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Preface

The area covered by this book is the discrete Volterra series and its application to
cancellation of nonlinear echo in digital telecommunication systems. This is the first
volume of Nonlinear Aspects of Telecommunications, which, as planned, will con-
tain altogether three volumes.

This volume consists of two chapters. The first chapter is devoted to explanation
of basics of the discrete Volterra series. The basic definitions and notions regarding
the discrete Volterra series, conditions for convergence and stability, and matrix
representation for multiple-input and multiple-output nonlinear digital systems are
presented. A very important problem of approximating a nonlinear digital system
with the use of the discrete Volterra series is dealt with on many pages. The newest
achievements in this area, not available in textbooks, are presented here. Finally,
other possible approximations for nonlinear digital systems are discussed.

The second chapter deals with the problem of nonlinear echo cancellation. After
introductory material regarding basics of adaptive cancellers, structures for nonlinear
echo cancellers using nonlinear transversal filters for baseband transmission are
analyzed. Nonlinear echo cancellers for voiceband transmission, as well as inter-
leaved structures, are presented in the last section of this chapter.

The book can serve as a text for graduate students of telecommunications. It
can be also helpful for engineers involved in the design of telecommunication
systems.

At the end of this short preface, I would like to express my sincere thanks to
Zbyszek Zakrzewski, who typed the manuscript and did all the drawings. I am also
indebted to Navin Sullivan and Felicia Shapiro, editors of the CRC Press, for their
support and kind cooperation. My special thanks goes to Zdzistaw Drzycimski, the
Head of the Institute for Telecommunications of ATR Bydgoszcz, for his continuous
encouragement.
©2001 CRC Press LLC
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1 Basics of Discrete 
Volterra Series

1.0 INTRODUCTION

The discrete Volterra series is one of the powerful tools used in analysis of nonlinear
digital systems. In this book, we present its application to nonlinear echo cancella-
tion. Presentation of solutions of nonlinear echo cancellers is, however, preceded by
theoretical material in this chapter. This material is necessary for understanding of
an analysis presented in the next chapter. The first chapter is long and seems maybe
to be partly very advanced because of the usage of functional analysis. The range
of functional analysis applied here is, however, needed for explanation and solving
of some problems related with the discrete Volterra series, such as its convergence,
approximation of a digital nonlinear system by the discrete Volterra series, and so
on. All the fundamental notions of functional analysis used are fully explained and
illustrated by examples. It is assumed to do this at the place of their first occurrence
in the text. No special appendices are devoted to them. The functional analysis allows
us to present many known results in a more general framework, as well as to present
the recent achievements in the field, which are inherently related to the use of this
analysis.

This chapter is devoted to basics of the discrete Volterra series. Thus, after
making the introductory remarks, we continue with Section 1.1, presenting the basic
definitions regarding the discrete Volterra series. Then, the basic notions related to
nonlinear sampled-data or, using another name for such systems, nonlinear digital
systems, are explained. Section 1.3 is devoted to the multidimensional Z transform
as introductory material for the next section, which deals with the discrete Volterra
series representation in the Z domain. Further relations of this representation with
the Laplace transform and the discrete Fourier transform representations are dis-
cussed as well. The very important topic of convergence and stability of the discrete
Volterra series, and of its components, is treated in Section 1.5. The next section
presents the matrix representation for multiple-input and multiple-output nonlinear
digital systems, which have the representation in the form of a discrete Volterra
series. Here, for the first time in this book, the first notion of the functional analysis
is introduced, that is, of the norm of a vector, and of a vector-valued sequence. In
Section 1.7, the notion of fading memory of a nonlinear discrete-time system
described by a nonlinear operator is introduced. Most of the material presented there
is, however, devoted to the explanation of basic notions of functional analysis used
in the following sections. These notions are mapping, function, operator, transfor-
mation, functional, linear space of which elements are vectors, or scalar- or vector-
valued sequences, normed space, metric space, convergence and continuity with
respect to a given metric, and, very important in this book, the l� space. The topic
©2001 CRC Press LLC



 

                                     
of fading memory is continued in the next section, where the definitions of the
related notions of decaying memory and of approximately-finite memory are intro-
duced, and discussed as well. The relations existing between the definitions of
memories mentioned above are explained. In Section 1.9, the approximation of
nonlinear discrete-time systems, possessing fading memory, or equivalently approx-
imately-finite memory with an additional property regarding continuity of a certain
functional obtained from the operator describing a system by the discrete Volterra
series is considered. Some recent results due to Boyd and Chua, 1 and due to
Sandberg, 2, 3, 4 are presented. Section 1.10 concerns a specialized version of the
discrete Volterra series for binary signals. Here, realization structures of the Volterra
series approximator dependent on a defined measure of the memory length of a
system considered, and dependent on the strength measure of system nonlinearities,
are presented. The main task of Section 1.11 is consideration of the so-called
associated, or extended, expansions and their relations to the original representations.
The last section of this chapter is devoted to presentation of other approximations
different from the discrete Volterra series, such as the approximation with the use
of lattice mapping, the approximation using sigmoidal functions, and the approxi-
mation exploiting radial functions.

1.1 BASIC DEFINITIONS

The purpose of this section is to provide the reader with some basic definitions
regarding the discrete Volterra series. In the forthcoming sections, we will extend
these definitions in many directions, which are useful in applications.

To define a discrete Volterra series, let us imagine such a nonlinear discrete
system of which response to any input signal (from an allowable set of input signals)
can be described in the form of a sum of partial responses. In other words, we
postulate the output signal (output sequence), y(k) as a response to the input signal
(input sequence) x(k), where k means a discrete time, to be expressed in the form

(1.1)

Note that y(0)(k), y(1)(k), y(2)(k), y(3)(k) in Equation 1.1 mean the zero-order, first-
order, second-order, third-order, respectively, partial responses, and so on. Figure
1.1 illustrates Equation 1.1. In this figure, we assume that the components of the
zero-order, first-order, second-order, third-order, and so on are related in some way
with (or correspond to) respective nonlinearity orders. So the zero-order component
is an independent-of-input-signal component, the first-order component is a linear
component, the second-order component is a quadratic one, and the third-order
component is a cubic one.

When the partial responses in Equation 1.1 have the form

y k( ) y 0( ) k( ) y 1( ) k( ) y 2( ) k( ) y 3( ) k( ) …+ + + + y n( ) k( )
n 0=

∞

∑= =
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(1.2a) 

(1.2b)

(1.2c)

and in general, 

(1.2d)

where n ∈�, � = {1, 2, 3, …} meaning the set of positive integers, then Equation
1.1 (with Equations 1.2) describes a discrete Volterra series for time-dependent
systems.

It is worthwhile to make at this point a terminological remark regarding the
order of occurrence of indices in the multiple sums, as, for example, in Equation
1.2d. In Equation 1.2d, the order of occurrence of the indices i1, …, in is the following:
i1, i2, i3, …, in. That order is used by many authors. However, the others use reverse
order, that is, in, …, i3, i2, i1. Note that, using the reverse order of indexing, Equation
1.2d can be rewritten as

(1.2d)

In this book, we prefer to use the first means of writing out the indices under
the symbols of multiple sums.

Note that y(0)(k) in Equation 1.2a does not depend upon the input signal x(k),
but eventually upon time, and equals h(0)(k). Here h(0)(k) is the zero-order impulse
response. We assume that �h(0)(k)� ≠ � for every k��, where � means the set of
integers, i.e., � = {…, �2, �1, 0, 1, 2, …}. Furthermore, h(1)(k, i) is a standard
impulse response h(k, i) known from the theory of linear systems. Note that, in this
case, it depends upon time k. In our terminology, it is of course the first-order impulse
response. h(n)(k, i1, i2, …, in), n = 2, …, mean impulse responses of orders greater
that 1, related with higher order terms (n � 2) in Equation 1.1.

These responses depend upon time. Note also that it is assumed i1 = i in Equation
1.2b for simplicity of notation.

For systems independent of time, the partial responses will look like

y 0( ) k( ) h 0( ) k( )=

y 1( ) k( ) h 1( )(k,i)x(i)
i ∞–=

∞

∑=

y 2( ) k( ) h 2( ) k i1 i2, ,( )x i1( )x i2( )
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑=

y n( ) k( ) … h n( ) k i1 i2 … in, , , ,( )x i1( )x i2( )…x in( )
in ∞–=

∞

∑
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑=

y n( ) k( ) … h n( ) k i1 i2 … in, , , ,( )x i1( )x i2( )… x in( )
i1 ∞–=

∞

∑
i2 ∞–=

∞

∑
in ∞–=

∞

∑=
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(1.3a)

(1.3b)

(1.3c)

and in general, 

 (1.3d)

FIGURE 1.1 A nonlinear discrete system described by (1.1).

y 0( ) k( ) h 0( )=

y 1( ) k( ) h 1( )(i)x(k-i)
i ∞–=

∞

∑=

y 2( ) k( ) h 2( ) i1 i2,( )x k i– 1( )x k i2–( )
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑=

y n( ) k( ) … h n( ) i1 i2 … in, , ,( )x k i– 1( )x k i– 2( )…x k i– n( )
in ∞–=

∞

∑
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑=
©2001 CRC Press LLC



 

As before, in Equation 1.2a, h(0) is the zero-order impulse response. Note that
this response is independent of time k, so it can be seen as a dc (direct current)
component at the output of a system. We assume �h(0) ≠ �. Moreover, h(1)(i) is a
standard impulse response h(i) known from the theory of linear systems. Note that
in this case, it does not depend upon time k. In our terminology, it is, of course, the
first-order impulse response. h(n)(i1, i2, …, in), n = 2, …, mean impulse responses of
orders higher than 1, related with higher order terms (n � 2) in Equation 1.1. In
this case, these responses do not depend upon time. Note finally that it is assumed
i1 = i in Equation 1.3b for simplicity of notation.

We assume that all the series both in Equations 1.2 as well as in Equations 1.3
are absolutely convergent.

A notion of stationarity is very useful in the theory of systems. Regarding
nonlinear systems having Volterra series representations, we say that they are sta-
tionary, according to the definition of Rugh, 5 when their impulse responses fulfill
the following equations:

(1.4a)

(1.4b)

(1.4c)

and in general, 

(1.4d)

for every k � �. In Equation 1.4d, n � �.
Let us rewrite Equation 1.4b assuming i1 = i for notational simplicity; then, we

obtain

(1.5)

where m = k � i. 
Having Equation 1.5 for the linear case, we shall illustrate now the property of

stationarity on this example (see Figure 1.2). We assume for purpose of illustration
that arguments i, k, m, of the functions in Figure 1.2 are real numbers. That is, i, k,
m � � in Figure 1.2, where � is the set of real numbers. This convention of plotting
a function with integer arguments as if these arguments would be real ones will be
also used in the forthcoming sections of the book. Moreover, note that the values
of the functions in Figure 1.2 are also values belonging to the set of real numbers �.

We start with Figure 1.2a, where the function h(1)(k, i) for the time instant k =
0 is shown; it has a typical form for real systems of a decaying curve for i → �.

h 0( ) k( ) h 0( ) 0( ) df g 0( ) const===

h 1( ) k i1,( ) h 1( ) 0 i1 k–,( ) df g 1( ) k i1–( )==

h 2( ) k i1 i2, ,( ) h 2( ) 0 i1 k i2 k–,–,( ) df g 2( ) k i1 k i2–,–( )==

h n( ) k i1 i2 … in, , , ,( ) h n( ) 0 i1 k i2 k … i k–, ,–,–,( ) df g n( ) k i1 k i2–,– … k in–, ,( )==

h 1( ) k i,( ) h 1( ) 0 i k–,( ) h 1( ) 0 m–,( ) g 1( ) m( )===
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Note that this function is repeated in all curves shown in Figure 1.2b, where the
curves are presented after applying the stationarity property for the times i = 0, i =
i�, and i = i�. These curves are mirror versions of that shown in Figure 1.2a, and are
shifted by 0, i�, and i�, respectively. Furthermore, note that the operation illustrated
can be interpreted as reducing one variable in the two-variable function h(1)(k, i),
which brings a one-variable function as a result, with the shifting parameter equal
to 0, i�, i�, and so on. Finally, after introducing a variable m = k � i, the result
presented in Figure 1.2b can be summarized in a single one-variable function g(1)(m),
as shown in Figure 1.2c.

FIGURE 1.2 Illustration of stationarity property in the linear case.
©2001 CRC Press LLC



 

Similarly, we can interpret Equations 1.4b, 1.4c, and, in general Equation 1.4d.
The stationarity property applied in these equations can be seen as reducing one
variable from them, making the corresponding impulse responses independent of a
moment of applying an input signal.

Now we will show that the description by the Volterra series given by 1.1 and
1.2 reduces to that given by 1.1 and 1.3, when the stationarity property is applied.
To show this, we begin with Equation 1.4a; using this equation in 1.2a gives

(1.6)

Similarly, substituting 1.4d in general expression for the system partial response
of the nth order given by 1.2d, we get

(1.7)

Changing then the variables k – ip = mp, p = 1, …, n, in 1.7 leads to

(1.8)

Finally, note that summation order in (1.8) is of no importance, so we can rewrite
(1.8) in the form

(1.9)

In conclusion, we see that Equations 1.6 and 1.9 represent system description
in the form of a Volterra series with partial responses as given by Equation 1.3 for
time-independent systems, with the only difference being that impulse responses are
now denoted by g(n)(m1, m2, …, mn), instead of h(n)(i1, i2, …, in).

The next important notion related to the Volterra series is the notion of homo-
geneity. Let us define the partial response given by 1.2a or 1.3a as being homoge-
neous of zero degree. Furthermore, observe that for the remaining partial responses,
we can write

(1.10)

where α is some nonzero real number and n = 1, 2, …. So taking 1.10 into account,
we can say that partial response y(n)(k) is homogeneous of degree n.

y 0( ) k( ) g 0( )=

y n( ) k( ) … g n( ) k i– 1 k i– 2 … k in–, , ,( )x i1( )x i2( )…x in( )
in ∞–=

∞

∑
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑=

y n( ) k( ) … g n( ) m1 m2 … mn, , ,( )x k m– 1( )x k m– 2( )…x k m– n( )
mn +∞=

∞–

∑
m2 +∞=

∞–

∑
m1 +∞=

∞–

∑=

y n( ) k( ) … g n( ) m1 m2 … mn, , ,( )x k m– 1( )x k m– 2( )…x k m– n( )
mn ∞–=

∞

∑
m2 ∞–=

∞

∑
m1 ∞–=

∞

∑=

y k  with input signal αx;( ) αn y( )n k  with input signal x;( )⋅=
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Note that using the homogeneity property just explained, we are now able to
define the notion of the order of a partial response as introduced intuitively in the
beginning of this section. So a given partial response is of the order n, n = 0, 1, 2,
…, if and only if it is homogeneous of degree n. Moreover, note that the property
of homogeneity can be also used to define the order of an impulse response. Similarly
as before, we consider the impulse response being of the nth order if and only if it
is related with partial response, which is homogeneous of degree n.

Consider now impulse responses h(n)(i1, i2, …, in) in Equations 1.3 possessing
such a property that they become equal to zero whenever one of the arguments i1,
i2, …, in becomes negative. In other words, for h(n)(i1, i2, …, in) to be equal to zero,
it is sufficient that one of the arguments i1, i2, …, in is negative. Note that systems
having such impulse responses are called causal.5

Both causality and noncausality of impulse responses are illustrated in Figure
1.3 using examples of the zero, first, and second order impulse responses.

Note that by the use of causality property in Equations 1.1 and 1.3, the Volterra
series description for time-independent systems simplifies to

FIGURE 1.3 Illustration of causality and noncausality of impulse responses.
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(1.11)

where lower summation limits are now equal to zero, and h(0) is meant as the
causal impulse response of the zero-order, as shown in Figure 1.3a. Further simpli-
fication of 1.11 is possible for input signals that are equal to zero for times k < 0,
that is, for signals applied to a system at time k = 0. Then, we get

(1.12)

where upper summation limits are also finite. These limits are now equal to k, which
means that each of the partial responses in Equation 1.12 is a sum over a finite
number of elements.

At the end of this section, we make a remark regarding the question of when
the Volterra series describes a linear system, and a nonlinear one. In this context,
note that a system is a linear one if and only if it fulfills the equation

(1.13)

where y means a system response, x1 and x2 are some input signals, and α and β
are real numbers.

Taking into account Equation 1.1 with Equations 1.2 or 1.3, observe that Equa-
tion 1.13 is fulfilled only when the Volterra series is reduced to

(1.14a)

for time-dependent systems, or to

y k( ) h 0( ) h 1( ) i( )x k i–( )
i 0=

∞

∑+=

+ h 2( ) i1 i2,( )x k i1–( )x k i2–( )
i2 0=

∞

∑
i1 0=

∞

∑

+ h 3( ) i1 i2 i3, ,( )x k i1–( )x k i2–( )x k i3–( )…
i3 0=

∞

∑
i2 0=

∞

∑
i1 0=

∞

∑

y k( ) h 0( ) h 1( ) i( )x k i–( )
i 0=

k

∑+=

+ h 2( ) i1 i2,( )x k i1–( )x k i2–( )
i2 0=

k

∑
i1 0=

k

∑

+ h 3( ) i1 i2 i3, ,( )x k i1–( )x k i2–( )x k i3–( )…
i3 0=

k

∑
i2 0=

k

∑
i1 0=

k

∑

y αx1 βx2+( ) αy x1( ) βy x2( )+=

y k( ) y 1( ) k( ) h 1( ) k i,( )x i( )
i ∞–=

∞

∑==
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(1.14b)

for time-independent systems.

One thing more needs some explanation in this section, namely, a notion of
symmetric, triangular, and regular nonlinear impulse responses (note that here,
nonlinear stands for all of them: zero-order, first-order, second-order, and so on).
Incidentally, note also that the adjective “nonlinear” is used in the literature before
the words “impulse response,” when one wants to underline consideration of a
nonlinear system described by the Volterra series.

We refer now to the stationary case as described by Equation 1.11, and define
nonlinear symmetric impulse responses in the following way:

(1.15)

Explanation 1.1

Note that it follows from Equation 1.15 that the first four nonlinear symmetric
impulse responses look like

All the symmetric impulse responses of higher orders are constructed similarly.

Explanation 1.2

Observe that

y k( ) y 1( ) k( ) h 1( ) i( )x k i–( )
i ∞–=

∞

∑==

h n( )
sym i1 i2 … in, , ,( ) df 1

n!
----- h n( ) i1 i2 … in, , ,( )

over all n!
permutations

of indices
i1 i2 … in, , ,

∑=

hsym
0( ) 1

0!
-----h 0( ) h 0( )= =

hsym i( )1( ) 1
1!
-----h 1( ) i( ) h 1( ) i( )= =

hsym i1 i2,( )2( ) 1
2!
----- h 2( ) i1 i2,( ) h 2( ) i2 i1,( )+[ ] 1

2
--- h 2( ) i1 i2,( ) h 2( ) i2 i1,( )+[ ]= =

hsym i1 i2 i3, ,( )3( ) 1
3!
----- h 3( ) i1 i2 i3, ,( ) h 3( ) i1 i3 i2, ,( ) h 3( ) i2 i1 i3, ,( ) h 3( ) i2 i3 i1, ,( )+ + +[ ]=

+h 3( ) i3 i1 i2, ,( ) h 3( ) i3 i2 i1, ,( ) ]+
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and

Note that we shall have similar relations for partial response of higher orders.
Taking now into account the results presented in Explanation 1.1 and Explanation

1.2, we see that Equation 1.11 can be rewritten in the form

(1.16)

Comparing Equation 1.11 with Equation 1.16, we see that they have the same
form. Moreover, the corresponding components in these equations are equal to each
other. So it does not matter whether the impulse responses are meant in Equation
1.11 as the ordinary or symmetric ones. Note that the advantage of symmetrization
of the nonlinear impulse responses in Equation 1.11 lies in the fact that, after
performing this operation, there exist many groups of elements having the same
values. For each of these groups, we take only one element in descriptions using
the triangular and regular impulse responses. Thus a reduction of elements, which
are summed for a given nonlinearity order n, is performed to arrive at a partial
response of that order, y(n)(k).

To find an alternative description of Equation 1.11, which uses triangular impulse
responses, we shall introduce a special multivariable step function defined by5

y 2( ) k( ) h 2( ) i1 i2,( )x k i1–( )x k i2–( )
i2 0=

∞

∑
i1 0=

∞

∑

h 2( ) i2 i1,( )x k i1–( )x k i2–( )
i2 0=

∞

∑
i1 0=

∞

∑

=

=

y 3( ) k( ) h 3( )

i3 0=

∞

∑ i1 i2 i3, ,( )x k i1–( )x k i2–( )x k i3–( )
i2 0=

∞

∑
i1 0=

∞

∑=

= h 3( )

i3 0=

∞

∑ i1 i3 i2, ,( )x k i1–( )x k i2–( )x k i3–( )
i2 0=

∞

∑
i1 0=

∞

∑

= h 3( )

i3 0=

∞

∑ i2 i1 i3, ,( )x k i1–( )x k i2–( )x k i3–( )
i2 0=

∞

∑
i1 0=

∞

∑
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(1.17)

Numbers m1, …, mz in Equation 1.17 mean numbers of zeros in groups of zeros
occurring one after another in the sequence of arguments i1, …, in-1, with such a
property that the numbers between the zeros are positive numbers.

Before going further, let us illustrate now the function given by Equation 1.17.

Explanation 1.3
Note from Equation 1.17 that we have

• for n = 2 

• for n = 3 

• for n = 4

and so on.
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The functions  and  are illustrated in Figure 1.4.
It is interesting to note that the function , as illustrated in Figure 1.4a, is

not identical to the standard step function defined by

(1.18)

FIGURE 1.4 Plots of functions  and .ε i1( ) ε i1 i2,( )

ε i1( ) ε i1 i2,( )
ε i1( )

ε k( )
1 k, 0 1 2 3 …, , , ,=

0 k 0<,



=
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h

The function �(k) is plotted in Figure 1.5.

Incidentally, note that having the function �(k), the impulse response h(0) in
Equation 1.11 can be expressed as h(0) �(k) with h(0) meaning only some constant. In
contrast to this, see in Figure 1.3a that h(0) there means both the impulse response
of the zero-order and a constant.

It has been shown5 that the triangular impulse responses can be obtained using
the following relations:

 (1.19a)

(1.19b)

(1.19c)

We now illustrate Equations 1.19.

Explanation 1.4
Note from Equation 1.19c that we have

• for n = 2 

• for n = 3 

FIGURE 1.5 Standard step function �(k).
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…

and so on.
To arrive at the Volterra series containing triangular impulse responses, we note

first that the functions h(n) (i1, i2, …, in) on the right-hand side of Equation 1.15 can
be also meant as triangular impulse responses. Using this in Equation 1.16, we get,
finally

 (1.20)

Changing the variables (i1 = i2 + m1, i2 = i3 + m2, …, in-1 = in + mn-1) in the expressions
under the summation symbols in Equation 1.20, successively for n = 2, 3, …, we
obtain 

(1.21)

Note that the range of the variables mi in Equation 1.21 is the same as that of
the variables ii.

Let us now replace quite formally the variables mi by the variables i1, i = 1, 2,
…, in Equation 1.21, and introduce then the regular impulse responses defined as5

(1.22a)

(1.22b)

(1.22c)

Performing the above operations leads to

    (1.23)
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All the four kinds of nonlinear impulse responses are illustrated by an example of 
an impulse response of the second order.

Example 1.1
Consider an impulse response of the second order h(2)(i1, i2) 	 0, 0 
 i1 
 8, 0 

i2 
 8. 

We assume here that h(2)(i1, i2) has nonzero values in the range 0 
 i1 
 8, 0 

i2 
 8. Figure 1.6a shows schematically the arguments i1 and i2 for which the function
h(2)(i1, i2) is nonzero. Note that it is assumed in Figure 1.6a that the values in the
lower triangle shown are different from those occurring in the upper triangle. In
Figure 1.6b, the effect of performing the symmetrization operation is seen: there is
full symmetry between nonzero values in the upper and lower triangle. Figure 1.6c
shows that the two triangles of Figure 1.6b are reduced to only one, with the function
values adjusted, respectively, to preserve the values of the function y(k). Finally,
note that the triangle of Figure 1.6d is placed the other way compared to that of
Figure 1.6c.

FIGURE 1.6 Illustration of notions of symmetric, triangular, and regular nonlinear impulse
responses.
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1.2 NONLINEAR SAMPLED-DATA SYSTEMS

Generally, we can say that electrical signals are continuous in analog systems and
discrete in digital ones. However, because we have two variables, time and amplitude,
which can be made discrete in processes illustrated schematically in Figures 1.7 and
1.8, four situations are possible. These situations are shown in Figure 1.9.

In Figure 1.9, x(t) denotes a continuous signal; that is, signal that is continuous
both in time and amplitude. This fully continuous signal is also called an analog
one. Furthermore, when the amplitude of a signal can take on only discrete values
from a prescribed set of numbers, then we have a signal denoted as xA(t) in Figure

FIGURE 1.7 Discretization (digitalization) in time shown schematically.

FIGURE 1.8 Discretization (digitalization) of amplitude shown schematically.
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1.9. Here the subscript A underlines the fact that this is a signal with a discrete
amplitude. On the other hand, when the signal x(t) is sampled in time, as shown on
the right-hand side of Figure 1.9, we arrive at a discrete signal x(k). Finally, the
signal x(k) can take on only discrete values both in time and amplitude, as illustrated
by means of a signal xA(k) in Figure 1.9. The signal xA(k) is a fully digital one. In
the literature, the signals x(k) and xA(k) are generally referred to as sampled-data
signals because of sampling in time. Moreover, note that in most considerations, no
distinction is made between them. So we also do not distinguish between these
signals in this book unless a situation forces us to show the difference. Hence, when
we write x(k), this stands for both the signals: discrete only in time, and discrete in
both time and amplitude. Furthermore, note that, in the literature, the signals x(k)
and xA(k) are both frequently referred to simply as discrete signals. We follow this
convention in this book.

Now we can give the definition of sampled-data systems. Sampled-data systems
are systems that process sampled-data signals or discrete signals. Furthermore,
nonlinear sampled-data systems are sampled-data systems that additionally possess

FIGURE 1.9 Four possible situations when making time and/or amplitude of an electrical
signal discrete.
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some nonlinearities. Finally, we mention that in this book we will use equivalently
the terms nonlinear digital systems and nonlinear discrete systems when referring
to nonlinear sampled-data systems.

We present now two examples of nonlinear sampled-data systems. Note that the
first example presented comes from the automatic control area, and is a classical
one of a linear plant with a nonlinear feedback. The second example comes from
the telecommunications area, and describes a digital transmission channel with a
quadratic nonlinearity involved.

Example 1.2 

Figure 1.10 shows a linear plant with a nonlinear feedback. 

Observe from Figure 1.10 that the presented system is not a purely digital one.
We see here both analog signals such as x(t), y(t), and c(t), and discrete ones, such
as e(kTs) and y(kTs). Note that the signals e(kTs) and y(kTs) have kTs, that is, k times
the sampling period Ts as an argument. When we drop Ts, which is a common practice
in the signal processing literature, we obtain e(k) and y(k). We are then consistent
with the notation assumed in Figure 1.9.

Example 1.3

Figure 1.11 shows a telecommunication tract consisting of a transmitter, a nonlinear
channel with quadratic nonlinearity and corrupted by an additive noise, and a receiver.

Note that the system in Figure 1.11 is not purely digital, similar to that shown
in the previous figure. This is because of the occurrence of analog signals xc(t) and
yc(t), besides the digital ones x(k) and y(k). However, when the telecommunication
tract in Figure 1.11 is considered as a black box between the points, where the
signals x(k) and y(k) are written, then such a box can be assumed to represent a
digital channel. Note that the transmitter in Figure 1.11, among other things, converts

FIGURE 1.10 An example of a linear plant with nonlinear polynomial-type feedback.
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the digital signal x(k) into the analog one xc(t). Similarly, the analog signal yc(t) is
converted by the receiver into the digital one y(k).

Note that for some parts of the system, or the whole system, as the relation
between y(kTs) and e(kTs) in Figure 1.10 and the relation between e(k) and y(k) in
Figure 1.11 can be described by the discrete Volterra series. Other examples of
nonlinear sampled-data systems will follow in the course of this book, some of
which will be discussed in great detail. 

1.3 MULTIDIMENSIONAL Z TRANSFORM

The Z transform is a basic tool in analysis and synthesis of linear discrete systems.
It can be viewed as the other form of the discrete Fourier transform or as a special
representation of the Laplace transform for discrete signals.

Let us begin with standard definitions of the Z transform for linear systems
and/or one-dimensional signals. We define two-sided Z transform of a sequence of
numbers x(k) = {…, x(-2), x(-1), x(0), x(1), x(2), …} as

(1.24)

Note that the set of values of elements of the sequence is denoted above by x(k).
Such a shortened notation of sequences will be used in this book. The actual meaning
of x(k), that is, whether it means only an element x(k) of the sequence {x(k)}, or the
whole, will follow from the context.

Similarly, one-sided Z transform for causal sequences; that is, for sequences of
the form {…, 0, 0, 0, x(0), x(1), x(2), …}, is given by

(1.25)

In Equations 1.24 and 1.25, the variable z means the complex variable z = a +
jb, where a and b are real numbers, and . Moreover, note that the two-
sided Z transform applies to sequences with discrete time going from k = �� to k

FIGURE 1.11 An example of a nonlinear telecommunication channel possessing quadratic
nonlinearity and corrupted by additive noise.
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∞
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∑= =
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= + �, whereas the one-sided Z transform applies to sequences with discrete time
changing also from k = �� to k = + �, but with all elements identically zeros for k<0.

It is worth noting that, when the sequence {x(k)} has identically zero values for
negative discrete time instants, i.e., x(k) = 0 for k = �1, �2, �3, …, then the two-
sided Z transform reduces to the one-sided transform for this sequence. This is the
reason we do not distinguish between the one- and two-sided Z transforms in notation
in this book. In each case, it will be clear from the context which of the transforms
is actually used.

To find a relation between the so-called discrete-time Fourier transform and the
Z transform, recall now the definitions of the forward and inverse discrete-time
Fourier transforms. These definitions have forms:

(1.26a)

and

(1.26b)

where the normalized frequency Ω is given by

(1.26c)

with ω being an angular frequency and Ts meaning the sampling period.
Taking into account the fact that the complex variable z in Equation 1.24 can

be rewritten in the polar form; that is, as

(1.27)

we obtain then, from Equation 1.24

(1.28)

Comparing Equation 1.28 with Equation 1.26a and identifying ϕ with Ω, we see
that the Z transform of the sequence {x(k)} is equal to the discrete-time Fourier
transform of the sequence {x(k)�z�-k}.

To proceed further, we define now a Dirac-impulse sequence as

X e jΩ( ) df
F x k( ){ } x k( )e jkΩ–

k ∞–=

∞

∑= =

x k( ) df
F 1– X e jΩ( ){ } 1

2π
------ X e jΩ( )e jkΩ Ωd

π–

π

∫= =

Ω ωT s=

z a2 b2+ e
j  arctan b

a
---

 
 

z e jϕ= =

X z( ) x k( ) z k–( )e jkϕ–

k ∞–=

∞

∑=
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(1.29a)

where δ means a Dirac impulse (distribution) having the following property

(1.29b)

The function given by Equation 1.29a is illustrated in Figure 1.12.
Note from Figure 1.12 that the Dirac-impulse sequence consists of an infinite

number of Dirac impulses lying equidistantly. The Dirac impulses are denoted by
arrows in the figure, and the period T is a distance between the nearest two impulses.

It can be shown that a sampled ideally, continuous signal can be expressed
mathematically as a multiplication of the original signal by the Dirac-impulse
sequence with T = Ts, where Ts is a sampling period. Hence, denoting such a signal
by xs(t), we can describe it as 

(1.30a)

or, using the selectivity property of the Dirac-impulse (x(t)δ(t–t0) = x(t0)δ(t–t0)) as

(1.30b)

Figure 1.13 illustrates the relationship between the original continuous signal
x(t), sampled signal xs(t) with continuous time variable t, and resulting sequence
consisting of discrete values. Note now that, because the function xs(t) given by

FIGURE 1.12 Dirac-impulse sequence as a function of time.
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k ∞–=

∞

∑= =

xs t( ) x kT s( )δ t kT s–( )
k ∞–=

∞

∑ x k( )δ t kT s–( )
k ∞–=

∞

∑= =
©2001 CRC Press LLC



 

Equation 1.30b has a continuous time variable t, we can calculate its Fourier trans-
form. For this purpose we recall, however, first the definition of the Fourier integral
(Fourier transform) for continuous signals (in the two-sided version here). It is given
by

(1.31)

for the forward transform, and by

(1.31b)

for the inverse transform. Applying then Equation1.31a to Equation 1.30b, we get

(1.32a)

Note the use of the selectivity property of the Dirac-impulse and the property
given by Equation 1.29b in Equation 1.32a, which give

(1.32b)

Substituting now, quite formally, s = jω in Equation1.32a we obtain

(1.33)

Assuming afterwards

(1.34a)

in Equation 1.33 leads to

(1.34b)
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 
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 
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∞
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∞
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The expression on the right-hand side of Equation 1.34b, according to Equation

1.24, is nothing other than the two-sided Z transform of the sequence x(k). On the
other hand, note that the left-hand side of Equation 1.34b is the two-sided Laplace
transform of the function xs(t). We recall here that the two-sided Laplace transform
is defined by the following equations:

FIGURE 1.13 Illustration of differences between original continuous signal x(t), ideally
sampled signal xs(t), and sequence x(k).
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(1.35a)

that is of the forward transform, and

(1.35b)

being the definition of the inverse transform, where the complex variable s is given by

(1.35c)

Comparing Equation 1.31a with Equation 1.35a, we see that both definitions are
identical when s = jω can be assumed. Note that such an assumption was made to
arrive at Equation 1.33 from 1.32a.

Furthermore, comparison of Equation 1.34b with 1.24 leads to the conclusion
that

(1.36)

Equation 1.36 means that the Z transform of the sequence x(k) is equal to the
Laplace transform of the signal xs(t), being the continuous in time representation of
the original signal x(t). The variables z and s are then related by Equation 1.34a.

Finally, it is also worth noting that

(1.37)

follows from Equations 1.26a, 1.26c, and 1.34a. Equation 1.37 shows that the Fourier
transform of the signal xs(t) is equal to the discrete-time Fourier transform of the
sequence x(k).

Let us now recapitulate the discussion about the relations of the Z transform
with the Fourier and Laplace transforms. For this purpose, we present Figure 1.14,
where all the relationships just described are illustrated.

To complete the expressions 1.24 and 1.25 regarding the forward Z transform,
recall that the definition of the inverse Z transform is given by

(1.38)
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T s

-----= 
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2πj
-------- X z( )zk 1– dz
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©2001 CRC Press LLC



 

where C is such a contour in the complex plane z, that lies in the area where X(z)
is stable (in other words, the series 1.24 or 1.25 converges for all values of z in this
area).

Having made this short review of the one-dimensional Z transform and its
relationships with other transforms, we can go further to extend the definitions 1.24,
1.25, and 1.38 to the multidimensional case. So, having a sequence of which elements
depend upon n>1 arguments k1, k2, …, kn, we define two-sided n-dimensional Z
transform as

(1.39)

FIGURE 1.14 Illustration of the relationship of the Z transform with the Fourier and Laplace
transforms.
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Similarly, the one-sided n-dimensional Z transform for sequences, which have
nonzero values only if the arguments k1 � 0, k2 � 0, …, kn � 0, is expressed by

(1.40)

Note that we do not distinguish in our notation between the one- and two-sided
n-dimensional Z transforms, as in the one-dimensional case. Which of the transforms
is considered at the moment will follow from the context.

Regarding the inverse n-dimensional Z transform, Equation 1.38 extends in this
case to the following form:

(1.41)

where C1, C2, …, Cn, are appropriate contours in the complex planes z1, z2, …, zn,
respectively. 

Let us now illustrate calculation of the forward multidimensional Z transform
by an example.

Example 1.4

Consider the following sequence:

where Ω is a normalized frequency equal to ωTs = 2πf / fs. Note that this sequence
depends upon two arguments k1 and k2.

To calculate the Z transform of the above sequence, we use the definition 1.40).
Then, we get
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∞

∑⋅
k1 0=

∞

∑=
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Now we shall use the one-dimensional Z transforms, available in almost every
book on the conventional Z transform and its applications. What we need here is
the knowledge of the following Z transform pairs:

Applying these transforms in the expression above, we get finally

Now take a look at Example 1.4 once again, and observe that the linearity
property of the two-dimensional Z transform is fulfilled here. Furthermore, using
Equation1.40, we show quite generally that this property holds for every n-dimen-
sional Z transform. For our purpose, we assume the sequence x(k) of having the
form of a linear combination of two sequences as

(1.42)

where k1, …, kn�{0, 1, 2, …}. Note that the sequences x, x1, and x2 in Equation 1.42
depend upon n arguments. Moreover, α and β in 1.42 are some constants.

Observe that, in principle, we use here the same definition of linearity as that
given by Equation 1.13 regarding linearity of systems. Hence, substituting Equation
1.42 into Equation 1.40 gives

(1.43)

Equation 1.43 can be rewritten in the form 

(1.44a)

or equivalently

(1.44b)

1
z

z 1–
-----------↔

k
z

z 1–( )2
------------------↔

kΩ( ) z Ω( )sin

z2 2z Ω( ) 1+cos–
--------------------------------------------↔sin

X z1 z2,( )
z1

z1 1–( )2
--------------------

z2

z2 1–
-------------

z1

z1 1–
-------------

z2 Ω( )sin

z2
2 2z2 Ω( ) 1+cos–

----------------------------------------------⋅–⋅=

x k1 … kn, ,( )
0 if any of k1 … k, n, 0<,
αx1 k1 … k, n,( ) βx2 k1 … k, n,( )+




=

X z1 … zn, ,( ) … αx1 k1 … kn, ,( ) βx2 k1 … kn, ,( )+[ ]z1

k1–
…zn

kn–

kn 0=

∞

∑
k1 0=

∞

∑=

X z1 … zn, ,( ) α … x1 k1 … kn, ,( )z1

k1–
…zn

kn–
β … x2

kn 0=

∞

∑
k1 0=

∞

∑ k1 … kn, ,( )+ z1

k1–
…zn

kn–

kn 0=

∞

∑
k1 0=

∞

∑=

X z1 … zn, ,( ) αX1 z1 … zn, ,( ) βX2 z1 … zn, ,( )+=
©2001 CRC Press LLC



 

The result, Equation 1.44b, proves the linearity of the multidimensional one-
sided Z transform. Moreover, observe that the proof of linearity expressed by Equa-
tions 1.42, 1.43, and 1.44 does not change for the sequences with nonzero values
for negative values of the arguments ki, i = 1, …, n, and the two-sided Z transforms.

Now we prove two more properties known very well from the theory of one-
dimensional Z transform and its applications, namely, representations for right-
shifting and convolution summation in the z domain. We shall start with the first
one, and with causal sequences; that is, with sequences that have identically zero
values for negative ki, i = 1, …, n. Take into account one of such sequences, which
is delayed m1 discrete time units in the argument k1, delayed m2 discrete time units
in the argument k2, and so on. We denote it by

(1.45a)

where mi�{0, 1, 2, …}, i = 1, …, n, and apply the definition 1.40. This gives

(1.45b)

Substituting then the variables k1–m1 = r1, k2–m2 = r2, …, kn–mn = rn in Equation
1.45b leads to

(1.46)

We use now in Equation 1.46 the fact that the sequence x(r1, r2, …, rn) is causal.
So we conclude that all the sums in Equation 1.46 with the lower and upper
summation limits –mi, i = 1, …, n, and –1, respectively, equal zero. In consequence,
we obtain

(1.47a)

and finally, 

(1.47b)

u k1 k2 … kn, , ,( ) x k1 m1 k2 m2 … kn mn–, ,–,–( )=

U z1 z2 … zn, , ,( ) … x k1 m1 k2 m2 … kn mn–, ,–,–( )z1

k1–
z2

k2– …zn

kn–

kn 0=

∞

∑
k2 0=

∞

∑
k1 0=

∞

∑=

U z1 z2 … zn, , ,( ) … x r1 r2 … rn, , ,( )z1

r1 m1+ 
 –

z2

r2 m2+ 
 –

…zn

rn mn+ 
 –

rn mn–=

1–

∑
r2 m2–=

1–

∑
r1 m1–=

1–

∑=

+ … x r1 r2 … rn, , ,( )z1

r1 m1+ 
 –

z2

r2 m2+ 
 –

…zn

rn mn+ 
 –

rn 0=

∞

∑
r2 0=

∞

∑
r1 0=

∞

∑

U z1 z2 … zn, , ,( ) z1

m1–
z2

m2– …zn

mn–
… x r1 r2 … rn, , ,( )z1

r1–
z2

r2– …zn

rn–

rn 0=

∞

∑
r2 0=

∞

∑
r1 0=

∞

∑=

U z1 z2 … zn, , ,( ) z1

m1–
z2

m2–
…zn

mn–
X z1 z2 … zn, , ,( )=
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It can be shown, using the same kind of argument, that the relation 1.47b holds
also for noncausal sequences with the transforms U(z1, z2, …, zn) and X(z1, z2, …,
zn) understood as the two-sided ones.

We show now what the n-dimensional convolution-summation property for
causal impulse responses and causal signals looks like in the Z domain. Note that
this property is an extension of the very well-known one-dimensional (linear) con-
volution-summation property to the n dimensions. It can be expressed as

(1.48)

where h(n)(i1, i2, …, in) is a nth order causal impulse response, and g(k1–i1, k2–i2, …,
kn–in) plays the role of a causal n-dimensional right-shifted signal.

Applying the one-sided n-dimensional Z transform to Equation 1.48 gives

(1.49)

Introducing then new variables k1–i1 = r1, k2–i2 = r2, …, kn–in = rn, in Equation
1.49 leads to

(1.50)

Observing that the expression in parentheses in Equation 1.50 is the n-dimen-
sional Z transform of h(n)(i1, i2, …, in), and that the variables r1, r2, …, rn change
from –� to +�, we can rewrite Equation 1.50 in the following form:

(1.51)

Because g(r1, r2, …, rn), as assumed, is a causal signal; that is, it has zero value
if any of its arguments is negative, the expression in Equation 1.51 can be rewritten as

u k1 k2 … kn, , ,( ) df … h n( ) i1 i2 … in, , ,( )g k1 i1 k2,– i2 … kn in–, ,–( )
in 0=

∞

∑
i2 0=

∞

∑
i1 0=

∞

∑=

U z1 z2 … zn, , ,( ) … … h n( ) i1 i2 … in, , ,( )
0in 0=

∞

∑
i2 0=

∞

∑
i1 0=

∞

∑
kn 0=

∞

∑
k2 0=

∞

∑
k1 0=

∞

∑=

g k1 i1 k2 i2 … kn in–, ,–,–( )z1

k1–
z2

k2– …zn

kn–

U z1 z2 … zn, , ,( ) … … h n( ) i1 i2 … in, , ,( ) z1

i1–
z2

i2–
…zn

in–
⋅

in 0=

∞

∑
i2 0=

∞

∑
i1 0=

∞

∑
 
 
 

kn 0=

∞

∑
k2 0=

∞

∑
k1 0=

∞

∑=

g r1 r2
… rn, , ,( )z1

r1–
z2

r2– …zn

rn–

U z1 z2 … zn, , ,( ) H n( ) z1 z2 … zn, , ,( ) … g r1 r2 … rn, , ,( )z1

r1–
z2

r2–
…zn

rn–

rn ∞–=

∞

∑
r2 ∞–=

∞

∑
r1 ∞–=

∞

∑⋅=
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(1.52a)

and finally, as

(1.52b)

Note from Equation 1.52b that the representation of the n-dimensional convo-
lution summation in the Z domain is the product of two corresponding Z transforms.
Moreover, note that, when we identify u(k1, k2, …, kn), in Equation 1.48 with the
partial response y(n)(k1, k2, …, kn), in the Volterra series for time-independent and
causal systems, and g(k1–i1, k2–i2, …, kn–in), in Equation 1.48 with the product
x(k1–i1)x(k2–i2)…x(kn–in), then we will be able to express the nth partial response of
the Volterra series in the Z domain by

(1.53a)

because

 (1.53b)

holds. According to Equation 1.11, we assumed the following form:

(1.53c)

of y(n)(k1, k2, …, kn) in derivation of Equation 1.53a.
Note that, using the same arguments, it can be shown that the relation 1.52b

holds also for the n-dimensional convolution with noncausal impulse responses and
signals. Then the Z transforms in Equation 1.52b should be understood as the two-
sided ones.

Some other useful properties related with the multidimensional Z transform,
specific and analogous to those known from the theory of one-dimensional Z trans-
form, can be proved.6, 7, 8 However, we do not intend to discuss these properties in
this book because of one fundamental reason: the multidimensional Z transform is
not as widely used as its one-dimensional counterpart in the theory of linear discrete
systems.

U z1 z2 … zn, , ,( ) H n( ) z1 z2 … zn, , ,( ) … g r1 r2 … rn, , ,( )z1

r1–
z2

r2–
…zn

rn–

rn 0=

∞

∑
r2 0=

∞

∑
r1 0=

∞

∑⋅=

U z1 z2 … zn, , ,( ) H n( ) z1 z2 … zn, , ,( ) G z1 z2 … zn, , ,( )⋅=

Y n( ) z1 z2 … zn, , ,( ) H n( ) z1 z2 … zn, , ,( )X z1( )X z2( )…X zn( )=

… x r1( )x r2( )…x rn( )z1

r1–
z2

r2– …zn

rn–

rn 0=

∞

∑
r2 0=

∞

∑
r1 0=

∞

∑ X z1( )X z2( )…X zn( )=

y n( ) k1 k2 … kn, , ,( ) … h n( ) i1 i2 … in, , ,( )x k1 i1–( )x k2 i2–( )…x kn in–( ) n 1≥,
in 0=

∞

∑
i2 0=

∞

∑
i1 0=

∞

∑=
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To calculate the inverse multidimensional Z transform, one of the following
ways can be chosen:

1. By the direct use of the inverse formula given by Equation 1.41 
2. By applying the properties such as linearity, right-shifting in time, con-

volution-summation, and others, and using the known transform pairs,
both one- and multi-dimensional

1.4 DISCRETE VOLTERRA SERIES IN THE Z DOMAIN

The response y(k) of a nonlinear system, given by Equations 1.1 and 1.3, can be
considered as a discrete signal, dependent upon one-dimensional discrete time k.
So, we can apply the Z transform to this signal, which gives

(1.54)

Because of linearity of the Z transform, Equation 1.54 can be rewritten as

(1.55)

assuming that y(k) is absolutely convergent.
Calculation of the Z transforms on the right-hand side of Equation 1.55 is not

so simple. Note first, that the two-sided Z transform of the constant component h(0)

does not exist, as shown below

(1.56)

However, the one-sided Z transform eventually exists. Hence, we restrict our-
selves in further consideration in this section to causal sequences. That is, we assume
the impulse response of the zero-order to be equal to h(0)ε(k) with h(0) being some
constant, and so on. Further, note then that the counterpart of Equation 1.55 can be
written in the form

Y z( ) Z y k( ){ } Z h 0( ) h 0( ) i( )x k i–( ) h 2( ) i1 i2,( )x k i1–( ) x k i2–( ) …+⋅
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑+
i ∞–=

∞

∑+
 
 
 

= =

Y z( ) Z h 0( ){ } Z h 1( ) i( )x k i–( )
i ∞–=

∞

∑
 
 
 

Z h 2( )

i2 ∞–=

∞

∑ i1 i2,( )x k i1–( ) x k i2–( )⋅
i1 ∞–=

∞

∑
 
 
  …+ + +=

Z h 0( ){ } h 0( )z k–

k ∞–=

∞

∑ h 0( ) z k– h 0( ) z k–

k 0=

∞

∑+
k ∞–=

1–

∑= =

↓ ↓
converges to converges to

   
h 0( )z
1 z–
----------- for z 1

h 0( )z
z 1–
----------- for z 1><
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(1.57a)

because

(1.57b)

according to the result in Equation 1.56, and because of the convolution-summation
property of the Z transform, i.e., 

(1.57c)

where H(1)(z) and X(z) are the Z transforms of the first-order impulse response and
of the input signal, respectively.

In Equation 1.57a, the problem remains of how to calculate the third, fourth,
and all following components appearing on the right-hand side of this expression.
We shall show now that this problem can be tackled by application of the so-called
association of variables. We will explain this notion by means of examples.

Let us start with associating two variables. And for this purpose, let us consider
the second-order partial response in the Volterra series with causal impulse responses.
This partial response possesses the following form:

(1.58a)

Note that the partial response given by Equation 1.58a can be made two-
dimensional in time by naming the time k in the signal x(k – i1) k1, and similarly,
the time k in the signal x(k – i2) k2. This gives the two-dimensional partial response
of the second-order as

(1.58b)

Note that the variables k1 and k2 are artificial variables, which enable us to
transform y(2)(k1, k2) into the Z domain, according to the definition 1.40. This gives

Y z( ) h 0( ) z
z 1–
----------- H 1( ) z( )X z( ) Z h 2( ) i1 i2,( )x k i1–( ) x k i2–( )⋅

i2 0=

∞

∑
i1 0=

∞

∑
 
 
  …+ + +=

Z h 0( )ε k( ){ } h 0( ) z
z 1–
----------- for z 1>=

Z h 1( ) i( )x k i–( )
i 0=

∞

∑
 
 
 

H 1( ) z( )X z( )=

y 2( ) k( ) h 2( ) i1 i2,( )x k i1–( )x k i2–( )
i2 0=

∞

∑
i1 0=

∞

∑=

y 2( ) k1 k2,( ) h 2( ) i1 i2,( )x k1 i1–( )x k2 i2–( )
i2 0=

∞

∑
i1 0=

∞

∑=
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(1.58c)

when using also the convolution–summation property as given by Equation 1.53a.
Furthermore, note that recovering, from the function y(2)(k1, k2) with two artificial
time variables k1 and k2, the function y(2)(k) with the true time variable k follows
according to the following relation:

(1.58d)

That is by substitution of k1 = k2 = k in Equation 1.58b.
We recall now the formula 1.41 for the inverse multidimensional Z transform.

So, in the case of two time variables k1 and k2, as in y(2)(k1, k2), we have

(1.59)

Association of variables k1 and k2 in Equation 1.59 means that we apply Equation
1.58d to it. This gives

(1.60)

Let us introduce a new auxiliary variable relating z1 with z2 by assuming that

(1.61a)

Differentiating in Equation 1.61a with respect to z1, we get

(1.61b)

Substituting then Equations 1.61a and 1.61b in Equation 1.60 gives

(1.62)

where Cu means an appropriate contour in the complex plane u.
Redefining the variables u = z and z2 = u1 in Equation 1.62, and rearranging the

resulting expression, leads finally to

Y 2( ) z1 z2,( ) h 2( ) i1 i2,( )x k1 i1–( ) x k2 i2–( )⋅
i2 0=

∞

∑
i1 0=

∞

∑
 
 
 

z1

k1–
z2

k2–
⋅

= H 2( ) z1 z2,( )X z1( )X z2( )
k2 0=

∞

∑
k1 0=

∞

∑=

k1 k2 k= =

y 2( ) k1 k2,( ) 1

2πj( )2
--------------- Y 2( ) z1 z2,( )z1

k1 1–
z2

k2 1–
dz1dz2

C2

∫°
C1

∫°=

y 2( ) k k,( ) 1
2πj
-------- 1

2πj
-------- Y 2( ) z1 z2,( )z1

k 1– z2
k 1– dz1

C1

∫° 
 
 

dz2

C2

∫°=

z1z2 u=

z2dz1 du=

y 2( ) k k,( ) 1
2πj
-------- 1

2πj
-------- Y 2( ) uz2

1– z2,( )uk 1– z2
1– du

Cu

∫° 
 
 

dz2

C2

∫°=
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(1.63)

where Cz and  are appropriate contours in the complex planes z and u1, respec-
tively. Furthermore, note that Equation 1.63 can be rewritten in the following form:

(1.64a)

with

(1.64b)

According to the inverse formula for the one-dimensional Z transform (see
Equation 1.38),  in Equation 1.64a is the one-dimensional Z transform of
y(2)(k). The relations 1.64a and 1.64b express the association of variables, in this
case of two of them, in the Z domain. Its counterpart in the time domain, according
to the relation 1.58d, has the form

(1.65)

Furthermore, note that by the use of Equation 1.58c to express Y(2)(z1, z2), we
obtain finally from Equation 1.64b

(1.66)

Note now that the transform  given by Equation 1.66 is expressed by
means of the Z transform H(2)(⋅,⋅), called in the literature the transfer function of the
second order of a system, and the Z transforms of an input signal, X(⋅).

Let us repeat the procedure of association of variables once again with three
variables. For this purpose, we consider the third-order partial response in the
Volterra series with causal impulse responses, having the form

(1.67a)

y 2( ) k( ) 1
2πj
-------- 1

2πj
-------- Y 2( ) zu1

1– u1,( )u1
1– du1

Cu1

∫° 
 
 

zk 1– dz
Cz

∫°=

Cu1

y 2( ) k( ) 1
2πj
-------- Y z

2( ) z( )zk 1– dz
Cz

∫°=

Y z
2( ) z( ) 1

2πj
-------- Y 2( ) zu1

1– u1,( )u1
1– du1

Cu1

∫°=

Y z
2( ) z( )

y 2( ) k( ) y 2( ) k1 k k2, k= =( )=

Y z
2( ) z( ) 1

2πj
-------- H 2( ) zu1

1– u1,( )X zu1
1–( )X u1( )u1

1–
du1

Cu1

∫°=

Y z
2( ) z( )

y 3( ) k( ) h 3( ) i1 i2 i3, ,( )x k i1–( )x k i2–( )x k x3–( )
i3 0=

∞

∑
i2 0=

∞

∑
i1 0=

∞

∑=
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Observe that the partial response given by Equation 1.67a can be made three-
dimensional in time by naming the time k in the signal x(k – i1) k1, the time k in the
signal x(k – i2) k2, and finally, the time k in the signal x(k – i3) k3. This leads to

(1.67b)

Once again, we stress that the variables k1, k2, and k3 in Equation 1.67b are
artificial variables, which allow transformation of y(3)(k1, k2, k3), into the Z domain.
Using the property expressed by Equation 1.53a to Equation 1.67b, we get

(1.67c)

Note also that, for getting the function y(3)(k) from y(3)(k1, k2, k3), the following
substitution

(1.67d)

is needed.
We recall now the formula 1.41 for the inverse multidimensional Z transform.

