The Essential Guide to Technical Product Specification: Engineering Drawing

Colin Simmons
and
Neil Phelps

First published in the UK in 2009 by

BSI 389 Chiswick High Road London W4 4AL

(C) British Standards Institution 2009

All rights reserved. Except as permitted under the Copyright, Designs and Patents Act 1988, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means - electronic, photocopying, recording or otherwise - without prior permission in writing from the publisher.

Whilst every care has been taken in developing and compiling this publication, BSI accepts no liability for any loss or damage caused, arising directly or indirectly in connection with reliance on its contents except to the extent that such liability may not be excluded in law.

While every effort has been made to trace all copyright holders, anyone claiming copyright should get in touch with the BSI at the above address.

BSI has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this book, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

The right of Colin Simmons and Neil Phelps to be identified as the authors of this Work has been asserted by them in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

Typeset in Optima and Gill Sans by Monolith - http://www.monolith.uk.com
Printed in Great Britain by Berforts Group, Stevenage

A catalogue record for this book is available from the British Library

Contents

Introduction vii
Dimensioning and tolerancing of size
1.1 Introduction
1.2 General principles
1.3 Types of dimension1
1.4 Dimensioning conventions
1.5 Arrangement of dimensions
1.6 Methods for dimensioning common features41.7 Dimensioning screw threads and threaded parts9
1.8 Dimensioning chamfers and countersinks12
1.9 Equally spaced repeated features 14
1.10 Dimensioning of curved profiles 16
1.11 Dimensioning of keyways 17
1.12 Tolerancing 18
1.13 Interpretations of limits of size for a feature-of-size 19
1.14 Datum surfaces and functional requirements 21
1.15 Relevant standards 21
Geometric tolerancing datums and datum systems 23
2.1 Introduction 23
2.2 Terms and definitions 23
2.3 Basic concepts 26
2.4 Symbols 27
2.5 Tolerance frame 29
2.6 Toleranced features 29
2.7 Tolerance zones 32
2.8 Datums and datum systems 37
2.9 Supplementary indications 45
2.10 Examples of geometrical tolerancing 64
2.11 Relevant standards 114
Graphical symbols for the indication of surface texture 115
3.1 Introduction 115
3.2 The basic graphical symbol 115
3.3 Expanded graphical symbols 115
3.4 Mandatory positions for the indication of surface texture requirements 116
3.5 Surface texture parameters 117
3.6 Indication of special surface texture characteristics 118
3.7 Indications on drawings 120
3.8 Relevant standards 123
Welding, brazed and soldered joints - Symbolic representation 125
4.1 Introduction 125
4.2 Relevant standards 133
Limits and fits 135
5.1 Introduction 135
5.2 Selected ISO fits - Hole basis 135
5.3 Selected ISO fits - Shaft basis 138
5.4 Methods of specifying required fits 140
5.5 Relevant standards 140
Metric screw threads 141
6.1 Introduction 141
6.2 Thread designation 141
6.3 Relevant standards 168
Illustrated index to BS $\mathbf{8 8 8 8}$ 169
Normative references 169

Chapter 1

Dimensioning and tolerancing of size

1.1 Introduction

Dimensioning is the process of applying measurements to a technical drawing. It is crucial to the whole process by which the designer will communicate the information required for the manufacture and verification of products.

1.2 General principles

Dimensions shall be applied to the drawing accurately, clearly and unambiguously. The following points shall be regarded as general dimensioning principles to be applied to all technical drawings.

- Each dimension necessary for the definition of the finished product shall be shown once only.
- Never calculate a dimension from the other dimensions shown on the drawing, nor scale the drawing.
- There shall be no more dimensions than are necessary to completely define the product.
- Preferred sizes shall be used whenever possible (see notes).
- Linear dimensions shall be expressed in millimetres (unit symbol ' mm '). If this information is stated on the drawing, the unit symbol 'mm' may be omitted. If other units are used, the symbols shall be shown with their respective values.
- Dimensions shall be expressed to the least number of significant figures, e.g. 45 not 45,0.
- The decimal marker shall be a bold comma, given a full letter space and placed on the baseline.
- Where four or more numerals are to the left or right of the decimal marker, a full space shall divide each group of three numerals, counting from the position of the decimal marker, e.g. 400 or 100 but 12500 (see notes).
- A zero shall precede a decimal of less than one, e.g. 0,5.
- An angular dimension shall be expressed in degrees and minutes, e.g. 20° and $22^{\circ} 30^{\prime}$ or, alternatively, as a decimal, e.g. 30,5 .
- A full space shall be left between the degree symbol and the minute numeral.
- When an angle is less than one degree, it shall be preceded by a zero, e.g. $0^{\circ} 30^{\prime}$.

NOTES: Preferred sizes are those referring to standard material stock sizes and standard components such as nuts, bolts, studs and screws.

Decimal marker points or commas are not used to separate groups of numerals. This causes ambiguity since the decimal marker is denoted by a comma.

1.3 Types of dimension

For the purposes of this section, the following definitions apply.

dimension

numerical value expressed in appropriate units of measurement and indicated graphically on technical drawings with lines, symbols and notes

Dimensions are classified according to the following types.

functional dimension

dimension that is essential to the function of the piece or space (' F ' in Figure 1). See also 1.14

non-functional dimension

dimension that is not essential to the function of the piece or space (' NF ' in Figure 1)

auxiliary dimension

Dimension, given for information purposes only, that does not govern production or inspection operations and is derived from other values shown on the drawing or in related documents

NOTE: An auxiliary dimension is given in parentheses and no tolerance may be applied to it ('AUX' in Figure 1).

feature

individual characteristic such as a flat surface, a cylindrical surface, two parallel surfaces, a shoulder, a screw thread, a slot or a profile

end product

complete part ready for assembly or service
or
configuration produced from a drawing specification
or
part ready for further processing (for example, a product from a foundry or forge) or a configuration needing further processing

Figure 1 - Types of dimensioning

1.4 Dimensioning conventions

Technical product specification standards specify the following conventions when dimensioning drawings.
Extension lines shall normally be placed outside the view to aid clarity, as shown in Figure 2.
The extension line connects the dimension line (on which the value of the measurement is placed) to the reference points on the outline of the drawing. The following standard practice is specified.

Crossing of extension lines shall be avoided whenever possible.
There should be a small gap between the outline of the drawing and a projection line. The extension line shall extend slightly beyond the dimension line, as shown in Figure 2.

Extension lines shall, where possible, be drawn at right angles to the dimension line.
Centre-lines, extensions of centre-lines and continuations of outlines shall never be used as dimension lines. They may, however, be used as projection lines.

Arrowheads and origin circles are commonly used as terminators for dimension lines. Oblique strokes and points can also be used, as shown in Figures 3 and 4.

Dimension lines shall be unbroken even if the feature they refer to is shown as interrupted, as illustrated in Figure 5.

Figure 2 - Examples of extension lines and dimension lines

Terminators: dimension lines shall be terminated according to one of the representations shown in Figure 3.

Figure 3 - Terminators for dimension lines

Origin indication: the origin of the dimension line shall be indicated as shown in Figure 4.

Figure 4 - Origin indication

Figure 5 - Dimensioning interrupted features

When symmetrical parts are drawn partially, the portions of the dimension lines shall extend a short way beyond the axis of symmetry and the second termination shall be omitted, as shown in Figure 6.

Figure 6 - Dimension lines on a partial view of a symmetrical part

1.5 Arrangement of dimensions

The way in which dimensions are typically used on drawings is shown in Figure 7. Conventions for arranging dimensions on drawings are as follows.

Dimensions shall be placed in the middle of the dimension line above and clear of it.
Dimensions shall not be crossed or separated by other lines on the drawing.
Values of angular dimensions shall be oriented so that they can be read from the bottom or the right-hand side of the drawing, as shown in Figure 8.

Where space is limited, the dimension can be placed centrally, above, or in line with, the extension of one of the dimension lines, as shown in Figure 9.

Larger dimensions shall be placed outside smaller dimensions, as shown in Figure 10.

Dimensions of diameters shall be placed on the view that provides the greatest clarity, as shown in Figure 11.

