
Springer Topics in Signal Processing

Volume 2

Series Editors

J. Benesty, Montreal, QC, Canada
W. Kellermann, Erlangen, Germany



Springer Topics in Signal Processing

Edited by J. Benesty and W. Kellermann

Vol. 1: Benesty, J.; Chen, J.; Huang, Y.
Microphone Array Signal Processing
250 p. 2008 [978-3-540-78611-5]

Vol. 2: Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. 
Noise Reduction in Speech Processing 
240 p. 2009 [978-3-642-00295-3]



Jacob Benesty · Jingdong Chen · Yiteng Huang

123

Israel Cohen 
·

Noise Reduction in Speech 
Processing



Prof. Dr. Jacob Benesty
Université de Quebec
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Preface

Noise is everywhere and in most applications that are related to audio and
speech, such as human-machine interfaces, hands-free communications, voice
over IP (VoIP), hearing aids, teleconferencing/telepresence/telecollaboration
systems, and so many others, the signal of interest (usually speech) that is
picked up by a microphone is generally contaminated by noise. As a result,
the microphone signal has to be cleaned up with digital signal processing tools
before it is stored, analyzed, transmitted, or played out. This cleaning pro-
cess is often called noise reduction and this topic has attracted a considerable
amount of research and engineering attention for several decades. One of the
objectives of this book is to present in a common framework an overview
of the state of the art of noise reduction algorithms in the single-channel
(one microphone) case. The focus is on the most useful approaches, i.e., fil-
tering techniques (in different domains) and spectral enhancement methods.
Readers who are interested in algorithms based on multiple microphones (or
microphone arrays) are invited to consult the recent book by J. Benesty, J.
Chen, and Y. Huang, Microphone Array Signal Processing, Berlin, Germany:
Springer-Verlag, 2008, and the references therein.

Several books on speech enhancement can be found in the literature. But
they either do not cover state-of-the-art noise reduction techniques or are not
rigorous in the explanations on how and why the noise reduction algorithms
really work. This is how the idea of writing a book on Noise Reduction in
Speech Processing came up. Therefore, the other objective of this text is to
derive the most important and well-known techniques in this area of research
and engineering in a rigorous way yet clear way, and prove many fundamental
and intuitive results often taken for granted.

This book is especially written for graduate students and research engi-
neers who work on noise reduction for speech and audio applications and
want to understand the subtle mechanisms behind each approach. We hope
the readers will find many new and interesting concepts that are presented in
this book useful and inspiring.
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1

Introduction

1.1 Noise Reduction in Speech Processing

The world we live in is full of different kinds of sounds; it is obviously hard to
imagine a world without any sound sources. Some sounds may originate from
far-away sources but they die away before reaching our ears so we do not hear
them. Some others, however, reach our ears, but their energies are so weak that
we do not perceive them clearly. There are sounds that we can clearly hear.
Among those, some may convey very important information while others may
not carry anything really useful, but purely interfere with the sounds that
do contain useful information. The sound that carries the information that
we want or need, is normally labelled as “desired.” The sound that does not
contain any useful information but interferes with the desired sound, is usually
referred to as “noise.”

The term “noise” was coined in 1905 by Einstein when he saw that it could
be the instrument to establish the existence of atoms [34]. Ever since, noise
has permeated every field of science and technology and has served as a driv-
ing force for countless great discoveries and inventions, such as the existence
of atoms, the Brownian motion, the Big Bang theory, the information theory,
the optimal filtering theory, to name a few. There are many exciting stories
behind noise [34]. One example of great interest is the Big Bang story. In the
1930s, Bell Laboratories built a large rotating antenna in Crawford Hill, New
Jersey, to identify and understand various sources of noise that impaired the
then-recently introduced transatlantic radio-telephone service. Having elimi-
nated all known sources, the team found that there was a persistent residual
“hiss” no matter where the antenna was pointed. At that time there were two
competing theories of the universe. In one corner was the Big Bang model,
which proposed a unique moment of creation followed by a rapid expansion.
Hubble had observed that galaxies were moving away from each other and
that the further they are, the faster they were moving away. Also, Gamow
and Alpher had shown that the Big Bang could explain the abundance of
hydrogen and helium. They and others predicted that the primordial radia-

J. Benesty et al., Noise Reduction in Speech Processing, Springer Topics in Signal Processing 2,  
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2 1 Introduction

tion, according to the Big Bang model, should be detectable as an isotropic
field with a black body temperature of about 10 K. In the other corner was
the Steady-State model, invented by Hoyle, Gold, and Bondi, which harked
back to the conservative view of an eternal universe, except that it included
an element of continuous creation and expansion. In the earlier 1960s, Wilson
and Penzias, who were working at Bell Laboratories, detected the isotropic
residual radiation using the 6-meter aperture antenna at Crawford Hill. When
Penzias called Dicke (who was a prominent physicist at Princeton University
and was working on how to find and measure the leftover radiation at that
time) about what was measured and to seek advice on a possible explanation,
he immediately realized what Penzias and his colleague Wilson had discov-
ered. This example shows the importance of noise in the confirmation of the
Big Bang theory.

However, as noise permeates every research and engineering field, its def-
inition also evolves. Now, many fields have their own definition and history
of noise, and in most cases, the definition has well departed from its original
meaning as basically an idea, a subject, a field, or an instrument. Such an
evolution, although accompanied with distortion, does make the description
and understanding of the problems in a specific field easier. For the problems
covered in this book, we follow the tradition built in the signal and speech pro-
cessing fields and the term noise is used to signify any unwanted signal that
interferes with measurement, processing, and communication of the desired
information-bearing speech signal.

With this definition of noise, it is then of great interest to know the im-
pact of noise on speech communications. As a matter of fact, this has been
one of the most studied problems in human-to-human and human-to-machine
communications over the last four decades. This problem, as perhaps we all
know, is very much complicated because noise can cause profound changes
to the characteristics of the speech signal. These changes can be classified
into two categories, depending on in what stage they are introduced during a
communication process.

• Changes in the talking/transmitting side. The talker, when hears the back-
ground noise, tends to alter his/her speaking style in an effort to increase
communication efficiency over the noisy medium. This phenomenon is
called the Lombard effect. This effect leads to changes in both speech in-
tensity and characteristics. The intensity change has been experimentally
quantified by, among others, Pearsons, Bennett, and Fidell [99]. Briefly, in
many noisy environments, the speaker would increase his/her vocal inten-
sity by 0.6 decibel (dB) for each dB increase in the background noise up
to a ceiling level. However, the changes in speech characteristics are very
difficult to model.

• Changes in the listening/receiving end. In the Lombard effect, noise causes
changes in speech statistics through an indirect way. But in most situa-
tions, noise may directly affect the speech signal. This has two forms. One
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is when the noise and speech signals are statistically dependent. As a re-
sult, the additive noise directly modifies the spectrum and characteristics
of the speech signal. The other is when the noise is independent of the
speech signal, so it does not cause any changes to the speech character-
istics. However, the characteristics of the observed signal is very different
from those of the desired speech since the observed signal is a mixture of
the desired speech and noise.

Regardless how the speech characteristics are modified by the presence
of noise, the noise effect will profoundly affect the listener’s perception and
machine’s processing of the observed speech. On the positive side, if the inten-
sity of the noise is not too high, voice communication is still possible, but it
would be less natural and less comfortable. On the negative side, if the noise
is strong and the speech signal is completely immersed into it, voice commu-
nication would become difficult and even impossible. Therefore, in order to
make voice communication feasible, natural, and comfortable in the presence
of noise regardless of the noise level, it is desirable to develop digital signal
processing techniques to “clean” the recorded signal before it is stored, trans-
mitted, or played out. This problem is generally referred to as either noise
reduction or speech enhancement.

The fact that noise can be any unwanted signal makes noise reduction an
extremely difficult problem to tackle. As of today, it is still not clear how this
problem can be described into a general mathematical model, not even men-
tion the solutions. So, instead of searching for a generic solution, researchers
and engineers in the speech field are adopting a pragmatic approach: divid-
ing noise into several categories based on the mechanism how it is generated
and conquering each category using a different approach. Commonly, noise is
divided into four basic categories as explained below.

• Additive noise. Additive noise can come from various sources. Some are
from natural sound sources, while others may be artificially introduced,
for example, the comfort noise in speech codecs.

• Echo. Acoustic echo occurs due to the coupling between loudspeakers and
microphones. The existence of echo will make conversations very difficult
or even impossible.

• Reverberation. Reverberation is the result of multipath propagation and is
introduced by an enclosure. It can cause spectral distortion, which impairs
speech intelligibility.

• Interference. Interference comes from concurrent sound sources. In tele-
conferencing and telecollaboration, it is possible that each communication
site has multiple participants and loudspeakers. So, there can be multiple
competing sound sources.

Combating these four categories of noise has led to the developments of
diverse acoustic signal processing techniques. They include noise reduction (or
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speech enhancement), echo cancellation and suppression, speech dereverbera-
tion, and source separation, each of which is a rich subject of research. A broad
coverage of these research areas can be found in [15], [72]. This monograph
will mainly focus on the (additive) noise reduction, which aims at eliminating
or mitigating the effects of additive noise. So, from now on, we shall narrow
the definition of noise down to additive noise.

Under this narrowed definition, the observed microphone signal can be
modeled as a superposition of the clean speech and noise. The objective of
noise reduction, then, becomes to restore the original clean speech from the
mixed signal. This can be described as a parameter estimation problem and
the optimal estimate of the clean speech can be achieved by optimizing some
criterion, such as the mean-squared error (MSE) between the clean speech
and its estimate, the signal-to-noise ratio (SNR), the a posteriori probabil-
ity of the clean speech given its noisy observations, etc. Unfortunately, an
optimal estimate formed from a signal processing perspective does not neces-
sarily correspond to the best quality when perceived by the human ear. This
inconsistency between objective measures and subjective quality judgement
has forced researchers to rethink performance criteria for noise reduction. The
objective of the problem has subsequently been broadened, which can be sum-
marized as to achieve one or more of the following three primary goals:

• to improve objective performance criteria such as intelligibility, SNR, etc.,
• to improve the perceptual quality of a degraded speech, and
• as a preprocessor, to increase robustness of other speech processing appli-

cations (such as speech coding, echo cancellation, automatic speech recog-
nition, etc.) to noise.

The different goals may lead to distinct speech estimates. It is very hard
to satisfy all three goals at the same time. With a specified goal (performance
criterion), the difficulty and complexity of the noise reduction problem can
vary tremendously, depending on many factors such as the number of micro-
phone channels. In general, the larger the number of microphones, the easier
the noise reduction problem. For example, when an array of microphones can
be used, a beam can be formed and steered to a desired direction. As a result,
signal propagating from the desired direction will be passed through with-
out degradation, while signals originating from all other directions will either
suffer a certain amount of attenuation or be completely rejected [15]. In the
two-microphone case, with one microphone picking up the noisy signal and
the other measuring the noise field, we can use the second microphone signal
as a noise reference and eliminate the noise in the first microphone by means
of adaptive cancellation [6]. However, most of today’s communication termi-
nals are equipped with only one microphone. In this case, the noisy speech is
the only resource that is accessible to us, so noise reduction becomes a very
challenging problem for many sophisticated reasons. First, a reference of the
noise is not accessible and the clean speech cannot be preprocessed prior to
being corrupted by noise. Second, the nature and characteristics of the noise
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Fig. 1.1. Spectra of two different noise signals: (a) periodogram spectrum of a car
noise signal and (b) periodogram spectra of noise in a conference room measured at
two time instants (two seconds apart).

can change dramatically from application to application and even vary in time
in one application. To illustrate this, Fig. 1.1 shows the spectra of a car noise
signal and a noise signal recorded in a conference room [spectra computed at
two different time instants (two seconds apart)]. It is seen that the spectrum
of the car noise is very different from that of the conference room noise. Even
for the same conference room, the characteristics of the noise are different
when measured at different points in time. In addition, the speech signal is
highly nonstationary. It is very difficult to estimate the fast changing statis-
tics of speech in the presence of noise. Despite these challenges, a tremendous
amount of attention has been dedicated to this problem since there are so
many applications that require a solution to it.

1.1 Noise Reduction in Speech Processing 5
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Fig. 1.2. General block diagram of a noise reduction system.

1.2 The Paradigm for Noise Reduction

This book addresses the challenging problem of how to achieve noise reduction
by analyzing and processing the noisy speech measured by only a single mi-
crophone without requiring additional information. The general model used
throughout this book is shown in Fig. 1.2. The model begins with a clean
speech signal (from a desired speaker), x(k), being corrupted with an un-
wanted additive noise, v(k). The noisy signal, y(k), which is a superposition
of x(k) and v(k) is first processed to determine whether the desired speech
is currently present or absent. The noise and speech statistics such as the
covariance matrices and power spectral densities are estimated based on the
detection results and the input noisy speech. These statistics will be used to
estimate a noise reduction filter. This filter can be optimal in the sense that
it optimizes some error criterion (e.g., MSE). It may be suboptimal, where
parameters are introduced to better control the quality of the output speech.
The estimated filter is applied to the noisy speech to filter out the noise signal,
thereby producing an output signal, z(k), which is supposed to be an estimate
of the clean speech, x(k).

The problem addressed in this book is of great importance from both
the theoretical and practical viewpoints. To illustrate this, we give the very
good example of multiparty conferencing explained by Diethorn in [38]. In
multiparty conferencing, the background noise picked up by the microphone
of each point of the conference combines additively at the network bridge with
the noise signals from all other points. The loudspeaker at each location of the
conference therefore reproduces the combined sum of the noise sequences from
all other locations. Consider a three-point conference in which the room noise
at all locations is stationary and independent with power σ2

v . Each loudspeaker
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receives noise from the other two locations, resulting in a total noise power
that is 2σ2

v , which is 3 dB greater than that of a two-point conference. Now
if we consider a P -point conference, each side receives a total noise power
of (P − 1)σ2

v , which is 10 log10(P − 1) dB greater than σ2
v . This is still the

ideal condition. In practice, there may be many processing operations in the
voice communication network, such as speech coding, transcoding, automatic-
gain-control processing, etc. Each operation may boost the noise level. So, the
noise problem is extremely serious, particularly when the number of conferees
is large, and without noise reduction, communication in this context is almost
impossible.

Besides multiparty conferencing, there are many other applications that
require a noise reduction technology. The following is a short list:

• hands-free communications,
• hearing aids,
• audio bridging,
• teleconferencing and telepresence,
• hands-free human-machine interfaces,
• car and mobile phones,
• cockpits and noisy manufacturing,
• high-quality speech coding.

To summarize this section, we can definitely claim that there are many
speech related applications that require a technique to reduce noise. Greater
efforts from both the research and engineering communities are indispensable
to develop practical and reliable solutions before the noise reduction technol-
ogy can be widely deployed.

1.3 A Brief History of Noise Reduction Research

Research on noise reduction has been going on for more than four decades.
A significant amount of progress has been achieved over this period. To gain
an appreciation of the basic concepts and fundamental techniques that were
developed, it is worthwhile to briefly review some research highlights and
milestones. The reader, however, is cautioned that such a review is narrowly
focused and might not be comprehensive.

The earliest attempts to devise noise reduction algorithms for enhancing
speech signals were made in the 1960s. In 1960, at Bell Laboratories, Schroeder
proposed a system for reducing noise in telecommunication environments. The
schematic diagram of his system is shown in Fig. 1.3. Note that this diagram
is slightly modified from its original form in [108] for ease of exposition. As
seen, the input noisy signal, y(t) (where t is the continuous time), which is a
superposition of the clean speech, x(t), and noise, v(t), i.e., y(t) = x(t)+v(t), is
divided into M subbands. For each subband, a rectifier and a lowpass filter are
applied in tandem to estimate the noisy speech envelope. The noise level in the
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Fig. 1.3. Schematic diagram of the Schroeder’s noise reduction system where BFP,
RECTF, LFP, and NLE denote, respectively, bandpass filter, rectifier, lowpass filter,
and noise level estimator.

corresponding subband is then estimated using an analog circuit with resistors,
capacitors, and diodes, and the noise estimate is subsequently subtracted from
the noisy speech envelope, resulting in an estimate of the clean speech envelope
for the subband. A second rectification process is applied to force the negative
results to zero due to the subtraction. The rectified clean speech envelope
estimate, which is served as a gain filter, is then multiplied with the unmodified
subband signal. Finally, the fullband signal, z(t), is constructed from all the
subband outputs, where z(t) is basically an estimate of x(t). As seen, the
Schroeder’s system is actually a spectral subtraction technique, but with all
analog implementation. However, this work was largely unknown in the noise
reduction research community until more formal methods were developed in
the late 1970s.

The 1970s was a decade in which great impetus was given to the spectral
modification based techniques. This wave of interest in noise reduction was
due largely to the confluence of digital signal processing (DSP) algorithms
and DSP hardwares, both of which had come to prominence at that time.
In 1974, Weiss, Aschkenasy, and Parsons developed a “spectrum shaping”
method that used amplitude clipping in filter banks to remove low-level ex-
citation, presumably noise [122]. A few years later, Boll, in his informative
paper [18], reinvented the spectral subtraction method but in the digital do-
main. Boll was perhaps the first to formulate the magnitude subtraction in the
framework of digital short-time Fourier analysis, which had earlier been un-
der development by, among others, Allen [1] and Portnoff [101]. Shortly after,
McAulay and Malpass cast the spectral subtraction approach in a framework
of statistical spectral estimation, and presented a broad class of estimators in-
cluding the magnitude and power subtraction, the Wiener filtering, the maxi-
mum likelihood envelope estimator, etc. [92]. They were also the first to make
connections between the spectral subtraction and the Wiener filter. Almost at
the same time, Lim and Oppenheim, in their landmark work [85], presented
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one of the first comprehensive treatments of methods of noise reduction and
speech enhancement. The spectrum subtraction methods were discussed, also
within an estimation framework, and were compared to other techniques of
speech enhancement. Also, Sondhi, Schmidt, and Rabiner published results
from a series of implementation studies that roots in Schroeder’s work in the
1960s [112].

In the 1980s, many fundamental ideas in noise reduction surfaced and were
published. By and large, these ideas can be broadly classified into two cat-
egories, namely, spectral restoration based on estimation theory and speech
model based methods. The spectral restoration technique treats noise reduc-
tion as a robust spectral estimation problem, i.e., estimating the spectrum of
the clean speech from that of the noisy speech. In 1984, Ephraim and Malah
developed an optimal spectral amplitude and some spectral phase estimators
using the statistical estimation theory [44]. Their paper was widely cited in
the noise reduction research and (together with McAulay and Malpass’ work)
was most notable as an early attempt to apply statistical theory to noise re-
duction. It is also the first showing, by theory, that the optimal estimate of the
clean speech spectral phase is the spectral phase of the noisy speech. There-
fore, the basic problem of noise reduction becomes one of estimating only the
clean speech spectral amplitude (this result was used previously but mainly
based on experimental observations). Following this work, many statistical
spectral estimators were developed, including the minimum mean-squared er-
ror (MMSE) log-spectral amplitude estimator, the maximum-likelihood (ML)
spectral amplitude estimator, the ML spectral power estimator, the maximum
a posteriori (MAP) spectral amplitude estimator, etc. Today, there are still
tremendous efforts to search for better spectral amplitude estimators, which
are inspired by McAulay and Malpass’ and Ephraim and Malah’s work. The
model-based approaches also formulate noise reduction as an estimation prob-
lem. Comparatively, in this category of methods, a mathematical model is
used to represent human speech production and parameter estimation is car-
ried out in the model space, which normally has a much lower dimensionality
than the original signal space. Lim and Oppenheim studied the harmonic (or
sinusoidal) model for speech and developed a method to reduce noise using
comb filtering [86]. In 1987, Paliwal and Basu published a paper that used
the linear predictive coding (LPC) model and the Kalman filter to reduce
noise [97]. The basic idea underlying the LPC model is that a given speech
sample at time k can be approximated as a linear combination of the past few
speech samples. The LPC model was well studied and widely used in speech
analysis, speech coding, and speech recognition in the 1980s, but Paliwal and
Basu were the first to combine the LPC model with the Kalman filter for noise
reduction. Since then, many efforts have been made to make this technique
more practical.

A number of significant milestones were achieved in the 1990s, from both
the theoretical and application points of view. From the theoretical side, the
hidden Markov models (HMMs) were borrowed from speech recognition and
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applied to noise reduction [46], [47], [48]. The HMM based method is basically
similar to the statistical spectral estimator developed in the 1980s. The differ-
ence is that the statistical spectral estimators assume the explicit knowledge of
the joint probability distribution of the clean speech and noise signals so that
the conditional expected value of the clean speech (or its sample spectrum),
given the noisy speech, can be evaluated, while in the HMM based approach,
the unknown probability distributions of the speech and noise are learned
from the training sequence. Also, subspace methods were developed by Den-
drinos, Bakamidis, and Carayannis [37] and by Ephraim and Van Trees [49]. In
essence, the subspace approach projects the noisy signal vector into a different
domain either via the Karhunen-Loève (KL) transform through eigenvalue de-
composition of an estimate of the correlation matrix of the noisy signal [49] or
by using the singular value decomposition of a Toeplitz-structured data ma-
trix specially arranged from the noisy signal vector [78]. Once transformed,
the speech signal only spans a portion of the entire space, and as a result, the
entire vector space can be divided into two subspaces: the signal-plus-noise
and the noise only. The noise statistics can then be estimated from the noise
only subspace. From the application side, the noise reduction technology has
been increasingly used in telecommunications. Many parametric codecs, such
as the enhanced variable rate codec (EVRC), the adaptive multi-rate (AMR)
codec, etc., integrated noise reduction into speech compression.

1.4 Organization of the Book

The material in this book is organized into twelve chapters, including this one.
We attempted to cover the most basic concepts and fundamental techniques
used in noise reduction from a signal processing perspective in the next eleven
chapters. The material discussed in these chapters is as follows.

Chapter 2 provides an overview of the noise reduction problem. The most
straightforward and classical approach to tackling this problem is through
linear filtering in the time (original signal) domain. However, it is often very
advantageous to deal with this problem in a transform space. This is due
to the fact that if the transform is properly selected, the speech and noise
signals can be better separated in that space, making it easier to estimate
the noise statistics, and thereby optimizing the noise reduction filter. So, we
discuss how to model the problem not only in the time domain, but also in
the two well-known transform spaces, i.e., the frequency and Karhunen-Loève
expansion (KLE) domains.

A key issue in the design and implementation of noise reduction filters is
how to assess their performance. Chapter 3 focuses on the performance met-
rics. We present several useful measures based on signal processing techniques.
These measures will not only help properly design filters in the different do-
mains, but also help us understand how noise reduction works in real-world
applications and what price we need to pay for achieving noise reduction.
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Most noise reduction filters are derived by optimizing some error criteria.
The most used error criterion is, by far, the MSE. In Chapter 4, we present the
MSE and its normalized form in the time, frequency, and KLE domains. We
will demonstrate that the normalized form, called normalized MSE (NMSE,
which can be in either subband or fullband) in all domains depends explicitly
on the input SNR, and some other performance measures presented in Chap-
ter 3, which makes the NMSE not only useful in deriving different optimal
filters, but also powerful in analyzing the noise reduction performance.

In the context of noise reduction, it is very important to directly compare
the output SNR with the input SNR. This is essential in order to tell whether
the filter is indeed able to reduce noise relative to the speech level. However,
the MSE and NMSE, which are overwhelmingly used to derive noise reduction
filters, are not explicitly related to the output SNR even though intuitively
they should depend on it. In Chapter 5, we present an alternative criterion to
the MSE, called the squared Pearson correlation coefficient (SPCC), in which
the output SNR appears naturally. We develop several forms of this coefficient
in the different domains.

In Chapter 6, we discuss many interesting properties of the SPCC in the
different domains. These fundamental properties establish relationships be-
tween the SPCC, the input SNR, the output SNR, and several other perfor-
mance measures. Armed with these properties it is possible in many cases to
derive and analyze optimal noise reduction filters by a simple inspection of a
certain form of the SPCC.

In Chapter 7, we derive various forms of noise reduction filters in the
time domain. The major focus is on the Wiener filter, which is an optimal
filter in the minimum MSE (MMSE) sense, and many known algorithms are
related to this filter in one way or another. We discuss many fundamental
and interesting properties of this filter and demonstrate that the Wiener filter
achieves noise reduction at the cost of adding speech distortion. To manage
the compromise between noise reduction and speech distortion, we present
a tradeoff filter, which is derived from a constrained MSE criterion where
a parameter is used to adjust the compromise between the amount of noise
reduction and the amount of speech distortion. We also discuss the well-known
subspace method, which can be viewed as a special way of implementing the
tradeoff filter.

While the time domain is the most straightforward domain to work with,
the derived noise reduction filters are often less flexible in terms of perfor-
mance tuning. For example, in practice, noise is not necessarily white and in
many cases its energy may concentrate only in some frequencies or frequency
bands. In such situations, it is advantageous to design noise reduction filters
on a subband basis. In Chapter 8, we investigate the design of noise reduction
filters in the frequency domain, which is an alternative to the time domain.
The frequency-domain filters are, so far, the most popular approaches to noise
reduction because: 1) the filters at different frequencies (or frequency bands)
are designed and used independently with each other, this design offers sig-
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nificant flexibility in dealing with colored and band-limited noise; 2) most of
our knowledge and understanding of speech production and perception is re-
lated to frequencies; and 3) thanks to the fast Fourier transform (FFT), the
implementation of frequency-domain filters are generally very efficient. We
develop some widely used classical frequency-domain filters and discuss their
properties.

Although it is widely studied, the frequency domain is not the only domain
we can work with. There are other domains that may offer more advantages
for the design of noise reduction algorithms. In Chapter 9, we consider the
KLE domain. We derive two broad classes (the classification is basically based
on the subband filter length) of optimal filters in this domain. The first class,
similar to the frequency-domain filters, estimates a frame of the clean speech
by filtering the corresponding frame of the noisy speech while the second
class does noise reduction by filtering not only the current frame but also a
number of previous consecutive frames of the noisy speech. We demonstrate
that better noise reduction performance can be achieved with the Class II
filters when the parameters associated with this class are properly chosen.

Chapter 10 is basically an extension of Chapter 9. In this chapter, we in-
troduce a new transform domain, where any unitary (or orthogonal) matrix
can be used to construct the forward (for analysis) and inverse (for synthesis)
transforms. This new domain can be viewed as a generalization of the KLE
domain. The advantages of working in this generalized domain are multiple,
such as different transforms can be used to replace each other without any re-
quirement to change the algorithm formulation (optimal filter) and it is easier
to fairly compare different transforms for their noise reduction performance.
We address the design of different optimal and suboptimal filters in such
a generalized transform domain, including the Wiener filter, the parametric
Wiener filter, some tradeoff filters, etc. We also compare different transforms,
including the KL, Fourier, cosine, and Hadamard transforms, for their noise
reduction performance.

Chapter 11 can be seen as an extension of Chapter 8. Chapter 8 considers
the optimal noise reduction filters in the continuous frequency domain where
the frequency-domain representation of a discrete speech signal is obtained
through the discrete-time Fourier transform (DTFT). In Chapter 11, we shift
our focus from the DTFT domain to the discrete Fourier transform (DFT)
domain, where the frequency-domain representation of the input speech signal
is achieved through the short-time discrete Fourier transform (STDFT), or
simply the short-time Fourier transform (STFT). Using the STFT as opposed
to DTFT, we have to take many effects such as circular convolution (which
may cause the aliasing problem) and finite frame length (which may change
the statistical distribution of the spectrum) into consideration. We formulate
the noise reduction problem in the STFT domain as both a filtering and
estimation problem. We present statistical models for the speech and noise
signals in this domain and derive estimators for the speech signal using various
distortion measures.
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Noise reduction can find numerous applications in various fields of speech
processing. It is, however, a very difficult problem since its technical objectives
and the acoustic environments can vary significantly from one application to
another. As a result, it is very difficult, if not impossible, to find a versatile
algorithm that can really work for all the applications in different practical en-
vironments. To illustrate the difficulty of this problem, we provide an example
in Chapter 12, where we consider the noise reduction problem in the helmet of
an astronaut’s spacesuit. Of course, the major focus of this chapter is not the
finding of the best noise reduction algorithm for the specific problem; instead,
we attempt to provide some deep analysis of the acoustic challenges and the
validation procedure of the suggested solutions that can be more useful and
can enrich the reader’s fund of knowledge. Although we restrict our attention
in this book to noise reduction using a single microphone, we will also briefly
examine the possibility of using multiple microphones to achieve noise reduc-
tion in this chapter, while most of the studied multichannel techniques can be
found in the book Microphone Array Signal Processing [15].

1.5 Some Notes to the Reader

Successful noise reduction systems require the knowledge and expertise from
a wide range of disciplines such as signal processing, statistics, estimation and
detection theory, pattern recognition, speech processing, communications, and
speech perception, to name a few. It is very difficult for any single person to
master all these disciplines. The philosophy and purpose of this book is to
provide in-depth discussions of a number of fundamental topics in noise re-
duction research from a signal processing viewpoint so that the reader can
have a good understanding of the fundamentals of this problem without nec-
essarily having to be an expert in all disciplines enumerated above. Our basic
goal is to obtain optimal filters for noise reduction and we resort to subop-
timal filters if the compromise between the amount of noise reduction and
the amount of speech distortion has to be made. We have tried to give deep
insights into the noise reduction problem by including results that we deem
to be most useful and important in practice.

The mathematical notation for all symbols is defined within the context
of the discussion and when it first appears in the text. In general, (column)
vectors are bold lowercase and matrices are bold uppercase.
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Problem Formulation

In this chapter, we explain the traditional formulation of the (additive) noise
problem and its reduction by linear filtering in the time, frequency, and
Karhunen-Loève expansion domains.

2.1 In the Time Domain

The noise reduction problem consists of recovering the signal of interest (clean
speech or desired signal) x(k) of zero mean from the noisy observation (mi-
crophone signal)

y(k) = x(k) + v(k), (2.1)

where k is the discrete time index, and v(k) is the unwanted additive noise,
which is assumed to be a zero-mean random process (white or colored) and
uncorrelated with x(k).

The signal model given in (2.1) can be written in a vector form if we
process the data by blocks of L samples:

y(k) = x(k) + v(k), (2.2)

where

y(k) =
[
y(k) y(k − 1) · · · y(k − L + 1)

]T
, (2.3a)

x(k) =
[
x(k) x(k − 1) · · · x(k − L + 1)

]T
, (2.3b)

v(k) =
[
v(k) v(k − 1) · · · v(k − L + 1)

]T
, (2.3c)

and superscript T denotes transpose of a vector or a matrix. Since x(k) and
v(k) are uncorrelated, the correlation matrix of the noisy signal is equal to
the sum of the correlation matrices of the desired and noise signals, i.e.,

Ry = Rx + Rv, (2.4)

J. Benesty et al., Noise Reduction in Speech Processing, Springer Topics in Signal Processing 2,  
DOI 10.1007/978-3-642-00296-0_2, © Springer-Verlag Berlin Heidelberg 2009    



16 2 Problem Formulation

where

Ry = E
[
y(k)yT (k)

]
, (2.5a)

Rx = E
[
x(k)xT (k)

]
, (2.5b)

Rv = E
[
v(k)vT (k)

]
, (2.5c)

are the correlation matrices1 of the signals y(k), x(k), and v(k), respectively,
and E[·] denotes mathematical expectation.

The objective of noise reduction is to estimate x(k) from the observation
vector y(k). Usually, we estimate the noise-free speech, x(k), by applying a
linear transformation to the microphone signal [10], [11], [25], [72], [88], [119],
i.e.,

z(k) = Hy(k) (2.6)
= H [x(k) + v(k)]
= xF(k) + vF(k),

where H is a filtering matrix of size L × L, xF(k) = Hx(k) is the filtered
clean speech (or filtered desired signal), and vF(k) = Hv(k) is the filtered
noise, which is often called the residual noise. The correlation matrix of the
estimated signal is

Rz = E
[
z(k)zT (k)

]
= HRxHT + HRvHT . (2.7)

Therefore, with this time-domain formulation, the noise reduction problem be-
comes one of finding an optimal filter that would attenuate the noise as much
as possible while keeping the clean speech from being dramatically distorted.

2.2 In the Frequency Domain

In the frequency domain, (2.1) can be rewritten as

Y (jω) = X(jω) + V (jω), (2.8)

where j is the imaginary unit (j2 = −1), and Y (jω), X(jω), and V (jω) are
respectively the discrete-time Fourier transforms (DTFTs) of y(k), x(k), and
v(k), at angular frequency ω (−π < ω ≤ π). Another possible form for (2.8)
is

Y (ω)ejϕy(ω) = X(ω)ejϕx(ω) + V (ω)ejϕv(ω), (2.9)

1 Here, we implicitly assume that all involved signals are stationary or quasi-
stationary.
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where for any random signal A(jω) = A(ω)ejϕa(ω), A(ω) and ϕa(ω) are its
amplitude and phase at frequency ω, A ∈ {Y,X, V }, a ∈ {y, x, v}. We recall
that the DTFT and the inverse transform [96] are2

A(jω) =
∞∑

k=−∞
a(k)e−jωk, (2.10)

a(k) =
1
2π

∫ π

−π

A(jω)ejωkdω. (2.11)

Using the power spectral density (PSD) of the noisy signal and the fact
that x(k) and v(k) are uncorrelated, we get

φy(ω) = φx(ω) + φv(ω), (2.12)

where

φa(ω) = E
[
|A(jω)|2

]
= E

[
A2(ω)

]
is the PSD of the signal a(k) [which is the inverse DTFT of A(jω)] at frequency
ω.

An estimate of X(jω) can be obtained by multiplying Y (jω) with a com-
plex gain, i.e.,

Z(jω) = H(jω)Y (jω) (2.13)
= H(jω) [X(jω) + V (jω)]
= XF(jω) + VF(jω),

where Z(jω) is the frequency-domain representation of the signal z(k), and
XF(jω) = H(jω)X(jω) and VF(jω) = H(jω)V (jω) are, respectively, the
filtered clean speech and noise in the frequency domain. The PSD of z(k) can
then be written as

φz(ω) = |H(jω)|2 φy(ω)

= |H(jω)|2 [φx(ω) + φv(ω)] . (2.14)

We can go back to the time domain using (2.11) to obtain the estimate

z(k) =
1
2π

∫ π

−π

Z(jω)ejωkdω. (2.15)

2 For the DTFT to exist, the time series a(k) must be absolutely summable, i.e.,∑+∞
k=−∞ |a(k)| < ∞. This condition does not hold for stationary signals. Never-

theless, we will still use this spectral representation for stationary signals in the
rest of this book for convenience of presentation and notation, knowing that the
discrete time Fourier (DFT) will lead to similar theoretical results.
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The objective of noise reduction in the frequency domain is then to find an
optimal filter3 H(jω) at each frequency ω that would attenuate the noise
greatly with as little distortion as possible to the desired signal (speech).

2.3 In the Karhunen-Loève Expansion (KLE) Domain

We first briefly recall the basic principle of the so-called Karhunen-Loève
expansion (KLE) and then show how we can work in the KLE domain.

Let the L × 1 vector x(k) denote a data sequence drawn from a zero-
mean stationary process with the correlation matrix Rx. This matrix can be
diagonalized as follows [59]

QT RxQ = Λ, (2.16)

where

Q =
[
q1 q2 · · · qL

]
and

Λ = diag
[
λ1 λ2 · · · λL

]
are, respectively, orthogonal and diagonal matrices. The orthonormal vectors
q1,q2, . . . ,qL are the eigenvectors corresponding, respectively, to the eigen-
values λ1, λ2, . . . , λL of the matrix Rx.

The vector x(k) can be written as a combination (expansion) of the eigen-
vectors of the correlation matrix Rx as follows

x(k) =
L∑

l=1

cx,l(k)ql, (2.17)

where

cx,l(k) = qT
l x(k), l = 1, 2, . . . , L (2.18)

are the coefficients of the expansion and l is the subband index.
The representation of the random vector x(k) described by (2.17) and

(2.18) is the Karhunen-Loève expansion (KLE) [63]. Equations (2.17) and
(2.18) are, respectively, the synthesis and analysis parts of this expansion.

From (2.18), we can easily verify that

E [cx,l(k)] = 0, l = 1, 2, . . . , L (2.19)

3 As will become clearer in Chapter 8, such an optimal filter is in general real and
positive, and its value is usually in the range between 0 and 1. So, when applied
to the noisy speech, this filter only modifies the gain, but does not change the
phase of Y (jω). As a result, it is often called a gain filter.
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and

E [cx,i(k)cx,j(k)] =
{

λi, i = j
0, i �= j

. (2.20)

It can also be checked from (2.18) that

L∑
l=1

c2
x,l(k) = ‖x(k)‖2

2 , (2.21)

where ‖x(k)‖2 is the Euclidean norm of x(k). The previous expression shows
the energy conservation through the KLE process.

One of the most important aspects of the KLE is its potential to reduce
the dimensionality of the vector x(k) for low-rank signals. This idea has been
extensively exploited in different manners for noise reduction where the signal
of interest (speech) is assumed to be a low-rank signal. In the following, we
show how to work directly in the KLE domain.

Left-multiplying (2.2) by qT
l , we get

cy,l(k) = qT
l y(k)

= qT
l x(k) + qT

l v(k)
= cx,l(k) + cv,l(k), l = 1, 2, . . . , L. (2.22)

Expression (2.22) is equivalent to (2.2) but in the KLE domain. Again, we see
that

L∑
l=1

c2
y,l(k) = ‖y(k)‖2

2 , (2.23)

L∑
l=1

c2
v,l(k) = ‖v(k)‖2

2 . (2.24)

We also have

E [cy,i(k)cy,j(k)] =
{

λi + qT
i Rvqi, i = j

qT
i Rvqj , i �= j

. (2.25)

In the rest of this work, we assume that |qT
i Rvqj | � λi + qT

i Rvqi or
|qT

i Rvqj | ≈ 0, for i �= j4, so that we can estimate each one of the coeffi-
cients cx,l, l = 1, 2, . . . , L, without being related to the others. Clearly, our
problem this time is to find an estimate of cx,l(k) by passing cy,l(k) through
a linear filter, i.e.,

cz,l(k) = hT
l cy,l(k)

= hT
l [cx,l(k) + cv,l(k)] , l = 1, 2, . . . , L, (2.26)

4 If the noise is white, then qT
i Rvqj = 0, ∀i �= j.
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where

hl =
[
hl,0 hl,1 · · · hl,Ll−1

]T (2.27)

is a finite-impulse-response (FIR) filter of length Ll, and

cy,l(k) =
[
cy,l(k) cy,l(k − 1) · · · cy,l(k − Ll + 1)

]T
, (2.28a)

cx,l(k) =
[
cx,l(k) cx,l(k − 1) · · · cx,l(k − Ll + 1)

]T
, (2.28b)

cv,l(k) =
[
cv,l(k) cv,l(k − 1) · · · cv,l(k − Ll + 1)

]T
. (2.28c)

We see that the filters hl, l = 1, 2, . . . , L, can take different lengths in the
different subbands. The variance of the signal cz,l(k) is

E
[
c2
z,l(k)

]
= hT

l Rcx,lhl + hT
l Rcv,lhl, l = 1, 2, . . . , L, (2.29)

where

Rcx,l = E
[
cx,l(k)cT

x,l(k)
]
,

Rcv,l = E
[
cv,l(k)cT

v,l(k)
]
,

are the correlation matrices of the signals cx,l(k) and cv,l(k), respectively.
Apparently, reducing the noise in the KLE domain comes to the design of the
FIR filters hl, l = 1, 2, . . . , L. Finally, an estimate of the vector x(k) would
be

z(k) =
L∑

l=1

cz,l(k)ql. (2.30)

2.4 Summary

In this chapter, we have described the fundamental formulation of the noise
reduction problem in the time, frequency, and KLE domains. This formulation
will be frequently used throughout the rest of this book to derive the most
well-known and useful noise reduction filters.



3

Performance Measures

In this chapter, we present some very useful measures that are necessary to
properly design filters in the different domains. These definitions will also help
us better understand how noise reduction works in real-world applications and
what price we need to pay for this. As a matter of fact, all known approaches in
the single-channel (one microphone) case add distortion to the desired signal.
Therefore, in most applications, it is essential to find a good compromise
between the amount of noise reduction and the degree of speech distortion,
and the measures presented in this chapter can guide us to achieve such a
compromise.

3.1 Signal-to-Noise Ratio

One of the most important measures in noise reduction is the signal-to-noise
ratio (SNR). From the signal model given in (2.1), we define the input SNR
as the ratio of the intensity of the signal of interest (speech) over the intensity
of the background noise, i.e.,

iSNR =
σ2

x

σ2
v

, (3.1)

where

σ2
x = E

[
x2(k)

]
and

σ2
v = E

[
v2(k)

]
are the variances of the signals x(k) and v(k), respectively. This definition of
the input SNR can also be written in different forms. With the signal model
shown in (2.2), it is easy to check that

J. Benesty et al., Noise Reduction in Speech Processing, Springer Topics in Signal Processing 2,  
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σ2
x = tr (Rx) /L

and

σ2
v = tr (Rv) /L,

where tr(·) denotes the trace of a matrix. Therefore, the input SNR can be
written as

iSNR =
tr (Rx)
tr (Rv)

. (3.2)

According to the Parseval’s relation, we have

σ2
x =

1
2π

∫ π

−π

φx(ω)dω (3.3)

and

σ2
v =

1
2π

∫ π

−π

φv(ω)dω. (3.4)

Substituting (3.3) and (3.4) into (3.1), we get another form of the input SNR:

iSNR =

∫ π

−π
φx(ω)dω∫ π

−π
φv(ω)dω

. (3.5)

In the KLE domain, if we apply the matrix diagonalization of (2.16) to (3.2),
we can readily deduce that

iSNR =
∑L

l=1 λl∑L
l=1 qT

l Rvql

. (3.6)

In the frequency and KLE domains, it is also important to examine the
SNR in each subband. So, we define the subband input SNRs in these two
domains as

iSNR(ω) =
φx(ω)
φv(ω)

, ω ∈ (−π, π] (3.7)

and

iSNRl =
λl

qT
l Rvql

, l = 1, 2, . . . , L. (3.8)

After noise reduction with the time-domain model given in (2.6), the out-
put SNR can be written as
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oSNR(H) =
E
[
xT

F(k)xF(k)
]

E
[
vT

F(k)vF(k)
]

=
tr
(
HRxHT

)
tr
(
HRvHT

) . (3.9)

One of the most important goals of noise reduction is to improve the SNR
after filtering [11], [24]. Therefore, we must design a filter, H, in such a way
that oSNR(H) ≥ iSNR.

In the frequency and KLE domains, the subband output SNRs are

oSNR [H(jω)] =
|H(jω)|2 φx(ω)
|H(jω)|2 φv(ω)

(3.10)

= iSNR(ω), ω ∈ (−π, π]

and

oSNR(hl) =
hT

l Rcx,lhl

hT
l Rcv,lhl

, l = 1, 2, . . . , L. (3.11)

In general, oSNR(hl) �= iSNRl except when hl is a scalar. It is interesting to
observe that the frequency-domain subband output SNR is not influenced by
H(jω).

We now define the fullband output SNRs for the frequency- and KLE-
domain filters:

oSNR(H) =

∫ π

−π
|H(jω)|2 φx(ω)dω∫ π

−π
|H(jω)|2 φv(ω)dω

(3.12)

and

oSNR (h1:L) =
∑L

l=1 hT
l Rcx,lhl∑L

l=1 hT
l Rcv,lhl

. (3.13)

It is of great importance to find the complex gains H(jω), ω ∈ (−π, π] and
the FIR filters hl, l = 1, 2, . . . , L, in such a way that oSNR(H) ≥ iSNR and
oSNR (h1:L) ≥ iSNR.

Property 3.1. We always have

L∑
l=1

iSNRl ≥ iSNR, (3.14)

L∑
l=1

oSNR(hl) ≥ oSNR (h1:L) . (3.15)
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This means that the aggregation of the subband SNRs is greater than or equal
to the fullband SNR.

Proof. The two previous inequalities can be shown by using the following
inequality: ∑

l al∑
l bl

=
∑

l

(
al

bl
· bl∑

i bi

)
≤
∑

l

al

bl
, (3.16)

where al and bl are positive reals.