For three variables, we can write

(1.68)

when considering the partial response y(3)(k1, k2, k3).
Having the expression 1.68, we can start association of variables by performing

the substitution k1 = k2 = k. Note that such substitution means in the time domain,
association of first two time variables k1 and k2. Thereby, we obtain

(1.69)

Let us introduce a new auxiliary variable u1, relating z1 with z2 such that

(1.70a)

Differentiating in Equation 1.70a with respect to z1 gives

(1.70b)

y 3( ) k1 k2 k3, ,( ) h 3( ) i1 i2 i3, ,( )x k1 i1–( )x k2 i2–( )x k3 x3–( )
i3 0=

∞

∑
i2 0=

∞

∑
i1 0=

∞

∑=

Y 3( ) z1 z2 z3, ,( ) H 3( ) z1 z2 z3, ,( )X z1( )X z2( )X z3( )=

y 3( ) k( ) y 3( ) k1 k k2, k k3,= = k=( )=

y 3( ) k1 k2 k3, ,( ) 1

2πj( )3
--------------- Y 3( ) z1 z2 z3, ,( )z1

k1 1–
z2

k2 1–
z3

k3 1–
dz1dz2dz3

C3

∫°
C2

∫°
C1

∫°=

y 3( ) k k k3, ,( ) 1

2πj( )2
--------------- 1

2πj
-------- Y 3( ) z1 z2 z3, ,( )z1

k 1– z2
k 1– z3

k3 1–
dz1

C1

∫° 
 
 

dz2dz3

C2

∫°
C3

∫°=

z1z2 u1=

z2dz1 du1=
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Applying then Equations 1.70a and 1.70b in Equation 1.69 leads to

(1.71)

where means an appropriate contour in the complex plane u1.
Now we associate the time variables k and k3 in Equation 1.71 by performing

the substitution k3 = k. This gives

(1.72)

Then, we introduce the second auxiliary variable u relating u1 with z3 in the
following way:

(1.73a)

Differentiating in Equation 1.73a with respect to u1 gives

(1.73b)

Substituting u1 and du1 given by Equation 1.73 into Equation 1.72, we get

 (1.74)

where Cu means an appropriate contour in the complex plane u. Finally, we redefine
the variables u = z, z2 = u1, and z3 = u2 in Equation 1.74, and rearrange the resulting
expression. This results in

(1.75)

where Cz, , and  mean appropriate contours in the complex planes z, u1, and
u2, respectively. Furthermore, note that Equation 1.75 can be rewritten in the fol-
lowing form:

(1.76a)

y 3( ) k k k3, ,( ) 1

2πj( )2
--------------- 1

2πj
-------- Y 3( ) u1z2

1– z2 z3, ,( )u1
k 1– z2

1– z3
k 1– du1

Cu1

∫° 
 
 

dz2dz3

C2

∫°
C3

∫°=

Cu1

y 3( ) k k k, ,( ) 1

2πj( )2
--------------- 1

2πj
-------- Y 3( ) u1z2

1– z2 z3, ,( )u1
k 1– z2

1– z3
k 1– du1

Cu1

∫° 
 
 

dz2dz3

C2

∫°
C3

∫°=

u1z3 u=

z3du1 du=

y 3( ) k k k, ,( ) 1

2πj( )2
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with

(1.76b)

The relations 1.76a and 1.76b for the case of association of three variables are
the counterparts of the relations 1.64a and 1.64b derived for two variables. Using
the same arguments, one can easily show that the relations:

(1.77a)

and

(1.77b)

hold in general. Moreover, we can express Y(n)( ⋅, ⋅, …, ⋅) in Equation 1.77b for the
Volterra series (see Equation 1.53a) through the transfer function of the nth order
and Z transforms of the input signal as 

(1.77c)

Knowing the general formula for the one-dimensional Z transform of the nth
partial response in the Volterra series, we are now able to complete Equation 1.57a.
So, with the above knowledge, this equation can be rewritten as

(1.78)

Note that Equation 1.78 is the equation we have looked for in this section. It
expresses the discrete Volterra series in the Z domain.

Using the representation of the discrete Volterra series presented in Figure 1.1b
and Equation 1.14b (with the lower summation limit equal to zero for causal h(1)(i)),
we can separate the linear part (linear component) from the nonlinear part (nonlinear
components) in the Volterra series. Formally, we then write

Y z
3( ) z( ) 1

2πj( )2
--------------- Y 3( ) zu1

1– u2
1– u1 u2, ,( )u1

1– u2
1– du1du2

Cu2
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n( ) z( )zk 1– dz
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Y z
n( ) z( ) 1

2πj( )n 1–
--------------------- … Y n( ) zu1
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∫°+ +=
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1– u2
1– du1du2

…+⋅
Cu2
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(1.79a)

Note from Equation 1.78 that the counterpart in the Z domain of the relation
1.79a can be expressed as

(1.79b)

Relations 1.79a and 1.79b are illustrated in Figure 1.15.
The same rules relating the Z transform with the Fourier and Laplace transforms

as in the case of the input signal x(k), apply to the sampled and digitalized output
signal y(k). This is illustrated in Figure 1.16.

At the end of this section, we shall point out a role that causal and noncausal
sequences play in our considerations. Note that we touched for the first time on the
problem of causality and noncausality by consideration of the notion of impulse
responses (see Figure 1.3). Then the causal sequences applied to the input of a

FIGURE 1.15 Illustration of linear and nonlinear parts in the discrete Volterra series in the
time and Z domains.

y k( ) ylin k( ) ynon k( )+=

Y z( ) Y LIN z( ) Y NON z( )+=
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nonlinear system were implicitly introduced by reduction of the expression 1.11 to
the form given by Equation 1.12.

It turns out that the notion of causality is also very useful in considerations of
the Z transform. In fact, the one-sided Z transform applies only to causal sequences.
When a sequence is noncausal, it must be transformed with the use of the two-sided
Z transform. Moreover, note that the Z transform does not distinguish between the
causal impulse responses and causal input (output) sequences, as defined schemat-

FIGURE 1.16 Illustration of the relationship of the Z transform with the discrete Fourier
and Laplace transforms, Figure 1.14 repeated for y(k).
©2001 CRC Press LLC



 

ically in Figure 1.17a for the one-dimensional case. Incidentally, note that the causal
sequences are also called one-sided sequences in the literature.5

With regard to the Volterra series, we point out that the output sequence y(k) =
y(0)(k) + y(1)(k) + y(2)(k) + … of a system described by this series is causal only if
both the impulse responses and input signal represent causal sequences. To see this,
consider for example the first- and the second-order partial responses with causal
impulse responses for the time instant k = –1, i.e., 

(1.80a)

and

(1.80b)

Note from 1.80a for i = 0 that when h(1)(0) ≠ 0 and x(k) is such that x(–1) ≠ 0
and x(k) = 0 for all k ≠ –1, then y(1)(–1) ≠ 0. So, y(1)(k) is not causal. Similarly, we
have from 1.80b for i1 = 0 and i2 = 0 the following result: y(2)(–1) ≠ 0 when h(2)(0, 0)
≠ 0 and x(–1) ≠ 0. Hence, y(2)(k) is not causal as well. However, note that putting
x(–1) = 0 immediately makes y(1)(–1) and y(2)(–1) equal to zero.

Consider now the sequence ε(k) shown in Figure 1.5. This sequence is, of course,
a causal one. If we shift this sequence by, for example, two time units to the right,
we get the right-shifted sequence ε(k–2), as shown in Figure 1.18a. Similarly, if we

FIGURE 1.17 Causal and noncausal sequences (one-dimensional case).

y 1( ) 1–( ) h 1( ) i( )x 1– i–( )
i 0=

∞

∑=
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∞

∑
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∞
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shift the sequence ε(k) by, for example, two time units to the left, we shall get the
left-shifted sequence ε(k + 2), as shown in Figure 1.18b.

Note from Figure 1.18 that the right-shifting in time of a causal sequence leaves
it causal. In contrast to this, the left-shifting in time of a causal sequence makes it
noncausal.

1.5 CONDITIONS FOR CONVERGENCE AND 
STABILITY

The problem of convergence is inherently associated with the Volterra series, as with
every other series having an infinite number of elements. In this section, we shall
show one of the means of dealing with this problem. However, before going further,
one general remark with regard to the relationship between stability and convergence
in the context of the Volterra series: by saying that a nonlinear system described by
the discrete Volterra series is stable, we mean its stability in the BIBO (bounded
input produces bounded output) sense. That is, a bounded input sequence x(k) gives
a bounded sequence y(k) at the output. However, in the case of the Volterra series,
not every bounded x(k) gives a bounded y(k). So, we conclude that a nonlinear
system described by the Volterra series can be BIBO stable only for some set of
bounded sequences x(k). And this set is exactly the set of x(k) for which the Volterra
series converges. Note that this is in contrast to linear systems which, when BIBO

FIGURE 1.18 Example of shifting a causal signal to the right and to the left.
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stable, are stable for all bounded input sequences. To see this, consider a linear part
in the Volterra series given by Equation 1.14b, for which we can write

(1.81)

where ��� means the absolute value of. Then, let us introduce quite formally something
that will turn out to be very useful, which is called the norm of a sequence x(k), by
saying simply that

(1.82a)

where sup means the supremum of. Note that having the norm ��x��, we are able to
give a bound on all the elements of the sequence x(k) as shown below:

(1.82b)

Hence, applying Equation 1.82b to Equation 1.81 leads to

(1.83)

Note that it follows from the inequality 1.83 that if the impulse response h(1)(i)
fulfils the condition

(1.84a)

then, for every bounded input sequence

(1.84b)

the output sequence y(1)(k) will be bounded, that is

(1.84c)

will hold.
Moreover, note that there are also nonlinear systems that are BIBO stable for

all the bounded input sequences x(k). One example is a system described by a
truncated Volterra series of the form

y 1( ) k( ) h 1( ) i( )x k i–( )
i ∞–=

∞

∑ h 1( ) i( ) x k i–( )
i ∞–=

∞

∑≤=

x df sup( ) x k( )
∞ k ∞≤ ≤–

=

x k i–( ) x k i �∈, ,≤

y 1( ) k( ) x h 1( ) i( )
i ∞–=

∞

∑⋅≤

h 1( ) i( ) ∞<
i ∞–=

∞

∑

x ∞<

y 1( ) k( ) ∞ k �∈,<
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(1.85)

Taking absolute values of the components in Equation 1.85, we can write 

(1.86)

By application of inequality 1.82b to 1.86, we then get

(1.87)

Note finally that it follows from inequality 1.87 that, if the impulse response
h(1)(i) fulfills inequality 1.84a and the impulse response h(2)(i1, i2) fulfills the condition 

(1.88)

then for every bounded input sequence ��x��<�, the output sequence y(k) will be
bounded, �y(k)� < �, k � �.

The inequality 1.87 may suggest that the convergence of the Volterra series is, in
some way, related to the convergence of a power series. This is true: the methods used
in investigating and calculating the convergence radius for a power series can also be
applied in the case of the Volterra series. Every procedure used here relies upon finding
a power series with nonnegative coefficients, that converges absolutely, and of which
the absolute value is greater or equal to the absolute value of the Volterra series
considered. To get such a power series we shall start with the following inequality:

(1.89)

Let the partial responses in inequality 1.89 be given by Equations 1.3. Then, we
can rewrite 1.89 as

(1.90)

Applying the triangle inequality also to the components of sums in inequality
1.90, in a similar way as in inequality 1.89, we obtain

y k( ) h 1( ) i( )x k i–( ) h 2( ) i1 i2,( )x k i1–( )x k i2–( )
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑+
i ∞–=

∞

∑=

y k( ) h 1( ) i( ) x k i–( ) h 2( ) i1 i2,( ) x k i1–( ) x k i2–( )
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑+
i ∞–=

∞

∑≤

y k( ) x h 1( ) i( ) x 2 h 2( ) i1 i2,( )
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑⋅+
i ∞–=

∞

∑⋅≤

h 2( ) i1 i2,( ) ∞<
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑

y k( ) y 0( ) k( ) y 1( ) k( ) y 2( ) k( ) …+ + + y 0( ) k( ) y 1( ) k( ) y 2( ) k( ) …+ + +≤=

y k( ) h 0( ) h 1( ) i( )x k i–( )
i ∞–=

∞

∑ h
i2 ∞–=

∞

∑ 2( ) i1 i2,( )x k i1–( )x k i2–( )
i1 ∞–=

∞

∑ …+ + +≤
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(1.91)

Furthermore, using expressions 1.82a and 1.82b in inequality 1.91, we get

(1.92a)

We now have a power series of the form 

(1.92b)

on the right-hand side of inequality 1.92a, of which coefficients are given by

(1.92c)

(1.92d)

(1.92e)

and in general, 

(1.92f)

All the coefficients ao, a1, a2, … are nonnegative. Moreover, note that when the
series S(��x��) converges, it converges absolutely because ��x�� � 0.

Let us now calculate the radius of convergence of the series 1.92b. For this
purpose, we use the Cauchy criterion,9 which says that the power series 1.92b is
convergent when

(1.93)

y k( ) h 0( ) h 1( ) i( ) x k i–( )
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∞
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∞

∑
i1 ∞–=

∞
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∞
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∞
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Substituting an given by inequality 1.92f into 1.93 and solving for ��x�� gives

(1.94a)

From inequality 1.94a, we obtain the radius of convergence of the series 1.92a as

(1.94b)

Having the expression for the radius of convergence in the form given by
Equation 1.94b, we shall now show one interesting relationship between the series
convergence and stability of its components. To this end, note that the partial response
of the nth order, y(n)(k), is stable when

(1.95)

Furthermore, note that we can write the following inequalities:

(1.96)

with ��x�� given by Equation 1.82a. Assuming then that the value of the expression
on the right-hand side of the last inequality in 1.96 is always finite, we have

 (1.97)

When the input sequence is bounded, that is ��x��<�, then to fulfil inequality 1.97,
we must have

x
1
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(1.98)

Note now that inequality 1.97 is fulfilled, then inequality 1.95 is also fulfilled.
So concluding, we can say that the inequality 1.98 is a sufficient condition of stability
of the nth order partial response. Furthermore, it follows from Equation 1.94b that,
to have a finite convergence radius different from zero, the limit of the root of the
expression 1.98 used in the stability condition must be a finite number, not infinity.
Moreover, observe that when the limit of the root in Equation 1.94b equals zero,
then the convergence radius r = �. This means that the corresponding nonlinear
system is BIBO stable for all the bounded input sequences (as in linear systems). 

At this point, we stress that one very important conclusion follows from the
considerations underlying inequalities (1.89 to 1.94): the Volterra series describing
the system output response y(k) is absolutely convergent for input sequences for
which �x�<r holds. This is clear when looking at the right-hand side of inequality
1.89, keeping in mind the bound on it found afterwards.

Summarizing the main result of this section and returning to the problems related
with series convergence, which were tacitly omitted in the previous section, we can say:

1. The series 1.1, which began our considerations, makes sense only when
it converges, and best if it converges absolutely. Then, the order of sum-
mation of its components is of no importance.

2. The sums occurring in partial responses, as, for example, in Equations
1.2, must converge. As shown, this can be expressed as a problem of
stability (in the BIBO sense) of partial responses. And in this context, we
have shown that sufficient conditions of the stability of partial responses
of the first-order, of the second-order and, generally, of the nth order, are
expressed by the inequalities 1.84a, 1.88, and 1.98, respectively. In the
case of the first-order partial response, the condition 1.84a is also a
necessary one.10 However, for the higher order partial responses, it has
been shown by Sandberg11 for causal impulse responses that the necessary
condition looks like

(1.99)

where J is a general n-vector of which elements J1, …, Jn are nonempty
finite subsets of �+ , with �+ meaning the set of nonnegative integers.
Observe that

(1.100)
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so, really, the bound on the right-hand side of 1.100 is broader than that
resulting from the necessity condition.

3. All the series related with the Z transform, discrete Fourier transform, or
Laplace transform, which were discussed in Section 1.3, have to converge.
Only then do the results presented make sense. One should be fully aware
of this fact when calculating some transforms, especially Z transforms,
along the lines presented. So, in each case, the convergence of a series
must be checked and the radius of convergence must be determined.

4. The series 1.78 expressing the Volterra series in the Z domain makes sense
only when all of its components possess Z transforms and the whole series
for Y(z) converges. The above must be checked for each concrete case of
transforming y(k), and the radius of convergence for Y(z) must be found,
taking into account the convergence radii of the Z transforms of all the
components of Y(z).

1.6 MATRIX REPRESENTATION FOR MULTIPLE-INPUT 
AND MULTIPLE-OUTPUT SYSTEMS

The form of the Volterra series described by Equations 1.1 and 1.2 or 1.3 takes into
account only one input and one output. Because of this, the series form is sometimes
called in the literature a scalar one (for scalar nonlinear systems). And it cannot be
used when a nonlinear system possesses more than one input and/or more than one
output. The scalar form of the Volterra series must be modified to take into account
the above fact. This can be achieved by a technique that is illustrated as follows.
For illustration purposes, we consider an example of a nonlinear discrete system
possessing three inputs and two outputs, as shown in Figure 1.19. Note that the
system in Figure 1.19 can be called the vector nonlinear system, complementing the
notion of scalar nonlinear systems defined previously.

For the system of Figure 1.19, we can write

(1.101)

FIGURE 1.19 Example of a nonlinear discrete system with three inputs and two outputs.
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in analogy to Equation 1.1. Note that in more compact form, with the use of the
shortened notation for vectors, Equation 1.101 can be rewritten as

1.102)

where y(k), y(0)(k), y(1)(k), y(2)(k), … are the corresponding vectors related with the
output, the partial response of the zeroth order, the partial response of the first order,
the partial response of the second order, and so on. That is, the system output signal
and the partial responses of the corresponding orders are considered to be vector-
valued.

We now develop Equation 1.101, according to Equations 1.3, for systems inde-
pendent of time. So we get

(1.103)

y k( ) y 0( ) k( ) y 1( ) k( ) y 2( ) k( ) y 3( ) k( ) …+ + + + y n( ) k( )
n 0=

∞

∑= =

y1 k( )
y2 k( )

h1
0( )

h2
0( )

h11
1( ) i( )x1 k i–( ) h12

1( ) i( )x2 k i–( ) h13
1( ) i( )x3 k i–( )+ +( )

i ∞–=

∞

∑

h21
1( ) i( )x1 k i–( ) h22

1( ) i( )x2 k i–( ) h23
1( ) i( )x3 k i–( )+ +( )

i ∞–=

∞

∑
+=

+

h111
2( ) i1 i2,( )x1 k i1–( )x1 k i2–( ) h121

2( ) i1 i2,( )x2 k i1–( )x1 k i2–( )+(
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑

h211
2( ) i1 i2,( )x1 k i1–( )x1 k i2–( ) h221

2( ) i1 i2,( )x2 k i1–( )x1 k i2–( )+(
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑

+h131
2( ) i1 i2,( )x3 k i1–( )x1 k i2–( ) h112

2( ) i1 i2,( )x1 k i1–( )x2 k i2–( )+

+h231
2( ) i1 i2,( )x3 k i1–( )x1 k i2–( ) h212

2( ) i1 i2,( )x1 k i1–( )x2 k i2–( )+

+h122
2( ) i1 i2,( )x2 k i1–( )x2 k i2–( ) h132

2( ) i1 i2,( )x3 k i1–( )x2 k i2–( )+

+h222
2( ) i1 i2,( )x2 k i1–( )x2 k i2–( ) h232

2( ) i1 i2,( )x3 k i1–( )x2 k i2–( )+

+h113
2( ) i1 i2,( )x1 k i1–( )x3 k i2–( ) h123

2( ) i1 i2,( )x2 k i1–( )x3 k i2–( )+

+h213
2( ) i1 i2,( )x1 k i1–( )x3 k i2–( ) h223

2( ) i1 i2,( )x2 k i1–( )x3 k i2–( )+

+h133
2( ) i1 i2,( )x3 k i1–( )x3 k i2–( ) )

+h233
2( ) i1 i2,( )x3 k i1–( )x3 k i2–( ) )

…+
©2001 CRC Press LLC



 

Note that Equation 1.103 can be rewritten in the more compact form:

(1.104)

where the notation [](i), [](i1, i2), and [](k-i1) means that the elements of the vector or
matrix considered (all the elements of that vector or matrix) depend upon arguments
i, i1, and i2, and k � i1, respectively.

Further simplification of Equation 1.104 leads to
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0 0 0 0 x2 0 0 0 0

0 0 0 0 0 x3 0 0 0

0 0 0 0 0 0 x1 0 0

0 0 0 0 0 0 0 x2 0

0 0 0 0 0 0 0 0 x3 k i1– 
 

x1

x1

x1

x2

x2

x2

x3

x3

x3 k i2– 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

⋅

x1 0 0 0 0 0 0 0 0

0 x2 0 0 0 0 0 0 0

0 0 x3 0 0 0 0 0 0

0 0 0 x1 0 0 0 0 0

0 0 0 0 x2 0 0 0 0

0 0 0 0 0 x3 0 0 0

0 0 0 0 0 0 x1 0 0

0 0 0 0 0 0 0 x2 0

0 0 0 0 0 0 0 0 x3 k i1– 
 

x1

x1

x1

x2

x2

x2

x3

x3

x3 k i2– 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

⋅

…+
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(1.105)

where the definitions of the vector h(0), and the matrices h(1) and h(2) follow from the
comparison of the corresponding expressions determining the components of the
series 1.105. Moreover, the symbol � used in Equation 1.105 means the Kronecker
product; it will be explained in detail in what follows.

Let A and B be matrices of order MA � NA and MB � NB, respectively. That is

(1.106a)

and

(1.106b)

The Kronecker product of the matrices A and B is then matrix C, given by

y1 k( )
y2 k( )

h1
0( )

h2
0( )

h11
1( ) h12

1( ) h13
1( )

h21
1( ) h22

1( ) h23
1( )

i( )

x1
x2
x3 k i–( )

⋅
i ∞–=

∞

∑+=

+ h111
2( )  h121

2( )  h131
2( )  h112

2( )  h122
2( )  h132

2( )  h113
2( )  h123

2( )  h133
2( )

h211
2( )  h221

2( )  h231
2( )  h212

2( )  h222
2( )  h232

2( )  h213
2( )  h223

2( )  h233
2( )

i2 ∞–=

∞

∑
i1 i2, 

 i1 ∞–=

∞

∑

x1 k i1–( ) x1 k i2–( )
x2 k i1–( ) x1 k i2–( )
x3 k i1–( ) x1 k i2–( )
x1 k i1–( ) x2 k i2–( )
x2 k i1–( ) x2 k i2–( )
x3 k i1–( ) x2 k i2–( )
x1 k i1–( ) x3 k i2–( )
x2 k i1–( ) x3 k i2–( )
x3 k i1–( ) x3 k i2–( )

• …+ h 0( ) h 1( ) i( ) x k i–(⋅
i ∞–=

∞

∑+=

+ h 2( ) i1 i2,( ) x k i1–( ) x k i2–( )⊗( ) …+⋅
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑

A

a11 a12
…… a1N A

a21 a22
…… a2N A

� � �
aM A1 aM A2

…… aM AN A

=

B

b11 b12
…… b1NB

b21 b22
…… b2NB

� � �
bMB1 bMB2

…… bMBNB

=
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(1.107a)

The order of the matrix C is MAMB � NANB.
Observe from Equation 1.107a that elements of C can be expressed as

(1.107b)

where ic, jc; ia, ja; ib, jb are the corresponding indices of elements of the matrices C,
A, and B, respectively. The indices ic and jc fulfill the following two equations:

(1.108a)

and

(1.108b)

The Kronecker product defined by Equations 1.107 and 1.108 is called in the
literature12 the left Kronecker product. More about the Kronecker product of matrices
can be found in Reference 12 and references cited there. Here, we give its most
important properties as

(1.109)

(1.110)

(1.111)

(1.112)

(1.113)

(1.114)

The symbol “�1” in Equation 1.113 means the inverse of, but the symbol “T” in
Equation 1.114 refers to the matrix transposition.

Note now applying the definition of the Kronecker product Equation 1.107a to
the product of the vectors x(k � i1) and x(k � i2) in Equation 1.105, we get

C A B
df⊗  

Ab11 Ab12
…… Ab1NB

Ab21 Ab22
…… Ab2NB

� � �
AbMB1 AbMB2

…… AbMBNB

= =

cic jc
aia ja

bib jb
=

ic ia M A ib 1–( )+=

jc ja N A jb 1–( )+=

A B B A (in general)⊗≠⊗

A B C⊗( )⊗ A B⊗( ) C⊗ A B⊗ C⊗= =

A B+( ) C⊗ A C⊗( ) B C⊗( )+=

A B⋅( ) C D⋅( )⊗ A C⊗( ) B D⊗( )⋅=

A B⊗( ) 1– A 1– B 1–⊗=

A B⊗( )T AT BT⊗=
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 (1.115)

And the resulting vector in Equation 1.115 is identical to the corresponding
vector written down explicitly in Equation 1.105.

Incidentally, observe that Equation 1.105 could be formulated otherwise, using
the right Kronecker product. Then, for example, the vector determining the second-
order partial response would look like

(1.116)

In this book we use the same notational convention as proposed by Saleh, 12 that
is, the formulation with the use of the left Kronecker product.

Now return to Equation 1.105 and rewrite its final form as

x k i1–( ) x k i2–( )⊗

x1 k i1–( )
x2 k i1–( )
x3 k i1–( )

x1 k i2–( )

x1 k i1–( )
x2 k i1–( )
x3 k i1–( )

x2 k i2–( )

x1 k i1–( )
x2 k i1–( )
x3 k i1–( )

x3 k i2–( )

x1 k i1–( ) x1 k i2–( )
x2 k i1–( ) x1 k i2–( )
x3 k i1–( ) x1 k i2–( )
x1 k i2–( ) x2 k i2–( )
x2 k i1–( ) x2 k i2–( )
x3 k i1–( ) x2 k i2–( )
x1 k i1–( ) x3 k i2–( )
x2 k i1–( ) x3 k i2–( )
x3 k i1–( ) x3 k i2–( )

= =

y1
2( ) k( )

y2
2( ) k( )

h111
2( )  h112

2( )  h113
2( )  h121

2( ) h 122
2( )  h123

2( )  h131
2( )  h132

2( )  h133
2( )

h211
2( )  h212

2( )  h213
2( )  h221

2( )  h222
2( )  h223

2( )  h231
2( )  h232

2( )  h233
2( )

i1 i2, 
 i2 ∞–=

∞

∑
i1 ∞–=

∞

∑=

x1 k i1–( ) x1 k i2–( )
x1 k i1–( ) x2 k i2–( )
x1 k i1–( ) x3 k i2–( )
x2 k i1–( ) x1 k i2–( )
x2 k i1–( ) x2 k i2–( )
x2 k i1–( ) x3 k i2–( )
x3 k i1–( ) x1 k i2–( )
x3 k i1–( ) x2 k i2–( )
x3 k i1–( ) x3 k i2–( )

⋅
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(1.117)

where all the Kronecker products indicated are the left ones.
Keeping in mind the considerations just presented, we will now explain the

general formula 1.117 for a nonlinear discrete system with N inputs and M outputs.
Note that such a system is presented schematically in Figure 1.20. For the purpose
of explanation, we refer in what follows to the 

nth order component in 1.117, having the following form:

(1.118)

where the arguments are omitted in the matrix h(n) and vectors x to simplify the
notation. Moreover, we call the reader’s attention to the fact that the small n here,
being the order of the nonlinear impulse response, has nothing to do with the capital
N, being the number of inputs.

It is clear from the definition of the Kronecker product given by Equation 1.107a
that the n-fold product x � … � x in Equation 1.118 results in the vector of order
N 

n� 1, which looks like

FIGURE 1.20 Nonlinear discrete system with N inputs and M outputs.

y k( ) h 0( ) h 1( ) i( ) x k i–( ) h 2( ) i1 i2,( ) x k i1–( ) x k i2–( )⊗( )⋅
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑+⋅
i ∞–=

∞

∑+=

+ h 3( ) i1 i2 i3, ,( ) x k i1–( ) x k i2–( )⊗ x k i3–( )⊗( ) …+⋅
i3 ∞–=

∞

∑
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑

… h n( ) x … x⊗ ⊗
n times 

  n 2≥,⋅
in ∞–=

∞

∑
i1 ∞–=

∞

∑     
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(1.119a)

Observe from Equation 1.119a that the jth element of the vector is equal to

(1.119b)

where the index j is related to the indices j1, …, jn in the following way:

(1.119c)

The matrices h(n) have the following form:

(1.120a)

These matrices are of order M � 
n.
Observe from Equation 1.120a that the ij-th element in the matrix h(n) can be

expressed as

(1.120b)

with j given by the relation 1.119c.
At the end of this section, we shall illustrate application of the representation

1.117, developed for nonlinear multiple-input and multiple-output systems, to the
stability and convergence problems encountered in such systems. We start with some
useful definitions. First, let us rewrite Equation 1.119b in the following symbolic
form:

(1.121)

x1

x2

�
xN

   

x1x1…x1

N  times

�
x j1

x j2
…x jn

�
xN xN…xN

the first element←

the jth element←
j1 j2 … jn ∈ 1 2 … N, , ,{ }, , ,

the Nnth element←

⇒

    

�applied
n times

x … x⊗ ⊗[ ] j x j1
…x jn

=

j j1 N j2 1–( ) … Nn 1– jn 1–( )+ + +=

h n( )

↓ Nn columns

h11��1
…… h1N��N

� � �
hM1��1

…… hMN��N

M rows ←
=

h n( )[ ]ij h j1… jn

n( )=

x … x⊗ ⊗
n  times j

xn( ) j=    
©2001 CRC Press LLC



 

The symbolic notation 1.121 means the jth element of the vector x � … � x (n
times) consists of n elements of the vector x.

Second, we extend the definition of the norm for scalar sequences, given by
Equation 1.82a, to vector-valued sequences. We do this for the input vector x(k) and
the output vector y(k) (more precisely, these, of course are the vector-valued input
and output sequences) as:

(1.122a)

and

(1.122b)

Note from definitions 1.122a and 1.122b that to calculate the norm of the vector
x or y, one calculates first the norms of all the components of these vectors according
to the definition 1.82a. Then one picks up the maximal value from them.

Let us now illustrate the usage of the vector representation of the Volterra series
as in Equation 1.117 to find the stability condition of the linear part in it, having
the form

(1.123)

We proceed here similarly as before (see inequality 1.81 and the following ones).
Hence, we get from Equation 1.123

(1.124a)

where the argument i1 instead of i is used. The letter i is used in the inequality 1.124a
and following inequalities to denote the row index of the elements of the matrix h
and of the vector y.

For better understanding of inequality 1.124a, let us write it explicitly for all
row indices i; that is, 

x I
df max

1 i N≤ ≤
sup

∞ k ∞≤ ≤–
xi k( )( )=

y I
df

max
1 i M≤ ≤

sup
∞ k ∞≤ ≤–

yi k( )( )=

y 1( ) k( ) h 1( ) i( ) x k i–( )⋅
i ∞–=

∞

∑=

yi
1( ) k( ) h 1( ) i1( ) x k i1–( )⋅[ ]i

i1 ∞–=

∞

∑ h 1( ) i1( ) x k i1–( )⋅[ ]i 1 i M≤ ≤,
i1 ∞–=

∞

∑≤=
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 (1.124b)

Note that inequalities 1.124b can be written in more compact form as 

(1.124c)

It is clear that the following inequality

(1.125)

is always true. So, taking into account the above fact in inequality 1.124c leads to

(1.126a)

Note that inequality 1.126a holds for every k. Hence, the following:

(1.126b)

is also fulfilled.
Consider now the index i � i�, for which

(1.127a)

occurs. We rewrite inequality 1.126b for this index

(1.127b)

y1
1( ) k( ) h1 j

1( ) i1( )x j k i1–( )
j 1=

N

∑ h1 j
1( ) i1( ) x j k i1–( )

j 1=

N

∑
i1 ∞–=

∞

∑≤
i1 ∞–=

∞

∑≤

y2
1( ) k( ) h2 j

1( ) i1( )x j k i1–( )
j 1=

N

∑ h2 j
1( ) i1( ) x j k i1–( )

j 1=

N

∑
i1 ∞–=

∞

∑≤
i1 ∞–=

∞

∑≤

� � � � �

yM
1( ) k( ) hMj

1( ) i1( )x j k i1–( )
j 1=

N

∑ hMj
1( ) i1( ) x j k i1–( )

j 1=

N

∑
i1 ∞–=

∞

∑≤
i1 ∞–=

∞

∑≤

yi
1( ) k( ) hij

1( ) i1( ) x j k i1–( ) 1 i M≤ ≤,
j 1=

N

∑
i1 ∞–=

∞

∑≤

x j k i1–( ) x I≤

yi
1( ) k( ) x I hij

1( ) i1( )
i1 ∞–=

∞

∑ 1 i M≤ ≤,
j 1=

N

∑≤

sup
∞ k ∞≤ ≤–

yi
1( ) k( ) x I hij

1( ) i1( ) 1 i M≤ ≤,
i1 ∞–=

∞

∑
j 1=

N

∑≤

max
1 i M≤ ≤

sup
∞ k ∞≤ ≤–

yi
1( ) k( )( )

sup
∞ k ∞≤ ≤–

yi'
1( ) k( ) x I hi' j

1( ) i1( )
i1 ∞–=

∞

∑
j 1=

N

∑≤
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Then taking into account equality 1.122b in inequality 1.127b, the latter can be
rewritten as

(1.127c)

To make inequality 1.127c more general, let us denote by

(1.128a)

Applying then K1 in inequality 1.127c allows us to write

(1.128b)

So with

(1.129a)

and bounded x, that is ��x��I < �, it is evident from inequality 1.128b that y(1) is
bounded:

(1.129b)

Hence, inequality 1.129a with K1 given by Equation 1.128a represents the stability
condition we looked for.

Equivalently, the stability condition for y1(k) given by Equation 1.123 can be
found using another form of the norm for the input and output vector-valued
sequences. Maybe this is a more elegant way. It assumes defining first the absolute
value for vectors, as written below for the input and output vectors

(1.130a)

(1.130b)

Note from the definitions 1.130a and 1.130b that the absolute value of a vector is
defined as the maximal value of all its elements.

When a vector depends upon the discrete time k, then it is a vector-valued
sequence. For such a sequence, using the absolute value of a vector just defined, we

y 1( )
I x I hi' j

1( ) i1( )
i1 ∞–=

∞

∑
j 1=

N

∑≤

K1 max
1 i M≤ ≤

hij
1( ) i1( )

i1 ∞–=

∞

∑
j 1=

N

∑
 
 
 

=

y 1( )
I K 1 x I≤

K 1 ∞<

y 1( )
I ∞<

x df max
i

xi max
1 i N≤ ≤

xi= =

y
df

max
i

yi max
1 i M≤ ≤

yi= =
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define a norm. Using the examples of the input and output vectors (more precisely,
the input and output vector-valued sequences) x and y, this is formulated as follows

(1.131a)

(1.131b)

FIGURE 1.21 Illustration of calculation of the norms ��� and ���I for vector-valued sequences.

x
df

sup 
∞ k ∞≤ ≤–

x k( )=

y
df

sup
∞ k ∞≤ ≤–

y k( )=
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Note that x(k) and y(k) in Equation 1.131a and 1.131b, respectively, with k given
explicitly, mean the vector-valued sequences. We use here the notational convention
similarly used before with regard to scalars x(k) and y(k). Recall that x(k) (or
similarly, y(k)) was used with two meanings: as the element x(k) of the sequence x,
or as the whole sequence; that is, x(k) = {…, x(�1), x(0), x(1), x(2), x(3), …} of which
meaning was valid at the moment, it followed from the context. And similarly here,
x(k) (or y(k)) is used: as the element x(k) of the vector-valued sequence x, or as the
whole vector-valued sequence: that is, x(k) = { …, x(�1), x(0), x(1), x(2), x(3), ...}.
Furthermore, the context determines which of the above meanings is valid at the
moment.

To point out the differences in calculating the norms ����� and �����I for vector-
valued sequences, we illustrate the calculation of both in Figure 1.21.

Let us now come back to calculating the stability condition for y(1)(k) given by
Equation 1.123 with the use of the norm ����� defined for vector-valued sequences.
We start by applying the definition 1.130b to the vector-valued output sequence of
Equation 1.123. This gives

(1.132)

where the argument i1 instead of i is used. The letter i is now reserved for row
indexing in the vector y(1)(k) (precisely, for indexing rows in the given vector-valued
sequence).

Note that inequality 1.132 can be rewritten as

(1.133)

Because 

(1.134)

holds, we can continue inequality 1.133 as

(1.135)

Furthermore, note that inequality 1.135 will also hold, if we use the supremum
function on the left-hand side of inequality 1.135; that is, 

y 1( ) k( ) h 1( ) i1( ) x k i1–( )⋅
i1 ∞–=

∞

∑ h 1( ) i1( ) x k i1–( )⋅
i1 ∞–=

∞

∑≤=

y 1( ) k( ) max
i

hij
1( ) i1( ) x j k i1–( )⋅

j 1=

N

∑ max
i

hij
1( ) i1( ) x j k i1–( )⋅

j 1=

N

∑
 
 
 

1, i M≤ ≤
i1 ∞–=

∞

∑≤
i1 ∞–=

∞

∑≤

x j k i1–( ) x k i1–( ) x≤ ≤

y 1( ) k( ) x max
i

hij
1( ) i1( )

j 1=

N

∑
 
 
 

i1 ∞–=

∞

∑⋅≤
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 (1.136a)

So, finally, with the definition 1.131b in mind, we get from inequality 1.136a

(1.136b)

If we introduce

(1.136c)

in inequality 1.136b, we shall get the inequality 1.136b in the following equivalent
form:

(1.136d)

Note that inequality 1.136d is the counterpart of inequality 1.128b derived
previously. And, as before, when

(1.137a)

and the vector-valued sequence x is bounded, then it follows from Equation 1.136d
that inequality

(1.137b)

So inequality 1.137a represents the stability condition for y(1)(k) Equation 1.123,
derived with the use of the norms ����� defined by Equations 1.131a and 1.131b.

Let us now consider the convergence of the series 1.117. For this purpose, we
write

(1.138)

sup
∞ k ∞≤ ≤–

y 1( ) k( ) x max
i

hij
1( ) i1( )

j 1=

N

∑
 
 
 

i1 ∞–=

∞

∑⋅≤

y 1( ) x max
i

hij
1( ) i1( )

j 1=

N

∑
 
 
 

i1 ∞–=

∞

∑⋅≤

K max
i

hij
1( ) i1( )

j 1=

N

∑
 
 
 

i1 ∞–=

∞

∑=

y 1( ) K x≤

K ∞<

y 1( ) ∞<

yi hi
0( ) hij

1( )x j

j 1=

N

∑
i1 ∞–=

∞

∑ hij
2( ) x2( ) j

j 1=

N
2

∑
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑+ +≤

+ hij
3( ) x3( ) j

j 1=

N
3

∑
i3 ∞–=

∞

∑
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑ …+

 1 i M≤ ≤
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for the ith element of the vector y. The arguments in yi, , xj, related to the time
in inequaltiy 1.138, i.e., k, i1, k � i1, i2, …, are omitted for simplicity of notation.
Note the use of the symbolic notation 1.121, and the fact that the letter i is exclusively
retained for the row indexing of matrices and vectors encountered. Inequality 1.138
follows from Equation 1.117 by applying the triangle inequality to its components.

Further application of the triangle inequality in inequality 1.138 leads to

 (1.139)

Moreover, note that the inequalities

(1.140a)

hold. So using these inequalities in inequality 1.139, we get

(1.140b)

Note that inequality 1.140b holds for every k. Hence, the following inequality:

(1.140c)

is also fulfilled.

hij
�( )

yi hi
0( ) hij

1( )x j

j 1=

N

∑
i1 ∞–=

∞

∑ hij
2( ) x2( ) j

j 1=

N
2

∑
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑+ +≤

+ hij
3( ) x3( ) j

j 1=

N
3

∑
i3 ∞–=

∞

∑
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑ …+

hi
0( )≤ hij

1( ) x j

j 1=

N

∑
i1 ∞–=

∞

∑ hij
2( ) x2( ) j

j 1=

N
2

∑
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑+

+ hij
3( ) x3( ) j …+

j 1=

N
3

∑
i3 ∞–=

∞

∑
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑

1 i M≤ ≤

x j x I x2( ) j x I
2 x3( ) j x I

3 …,≤,≤,≤

yi hi
0( ) x I hij

1( )

j 1=

N
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Let us now take into account the index i = i� for which

(1.141a)

occurs. For this index, we rewrite inequality 1.140c as

(1.141b)

Furthermore, taking into account definition 1.122b and the fact that

(1.141c)

(see definition 1.130b) holds, inequality 1.141b can be rewritten as

(1.141d)

Note now the following inequalities:

(1.142a)

(1.142b)

(1.142c)

and in general, 
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(1.142d)

hold. So the use of these inequalities in 1.141d gives

(1.143)

with the coefficient a0 equal to �h(0)� (compare inequality 1.143 with 1.141d). Inci-
dentally, note that all the coefficients an, n = 0, 1, 2, …, in inequality 1.143 are
nonnegative.

Now calculate the radius of convergence of the power series on the right-hand
side of inequality 1.143 in the same way as before; that is, by the use of the Cauchy
criterion 1.93, with ��x��1 instead of ��x��. So, substituting an given by Equation 1.142d
into 1.93 and solving for ��x��1 gives

(1.144a)

Finally, it follows from inequality 1.144a that the radius of convergence of the power
series in inequality 1.143 is given by the expression

(1.144b)

In conclusion, we can say that the series given by Equation 1.117 converges
absolutely for the input vector-valued sequences fulfilling

(1.144c)

We also point out that similar results to those obtained with the use of the norm
�����I for vector-valued sequences can be achieved using the norm ����� defined by
Equations 1.131. The methodology of arriving at such results is the same as that
used in expressions from 1.138 to 1.144.
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1.7 NONLINEAR SYSTEMS WITH FADING MEMORY

It has been shown in Section 1.5 that the notion of the norm of a sequence is very
useful in handling expressions used in convergence and stability considerations. The
norm of a sequence turned out to express, in some defined way, the magnitude of a
sequence — in terms of the functional analysis.13,14 And because of the usefulness
of the functional analysis, we will use often its notions and tools in this and in the
following sections. Hence, for the purposes of further considerations, we recall now
some of the fundamentals of this analysis. We start with the definitions of mapping
and functional.

So, let X and Y be some sets. A mapping is then defined as a rule by which the
elements of the set X are assigned to the elements of the set Y. Moreover, the
assignment is unique; that is, each of the elements of X is mapped to only one of
the elements of Y.

To express the above definition symbolically, the three kinds of notation given
below are used in the literature. They are

(1.145a)

(1.145b)

(1.145c)

Moreover, note that the element y as defined in Equations 1.145 is the image of
the element x under the mapping f. Furthermore, the set X is the domain of the
mapping, and the set of all images y is the range of that mapping. Of course, the
range of the mapping is contained in the set Y, or is equal with this set. In the latter
case, we say that the mapping f maps X onto Y, and we write

(1.146)

When this is not the case, we simply say that the mapping f maps X into Y.
The different kinds of notation in Equations 1.145 point out some particular

aspects of the mapping. So notation 1.145a expresses the mapping of one set into
(onto) another set. Notation 1.145b is used, when one wants to point out that the
mapping is identical with the notion of the function. And finally, 1.145c with the
capital F instead of the small f, shows that the mapping is also nothing else than
the operation (operator). Hence, we see that the notions of the mapping, function,
operation (operator), transformation mean the same in the functional analysis. There
is, however, one terminological exception: we do not say that a functional is identical
to an operator. Quite the contrary. These notions are disjunctive, but both are types
of mappings.

The general illustration of the notion of mapping is presented in Figure 1.22.
Moreover,

f : X Y→

y f x( ) x X y Y∈,∈,=

y Fx x X y Y∈,∈,=

f :
onto

X Y→
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Figure 1.23 illustrates the notion of into and onto mappings. Note that the set of
images y in Figure 1.23 is denoted by f(X).

If the images y of all the elements of the set X are distinct in Y, as shown in Fig.
1.24, then the mapping f is one-to-one. Moreover, when the mapping f is also onto,
then there exists the inverse mapping f�1 with the following properties:

(1.147a)

FIGURE 1.22 Illustration of the definition of mapping.

FIGURE 1.23 Mapping of the set X into the set Y, or onto the set Y.

X Y

forbidden

X

X

Y

Y

f(X)=Y

f(X)=Y

(a) Into mapping

(b) Onto mappping

f 1– y( ) f 1– f x( )( ) x= =
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(1.147b)

for every x � X and  y � Y.

When the set resulting from one mapping is mapped into the next, we have a
composition of mappings, and, of course, this process can be continued. The resulting
mapping is called a composite mapping, and is illustrated in Figure 1.25 for the case
of using two functions. We write then

(1.148a)

with

FIGURE 1.24 One-to-one and onto mapping f with its inverse f�1.

FIGURE 1.25 Illustration of construction of the composite mapping f � f2f1.

f x( ) f f 1– y( )( ) y= =

x

y

f(x)=y

f

f-1

f f 2 f1 : X Y 2→=

f1
f2

f=f2f1

X

Y1 Y2
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(1.148b)

which means that

(1.148c)

The operation most often used in this book is that which operates on signals
that are sequences. In this case, the elements of the sets X and Y are the sequences.
This fact is illustrated in Figure 1.26.

We will call a functional such a mapping, which maps the signals (sequences)
into the set of real numbers, �. For illustration, see Figure 1.27.

Explanation 1.5
Note that the Volterra series given by Equations 1.1 and 1.2 or 1.3 is a mapping,
which maps the element x(k) (input sequence) into the element y(k) (output
sequence).

On the other hand, the norm ��x�� given by Equation 1.82a is a functional
converting the sequence x(k) into a real number.

Let us now introduce some algebraic structure into the sets considered. This
structure is added by defining a linear space, determining operations of summation
of elements of the set considered and of their multiplication by scalars. So we say

FIGURE 1.26 Illustration of  the mapping of sequences belonging to the set X into sequences
belonging to the set Y.

f 1 : X Y 1 and f 2 : Y1 Y 2→→

y2 f 2 y1( ) f 2 f 1 x( )( ) f x( ) x X∈,= = =

0 k

0 k

0 k

0 k

0 k

0 k

0 k

0 k

Y

f(X)X
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that a given set X is linear, or, in other words, is a linear space if for any pair of
its elements x1 and x2 there exists the sum x1�x2 � X having the following four
properties:

1a) x1 � x2  � x2 � x1  (summation is commutative) (1.149a)
2a) (x1 � x2) � x3 � x1 � (x2 � x3) where x3 � X, too 

(summation is associative) (1.149b)
3a) there exists in X a unique zero element � (sometimes called the origin) 

such that, for any x � X , x � � � x holds (1.149c)
4a) there exists for each x � X such a unique element �x that 

x � (�x) � � holds (1.149d)

Moreover, the multiplication by scalar must fulfill the following:

0b) �x � X where � is an element of the set of scalars (the resulting element belongs
to the space X) (1.150a)

1b) �1(�2x) � (�1�2)x  where �1 and �2 are scalars (multiplication by 
scalar is associative) (1.150b)

2b) 1x � x for each x � X (1.150c)
3b) 0x � � for each x � X; (1.150d)
4b) (�1 � �2)x � �1x � �2x (distributive law) (1.150e)
5b) �(x1� x2) � �x1 � �x2  (distributive law) (1.150f)

Note that when the scalars �, �1, �2, ... are real numbers, then the linear space
X is called real; but when they are complex, the space X is also called complex.

FIGURE 1.27 Illustration of the notion of a functional.

Y=RR

0 k

0 k

0 k

0 k

X
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In the functional analysis, the elements (points) of a linear space are also called
vectors. Note that this book deals with spaces whose elements are scalar sequences
or sequences of vectors (vector-valued sequences). See, for example, Figure 1.21.
When we consider the latter sequences, we usually indicate them by boldface type
symbols.

Explanation 1.6
Consider now whether our sets of sequences can be considered as linear spaces. Let
us, for example, check the property 1a) from the list given. So, taking into account
two sequences

and

we write their sum as

Changing then the order of occurrence of components in each of the elements of
the above sequence, we get

which finally allows us to write

So property 1a) is proved.
Note also that we can similarly prove the property 2a). 
Now, if we take into account the following two sequences, 

and

we can write

The above equality proves the property 3a) and shows what the zero element
(zero sequence) looks like. Furthermore, see that for the sequences

x1 k( ) … x1 1–( ) x1 0( ) x1 1( ) …,,,,{ }=

x2 k( ) … x2 1–( ) x2 0( ) x2 1( ) …,,,,{ }=

x1 k( ) x+ 2 k( ) … x1 1–( ) x2 1–( ) x1 0( ) x2 0( ) x1 1( ) x2 1( ) …,+,+,+,{ }=

x1 k( ) x+ 2 k( ) … x2 1–( ) x1 1–( ) x2 0( ) x1 0( ) x2 1( ) x1 1( ) …,+,+,+,{ }=

x1 k( ) x+ 2 k( ) x2 k( ) x+ 1 k( )=

x k( ) … x 1–( ) x 0( ) x 1( ) x 2( ) …,,,,,{ }=

θ k( ) … 0 0 0 0 …, , , , ,{ }=

x k( ) θ k( )+ … x 1–( ) 0 x 0( ) 0 x 1( ) 0 x 2( ) 0 …,+,+,+,+,{ }=

= … x 1–( ) x 0( ) x 1( ) x 2( ) …,,,,,{ } x k( )=

x k( ) … x 1–( ) x 0( ) x 1( ) x 2( ) …,,,,,{ }=
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and

their sum can be expressed as

And this proves property 4a).
Let us now observe that

and the result of multiplication of x(k) by a scalar � is a sequence, too. So property
0b) is thereby proved. Furthermore, note that, using the above result, it is easy to
show that the properties 1b), 4b), and 5b) hold. Also see then that properties 2b)
and 3b), as

and

hold, too. Altogether, this means that the set of scalar sequences forms a linear space.
It is clear that by using the same arguments, we are able to prove all the properties

of linear spaces for the set of vector-valued sequences. In what follows, we point
out briefly some interesting points related to these proofs. So, with regard to the
property 3a), see that

And it follows from the above how the zero element (zero vector–valued
sequence) looks in the case of considering vectors with n rows. Note that the
sequence θθθθ(k) is often denoted by θθθθn(k) (to indicate the number of vector rows).
Furthermore, with regard to the next property, 4a), we see that

x– k( ) … x– 1–( ) x– 0( ) x– 1( ) x– 2( ) …,,,,,{ }=

x k( ) x k( )–( )+ … x 1–( ) x 1–( ) x 0( ) x 0( ) x 1( ) x– 1( ) x 2( ) x 2( ) …,–,,–,–,{ }=

= … 0 0 0 0 …, , , , ,{ } θ k( )=

αx k( ) … αx 1–( ) αx 0( ) αx 1( ) αx 2( ) …,,,,,{ }=

1x k( ) … 1x 1–( ) 1x 0( ) 1x 1( ) 1x 2( ) …,,,,,{ } x k( )= =

0x k( ) … 0x 1–( ) 0x 0( ) 0x 1( ) 0x 2( ) …,,,,,{ } … 0 0 0 0 …, , , , ,{ } θ k( )= = =

x k( ) θ k( )+ …

x1 1–( )
x2 1–( )

�
xn 1–( )

x1 0( )
x2 0( )

�
xn 0( )

x1 1( )
x2 1( )

�
xn 1( )

…, , , ,

 
 
 
 
 
 
 

…

0

0

�
0

0

0

�
0

0

0

�
0

…, , , ,

 
 
 
 
 
 
 

+=

…

x1 1–( ) 0+

x2 1–( ) 0+

�
xn 1–( ) 0+

x1 0( ) 0+

x2 0( ) 0+

�
xn 0( ) 0+

x1 1( ) 0+

x2 1( ) 0+

�
xn 1( ) 0+

…, , , ,

 
 
 
 
 
 
 

x k( )= =
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As far as the next series of properties is concerned, we see that �x(k) is given by

So the resulting sequence belongs also to the set of the vector–valued sequences, as
property 0b) requires. Moreover, note that

and

Finally, observe that the linear space of scalar sequences is in fact a subspace
of the linear space of vector–valued sequences, when putting n � 1.

Having defined the notion of linear spaces, we are now able to define something
which determines, in some sense, the size of each element of a given linear space.

x k( ) x k( )–( )+

= …

x1 1–( )
x2 1–( )

�
xn 1–( )

x1 0( )
x2 0( )

�
xn 0( )
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�
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…, , , ,
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 
 
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This is done by assigning a real nonnegative number to each of the space elements
and calling this number a norm of that element. Furthermore, it is assumed that the
norm ��x�� of each element x of a linear space X fulfills the following properties:

1. ��x�� � 0 if and only if x � �(1.151a)
2. ���x�� � �����x�� where �  is a real or complex number(1.151b)
3. ��x1 � x2�� � ��x1�� � ��x2�� where x1, x2 � X(1.151c)

The inequality 1.151c is called the triangle inequality. Moreover, note that a
linear space in which a norm is defined is called the normed space. Furthermore,
observe also that, without having defined the algebraic structure consisting of the
definitions of the summation operation and of the operation of multiplication by a
scalar, the norm definition as given by Equations 1.151 would be impossible.

Explanation 1.7
Let us check whether the norm defined by Equation 1.82a fulfils the required
properties 1.151.

Observe first that when x(k) � �(k) � �…,0,0,0,… �, then .
Hence, ���(k)�� � 0 really holds.

Assume now that x(k) � �(k). So some of the elements of x(k) are different from
zero. Then, of course,  for such a sequence. In conclusion, we see
that property 1.151a holds for the norm given by Equation 1.82a.

Note that

holds. So, property 1.151b is also fulfilled.
With regard to property 1.151c, note that we have

for each k. So 

will also hold for each k. That is, we can write the supremum symbol on the left-
hand side of the above inequality as well. Hence, we get

which, after using the norm definition of Equation 1.82a, is nothing other than the
property 1.151c. So, we can conclude that all the properties 1.151 are really fulfilled
for the norm definition of Equation 1.82a.

Closely related to the notion of the norm is the notion of a metric. This is because
the metric determines in some way what we can call, using the terminology taken

sup
∞ k ∞≤ ≤–

θ k( ) 0=

sup
∞ k ∞≤ ≤–

θ k( ) 0≠( )

αx k( ) sup
∞ k ∞≤ ≤–

αx k( ) α sup
∞ k ∞≤ ≤–

x k( ) α x k( )= = =

x1 k( ) x2 k( )+ x1 k( ) x2 k( )+≤

x1 k( ) x2 k( )+ sup
∞ k ∞≤ ≤–

x1 k( ) sup
∞ k ∞≤ ≤–

x2 k( )+≤

sup
∞ k ∞≤ ≤–

x1 k( ) x2 k( )+ sup
∞ k ∞≤ ≤–

x1 k( ) sup
∞ k ∞≤ ≤–

x2 k( )+≤
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from geometry, the distance between elements of a space. And this distance is
determined by assigning to each pair x1, x2 of elements of a space X a real nonnegative
number. We define thereby such a functional  that has the properties

1. d�x1, x2� 	 0  with d�x1, x2� � 0 if and only if x1 � x2 (1.152a)

2. d�x1, x2� � d�x2, x1� (symmetry of the metric) (1.152b)

3. d�x1, x2� � d�x2, x3� 	 d�x1, x3) (triangle inequality) (1.152c)

where x3 is another element of the considered space X.

Note that the properties 1.152 reflect those associated with the notion of distance.
That is 1.152a says that the distance is a nonnegative number. And, of course, the
distance between the same elements is equal to zero. Furthermore, the distance from
the element x1 to the element x2 is the same as the distance from the element x2 to
the element x1. And finally, property 1.152c says that the sum of the lengths of two
triangle sides is always greater than (or eventually equal to) the length of its third side. 

A set of elements of a space X, together with the metric defined in this space,
is called a metric space. Note also that the same space X with two different metrics
forms, of course, two different metric spaces.

Incidentally, note that the notion of the space metric does not need the space
considered to be linear. When a space is linear, it makes sense to relate the space
norm with its metric. This can be done, for example, by defining that

(1.153)

Explanation 1.8

Let us check whether the definition of the metric in a linear space as given by
Equation 1.153 is correct. That is, we ask whether the metric so defined fulfills the
properties of a metric expressed in 1.152. For this purpose, we take into account an
element x � x1�x2 � X.