Figure 7 - Examples of the ways in which dimensions are typically used on drawings

Figure 8 - Orientation of linear and angular dimensions

Figure 9 - Dimensioning smaller features

Figure 10 - Larger dimensions placed outside smaller dimensions

Figure 11 - Dimensions of diameters placed on view providing greatest clarity

Dimensioning from a common feature can be used where a number of dimensions of the same direction relate to a common origin.

Dimensioning from a common feature may be executed as parallel dimensioning or as superimposed running dimensioning.

Parallel dimensioning is the placement of a number of single dimension lines parallel to one another and spaced out so that the dimensional value can easily be added in, as shown in Figure 12a.

Superimposed running dimensioning is a simplified parallel dimensioning and may be used where there are space limitations. The common origin is as shown in Figure 12. Dimension values may be above and clear of the dimension line, as shown in Figure 12b; or in line with the corresponding extension line, as shown in Figure 12c.

Figure 12 - Paralle/ dimensioning and running dimensioning

Chain dimensioning consists of a chain of dimensions. These shall only be used where the possible accumulation of tolerances does not affect the function of the part, as shown in Figure 13.

Figure 13 - Chain dimensioning

Combined dimensioning uses chain dimensioning and parallel dimensioning on the same drawing view. Figure 14a illustrates combining single dimensions and parallel dimensioning from a common feature. Figure 14b illustrates combining single dimensions and chain dimensions.

a)

b)

Figure 14 - Combined dimensioning

Dimensioning by coordinates uses superimposed running dimensioning in two directions at right angles, as shown in Figure 15a. The common origin may be any suitable common reference feature. It may be useful, instead of dimensioning as shown in Figure 15a, to tabulate dimensional values as shown in Figure 15b.

a) in two directions

Hole	X	Y	\varnothing
A1	20	20	15
A2	20	160	15
B1	60	60	10
B2	60	120	10
C	100	90	25

b) tabulated

Figure 15 - Dimensioning by coordinates

1.6 Methods for dimensioning common features

Certain features, such as diameters, radii, squares, hole sizes, chamfers, countersinks and counter-bores, can occur frequently in engineering drawings.

A diameter of a circle or cylinder shall be dimensioned by prefixing the value with the symbol \emptyset, as shown in Figure 16. A square feature shall be dimensioned by prefixing the value with the symbol a . Additionally, square and flat features can be indicated by continuous narrow lines drawn diagonally on the flat feature, as shown in Figure 18.

Where dimension lines and other lines (e.g. extension lines) would otherwise intersect, the dimension lines to the feature can be dimensioned by leader lines as shown in Figure 16.

Where the whole view is not shown, concentric diameters shall be dimensioned as in Figure 17.

Figure 16 - Diameter dimensions indicated by leader lines

Figure 17 - Dimensioning concentric diameters on a partial view

Figure 18 - Dimensioning a square

Circles shall be dimensioned as shown in Figure 19 and spherical surfaces as shown in Figure 20.
Radii of features shall be dimensioned by prefixing the value with the letter R. Radii shall be dimensioned by a line that passes through, or is in line with, the centre of the arc. The dimension line shall have one arrowhead only, which shall touch the arc.

Radii that require their centres to be located shall be dimensioned as in Figure 21a; those that do not shall be dimensioned as in Figure 21b. Spherical radii shall be dimensioned as shown in Figures 21c and 21 d .

Figure 19 - Dimensioning a diameter
-

b)

Figure 20 - Dimensioning spherical diameters

a)

Figure 21 - Dimensioning radii

Holes shall be dimensioned as shown in Figure 22. The depth of the drilled hole, when given after the diameter, refers to the depth of the cylindrical portion of the hole and not to the extremity made by the point of the drill, unless otherwise specified.

The method of production (e.g. drill, punch, bore or ream) shall not be specified except where it is essential to the function of the part.

Figure 22 - Dimensioning holes

The dimensioning of chords, arcs and angles shall be as shown in Figure 23.

Figure 23 - Dimensioning chords, arcs and angles

Dimensioning the spacing of holes and other features on a curved surface shall be as shown in Figure 24, whether the dimensions are chordal or circumferential, they shall be indicated clearly on the drawing.

Figure 24 - Dimensions on a curved surface

1.7 Dimensioning screw threads and threaded parts

ISO metric screw threads shall be designated in accordance with BS EN ISO 6410-1, which specifies that the designation shall indicate the thread system, nominal diameter and the thread tolerance class. If necessary, the pitch shall also be indicated; however, when designating metric coarse threads, the pitch is generally omitted.

The nominal diameter refers to the major diameter of external and internal threads; the dimension relating to the depth of thread refers to the full depth of thread. The direction of a right hand thread (RH) is not generally noted; however left hand threads shall be denoted with the abbreviation 'LH' after the thread designation.

Thread system and size

The letter M, denoting ISO metric screw threads, shall be followed by the values of the nominal diameter and pitch (if required), with a multiplication sign between them, e.g. $\mathrm{M} 8 \times 1$.

Thread tolerance class

For general use, the tolerance class 6 H is suitable for internal threads and tolerance class 6 g for external threads. The thread tolerance class shall be preceded by a hyphen, e.g. $\mathrm{M} 10-6 \mathrm{H}$ or $\mathrm{M} 10 \times 1-6 \mathrm{~g}$.

Screw threads shall be dimensioned as shown in Figures 25 and 26.

Figure 25 - Dimensioning external screw threads

Figure 26 - Dimensioning internal screw threads

1.8 Dimensioning chamfers and countersinks

Chamfers shall be dimensioned as shown in Figure 27. Where the chamfer angle is 45°, the indications may be simplified as shown in Figure 28.

Figure 27 - Dimensioning external and internal chamfers

Figure 28 - Simplified dimensioning of chamfers

Countersinks shall be dimensioned by showing either the required diametral dimension at the included angle, or the depth and the included angle, as shown in Figure 29.

Figure 29 - Dimensioning countersinks

1.9 Equally spaced repeated features

Where repeated features are linearly spaced, a simplified method of dimensioning may be used, as shown in Figure 30.

Figure 30 - Dimensioning of linear spacings

If there is any ambiguity, one feature space may be dimensioned as illustrated in Figure 31.

Figure 31 - Dimensioning of linear spacings to avoid confusion

Angular, equally spaced features shall be dimensioned as shown in Figure 32. The angle of the spacings can be omitted where the intent is explicit, as shown in Figure 33.

Figure 32 - Dimensioning angular spacing

Figure 33 - Omission of angle of spacing

Circular spaced features can be dimensioned indirectly by specifying the number of common features as shown in Figure 34.

Figure 34 - Dimensioning circular spacings

Series or patterned features of the same size may be dimensioned as illustrated in Figures 35 and 36.

Figure 35 - Dimensioning a quantity of features of the same size - linear

Figure 36 - Dimensioning a quantity of features of the same size - circular

1.10 Dimensioning of curved profiles

Curved profiles composed of circular arcs shall be dimensioned by radii, as shown in Figure 37.
Coordinates locating points on a curved surface, as shown in Figure 38, shall only be used when the profile is not composed of circular arcs. The more coordinates specified, the better the uniformity of the curve.

Figure 37 - Dimensioning of a curved profile

Figure 38 - Linear coordinates of a series of points through which a profile passes

1.11 Dimensioning of keyways

Keyways in hubs or shafts shall be dimensioned by one of the methods shown in Figure 39.
NOTE: Further information on keys and keyways is given in BS 4235-1, Specification for metric keys and keyways - Part 1: Parallel and taper keys and BS 4235-2, Specification for metric keys and keyways - Part 2: Woodruff keys and keyways.

Figure 39 - Dimensioning of keyways

1.12 Tolerancing

Tolerancing is the practice of specifying the upper and lower limit for any permissible variation in the finished manufactured size of a feature. The difference between these limits is known as the tolerance for that dimension.

All dimensions (except auxiliary dimensions) are subject to tolerances.
Tolerances shall be specified for all dimensions that affect the functioning or interchange ability of the part.

Tolerances shall also be used to indicate where unusually wide variations are permissible.
Tolerances shall be applied either to individual dimensions or by a general note giving uniform or graded tolerances to classes of dimensions, for example:

TOLERANCE UNLESS OTHERWISE STATED LINEAR $\pm 0,4$ ANGULAR $\pm 0^{\circ} 30^{\prime}$
The method shown in Figure 40a should be followed where it is required to tolerance individual linear dimensions. This method directly specifies both the limits of the size of the dimension, the tolerance being the difference between the limits of the size.