3.2 Noise-Reduction Factor

Another important measure in noise reduction is the noise-reduction factor,
which quantifies the amount of noise being attenuated by the filter. With the
time-domain formulation, this factor is defined as [11], [24]

ξnr (H) =
tr (Rv)

tr
(
HRvHT

) . (3.17)

By analogy to the above time-domain definition, we define the subband noise-
reduction factors in the frequency and KLE domains as

ξnr [H(jω)] =
φv(ω)

|H(jω)|2 φv(ω)

=
1

|H(jω)|2 , ω ∈ (−π, π] (3.18)

and

ξnr (hl) =
qT

l Rvql

hT
l Rcv,lhl

, l = 1, 2, . . . , L. (3.19)

The larger the value of ξnr [H(jω)] [or ξnr (hl)], the more the noise is reduced
at frequency ω (or subband l). After the filtering operation, the residual noise
level at frequency ω (or subband l) is expected to be lower than that of the
original noise level, therefore this factor should have a lower bound of 1.

The fullband noise-reduction factors for the frequency- and KLE-domain
filters are

ξnr(H) =

∫ π

−π
φv(ω)dω∫ π

−π
|H(jω)|2 φv(ω)dω

(3.20)

=

∫ π

−π
φv(ω)dω∫ π

−π
ξ−1
nr [H(jω)] φv(ω)dω
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and

ξnr (h1:L) =
∑L

l=1 qT
l Rvql∑L

l=1 hT
l Rcv,lhl

(3.21)

=
∑L

l=1 qT
l Rvql∑L

l=1 ξ−1
nr (hl)qT

l Rvql

.

The fullband noise-reduction factor for the frequency-domain (or KLE-
domain) approach is the ratio of the energy of the noise over the weighted
energy of the noise with the weighting ξ−1

nr [H(jω)] [or ξ−1
nr (hl)]. Same as in

(3.18) [or (3.19)], ξnr(H) [or ξnr (h1:L)] is expected to be lower bounded by 1.
Indeed, if ξnr [H(jω)] ≥ 1, ∀ω [or ξnr (hl) ≥ 1, ∀l], we deduce from (3.20) [or
(3.21)] that ξnr(H) ≥ 1 [or ξnr (h1:L) ≥ 1].

Property 3.2. We always have

L∑
l=1

ξnr (hl) ≥ ξnr (h1:L) . (3.22)

This means that the aggregation of the subband noise-reduction factors in the
KLE domain is greater than or equal to the fullband noise-reduction factor.

Proof. This inequality can be shown by using (3.16).

3.3 Speech-Distortion Index

The filtering operation adds distortion to the speech signal. In order to eval-
uate the amount of speech distortion, the concept of speech-distortion index
has been introduced in [11], [24]. With the time-domain model, the speech-
distortion index is defined as

υsd (H) =
E
{

[xF(k) − x(k)]T [xF(k) − x(k)]
}

E [xT (k)x(k)]

=
E
{

[Hx(k) − x(k)]T [Hx(k) − x(k)]
}

tr (Rx)

=
tr
[
(H − I)Rx(H − I)T

]
tr (Rx)

, (3.23)

where I is the identity matrix. We can extend this definition to other domains.
Indeed, we define the subband speech-distortion indices in the frequency and
KLE domains as
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υsd [H(jω)] =
E
[
|H(jω)X(jω) − X(jω)|2

]
φx(ω)

= |1 − H(jω)|2 , ω ∈ (−π, π] (3.24)

and

υsd (hl) =
E

{[
hT

l cx,l(k) − cx,l(k)
]2}

λl
, l = 1, 2, . . . , L. (3.25)

The subband speech-distortion index has a lower bound of 0 and an upper
bound of 1 for optimal filters to be derived later in this book. The higher the
value of υsd [H(jω)] [or υsd (hl)], the more the speech is distorted at frequency
ω (or subband l).

The fullband speech-distortion indices for the frequency- and KLE-domain
filters are

υsd(H) =

∫ π

−π
E
[
|H(jω)X(jω) − X(jω)|2

]
dω∫ π

−π
φx(ω)dω

=

∫ π

−π
φx(ω) |1 − H(jω)|2 dω∫ π

−π
φx(ω)dω

=

∫ π

−π
υsd [H(jω)] φx(ω)dω∫ π

−π
φx(ω)dω

(3.26)

and

υsd (h1:L) =

∑L
l=1 E

{[
hT

l cx,l(k) − cx,l(k)
]2}

∑L
l=1 λl

=
∑L

l=1 υsd (hl) λl∑L
l=1 λl

. (3.27)

Equation (3.26) [or (3.27)] is the ratio of the weighted energy of the speech
with the weighting υsd [H(jω)] [or υsd (hl)] over the energy of the speech. If
υsd [H(jω)] ≤ 1, ∀ω [or υsd (hl) ≤ 1, ∀l], we see from (3.26) [or (3.27)] that
υsd(H) ≤ 1 [or υsd (h1:L) ≤ 1].

Property 3.3. We always have
L∑

l=1

υsd (hl) ≥ υsd (h1:L) . (3.28)

This means that the aggregation of the subband speech-distortion indices in
the KLE domain is greater than or equal to the fullband speech-distortion
index.

Proof. Easy to show by using the inequality (3.16).
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3.4 Speech-Reduction Factor

This measure is somewhat similar to the noise-reduction factor. Since the noise
is reduced by the filtering operation, so is the speech. This speech reduction
implies, in general, speech distortion.

With the time-domain formulation, the speech-reduction factor is defined
as

ξsr (H) =
tr (Rx)

tr
(
HRxHT

) . (3.29)

We define the subband speech-reduction factors in the frequency and KLE
domains as

ξsr [H(jω)] =
φx(ω)

|H(jω)|2 φx(ω)

=
1

|H(jω)|2 , ω ∈ (−π, π] (3.30)

and

ξsr (hl) =
λl

hT
l Rcx,lhl

, l = 1, 2, . . . , L. (3.31)

The larger the value of ξsr [H(jω)] [or ξsr (hl)], the more the speech is reduced
at frequency ω (or subband l). After the filtering operation, the speech level at
frequency ω (or subband l) is typically lower than that of the original speech
level, therefore this factor should have a lower bound of 1.

The fullband speech-reduction factors for the frequency- and KLE-domain
filters are

ξsr(H) =

∫ π

−π
φx(ω)dω∫ π

−π
|H(jω)|2 φx(ω)dω

(3.32)

=

∫ π

−π
φx(ω)dω∫ π

−π
ξ−1
sr [H(jω)] φx(ω)dω

and

ξsr (h1:L) =
∑L

l=1 λl∑L
l=1 hT

l Rcx,lhl

(3.33)

=
∑L

l=1 λl∑L
l=1 ξ−1

sr (hl) λl

.

The fullband speech-reduction factor for the frequency domain (or KLE do-
main) approach is the ratio of the energy of the speech over the weighted
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energy of the speech with the weighting ξ−1
sr [H(jω)] [or ξ−1

sr (hl)]. Same as in
(3.30) [or (3.31)], ξsr(H) [or ξsr (h1:L)] is expected to be lower bounded by 1.
Indeed, if ξsr [H(jω)] ≥ 1, ∀ω [or ξsr (hl) ≥ 1, ∀l], we deduce from (3.32) [or
(3.33)] that ξsr(H) ≥ 1 [or ξsr (h1:L) ≥ 1].

Property 3.4. We always have
L∑

l=1

ξsr (hl) ≥ ξsr (h1:L) . (3.34)

This means that the aggregation of the subband speech-reduction factors in
the KLE domain is greater than or equal to the fullband speech-reduction
factor.

Proof. This inequality can be easily shown by using (3.16).

3.5 Discussion

We have presented several measures in this chapter. It is fair to ask whether
all these measures are relevant and could give us a good idea on how a spe-
cific linear filter will behave in terms of reducing the noise and distorting
the desired signal. The input SNR (independent of the filtering operation)
is certainly a measure of great importance from both signal processing and
perception points of view. Indeed, the human ear can do a pretty good job
in judging the SNR values when we listen to some audio signals that are cor-
rupted by additive noise with different SNRs. The subband input SNR, which
is a narrowband definition, is less obvious to understand in our context since
we usually do not listen to narrowband signals. But this measure is relevant
since it is closely related to the input SNR. The output SNR (computed af-
ter the processing is done in the time domain) and the fullband output SNR
(computed after the processing is done in the transform domain) are also very
reliable. They tell us indeed whether the SNR is improved or not and by how
much.

The noise-reduction factor is a relative measure because it does depend on
the distortion (or reduction) of the desired signal. It is possible in some situ-
ations to have this factor much larger than 1 and yet the SNR has not been
improved. So this measure has to be handled with care. The speech-distortion
index and speech-reduction factor are very rough measures of distortion. Re-
fined measures able to detect different kinds of distortions are more compli-
cated to derive and much more research is needed in this topic. Nevertheless,
four of the (fullband) measures are simply related as shown in the following
property:

Property 3.5. We always have

oSNR(H)
iSNR

=
ξnr (H)
ξsr (H)

. (3.35)
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Proof. This is easy to see by combining expressions (3.1), (3.9), (3.17), and
(3.29).

From (3.35) we observe that oSNR(H) > iSNR if and only if ξnr (H) >
ξsr (H). So is it possible that with a judicious choice of the filtering matrix,
H, we can have ξnr (H) > ξsr (H)? The answer is yes. A generally rough
and intuitive justification to this answer is quite simple: improvement of the
SNR is due to the fact that speech signals are partly predictable. In this
situation, H is a kind of a complex predictor or interpolation matrix and as a
result, ξsr (H) can be close to 1 while ξnr (H) can be much larger than 1. This
observation is essential in order to understand how noise reduction happens
when it happens.

We have similar relations to (3.35) for the filters in the frequency and KLE
domains:

oSNR(H)
iSNR

=
ξnr (H)
ξsr (H)

, (3.36)

oSNR(h1:L)
iSNR

=
ξnr (h1:L)
ξsr (h1:L)

. (3.37)

Even though the complex gains H(jω), ω ∈ (−π, π] and the FIR filters
hl, l = 1, 2, . . . , L, may be interpreted differently than the time-domain filter-
ing matrix H (since the formers act mostly like gain functions), the objective
stays the same.
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Mean-Squared Error Criterion

Error criteria play a critical role in deriving optimal noise reduction filters. Al-
though many different criteria can be defined, the mean-squared error (MSE)
is, by far, the most used one because of its simplicity in terms of deriving use-
ful filters. This chapter presents relevant error signals from which meaningful
MSE criteria are built in the different domains.

4.1 In the Time Domain

We define the error signal vector between the estimated and desired signals
as

e(k) = z(k) − x(k) (4.1)
= Hy(k) − x(k),

which can also be written as the sum of two error signal vectors:

e(k) = ex(k) + ev(k), (4.2)

where

ex(k) = (H − I)x(k) (4.3)

is the speech distortion due to the linear transformation, and

ev(k) = Hv(k) (4.4)

represents the residual noise [49].
Having defined the error signal, we can now write the MSE criterion:

J (H) = tr
{
E
[
e(k)eT (k)

]}
(4.5)

= tr (Rx) + tr
(
HRyHT

)
− 2tr (HRyx)

= tr (Rx) + tr
(
HRyHT

)
− 2tr (HRx) ,
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where

Ryx = E
[
y(k)xT (k)

]
is the cross-correlation matrix between the observation and desired signals,
which can also be expressed as

Ryx = Rx

since Rvx = E
[
v(k)xT (k)

]
= 0 [x(k) and v(k) are assumed to be uncorre-

lated]. Similarly, using the uncorrelation assumption, expression (4.5) can be
structured in terms of two MSEs, i.e.,

J (H) = tr
{
E
[
ex(k)eT

x (k)
]}

+ tr
{
E
[
ev(k)eT

v (k)
]}

(4.6)
= Jx (H) + Jv (H) .

For the particular transformation H = I (the identity matrix), we get

J (I) = tr (Rv) , (4.7)

so there will be neither noise reduction nor speech distortion. Using this par-
ticular case of the MSE, we define the normalized MSE (NMSE) as

J̃ (H) =
J (H)
J (I)

= iSNR · υsd (H) +
1

ξnr (H)
, (4.8)

where

υsd (H) =
Jx (H)
tr (Rx)

, (4.9)

ξnr (H) =
tr (Rv)
Jv (H)

. (4.10)

This shows the connection between the NMSE and the speech-distortion index
and the noise-reduction factor defined in Chapter 3.

4.2 In the Frequency Domain

We define the error signal between the estimated and desired signals at fre-
quency ω as

E(jω) = Z(jω) − X(jω) (4.11)
= H(jω)Y (jω) − X(jω).
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This error can also be put into the form:

E(jω) = Ex(jω) + Ev(jω), (4.12)

where

Ex(jω) = [H(jω) − 1] X(jω) (4.13)

is the speech distortion due to the complex filter, and

Ev(jω) = H(jω)V (jω) (4.14)

represents the residual noise.
The frequency-domain (or subband) MSE is then

J [H(jω)] = E
[
|E(jω)|2

]
(4.15)

= φx(ω) + |H(jω)|2 φy(ω) − 2R [H(jω)φyx(jω)]

= φx(ω) + |H(jω)|2 φy(ω) − 2R [H(jω)φx(ω)] ,

where R(·) is the real part of a complex number and

φyx(jω) = E [Y (jω)X∗(jω)]
= φx(ω)

is the cross-spectrum between the observation and speech signals. The sub-
band MSE is also

J [H(jω)] = E
[
|Ex(jω)|2

]
+ E
[
|Ev(jω)|2

]
(4.16)

= Jx [H(jω)] + Jv [H(jω)] .

For the particular gain H(jω) = 1, ∀ω, we get

J (1) = φv(ω), (4.17)

so there will be neither noise reduction nor speech distortion. With this par-
ticular case of the MSE, we define the frequency-domain (or subband) NMSE
as

J̃ [H(jω)] =
J [H(jω)]

J (1)

= iSNR(ω) · υsd [H(jω)] +
1

ξnr [H(jω)]
, (4.18)

where

υsd [H(jω)] =
Jx [H(jω)]

φx(ω)
, (4.19)

ξnr [H(jω)] =
φv(ω)

Jv [H(jω)]
. (4.20)
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The frequency-domain NMSE depends explicitly on the subband speech-
distortion index and the subband noise-reduction factor.

Sometimes, it is also important to examine the MSE from the fullband
point of view. We define the fullband MSE and fullband NMSE as

J (H) =
1
2π

∫ π

−π

J [H(jω)] dω (4.21)

=
1
2π

∫ π

−π

φx(ω) |1 − H(jω)|2 dω +
1
2π

∫ π

−π

φv(ω) |H(jω)|2 dω

= Jx (H) + Jv (H)

and

J̃ (H) = 2π
J (H)∫ π

−π
φv(ω)dω

(4.22)

=

∫ π

−π
φx(ω) |1 − H(jω)|2 dω∫ π

−π
φv(ω)dω

+

∫ π

−π
φv(ω) |H(jω)|2 dω∫ π

−π
φv(ω)dω

= iSNR · υsd(H) +
1

ξnr(H)
,

where

υsd(H) =
Jx (H)∫ π

−π
φx(ω)dω

, (4.23)

ξnr(H) =

∫ π

−π
φv(ω)dω

Jv (H)
. (4.24)

Again, we see clearly that the fullband NMSE depends explicitly on the full-
band speech-distortion index and the fullband noise-reduction factor.

4.3 In the KLE Domain

In the KLE domain, the error signal between the estimated and desired signals
in the subband l is

el(k) = cz,l(k) − cx,l(k) (4.25)

= hT
l cy,l(k) − cx,l(k),

which can also be written as the sum of two error signals:

el(k) = ex,l(k) + ev,l(k), (4.26)

where
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ex,l(k) = hT
l cx,l(k) − cx,l(k) (4.27)

is the speech distortion due to the FIR filter, and

ev,l(k) = hT
l cv,l(k) (4.28)

represents the residual noise.
From the error signal (4.25), we give the corresponding KLE-domain (or

subband) MSE criterion:

J (hl) = E
[
e2
l (k)
]

(4.29)

= λl + hT
l Rcy,lhl − 2hT

l rcycx,l,

where

Rcy,l = E
[
cy,l(k)cT

y,l(k)
]
,

rcycx,l = E [cy,l(k)cx,l(k)] ,

are the correlation matrix of the signal cy,l(k) and cross-correlation vector
between the signals cy,l(k) and cx,l(k), respectively. Expression (4.29) can be
structured in a different way:

J (hl) = E
[
e2
x,l(k)

]
+ E
[
e2
v,l(k)

]
(4.30)

= Jx (hl) + Jv (hl) .

For the particular FIR filter

il =
[
1 0 · · · 0

]T
of length Ll, we get

J (il) = E
[
c2
v,l(k)

]
= qT

l Rvql, (4.31)

so there will be neither noise reduction nor speech distortion. Using this par-
ticular case of the MSE, we define the KLE-domain (or subband) NMSE as

J̃ (hl) =
J (hl)
J (il)

= iSNRl · υsd (hl) +
1

ξnr (hl)
, (4.32)

where

υsd (hl) =
Jx (hl)

λl
, (4.33)

ξnr (hl) =
qT

l Rvql

Jv (hl)
. (4.34)
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The KLE-domain NMSE depends explicitly on the subband speech-distortion
index and the subband noise-reduction factor.

We define the fullband MSE and fullband NMSE as

J (h1:L) =
1
L

L∑
l=1

J (hl) (4.35)

=
1
L

L∑
l=1

(hl − il)T Rcx,l(hl − il) +
1
L

L∑
l=1

hT
l Rcv,lhl

= Jx (h1:L) + Jv (h1:L)

and

J̃ (h1:L) = L
J (h1:L)∑L
l=1 qT

l Rvql

(4.36)

=
∑L

l=1(hl − il)T Rcx,l(hl − il)∑L
l=1 qT

l Rvql

+
∑L

l=1 hT
l Rcv,lhl∑L

l=1 qT
l Rvql

= iSNR · υsd(h1:L) +
1

ξnr(h1:L)
,

where

υsd(h1:L) =
Jx (h1:L)∑L

l=1 λl

, (4.37)

ξnr(h1:L) =
∑L

l=1 qT
l Rvql

Jv (h1:L)
. (4.38)

Same as for the frequency-domain approach, the fullband NMSE with the KLE
depends explicitly on the fullband speech-distortion index and the fullband
noise-reduction factor.

4.4 Summary

In this chapter, we have presented the MSE and NMSE criteria in the time,
frequency, and KLE domains. It has been demonstrated that the (subband or
fullband) NMSE in all domains depends explicitly on the input SNR, speech-
distortion index, and noise-reduction factor, which makes the NMSE not only
useful in deriving different optimal filters, but also powerful in analyzing noise
reduction performance. In noise reduction, it is also very important to directly
compare the output SNR with the input SNR. This is essential in order to
tell whether the filter is really able to achieve noise reduction. However, the
MSE and NMSE do not show explicitly the output SNR even though intu-
itively (and implicitly) they should depend on it. In the next chapter, we will
present another criterion, called the Pearson correlation coefficient, in which
the output SNR appears naturally.



5

Pearson Correlation Coefficient

This chapter develops several forms of the Pearson correlation coefficient in
the different domains. This coefficient can be used as an optimization criterion
to derive different optimal noise reduction filters [14], but is even more useful
for analyzing these optimal filters for their noise reduction performance.

5.1 Correlation Coefficient Between Two Random
Variables

Let a and b be two zero-mean real-valued random variables. The Pearson
correlation coefficient (PCC) is defined as1 [41], [98], [105]

ρ (a, b) =
E (ab)
σaσb

, (5.1)

where E (ab) is the cross-correlation between a and b, and σ2
a = E

(
a2
)

and
σ2

b = E
(
b2
)

are the variances of the signals a and b, respectively. In the
rest, it will be more convenient to work with the squared Pearson correlation
coefficient (SPCC):

ρ2 (a, b) =
E2 (ab)
σ2

aσ2
b

. (5.2)

One of the most important properties of the SPCC is that

0 ≤ ρ2 (a, b) ≤ 1. (5.3)

The SPCC gives an indication on the strength of the linear relationship be-
tween the two random variables a and b. If ρ2 (a, b) = 0, then a and b are said
1 This correlation coefficient is named after Karl Pearson who described many of

its properties. Actually to be precise, the true definition of the PCC is when the
expectation operator in (5.1) is replaced by a sum over the samples.

J. Benesty et al., Noise Reduction in Speech Processing, Springer Topics in Signal Processing 2,  
DOI 10.1007/978-3-642-00296-0_5, © Springer-Verlag Berlin Heidelberg 2009    
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to be uncorrelated. The closer the value of ρ2 (a, b) is to 1, the stronger the
correlation between the two variables. If the two variables are independent,
then ρ2 (a, b) = 0. But the converse is not true because the SPCC detects only
linear dependencies between the two variables a and b. For a non-linear de-
pendency, the SPCC may be equal to zero. However, in the special case when
a and b are jointly normal, “independent” is equivalent to “uncorrelated.”

5.2 Correlation Coefficient Between Two Random
Vectors

We can generalize the idea of the SPCC between two random variables to two
random vectors. Indeed, let

a =
[
a1 a2 · · · aL

]T
,

b =
[
b1 b2 · · · bL

]T
,

be two zero-mean real-valued random vectors of length L. We define the SPCC
between a and b as

ρ2 (a,b) =
E2
(
aT b
)

E (aT a) E
(
bT b
) . (5.4)

Let Πa and Πb be two permutation matrices. If Πa = Πb then
ρ2 (Πaa,Πab) = ρ2 (a,b). In general, if Πa �= Πb, we have ρ2 (Πaa,Πbb) �=
ρ2 (a,b).

Property 5.1. We always have

0 ≤ ρ2 (a,b) ≤ 1. (5.5)

Proof. From the definition (5.4), it is clear that ρ2 (a,b) ≥ 0. To show that
ρ2 (a,b) ≤ 1, let us define the positive quantity:

E
[
(a − cb)T (a − cb)

] ≥ 0, (5.6)

where c is a real number. The development of the previous expression gives:

E
[
(a − cb)T (a − cb)

]
= E

(
aT a
)− 2cE

(
aT b
)

+ c2E
(
bT b
)

. (5.7)

In particular, for

c =
E
(
aT a
)

E (aT b)
(5.8)

we get



5.4 KLE-Domain Versions 39

E
(
aT a
)− 2E

(
aT a
)

+
E2
(
aT a
)
E
(
bT b
)

E2 (aT b)
≥ 0, (5.9)

which implies that

E
(
aT a
)
E
(
bT b
)

E2 (aT b)
≥ 1. (5.10)

Therefore ρ2 (a,b) ≤ 1.

5.3 Frequency-Domain Versions

Let A(jω) and B(jω) be the DTFTs of the two zero-mean real-valued random
variables a and b. We define the subband SPCC, which is also known as the
magnitude squared coherence function (MSCF), between A(jω) and B(jω) at
frequency ω as

|ρ [A(jω), B(jω)]|2 =
|E [A(jω)B∗(jω)]|2

E
[
|A(jω)|2

]
E
[
|B(jω)|2

] (5.11)

=
|φab(jω)|2
φa(ω)φb(ω)

,

where superscript ∗ denotes complex conjugation. It is clear that the subband
SPCC always takes its values between 0 and 1.

We can generalize this idea to infinite vectors (containing all frequencies).
We will refer to this definition as the fullband SPCC, which also takes its
values between 0 and 1. In this case, we have

|ρ (A,B)|2 =

∣∣∣E [∫ π

−π
A(jω)B∗(jω)dω

]∣∣∣2
E
[∫ π

−π
|A(jω)|2 dω

]
E
[∫ π

−π
|B(jω)|2 dω

] (5.12)

=

∣∣∣∫ π

−π
φab(jω)dω

∣∣∣2[∫ π

−π
φa(ω)dω

] [∫ π

−π
φb(ω)dω

]
=

E2 (ab)
σ2

aσ2
b

= ρ2 (a, b) .

5.4 KLE-Domain Versions

Let a and b be two zero-mean real-valued random variables and ca,l and cb,l

their respective representations in the KLE domain and in the subband l. We
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define the subband SPCC (or MSCF) between ca,l and cb,l in the subband l
as

ρ2 (ca,l, cb,l) =
E2 (ca,lcb,l)

E
(
c2
a,l

)
E
(
c2
b,l

) . (5.13)

The vector form or fullband SPCC is

ρ2 (ca, cb) =
E2
(
cT

a cb

)
E (cT

a ca) E
(
cT

b cb

) , (5.14)

where ca and cb are two vectors of length L containing all the elements ca,l

and cb,l, l = 1, 2, . . . , L, respectively. It is clear that

0 ≤ ρ2 (ca, cb) ≤ 1, (5.15)
0 ≤ ρ2 (ca, cb) ≤ 1. (5.16)

5.5 Summary

This chapter developed different forms of the so-called Pearson correlation
coefficient in the time, frequency, and KLE domains. Each of these forms has
many interesting properties, which are very useful not only for deriving, but
also for analyzing optimal filters in the context of noise reduction. We will
elaborate on these properties in the next chapter.
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Fundamental Properties

Having introduced in the previous chapter several forms of the SPCC in differ-
ent domains, we now study their fundamental properties. Armed with these
properties it is possible in many cases to derive and analyze optimal noise
reduction filters by a simple inspection of a certain form of the SPCC.

6.1 In the Time Domain

The SPCC between the desired and observation vectors x(k) and y(k) [as
defined in (2.2)] is

ρ2 (x,y) =
E2
(
xT y
)

E (xT x) E (yT y)

=
tr(Rx)
tr(Ry)

=
iSNR

1 + iSNR
. (6.1)

So this SPCC says how much the observation signal is noisy. Indeed, a value
of ρ2 (x,y) close to 1 implies that the speech is largely dominant while a value
of ρ2 (x,y) close to 0 implies that the noise is largely dominant.

The SPCC between the two vectors x(k) and z(k) [as defined in (2.6)] is

ρ2 (x, z) =
tr2(HRx)

tr(Rx)tr
(
HRyHT

)
=

tr2(HRx)

tr(Rx)tr
(
HRxHT

) · oSNR(H)
1 + oSNR(H)

. (6.2)

Property 6.1. We have

J. Benesty et al., Noise Reduction in Speech Processing, Springer Topics in Signal Processing 2,  
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ρ2 (x, z) = ρ2 (x,xF) · ρ2 (xF, z) , (6.3)

where

ρ2 (x,xF) =
tr2(HRx)

tr(Rx)tr
(
HRxHT

) (6.4)

and

ρ2 (xF, z) =
oSNR(H)

1 + oSNR(H)
. (6.5)

The SPCC ρ2 (x,xF) can be viewed as another definition of the speech-
distortion index. If H = I (no speech distortion) then ρ2 (x,xF) = 1. The
closer the value of ρ2 (x,xF) is to 0, the more the speech signal is distorted.
The SPCC ρ2 (xF, z) shows the SNR improvement and reaches its maximum
when oSNR(H) is maximized. Intuitively, we would like to find a matrix H in
such a way that the signal vector z(k) is as close as possible to the vector x(k);
mathematically, this can be translated by maximizing the SPCC ρ2 (x, z) or
by minimizing ρ−2 (x, z). Clearly, from this property [eq. (6.3)], the SNR im-
provement is made at the expense of speech distortion. Maximizing the output
SNR is equivalent to maximizing the SPCC ρ2 (xF, z). The filter derived from
this optimization will introduce a large distortion to the desired signal since
we try to make the signal vector Hy(k) = z(k) as close as possible to the
signal vector Hx(k) = xF(k) [instead of x(k)], which is a filtered version of
x(k).

Now, if we take the natural logarithm of ρ−2 (x, z), we find that

ln
[
ρ−2 (x, z)

]
= ln [tr (Rx)] + ln

[
tr
(
HRyHT

)]
− ln

[
tr2 (HRx)

]
. (6.6)

It is instructive to compare this criterion to the MSE J (H) [eq. (4.5)].

Property 6.2. We have

ρ2 (x, z) ≤ oSNR(H)
1 + oSNR(H)

, (6.7)

with equality when H = I.

Proof. This property follows immediately from (6.3) since ρ2 (x,xF) ≤ 1.

Property 6.3. We have

ρ2 (xF,y) = ρ2 (x,xF) · ρ2 (x,y) . (6.8)

Proof. Indeed
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ρ2 (xF,y) =
tr2(HRx)

tr
(
HRxHT

)
tr(Ry)

=
tr2(HRx)

tr
(
HRxHT

)
tr(Rx)

· iSNR
1 + iSNR

= ρ2 (x,xF) · ρ2 (x,y) .

Property 6.4. We have

ρ2 (xF,y) ≤ iSNR
1 + iSNR

, (6.9)

with equality when H = I.

Proof. This property follows immediately from (6.8) since ρ2 (x,xF) ≤ 1.

The SPCC between the two vectors v(k) and y(k) is another way to see
how much the microphone signal is affected by the noise. This SPCC is

ρ2 (v,y) =
tr(Rv)
tr(Ry)

=
1

1 + iSNR
. (6.10)

So a value of ρ2 (v,y) close to 1 implies that the noise is largely dominant
while a value of ρ2 (v,y) close to 0 implies that the speech is largely dominant.

Property 6.5. We have

ρ2 (x,y) + ρ2 (v,y) = 1 (6.11)

and

iSNR =
ρ2 (x,y)
ρ2 (v,y)

. (6.12)

Proof. Easy to see from (6.1) and (6.10).

The input SNR is the ratio between two SPCCs and the sum of these two
SPCCs is equal to 1. We can give another simple interpretation of Prop-
erty 6.5. Let us define the complex number


 (x,v) = ρ (x,y) + jρ (v,y)
= cos θ + j sin θ, (6.13)

where θ is the angle of 
 (x,v) for which the modulus is equal to 1. On the
complex plane, this complex number is on the unit circle. Since 0 ≤ ρ (x,y) ≤
1 and 0 ≤ ρ (v,y) ≤ 1, therefore 0 ≤ θ ≤ π

2 . Hence
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lim
θ→0

iSNR = ∞, (6.14)

lim
θ→π

2

iSNR = 0. (6.15)

In other words, 
 (x,v) is purely real (resp. imaginary) if and only if the input
SNR is equal to infinity (resp. zero). In this interpretation, we represent the
input SNR by the angle θ for which it takes its values between 0 and π/2.

The SPCC between the two vectors v(k) and z(k) is

ρ2 (v, z) =
tr2(HRv)

tr(Rv)tr
(
HRyHT

)
=

tr2(HRv)

tr(Rv)tr
(
HRvHT

) · 1
1 + oSNR(H)

. (6.16)

Property 6.6. We have

ρ2 (v, z) = ρ2 (v,vF) · ρ2 (vF, z) , (6.17)

where

ρ2 (v,vF) =
tr2(HRv)

tr(Rv)tr
(
HRvHT

) (6.18)

and

ρ2 (vF, z) =
1

1 + oSNR(H)
. (6.19)

Property 6.7. We have

ρ2 (v, z) ≤ 1
1 + oSNR(H)

, (6.20)

with equality when H = I.

Proof. This property follows immediately from (6.17) since ρ2 (v,vF) ≤ 1.

Property 6.8. We have

ρ2 (vF,y) = ρ2 (v,vF) · ρ2 (v,y) . (6.21)

Proof. Indeed

ρ2 (vF,y) =
tr2(HRv)

tr
(
HRvHT

)
tr(Ry)

=
tr2(HRv)

tr
(
HRvHT

)
tr(Rv)

· 1
1 + iSNR

= ρ2 (v,vF) · ρ2 (v,y) .
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Property 6.9. We have

ρ2 (vF,y) ≤ 1
1 + iSNR

, (6.22)

with equality when H = I.

Proof. This property follows immediately from (6.21) since ρ2 (v,vF) ≤ 1.

Property 6.10. We have

ρ2 (xF, z) + ρ2 (vF, z) = 1 (6.23)

and

oSNR(H) =
ρ2 (xF, z)
ρ2 (vF, z)

. (6.24)

Proof. Easy to see from (6.5) and (6.19).

The output SNR is the ratio between two SPCCs depending on H and the
sum of these two SPCCs is equal to 1. Now, let us define the complex number
after the filtering processing:


 (xF,vF) = ρ (xF, z) + jρ (vF, z)
= cos θF + j sin θF, (6.25)

where θF is the angle of 
 (xF,vF) for which the modulus is equal to 1. On the
complex plane, this complex number is on the unit circle. Since 0 ≤ ρ (xF, z) ≤
1 and 0 ≤ ρ (vF, z) ≤ 1, therefore 0 ≤ θF ≤ π

2 . Hence

lim
θF→0

oSNR(H) = ∞, (6.26)

lim
θF→π

2

oSNR(H) = 0. (6.27)

In other words, 
 (xF,vF) is purely real (resp. imaginary) if and only if the
output SNR is equal to infinity (resp. zero). In this interpretation, we represent
the output SNR by the angle θF for which it takes its values between 0 and
π/2.

It is easy to check that oSNR(H) > iSNR is equivalent to ρ2 (xF, z) >
ρ2 (x,y). In this case, ρ2 (vF, z) < ρ2 (v,y). With the angle interpretation,
oSNR(H) > iSNR is equivalent to cos2 θF > cos2 θ which implies that θF < θ.

To finish this part, we link the noise-reduction and speech-reduction factors
with the SPCCs:

ρ2 (xF, z)
ρ2 (x,y)

· ξsr (H) =
ρ2 (vF, z)
ρ2 (v,y)

· ξnr (H) , (6.28)

and with the angles:

tan2 θ · ξsr (H) = tan2 θF · ξnr (H) . (6.29)
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6.2 In the Frequency Domain

The subband SPCC (or MSCF) between the two signals X(jω) and Y (jω)
[as defined in (2.8)] at frequency ω is

|ρ [X(jω), Y (jω)] |2 =
φx(ω)
φy(ω)

=
iSNR(ω)

1 + iSNR(ω)
. (6.30)

This subband SPCC tells us how much the observation signal is noisy at
frequency ω. A value of |ρ [X(jω), Y (jω)] |2 close to 1 implies that the speech
is largely dominant while a value of |ρ [X(jω), Y (jω)] |2 close to 0 implies that
the noise is largely dominant at frequency ω.

The fullband SPCC between the two signals X(jω) and Y (jω) is

|ρ (X,Y ) |2 =

∫ π

−π
φx(ω)dω∫ π

−π
φy(ω)dω

=
iSNR

1 + iSNR
= ρ2 (x,y) . (6.31)

As expected, the SPCC between the two vectors x(k) and y(k) is identical to
the fullband SPCC between X(jω) and Y (jω).

The subband SPCC between the two signals X(jω) and Z(jω) [as defined
in (2.13)] at frequency ω is

|ρ [X(jω), Z(jω)] |2 = |ρ [X(jω), Y (jω)] |2. (6.32)

The subband SPCC between X(jω) and Z(jω) is equal to the subband SPCC
between X(jω) and Y (jω) and does not depend on H(jω); the same way the
subband input SNR is equal to the subband output SNR and does not depend
on H(jω).

The fullband SPCC between the two signals X(jω) and Z(jω) is

|ρ (X,Z) |2 =

∣∣∣∫ π

−π
H(jω)φx(ω)dω

∣∣∣2[∫ π

−π
φx(ω)dω

] [∫ π

−π
|H(jω)|2 φy(ω)dω

] (6.33)

=

∣∣∣∫ π

−π
H(jω)φx(ω)dω

∣∣∣2[∫ π

−π
φx(ω)dω

] [∫ π

−π
|H(jω)|2 φx(ω)dω

] · oSNR(H)
1 + oSNR(H)

.

Property 6.11. We have

|ρ (X,Z) |2 = |ρ (X,XF) |2 · |ρ (XF, Z) |2, (6.34)
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where

|ρ (X,XF) |2 =

∣∣∣∫ π

−π
H(jω)φx(ω)dω

∣∣∣2[∫ π

−π
φx(ω)dω

] [∫ π

−π
|H(jω)|2 φx(ω)dω

] (6.35)

and

|ρ (XF, Z) |2 =
oSNR(H)

1 + oSNR(H)
. (6.36)

The fullband SPCC |ρ (X,XF) |2 is a speech-distortion index. If H(jω) =
1, ∀ω (no speech distortion) then |ρ (X,XF) |2 = 1. The closer the value of
|ρ (X,XF) |2 is to 0, the more the speech signal is distorted. The fullband
SPCC |ρ (XF, Z) |2 shows the SNR improvement and reaches its maximum
when oSNR(H) is maximized. The maximization of |ρ (X,Z) |2 leads to an
optimal filter.

Property 6.12. We have

|ρ (X,Z) |2 ≤ oSNR(H)
1 + oSNR(H)

, (6.37)

with equality when H(jω) = 1, ∀ω.

Proof. This property follows immediately from (6.34) since |ρ (X,XF) |2 ≤ 1.

Property 6.13. We have

|ρ (XF, Y ) |2 = |ρ (X,XF) |2 · |ρ (X,Y ) |2. (6.38)

Proof. Indeed

|ρ (XF, Y ) |2 =

∣∣∣∫ π

−π
H(jω)φx(ω)dω

∣∣∣2[∫ π

−π
|H(jω)|2 φx(ω)dω

] [∫ π

−π
φy(ω)dω

]

=

∣∣∣∫ π

−π
H(jω)φx(ω)dω

∣∣∣2[∫ π

−π
|H(jω)|2 φx(ω)dω

] [∫ π

−π
φx(ω)dω

] · iSNR
1 + iSNR

= |ρ (X,XF) |2 · |ρ (X,Y ) |2.

Property 6.14. We have

|ρ (XF, Y ) |2 ≤ iSNR
1 + iSNR

, (6.39)

with equality when H(jω) = 1, ∀ω.
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Proof. This property follows immediately from (6.38) since |ρ (X,XF) |2 ≤ 1.

The MSCF between V (jω) and Y (jω) is another way to see how much the
observation signal is affected by the noise at frequency ω. This MSCF is

|ρ [V (jω), Y (jω)] |2 =
φv(ω)
φy(ω)

=
1

1 + iSNR(ω)
. (6.40)

Property 6.15. We have

|ρ [X(jω), Y (jω)] |2 + |ρ [V (jω), Y (jω)] |2 = 1 (6.41)

and

iSNR(ω) =
|ρ [X(jω), Y (jω)] |2
|ρ [V (jω), Y (jω)] |2 . (6.42)

Proof. Easy to see from (6.30) and (6.40).

The subband input SNR at frequency ω is the ratio of two MSCFs and the
sum of these two MSCFs is equal to 1.

The fullband SPCC between V (jω) and Y (jω) is

|ρ (V, Y ) |2 =
1

1 + iSNR
= ρ2 (v,y) . (6.43)

The SPCC between the two vectors v(k) and y(k) is equal to the fullband
SPCC between V (jω) and Y (jω).

The subband SPCC between the two signals V (jω) and Z(jω) at frequency
ω is

|ρ [V (jω), Z(jω)] |2 = |ρ [V (jω), Y (jω)] |2. (6.44)

The fullband SPCC between the same signals is

|ρ (V,Z) |2 =

∣∣∣∫ π

−π
H(jω)φv(ω)dω

∣∣∣2[∫ π

−π
φv(ω)dω

] [∫ π

−π
|H(jω)|2 φy(ω)dω

] (6.45)

=

∣∣∣∫ π

−π
H(jω)φv(ω)dω

∣∣∣2[∫ π

−π
φv(ω)dω

] [∫ π

−π
|H(jω)|2 φv(ω)dω

] · 1
1 + oSNR(H)

.
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Property 6.16. We have

|ρ (V,Z) |2 = |ρ (V, VF) |2 · |ρ (VF, Z) |2, (6.46)

where

|ρ (V, VF) |2 =

∣∣∣∫ π

−π
H(jω)φv(ω)dω

∣∣∣2[∫ π

−π
φv(ω)dω

] [∫ π

−π
|H(jω)|2 φv(ω)dω

] (6.47)

and

|ρ (VF, Z) |2 =
1

1 + oSNR(H)
. (6.48)

Property 6.17. We have

|ρ (V,Z) |2 ≤ 1
1 + oSNR(H)

, (6.49)

with equality when H(jω) = 1, ∀ω.

Proof. This property follows immediately from (6.46) since |ρ (V, VF) |2 ≤ 1.

Property 6.18. We have

|ρ (VF, Y ) |2 = |ρ (V, VF) |2 · |ρ (V, Y ) |2. (6.50)

Proof. Indeed

|ρ (VF, Y ) |2 =

∣∣∣∫ π

−π
H(jω)φv(ω)dω

∣∣∣2[∫ π

−π
|H(jω)|2 φv(ω)dω

] [∫ π

−π
φy(ω)dω

]

=

∣∣∣∫ π

−π
H(jω)φv(ω)dω

∣∣∣2[∫ π

−π
|H(jω)|2 φv(ω)dω

] [∫ π

−π
φv(ω)dω

] · 1
1 + iSNR

= |ρ (V, VF) |2 · |ρ (V, Y ) |2.

Property 6.19. We have

|ρ (VF, Y ) |2 ≤ 1
1 + iSNR

, (6.51)

with equality when H(jω) = 1, ∀ω.

Proof. This property follows immediately from (6.50) since |ρ (V, VF) |2 ≤ 1.
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Property 6.20. We have

|ρ (XF, Z) |2 + |ρ (VF, Z) |2 = 1 (6.52)

and

oSNR(H) =
|ρ (XF, Z) |2
|ρ (VF, Z) |2 . (6.53)

Proof. Easy to see from (6.36) and (6.48).

The fullband output SNR for the frequency-domain approach is the ratio of
two fullband SPCCs and the sum of these two SPCCs is equal to 1.

It can be checked that oSNR(H) > iSNR is equivalent to |ρ (XF, Z) |2 >
ρ2 (x,y). In this situation, |ρ (VF, Z) |2 < ρ2 (v,y).

6.3 In the KLE Domain

The subband SPCC (or MSCF) between the two signals cx,l(k) and cy,l(k)
[as defined in (2.22)] in the subband l is

ρ2 (cx,l, cy,l) =
λl

λl + qT
l Rvql

=
iSNRl

1 + iSNRl
. (6.54)

This SPCC tells us how much the observation signal is noisy in the subband
l. A value of ρ2 (cx,l, cy,l) close to 1 implies that the speech is largely domi-
nant while a value of ρ2 (cx,l, cy,l) close to 0 implies that the noise is largely
dominant in the subband l.

The subband SPCC between the two signals cx,l(k) and cz,l(k) [as defined
in (2.26)] in the subband l is

ρ2 (cx,l, cz,l) =

(
iTl Rcx,lhl

)2

λl · hT
l Rcy,lhl

=

(
iTl Rcx,lhl

)2

λl · hT
l Rcx,lhl

· oSNR(hl)
1 + oSNR(hl)

. (6.55)

Property 6.21. We have

ρ2 (cx,l, cz,l) = ρ2
(
cx,l,hT

l cx,l

)
· ρ2
(
hT

l cx,l, cz,l

)
, (6.56)

where
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ρ2
(
cx,l,hT

l cx,l

)
=

(
iTl Rcx,lhl

)2

λl · hT
l Rcx,lhl

(6.57)

and

ρ2
(
hT

l cx,l, cz,l

)
=

oSNR(hl)
1 + oSNR(hl)

. (6.58)

Property 6.22. We have

ρ2 (cx,l, cz,l) ≤ oSNR(hl)
1 + oSNR(hl)

, (6.59)

with equality when hl = il.

Proof. This property follows immediately from (6.56) since ρ2
(
cx,l,hT

l cx,l

)
.

Property 6.23. We have

ρ2
(
hT

l cx,l, cy,l

)
= ρ2

(
cx,l,hT

l cx,l

)
· ρ2 (cx,l, cy,l) . (6.60)

Proof. Indeed

ρ2
(
hT

l cx,l, cy,l

)
=

(
iTl Rcx,lhl

)2

hT
l Rcx,lhl ·

(
λl + qT

l Rvql

)

=

(
iTl Rcx,lhl

)2

hT
l Rcx,lhl · λl

· iSNRl

1 + iSNRl

= ρ2
(
cx,l,hT

l cx,l

)
· ρ2 (cx,l, cy,l) .

Property 6.24. We have

ρ2
(
hT

l cx,l, cy,l

)
≤ iSNRl

1 + iSNRl
, (6.61)

with equality when hl = il.

Proof. This property follows immediately from (6.60) since ρ2
(
cx,l,hT

l cx,l

)
≤

1.