Note that it follows from property 1.151a that ��x1 � x2�� � 0 if and only if x1�x2

� �. Therefore, x1 � x2 � �, and furthermore, x1 � x2 by applying property 1.149c
of a linear space. In conclusion, we see that d(x1, x2) � ��x1 � x2�� � 0 holds if and
only if x1 � x2. Otherwise, d(x1, x2) 
 0. Property 1.152a is fulfilled.

Consider

where some of the properties of a linear space have been used. See properties 1.149a
and 1.150f. Moreover, note that property 1.151b has been applied as well. We
conclude that the above is a proof of symmetry property 1.152b.

d : x1 x2,{ } �→

d x1 x2,( ) df
x1 x2–=

d x1 x2,( ) x1 x2– x2 x1–( )– 1– x2 x1– x2 x1– d x2 x1,( )= = = = =
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To prove property 1.152c, take into account an element x1 � x2 � x1� x2 � x3

� x3 � X. According to property 1.151c, we can write for the above element

where, as before, some of the properties of a linear space, and the property 1.151b
of the norm, have been used. Keeping in mind definition 1.153, we observe that the
above inequality is, in fact, a proof of the triangle inequality 1.152c.

Note that the notion of the metric of a space applies in a natural way to properties
such as convergence and continuity. We deal with convergence when we are con-
cerned with infinite sequences of elements of some space. We are concerned with
continuity when we ask whether mapping from one metric space to another metric
space is continuous.

With regard to an infinite sequence �x1, x2, x3, …, xn, …�  of elements of a space
X �xn � X, n � 1, 2,…�, we say that this sequence is convergent to some element x
� X  if, for any ε 
 0, there exists such a n � n0 that 

for each (1.154a)

holds. This relation is also expressed as 

(1.154b)

With regard to a mapping f which maps elements x of a metric space X with the
metric dx into elements y of a metric space Y with the metric dy, we say that this
mapping is continuous at a point x0 if for any ε 
 0 there exists a � 
 0, such that

(1.155)

where y � f(x) and y0 � f(x0). Furthermore, if f is continuous at each x�X, then we
say that this mapping is a continuous mapping.

Having defined the fundamental notions of the functional analysis, we can now
continue our main considerations regarding nonlinear systems. Our goal in this
section is to formulate a property, which is called the fading memory.1,15,16 Note that
very closely related with the definition of this memory are the definitions of the
decaying memory17 and approximately finite memory,18,19,20 also formulated in the
literature on the Volterra series. The relationship among all the above definitions
will be discussed in the next section.

Let us now start with the definition of the space l�. First, for scalar sequences,
with k the discrete time, taking the values from the set K � �, or K � ��, or K �
��, where �, ��, or ��, mean the sets of integers, nonnegative, and nonpositive

x1 x2– x3 x3–+ x1 x3– x3 x2–+=

x1 x3– x3 x2–+≤ x1 x3–=

x2 x3–( )–+ x1 x3– x2 x3–+=

n n0 d xn x,( ) ε<≥

xn
n ∞→
lim x=

dx x x0,( ) δ implies dy y y0,( ) ε<<
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integers, respectively, we define the space l� (K) of bounded sequences as that having
the norm defined by

(1.156)

Note that the definition 1.156 is the same as the definition introduced for the
first time in  Section 1.5 by Equation 1.82a.

To define the space l�(K) for vector-valued sequences, we recall first from Section
1.6 the norm for vectors (the absolute value of a vector), denoted �
�, and given by

(1.157a)

where x(k) for each k is a vector having N elements. In the case of vector-valued
sequences, the operation 1.157a “reduces” a given vector-valued sequence to a scalar
sequence

to which, of course, the definition 1.156 can now be applied. Consequently, we get

(1.157b)

And summarising, the l�  space of vector-valued sequences is a space with the
norm given by Equations 1.157. Moreover, note that the defining expressions 1.157
are the same as those presented for the first time in Section 1.6 for vector-valued
sequences (Equations 1.130 and 1.131).

Let us now define a delay operator Uτ. So, we say that the delay operator Uτ is
an operator, that shifts a scalar or vector signal (a scalar or vector-valued sequence)
x(k) or x(k) by τ�� on the discrete time axis. Its defining equation is

(1.158a)

or

(1.158b)

Observe on the left-hand side of Equations 1.158 a usage typical in the literature
of one pair of parentheses to separate a operator (here Uτx) from the time argument
k put into the second pair of parentheses. Generally, in this book we allow dropping
parentheses or separating composite operators by the use of parentheses. Hence, for
example, Uτx(k), Uτ(x)(k), and (Uτ)(x)(k)  are exactly the same.

x
df

sup
k K∈

x k( ) ∞<=

x
df

max
i

xi max
1 i N≤ ≤

xi k( )= =

… x 2–( ) x 1–( ) x 0( ) x 1( ) …, , , , ,{ }

x
df

sup
k K∈

x k( )=

Uτx( ) k( ) df
x k τ–( )=

Uτx( ) k( ) df
x k τ–( )=
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Moreover, we say that an operator N is time-invariant if the equality

(1.159)

holds for all τ � �.

According to Explanation 1.5, the Volterra series given by Equations 1.1 and
1.2 or 1.3 represents an operator. We shall name this operator the Volterra series
operator and define it as

(1.160)

where the partial responses y(n)(k) are given by Equations 1.2 or 1.3. Note that these
responses represent operators themselves. That is, for example, Equation 1.2c can
be rewritten as

(1.161)

where V2 represents an operator related to the impulse response of the second-order
and twofold summation, as shown in Equation 1.161.

The notions of stationarity and of time-invariance (time-independence) with
regard to the Volterra series (Volterra series operator) are equivalent to each other.
We shall show this before going ahead with the fading memory definition.

Our goal first is to show that applying the condition 1.159 to the Volterra series
operator for time-dependent systems (given by Equations 1.160 and 1.2) leads to its
simplification. Then, it takes on the form for time-independent systems (given by
Equations 1.160 and 1.3). Moreover, according to what was already shown in Section
1.1, this operator describes then the stationary system, in the sense of stationarity
definitions 1.4.

To proceed, assume that the operator N in Equation 1.159 has the form of the
Volterra series given by Equations 1.1 and 1.2. That is,

(1.162)

Keeping this in mind, we see that the composite operator UτN takes on the
value of

UτN NUτ=

y k( ) Vx( ) k( ) df
y n( ) k( )

n 0=

∞

∑= =

y 2( ) k( ) V 2x( ) k( ) h 2( ) k i1 i2, ,( )x i1( )x i2( )
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑= =

Nx( ) k( ) h 0( ) k( ) h 1( ) k i,( )x i( ) h 2( ) k i1 i2, ,( )x i1( )x i2( )
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑+
i ∞–=

∞

∑+=

h 3( ) k i1 i2 i3, ,,( )x i1( )x i2( )x i3( ) …+
i3 ∞–=

∞

∑
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑+
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(1.163)

at the point k � τ on the discrete time axis.

Similarly, the composite operator NUτ possesses the value of

(1.164)

at the point k � τ  on the discrete time axis.

The calculations performed in Equations 1.163 and 1.164 have been illustrated
in Figure 1.28.

Let us now introduce new variables in Equation 1.163 by making the following
substitutions: i � i�′ � τ, ip � ip

′
 τ, p � 1, 2, 3…, and afterwards, let us drop the

symbol “�”. As a result, we get

FIGURE 1.28 Illustration of calculations performed in Equations 1.163 and 1.164.

UτNx( ) k( ) h 0( ) k( ) h 1( ) k i,( )x i( ) h 2( ) k i1 i2, ,( )x i1( )x i2( )
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑+
i ∞–=

∞

∑+=

h 3( ) k i1 i2 i3, ,,( )x i1( )x i2( )x i3( ) …+
i3 ∞–=

∞

∑
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑+

NUτx( ) k( ) h 0( ) k τ+( ) h 1( ) k τ i,+( )x i τ–( )
i ∞–=

∞

∑+=

h 2( ) k τ i1 i2, ,+( )x i1 τ–( )x i2 τ–( )
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑+

h 3( ) k τ i1 i2 i3, , ,+( )x i1 τ–( )x i2 τ–( )x i3 τ–( ) …+
i3 ∞–=

∞

∑
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑+
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(1.165)

To satisfy the condition for time-invariance 1.159, the expressions on the right-
hand sides of Equations 1.164 and 1.165 must be equal to each other (referring to
Figure 1.28, the points “�” and “•” on the right-hand side of it must reduce to one
point) for all possible input sequences, all time instants k, and all values of delay τ.
This however, is only possible when the corresponding impulse responses in Equa-
tions 1.164 and 1.165 are equal to each other. That is, the following equalities

(1.166a)

(1.166b)

(1.166c)

and, in general,

(1.166d)

hold for all τ, k � �.
Observe now that by substituting k � 0 in Equations 1.166, and then renaming

the variable τ as k, we arrive finally at the equations identical with Equations 1.4.
In conclusion, we can say that application of the condition 1.159 led us to the
description for stationary systems, which, as we know from Section 1.1, have the
Volterra series description in the form given by Equations 1.1 and 1.3.

Note that the converse — the stationary Volterra series fulfills the condition
1.159 — is also true. To prove this, observe that, when Equations 1.166 are fulfilled,
then the expression in 1.165, and thereby, also the expression in 1.163, is equal to
the corresponding expression in 1.164. This is nothing other than the condition 1.159.
So, in summarizing we say that the notions of stationarity and time-invariance are
equivalent.

Now we present two definitions of the fading memory in the form that was
presented by Boyd and Chua.1

FMD1 (Fading Memory Definition 1): A time-invariant operator N: l�(�)
l�(�) has fading memory on the subspace B of l�(�) if there is a decreasing

UτNx( ) k( ) h 0( ) k( ) h 1( ) k i τ–,( )x i τ–( )
i ∞–=

∞

∑+=

h 2( ) k i1 τ i2 τ–,–,( )x i1 τ–( )x i2 τ–( )
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑+

h 3( ) k i1 τ i2 τ i3 τ–,–,–,( )x i1 τ–( )x i2 τ–( )x i3 τ–( ) …+
i3 ∞–=

∞

∑
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑+

h 0( ) k τ+( ) h 0( ) k( ) h 0( )= =

h 1( ) k τ i,+( ) h 1( ) k i τ–,( )=

h 2( ) k τ i1 i2, ,+( ) h 2( ) k i1 τ i2 τ–,–,( )=

h n( ) k τ i1 i2 … in, , , ,+( ) h n( ) k i1 τ i2 τ … in τ–, ,–,–,( )=

 →
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sequence w: �� (0,1�, , such that for each x � B and � 
 0 there
is a � 
 0 such that for all v�B the following relation

(1.167)

holds.

FMD2 (Fading Memory Definition 2): A time-invariant operator N: l�(��)
l�(��) possesses fading memory on the subspace B� of l�( ��) if there is a decreasing
sequence w : �� (0,1�, , such that for each x � B� and ε 
 0  there
is a � 
 0 such that for all v � B� the following implication 

(1.168)

holds.

1.8 FURTHER CONSIDERATIONS ON FADING 
MEMORY

In this section, a continuation of the previous one, first we show how to associate
a functional with any time-invariant operator. Using the following example, the
operator N, defined in definition 1.167 is associated with a functional F defined on
l�(��) by

(1.169a)

where the sequence xe is given by

(1.169b)

Note that Equation 1.169b defines an extension of the sequence x � l�(��) to
the sequence xe � l�(�). The mapping F can be interpreted as one that maps the
past input to the operator N, which is an element of l�(��), into the present output
of N at the discrete time k � 0, which is an element of the set of real numbers �.

It is possible to recover the operator N knowing its associated functional
F. We show how to do this. For this purpose, we define a truncation operator
P: l�(�) l�(��), by

(1.170)

→ w k( )
k ∞→
lim 0=

sup
k 0≤

x k( ) v k( )– w k–( ) δ Nx( ) 0( ) Nv( ) 0( )– ε<→<

→

→ w k( )
k ∞→
lim 0=

sup
0 τ k≤ ≤

x τ( ) v τ( )– w k τ–( ) δ Nx( ) k( ) Nv( ) k( )– ε<→<

Fx
df

N xe( ) 0( )=

xe k( ) df x k( ) for k 0≤
x 0( ) for k 0>




=

→

Px( ) k( ) df
x k( ) for k 0≤( )=
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It follows clearly from definition 1.170 that P is such an operator that truncates
an element of l�(�) into an element of l�(��).

Note now that, by applying the delay operator U�k to the input sequence x(l),
we get

(1.171a)

Using the truncation operator P in the sequence given by Equation 1.171a results
in

(1.171b)

which is an element of l�(��).
Finally, applying the functional F to the element of l�(��) given by Equation

1.171b, we obtain

(1.171c)

From Equation 1.171c, we conclude that the operator N can be recovered from
its associated functional F, and the corresponding relationship is

(1.172)

The operations described in Equations 1.169 to 1.172 are illustrated in Figure
1.29. Note that the starting sequence x(k) in Figure 1.29a is assumed to belong to
l�(�) (not to l�(��)). The truncated sequence z � PU�kx belongs, however, to l�(��).
When this sequence is extended according to the formula 1.169b, it assumes the
form ze given in Figure 1.29e. Observe that the form of the starting sequence x(k)
is different from the form of the sequence ze(l).

Now we show that the second definition of the fading memory (FMD2) presented
in the previous section, which was proposed for systems of which behavior is
considered only for nonnegative times (k 	 0), follows from the first definition of
the fading memory (FMD1). To do this, we refer to the definition FMD2 with the
time-invariant operator N: l�(��) l�(��), and the sequences x and ν  belonging
to B� � l�(��). Note that to be able to use the definition FMD1, we must redefine
in some way the above operator N and the sequences on which it operates. We start
by defining the sequences xf and νf, with the discrete time arguments taking on the
values from the whole set �, as

(1.173a)

and similarly,

U k– x( ) l( ) x l k+( ) l∞
�( )∈=

PU k– x( ) l( ) Px( ) l k+( ) x l k+( ) for l 0≤= =

FPU k– x( ) l( ) Nx( ) 0 k+( ) Nx( ) k( )= =

Nx( ) k( ) FPU k– x( ) l( )=

→

x f k( ) df x k( ) for k 0≥
0      for k 0<




=
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(1.173b)

Using the above definitions of the extended sequences, we define a time-invariant
operator Nf working on such sequences by

FIGURE 1.29 Illustration of operations described in Equations 1.169 to 1.172: (a) starting
sequence x(k), (b) sequence x(k)  in which k  l, (c) delayed sequence U�kx, (d) truncated
sequence z � PU�kx, (e) extended sequence ze.

→

v f k( ) df v k( ) for k 0≥
0      for k 0<




=
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(1.174)

where xf stands for all the sequences of type 1.173, which form a subspace Bf of l�(�).

Assume now that the operator Nf defined by Equation 1.174, possesses a fading
memory. Moreover, let us take into account time-shifted sequences U�kxf(l) and
U�kνf(l), as illustrated in Figure 1.30 for the first of these sequences.

Now, having in mind the definition 1.167, we can write the following relation:

(1.175)

for the operator Nf. Furthermore, note that, by the use of the definition of the delay
operator U�k, the first part of the relation 1.175 can be rewritten as

(1.176a)

Then, using a new variable l � k � τ in inequality 1.176a, we get

(1.176b)

Because xf (τ) � νf(τ) � 0 for τ � 0 (see Figure 1.30), inequality 1.176b takes
on the form

(1.176c)

Moreover, taking into account the definitions 1.173 in inequality 1.176c, we
arrive finally at

(1.176d)

After getting the result 1.176d, consider the right-hand side of the relation 1.175.
Note that it can be rewritten as

(1.177a)

or

(1.177b)

N f x f( ) k( ) df Nx( ) k( ) for k 0≥
0            for k 0<




=

sup
l 0≤

U k– x f l( ) U k– v f l( )– w l–( ) δ  →<

 N f U k– x f( ) 0( ) N f U k– v f( ) 0( )– ε<→

sup
l 0≤

x f l k+( ) v f l k+( )– w 1–( ) δ<

sup
τ k– 0≤

x f τ( ) v f τ( )– w k τ–( ) δ<

sup
0 τ k≤ ≤

x f τ( ) v f τ( )– w k τ–( ) δ<

sup
0 τ k≤ ≤

x k( ) v k( )– w k τ–( ) δ<

N f x f( ) k 0+( ) N f v f( ) k 0+( )– ε<

N f x f( ) k( ) N f v f( ) k( )– ε<
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Note that in our considerations, we have chosen the time-shifting parameter k
to be greater than or equal to zero. With that in mind and definition 1.174, we rewrite
inequality 1.177b as

(1.177c)

Taking into account the achieved results 1.176d and 1.177c, and comparing them
to definition 1.168, we conclude that really the definition FMD2 can be derived from
the FMD1. So the definition FMD2 is, in fact, nothing more than a specific variant
of the definition FMD1, derived for sequences defined only for nonnegative times
(k 	 0).

Now let us define what we mean by the notion of causality of an operator. We
call the operator N to be causal if the equality of sequences x(τ) � ν(τ) for times τ
� k implies equality (Nx)(k) � (Nν)(k).

FIGURE 1.30 (a) Original sequence belonging to the space l�(��), (b) the sequence xf �
l�(�) created from x(k), (c) the time-shifted sequence U�kxf(l).

Nx( ) k( ) Nv( ) k( )– ε k 0≥,<
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Using the above definition of operator causality, we will show now that every
time-invariant operator N: l�(�) l�(�), possessing the fading memory on the
subspace B of l�(�), is causal. To do this, we take into account sequences (PU�kx)(m)
and (PU�kν)(m), where k,m � �. Note that these sequences are elements of the
space l�(��). Furthermore, applying the extension formula 1.169b to them, we arrive
at the sequences belonging to the space l�(�). So we get

(1.178a)

and

(1.178b)

Moreover, we assume that the sequences given by Equations 1.178 belong to
the subspace B of l �(�). Hence, we can use the definition 1.167 of the fading memory,
to get

(1.179)

Let us now introduce a new variable τ � m � k in (1.179). This leads to

(1.180)

Furthermore, note that we use sequences, that are equal to each other, i.e., x(τ)
� v(τ) for τ � k, in the definition of causality of an operator N. Taking this into
account, in Equation 1.180, we get, finally

(1.181)

Observe that the inequality on the right-hand side of the relation 1.181 holds
independently of the choice of δ. Furthermore, because this inequality must hold
for any small ε 
 0, it implies (Nx)(k) � (Nv)(k). Any time-invariant operator N
possessing the fading memory is causal. The inverse is not true. That is, not every
time-invariant and causal operator has the property of fading memory. This is because
nothing is said in the definition of causality about the behavior of the operator N
for signals x(τ) � v(τ), for τ � k and τ,k � �.

In considering causality of an operator N in this section, we recall we have
already tackled a similar problem in Section 1.1. We explained in Section 1.1 what

→

xePU k–
m( )

x k m+( ) for m 0≤
x k( )        for m 0>




=

vePU k–
m( )

v k m+( ) for m 0≤
v k( )        for m 0>




=

sup
m 0≤

xePU k–
m( ) vePU k–

m( )– w m–( ) sup
m k k≤+

x m k+( ) v m k+( )– w m–( ) δ<=

 N xePU k–
( ) 0( ) NvePU k–

( ) 0( )–→ Nx( ) k( ) Nv( ) k( )– ε<=

sup
τ k≤

x τ( ) v τ( )– w k τ–( ) δ Nx( ) k( ) Nv( ) k( )– ε<→<

sup
τ k≤

x τ( ) v τ( )– w k τ–( ) 0 δ Nx( ) k( ) Nv( ) k( )– ε<→<=
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the nonlinear causal responses h(n)(i1,i2,…,in) are. For illustration, see again Figure
1.3. Now, if we define a causal time-invariant Volterra series operator given by
definition 1.160 as one that has nonlinear responses of the kind just mentioned, we
can ask about its relationship with the definition presented in this section. We shall
show that the two definitions of causality of the Volterra series operator are equivalent
to each other.

First, we show that the definition of Section 1.1 follows from the definition of
this section. And to this end, we consider the following difference:

(1.182)

Note that if we assume that the operator V in Equation 1.182 is causal, it follows
from the causality definition of this section that the difference 1.182 equals zero
when x(τ) � v(τ), τ � k. So, for k � i, k � i1, k � i2, etc., less than or equal to k,
the corresponding components in Equation 1.182 are equal to zero because x(k �
i) � v(k � i), x(k � i1) � v(k � i1), x(k � i2) � v(k � i2), etc., according to the
assumption x(τ) � v(τ), τ � k. On the other hand, when k � i 
 k, k � i1 
 k, k
� i2 
 k, etc., the differences x(k � i) � v(k � i), x(k � i1)x(k � i2) � v(k � i1)
v(k � i2), etc., can take on any values different from zero. So, to make the difference
on the left-hand side of Equation 1.182 equal to zero in each case, we must postulate
fulfillment of the following equalities:

(1.183a)

(1.183b)

(1.183c)

and so on. Further, observe that Equations 1.183, in fact, express nothing other than
the definition of the nonlinear response causality presented in Section 1.1.

To prove the converse, let us take again into account Equation 1.182. Under the
assumption that the equalities 1.183 are fulfilled, this equation can be rewritten as

Vx( ) k( ) Vv( ) k( )– h 1( ) i( ) x k i–( ) v k i–( )–[ ]
i ∞–=

∞

∑=

 h 2( ) i1 i2,( ) x k i1–( )x k i2–( ) v k i1–( )v k i2–( )–[ ]
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑+

h 3( ) i1 i2 i3, ,( ) x k i1–( )x k i2–( )x k i3–( ) v k i1–( )v k i2–( )v k i3–( )–[ ] …+
 i3 ∞–=

∞

∑
i2 ∞–=

∞

∑
i1 ∞–=

∞

∑+

h 1( ) i( ) 0  for  i 0<=

h 2( ) i1 i2,( ) 0  for  i1 0 and/or  i2 0<<=

h 3( ) i1 i2 i3, ,( ) 0  for  i1 0 and/or  i2 0 and/or  i3 0<<<=
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(1.184)

Note now that the left-hand side of Equation 1.184 is identically equal to zero,
if we assume additionally x(τ) � v(τ) for τ � k, where τ, k � �, τ � k � i, k �
i1, k � i2, , with i, i1, i2, � �. This means that the causality definition of this
section follows from that of Section 1.1.

It is worth noting that the property of fading memory can be expressed in another
way using the notion of operator continuity. That is this can be expressed in the
following form: a time-invariant operator N: l�(�) l�(�) possesses fading memory
on the subspace B of l�(�) if, and only if, its associated functional F, defined by
Equation 1.169a, is continuous on the subspace

(1.185a)

with respect to the weighted norm

(1.185b)

where x� l�(�) and the nonnegative weighting sequence w is a mapping w :
�� (0,1>), .

In what follows, we show that the above definition of fading memory is true.
To this end, note first that the definition FMD1 of fading memory is so constructed
that it follows immediately from it, and from the definition 1.169 that the following
relation:

(1.186)

holds. Furthermore, observe that relation 1.186 is nothing other than the continuity
definition expressed in definition 1.155. In other words, the fact that the distance
between the elements Px and Pv of the subspace PB, i.e.,

is less than �, implies the distance between the elements FPx and FPv, i.e.,

Vx( ) k( ) Vv( ) k( )– h 1( ) i( ) x k i–( ) v k i–( )–[ ]
i 0=

∞

∑=

 h 2( ) i1 i2,( ) x k i1–( )x k i2–( ) v k i1–( )v k i2–( )–[ ]
i2 0=

∞

∑
i1 0=

∞

∑+

 h 3( ) i1 i2 i3, ,( ) x k i1–( )x k i2–( )x k i3–( ) v k i1–( )v k i2–( )v k i3–( )–[ ] …+
i3 0=

∞

∑
i2 0=

∞

∑
i1 0=

∞

∑+

… …

→

PB
df

Px x B∈{ }=

x ω
df

x k( )w k–( ) sup
k 0≤

x k( ) w k–( )= =

→ w m( )
m ∞→
lim 0=

Px Pv– ω δ FP( ) x( ) FP( ) v( )– ε<→<

dPB Px Pv,( ) Px Pv– ω=

dFPB FP( ) x( ) FP( ) v( ),( ) FP( ) x( ) FP( ) v( )–=
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is less than ε. We conclude that if a time-invariant operator, N, has fading memory
property, its associated functional F is continuous on the subspace PB.

To prove the converse, we consider the relation 1.186, which expresses the
continuity property of the associated functional F. This relation can be expressed in
the following form:

(1.187)

because (P)(x) � (PU�0)(x) and (P)(v) � (PU�0)(v).
Then, using the definitions 1.185b and 1.172, the relation 1.187 can be rewritten

as

(1.188)

which is nothing other than the fading memory definition, (see 1.167).
Incidentally, note in the relations 1.186 to 1.188 once again the typical usage of

parentheses around the arguments of functionals and operators. Here parentheses
are used to stress an argument, as in (P)(x) standing for Px. Sometimes, parentheses
are dropped, as in (FPU�0)(x), standing for (F)(P)(U�0)(x). In (FPU�0)(x), the
composite operator FPU�0 is separated from its argument x.

As mentioned in the previous section, the notions of decaying memory and
approximately finite memory, introduced to the literature by Sandberg, are closely
related to the notion of fading memory. Now we consider them, starting from the
notions of decaying memory, which are, as originally formulated by Sandberg, the
definitions of the so-called M1(m) and P1(m) sets,17 specialized here for discrete-
time systems.

To be able to define the set M1(m), we have to introduce first Sandberg’s
truncation operator Qτ as

(1.189)

where x(k) � l�(�), and k, τ � �. This operator is illustrated in Figure 1.31. It is
worth noting at this point two fundamental differences existing between the previ-
ously defined truncation operator P and the operator Q : P’s “critical” point is zero,
but Q’s one is any chosen τ � �. Moreover, P is a mapping l�(�) l�(��),  in
contrast to Q, which is the mapping of l�(�) into itself, that is l�(�) l�(�).

Having defined the operator Qτ, we define now the set M1(m) in the following
way: for each positive integer m, after Sandberg, an operator N : l�(�) l�(�) is
an element of the set M1(m) if given any k1 � (��, �) and any real ε 
 0, there
exists such a k2 � (��, k1) that

(1.190)

PU 0–( ) x( ) PU 0–( ) v( )– ω δ FPU 0–( ) x( ) FPU 0–( ) v( )– ε<→<

sup
k 0≤

x k( ) v k( )– w k–( ) δ Nx( ) 0( ) Nv( ) 0( )– ε<→<

Qτx( ) k( )
x k( ) for k τ≥
0      for k τ≥




=

→
→

→

Nx( ) k( ) NQk2
x( ) k( )– ε x m for k k1≥≤
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holds for x(k) belonging to some subspace B of l�(�). We call this definition the
first Sandberg’s Decaying Memory definition (SDM1).

In other words, an operator N possesses the property of decaying memory in
the sense of the definition SDM1 if it belongs to the set M1(m) for which elements
the inequality 1.190 holds.

To proceed further, we now need to define two other operators introduced by
Sandberg in  his paper.17 For this purpose, we introduce the so-called space,
which consists of sequences defined for the discrete times belonging to the set 	k0,
�), where k0 � �, with the usual norm . In other words, the
sequences of the space are such sequences that begin at k � k0 and for the
time instants k less than k0 are not determined.

Now having defined the space , we are able to define the Sandberg’s 
operator as such a mapping, that maps elements of the space into elements
of the space  according to the following rule:

(1.191)

The operator  is illustrated in Figure 1.32.

Similarly, we define Sandberg’s  operator, k0 � �, as a mapping from the
space l�(�) into the space , which is given by

(1.192)

FIGURE 1.31 (a) Original sequence x(k)�l�(�), (b) the truncated sequence (Qτx)(k) for
τ�2.

l∞
�k0

( )

x k0
sup
k k

0
≥

x k( )=
l∞

�k0
( )

l∞
�k0

( ) T k1k 2

l∞
�k1

( )
l∞

�k2
( )

T k1k2
x( ) k( ) x k k1 k2–+( ) k k2≥=

T k1k2

Rk0

l∞
�k2

( )

Rk0
x( ) k( ) x k( ) for k k0≥=
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The operator is illustrated in Figure 1.33.

Note the fundamental difference between the truncation operator Qτ defined in
1.189 and the just-defined in 1.192. The first is a mapping from l�(�) into itself,

FIGURE 1.32 (a) Original sequence , (b) shifted sequence .

FIGURE 1.33 (a) Original sequence x(k)�l�(�), (b) truncated sequence .

x k( ) l
∞

�k1 2–= 
 
 

∈ Tk1k2
x

 
 
 

k( ) l
∞

�k2 1= 
 
 

∈

Rk0
x( ) k( )

Rk0
x( ) k( ) l∞

�k0 2=( )∈

Rk0
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but the latter is a mapping from l�(�) into . This follows clearly from the
comparison of Figure 1.31 with Figure 1.33.

Consider now a special kind of mappings from l�(��) into l�(��) called K0

mappings by Sandberg in his paper.17 These mappings have the following property:

(1.193)

where ρ is a nondecreasing function ρ : subset 	0,�) of real numbers � into itself,
and the norm ��x��0 is , specialized for k0 � 0.

We can associate with the mapping K0 its k0-associate , which is a mapping
defined as  for any k0  � �. This is, of course, a composite mapping, a
mapping from the space into itself.

Now we are able to define Sandberg’s17 P1(m) set in the following way: a
mapping K0 is an element of the set P1(m) if, given any k1 � � and any real ε 
 0,
there exists such a k2 � k1 that

(1.194)

holds for all x belonging to some subspace B of l�(�), when max (k3, k4) � k2. We
call this definition the second Sandberg’s Decaying Memory definition (SDM2). In
other words, an operator K0 with the property 1.193 possesses the decaying memory
in the sense of the definition SDM2 if it belongs to the set P1(m) for which elements
the inequality 1.194 holds. Moreover, comparing the definitions SDM1 and SDM2,
we see that the latter can be considered as a variant of the first, in which the values
of the input signal (sequence) for k � min(k3, k4) are not taken into account.

Let us now consider two definitions of the notion of approximately-finite mem-
ory, as formulated by Sandberg in another paper.20 The first definition was originally
formulated in the following way:

AFM1 (Approximately-Finite Memory definition 1): let N be a mapping N :
l�(��) CR(��), where CR means the collection of all �-valued mappings defined
on ��. Moreover, let � mean the set of integers 
1, 2, 3, �. Then we say that the
mapping N has approximately-finite memory on some subspace B of l�(��) if, given
ε 
 0, there exists such an a � � that

(1.195a)

holds for all x �  B, where Wk,ax means the sequence x(k) after performing a
windowing operation given by

(1.195b)

The operation expressed by 1.195b is illustrated in Figure 1.34.

l∞
�k0

( )

K 0x 0 ρ x 0( )≤

x k0
sup
k k0≥

x k( )=
Kk0

T 0k0
K 0T k00

l∞
�k0

( )

Kk3
Rk3

x( ) k( ) Kk4
Rk4

x( ) k( )– ε x m,    k k1≥≤

→
…

Nx( ) k( ) NW k a, x( ) k( )– ε k �  +∈,<

W k a, x( ) τ( )
x τ( ) for k a τ k≤ ≤–

0  otherwise



=
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The second definition of the notion of approximately-finite memory is closely
related to that given by 1.195, and can be formulated, after Sandberg, as:

AFM2 (Approximately-Finite Memory definition 2): let N be a mapping N :
l�(��) CR(��). We say that this mapping possesses approximately-finite memory
on some subspace B of l�(��) if, given ε 
 0, there exists such a ∆ 
 0 that 

(1.196)

holds for a 	 ∆.
Comparison of Sandberg’s definitions SDM1, SDM2, AFM1, and AFM2 shows

that, in contrast to the definitions FMD1 and FMD2 of Boyd and Chua, they
concentrate primarily on a proper choice of truncated, or windowed, sequences as
inputs for a mapping considered. In other words, they focus on the discrete-time
axis and consider two versions of the same input sequence, truncated or windowed,
as two different input sequences. The Boyd and Chua definitions 1.167 and 1.168,

FIGURE 1.34 (a) Original sequence x(k) � l�(��), (b) example of windowed sequence for
k � 4 and window width a � 1 � 4, (c) another example of windowed sequence for k � 6
and the same window width.

→

Nx( ) k( ) NW k a, x( ) k( )– ε k �  +∈,<
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rather take into account two different input sequences to determine what the weighted
size of the difference between them should look like, to ensure the correspondingly
small size of the absolute value of the difference between the values of the mapping
calculated for these input sequences. This is simply a certain form of the continuity
condition. In contrast, all of Sandberg’s definitions do not take into account the size
of the difference between the sequences for which a mapping is calculated.

Figure 1.35 summarizes the main characteristics of the types of memory
described in this and previous section.

Park and Sandberg4 have proven that there is an exact relation between the
definitions AMF1 and FMD2. That is, the definition AFM1 with the continuity
condition imposed on the mapping N is equivalent to the definition FMD2. This is
shown in Figure 1.35. Moreover, we have shown in this section that the definition
FMD2 can be derived under some assumptions from the definition FMD1.

FIGURE 1.35 Summary of the definitions regarding the notions of decaying, fading, and
approximately-finite memory.
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Finally, the definitions of the fading memory, decaying memory, and approxi-
mately-finite memory presented in this and the previous section, extend easily for
the case of vector-valued input and output sequences. Then, we simply exchange
the scalar-valued notation x(k) and v(k)  in inequalities 1.167, 1.168, 1.190, 1.194,
1.195, and 1.196 for the vector-valued notation x(k)  and v(k). And we interpret then
the symbol �
� of the absolute value of, as given for vectors, according to Equation
1.157a. Moreover, when the output of a system is a vector-valued signal, then the
output sequences (Nx)(k) and (Nv)(k) are the vector-valued sequences, too. This
description is used in the next sections in those considerations where the multiple-
input and multiple-output systems are discussed.

1.9 APPROXIMATION OF THE SYSTEM RESPONSE BY 
VOLTERRA SERIES

In this section, we consider nonlinear discrete-time systems, which have the property
of fading or approximately-finite memory. We show that the responses of these
systems can be approximated by the discrete Volterra series. We start by presenting
two theorems published by Boyd and Chua in their paper.1

Theorem 1.1
Let ε 
 0 and

(1.197a)

be a ball in l�(�) of radius M1. If N: l�(�) l�(�) is a time-invariant operator
possessing the fading memory in the sense of definition FMD1 on the ball , then
there exists such a Volterra series operator V given by Equations 1.1 and 1.11 with
a finite number of components, and with nonlinear responses fulfilling the stability
condition 1.98 (with lower summation limits equal to zero), that the following
inequality

(1.197b)

holds for all x� .

Theorem 1.2
Let Bm1

 be a ball in l�(�) of radius M1 as given by Equation 1.197a. If N:
l�(�) l�(�) is a time-invariant operator possessing the fading memory in the sense
of definition FMD1 on the ball  then, for any ε 
 0, there exists such a polynomial
p of M variables: �M � that the following

(1.198)

holds for all x�  and with y(k) � p(x(k), x(k � 1), , x(k � M � 1))
considered as a mapping from l�(�)  into itself.

BM1
 df

x l∞
�( ) x M1≤∈{ }=

→
BM1

Nx Vx– ε≤

BM1

→
BM1

→

Nx( ) k( ) p x k( ) x k 1–( ) … x k M– 1+( ), ,,( )– ε≤

BM1
…
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Because of the importance of the above two theorems, we shall present their
proofs in this book. We begin with the proof of Theorem 1.2. For this purpose, we
show that the two lemmas presented in what follows are true.

Lemma 1.1. A ball

(1.199)

is a compact set with respect to the weighted norm given by Equation 1.185b,
with x belonging now to l�(�–).

Note that we have to work with a new notion in the above lemma, namely, the
notion of the compactness of a set. So, we must first explain it. However, to do this,
we need to consider two other new notions; the notion of Cauchy sequence and the
notion of complete space.

We say that a sequence �xn� � �x0, x1, x2,…� of a metric space X is a Cauchy
sequence if 

(1.200)

Now, using the above definition, we define the complete space. That is, the
complete metric space X is a space in which every Cauchy sequence possesses its
limit, which belongs to this space.

In this book, we deal with metric spaces, which are complete. Furthermore,
knowing what the notion of completeness of a metric space means, we are now able
to define the set compactness in the following way. Let X be a complete metric
space. Then we say that a set BX� X is compact if every infinite sequence �xn� of
elements xn � BX possesses a subsequence convergent to some element x* � BX .

We begin with the proof of Lemma 1.1. For this purpose, let us denote by xn a
sequence in B�. Afterwards, observe that, �xn(0)� � M1 according to assumption
1.199. To proceed further, recall the well-known Bolzano-Weierstrass21 theorem,
that every finite segment 	a,b� on the �-line is a compact set. According to this
theorem, we are able to find a subsequence of xn, which converges at point k � 0
to some element we call x0(0). That is,

(1.201)

holds. In relation 1.201, n1 is an index that belongs to a certain set �1 � �, where
� stands for the set of positive integers.

Note now that  because, of course,  belongs to the ball B�.
Using the Bolzano-Weierstrass theorem, as before, we can take a subsequence of

such that it converges at point k � �1 to some element we call x0(�1).
Denoting this subsequence , we can write

(1.202)

B  –
df

x l∞
�  –( ) x M1≤∈{ }=

d xn xm,( ) 0 when n m 0→, ,→

xni
{ }

xn1
0( ) x0 0( )– 0 when n1 ∞→,→

xn1
1–( ) M 1≤ xn1

xn1
k( )

xn2
k( )

xn2
1–( ) x0 1–( )– 0 when n2 ∞→,→
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with n2 � �2 � �1� �.
Observe that the above process can be continued, and this results in obtaining

an element x0 � � , x0(�2), x0(�1), x0(0)� of the ball B�. Moreover, observe that
the subsequence xn2 converges pointwise for k � �1 and k � 0 as well. Furthermore,
see that the latter observation can be generalized, resulting in what we call a diagonal
subsequence. So the diagonal subsequence , is a sub-
sequence of xn, which is convergent pointwise for discrete-time instants �(m � 1),
�(m � 2), , �1, 0. And this fact can be written as

(1.203)

Let ε be any ε 
 0. From the property of the decreasing weighting sequence
w(k): w(k) 0, when k �, it follows that we can find such a k0 for which the
inequality w(k0) � ε�(2M1)  holds. Furthermore, because xnm

, x0, � B�, we can write

(1.204)

Having the above inequality in mind, we see that the inequality

(1.205)

holds, too. Applying then the relation w(k) � w(k0) �  ε�(2M1)  for k 	 k0 in
inequality 1.205, we arrive at

(1.206)

On the other hand, from the relation 1.203 and the fact that the inequality w(k)
� 1 holds for the weighting sequence, it follows that

(1.207)

is valid for all indices nm 	 n0.
Before going further, let us choose m � 1 � k0 in relation 1.207. Taking into

account both inequalities 1.205 and 1.207, we see that

(1.208)

holds for all nm 	 n0. This of course means that the subsequence xnm
 converges to

x0, so the ball B� is a compact set with respect to the weighted norm 1.185b.

…

xnm
nm �m �m 1– … �⊂ ⊂ ⊂ ⊂,

…

sup
m 1–( ) k–≤– 0≤

xnm
k–( ) xo k–( )– 0 when nm ∞ nm �m k �  +∈,∈,→,→

→ →

xnm
k–( ) xo k–( )– xnm

k–( ) xo k–( ) 2M1≤+≤

sup
k k0–≤–

xnm
k–( ) xo k–( )– w k( ) 2M1w k( )≤

sup
k k0–≤–

xnm
k–( ) xo k–( )– w k( ) ε≤

sup
m 1–( )– k 0≤–≤

xnm
k–( ) xo k–( )– w k( ) ε≤

sup
k 0≤–

xnm
k–( ) xo k–( )– w k( ) xnm

k–( ) xo k–( )– ω ε≤=
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Lemma 1.2. Take into account the set of functionals

(1.209a)

of which elements are given by

(1.209b)

That is, the functional Gτ is associated with the delay operator Uτ given by Equation
1.158a. The functionals Gτ are continuous with respect to the weighted norm �
��.

To prove the above lemma, observe first that it follows from  that
the inequality

(1.210)

holds for bounded sequences considered, belonging to the ball B�, when the sequence
x(k) is not identical with v(k), and is not the zero sequence. The result in inequality
1.210 means that the supremum is not achieved at the point τ � �. This allows us
to write the inequality

(1.211)

where τ1 stands for the τ for which the supremum is achieved. Furthermore, ine-
quality 1.211 can be rewritten as

(1.212)

Note that w(τ1) � 0 always holds because τ1, according to inequality 1.210,
cannot lie in infinity, so, for any ε 
 0 for which �Gτx � Gτv� � ��x � v��� � w(τ1)
� ε holds, we can choose δ � εw(τ1) such that ��x�v��� � δ implies, according to
inequality 1.212, . This proves the continuity of
the functionals Gτ.

Lemma 1.3. The functionals of the set G given by Equations 1.209 separate the
elements of the ball B�. The separability property means here that having any two
different sequences x and v, we can always find such a functional Gτ, τ � 0, 1, 2,
3, , that Gτx � Gτ v� 0.

To prove Lemma 1.3, we assume that the sequences x and v belong to the ball
B�. Moreover, assume that these sequences are not identical; that is, x(k) � v(k)
holds at least at one point k � ��. We can then find such a functional Gτ, that 

(1.213)

G
df

G0 G1 G2
…, , ,{ }=

Gτx
df

x τ–( ) τ �  +∈,=

w τ( )
τ ∞→
lim 0=

sup
τ 0≥

x τ–( ) v τ–( )– w τ( ) x τ–( ) v τ–( )–
τ ∞→
lim w τ( )>

sup
τ 0≥

x τ–( ) v τ–( )– w τ( ) x τ–( ) v τ–( )– w τ1( )≥

Gτx Gτv– x v– ω w τ1( )⁄≤

Gτx Gτv– δ
w τ1( )-------------< εw τ1( )

w τ1( )---------------- ε= =

…

Gτx Gτv– x τ–( ) v τ–( ) 0≠–=
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holds in the point in which, x(�τ) � v(�τ). Finally, observe that the inequality
1.213 proves the separability property of the functionals of the set G.

We also need to prove Theorem 1.2 is the Stone-Weierstrass theorem.21 This
theorem can be expressed in the following way:

Theorem 1.3 (Stone-Weierstrass)
Let E be a compact metric space and G a set of continuous functionals on E.

Moreover, the functionals of the set G are such that they separate points of E, that
is, for any two distinct x, v � E there exists a functional Gi � G, i � 0, 1, 2, ,
such that Gix � Gi v. Furthermore, let F be any continuous functional on E and ε

 0. Then there is a polynomial p : �M � and G0, G1, ,GM�1�G such that for
all x � E

(1.214)

holds.
Using the lemmas just presented and the Stone-Weierstrass theorem, we now

prove  Theorem 1.2. For this purpose, we assume that N is a time-invariant operator
possessing the property of fading memory on the ball  in the sense of the
definition FMD1, and that F is a functional associated with the operator N. The
associated functional F is given by defining Equations 1.169a and 1.169b. (Caution:
note that x means an element of l�(��) in the definition 1.169 and in the defining
Equation 1.199 of the ball B�. But in Equation 1.197a, it is a different element: an
element of l�(�)). Furthermore, the functional F is continuous with respect to the
norm ��
���, which follows from the property proved previously (see the relation
1.186).

Identifying now the ball B� with the space E in the Stone-Weierstrass theorem,
using the lemmas 1, 2, and 3, and the fact that the associated functional F is
continuous, we conclude from the Stone-Weierstrass theorem that for any ε 
 0,
there can be found such a polynomial p of M variables: �M � and a subset of
functionals G0, G1, , GM�1 � G,  that for all x � B�

(1.215)

holds.
Assume now that x � BM1

 and k � �. The element PU�kx is an element of the
ball B� and the inequality 1.215 can be applied. Consequently, we arrive at

(1.216)

under the assumptions stated, with regard to the operator N.
Finally, we use the general relation 1.172 for recovering the operator N from its

associated functional F. We apply this relation to all the functionals F, G0, G1, ,
GM�1 occurring in inequality 1.216. Then we get

…

→ …

Fx p G0x G1x … GM 1– x, ,,( )– ε<

BM1

→
…

Fx p G0x G1x … GM 1– x, ,,( )– ε<

FPU k– x p G0PU k– x G1PU k– x … GM 1– PU k– x, ,,( )– ε<

…
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(1.217)

This is so because (Nx)(k) � (FPU�kx)(l) follows directly from relation 1.172
and, for example, G2PU�kx results in U2x because we get successively: U�kx � x(l
� k); PU�kx � x(l � k), l � 0; G2PU�kx � x(�2 � k) � x(k � 2); (U2x)(k) � x(k
� 2). Finally, note that the inequality 1.217 holds for all k and is identical with
inequality 1.198. Hence, this ends the proof of Theorem 1.2.

Observe now that Theorem 1.2 is stronger than Theorem 1.1. That is, if Theorem
1.2 is true, than Theorem 1.1 is also true. This follows from the fact that every
polynomial p (of M variables): �M � is at the same time a Volterra series operator
V : l� l� given by Equations 1.1 and 1.11 with a finite number of components,
and with nonlinear responses fulfilling the stability condition 1.98 (with lower
summation limits equal to zero). To show the above, note that the polynomial
p((U0x)(k), (U1x)(k), ..., (UM�1x)(k)) can be expressed in the following form:

(1.218)

where α0 is a constant coefficient of the polynomial, and the coefficients , 0
� i1, …, in � � � 1, 1 � n � L, are the coefficients by the corresponding powers
of the signal samples. L in Equation 1.218 means the order of the polynomial.

Comparison of the corresponding coefficients of the polynomial p expressed in
two different forms in Equation 1.218 gives

Nx( ) k( ) p U0x( ) k( ) U1x( ) k( ) … UM 1– x( ) k( ), ,,( )– ε<

→
→

p U0x( ) k( ) U1x( ) k( ) … UM 1– x( ) k( ), ,,( )

α0 αi1…in
Ui1

x( ) k( )… Uin
x( ) k( )

0 i1
… in M 1–≤, ,≤
∑

n 1=

L

∑+=

α0 αi1
Ui1

x( ) k( ) αi1i2
Ui1

x( ) k( ) Ui2
x( ) k( )

i2 1=

M 1–

∑
i1 1=

M 1–

∑+
i1 1=

M 1–

∑+=

 … … αi1
…iL

Ui1
x( ) k( )… UiL

x( ) k( )
iL 1=

M 1–

∑
i1 1=

M 1–

∑+ +

h 0( ) h 1( ) i1( )x k i1–( ) h 2( ) i1 i2,( )x k i1–( )x k i2–( )
i2 0=

M 1–

∑
i1 0=

M 1–

∑+
i1 0=

M 1–

∑+=

 … … h L( ) i1
… iL, ,( )x k i1–( )…x k iL–( )

iL 0=

M 1–

∑
i1 0=

M 1–

∑+ +

p x k( ) x k 1–( ) x k 2–( ) … x, k M– 1+( ), , ,( )=

αi1…in
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(1.219)

The relations 1.219 mean that the constant coefficient of the polynomial p equals
the zero-order impulse response and the remaining coefficients  equal
the corresponding samples of the nonlinear responses of the first (linear one) and
higher orders. Furthermore, observe that the form of the Volterra series operator
presented in Equation 1.218 differs from the form in Equations 1.1 and 1.11 only
in that there occur finite upper summation limits (M � 1) in Equation 1.218 instead
of infinite ones as in Equation 1.11. At the same time, this means that the stability
conditions such as in inequality 1.98 are fulfilled because of the occurrence of finite
lower and upper summation limits. Finally, we conclude that the polynomial p(x(k),
x(k � 1), , x(k � M � 1))  from Theorem 1.2 is simply the Volterra series operator
V: l � l�  with a finite number of components and finite lower and upper summation
limits in the defining Equations 1.160 and 1.3.

For further considerations, denote the approximating Volterra series operator V
from Theorem 1.1  and rewrite it according to Equation 1.218, as

(1.220a)

and the accompanying stability condition for its nonlinear impulse responses as

(1.220b)

It follows from our considerations that the operator can be realized, as shown
in Figure 1.36.

In Figure 1.36, the linear part of the realizing system is a linear discrete sub-
system with memory and transmittance, which can be expressed by the following
vector:

h 0( ) α0  ,=

h 1( ) i1( ) αi1
    0 i1 M 1–≤ ≤,=

……………………………

h n( ) i1
… in, ,( ) αi1

…in
0 i1

… in M 1 1 n L≤ ≤,–≤, ,≤,=

αi1
… αi1…in

, ,

…
→

V̂

V̂ x( ) k( ) h 0( ) h 1( ) i1( )x k i1–( ) h 2( ) i1 i2,( )x k i1–( )x k i2–( )
i2 0=

M 1–

∑
i1 0=

M 1–

∑+
i1 0=

M 1–

∑+=

 … … h L( ) i1 i2
… iL, , ,( )x k i1–( )x k i2–( )…x k iL–( )

iL 0=

M 1–

∑
i2 0=

M 1–

∑
i1 0=

M 1–

∑+ +

… h n( ) i1 i2
… in, , ,( ) ∞ n,<

in 0=

M 1–

∑
i2 0=

M 1–

∑
i1 0=

M 1–

∑ 1 2 … L, , ,=

V̂
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(1.221a)

where z stands for the z variable in the one-dimensional Z transform. Furthermore,
in the above context, note that the relations

(1.221b)

hold, which confirms the form of the linear part in Figure 1.36, with the input signal
x(k) shifted in time (M � 1) times.

On the other hand, the nonlinear part of the realization presented in Figure 1.36
is a subsystem without memory. In this subsystem, only the operations of summation
and multiplication are performed, according to the formula given by the polynomial
p. This kind of mapping is known in the literature as the polynomial readout
mapping.1

One well known model in the literature used to model linear systems (in the
context of spectral analysis of stochastic processes) is the so-called moving average
map22 (MA-map), presented in Figure 1.37.

Observe the similarity of the MA-map structure presented in Figure 1.37 to the
realization of the Volterra series approximator of Figure 1.36. The dashed-line

FIGURE 1.36 Realization of the approximating Volterra series operator with z�1 meaning
operation of shifting in discrete time by one sampling period.

1

z 1–

�

z M– 1+

V̂

X z( )

1

z 1–

�

z M– 1+

⋅

X z( )

X z( )z 1–

�

X z( )z M– 1+

=

z-domain 

x k( )
x k 1–( )

�
x k M– 1+( )

discrete-time domain

⇔

                   
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rectangle of Figure 1.37 corresponds to the solid-line rectangle of Figure 1.36. The
main difference between the structures presented lies in the fact that the polynomial
p� in Figure 1.36 is quite general, but the polynomial pl� of Figure 1.37, is a
linear function of M variables, x(k), x(k � 1), , x(k � � � 1). The similarity of
the structure of Figure 1.36 to the structure of the moving average map in Figure
1.37 resulted in naming the first a nonlinear moving average map1 (NLMA).

The output signal in the structure of Figure 1.37 can be expressed in the following
way:

(1.222)

Let us now divide the polynomial p� into two parts: a strictly linear one, pl�,
and a strictly nonlinear one, pn �, such that we arrive at

(1.223a)

where

FIGURE 1.37 Structure of the moving average map.

…

ylin k( ) α0x k( ) α1x k 1–( ) α2x k 2–( ) … αM 1– x k M– 1+( )+ +++=

αix k i–( )
i 0=

M 1–

∑= x k( ) x k 1–( ) … x k M– 1+( )[ ]

α0

α1

�
αM 1–

=

pl x k( ) x k 1–( ) … x k M– 1+( ), ,,( )=

p x k( ) x k 1–( ) … x k M– 1+( ), ,,( )
pl x k( ) x k 1–( ) … x k M– 1+( ), ,,( )=

+ pn x k( ) x k 1–( ) … x k M– 1+( ), ,,( )
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(1.223b)

and

(1.223c)

Taking now into account Equations 1.223, and the structures presented in Figures
1.36 and 1.37, we conclude that the Volterra series approximator  from Figure
1.36 can be divided into two mappings: strictly linear and strictly nonlinear moving
average maps, as illustrated in Figure 1.38. In more detail, the structure of the strictly
nonlinear moving average map is shown in Figure 1.39.

It is worth noting at this point that there is also an engineer’s approach to the
problem of nonlinear systems possessing finite memory that can be described by
the Volterra series. The notion of a discrete-time nonlinear time-invariant causal
system with finite memory, described by the Volterra series, has been introduced.23

In other words, it has been defined such a system of which describing Volterra series
contains only a finite number, say, M samples of the input signal. In this case, the
Volterra series takes on the following form:

 (1.224)

Note that the Volterra series given by Equation 1.224 is a series, that has an
infinite number of components but contains only a finite number of samples of the
input signal, x(k), x(k � 1), , x(k � � � 1).

Observe that, if the series given by Equation 1.224 converges on some ball

(1.225)

then it can be approximated on this ball by the series with a finite number of
components, that is, by the series of the form 1.220a.

Note that from the engineer’s point of view, the parameter M occurring in
Equation 1.220a can be viewed as a measure of the memory length of a system

pl x k( ) x k 1–( ) … x k M– 1+( ), ,,( ) αix k i–( )
i 0=

M 1–

∑=

pn x k( ) x k 1–( ) … x k M– 1+( ), ,,( ) α0 αi1i2
x k i1–( )x k i2–( )

i2 0=

M 1–

∑
i1 0=

M 1–

∑+=

… … αi1i2…iL
x k i1–( )x k i2–( )…x k iL–( )

iL

M 1–

∑
i2 0=

M 1–

∑
i1 0=

M 1–

∑+ +

V̂x

y k( ) h 0( ) h 1( ) i1( )x k i1–( ) h 2( ) i1 i2,( )x k i1–( )x k i2–( )
i2 0=

M 1–

∑
i1 0=

M 1–

∑+
i1 0=

M 1–

∑+=

+ h 3( ) i1 i2 i3, ,( )x k i1–( )x k i2–( )x k i3–( ) …+
i3 0=

M 1–

∑
i2 0=

M 1–

∑
i1 0=

M 1–

∑

…

BM2

 df
x l∞

�( ) x M2≤∈{ }=
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FIGURE 1.38 Division of the NLMA operator into two parts: strictly linear and strictly
nonlinear.

FIGURE 1.39 Structure of the strictly nonlinear moving average operator in detail.
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considered.23 Moreover, the parameter L in Equation 1.220a can be viewed as some
measure of how strong the nonlinearity of a system is.

The work23 is an example of a typical engineer’s approach to the problem of
modeling nonlinear discrete-time systems by means of description using the discrete
Volterra series. This approach is characterized by the following two features:

1. Only a finite number, M, of input signal samples occurs in the Volterra
series used for system description,

2. The series used is truncated at the component of the Lth order, being a
L-fold sum of components of the form: h(L)(i1, i2, , iL) x(k � i1)x(k �
i2) x(k �iL), (see Equation 1.220a).

Consider now time-invariant operators working on the sequences belonging to
the space l�(��), that is, operators N : l�(��) l�(��). We show in what follows
that Theorems 1.1 and 1.2 are also valid for such operators. For this purpose, we
consider the definition FMD2 of the fading memory to try to show that definition
FMD1 follows from it for the extended operators Nf (see Equation 1.174) working
on the extended sequences such as xf (see Equation 1.173a). In other words, we
proceed in the following way: assume that the operators N : l�(��) l�(��) con-
sidered have the property of fading memory in the sense of the definition FMD2.
Next, for these operators, we form the extended operators, according to  definition
1.174. Furthermore, we assume that the extended operators work on the extended
sequences such as xf � l�(�) given by Equation 1.173a.