The larger limit of the size shall be placed above the smaller limit and both shall be given to the same number of decimal places.

The method shown in Figure 40b can be used as an alternative way of specifying tolerances.

Figure 40 - Linear dimension tolerance by directly specifying limits of size

The methods shown in Figure 41 may be used to tolerance individual angular dimensions.

Figure 41 - Tolerancing angular dimensions

1.13 Interpretations of limits of size for a feature-of-size

Limits of size for an individual feature-of-size shall be interpreted according to the principles and rules defined in BS ISO 8015, BS EN ISO 14660-1 and BS EN ISO 14660-2.

A feature-of-size may consist of two parallel plane surfaces, a cylindrical surface or a spherical surface, in each case defined with a linear size. A feature-of-size may also consist of two plane surfaces at an angle to each other (a wedge) or a conical surface, in each case defined with an angular size.

BS ISO 8015 states that limits of size control only the actual local sizes (two-point measurements) of a feature-of-size and not its deviations of form (e.g. the roundness and straightness deviations of a cylindrical feature, or the flatness deviations of two parallel plane surfaces). Form deviations may be controlled by individually specified geometrical tolerances, general geometrical tolerances or through the use of the envelope requirement (where the maximum material limit of size defines an envelope of perfect form for the relevant surfaces; see BS ISO 8015).

BS ISO 8015 defines the principle of independency, according to which each specified dimensional and geometrical requirement on a drawing is met independently, unless a particular relationship is specified. A relationship may be specified through the use of the envelope requirement or material condition modifiers maximum material condition (MMC) or least material condition (LMC).

Where no relationship is specified, any geometrical tolerance applied to the feature-of-size applies regardless of feature size, and the two requirements shall be treated as unrelated, as shown in Figure 42. The limits of size do not control the form, orientation, or the spatial relationship between, individual features-of-size.

Consequently, if a particular relationship of size and form, or size and location, or size and orientation is required, it needs to be specified.

a) Drawing presentation

NOTE There is no form control (i.e. over roundness, straightness or cylindricity). Measurements a, b and c may lie between 25.0 mm and 24.9 mm , meeting the drawing requirement using two-point measurement only.
b) Permissible interpretation: straightness unconstrained

NOTE For any cross-section of the cylinder, there is no roundness control.
c) Permissible interpretation: roundness unconstrained

Figure 42 - Permissible interpretations when no form control is given on the drawing

1.13.1 Limits of size with mutual dependency of size and form

Some national standards apply, or have applied, the envelope requirement to all features-of-size by default. As the envelope requirement has been the default, they have not used a symbol to indicate this requirement; rather they use a note to indicate when this is not required. This system of tolerancing is sometimes described as the principle of dependency, or the application of the Taylor principle.

Standards which apply, or have applied, the envelope requirement by default include:

ASME Y14.5

The requirement that there shall be an envelope of perfect form corresponding to the maximum material size of the feature is defined as Rule \#1).

BS 308

The principle of dependency was taken as the default option under BS 308, although the option of working to the principle of independency was included, through the use of the BS 308 triangle I indication.

BS 8888

Prior to the 2004 revision; the principle of dependency was taken as the default option under BS 8888:2000 and BS 8888:2002, although the option of working to the principle of independency was included, through the use of the BS 8888 triangle I indication.

BS 8888:2004 and BS 8888:2006

the principle of dependency could be explicitly invoked through the use of the BS 8888 triangle D indication.

As the interaction between the envelope requirement and individual geometrical tolerances is not always fully defined within the ISO system, and as the application of the envelope requirement by default to all features-of-size is not formally supported within the ISO system, the use of the principle of dependency is no longer recommended.

1.14 Datum surfaces and functional requirements

Functional dimensions shall be expressed directly on the drawing, as shown in Figure 1. The application of this principle will result in the selection of reference features on the basis of the function of the product and the method of locating it in any assembly of which it may form a part.

If any reference feature other than one based on the function of the product is used, finer tolerances will be necessary to meet the functional requirement, which in turn will increase the cost of producing the product, as shown in Figure 43 on page 22.

1.15 Relevant standards

BS EN ISO 1660, Technical drawings - Dimensioning and tolerancing of profiles
BS ISO 129-1, Technical drawings - Indication of dimensions and tolerances - Part 1:
General principles
BS ISO 3040, Technical drawings - Dimensioning and tolerancing - Cones
BS ISO 10579, Technical drawings - Dimensioning and tolerancing - Non-rigid parts
BS ISO 406, Technical drawings - Tolerancing of linear and angular dimensions
BS EN 22768-1, General tolerances - Part 1: Tolerances for linear and angular dimensions without individual tolerance indications
BS 4235-1, Specification for metric keys and keyways - Part 1: Parallel and taper keys
BS 4235-2, Specification for metric keys and keyways - Part 2: Woodruff keys and keyways
BS ISO 8015, Technical drawings - Fundamental tolerancing principle
BS EN ISO 14660-1, Geometrical Product Specifications (GPS) - Geometrical features - Part 1: General terms and definitions
BS EN ISO 14660-2, Geometrical Product Specifications (CPS) - Geometrical features - Part 2: Extracted median line of a cylinder and a cone, extracted median surface, local size of an extracted feature
PP 8888-2, Engineering drawing practice: a guide for further and higher education to BS 8888:2006, Technical product specification (TPS)

Description	Drawing
a) Assembly drawing showing a given functional requirement, namely the limits of height of the top face of item I above the top face of item 3, with a tolerance of 0.08 mm	
b) Detail of head of item I showing given limits of size, with a tolerance of 0.03 mm	(s)
c) Item 2 dimensioned from a functional reference surface NOTE: One direct dimension with a tolerance of 0.05 mm is needed to satisfy the condition shown in a). A nominal flange thickness of 5 mm has been assumed. This value is non-functional and can have any large tolerance.	
d) Item 2 dimensioned from a nonfunctional reference surface NOTE: Tolerances have had to be reduced; two dimensions with tolerances of, say, 0.02 mm for the flange and 0.03 mm are now needed to satisfy the condition shown in a).	

Figure 43 - Effect on tolerances by changing datum surfaces from those determined by functional requirements

Chapter 2

Geometric tolerancing datums and datum systems

2.1 Introduction

This section comprises information extracted from BS EN ISO 1101 and BS ISO 5459. Information not extracted should not be considered as being less important and for a more in-depth awareness of the application of geometric tolerancing and datums, both standards should be consulted.

Geometric tolerances have been developed to replace the 'written word' when specifying conditions which apply to a feature on a product. Geometric tolerances control the deviation of the feature from its theoretically exact form, orientation or location, regardless of the feature size.

Datums and datum systems are used as the basis for establishing the geometric relationship of related features.

2.2 Terms and definitions

annotation plane

conceptual plane containing annotation
NOTES: It is desirable that annotation planes intersect or be coincident with a model feature.
The plane is 'conceptual' because it is not physically shown as geometry on the model but is provided to replace the drawing media. [BS ISO 16792:2006, 3.2.2].

datum feature

non-ideal integral feature used for establishing a datum
NOTE: A datum feature can be a complete surface, a portion of a complete surface, or a feature of size.

associated feature (for establishing a datum)

ideal feature which is fitted to the datum feature with a specific association criterion
NOTES: The type of the associated feature is generally the same as the type of the nominal integral feature used to establish the datum.

The associated feature for establishing a datum simulates the contact between the real surface of the workpiece and other components of an assembly or the fixture used to locate or orientate the workpiece during manufacture or inspection.

collection surface

two or more surfaces considered simultaneously as a single surface
EXAMPLE 1: Two intersecting planes may be considered together or separately. When the two intersecting planes are considered simultaneously as a single surface, that surface is a collection surface.

collection plane

plane, established from a nominal feature on the workpiece, defining a closed compound continuous feature NOTES: The collection plane may be required when the 'all around' symbol is applied.