The SPCC between the two signals cv,l(k) and cy,l(k) is another way to
see how much the microphone signal is affected by the noise in the subband
l. This SPCC is

ρ2 (cv,l, cy,l) =
qT

l Rvql

qT
l Ryql

=
1

1 + iSNRl
. (6.62)
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So a value of ρ2 (cv,l, cy,l) close to 1 implies that the noise is largely dominant
while a value of ρ2 (cv,l, cy,l) close to 0 implies that the speech is largely
dominant in the subband l.

Property 6.25. We have

ρ2 (cx,l, cy,l) + ρ2 (cv,l, cy,l) = 1 (6.63)

and

iSNRl =
ρ2 (cx,l, cy,l)
ρ2 (cv,l, cy,l)

. (6.64)

Proof. Easy to see from (6.54) and (6.62).

The subband input SNR is the ratio between two SPCCs and the sum of these
two SPCCs is equal to 1.

The SPCC between the two signals cv,l(k) and cz,l(k) in the subband l is

ρ2 (cv,l, cz,l) =

(
iTl Rcv,lhl

)2

qT
l Rvql · hT

l Rcy,lhl

=

(
iTl Rcv,lhl

)2

qT
l Rvql · hT

l Rcv,lhl

· 1
1 + oSNR(hl)

. (6.65)

Property 6.26. We have

ρ2 (cv,l, cz,l) = ρ2
(
cv,l,hT

l cv,l

)
· ρ2
(
hT

l cv,l, cz,l

)
, (6.66)

where

ρ2
(
cv,l,hT

l cv,l

)
=

(
iTl Rcv,lhl

)2

qT
l Rvql · hT

l Rcv,lhl

(6.67)

and

ρ2
(
hT

l cv,l, cz,l

)
=

1
1 + oSNR(hl)

. (6.68)

Property 6.27. We have

ρ2 (cv,l, cz,l) ≤ 1
1 + oSNR(hl)

, (6.69)

with equality when hl = il.

Proof. This property follows immediately from (6.66) since ρ2
(
cv,l,hT

l cv,l

)
≤

1.
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Property 6.28. We have

ρ2
(
hT

l cv,l, cy,l

)
= ρ2

(
cv,l,hT

l cv,l

)
· ρ2 (cv,l, cy,l) . (6.70)

Proof. Indeed

ρ2
(
hT

l cv,l, cy,l

)
=

(
iTl Rcv,lhl

)2

hT
l Rcv,lhl ·

(
λl + qT

l Rvql

)

=

(
iTl Rcv,lhl

)2

hT
l Rcv,lhl · qT

l Rvql

· 1
1 + iSNRl

= ρ2
(
cv,l,hT

l cv,l

)
· ρ2 (cv,l, cy,l) .

Property 6.29. We have

ρ2
(
hT

l cv,l, cy,l

)
≤ 1

1 + iSNRl
, (6.71)

with equality when hl = il.

Proof. This property follows immediately from (6.70) since ρ2
(
cv,l,hT

l cv,l

)
≤

1.

Property 6.30. We have

ρ2
(
hT

l cx,l, cz,l

)
+ ρ2

(
hT

l cv,l, cz,l

)
= 1 (6.72)

and

oSNR(hl) =
ρ2
(
hT

l cx,l, cz,l

)
ρ2
(
hT

l cv,l, cz,l

) . (6.73)

Proof. Easy to see from (6.58) and (6.68).

The subband output SNR for the KLE-domain approach is the ratio of two
SPCCs depending on hl and the sum of these two SPCCs is equal to 1.

For Ll > 1, it is easy to see that oSNR(hl) > iSNR is equivalent to
ρ2
(
hT

l cx,l, cz,l

)
> ρ2 (cx,l, cy,l). In this case, ρ2

(
hT

l cv,l, cz,l

)
< ρ2 (cv,l, cy,l).

Now, let us define the four vectors of length L:

cv(k) =
[
cv,1(k) cv,2(k) · · · cv,L(k)

]T
, (6.74a)

cx(k) =
[
cx,1(k) cx,2(k) · · · cx,L(k)

]T
, (6.74b)

cy(k) =
[
cy,1(k) cy,2(k) · · · cy,L(k)

]T
, (6.74c)

cz(k) =
[
cz,1(k) cz,2(k) · · · cz,L(k)

]T
, (6.74d)
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and the two filtered vectors of length L:

cv,F(k) =
[
hT

1 cv,1(k) hT
2 cv,2(k) · · · hT

Lcv,L(k)
]T

, (6.75a)

cx,F(k) =
[
hT

1 cx,1(k) hT
2 cx,2(k) · · · hT

Lcx,L(k)
]T

. (6.75b)

The SPCC between the two vectors cx(k) and cy(k) is

ρ2 (cx, cy) =
∑L

l=1 λl∑L
l=1 λl +

∑L
l qT

l Rvql

=
iSNR

1 + iSNR
= ρ2 (x,y) . (6.76)

As expected, the SPCC between the two vectors x(k) and y(k) is identical to
the SPCC between the two vectors cx(k) and cy(k).

The SPCC between the two vectors cx(k) and cz(k) is

ρ2 (cx, cz) =

(∑L
l=1 iTl Rcx,lhl

)2

∑L
l=1 λl ·

∑L
l=1 hT

l Rcy,lhl

=

(∑L
l=1 iTl Rcx,lhl

)2

∑L
l=1 λl ·

∑L
l=1 hT

l Rcx,lhl

· oSNR(h1:L)
1 + oSNR(h1:L)

. (6.77)

Property 6.31. We have

ρ2 (cx, cz) = ρ2 (cx, cx,F) · ρ2 (cx,F, cz) , (6.78)

where

ρ2 (cx, cx,F) =

(∑L
l=1 iTl Rcx,lhl

)2

∑L
l=1 λl ·

∑L
l=1 hT

l Rcx,lhl

(6.79)

and

ρ2 (cx,F, cz) =
oSNR(h1:L)

1 + oSNR(h1:L)
. (6.80)

Property 6.32. We have

ρ2 (cx, cz) ≤ oSNR(h1:L)
1 + oSNR(h1:L)

, (6.81)

with equality when hl = il, ∀l.

Proof. This property follows immediately from (6.78) since ρ2 (cx, cx,F) ≤ 1.
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Property 6.33. We have

ρ2 (cx,F, cy) = ρ2 (cx, cx,F) · ρ2 (cx, cy) . (6.82)

Proof. Indeed

ρ2 (cx,F, cy) =

(∑L
l=1 iTl Rcx,lhl

)2

∑L
l=1 hT

l Rcx,lhl ·
∑L

l=1

(
λl + qT

l Rvql

)

=

(∑L
l=1 iTl Rcx,lhl

)2

∑L
l=1 hT

l Rcx,lhl ·
∑L

l=1 λl

· iSNR
1 + iSNR

= ρ2 (cx, cx,F) · ρ2 (cx, cy) .

Property 6.34. We have

ρ2 (cx,F, cy) ≤ iSNR
1 + iSNR

, (6.83)

with equality when hl = il, ∀l.

Proof. This property follows immediately from (6.82) since ρ2 (cx, cx,F) ≤ 1.

The SPCC between the two vectors cv and cy is

ρ2 (cv, cy) =
∑L

l=1 qT
l Rvql∑L

l=1 qT
l Ryql

=
1

1 + iSNR
= ρ2 (v,y) . (6.84)

As expected, the SPCC between the two vectors v(k) and y(k) is identical to
the SPCC between the two vectors cv(k) and cy(k).

The SPCC between the two vectors cv(k) and cz(k) is

ρ2 (cv, cz) =

(∑L
l=1 iTl Rcv,lhl

)2

∑L
l=1 qT

l Rvql ·
∑L

l=1 hT
l Rcy,lhl

=

(∑L
l=1 iTl Rcv,lhl

)2

∑L
l=1 qT

l Rvql ·
∑L

l=1 hT
l Rcv,lhl

· 1
1 + oSNR(h1:L)

. (6.85)

Property 6.35. We have

ρ2 (cv, cz) = ρ2 (cv, cv,F) · ρ2 (cv,F, cz) , (6.86)

where
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ρ2 (cv, cv,F) =

(∑L
l=1 iTl Rcv,lhl

)2

∑L
l=1 qT

l Rvql ·
∑L

l=1 hT
l Rcv,lhl

(6.87)

and

ρ2 (cv,F, cz) =
1

1 + oSNR(h1:L)
. (6.88)

Property 6.36. We have

ρ2 (cv, cz) ≤ 1
1 + oSNR(h1:L)

, (6.89)

with equality when hl = il, ∀l.

Proof. This property follows immediately from (6.86) since ρ2 (cv, cv,F) ≤ 1.

Property 6.37. We have

ρ2 (cv,F, cy) = ρ2 (cv, cv,F) · ρ2 (cv, cy) . (6.90)

Proof. Indeed

ρ2 (cv,F, cy) =

(∑L
l=1 iTl Rcv,lhl

)2

∑L
l=1 hT

l Rcv,lhl ·
∑L

l=1

(
λl + qT

l Rvql

)

=

(∑L
l=1 iTl Rcv,lhl

)2

∑L
l=1 hT

l Rcv,lhl ·
∑L

l=1 qT
l Rvql

· 1
1 + iSNR

= ρ2 (cv, cv,F) · ρ2 (cv, cy) .

Property 6.38. We have

ρ2 (cv,F, cy) ≤ 1
1 + iSNR

, (6.91)

with equality when hl = il, ∀l.

Proof. This property follows immediately from (6.90) since ρ2 (cv, cv,F) ≤ 1.

Property 6.39. We have

ρ2 (cx,F, cz) + ρ2 (cv,F, cz) = 1 (6.92)

and

oSNR(h1:L) =
ρ2 (cx,F, cz)
ρ2 (cv,F, cz)

. (6.93)

Proof. Easy to see from (6.80) and (6.88).

The fullband output SNR for the KLE-domain approach is the ratio of two
SPCCs depending on hl, l = 1, 2, . . . , L and the sum of these two SPCCs is
equal to 1.

It can be checked that oSNR(h1:L) > iSNR is equivalent to ρ2 (cx,F, cz) >
ρ2 (cx, cy). In this case, ρ2 (cv,F, cz) < ρ2 (cv, cy).
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6.4 Summary

In this chapter, we discussed many interesting properties of the SPCC in dif-
ferent domains. These fundamental properties establish relationships between
the SPCC and the input and output SNRs. Armed with these properties, it
is possible in many cases to derive and analyze optimal noise reduction filters
by a simple inspection of a certain form of the SPCC, which will be exploited
in the next several chapters.



7

Optimal Filters in the Time Domain

Having discussed different error criteria and performance measures, we now
begin our search for reliable and practical noise reduction filters. In this chap-
ter, we restrict our attention to filters in the time domain. Particularly, much
emphasis is on the Wiener filter [125] as it is directly derived from the MSE
criterion and most well-known algorithms are somehow related to it.

7.1 Wiener Filter

If we differentiate the MSE criterion, J (H) [eq. (4.5)], with respect to H and
equate the result to zero, we easily find the Wiener filter matrix:

HT
W = R−1

y Rx

= I − R−1
y Rv. (7.1)

This optimal filter depends on the correlation matrices Ry and Rv: the first
one can be estimated during speech-and-noise periods while the second one
can be estimated during noise-only intervals assuming that the statistics of
the noise do not change much with time.

Now, if we substitute (2.16) into (7.1) we get another useful form of the
time-domain Wiener filter:

HT
W = Q

[
Λ + QT RvQ

]−1

ΛQT . (7.2)

Let us define the following normalized correlation matrices:

R̃v =
Rv

σ2
v

,

R̃x =
Rx

σ2
x

,

R̃y =
Ry

σ2
y

.

J. Benesty et al., Noise Reduction in Speech Processing, Springer Topics in Signal Processing 2,  
DOI 10.1007/978-3-642-00296-0_7, © Springer-Verlag Berlin Heidelberg 2009    
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A third way to write the Wiener filter is

HT
W =

[
I

iSNR
+ R̃−1

v R̃x

]−1

R̃−1
v R̃x (7.3)

= ρ2(x,y)R̃−1
y R̃x

= I − ρ2(v,y)R̃−1
y R̃v,

We can see from (7.3) that

lim
iSNR→∞

HW = I, (7.4)

lim
iSNR→0

HW = 0L×L, (7.5)

where 0L×L is an L×L matrix with all its elements being zeros. Clearly, the
Wiener filter may have a disastrous effect for low input SNRs since it may
remove everything (noise and speech).

Property 7.1. With the optimal Wiener filter given in (7.1), the output SNR
is always greater than or equal to the input SNR, i.e., oSNR(HW) ≥ iSNR.

Proof. Let us evaluate the SPCC between the two vectors y(k) and zW(k) =
HWy(k):

ρ2(y, zW) =
tr2 (HWRy)

tr (Ry) · tr
(
HWRyHT

W

)
=

tr (Rx)
tr (Ry)

· tr (Rx)
tr (HWRx)

=
ρ2(x,y)

ρ2(x, zW)
.

Therefore

ρ2(x,y) = ρ2(y, zW) · ρ2(x, zW) ≤ ρ2(x, zW).

Using (6.1) and Property 6.2 in the previous expression, we get

iSNR
1 + iSNR

≤ oSNR(HW)
1 + oSNR(HW)

,

that we can slightly rearranged to

1
1 + 1

iSNR

≤ 1
1 + 1

oSNR(HW)

,

which implies that
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1
iSNR

≥ 1
oSNR(HW)

.

As a result

oSNR(HW) ≥ iSNR.

The minimum MSE (MMSE) and minimum NMSE (MNMSE) are ob-
tained by replacing HW in (4.5) and (4.8):

J (HW) = tr (Rx) − tr
(
RxR−1

y Rx

)
= tr (Rv) − tr

(
RvR−1

y Rv

)
, (7.6)

J̃ (HW) = 1 − tr
(
RvR−1

y Rv

)
tr (Rv)

≤ 1. (7.7)

We can compute the speech-distortion index by substituting (7.1) into (3.23):

υsd (HW) = 1 − oSNR(HW) + 2
iSNR · ξnr (HW)

≤ 1. (7.8)

Using (4.8) and (7.8), we get the noise-reduction factor:

ξnr (HW) =
oSNR(HW) + 1
iSNR − J̃ (HW)

≥ 1. (7.9)

Property 7.2. We have

J̃ (HW) = iSNR
[
1 − ρ2(x, zW)

]
. (7.10)

Proof. Indeed

J̃ (HW) =
tr (Rx)
tr (Rv)

− tr
(
RxR−1

y Rx

)
tr (Rv)

= iSNR

[
1 − tr

(
RxR−1

y Rx

)
tr (Rx)

]

= iSNR
[
1 − ρ2(x, zW)

]
.

Therefore, the NMSE is minimized when the SPCC between the two vectors
x(k) and z(k) is maximized. This SPCC can be rewritten as follows:

ρ2(x, zW) =
1

ξsr (HW)
· 1 + oSNR(HW)

oSNR(HW)
. (7.11)

We observe that the Wiener filter is compromising between speech reduction
(i.e., speech distortion) and output SNR improvement.
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Property 7.3. We have

iSNR
1 + oSNR(HW)

≤ J̃ (HW) ≤ iSNR
1 + iSNR

. (7.12)

Proof. Since

ρ2(x, zW) ≥ iSNR
1 + iSNR

and with the help of (7.10), we easily get

J̃ (HW) ≤ iSNR
1 + iSNR

.

Since

ρ2(x, zW) ≤ oSNR(HW)
1 + oSNR(HW)

and, again, with the help of (7.10), we obtain

iSNR
1 + oSNR(HW)

≤ J̃ (HW) .

Hence, we get better bounds for the MNMSE than the usual ones [0 ≤
J̃ (HW) ≤ 1].

Property 7.4. We have

[1 + oSNR(HW)]2

iSNR · oSNR(HW)
≤ ξnr (HW) ≤ (1 + iSNR) [1 + oSNR(HW)]

iSNR2 . (7.13)

Proof. Easy to show by using (7.9) and the bounds of J̃ (HW) [eq. (7.12)].

Property 7.5. We have

1
[1 + oSNR(HW)]2

≤ υsd (HW) ≤ 1 + oSNR(HW) − iSNR
(1 + iSNR) [1 + oSNR(HW)]

. (7.14)

Proof. Easy to show by using (7.8) and the bounds of ξnr (HW) [eq. (7.13)].

Particular case: white noise.

We assume here that the noise picked up by the microphone is white (i.e.,
Rv = σ2

vI). In this situation, the Wiener filter matrix becomes

HW = I − σ2
vR

−1
y , (7.15)

where
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Ry = Rx + σ2
vI.

It is well known that the inverse of the Toeplitz matrix Ry can be factorized
as follows [8], [82]:

R−1
y =




1 −c21 · · · −cL1

−c12 1 · · · −cL2

...
...

. . .
...

−c1L −c2L · · · 1






1/E1 0 · · · 0
0 1/E2 · · · 0
...

...
. . .

...
0 0 · · · 1/EL


 , (7.16)

where the columns of the first matrix in the right-hand side of (7.16) are the
linear interpolators of the signal y(k) and the elements El in the diagonal
matrix are the respective interpolation-error powers.

Using the factorization of R−1
y in (7.6) and (7.7), the MMSE and MNMSE

can be rewritten, respectively, as

J(HW) = Lσ2
v − (σ2

v

)2 L∑
l=1

1
El

, (7.17)

J̃(HW) = 1 − σ2
v

L

L∑
l=1

1
El

. (7.18)

Assume that the noise-free speech signal, x(k), is very well predictable.
In this scenario, El ≈ σ2

v , ∀ l, and replacing this value in (7.18) we find
that J̃(HW) ≈ 0. From (4.8), we then deduce that υsd(HW) ≈ 0 (no speech
distortion) and ξnr(HW) ≈ ∞ (infinite noise reduction). Notice that, from a
theoretical point of view (and with white noise), this result is independent of
the SNR. Also

HW ≈




0 c12 · · · c1L

c21 0 · · · c2L

...
...

. . .
...

cL1 cL2 · · · 0


 (7.19)

and since HWx(k) ≈ x(k), this means that ξsr(HW) ≈ 1; as a result
oSNR(HW) ≈ ∞ and we can almost perfectly recover the signal x(k).

At the other extreme case, let us see now what happens when the signal
of interest x(k) is not predictable at all. In this situation, El ≈ σ2

y, ∀ l and
cij ≈ 0, ∀ i, j, i �= j. Using these values, we get

HW ≈ iSNR
1 + iSNR

I, (7.20)

J̃(HW) ≈ iSNR
1 + iSNR

. (7.21)

With the help of the two previous equations, it’s straightforward to obtain
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ξnr(HW) ≈
(

1 +
1

iSNR

)2

, (7.22)

υsd(HW) ≈ 1
(1 + iSNR)2

, (7.23)

SNR(HW) ≈ iSNR. (7.24)

While some noise reduction is achieved (at the price of speech distortion),
there is no improvement in the output SNR, meaning that the Wiener filter
has no positive effect on the microphone signal y(k).

This analysis, even though simple, is quite insightful. It shows that the
Wiener filter may not be that bad after all, as long as the desired signal
is somewhat predictable. However, in practice some discontinuities could be
heard from a voiced signal to an unvoiced one, since for the former the noise
will be mostly removed while it will not for the latter.

7.2 Tradeoff Filters

The time-domain NMSE as shown in (4.8) is the sum of two terms. One
depends on the speech distortion while the other one depends on the noise
reduction. Instead of minimizing the NMSE with respect to H as we already
did to find the Wiener filter, we can minimize the speech-distortion index
with the constraint that the noise-reduction factor is equal to a value that is
greater than one. Mathematically, this is equivalent to

min
H

Jx(H) subject to Jv(H) = β · tr (Rv) , (7.25)

where 0 < β < 1 in order to have some noise reduction. If we use a Lagrange
multiplier, µ, to adjoin the constraint to the cost function, (7.25) can be
rewritten as

HT = arg min
H

L(H, µ), (7.26)

with

L(H, µ) = Jx (H) + µ [Jv (H) − β · tr (Rv)] (7.27)

and µ ≥ 0. From (7.26), we can easily derive the optimal filter:

HT
T = (Rx + µRv)−1 Rx

= [Ry + (µ − 1)Rv]−1 [Ry − Rv]

=
[
(1 − µ)I + µ

(
HT

W

)−1
]−1

, (7.28)

where the Lagrange multiplier, µ, satisfies Jv (HT) = β ·tr (Rv), which implies
that
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ξnr(HT) =
1
β

> 1. (7.29)

From (4.8), we get

υsd (HT) =
1

iSNR

[
J̃(HT) − β

]
, (7.30)

and because υsd (HT) ≥ 0, J̃(HT) ≥ β.
Since J̃(HW) ≤ J̃(HT), ∀µ, we also have

υsd(HT) ≥ υsd(HW) +
1

iSNR

[
1

ξnr(HW)
− 1

ξnr(HT)

]
. (7.31)

Therefore, ξnr(HT) ≥ ξnr(HW) implies that υsd(HT) ≥ υsd(HW).
In practice it’s not easy to determine the optimal µ. Therefore, when this

parameter is chosen in an ad-hoc way, we can see that for

• µ = 1, HT = HW: Wiener filter;
• µ = 0, HT = I: distortionless filter;
• µ > 1, results in low residual noise at the expense of high speech distortion;
• µ < 1, we get little speech distortion but not so much noise reduction.

Property 7.6. With the tradeoff filter given in (7.28), the output SNR is always
greater than or equal to the input SNR, i.e., oSNR(HT) ≥ iSNR.

Proof. The SPCC between the two vectors x(k) and x(k) +
√

µv(k) is

ρ2 (x,x +
√

µv) =
tr2 (Rx)

tr (Rx) [tr (Rx) + µtr (Rv)]

=
iSNR

µ + iSNR
.

The SPCC between the two vectors x(k) and HTx(k) +
√

µHTv(k) is

ρ2 (x,HTx +
√

µHTv) =
tr2 (HTRx)

tr (Rx) tr
[
HT (Rx + µRv)HT

T

]
=

tr (HTRx)
tr (Rx)

.

Another way to write the same SPCC is the following:

ρ2 (x,HTx +
√

µHTv) =
tr2 (HTRx)

tr (Rx) tr
(
HTRxHT

T

) · oSNR (HT)
µ + oSNR (HT)

= ρ2 (x,HTx) · ρ2 (HTx,HTx +
√

µHTv)

≤ oSNR (HT)
µ + oSNR (HT)

.
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Now, let us evaluate the SPCC between the two vectors x(k) +
√

µv(k) and
HTx(k) +

√
µHTv(k):

ρ2 (x +
√

µv,HTx +
√

µHTv) =
tr2 [HT (Rx + µRv)]

[tr (Rx) + µtr (Rv)] · tr
[
HT (Rx + µRv)HT

T

]
=

tr (Rx)
tr (Rx) + µtr (Rv)

· tr (Rx)
tr (HTRx)

=
ρ2
(
x,x +

√
µv
)

ρ2
(
x,HTx +

√
µHTv

) .
Therefore

ρ2 (x,x +
√

µv) =
iSNR

µ + iSNR
= ρ2 (x +

√
µv,HTx +

√
µHTv) · ρ2 (x,HTx +

√
µHTv)

≤ ρ2 (x,HTx +
√

µHTv)

≤ oSNR (HT)
µ + oSNR (HT)

.

As a result

oSNR (HT) ≥ iSNR.

We can find another tradeoff filter by minimizing the residual noise with
the constraint that we allow some level of speech distortion. Mathematically,
this is equivalent to

min
H

Jv(H) subject to Jx(H) = β2 · tr (Rx) , (7.32)

where β2 > 0 in order to have some noise reduction. If we use a Lagrange
multiplier, µ2, to adjoin the constraint to the cost function, (7.32) can be
rewritten as

HT,2 = arg min
H

L(H, µ2), (7.33)

with

L(H, µ2) = Jv (H) + µ2 [Jx (H) − β2 · tr (Rx)] (7.34)

and µ2 ≥ 0. The optimal solution to this optimization problem is

HT
T,2 =

(
Rx +

Rv

µ2

)−1

Rx, (7.35)
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where the Lagrange multiplier, µ2, satisfies Jx (HT,2) = β2 · tr (Rx), which
implies that

υsd(HT,2) = β2 > 0. (7.36)

From (4.8), we get

ξnr (HT,2) =
1

J̃(HT,2) − β2 · iSNR
, (7.37)

and because ξnr (HT,2) > 0, J̃(HT,2) > β2 · iSNR.
Since J̃(HW) ≤ J̃(HT,2), ∀µ, we also have

1
ξnr(HT,2)

≥ 1
ξnr(HW)

+ iSNR [υsd(HW) − υsd(HT,2)] . (7.38)

Therefore, υsd(HT,2) ≤ υsd(HW) implies that ξnr(HT,2) ≤ ξnr(HW).
From a practical point of view, the two tradeoff filters derived here are

fundamentally the same since by taking µ = 1/µ2, we see that HT = HT,2.

7.3 Subspace Approach

In [54], it is shown that two symmetric matrices Rx and Rv can be jointly
diagonalized if Rv is positive definite. This joint diagonalization was first
introduced by Jensen et al. [78] and then by Hu and Loizou [66], [67], [68]
in the single-channel noise reduction problem. For our time-domain model we
get

Rx = BT ΛjdB, (7.39a)

Rv = BT B, (7.39b)
Ry = BT [I + Λjd]B, (7.39c)

where B is a full rank square matrix but not necessarily orthogonal, and the
diagonal matrix

Λjd = diag
[
λjd,1 λjd,2 · · · λjd,L

]
(7.40)

are the eigenvalues of the matrix R−1
v Rx with λjd,1 ≥ λjd,2 ≥ · · · ≥ λjd,L ≥ 0.

Applying the decompositions (7.39a)–(7.39c) in (7.28), the tradeoff filter
becomes

HT = BT Λjd (Λjd + µI)−1 B−T . (7.41)

Therefore, the estimation of the speech signal, x(k), is done in three steps: first
we apply the transform B−T to the noisy signal; second the transformed signal
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is modified by the gain function Λjd (Λjd + µI)−1; and finally we transform
back the signal to its original domain by applying the transform BT .

Usually, a speech signal can be modelled as a linear combination of a num-
ber of some (linearly independent) basis vectors smaller than the dimension
of these vectors [49], [64], [76]. As a result, the vector space of the noisy signal
can be decomposed in two subspaces: the signal-plus-noise subspace of length
Ls and the noise subspace of length Ln, with L = Ls + Ln. This implies that
the last Ln eigenvalues of the matrix R−1

v Rx are equal to zero. Therefore, we
can rewrite (7.41) to obtain the subspace filter:

HS = BT

[
Σ 0Ls×Ln

0Ln×Ls 0Ln×Ln

]
B−T , (7.42)

where

Σ = diag
[

λjd,1
λjd,1+µ

λjd,2
λjd,2+µ · · · λjd,Ls

λjd,Ls+µ

]
(7.43)

is an Ls × Ls diagonal matrix. We now clearly see that noise reduction with
the subspace method is achieved by nulling the noise subspace and cleaning
the speech-plus-noise subspace via a reweighted reconstruction. Some noise
reduction can be achieved by only nulling the noise subspace and leaving
intact the speech-plus-noise subspace (µ = 0). This algorithm was developed
in [37].

7.4 Experiments

Having formulated different noise reduction filters in the time domain, we are
now ready to evaluate their performance. A number of experiments have been
carried out in various noise and operation conditions. In this section, we will
present some results, which illustrate the impact of some important parame-
ters on the performance and highlight the merits and limitations inherent in
these noise reduction algorithms.

7.4.1 Experimental Setup

The clean speech signal used in our experiments was recorded from a female
speaker in a quiet office environment. It was sampled at 8 kHz and quantized
with 16 bits (2 bytes). The overall length of the signal is 30 s. The first 5 s of
this signal and its spectrogram is visualized in Fig. 7.1. The noisy speech is
obtained by adding noise to the clean speech where the noise signal is properly
scaled to control the input SNR. We considered three types of noise: computer
generated white Gaussian noise, car noise, and babbling noise.

The car noise is recorded in a car compartment with the car running at
55 miles per hour on a highway. The resulting signal is also digitized with
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Fig. 7.1. Clean speech (first 5 s) and its spectrogram.
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Fig. 7.2. Waveform (first 5 s) and spectrogram of car noise.

a sampling rate of 8 kHz. Figure 7.2 plots the first 5 s of this noise and its
spectrogram. Compared with the white Gaussian noise which has a constant
spectral energy at all frequencies, the car noise is colored in nature, and most of
its energy is concentrated in low frequencies (below 2 kHz). In general, it is less
stationary than the white Gaussian noise and its characteristics may change
according to the road condition, running speed, and many other factors.
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Fig. 7.3. Waveform (first 5 s) and spectrogram of NYSE babbling noise.

The babbling noise is recorded in a New York Stock Exchange (NYSE)
room. This noise consists of sounds from various sources such as electric fans,
telephone rings, and even speakers. As illustrated in Fig. 7.3, this noise is
neither stationary nor white and its statistics change significantly from time
to time.

7.4.2 Effect of Forgetting Factor on Performance

To compute the noise reduction time-domain filters, we need to know the
covariance matrices Ry and Rv. Since the noisy signal is accessible, the co-
variance matrix Ry can be estimated from its definition given in (2.5a) by
approximating the mathematical expectation with sample average. However,
due to the fact that speech is nonstationary, the sample average has to be
performed on a short-term basis so that the estimated covariance matrix can
follow the short-term variations of the speech signal. In speech processing,
one of the most popularly used approaches to estimating Ry that takes into
account the speech nonstationarity is the recursive method, where an estimate
of Ry at time instant k is obtained as

Ry(k) = αyRy(k − 1) + (1 − αy)y(k)yT (k), (7.44)

where αy is a forgetting factor that controls the influence of the previous data
samples on the current estimate of the noisy signal covariance matrix. This
method will be adopted in this experiment.
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Fig. 7.4. Performance versus the forgetting factor αy for different filters in white
Gaussian noise with an iSNR = 10 dB and L = 20. (a) Output SNR and (b) speech-
distortion index.

The computation of the noise signal covariance matrix Rv requires a noise
estimator, which can be achieved in different ways and will be addressed in
the next chapter.

This experiment aims at studying the effect of αy on noise reduction per-
formance. We consider the stationary white Gaussian noise and compute the
matrix Rv directly from the noise signal using a long-term sample average.
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The results of this experiment1 is plotted in Fig. 7.4 where the output
SNR and speech-distortion index are computed according to (3.9) and (3.23)
respectively [at each time instant, the noise reduction filter is estimated and
then directly applied to the clean speech and noise to obtain xF(k) and vF(k),
and the output SNR and speech-distortion index are subsequently computed].
It is seen from Fig. 7.4 that both the output SNR and speech-distortion index
bear a nonmonotonic relationship with the forgetting factor αy. Specifically,
the output SNR first increases as αy increases and then decreases. In compar-
ison, the speech-distortion index first decreases with αy and then increases.
Apparently, the value of αy plays a critical role on the noise reduction perfor-
mance of the studied filters. On the one hand, the forgetting factor αy cannot
be small; otherwise, the estimation variance of Ry(k) will be large, which can
lead to performance degradation in noise reduction. Furthermore, Ry(k) may
tend to be rank deficient, causing numerical stability problems. On the other
hand, this forgetting factor αy cannot be too large. If it is too large (close
to 1), the recursive estimate will essentially be a long-term average and will
not be able to follow the short-term variations of the speech signal. As a re-
sult, the nature of the speech is not fully taken advantage of, which limits the
noise reduction performance. From Fig. 7.4, we can see that the optimal noise
reduction performance (highest output SNR and lowest speech distortion) oc-
curs when αy is between 0.985 and 0.995. So, in the subsequent experiments,
we will set αy to 0.985.

7.4.3 Effect of Filter Length on Performance

Another important parameter for all the time-domain noise reduction filters
is the filter length (also the frame size) L. So, in this second experiment, we
study the impact of the filter length L on the performance of noise reduction.
Again, the noise is white Gaussian with an iSNR = 10 dB. Based on the
previous experiment, we set αy = 0.985 and the noise covariance matrix Rv is
computed using a long-term average. The results are depicted in Fig. 7.5. It
is clear that the length L should be reasonably large enough to achieve good
noise reduction performance. When L increases from 1 to 20, the output SNR
improves while speech distortion decreases. But if we continue to increase
L, there is either marginal additional SNR improvement (for the tradeoff
filter with µ = 4), or the output SNR even slightly degrades (for the Wiener
filter and the tradeoff filter with µ = 0.6), and there is also some increase in
speech distortion. In general, good performance for all the studied algorithms
is achieved when the filter length L is between 10 and 20. This result coincides
with what was observed in [24]. The reason behind this is that speech is
somewhat predictable. It is this predictability that helps us achieve noise
reduction without noticeably distorting the desired speech signal. In order to

1 Note that we do not present the results of the subspace method here because it
does not perform better than the tradeoff filter.
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Fig. 7.5. Performance versus the filter length L for different filters in white Gaussian
noise with an iSNR = 10 dB and αy = 0.985. (a) Output SNR and (b) speech-
distortion index.

fully take advantage of the speech predictability, the filter length needs to
be larger than the order of speech prediction, which is in the range between
10 and 20 for an 8-kHz sampling rate. But if we continue to increase L, the
additional performance improvement will be limited. In theory, there shouldn’t
be performance degradation for large L. However, in practice, the estimation
variance of the covariance matrix Ry increases with L, which generally leads
to performance degradation.
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7.4.4 Performance in Different Noise Conditions

In this experiment, we test the performance of the different filters in various
noise conditions with different input SNRs. We consider three types of noise:
white Gaussian, car, and NYSE. Based on the previous experimental results,
we set L = 20 and αy = 0.985. Again, we do not use any noise estimator, but
compute the noise covariance directly from the noise signal. However, since
we have now both stationary and nonstationary noise, we choose to compute
the noise signal covariance matrix using the recursive method through

Rv(k) = αvRv(k − 1) + (1 − αv)v(k)vT (k), (7.45)

where Rv(k) is an estimate of the covariance matrix Rv at time k and αv,
similar to αy, is a forgetting factor.

Theoretically, the optimal value of αv depends on the characteristics of
the noise. A large αv should be used if the noise is stationary. But if the
noise is nonstationary, the value of αv should be set smaller. However, in this
experiment, we do not assume to know the nonstationarity of each type of
noise and set αv = 0.995 for all the three noise signals. (Note that this value
of αv is determined through experiments. We fixed αy to 0.985 and L = 20,
but change αv from 0 to 1. In average, we found that the best noise reduction
performance is achieved when αv = 0.995.) The results for this experiment
are shown in Fig. 7.6, where we only plotted the results of the Wiener filter
and the tradeoff filter with µ = 4 to simplify the presentation.

It is seen from Fig. 7.6 that, in the same type of noise, the lower the
input SNR, the more the noise is reduced (higher SNR improvement). But the
speech-distortion index increases rapidly as the input SNR decreases. When
the input SNR is very low (e.g., below 0 dB), the speech-distortion index
becomes very large, which may cause significant negative impact to the speech
signal (instead of improving the speech quality, it may degrade it due to
the large speech distortion). To circumvent this problem in practical noise
reduction systems, we suggest to use grace degradation, i.e., when the input
SNR is above a certain threshold (around 10 dB), the noise reduction filters
can be directly applied to the noisy speech; but when the input SNR is below
some lower threshold (around or below 0 dB), we should leave the noisy speech
unchanged; if the input SNR is between the two thresholds (we call it the
grace degradation range), we can use some suboptimal filter so that there is
a smooth transition in speech quality from low input SNR to high input SNR
environments.

If we use the Gaussian noise as the baseline, it is seen that both the Wiener
and tradeoff filters perform consistently worse in the NYSE noise. This is due
to the fact that the NYSE noise is nonstationary, therefore it is more difficult
to deal with. In car noise, however, both filters yielded better performance in
low input SNRs but poorer performance in high input SNRs. As what caused
this behavior and how to take advantage of the low-pass nature of the car
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Fig. 7.6. Performance for different input SNRs and noise conditions. The parame-
ters used in this experiment are L = 20, αy = 0.985, and αv = 0.995.

noise to achieve better performance will be discussed in the following two
chapters.

7.5 Summary

In this chapter, we derived several forms of time-domain filters for noise re-
duction. The Wiener filter is optimal in the MSE sense and many known
algorithms are somehow related to it. We discussed many important and in-
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teresting properties of the Wiener filter and showed that the it achieves SNR
improvement at the cost of speech distortion. We also derived two tradeoff
filters, which are also optimal from an MMSE point of view. The only differ-
ence between the Wiener and tradeoff filters is that the latter one is deduced
from a constrained MSE criterion where a parameter is used to control the
compromise between the amount of noise reduction and the amount of speech
distortion. The subspace method can be viewed as a special way of imple-
menting the tradeoff filter. Using experiments, we have also illustrated the
impact of some important parameters on the performance of noise reduction
time-domain filters.

While the time domain is the most straightforward and natural domain
to work with, the derived noise reduction filters are often not very flexible
in terms of performance tuning. For example, in practice, noise is not neces-
sarily white and in many cases its energy may be concentrated only in some
frequency bands (such as the car noise). In such situations, it is advanta-
geous to design a noise reduction filter in the frequency domain, which will
be discussed in the next chapter.



8

Optimal Filters in the Frequency Domain

We now investigate the design of noise reduction filters in the frequency do-
main, which is an alternative to the time-domain approach studied in the pre-
vious chapter. In the real world, frequency-domain filters are, by far, the most
popular methods. This is mainly because: 1) the filters at different frequencies
(or frequency bands) are designed and handled independently with each other,
therefore there is a significant flexibility in dealing with colored noise; 2) most
of our knowledge and understanding of speech production and perception is
related to frequencies; and 3) thanks to the fast Fourier transform (FFT), the
implementation of frequency-domain filters are generally very efficient. So, in
this chapter, we develop some widely used classical frequency-domain filters
and discuss their properties.

8.1 Wiener Filter

Taking the gradient of J [H(jω)] [eq. (4.15)] with respect to H∗(jω) and
equating the result to 0 lead to

−E {Y ∗(jω) [X(jω) − HW(jω)Y (jω)]} = 0. (8.1)

Hence

φy(ω)HW(jω) = φxy(jω). (8.2)

But

φxy(jω) = E [X(jω)Y ∗(jω)]
= φx(ω).

Therefore the optimal filter can be put into the following forms:

J. Benesty et al., Noise Reduction in Speech Processing, Springer Topics in Signal Processing 2,  
DOI 10.1007/978-3-642-00296-0_8, © Springer-Verlag Berlin Heidelberg 2009    
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HW(jω) =
φx(ω)
φy(ω)

= 1 − φv(ω)
φy(ω)

=
iSNR(ω)

1 + iSNR(ω)
. (8.3)

We see that the noncausal Wiener filter is always real and positive. Therefore,
from now on we will drop the imaginary unit from HW(jω), i.e., HW(ω), to
accentuate the fact that this filter is a real number. The same frequency-
domain filter can also be easily deduced from the framework of Bayesian risk
theory in the particular case where the model is Gaussian [39], [58], [126].

Another way to define the Wiener filter is with the MSCFs. Indeed, it is
easy to see that

HW(ω) = |ρ [X(jω), Y (jω)] |2
= 1 − |ρ [V (jω), Y (jω)] |2. (8.4)

These fundamental forms of the Wiener filter, although obvious, do not seem
to be known in the literature. They show that they are simply related to
two MSCFs. Since 0 ≤ |ρ [X(jω), Y (jω)] |2 ≤ 1, therefore 0 ≤ HW(ω) ≤ 1.
The Wiener filter acts like a gain function. When the level of noise is high at
frequency ω, |ρ [V (jω), Y (jω)] |2 ≈ 1, then HW(ω) is close to 0 since there is
a large amount of noise that has to be removed. When the level of noise is
low at frequency ω, |ρ [V (jω), Y (jω)] |2 ≈ 0, then HW(ω) is close to 1 and is
not going to affect much the signals since there is little noise that needs to be
removed.

Now, let us define the complex number1


 [X(jω), V (jω)] = ρ [X(jω), Y (jω)] + jρ [V (jω), Y (jω)]
= cos θ(ω) + j sin θ(ω), (8.5)

where θ(ω) is the angle of 
 [X(jω), V (jω)] for which the modulus is equal
to 1. On the complex plane, 
 [X(jω), V (jω)] is on the unit circle. Since 0 ≤
ρ [X(jω), Y (jω)] ≤ 1 and 0 ≤ ρ [V (jω), Y (jω)] ≤ 1, therefore 0 ≤ θ(ω) ≤ π

2 .
We can then rewrite the Wiener filter as a function of the angle θ(ω):

HW(ω) = cos2 θ(ω)
= 1 − sin2 θ(ω). (8.6)

Hence

lim
θ(ω)→0

HW(ω) = 1, (8.7)

lim
θ(ω)→π

2

HW(ω) = 0. (8.8)

1 Notice that both ρ [X(jω), Y (jω)] and ρ [V (jω), Y (jω)] are real numbers.
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We deduce the subband noise-reduction factor and subband speech-
distortion index

ξnr [HW(ω)] =
1

cos4 θ(ω)
≥ 1, (8.9)

υsd [HW(ω)] = sin4 θ(ω) ≤ 1, (8.10)

and the subband MNMSE

J̃ [HW(ω)] = HW(ω), (8.11)

which is exactly the Wiener filter. We see clearly how noise reduction and
speech distortion depend on the angle θ(ω) in the noncausal Wiener filter.
When θ(ω) increases so does ξnr [HW(ω)]; at the same time υsd [HW(ω)] in-
creases.

Property 8.1. With the optimal noncausal Wiener filter given in (8.3), the
fullband output SNR is always greater than or equal to the input SNR, i.e.,
oSNR(HW) ≥ iSNR.

Proof. Let us evaluate the fullband SPCC between Y (jω) and ZW(jω) =
HW(ω)Y (jω):

|ρ (Y,ZW) |2 =

[∫ π

−π
HW(ω)φy(ω)dω

]2
[∫ π

−π
φy(ω)dω

] [∫ π

−π
H2

W(ω)φy(ω)dω
]

=

∫ π

−π
φx(ω)dω∫ π

−π
φy(ω)dω

·
∫ π

−π
φx(ω)dω∫ π

−π
HW(ω)φx(ω)dω

=
|ρ (X,Y ) |2
|ρ (X,ZW) |2 .

Therefore

|ρ (X,Y ) |2 = |ρ (Y,ZW) |2 · |ρ (X,ZW) |2 ≤ |ρ (X,ZW) |2.
Using (6.31) and Property 6.12 in the previous expression, we get

iSNR
1 + iSNR

≤ oSNR(HW)
1 + oSNR(HW)

,

as a result

oSNR(HW) ≥ iSNR.

Substituting (8.3) into (4.22), we find the fullband MNMSE:

J̃ (HW) = 1 −
∫ π

−π
φ2

v(ω)φ−1
y (ω)dω∫ π

−π
φv(ω)dω

≤ 1. (8.12)
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We can compute the fullband speech-distortion index by substituting (8.3)
into (3.26):

υsd (HW) = 1 − oSNR(HW) + 2
iSNR · ξnr (HW)

≤ 1. (8.13)

Using (4.22) and (8.13), we get the fullband noise-reduction factor:

ξnr (HW) =
oSNR(HW) + 1
iSNR − J̃ (HW)

≥ 1. (8.14)

Property 8.2. We have

J̃ (HW) = iSNR
[
1 − |ρ(X,ZW)|2] . (8.15)

Proof. Indeed

J̃ (HW) =

∫ π

−π
φx(ω)dω∫ π

−π
φv(ω)dω

−
∫ π

−π
φ2

x(ω)φ−1
y (ω)dω∫ π

−π
φv(ω)dω

= iSNR

[
1 −
∫ π

−π
φ2

x(ω)φ−1
y (ω)dω∫ π

−π
φx(ω)dω

]

= iSNR
[
1 − |ρ(X,ZW)|2] .

Therefore, the fullband NMSE is minimized when the fullband SPCC be-
tween the signals X(jω) and Z(jω) is maximized. This fullband SPCC can
be rewritten as follows:

|ρ(X,ZW)|2 =
1

ξsr (HW)
· 1 + oSNR(HW)

oSNR(HW)
. (8.16)

We observe that the noncausal Wiener filter is compromising between speech
reduction (i.e., speech distortion) and fullband output SNR improvement.

