be further transformed into the form
bo(l) = — — (1.263)
{to )

Here. we have adopted the following notations:

koz2bl = (¢
(= Feznb ) (1.265)

Thus. we have established that, if the magnetic Hux density on the boundary
of conducting half-space varies with time according to expressions (1.263)

{1.265). then the zero front of b(z.t) stands still during the time interval
b <t < ty. In other words, during this time interval the clectromagnetic
field diffusion exhibits a standing mode illustrated in Fig. 1.20. It is clear
from (1.263) that, for the standing mode to be realized, the magnetic fhux
density by(t) on the boundary should be increased very rapidly and even
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b, (t,<tp<ty)

Fig. 1.20

approach infinity as t approaches tg. In practice, it is impossible to increase
bo(t) up to infinity. However, if by(t) is increased in time in accordance with
expressions (1.263) (1.265) during time interval [y, #,] (with t» < ¢3), then
for this time interval the standing mode will occur.

The origin of the standing mode can be elucidated on physical grounds
as follows. When the magnetic flux density by(¢) at the boundary is in-
creased in time, then usually two things may happen: (1) the height of
the rectangular profile of magnetic flux density is inereased and (2) further
inward progress of this rectangular profile occurs. These two phenomena
require an additional supply of electromagnetic energy for their realizations.
It turns out that, under the boundary condition (1.263) (1.265), the clec-
tromagnetic energy entering the conducting material at any instant of time
is just enough to affect the uniform (in 2) increase in magnetic lux density
in the region (0 < z < z4) already “occupied” by the electromagnetic field,
but insufficient to affect the further inward diffusion of the field into the
material.

Qur previous discussion of the standing mode of nonlinear diffusion has
been based on the “rectangular profile” approximation for magnetic flux
density. The question can be asked whether this mode is an artifact of the
rectangular profile approximation. For this reason, it is interesting to find a
standing mode solution without resorting to the above approximation, but
rather through analytical solution of nonlinear diffusion Eq. (1.99). It is
remarkable that the standing mode solution can be obtained by using the
method of separation of variables. Actually, this is the only solution that
can be obtained by this method.

According to the method of separation of variables, we look for a so-
lution of nonlinear diffusion Eq. (1.99) in the form

b(z,t) = p(2)p(t). (1.266)
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By substituting expression (1.266) into Eq. (1.99), after obvious transfor-
mations we obtain

1 40 ko dy(t)

o(z) dz2  Yn(t) dt

Since the left-hand side of the last equation depends only on z, while the
right-hand side of the same equation depends only on ¢, we conclude that
these two sides can be equal to one another only if they are equal to the
same constant A. Thus, we have

(1.267)

ko dy(t)

o d =N (1.268)
1 dPp™(2) _
o =N (1.269)

First, we shall integrate Eq. (1.268). To this end, we rewrite this equation
as follows: y \
2’—/,
— = —dft, 1.270
o ko ( )

and after integration we obtain

ko )
W(t) = | —————F——— |77, 1.271
vl [(”*1)/\(%*1)} ' ( )
where tg is some constant of integration.
Equation (1.269) is more complicated than Eq. (1.268), and its integra-
tion is more involved. To integrate Eq. (1.269), we introduce the following
functions:

w"(2) = 0(z), (1.272)
dfl(zz) = R(z). (1.273)

From the last two expressions and Eq. (1.269), we derive
dr d40  d*o"(2)
dz ~ dz?  d2?

On the other hand, by using formula (1.273), we have

dR dR d8 _dR _ldR2

dz d8 dz "~ df 24§’
By equating right-hand sides of formulas (1.274) and (1.275), we obtain the
first-order differential equation for R:

2
% = 2A0% . (1.276)

= Ap(2) = A07 (2). (1.274)

(1.275)
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By integrating the last equation, we obtain

R(z) = /2 x (0(2)] 50

1.277
n+1 ( )

In formula (1.277), a constant of integration was set to zero. This can be
justified on physical grounds. Indeed, the electric field should vanish at
the zero front zg, that is, at the same point where b(z,t) vanishes. But
the electric field is proportional to R(z). Indeed, by using formula (1.266),
(1.272), and (1.275), we find:

16h 100" ¢7(t)
g8z ko Bz ko R(2). (1.278)

E(z,t)=—

The magnetic flux density b(z,t) is proportional to ¢(z). Thus, functions
R(z) and ¢(z) should vanish simultaneously. According to formula (1.272),
this is only possible if the integration constant in (1.277) is set to zero.
Next, hy substituting expression (1.273) into formula (1.277), we arrive at
the differential equation:

dg(z) 2n rs) e
7. = n+1/\ [0(z)] 2. {1.279)

By integrating the last equation, we derive

w {n—1)* 2 .
Bz) 7 = m)\(z() — 2)°, (1.280)

where zg > 0 is some constant of integration.
Now, by using the relation (1.272) between o(z) and 8(z), from the
last formula we obtain

n— 2/\ o
;(n:i)n(z"”)z ' (28

plz) =
Finally, by substituting expressions (1.271) and (1.281) into formula (1.266),

we arrive at the following analytical (and exact) solution of nonlinear dif-
fusion Eq. (1.99):

(n— Dko(zg — 2)? o
2n+ Dnlty —t) = (1.282)

b(z,t) =

It is remarkable that, as a result of the above substitution, constant A
cancels out. As a consequence, we end up with the only solution that can
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be obtained by the method of separation of variables and this solution does
not depend on “separation” constant A at all.

In the form (1.282), the above solution is not physically meaningful.
This is because b(z,t) approaches infinity as z is increased. However, the
above solution can be “cut off” at z = 2z and then physically reinterpreted
as follows. Suppose that at time £ = 0 the magnetic flux density satisfies
the following initial condition:

(n—l)ka(:.,—z)'~’ ﬁl—; .
b(=,0) = {W} , 10 <z <z, (1.283)

0. if 2 Z 2()-

Suppose also that the magnetic flux density satisfies the following boundary
condition for the time interval 0 <t < ty:

bo(t) = b(0,t) =

— Dkoz? o
(n = ko } (1.284)

2(n + Dn(ty — t)

Then, according to formula (1.282), the exact solution to the initial
boundary value problem (1.285) (1.284) for the nonlinear diffusion Eq.
(1.99) can be written as follows:

|
(n=Dka{zq—2)" 17 7T ..
b(z.t) = {m] SRNURS
0. if 2> 2.

aQ
IN
Qe

(1.285)

This solution is illustrated by Fig. 1.21. and it is apparent that it has the
physical meaning of the standing mode. It is also clear from the last formula
as well as from Fig. 1.21 that this solution has the self-similarity property.
Namely, the profiles of magnetic flux density for different instants of time
canr be obtained from one another by dilation (or contraction) along the
h-axis. In other words. these profiles remain similar to oue another. This
suggests that the standing mode solution (1.285) can be derived by using
dimensional analysis. However. we shall not. delve further into this matter.
Instead, we shall use the self-similarity property of the above solution in
order to give another interpretation (and definition) of the standing mode.
To this end, we troduce the normalized profile b* (=, £) of magnetic flux
density:

* -~ _ [)(:‘f) .
b*(z.1) = WOk (1.286)

From formulas (1.285) aud (1.286), we Hud

pron = {1577 0z <, (1.287)
0, if 2 Z Z(-
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b, (ty<ty<ty)

Fig. 1.22

Thus, in the case of the standing mode, the normalized profile of magnetic
flux density does not change with time (see Fig. 1.22 a). This property
can he used as another definition of the standing mode. It is instructive to
note that, in the case of self-similar solutions (1.193). the normalized profile
of magnetic flux density is dilated (expanded) with time (see Fig. 1.22 b),
which is natural for “forward” diffusion. It is also instructive to point out
that the standing mode solution (1.285) is limited both in time and space.
This is related to the fact that expouent “n” in the nonlinear diffusion
equation is larger than one. In Chapter 3 we shall show that, in the case
when this expounent is simnaller than one, there exists the self-similar standing
mode solution (that is, the solution with the independent of time normalized
profile), and this solution is “unlimited” in time and in space. In other
words, this solution exists for the semi-infinite interval 0 < t < oo and at
any instant of time t it asymptotically approaches zero as z is increased to
infiuity (i.e., there is no zero front). Moreover, it will be shown that there
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also exist self-similar solutions with normalized profiles contracting in time.
These solutions can be physically interpreted as “backward” diffusion.

It is interesting to compare the exact standing mode solution (1.285)
with the standing mode expressions derived in this section on the basis of
rectangular profile approximation. First, it is clear from formula (1.285)
(as well as Fig. 1.21) that, for sufficiently large “n,” the actual magnetic
flux density profiles are almost rectangular. Second, it is apparent that the
boundary condition (1.284) can be written in the form (1.263) with “¢” and
“to” defined as follows:

[n- DkozE =
= [ CE , (1.288)
. . 2bl——n
by = (n — L)kozghg (0). (1.289)

2(n+ 1)n

By comparing formulas (1.288) (1.289) with formulas (1.264) (1.265), re-
spectively, we find that for sufficiently large “n” these expressions are prac-
tically identical (up to inessential initial thine £ in (1.265)). This once again
suggests that the rectangular profile approximation is a fairly accurate one.

Finally, it should be noted that, in the case of the standing mode of
noulinear diffusion, very peculiar shielding (screening) of internal layers of
the conducting material takes place. It is amusing that this self-shielding
occurs for rapidly increasing magnetic flux density at the boundary. It
would be interesting to find some meaningful practical applications for the
standing mode of nonlinear diffusion.

1.7 NONLINEAR DIFFUSION IN A CYLINDER

In previous sections, we dealt with nonlinear diffusion of electromag-
netic fields in conductors with plane (flat) boundaries. In this section, we
shall extend our study to the case of nonlinear diffusion in a cylinder. This
study will shed some light on how the curvature of conducting boundaries
may affect the process of nonlinear diffusion. In this section, we shall also
discuss the case of magnetically inhomogeneous conducting media.

Consider an infinite conducting cylinder of radius R (sce Fig. 1.23)
subject to time-varying uniform magnetic field Hy(t) whose direction is
parallel to the cylinder axis. First, we assume that this cylinder is mag-
netically homogencous with constitutive relation described by Eq. (1.18).
In other words, we shall first consider the case of abrupt (sharp) magnetic
transition.

Suppose that initial values of magnetic flux density and magnetic field
are equal to —B,, and 0, respectively. Next, suppose that the magnetic
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field at the boundary is increased from its zero value and remains positive.
As the magnetic field at the boundary is increased, this increase extends
inside the conducting cylinder causing the transition of magnetic lux den-
sity from —B,, to +B,,. As a result, a rectangular front of magnetic flux
density is formed and it moves from the boundary of the cylinder toward
its axis (see Fig. 1.24). We intend to derive the expression for the radial
coordinate, ro(t), of this front in terms of o, By, R and the magnetic field,
Hy(t), at the boundary. To this end, we shall exploit the circular symmetry
of the problem. According to this symmetry, electric field lines and lines of
electric current density are circular ones. They exist only for r > rg(t).
Consider an electric field line L, of radius r and let us apply the law

R

Fig. 1.23

oD R

Fig. 1.24
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of clectromagnetic induction to this line:

: 1D (1, t
fE-dl = —@%, (1.290)

L,

where @(r, ¢) is the wmagnetic flux that links L.
Due to the circular synunetry, we have

%Ew:ll: E(r,t) - 2mr. (1.291)
L,

By using Fig. 1.24, it is casy to see that the following expression is valid
for flux O (r, ¢):

B(r.t) = Bm(r? —rd(t)) = Buarg(t), (1.292)
which can be further reduced to the form
D(r.1) = Bw(r? = 208(1). (1.293)
From the last formula. we find

db(r.t) (11'5(?)
Sl =03, 1.294
fdt m dt ( )

By substitnting expressions (1.291) and (1.294) into formula (1.290), we
end up with

. B, drd(t

E(rt)y = " dratt) (1.295)
rodt

By using the last expression. we obtain the following equation for electric

current density:

o B, dré(t)

Hr )y =akE(r.t) = (1.296)
r dt
Now, we recall that
OH (r.t
oy = =20, (1.207)
or

By integrating the last expression from ry(¢) to 2 and taking into account
that H(rg(1),1) = 0, we obtain

B
Hy(t) = H{(R.t) = — / J(r t)dr. (1.298)
B 7'()(()



1.7  Nonlincor Diffusion in a Cylinder 61

By substituting formula (1.296) into (1.298) and performing the integration.
we arrive at

H()(t) = aBm (hl 7(2 )> (17;;t(t) - (]29())

It can be shown that

o () 250 = o ()] -5 cam

Indeed,

£ o (4] o () 40 st

. 1.301
—n <7()< )) (17‘()(“) n % ‘ (17-(2)(f2. ( )

R dt dt

which justifies equality (1.300).
By substituting this equality into formula (1.299). then performing
integration from 0 to t and taking into account that 74(0) = R, we obtain

{

[ Ho(7)dr ro(t)  r2(t) — R?

P = (1.302)

This is a nonlinear equation for ro(¢). It is convenient to transform this
equation as follows:

— —_— =

2] Holrydr 201 20

0 )y rat) ) (1.303)
oR2B,, R? R? R? ' -

We shall next introduce the variable

i ()

RT (1.3041)

Alt) =
and the function
F(A) =XInAx-1)+1. (1.305)
By using the above funection, Eq. (1.303) can be represented in the form

4

2 ] Hy(r)dr
. F(A(1)). (1.306)
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This form is convenient for the graphical solution of Eq. (1.303). Indeed, the
function, F()), can be precomputed and its graph can be constructed (see
Fig. 1.25). Then, for every instant of time, the left-hand side of Eq. (1.306)
can be evaluated and plotted along the vertical axis in Fig. 1.25. Finally,
by drawing the horizontal line until it intersects with the graph of the
function F(A) and the vertical line until it intersects with the horizontal
axis, we determine the value of A(t) corresponding to the left-hand side of
Eq. (1.306). By using this value and formula (1.304), we find ro(t).

Equation (1.306) can also be solved numerically by using, for instance,
the Newton iterative technique. This equation can also be solved analyti-
cally, albeit approximately. The analytical solution is based on the following
approximation of F'(A):

A= 14+ (A - 1)?

5 (1.307)

F(\) =~

To appreciate the accuracy of approximation (1.307), the graphs of func-
tion F(A) and its approximation are plotted in Fig. 1.26. This figure sug-
gests that approximation (1.307) is quite acenrate. By substituting formula
(1.307) into Eq. (1.306), we end up with the quadratic equation for (A—1)2.
By solving this equation and taking into account expression (1.304) for A.
we arrive at the following approximate formula for ry(t):

{

4 ] Hy(7)dr

1 1 0
oty =~ Ryl —A| —= -+ — 1.308
ro(t) 2+ 4+ o R2D,, { )

Fig. 1.25
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Fig. 1.26

The value of rq(t) given by formula (1.308) can be used as an initial guess
in Newton iterations. However, this may be unnecessary, because it is quite
conceivable that the accuracy of formula (1.308) is higher than the accuracy
of abrupt magnetic transition assumption, which was used in the derivation
of Eq. {1.306).

Having determined the radial coordinate, ro(t), of the front, we can
fully describe the distribution of magnetic flux density. We can also find
the electric field by invoking formula (1.295). However, there is some in-
convenience in using this formula. This is because this formmula requires
differentiation of ry(t), which is found graphically or numerically. This dif-

2
ficulty can be circumvented by recalling formula (1.299) and expressing d—(},ﬂ
as follows:

drg _ Ho(t) (1.309)
dt 6B, In l}%’_')

By substituting the last expression into Eq. (1.295), we end up with

Hy(t)

gy Tolt)
orln R

E(r,t) = (1.310)

The last formula does not contain the derivative of ro{t) and, for this reason,
it is convenient for calculations. By using formula (1.310), we can also
find an important relationship between electric and magnetic fields at the
cylinder boundary:

Hy(t)

Eolt) = 20l
oRIn T“—}({")

(1.311)
where the notation F(R,t) = Ey(t) has been used.

Up to this point, we have discussed the situation when the magnetic
field Hg(t) at the boundary is assumed to be positive. If the magnetic
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field Hy(#) is reduced to zero and then becomes negative, the motion of
the “positive” rectangular front of magnetic flux density is terminated and
the “negative” rectangular front is formed and it moves from the cylinder
boundary toward its axis (sce Fig. 1.27). By repeating the same line of
reasoning that was used in the derivation of formula (1.303), we arrive at
the similar expression:

(

=2 [ Ho(7)dr , , .

O s W 0 ) (1312)
URzBm R2 R2 11)2 ‘ .

This cquation can be used for the determination of the radial coordinate
ro(t) of the “negative” rectangular front of magnetic Hux density in the
same way as we have used Eq. (1.303).

The previous discussion can be casily extended to the case when the
abrupt (sharp) magnetic transition is described by the rectangular hystere-
sis loop shown in Fig, 1.7, In this case, the “positive” rectangular frouts are
formed and they move inward when f{o(f) — I1,. is positive. The “negative”
rectangular fronts are formed and they move inward when Hy(#) + 1. is
negative. The radial coordinates of “positive”™ and “negative” fronts can
be determimed by solving moditied Eqgs. (1.303) and (1.312). respectively.
Modification of these equations consists in the replacement of the integral
f ] '

[ Ho(m)dr by integrals [ (Ho(7) = Ho)dr and [(Ho(t) + H)dr, correspond-
4] 4] (b

ingly. When Hy(#) 1s between - H,oand -+ H .. evervthing is still and there
is no movement of rectangular frouts.

Fig. 1.27
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So far, we have only considered magnetically homogeneous conducting
media. However, in many applications magnetic propertics of surface lay-
ers are different from magnetic properties of interior layers. To account for
these inhomogeneities, we consider magnetically layered (piecewise homoge-
neous) media. Namely, we shall assume that a conducting cylinder consists
of several cylindrical layers (Req4q < r < Ry, k = 1,2,...,n), which ex-
hibit abrupt magnetic transitions with different saturation values +B,,,
(see Fig. 1.28). When rectangular fronts move through the first layer, ro(t)
can be evaluated by using Eqs. (1.303) and {1.312). Next, we shall derive
similar equations for ro(t) in the case when rectangular fronts move through
cylindrical layer number k + 1, that is, when Re4y < rp(t) < Bi. To this
end, we shall first establish some relation (boundary condition) between
H(Ry,t) and E(Rg,t). Consider a circular line L, with R < r < R and
let us apply the law of electromagnetic induction to this line:

dd(r,t
E(rt)2nr = ——(7—>. (1.313)
dt
Similarly, when r = Ry, we have
A (R . t
E(Ry.t)2mr = —()(—H‘——) (1.314)
dt

When the rectangular front moves through the layer number & + 1. the
magnetic Hux density changes only within this layer. For this reason. we
conclude thiat

dO(r .ty dP(Ry.t)

= . 1.315
dt dt (1.315)

By using the last expression in Eqgs. (1.313) and (1.314), we find
E(r.t)2rr = E(Ry. )27 Ry. (1.316)
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which leads to R
E(r,t) = 7—'_kE(R,C,t), (1.317)

From the last formula, we obtain

Jrt) = ‘ﬂE(Bk t). (1.318)

By combining expressions (1.297) and (1.318), we derive

R
R
H(Ry,t) — Hy(t) = / j(r.t)dr = (6 Ry In F)E(Rk‘t)‘ (1.319)
J R, K
which can be rewritten as
R
H(Ry. t) — (0 Rg I R—)b([{k,t) = Hy(t). (1.320)
'k

The last relation can be construed as the boundary condition that holds
at r = R for any time ¢ > t;. where fi is the time when the front moved
through the interface boundary » = Ry. It is remarkable that this boundary
condition does not depend on values of B, that is, on the specific nature of
abrupt magnetic transitions. Boundary condition (1.320) can be converted
into a nonlinear equation for ro(f). To do this, we recall formulas (1.295)
and (1.303). which for the layer number & + 1 can be rewritten as follows:

Bk dri(t
E(Rp.t) = 2ox 4ol

oBo d [ . 2(1)
[I(Rk.t) = 5 ~(~1¥ [[v(‘f(f) (111 Rz* — 1)]

By substituting these expressions into formula (1.320), we arrive at

Zg_’ii ,(,[, { (ln gj + 1) ( )+ 1()(f)lu 7(2](0} Hy(t).

2 dt R?

By iutegrating the last equation from ¢y to ¢, we derive

!

2 ‘ [’L)(T)({T

. 2 Z 2 2
! o), 7o t) R ro(t) e
= = -1 1+ — 1-— - . 1.321
oRB. RV TR TUTMR R (1:321)
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The last equation is similar to Eq. (1.303) and, actually, it is reducible to
it for Ry = R. For this reason, the last equation can be solved in the same
manner as was discussed for Eq. (1.303). By solving Eq. (1.321) for k =
1,2,...n, we can completely describe nonlinear diffusion in magnetically
inhomogeneous conducting media.

Next, we consider nonlinear diffusion in a cylinder in the case of gradual
magnetic transitions described by hysteresis loops exemplified by Fig. 1.9.
In this case, we shall use the rectangular profile approximation introduced in
Section 1.5. According to this approximation, as soon as ho(t) = Ho(t)— H.
becomes positive, a rectangular profile of magnetic flux density is formed
and it moves inward (see Fig. 1.29). We intend to derive the expression
for the radial coordinate, rq(t), of this profile. This derivation, in many
respects, closely parallels the derivation of formula (1.303). We start with
the law of electromagnetic induction:

E(r,t)2rr = —dq)((l:’tf (1.322)
By using Fig. 1.29, the flux, ®(r, t). can be evaluated as follows:
O(r,t) = (bo(t) — B)m(r? — r2(t)) — Bemrs(t), (1.323)
which can be further reduced to the form
®(r,t) = mribo(t) — mby(t)ri(t) — mB.r. (1.324)

By substituting the last expression into formula (1.322), we end up with

E(rt) = o at Zaz[bo(t)’"o(t)]- (1.325)

B

A

] R

Fig. 1.29
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Equation (1.325) leads to the following expression for the electric current
density:
ordby(t) o d N
jrit) = ——- — —|bo(£)r5(t)]. 1.326
i(r.t) 2 di 2rdt[ o(t)rg (1)) ( )
By using formulas (1.297) and (1.326) and performing integration with
respect to r, we obtain

hott) = 25 - .,.5(t))'1’)((;ff>. N (g I ""}g")) < o). (20

where, as before, ho(t) = Hy(t) — H.. By using siimple caleulus, we find

(1“ 7.[)(1")) L] [b”(f)'rf,(/,)] = (—(1{ {1)()(t)7';2)(f) In 7“1?)}

R
. . 1.328
o d [ho(t)rg(t) + r3 (1) dby(t) ( )
(t 2 2 dt
By substituting formula (1.328) into Eq. (1.327), we arrive at
5 dby(t { . ro(t
ho(t) :%1{“ "I’IQ | ;’ ‘H [b(,(t)rf,(f)ln ’“[({)J
‘ ¢ “ (1.329)
o d SN
= 5 i (i)

By integrating the last equation with respect to time from 0 to f and taking
into account that by(0) = 0 and ry(0) = . we obtain

y
5 o .,
/ /l.(;(T)(lT:-(-I[?")“(f) : II'G(f)b(,(f)
\ . 4

Jo " (1.3:30)

o . ro(t

+ Q-b“(f)rf,(f)ln T
The last expression can be rewritten as follows:
f 2 2 0

4y olr)dr i(_f,.? o) o) (1.331)

aR?by(t) e e I?
)

The last equation is a generalization of Eq. (1.303) to the case of gradual
magnetic transitions. It is actually reduced to Eq. (1.303) when by(f) =
28, and H. = 0. Thus, we can use the same solution technignes for
Eq. (1.331) as we used for Eq. (1.303). Namely. the following approximate
formula (similar to formula (1.30%8)) can be used for the caleulation of ry(f):

—_—
1 1 [ ho(T)dT

PO YN SR S ! _ 33

ro(t) = R 2+\/4+ o b (1) (1.332)
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In Eqs. (1.331) and (1.332), ho(t) and by(t) arce rclated throngh actual
shapes of hysteresis loops.

Finally, we shall use Eq. (1.331) to evaluate how the curvature of con-
ducting boundary affects the process of nonlinear diffusion. To this end,
we introduce the variable

5(t) = R — ro(t), (1.333)

which has the meaning of instantancous penetration depth. By using defi-
nition (1.333), we find

2 CO412 N o2
rg(t) _ [ 0(t)] S0(8) 0°(1) o
= S =1 — 2 1.334
R R E R (1.334)
Similarly,
r3(t) R —4(t) a(t)
In 220 =92 —— 2 =201 — —-4]. 335
e n—p 21n| 7 ] (1.335)
Next, by using the power series expansion for lu(1 — x}, we obtain
ra(t) f) 82 (t) o) erg:
In -??-— == 2[ - - Eﬁ - _,31?_‘ .. ] (lni«j())

By using formulas (1.334) and (1.336) on the right-hand side of Eq. (1.331).
we derive:

B rB0) R A ()
R? b R? R? 471&#2? R
S() B (60 & 28
+(1‘2?‘“ 7)( TR 7#*71?“-) (1.337)
{52(1) 3 (t) }
%2 T T, .. .
12 3RS

By substituting formula (1.337) into Eq. (1.331) and retaining only the first
two terms of the above power series expansion, we obtain

LUy [ )
V[ﬁ(,_(-f‘)g = 8(t)y/ 1 - ﬁ (1.338)

By using the approximation

IO ) a
\/ Rz 1- SR (1.339)
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the formula (1.338) can be written in the form

2 [ holt) _ 8(t)
U"b—o(t)— ~ §(t) ( - 6R> : (1.340)

In the case when §(¢) is small in comparison with 6R (note factor 6) the
second term on the right-hand side of (1.340) can be neglected and the last

expression leads to
2ft ho(T)dr
SOty [ 1.341
(t o (1.341)

This formula coincides with Eq. (1.209) derived for flat {(plane) boundaries
of conducting media, that is, for zero curvature. This justifies the use of
superscript “(0)” for §(t).

Formula (1.340) can also be treated as a quadratic equation for 6(t).
This leads to the following formula for 6(t):

o 26(0)(¢) ,
5(t) = 3R (1 —j1- T) . (1.342)

In the case when 6 (#) is small in comparison with R, we can use the
power series expansion for 1 — . and retain only the first two terms of
this expansion. This leads to the following formula:

L(0 2
S(ty = 89y + @) ?(t')) . (1.343)
6R
The second term in last expression gives the correction for finite curvature of
conducting boundaries. It also suggests that, for small penctration depths,
nonlinear diffusion in conducting bodies with curvilinear boundaries oceurs
almost in the same way as in the case of plane (flat) boundaries. This fact
will be extensively used in Chapter 5. where the results obtained for plane

boundaries will be interpreted as impedance boundary conditions.

1.8 APPLICATIONS TO CIRCUIT ANALYSIS

In owr previous discussions, it has been tacitly assumed that the mag-
netic field (or the electric field) at the boundary of conducting media is
known as a function of time. However, in applications such a situation is
rarely encountered. Typically, magnetic ficlds are created by electric cur-
rents through coils that are placed around magnetic conductors (laminated
cores, for instance). The electric currents through such coils are usually not
known in advance. These currents should be determined from the analysis
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of electric circuits that contain these coils. It is apparent that the elec-
tric currents in such circuits are affected by the voltages induced in the
coils placed around conducting magnetic cores. These voltages, in turn,
are determined by the process of nonlinear diffusion of magnetic fields in
the above cores. Thus, we are back full circle: we need to know an electric
current through a coil for the analysis of nonlinear diffusion in a conducting
magnetic core, however, in order to find this current the analysis of nonlin-
ear diffusion in the magnetic core is needed. There are two ways out of this
predicament. The first way is to treat the electric circuit equations as the
boundary conditions for the analysis of nonlinear diffusion. This approach
is convenient for relatively simple electric circuits. The second way is to
use the nonlinear diffusion analysis for the derivation of terminal (current-
voltage) relations for coils placed around conducting magnetic cores. When
these terminal relations are found, they can be used along with other cir-
cuit equations in the analysis of electric circuits with the above coils. This
approach is preferable for complicated electric circuits.

Next, we proceed with the discussion of the first approach. As an
example, consider a toroidal conducting magnetic core of circular cross-
section. We assume that a coil that has N turns is uniformly wound around
this core (see Fig. 1.30). Suppose the “source” voltage v,(t) across the coil
terminals is known. Then, we can write the following circuit equation:

v.(t) = R.i(t) + N%EL)\ (1.344)
where R. is the electrical resistance of the coil, i(t) is the coil current and
&(t) is the magnetic flux that links each turn of the coil.

In the case when the magnetic core is assumed to be linear and the
distribution of magnetic flux density over the core cross-section is assumed
to be uniform, we can introduce the inductance L. of the coil:
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N®(t) = Li(t). (1.345)

By substituting formula (1.345) into expression (1.344), we arrive at the
conventional clectric circuit differential equation:

di(t)

ve(t) = R.i(t) + L(,T (1.346)

Now, we shall remove the assumption that the core is magnetically linear
but shall still assume that the magnetic flux distribution over the core
cross-section is uniform. Then. the fux, @ (1), can be expressed as follows:

O(t) = AB(H(t)), (1.347)
where A is the cross-sectional arca and B(H) stands for the notation for

nonlinear relation between B and H.
By using the Ampére Law, we find

H(t) = S22 (1.348)

where £ is some average length of magnetic ficld lines within the core.
From formulas (1.347) and (1.348). we derive

dP o dB dl o di

= Aem 2l D 34
dt dH di df (L349)
which leads to Iy AN dB i)
dd AN d di(t
IS o 1.:350
a = a7 (1.350)

By combining formulas (1.344) and (1.350). we arrive at the following cirenit
equation:

st = Rui(t) + L (i P (1.351)

where we introduced the nonlinear (current dependent) inductance L, (i(t))
defined as follows:

ANZ2AB ANZ

i) = S i), (1.352)

L.(i(t)) =

In the case of linear media, B = pH and expression (1.352) is reduced to
3

the well-known formula: ‘
- /LAJ’VJ

¢

L. (1.353)
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Now, we shall remove the assumption that the distribution of magnetic flux
density over the core cross-section is uniform. In other words, we shall try
to take into account the screening effect of eddy currents induced in the
core during the process of nonlinear diffusion. In this case, we shall use the
law of electromagnetic induction and express % in terms of electric field

at the core boundary:

% - 7fE0 “dl = —Eo(t)L = —E2nR. (1.354)

L

Here L is the circular boundary of toroidal cross-section and R is its radius.
The second equality in formula (1.354) implies circular symmetry of
electric field, which holds fairly accurately when L is small in comparison
with ¢, that is, when L < ¢. By substituting formulas {1.348) and (1.354)
into the circuit Eq. (1.344), we end up with
R.¢

THU(t) — NLEy(t) = v (t). (1.355)

Equation (1.355) relates the boundary values of magnetic and electric fields
to the known source voltage, vg(t), applied to the coil terminals,  This
ecquation can be coustrued as a boundary condition, and it can be used
for the analysis of nonlinear diffusion of magnetic field in the conducting
magnetic core. To illustrate this, consider first the case when the magnetic
propertics of the core can be modelled as abrupt magnetic transitions. Since
it Is also assumed that L < ¢, then the nonlinear diffusion in the toroid
oceurs almost i the same way as the nonlinear diffusion in the circular
cylinder of radius R. For this reason, we can use expressions (1.295) and
(1.302), which can be represented in these forms:

B, (17"5(?)

Ey(t) = T di (1.356)
B, 2
Holt) = Z52 5 [ 0 30 (1.357)

By using the last two formulas, we can convert the boundary condition
(1.355) into a nonlinear equation for ry(t):

5 | v T

0Bp d [R.l . r2(t) (Rt 2NLY\ .
o olt) _ < N +—ﬁ>r§(t)} =uv.(t).  (1.358)
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By integrating in the last formula and taking into account that 7y(0) = R,
we arrive at

,Zj(){ vs(T)dr
 oR?B,,

\ " ‘ , (1.359)
R0, O _ (R 2V (10 ),

N R? R? N oR R?
The last equation is very similar to Eq. (1.303). For this reason, the tech-
nique that was used for the solution of the former equation can also be used
for the solution of Eq. (1.359).

After ro(t) is found, we can determine the eurrent, i(t), through the
coil. To this end, we shall invoke formula (1.311) and transform the bound-
ary condition (1.355) as follows:

R.¢ NI -
v (t) = { —+ - BT Ho(t). (1.360)
N oRIn -~

By using expression (1.348) in the last equation, we obtain the following
formula for i(t):

alRén %1

For t =0, ry(0) = R and. from the last expression, we find that
i(0) =0, (1.362)

as it mnst.,
Let. T be the time when rg(T) = 0. Then, for ¢ > 7T from formula
(1.361), we obtain

i) = 22U (1.363)

as expected.
[t is also clear from formula (1.361) that

i) < ”;?(")

for 0 <t <T. (1.364)
-

Thus, time T can be physically interpreted as a rise tiine. This interpreta-
tion is especially transparent in the case when vg(¢) = Vg = const. In this
case, for ¢ > T we have

i) = Iy = —. (1.365)
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The previous analysis can be extended to the important case when
the conducting magnetic core has a small air gap. This case exhibits some
peculiarities, which we proceed to discuss. First, Eq. (1.348) should be
modified. Indeed, by using the Ampére Law, we arrive at

Ho(t) - €+ Hs - 6 = Ni(t), (1.366)

where Hj is the magnetic field in the air gap region, while ¢ is the (effective)
length of the air gap.

By invoking the continuity of normal component of magnetic flux den-
sity across a media interface, we find

Bm
Hs = +—, (1.367)
Ho

where the “£” signs account for two possible states of magnetic flux density
within the core.

Let us assume that, before the source voltage v, (t) is turned on (i(t) =
0), the initial magnetic flux density within the core has been equal to —B,;,.
Then, from Egs. (1.366) and (1.367), we obtain

B”I(s
Hy(0) = — > 0. (1.368)
pof

This suggests that the abrupt magnetic transition of the core should be
described by a rectangular loop with H. > Hy(0). Otherwise, the “de-
magnetizing” field H(0) is too strong for the state of B = —B,, to be
sustainable.

Now, suppose that the voltage source, vy(t), is turned on and the
current, ¢(t), in the coil has reached the value at which the magnetic field,
Hy(t), at the boundary of the conducting magnetic core exceeds the value
of H.. Then, the process of nonlinear diffusion of the magnetic field in the
core begins and the magnetic flux density at the core boundary is equal to
+B,,,. By using this fact and Egs. (1.366) and (1.367), we arrive at

Bn6
Ho(t) - ¢+ /T = Ni(t), (1.369)
0
which leads to ¢ B
() = Ho(t)— Uiy 1.
i) o()N+uON (1.370)

By substituting the last equation as well as the Eq. (1.354) into electric
circuit Eq. (1.346), we end up with the following modified boundary con-
dition:
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Rt R. B0
e Ho(t) - NLE(1) = vo(t) — —<om? (1.371)
N “()Af

As before, this boundary condition can be converted into a nonlinear equa-
tion for the radial coordinate, ro(t). of the rectangular front. To this end,
we rewrite Eq. (1.357) in the form:

(TBm. d 2 7(2)(1() 2
Hy(t) — H.= —— |ri(t)In === — r§(t)] . 1.372
o(t) — He = T2 S b B — 2 (1.372)
which takes into account the hysteretic nature of the abrupt transition.

Now, by substituting Eqs. (1.356) and (1.372) into the boundary con-
dition (1.371), we obtain

oRAB,, d [, ré(t) 2 NLI3, dri(t)
e e AN . aied (AN
aN ap oI eyt () R at

where . o
¢ m() . : - .
JioN N (1.374)

euf) = vlt) -

By integrating Fq. (1.373) and taking into account that ro(f,) = R. we
arrive at. the following nonlinear equation:

ot
2/,

O (T)dT
aR2B, (1.375)

RO gty rolt) (RECINLN ()
N R R N " oR R? ‘

where £y s the instant of tiime at which the magnetic field Hy(#) exceeds
the value of /1. This instant of time can be determined from Eqgs. (1.344)
and (1.369). Indeed. before time ¢, there are no changes in the magnetic
flux through the core. and from Eq. (1.344) we find

=" o<t <t,. (1.376)

Now, by substituting formula (1.376) into Eq. (1.369) and taking into ac-
count that Hy(t,) = H,., we obtain

RAH, R.B,0
<t

N /mN . ( l) ( )
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which is the desired equation for ¢;.

Now, we shall turn back to Eq. (1.375). This equation is very similar
to Eq. (1.303) from Section 1.7, and it can be solved by using the techniques
described therein. After rq(t) is found, the current, i(t), through the coil
can be determined. To this end, we shall use formula (1.299) in the form

Ho(t) — H, = 0B, (m f‘%”) #, (1.378)

which accounts for the hysteretic nature of the core.
From formulas (1.356) and (1.378), we find

HO(t> - Hc

Eo(t) = .
o0 = R

(1.379)

By substituting the last formula into expression (1.354) and then into
Eq. (1.344}, we obtain

 NL(Hy() ~ H)

vy(t) = R.i(t) -
oRln%

(1.380)

Finally, by combining the last equation with Eq. (1.369) and by solving
these two equations for i(t), we derive the formula:
vg(t) — BroNLApu NELH,
. LAY pnfo R lu(ro(t)/ R) R
i(t) = o N, : . (1.381)
v agRfn{r,(1)/R)

whicli can be used for the calculation of electric current.
For t = t;, 79(t;) = R and, from the last expression, we find that
1. T

Bno | (H.
= +

- /L()N TV (1&82)

i(th)

which is consistent with formula (1.377).

At t = T, we have ro(T) = 0, and, from forinula (1.381), we obtain
expression (1.363).

The approach that we have thus far discussed is convenient when
an clectric circuit is described by a relatively simple equation such as
Eq. (1.344). If a coil with a magnetic conducting core is a part of a compli-
cated electric circuit described by many differential equations, this approach
does uot work very well. This is because complicated circuit equations can-
not be reduced to a simple boundary condition. Under those circumstances,
another approach can be pursued. In this approach, the nonlinear diffusion
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analysis is used in order to derive a terminal voltage-current relation for a
coil placed around a conducting magnetic core. In general, this terminal
relation can be written in the form

Le(v(t),i(t)) =0, (1.383)

where v(t) is the voltage induced in the coil by a time varying magnetic flux
through the core, i(t) is the current through the coil, and L, stands for some
(integral-differential} operator. The actual form of this operator depends
on the geometry and magnetic characteristics of the core. If the relation
(1.383) is found, it can then be used to complement the electric circuit
cquations. In other words, it can be discretized and solved numerically
jointly with these circuit equations.

It is apparent that the essence of the above approach is in the derivation
of terminal relation (1.383). We shall first demonstrate how this type of
relation can be derived for a gapless, circular cross-section toroid. For this
toroid, according to formua (1.354), voltage v(t) is related to the electric
ficld FEy(t) at the boundary by the expression

o(t) = —LNEy(t). (1.384)

while the magnetic ficld Hy(t) at the boundary is related to the electric
current by formula (1.348):

_ HN

N (1.385)

i(t)

On the other hand. Hy(t) and £y(t) are related to one another by expression
(1.311):

R r2(t
Holt) = T2 By (1) n ).

By using formulas (1.384) and (1.385) in the last expression, we arrive at

(1.386)

N oR T3(t) )
7'1(t) = ——QLsz(t) In R (1.387)
The last equation can be solved for 5,3(;'*) which yields
2 2r;
ry(t) 2N-Li(t) .
L — ¢ - 1.388
R? P ofRu(t) ( )

Next, from formulas (1.356) and (1.384), we obtain

u(t) = —NRLBmd% (ﬂ?) . (1.389)
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Finally, by using expression (1.388) in the last formula, it can be trans-
formed as follows:

u(t) + NRLBm% [exp (—QU]Z—Z)’(%)H =0. (1.390)

The last expression can be construed as a terminal relation of the type
(1.383), and it can be used in circuit analysis in conjunction with other
circuit equations.

As another example, consider a core that consists of one thin magnetic
conducting lamination (or a stack of such laminations). Suppose also that
the core has an air gap of length 4 and that magnetic properties of the
core exhibit gradual magnetic transitions described by hysteresis loops as
exemplified by Fig. 1.9. In this case, we can use “rectangular profile”
approximation for magnetic flux density, which leads to the relation (1.224)
between electric (Eg(t)) and magnetic (Ho(t)) fields at the boundary. We
shall next express this relation in terms of v(t) and i(t). First, we remark
that the Ampére Law leads to the expression (1.366). In this expression,
Hj can be related to By(t) by the formula similar to (1.367):

_ Bo(t)
Ho .

Hy (1.391)

By substituting the last equation into expression (1.366), we obtain

Ho(t)e + y = Ni(t). (1.392)
0

Magnetic flux density Bqo(t) is a nounlinear function of Ho(t):
Bo(t) = f(Ho(t)), (1.393)

which describes an ascending branch of hysteresis loop.
By using formula (1.393) in Eq. {1.392), we have

, o J(Ho()5
Ho

Ho(t) = Ni(t). (1.394)

Next, by using formulas (1.384) and (1.393) in relation (1.224), we arrive
at
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Formulas (1.394) and (1.395) considered together can be construed as the
terminal relation between ¢(t) and «(2). Indeed, formula (1.394) is a non-
lincar equation for Hy(t). By solving this equation, Hy{t) can be found as
a nonlinear function of (¢):

Hy(t) = F(i(t)). (1.396)

By substituting this function into formula (1.395), we arrive at the terminal
relation between w(f) and (). However, in practical applications, instead
of finding function £ and excluding Hy(t) from the coupled Eqgs. (1.394) and
(1.395), we can use the above coupled equations as the terminal relation
between »(#) and i(#). In other words, we can diseretize these coupled
cquations and solve them jointly with the rest of electric circuit equations.
This has the advantage that. Ho (1) and, consequently, By(1) are determined
at every instant of time as we solve these equations. By knowing Hy(t)
and 13y(1). we can find zg(7) (see formmlas (1.209) and (1.223)). Knowledge
of zy(#) is very important. This is because, as soon as zg(t) reaches the
value of % (sce formula (1.251)). the distribution of magnetic flux density
over the lamination cross-section becomes aniform (within the framework of
“rectangilar profile”™ approximation). As a result, at subsequent instances
of tinme the relation between e(f) and i(#) can be expressed in ferms of
current dependent inductance Lo (i(1)):

oty = Lo (i) . (1.397)

i

where Lo (/(8)) is given by formula (1.352).

Thus. coupled Eqgs. (1.391) and (1.395) arc used as the terminal relation
between o(f) and (t) before the instant of thne the two rectangular frouts
are merged together at the middle of the lamination, while the terminal
relation (1.397) is used after that instant of time.

1.9 EDDY CURRENT HYSTERESIS AND THE
PREISACH MODEL

In Section 1.8, we disenssed how the electrie cireuit analysis and non-
linear ditfusion analysis can be coupled together. However. it was tacitly
asstumed inour previous discussion that the carrent () through a coil
{and magnetic ficld Hg(?) at the boundary) are monotouically increased
(or decreased) in time. Under this assumption. we were able to derive
the terminal relation between voltage «(¢) indueed in the coil and current
(1) throngh the coil. In the general case when curvent through the coil is
a piecewise monotonic function of thme, the derivation of the above termi-
nal relation becomes quite complicated. This is because of the phienomenon
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Fig. 1.31

of eddy current hysteresis. To explain this phenomenon, consider, as an
example, a thue vartation of magnetic feld Hy(t) shown in Fig. 1.31. It
will be assumed that the following incqualities are valid:

oly ol Ly
/ Hy(r)dr > -- / Hy(m)dr > / Holr)dr > - >
Jo Ji, Ji,

| (1.398)
- / [{()(T)(IT.
S

It will also be asswmed that magnetic properties of conducting material
are deseribed by rectangular magnetization curves (abrupt magnetic tran-
sitions) and that the initial value of magnetic fux density is equal to - I3,,,.

According to the previous assumptions. we concelude that during the
time interval 0 < £ < ¢ a “positive” rectangular front of maguetic Hux den-
sity 1s formed and moves toward the axis of a cvlinder (see Fig. 1.32a). The
radial coordinate 7o(t) of this front can be determined by solving Eq. (1.303)
or by usiug the approximate formula (1.308). At time ¢ = 1. the motion of
the positive rectangular front is terminated and a negative rectangular front
of magnetic lux density is formed. During the time interval ) <t < ¢y, the
latter front moves toward the eylinder axis (see Fig. 1.32 b). The radial co-
ordinate of this front can be determined by solving nonlinear Eq. (1.312). At
tine t = f,, the motion of this negative rectangular front s terminated and
a new positive rectangular front of magnetic Hux density is formed. This
front. moves toward the cylinder axis during the time interval o < 8 < ty,
and the distribution of magnetic flux density for this time interval is shown
in Fig. 1.32 ¢. At subsequent time tervals (1 <t <<ty 8y <t < 15, and
tn < < ty), new negative and positive rectangular fronts of magnetic Hux
density are formed, and the distribution of magnetic Hux density at time
t = ts looks like the one shown in Fig. 1.32 d. It is important to note
that radial coordinates 7'(()"") of still {motionless) rectangular fronts form a
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Fig. 1.32

wonotonically increasing sequence:
(02 ) ) () L (6) . BT
ry <y <y <y <y <y < < IR (1.399)

This follows directly from inequality (1.398) and Eq. (1.303) and (1.312).
In other words, the past time variations of magnetic fielkd Hy(t) at the con-
ductor boundary leave their mark upon future magnetic flux distributions
over the conductor cross-section. This suggests that there s a hysteretic
relation between the magnetic flux through the conductor cross-section and
the magnetice field at the boundary. To clearly understand this hysteretic
relation, we introduce the magnetic Hux:

.
D(t) = 2m / B(r.t)rdr. (1.400)
Jo
and the function: ,
wy(t) = / Hy(7)dr. (1.401)
Jo

Next., we shall plot &(¢) versus wo(f). Tt is evident from Eq. (1.303) and
Fig. 1.32 a that as w(t) is monotonically increased during the time interval
0 < t < t;, the flux ®(¢) is also monotonically increased starting from its
initial value —®,,, = —wR%B,,. Thus, the branch #17 is traced in Fig. 1.33
during the above time interval.  For the time interval £, < ¢ < ¢y, the



1.9 Eddy Current Hysteresis and the Preisach Model 83

magnetic field, Hy(t), is negative and the function wg(t) is monotonically
decreased. It is clear from Fig. 1.32 b that for the same interval the magnetic
flux is monotonically decreased as well. As a result, the branch “2” is traced
in Fig. 1.33. During the time interval to < t < t3, the magnetic field Hy(t) is
positive and the function w(t) is monotonically increased. It is obvious from
Fig. 1.32¢ that for the same time interval the magnetic flux is monotonically
increased as well. This results in the branch “3” in Fig. 1.33. By using the
same line of reasoning, it is easy to see that new branches “4,” “5,” and
“6” will be formed during the time intervals t3 < t < t4,t4 < t < t5 and
ts < t < tg. Thus, the relation between ®{t) and wo(t) is a multibranch
nonlinearity. It is also clear that branch-to-branch transitions occur after
each extremum value of wo(t). Indeed, the function wp(t) assumes its (local)
maximum values at times t = #1, t = t3, t = t5, and its (local) minimum
values at times t = to,t = t4, and t = t5, and at all these time instants
transitions to new branches occur. It is important to stress that the ®(¢)
vs. wg(t) relation is rate independent. This means that the value of &(t)
depends on the past extremum values of wg(t) as well as the current value
of wy (1), however, it does not. depend on the rate of time variations of wq(t).
The last statement is obvious from the fact that ®(t) is fully determined by
radial coordinates of rectangular fronts of magnetic flux density, and these
“front” coordinates depend only on the values of wg{f) and do not depend
on the rate of its time variations.

It is apparent that the branching described above oceurs inside some
major (“lmiting”) hysteresis loop shown in Fig. 1.34. This major loop is
formed when for two subsequent monotonic variations of wy(f) the corre-
sponding fronts of maguctic flux density reach the eylinder axis. Beyond
the major loop magnetic lux ®(t) may assume only two values: +@,, or
—b,,.

The major hysteresis loop as well as the branching inside this loop

Fig. 1.33
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,(I)m

Fig. 1.34

exhibit some asymmetry. This asymuetry can be completely removed by
redefining the function wq(t) as

Uiy

2

‘(;!(;(f) = U"()(f) - (14()2)

where w, is specified in Fig. 1.34. In our subsequent. disenssion. it will
be tacitly assumed that the above shifting of w(f) is performed when it is
needed.

Now. we can summarize our previous discussion by stating that the
essence of eddy current hysteresis is the multibranch rate independent non-
lincar relation between the magnetic flux @(¢) and the function wy(t) =
](: Hy(7m)dr. Tt is interesting to explore the use of mathematical models of
hysteresis for the description of eddy current hysteresis. One of the most
powerful hysteresis models is the Preisach model. The origin of this model
can be traced back to the landmark paper of F. Preisach [19]). Initially, this
model was developed for the deseription of magnetic hysteresis. However,
it was gradually realized that the Preisach model is a general mathematical
tool that can be used for the deseription of hysteresis of various physical
natures. Presently, there exists an extensive monographic literature on the
Preisach model [5], [6]. (9], [16], [20]. To make onr discussion self-contained,
the main facts related to the Preisach model are summarized in Appendix
A. Our presentation of these facts closely follows the book [16]. These
facts also will be used in Chapter 4 when superconducting hysteresis will
be discussed.

The Preisach model is given by the following expression:

f(t) = // jlee, ) agu(t)dadi, (1.403)

> i
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where u(t) is a physical quantity called input, f(t) is a physical quantity
called output, 4,4 are rectangular loop operators with & and 3 being “up”
and “down” switching values, respectively, while u{c, 8) is a weight func-
tion. Details related to formula (1.403) can be found in Appendix A.

The Preisach model (1.403} describes a rate-independent hysteretic re-
lation between input u(t) and output f(¢). In Appendix A, the theorem is
proven, which states that wiping-out and congruency properties consistute
the necessary and sufficient conditions for a hysteretic nonlinearity to be
represented by the Preisach model. The last theorem is very instrumen-
tal in establishing the connection between eddy current hysteresis and the
Preisach model. To do this, we recall that in the case of eddy current hys-
teresis, ®(t) vs. wy(t) relation is a rate-independent hysteretic nonlinearity.
Now, we shall demonstrate that this nonlinearity exhibits wiping-out and
congruency properties. Indeed, each time wg(t) is monotonically increased
(or decreased), a rectangular front of magnetic flux density is formed and
it moves toward the cylinder axis. This moving front will wipe out those
previous rectangular fronts of magnetic flux density if they correspond to
the previous extremum values of wg(t), which are exceeded by its new ex-
tremum value. In this way, the effect of those previous extrennun values of
wg(t) on the future values of magnetic flux ®(¢) is completely eliminated.
This means that the wiping-out property holds. Next, we shall demon-
strate the validity of the congruency property. Consider two variations of
wo(t): w(()l)(t) and w(()z)(t). Suppose that w(()l)(f) and ur(()z)(t) have different
past histories (different past extrema) but, starting from some instant of
time, they vary monotounically back-and-forth between the same reversal
(extremum) values. It is apparent from the mechanisi of nonlinear diffu-
sion described at the beginning of this section that these back-and-forth
variations of w(()”(t) and wgz)(t) will affect in the identical way the same
surface layers of the conducting cylinder. Consequently, these variations
will result in equal increments of magnetic lux ®(¢), which is tantamount
to the congrucncy of the corresponding minor loops. Since the wiping-out
and congruency properties are established for the ®(t) vs. wy(t) relation.
this relation can be represented by the Preisach model. Thus, by taking
formula (1.401) into account, we find

d(t) = // wla, ) ¥ap (/0 H()(T)dT> dadf3. (1.404)

azf

By using the following relations between ®(t) and v(t) as well as between
Hy(t) and i(t):

B(t) = % /Ot o(7)dr + ®o, (1.405)
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Ho(t) = %i(t), (1.406)

expression (1.404) can be written in the form:

%/()tv(r)dr—kd)o: //ﬂ(a,ﬂ)m (% /Oti(r)dr> dadB.  (1.407)

azp

The last expression can be interpreted as a terminal voltage-current relation
for a coil placed around a conducting magnetic cylinder. It is important
to note that this terminal relation is valid for arbitrary time variations of
current and voltage.

Formula (1.404) (as well as (1.407)) has been derived for a conducting
magnetic cylinder of circular cross-section. However, this formula can be
generalized for a conducting magnetic cylinder of “arbitrary” cross-section.
For such a cylinder, the nonlinear diffusion equation has the form:

O*H o*H  OB(H)
=0

‘ - , 1.408
PISIREr Bt (1.408)
where for the case of abrupt magnetic transitions

B(H(t)) = B, sign H(t). {1.409)

In Eq. (1.408), z and y are coordinates in the cylinder cross-section plane,
while the magnetic field is always normal to this plane.

Let us now assumne that the initial value of the magnetic flux density
in the cylinder is equal to —B,,. Let us also assume that Hy(t) varies with
time as is shown in Figure 1.31. By using the same line of reasoning as
before, we conclude that positive rectangular fronts of magnetic flux density
are formed and moved inwards for odd time intervals (t25x < t < tok41),
while negative fronts are formed and moved inwards for even time intervals
(k1 < t < k). Next, we shall transform nonlinear diffusion Eqgs. (1.408
(1.409) into rate independent forms for odd and even time intervals. To
this end, we introduce the function

t +
Wkt =/t H(r)dr, (H(t) = %) (1.410)

By integrating Eq. (1.408) with respect to time from ¢y, to t and by using
formula (1.409), we derive:

“+

Viw =0 |:Bm sign <81;:k> - B(tzk)] : (1.411)
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The last equation is valid within the region Q;kﬂ(t) occupied by a newly
formed positive front. In this region, function w;k is monotonically in-

. . . dw}, .
creased with time and, consequently, sign ( :;f") = 1. In the same region,

we also have B(tor} = —B,,. As a result, Eq. (1.411) takes the form of the
Poisson equation:
V?wgy = 20B,. (1.412)

The solution of the last equation is subject to the following boundary con-
ditions:

t
w;k+1(t)lL = w&2k+1(t) :/t Hy(7)dr, (1.413)
2k
w2+k+1(t)|14;k“(t) =0, {1.414)
aw;kﬂ
g0 =0 (1415

where v is a normal to the moving boundary L;k+1 (t) of the region Q;L,CH (1).
Boundary conditions (4.414) and (4.415) at the moving boundary
L;”kH(t) follow from the fact that magnetic field and tangential compo-
nent of clectric fleld are equal to %ero at the points of L;L,H_l {t) for the time
interval tor < 7 < ¢, that is, before the arrival of the positive front.
During even time iutervals, Hy(t) < 0 and negative fronts of the mag-
netic flux density are formed and they extend inwards with timme. By intro-

ducing the function
t
Woyp = / H{r)dr, (1.416)
top— 1

and by literally repeating the same line of reasoning as before, we end up
with the following boundary value problem:

Viwy, = —20B,,. (1.417)
¢
wy (B = wo 2k(t) = / Hy(r)dr. (1.418)
Lok
w;k(t)!L;A_(t) =0, (1.419)
Jwy,,
v IL,;k(t) =0 (1.420)

It is interesting to note that nonlinear diffusion Eq. (1.408) is transformed
into linear Poisson Eqs. (1.412) and (1.417). However, noulinearity of the
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problem did not disappear; it is present in boundary conditions (1.414)
(1.415) and (1.419) (1.420), which should be satisfied at moving bound-
aries L3, +1(t) and Ly, (t), respectively. Locations of these boundaries are
not known beforchand and should be determined from the fact that zero
Dirichlet and Neumann boundary conditions must be simultaneously sat-
isfied at these boundaries. In other words, formulas (1.412) (1.415) and
(1.417) (1.420) define boundary value problems with moving boundaries,
and these moving boundaries are the source of nonlinearity.

The following properties can  be  inferred by  inspecting
boundary-value problems (1.412) (1.415) and (1.417) (1.420).

Rate Independence Property.

Boundary value problems (1.412) (1.415) and (1.417) (1.420) are rate
independent because there are no time derivatives in the formulations of
these boundary value problems. Conseguently, the instantancous positions
and shapes of moving boundaries ij+l(t) and L, {t) are determined by
instantancous boundary values of w(tzk“ (1) and g, (1), respectively.

Symmetry Property.

Boundary value problems (1.412) (1.415) and (1.417) {1.420) have
identical (up to a sign) mathematical structures. This suggests that, if
[ty o0l = |u'“+<2k+[|. then the corresponding boundaries L, and L.ij are
identical.  In other words, there is complete symmetry between inward
motions of positive and negative fronts,

Now we introduce the function

Ny
'w”(f):/ Hy(m)dT. (1.421)
Jo

It is clear that function wq(t) is a sumn of the appropriate functions 11'(“;2,\,(#)
and w,, (). Tt is also clear that wo(t) achieves local maxima at t = 54
and local minima at + = £y, Next, we intend to show that $(#) vs. wy(t) is
a rate-independent hvsteretic relation. The rate independence of the above
relation directly follows from the previously stated rate independence prop-
erty. It is also true that ©(#) vs. wo(f) is a hysteretic relation. Indeed, the
current. value of ®(¢) depends not only on the earrent value of wp(t) but
on the past extremum values of wq(t) as well. This is because the past
extremun values of wy(t) determine the final locations and shapes of posi-
tive and negative rectangular frouts of B that were generated in the past.
These past and motionless rectangular fronts affect current values of ®(¢).
It is also apparent that there are reversals of ®(t) at extremum values of
wg(t). In other words, new branches of @ vs. wy relation are formed af-
ter local extrema of wy(t). The previous discussion clearly suggests that &
vs. wy is a rate independent hysteretic relation. Next, we shall demonstrate
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that this hysteretic relation exhibits the wiping-out and congruency prop-
erties. Indeed, every monotonic increase (or decrease) of wp(t) results in
the formation of a positive (or negative) rectangular front of the magnetic
flux density, which extends inwards. This moving front will wipe out those
previous rectangular fronts if they correspond to those previous extremun
values of wq(t), which are exceeded by a new extremum value of wg(t). In
this way, the effect of those previous extremum values of wo(¢) on the future
values of magnetic flux ¢(t) is completely eliminated. This means that the
wiping-out property holds. Now we shall demonstrate the validity of the
congruency property. Consider two different boundary conditions: wél) (t)
and w(()2)(t). Suppose that wél)(t) and w((,l)(t) have different past histo-
ries (different past extrema) but, starting from some instant of time, they
vary monotonically back-and-forth between the same two extremum (rever-
sal) values. It is apparent that these back-and-forth variations of w(()l)(t)
and 'zugz)(t) will affect in the identical way the same surface layers of the
conducting cylinder. Consequently, those variations will result in equal in-
crements of the magnetic flux, which is tantamount to the congruency of
the correspouding minor loops. Since the wiping-out and congruency prop-
crties constitute necessary and sufficient conditions for applicability of the
Preisach model, we conclude that the @ vs. wy relation can be represented
by the Preisach model. As a result. we arrive at the following representation
of eddy current hysteresis:

g ol
D(t) = // e 3) e < H(;(T)(IT) dodf3. (1.422)
J Jo

a>f3

which is valid for cylinders of arbitrary cross-sections.

It is worthwhile to stress two remarkable points related to the above
result. First, memory effects aud dynamic effects of eddy current hysteresis
are clearly separated. The memory effects are taken into account by the
structure of the Preisach model, while the dynamic effects are accounted

. . y .
for by the nature of the input <<lo H()(T)([T) to this model. Second, the last

formula suggests that the Preisach model can be useful for the description
of hysteresis extiibited by spatially distributed systems. This is in contrast
with the traditionally held point of view that the Preisach model desceribes
only local hysteretic effects in maguetic materials.

Next, we turn to the discussion of properties of function p(e, 8) in
formula (1.422). By using the symrnetry property, it can be inferred that
the same increments of wy(t), which occurred after different ex-
tremum values of wy(t), result in the same increments of ®(¢). This
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fact implies that the integral

Fla,B) = // p(a, pYda'dB’ (1.423)
T{(a,B)

over a triangle T(a, 3), defined by inequalities o < o, 8 > 8,0/ - 3 >0,
does not depend on « and 3 separately but rather on the difference o — 3.
In other words, the value of the above integral is invariant with respect to
parallel translations of the triangle T(a, ) along the line @ = 3. This is
only possible if

wa, B) = pla = B). (1.424)

This means that function p assumes constant values along the lines o — 3
= const. By using this fact, it can be easily observed that function p
can be found by measuring only the ascending (or descending) branch of
the major loop of ® vs. wy hysteretic nonlinearity. It can also be seen
that any path traversed on the (wq, ®) plane is piecewise congruent to the
ascending branch of the major loop. (See Fig. 1.33.) Thus, ¢ vs. wy
hysteretic nonlinearity is completely characterized by the ascending branch
of the major loop. This branch can be found experimentally by measuring
the step response of eddy current hysteresis. Indeed, by assuming initial
condition B(0) = —B,,. we apply the ficld Hy{t) = s(t). where s(t) is the
unit step function. We can then measure flux ®,(¢), which corresponds
to wy(t) = t. By excluding time ¢, we find the function ¢, (wy), which
describes the ascending brauch of the major loop. Thus, we arrive at the
remarkable conclusion that nonlinear (and dynamic) eddy current
hysteresis can be fully characterized by a step response.

It is clear from the previous discussions that the ascending branch of
the major loop can also be experimentally found by measuring response ®(t)
to any wonotounically increasing function wy = X (t), that is, to any positive
and sufficiently large current ¢(t). Indeed, for any monotonically increasing
function wy = X(t), we can find the inverse function t = X~ wy). By
substituting the latter function into response ®(t), we find the ascending
branch ®(X ~!(wy)) of the major loop. By using this branch, we can predict
eddy current hysteresis for arbitrary time variations of current i(t).

Boundary value problems (1.412) (1.415) and (1.417) (1.420) can be
used for a very elegant derivation of the formula for the front zy(¢) in the
case of plane boundary, that is, in the 1D case. In that case, the boundary
value problem (1.412) (1.415) is reduced to:

d*w

T =20Bn if 0<z <at), (1.425)

w(0,t) = wolt), (1.426)
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w(zo(t), 1) =0, (1.427)
iwa(l—z’tll%(t) =0. (1.428)

The solution to Eq. (1.425) that satisfies the boundary conditions (1.426)
and (1.428) has the form

w(z,t) = 0Bz — 20Bm220(t) + wo(t). (1.429)
To find 24(t), the boundary condition (1.427) is used, which leads to
—0 B z2(t) + wo(t) = 0. (1.430)

The last expression yields

alt) = (200 _ (fo H0(7>d7>2 | (La31)

oB 0B,

which is identical to formula (1.42).
To find H(z,t), we differentiate both sides of Eq. (1.429) with respect
to time and recall (1.410), which yields

dz
H(z,t) = —20Bmnz (;t(t) + Hy(t). (1.432)
¢
From formula (1.431) we find
dz()(t) . H()(t)

dt  20Bnzo(t) (1.433)

By substituting the last expression into formula (1.432), we arrive at

H(z,t) = Ho(t) (1 - Zoz(t)> , (1.434)

which is consistent with formula (1.37).

By using formula (1.431), we cau derive the expression for the ascend-
ing branch of the major loop of eddy current hysteresis in the case of a
magnetically nonlinear conducting lamination. In the above case, we have:

& = —,, + 2Bm20(t). (1.435)

By substituting formula (1.431) in the last expression, we find:

Bnwo]?
“’0] , (1.436)
[0}

<I)=*<I>m+2[
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which is the equation for the ascending branch. It is clear from this equa-
tion that this branch has a vertical (infinite) initial slope, that is, the slope
at wo = 0 (see Fig. 1.33). For this reason, weight function p(a, 8) is singu-
lar and must be understood as a distribution. Although we have arrived at
this conclusion for the case of lamination, it is of a general nature. This is
because at initial stages (i.e., for small penetration depths) nonlinear diffu-
ston in conducting bodies with curvilinear boundaries occurs almost (i.e.,
asymptotically) in the same way as in the case of plane (flat) boundaries.
As a result, the ascending branches always have vertical initial slopes and
functions p{a, 3) are always singular.