The tolerance requirement applies to each surface or line element independently, unless otherwise specified (e.g. by using CZ symbol).

compound continuous feature

feature composed of several single features joined together without gaps
NOTES: A compound continuous feature can be closed or not closed.
A non closed compound continuous feature can be defined by the way of using the 'between' symbol.
A closed compound continuous feature can be defined by the way of using the 'all around' symbol. In this case, it is a set of single features whose intersection with any plane parallel to a collection plane is a line or a point.

single datum

datum established from one datum feature taken on a single surface or from one feature of size
NOTE: A single surface can be complex, prismatic, helical, cylindrical, revolute, planar or spherical.

common datum

datum established from two or more datum features considered simultaneously

NOTES: To define a common datum, it is necessary to consider the collection surface created by the considered datum features.

The collection surface can be complex, prismatic, helical, cylindrical, revolute, planar or spherical.

datum system

datum established from two or more datum features considered in a specific order
NOTES: To define a datum system, it is necessary to consider the collection surface created by the considered datum features.
The collection surface can be complex, prismatic, helical, cylindrical, revolute, planar or spherical.

datum target

portion of a datum feature which can be a point, a line or an area

derived feature

centre point, median line or median surface from one or more integral features

EXAMPLE 2: The centre of a sphere is a derived feature obtained from the sphere, which is an integral feature.
EXAMPLE 3: The median line of a cylinder is a derived feature obtained from the cylindrical surface, which is an integral feature.

direction feature

feature, established from an extracted feature of the workpiece, identifying the direction in which the tolerance value applies

NOTES: The direction feature can be a plane, a cylinder or a cone.
For a line in a surface the use of a direction feature makes it possible to change the direction of the width of the tolerance zone.

The direction feature is used on a complex surface or complex profile when the direction of the tolerance value is not normal to the specified geometry.

By default, the direction feature is a cone, a cylinder or a plane constructed from the datum or datum system defined in the tolerance frame. The geometry of the direction feature depends on the geometry of the toleranced feature.

extracted feature (integral)

approximated representation of the real (integral) feature, obtained by extracting a finite number of points from the real (integral) feature

extracted feature (derived)

centre point, median line or median surface derived from one or more extracted integral features

feature of size

geometrical shape defined by a linear or angular dimension which is a size
NOTE: The features of size can be a cylinder, a sphere, two parallel opposite surfaces, a cone or a wedge. [BS EN ISO 14660-1:2000, 2.2].

geometrical feature

point, line or surface

integral feature

surface or line on a surface

intersection plane

plane, established from an extracted feature of the workpiece, identifying a line on an extracted surface (integral or median) or a point on an extracted line

NOTE: The use of intersection planes makes it possible to define toleranced features independent of the view.

orientation feature

feature, established from an extracted feature of the workpiece, identifying the orientation of the tolerance zone

NOTES: For a derived feature the use of an orientation feature makes it possible to define the direction of the width of the tolerance zone independently of the TED model (case of location) or of the datum (case of orientation).

The orientation feature is only used when the toleranced feature is a median feature (centre point, median straight line) and the tolerance zone is defined by two parallel straight lines or two parallel planes.

orientation plane

plane, established from an extracted feature of the workpiece, identifying the orientation of the width of the tolerance zone

NOTES: For a derived feature, the use of an orientation plane makes it possible to define the direction of the width of the tolerance zone independent of the view.

For a line in a surface, the use of an orientation plane makes it possible to change the direction of the width of the tolerance zone.

theoretically exact dimension

dimension indicated on technical product documentation, which is not affected by individual or general tolerances

NOTES: For the purpose of this guide, the term 'theoretically exact dimension' has been abbreviated to TED.
A TED can be a linear, circular or spherical dimension or an angular dimension. It is possible for example to write a theoretically exact angle.

A TED can define:

- the extension or the relative location of a portion of one feature or
- the length of the projection of a feature or
- the theoretical orientation or location from one or more features, or
- the nominal shape of a feature.

A TED is indicated by a dimension frame.

tolerance zone

space limited by one or several geometrically perfect lines or surfaces, and characterized by a linear dimension, called a tolerance

2.3 Basic concepts

Geometrical tolerances shall be specified in accordance with functional requirements. Manufacturing and inspection requirements can also influence geometrical tolerancing.
NOTE: Indicating geometrical tolerances on a drawing does not necessarily imply the use of any particular method of production, measurement or gauging.

A geometrical tolerance applied to a feature defines the tolerance zone within which that feature shall be contained.

A feature is a specific portion of the workpiece, such as a point, a line or a surface; these features can be integral features (e.g. the external surface of a cylinder) or derived (e.g. a median line or median surface). See BS EN ISO 14660-1.

According to the characteristic to be toleranced and the manner in which it is dimensioned, the tolerance zone is one of the following:

- the space within a circle;
- the space between two concentric circles;
- the space between two equidistant lines or two parallel straight lines;
- the space within a cylinder;
- the space between two coaxial cylinders;
- the space between two equidistant surfaces or two parallel planes;
- the space within a sphere.

Unless a more restrictive indication is required, for example by an explanatory note (see Figure 65), the toleranced feature may be of any form or orientation within this tolerance zone.

The tolerance applies to the whole extent of the considered feature unless otherwise specified.
Geometrical tolerances which are assigned to features related to a datum do not limit the form deviations of the datum feature itself. It may be necessary to specify tolerances of form for the datum feature(s).

2.4 Symbols

Symbols to indicate characteristics to be toleranced are shown in Table 1. The symbols in Table 2 identify and qualify toleranced features, datums, zones and dimensions. The uses of these symbols are shown in the remainder of this chapter.

Table 1 - Symbols for geometrical characteristics

Tolerances	Characteristics	Symbol	Datum needed	Subclause
Form	Straightness	-	no	18.1
	Flatness	\square	no	18.2
	Roundness	\bigcirc	no	18.3
	Cylindricity	θ	no	18.4
	Profile any line	n	no	18.5
	Profile any surface	0	no	18.7
Orientation	Parallelism	//	yes	18.9
	Perpendicularity	\perp	yes	18.10
	Angularity	\angle	yes	18.11
	Profile any line	n	yes	18.6
	Profile any surface	0	yes	18.8
Location	Position	中	yes or no	18.12
	Concentricity (for centre points)	©	yes	18.13
	Coaxiality (for axes)	(yes	18.13
	Symmetry		yes	18.14
	Profile any line	n	yes	18.6
	Profile any surface	0	yes	18.8
Run-out	Circular run-out	1	yes	18.15
	Total run-out	4	yes	18.16

NOTE: The last column refers to clauses in BS EN ISO 1101.

Table 2 - Additional symbols

Description	Symbol	Reference
Toleranced feature indication		Clause 7
Datum feature indication		Clause 9 and ISO 5459
Datum target indication	(\$2 ${ }^{\text {A1 }}$	ISO 5459
Theoretically exact dimension	50	Clause II
Median feature	(A)	Clause 7
Projected tolerance zone	(P)	Clause 13 and ISO 10578
Maximum material requirement	(1)	Clause 14 and ISO 2692
Least material requirement	(L)	Clause I5 and ISO 2692
Free state condition (non-rigid parts)	(F)	Clause 16 and ISO 10579
All around (profile)		Subclause 10.1
Envelope requirement	(E)	ISO 8015
Common zone	CZ	Subclause 8.5
Minor diameter	LO	Subclause 10.2
Major diameter	MD	Subclause 10.2
Pitch diameter	PD	Subclause 10.2
Line element	LE	Subclause 18.9.4
Not convex	NC	Subclause 6.3
Any cross-section	ACS	Subclause 18.13.1
Unequally disposed tolerance	UZ	Subclause 10.3
Intersection plane	$\begin{array}{\|l\|l\|l\|} \hline / & \mathrm{B} \\ \hline & \mathrm{~B} & = \\ \hline \end{array}$	Clause 19
Orientation plane	$\langle/ \mid B\rangle\langle\perp B\rangle<\angle B$	Clause 19
Collection plane	O// B (C ■ B	Clause 3
Direction feature	$\rightarrow-1 / \mathrm{B} \rightarrow-\perp \mathrm{B} \rightarrow-\angle \mathrm{B}$	Clause 3
Between (two points)	\longrightarrow	Subclause 10.1.4
From (two points)	\longrightarrow	Clause 8

NOTE: The last column refers to clauses in BS EN ISO 1101.