From the definition FMD2 for k � 0, we get

(1.226a)

or, in another form

(1.226b)

Taking into account the definitions of the extended operators and sequences
given by Equations 1.174 and 1.173, respectively, we can rewrite the relation 1.226b
in the following form:

(1.227a)

Moreover, it is obvious from the definitions 1.173 and 1.174 that 

(1.227b)

holds. Then, consideration of both relations 1.227a and 1.227b leads to

…
…

→

→

sup
0 τ 0≤ ≤

x τ( ) v τ( )– w 0 τ–( ) δ Nx( ) 0( ) Nv( ) 0( )– ε<→<

x 0( ) v 0( )– w 0( ) δ Nx( ) 0( ) Nv( ) 0( )– ε<→<

x f 0( ) v f 0( )– w 0( ) δ N f x f( ) 0( ) N f v f( ) 0( )– ε<→<

sup
k 0<

x f k( ) v f k( )– w k–( ) 0≡ δ N f x f( ) 0( ) N f v f( ) 0( )– ε<→<
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(1.228)

Finally, the relation 1.228 only expresses definition FMD1 restricted, however,
to the sequences xf (k).

Consider now another definition of the extended operator for N : l�(��) l�(��).
Let us name it Ng and define it in the following way:

(1.229a)

and

(1.229b)

where x � l�(�+), xf (k) is the extension of x(k) given by Equation 1.173a, xfτ (k) �
xf (k � τ)  is the sequence xf (k) time-shifted, and N is assumed to have a description,
which is valid also for the extended sequences xf (k)  and their time-shifted versions,
belonging to l�(�). Then, under the above assumption, the relations (Ngxf)(k) �
(Nxf)(k), k � 0  in Equation 1.229a and (Ngxfτ)(k) � (Nxfτ)(k) in Equation 1.229b
make sense.

What do we mean under that the operator N has a description which is valid for
the extended sequences xf and their time-shifted versions xfτ? We explain this in the
following example: Let N be given by (Nx)(k) � x2(k) � x(k � 1) with x(k) � l�(��)
and (Nx)(0) � x2(0), as it would be calculated with x(�1) � 0. Then (Nxf)(k) �
x2(k) � xf(k � 1) is valid for any set  �xf (k), xf (k � 1)� of any sequence xf (k).
Furthermore, (Nxfτ)(k) � x2

fτ (k)  � xfτ (k � 1) � x2
 f(k � τ) � xf (k � τ � 1) is also

valid for any τ � �.
Having defined the operator Ng, we shall check now whether this operator has

the fading memory in the sense of definition FMD1, when the original operator N
: l�(��) l�(��) has, in the sense of definition FMD2. Consider again, quite for-
mally, the definition FMD2. We rewrite this definition, introducing a new variable
τ� � τ � k, which leads to

(1.230a)

Note that we can also rewrite relation 1.230a as follows:

(1.230b)

Further, relation 1.230b can be written with the use of the notion of the time-shifted
extended sequences introduced just before. Then, we arrive at

sup
k 0≤

x f k( ) v f k( )– w k–( ) δ N f x f( ) 0( ) N f v f( ) 0( )– ε<→<

→

Ngx f( ) k( )
df

N x f( ) k( )
Nx( ) k( ) k 0≥
N x f( ) k( ) k 0<




= =

Ngx fτ( ) k( )
df

N x fτ( ) k( )=

→

sup
k τ' 0≤ ≤–

x k τ'+( ) v k τ'+( )– w τ'–( ) δ Nx( ) k( ) Nv( ) k( )– ε<→<

sup
k τ' 0≤ ≤–

x k τ'+( ) v k τ'+( )– w τ'–( ) δ Nx( ) k 0+( ) Nv( ) k 0+( )– ε<→<
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(1.231a)

because, having xf (k) and vf (k) given by Equations 1.173a and 1.173b, respectively,
we get xf(�k)(τ�) = xf(τ� = k) � x(τ� � k), and vf(�k)(τ�) = vf(τ� � k) � v(τ� � k), τ�
� k 	 0.

Note that relation 1.231a is not quite correctly written: instead of the operator
N, we should use the operator Ng, because the operator N works only on the sequences
belonging to l�(��), but the sequences xf(�k) and vf(�k) belong to the space l�(�). The
proper operator in relation 1.231a is Ng, working on the sequences belonging to the
space l�(�) according to the rule represented by the operator N. Hence, the relation
1.231a written correctly has the following form:

(1.231b)

Take now into account any sequence belonging to some ball B of the space l�(�)
such that this sequence is identical with a certain sequence x(τ) for all τ 	 �k, as
shown in Figure 1.40c. Moreover, observe that when k increases, as in Figure 1.40d,
the sequence xf(�k)(τ) becomes identical with the same or another sequence of the
ball B of the space l�(�). This process can be continued into infinity, which allows
us to conclude that each of the sequences x(τ) � l�(�) can be viewed as a sequence
xf(�k)(τ) for k � �.

Because relation 1.231b holds for every k, so it also holds for k � �. This means,
when taking into account the interpretation of the sequences xf(�k) for k � � just
given, that

(1.231c)

holds for all the sequences x(τ) of the ball B of the space l�(�). This allows us to
conclude that when the operator N : l�(��) l�(��) possesses the fading memory
in the sense of  definition FMD2, then its extended operator Ng possesses the fading
memory, in the sense of definition FMD1, too.

Comparing now the extended operators Nf and Ng, we see why the first cannot
be used to reformulate Theorems 1.1 and 1.2 for the sequences belonging to the
space l�(��). First of all, the operator Nf does not possess the fading memory for
all the sequences of some ball B � l�(�). It possesses the fading memory only for
the extended sequences xf (see relation 1.228). Moreover, the operator Nf  is not a
time-invariant operator.

We explain the latter in more detail in what follows. Let us clarify first what we
mean by the property of time-invariance in the case of operators working on the
sequences belonging to the space l�(��). Illustrated in Figures 1.41 and 1.42, note
that the sequences (c) and (e) in Figure 1.41, and the sequences (a) and (c) in Figure
1.42, represent the sequences (UτNx)(k) and (NUτx)(k), which should be equal to
each other, according to definition 1.159 of the operator time-invariance property.

sup
k τ' 0≤ ≤–

x
f k–( )

τ'( ) v
f k–( )

τ'( )– w τ'–( ) δ N x
f k–( )

( ) 0( ) Nv
f k–( )

( ) 0( )– ε<→<

sup
k τ' 0≤ ≤–

x
f k–( )

τ'( ) v
f k–( )

τ'( )– w τ'–( ) δ Ngx
f k–( )

( ) 0( ) Ngv
f k–( )

( ) 0( )– ε<→<

sup
τ 0≤

x τ( ) v τ( )– w τ–( ) δ Ngx( ) 0( ) Ngv( ) 0( )– ε<→<

→
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In this context, observe that the sequences (c) and (e) of Figure 1.41 represent the
same sequence. That is, operator N is time-invariant when the time-shifting is to the
right. However, when the time-shifting is to the left, as in Figures 1.42a and c, the
corresponding sequences are not equal to each other. So, then the time-invariance
of the operator N does not hold. In conclusion, when we say that an operator N :
l�(��) l�(��)  is time-invariant, this means the fulfillment of the time-invariance
definition 1.159, with only positive values of τ.

Similarly, the operator Nf is time-invariant with respect to the time-shifting to
the right, but not with respect to the time-shifting to the left. This is illustrated in
Figures 1.43 and 1.44.

FIGURE 1.40 Illustration of construction of the sequences xf(�k): (a) the original sequence
x(k) � l�(��), (b) the extended sequence xf(τ) � l�(�), (c) the extended time-shifted sequence
for k � 4, (d) the extended time-shifted sequence for k � 5.

→
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FIGURE 1.41 Illustration of the property of time-invariance of operators working on the
sequences belonging to l�(�+): (a) original input sequence, (b) output sequence (Nx)(k), (c)
sequence (b) time-shifted, (d) sequence (a) time-shifted, (e) output sequence for the input
sequence (d).
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Note that the sequences (c) and (e) of Figure 1.43 represent the same sequences,
but not the sequences (a) and (c) of Figure 1.44. Because the operator Nf represents
a mapping from l�(�) into itself, the time-invariance definition 1.159 should hold
for any τ, both positive as well as negative ones. However, this is not the case here.
The operator Nf cannot be regarded as a time-invariant one.

What is lacking in the operator Nf is present in the operator Ng. That is, the
operator Ng behaves like the operator Nf for the time-shifting to the right, but
differently for the time-shifting to the left. The time-shifting of the operator Ng to
the left is illustrated in Figures 1.44d and e. It follows from Figures 1.44d and e
that the sequences (U�3Ngxf)(k) and (NgU�3xf)(k) are identical. This means that the
operator Ng is a time-invariant mapping from l�(�)  into itself.

With this knowledge we are able to reformulate Theorems 1.1 and 1.2 for the
N : l�(��) l�(��)  operators in the following way:

FIGURE 1.42 Checking the operator time-invariance property when time-shifting to the left
is performed: (a) the sequence (b) of Figure 1.41 time-shifted to the left by τ � �3, (b) the
sequence (a) of Figure 1.41 time-shifted to the left by τ � �3, (c) the output sequence for
the input sequence (b) of this figure.

→
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FIGURE 1.43 Checking time-invariance property of the operator Nf based on the operator
N of Figure 1.41: (a) the extended sequence of that of Figure 1.41a, (b) the output sequence
of the extended operator Nf, (c) the sequence (b) time-shifted, (d) the sequence (a) time-
shifted, (e) the output sequence for the input sequence (d).
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FIGURE 1.44 Checking time-invariance property of the operators Nf and Ng when time-
shifting to the left is performed: (a) the sequence (b) of Figure 1.43 time-shifted to the left
by τ � �3, (b) the sequence (a) of Figure 1.43 time-shifted to the left by τ � �3, (c) the
output sequence of the operator Nf for the input sequence (b) of this figure, (d) the output
sequence (U�3Ngxf)(k), (e) the output sequence (NgU�3xf)(k).
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Theorem 1.1 (for x � l�(��))
Let ε 
 0 and

(1.232a)

be a ball in l�(��) of radius M3. If the N : l�(��) l�(��) is a time-invariant
operator possessing the fading memory in the sense of definition FMD2 on the ball
B+, then there exists such a Volterra series operator V given by Equations 1.1 and
1.11 with a finite number of components and of which nonlinear responses fulfill
the stability condition (1.98) (with lower summation limits equal to zero) that the
following inequality for extended operators and sequences

(1.232b)

or equivalently for k 	 0

(1.232c)

holds for all x � B�.
Theorem 1.2 (for x � l�(��))
Let B� be a ball in l�(��) of radius M3 as given by definition 1.232a. If N :

l�(��) l�(��)  is a time-invariant operator possessing the fading memory in the
sense of definition FMD2 on the ball B�, then, for any ε 
 0, there exists such a
polynomial p of M variables: �M � that the following:

(1.233a)

or equivalently for k 	 0

(1.233b)

holds for all x � B� and with y(k) � p(x(k), x(k � 1), , x(k � � � 1)) considered
as a mapping from l�(��) into itself.

Note that the operators Vg and pg inequalities 1.232b and 1.233a, respectively,
are the extended operators of V and p, and are defined by the defining Equations
1.229.

Concluding consideration of Theorems 1.1 and 1.2 (for operators N :
l�(��) l�(��)), we denote similarly, the approximating Volterra series operator V
in definition 1.232c by  and write the following:

B  +
 df

x l∞
�  +( ) x M3≤∈{ }=

→

Ngx f( ) k( ) V gx f( ) k( )– ε k �∈,≤

Nx( ) k( ) Vx( ) k( )– ε with x l( ),≤ 0 when l 0<,=

→

→

Ngx f( ) k( ) pg x f k( ) x f k 1–( ) … x f k M– 1+( ), ,,( )– ε<

Nx( ) k( ) p x k( ) x k 1–( ) … x k M– 1+( ), ,,( )– ε with x l( ),< 0 when l 0<,=

…

→
V̂
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(1.234a)

with x(l) � 0, when l � 0 or, in other words, substituting x(k � ip),  p � 1, 2, ,
L, by zero when k � ip eventually takes a negative value. This allows us to put
Equation 1.234a into an alternative form:

(1.234b)

The results obtained using the notion of fading memory can be related to those
achieved by the use of the notion of approximately-finite memory. The theorem
expressing this relation was given by Park and Sandberg.4 For scalar sequences, it
can be formulated in the following way:

Theorem 1.4
Let B� given by definition 1.232a be any closed ball in l�(��). Then a causal

and time-invariant operator N : l�(��) l�(��),  has fading memory on B� if and
only if it possesses approximately-finite memory in the sense of the definition AFM1
and the functional Fs associated with the operator N, defined as

(1.235)

is continuous on B+ for each k � �1, 2, 3, �.
Before going further, observe that the mapping N in Theorem 1.4 can be defined

more generally as N : l�(��) CR (��), where CR means the collection of all �-
valued mappings defined on ��; the definition of the mapping N given above occurs
in the original formulation by Park and Sandberg.4 Clarification of the definition of
the functional Fs is also needed. If we denote by cs(��) the subset of l�(��), which
consists of all the sequences with at most finitely many nonzero terms, then Fs can
be assumed to be a mapping Fs : cs(��) �. Moreover, the functional Fs is asso-

V̂ x( ) k( ) p x k( ) x k 1–( ) … x k M– 1+( ), ,,( )=

h 0( ) h 1( ) i1( )x k i1–( ) h 2( ) i1 i2,( )x k i1–( )x k i2–( )
i2 0=

M 1–

∑
i1 0=

M 1–

∑+
i1 0=

M 1–

∑+=

 … … h L( ) i1 i2
… iL, , ,( )x k i1–( )x k i2–( )…x k iL–( )

iL 0=

M 1–

∑
i2 0=

M 1–

∑
i1 0=

M 1–

∑+ +

…

V̂ x( ) k( ) h 0( ) h 1( ) i1( )x k i1–( )
i1 0=

min k M 1–,{ }

∑+=

 h 2( ) i1 i2,( )x k i1–( )x k i2–( )
i2 0=

min k M 1–,{ }

∑
i1 0=

min k M 1–,{ }

∑+

 … … h L( ) i1 i2
… iL, , ,( )x k i1–( )x k i2–( )…x k iL–( )

iL 0=

min k M 1–,{ }

∑
i2 0=

min k M 1–,{ }

∑
i1 0=

min k M 1–,{ }

∑+ +

→

Fsxk 
df

Nx( ) k( ) where xk, x k( ) x k 1–( ) … x 0( ) 0 0 0 …, , , ,, ,,{ }= =

…

→

→
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ciated uniquely with the causal time-invariant operator N : l�(��) CR (��). The
rule here is given by Equation 1.235.

Because of the importance of Theorem 1.4 for our considerations, we shall repeat
now its proof, after Park and Sandberg.4 For this purpose, let us denote by Ms a
positive real number greater than the radius of B�, that is Ms 
 M3. Furthermore,
assume that the operator N : l�(��) l�(��) possesses the fading memory. Using
relation 1.168 with v(τ) � (Wk,a,x)(τ), we get

(1.236a)

Of course inequaltiy 1.236a is not true for every value of the parameter a.
Because this inequality should hold independently of the choice of x � B�, the only
way to get this to hold is by choosing the parameter a properly. In this context,
inequality 1.236a can be rewritten as

(1.236b)

because x(τ) � (Wk,a,x)(τ),  for τ � k, k � 1, , k � a. On the other hand, �x(τ)�
� Ms for any τ. If we choose the parameter a such that  will hold, then

(1.236c)

will also hold. This, of course, will mean that relation 1.236b is true for the values
of a found. That is,

(1.236d)

holds for the parameter a fulfilling the inequality . Finally, we observe
that inequality 1.236d is simply the definition AFM1 of the approximately-finite
memory.

To complete the first part of the proof, we need to show the continuity of the
associated functional Fs. For this purpose, we assume that sequences x and v � B�

and

(1.237a)

holds. Furthermore, it follows from inequality 1.237a, and from the fact that 0 �
w(k � τ) � 1 for k � τ � ��, that

(1.237b)

→

→

sup
0 τ k≤ ≤

x τ( ) W k a, x( ) τ( )– w k τ–( ) δ Nx( ) k( ) NW k a, x( ) k( )– ε<→<

sup
0 τ k a–≤ ≤

x τ( ) w k τ–( ) δ Nx( ) k( ) NW k a, x( ) k( )– ε<→<

…
w a( ) δ Ms

⁄<

sup
0 τ k a–≤ ≤

x τ( ) w k τ–( ) Ms
δ

Ms

-------⋅< δ=

Nx( ) k( ) NW k a, x( ) k( )– ε<

w a( ) δ Ms
⁄<

sup
τ �  +  ∈

x τ( ) v τ( )– δ<

sup
0 τ k  ≤ ≤

x τ( ) v τ( )– w k τ–( ) δ<
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also holds. Because of  relation 1.168, we have

(1.237c)

for each k � �1, 2, 3, �. Finally, observe that relation 1.237c is the continuity
definition for the functional Fs, because Fsxk � (Nx)(k).

To prove the converse part of Theorem 1.4, we need another result from the
paper4 by Park and Sandberg, which can be formulated for scalar sequences in the
following way:

Theorem 1.5
Let denote N : l�(��) l�(��) as any causal and time-invariant operator, and

let B� given by 1.232a be any closed ball in l�(��). Then the statements given below
are equivalent.

1. The operator N possesses approximately-finite memory on the ball B� in
the sense of the definition AFM1 and the functional N�(k) : l�(��) �

is continuous on the ball B� for each k � � � �1, 2, 3, �.
2. For any ε 
 0, there exist such m � �, a � �, a real m-vector (consisting

of m elements) d, a real m � (a � 1) (having m rows and (a � 1) columns)
matrix C, and a lattice map L: �m � that

(1.238a)

holds for all x � B�. Moreover, the map Pa in (1.238a) means picking a vector
having (a � 1) elements from a given sequence x(k), according to the relation

(1.238b)

with T standing in relation 1.238b for the operation of transposition. Also, it is
assumed in 1.238b that x(l) � 0 when l � 0, where l means k � i, 0 � i � a.
Furthermore, the lattice map L in relation 1.238a generates its output value Lz from
the elements of the vector z �  
z1, z2, , zm �T  by a finite number of so-called
lattice operations. The definition of the latter is as follows: let y and z be real numbers,
then the lattice operations are given by

(1.238c)

and

(1.238d)

Upon examination of Theorem 1.5, observe that something similar to picking
from a sequence a vector of the kind shown in 1.238b occurred also in Equation

sup
τ �  +  ∈

x τ( ) v τ( )– δ Nx( ) k( ) Nv( ) k( )–→<

…

→

→
…

→

Nx( ) k( ) L d C Pax( ) k( )⋅+( )– ε k �  +∈,<

Pax( ) k( ) x k( ) x k 1–( ) … x k a–( ), ,,[ ]T=

…

y z∨ max y z,( )=

y z∧ min y z,( )=
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1.218. Using the notation of 1.238b, we could also write p(x(k), x(k � 1), , x(k �
� � 1)) as p(PM�1x). From the latter, it follows that the relation between the
parameters a and M is a � M � 1.

The continuity of the functional N�(k) : l�(��) � for k � �, as used in
Theorem 1.5, means the same as the continuity of the functional Fs from Theorem
1.4. This is because of definition 1.235 and the relation between the sequences xk

and x(k), expressed by it.
The proof of Theorem 1.5 for vector-valued sequences can be found in the paper4

by Park and Sandberg. Here, this proof is omitted.
Let us now start with the converse part of the proof of Theorem 1.4. For this

purpose, we assume that the operator N possesses approximately-finite memory in
the sense of the definition AFM1 and the functional Fs or, equivalently, the functional
N�(k) : l�(��) � for k � � is continuous on B� for each k. Furthermore, take
ε 
 0 and any sequences x(k) and v(k)  belonging to the ball B�. Then using Theorem
1.5, we can say that there are m � �, a � �, a real m-vector d, a real m � (a �
1) matrix C, and a lattice map L: �m � such that

 (1.239a)

and

(1.239b)

where the approximating operator N : l�(��) l�(��) for the sequences x(k) and
v(k) is given by

(1.239c)

and

(1.239d)

respectively.
We recall now another fact in the paper4 by Park and Sandberg regarding

a certain property of the lattice map L(d � C⋅) : �(a � 1) �; that is, its
uniform continuity on the cube 	�Ms, Ms �(a � 1). More precisely, if we choose
δ0 such that z1 and z2 lie in the cube 	�Ms, Ms�(a � 1) and the length between
them , then

(1.240)

…

→

→

→

Nx( ) k( ) N̂ x( ) k( )–
ε
3
---<

Nv( ) k( ) N̂ v( ) k( )–
ε
3
---< k �  +∈,

→

N̂ x( ) k( ) L d C Pax( ) k( )⋅+( )=

N̂ v( ) k( ) L d C Pav( ) k( )⋅+( )=

→

z1 z2–  df

max
1 i a 1+≤ ≤

z1i z2i– δ0<=

z1 z2– δ0 L d Cz1+( ) L d Cz2+( )–
ε
3
---<→≤
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Since relation 1.240 holds, consider any decreasing sequence w : �� (0, 1
)
such that . Furthermore, take δ � δ0w(a) and arbitrary x and v from
the ball B�, and arbitrary k � ��, too. Note then

(1.241a)

implies

 (1.241b)

The relation 1.241 holds because it follows from the definition of the absolute
value of a vector and from the inequality 1.241a that

 (1.242a)

where imax stands for this index for which max �x(k � i) � v(k � i)� occurs.
Furthermore, because the index imax can take a value from the range 0 � imax � a,
and w(i) 
 w(i � 1) holds for each i � ��, we can write

(1.242b)

Finally, taking into account inequality 1.242b in 1.242a, we get inequality
1.241b. The inequality 1.242a holds for indices i that fulfil the inequality k�i � 0.
For these indices, however, x(k � i) � v(k � i) � 0, which indicates that imax cannot
come from the range for which k � i � 0 holds.

Identifying z1 with Pax and z2 with Pav and taking into account the definitions
1.239c and 1.239d, we conclude from relation 1.240 that 1.241b implies

(1.243a)

To summarize, observe that because the inequalities 1.239a and 1.239b hold for
all k � ��, and the relation 1.243a holds as well, we can conclude that

 implies

(1.243b)

The latter is the definition FMD2 of fading memory. This completes the proof
of Theorem 1.4.

→
w k( )

k ∞→
lim 0=

x τ( ) v τ( )– w k τ–( ) δ τ,< 0 1 … k, , ,=

Pax( ) k( ) Pav( ) k( )– δ0<

Pax( ) k( ) Pav( ) k( )– max
0 i a≤ ≤

x k i–( ) v k i–( )–
δ

w imax( )
-----------------<

δ0w a( )
w imax( )
-----------------= =

w a( )
w imax( )
----------------- 1≤

N̂ x( ) k( ) N̂ v( ) k( )–
ε
3
---<

sup
0 τ k≤ ≤

x τ( ) v τ( )– w k τ–( ) δ<

Nx( ) k( ) Nv( ) k( )– Nx( ) k( ) N̂ x( ) k( )–≤

+ N̂ x( ) k( ) N̂ v( ) k( )– N̂ v( ) k( ) Nv( ) k( )– ε<+
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The important conclusion that follows from Theorem 1.4, is that the definition
FMD2 of the fading memory and the definition AFM1 of the approximately-finite
memory are equivalent only when some continuity condition is added to the latter.

Also worth noting is that the fading memory property for mappings N :
l�(��) l�(��)  is equivalent to the continuity of the associated functionals Fs,
defined by 1.235, with respect to the norm . To show this, assume
that an operator N : l�(��) l�(��) possesses the fading memory property according
to the definition FMD2. Then we can write

(1.244a)

To proceed further, note that the order of elements in the sequence xk is reversed
compared to the order of elements in the sequence x(k) for the indices from 0 to k,
that is, xk(0) � x(k), xk(1) � x(k � 1), , xk(k) � x(0). Keeping this in mind, and
taking into account definition 1.235, we can rewrite relation 1.244a in the following
form:

(1.244b)

With the definition of the norm

(1.244c)

we get from relation 1.244b

(1.244d)

Finally, we conclude that relation 1.244d is the definition of the uniform conti-
nuity of the functional Fs on the set cs (��) � B�.

We can also proceed conversely. Starting from relation 1.244d, with the corre-
sponding interpretations of the sequences xk and x, and keeping in mind definition
1.235, we arrive at relation 1.244a, that is, the fading memory definition FMD2.

Knowing the relation between the definitions of the fading memory and of the
approximately-finite memory, we can formulate equivalently Theorems 1.1 and 1.2
(for x � l�(��)) using the phrase “possessing the approximately-finite memory in
the sense of the definition AFM1 together with the continuity property of the
functional N�(k) : l�(��) � for each k � �” instead of the phrase “possessing
the fading memory in the sense of the definition FMD2.” With this comment, we
conclude Section 1.9. The next section will be devoted to the Volterra series repre-
sentations for special input sequences, binary sequences.

→
sup
k 0≥

x k( ) w k( )
→

sup
0 τ k≤ ≤

x τ( ) v τ( )– w k τ–( ) δ Nx( ) k( ) Nv( ) k( )– ε<→<

…

sup
τ �  +∈

xk τ( ) vk τ( )– w τ( ) δ Fsxk Fsvk– ε<→<

x ω1
 df

sup
τ �  +∈

x i( ) w i( )=

xk vk– ω1 δ Fsxk Fsvk– ε<→<

→
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1.10 DISCRETE VOLTERRA SERIES FOR BINARY 
SIGNALS

Binary signals are most often used in digital systems. If the systems considered are
nonlinear and possess the fading memory property, their behavior can be described
by the Volterra series approximator, as shown in the previous section. With the
specific form of binary signals, however, the form of the approximator, given by
Equation 1.220a, can be further reduced. This section is devoted to this task.

Assume that the input sequence x(k) in Equation 1.220a is a binary sequence;
that is, its elements have the following form:

(1.245)

where a and b are constants, and xB(k) takes on the value 0 or 1. Thus, x(k) takes
on only two distinct values: a, for xB(k) � 0, or a � b, for xB(k) � 1.

Equation 1.245) is a general form expressing all the possible forms of binary
signals, as illustrated in Figure 1.45 by means of three characteristic examples.

To proceed further, we observe now that the multiplication of any element of
the sequence x(k) by itself produces an element of the general form expressed by
Equation 1.245.

That is, we get

 (1.246a)

because xB(k) 
 xB(k) � xB(k). Furthermore, we can rewrite Equation 1.246a as

(1.246b)

where the constants a1 and b1 are given by

(1.246c)

and

(1.246d)

Using the notion of symmetric impulse responses (see the defining Equation
1.15), we can rewrite Equation 1.220a for the Volterra series approximator  as

x k( ) a bxB k( )+=

x k( ) x k( )⋅ a bxB k( )+( )2 a a b+( )– 2a b+( ) a bxB k( )+( )+= =

x k( ) x k( )⋅ a1 b1x k( )+=

a1 2a b+=

b1 a a b+( )–=

V̂
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(1.247a)

Moreover, the Volterra series approximator  can be equivalently expressed by
means of the triangular impulse responses (see the defining Equations 1.19). Then
it takes on the following form:

FIGURE 1.45 Illustration of the formula 1.245 describing any binary signal, (a) assumed
xB(k), (b) x(k) for a � 0 and b � 1, (c) x(k)  for a � 1  and b � �2, (d) x(k)  for a 
 0  and
b � �2a.

V̂ x( ) k( ) hsym  
0( ) hsym  

1( ) i1( )x k i1–( ) hsym  
2( ) i1 i2,( )x k i1–( )x k i2–( )

i2 0=

M 1–

∑
i1 0=

M 1–

∑+
i1 0=

M 1–

∑+=

 … … hsym  
L( ) i1 i2

… iL, , ,( )x k i1–( )x k i2–( )…x k iL–( )
iL 0=

M 1–

∑
i2 0=

M 1–

∑
i1 0=

M 1–

∑+ +

V̂
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(1.247b)

Observe that the representation 1.247b takes into account only distinct multiples
of signal samples at different time instants; in other words, the components such as
x(k � i)x(k � j) � x(k � j)x(k � i), x(k � i)x(k � j) x(k � l) � x(k � j) x(k � i)
x(k � l) � � x(k � l) x(k � j) x(k � i) and so on, occur only once in the
expression. This is so because, for example, when h(2)

tri(2, 1) � 0, then h(2)
tri(1, 2)

� 0 follows immediately from the definition of triangular impulse responses. Con-
sequently, this means that x(k � 2)x(k � 1) � x(k � 1) x(k � 2)  occurs only once
in Equation 1.247b. Similarly, x(k � 2)x(k � 1)x(k � 3) � x(k � 1)x(k � 2)x(k �
3) occurs only once, and so on, which allows us to rewrite Equation 1.247b as

(1.247c)

where the n-fold summation symbol  is over all the terms containing those
triangular impulse responses that are not zero by definition.

We obtain further reduction of the number of components in the Volterra series
approximator given by Equation 1.247c, by the use of Equation 1.246b. Using the
relation 1.246b, we reduce these components, which have the same values of the
indices, for example, i1 � i2 � 0, i1 � i2 � 1, and so on. To illustrate, consider a
term (2, 2, 1)x(k � 2) x(k � 2)x(k � 1) � (2, 2, 1)x2(k � 2) x(k � 1) as an
example. To reduce the quadratic term x2(k � 2) in the above expression, we use
the general relation 1.246b, which gives x2(k � 2) � a1 � b1x(k � 2). Substituting
the latter into the previous expression, we arrive at (2, 2, 1)(a1 � b1x(k � 2))
x(k � 1) � a1 (2, 2, 1)x(k � 1) �b1 (2, 2, 1)x(k � 2) x(k � 1). The two
components achieved cannot be further reduced. The first contributes to the compo-
nents that have the following form of a constant multiplied by x(k � 1). The second
component contributes to the components possessing the form of a constant multi-
plied by x(k � 2) x(k � 1).

From the above procedure, we see that the successive applications of the Equa-
tion 1.246b in Equation 1.247c lead to getting an equivalent form of the Volterra
series approximator for binary signals; that is, to

V̂ x( ) k( ) htri  
0( ) htri

1( ) i1( )x k i1–( ) htri  
2( ) i1 i2,( )x k i1–( )x k i2–( )

i2 0=

M 1–

∑
i1 0=

M 1–

∑+
i1 0=

M 1–

∑+=

 … … htri  
L( ) i1 i2

… iL, , ,( )x k i1–( )x k i2–( )…x k iL–( )
iL 0=

M 1–

∑
i2 0=

M 1–

∑
i1 0=

M 1–

∑+ +

…

V̂ x( ) k( ) htri  
0( ) htri

1( ) i1( )x k i1–( ) htri  
2( ) i1 i2,( )x k i1–( )x k i2–( )

i1 i2 0= =

M 1–

∑+
i1 0=

M 1–

∑+=

 … htri  
L( ) i1 i2

… iL, , ,( )x k i1–( )x k i2–( )…x k iL–( )
i1 i2

… iL 0= = = =

M 1–

∑+ +

 
i1 i2

… iL 0= = = =

M 1–

∑

htri
3( ) htri

3( )

htri
3( )

htri
3( ) htri

3( )
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(1.247d)

for L 	 M. In Equation 1.247d, , are the resulting
coefficients, taking into account all the contributions to the corresponding combi-
nations of signal samples x0(k) � 1, x(k � i1), x(k � i1) x(k � i2), , x(k)x(k �
1) x(k � M � 1), respectively. It is clear that these coefficients depend upon the
values of the impulse responses and upon the values of the coefficients a and b. The
summation symbol in Equation 1.247d is slightly modified in comparison to that in
Equation 1.247c. Namely, the components with the same values of indices are
excluded in (1.247d). Finally, we stress that, in the combinations x(k � i1) x(k �
i2), , x(k � in), n � 1, 2, , M, in Equation 1.247d, only the signal samples
x(k), x(k � 1), , x(k � M � 1) to the power of one or zero occur.

The representation given by Equation 1.247d holds only for L 	 M ��� For L�
M, that is, when the value of the measure of system nonlinearity strength is less than
the value of the system memory length measure, the longest possible combination in
1.247c, as for example, x(k)x(k � 1) x(k � L � 1), contains a lesser number of
signal samples than the longest combination in Equation 1.247d. In other words, the
series 1.247c for binary signals in the case of L � M must have a lesser number of
components than that given by Equation 1.247d. It has then the form

 (1.247e)

for L � M.
Comparison of the expressions 1.247d and 1.247e shows that the length of the

system memory, M, decides about the number of components to be taken into account
when L > M. Conversely, when the system nonlinearity is relatively small in com-
parison to the system memory length, that is, when L � M, this nonlinearity, not
the system memory, decides about the number of the series components to be taken
into account.

A similar expansion to that in Equation 1.247d has been derived using other
arguments, not related to the topic of the Volterra series (see Reference 54).

Example 1.5
Let us illustrate in this example the expansion given by Equation 1.247d. For

this purpose, assume that L � 4 and M � 3. Then, we get from Equation 1.247d 

V̂ x( ) k( ) d0
0( ) di1

1( )x k i1–( ) di1i2

2( ) x k i1–( )x k i2–( ) …+
i1 0= i2 0=,

i1 i2≠

M 1–

∑+
i1 0=

M 1–

∑+=

+d
012… M 1–( )
M( ) x k( )x k 1–( )…x k M– 1+( )

d0
0( )  di1

1( )  di1i2

2( )  …  d
012… M 1–( )
M( ), , , ,

…
…

… …
…

…

V̂ x( ) k( ) d0
0( ) di1

1( )x k i1–( ) di1i2

2( ) x k i1–( )x k i2–( ) …+
i1 0= i2 0=,

i1 i2≠

M 1–

∑+
i1 0=

M 1–

∑+=

+ di1i2
…iL

L( ) x k i1–( )x k i2–( )…x k iL–( )
i1 0 …,= iL 0=,
i1 i2

… iL≠ ≠ ≠

M 1–

∑
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This expansion is presented in Figure 1.46.

Example 1.6
Here we illustrate the expansion given by Equation 1.247e. For this purpose,

we assume L � 2 and M � 3. Then, we get from Equation 1.247e

FIGURE 1.46 Illustration of the Volterra series approximator for binary signals for L�4 and
M�3.

V̂ x( ) k( ) d0
0( ) di1

1( )x k i1–( ) di1i2

2( ) x k i1–( )x k i2–( )
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A graphical illustration of the expansion is presented in Figure 1.47.

Comparison of Examples 1.5 and 1.6 shows a general rule that, depending upon
the relation between the measure of system memory length, M, and the measure of
system nonlinearity strength, L, a decisive about the number of components in the
Volterra series approximator is either the first or the second of the parameters. In
Example 1.5, where L > M holds, there occur no components of higher order than
three. In other words, the approximator highest order component is that of order
three, which equals the system memory length M � 3. Conversely, in Example 1.6,
we have M > L.  L is less than M, and as before, the lesser parameter decides on
the highest order component in the Volterra series approximator. Because L = 2, the
highest order components in Example 1.6 are the components of the second order,

x(k) x(k � 1), x(k)x(k � 2), and x(k � 1)x(k � 2).
Comparison of Examples 1.5 and 1.6 leads also to another observation. For this

purpose, we need the notion of a linear finite impulse response (FIR) system (filter).24

The response y(k) to the input signal x(k) of such a system (filter) is given by

(1.248)

FIGURE 1.47 Illustration of the Volterra series approximator for binary signals for L � 2
and M � 3.
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where b(i) are the samples of the system (filter) impulse response. Equation 1.248
is illustrated in Figure 1.48.

Comparison of the structure of a linear FIR filter in Figure 1.48 with the structure
of the moving average map in Figure 1.37 shows that, in fact, both the structures
are identical when the samples of the impulse response are identified with the
coefficients α, i � 0, 1, , M � 1 in the following way:

(1.249)

We prefer now, however, to use the notion of the FIR filter rather than the notion
of the moving average map. The latter is used to model linear systems in the context
of spectral analysis of stochastic processes. On the other hand, the finite impulse
response filter name underlines that property which we want to exploit now, that is,
the finite memory property expressed by an impulse response of a finite length.

The linear parts of the structures in Figures 1.46 and 1.47 represent a FIR filter
of the same length because, in both cases, we have assumed M � 3. We conclude
that the system memory length fully determines the length of the impulse response
of a system linear part, and this is independent of the system nonlinearity strength
expressed by parameter L. On the other hand, note that the parameter L affects the
coefficients  � 0, 1, , M � 1, which we identify here with the samples of
the impulse response of a FIR filter. That is, we write

(1.250)

The coefficients b(i) are equal to the corresponding samples (i), that is, b(i)
�  (i) � h(1)(i) only in the case of a linear approximator, when L � 1. In the
case of a nonlinear approximator, when L 
 1, the coefficients  � 0, 1, , M

FIGURE 1.48 Structure of a linear FIR system (filter).
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� 1 depend also upon the form of a binary signal and upon the values of the system
impulse responses of higher orders. We illustrate this by means of an example. Note
that, as we have just shown, the term

is equal to

FIGURE 1.49 (a) The structure of Figure 1.46 redrawn with the strictly linear part (FIR
filter) separated, (b) the structure of Figure 1.47 redrawn with the strictly linear part (FIR
filter) separated.
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From the above, it is evident that the coefficient (2, 2, 1) contributes to
the value of the coefficient . Moreover, the coefficient (2, 2, 1) contributes
to the value of the coefficient . Hence, we conclude that linear FIR filters shown
in Figure 1.49 for the structures derived in Examples 1.5 and 1.6 are linear because
they fulfill the defining Equation 1.248. However, the filter’s coefficients depend
upon the remaining structure, that is, upon the nonlinear part and upon the form of
the binary input signal. The values of the coefficients , , and  are different
in Figure 1.49a and Figure 1.49b because of the different nonlinearity strength
assumed in the examples 1.5 and 1.6. Also different are the nonlinear moving average
maps in Figure 1.49a and Figure 1.49b, that is, the values of the corresponding
coefficients and the number of these coefficients.

The form of the Volterra series approximator for binary input signals is a
particular case of the general formula (see Equations 1.247a or 1.247b). One could,
of course, try to find simplified versions of these formulas for input signals possess-
ing more than two amplitude levels. This would be, however, cumbersome and
unsatisfactory in most cases. We propose, in the cases of signals with more than
two amplitude levels, to use the general formula given by Equation 1.220a or
alternatively, by Equations 1.247a or 1.247b.

1.11 ASSOCIATED EXPANSIONS

Origins of what is now called the Volterra series in the technical literature lie in the
works25, 26 of Vito Volterra, who investigated functional expansion of a type in which
the discrete-time variant can be expressed as

(1.251)

where h(o) is a constant and h(n)(i1, i2, , ii), i � 1, 2, , and x(i1), x(i2), , with
ia � ii � ib, represent samples of the corresponding functions h(n) and x.

Observe that the expression 1.251 is a typical functional, that is a mapping into
the set of real numbers �. More precisely, identifying the function xi in expression
1.251 with the input signal, a sequence from the space l�(ia � i � ib) with the norm

(1.252)

we can interpret expression 1.251 as a mapping of the type: l�(ia � i � ib) �.
Introducing a parameter k into expression 1.251 by assuming for instance that

x depends upon this parameter; that is, we have now to work with x(k, ii), i � 1, 2,
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…, and assuming then that each x(k, ii) can be written in the form x(k, ii)  �  x(k
� ii) and 0 � ii � k, we get finally from expression 1.251 the expansion 1.12

 (1.12)

where y(k) means the resulting sequence. We arrived thereby at what has been called
the Volterra series in Section 1.1. This is no longer a functional but an operator, that
is, a mapping of sequences x(k) into sequences y(k).

Using similar arguments as above, we are able to get from expression 1.251 all
the other forms of the Volterra series presented in Section 1.1. For example, letting
�� � ii � � and substituting x(k � ii) into expression 1.251 instead of x(ii), i � 1,
2, , we get the expansion given by Equations 1.1 and 1.3. On the other hand,
when we introduce the parameter k by substituting h(0)(k) in place of h(0), h(1)(k, i1)
in place of h(1)(i1), h(2)(k, i1, i2) in place of h(2)(i1, i2), and so on, in expression 1.251,
we get, as a result, the general form of the Volterra series for time-dependent systems,
as given by Equations 1.1 and 1.2.

Consider once again what has been called the discrete Volterra series for time-
independent systems in Section 1.1, that is, 

(1.1) and (1.3)

An analog version of the above series contains, of course, integral symbols in
place of summation ones. Different authors who have applied the series in their
investigations of nonlinear analog systems have often used quite different names.
For instance, Schetzen27 uses the Volterra series term in the context of nonlinear
time-invariant systems with memory, and Chua and Ng28 use Volterra functional
series term for these systems. 

Furthermore, for the series without the constant component h(0), Kuo29 uses the
name Volterra series time-domain representation, Saleh12 uses Volterra series expan-
sion, and Bedrosian and Rice30 simply use Volterra series. Boyd, Chua, and Desoer
in Reference 31 use three equivalent names: Volterra series operator, Volterra series,
and Volterra series expansion, without giving any limits of integration under the
integration symbols. Note that the first name used underscores the fact that the
Volterra series represents a mapping which is an operator, not a functional. The third
of the names mentioned underscores the fact that the Volterra series is an expansion.
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As we already know from Section 1.9, this expansion, truncated or not, can represent
an approximation of a nonlinear system response.

In this context, the notion of a functional expansion (series) can be understood
as a mapping, transforming functions into reals, that is, as a functional. On the other
hand, it can be also understood as a mapping transforming a set of functions into
another set of functions (which is a main subject of functional analysis), that is, as
an operator. As mentioned, the above notion has been used in both meanings in the
technical literature, which sometimes led to misunderstandings. In this book, we use
the Volterra series term for all the forms of series described in Section 1.1, as is
assumed in most papers on these subjects. Because of our restriction here to con-
sideration of nonlinear discrete-time systems, our series is called the discrete Volterra
series.

We shall now explain what the associated Volterra series, or associated Volterra
series expansions, are. These expansions have been introduced to the literature by
Sandberg.17, 32 For nonlinear discrete-time systems, these Volterra series expansions
have the following form3:

(1.253a)

where x, y �  l� (�), k �  �. When needed, the constant component h(0) can be
added to the expansion 1.253a.

The expansion 1.253a can be written in an equivalent form with k � ii, i � 1,
2, …, standing in the expansion as arguments of the input signal x. To get this
representation from expansion 1.253a, one has to introduce new variables ii� �  k
� ii, i � 1, 2, , in 1.253a. This leads, after changing the summation limits, because
of 0 � ii� � �, and after dropping the prime symbol at each ii�, to

 (1.253b)

Both expansions 1.253a and 1.253b are equivalent to the following expansions:

(1.253c)

and

(1.253d)
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for causal systems defined in Section 1.1: that is, for systems of which nonlinear
impulse responses fulfill: h(n)(i1, i2, , in) � 0, n  �  1, 2, …, when even one of
the arguments ii � 0, i �  1, 2, , n. It follows from this property that h(n)( k �
i1, k � i2, , k � in) equals zero if even one ii 
 k. Therefore, we can let each ii

in expansion 1.253a go to infinity without changing the value of y(k). Similarly,
because h(n)(i1, i2, , in) equals zero if even one ii � 0, we can let each ii in expansion
1.253b go to minus infinity without changing the value of y(k).

Note also that expansion 1.253d is identical with that represented by Equations
1.1 and 1.3, when dropping the constant component in the latter.

In Section 1.1, we have defined the Volterra series using the notion of a nonlinear
system. We have considered such systems in which response to an input can be
represented in the form of a series such as that assumed in Equations 1.1 and 1.2
or in Equations 1.1 and 1.3. Furthermore, note that we have called these series
possessing the infinite summation limits, the discrete Volterra series. We see now
that, when omitting the component independent of an input signal, they are nothing
other than the associated series in the case of considering causal systems. In the
case of nonlinear causal systems, our basic definitions of the discrete Volterra series
from Section 1.1 are conceptually identical with the definition of the Volterra series
expansions of Sandberg.

Of course, the Volterra series may not exist for a given system. That a given
system possesses a representation in the form of a Volterra series or, in Sandberg’s
terminology, of an associated Volterra series expansion, must be proven in each case.
Furthermore, the associated Volterra series expansion represents a natural description
of a system response only when input signals are defined on the whole time-axis,
from �� to ��, as, for instance, is the case with signals taken from the space l�(�).
However, in many cases in which input signals are defined only for nonnegative
times, k  	 0, the associated Volterra series expansions are taken as the input-output
representations. The advantage of this is that, as in the linear case, the occurrence
of the summation limits �� and �� enables simplification of some calculations.
For example, the two-sided Z transform can be then applied to such representations,
(see Section 1.3). However, such use of the associated Volterra series has, as a result,
the modification of the original model of a system. This fact is illustrated in Figure
1.50.

As shown in Figure 1.50, the set of allowable input signals to a system is an
inherent part of any model of this system. In Figure 1.50a, an original model of a
nonlinear causal and time-invariant system is presented. This model consists of the
set of input signals defined only for nonnegative times, k  	 0. Assume that an input-
output representation in the form of a Volterra series exists for the above model, and
assumes the form given by Equation 1.12, which, after the change of variables k �
ii � ii�, 0 � ii� � k, and dropping the prime at each ii�, can be also expressed as:

…
…

…

…
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 (1.254a)

The fact that the original model of a system possesses the Volterra series repre-
sentation does not mean that any modified model, such as that in Figure 1.50b, also
possesses such a representation. This is so because any modified model is another
model, even when it regards only the allowable domain of inputs different from
those in the original model. Assume, however, that the modified model in Figure
1.50b possesses the Volterra series representation. It can then be expressed by
Equation 1.11, or, equivalently, by Equation 1.253a with the component h(0) added
to it. Further, because of x(k) � 0 for every k  � 0, the latter simplifies to Equation
1.254a. The output response of the system in Figure 1.50a is equal to the output
response of the system in Figure 1.50b, that is, 

(1.254b)

In other words, the associated model of Figure 1.50b leads to the same result
as the original one, when the Volterra series input-output representation does exist

FIGURE 1.50 (a) An original model of a nonlinear causal and time-invariant system N for
which input signals are defined only for nonnegative times, k  	 0, (b) a modified model
with input signals as in (a) for k  	 0 and identically zero for k  � 0, (c) another modified
model with input signals as in (a) for k  	 0 and not identically zero for k  � 0.
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for it. We stress once again that the existence of the Volterra series input-output
representation for the associated model must be checked.

Consider now another associated model, presented in Figure 1.50c. If the Volterra
series input-output representation exists for this model, it has the form expressed by
Equation 1.11, or, equivalently, by Equation 1.253a with the component h(0) added
to it. Because the output of the original system is given by Equation 1.254a, the
difference between the outputs y3(k) and y1(k) can be expressed as

(1.254c)

where the input signal samples x(i1), x(i2), , x(in), occur for negative arguments
ii � 0 i � 1, 2, , n; these are the samples of the input signal as defined in Figure
1.50c.

Thus, in this case, using the associated model presented in Figure 1.50c instead
of the original model of Figure 1.50a, we must answer the question whether the
difference between the outputs given by Equation 1.254c is essential for the model
replacement. In this context, a theorem presented for the first time by Sandberg17 is
very important. We present here its discrete-time version for scalar-valued inputs
and outputs. It is a simplified version in comparison with the original theorem
presented by Sandberg17 for continuous-time systems; this theorem is formulated in
what follows.

From Section 1.7, we already know what the linear normed spaces are. When
these spaces are also complete as metric spaces, then they are called Banach spaces.13

We draw the reader’s attention to the fact that the spaces l�(�) and l�(��) defined
and used in the previous sections are just such spaces; that is, they are Banach spaces.

It is important to be aware of the above fact because the authors of some papers
use the notion of Banach space in their formulations. The others, however, exploit
the notion of linear normed space possessing the metric d(x, v) � ��x � v��. As we
know, both notions can be used equivalently.

Finally, we sketch in what follows the proof of the fact that the linear normed
spaces l�(�) and l�(��) are complete. For this purpose, we take into account any
Cauchy sequence �xn� (for the definition of the Cauchy sequence, see Section 1.9).
That is, we take such a sequence for which

(1.255)

holds, where K � � or K � ��. Whence the relation �xn(k) – xm(k)�→0, n, m → ∞
holds for any given k. That is, the sequence �xn(k)� for a given k, being a sequence
of the following real numbers �x0(k),  x1(k),  x2(k), �, is a Cauchy sequence in the
space of reals. At this point, we recall a very well-known fact from the functional
analysis that the space of real numbers with the metric d(x, v) � �x � v� is complete.13

Further, it follows that the sequence �xn(k)� for a given k has a limit, say, x*(k), for
every k.
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Let us now check whether x* is an element of the space l�(K), K � � or K �
��, and whether it is a limit of xn and xm, that is, . In this
context, we use the observation just made, which allows us to write

(1.256a)

and similarly, for xm(k)

(1.256b)

for every k. Because of this, it is possible to choose such n and m for any ε 
 0,
so that the following inequalities

(1.257a)

and

(1.257b)

hold as well. That is, x* is a limit of xn and xm.
To show that x* belongs to the space l�(K), K � � or K � ��, take into account

the obvious equality

(1.258a)

that holds for every k. Proceeding further, see that this equality allows us to write

(1.258b)

Using then in 1.258b the inequality 1.257a and the fact that xn �  l�(K), that is,
, we get from inequality 1.258b

(1.258c)

We conclude from inequality 1.258c that x* is an element of the space l�(K),
where K means � or ��.

Returning to the formulation of the theorem, recall that the partial responses of
the Volterra series for the original model and the associated model in Figure 1.50
have the following form

(1.259a)
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and

(1.259b)

respectively.
It is clear that each of the partial responses given by Equations 1.259a and 1.259b

describes a mapping. In the case of 1.259a, these mappings (for n = 1, 2, 3,…) can
be considered as the mappings from the Banach space l�(��), or in short, from the
space l�(��) into itself. Similarly, the mappings represented by Equation 1.259b can
be considered as the mappings from the Banach space l�(�), or in short, from the
space l�(�) into itself.

It can be proven, in analogy to the continuous-time case,17 that the mappings
given by Equation 1.259a belong to the set P1(m), and the mappings given by 1.259b
belong to the set M1(m); for the definitions of the sets P1(m) and M1(m), see Section
1.8.

After clarification of some notions, let us now formulate the theorem.
Theorem 1.6
Let the mappings yO

(n)
: l�( ��) l �( ��)   and yA

(n)
: l�( �) l �( �)   for n  �

1, 2, 3, … be given by Equations 1.259a and 1.259b, respectively. Furthermore,

let  there be posi t ive constants  σ 1 ,  σ 2  and δ  such that  and

f o r  e a c h  n  a n d x �   l � ( � � ) ,  w h e r e  t h e  n o r m

and��x ��0<δ. Moreover, let Bδ denote the open ball in l�( �)

of radius δ centered at the zero element of l �( �), that is, Bδ is the set �x  �

l �( ��)  � ��x �� � δ�, where ��x �� is the usual norm . Then the

series converges in l �( �) uniformly with respect to x  � Bδ, and the

mapping  has the following two properties:

1.  �(Hx)(k) � ( )(k)� 0 uniformly with respect to x � Bδ as (k �
k0) �

2. (Hx � Hv)(k) goes to the zero element of l�(�) as k � for x and v
belonging to Bδ whenever (x � v)(k) goes to the zero element of l�(�)

Commenting on Theorem 1.6, we note that the zero element of the space l�(�)
of bounded scalar-valued sequences is, as we already know from Section 1.7, the
sequence θ(k) � � , 0, 0, 0, 0, … �. Furthermore, recall that the truncation operator

 occurring in the first property has been already defined. See the defining Equa-
tion 1.189 in Section 1.8. However, one new notion still occurs in the above theorem,
that needs some explanation, namely, the notion of uniform convergence of a
sequence or a series.

To explain what the uniform convergence of the series ,

with respect to x � Bδ means, denote the partial series in the above series in the

following way:

yA
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n
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x k0 0=
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x
sup

k �∈ x k( )=
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n 1=
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Hx yA

n( )x:Bδ l∞
�( )→

n 1=

∞
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x  →

 →
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…
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(1.260a)

(1.260b)

(1.260c)

and so on. Then, choose any ε 
 0 and such n0 that the inequality

(1.261a)

holds for all n 	 n0. In this context, the uniform convergence of the series considered
means that the inequality 1.261a holds for all n  	  n0 independently of the choice
of the sequence x � Bδ.

Similarly, the uniform convergence in the property 1 means that choosing any
ε 
 0, we can find such k� that, for all (k � k0) 	 ( k� � k0), the inequality 

(1.261b)

holds independently of the choice of x � Bδ.

The proof of Theorem 1.6 is omitted in this book. We shall present another result
of Sandberg regarding associated expansions in a more general framework for vector-
valued sequences. For the latter, we shall also present the proof of a corresponding
theorem.

It follows immediately from Theorem 1.6 that, if the original model of Figure
1.50a possesses the Volterra series representation in which partial responses fulfill
some requirements, then the associated expansion  does exist, with the
input sequence x in the associated model of Figure 1.50c equal to the input sequence
x in the original of Figure 1.50a for k  	 0, and having such values that ��x�� � δ
holds also for k  � 0. Moreover, the representation  is equal to the
Volterra series representation in the original model of Figure 1.50a when k0 � 0 is
assumed. Furthermore, it follows from the property 1 that, for accordingly high
values of k, the difference between (Hx)(k) and (HQ0x)(k) is so small that the
associated series can be practically identified with the series of the original system
in Figure 1.50a. In other words, coming back to our question regarding the difference
given by Equation 1.254c, this difference is not essential for accordingly high values
of k.

By the way, note that if the partial responses in the Volterra series of the original
system in Figure 1.50a fulfill the requirements indicated in Theorem 1.6, this series
then converges absolutely. This follows from the fact that the series consisting of
the normed partial responses converges, 

y1 A k x,( ) yA
1( )x( ) k( )=

y2 A k x,( ) yA
n( )x( ) k( )

n 1=

2

∑=

y3 A k x,( ) yA
n( )x( ) k( )

n 1=

3

∑=

sup
k K∈

ynA k x,( ) yA k x,( )– ε<

Hx( ) k( ) HQk0
x( ) k( )– ε<

Hx yA
n( )x

n 1=

∞

∑=

HQk0
x( ) k( )
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(1.262a)

The latter holds because we can write the following relations:

(1.262b)

Continuing further, we write

 (1.262c)

Finally, the geometric series on the right-hand side of relation 1.262c converges
because σ2δ  � 1. We get

(1.262d)

which ends the proof of the absolute convergence of the series .
Worth noting at this point is that the technique presented in inequalities 1.262a

to d can also be used for estimation of an error made by truncation of higher terms

in the Volterra series. To illustrate this point, let us consider the model of a system

presented in Figure 1.50a and assume that the exact representation for it exists in

the form of an infinite Volterra series . Furthermore, assume that a truncated

representation obtained from the infinite Volterra series by keeping in it only, say,

L components, is used instead of that exact one. Then the error made by such a

series replacement can be expressed as

(1.263a)

Using the same technique as that presented in inequalities 1.262a to d, to the
right-hand side expression in Equation 1.263a, we get

(1.263b)

And, continuing, we write
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(1.263c)

where er means a maximal admissible value assumed for the error estimate.
Solving inequality 1.263c for L, after performing some simple operations, we

arrive at

(1.263d)

where ln means a logarithm with the base equal to e.
Note that inequality 1.263d determines the number of components in the trun-

cated Volterra series that are necessary to guarantee the truncation error does not to
exceed the value of er.