Property 8.3. We have

iSNR
1 + oSNR(HW)

≤ J̃ (HW) ≤ iSNR
1 + iSNR

. (8.17)

Proof. Since

|ρ(X,ZW)|2 ≥ iSNR
1 + iSNR

and with the help of (8.15), we easily get

J̃ (HW) ≤ iSNR
1 + iSNR

.
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Since

|ρ(X,ZW)|2 ≤ oSNR(HW)
1 + oSNR(HW)

and, again, with the help of (8.15), we obtain

iSNR
1 + oSNR(HW)

≤ J̃ (HW) .

Hence, we get better bounds for the fullband MNMSE than the usual ones
[0 ≤ J̃ (HW) ≤ 1].

Property 8.4. We have

[1 + oSNR(HW)]2

iSNR · oSNR(HW)
≤ ξnr (HW) ≤ (1 + iSNR) [1 + oSNR(HW)]

iSNR2 . (8.18)

Proof. Easy to show by using (8.14) and the bounds of J̃ (HW) [eq. (8.17)].

Property 8.5. We have

1
[1 + oSNR(HW)]2

≤ υsd (HW) ≤ 1 + oSNR(HW) − iSNR
(1 + iSNR) [1 + oSNR(HW)]

. (8.19)

Proof. Easy to show by using (8.13) and the bounds of ξnr (HW) [eq. (8.18)].

Very often in practice, the ensemble averages are unknown, so it is conve-
nient to approximate the PSDs used in the Wiener filter by sample estimates
[38], [119]:

ĤW(ω) = 1 − V 2(ω)
Y 2(ω)

(8.20)

= |ρ̂ [V (jω), Y (jω)] |2.

This form of the Wiener filter is the starting point of so many spectrum-based
noise reduction techniques [33], [44], [86], [88], [119].

8.2 Parametric Wiener Filter

Some applications may need aggressive noise reduction. Other applications
on the contrary may require little speech distortion (so less aggressive noise
reduction). An easy way to control the compromise between noise reduction
and speech distortion is via the parametric Wiener filter2 [50], [85]:

2 There is nothing optimal about the parametric Wiener filter but for convenience
of presentation we included it in this chapter.
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HG(ω) =
[
1 − sinβ1 θ(ω)

]β2
, (8.21)

where β1 and β2 are two positive parameters that allow the control of this
compromise. For (β1, β2) = (2, 1), we get the noncausal Wiener filter devel-
oped previously. Taking (β1, β2) = (2, 1/2), leads to

HP(ω) =
√

1 − sin2 θ(ω) (8.22)

= cos θ(ω),

which is the power subtraction method studied in [44], [50], [85], [92], [112].
The pair (β1, β2) = (1, 1) gives the magnitude subtraction method [17], [18],
[108], [109], [122]:

HM(ω) = 1 − sin θ(ω) (8.23)

= 1 −
√

1 − cos2 θ(ω).

We can verify that the subband noise-reduction factors for the power sub-
traction and magnitude subtraction methods are

ξnr [HP(ω)] =
1

cos2 θ(ω)
, (8.24)

ξnr [HM(ω)] =
1

[1 − sin θ(ω)]2
, (8.25)

and the corresponding subband speech-distortion indices are

υsd [HP(ω)] = [1 − cos θ(ω)]2 , (8.26)
υsd [HM(ω)] = sin2 θ(ω). (8.27)

We can also easily check that

ξnr [HM(ω)] ≥ ξnr [HW(ω)] ≥ ξnr [HP(ω)] , (8.28)
υsd [HP(ω)] ≤ υsd [HW(ω)] ≤ υsd [HM(ω)] . (8.29)

The two previous inequalities are very important from a practical point of
view. They show that, among the three methods, the magnitude subtraction
is the most aggressive one as far as noise reduction is concerned, a very well-
known fact in the literature [38], but at the same time it’s the one that will
likely distorts most the speech signal. The smoothest approach is the power
subtraction while the Wiener filter is between the two others in terms of speech
distortion and noise reduction. Several other variants of these algorithms can
be found in [62], [87], [110].

8.3 Tradeoff Filter

An important filter can be designed by minimizing the speech distortion with
the constraint that the residual noise level is equal to a positive number smaller
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than the level of the original noise. This optimization problem can be trans-
lated mathematically as

min
H(jω)

Jx [H(jω)] subject to Jv [H(jω)] = β · φv(ω), (8.30)

where

Jx [H(jω)] = |1 − H(jω)|2 φx(ω), (8.31)

Jv [H(jω)] = |H(jω)|2 φv(ω), (8.32)

and 0 < β < 1 in order to have some noise reduction at frequency ω. If we use
a Lagrange multiplier, µ ≥ 0, to adjoin the constraint to the cost function, we
easily find the tradeoff filter:

HT(ω) =
φx(ω)

φx(ω) + µφv(ω)

=
φy(ω) − φv(ω)

φy(ω) + (µ − 1)φv(ω)

=
iSNR(ω)

µ + iSNR(ω)
. (8.33)

This filter can be seen as a noncausal Wiener filter with adjustable input noise
level µφv(ω).

The MSCF between the two signals X(jω) and X(jω) +
√

µV (jω) at
frequency ω is

|ρ [X(jω),X(jω) +
√

µV (jω)]|2 =
iSNR(ω)

µ + iSNR(ω)
. (8.34)

The MSCF between the two signals V (jω) and X(jω)+
√

µV (jω) at frequency
ω is

|ρ [V (jω),X(jω) +
√

µV (jω)]|2 =
µ

µ + iSNR(ω)
. (8.35)

Therefore, we can write the tradeoff filter as a function of these two MSCFs:

HT(ω) = |ρ [X(jω),X(jω) +
√

µV (jω)]|2
= 1 − |ρ [V (jω),X(jω) +

√
µV (jω)]|2 . (8.36)

Now, let us define the complex number3


µ [X(jω), V (jω)] = ρ [X(jω),X(jω) +
√

µV (jω)] +
jρ [V (jω),X(jω) +

√
µV (jω)]

= cos θ(ω, µ) + j sin θ(ω, µ), (8.37)
3 Notice that both ρ

[
X(jω), X(jω) +

√
µV (jω)

]
and ρ

[
V (jω), X(jω) +

√
µV (jω)

]
are real numbers.
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where θ(ω, µ) is the angle of 
µ [X(jω), V (jω)] for which the modulus is equal
to 1. On the complex plane, 
µ [X(jω), V (jω)] is on the unit circle. Since 0 ≤
ρ
[
X(jω),X(jω) +

√
µV (jω)

] ≤ 1 and 0 ≤ ρ
[
V (jω),X(jω) +

√
µV (jω)

] ≤
1, therefore 0 ≤ θ(ω, µ) ≤ π

2 . We can then rewrite the tradeoff filter as a
function of the angle θ(ω, µ):

HT(ω) = cos2 θ(ω, µ)
= 1 − sin2 θ(ω, µ). (8.38)

We deduce the subband noise-reduction factor and subband speech-distortion
index

ξnr [HT(ω)] =
1

cos4 θ(ω, µ)
≥ 1, (8.39)

υsd [HT(ω)] = sin4 θ(ω, µ) ≤ 1. (8.40)

Property 8.6. With the tradeoff filter given in (8.33), the fullband output SNR
is always greater than or equal to the input SNR, i.e., oSNR(HT) ≥ iSNR.

Proof. The fullband SPCC between the two variables X(jω) and X(jω) +√
µV (jω) is

|ρ (X,X +
√

µV )|2 =

[∫ π

−π
φx(ω)dω

]2
[∫ π

−π
φx(ω)dω

] [∫ π

−π
φx(ω)dω + µ

∫ π

−π
φv(ω)dω

]
=

iSNR
µ + iSNR

.

The fullband SPCC between the two variables X(jω) and HT(ω)X(jω) +√
µHT(ω)V (jω) is

|ρ (X,HTX +
√

µHTV )|2 =[∫ π

−π
HT(ω)φx(ω)dω

]2
[∫ π

−π
φx(ω)dω

] [∫ π

−π
H2

T(ω)φx(ω)dω + µ
∫ π

−π
H2

T(ω)φv(ω)dω
]

=

∫ π

−π
HT(ω)φx(ω)dω∫ π

−π
φx(ω)dω

.

Another way to write the same fullband SPCC is the following:
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|ρ (X,HTX +
√

µHTV )|2 =

[∫ π

−π
HT(ω)φx(ω)dω

]2
[∫ π

−π
φx(ω)dω

] [∫ π

−π
H2

T(ω)φx(ω)dω
] ×

oSNR (HT)
µ + oSNR (HT)

= |ρ (X,HTX)|2 · |ρ (HTX,HTX +
√

µHTV )|2

≤ oSNR (HT)
µ + oSNR (HT)

.

Now, let us evaluate the fullband SPCC between the two variables X(jω) +√
µV (jω) and HT(ω)X(jω) +

√
µHT(ω)V (jω):

|ρ (X +
√

µV,HTX +
√

µHTV )|2 =

∫ π

−π
φx(ω)dω∫ π

−π
φx(ω)dω + µ

∫ π

−π
φv(ω)dω

×
∫ π

−π
φx(ω)dω∫ π

−π
HT(ω)φx(ω)dω

=

∣∣ρ (X,X +
√

µV
)∣∣2∣∣ρ (X,HTX +

√
µHTV

)∣∣2 .

Therefore

|ρ (X,X +
√

µV )|2 =
iSNR

µ + iSNR

= |ρ (X +
√

µV,HTX +
√

µHTV )|2 ×
|ρ (X,HTX +

√
µHTV )|2

≤ |ρ (X,HTX +
√

µHTV )|2

≤ oSNR (HT)
µ + oSNR (HT)

.

As a result

oSNR (HT) ≥ iSNR.

The tradeoff filter can be more general if we make the factor β dependent
on the frequency, i.e., β(ω). By doing so, the control between noise reduction
and speech distortion can be more effective since each frequency ω can be
controlled independently of the others. With this consideration, we can easily
see that the optimal filter derived from the criterion (8.30) is now

HT(ω) =
iSNR(ω)

µ(ω) + iSNR(ω)
, (8.41)

where µ(ω) is the frequency-dependent Lagrange multiplier. This approach
can now provide some noise spectral shaping for masking by the speech signal
[49], [68], [69], [75], [120], [121].
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8.4 Experiments

We have discussed in the previous sections several noise reduction filters in the
frequency domain. While some filters (such as the Wiener filter) are optimal in
the MMSE sense, others are constructed empirically (such as the parametric
Wiener filter) and have no optimality properties associated with them, but
they make good sense for managing the compromise between noise reduction
and speech distortion. In this section, we study the performance of these main
frequency-domain filters through experiments. The experimental setup is the
same as used in the previous chapter.

8.4.1 Impact of Input SNR on Filter Gain and Speech Distortion

As seen from the previous sections, all the main frequency-domain filters,
including the Wiener, parametric Wiener, and tradeoff filters, are essentially
a function of the subband input SNR, i.e., iSNR(ω). Figure 8.1 plots the
theoretical gain of each filter versus the input SNR at frequency ω where the
gain is shown in both linear and dB scales. With no exception, we see that
the gain of each filter is always in the range between 0 and 1, and its value
is proportional to the subband input SNR. Since a lower gain corresponds to
more noise attenuation, we can expect significant amount of noise suppression
when iSNR(ω) is small while less noise reduction when iSNR(ω) is large. This
is, of course, reasonable. When iSNR(ω) is small, the signal is very noisy, so
there will be much noise to be suppressed. But if iSNR(ω) is large, the signal
is relatively clean, so, there won’t be much noise to be cleaned.

Comparatively, the speech-distortion index decreases exponentially with
the increase of the input SNR as shown in Fig. 8.2. Since a higher speech-
distortion index indicates more speech distortion, we can expect significant
amount of speech distortion when the subband input SNR is low. Putting
Figs. 8.1 and 8.2 together, one can clearly see that noise reduction is always
associated with speech distortion. The more the noise is reduced, the more
the speech is distorted. As for how these filters behave in practical environ-
ments, this will be studied through experiments. But first let us discuss how
to estimate the noise signal so that we can implement the frequency-domain
filters.

8.4.2 Noise Estimation

An important issue, in the implementation of an algorithm for noise reduc-
tion, is the estimation of the statistics of the noise signal. The accuracy of
this estimator greatly affects the noise reduction performance. There has been
a tremendous effort in tackling this problem. Representative approaches in-
clude estimating noise in the absence of speech, minimum statistics method,
quantile-based method, and sequential estimation using single-pole recursion.
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Fig. 8.1. Theoretical gain of different filters as a function of the subband input
SNR, i.e., iSNR(ω). (a) Gain in linear scale and (b) Gain in dB.

Usually, a noisy speech signal is not occupied by speech all the time. In a
large percentage of the time it is occupied by noise only. Therefore, a voice
activity detector (VAD) can be designed to distinguish speech and non-speech
segments for a given noisy signal and the noise can then be estimated from
regions where the speech signal is absent. This basic noise estimation relies on
a VAD with high detection accuracy. When noise is strong so that the input
SNR becomes rather low, the distinction between speech and noise segments
could be difficult. Moreover, noise is estimated intermittently and obtained
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Fig. 8.2. Theoretical speech-distortion index as a function of the subband input
SNR, i.e., iSNR(ω).

only during speech silent periods. This may cause problems if the noise is
non-stationary, which is the case in many applications.

To avoid explicit speech/non-speech detection, the so-called minimum
statistics method was developed [89]. This technique is based on the assump-
tion that during a speech pause, or within brief periods between words and
even syllables, the speech energy is close to zero. As a result, a short-term
power spectrum estimate of the noisy signal, even during speech activity, de-
cays frequently due to the noise power. Thus, by tracking the temporal spectral
minimum without distinguishing between speech presence and speech absence,
the noise power in a specific frequency band can be estimated. Although a
VAD is not necessary in this approach, the noise estimate is often too small
to provide sufficient noise reduction due to the significant variability inherent
to the spectral estimation.

Instead of using minimum statistics, Hirsch et al. proposed a histogram
based method which achieves a noise estimate from the subband energy his-
tograms [65]. A threshold is set over which peaks in the histogram profile are
attributed to speech. The highest peak in the profile below this threshold is
treated as noise energy. This idea was extended in [114] to a quantile-based
noise estimation approach, which works on the assumption that even in active
speech sections of the input signal not all frequency bands are permanently oc-
cupied with speech, and for a large percentage of the time the energy is at the
noise level. Thus, this method computes short-term power spectra and sorts
them. The noise estimate is obtained by taking a value near to the median of
the resulting profiles.
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Recently, sequential estimation methods [23], [38] were developed, where
noise is estimated sequentially using a single-pole recursive average with an
implicit speech/non-speech decision embedded. Briefly, the noisy signal y(k)
is segmented into blocks of L samples. Each block is then transformed via a
DFT (discrete Fourier transform) into a block of L spectral samples. Succes-
sive blocks of spectral samples form a two-dimensional time-frequency matrix
denoted by Yn(jω), where the subscript n is the frame index and denotes the
time dimension. Then an estimate of the magnitude of the noise spectrum is
formulated as

|V̂n(jω)| =
{

αa|V̂n−1(jω)| + (1 − αa)|Yn(jω)|, if |Yn(jω)| ≥ |V̂n−1(jω)|
αd|V̂n−1(jω)| + (1 − αd)|Yn(jω)|, if |Yn(jω)| < |V̂n−1(jω)| ,

(8.42)
where αa is the “attack” coefficient and αd is the “decay” coefficient. Mean-
while, to reduce its temporal fluctuation, the magnitude of the noisy speech
spectrum is smoothed according to the following recursion:

|Ȳn(jω)| =
{

βa|Ȳn−1(jω)| + (1 − βa)|Yn(jω)|, if |Yn(jω)| ≥ |Ȳn−1(jω)|
βd|Ȳn−1(jω)| + (1 − βd)|Yn(jω)|, if |Yn(jω)| < |Ȳn−1(jω)| ,

(8.43)
where again βa is the “attack” coefficient and βd the “decay” coefficient. To
further reduce the spectral fluctuation, both |V̂n(jω)| and |Ȳn(jω)| are aver-
aged across the neighboring frequency bins around ω. Finally, an estimate of
the noise spectrum is obtained by multiplying |V̂n(jω)|/|Ȳn(jω)| with Yn(jω),
and the time-domain noise signal is obtained through the inverse DFT and
the overlap-add technique.

To illustrate the accuracy of the sequential noise estimator, we provide an
example where a clean speech signal (same as used in Chapter 7) is corrupted
by the car noise with an iSNR = 10 dB. The estimated noise and its spectro-
gram are plotted in Fig. 8.3. Comparing Fig. 8.3 with Fig. 7.2, one can see
that during the absence of speech, the noise estimate is a good approximation
of the noise signal. During the presence of speech, the noise estimate consists
of some minor speech components. However, such minor amount of speech
remained in the noise estimate is almost inaudible.

An apparent advantage of this sequential noise estimation technique is that
it does not require an explicit VAD. In addition, such a method is in general
able to capture the noise characteristics in both the presence and absence of
speech, therefore it works even in the environments where the noise is not
very stationary.

8.4.3 Performance Comparison in NYSE Noise

Based upon the previous sequential noise estimation method, we implemented
a frequency-domain noise reduction system using the overlap-add technique.
Briefly, the input noisy speech is partitioned into overlapped frames with a
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Fig. 8.3. Waveform and spectrogram (first 5 s) of the estimated car noise with an
iSNR = 10 dB.
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Fig. 8.4. Waveforms of the clean, noisy, and enhanced speech (with the frequency-
domain Wiener filter) in NYSE noise with an iSNR = 10 dB.

frame length of 8 ms (corresponding to 64 points at an 8-kHz sampling rate)
and an overlap factor of 75%. Each frame is multiplied with a Kaiser window
and then transformed into the frequency domain using the FFT. The noise
spectrum is then estimated using the sequential noise estimator, and a gain
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Fig. 8.5. Spectrograms of the clean, noisy, and enhanced speech (with the frequency-
domain Wiener filter) in NYSE noise with an iSNR = 10 dB.

filter is then computed according to (8.3), (8.22), (8.23), and (8.33) respec-
tively. The estimated gain filter is subsequently applied to the noisy speech
spectrum. The gain-modified noise speech spectrum is then transformed back
to the time domain using the inverse FFT (IFFT). A synthesis window, which
is the same as the analysis window, is applied, and the result is overlapped
with, and added to the previous estimated signal to obtain the final enhanced
speech.

Figure 8.4 illustrates the first 5 seconds of the waveforms of the clean
speech, noisy speech corrupted by the NYSE noise at an iSNR = 10 dB,
and the enhanced speech using the frequency-domain Wiener filter. It shows,
at least visibly, that the background noise is significantly reduced using the
Wiener filter. To visualize the clean speech estimate in the frequency domain,
the spectrograms of the clean, noisy, and enhanced speech signals are displayed
in Fig. 8.5. It can be seen that the background noise is dramatically removed,
and the spectrogram of the estimated speech resembles that of the original
speech.

The detailed evaluation of the output SNR and speech-distortion index as
a function of the input SNR in the NYSE noise is sketched in Fig 8.6. [Note
that, similar to the previous chapter, we first computed the filtered speech and
noise signals XF(jω) and VF(jω), and the output SNR and speech-distortion
index are subsequently estimated. This way, the results from different chapters
can be compared]. It is noticed that the output SNR is always larger than the
input SNR, but the amount of SNR improvement depends on the input SNR.
Roughly, the lower the input SNR, the larger the SNR improvement. However,
the speech-distortion index tends to increase as more SNR improvement is
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Fig. 8.6. Performance of the different methods in different input SNRs with NYSE
noise: (a) output SNR versus input SNR and (b) speech-distortion index.

gained. It is clear that noise reduction is achieved at the price of speech
distortion, as we have pointed out before.

Comparatively, the magnitude subtraction method achieves a higher SNR
gain as compared to the Wiener filter, but it also has a larger speech-distortion
index. The power subtraction is less effective than the Wiener filter in terms of
SNR improvement, but it causes less speech distortion. Therefore, these two
approaches can be chosen to replace the Wiener filter if a compromise between
noise reduction and speech distortion is needed. If more noise reduction is
required, we can use the magnitude subtraction. If, on the other hand, we

T(ω)

H (ω)M

= 10H

HW(ω)

HP(ω)

, µ
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Fig. 8.7. Performance of the different methods in different input SNRs with car
noise: (a) output SNR versus input SNR and (b) speech-distortion index.

need to keep the speech distortion low, we can use the power subtraction.
Alternatively, the compromise can be achieved through the tradeoff filter by
selecting an appropriate value of the parameter µ.

8.4.4 Performance Comparison in Car Noise

Another set of experiments were performed in the car noise condition. The
results are plotted in Fig. 8.7. In general, we see that each method has gained
more SNR improvement in the car noise than that in the NYSE noise. But
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the trend of the SNR improvement and speech-distortion index with respect
to the input SNR in the car noise is similar to that in the NYSE noise.

8.5 Summary

In this chapter, we discussed many noise reduction filters in the frequency
domain. Both the Wiener and tradeoff filters are optimal in the MMSE sense.
The difference between the two is that the former is derived from an un-
constrained MSE criterion, while the latter is obtained from a constrained
MSE criterion. The magnitude subtraction and power subtraction filters (or
more generally the parametric Wiener filter) have no optimality properties
associated with them, but they make good sense in practical situations for
managing the compromise between noise reduction and speech distortion. We
have also discussed many interesting properties of these filters and some of
these properties were verified through experiments.



9

Optimal Filters in the KLE Domain

We have seen the advantages of transforming the noisy speech into the fre-
quency domain and then performing noise reduction. Although it is the most
studied one, the frequency domain is not the only domain in which we can
design interesting filters for noise reduction. There are other domains that
may offer more advantages in the filter design. In this chapter, we consider
the KLE domain. we derive two broad classes of optimal filters in this domain
depending basically on the subband filter length. The first class, similar to
the frequency-domain filters, estimates a frame of the clean speech by filter-
ing the corresponding frame of the noisy speech while the second class does
noise reduction by filtering not only the current frame but also a number of
previous consecutive frames of the noisy speech.

9.1 Class I

In this first category of filters, we consider the particular case where L1 =
L2 = · · · = LL = 1. Hence hl = hl,0, l = 1, 2, . . . , L, are simply scalars. For
this class of filters, we always have

oSNR(hl,0) = iSNRl, ∀l. (9.1)

Therefore, the subband output SNR cannot be improved with respect to the
subband input SNR. But the fullband output SNR can be improved with re-
spect to the input SNR and from Chapter 3 we know that it is upper bounded
(for all filters) as follows:

oSNR (h1:L) ≤
L∑

l=1

iSNRl =
L∑

l=1

oSNR(hl,0). (9.2)

9.1.1 Wiener Filter

By minimizing J (hl,0) [eq. (4.29)] with respect to hl,0, we easily find the
Wiener filter:

J. Benesty et al., Noise Reduction in Speech Processing, Springer Topics in Signal Processing 2,  
DOI 10.1007/978-3-642-00296-0_9, © Springer-Verlag Berlin Heidelberg 2009    
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hW,l,0 =
E
[
c2
x,l(k)

]
E
[
c2
y,l(k)

]

= 1 −
E
[
c2
v,l(k)

]
E
[
c2
y,l(k)

]
=

λl

λl + qT
l Rvvql

=
iSNRl

1 + iSNRl
. (9.3)

This filter is the equivalent form of the frequency-domain Wiener filter (see
Chapter 8).

Another way to define the Wiener filter is with the subband SPCCs. In-
deed, it is easy to see that

hW,l,0 = ρ2(cx,l, cy,l)
= 1 − ρ2(cv,l, cy,l). (9.4)

Since 0 ≤ ρ2(cx,l, cy,l) ≤ 1, therefore 0 ≤ hW,l,0 ≤ 1. The KLE-domain Wiener
filter acts like a gain function. When the level of noise is high in the subband
l, ρ2(cv,l, cy,l) ≈ 1, then hW,l,0 is close to 0 since there is a large amount of
noise that has to be removed. When the level of noise is low in the subband l,
ρ2(cv,l, cy,l) ≈ 0, then hW,l,0 is close to 1 and is not going to affect much the
signals since there is little noise that needs to be removed.

Now, let us define the complex number


 (cx,l, cv,l) = ρ(cx,l, cy,l) + jρ(cv,l, cy,l)
= cos θl + j sin θl, (9.5)

where θl is the angle of 
 (cx,l, cv,l) for which the modulus is equal to 1. On the
complex plane, 
 (cx,l, cv,l) is on the unit circle. Since 0 ≤ ρ(cx,l, cy,l) ≤ 1 and
0 ≤ ρ(cv,l, cy,l) ≤ 1, therefore 0 ≤ θl ≤ π

2 . We can then rewrite the Wiener
filter as a function of the angle θl:

hW,l,0 = cos2 θl

= 1 − sin2 θl. (9.6)

Hence

lim
θl→0

hW,l,0 = 1, (9.7)

lim
θl→π

2

hW,l,0 = 0. (9.8)

We deduce the subband noise-reduction factor and subband speech-
distortion index
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ξnr (hW,l,0) =
1

cos4 θl
≥ 1, (9.9)

υsd (hW,l,0) = sin4 θl ≤ 1, (9.10)

and the subband MNMSE

J̃ (hW,l,0) = hW,l,0, (9.11)

which is exactly the Wiener filter. We see clearly how noise reduction and
speech distortion depend on the angle θl in the KLE-domain Wiener filter.
When θl increases so does ξnr (hW,l,0); at the same time υsd (hW,l,0) increases.
It is also easy to check the formula:

υsd (hW,l,0) = 1 − 2√
ξnr (hW,l,0)

+
1

ξnr (hW,l,0)
. (9.12)

Property 9.1. With the optimal KLE-domain Wiener filter given in (9.3), the
fullband output SNR is always greater than or equal to the input SNR, i.e.,
oSNR(hW,1:L) ≥ iSNR.

Proof. Let us evaluate the fullband SPCC between the two vectors cy(k) and
cz,W(k) = [hW,1,0cy,1(k) hW,2,0cy,2(k) · · · hW,L,0cy,L(k)]T :

ρ2 (cy, cz,W) =

{∑L
l=1 hW,l,0E

[
c2
y,l(k)

]}2

∑L
l=1 E

[
c2
y,l(k)

]
·∑L

l=1 h2
W,l,0E

[
c2
y,l(k)

]

=

∑L
l=1 E

[
c2
x,l(k)

]
∑L

l=1 E
[
c2
y,l(k)

] ·
∑L

l=1 E
[
c2
x,l(k)

]
∑L

l=1 hW,l,0E
[
c2
x,l(k)

]
=

ρ2 (cx, cy)
ρ2 (cx, cz,W)

.

Therefore

ρ2 (cx, cy) = ρ2 (cy, cz,W) · ρ2 (cx, cz,W) ≤ ρ2 (cx, cz,W) .

Using (6.76) and Property 6.32 in the previous expression, we get

iSNR
1 + iSNR

≤ oSNR(hW,1:L)
1 + oSNR(hW,1:L)

,

as a result

oSNR(hW,1:L) ≥ iSNR.
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Substituting (9.3) into (4.36), we find the fullband MNMSE:

J̃ (hW,1:L) = 1 −
∑L

l=1

(
qT

l Rvql

)2 (
λl + qT

l Rvql

)−1∑L
l=1 qT

l Rvql

≤ 1. (9.13)

We can compute the fullband speech-distortion index by substituting (9.3)
into (3.27):

υsd (hW,1:L) = 1 − oSNR(hW,l:L) + 2
iSNR · ξnr (hW,l:L)

≤ 1. (9.14)

Using (4.36) and (9.14), we get the fullband noise-reduction factor:

ξnr (hW,1:L) =
oSNR(hW,1:L) + 1
iSNR − J̃ (hW,1:L)

≥ 1. (9.15)

Property 9.2. We have

J̃ (hW,1:L) = iSNR
[
1 − ρ2 (cx, cz,W)

]
. (9.16)

Proof. Indeed

J̃ (hW,1:L) =
∑L

l=1 λl∑L
l=1 qT

l Rvql

−
∑L

l=1 λ2
l

(
λl + qT

l Rvql

)−1∑L
l=1 qT

l Rvql

= iSNR

[
1 −
∑L

l=1 λ2
l

(
λl + qT

l Rvql

)−1∑L
l=1 λl

]

= iSNR
[
1 − ρ2 (cx, cz,W)

]
.

Therefore, the fullband NMSE is minimized when the fullband SPCC between
the two vectors cx(k) and cz,W(k) is maximized. This fullband SPCC can be
rewritten as follows:

ρ2 (cx, cz,W) =
1

ξsr (hW,1:L)
· 1 + oSNR(hW,1:L)

oSNR(hW,1:L)
. (9.17)

We observe that the KLE-domain Wiener filter is compromising between
speech reduction (i.e., speech distortion) and fullband output SNR improve-
ment.

Property 9.3. We have

iSNR
1 + oSNR(hW,1:L)

≤ J̃ (hW,1:L) ≤ iSNR
1 + iSNR

. (9.18)

Proof. Since

ρ2 (cx, cz,W) ≥ iSNR
1 + iSNR
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and with the help of (9.16), we easily get

J̃ (hW,1:L) ≤ iSNR
1 + iSNR

.

Since

ρ2 (cx, cz,W) ≤ oSNR(hW,1:L)
1 + oSNR(hW,1:L)

and, again, with the help of (9.16), we obtain

iSNR
1 + oSNR(hW,1:L)

≤ J̃ (hW,1:L) .

Hence, we get better bounds for the fullband MNMSE than the usual ones
[0 ≤ J̃ (hW,1:L) ≤ 1].

Property 9.4. We have

[1 + oSNR(hW,1:L)]2

iSNR · oSNR(hW,1:L)
≤ ξnr (hW,1:L) ≤ (1 + iSNR) [1 + oSNR(hW,1:L)]

iSNR2 .

(9.19)

Proof. Easy to show by using (9.15) and the bounds of J̃ (hW,1:L) [eq. (9.18)].

Property 9.5. We have

1
[1 + oSNR(hW,1:L)]2

≤ υsd (hW,1:L) ≤ 1 + oSNR(hW,1:L) − iSNR
(1 + iSNR) [1 + oSNR(hW,1:L)]

.

(9.20)

Proof. Easy to show by using (9.14) and the bounds of ξnr (hW,1:L) [eq. (9.19)].

It is of great interest to understand how the time-domain Wiener filter
filter (see Chapter 7)

HW = QΛ
[
Λ + QT RvQ

]−1

QT (9.21)

is related to the KLE-domain Wiener filter given in (9.3).
Substituting the KLE-domain Wiener filter into (2.30), we see that the

estimator of the vector x(k) can be written as

zKLE,W(k) =
L∑

l=1

hW,l,0cy,lql

=

(
L∑

l=1

hW,l,0qlq
T
l

)
y(k)

= HKLE,Wy(k). (9.22)
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Therefore, the time-domain filter

HKLE,W =
L∑

l=1

hW,l,0qlq
T
l (9.23)

is strictly equivalent to the KLE-domain filter hW,l,0, l = 1, 2, . . . , L. Substi-
tuting (9.3) into (9.23), we easily find that

HKLE,W = QΛ
[
Λ + diag

(
QT RvQ

)]−1

QT . (9.24)

Clearly, the two filters HW and HKLE,W are very close. For example if the
noise is white, then HW = HKLE,W. Also the orthogonal matrix Q tends to

diagonalize the Toeplitz matrix Rv. In this case, QT RvQ ≈ diag
(
QT RvQ

)
and as a result, HW ≈ HKLE,W.

9.1.2 Parametric Wiener Filter

One practical way to control the compromise between noise reduction and
speech distortion is via the parametric Wiener filter [50]:

hG,l,0 =
[
1 − sinβ1 θl

]β2
, (9.25)

where β1 and β2 are two positive parameters that allow the control of this
compromise. For (β1, β2) = (2, 1), we get the KLE-domain Wiener filter de-
veloped in the previous subsection. Taking (β1, β2) = (2, 1/2), leads to

hP,l,0 =
√

1 − sin2 θl (9.26)
= cos θl,

which is the equivalent form of the power subtraction method. The pair
(β1, β2) = (1, 1) gives the equivalent form of the magnitude subtraction
method:

hM,l,0 = 1 − sin θl (9.27)

= 1 −
√

1 − cos2 θl.

We can verify that the subband noise-reduction factors for the power sub-
traction and magnitude subtraction methods are

ξnr (hP,l,0) =
1

cos2 θl
, (9.28)

ξnr (hM,l,0) =
1

(1 − sin θl)
2 , (9.29)

and the corresponding subband speech-distortion indices are
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υsd (hP,l,0) = (1 − cos θl)
2
, (9.30)

υsd (hM,l,0) = sin2 θl. (9.31)

We can also easily check that

ξnr (hM,l,0) ≥ ξnr (hW,l,0) ≥ ξnr (hP,l,0) , (9.32)
υsd (hP,l,0) ≤ υsd (hW,l,0) ≤ υsd (hM,l,0) . (9.33)

The two previous inequalities show that, among the three methods, the mag-
nitude subtraction is the most aggressive one as far as noise reduction is
concerned, a very well-known fact in the literature [38], but at the same time
it’s the one that will likely distorts most the speech signal. The smoothest
approach is the power subtraction while the Wiener filter is between the two
others in terms of speech distortion and noise reduction.

In the previous subsection, we have shown that it was possible to rewrite
the KLE-domain Wiener filter into the time domain. This way, it is more
convenient to compare the two Wiener filters from a theoretical point of view
(in the time and KLE domains). Following the same line of thoughts, it is easy
to show that the KLE-domain power subtraction and magnitude subtraction
algorithms are equivalent to

HKLE,P = QΛ1/2
[
Λ + diag

(
QT RvQ

)]−1/2

QT (9.34)

and

HKLE,M = I − Q
[
I + Λdiag−1

(
QT RvQ

)]−1/2

QT . (9.35)

9.1.3 Tradeoff Filter

The tradeoff filter is obtained by minimizing the speech distortion with the
constraint that the residual noise level is equal to a value smaller than the
level of the original noise. This is equivalent to solving the problem

min
hl,0

Jx(hl,0) subject to Jv(hl,0) = β · qT
l Rvql, (9.36)

where

Jx(hl,0) = (1 − hl,0)
2
λl, (9.37)

Jv(hl,0) = h2
l,0 · qT

l Rvql, (9.38)

and 0 < β < 1 in order to have some noise reduction in the subband l. If we
use a Lagrange multiplier, µ ≥ 0, to adjoin the constraint to the cost function,
we get the tradeoff filter:
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hT,l,0 =
λl

λl + µ · qT
l Rvql

=
E
[
c2
y,l(k)

]
− qT

l Rvql

E
[
c2
y,l(k)

]
+ (µ − 1)qT

l Rvql

=
iSNRl

µ + iSNRl
. (9.39)

This filter can be seen as a KLE-domain Wiener filter with adjustable input
noise level µ · qT

l Rvql.
The subband SPCC between the two signals cx,l(k) and cx,l(k)+

√
µcv,l(k)

in the subband l is

ρ2 (cx,l, cx,l +
√

µcv,l) =
iSNRl

µ + iSNRl
. (9.40)

The subband SPCC between the two signals cv,l(k) and cx,l(k)+
√

µcv,l(k) in
the subband l is

ρ2 (cv,l, cx,l +
√

µcv,l) =
µ

µ + iSNRl
. (9.41)

Therefore, we can write the tradeoff filter as a function of these two subband
SPCCs:

hT,l,0 = ρ2 (cx,l, cx,l +
√

µcv,l)
= 1 − ρ2 (cv,l, cx,l +

√
µcv,l) . (9.42)

Now, let us define the complex number


µ (cx,l, cv,l) = ρ (cx,l, cx,l +
√

µcv,l) + jρ (cv,l, cx,l +
√

µcv,l)
= cos θl(µ) + j sin θl(µ), (9.43)

where θl(µ) is the angle of 
µ (cx,l, cv,l) for which the modulus is equal
to 1. On the complex plane, 
µ (cx,l, cv,l) is on the unit circle. Since 0 ≤
ρ
(
cx,l, cx,l +

√
µcv,l

) ≤ 1 and 0 ≤ ρ
(
cv,l, cx,l +

√
µcv,l

) ≤ 1, therefore
0 ≤ θl(µ) ≤ π

2 . We can then rewrite the tradeoff filter as a function of the
angle θl(µ):

hT,l,0 = cos2 θl(µ)
= 1 − sin2 θl(µ). (9.44)

We deduce the subband noise-reduction factor and subband speech-distortion
index

ξnr (hT,l,0) =
1

cos4 θl(µ)
≥ 1, (9.45)

υsd (hT,l,0) = sin4 θl(µ) ≤ 1. (9.46)
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Using Properties 3.2 and 3.3, we see how the fullband noise-reduction factor
and fullband speech-distortion index are bounded:

1 ≤ ξnr (hT,1:L) ≤
L∑

l=1

1
cos4 θl(µ)

, (9.47)

0 ≤ υsd (hT,1:L) ≤ min

[
L∑

l=1

sin4 θl(µ), 1

]
. (9.48)

Property 9.6. With the tradeoff filter given in (9.39), the fullband output SNR
is always greater than or equal to the input SNR, i.e., oSNR(hT,1:L) ≥ iSNR.

Proof. The fullband SPCC between the two vectors cx(k) and cx(k)+
√

µcv(k)
is

ρ2 (cx, cx +
√

µcv) =

(∑L
l=1 λl

)2

(∑L
l=1 λl

)(∑L
l=1 λl + µ

∑L
l=1 qT

l Rvql

)
=

iSNR
µ + iSNR

.

The fullband SPCC between the two vectors cx(k) and cx,F(k) +
√

µcv,F(k)
is

ρ2 (cx, cx,F +
√

µcv,F) =(∑L
l=1 hT,l,0λl

)2

(∑L
l=1 λl

)(∑L
l=1 h2

T,l,0λl + µ
∑L

l=1 h2
T,l,0 · qT

l Rvql

)

=
∑L

l=1 hT,l,0λl∑L
l=1 λl

.

Another way to write the same fullband SPCC is the following:

ρ2 (cx, cx,F +
√

µcv,F) =

(∑L
l=1 hT,l,0λl

)2

(∑L
l=1 λl

)(∑L
l=1 h2

T,l,0λl

) · oSNR (hT,1:L)
µ + oSNR (hT,1:L)

= ρ2 (cx, cx,F) · ρ2 (cx,F, cx,F +
√

µcv,F)

≤ oSNR (hT,1:L)
µ + oSNR (hT,1:L)

.

Now, let us evaluate the fullband SPCC between the two vectors cx(k) +√
µcv(k) and cx,F(k) +

√
µcv,F(k):
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ρ2 (cx +
√

µcv, cx,F +
√

µcv,F) =
∑L

l=1 λl∑L
l=1 λl + µ

∑L
l=1 qT

l Rvql

×
∑L

l=1 λl∑L
l=1 hT,l,0λl

=
ρ2
(
cx, cx +

√
µcv

)
ρ2
(
cx, cx,F +

√
µcv,F

) .
Therefore

ρ2 (cx, cx +
√

µcv) =
iSNR

µ + iSNR
= ρ2 (cx +

√
µcv, cx,F +

√
µcv,F) ×

ρ2 (cx, cx,F +
√

µcv,F)
≤ ρ2 (cx, cx,F +

√
µcv,F)

≤ oSNR (hT,1:L)
µ + oSNR (hT,1:L)

.

As a result

oSNR (hT,1:L) ≥ iSNR.

Furthermore, by using Property 3.1, we see how the fullband output SNR for
the tradeoff filter is bounded:

iSNR ≤ oSNR (hT,1:L) ≤
L∑

l=1

iSNRl. (9.49)

As we already did for other filters in this class, we can write the KLE-
domain tradeoff filter into the time domain. Indeed, substituting (9.39) into
(2.30), we find that

HKLE,T = QΛ
[
Λ + µ · diag

(
QT RvQ

)]−1

QT , (9.50)

which is identical to the filter proposed in [103]. This filter can be compared
to the time-domain tradeoff filter (see Chapter 7)

HT = QΛ
[
Λ + µ · QT RvQ

]−1

QT . (9.51)

We see that if the noise is white, the two filters are the same.
We can make the tradeoff filter more general by making the factor β de-

pendent on the subband index l, i.e., βl. By doing so, the control between
noise reduction and speech distortion can be more effective since each sub-
band l can be controlled independently of the others. With this consideration,
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we can easily see that the optimal filter derived from the criterion (9.36) is
now

hT,l,0 =
iSNRl

µl + iSNRl
, (9.52)

where µl is the subband-dependent Lagrange multiplier. This approach can
now provide some noise spectral shaping for masking by the speech signal [49],
[68], [69], [75], [120], [121].

9.2 Class II

Although they can improve the fullband SNR, the optimal filters derived in
Class I have no impact on the subband SNR. In this section, we consider
another category of filters hl, l = 1, 2, . . . , L, with length Ll where at least
one of them has a length Ll > 1. In this scenario it is possible to improve
both the subband (when Ll > 1) and fullband SNRs at the same time.

9.2.1 Wiener Filter

From the KLE-domain MSE [eq. (4.29)], we easily deduce the KLE-domain
filter:

hW,l = R−1
cy,lRcx,lil

=
(
Il − R−1

cy,lRcv,l

)
il, (9.53)

where Il is the identity matrix of size Ll ×Ll. Another way to write this filter
is

hW,l =
(

Il

iSNRl
+ R̃−1

cv,lR̃cx,l

)−1

R̃−1
cv,lR̃cx,lil (9.54)

= ρ2 (cx,l, cy,l) R̃−1
cy,lR̃cx,l

=
[
Il − ρ2 (cv,l, cy,l) R̃−1

cy,lR̃cv,l

]
il,

where

R̃cx,l =
Rcx,l

λl
,

R̃cv,l =
Rcv,l

qT
l Rvql

.

We can see from (9.54) that

lim
iSNRl→∞

hW,l = il, (9.55)

lim
iSNRl→0

hW,l = 0Ll×1, (9.56)

where 0Ll×1 is a vector of length Ll with all its elements being zeros.



106 9 Optimal Filters in the KLE Domain

Property 9.7. With the optimal KLE-domain Wiener filter given in (9.53), the
subband output SNR is always greater than or equal to the subband input
SNR, i.e., oSNR (hW,l) ≥ iSNRl, ∀l.

Proof. Let us evaluate the SPCC between cy,l(k) and hT
W,lcy,l(k)

ρ2
(
cy,l,hT

W,lcy,l

)
=

(
iTl Rcy,lhW,l

)2

(
λl + qT

l Rvql

) (
hT

W,lRcy,lhW,l

)
=

λl

λl + qT
l Rvql

· λl

iTl Rcx,lhW,l

=
ρ2 (cx,l, cy,l)

ρ2
(
cx,l,hT

W,lcy,l

) .

Therefore

ρ2 (cx,l, cy,l) = ρ2
(
cy,l,hT

W,lcy,l

)
· ρ2
(
cx,l,hT

W,lcy,l

)
≤ ρ2

(
cx,l,hT

W,lcy,l

)
.

But

ρ2 (cx,l, cy,l) =
iSNRl

1 + iSNRl
,

ρ2
(
hT

W,lcx,l,hT
W,lcy,l

)
=

oSNR (hW,l)
1 + oSNR (hW,l)

,

and

ρ2
(
cx,l,hT

W,lcy,l

)
= ρ2

(
cx,l,hT

W,lcx,l

)
· ρ2
(
hT

W,lcx,l,hT
W,lcy,l

)
≤ ρ2

(
hT

W,lcx,l,hT
W,lcy,l

)
.

Hence

iSNRl

1 + iSNRl
≤ oSNR (hW,l)

1 + oSNR (hW,l)
.

As a result

oSNR (hW,l) ≥ iSNRl, ∀l.