2.5 Tolerance frame

The requirements are shown in a rectangular frame which is divided into two or more compartments. These compartments contain, from left to right, in the following order (as shown in Figures 44, 45, 46, 47 and 48):

- first compartment, the symbol for the geometrical characteristic;
- second compartment: information on the tolerance zone defined in the unit used for linear dimensions and complementary requirements. If the tolerance zone is circular or cylindrical, the value is preceded with the symbol ' \varnothing^{\prime} ', if the tolerance zone is spherical, the value is preceded with 'S \varnothing^{\prime};
- third and subsequent compartment, if applicable: the letter or letters identifying the datum or common datum or datum system, as shown in Figures 45, 46, 47 and 48.

0,1	$/ / 0,1$ A	$\boldsymbol{\|} \mid$ 0,1 A C B	\boldsymbol{P} $S \phi 0,1$ A B C	(O) $\Phi 0.1$ A A-B
Figure 44	Figure 45	Figure 46	Figure 47	Figure 48

When a tolerance applies to more than one feature, this shall be indicated above the tolerance frame by the number of features followed by the symbol ' \mathbf{x} ', as shown in Figures 49 and 50.

If required, indications qualifying the form of the feature within the tolerance zone shall be written near the tolerance frame, see Figure 51 and Table 2 for other indications.

If it is necessary to specify more than one geometrical characteristic for a feature, the requirements may be given in tolerance frames one under the other for convenience, as shown in Figure 52.

$6 \times$
0.2

Figure 49
$6 \times \Phi 12 \pm 0,02$

Figure 50

Figure 51

Figure 52

Figure 53

If required, indications qualifying the direction of the tolerance zone and/or the extracted (actual) line shall be written after the tolerance frame. See Figure 53 for an example of indication of orientation of the tolerance zone.

2.6 Toleranced features

A geometrical specification tolerance applies to a single complete feature, unless an appropriate modifier is indicated. When the toleranced feature is not a single complete feature, see 2.9 Supplementary indications.

When the tolerance refers to the feature itself, the tolerance frame shall be connected to the toleranced feature by a leader line starting from either side of the frame and terminating with an arrowhead in one of the following ways:

- in 2D annotation, on the outline of the feature or an extension of the outline (but clearly separated from the dimension line), as shown in Figures 54 and 56; the arrowhead may also be placed on a reference line using a leader line to point to the surface, as shown in Figure 58.
- in 3D annotation, on the feature itself or on an extension line in continuation of the feature (but clearly separated from the dimension line), as shown in Figures 55 and 57; the arrowhead may also be placed on a reference line using a leader line to point to the surface, as shown in Figure 59.

NOTE: Leader lines are terminated with an arrow when they terminate on an outline of a feature, as shown in Figures 58 and 59, or a dot when they terminate on a surface, as shown in Figure 59. When the surface is visible, the dot is filled in, when the surface is hidden; the dot is not filled in.

Figure 54

Figure 56

Figure 55

Figure 57

Figure 58

Figure 59

When the tolerance refers to a median line, a median surface, or a median point, then it is indicated (in both 2D and 3D applications) either:

- by the leader line starting from the tolerance frame terminating on the extension of the dimension line of a feature of size, as shown in Figures 60, 61, 62, 63 and 64; or
- by a modifier (A) (median feature) placed at the rightmost end of the second compartment of the tolerance frame (from the left). In this case, the leader line starting from the tolerance frame does not have to terminate on the dimension line, but can terminate on the outline of the feature or an extension of the outline, as shown in Figure 65.

Figure 60

Figure 62

Figure 63

Figure 64

Figure 65

When the toleranced feature is a line, a further indication may be needed to control the orientation of the toleranced feature, see Figure 66a for 2D annotation and Figure 66b for 3D annotation.

2.7 Tolerance zones

The tolerance zone is positioned symmetrically from the exact geometrical form, orientation, or location, unless otherwise indicated.

The tolerance value defines the width of the tolerance zone. This width applies normal to the specified geometry (see Figures 67 and 68) unless otherwise indicated (see figures 69 and 70).

NOTE: The orientation alone of the leader line does not influence the definition of the tolerance.

Figure 68 - Interpretation

Figure 69 - Drawing indication

a Datum A.

The angle ' α ' shown in Figure 69 shall be indicated, even if it is equal to 90°.
In the case of roundness, the width of the tolerance zone always applies in a plane perpendicular to the nominal axis.

The tolerance value is constant along the length of the considered feature, unless otherwise indicated either by:

- a graphical indication, defining a proportional variation from one value to another, between two specified locations on the considered feature, identified as given in clause 10.1.4. The letters identifying the locations are separated by an arrow; see Figure 71 and clause 12.2 for restricted parts of a feature. The values are related to the specified locations on the considered feature by the letters indicated over the tolerance frame (e.g. in Figure 71, the value of the tolerance is 0,1 for the location J and 0,2 for the location K). By default, the proportional variation follows the curvilinear coordinates, i.e. the distance along the curve connecting the two specified locations;
- a defined company specific indication, when the variation is not proportional.

Figure 71

In the case of a centre point or median line or median surface toleranced in one direction:

- the orientation of the width of a positional tolerance zone is based on the pattern of the theoretically exact dimensions (TED) and is at 0° or 90° as indicated by the direction of the arrowhead of the leader line unless otherwise indicated, see Figure 72;
- the orientation of the width of an orientation tolerance zone is at 0° or 90° relative to the datum as indicated by the direction of the arrowhead of the leader line unless otherwise indicated, see Figures 73 and 74;
- when two tolerances are stated, they shall be perpendicular to each other unless otherwise specified, see Figures 73 and 74 .

Figure 72

Figure 73 - Drawing indication

a Datum A
b Datum B
Figure 74 - Interpretation

The tolerance zone is cylindrical or circular if the tolerance value is preceded by the symbol ' \varnothing ' or spherical if it is preceded by the symbol ' $\mathrm{S} \varnothing^{\prime}$ ', as shown in Figures 75 and 76.

Figure 75 - Drawing indication

Figure 76 - Interpretation

Individual tolerance zones of the same value applied to several separate features may be specified as shown in Figure 77.

Figure 77

Where a common tolerance zone is applied to several separate features, this common requirement shall be indicated by the symbol 'CZ' for common zone following the tolerance in the tolerance frame, as shown in Figure 78.

Figure 78

Where several tolerance zones (controlled by the same tolerance frame) are applied simultaneously (not independently) to several separate features, to create a combined zone, the requirement shall be indicated by the symbol 'CZ' for common zone following the tolerance in the tolerance frame, as shown in Figure 79. In addition, there shall be an indication that the specification applies to several features (e.g. using ' 3 x' over the tolerance frame as shown in Figures 49 and 50 , or using leader lines attached to the tolerance frame as shown in Figure 77.

Figure 79

Where $C Z$ is indicated in the tolerance frame, all the related individual tolerance zones shall be located and orientated amongst themselves using either implicit ($0 \mathrm{~mm}, 0^{\circ}, 90^{\circ}$, etc) or explicit theoretically exact dimensions (TED).

2.8 Datums and datum systems

Geometrical specifications define tolerancing of geometrical features. Tolerancing limits their geometrical deviations in relation to their theoretically exact form, orientation and/or location. This limitation is achieved by defining tolerance zones which confine the toleranced features of workpieces which conform to the specification. Depending on the application of these tolerance zones, three cases can exist:

- a tolerance zone is free to orient and locate itself to best accommodate the feature it confines, i.e. a form tolerance;
- a set of tolerance zones is oriented and located collectively, i.e. common zone;
- a tolerance zone is oriented and/or located in relation to other features, i.e. a datum or a datum system (see Examples 5 and 6).

Datums are established from identified real surfaces of the workpiece.
Datums can lock some degrees of freedom of a tolerance zone. The number of degrees of freedom locked (up to six) depends on the nominal shape of the features utilized to establish the datum or datum system and the toleranced characteristic indicated in the considered geometrical tolerance frame.
EXAMPLE 5: The tolerance zone, which is the space between two parallel planes $0,2 \mathrm{~mm}$ apart, is constrained in orientation by a 75° angle from the datum. Here, the datum is the cylinder axis. See Figure 80.

a

Datum A.