Consider now other results3 of Sandberg published in 1992 that can be seen as
a continuation of the considerations presented in Reference 17 for continuous-time
systems. The paper3 develops further ideas given in Reference 17 with respect to
the accuracy of truncations often made in practical applications using the associated
Volterra series. The problem of a uniform approximation with doubly finite Volterra
series is formulated and solved in Reference 3.

We now present the results of Sandberg’s paper3. In particular, the results regard-
ing nonlinear systems, which can be modeled by the following system equations, 

(1.264a)

(1.264b)

(1.264c)

where x is a vector-valued input signal (sequence) to a system and y is a vector-
valued output signal (sequence) of a system. Furthermore, it is assumed that the
input sequences (that is the elements of x(k)) belong to a subset of the (scalar) space
l�(��)  and the output vector-valued sequence y(k) belongs to the linear space E of
�m-valued functions defined on ��, where m � �. The first two equations, 1.264a
and 1.264b, describe the linear part of a system, but Equation 1.264c describes its
nonlinear part. The mappings A, C, D, and B are linear ones, mapping the space E
into itself. The behavior of all the nonlinear elements of a system is described
collectively by means of the mapping N. And the vector-valued sequence w(k) of
the space E represents the input to this mapping. Similarly, the vector z consists of
output sequences of the mapping N. Because it is assumed that the output vector-
valued sequences also belong to the space E, the nonlinear mapping N is a mapping
from one subset of E into another.

With regard to the same dimension m assumed for all the vectors occurring in
Equations 1.264, we draw the reader’s attention to the fact that the above assumption
can have such a consequence on the system model that some elements of the vectors
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w, x, z, and y (sequences) eventually will have no effect on the system in some
situations. Then they will be simply ignored as redundant. Finally, it is also assumed
in the system model that any nonzero initial conditions are taken into account in the
system input vector-valued sequence x.

The model given by Equations 1.264, used widely in the literature for modeling
nonlinear systems, is presented in graphical form in Figure 1.51.

Now having introduced the nonlinear system description presented in Figure
1.51, we draw the reader’s attention to the fact that the vector-valued sequences, are
understood here both as the vectors of which elements are sequences and as the
sequences of which elements are vectors. For example, 

(1.265a)

and

(1.265b)

mean in principle have the same meaning.
A large class of nonlinear systems can be described by the model represented

by Equations 1.264 and the signal flow graph of Figure 1.51. For example, nonlinear
systems governed by a system of difference equations of the form y(k � 1) � f(y(k),
x(k), k), k � ��, y(0) � y0 where, f means a vector consisting of nonlinear functions,
can be put into the above form. To illustrate this, we present the following example:

FIGURE 1.51 Graphical representation of nonlinear system modeling Equations 1.264.
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Example 1.7
Assume we have a system governed by the following difference equation:

where k � ��, and the initial condition y(0) � 0. Comparing the above equation
with the general form y(k � 1) � f(y(k), x(k), k), we see that the dimension of our
equation is m � 1, and the function f(y(k), x(k), k) �  y(k) � (y(k))2 � (y(k))3 �
x(k). This function is obviously nonlinear because of the occurrence of quadratic
and cubic terms. Moreover, we identify x(k) with the input sequence and y(k) with
the output sequence, respectively, in the underlying model of Figure 1.51.

Note that the difference equation in this example can be rewritten in an equivalent
form as a system of the following equations:

Furthermore, using the Z transform, the third equation in the above system can
be solved for y(k). The final result in the time-domain will then have the following
form:

with the linear impulse response g(k) given by

and 

Moreover, because w(k)�  y(k) in the first of the modelling equations in our
example, we can write 

as well. Thus, we see that all the signals in this example are scalar-valued sequences,
and the linear mappings A, C, D, and B have the form of the discrete-time convolution
with the impulse response g(k) as given above, that is, 

where s(k) means a scalar-valued sequence. The nonlinear mapping N in the example
considered has the form of a sum of quadratic and cubic terms. Finally, these
observations are illustrated in Figure 1.52.
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The following three assumptions are made with regard to the model given by
Equations 1.264:

1. The mapping A possesses the discrete-time convolution representation

(1.266a)

that is, A is a real m × m matrix-valued map defined on �� such that the elements
of the matrix A, dependent upon the discrete-time, ars, r  �  1, , m, s  � 1, …,
m, fulfill the condition

FIGURE 1.52 Illustration of modeling equations obtained in Example 1.7.

Ax( ) k( ) A k i–( ) x i( )⋅
i 0=

k

∑
a11 k i–( ) a12 k i–( ) … a1m k i–( )
a21 k i–( ) a22 k i–( ) … a2m k i–( )

� � � �
am1 k i–( ) am2 k i–( ) … amm k i–( )

x1 i( )
x2 i( )

�
xm i( )

⋅
i 0=

k

∑= =

a11a12
…a1m[ ]

k i–( )

x1

x2

�
xm i( )

⋅
i 0=

k

∑

a21a22
…a2m[ ]

k i–( )

x1

x2

�
xm i( )

⋅
i 0=

k

∑

�

am1am2
…amm[ ]

k i–( )

x1

x2

�
xm i( )

⋅
i 0=

k

∑

=

…

©2001 CRC Press LLC



 

(1.266b)

Moreover, the same representation possess the remaining linear mappings C, D,
and B, that is, 

(1.266c)

(1.266d)

(1.266e)

where all the matrices C, D, and B have order m × m, and the elements of these
matrices fulfill a condition similar to that given by condition 1.266b.

The discrete-time convolution representations 1.266a, 1.266c, 1.266d, and
1.266e represent linear multiple-input and multiple-output systems, where both the
input vector x and the output vector Ax, Cx, Dx, or Bx have the same dimension m.
For details of representation of such systems, see Section 1.6, where the more general
case of nonlinear multiple-input and multiple-output systems has been considered.

2. Let now l�(��) mean the normed linear space of vector-valued sequences
defined on �� with the norm given by Equations 1.157. Moreover, let Bp� mean the
open ball in the above space of radius ρ, centered at the zero element of this space, 

We assume then that there exists such a positive real number � that the mapping
N is defined on B�� by the following equation:

(1.267a)

where the mapping ηηηη(w) represents a vector of dimension m, of which elements are
given by
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(1.267b)

for some positive integer j0, and for all i  �  1, …, m. Moreover, each function
λij:(�δ, δ) � in Equation 1.267b has an extension into the complex plane, that
is, λij(zi), where zi is a complex number, is properly defined. Furthermore, it is
assumed that each function λij(zi) is an analytic function, taking the disk �zi�  �  δ
into the complex plane and having the property that λij(0)  � 0. At this point, we
also recall how the theory of complex functions defines analytic functions. Thus, a
complex function given on some disk D is analytic if it is differentiable in each
point of the disk D.

3. The assumptions 1 and 2 hold, and for each w � l�(��), where l�(��) now
means the normed linear space of vector-valued sequences defined on ��, there
exists a unique vector-valued sequence z � l�(��) such that Equation

(1.268a)

holds. The matrix C in Equation 1.268a is defined by Equation 1.266c, and the
matrix J of order m × m is a Jacobian matrix given by

(1.268b)

The Jacobian matrix in Equation 1.268a is calculated at the point (of a vector
space) w1 �  w2 �  w1 �  �  wm � 0 .

For readers not familiar with the Jacobian matrix, we observe from Equation
1.268b that this matrix can be treated as a derivative of the vector N(w) with respect
to the vector w. Because this derivative must take into account all the components
of both the vectors N(w) and w, it assumes the form of a matrix of scalar derivatives,
as given in Equation 1.268b.

Finally, note from Equation 1.268b that the components of the vector N(w) are
ηi(w), i � 1, 2, , m, that is, N(w) has the form
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(1.268c)

We now introduce an auxiliary vector p

(1.269a)

Using then the vector p and the notation as in Equation 1.266a, we can rewrite
Equation 1.268a in explicit form, as

(1.269b)
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Let us now solve Equation 1.268a for z(k). We start with Equation 1.269b and
transform it into the Z-domain using the corresponding transform relations developed
in Section 1.3. We get then

(1.270a)

where W1(z), , Z1(z), , C11(z), , P1(z), are the Z transforms of w1(k), ,
z1(k), , c11(k), , p1(k),  respectively.

Moreover, transforming Equation 1.269a into the Z-domain, we obtain

(1.270b)

where P1(z), , Pm(z) are the Z transforms of p1(k), , pm(k), respectively. Sub-
stituting then Equation 1.270b into Equation 1.270a, and rewriting in a more compact
form gives

(1.271a)

Finally, solving Equation 1.271a for Z(z), we arrive at

(1.271b)

where Im is the identity matrix of order m � m. That is, Im is given by

(1.271c)

Moreover, the �1 symbol in Equation 1.271b means the matrix inverse.
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Applying the inverse Z transform defined by Equation 1.38, to Equation 1.271b,
we get

(1.272a)

where Z�1 denotes the operation of transforming from the Z-domain into the discrete-
time domain defined by Equation 1.38. We see from the above equation that, if the
“input vector” w(k) is bounded, then the “output vector” z(k) is bounded as well,
when the inverse matrix

(1.272b)

does exist. In other words, a hypothetical system with the “input” vector-valued
sequence w(k) and “output” vector-valued sequence z(k) is bounded-input bounded-
output stable.

Of course, it follows from the derivations presented above that assumption 3 is
equivalent to the existence of the inverse matrix given by 1.272b. Moreover, the
Jacobian matrix simplifies when the relation 1.267b in assumption 2 holds. Then
we can write

(1.273a)

which allows us to simplify Equation 1.268b to

(1.273b)

In other words, when the mapping N can be expressed by m single-input single-
output nonlinear operations as in Equation 1.267b, then the corresponding Jacobian
matrix is a diagonal matrix.

Let us now define Sandberg’s “conversion” operators3 St (truncating) and Se

(expanding). So the map St : l�(�) l�(��) is such that it truncates a vector-valued
sequence defined on � into a vector-valued sequence defined on ��. That is, 
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(1.274)

where x(k) � l�(�). By the way, note that the operator St is identical with Sandberg’s
operator Rk0

 defined in Section 1.8, when assuming k0  � 0 in the latter and redefining
to allow for vector-valued sequences to be incorporated.

Similarly, the map Se : l�(��) l�(�) is such that it expands a vector-valued
sequence defined on �� into a vector-valued sequence defined on � according to
the following relation:

(1.275)

where x(k) � l�(��) and θθθθ (k) � l�(�).
In Section 1.6, the multiple-input and multiple-output systems have been con-

sidered. For such systems, the Volterra series representation has been presented,
using the impulse responses in the form of matrices of order M � Nn, where M
meant the number of outputs and N meant the number of inputs. Now we adopt this
kind of system description to our model of Figure 1.51. First, we recall what was
assumed about the model of Figure 1.51: all the vectors shown in this figure have
the same dimension m, including the input vector x and the output vector y. There-
fore, corresponding matrices h(n), n � 1, 2, 3, , are of order m × mn in our case
of considering the model of Figure 1.51. Continuing, we denote by H(n), n � 1, 2,
3, , the set of all real m � mn matrix-valued maps defined on ��

n such that each
component of the related matrix h(n) satisfies the condition

(1.276)

where r � 1, , m and s � 1, , mn.
To be able to formulate Sandberg’s theorem regarding the existence of strict-

sense representations, published for the first time in Reference 3, we need yet to
define a class of maps denoted by Sandberg as . So assuming h(n) � H(n), we
define the map  : l�(�) l�(�) as

(1.277)

where the symbol � stands for the Kronecker product of matrices (see Section 1.6).
In what follows, when the symbol of the absolute value �
� is used with regard

to a vector, it is taken in the sense of definition 1.157a. Similarly, when the norm
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symbol ��
�� regards a vector-valued sequence, it is taken in the sense of definition
1.157b.

Theorem 1.7 (Sandberg’s theorem regarding existence of strict-sense represen-
tations)

Consider a nonlinear system belonging to a class of systems that can be modeled
by Equations 1.264, and assume that the assumptions 1, 2, and 3 are met. Then there
exist positive numbers ρ, σ1, and σ2, as well as elements h(1), h(2),  of the sets
H(1), H(2), , respectively, and an open neighborhood U�Bδ� of the zero element
θθθθ, such that

(1) σ2ρ � 1 holds.
(2) For each x � Bδ�, there exists a unique w, z, and y of U, l�(��), and l ∞

(��), respectively, satisfying Equations 1.264.
(3) The output can be expressed in the form of the series that follows.

(1.278a)

of which components satisfy

(1.278b)

for x �  l�(��).
Comments regarding the proof of Theorem 1.7 can be found in Reference 3.

Here, this proof is omitted.
Consider now the main result of Reference 3; that is, a theorem regarding

extended representations. The term extended representations, or extended expan-
sions, is used in Reference 3 as a synonym for the terms associated representations,
or associated expansions. We formulate the theorem as follows.

Theorem 1.8 (Sandberg’s theorem regarding existence of extended (associated)
representations)

Let all the assumptions of Theorem 1.7 are valid and the positive numbers ρ,
σ1, and σ2, and the elements h(1), h(2),  of the sets H(1), H(2), , respectively, as
defined there. Then, the following holds:

(1) The series

(1.279a)

…
…

y StV hn
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n 1=

∞
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∞
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converges uniformly with respect to x � Bδ �  l�(�), where Bδ stands for
the open ball in l�(�) of radius ρ centered at the zero element of l�(�).
That is, for given ε 
 0 the inequality

(1.279b)

holds for all n� 	  n0 independently of the choice of x � Bδ. Moreover,
the series given by Equation 1.279a is called the extended or associated
representation.

(2) If (x(k)  � v(k)) θθθθm as k �, where x(k), v(k) � Bδ, and θθθθm is the
zero vector of order m, 

then 

(1.279c)

holds.
(3) For q, n  �  � 1, 2, �, let the mapping Tq : H(n) H(n) be given by

(1.279d)

where θθθθm�mn denotes the zero matrix of order m � mn, 

Then, for any positive ε 
 0, there exist positive integers p and q such
that the inequality

(1.279e)

holds for all x  �  Bδ.

sup
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By the way, note that the operator Tq defined by Equation 1.279d has
nothing to do with the Sandberg’s operator  defined in Section 1.8.
They are quite different operators.

(4) For given ε 
 0 and a positive integer p, there exist such a ρ1  � (0,  ρ)
and a positive integer q that the following inequality:

(1.279f)

holds for all x � Bδ, where Bδ denotes the open ball in l�(�) of radius ρ1

centered at the zero element of l�(�).

Because of the importance of Theorem 1.8, we present here its proof along the
lines given by Sandberg in Reference 3. We show first that the following lemma
holds.

Lemma 1.4. Let the assumptions of Theorem 1.8 be valid. Then, for each n and
any k1 � � and any real number γ 
 0, there exists an integer k2 �  � , 0, 1, ,
k1  � k1 � such that the following inequality

(1.280)

holds for all x �  l�(�). Moreover, it is assumed in inequality 1.280 that the vector-
valued sequence  is given by (k) � x(k)  for k 	 k2 and (k) � θθθθm for each
k < k2.

Regarding inequality 1.280, we see that it resembles inequality 1.190 defining
the so-called decaying memory (SDM1) property of an operator, which has been
formulated in Section 1.8. Furthermore, extending inequality 1.190 to allow for
vector-valued sequences, we get nothing other than inequality 1.280 after addition-
ally making the following identifications: N , ε γ, m n, and after extend-
ing the definition of the truncation operator Qτ, given by Equation 1.189, to vector-
valued sequences. Then, of course, the vector-valued sequence (k) will be
expressed with the use of the operator  by (k) � ( x)(k).

Note that we get as a byproduct of the above observation the evidence of
possessing the property of decaying memory in the sense of Sandberg’s first defi-
nition (SDM1) by the maps .

To prove Lemma 1.4, observe first that using the defining Equation 1.277 for
(x), the symbolic notation for components in the Kronecker product given by

Equation 1.121, and the definition of the vector-valued sequence (k), the left-
hand side of inequality 1.280 can be rewritten as

T k1k2

S x( ) V T qhn
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… …

V hn
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(1.281a)

For a given k, let the maximal (in the sense of absolute value) component of the
vector (x)(k) � ( )(k) given in the explicit form in expression 1.281a, occur
for, say, r � r0. According to 1.281a, this component has the form

(1.281b)

Let us now take the absolute value of the above component and introduce new
variables k � i1 � i1 ′ , , k � in � in′ . To perform this operation correctly, we also
need to show the arguments in (xn)s. Hence, we get

(1.281c)

Observe that some components in the expression under the absolute value in
expression 1.281c have the same magnitude. They differ only in signs. In each case,
one of them is preceded by a plus sign, and the second by, a minus sign. When
added to each other, they give, in effect, zero. After grouping these components in
pairs, we get the following expressions:

(1.281d)

where i1′ , , in′ �  �0, , k � k2�.
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Let us now consider each of the components under the summation symbols in
expression 1.281c and use the triangle inequality

where a, b, c, stand for the grouped components in the form

(1.281e)

or in the form given by expression 1.281d. Furthermore, in the cases where �a�, �b�,
�c�,  are equal to zero, let us use additionally the following obvious inequalities:

It follows then that the absolute value of the expression given by 1.281c is equal
to or less than the value of following expression:

(1.281f)

Obviously, the expressions  occurring in expression 1.281f
are bounded, and we have

(1.281g)

for any set of k, i�1,i, , i�n. Moreover, using the triangle inequality again and
expression 1.281g, we get for 

(1.281h)

Applying then inequality 1.281h to expression 1.281f, dropping the prime at
each i�i, and coming back to expressions 1.281c and 1.281b, we write
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(1.281i)

Recall that it has been assumed k 	 k1 
 k2 in the formulation of Lemma 1.4.
Hence, we have k 	 k1 in inequality 1.281i. This implies the following inequality:

Using the above inequality in 1.281i gives, finally

(1.281j)

Inequality 1.281j ends the proof of Lemma 1.4 because the value of the expres-
sion in brackets on the extreme right-hand side of inequality 1.281j can be made
arbitrarily small by the choice of k2 sufficiently small. That is, letting k1 � k2 to be
nearer to the value of the upper summation limit � occurring in sums of the first
component in brackets in 1.281j has as an effect the decrease of the difference
between the first and the second component in brackets in 1.281j. This difference
can be made arbitrarily small. Moreover, note that the bound on the extreme right-
hand side of 1.281j is independent of k. However, it can happen that this bound
takes on the maximal value for some other index r�0, different from that assumed
initially for a given k. Note that this does not create any problem because we take
the difference for the index r�0 and make this difference as small as needed by
choosing k2 sufficiently small. In conclusion, the inequality 1.280 is satisfied in each
case. Moreover, it can be rewritten in the following form:

(1.281k)
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because inequality 1.280 holds for any k1 � �.
Before going further, let us first show that the series  from Theorem

1.7 converges uniformly. To do this, we take any positive number ε 
 0 and ask
under what conditions the following inequality

(1.282a)

holds. In inequality 1.282a x � Bδ� �  l�(��).
According to point 3 of Theorem 1.7, the series 1.278a converges. So inequality

1.282a must hold for all n� up to some n0. Furthermore, note that inequality 1.282a
can be rewritten as

(1.282b)

On the other hand, observe that, using inequality 1.278b and the triangle ine-
quality, we can write 

(1.282c)

Under the assumptions of Theorem 1.7, ��x�� � ρ and σ2ρ � 1, inequality 1.282c
can be put into the form

(1.282d)

where the expression on the extreme right side of relation 1.282d follows from the
formula for the infinite convergent geometric series.

Note that, given any ε 
 0, n� can be so chosen that the inequality

(1.282e)

holds. This is possible because, as assumed, σ2ρ � 1. Furthermore, observe that
inequality 1.282a holds independently of the choice of x � Bδ�. That is, the series
1.278a converges uniformly with respect to the vector-valued input sequence x.

Let us now consider the term �� (x)(k)��, where x � Bδ �  l�(�). Observe that
this term can be written in the following equivalent form:
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(1.283a)

where  is defined as in inequality 1.280. Obviously, � � � ��x��, holds.

To proceed further with Equation 1.283a, we need some bound on the expression
( )(k). To arrive at such a bound, consider first the vector-valued sequence
(k) � l�(�) occurring in ( )(k). This sequence has the form shown below.

Note that, without loss of generality, we can assume k2 to be negative in (k).
Hence, when we shift the sequence (k) by k2 discrete-time units on the discrete-
time axis, this means shifting to the right such that all the nonzero elements of the
sequence occur for times k 	 0, and all the elements being identically zero vectors
occur for times k � 0. We then get the following vector-valued sequence:

Using Equation 1.277, we now write the expression ( xs)(k) for the sequence
xs(k) � (k � k2) . That is, 

(1.283b)

Note that, because of the form of the sequence xs(k), the expression 1.283b
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(1.283c)

Observe at this point that the expression for St (xs)(k), has the same form and
the same value for each k 	 0 as the expression given by Equation 1.283c. Moreover,
we get ( xs)(k) � θθθθm for each k � 0 from expression 1.283b. The above results
allow us to write

(1.283d)

where ( )(k) �  l�(�) and StVhn(xs)(k) �  l�(��). The bounds on the right-hand
side of relation 1.283d follow from inequality1.278b and the fact that ��xs�� � �� �� � �x�.

Performing the time-shifting back to the left by �k2 discrete-time units on the
vector-valued sequence ( xs), given by Equation 1.283b, we get

(1.283e)

Furthermore, introducing new variables i�1  � i1 � k2, , i�n  � in � k2 in Equation
1.283e, we obtain

 (1.283f)

And after dropping the prime at each i�i in Equation 1.283f, we arrive at

(1.283g)

The expression 1.283g is identical to the expression that can be obtained for
( )(k) from the defining Equation 1.277.
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Observe that the norm of any vector-valued sequence belonging to the space
l�(�) does not change under the operation of time shifting. In particular, the above
rule applies to the sequence ( )(k) � l�(�). With this fact and the result given
by inequality 1.283d taken into account, we can write the following:

(1.283h)

Recall at this point that ( )(k)  and ( )(k)  have exactly the same
meaning according to the notational convention assumed for writing mappings
(operators) in Section 1.7.

Applying the triangle inequality, and inequalities 1.281k and 1.283h in 1.283a,
we get

 (1.283i)

On the other hand, we know from the preceding considerations that γ in ine-
quality 1.283i can be made arbitrarily small by letting k2 –�. In so doing, ine-
quality 1.283i takes on the following form:

(1.283j)

Inequality 1.283j allows us to prove point 1 of Theorem 1.8. That is, the series
S(x) given by Equation 1.279a converges because

(1.284)

holds, when σ2ρ � 1, as assumed.
Because the proof of the uniform convergence of the series S(x) given by

Equation 1.279a is the same as the proof presented in inequalities 1.282a to
1.282e for the series , it is omitted here. This proof relies on the
property given by inequality 1.283j, the counterpart of the property 1.278b for
sequences belonging to the space l�(��).

To prove point 2 of Theorem 1.8, consider the absolute value of the difference
�(Sx)(k) �  (Sv)(k)�, which, using 1.279a, can be rewritten as

(1.285a)
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Furthermore, by applying the triangle inequality to the components on the right-
hand side of Equation 1.285a, we can write

(1.285b)

for any p � �.
Given any ε1 
 0, assume now that

(1.286)

holds for all k 	 k3. Because we can go in inequality 1.286 with ε1 0, this means
that x(k)  v(k) for k �. To apply inequality 1.286 in 1.285b, we need some
other results. The property of uniform continuity can help, so we concentrate on
proving this property for operators . Using Equations 1.277 and 1.121 for sym-
bolic notation of Kronecker products, the difference � (x)(k)  � (v)(k)� can be
expressed as follows:

(1.287a)

where the rth, r � 1, , m, component of the vector is given by

(1.287b)

Note that the application of the algebraic equality

(1.288a)

to the expression ((xn)s �  (vn)s) in Equation 1.287b allows us to write it in the form

(1.288b)

V hn
x( ) k( ) V hn

v( ) k( )–( )
n 1=

∞

∑ V hn
x( ) k( ) V hn

v( ) k( )–( )
n 1=

p

∑

V hn
x( ) k( ) V hn

v( ) k( )–( )
n p 1+=

∞

∑+

≤

x k( ) v k( )– ε1<

 →
 →  →

V hn

V hn
V hn

V hn
x( ) k( ) V hn

v( ) k( )–

V hn
x( ) k( ) V hn

v( ) k( )–
1

V hn
x( ) k( ) V hn

v( ) k( )–
2

�

V hn
x( ) k( ) V hn

v( ) k( )–
m

=

…

V hn
x( ) k( ) V hn

v( ) k( )–[ ]
r

… hrs
n( ) k i1– … k in–, ,( ) xn( )s vn( )s–( )

s 1=

m
n

∑
in ∞–=

k

∑
i1 ∞–=

k

∑=

an bn– a b–( ) an 1– an 2–+ b … abn 2– bn 1–+ + +( ) a b �∈, ,=

xn( )s vn( )s–( ) x v–( ) xn 1– xn 2– v… xvn 2– vn 1–+ + +( )( )s=
©2001 CRC Press LLC



 

Substituting then Equation 1.288b into 1.287b, taking the absolute value and apply-
ing the corresponding bounds to the components of the sequences x and v, we get

(1.289a)

We obtain further simplification of inequality 1.289a using the procedure of
introducing new variables k � i1 � i�1 and then dropping the prime at each i�,…,1
and assuming that x, v � Bδ, that is, ��x��, ��v�� are less than ρ. Then, we arrive at

(1.289b)

Furthermore, observe that the expression on the right-hand side of inequality
1.289b does not depend upon k. Moreover, denote by βn the following expression:

(1.289c)

Applying expression 1.289c to inequality 1.289b, and then coming back to
Equation 1.287a allows us to write for the latter

(1.289d)

From inequality 1.289d, it is evident that (x) is uniformly continuous. This
is so because, according to the uniform continuity definition, for any ε2 such that
� (x)(k)  � (v)(k)�  �  ε2 we can choose such ε1 that ��x � v�� �  ε1, and the
latter inequality implies the first inequality for all x and v belonging to Bρ (and
satisfying ��x � v�� �  ε1). In fact, choosing �� (x)(k)  � (v)(k)�� �  ε2, we get
from inequality 1.289d ε1 � ε2(nρn � 1βn) � 1 as a bound on ��x � v��. Moreover, it
follows then from 1.289d that ��x � v�� �  ε1 implies � (x)(k)  � (v)(k)�  �  ε2.

With the uniform continuity of the operator Vhn
 already proven, we now return

to inequality 1.285b and rewrite it in the following way:
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 (1.290)

Given any ε2 
 0, we choose then such p that

(1.291a)

and accordingly, 

(1.291b)

The validity of inequalities 1.291a and 1.291b follows, of course, from the fact
already proven that the series  and  converge for the vector-valued
sequences belonging to Bρ.

Let us now consider the first component on the right-hand side of inequality
1.290. Note that this component can be rewritten, without changing its value, in the
following way:

(1.292a)

where the vector-valued sequences  and  are defined as (k) � x(k) and
(k) � v(k)  for k 	 k2, and as  � θθθθm and  � θθθθm for each k < k2. The

inequality on the extreme right-hand side of inequality 1.292a follows, of course,
from the application of the triangle inequality to the preceding expression in 1.292a.

Now we shall use the uniform continuity property of the operators Vhn
, n � 1,

2, , proven at the beginning of the proof of point 2 of Theorem 1.8. It follows
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from this property that having a positive number equal to ε2�(4p), and taking into
account the fact that x(k) v(k), when k �, we can choose such k3 that

(1.292b)

holds for each Vhn
, n � 1, 2, , p, and for all k 	 k3 such that

(1.292c)

With regard to inequality 1.292c, see also inequality 1.286.
The next step is searching for such a k2 � k3 that the following inequalities

(1.292d)

and

(1.292e)

are satisfied for all k 	 k1 
 k2, and for each n � 1, 2, , p, when x, v � Bδ. The
satisfaction of inequalities 1.292d and 1.292e is guaranteed by inequality 1.280.
That is, choosing the correspondingly small value of k2 causes the value of γ in
1.292d and 1.292e to be as small as needed. If the value of k2 needed for satisfaction
of inequalities 1.292d and 1.292e is greater than or equal to the value of k3 determined
by inequalities 1.292b and 1.292c, we then simply choose k2 � k3. On the other
hand, when the value of k2 needed for satisfaction of inequalities 1.292d and 1.292e
is less than the value of k3 determined by inequalities 1.292b and 1.292c, we must
change the value of k1 influencing γ in inequalities 1.292d and 1.292e. In this context,
observe from inequality 1.281j that the increase of k1 causes the decrease of γ in
inequality 1.280, that is, the decrease of γ in inequalities 1.292d and 1.292e as well.
We increase k1 until the satisfaction of inequalities 1.292d and 1.292e is obtained
for k2 	 k3, and then do the same as in the first case. That is, we put k2 � k3.
Consequently, we obtain satisfaction of all the inequalities 1.292b, 1.292d, and
1.292e at the same time for all k 	 k1 
 k3 � k2.

To proceed further, let us apply the triangle inequality to the extreme right-hand
side of inequality 1.292a. This gives

(1.292f)
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Then, using inequalities 1.292d, 1.292e, and 1.292b in inequality 1.292f leads to

(1.292g)

Finally, applying inequality 1.291a, 1.291b, and 1.292g to inequality 1.290, we
get

(1.293)

for all k 	 k1 
 k3 � k2. Given any positive numbers ε1 and ε2 such that inequality
1.286 holds, the latter implies inequality 1.293 for all k 	 k1 
 k3 � k2. This ends
the proof of point 2 of Theorem 1.8.

Let us now start with the proof of point 3 of Theorem 1.8. For this purpose, we
choose such p �  � that the following

(1.294)

holds, where ε is any positive real number, and σ1, σ2, ρ are as described in point
1 of Theorem 1.7 and in the first sentence of Theorem 1.8.

Using inequality 1.294, the convergence of the series S(x) proven in point 1,
and the result given by inequality 1.283j, we can write 

(1.295)

Moreover, we can write the following:

(1.296)
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Furthermore, observe that each of the components of the vector

occurring on the extreme right-hand side of inequality 1.296 has

the form

(1.297a)

In the next step, consider the component  in Equation
1.297a. This component can be expressed as

(1.297b)

where �x(i1) x(in)�s means the sth component of the vector x(i1) �  � x(in),
according to the simplified notation 1.121. Furthermore, after substituting new
variables i�1 � k � i1, , i�n � k � in, into Equation 1.297b and dropping the
prime at each i�i, we get from Equation 1.297b

(1.297c)

Note that applying the triangle inequality and the bound on x(k � i1) x(k �
in) given by inequality 1.281g to Equation 1.297c, we obtain

(1.297d)

V hn
x( ) V T qhn

x( )–( )
n 1=

p

∑

V hn
x( ) V T qh

n
x( )–( )

n 1=

p

∑
r

V hn
x( ) V T qh

n
x( )–( )[ ]

r
n 1=

p

∑ r, 1 … m, ,= =

V hn
x( ) V T qhn

x( )–( )[ ]
r

V hn
x( ) V T qh

n
x( )–( )[ ]

r
… hrs

n( ) k i1– … k in–, ,( ) x i1( )…x in( )( )s

… T qhrs
n( ) k i1– … k in–, ,( ) x i1( )…x in( )( )s

s 1=

m
n

∑
in ∞–=

k

∑
i1 ∞–=

k

∑–

s 1=

m
n

∑
in ∞–=

k

∑
i1 ∞–=

k

∑=

… …

…

V hn
x( ) V T qh

n
x( )–( )[ ]

r
… hrs

n( ) i1 … in, ,( ) x k i1–( )…x k in–( )( )s⋅

… T qhrs
n( ) i1 … in, ,( ) x k i1–( )…x k in–( )( )⋅ s

s 1=

m
n

∑
in 0=

∞

∑
i1 0=

∞

∑–

s 1=

m
n

∑
in 0=

∞

∑
i1 0=

∞

∑=

…

V hn
x( ) V T qhn

x( )–( )[ ]
r

… hrs
n( ) i1 … in, ,( ) T qhrs

n( ) i1 … in, ,( )– x k i1–( )…x k in–( )( )s

x( )n … hrs
n( ) i1 … in, ,( ) T qhrs

n( ) i1 … in, ,( )– r,
s 1=

m
n

∑
in 0=

∞

∑
i1 0=

∞

∑⋅≤

⋅
s 1=

m
n

∑
in 0=

∞

∑
i1 0=

∞,

∑≤

1 … m, ,=
©2001 CRC Press LLC



 

The expression in inequality 1.297d dependent upon the nonlinear impulse
responses (i1, , in) can be rewritten as

(1.298a)

Furthermore, using the definition of the mapping Tq given by definition 1.279d in
the expression in round brackets in Equation 1.298a allows us to write the bracketed
term in the form

(1.298b)

Note that the expression 1.298b has been obtained by additionally applying the
obvious equality �0� � �a � a� � �a� � �a� � 0 to the components

(1.298c)

in the bracketed expression in Equation 1.298a.
Now observe that the value of expression 1.298b goes to zero, when q goes to

infinity. On the other hand, this causes the value of expression 1.298a to go to zero,
and also the bound on the extreme right-hand side of inequality 1.297d. Moreover,
the above holds for all k, all values of r � 1, , m, and all values of n � 1, ,
p. Given any ε 
 0, we can find such q that

(1.299)

holds. Using then inequalities 1.295 and 1.299 in inequality 1.296, we get, finally

(1.300)

Note that inequality 1.300 is nothing other than inequality 1.279e, which ends
the proof of point 3 of Theorem 1.8.

To prove point 4 of Theorem 1.8, observe that, given p and ε 
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hrs
n( ) …

… hrs
n( ) i1 … in, ,( ) T qhrs

n( ) i1 … in, ,( )–
s 1=

m
n

∑
in 0=

∞

∑
i1 0=

∞

∑

… hrs
n( ) i1 … in, ,( ) T qhrs

n( ) i1 … in, ,( )–
in 0=

∞

∑
i1 0=

∞

∑
 
 
 

s 1=

m
n

∑=

… hrs
n( ) i1 … in, ,( )

in 0=

∞

∑
i1 0=

∞

∑ … hrs
n( ) i1 … in, ,( )

in 0=

q

∑
i1 0=

q

∑–

hrs
n( ) i1 … in, ,( ) hrs

n( ) i1 … in, ,( )– i1 … in, , 1 … q, ,{ }∈,

… …

V hn
x( )

n 1=

p

∑ V T qhn
x( )

n 1=

p

∑–
ε
2
---<

S x( ) V T qhn
x( )

n 1=

p

∑– ε
2
---

ε
2
--- ε<+<
©2001 CRC Press LLC



 

(1.301)

will be satisfied for all ��x�� � ρ1. We also stress at this point the difference between
inequalities 1.295 and 1.301. The first is satisfied for signals ��x�� � ρ, with p not
being fixed, in contrast to the latter, which is satisfied generally for signals smaller
in the amplitude, ρ1 � ρ, and with the fixed parameter p.

As before, given ε 
 0, we are able to choose such q0 that, for all q 	 q0 and
all x � Bδ1, inequality 1.299 is satisfied. Using this, and inequality 1.301 in inequality
1.296, we get inequality 1.300, thereby proving point 4 of Theorem 1.8.

Note that the result in point 4 is interesting in the respect that, given p and ε,
we can achieve the needed accuracy represented by the truncated series by choosing
an accordingly high value of q and restricting ourselves to signals of the suitably
small values of the norm ��x�� � ρ1.

Comparison of the approximating Volterra series operator  from Section 1.9,
given by Equation 1.220a, with the approximating Volterra series  of this
section, defined for scalar-valued sequences, shows that both the approximating
series are identical except the constant component h(0). In fact, identifying L and M-
1 in Equation 1.220a with p and q in inequality 1.279e, respectively, we get

(1.302a)

with  given by

(1.302b)

which, after introducing new variables i�1 � k � i1, , i�n � k � in, dropping the
prime at each i�i, and finally applying the definition of the mapping Tq, 1.279d, takes
on the following form:

(1.302c)
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It follows also from Equations 1.302a and 1.302c that

(1.302d)

We recall as well at this point that the approximating Volterra series operator  of
Section 1.9 has been obtained considering systems with the property of fading memory.
On the other hand, the approximating Volterra series of this section, , relates
to a class of systems described by Equations 1.264 and satisfying three assumptions
formulated in Equations 1.266 to 1.268.

The most important result of this section, following from Theorem 1.8, is the
proof of the existence of associated or , as referred to in Reference 3, extended
representations for the class of systems mentioned above. This is so because, when
(x(k) � (SeStx)(k)) θθθθm as k �, where x(k) � l�(�), it follows from point 2 of
the theorem that

(1.303)

as k �, with Stx(k) � l�(��). And we identify the series S(x)(k) and S(SeStx)(k)
in relation 1.303 with the associated (extended) representation and the strict-sense
representation, respectively. Hence, the associated expansion approaches the strict-
sense one for times k high enough.

1.12 OTHER APPROXIMATIONS

The purpose of this section is to show that, for systems possessing the property of
approximately-finite memory or fading memory, besides the Volterra series approx-
imations, there exist other approximations. These approximations have appeared in
the literature for the first time in recent years. One example, Theorem 1.5 of section
1.9, regards causal and time-invariant operators N: l�(�� ) l�(�� ), having the
property of approximately-finite memory in the sense of the definition AFM1 and,
additionally, the property of the functional N � (k) : l�(�� ) �, as continuous.

It follows from inequality 1.238a that the approximator of the operator (Nx)(k),
which we call here the lattice map approximator, has the following form:

(1.304a)

where the vector (Pax)(k), according to Equation 1.238b, is given as

V T
M 1–( )

hn
x( ) k( )

n 1=

L

∑ … h n( ) i1 … in, ,( ) x k i1–( )…x k in–( )⋅
in 0=

M 1–

∑
i1 0=

M 1–

∑
n 1=

L

∑=

V̂

V T qhn
x( )

n 1=

p

∑

 →  →

S x( ) k( ) S SeStx( ) k( )–( ) θθθθm→

 →

 →

 →

N̂ x( ) k( ) L d C Pax( ) k( )+( ) k �+∈,=
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(1.304b)

and C is a real matrix, consisting of m rows and (a � 1) columns. Moreover, d in
Equation 1.304a is a real vector consisting of m components, and L means the lattice
map, such that it generates its output value Lz from the components of the vector z
� 
z1, z2, …, zm �T by performing a finite number of the lattice operations defined by
expressions 1.238c and 1.238d. On this occasion, we recall that the operations of
addition and multiplication by scalar are not allowed in the lattice map.

Note that Theorem 1.5 of Section 1.9 is formulated for scalar-valued sequences.
This theorem is given in Reference 4 for vector-valued sequences. For the purpose
of this section, however, the formulation of Section 1.9 suffices. Here we illustrate
approximations other than the Volterra series approximation for nonlinear systems
with only one input and one output, so as not to complicate matters too much. In
this context, the number m mentioned above at the descriptions of the matrix C and
vector (Pax)(k), occurring in Equations 1.304a and 1.304b, does not mean the number
of components in the input signal vector, as in the previous section. Here, m means
the number of affine components needed in the approximation for assumed accuracy.
Loosely speaking, this number is, in some sense, the counterpart of the number L
or p in the approximations given by Equation 1.302a. On the other hand, the number
a in Equations 1.304a and 1.304b can be identified with the numbers M � 1 and q
in Equation 1.302a, expressing in some sense the memory length of a system.

With regard to the lattice map, let us illustrate it using an example of the vector
z mentioned above with m � 3 components. Then the input vector to the lattice map
has the following form:

but the map itself would look as shown in Figure 1.53. 
According to the literature,33 the lattice operations given by expressions 1.238c

and 1.238d can be expressed as

(1.305a)

and

(1.305b)

Pax( ) k( )

x k( )
x k 1–( )

�
x k a–( )

=

z
z1

z2

z3

=

y z∨ max y z,( ) 1
2
--- y z y z–+ +( )= =

y z∧ min y z,( ) 1
2
--- y z y z––+( )= =
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Thus, either one of the lattice operations needs for its realization two adders and
one subtractor or one adder and two subtractors, one multiplier, and one functional
block realizing the absolute-value nonlinearity. All of these functional blocks are
known as basic blocks used in realization of prescribed nonlinear characteristics
(operations) in the literature on realization of nonlinear circuits and systems.34

Observe now that the vector d � C(Pax)(k) can be written as

(1.306a)

where it has been assumed that

(1.306b)

FIGURE 1.53 Illustration of lattice map with input vector with three components and two
lattice operations given by expressions 1.238c and 1.238d.
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in the vector on the extreme right-hand side of Equation 1.306a. It follows from the
above relations that each of the components of the vector d � C(Pax)(k) represents
an affine system, that is, a system described by a linear-plus-constant function. And
as shown by using Equation 1.306b, each of these affine systems can be assumed
to be a system described in the form of a discrete-time convolution, as for linear
finite impulse response systems (see Section 1.10), plus a constant component.

Summarizing then, we can say that Theorem 1.5 of Section 1.9 proves the
existence of the approximator, which is shown schematically in Figure 1.54.

Finally, let us comment on the definition of the time-invariance property used
in Theorem 1.5. Sandberg’s time-invariance definition of the operator N: l�(��)
l�(��), used in Reference 4, where proof of Theorem 1.5 has been presented, is
somewhat different from that given by Equation 1.159 in Section 1.7. Sandberg’s
definition can be formulated with the use of the delay operator Uτ, defined by
Equation 1.158 in Section 1.7, in the following way:

(1.307a)

and

(1.307b)

whenever s(l) � 0 for l � k0.
Note that the defining Equation 1.307b is equivalent to the definition given by

Equation 1.159. According to Equation 1.159, we can write . Fur-
thermore, applying the delay operator  to both sides of the latter equation, we
arrive at Equation 1.307b. On the other hand, Equation 1.307a does not follow from
Equation 1.159 at all. Consequently, some kinds of operators, such as operator
(Nx)(k) � N0 � x(k) � x(k � 1), where N0 � 0, are excluded. In the latter for

FIGURE 1.54 Structure of the lattice map approximator .N̂ x( ) k( )

 →

Nx( ) k( ) 0 for k k0<=

Nx( ) k( ) Uko
NU k0– x( ) k( ) for k k0≥=

U k0– N NU k0–=
Uk0
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instance, for k � k0  � 1, we have (Nx)(k0 � 1) � N0  � x(k0 � 1) � x(k0 � 2) �
N0 � 0 (xk) = 0 for k � ko. So the condition 1.307a is not satisfied. Note, however
that the above restriction can be easily removed by taking into account the operator
(Nx)(k) � N0, where N0 is the value of the operator (Nx)(k) for those k � k0 for
which x(k) � 0, k � k0. Then the operator (Nx)(k) � N0 satisfies both the time-
invariance defining Equations 1.307a and 1.307b. After finding some approximation
for this operator, we add the constant N0 to it, to get the approximation for the
operator (Nx)(k) itself.

Another approximation follows from the theorem presented by Sandberg in
Reference 20. The theorem for nonlinear single-input single-output systems, that is,
for systems operating on scalar-valued input and output sequences is presented as
follows:

Theorem 1.9

Let N: l�( ��) l �( ��) be any causal and time-invariant operator, having
approximately-finite memory in the sense of the definition AFM1. Moreover, let the
functional N � (k) : l�(�� ) �, be continuous for each k � � � �1, 2, 3, … � on
the ball B� . Furthermore, let σ : � � denote any continuous mapping having
the property: σ(x) 1, when x �, and σ (x) 0, when x – �. For any ε 

0, there exist then such m and a � �, real numbers α1, …, αm, β1, … , βm, and a
real matrix ηηηη consisting of m rows and (a � 1) columns such that 

(1.308)

holds for all x � B�. The vector ηηηηj,  j � 1, …, m, in inequality 1.308 means the
row vector made of the jth row of the matrix ηηηη.

The proof of Theorem 1.9 is omitted here, but can be found in Reference 20.

Observe now that inequality 1.308 allows us to write the approximator of the
operator (Nx)(k), which we call here the sigmoid function approximator, in the form

(1.309a)

where the vector (Pax)(k) is given by Equation 1.304b, and the mapping σ is an
ordinary function satisfying the requirements of Theorem 1.9. One of the possible
choices for such a function, called a sigmoid function in the literature on neural
networks,35 is illustrated in Figure 1.55. Note further that a function given by the
expression

(1.309b)

 →

 →
 →

 →  →  →  →

Nx( ) k( ) a jσ β j η j Pax( ) k( )+( )
j 1=

m

∑– ε k �+∈,<
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j 1=

m

∑–

σ1 x( ) 1
2
--- tgh x( ) 1+( ) 1

2
--- ex e x––
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----------------- 1+ 
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satisfies the requirements of the sigmoid function as referred to in Theorem 1.9.
Similarly, the function

(1.309c)

with function ctg� taken for angles from the first two quadrants fulfills the above
requirements as well. Other expressions for functions having the shape as sketched
in Figure 1.55 can also be found.

Return to the sigmoid function approximator given by Equation 1.309a and
observe that the expressions Bj  � ηj (Pax)(k),  j � 1, …, M, occurring in Equation
1.309a can be rewritten as

(1.310a)

where it has been assumed that

(1.310b)

in the expression on the extreme right-hand side of Equation 1.310a. Again, it follows
from Equation 1.310a that each of the expressions ββββj  � ηj (Pax)(k) represents an
affine system, that is, a system described by a linear-plus-constant function. Fur-
thermore, using expression 1.310b, each of these affine systems can be represented

FIGURE 1.55 Sigmoid function: one of the possible choices for function σ(x) occurring in
Equation 1.309a.
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by a discrete-time convolution, as for linear finite impulse response systems, plus a
constant component.

Then, using the above interpretation of the expressions βj  � ηj (Pax)(k) in the
expression for the sigmoid function approximator, we can present this approximator
graphically, as shown in Figure 1.56.

Comparison of structures of Figure 1.54 and Figure 1.56 shows high similarity
between them. The only difference lies in the fact that in the structure of Figure
1.56, in place of the lattice map we have the summation of outputs coming from m
sigmoid functions and multiplied by the corresponding coefficients  αj, j � 1, …,
m. Again, in the structure of Figure 1.56, the number m is in some sense, the
counterpart of the number L or p in the approximations given by Equation 1.302a.
On the other hand, the number a in Equations 1.309a and 1.310a can be identified
with the numbers M � 1 and q in Equation 1.302a, expressing, in some sense, the
memory length of a system.

In Reference 2, one more theorem is presented regarding the problem of approx-
imation of nonlinear discrete-time systems with the use of so-called radial basis
functions.36,37 Using the formulation of Sandberg,2 a simplified version for scalar-
valued sequences follows. 

Theorem 1.10

Let N: l�(��) l�(��) denote any causal and time-invariant operator, possess-
ing approximately-finite memory in the sense of the definition AFM1, and let the
functional N � (k) : l�(��) � be continuous for each k � � on the ball B�.
Moreover, let R mean a continuous and bounded map from �l to � that is Lebesgue
integrable38 with

(1.311a)

FIGURE 1.56 Structure of the sigmoid function approximator .N̂ x( ) k( )

 →

 →

R µ( ) µ 0≠d

�
l
∫
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Then, for any ε 
 0, there exist m, l, and a � �, real numbers α1, …, αm, column
vectors

consisting of elements βij, i � 1, …, l,  j � 1, …, m, real numbers, and a real matrix
Y of order l × (a � 1) such that 

(1.311b)

holds for all x �  B�.
In expression 1.311a, the notion of Lebesgue integral occurs. For the purposes

of this book, suffice it to know that this integral is some extension of the well-known
ordinary Riemann integral. The explanation of the Lebesgue integral requires knowl-
edge of the measure theory beyond the scope of this book. The interested reader is
referred to Reference 38, where the general theory of integration using the notion
of measure is presented. In particular in Reference 38, the Lebesgue integral is
discussed in detail.

The boundedness of the map R in Theorem 1.10 means that, for bounded input
sequences, it produces bounded output sequences. We also draw the reader’s attention
to the notation used for column vectors ββββs, s � 1, …, m, in expression 1.311b. To
this end, observe that these vectors can be considered as columns of the following
matrix ββββ:

(1.311c)

Thus, the index s at ββββs means the corresponding column number in the matrix
ββββ. In this context, note also that the indices j � 1, …, m at the row vectors ηj, used
just before, meant the corresponding row numbers in the matrix η. Hence, it follows
from the above that the notation of the form ηj and ββββs is common for both the row
and column vectors. To make this notation unique, it must be specified every time,
whether it concerns a row or a column vector.

One of the possible choices for the function R(w), meeting the conditions stated
in Theorem 1.10, is the following function

(1.311d)
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�
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where ��•�� means any norm on �l and the mapping γ : �0, �) �0, �) is continuous.
Moreover, the mapping γ satisfies the inequality: γ���w��� 	 g ��w��2 for some positive
constant g.

Because the function R(w) depends upon the norm of the vector w, which is
non-negative, it is referred to as a radial function. Consequently, we call the approx-
imation following from Theorem 1.10 the radial basis function approximation.

Example 1.8

Let us choose for the function γ���w��� the quadratic one,

Then observe that this function satisfies the conditions required by Theorem
1.10. That is, it is continuous and fulfills the inequality: γ���w��� 	 g ��w��2, because here

holds, when the constant � 0 < g � 1. And finally, substitute γ���w��� = ��w��2 into
Equation 1.311d, which gives

We call the above function R(w) a Gaussian function because of its shape, which
resembles the shape of the function

where µ is the mean value and σ2 is the variance of a random variable w. The latter
function is the probability density function of the variable w. Thus, the Gaussian
function exp ����w��2 � with w identified with the vector Y(Pax)(k) � ββββs is one of the
possible choices for the function R� in inequality 1.311b.

With regard to the Gaussian function R(w) � exp ����w��2�, used for the radial
basis function approximation in inequality 1.311b, we point out that its shape differs
from that of the sigmoid function used in the sigmoid function approximation given
by inequality 1.308. Observe from Figure 1.55 that the sigmoid function is a con-
tinuous strictly increasing function. In contrast to this, the shape of the Gaussian
function considered is that of a half-bell, because ��w�� is always non-negative, as
shown in Figure 1.57.

The proof of Theorem 1.10 is omitted here. It can be found in Reference 20.

From inequality 1.311b, it follows that the radial basis function approximator
has the following form:

(1.312a)

 →

γ w( ) w( )2=
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--------------------
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Observe now that the vector Y(Pax)(k) � ββββs occurring in Equation 1.312a, can
be, for a given k, rewritten in the explicit form as

(1.312b)

Then using the following notation:

(1.312c)

in Equation 1.312b, we arrive at

FIGURE 1.57 Sketch of the Gaussian function exp ���w�2�.
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(1.312d)

Thus, it follows from Equation 1.312d that each of the components of the vector
Y(Pax)(k) � ββββs represents an affine system. Moreover, each of the above affine
systems possesses the description in the form of a discrete-time convolution, as for
linear finite impulse response systems, plus a constant component.

As the radial function R� in the approximator given by Equation 1.312a, the
Gaussian function exp ����•��2� from Example 1.8, with the norm 1.130 for vectors,
can be chosen. Then we get

 (1.312e)

for a given k, and for each s � 1, …, m.
The radial basis function approximator is presented graphically in Figure 1.58.

Comparing the structure of Figure 1.58 with the structures of other approxima-
tors presented in Figure 1.54 and Figure 1.56, observe the differences and similarities
existing between them. The main difference lies in the nonlinear part of the structure
of Figure 1.58, consisting now of additions of vector-valued coefficients ββββ1, …, ββββm,

FIGURE 1.58 Structure of the radial basis function approximator  with the mapping
R realized as given by Equation 1.311d.
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calculations of the vector norm, and calculations of the value of the radial function
R� for the corresponding vector norm values. Moreover, we have the number l of
linear FIR subsystems in the structure of Figure 1.58, and this number is different
from m, the number of coefficients αs, s � 1, …, m. As before, the number a here
can be considered that number which expresses, in some sense, the memory length
of the system approximated.

As shown in Reference 20, the theory and results regarding the lattice map,
sigmoid function, and radial basis function approximations, especially Theorem 1.5
of Section 1.9, can be used to derive the Volterra series approximation. The Volterra
series approximation can be viewed as a special case of the approximations men-
tioned above. A very important difference between these approximations and the
Volterra series approximation lies in the fact that the latter uses for approximation
nonlinearities of the polynomial type in contrast to the addition of some constant
coefficients together with the lattice map (Figure 1.54), in contrast to the addition
of some constant coefficients together with the sigmoid function and multiplication
by some constant coefficients (Figure 1.56), and in contrast to the addition of some
vector-valued constant coefficients together with the radial function and multiplica-
tion by some constant coefficients (Figure 1.58), used in the lattice map approxi-
mation, in the sigmoid function approximation, and in the radial basis function
approximation, respectively. Another difference lies in the fact that the Volterra series
approximator contains only one linear FIR subsystem (see Figures 1.36, 1.38, 1.39,
and 1.49), in contrast to the structures of the other approximators containing more
than one linear FIR subsystem.
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2 Nonlinear Echo 
Cancellation

2.0 INTRODUCTION

This chapter is devoted to the problem of nonlinear echo cancellation. First, to
introduce the reader to the topic, some fundamentals of echo cancellation with
emphasis on adaptive cancellers are presented. We will explain how echo arises in
telecommunication systems, and what are its sources. The similarities and differences
between the echoes arising in voice and data transmission systems are given as well.
The principle of a linear transversal filter is explained, and the principle of adaptation
of its coefficients to adjust to characteristics of an echo path is discussed, too. Some
basic configurations for cancelling echo are presented, especially for the digital
subscriber loop occurring in the integrated services digital network (ISDN). The
principle of achieving the full-duplex communication on two wires with the use of
echo cancellers is presented from many points of view.

In Section 2.2, the problem of nonlinear echo cancellation in baseband is dis-
cussed in detail. First, sources of nonlinearities that occur in practice in an echo
path are given. Then, the methods of nonlinear echo cancellation published in the
literature are briefly described. Specifically, advantages and disadvantages of these
methods are presented. Afterward, the behavior of linear and nonlinear digital can-
cellers working with binary input signals and in a nonlinear echo environment is
analyzed in detail. A structure of the nonlinear canceller is based on the Volterra
series description for binary signals developed in Section 1.10. For the purpose of
analysis, the basic notions regarding stochastic processes are introduced. These are
random variables, their outcomes, probabilities, random sequences, expected value
of a random variable, autocorrelation function, wide-sense stationarity of a stochastic
process, and so on. Finally, the nonlinear echo canceller structures based on the
lattice map approximator, using the description of the sigmoid function approxima-
tor, or applying the form of the radial basis function approximator, are described in
Section 2.2.

Section 2.3 is devoted to the discussion of structures of interleaved and passband
nonlinear transversal filters. First, the structure for linear transversal filters for
achieving higher output sampling than that at their input is explained in detail. The
description of this structure is then used to extend to the case of interleaved nonlinear
transversal filters. For the purpose of discussion of nonlinear echo cancellers for
passband applications, some notions regarding the quadrature amplitude modulation
(QAM), used in transmission in the passband, are first introduced. These are the
Hilbert transform filter, analytic signal, phase splitter, and equivalent lowpass rep-
resentation. Furthermore, general structures of the QAM transmitter and receiver
are presented. Using the theory related to analytic signals, the structures for linear
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echo cancellers with single lowpass or passband complex-valued transversal filters,
and their interleaved versions, are developed. Finally, these structures are extended
to the nonlinear case.

2.1 ADAPTIVE CANCELLERS

The purpose of this section is to present principles of adaptive cancellers in the
context of their application to echo cancellation. Hence, we start our considerations
with an explanation of how the echo arises in a telecommunication system, and what
the reasons are for trying to cancel its influence on the behavior of a system. To this
end, consider Figure 2.1, where a simplified connection for voice transmission over
a telephone network is presented. The connection shown is typical for connecting
two subscribers in a telephone network.