The above difficulty can be completely circumvented if we consider the
inverse wy vs. ¢ hysteretic relation. This relation is shown in Fig. 1.35. It
can be mathematically shown that this inverse hysteretic relation can also
be represented by the Preisach model

wy(t) = // U@, B)iap®(t)dads (1.437)

a>f3
with the weight function v{e, 3), which has the following property:
vie, 3) = v{er — j3). {1.438)

The last property suggests that function v{a. ) can be fully determined
by using the ascending branch of the major loop. In the case of lamination,
this branch can be found analytically. Indeed, by using formula (1.436), we
derive

(1.439)

wy =

c [P+ D, 2
B'Hl 2 '

which is the equation for the ascending branch.
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To find function v, we shall invoke formula (A.22) from Appendix A.
For the case when property (1.438) is valid, function F{a, 8) also depends
on a — 3, and formula (A.22) takes the form:

v(a) o (1.440)
For the ascending branch (1.439), function F and argument « can be iden-

tified as follows:
F = w,, a=>o. (1.441)

By substituting the last equalities into expression (1.439) and then by using
formula (1.440}, we derive:

via —f) = const. (1.442)

o
2B,
In the general case, function v(e — 3) can be found experimentally. The
best way to see how it can be accomplished is to write formula (1.437) in
terms of current ¢(¢) and voltage v(t). To this end, we employ formulas
(1.428), (1.406), and (1.405) and after simple transformations we arrive at
the following expression:

ot
) 0

%/{ i(r)dr = // v(a = B iap [%/ o(T)dr + <1>0} dedf. (1.443)

a>f

The last expression can be construed as a terminal voltage-current re-
lation for a coil placed around a conducting magnetic cylinder. The differ-
ence of this relation from the one given by formula (1.407) is that terminal
relation (1.443) is in a “voltage controlled” formm. This suggests that by ap-
plying any positive voltage v(t) (for instance v(¢) = s(¢)) and by measuring
i(t}, we can find corresponding functions ®(¢) and wy(t). By excluding time
t from those functions, we can find a relation wo(®), which represents the
ascending branch. This relation can be used for determination of v(«a — /3),
or it can be directly used to predict current i(t) for arbitrary variations of
voltage v(¢).

Finally, we remark that formula (1.422) can be gencralized to the case
when abrupt maguetic transitions are described by rectangular hysteresis
loops (see Fig. 1.7). It can be easily shown that in this case formula (1.442)
can be modified as follows:



94 Chapter 1 Diffusion of Electromagnetic Ficlds

|

A(Hy)

_HC / h
He 0
Fig. 1.36
- y ]
(1) = // pilev, NAan (/ )\(H“(T))({T) devd 3, (1.444)
J Jo

a2l

where function A(f{y) is defined as (see Fig. 1.36):

AH) = (Hy - H)s(Hy - H) b (Hy + H)s(-Ho - 1D (1415)

L. . . e |

anud s(-) is the unit step function.

As approxitiations, the last two formmlas can be used in situations
when actual bysteresis loops are close to rectangulir ones. In those situ-
ations, the same simple experiments as desceribed before can be used for
identification of function s
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CHAPTER 2

Diffusion of Electromagnetic
Fields in Magnetically
Nonlinear Conducting Media
(Vector Polarization)

2.1 NONLINEAR DIFFUSION OF CIRCULARLY
POLARIZED ELECTROMAGNETIC FIELDS
IN ISOTROPIC MEDIA

In this chapter. we shall continue our discussion of nonlinecar diflusion
of plane electromagnetic waves in the conducting half-space. In the previ-
ous chapter, our discussion of this problem was carricd out for the case of
lincarly polarized magnetic fields. In that case. the analysis was reduced to
the solution of a scalar nonlincar diffusion cquation. I many applications.
the magnetic field is not linearly polarized. For this reason. it is of impor-
tance to consider nonlinear diffusion of arbitrary polarized electromagnetic
fields. As was shown in Section 1.1, the above problem is reduced to the
solution of the vector nonlinecar diffusion equation:

e 2.1
02 =" (2.1)

or two coupled scalar nonlinear diffusion equations:

0211.:' — (’_(A)B.R(H_“ H.U)
oz ot

: (2.2)

90
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o2 T ot i
This obviously raises the level of mathematical difficulties. However, these
difficultics can be completely circumvented in the case of isotropic media
and circular polarization of clectromagnetic fields. This is due to the high
degree of symmetry of the problem in the above case. The analysis of
noulinear diffusion for the circular polarization of an clectromagnetic field
is of interest for the following two reasons. First, linear and cirenlar polar-
izations can be viewed as two limiting cases for other types of polarization.
Therefore, the solution of the problem for these two limiting cases may pro-
vide some insights in how the surface impedance of magnetically nonlinear
conducting wmedia depends on the type of polarization. Secoud, elliptical
polarizations of electromagnetic ficlds can be treated as perturbations of
the circular polarization. This will allow us to use extensively the pertur-
bation technique for the solution of the vector nonlinear diffusion Eq. (2.1)
in the case of elliptical polarizations of electromagnetic ficlds.

However, we shall first proceed with the discussion of nonlinear diffu-
sion in the case of circular polarization and isotropic media. For isotropic
media, the Cartesian components of the magnetic flux density are related
to the Cartesian components of the magnetice field by the formulas

B(H, H,) =g (\/ H? | _11_,) i, (2.1)

By(H, 1) = g (1124 12) H,. (2.5)

where p(JHY) = n (\/Hf + H;f) is the magnetic permeability of isotropic
conducting media.

[t is clear that we deal with the case of unhysteretic media. The case
of isotropic hysteretic media will be treated at the end of this section,

By substitating formnlas (2.4) and (2.9) into Eqgs. (2.2) and (2.3). re-
spectively, we end up with the following coupled noulinear diffusion equa-

tions: ", )
OH, ¢ IS o
02 "% [”' (\/Hf' + Hﬁ) H"‘] ' (2.6)
92 H, 9 S
S o (e 27)

We shall be interested in time-periodic solutions to the above equations
subject to the following boundary conditions:

H.(0,8) = H,,, cos(wt + 0y). (2.8)
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H,(0,t) = Hp,sin(wt + 6p), (2.9)
H(co,t) =0, (2.10)
H,(co,t) = 0. (2.11)

The boundary conditions (2.8) and (2.9) correspond to the circular polar-
ization of the magnetic field, whereas the boundary conditions (2.10) and
(2.11) reflect the fact that the magnetic field decays to zero.

Now we shall make the following very important observation. The
mathematical structure of nonlinear partial differential Eqgs. (2.6) and (2.7)
as well as of boundary conditions (2.8) (2.11) is invariant with respect to
rotations of x- and y-axes around the z-axis. In other words, the mathe-
matical form of the above equations and boundary conditions will remain
the same for any choice of z- and y-axes in the plane z = (. This suggests
that the solution of the boundary value problem (2.6) (2.11) should also be
invariant with respect to the rotations of the z- and y-axes*. This, in turn,
implies that the magnetic field is circularly polarized everywhere within the
conducting media:

H,(z,t) = H(z)cos{wt + 0(z2)), (2.12)

Hy(z.t) = H(z)sin{w! + 6(2)). (2.13)

Next, we shall formally show that the circularly polarized solution (2.12)
(2.13) is cousistent with the mathematical form of the boundary value prob-
lem (2.6) (2.11). First, it is clear from formulas (2.12) and (2.13) that:

H(2)| = \/H2(z) + H2(z) = H(2). (2.14)

This means that the magnitude of the magnetic field and, consequently,
the maguetic permeability g((HY) do not change with time at every point
within the conducting media.

Next, we represent formulas (2.12) and (2.13) in the phasor form:

H.(z) = H(2)el?®), (2.15)

*Strictly speaking, this statement is valid when the solution to the bound-
ary value problem (2.6) (2.11) is unique, which is assumed here on physical
grounds. In the case when there are many (or infinite number of solutions,
the symmetry of equations may not be reflected in the symmetry of each
individual solution, but rather in the symmetry of the overall pattern of
all solutions. this is the so-called “spontaneous symmetry breaking” phe-
LOenolt,
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Hy(z) = —jH(2)e’"), (2.16)

where, as before, the symbol “” ” is used for the notation of phasors, while
j=+v-1

It is apparent from expressions (2.14), (2.15), and (2.16) that
H(z) = |H.(2)] = |Hy(2)], (2.17)

and

p(HE) = (1Ba()) = 1 (1Hy(2)]) (2.18)

By using phasors (2.15) and (2.16) as well as the formula (2.18), it is easy
to transform the boundary value problem (2.6) (2.11) into the following
boundary value problems:

d’H, , . )
*I;zz(z) =Jwop (in(Z)i> H.(z), (2.19)
H(0) = Hpne!™, (2.20)
H,(0) =0, (2.21)

and .

TIND — o (11,(2)1) 1,02, (222
Hy(0) = —jHpe?%, (2.23)
H,(0) = 0. (2.24)

This exact transformation of the boundary value problem (2.6) (2.11)
into boundary value problems (2.19) (2.21) and (2.22) (2.24) can be con-
strued as a mathematical proof that the circular polarization of the incident
wave is preserved everywhere within the magnetically nonlinear conducting
media. This also proves the remarkable fact that there are no higher-order
time-harmonics of the magnetic field anywhere within the media despite its
nonlinear magnetic properties.

From the purely mathematical point of view, the achieved simplifi-
cation of the boundary value problem (2.6) -(2.11) is tremendous. First,
partial differential Eqs. (2.6) and (2.7) are exactly reduced to ordinary dif-
ferential Eqgs. (2.19) and (2.22), respectively. Second, the boundary value
problem (2.6)- (2.11) for coupled equations is reduced to two completely
decoupled boundary value problems (2.19) (2.21) and (2.22) (2.24). Fi-
nally, the decoupled boundary value problems have identical mathematical
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structures. As a result, the same solution technique can he applied to both
of them.

It turns out that simple analytical solutions to Eqgs. (2.19) and (2.22)
can be found in the case of a power law approximation of a magnetization
curve. This approximation is given by the expression:

B k43
H= <k> . (n>1), (2.25)

which can also be rewritten as follows:
B=kHr. (2.26)

This approximation implies the following formula for the magnetic perme-
ability:
p(H) = kH» . (2.27)
Sketches of the B vs. H and g vs. H relations corresponding to the power
law approximation are shown in Figs. 2.1 and 2.2, respectively. It is clear
that for the above approximation the magnetic permeability is decreased as
the magnetic ficld is inercased. Thus, this approximation takes magnetic
saturation of media into account. However. this approximation idealizes
the actual magnetic properties of media for very simall values of magnetic
ficld. Namely. the permeability approaches infinity as the field approaches
zero. The physical implications of this idealization will be discussed later,
By using formula (2.27), we find the following expression for the mag-
netic permeability e, at the boundary of media:

I
P (2.28)
By combining formulas (2.27) and (2.28), we can exclude the coeflicient &
from expression (2.27):

Hy
,“(11) = thn H_ . (22‘))

m

From formulas (2.18) and (2.29), we obtain:

; | H)" .
i (|I{l(*)|> = fim "}_17” - s (2.5())
|
7 () = A o
M (iHU(“)‘) Han Hm . (251)

By substituting expressions (2.30) and (2.31) into Eqgs. (2.19) and (2.22),
respectively, we arrive at the following boundary value problenis:
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BA}

\
n

Fig. 2.1
Hy
> H
Fig. 2.2
!Zi\{ ( ) }:"{ ( ) Ly
¢ s\ o _,—3_ A N
_([‘-32 = JWT iy }-Im }{,(M)
H:(“) = f]'m(ylou~
H.(~) = 0.
and
N ) -
dZH! (,’;) ) 11“(2) )
# = JW iy, Hm 11_.,(2)
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(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)
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First, we find the solution to the boundary value problem (2.32) (2.34).
This solution will be sought in the form:

~ o4
i LA (1-5)  if0<z<za, (2.38)
) if z > 2,
where ) ,
Hm = an(f](}”v (239)
a=a +jo’. (2.40)

It is clear that the function (2.38) satisfies the boundary conditions (2.33)
and (2.34). Next, we shall choose parameters 2o, o and «” in the way that
Eq. (2.32) will be also satisfied. To this end, we shall rewrite formula (2.38)

as follows: .
Ha(z) _ (1 - 3) _ (2.41)

m <0

The last expression is written in an abbreviated form with the tacit under-
standing that it is valid for 0 € z < zg, while for z > 2 the right-hand side
is equal to zero. Similar abbreviations will be tacitly nsed in subsequent

formulas when they are appropriate.
From formulas (2.39) (2.41), we find:
IH"'(:)I ={1-2 (2.42)
IIm B ] . '

which leads to

By substituting formulas (2.41) and (2.43) into BEq. (2.32), we arrive at:

’
oltn

. a—2 . x— - D
ov(ev = 1)[:1,,, <l ;> = jwoptm Hop 28 (1 — :--) . (244

<0 ()

It is clear that the last equality will hold, if the following two conditions
are satisfied:

o BT (2.45)

and:
alo—1) = jwopim - (2.46)

From formula (2.45), we find:
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o = . (2.47)

Next, we shall use the characteristic Eq. (2.46) to determine o’ and zy. To
this end, we shall represent this equation in the form:

o +jo" N — 1+ ja) = jwoumz?, (2.48
0
which is equivalent to the following two equations:
a(e —1)— (o) =0, (2.49)

o'(20" — 1) = wopmzd. (2.50)
By using formulas (2.47) and (2.49), we find

2n(n+ 1)
[ S 2.51
x W1 ( 51)

Next, by substituting this expression for o’ mto Eq. (2.50), we arrive at:
(2a/ = 1)V/a'(of = 1) = wop,2E. (2.52)

By taking formula (2.47) into account in the last equation, we finally obtain:

[2n(n + 1)(3n + 1)2]3
V&G i (n — 1)

(2.53)

20 =

Formulas (2.38), (2.47), (2.51), and (2.53) completely define the solution to
the boundary value problem (2.32) (2.34). The boundary value problem
(2.35) (2.37) is identical (up to notations) to the boundary value problem
(2.32) (2.34). For this reason, the solution to the boundary value problem
(2.35)-(2.37) can be written in the form:

Hy(z) = —jHpn (1 - i>a, (2.54)

20

where a and zg are given by the expressions (2.40), (2.47), (2.51), and
(2.53).

Solutions (2.38) and (2.54) are written in terms of phasors. We shall
next transform them into time-domain forms (2.12) and (2.13). To this
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cnd, we shall first use the following transformations:

L\ e
Hr(z) = H"n(fjell (1 o "’_)
)

Z(

(259
= Ho (1 - ) o oo m(=55)].
<0
Now, by using the standard expression
H:::(Z-. I/) = R({[H:I:(z)({-]“/l] (250)
and formula (2.55), (2.47), and {2.51), we derive
| -
N7 2n(n+1 z
} Ho(:.t) = H,, (1 - —) cos |t 4 0y + Y2URED (1 - —)
20 n— 1 20
’ (2.57)

By repeating the same line of reasoning., we arrive at the following expres-
sion for H,(z.4):

[ S : , e
N SR .
\ H,(z.t)=H, <1 - ——) s | wit 4 g + \/ i 1.)|“<1 o ) ) ‘
' n :

20 ~0
| i

In the last two formulas, parameter zy is given by expression (2.53).

Formulas (2.57) and (2.58) give the exact analytical solution to the
boundary value problem (2.6) (2.11) in the case of power law relation
(2.27). Next, we shall analyze this solution. If we fix time ¢ in the last
two formmulas and consider H, and A, as functions of =, then we can cas-
ily observe that on the mterval 0 < = < zp these functions have infinite
numbers of zeros (infinite muubers of oscillations). It is also clear that the
sequences of Hy-zeros and H-zeros converge to zp. This is the result of
logarithmic dependence of phase 6(z) on z. Indeed, by comparing the last
two formulas with expressions (2.12) and (2.13), we find

0(;) = 9() -+ -—*\/g_”*(l%**) In (1 - i) \ (259)

n--



2.1 Nonlinear Diffusion of Circularly Polarized Fields 105

By using the last cquation and formula (2.29), we find the following expres-
sion for the magnitude of magnetic Aux density as a function of z:

1_) —éT
IX@—MW(E&» 1u@—gm<L_i> 7 (2.61)
Iirn Z0

where the following notation is introduced:
Bm, == ,U/mHm.- (262)

A typical plot of B(z) as a function of z is shown in Fig. 2.3. It is ap-
parent. from this figure (as well as from formnla (2.61) and other previous
formulas) that there is a finite depth zg of penetration of clectromagnetic
ficlds into magnetically nonlinear conducting media. This can be explained
by the fact that power law approximation (2.26) introduces idealization of
magnetic properties of conducting media by allowing for the infinite growth
of the magnetic permeability when the magnetic field tends to zero. This
infinite growth in g causes the complete attennation of the magnetic field
at. the finite distance zg. Actual z-variation of magnetic flux density 3(z),
schematically shown in Fig. 2.4, exhibits a tail “17 at small values of B(z).
This tail is usually of no practical significance and can be neglected. As a
result, the depth zy attains the physical meaning of the penctration depth
of the “bulk™ part of magnetic flux density.

Now, we proceed to the discussion of surface inpedance in the case
of circular polarization. To find this impedance. we shall use the following
formulas for the clectrie field phasors:

VdH,(z) 4

(o) = LAteA2)
2 (2) =

Sy (2.63)

- 1
Eilz) =+ o dz

o dz
By using the last formulas as well as expressions (2.38) and (2.54), we find:

~ (v 5

o -
E.(0) = —H,(). E,(0)=—-—H.,(0). (2.64)
a2 20
From the last equations we obtain the following expression for the surface
impedance:
(0 E,(0
B0 B0 o .
H,(0) H.(0) o
Now. by invoking formmlas (2.10), (2.47), (2.51), and (2.53), we represent
the surface impedance in the form:

u—(a+jmv@%ﬂ (2.66)
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-~ 7
Fig. 2.3
BA
\__1
|
z -7
0
Fig. 2.4
where 5
@ = ad S (2.67)
[2n(n + 1){3n + 1)?]7
TICESY
\/n(n + 1) (2.68)

. [2n(n + 1)(3n + 1)2]5

It is also convenient to represent. the surface impedance in the polar form

7= |nle¥ (2.69)

2n P Wiy, b n+1
— ) tangp = — = 4/ - - 2.70
i (n + 1) o YTy 2n ( )

where
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By performing simple calculation in accordance with formulas (2.67), (2.68),
and (2.70), we find that as n varies from 7 to oo, coefficients a and b as well
as va? + b2 and tany vary within the following narrow limits:

92 < a< 971, (2.71)
687 < b < .694, (2.72)
1.15 < Va2 + b2 < 1.19,.707 < tanp < .76. (2.73)

This suggests that with fair accuracy the surface impedance n can be rep-
resented by the formulas

Wikm

or

n=1.17,/ Whm 5363 (2.75)
o

It is instructive to compare these results with the expression for the surface
impedance obtained in the previous chapter (see Section 1.5) for the case of
linear polarization of electromagnetic fields. This expression can be written
in the same form as (2.69) (2.70), however, the limits of variations for
Va? + b?% and tan ¢ are appreciably different and specified here:

1.28 < VaZ + b2 < 1.35. (2.76)

49 < tany < .71. (2.77)

It was shown that in the case of linear polarization the value of surface
impedance is most sensitive to the “squareness” x of hysteresis loops.
There is no parameter like that in formulas (2.67) and (2.68). This makes
the above comparison between the cases of circular and linear polarization
somewhat ambiguous. This ambiguity can be completely removed in the
case of abrupt magnetic transitions described by rectangular magnetization
curves. These magnetization curves can be obtained from the power law
approximation (2.26) in the limit of n approaching infinity. In this limit,
by using formulas (2.67), (2.68) and (2.70), we find

Va? + b = 1.19, (2.78)

tany = 0.707. (2.79)
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In the case of linear polarization, for the same quantities we have (sce
formula (1.55) from Chapter 1):

Va2 f b2 = 1.34, (2.80)
tan o = 0.5. (2.81)

The last two expressions have bheen obtained for sinusoidal variations of
magnetic field at the boundary of conducting half-space. In the case of si-
nusoidal variations of electric field at the boundary, the last two expressions
arc modified as follows (see formulas (1.71) and (1.72)):

Va+ b2 =147, (2.82)
tanp = 424, (2.83)

which makes the discrepancy with the case of circular polarization even
more pronounced. This discrepancy suggests the importance of examining
how the polarization affects the surface impedance.  This study will be
carried out in subsequent. seetions of this chapter.

Next. we shall extend the results of this section to the case of isotropic
hysteretic media. In the case of isotropic hysteresis. a uniformly rotating
magnetic field results in a uniformly rotating component of magnetic fux
density. However, due to hysteresis, this uniforinly rotating component of
magnetic flux density lags hehind the magnetic ficld (see Fig. 2.5). Apart
from the above-mentioned uniformly rotating component of magnetic Hux
density, there can be a component By of the magnetic flux density that
does not change with time. This constant component is usually dependent.
on past history and it is not essential as far as eddy currents are concerned.
The existence of the uniformly rotating component. B(#) of magnetic flux
density has been observed in unmerous experiments and it can be justified
on the symmetry grounds.  Indeed, the isotropicity of hysteretic media
means that the properties of this media should be invariant. with respect.
to rotations of Cartesian coordinates. In particular, the media properties
must be invariant with respect to rotations of - and y-axes. Since the
mathematical form of a uniformly rotating (in z y plane) magnetic field
is also invariant with respect to rotations of the same axes, we conclude
that the time-varyving component of magnetic fiux density should have the
mathematical form that is invariant with respect to these rotations as well.
This implies that the time-varving component of magnetic lux density is a
uniformly rotating vector.

By using Fig. 2.5, the relation between the uniformly rotating veetors
B(t) and H(¢t) can be expressed in the mathematical form as follows:

B = u(|A])e 7 H. (2.84)
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ﬁ(t)l >
B(t)

(1)‘\

Fig. 2.5

B and H are vector phasors correspouding to B(t) and H(t), respectively,
while u(|H
¢ being a “loss™ angle.

In the sequel, we shall use the approximation (model) (2.27) for g,
which can also be written in the forms (2.30) and (2.31):

yt (IHI) = flum

In addition, it will be assumed that,

Ye~ 7% can be construed as a complex magnetic permeability with

1.(2) "

mln

A = const.

The last assumption will be justified (to some extent) after the derivation
of the expression for the magnetic fux density.

By using formulas (2.84), (2.85), and the above assumption, we can
maodify the boundary value problems (2.32) (2.34) and (2.3%) (2.37) as fol-
lows:

- R 1
PH (2 sl .
T2 T WO ke ! I, H,(z). {2.86)
H.(0) = Hype?", (2.87)
H (o) = 0, (2.88)
and |

°H,(z) Jal ‘

73’2 = jwopt,e™ o H, (%), (2.89)

H,(0) = —jH,,e?™, (2.90)
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H,(o0) = 0. (2.91)

To solve these boundary value problems, we shall use the same ap-
proach as before. Namely, we shall look for the solution of Eq. (2.86) in the
form

H.(z) = H,, (1 - i) : (2.92)

20

where By, = Hoed® and o = of + ja’.
It is clear that function (2.92) satisfies the boundary conditions (2.87)
and (2.88). Fromw the last formula, we also find

L a'(n 1)

H (= " z - v

H.42) _ (1.2 _ 2.93
H,, ( ( 0 ) (29%)

Now. by substituting formulas (2.92) and (2.93) into Eq. (2.86), we tind that
this equation will be satisfied if « is the root of the following characteristic

cquation: ‘
ala — 1) = jwa/lv,,,(’_*m:(z,. (2.94)
and ,
viin -
g =) (2.95)
n
The last. relation yields:
- - S 2n 7 N
"= — 2.96
o = - (2.96)

We shall next proceed to the determination of imaginary part o and
2o from Fe. (2.94). To this end, we shall rewrite the complex Eq. (2.94) as
the following two coupled equations:

o' (of = 1) — ((\")2 = WOty 2h Sin b, (2.97)

o (20" = 1) = wa g, 22 cos o, (2.98)

By using formula (2.96) in the last two equations, we find

2 2n(n+1) S )
()" — —(”—(7_ 0z = —Wofiy, 25 SiN G, (2.99)
w_n=1 2 s .

1 WT i 25 COS . {2.100)

:3n+l
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The last expression yields:

: 3n+1 )
WO 2 = 7 TTo0s 50”. (2.101)
By substituting the last formula into Eq. (2.99), we arrive at
: 3 1 2n(n+1
(@ 4oL g2 A D (2.102)
n— (n—1)2

" dn+] Bn+1)2% ,  2n(n+ 1) I
= and ——tan‘“gd + —— 2.103
ey e tand + 1n 1) wn? 4§+ 17 ( )

Finally, by substituting f()mmla(Z l()J) into Eq. {(2.101}), we derive

by substituting £ T

iR (3n+1)% 2 2n(n+1) Bl
\/’(,,'-1)(“5" <\/1( )y tan d + ”7”')3‘ — T(n—_) tan ())

2 = —L (2104
U \/(D(Tll”l ( )

—

[t is apparent that in a particular case of § = 0, formulas (2.103) and (2.104)
are reduced to formulas (2.51) and (2.53).
Siilar to formula (2.93), we find

H,(z) = -jH,, (1 - i) , (2.105)

20

where o and zg are specified by the expressions (2.98), (2.103), and (2.104).
By using formulas (2.84), (2.85), (2.92), and (2.105), we derive

o]

) o (2.106)

| v

12(3) = Bm (1 -

i

(

The last expression suggests that for sutliciently large (and typical) values
of n, the magnitude of magnetic lux density is fairly close to its boundary
value B,, almost everywhere within the conducting media (see Fig. 2.3).
Therefore, the loss angle 8, which is a function of B(z), is also close to
its boundary value almost everywhere within the media. This justifies the



112 Chapter 2 Diffusion of Elcctromagnetic Fields

assiuption that 4 is constant. Furthermore, the values of § are usually
sall (and tend to zero) for sufficiently large values of B,,.

By using formulas (2.92) and (2.105) and the same line of reasoning as
before, we derive the following expression for the surface impedance:

By using expressions (2.96), (2.103), and (2.104), this impedance can be
written in the form (2.66) with a and b given by the following “messy”
CXPression:

2n
a=
‘ B Bl (3n+1) 2”("* 1) Al oy, Y
(n - 1)\/(,, “Yeowd (\/1(”4)— an’ § + T 2= t"““’)
(2.107)
1) )
)‘:" ’—'— and + \/1511 + B tan? g + ,),’L( 'T)l)
b= N _ e (2.108)
_Bngl ’HnH)~’ (et 1) in{l
\ s (\/ TUERBE tan® 5 * e =1 and)

As was pointed out before, cocllicionts « and b are not very sensitive to
particnlar values of # for n = 7. Thus, assuming that nis sulliciently large,
we can simplify the Tast two equations:

2
T Tim =l (2.109)

\/(:;E;, (\/T an< o+ 2 - f;t,;lm)')

——t(m() + /2 tan? (> +—
b= o . \/ . (2.110)

\/;1.ji" <\/ Teant o+ 2 f:ftzmd)

The results of caleulations of Va2 + b2 and tan e as functions of the Toss
Kr/
angle d are shown in Figs. 2.6 and 2.7.
In concluding this section. we shall make the following historical re-

mark. Many fornmlas presented in this section were first derived and pub-
lished by the Russian scientist, LR Newmann [9] in 1949, However, there
these formulas had entirely different meaning. They were obtained for the
problem of noulinear diffusion of linearly polarized clectromagnetic fields
by using the method of “equivalent sinusoids,” that is, by neglecting higher-
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Fig. 2.7

order harmonics. For this reason, these formulas were approximate in
nature. Many years passed before it was understood and proved (see [4],
[5]) that these formulas give the exact solution to a different problem,
namely, that of nonlinear diffusion of circularly polarized electromagnetic
fields. This historical fact supports the notion that “scientific progress,
considered historically, is not a strictly logical process™ (see [10]).

2.2 PERTURBATION TECHNIQUE

In this section, we shall develop the mathematical machinery for the
analysis of noulinear diffusion in the case of noncireular polarizations of
electromagnetic fields. We shall treat these polarizations as perturbations
of circular polarization. Such an approach requires the development of per-
turbation techunique. This technique will lead to linear partial differential
cquations for perturbations.
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To start the discussion, we shall first mathematically state the problem
under consideration as the following boundary value problem: find the time-
periodic solution to the coupled nonlinear diffusion equations

O*H, _ 0B.(H Hy)

922 o (2.111)
subject to the boundary conditions:
H.(0.t) = Hyy coswt + eH,,, (8, (2.113)
H,(0.8) = Hy, sinwt + eHy f, (1), (2.114)
Hi(>. t) = Hy(sc. t) = 0. (2.115)

Here € is o small (in some sense) parameter, f.(8) and f,(#) are known
DY '/
periodic functions of time with period T = =, while constitutive relations

for B.(H, H,) and By(H,. H,) are given by

Bo(H, H,) = (\/ﬁz + 11;’) H,. (2.116)

B,(H, H,) = (\/1?+_H§) H,. (2.117)

[t is apparent that boundary conditions (2.113) and (2.114) can be viewed
as perturbations of boundary conditions (2.8) and (2.9), which correspond
to the cirenlar polarization of the incident electromagnetic field. The only
difference is that, for the sake of notational simplicity, initial phase 6y has
been omitted in boundary conditions (2.113) and (2.114) in comparison
with boundary conditions (2.8) and (2.9). This initial phase is not essential,
and it can always be removed by the appropriate change of time origin.

Now, by using the general idea of perturbation techniques, we shall con-
sider series expansions for H, (2, 8), H, (2. t). B.(H. . H,), and B,(H, . H,)
with respect to €. By restricting ourselves only to zero- and first-order
terms, the above e-expansions can be written as follows:

Ho (2. t) = HY (= t) + ehe(2,t), (2.118)
Hy(z,t) = Hy(2.t) + ehy(2,1), (2.119)
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B.(H., H,) = B,(H}, H)

OB, OB
+e {h i (HY, 1Y) +h,,d < (HY, H")J, (2.120)
By (Hars Hy) = !/ (H(r)HI(/))
OB, B, 1
H{}],,,,,OHi (H,‘,?,1-1;))+hl,0H (H°, H”)], (2.121)

where H(z.1), H)(z.1), and h,(z, 1), hy(z.t) arc zero- and first-order terms
of H.(z,t) and H y (2. 8), respectively.

By sul)xtmmng1 formulas (2.118) (2.121) into Eqgs. (2.111) (2.117) and
by equating the terms of like powers of €, we end up with the following two
houndary value problems:

9?H ] e
L& 70V2 o ( FJ0N2 0 9 19¢
= [,1. <\/(H_L) F(HY) )H] (2.122)
PHY J ————
Y — 5 0y2 )2 Y 912
o () ).
H_(,?(()\f) = H,, coswt, (2.124)
H(0.8) = H,, sinwt, (2.125)
HY) (0. 1) = HJ (. 1) =0, (2.126)
and
O, 3 B, OB,
= hoe == (I} H)) + b, H) H))| . 2.127
9=~ "ot {’ o ”")U( ) (2.127)
&h, 3 on, oB
—2 == |h, HYH)) 4 hy =L (HY HY) | 2.12
o= 7ot {" o, (o Hy) + vom, ) (2.128)
T (0,8) = Hop fo(8). (2.129)
Ry (0,1) = H,y, £, (8), (2.130)
ho(se.t) = Dy (¢, t) = 0. (2.131)

Thus, we have arrived at the nonlinear boundary value problem (2.122)
(2.126) for zevo-order terms HP(z t) and Hf}(a t) and the lincar boundary
value problem (2.127) (2.131) for perturbations b (z.t) and hy{z.1).

It is obvious that the boundary value problem (2.122) (2.126) is iden-
tical to the boundary value problem (2.6) (2.11) studied in the previous
scection for the case of circular polarization. Consequently, we can use the
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results from the previous section and write the solution to the boundary
value problem (2.122) (2.126) in the form:

20
z\" " Vv 2n( 1
H)(z,t) = Hn <1 - -—> cos {wt nin+ ) (1 - Zﬂ ,

20 n —

2n
H,?(z,f) = H,, (1 - L) sin [u)f + f\/__L—Yi-l (1 - ~>
’ 20 n—1
(2.133)
where, as hefore, n is the exponent in the power law approximation (2.25),
while zg is given by the formula (2.53).
Our next step is to use the last two expressions to transform Eqgs. (2.127)
and (2.128) for perturbations. We begin this lengthy transformation by
cevaluating the derivatives

B, OB, 0B, 0B,
oll,” oH, 0oH, OH,

(2.134)

By using formulas (2.116) and (2.117) and straightforward differentiation.
we obtain

gj_jl _ z;g/ _ (%(H) _ ﬁ’»}j’-’/‘ (2.136)
g%; _ (11)+1;%(H)-£§. (2.137)

where we used the following notation:
H? + H2. (2.138)

By invoking the power law approximation, we find (sce (2.28) (2.29)):

H o\
u(H)—//rn.<H> ‘ (2.139)

i 1-—n H\""' 1
—(H B Ce= 2.14
(lH( )= n Eka < : ) ( 0
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By substituting formulas (2.139) and (2.140) into expressions (2.135)
(2.137), we end up with

0B, H\*! 1—n H?
- = fim | 55— S+ =5 2.
oH, " <H) { TTh o w (2141
OB, 0B, l-n H\*"" H.H,
= = m rr : - 5, 2142
oH, ~ OH, n <H> H? (2.142)
oB, H\""! 1 —n H?
= = Hm \ <11 55 2.14.
oH, " <H> { TR (2.143)
It is clear from formulas (2.132) and (2.133) that
HO(z,1) = Hpn (1 - ) (2.144)
<0

From the last expression, we obtain

oy w ! L\ 2
<Z ) = (1 - —) (2.145)
™m <)

By using formulas (2.132), (2.133), and (2.144), we derive

HONY I U P Lo
o ) = oS [wt+0(2)] = 2 + 2 cos[ 2wt + 260(2)). (2.116)
H() 2
—Y ) = sin?[wt + 0(2)] = L cos[2wt + 26(2)] (2.147)
HO 2 2 ’
HYH) , 1 A ‘
W = cosfwt + 0(2)] sinfwt + 6(z)] = 5 sin[2wt + 260(=)]. (2.148)

where, for the sake of brevity, the following notation is used:
ven(n+1 z z
0(z) = Venn £ 1) In <1 - --—> =’ In (l - —) . (2.149)
n—1 2 20

By substituting formulas {2.145) {2.148) into expressions (2.141) (2.143)
and then into Egs. (2.127) and (2.128), we can transform these equations
as follows:

2 .
z Ph,(z,t) 1% .
(1 - :()) __(')-22 = Oy ;); {’hr(‘—st)

1-n

1 +n
2n

(2.150)

+
n

cos(2wt + 20(z))} + hy(z, t)%:ﬁ sin (2wt 4 26(z)) }
i



118 Chapter 2 Diffusion of Electromagnetic Fields

82h,(z,t) 8 1-
(2 P50 e

14+n 1-—
2n 2n

n sin(2wt + 260(z))

+ hy(z,t) { n cos(2wt + 29(2:))}

(2.151)
Equations (2.150) and (2.151) are coupled linear partial differential equa-
tions of parabolic type with variable (in time and space) coefficients. These
equations look messy, however, their structure can be essentially simplified
by introducing new state variables:

#(2,t) = ho(2,t) + jhy(2,1), (2.152)
P(z,t) = ha(z,1) — jhy(z,1). (2.153)

Indeed, by multiplying Eq. (2.151) by j and then adding it to Eq. (2.150),
we find

<1— )8%( )—au 2[1+n¢(z,t)
20

022 ™ot on
(2.154)

1—n " . . .
h, t ‘J(Zwt+20( h JJ (2wt +20(2)) )
+ et 5 Py z e

By using formula (2.153) and the fact that according to expression (2.149)
. j2a”
(I20(5) (1 _ _> , (2.155)
2y
Eq. (2.154) can be trausformed as follows:

8%¢(z, ) l-ndl|l+n
(1 - Z‘U) dZ =0 Um 2n & 1 — né(zvt)
p (2.156)

> j2a )
+ <1 - —> ejz“’"d)(z,t)}
20

Now, by wultiplying Eq. (2.151) by —j and then adding it to Eq. (2.150)
and by using the transformations that are similar to those just described,
we derive:

2 e
2\ © 0%Y(z,t) 1-nd 1+n
<1_%> Ta2 - T m TRV Y

2 —j2a’ ,
+ (1 - ~> 6_72“’t¢(z,t)}
2z

(2.157)
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We shall be interested in periodic solutions to Egs. (2.156) and (2.157)
subject to the boundary conditions

$(0,t) = Hin (f2(t) + 5 fy (1)), (2.158)
¥(0,t) = Hp(f2(t) — 3 (1), (2.159)
P00, t) = 1h(c0,t) = 0, (2.160)

which follow from boundary conditions (2.129) (2.131) and formulas (2.152)
and (2.153).

We look for the periodic solution to the boundary value problems
(2.156) (2.160) in terms of Fourier series:

Pz t) = Y ou(z)e?™, (2.161)
k=—00

Pz t) = Y yr(z)el™ (2.162)
k=—-00

By substituting Fourier series (2.161) and {2.162) into Egs. (2.156) and
(2.157) and equating the terms with the same exponents, after simple trans-
formations we derive the following coupled ordinary differential equations:

2 2 j2a
(1 - i) o) _ i [amu) N (1 - i) -wk-zm} L (2.163)

20 dz* 2y

2 o —-J2a”
(1 - i) L) i I:(ﬂ/’k(z) ; (1 - i) ~¢k+z(z>} . (2.164)

20 dz? 20
where for the sake of brevity the following notations are introduced:

Xk = kwo iy, (2.165)
14+n

= . 2.166

a= (2.166)

Thus, we have reduced the coupled partial differential Egs. (2.156) and
(2.157) to the infinite set of coupled ordinary differential Eqgs. (2.163) and
(2.164). The remarkable property of these simultaneous ordinary
differential equations is that they are coupled in separate pairs.
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To make this pairing coupling manifest, we change & to & — 2 in Eq. (2.164)
and rewrite Eqs. (2.163) and (2.164) in the form

2 o j2a’
z d°op(z ) ) z .
(1 - “) k"gg) - JXk [(MPk(z) + (1 - ) "’J)k—-z(z)} =0,
Zo dz Z0

2 9, —_}2(!”
z Aoz . z )
(] — > k—;() — JXk-2 {(L'L//‘A:;z(z) + (1 — ) '(:')A:(Z)} =4,
20 dz 20

(k=0.42.+3,...).

{2.168)
Thus, we can solve cach pair of coupled Eqgs. (2.167) (2.168) separately.
The solution of these equations should be subject to the following boundary
conditions:

G1(0) = Ho(fen + Jfyn), (2.169)
U”k—‘.l(()) = [[m(f,r./\'—-'.l v jf;/.k --2)< (217())

(‘,")[‘.( X ) = —E(VX’) =0,

(2.171)
(k= 0.1, 42, £3...).

where f, o and f, 4 are Fourier coctlicients of functions f,(f) and f,(1).
respectively, while the boundary couditions (2.169) (2.171) follow from
boundars conditions (2.158) (2.160).

After functions ¢y (2) and ¢ (2) are detertined, from Egs. (2.152) and
(2.153). we can find complex Fourier coetlicients for perturbations /(= f)
and b (= f):

[y : -

hea(5) = (o) + i), (2.172)
[ ’ .

hya(z) = 5 (o (2) - vu(=)) . (2.173)
J

and (he perturbations themselves:

holzt) = 3 hp(2)elil, (2.174)

h=--x

hy(zt) = Z Dyl 2)el Rt (2.175)
k= -

It is apparent that b, and ko, 4 are complex conjugate to b, g and by —k.
For this reason, it suffices to solve the boundary value problems (2.167)
(2.171) for nonnegative values of & only.
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We will seek a solution to Eqs. (2.167) and (2.16%) iu the form

fefs
) , (2.176)

| ¢

br(z) = Ay (1 -

o

I

N\ e —j2af
1/"1&'—-2(2) = Bk...z <1 - »7_“) . (2177)
As before, it is tacitly nnderstood that formulas (2.176) and (2.177) arc
valid for 0 < z < zi. whereas for z 2> zg functions ¢ (z) and i _o(2) are
equal to zero. Thus, the boundary conditions (2.171) are satisfied.

By substituting formulas (2.176) and (2.177) into Eqs. (2.167) and
(2.168), we find that these equations are satisfied if Ag, By_o, and 35 are
constrained by the relations

(3% = 3 — jxwazd) Ax — Jxwzg Bz = 0. (2.178)

7.}A\;\A,2:£Ak + [(ik — ‘]‘2()”)2 — (/ﬁ- — _}2(\”) - _}.\/\-,2(1:5} By = 0.
(2.179)
Relations (2.178) and (2.179) can bhe construed as linear sinmltancous equa-
tious with respect to Ag and B35- 4. Since these equations are homogeneous,
they will have nonzero solntion if and only if the corresponding determi-
nant is equal to zero. This yields the following characteristic (dispersion)
cquation for

(3 = B = Jueaz) (B — 7207 = (B = j207") = j\keaaz]]

(2.130)

A

+ \aYro2zg = O
The coetlicients of this characteristic equation depend only on A and

exponent. noof the power law approximation. Indeed, by using formulas

{2.53), (2.165), and (2.166). we find

o kBN + D0+ l)\/‘n + 1 (2.181)

k=) = (n - 1)? 2n

k(k = 2)(3n + 1)2(7i+71)

9 1w
2n(n —1)? (2.182)

4
Xk Xk=27) =
" is given by (2.51).
From the above fact we conclude that the roots of the characteristic
Eq. (2.180) depend only on & and n.

while «f
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It can be shown that, for any k and n, the characteristic Eq. (2.180)
has two roots (two solutions ) G;, and 8} with positive real parts:

Re(8,) >0,  Re(B)) > 0. (2.183)

By using these roots and formulas (2.176) and (2.177), the solution ¢ (z)
and ¢,-2(2) to differential Eqs. (2.167) and (2.168) can be represented in

the form

2 By » By

or(2) = A} <1 — —> + AY (1 - —) , (2.184)
20 20

. 2 B —12a" . 5 By —j2a"
1,[1k_2(2) = Bk—‘l 1- TO + Bk—2 1- z— . (2185)
“ 0

The unknown coeflicients Aj, A, B, _,, and B}/_, can be found by satis-
fying the boundary conditions (2.169) and (2.170) as well as Eq. (2.178).
This results in the following four equations:

wt AL = Hop (fox +ifyr), (2.186)

Bi_ o+ Bl y=Huy (fos—2—Ffyk—2). (2.187)
((B)* = — jxwast] Ay — jxak By, =0, (2.188)
(0 = B = Jxwazd] AL = s B, =0, (2.189)

As far as Eq. (2.179) is concerned, it will be automatically satisfied. This
Is because it is equivalent to Eq. (2.178) when f is the solution to the
characteristic Eq. (2.180).

Equatious (2.186) (2.189) can be easily solved and their solution is
given by

Cilfen — fenez  Clfyr+ fyx—2
= H,, | L Al SNt L Y, . 2.190
k { cr—cy o= (2.190)

Ciferk = fok—2  .Cifyr + fur—2
h=Hp | 2= bl o8 2.191
(=t [ c,-cr (19D
By, = CiAL, Bi_,=ClAY, (2.192)

where the constants Cp and C} are defined as follows:
N2 s 2

(;v]/C — (ﬁk) lgk ]XkaZ(). (2193)

IXk7h
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AV -1 2
oy = ) =B — ixwaz (2.194)

Ixk73

Thus, the algorithm of calculation of perturbations h,(z,t) and hy(z,t) con-
sists of the following steps: (1) solve the characteristic Eq. (2.180) and find
the roots that satisfy conditions (2.183); (2) use formulas (2.190)-(2.194)
to find the coefficients A}, AY, B, and By and plug them into expressions
(2.184) and (2.185) to determine the functions ¢,(z) and ¥i(2); (3) use
formulas (2.172) and (2.173) to find Fourier coefficients h; x and hy ; and
then the perturbations themselves according to Egs. (2.174) and (2.175). It
is useful to stress that this algorithm is valid for any periodic perturbations
fo(t) and £, (t).

Up to this point, we have discussed only first-order perturbations in
€. For higher-order perturbations in €, calculations become much more
convoluted. However, the structure of partial differential equations for the
higher-order perturbations remains almost the same as for the first-order
perturbations. Indeed, if we use the following e-expansions:

H.(z,t) = H(z,t) + ehy(z,t) + €ho(2,8) + ..., (2.195)

Hy(z,t) = H)(2,t) + ehy(2,t) + hy(2,8) + ..., (2.196)

and repeat the same line of reasoning as in the derivation of Egs. (2.127) and
(2.128), then we arrive at the following equations and boundary conditions
for the second-order perturbations hy(z.t) and hy(z. t):

8%h,(z,t) d I 9Bz , 0 0
5 %% [hr(z,t)aHI (HI,Hy)
- 0B, o 0 0B,
+hy(z,t)8Hy(H2,H3)] =55 [hi(z,t) oH? (H. HY)) (2.197)
+ 2hz(z, t)hy (2 t)—azi (HY, HY) + h2(= t)azB“” (H2, H?)
Y OH 0, N VI oH2 VT Y
3hy(z,t) 9 - 3By .0 10
AT {hx(z,t)aHI (HO, 1)
(2.198)
1 0B, 0 70y | _ Eﬁ 2 62311 0 o
+hy(z,t)aHy (HI,Hy) =35 hi(z,t) G2 (H), Hy) +
asz 0 0 2 82311 0 0
2h”(z’t)hy(z’t)8—HIa—Hy (Hz, Hy) + hi(z,¢) DI (2, Hy) |,

hz(0,t) = hy(0,t) = 0, (2.199)
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h(co,t) = hy(co,t) = 0. (2.200)
By comparing partial differential Eqs. (2.197) and (2.198) with partial dif-
ferential Eqs. (2.127) and (2.128), we observe that these equations have
almost identical structures with the only difference that the equations for
the first-order perturbations are homogeneous, whereas the equations for
the second-order perturbations are inhomogeneous. The right-hand sides
of the later equations are determined by the zero-and first-order terms.
On the other hand, the boundary conditions for the second-order pertur-
bations are homogeneous, whereas this is not the case for the first-order
perturbations. Since the equations for the second-order perturbations have
the same mathematical structure as in the case of the first-order pertur-
bations, the same analytical technique can be used to find their solution.
Namely, these partial differential equations can be reduced to the infinite set
of ordinary differential equations coupled in separate pairs. However, the
solution of these ordinary differential equations cannot be carried out ex-
plicitly because the first-order perturbations should be found first. Finally,
we shall remark that partial differential equations similar to Egs. (2.197)
and (2.198) can be derived for perturbations of any order. However, the
right-hand sides of these equations become more complex as the order of
perturbation is increased.

2.3 NONLINEAR DIFFUSION OF ELLIPTICALLY
POLARIZED ELECTROMAGNETIC FIELDS
IN ISOTROPIC MEDIA

[n this section, we shall apply the perturbation technique developed in
the previous section to the analysis of nonlinear diffusion of elliptically po-
larized electromagnetic ficlds. We begin with a brief review of how elliptical
polarizations can be characterized. There are two commonly used ways to
deseribe elliptical polarizations. The first way is to specify the equations
for z- and y-components of the field

H,(0.t) = Hypcos (wt + 0pz) (2.201)
H,(0,t) = Huyy cos (Wt + Goy) (2.202)

with
9() - 9()1: - H(Jy (2203)

being an initial phase difference. It is well known that the endpoint of
the magnetic field vector H(O,¢) specified by Egs. (2.201) (2.202) traces
an ellipse. The semimajor and the semiminor of this ellipse as well as its
orientation with respect to z- and y-axes are completely determined by
three parameters Hoyg, Hmy, and 6y, In this sense, these three parameters
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completely characterize elliptical polarizations. However, these parameters
do not have the same dimension. For this reason, it is sometimes more
convenient to characterize elliptical polarizations by the Stokes parameters.
These parameters are defined as follows:

I=H., +H, (2.204)
Q=H., - H:, (2.205)
U = 2H, Hmy cos by, (2.206)
V = —2H,, Hpy sinbp. (2.207)

These parameters have the same dimension and they are related by the

equation
I?=Q*+U*+ V2 (2.208)

The last equation leads to the notion of the Poincaré sphere. The radius of
this sphere is I, and points on this sphere are uniquely defined by the Stokes
parameters @, U, aud V. These three Stokes parameters also uniquely
characterize various elliptical polarizations. Thus, we conclude that the
elliptical polarizations can be represented by the points on the Poincaré
sphere (2.208). In this representation, the north pole (V = 1.U = 0,Q = 0)
and the south pole (V = =1, U = 0,Q = 0) correspond to left- and right-
handed circular polarizations, respectively, while the points of the equator
V = 0 correspoud to linear polarizations of different oricntations. The
points of the northern and southern hemispheres represent left- and right-
handed elliptical polarizations.

The Stokes parameters and the Poincaré sphere are frequently used
for characterization of elliptical polarization in optics where parameter [
has the physical meaning of light intensity. However, these parameters are
not convenient for the development of the perturbation techniqgue, because
of nonlinear relations between the Stokes parameters and magnetic field
components. For this reason, we shall use the characterization of elliptical
polarizations based on parameters Hyz, Hpmy, and 6p. This characteriza-
tion allows one to take explicitly into account the isotropicity of media and
reduce the number of parameters used for specification of elliptical polariza-
tions. Indeed, for fixed H,,; and H,,,, the orientation of an ellipse traced
by the endpoint of H(0,¢) is determined by the phase difference 85. How-
ever, for isotropic media all these orientations are equivalent. Consequently,
one can choose z- and y-axes as major and minor axes of the ellipse, which
results in the following expressions for the field components:

H.(0,t) = H,,, coswt, (2.209)
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Hy(0.t) = Hpy sinwt, (2.210)

with

'H'VWJT >... H‘Hly' (2211)

In this way, elliptical polarizations can be characterized by only two pa-
rameters Ho,, and H,y of the same dimension. This characterization is
also convenient for the introdnction of perturbation parameter e:

w7 g (2.212)

When e = 1, one deals with linear polarizations, whereas for € = 0 one deals
with circular polarizations. By using paraweter e, the boundary conditions
(2.209) and (2.210) can be written in the form

H,.(0.t) = H,, coswt + eH,,, coswt, (2.213)
H,(0.t) = H,, sinwt — ¢H,, sinwt, (2.214)

where

Hoe + Hyyy,
By comparing boundary conditions (2.213) (2.214) with boundary condi-
tions (2.113) (2.114), we canideutify functions f.(4) aud f,(f} as follows:

folt) =coswt. f(t) = - sinwt. (2.216)

Now, it is clear that the Fourier cocthicients of functions f,.(¢) and f,(f) are
given by

X 1 X 1 - -
f_,-‘___] = Q. ./.,-.] = Q, f_r'}‘- =0 lf |}\‘ # 1. (221{)
, 1 . 1 . - o
Jy-1= 5 o= B fun =0 if|A] £ 1. (2.218)
By using the last expressions and formulas {(2.169) and (2.170), we find
¢d_1(0) = Hipo 0(0) =0 if k£ -1, (2.219)
O(0) = Hyoo v (0) =0 if k£ L (2.220)

Thus, in the case of elliptical polarizations the boundary value problemns
(2.167) (2.171) can be written as follows:

’

PRV 2ev’
< ﬂz: 2z J
P2 ekl e+ (1 - a(2)] = 0,
20 (12 20

(2.221)

1!(‘:
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2 o, —j2a”
1“4~ z
(1 - i) T s {awk_xz) +(1-2) m(z)} -0,

20 d22 20
(2.222)
&% (0) = th—2(0) = 0, (2.223)
@k(oo) = 1;");‘;,2(00) =1, (2224)

if k>0 and k # 3.
For k = 3, we have

N 2 24 2 j2a
(l - i) M - j,\’g [(l(f),’;(Z) + (] - —> - UI(Z):' = () (2225)

dz? 20

2\ %y, (2) 2\ 7
1 - — —— _j\/l at?) (Z) +{1-— - (,’);;(Z) ={), (222())
20y (122 Z0
B3(0) = 0. ¥ (0) = H,,. (2.227)
da(c) =3 (o0) = 0. (2.228)

Because all the equations and boundary conditious of the boundary value
problams (2.221) (2.224) are homogencous, we conclude that these bound-
ary value problems have zero solutions. Consequently, we have

dr(z) =0 ifk>0and k # 3, (2.229)

Pr(z) =0 i k>0andk #1. (2.230)
From formulas (2.229) (2.230) and (2.172) (2.173) we find that

Ben(2) = hy _p(2) =hya(z) =hy 4 (2) =0 if k#1and k# 3,
(2.231)
where “+” means a complex conjugate quantity.

Thus, we conclude that only the first and the third harmonics of the
magnetic fHeld are not equal to zero, while all other harmonics are equal
to zero. We have obtained this result because we have restricted ourselves
only to first-order perturbations. If we take into account higher-order per-
turbations, we shall recover higher-order harmonics of the electromagnetic
field.

From the purely mathematical point of view, it is quite interesting that
the solution to the coupled partial differential Egs. (2.150) (2.151) subject
to the boundary conditions (2.129) (2.131) can be represented as a sun
of first- and third-order harmonics only. This suggests that the coupled
Eqgs. (2.150) (2.151) may have inherited some symmetry properties from
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the unperturbed problem (2.122) (2.126) describing nonlinear diffusion of
circularly polarized clectromagnetic fields.
According to formulas (2.172) (2.173) and (2.229) (2.230), we find

. 1, )
haa(z) = hy ((2) = Q'q'n(z)., (2.232)
. J, o o
hya(z) = hy, (z) = 5’0/'1(3), (2.233)
1
hes(z)y =02 _4(2) = ‘—2-(,63(:). (2.2:34)
. J 5 ar
hya(z) = hy _4(2) = "‘"QC"’:;(:)- (2.235)

Thus, if we solve the boundary value problem (2.225) (2.228) and find
the functions éy(z) and 4 (z), we can then determine the first and thircd
harmonics of magnetic field perturbations. The solution of the boundary
vahie problem (2.225) (2.228) proceeds along the lines discussed in the
previons section. Namely, we seck the solation to this boundary value
probleny in the form

i’ N
az) = A (1 - ) + A (‘ ) : (2.236)
-0 <0
- B g2a” ~ TN
n =B (1 :> s (1 ) * (2.237)
-0 S0

where 3 and 37 are the roots of the following characteristic equation (see
(2.180)):

(5 13— _j\;;:(fu.) [(‘:’f - ‘/'20”)2 — (i3 j2¢") — Jx :3(:} + sz = O,
(2.23%)
which satisfy the conditions (2.183). The coetlicients of this characteristic
cquation depend only on ne and they are given by the formulas

3B3n 4 D+ 1) n+1

) 9 o
g = Bt Dl D) n+ 1 2,239
AR (1 — 1)? 20 ( )

RS IIASINCE N

2, Bt Dt 1) \ 2.240
X1 (”‘ o l)z In ( )

4 3B+ DEn+ 1)
N G R (2.241)

 2n(n - 1)2
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Consequently, roots 3 and $” are only functions of n. These functions
have been computed and presented in Figs. 2.8 and 2.9, respectively. By
knowing roots 8" and 3", coefficients A’, A”, B’, and B” in formulas {2.236)
and (2.237) can be found by using the expressions

L= A = Jx323
A= ((B/)Q - /3') — ((/3”)2 _ ﬂ//) Hp, (2242)

Fig. 2.9
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i (B =8~ jxszda o o4
v ()2 - 3) = ((8")? - ﬁ")Hm’ (2.243)

B = . B = 8"~ jxszga H,. (2.244)
(32 = 5) - (32 - )
The last expressions arc derived in a straightforward way from formmnlas
(2.190) (2.194) and (2.217) (2.218).

Knowing the coefficients A’, A7, B, and B”, we can now proceed to
the caleulation of surface impedance. First, we shall find the expressions
for phasors of the first and third harmonics of the magnetic field. Accord-
ing to formula (2.174), for the first-order harmonic of the magnetic ficld

perturbation 1;.51)(3\ t) we have

WD (20t) = hey (2)e7 4 B2 (2)e™7 = Re (2, (2)e7'] . (2.245)

This means that 2%, ;(z) is the phasor of 11.5;‘)(3, t). By using this fact, the
phasor of the first harmonic of the magnetic field can be written as follows:

Hoo(z) = H" () + 2eh, ,(2). (2.246)

Similarly, we find

H!/-l<3)

Now. by using formmulas (2.38). (2.51). (2.232). (2.233). and (2.237) in the
last two expressions, we obtain

) . o N ;‘1'—.)2&”
}ltl(:) :jim (1 - ;> +¢'J:B,<l :->
<0 <0
. 37— 20
+ B (1 —~ L)
<0

R - v . ;‘1'71'2(["
I_Iy.l(:) = _.jl-lm (1 o :_> +/( {B/ (I — ;>
<4 20
. 87— )20
s <1 - _“.> }
20

By using the same line of reasoning as before, we derive the following ex-
pressions for the phasors of the third harmonic of the magnetic field:

g’ - 3"
) + A" (1 - —) } . (2.250)
20

HI(2) 4 200,40 (2). (2.247)

f

(2.248)

(2.249)

| &

H,x»,:s(x:) = ¢ [A' (1 —

&

)
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Hy3(2) = —je {A’ (1 - i>ﬂ/ + A" <1 - f-)[j/} . (2.251)

20 20

It is interesting to note that, in the first-order approximation (with respect
to €), the third harmonic of the magnetic field is circularly polarized, and
its sense of polarization is identical to that of the incident field at the
boundary.

By invoking formulas (2.63), we find the following expressions for the
phasors of the first harmonics of the electric field at the boundary:

By (0) = -;%0 (Hy ~ ¢(B'(8 — j2a") + B"(8" — j2a"))],  (2.252)
£, (0) = —i (0Hp + €(B'( — j20") + B"(B" — j2a"))].  (2.253)

Now, we can define surface impedances:

E. (0 E, (0
Ny = A-‘.l( )a Ty = — Ay,l( ) (2254)
H, .1 (0)

By using the last two expressions and formulas (2.213), (2.214), (2.252),
(2.253), as well as (2.65), we derive

ey Hy —€[B' (3 —2jo”)+ B"(3" — j2a'")]
1 (1(1 - E)Hm ’
Nye  Hp +e(B(( = 2jo") + B"(3" — j2a")]

= , 2.256
7 a(l+e)Hp, (2:256)

where 77 1s the surface impedance in the case of circular polarization of the
magnetic field.

Formulas (2.255) and (2.256) allow one to evaluate to what extent the
surface impedance is affected by deviations from circular polarizations. It is
lmportant to note that the right-hand sides of formulas (2.255) and (2.256)
do not depend on H,,. This is because, according to formulas (2.243) and
(2.244), coefficients B’ and B’ are directly proportional to H,,,. Thus, the
right-hand sides of (2.255) and (2.256) are functions only of n and €. These
functions have been computed for various values of n and € and the results
of computations are shown in Figs. 2.10, 2.11, 2,12, and 2.13.
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n

.
Fig. 2.10
m..\
arg{ \E‘I.ll
- - £
Fig. 2.11
n,
N

Fig. 2.12
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(degrees)

Fig. 2.13

Owr calculations are based on the perturbation technigue. For this
reason, they are inevitably approximate in nature. Therefore, it is desir-
able to evaluate the accuracy of the perturbation technique. ‘The rigorous
mathematical evaluation of the acenracy of the perturbation technique is
beyoud the scope of this book. However. some insights concerning this ac-
curacy still can be gained. This can be done by applving the perturbation
technique to the case of circular polarization. For this case, the exact ana-
lvtical solution is available (sece Section 2.1). The comparison of this exact
solution with the solution obtained by using the perturbation technique
will provide some insights into the accuracy of the perturbation technigue.

Consider nonlinear diffusion of the magnetic field in the case of the
following boundary conditions:

H,.(0.1) = H,,(coswt — esinwt), (2.257)

H,(0.t) = Hy, (sinwt + € coswt), (2.258)

where € is some siall parameter.

It is easy to see that the perturbed and unperturbed magnetic fields
are circularly polarized.  First, we shall nse the perturbation technigue
developed in the previons section. By comparing formulas (2.257) (2.258)
with formulas (2.113) (2.114), we observe that

folt) = —sinwt,  f,(t) = coswt, (2.259)
The Fourier coefficient of the functions f,. () and f, () are given by:

1 -1
froi= = for===. fer=0 if[k|#1. (2.260)
27 2j
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1 1
fy.—lziw f’y,l :57

By using the last expressions and formulas (2.169) and (2.170), we find

fok =0 if [k # 1. (2.261)

61 (0) = jHm, &x(0)=0 if k>1, (2.262)
Pe(0) =0  forall & > 0. (2.263)

By using last equations and the same reasoning as before, we easily conclude
that

hok(z) =hy 4 (2) =hyx(2)=h, 4(2)=0 if k>1 (2.264)

Thus, as expected, there are no higher-order harmonics of the magnetic
field perturbation. To compute the first harmonic of the magnetic field

perturbation, we invoke Eq. (2.167), which for & = 1 can be written as
follows:
2 2207
z Ao (z . . z
(1 — A> —%—é—) —Jxi {u.q’)l(:) + <1 - ) -L’)l(z)] = 0. (2.265)
<0 az <0

From formulas (2.172), (2.173), (2.262). and (2.263) we tind
Yor(z) = he o (2) = Jhy i (2) = R (2) = ghy () = 01(2). (2.266)

By using equality (2.266). Eq. (2.265) can be modified as follows:

z 2 (12(.‘)1(:) - 20"
(-2 'T'"fhﬁmﬂﬂ+(l~—) -mun}:u<z%n

20 d:Z 20

According to formula (2.262), the solution to this equation is subject to the
following boundary conditions:

()')l((]) :.j}[nr (pl(;X;) =0. (2208)
Now it is casy to prove that the solution to the boundary value problem
(2.267) (2.268) is given by
<0

Indeed, by taking into account the fact that o’ = I (o) and by substi-
tuting expression (2.269) into Eq. (2.267), we arrive at:

VA «x @
i 0H,, (1 _ Z) o Hola— 1) (1 - z) -0, (2.270)

Z( 20 20
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which is tantamount to
o —a—jxila— 1)z =0. (2.271)
According to formulas (2.165) and (2.166), we have
xi(a — 1)z¢ = woptmzs. (2.272)

This means that Eq. (2.271) coincides with the characteristic Eq. (2.46).
Because «is the root of the latter equation, we conclude that Eq. (2.271) is
satisfied. This proves that expression (2.269) is the solution to the boundary
value problem (2.267) (2.268).