Figure 80 - Tolerance zone constrained in orientation by a 75° angle from the datum

EXAMPLE 6: The tolerance zone, which is the space between two parallel planes $0,2 \mathrm{~mm}$ apart, is constrained in orientation by a 110° angle from a datum, and in location by the distance 20 mm from the gauge plane (the plane where the local diameter of the cone with a fixed angle of 40°, is 30 mm). Here, the datum is the set of situation features of the cone with a fixed angle of 40°, i.e. the cone axis and the point of intersection between the gauge plane and that axis. See Figure 81.

a Datum A .
Figure 81 - Tolerance zone constrained in orientation by a 110° angle from the datum

A datum related to a toleranced feature shall be designated by a datum letter. A capital letter shall be enclosed in a datum frame and connected to a filled or open datum triangle to identify the datum, see Figures 82 and 83 for 2D application and Figure 84 for 3D application; the same letter which defines the datum shall also be indicated in the tolerance frame.

It is recommended not to use the letters $\mathrm{I}, \mathrm{O}, \mathrm{Q}$ and X which can be misinterpreted.
There is no difference in the meaning between a filled and an open datum triangle.

Figure 82

Figure 83

Figure 84

When a datum is a feature (such as a surface), the datum triangle with the datum letter shall be placed:

- in 2D annotation, on the outline of the feature or an extension of the outline (but clearly separated from the dimension line), when the datum is the line or surface shown, see Figure 85; the datum triangle may also be placed on a reference line using a leader line to point to the surface, as shown in Figure 86;
- In 3D annotation, on the feature itself or on an extension line in continuation of the feature (but clearly separated from the dimension line) when the datum is the line or surface shown, see Figure 87; the datum triangle may be placed on a reference line using a leader line to point to the surface, as shown in Figure 88.

Figure 85

Figure 87

Figure 86

Figure 88

When the datum is the axis or median plane or a point defined by the feature so dimensioned, the datum triangle with the datum letter shall be placed as an extension of the dimension line in both 2D and 3D applications, as shown in Figures 89 to 94 . If there is insufficient space for two arrowheads, one of them may be replaced by the datum triangle, as shown in Figures 91 to 94 .

Figure 89

Figure 91

Figure 90

Figure 92

Figure 93

Figure 94

If a datum is applied to a restricted part of a feature only, this restriction shall be shown as a wide, long dashed-dotted line and dimensioned using TEDs, as shown in Figures 95 and 96. (See BS ISO 128-24, Table 2, 04.2 for line type.)

Figure 95

Figure 96

Tolerance frames with only three compartments signify a single datum or a common datum used alone; see Figures 97a and 97b.

When a datum system is specified, the tolerance frame shall have more than three compartments, as shown in Figure 97c to 97e.

Each compartment of the tolerance frame (after the second) shall contain either a single datum or a common datum.

In a datum system, the primary datum is identified in the third compartment of the tolerance frame; the secondary datum is identified in the fourth compartment of the tolerance frame; the tertiary datum is identified in the fifth compartment of the tolerance frame, as shown in Figures 97c, d and e.

When a datum system is used, the orientation constraints between each datum (single or common) are specified by TEDS. TED values of $0^{\circ}, 90^{\circ}, 180^{\circ}$ and 270° are implicit and not indicated.

\section*{| | | A |
| :--- | :--- | :--- |}

a) $\begin{aligned} & \text { Single datum } \\ & \text { used alone }\end{aligned}$

		R-S

b) Common datum used alone

c) Two single datums used in a system

d) Three single datums used in a system

e) A single datum and a common datum used in a system

Datums can also be identified by either:

- adding the complementary indication ' n ' giving the number (n) of surfaces in the collection on the right side of a datum indicator attached to one of the surfaces, as shown in Figure 98a. When the datum indicator points to the tolerance frame, the indication ' n ' is not written on the right side of a datum indicator but above the tolerance frame, as shown in Figure 98b, or,
- when the datum indicator points to the tolerance frame, by using leader lines indicating each surface included in the common datum, as shown in Figure 98c.

Figure 98 - Examples complementary indication of datums

2.8.1 Datum targets

When it is not desirable to use a complete integral surface to establish a datum feature, it is possible to indicate portions of the surface (areas, lines or points) and their dimensions and locations. These portions are called datum targets. They usually simulate the interface between the portion of the considered surface of the workpiece and one or more contacting ideal features (assembly interface features or fixture features).

A datum target is indicated by a datum target indicator. This indicator is constructed from a datum target frame, a datum target symbol and a leader line linking the two symbols (directly, or through a reference line).

Where the datum target indicator uses a single datum target frame, the datum target is the portion of the integral surface (point, line or area) indicated.

Where the datum target indicator uses an equalizing datum target frame, the datum target is the median feature constructed from two portions (a pair) of the same type (point, line or area) of the integral surface indicated, and the distance between these two portions is variable.

The datum target frame is divided into two compartments by a horizontal line. The lower compartment is reserved for a letter and a digit (from 1 to n). The letter represents the datum feature and the digit the datum target number.

The upper compartment is reserved for additional information, such as dimensions of the target area.
The single datum target frame is a circle, as shown in Figure 99. The equalizing datum target frame is a hexagon, as shown in Figure 100.

Figure 99 - Single datum target frame

Figure 100 - Equalizing datum frame

The types of datum targets are a point, a line and an area. They are indicated using the following datum target symbols, respectively:

- a cross, as shown in Figure 101a;
- a long-dashed double-dotted narrow line (type 05.1 of BS ISO 128-24), which, when this line is not closed, is terminated by two crosses, as shown in Figures 101 b and c. This line may be straight, circular or of any shape;
- a hatched area surrounded by a long-dashed double-dotted narrow line (type 05.1 of BS ISO 128-24), as shown in Figure 101d and e.

Figure 101 - Datum target indication

The datum target frame is connected directly, or through a reference line, to the datum target symbol by a leader line terminated with an arrow, as shown in Figures 102a and b. When the portion of the surface in question is hidden, the hidden part of the leader line shall be dashed and terminated by an open circle.

When the leader line is used with a single datum target frame, the orientation of the leader line connecting the frame with the datum target symbol is unimportant.

The leader line shall indicate the direction of movement of the relevant datum target when used with an equalizing datum target frame. This direction shall be given by the segment of the leader line terminated by the arrow (or the open circle), in an appropriate view. Where the required direction of movement is ambiguous, the angle shall be indicated as a TED between the leader line and the surface of the workpiece.

NOTE: The complete definition of this direction may require more than one 2D view.
A datum target indicator is constructed from a datum target frame, a datum target symbol and a leader line linking the two symbols, directly, or through a reference line, as shown in Figures 102a, b and c.

It may be necessary to indicate the same datum target on several appropriate views to have an unambiguous definition of the considered datum target, as shown in Figure 107.

For equalizing datum target frames, the leader line shall be in the extension of a dimension line (with no TED value) linking the two datum target symbols, as shown in Figures 103 and 104. The indication of the second datum target symbol of the pair and the dimension line may be omitted when no ambiguity exists.

Figure 102 - Datum target indicators for a point, line and surface

Figure 103 - Point

Figure 104 - Equalizing datum target - line and surface

If a datum is established from datum targets belonging to only one surface, then the letter identifying the surface shall be repeated on the right side of the datum indicator, followed by the list of numbers (separated by commas) identifying the targets, as shown in Figure 105. Each individual datum target shall be identified by a datum target indicator, indicating the datum letter, the number of the datum target and, if applicable, the dimensions of the datum target, as shown in Figure 107.

A A 1, 2, 3

Figure 105 - Indication of datums established from datum targets

It is permitted to simplify the drawing indication in case of only one datum target by placing the datum indicator on a long-dashed dotted wide line (type 04.2 of BS ISO 128-24) defining the portion of the considered surface, as shown in Figure 106a or on the reference line of a leader line pointing to a hatched area surrounded by a long dashed double-dotted narrow line (type 05.1 of BS ISO 128-24), as shown in Figure 106b.

a)

b)

Figure 106 - Simplification of drawing indication in the case of only one datum target area

The location of datum targets on one surface shall be defined by TEDs, as shown in Figure 107. The location of a datum target relative to one or more other feature(s) shall also be defined by TEDs.