The KLE-domain minimum MSE (MMSE) and KLE-domain minimum
NMSE (MNMSE) are obtained by replacing hW,l in (4.29) and (4.32):

J (hW,l) = λl − iTl Rcx,lR−1
cy,lRcx,lil

= qT
l Rvql − iTl Rcv,lR−1

cy,lRcv,lil, (9.57)

J̃ (hW,l) = 1 −
iTl Rcv,lR−1

cy,lRcv,lil
qT

l Rvql

≤ 1. (9.58)
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We can compute the subband speech-distortion index by substituting (9.53)
into (3.25):

υsd (hW,l) = 1 − oSNR(hW,l) + 2
iSNRl · ξnr (hW,l)

≤ 1. (9.59)

Using (4.32) and (9.59), we get the subband noise-reduction factor:

ξnr (hW,l) =
oSNR(hW,l) + 1
iSNRl − J̃ (hW,l)

≥ 1. (9.60)

Property 9.8. We have

J̃ (hW,l) = iSNRl

[
1 − ρ2

(
cx,l,hT

W,lcy,l

)]
. (9.61)

Proof. Indeed

J̃ (hW,l) =
λl

qT
l Rvql

−
iTl Rcx,lR−1

cy,lRcx,lil
qT

l Rvql

= iSNRl

(
1 − iTl Rcx,lhW,l

λl

)

= iSNRl

[
1 − ρ2

(
cx,l,hT

W,lcy,l

)]
.

Therefore, the subband NMSE is minimized when the subband SPCC between
the two variables cx,l(k) and hT

W,lcy,l(k) is maximized. This subband SPCC
can be rewritten as follows:

ρ2
(
cx,l,hT

W,lcy,l

)
=

1
ξsr (hW,l)

· 1 + oSNR(hW,l)
oSNR(hW,l)

. (9.62)

We observe that the KLE-domain Wiener filter is compromising between sub-
band speech reduction (i.e., subband speech distortion) and subband output
SNR improvement.

Property 9.9. We have

iSNRl

1 + oSNR(hW,l)
≤ J̃ (hW,l) ≤ iSNRl

1 + iSNRl
. (9.63)

Proof. Since

ρ2
(
cx,l,hT

W,lcy,l

)
≥ iSNRl

1 + iSNRl

and with the help of (9.61), we easily get

J̃ (hW,l) ≤ iSNRl

1 + iSNRl
.
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Since

ρ2
(
cx,l,hT

W,lcy,l

)
≤ oSNR(hW,l)

1 + oSNR(hW,l)

and, again, with the help of (9.61), we obtain

iSNRl

1 + oSNR(hW,l)
≤ J̃ (hW,l) .

Hence, we get better bounds for the KLE-domain MNMSE than the usual
ones [0 ≤ J̃ (hW,l) ≤ 1].

Property 9.10. We have

[1 + oSNR(hW,l)]
2

iSNRl · oSNR(hW,l)
≤ ξnr (hW,l) ≤ (1 + iSNRl) [1 + oSNR(hW,l)]

iSNR2
l

.(9.64)

Proof. Easy to show by using (9.60) and the bounds of J̃ (hW,l) [eq. (9.63)].

Property 9.11. We have

1
[1 + oSNR(hW,l)]

2 ≤ υsd (hW,l) ≤ 1 + oSNR(hW,l) − iSNRl

(1 + iSNRl) [1 + oSNR(hW,l)]
. (9.65)

Proof. Easy to show by using (9.59) and the bounds of ξnr (hW,l) [eq. (9.64)].

Property 9.12. With the optimal KLE-domain Wiener filter given in (9.53),
the fullband output SNR is always greater than or equal to the input SNR,
i.e., oSNR(hW,1:L) ≥ iSNR.

Proof. The proof is identical to the one given after Property 9.1.

It is remarkable that the KLE-domain filter for Ll > 1 can improve both the
subband and fullband SNRs. As a consequence, we should expect more noise
reduction with this filter than the Wiener filters in the time and frequency
domains.

Properties 9.2, 9.3, 9.4, and 9.5 apply here as well.

9.2.2 Tradeoff Filter

The tradeoff filter is obtained by solving the following optimization problem:

min
hl

Jx(hl) subject to Jv(hl) = β · qT
l Rvql, (9.66)

where
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Jx(hl) = E
{[

(il − hl)T cx,l

]2}
, (9.67)

Jv(hl) = E

[(
hT

l cv,l

)2
]

, (9.68)

and 0 < β < 1 in order to have some noise reduction in the subband l. If
we use a Lagrange multiplier, µ(≥ 0), to adjoin the constraint to the cost
function, we easily find the optimal filter:

hT,l = (Rcx,l + µRcv,l)
−1 Rcx,lil

=
[
Rcy,l + (µ − 1)Rcv,l

]−1 (
Rcy,l − Rcv,l

)
il

=
[
Il + (µ − 1)R−1

cy,lRcv,l

]−1

hW,l, (9.69)

where the Lagrange multiplier satisfies Jv(hl) = β·qT
l Rvql. In practice it’s not

easy to determine µ. Therefore, when this parameter is chosen in an ad-hoc
way, we can see that for

• µ = 1, hT,l = hW,l; so the tradeoff and Wiener filters are identical;
• µ = 0, hT,l = il; therefore, with this filter there is neither noise reduction

nor speech distortion;
• µ > 1, corresponds to more aggressive noise reduction compared to Wiener,

so the residual noise level would be lower, but it is achieved at the expense
of higher speech distortion;

• µ < 1, corresponds to less aggressive noise compared to Wiener, in this
situation we get less speech distortion but less noise reduction as well.

Property 9.13. With the KLE-domain tradeoff filter given in (9.69), the sub-
band output SNR is always greater than or equal to the subband input SNR,
i.e., oSNR (hT,l) ≥ iSNRl, ∀l.

Proof. The subband SPCC between the two signals cx,l(k) and hT
T,lcx,l(k) +√

µhT
T,lcv,l(k) in the subband l is

ρ2
(
cx,l,hT

T,lcx,l +
√

µhT
T,lcv,l

)
=

(
iTl Rcx,lhT,l

)2

λl

(
hT

T,lRcx,lhT,l + µhT
T,lRcv,lhT,l

)

=
iTl Rcx,lhT,l

λl
.

Another way to write the same subband SPCC is the following:
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ρ2
(
cx,l,hT

T,lcx,l +
√

µhT
T,lcv,l

)
=

(
iTl Rcx,lhT,l

)2

λl · hT
T,lRcx,lhT,l

· oSNR (hT,l)
µ + oSNR (hT,l)

= ρ2
(
cx,l,hT

T,lcx,l

)
×

ρ2
(
hT

T,lcx,l,hT
T,lcx,l +

√
µhT

T,lcv,l

)
≤ oSNR (hT,l)

µ + oSNR (hT,l)
.

Now let us evaluate the subband SPCC between the two signals cx,l(k) +√
µcv,l(k) and hT

T,lcx,l(k) +
√

µhT
T,lcv,l(k) in the subband l:

ρ2
(
cx,l +

√
µcv,l,hT

T,lcx,l +
√

µhT
T,lcv,l

)
=[

iTl (Rcx,l + µRcv,l)hT,l

]2
(
λl + µ · qT

l Rvql

) [
hT

T,l (Rcx,l + µRcv,l)hT,l

]
=

λl

λl + µ · qT
l Rvql

· λl

iTl Rcx,lhT,l

=
ρ2
(
cx,l, cx,l +

√
µcv,l

)
ρ2
(
cx,l,hT

T,lcx,l +
√

µhT
T,lcv,l

) .

Therefore

ρ2 (cx,l, cx,l +
√

µcv,l) =
iSNRl

µ + iSNRl

= ρ2
(
cx,l +

√
µcv,l,hT

T,lcx,l +
√

µhT
T,lcv,l

)
×

ρ2
(
cx,l,hT

T,lcx,l +
√

µhT
T,lcv,l

)
≤ ρ2

(
cx,l,hT

T,lcx,l +
√

µhT
T,lcv,l

)
≤ oSNR (hT,l)

µ + oSNR (hT,l)
.

As a result

oSNR (hT,l) ≥ iSNRl, ∀l.

Property 9.14. With the KLE-domain tradeoff filter given in (9.69), the full-
band output SNR is always greater than or equal to the input SNR, i.e.,
oSNR(hT,1:L) ≥ iSNR.

Proof. The proof is identical to the one given after Property 9.6.
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From the two previous properties, we see that the tradeoff filter in the
KLE domain has the potential to improve both the subband and fullband
SNRs.

It is straightforward to get a more general form of the tradeoff filter by
just making the factor β dependent on the subband index l. We then obtain

hT,l = (Rcx,l + µlRcv,l)
−1 Rcx,lil, (9.70)

where now the Lagrange multiplier depends also on the subband index l. This
filter could be useful in practice if we want to give a particular shape to the
residual noise.

9.3 Experiments

In this section, we study the performance of the two classes of noise reduction
filters in the KLE domain through experiments. The experimental setup is
the same as used in Chapter 7.

9.3.1 Impact of Forgetting Factor on Performance of Class-I
Filters

To implement the Class-I filters developed in Section 9.1, we need to know
the correlation matrices Ry and Rv. The matrix Ry can be directly estimated
from the noisy signal using the recursive approach given in (7.44). Therefore,
the forgetting factor αy plays a critical role in the estimation accuracy of the
correlation matrix Ry, which in turn may significantly affect the noise reduc-
tion performance. As explained in Chapter 7, the forgetting factor αy cannot
be too large. If it is too large (close to 1), the recursive estimate will essen-
tially be a long-term average and will not be able to follow the short-term
variations of the speech signal. As a result, the nature of the speech signal
cannot be fully taken advantage of, which limits the noise reduction perfor-
mance. Conversely, if αy is too small, the estimation variance of Ry(k) will be
large, which, again, may lead to performance degradation in noise reduction.
Furthermore, Ry(k) may tend to be rank deficient, causing numerical stability
problems. Therefore, a proper value of the forgetting factor is very important.
In this experiment, we attempt to find the optimal forgetting factor by di-
rectly examining the noise reduction performance. White noise is used in this
experiment with an iSNR = 10 dB. Similar to that in Section 7.4, we tend not
to use any noise estimator, but compute the correlation matrix Rv directly
from the noise signal using a long-term sample average.

Figure 9.1 plots both the output SNR and speech-distortion index as a
function of αy. It is seen that, for all the investigated algorithms, both the
output SNR and speech-distortion index bear a nonmonotonic relationship
with αy. Specifically, the output SNR first increases as αy increases and then
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Fig. 9.1. Performance versus the forgetting factor αy in white Gaussian noise with
an iSNR = 10 dB and L = 20.

decreases, but the speech-distortion index first decreases with αy and then
increases. The optimal noise reduction performance (highest output SNR and
lowest speech distortion) appears when αy is in the range between 0.985 and
0.995. This result is similar to what was observed with the time-domain filters
in Chapter 7.

It is also seen from Fig. 9.1 that the power subtraction method yielded the
least SNR gain, but it also has the lowest speech distortion as compared to the
Wiener filter and the tradeoff filter with µ = 4 and µ = 0.6. The performance
of the tradeoff filter depends on the value of µ. When µ = 4, this method
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Fig. 9.2. Performance versus filter length L in white Gaussian noise with an
iSNR = 10 dB and αy = 0.985.

achieved higher output SNRs than the Wiener filter, but at the cost of higher
speech distortion as shown in Fig. 9.1(b). When µ = 0.6, the tradeoff filter
yielded less SNR improvement as compared to the Wiener. All these agreed
very well with the theoretical analysis given in the previous sections.

9.3.2 Effect of Filter Length on Performance of Class-I Filters

Another important parameter that affects the performance of all the Class-I
filters is the filter length L. So, in this experiment, we study the impact of
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the filter length (also the frame size) L on the performance of noise reduction.
Again, white noise is used with an iSNR = 10 dB and the noise correlation
matrix is directly computed from the noise signal using a long-term average.
Based on the previous experiment, we set αy = 0.985. Figure 9.2 depicts the
results. It is safe to say that the length L should be reasonably large enough
to achieve good noise reduction performance. When L increases from 1 to
20, the output SNR improves while speech distortion decreases. But if we
continue to increase L, there is either marginal additional SNR improvement
(for the tradeoff method with µ = 4), or even SNR degradation (for the
Wiener filter, the power subtraction, and the tradeoff filter with µ = 0.6), and
there is also some increase in speech distortion. In general, good performance
for all the studied algorithms is achieved when the filter length L is around
20. This result coincides with what was observed with the time-domain filters
in Chapter 7.

9.3.3 Estimation of Clean Speech Correlation Matrix

Previously, we have used the recursive approach to compute the noisy signal
correlation matrix Ry. When noise is not stationary, we also used the recursive
approach to estimate the correlation matrix Rv. We then assumed that at time
k, the clean speech correlation matrix Rx can be calculated as

Rx(k) = Ry(k) − Rv(k). (9.71)

Substituting (7.44) and (7.45) into (9.71), one can readily check that Rx(k)
is not in a recursive form (if αy �= αv) even though both Ry(k) and Rv(k)
are computed recursively.

Now we consider to use the recursive method to compute Rx, i.e.,

Rx(k) = αxRx(k − 1) + (1 − αx)x(k)xT (k), (9.72)

where αx is a forgetting factor. Putting (9.72) and (7.45) together and assum-
ing that at any time instant k the relationship (9.71) should be satisfied, we
have

Ry(k) = αxRy(k − 1) + (1 − αx)y(k)yT (k) +
(αv − αx)Rv(k − 1) − (αv − αx)v(k)vT (k). (9.73)

To examine the impact of αx on the Class-I filters, we repeated the exper-
iment of Section 9.3.1. The only difference is that now the correlation matrix
Ry(k) is computed according to (9.73) and the matrix Rv is also computed
recursively using (7.45) with αv = 0.995. The results are plotted in Fig. 9.3.
It is seen from Fig. 9.3 that the output SNR decreases monotonically as the
forgetting factor αx increases; but it decreases slowly at first and then more
rapidly. This result is different from what was observed from Fig. 9.1. In com-
parison, the speech-distortion index bears a nonmonotonic relationship with
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Fig. 9.3. Performance versus the forgetting factor αx in white Gaussian noise with
an iSNR = 10 dB, αv = 0.995, and L = 20.

αx. It first decreases with αx and then increases. Again, it can be seen that the
value of αx plays a very important role on the noise reduction performance of
the studied filters. Comparing Figs. 9.3 and 9.1, one can see that the estima-
tor in (9.73) produces a more consistent noise reduction performance (with
respect to the value of the forgetting factor) than the recursive estimator given
in (7.44). This is more true in the subband case where, if we need to estimate
the correlation matrices, the forgetting factors are much smaller. We will come
back to this point when we will discuss the Class-II filters.
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9.3.4 Performance of Class-I Filters in Different Noise Conditions

In this experiment, we test the performance of the Class-I filters in differ-
ent input SNRs and noise conditions. We consider three types of noise (see
Chapter 7): white Gaussian, car, and NYSE. Based on the previous experi-
ment, we set L = 20 and compute the matrix Ry(k) according to (9.73) with
αx = 0.985. Again, we do not use any noise estimator, but compute the noise
correlation matrix directly from the noise signal using the recursive method
with αv = 0.995 for all the three noise signals. The results of this experiment
are shown in Fig. 9.4, where we only plotted the results of the Wiener filter
and the tradeoff filter with µ = 4 to simplify the presentation.

It is noticed from Fig. 9.4 that the output SNR is always larger than the
input SNR, but the amount of SNR improvement depends on the input SNR
and noise characteristics. Roughly, the lower the input SNR, the larger the
SNR improvement. However, the speech-distortion index tends to increase
as more SNR improvement is gained. This result coincides with what was
observed with the time- and frequency-domain filters. If the input SNR is
very low (e.g., below 0 dB), the noise reduction filters may even lead to speech
quality degradation (instead of improving the speech quality) because of the
significant speech distortion. Again, we suggest to use the grace-degradation
technique in practical systems to better control the performance.

It is also seen from Fig. 9.4 that both the Wiener and tradeoff filters are less
effective in suppressing the NYSE noise as compared to the white noise and
the car noise. The main reason for this is due to the fact that the NYSE noise is
highly nonstationary. Another way to look at this problem is by examining the
eigenvalue distribution of the correlation matrices of the different noise signals.
We computed the correlation matrices (with L = 20) of the clean speech and
all the three noise signals using the long-term average. The diagonalization
process given in (2.16) was then applied to find the eigenvalues of all these
matrices. As shown in Fig. 9.5, the white noise has constant eigenvalues. The
car noise has only a couple of large eigenvalues and all the others tend to be
close to 0. Comparatively, the NYSE noise has a similar eigenvalue distribution
to the clean speech. These eigenvalue distribution patterns indicate that the
NYSE noise is more difficult to detect making the noise suppression more
challenging.

9.3.5 Impact of Forgetting Factor on Performance of Class-II
Filters

Unlike the Class-I filters where each frame may have a different transformation
Q, the Class-II algorithms assume that all the frames share the same trans-
formation Q (otherwise, filtering the KLE coefficients across different frames
would not make much sense). In this situation, the estimation of Q is relatively
easier than that for the Class-I filters. We can simply use a long-term sample
average to compute the correlation matrices Ry and Rv, thereby obtaining
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Fig. 9.4. Performance as a function of the input SNR with white Gaussian noise
(WGN), car noise, and NYSE babbling noise.

an estimate of Rx. The KLT matrix Q can then be computed using the eigen-
value decomposition. In our study, we found that the estimation accuracy of
the matrix Q plays a less important role in noise reduction performance of
the Class-II methods than it does in performance of the Class-I filters. We can
even replace the matrix Q by the Fourier matrix without degrading the noise
reduction performance, which indicates that the idea of the Class-II filters can
also be used in the frequency-domain approaches. However, following the the-
oretical development in Section 9.2, we still use the transformation matrix Q
in our experiments, with the correlation matrices Ry and Rv being estimated
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Fig. 9.5. Eigenvalues of the clean speech and different noise signals with L = 20.

using a long-term average and the matrix Rx being computed as Ry − Rv.
The matrix Q is then applied to each frame of the signals to compute the
KLE coefficients cy,l and cv,l.

In order to estimate Rcv,l, we need to have an estimate of the noise signal
v(k). Although we have developed a noise detector in Chapter 8, we compute
the noise statistics directly from the noise signal in this experiment to avoid
the influence of the noise estimation error on the parameter optimization.
Specifically, the KLT Q is applied to the noise signal v(k) to obtain the KLE
coefficients cv,l(k). The matrix Rcv,l is then computed using the recursive
method

Rcv,l(k) = αcv,lRcv,l(k − 1) + (1 − αcv,l)cv,l(k)cT
v,l(k), (9.74)

where αcv,l, same as αv and αy, is a forgetting factor.
In the previous analysis, we have pointed out that when the forgetting

factors are small, which is the case in the Class-II filters, it is better to assume
that the speech correlation matrix is in a recursive form. So, we assume to
have

Rcx,l(k) = αcx,lRcx,l(k − 1) + (1 − αcx,l)cx,l(k)cT
x,l(k). (9.75)

In this case, at time k, Rcy,l(k) should be computed according to

Rcy,l(k) = αcx,lRcy,l(k − 1) + (1 − αcx,l)cy,l(k)cT
y,l(k) +

(αcv,l − αcx,l)Rcv,l(k − 1) −
(αcv,l − αcx,l)cv,l(k)cT

v,l(k). (9.76)
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Fig. 9.6. Performance as a function of the forgetting factor αcx,l in white Gaussian
noise (WGN).

The forgetting factors αcx,l and αcv,l (l = 1, . . . , L) play an important
role in noise reduction performance of the Class-II filters. In principle, each
subband l may take a different forgetting factor. But for simplicity, in this
study, we assume the same forgetting factor for all the subbands, i.e., αcx,1

= αcx,2 = · · · = αcx,L = αcx
, and αcv,1 = αcv,2 = · · · = αcv,L = αcv

. Again,
white Gaussian noise is used. We set Ll to 3 and αcv

to 0.91 (this value
of αcv

was obtained trough experiments) and examine the noise reduction
performance for different values of αcx

. The result of this experiment is plotted
in Fig. 9.6. It is seen that, for all the three configured algorithms, the output
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Fig. 9.7. Performance as a function of the filter length Ll in white Gaussian noise
(WGN) with an iSNR = 10 dB, αay = 0.8, αav = 0.91, and L = 20.

SNR monotonically decreases (slowly when αcx
< 0.9 and then rapidly) as

αcx
increases. In comparison, the speech-distortion index first decreases as

αcx
increases and then increases. Taking into account both SNR improvement

and speech distortion, one can see that good noise reduction performance is
obtained with αcx

being in the range between 0.7 and 0.9.

9.3.6 Effect of Filter Length on Performance of Class-II Filters

In the next experiment, we study the impact of the filter length Ll on the
noise reduction performance. Again, the background noise is white and no
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noise estimator is used. The parameters used in this experiment are αcx
= 0.8,

αcv
= 0.91, iSNR = 10 dB, and L = 20. The results are depicted in Fig. 9.7.

It is seen from Fig. 9.7(a) that the output SNRs for the tradeoff filters with
µ = 4 and µ = 2 increase with Ll. For the Wiener filter, however, the output
SNR increases first to its maximum and then decreases. In comparison, the
speech-distortion indices with both methods decrease first and then increase
with Ll. Taking into account both SNR improvement and speech distortion,
we would suggest to use Ll between 5 and 10.

Comparing Figs. 9.7 and 9.2, one can see that, with the same L, the
optimal filters in Class II can achieve much higher SNR gain than the filters
of Class I. The Class-II filters also have slightly more speech distortion. But
the additional amount of distortion compared to that of the Class-I filters
is not significant. This indicates that the Class-II filters may have a great
potential in practice.

9.4 Summary

In this chapter, we discussed two broad classes of optimal noise reduction fil-
ters in the KLE domain. While the filters of Class I achieve a frame of speech
estimate by filtering only the corresponding frame of the noisy speech, the
filters of Class II are inter-frame techniques, which obtain noise reduction by
filtering not only the current frame, but also a number of previous consecutive
frames of the noisy speech. We have also discussed some properties and imple-
mentation issues of these filters. Through experiments, we have investigated
the optimal values of the forgetting factors and the length of the optimal fil-
ters. We also demonstrated that better noise reduction performance can be
achieved with the filters of Class II when the parameters associated with this
class are properly chosen, which demonstrated the great potential of the filters
in this category for noise reduction.

It should be pointed out that the underlying idea of the filters of Class II
can also be used in the frequency domain, which will be left to the reader’s
investigation.
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Optimal Filters in the Transform Domain

In this chapter, we reformulate the noise reduction problem into a more gen-
eralized transform domain. There are at least two advantages doing this: first,
different transforms can be used to replace each other without any requirement
to change the algorithm formulation (optimal or suboptimal filter) and sec-
ond, it is easier to fairly compare different transforms for their noise reduction
performance. To do so, we need to generalize the KLE concept. Therefore, we
recommend the reader to be familiar with the KLE (explained in Chapter 2)
before reading this part.

10.1 Generalization of the KLE

In this section, we are going to generalize the principle of the KLE to any
given unitary transform U. For that, we need to use some of the concepts
presented in [12], [106], [107], [129]. The basic idea behind this generalization
is to find other ways to exactly diagonalize the correlation matrix Ry

1. The
Fourier matrix, for example, diagonalizes approximately Ry (since this matrix
is Toeplitz and its elements are usually absolutely summable [60]). However,
this approximation may cause more distortion to the clean speech when noise
reduction is performed in the frequency domain.

We define the square root of the positive definite matrix Ry as

R1/2
y = QyΛ

1/2
y QT

y , (10.1)

where the matrices Qy and Λy are, respectively, orthogonal and diagonal
matrices. Expression (10.1) is very useful in the derivation of a generalized
form of the KLE.
1 In Chapters 2 and 9, we diagonalized the correlation matrix Rx. In this part, it

is far better to diagonalize Ry instead of Rx for numerical reasons (Ry is much
better conditioned than Rx) since all optimal filters depend on the inverse of the
correlation matrix that we choose to diagonalize.

J. Benesty et al., Noise Reduction in Speech Processing, Springer Topics in Signal Processing 2,  
DOI 10.1007/978-3-642-00296-0_10, © Springer-Verlag Berlin Heidelberg 2009    
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Consider the L × L unitary matrix

U =
[
u1 u2 · · · uL

]
,

where UHU = UUH = I and superscript H denotes transpose conjugate
of a vector or a matrix. We would like to minimize the positive quantity
gH(ul)R1/2

y g(ul) subject to the constraint

gH(ul)ul = uH
l g(ul) = 1. (10.2)

Under this constraint, the process y(k) is passed through the filter

g(ul) =
[
g0(ul) g1(ul) · · · gL−1(ul)

]T
with no distortion along ul and signals along vectors other than ul tend to
be attenuated. Mathematically, this is equivalent to minimizing the following
cost function:

JS [g(ul)] = gH(ul)R1/2
y g(ul) + µS

[
1 − gH(ul)ul

]
, (10.3)

where µS is a Lagrange multiplier. The minimization of (10.3) leads to the
following solution:

g(ul) =
R−1/2

y ul

uH
l R−1/2

y ul

. (10.4)

We define the spectrum of y(k) along ul as

φy(ul) = gH(ul)Ryg(ul). (10.5)

Substituting (10.4) into (10.5) gives

φy(ul) =
1(

uH
l R−1/2

y ul

)2 . (10.6)

Expression (10.6) is a general definition of the spectrum of the signal y(k),
which depends on the unitary matrix U. Using (10.4) and (10.6), we get

R1/2
y g(ul) = φ1/2

y (ul)ul. (10.7)

By taking into account all vectors ul, l = 1, 2, . . . , L, (10.7) can be written
into the following general form

R1/2
y G(U) = UΦ1/2

y (U), (10.8)

where

G(U) =
[
g(u1) g(u2) · · · g(uL)

]
and

Φy(U) = diag
[
φy(u1) φy(u2) · · · φy(uL)

]
is a diagonal matrix.
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Property 10.1. The correlation matrix Ry can be diagonalized as follows:

GH(U)RyG(U) = Φy(U). (10.9)

Proof. This form follows immediately from (10.8).

Property 10.1 shows that there are an infinite number of ways to diag-
onalize the matrix Ry, depending on how we choose the unitary matrix U.
Each one of these diagonalizations gives a representation of the spectrum of
the signal y(k) in the subspace U. Expression (10.9) is a generalization of the
KLT; the only major difference is that G(U) is not a unitary matrix except
for the case where U = Qy. For this special case, it’s easy to verify that
G(Qy) = Qy and Φy(Q) = Λy, which is the KLT formulation.

Property 10.2. The vector y(k) can be written as a combination (expansion)
of the vectors of the matrix U′ = R1/2

y UΦ−1/2
y (U) as follows

y(k) =
L∑

l=1

cy (k,ul)
R1/2

y

φ
1/2
y (ul)

ul

=
L∑

l=1

cy (k,ul)u′
l, (10.10)

where

cy (k,ul) = gH(ul)y(k), l = 1, 2, . . . , L (10.11)

are the coefficients of the expansion and

u′
l =

R1/2
y

φ
1/2
y (ul)

ul, l = 1, 2, . . . , L. (10.12)

Expressions (10.10) and (10.11) are the time- and transform-domain repre-
sentations of the vector signal y(k).

Proof. Expressions (10.10) and (10.11) can be shown by substituting one into
the other.

Property 10.3. We always have

E [cy (k,ul)] = 0, l = 1, 2, . . . , L (10.13)

and

E
[
cy (k,ui) c∗y (k,uj)

]
=
{

φy(ui), i = j
0, i �= j

. (10.14)

Proof. These properties can be verified from (10.11).
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It can be checked that the Parseval’s theorem does not hold anymore if
U �= Qy. This is due to the fact that the matrix G(U) is not unitary. Indeed

L∑
l=1

E
[|cy (k,ul) |2

]
=

L∑
l=1

φy(ul)

= tr
[
RyG(U)GH(U)

]
�= tr (Ry) . (10.15)

This is the main difference between the KLT and the generalization proposed
here for U �= Q. This difference, however, should have no impact on most ap-
plications and Properties 10.1, 10.2, and 10.3 are certainly the most important
ones.

We define the spectra of the clean speech, x(k), and noise, v(k), in the
subspace U as

φx(ul) = gH(ul)Rxg(ul), l = 1, 2, . . . , L, (10.16)
φv(ul) = gH(ul)Rvg(ul), l = 1, 2, . . . , L. (10.17)

Of course, φx(ul) and φv(ul) are always positive real numbers.
We can now apply the three previous properties to our noise reduction

problem. Indeed, with the help of Property 10.2 and substituting (2.2) into
(10.11), we get

cy (k,ul) = gH(ul)y(k)
= gH(ul)x(k) + gH(ul)v(k)
= cx (k,ul) + cv (k,ul) , l = 1, 2, . . . , L. (10.18)

We also have from Property 10.3,

E
[
cy (k,ui) c∗y (k,uj)

]
=
{

φx(ui) + φv(ui), i = j
0, i �= j

. (10.19)

Expression (10.18) is equivalent to (2.2) but in the transform domain. Similar
to the KLE case, our problem becomes one of finding an estimate of cx (k,ul)
by multiplying cy (k,ul) with a (complex) scalar hl, i.e.,

cz (k,ul) = hlcy (k,ul)
= hl [cx (k,ul) + cv (k,ul)]
= cx,F (k,ul) + cv,F (k,ul) , l = 1, 2, . . . , L. (10.20)

The variance of the signal cz (k,ul) is

E
[|cz (k,ul) |2

]
= |hl|2φy(ul), l = 1, 2, . . . , L. (10.21)

Finally by using Property 10.2, we can go back into the time domain and see
that an estimate of the vector x(k) would be



10.2 Performance Measures 127

z(k) =
L∑

l=1

cz (k,ul)u′
l

= R1/2
y

(
L∑

l=1

hluluH
l

)
R−1/2

y y(k)

= H(U) [x(k) + v(k)] , (10.22)

where

H(U) = R1/2
y U diag

[
h1 h2 · · · hL

]
UHR−1/2

y (10.23)

is an L×L (time-domain) filtering matrix, which depends on the unitary ma-
trix U and is equivalent to the transform-domain filter h =

[
h1 h2 · · · hL

]T .
Moreover, it can be checked, with the help of Property 10.1, that the correla-
tion matrix Rz = E

[
z(k)zH(k)

]
can be diagonalized as follows:

GH(U)RzG(U) = diag
[ |h1|2φy(u1) |h2|2φy(u2) · · · |hL|2φy(uL)

]
.

(10.24)

We see from the previous expression how the coefficients hl, l = 1, 2, . . . , L,
affect the spectrum of the estimated signal z(k) in the subspace U, depending
on how they are optimized.

10.2 Performance Measures

Like we did it in the time, frequency, and KLE domains (see Chapter 3), we
are going to define the most important measures for noise reduction but in
this generalized transform-domain context.

10.2.1 SNR

With the proposed transform-domain representation, we define the subband
and fullband input SNRs, respectively, as

iSNR(ul) =
E
[|cx (k,ul) |2

]
E [|cv (k,ul) |2]

=
φx(ul)
φv(ul)

, l = 1, 2, . . . , L, (10.25)

iSNR(U) =
∑L

l=1 φx(ul)∑L
l=1 φv(ul)

. (10.26)

In general, iSNR(U) �= iSNR. But for U = Qy, iSNR(Qy) = iSNR.
After noise reduction with the model given in (10.22), the output SNR is
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oSNR [H(U)] =
tr
[
H(U)RxHH(U)

]
tr
[
H(U)RvHH(U)

] . (10.27)

With the transform-domain model shown in (10.20) and after noise reduc-
tion, the subband output SNR is

oSNR(ul) =
|hl|2φx(ul)
|hl|2φv(ul)

= iSNR(ul), l = 1, 2, . . . , L (10.28)

and the fullband output SNR is

oSNR(h,U) =
∑L

l=1 |hl|2φx(ul)∑L
l=1 |hl|2φv(ul)

. (10.29)

In general, oSNR(h,U) �= oSNR [H(U)]. But in the special case where U =
Qy, we have oSNR(h,Qy) = oSNR

[
H(Qy)

]
. It is important to observe that

the subband output SNR is equal to the subband input SNR; therefore these
SNRs are not influenced by the coefficients hl, l = 1, 2, . . . , L.

Property 10.4. We always have

L∑
l=1

iSNR(ul) ≥ iSNR(U), (10.30)

L∑
l=1

oSNR(ul) ≥ oSNR(h,U). (10.31)

This means that the aggregation of the subband (input or output) SNRs is
greater than or equal to the fullband (input or output) SNR.

Proof. The two previous inequalities can be easily shown by using the inequal-
ity (3.16).

10.2.2 Noise-Reduction Factor

We define the noise-reduction factor for the model in (10.22) as

ξnr [H(U)] =
tr (Rv)

tr
[
H(U)RvHH(U)

] . (10.32)

The larger the value of ξnr [H(U)], the more the noise is reduced. After the
filtering operation, the residual noise level is expected to be lower than that
of the original noise level, therefore this factor should be lower bounded by 1.

The subband noise-reduction factor is
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ξnr(hl) =
1

|hl|2 , l = 1, 2, . . . , L (10.33)

and the corresponding fullband noise-reduction factor is

ξnr(h,U) =
∑L

l=1 φv(ul)∑L
l=1 |hl|2φv(ul)

. (10.34)

In general, ξnr(h,U) �= ξnr [H(U)]. But for U = Qy, ξnr(h,Qy) =
ξnr

[
H(Qy)

]
.

Property 10.5. We always have

L∑
l=1

ξnr(hl) ≥ ξnr(h,U). (10.35)

This means that the aggregation of the subband noise-reduction factors is
greater than or equal to the fullband noise-reduction factor.

Proof. Easy to show by using the inequality (3.16).

10.2.3 Speech-Distortion Index

The filtering operation adds distortion to the speech signal; so a measure is
needed to quantify the amount of speech distortion. With the model given in
(10.22), we define the speech-distortion index as

υsd [H(U)] =
E
{

[x(k) − H(U)x(k)]H [x(k) − H(U)x(k)]
}

tr (Rx)
. (10.36)

This index is lower bounded by 0 and expected to be upper bounded by 1
for optimal filters. The higher the value of υsd [H(U)], the more the speech is
distorted.

In the transform domain with the formulation given in (10.20), we define
the subband and fullband speech-distortion indices, respectively, as

υsd (hl) = |1 − hl|2, l = 1, 2, . . . , L (10.37)

and

υsd (h,U) =
∑L

l=1 |1 − hl|2φx(ul)∑L
l=1 φx(ul)

. (10.38)

In general, υsd(h,U) �= υsd [H(U)]. But for the special case of U = Qy,
υsd(h,Qy) = υsd

[
H(Qy)

]
.
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Property 10.6. We always have
L∑

l=1

υsd (hl) ≥ υsd (h,U) . (10.39)

This means that the aggregation of the subband speech-distortion indices is
greater than or equal to the fullband speech-distortion index.

Proof. Easy to show by using the inequality (3.16).

10.2.4 Speech-Reduction Factor

This factor measures the amount of speech reduced by the filtering operation.
We define the speech-reduction factor for the model in (10.22) as

ξsr [H(U)] =
tr (Rx)

tr
[
H(U)RxHH(U)

] . (10.40)

The larger the value of ξsr [H(U)], the more the desired speech is reduced.
After the filtering operation, the residual speech level is expected to be lower
than that of the original speech level, therefore this factor should be lower
bounded by 1.

The subband speech-reduction factor is

ξsr(hl) =
1

|hl|2 , l = 1, 2, . . . , L (10.41)

and the corresponding fullband speech-reduction factor is

ξsr(h,U) =
∑L

l=1 φx(ul)∑L
l=1 |hl|2φx(ul)

. (10.42)

In general, ξsr(h,U) �= ξsr [H(U)]. But for U = Qy, ξsr(h,Qy) = ξsr

[
H(Qy)

]
.

Property 10.7. We always have
L∑

l=1

ξsr(hl) ≥ ξsr(h,U). (10.43)

This means that the aggregation of the subband speech-reduction factors is
greater than or equal to the fullband speech-reduction factor.

Proof. Easy to show by using the inequality (3.16).

Property 10.8. We always have

oSNR [H(U)]
iSNR

=
ξnr [H(U)]
ξsr [H(U)]

, (10.44)

oSNR (h,U)
iSNR(U)

=
ξnr (h,U)
ξsr (h,U)

. (10.45)

Proof. Easy to see by using the different definitions of the involved measures.
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10.3 MSE Criterion

Let us define the transform-domain error signal between the estimated and
desired signals in the subband l:

e (k,ul) = cz (k,ul) − cx (k,ul)
= hlcy (k,ul) − cx (k,ul) , l = 1, 2, . . . , L. (10.46)

This error can also be written as the sum of two error signals:

e (k,ul) = ex (k,ul) + ev (k,ul) , (10.47)

where

ex (k,ul) = (hl − 1)cx (k,ul) (10.48)

is the speech distortion due to the complex gain, and

ev (k,ul) = hlcv (k,ul) (10.49)

represents the residual noise.
From the error signal (10.46), we give the corresponding transform-domain

MSE criterion in the subband l:

J (hl,ul) = E
[|e (k,ul) |2

]
(10.50)

= φx(ul) + |hl|2 φy(ul) − 2R [hlφyx(ul)]

= φx(ul) + |hl|2 φy(ul) − 2R [hlφx(ul)] ,

where

φyx(ul) = E [cy (k,ul) c∗x (k,ul)]
= φx(ul)

is the cross-spectrum between the observation and speech signals. Expression
(10.50) can be structured in a different way:

J (hl,ul) = E
[|ex (k,ul) |2

]
+ E
[|ev (k,ul) |2

]
(10.51)

= Jx (hl,ul) + Jv (hl,ul) .

For the particular gain hl = 1, ∀l, we get

J (1,ul) = φv(ul), (10.52)

so there will be neither noise reduction nor speech distortion. Therefore, we
define the transform-domain NMSE in the subband l as
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J̃ (hl,ul) =
J (hl,ul)
J (1,ul)

= iSNR(ul) · υsd(hl) +
1

ξnr(hl)
, (10.53)

where

υsd(hl) =
Jx (hl,ul)

φx(ul)
, (10.54)

ξnr(hl) =
φv(ul)

Jv (hl,ul)
. (10.55)

The transform-domain NMSE depends explicitly on the subband input SNR,
the subband speech-distortion index, and the subband noise-reduction factor.

We define the fullband MSE and fullband NMSE as

J (h,U) =
1
L

L∑
l=1

J (hl,ul) (10.56)

=
1
L

L∑
l=1

|hl − 1|2φx(ul) +
1
L

L∑
l=1

|hl|2φv(ul)

= Jx (h,U) + Jv (h,U)

and

J̃ (h,U) = L
J (h,U)∑L
l=1 φv(ul)

(10.57)

=
∑L

l=1 |hl − 1|2φx(ul)∑L
l=1 φv(ul)

+
∑L

l=1 |hl|2φv(ul)∑L
l=1 φv(ul)

= iSNR(U) · υsd (h,U) +
1

ξnr (h,U)
,

where

υsd (h,U) =
Jx (h,U)∑L
l=1 φx(ul)

, (10.58)

ξnr (h,U) =
∑L

l=1 φv(ul)
Jv (h,U)

. (10.59)

The fullband NMSE depends explicitly on the fullband input SNR, the full-
band speech-distortion index, and the fullband noise-reduction factor.

10.4 PCC and Fundamental Properties

Let ca (k,ul) and cb (k,ul) be two signals in the transform domain. We de-
fine the subband SPCC or the MSCF between ca (k,ul) and cb (k,ul) in the
subband l as
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|ρ [ca (k,ul) , cb (k,ul)] |2 =
|E [ca (k,ul) c∗b (k,ul)]|2

E [|ca (k,ul) |2] E [|cb (k,ul) |2]
=

|φab(ul)|2
φa(ul)φb(ul)

. (10.60)

Now, let us define the two vectors of length L:

ca(k,U) =
[
ca(k,u1) ca(k,u2) · · · ca(k,uL)

]T
,

cb(k,U) =
[
cb(k,u1) cb(k,u2) · · · cb(k,uL)

]T
.

We define the fullband SPCC as

|ρ [ca (k,U) , cb (k,U)] |2 =

∣∣E [cT
a (k,U) c∗b (k,U)

]∣∣2
E [cT

a (k,U) c∗a (k,U)] E [cT
a (k,U) c∗a (k,U)]

=
|∑L

l=1 φab(ul)|2∑L
l=1 φa(ul) ·

∑L
l=1 φb(ul)

. (10.61)

It is clear that

0 ≤ |ρ [ca (k,ul) , cb (k,ul)] |2 ≤ 1, (10.62)
0 ≤ |ρ [ca (k,U) , cb (k,U)] |2 ≤ 1. (10.63)

The MSCF between the two signals cx (k,ul) and cy (k,ul) in the subband
l is

|ρ [cx (k,ul) , cy (k,ul)] |2 =
φx(ul)

φx(ul) + φv(ul)

=
iSNR(ul)

1 + iSNR(ul)
. (10.64)

This MSCF tells us how much the observation signal is noisy in the subband
l. A value of |ρ [cx (k,ul) , cy (k,ul)] |2 close to 1 implies that the speech is
largely dominant while a value of |ρ [cx (k,ul) , cy (k,ul)] |2 close to 0 implies
that the noise is largely dominant in the subband l.

The fullband SPCC between the two signals cx (k,U) and cy (k,U) is

|ρ [cx (k,U) , cy (k,U)] |2 =
∑L

l=1 φx(ul)∑L
l=1 φx(ul) +

∑L
l=1 φv(ul)

=
iSNR(U)

1 + iSNR(U)
. (10.65)

The subband SPCC between the two signals cx (k,ul) and cz (k,ul) in the
subband l is

|ρ [cx (k,ul) , cz (k,ul)] |2 = |ρ [cx (k,ul) , cy (k,ul)] |2. (10.66)
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The subband SPCC between cx (k,ul) and cz (k,ul) is equal to the subband
SPCC between cx (k,ul) and cy (k,ul) and does not depend on hl; the same
way the subband input SNR is equal to the subband output SNR and does
not depend on hl.

The fullband SPCC between the two signals cx (k,U) and cz (k,U) is

|ρ [cx (k,U) , cz (k,U)] |2 =

∣∣∣∑L
l=1 hlφx(ul)

∣∣∣2[∑L
l=1 φx(ul)

] [∑L
l=1 |hl|2 φy(ul)

] (10.67)

=

∣∣∣∑L
l=1 hlφx(ul)

∣∣∣2[∑L
l=1 φx(ul)

] [∑L
l=1 |hl|2 φx(ul)

] ×
oSNR(h,U)

1 + oSNR(h,U)
.

Property 10.9. We have

|ρ [cx (k,U) , cz (k,U)] |2 = |ρ [cx (k,U) , cx,F (k,U)] |2 ×
|ρ [cx,F (k,U) , cz (k,U)] |2, (10.68)

where

|ρ [cx (k,U) , cx,F (k,U)] |2 =

∣∣∣∑L
l=1 hlφx(ul)

∣∣∣2[∑L
l=1 φx(ul)

] [∑L
l=1 |hl|2 φx(ul)

] (10.69)

and

|ρ [cx,F (k,U) , cz (k,U)] |2 =
oSNR(h,U)

1 + oSNR(h,U)
. (10.70)

The fullband SPCC |ρ [cx (k,U) , cx,F (k,U)] |2 is a speech-distortion index.
If hl = 1, ∀l (no speech distortion) then |ρ [cx (k,U) , cx,F (k,U)] |2 = 1. The
closer the value of |ρ [cx (k,U) , cx,F (k,U)] |2 is to 0, the more the speech
signal is distorted. The fullband SPCC |ρ [cx,F (k,U) , cz (k,U)] |2 shows the
SNR improvement and reaches its maximum when oSNR(h,U) is maximized.
The minimization of |ρ [cx (k,U) , cz (k,U)] |−2 leads to an optimal filter.

Property 10.10. We have

|ρ [cx (k,U) , cz (k,U)] |2 ≤ oSNR(h,U)
1 + oSNR(h,U)

, (10.71)

with equality when hl = 1, ∀l.

Proof. This property follows immediately from (10.68) since
|ρ [cx (k,U) , cx,F (k,U)] |2 ≤ 1.
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Property 10.11. We have

|ρ [cx,F (k,U) , cy (k,U)] |2 = |ρ [cx (k,U) , cx,F (k,U)] |2 ×
|ρ [cx (k,U) , cy (k,U)] |2. (10.72)

Proof. Indeed

|ρ [cx,F (k,U) , cy (k,U)] |2 =

∣∣∣∑L
l=1 hlφx(ul)

∣∣∣2[∑L
l=1 |hl|2 φx(ul)

] [∑L
l=1 φy(ul)

]

=

∣∣∣∑L
l=1 hlφx(ul)

∣∣∣2[∑L
l=1 |hl|2 φx(ul)

] [∑L
l=1 φx(ul)

] ×
iSNR(U)

1 + iSNR(U)
= |ρ [cx (k,U) , cx,F (k,U)] |2 ×

|ρ [cx (k,U) , cy (k,U)] |2.