Now, by using formulas (2.232), (2.233), (2.245), and (2.269), we find
that the perturbation technique leads to the following expression for the
phasors of the magnetic field:

H,(z) = (1+ je)H,, (1 - ) (2.273)

20
. ¥
20
In the last two formulas, the penetration depth zg is determined by the

value of 1, computed for H = H,,:

Hoan = }‘Hrlrl:¥ - (2275)

Next, we shall use the formlas (2.38) and (2.54) and write the exact expres-
sions for the phasors of the magnetic field. First, we note that, according
to the boundary conditions (2.257) and (2.258), we have

Fl'm = (] +j()111n- (227())

Now. by using formulas (2.38) and (2.54), we find

I:{T(:) = (1 +.j(')Hm (l - :i) B (2277)
~0)
IA{U(Z) = '—.j(l + .jF)f]7rr (1 - é) . (2278)
20

In these two formulas, the symbol ~ is used to distinguish between the exact
value of penetration depth and the one found through the perturbation
technigue (sece (2.273) (2.274)). By comparing formulas (2.277) (2.278)
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and (2.273)-(2.274), we find that they are identical with the exception that
the penetration depth 2o is determined by the value of fi,, computed for
the exact magnitude of the magnetic field H = v/1 + ¢2H,,:

i = k (\/1 + 62Hm> e (2.279)

This discrepancy in the penetration depth determines the inaccuracy of the
perturbation technique. Let us examine how this discrepancy affects the
surface impedance, which is the quantity that is most interesting in many
applications. By using the same reasoning as before, we find that the values
of the surface impedance obtained by using the perturbation technique and
the exact solutions are given by

n= 2 5= (2.280)

T2 20

From these formulas, we conclude that the phase of the surface
impedance is not affected by the inaccuracy of the perturbation technique.
As far as the magnitude of the surface impedance is concerned, from for-
mulas (2.280) and (2.53) we find

7

g

[Lm 2 % o
A= (I+e€) ™ . (2.281)

The results of computations of the ratio ‘i—;\ for various values of n and ¢
are shown in Fig. 2.14. Tt is clear from this figure that for e < 0.5 the error
of the perturbation technique does ot exceed 5%.

n|s

Fig. 2.14
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2.4 NONLINEAR DIFFUSION OF CIRCULARLY
POLARIZED ELECTROMAGNETIC FIELDS
IN ANISOTROPIC MEDIA

In this section, we shall extend the perturbation technique to the anal-
ysis of nonlinear diffusion of circularly polarized electromagnetic fields in
anisotropic media. We shall mathematically treat constitutive relations for
anisotropic media as perturbations of constitutive relations for isotropic me-
dia. However, we shall first discuss the question of how the material proper-
ties of magnetically nonlinear and anisotropic media should be mathemati-
cally described. This question is of independent interest. In the sequel, we
assume that magnetic media is unhysteretic. Since hysteresis is neglected,
the relation between the magnetic flux density B and the magnetic field H
should be represented by a single-valued function:

B = B(H). (2.282)
It turns out that not any single-valued function B(H) can be used for the
description of magnetic properties of materials. The absence of hysteresis
imposes some restrictions on B(H) (see [7]). To find these restrictions, let

us recall that the absence of hysteresis nmeans that any local eyclic losses
are cqual to zero. Mathematically, it can be expressed as

fH 4B =0, (2.283)
L

where L is an arbitrary closed path in H-space, that is, in the three dimen-
stonal space with axes Hy, Hy,, and H..
On the other hand, we have

0= fd(H-B) - %H-dB+ fB-dH. (2.284)
L L i

By taking into account expression (2.283) in formula (2.284), we find

/413 “dH = 0. (2.285)
L

The last equation means that the B-field is curl-free in H-space:

curlyB(H) = 0. (2.286)
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This implies that:
OB, B, o
e T (N TR 2.2
oH,, ~ OH,, R (2.287)

where 1, x2, 3 stand for x,y, and z, respectively.
From formula (2.287), we conclude that the Jacobian matrix

J(H) = {(zi‘; = ‘)B } (2.288)

1s symmetric.

This is a mathematical restriction that must be imposed on any consti-
tutive relation B(H) for nonhysteretic media. However, this is not the only
restriction on B(H). There are two additional (and natural) constraints on
B(H), which can be expressed by the following inequalities (see [7]):

|/AH|? < AB - AH < C|AH|?. (2.289)

where O 2> ¢ > 0, AH is an arbitrary increment of the magnetic field,
while AB is the corresponding increment of magnetic fux density.

Inequalitios (2.289) admit the following physical interpretation. The
left inequality in (2.289) is valid for passive media. For such media, in-
crements AH of magnetic field and the corresponding increments AM of
magnetization form acute angles. This means that projections of AM on
the directions of AH arc nonnegative. In other words, passivity of media
nnplies that any inerement AH of the maguetic field results in an increment
AM of magnetization whose component, parallel to AH, should have the
same direction as AH (see Fig. 2.15). The property of passivity of media
requires that

AM  AH > 0. (2.290)

On the other hand, we have

AB = /1.(;AM + /L()AH, (2291)

From the last two formulas, we derive
AB - AH > jo|AHJ?, (2.292)

which is tantamount to the left inequality i (2.289) with ¢ > .

The right inequality in (2.289) reflects the property of saturation of
magnetic media. This property means that, for any fixed H and B, pro-
jeetions of AB on the dircetions of AH are monotonically increasing fune-
tions of |[AH|, which exhibit saturation. In other words, these functions
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are represented by curves that lie below some straight line (see Fig. 2.16).
Mathematically, the last fact can be expressed as follows:

AB.-u<C|AH|, u= ‘%I%, (2.293)
—pl AH

Fig. 2.15

where C' is the slope of the above-mentioned straight line.

It is obvious that the last formula is equivalent to the right inequality
in (2.289).

Inequalities (2.289) can be expressed in terms of Jacobian matrix (2.288)
as follows:

clé]? < J(H)E- € < CIEP, (2.294)

where H is an arbitrary magnetic field, while gis an arbitrary vector.
The proof of equivalence of inequalities (2.289) and (2.294) is based on
the following relation:

AB = < /0 I .f(H,,)du) AH, (2.295)

where
H,=H+vAH, (0<v<1). (2.296)
To establish relation (2.295), we begin with the obvious identity
1
dB., (H,
AB, =B, (H+AH)- B, (H) = / —'(’i—(—)du. (2.297)
0 v
On the other hand, we have
dB;.(H,) 9Ba, ,,xJ GBL
e G i H = Z (-)HIJ H,,. (2.298)
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By substituting the last formula into expression (2.297), we find

9B,
AB, = —(H,)dv | - AH, , 2.299
,, Z( SEed) A (2.209)
_)
AB‘G‘P I,

= |aH|

Fig. 2.16
which is the same as formula (2.295).
By using relation (2.295). inegualities (2.289) can be rewritten as fol-
l()WS:

AH[?. (2.300)

N
dAﬂﬁg(/,KHA>AHvAH§(‘
SO
or

1
«5</.anmJu~ug(t (2.301)
J0

where uis a unit vector defined in formula (2.293).

Now we are ready to prove imegualities {2.294) by using reasoning by
contradiction. Suppose that the left inequality (2.294) is not valid. This
means that we can find magnetic ficld H and mnit vector u such that

J(Hu u < e (2.302)

Then, assuming that coeflicients of Jacobian matrix are continuons func-
tions of H, we can find such a small value of AH that for all H, =
H+ vAHu and 0 < v < 1 we have

JH,)u-u < ¢ (2.303)

By integrating the last inequality with respect to v, we find

3|
(/ .j(H,,)(iI/) u-u<c, (2.304)
Jo
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which contradicts to the left inequality (2.301). This reasoning by con-
tradiction proves the left inequality (2.294). By using the same line of
reasoning, the right inequality (2.294) can be established.

Thus, we have found that the Jacobian matrix (2.288) of the consti-
tutive relation B(H) of nonhysteretic magnetic media is symmetric and
satisfies inequalities (2.294). It is easy to demonstrate that these restric-
tions hold for the constitutive equation of isotropic media:

B(H) = u(H))H. (2.305)

Indced, formula (2.136) suggests that the corresponding Jacobian matrix is
symmetric. The validity of inequalities (2.294) can also be verified. To this
end, we mention that formulas (2.135) (2.137) can be written as follows:

0B,
= u(H)di; + JH H )

o,

(2.306)

where §,; is the Kronecker delta.
By using the last formula. we find

3 ”=ZZ§§ = nt) ¢

1 d .
-"(‘[H ZZH &H.,€, = p(H)IgP°

1 » Lu(H 2
() e
(2.307)

Next, we assume that

dp(H)
dH

This assumption is, for instance, valid for the power law approximation
(2.25) (2.27). By using inequality (2.308). from formula (2.307) we derive:

< 0. (2.308)

~ —

JH)E- € < p(H)E. (2-309)

On the other hand . .
(H-€)* < H?[¢[? (2.310)

By using the last inequality and (2.308) in formula (2.307), we obtain

J(H)E € > (u( )+Hd“( >|§|2 (2.311)
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It is clear that

- dp) d B dp(H) o o
palH) = 2 = D H) = (i) + B o)
Thus, we find i o .
JH)E - € > pq(H)|E]” (2.313)

By combining inequalitics (2.309) and (2.313), we arrive at:

- —

ja(EDIE? < JB)E - € < u(H)IE%, (2.314)

which means that

= 11;}11/1,,1(1'1), = wiax ju(H), (2.315)

where minimum and maximuim are taken over the relevant range of variation
of H.

It is worthwhile to note that sometimes the situation can be encoun-
tered when ¢ = 0 and ("= . This is. for example, the case when we deal
with the power law approximation (2.25) (2.27). In this case, the above
situation arises becanse of the mathematical idealization of actual magnetic
properties of media for very small (H — 0, p(H) — 20) and very large
(H — . jig(H) — 0) values of the magnetie ficld.

Next, we consider the question of how the constitutive relation (2.305)
can be perturbed (modified) in order to account for anisotropic properties
of magnetic media without violating the symmetry of Jacobian matrix. The
casy and natural way to generate such perturbations is by using the notion
of the potential of B-field in H-space. According to formulas (2.285) and
(2.286). this potential is legitimate and can be defined as follows:

-H
U(H):/ B(H') - dH’. (2.316)
40

where a particular choice of integration path between points O and H does
not matter.

If the potential U is known, then the corresponding constitutive rela-
tion can be generated by using the formula:

B{H) = pradg U {H). (2.317)
It is apparent that this constitutive relation will satisfy Fq. (2.286), which

is tantamount to the symmetry of the Jacobian matrix. I this matrix is
expressed in terms of potential U, it becomes the Hessian matrix:

.f(H)-{u.,_,- i (H)}. (2.318)

or, 0,
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According to formula (2.294), this matrix is positive definite. This implies
that the potential U is (strictly) convex [11]. Thus, a B-field in H-space,
which is generated by a constitutive relation B(H) for nonhysteretic mag-
netic media, can be described by a convex potential U defined in the same
space.

Now let us derive the expression for the potential U{H) in the case of
isotropic media. By substituting relation (2.305) into formula (2.316) and
integrating along the ray between 0 and H, we find

U(H) = /OH w(HYH'dH'. (2.319)

If we assume the power law approximation (2.27), then from the last equa-

tion we obtain
n n+ 1

UH) = —kH"", (2.320)

which can be rewritten in terms of H, and H, as follows:

n+
2n

n , .
U(H. H,) = —k (HZ+ H) (2.321)
It is clear that the isotropicity of media is reflected in the symmetry of the
last expression for U(H,, Hy) with respect to H, and Hy. To generate the
potential for auisotropic media, the above symmetry must be perturbed.
The simplest way to do this is to assign different “weight™ coeflicients for
H,. and H,. By using a perturbation parameter €, this can be accomplished
as follows:

7n by it

1k[(1+e)H_'ﬁ+(1 — e HZ] T (2.322)

U (H:.Hy) =

7t +

By using formmulas (2.322) and (2.317), we generate the following constitu-
tive relations for anisotropic media:

11
B.(H. H,) = (1+ )kH, (\/(1 Y HZ 4+ (1 f)H_g) o (2.323)

L1

By(HI,Hy):(lve)kHy(\ﬁl+e)H;f+(1—g)Hﬁ)W . (2.324)

which automatically satisfy the syminetry restriction {2.287). In the limit-
ing case of n — oo, expressions (2.323) and (2.324) lead to the constitutive
relations for anisotropic media with abrupt magnetic transitions:

H;

\/(1 +OH2 + (1 - ) H2

Bo(H. Hy) = (1+ ek : (2.325)
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Hy
\/(1 +e)H2 + (1 — ¢)H?

B,(H. H,) = (1 ok (2.326)

In the cases when H, = 0 or H, = 0, the last relations are reduced to the
following ones, respectively:

BCJT(HJ‘) = an,;x‘,sigu(H;::)~ (2-327)
B,(H,) = By,sign(H,), (2.328)
where
- BH € 1
B = kU4 e, Buy = kVI—e, 250 = /o re (2.329)
Dy — €

Now we proceed to the analysis of nonlinear diffusion of cireularly po-
larized electromagnetic fields in anisotropic conducting media whose mag-
netic properties are described by constitutive relations (2.323) and (2.324).
Mathematically, this analysis is tantamount to the solution of the following
boundary value problem: find the time-periodic solution to the following
cquations:

OB, (H,. 1) (2.330)

D= )

S ot
O*H ,(2.0) aB,,. 1)
S = g et 2.331
z? ot ( )
subject to the boundary conditions
H.(0.t) = H,, coswl, (2.332)
1,(0.t) = H,, sinwt. (2.333)
Ho(>x.1) = H,(x,t)=0. (2.334)

We intend to apply the perturbation techunique to the solution of the above
boundary value problem. To this end, we shall first find e-cxpansions for the
constitutive relations (2.323) and (2.324). We begin with the e-expansion
of the function

. - y_l,_l
fle) = <\ﬂ+ OHEE (- omz) (2.335)
This expansion has the form

fle) = fO)+ef (O)+.... (2.336)
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By using simple calculus, we find

—_— L] .
F(0) = ( H2 4+ Hj) = g (2.337)
L-n 4 H? — H?
O = —— Fa L v 2.338
f1(0) = - 7e (2.338)
By substituting formulas (2.337) and (2.338) into expansion (2.336), we
obtain
floy =i (14l M- Hp) (2.339)
o= ‘ 211 H? o -

From expressions (2.323), (2.324), (2.335), and (2.339). we find

1 —n H:,“T*Hf
m FH?

B.(H, H,) =014+ ()kH?lT “'H. (l + € ) + ..., (2.340)

: 1y |- n M0 Y
By(H. [,)=(1 e)kII"""H, |1 +e¢ S 72 =1+ ... (2.341)

By retaining only zero- and first-order terms in the last two cquations, we
transform them as follows:

| — }]'27[‘]2

B, (H, H,)=0BY(, 1)+ B (H,. H,) (1 g ‘m—*‘i .
(2.342)
0 0 I —mn H'z B H;
B, (H. H,) = B)(H,.H,) - eB)(H, H,) (1 B D F

(2.343)
where zero-order terms BY(H . H,) and [32(11., . H,) coincide with the con-
stitutive relations for isotropic media:

BUH, H,) =kH"""H,, BYH, H,)=kH" ‘'H, (2.344)

We shall look for the solution to the boundary value problem (2.330)
(2.334) in the form

Ho(zot) = HYz ) + cho(z ) + ..., (2.345)

Hy(z,0) = H)(2,8) + ehy (2. 0) + ... (2.346)
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By substituting the last two expressions into (2.342) and (2.343), expanding
the results of substitutions with respect to € and retaining only zero- and
first-order terms, we obtain

B, (H, H)) =By (H) H)) +¢ [h, %f (HY, HY) +

Y2 r()y2
hqgg( (HY, H")} +eB) (HY. HY) {1 + 12_71” : ,(H-'")(H_O)(fi”) +...,
(2.347)
By (H. H,) = B (HY, HY) + ¢ [m —?BS (H H))+
! R ()HJ: Yy
0 . VA 0\2
hujﬁv (H. H”)} — By (H}, H),) [1 — 1—27” : QIWW o
(2.348)

Now, by substituting formulas (2.345) (2.348) into the boundary value
problem (2.330) (2.334) and by equating the terms of like powers of e,
we end up with the following two bonndary value problems for zero- and
first-order terms, respectively:

drHY (= t (‘)11‘,?([1‘,,’.[1}”)

THAS P ) 2.349
a2 ot ' (2.349)

) o )

AL = 2.35
02 7 ot (2:350)
HY0.t) = H,, coswt, (2.351)
H;}((l, t)y = H,, sinwt, (2.352)
Hj(~, t) = Hp) (o, 1) = 0, (2.353)
and
Ph(z.1) ) OBY o oBY
- L g— v (2 ) —2 (HY | - h, (2.t ¥ (). H(l
5 o |1 =D G (M HY) + hy(z, )(‘)H!, (H].H)})
Bg.
=o0-=", 2.354
ot (2.354)
9%hy(2,1) ] anY B,
S g by (2 t) = (HOHY) 4 HY HY
o2 i Mg, (e Hy) o+ btz )c)H,, (F2 1)
)
P (2.355)

ot
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ha(0.t) = hy (0, 8) =0, (2.356)
h,l:(f’(}.t) - }L?/(OC,t) = ()‘ (2357)

where the functions g.(z,t) and g,(z,t) are given by the following expres-
slons:

(2.358)

L-n (H})* = (H))*
2n (HY)2 ’

g.(z.t) = BY (H)), H}) {1 + :

(2.359)

L—n (H)*-(H))}
.(J')/(z'.[') = 7Bf/) (}II)H;/’) {1 o ’ . :

2n (H")?

It is obvious that the boundary value problemn (2.349) (2.353) is identical to
the boundary value problem (2.122) (2.126). Consequently. the zero-order
terms H%(z,#) and H:f(z‘ ) are given by formulas (2.132) and (2.133). It is
also obvious that Fgs. (2.354) and (2.355) are similar to Egs. (2.127) and
(2.128). The only difference is that Egs. (2.354) and (2.355) are inhomo-
gencous. that is. they have right-hand sides (i.e., “driving forces™). which
are determined by functions g,.(z.f) and g, (=, ). Thus, it can be concluded
that Eqs. (2.354) and (2.355) can be transformed in the same way as we
transformed Eqgs. (2.127) and (2.128) in Section 2.2, The only new ele-
ment will be the transformations of the right-hand sides of Kgs. (2.354)
and (2.355). These transformations are performed as follows. By substi-
tuting expressions (2.132) and (2.133) into formmlas (2.358) and (2.359)
and by using simple trigonometry, we obtain

2\ 1
ge(zt) = p Hy, (l - —) cos(wt + 0(z)) {l b=

<0

i " cos(2wit + 2()(:))}
n
S\ [0+ 1)
=pH, 1 - — okl cos(w! + 6(2)) + S cos(Jwt + 30(z))
0 dn 4n
(2.360)
Similarly, we have

2

N (3t 1
gz ) = — e H,, (1 - ~—> { nil sin(wt + #(z))
~()

an

| (2.361)
(et + 30(:))} .
dn

Next, by introducing new state variables

Az t) = ho (2 8) + jhy(z.8), (2.362)
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Uz, t) = he(z,t) — jhy(2, 1), (2.363)

and by using formulas (2.360) and (2.361) and the same line of reasoning as
in Section 2.2, we transform the boundary value problem (2.354) (2.357)
to the form:

2 o9 . E J2c¢
2\ 0°p(z,t) l-nd |1+n z
1= ASA - , ety + (11— =
( zu) 0z? THn T on ot [l - ”(b(z ) ( z())

2n Lo
, NP | dn+1 T
S (2 )| = H (1 — — — = {1- Al
¢ v )‘| THm ( z(,> ot [ in < ‘

I —n z saa’ it o o
Al e (2.364)

. F : O%p(z.t) l-nd [1+n !
; AR gy T s
20 dz* ! o ot |1—n"

. =N D |3+l 2\
xe e Y| =op, H, [ V= - — — {1 - !
( &( )] o ( Cu> ot [ in ( 30) ‘
- - — 3’ -
P (1 - ,_> (,_z-‘w'} (2.365)
dn 2

B(0.1) = $(0.1) = 0, (2.366)

| v

2

Py
—
-
TN
—_
|

Lo
SN——
|
«
NG
o]

Pl t) = (oo t) = 0. (2.367)

We look for the periodic solution to the boundary value problem (2.364)
(2.367) in terms of the Fourier series:

PRI SRR (2.368)
k=—0o0
e 9

0= 3 onlz)e (2:369)
k=—0oc

By substituting these Fourier series into Eqs. (2.364) and (2.365) and equat-
ing the terms with the same exponents, we derive the following coupled
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ordinary differential equations:

2 0. j2a’
z d*or(z . , zY’ :
(1 B _) Lkz() —JXk [a(f)k(z) + (1 - —) ~wk—z(z)} =
20 dz 2()

2 2L i3’
) z 7 N . z -
—jv (1_ Z—) 'é—l,k +j< <] — z-) 'd’i.ks
0 0
(2.370)

2 g, —j2a”
z d“Yr_a(z . ) z ‘
1-— u .;*(—) — JXk-2 |aPp_2(2) + {1 - — Spp(2)| =
20 dZ Z0

. g - A — 3 ]
Jv <1 - z_) “Sk—2 = JC (1 - z) SO0y k-
0 0
(2.371)

Here 6-4 .03 4,81 k—2, and d_3 gy are the Kronecker deltas, yx and a are
specified by formulas (2.165) and (2.166), respectively, while v and ¢ are
given by the following expressions:

3n 41
v =wop,,H,, l+— (2.372)
an
. I —n )
(= Bwop,H, —. (2.373)
an

As before, we find that simultancous differential Eqs. (2.370) and (2.371)
are coupled in separate pairs. The solution to these dilferential equations
is subject to the following boundary conditions:

o (0) = V_1(0) = 0, (2.374)

(p,\.(oc) = ’L/')k-,g(OO) = . (2.375)

It is obvious that for all & > 0 and k # 3, Eqgs. (2.370) and (2.371) and the
corresponding boundary conditions are homogencous. This implies that

or(z) = 0, if k2> 0andk # 3, (2.376)

We(z) =0, if k>0and k # 1. (2.377)

From these formulas, we conclude that within the first-order perturbation
theory all harmonics of the electromagnetic ficld, except the first and third
harmonics, are equal to zero. To find the first and third harmonics of
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magnetic field perturbations, we need to solve the following boundary value
problem:

’"

(1-2) o v L%(Z) (-2 'Wz)} )

. (2.378)
i 2N 4jisal
J6 (1 - ) ;
20
9 —j2a’
1% (z . 2\’
1= 2 ¢ ‘115 ) —ix1 Jav(z)+ 1 — — “o3(2)| =
Z0 (iz A}
, (2.379)
- e
Jv (1 - —) )
20
¢3(0) = 1 (0) = 0, (2.380)
(;‘)3(()0) = 1y (f)o) = (). (2.381)

We ook for the particular solution to Eqgs. (2.378) and (2.379) in the form

A
W) = ¢ ( -2 (2:382)
20
2\
W2y = O (1 - -> , (2.383)
Z0
where ) 5
M= e, A =a= 2 e, (2.384)
n+1 n—1

By substituting expressions (2.382) and (2.383) into Eqs. (2.378) and (2.379),
we end up with the following simultancous equations for Cy and Cy:

A (Ay = 1) = Jxsazs] Oy — jixsz5Ch = j(z4, (2.385)

[/\| (/\] - 1) - jxlaz(z,] (/'1 —jx.ng’g = _]l/zé (258())

By taking into account Eq. (2.271) and the fact that A} = «, the last
two equations can be easily solved. As a result, we arrive at the following
expressions for Cy and Cy:

2 . 2
Czy — 3vz)

- 5 . 2.387
As(Ag — 1) — jxs(a — 1)z(2) ( )

Cy =7
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C3vAs(Ag = 1) = xsazg] + ixaziC

xs{As(As = 1) = jxsla = 1)z{]
A general solution to the homogeneous differential equations corresponding
to Egs. (2.378) and (2.379) can be found in the same form (2.236) (2.237)
as in the previous section. Thus, the complete solution to the differential
Eqs. (2.378) and (2.379) can be written in the form

~ H/ - ’H” ~ As
(;63(2) = A/ (l - %) + A// (] - 5—) -|— (/';; (1 - %) N (2389)
<() ~{) ~0
. A —j2a” . 8 —j20” L\ A
(z) = B <l - i) + B” (l — M) + (1 - Q) :
<0 <0 20

(2.390)
In formulas (2.389) and (2.390), 4" and 3" are the roots of the charac-
teristic Bq. (2.238) with positive real parts, while coetlicients A’, A", 13,
and B” can be found from the boundary conditions (2.380) (2.381) and
equations similar to Eqs. (2.188) (2.189). This leads to the following set of
simultancous cquations with respect to the above coetficients:

) = (2.388)

A + A" = ——(,':‘. (2-;91)
B4 B =—C. (2.392)
[(;’i’)z . _,'W,:ﬁ,} A st =, (2.393)
[(;)’”)2 - g J‘\;m.;f,] A" = j\azi B =0 (2.394)

By solving the above equations. coeflicients A’, A7, B’ and B” can be de-
termined. By using these coeflicients and the same line of reasoning as
before, the following formulas for the phasors of the first harmonies of the
magnetic field components can be derived:

1}.1'.](:):(11I11 {((‘vl)<1 :> + €

20

. A —g2a"
% <1 - ) |
<0

(2.396)
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By using the last two equations and by invoking the formulas (2.63) and
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(2.65), we obtain the following expressions for surface impedances:

Ty

a(Hy, - €Cy) — e[B(8" — j2) + B"(3” — j2a")]

2.397
] «H,, ( )

Uyr _ aH,, + eCy) + €[B' (3 — j20") + B"(3" — j2(y”)]’ (2.398)
7 oH,,

where 17 is the surface iimpedance in the case of isotropic media.

‘ormulas (2.397) and (2.398) allow one to evaluate the affect of mag-
netic anisotropy on the surface impedance. It is Important to stress that
the right-hand sides of formulas (2.397) and (2.398) do not depend on H,,.
This is because, according to formulas (2.372), (2.373), (2.387), (2.388),
and (2.391) (2.394). coeflicients ). B’, and B” are dircetly proportional
to H,,.

Thus, ratios 1., /n and 1, /y are functions only of n and e. These
finctions have been computed for various values of 2 and ¢ and the results
of computations are shown in Figs. 2,17, 2.18, 2.19, and 2.20.

2.5 NONLINEAR DIFFUSION OF ELLIPTICALLY
POLARIZED ELECTROMAGNETIC FIELDS
IN ANISOTROPIC MEDIA

In this section. we shall further generalize the perturbation technique
to analvze nonlinear diffusion of elliptically polarized electromagnetic fields
i anisotropic media. To this end, both elliptical polarizations and con-
stitutive relations for antsotropic media will be treated as perturbations of
circular polarizations and constitutive relations for isotropic media, respec-
tively. This will require the introduetion of two perturbation parameters:
one for boundary conditions and another for constitutive relations.

As far as the coustitutive relations are concerned, expressions (2.323)
and (2.324) will be used in the sequel for the deseription of anisotropic and
nonlinear magnetic properties of media. These expressions imply that axes
a and y are chosen as anisotropy axes.  For anisotropic media (contrary
to the case of isotropic media), various elliptical polarizations (which differ
by the orientation of the ellipse traced by the endpoint of the magnetic
field H(0,4)) arc not equivalent to one another. This requires a certain
modilication of boundary conditions (2.213) and (2.214). To achieve this
modification, consider major and minor axes of the polarization ellipse,
which will be denoted as 2" and ¢ respectively. Let €y be the angle between
the major axis @7 and the anisotropy axis @, In the @ and ¢ coordinate,
the elliptical polarization can be characterized by the cquations:

H 0,8y =H,, . coswt, (2.399)
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Hy(0,t) = Hpy sinwt. (2.400)

By introducing the perturbation parameter €:

Hm r — H ’
é= T Y (2.401)
Hm:c’ + Hmy’
the last two formulas can be rewritten as follows:
H.(0,t) = H, coswt + éH,, coswt, (2.402)
H, (0,t) = Hp, sinwt — éHp, sinwt, (2.403)
where, as before,
Hypur + Hypo
H,, — m_;_y (2.404)

The z- and y-component of the magnetic field H(0,t) can be expressed in
terms of z’- and y’-components of the same field and the orientation angle
6y as follows:

H.(0,t) = H,.(0,t) cos o — H, (0,¢) sin g, (2.405)

Hy(0,t) = Hoo(0,¢)sinfy + Hy (0, ) cos . (2.406)

By substituting formulas (2.402) and (2.403) in the last two equations and
by using simple trigonometry, we end up with the following relations for z-
and y-components of the magnetic field:

H,(0,t) = H,p, cos(wt + 0g) + €H,, cos(wt — by), (2.407)

Hy(0,t) = Hp, sin(wt + 6y) — €H,, sin(wt — 0y). (2.408)

The last two formulas are transparent from the physical point of view, and
they reflect the well-known fact that any elliptical polarization can be rep-
resented as a superposition of two oppositely rotating circular polarizations.
One of these circular polarizations is treated as a perturbation.

Now, we proceed to the analysis of nonlinear diffusion of elliptically
polarized electromagnetic fields in anisotropic media with constitutive re-
lations (2.323) and (2.324). Mathematically, this analysis is tantamount to
the solution of the following equations:

0°H,(z,t)  OB.(H,, H,)
o =0 5 , (2.409)

82H,(z,t)  OBy(Hy, Hy)
=0 o , (2.410)
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subject to the boundary conditions (2.407) (2.408) and zero conditions at
infinity.

By using the general idea of the perturbation technique, we look for
the solution in the form

Ho(z,t) = H(2,1) + €hy(z,t) + éhalz, ) + . .., (2.411)
Hy(z.t) = H)(z.t) + eHy(2.1) + €hy(z,t) + ... (2.412)

In other words, we use expansions with respect to two perturbation pa-
rameters (e and €), which are present in the coustitutive relations and the
boundary conditions, respectively.

By substituting the last two expressions into formulas (2.323) and
(2.324) and by using the same line of reasoning as in Sections 2.2 and
2.4, we arrive at the following expansions for B, (H,, Hy) and By (H,, H,):

0

B.(H, H,) =B)(H) H)) +¢ [h, 0B, - (HY, HY)

()H
()B“ l -7 (f]“) (]]0)
J 0 g0 0 (K, I“ 3 n
G, (5 1) + B (M) n (HY)?
oY oY
s [ OB g oy g, OB (o g } b (2.413)
JH, : *’) Y dH, : -’)
9B
By (H, Hy) = BY (H H) 4 ¢ [h, =2 (HO HO
7] 73 7] ' i
| : o e 2, I
()B“ 1—n (HO) - (H))?
’ HY HY U (g, II“ |2 -
i, F (I Hy) - By /) om (HO)?
oY oY
+@|/ ()H (H", 11”)+h.,” (HY. H”)} T (2.414)

where, as before, BY(HY, H“) and B“(H“ H“) are constitutive relations for
isotropic media defined by hq (2. 544) It is casy to sce that expansions
(2.413) and (2.414) are simple combinations of expansions (2.347), (2.120)
and (2.348), (2.121), respectively, as they must be.

By substituting expansions (2.411), (2.412), (2.413), and (2.414) into
Eqs. (2.409) (2.408) and by equating similar terms, we end np with the
following three boundary value problems:

O*H(z,t) OBY(HY), HY)

_ § L. ‘ r
7 A TR (2.415)
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O°HY(z.t)  OBY(HY, HY)

: — 2.416
a2 U ot ( 6)
HY(0,t) = H,, cos(wt + 6y). (2.417)
HL)(O, t) = Hp sin(wt + 6y), (2.418)
HY(co.t) = H)(oc,t) = 0. (2.419)
Next,
Pho(zt) 0 OB o
—_— - t e
922 7ot [" (O (Hao 1)
9B s (o) (2.420)
0 oy | _ ¢Y9r(z )
+ }L,/(M,t)()l_ll/ (HJ:,Hy)} =0

O%hy(2.1) Jd 9B,y 4 o
e ) ¢ H' H
9 o 0 g, (e Hy)

(2.421)

oBY Dy (= 1)
. 70 = g Y
by L) | =
I (008) = hy, (0.) =0, (2.422)
he(oc, t) = hy(oc, t) =0, (2.423)

where functions g,(z.t) and g,(z.t) are given by formulas (2.358) and
(2.359), respectively; and, finally:

Pho(zt) O r OB
o=t "7 [h"( Do, He 1) o
2.424
) I,
ZE 50 B | = 0.
+ (.0 g (HD. )

0 g0
(H H,)

PFhy(zt) 0 { )B“

(2.425)

7 IBY o 0
-+ })!/(~.t)'(—);1— H H )
B (0, 8) = H,p, cos(wt — 6p), (2.426)

hy(0,t) = —H,, sin(wt — 6y), (2.427)
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ho(oc,t) = hy(o0,t) = 0. (2.428)

It is clear that, the boundary value problems (2.415) (2.419), (2.420) (2.423),
and (2.424) (2.418) arc almost identical to the boundary value problems
(2.349) (2.353), (2.354) (2.357), and (2.127) (2.131), respectively. The
only difference is the presence of the “orientation” angle €y in formulas
(2.417), (2.418), (2.426), and (2.427). For this reason, H)(z,t) and H)(z, )
will be given by formulas (2.57) (2.58) instead of formulas (2.132) (2.133).
This will result in the replacement of relation (2.149) for 8(z) by the fol-
lowing formula:

6(z) = 0y + o In (1 - f) : (2.429)

o

By using literally the same line of reasoning as in the previous section, it can
be shown that the solution to the boundary value problem (2.420) (2.423)
contain only the first and third harmonics, while all other harmonics are
equal to zero. To find these first and third harmonics, the boundary value
problem (2.420) (2.423) can be reduced to the following boundary value
problem for the ordinary differential equations:

2 g J2a”
z d*py(3) , , . z ,
(l - 7) PR [(I(/):i(l) poed200 (l - :(_,) -(J't(:)}
. ';"'JTJ 230
= jCelt (1 ._‘“_> .
<0

S\ e
= juedf (1 - ;) , (2.431)
0
(,")3(")(‘,) = " ('X,') = ()‘ (21(;&)

where ¢3(z) and 4 (2) are the third and first harmounics of the functions
o(=) and ¥ (2) defined by formulas (2.362) and (2.363). respectively.

Equations (2.430) and (2.431) are very similar to Eqgs. (2.378) and
(2.379). The only difference is the presence ol exponential factors e/2% and
e300 i Bg. (2.430) and factors ¢ 2% and 2% in Eq. (2.431). However,
this difference can be accommodated by looking for the particular solution
to Eqs. (2.430) and (2.431) in the form

A
o (2) = ¥y ( 1 - }) , (2.434)

~()
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Al

‘1/;§p)(z) = %0 (1 - ﬁ) , (2.435)
20

where A3 and X\ are given by formulas (2.384).

By substituting functions (2.434) and (2.435) into Egs. (2.430) and
(2.431), we cud up with the siimultancous equations for coefhicients Cy and
C) which are identical to Eqgs. (2.385) and (2.386). This means that these
coefficients can be computed by using formulas (2.387) and (2.388).

The complete solution to differential Egs. (2.430) and (2.431) can be
sought in the form

A’ s . A
P3(z) = Al <1 B ;> + A" (1 - L> +Cy (1 - ;) } .
~0 <) )

) (2.436)

SN\ A =g LN\ B =2a”
Py (2) =0 | B (l — L) + B” (l - l)
20 <0

- (2.437)

- )\l
(-2
~(}

By using the same line of reasoning as before, it can be shown that /3" and
3" are the roots of the characteristic Eq. (2.238) with positive real parts,
while cocficients A, A”. B', and B” can be found by solving simultaneons
Eqs. (2.391) (2.394). Thus, we can see that the algorithm of calculation
of cocllicients (g, €1, A7, A”. B’ and B” is exactly the same as in the pre-
vious section, and that the peculiarity of Eqs. (2.430) and (2.431) is fully
accounted for by factors ?® and o/ iy formulas (2.436) and (2.437).
respectively.

Next, we proceed to the solution of the bonndary value problew (2.424)
(2.428). By introducing the functions

Bz 1) = hp(z t) + jh,(=.1). (2.438)

ylzt)y = Dy (z0t) — jhy,(z.1). (2.439)
and by literally repeating the same line of reasoning as in Sections 2.2 and
2.3, it can be established that only the first and third harmonics of ¥:(z.1)
and ¢(z. t) respectively, are not equal to zero. To find these harmonics, the
boundary value problem (2.424) (2.428) can be reduced to the following
boundary value problem for the ordinary differential equations:

2 7 20"
z\ " d*. - B =Y -
(l - ) {—M - 7X3 |:(1(,f);;(2) + e (l - —) -1/')1(::)} = (),
20
(2.440)
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2 T —j2a”
z A%y (= ~ o z J ~
(1 B '—> '—-Z})lz( ) {mm(z) eI (1 - ) -m(z)} =0,

3

2 20
(2.441)
B3(0) =0, 4 (0) = Hpe 7%, (2.442)
o3(00) = 1 (oc) = 0. (2.443)

Again, we find that the boundary value problem (2.440) (2.443) is very
similar to the boundary value problem (2.225) (2.228). The only differ-
ence is the presence of exponential factors /2% in Eq. (2.440), ¢=72% iy
Eq. (2.441), and e 7% in the second bonndary condition (2.442). This dif-
ference can be accommodated by looking for the solution to the boundary
value problem (2.440) (2.443) in the form

. ;1' _ . i1
bu(z) = " {A’ (1 _“) + A" (1 - -”—) } . (2.444)
M 0
i ‘ N - 320’ ) 37— y2a
P (z) = {B’ (1 : 7) + B (1 = ) ] - (2.145)
= <0

By using the same line of reasoning as before, we find that 37 and ;37 are

|(.'

the roots of the characteristic Fe. (2.238) with positive real parts, while
coofficients A/ L A”. B and B can be computed by using formulas (2.212)
(2.241). Thns, the algorithin of calculations of 47, /3", AL A" B and B
15 exactly the same as in Section 2.3, and the peculiarity of Egs. (2.440)
(2.4411) and the houndary conditions (2.442) is fully acconnted for by factors
1% and ¢ =% iy formulas (2.444) and (2.415), respectively.

Having determined all coeficients and exponents i formulas (2.436)
{2.437) and (2.444) (2.445), the phasors of the first harmonics of the mag-
netic field components can be found as follows:

1}_,-‘(:) :(Hnl + l(r‘[)(”'()” <l — i)

20

. H/ ‘/2”” N ;"1”7‘)2“”
bec!? | B <l - ;> b B (1 - w)
20 <0

”

~ N A =a2a N . i3y
4 e | B (1 — N) + B (1 _ ;) i
<0 <0
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12]1/' (Z) = j(Hm - f(;))(’.“]o“ (] - _Z_.>

20

B3 =20 B g2
. z >
+ jeei™ | B {1 - = +B"{1- =
20 20

N\ B —ga N3 =5
PR i A nd i
+ jée % 3 <l - —) + B <] - ——)
20 ()

(2.447)
By using the last two formulas and by lvoking the relations (2.63) and
(2.65), we obtain the following equations for surface nnpedances:

ULZ 1 S — : — 7 00
y 300 H,, & (Hy —eCy)e
S B 207+ BT (3~ j207) (2.44%)
— e B (3 - 20" + B (4 - j2a"y] 5.
e I ‘ 0
LA e ' F]”' + ¢ S
noooaled oy cemtO o i)

FeeM (B (3 - 20"+ B - 207 (2.449)
+ée -0 [}/ (l'f/ B J-2”//) . B// (D,n B _}2()”)]

where 1) 1s the suwrface impedance in the ease of isotropic media.

As before. it is casy to see that ratios 1., /1 and i, /1 do not depend
on H,,. This is because coefticients ¢, B, B". B, and B” arc directly
proportional to H,,. It is also clear from the above discussion that these
cocflicients do not depend on the “orientation”™ angle 8y and are only func-
tions of exponent n used in the power law approximation. In this sense.
formmlas (2.14%) and (2.449) give explicit dependence of surface inpedance
ratios in terms of the perturbation parameters € and € and the “orientation”
angle 6. Some sample results of caleulation of the ratios vy, /1 and 1y, /y
are presented in Figs. 2.21 through 2.28.
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2.6 EDDY CURRENT LOSSES IN THIN
LAMINATIONS

It is well known that rotating magnetic fields occur in various types of
electric machinery, actuators and other devices. It was realized that eddy
current losses in steel laminations caused by these fields are appreciably
higher than losses associated with unidirectional alternating magnetic fields
of comparable magnitude. For this reason, “rotational” eddy current losses
have been a focus of active research for many years. These losses were first
investigated experimentally for some specific field values and flux patterns
(see [12], {13], [8]). Then some efforts were made to study these losses
theoretically [3] by using numerical techniques for the solution of nonlinear
diffusion equations. In this section, we shall revisit the issue of “rotational”
eddy current losses. By using the results obtained in the previous sections,
we shall derive analytical expressions for these losses and clarify certain
aspects and questions related to this matter.

We begin with the discussion of eddy current losses under the as-
sumption that a distribution of magnetic flux density over a lamination
cross-section is uniform. We start with the case of unidirectional alternat-
ing magnetic fields. This is a classical problem that has been extensively
treated in the literature. Then the discussion of this classical problem will
be generalized to the case of rotating magnetic fields.

Consider @ magnetic conduacting lamination with height A, width w,
and thickness A (see Fig. 2.29). It is assuiied that the magnetic Hux density
is uniform over the Lunination cross-section and has only the z-component

B(t) = & B, coswt. (2.450)

This time-varying magnetic lux density induces eddy currents whose closed
lines lie in planes normal to the z-axis. Let L, be one of these eddy current
lines. By applying Faraday’s law of electromagnetic induction to path L,
we find

f}idf:-w, (2.451)

dt

L.

where @,(z,t) Is the fux that links L.
By taking into account that the lamination is thin (A < h), the left-

hand and right-hand sides of formula (2.451) can be approximated as fol-
lows:
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bE -dl~ I, (z.1) - 2h (2.452)
1.
D (20t) = 2hzB,, coswl. (2.153)

By substituting (2.452) and (2.453) into (2.451), we arrive at

Ey(z ) = w2y, sinwt. (2.454)

which suggests that
Ey(2) =wzB,,. (2.455)
By nusing expression (2.454), we can compute loeal power loss density p(z.t):
plz.t) = 0155(:, 1) = ow?:? B2, sin® wt. (2.456)

This power loss density varies with time. For this reason, it is customary
to characterize eddy current losses by the average power loss density p(z),
which can he computed as follows:

.
(=) = ErrEf,,y. (2.457)

By taking into account formula (2.455). the last equation can be writien in
the form
Wiy o
plz) = 5 Be 2= (2.453)
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The eddy current power losses per unit surface area of lamination can be
obtained by integration of p(z) with respect to z from f% to %:

2 3

, Pl . . A
pin =92 / P(2)dz = w?oB?, 57 (2.459)
JO

where superscript “lin” indicates that the losses are computed for the case
of linear polarization of the magnetic Held.
By using the obvious relation

(I)'m = 13,71A\ (24()())

formula (2.459) can be reduced to the form
plin = 2 £ 02 (2.461)

Now suppose that the magnetic Aux density is nniform over the lamination
cross-section and circularly polarized:

B = e, B, coswt 4 e, 3, sinwf. (2.162)

This magnetic flux density induces the electrie ficld, which has - and y-
components. The y-component of this field can be compated in the same
way as before. In other words, formula (2.454) is valid for this component.
To compute the r-component of the electric field. we consider a path L,
in a plane normal to y-axis (sce Fig. 2.25) and apply Faraday's law to this
path:
/) Bogi= - 0ulst) (2.463)
. dt
Ly
where @,(z.¢) stands for the magnetic fux that links L.
By taking into account that the Lunination is thin (A < w) we find

/E Al = B (z4) - 2w, (2.464)
i
b (z.8) = 2wz B, sinwt. (2.465)

By substituting two last equations into formula (2.463), we obtain

E (2, t) = wzB,, coswt. (2.466)
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By comparing formulas (2.454) and (2.466) we conclude that the induced
electric field is circularly polarized. This is expected because the magnetic
flux density is circularly polarized. By using formulas (2.454) and (2.466),
we can compute the instantaneous power loss density

p(z,t) =0 {Eg(z, ty + EZ(z,t)] = ow?2?B2 . (2.467)

It is apparent from the last equation that this power loss density is constant
in time. In other words, in the case of circular polarization of the magnetic
flux density the “eddy current” energy dissipation occurs at a constant rate
in time. This clearly explains why the rotational eddy current losses are
higher than those for unidirectional magnetic fields.

From formula (2.467) we conclude that

p(2) = p(z,t) = ow?2* B2, (2.468)

By integrating the last expression with respect to z, we obtain losses per
unit surface arca of lamination:

AN
2

. ) ) A.’i
pt =2 / p(2)dz = w0 B?
Jo

= 5¢
(423 ]2 N (2'4()'))
where superseript “cir” indicates that the losses are computed for the case
of circular polarization of magunetic field.

By using formula (2.460), the last equation can be transformed as
follows:

< , wiol
=@ ——. 2.470
I) m 12 ( )
By comparing expressious (2.461) and (2.470), we conclude that
pcir — 2]7)“11' (2471)

The above discussion can be easily generalized to the case of elliptical po-
larization of magnetic flux density

B(t) = e. By, coswt + e, B, sinwt. (2.472)

For this case, formulas (2.466) and (2.454) can be respectively written as
follows:
Ei(z,t) = —wzBny coswt, (2.473)

E (z,t) = wzBp sinwt. (2.474)
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This leads to the following expressions for the instantancous power loss
density

p(z,t) = o(E* + E;) = ow?z* (B2, sin’wt + B2, cos®wt), (2.475)

my
and average power loss density:

O'UJ2~2
(

1
ﬁ(Z) 2 (E;);)r + meu) - 5

5 B, +DBL,). (2.476)

T

Now, by literally repeating the same line of reasoning as before, we ob-
tain the following expression for the power losses per unit surface arca of
lamination: )

= (@2, + 02, ) 278

mar mr/) T (2477)

By comparing formulas (2.461) and (2.477) we conclude that the last equa-
tion can be written in the form

pr‘l . ]ln 4 i}lm. (2478)

The last expression clearly suggests that eddy current losses in the case of
clliptical polarizations of the magnetic flux density are equal to the smm
of eddy current losses associated with two unidirectional and orthogonal
components of magnetic flux density acting separately. This fact was first
observed experimentally (see [12], [13]) and later was confirmed by numeri-
cal computations [3]. It is important to point out that we have analytically
derived this fact without invoking any assutnptions concerning magnetic
properties of laninations. For this reason, this fact as well as formulas
(2.470) and (2.477) hold for magnetically isotropic and anisotropic lamina-
tions with (and without) hysteresis. The main lmitation of our derivation
is the assumption that the magnetic flux density is uniform over a lami-
nation cross-section. If this assmunption does not hold. the above fact and
formulas (2.470) and (2.477) are not valid. In other words, in the case
of nonuniform distributions of magnetic fux density, eddy current power
losses are affected by the magnetic properties of laminations.

To treat the case of nonuniforin magnetic lux density, we shall use
the results obtained in the previous sections of this chapter. These re-
sults have been derived for nonlinear diffusion of electromagnetic fields in
magnetically nonlinear conducting half-space, and the existence of finite
penctration depth zg has been established. Therefore, it is obvious that if
the thickness of lamination exceeds 2z, then nonlinear diffusion of electro-
magnetic fields at each side of the lamination will oceur in the same way
as in the case of the semi-infinite conducting half-space. Consequently, we
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can use the previously derived results for the case of conducting lamination.
Namely, when the magnetic field is circularly polarized and conducting me-
dia are magnetically isotropic, we can write the following formulas for the
phasors of the magnetic field:

A o
Hm (1_ 7::2> ) If—%SZS_%+207
ﬁl(Z) = 03 if "% + 20 S z < % — 20, (2 479)
A__\&
Hm(l_ 22[)11) 3 lf——Z()SZS%,

H,(z)={ 0, i —L <2< S~z (2.480)
]Hm(l‘THZ) ) if%*30<2§%,
where zg and a are given by expressions (2.53) and (2,40}, (2.47), (2.51),

respectively.

By using these formulas, we can compute surface impedances on cach
side of the lamination. It is obvious that these impedances will be the same
and given by formulas (2.66) (2.68). Now, by invoking the notion of the
Poynting vector S, we can compute eddy current losses in the lamination
as follows:

s - (8(2) ()
-l (3)(3) -5 () ()]

where the symbol x is used for the notation of complex conjugate quantity.
By employing the relations

- (A - (A - (A ~ (A .
E, <2> =nH, (7> N O <2> = —7H, <7> . (2.482)
and by substituting themn into formula (2.481), we derive
P AN ~ (A
H.| = H, | —
- (3)] | ()

where we used the fact that in the case of circular polarizations

Hy (8)] = Ho

(2.481)

2 2

pcir — R(‘,(T}) + = ZHilR(*(’I]) (2485)

He (

Nl

)| =
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Now, by recalling expressions (2.66) and (2.67), we arrive at

ﬁdr — 2 Wik 4n
Voo [2n(n+ 1D)(@Bn+ 1)2)7

(2.484)

In this formula, “rotational” eddy current losses are expressed in terms
of the maguetic feld magnitude at the lamination boundary. In many
applications, the total flux through the lamination is given. For this reason,
it is desirable to express rotational eddy current losses in terms of this flux.
To this end, we recall the equation

OF, .
o —jwDB,. (2.485)

By integrating this equation with respect to z, we obtain

=Y
2

A ~
. T . y OF, 2 . A
¢, =2 /A By(z)dz=j /A = (z)dz = /; E, (E) . (2.486)

e w Jz

&) u

where we used the fact that E, (% — :(,) = 0, and P is a flux per unit width
{or height).
By utilizing the impedance relation (2.482) in the last formula, we

derive 5 A
(i),/ — ]—1, ]}‘/ (—) . (2.487)
: w 2

From the last equation, we find

2|

(I)m. = -

H"7
or by invoking expression (2.65), we have
b, = L H,,. (2.488)

Since zy depends on i, (sce (2.53)), which in turn. is a function of H,,, the
last formula can be construed as a nonlinear equation for H,,. By solving
this cquation, we can find H,, and i, for the given ¢,,. By plugging this
value of ji,, in the expression for zy and by using formula (2.488), we find
the following expression for H,, in terms of &,,,:

[9%] ¢ 11

Ifm. = q)vn T (2489)
2|a]
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From formulas (2.40), (2.47), and (2.51), we easily derive

2n(3n + 1)

2

= . 2.4
off = S (2.490)
By substituting formula (2.489) into expression (2.484) and by using Eqgs.
(2.53) and (2.490), after simple transformations we arrive at the following

result:
e 2n(n + 1)(3n + 1)2]3
e = 2, [T [ : 2.491
p mt L 2(3n+ 1) ( )

By comparing the last result with formula (2.484), we can observe that the
above rotational eddy current losses have different frequency dependencies.
These losses increase as ~ w? in the case of the fixed magnetic field mag-
nitude at the lamination boundary, and they grow as ~ w? for the given
magnetic flux through the lamination. It is also clear that these losses de-
pend differently on o and pi,,. According to formulas (2.484) and (2.491),
the rotational eddy current losses are nonlinear functions of H,, and ¢,
respectively.

So far, we have discussed the case when 22y < A, Consider the liniting

A
5 .

case when

2 = (2.492)
and let us express o7 explicitly in terms of zo.  According to formulas
(2.483), (2.65), and (2.40), we have

/
i =2gt (2.493)
(045

Now, by substituting relation (2.489) into the last equation, we obtain

2 l
- o WTT 2y
cir __ q)z 0

% "l (2.494)

By taking into account condition (2.492) in the last formula, we derive

- y WiolAa!
=0l . 2.495
From expression (2.47) and (2.490), we find
7
-1
@ -0 (2.496)

dlal?  4(3n+ 1)’
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and formula (2.495) can now be rewritten as follows:

. . , 7i— 1
P = 2 g A —e 2.497
P OB+ 1) (2.497)
For sufficiently large n, we have
n--1 1
— — 2.498
ABn+1) 12 (2.498)
and formula (2.497) assumes the form
42 A
Seir g2 ‘_’f’_l_ 2499
2 (249

The last equation coincides with formula (2.470) derived by using a differ-
ent. line of reasoning under the assumption that the magnetic flux density
within the lamination is uniform. Although encouraging, this coincidence
is not very surprising. This is becanse under condition (2.492) the distri-
bution of magnetic fhux density is almost uniform (see Fig. 2.30). Thus, we

can conclude that for zg < A e can use fornmla (2.491) for the calenlation

5
of rotational eddy current losses, while for zy > % formula (2.470) is ap-
propriate, and there is a more or less smooth trausition from the values of
eddy current losses predicted by formula (2.491) to the values predicted by
formula (2.470). Tt is also important to point out. that in the cases z) < %
and zy > % there are different frequency dependencies for the rotational
cddy current losses. In the first case, these losses grow as ~ u_)%, whereas in
the second case these losses inerease as ~ w?. Another important remark
is that the above two cases are determined not only by the frequency of
thie wagnetic field but by medinm saturation as well. This is because the
penetration depth zy is field dependent. Thus, the level of saturation may
affect the frequency dependence of the rotational eddy current losses.

We shall next consider the case of eddy curvent losses for elliptical
polarizations of the magnetic field at the boundary. For this case, formula
(2.431) can be maodified as follows:

. (AN (AN~ (AN - (A o
p 1 g I{(‘ [[’LJ." (2> H!I (2) - ]-Jy.l <2> H_‘. (5)} N (21)()(])

where F, ) (%) and F, | (%) are the phasors of the first harmonics of r-
ad y-components of clectrice field at the boundary.
These phasors are related to the phasors of the x- and y-components

of the maguetic field by the equations
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B

Fig. 2.30

N A N A . A . A .
E. <2> =1y Hy (2) , By (5) = =nyrHy (5) . (2.501)

By using the last two relations in formula (2.500), we arrive at

(AN - (AN .
P = |H, (2) I2Re (1) + |H, <2> I“Re (1) - (2.502)

In the case of elliptical polarizations specified by formulas (2.213) and
(2.214). we have

~ (AN 5 ~ AN .
|H, <2> P=(1+e)*H:, |H, (-2-) |* = (1 -¢)*HZ2. (2.503)
By substituting the last two expressions into formmula (2.502), we find
7 = H;z” [(1 + ()2R<‘(1]_,,y) + (1~ G)ZR(‘(UUJ,)] . (2.504)

Finally. by cmploying formula (2.483}, we derive

(L) Re(n,,) + (1 — €)2Re(n,,) .
e - . {2.505)
per 2Re(n)

In Scction 2.3, we have discussed in detail the technique for caleulations
of impedances 1, and 1, By using this technique and formula (2.505),
the dependence of ration p/peT
calculated. The sample results of these caleulations are shown in Fig. 2.31.

By using the results of Sections 2.4 and 2.5, similar calculations can
be performed for anisotropic (oriented steel) laninations in the case of cir-
cular and elliptical polarizations of the magnetic field at the boundary.

on € for different values of n has been
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However, in applications, the total magnetic flux through the lamination
is usually given. This requires some modifications of the techniques pre-
sented in Sections 2.3, 2.4, and 2.5. Next, we shall proceed to outline these

modifications.
Suppose that the total magnetic flux through the lamination is ellipti-

cally polarized:
D.(t) = P sinwt, Py(t) = —Ppy coswt. (2.506)

We shall find the boundary condition corresponding to this sitnation. We
start with the nonlinear diffusion equation

5*H, OB,

Ol _ 00 2.507
8z? ot ( )
and integrate this cquation with respect to z, which leads to
O*H, dd,
——d:=0—>. 2.508
/() d? dt ( )

By performing integration in the left-hand side of the last formula and by
taking into account that %(X t) = 0. we find

CALEUT L (2.509)
gz T 7 dt v
Peel/%c
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Sitnilarly, we derive

OH, dd

0,t) = —o—2. 2.510
5, (Ot = —o— (2.510)

By substituting expression (2.506) into the relations (2.509) and (2.510),

we obtain the boundary conditions

9H,
9 —(0,t) = —owPm, coswt, (2.511)
OH

EE((), t) = —owdp,, sinwt. (2.512)

The last boundary conditions can be written in the form that is appropriate
for the development of the perturbation technigue:

JH,
P (0, t) = —ow®,, (coswt + € coswt), (2.513)
OH, .
0—‘/((). 1) = —ow®,, (sinwt — esinwt), (2.514)
where ; ; ; ;
PGP . < o . — P
(I)”' — e + my . ¢ = e Ty . (2515)
2 (I)m.r + (I)my

The boundary conditions (2.513) (2.514) suggest that the elliptical polar-
ization of the total flux can be mathematically treated as a perturbation
of the circular polarization of the total Hlux. Thus. the previously devel-
oped wachinery of the perturbation technigque can be fully employed. The
solution for the cirewlar polarization of the Hux is the same as (2.479) and
(2.4%0) with the only difference that H,, in these formulas should be re-
placed by —jw®,, /2y, This fact can be inferred from relation (2.487). All
the differential equations for perturbations will be identical to those de-
rivedd in Sections 2.2 through 2.5. However, instead of the previous Dirich-
let boundary conditions, now we have to deal with the Neumann boundary
conditions (2.513) (2.514). This is a relatively minor difference and, for
this reason, all relevant algebraice transformations are omitted.

Finally. for the sake of completeness (and comparison), we consider
cddy current losses for the case of linear polarizations of the magnetic field
or the magnetic flux. We linit our discussion to the situation when the pen-
ctration depth is less than %. To make our analysis simple, we assume that
we deal with abrupt magnetic traositions. First, consider the case when
the lamination is subject to the sinusoidal magnetic field at the boundary:

Hy(t) = H,, sinwt. (2.516)
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In this case, by using the Poynting vector, we can easily derive that the
eddy current losses are given by the expression
P = H? Re(n), (2.517)

(242

where the surface impedance 7 is defined by formula (see (1.57)):

= 1.34, /L—dl(iﬂe-’ (2.518)

By using the last equation in expression (2.517), we obtain

P = 1287 \/Z’g (2.519)

Now suppose that the lamination is subject to the sinusoidal flux:

D,(t) = P, coswt. (2.520)
By using the same line of reasoning as in the derivation of formula (2.486),
we find 1 (1)
AP, (t
E,(0.1) = - v% . (2.521)
‘

By substituting (2.520) iuto (2.521), we obtain
h“/(() f) ! '(1)”, Sillw'f. (2522)

By using the Poynting theorem and the surface impedance, we can express
eddy current losses in terms of electric field at the houndary:
2

. E
—lin 1 . Y
' = ——. 2.92:
P Re(n) (2.523)

In the last formula, the surface impedance 3 should be determined for the
case of sinusoidal clectric field at the boundary. This impedance is given
by formula (sce (1.72)):

'»‘)/1'771 L

1= 1.47 e (2.524)

By substituting (2.524) into (2.523) and taking into account (2.522), we
derive

ll’"),

I—)Iin — ()'74(1)';3nw\/>ﬂr . (2525)
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Thus, as before we can observe that eddy current losses increase as ~ w? in
the case of the fixed magnetic field at the boundary, and these losses grow
as ~ w? in the case of the given Hux through the lamination.

Consider the case when the penetration depth is exactly equal to %.
By using formula (1.73), this can be mathematically expressed as follows:

-2 (2.526)

Wty

To use the last equation in formula (2.525), we transform this formula in
the following way:

2 r
—lin 2 W 1.57 9 £
= 0.7407, . . 2.527
! Visr Vo, (2.527)
Now, by using (2.526) in (2.527), we arrive at
; 5 wiaA
P = 02, 7 (2.528)

By comparing the last equation with expression (2.161), we observe that.
althongh they have similar mathematical forms. their meanings are quite
different. First, relation (2.528) does not give the frequency dependence
of eddy current losses, whereas formimla (2.161) does. This is because rela-
tion {2.528) is valid ouly for one frequency, namely. the frequency at which
formula (2.526) holds.  Sccoud, cven for this [requency, relation (2.528)
predicts substantially higher eddy current losses than those predicted by
formula (2.1461). This discrepancy can be explained as follows.  Formula
(2.461) has been derived under the assumption of uniform magnetic flux
density within the lamination at all instants of time, whereas the last equa-
tion has been derived without invoking this assumption. Furthermore, it is
quite clear that the distribution of magnetic flux density is quite nonuni-
form at the instants of time when zero front zo(f) is appreciably smaller
than % Nonuniform magnetic flux density distributions usually result in
larger eddy currents and hence in lugher losses.

It is interesting to point out that, in the case of abrupt magnetic transi-
tions and in the situation when the penetration deptly is larger than one half
of the lamination thickness, the eddy currents are not continuous in time
but are rather intermittent. Indeed, after two rectangular fronts of mag-
netic flux density meet at the middle of the lamination. the magnetic flux
through the lamination becones constant in time and it remains this way
until new rectangnlar fronts of opposite polarity are formed. This results in
the intermittency of eddy currents. This intermittency is not natural bat
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rather it is due to idealizations introduced by abrupt magnetic transitions.
In the case of gradual magnetic transitions and rectangular profile approxi-
mation (see Section 1.5), the merger of rectangular profiles of the magnetic
flux density at the middle of the lamination does not result in the constancy
in time of the magnetic flux through the lamination. Instead, this merger
results in the uniform distribution of the magnetic flux density over the
lamination cross-section, but this uniform magnetic flux density still varies
with time. In other words, the merger of rectangular profiles results in the
conditions under which formula (2.461) has been derived. Thus, it can be
concluded that the sooner the rectangular profiles of the magnetic flux den-
sity meet at the middle of the lamination, the more accurate the formula
(2.461) for eddy current losses. In general, eddy current losses may have two
distinet compouents. The first component represents eddy current losses
oceurred prior to the merger of the rectangular profiles of the magnetic
flux density. This component increases with frequency as ~ w3/2. The sec-
ond component represents the eddy current losses that occurred after the
merger of the rectangular profiles of the magnetic lux density. According
to formula (2.461), this component of the eddy current losses grows with
frequency as ~ w?. These two components together may produce the fre-
quency dependence of eddy current losses of the type ~ w? + w? that has
been observed i experiments. Another explanation for this experimentally
observed frequency dependence of eddy current losses has heen given by
G. Bertotti ([1]. {2]) and it is based on a different conceptual foundation.
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CHAPTER 3

Nonlinear Diffusion of Weak
Magnetic Fields

3.1 NONLINEAR DIFFUSION OF LINEARLY
POLARIZED ELECTROMAGNETIC FIELDS

In the previous chapters, we discussed nonlinear diffusion of electro-
magnetic fields in magnetically nonlinear conducting media in the case when
differential magnetic permeability pg(H) of media is decreased as the mag-
netic field is increased. This type of variation of the differential magnetic
permeability typically occurs for sufliciently strong magnetic fields and it
reflects magunetic saturation of media. In this chapter, we shall discuss
nonlinear diffusion of magnetic fields in another case when the differen-
tial magnetic permeability of media is increased with the increase in the
magnetic ficld. This case is realized for relatively weak magnetic fields.
Typical B vs. H and pg vs. H relations for this case are shown in Figs.
3.1 aand 3.1 b, respectively. In the sequel, we shall use the following power
law approximation for this type of relations

B=(kH)*, (n<1). (3.1)

This approximation is formally similar to ones used in the previous chap-
ters. However, the important difference is that approximation (3.1) is valid
for n < 1, whereas in the previously used power law approximations we
had n > 1. The formal similarity of these two power law approximations
will allow us to use almost identical mathematical machinery for the anal-
ysis of nonlinear diffusion of electromagnetic fields. However, the physical

182
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Fig. 3.1
features of nonlinear diffusion itself will be quite different. This is because
for n > 1 the nonlinearity of medium results in the increase in pq and,
consequently, in the cerease in the attenuation rate of electromagnetic
ficlds as they are diffused deeper and deeper inside the conducting mediuin.
On the other hand. for n < 1 the nonlinecarity of medium results in the
decrease in gy and, cousequently, in the decrease in the attenmation rate of
clectromagnetic fields as they are further diffused inside the medinm.
Next, we point out. that variations of differential magnetic permeability
similar to that shown in Fig. 3.1 b are observed in other situations as well.
Examples of these situations include symmetrie and nonsymmetrie minor
hysteresis loops (see Figs. 3.2 a and 3.2 b) formed for sufficiently small
magnetic ficld variations, and initial parts of ascending and descending
branches of synetric hysteresis loops (Fig. 3.2 ¢) formed for sufficiently
large ficld variations. In all these situations, the power law approximation
of the form
L 0
b= (kh)~, (n<1) (3.2)
is appropriate. In formula (3.2). & and A are a “shifted” magnetic flux
density and magnetic ficld, respectively. They are related to the actual
magnetic flux density and maguetie field by the expressions
b= B, +B. h=H, t+H (3.3)
in the case of ascending and descending branches of hysteresis loops shown
in Figs. 3.2 a and 3.2 ¢, and by the formula
h=AB, h=AH (3.4)
in the case of the hysteresis loop shown in Fig. 3.2 h. In all these cases, the
differential magnetic permeability is inereased as b s inereased (Fig. 3.2 d).
It is worthwhile to point out that approximations (3.1) and (3.2) ide-
alize actual magnetic propertics of media for very small values of A and 7.
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This is because these approximations predict vanishing values of differen-
tial magnetic permeability, whereas actual values should be finite. Because
this discrepancy occurs for very small values of magnetic fields, it will af-
feet magnetic field distributions for very large depths, which is hardly of
parainotint importance.