The length of a datum target line shall be defined by TEDs.
The extent of a datum target area shall be considered theoretically exact. The dimensions of the area shall be indicated:

- in the upper compartment of the datum target indicator when the area is circular or square, as shown in Figure 108, or, if the area is rectangular and the space within the compartment is limited, placed outside and connected to the appropriate compartment by either a leader line or by a leader line and a reference line, as shown in Figure 109;
- directly on the drawing by TEDs, when the area is neither square, circular nor rectangular.

NOTE: In case of a point or a line, it may be necessary to indicate the datum target on several views to have an unambiguous definition.

Figure 107 - Datum targets on one surface

Figure 108 - Indication of circular or square area

Figure 109 - Indication of rectangular area

2.9 Supplementary indications

When the toleranced feature is a portion of a single feature, or a compound continuous feature, then it shall be indicated either as a:

- continuous, closed feature (single or compound), or
- restricted area of a single surface, or
- continuous, non-closed feature (single or compound).

2.9.1 A// around - Continuous, closed toleranced feature

If a requirement applies to a closed compound continuous surface defined by a collection plane, the 'all around' modifier (' O ') shall be placed on the intersection of the leader line and the reference line of the tolerance frame. In addition, a collection plane indicator identifying the collection plane shall be placed after the tolerance frame, as shown in Figures 110 to 113. An all-around requirement applies only to the surfaces represented by the outline, not the entire workpiece, as shown in Figures 110 and 112.

If a requirement applies to the set of line elements on the closed compound continuous surface (defined by a collection plane), an intersection plane indicator identifying the intersection plane shall also be placed between the tolerance frame and the collection plane indicator, as shown in Figure 111. NOTE: The long dashed short dashed line indicates the considered features. Surfaces a and b are not considered in the specification.

Figure 110

Figure 111

NOTE: When using the any line symbol, if the intersection plane and the collection plane are the same, the collection plane symbol can be omitted.

Figure 112

Figure 113

2.9.2 Restricted area toleranced feature

In 2D annotation, the surface portions involved shall be outlined by a long-dashed dotted wide line (in accordance with BS ISO 128-24), as shown in Figures 114 and 115.

In 3D annotation, the leader line starting from the tolerance frame shall terminate on a hatched area, indicating the surface portions involved.

The location and dimensions of the surface portion shall be defined by TEDs, as shown in Figures 115 and 117.

Figure 114

Figure 115

Figure 116

Figure 117

2.9.3 Continuous, non closed toleranced feature

If a tolerance applies to one identified restricted part of a feature or to contiguous restricted parts of contiguous features, but does not apply to the entire outline of the cross-sections (or entire surface represented by the outline), this restriction shall be indicated using the symbol ' \leftrightarrow ' (called 'between') and by identifying the start and the end of the toleranced feature.

The points or lines that identify the start and end of the toleranced feature are each identified by a capital letter connected to it by a leader line terminating with an arrowhead. If the point or line is not at the boundary of an integral feature, its location shall be indicated by TEDs.

The between symbol ' \leftrightarrow ' is used between two capital letters that identify the start and the end of the toleranced feature. This feature (compound toleranced feature) consists of all segments or areas between the start and the end of the identified features or parts of features.

In order to clearly identify the toleranced feature, the tolerance frame shall be connected to the compound toleranced feature by a leader line starting from either side of the frame and terminating with an arrowhead on the outline of the compound toleranced feature, as shown in Figure 117. The arrowhead may also be placed on a reference line using a leader line to point to the surface.

In Figure 118, the toleranced feature is the upper surface starting at line J and finishing at line K. The long dashed dotted line represents the toleranced feature, Surfaces a, b and c are not covered by the specification.

Figure 118

To avoid problems of interpretation regarding the considered feature, the start and end of the feature shall be indicated as shown in Figure 119.

If the same specification is applicable to a set of compound toleranced features, this set can be indicated above the tolerance frame, one above the other, as shown in Figure 120.

If all the compound toleranced features in the set are defined identically, it is possible to simplify the indication of this set, using the ' $n \mathbf{x}$ ' indication, i.e. ' 3 x', as shown in Figure 121.

The rule defining the common zone indication also applies to defining a common compound tolerance zone, as shown in Figure 121.

Key

I. sharp edge or corner
2. rounded 'blind' edge (tangent continuity)
3. offset from corner or edge (with TED)
4. combination with an edge indication according to BS ISO 13715

Figure 119

Figure 120

Figure 121

2.9.4 Unequally disposed tolerance zone

If the tolerance zone is not centred on the theoretically exact geometrical form, then this unequally disposed tolerance zone shall be indicated using the 'UZ' modifier as shown in Figure 122.

The extracted (actual) surface shall be contained between two equidistant surfaces enveloping spheres of a diameter equal to the tolerance value, the centres of which are situated on a surface corresponding to the envelope of a sphere in contact with the theoretically exact geometrical form and whose diameter is equal to the absolute value given after the 'UZ' modifier with the direction of the shift indicated by the sign, plus (+) indicating out of the material and minus $(-)$ into the material.

Figure 122 - Unequally disposed tolerance zone indication

When specifying a unilaterally disposed tolerance zone, the value after the ' $U Z$ ' modifier shall be equal to half the value of the tolerance zone.

2.9.5 Screw threads

Tolerances and datums specified for screw threads apply to the axis derived from the pitch cylinder, unless otherwise specified, e.g. 'MD' for major diameter and 'LD' for minor diameter, as shown in Figure 123. Tolerances and datums specified for gears and splines shall designate the specific feature to which they apply, i.e. 'PD' for pitch diameter, 'MD' for major diameter or 'LD' for minor diameter.

Figure 123

2.9.6 Theoretically exact dimensions (TED)

If tolerances of location, orientation or profile are prescribed for a feature or a group of features, the dimensions determining the theoretically exact location, orientation or profile respectively are called theoretically exact dimensions.

TED also applies to the dimensions determining the relative orientation of the datums of a system. TEDs shall not be toleranced. They are to be enclosed in a frame, as shown in Figures 124 and 125.

Figure 124 - Linear TED

Figure 125 - Angular TED

2.9.7 Restrictive specifications

If a tolerance of the same characteristic is applied to a restricted length, lying anywhere within the total extent of the feature, the value of the restricted length shall be added after the tolerance value and separated from it by an oblique stroke, as shown in Figure 126a. If two or more tolerances of the same characteristic are to be indicated, they may be combined as shown in Figure 126 b.

a)

b)

Figure 126

2.9.8 Projected tolerance zone

The symbol \mathbb{P} after the tolerance value in the second compartment of the tolerance frame indicates a projected tolerance, as shown in Figures 127a and b. In this case, the tolerance applies to an extended feature.

The projected tolerance length shall be indicated in order to clearly define the toleranced feature.
The limits of the relevant portion of this extended feature shall be clearly defined and shall be indicated either directly or indirectly, as follows:

When indicating the projected tolerance length directly on a virtual integral feature representing the portion of the extended feature to be considered, this virtual feature shall be indicated by use of a long-dashed double-dotted narrow line, and the length of the extension shall be dimensioned with a theoretically exact dimension (TED) with the symbol \mathbb{P} prior to the value, as shown in Figure 127a.

When indicating the length of the projected toleranced feature indirectly in the tolerance frame, the value shall be specified after the symbol \mathbb{P} in the tolerance frame, as shown in Figure 127b. In this case the representation of the extended feature with a long-dashed double-dotted narrow line shall be omitted, as shown in Figures 128a and 128b. This indirect method only applies to blind holes.

a) Length of the extension by a TED

b) Length of extension within tolerance frame

Figure 127

When indirectly indicating the length of the projected toleranced feature of a counter bored hole, the start of the projected zone is taken from the bottom of the counter bore, see Figure 128.

Figure 128

2.9.9 Maximum material requirement

The assembly of parts depends on the relationship between the actual size and the actual geometrical deviation of the features being fitted together, such as the bolt holes in two flanges and the bolts securing them.

The minimum assembly clearance occurs when each of the mating features is at its maximum material condition (MMC), e.g. largest bolt and smallest hole and when their geometrical deviations (e.g. positional deviation) are also at their maximum.