Property 10.12. We have

|ρ [cx,F (k,U) , cy (k,U)] |2 ≤ iSNR(U)
1 + iSNR(U)

, (10.73)

with equality when hl = 1, ∀l.

Proof. This property follows immediately from (10.72) since
|ρ [cx (k,U) , cx,F (k,U)] |2 ≤ 1.

The MSCF between cv (k,ul) and cy (k,ul) is another way to see how
much the observation signal is affected by the noise in the subband l. This
MSCF is

|ρ [cv (k,ul) , cy (k,ul)] |2 =
φv(ul)
φy(ul)

=
1

1 + iSNR(ul)
. (10.74)

Property 10.13. We have

|ρ [cx (k,ul) , cy (k,ul)] |2 + |ρ [cv (k,ul) , cy (k,ul)] |2 = 1 (10.75)

and

iSNR(ul) =
|ρ [cx (k,ul) , cy (k,ul)] |2
|ρ [cv (k,ul) , cy (k,ul)] |2 . (10.76)
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Proof. Easy to see from (10.64) and (10.74).

The subband input SNR in the subband l is the ratio of two MSCFs and the
sum of these two MSCFs never exceeds 1.

The fullband SPCC between cv (k,U) and cy (k,U) is

|ρ [cv (k,U) , cy (k,U)] |2 =
1

1 + iSNR(U)
. (10.77)

The subband SPCC between the two signals cv (k,ul) and cz (k,ul) in the
subband l is

|ρ [cv (k,ul) , cz (k,ul)] |2 = |ρ [cv (k,ul) , cy (k,ul)] |2. (10.78)

The fullband SPCC between the same signals is

|ρ [cv (k,U) , cz (k,U)] |2 =

∣∣∣∑L
l=1 hlφv(ul)

∣∣∣2[∑L
l=1 φv(ul)

] [∑L
l=1 |hl|2 φy(ul)

] (10.79)

=

∣∣∣∑L
l=1 hlφv(ul)

∣∣∣2[∑L
l=1 φv(ul)

] [∑L
l=1 |hl|2 φv(ul)

] ×
1

1 + oSNR(h,U)
.

Property 10.14. We have

|ρ [cv (k,U) , cz (k,U)] |2 = |ρ [cv (k,U) , cv,F (k,U)] |2 ×
|ρ [cv,F (k,U) , cz (k,U)] |2, (10.80)

where

|ρ [cv (k,U) , cv,F (k,U)] |2 =

∣∣∣∑L
l=1 hlφv(ul)

∣∣∣2[∑L
l=1 φv(ul)

] [∑L
l=1 |hl|2 φv(ul)

] (10.81)

and

|ρ [cv,F (k,U) , cz (k,U)] |2 =
1

1 + oSNR(h,U)
. (10.82)

Property 10.15. We have

|ρ [cv (k,U) , cz (k,U)] |2 ≤ 1
1 + oSNR(h,U)

, (10.83)

with equality when hl = 1, ∀l.
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Proof. This property follows immediately from (10.80) since
|ρ [cv (k,U) , cv,F (k,U)] |2 ≤ 1.

Property 10.16. We have

|ρ [cv,F (k,U) , cy (k,U)] |2 = |ρ [cv (k,U) , cv,F (k,U)] |2 ×
|ρ [cv (k,U) , cy (k,U)] |2. (10.84)

Proof. Indeed

|ρ [cv,F (k,U) , cy (k,U)] |2 =

∣∣∣∑L
l=1 hlφv(ul)

∣∣∣2[∑L
l=1 |hl|2 φv(ul)

] [∑L
l=1 φy(ul)

]

=

∣∣∣∑L
l=1 hlφv(ul)

∣∣∣2[∑L
l=1 |hl|2 φv(ul)

] [∑L
l=1 φv(ul)

] ×
1

1 + iSNR(U)
= |ρ [cv (k,U) , cv,F (k,U)] |2 ×

|ρ [cv (k,U) , cy (k,U)] |2.
Property 10.17. We have

|ρ [cv,F (k,U) , cy (k,U)] |2 ≤ 1
1 + iSNR(U)

, (10.85)

with equality when hl = 1, ∀l.

Proof. This property follows immediately from (10.84) since
|ρ [cv (k,U) , cv,F (k,U)] |2 ≤ 1.

Property 10.18. We have

|ρ [cx (k,U) , cy (k,U)] |2 + |ρ [cv (k,U) , cy (k,U)] |2 = 1 (10.86)

and

iSNR(U) =
|ρ [cx (k,U) , cy (k,U)] |2
|ρ [cv (k,U) , cy (k,U)] |2 . (10.87)

Proof. Easy to see from (10.65) and (10.77).

Property 10.19. We have

|ρ [cx,F (k,U) , cz (k,U)] |2 + |ρ [cv,F (k,U) , cz (k,U)] |2 = 1 (10.88)

and

oSNR(h,U) =
|ρ [cx,F (k,U) , cz (k,U)] |2
|ρ [cv,F (k,U) , cz (k,U)] |2 . (10.89)
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Proof. Easy to see from (10.70) and (10.82).

The fullband input or output SNR for the transform-domain approach
is the ratio of two fullband SPCCs and the sum of these two SPCCs never
exceeds 1.

It can be checked that oSNR(h,U) > iSNR(U) is equivalent to
|ρ [cx,F (k,U) , cz (k,U)] |2 > ρ2 [cx (k,U) , cy (k,U)]. In this situation,
|ρ [cv,F (k,U) , cz (k,U)] |2 < ρ2 [cv (k,U) , cy (k,U)].

10.5 Examples of Filter Design

In this section, we develop some important optimal and suboptimal filters in
the transform domain.

10.5.1 Wiener Filter

Taking the gradient of J (hl,ul) with respect to h∗
l and equating the result to

0 lead to

−E
{
c∗y(k,ul) [cx(k,ul) − hW,lcy(k,ul)]

}
= 0. (10.90)

Hence

φy(ul)hW,l = φxy(ul). (10.91)

But

φxy(ul) = E
[
cx(k,ul)c∗y(k,ul)

]
= φx(ul).

Therefore the optimal filter can be put into the following forms:

hW,l =
φx(ul)
φy(ul)

= 1 − φv(ul)
φy(ul)

=
iSNR(ul)

1 + iSNR(ul)
. (10.92)

We see that the transform-domain Wiener filter is always real and positive
and its form is similar to that of the frequency-domain Wiener filter (see
Chapter 8).

Another way to define the Wiener filter is with the MSCFs. Indeed, it is
easy to verify that

hW,l = |ρ [cx(k,ul), cy(k,ul)] |2
= 1 − |ρ [cv(k,ul), cy(k,ul)] |2. (10.93)

Now, let us define the complex number2

2 Notice that both ρ [cx(k,ul), cy(k,ul)] and ρ [cv(k,ul), cy(k,ul)] are real numbers.
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 [cx(k,ul), cv(k,ul)] = ρ [cx(k,ul), cy(k,ul)] + jρ [cv(k,ul), cy(k,ul)]
= cos θ(ul) + j sin θ(ul), (10.94)

where θ(ul) is the angle of 
 [cx(k,ul), cv(k,ul)] for which the modulus is equal
to 1. On the complex plane, 
 [cx(k,ul), cv(k,ul)] is on the unit circle. Since
0 ≤ ρ [cx(k,ul), cy(k,ul)] ≤ 1 and 0 ≤ ρ [cv(k,ul), cy(k,ul)] ≤ 1, therefore
0 ≤ θ(ul) ≤ π

2 . We can then rewrite the Wiener filter as a function of the
angle θ(ul):

hW,l = cos2 θ(ul)
= 1 − sin2 θ(ul). (10.95)

Hence

lim
θ(ul)→0

hW,l = 1, (10.96)

lim
θ(ul)→π

2

hW,l = 0. (10.97)

We deduce the subband noise-reduction factor and subband speech-
distortion index

ξnr (hW,l) =
1

cos4 θ(ul)
≥ 1, (10.98)

υsd (hW,l) = sin4 θ(ul) ≤ 1, (10.99)

and the subband MNMSE

J̃ (hW,l,ul) = hW,l, (10.100)

which is exactly the transform-domain Wiener filter. We see clearly how noise
reduction and speech distortion depend on the angle θ(ul) in the Wiener filter.
When θ(ul) increases so does ξnr (hW,l); at the same time υsd (hW,l) increases.

Property 10.20. With the optimal transform-domain Wiener filter given in
(10.92), the fullband output SNR is always greater than or equal to the full-
band input SNR, i.e., oSNR(hW,U) ≥ iSNR(U).

Proof. Let us evaluate the fullband SPCC between cy(k,U) and cz,W(k,U) =
[hW,1cy(k,u1) hW,2cy(k,u2) · · · hW,Lcy(k,uL)]T :

|ρ [cy(k,U), cz,W(k,U)] |2 =

[∑L
l=1 hW,lφy(ul)

]2
[∑L

l=1 φy(ul)
] [∑L

l=1 h2
W,lφy(ul)

]

=
∑L

l=1 φx(ul)∑L
l=1 φy(ul)

·
∑L

l=1 φx(ul)∑L
l=1 hW,lφx(ul)

=
|ρ [cx(k,U), cy(k,U)] |2

|ρ [cy(k,U), cz,W(k,U)] |2 .
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Therefore

|ρ [cx(k,U), cy(k,U)] |2 = |ρ [cy(k,U), cz,W(k,U)] |2 ×
|ρ [cx(k,U), cz,W(k,U)] |2

≤ |ρ [cx(k,U), cz,W(k,U)] |2.
Using (10.65) and Property 10.10 in the previous expression, we get

iSNR(U)
1 + iSNR(U)

≤ oSNR(hW,U)
1 + oSNR(hW,U)

,

as a result

oSNR(hW,U) ≥ iSNR(U).

Substituting (10.92) into (10.57), we find the fullband MNMSE:

J̃ (hW,U) = 1 −
∑L

l=1 φ2
v(ul)φ−1

y (ul)∑L
l=1 φv(ul)

≤ 1. (10.101)

We can compute the fullband speech-distortion index by substituting (10.92)
into (10.38):

υsd (hW,U) = 1 − oSNR(hW,U) + 2
iSNR(U) · ξnr (hW,U)

≤ 1. (10.102)

Using (10.57) and (10.102), we get the fullband noise-reduction factor:

ξnr (hW,U) =
oSNR(hW,U) + 1

iSNR(U) − J̃ (hW,U)
≥ 1. (10.103)

Property 10.21. We have

J̃ (hW,U) = iSNR(U)
{
1 − |ρ[cx(k,U), cz,W(k,U)]|2} . (10.104)

Proof. Indeed

J̃ (hW,U) =
∑L

l=1 φx(ul)∑L
l=1 φv(ul)

−
∑L

l=1 φ2
x(ul)φ−1

y (ul)∑L
l=1 φv(ul)

= iSNR(U)

[
1 −
∑L

l=1 φ2
x(ul)φ−1

y (ul)∑L
l=1 φx(ul)

]

= iSNR(U)
{
1 − |ρ[cx(k,U), cz,W(k,U)]|2} .

Therefore, the fullband NMSE is minimized when the fullband SPCC between
the signals cx(k,U) and cz(k,U) is maximized. This fullband SPCC can be
rewritten as follows:
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|ρ[cx(k,U), cz,W(k,U)]|2 =
1

ξsr (hW,U)
· 1 + oSNR(hW,U)

oSNR(hW,U)
. (10.105)

We observe that the transform-domain Wiener filter is compromising between
speech reduction (i.e., speech distortion) and fullband output SNR improve-
ment.

Property 10.22. We have

iSNR(U)
1 + oSNR(hW,U)

≤ J̃ (hW,U) ≤ iSNR(U)
1 + iSNR(U)

. (10.106)

Proof. Since

|ρ[cx(k,U), cz,W(k,U)]|2 ≥ iSNR(U)
1 + iSNR(U)

and with the help of (10.104), we easily get

J̃ (hW,U) ≤ iSNR(U)
1 + iSNR(U)

.

Since

|ρ[cx(k,U), cz,W(k,U)]|2 ≤ oSNR(hW,U)
1 + oSNR(hW,U)

and, again, with the help of (10.104), we obtain

iSNR(U)
1 + oSNR(hW,U)

≤ J̃ (hW,U) .

Property 10.23. We have

[1 + oSNR(hW,U)]2

iSNR(U) · oSNR(hW,U)
≤ ξnr (hW,U) ≤

[1 + iSNR(U)] [1 + oSNR(hW,U)]
iSNR2(U)

. (10.107)

Proof. Easy to show by using (10.103) and the bounds of J̃ (hW,U) [eq.
(10.106)].

Property 10.24. We have

1
[1 + oSNR(hW,U)]2

≤ υsd (hW,U) ≤ 1 + oSNR(hW,U) − iSNR(U)
[1 + iSNR(U)] [1 + oSNR(hW,U)]

.

(10.108)
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Proof. Easy to show by using (10.102) and the bounds of ξnr (hW,U) [eq.
(10.107)].

To finish this study on the Wiener filter, let us convert the transform-
domain Wiener filter, hW, into the time-domain filtering matrix, HW(U).
Indeed, with (10.23) and (10.92) we can rewrite, equivalently, the transform-
domain Wiener filter into the time domain:

HW(U) = R1/2
y U

[
I − Φ−1

y (U)Φv(U)
]
UHR−1/2

y , (10.109)

where

Φv(U) = diag
[
GH(U)RvG(U)

]
(10.110)

is a diagonal matrix whose nonzero elements are the elements of the diagonal
of the matrix GH(U)RvG(U). Now if we substitute (10.9) into (7.1) (see
Chapter 7), the time-domain Wiener filter [given in (7.1)] can be written as

HW = R1/2
y U

{
I − Φ−1/2

y (U)
[
G(U)HRvG(U)

]
Φ−1/2

y (U)
}

UHR−1/2
y .

(10.111)

It is clearly seen that if the matrix GH(U)RvG(U) is diagonal, the two filters
HW and HW(U) are identical. In this scenario, it would not matter which
unitary matrix we choose.

10.5.2 Parametric Wiener Filter

One convenient way to control the compromise between noise reduction and
speech distortion is via the so-called parametric Wiener filter:

hG,l =
[
1 − sinβ1 θ(ul)

]β2
, (10.112)

where β1 and β2 are two positive parameters that allow the control of this
compromise. For (β1, β2) = (2, 1), we get the transform-domain Wiener filter
developed previously. Taking (β1, β2) = (2, 1/2), leads to

hP,l =
√

1 − sin2 θ(ul) (10.113)

= cos θ(ul),

which is the equivalent form of the power subtraction method. The pair
(β1, β2) = (1, 1) gives the equivalent form of the magnitude subtraction
method:

hM,l = 1 − sin θ(ul) (10.114)

= 1 −
√

1 − cos2 θ(ul).
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We can verify that the subband noise-reduction factors for the transform-
domain power subtraction and magnitude subtraction methods are

ξnr (hP,l) =
1

cos2 θ(ul)
, (10.115)

ξnr (hM,l) =
1

[1 − sin θ(ul)]
2 , (10.116)

and the corresponding subband speech-distortion indices are

υsd (hP,l) = [1 − cos θ(ul)]
2
, (10.117)

υsd (hM,l) = sin2 θ(ul). (10.118)

We can also easily check that

ξnr (hM,l) ≥ ξnr (hW,l) ≥ ξnr (hP,l) , (10.119)
υsd (hP,l) ≤ υsd (hW,l) ≤ υsd (hM,l) . (10.120)

The two previous inequalities are very important from a practical point of
view. They show that, among the three methods, the magnitude subtraction
is the most aggressive one as far as noise reduction is concerned but at the same
time it’s the one that will likely distorts most the speech signal. The smoother
approach is the power subtraction while the Wiener filter is between the two
others in terms of speech distortion and noise reduction. Since 0 ≤ hG,l ≤ 1,
then oSNR (hG,U) ≥ iSNR(U). Therefore, all three methods improve the
(fullband) output SNR.

The two particular transform-domain filters derived above can be rewrit-
ten, equivalently, into the time domain.

• Power subtraction:

HP(U) = R1/2
y U

[
I − Φ−1

y (U)Φv(U)
]1/2

UHR−1/2
y . (10.121)

• Magnitude subtraction:

HM(U) = R1/2
y U

[
I − Φ−1/2

y (U)Φ1/2
v (U)

]
UHR−1/2

y . (10.122)

These two filters are, of course, not optimal in any sense but they can be very
practical.

10.5.3 Tradeoff Filter

Another useful filter can be designed by minimizing the speech distortion with
the constraint that the residual noise is equal to a positive value smaller than
the level of the original noise. This optimization problem can be translated
mathematically as
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min
hl

Jx (hl,ul) subject to Jv (hl,ul) = βlφv(ul), l = 1, 2, . . . , L,

(10.123)

where 0 < βl < 1 in order to have some noise reduction. Using a Lagrange
multiplier, µl(≥ 0), to adjoin the constraint to the cost function, we can derive
the optimal filter:

hT,l =
φx(ul)

φx(ul) + µlφv(ul)
(10.124)

=
φy(ul) − φv(ul)

φy(ul) + (µl − 1)φv(ul)

=
1 − |ρ [cv (k,ul) , cy (k,ul)] |2

1 + (µl − 1)|ρ [cv (k,ul) , cy (k,ul)] |2 , l = 1, 2, . . . , L.

Hence, hT,l is a transform-domain Wiener filter with adjustable input noise
level µlφvv(ul). Since 0 ≤ hT,l ≤ 1, ∀µl ≥ 0, then oSNR (hT,U) ≥ iSNR(U).
Therefore, this method improves the (fullband) output SNR.

The Lagrange multiplier must satisfy

Jv (hT,l,ul) = βlφv(ul) = h2
T,lφv(ul), l = 1, 2, . . . , L. (10.125)

Substituting (10.124) into (10.125), we can find

µl = iSNR(ul)
(

1√
βl

− 1
)

, l = 1, 2, . . . , L (10.126)

and from (10.125), we also have

hT,l =
√

βl, l = 1, 2, . . . , L. (10.127)

The Lagrange multiplier µl can always be chosen in an ad-hoc way if we
prefer. Then, we can see from (10.124) that there are four cases:

• µl = 1; in this case, the tradeoff and Wiener filters are the same, i.e.,
hT,l = hW,l;

• µl = 0; in this circumstance, we have hT,l = 1 and there is no noise
reduction and no speech distortion;

• µl > 1; this situation corresponds to a more aggressive noise reduction at
the expense of higher speech distortion as compared to the Wiener filter;

• µl < 1; this case corresponds to a more conservative noise reduction with
less speech distortion as compared to the Wiener filter.

With (10.23) and (10.127) we can rewrite, equivalently, the transform-
domain tradeoff filter into the time domain:

HT(U) = R1/2
y U diag1/2

[
β1 β2 · · · βL

]
UHR−1/2

y . (10.128)
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10.5.4 Examples of Unitary Matrices

There are perhaps a very large number of unitary (or orthogonal) matrices
that can be used in tandem with the different noise reduction filters presented
in this section. But does a transformation exist in such a way that an opti-
mal filter maximizes noise reduction while it minimizes speech distortion at
the same time? The answer to this question is not straightforward. However,
intuitively we believe that some unitary matrices will be more effective than
others for a given noise reduction filter.

The first obvious choice is the KLT developed in Chapter 2. In this case,
U = Qy where Qy contains the eigenvectors of the correlation matrix, Ry, of
the noisy signal, y(k), for which the spectral representation are the eigenvalues
of Ry. This choice seems to be the most natural one since the Parseval’s
theorem is verified.

Another choice for U is the Fourier matrix:

F =
[
f1 f2 · · · fL

]
, (10.129)

where

fl =
1√
L

[
1 exp(jωl) · · · exp[jωl(L − 1)]

]T (10.130)

and ωl = 2π(l−1)/L, l = 1, . . . , L. Even though F is unitary, the matrix G(F)
constructed from F is not; as a result, the Parseval’s theorem does not hold
but the transform signals at the different frequencies are uncorrelated. Filters
in this new Fourier domain will probably perform differently as compared to
the classical frequency-domain filters.

In our application, all signals are real and it may be more convenient to
select an orthogonal matrix instead of a unitary one. So another choice close
to the previous one is the discrete cosine transform:

C =
[
c1 c2 · · · cL

]
, (10.131)

where

cl =
[
c(1) c(2) cos π(2l−1)

2L · · · c(L) cos π(2l−1)(L−1)
2L

]T
(10.132)

with c(1) =
√

1/L and c(l) =
√

2/L for l �= 1. We can verify that CT C =
CCT = I.

Another possible choice for U is the Hadamard transform. We are now
going to give an example of a Hadamard matrix. Let us define first the two
matrices:

H1 = 1, (10.133)

H2 =
1√
2

[
1 1
1 −1

]
=

1√
2
H′

2. (10.134)
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A Hadamard matrix of order 2p can be constructed from the two previous
matrices as follows:

H2p =
1√
2p

[
H′

2p−1 H′
2p−1

H′
2p−1 −H′

2p−1

]

=
1√
2p

H′
2 ⊗ H′

2p−1 (10.135)

for p ≥ 2, where ⊗ is the Kronecker product. It can be verified that H2pHT
2p =

HT
2pH2p = I.

10.6 Experiments

We have formulated the noise reduction problem in a generalized transform
domain and discussed the design of different noise reduction filters in that
domain. In this section, we study several filters through experiments and
compare different transforms for their impact on noise reduction performance.
The experimental setup is the same as used in Chapter 7.

10.6.1 Performance of Wiener Filter in White Gaussian Noise

In this experiment, we examine the performance of the Wiener filter in a white
Gaussian noise with an iSNR = 10 dB.

Similar to the time- and KLE-domain filters, the implementation of the
generalized transform-domain Wiener filter requires to know the correlation
matrices Ry and Rv. Although different approaches can be used to compute
Ry from the noisy signal y(k), we will adopt the recursive method given in
(7.44). Same as in Section 7.4, we do not to use any noise estimator, but
compute the noise correlation matrix Rv directly from the noise signal. Since
the background noise is stationary, we use a long-term sample average to
compute Rv.

With the above ways of computing Ry and Rv, the performance of the
Wiener filter given in (10.92) is mainly affected by three major elements: the
forgetting factor αy, the frame length L, and the transformation matrix U. In
the first experiment, we fix the frame length to L = 32 and study the effect
of the forgetting factor αy with different transforms on the performance. For
the matrix U, we choose to compare four well-known transforms: KL, Fourier,
cosine, and Hadamard.

Figure 10.1 plots the output SNR and the speech-distortion index for dif-
ferent transforms as a function of the forgetting factor αy. It is seen that
the output SNR for all the studied transforms first increases as αy increases
and then decreases. The highest output SNR is obtained when αy is between
0.985 and 0.995. This agrees with what has been observed with the time- and
KLE-domain filters.
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Fig. 10.1. Noise reduction performance of the Wiener filter versus αy in white
Gaussian noise: iSNR = 10 dB and L = 32.

Generally, the speech-distortion index υsd decreases as the forgetting factor
αy increases. So, the larger the value of αy, the smaller the speech distortion in-
dex. The only exception is with the KL transform, where the speech-distortion
index first decreases slightly and then increases as αy increases from 0.9 to its
upper bound 1.

We also see from Fig. 10.1 that the Fourier and cosine transforms yielded
similar performance. When αy is reasonably large (e.g., ≥ 0.98), the KL,
Fourier, and cosine transforms produced similar output SNRs. Comparatively,
however, the KL transform has much lower speech distortion. When the value
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of αy is in a reasonable range (e.g., ∈ [0.96, 1]), the Hadamard transform can
also improve the SNR. But its performance is much inferior to that of the
other three transforms.

The transform-domain Wiener filter with the KL transform is not identical
to the KLE-domain Wiener filter (Class I) derived in Chapter 9. Indeed, it is
noticed from Fig. 10.1 that the speech-distortion index with the KL transform
is somehow slightly different from what was observed with the KLE-domain
Wiener filter in Fig. 9.1. There are three major reasons for this difference: 1)
in Chapter 9, the matrix U is obtained by eigenvalue decomposition of the
correlation matrix Rx, while the matrix U in this chapter is derived from the
correlation matrix Ry; 2) the frame length L in Fig. 9.1 is 20 while it is 32
in this experiment (because we also used the Hadamard transform for which
the value of L has to be a power of 2); 3) in this section, a small positive
constant has been applied to regularize the correlation matrix Ry so that the
inverse of its square root, i.e., R−1/2

y , can be computed reliably, while we do
not regularize any matrix in Chapter 9.

10.6.2 Effect of Filter Length on Performance

In this experiment, we study the effect of the frame length L on the noise
reduction performance. Same as in the previous experiment, white Gaussian
noise is used with an iSNR = 10 dB. Again, the noise correlation matrix is
computed using a long-term average. Based on the previous results, we set
αy = 0.99. Figure 10.2 depicts the output SNR and speech-distortion index,
both as a function of L. It is seen that, as L increases, the output SNR of
the Wiener filter using the KL transform first increases and then decreases.
Good performance with this transform is obtained when L is between 20
and 80. The Fourier and cosine transforms yielded similar performance. For
the Hadamard transform, a larger L corresponds to a less SNR gain and a
larger speech-distortion index, which indicates that a small frame length L
should be preferred if the Hadamard transform is used. Generally, however,
the Hadamard transform is much inferior to the KL, Fourier, and cosine trans-
forms in performance.

10.6.3 Performance of Tradeoff Filter in White Gaussian Noise

Now we evaluate the performance of the transform-domain tradeoff filter given
in (10.124) in different conditions. From the theoretical analysis, we already
know that if µ = 1, the tradeoff filter is the Wiener filter. Increasing the
value of µ will give more noise reduction, but will also lead to more speech
distortion. In this experiment, we set µ = 4. Again, the noise used is a white
Gaussian random process with an iSNR = 10 dB. The noise correlation matrix
is computed using a long-term average. We first fix the frame length L to 32
and investigate the effect of αy and different transforms on the performance.
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Fig. 10.2. Noise reduction performance of the Wiener filter versus L in white Gaus-
sian noise: iSNR = 10 dB and αy = 0.99.

Figure 10.3 portrays the output SNR and speech-distortion index as a function
of αy.

Similar to the Wiener filter case, the output SNR (for all the studied
transforms) first increases and then drops as αy increases. The largest SNR
gain for each transform is obtained when αy is between 0.985 and 0.995.
The KL transform yielded the best performance (with the highest output
SNR and lowest speech-distortion index). The Fourier and cosine transforms
behave similarly. In general, the performance of the Hadamard transform is
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Fig. 10.3. Noise reduction performance of the tradeoff filter versus αy in white
Gaussian noise: iSNR = 10 dB, L = 32, and µ = 4.

relatively poor as compared to the other three transforms, again, indicating
that this transform is less effective for the purpose of noise reduction.

Comparing Figs. 10.3 and 10.1, one can see that the output SNR of the
tradeoff filter is boosted with the use of a larger value of µ, but this is achieved
at the price of adding more speech distortion, which corroborates the analysis
presented in Section 10.5.3.

To investigate the effect of the frame length L on the performance, we
set αy = 0.99 and change L from 4 to 160 (note that, for the Hadamard
transform, the length L can only take values that are powers of 2). All other
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Fig. 10.4. Noise reduction performance of the tradeoff filter versus L in white
Gaussian noise: iSNR = 10 dB, αy = 0.99, and µ = 4.

conditions are the same as used in the previous experiment. The results are
shown in Fig. 10.4. Similar to the Wiener filter case, we observe that the
output SNR for the KL transform first increases to its maximum and then
drops as L increases. However, there are two major differences as compared to
the Wiener filter case: 1) the largest SNR gain with the tradeoff filter appears
when L is in the range of 40−120, while such performance occurs when L in the
range of 40−80 for the Wiener filter; 2) although the performance with the KL
transform decreases if we keep increasing L after the optimal performance is
achieved, the performance degradation with L is almost negligible. The reason
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for these two differences can be explained as follows. In this experiment, we
set µ = 4 and all the βl in the diagonal matrix diag1/2[β1 β2 · · · βL] that
are less than 0 are forced to 0. After a certain threshold, if we further increase
L, the signal subspace that consists of all the positive βl value do not increase
much. In other words, even though we increases L, which results in a larger
size for Ry, we are still dealing with a signal subspace of similar order. As a
result, the performance does not change much. Again, the Fourier and cosine
transforms have similar performance. Comparatively, the effect of L on the
Fourier, cosine, and Hadamard transforms in the subspace case is almost the
same as that in the Wiener filter situation. The only difference is that now we
have achieved a higher SNR gain. But the speech distortion is also higher.

10.7 Summary

In this chapter, we formulated the noise reduction problem in a generalized
transform domain, where any unitary (or orthogonal) matrix can be used to
construct the forward (for analysis) and inverse (for synthesis) transforms.
The advantages of working in this generalized domain are multiple, such as
different transforms can be used to replace each other without any require-
ment to change the algorithm formulation (optimal filter) and it is easier
to fairly compare different transforms for their noise reduction performance.
We have addressed the design of different optimal and suboptimal filters in
such a generalized transform domain, including the Wiener filter, the para-
metric Wiener filter, the tradeoff filter, etc. We have also compared, through
experiments, four different transforms (KL, Fourier, cosine, and Hadamard)
for their noise reduction performance. In general, the KL transform yielded
the best performance. The Fourier and cosine transforms have quite similar
performance, which is slightly poorer than that of the KL transform. While
the Hadamard transform can improve the SNR, it is much less effective than
the other three transforms for noise reduction.
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Spectral Enhancement Methods

In this chapter, we focus on spectral enhancement methods in the short-
time Fourier transform (STFT) domain. We present statistical models for
the speech and noise signals, and derive estimators for the speech signal using
various distortion measures. We also describe an example of a speech enhance-
ment algorithm and demonstrate its performance on speech signals degraded
by various additive noise types.

11.1 Problem Formulation

In the STFT domain, (2.1) can be rewritten as

Y (n,m) = X(n,m) + V (n,m), (11.1)

where Y (n,m), X(n,m), and V (n,m) are respectively the STFTs of y(k),
x(k), and v(k), at time-frame n and frequency-bin m. We recall that the
STFT and the inverse transform are

A(n,m) =
M−1∑
k=0

a(k + nL)ψ(k) e−j 2π
M km, (11.2)

a(k) =
∑

n

M−1∑
m=0

A(n,m) ψ̃(k − nL) ej 2π
N m(k−nL), (11.3)

where A ∈ {Y,X, V }, a ∈ {y, x, v}, ψ(k) is an analysis window of size M (e.g.,
Hamming window), L is the framing step (number of samples separating two
successive time frames), and ψ̃(k) is a synthesis window that is biorthogonal
to the analysis window ψ(k) [124]. Another possible form for (11.1) is

Ay(n,m)ejϕy(n,m) = Ax(n,m)ejϕx(n,m) + Av(n,m)ejϕv(n,m), (11.4)

J. Benesty et al., Noise Reduction in Speech Processing, Springer Topics in Signal Processing 2,  
DOI 10.1007/978-3-642-00296-0_11, © Springer-Verlag Berlin Heidelberg 2009    
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where for any random signal A(n,m) = Aa(n,m)ejϕa(n,m), Aa(n,m) and
ϕa(n,m) are its amplitude and phase at time-frame n and frequency-bin m =
0, . . . ,M − 1, a ∈ {y, x, v}.

Using the variances of the noisy spectral coefficients and the fact that x(k)
and v(k) are uncorrelated, we get

φy(n,m) = φx(n,m) + φv(n,m), (11.5)

where

φa(n,m) = E
[
|A(n,m)|2

]
= E

[
A2

a(n,m)
]

is the variance of a spectral coefficient of the signal a(k) at time-frame n and
frequency-bin m.

An estimate of X(n,m) can be obtained by multiplying Y (n,m) with a
complex gain, i.e.,

Z(n,m) = H(n,m)Y (n,m) (11.6)
= H(n,m) [X(n,m) + V (n,m)]
= XF(n,m) + VF(n,m),

where Z(n,m) is the STFT of the signal z(k). The variance of a spectral
coefficient of z(k) is then

φz(n,m) = |H(n,m)|2 φy(n,m)

= |H(n,m)|2 [φx(n,m) + φv(n,m)] . (11.7)

We can go back to the time domain to obtain the estimate

z(k) =
∑

n

M−1∑
m=0

Z(n,m) ψ̃(k − nL) ej 2π
N m(k−nL). (11.8)

The spectral enhancement problem is generally formulated as deriving an
estimator Z(n,m) for the speech spectral coefficients, such that the expected
value of a certain distortion measure is minimized. Let d [X(n,m), Z(n,m)]
denote a distortion measure between X(n,m) and its estimate Z(n,m), let
φ̂x(n,m) denote an estimate for the variance of a speech spectral coefficient
X(n,m), and let φ̂v(n,m) denote an estimate for the variance of a noise spec-
tral coefficient V (n,m). Then an estimator for X(n,m) which minimizes the
expected distortion given φ̂x(n,m), φ̂v(n,m), and the noisy spectral coefficient
Y (n,m) is obtained by solving the minimization problem

min
Z(n,m)

E
{

d [X(n,m), Z(n,m)]
∣∣∣ φ̂x(n,m) , φ̂v(n,m) , Y (n,m)

}
. (11.9)
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In particular, restricting ourselves to a squared error distortion measure of
the form

d [X(n,m), Z(n,m)] = |g[Z(n,m)] − g[X(n,m)]|2 , (11.10)

where g(X) is a specific function of X (e.g., X, |X|, log |X|, ej∠X), the esti-
mator Z(n,m) can be calculated from

g[Z(n,m)] = E
{

g[X(n,m)]
∣∣∣ φ̂x(n,m) , φ̂v(n,m) , Y (n,m)

}
. (11.11)

The design of a particular spectral enhancement algorithm requires to
specify the function g(X) that determines the fidelity criterion of the estima-
tor, and estimators φ̂x(n,m) and φ̂v(n,m) for the speech and noise spectral
variances.

11.2 Performance Measures

11.2.1 SNR

The input SNR in the STFT domain is defined as the ratio of the intensity of
the signal of interest (speech) over the intensity of the background noise, i.e.,

iSNR =
∑

n

∑M−1
m=0 φx(n,m)∑

n

∑M−1
m=0 φv(n,m)

. (11.12)

We also define the subband input SNR and segmental input SNR in the STFT
domain as

iSNR(n,m) =
φx(n,m)
φv(n,m)

, m = 0, 1, . . . ,M − 1, (11.13)

iSNR(n) =
∑M−1

m=0 φx(n,m)∑M−1
m=0 φv(n,m)

. (11.14)

After noise reduction with the STFT domain model given in (11.6), the sub-
band, segmental, and fullband output SNRs are

oSNR [H(n,m)] =
|H(n,m)|2 φx(n,m)
|H(n,m)|2 φv(n,m)

(11.15)

= iSNR(n,m), m = 0, 1, . . . ,M − 1,

oSNR [H(n)] =
∑M−1

m=0 |H(n,m)|2 φx(n,m)∑M−1
m=0 |H(n,m)|2 φv(n,m)

, (11.16)
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oSNR(H) =
∑

n

∑M−1
m=0 |H(n,m)|2 φx(n,m)∑

n

∑M−1
m=0 |H(n,m)|2 φv(n,m)

. (11.17)

It is important to find a complex gain H(n,m), n ∈ ZZ, m = 0, 1, . . . ,M − 1,
in such a way that oSNR(H) ≥ iSNR.

Property 11.1. We always have

M−1∑
m=0

iSNR(n,m) ≥ iSNR(n) , (11.18)

∑
n

M−1∑
m=0

iSNR(n,m) ≥
∑

n

iSNR(n) ≥ iSNR , (11.19)

M−1∑
m=0

oSNR [H(n,m)] ≥ oSNR [H(n)] , (11.20)

∑
n

M−1∑
m=0

oSNR [H(n,m)] ≥
∑

n

oSNR [H(n)] ≥ oSNR(H). (11.21)

This means that the aggregation of the subband SNRs is greater than or equal
to the segmental SNR and the aggregation of the segmental SNRs is greater
than or equal to the fullband SNR.

Proof. Easy to show by using inequality (3.16).

11.2.2 Noise-Reduction Factor

By analogy to the time-domain and frequency-domain definitions, we define
the subband, segmental, and fullband noise-reduction factors in the STFT
domain as

ξnr [H(n,m)] =
φv(n,m)

|H(n,m)|2 φv(n,m)

=
1

|H(n,m)|2 , m = 0, 1, . . . ,M − 1, (11.22)

ξnr [H(n)] =
∑M−1

m=0 φv(n,m)∑M−1
m=0 |H(n,m)|2 φv(n,m)

, (11.23)

ξnr(H) =
∑

n

∑M−1
m=0 φv(n,m)∑

n

∑M−1
m=0 |H(n,m)|2 φv(n,m)

. (11.24)

The segmental and fullband noise-reduction factors are ratios of the noise
energy over a weighted energy of the noise with the weighting ξ−1

nr [H(n,m)].
After the filtering operation, the residual noise level at time-frame n and
frequency-bin m is expected to be lower than that of the original noise level,
therefore ξnr [H(n,m)], ξnr [H(n)], and ξnr(H) are expected to larger than 1.
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Property 11.2. We always have

M−1∑
m=0

ξnr [H(n,m)] ≥ ξnr [H(n)] , (11.25)

∑
n

M−1∑
m=0

ξnr [H(n,m)] ≥
∑

n

ξnr [H(n)] ≥ ξnr(H). (11.26)

This means that the aggregation of the subband noise-reduction factors is
greater than or equal to the segmental noise-reduction factor and the aggre-
gation of the segmental noise-reduction factors is greater than or equal to the
fullband noise-reduction factor.

Proof. Easy to show by using inequality (3.16).

11.2.3 Speech-Distortion Index

The definition of the speech-distortion index in the frequency domain is ex-
tended to the STFT domain. We define the subband speech-distortion index
in the STFT domain as

υsd [H(n,m)] =
E
[
|H(n,m)X(n,m) − X(n,m)|2

]
φx(n,m)

= |1 − H(n,m)|2 , m = 0, 1, . . . ,M − 1. (11.27)

The subband speech-distortion index is lower bounded by 0 and expected to
be lower than 1 for optimal filters. The higher the value of υsd [H(n,m)], the
more the speech is distorted at time-frame n and frequency-bin m.

The segmental and fullband speech-distortion indices in the STFT domain
are

υsd [H(n)] =

∑M−1
m=0 E

[
|H(n,m)X(n,m) − X(n,m)|2

]
∑M−1

m=0 φx(n,m)

=
∑M−1

m=0 |1 − H(n,m)|2 φx(n,m)∑M−1
m=0 φx(n,m)

=
∑M−1

m=0 υsd [H(n,m)] φx(n,m)∑M−1
m=0 φx(n,m)

(11.28)

and

υsd(H) =

∑
n

∑M−1
m=0 E

[
|H(n,m)X(n,m) − X(n,m)|2

]
∑

n

∑M−1
m=0 φx(n,m)

=
∑

n

∑M−1
m=0 υsd [H(n,m)] φx(n,m)∑

n

∑M−1
m=0 φx(n,m)

. (11.29)
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Equations (11.28) and (11.29) are ratios of the weighted energy of the
speech with the weighting υsd [H(n,m)] over the energy of the speech. If
υsd [H(n,m)] ≤ 1, ∀(n,m), we see from (11.28) and (11.29) that υsd [H(n)] ≤
1 and υsd(H) ≤ 1.

Property 11.3. We always have

M−1∑
m=0

υsd [H(n,m)] ≥ υsd [H(n)] , (11.30)

∑
n

M−1∑
m=0

υsd [H(n,m)] ≥
∑

n

υsd [H(n)] ≥ υsd(H). (11.31)

This means that the aggregation of the subband speech-distortion indices
is greater than or equal to the segmental speech-distortion index and the
aggregation of the segmental speech-distortion indices is greater than or equal
to the fullband speech-distortion index.

Proof. Easy to show by using inequality (3.16).

11.2.4 Speech-Reduction Factor

We define the subband speech-reduction factor in the STFT domain as

ξsr [H(n,m)] =
φx(n,m)

|H(n,m)|2 φx(n,m)

=
1

|H(n,m)|2 , m = 0, 1, . . . ,M − 1. (11.32)

The larger the value of ξsr [H(n,m)], the more the speech is reduced at time-
frame n and frequency-bin m. The segmental and fullband speech-reduction
factors in the STFT domain are

ξsr [H(n)] =
∑M−1

m=0 φx(n,m)∑M−1
m=0 |H(n,m)|2 φx(n,m)

(11.33)

=
∑M−1

m=0 φx(n,m)∑M−1
m=0 ξ−1

sr [H(n,m)] φx(n,m)
,

ξsr(H) =
∑

n

∑M−1
m=0 φx(n,m)∑

n

∑M−1
m=0 |H(n,m)|2 φx(n,m)

(11.34)

=
∑

n

∑M−1
m=0 φx(n,m)∑

n

∑M−1
m=0 ξ−1

sr [H(n,m)] φx(n,m)
.

The segmental and fullband speech-reduction factors in the STFT domain are
ratios of the energy of the speech over the weighted energy of the speech with
the weighting ξ−1

sr [H(n,m)].
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Property 11.4. We always have

M−1∑
m=0

ξsr [H(n,m)] ≥ ξsr [H(n)] , (11.35)

∑
n

M−1∑
m=0

ξsr [H(n,m)] ≥
∑

n

ξsr [H(n)] ≥ ξsr(H). (11.36)

This means that the aggregation of the subband speech-reduction factors is
greater than or equal to the segmental speech-reduction factor and the aggre-
gation of the segmental speech-reduction factors is greater than or equal to
the fullband speech-reduction factor.

Proof. Easy to show by using inequality (3.16).

Property 11.5. The fullband and segmental measures mentioned above are re-
lated in the STFT domain by

oSNR(H)
iSNR

=
ξnr(H)
ξsr(H)

, (11.37)

oSNR [H(n)]
iSNR(n)

=
ξnr [H(n)]
ξsr [H(n)]

. (11.38)

Proof. This is easy to see by combining expressions (11.12), (11.17), (11.24),
and (11.34), and combining expressions (11.14), (11.16), (11.23), and (11.33).

Hence, a segmental or fullband increase in the SNR, i.e., oSNR [H(n)] >
iSNR(n) or oSNR(H) > iSNR, can be obtained only when the segmental, or
respectively the fullband, noise-reduction factor is larger than the correspond-
ing speech-reduction factor, i.e., ξnr [H(n)] > ξsr [H(n)] or ξnr(H) > ξsr(H).

11.3 MSE Criterion

We define the error signal between the estimated and desired signals at time-
frame n and frequency-bin m as

E(n,m) = Z(n,m) − X(n,m) (11.39)
= H(n,m)Y (n,m) − X(n,m).

This error can also be put into the form:

E(n,m) = Ex(n,m) + Ev(n,m), (11.40)

where

Ex(n,m) = [H(n,m) − 1] X(n,m) (11.41)
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is the speech distortion due to the complex gain, and

Ev(n,m) = H(n,m)V (n,m) (11.42)

represents the residual noise.
The subband MSE in the STFT domain is then

J [H(n,m)] = E
[
|E(n,m)|2

]
(11.43)

= E
[
|Ex(n,m)|2

]
+ E
[
|Ev(n,m)|2

]
= |1 − H(n,m)|2 φx(n,m) + |H(n,m)|2 φv(n,m)
= Jx [H(n,m)] + Jv [H(n,m)] .

For the particular gain H(n,m) = 1, ∀(n,m), we get

J (1) = φv(n,m), (11.44)

so there will be neither noise reduction nor speech distortion. Therefore, we
define the subband NMSE in the STFT domain as

J̃ [H(n,m)] =
J [H(n,m)]

J (1)

= iSNR(n,m) · υsd [H(n,m)] +
1

ξnr [H(n,m)]
, (11.45)

where

υsd [H(n,m)] =
Jx [H(n,m)]

φx(n,m)
, (11.46)

ξnr [H(n,m)] =
φv(n,m)

Jv [H(n,m)]
. (11.47)

The STFT-domain NMSE depends explicitly on the subband speech-
distortion index and the subband noise-reduction factor.