In this section, we shall discuss nonlinear diffusion of electromagnetic
ficlds m the case when these fields are linearly polarized. This leads to the
scalar nonlinear diffusion equation

a*H IB(H) .
iy EO o (3.9)
)z ot
By using constitutive relations (3.1) aud (3.2). this equation can be written
in the following forms, respectively:

92 pn OB

CU Y 3.6
02 Tt (3.6)
d* b b (3.7)
= ko —. 3.
=2 ot

[t is clear that Eqgs. (3.6) and (3.7) are mathematically identical. Conse-
quently, all the results obtained for constitutive relation (3.2) and nonlinear
ditfusion Eqs. (3.7) can be casily reformulated for constitutive relation (3.1)
and Fq. (3.6). For this reason. we shall only discuss the case of constitutive
relation (3.2) and nonlinear diffusion Eq. (3.7). To start the discussion,
we consider the “model”™ problem specified by the following boundary and
imtial conditions:

bo(t) = b(0. ) = ¢t?. (p >0, (3.8)

b, t) =10, (3.9)
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b(z.0) = 0. (3.10)

This model problem is similar to one posed in Section 1.3, and it cor-
responds to nonlinear diffusion of electromagnetic fields in a conducting
half-space.

The initial-boundary value problem (3.7} (3.10) can be reduced to the
boundary value problem for a certain ordinary differential equation.  As
in Chapter 1, this can be achieved through the dimensional analysis of
Eq. (3.7) and boundary condition (3.8). This analysis leads to the following
diensional relations:

W i .
o = Kol (3.11)
1] = [elit)” (3.12)

which suggest that the following vanable is dimensionless:

€= e (3.13)
(k---lo-—l(.n--- l)-_’ pr

where ( )
pln—-1)+1 .
n="————— 314
: (3.14)
By using the above dimensionless variable, we shall look for the solution of
the initial-boundary value problem (3.7) (33.10) in the form

bz 0) = ct’ f(&). {3.15)

where f(€) s a dunensionless function of dimensionless variable €.

By literally repeating the same line of reasoning as in Section 1.4, we
find that b(z.t) given by formula (3.15) will be the solution to the initial-
boundary valiue problemn (3.7) (3.10) if function f(&) satisfies the following
cquation and boundary conditions:

2 d .
f(0) =1, (3.17)
flx) = 0. (3.18)

Function f(€) can be construed as the normalized profile, d(z, 1), of mag-
netie flux density:
~ bz t)

bz, t) = _h(,(t) = f(&). (3.19)
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This profile completely characterizes the nonuniformity of magnetic flux
density distribution at any instant of time. The analysis of the normal-
ized profile reveals that there is a very important difference between the
self-similar solutions discussed in Section 1.4 and the self-similar solutions
(3.15). This difference stems from the fact that in Chapter 1 we had the
situation when n > 1 and, for this reason, exponent m was positive for all
values of p > 0. In the situation being discussed, we have the inequality
n < 1 (see formulas (3.10) and (3.2)), which suggests that exponent m in
formula (3.13) may change its sign. Indeed, according to formula (3.14),
we have three distinct cases:

case 1, when

1
0<p<—— and m>0 (3.20)
1-n
case 2, when
1
p=-—— and m=0; (3.21)
1—n
and case 3, when
1
P> T and  m < 0. (3.22)
—-n

In the first case, from formulas (3.13) and (3.19) we conclude that the nor-
malized profiles of the magnetic flux density are dilated (stretched) along
the z-axls as time # is iereased (see Fig.3.3 a). In other words. the nonuni-
formity of the magnetic Hux density distribution is decreased with time.

In the second case, from formulas (3.13) and (3.19) we find that the
normalized profile of the magnetic flux density does not change as time # is
increased (see Fig. 3.3 b). This means that the nonuniformity of the mag-
netic flux density distribution remains the same with time. This property
can be interpreted as “standing” diffusion of electromagnetic fields.

b BT b,

(ti<lp<ty) (ti<tp<ty)

W 1
\

\
AN
\
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Finally, it is apparent from formulas (3.13) and (3.19) that in the third
case the normalized profiles of the magnetic flux density are contracted
along the z-axis as time ¢ is increased (see Fig. 3.3 ¢). In other words, the
nonuniformity of the magnetic flux density distribution is increased with
time. This property of self-similar solutions is quite unusual, and it can
be construed as “backward” diffusion. “Backward” diffusion is peculiar
for nonlinearity (3.2) and it does not exist for linear media (n = 1) or
media with saturation (n > 1). Indeed, according to formula (3.22), the set
of self-similar solutions that exhibit “backward” diffusion becomes smaller
and smaller as n tends to 1, and it disappears in the limit when n = 1.

It turns out that the simple analytical solution to the boundary value
problem (3.16)-(3.18) can be found in the case of “standing” diffusion.
Since in this case m = 0 and p = ﬁ, Eq. (3.16) can be written as follows:

a?fr 1 .
d¢? * n— lf =0 (3.23)

To integrate this equation, we introduce auxiliary functions:

[ (&) = 8(6), (3.24)
do .

By using these functions, we find

dfr dF dF dé  _dF _ 1d(F?)
€2~ de  de de T T de¢ 2 do

(3.26)
By using formulas (3.24) and (3.26), the sccond-order differential Eq. (3.23)
can be reduced to the following first-order equation:

dFY 2 Ny
ekt (3.27)

By integrating the last equation, we obtain

2n 4l
1 —-n?

F?= + Ay, (3.28)

where A1 is an integration constant. By recalling formulas (3.24) and (3.25),
the last equation can be transformmed as follows:

1

‘g—; = <1 f”nz et A1> - (3.29)
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To find the constant A, we demonstrate that
afr
d§
Indeed, we can easily establish the following expression for the electric field:

1 0H 10h 1 6™
Bt =05, =58~ shor (3:31)

—=(00) = 0. (3.30)

Now, by using formulas (3.15) and (3.13), we find

G A ¢ @ (3.32)

E(zt) = — -
(z.1) ok dz ak(k‘la_lc"_l)%tm dg’

From formula (3.32) and the fact that the electric field vanishes at infin-
ity, we establish the validity of condition (3.30). From this condition and
formulas (3.18) and (3.29), we find that

Ay =0. (3.33)
As a result, differential Eq. (3.29) is simplified as follows:

(l n

d€ “Vio ”2

=2 (3.34)
By separating the variables in the last equation, we obtain

2

md{. (3.35)

w3
f7 df =
By integrating the last equation, we derive

i 1—n ’ g e
f= = ( 2n(1+n)§+Az>’ (3:36)

where A, is a constant of integration. The last formula can be transformed
as follows:

2
1-—
n—1 Qo
GRS ( s A ) : (3.37)
which, in turn, yields the expression
1 g -
f&) = g (3.38)

< znl(lﬁn)é + Az)
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Now, by invoking the boundary condition (3.17), from formula (3.38) we
derive

Ay = 0. (3.39)
This leads to the following final expression for f(£):

f(g) = ! . (3.40)

/A T
(l + \/ Zvr(lﬁn) )

By using this expression and formulas (3.13), (3.15), and (3.21), we derive
the following equation for the magnetic lux density:

AN
b(z,t) = ¢ - (3.41)

S
; (d-n)kaec! ~ o
(J' + Z\/ 2n(14n) _)

which yields the following expression for the magnetic field:

_n
(,7" ] :

hiz t) = —— . (:3.42)

B (st )

A few remarks are in order concerning the “standing”™ mode solution (3.11).
This solution is similar (in some ways) to the standing mode solntion (1.285)
obtained in Section 1.6, In both cases, the solutions are represented as the
product of two functions, which (1(‘1)(‘11(1 ouly on { and z, respectively. Tt
s this mathematical property of the above solutions that leads to their
physical interpretations as “standing” modes. This property also suggests
that the solution (3.41) can he obtained by using the method of separation
of variables, that is, in the same way as was done for the solution (1.235).
There are. however, substantial differences hetween the above two solutions.
The solution (1.285) is localized in time and space. whereas tll(‘ solution
(3.41) is “undimited™ o both time and space. In other words. the latter
solution exists for the semi-inlinite time interval 0 < ¢ < > .\11(1 at any
instant of time ¢ > (0 this solution extends to mflmly in the direction of
the z-axis. The above solution also suggests the asymptotic behavior of the
magnetic flux density at infinity. Namely, formula (3.41) shows that b(z.f)
tends to zero as z 77 when z approaches infinity. Next, we demonstrate
that this 1s a general property that is valid for all self-similar solutions
(3.15). To this end, we shall find the asymptotics of function f(€) at infinity.
We shall use the notation

F&) ~ A(L + &)™, (o < 0), (3.43)
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if _
lim — /(&)

e oo A(l + af)r (3.44)

It is clear that formula (3.43) is an asymptotic equality.
To find A, a, and «a in formula (3.43), we turn to differential Eq. (3.16)
and rewrite this equation in the form

A2 om df ~ mdf .
ety = ‘F(l +(L£);E + ;E_ +])f (340)

By assuming asyvmptotics (3.43) for function f(£), we can transform Eq.
(3.45) into the following asymptotic equality:

Aanf{an = 1) (14 a€)™ ™2 ~ —Ama(1 + a€)”

+Ama(l 4+ a&) " 4 pA(l + af)”. (3.46)

Becanse o <2 0, the second term on the right-hand side of asymptotic equal-
ity (:3.46) decays faster than the two other terms. For this reason, this term
can be omitted. With this fact in mind, we conclude that asymptotic equal-
ity (3.16) can hold only if

an —2 - o (3.47)
andd
AMafan(on — 1) = Alp — ma). {(3.18)
From formula (33.47). we find
2
Go= e (3.19)
n--1

By substituting the last expression into Eq. (3.48) and invoking formula
(3.14) for m, we obtain

1—n

‘4n--l 2: e —_ 3.50
D AT (3.50)

Thus, A and a cannot be chosen independently: any choice of one of these
two constants determines the value of another. For instance. if we make
the choice

A=l (3.51)

then, according to formula (3.50), we have

I—n
= g — . 3.52
“ 2n(n +1) (3.52)
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Now, by recalling the expression (3.40) for f(£), we obscrve that it has the
form of (3.43) with the values of «, A, and a given by formulas (3.49),
(3.51), and (3.52), respectively.

Thus, we have established that

A
Yo —— (3.53)
(14 a&)™~

By using the last asymptotic equality in formula (3.15) and taking into ac-
count expression (3.13) for £, we easily conclude that the following asymp-
totics is valid for the magnetic flux density

2.

b(z,t) ~ 27 T-7, (3.54)

This is the fact we intended to prove. Tt is established for boundary con-
ditions(3.8), that is, for any p > 0. These boundary conditions describe
a very broad class of monotonically increasing functions as p varies from
0 to infinity. This suggests that asymptotics (3.54) is valid for any mono-
tonically increasing boundary condition. This fact can be mathematically
proven by using the “maximumn principle” for Eq. (3.7).

The fact that in asymptotics (3.53) A and a are not independent. but
related by the expression (3.50) is uot accidental. [t can be traced to the
property of Eq. (3.16) being invariant with respect to the transformations:

F(E) = A7 1 f(AE). (3.55)

In other words, if f(£€) is a sohition to Eq. (3.16) then F(&€) is a solution
to the same egunation. This can be established by literally repeating the
reasoning given in Section 1.4, This property can be utilized in the following
way. Suppose we can find a solution to Eq. (3.16) that satisfies the boundary
condition (3.18) but does not satisfy the boundary condition (3.17):

f(0)y =¢q # 1. (3.50)
Then, by taking
A=gq T, (3.57)
we find that the function
. 1 nt g E
Fey= f(a=¢) (3.58)

will be the solution to Eq.(3.16) that satisfies both boundary conditions
(3.17) and (3.18). Thus, if we know any solution to Eq. (3.16) satisfving
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the boundary condition (3.18), then, by using transformation (3.55), we can
map this solution into the solution that satisfies the boundary condition
(3.17) as well.

Transformation (3.55) along with asymptotics (3.53) can be utilized
for the solution of Eq. (3.16). Namnely, we can look for the solution in the
form

2

FEO =AU+ I+ a1+ +a(1+ 72 +.]. (359

By substituting the last expression into Eq. (3.16) and by equating terms
of the same order of (1 -+ £), we can sequentially determine coetficients
apay,. ... Then, by using transformation (3.58), we can map solution
(3.59) into the solution that will satisfy the boundary condition (3.17).
This is the strategy that was utilized and worked well in Section 1.4, This
was the case hecanse exponent o in power approximation (1.92) (or (1.93))
was appreciably larger than 1. This is not true for exponent n in power
approximation (3.2). For this reason, we pursue another approach that ex-
ploits smmallness of e Indeed, for m = 0 we have found the exact analytical
solution (3.10) to Eq. (3.16). Now. by assmming that wnis sufficient]ly small.
we shall use the perturbation technigue to find solntions to Eq. (3.16). To
this end. we express p o terms of e

2m -1 .
p= (13.60)
noo |
and transform Fq. (3.16) as follows:
(/_“L'i N C(lf _ 2 1

S L L Y ) 3.6
de HK(IE /171'f+'11 —f'l'/ (3.61)

In this way, we absorbed p into 1 and reduced ditferential Eeq. (3.16) to the
form (3.61) that contains only parameter m. Next, we shall look for the
solution of Eq. (3.61) in the form

FE) = fol&) + mfi(&) + m? o) 4 o+ mb (&) + (3.62)

To proceed further, we have to find the power series expansion with respect
to m for f

fr= (ot mfi+ulfot b )" (3.63)
To do this, we nse the formnla
(U'n ,,”2 ([qu ,”l.'i (llifu '
= dmee | | b 4 (364
f ! din 21 dm? 3 din? ( )

==} m=) =0 me={)
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[t is apparcut from (3.62) that

= o (3.65)

m=0

./"I.

Then, from formula (3.63), we find

i]fn
dm

=n(fo+mfi+ m?fo + .. _)"7[ . (fl +2mfo +3mEfy 4 ). (3.66)

Conseguently,

(IJ“II

dm

=nf)" fi. (3.67)

rrr=0)

Sunilarly, from (3.63), we derive

(12 f” . 2 n- 2 . . . 5 2
I——z =n(n- 1) (ft) donfyHmcfy b ) : (_fl +2mfy + 3w fy b )
clin
1on (fod4 mfi 4 mfy 4 .)” ot (2fo46mfy+ ...
(3.68)
As a result.

—

=2 f e k(e = VT (3.69)

i =}

d2f

dm?

By using the same line of reasoning. we abtain
. o o

(lii./'u

dm?

= 3 gl fet 6n(n =V fE R f fabn(n = D) (e 200 S (3.70)

m -0

By substituting formulas (3.65). (3.67). (3.69), and (3.70) into cxpansion
(3.64). we find

fro=fl b fl V4 om? [nf(’}' i . nin ,,721(1 ‘”f“}
4 e {/1}‘(”l [y + f,](l,,;_l:j)!i(‘”,,_;z,), "*‘fl T ) n— )/] /)il

(3.71)
By plugging expressions (3.62) and (3.71) into differential Eq. (3.61), we
arrive at

2 orn 2 n—1 2 =1 . ] ) ”
d 20 mn fo” N ©om? ,”’l fo ' fo n(no- 1) d*, j
- e de® 2 e
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3 dzf(;'_lf.'i n(n — 1)(n - 2) ézf(?_;flg l‘zf(7 zflfz
+m [n dé? + 3 T2 +n(n—1)— d{z
dh f1 o adfs
ot §<d£ ETE
2m 2 4
o (fnerfl +mifo+mifs+...)
% (fo+mfi+mfotm’fy+...) =0 (3.72)

By collecting the terms of the same order of m and by equating them to
zero, we obtain the following differential equations:

&y 1 o
2 jfo = (0, (3.73)
d2frt 1 2 dfo .
TR lfl = lfo - EE-, (3.74)
o fo 1 2 dfy  n(n—1)d*frEFE
T TaT TT"“ ST T gz BT
12 ST 1 {
n( U 2 Js . fa = fz - f(ﬁ
& n—1 d€ (3.76)
n(n = 1)(n = 2) d*fi— ‘f,_ nln - l)d_z,fL"' SN i
3! de? dez

Differential Eq. (3.73) is identical to differential Eq. (3.23), which we have
already solved (see formula (3.40)). Thus, a solution to Eq. (3.73) that goes
to zero at infinity can be written as follows:

Jol€) = (L + af)7 T, (3.77)

where a is given by formula (3.52).

Differential Eqgs.(3.74). (3.75). and (3.76) have similar mathematical
structures.  All these equations can be written in the following generic
form:

(12 n—1
d{};f& + ;17—“ Sfe = Qk(€). (K =1.2,..). (3.78)

where the right-hand sides Q¢ (€) are determined from the solution of Eq.
(3.78) for all & < k.
By using expression (3.77), we find
(li(']‘flfk B d
dg? dfz

+4a(l + af)%féi + 2a* f.

(3.79)

2 & fi
(a5

1+ a€)” 1]
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By substituting formula (3.79) into Eqgs. (3.78), we arrive at

1+ ai)Q% +da(1+a) T + (2a2 ; ;(n—l_l—)) fe = Qul6). (3.80)
Thus, for all k’s we need to solve similar Euler’s type differential equations.
These are linear equations with variable coefficients. Since Euler’s type
equations are well studied, in principle, Eq. (3.80) can be solved up to any
value of k for a given n. However, if we want to perform these calculations in
general (symbolic) form, formulas become very complicated and convoluted
as k is increased. For this reason, we shall consider only the calculation of
the first order term f; and then shall draw some conclusions. For k = 1,
from formulas (3.74) and (3.77) we find

a© =1 20— -1 2 as e -

" /3
= ! +a£)‘7’;’fJ - (3.81)
n-—1
m(ua{) T(1+af ~af) = n(n—-n(”af)'ﬁ

Consequently, for & = 1 Eq. (3.80) can be written as follows:

d*fi df\ 2 1 4
(1+a€)? ng+4 (1+a§)E+(2a +n(”_1) (1 +af)

(3.82)

i = n(n — 1)

The correspouding homogencous equation

dz f{l
dg?

(1 + ag)?

. 1

has solutions of the formn

FTE) = AL+ af)". (3.84)
Here, a is a root of characteristic equation
. . . 1
alala —1) +4a*a + 26 + ——— = 0. (3.85)
n{n —1)

By taking into account formula (3.52), the last equation can be simplified
and written as follows:
2 .
9 . n‘ —3n o
a“+3a+2— =0. 3.86
1) (3.86)
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By solving the last equation, we find

3—-n 2n
—, g = . 3.87
n—1 2 1—n (3.87)

Yy =

Since o) coincides with the exponent of the right-hand side of Eq. (3.82),
we look for the solution of this equation in the form

S1(6) = A1 + a&)™ In(l + ). (3.8%)

By substituting the last formula into Eq. (3.82) and performing all necessary
transformations, we end up with
2

24a%ay + 3afA == — - 3.89
a“a) + 3a w(n = 1) ( )

By taking into account formulas (3.52) and (3.87), we derive

A= 3+ M n) (3.90)
Thins.
ey M) . 7 .
Si(§) = (:-;--J.r ‘”)(1_ ;_n)(l i af) In(l + «af). (3.91)
Consequently,
FUEY = fol€) + mfi(€) = (1 + af)i T
A+ 1) (3.92)

+m (lJr(lf)%*"I In(l + a&).

A=)
[t is casy to see that function f(€) satisfies both boundary conditions (3.17)
and (3.18). If this were not the case, we would use transformation (3.55) to
impose the boundary condition (3.17). It is clear from formula (3.91) that

fi) =0 and fi() =0 (3.93)

It ts also apparent that function f{£) is positive for 0 < & < no. This means
that this function assumes at least one maximum value. To find this vahie,
we consider the equation

Ji(&) = 0. (3.94)
According to formula (3.88), the last equation is equivalent to

1
111(1 + (161)) = —(; B (-;95)
1
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which, in turn, is tantamount to

$

(14 aky)=¢ 77 (3.96)

Thus, function f(£) has only one maximum. This function is schemati-
cally shown in Fig. 3.4. By substituting formnulas (3.95) and (3.96) into
expression (3.91), we find

d(n + 1)

max fi(§) = f1(&) = BrmE-n) (3.97)
By using the last formula, we derive
max |mfi(&)] < ‘"'!Tsi(,:z—;sl)fuﬂ) (3.9%8)
Counsider the case when
no=10.5 and [m] < 0.5. (3.99)
For this case, according to formula (3.60), we have
0 < p <. (3.100)

For these values of p, the boundary conditions (3.8) deseribe a sufficiently
broad class of monotonically increasing functions of fime (see Fig. 3.5).
However, for all these monotonically inereasing boundary conditions. ac-
cording to formmlas (3.98) and (3.99) we have

max | fy(&)] < 013 (3.101)

Thus, as a first. approximation, we can negleet the term m fi(€) and use the
following, expression for f(€):

FlE)~ (1 +ag)7T. (3.102)

By substituting the last equation into formmla (3.13) and taking info
account (3.13), we eud up with the following approximate expression for
the magnetic flux density:

b{z,t) ~ ’_1)1,(,#)4_‘ (3.103)

(L4 )™
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f1 A

\j
Je

Fig. 3.4

p<i

p=4

—» t

Fig. 3.5

We can make the next step in our approximations and assume that
formula (3.103) is fairly accurate for all monotonically increasing boundary
conditions. Unknown function zo(¢) in this formula then can be determined
from the first moment equation for nonlinear diffusion Eq. (3.7)

" 9%h > ob )
/0 z@(lz:o'l zadz. (3.104)

By literally repeating the same line of reasoning as in Section 1.5, we can
transform the last formula as follows:

I oo
- / ho(7)dT = / zb(z,t)dz, (3.105)
0 0

g
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where hqo(t) is the boundary value of the magnetic field.
By substituting expression (3.103) into (3.105) and performing inte-
gration, we derive

1

2n(n +1) fot ho(r)dr | 2
(1 — n)20bo(t) ’

20(t) = (3.106)

Formulas (3.103) and (3.106) provide a complete (albeit quite approximate)
description for nonlinear diffusion of electromagnetic fields. This descrip-
tion is not as accurate (and universal) as the one we obtained in Chapter 1
for the case of strong magnetic fields. Moreover, this description cannot be
extended to treat time-periodic problems of nonlinear diffusion. It turns
out that the time-periodic problems of nonlinear diffusion are more or less
manageable in the case of circular and elliptical polarizations of clectro-
magnetic fields. A detailed analysis of these problems is presented in the
following sections.

3.2 NONLINEAR DIFFUSION OF CIRCULARLY
POLARIZED ELECTROMAGNETIC FIELDS
IN ISOTROPIC MEDIA

Frow the mathematical point of view, this problem is tantamount to
the finding of time-periodic solutions of the following coupled nonlinear
partial differential equations:

0;5; - ”% {“ (\/WH?) Hm] ~ (3.107)
0;5; - ”% [“ (M) Hy] ~ (3.108)

subject to the following boundary conditions:

H.(0,t) = H,,, cos(wt + bp). (3.109)
Hy(0,t) = Hyp, sin(wt +6y), (3.110)
H, (0, t) = 0, (3.111)
Hy(>o.t) =10 (3.112)

As before, we observe that the mathematical structure of nonlinear dif-
ferential Egs. (3.107) (3.108) and boundary conditions (3.109) (3.112) is
invariant with respect to rotatious of the z- and y-axes. In other words,
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the mathematical form of these equations and boundary conditions will re-
wain the same for any choice of z- and y-axes in the plane z = 0. This
implies that the solution of the boundary value problem (3.107) (3.112)
should also be rotationally invariant. This means that the magnetic field is
circularly polarized anywhere inside the conducting media:

H.(z) = H(z)cos(wt + 6(z)), (3.113)

H,(z) = H(z}sin{wt + 6(=z)). (3.114)

Next, we shall formally demonstrate that the “circularly polarized” solu-
tion (3.113) (3.114}) is copsistent with the mathematical structure of the
houndary value problem (3.107) (3.112).

First. we note that according to foriulas (3.113) and (3.114) we have

)| = \/H-? )+ H2(2.1) = H(z). (3.115)

Consequently, the magnitude of the magnetic field and the magnetic per-
meability, o(|H|), remain constant with time at any point. within the con-
ducting media.

Now we represent formmlas (3.113) and (3.114) in the phasor form:

Ho(z) = H(2)e!") (3.116)
M,(z) = —jH(z)e/") (3.117)

I s clear from the last three expressions that
H(=0)] = H(z) = [l(2)] = f//,,(:)f (3.118)

Consequently,

pHC 0D = (B (2)) = ol 1, ). (3.119)

By using formula (3.119) as well as anticipated forms (3.113) and (3.114) for
the solution, we can transform the boundary value problem (3.107) (3.112)
ito the following two boundary value problems:

d*H, (
o = jwap

a,.(0) = H,, (3.121)
Ho () =0, (3.122)

) (3.120)
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and o
d::ﬁ“ = jwon(|H,|)H,, (3.123)
ﬁy(”) = —jHym, (3.124)
Hy(x) =0, (3.125)
where
H,, = H,,e%. (3.126)

The very fact that the boundary value problem (3.107) (3.112) is exactly
transformed into the boundary value problems (3.120) (3.122) and (3.123)
(3.125) for magnetic field phasors indicates that the “circularly polarized”
solution is consistent with the mathematical structure of the boundary value
problem (3.107) (3.112). This fact also proves that there are no higher-
order time-harmonies of the magnetic ficld anywhere within the conducting
media despite its nonlinear magnetic properties.

The achicved simplification is quite remarkable from the purely math-
cmatical point of view. First, partial differential equations (3.107) (3.108)
arc exactly reduced to ordinary differential Eags. (3.120) and (3.123).
Second, the bonndary value problems (3.120) (3.122), and (3.123) (3.125)
are entirely decoupled. Third, the deconpled boundary value problems have
identical mathematical structures. For this reason, the same solution tech-
nigue can be used to handle these problems. Tt is instructive to stress that
all these simplifications stem from the rotational symmetry of the orginal
boundary value problem (3.107) (33.112).

The above simplifications are valid for any isotropic nonlinear media.
To proceed further, we shall use the following constitutive equation for
isotropic medi

B=kH"  (n>1). (3.127)

This constitutive equation desceribes B ovs. H relations exemplified by Fig.
3.1 a. In other words, this constitutive equation is similar to the one given
by fornmla (3.1}, however. the meanings of noand & are different. We have
made this change becanse it leads to simpler expressions.

From formula (3.127), we find
B
Hy=— =kH""", 3.128
p(H) 7 =k (3.128)

which leads to the following expression for the magnetic permeability at
the bonndary of media:

n—1

Han = kl]7'7l =k |H,,

m

(3.129)
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From the last two formulas, we obtain
H n—1
H) = 3.130
/L( ) Lm <Hrn> ( )
Consequently,
N n—1 1:1 n—1
,L(’HL. ) = fiam | | B]) = o |22 (3.131)
m m
By using relations (3.131), Eqs. (3.120) and (3.123) can be written as fol-
lows: .
d2H, 2
St = WOy, | H,. 3.132
e (3.132)
2H a, "
C My = JWa iy, HJ H,/. (3.133)

dz?

(3.134)

We shall look for the solution of Eq. (3.132) in the form

(3.135)

4 - M
o= Jov

where

It is clear that (under the condition o > 0) the function (3.134) satisfies
the boundary conditions (3.121) and (3.122). Frow forinula (3.134), we find

H. (=) < : )
— =1+ — 3.136
‘ Hm <0 ( )

(3.137)

which vields
n—l . a’(n—1)
= (1 4+ -}) .

__}'Im <0
By substituting expressions (3.134) and (3.137) into q. (3.132), we obtain
A . —-_——2 . . —ov—a (n—1)
ala+1)H, (1 + “) = jwopt, H 2t (1 + L) (3.138)
20 <0
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It is clear that the last equality can be valid only if

ala+ 1) = jwop, 22, (3.139)
and
2=1a/(n-1). (3.140)
The last equation yields
2
a'= "= (3.141)
n—1

Next, the characteristic Eq. (3.139) will be used in order to find «” and
2y. To this end, we shall write complex characteristic Eq. (3.139) as the
following two real cquations:

o (o +1) = (o), (3.142)
(20 + D" = worpi, 2. (3.143)
By substituting formula (3.141) into Eq. (3.142), we find
V2(n 1)
n_ VR (3.144)

n—1

(¥

Next, by substituting formulas (3.141) and (3.144) into Eq. (3.143), we
obtain

R+ )+ 3)Y)s o
- NG (13.145)

Thus, formulas (3.134), (3.13%), (3.141), (3.144), and (3.145) completely
define the solution of the boundary value problem (3.120) (3.122). The
boundary value problem (3.123) (3.125) is identical (up to notations) to
the boundary value problem (3.120) (3.122). As a result, the solution to
the former boundary value problem can be written as follows:

]:11/(2) - _.j[:[771, <L + Z) . (314())

20

By converting formulas (3.134) and (3.146) from the phasor form into the
time-domain form and taking into account relations (3.141) and (3.144),
we obtain the following solution of the boundary value problem (3.107)
(3.112):
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2(n+1
oS (u)t + By — ﬁ(;) In (1 + i)) ,
n—1 2()

(3.147)
-t St 1)
H,(z.t) = H, (1 + Z) sin | wt + 6y — M In <1 + Z) ,
! 20 n—1 20
(3.148)

where zg s given by Eq. (3.149).

[t is instructive to show that in the limit of n — 1 formulas (3.147)
and (3.148) give classical expressions for linear media. First, it is apparent
from formula (3.145) for z, that

where

S ST — (3.150)
R2(n + D){n+ 3)%]5

. ”~.-'..I
lim <1 | > _ o (3.151)
1= 20
W Ly
= \/;‘ . (3.152)

Similarly. it can be established that

V2(n +1) z
lim it) In <1 + ) = iz (3.153)
n—1 n—| Z0

Conseqguently,

where

By using relations (3.151) and (3.153) in formulas (3.147) and (3.148), we
arrive at the classical expressions:
H,.(z.1)= H,,,(‘_": cos(wt + 6y — 3z). {(3.154)
Hy(zt) = H,, e sin{wt + 8y — j12). (3.155)
By comparing these classical expressions with formulas (3.147) and (3.148),

we conclude that nonlinearity (3.127) results in slower (than exponential)
decay of the magnetic field magnitude and in logarithmic variations of initial
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phase #(z) with respect to z rather than in linear variations of this phase.
It is also interesting to compare formulas (3.147) and (3.148) with solution
(2.57) (2.58) from the previous chapter. We observe that in the case of
strong magnetic fields the process of nonlinear diffusion is localized near
the boundary of conducting media, whereas in the case of weak magnetic
felds nonlinear diffusion extends up to infinity. In formmlas (2.57) and
(2.58) parameter zg has the meaning of penctration depth, that is, there is
no clectromagnetic field beyond zg. In contrast, parameter zy in formulas
(3.147) and (3.148) does not have a trausparent relation to the penetration
depth, although it clearly affects the rate of decay of the magnetic field,
that is. the smaller z) the faster the magnetic feld decays.
From formulas (3.147) and (3.143), we find

)

[H(z.1)] = H(z) = H,, (1 + i) ‘ (3.156)
20
By using the last equation in formmla (3.130), we obtain
N =2
J(H(2) = fion (1 f “) : (3.157)
<0
By combining expressions (3.156) and (3.157). we derive
z o
B(z) =13, (l 4 ) . (3.158)
<0
where
By = pi H,, (3.159)

is the magnetic flux density at the hboundary.

A typical plot of B(z) vs. zis shown in Fig. 3.6. Again, we can observe
that the rate of decay of 13(z) is lower than exponential. Physically, this
can be explained by the fact that the magnetic permeability of media is
decreased as the clectromagnetic field diffuses deeper i the condnceting
media.

Next, let us proceed to the calculation of surface impedance in the case
of circular polarization. By using formulas (3.134) and (3.146) along with
the following expressions for the phasors of the clectrice field
oy VUG TdLG),

o dz o dz

(3.160)

we find that the surface impedance is given by
2 (0 E,(0 o
N = (—) = ——i—) = —. (3.161)
H,(0 H,.(0) 0%z
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By invoking formulas (3.135), (3.141), (3.144), and (3.145), from the last
equation we derive

Whim 24 jv2(n+1) (3.162)

o PRr+D)(n+3)%F

7]:

Thus, the surface impedance is expressed in terms of frequency and physical
properties of conducting media. This impedance is field dependent because
{18 determined by the value of the magnetic field at the medium bound-
ary. By setting n = 1, we recover from the last equation the well-known
formula for the surface impedance of linear conducting media:

n= (1+j)\/;Z“. (3.163)

Of course, in this case the magnetic permeability does not depend on the
magnetic field and is the same everywhere within the media.  For this
reason, subscript m for poin the last formula is omitted.

It is often desired to represent the surface impedance in the polar form

7= |nle?. (3.164)
By using formula (3.162). we find
2 L Wik
0= ) 3.165
i <”H) : (3.165)
and
4+ 1
tang = " 5 {3.1606)

Fig. 3.6
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Fig. 3.7

These remarkably simple formulas reveal that the magnitude of the surface
impedance tends to zero and its polar angle tends to 7 as nis increased.
This is in contrast with the results obtained in Section 2.1, There, we found
that the magnetic nonlinearity of conducting media results in the incerease
in the magnitude of the surface impedance and in the deerease inits polar
angle ¢. The plots of n] vs. 1 and ¢ vs. noare shown in Figs. 3.7 a and
3.7 b, respectively.

Previously, it has been asstined that the magnetic field components
at the boundary arc specified (see formulas (3.109) and (3.110)). However,
the found solutions can be casily generalized to the case when total Huxes
are given. Indeed, suppose that

D, (t) = D, sin{wt + 6y), D, (1) = b, cos(wt + 6y), 3.167)
Y

where @, (t) and &, (1) are total fluxes per unit length in y and @ directions,
respectively.
Using formulas
d®,(t) dd (1)

Eo(0.8) = === B,(0.4) = - (3.168)

we derive

EA0) = —jwb,,  Ey(0) = —wd,, (3.169)
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where X A
o, = Be’. (3.170)

Now, by invoking formula (3.161), we find

-~ ~ wWozy 2

&
H,(0) = - jHm = _ijZO &, (3.172)

By substituting the last two equations into {3.134) and (3.146), respectively,
we end up with

H.(2) = %%, (1 + i) , (3.173)
20
H(:) = -7, <1 + i) : (3.174)
x Zn

which are the formulas we intended to establish.

It is important to note that the last two formulas do not give fully
explicit expressions for magnetic field components in terms of . This is
because zy depends on gy, that, in turn, depends on H,,,. This difheulty
can be circumvented if we write relation (3.171) in the form

af

'}{uz = (I)m (3175)

WT 2

and cousider it as a nonlinear equation for f,,. By solving this equation.
we can find H,,,, which then can be utilized for the caleulation of zy. Having
done that, we can use formulas (3.173) and (3.174).

3.3 NONLINEAR DIFFUSION OF ELLIPTICALLY
POLARIZED MAGNETIC FIELDS IN
ISOTROPIC MEDIA

Noulincar diffusion of elliptically polarized magnetic ficlds in isotropic
media can be analytically treated by using the perturbation technigue. The
development of this technique closely parallels the discussion presented in
Scctions 2.2 and 2.3. For this reason, in our exposition only the major steps
of this technique will be outlined, while minor details will be omitted. The
samie style of exposition will be adopted in the next section as well.

To start the discussion, let us suppose that the following boundary
conditions are realized at the interface of conducting half-space:

H (0,t) = H,,, coswt + eHp, f2 (1), {3.176)
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Hy(0,t) = H,, sinwt + ¢H,, f,(t). (3.177)

Here e is a small parameter, while f.(¢) and f,(¢) are known periodic func-
tions of thme with period T = Zu_”

By using the general idea of perturbation techniques, we look for the
solution of Eqs. (3.107) (3.108) subject to boundary conditions (3.176)

(3.177) and (3.111) (3.112) in the following form:

Ho(z,t) = H2 (2, t) + ¢hy(2.1), (3.178)
H,zt)= H(y)(z, t) +ehy(zt). (3.179)

By substituting the last two formulas into the equations and boundary
conditions mentioned above and by equating the terms of like powers of ¢,
we end up with the following boundary value problems:

G HY P, —
S 032 02 0 .
oo =g [ (VD + () 1] (3.180)
JPHY B T 3\ o
HY(0.1) = H,, coswl (3.182)
(0. 1) = 1, sinwl. (3.183)
H(2. 1) =0, (3.184)
HY(no. 1) = 0, (3.185)
and
Dh, 9] OB, OB,
= =0 | (HY HY) + hy—— (H) . HY) | 3186
2 {T()[ [1‘ JH, ( 4 !/) F IA/(-)]]!/ ( J y) ) ( ))
P?h, ] O B
Y=o b, (HYCHYY by, = (HY O HYY 3.1
o= = T {" gt Fr )+ g (1) (3. 187)
ho(0.8) = Hy, fu(t), (3.18%8)
hy(0,8) = H,,, f, (). (3.189)
hy(oo, t) =0, (3.190)
hy(oc, t) = 0. (3.191)

Here, as before, we have used the following notations:

B, (H,.H,) = ,,,< (H2 1 H,g)) H,. (3.192)
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By (Hy, Hy) = < (H2 + H§)> H,. (3.193)

The boundary value problem (3.180) (3,.185) is identical to the boundary
value problem (3.107) (3.112), which describes noulinear diffusion of cir-
cularly polarized electromagnetic fields. The solution to this problem was
found in the previous section and it can be written in the following {orm:

2
HY(z.t) = H,, <l + i) cos(wt + 6(z)), (3.194)
20
H,;)(z.t) = H,, <1 + é) ’ sin(wt + 6(z)), (3.195)
20

where

v 2(n + z 2
6(z) = ————(—7}—+1—1—) In <1 + f’) = —a’ln (I + ) . {3.196)

n-—- <0 <0
By substituting formulas (3.194) and (3.195) into Eqs. (3.186) (3.187) and
by performing the same transformations as in Section 2.2, we arrive at the
following equations:

(3.197)
A cos(2wt 2()(:))jl + h,,(;.z‘)y-;f sin( 2wt +26’(:))},
DNzt 2\ o -1
%2(377) =0 flyn, (l + ;;) (()—t {lz_r(:. f)”—z-— sin(2wt + 20(z))
-+ 1 -1
thy (e | P st 1 26(2)
‘ 2 2
(3.198)
To further simplify the above equations, we introduce the auxiliary function:
Bz t) = ho(z.t) + jh,(2.1), (3.199)
@z t) = h(2.t) - jhy(z,t). (3.200)

By using these functions and literally repeating the transformations de-
scribed in Section 2.2, we end up with the equations:

0?p(z,t 2\ 20 [n+1
z 022_2 = Ol (1 + "_0) & 5 (f)(z,t)
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-}

n—1 z\ a2t
T (1 + TJ I (z 1) | (3.201)
0%z, t 2\P0 [n+l
azﬁ;“l =0pm, |1+ 7-() o 2 ¥(z.t)

(3.202)

n—1 z s20” .
+ — (l + ;> eIz, 1)
2 20

Next, we shall look for the solution of Eqs. (3.201) and (3.202) in the form
of Fourier series:

Bz )= Y dr()eF (3.203)

Pz, t) = Z g (2)er (3.204)

By substituting the above Fourier sories into Bgs. (3.201) (3.202) and by
equating sitmilar terms, we obtain the following infinite set of conpled ordi-
nary differential equations:

N (s , Ly
(1 + 4> “ ““E ) = j\& [{:q’)k(:) - (1 + —> . Ij‘k_-z(:)} . {3.205)
20 oz 0
P 220’
z deyy oz . , : ,
(1 + 4) & ;(l = JXk-2 [(u/w alE) + <1 + ) ‘G)k(l)} 8
Zu 17 0

BT

(h=0,£122...). (3.206)
where l
n 4+ — 1
P 8 (1T (3.207)
n—1 2

The remarkable feature of these simmltancous ordinary differential equa-
tions is that they are coupled in separate pairs. For this reason, cach pair
of coupled differential Egs. (3.205) (3.206) can be solved separately. The
solution of these differential equations must be subject to the boundary

conditions

(»f)k(()) = ]lm (f.:\k + jf_l;,k) B (‘3208)
W—2(0) = Hopy (fok—2 = i fyk=2) (3.209)
dr(0o) = P (o0) = 0. (3.210)
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Boundary conditions (3.208) (3.209) follow from formulas (3.199) (3.200)
and boundary conditions (3.188) (3.189), whereas notations fo x and f, ¢
stand for Fourier coefficients of functions f,(t) and f,(f). respectively.

Having solved Eqgs. (3.205) (3.206), we can find Fourier coefficients of
perturbations:

hex(z) = ;17 [br(2) + 1u(2)] (3.211)
hyr(z) = 2% [ox(2) = vi(2)], (3.212)

and then perturbations theniselves:

ho(z,t) = Z by g (z)edhet (3.213)
h=—ox

~:

()= 3 hya(z)et (3.214)
= —~x

Now we shall apply the perturbation technigue just outlined to the case

when the magnetic ficld on the houndary is elliptically polarized. Since we

deal with isotropic media, we can choose axes @ and g to be coincident with

major and minor axes of the “polarization”™ ellipse. respectively. For this

choice of coordinate axes. we have the following boundary conditions:

H (0.8) = Hppcosawl, (3.215)
H,(0.1) =, sinwt. (3.216)
By introducing notations

[_17111‘ + [{m Y . ]Im.r " llmy

H, =

(3.217)

€ = —(—————— .

2 11/7:.:' + ]'{my
the above houndary conditions can be written in the perturbation form:

H.(0.t) = H,, coswt + ¢H,, coswt, (3.218)

H,(0.1) = H,, sinwt — ¢ H,, sinwt. (3.219)

By comparing boundary conditions (3.213) (3.219) with boundary condi-
tions (3.176) (3.177). we can identify f,.(#) and f, (1) as follows:

fo(t) = coswt,  f,(t) = —sinwt. (3.220)
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From formula (3.220), we find

1

f.’r,l - 53 fa:,fl -

1 1
fy,l*_z~ fy,—l** Za

By using formulas (3.221) and (3.222) in boundary conditions (3.208) and
(3.209), we conclude that

1
g Jrk=0 ALJR#1. (3.221)

for =0 if [k[ # 1. (3.222)

Gr(0) =0, wR(0)=0 if [k #1, (3.223)

G1(0) =0, ¥ (0) = H,,. (3.224)

Consequently, for & > 0 and k& # 3 we have the boundary value problems for
pairs of coupled Eqs. (3.205) (3.206) subject to zero boundary conditions.
Equations (3.205) (3.206) are homogeneous, so we conclude that for & > 0
and & #£ 3 these equations have zero solutions:

op(z) =0, y_p(z) =0 if k>0and k # 3. (3.225)
According to formmlas (3.211) and (33.212). this implies that

hew(2) =00 Dya{z)=0 fhk20kFF£I1L#3 (3.226)

Thus, only the first and third harmonics are not equal to zero. To find these

harmonics, we shall write Eqgs. (3.205) (3.206) for A = 3 and supplement

them with boundary conditions (3.224) and (3.210). In this way, we arrive
at the following boundary value problem:

N\ 2oy 2\ e
Lt ) == =g fads t [ T+ — | =0, (3.227)
Z0 oz 20
. . 207"
S\ @y . , ) =\’ , .
T+ =) = ~Jju e+ [T+ — “oy| = 0. (3.228)
20 dz 2

G3(0) = 0. ¥ (0) = H,,. (3.229)
ds(xc) = () = 0. (3.2:30)

We shall look for the solution of the boundary value problem (3.227) (3.2:30)
in the form

. i3 N B2’
dy(z) = A (1 + —“—) () =B (1 + %) . (3.231)
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By substituting expressions (3.231) into differential Eqs. (3.227)-(3.228),
we find that these equations have solutions in the form (3.231) if 3 satisties
the following characteristic equation:

( R — ]X;(LZ()) [(8 + j2d/ ) —(B+j2a") - jxlaz;ﬂ + x1x326 = 0.

(3.232)
By involving formulas (3.207) and (3.145), we obtain

Y1zt = W\m( T 1) (3.233)

2(n
. 1)(
an’z(z) - M\F” +1), (3.234)
2(n —
3(n+3)%(n+1)
37 = — 3.235
X1X3%9 2n - 1) (3.235)

Thus, the coeflicients of characteristic Egs. (3.232) depend only on n. Con-
sequently, the roots of this equation depend only on n as well. To satisfy
the boundary conditions (3.230), exponent 4 in formula (3.231) has to have
a negative real part. It can be shown that characteristic Eq. (3.232) has two
roots, " and 47, with negative real parts. These roots have heen computed
as functions of 722, and the results of computations are presented in Figs.
3.8 a and 3.8 b.

By using roots " and 37 general solutions (3.231) to differential Eqs.
(3.227) and (3.228) can be written in the form

., A’ N o
by(z) = A’ (1 n ‘> + A" (1 + i) . (3.236)
20 ()
- ﬁ'+12u” . B ial’
w(z)=08 (l + ) + B” (1 + :> . (3.237)
20 <0

By using the same line of reasoning as in Section 2.2, we find that functions
(3.236) and (3.237) will satisfy boundary conditions (3.229) and differential
Eqs.(3.227) (3.228) if coeflicients A, A”, B’, and B” are determined from
the following simultancous equations:

A+ A =0, (3.238)
B+ B" = H,,. (3.239)

[(x’f’)2 -4 - jx;;zf)a] A~ jxa3zi B =0, (3.240)
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Fig. 3.8

((87)2 — 3" — j\azga] A7 — jxsziB” = 0. (3.241)

By solving the last equations, we find explicit formulas for the above coef-
ficients:

A=A = - JX3%0 H (3.242)
[ =) - o -]

(32 - 3 = jyazia
(32 =37 = [(17)2 — 3"
3 (,;’3“)2 - = )(';;:3(1,
[([1/)2 _ H’] _ [(Hu)'z _ /1//]
Having found the above cocfticients and, consequently, functions ¢;(2) and

Wi{z). the first and third harmonics of perturbations can be determined.
Indeed, from formulas (3.211), (3.212), and (3.225), we obtain

B =

H,., (3.243)

B// _

H. (3.244)

1 .
hes(z) = Q(D:s(z)‘ hy(2) = —%(f):i(‘?)e (3.245)
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T yaf
nis

Fig. 3.11
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ol

Fig. 3.12
1 J v o4
Dy (2) = 5 (). hya(2) = ;2'1,"'1(:). (3.246)

By using h, 1{2) and hy ((2), we can find the phasors of the first harmonice
of the total field:

H,.‘l (=) = II‘,.’(:) + 2¢h, (=), (3.247)
I, (2) = H) =) 4 2chy0 (). (3.24%)

By taking into account formnulas (3.236), (3.237). and (3.246), the last two
expressions can be rewritten as follows:

) . —x o A 420
H.\(z)=H,, (1 F ;-) + {B/ (1 + ;—)
20 <0

REPLL
. ;5”.,._,2““ (&24))
ce(ee2)
<0
" _ —cy . ,,i/+J2”u
Hy,[(;) :—.jH‘rvz <1+ ‘E’) -f—j(— B/ <l + {_)
~0 <0
(3.250)

. A +j20
+B” <1 + i) .
20
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By using the last two formulas as well as formulas (3.160) and (3.161), we
derive the following expressions for the surface impedance:
Ney  0Hp +€[B'(8 + 52a") + B"(B8" + j2a"")]

= (T , (3.251)

zzﬁ B aHm — € {B/ (ﬁ/ +]20l/) _+_ BII (ﬁl! +3201l)] (3 252)
n B a(l +e)Hn, ’ .
where 77 is the surface impedance in the case of circular polarization of the
magnetic field.

Formulas (3.251) and (3.252) allows one to evaluate to what extent the
surface impedance is affected by deviations from the circular polarizations.
These deviations are accounted for by parameter € in (3.251) and (3.252).
It is instructive to note that the right-hand sides of formulas (3.251) and
(3.252) do not depend on H,,. This is because, according to formulas
(3.243) (3.244), coeflicients B’ and B” are directly proportional to H,,.
Thus, the right-hand sides of (3.251) and (3.252) are functions only of n
and e. These functions have been computed for various values of n and
e and the results of computations are shown in Figs. 3.9, 3.10, 3.11, and
3.12.

3.4 NONLINEAR DIFFUSION IN ANISOTROPIC
MEDIA

In this section, a two-parameter perturbation technique is applied to
the analysis of nonlinear diffusion of elliptically polarized electromagnetic
fields in anisotropic media. One parameter is used for the description of
anisotropic magnetic properties of media as perturbations of isotropic prop-
erties, while another parameter is introduced to treat elliptical polarizations
as perturbations of circular polarizations.

A convenient way to introduce the first perturbation parameter is
through the potential function U(H) of B-field in H-space (sce Section
2.4). For isotropic media with constitutive relation (3.127), this potential
function is given by the expression

H ke
UH)= | B(H')H = — H|". (3.253)

Jo
The last expression can be rewritten in terms of H, and H,, as follows:
k 2 2\ "
U(H,, Hy) = o (HZ + Hu) . (3.254)
) ;

The symmetry of the last expression with respect to Hy and Hy reflects the
isotropicity of media. To generate the potential for anisotropic media, the
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above symmetry must be perturbed. A simple way to do this is to assign
different “weight” coeflicients for H, and H,. By using a perturbation
parameter ¢, this can be achieved as follows:

k ntl
1 [(1+eHZ+(1—e)HZ] ® . (3.255)

Ue (Hz, Hy) =
By taking the gradient of U.(H,, H,) with respect to H, and H, (see
formula (2.317)), we end up with the following constitutive relations for
magnetically anisotropic media:

Bo(H., H,) = (1 + O)kH, (\/(1 +e)H2 + (1 c)Hg)"_l , (3.256)

B,(H,, H,) = (1 - ¢)kH, (\/(1 Y H2 4+ (1 E)Hg)"*l . (3.257)

Next, we introduce another parameter € to describe elliptical polarizations
as perturbations of circular polarizations. This is done as follows:

H.(0,t) = Hp, cos{wt + 6y) + €H,p, cos(wt — 6), (3.258)
H,(0.t) = Hp, sin(wt + 6y) — €H,, sin{wt — y), (3.259)
where g H H o
Hm - mx’ my’ i : mx’ T ddmy’ X 3.260
2 ‘ Hml’ + Hmy’ ( )

while Hpgr and Hop,ye are peak values of the magnetic field along the major
(z') and minor (y'} axes of the polarization ellipse, respectively, and 8y is
the angle between the major axis ' and the anisotropy axis z.

In accordance with the general idea of the perturbation technique, we
look for the magnetic field in the form of the following expansions:

Ho(z,t) = H(z,t) + ehy(2.t) + ehy(z, 1) + . ... (3.261)
Hy(z,t) = HY(z,t) + ehy(2,t) + ehy(z,8) + . ... (3.262)

Next, we substitute formulas (3.261) and (3.262) into houndary conditions
(3.258) and (3.259) and nonlinear diffusion equations

0*H,  0B,(H,, H,) o
922 7 bt ’ (3.263)

OH, __9B,(H, H,)

5.2 5 (3.264)
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Then we equate the terms of like powers of ¢ and €. As a result, we end up
with the following boundary value problems for H? and H,(y), he. and hy,

he. and hy, respectively:

oLHY B AR~
= g o (Ve ) 2]

22 ot
—
Hy)") 3]

O*H)) 2, ——
[ 0
922~ "ot {"( (H?)

H(r)(()‘ ,) = Hm (7()5(&)1‘ -+ 6()),
H(0,t) = H,, sin(wt + b)),

H})(,t) = H)(. t) = 0.

Next

*h. J aBY Bl ()q
£ o Y } et H() }I(l /l 11“ [§] _ r ,
i)z2 it {I" OH, ( ) ity OH, ( i, )} ot
Ph, 0|, OB, OBy 2y
St — |y ==L (HY, 11“ + by, =2 (HY, HU =02
gz "o {' ot { /) 4 "()H,, (L H) =0y
L (008) = by (008) =0,
ho(oxct) = hy(x. 1) = h,(x.t) =0,
where

BY(H). H)) = p(|H')H,
By (HY, HY) = p(|B)HY,

2 27
Wt (1Y) (HY)
2 H?

Go = /3.(,)‘ (1].(,:’. HL’) |:1 +

w1 (HY) - (HY)]

Yy = B:/) (112*111(:) |:1 -

2 IE
and finally,
Ohy 0 08 (HO. 1Y) + b, OB, o, H”) 0
— 13 . ! =
)22 ()/ TOH, TR )()Hl, |

(H . H])| =0,

} HO, H“ h,
g " o | M om )+ ”on

Phy Y {}. oY aBY

(3.265)

(3.266)

(3.267)
(3.268)
(3.269)

(3.270)

(3.271)

(3.272)
(3.273)

(3.274)
(3.275)

(3.276)

(3.277)

(3.278)

(3.279)
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he(0,8) = Hp, cos(wt - 6), (3.280)
hy(0.) = ~ Hy sin(wt — 6y), (3.281)
ha(00,t) = hy (00, ) = 0. (3.282)

The boundary value problem (3.265) (3.269) must be solved first. Then,
by having found HY aud A, boundary value problems (3.270) (3.277) and
(3.278) (3.282) can be tackled. It is apparent that the boundary value prob-
lem (3.265) (3.269) is identical (up to the initial phase 6y) to the boundary
value problem (3.180) (3.185). Consequently, its solution is given by for-
mulas (3.194) (3.195) with the only modification that phase 6(z) takes into
account the initial phase 8:

20

B(z) =60y — o' In (1 + j) . (3.283)

By using formulas (3.194), (3.195), and (3.283) in the boundary value prob-
lem (3.270)-(3.277) and by literally repeating the same line of reasoning as
in Sections 2.4 and 2.5, it can be shown that b, (z0) and k(= t) have only
the tirst and third time-harmonics. To find these harmonies, the following
ordinary differential equations have to be solved for anxiliary functions ¢

and ¢

"

=\ 4o, ‘ BNEIET
(] ' _> At [mb:; 4 s (1 + ) S
! az 0
- _';,"’T — 130
:J'C(,.l*‘(}u <1 n ~)
20

z A2y ‘ _ iz, 2\
1+ - 71"*2 — I\ |at + e 4+ - s
on Lz Zy

(3.284)

o™

) . (3.285)
. T e
= jued™ (] + -7> ,
=0
subject to the boundary conditions
d3(0) =2 (0) = 0, (3.286)
(f);;(")()) == l;"’l(’)()) = (. (-;287)

where . Cy
¢ = dwop,, H,, ZL—z—g v = wa,, H,, 7—'-—{;. (3.28%)
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Coupled differential Eqgs. (3.284) (3.285) are inhomogencous. Their partic-
ular solution can be sought in the form

Ax
B(2) = FC (1 ; -i> | (3.289)
Z0
PP () = e, (1 + z—) . (3.200)
{}

By substituting functions (3.289) and (3.290) into differential cquations
(3.284) and (3.285), we find that these equations will be satisfied if
2

Al = ———— — ja' = —q, (3.291)
n—1

Ay = Ay — j2a”, (3.292)

andd coetlicients Cy and Cy are the solution of simultancous linear equations
identical to Egs. (2.385) and {2.386). This means that these coeflicients can
be computed by using formulas (2.387) and (2.38%), and these coefficients
do not depend on fy.

Having found the particular solution (3.2%89) and (3.290). a general
solntion to coupled differential Eqgs. (3.281) (3.285) can be represented in

the form
)\;:l
u) '

® N
dy(z) = [.4’ (l + ';:‘> + A" (1 + ;> + Cy (1 +
0 ZQ
(3.293)

R N " . Ay
¢y (2) = % [B’ (1 + i-) + B (1 + = ) + (1 + -i> } .
<0 =0 <0

{3.294)
where 4" and 3" are the roots of the characteristic Eeq. (3.232) with negative
real parts.

By using literally the saune line of reasoning as in Sections 2.4 and 2.5,

|t:

(%3

we arrive at the conclusion that coeflicients A, A7, B, and B” can be
found from simultancous lincar Eqs. (2.391) (2.394). After these equations
are solved and the above coeflicients determined, the first and third time
harmonics of perturbations i, and by, can be caleulated according to the
formmlas

hea(z)= %’u’r](:), hya(z) = %L/:,(z), (3.295)
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hys(z) = %(,b;;(z), hy3(z) = '—%9‘):;(2)- (3.296)
Now we proceed to the solution of the boundary value problem (3.278)
(3.282).  As before, it can be demonstrated that perturbations h(z, 1)
and izy(zt) have only the first and third time-harmonics, while all other
harmonics are cqual to zero. The caleulation of the first and third time-
harmonics can be reduced to the solution of the following coupled ordinary
differential equations for auxiliary functions ¢s(z) and v (z):

2 w7 —j2a’
z d [6X X - " z ~
(1 + —> % —jxs |agy + /2% (1 + #) g
20 dz Zy

2 T j 2
z 1/ ~ 2\ ~
<'l N ) i { e (1 " > -wﬁ} =0, (3.298)
dz z

<0 <{)

subject to the boundary conditions
B3(0) =0,y (0) = H,e ™70 (3.299)

da() = i () = 0, (3.300)

A general solution of the above coupled differential equations can he rep-
resented in the form

5 N2
Balz) = ™ {A’ (1 + "> 4 A" (1 + “) } : (3.301)
o0 <0

~ . H4 v y2a’ . A7+ j20’
Jid (1 + “-) + B <1 + ) } C(3.302)
2 0

where, as before, 37 and 37 arve the roots of the characteristic Eq. (3.232)
with negative real parts.

By invoking the same reasoniig as in the previous section. it can be
demonstrated that coefficients A7, A7, B, and B can be computed by
using formulas (3.242) (3.244). Having found these coetlicients, the first
and third time-harmonics of perturbations l.z_,.(:, t) and izv!,(z‘ t) can be de-
termined as follows:

¥ (;) — o0

| 2

2

hoa(z) = in(2), (3.303)

- 1 - N ) ~
]l‘,«,‘;;(;’) = 5(])3(;’), h,y‘;;(z) = —é@';;(:). (3‘5()4)
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For the phasors of the first harmonic of the total ficld, we have

oo (2) = B(2) + 2¢ [h,_w(z) n iz,_,,l(z)] , (3.305)

By.1(2) = HO(2) + 2¢ [hw (2) + Iy, (z)] . (3.306)

This leads to the following expressions:

]:IJ;J(;’) = (f[m + 601)(510“ (1 + i)

()

NS . 374y
4WM'B«1+> +B”O+)
<0 <0
3 B4 jen ~ N\ A 020
eI B (1 + ) + B (1 + ) .
0 )

(3.307)

f a2

Q2

[}!/-I(:) = / (}]m ‘('l)‘"]()“ (1 + f )
~0

"

NG RN AR P
+ ject™ B (1 + ) + B (1 + )
() 20
R N /f’—f/'.l()” i . i k_/Zu”
L’ (1 + - ) + B (1 + -1'—-) 4
<0 <0

{(3.308)
By using the last two formulas, the expressions for surface impedances
similar to (2.448) (2.449) can be derived. These expressions give explicit
dependence of surface impedances on perturbation parameters ¢ and € as
well as on the “orientation” angle ¢y.
The discussion presented in this Chapter is an extended and modified
version of our previous publications [1] and [2].

+jce
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CHAPTER 4

Nonlinear Diffusion in
Superconductors

4.1 SUPERCONDUCTORS WITH SHARP
RESISTIVE TRANSITIONS (THE BEAN
MODEL FOR SUPERCONDUCTING
HYSTERESIS AND ITS RELATION
TO THE PREISACH MODEL)

It is well known that high ficld (hard) type-11 superconductors are not
actually ideal conductors of electric current. It is also known that these
superconductors exhibit magnetic hysteresis. Finite resistivity and mag-
netic hvsteresis in these supercondnctors appear becanse the motion of flux
filanments is pinned by defects such as voids, normal inclusions, dislocations,
grain boundaries, and compositional variations. This pinning results in the
multiplicity of metastable states, which manifest themselves in hysteresis.
When the flux filaments depin by thermal activation or because a current
density exceeds some critical value, their motion induces an electric field.
As o result. superconductors exhibit “current-voltage™ laws E(J). which
are strongly nonlinear. Thus, the very plhienomenon (pinning) that makes
type-IT superconductors useful in practical applications is also responsible
for their magnetic hysteresis and nonzero resistivity.

Frow the point of view of phenomenological electrodynawmics, type-I1
superconductors can be treated as electrically nonlinear conductors, and
the process of electromagnetic field penetration in such superconductors is
the process of nonlinear ditfusion. Analysis of noulinear ditfusion in type-11

225
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superconductors is of practical and theoretical importance because it can
be useful for the evaluation of magnetic hysteresis in these superconductors
as well as for the study of creep phenomena.

Mathematically, this analysis has many features in common with the
analysis of nonlinear diffusion in magnetically nonlinear conductors that
has been carried out in the previous chapters. For this reason, our discus-
sion of nonlinear diffusion in superconductors will inevitably contain some
repetitions, however, it will be deliberately more concise and it will stress
the points that are distinct to superconductors.

We begin with the case of a sharp (ideal) resistive transition shown
in Fig. 4.1. This transition implies that persistent currents up to a criti-
cal current density J. are always induced in superconductors. We consider
nonlinear diffusion of linearly polarized electromagnetic fields in a lamina-
tion (slab) of thickness A. At first, it may seemn natural to use the scalar
nonlinear diffusion equation

O*E OJ(E)

922 M T
for the analysis of this nonlinear diffusion. However, since the magnetie
field at the slab boundary is usually specified, a simpler way to solve the
problem at hand is to base our analysis on the equation

J(E)=J, sign E (4.1)

curl H = J, (4.2)
which in our one-dimensional case can be written as
dH
=—J. (4.3)
dz

Since the eritical current density Jo is constant, the last equation implies
linear profiles of the magnetic field within the slab.

AJ
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The sharp (ideal) resistive transition (sce Fig. 4.1) along with formula
(4.3) form the basis for the critical state model for magnetic hysteresis of
type-1I superconductors. This model was first proposed by C.P. Bean {2],
[3], (see also [16]) and then it was further generalized in [12] to take into
account a dependence of critical current density on the magnetic field. The
critical state type models have been tested experimentally and have proved
to be fairly accurate for simple specimen geometries (plane slabs, circu-
lar cross-section cylinders). It was also realized that the critical state type
models have some intrinsic limitations. First, these models do not take into
account actual gradual resistive transitions of type-II superconductors. Sec-
ond, even under the assumption of ideal resistive transitions, these models
lead to explicit analytical results only for very simple specimen geometries.

Next, we shall briefly describe some basic facts concerning the critical
state (Bean) model for superconducting hysteresis. Then, we shall demon-
strate that the critical state type models are particular cases of the Preisach
model of hysteresis discussed in detail in Section 1.9. By using this fact,
we shall try to make the case for the Preisach model as an efficient. tool for
the deseription of superconducting hysteresis.