It consists of two two-wire parts on the ends and a four-wire facility in the
middle. Each of the two-wire parts on the ends contains the subscriber loop and,
eventually, a part of the local network. The transmission in these parts takes place
in two directions, as shown in Figure 2.1. The four-wire facility consists of two
separate two-wire connections, each of them only for one direction of transmission.
This is shown schematically in Figure 2.1, where the upper two wires are for the
transmission from the left to the right, and the lower two wires are for the opposite
direction of transmission. The coupling of the middle part of the connection, with
both end-parts, on the left- and right-hand side, takes place through the so-called
hybrids. One of the possible realizations of the hybrid, using two separating ampli-
fiers and one differential amplifier,39 is shown in Figure 2.2.

The operation of the hybrid in Figure 2.2 is as follows: the signal x�1(t) coming
from the four-wire facility is fed as the input signal to the first separating voltage
amplifier of the hybrid (of gain equal to one), and then goes through the second
separating voltage amplifier to the transformer. So it appears at the transformer as
the voltage x�1(t) modified by the voltage divider consisting of the impedances R

FIGURE 2.1 Voice transmission over a telephone network.
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and ZL, where the latter means the input impedance of the two-wire transmission
line shown on the extreme right in Figure 2.2. The separating behavior of the
separating amplifiers in Figure 2.2 is illustrated in Figure 2.3, showing clearly
“voltage transferring” in only one direction, from the left to the right. Further, the
signal x�1(t) on the right-hand side of the transformer in Figure 2.2, which corre-
sponds to the signal x�1(t), is transmitted through two wires to the customer premise
on the right.

The voice signal x�2(t) from this customer to the hybrid appears on the left-hand
side of the transformer only as the input signal to the “plus” input of the differential
amplifier. It does not go to the “minus” input of the differential amplifier on the
path through the separating amplifier. On the other hand, the signal x�1(t), modified
by the voltage divider consisting of the impedances R and Zc, appears on the “minus”
input of the differential amplifier. However, when the compensating impedance Zc

equals the impedance ZL, then the undesired leakage of the signal x�1(t) to the output
of the differential amplifier is perfectly attenuated. The signal x�2(t) on the left of
Figure 2.2 corresponds exclusively with the signal x�2(t) on the right. In practice,

FIGURE 2.2 Realization of the hybrid, which uses two separating amplifiers and one dif-
ferential amplifier.

FIGURE 2.3 (a) Symbol of the voltage separating amplifier, (b) equivalent scheme with
voltage-controlled voltage source of gain equal to one.
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Zc differs more or less from ZL depending on the realization of Zc and properties
(which are not fixed) of the two-wire transmission line on the right of Figure 2.2.
Therefore, some part of the signal x�1(t) at the upper left corner of Figure 2.2 leaks
to the signal x�2(t) at the lower left corner of Figure 2.2. 

This leakage can be expressed as the attenuation of the signal x�1(t) at the output
of the differential amplifier with respect to its level at the input of the separating
amplifier at the upper left corner of Figure 2.2, which can be as small as 6 to 10 dB.

The scheme of two wires/hybrid/four-wire facility/hybrid/two wires, seen in the
center of Figure 2.1, is quite general. Note that the transmission through a satellite,
as shown in Figure 2.4, can be also classified as belonging to this category.

With the principle of operation of the hybrid, as shown in Figure 2.2, and its
description in mind, we can examine the transmission paths in Figure 2.1 and Figure
2.4 in convention24,40 presented schematically in Figure 2.5.

Figure 2.5 shows a situation where the talker on the left-hand side speaks and
the listener on the right-hand side listens. The basic desired transmission path, called
the talker speech path, is shown in Figure 2.5a. Here, the speech goes through both
hybrids and arrives, as needed, at the listener’s site. Furthermore, Figure 2.5b shows
that a part of the signal arriving at the right-hand side hybrid, because of the
mismatching of the hybrid impedances Zc and ZL, leaks to another two wires of the
four-wire facility and comes back to the talker as the talker echo. As shown in Figure
2.5c, the leakage can occur on both hybrids, so that a part of the talker speech, after
making a round-trip in the four-wire facility, comes to the listener as the echo. This
echo, arriving at the listener’s site, is called the listener echo. Finally, observe that
the talker and listener shown in Figure 2.5 can change their roles. Thus, all that has
been written above about one site, in Figure 2.5, regards also another site.

FIGURE 2.4 Long-distance call with the use of a satellite as the transmission medium.
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To prevent the arising echo, echo suppressors40 can be used, as illustrated in
Figure 2.6.

As shown in Figure 2.6, the echo suppressor consists of two switches and a
controlling circuitry. The task of the controlling circuitry is to recognize who is
speaking at a given moment, and to close one of the switches at that moment. The
second switch then remains opened. Figure 2.6 shows such a situation, where the
far-end is active, and this state is recognized by the controlling circuitry. The upper
switch is closed, allowing the received far-end signal to go through the hybrid to

FIGURE 2.5 Basic transmission path and echo transmission paths in the telephone network:
(a) talker speech path, (b) talker echo, (c) listener echo.

FIGURE 2.6 Principle of operation of the echo suppressor.
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the listener on the right-hand side of Figure 2.6. At the same time, the lower switch
is opened, preventing the echo signal from making trips in the four-wire facility, as
shown in Figs. 2.5 b and c. When the near-end becomes active, the states of the
switches reverse. And we see from the above, the suppressor works correctly when
persons on the opposite sides of the telephone connection do not speak simulta-
neously. When, for example, the listener wants suddenly to interject a point, it is
likely that his or her message will not arrive to the talker on the other side of the
telephone connection, because the switches will not switch for transmitting this
message. In this case, a canceller will work better.

The basic difference in the operation of echo suppressors and echo cancellers
is illustrated in Figure 2.7. In this figure, the situation is presented where both the
far-end and near-end talkers speak simultaneously. In Figure 2.7a, no near-end
transmitted signal is presented because, compared with Figure 2.6, the upper switch
of the suppressor is closed, and the lower switch is opened. This is so because we
assumed while before that only the far-end talker was speaking. Thus, in Figure
2.7a, both the leaked echo signal and near-end talker speech are blocked. Note that
this is not the case in Figure 2.7b. In the echo canceller, an echo replica is synthesized
and then subtracted from the transmitted signal. As a result, in the ideal case of
building a perfect replica, there remains after performing the above operations, as
shown in Figure 2.7b, only the speech of the near-end talker.

At first glance, the concept of echo cancellation as shown in Figure 2.7b can
look very strange. However, it really works.41,42,43,44 It is possible to remove the
unwanted echo signal in an adaptation process such that the level of the echo
remaining does not hinder the correct receipt of the wanted signal.

To explain the principle of operation of an adaptive canceller, let us now redraw
the scheme of Figure 2.7b, as shown in the next figure, Figure 2.8. Here, the echo
path is presented schematically by the corresponding block, called an echo path, of
which the input signal is the far-end signal x, and of which the output signal is
simply the echo signal e. The echo signal e adds to the near-end signal v, giving the
resulting signal e � v. Furthermore, the echo path is modeled in some way in an
adaptive echo canceller, for example, as a finite impulse response (FIR) filter. The
input signal to the echo canceller is the far-end signal x, and its output signal is the
estimated echo replica ê. The parameters of the echo path model, built in the echo
canceller, are adapted in the adaptation process to make the signal v � e � ê as
similar to the near-end signal as possible.

Of course, in practice, cancellation of the echo is needed on both sides of a
telephone connection. This is illustrated in Figs. 2.9a and b with the use of the
scheme of Figure 2.8. In Figure 2.9a, the four-wire facility occurring between the
ports AB and CD is marked by dashed lines and redrawn in Figure 2.9b for con-
nections with a very long signal delay as, for example, experienced on satellite
connections. The amount of 300 milliseconds is a typical value of delay in the long
delay satellite channel of Figure 2.9b, for one direction of transmission.

Note that the echo signal before cancellation by the canceller on the left-hand
side of Figure 2.9c makes a round trip lasting about 600 ms. And the canceller
considered has to be able to synthesize such a long delay, which causes a high
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realization cost, making the solution impracticable. This can be changed by moving
the canceller from the left-hand side to the right-hand side in Figure 2.9c. The
canceller position on the right-hand side is much better because here the echo signal
has to make only a short round trip from the upper to the lower canceller port. In
the canceller realization, it reflects through the need to synthesize a much shorter
delay than before, which is realizable.

FIGURE 2.7 Illustration of the principle of operation of an echo suppressor (a), and of an
echo canceller (b).

FIGURE 2.8 Principle of operation of an adaptive canceller.
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Note that placing the echo canceller on the right-hand side of Figure 2.9c
corresponds to the position of the canceller on the right-hand side of Figure 2.9b.
This is the exact same position. Moreover, with regard to Figure 2.9b, we say that
the canceller sees a short delay end channel from the port CD to the right.

The configuration shown in Figure 2.9b, because of the properties just described,
has been given the special name of a split echo canceller configuration by Messer-
schmitt in Reference 40. In fact, the echo canceller for both transmission directions
in the middle of Figure 2.9a, between the dashed lines, is split by the long delay
channel in Figure 2.9b into two distinct cancellers located near the ends of the
connection.

At this point, it worth noting that the words near end and far end are used in
two different meanings in the literature on echo cancellation. This point is illustrated
in Figure 2.10. In this figure, the points A, B, C, and D are shifted to the left and
to the right accordingly, such that the rectangle between the dashed lines encom-
passes also the echo paths, outside it in Figure 2.9a. Figure 2.10 considers the echo
canceller configuration from the point of view of the listener at point B. For him or

FIGURE 2.9 (a) Illustration of echo cancellation on both sides of a telephone connection, 
(b) long delay channel occurring between the cancellers as, for example, in connection through 

a satellite, (c) correct placing of the canceller with respect to the delay in echo path.
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her, the near end and far end, understood spatially, are as shown in Figure 2.10a.
They are used in such a way, for example, in References 43 and 45. However, taking
into account the length of the trip made by the talker signals coming from points D
and A to the listener at point B, we see that the first point is nearer than the second
one. This is so because the trip for the talker signal from A to B is twice as long as
that from D to B (see Figure 2.10b). The above terminology is used in Reference 40.

We will now go to data transmission, and restrict ourselves here to digital data
transmission over analog channels. In this transmission, digital cancellers are used
in most solutions proposed in the literature. The basic structure of the linear digital
canceller is shown in Figure 2.11. This structure works with digital signals: the
reference signal x(k), the echo signal e(k), and the near-end talker (according to the
terminology assumed in Figure 2.10b) signal v(k). It is linear because this is exactly
the same structure as that of the linear finite impulse response (FIR) system (compare
with Figure 1.48). The x(k) is called the reference signal because, with reference to
it, the echo replica is constructed; it is the input signal to the echo path.

If we use the expression 1.248 relating the input signal with the output signal
of a FIR system through the linear convolution sum, we can write the corresponding
relation for the echo replica ê(k) in Figure 2.11 as

(2.1a)

FIGURE 2.10 (a) “Near-end” and “far-end” understood spatially in the echo canceller
configuration, (b) another point of view, taking into account the length of the trip made by
the talker signal arriving at the listener at point B.
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Of course, the structure of the canceller presented in Figure 2.11 is not an
adaptive one; its impulse response, given by the coefficients c(i), i � 0, …, Mê � 1,
does not change with the elapsing time. To make this structure adaptive, we must
allow the coefficients c(i) to depend upon time, that is, to allow the following form:
c(k,i). For such coefficients determining the canceller impulse response, Equation
2.1a modifies to

(2.1b)

It is also convenient to rewrite Equation (2.1b) in the equivalent forms

(2.1c)

and

(2.1d)

FIGURE 2.11 Structure of the linear digital canceller.
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Mê 1–

∑=
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A rule for making the coefficients c(k,i) � ci(k), i � 0, …, Mê � 1, in Equations
2.1b to d dependent upon time can be chosen in many ways. For example, it can be
the rule of the stochastic iteration algorithm,46

(2.2a)

or

(2.2b)

where α is an amplification constant, and r(k) means the residual signal given by

(2.2c)

(see Figure 2.11).
Note that, with the time-dependent coefficients c(k,i), the canceller structure of

Figure 2.11 must be redrawn, as shown in Figure 2.12. Then, for correct understand-
ing, the notational convention used in Equations 2.1c and d and 2.2b must be used.The
fundamental difference in the coefficients c in the structures presented in Figures 2.11
and 2.12a lies in the fact that, in the first case, the time variable i occurs in parentheses
as c(i), i � 0, …, Mê � 1, and, in the second case, this time variable is “shifted” to
form an index at ci(k), i � 0, …, Mê � 1. The form ci(k) is needed to express the
change in the coefficient values with the changing time, as the adaptation process
proceeds. When the echo path can be considered as a linear system possessing a
linear impulse response of the approximately-finite length, then, after some time
elapsed in the adaptation process, the values of the coefficients ci(k) correspond quite
well with the values of the corresponding samples of the impulse response of the
echo path. In other words, assuming the echo path response described by

(2.3a)

and the echo replica, described by Equation 2.1d with the parameter Me satisfying
inequality Mê � Me, we get

(2.3b)

in the adaptation process, when k �. This is so because, in the adaptation process
illustrated 
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r k( ) v k( ) e k( ) ê k( )–+=
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in Figure 2.12, the following:

(2.3c)

and

(2.3d)

takes place. In Equations 2.3, gi, i � 0, …, Me � 1, mean the samples of the echo
path impulse response, and Me and Mê are the memory lengths of the echo path and
the echo canceller, respectively, in the engineer’s sense explained in Section 1.9.

Of course, the description of the adaptation process given by Equations 2.3b, c,
and d is highly simplified, because it does not take into account statistics of the

FIGURE 2.12 (a) Structure of the linear digital canceller with time-dependent coefficients,
(b) calculation of the coefficients ci(k) for successing time instants according to the stochastic
iteration algorithm.

ci k( ) gi i,→ 0 … Me 1 as k ∞→,–, ,=

ci k( ) 0 i,→ Me≥ as k ∞→,
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reference signal x(k) and the effect of noise. The probabilistic character of the
adaptation process will be considered later.

With regard to the terminology used, we draw the reader’s attention to the fact
that a direct realization of the FIR filter, as shown in Figure 2.11 or, for a given k,
in Figure 2.12, is called the transversal filter in the digital communication literature.

Data signals can be transmitted on a two-wire line in only one direction, in some
frequency band; this mode of operation is called a half-duplex. However, the trans-
mission in both directions can also occur simultaneously on a two-wire connection,
occupying the same frequency band. This mode of operation is called the full-duplex
transmission. The echo creates real problems only in the latter case because the
signal transmitted in one direction can interact with the signal transmitted in the
opposite direction. This is not the case in the half-duplex transmission. In fact, we
have then a situation as shown in Figure 2.5a. The paths of Figs. 2.5b and 2.5c do
not occur, because there is no receiver on the transmitting end.

In Reference 40, two important applications of full-duplex transmission are
mentioned: digital transmission on the subscriber loop and digital transmission in
voiceband. The first type of transmission is illustrated schematically in Figure 2.13.
Over the subscriber loop, the digital voice and data are transmitted.

As shown by the block named the voice coding/decoding facility, the voice
transmission requires the analog-to-digital (A/D) and digital-to-analog (D/A) con-
versions to be performed on the customer premises. Data signals coming from or
to the modem facility in Figure 2.13 do not need any signal conversion between the
above facility and the customer premises. The modems shown in Figure 2.13 perform
operations of modulation and demodulation of analog impulses by the stream of
digits (most often binary). This is needed because only analog signals can be
transmitted on two wires of the subscriber loop.40 The modem facility on the right-
hand side of the subscriber loop in Figure 2.13 is connected to the central office
switch, which enables digital voice or data stream switching. This facility also has

FIGURE 2.13 Digital transmission on the subscriber loop.
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connections for transmission of packetized data; that is, data packets used in data
networks.

The digital subscriber loop as shown in Figure 2.13 and described above occurs
in the integrated services digital network (ISDN), which integrates voice and data
services to provide them to the customer over a common facility.40,48 At its basic
level, the ISDN provides transmission rate of 144 kbit/s for each direction. This rate
is described as the basic interface and called 2B+D, which means that the interface
consists of two B channels at 64 kbit/s each and one channel D at 16 kbit/s. The B
channels are devoted to transmission of the digital voice and/or data, while the D
channel is an additional channel for data, which can be transmitted at a lower rate
(4 times lower, 64 kbit/s: 4 = 16 kbit/s, than in the B channel). Additionally, framing
and control data are transmitted at the rate of 16 kbit/s, which gives altogether 144
+ 16 = 160 kbit/s. With regard to Figure 2.13, that means that the transmission rates
are 160 kbit/s on the subscriber loop in each direction. Moreover, the transmission
on the digital subscriber loop is the so-called baseband transmission,40 that is, without
the use of carriers. This is because the frequency characteristic of the two-wire
connection of the digital subscriber loop in Figure 2.13 has a shape of a lowpass
filter. For example, to transmit at the rate of 160 kbits/s, it must provide bandwidth
at least in the range of 0 � 40 kHz.24 On the other hand, the voiceband channel can
be considered as a passband channel, having the character of a bandpass filter. It
provides bandwidth in the range of 300 � 3300 Hz. By the way, comparing the
bandwidth 3300 � 300 = 3000 Hz with the previous value of 40 kHz for the digital
subscriber loop, note that the bandwidth provided by the voiceband channel is much
smaller than that provided by the digital subscriber loop. This is rather the rule.

Communication between two full-duplex voiceband data modems is shown
schematically in Figure 2.14. In this figure, two modems are connected to the public
telephone network via two wires representing telephone channels of bandpass fre-
quency characteristic with the passband in the range mentioned just before; that is,
between 300 � 3300 Hz. They work in the full-duplex mode of operation.

Comparing Figure 2.13 with Figure 2.14, we see that the common feature there
are two modems (modem facilities) communicating in the full-duplex mode of
operation via two wires, and connected to each other, directly or indirectly, through
them. To reduce an inherent echo in such a connection, echo cancellers are needed

FIGURE 2.14 Two full-duplex voiceband data modems communicating over a public tele-
phone network.
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on its both ends. This is shown in Figure 2.15, where hybrids are parts of modems,
or modem facilities, as in Figure 2.13. Moreover, in Figure 2.15, double lines used
to mark two-wire connections are replaced by single ones for simplicity, as was
already done in the schematic drawings in Figs. 2.8 to 2.12.

Comparison of the structure of Figure 2.15 with the structure presented in Figure
2.9 shows that placing an echo canceller is principally the same in both figures. That
is, the echo canceller is placed on the same side of the hybrid in both structures.
The main difference between the configurations lies “in the middle of the connec-
tion”: in Figure 2.9b, this is a four-wire facility building a long delay channel; but,
in Figure 2.15, this is a short delay channel on two wires. Moreover, it follows from
the discussion that the configuration of Figure 2.15 describes correctly both types
of full-duplex data transmission shown in Figs. 2.13 and 2.14. The configuration of
Figure 2.15 encompasses also echo cancellation in both transmission directions.

The structure in Figure 2.15 for echo cancellation in full-duplex data transmis-
sion is highly simplified. Nevertheless, it can be used in analyses aimed at finding
basic characteristics of the cancellation process. This structure and the more detailed
structures derived from it have been studied intensively in the literature.48-53

There are a transmitter and a receiver on each end of the configuration shown
in Figure 2.15. The task of the hybrids is to provide a virtual four-wire connection
between the above elements; two virtual wires are devoted to one direction and the
next two to another direction (see Figure 2.16a). This virtual four-wire connection
is, however, not ideal because of the impairments of hybrids. These impairments are
responsible for the signal leakage between the upper and lower part of a hybrid, as
already discussed in the description of the hybrid presented in Figure 2.2. This
leakage is shown schematically in Figure 2.16b.

The signal leakage in the hybrid or, in other words, the feedthrough in the hybrid,
of the transmitted signal from the transmitter to the local receiver can be as high as
6 to 10 dB, as already mentioned in the discussion of the structure in Figure 2.2. In
terms of signal attenuation, this will mean 6 to 10 dB of attenuation between the
transmitter and local receiver. Only 6 to 10 dB, means that the above leakage will
be the main echo component to be cancelled by each of the cancellers in Figure 2.15.

Assume now, after Reference 40, that the two-wire channel attenuation from the
transmitter to the receiver on the other side of the connection in Figure 2.15 is about
40 to 50 dB. This value is typical for both types of transmission: in the digital
subscriber loop and in the voiceband data transmission. Furthermore, assume that

FIGURE 2.15 General scheme for echo cancellation in full-duplex data transmission.
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the attenuation provided by the hybrid is about 10 dB. Then, assuming that the
transmitted signals on both sides of the connection are at the same level, we get the
level of the local echo (local feedthrough) signal on each of the connection ends
about 30 to 40 dB higher than the level of the receiver signal on these ends. For
reliable data transmission, this signal should be, however, at least 20 dB under the
level of the received signal. Therefore, the echo cancellers in Figure 2.15 will have
to provide the attenuation of the local feedthrough signal of an order of 50 to 60
dB. The achievement of this goal can be critical40,54,55,56 because of the occurrence
of the inherent nonlinearities associated with the echo path. The next section will
be devoted to explanation of the problem in more detail.

2.2 NONLINEAR ECHO CANCELLATION IN DATA 
TRANSMISSION

To show the sources of nonlinearities in the echo path, we must present the general
scheme for echo cancellation of Figure 2.15 in more detail. In Figure 2.17, we show
the more detailed structure of a full-duplex digital subscriber loop transceiver, that
is, of an arrangement consisting of the transmitter and receiver. Note that such an
arrangement occurs on the ends of the connection in Figure 2.16a; so this connection
can be viewed as the one between two transceivers.

A similar structure as that shown in Figure 2.17 was used in Reference 24 in
considerations regarding echo cancellation. This structure contains all the details
needed in our explanations and analyses. Of course, it still remains a simplified
structure because, for example, it does not contain a detection block in the lower,
receiver path. For more details regarding the structure of the full-duplex digital
subscriber loop transceiver, interested readers are referred to Reference 48.

From Figure 2.17, it is evident that the adaptive canceller works with digital
signals (other solutions are also possible, for example, see Reference 54). The

FIGURE 2.16 (a) Virtual four-wire connection, (b) signal leakage in a hybrid.
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elements of the echo path, which belong to the transceiver, lie between the dashed
lines in the figure. We included here the hybrid, transmit and receive filters, the
block in which line coding of the transmitted signal is performed, and the sampler
in the receiving path, which converts the received analog signal into the digital one.
A block where the timing recovery is performed is also shown. The task of this
block is to recover a clock from the received signal, to sample it properly for getting
a discrete-time sequence of data symbols in the received path. The input signal to
the timing recovery block is the same signal that is used for adaptation purposes in
the canceller. This is the sum of the canceller output signal and the received signal
after sampling. Furthermore, on the extreme left-hand side of Figure 2.17, we have
the blocks named scrambler and descrambler. The scrambler occurs in the transmit-
ting path, and its task is to make more random the data to be transmitted. The
scrambled signals, much more random than the original ones, make it easier to
achieve accurate timing recovery.24 They also enable achieving dc balance of the
signal. On the other hand, the descrambler performs the inverse operation to the
scrambling made by the transmitter on the opposite side of the transmission con-
nection. After performing the descrambling operation, the original form of the
received data sequence is achieved.

In the line coding block in Figure 2.17, coding of the transmitted signal, to adjust
in some way to the transmission line characteristics, is performed. Generally speak-
ing, such coding is used to control the spectral characteristic of the transmitted
signal.24 One common goal here is the introduction of a spectral zero at dc, thereby
enabling transmission of a baseband signal over a channel that rejects dc components.

The task of the transmit filter in Figure 2.17 is to attenuate the higher frequency
components of the signal for avoiding radio-frequency interference (RFI) and
crosstalk between the different channels. Finally, the receive filter in the scheme of
Figure 2.17 is to prevent aliasing effects in the subsequent sampler.

With the structure of the full-duplex digital subscriber loop described, we now
can consider the sources of nonlinearities in it. In Reference 54, the sources are
identified as follows:

FIGURE 2.17 More detailed structure of a full-duplex digital subscriber loop transceiver.
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(1) Nonlinear characteristics of data converters
(2) Nonlinearity associated with an imbalance in the positive and negative

pulses transmitted
(3) Saturation in transformers of hybrids

Depending upon the concrete realization of the full-duplex subscriber loop
transceiver, a greater or lesser number of analog-to-digital (A/D) and digital-to-
analog (D/A) converters is used.53, 54 In the implementations, these converters do not
behave ideally. Their characteristics are, in practice, not exactly linear. The nonlin-
earities occurring in the converters are well documented in the literature, (see
References 54, 57-60, for example). They are not discussed here. For our purposes
in this book, suffice it to know that such imperfections occur, making the echo path,
in effect, nonlinear

The nonlinearity mentioned in Reference 54 as the nonlinearity associated with
an imbalance in the positive and negative pulses transmitted should be interpreted
mathematically as occurrence of the dc component in the echo path. That is, the
echo path is represented by a nonlinear operator, say, Ec. Assume that the input
sequence x(k) to this operator is an exactly symmetric sequence with respect to the
time axis. The operator Ec then gives as the output signal something like this: (Ecx)(k)
� e0  + ef(k), where e0 is the dc component in the echo path and ef(k) stands for the
echo dc-free component. Furthermore, observe that such an operator does not obey
relation 1.13 for linear systems (operators) because we have Ec�(αxk)� � e0  + e�f(k)
� α�e0 � ef(k)�, where α is some real number and e�f(k) is the echo dc-free component
when the input sequence to the operator Ec is equal to αx(k). Even when the
component ef would be linear, that is, e�f(k) would be equal to αef(k), the remaining
dc component would still determine the nonlinear character of the operator Ec.

It has been reported in the literature39, 54 that, for the levels and shapes of signals
used in digital transmission, the saturating effects can occur in transformers. The
transformer cannot then be considered as a linear element. It contributes in this case
to the nonlinear characteristic of the echo path.

In the voiceband data transmission systems, we have similar sources of nonlin-
earities in the echo path, as in the case of the digital subscriber loop.

In the literature, a few interesting approaches to the problem of nonlinear echo
cancellation are presented. Thomas61 was first to systematically study the problem.
He used the Volterra series method. Next, to study the problem were Coker and
Simkins.62 They, like Thomas, applied the Volterra series.

The work of Holte and Stueflotten51 had a great impact on further studies and
works on this topic. They presented the memory compensation principle, or table
look-up method, that applies the following property: when the operator describing
the echo path has the fading memory or, equivalently (as explained in Section 1.9),
approximately-finite memory, say, of length M, then a set of possible values of the
echo path responses is finite. It consists of 2M elements for binary signals. These
values can, of course, be stored in a digital memory, and afterward accessed in the
echo cancellation process; the last M transmitted bits form an address to the corre-
sponding value of the echo path response saved in memory.
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Referring to Figure 2.11 that shows the structure of the linear digital canceller
based on the transversal filter, we now redraw the above structure in the form
incorporating the use of the memory compensation principle. The corresponding
scheme is presented in Figure 2.18.

It follows clearly from Figure 2.18 that the corresponding sequence of the last
M bits x(k), x(k  � 1), …, x(k � M � 1) taken from the reference sequence x(k)
forms the address to the digital memory. (We recall here that, according to the
simplified notation assumed in Section 1.7, x(k) is also equivalently used instead of
�x(k)�.) At this address, the corresponding value of the echo replica for the discrete-
time point k is found in the digital memory, where it was stored before in a learning
process of the echo channel. Then ê(k) is substracted from the incoming signal e(k)
� v(k) in the received path, similarly as in Figure 2.11.

Variations of the usage of the table look-up method to nonlinear echo cancella-
tion have been presented in many publications after 1981. For example, Smith,
Cowan, and Adams in Reference 55 have used the so-called transpose distributed
arithmetic63, 64 for an effective realization of the nonlinear echo canceller. More
recently, Weruaga-Prieto and Figueiras-Vidal65 have presented some results for a
combined canceller, using the table look-up method for realization of its nonlinear
part and FIR filter for realization of its linear part.

Other approaches to the problem of nonlinear echo cancellation are the following:
the use of the canonical piecewise-linear function description66 and the application
of the neural network models35 to model the nonlinear behavior of the echo path.

Since this book is devoted first of all to presentation of the application of the
discrete Volterra series in solving nonlinear problems encountered in telecommuni-
cations, we present, in what follows, the application of this series to nonlinear echo
cancellation in greater detail. However, we will also describe its relationship with
the other methods mentioned. The description of the Volterra series method of echo

FIGURE 2.18 Structure of the digital canceller using the memory compensation principle.
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cancellation presented in this section is based mostly on References 23, 56, and 67;
and its main objective is to serve as an illustrative example, which can be used in
different ways in practical applications. Also, all the analyses based on the above
description, which will be presented, illustrate the calculations typically performed
in studies of linear and nonlinear echo cancellers.

Assume that the nonlinear echo path in our case possesses fading memory or
equivalently (as explained in Section 1.9), approximately-finite memory. Using the
results of Section 1.9, we can model (approximate) its response by the discrete
Volterra series. Assume additionally that an echo canceller to be constructed for the
above echo path will work with binary signals. To model its behavior, we can choose
a special version of the Volterra series, which was derived in Section 1.10, just for
binary signals.

By the way, note that the property of possessing fading memory is crucial for
the echo path modeling, independent of the method used. For example, see in the
table look-up method51 that, if the memory length M would go to infinity, then the
digital memory size of the canceller, 2M, would also go to infinity, thereby making
the method quite useless.

Not to complicate our calculations too much, assume that the nonlinearities of
the echo path are strong enough such that inequality L � Me holds, where L is a
strength measure of these nonlinearities and M � Me is a memory length measure
of the echo path (see Section 1.10). Then we can approximate the echo path response
using the Volterra series approximator given by Equation 1.247d. Hence, the descrip-
tion of the echo path is, in this case, 

(2.4)

where somewhat different notation, as in Equation 1.247d is used. Here, g00 is the
dc component in the echo path, which corresponds to the dc component d0

(0) in
Equation 1.247d. Furthermore, g(0), g(1), …, g(Me � 1), g(0, 1), g(0, 2), …, g(0,
1, …, Me � 1) correspond to the coefficients , , , , , , …,

, in Equation 1.247d (with Me � M), respectively. Moreover, the last Me

samples of the echo path input signal are denoted here otherwise than in Equation
1.247d because they are not the samples but the transmitted symbols, according to
the terminology used in telecommunications. So, a(k), a(k � 1), …, a(k � Me � 1)
correspond to x(k), x(k � 1), …, x(k � Me � 1) in Equation 1.247d (with Me � M),
respectively. These symbols take on, in our case, only two distinct values because
they are binary. In other words, using the telecommunications terminology, 24 we
say that the alphabet set for the above symbols possesses only two elements.

e k( ) g00= g i1( )a k i1–( )
i1 0=

Me 1–

∑ g i1 i2,( )a k i1–( )a k i2–( )
i1 0 i2, 0= =

i1 i2≠

Me 1–

∑ …

g 0 1 … Me 1–, , ,( )a k( )a k 1–( )…a k Me– 1+( )

+ + +

+

d0
1( ) d1

1( ) … dMe 1–
1( ) d01

2( ) d02
2( )

d
01… M 1– 

 

Me 
 
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Another reason for changing the notation for the transmitted symbols, as done
above, follows: We want to avoid some misinterpretations, which would follow from
eventually identifying the input sequence x(k) with a vector containing only Me

elements taken from it. We will construct such a vector in what follows because it
will be very useful in our further considerations.

Using the echo path description given by Equation 2.4, we shall now investigate
the influence of nonlinearities on echo cancellation in the digital subscriber loop, in
which a linear canceller in the form of a digital adaptive transversal filter, as shown
in Figure 2.12, is used. In our calculations regarding the above environment, we
shall assume that the memory length of this canceller is so chosen that Mê � Me �
M holds. Moreover, we shall use the vector notation 

(2.5a)

for the transmitted data vector, consisting of M elements, 

(2.5b)

for the auxiliary transmitted data vector, consisting of 2M � M elements, 

(2.5c)

for the vector associated with the linear part of the echo path response, consisting
of M elements, 

 (2.5d)

for the vector associated with the nonlinear part of the echo path response, consisting
of 2M � M elements, 

(2.5e)

for the vector of the adaptive transversal filter coefficients, consisting of M elements.
In Equations 2.5, the symbol “T” stands for the vector transpose. Moreover, we

assumed in these equations to use M, where, in fact, Mê and Me should stand, because,
in the case considered, all three parameters are equal to one another. Also, for good
readability, the elements in vectors are separated from each other by commas. The
number of elements in each of the vectors is given as well. In this context, note that
the total number of elements in both the vectors a and u is equal to 2M, and similarly,
we have 2M elements in both the vectors gL and gN taken together. The above
corresponds of course, with the total number of components of the sum on the right-
hand side of Equation 2.4. To see that this number is also equal to 2M, observe that

a k( ) a k( ) a k 1–( ) … a k M– 1+( ), , ,[ ]T=

u k( ) 1 a k( )a k 1–( ) a k( ) k 2–( ) …
a k M– 2+( )a k M– 1+( ) … a k( )a k 1–( )…a k M– 1+( ), ,

,, ,[
] T

=

gL g 0( ) g 1( ) … g M 1–( ), , ,[ ]T=

gN g00 g 0 1,( ) g 0 2,( ) … g M 2 M 1–,–( ) … g 0 1 2 … M 1–, , , ,( ), ,, ,, ,[ ]T=

c k( ) c0 k( ) c1 k( ) … cM 1– k( ), , ,[ ]T=
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the n-fold sum in Equation 1.247d or 2.4 represents a summation over all combi-
nations of n from the M indices, 0, 1, …, M � 1. Hence, the total number of
components in Equation 1.247d or 2.4 is given by the expression

(2.6)

where  is a Newton symbol (for details see, for example Reference 9).
By the way, an immediate conclusion follows from comparison of Equation 2.6

with the previously mentioned size of 2M of the digital memory in an echo canceller
based on the table look-up method. Note that both numbers are identical. This means
that, when all the components of the expansion 2.4 are used in the construction of
a canceller based on it, then this canceller is equivalent to that using the table look-
up principle.23

Using now the vectors defined by Equations 2.5, we can rewrite Equation 2.4
in a compact form as

(2.7a)

Moreover, for the echo replica ê(k) of our linear canceller considered, we can
write

(2.7b)

With the use of Equations 2.7a and 2.7b, the residual signal, defined by Equation
2.2c, can be written as 

(2.8)

where v(k) � s(k) � n(k). In Equation 2.8, we assume that the echo signal e(k)
consists of all echo components, that is, of the signal leakage through the local
hybrid, and of the components coming from the reflections along the line. On the
other hand, the signal v(k) consists of all the other components present in the received
signal. Of these components, the most important is the data stream s(k) coming from
the other connection end. This signal is corrupted by noise and all the possible
interactions between the transmitted and received data streams. It is denoted here
n(k).

Having described the nonlinear echo path and the linear echo canceller, we can
now start the analysis of the adaptation process of the canceller. The objective of
this analysis will be to achieve some view into the dynamic behavior of the linear
canceller working in a nonlinear environment. We shall restrict ourselves here to

M

n 
 

n 0=

M

∑ 2M=

M
n 

 

e k( ) aT k( ) gL uT k( ) gN⋅+⋅=

ê k( ) aT k( ) c k( )⋅=

r k( ) e k( ) ê k( ) v k( )+– e k( ) ê k( ) s k( )+– n k( )+
aT k( ) gL c k( )–( )⋅ uT k( )+ gN⋅ s k( ) n k( )+ +

= =
=
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investigation of only one adaptation algorithm; that is, of the stochastic iteration
one.46

Consider the difference between the echo signal and echo replica. Using Equa-
tions 2.7a and 2.7b, we get

(2.9)

To go ahead, we need now one notion from the probability theory, namely, the
notion of a mean value, also called, a mathematical expectation or an expected value.
The definition of this notion can be found in any texbook on probability theory and
its applications, but it can also be found in textbooks on digital communication (for
example, in Reference 24).

Let X be a random variable. The outcome of this random variable, we then
denote x, using a small letter. Proceeding further, let an event Ev be a set of possible
outcomes taken from the so-called sample space Ω of all the possible outcomes. In
the probability theory, an event is assigned a probability we denote here as P(Ev).
This probability takes on the values only from the range �0,1�; that is, 0 	 P(Ev) 	
1 holds. 

At this point, we must make a distinction between the continuous-valued and
discrete-valued random variables. For the first ones, we define the cumulative prob-
ability distribution function, Pc(x) as the probability of the event X 	 x, that is, 

(2.10a)

(By the way, the same definition of the cumulative probability distribution
function as that given by definition 2.10a holds also for discrete-valued random
variables. However, it will not be used here in further derivations for this type of
random variables.)

The probability density function of the random variable X is then defined as

(2.10b)

To define the probability density function of a discrete-valued random variable
X, we now follow the means presented by Lee and Messerschmitt in Reference 24.
To this end, we denote the probability of an outcome x � Ω (that is, belonging to
the discrete-valued sample space Ω of the discrete-valued random variable X) by
P(X � x). Then, the probability density function of X can be defined as

(2.11)

where the summation is over all the possible outcomes of the random variable X,
and δ represents the one-dimensional discrete Dirac impulse, having the property
δ(0) � 1, and the zero value otherwise.

e k( ) ê k( )– aT k( ) gL c k( )–( )⋅ uT k( )+ gN⋅=

Pc x( ) P X x≤( )=

p x( ) d
dx
------Pc x( ) d

dx
------P X x≤( )= =

p x( ) P X z=( )δ x z–( )
z Ω∈
∑=
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Using the definitions of the probability density function given by Equations
2.10b and 2.11, we can define the mean, or expected value, of a random variable X as

(2.12a)

for continuous-valued variables, and

(2.12b)

for discrete-valued variables. The operation E� defined in Equations 2.12a and
2.12b is called the mathematical expectation.

Returning to Equation 2.9, let us now treat the difference e(k) � ê(k) for a given
k as a random variable. (For simplicity of notation, we use also small letters to
denote both a random variable and an outcome related with it, where this does not
create any confusion.) There are good arguments for such treatment. Refer to the
scheme of Figure 2.17, where the block called “scrambler” occurs in the transmitting
path. The task of this block is just to make the occurrence of the transmitted symbols
for given discrete time points as random as possible. Hence, the difference e(k) �
ê(k) for a given k can really be treated as a random variable. Moreover, it is a function
of other random variables to be the transmitted data symbols. It is also a function
of echo canceller coefficients, which, we can assume, change randomly. Moreover,
when we have a series of random variables, as in the case of e(k) � ê(k), depending
upon the time, we speak then about a random (time) series and/or a random or
stochastic process. In other words, a random (stochastic) discrete-time process �X(k)�
is a sequence of random variables, which are related with the corresponding discrete-
time points. In the case of continuous time, we have a “continuous” time series
�X(t)�, of which values are random. The outcomes of these processes, on the other
hand, are denoted with the use of small letters �x(k)� and �x(t)�, respectively. Moreover,
the braces at �X(k)�, �X(t)�, �x(k)�, and �x(t)� are omitted, when this does not lead to
any confusion. The above notation is consistent with that used in Section 1.7 in the
deterministic case.

Example 2.1

The notion of discrete- and continuous-time random (stochastic) processes is illus-
trated in Figure 2.19. This is done by plotting examples of outcomes for these
processes. It is assumed in the plots that the random variable x(k) for a given k
assumes only two values, �1 and �1. That is, the sample space of this random
variable is discrete and consists of two elements � 1 and �1. The series of random
variables x(k) for the discrete-time points k � …, 0, 1, 2, 3, … can appear as shown
in Figures 2.19a, b, c, and so on. These sequences, �x(k)�1, �x(k)�2, �x(k)�3, …, form
the space of outcomes of the random process �X(k)�. The same can be said about the

E X( ) xp x( ) xd
∞–

∞

∫=

E X( ) xp x( )
z Ω∈
∑=
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signals �x(t)�1, �x(t)�2, �x(t)�3 in Figures 2.19d, e, and f, three examples of outcomes
of the continuous-time random process �X(t)�.

By the way, see in Figure 2.19 that the signals �x(k)�1, �x(k)�2, �x(k)�3 are the signals
�x(t)�1, �x(t)�2, �x(t)�3 sampled at the discrete-time points k � …, 0, 1, 2, 3, …. This
reflects the fact that the discrete-time process �X(k)� was chosen here to be a sampled
process �X(t)�.

FIGURE 2.19 Three examples, (a), (b), and (c), of outcomes of a discrete-valued random
process �X(k)�; and, for comparison, three examples, (d), (e), and (f), of a continuous-valued
random process �X(t)�.
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Example 2.2
It was assumed in the previous example that the elements x(k) of the sequences
�x(k)�i, i � 1, 2, 3…, took on only two values. Therefore, the underlying random
process �X(k)� was both the discrete-time and discrete-valued one.

However, in telecommunications, we also have situations when a discrete-time
random process possesses the continuous-valued amplitude. Figure 2.20a shows an
example of the outcome, denoted �x(t)�1, of continuous-time and continuous-valued
random process �X(t)�. (Note that this is �x(t)�1 of Figure 2.19d modified slightly.) 

The sequence presented in Figure 2.20b is the discrete-time continuous-valued
outcome of the random process �X(k)�, the sampled-in-time random process �X(t)�
mentioned above. That is, the outcome �x(k)�1 presented in Figure 2.20b is obtained
from that of Figure 2.20a through sampling the time.

Now take the square of the random variable e(k) � ê(k) for a given k and use
one of the definitions of the mean value, Equations 2.12a or 2.12b, depending on
whether the new variable (e(k) � ê(k))2, k fixed, is a continuous-valued or a discrete-
valued random variable. Moreover, apply Equation 2.9. We get

(2.13)

where mes(k) is used to denote the mean value of �e(k) � ê(k)� squared.
Squaring the expression in Equation 2.13, we arrive at

(2.14)

Furthermore, without loss of generality, we can assume that the random variable
x � e(k) � ê(k) for a given k is continuous-valued. The fundamental theorem of

FIGURE 2.20 Example of an outcome of continuous-time continuous-valued random pro-
cess �X(t)�, (a); the corresponding outcome of discrete-time continuous-valued random process
�X(k)�, obtained through sampling the time in the previous one, (b).

mes k( )
   df

E e k( ) ê k( )–( )2( ) E aT k( ) gL c k( )–( ) uT k( ) gN⋅+⋅( )2( )= =

mes k( ) E aT k( )(( gL c k( ) ) )2–⋅=

2 aT k( ) gL c k( )–( )⋅ uT k( )gN⋅( ) uT k( ) gN⋅( )2
+ )+
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expectation operation68 says that, for any function f(x) of such random variable, the
following, 

(2.15)

holds. From Equation 2.15, it follows immediately that

(2.16a)

when f(x) � f1(x) � f2(x) �…� fn(x), and

(2.16b)

where α is a real number.
Explanation 2.1
Note that the random variable Y � �e(k) � ê(k)�2 was considered in Equation

2.13. Take into account the random variable X � �e(k) � ê(k)�. Hence, the relationship
between these random variables is given by the function Y � f(X) � (X)2.

The fundamental theorem of expectation operation given by Equation 2.15 says
that the expected values calculated in Equations 2.13 and 2.14 can be taken with
regard to the random variable Y as well as to the random variable X. This is so
because the equality

holds, where pY and pX are the probability density functions of the variables Y and
X, respectively.

Returning now to Equation 2.14 and using relations 2.16a and 2.16b in it, we get

(2.17)

Note that aT(k) 
 �gL � c(k)� can also be written as �gL � c(k)�T 
 a(k). Hence,
the first component on the right-hand side of Equation 2.17 has the following
equivalent form:

(2.18)

To proceed further, consider the expression a(k) 
 aT(k) in expression 2.18. This
expression forms a matrix

E f x( )( ) f x( ) p x( )
∞–

∞

∫ dx=

E f x( )( ) E f 1 x( ) f 2 x( ) … f n x( )+ + +( )=

E f 1 x( )( ) E f 2 x( )( ) … E f n x( )( )+ + +=

E αf x( )( ) αE f x( )( )=

y pY y( ) yd
∞–

∞

∫ f x( ) pX x( ) xd
∞–

∞

∫=

mes k( ) E aT k( ) gL c k( )–( )⋅( )2( )
2E aT k( ) gL c k( )–( ) uT k( )gN⋅ ⋅( ) E uT k( ) gN⋅( )2( )+ +

=

E gL c k( )–( )T a k( ) aT k( ) gL c k( )–( )⋅ ⋅ ⋅( )
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(2.19)

As already mentioned, we treat the elements of the vector a(k) as random
variables in our consideration. Hence, the matrix given by Equation 2.19 is, in fact,
a matrix consisting of elements that are products of random variables. For such
objects, our definitions 2.12a and 2.12b, and relation 2.15, regarding the expectation
operation, need some extension. First, we define what we mean under the notion of
the expected value of a matrix. This simply means taking the expected values of its
elements. Applying the above definition to the matrix given by Equation 2.19, we get

(2.20)

where the expectation operation E is taken with respect to the “M-dimensional”
random vector-valued variable, represented by the vector a(k) consisting of M “one-
dimensional” random scalar-valued variables. More precisely, when f(x), where x
�  �x1, x2, …, xn	T, is a scalar-valued function of n random variables x1, x2, …, xn,
then the expected value of f(x), is given by

(2.21a)

a k( ) aT k( )⋅

a k( )
a k 1–( )



a k M– 1+( )

a k( ) a k 1–( ) … a k M– 1+( ), , ,[ ]

a k( )a k( ) a k( )a k 1–( )  ,, …  , a k( )a k M– 1+( )
a k 1–( )a k( ) a k 1–( )a k 1–( )  ,, …  , a k 1–( )a k M– 1+( )


 
 

a k M– 1+( )a k( ) a k M– 1+( )a k 1–( )  ,, …  , a k M 1+–( )a k M– 1+( )

=

=

E a k( ) aT k( )⋅( )

E a k( )a k( )( ) E a k( )a k 1–( )( )  ,, …  , E a k( )a k M– 1+( )( )
E a k 1–( )a k( )( ) E a k 1–( )a k 1–( )( )  ,, …  , E a k 1–( )a k M– 1+( )( )


 
 

E a k M– 1+( )a k( )( ) E a k M– 1+( )a k 1–( )( ), …  , E a k M– 1+( )a k M– 1+( )( )

=

E f x( )( ) … f x( ) p x1 x2 … xn, , ,( ) x1d x2d … xnd
∞–

∞

∫
∞–

∞

∫
∞–

∞

∫ f x( ) p x( ) Ω
                 

n  times

d
Ω
∫= =

  
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for continuous-valued variables, and

(2.21b)

for discrete-valued variables. Relation 2.21a is an extension of the relation 2.12a
and expectation fundamental theorem given by Equation 2.15. On the other hand,
relation 2.21b is a similar extension of the relation 2.12b and the expectation
fundamental theorem

(2.22)

for one-dimensional discrete-valued random variables, being an equivalent of Equation
2.15 for one-dimensional continuous-valued random variables. Moreover, the integral

 in Equation 2.21a represents a shorthand notation for the n-dimensional

integral, as shown in the above equation. This integral is over the n-dimensional
sample space Ω of the random variables X1, X2, …, Xn.

Similarly,  stands for the n summations over the n-dimensional sample space

Ω of the discrete-valued random variables X1, X2, …, Xn. The joint probability density
functions of n random variables p(x1, x2, …, xn)  �  p(x) in Equations 2.21a and
2.21b are the corresponding generalizations of the previously given expressions
2.10b and 2.11. That is, 

(2.23a)

with the joint cumulative probability distribution function Pc(x1, x2, …, xn) given by

(2.23b)

for continuous-valued random variables, and

(2.23c)

for discrete-valued random variables, with δM(x1 �  z1, x2 � z2, …, xn �  zn) which
could be called a multi-dimensional discrete Dirac impulse, having the property:
δM(0, 0, …, 0)  �  1, and the zero value otherwise.

Equation 2.23b is the generalization of expression 2.10a. Moreover, the function
P(X1 	 x1, X2 	 x2, …, Xn 	 xn) in Equation 2.23b and the function P(X1 = z1, X2 = z2,

E f x( )( ) … f x( ) p x1 x2 … xn, , ,( )
xn

∑
x2

∑
x1

∑ f x( ) p x( )
x Ω∈
∑= =

E f x( )( ) f x( ) p x( )
x Ω∈
∑=

… Ωd
Ω
∫

 
x Ω∈
∑

p x1 x2 … xn, ,,( )
∂nPc x1 x2… xn,,( )

∂x1∂x2
…∂xn

-------------------------------------------=

Pc x1 x2 … xn, ,,( ) P X1 x1 X2 x2 … Xn xn≤, ,≤,≤( )=

p x1 x2 … xn, , ,( )

… P X1= z1 X2= z2 … Xn zn=, ,,( )δM x1 z1– x2 z2 … xn zn–, ,–,( )
zn Ω∈

∑
z2 Ω∈

∑
z1 Ω∈

∑=
©2001 CRC Press LLC



 

…, Xn = zn) in Equation 2.23c are the generalizations of the one-variable functions
P(X 	 x) in definition 2.10a and P(X = z) in definition 2.11), respectively. The
function P(X1 	 x1, X2 	 x2, …, Xn 	 xn)  expresses the probability of the event
(X1 	 x1 and X2 	 x2 and … and Xn 	 xn). Similarly, P(X1 = z1, X2 = z2, …, Xn = zn)
expresses the probability of the event (X1 = z1 and X2 = z2 and … and Xn = zn) .

Let us now return to the matrix given by Equation 2.20. Assume that the
transmitted symbols a(k), a(k � 1), …, a(k � M � 1) in this matrix are random
and binary, and assume that they take on the values �1 or  �1. We then have to
work in Equation 2.20 with the discrete-valued random variables and must use the
expression 2.21b for calculation of the mean value, with the function f(x) being
quadratic.

We say that the random variables X1, X2, …, Xn are independent, or statistically
independent, when the probability functions P(X1 	 x1, X2 	 x2, …, Xn 	 xn) and
P(X1 = z1, X2 = z2, …, Xn = zn) can be expressed as

 (2.24a)

and

 (2.24b)

respectively, where the probability P1(X1 	 x1) is the probability of the event X1 	
x1, and so on. Moreover, the relations 2.24 are equivalent to the corresponding
relations between the probability density functions, 

(2.25)

where p1(x1) is the probability density function of the random variable X1, and so
on. For further calculations, assume that the transmitted symbols a(k), a(k � 1), …,
a(k � M � 1) satisfy the property of statistical independence stated above. That is,
the probability density function defined by Equation 2.23c can be expressed, in our
case, as

(2.26)

according to Equation 2.25.
The use of relation 2.26, as we shall see, will simplify our calculations of the

expected values in the matrix 2.20. To this end, consider, for instance, the first
element of the matrix 2.20, E(a(k)a(k)). Using Equation 2.21b, it can be written as

(2.27a)

P X1 x1 X2 x2 … Xn xn≤, ,≤,≤( ) P1 X1 x1≤( )P2 X2 x2≤( )…Pn Xn xn≤( )=

P X1 z1 X2 z2 … Xn zn=, ,=,=( ) P1 X1 z1=( )P2 X2 z2=( )…Pn Xn zn=( )=

p x1 x2 … xn, , ,( ) p1 x1( ) p2 x2( )…pn xn( )=

p a k( ) a k 1–( ) … a k M– 1+( ), , ,( ) p1 a k( )( ) p2 a k 1–( )( )… pM a k M– 1+( )( )=

E a2 k( )( ) … a2 k( ) p a k( ) a k 1–( ) … a k M– 1+( ), , ,( )
a k M– 1+( )

∑
a k 1–( )
∑

a k( )
∑=
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and applying Equation 2.26 as

(2.27b)

where f(x) of Equation 2.21b is the quadratic function a2(k), and a(k), a(k � 1), …,
a(k � M� 1) also stand for the corresponding random variables, according to the
notational convention assumed.

Take now the sum of p(x) given by Equation 2.11 over all the possible outcomes
of the random variable X, that is, for all x � Ω, where Ω is the discrete-valued
sample space of the random variable X. We then get

(2.28)

because the event that the random variable X takes on one of the values x � Ω is a
certain event.

Note that the relation 2.28 can be applied to each of the expressions
 occurring in Equation 2.27b. In

fact, each of these expressions is equal to one. Consequently, Equation 2.27b
simplifies to

(2.29)

Explanation 2.2
Assume that our random variables a(k), a(k � 1), …, a(k � M� 1) (here the
notational convention with the use of small letters for random variables is used) take
on only two values,  �1 or �1, with the same probability, . The sample spaces
Ω for these random variables consist of only two elements,  �1 and �1. Moreover,
relation 2.28, for instance, for a(k � 1), looks then as

Observe also that in the above equation, two different notations, A(k � 1), for
the random variable, and a(k � 1) for its outcome, are used to avoid any calculation
errors that could arise by using exclusively small letters.

Knowing that the sample space of the random variable a(k) consists of two
elements,  �1 and �1, we can rewrite Equation 2.29 as

E a2 k( )( )

a2 k( ) p1 a k( )( )
a k( )
∑ 

  p2 a k 1–( )( )
a k 1–( )
∑ 

  … pM a k M– 1+( )( )
a k M– 1+( )

∑ 
 =

p x( )
x Ω∈
∑ P X z=( )δ x z–( )

z Ω∈
∑

x Ω∈
∑ P X x=( )

x Ω∈
∑ 1= = =

p2 a k 1–( )( ) … pM a k M– 1+( )( )
a k M 1+–( )

∑, ,
a k 1–( )
∑

E a2 k( )( ) a2 k( ) p1 a k( )( )
a k( )
∑=

1 2⁄

p2 a k 1–( )( )
a k 1–( ) 1 1,–{ }∈

∑ P A k 1–( ) z=( )δ a k 1–( ) z–( )
z 1 1,–{ }∈
∑

a k 1–( ) 1 1,–{ }∈
∑

P A k 1–(( )
a k 1–( ) 1 1–{ }∈

∑ a k 1 )–( ) P A k 1–( ) 1–=( ) P(A k 1–( )=1)+ 1
2
--- 1

2
---+ 1

=

= = = = =
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(2.30)

So the element E(a2(k)) in the matrix 2.20 is simply equal to 1.

Consider now the next element in the matrix 2.20, E(a(k)a(k � 1)). Using
Equation 2.21b, it can be written as

(2.31a)

and furthermore, applying Equation 2.26 as

(2.31b)

By the appliction of relation 2.28 to the sums 

 in Equation 2.31b, the latter simplifies to

(2.31c)

Finally, substituting the corresponding values for a(k), p1(a(k)), a(k � 1), and
p2(a(k � 1)) in Equation 2.31c, we get

(2.31d)

So that the element E(a(k)a(k � 1)) in the matrix 2.20 equals 0.