We define the segmental and fullband MSEs as

J [H(n)] =
1
M

M−1∑
m=0

J [H(n,m)] (11.48)

=
1
M

M−1∑
m=0

φx(n,m) |1 − H(n,m)|2 +
1
M

M−1∑
m=0

φv(n,m) |H(n,m)|2

= Jx [H(n)] + Jv [H(n)] ,
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J(H) =
1

NM

N−1∑
n=0

M−1∑
m=0

J [H(n,m)] (11.49)

=
1

NM

N−1∑
n=0

M−1∑
m=0

φx(n,m) |1 − H(n,m)|2 +

1
NM

N−1∑
n=0

M−1∑
m=0

φv(n,m) |H(n,m)|2

= Jx(H) + Jv(H).

The segmental and fullband normalized MSEs are

J̃ [H(n)] = M
J [H(n)]∑M−1

m=0 φv(n,m)
(11.50)

=
∑M−1

m=0 φx(n,m) |1 − H(n,m)|2∑M−1
m=0 φv(n,m)

+
∑M−1

m=0 φv(n,m) |H(n,m)|2∑M−1
m=0 φv(n,m)

= iSNR(n) · υsd [H(n)] +
1

ξnr [H(n)]
,

J̃(H) = NM
J(H)∑N−1

n=0

∑N−1
n=0

∑M−1
m=0 φv(n,m)

(11.51)

=
∑N−1

n=0

∑M−1
m=0 φx(n,m) |1 − H(n,m)|2∑M−1

m=0 φv(n,m)
+

∑N−1
n=0

∑M−1
m=0 φv(n,m) |H(n,m)|2∑M−1

m=0 φv(n,m)

= iSNR · υsd(H) +
1

ξnr(H)
.

Same as in the time, frequency, and KLE domains, in the STFT domain
the NMSE (subband, segmental, or fullband) depends explicitly on the input
SNR, speech-distortion index, and noise-reduction factor.

11.4 Signal Model

In this section, we present a Gaussian statistical model that takes into account
the time-correlation between successive spectral components of the speech sig-
nal. It is commonly assumed that expansion coefficients in different frequency-
bins are statistically independent [31], [32], [44], [90]. This allows to formu-
late independent estimation problems for each frequency-bin m, which greatly
simplifies the resulting algorithms. A Gaussian statistical model in the STFT
domain relies on the following assumptions [30]:
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1. The noise spectral coefficients {V (n,m)} are zero-mean statistically in-
dependent Gaussian random variables. The real and imaginary parts of
V (n,m) are independent and identically distributed (iid) random vari-
ables ∼ N [0, 1

2φv(n,m)
]
.

2. Given {φx(n,m)}, the speech spectral coefficients {X(n,m)} are gener-
ated by

X(n,m) =
√

φx(n,m) W (n,m), (11.52)

where {W (n,m)} is a white Gaussian process with zero mean
(E [W (n,m)] = 0) and unit variance (E

[|W (n,m)|2] = 1). The prob-
ability density function (pdf) of W (n,m) is given by

p [W (n,m)] =
1
π

exp
[−|W (n,m)|2] . (11.53)

The first assumption requires that the overlap between successive time
frames would be small (less than 50%) [31]. The second assumption implies
that the speech spectral coefficients {X(n,m)} are conditionally zero-mean
statistically independent random variables given their variances {φx(n,m)},
satisfying

p [X(n,m) | φx(n,m)] =
1

π φx(n,m)
exp
[
−|X(n,m)|2

φx(n,m)

]
. (11.54)

Note that successive spectral coefficients are generally correlated, since the
random processes {X(n,m) | n = 0, 1, . . .} and {φx(n,m) | n = 0, 1, . . .} are
not independent. However, given φx(n,m), X(n,m) is statistically indepen-
dent of X(n′,m′) for all n �= n′ and m �= m′. Hence, the time-correlation be-
tween successive spectral coefficients of the speech signal is taken into account,
while still considering the scalar estimation problem formulated in (11.9).

11.5 Signal Estimation

In this section, we derive estimators for X(n,m) using various fidelity crite-
ria, assuming that φ̂x(n,m) and φ̂v(n,m) are given. Fidelity criteria that
are of particular interest for speech enhancement applications are mini-
mum mean-squared error (MMSE) [85], MMSE of the spectral amplitude
(MMSE-SA) [44], and MMSE of the log-spectral amplitude (MMSE-LSA)
[27], [45]. The MMSE estimator is derived by substituting into (11.11) the
function g[X(n,m)] = X(n,m). The MMSE-SA estimator is obtained by us-
ing g[X(n,m)] = |X(n,m)|, and the MMSE-LSA estimator is obtained by
using g[X(n,m)] = log |X(n,m)|.

11.5.1 MMSE Spectral Estimation

Let HMSE(n,m) denote a gain function that satisfies
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E [X(n,m) |φx(n,m) , φv(n,m) , Y (n,m) ] = HMSE(n,m)Y (n,m). (11.55)

Then, by substituting g[X(n,m)] = X(n,m) into (11.11) we have

Z(n,m) = HMSE(n,m)Y (n,m). (11.56)

The specific expression for HMSE(n,m) depends on the statistical model:

HMSE(n,m) =
1

Y (n,m)

∫
X(n,m) p [X(n,m) |φx(n,m) , φv(n,m) ] dX,

where

p [X(n,m) |φx(n,m) , φv(n,m) ] =
p [Y (n,m) |X(n,m) , φv(n,m) ] p [X(n,m) |φx(n,m) ]

p [Y (n,m) |φx(n,m) , φv(n,m) ]
.

For a Gaussian model, the gain function depends only on the input SNR [85]:

HMSE(n,m) =
iSNR(n,m)

1 + iSNR(n,m)
, (11.57)

and the MMSE estimator for X(n,m) reduces to

Z(n,m) =
îSNR(n,m)

1 + îSNR(n,m)
Y (n,m), (11.58)

where îSNR(n,m) = φ̂x(n,m)/ φ̂v(n,m) is an estimate of iSNR(n,m).

11.5.2 MMSE Spectral Amplitude Estimation

Estimators which minimize the MSE of the spectral amplitude, or log-spectral
amplitude, have been found advantageous to MMSE spectral estimators in
speech enhancement applications [44], [45], [100]. An MMSE-SA estimator is
obtained by substituting g[X(n,m)] = |X(n,m)| = Ax(n,m) into (11.11),
and combining the resulting amplitude estimate with the phase of the noisy
spectral coefficient Y (n,m).

Let

γ(n,m) =
|Y (n,m)|2
φv(n,m)

(11.59)

denote an instantaneous input SNR. Note that

E [γ(n,m)] =
φy(n,m)
φv(n,m)

=
φx(n,m) + φv(n,m)

φv(n,m)
= iSNR(n,m) + 1.

The spectral gain that satisfies
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E [Ax(n,m) |φx(n,m) , φv(n,m) , Y (n,m) ] = HSA(n,m)Ay(n,m) (11.60)

is given by [44]

HSA(n,m) =
1

Ay(n,m)

∫
Ax(n,m) p [X(n,m) |φx(n,m) , φv(n,m) ] dX

=
√

π

2

√
ϑ(n,m)

γ(n,m)
exp
[
−ϑ(n,m)

2

]

×
{

[1 + ϑ(n,m)]I0

[
ϑ(n,m)

2

]
+ ϑ(n,m) I1

[
ϑ(n,m)

2

]}
,

(11.61)

where

ϑ(n,m) =
γ(n,m) iSNR(n,m)

1 + iSNR(n,m)
, (11.62)

and I0(·) and I1(·) denote the modified Bessel functions of zero and first order,
respectively. Combining the resulting amplitude estimate with the phase of
the noisy spectral coefficient yields

Z(n,m) =
√

π

2

√
ϑ̂(n,m)

γ̂(n,m)
exp

[
− ϑ̂(n,m)

2

]
×

{
[1 + ϑ̂(n,m)]I0

[
ϑ̂(n,m)

2

]
+ ϑ̂(n,m) I1

[
ϑ̂(n,m)

2

]}
Y (n,m),

(11.63)

where

γ̂(n,m) =
|Y (n,m)|2
φ̂v(n,m)

, ϑ̂(n,m) =
γ̂(n,m) îSNR(n,m)

1 + îSNR(n,m)
.

Figure 11.1 displays parametric gain curves describing HSA(n,m) for sev-
eral values of γ(n,m). For a fixed value of the instantaneous input SNR, the
LSA gain is a monotonically increasing function of iSNR(n,m). However, for a
fixed value of iSNR(n,m), the LSA gain is a monotonically decreasing function
of γ(n,m).

11.5.3 MMSE Log-Spectral Amplitude Estimation

An MMSE-LSA estimator is obtained by substituting g[X(n,m)] =
log[Ax(n,m)] into (11.11), and combining the resulting amplitude estimate
with the phase of the noisy spectral coefficient. The spectral gain that satis-
fies
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Fig. 11.1. Parametric gain curves describing the MMSE spectral amplitude gain
function HSA(n, m) for a Gaussian model, obtained by (11.61).

E {log[Ax(n,m)] |φx(n,m) , φv(n,m) , Y (n,m)} = HLSA(n,m)Ay(n,m)
(11.64)

is given by [45]

HLSA(n,m) =
1

Ay(n,m)

∫
log[Ax(n,m)] p [X(n,m) |φx(n,m) , φv(n,m) ] dX

=
iSNR(n,m)

1 + iSNR(n,m)
exp

(
1
2

∫ ∞

ϑ(n,m)

e−x

x
dx

)
. (11.65)

The integral in (11.65) is the well known exponential integral of ϑ(n,m) and
it can be numerically evaluated, e.g., using the expint function in MATLAB.
Alternatively, it may be evaluated by using the following computationally
efficient approximation, which was developed by Martin et al. [91]

expint(ϑ) =
∫ ∞

ϑ

e−x

x
dx ≈




−2.31 log10(ϑ) − 0.6 , for ϑ < 0.1
−1.544 log10(ϑ) + 0.166 , for 0.1 ≤ ϑ ≤ 1
10−0.52 ϑ−0.26 , for ϑ > 1

.

(11.66)
Combining the resulting amplitude estimate with the phase of the noisy spec-
tral coefficient yields

Z(n,m) =
îSNR(n,m)

1 + îSNR(n,m)
exp

(
1
2

∫ ∞

ϑ̂(n,m)

e−x

x
dx

)
Y (n,m). (11.67)

Figure 11.2 displays parametric gain curves describing HLSA(n,m) for sev-
eral values of γ(n,m). For a fixed value of the instantaneous input SNR, the
LSA gain is a monotonically increasing function of iSNR(n,m). Similar to
HSA(n,m), for a fixed value of iSNR(n,m), the LSA gain is a monotonically
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Fig. 11.2. Parametric gain curves describing the MMSE log-spectral amplitude gain
function HLSA(n, m) for a Gaussian model, obtained by (11.65).

decreasing function of γ(n,m). The behaviors of HSA(n,m) and HLSA(n,m)
are related to the useful mechanism that counters the musical noise phe-
nomenon [22]. Local bursts of the instantaneous input SNR, during noise-
only frames, are “pulled down” to the average noise level, thus avoiding local
buildup of noise whenever it exceeds its average characteristics. As a result,
the MMSE-SA and MMSE-LSA estimators generally produce lower levels of
residual musical noise, when compared with the MMSE spectral estimators.

11.6 Spectral Variance Model

In this section, we present a novel modeling approach for the speech spectral
component variances φx(n,m) = E

[|X(n,m)|2]. This approach is based on
generalized autoregressive conditional heteroscedasticity (GARCH) modeling,
which is widely-used for modeling the volatility of financial time-series such
as exchange rates and stock returns [20], [43]. Similar to financial time-series,
speech signals in the STFT domain are characterized by heavy tailed distri-
butions and volatility clustering [30]. GARCH models enable parametrization
of the time variation of speech spectral variances, and derivation of mathe-
matically tractable estimates, while taking into consideration the heavy-tailed
distribution and variation clustering.

11.6.1 GARCH Model

Let {d(k)} denote a real-valued discrete-time stochastic process and let ψ(k)
denote the information set available at time k [e.g., {d(k)} may represent a
sequence of observations, and ψ(k) may include the observed data through
time k]. Then, the innovation (prediction error) ε(k) at time k in the MMSE
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sense is obtained by subtracting from d(k) its conditional expectation given
the information through time k − 1,

ε(k) = d(k) − E [d(k) |ψ(k − 1) ] . (11.68)

The conditional variance (volatility) of d(k) given the information through
time k − 1 is by definition the conditional expectation of ε2(k),

σ2(k) = var [d(k) |ψ(k − 1) ] = E
[
ε2(k) |ψ(k − 1)

]
. (11.69)

Autoregressive conditional heteroscedasticity (ARCH) models, introduced
by Engle [42] and generalized by Bollerslev [19], are widely-used in vari-
ous financial applications such as risk management, option pricing, foreign
exchange, and the term structure of interest rates [20]. They explicitly pa-
rameterize the time-varying volatility in terms of past conditional variances
and past squared innovations (prediction errors), while taking into account
excess kurtosis (i.e., heavy tail behavior) and volatility clustering, two im-
portant characteristics of financial time-series. ARCH and GARCH mod-
els explicitly recognize the difference between the unconditional variance
E
{
|d(k) − E[d(k)]|2

}
and the conditional variance σ2(k), allowing the latter

to change over time. The fundamental characteristic of these models is that
magnitudes of recent innovations provide information about future volatility.

Let {w(k)} be a zero-mean unit-variance white noise process with some
specified probability distribution. Then a GARCH model of order (p, q), de-
noted by ε(k) ∼ GARCH(p, q), has the following general form

ε(k) = σ(k)w(k), (11.70)
σ2(k) = f

[
σ2(k − 1), . . . , σ2(k − p), ε2(k − 1) . . . , ε2(k − q)

]
,(11.71)

where σ(k) is the conditional standard deviation given by the square root of
(11.71). That is, the conditional variance σ2(k) is determined by the values of p
past conditional variances and q past squared innovations, and the innovation
ε(k) is generated by scaling a white noise sample with the conditional standard
deviation. The ARCH(q) model is a special case of the GARCH(p, q) model
with p = 0.

The most widely-used GARCH model specifies a linear function f in
(11.71) as follows,

σ2(k) = κ +
q∑

i=1

αi ε2(k − i) +
p∑

j=1

βj σ2(k − j), (11.72)

where the values of the parameters are constrained by

κ > 0 , αi ≥ 0 , βj ≥ 0 , i = 1, . . . , q , j = 1, . . . , p,
q∑

i=1

αi +
p∑

j=1

βj < 1.



168 11 Spectral Enhancement Methods

The first three constraints are sufficient to ensure that the conditional vari-
ances {σ2(k)} are strictly positive. The forth constraint is a covariance sta-
tionarity constraint, which is necessary and sufficient for the existence of a
finite unconditional variance of the innovations process [19].

Many financial time-series such as exchange rates and stock returns ex-
hibit volatility clustering phenomenon, i.e., large changes tend to follow large
changes of either sign and small changes tend to follow small changes. Equa-
tion (11.72) captures the volatility clustering phenomenon, since large in-
novations of either sign increase the variance forecasts for several samples.
This in return increases the likelihood of large innovations in the succeeding
samples, which allows the large innovations to persist. The degree of persis-
tence is determined by the lag lengths p and q, as well as the magnitudes of
the coefficients {αi} and {βj}. Furthermore, the innovations of financial time-
series are typically distributed with heavier tails than a Gaussian distribution.
Bollerslev [19] showed that GARCH models are appropriate for heavy-tailed
distributions.

11.6.2 Modeling Speech Spectral Variance

The variances of the speech coefficients are hidden from direct observation,
in the sense that even under perfect conditions of zero noise [V (n,m) = 0
∀(n,m)], the values of {φx(n,m)} are not directly observable. Therefore,
our approach is to assume that {φx(n,m)} themselves are random vari-
ables, and to introduce conditional variances which are estimated from the
available information (e.g., the clean spectral coefficients through time-frame
n− 1, or the noisy spectral coefficients through time-frame n) [30]. Let X r

0 =
{X(n,m) |n = 0, . . . , r, m = 0, . . . , M − 1} represent the set of clean speech
spectral coefficients up to frame r, and let φx|r(n,m) � E

{
A2

x(n,m) | X r
0

}
de-

note the conditional variance of X(n,m) given the clean spectral coefficients
up to frame r. Then, our statistical model for the speech spectral variance
relies on the following assumption [30]: the conditional variance φx|n−1(n,m),
referred to as the one-frame-ahead conditional variance, is a random process
which evolves as a GARCH(1, 1) process:

φx|n−1(n,m) = φmin +µA2
x(n−1,m)+δ

[
φx|n−2(n − 1,m) − φmin

]
, (11.73)

where
φmin > 0 , µ ≥ 0 , δ ≥ 0 , µ + δ < 1, (11.74)

are the standard constraints imposed on the parameters of the GARCH
model [20]. The parameters µ and δ are, respectively, the moving average
and autoregressive parameters of the GARCH(1,1) model, and φmin is a lower
bound on the variance of X(n,m).
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11.6.3 Model Estimation

The maximum-likelihood (ML) estimation approach is commonly used for es-
timating the parameters of a GARCH model [43]. In this section we derive
the ML function of the model parameters, by using the spectral coefficients
of the clean speech signal on some interval n ∈ [0, N − 1]. For simplicity,
we assume that the parameters are constant during the above interval and
are independent of the frequency-bin index m. In practice, the speech signal
can be divided into short time segments and split in frequency into narrow
subbands, such that the parameters can be assumed to be constant in each
time-frequency region. Furthermore, we generally do not have a direct ac-
cess to the clean spectral coefficients. However, the expectation-maximization
(EM) algorithm [36], [93] can be utilized for solving this problem by iteratively
estimating the clean spectral coefficients and the model parameters from the
noisy measurements.

Let XN−1
0 denote the set of clean speech spectral coefficients employed

for the model estimation, let H1 denote the set of time-frequency bins where
the signal is present, and let λ =

[
µ δ φmin

]T denote the vector of unknown
parameters. Then, the conditional variance φx|n−1(n,m) can recursively be
calculated from past spectral coefficients Xn−1

0 by using (11.73) and the pa-
rameter vector λ. Hence, for a Gaussian model, the logarithm of the condi-
tional density of X(n,m) given the clean spectral coefficients up to frame n−1
can be expressed as

log p
[
X(n,m)

∣∣Xn−1
0 ;λ

]
= − A2

x(n,m)
φx|n−1(n,m)

− log φx|n−1(n,m) − log π,

(11.75)
where (n,m) ∈ H1. It is convenient to regard the speech spectral coefficients
in the first frame (n = 0) as deterministic, with the values of φx|−1(0,m) in
the first frame initialized to their minimal value φmin, and maximize the log-
likelihood when conditioned on the first frame (for sufficiently large sample
size, the spectral coefficients of the first frame make a negligible contribution to
the total likelihood). The log-likelihood conditional on the spectral coefficients
of the first frame is given by

L(λ) =
∑

(n,m)∈H1∩n∈[1,N−1]

log p
[
X(n,m)

∣∣Xn−1
0 ;λ

]
. (11.76)

Substituting (11.75) into (11.76) and imposing the constraints in (11.74) on
the estimated parameters, the ML estimates of the model parameters can be
obtained by solving a constrained minimization problem:

minimize
φ̂min, µ̂, δ̂

∑
(n,m)∈H1∩n∈[1,N−1]

[
A2

x(n,m)
φx|n−1(n,m)

+ log φx|n−1(n,m)
]

(11.77)

subject to the constraints
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φ̂min > 0 , µ̂ ≥ 0 , δ̂ ≥ 0 , µ̂ + δ̂ < 1. (11.78)

For given numerical values of the parameters, the sequences of conditional
variances

{
φx|n−1(n,m)

}
can be calculated from (11.73) and used to evaluate

the series in (11.77). The result can then be minimized numerically by using
the Berndt, Hall, Hall, and Hausman [16] algorithm as in Bollerslev [19].
Alternatively, the function fmincon of the Optimization Toolbox in MATLAB
can be used to find the minimum of the constrained nonlinear function of
the model parameters, similar to its use within the function garchfit of the
GARCH Toolbox.

11.7 Spectral Variance Estimation

In this section, we assume that the model parameters µ, δ, and φmin are
known, and derive a recursive estimator for the speech spectral variance. The
speech variance estimation approach is closely related to the variance estima-
tion approach introduced in [30], [31]. We start with an estimate φ̂x|n−1(n,m)
that relies on the noisy observations up to time-frame n−1, and “update” the
variance by using the additional information Y (n,m). Then, the variance is
“propagated” ahead in time, following the rational of Kalman filtering, to ob-
tain a conditional variance estimate at time-frame n+1 from the information
available at time-frame n.

Assuming an estimate φ̂x|n−1(n,m) for the one-frame-ahead conditional
variance of X(n,m) is available, an estimate for φx|n(n,m) can be obtained
by calculating its conditional mean given Y (n,m) and φ̂x|n−1(n,m). By defi-
nition, φx|n(n,m) = A2

x(n,m). Hence,

φ̂x|n(n,m) = E
[
A2

x(n,m)
∣∣∣ φ̂x|n−1(n,m) , Y (n,m)

]
. (11.79)

We can write

E
[
A2

x(n,m)
∣∣∣ φ̂x|n−1(n,m) , Y (n,m)

]
= HSP(n,m)A2

y(n,m), (11.80)

where HSP(n,m) represents the MMSE gain function in the spectral power
domain [32]. The specific expression for HSP(n,m) depends on the particular
statistical model. For a Gaussian model, the spectral power gain function is
given by

HSP(n,m) =
1

A2
y(n,m)

∫
A2

x(n,m) p [X(n,m) |φx(n,m) , φv(n,m) ] dX

=
iSNR(n,m)

1 + iSNR(n,m)

[
1

γ(n,m)
+

iSNR(n,m)
1 + iSNR(n,m)

]
. (11.81)

Substituting (11.80) into (11.79), we obtain an estimate for φx|n(n,m) given
by
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φ̂x|n(n,m) =
îSNRn−1(n,m)

1 + îSNRn−1(n,m)

[
1

γ(n,m)
+

îSNRn−1(n,m)

1 + îSNRn−1(n,m)

]
A2

y(n,m)

=
φ̂x|n−1(n,m)φv(n,m)

φv(n,m) + φ̂x|n−1(n,m)
+

[
φ̂x|n−1(n,m)Ay(n,m)

φv(n,m) + φ̂x|n−1(n,m)

]2
.

(11.82)

Equation (11.82) is the update step of the recursive estimation, since we start
with an estimate φ̂x|n−1(n,m) that relies on the noisy observations up to time-
frame n−1, and then update the estimate by using the additional information
Y (n,m).

To formulate the propagation step, we assume that we are given at time-
frame n−1 an estimate φ̂x|n−2(n−1,m) for the conditional variance of X(n−
1,m), which has been obtained from the noisy measurements up to frame
n− 2. Then a recursive MMSE estimate for φx|n−1(n,m) can be obtained by
calculating its conditional mean given φ̂x|n−2(n − 1,m) and Y (n − 1,m):

φ̂x|n−1(n,m) = E
[
φx|n−1(n,m)

∣∣∣ φ̂x|n−2(n − 1,m) , Y (n − 1,m)
]
. (11.83)

Substituting (11.73) into (11.83), we have

φ̂x|n−1(n,m) = φmin + µE
[
A2

x(n − 1,m)
∣∣∣ φ̂x|n−2(n − 1,m) , Y (n − 1,m)

]
+ δ
[
φ̂x|n−2(n − 1,m) − φmin

]
. (11.84)

Equation (11.79) implies that

E
[
A2

x(n − 1,m)
∣∣∣ φ̂x|n−2(n − 1,m) , Y (n − 1,m)

]
= φ̂x|n−1(n − 1,m).

Substituting this into (11.84), we obtain

φ̂x|n−1(n,m) = φmin + µ φ̂x|n−1(n − 1,m) + δ
[
φ̂x|n−2(n − 1,m) − φmin

]
.

(11.85)
Equation (11.85) is called the propagation step, since the conditional variance
estimates are propagated ahead in time to obtain a conditional variance es-
timate at time-frame n from the information available at time-frame n − 1.
The propagation and update steps are iterated as new data arrive, follow-
ing the rational of Kalman filtering. The algorithm is initialized at the first
time-frame, say n = 0, with φ̂x|−1(0,m) = φmin for all the frequency bins,
m = 0, . . . ,M − 1. Then, for n = 0, 1, . . ., the estimate φ̂x|n(n,m) is calcu-
lated by using the update step (11.82) and φ̂x|n(n + 1,m) is subsequently
calculated by using the propagation step (11.85).
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11.7.1 Relation to Decision-Directed Estimation

The recursive spectral variance estimator φ̂x|n(n,m) is closely related to the
decision-directed estimator of Ephraim and Malah [44]. The decision-directed
estimator is given by

φ̂DD
x (n,m) = α Â2

x(n−1,m)+(1−α) max
{
A2

y(n,m) − φv(n,m), βφv(n,m)
}

,
(11.86)

where α (0 ≤ α ≤ 1) is a weighting factor that controls the tradeoff between
noise reduction and transient distortion introduced into the signal. The pa-
rameter β is a lower bound on the estimated input SNR to further reduce the
level of residual musical noise [22]. The decision-directed estimator is partic-
ularly useful when combined with the MMSE spectral, or log-spectral, mag-
nitude estimators [22], [44], [45]. It results in perceptually colorless residual
noise, but is heuristically motivated and its theoretical performance is un-
known due to its highly nonlinear nature. Furthermore, the parameters of the
decision-directed estimator have to be determined by simulations and subjec-
tive listening tests for each particular setup of time-frequency transformation
and speech enhancement algorithm. Since the decision-directed approach is
not supported by a statistical model, the parameters are not adapted to the
speech components, but are set to specific values in advance.

The update step (11.82) of the recursive estimator can be written as

φ̂x|n(n,m) = α(n,m) φ̂x|n−1(n,m) + [1 − α(n,m)]
[
A2

y(n,m) − φv(n,m)
]
,

(11.87)
where α(n,m) is given by

α(n,m) = 1 − φ̂x|n−1(n,m)[
φv(n,m) + φ̂x|n−1(n,m)

]2 . (11.88)

Substituting (11.84) into (11.87) with µ ≡ 1 we have

φ̂x|n(n,m) = α(n,m)E
[
A2

x(n − 1,m)
∣∣∣ φ̂x|n−2(n − 1,m) , Y (n − 1,m)

]
+ [1 − α(n,m)]

[
A2

y(n,m) − φv(n,m)
]
+ α(n,m)φmin.(11.89)

The expression (11.89) is an alternative practical form of the decision-
directed estimator, with α replaced by α(n,m), A2

x(n − 1,m) replaced
by E

[
A2

x(n − 1,m)
∣∣∣ φ̂x|n−2(n − 1,m) , Y (n − 1,m)

]
, and instead of the pa-

rameter β, which represents a lower bound on the estimated input SNR
φ̂DD

x (n,m)/ φv(n,m), we have a parameter φmin, which is a lower bound on
φ̂x|n−1(n,m). Accordingly, a special case of the recursive estimator with µ ≡ 1
degenerates to a “decision-directed” estimator with a time-varying frequency-
dependent weighting factor α(n,m).

It is interesting to note that the weighting factor α(n,m), given by (11.88),
is monotonically decreasing as a function of the one-frame-ahead conditional
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Fig. 11.3. SNR in successive time-frames: instantaneous input SNR, γ(n, m) (dot-

ted line); decision-directed estimate of the input SNR, îSNR
DD

(n, m) (dashed line);

and recursive estimate of the input SNR, îSNRn(n, m) (solid line).

input SNR, îSNRn−1(n,m) = φ̂x|n−1(n,m)/ φv(n,m). A decision-directed es-
timator with a larger weighting factor is indeed preferable during speech ab-
sence (to reduce musical noise phenomena), while a smaller weighting factor is
more advantageous during speech presence (to reduce signal distortion) [22].
The above special case of the recursive estimator conforms to such a desirable
behavior. Moreover, the general form of the recursive estimator provides an
additional degree of freedom for adjusting the value of µ in (11.85) to the de-
gree of spectral nonstationarity. This may produce even further improvement
in the performance.

The different behaviors of the recursive estimator φ̂x|n(n,m) (11.82) and
the decision-directed estimator φ̂DD

x (n,m) (11.86) are illustrated in the ex-
ample of Fig. 11.3. The analyzed signal contains only white Gaussian noise
during the first and last 20 frames, and in between it contains an addi-
tional sinusoidal component at the displayed frequency with 0 dB SNR. The
signal is transformed into the STFT domain using half overlapping Ham-
ming windows. The SNR estimates, îSNRn(n,m) = φ̂x|n(n,m)/ φv(n,m) and

îSNR
DD

(n,m) = φ̂DD
x (n,m)/ φv(n,m), are obtained by using the parameters

β = −25 dB, α = 0.98, µ = 0.9. The signal estimate Z(n,m) is recursively
obtained by applying HLSA(n,m) to the noisy spectral measurements [see
(11.67)].

Figure 11.3 shows that when the instantaneous SNR γ(n,m) is sufficiently
low, the recursive input SNR estimate is smoother than the decision-directed
estimate, which helps reducing the level of musical noise. When γ(n,m) in-

creases, the response of îSNRn(n,m) is initially slower than îSNR
DD

(n,m),
but it then builds up faster to the instantaneous SNR. When γ(n,m) is suf-

ficiently high, îSNR
DD

(n,m) follows the instantaneous SNR with a delay of
1 frame, whereas îSNRn(n,m) follows the instantaneous SNR without delay.
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When γ(n,m) decreases, the response of îSNRn(n,m) is immediate, while

that of îSNR
DD

(n,m) is delayed by 1 frame. As a consequence, when com-
pared with the decision-directed estimator, the recursive estimator produces
a lower level of musical noise while not increasing the audible distortion in
the enhanced signal [31].

11.8 Summary of Spectral Enhancement Algorithm

In this section, we present an example of a speech enhancement algorithm,
which is based on an MMSE log-spectral amplitude estimation under a Gaus-
sian model, improved minima-controlled recursive averaging (IMCRA) noise
estimation [28], and recursive estimation of the input SNR. The performance
of the algorithm is demonstrated on speech signals degraded by various addi-
tive noise types.

The implementation of the speech enhancement algorithm is summarized
in Table 11.1. For each time-frame n we recursively estimate the STFT coeffi-
cients of the clean speech {X(n,m) |m = 0, . . . , M − 1} from the noisy STFT
coefficients {Y (n,m) | k = 0, . . . ,M − 1}, where M is the length of the anal-
ysis window. We typically use a Hamming window of 32 ms length and a
framing step of 8 ms (i.e., M = 512 and L = 128 for a sampling rate of
16 kHz). In the first frame (n = 0) we compute {Y (0,m) |m = 0, . . . ,M − 1}
by applying the discrete Fourier transform to a short-time section of the noisy
data

yψ(0) = [y(0)ψ(0) y(1)ψ(1) · · · y(M − 1)ψ(M − 1)]T ,

where ψ(n) is the analysis window. In the following frames (n > 0), the section
of noisy data is updated with L additional samples

yψ(n) = [y(nL)ψ(0) y(1+nL)ψ(1) · · · y(M−1+nL)ψ(M−1)]T (11.90)

and subsequently {Y (n,m) |m = 0, . . . , M − 1} is computed by applying the
discrete Fourier transform to yψ(n). Since the speech signal x(k) is assumed
real, once we have spectral coefficients {Z(n,m) |m = 1, . . . , (M − 1)/2}, the
spectral coefficients for (M − 1)/2 < m ≤ M − 1 are obtained by Z(n,m) =
Z∗(n,M − m). The DC component Z(n, 0) is set to zero, and a sequence
{zn(k) | k = 0, . . . , M − 1} is obtained by applying the inverse discrete Fourier
transform to {Z(n,m) |m = 0, . . . ,M − 1}:

zn(k) =
1
M

M−1∑
m=0

Z(n,m) ej 2π
M km. (11.91)

Employing the weighted overlap-add method [35], we compute the following
sequence
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Table 11.1. Summary of a spectral enhancement algorithm.

Initialization at the first time-frame n = 0:

φ̂v(0, m) = A2
y(0, m); φ̂x|−1(−1, m) = φmin, for all m;

Read M − L samples of the noisy signal y(k).

For all time-frames n = 0, 1, . . .

Read L new samples of the noisy signal, and compute yψ(n) using (11.90).

Compute {Y (n, m) |m = 0, . . . , M − 1} by applying the discrete Fourier trans-
form to yψ(n).

For frequency-bins m = 1, . . . , (M − 1)/2

Update the variance of the noise spectral coefficient φ̂v(n, m) using [28].

Compute φ̂x|n−1(n, m) using the propagation step of the recursive variance
estimation (11.85).

Compute φ̂x|n(n, m) using the update step of the recursive variance esti-
mation (11.82).

Compute îSNR(n, m) = φ̂x|n(n, m)/ φ̂v(n, m), and compute ϑ̂(n, m) using
(11.62).

Compute the speech spectral estimate Z(n, m) using (11.67).

Let Z(n, 0) = 0, and let Z(n, m) = Z∗(n, M −m) for m = (M +1)/2, . . . , M −1.

Apply the inverse discrete Fourier transform to {Z(n, m) |m = 0, . . . , M − 1},
and compute L new samples of the enhanced speech signal using (11.91)–(11.93).

on(k) =

{
on−1(k + L) + M ψ̃(k) zn(k) , for 0 ≤ k ≤ M − L − 1

M ψ̃(k) zn(k) , for M − L ≤ k ≤ M − 1
, (11.92)

where ψ̃(k) is the synthesis window. Then, according to (11.3), for each time-
frame n, we obtain L additional samples of the enhanced speech signal:

z(k + nL) = on(k) , k = 0, . . . , L − 1. (11.93)

The synthesis window ψ̃(k) should satisfy the completeness condition [124]
∑

n

ψ̃(k − nL)ψ(k − nL) =
1
M

for all k. (11.94)

Given analysis and synthesis windows that satisfy (11.94), any signal x(k) ∈
�2(Z) can be perfectly reconstructed from its STFT coefficients X(n,m). How-
ever, for L < M (over-redundant STFT representation) and for a given anal-
ysis window ψ(k), there might be an infinite number of solutions to (11.94).
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Fig. 11.4. Performance of the spectral enhancement algorithm in Table 11.1 in
different input SNR conditions.

A reasonable choice of a synthesis window is the one with minimum energy
[102], [124], given by

ψ̃(k) =
ψ(k)

M
∑

� ψ2(k − �L)
. (11.95)

11.9 Experimental Results

The speech signals used in our evaluation are taken from the TIMIT database
[57]. They include 20 different utterances from 20 different speakers, half male
and half female. The speech signals are sampled at 16 kHz and degraded by
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Fig. 11.5. Waveform and spectrogram of a clean speech signal: “Higher toll rates
also are helping boost revenues.”

various noise types from the Noisex92 database [118], which include white
Gaussian noise, car interior noise, F16 cockpit noise, and babble noise. The
input SNR is in the range [−5, 20] dB. The average fullband output SNR,
noise-reduction factor, and speech-distortion index obtained by the apply-
ing the spectral enhancement algorithm to the noisy signals are displayed in
Fig. 11.4.

The results show that the fullband output SNR, oSNR(H), is larger than
the fullband input SNR in all the tested conditions. However, the increase in
SNR depends on the input SNR level and on the type of background noise.
The increase in SNR is larger for lower input SNR levels and for noise char-
acteristics which are different than the speech signal. The faster the noise
spectrum varies in time, the less reliable is the noise spectrum estimator, and
consequently the lower is the increase in SNR that can be achieved by the
spectral enhancement algorithm. For car interior noise, most of the noise en-
ergy is concentrated in the lower frequencies, and its characteristics change
slowly in time compared to the speech signal. Therefore, the output SNR and
noise-reduction factor can be large, while keeping the speech-distortion index
small. On the other hand, the characteristics of babble noise are similar to
speech signals and the variations in time are faster, when compared to the
other noise types. Therefore, the noise spectrum estimator is least reliable
for babble noise and the speech enhancement performance is inferior to that
achievable in the other noise environments. In particular, the noise-reduction
factor is smallest for babble noise and largest for car interior noise, while the
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Fig. 11.6. Waveforms and spectrograms of the noisy and enhanced speech in white
Gaussian noise environment with fullband iSNR = 5 dB (oSNR = 16.5 dB, ξnr =
12.1 dB, υsd = −12.4 dB).

speech-distortion index is smallest for car interior noise and largest for babble
noise.

A clean utterance from a female speaker is shown in Fig. 11.5. Figures 11.6–
11.9 show its noisy versions in different environments (with input SNR of 5 dB)
and the enhanced speech signals. The enhanced speech signals are obtained by
using the spectral enhancement algorithm in Table 11.1. The fullband input
SNR is the same for all the signals shown in Figs. 11.6–11.9, but the subband
input SNR in the STFT domain, iSNR(n,m), varies significantly depending
on the type of background noise. The noise spectrum is uniform in time and
frequency for the white Gaussian noise. Hence, in time-frequency bins where
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Fig. 11.7. Waveforms and spectrograms of the noisy and enhanced speech in car
interior noise environment with fullband iSNR = 5 dB (oSNR = 16.3 dB, ξnr =
11.6 dB, υsd = −17.5 dB).

the speech spectral variance φx(n,m) is high, the spectral gain H(n,m) is
closer to 1, in order to reduce the speech-distortion index. In time-frequency
bins where the speech spectral variance φx(n,m) is low, the spectral gain
H(n,m) is closer to 0, in order to increase the noise-reduction factor. For
car interior noise, one can apply a significant noise reduction in the lower
frequencies and subtle noise reduction in the higher frequencies, since most of
the noise energy is concentrated in the lower frequencies. Hence, the subband
noise-reduction factors are large in the lower frequencies and small in the
higher frequencies, while the subband speech-distortion indices are small in
the higher frequencies and large in the lower frequencies. The fullband noise-
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Fig. 11.8. Waveforms and spectrograms of the noisy and enhanced speech in F16
cockpit noise environment with fullband iSNR = 5 dB (oSNR = 14.7 dB, ξnr =
10.7 dB, υsd = −12.7 dB).

reduction factor would generally be large, while keeping the fullband speech-
distortion index low. For babble noise, the noise spectrum varies significantly
in time and frequency. Hence, to restrict the fullband speech-distortion index
to be smaller than a certain threshold, one has to restrict the spectral gain
H(n,m) to larger values, and thus restrict the fullband noise-reduction factor
to smaller values. This generally yields higher residual noise levels than those
achieved in other noise environments.



11.10 Summary 181

F
re

qu
en

cy
 (

kH
z)

 

 

0

2

4

6

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.5

0

0.5

A
m

pl
itu

de

Time (s)

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

Fig. 11.9. Waveforms and spectrograms of the noisy and enhanced speech in babble
noise environment with fullband iSNR = 5 dB (oSNR = 8.8 dB, ξnr = 4.4 dB,
υsd = −16.0 dB).

11.10 Summary

In this chapter, we formulated the noise reduction problem in the STFT do-
main and the derived MMSE, MMSE-SA and MMSE-LSA estimators for the
speech spectral coefficients. The estimators rely on Gaussian statistical mod-
els for the speech and noise signals. The Gaussian model for the speech signal
is integrated with a GARCH model for the spectral variances, thus enabling
to take into account time-correlation between successive spectral components
of the speech signal. We showed that the resulting recursive spectral variance
estimator is closely related to the decision-directed estimator of Ephraim and
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Malah. We described the beneficial behaviors of the MMSE-SA and MMSE-
LSA estimators, which enable the mechanism that counters the musical noise
phenomenon. Finally, we have demonstrated the design of a spectral enhance-
ment algorithm and discussed its performance in different noisy environments.
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A Practical Example: Multichannel Noise
Reduction for Voice Communication in
Spacesuits

Noise reduction can find numerous applications in various fields of speech
processing. Since acoustic environments and technical objectives vary from
application to application, it is impossible (at least impossible at the present
time) to find a universally feasible approach. In the design of a microphone
array system and the choice of a well-suited noise reduction algorithm, there
is no simple rule to follow and experiences are still crucial. In this chapter, we
use a practical example to explain the primary considerations that need to be
kept in mind. We think that what can be interesting to the readers is not the
finding of the best noise reduction algorithm for the specific problem under
investigation but instead, it is the analysis of the acoustic challenges and the
validation procedure of the suggested solutions that can be more useful and
that can enrich the reader’s fund of knowledge.

12.1 Problem Description

Collaboration and cooperation between the crewmembers in space and the
mission control center on the earth are the lifeline of astronauts and space
shuttles. Clear and reliable voice communications are essential to astronaut
safety and the success of every NASA flight mission. But widely varying work-
ing conditions of a space shuttle and the special design of an astronaut’s
spacesuit form an extreme acoustic environment that imposes unique chal-
lenges for capturing and transmitting speech communications to and from a
crewmember, as summarized in, but not limited to, the followings [2].

• Noise heard in the spacesuit has complicated characteristics in either the
temporal, spectral, or spatial domain: generally non-stationary, inherently
wideband, and possibly either directional or dispersive. In addition, dur-
ing launch, entry descent, and landing, ambient noise penetrating from
outside the spacesuit is at a very high level, while during on-orbit and Ex-
travehicular Activity (EVA) operations suit-borne noise makes it difficult
to achieve an adequate SNR for satisfactory voice communication.

J. Benesty et al., Noise Reduction in Speech Processing, Springer Topics in Signal Processing 2,  
DOI 10.1007/978-3-642-00296-0_12, © Springer-Verlag Berlin Heidelberg 2009    
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• The helmet of a spacesuit is made of highly reflective materials, which
create a very reverberant in-suit acoustic environment. Strong reverbera-
tion will severely distort the speech uttered by the suit subject and hence
remarkably reduce its intelligibility. Moreover, strong reverberation leads
to a more dispersive noise field, which makes beamforming less effective.

• Spacesuits can operate at several non-standard static pressures during
EVA: specific static pressure levels include 30, 50, 55, 100, 101 kPa. These
changes in static pressure level will alter the density of the medium and
hence the speed of propagating acoustic waves. Varying and indetermi-
nate acoustic transduction adds another layer of difficulty to our efforts to
model the acoustic environment for combating noise and reverberation.

The current solution is a communication cap-based audio (CCA) system.
As shown in Fig. 12.1, astronauts wear such a cap under their helmets. It
has redundant, built-in microphones and earphones. The use of close-talking,
noise cancelling microphones of a CCA can dramatically help improve speech
intelligibility, but only when the microphones are very close to the crewmem-
ber’s mouth. Moving them away from the mouth, even though only for a
very short distance, can cause great performance degradation. Such sensitiv-
ity gives arise to a number of recognized logistical issues and inconveniences
that cannot be resolved with incremental improvements to the basic design of
the CCA systems:

• the communication cap and the microphone booms cannot be adjusted
during EVA operations (which last from four to eight hours) or during
launch and entry,

• the microphones that are right next to the mouth can interfere in the suit
subject from eating and drinking and, on the other hand, can easily be
contaminated by food and drinks,

• since the communication cap needs to be individually tailored and the
microphones need to be properly mounted according to the head size of
each astronaut, caps in a number of different sizes have to be built and
maintained (e.g., there are five sizes for Space Shuttle and International
Space Station Extravehicular Mobility Unit CCA), and

• wire fatigue and blind mating of the connectors are also problems with the
CCA.

Therefore a great effort is under way in NASA to develop a multiple-
microphone audio system that is integrated with spacesuits and would be
able to possess similar performance to a CCA. Innovations in beamforming
and multichannel acoustic signal processing technologies are then solicited to
improve in-helmet voice communication with better experiences. We (the re-
search team of WeVoice, Inc.) were selected for a NASA Phase I SBIR (small
business innovation research) award and were funded to carry out a 6-month
pilot feasibility study in 2008.
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(a)

(b)

Fig. 12.1. Illustration of the current communication cap-based audio (CCA) system
in a spacesuit helmet: (a) schematic of the CCA system and (b) an example of the
CCA system worn by a female astronaut.
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Fig. 12.2. Three currently used NASA communication caps: (a) shut-
tle/international space station extravehicular mobility unit (EMU) cap, (b) ad-
vanced crew escape suit (ACES) cap, and (c) developmental cap.