Consider a plane supcerconducting slab subject to an external time-
varving magnetic ficld Hy(t). We will be interested in the B vs. Hy relation.
Here, B is an average magnetic flux density that is defined as

S

=" / H(z)d=. (4.4)
AJs

aund H(z) is the magnetic field within the slab.

In practice, B and Hy are quantities that are experimentally measured
and it is their relation that exhibits hysteresis,

It follows from formulas (4.4) that in order to compute B for any Hy.
we have to find a magnetic field profile (inagnetic field distribution) within
the superconducting slab. This is exactly what we shall do next.

Suppose that no magnetic field was present prior to the instant of
time 3. It is assumned that for times ¢ > #4. the external magnetic field
Hy(t) is monotonically increased until it reaches some maximum value H,,,.
The monotonic increase in the external magnetic field induces persisting
clectric currents of density J.. According to formula (4.3), this results in
the formation of linear profiles of the magnetic field shown in Fig. 4.2.
The corresponding distribution of persisting clectric currents is shown in
Fig. 4.3. It is casy to see that the instantancous depth of penetration of
the magnetic field is given by

(4.5)
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HA
[
H. (1)
L ° ® o ! -7
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b Z.(1)
Fig. 4.2
|
“A
Z (1)
Z. (1)
L A
Fig. 1.3
It is also clear that A
20(f) < ER (4.6)
if 1A
Ho(t) < 2 = (4.7)

By using Fig. 4.2 and formulas (4.4). (4.5). and (4.7). we find the average
value of the magnetic flux density:

_ poHy((t) to(Ho(1)*

B(t) - =
(#) A 2H*

(4.8)

Suppose now that after achieving the maximum value, H,,, the external
magnetic field is monotonically decreased to zero. As soon as the maximmm
value H,,, is achieved, the motion of the previous linear profile is terminated
and a new moving lincar profile of magnetic field is formed. Due to the
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previously induced persisting currents, the previous profile stays still and
is partially wiped out, by the motion of the new profile. The distribution of
the magnetic ficld within the slab at the instant of time when the external
magnetic field is redneed to zero is shown in Fig. 4.4. This figure shows that
there is nonzero (positive) average magnetic Hux density, which is given by:

B fh (1.9)
4H*
This clearly suggests that the BB vs. H, relation exhibits hysteresis. We
next demonstrate the validity of this statement by computing the hysteresis
Joop for the case of back-and-forth variation of the external magnetic field
between — i, and +H,,,. For the sake of siimplicity of our computations,
we shall assume that

H, <H. (4.10)
We first consider the half-period when the external magnetic field is mono-
tonically decreased. A typical magnetic field distribution for this half-
period is shown in Fig. 4.5, For the penetration depths =y and 8, shown in

this figure. we have

. H, H,, - Hyt

J. 2., (1i)

By using Fig. 1.5 and formmla (1.11). we find the increment A/ of the
average magnetic flux density:
Hoy - Hy)zolt) (M, Hy)?

2
dall = g L (1.12)

AB = : / e
A 2 ! 1

This leads to the [ollowing expression for the average mapgnetic fux density
on the descending branch of the hvsteresis loop:

)
M.

Fig. 4.4
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Fig. 4.5
2 - 2
B=B,  AB<"ofn _po(Hn - Ho)" (4.13)

2H* 4H*
Consider now the half-period during which the external magnetic field is
monotonically increased from —H,, to +H,,. A typical magnetic field dis-
tribution for this half-period is shown in Fig. 4.6. By using this figure, as
before we find

_ /L()(Hm + 11())2

AB 4.14
and ) 2
woHy,  po(Hy + Hy

B=— AB = — . 4.15
Bm+ QH* + 4H* ( 10)

The expressions (4.13) and (4.15) can be combined into one formula:

f{2 Hm H 2

B = 4y | Hm _ U ¥ HOZ (4.16)

2H* 4H*

where the upper signs correspond to the descending branch of the loop,
while the lower signs correspond to the ascending branch.

On the basis of the previous discussion, the essence of the Bean model
can now be summnarized as follows. Each reversal of the maguetic field
Hy(t) at the boundary of the superconducting slab results in the formation
of a lincar profile of the magnetic field. This profile extends inward into
the superconductor until another reversal value of the magnetic field at the
boundary is reached. At this point, the motion of the previous profile is ter-
minated and a new moving linear profile is formed. Due to the previously
induced persisting currents, the previous linear profiles stay still and they
represent past history, which leaves its mark upon future values of average
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magnetic ux density. These persisting linear profiles of the magnetic field
may be partially or completely wiped out by new moving profiles.

Next, we shall establish the connection between the eritical state (Bean)
model for superconducting hysteresis and the Preisach model deseribed in
Section 1.9. To do this, we shall establish that the wiping-out property
and cougrucucy property hold for the Bean model. Indeed, a moviug lincar
profile of the magnetic tield will wipe out those persisting linear profiles
if they correspond to the previous extremumn values of (1), which are
exceeded by a new extremum valne. In this way, the effect of those pre-
vious extremnun values of Hy(f) on the future average values of magnetic
flux density 3 will be completely eliminated. This means that the wiping-
ot property holds. It can also he shown that the congruency property of
minor loops corresponding to the same reversal values of Hy(#) holds as
well. Indeed, consider two variations of external magnetic feld 1'1((]”(1) and
H((,z)(i). Suppuose that these external Helds may have different. past histo-
ries, but starting from some instant of thine fy they vary back-and-forth
between the sanie reversal values. It is apparent from the previous deserip-
tion of the Bean model that these back-and-forth variations will affect in
the same way equal surface layvers of superconductors. Consequently, these
variations will result in equal increments of . which is tantamount to the
congruency of the corresponding minor loops.

In the case of generalized eritical state models [12], the linear profiles of
the magnetie field within superconductors are replaced by curved profiles,
However, the creation and motion of these profiles are hasically governed
by the same rules as in the case of the Bean model. As a result, the pre-
vious reasoning holds, and, conseguently, the wiping-out property and the
congruency property are valid for the generalized critical state models as
well. It was established in Chapter 1 that the wiping-out property and con-
gruency property constitute necessary and sufficient conditions for the rep-
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resentation of actual hysteresis nonlinearity by the Preisach model. Thus,
we conclude that the Bean model and generalized critical state models are
particular cases of the Preisach model:

B) = [[ e 8)30pHolt)dads. (4.17)
azf

It is instructive to find such a function p{a, 8) for which the Preisach
model coincides with the Bean model. To do this, consider a “major”
loop formed when the external magnetic field varies back-and-forth between
+H,, and —H,,. Consider first-order transition curves B,s attached to
the ascending branch of the previously mentioned loop. We recall that the
curves B,p are formed when, after reaching the value —H,,, the external
magnetic field is monotonically increased to the value o and subsequently
monotonically decreased to the value 8. Depending on particular values of
o and B, we may have three typical field distributions shown in Fig. 4.7,

4.8, and 4.9. We will use these figures to evaluate the function

) 1
F((Y,/f) = E(B(x - B(y/f)- (418)
Figure 4.7 is valid under the condition:
H,, +a<2H" (4.19)
From this figure we find
, —4)?
Fla gy = Folo=n)" (4.20)

8H*
Figure 4.8 holds when

H771+022H*, (Y—ling*. (421)

By using this figure, we derive

Fig. 4.7
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ola — B)?
Fla, ) = Hola = )7 (4.22)

8H*
Finally, the distribution of the maguetic field shown in Fig. 4.9 occurs when

H,+a>2H" and o—-F>2H". (4.23)
From Fig. 4.9, we obtain

F(a.f) = %(a + 8- H). (4.24)

The expressious (4.20), (4.22), and (4.24) can be combined into one formula:

ola—p)? . . N
F(a,m:{“——m—, f0<a-B<2H", ol < Hn,|B8] < Hnm,
Bla+pB-H"), fa-p2>2H", o] < Hpn, 18] € Hp.

(4.25)
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By using formula (4.25) as well as the formula (sce Chapter 1):

) G*Fla. ) ,
;L((Y,‘d) = - "'W, (42())

we find

,Hf S Hm-, (427)

1H"

e ) = 0, otherwise.

{ B0 <a— 3 <2HY, ol € H,,
The trapezoidal support of g, 3) given by (4.27) is illustrated in Fig. 4.10.

Thus, it has been shown that the critical state model for superconduct-
ing hysteresis is a very particular case of the Preisach model. This result
has been established for one-dimensional flux distributions and specimens
of simple shapes (plane slabs). For these cases, explicit analytical expres-
sions for magnetic field distributions within the superconductors are readily
available, and they have been instrumental in the discussion just presented.

Next, we demonstrate that the critical state model is a particular case
of the Preisach model for specimens of arbitrary shapes and complex flux
distributions. For these specimens, analytical machinery for the caleulation
of magnetic ficlds within the superconductors does not exist. Nevertheless.,
it will be shown next that the supercondnceting hysteresis (as deseribed
by the eritical state model) still exhibits the wiping-out property and the
congruency property of minor hysteresis loops.

To start the discussion, consider a superconducting evlinder of arbi-
trary cross-scction subject to the uniform external field B(#) whose direction
does not change with time and lies in the plane of superconductor cross-
section (Fig. 4.11). We will choose this direction as the direction of axis

Fig. 4.10
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Fig. 4.11
z. As the time-varying flux enters the superconductor, it induces screening
(shielding) currents of density £.J.. The distribution of these superconduct-
ing screening currents is such that they create the magnetic field, which at
any instant of time completely compensates for the change in the external
field Bo(t). Mathematically, this can be expressed as follows:

dBy(t) + Bi(t) = 0. (4.28)

Here 8By(t) is the change in By(t), while B,(t) is the field created by
superconducting screcning currents, and equality (4.28) holds in the region
interior to these currents.

It is clear that §By(t) > 0 when By(t) is monotonically increased, and
8By(t) < 0 when By(t) is monotonically decreased. By using this fact and
(4.28), it can be concluded that there is a reversal in the direction (polarity)
of superconducting screening currents as Bg(t) goes through its maximun
or minimum values.

With these facts in mind, consider how the distribution of supercon-
ducting currents is generically modified in time by temporal variations of
the external magunetic field. Suppose that, starting from zero value, the
external field is monotonically increased until it reaches its maximum value
M, at some time ¢ = ¢, This monotonic variation of By(t) induces a sur-
face layer of superconducting screening currents. The interior -boundary of
this current layer extends inwards as Bo(t) is increased [see Fig. 4.12 a],
and at any instant of time this boundary is uniquely determined by the in-
stantaneous values of By(t). Next, we suppose that this monotonic increase
is followed by a monotonic decrease until By(¢t) reaches its minimum value
my at some time ¢ =t . For the time being it is assumed that |m| < M.
As soon as the maximum value M, is achieved, the inward progress of the
previous current layer is terminated and a new surface current layer of re-
versed polarity (direction) is induced [see Fig. 4.12 b]. This new current
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Fig. 1.12

layer ereates field 13,(#). which compensates for monotonic decrease in 3y (f)
in the region interior to this cirrent layer. For this reason, it is clear that
the intertor bonndary of the new current layer extends inward as Bo(#) is
monotonically decreased. 11 1s also clear that this boundary is unignely
determined by the instantancous value of 8 By(#). and. consequently, by the
instantancous value of f3,(4) for any specific (given) value of Afj. Now
suppose that the monotonic decrease is followed by a monotonic increase
until I33(#) reaches its new maxinnan value M, at some tine = {; For
the time being, it s assumed that Ay < ] As soon as the mininnnn
valne my s achioved. the inward progress of the second layer of supercon-
ducting screening cirrents of reversed polarity is introduced to counteract
the monotonic inerease of the external field [see Fig. 4.12 ¢]. This current
layer progresses inward until the maxinnun value Ay is achicved: at this
point the inward progress of the current layer is terminated.  As belore,
the instantancous position of the intertor boundary of this layer is mmiguely
determined by the instantancous value of 8 By (£). and, consequently, by the
instantancous value of B3y(f) for a specitic (given) value of my.

Thus. it can be concluded that at any instant of time there exist several
{mmany) layers of persisting superconducting currents [see Fig. 4.12 d]. These
persisting currents have opposite polarities (directions) in adjacent layers.
The interior boundaries S:’ and S, of all layers (except the last one) remain
still and they are uniquely determined by the past extremum values Al and
g of By(t), respectively. The last induced current layer extends inward as
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the external field changes in time monotonically.
The magnetic moment M of the superconductor is related to the dis-
tribution of the superconducting screening currents as follows:

M(t) = /S[r < 3(1))ds, (4.29)

where the integration is performed over the superconductor cross-section.
In general, this magnetic moment has z and y components. According
to (4.29), these components are given by the expressions

M.(t) = /S yi{t)ds, (4.30)

My (t) = — /s 2j(t)ds. (4.31)

It is clear that if the superconductor cross-section is symmetric with respect
to the z-axis, then only the » cotnponent of the magnetic moment, is present.
In the absence of this symnnetry. two components of the magnetic moments
exist.

It is apparent from the previous discussion that the instantancous val-
ues of A () and Al (t) depend not only on the enrrent instantancous vahie
of the external Hield By (¢) but on the past extremum values of By(t) as well.
This is because the overall distribution of persisting superconducting cur-
rents depends on the past extrema of By(t), Thus. it can be concluded that
relationships AL() vs. Bo(t) and AL, (t) vs. B(#) exhibit discrete memories
that are characteristic and intrinsic for the rate-independent hysteresis. It
is worthwhile to note that it is the hysteretic relationship A7 (1) vs. Bo(t)
that is typically measured in experiments by using. for instance. a vibrat-
ing sample magnetometer (VSM) with a one pair of pickup coils. By using
a VSM cquipped with two pairs of orthogonal pickup coils, the hysteretic
relation between A (¢) and By(t) can be measured as well.

It is fmportant to stress here that the origin of rate independence of
superconducting hysteresis can be traced back to the assmnption of ideal
(sharp) resistive transitions. This connection is especially apparent for
superconducting specimens of simple shapes (plane slabs). For such spec-
imens, the explicit and single-valued relations between the increments of
the external field and the location of inward boundaries of superconducting
layers can be found by resorting only to Ampére’s law. It is also clear that
there is a strong mathematical stiilarity and a close formal parallel between
the superconducting hysteresis and the eddy current hysteresis discussed in
the Section 1.9. The main distinction, however, is that the eddy current
hysteresis is rate dependent. This distinction appears because in the case
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of superconductors we deal with electrically nonlinear conducting media,
whereas in the case of eddy currents we deal with magnetically nonlinear
conducting media whereas we look at hysteresis between the same variables
B and H.

It is clear from the presented discussion that a newly induced and
inward-extending ayer of superconducting currents will wipe out (replace)
some layers of persisting superconducting currents if they correspond to the
previous extremuin values of By(t), which are exceeded by a new extremum
value. I this way, the effect of those previous extremun values of By(t)
on the overall future current distributions will be completely eliminated.
According to formmias (4.30) and (4.31), the effect of those past extremum
values of the external magnetic field on the magnetic moment will be elin-
inated as well. This is the wiping-out property of the superconducting
hysteresis as desceribed by the eritical state model.

Next. we proceed with the discussion of the congruency property.
Clonsider two distinet variations of the external field, B[(,l)(l) and 13((,2)(£).
Suppose that these two external fields have diflerent past histories and,
consequently, different sequences of local past extreme, {,'\[A(,l), mE‘,])} and
{x\]:,z).migz)}. However, starting from some instant of tiime they vary back-
and-forth between the same reversal values. It is apparent from the de-
scription of the critical state model and expressions (1.30) and (4.31) that
these two identical back-and-forth variations of the external field will re-
sult in the formation of two minor loops for the hysteretic relation AL (#)
v, Bolt) |or M) vs. By(H]. Tt is also apparent from the same deseription
of the critical state model that these two back-and-forth variations of the
external field will atfeet in the wdentical way the same surface layers of a su-
perconductor. Unaffected lavers of the persistent superconducting currents
will be different hecause of different past histories of 13[(,”(0 and B(()”(f)‘
However, according to (1.30) and (4.31). these wnaffected layers of persis-
tent currents result in constant-in-time (“background™) components of the
magnetic moment. Consequently. it can be concluded that the same inere-
mental variations of H((,”(f) and 13([}2)“) will result in equal inerements of
M, (and AM,). This is tantamount to the congruency of the corresponding
minor loops. Thus, the congruency property is established for the super-
conducting hysteresis as described by the eritical state model.

[t has been previously established that the wiping-out property and the
congrucncy property constitute the necessary and sufficient conditions for
the representation of actual hysteresis nonlinearities by the Preisach model.
Thus, the description of the superconducting hysteresis by the critical state
model is equivalent to the deseription of the same hysteresis by the Preisach
model.

The question can be immediately asked, “What is to be gained fromn
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this result?” The answer to this question can be stated as follows: There
is no readily available analytical machinery for the calculation of the interior

AY
o | \ 4
c \
Q
3 |
\ 4
£ .
= \
E \
_20-—
-800 -400 (4 400 800
H (Oe)
Fig. 4.13
60
Nb T=42K |
40 — -

M(emu/cm?)

~20f- —
- 40 — |
i
S O S B M
76000  -4000  -2000 0 2000 4000  600O
H(Oe)

Fig. 4.14



240 Chapter 4 Nonlinear Diffusion in Superconductors

20
10 -
—
"’E from 600 Oe
S ot .
E
£
L
= 1o Ba 575K (258104 .
T=42K
-20— T
) R SRR SO N SR S
-500  -400  -300  -200  -100 ) 100 200
H (Oe)
20 from 1000 Oe —f
0 - . -
o from 500 Oe
£
3
L o N
3
E b
L
= 10 BagsK osBi0; 7
H T =42 K
-201— |
PR P U SR SO S SR
-700 -600 -500 -400 -300 -200 -100 O 100
H (Oe)
20»— —
1000 Oe
10— trom 600 Oe
& L
g
L ook
g
©
X -1~ B K ,..Bi0 from 200 Oe —f
= A 575 425 81U3
T=42K
_20.—
U Y SRRV GHRPU WD SRS SR S
-200 -150 -106 -50 O SO 100 150 200

H (Oe)
Fig. 4.15



4.1 Superconductors with Sharp Resistive Transitions

M(emu/cm®)

M(emu/cm?)

M(emu/cm?)

30

20—

2

m‘yOe

{ro!

-50
~1000

30

20

trom ZFC

T=42K

100

| I B U SR 1
200 300 400 500 600

H (Oe)

—204—

-30}—

-401—

from 15 kpe

-80
400

800 700 800 900 1000

241



242 Chapter 4  Nonlinear Diffusion in Superconductors

boundaries of superconducting current layers for specimens of arbitrary
shapes. For this reason, the critical state model does not lead to mathe-
matically explicit results. The application of the Preisach model allows one
to circumvent these difficulties by using some experimental data. Namely,
for any superconducting specimen, the “first-order transition” curves can
be measured and used for the identification of the Preisach model for the
given specimen. By using these curves, complete prediction of hysteretic
behavior of the specimen can be given at least at the same level of accu-
racy and physical legitimacy as in the case of the critical state model. In
particular, cyclic and “ramp” losses can be explicitly expressed in terms of
the first-order transition curves (see [17]).

Experimental testing of the congruency and wiping-out properties (and
with them the applicability of the Preisach model} has been recently car-
ried out by G. Friedman, L. Liu, and J.S. Kouvel [9]. In the reported
experiments, two superconducting samples were used. One was a high-
temperature superconductor Bag s7s Ko 425 Bi:Os. The other was niobium
(Nb). Their major loops are shown in Figs. 4.13 and 4.14, respectively.
The wiping-out property was checked by observing closure of minor loops
at the end of the first cycle of the magnetic field. To examine the con-
gruency property. minor hysteresis loops were formed by cyeling magnetic
fields with different prior histories. The results of these experiments for
the Bal B,03 sample and the Nb sample are shown in Figs. 4.15 and 4.16,
respectively, These experimental results suggest that the Preisach model is
fairly accurate for these particular superconductors.

As an aside, we point out that the presented discussion can also be
useful whenever munerical implementation of the Bean model is attempted.
Indeed, the munerical implementation of the Bean model can be apprecia-
bly sinplificd by computing only the “first-order transition™ curves and
then by using these curves for the prediction of hysteretic behavior for ar-
bitrary piccewise monotonic variations of the external field. The latter is
possible because, whenever the congruency and wiping-ont, properties are
valid, all hysteretic data can be compressed (collapsed) into the “first-order
trausition” curves.

4.2 PREISACH MODEL WITH STOCHASTIC
INPUT AS A MODEL FOR CREEP
(AFTEREFFECT)"

It is well known that the physical origin of hysteresis is due to the multi-
plicity of metastable states exhibited by hysteretic materials  or

*This section is not conceptually related to the subsequent sections of
this chapter.
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systems. At equilibrium, large deviations of random (thermal) perturba-
tions may cause a hysteretic systemn to move from one metastable state to
another This may result in gradual (slow) changes of an output variable
(magnetization or magnetic flux density). This temporal loss of memory
of hysteretic systems is generally referred to as “creep” in the literature
on superconductors and as “aftereffect” or “viscosity” in the literature on
magnetics. In our discussion, we shall mostly use the term “viscosity.”

Traditionally, the phenomenological modeling of hysteresis and viscos-
ity has been pursued along two quite distinet lines. In modeling of hystere-
sis, the Preisach approach has been prominent, whereas creep, aftereffect,
and viscosity have been studied by using thermal activation-type models.
It is desirable to develop a uniform approach to the modeling of hystere-
sis and viscosity. In this section, we shall explore such an approach to the
modeling of viscosity. The central idea of this approach is to model random
thermal agitations by a stochastic input to the Preisach model.

Consider a deterministic input w(t), which at thme ¢ = 0 assumes some
value u and remains constant thereafter. In a purely deterministic situation,
the output f(t) would remain constant for ¢ > 0 as well. However, in order
to model viscosity phenomenon, we assume that some noise described by the
stochastic process X, is superimposed on constant. input . Consequently,
the Preisach model is driven by the following random process:

= u+ Xy, X, =0. (4.32)

where X stands for the expected value of X,
The output will also be a randowm process given by

fi = ///L((v./f)i,,;;zr,d(w(lﬂ. (4.33)

>3

It is instructive to note that adding noise X to the deterministic in-
put w(t) is mathematically equivalent to subtracting the same noise from
switching thresholds o and /4. This is because

oo X, =X, u{t) = Aaplult) + Xo).

Linposing noise on the switching thresholds (barriers) may be more trans-
parent from the physical point of view.

To simplify the problem, we shall first model the noise by a discrete-
titme independent identically distributed (i.i.d.) random process X,. The
continuous-time noise will be discussed afterwards. In the discrete-time
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case, it can be assumed that process samples remain constant at time in-
tervals At = £, — ¢, and undergo monotonic step changes at times t,4.
Accordingly, the Preisach model is driven by the process

fn = //,u OV Yasrndads. (4.35)

We will be interested in the time evolution of the expected value of the
output process.  Siuce integration is a linear operation, from (4.35) we
derive

£, =E{f.} // p{ev, DY E{ Aoy, Ydadi3, (1.36)

>t

Thus. the whole problen is reduced to the evaluation of the expected value,
KA} Sinee 3,41, may assume only two values +1 and 1, we find

E{fnae, ) = P{Aage, = +1} = P{Aagr, = -1} (1.37)
It is also clear that
P{Agsry = 41} 4+ PG, = =1} = 1 (1.38)
By introducing the notation
Planar, = 1} = qas(n), (1.39)
from (4.37) and (1.38) we obtain
E{duseat = 2q0s(n) - L (-1.40)

We next derive the finite difference equation for ¢, 5(n). According to the
total probability theorem, we have

[){:yn;1~l',,+[ = +l}
- 1){/:‘”“‘”:’.”*1 = +1 l:)'(x.'f-"'u - ‘f’l}P{’A}(U;J,‘” = +1}

+ PlAngtner = A0, = =11 P{Aeax, = =1} (4.41)

[t is convenient now to introduce the switching probabilities:

1)++ P{ Vansdner = 11 I’:/m"”:n =+ l}v (442)

[372]

1"{:;(11) = P{Aatnsr = +1 [Fast, = =1} . (4.43)
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Similar meanings hold for the switching probabilities P77 (n) and PE7 (n).
It is clear that

Pii(n) + Pl () = 1. (1.44)
Py () + Py (n) = L. (4.45)
P{Yaptn = =1} =1 = qag(n). (4.46)

By using (4.39) and (4.40) (4.46), we can transform (4.41) to
Jag(m -+ 1) = qas(n)[1 — (Ii,f(rz) + PTI)] 4+ Pt (n). (4.47)

We next proceed to the evaluation of switching probabilities 1"(;;(71) and

P:;(n) It is c¢lear that these probabilities can also be defined as

Pt (n) = Plagr > afapr, = =1}, (h48)
]-)(j;i_(”) = 17{"1711-9-1 < J I':,v'”d.l',, = +1 } (11())

In general, these probabilities are diffcult to evaluate becanse mnltidimen-
sional conditional probability density functions are required. However, the
problem is significantly simplified if the noise is modeled by the vid. pro-
cess (independent identically distributed process). In this case we find

I’(:},f(n) =Pt =Plrag >al = / ple)de. (-1.50)
.3

P’t;(n) = 1’: T =P, <8 = / pla)dr, (1.51)
J =

where p(z) is a probability density function.
By using (41.50) and (4.51). the finite difference Eq. (4.47) can be rep-
resented as follows:

Goag(r+ 1) = rosqas(n) + P7 t (4.52)

where "
rag=1— (P, P+ P = / pla)dar. {1.53)
’ J3

If the probability density function p(x) is strictly positive, then

0 < rag < L. (4.54)
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Equation (4.52) is a constant coeflicient first-order finite difference equation
whose general solution has the form:

qap(n) = Arjs + B (4.55)
By substituting (4.55) into (4.52), we find

Pt p~+ ‘
B s Ty P (4:56)

From the initial condition we obtain
4a3(0) = A+ B, (4.57)

where +
1 i (@ 3) € ST(),
qas(0) = {()’ if (o, 3) € §7(0),

and S*(0) and S7(0) are positive and negative sets on the (v, 8)-diagram,
respectively, at the instant of time ¢ = 0. From (4.55) (4.57) we derive

" L
G (1) = (@ (0) = Gags(00)]riyy + TR (4.59)
where
p-+t
ap(oe) = i ap(n) = - 4.60
G (2¢) Jim g g(n) Y (4.60)
By substituting (4.59) into (4.40), we obtain
- P
E{"}'m’iil,'n} = 2[(]4y;/3(()) (](n'l ]7(1/1 + m_ (4()1)
We next introduce the functions
p-—+ _ 1)+—
(e 3) = o (4.62)
Pt rf
) 1, if (e, 3) € §T(0), .
)= o 6.
e ) { =1, if (e, 3) € 57(0). (4.63)

By using (4.58), (4.62), and (4.63), we can transform (4.61) to

E{;Yaﬂxn} = [79(07[3) C((Yv ﬁf ]rn/j »fj) (4()4)
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By substituting (4.64) into (4.36), we finally find

Fo= Tt / / e B)8(an ) — Cla, irpdadB,  (4.65)

azf3

where

oo = Jin T = [ [ wle (0, 9)dads. (4.66)

n—oc
azf

It is apparent from (4.65) and (4.66) that the limiting expected value of
output f., does not depend on the history of input variations prior to
time ¢ = 0. In this respect, the value, f._. bears some resemblance to the
anhysteretic output value. This resemblance is enhanced by the fact that
foo = 0 if the expected value u of z, is equal to zero. To prove this fact,
we assume that p(z) = p(X) is an even function. In this case. according to
(4.50) and (4.51}), we find

P t=prt. (4.67)

By using (4.67), it is casy to check that
o 3) = —C(—B.—a). (4.68)

On the other hand, we recall that

o ) = p(—p. —a). (1.69)

From (4.63) and (4.69), we conclude that p(e, )¢, 3) is an odd function

with respect to the line a = —f. From the last fact and (4.66), we find
that B

foo =0, (4.70)

If « is not equal to zero, then f_ is not equal to zero as well, and its value
depends on noise characteristios. In the case when p(r) is Gaussian, fe
depends only on the variance o2 of the noise. This dependence has been
numerically analyzed and it has been found that f_ is not very sensitive
to o2, This fact is another reason to identify f_, with anhysteretic output
values.

Next, we shall compare the result (4.65) with thermal activation type
models for viscosity. For this purpose. we replace discrete time n by con-
tinuous time ¢t and rewrite (4.65) as follows:

fi=Ffo+ //X(a,ﬁ)e*“"‘m'dadﬁ, (4.71)

a>f3
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where

x(a, B8) = plew, B)[¥ (e, B) — ((a, )], (4.72)
£(a,f) = —Inryg. (4.73)

In thermal activation type models, it is assumed that metastable equilib-
rium states of hysteretic systems are separated by energy barriers Eg. It
is also assumed that there is a continmum of these energy barriers and it is
postulated (with some physical justification) that the viscosity phenomenon
is described by the model

F() = o) + A /Oc o(Ep)e MEntdpy, (4.74)

where g(Ep) is some density of states,

By
=

)\(E[g) = /\“(f (475)
A is Boltzmann's constant. T is the absolute temperature, while A and A,
are sonie coustants.

It is clear by inspection that there is formal similarity between onr
result (4.71) and the thermal activation model (4.74). Actually. our model
(1.71) can be reduced to (4.71) n the particular case when only symimetrical
loops {(operators) 9, _, are used in the Preisach model. In this case

o) = 6(a )00 + 1), (4.76)

where d(a + 4} 1s the Dirac delta function.
By substituting (4.76) into (4.72) and (4.71). after simple transforma-
tions we can represent (4.71) as

X

F=T.+ / e & o, (4.77)

EAY

Now. by using the change of variables:

E() = MEp), o= (MER)). (4.78)

the expression (4.77) can be reduced to (4.74). This shows that the Preisach
model of viscosity (1.71) is reduced to the thermal activation model in a
very particular case. This case oceurs when ouly symunetrical rectangular
loops are used in the Preisach model. Since it is generally believed that
nousymmetrical loops in the Preisach model account for “particle interac-
tions,” the last reduction is cousistent with the generally held opinion that
the thernal activation model (4.74) is & “noninteracting particle™ model.
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In comparison with the thermal activating type models of the form
(4.74), the model (4.65) (or (4.71)) has certain attractive features. First,
the model (4.65) explicitly accounts for the specific hysteretic nature of
the system as well as for specific input histories. Second, stochastics char-
acteristics of thermal noise explicitly appear in the model (4.65), whercas
the thermal activation type models are formulated in purely deterministic
terms. Third, thermal activation type models (4.74) are intrinsically scalar
models, whereas the model (4.65) can be generalized to the vector case (see,
for iustance, [10]).

The model (4.65) has been experimentally tested by C.E. Korman
and P. Rugkwamsook [13] for v — FeyO0, magnetic recording material.
Thermal viscosity for this material (and magnetic materials in general)
has many features in common with thermal creep for superconductors.
By using a vibrating sample magnetometer (VSM), first-order reversal
curves were measured.  These experimental data were used for the iden-
tification of the Preisach model (determination of p{ev, 3)). It was also
found from these data that the cocrcivity of the sample was approximately
290 Oc. Then viscosity measurctuents were performed nnder the condi-
tions that the sample was first. brought to positive saturation and after-
ward the applied field was reversed. held constant at some fixed value,
and gradual decay of magnetization was observed. The viscosity measure-
ments were perforined at constant fields in the range between 800 Qe
and 100 Oc. These measurements are demonstrated in Figs, 4,17 and 4.18.

fagra
*
%

Fig. 4.17. (©1997 IEEE)
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Figure 4.17 shows temporal changes in magnetization in the linecar and log-
arithuic time scales when the magnetic field was held constant at the value
of 290 Oc. On the logarithmic time scale temportal variations of average
maghetization can be approximated by a straight line for sufficiently long
times. This supports the following well-known intermediate asymptotics:

fo=-=Su)nt+c. (4.79)

Figure 4.18 shows temporal changes in magnetization on the logarithmic
time-scale measured at various fixed values of the magnetic tield. It is ap-
parent from this figure that slope S reaches its maximum near the coercivity
290 Oe.

The described viscosity experiments were numerically simulated by us-
ing model (4.65) and experimentally measured first-order transition curves.
The noise was assumed to be Gaussian and calculations we performed for
different values of variances ¢?. The calculations revealed the same “Int”-
intermediate asywmptotics as those given by formula (4.79). The slopes of
these asymptotics were computed by means of the formula

“AM(t) B _]\Jn/ — M,
Alnt ln%

S = (4.80)

then they were normalized and it was observed that the normalized curves
S(u)/Smax computed for different variances practically collapsed into one
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curve. This computed universal curve is almost identical to the normalized
curve S(u)/Smax found from the experimental data previously described
(see Fig. 4.19). This suggests that the variance o2 of the noise can be
found by matching Spax, and then the model (4.65) predicts the same curve
S(u) as observed in experiments. It would be interesting to examine the
existence of the collapse of the normalized curves S(u)/Smax experimentally
observed for different temperatures.

Next, we turn to the discussion of continuous-time noise. From the
mathematical point of view, this makes the problem quite complicated. It
is shown next that these difficulties can be largely overcome by using the
mathematical machinery of the “exit problem.”

The noise X; in equations (4.32) and {4.33) will be modeled by a (con-
tinuous time and continuous samples) diffusion process, which is a solution
to the Ito stochastic differential equation ([11)):

dX, = b(X)dt + o(X,)dW,. (4.81)

In this equation, W, is the Wiener process, and its formal time derivative
is the white noise. Formula (4.81) can be construed as a generic equa-
tion for dynamical systems driven by the white noise, and trajectories of
such dynamical systems can be viewed as samples of stochastic diffusion

56005
Sirnulation with sigma = 10 O ——
® Simulabon with sigma = 15 Oa ---x--
08 r & Simulation with sigma = 20 O ~-=-
T Experment & |
o8 f 1 4e005
- OF | '3!; 1 ;
P g
& f t . :
T o6 i 430005 §
d . i‘ ;
§ 3 L7r]
§ ost B ] -
B §
¥ I : 3
o f ] 420005 ¥
g fo A 2 ‘-:
E | B % 2
2 o3tk ¢ ] :
l [
| 4 .
L ,/;:.-:' f 5 - 1e-005
01 E G “
(4] | AL A L A ' L b 1 (:
-1000 -500 -BOO -700 -600 -500 400 -300 -200 -100 © 100 200 300 400

Applied Field. Ce

Fig. 4.19. (©1997 IEEE)



252 Chapter 4  Nonlinear Diffusion in Superconductors

Fig. 4.20

processes. From the purely mathematical point of view, the Ito stochastic
differential equation generates complicated diffusion processes by using the
Wicner process. which is one of the simplest and most studied stochastic
ProCesSes.

Now we shall return to Eq. (4.33). Since integration is a linear opera-
tion. from (4.33) we derive:

fi= //;L((x./3)E{§(,_,;X,}(10(1/3. (4.82)
.ozé/i

Thus, the problem is reduced to the evaluation of the expected value,

E{:Y(V.HXI }

Let
Gop(t) = Prob{fa e = +1}. (4.83)
Since Ay gL may assume ouly two values +1 and —1, we find:
E{dapri} =290 5(t) — 1. (4.84)

In this way, the problem is reduced to the calculation of g4 g(¢). The last
quantity can be expressed in terms of switching probabilities P;f(t) and
P (t), which are defined as follows:

(4.85)

k switchings of 94 3 during
+ — 1 B g
P/ (t) = Pro ){ timme interval (0,¢) | 443 z9 = +1
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k switchings of 5, 5 during

Py {t) = Prob time interval (0.£) | 4,3 19 = — L. (4.86)
By using these switching probabilities, we derive:
>, o
Z P;A(”* if %"{x.;’i?r() = +1,
(l(v\ﬁ((’) = k;“ (487)
Z Pz-_};t-f-]([)* if Yo 380 = -1.
A=0

The last expression is valid because occurrences of different mubers of
switchings are nonintersecting (disjoint) events.

Next, we shall discuss the mechanism of switching. Tt is clear [rom
Fig. 4.20 that the first switching occurs at the moment when the stochastic
process oy starting from the point @y exits the semi-infinite interval (3. oc).
Then, the second switching occurs at the moment. when the process x
starting from the point 2 = /7 exits the semi-infinite interval (—oc, «v). The
third switching takes place at the moment when the process o, starting
from the point @ = « exits the semi-infinite interval (3. x). It is appareat
that the mechanism of all subsequent even switchings is identical (o the
mechanisin of the second switehing, while all subsequent odd switchings
occur in the same manner as the third switching,  Thus, switchings of
rectangilar loops 4, 3 are closely related to the exit problem for stochastie
processes. This problem is one of the most studied problems in the theory
of diffusion processes and the mathematical machinery developed for the
solution of this problem will be utilized in the caleulation of probabilities
Prn.

The exit. problems just deseribed can be characterized by exit thmes
7. which are random variables. Tn the above notation for the exit times,
subseript " means that process xzy starts from point x. while superseripts
“47 wmean that upward and downward switchings, respectively, ocenr at
these exit times. Next, we introduce the functions

eF () = Prob{rE = t). (1.88)
VE(E ) = c(t) - eE (1. r). (1.%9)

where ¢(#) is a unit. step-funetion.
It is clear that
VE(L r) = Prob{rE < t}. (1.90)

which means that VE(t ) has the meaning of a cumulative distribution
function for the random variable 7. This, in turn, implies that
OVE(t. 1)

/)i(f,;r) = — g (4.91)
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is the probability density function for the random variable 7%,

It is apparent from (4.89) (4.91) that p®(t,x) can be casily computed
if % (¢,2) are somchow found. It turns out (and this is a well-known result
from the theory of stochastic processes) that v*(t,x) is the solution to
the following initial boundary value problem for the backward Kolmogorov
equation:

Qu_t - "z(_“’l E + b L)dlg_c (4.92)
ot 2 Ja? o
v(0,1) = 1, vt et) =0, (4.93)

where ¢ are the exit points for the process X, which are equal to o —
and /1 — ug, respectively.

Next, we shall show that switching probabilities I’ki (1) can be expressed
in termns of ot (¢) and p®(£). Note that, according to (4.89) (4.91), p™(¢)
are related to vE(t) as follows:

()
P = L) et ) (4:94)
N

It is clear from the very definition of v (¢, #) that
PE(t) = o2 (t.0). (4.95)

It is apparent from Fig. 4.21 that the occurrence of exactly one downward
switching is the union of the following disjoint elementary events: down-
ward switching occurs in the time interval (A, A + dA) and then no npward
switching oceurs up to the time t. Due to the strong Markov property of
X, the probability of this elementary event is given hy

PO Tt — A — g )dA. (4.96)

Now the probability ' (¢) of exactly one downward switching cau be
found by integrating (4.96) from 0 to t:

ot
Pr(t) = / P ATt = A — g )dA. (4.97)
Jo

Iu other words, £;7(t) is the couvolution of p~ (¢,0) and v (t. 3 — u,):
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+1
L ma ? - 1
Al A+dA :
-1 .dr. :
Fig. 4.21
f’f(f) =p7(t.0) % 'l‘+(f. 3= ,). (4.98)
By using similar reasoning, we can derive
Prt)y =pt(t.0)x e (toa - u,). (1.99)

Next, consider the probability I’.;(I) of the oconrrence of exactly two
switchings starting from the initial state 4, 5.0, = 1. According to Fig. -1.22,
this occurrence can be considered as the union of the following disjoint
clementary events: downward switching oceurs in the time interval (A X
dA) and then exactly one upward switching oceurs up to the time 1. The
probability of these elementary events is given by

P A OVt — A)dA. {(4.100)
Now, by integrating (4.100), we find
y
Pty = / P~ (N OYPT(E A (4.101)
Jo
From (4.99) and (4.101) we obtain
PH) = p  (.0) = pt (8.3 —uy) x v (tov — ). {4.102)
By using the same line of reasoning, we derive
P(t) = pt(t.0) % p~ (toao —wy) w et (8.3 — w,). (4.103)

For the sake of conciseness, we introduce the notations:



256 Chapter Nonlinear Diffusion in Superconductors
7 1

+1

'S

Al A+dA

+

Fig. 4.22

pE0) = pE (). pT B —w) = pt ), pToa—w,) == pT (1), (4.104)

TG0 =0T (S cu) = () e (fa—w,) =0T (). (4.105)

Now, by usiug the same line of reasoning as hefore and the induction ar-
gunent. we can casily derive the following expressions for the switching
probabilities:

2h02 ternns

Pt ) = p, (1)« p (e p” (0w p ()% om p () wpT (1) w0 (1),
{(-1.106)

2k terms

1727,‘_*,“.(1,,)::/);:({)*/)7(1)*/)"'(f)*w-*/) (y* pt (O =07 (). (4.107)

By substituting (£.106) and (4.107) into (4.87). we obtain the expression
for g,,4(f) in terms of infinite series of iterated convolutions. These series

can he reduced to geometric ones by employing Laplace transforins:

ps) = / p()e “dt, (Re s = 0). (1.108)
Jo
Ps) = / e ' dr. (4.109)
0
It is clear that
[ pls) j< L {4.110)

By using these Laplace transforms, from (4.95). (4.106), and (4.107) we
obtain

PE(s) = 05 (s), (4.111)
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Pii(s) = s ()5 ()0~ ()™ ()3 (). (4.112)
PZ_I\-H( 5) = /33_(5){‘- (-"')[/T' ('*‘)/\)ii("")]k- (4-113)
From (4.113) and (4.87), we derive

Gsls) = T—%Jp( ZIT(*_S)_O i At = —1. (4.114)

A similar expression can be derived for the case §,51, = 1.
According to (4.94).

/7t<ﬁ) =1 - 5(‘;1(5) (4115)

Thus, the pml)l(‘m of computing ¢, is reduced to the problem of
determining ¢% (5). This can be accomplished by using: the initial houndary
value problem (4 ‘)2) (4.93). The complexity of this task will depend on the
nature of the stoclhiastic process X;. which models the noise i hysteretic
systems. It is natural 1o require that the stochastic process that models
the noise must be a stationary Gaussian Markov process. According (o the
Doob theorew (11, the ouly process that satisties these requirciments is the
Ornstein-Ublenbeck process. This process is the solution to the following
[to stochastic differential equation:

dX) = - bXydt 4 adW. (1.116)

where 1/ has the meaning of the correlation thne. (This means that X,
and X, are only significamly corvelated if {1 [<1/h).
The hackward Kolmogorov equation for the Ornstein-Uhlenbeck pro-

cess has the forme: ‘
JuE ot gt Jdot

o 2 o T o

This equation should be considered jointly with initial and boundary
conditions (:1.93). By applying the Laplace transforin to (4.117) and (:4.93),

we arrive at the following boundary value problem (or 7% (s):

(1117)

1, S,
35 LT( SR ({(7 ) i) =1, (1.118)

PRy =00 i (s ) = 1 s (4.119)

The solution to the boundary value problem (1.118) (4.119) can be
written in the form:

2 12 : D_ s/ot /\
(s a) = ! (1 e R 77/’7( il ) (4.120)
K - s/[r /)\
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where D/, (/X)) are parabolic cylinder functions, while

A=a/V2b.

Expressions (4.115), (4.114), and (4.120) jointly with (4.82) and (4.84) out-
line the main steps of compnting f,.

It is apparent that the case of continuous-time noise is computationally
more expensive. Some sample examples of computations for this case can

be found in [14], [15)].

4.3 NONLINEAR DIFFUSION IN
SUPERCONDUCTORS WITH GRADUAL
RESISTIVE TRANSITIONS (LINEAR
POLARIZATION)

In the previons sections of this chapter, nonlinear diffusion in super-
conductors with sharp (ideal) resistive transitions was discussed. However,
actual resistive transitions are gradual and it is customary to describe them
by the following power law:

"
F = (/‘—]> - sign L, (> 1). (4.121)
where I2 15 electrie field, J is current density, and A is some parameter that
coordinates the dimensions of both sides in expression (4.121).

The exponent *n™ s a measure of the sharpness of the resistive tran-
sition and it may vary in the range 7 1000, Initially, the power law was
regarded only as a reasonable cupirical description of the resistive tran-
sition.  Recently, there has been a cousiderable research effort to justify
this law theoretically.  As a result, models based on Josephson-junction
conpling [27]. “sausaging” [8], and spatial distribution of eritical current
[28] have been proposed. However, the most plausible explanation for the
power law came from the thermal activation theory [6]. [7], [29]. According
to this theory. the electric field E induced by thermally activated drift of
flux filaments (vortices) can be written in the form of the Arrhenius law:

E = E.exp[-U(J)/kT]. (4.122)
where U(J) is a current-dependent. Hux creep potential barrier, which sup-

posedly vanishes at some critical current J.; E,. is an electric fleld at J = ..
It a logarithmic dependence of activation barrier U on current J

U(J) = Ueln <]7> (4.123)
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is assumed, then from formula (4.122) we readily obtain the power law
(4.121) for the resistive transition.

Whatever the theoretical rationale may be behind the power law, this
law has been observed in numerous experiments. For this reason, in our
subsequent discussions, this law will be used as a constitutive relation for
hard superconductors. By using this constitutive relation and Maxwell’s
equations, it is easy to show that nonlinear diffusion of linearly polarized
electromagnetic fields for monotonically increasing boundary conditions is
described by the following nonlinear partial differential equation:

8tJn n0J
ey —. 4.124

922 Ho 5t ( )
We shall first consider the solution of this equation for the following bound-
ary and initial conditions:

JO8) =ct?, (> 0,p>0), (4.125)

J(z,0)=0 (z>0). (4.126)

It may seewm at first that these boundary conditions are of a very specific
nature. However, it can be remarked that these boundary conditions do
describe a wide class of monotonically increasing functions as p varies from
0 to x¢ (see Fig. 4.23). Tt will be shown below that for all these boundary
conditions the profile of electric current density as a function of z remains
practically the same. This observation will suggest using the same profile
of electric current density for arbitrary monotonically increasing boundary
conditions. This will lead to very simple analytical solutions.

The initial boundary value problem (4.124) (4.126) is mathematically
identical to the model problem discussed in Sections 1.3 and 1.4. As a
result, the solution of the initial boundary value problemn (4.124) (4.126)
closely parallels the solution of the model problem mentioned above. For
this reason, we shall only outline the main steps of this solution.

The initial boundary value problem (4.124) (4.126) can be reduced to
the boundary value problem for an ordinary differential equation. This re-
duction is based on the dimensional analysis of Egs. (4.124) and (4.125).
This analysis leads to the conclusion that the following variable is dimen-
sionless:

o
<

¢ = , (4.127)
pm /k—nuo_lcnfl
where : .
m = p(_n——)L (4.128)

2
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J(O,0) &

p<l

Fig. 4.23

By using this dimensionless variable, we look for the self-similar solution of
initial boundary value problem (4.125) (4.124) in the forn:

J(zt) = ct” f(O). (4.129)

where f(C) is a dimensionless function of . By substituting formmla (1.129)
into Eq. (1.124). after siinple trausformations we end np with the following
ordinary differential equation:

d2fr df
ISER,

pf =0 (-1.1:30)
[t is apparent that J(2.¢) given by expression (1.129) will satisfy bound-
ary and initial conditions (4.125) and (4.126) if f satisfies the boundary
conditions:

flo) =1L (4.131)
fle) =10, (4.132)

Thus. the initial boundary value problem (1.124) ((1.126) is reduced to
the boundary value problem (4.130) (4.132) for the ordinary differential
Eq. (4.130). It can be proven that this nondinear differential equation has
the following group property: if f(¢) is a solution to Eq. (4.130). then

F(Q) = A0 a0 (4.133)
is also a solution to this equation for any constant A. This property can
be utilized as follows. Suppose we have solution f{C) to Eq. (4.130), which

satisfies the boundary condition (4.132), however

fO)y =a#1. (4.134)
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Then, by using A = (1"—1/2, we find that
Lo m—1y/2 Jar
JO=_fla ¢) (4.135)

is the solution to Eq. (4.130), which satisfied (4.132) as well as the boundary
condition (4.131). Thus, we can first find a solution to Eq. (4.130) subject
to boundary condition (4.132). then, by using transformation (4.132), we
can map this solution into the solution that also satisfies the boundary
condition (4.131).

It can be shown that a solution to Eq. (4.130) satisfying the boundary
condition (4.132) has the form:

£(C) = { b1 — QYD 4 by (1 O+ ba(l — )%+ ..), if0<¢<L
(AR W1 it ¢ > 1.
{4.136)
By substituting formula (4.136) into Eq. (4.130). after simple hut lengthy
transformations, we find

1 f{n—1)
b= P—(’ )} ‘ (4.137)
n
plr - 1) )
by = : . 113R
!l 2mn(n 1) ( )
L4 20020 — DB - 2) - -]
by = b2 2L T 1.139
& ‘ 3020 - 1) (1.139)
It is clear that

FOY=b1+b +by F...) # L. (4.140)

This difficulty is overcome by using Gransformation (4.133) with
A=D1 4 by + by .0 D2 (4.141)

This leads to the following solution of the houndary value problem (1.130)
(4.132):

e bi(1=AC)+ha(1=A0)*+... ey P
70) = {(1 = AQ M NHRLE g R R 0 S A< L (g )
0, if AL » 1.

The last expression can be simplified by exploiting the fact that the expo-

nent 72 in the power law is usually greater than 7. This shmplification can
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be accomplished by using the following inequalities for by and b, which can
be easily derived from Eqs. (4.128), (4.138), and (4.139):

1
| < —r—— 4.14
lll_Qn(n—l)7 (4.143)
{ba] < ! + ! (4.144)
2= 6n—-1)2n—-1)n  8(n—1)n? '
From the above inequalities, for n > 7 we find
by] < 0.012, [by| < 0.00075. (4.145)

This suggests the following simplification of solution {4.142):

1/(n—1
£l¢) = (l- m(n—l)/n() t >, if0<¢<v/n/m(n-1),
0, if ¢ > /n/m(n-1).
(4.146)
By substituting formula (4.146) into expression (4.129) and taking into
account Eq. (4.127), we end up with the following analytical expression for
the current density:

) z 1/(m—1) o~ m
J(z,t) = {"“ (1 - zw) - iz < di™ (4.147)
0, if z > dt,
where
d = /(ne=1) /[pokm(n — 1)]. (4.148)

The brief examination of self-similar solutions (4.147) leads to the following
conclusion: the profile of clectric current density J(z,t) remains approxi-
mately the satne in spite of wide-ranging variations of boundary conditions
(4.125) (sece Fig. 4.23). For typical values of n (usually n > 7), this profile
is very close to a rectangular one. This suggests that the actual profile of
electric current density will be close to a rectangular one for other boundary
conditions as well. Thus, we arrive at the following generalization of the
critical state model.

Current density J(z,t) has a rectangular profile with the height
equal to the instantaneous value Jy(¢f) of electric current density
on the boundary of the superconductor (see Fig. 4.24). Magnetic
field H(z,t) has a linear profile with a slope determined by the
instantaneous value of Jy(t).

To better appreciate this generalization, we recall that in the criti-
cal state model the current has a rectangular profile of constant (in time)
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height, while the magnetic field has a linear profile with coustant (in time)
slope.
For the zero front of the current profile we have

zp(t) = 122(:)2 (4.149)
Iz H(z,1)
/ .
[’2
{t1
241 2, zD(t3)= ’ ) 2ty) 2ty)
a) b)

Fig. 4.24

However, Ho(t) and Jy (1) are not. simultancously known. For this reason. we
intend to find Jo(t) in terms of Hy(¢). To this end. we multiply Eq. (4.124)
by = and integrate from 0 to zo(t) with respect to 2 and from 0 to £ with
respect to £o By literally repeating the same transformations as in Section
1.5, we arrive at the following equation:

<2n(t) of
fok™ / Iz t)dz = / Jy (7)dT (4.150)
Ja o

By using in the last equation the rectangular profile approximation for

J(z,t). we obtain
Hok™ 2 g
B Rtz = [ (4151)
Jo

By substituting formula (4.149) into Eq. (4.151), we find

ok d {“(f(t)}
H L = T, 4.152
.]()(f,) 0( ) ( )

2 dt
By introducing a new variable:

Hi(t)

) = Jo(t)
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we can represent formula (4.152) as the following differential cquation with
respect to y(t):
dy™tt 2nt 1),

i L F AT 4.154
dt Jok™ 0" (1) (4:154)

By integrating Eq. (4.154) and by using Eq. (4.153), we arrive at the fol-
lowing expression for Jg(t):

Hi(t)
']()(f,) = o z
{[(2n 4 1) /;mk”)]] r(r)dr b/ )
By substituting formula (4.155) into Eq. (4.149), we find the following ex-
pression for zero front z;(t) o terms of the magnetic field, Hy(1), at the
boundary of the superconductor:

. . 1/ (n+1)
1 20+ 1) [H .,
zo(t) = —— | ———= HS" [ 4.156
() Ho(t) [ frok™ /() 8" (7T (1.156)

Up to this point, nonlinear diffusion of electromagnetic fields in seini-
infinite superconducting half-space has been discussed. However, the above
results can be divectly extended to the case of a slab of Hnite thickness A,
This can be done due to the finite speed of propagation of zero front zo(t).
As o resalt, if () < % noulinear diffusion at both sides of a super-
conducting slab occurs in the same way as in the case of superconducting
half-space. This is illustrated by Figs. 4.25 a and 125 b,

After the instant of time £, when two fronts meet at the wmiddle of the
slab, formula (4.155) is not valid anvmore. To find the appropriate fornmla
for Jy(t) in the case £ 2> ¢ we shall again use the first moment relation for
the nonlinear diffusion equation. However. this moment relation should be
somewhat modified (in comparison with (4.150)). To find this modification,

we start with the nonlinear diffusion equation:

()2F a.J
= Joy—- 4.157
o2 Mo (4.157)
We multiply both sides of this equation by = and integrate with respect to
z from the boundary = = 0 to - = %
D . A
T VK T O
Tz = i s—dz. 4.158
_/(, PR o ,/(, ot (4.158)

Next, we shall transform the first integral in formula (4.158) by using nte-
gration by parts:

S 3 A
O'E OE|"  [% OE AVE (A

dz =z = —Tdz =5 .t + B 4.159
./() 022 Oz /(, P 2 s (2 ) o(t). (4.159)

[e
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From cquation curl E = —pg (—i)l’i, we find
OF (A OH [ A
—_— | .t 4 —,t]. 4.160
02(‘2 ) l“df<2 ) (4.160)

By using the last equation in formula (4.159), as well as the power law
(4.121), we obtain

Y
2

S A OH (A T2 ()
gz = MR OT (2 et 16
/0 e 5 Dt (2 > e (4.161)

By substituting formula (4.161) into the moment relation (4.158), we derive

2

/1()A/s ()H A 1) / 2 .
SN =t = ok = zJ{z, t)dz. 4.162
Ji (') 5 df 5 Ho ot J, J(z t)d ( 32)

Since it is assumed (in our generalization of the critical state model) that

=)= Jo(h).  (0€z< %), (4.163)

we can transform formula (4.162) as follows:

jAK O (A ;:(.AL dJo(t) .
gn U= N 7 A4.16¢
Jo () 2 g \ 2 % di (4.164)

Relation (1.163) implies that

A
Ho(t) - H <2 I>

JT . | HI

MD

(4.165)

A

JE N

V
ru
-
.\\\
\ N

A"” 1 ‘ ; *\ t A -7
\ A A
2| ( . : 2
! | | !
(1, <t,<ty)
a) b)

Fig. 4.25



266 Chapter 4§  Nonlinear Diffusion in Superconductors

which yiclds

OH (A t> L _Ddh(t) dH() (4.166)

ot \ 2 2 dt dt

2
By substituting the last formula into expression (4.164), we arrive at the
following ordinary differential equation for Ju(%):

dJy(t) " dry  dHy(t)
Ty = =2 - - 16
70 di ()( ) A dt ) (4 107)
where
AkT
= 10 T (4.168)

Thus, in order to find Jy(#) for ¢ > t*, the solution to differential Eq. (4.167)
subject to the initial condition

Jolt™) = J; (4.169)

must. be found. Here JJ s the value of the current density immediately
prior to the instant ¢, and this value can be computed by using formula
{4.155).

As an example. consider an important case when

I{()(f) = 11() = const, (i > ()) (4]7())

For this case, Eq. (4.167) is reduced to
To—t = = JU (1), (4.171)

This equation can be integrated by employing the following separation of
variables:
— = (4.172)

which leads to ]
Jo(t) = (T(’> \ (4.173)

where )
f Ty . ,lt()A kn

- - = — . 4
[ — 8(n—1) (4.174)

and t' is determined from initial condition (4.169).
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It is interesting to note that formula (4.173) coincides with the long-
time (intermediate) asymptotics found in [29] (see also [6], [7]). These
asymptotics are used to describe the phenomenon of flux creep in super-
conductors. To better appreciate this, we shall rewrite formula (4.173) in
the form:

1 t+t
Jo(t) = — 1 . 4.175
o(t) exp{ —n - } (4.175)
By assuming that
1 i+t
Rl t>t, — il (4.176)
n—1 To

and by using only two terms of the Taylor expansion in formula (4.175), we
find
t

— lnT—(,). (4.177)

.]()(t) ~1-—

This is the well-known logarithmic intermediate asymptotics, which is a
characteristic of creep phenomena. Thus, it can be concluded that long-
titne solutions to the nonlinear diffusion Eq. (4.124) are instrumental for
the description of creep. The idea of using nonlinear diffusion equations
for the description of flux creep can be traced back to the landmark papers
of P.W. Anderson and Y.B. Kim [1] and M.R. Beasley, R. Labusch, and
W.W. Webb [5].

Typical distributions of the electric current density and the magnetic
ficld computed by using the described generalization of the critical state
model for the case Hy(t) = Hy = const are shown in Figs. 4.26 a and
4.26 b.

Next, we intend to show that electromaguetic field diffusion in su-
perconductors with gradual resistive transitions may exhibit a peculiar
(anomalous) mode that does not exist in superconductors with ideal re-
sistive transition. This is a standing mode. In the case of this mode. the
electromagnetic ficld on a superconductor boundary increases with time,
while the region occupied by the electromagnetic field does not expand.
We shall first find the condition for the existence of this mode by using the
“rectangular profile” approximation for the current density. Then we shall
derive the exact expressions for the standing mode through the analytical
solution of the nonlinear diffusion equation, that is, without resorting to
the rectangular profile approximation. Finally, we shall compare these two
results.

To start the discussion, we turn to equation (4.150) and try to find
such a monotonically increasing boundary condition Jy(t) for which the zero
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front, zy(t), stands still. To this end, we assume that zq(t) = 2y = const,
and, by differentiating both sides of (4.150), we arrive at

_ /L()kn 2 d.]()(ﬁ)

Jytr) = Mo g (4.178)
The last expression can be transformed as follows:
2 1Jo(t
1ok 2 Jg (1)
By integrating both parts of (4.179). we obtain
2 b= o) — 2] (4.180)
Hok? 22 n—1"4"°9 o ’ ’
From (4.180), we derive
1
Jo(t) = — —- (1.181)
-n 20n 1 ol
CAUEE = 10)
The last expression can be represented in the form:
. «
oty = . (4.182)
(fo — ¢y
where
. L.n:'z 7,"|"1 ) /\‘”:2,11_” 0
P LR ) ', — HoR "~y ( ) (4.183)
2(n — 1) 2(n - 1)
JT HA
: t,
| 1, : ~ ! t el
o, | .
o3 7 /,/’ 12
' 5 Lo
2 A 2 A
(t,<t<ty)
a) b)

Fig. 4.26
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Thus, we have established that, if the current density on the boundary
of superconducting half-space varies with time according to the expressions
(4.182) (4.183), then the zcro front, zp(t), of the current density stands
still during the time interval 0 < t < #5. In other words, during this time
interval the electromagnetic field diffusion exhibits a standing mode. This
mode is illustrated by Fig. 4.27.

It is desirable to express the boundary condition for the standing mode
in terms of magnetic field Hy(f) at the superconductor boundary. This can
be easily accomplished by using (4.182) and Ampére’s law, which lead to:

Ho(t) = ——2 . (4.184)
(to — )77

Our previous derivation has been based on the rectangular profile ap-
proximation for the electric current density. Next, we shall derive the ex-
pressions for the standing mode solution without resorting to the above
approximation, but instead through analytical solution of the nonlinear
diffusion Eq. (4.124). It is remarkable that the standing mode solution can
be obtained by using the method of separation of variables. Actually, this
is the only “short-time™ solution that can be obtained by this method. Ac-
cording to the method of separation of variables. we look for the solution
of Eq. (4.185) in the form:

J(z ) = g2t {1.185)
By substituting (4.185) into (1.124). after simple transformations we derive

L o) k™ dy(t)

o(z) dzt yn(t) dt (1.186)

This means that )
:1:(,) T (4.187)

UCANY o
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ML AR LZANNS Y (4.188)

where A is some constant.
By integrating Eq. (4.187), we easily obtain

L
k7l 1
A ULTN (4.189)

PO = G DG~

where ¢y is a constant of integration.

Equation (4.188) is somewhat more complicated than Eq. (4.187) and
its integration is somewhat more involved. To integrate Eq. (4.188), we
introduce the following auxiliary functions:

19(=
0" (z) = 0(z),  R(2) =" 1( ). (4.190)
dz
From (1.190) and (4.188). we derive
{ 12(9 12 ;
AR _ 0T o2y = M (2, (4.101)

dz dz? T dz?
On the other hand.

dR _dR db _ R@ _ Ld(E?)
d= "~ df dz T T8 T 2 de

(1.192)

By equating the right-hand sides of (4.191) and (4.192), we obtain

d(R?) il
AL P 4.19:
- 2N (4.193)

By integrating equation {1.93), we find

Ton ;
(z) ——AB(2)] 7 . 4.194
n+1 [ ( )

In formula (4.194), a constant of integration was set to zero. This can he
justified on the physical grounds. Indeed, the magnetic field should vanish
at the zero front, that is, at the same point where J{z,t) vanishes. By
using (4.185) and (4.190), it can be shown that the magnetic field and
J(z.t) arc proportional to R(z) and % (z), respectively. This means that
these two functions should vanish simultancously. This is only possible if
the integration constant in (4.194) is set to zero.
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Next, by using (4.190) in (4.194), we find

10 BN il
db(z) _ \/n_”_)\[()(z)}-m—,. (4.195)

dz + 1

By integrating (4.195), we derive

EIN (n—1)?
T 2(n+ D)n

[6()] AMzo — 2)%, (4.196)

where zg is a constant of integration.
From (4.190) and (4.196), we obtain

| (n- 1)2/\
{2(71-}— 1)n

~

plz) =

(20 — )zJ o (4.197)

Now, by substituting (4.139) and (4.197) into (4.185), we tind the following
analytical (and exact) solution of nonlinear diffusion:

T n.y_~2'”_l_|
(12 1)/1()/? (20 ;) jl - (1.198)

20n + Dyn(ty —f

J(zt) = {

[t is remarkable that, as a result of substitution, the “separation™ constant
A cancels out. and the solution (4.198) does not depend on A at all.

The obtained solution (4.198) can be physically interpreted as follows.
Suppose that at tiime ¢ =- 0 the clectric current density satisfies the following
initial condition:

{ )it (zu ) ”_l‘ s O
J(z.0) = { [—'Tf“Tﬁ‘_] U (4.199)
0 if = > 2.

Suppose also that the current density satisties the following boundary con-
dition during the time interval 0 < ¢ < ¢

(n— Dok 38 } Ea

1.200
2(n+ Lin(ty — 1) ( )

Jo(t) = J(0.t) = {

Then, according to (4.198). the exact solution to the initial boundary value
problemn (4.199) (4.200) for the nonlinear diffusion Eq. (4.124) can be writ-
ten as follows:

1

1 {
=1k (zo—2)* | 70 : . o~
J(z,t) = { [—< Dl —1) L0z <x (4.201)
5 .
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This solution is illustrated by Fig. 4.28 and it is apparent that it has the
physical incaning of the standing mode. 1t is also clear from formula (4.201)
(and Fig. 4.28) that the above solution has the following sclf-similarity
property: the profiles of electric current density for different instants of time
can be obtained from one another by dilation (or contraction) along the J-
axis. In other words, these profiles remain similar to one another. This
suggests that solution (4.201) can be derived by using the dimensionality
analysis. However, we shall not delve further into this matter.