Using the same methodology as that used in calculations of elements E(a2(k)
and E(a(k)a(k � 1)) to calculate the remaining elements of the matrix 2.20, we
arrive at such a result that the elements on the diagonal of the matrix E(a(k)aT(k))
are ones and the remaining elements are zeros. That is, the matrix E(a(k)aT(k)) has
in this case, the following form:

E a2 k( )( ) 1–( )2 1
2
---⋅ 1( )2+

1
2
---⋅ 1= =

E a k( )a k 1–( )( ) … a k( )a k 1–( ) p a k( ) a k 1–( ) … a k M– 1+( ), ,,( )⋅
a k M– 1+( )

∑
a k 1–( )
∑

a k( )
∑=

E a k( )a k 1–( )( ) a k( )a k 1–( ) p1 a k( )( ) p2 a k 1–( )( )
a k 1–( )
∑

a k( )
∑ 

 

p3 a k 3–( )( )
a k 2–( )
∑ 

  … pM a k M– 1+( )( )
a k M– 1+( )

∑ 
 ⋅

=

p3 a k 3–( )( ) …, ,
a k 2–( )
∑

pM a k M– 1+( )( )
a k M– 1+( )

∑

E a k( )a k 1–( )( ) a k( )a k 1–( ) p1 a k( )( ) p2 a k 1–( )( )
a k 1–( )
∑

a k( )
∑

a k( ) p1 a k( )( )
a k( )
∑ 

  a k 1–( ) p2 a k 1–( )( )
a k 1–( )
∑ 

 

=

=

E a k( )a k 1–( )( ) 1–( )1
2
--- +1( )1

2
---+ 

  1–( )1
2
--- +1( )1

2
---+ 

  0 0⋅ 0= = =
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(2.32)

Consider now two sets of discrete-valued random variables �X1, X2, …, Xi� and
�Xi�1, Xi�2, …, Xn�, which are statistically independent, that is, 

(2.33)

take into account a function f(x) dependent upon the random variables X1, …, Xi,
Xi�1, …, Xn, and calculate the expected value of this function. Using Equations 2.21b
and 2.33 gives

(2.34a)

Furthermore, assuming in Equation 2.34a that the function f(x) can be expressed
as f(x)  �  f1(x1, …, xi) 
 f2(xi�1, …, xn), we can rewrite expression 2.34a as

(2.34b)

Example 2.3

Consider the following expression:

Note that the above expression is a scalar-valued one, although its com-
ponents are vectors and a matrix. Assume that these components represent two
sets of random variables. That is, the vector

E a k( ) aT k( )⋅( )

1 0 0 … 0

0 1 0 … 0

0 0 1 … 0


 
 
 
 

0 0 0 … 1

=

p x( ) p x1 x2 … xi x, i 1+ xi 2+ … xn, , ,, , ,( ) p1 x1 x2 … xi, , ,( ) p2 xi 1+ xi 2+ … xn, , ,( )⋅= =

E f x( )( ) … … f x( ) p1 x1 … xi, ,( ) p2 xi 1+ … x, n,( )⋅
Xn

∑
Xi 1+

∑
Xi

∑
X1

∑=

E f x( )( ) E f 1 x1 … xi, ,( ) f 2 xi 1+ … xn, ,( )( )

… f 1 x1 … xi, ,( ) p1 x1 … xi, ,( )
Xi

∑
X1

∑ 
  … f 2 xi 1+ … xn, ,( ) p2 xi 1+ … xn, ,( )

Xn

∑
Xi 1+

∑ 
 ⋅

E f 1 x1 … xi, ,( )( ) E f 2 xi 1+ … xn, ,( )( )⋅

=

=

=

xT A x⋅ ⋅ x1 x2 x3, ,[ ]
a11 a12 a13

a21 a22 a23

a31 a32 a33

x1

x2

x3

=
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represents a vector-valued random variable

 

Similarly, the matrix

 

represents a matrix-valued random variable

 

In what follows, we use the notational convention for random variables
with the use of small letters; that is, we treat the components of xT
A
x as the random
variables. Further, we want to calculate the expected value of this expression. So
we write

To proceed further, we need an extension of the property 2.16a to the multi-
variable case and discrete-valued random variables. Using 2.21b, we get such a
result, because, assuming f(x)  �  f1(x) �  � fm(x), in this expression, we have

(I)

x
x1

x2

x3

=

X
X 1

X 2

X 3

=

A
a11 a12 a13

a21 a22 a23

a31 a32 a33

=

A11 A12 A13

A21 A22 A23

A31 A32 A33

E xT A x⋅ ⋅( )
E x1a11 x2a21 x3a31+ +( )x1 x1a12 x2a22 x3a32+ +( )x2 x1a13 x2a23 x3a33+ +( )x3+ +( )
E x1x1a11 x2x1a21 x3x1a31+ + x1x2a12 x2x2a22 x3x2a32+ + x1x3a13 x2x3a23 x3x3a33+ ++ +( )

=
=

…

E f x( )( ) E f 1 x( ) … f m x( )+ +( ) … f 1 x( ) … f m x( )+ +( ) p x( )
xn

∑
x1

∑
… f 1 x( ) p x( ) … f m x( ) p x( )

xn

∑+ +
xn

∑ 
 

xn 1–

∑
x1

∑ …

… f 1 x( ) p x( ) … … f m x( ) p x( )
xn

∑
x1

∑+ +
xn

∑
x1

∑ E f 1 x( )( ) … E f m x( )( )+ +

= =

= =

= =
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Using the above property in the previous expression, we now get

Furthermore, we assume that the two sets of random variables, corresponding
to the matrix A and to the vector x, are statistically independent. This assumption,
according to relation 2.34b, allows us to rewrite the expression presented above in
the following form:

Note that each of the expected values E(a11), E(a21), …, E(a33), in the above
expression is a real number. Using the property expressed by Equation 2.16b, we
can write E(xT
A
x) in an equivalent form:

Applying the result regarding the expected value of a sum of functions derived
in this example, we can put the latter expression into the following form:

The conclusion from this example is that, when the sets of random variables
represented by the vector x and the matrix A are statistically independent, then we
can write 

Note that the result of Example 2.3 is not restricted to vectors x having three
elements and matrices A of order 3 � 3. This result can be generalized to any number
n of the elements of the vector x and order n � n of matrix A, accordingly.

E xT A x⋅ ⋅( ) E x1x1a11( ) E x2x1a21( ) E x3x1a31( ) E x1x2a12( ) E x2x2a22( )
E x3x2a32( ) E x1x3a13( ) E x2x3a23( ) E x3x3a33( )

+ + + +
+ + + +

=

E xT A x⋅ ⋅( ) E x1x1( )E a11( ) E x2x1( )E a21( ) E x3x1( )E a31( ) E x1x2( )E a12( )
E x2x2( )E a22( ) E x3x2( )E a32( ) E x1x3( )E a13( ) E x2x3( )E a23( ) E x3x3( )E a33( )

+ + +
+ + + + +

=

E xT A x⋅ ⋅( ) E x1E a11( )x1( ) E x2E a21( )x1( ) E x3E a31( )x1( ) … E x3E a33( )x3( )+ + + +=

E xT A x⋅ ⋅( ) E x1E a11( ) x2E a21( ) x3E a31( )+ +( )x1( ) …
E x1E a13( ) x2E a23( ) x3E a33( )+ +( )x3( )

+
+

=

E xT
E a11( )
E a21( )
E a31( )

x1 xT+
E a12( )
E a22( )
E a32( )

x2 xT+
E a13( )
E a23( )
E a33( )

x3⋅⋅⋅

 
 
 
 
 

=

E xT
E a11( ) E a12( ) E a13( )
E a21( ) E a22( ) E a23( )
E a31( ) E a32( ) E a33( )

x⋅ ⋅

 
 
 
 
 

E xT E A( ) x⋅ ⋅( )= =

E xT A x⋅ ⋅( ) E xT E A( ) x⋅ ⋅( )=
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Using in expression 2.18 the result given by Equation 2.32 and the property
derived in Example 2.3, generalized to n � M, we get

(2.35)

In derivation 2.35, we assumed that the transmitted symbols a(k), …, a(k � M
� 1) were statistically independent of the adjusted transversal filter coefficients c0(k),
…, cM�1(k). Further, both the sets were treated as the sets of random variables.
Moreover, as seen in the example below, when a set of random variables represented
by a vector y is statistically independent of a set of random variables represented
by a matrix A, then the set represented by the vector 

(2.36a)

where α1, …, αn and β1, …,  βn are some real numbers, is statistically independent
of the set represented by the matrix A as well. The transformation x � �y � �
given by Equation 2.36a, applied in Equation 2.35, had the following form:

(2.36b)

Example 2.4
Consider a set of random variables y1, …, yn, and assume that these variables are
statistically independent of random variables a11, a12, …, ann, being elements of a

E gL c k( )–( )T a k( ) aT k( ) gL c k( )–( )⋅ ⋅ ⋅( )

E gL c k( )–( )T E a k( ) aT k( )⋅( ) gL c k( )–( )⋅ ⋅( )

E gL c k( )–( )T

1 0 0 … 0

0 1 0 … 0


 
 
 
 

0 0 0 … 1

gL c k( )–( )⋅ ⋅

 
 
 
 
 
 

E gL c k( )–( )T gL c k( )–( )⋅( )

=

=

=

x �y �+

α1 0 … 0

0 α2
… 0


 
 
 

0 0 … αn

y1

y2



yn

β1

β2



βn

+⋅= =

x gL c k( )–

1– 0 … 0

0 1– … 0


 
 
 

0 0 … 1–

c0 k( )
c1 k( )



cM 1– k( )

g 0( )
g 1( )



g M 1–( )

+⋅ c k( ) gL+–= = =
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matrix A of order n � n. Furthermore, assume that the random variables, represented
by the vector y, are transformed using the relation 2.36a into a set, of which elements
form a vector x. We show that the resulting set is also statistically independent of
the set a11, a12, …, ann. To this end, we start with the relation

(I)

describing the statistical independence of the random variable sets, see Equation 2.33.
The objective is to find the probability density function pxa (x1, …, xn, a11, a12, …, ann).

In the expression above, py� and pa� are the probability density functions of
the random variable sets �y1, …, yn� and �a11, a12, …, ann�, respectively.

To proceed further, we need now to recall one result from the literature regarding
the transformation of random variables (see, for example Reference 69). Applying
this result in our case, we say that we have the set of random variables y1, …, yn,
a11, a12, …, ann with the joint probability density function pya(y1, …, yn, a11, a12, …,
ann); further, we transform this set of random variables into another set x1, …, xn,
a11, a12, …, ann related to the previous one by the functions

Moreover, we assume that the above functions are single-valued and invertible,
and have continuous partial derivatives as well. So there exist the inverse functions

We assume also that the inverse functions are single-valued with continuous
partial derivatives. Then, the joint probability density function pxa for the set x1, …,
xn, a11, a12, …, ann is given by the following expression:

pya y1 … yn a11 a12 … ann, , , , , ,( ) py y1 … yn, ,( ) pa a11 a12 … ann, , ,( )⋅=

x1  =



xn  =

 

a11  =

a12  =



ann  =

f 1 y1 … yn a11 a12 … ann, , , , , ,( )



f n y1 … yn a11 a12 … ann, , , , , ,( )
 

f 11 y1 … yn a11 a12 … ann, , , , , ,( )
f 12 y1 … yn a11 a12 … ann, , , , , ,( )



f nn y1 … yn a11 a12 … ann, , , , , ,( )

y1  =



yn  =

 

a11  =

a12  =



ann  =

f 1
1– x1 … xn a11 a12 … ann, , , , , ,( )



f n

1– x1 … xn a11 a12 … ann, , , , , ,( )
 

f 11
1– x1 … xn a11 a12 … ann, , , , , ,( )

f 12
1– x1 … xn a11 a12 … ann, , , , , ,( )



f nn

1– x1 … xn a11 a12 … ann, , , , , ,( )
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(II)

where �J� is the absolute value of the determinant of the Jacobian matrix of the
transformation considered,

Now, returning to Equation 2.36b and completing the vector x of random vari-
ables x1, …, xn with the remaining random variables a11, a12, …, ann, we get 

It follows from the above matrix equation that

pxa x1 … xn a11 a12 … ann, , , , , ,( )
pya y1 f 1

1– .( )= … yn f n
1– .( )= a11 f 11

1– .( )= a12 f 12
1– .( )= … ann f nn

1– .( )=, , , , , ,( ) J=

J

∂ f 1
1– .( )

∂x1

-----------------
∂ f 2

1– .( )
∂x1

----------------- … ∂ f nn
1– .( )

∂x1

-----------------

∂ f 1
1– .( )

∂x2

-----------------
∂ f 2

1– .( )
∂x2

----------------- … ∂ f nn
1– .( )

∂x2

-----------------


 
 
 


∂ f 1
1– .( )

∂ann

-----------------
∂ f 2

1– .( )
∂ann

----------------- … ∂ f nn
1– .( )

∂ann

-----------------

=

x1

x2



xn

a11

a12



ann

1– 0 … … … …  0

0 1– … … … …   

       


 
  1–    


 
   1   


 
    1  

      
  

0  … … … …  1

y1

y2



yn

a11

a12



ann

β1

β2



βn

0

0



0

   with+=

y1

y2



yn

c0 k( )
c1 k( )



cM 1– k( )

β1

β2



βn

,

g 0( )
g 1( )



g M 1–( )

   and  n M= = =

x1  =

x2  =



xn  =

 

a11  =

a12  =



ann  =

f 1
.( )  =

f 2
.( )  =



f n

.( )  =

 

f 11
.( )  =

f 12
.( )  =



f nn

.( )  =

y1– β1+

y2– β2+



yn– βn+

 

a11

a12



ann©2001 CRC Press LLC



 

Hence, the inverse functions are given by

Furthermore, applying the latter result for calculation of the Jacobian matrix of
the transformation, we arrive at

The determinant of this Jacobian matrix is given by

Using the above result in relation (II) of this example, we get

Substituting then pya given by (I) into the above expression, we arrive at

On the other hand, using the same procedure and expressions exploited earlier
to the transformation of random variables y1, …, yn into x1, …, xn, it can be easily
shown that

holds. And this result, applied in the previous equation, leads finally to

y1  =

y2  =



yn  =

 

a11  =

a12  =



ann  =

f 1
1– .( )  =

f 2
1– .( )  =



f n

1– .( )  =

 

f 11
1– .( )  =

f 12
1– .( )  =



f nn

1– .( )  =

x1– β1+

x2– β2+



xn– βn+

 

a11

a12



ann

J

1– 0 … … … …  0

0 1– … … … …   

       


 
  1–    


 
   1   


 
    1  

      O  

0  … … … …  1

1

2



n

 

 

 

nn n+

=

J 1–( )n 1( )nn 1–( )n= =

pxa x1 … xn a11 a12 … ann, , , , , ,( )
1–( )n p⋅ ya y1 f 1

1– .( )= … yn  f 1
1– .( )= a11 a12 … ann, , , , , , )(=

pxa x1 … xn a11 a12 … ann, , , , , ,( )
1–( )n p⋅ ya y1 f 1

1– .( )= … yn  f n
1– .( ) )= pa a( 11 a12 … ann, , , , , )(=

px x1 … xn, ,( ) 1–( )n py y1 f 1
1– .( )= … yn f n

1– .( )=, ,( )⋅=

pxa x1 … xn a11 a12 … ann, , , , , ,( ) px x1 … xn, ,( ) pa a11 a12 … ann, , ,( )=
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which expresses the statistical independence between the sets of random variables
�x1, …, xn� and �a11, a12, …, ann �.

Consider now the second component in Equation 2.17. The expected value of
aT(k) 
 (gL  � c(k))uT (k)gN in this component can be written as

(2.37a)

Multiplying the expressions in Equation 2.37a and then applying the property (I)
proved in Example 2.3, we get

(2.37b)

Furthermore, using the assumed statistical independence of the sets of random
variables �a(k), a(k � 1), …, a(k � M � 1)� and �c0(k), c1(k), …, cM �1(k)�, and the
methodology used in Example 2.4, one can show that the sets of random variables
�a(k), a(k � 1), …, a(k � M � 1)�  and �g(0) � c0(k), g(1) � c1(k), …, g(M � 1)
� cM�1(k)� are statistically independent as well. Applying this fact in Equation 2.37b
leads to

(2.37c)

Observe now that applying the statistical independence property of the trans-
mitted symbols a(k), …, a(k � M � 1 expressed by Equation 2.26, we can write
the expected values E(a2(k) 
 a(k � 1)), …, E(a(k)a(k � 1) … a2(k � M � 1)),
occurring in Equation 2.37c, in the form

(2.38a)

E aT k( ) gL c k( )–( )uT k( )gN⋅( )
E a k( ) g 0( ) c0 k( )–( ) … a k M– 1+( ) g M 1–( ) cM 1– k( ) )–( )+ +

g( 00 a k( )a k 1–( )g 0 1,( ) … a k( )a k 1–( )…
a k M– 1+( ) g 0 1 2 … M 1–, , , ,( )⋅ ⋅

+ + +⋅
(

) )

(=

E aT k( ) gL c k( )–( )uT k( )gN⋅( )
E a k( ) g 0( ) c0 k( )–( )g00( ) E a k( ) g 0( ) c0 k( )–( )a k( )a k 1–( )g 0 1,( )( ) …

E a k( ) g 0( ) c0 k( )–( )a k( )a k 1–( )…a k M– 1+( )g 0 1 2 … M 1–, , , ,( )( ) …
E a k M– 1+( ) g M 1–( ) cM 1– k( )–(( )a k( )a k 1–( ) …

a k M– 1+( )g 0 1 2 … M 1–, , , ,( ) )⋅

+ +
+ +

+

=

E aT k( ) gL c k( )–( )uT k( )gN⋅( )
g00E a k( )( )E g 0( ) c0 k( )–( ) g 0 1,( )E a2 k( )a k 1–( )( )E g 0( ) c0 k( )–( ) …

g 0 1 2 … M 1–, , , ,( )E a2 k( )a k 1–( )…a k M– 1+( )( ) E g 0( ) c0 k( )–( ) …
g 0 1 2 … M 1–, , , ,( )E a k( )a k 1–( )…a2 k M– 1+( )( )E g M 1–( ) cM 1– k( )–( )

+
+

⋅
+ +

+
=

E a2 k( )a k 1–( )( ) E a2 k( )( )E a k 1–( )( )=
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(2.38b)

(2.38c)

(2.38d)

(2.38e)

Moreover, note that the remaining expected values in Equation 2.37c, involving
single transmitted symbols, equal zeros. This is because

(2.39)

The result (2.39) can be also used in all the expressions 2.38 because they consist
of at least one multiplier of the form mentioned in Equation 2.39 times some other
components. Using Equation 2.39 in the expressions 2.38 leads to the conclusion
that all the latter expressions equal zeros. Furthermore, using this result and that
given by Equation 2.39 in Equation 2.37c allows us to say that

(2.40)

Thereby, the second component in Equation 2.17 is equal to zero.
It remains now to consider the third component of Equation 2.17. To this end,

note that the product can be expressed as

(2.41a)

E a2 k( )a k 1–( )…a k M– 1+( )( ) E a2 k( )( )E a k 1–( )( )…E a k M– 1+( )( )=

E a k 1–( )a k( )a k 1–( )( ) E a k( )( )E a2 k 1–( )( )=




E a k 1–( )a k( )a k 1–( )…a k M– 1+( )( ) E a k( )( )E a2 k 1–( )( )…E a k M– 1+( )( )=




E a k( )a k 1–( )…a2 k M– 1+( )( ) E a k( )( )E a k 1–( )( )…E a2 k M– 1+( )( )=




E a k( )( ) E a k 1–( )( ) … E a k M– 1+( )( ) 1–( ) 1
2
---⋅ 1( )+

1
2
---⋅ 0= = = = =

E aT k( ) gL c k( )–( )uT k( )gN⋅( ) 0=

uk
TgN( )2

uk
TgN( )2

g00 g 0 1,( )a k( )a k 1–( ) … g 0 1 … M 1–, , ,( )a k( )a k 1–( )…a k M– 1+( )+ + +( )
g00 g 0 1,( )a k( )a k 1–( ) … g 0 1 … M 1–, , ,( )a k( )a k 1–( )…a k M– 1+( )+ + +( )⋅

g00
2 g2 0 1 )a k( ) a( k 1–( ),( )2 g2 0 2,( ) a k( )a k 2–( )( )2 …

g2 M 2– M 1–,( ) a k M– 2+( )a k M– 1+( )( )2 …+

g2 0 1 2 … M 1–, , , ,( ) a k( )a k 1–( )…a k M– 1+( )( )2 2g00g 0 1,( )a k( )a k 1–( )

+

+ + …

2g00g 0 1 … M 1–, , ,( )a k( )a k 1–( )…a k M– 1+( )
2g 0 1,( )g 0 2,( )a2 k( )a k 1–( )a k 2–( ) …

2g 0 1 … M 1–, , ,( )g 0 1 … M, 2–, ,( )a2 k( )a2 k 1–( )…a k M– 1+( ) …

2g 0 1 … M 1–, , ,( )g 1 2 … M 1–, , ,( )a k( )a2 k 1–( )…a2 k M– 1+( )

+ +

+

+

+ +

+ +

+

=

=
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Hence, under the assumptions regarding the properties of the transmitted sym-
bols, and proceeding similarly as in considering the first and second components in
Equation 2.17, we get from Equation 2.41a

(2.41b)

By introducing a function RN, given by

(2.42a)

we can also write Equation 2.41b in the following form:

(2.42b)

Finally, returning to Equation 2.17 and introducing in it the results of Equations
2.35, 2.40, and 2.42b, we arrive at

(2.43)

To proceed further, let us now recall the rule for changing the transversal filter
coefficients given by Equation 2.2b. We rewrite this rule in the vector-form and with
the transmitted symbols a(k � i) instead of x(k � i), i � 0, …, M � 1, as

(2.44a)

Performing the substitution of k� for k � 1 in Equation 2.44a, and renaming
then k� as k, and substituting r(k) given by the expression (2.8), we obtain

(2.44b)

Substituting Equation 2.44b into Equation 2.43, we arrive at

(2.45a)

E uk
TgN( )2( )

g00
2 g2 0 1,( ) g2 0 2,( ) … g+ +

2
M 2– M 1–,( ) … g2 0 1 2 … M 1–, , , ,( )+ + + +=

RN g00
2 g2 0 1,( ) g2 0 2,( ) … g+ +

2
M 2– M 1–,( ) … g2 0 1 2 … M 1–, , , ,( )+ + + +=

E uk
TgN( )2( ) RN=

mes k( ) E gL c k( )–( )T gL c k( )–( )⋅( ) RN+=

c k 1+( ) c k( ) 2αr k( )+ a k( )⋅=

c k( ) c k 1–( ) 2α aT k 1–( ) gL c k 1–( )–( ) uT k 1–( ) gN v k 1–( )+⋅+⋅( ) a k 1–( )⋅+=

mes k( ) E gL c k 1–( )–( )T 2αaT k 1–( )aT k 1–( ) gL c k 1–( )–( )–
2αaT k 1–( )uT k 1–( ) gN 2αaT k 1–( )v k 1–( )–⋅–

(
)

gL c k 1–( )–( ) 2αa k 1–( )aT k 1–( ) gL c k 1–( )–( )–
2αa k 1–( )uT k 1–( ) gN 2αa k 1–( )v k 1–( )–⋅–
(

)
⋅

(

) RN+

=
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Note that the fact that the transpose of a sum of vectors is equal to the sum of
the vectors transposed was used in Equation 2.45a. Moreover, the fact that a number
multiplied by a vector (for example aT(k � 1)(gL � c(k � 1))aT(k � 1), being a
number multiplied by the vector aT(k � 1)) can be also represented in the reverse
order, that is, as this vector times the number applied.

Performing all the multiplications in Equation 2.45a, applying then the assump-
tions regarding the statistical independence of a and c, and furthermore exploiting
the fact of the binary form of the transmitted symbols, assuming values:  �1 and
�1 (which, among others, gives aT(k � 1) a(k � 1) � M), we obtain from Equation
2.45a the following result:

(2.45b)

Finally, using Equation 2.43 and the observation that 4α2MRN�RN �  (1 � 4α
� 4α2M)RN�  4αRN in Equation 2.45b leads to

(2.45c)

where mv and are the mean values of the random variables V(k � 1) and �V(k
� 1)�2, respectively, that is, 

(2.45d)

and

(2.45e)

With regard to mv and , using another terminology,69 it is worth noting that
they are the first and the second moment, respectively, of the random variable V(k
� 1). These moments are independent of the discrete time k, when the random
process �v(k � 1), v(k � 2), …�, of which outcomes we denote using small letters,
�v(k � 1), v(k � 2), …�, is a discrete-time wide-sense stationary (WSS) process.

Before defining the WSS random process, we would like to draw the reader’s
attention to the notational convention we will also use in what follows. That is, we
shall use small letters for denoting a random process, when this will not cause any
confusion. Note that the same terminological convention was already used in the
case of random variables.

Now returning to the definition of the WSS random process, we start with a
more obvious definition of stationarity, that is with the strict-sense stationarity
property. With regard to this property, we say24, 69 that a discrete-time random process
�X(k), X(k � 1), X(k � 2), …� is a strict-sense stationary process if the probability

mes k( ) E gL c k 1–( )–( )T gL c k 1–( )–( )⋅( ) 1 4α 4α2M+–( ) 4α2MRN

8α2Mg00E v k 1–( )( ) 4α2ME v k 1–( )( )2( ) RN

+
+ + +

⋅=

mes k( ) 1 4α 4α2M+–( )mes k 1–( ) 4αRN 8α2Mg00 mv 4α2Mm2v+⋅+ +=

m2v

mv E V k 1–( )( )=

m2v E V k 1–( )2( )=

m2v
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density function of each of the random variables X(k), X(k � 1), X(k � 2), … is
independent of time, and the joint probability density function of any set of the
above random variables depends only upon the time differences related with these
variables. That is, in the case of considering, for example, X(k) and X(k � 2), the
latter function depends only upon the difference ∆k � k � (k � 2) � 2, but not
upon k and/or k � �2. Further, we say that a discrete-time random process is a
wide-sense stationary (WSS) one when the first condition is satisfied, and the second
is satisfied at least for any set consisting of two random variables.

Note that the wide-sense stationarity implies that the mean value (expected value)
of the random process

(2.46a)

does not depend upon time, that is, it is a constant equal to the value of the first
moment. Furthermore, the so-called autocorrelation function (defined here for real-
valued processes), 

(2.46b)

is then a function of only one argument, being the time difference i �  k � (k � i).
To use the result (2.46b) in Equation 2.45e, observe first that, when i � 0, the

autocorrelation function is identical with the second moment of a random variable.
Therefore, m2x � Rxx(0) � const. That is, the fact that m2x � const follows from the
wide-sense stationarity property of the random process �X(k), X(k � 1), X(k � 2), …�.

Example 2.5
Consider the difference equation

where a and b are real numbers. Substituting a new variable k� � k � 1 into this
equation leads to

Now dropping the prime at k in the above relation, we get

Moreover, assume the starting point in the latter equation at k � 0. To solve this
equation, we can use, for example, the Z-transform method.10 What we need is the
following relation10:

where Z�
� means the one-sided Z transform (see Section 1.3). Applying this relation
in the previous equation, we get 

mx E X k( )( ) E X k 1–( )( ) E x k 2–( )( ) …= = = =

Rxx k k 1–,( ) E X k( )X k i–( )( ) Rxx i( )= =

x k( ) ax k 1–( ) b+=

x k' 1+( ) a k'( ) b+=

x k 1+( ) ax k( ) b+=

Z x k 1+( ){ } z Z x k( ){ } x 0( )–( )=

z X z( ) x 0( )–( ) Z ax k( ) b+{ } aX z( ) bz
z 1–
-----------+= =
©2001 CRC Press LLC



 

because Z�b�, or more precisely, Z�ε(k)b�, where ε(k) is the standard step function
(see Figure 1.5 in Section 1.1) equals bz�(z � 1). Moreover, the Z transform satisfies
the linearity property.

Solving the latter equation for X(z), we arrive at

Exploiting the Z transform pairs

and

in this equation, we get finally

The result of Example 2.5 will now help us to solve the difference equation
2.45c. This is the difference equation of the first order of the same form as that
which we solved in Example 2.5, with x(k) and x(k � 1) now identified with mes(k)
and mes(k � 1), respectively, and with a now equal to (1 � 4α  � 4α2M) and b
equal to 4αRN �8α2Mg00mv  � 4α2Mm2v , accordingly. Using the final result of
Example 2.5, we get the following solution of the difference Equation 2.45c:

(2.47)

where mes(0) is the initial value of mes(k) at the starting point k  � 0.
Let us draw a few conclusions from the solution given by Equation 2.47:

1. Note that the solution for the linear case, that is for a linear echo path,
can be obtained from Equation 2.47 by assuming in it RN �  0 and g00 �
0. We get then the following result:

(2.48a)

2. Observe from Equation 2.47 that mes(k) converges, that is, mes(k)
decreases when k �, when the condition

(2.48b)

X z( ) zx 0( )
z a–
------------- bz

z a–( ) z 1–( )
--------------------------------+ zx 0( )

z a–
-------------

b
1 a–
------------ 

z
z 1–
----------- b

1 a–
------------ 

z
z a–
-----------–+= =

1 ε k( ) z
z 1–
-----------↔⋅

ak z
z a–
-----------↔

x k( ) ak x 0( ) b
1 a–
------------– 

  b
1 a–
------------   k,+ 0 1 2 …, , ,= =

mes k( ) 1 4α– 4α2M+( )k
mes 0( )

4αRN 8α2Mg00mv 4α2Mm2v+ +
4α 1 αM–( )

-------------------------------------------------------------------------------– 
 

4αRN 8α2Mg00mv 4α2Mm2v+ +
4α 1 αM–( )

-------------------------------------------------------------------------------+

=

mesL k( ) 1 4α– 4α2M+( )k
mesL 0( )

αMm2v

1 αM–
------------------– 

  αMm2v

1 αM–
------------------+=

 →

1 4α– 4α2M+ 1<
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holds. Furthermore, note from Equation 2.48a that the same condition for
convergence is needed in the case of a linear echo path. Independently of
the case of linear or nonlinear environment, the condition for mesL(k) or
mes(k) to decrease is identical.

Solving inequality 2.48b for α assumed to be a positive real number,
we can express the convergence condition 2.48b equivalently as

(2.48c)

3. According to the theory of stochastic processes (see, for example, Chapter 3
of Reference 24), mes(k)  or mesL(k) can be interpreted as the power of
the stochastic process e(k) � ê(k), with e(k) as a nonlinear or linear echo
response, accordingly. We call this power for k � the residual echo
power. It follows from Equations 2.47 and 2.48a, respectively, that the
residual echo powers in the nonlinear and linear echo environments are
given by

(2.48d)

and

(2.48e)

accordingly. Comparing Equation 2.48d with Equation 2.48e, we observe
that mes(�) � mesL(�), that is, the residual echo power in the case of
nonlinear echo environment is greater than that in the case of linear echo
environment.

It is also worthwhile to compare the residual echo power with the
power of the received signal (together with the additive corrupting noise).
Because the latter power is nothing other than m2v, we get from Equations
2.48d and 2.48e

(2.48f)

and

(2.48g)

0 a
1
M
-----< <

 →

mes ∞( )
RN 2αMg00mv αMm2v+ +

1 αM–
----------------------------------------------------------------=

mesL ∞( )
αMm2v

1 αM–
------------------=

rre 10log
mes ∞( )

m2v

------------------- 
  10log

RN 2αMg00mv+
1 αM–( )m2v

--------------------------------------- αM
1 αM–
------------------+ 

 = =

rreL 10log
αM

1 αM–
------------------ 

 =
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respectively. In Equation 2.48f, rre means the relative residual echo power
in the nonlinear echo environment, and rreL in Equation 2.48g the similar
measure for the linear echo environment. Moreover, log in the above two
equations means the logarithm with a base equal to 10.

4. The rate of convergence of an adaptation algorithm can be defined, as in
Reference 46, by the coefficient v20, which is a number of iterations,
required to reduce the residual echo by 20 dB. To find this coefficient,
we must solve the following equation:

(2.48h)

On assuming

(2.48i)

in Equation 2.47 or

(2.48j)

in Equation 2.48a, and applying then Equations 2.47 and 2.48a in Equation
2.48h to solve for v20, we get

(2.48k)

in both the cases. Because v20 must be an integer, we take as this number
of iterations the nearest integer greater than or equal to the real number
provided by expression 2.48k.

The residual echo power expressed by mes(∞) or rre, and the rate of convergence,
v20, are two very important measures of performance of any echo canceller adaptation
algorithm. Between these measures, there is a fundamental tradeoff, for the class of
algorithms considered, in the sense that, when the speed of convergence is made
better, this has, in consequence, the worsening of the rest echo after adaptation. In
other words, when the value of v20 decreases this immediately causes the increase
of the value of mes(∞), as illustrated in Figure 2.21. 

In Figure 2.21, the functions v20 and mesL(∞) for the linear echo environment are
sketched versus the amplification coefficient α. From the curve for v20, it follows that
v20 decreases when the amplification coefficient α increases from the values near zero

to the value equal to . At the same time, as the curve for mesL(∞) shows, the value

10log
mes v20( )
mes 0( )

--------------------- 
  20dB–=

mes k( )
RN 2αMg00mv aMm2v+ +

1 αM–
---------------------------------------------------------------»

mesL k( )
αMm2v

1 αM–
------------------»

v20
2–

1 4α– 4α2M+( )log
--------------------------------------------------≅

1
2
--- 1

M
-----
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of the rest echo power increases. So really, we have to work with the tradeoff between
the parameters v20 and mesL(∞).

In the range of values of α � �, the functions v20(α) and mesL(�)(α) change

their values in opposite directions. In the next range of α � �, this is not the

case. Here the values of both functions increase when α increases. However, the
latter range is of no practical importance because mesL(�) � m2v holds in it (see
Figure 2.21).

The smallest value of the parameter v20 is approximately equal to 4, 61M (see
Figure 2.21). That is, the minimal value of v20 is proportional to the memory length
of the echo path. This result is, however, of no practical importance because the
values of α must be so chosen to be very small to ensure a proper attenuation of
mesL(�) with respect to m2v , at least at the level of  �20 dB. Furthermore, it can be
shown that the values of α are then of order 2�14 � 2�18. Moreover, for such very
small values of α, good approximations for mesL(�) given by expression 2.48e and
v20 given by expression 2.48k are

FIGURE 2.21 Sketch of the functions v20 and mesL(∞) versus the amplification coefficient α.
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α
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(2.48l)

and

(2.48m)

respectively.
The tradeoff between mesL(�) and v20 is evident when looking at Equations 2.48l

and 2.48m.
As already mentioned, when the condition 2.48i is satisfied, then the expression

for the parameter v20 is the same in both the cases of the linear and nonlinear echo

path environments. This expression is given by expression 2.48k and illustrated on

the left-hand side of Figure 2.21. The difference between the linear and nonlinear

echo paths occurs with regard to the second parameter, mesL(�). For the nonlinear

echo path, this parameter as a function of α, according to Equation 2.48d, is sketched

in Figure 2.22. Comparison of the curves mesL(�)(α)  of Figure 2.21 and mes(�)(α)

of Figure 2.22 shows that the latter starts with the value RN at α � 0, and increases

more rapidly than the curve mesL(�)(α) to achieve the value 2RN � (m2v  � 2g00mv)

for α � .

Consider now the influence of the echo path nonlinearities on the residual echo
power in more detail, and take for this purpose the relative measure rre, but with
the logarithm dropped for simplicity. From Equation 2.48f, we have then

(2.49a)

where

(2.49b)

and

(2.49c)

The component g2
00 is excluded in Equation 2.49b from RN given by Equation

2.42a because it is responsible for the transmitted pulse asymmetry. In what follows,
the influence of the pulse asymmetry is considered separately. Moreover, the relation

mesL ∞( )
m2v

--------------------- αM≅

v20
1.15

α
----------≅

1
2
--- 1

M
-----

rre'
R'N
m2v

-------- 1
1 αM–
------------------

g00
2

m2v

-------- 1
1 αM–
------------------

2g00mv

m2v

---------------- αM
1 αM–
------------------ αM

1 αM–
------------------+ + +=

R'N RN g00
2–=

rre 10 rre'( )log=
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between the newly introduced parameter rre� and the parameter rre is given by
Equation 2.49c.

Proceeding further, we can use Equation 2.49a to determine when the particular
component coming from the echo path nonlinearities (excluding the pulse asymmetry),
from the transmitted pulse asymmetry, and from the combined transmitted and received
pulse asymmetry can be neglected, compared to the component αM�(1 � αM) as
the relative residual echo power in the linear echo environment (see Equation 2.48g).
Hence, we can write the following inequalities.

1. To neglect the component related with the echo path nonlinearities
(excluding the pulse asymmetry), the inequality

(2.50a)

must be satisfied. Furthermore, one obtains

(2.50b)

from inequality 2.50a.

FIGURE 2.22 Sketch of the function mes(∞)(α) for the nonlinear echo path.

mes(∞)
2RN+(m2v+2g00mv)

RN

0

-(m2v+2g00mv)

1 1 1 α
2 M

R′N

m2v
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1 αM–
------------------ αM

1 αM–
------------------«

R′N

m2v
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2. The inequality

(2.51a)

must be satisfied to be able to neglect the component related with the
transmitted pulse asymmetry. Simplifying inequality 2.51a gives

(2.51b)

3. Because g00 as well as mv can be negative, we take in our consideration
the absolute value of the product g00 
 mv, and compare it with the power
of the signal v(k), m2v. Returning to Equation 2.49a, we need

(2.52a)

to be satisfied for neglect of the component related with the combined
transmitted and received pulse asymmetry. Furthermore, we get

(2.52b)

from inequality 2.52a.

The importance of inequalities 2.50b, 2.51b, and 2.52b lies in the fact they
determine quantitatively the conditions under which the echo path nonlinearities and
the signal asymmetry do not disturb the behavior of the linear echo canceller. When
these inequalities are not satisfied, then to obtain the required echo attenuation, one
needs to implement a nonlinear canceller.

Note that, when only the inequality 2.51b is violated, one has to implement only
one additional tap more compared to the linear echo canceller, to cancel the dc
component g00. Therefore the echo replica ê(k) in this case will assume the following
form:

(2.53a)

which is the modified expression 2.7b, where the dc component c00(k) for compen-
sation of g00 is added to it. This component represents, of course, the additional tap
just mentioned. Furthermore, subtracting ê(k) given by Equation 2.53a from e(k),
expressed by Equation 2.7a, and using Equation 2.8, we get as an expression for
the residual signal

g00
2

m2v

-------- 1
1 αM–
------------------ αM

1 αM–
------------------«

g00
2

m2v

-------- αM«

2 g00mv

m2v

------------------- αM
1 αM–
------------------ αM

1 αM–
------------------«

g00mv

m2v

---------------- 1
2
---«

ê k( ) aT k( ) c k( )⋅ 1+ coo k( )⋅=
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 (2.53b)

with u1(k) � 1 and u2(k) � �a(k)a(k � 1), a(k)a(k � 2), …, a(k � M � 2)a(k � M � 1),
…, a(k)a(k � 1) a(k � M � 1)	T, and with gN1 � g00 and gN2 � �g(0, 1), g(0, 2),
…, g(M � 2, M � 1), …, g(0, 1, 2, …, M – 1)	T. More generally, we assume here,
and in what follows, that the vector u1(k) represents that part of the vector u(k) that
is involved, as shown in the expression 2.53b, in the compensation of some nonlinear
part of the nonlinear echo. In Equation 2.53b, this is just the dc component (k)
gN1

�  1 
g00  � g00, which has to be compensated by the adapted dc component
(k)
c00(k) � 1
c00(k) � c00(k) generated by the nonlinear canceller. Moreover, the

vector u2(k) represents the remaining part of u(k), that is not involved in nonlinear
compensation. So we can write 

(2.53c)

to be consistent with the definition of u(k) given by expression 2.5b. Similarly, to
be consistent with the definition of gN expressed by 2.5d, we write

(2.53d)

That is, as in the case of u1(k) and u2(k), gN1 and gN2 are the corresponding parts
of the vector gN, which are and are not involved in nonlinear compensation, respec-
tively. Furthermore, note that, with the notation just introduced, the expression 2.9
for the difference between the echo signal and echo replica can be rewritten as

 (2.53e)

where the vector cN(k) can be viewed as an complement of the vector c(k) for an
adaptive linear transversal filter (see Equation 2.5e) to describe an adaptive nonlinear
transversal filter such that the linear part of the latter filter is described by the vector
of coefficients c(k) and its nonlinear part is described by the vector of coefficients
cN(k). The structure of the vector cN(k) is then

 (2.53f)

reflecting the structure of the vector gN (see Equation 2.5d). That is, the element
c00(k) in expression 2.53f corresponds to g00 in expression 2.5d, c01(k) in expression
2.53f to g(0, 1) in expression 2.5d, and so on. Eventually, as in, for example,
expression 2.53b, this vector does not consist of all the possible 2M  � M elements.
It can be shorter than the vector gN.

The nonlinear transversal filter just introduced, with only one additional tap
compared to the linear filter, for cancelling the dc component, is illustrated in Figure
2.23.

r k( ) aT k( ) gL c k( )–( )⋅ u1
T k( ) gN 1 c00 k( )–( )⋅ u2

T k( ) gN 2 v k( )+⋅++=

…

u1
T

u1
T

u k( ) u1
T k( ) u2

T k( ),[ ]T
=

gN gN 1
T gN 2

T,[ ]T
=

e k( ) ê k( )– aT k( ) gL c k( )–( ) u1
T k( ) gN 1 cN k( )–( ) u2
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cN k( ) c00 k( ) c01 k( ) c02 k( ) … cM 2 M 1–,– k( ) … c0 1 2 … M 1–, , , , k( ), , , , , ,[ ]T=
©2001 CRC Press LLC



 

Consider once again the difference between the echo signal and echo replica
given by Equations 2.9 or 2.53e, and take the expected value of it. That is, take into
account the following:

(2.54a)

Using the assumptions regarding the random vectors a(k), u(k), c(k), and extend-
ing the statistical independence property also to the random vector cN(k), we get
from Equation 2.54a

(2.54b)

And, for the time after adaptation, that is, substituting k �  � in Equation 2.54b,
we obtain

FIGURE 2.23 Adaptive nonlinear transversal filter with nonlinear part consisting of only
one tap c00(k) for cancelling adaptatively dc component.
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(2.54c)

Moreover, let us consider

(2.55a)

for the nonlinear canceller, similarly as before, in considering the corresponding
expression for the linear canceller. In Equation 2.55a, êN(k) means the echo replica
generated by the nonlinear canceller. So, the function mesN(k) is nothing other than
the function mes(k) for this canceller.

In what follows, we provide the main steps of the derivation leading to a similar
result as that given by Equation 2.43 for the linear canceller, without going into
details. First, after squaring the expression in Equation 2.55a and applying rule (I)
of Example 2.3, we get

(2.55b)

Because of the properties assumed regarding the random vectors a(k), u1(k),
u2(k), c(k), and cN(k), the fourth, fifth, and sixth components on the right-hand side
of Equation 2.55b are equal to zero. This simplifies Equation 2.55b to

(2.55c)

On the other hand, keeping in mind that the component E�2aT(k)(gL � c(k)) 

(k) 
 (gN1 � cN(k))� is equal to zero, and introducing new vectors

(2.55d)

(2.55e)

(2.55f)
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into Equations 2.55b or 2.55c, we can rewrite each of these expressions in the
following form:

(2.55g)

Note that the vectors ae(k), ce(k), and ge given by expressions 2.55d, 2.55e, and
2.55f are the extended vectors a(k), c(k), and gL, respectively. These extended vectors
are used to describe the behavior of the nonlinear canceller in a way similar to that
done in the case of the linear canceller.

Further, proceeding with the expression in Equation 2.55g in the same way as
in the case of the linear canceller, we simplify Equation 2.55g to the following form:

(2.55h)

which is the same as that in Equation 2.43 for the linear canceller. RN2 in Equation
2.55h is that part of RN given by Equation 2.42a, that is not intended to be cancelled
by the nonlinear canceller, while the remaining part of RN is that which the nonlinear
canceller tries to cancel. So, the following relation

(2.55i)

holds. For example, for the nonlinear canceller presented in Figure 1.23 with only
one additional tap for cancelling the dc component, we shall write

(2.56a)

and

(2.56b)

Moreover, in this case, the R′N defined by expression 2.49b will be equal to RN2,
that is, R′N � RN2 will hold.

In the adaptation process of the coefficients of a nonlinear transversal filter, we
use the same rule as that expressed by Equation 2.44a, however, modified now to
the form

(2.57a)

with the residual signal r(k) modified, as in Equation 2.53b, but put into the more
general form, valid not only for one nonlinear tap. Using the extended vectors ae(k),
ce(k), and ge, we get for r(k), 

mesN k( ) E ae
T k( ) ge ce k( )–( )( )2( ) E u2

T k( )gN 2( )2( )+=
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RN RN 1 RN 2+=

RN 1 g00
2=

RN 2 RN g00
2– g2 0 1,( ) g2 0 2,( ) …

g2 M 2– M 1–,( ) … g2 0 1 2 … M 1–, , , ,( )
+ +

+ + +
= =

ce k 1+( ) ce k( ) 2αr k( ) ae k( )⋅+=
©2001 CRC Press LLC



 

(2.57b)

Furthermore, applying Equations 2.57a and 2.57b in Equation 2.55h and pro-
ceeding as in the case of the linear canceller (see Equations 2.44b and 2.45a), we
get finally

(2.58a)

which can be also put into the following form:

(2.58b)

In Equations 2.58a and 2.58b, MT means the number of taps of the nonlinear
canceller. For example, for the nonlinear transversal filter of Figure 2.23, this number
is equal to M�1, that is, M linear taps plus one nonlinear, for cancelling the dc
component. Furthermore,  is an indicator of whether the element g00 is an element
of the vector ge or not. When the element g00 is incorporated into the vector ge, then

 � 0; otherwise,  � 1. Terms mv and m2v in Equation 2.58b are defined by
expressions 2.45d and 2.45e, respectively.

Equation 2.58b is the difference equation of the first order, so its solution has
the same form as the solution of Equation 2.45c. We get for Equation 2.58b

(2.59)

Performing an analysis of the solution given by Equation 2.59, similar to the
case of the linear canceller, we conclude:

1. The convergence condition 2.48c is now slightly modified to

(2.60a)

That is, in place of M, we have now MT.
2. The residual echo power is given by
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+
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=
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+
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=
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(2.60b)

Moreover, note that applying the indicator δg00
 in Equation 2.54c, we can

rewrite this equation in a more general form as

(2.61)

where δg00
 means the inverse of δg00

 (that is, δg00
 � 1 when δg00

 � 0, and
δg00

 � 0 when δg00
 � 1).

After derivation of the corresponding relations for the nonlinear canceller as
well, we now can make some comparisons, and from them draw conclusions. First,
observe from Equation 2.54c or 2.61 that application of the nonlinear tap for can-
celling the dc component in the nonlinear echo enables reduction of the mean value
of the residual echo signal. Furthermore, vanishing E�(e � ê)(�)� is possible. This
takes place when the stochastic processes represented by the scalar-valued set �v(k)�
and vector-valued set �a(k)� are jointly wide-sense stationary, which means that the
vector p �  E�v(k)
a(k)� is independent of the discrete-time variable k. Moreover,
the latter vector must be the zero vector, that is, p � 0. Then, as shown in reference
40, the coefficients of the adaptive transversal filter go, in the mean value sense,
into the corresponding coefficient values describing the echo path response. Among
others, E�c00(�)� g00, causing E�(e � ê)(�)� 0.

With the result of Reference 40 in mind, we take this opportunity to comment
on the relations 2.3b, 2.3c, and 2.3d. In describing the adaptation process more
precisely, understand the results presented by the above relations in the mean value
sense and be aware of the fact that the relations hold only when the vector p, just
defined, is the zero vector. When this is not the case, E�(e � ê)(k)� does not go
exactly to zero as k �. Similarly ci(k), i � 0, …, Me � 1, do not go exactly to
gi as well as ci(k), i � Me, do not go to zero values as k �. For more details
regarding the behavior of the adaptation process from the probabilistic point of view,
see Reference 40.

Looking at Equation 2.60b, we see that application of the tap c00(k) also causes
reduction of the residual echo power, that is, of the variance of (e � ê)(k). More
precisely, when c00(k) is applied, then the second component on the right-hand side
of Equation 2.60b vanishes, and the first component in this equation is smaller
because RN2 does not comprise then g2

00. However, if after applying the tap c00(k),
the first component in Equation 2.60b is still larger than the third one, it is necessary
to identify the largest components of RN2 among the remaining g2(0, 1), g2(0, 2), …,
g2(M � 2, M � 1), …, g2(0, 1, 2, …, M � 1), and reconstruct the nonlinear canceller
by adding the corresponding nonlinear taps into it for cancellation of the identified
components. The objective of such a procedure is to achieve such a RN2, say R′N2 ,
which satisfies the inequality

mesN ∞( )
RN 2

1 αMT–
---------------------

2δg00
αMT g00mv

1 αMT–
-------------------------------------

αMT M2v

1 αMT–
---------------------+ +=

E e ê–( ) ∞( )( )
g00 for a linear canceller

g00 δ00– E c00 ∞( )( ) for a nonliner canceller⋅



=

 →  →

 →
 →
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(2.62a)

Compare this inequality with inequality 2.50b.

Finally, note from Equation 2.60b that, by obtaining inequality 2.62a, we arrive
with the residual echo power at the irreducible limit given by

(2.62b)

Proceeding similarly as in Equations 2.48h to k with the solution given by
Equation 2.59, we get the expression:

(2.63)

for the rate of convergence of the coefficient adaptation of the nonlinear transversal
filter.

Comparing the expressions 2.62b with 2.48e and 2.63 with 2.48k, we see that
the corresponding expressions are identical in both the cases of the nonlinear can-
celler and of the linear canceller working in the linear echo environment, except
that, in the first case, we have MT in the expressions in place of M. It follows from
this that the curves presented in Figure 2.21 are also valid for the nonlinear canceller,
with the parameter M replaced by MT. Hence, because MT  � M� number of
additional nonlinear taps, we conclude immediately from Figure 2.21 that the addi-
tion of nonlinear taps worsens slightly the rate of convergence of the adaptation
process. Moreover, it also increases the value of the irreducible limit for the residual
echo power because

holds for .

Example 2.6

Let a nonlinear echo path have the memory length of Me � 3. We choose three
linear taps for cancellation of this echo. That is, we have Mê � Me� M � 3 in our
case. Furthermore, assume that the transmitted pulse asymmetry is so large in our case
that inequality 2.51b is violated for a chosen α, 0 
 α  
 . Hence, we decide to use
a nonlinear canceller with a tap c00(k) for cancellation of the dc component. Further
analysis shows, however, that the value of RN2 � g2(0, 1) � g2(0, 2) � g2(1, 2) �
g2(0, 1, 2), is still not acceptable.

R'N 2 αMT m2v«

αMT m2v

1 αMT–
---------------------

v20N
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1 4α– 4α2MT+( )log
-----------------------------------------------------≅

Mαm2v

1 Mα–
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MT αm2v

1 MT α–
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0 α 1
MT
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1
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By the way, according to the result of Example 1.5, the RN2 given above com-
prises all possible components when M equals 3. For instance, RN2 here cannot
comprise such a component as g2(0, 1, 2, 3).

Assume g2(0, 1) and g2(0, 2) are the largest values in the expression for RN2

given above. Eliminating them from RN2 gives R�N2, which satisfies inequality 2.62a

for MT  � 3 � 1 � 2 � 6, and for a chosen α, 0 
 α  
  .

Finally, we check the correctness of our choice for α. For instance, to fulfill the
requirement of the difference of 20 dB between the power levels of the residual
echo signal and received signal postulated at the end of Section 2.1, we should
satisfy the following inequality:

(see expression 2.62b).
Solving the above inequality for MT  � 6 gives α 
 1.684 
 10�3. Thus, when

the chosen value of α was greater than 1.684 
 10 � 3, the whole procedure for RN2

(without the component g2
00) must be repeated. Note that checking inequality 2.51b

would be superfluous in such a case.
A nonlinear transversal filter of this example with three nonlinear taps for

cancelling g00, g(0, 1), and g(0, 2) is shown in Figure 2.24.
The method of nonlinear echo cancellation with the use of the nonlinear trans-

versal filter seems to be the simplest one. However, as mentioned at the beginning
of this section, there are other approaches, which are more or less equivalent to the
method using the nonlinear transversal filter based on the discrete-time Volterra
series. These approaches represent some alternatives for the latter, as sometimes
stressed in the literature.66 Moreover, they seem to be better suited to the work in
environments incorporating strong nonlinearities. Some of these methods have been
listed as, for example, the method using the memory compensation principle, 51 and
the approach applying the canonical piecewise-linear function description of a non-
linear echo path, etc.

The results of Section 1.12 regarding the approximations of the response of
nonlinear systems possessing the property of fading memory can be also used in
modeling the nonlinear echo, which possesses the property mentioned above. Three
structures of nonlinear echo cancellers, based on the approximations of Section 1.12,
are presented in Figures 2.25, 2.26, and 2.27. To be consistent with the notation
introduced in Section 1.12 for the corresponding approximators, the same notation
regarding d1, …, dm in Figure 2.25, β1, …, βm, σ�, α1, …, αm in Figure 2.26, and
�1, …, �m, the norm �
�, α1, …, αm in Figure 2.27 is used. That is, this notation is
consistent with that in Figure 1.54, in Figure 1.56, and in Figure 1.58, respectively.

To make the nonlinear echo canceller structures of Figures 2.25, 2.26, and 2.27
adaptive, one allows the coefficients of the linear transversal filters in these structures
to be subject to the change in an adaptation process. Also, one allows the other
parameters — d1, …, dm in the structure of Figure 2.25, β1, …, βm, α1, …, αm in the
structure of Figure 2.26, and the elements of vectors �1, …,  �m, the amplification

1
6
---

mesN ∞( )
m2v

----------------------
αMT

1 αMT–
--------------------- 1

100
--------- 20dB–( )≤≅
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FIGURE 2.24 Nonlinear transversal filter with the memory length M � 3 and three nonlinear
taps c00(k), c01(k), and c02(k).

FIGURE 2.25 Nonlinear echo canceller structure based on the lattice map approximator.
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coefficients α1, …, αm in the structure of Figure 2.27 to be subject to the change.
Of course, one can restrict oneself to adapting the coefficients of the linear transversal
filters only, letting the other parameters be unchangeable, or one can find another
adaptation strategy. Moreover, the algorithm for adaptation of the coefficients and
parameters just mentioned can be the stochastic iteration algorithm used in the
analysis of the nonlinear transversal filter.

Note that the function mes(k), as defined in Equation 2.13, has the following
form:

(2.64a)

for the nonlinear echo canceller based on the lattice map approximator in Figure 2.25, 

 (2.64b)

for the nonlinear echo canceller based on the sigmoid function approximator in
Figure 2.26, and

(2.64c)

FIGURE 2.26 Nonlinear echo canceller structure based on the sigmoid function approxi-
mator.
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for the nonlinear echo canceller based on the radial basis function approximator in
Figure 2.27. In Equation 2.64a, the lattice map L, the matrix C, and the vector d
are as defined in Equation 1.304a. Similarly, the function σ�, the row vectors �j,
j � 1, …, m, and the coefficients αj and βj, j � 1, …, m in Equation 2.64b are as
defined in Equation 1.309a. Moreover, the radial function R�, the matrix Y, the
vectors �s, s � 1, …, m, and the coefficients αs, s � 1, …, m in Equation 2.64c are
as defined in Equation 1.312a. The vector (Pax)(k) occurring in Equations 1.304a,
1.309a, and 1.312a is equal to the vector of the transmitted data symbols a(k) in the
expressions 2.64a, 2.64b, and 2.64c. This is so because we assumed here the param-
eter a, being the index of Pa given by Equation 1.304b, equal to M � 1.

The expressions for the function mes(k) for the linear echo canceller, Equation
2.43, or for the nonlinear echo canceller based on the nonlinear transversal filter,
Equation 2.55h, are the quadratic functions of the elements of the vectors c(k) or
ce(k), respectively. These functions possess only one minimum, and the adaptation
of the transversal filter coefficients collected in the vector c(k) or ce(k) leads to
achieving this minimum.