12.2 Problem Analysis

12.2.1 Sources of Noise in Spacesuits

There are two forms of noise in spacesuits: ambient noise that penetrates from
the outside into the inside of the spacesuits, and suit structure-borne noise.
The level of ambient noise is subject to a large range of variations, depend-
ing on the operation that the space shuttle/vehicle and the suit subject are
undertaking. During launch, entry descent, and landing, the sound pressure
level (SPL) of impulse ambient noise is < 140 dB. But during on-orbit and
EVA operations, the surrounding environment of a crewmember is quiet. The



12.2 Problem Analysis 187

Table 12.1. Upper limits on continuous on-orbit noise level by frequency.

Band Center Frequency (Hz) 63 125 250 500 1k 2k 4k 8k 16k

Sound Pressure Level (dB) 72 65 60 56 53 51 50 49 48

Table 12.2. Sound pressure level (SPL) chart of typical noise fields.

SPL (dB) Perception Typical Environments

85 – 95 Very High Noise: Construction Site

Speech Almost Loud Machine Shop

Impossible to Hear Noisy Manufacturing

75 – 85 High Noise: Assembly Line

Speech is Difficult Crowded Bus/Transit Waiting Area

to Hear Very Noisy Restaurant/Bar

65 – 75 Medium Noise: Department Store

Must Raise Voice Bank/Public Area

to be Heard Supermarket

55 – 65 Low Noise: Doctor’s Office

Speech is Easy Hospital

to Hear Hotel Lobby

upper limits on continuous on-orbit noise level by frequency are shown in Ta-
ble 12.1. By comparing these SPL values to those of typical noise fields given
in Table 12.2, we see that the crewmembers talk and listen as if they were at
best in a doctor’s office and at worst in a supermarket. Therefore, during EVA
operations, ambient noise is at most a minor problem, and structure-borne
noise is more imperative to be solved for in-helmet voice communication.

Four sources have been identified for the structure-borne noise in spacesuits
[2]:

• airflow and air inlet hissing noise, as well as fan/pump noise due to required
air supply and circulation,

• arm, leg, and hip bearing noise,
• suit-impact noise (e.g., footfall), and
• swishing-like noise due to air movement caused by walking (since the suits

are closed pressure environments).

For head-mounted CCA systems, since the suit subject’s body does not trans-
mit bearing and impact noise, only airflow-related noise needs to be properly
controlled. However, for an integrated audio system, structure-borne vibration
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easily adds on the microphone outputs since the microphones are mounted di-
rectly on the suit structure.

12.2.2 Noise Cancelling Microphones

Noise cancelling microphones are nothing mysterious but close-talking differ-
ential microphone arrays. A differential microphone consists of an array of
pressure sensors which are exposed to the incident sound. The microphone is
therefore responsive to the spatial derivatives (gradients) of the scalar acous-
tic pressure field. Its output is a finite-difference approximation to the sum
of those spatial derivatives. The response of a first-order differential micro-
phone array (FODMA) is the combination of the zeroth-order signal and the
first-order spatial derivative, while an ith-order (i ≥ 1) array has a response
proportional to a linear combination of signal derived from spatial derivatives
up to, and including order i.

An FODMA, as depicted in Fig. 12.3(a), consists of two omnidirectional
sensor elements with inter-element spacing d. The (zero-order) responses of
the two omnidirectional microphones due to a sound source at a distance of
r as a function of frequency f are

Hn(rn; f) =
e−j2πfrn/c

rn
, n = 1, 2, (12.1)

where

r1 =
√

r2 − rd cos θ + d2/4,

r2 =
√

r2 + rd cos θ + d2/4,

θ is the incident angle of the sound source with respect to the sensor axis,
and c is the speed of sound whose value (in m/s) in air (similarly in pure
oxygen, which is diatomic gas) can be calculated from the air temperature
tair (in degrees Celsius) using the following formula

c ≈ 331.3 ×
√

1 +
tair

273.15
. (12.2)

Then the FODMA response can be written as

HFODMA(r, θ; f) = H1(r1; f) − H2(r2; f)

=
e−j2πfr1/c

r1
− e−j2πfr2/c

r2
. (12.3)

Similarly the response of a second-order differential microphone array
(SODMA), as shown in Fig. 12.3(b), is deduced as

HSODMA(r, θ; f) =
e−j2πfr1/c

r1
− 2

e−j2πfr2/c

r2
+

e−j2πfr3/c

r3
, (12.4)
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(a) (b)

Fig. 12.3. Schematics of (a) a first-order differential microphone array (FODMA)
and (b) a second-order differential microphone array (SODMA).

where

r1 =
√

r2 − 2rd cos θ + d2,

r2 = r,

r3 =
√

r2 + 2rd cos θ + d2.

Figure 12.4(a) plots the FODMA and SODMA responses to an on-axis sound
source (θ = 0◦) evaluated at r = 50 mm and 1 m for d = 10 mm. The farfield
responses indicate a highpass filter with a slope of 6i dB/octave for an ith-
order (i = 1, 2) differential microphone array.

Consider two on-axis sound sources: one is the sound source of interest in
the near field at a distance of rs, and the other is a noise source in the far
field at a distance of rn. Then the gain in signal-to-noise ratio (GSNR) by
using a differential microphone array (DMA) over using an omnidirectional
microphone is found as

GSNRDMA = 20 log10

{ |HDMA(rs, θs; f)|
|HDMA(rn, θn; f)|

}
− 20 log10

(
rn

rs

)
, (12.5)

where DMA can be either FODMA or SODMA. Figure 12.4(b) presents the
GSNRs for rs = 15 mm, θs = θn = 0◦, and d = 10 mm. It is clearly demon-
strated that differential microphones inherently suppress farfield noise. The
higher the order of a DMA and the larger the distance of a noise source,
the more attenuation is gained against the noise. Moreover, the farfield noise
signal is more suppressed in the low frequencies than in the high frequencies.

While differential microphones are found very useful in situations where
the background noise level is very high (like what exist in spacesuits), a well-
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Fig. 12.4. Performance comparison of an FODMA and an SODMA for near-field
speech acquisition. (a) Differential microphone array response and (b) gain in SNR
over using an omnidirectional microphone.
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(b)

Fig. 12.5. Illustration of SODMA’s sensitivity to (a) the range and (b) the incident
angle of the near-field sound source of interest.
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known, prominent drawback of differential microphone arrays is that their
frequency response and level are extremely sensitive to the position and ori-
entation of the arrays relative to the speaker’s mouth. Figure 12.5 visualizes
the sensitivity of an SODMA’s response to r and θ. The inter-element spac-
ing is d = 10 mm. Suppose that the microphone is initially placed 15 mm
away from the mouth. When we move it only 45 mm (which is significantly
less than an average distance between a man’s mouth and one of his ears)
further away, as seen from Fig. 12.5(a), the low-frequency speech components
(between 100 Hz and 1 kHz) are attenuated more than 40 dB. At such a dis-
tance with such a level of attenuation, the captured speech signal becomes
very weak and submerged in the background noise. Very poor speech intel-
ligibility can then be expected and noise cancelling microphones no longer
work as their name implies. In addition, we can see that the farther we move
the microphone away from the mouth, the more attenuation is applied to the
high-frequency components of the speech signal. This will not only reduce its
intelligibility but also lower its quality. If the distance between the microphone
and the mouth is fixed but the mouth deviates from the axis of the differential
microphone, then from Fig. 12.5(b) we see that the response also changes re-
markably. Since differential microphones are supposedly in close proximity to
a user’s mouth, a small displacement of the mouth can lead to a large change
in the incident angle with respect to the array axis.

The sensitivity of a differential microphone to dislocation and disorien-
tation makes it necessary to perform frequency and level equalization to its
response according to the range and incident angle of its user’s mouth [116].
However, this equalization will not affect the SNR and the directional response
pattern. In the axis direction (θ = 0◦), the response is always the largest. In
other words, the main lobe cannot be electrically steered to the mouth. There-
fore, it can be concluded that noise cancelling microphones will not be used in
the next-generation voice communication systems integrated with spacesuits.

12.3 Suggested Algorithms

We have learned that noise inside the helmet of a spacesuit has complicated
characteristics. In addition, because of the presence of strong reverberation,
the suit subject’s speech and noise signals are mixed in a complex way in mi-
crophone outputs. To extract clean speech with high intelligibility and quality,
noise reduction and speech enhancement will be explored in three domains: the
time, frequency, and space domains. Hopefully a line can be drawn between
noise and the interested speech signal. As illustrated by Fig. 12.6, we thought
that there could be four techniques that are potentially helpful and deserve
to be carefully studied: namely beamforming, multichannel noise reduction,
adaptive noise cancellation, and single-channel noise reduction. As will be ex-
plained below, these algorithms (except beamforming and multichannel noise
reduction) are not mutually exclusive, but in fact complementary and should
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Fig. 12.6. Block diagram of the suggested algorithms to be used in the integrated
spacesuit audio (ISA) system for in-helmet voice communication.

be used in concert. In general spatial cues are more vulnerable to improper
processing than temporal/spectral cues. Consequently spatial processing will
be carried out prior to time-frequency analysis.

12.3.1 Nearfield, Wideband Microphone Array Beamforming for
Speech Acquisition in Spacesuits

Beamforming is a means of spatial filtering, which lets the signal coming
from the pre-specified look direction pass through while suppressing signals
propagating from other directions. The origin and the first implementation of
the idea can be traced a long way back to a century ago. Nowadays one can find
various beamformers in the literature. But their structures are not significantly
different. The general structure of a beamformer is shown in Fig. 12.7. When
the speech source of interest is in the far field of the microphone array, its
corresponding time difference of arrival (TDOA) between the first and the
nth (n = 2, 3, . . . , N , where N is the number of microphones) microphone
outputs τn is dependent only on the incident angle θ of the speech source.
But when the speech source is in the near field, the TDOA τn depends on the
position of the speech source rs.
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(b)

Fig. 12.7. General structure of a beamformer when the speech source of interest is
in (a) the far field and (b) the near field of the microphone array.
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There are two parameters to tune for a beamformer: the TDOAs τn(rs)
and the filter coefficients hn. The TDOAs specify the look direction (or more
precisely the look position in the nearfield case) and the filter coefficients
control the beam pattern of the array: the beamwidth of the mainlobe, the
characteristics of the sidelobes, and the position of the nulls. For a delay-and-
sum beamformer (known as the classical beamforming algorithm), hn = 1/N
(∀n = 1, 2, . . . , N). As a result, speech signal originating from the desired di-
rection are summed in phase, while other signals undergo destructive interfer-
ence. If noise is incoherent, the improvement in SNR would be 10 log10 N dB.
When N is small, only a very limited gain in SNR can be obtained, which is
insufficient and practically not so useful. For coherent noise, the performance
of the delay-and-sum beamformer is strongly dependent on the direction of
arrival of the noise signal. If the direction of noise coincides with that of speech
signal, no SNR gain can be possibly produced. Since the microphone weights
of the classical delay-and-sum beamformer are constants and frequency inde-
pendent, its spatial response is a function of frequency, as shown in Figs. 12.8
and 12.9. As the frequency increases, the beam becomes commensurately nar-
rower. This implies that when the speech source deviates from the look di-
rection, speech distortion will be observed in the beamformer output. The
high-frequency components are more attenuated than the low-frequency com-
ponents, i.e., the speech signal will be low-pass filtered.

In order to have a constant-beamwidth spatial response over a wide fre-
quency range of speech spectrum, harmonically-nested subarrays [51], [52], [83]
and the more generalized filter-and-sum beamformer [77], [115] were proposed.
Harmonically-nested subarrays are large in size and require a great number of
microphones. For integrated spacesuit audio (ISA) systems, a filter-and-sum
beamformer is practically more useful. In the design of a fixed filter-and-sum
beamformer, the microphone weights can be computed using a least-squares
(LS) filter design method [94], [95], which can yield satisfactory results [15] as
exemplified by the far-field response of a filter-and-sum beamformer visualized
in Fig. 12.10 in comparison with that of a delay-and-sum beamformer previ-
ously shown in Fig. 12.8. But when a nearfield speech source is concerned,
the LS algorithm was found not as stable as an LCMV (linearly constrained
minimum variance) algorithm.

Spatial responses of fixed beamformers are static since the microphone
weights, once designed, are fixed. Fixed beamformers are data-independent
spatial filters. During the design of a fixed beamformer, noise field is not
known and the isotropic model that is a reasonable first-order approximation
of most of the real noise fields is commonly used. If the assumption matches
the acoustic condition in which the array is used, this approach leads to a
good beamformer design. However, such a simple model can never be real in
practice and therefore a fixed beamformer is at best suboptimal even though
it can be steered to accurately follow the movement of the speech source. For
example, if noise is coming from a point sound source, ideally the beamformer
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(b) N = 8

Fig. 12.8. Response of a delay-and-sum beamformer for two equally spaced linear
arrays containing respectively (a) N = 4 and (b) N = 8 microphones spaced by
d = 20 mm and with the look direction θ = 90◦. The sound sources are assumed in
the far field.
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Fig. 12.9. Directional patterns of a delay-and-sum beamformer for two equally
spaced linear arrays containing respectively N = 4 (red solid line) and N = 8 (blue
dashed line) microphones spaced by d = 20 mm and with the look direction θ = 90◦.
The sound sources are assumed in the far field.

should be able to put a null in that direction. However, only by chance a fixed
beamformer can do so.

In this line of thoughts, adaptive beamformers were proposed. Adaptive
beamformers try to track the variation of the surrounding noise field and
adaptively search for the optimum location of the nulls that can most signif-
icantly reduce noise under the constraints that the interested speech signal
is not distorted at the beamformer output. This is then formulated as the
widely-known linearly constrained minimum variance (LCMV) problem. The
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Fig. 12.10. Far-field response of a filter-and-sum beamformer for an equally spaced
linear array containing N = 4 microphones spaced by d = 20 mm and with the
look direction θ = 90◦. In the design of such a beamformer with the least-squares
method, the width of the mainlobe was set as 40◦.

difficulty of implementing an adaptive beamformer is how to properly define
the constraint. In an anechoic environment, only the direction of the speech
source needs to be known and the LCMV solution leads to the minimum vari-
ance distortionless response (MVDR) beamformer due to Capon [21]. But in a
real reverberant environment, the linear constraint of the LCMV algorithm re-
quires the knowledge of the impulse responses from the speech source to each
microphone [13]. The LCMV beamformer was first developed by Frost [53]
and is also called the Frost beamformer. One variant of the Frost beamformer
is the so-called generalized sidelobe canceller (GSC) proposed by Griffiths
and Jim [61]. The GSC transforms the LCMV algorithm from a constrained
optimization problem into an unconstrained form. Therefore, the GSC and
LCMV beamformers are essentially the same while the GSC can lower the
computational cost by forcing the constraint into the front-end of the array
processing [79], [123].

The LCMV beamformer is theoretically appealing since it seems to be an
optimal spatial filter. But in practice, when an MVDR beamformer is used
in a reverberant environment or when the estimates of the acoustic impulse
responses in the Frost/GSC beamformer have errors (which is certainly in-
evitable), the so-called signal cancellation problem would occur and only a
suboptimal performance can be achieved.
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Our perception of speech remarkably benefits from spatial hearing since
it can be easily experienced by observing the difference in understanding be-
tween using both ears and with either ear covered when listing in an enclosed
space where there are multiple (both speech and noise) sound sources at the
same time. This is a striking capability since we accomplish it with only two
ears and without much efforts. Consequently some people may mistakenly
believe that a small array of only two microphones would be able to give us
quite some gain in SNR via beamforming. One needs to understand that spa-
tial filtering is only a part, rather than the entirety, of the cocktail-party effect
of human auditory systems. With a man-made microphone array system, we
summarize that

• for incoherent noise sources, the SNR gain is low if a small number of
microphones are used;

• for coherent noise sources whose directions are different from that of the
speech source, a theoretically optimal gain in SNR can be high but is diffi-
cult to obtain due to practical limitations (e.g., unavailability of a precise a
priori knowledge of the acoustic impulse responses from the speech sources
to the microphones, inconsistent responses of the microphones across the
array, etc.); and

• for coherent noise sources that are in the same direction as the speech
source, beamforming (as a spatial filter) is ineffective.

One way to achieve a higher noise reduction gain at a price of some speech
distortion is to replace the hard constraint in the LCMV beamformer with a
soft constraint [81], [113], which becomes nonlinear and allows for some devi-
ation in magnitude and phase for signals propagating from the look direction.
The other way is to have a post-filter at the beamformer output [80], [127],
[128]. The idea of sequential beamforming and post-filtering is based on the
discovery that the multichannel Wiener filter, which minimizes the MSE in
the context of speech extraction with a microphone array, can be factorized
as a product of the LCMV beamformer and a single-channel Wiener filter for
noise reduction [111]. The former approach involves a nonlinear optimization
problem and a gradient search has to be employed. In addition, the amount
of speech distortion is hard to adjust. It is the post-filtering technique which
has attracted an increased interest and has achieved some successes. In Sec-
tion 12.3.3 that follows, we will discuss various single-channel noise reduction
algorithms for post-filtering.

An essential requirement of microphone array beamformers, either fixed
or adaptive, is the knowledge about the position of the suit subject’s mouth.
This can be met by using acoustic source localization and tracking method or
infrared marker-based 3D motion tracking systems. While acoustic methods
can make the whole system more compact with no need to add additional
hardware, their level of precision is not in the same order of magnitude as
that of marker-based 3D motion tracking systems, not even to mention the
reliability in the face of strong noise and reverberation. A small marker will be
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placed on the suit subject’s head and would presumably cause little distraction
or logistical inconvenience. The marker-based motion tracking system provides
the marker’s position relative to the system’s origin. This origin needs to be
aligned to the origin of the microphone array. Otherwise the data of the mouth
position cannot be used. The alignment can be manually carried out, but
an automatic way with the help of acoustic source localization techniques is
by all means more preferable. The calibration is performed only once when
the spacesuit is put on or when the audio system is rebooted. During this
operation mode, the acoustic condition can be well controlled1 and a large
amount of acoustic data can be collected. Therefore a high degree of accuracy
of acoustic source localization algorithms can be expected. For the state of the
art of time delay estimation and acoustic source localization, the interested
reader can refer to a recent survey [73] and the references therein.

12.3.2 Multichannel Noise Reduction: a More Practical
Microphone Array Signal Processing Technique

Performance degradation of an adaptive beamformer in reverberant environ-
ments is a well-known problem due to the unavailability of an accurate a
priori knowledge of the acoustic channel impulse responses from the speech
source to each microphone. As clearly explained in the previous chapters, a
beamformer has two effects: dereverberation and denoising. The performance
degradation of an adaptive beamformer in reverberant environments is mainly
caused by poor dereverberation results [10], [15]. If we cannot do a good job
with a beamformer in dereverberation, the better strategy may be not to do
it at all. Therefore the reverberant speech signal at one arbitrary microphone
across the array, instead of the original speech source signal, is what to be
estimated from the multiple microphone outputs [26], [74]. This suggests that
multichannel noise reduction should be used.

In the so-called transfer function generalized sidelobe canceller (TF-GSC)
algorithm proposed by Gannot et al. [55], [56], transfer function ratios with
respect to various microphone pairs (instead of transfer functions themselves
in traditional adaptive beamforming algorithms) are blindly estimated by ex-
ploiting the non-stationarity of speech. But this only partially takes advan-
tage of the idea of multichannel noise reduction. In [15], we showed a trick
which theoretically eliminates the need to estimate the transfer function ra-
tios, which leads to a more practical approach to reducing noise with multiple
microphones.

Another convenience of using a multichannel noise reduction algorithm
compared to a traditional adaptive beamformer is that the array geometry
and the sensor consistency in gain and frequency response are not critical.
This makes the design and fabrication of the microphone array in spacesuits
much easier and more flexible.
1 For example, air supply hasn’t been turned on yet, the suit subject stands still,

and even the helmet hasn’t been put on the suit.
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In the traditional microphone array processing, the original speech signal
is to be recovered and the Wiener filter (which is the optimal solution in the
MMSE sense) can be factorized into the product of an LCMV beamformer and
a post-filter [111]. For multichannel noise reduction, the reverberant speech
signal received at one microphone across the array is the goal and the Wiener-
filter solution again can be factorized into the product of an LCMV filter and a
post-filter [15]. While the LCMV filters are different in the two approaches, the
post-filters are identical. Therefore the single-channel noise reduction methods
to be discussed below are shared by both approaches.

12.3.3 Single-Channel Noise Reduction

While microphone array beamforming or the multichannel noise reduction
technique can effectively attenuate noise theoretically without introducing
much distortion to speech, the achievable gain in SNR is limited by the number
of microphones to be employed. If that number is small due to the size of the
helmet, the residual noise can still be quite strong. Both speech distortion and
additive noise impair speech intelligibility. So it is not an optimal solution, in
terms of speech intelligibility, to keep speech distortion very low while allowing
strong residual noise. Instead, attaining a balance between speech distortion
and noise level is what we desire for. Single-channel noise reduction methods
boost the SNR but inevitably incur speech distortion. They essentially trade
off speech distortion for noise reduction, and therefore can be ideally used as
a post-filtering step for microphone arrays.

So far a large number of single-channel noise reduction algorithms have
been invented and they can be broadly classified into three classes: the class of
filtering techniques, the class of spectral restoration methods, and the class of
speech model-based approaches. The first two classes of methods have been ex-
tensively studied in this book while typical algorithms in the third class include
harmonic-model-based methods [85], linear-prediction-model-based Kalman
filtering approaches [97], and hidden-Markov-model-based statistical methods
[46].

While the filtering and spectral restoration methods tackle the noise reduc-
tion problem from different perspectives, their implementations are all based
on the estimates of second-order statistics (SOS) of the noisy speech and noise
signals. Accurate and timely estimation of these statistics is crucial to the suc-
cess of these algorithms. A common way to estimate the SOS of noise is to
implement a voice activity detector (VAD) and then perform the estimation
when speech is absent [28], [40], [89], [104]. In order to ensure that the noise
SOS estimated during silent periods are useful when speech is present, a sta-
tionary or slowly varying noise signal has to be assumed. If noise unfortunately
varies fast in time, none of the filtering and spectral restoration algorithms
can work well. Another way is to directly estimate the SOS of the clean speech
signal from multiple microphone outputs. Apparently this method can only
be used when the developed noise reduction algorithm serves as a post-filter
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of a microphone array system. With this speech spectral estimation method,
noise has to be incoherent at the multiple microphones [127], which limits its
use in practice.

12.3.4 Adaptive Noise Cancellation

As clearly explained above, a nonstationary noise signal is in general dif-
ficult to reduce due to the lack of the ability to instantaneously track its
time-varying statistics. Good examples inside spacesuits are spacesuit bear-
ing noise and footfall. They are short bursting and randomly occur. If they
have no overlap in time with the suit subject’s speech, we can develop a so-
phisticated detector to detect noise transients and actively eliminated them.
The detection criterion can be based on a single-channel microphone output
or multichannel microphone outputs [29]. However, bearing/footfall noise and
speech can be simultaneously observed. In these cases, only adaptive noise
cancellation (ANC) can possibly produce some good results.

Among the four noise sources summarized previously in Section 12.2.1,
spacesuit bearing noise and suit-impact noise signals are transmitted by the
spacesuit from the lower parts of the suit to the microphones around the
helmet. If we have a microphone woven in the inner fabric of the suit at
a place in the upper torso where the suit subject’s speech is inaudible, the
sensor will only pick up vibrations that propagate through and its output
can be nicely used as a noise reference signal. Then we can use ANC and
remove the components that are linearly correlated to the noise reference
signal from the multichannel microphone array outputs. If the beamformer
is fixed, it makes no difference in performance (without taking into account
the complexity) whether ANC or beamforming is first performed. But if an
adaptive beamformer is employed, the order is definitely critical and the favor
goes to ANC being first performed, as depicted in Fig. 12.6.

In ANC, a reference noise signal is assumed available, as illustrated by
Fig. 12.11. This reference signal v2(k) is used to estimate the noise v1(k) in
the primary microphone output y(k) by a linear filter, and this estimate v̂1(k)
may then be subtracted from y(k) to form an estimate of the speech signal
x(k). If x(k), v1(k), and v2(k) are jointly wide-sense stationary processes,
then a Wiener filter may be designed to find the MMSE estimate of v1(n).
In practice, however, a stationarity assumption is not generally appropriate.
Therefore, as an alternative to the Wiener filter, an adaptive filter is used.

Needless to emphasize, the key to the successful operation of the adap-
tive noise canceller is the availability of a good reference signal v2(k) which
has a strong correlation with v1(k) but ideally has no correlation with the
speech signal x(k). The performance of the employed adaptive algorithm is
also critical. If the adaptive algorithm cannot converge fast enough to track
time variation of the noise signals, the estimate of the noise signal cannot
be reliable. The problem that the adaptive filter faces in ANC is similar to
that in acoustic echo cancellation (AEC). Thereafter a number of recently
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1
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Adaptive

Filter

−

Fig. 12.11. Illustration of the concept of adaptive noise cancellation when a refer-
ence noise signal v2(k) is available.

proposed fast adaptive algorithms that were found useful for AEC can also be
helpful for ANC. They include the frequency-domain adaptive filters [4], the
improved proportionate NLMS (IPNLMS) algorithm [5], and the exponenti-
ated gradient (EG) algorithm [7].

12.4 Algorithm Validation

12.4.1 In-Helmet Multichannel Acoustic Data Collection

For algorithm analysis and validation, two sets of multichannel acoustic data
were collected from inside of several spacesuits at the beginning of this re-
search. One set of the data was measured by us (i.e., WeVoice, Inc.) and
NASA engineers from the Glenn Research Center (GRC) and Johnson Space
Center (JSC) in March 2008. The other was measured by Begault and Hi-
eronymus from the NASA Ames Research Center (ARC) in early 2007 [2].

WeVoice-GRC Experimental Setup

In the WeVoice-GRC data collection effort, two NASA’s current prototype
planetary exploration suits were used. They are the Mark III (a joint effort
between Air-Lock, Inc. and ILC Dover, Inc.) and the REI (Rear Entry I-Suit
developed and fabricated by ILC Dover, Inc.) suits, as shown in Fig. 12.12.
Both are rear-entry suits, unlike the EMU currently in use, which is a waist-
entry suit. The Mark III incorporates a hybrid mixture of hard and soft suit
components, including hard upper torso (HUT), hard brief and hip/thigh
elements made of graphite/epoxy composite, bearings at the shoulder, upper
arm, hip, waist, and ankle, and soft fabric joints at the elbow, knee, and ankle,
and a pair of military flight boots. The I-Suit is primarily a soft suit, yet
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(a)

(b)

Fig. 12.12. Comparison of two NASA’s prototype planetary exploration spacesuits:
(a) the Mark III with a round helmet neck ring and (b) the REI (Rear Entry I-Suit)
with an oval ring.

incorporates a limited number of bearings at the wrist, shoulder, upper arm,
upper hip, upper leg joints (the other joints on this suit are fabric joints).
In addition, it has a pair of mountaineering boots. The I-Suit represents a
compromise between an HUT suit and an all soft suit, such as the Apollo
A7LB suit. As illustrated in Fig. 12.12, the Mark III has a round helmet neck
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(a) (b)

Fig. 12.13. Illustration of two equispaced, linear microphone arrays and their
mounting apparatuses developed in the multichannel acoustic data collection ex-
periments. (a) The SMS array mounted in a Mark III suit and (b) the Pro-Audio
microphone array mounted in a REI suit.

ring while the REI has an oval ring. The Mark III is much (about 50 pounds)
heavier but has better mobility than the I-Suit [117].

Two types of microphone array and acoustic data acquisition systems were
used. One is an SPL (Sound Pressure Level) Measurement System (SMS) and
the other is a digital Pro-Audio system. Each system has its own 4-element
linear microphone array with 4 cm inter-element spacing located in front of
the suit subject. Specialized microphone array mounting apparatuses were
developed at NASA-JSC, as illustrated in Fig. 12.13. In addition to the 4-
element array, a fifth microphone (of the same type as that used in the array)
was positioned on the rear panel (for the study on adaptive noise cancellation)
and a close-talking microphone was also used. The rear panel on the Mark III
suit had an acoustic foam panel covering the rear where the microphone was
located.

The SMS provided by the NASA GSC EVA Audio Team is a NIST-
calibrated acoustic data collection system. Its array consists of 4 G.R.A.S.
Type 40BE pre-polarized, free-field instrumentation microphones with type
26CB preamp modules. An NI-4722 24-bit DAQ performs analog-to-digital
conversion (ADC) and provides the IEPE current supply for the microphone
preamps. The Pro-Audio system was designed by WeVoice, Inc. It employs
an array of 4 MWM Acoustics EM6022 omni-directional electret microphone,
a Grace M802 microphone preamp with digital audio outputs, a Rosetta 800
Apogee audio interface, and a PC Laptop (Windows XP) with Adobe Au-
dition software. The block diagrams of these two multichannel acoustic data
acquisition systems are presented in Fig. 12.14.

In the experiments, the Mark III and REI suits were fitted with both
the SMS and the Pro-Audio microphone arrays. An extensive set of tests
were run under three measurement conditions: 1) subject standing, 2) subject
walking slow, and 3) subject walking fast. The experiments were conducted
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Fig. 12.14. Block diagrams of (a) the SPL measurement and (b) the digital Pro-
Audio multichannel acoustic data acquisition systems.

using either a Liquid Air Backpack (LAB) or a K-Bottle based air supply.
The K-Bottle supply simulates an umbilical configuration while the LAB sim-
ulates a PLSS (Primary, or Portable, Life Support System/Subsystem) based
configuration. Over 11 gigabytes of data were collected.



12.4 Algorithm Validation 207

Andrea ANC-700 active
noise cancelling microphone
on communication cap

YOGA EM060 omni-directional
electret microphones

Fig. 12.15. Mark III suit with helmet bubble removed showing a head-mounted
Andrea ANC-700 active noise cancelling microphone on the communication cap and
two Yoga EM060 electret microphones as placed along the helmet ring. (Courtesy
Durand R. Begault and James L. Hieronymus, NASA ARC.)

ARC Experimental Setup

In the experiments that Begault and Hieronymus conducted [2], data were
collected by a digital Pro-Audio system in a Mark III suit with LAB. While
different microphone array, preamp, and ADC were used, their system archi-
tecture is similar to that of the WeVoice Pro-Audio system as illustrated in
Fig. 12.14(b). Attached to the communication cap was also an Andrea ANC-
700 active noise cancelling microphone used as a baseline reference. But the
array consisted of only two YOGA EM 060 omni-directional electret micro-
phones, which were positioned around the helmet-mounting ring of the suit
on foam rubber mounts at 7 and 4 o’clock, respectively (the top of the ring
is 12 o’clock and the bottom 6 o’clock), as shown in Fig. 12.15. The subject
read a set of spoken dialogue system commands with the suit pressurized in
the following 5 conditions:

1) subject inside suit on the “donning stand,” a device that holds the suit in
place,

2) subject standing,
3) subject walking (footfall impacts and hip bearing noise),
4) subject walking and moving arms (shoulder bearing noise plus walking

noise), and
5) subject seated in a rover seat (volume change and head lower in helmet

area).
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In-Helmet Multichannel Acoustic Database and Data
Preprocessing

Among the huge amount of multichannel acoustic data, not all the recordings
are immaculate and can be used for validation of beamforming and multi-
channel noise reduction algorithms. Only typical, relevant recordings of good
quality are selected to form a database for future use. A description of the
database is presented in Table 12.3. All these multichannel sound clips were
sampled at 48 kHz and quantized with 16 bits.

Shown in Fig. 12.16(a) is a period of waveform extracted from
grc stand.wav for which the suit subject stood with no body movement and
hence only air flow related noise was present. Clearly seen from Fig. 12.16(c),
the recording contained a loud low-frequency sound, which is similar to rum-
ble noise (rumble noise is a loud low-frequency sound and is usually caused
by ball bearings). A high-pass filter (HPF) therefore needs to be used to pre-
process the microphone outputs. Such a high-pass filtering is critical to the
beamforming and multichannel noise reduction algorithms that follow. Mul-
tichannel algorithms that exploit spatial sampling generally can yield just a
theoretically marginal gain in speech enhancement for low-frequency signals.
If a loud low-frequency noise signal dominates in the microphone output like
what is shown in Fig. 12.16(a), then the full-band improvement of those mul-
tichannel algorithms will not manifest even though they can do a pretty good
job in high-frequency bands. The processed signal using an HPF with the cut-
off frequency of 100 Hz is shown in Fig. 12.16(b) and a comparison of spectrum
of the original and processed noise signals is presented in Fig. 12.16(c).

Summarized in Table 12.4 are the SNRs of the recorded multichannel sig-
nals and the signals after being HP filtered. These SNRs will be used as the
baseline references to assess the beamforming and multichannel noise reduc-
tion algorithms. Since speech is non-stationary in nature, estimating the SNR
of a noise-corrupted speech signal is not a theoretically trivial problem. So-
phisticated speech-model-based methods (e.g., hidden Markov model-based
approaches) are computationally intensive, while simple algorithms may not
be always reliable. In our research, a frame-based, histogram analysis algo-
rithm is used for SNR estimation of speech signals. This algorithm divides
a sufficiently long sequence of speech samples into frames and computes the
energy of each frame. The average of the top 20% of the frame energies is
regarded as the speech energy and the average of the bottom 20% as the noise
energy. Their ratio leads to the SNR estimate of the signal.

12.4.2 Performance Evaluation of Beamforming Algorithms

In this study, fixed beamformers targeted for a nearfield speech sound source
were first investigated. But unfortunately these fixed beamformers produced
only marginal, if not nonexistent, gains in SNR. For these results, two possi-
bilities can be surmised: 1) the speech source and the dominant noise sources
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Table 12.3. Description of the multichannel acoustic database collected from inside
spacesuits.
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Fig. 12.16. Illustration of low-frequency noise recorded inside spacesuits and re-
moving it with a high-pass filter (HPF). (a) A short period of waveform extracted
from grc stand.wav, (b) the processed signal using a high-pass filter with the cut-off
frequency of 100 Hz, and (c) the comparison of spectrum between the original and
the processed noise signals (corresponding to the circled parts).



12.4 Algorithm Validation 211

Table 12.4. SNRs of the recorded multichannel signals and the signals after being
high-pass filtered.

SNR (dB)

Microphone Outputs HP-Filtered Signals

File Name #1 #2 #3 #4 #1 #2 #3 #4

wv stand.wav 21.309 19.683 19.567 21.508 22.891 22.393 22.012 22.335

wv walkslow.wav 19.062 18.606 17.942 19.717 20.496 20.784 20.997 20.553

wv walkfast.wav 19.431 19.028 19.061 19.251 20.265 20.750 20.686 19.755

grc stand.wav 15.417 15.417 16.145 15.614 21.912 21.912 20.385 21.143

grc walkfast.wav 17.067 15.541 15.590 16.216 17.766 18.027 17.207 18.094

SNR (dB)

Microphone Outputs HP-Filtered Signals

File Name #1 #2 #1 #2

arc donning lookfwd.wav 16.874 17.007 28.902 27.959

arc donning lookright.wav 18.560 18.152 29.507 27.300

arc donning lookleft.wav 18.066 18.328 28.618 28.744

arc stand lookfwd.wav 14.950 14.558 26.601 26.012

arc stand lookright.wav 17.593 16.829 26.881 25.933

arc stand lookleft.wav 16.853 16.292 27.646 27.383

arc walk.wav 17.247 17.800 20.888 20.869

arc walk movearm1.wav 13.539 12.743 20.427 20.111

arc walk movearm2.wav 12.380 12.953 19.146 18.554

are in the same direction with respect to the array, 2) the assumption that
the suit subject’s mouth can be treated as a point sound source is problematic
inside the helmet.

Recall that in the WeVoice and GRC measurements, the two arrays were
mounted under the suit subject’s jaw (see Fig. 12.13). Consequently, both the
subject’s mouth and the airflow inlet are normal to the array axis and the
first surmise above is very likely true. Presented in Fig. 12.17 is a comparison
of the magnitude of coherence between the signals in two periods of recording
extracted from wv stand.wav: one when speech was present and the other
when there was only noise. It is evident that the noise signals at the four
microphones are fairly coherent.

We studied the second surmise via a number of time delay estimation
(TDE) algorithms for acoustic source localization. They included the full-band
GCC-PHAT (generalized cross correlation-phase transform) method [84], the
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Fig. 12.17. Comparison of the magnitude of coherence between the signals in two
periods of recording extracted from wv stand.wav: (a) when speech was present and
(b) when there was only noise.

subband GCC-PHAT algorithm, the adaptive eigenvalue decomposition de-
composition algorithm [3], [70], the blind SIMO system identification based
approach [71], and the spatial multichannel correlation technique [9], [23].
A voice activity detector was used and flawed detections around ambiguous
speech-noise boundaries were manually corrected. But still none of the TDE
algorithms can produce satisfyingly consistent and accurate results. While
these can be mainly attributed to strong reverberation and loud noise inside
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Table 12.5. Summary of the simulation results of an adaptive subband MVDR
beamformer (MVDR-BF) followed by a Wiener filter for single-channel noise reduc-
tion (WF-SCNR) with the multichannel acoustic data gathered in spacesuits.

Input Microphone Output SNR (dB) Average

SNR (dB) MVDR- WF- Gain

File Name #1 #2 #3 #4 BF SCNR (dB)

wv stand.wav 22.89 22.39 22.01 22.33 22.97 34.62 12.21

wv walkslow.wav 20.50 20.78 21.00 20.55 21.25 31.29 10.58

wv walkfast.wav 20.27 20.75 20.69 19.76 21.47 31.45 11.08

grc stand.wav 21.91 21.91 20.38 21.14 22.04 32.11 10.77

grc walkfast.wav 17.76 18.02 17.21 18.09 17.97 26.64 8.87

Input Mic. Output SNR (dB) Average

SNR (dB) MVDR- WF- Gain

File Name #1 #2 BF SCNR (dB)

arc donning lookfwd.wav 28.91 27.96 29.55 42.74 14.31

arc donning lookright.wav 29.49 27.30 28.50 41.80 13.41

arc donning lookleft.wav 29.02 28.74 29.44 42.02 13.14

arc stand lookfwd.wav 26.59 26.02 26.92 39.38 13.07

arc stand lookright.wav 26.90 25.93 26.37 38.95 12.54

arc stand lookleft.wav 27.65 27.39 27.49 40.60 13.08

arc walk.wav 20.90 20.87 21.97 32.08 11.20

arc walkarm1.wav 20.42 20.11 21.22 32.34 12.07

arc walkarm2.wav 19.14 18.56 18.65 29.43 10.58

the helmet, a negative impact caused by the problematic assumption that
the mouth can be treated as a point sound source (by observing its size with
respect to the distance from the array) is certainly unable to be eliminated.

In addition to fixed beamformers, two adaptive beamforming algorithms
were also tested: the full-band and subband MVDR beamformers. The speech
source was believed to be in the broadside. The subband MVDR beamformer
performed better than the full-band implementation. The subband MVDR
results are presented in Table 12.5. This study suggests that we need to move
the microphone array to the side of the suit subject (such that the mouth and
the airflow inlet could be in different directions to the array) in the following-
up efforts for the development of ISA systems.
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12.4.3 Validation of Multichannel Noise Reduction Algorithms

The simulation results of the subband MVDR algorithm for multichannel
noise reduction (MCNR) are summarized in Table 12.6. By comparing these
results to that presented in Table 12.5, it is very clear that the MVDR for
MCNR performs better than the MVDR beamformer. In each set of the three
measurements, the performance of both the beamformer and MCNR degrades
as the subject increases movement and the noise becomes more non-stationary.
Figure 12.18 visualizes the non-stationarity of the noise signals recorded under
different conditions. When the suit was on the donning stand, the noise signal
was at a low level and reasonably stationary. But as the subject’s movement
increased, the captured noise became more and more non-stationary. When
the subject walked and moved his arms, the noise sounds like sanding wood.
In this case, noise reduction would be very challenging.

12.4.4 Validation of Single-Channel Noise Reduction Algorithms

Tables 12.5 and 12.6 also include the performance of a Wiener-filter single-
channel noise reduction algorithm as a post filter following the subband
MVDR beamformer and the subband MVDR multichannel noise reduction,
respectively. One can see that the Wiener filter for single-channel noise re-
duction we developed in this research is relatively robust and can reliably
produce about 12 dB gain in SNR in all studied measurement conditions. In
our experiments, the algorithm was tuned to yield such a level of gain with
the amount of speech distortion that caused little intelligibility loss according
to our informal listening tests. If more speech distortion is allowed, more gain
in SNR can be achieved. Figure 12.19 visualizes the noise reduction proce-
dure and plots the waveforms of the first microphone, the MCNR, and the
SCNR outputs for the recording wv stand.wav. The background airflow noise
is clearly minimized.

12.4.5 Feasibility Assessment of Using Adaptive Noise
Cancellation in Spacesuits

As previously explained, the key to the success of applying an adaptive noise
cancellation algorithm inside spacesuits is that the reference noise signal is
highly correlated with the noise components, but is little correlated with the
speech components of the primary microphone outputs. These two conditions
are equally important. By examining the reference microphone (Microphone 5
in the WeVoice and GRC measurements) signals, we found that they contain
very evident speech signals from the suit subject, as seen from a sample of
Microphone 5 outputs in comparison with the first microphone output shown
in Fig. 12.20. Therefore, adaptive noise cancellation cannot be employed with
the current installation of Microphone 5. In the future, Microphone 5 will be
moved further away from the spacesuit helmet, ideally closer to the spacesuit
bearings.
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Fig. 12.18. Comparison of stationarity among the noise signals in the ARC mea-
surements under different conditions: (a) subject inside suit on the “donning stand”
(looking forward), (b) subject standing (looking forward), (c) subject walking, and
(d) subject walking and moving arms.
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Fig. 12.19. Waveforms of (a) the first microphone, (b) the output of the sub-
band MVDR algorithm for multichannel noise reduction, and (c) the output of the
Wiener filter for single-channel noise reduction in the processing of the recording
wv stand.wav.
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Table 12.6. Summary of the simulation results of a subband MVDR algorithm for
multichannel noise reduction (MVDR-MCNR) followed by a Wiener filter for single-
channel noise reduction (WF-SCNR) with the multichannel acoustic data gathered
in spacesuits.

Input Microphone Output SNR (dB) Average

SNR (dB) MVDR- WF- Gain

File Name #1 #2 #3 #4 MCNR SCNR (dB)

wv stand.wav 22.89 22.39 22.01 22.33 30.69 41.82 19.42

wv walkslow.wav 20.50 20.78 21.00 20.55 28.14 40.19 19.49

wv walkfast.wav 20.27 20.75 20.69 19.76 29.09 40.98 20.62

grc stand.wav 21.91 21.91 20.38 21.14 25.36 37.73 16.39

grc walkfast.wav 17.76 18.02 17.21 18.09 20.54 29.82 12.05

Input Mic. Output SNR (dB) Average

SNR (dB) MVDR- WF- Gain

File Name #1 #2 MCNR SCNR (dB)

arc donning lookfwd.wav 28.91 27.96 31.91 44.85 16.42

arc donning lookright.wav 29.49 27.30 32.20 45.66 17.27

arc donning lookleft.wav 29.02 28.74 31.89 44.30 15.43

arc stand lookfwd.wav 26.59 26.02 28.73 40.88 14.58

arc stand lookright.wav 26.90 25.93 29.15 42.05 15.63

arc stand lookleft.wav 27.65 27.39 30.30 42.74 15.22

arc walk.wav 20.90 20.87 23.25 32.68 11.80

arc walkarm1.wav 20.42 20.11 21.28 33.30 13.03

arc walkarm2.wav 19.14 18.56 19.87 31.27 12.42

12.5 Summary

This chapter described one of our ongoing efforts to help NASA develop an
integrated spacesuit audio system for in-helmet voice communication during
extravehicular activities. The motivation underlying such a project was first
explained by the necessities for the enhanced intelligibility and quality of cap-
tured speech, comfort and ease of use, and logistical convenience. Then the
unique challenges imposed by the extreme acoustic environment due to the
special design of spacesuits were analyzed. Four noise reduction techniques
were proposed and the theoretical considerations as to why these techniques
can potentially be helpful were comprehensively discussed. Finally the experi-
mental setup and procedure as well as the preliminary validation results were
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Fig. 12.20. Waveforms of (a) the 1st and (b) the 5th microphone outputs in the
recording wv stand.wav.

reported and the established directions for future work were sketched. We use
such a real-life example to show how the problem of noise reduction is tackled
in practice and believe that the experience can be beneficial to the readers
who are probably working on distant speech acquisition systems in different
acoustic environments but with similar noise reduction tools.
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