From the practical point of view, it is desirable to express the boundary
condition (4.200) for the standing wode in terms of magnetic field Hy(1)
on the superconductor boundary. According to Ampére’s law, we have

Ho(t) = / (=0 1)ds. (4.202)
J0

By substituting (4.201) into (1.202) and performing integration. we obtain
I

n -1 (n = Dpph"zg 17
Holt) = “m o | e =0 : 120;
ulf) P {2(11 b Dty 1) ( 2

It is also instructive to compare the above exact standing wode solution
with the standing mode expressions derived on the basis of rectangular
profile approximation. First. it is elear from formula (1.201) (and Fig. 1.2%8)
that. for sufficiently Large oo the actual current density profiles for the
standing mode are almost rectangular. Second, it is apparent. that the
boundary condition (£.200) can be written in the form (1182) with ¢ and
fo detined as follows:

1 }‘.11:2 W
o= F”— o ”} . (4.204)

2(n 4 1)n

A[VARY
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(n — Duok™z3.J,7™(0)
= . 4.205
2(n+ 1n (4.205)

to

By comparing (4.204) (4.205) with (4.183), it can be observed that for
sufficiently large n these expressions are practically identical. Thus, the
rectangular profile approximation is fairly accurate as far as the prediction
of the standing mode diffusion is concerned. This brings further credence
to the rectangular profile approximation.

The origin of the standing mode can be elucidated on physical grounds
as follows. Under the boundary condition (4.200), the electromagnetic en-
ergy centering the superconducting material at any instant of time is just
enough to affect the almost uniform increase in electric current density in
the region (0 < z < z4) already occupied by the field but insufficient to
affect the further diffusion of the field in the material.

In the discussion presented above, the method of separation of variables
has been used in order to find the “short-time” solution, which deseribes the
standing mode of nonlinear diffusion. It turns out that the sane method of
separation of variables can be used in order to study “long-time” solutions,
which describe the phenomenon of Hux ereep. As has been demonstrated by
E.H. Brandt [7]. these “long-time™ solutions can be found in quite general
situatious.  In our presentation below. we closely follow the paper [7] of
E.H. Brandt.

Consider a long superconducting evlinder of an arbitrary cross-section
subject to uniform magnetic field By directed along the y-axis (see Fig. -1.29).
This magnetic ficld induces currents J in the superconductor and these cur-
rents are directed along the z-axis. The vector magnetic potential A is also
directed along the z-axis and it is given by the following formula:

Alr. 1) = —’2’% J ) e — |2y + Aglr). (4.206)
JS

where Ay is the vector magnetic potential of the external feld:

Ao(r) = —1By. {4.207)
From equations curl E = v% and curl A = B we conelude that
N U
Blrt) = -5 Ar.1). (4.208)

Combining formulas (4.206). (4.207), and (4.208). we derive

CaJ(r ¢ . 0B
E(r.t) = ;L—;; /. %2 Injr —r'| &% + .1:%. (4.209)
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Now we consider “long-time” conditions when the external magnetic field
is maintained constant:

08,
ot

By = const, =0. (4.210)

By substituting (4.210) into Eq. (4.209) and taking into account power law
(4.121), we arrive at the following nonlinear integro-differential equation:

E(r,t) = %:E /s BE_'B(tr,_t) JInjr - r/|d%r. (4.211)

We look for a nonzero solution of this equation in the form:

E(r.t) = o(r) (5>a. (4.212)

T

By substituting formula (4.212} into Eq. (4.211), we find that the above

equation is satisfied if
0

ao=— -1 (4.213)
n
which yields
= — (4.214)
Il —n
This means that solution (4.212) takes the form:
FNT
E(r,t) = o(r) (~> , (4.215)
T

Fig. 4.29
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and Eq. (4.211) is reduced to the following nonlinear integral equation:

o(r) = T;(E:;)f—l) [5 [cp(r’)]% Injr —r'|d*r’. (4.216)

As n > 1 and 7 can be chosen sufficiently large, Eq. (4.216) can be solved
numerically by using contraction mapping iterations [7].
Having computed ¢(r), we can find the electric current density:

Jr,t) =k [gp(r)]% (t> - sign o(r). (4.217)

T

To investigate the intermediate asymptotical behavior of the current den-
sity, we shall emiploy the formula

PN 1 ¢
<> Z(?XI){#IH}. (4.218)
T n—1 T

Since n > 1, there are always such times that

t
In— <« 1. (4.219)
n—1 T
For such times. we can retain ouly two terms of the Taylor expansion of
the expouent in formula (4.218). This leads to the following intermediate
logarithmic asymptotics:

1

n—1

J(r. t) =k {«p(r)]% [1 — In ;} sign p(r), (4.220)

which is typical of creep phenomena.

4.4 NONLINEAR DIFFUSION IN ISOTROPIC
SUPERCONDUCTORS WITH GRADUAL
RESISTIVE TRANSITIONS (CIRCULAR
POLARIZATION)

In the previous sections of this chapter, nonlinear diffusion of linearly
polarized clectromagnetic ficlds was discussed. Our analysis was based on
the solution of scalar nonlinear diffusion equations. Now we turn to the
discussion of more complicated and challenging problems, where electro-
magnctic fields are not linearly polarized. This will require the solution of
vector nonlinear diffuston equations. We begin with the simplest case when
electromagnetic fields are circularly polarized and superconducting media
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are assumed to be electrically isotropic. We shall still use the power law
as the constitutive relation for the isotropic superconducting media. In the
vector case, the power law (4.121) can be written as follows:

JAEw By = (\/JE2+ E2) E.. (4.221)

T B By) =0 (, e bf) E,. (4.222)

a (\/ﬁz + f:j) — o ([E|) = k|E[*7". (4.223)

where

By nsing the above formulas, the problem of nonlinear diffusion of circularly
polarized clectromagnetic fields in the superconducting half-space z > 0
can be framed as the following boundary value problem: fiud the periodie

solution of the coupled nonlincar diffusion equations

92 E, ) —

i e o (B R R (1.221)
9L, B FTTN

o= [n (V' 12y I'.!f) 1;,,]. (1.220)

subject to the following boundary conditions:

[“l((),) e l,l',“ (‘()S(‘—UI + (}”)‘ (122())
E 004 = F,osin(wf -+ 6,). (1.227)
[',',,;(x,.f) = IL‘_,/(’X,‘/) = (). (1228)

It is apparent that the mathematical structure of nonlinear differential
Fas. (1.224) (4.225) and boundary couditions (4.226) (4.228) is invariant
with respect to rotations of the - and y-axes around axis z. This suggests
that the solution of the bonndary value problem (4.224) (4.22%8) should also
be mvariant with respect to the above rotations. The Latter implies that the
clectrie field is civcularly polarized everywhere within the superconducting
media:

£.(z0t) = F(z) cosfwt + 6(2)], (1.229)
E, (=) = E(z)sinfwt + 6(=)]. (4.230)

Now we formally demonstrate that the cireularly polarized solution (4.229)
(4.230) is consistent with the mathematical structure of the boundary value
problems (4.224) (4.228). First, it is clear from the above formulas that

E(z, )] = \/h‘f(:, 1)+ E2(=.0) = E(2). (1.231)
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This means that the magnitude of the electric field, as well as the condue-
tivity o (|El}, do not change with tine at every point of the supercondueting
media.

Next, we shall write formulas (4.229) and (4.230) in the phasor form:

E.(z) = E(z)e??), (4.232)
Ey(z) = —jE(z)e"), (4.233)

It s apparent that
|E(z.t)| = |E.(z)] = |E,(2) (4.234)

and

Now, by using phasors (4.232) and (4.233) as well as the formula (4.235).
we can exactly transform the boundary value problem (4.224) (4.228) into
the following boundary value problems for 5 () and F,(2). respectively:

d2E, _ N .
T Jwpoo ([E ) E,, (-1.236)
E0)=E,. F.(x)=0. (1.237)
and
(lzi‘, . A
('?;2/ = jwpgo(|Fy )V E,. (1.23%)
E 0) = jE,. E,(x)=0. (4.2339)
where A
lim = h‘m(“‘()”- (121())

The above exact transformation can be construed as a mathematical proof
that the circular polarization of the incident electromagnetic field is pre-
served everywhere within the superconducting media. This also proves
that there are no higher-order time-harmonics of the electrie field anywhere
within the media despite its nonlinear properties.

From the purely mathematical point of view, the achieved simplifica-
tion of the boundary value problem (4.224) (1.228) is quite remarkable.
First, partial diferential Eqs. (4.224) (4.225) are exactly reduced to the
ordinary differential Eqs. (4.236) and (4.238). respectively. Second, these
ordinary differential equations are completely decoupled. Finally, these de-
coupled equations have identical mathematical structures. As a result, the
saue solution techuigue can be applied to both of them.
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To solve Eqgs. (4.236) and (4.238), we shall first slightly transform them.
According to formulas (4.223) and (4.235), we have

o(|Ea]) = k| Ea|» 7", (4.241)
a(|E,]) = K| Ey7 71, (4.242)
Tm = (| Eml) = k| Em] 77" (4.243)

From the last three expressions, we derive

. E,
NS
A K
o(|Ey]) = om | =2 (4.245)
Em

By substituting formulas (4.244) and (4.245) into Egs. (4.236) and (4.238),
respectively, we find

(12E.E . El ! ~ .
W = JWH)Tm E’ El-, (4246)
£E, g7

2 = JwHoOm i E,. (4.247)

The solution to Eq. (4.246), subject to the boundary conditions (4.237),
can be sought in the form:

E.(2) = En, (1 - i>a, (4.248)

-~

~0

where

a=a +ja". (4.249)

Here, zg,a’ and o are parameters, which will be appropriately chosen to
guarantee that E.(z) given by formula (4.248) satisfies Eq. (4.246).

It is important to keep in mind that expression (4.248) is an abbrevi-
ated form of the solution. In other words, it is tacitly understood that this
form is valid for 0 < z < 2z, while for z > zp the solution is equal to zero.
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From formulas (4.248) and (4.249), we derive

ED o
(2] _ (1 i) , (4.250)
En 20
which leads to
. L1 (=11
E, " Coo
) (1 - = (4.251)
En 20

By substituting formulas (4.248) and (4.251) into Eq. (4.246), we find
-

—2 18]
ala — DE,, <l — ~> = Jupioom e B, (1 -~ -:> . (4.252)

20

It is clewr that equality (4.252) will hold, if the following two conditions are
satisfied:

o’(n —
2= —( —) (4.253)
n
and
alov = 1) = jwpgo, 22 (4.254)
From the first condition, we immediately find
s e e R
o = T (4 ZSSJ
i —1 I

The second condition (4.254) can be construed as a characteristic cquation,
which can be used for determination of o and z;. This is an cquation in
terns of complex variable . It can be reduced to the following two real
cquations:

Ao 1) = (&) =0, (4.256)

”‘”(2”’ - 1) = '/L()O‘m,:(;i- ('—1257)

By using formulas (4.255) and (4.256), we derive

o+ 1
g V2t ) (4.258)

n—1

By substituting expressions (4.255) and (4.258) into (4.257), we arrive at
the following expression for zq:

In(n + 1)(3n + 1)%]3
s = 2o+ 00+ AT (4.259)
(n— 1) /o,
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Formulas (4.24%), (4.249), (4.255), (4.258). aund (4.259) completely define
the phasor lvl,(~) as the solution of the boundary value problem (4.236)
(4.237). The boundary value problem (4.238) (4.239) has the same math-
cmatical form (structure) as the boundary value problemn (4.236) (4.237).
For this reason, the solution to the boundary value problem (4.238)-(4.239)
can be written as follows:

E(z) = -, (1 - i) . (4.260)

20

where. as before, a and zg are given by formulas (4.249), (4.255), (4.268),
and (4.259).

Expressions (4.248) and (4.260) can be converted from the phasor form
into the time-domain forms. This yields

2

AN V2 + 1 z
E.(zt)=F,, (1 - —-) COs ,:u)[ + -+ - (’177—) In (I - )} .
2o 1 1 0

(1.261)

=z o 27 £ {t l7 oy
() = £, (1 ) win Wt 1 0y Vanln ) (1 ) .
o no—1 20

(-1.262)

R [ J

The above formulas give the exact analvtical solution 1o the boundary
value problem (4.22.1) (4.228) for coupled nonlinear ditfusion equations.
This is the high symmetry solution, which is invariant (np to a choice of
initial phase #y) with respect to rotations of axes . and y.

By nsing the last two formlas along with expressions (1.221) (4.223),
we obtain the loll(mm;ﬁ relations for the electrie current densities:

2\ \/3;_;7i E ]
Jolzty =gy (1 - cos |t + 0y + - - —
20 20

S\ . [ \/2:)(}1, 4?1
Jylzot) = T [ 1 - sin Jwt + 604 Y S | -
s n -

|

where

']m = T Em . (1205)
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Irowm the above relations, we find

|J(Z)| = ']m,,r(z) = ']m.y(:) = Jm (1 - M) . (12()())

We sce that for n 2 1 profile of [J{z)] is almost. rectangular. A typical plot
of this profile is shown in Fig. 4.30. We can also observe the logarithmic
variation of phase with respect to 2. As a result, for any fixed time ¢, clectric
current densities J, and J, (as well as electrie ficlds E, and E)) have infinite
nubers of zeros (infinite numbers of oscillations) in the interval O < 2 < 2.

Up to this point, it has been assumed that the clectric field components
are specified on the bonudary of the superconducting half-space z > 0.
However, in applications it is more convenient to specify the houndary
values of the magnetic ficld components. For this reason, we shall express
the above solutions (4.261) (4.262) in terms of the magnetic field at the
boundary. To do this, we shall invoke the equations

Rt AN N I8 (4.267)
o= ’
ik, -
(,Tf = jwpotl,. (1.268)
4z

as well as formmlas (L213) and (1.260). As a result, we obtain

_ o
n,(z)=11, (1 : ) . {1.269)

. a
1}.1/(:) - _A}'[[m (1 o ;) . (127())
0
where A o
]{m - I{nw (1271)
Wty lg

1f H,,, is given. then the Tast relation can be construed as o nonlinear
cquation for I:J,,,. This equation is nonlinear, hecause 3y depends on o),
which is a nonlincar function of £,,. To make this noulincarity mantfest.
we use formula (£.259) i (4.271) and derive

24 - l
[{IH = |”1\/n - 72"* o ["Jm- (‘1272)
Wity 2n(n + 1)(3n + 1)%]7

Now, by recalling formmula (4.243), we transform the last equation as follows:

-1 Lin
Hyp = oy [ om0 (4.273)
\) wito [2n(n + (30 4 1) l
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From expressions (4.249), (4.255), and (4.258), we find

o] = VGt 1) (4.274)

n—1

By substituting formula (4.274) into (4.273), we end up with the nonlinear

equation for E,:
Zn
”l ETYf” (4,275)
wm)

W T o+ 1\ D s e
B = (520)7 ( LG ) H (4.276)
and 1
20 1 ) -+ 1 ) 210 n)
O = k75T (wpp) (”2”) Ha ' (4.277)

Thus, for any given H,, we can find o, from formula (4.277). and then
zo from formula (4.259). Having found z), we can use formulas (4.269),
(4.270), and (4.271) for calculations of H,( ) H_,/( ), and E,,.
Next, we consider the surface impedance of the superconducting half-
space. This impedance is defined as follows:
3= B0 Ey(0) (4.278)
H,(0) H,(0)

From formmlas (4.248), (4.270), (4.271). and (4.278). we find

_ JWhozo
@

(4.279)

Fig. 4.30
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By using the polar form of the impedance

n = [nje’?, (4.280)
from Eq. (4.279), we derive
WHo2zg
= .281
Il = =5 (4.281)
a/
tang = —. (4.282)

By invoking formulas (4.259) and (4.274), from (4.281) we find

Inl = <n+1>% who (4.283)

2n Om

Similarly, from formulas (4.255), (4.258), and (4.282), we arrive at

2n

. 4.284
n+1 ( )

tan @ =

The last two formulas are remarkably simple. In the particular case of
n = 1 (linear media), these formulas lead to the well-known expressions:

Wl us
=4/ —, = —, 4.285
mi= 22 =1 (4.285)

It is important to note that the magnitude of the surface impedance is
field dependent. This is clearly seen from formula (4.277). In contrast. the
phase ¢ of the surface impedance is not field dependent. It is determined
only by the sharpness of the resistive transition. Figs. 4.31 and 4.32 show
respectively the dependence of ]n]/,/“—;“% and tany on the exponent n,

which is the natural measure of the sharpness of the resistive transition.

In another limiting case n = oo (sharp trausition), from formulas
(4.283) and (4.284) we derive

In| = \;‘%‘:’ . tang = V2. (4.286)
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Fig. 4.32
Now we tuwrn back to formulas (4.269) and (1.270) and convert them into
time-domain form. As a result, we obtain

n-1

H.(=.t) = H,, <l - :—) ’ cos |wt + —-"——1n
. 0

u|(.r
—_— N’

NZICES) (1_ ‘

4.287)

2 _'
[1]/(»:.,) = }{,,, (] — —;—> sin [II_L_F__ (1 - -

20

e
/-\\_/

where, for the sake of simplicity, it is assumed that the initial phase of the
magnetic feld at the boundary is equal to zero.

Next, we shall show that, in the limiting case of sharp resitive tran-
sitions (n = o), the last two expressions are reduced to those that were
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asserted by C. Bean in the paper [4]. To this end, from formula (4.271), we
find

Hm = ——— . (428‘))

WHOT 2o

From the last equation as well as formulas (4.259) and (4.274), we obtain

. MmN\ T
T, = <_’L> Foa (4.290)

n+1

By substituting the last expression into formula (4.259), we arrive at
Y g I

n -+ 3n Hm
gy = Yt DBt 1) H,y (4.291)
n—1 o

In the case of sharp resistive transitions,
T = e (1.292)

and the ratio . i
§= M= (1.293)
']/II '](
can be construed as the field dependent (Bean) penetration depth. which
we dealt with for linear polarizations of magnetic felds (see formula (L1)).
By wsing expression (4.293) in fornula (£.291). in the limiting case of
no- X, we obtain

2 = V34 (1.204)

Thus. the penetration depth in the case of the cirenlar polarization is V3
times larger than in the case of linear polarization.

Finally., by substituting formula (4.294) into expressions (4.287) and
(1.288) and letting n go to infinity, we derive

H.(z.t) = H,, (1 : \/'so> cos {u.;t + V2 <1 - “)} . (‘1.295)1

H(zt)=H, <l - Cf%d) sin [u)/ + V21 (1 - ;))} ) (1.206)

- N

The last expressions are identical to those published i the paper |4].
The results diseussed up to this point were obtained for the supercon-
ducting half-space. However, they can be casily extended to the case of
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a superconducting slab of finite thickness A if the penetration depth zq
satisfies the following inequality:

20 < =, (4.297)

| D>

Under condition (4.297), nonlinear diffusion of electromagnetic fields at
each side of the superconducting slab occurs in the same way as in the
case of the superconducting half-space. As a result, we obtain the following
formulas:

Stinilar generalizations can be given for the electric field and current den-
sity. It would be interesting to find the solution to the nonlinear diffusion
problem in the case when zg > %.

4.5 NONLINEAR DIFFUSION IN THE CASE OF
ELLIPTICAL POLARIZATIONS AND
ANISOTROPIC MEDIA

In this section, we shall use the perturbation technique in order to
extend the results from the previous section to more complicated situations.

To start the discussion, cousider a plane electromagnetic wave pene-
trating the superconducting half-space z > 0. The magnetic field at the
boundary of this half-space is specified as follows:

H,(0,t) = HyJcos(wt + ) + e fe ()],

. (4.300)
H,(0,t) = Hy[sin{wt + ) + € f,(t)],
where € is some small parameter, while f.(f) and f,(¢) are given periodic
functions of time with the period %"
It is apparent that this plane wave can be construed as a perturbation
of the circularly polarized plane wave. By using the Maxwell equations, we
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find that the distribution of electric field in the half-space z > 0 is governed
by the following coupled nonlinear partial differential equations:

P E, 0 (B, Ey) ‘
92 = m 5t . (4.301)
0*E, OIE,, Ey,) .
8:2 = [y ot 5 (4.}()2)
subject to the boundary conditions
OF, Ho o cos(c R ; .
.5;—([) t) = —poHpfw cos{wt + ) + ¢ f, (1], (4.303)
0E,
‘7)-(0 t) = g Ho wsinfwt + ) — cfL(t)). (4.304)
E, () =FE, () =0, (1.305)

where functions J. (£, E,) and J,(E,, E,) are specified by formulas (4.221).
(4.222), and (4.223).

Next, we shall look for the periodic solution of the boundary value
problem (4.301) (4.305) in the following form:

Eo(zt) = EV(zt) + ee (2. 1), (4.3006)
Ey(z ) = Ep(z.6) + ecy (1) (4.307)

By substituting expressions (4.306) and (4.307) into Eqs. (4.301) and (4.302)
and boundary conditions (4.303) (4.305) and by cquating the terms of like
powers of e, we arrive at the following boundary value problems for £, Ef/’
and ep. ey

O*EY DI (EYED) P*EY aJg,(EV.E))
h2 o é).t =, UJU = jig—~ i L (4.308)
OE i
- L0, t) = —wppH,,, cos(wt + ), {4.309)
C)E()
_(T?(U' t) = —wpoH,, sin(wt + ), {4.310)
E(x) = By{c) = 0. (4.311)
and
e, ) [ aJ, aJ,
o g s (F“ ENes + —==(EY EDey (4.312)

PR OE,
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02(”J 9Jy 0 20 z/ O a0
= e B )ee & E.. 31

22 /0(), {.)EI(L ) Cr () (B E))ey! (4.313)
()( .
()(v .
5_ (” f) - fl()[{m/‘ ( ) (4151))
eq(oc,t) = ey(oc. ) = 0. 4.316)

Yy

The boundary value problem (4.308) (4.311) describes the penetration of
circularly polarized plane wave into the superconducting half-space. The
solution to this problem has been found in the previous section. For the
case when the initial phase, v, is such that the initial phase of EY on the

homndary (z = 0) is equal to zero, this solution is given by the following
CXPIOSSIONS:
Mty = E, (1 - ¥> cos(wt + (). (4.317)
)
E(zt) = B, <1 > sin{wt + 0(2)). (L31%)
i <0
l\/ZN (n i 1 in } f)j 1

Ty = "[/III . (l:;l()]

s ==

\/W‘/I[)Um \ 1)

0(z) = ' 1n (1 . ) . (-1.320)
)

2n 2n(n 4 1 ,
af = e o = \/——(-------- - --). (1.321)
n—1 n -1

and £, can be fonnd from the nonlinear equation:
(v + /n
H,, = l l[v,,, (4.322)
wto 20

By substituting (+£.317) and (4.318) into Eqs. (4.312) and (4.313) and by
nsing expressions (1221) (4.223). after simple but somewhat lengthy trans-
formations (that can be fonnd in Section 2.2) we arvive at the following
equations for ¢, and ¢

e ,(M.f) =\ 2o 14+ n [T
Do (1) S 2w 4 20
B ad ( :u> ot 2n i 2n cost F20(: ))}

xe(z t) + 1—2——1 sin(2wt 4 26(2))e, (5. /)J . (4.323)

14
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e, (2.t 2\ 2oll-n
€ (5;52 ) =11 (1 - ) e 77—2— sin(2wt + 26(z))e.(z, t)
z )

2 ot 2n

(4.324)

+ {i%ﬁ - LQHE cos(2wt + 20(‘,))} e, (z, I)} .
Equations (4.323) and (4.324) are coupled lincar partial differential equa-
tions of parabolic type with variable i time and space coefficients. We
would like to find the periodic solutions of these equations subject to the
boundary conditions (4.314) (4.316). To this end, we introduce new com-
plex valued state variables:

P2 t) = ez 1)+ je,(2.0). (3.325)

() = e (5,1) — jo,(2.0). (4.326)

By using these state variables, and some simple transformations, we can
represent Egs. (4.323) and (4.324) in the following form:

2D - =\ Yol S\
(f' 5 oG - ! [ ( S +"”*‘I’ bl - =
== 2n 0 at |l -n 0

(1.327)

AT | ) - 2 ) |+ n - - 1207 '
; 'lv; = HoTm , | § - AL ¢ IR
i)z= 2n 0 at |1 - n =0

(:1.328)
Assuming that functions f(¢) aud [, (1) in boundary conditions (4.31.4)
and (L315) are functions of half-wave svinmetry (the case that is usually
of most practical interest). we conelude that e (= 4) and ¢, (5.4) will also
be the functions of half-wave synunetry. For this reason, we will use the
following Fourier series for @z 1) and v (z.1):

P(z.1) = Z Dopo s () RHR0 (4.329)
A= X

Pl )= e (2) D (4.330)
k= — %

[t is clear from ((1.325). (1.316). {(4.329). and (1.330) tha
Pl (=) = van-i(2). (4.331)

'(;".';)‘__‘ l(,’:) = ¢ ”2}‘.7\(,‘;)_ (4332)

where the superseript *+7 means a complex coujugate quantity.
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By substituting (4.329) and (4.330) into (4.327) and (4.328) and by
cquating the terns with the same exponents, after simple transformations
we derive

z 2 dzq)zk_H i Z 207, ey
L) o = ek [0®uen + (1 )7 ey, (4.333)

20 20
2 g2 ~j2a’
< d*op . , z .
<1 - 7) Tz S X {(I/I/f'zkﬂr (1 - ~) Pokyr|, (4.334)
Zo z Z0

(k=0.41,+2,..),

where we have introduced the following notations:

1+n l—n
X2k+1 = (21‘ + 1)&)/1,()(77” 7 (4335)

a= ,
1—-n

Thus. we have reduced the problem of integration of partial differential
cquations (4.327) (4.328) to the solution of an infinite set of ordinary dif-
ferential equations with respect to Fourier cocfhicients ®op4 and gy,
The remarkable property of these simultancous equations is that they are
only coupled in pairs. Tt allows one to solve each pair of these coupled
cquations separately. After $up 0 and 4y are found, we can compute
Gz 4y and (= f) and then e, (2. 1) and ¢, (z.1). Another simplification is
that according to (4.331) it suftices to solve coupled equations (4.333) and
(4.3:34) only for nonnegative values of A.

We shall seek a solution of the conpled equations (4.333) and (4.334)
in the form:

- B
Do (2) = Avis (1 - f—-) . (4.336)
Z0
N A 20
Yak—1 = Bag— (1 - %) . (4.337)
)

By substituting (4.336) and (4.337) into (4.333) and (4.334), we end up with
the following simultancous homogencous cquations with respect to Agp
and By

(1 — 83— Jxarp126a) Aok i1~ J\aky 120 Bak—1 = 0, (4.338)

ok 2o Avker + [(B = 262 = (3~ 52a"") = jxuk_12z80)Bog_ 1 = 0.
(4.339)
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[ ve

The above homogencous equations have nonzero solution for Agxy; and
By y if and only if the corresponding determinant is equal to zero. This
yields the following characteristic equation for /7

. . . . y 2 ., y . ;
(# = 3 = ixaenizda) [(6 = j20)° = (8= j20") = jxonm1 750

| (4.340)

+ Xk 1 X2k 125 = 0.

From expressions (4.335) and (4.319), we find

) (2k+1)(3n+1)(n+1)\/7{+1 .
Skt lZha = — - —\/ - - 4.341
X2k+ 1200 n 1) o { )
4k* — 1)(3n+ D)%*(n + 1 n+1
X2k+1 X2k~ 120 = ( )( A,) ( ) ——. (4.342)
(n —1)? 2n

From the last two expressions we conclude that the coeficients of the char-
acteristic equation (4.340) depend on the exponent, n. of the power law
and &, Consequently. the roots of this equation also depend only on nand
k. It can be proven that the above characteristic equation has two roots
B1(n. k) and Jy(n. &) with positive real parts. After these roots are found.
the solution of conpled equations (4.333) and (4.334) can be represented in
the form:

SRy 2 =\ g
Bopgr(z) = AW, (1 - TSVI AG (L T (1.313)
z o))
7/"21s‘—-l(3) _ Bgi)l(l W ;i;)m — g0’ + 13‘£i-)»-1(1 _ ::;; )/”: ".IZu”‘ (1‘41)

where for the sake of notational siplicity we have omitted the dependence
of 3 and 35 on n and k.
From boundary conditions (4.314) (4.315) and (xpu‘ssions (4 325)

(4.326), we obtain the following equations for AZA-H {21\{—1 BM , and
(2) .
By

ol AzAH + 32Azk+| = —zopo Ho [~ fo opar + 310 2650 (4.345)

(B = 320" VBS) 4 (B2 — 20V BS | = —zopoHoul - gy — 3 Fai)-

(1.346)
. ) . . 1 . 251 .
(‘D’f -3 - .l\2k-+—l3(z)”')A'(zk).H - _/xzkﬁ.lzél}.ﬁk)ﬂl = (), (4.347)
o . : 2 : 2 (2 .
(B3 =3~ J \’2k+13(2)”)/1~(zk)+1 - Jx'zkw-llf)Bék)_, =10, (4.348)

Hor 4 . 4 AT ¢ w Fonivier o PR ’
where fl o and f) o, ) are complex Fourier coefficients of f and f.
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By solving simultancous equations (4.345) (4.348), we can find coef-
ficients _A,EL)_I,,4‘21)+],B.§L),_1 and Béill. Then, by using (4.343). (4.344),
(4.329) (4.330) and (4.325) (4.326), we can determine perturbations e, (z, f)
and ¢,(z,t), which in turn can be used in (4.306) (4.307) to compute the
total electric field.

Consider the particenlar case when

fo(t) = coswt, fy = sinwt. (4.349)

This case corresponds to elliptical polarization of the incident field. It is
casy to see that in this case the right-hand sides of equations (4.345) and
(4.346) are cqual to zero for all k except & = 1. This means that only first
and third harmonics are not equal to zero. We have reached this conclusion
hecause we have considered only first-order perturbations with respect to e,
If we consider higher-order perturbations with respect to €. we shall recover
higher-order harmonies of electric field.

From the purely mathematical point of view, it is remarkable that the
solution of conpled equations (4.323) (4.324) corresponding to the bound-
ary conditions (4.314) {(4.316). and (4.319) coutains ouly the first and third
harmonics. Perhaps this is hecanse the coupled PDEs (4.323) ((1.32.4) have
inherited some symmetry properties from the unperturbed problem corre-
sponding to the circular polarization of the incident wave.

So far. we have dealt with isotropic supercondneting media. Now. we
proceed to the discussion of nonlinear diffusion in anisotropic media. The
first. question to be addressed is how the power law that deseribes gradual
resistive transitions can be generalized to the case of anisotropic media. By
repeating the same line of reasoning as in Section 2.4, we can reach the
conclusion that a reasonable generalization of the power law is given by the
following formmulas:

JEe By = 0+ OkE, (U B+ (- akz) " (4850)

BBy = (- aks, (O rort (- aEz) L ss))

where e is some relatively small parameter, which accounts for anisotrop-
icity of media. It is clear that the superconductor properties enter into
Eqs. (4.350) and (4.351) through parameters n, e, and k.

In the limiting case of € = 0, expressions (4.350) and (1.351) are re-
duced to

1
L

JOE, B, =kE, (\ﬁz + ’E.;z,) TS kER g, (4.352)
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1
— L1

HO B £) = kE, (B2 + E2)" = kETTE,, (4.353)

which are constitutive relations for isotropic superconducting media with
gradual resistive transitions described by the power law.

Thus, the anisotropic media with constitutive relations (4.350) and
{4.351) can be mathematically treated as perturbations of isotropic media
described by the power law. This suggests that the perturbation techuique
can be very instrumental in the mathematical analysis of nonlinear diffusion
m anisotropic media with constitutive relations (4.350) and (4.351).

Formulas (4.350) and (4.351) lead to power law-type resistive transi-
tions along the r- and y-axis:

Jo(E,) = k| B.|7" sign E,. (4.354)
JJE,) = ky|E,|7 sign E,. (4.355)

1y

with k, = k(1 + )= and k, = k(1 - ) 7

In the limiting case of 7 = . expressions (4.351) and (1.355) deseribe
ideal (“sharp™) resistive transitions with critical enrrents JO = (14 )& and
Jy o= (1 =€)k, It is also inportant to note that the Jacobian matrix for
J(E) defined by Eqs. (1.350) and (£.351) is svimetrie. This guarantees the
abscnce of local evelie (hvsteretic type) losses (see Section 2.1).

Now cousider a plane civcularly polarized electromagnetic wave pene-
trating the superconducting half-space = = 0. The magnetic field on the
boundary of this half-space is specified as follows:

H (0. t) = H,, cos(wt + 7). (-1.356)
H,(0.4) = I, sin{wl + 7). (4.357)
By using the Maxwell equation. it is casy to find that the distribution of

clectrie field in the half-space = > 0 satishies the following coupled nonlincar
partial differential equations

PE,_OL(EE,) (L)
gze Ty
DL, g (B, E,

cLy OBy (:1.359)

o2 ! ot
subject to the bonndary conditions:
oE, o

s (0.1) = —powH,, cos(wt + ). o

(0.1) = —ppwH,, smwlt + ),
(1.360)
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E.(00) = Ey(xc) = 0. (4.361)

Next, by using the perturbation techuique, we shall look for the solution of
the boundary value problem (4.358) (4.361) in the form:

Eo(2,t) = E2(2,1) + eep(2,1), (4.362)
Ey(z,t) = E)(z,t) + eey(z, t). (4.363)

We shall also use the following e-expansions for constitutive relations (4.350)
and (4.351):

1-n KE?2-E?
. —" + ey
2n E?
(4.364)

Jo(Eo Ey) = JUE, E,) + ¢JY(E.. E,)

£2 2
1-n E;-Ey

1y (Ba By = J)Ee, By) = <J)(E B, [1 - = =

ey

(4.365)
where JU(E,, Ey) and .]L)(E,,.,Ey) are defined by expressions (4.352) and
(4.353), respectively, while F = \/Ef + EZ.

By substituting expressions (4.362) (4.363) into Eqs. (4.358) (4.359)
and boundary conditions (4.360) (4.361), and equating the terms of like
powers of ¢, we end up with the following boundary value problemns for

00 o
LB, and e, ey

2 EY ('}JJQ Eﬁ,Ef’ (')zEf’ 0.0 E?,E“
(‘ ‘J. = 1y ,(‘ 4 ‘/), : ’J = 10 y(“ y). (4&66)
gzz ! ot 922 ot
OEY OEY .
Oz (() t) *UJ/L()H,,, ("()S(L‘}t + 7)4 70”' = _w/L()H‘nL Sln(“)t + ’Y)a
i (4.367)
E(x) = Ep(s0) = 0, (4.368)
and
()ch g (0. 1‘ 0.]‘,’ .
022 ~ Moy ()f <()Z’]g (E(:) E(J)()r + (")E?/ (EQ Eg)(‘y> =
) . 4.369
0 ]O(E“ EO) v l1-n (Eﬂ))z - (Eij)z ( )
L Form— ,
Hao ot 5 ToUE

6281/ J d]f/) EV EY 9y 0 0
- (B2 EDe, + == (EY. EDe, | =
922 ot (dE v oF, uty
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‘ 1—n (E9?2 - (EY)?
~pog: | 1) (EL Ey) (1 R v , (4.370)
%(O,t) = %(0, ty =0, ex(00,t) = ey(00,t) = 0. (4.371)

The boundary value problem (4.366) (4.368) describes the diffusion of
circularly polarized electromagnetic wave in the isotropic superconducting
half-space z > 0. The solution to this problem has been found in the
previous section. For the case when the initial phase v in (4.367) is such
that the initial phase of E® on the boundary (z = 0) is equal to zero, this
solution is given by formulas (4.317) (4.322).

By substituting (4.317) and (4.318) into Eqs. (4.369) and (4.370) and
by using expressions (4.352) and (4.353), after straightforward but some-
what lengthy transformations we derive the following equations for e, and

€yt

e, 2\"? 0 14n 1-—mn
52 HOTm <l — Z_u) pn [({E ( 5 + o= cos 2wt + 9(:)]) +

1—n

1

Cy

sin 2 fwt + 0(:)]J (4.372)

SN0 [3n 41
- lL()(f"LEHL <1 - T) ;;7 [ ”4” COS (u}f + 9(3)) +
20 .

14;2 cos 3 (wt + 9(3))} .

T

02‘511 =\ %o 1l—-n ,
Tz 10T m (1 — 3_(,> p ¢y o sin 2wt + 6(2)] +

l+n 1-n . .
Cy ( o T gy oS 2wt + 9(:)]) } (4.373)

\7TT O [Bn+1
= - mm - — Y si it 6(z
HoT E ( :”> ot [ an Sln(“’ + ( ))

4nn sin 3(wt + 9(:)):} .

To simplify the above equations, we introduced new state variables:
puty

D(z2,t) = e, (2. t) + je, (2, 1), (4.374)
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P(z,t) = ex(z,t) — jey(z,t). (4.375)

By using these state variables, we can transform Egs. (4.372) and (4.373)
as follows:

9% 1-n 228 {1+n 2\
A e - =) = o+ (1-= J2iyy | =
822 2n HOTm ( zo) ot {1 -n * < zo> Y

2\ 8 [3n+1 2\
= poomEn (1~ = = 1- = eIt
Hog m < Z()> 8t 4n < Z())

4n 20
My 1-n 2\ 8 [1+n 2\
i A 11— = - 1 - = AJZUJI(I) —
dz? 2n HoTm 20 ot |1 —n vr 20 ‘

L—n - ‘_1.'5(1” )
. 4”,; (1 B ~_“) (,,,.w} (4.377)

By looking for the solution of Eqs. (4.376) and (4.377) in terms of Fourier

SOTIOS:

o0

Dz, t) = Y Dypqa(2)e? D (4.378)
k=—o0

Pty = D dmnr ()l (4.379)
h=—-c

it. can be shown (see the reasoning in Section 2.4) that only @3, P ). and
¥_y are not equal to zero. For ®3 and v, the following coupled (ordinary
differential equations) can be derived:

’

2 i2a’
z dzq)'; ( Z )J
1-— = —Jxz laPs + {1 - — | =
( Z()) ) VR & { 3 % 1

7

%4—]30
) (4.380)

|

I

(



4.5 Nonlincar Diffusion in the Case of Elliptical Polarizations 297

| p 2 (12/(1’.)] . (s pe —j2a’’ I)
- 7"# — aw [ — ( . =
z9) dz? N 20 :

N “2", +ia”
jn En, <1 - L) , (4.381)
Z()
where . -
—-n 7
X2k41 = (QIS + 1)u)/1,()()’,,, -, a= . (4‘382)
2n I —n
. 1—n dn+1 L
C.‘l = ‘5W/L()U'm, T V) = WOy — . (4383)
4n an

The solution of Eqs. (4.380) (4.381) should be subject to the boundary
conditions
1P S
(1 Y0y = o)y = 0, Ba(oo) = () = 0. (4.384)
dz

dz

which follow from the boundary conditions (4.371).
Sitnilar ODEs can be derived for ¢ and ¥_3. However, this can be
avoided because g and ¢ as well as ¢ 5 and p3 are complex conjugate.
The particular solution of ODEs (4.380) and (4.381) has the form:

N Ay N AL
q,:(;v)(:) = (Y (l - f) . l,’v(l”) =( (I _ *) . {1.385)
Z0 ~(}

2 2
M= o sat A = 2y e (1.386)
o1 n-1

where

Coctlicients (%5 and (7 satisfy the following simultancous equations:

[As(hs — 1) = jgazi] Oy — jxszdCr= Gz B, (4.387)

iz Cs + A(A - 1) - .}'\l”3(2)] Cy=jmizgEn. (4.38%)

It s clear from (4.319). (4.382). (1.383). and (4.386) that the coethicients
in Egs. (1.387) (4.388) depend only on n. This opens the opportunity to
compute the ratios C/F,, and Cy/F,, as functions of n.

It hias been shown before that the solution of homogencous ODEs cor-
responding to (4.380) (4.381) has the form:

N N

() = A <1 - > oM =B <1 - —> . (4.389)
Z0 =0

where /7 is the solution of the following characteristic equation:

(32 - = jxzaz) (B — 20" = (- j2a"y = ix1azd] + xaxazg = 0. (4.390)
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It can be shown that the above characteristic equation has two roots 3 and
72 with positive real parts. By using these roots and expressions (4.385)
and (4.389), the solution of equations (4.380) (4.381) can be written as
follows:

3 3 A
z z z
<I>3(z) = A (l - ——) + A, <1 — ——> + Cy (1 — —) R (4.391)
20 20 20
o\ Bi—a20” 5 Ba— 2’ Y
l,)[(Z) = B] <1 — L) -+ Bz (1 — —) +(./'1 (1 — i) .
20 Z0 20

(4.392)
The unknown coeflicients 4y, Ay, 31, and By can be found from the bound-
ary conditions (4.384) at z = 0 and from the fact that expressions (4.389)
should satisfy homogencous ODEs corresponding to Eqgs. (4.380) (4.381).
This yields the following simnltancous equations for the above coefficients:

,/3]/1] + /"'32/12 = ’A:;(v;g. (4303)

(i = 20" VB (e - 20"V, = =X (), (4.394)
(37 -3 = jasas)A — sz By = 0. (1.395)
(33 - B2 — \sazi) Ay = jaazi By = 0. (1.396)

Again, it is casy to see that the coefficients of characteristic equation (4.390)
as well as the coethicients of simultancons equations (4.393) (4.396) depend
only on n. This allows oue to compute the roots /3 and 3, as well as
the ratios A /K, Ao/ F,,. B /K, and B3,/ F,, as functions of n. In the
limiting case of n = o¢ (ideal resistive transition-critical state model), one
can compute specific numerical values of the above gquantities. These valnes
are as follows: 3 = 24 jvV2. 3y = 1.921 4 j3.699, CVJE, = E, —
JOZ B = j0E A B, = 0029 4 j0.116, Ay/E,, = 0071 —
70990,  B(/E, = -0.043 + 70039, B,/F,, = -1.899 + ;0.513. By
using these values all desired quantities can be found. For instance. the
magnitudes of the first and third harmonics e and ey of the perturbation
can be computed as the functions of . The results of these computations
arc shown in Fig. 4.33. For gradual resistive transitions (finite n), the roots
71 and 3 as well as all the mentioned coctlicients have been computed as
functions of n. The results of these computations ave presented in Figs. 4.34
through 4.37. Finally., Fig. 4.38 shows the dependence ou noof |ep] and |ey]
at 2 =0.
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Fig. 4.38

The presented analysis can be extended to the case of nonlinear diffu-
sion of elliptically polarized clectromagnetic fields in anisotropic supercon-
ducting media deseribed by constitutive relations (4.350) (4.351). In this
case, the perturbation technigque with respect to two small parameters can
be employed. One small parameter is involved in the constitutive relations,
while another is used in the boundary conditions. Mathematical details
of this perturbation techuique are almost identical to those presented in
Section 2.5. For this reason, the discussion of this perturbation technique
is omitted here, and the reader is referred to Chapter 2.
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CHAPTER 5

Nonlinear Impedance Boundary
Conditions and Their Application
To the Solution of Eddy Current
Problems

5.1 MATHEMATICAL STRUCTURE OF
MAXWELL’S EQUATIONS FOR EDDY
CURRENT PROBLEMS

In the previous chapters, we extensively discussed the nonlinear diffu-
sion of plane clectromagnetic waves in magnetically (or electrically) nonlin-
car conducting half-space. Special attention has been paid to the caleula-
tion of surface impedances. This has been done on purpose. The reason is
that. by using these pedances, nonlinear impedance boundary conditions
can be formmlated. These boundary conditions can then be applied to the
computation of eddy currents in conductors of complex shapes provided
that the penetration (“skin™) depth is small in comparison with geometric
dimensions of these conductors. Tt turns out that the impedance bound-
ary conditions can be most effectively formulated in terms of the magnetic
scalar potential. To understand the rationale hehind this formmlation, it is
worthwhile to cousider first the mathematical structure of Maxwell's equa-
tions for 3-D eddy current problems. This structure is quite peculiar, and
it is of interest in its own right.

To start the discussion, cousider a conductor V1 of arbitrary shape
subject to a given external (“source™) ficld (see Fig. 5.1). Notations EY

304
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Fig. 5.1

and HY will be used for the electric and magnetic veetors, respectively, of
the source field. Electric and magnetic vectors of the scattered (reflected)
ficld will be respectively denoted as E7 and H . Within the conductor.
the total electromagnetic ficld vectors, EY and HY | will be employed.

Now. by using Maxwell's equations. the calculation of time harmonic
clectromagnetic fields can be reduced to the following bonndary value prob-
lem: find the solution of the eqguations

el BV - o HY (H.1)
cirl HY = aBY + jwd'E7. (H.2)
et B = —jwpgH ™. (H.3)
cul H = jwegE7 (5.1)

subject 1o the boundary conditions
Fx (HY H )7 xH. (5.5)

7x (E'" E7)=17xE" (5.6)

It is also tacitly understood that the outgoing Sommerfeld radiation
conditions arce imposed at infinity on the seattered ficld vectors E7 and
H

In the above equations. notations jioe, and o stand for magnetic per-
meability, dielectrie permittivity, aud conductivity, respectively, while 7 s
a nnit. vector of outward normal to the conductor bonndary, S. It is also
clear that the above equations are written for phasor vector quantitios.

It can be proven that the boundary value problem (5.1) (5.6) has a
unigue solution. The proof can be fonnd in many textbooks on electromag-
netics.
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It can be remarked that the following equation and integral-type bound-
ary condition

div ET =0, (5.7)
fE— -dS =0 (5.8)
J

can be derived from Eq. (5.4). Indeed, by applying div-operator to both
sides of Exq. (5.4), we find

0 = div eurl H™ = jwey div E7, (5.9)

which is tantamount to (5.7). Sunilarly, by integrating Eq. (5.4) over the
boundary S, we obtain

fé curl H™ - dS = jwey %E7 -dS. (5.10)

s s

By invoking the Stokes theorenm. we derive

/ curl H™ -dS = 0, (H.11)

S

which, in combination with formula (5.10). is cquivalent to boundary con-
dition (H.8).

The boundary value problem (5.1} (5.6) is typically nsed for high fre-
guencies (scattering problems). I eddy current problems, it is customary
that frequency w is relatively small. For this reason, displacement currents
tuside and outside the conductor VT can be neglected. This leads to the

r

following degenerate form of the boundary value problem (5.1) (5.6): lind
the solntion to the cquations

curl EY = ~jwopgTH? (5.12)
curl HY = oE1, (5.13)
cl E- = —jwpugH™. (5.14)
curl H™ =0, (5.15)

subject to the boundary conditions
/x (HY -H ) =7 xH", (5.16)

ix (BT —E)=ixE" (5.17)
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The boundary value problemn (5.12) (5.17) does not have a unique solution.
Indeed, formula (5.7) does not follow from Eq. (5.15) and, consequently,
divE™ may assume an arbitrary value:

div E- # 0. (5.18)

It is also clear that the houndary condition (5.8) does not follow from
Eq. (5.15) either. As a result, integral {}:s. E~ - dS may assume an arbitrary
value as well: i
/E* LS £ 0. (5.19)
s

This state of affairs oceurs becanse we have neglected displacement. currents
and Eq. (5.4} has become Lomogencous Eq. (5.15),

Thus, the conclusion can be reached that Eq. (5.7) and boundary con-
dition (5.8) are independent of relations (5.12) (5.17) and must be incor-
porated into the mathematical formulation. This leads to the following
complete set of differential equations and boundary conditions:

el BY » —joptHY (H.20)
el HY - 0B (h.21)
cul E = jwngH . (H.22)
cul H =0, (5.23)
divE =0. (h.24)
7x (HY - H7) =7 x H". (5.25)
ix(E'-E)=ixE" (5.26)
/E -dS = 0. (5.27)

K

The following result can be proven.

Theorem 1. The bonndary value problem (5.20) (5.27) with appropriate
couditions at infinity has a anigue solution. -
The proof of this theorem as well as other theorems from this section
can be found in [17].
The fact that the boundary value problem (5.20) (5.27) has additional
Eq. (5.24) and boundary condition (5.27) makes the initial formulation
(5.1) (5.6) look simpler than the formulation (5.20) (5.27). This fact may
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also suggest that it would be better to compute eddy currents in conduc-
tor VT without neglecting displacement currents, that is, by using the
initial formulation (5.1)-(5.6). However, the close examination of the sit-
uation shows that this is not the case. First, the boundary value problem
(5.1) (5.6) is ill-posed for small frequencies. Indeed, for small frequencies
the problem (5.1) (5.6) is very close to its degenerate form (5.12) (5.17),
which does not have a unique solution. Consequently, discretizations of
the boundary value problem (5.1} (5.6) may result in sets of simultaneous
algebraic equations with determinants that are close to zero for small fre-
quencies. Second and more important, the mathematical structure of the
boundary value problem (5.20) (5.27) is simpler than that of the boundary
value problem (5.1) (5.6). Indeed, the magnetic field H™ is curl-free in V=
(see Eq. (5.23)). For this reason, this field can be expressed in terms of
magnetic scalar potential:

H™ =-Vp~. {5.28)
In other words, we can use the magnetic scalar potential as a state variable
in the region V'~ outside the conductor. As far as the condncting region
VT is concerned. there are two possible choices:

H* is a state variable or E7 is a state variable. {5.29)

which lead to H — ¢ and E — ¢ formmulations, respectively.
In H — p formulation one deals with the solution of the equations:

curl curl HY + jwopHTY =0 in V1, (5.30)
Vi~ =0 inV~, (5.31)
subject to the interface boundary conditions:
vx (HY +Vyp ) =07 x H. (5.32)
7o (utHY + oV ) = per - HY, (5.33)
and the condition at infinity:
p (o) = 0. (5.34)

In the case of E — ¢ formulation, one deals with the solution of the
following equations:

curl curl EY 4 jwou™EY =0 in V1, (5.35)
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Vip~ =0 in V7™, (5.

o
o
[«
N

subject to the interface boundary conditions

Jx(flxcm1E++VWF)::ﬁx}ﬂ, (5.37)
wit
U (% curl EY + p()Vgp‘) = poi - HY, (5.38)

and the condition at infinity
P (o) = 0. (5.39)

30) and (5.35) follow from Eqgs. (5.20) and

It is casy to see that Egs. (5.3
1 (5.36)) can be casily derived from Eq. (5.22),

(5.21), while Eq. (5.31) (anc
which immplies that

divH™ = 0. (5.40)

[t is also apparent that the boundary conditions (5.33) and (5.38) express
the continuity of the normal component of the magnetic finx density across
the conductor boundary S. These boundary conditions can be casily de-
rived from the boundary coudition (5.26) and Eqs. (5.20) and (5.22). In
other words, the H — @ and E — p formulations are fully derivable from the
boundary value problew (5.20) (5.27).

The following statement can be proven.

Theorem 2. The boundary value problems (5.30) (5.34) and (5.35) (5.39)
have unique solutions. »

In the H — ¢ and E — ¢ formulations. vector equations are to be
solved only within the conducting region. while the scalar Laplace equation
is required to be solved in the region surrounding the conductor. This is
a definite advantage over the formulation (5.1) (5.6). because it leads to
the appreciable reduction of the total number of discretized equations to
be solved from 3-D eddy current problems.  The choice between H — o
and E — ¢ formulations depends on a particular numerical technique to
be used. The H — ¢ formulation is very suitable for the application of the
boundary element technique. By using this approach. the boundary integral
equations of minimumn order have been derived and extensively used for the
calculation of eddy currents (8], [9]. The E — ¢ formulation, on the other
hand, leuds itself to the finite element implementation. Furthermore, this
formulation is also attractive because it leads directly to the caleulation of
eddy currents within conductors.

The H — ¢ and E — ¢ formulations allow one to compute the magnetic
scalar potential o~ and, consequently, the magnetic field H™ in the exterior
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region V~. To compute the electric field E™ in the same region requires
the solution of the additional boundary value problem, which will be called
the E~-problem. In the E~-problem, one deals with the solution of the

following equations:
curl E7 = jwugVe™, (5.41)

div E™ =0, (5.42)

subject to the boundary conditions

FxE™ =0x (ET —EY), (5.43)
/E_ .dS =0, (5.44)

S
E (c0) =0. (5.45)

It is apparent that the above formulas are directly derivable from relations
(5.22), (5.24), (5.26), (5.27), and (5.28). It is also clear that the solution of
the E~-problem can be attempted only after the H—p or E—¢ formulations
have been implemented.

The following statement can be proven.

Theorem 3. The boundary value problem (5.41) (5.45) has a unique
solution. »

The proof of the above theorem is instructive because it clearly reveals
that the omission of Eq. (5.42) or the boundary condition (5.44) results
in nonuniqueness of electric field E7. We shall not give this proof here,
however, we shall rather briefly demonstrate how the boundary condition
(5.44) is essential for the uniqueness of E™-field. To this end, we consider
the boundary value problem with all relations (5.41) (5.45) being homoge-
neous except the boundary condition (5.44):

crl ET =0 inV7™, (5.46)
divE" =0 inV"~, (5.47)
UxE" =0 onS§ (5.48)
fE* ds=2zo, (5.49)
0
S
E~(00) = 0. (5.50)

It can be easily recognized that the E~-field described by formulas (5.46)
(5.50) is the “electrostatic” field created by the charged conductor V* with
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total charge ¢g. It is in order to exclude this electrostatic ficld that the
houndary condition (5.45) (or (5.27) for the same matter) is imposed.

By sumunarizing the discussion presented above, it can be concluded
that formulation (5.20) (5.27) can be decoupled (split) into the H — ¢ (or
E - ) formulation and the E~-problem, which can be solved scquentially
one after another.  This decoupling is a peculiar property of 3-D oddy
current. problems that can be traced back to the neglect of displacement
currents. In many engincering applications (such as, for instance, nonde-
structive testing, induction heating, geological explorations) the solution
of the E™-problem can be avoided. In those applications, all the relevant
information (such as distributions of eddy currents and magnetic fluxes)
can be directly extracted from H — @ (or E — ) formulation. while the
knowledge of the E™-field is not paramonnt. Nevertheless, there are some
nnportant engineering problems that do require the knowledge of the E~-
field and, consequently, the solution of the E--problem. Those problems
are related mostly to the area of accelerator technology. For instance, in
betatron accelerators. particles are accelerated by electrie fields indueed in

air or in a vacuum. Eddy currents in conducting surroundings of particle
rings cffect the induced electrie fields and. consequently. the acceleration

process.
5.2 CALCULATION OF THE SOURCE FIELD H"

In the previous section, we used the decomposition of the total field
H' in the exterior region V7 into two components: the source field HY
and the “refleeted” (secondary) field H

H'-=H" +H" (5.51)

Previously, our attention has heen exclusively focused on various ditler-
ential formulations for 3-D eddy current. problems. while the issue of the
calenlation of the source ficld HY has not been addressed at all. Now, it is
this issne that will be the focns of our discussion.

In eddy current probleums, a primary source of excitation is usually a
call (or a group of coils) with known (given) distribution of eleetric currents,
This implies that the total field H' = satisfies the following equations:

- JU i v, e
earl H - = {“ V- (5.52)

dvH ™ =0 inV~. (5.53)

Here JV is the known current density in the coils, while V9 is the region
oceupied by the current-carrying cotls (see Fig. 5.2).
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So
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Fig. 5.2

In the previous section, we used the secondary (reflected) field H™
defined by the equations

cul H" =0 in V™, {5.54)

divH =0 inV™. {5.55)
This prompted the introduction of the magnetic scalar potential
H =-Ver. (5.50)

which. according to Eq. (5.55). must satisfy the Laplace equation

Vip™ = 0. (5.57)

From relations (5.52) (5.55) and the decomposition (5.51) we find that the

source ficld HY satisfies the equations

0 0
curl HY = {EI) 2: 1, . (5.58)

divHY =0 in V" {5.59)

Thus, we can take any solution of Eqgs. (5.58) (5.59) as a source field. One
solution of those equations, which is particularly well known. is given by
the Biot-Savart law:

1 7 JI%M) x
HY(Q) = g /v (_ﬁlﬂdvl\l, (5.60)
Jyvo ATQ
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where @ is a point of observation, M is a point of integration, raro is the
distance between M oand Q, while rayq is the vector with magnitude ray¢
and direction from A to Q).

The source field given by the formula (5.60) has the transparent phys-
ical meaning: this is the ficld that would exist if the conductor VT were
not present.

It is casy to sce that the source ficld H? given by formula {5.60) satisfies
the Eq. (5.59). ludeed, by using simple vector calculus, we can rewrite
formula. (5.60) as follows:

© INA
H = curlg (1'1-' / ﬁdV;\/) - (5.61)
- "\)

., TALQ

-

which immediately implies the validity of formula (5.59). By using some-
what move complicated vector calculus transformations, it can be shown
that the sonrce tield (5.60) satisfies the Eq. (5.58) as well.

Numerical implementation of formula (5.60) for the source field en-
counters two major computational difficulties. First, it reguires munerical
evaluation of vohune integrals. Second. for cach new observation point. (.
computations have to be performed from serateli. The first diftienlty can
be somewhat amecliorated in the case when the sonree current density s
curl-free:

curl JYAL) = 0. (5.62)

In this case. the volume integral in formuala (5.60) can be reduced to
the surface integral. This can be accomplished as follows (sce [7]). From
the vector calenlus, we have

JU(AS | |
curlyy ( ( )> = curl JYALY - JY(A) x Wy ( S ) . (5.63)
TALQ "ALQ PArQ
From the last expression and formula (5.62). we derive
JUAN) xr JU(AI
gt ,?g,, Sl ( A )> . (5.6:1)
" FALQ
By using the last equation in formula (5.60). we obtain
1 f Jo(M
HY(Q) = - — / curly Jo(A) dVay. (5.65)
Az fy-o raro

Now, by invoking the following iutegral relation from the vector caleulus
(sec [B]):
/ curl adV = ,417 x ads, (5.606)
JU .



314 Chapter 5 Nonlinear Impedance Boundary Conditions

we transform formula (5.65) as follows:

: 1 [IM) x 7
H'(Q) = o I ‘,..,NE;,W:, (5.67)
Su :

where Sy is the boundary of V.

The last formula is simpler than formula (5.60), because it requires
the evaluation of surface integrals instead of volume integrals. However,
the validity of expression (5.67) is subject to the validity of formula (5.62),
which can be rigorously justified only for de currents. Furthermore, simi-
lar to formula (5.60), nunerical implementations of formula (5.67) require
perforniing computations from scrateh for each new observation point Q.
Thus, the conclusion can be casily reached that it is desirable to explore al-
ternative approaches to the caleulation of the source field, approaches that
are not based on the Biot-Savart. Jaw. The main idea of these approache
Is to compromise the divergence relation (5.59) iu order to aclieve simple
expressions for the source field. We consider two such approaches. The
first approach leads to the exeeptionally simple formulas, however. it is ap-
plicable only for sutficiently simple geometries of V9. The second approach

is quite general in nature and it is based on the notion of the “Poincaré
gange.” 1t leads to one-dimensional integrals and their evaluation does not
start from scrateh for each new observation point.

We present. the first approach [17] for the case of a coil with rectangular
cross-section (see Fig. 5.3). It is asswned that the height of the coll cross-
section remaius constant along the coil, while its base may change. Under
these conditions, the z-component of J? is equal to zero and the current
density distribution in the coil does not depend on z. Next, we introduce
consists of the exterior
Stop and Sporem. In

the “extended”
side surface, Sgges, Of the coll and two Hat surface

niree region VY whose boundar

other words. the extended source region VO contains the coil itself as well
as the region enclosed by the coil and the flat surfaces Sy, and Shatom.
We shall look for the source ficld, which is confined to the extended source
region:

H' =0 V- -y (5.68)

Within the extended source region, the source tield satisties the following
cquations:
JU i vO, .
curl HY = e o (5.69)
0 inV®. VY

divH" =0  in V" (5.70)
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sides

Fig. 5.3

Since the current density distribution does not depend on z, we look for
the solution of Eqs. (5.69) and (5.70) in the form:

H(z.y) = a, H(x. y). (5.71)

It is apparent that Eq. (5.70) is satistied, while Eq. (5.69) can be represented
as follows:

')H()

fmﬁ = - J%cy) VO (5.72)
OHY

= Iry)y  in VY, (5.73)
7Y

and the above derivatives are equal to zero in the region V9 — VO,
Now, we introduce the stream function T(Q):

T(Q) = /I JOP)dl s, (5.74)

where Lgog is an arbitrary line in the plane = = 2/, (0 < 2 < A), the
reference point O belongs to the side surface Sgges. and ],‘,' 1s the component
of the source current density J% normal to the line Log.

Because o o
o o0J
div JO = W + -&;A =), (5.75)
7-Jv =0, (5.76)
sides

it is clear that the value of the stream function 7(Q) does not depend
on the particular choice of the reference point 0 ot Sgqes 0r on the shape
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of the line Lyg. The value of the stream function depends only on the
position of observation point @ in the plane z = 2’ and it is the same for
all 2, (0 < 2/ < k). It is well known (and it is also easily derivable from the
definition (5.74)) that the stream function is related to the current density
as follows:

3%:—~f;’<.z:,x/) in V°, (5.77)
-
gﬂ?:-li..’(:zr,g/) in VO, (5.78)

and the above derivatives are equal to zero in the region VO — VO
Relations (5.72) (5.73) and (5.77) (5.78) arc identical, so we conclude
that

HY(Q) = a.7(Q). (5.79)

This is the sought formula for the source field. It is apparent from this
formmla that

HY(Q) = 0. if Q€ Sqes- (5.80)
I . .
H"(Q) = a. oot Qe oy (5.81)

where [ s the total carrent. through the coil.

J|” of the current,
density are nniform then the souree field HY varies linearly in normal cross-
section of ¥ Otherwise. the caleulation of the source field H? requires the
evaluation of one dimmensional integrals (5.74). and in cach normal cross-

If the coll cross-section as well as the magnitnde

section these integrals are evaluated incrementally for each new observation
point. Q. In other words. computations of the above integrals do not start
from seratch.

Next, we discuss the implications of the above choice of the source
field. Tt is clear from formulas (5.68) (5.70) that the tield H™ satisfies the
Eqs. (5.54) (5.55). However, the normal components of H™ are discontin-
nous across the flat surfaces Syop and Shogon:

(7 H ] s, = HYQ) = T(Q). (5.82)

(7 H" = —H" Q) = -T(Q). (5.83)

Shattom

where the symbol {a]]g stands for a discontinuous change in quantity a
across 5.



5.2 Caleulation of the Source Field H° 317

Thus, the magnetic scalar potential ¢~ must satisfy the Laplace equa-
tion iu V7, however, its z— derivatives are discontinnous across Sy, and

Sbottum:
dy - 0 _ D
[0;_} g = —H(Q) = ~T(Q), (5.84)
Pﬁ} = HY(Q) = T(Q). (5.85)
Oz

Shottom

Formulas (5.84) (5.85) specify the driving forces for the magnetic scalay
potential, and these formulas can be easily incorporated into finite element
formulations. These formulas also admit the following physical interpreta-
tion: discontinuities (5.84) (5.85) (as well as (5.82) (5.85)) can be viewed
as caused by fictitious surface magnetic charges distributed over S, and
Shotrom- The densities of these charges are given by the formulas

(Tm((c)) = ,‘1'()7‘((2)- ('—)8())

Stap

|
T ((2) = -y T(Q). (H.87)

Slmu..m

One can casily recognize a close similarity between the modeling of coils
with currents by magnetic charges (5.86) (5.87) and the modeling of ideal
permanent wmagnets by surface magnetic charges.  This similarity is not
accidental because the ideal permanent magnets can also be modeled by
current-carrying coils.