In contrast to this, a problem exists in rearranging the expressions 2.64a, 2.64b,
and 2.64c in such a way that leads to getting similar expressions as 2.43 and 2.55h.
Generally, this is impossible. Moreover, the nonlinear echo cancellers of the type
presented in Figures 2.25, 2.26, and 2.27 can possess the functions mes(k) with more
than one minimum. Such a problem was reported in Reference 66 for the nonlinear
echo cancellers based on the canonical piecewise-linear function description. How-
ever, the convergence of the adaptation algorithm used to a local minimum was also
shown in Reference 66.

FIGURE 2.27 Nonlinear echo canceller structure based on the radial basis function approx-
imator.
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2.3 INTERLEAVED AND PASSBAND NONLINEAR 
TRANSVERSAL FILTERS

Timing recovery in the digital transmission imposes that the sampling rate at the
echo canceller output is higher than the sampling rate at its input. The echo cancellers
in form of the so-called interleaved linear transversal filters24,40 are a suitable solution
to work in the environment described above. In this section, we consider, the impact
of the constraint regarding the difference between the echo canceller input and output
sampling rates when a nonlinear transversal filter as the echo canceller must be
applied to cancel the nonlinear echo.

Also addressed in this section are nonlinear transversal filters working in the
passband. In fact, the nonlinear transversal filter discussed in the previous section
was applied as a nonlinear canceller in the baseband. This application is typical for
transmission in the digital subscriber loop. On the other hand, in the voiceband data
transmission the carrier frequency is used, so we have to work with transmission in
the passband.

Returning to the first topic, consider once again Equation 2.1a describing the
echo replica generated by a canceller in the form of a linear transversal filter, and
rewrite this equation in the following form:

(2.65a)

where, in place of x(k � i) stand now the transmitted data symbols a(k � i), and
Mê is simply denoted by M, that is Mê � M. Furthermore, assume that the sampling
rate at the canceller output is R times larger than at its input. In other words, when
T means the interval between the transmitter data symbols, of which reciprocal is
equal to the sampling rate at the canceller input, then the sampling interval at the
canceller output equals T�R. Showing explicitly the sampling interval in Equation
2.65a, we get

(2.65b)

with the memory length of the filter impulse response equal to M�� (M � 1) R �
1 instead of M as it would be in the case of the sampling rate 1 �T. This point is
illustrated in more detail in Figure 2.28.

Observe now that the components in Equation 2.65b can be rearranged in such
a way that Equation 2.65b can be rewritten in the form

ê k( ) c i( )a k i–( )
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T
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(2.65c)

when, additionally, the components  are added. These addi-

tional components are, of course, equal to zero when the memory length of the filter
impulse response is exactly equal to (M � 1)R � 1 at the sampling rate R�T.

Performing the multiplications in the parentheses of c(

) and a(

) in Equation
2.65c, and introducing a new discrete time variable k� satisfying the relation

, we obtain

 (2.65d)

It follows from Equation 2.65d that there are R phases, , between
the neighboring time points k�T and (k��1)T, when the higher sampling rate R�T is
applied. Let us write down explicitly the values of the echo replica ê, sampled at
the rate R�T, that follow from Equation 2.65d. We then have

(2.65e)
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ê k'T( ) c i
l
R
---+ 

  T 
  a k' i– 0 l–

R
----------+ 

  T 
  , for n

i 0=

M 1–

∑
l 0=

R 1–

∑ 0= =
 
 
 

…
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The form of ê given by Equation 2.65e for the phase 0 �R with R � 4 and M � 6
is illustrated in Figure 2.29. Note also that, for each of the remaining phases

 we arrive at a similar structure as that shown in Figure 2.29 for the

phase 0�R with R � 4.
Before going further, we make a remark regarding the values of samples of the

impulse response of a transversal filter. For this purpose, consider again Equation
2.65a, which is, in fact, a sampled version of the convolution-integral used in
description of linear continuous-time systems. In another form, showing the sam-
pling period, this equation can be rewritten as

(2.66a)

where  stands for the filter impulse response sample at the time point iT.

FIGURE 2.28 Determining the impulse response memory length of a linear filter at sampling
rate 1�T (a), and at sampling rate R�T (b).
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The symbol of “approximately equal to” points out the fact that the expression
given by Equation 2.66a approximates the value of the corresponding convolution-
integral. And, in this context, note that the above interpretation corresponds with
the application considered because the echo path represents in fact an analog system.
That is, its description is through a convolution-integral, which is replicated in an
echo canceller.

Assuming the increase of time ∆(iT) in Equation 2.66a is simply equal to the
sampling period T, we get

2
FIGURE 2.29 Illustration of possible means of obtaining the echo replica value given by
Equation 2.65e with the use of R convolution summations (“conv sum” blocks in the figure)
applying the samples achieved at the sampling rate 1�T.
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(2.66b)

And comparison of Equation 2.66b with 2.65a reveals that

(2.66c)

holds. That is, the samples of the filter impulse response from Equation 2.65a
incorporate the sampling rate.

Consider again expression 2.65e for the echo replica samples at the corresponding

phases , and consider, in more detail, the calculation of the sample for

the phase , illustrated in Figure 2.29 for R � 4. First, note from Figure 2.29 that

the value of ê(k�T) is a sum of values of four convolution-summations realized with

the use of the transversal filters with the coefficients taken from the impulse response

c(k) sampled at the rate R�T. See, however, that the coefficients of the above four

transversal filters are so chosen that only each fourth is taken and a shift of T�R occurs

between the neighboring sets of coefficients. Because the coefficients come from the

impulse response c(k) sampled at the rate R�T, they incorporate the sampling interval

T�R, That is, according to Equation 2.66c, we have .

Fur the rmore ,  obse rve  tha t  the  va lues  o f  the  t r ansmi t t ed  da ta

, involved in the convolution-summations in Figure

2.29 differ from the data , and  for

the corresponding values of i. This is so because the values of the transmitted data

a(nT), n any integer, do not change only in the interval from nT to (n � 1)T. And

because we want to use only one unique set of the transmitted data in the expression

for ê(k�T), we choose for our further approximation only one phase from all the four

phases presented in Figure 2.29. It is convenient to choose the phase  identical

with the phase  at the argument of ; see expressions

2.65d and 2.65e, which, in other words, means choosing l � n � 0.
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Making the choice described above, we must, however, incorporate the sampling
period T instead of T�4 because we decided to apply only one transversal filter. To
express this mathematically, we use the following approximation:

(2.67a)

for the case shown in Figure 2.29, or, more generally,

(2.67b)

for the case of R phases. In Equations 2.67a and 2.67b, the coefficients c# follow
from a general expression

(2.67c)

by substituting l � 0 in it.
Proceeding similarly with the remaining phases , as in the case of

the phase 0�R, assuming l � n in all the remaining Equations 2.65e, and applying

a similar approximation as in Equations 2.67a, we can write the counterparts of

Equation 2.67b for other phases as

(2.67d)
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ê k'T( ) c# i
0
R
---+ 

  T 
  a k' i–( ) 0

R
---+ 

  T 
 

i 0=

M 1–

∑≅

c# i
l
R
---+ 

  T 
  c̃ i

l
R
---+ 

  T 
  T⋅ c̃ i

l
R
---+ 

  T 
  T

R
--- R Rc i

l
R
---+ 

  T 
  ,0 l R 1–≤ ≤≅⋅= =

1
R
--- … R 1–

R
------------, ,
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Finally, putting Equations 2.67b and 2.67d into one equation, we get

(2.68a)

Furthermore, note that the values of the transmitted data symbols a�((k� � i) �
l�R)T� in Equation 2.68a do not change when the parameter l changes from l � 0
to l � R � 1 and (k� � i) is fixed. That is, we can write

(2.68b)

for a fixed (k� � i) and 0 	 l 	 R �1. Further, substituting Equation 2.68b into
2.68a gives

(2.68c)

Moreover, assume for the purpose of this derivation the following notations:

(2.69a)

and

(2.69b)

Forgetting that Equation 2.68c represents only an approximation, that is writing
the “equal” symbol instead of “approximately equal to” and using Equations 2.69a
and 2.69b, we can rewrite Equation 2.68c in the form

(2.70a)
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or, equivalently, by dropping the interval T, as

(2.70b)

where k� refers to sampling with the rate 1�T.

Figure 2.30 illustrates the realization of the response given by Equation 2.65b with
the use of the so-called interleaved transversal filters described by Equation 2.70b.

In Figure 2.30, the case is illustrated in which the output sampling rate of the

canceller is four times larger than at its input. The linear transversal filters are given

numbers corresponding to the values of the parameter l � 0, 1, 2, and 3, respectively.

The structure of these filters is the same as that in Figure 2.11. Moreover, they are

made adaptive, that is, the filter coefficients cl(i), i � 0, 1, …, M � 1 are adapted

in the adaptation process and, as it follows from the figure, they are adapted sepa-

rately for each filter, no. 0, no. 1, no. 2, and no. 3. In other words, each of the

transversal filters in Figure 2.30 adapts to the echo impulse response at the rate equal

to the transmitted data rate, but with a different phase out of the number R possible

phases . The filters converge and cancel independently. The filter

output streams are recombined into a single data stream e(k) � ê(k) � v(k) at the

sampling rate .

It follows from the above considerations that the solution of the problem with
the use of the interleaved transversal filters, as illustrated in Figure 2.30 for the case

FIGURE 2.30 Interleaved adaptive linear transversal filters for achieving larger output sam-
pling than that at the input (here four times larger, R � 4).
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of four phases, can be viewed as approximating the echo canceller response sepa-
rately for each phase, and quite independently of the other phases; this fact is
expressed by Equations 2.67b and 2.67d. Furthermore, the values of the echo replica
at the corresponding phases are obtained using the sampling at the same rate as that
at the canceller input.

Note that, in the case of nonlinear echo and its cancellation with the use of the
nonlinear transversal filter, we can apply the same argument stated above of approx-
imating independently for each phase. More precisely, when we use the notation of
Equation 2.53e for expressing the nonlinear echo replica ê(k), we arrive at the
following counterparts of Equations 2.67b and 2.67d:

(2.71a)

(2.71b)

…

(2.71c)

where the corresponding vectors a�, c#�, u1�, and c#
N� now assume the form:

(2.71d)

 (2.71e)

(2.71f)
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and

(2.71g)

As before, l � 0, 1, …, R � 1 in Equations 2.71d to g correspond to the phases

, respectively. Moreover, k� and T refer to the sampling of the trans-

mitted data symbols. The vector  corresponds to the vector a(k) defined

by expression 2.5a, and the vector to the vector c(k) defined by expres-

sion 2.5e, with the # superscript to underline the fact of its occurrence in the

approximations 2.71a to c. Also, note that the elements of the vector 

depend upon the time; that is, they are put into the form suitable for performing an

adaptation analysis. The operations U1 and CN in Equations 2.71f and 2.71g, respec-

tively, are operations of filtering those elements of given vectors, which a particular

nonlinear echo canceller structure takes into account. The resulting vectors, obtained

through performing the filtering operations U1 and CN contain only elements involved

in the description of a nonlinear canceller constructed. Furthermore, note that the

vectors  and correspond to the vectors u1(k) and cN(k),

used for the first time in Equation 2.53b and Equation 2.53e, respectively. These

vectors applied in Equations 2.71a to c are defined separately for each of the phases

.

Putting Equations 2.71a to c into one equation, taking into account relation
2.68b, and for simplicity dropping the sampling interval T, we get

 (2.72a)

Using then a similar notation as that used in Equations 2.69a and 2.69b to the
vectors occurring in Equation 2.72a, that is, denoting

(2.72b)
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(2.72c)

(2.72d)

(2.72e)

(2.72f)

we can rewrite Equation 2.72a as

(2.72g)

In Equation 2.72g, the symbol of “equality” is used in place of the symbol of
“approximately equal to.” We thereby ignore the fact that Equation 2.72g represents
only an approximation.

Equation 2.72g is illustrated in Figure 2.31; in this figure, the nonlinear echo
canceller with the use of interleaved nonlinear transversal filters is presented for the
case of four (R � 4) times higher sampling rate at the canceller output than at its
input.

Note from Figure 2.31 that the structure of the nonlinear echo canceller using
nonlinear transversal filters is, in principle, the same as that in Figure 2.30, exploiting

FIGURE 2.31 Nonlinear echo canceller consisting of interleaved adaptive nonlinear trans-
versal filters for achieving higher output sampling than that at the input (here four times
higher, R � 4).
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linear transversal filters. The only difference lies in the fact that we have here
nonlinear transversal filters in place of linear ones.

Example 2.7

Let us assume that the interleaved adaptive nonlinear transversal filters of Figure
2.31 have the structure presented in Figure 2.24. For this structure, we illustrate here
the form of the vectors al(k�), c l(k�), u1,l(k�), and cN, l (k�). Keeping in mind Equations
2.71d to g and Equations 2.72c to f, we get

and

Note that the form of the vectors al(k�) and u1,l(k�) given above is simplified
further using the relation 2.68b.

To start with passband echo cancellers, the second topic of this section, we first
must introduce some new notions. We begin with the notion of an analytic signal,
defining it as such a signal that has only positive frequency components in its
spectrum. To get such a signal from a real-valued one, we need to use the so-called
Hilbert transform filter,40 or Hilbert transformer,69 a linear filter with transfer function
in the form

(2.73a)

where the “sign of” function, sgn(ω), is given by
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(2.73b)

It follows from expressions 2.73a and 2.73b that the magnitude of H(jω), 
H(jω)


� 1, and the phase of H(jω), , radians for positive frequencies (ω � 0)

and  radians for negative frequencies (ω 
 0). In other words, we can

say that the Hilbert transformer is in principle, a 90° phase shifter; this is illustrated

in Figure 2.32.

Now let us take into account a real-valued continuous-time signal x(t), and let
the Fourier transform (see the defining Equation 1.31a) of this signal be X(jω).
Moreover, take into account a signal obtained by passing the signal x(t) through the
Hilbert transform filter; the Fourier transform of this signal will be X(jω)H(jω) �
�jsgn(ω)X(jω). Furthermore, note that the resulting signal will be represented in
the time-domain by a real-valued signal because the impulse response of the Hilbert
transform filter is real-valued and given by

(2.74)

where t stands for the continuous time. With regard to the form of h(t) see, for
example, Reference 69 for more details. Thus, the product X(jω)H(jω) corresponding
to the convolution-integral in the time-domain will give as a result a real-valued
signal in this domain. We will denote this signal by xH(t).

FIGURE 2.32 Sketch of the transfer function magnitude (a), and the transfer function phase
(b) for the Hilbert transform filter.

ω( )sgn
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Further, having defined the signal xH(t) as the resulting signal of passing a real-
valued signal x(t) through the Hilbert transform filter, let us construct a complex-
valued signal xa(t)  as follows

(2.75a)

where the signals x(t) and xH(t), according to the previous considerations, have the
Fourier transforms denoted by X(jω) and X(jω)H(jω), respectively. The Fourier
transform of the signal xa(t) can be expressed as

(2.75b)

Using expression 2.73a in 2.75b gives

(2.75c)

The resulting expressions, 2.75c show that the signal xa(t) given by Equation
2.75a is an analytic signal. According to our definition, it possesses only positive
frequency components in its spectrum. Moreover, it follows from Equation 2.75a
that the analytic signal is a complex-valued signal. We see also that this signal has
an asymmetrical spectrum, in contrast to real-valued signals obeying the relation
X(�jω) � X*(jω), where the asterisk means a complex-conjugate. That is, we have

X(�jω)
 � 
X*(jω))
 � 
X(jω)
, ω � 0, in the latter case, as opposed to the previous
case, in which 
Xa(jω)
 � 
Xa(�jω)
 � 0, ω � 0 holds. The realization of an analytic
signal is through the use of the Hilbert transform filter providing the imaginary part
of this signal. Knowing that the product X(jω)H(jω) corresponds to the convolution-
integral in the time-domain and using expression 2.74, we can write

(2.76)

Relation 2.75b can be also interpreted as getting an analytic signal (being a
complex-valued signal) by passing a real-valued signal through a filter with the
complex-valued impulse response. Observe from relation 2.75b that the Fourier
transform of this complex-valued impulse response is equal to 1 � jH(jω); so it
follows that the impulse response itself, using expression 2.74, is given by .

Assume now that the real-valued signal x(t) taken into account in our consider-
ations regarding the notion of the analytic signal is a bandpass signal. That is, x(t)
is a signal of which spectrum (the magnitude of its Fourier transform) is concentrated

xa t( ) x t( ) jxH t( )+=

Xa jω( ) X jω( ) jXH jω( )+ X jω( ) jX jω( )H jω( )+= =
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
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around some angular frequency ωc, as illustrated in Figure 2.33. Then consider the
analytic signal xa(t) resulting from a real-valued bandpass signal x(t), of which
spectrum is shown in Figure 2.33. It follows from expression 2.75c that this signal
is a bandpass signal as well. Its spectrum is shown in Figure 2.34. This spectrum is
asymmetrical (with respect to the “magnitude” axis), as previously mentioned.
Moreover, the spectrum values at the corresponding frequencies are two times greater
than those in Figure 2.33, according to relation 2.75c.

In telecommunications,24,69 a very popular means of representing bandpass sig-
nals is through their lowpass equivalents. Such lowpass equivalents are constructed
by frequency shift to the zero frequency performed on the Fourier transform of the
related analytic signal. Thus, considering a real-valued bandpass signal x(t), which
has a representation in the form of an analytic signal xa(t) with the Fourier transform
Xa(jω), we define its lowpass equivalent as

(2.77a)

The relation 2.77a is illustrated in Figure 2.35, showing the frequency shift of
the signal spectrum from the angular frequency ωc to the zero frequency.

FIGURE 2.33 Spectrum of a real-valued bandpass signal.

FIGURE 2.34 Spectrum of the analytic bandpass signal related with that in Figure 2.33.
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The shift to the left in the frequency-domain is related with the multiplication
by exp(�jωct) in the time-domain.24 Hence, relation 2.77a can be rewritten equiva-
lently in the time-domain as

(2.77b)

Further, substituting xa(t) given by Equation 2.75a into 2.77b, we get

(2.77c)

which multiplied by exp(jωct), gives the following expression

(2.77d)

for the analytic signal versus the equivalent lowpass signal.

In general, the equivalent lowpass signal xl(t) is not a real-valued signal because
relation  or, equivalently, ,
ω �  0, does not hold. This fact is reflected in Figure 2.35, where the spectrum
shown is asymmetrical with respect to the “absolute value of” axis (more precisely,
a less restricted case of 
Xl(�jω)
 � 
Xl(jω)
, ω �  0, is shown in the figure).
Considering in general the equivalent lowpass signal xl(t) as a complex-valued signal,
we write down

(2.78)

for it, where xR(t) and xI(t) mean its real and imaginary part, respectively.
Substituting xl(t) given by Equation 2.78 into 2.77d, and equating then the real

and imaginary parts on both sides of the resulting equation, we get

FIGURE 2.35 Spectrum of the equivalent lowpass signal.
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(2.79a)

and

(2.79b)

Note that Equation 2.79a provides a representation of a real-valued bandpass

signal x(t) through two real-valued lowpass signals xR(t) and xI(t) being respectively

the real and imaginary parts of the complex-valued lowpass signal xl(t) (see Equation

2.78). The signal x(t) can be viewed as a sum of two amplitude modulated signals

xR(t)cos(ωct) and �xI(t)sin(ωct), that is, as the carrier cos(ωct) modulated by the

signal xR(t) plus the carrier  modulated by the signal xI(t).

The phase difference between the above carriers is equal to  radians, meaning that

they are in phase quadrature. According to this, the signal xR(t) modulating the carrier

cos(ωct) is called the in-phase component, and the signal xI(t) modulating the carrier

sin(ωct) is called the quadrature component. Moreover, the modulated signal

xR(t)cos(ωct) is called the in-phase signal, and the modulated signal xI(t)sin(ωct) is

called the quadrature signal.

In the voiceband data transmission, a technique of modulation called the quadra-
ture amplitude modulation (QAM) is used. It is convenient to describe this technique
mathematically using the notions just introduced, such as the analytic signal, Hilbert
transform filter, and equivalent lowpass representation. To this end, consider the
form of the transmitted signal in a transmitter using the QAM technique. As in the
pulse amplitude modulation technique in the baseband, applied in the digital sub-
scriber loop, the pulse shape, that is, the impulse response of the transmit filter, is
here a real-valued function, too. Hence, let us denote this impulse response by p(t).
Furthermore, a popular way24 of describing the QAM technique is through consid-
eration of the data symbols as being complex. Using this description here we can
express the outgoing signal of the transmit filter in the following form as well,

(2.80a)

which can be written equivalently as
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(2.80b)

where ã(i) means the ith complex-valued data symbol,

(2.80c)

In Equations 2.80b and 2.80c, T denotes the sampling period.

Equation 2.80a is illustrated in Figure 2.36.

To proceed further, let us simplify our considerations at this moment by assuming
that a single complex-valued data symbol is transmitted, for example, that occurring
at the time instant iT � 0. Then, y(t) given by 2.80b simplifies to p(t)(a(0) + jb(0))
� p(t)(a � jb), which is evidently a complex-valued signal for b � 0. The Fourier
transform of this signal is equal to P(jω)(a � jb), which does not obey the complex-
conjugate equality that is P(�jω)(a � jb) � (P(jω)(a � jb))* �P*(jω)(a � jb), ω
� 0. Note in this case, however, that the equality of the absolute values of the Fourier
transforms 
P(�jω)(a � jb)
 � 
P*(jω)(a � jb)
 � 
P(jω)(a � jb)
 takes place because

P*(jω)
 � 
P(jω)
 for real-valued impulse responses p(t).

The pulse shapes p(t) used in digital telecommunications are lowpass band-
limited pulses. An ideal one is the pulse having the frequency characteristic (the
Fourier transform)

FIGURE 2.36 Illustration of applying a complex-valued data symbol sequence to a transmit
filter having the real-valued impulse response.
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(2.81a)

or, equivalently, in the time-domain, the impulse response of the form

(2.81b)

where B means the pulse bandwidth. For more details regarding the pulse shape
characterized by Equation 2.81 and other pulse shapes allowing the avoidance of
the so-called intersymbol interference, see Reference 24.

For illustration, the pulse shape given by Equation 2.81b is sketched in Figure
2.37.

Returning now to consideration of the signal p(t)(a � jb), we see that, using in
it the pulse shape given by Equation 2.81b or a related lowpass band-limited one,
we get the resulting complex-valued signal possessing the spectrum concentrated at
the zero frequency, such as the signal of which spectrum is presented in Figure 2.35.
Then, if we multiply this signal by a complex exponential exp(jωct) with the angular
frequency ωc � B, we get, evidently, according to Equation 2.77d, an analytic signal.
This signal,

(2.82a)

will of course be a complex-valued bandpass signal with the spectrum located
similarly as that shown in Figure 2.34. But what will be put into a bandpass channel
for transmission, will be a real-valued bandpass signal, that is, a real part of Equation
2.82a. So this real-valued bandpass signal will have the form

FIGURE 2.37 Sketch of the pulse shape .
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(2.82b)

where Re� means the operation of “taking a real part of a complex number.”
Furthermore, observe that the form of the signal given by Equation 2.82b is the
same as that given by Equation 2.79a. Comparison of the above expressions shows
that xR(t) � Re�p(t)(a � jb)� � ap(t) and that xI(t) � Im�p(t)(a � jb)� � bp(t), where
Im� means the operation of “taking an imaginary part of a complex number.” The
spectrum of the signal 2.82b, a real-valued bandpass signal, is similar to that shown
in Figure 2.33. That is, this spectrum has two parts symmetrically located about the
zero frequency: one part around the carrier frequency ωc and the second around the
negative frequency �ωc. According to the terminology introduced, the lowpass
signal ap(t) modulating the carrier cos(ωct) is the in-phase component, and the
lowpass signal bp(t) modulating the carrier sin(ωct) is the quadrature component,
respectively.

With the above explanation in mind, as regards the transmit filter output signal
y(t) in a simple form of the single pulse (a � jb) p(t), consider its general form
given by Equation 2.80a. The signal y(t) given by 2.80a is a sum of lowpass signals
�a(i) � jb(i)� p(t � iT) shifted in time by iT, i � 0, � 1, � 2, …. To prove that the
character of the frequency characteristic of this signal remains a lowpass one, a more
advanced analysis is needed. In such an analysis,24 one assumes that the transmitted
data symbols a(i) � jb(i) are random, so y(t) given by Equation 2.80a represents
outcomes of a complex-valued random process. Moreover, the notion of the power
spectrum characterizing random processes, instead of the magnitude of the Fourier
transform, is then used. With the assumption that the successive data symbols are
uncorrelated, it is possible to show that the frequency characteristic of the power
spectrum of a random process, of which outcomes are described by Equation 2.80a,
is exclusively determined by the frequency characteristic of 
P(jω)
. For more details,
see, for example, Reference 24.

Multiplying the signal y(t), given by Equation 2.80a by exp(jωct), we get

(2.83)

which is a sum of analytic signals. The expression ya(t) is also an analytic signal in
the sense that the power spectrum related to it, as the representative of a random
process, is nonzero only for the positive frequencies. This can easily be shown using
the argument discussed above. Treating each p(t � iT) together with exp(jωct) in
Equation 2.83 as a deterministic multiplier of the random part �a(i) � jb(i)�, we get
for it, the Fourier transform in the form P�j(ω � ωc)�exp(�jωiT). The magnitude of
this Fourier transform is equal to 
P�j(ω � ωc)�
, and it corresponds to the spectrum

P(jω)
 shifted on the frequency axis to the point ω � ωc. Because the power
spectrum of the random process considered depends (as a function of frequency)
exclusively upon the frequency characteristic of a pulse shape, here the frequency
characteristic of the complex-valued pulse shape p(t)exp(jωct), this implies that the

Re p t( ) a jb+( )e
jωct

( ) ap t( ) ωct( )cos bp t( ) ωct( )sin–=

ya t( ) p t iT–( ) a i( ) jb i( )+( )e
jωct

i ∞–=

∞

∑=
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power spectrum frequency characteristic of ya(t) given by Equation 2.83 is fully
determined by 
P �j(ω � ωc)�
.

Taking a real part of ya(t) given by Equation 2.83, we obtain

(2.84)

Note that the real-valued bandpass signal Re�ya(t)� is presented in Equation 2.84
in two equivalent forms (one with the use of the complex-valued notation for the
transmitted data symbols, ã(i)).

A usual means of illustrating Equation 2.84 describing the quadrature amplitude
modulation (QAM) used in the transmitter for transmitting in the voiceband channel
is presented in Figure 2.38.

At this point, let us also illustrate a plot called a signal constellation, used in
digital telecommunications for visualization of the signal alphabet. We know what
the data symbols are. The set of all the data symbols available for transmission is
called the signal alphabet. A baseband signal possesses the signal alphabet, which
consists of real numbers, such as ��1,1�; note that this alphabet, ��1,1�, was used
in the analysis presented in the previous section. The data symbols can also be
complex numbers. To illustrate, consider the so-called 16-QAM that has the signal

FIGURE 2.38 Illustration of structure of the QAM transmitter.
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∞
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∞
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alphabet consisting of 16 complex numbers. Let this be the following set: ��3 �
3j, �3 � j, �3 � j, �3 � 3j, �1 � 3j, �1� j, �1 � j, �1 � 3j, 1 � 3j, 1 � j,
1 � j, 1 � 3j, 3 � 3j, 3 � j, 3 � j, 3 � 3j�. Both the signal alphabets are illustrated
in Figure 2.39; the plots presented in the figure are called signal constellations.

Observe from Figure 2.39a that the data symbols of a basisband signal lie on
the real axis a(i). This is in contrast to the case of the 16-QAM shown in Figure
2.39b, where the sixteen possible complex-valued data symbols are represented by
the sixteen points on the complex plane. The encoder shown in Figure 2.38 performs
in this case the mapping of four input bits, representing one of the 24 � 16 different
four-bit blocks, into one of the complex-valued data symbols shown in Fig.2.39b.
Two of the input bits are mapped into the real part and two into the imaginary part
of ã(i).

The first operation which must be performed in the QAM receiver is the recovery
of the lowpass signal from the received bandpass signal. To do this, we can proceed
as shown schematically in Figure 2.40; the correctness of the structure of Figure
2.40 will follow from the analysis presented below.

Observe that the received bandpass signal zb(t) in the QAM receiver of Figure
2.40 is a signal, obtained through performing the convolution operation of the
transmitter output signal Re� ya(t) � with a composite bandpass impulse response r(t)
of the communication channel and receive filter. That is we have

FIGURE 2.39 Signal constellations regarding the signal alphabets given in the text, (a) for
baseband signal, and (b) for 16-QAM.
©2001 CRC Press LLC



 

(2.85a)

where the subscript at zb(t) stands for emphasizing the bandpass character of this
signal. Assuming that the communication channel is linear, the composite impulse
response r(t) in Equation 2.85a is determined by another convolution integral as

(2.85b)

where rc� stands for the channel impulse response, and rr� for the receive filter
impulse response, respectively. To get the composite characteristics of the commu-
nication channel and receive filter in the time and frequency domains, see Figure 2.41.

In our consideration, we assume that both the impulse responses rc� and rr�
in Equation 2.85b are real-valued, and that they have bandpass character about the

FIGURE 2.40 One of the possible schemes for performing signal demodulation in the QAM
receiver.

FIGURE 2.41 Getting the composite impulse response or composite transfer function for
the communication channel together with the receive filter.
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carrier frequency. Then, of course, the composite impulse response r(t) is also real-
valued, having the bandpass character as well.

Observe from Figure 2.40 that the real-valued bandpass signal zb(t) is filtered
through the Hilbert transform filter to get the imaginary part of the analytic signal
za(t) (see the general relation given by expression 2.75a). Both the Re�za(t)� � zb(t)
and jIm�za(t)� are added to each other, resulting in za(t), which is then multiplied by
exp(�jωct). Consequently, we get the lowpass signal zl(t) at the output. To see this,
note that because r(t) being real-valued, we can rewrite Equation 2.85a as

(2.85c)

Substituting then ya� given by Equation 2.83 into 2.85c, we get from the latter
equation

(2.85d)

Furthermore, by introducing in Equation 2.85d a new equivalent complex-valued
impulse response

(2.85e)

we can rewrite Equation 2.85d in the following form:

(2.85f)

To proceed further, consider r(τ) together with exp(�jωcz) in Equation 2.85e,
and recall from earlier discussions in this section that the shift to the left in the
frequency-domain is related with the multiplication by exp(�jωct) in the time-
domain. Then, taking the Fourier transforms on both sides of Equation 2.85e gives

(2.85g)

From Equation 2.85g, it is evident that M(jω) is a lowpass transfer function
because the bandpass transfer function R(jω) is shifted by ωc to the dc frequency,
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giving the lowpass transfer function R�j(ω � ωc)�. And, finally, a result of multipli-
cation of the lowpass R�j(ω � ωc)� by lowpass P(jω) remains lowpass.

Compare now the expression under the operation Re � in Equation 2.85f with
the expression for ya(t) given by Equation 2.83. Note that the form of the expressions
is the same, and m(t � iT) in Equation 2.85f, corresponding to p(t � iT) in Equation
2.83, is lowpass, similarly as the latter. By virtue of the discussion underlying the
expression 2.83, the sum under the Re � operation in Equation 2.85f is a sum of
analytic signals. Moreover, this sum is itself an analytic signal, and is given by

(2.85h)

To get the lowpass signal zl(t) from the analytic signal za(t), one multiplies the
latter by exp(�jωct). Note that this operation is mathematically expressed by Equa-
tion 2.77b. As a result, one obtains

(2.85i)

The expression zl(t) given by Equation 2.85i is a complex-valued lowpass signal.
Furthermore, because as it follows from Equation 2.85e the impulse response m(t)
is, in general, complex-valued, Equation 2.85i represents a convolution (in the
discrete time) of the complex-valued signal a(i)�jb(i) with the complex-valued
samples of the impulse response m(t); more precisely, with m(t � iT), i � 0, �1,
�2, …, where t is not the discrete but continuous time. Furthermore, each of the
components of the sum in Equation 2.85i is obtained as illustrated in Figure 2.42.

FIGURE 2.42 Illustration of the means of calculation of components in sum 2.85i.
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Note that expression 2.85i for the signal zl(t) can be also rewritten in the
following form:

(2.85j)

It follows from Equation 2.85j that the complex-valued signal zl(t) can be viewed
as resulting from performing four real-valued convolutions, having the corresponding
shares in its real and imaginary parts. This is shown in Figure 2.43, where the
notation of Figure 2.44 is used for the convolution sum of the type occurring in
Equation 2.85j.

After the discussion of the structure of Figure 2.40, note that a similar scheme
can be used to describe the passband echo path. The only difference between both
the schemes will lie in the interpretation of the word “channel” in the first block on

FIGURE 2.43 Getting the signal zl(t) by performing four real-valued convolutions.

FIGURE 2.44 Graphical notation used for convolution sums occurring in Equation 2.85j.
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the left-hand side of Figure 2.40. In the case of considering the echo path, it will
simply mean an “echo channel.” Furthermore, referring, for example, to References
24 and 40, we assume in our consideration that a signal taken for performing the
echo cancellation is the one denoted by za(t) in Figure 2.40.

Using notational convention introduced previously, let us now rewrite the signal
za(t), expressed by Equation 2.85h, in the form

(2.86)

for the case of the passband echo channel. In Equation 2.86, ea(t) means the analytic
signal of the echo channel, and g(t) denotes its equivalent lowpass impulse response
(g(t) corresponds to m(t), and the latter is an equivalent lowpass impulse response
(see the explanation regarding Equation 2.85g).

Note that Equation 2.86 can be rewritten for the discrete-time t � kT as

(2.87)

where the sampling period T is dropped at ea(k) � ea(kT) and g(k � i) � g(kT �
iT). Furthermore, substituting a new variable i� � k � i into Equation 2.87, rear-
ranging, and dropping finally the prime in i�, we get from Equation 2.87

(2.88)

The kind of characteristic represented by g(i) allows40 us to approximate the
expression

(2.89a)

in Equation 2.88 by a complex-valued transversal filter representation with the
complex-valued coefficients and complex-valued data symbols. That is, we write

(2.89b)

Using then Equation 2.89b for approximation of Equation 2.88, we arrive at

ea t( ) g t iT–( ) a i( ) jb i( )+( )e
jωct
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(2.90)

A good choice for a means of cancelling the echo signal described by Equation
2.90 is the use of a canceller having the description in a similar form. Let us write
the corresponding relation for this canceller as

(2.91)

where c(i), i � 0, 1, 2, …, Mê � 1 represent the complex-valued filter coefficients.
Having the expressions describing the bandpass echo channel and echo canceller,

we can illustrate a means of cancellation in the case of bandpass voiceband channel.
This is shown in Figure 2.45. In Figure 2.45a, Re �va(t)� means the received real-
valued signal, except for the echo signal; the latter signal is denoted by Re �ea(t)� in
the figure. We assume that the effect of filtering through the received filter is already
included in the signals mentioned above. The sum of these signals, that is, Re �ea(t)
� va(t)�, provides an input signal to the so-called phase splitter,24 whose behavior is
explained in Figure 2.45b. As shown in this figure, the task of the phase splitter is
to provide an analytic signal from a real-valued one; its implementation is through
the use of the Hilbert transform filter. For more explanation, compare the scheme
of Figure 2.45a with that presented in Figure 2.40. The complex-valued transversal
filter in Figure 2.45a works with the input signal as a complex-valued data symbol
stream provided by the encoder shown in Figure 2.38.

The output signal of the complex-valued transversal filter in Figure 2.45a is
given by

(2.92)

It is clearly seen from Equation 2.92 that the coefficients c(i) of the transversal
filter considered are complex-valued. The implementation of the complex-valued
transversal filter having description in the form given by Equation 2.92 will look
similar to that presented in Figure 2.43. For more detailed illustration, we redraw
the scheme of the above figure for the transversal filter; it is shown in Figure 2.46.

Multiplying the output signal of the complex-valued transversal filter of Figure
2.45, ê(k), by exp(jωckT) gives as a result the sampled analytic signal 2.91, which
is subtracted from the sampled received analytic signal va(k) � ea(k). The resulting
signal, va(k) � ea(k) � êa(k), is processed further in the QAM receiver.

The frequency characteristic of the complex-valued transversal filter in Figure
2.45 is lowpass because the complex-valued impulse response described by the
coefficients c(i), transformed into the frequency-domain, has such a character. Sim-
ilarly, the data symbol stream �ã(k)� has a lowpass frequency characteristic. However,

ea k( ) g i( ) a k i–( ) jb k i–( )+( )e
jωckT

i 0=

Me 1–

∑≅

êa k( ) c i( ) a k i–( ) jb k i–( )+( )e
jωckT

i 0=

Mê 1–

∑=

ê k( ) Re c i( )( ) jIm c i( )( )+( ) a k i–( ) jb k i–( )+( )
i 0=

Mê 1–

∑=
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it is possible to interpret Equation 2.90 describing the echo channel in another way.
The new interpretation leads to applying a complex-valued passband transversal
filter, the point of which will be explained in more detail in what follows.

Consider again Equation 2.90, and rewrite it in the following form:

(2.93a)

Rearranging in Equation 2.93a gives

(2.93b)

Then introducing in Equation 2.93b an equivalent bandpass impulse response of the
echo channel given by the coefficients

(2.93c)

FIGURE 2.45 (a) Cancelling the voiceband channel echo with the use of a complex-valued
transversal filter; (b) explanation of the function of the phase splitter introduced in the scheme
above.
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∑≅

ea k( ) g i( )e
jωciT

a k i–( ) jb k i–( )+( )e
jωc k i–( )T

i 0=

Me 1–

∑≅

?diacritical?g k( ) g k( )e
jωckT

= k, 0 1 … Me 1–, , ,=
©2001 CRC Press LLC



 

and the so-called rotated data symbols24 given by

(2.93d)

we arrive at

(2.93e)

Hence, the corresponding equation for an equivalent complex-valued passband
transversal filter will have the form

(2.94a)

where the equivalent passband complex-valued filter coefficients will be given by

FIGURE 2.46 (a) Implementation of the complex-valued transversal filter of Figure 2.45
through four real-valued transversal filters; (b) graphical notation used for convolution sums
occurring in Equation 2.92.
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(2.94b)

At this point, a notational remark: the equivalent complex-valued passband
transversal filter can be also given a name of an equivalent complex-valued bandpass
transversal filter, because its impulse response is a bandpass one, and it produces a
bandpass signal. Furthermore, note that Equation 2.94a, describing the passband
transversal filter, has the same form as Equation 2.65a for the baseband transversal
filter, except that êa(k) is a sampled analytic signal.

A cancelling scheme equivalent to that in Figure 2.45a, with the use of the
passband transversal filter, is presented in Figure 2.47.

Similarly as in the baseband case, the timing recovery in the passband environ-

ment needs to implement an echo canceller that has the output sampling rate higher

than that at its input. Assume that the canceller output sampling rate is R times

higher than its input sampling rate. When the canceller input sampling period equals,

say, T, we can distinguish R phases,  in this period. At these

phases, the sampling is performed at the canceller output. Furthermore, we use the

same argument as before of approximating the canceller output response indepen-

dently at each of the phases. Exploiting the relation 2.68b and using a similar notation

to that in expressions 2.69a and 2.69b, that is

FIGURE 2.47 Cancelling scheme with the use of a passband transversal filter.

c k( )  c k( )e
jωckT
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:
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(2.95a)

and

(2.95b)

we can write an equivalent of Equation 2.91 for the corresponding phases as

(2.95c)

In Equations 2.95, k refers to sampling with the rate . Moreover, the superscript #

at  in Equation 2.95a refers to a similar type of approximation as that

shown in Equation 2.67c.

A similar relation to that given by Equation 2.95c can be also written for the
echo canceller using an equivalent structure with the passband transversal filter. To
this end, rewrite Equation 2.95c in the following form:

(2.96a)

Rearranging then the expressions under the sum symbol in Equation 2.96a gives

(2.96b)

And introducing in Equation 2.96b a notation similar to that in expression 2.94b

for the coefficients of the equivalent passband filters for the corresponding phases

, that is, denoting them by

(2.96c)

and using also the notation of Equation 2.93d for the rotated data symbols, we arrive at
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(2.96d)

Both Equations 2.95c and 2.96d are illustrated through canceller implementations
with interleaved transversal filters for four phases, R � 4, in Figure 2.48 and Figure
2.49, respectively. Observe that the form of Equation 2.96d is identical with that in
Equation 2.70b for the baseband case, except that êa,l(k) in Equation 2.96d is a sampled
analytic signal and , represent coefficients of a passband
transversal filter. The same form of the expressions mentioned is the reason the
structures presented in Figures 2.30 and 2.49 look similar. The difference lies in the
type of transversal filter used (lowpass or passband) and the form of the input data
stream (baseband real-valued or passband complex-valued rotated data symbols).   

Quite another form has the structure presented in Figure 2.48. Here, the

interleaved lowpass transversal filters are used, of which the outputs are modu-

lated by the carrier expressions , corresponding to the

phases . Input data stream to the transversal filters are the

complex-valued data symbols ã(k) � a(k) � jb(k).

Finally, we draw the reader’s attention to the fact that k and k� used in Figures
2.30, and 2.31 have the opposite meaning of k and k� in Figures 2.48 and 2.49.

To consider cancellation of nonlinear passband echo, we need to use a contin-
uous-time version of the Volterra series1 for the underlying analysis. Such a series
for nonlinear systems independent of time has, in analogy to Equations 1.1 and 1.3,
the following form:

(2.97)

where t means a continuous time. Moreover, y(t) and x(t) in Equation 2.97 stand for
the system output and system input signal, respectively.

With regard to the passband channel shown in Figure 2.40, assume that this
channel behaves as a nonlinear system, which can be described by the time-
independent, that is, stationary Volterra series (2.97). Furthermore, assume that the
dc component h(0) does not occur here. Then, Equation 2.85a can be extended to the
nonlinear case as
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(2.98a)

where r(1)(τ), r(2)(τ1, τ2), r(3)(τ1, τ2, τ3), mean the nonlinear impulse responses of the
first, second, and third order, respectively, of the communication channel and receive
filter connected with each other in series, as shown in Figure 2.41. Furthermore,
assume that the communication channel in Figure 2.41 now has a nonlinear bandpass
characteristic, and the receive filter, as before, is a linear bandpass filter. For this
case, using the theory of the continuous-time version of the Volterra series, presented,
for example, in Reference 29, one can show that the relations between the impulse
responses r(1)(·), r(2)(·,·), r(3)(·,·,·), and the impulse responses of the nonlinear com-
munication channel and linear receive filter are 

(2.98b)

(2.98c)

(2.98d)

and so on. In Equations 2.98b, c, and d, rr� is the (linear) impulse response of the
(linear) bandpass receive filter, and (
), (
,
), and (
,
,
) are the first, second,
and third order, respectively, nonlinear impulse responses of the nonlinear commu-
nication channel. Moreover, note that Equation 2.98b corresponds to Equation 2.85b
for the linear case. The next equations are the result of nonlinear behavior of the
communication channel.

To proceed further, consider now the analytic signal ya(t) given by Equation
2.83, and note that the real part of this signal can be written as

(2.98e)

Applying then Equation 2.98e in Equation 2.98a leads to
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 ...
(2.98f)

Furthermore, observe that rearranging the terms in Equation 2.98f, we can
rewrite the latter equation in the following form:
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ã i2( )ã i2( ) r 2( ) τ1 τ2,( ) p t τ1– i1T–( ) p t τ2– i2T–( )e

jωcτ1–
e

jωcτ2–
⋅ τ1 τ2

e
j0ωct

ã i1( )ã* i2( ) r 2( ) τ1 τ2,( ) p t τ1– i1T–( ) p t τ2– i2T–( )e
jωcτ1–

e
jωcτ2⋅ τ1 τ2

e
j0ωct
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(2.98g)

Let us now extend the notion of the equivalent lowpass complex-valued impulse
response m(t) given by Equation 2.85e to the nonlinear case. Then, we shall speak
about the nonlinear first-order, second-order, third-order, and so on, equivalent low-
pass complex-valued impulse responses, and we shall express these impulse
responses as

(2.98h)

(2.98i)

(2.98j)

and so on.
Furthermore, to simplify Equation 2.98g, we shall use the fact that the receive

filter in Figure 2.41 is a bandpass filter with the passband about the carrier frequency
ωc. So this filter filters out all those new frequency components in the signal, which
eventually appear in the nonlinear communication channel but are outside the receive
filter passband. Without going into the mathematical details (for more theory, the
interested reader is referred to Reference 70 and references cited there), we observe
that the components related with exponentials: exp(j2ωct), exp(j0ωct), exp(�j2ωct),
exp(j3ωct), and exp(�j3ωct) in Equation 2.98g are those that are outside the filter
passband. Hence, we can assume that the above components are equal to zero. Using
this fact in Equation 2.98g, and definitions 2.98h, 2.98i, 2.98j, we can rewrite
Equation 2.98g in the following form:

 e
j– 3ωct

+ ã* i1( )ã* i2( )ã* i3( ) r 3( ) τ1 τ2 τ3, ,( ) p t τ1– i1T–( ) p t τ2– i2T–( )
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(2.99)

Note that, to arrive at the form of zb(t) given by Equation 2.99, we also assumed
in derivation of this equation that the nonlinear impulse responses involved are
symmetric. That is, they are symmetrized according to definition 1.15, when applied
to the continuous-time nonlinear impulse responses, and where the index “sym” is
dropped after performing the symmetrization. More precisely, we assumed

 (2.100)

where the symbol � means “symmetric to.” We treated all the other nonlinear
impulse responses occurring in Equation 2.99 accordingly. Moreover, we used in
Equation 2.99 a special notation for “partly conjugate” versions of expression defined
by 2.98j; that is,

(2.101a)

and

(2.101b)

The third-order impulse response  given by Equation 2.101a is named m(3)

partly conjugate “with one star,” because one of the exponents, exp(jωcτ1) in determining
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expression 2.101a is the complex-conjugate of exp(�jωcτ1) occurring in m(3) given
by Equation 2.98j. Similarly, the third-order impulse response m**

(3) given by
Equation 2.101b is named m(3) partly conjugate “with two stars” because two of the
exponents, exp(jωcτ1) and exp(jωcτ2),  are the complex-conjugates of exp(�jωcτ1)
and exp(�jωcτ2), respectively, occurring in m(3)  given by Equation 2.98j.

At first glance, the nonlinear impulse responses written in Equation 2.100 seem
to be not equal to each other. Therefore, a special notation (�) for “approaches”
rather than the symbol for “equal” is used for denoting that they are symmetric. On
the other hand, however, because we assumed that the nonlinear impulse responses
in Equation 2.100 are symmetric in the sense of definition 1.15, they must be equal
to each other. In what follows below, we shall show that this is the case. To this
end, let us begin with the assumption that the Volterra series representation (2.98a)
involves the symmetric impulse responses. This means, according to definition 1.15,
that we have

(2.102a)

where, at each of rc
(3)(
,
,
)’s, the subscript “sym” is omitted.

Now note that formally interchanging the variables τ1 with τ2 (i.e., renaming τ1

as τ2, and τ2 as τ1) in the first expression in Equation 2.100, and τ1 with τ3 (i.e.,
renaming τ1 as τ3, and τ3 as τ1) in the third expression in Equation 2.100, we can
rewrite Equation 2.100 as

 (2.102b)

Because of the relation 2.102a, the expressions in Equation 2.102b are equal to
each other. That is, the symbol for “approaches” in Equation 2.102b can be replaced
by the “equal” symbol. Of course, similar equalities to those in 2.102b can also be
written for all the other nonlinear impulse responses of a similar form to that
represented by the impulse responses in Equation 2.100. For example, we can write
for the impulse responses involved in the expressions standing by the exponential
exp(�jωct) in Equation 2.98g,

 (2.102c)

Application of relations such as Equations 2.102b and 2.102c in Equation 2.98g
led to the simplification of the resulting form for zb(t) given by Equation 2.99.

Keeping in mind our purpose to get from Equation 2.99 an analog of the expres-

sion 2.85f, we check now whether the (η1, η2, η3) given by Equation 2.101b is
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a complex-conjugate of the (η1, η2, η3) given by Equation 2.101a. To this end,
take into account the following nonlinear impulse response:

(2.103a)

Using equivalences 2.102b and 2.102a, we easily show that the above impulse
response can be rewritten as

 (2.103b)

Furthermore, note that relation

(2.103c)

holds. Then, using Equations 2.103b and 2.103c in Equation 2.101b gives

(2.103d)

In another form, Equation 2.103d can be rewritten as

(2.103e)

Equation 2.103d gives evidence to the fact that m**
(3)(η1, η2, η3) is really a

complex-conjugate of m*
(3)(η1,η2, η3). Similar relations can also be found for the

corresponding partially conjugate equivalent lowpass complex-valued impulse
responses of higher odd orders, like the fifth, seventh, ninth order, and so on.

Using in Equation 2.99 the fact that

(2.104a)
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©2001 CRC Press LLC



 

and the relation 2.103d, we can rewrite Equation 2.99 as

(2.104b)

Moreover, it can be shown that zb(t), being real-valued, has the form of the
expression exp(jωct)� � exp(�jωct)�*. Using this fact in Equation 2.104b, we can
write the latter equation in the following form:

(2.104c)

From the analysis just presented for the linear communication channel, it follows
that the form of the expression 2.104c allows us to write the analytic signal za(t),
after performing the Hilbert transform filtering in the QAM receiver of Figure 2.40 as

(2.104d)

The expression 2.104d regards the case in which the communication channel
shown in Figure 2.40 is a channel that has nonlinear characteristics.

Similar to the case of the linear echo passband channel discussed previously,
we model the nonlinear echo passband channel using the description derived just
for the nonlinear communication channel. That is, we use the same form of descrip-
tion of an analytic signal related with the nonlinear echo channel as that given by
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Equation 2.104d for the nonlinear communication channel. Hence, denoting the
analytic signal related with the nonlinear echo channel by ea(t), we write for it

(2.105)

In Equation 2.105, g(1)(
) and (
,
,
) for the nonlinear echo passband channel
correspond to m(1)(
) and (
,
,
), respectively, which were introduced previously.
The g(1)(
) and (
,
,
)  represent the nonlinear first-order and third-order, respec-
tively, equivalent lowpass complex-valued impulse responses. Additionally, (
,
,
)
is partly-conjugate compared to g(3)(
,
,
), similarly as was (
,
,
), compared to
m(3)(
,
,
).

For the discrete-time t � kT and with the substitution of new variables, as in
Equation 2.87, the expression for ea(t) given by Equation 2.105 can be rewritten as

(2.106a)

where ã(k � i) stands for

(2.106b)

and similarly,

(2.106c)

Furthermore, let us assume the same kind of approximation of ea(k) given by
Equation 2.106a as that used in Equation 2.89b, that is, by a complex-valued
transversal filter representation with the complex-valued coefficients and complex-
valued data symbols; however, now being a nonlinear transversal filter description.
Using this approximation in Equation 2.106a gives
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(2.107)

A good choice for cancellation of the echo signal described by Equation 2.107
is the use of a canceller possessing the description in a similar form to that repre-
sented by Equation 2.107. If we restrict ourselves to the components, for example,
up to the third order in the description of a canceller, we shall have the relation:

(2.108)

for this nonlinear passband canceller. In Equation 2.108, c(i), i � 0, 1, …, Mê � 1,
correspond to g(1)(i), i � 0, 1, …, Mê � 1, and c(i1, i2, i3), i1, i2, i3 � 0, 1, …, Mê � 1,
correspond to (i1, i2, i3), i1, i2, i3 � 0, 1, …, Me � 1, respectively. Furthermore,
when Me� Mê , the number of elements c(i) will be identical with that of g(1)(i); and
similarly, the numbers of elements c(i1, i2, i3) and (i1, i2, i3) will be identical as
well. In the case of Me � Mê, some elements in one set will not be represented by
the corresponding elements in the second set.

A general scheme of nonlinear echo cancellation with the use of a nonlinear
complex-valued transversal filter, having the description in the form of êa(k) given
by Equation 2.108, is presented in Figure 2.50.

Comparing the structure of Figure 2.50 with that of Figure 2.45a, we see that
the only difference between them lies in the type of transversal filter applied. In
Figure 2.45a, we have a linear complex-valued transversal filter, in contrast to the
structure of Figure 2.50, where a nonlinear complex-valued transversal filter is
applied. Furthermore, comparing the structure of Figure 2.50 with the corresponding
description given by Equation 2.108, observe that the nonlinear transversal filter
output signal ê(k) is given by
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 (2.109)

Note that the form of the expression in Equation 2.109 resembles more the general
form of the discrete-time truncated Volterra series than the form of the Volterra series
for binary signals used previously in the discussion of canceller structures for baseband
applications. In fact, expression 2.109 represents nothing other than a truncated Volterra
series that works on the complex-valued data symbols and has complex-valued impulse
responses. We also have to work here with multiplications of the data symbols by their
complex-conjugates (in the second component of Equation 2.109).

To show that the coefficients (samples of the impulse responses) c(i) and c(i1,
i2, i3) change in the adaptation process, we rewrite Equation 2.109 in another form:

(2.110)

FIGURE 2.50 Cancelling the voiceband nonlinear channel echo with the use of a nonlinear
complex-valued transversal filter.
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+

+

(

)

⋅

i3 0=
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Mê 1–

∑
i2 0=
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Note that, in Equation 2.110 the notational convention of Equation 2.1c is used.
That is, the arguments i, and i1, i2, i3 at c(i) and c(i1, i2, i3), respectively, are “shifted”
to form the corresponding subscripts: as an argument occurs the discrete time k,
which changes in an adaptation process.

Keeping in mind the form of ê(k) given by Equation 2.110, we redraw the
corresponding fragment of Figure 2.50 to underline the fact that the nonlinear
complex-valued transversal filter must be an adaptive transversal filter in echo
cancellation applications. This is shown in Figure 2.51.

To give some view into the internal structure of the nonlinear complex-valued
adaptive transversal filter of Figure 2.51, consider the following simple example.

Example 2.8

Assume for simplicity of presentation that Mê � 2. Then, to realize the linear part
of Equation 2.110, we need two taps, and, to realize the strictly nonlinear part of
Equation 2.110, we need 23 � 8 taps. For this choice, the structure of a nonlinear
complex-valued adaptive transversal filter is shown in Figure 2.52.

Looking at the structure of Figure 2.52, we see that it presents “a true cobweb”
even, as here, for such a small Mê � 2 (in practice, of course, Mê is much greater
than 2), and when taking into account only nonlinearities up to the third order. This
poses true difficulty in practical implementation of a nonlinear complex-valued
transversal filter.

The structure of the nonlinear echo canceller of Figure 2.50 can be also presented
in another equivalent form using an equivalent nonlinear complex-valued passband
transversal filter, in analogy to the linear one shown in Figure 2.47. To get such a
structure, one needs to repeat in Equation 2.108 the steps performed successively
in Equations 2.93a to e. As a result, one obtains a similar structure to that presented

FIGURE 2.51 Adaptive cancelling the voiceband nonlinear channel echo.
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in Figure 2.47, with the rotated data symbols at the input and an equivalent nonlinear
complex-valued passband transversal filter in place of the linear one. 

Structures for nonlinear interleaved complex-valued transversal filters can be
obtained easily applying the argument used before: of approximating the echo replica
separately in each of the phases, here with the use of Equation 2.108. Then we get
structures similar to those presented in Figures 2.48 and 2.49, with nonlinear trans-
versal filters in place of linear ones.

FIGURE 2.52 Nonlinear complex-valued adaptive transversal filter with memory length Mê

� 2.
©2001 CRC Press LLC
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