Next, we proceed to the disenssion of the second approach, which is
applicable to coils of complex geometries. This approach is based on the
notion of the Poincaré gauge, which is introduced for magnetic vector po-
tentials [16], [1]. First. we shall briefly deseribe the basie facts related to
this gauge.

It. 15 well known that the magnetic vector potential is introduced by
the equation

cul A = B. (5.88)

where B is the magnetic flux density.

The last equation does not uniguely define the magnetic vector poten-
tial. To make this potential unique, various gauges are introduced addi-
tionally to Eq. (5.88). One of the most well-known gauges is the Coulomb
gauge:

div A = 0. (5.39)
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If we perform the Fourier transform of A

O
A(k) = A(r)e! " dr, (5.90)

e el

then it is casy to establish that Eq. (5.89) can be written in terms of the
transformed potential as follows:

k-A(k) =0. (5.91)

In other words, the Coulomb gange defines the magnetic vector potential,
which is orthogonal to the wave vector k in the k-space. For this reason,
the Coulomb gauge is also called the “transverse gauge.”

The idea of the Poincard gange is to define the vector potential, which
is transversed in r-space. This means that the Poincaré gaunge is mathe-
wmatically defined by the equation

r-A(r) = 0. (5.92)

which s dual to Eq. (5.91). The last equation nmplies that the vector
potential in the Polncaré gange is always tangential to spherical surfaces.

It can be proven that Eq. (5.88) along with the Poincaré gauge (5.92)
uniquely defines the magnetic vector potential. Furthermore, there exists
quite a simple formula, which expresses this potential in terms of the mag-
netic flux density:

-1
Afr) = - / Ar x B(Ar)dA. (5.9:3)
JAO)

Thus, the vector potential can be evalunated by integrating aloug the
ray. which connects the origin with the observation point.

It is this simple formula that makes the Poincaré gauge attractive in
quantum wechanies. The reason is that the vector magnetic potential ap-
pears in the Schrodinger eguation. Thus. if we would like to write the
Schrodinger equation for a given external magnetic field, we need the ex-
pression for the corresponding magnetic veetor potential, and forinula (5.93)
can be used for this purpose.

The Poincaré gauge cal also be very attractive in computational clee-
tromagnetics. It enforees the uniqueness of the magnetic vector potential
by locally reducing (through Eq. (5.92)) the muuber of nuknowns to two.
This can be very advantageous for Onite element inplementations.  Un-
fortunately, the Poincaré gauge is not well known and is not sufficiently
appreciated by the finite element community.
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Next, we shall use the Poincaré gauge for a different purpose; nawely,
we shall apply it to the calculation of the source field HY. The main equa-
tion that the source field must satisfy can be written as follows:

curl H? = JY, (5.94)

where it is tacitly assumed that JV is equal to zero outside V. Mathemat-
ically, the last equation is identical to formula (5.88), and by itself it does
not unicquely define the source field H®. To make this field unique, we shall
impose the Poincaré gauge condition:

r-Hr) = 0. (5.95)

Because the pair of relations (5.94) (5.99) is wathematically identical to
the pair of relations (5.88) and (5.92), we can conclude that the source field
HY can be expressed in terms of the source current density JV in exactly the
same way as A is expressed in terms of B, Thus, we arrive at the formula

.l
H(r) = - / Ar < JYAD)AA. (5.96)
()

L , L L , |

The gange (5.92) (as well as the gange (5.95)) is called the Poincaré gange
because formmla (5.93) (as well as (5.96)) can be most generally derived
from the Poincard lemma for ditferential forms [1]. Next. we present a
direct derivation of formula (5.96). which is based on veetor calenlus,

To start the dertvation, constder the rayv:

r'=Ar. 0< A< (5.97)
Next, we write the gange (5.95) in terms of v’
r-H(r') = 0. (5.98)
and take the gradient of both sides of the last equation:
Vi’ -H"(x)) = 0. (5.99)
By using a well-known formula from vector caleulus, we find

v H' () =H )V - + 'V -HYx)

O ; / 0, s (5.100)
+H(")Y x Vxr' +1r xVxH'(¥) =0

Here
or’ or’ or’
Ot oy = _(.) AVl (¢ f " () U ; 510
H'(x"V-r H, (r )(,)‘1‘_/ + [1",/(1‘ )(T.(/’ + Hl(r )0‘7:’ (5.101)
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which leads to
H(l(rl)v R r/ — H“(r’). (51()2)

Then, we recall that
Vxr' =0, vV x H'(r') = J(r). (5.103)

By substituting expressions (5.102) and (5.103) into formula (5.100), we
find
H'(x) + 'V -H"(x') = -’ x J'(x'). (5.104)

Next, we use formula (5.97) and consider the derivative:

dH"(r’) _ OH"(r") (lf.’I,'z OH(r")  dy’ | S')H“(r’)_ dz’
dh O dX oy d iz 75 (5.105)
5.105

OHO(r')  OHV(r)  OH() L., .
= Myt T TR PV
Thus. we have
HY(\
r'v-H"(x) = g___[_ﬁ\ r) (5.106)
L/

By substituting the last formula into relation (5.104), after simple trans-
formations we arrive at

o

5 PEGR)] = e 30, (5.107)
./

By integrating the last formula with respect A from 0 to 1 and taking into
account that
S
/ —IAHY(Ar)]dA = H(r). (5.108)
Jo dA
we finally derive the fornntda (5.96).
Formula (5.96) is valid for arbitrary geometry of the source region VY.
and this is an important advantage of this formula over formuda (5.79).
which is applicable onlv to coils of sufficiently simple geometries. In other
words. formula (5.96) is as general as the Biot-Savart law (5.60). How-
cver, its numerical hplementation is appreciably simpler. First, due to
the gange condition (5.95), only two components of the source field shonld
be computed at every observation point. Sccond. the computation of these
componetts requires only evaluations of one-dimensional integrals along the
rays connecting the observation points with the origin. Third, for observa-
tion points belonging to the same rays, the above integrals can be evaluated
incrementally, rather than being computed from scrateh for each new ob-
servation point. Finally, the source field is localized. Tn other words, the
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source field is equal to zero along the rays, which do not cross the source
region V0. Furthermore, for the rays that do cross VP, the source field H?
varics only along those segments of those rays, which are within the source
region. As is usually the case, the deseribed computational efficiency comes
at some cost. The divergence of the source field H® defined by the forimula
(5.96) is not equal to zero:

div H® # 0. (5.109)

As a result
div H = — div H” # 0. (5.110)

This means that the magnetic scalar potential = will satisfy the Poisson
equation

V2™ = div H, (5.111)

rather than the Laplace equation.  Finite element discretizations of the
above Poisson equations will contain additional source terms of the form:

/ Vv, - Hdo, (5.112)
J\

i

where v, is a finite element function. However, these complications are of
rather marginal nature.

5.3 IMPEDANCE BOUNDARY CONDITIONS

[t has been demonstrated in Section 5.1 that the analysis of 3-D eddy
current. problems reguives the solution of vector partial differential equa-
tions within counductors and scalar (Laplace-Poisson) equations ontside the
couductars, It is clear that the solution of vector partial differential equa-
tions within the conductors constitutes by far the most laborious task of the
3-D eddy current analysis. This task Deconmes even more daunting when the
conductors are magnetically (or clectrically) nonlincar. The level of com-
putational difficulties is even further raised when penetration (skin) depths
are small in comparison with geometrie dimensions of the conductors. This
is because, for small skin depths. electromagnetic fields are closely concens-
trated near conductor boundaries and decay very fast in directions normal
to these boundaries. These fast spatial variations of clectromagnetic fields
are very hard to resolve numnerically. Fortunately, the aforementioned -
merical difficulties can be completely circumvented by using the idea of
impedance boundary conditions. These boundary couditions are based on
the notion that for small skin depths electromaguetic fields penctrate lo-
cally (i.e., at cach boundary point) almost in the same way as plane waves
penetrate a conducting half-space. This leads to the conclusion that, at
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cach boundary point, tangential compouents of electric and magnetic helds
arc related to one another almost in the same way as in the case of plane
waves penetrating the conducting half-space. These relations between the
tangential components of electric and magnetic ficlds can be construed as
local impedance boundary conditions. These relations are well known in the
case of linear conducting media and they can be expressed mathematically
as follows:

7 x E =710 x H). (5.113)

where 7 is a unit vector of ontward normal, while 77 is the impedance matrix,
which is defined as follows:
ST

n= /T A, (5.114)

(22

0 o
L0 ) {5.115)

In the case of nonlinear condncting media. the general mathematical strue-

=
!

ture (H5.113) of the impedance boundary conditions remains the same, how-
ever, the expression for the impedance matrix is different. This matrix can
be written as

g " ) (5.116)

723 0

where 1y and iy depend on the type of polarization of clectromagnetic
ficld at 2 given point of the conductor boundary.  For instance, in the
case of cirenlar polarizations we have derived (sce Chapter 2) the following
CXPressions:

Mz = 121 = yle?”. {6.117)

Here o is an exponent in power law approximation for itagnetization curves,
while e, i3 the magnetic permeability at boundary points, which is a
nonlinear function of magnetic field magnitude: this wakes the impedance
boundary couditions (5.113) nonlinear.

In the previons chapters, we have also derived the expressions for 1,
and 727 in the cases of lincar and elliptical polarizations.  All these ex-
pressions can be casily incorporated in the inpedance boundary conditions
defined by formulas (5.113) and (5.116).

It is unportant to stress that the inpedance boundary couditions are
not exact but approximate in nature. They are sufficiently accurate only
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for small skin depths, and the smaller the skin depths in comparison with
geometric dimensions of the conductors the more accurate the impedance
boundary conditions. The mathematical justification of the impedance
boundary counditions is based on the fact that electromagnetic fields, which
are tightly concentrated near the conductor boundaries, can be construed
as “boundary layers.” This suggests that eddy current problems with small
skin depths belong to the class of singularly perturbed problems. For this
reason, the impedance boundary conditions have long been justified by us-
ing the perturbation analysis. This approach can be traced back to the
paper of .M. Rytov [15]. The impedance boundary conditions have been
extensively used in electromagnetic field computations (see, for instance,
[3], [17]), and their acceptance has reached the point that they are now
presented in textbooks [4].

To understand better the accuracy of the impedance boundary con-
ditions as well as their special importance for magnetic conductors, we
consider the example problem of a conducting sphere V7 subjeet to a uni-
form time-harmonic magnetic flux density BY (see Fig. 5.4). This problem
adinits the exact analytical solution, which can be compared with the ap-
proximate analytical solution obtained by using the impedance boundary
conditions.

It will be assumed that the external field BY is directed along the
Z-aXis

B = a.B" (5.119)
Then. 1t is clear that the posed problem is axially svinmetric. As a result,
the magnetic vector potential has ouly the p-component, 4. In the region
V= outside the conducting sphere, this component can be represented as

follows:
A, = A7 + AL (5.120)
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where A_ is the magnetic vector potential of the field in V'~ created by
the magnetization and eddy currents induced in the magnetic conducting
sphere, while A° is the magnetic vector potential of the source field B°.

It is easy to establish that the potential Ag is related to the source
field B® by the expression

1
0 0,
A, = 2B rsiné, (5.121)

where r, ¢, and 8 are spherical coordinates with the origin coinciding with
the center of the sphere.

Indeed, consider a circular path L,y defined by equations r =const
and 8 =const. The source flux, which links this path, can be evaluated by
using the line integral of Ag along L, ¢ as well as the surface integral of By
over the circular region S,y enclosed by L, . This leads to

f Agd[ = A2,27rr sinf = / BYds = Bnr*sin? 6, (5.122)
SI.H
Ly.a

which yields formula (5.121).
The potential, A, satisfies in the region V= the following equation:

1o [ ,04; 1 9 /. 0A; A

—— | — [sing—=%2) ~ £— =0,

T2 or <T or ) T sme 06 \MM 0 r2sin? @ S (5.123)
for R<71 < 00,

where R is the radius of the conducting sphere.

It is assumed that the frequency of the source field is large enough that
the skin depth in the conducting sphere is quite small in comparison with
R. Under these conditions, we can use the impedance boundary conditions
on the sphere boundary Sr. We shall first reformulate these boundary
conditions in terms of A,. To this end, we shall invoke the relations:

E, = —jwA,, (5.124)
1 0

By assuming the conducting medium of the sphere to be linear and by
using formulas (5.124) and (5.125), we represent the impedance boundary
conditions (5.113)- (5.115) in the form:

=0, (5.126)
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. [ 2
0= 4f—. 5.127
wao L (® )

In order to satisfy the boundary condition (5.126), we look for the solution
of Eq. (5.123) in the form that has the smne dependence on 8 as Ag. It is
casy to see that this solution is given by formmula

where § is the skin depth:

A = 572 sin 6. (5.128)

where coefficient a; should be determined from the boundary condition
(5.126).

By substituting relations (5.128) and (5.121) into formula (5.120) and
then into the boundary condition (5.126), after straightforward transfor-
mations we derive the following expression for ap:

21+ )k §

R A :
A = — e e n. (t’) ] 2())
IS

The posed problem can also he solved exactly, Le. without invoking impe-
dance bonudary conditions. For the exact analytical solution. potential A~
has also the form given by formulda (5.128). however. the coeflicient oy is
determined by the equation

L G+ 20 (FRthAR = 1) — up(BR)Y? )
Ayt = e e s S R (5.130)
(B3R oy - (3 RethdR - 1)
where L1
g =\ jwop = -—);—’. (5.131)
(
In the case when the skin depth is nmch smaller than the radius of the
sphere:
fr 1 {5.132)
IR 5032
5 > L ).
we hiave
IR > 1. (5.133)
cthiglR =~ 1. (5.134)

By using the last two formulas in Eq. (5.130). we easily obtain the following

asywmptotic expression for af"

w 2R ol IR)? b
pR A+ pg(31R)?

oCar
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By dividing the numerator and denominator of the fraction in (5.135) by
uBR and taking into account (5.131), we derive

_ o . R
a%® ~ (H],) - o RS, (5.136)
1+ 1+ %

which coincides with (5.129). Thus, as far as the external field is con-
cerned, the impedance boundary conditions lead to the solution, which is
asymptotically (for small skin depth) the same as the exact solution.

As an example, consider the conducting sphere with R = 0.1m, p =
10%1g, 0 = 0.833.1()7ﬁ and assume that the frequency of the external
fleld is f = 60sec™!. For these data, we have

§ = 0.00225m, (5.137)

and the condition (5.132) is met. By substituting these data into formula
(5.136) {or (5.129)), we find

a; = (0.89 — j0.59)R%. (5.138)

Now, let us compare the impedance boundary conditions with other ap-
proximate boundary conditions, which have long been used for the solution
of electromagnetic problems. In the case of nonmagnetic conductor and
small skin depths, the boundary condition of perfect (ideal) conductor is
customarily used. This boundary coudition can be written as follows:

FxE =0, (5.139)

which reflects that tangential components of electric fields on the boundary
of good conductors is almost equal to zero.
From the above boundary condition, we find

v-H=0, (5.140)

which means that eddy currents, induced in good conductors, shield these
conductors from the magnetic fields and force the magnetic field lines to go
around the conductors.

Cousider the solution of the above problem in the case of boundary
condition (5.139). By invoking the relation (5.124), the above boundary
condition can be written as follows:

A, =0 (5.141)
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Now, by using the last equation as well as formulas (5.120), (5.121), and
(5.128), we casily derive
a = —R%. (5.142)

According to formula (5.129), the inpedance bonndary conditions, applied
to the nonmagnetic (¢ = ) conducting sphere, lead to the result
2-(1L+7)§ 4 .
a) = TlmTR . (5.143)
5

By comparing formulas (5.142) and (5.143) and taking incquality (5.132)
into account, we conclude that, in the case of nonmagnetic conductors and
small skin depth, the perfeet conductor hboundary conditions and impedance
boundary conditions lead to asymptotically equivalent results.  In other
words, as far as the external fields are concerned, the perfect counduce-
tor hboundary couditions give fairly accurate results (first approximations),
whereas the impedance boundary conditions only slightly improve them.
The situation s fundamentally different in the case of magnetic (ju > i)
conductors and small skin depths. 1t is evident from comparison of formulas
(5.138) and (5.142) that the perfect conductor houndary conditions do not
lead to asvmptotically acenrate results, whereas the impedance boundary
couditions do (we have already proved this). The physical reason for this
difference is not. diflicult to see. The point is that the perfect conductor
bonndary conditions enforee zero normal component of the magnetic ficld
al the conductor honndary (see formula (5.110)). whercas for wagnetic con-
dnctors this component of the magnetic field can bhe quite large due to the
large magnetic permeability of the conductor.

It may be conjectured that, in the case of magnetic (je = p) condue-
tors, accurate results can bhe achieved by using the “ideal magnetic bound-
ary conditions”

7x H=0. (H.144)

These boundary conditions are exact i the case when g = o~ and no
current is enclosed by “ideal” magnetic objects. For real magnetic objects,
this boundary conditions can be regarded as approximate ones.

Now, cousider the solution of the problem shown in Fig. 5.4 in the
case of boundary condition (5.144). By invoking the relation (5.125), this
houndary condition can be written as follows:

- (A =0 (5.145)
r=R

Now, by using the last equation as well as formulas (5.120), (5.121}, and

(5.128). we casily derive

L= 2R (5.146)
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By comparing formmlas (5.138) and (5.146), the conclusion can be casily
reached that the ideal magnetic boundary conditions do not lead to asymp-
totically accurate results either, 1.c., the results that are accurate for small
skin depths. The reason is not difficult to find. The thing is that, in mag-
netic (g 3 po) conductors with small skin depths (% > 1), there is always
some trade-off hetween clectric and magnetic shielding effects. The degree
of this trade-off is determined by the delicate interplay of such parameters
as permeability g, conductivity o and frequency f. The “ideal” bound-
ary conditions (5.139) or (5.144) reflect only electric or magnetic shielding
offeets separately, however, they do not account for possible trade-offs be-
tween these shiclding effects. The iipedance boundary couditions, on the
other hand, do account for these trade-offs, and they lead to asymptotically
accurate results for any values of 1,0, and f, provided that the condition
(5.132) is satisfied. This clearly reveals the special significance of iimpedance
boundary conditions for magnetic conductors. Although our conclusion
has been motivated by the solution of the model problem of the conducting
sphere subject to uniform magunetic ficlds, it is apparent that this conclusion
is of general nature. Tt is also Important to stress that althongh the applica-
hility of impedance boundary conditions is limited to the case of small skin
depths. nevertheless, for the magnetic conductors this case is quite typical.
The reason is that due to high values of magnetic permeability of these
conductors the skin depth is quite small even for low frequencies. For mag-
netically nonlinear conductors, there is further decrease of the skin depth,
becanse the magoetic permeability inside the conductors is increased due
to the attenuation of magnetic field.

Until now, we have discussed the solution of the problem of the con-
ducting sphere for the linear case when the magnetic permeability of the
conducting sphere has been assumed to be constant and independent of
magnetic field, It s instructive to solve the same problem in nonlinear
formulation by using the nonlinear impedance boundary conditions. Due
to the axial svimmetry of the posed problen, it is clear that there is only
a B-component of the magnetic field tangential to the spheve. This sug-
gests that at ecach boundary point the electromaguetic field penetrates the
sphere as a lincarly polarized plane ware. 'Thus, we can nse the nonlin-
car impedance computed in Section 1.5 in the boundary condition (5.113).
This, together with formulas (5.124) and (5.125), leads to the following
noulinear impedance boundary conditions:
uHobler 0

_____ (rA.) =0, (D.147)

wA -
M Lgr dr

r=I

Wit (| Hol)
bl = 1-?32\/:{LIL1'-‘), tan o = 0.6. (5.148)
F

where
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The previous expressions are taken from Figs. 118 a and 1.18 b for the
“squarencess” paramceter y =~ 0.8.

By using the method of separation of variables, a gencral solution to
Eq. (5.123) can be represented in the form:

N

- o~ SA—2k42 D2
AS(r,0) = Z(z,zk+lr( +2) )2(k+l((()h0). (5.149)
k=0
where Pé,j_)H (cos @) are associated Legendre functions.
Then, the f-component of the total magnetic field s given by

N

| -
Hy(r.0) = — 3 " (2k + Dagepar = IPL0 (cost) + HYsind. - (5.150)
/1.() X

Now the algorithm of the solution of the problem can be stated as the se-
quenee of the following steps: (1) first. we asswmne g, in (5.148) to be con-
stant and analytically solve the problem in exactly the same way as we did
before: (2) by using the fonud solution. we can evaluate Hy and e, (| Hy))
in formula (5. 018): (3) by substituting formulas (5.121) and (5.1149) into
the boundary condition (5.147) and vequiring that this boundary condition
is satisticd in the following “collocation™ points

' m
el — 2 N 4 515
{, NTD (4 | I { 1), (5.151)

we obtain and solve simultancous equations for coetlicients agy g0 (4) by
using the found coctlicients and formula (5.150). we can evaluate Hy and
correct. the previons values of e, (Hg): (5) then, we sequentially repeat
steps 3 and 4 until the convergence is reached.

The (l(‘srl'il)(‘(] calenlations have been [)(‘l'f(n‘lm‘d for the following sam-
ple valwes: 1R = 0.25m, HY = 4. 1(!‘ A =60scc ! and o = 0.833-107 Q%;.
Three terms (N = 2) have been use (l in the expansion (5.149) (caleulations
for larger mumber N of terms resulted practically in the sane values of
Hp)). Our computations produced the following magnetic field:

Ho(R.6) = [13.33 + j12.08 - (2.934 + j2.565) cos
+(0.269 — jO.086) cos 40] sin 6.

To compare the solutions obtained for linear and nonlinear formulations,
the following function is introduced

) [H(R.0)] -
gy = TN 5.10.
F maxy |H(R,0)] (6-153)
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Fig. 5.5

and its values are plotted in Fig. 5.5, with curve 1 corresponding to the
linear formulation and curve 2 to “nonlinear” solution (5.152). It is appar-
ent from the figure that {H(8)] is increased faster in the linear case. This
can be explained by the fact that saturation gradnally builds up as 6 is
increased. As a rvesult, gy, (|Hpl) is gradually reduced, while the skin depth
is increased. This. in turn, causes more nniform {with respeet to #) pnlling
of magnetic field lines inside the conductor than in the linear case. As a
cousequence. there is a more gradual inerease of [Hy|.

The mpedance boundary conditions (5.113) are formulated in terms
of E and H vectors, while the magnetic fields outside the conductors can be
characterized in terms of magnetic scalar potential o=, For this reason, it is
very desirable to formmlate the impedance boundary conditions in terms of
the same potential as well. If this is accomplished. then 3-D eddy current
problems can be reduced to the calculation of magnetic scalar potential,
and vectorial computations can be completely avoided.  Furthermore, it
turns out that the scalar potential formulation of the impedance boundary
conditions is very convenient for finite element implementations. These im-
plementations result in two (volume and surface) stiffness matrices, which
makes the assembly process of finite element equations rather simple. All
these issues are discussed i the next section.

5.4 FINITE ELEMENT IMPLEMENTATION
OF IMPEDANCE BOUNDARY CONDITIONS

To arrive at the scalar potential formulation of the impedance bound-
ary conditions, we introduce orthogonal curvilinear coordinates 7, 75, and
v. These coordinates are such that 71- and 7m-coordinate lines lie on the
conductor boundary S, while v-coordinate lines are normal to §. Let
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ay, a7, and ag be the triad of orthogonal unit vectors that are tangent to the
Ti-, T9-, and v-coordinate lines, respectively, and that form a right-handed
set, in this order. Also, let hy, hy, and hs be the corresponding metric
coefficients. The introduced curvilinear coordinates will be extensively used
in subsequent derivation. However, the final finite element formulation will
contain no traces of these coordinates; in this sense, it will be coordinate
invariant.
We begin our derivation by invoking the Maxwell equation:

curl E = —jwuoH, (5.154)

and the following expression for the curl-operator in the curvilinear coor-
dinates:

1 h laal hQBaQ h 3833

curl E= ——— 2 =2 £ (5.155)
ar o1y ov
ihoha| b B hoE,, hyE,
From the last two equations, we find
1 0 19,

—9 H,= — | 7— (hFE;,) - — (hE;)]|. 5.156
JWHo }l[h'z {67’1 (12 2) ()7'2 ( " )} (0 v )

Next, we shall write the impedance boundary conditions (5.113) and (5.116)
in terms of the introduced curvilinear coordinates:

Eﬂ = 47“2HT2, (5157)

ET; = 7/21H7'1- (5158)

By substituting the last two formulas into Eq. (5.156), we end up with the
following H-formmulation of the impedance boundary conditions:

. 1 5] o
—JjwpeH, = i L_?T—l (homai Hyr, ) + o (1117112Hm)} : (5.159)

It is convenient to introduce vector ¢

c. =CH,, (5.160)

where

and
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Then the boundary condition (5.159) can be written in the form:

1 d 15]
—jwiupH, = — | — (hye, - — (e, . 5.16.
JwWito s | B (haer ) A o (hyer,) (5.163)

To understand the wmeaning of the right-hand side of formula (5.163) and
how it can be cast in finite clement terms, we shall need some machinery
of the vector field theory on curvilinear surfaces (inanifolds). This theory
is of general interest and it has already been used suceessfully for eddy
current analysis [6] [14]. To make our exposition self-contained and easily
readable, we shall present next sowe selected and relevant facts from this
theory. These facts will be very instrumental in the development of finite
clement formulations discussed in this and subscequent sections.

Consider some vector field ¢ that is tangential to curvilinear surface
5. We shall next introduce the notion of divergence of vector field ¢ on
S. To this end. cousider an arbitrary point 2 on S and a closed path L
on S that encloses the point 12 (see Fig. 5.6). Let mobe a unit vector that
is tangential to 5 and normal to L. Then. the divergence of ¢ on 5 (i.ce..
divge) is defined as follows:

) g, endl
divge = lim O

N .v
Al TR (H.16:1)

where AS is the area enclosed by L. We shall next derive the expression for
divge in terms of curvilinear coordinates 7y and 7. Consider an integration
path L formed by infinitesimally small portions of 7- and 7-coordinate
lines (see Fig. 5.7). These coordinate lines are specified by coordinates 7.
7y + drp. 7 and T+ d7yrespectively. By using Fig, 5.7, the path integral
in fornmla (5.164) can be evaluated as follows:

/(‘,,rl( = cp dadry — ey hpdry| 4
tdiy l/

=

o (5.165)

('r.:}l](lTl - ('r-_:hl([Tl

T, dTo T

e

By taking into account that dr and dr, are small, the last expression can
be simplified as follows:

T JdTy

' () ()
%(',I(W ~ )(— (hoer Y dridry + ;)(— (hyer,Ydridr,. (5.166)

1.
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e
AS L

-

Fig. 5.6

Fig. 5.7

On the other hand, the area enclosed by the path L can be evaluated as
AS =~ hthdTlde. (5167)

By substituting formulas (5.166) and (5.167) into the definition (5.164) and
taking into account that expressions (5.166) and (5.167) become more and
more accurate as AS goes to zero, we finally derive
o) 0

—— | =— (heocr,) + — (hic . 5.168
e Lo (o) + 5 (i) (5168
By comparing formulas (5.168) and (5.163) and taking into account relation
(5.160), we can represent the impedance boundary condition (5.163) in the
following compact form:

divge =

H, = M%Odivs ((H) , (5.169)
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where the impedance matrix f is defined by (5.162).

The above form of the impedance boundary conditions will be used
in the development of the finite element formulation. Before proceeding
to this formulation, we shall establish some additional useful facts from
the vector field theory on curvilinear surfaces. First, we shall prove the
“divergence theorem”:

f divgedS = 0. (5.170)
s
To this end, let us consider some smooth closed surface S and let us parti-

tion it into small pieces ASy (see Fig. 5.8). Then, we can write

N
.f‘(livscdS:Nliﬁn;;divsc ASy, (5.171)
5 =

k

where symbol ‘ " means that divergence is evaluated at some interior point

A<
of ASi. According to the definition (5.164) of divergence, we have
g, c,db
. 9, (n -
divge| ~ M 5.172
” ASy (5.172)

where Ly is the boundary of AS,. By substituting formula {5.172) iuto
expression (5.171). we obtadn

. N .
edS — 1 dr 517
f(hv_scdé NLmlDC E f ol (5.173)

5 k=17,
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Because cach boundary Ly of piece ASy has common parts with the bound-
aries of adjacent pieces and because normal n has opposite directions for
adjacent picces, the complete cancellation occurs in the sum in formula
(5.173) and we conclude that

N .
> f{:,,dﬁ =0. (5.174)

k=L,

From the last equation and formula (5.173), we arvive at the divergence
theorem (5.170).

It is casy to sce that in the case when the surface S is not closed but
bounded by some curve L, the cancellation in the sun in formula (5.173)
is not complete. Indeed, the integrals over those parts of Lg. which are
shared with the boundary L of S, are not cancelled. As a result, we have

N . .
Z /u-,,(zf = f(-,,(u: (5.175)

Ml L

Thus. the divergence theorem takes the form:
/ divgeds = /(‘,,(!/‘ (5.176)
Js y

Next. we derive the expression for divg(+h¢), which will be instnunental in
our subscquent discussion. By using formuda (5.168). we have

. 1 i) J —
divg(yc) = Wi I:JT[ (/1,2(;"(}') -4 UQ(III(’H(.T'-)} ) (5.177)

By nsing the “product vule.” we find

hTh: (‘_)T,l, T,
I e 1 Iy

S oy

| () ()
divg(te) =y - [ ( (hyee, )+ (7 (hlr'r_,)}
(5.178)
,F (-r]

By using again formula (5.168) and the following expression for the gradient
of scalar function ¢+ along S
1 Oy 1 O

radgtr =a) — — + ap— —. 5.179
& “ : hy O : hy Oy ( )
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we derive
divg(ve) = vdivge + ¢ - grad g (5.180)

Now we apply the divergence theorem to divg(3c):

0= %(h\ﬂ'(y’"(:)dS = /’1;"(11\’50(15’%— /c sprad ¥dS. (5.181)

5 5 s

Thus, we arrive at the following formula:

fc"rdiv,g(‘.(lﬁ = — /c -grad g S, (5.182)

5 &

which will be used in the derivation of finite element formulations,

Next, we proceed to the formulation of a generie boundary value prob-
lem for 3-1) eddy current analysis by using the impedance boundary condi-
tion (5.169) and the magnetic scalar potential. As before. we shall use the
following, decomposition for the magnetic tield ontside the conductor:

H=- Vo | H" (5.183)

where HY is the source field. which ean be computed by using one of the
techniques discussed in Section 5,20 1F HY is computed by using the Biot-
Savart law. then:

div HY = 0. (5.184)

By using this fact. from relation (5.183) we find that the magnetic scalar
potential satisfies the Laplace equation

Vi =0 V. (5.185)

By using the relation (5.183). we represent. the impedance bonndary con-
dition (5.169) in the fornn

‘)'1' ) " .
Ui [c (Vap H‘;)} P, (5.186)

g Wit
In addition, we iimpose the following zero conduction at infinity:
w(x) = 0. (5.187)

Formulas (5.185) (5.187) constitute the boundary value problem for the
magnetic scalar potential.
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Now we shall reduce this houndary value problem to the weak Galerkin
form. To this end, we shall use the following Green formula:
. o2 ) _ ., ; I -
(¥Vep + Vi - V)dv = — Q'T-dh, (5.188)
, J v

S

where ¢ and ¢ are arbitrary and sufficiently smooth functions, and %% is
the derivative with respect to the inward (to V=) normal.
By choosing
w=¢ (5.189)

and taking into account the Eqg. (5.185) and the boundary condition (5.186).
we transform the Green formula (5.188) as follows:

/ Vi - Ve de + S D ¢ (“V'g(é gradge™ )dS =

Wty |
G

L /}1' divg (QH”) dS /1;»11:,](/.5'.
Wiy, .

A ~

(5.190)

To proceed further. we shall use the expression (5.182) to transforin the
second and thivd infegrals in formuala (5.190):

%g" (Ii\'g(é prad gy )dS — /) pradgy - Q gradgs dS. (5.191)
J J
/)1;" divg (QH‘:) dS = — /; pradgy - Q:H(,_'db'. (H.192)
g S

By substituting formmlas (5.191) and (5.192) to the relation (5.190). we
arrive at the h)ll()\\m;, wml\ Galerkin form:

/ Vi -V de - /Vgl' (Vay dS =

u)/l“

J. /v o CHYAS /m,‘m.
Wil | ' .
| 5 S

e R

Thus, we have proved that if some function @7 satisties the boundary value
problem (5.185) (5.187) it will also satisfy the weak Galerkin form (5.193).
This form is called “weak™ becanse it contains only first-order derivatives
of @ 7. while the Laplace Eq. (5.185) requires 7 to be twice differentiable.
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Thus, regularity conditions on ¢~ in the form (5.193) are weaker than those
in the boundary value problem (5.185)-(5.187). The form {5.193) is called
the “Galerkin form” for historical reasons. The point is that forms like
(5.193) were first proposed by the Russian engineer B. Galerkin as alter-
natives to variational formulations. It can be shown that if the Galerkin
form (5.193) is satisfied for any (sufficiently smooth) function ¢ and func-
tion ¢~ is twice differentiable, then ¢~ is the solution of the boundary
value problem (5.185) (5.187). In this sense, the boundary value problem
(5.185) (5.187) and the weak Galerkin form (5.193) are equivalent.

The weak Galerkin form is convenient for the construction of approx-
imate finite element solution as well as for the proof of various statements
concerning the boundary value problem (5.185) (5.187). We demonstrate
the latter, by proving the uniqueness of the solution to the boundary value
problem (5.185) (5.187) for the linear case. For this case, the Galerkin form
(5.193) can be written as follows:

/ V- Vo~ dv — a0 Vs - Vsp~dS =
Jv Wity i

. (5.194)
— 2 SOy HOAS - /wH‘:ds.

Wiy |
S

. . . x
where 7 is the surface impedance defined as /“Fe/ 5.

If there are two solutions o and @) to the boundary value problem
(5.185) (5.187), then their difference:

P =i — s (5.195)
will satisfy the following homogeneous Galerkin form:

I
Vy - Vodo + l
v-
R('

wu

fV;, Y- prdS
(5.196)

fVSZ/J VspdS = 0.

The last Galerkin form holds for any function v, so it should hold for
V=", (5.197)

where ¢* is a complex conjugate to .
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By substituting relation (5.197) into the form (5.196), we obtain

: ) I .
/ [V@|*dv + bu(y) %|VS<,9|ZJS—
Jv Wio J

(5.198)
jRe) /IVWWS

Wity

By equating the real and imaginary parts of the left-hand side of formula
(5.198) to zero, we Hind

/szds =0, (5.199)

/ [Vo2de = 0. (5.200)
Jyv
From the last two formulas, we derive

2 =const in V. (5.201)

By taking into account that 2 should be equal to zero at infinity, we con-
clude that
S2=0 in{ . (5.202)

This, according to (5.195), proves the nniqueness of the solution of the
honndary value problem (5.185) (5.187).

Next. we shall use the weak Galerkin form for the development of the
fimite element technigue. To this end, we shall mesh the region V7 oand
introdnce the following finite element. approximation for o7

N
= o, (5.203)
e

where 27 are unkunown “node” values of ¢ =, while «,, arc Jocal support
finite element functions. The term “local support™ means that functions
e, are equal to zero outside some small regions (elements) centered around
mesh points. This eventually leads to the sparse structure of finite element
equations.

By substituting expression (5.203) into the Galerkin form (5.198) and
by choosing sequentially:

W=y, (1t =1.2... N},
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we end up with the following finite element equations:

1’\'
Z Vi@, = f‘i! (I =12 I’V)’ (52()4)

n=I1

where
Yy — / V(h‘ N V(er(l'(' o fvg(h v%“‘nds (52()5)
Jv Wity
fi= ]'I %V g .H(:(lS - %(n HUdS. (5.206)
w’/LU v

A remarkable feature of these equations is that the contribution of surface
integrals

%Vs(r., - Vga,dS (5.207)

is very similar in form to the contribution of voluine integrals
/ Ve, - Ve, do. (H.208)
Iy

For this reason. the submatrix formed by the surface integrals (5.207) can
be called the “surface stiffness matrix.” Its assewbly is quite similar to
the assembly of the volume stiffness matrix (5.208). This suggests that
the numerical implementation of the discussed technique may require very
minor new software development.

In our previous discussion of finite clewent formulation, it has been
assumed that the source field is computed by using the Biot-Savart law.
However, this formulation can be easily extended to accommodate other
techniques for the calculation of the source field. We demonstrate this for
the case when the sourcee field is created by a coil with rectangular cross-
scection (see Fig. 5. 'i) It has been shown in Section 5.2 that in this case the
source field HY can be confined to the extended source region VO oand it is
giveu by formula (5.79). As a result, the relation (5.183) takes the formn:

-V~ in V- —vo
H = v - 520
{ Voo +a.T(Q) in V. (5.209)

By using the last formula as well as formulas (5.84) and (5.85), we end up
with the following boundary value problem: find the solution to the Laplace

equation
V2%~ =0 inV~, (5.210)
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subject to the boundary conditions

-d,.if -7 divg [fgrmhp] ou S. (5.211)
v Wity ’
o~ B
Z_l| =-1@: (5.212)
v
Hhm
Oy~ g, .
[_5_((3)} = T(Q). (5.213)
v
Sl,.,nmn
and the zero condition at infinity
w (o) = 0. (5.214)

By using the Green formula (5.188) and the same ine of reasoning as before,
the boundary value problem (5.210) (5.214) can be reduced to the following

weak Galerkin form:

—_— . - J— - |

/ V- Vo de — e §Ver (Vep dS =
JV

Wity |
-/h'l.,

s (5.215):

L;'!’]‘({l‘)‘ — / ll",l‘(]f’v. I
S Skt

By wsing the last Galerkin form and the following finite clement approxi-
mation for the potential:

o = LT {5.216)

we casily derive the finite element. equations:

N
Z”/’,LLS‘?; = f. (i=12...N) (5.217)
n=1
where
Tni = / Ve, - Vg de — — v, - (Vi dS. (5.218)
Jv

Wity .
S

fi= / o TdS — / v, 1'dS. (5.219)
b Svup - S\uuuum
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It is clear that the stream function T(Q) of the source currents is the
“driving force” in the above finite element formulation.

In the case of nonlinear impedance boundary conditions, the matrix el-
ements of ¢ depend on {V g~ |, which makes the finite element Egs. (5.217)-
(5.219) nonlinear. For this reason, iterative techniques must be employed
to solve the above equations. One of the simplest iterative techniques can
be described by the following formulas:

N
Y APt = £, (5.220)
n=1
’71(1}:) = / Va; - Vapdv — S Va, 'é(k)VsandS, (5.221)
- Wio

where the matrix elements of é(k) are computed by using |Vsep® |, which
is the magnetic scalar potential computed on the previous step of itera-
tions.

5.5 IMPEDANCE BOUNDARY CONDITIONS
FOR THIN MAGNETIC CONDUCTING
SHELLS AND THEIR FINITE
ELEMENT IMPLEMENTATION

The mathematical machinery developed in the previous section can
also be used for the calculation of eddy currents in thin magnetic conducting
shells. To start the discussion, let us consider the problem of computing
3-D electromagnetic field created by given (known) time-harmonic “source”
currents JY in coil V¢ in the presence of thin magnetic conducting shell V'
(sce Fig. 5.9). The shell region, V2, is bounded by surfaces S; and S,. The
posed problem is a simple one. Nevertheless, the finite element formulation
developed for this problem can be easily extended to more complex and
realistic situations.

Within the conducting shell, electric E and magnetic H fields satisfy
the following equations:

curl H = oE, (5.222)
curl E = —jwB(H). (5.223)
The last two equations can be written in the following symmetric form:
curl H = J,, (5.224)
curl E =J,,, (5.225)

where
J. =0cE (5.226)
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W0

Fig. 5.9

is an clectric current density, while
J,, = —jwB(H) (5.227)

can be construed as a magnetic carrent density.

Next, we shall replace the actual magnetic conducting shell by its “mid-
dle” surface S and the actual distributions of electric and magnetic eurrents
by the equivalent distributions of surface eleetrie i, and magnetic i, cur-
rents on S (see Fig. 5.10). These equivalent surface currents are related to
the actual currents by the expressions:

—

/ Jode. (5.228)
Ja

im = / deps (5229)
JA

where the integration is performed over the thickness A of the shell.
It is clear that the tangential components of magunetic and electric fields
on S are related to the surface currents 1, and i,,, by the formulas

Fx (HY —H") =7 x (7 x i), (5.230)

Fx(BY =B ) =0 x (7% i) (5.231)

where the superscripts “+7 and » 7 indicate the values of physical quanti-
ties inside and outside S, respectively.

In the case of thin shells, it can be assumed with high accuracy that
locally (at each point) elcctromagnetic ficlds penetrate these shells in the
same way as plane waves penetrate thin conducting plates. This is the
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Fig. 5.10

“plane wave” approximation. By using this approximation and formulas
(5.228) and (5.229). we can casily derive the following expressions for i,
and i, in terms of the boundary values of clectric and magnetic fields:

1
7xi. = -i7x (EY +E"). (5.232)
§

Vxi, =-nix (H" +H). (5.233)

where the factors ¢ and y have the dimension of surface impedance and are
given by the formulas

R 3 BSA
¢ = —coth —. (5.234)
a 2
» BA
- ‘/7;/[(;11111 o (5.235)

and. as before,
=\ jwojt (5.236)

By substituting relations (5.232) and  (5.233) into formula (5.230)
and (5.231). we arrive at the following impedance houndary conditions:

Px (EY+E ) =@ x (H" —H™)) x 7, (5.237)
Fx (EY -E™)=nyZ < (H" + H™)) x 7. (5.23%)

l

These impedance boundary conditions allow one to avoid the caleulation

of electromagnetic fields within the condueting shell. In other words, the
analysis of eddy currents in the maguetic conducting shell is reduced to the
solution of the field equations in the regions exterior to the shell subject to
the impedance boundary conditions (5.237) and (5.238).
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In the practically important case when the “skin™ depth is large in
comparison with the shell thickness, we have

HA
tn.nh—? NS (5.239)

2

T - . 7‘.24()

oA’ (5 )
TRII7AN

) = LT/;_ (5.241)

In this case, the impedance boundary conditions (5.237) and (5.238) can be
actually derived without nsing the “plane wave™ approximation but instead
evaluating integrals in formmlas (5.228) and (5.229) on the basis of simple
averaging of electric and magnetic airrent densitios ou both sides of the
conducting shelll It is clear from this remark that the “plane wave™ ap-
proxiuation is needed to justily the impedance boundary conditions (5.237)
and (5.238) only in the case when the skin depth is stall in comparison
with the thickness of the shell.

We shall next formulate the impedance bonudary conditions i teris
of the magnetic scalar potential. To this end. we introduce the same curvi-
linear coordinates 7. 75, and 7 as i the previous section. By using these
enrvilinear coordinates. we can represent. the hboundary conditions (5.237)
and (H.238) in the forn

Bl 4B = (M) 1) (5.212)
Bl R =t 1y, (5.213)
shE = oy (HE Y ). (5.214)
Lk =g (0] 4 1) (5.215)

Next, we invoke the Maxwell equation:

el BY = juopgH®, (5.216)
whose v-component can be written as follows:
1 o 7,
: 4 b -t o
—JwpgHT = = o= (M EE ) ~ — (0 E . 5.247
Jwtto })[/In_) (}Tl ( ‘ r_-) 07’2 ( ] 7|) ( )
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By using impedance boundary conditions (5.242) (5.245) in Eq. (5.247),
we derive

. - 1 o -
g (B + 17) = L (1 1)

:BI}LZ 07’1
) (5.248)
- st - )]

, _ 1 (0 B
— JW (1{:’ - 1111 ) :m’; {})‘;—T [}1,27] (H:; + HT| )]
(5.249)

0 _ -
+ 57: [}117/ (H;t, + 1?[7,2)] }

Now, by recalling the formula (5.168), we represent the last two relations
in the following forms:

HY + HY =~ divg [ (H! —H;)]. (5.250)
Wity
HY - H; = < dive [y (Hf +H;)). (5.251)
Wit :
where, as hefore, we used the notation
Hf =a, Hf +a, H:. (5.252)

Formulas (5.250) and (5.251) constitute the magnetic field formulation of
impedance boundary conditions (5.237)-(5.238). By adding and subtracting
formulas (5.250) and (5.251), the above impedance boundary conditions can
also be written as follows:

I
HY = 2 divs [(( + B — (¢~ yH]]. (5:253)
I
f]; = —-'-)‘f(liV},' [(C — f})H: - (C + 7’)H;] ' (6254)
2&)/1,()

I

Next, we proceed to the formulation of the boundary value problem with
respect to the magnetic scalar potential. As before, we shall use the fol-
lowing decompositions of the magnetic ficld in the regions V' oand V|
respectively:

H' =H" - VT, (5.255)
H = -Vg, (5.256)
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where HC is the source field.

For the sake of simplicity, it will be assumed that the coil V° has a
rectangular cross-section (see Fig. 5.3). In this case, the source field is
confined to the extended source region VO and it is given by the formula

i 170
HO — {SZT(Q) iﬁ “; B 70 (5.257)

By using the last five formulas, we arrive at the following boundary value
problem: find the solution to the Laplace equations

Vit =0 inVT, (5.258)

V2p~ =0 inV~, (5.259)

subject to the boundary conditions

E = J divs [((+7)Vse® = ((—n)Vsp~] on S (5.260)
81/ 2&)}1,() ’ ’
_&’;_ = J divg [(C - Vst — (¢ + 7))Vg<,:>_] on S (5.261)
v 2wty ’ ’ '
9ot
[_f/’ } = -T(Q). (5.262)
ov
0 +
[ aad } = T(Q), (5.263)
dv
Shottom
and the following condition at infinity:
p (00) =0. (5.264)

To reduce the above boundary value problem to weak Galerkin forms, we
invoke the Green formula (5.188). By applying this formula to regions
V* and V™ and by taking into account Egs. (5.258) and (5.259) and the
boundary conditions (5.262) and (5.263), we obtain the following relations:

/ Vi - Vo du + wads -0, (5.265)
v- Ov
S

v+ Shottom

+
V¢-V@+dv—f¢%d5:/ wTdS — WTdS. (5.266)
Stop
S
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Now, by using the boundary conditions (5.260) and (5.261) in the formulas
(5.265) and (5.266), we obtain

Vi - Vo dv+ 21— ]{zﬂ divs [(( —m)Vse® = (( +7)Vsp~]dS -0,
v- 2w /

(5.267)

V- Vtdu— 5L fudivs [(+) Vst = (€~ n)Vsp7]dS =
Wity
S

v
/ VTdS — WTdS. (5.268)
St J Shattom

To proceed further, we shall use generic formula (5.182) in order to trans-
form the surface integrals in expressions {5.267) and (5.268). As a result,
we arrive at the following coupled Galerkin’s forms:

/ Vi - Vo~ dv +
Jv

2wy

%(C + 7])Vg1/) - V_g'l,DAdS
R (5.269)
— %(C — )V - VepTdS| = 0.
s

Vi Votdo + -2 %(C +1))Vsi-VgptdS
v 2wp | )
9 (5.270)
— f(( - Vs - V,«pdS} = / pTdS — YTdS.
. ASTINS J Shortom
5 J
The weak Galerkin's forms (5.269) and (5.270) are the natural starting

point. for finite element discretizations. Indeed, by using the following finite
clement approximations for <p+ and ¢, respectively:

N1

et =Y plal, (5.271)
n=1
N-

TR pran, (5.272)
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and by substituting them into Galerkin’s forms (5.269) and (5.270), we
naturally end up with the finite element equations:

va% + Z Ao = (t=1,2,...N7), (5.273)
.

vawn +3 Aen=fi (i=1,2,...NF) (5.274)

n=1

The matrix coefficients and the right-hand sides of these fnite element
equations are given by the following formulas:

= / Vol - Valdv+ J
v+ 2

Wito

/(C+n)Vsa -VsatdS  (5.275)

A= 5 f(C—n)Vsu -Vsa, dS. (5.276)

2(4.)/L()

Vor = / Va; Ve, dv + f ¢+ 1mVsa,” - Vea; dS, (5.277)
S'

Wiy
AF = ;L %(C — ) Vsa - Vgalds. (5.27%)
2wy |
s
fi= / atTds - / ot TdS. (5.279)
S‘.,,, - Slmnnm

As before, we note that a remarkable feature of the above finite element
equations is that the contribution of the surface integrals into the overall
equation matrix closely resembles the contribution of the vohune integrals.
For this reason, the submatrices formed by the above surface integrals can
be called “surface stiffiess matrices.” Their assembly is quite similar to the
assembly of voluwe stiffness matrices, which is a standard procedure in any
finite element program. This suggests that the numerical inplementation
of the above finite clement equations may require very little additional
software development with respect to already existing ones.

Finally, we shall establish the relationship between the stream function
Ts(M) for eddy currents i in the thin conducting shell and the values of
the magnetic scalar potential ¢t and ¢~ on S. First, we shall define the
streamn function Ts(M ). Counsider two points M and Q on S (sece Fig. 5.11).
Let Lgar be an arbitrary path that lies on .S and counects points A and
Q. Then, the streamn function can be defined as follows:
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S

Fig. 5.11

To(M) - Ts(Q) = / i.(0) -npdlp, (H.280)
. I”JM
where np is aunit vector that is tangent to S and normal to the path L ag.
If the point @ 1s chosen Lo he a reference point:

T4(Q) = 0. (5.281)

then

'1;-(;11):/ i () npdf ), (5.282)
JLega

It is apparent that the value of the steam funetion T(A1) does not depend
on the choice of the integration path between the points A and Q. It is
also clear from (5.282) that the “level” lines of To (M) (lines of equal values
of T4(AM)) coincide at every instaut of time with the lines of eddy current
i.(#). Thus, if the level lines of To(A) are somchow fomud. they can be
used for the visnalization ol distributions of eddy currents i, (#) on S. This,
in turi, may benefit the post-processing of the finite elemeni solution.

By using formula (5.230) in the definition (5.282) of the strean funetion
To( M), we find

To(M) = H(P) - dl, / HY(P) - dl. (5.253)
Jlgar

Sl

By recalling formulas (5.255) (5.257). the last expression can be trans-
formed as follows:

To(M) = [t (M) — o~ (M)] - [p7(Q) - o (Q)]. (5.284)



5.6  Calculation of Fddy Currents in Thin Nonmagnetic 351

Because the stream function is defined up to an arbitrary constant, the last
(Q-dependent) term in the relation (5.284) can be omitted, and we arrive
at the following result:

Ts(M) = (M) — ¢~ (M). (5.285)

Thus, the stream function is equal to the “step” change in the magnetic
scalar potential across the conducting shell. By using this fact and the finite
element solution for the magnetic scalar potential, the lines of “equipoten-
tial differences” (p*(M,t) — ¢ (M,t) = const) can be determined at any
instant of time t. These lines will coincide with the lines of eddy currents
at the same instant of time t. For this reason, these lines can be used for
the visualization of eddy current distributions.

5.6 CALCULATION OF EDDY CURRENTS IN
THIN NONMAGNETIC CONDUCTING SHELLS

The finite element techuique disenssed in the previous section requires
the solution of finite element equations in the regions around magnetic
conducting shells. I this seuse, this is a “volume” solution technique.
It turus out that in the case of thin nonmagnetic conducting shells the
“houndary™ solution technique can be developed. This technique requires
only discretizations of shell surfaces. The development of this boundary
techuique utilizes the same mathematical machinery of vector caleulus on
curvilinear manifolds that has been developed and extensively used in the
previous two sections. The development of this boundary technique also in-
volves additional mathematical tools from functional analysis. These tools
bring new and interesting insights into the nature of eddy current problems.
The value of these insights may extend far beyond the utility of the tech-
nique itself. For instance, by using these mathematical tools, eflicient (1.e.,
casily computable) estimates for eddy current losses are derived. These
estimates allow one to obtain useful information concerning eddy current
losses without resorting to laborious eddy current caleulations.

To start the discussion, cousider a thin nonmagnetic conducting shell
shown in Fig. 5.12. The electric field within this conducting shell satisfies
the equation

curl E = —jwB. (5.286)

By introducing the maguetic vector potential

B = curl A, (5.287)
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Fig. 5.12

from the last two formulas we derive
E=—jwA - VU. (5.288)

where U can be interpreted as an electric scalar potential.

Next. by assuming that distribution of eddy currents over the shell
thickuess is more or less uniform. we replace the actual condueting shell by
its “middle” surface S and the actual distribution of eddy currents within
the shell by the equivalent distribution of surface currents 1 (see Fig. 5.13):

i=chE;. (E,=al, +ai,,). (H.289)
Here, we use the same curvilinear coordinates 7p and 7 on the surface S
that are described in Section 5.4.
By substituting formula (5.238) into the last expression. we find:
i=—jwohA;, —chVU. (5.200)
where, as before, VU means a gradient along the surface S.
The maguetic vector potential A, has two distinet components: A’

which is due to the distribution of eddy currents i over S, and AV, which
is due to the source field. Thus, we can write:

A=A +A" (5.291)
By substituting the last forinula into (5.290). we obtain

i= —jwoh(AL + AY) — ohVU. (5.292)
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S

BO
YoN
\ .
i\
Iig. 5.13
The following expression can be used for A':
Ci(A] N
Al(Q) = k0 / AT sy, (5.203)
A Jg raro

whereo as befores (2 and 87 are observation and integration points. respec-
tively, while a0 s the distance between Q and AL

By substituting the last formula into Feq. (5.292) and then projecting
this equation along the directions of 7,- and m-coordinate lines. we derive
the following iutegral equations:

o . " F: -a (A
Q) 1 S [/ i@l
Am Js 'ArQ
' : ~a, (A 5.29.
1 /i,_:(f\l)'-‘-‘ﬁ-Q-)--":(------)-(/.s:\,} (5.201)
Js afq

baha (Q)-Vl! = - juwoh A(; (Q),

s ' a- i A
i Q) Jxtton {/ ,'1_2(1\1)1&(.(2), _}l,(wl,)([‘g'lw
’ RE I

+ / iT,_,(;‘\I)E'“)—(Ql'fqg(iu)(/b’,\l 5

TALQ

ot
(S
<
o

1 ohay(Q) - Vsl = — jwohAY ().

The conpled surface integral Bgs. (5.204) (5.295) are uot complete, bheeause
we have not vet specified how the electrie potential U mmst be computed.
This potential is chosen in sueh @ way that the following cquation and
boundary condition are satisfied:

divgi=0  ouS. (5.296)
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in=0 onT, (5.297)

where nis a unit vector tangential to S and normal to the boundary T" of
S. (By the way, this boundary may consist of several closed lines if the
conducting shell has holes. Our subsequent discussion is directly applicable
to this more general case.)

By substituting the relation (5.292) into formulas (5.296) and (5.297),
we arrive at the following Neumann boundary value problem for U on
curvilinear surface S:

divyg gradgU = ~jw divg(AL + AY)  on S. (5.298)
n-Vel = —jw(AL +A% -n  onl. (5.299)
The boundary value problem (5.298) (5.299) is coupled with surface inte-
pral Egs. (5.294) (5.295) through formula (5.293). This boundary value
problem along with the above integral equations constitute a complete
“boundary” fornmlation for the calculation of eddy currents 1. This means
that these integral equations and the boundary value problem can be jointly
diseretized and simultaneously solved. The finite element diseretization of
the boundary value problem (5.208) (5.299) is based on its reduction to
the weak Galerkin's form. To arrive at this form, we shall fiest multiply
cquation (5.298) by an arbitrary and sufficiently smooth function ¢ and
integrate over S:

/. v divy gradUdS = —jw / ddive (AL + AY)dS. (5.300)

Js Ju

Next, we shall nse generie formula (5.130). which leads to the following
cqualities:

dive grad (U = divs (ygradU) — Vg - VU, (H.301)

odive (AL + AY) = divg[¥(AL + AL - Vo' (A + A"). (5.302)

By substituting these equations into formda (5.300), and then using the

divergence theorem in the form (5.176), we derive

/ Ve - VUdS - /'I,f')n VUdl = —jw / Ve - (AT + ANdS
Js J Js
+ Jjw %1;",’(A’T + AYY ndl. (5.303)
J
Finally, by using the boundary condition (5.299), we arrive at the following
Galerkin's form:
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/ Vg - VslUdS + jw / Vet - A'dS = —jw / V- AYdS,  (5.304)
JS JS J NS

]

which can be discretized along with integral equations (5.294) (5.295).

The finite clement discretization of the Galerkin’s form (5.304) is
straightforward. The first termn of this form leads to a sparse “stiffness”
matrix, which we have alrcady enconntered in the two previous sections.
On the other hand, the discretization of the swriace integral Eq. (5.294)
(5.295) leads to fully populated matrices for eddy currents i. These fully
populated matrices are the main impediment. in the numerical solution of
the overall set of diseretized egnations. This munerical difHeulty can be
ameliorated by nsing the following iterative technigue:

e

/ Vi Vel/F (8 = 7,,@/ Vae (A + Ag)dS. (5.305)
EAY JS

|

|

|

Q) =1 - )i(Q) ol [/ G 2UQR) )
Js \

|

\

A l,\]Q
' « ( '()
+./ RV )(/A{,\,}
Js "alq

|
acha (Q)- VU NQ) -~ ajuah AL (Q). |
(5.306) |
jw : a, a (A
Q) =1 - a)iQ) - ol ol {/ iran™ @Qady o
J8

T

1 AT \1
. SO - as (M |

o [an@ gy, |
I rarQ ‘

—achay(Q) - VsURTIQ) — ajwoh A (Q).
(5.307)

wlhere o is some parameter that can be chosen to guarantee the convergence
of iterations (5.305) (5.307).

The above iterative technique can be stimmuarized as follows. Suppose
that the Sthiteration is found. Then. by using a finite element discretiza-
tion of the Galerkin's form. we can find U0 By using this clectric
potential and explicit formulas (5.306) and (5.307) we can compute the
iteration, %+, for cddy cnrrents. Thus. at cach step of iterations, we
have to solve simultancous equations with a sparse “surface stiffness™ ma-
trix, while the direct solution of algebraic eqnatious with fully populated
matrices is replaced by explicit iterations (5.306) (5.307). The evaluation
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of integrals in formulas (5.306)-(5.307) can be run in parallel for various
observation points ¢, which is another advantage of the above iterative
technique.

Theorem. Iterations (5.305)-(5.307) converge globally (i.e., for any choice
of initial guess) if parameter « satisfies the inequalities:
2

I<ac< W‘D—)Q—, (5308)

where D is the diameter of S (that is the largest distance between two
points on S).

Proof. The proof is somewhat lengthy and uses some standard facts from
the functional analysis [2]. However, some results developed in the course
of this proof are of interest in their own right.

The central point of the proof is the interpretation of the “boundary”
formulation (5.294) (5.295) and (5.298) (5.299) as a special operator equa-
tion. This interpretation is achieved by treating the subtraction of chV U
in formula (5.292) as an operation of orthogonal projection. In order to give
the exact meaning to the last statement, we have to introduce some Hilbert
spaces. First, consider the Hilbert space H of vector valued functions on §
with the inner product:

< b(M),c(M) >=/b(M)-c*(M)dSM, (5.309)
S

where ¢*(M) is a vector whose Cartesian components are complex conju-
gate to the Cartesian components of the vector ¢(AM). In the space ‘H con-
sider a linear subset of continuously differentiable vector functions, which
satisfy the following two conditions:

divsb(M) =0 on S, (5.310)

b(M) -npy =0 onl. (5.311)

The closure of the above subset (in the norm ||b]| = /< b, b > of the space
‘H) is a subspace of H. The notation Hy will be used for the notation of this
subspace. It is clear from formulas (5.296) (5.297) that the surface eddy
current density 1(M) belongs to the subspace Hp.
Next, we shall prove that for any b(M) € Hp and an arbitrary function
1 we have
< b(M),Vsy >=0. (5.312)
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Indeed, we derive

< b(M),Vgip >= / b(M) - Vg¢dSy = / divg (¢ b{M))dSy;
Js Js
- / " divgb{M)dS,; = [‘uﬁr*b(}kl)-ndlm - /u}'* divgb(M)dSyy.
s . Js
T

(5.313)
Now. by recalling formulas (5.310) and (5.311), we arrive at the identity
(5.312). Strictly speaking, this identity has been proved for sufficiently
smooth b(M) from H,. Howcever, by using the continuity argument, this
results can be extended to any b(A) from Hy. This tvpe of subtlety is
tacitly assumed in the subsequent discussion.
Proceeding further, we introduce the vector

clQ) = —jw(AL(Q) + AYQ)) (5.314)

and rewrite formula (5.292) as follows:
i(Q) = oh{c(Q) — V). {5.315)
Because the potential I is chosen to guarantee that 1(Q)e Hyy. according to

(H.312), we have

< 1), Vsl == 0. (5.316)
By using formula (5.315). the last equation can bhe written as follows:

< e(Q) - Vel Veli == 0. (5.317)

This means that the operation of subtraction of ViU is the operation of
orthogonal projection on Hy. Thus, we can symbolically write:

c- Vyl = Pe. (5.31%)

where P is the lincar operator of orthogonal projection on Hy. It is known
that this operator is self~adjoint (Hermitian) and that

1P = 1. (5.319)

where ||+ 1] in (5.319) stands for the norm of the operator.
Frowm forumlas (5.314), (5.315), and (5.318), we find

i= —‘jw(Th.(]:’A; “+ f’A‘,’) (5.320)
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Next, we introduce the matrix integral operator:

2 Ky Ky
K=1{, 3 5.321
(K:n K22> ’ ( )
with y

R’nn@:/@(j\l)M_EdSM’ (5.322)

5 TMQ
kmmsp:/w(A{)MdgM’ (5.323)

s TMQ

(m=1,2; n=1,2).

From formulas (5.320) (5.323) we find that surface integral Eqgs. (5.294)
(5.295) can be represented in the following operator form:

b )
i+ 2R PR — —jwohPAY. (5.324)

s
It is easy to see that operator K is self-adjoint:
< Kb,c >=<b.Kc > . (5.325)

This can be checked by using the definition (5.309) of the inner product
and formulas (5.321) (5.323).

Now, we are going to prove a very important fact that operator PK is
self-adjoint on the subspace Hg. Let

b(M)eHy and c(M) € Hy, (5.326)

which means that ) )
Pb = b, Pc=c. (5.327)
Then, by using the last formulas and the fact that P and K are self-adjoint
operators, we derive
< PKb,c > =< Kb, Pc >=< Kb,c >=< b, Ac >

L. . {5.328)
=< Pb,Kc¢ >=<b,PKc >,

which means that operator PK is self-adjoint on Hy.
Next, we shall rewrite Eq. (5.324) in the following concise form:

i+jTi="f, (5.329)
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where ;
T— w_f:_;" ‘PR, (5.330)
= —jwohPAL. (5.331)

It is apparent that operator T is self-adjoint.
By using parameter «, we make the following cquivalent transformation
of operator Eq. (5.329):

i=(1-a)i-jali+af. (5.332)
By introducing the operator
Co= (1) —joT, (5.333)
we rewrite Eq. (5.332) as follows:

i=Chi+af. (5.334)

Now we shall establish the fact that if v satisfies inequalities (5.308), then
the operator (', 1s a contraction:

|

Call < 1, (5.335)

and iterations
LRI GRS (L IO § (5.336)

globally converge.
To prove inequality (5.335), we use the chain of the following identities:

<(l-a)b-jaTb,(I —a)b—jaTbh >
(1) <b.b>+ja(l —a)<b.Ib> (5.337)
wja(l —a) <Tb,b > +0? < Tb.Tb > .

ICabl[?

Operator T is self-adjoint, consequently the second and third terms before
the last one in formula (5.337) are cancelled out. As a result, we obtain

By using inequality

Coubl)? = (1 - )3 [bl|? + o?||Tb|%. (5.338)

ITb T

from formula (5.338) we find

* <

!2’{b1'2* (5.339)

[ICablf? < [(1 = ) a*|I712] 1o (5.340)
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which means that
[|Coll? < (1 —a)? + 3| T2 (5.341)

We casily find that

(1—a)? 4+ 2|7 < 1 (5.342)
and inequality (5.335) is valid, if
2
D<a< — (5.343)
L+ [T

Next, we shall estimate the norm of operator 7. According to formula
(5.330), we have

2
o [ wpgoh PR .
7 < (T‘; ) [P (5.344)

The matrix integral operator I is an operator with weak singularity., Ac-
cording to [13], the following estimate is valid for the norm of A

K] < 47D. (5.315)
By using formulas (5.319) and (5.345) in the inequality (5.341). we derive

1712 < (wjeoahD)?, (5.346)

Incqualitios (5.343) are guaranteed if we replace [[T][% in (5.343) by its
estimate (5.346). This leads to the inequality (5.308) for o Thus, it is
established that iterations (5.336) arc globally convergent if formla {5.308)
is valid. By using formulas (5.332), (5.331). (5.330), as well as the definition
of operation K, the iterations (5.336) can be represented in the form:

D = (1 — i — agwah PIAR) 4 Al (5.317)

By recalling the definition of projection operator P2, from the last formula
we find

I = (1= )i — ajwoh(AL 4 AY) = ach VU, (5.348)

where U

) is the solution of the houndary value problem (5.298) (5.299)
. ] - . . .

with A? replaced by A?° . This boundary value problem is, in turn, tan-

tamount to the weak Galerkin's form (5.305). Finally, it is clear that iter-

ations (H.348) are cquivalent to the iterations (5.306) (H.307). .
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Any value of « that satistics inequalities (5.308) can be used in itera-
tions (5.305) (5.307). However, the best estimate for the convergence rate
of these iterations can be obtained for

= — 5.349
“Ta + (wpgohD)? (5 )

For this value of «, from formulas (5.341) and (5.346) we find

: WD
Coll € ——d0Z00 (5.350)

RV e

This means that iterations (5.305) (5.307) converge faster than a geometric
series with the ratio cqual to the right-hand side of formula (5.350). In fact,
this convergence may be appreciably faster.

Now, by using the mathematical machinery developed in the proof of
the above theorem, we shall derive easily computable estimates for eddy
current. losses in conducting shells.

IFirst. the eddy current losses can be expressed as follows:

ah ., I - | .
o=y [ JERAS =g [ RS = 5.351
g 2 /JF| d 20 h /JI\ ‘ 20})H1H (H.351)

Second. we invoke the operator Eq. (5.329) to estimate [[i]j2. According 1o
the above equation. we find
9 } L. i Fee - cfhe L « 2 C e s L
[f]]7 = << £.f >=<i+4 JTL1} jT1 == ||i)) - j < i.Ti 2

b < Tid > +| T2

The operator T is self-adjoint, so the second and the thivd terms before the
last. one in formula (5.352) are cancelled out. As a result, we have
Th

IR+ 11752 = [I£)]% (5.353)

Now it is obvious thad
RN < i) (5.354)

By using formulas (5.351) and (5.331), from the last inequality we obtain
) £ | Y

wrah A0 2 ‘& o

Los ——lIPAS| {5.355)

[t is clear from the above derivation that the estimate (5.355) is obtained
by neglecting the term 71, This term describes the part of the surface eddy
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current density, which is induced by the electromagnetic field created by
eddy currents themselves. For this reason, this part can be called the eddy
current reaction. Thus, we reach the conclusion: the actual eddy cur-
rent losses are always smaller than those computed by neglecting
the eddy current reaction. In other words, the eddy current reaction
reduces eddy current losses.

To proceed further, we use the inequality:

[[PA]] < [IP]]- [|AYI. (5.356)

By recalling formula (5.319) from (5.355) and (5.356), we derive

2qh
L. < = |lAYP, (5.357)
which means that
24} .
L. < “’;” / |AY|2dS. (5.358)
Js

In the last step of our derivation, we have replaced [[PA%]] by [JAY]].
In doing so, we have neglected “shape effects.” Thus, it can be concluded
that “shape effects” reduce eddy current losses as well.

It is clear that the estimate (5.363) is casily computable. And this is
the main attractive feature of the above estimate.

The inequality (5.358) has been derived for the case of time harmonic
source fields. However, by using this inequality and the Fourier transform.,
we can derive the casily computable estimates for eddy current losses in
the case of arbitrary time varying source fields. The derivation proceeds as

follows: . -
L= (/ li(M.t)|2dt) dSy;. (5.359)

oh Jo \J o

By using the Fourier transform and Parseval’s relation, we obtain
1 [ ,
Lo= — (/ [i(]\!,w)V(ISM) dw. (5.360)
O'h J—oo S
According to (5.358), for each frequency w we have the inequality:
1 . . ' .
— / (M, w)|*dSp < w?oh / |AY (M, w)|*dSy;. (5.361)
Uh Js Js

By substituting the last inequality into formula (5.360), we find

oo 2
Le < Uh/ (/ ;wAQ(M,w)Fdw> dSh;. (5.362)
S

— o0
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By using Parseval’s relation again, we finally derive

L, < ah/s (/: |%]2dt> dSy. (5.363)

All the results obtained in this section can also be derived for eddy currents
in “bulk” nonmagnetic conductors {14]. In the case of these conductors, the
following relation is valid for the volume eddy current density

J = —jwo(A! + A®) - oVU (5.364)

where A9 is the magnetic vector potential of the source field, A’ is the
magnetic vector potential of the field created by the eddy currents and this
potential is given by the expression:

AT(Q) = f{%/ IM) s, (5.365)
Vi

while the electric potential U is chosen to guarantee the following conditions
for the eddy current density:

divI=0 inV*. (5.366)

J-7=0 onS. (5.367)

with V't and S being the region occupied by the conductor and its bound-
ary, respectively.

By substituting formula (5.365) into Eq. (5.364), we arrive at the fol-
lowing integral equation for the eddy current density.

; J(M
J(Q) + LT / M) ons + oYU = —jwoA%(Q). (5.368)
4 v TMQ

This integral equation is not complete and should be supplemented by the
following interior Newmann boundary value problem for U:

ViU=0 V", (5.369)

ou

— = —jw(A + A" -7 onS. (5.370)

v
The last two rclations are easily derivable from formulas (5.364), (5.365),
(5.368) and Coulomb gauge conditions for the magnetic vector potentials
A’ and A°. By using the same line of reasoning as before, it can be

demonstrated [14] that the operation of subtraction of oVU in formula
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(5.364) can be interpreted as the operation of orthogonal projection on
subspace Ho(VT) defined by constraints (5.366) (5.367). On the basis of
this fact, the formulation (5.368) (5.370) can be reduced to the operator
equation of the form (5.324) with the self-adjoint operator PK on Ho(V ).
By employing this operator equation and the same reasoning as before, it
can be proved that the following iterations:

T2kt g (6.371)
arr{k+1) N
= A A% (5.372)
wigor [ JR(A)
JEHD(Q) =(1 — M IFI(Q) —~ jor 2 / S,
( 2) ( ) ( J) J T Vo TAIQ M (5575)

— acVUS () - jowaAY(Q)

globally converge if parameter v is chosen to satisfv inequalities:

2
0< < ——

T

=1

where 7 is the radius of the smallest ball that contains V' while 4 is the
skin depth.

The best estimate for thie convergence rate s obtained for the following
value of o |

= 1.+. (”)1, (H.375)
3\s

For this value of a, the iterations (5.371) (5.373) converge at least as fast
as the geometric series with the ratio:

Kl

g Bl (5.376)

By repeating the same reasoning as before, we can also derive the following

casily computable estimates for eddy current losses:

‘ w? ' . .,j
377) |

| L. < 7‘(1 / ]A“(A[)'z(f'ﬂ/\/. (5.:
2 )i

d s SN’ §]
L.<a / (/ |({é—(11[, f)|2(ll> dupy. (5.378)
Jvi U Ot
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Next, we shall illustrate our previous discussion with some examples.

Example 1. Consider a thin spherical conducting shell subject to uniform
time-harmonic source magnetic field H®. By using formula (5.121) for A°
and estimate (5.358), we find

v d

Lesiez3

Wwiu2chHZRY, (5.379)
where R is the radius of the shell.

This problem can also be solved analytically by using the method of
separation of variables. The analytical solution leads to the following ex-
pression for eddy current losses:

rw?plohHE R

2,2,2Rh2R2
3(1 + % 2 "9

L, = (5.380)

which is exact up to small terms of order %.
From formulas (5.379) and (5.380), we derive

L. (AR)?
=L =142 5.381
n=g. =1+t (5.381)
where A = wugoh.
The function n = f(AR) is shown in Fig. 5.14. 1t is apparent from this

figure that the estimate (5.358) is fairly accurate for 0 < AR < 1.5. .

Example 2. Consider a nonmagnetic conducting ball of radius R subject
to uniform time-harmonic source field H®. By using the estimate, (5.377),

we find )
_ 2nwpoH?R? (R)

e<L.= .382
L. <L B (5.382)

]

. /
’

14

12

10 — . R
§ a5 10 5§ 20 25 30 O

Fig. 5.14
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The exact analytical solution of this problem results in the following exact
expression for eddy current losses:

3 o sh(—g)ﬁ-sm(—R) R
Le= = HZR? J oL . 5.383
2ol T | G () —eon (3B) (5:353
From the last two formulas we find
I, 4 y?
,]:__:_.*——(") - (5.384)

L. 45 sh( ”)+~1n(%
ch(4f)—cos(¥)
) is shown in Fig. 5.15. Tt is clear from this figure
7Y is fairly accurate for 0 < E < 1.5. n

The function n =
that the estiinate (5

F (%
37

Example 3 (see [14]). Consider a slotted copper cube with 1 ¢m long
edges and ¢ = 5.8 x 1()7%. subject to source magnetic field created by a

(2

/
)4

Ty

| /

A

12 /

0 0.5 1.0 .5 20 25 3.0*“z
Fig. 5.15

Fig. 5.16
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current through the “rectangular frame” conductor around the cube (see
Fig. 5.16}. This problem was solved for different frequencies varying from
1 Hz to 500 Hz by using the iteration (5.371)—(5.373). The convergence
criterion used was one part per million. The finite element mesh used in
calculations contained 30,282 nodes and 32,513 (hexahedron and prism)
elements. Some sample results of calculations are presented in the table
below. In this table, L., stands for the right-hand side of the estimate
(5.377), while L. are actual eddy current losses computed by using the
above iterations. It is clear from the table below that the actual numbers
of iterations in many cases are substantially smaller than the numbers of
iterations estimated on the basis of the g-value given by formula (5.376).
Thus, as expected, the actual convergence is faster than the theoretical one
predicted by the estimate (5.376). It is also worthwhile to note that the
estimate (5.376) for eddy current losses is quite realistic even for fairly small
skin depths (see the last column of the table).

Iterations  Iterations

fHz] 6fem] X o q Actual Estimated ’,—’

1 6.6 0.13 0.99961 0.01983 4 4 1.01986
5 3.0 029 0.99023 0.09867 5 6 1.01992
10 2.1 041 096217  0.19451 6 6 1.02011
20 1.5 059 0.86409 0.36866 9 14 1.02089
30 1.2 0.72 0.73861 0.51127 12 21 1.02220
40 1.0 083 0.61382 0.62144 16 30 1.02402
50 0.93 093 0.50427 0.70408 21 40 1.02638
60 0.85 1.02 041398 0.76552 27 52 1.02924
100 0.66 1.31 0.20275 0.89289 62 122 1.0458%
500 0.295 2.93 0.010070 0.99495 1526 2731 1.67280

.

5.7 ANALYSIS OF THIN MAGNETIC SHELLS
SUBJECT TO STATIC MAGNETIC FIELDS

This analysis is important for at least two reasons. First, this analysis
is of interest in its own right because thin magnetic shells are widely used for
shielding of static maguetic fields in many enginering applications. Second,
the static analysis can also be of interest as an approximate one in situa-
tions when magnetic conducting shells are employed for shielding of time-
harmonic fields. The stronger the magnetic shielding effects in comparison
with the eddy current shielding effects the more accurate this approxima-
tion. In other words, this approximation is justifiable when distributions
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of magnetic flux density are fairly uniform over the shell thickness. In that
case, the static analysis can be performed first to find the distribution of
magnetic field and then eddy current losses can be approximately evaluated
by using appropriate formulas from Section 2.6.

Below, the analysis of thin magnetic shells subject to static magnetic
fields will be based on boundary conditions that are mathematically sim-
ilar to those used for thin magnetic conducting shells in Section 5.5. For
this reason, the same mathematical machinery will be utilized to carry out
finite element formulations of this analysis. However, we shall also develop
additional mathematical tools to rigorously study the convergence of finite
element discretizations as well as the global convergence of special iterative
techniques for the solution of nonlinear finite element equations.

We begin our discussion with the derivation of boundary conditions
for thin magnetic shells. To this end, consider the infinitesimal volume as
shown in Fig. 5.17. The boundary of this volume consists of three pieces:
ASiops AShotions and Sges. Pleces ASy,;, and ASy,iion lie on the exterior
and interior boundaries of the shell, respectively. and have alimost the same
area AS, while piece Sy« is entirely within the shell. By using the principle
of continuity of the magnetic flux, we find

/ B~dS+/ B~dS+/ B-dS = 0. (5.385)
Y . .

Siop Shottom N

Each term of the left-hand side of the formula (5.390) can be evaluated as
follows:

/ B-dS= (B -/)AS. (5.386)
J S,
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/ B.dS = th -ndl. (5.388)
Saides
L

Here 7 is the unit outward normal to the middle surface S of the shell, h is
the thickness of the shell, L is the closed line of intersection between Sgiges
and S, while 7 is a unit vector tangential to S and normal to L.

By substituting formulas (5.386) (5.388) into Eq. (5.385), we obtain

BSAS - BIAS+h andz ~ 0, (5.389)
T

which can be rewritten as follows:

h 4, Bpdl
HY - H, = ;leg (5.390)
The smaller AS. the more accurate the last equality. Thus, in the limit we
obtain the exact relation:

(}, 13,,dl

Lo 2 (5.391)
fg AS—0  AS o

By recalling the definition (5.164) of the divergence of a vector field on a
curvilinear surface, from the last formula we find

]
Hf — HI = — divgB. (5.392)
1o

Now we replace the actual thin magnetic shell by its middle surface S and
we use the boundary condition (5.392) on this surface. It is tacitly assuuned
that B in the above boundary condition is the total magnetic flux density,
which is tangential to S, This asswnption is justified by the fact that within
the actual thin magnetic shells the normal components of B are very small
and can be neglected.

In addition to the boundary coudition (5.392), it is assumed that tan-
gential components of the magnetic field H are continious across S:

FxHY =0 xH™. (5.393)
This assumption is justificd by the small thickness of the shell as well as

by the continuity of the tangential components of the magnetic field across
the exterior and interior boundaries of the actual shell.
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Next, we shall introduce the magnetic scalar potential ¢ and formulate
the boundary value problem for this potential. For the sake of simplicity,
we assume that the shell is closed and that the source field is created by a
coil with a rectangular cross-section. In this case, the source field can be
confined to the extended source region VO and it is given by the formula
(see Section 5.2):

00y = § 2.T(Q) in VP, :
H(@) {0 outside V0. (5-394)

To be specific, we shall also assume that the coil and the extended source
region VY are located within the shell. In this case, the magnetic scalar
potential can be introduced as follows:

H* =H" - Vo™, (5.395)

H =-Vy . (5.396)

By using formulas (5.392) (5.396). we find that the magnetic scalar poten-
tial p satisfies the equations:

Vipt =0 in V', (5.397)

Vi =0 inV-, (5.398)

and the following boundary conditions:

et =9  on S, (5.399)
do= Dot
Op” 90T M G eB(- V). (5.400)
v ov 140
St
{%} = ~T(Q), (5.401)
Stap
d +
[%} =T(Q), (5.402)
‘SIV(X(!llX)I
p~ (00} =0. (5.403)

To arrive at the finite element formulation, we shall first reduce the bound-
ary value problem (5.397)-(5.403) to the appropriate weak Galerkin’s form.
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To this end, we shall recall the scalar Green formulas, which can be written
in the form:

I

Op™ : .
Y _ds = / YTdS - / wT'dS, (5.404)
Siop 7 Shottom

Vi - Vetde - /y’) -
) ov

JYV+

Do
/ Vi - Vo~ duv -+ %u’) _dS = 0. (5.405)
Jv - . ()I/
5
Here we have already taken into account Egs. (5.397) (5.398), discontinuity
conditions (5.401) (5.402) and condition (5.403) at infinity. By adding for-
mulas (5.404) and (5.405) and taking into account the boundary condition
(5.400), we obtain

" h f i
/ Vi - Vpdue + z 1 diveB(~Vgp)dS =
Jv

g
S

/ yrldS — / TS,
S St

where V=V+ 4+ V.
Now, by applying identity (5.1832) to the surface integral in (5..106), we
arrive at the following Galerkin form:

e

(5.106)

' h
/ Vi - Vpdo -~ s
Jyv

2

yTdS — / &T'dS.
S Shoram

J S

fvs-gw B(-V)dS = /
S

(5.407)

This Galerkin form is considered on the set of continuous functions. In
this way, the boundary condition (5.399) is taken into account. Thus. we
have proved that if the magpetic scalar potential ¢ i1s a solution of the
boundary value problem (5.397) (5.403), then this potential satisties the
weak Galerkin form (5.407) for any sufficiently regular function 4. The
inverse statement can be established as well. Namely, it can be proved
that if the potential p is twice differentiable in VY and V7 and satisfies
the weak Galerkin form (5.407) for any function ¢ then this potential is a
solution of the boundary value problem (5.397) (5.403). The main idea of
this proof is to exploit the arbitrariness of function 3 in the Galerkin form
(5.407).

It is clear from the above discussion that the boundary value problem
(5.397) (5.403) is equivalent to the Galerkin form (5.407). However, the
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above Galerkin form can be preferable for the following reasons. First, this
Galerkin form is a more concise statement of the problem; this statement
is expressed in one formula (5.407). Second, the Galerkin form can be di-
rectly used for finite element discretizations. Finally, the Galerkin form is
more convenient for derivations of various integral estimates that are in-
dispensable in proving various mathematical facts. We shall first illustrate
the last statement by proving the uniqueness theorem for the boundary
value problem (5.397)-(5.403). Before directly proceeding to the proof of
the uniqueness theorem, we recall that constitutive relations B(H) for un-
hysteretic media satisfy the following constraints (see Section 2.4): (a) Ja-
cobian matrices for constitutive relations are symmetric; { b) the following
inequalities are valid:

¢/AH|?> < AB-AH < C|AH%. (5.408)

Here AH is an arbitrary increment of the magnetic field and AB is the
corresponding increment of the magnetic flux density.

The left inequality in (5.408) expresses the fact that the magnetic
mediwm is passive, while the right inequality in (5.408) reflects saturation
phenomena of magnetic media.

Inequalities (5.408) can also be written in the following equivalent form:

—, —

cg]* < € JH)E < CIEPP, (5.409)

where J(H) is a three-dimensional symmetric Jacobian matrix with matrix
elements evaluated at the ficld H and 5 is an arbitrary three-dimensional
vector. The values of coustants ¢ and C depend on particular forms of
counstitutive relations. In the case of nonlinear isotropic media with B(H) =
#({H)H, we have established (see (2.315)) that

c= n}}n uwa(H), C= max u(H), (5.410)

where minimum and maximum are taken over the relevant range of variation
of H.
Now we are ready to prove the validity of the following statement.

Uniqueness Theorem. For unhysteretic magnetic media with constitu-
tive relations that satisfy inequalities (5.408) (or (5.409)), the boundary
value problem (5.397) (5.403) has the unique solution.

Proof. Suppose that there are two solutions ¢(1) and ¢(® of the bound-
ary value problem (5.397)-(5.403). Then, these solutions must satisfy the
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Galerkin form (5.407):

)
/ Vi - VgD - — [ng;v-B(-——Vgga“))dS
Jv Ho 4

:/ WTdS — $TdS, (5.411)
S(()') 'Slmnmu
/vu Voo - - Vg B(—V5¢(2)> ds
lto
(5.412)

- / WTdS — / PpTdS,
J Seon J Sbortom

By subtracting formula (5.412) from formula (5.411), by introducing the

notation
g = — 3, (5.413)

and by taking ¥ = @, we derive
) h 2
/ V3| dv— — {vsg;m[B (--v‘gr*o(')) - B (—v‘S 2 )] dS = 0. (5.414)
Jv Ha /.

Consider the inerement of the magnetic field:
BH = -V (¢ = ) = Vg, (5.415)
The corresponding increment of the magnetic flux density is
VB = B (~vs¢“>) -B (mvwm) . (5.416)
According to the left inequality of (5.408), we have
Vs [B(-Vsp") - B(-Vip?) > lVipl (5.417)

By using the last inequality in the formula (5.414), we arrive at the contra-
diction

. T e
0= / Vg2 — - fvgg;m B (-Vso) = B (-9sp?)] ds
Jv Ho I

. he f .
> / IVG[du + I—jfﬂvggaws >0, (5.418)
NA% 0
s
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This contradiction is removed only when
Vo =0. (5.419)

Because ¢{c0) = 0, from the last equation we find

p=0, (5.420)

and
o) = ), (5.421)
The uniqueness is proved. "

Next, we proceed to the finite element discretization of the Galerkin
form (5.407). We shall look for the approximate solution in the form:

N
PR PN =) Pnm, (5.422)

n=|

where, as before, «, are local support finite element functions, while ¢,
are unknown node values of .

By substituting the expression (5.422) into the Galerkin form (5.407)
and by choosing sequerntially

Y=q, (i=1.2,...N), (5.423)

we end up with the following nonlinear algebraic equations:

N N
. o
Z D / Va,  Vagd — L Vsa;, -B | — Z onVsa, {dS
n=l1 SV Fo . n=1
S (5.424)
= / a, TdS — a«TdS, (¢=1,2,...N).
S Siap S Shottom

By solving these equations with respect to unknowns ¢,, we can find the
approximate solution .

Three important questions can be posed concerning nonlinear finite
clement Eq. (5.424). Is the solution to these equations unique? Does the
finite element solution @i converge to the exact solution 7 Is it possible
to design iterative techniques for the solution of nonlinear finite element
equations (5.424) that are globally convergent? Next we shall present
affirmative answers to all these questions.
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To establish the uniqueness of the solution of the finite element equa-
tions (5.424), we shall rewrite them in the following cquivalent form:

/ Vo - Vende — — Vg(ll B(-Vseon)dS
,u()
_ (5.425)
= / o, TdS — o, TdS, (1=1,2,...N).
Stom Sttrom

By multiplying cach equation in (5.425) by an arbitrary cocficient d; and
by adding them together, we obtain

/V'U‘/'N Vondv — — %VSLV B(-Vgy)dS
JV

Ho

= / YnTdS — / WHNTdS,
Js Js

[ Ohiattom

(5.426)

where we introduce the notation

N

N = 2111”1~ (5127)

=1

Thus, finite element Egs. (5.424) are equivalent to the form (5.126) where
Py s an arbitrary lincar combination (5.427) of finite clement functions
v,

The form (5.426) has the sane mathematical structure as the Galerkin
form (5.407). For this reason, hy literally repeating the same line of rea-
soning as in the proof of the uniqueness theorem, we can establish that the
function px that satisfies the form (5.426) is unique. This is tantamount
to the uniqueness of the solution of the finite clement Eqgs. (5.424). [t is
remarkable that the uniqueness holds for any finite clement mesh (and for
any N).

Now. we shall discuss the convergence of the finite element solution
o~ to the exact solution. To this end, cousider the Hilbert space H' with
the inner product

< g1 >= / Vi - Vede -+ h %Vm/! -VisipdS, (5.428)
Jv .

and the norm

[

ol = [ [wetansn fivapras) (5.429)
JV J
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Y

Consider also subspace H) of H', which contains all lincar combinations
of the form (5.427). We proceed to prove the following statement.

Theorem (convergence of the finite element technique). The fol-
lowing inequality is valid:

‘[ lle — ol < %Hso %1, (5.430)

where % is the best approximation to » by functions from Hj,:

lbo =411 = min [l = ] (5.431)

Proof. First, a fow remarks concerning the meaning of this theorem. It
is clear that the inequality (5.430) implies the convergence of the finite
clement technique. This is because the error of the best approximation of
any function p from H' by functions from H goes to zero as the density
of the finite element mesh s infinitely incercased (N — o). This inequality
also characterizes the rate of convergence. Naunely, this inequality means
that pa converges to ¢ as fast as IT\ converges to 2. Furthermore, this
inequality suggests the nnportance of the proper design of the finite element
mesh. The better the design of the finite element mesh, the less the quantity
[l - ¢%l] and the better the quality of the finite element solution. This
is the trite maxnn that the finite element solution is as good as its finite
clement mesh.

The proof of inequality (5.430) is based on upper and lower estimates
of the following expression:

: | W
1=/|¢~¢M4H74”%VM¢79N%HN*VwﬂfBFWH¢NWH‘
JN

Ho
5
(5.432)
First, we find the lower estimate. By nsing the right inequality (5.408), we
Lrave

~Vs(p ~ wn) B(=Vap) - B(- Vson)] 2 cTs(e — on)[% (5.433)

By using the last inequality in the expression (5.432) and taking into ac-
count the formula (5.429) and the fact that ¢ > g, we derive

12 le —enll® (5.434)
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To tind the upper estimate for I, we shall rewrite formula (5.432) in the
following equivalent form:

= / V@R —en) - Vip —pn)dv

o %Vs vy - on) - B(-Vgg) - B(=Vson)]dS
0

/ Ve = ¢%) - Vip — pn)dv
T %Vs o — %) [B(=Vsg) — B(—Vspn)|ds.
0

[t turns out that

/ V(¥ —on) Vip ~ pn)de
(5.436)
" V(0% — ) [B(=Visp) = B(=Vspon)jds = 0.
0.
),
To prove this, we replace ¥ in the Galerkin form (5.407) by an arbitrary
function ¥rx from Hy and then subtract the formula (5.126) from that
expression. As a result we find

/ Vin (¢ —pnlde “ / Visiin Vise) B Vagn)ds =0
Jyv 0

S (5.437)
Because 1% — py belongs to H) and becanse the identity (5.437) is valid
for any ¢ from HY, it will also be valid for vin = vy - 2. This proves
the formmla (5.43G).

From formulas (5.435) and (5.436), we conclude:
- / Uiy~ 9%) - Vg = o )do

(5.438)
/1- fv — %) [B(~ V) - B(—Vapn )ds.
]

By using the (I;m('hy 111(‘,(111;1.ht,v we derive

(s ()

f|vg - e ] - / —V) — B(=Von)|*ds
S

N()
(5.439)
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378
By recalling formulas (2.295) and (2.296), we have
B(- Vi) - B(=Vson) = Al=Vslp — o), (5.440)
where the matrix A is given by
(5.441)

1
A= / JH)dv, H, =-Vsen +vVs(pny — 9).

Jo
Strictly speaking, matrix A depends on ¢ and ¢ . However, for all possibl

Strictly spe
and @, this matrix is symmetric and satisfies inequalities

€] < €- A€ < Clé] (5.442)

These inequalitios directly follow from formula (5.409). Frow the above
inequalities and the symmetry of A, we find that for any ¢ and @ we have

l14]] < ¢
Consequently,
IB(~Vgp) ~ B(-Vsan)| € ClVs(p — o)™ (5.443)
By substituting the last result into formula (5.439) and taking into account

that (" > jtg. we obtain
L

1< ¢ {( | V(g - 't,r"ﬁ.)|2(11r> s </ [V (i - a,?;v)[z(hf) )
Jyv Jv

T
! X (5.414)
h % Vsle - v5)2as | - [ h / Vsl — on([2ds }
‘.S' '5
By introducting vectors
{5.415)

a=(a.ay).

a) =

(/ IV (g~ v | (/1) oaz=|h %|V‘q(gp - %)%dS
Jyv .
5

!

by = (A Vi - u;;v)\zd'u> . %qu NS ),
(5.447)
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we can rewrite the inequality (5.444) as follows:
C ¢
I'< —a-b< —Jal|bl. (5.448)

o Ho

It is clear from formulas (5.429) and (5.445) (5.447) that

la = lle —wXIl, bl =l¢ — e~ (5.149)
Thus, we have
(7 IRy KA
I's —llp—vyll v - el (5.450)
t o
From inequalitics (5.434) and (5.450), we have
2« ¢ e EoAn
o = enll® < l‘r”kﬂ =l v — el (5.451)
)
which is tantamonnt to
e~ enll € e~ vkl (5.452)
o
n

Now, we consider the globally convergent iterative technique for the
solution of nonlincar finite clement Eas. (5.425). This technique can be
mathematically formulated as follows:

——— e .

' . Iyt . )
/ Ve, VWD 4 2L /vgn,vvwfw‘.*”d.s':
5

o

Ho

.
J5,

hye, [ . \ .
e o [Tl v LB (vt
. It
S

A
fuba |
=
e |
g

=

o, TdS — / o, TdS,  (1=1,2....N).
J S

opr

where

-
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Thus, on each step of iterations we have to solve linear simultaneous Egs.
(5.453) whose right-hand sides depend on the previous iteration as well as
on excitation conditions. The matrix of these linear equations remains the
same for all iterations. This can be clearly seen if the iterative technique
(5.453) is written in the form:

N
S i = f5U =12, N), (5.455)
Yin = Va; Va,d -Vsa,ds, (5.456)
‘/
(k+1) _fpte ky , 1 B
fi Vsa; - |Vspy' + —B(=Vspy')| d
Ho He
(5.457)
+ / o, TdS — a; TdS.
Stop Shottom J

To prove the global convergence of the above technigue we introduce space
HY ., Of linear combinations (5.427) with the following inner product:

. |
< PN PN >,,,:/ Vi - Vondo + ;i }Vsuvy,v-vgwds, (5.458)
JV ‘.
5

and the norm

. hite .
ol = / Vv + % / Vs 2dS. (5.459)
JV O .
N

Next, we shall prove the following result.

Theorem (global convergence of iterative technique). Iterations
(5.453) globally converge to the solution of nonlinear finite element Egs.
(5.425) at least as fast as a geometric series with the ratio:

C—-c

= . 5.460
1=C +c ( )
Proof. By using simple transformations, from formulas (5.453) we derive
hpe
/ Vi - k+l) (k))d 4 P %Vsl/zv Vg(w(kﬂ) 5\’,“))(15:

hite
:/Vﬁ/)N VS(W(k) “CH))
0

L (B(-Vsel) - B(-V w““’))}ds, (5.461)

€
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where ¥y is an arbitrary function from Y, .. - By taking

vv=ol T - ol (5.462)
from formulas (5.459) and (5.461) we find

(k+1 k),
o T = o112

bt (k+1 k k—1
— %V N - ¥ )[ (() ‘PF’V ))
Lo

(5.463)

+A(B( Vo) — B(-Vgpb ! ))}db‘.
/Lff
By recalling formulas (2.295) and (2.296), we have

B(-Vspl) - B(~Vsph ) = - Ars Vsl - ) (5.464)
where

-1
Ak :/ JH,)dv, H, = -Veo'® + vt " = 8. (5.465)
40

and subscript. “A&, k—1" Indicates that the syimmetric matrix Ak.;\. _y depends

. o1 . . R . .
on ;px)) and p(mk. ). By using the expression (5.464) i the formula (5.463).
we obtain

&t — 211

N TN
hp [ k4l k T (k k=10 e
e fw»ox-* P U - -/--I—AA..k_nv.g(soN) - ol s,
J ‘
) (5.466)
where [ is the identity matrix.
Next, we shall prove that
L1 C—c
I — — A - 0.467
I ok il < e (5.467)

Indeed, according to mequalitics (5.409) and formula (5.465), we have

- ~ — —,

CE? < € Apnoi€ < CIEPR (5.468)

By using this fact and formula (5.454) for p,., we find

A

- —C =, ~ [ 1 N
(C.Jr(:\ﬂz <¢- ([ -- I_—Ak k-l) €< g‘f*lf\z (5.469)
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Because matrix 1 — ﬁlf— Ak‘k,( is symmetric, the last inequalities imply the
validity of inequality (5.467).
By using incquality (5.467), we derive

~ [ 4 k k— (V—( k k— r
(7 — /’;Ak,kfl)vﬁ'(‘/“ff\f) \P( 1)) = O |V5( o - P(\' ))|~ (5.470)

Now, we turn back to formula (5.466) and, by using (5.470) and the Cauchy
inequality, we obtain:

(k+1) k)
len Iy, <
C-c hlt( AR _ ik k- 1)
e /W A 1958 ~ o las
Ste
C = [ hyte Gy :
e f|v N — o) 2ds
CHe\ ‘ (5.471)
3
hyt,. TR )
o[ 2 flvs D s
Ho g
- C (k1) Y (k) (k--1)
1-( ||w = o e el = 28
}
which is tantamount to
(k+1) (k) k=) e oy
ol ™ = oW < - —on - (5.472)

That means that iterations ,9(\17) form a contracting sequence. This sequence
converges at least as fast as a geometric series with the ratio given by the
formula (5.460). .

It is evident from the proof of the theorem that the actual rate of con-
vergence may be substantially higher than the one specified by inequality
(5.472). This is because we have used rough estimates to guarantee the
validity of inequality (5.472) under all possible circumstances. It is also iin-
portant to keep in mind that we have proved the global convergence of the
iterative technique (5.455) (5.457) iu the norm (5.459), which is stronger
than the norm (5.429). This means that the iterative technique (5.455)-
(5.457) will converge faster in the norm (5.429) than is predicted by the
imequality (5.472).

The proven theorem also implies the existence of the solution of non-
linear finite clement Egs. (5.424) for any finite element mesh (for any N).
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Furthermore, using the iterations

Rpte

o

/ Vi - Yty 4 /sz Vs TUdS =
Y K
hgee

2%

+ / PIdS — / wl'dS,
- Sum . Shnnum

and by literally repeating the same hine of reasoning as in the proof of

the last theorem, we can establish that iterations (5.473) globally converge

to the exact solution ¢ specified by the weak Galerkin form (5.407). This

nnplies the existence of the weak solution of the nonlinear boundary value
problem (5.397) (5.403).

[t is instructive to compare the iterative technique (5.455) (5.457) with

the Newton method. The above iterative technigue converges globally (i.e.,

. . 1
Vst Do)+ L B(-Vip®ldS (5473
.Ag €

for any choice of initial guess), whereas the Newton method converges lo-
cally (1.e., for initial guesses that ave suthiciently close to the actual solution).
The above iterative technigue requires the solution of linear equations with
the same stiffhess matrix {4, } at every step of iterations, whereas in the
case of the Newton method the matrix of the simultancons equations to
be solved at each iteration is a Jacoblan of the nonlinear finite clement
cquations and this Jacobian must be reevaluated by using the previous it-
cration. Thus. this Jacobian changes from one iteration 1o another. This
makes the computation of every new iteration more costly. However, in
a sufficiently close vicinity of the actual solution, this additional conputa-
tional cost is paid for by the quadratic rate of convergence of the Newton
method, whercas the jterative techmigque (5.455) (5.457) has ouly the lin-
ear rate of convergence. This suggests that the combination of the above
iterative technigue and the Newton method may be desirable.

Finally, we remark that the results presented in this section can also
he obtained for static fickds in the presence of bulky (voluminous) mag-
netic objects. This is actually accomplished in the author’s book [7] albeit
published in Russian.
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Appendix A

The Preisach Model of Hysteresis

Supposce that we want to model a hysteretic rate-independent relation
between some phvsical quantity w(4). which will he called the input. and
another physical quantity f(). which will he called the ontput. It is as-
sumed that the (1) vs. () relation exhibits historyv-dependent branching.
This means that the realization of a particular branch of this hvsteretic
relation is determined by the past extremum values of the inpat w(f). To
model such a hysteretie refation. we need a mathematical tool that itself
(due to its intrinsic strncture} will be able to detect and accumulate input
extrema and then to choose appropriate branches of the hysteretic rela-
tion according to the accunmmlated histories. One such tool is the Preisach
model, which we will proceed to define next.

Consider an infinite {continnons) set of the simplest hvsteretic nonlin-
caritios (operators) 4,,4. Each of these operators can be represented by a
rectangular loop on the input-outpat diagram (see Fig. A.1). Numbers a
and 3 correspond to “up” and “down” switching values ol input. respec-
tively. Tt will be assumed in the sequel that o > 40 Outputs of these
clementary hysteresis operators may asswune only two values: +1 and 1.
As the input w(t) is monotonically iucreased above e the ascending branch
abede is traced. When the input is monotonically decreased below 3, the
descending branch cdfba is followed. The horizontal parts of these rect-
angular loops are fully reversible. Thus. irreversibility occurs as a resnlt
of switchings. Along with the infinite set of operators 4,3 consider an ar-
bitrary weight function je(ev, /). Then the Preisach model can be written

as

385
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fit) = // (e BYiapult)dadB. (A1)

azp

Thus, the Preisach model is constructed as a superposition of the simplest
hysteretic operators 444. These operators can be viewed as main building
blocks of the model. In this sense, the Preisach model can be viewed as a
spectral decomposition of complicated hysteretic operators into rectangu-
lar loop operators 445. There is also an interesting parallel between the
Preisach model and wavelet transforms, which are currently very popular
in the area of signal processing. Indeed, all rectangular loop operators Jas
can be obtained by translating and dilating the rectangular loop operator
A1.—1, which can be regarded as the “mother loop operator.” Thus, the
Preisach model can be viewed as a “wavelet operator transform.”

It is important to note that rectangular loop operators Jo5 are lys-
teretic operators with local memories. This means that for these operators
the values of output at some instant of time t; and the values of input
u(t) at all subsequent instants of time t > t; uniquely predetermine the
value of output for all t > ¢;3. In other words, for hysteretic operators with
local memories the past exerts its influence upon the future through the
current values of output. Although the Preisach model is constructed as a
superposition of rectangular loop operators with local memories, it usually
has a nonlocal memory. In other words, for the Preisach model the current
value of output f(tg) is not sufficient in order to predict the future values
of f(t) for t > ty given the values of u(t) for t > ty. It turns out that
the past extremum values of u(t) that occurred for ¢ < ¢y affect the future
values of f(¢t) for ¢t > to, and this is the essence of nonlocal memory. It is
remarkable that a new qualitative property of nonlocal memory emerges as
a collective property of a system having a huge (infinite) number of simple
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and qualitatively similar components y,4 with local memories.

To understand the formation of nonlocal memory of the Preisach model
as well as its other properties, the special diagram technigque can be em-
ployed. This diagram technique is based on the simple fact that there is a
one-to-one correspondence between operators .5 and points (a. 3) of the
half-plane o = 3 (see Fig. A.2). Cousider a right triangle 7. Its hypotenuse
is a part of the line oo = F, while the vertex of its right angle has the coor-
dinates aq and Jy with J9 = —ag. In the sequel, this triangle will be called
the luniting triangle and the case when (e, 3) s a finite function with a
support, within 7" will be discussed. In other words, it will be assumed that
the function p(a, 3) is equal to zero outside the triangle 7. This case covers
the important class of hysteresis noulinearities with closed major loops.

To start the discussion, we first assume that the input w(f) at some
instant of time fy has a value that is less than g, Then, the ontputs of all 4-
operators that correspond to the points of the triangle T are oqual to — 1. In
other words, all 4-operators are in the “down™ position. This corresponds to
the state of “negative saturation”™ of the hysteresis nonlinearity represented
by the Preisach model.

Now, we assume that the input is monotonically inercased antil it
reaches at time f; some maxinum value w;.  As the input is being in-
creased, all A-operators with “up” switching values o less than the enrrent
input value w(t) are being turned into the “up™ position. This means that
their outputs become equal 1o +1. Geontetrically. it leads to the subdivi-
sion of the triangle 7" into two sets: ST(#) consisting of points («. 3) for
which the corresponding 4-operators are in the “up” position. and S7(#)
consisting of points (v, /3) such that the corresponding A-operators are still
in the “down” position. This subdivision is made by the line o = w(#} (see
Fig. A.3), which moves upward as the input is being increased. This upward

o
(0,.5) b
* [ G
R
e
7

Fig. A.2
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motion is terminated when the input reaches the maximum value w,. The
subdivision of the triangle 7" into S*(¢) and S~ (#) for this particular instant
of time is shown in Fig. A.4.

Next, we assumne that the input is monotonically decreased until it
reaches at time ¢y some mininnun value uy. As the input is being decreased,
all 4-operators with “down” switching values /3 above the current input
value, u(t), are being turned back to the “down” position. This changes
the previous subdivision of 7' into positive and negative sets. Indeed, the
interface L(t) between ST(#) and §7(8) now has two links, the horizontal
and vertical ones. The vertical link moves from right to left and its motion
15 specified by the equation 4 = u(¢). This is illustrated by Fig. A.b. The
above motion of the vertical link is terminated when the input reaches its
minimum value uy. The subdivision of the triangle T for this particular
stant of time is shown in Fig. A.6. The vertex of the interface L(1) at
this instant of time has the coordinates a = u and 3 = uy.



Appendiz A 389

o
X0)
s
4
B=u(t) B
Fig. A5
o
T
) | S
S+

P

Fig. A.6

Now, we assume that the input is increased again until it reaches at
time t3 some maximum value us, which is less than u;. Geometrically,
this increase results in the formation of a new horizontal link of L(t) that
moves upwards. This upward motion is terminated when the maximum ug
is reached. This is shown in Fig. A.7.

Next, we assume that the input is decreased again until it reaches
at time t4 some minimum value ug4, which is above uy. Geometrically,
this input variation results in the formation of a new vertical link that
moves from right to left. This motion is terminated as the input reaches
its minimum value u4. As a result, a new vertex of L(t) is formed that has
the coordinates a@ = ug and 8 = u4. This is illustrated by Fig. A.8. By
generalizing the previous analysis, the following conclusion can be reached.
At any instant of time, the triangle T is subdivided into two sets: S*(¢)
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Fig. A.8
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consisting of points (cv, /7) for which the corresponding A-operators are in
the “up™ position, and S~ (f) consisting of points (o 3) for which the cor-
responding 4-operators are in the “down”™ position.

The interface L(t)

between ST(t) and S7(1) is a staircase line whose vertices have « and /3
coordinates coinciding respectively with local maxima and mimima of input.
at previous instants of time. The final link of L(1) is attached to the line
o = /3 and it moves when the input is changed. This link is a horizontal
one and it moves upwards as the iuput is increased (see Fig. A.9). The
final link is a vertical one and it moves from right to left as the input is

decreased (see Fig. AL 10).

According to the above conclusion, at any instant of time the inte-
gral in (A1) can be subdivided into two integrals, over S (¢) and S~ (¢),

respectively:
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Fig. A.10

po) =Fut) = | ules)iapuit)dads

SH(t)
+ // (e, B yagu(t)dads. (A.2)
5 (1)
Since
Fagu(t) = +1, if (o, 3)eST(t) (A.3)
and
Fapu(t) = =1, if (a,3)eS™(t), (A4)

from (A.2) we find

// a, B)dadf — // wla, B)dad3. (A.5)

S+(t) S=(¢)
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From this expression, it follows that an instantancous value of output de-
pends on a particular subdivision of the limiting triangle, T, into positive
and negative sets ST(t) and S (). This subdivision is determined by a
particular shape of the iuterface L(t). This shape, in tury, depends on the
past. extremum values of input because these extremum values are the co-
ordinates of the vertices of L(#). Consequently, the past extremum valies
of input shape the staircase interface, L{t), and in this way they leave their
mark upon the future.

To wmake this point perfecily clear, consider two puts wy (¢) and wy(t)
with two differeut past histories for ¢+ < . This means that they had
different local extrema for ¢ < /. It is next assumed that these inputs
coincide for £ > #'. Then according to (A.5). the outputs f1(1) and fo(t)
corresponding to the above mputs are given by the formulae:

Ni() = // jilce, e — // Jelev, A)devd3, (A.6)

S0

// jelev,3)dad3 // s, i) devedid, (A7)

O

Ja(1)

5

where S and S, (0).9) (1) and S, (1) are positive and negative sets of
two subdivisions of T associated with o (f) and wa(f). respectively,
These two subdivisions are different because they correspond to two

different input histories. Thus, from (A.6) and (A.7) we conclude that
) # fat) for ¢t (A.8)

[t 15 clear that the last inequality (A.8) holds even if the outputs f(t7) and
Sa (") are somchow the sane at time ¢, This means that the Preisach model
deseribes, in general. hysteresis nonlinearities with nonlocal memories.

The previous disenssion reveals the mechanismy of memory formation
in the Preisach model. The memory is formed as a result of two different
rules for the modification of the interface L{#). Indeed. for a monotonically
increasing input, we have a horizontal final link of L(1) moving npwards,
whereas, for a monotonically decreasing input, we have a vertical final link
of L(t) moving from right to left. These two different rules result in the
formation of the staircase interface. L{t), whose vertices have coordinates
cqual to past iuput extreia.

We next proceed to the discussion of an interesting property that fur-
ther elncidates the mechanism of memory formation in the Preisach model.
[t turns out that this model does not acamulate all past extremum values
of input. Some of them can be wiped out by subsequent input variations.
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Fig. A.11

To make this property clear, consider a particular past history that is char-
acterized by a finite decreasing sequence {uwy . ug. s, wr }oof local input max-
na and an inereasing sequence i, g, 1k of Tocal inpat inima. A
typical «v - 7 diagram for this kind of history is shown in Fig. A.11. Now,
we asstune that the inpat w(t) is maonotonically imerecased until it reaches
sotpe maxinnim value wg, which is above wy. This monotonic inerease of
input «(f) results in the formation of a horizontal final link of L(f). which
moves upwards until the maxinmon value wg is reached. This results in
a modificd o - 3 diagram shown in Fig, A2, 1t s evident that all ver-
tices whose a-coordinates were below wg have heen wiped out. It s also
clear that the wiping out of vertices is equivalent 1o the erasing of the his-
tory associated with these vertices. Namelv, the past input maxima and
miniia that were respectively equal to o and S-coordinates of the erased
vertices have been wiped ont. We have illustrated how the wiping out of
vertices occurs for monotonically nereasing inputs. However, it is obvious

o
)

Fig. A.12
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that the wiping out of vertices occurs in a similar manner for monotonically
decreasing inputs as well. Thus, we can formulate the following property
of the Preisach model, which is called the wiping-out property.

Each local input mazimum wipes out the vertices of L(t) whose a-
coordinates are below this mazimum, and each local minimum wipes out the
vertices whose (3-coordinate are above this minimum.

The wiping-out property is asserted here in purely geometric terms.
This property can also be described in analytical terms.

Consider a particular input variation shown in Fig. A.13 for the time
interval ty < t < t'. We assume that at the initial instant of time £y the
input value u(tg) was below (. This means that the initial state is the state
of negative saturation. Consequently, the whole history has been written by
the input variation after time tq. We would like to specify explicitly which
local input extremum values will be stored by the Preisach model at time
t’. Consider the global maximum of the input at the time interval [tg,t'].
We will use the notation M; for this maximum and ¢} for the instant of
time the maximum was reached:

M = ma>/(] u(t), u(t) = M. (A.9)

[to.t

It is clear that all previous input extrema were wiped out by this maximuin.
Now, consider the global minimum of the input at the interval [¢t],t']. We
will use the notation m; for this minimum and t; for the time it was
reached:

m; = min u(t), u(ty) =my. (A.10)

(t7 ']

It is apparent that all intermediate input extrema that occurred between
t7 and t; were erased by the minimum m;. Next, consider the global
maximum of the input at the interval [¢7,¢']. The notations Mz and t] are
appropriate for this maximum and the time it occurred:

My = max u(t), u(ty) = M. (A.11)

e, .t]
It is obvious that this maximum wiped out all intermediate input extrema
that occurred between t] and ¢ . As before, consider the global minimum

of input at the time interval [t3,#] and the notations

mo = min u(t), u(ty ) = my. (A.12)

[t3.']

It is clear that this minimum wiped out all intermediate input extrema.



Appendiz A 395

Continuing this line of reasoning, we can inductively introduce the
global maxima My and global minima rg:

M, = max u(t), u(ty) = My. (A.13)
[t t]

my = min u(t), ulty ) = my. (A.14)
ft ]

Only these input extrema are aceumulated by the Preisach model, while all
intermediate input extrema are crased. It is natural to say that My and my
(k=1,2,..) form an alternating series of dominant maxima and minima.

It is evident from this analysis that - and 3- coordinates of vertices
of the interface L(t") are equal to My and 1y, respectively. It is also clear
that the alternating series of dominant extrema is modified as time goes
by. This means that new dowinant extrema can be introduced by the time-
varying input, while the previous ones can be erased. In other words, A,
and my are functions of # as it is clearly suggested by their definitions.

Now, the wiping-oul property can be stated in the following form. Only
the alternating scrics of dowmanant tput crivemma are stored by the Preisach
model. ALl other dnput cxtrema ave wiped out.

It is worth noting that the wiping-out property is somewhat natural
and consistent. with experimental facts. Indeed. experiments in the area
of magnetics show the existence of major hysteresis loops whose shapes do
not. depend on how these loops are arrived at. In other words, the major
hysteresis loops are well defined. This means that past history is wiped out
by input oscillations of sufficiently large maguitude. This is in complete
agreetnent with the wiping-out property.

Consider another characteristic property of the Preisach model that is
valid for periodic input variations. Let wy (#) and w2 (#) be two inputs that
may have different past histories (different alternating series of dominant.
extrema). However, starting from sonie instant of time ¢, these inputs vary
back and forth between the same two conseeutive extrenmm values, wy and
w_. It can be shown that these periodie iput variations result in minor
hysteresis loops. Lot Figs. A4 and A5 represent o — [ diagrams for
the inputs w, (¢) and wy(t), respectively. As the inputs vary back and forth
between wy and u_ . the final links of staircase interfaces Ly(8) and Ly(1)
move within the identical triangles 77 and 75, This results in periodic shape
variations for Ly (t) and Ly(¢), which in turn produce periodic variations of
the outputs, f(#) and fo(t). This means that some minor hysteresis loops
are traversed in the f - w diagram for both inputs (see Fig. A.16). The
positions of these two loops with respect to the f-axis are different. This is
because these two inputs have different past histories, which lead to differ-
ent shapes for staircase interfaces, Ly (1) and Lo(t). As a result, the values
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of outputs for the same values of inputs are different. This is easily seen
from the formula (A.5). However, it can be proven that these two hysteresis
loops are congruent. This means that the coincidence of these loops can
be achieved by the appropriate translation of these loops along the f-axis.

Fig. A.13

oy

S 200

Tt B

AT,

Fig. A.14
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The proof of the congrueney of these loops is equivalent to showing that
any cqual increments of inputs w) () and uz () result in equal inerements of
outputs fi(t) and fo(t). To this end, let us assume that both inputs after
achieving the same minimumm value v are inereased by the same amount:
Auy, = Auy = Au. As a result of these nereases, the identical triangles
ATy and AT} are added to the positive sets S\ (#) and S5 (#) and subtracted
from the negative sets Sy (¢) and S; () (sce Figs. A.14 and A.15). Now,
using the formmla (A.5), we find that the corresponding output increments

are given by

Af =2 // jiev, 3)ded 3, (A.15)

AT,

Afy, =2 //;L(a,/ﬁ’)d(wlﬁ. (A.16)

AT
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Since AT; = AT, we conclude that
Afi=Af. (A.17)

The equality (A.17) has been proven for the case when inputs u,(¢) and
uy(t) are monotonically increased by the same amount after achieving the
same minimum value w_. Thus, this equality means congruency for the
ascending branches of these minor loops. By literally repeating the previous
reasoning, we can prove that the same equality {A.17) holds when the inputs
wi(t) and uy(t) are monotonically decreased by the same amount Aw after
achieving the maximum value wy . This means that the descending branches
of these minor loops are congruent as well. Thus, we have established the
following property of the Preisach model, which is called the congruency

property.

All minor hysteresis loops corresponding to back and forth varations
of inputs between the same two consceutive criremum values are congruent.

Next., we proceed to the discussion of the identification problem for
the Preisach model. The essence of this problem is in the determination of
weight function p{a.3). The set of first-order transition curves will be used
for this purpose. These curves can be defined as follows. First, the input
w(t) should he decreased to the value that is less than /3. This brings a
hysteresis nonlinearly to the state of negative saturation. Next, the input
is wonotonically increased until it reaches some value o). The correspond-
ing o — 4 diagram is shown in Fig. A.17. As the input is increased, an
ascending branch of a major loop is followed (see Fig. A.18). This branch
will also be called the limiting ascending branch because usually there is no

Fig. A.17
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%

Fig. A.18

branch below it. The notation f,, will be used for the output value on
this branch, which corresponds to the input value u = o’. The first-order
transition (reversal) curves are attached to the limiting ascending branch.
Each of these curves is formed as the above monotonic increase of the input
is followed by a subsequent monotonic decrease. The term “first-order” is
used to emphasize the fact that each of these curves is formed after the
first reversal of input. The notation fors will be used for the output value
on the transition curve attached to the limiting ascending branch at the
point fo-. This output value corresponds to the input value v = 3 (see
Fig. A.18). The above monotonic decrease of input modifies the previous
a — 3 diagram shown in Fig. A.17. A new a — 3 diagrain for the instant of
time when the input reaches the value 3 is illustrated by Fig. A.19.
Now, we define the function:

F(a!\ ) = 5 (fur — o) (A18)

This function is equal to one half of the output increments along the first-
order transition curves. The next step is to express this function in terms
of the weight function up{a, 3). To this end, we compare the a — 3 diagramns
shown in Figs. A.17 and A.19. It is clear from these diagrams that the
triangle T(a', 3') is added to the negative set S~ and subtracted from the
positive set S* as a result of the monotonic input decrease from the value
u = o to the value v = §'. Using this fact and the formula (A.5), we
find that the Preisach model will match the output increments along the
first-order transition curves if the function p(a, 3) satisfies the equation:

fa'ﬁ’ - fa’ = -2 // u(aﬁ)dadﬁ (Alg)

T(a’.8")
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Fig. A.19

By comparing the formulas (A 18) and (A.19), we obtain

F(o // Fdevd;3. (A.20)

(et )

The integral over the triangle T(a’.3) can be written as the following
double integral:

l"((\’,;)"):/ / Jlev o Ade | dis. (A.21)
J g3

By differentiating the last expression two tines (Hrst with respect to 3 and
then with respect to a’), we find:

— e

) ’a ( i)
/. [f/ _ ( R ) " B
e ) = Do’ (),f’ (A-22)

e

Invoking (A 18). the expression (A.22) can be written in another equivalent
form:

e — e

p{ad ) =

() /n 3
2 da’ s

1
O . R - _—

|
(Az;‘!
o

Thus, the complete identification of the Preisach model can be performed
by using the first-order transition curves shown in Fig. A.20.

The Preisach model can be munerically bnplemented by using the
formula (A.5) for the computation of the output. f(#), and the formnla
(A.22) for the determination of the weight function, p(ev,3).  Although
this approach is straightforward. it. encounters two main difficulties, First,
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Fig. A.20

it requires the nmmerical evaluation of double integrals in (A.5). This is
a tlime-consuming procedure, which may impede the use of the Preisach
model in practical applications. Second, the deterinination of the weight
function ye(cv. /3) by employing the formula (A.22) requires differentiations
of experimmentally (or numcerically) obtained data. These differentiations
may strongly amplify errors (noise) inherently present in any experimental
data. It tnaris out that another approach can be developed for the nmmerical
implementation of the Preisach model. This approach completely cirenm-
vents these difficultios. Tt is hased on the explicit formula for the integrals
in (A.D). This formula directly involves (without any differentiation) the
data nsed for the identification of jey, i),

The starting point for the derivation of the explicit formula for f(£) is
the expression (ALH).

By adding and subtracting the integral of (o, 3) over (8, the ex-
pression (AL5) can be represented in the form

1) = — //i/z((v.;‘f)d(ul,’f+ 2 // sl Hdad3, (A.24)
. A

St

where, as before, T is the limiting triangle.
According to (A.20). we find

// e, devd3 = Flog,, 3,). (A.25)
.

The positive set. ST(#), can be subdivided into n trapezoids Qg (see Fig.
A21). As a result, we have

" n(t)
// plo dadid = Z // p(ar, dewd3. (A.26)
() M= Qe

S
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It is clear that the number, n, of these trapezoids and their shapes may
change with time. For this reason, n and @y are shown in {A.26) as func-
tions of time.

Each trapezoid @i can be represented as a difference of two triangles,
T (Mg, mg—1) and T (Mg, mi). Thus, we obtain

// peddadd = [[ i, dads

Qu(t) T(Mi,mye_1) (AQ?)
// o, B)dads,
T(My ,my)
where, for the case of k = 1, m, in (A.27) is naturally equal to j3,.
According to (A.20), we find
// wla, FydadB = F(Mg,mi_y), (A.28)
T{Mi,me_)
and
// (v, B)dad3 = F(Mi,my). (A.29)
(M)
From (A.27), (A.28), and (A.29), we derive
// e, B)dadd = F(Me,me—y) — F(Mg,my). (A.30)
Qult)
From (A.24), (A.25), (A.26), and (A.30) we obtain
n(t)
F(&) = —Flag Bo) + 2 [F(My. me_1) — F(Mi,my)]. (A.31)
k=1

It is clear from Fig. A.21 that m,, is equal to the current value of input:
my, = u(t). (A.32)
Consequently, the expression {A.31) can be written as

n(t)—1
F#) == F(o0,80) +2 Y [F(Mi,mie—y) — F(My. mi)]
k=1
+ 2[F (M, mpu_1) — F(My, u(t)))]. (A.33)
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The last expression has been derived for monotonically decreasing input,
that is, when the final link of interface L(t) is a vertical one. If the input u(t)
is being monotonically increased, then the final link of L(t) is a horizontal
one and the & —  diagram shown in Fig. A.21 should be slightly modified.
The appropriate diagram is shown in Fig. A.22. This diagram can be
considered as a particular case of the previous one. This case is realized
when

M (t) = Ma(t) = u(t). (A.34)

According to the definition (A.20) of F(a, 3), we find

F(M,,m,) = F(u(t),u(t)) = 0. (A.35)
o
P
- &
S
u(t) B
Fig. A.21
o
L
S

u(t)

Fig. A.22
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From formulas (A.31), (A.34), and (A.35), we derive the following expres-
sion for f(t) in the case of monotonically increasing input:

n(t)—1
f(8) = = Flag,8) +2 S [F(My,mey) - F(Mi,mi)]
k=1
+ 2F(u(t), ma_y).

(A.36)

Thus, we have derived the explicit formulas (A.33) and (A.36) for output
f(t) in terms of the data used for the identification of the Preisach model.
These formulas constitute the basis for the numerical implementation of
the Preisach model. These formulas can also be useful for the evaluation
of the time derivative of f(t):

df(t) _231-'(A1,l,u(t)) . du(t)’ if di;(tl) < 0’

T :{ OF(u(th b1, 1)  dult du(t)
u(t), M, - u(t . u(t
dt 2= e T >0

(A.37)

We next proceed to the formulation and the proof of the fundamental
theorem, which gives the necessary and sufficient conditions for the repre-
sentation of actual hysteresis nonlinearities by the Preisach model.

Representation Theorem. The wiping-out property and the congruency
property constitute the necessary and sufficient conditions for a hysteresis
nonlinearity to be represented by the Preisach model on the set of piccewise
monotonic inputs.

Proof

Necessity. Let a hysteresis nonlinearity be representable by the Preisach
model. Then, this nonlinearity should have the same properties as the
model. In particular, it should have the wiping-out and congruency prop-
erties.

Sufficiency. Consider a hysteresis nonlinearity that has both the wiping-
out property and the congruency property. We intend to prove that the
hysteresis nonlinearity can be represented by the Preisach model.

The proof of the last statement is constructive. First, it is assumed that
the weight function, u(a, 3), is found for the given hysteresis nonlinearity
by matching its first-order tramsition curves. This can be accomplished
by using the formula (A.19). This formula is equivalent to (A.22), which
means that the integrals of u(a, ) over triangles T(a’, ') are equal to
one half of output increments, :Af = —é—(fa/ — farpr), along the first-order
transition curves. Next, it will be proven that if this weight function is
substituted in (A.1), then the Preisach model and the given nonlinearity
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will have the same input-output relationships. This statement is true for
the first-order transition curves due to the very way by which the weight
function, p(a, B), is determined. The induction argument will be used to
prove that the same statement holds for higher-order transition curves as
well. Let us assume that this statement is true for transition curves with
number 1,2, ... k. Then, for the induction inference, we need to prove that
this statement holds for a transition curve number k + 1.

Let a be a point at which the transition curve number k + 1 starts
(see Fig. A.23). The point, a, corresponds to some input value u = o'
According to the induction assumption, the output values of the hysteretic
nonlinearity and the Preisach model coincide at this point. Thus, it remains
to be proven that the output increments along the transition curve number
k + 1 are the same for the actual nonlinearity and the Preisach model.
Consider an arbitrary input value © = 8’ < o’. The output increment for
the nonlinearity will be equal to the increment of f along some curve ab (see
Fig. A.23). Let Figs. A.24 a and A.24 b represent o — 3 diagrams for the
Preisach model at the time instants when v = o’ and u = /3, respectively.
From these diagrams we find that the input decrease from o' to 3 results
in adding the triangle T(a’, 3') to the negative set, S7, and subtracting the
same triangle from the positive set, S*. Using this fact and the formmla
(A.5), we find that for the Preisach model the output increment along the
transition curve number & + 1 is given by:

Af=2 // J{(ex, B)doedf. (A.38)
T(a’ B
*t
IR
. ‘ ’é’v /
oy / ;
j/;" , /
- e a—#r‘/ — -y
P
d /
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However, according to the way the function, sl j3), is defined., the right-
hand side of (A.38) is cqual to the merement of the output along the Hrst-
order transition carve od (see Fig. A.23). Thus, it remains to be shown
that the output increments along the curves ab and ed are the same. It
is here that the wiping-out and congrueney properties will be used. The
proof proceeds ax follows. If starting from the point & we monotonically
increased the input value from 3 back to o, then, according to the wiping-
out. property, we would mrive at the same point o by moving along, sowe
curve ba (sce Fig, A23). Indeed. the wiping-out property mmplies that as
soon as the input exceeded the vatlue o' the history associated with bhack-
and-forth input variations between o and 7 should be erased and the
subsequent. oulput variation should {ollow the transition curve number &,
However. this would be possible if ouly for « = o we arrived back at the
point a. Similarly. i starting from the point J we monotonically increased
the input value from " to o', then. according to the smne wiping-out
property. we would arrive at the point ¢ moving along some carve de. Now,
invoking the congruencey property, we conclude that the hysteresis loops
bab and ded are congrnent. This is true because hoth loops result from
back and forth input variations between the same two conscecutive input
extrema, o and ;370 From the congruency of these loops. we find that the
output increments along the curves ab and od are the same. Consequently,
the output values for the hysteretic nonlincarity and for the Preisach model
coincide along the transition curve wnnber A 4 L. The last fact has been
proven for any 37 2 ~'. However, according to the wiping-out. property.,
the transition curve munber &t 1 shonld coineide with the transition curve
number A — 1 for /3 < 4", Thas, the case ;37 <2~/ falls in the domain of the
induction asstuuption. -

It is casy to sce that the essence of the given proof is in the reduction
of higher-order transition curves to the first-order transition curves. This
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reduction rests on both the wiping-out property and congruency property.

The proven theorem is very important because it clearly establishes the
limits of applicability of the Preisach model. These limits are formulated in
purely phenomenological terms, without any reference to the actual physical
nature of hysteresis. This reveals the physical universality of the Preisach
model.
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