Assembly clearance increases to a maximum when the actual sizes of the assembled features are furthest from their maximum material conditions (e.g. smallest shaft and largest hole) and when the geometrical deviations (e.g. positional deviations) are zero. It follows that, if the actual sizes of a mating part do not reach their maximum material condition, the indicated geometrical tolerance may be increased without endangering the assembly of the other part.

This is called the 'maximum material principle' and is indicated on drawings by the symbol ${ }^{(10}$. The symbol is placed after the specified tolerance value, datum letter or both as appropriate, as shown in Figures 129, 130 and 131. (See BS EN ISO 2692 for detailed rules.)
| $\phi 0,04$ (M) A

Figure 129

Figure 130

Figure 131

The figures in this section are intended only as illustrations to aid the user in understanding the maximum material principle. In some instances, figures show added details for emphasis; in other instances, figures have deliberately been left incomplete. Numerical values of dimensions and tolerances have been given for illustrative purposes only.

For simplicity, the examples are limited to cylinders and planes.

Positional tolerance for a group of holes

The maximum material principle is most commonly used with positional tolerances, and therefore positional tolerancing has been used for the illustrations in this section.

NOTE: In the calculations of virtual size, it has been assumed that the pins and holes are at their maximum material condition and are of perfect form.

The indication on the drawing of the positional tolerance for a group of four holes is shown in Figure 132, and the interpretation in Figure 133.

The indication on the drawing of the positional tolerance for a group of four fixed pins that fit into the group of holes is shown in Figure 134.

- The minimum size of the holes is 08,1 : this is the maximum material condition.
- The maximum size of the pins is 07,9 : this is the maximum material condition.
- The difference between the maximum material condition of the holes and the pins is $8,1-7,9=0,2$.

The sum of the positional tolerances for the holes and pins should not exceed this difference $(0,2)$. In this example, this tolerance is equally distributed between holes and pins, i.e. the positional tolerance for the holes is $\oslash 0,1$, as shown in Figure 132 and the positional tolerance for the pins is also $\varnothing 0,1$, as shown in Figure 134.

The tolerance zones of $\varnothing 0,1$ are located at their theoretically exact positions, as shown in Figures 133 and 135. Depending on the actual size of each feature, the increase in the positional tolerance may be different for each feature.

Figure 132 - Positional tolerance for a group of holes, indication on the drawing

Figure 134 - Positional tolerance for a group of pins, indication on the drawing

Figure 133 - Positional tolerance for a group of holes, interpretation

Figure 135 - Positional tolerance for a group of pins, interpretation

Figure 136 shows four cylindrical surfaces for each of the four holes all being at their maximum material condition and of perfect form. The axes are located at extreme positions within the tolerance zone.
Figure 137 shows a larger scale version of Figure 136.
Figure 138 shows the corresponding pins at their maximum material condition. It can be seen from Figures 136-139 that assembly of the parts is still possible under the most unfavourable conditions.

The tolerance zone for the axis is $\varnothing 0,1$. The maximum material condition of the hole is $\varnothing 8,1$. All $\varnothing 8,1$ circles, the axes of which are located at the extreme limit of the $\varnothing 0,1$ tolerance zone, form an inscribed enveloping cylinder of Ø8. This cylinder is located at the theoretically exact position and forms the functional boundary for the surface of the hole.

One of the pins in Figure 138 is shown to a larger scale in Figure 139. The tolerance zone for the axis is $\varnothing 0,1$. The maximum material condition of the pin is $\triangle 7,9$. All $\varnothing 7,9$ circles, the axes of which are located at the extreme limit of the $\varnothing 0.1$ tolerance zone, form a circumscribed enveloping cylinder of 08 , which is the virtual condition of the pin.

Figure 136 - Four holes (Figure 132) all at maximum material condition

Figure 137 - Enlarged detail of Figure 136

Figure 138 - Four pins (Figure 134) all at maximum material condition

Figure 139 - Enlarged detail of Figure 138

When the size of the hole is larger than its maximum material condition and/or when the size of the pin is smaller than its maximum material condition, there is an increased clearance between the pin and hole, which can be used to increase the positional tolerances of the pin and/or the hole. Depending on the actual size of each feature, the increase in the positional tolerance may be different for each feature.

The extreme case is when the hole is at the least material condition, i.e. Ø8,2. Figure 140 shows that the axis of the hole may lie anywhere within a tolerance zone of $\varnothing 0,2$ without the surface of the hole violating the cylinder of virtual size.

Figure 141 shows a similar situation with regard to the pins. When the pin is at the least material condition, i.e. $\varrho 7,8$, the diameter of the tolerance zone for position is $\varnothing 0,2$.

The increase in geometrical tolerance is applied to one part of the assembly without reference to the mating part. Assembly will always be possible even when the mating part is manufactured on the extreme limits of the tolerance in the direction most unfavourable for the assembly, because the combined deviation of size and geometry on neither part is exceeded, i.e. their virtual conditions are not violated.

Figure 140 - Hole (Figure 129) at least material condition

Figure 141 - Pin (Figure 131) at least material condition

2.9.10 Least material requirement

The least material requirement permits an increase in the stated geometrical tolerance when the concerned feature departs from its least material condition (LMC). This increase in the geometrical tolerance facilitates less scrapped components.

The least material requirement shall be indicated by the specification modifier symbol (L). The symbol shall be placed after the specified tolerance value, datum letter or both as appropriate, as shown in Figures 142, 143 and 144. It specifies:

- when applied to the toleranced feature, that the least material virtual condition (LMVC) should be fully contained within the material of the actual toleranced feature;
- when applied to the datum, that the boundary of perfect form at least material size may float within the material of the actual datum feature (without violating the actual datum feature surface).

See BS EN ISO 2692 for additional information.

$\phi \mid \phi 0,5$	(L)

Figure 142

Figure 143

Figure 144

The least material requirement is illustrated in Figure 145. When the feature departs from its least material size, when it was at perfect form, an increase in positional tolerance is allowed, which is equal to the amount of such departure. An example of the application of least material requirement is illustrated in Figure 146.

Figure 146 - Application of least material requirement - minimum wall thickness

2.9.11 Free state condition

The free state condition for non-rigid parts shall be indicated by the specification modifier symbol \mathcal{F} placed after the specified tolerance value, as shown in Figures 147 and 148. Application of the modifiers indicates that the tolerance applies only when the part is in its free state condition.

Several specification modifiers $(\mathbb{P},(\mathbb{M},(\mathbb{F}$ and UZ may be used simultaneously in the same tolerance frame, as shown in Figure 149.

See BS ISO 10579 for additional information.
$O \mid 2,8$ ©

Figure 147
Figure 148
$\Phi 0,1 C 2 \in|A|(1)$

Figure 149

2.9.12 Intersection planes

Intersection planes can be used in 3D annotation to replicate the application of view dependent tolerances in 2D annotation, e.g. straightness of a line in a plane, profile of any line, orientation of a line element of a feature (LE), 'all around' specification for lines or surfaces. Intersection planes can also be used in 2D annotation if required.

Only surfaces belonging to one of the following shall be used to establish a family of intersection planes:

- revolute (e.g. a cone or a torus)
- cylindrical (i.e. a cylinder)
- planar (i.e. a plane)

The intersection plane is specified through an intersection plane indicator placed as an extension to the tolerance frame, as shown in Figures 152 to 155 . The symbol defining how the intersection plane is derived from the datum is placed in the first compartment of the intersection plane indicator, as shown in Figure 150. The letter identifying the datum used to establish the intersection plane is placed in the second compartment of the intersection plane indicator, as shown in Figure 151.

Figure 150

Figure 151

For geometrical specifications that include intersection plane indicators, the following applies:

- When the toleranced feature is a line on an integral feature, an intersection plane shall be indicated in 3D annotation to avoid misinterpretation of the toleranced feature, except in the case of straightness or circularity of a cylinder or a cone.
- The intersection plane is established parallel to, perpendicular to, or including the datum identified in the intersection plane indicator.
- The intersection plane is established parallel to, perpendicular to, or including the datum given in the intersection plane indicator without additional orientation constraints when the tolerance frame does not indicate datum(s).
- When the tolerance frame indicates datum(s), then the intersection plane is established parallel to, perpendicular to, or including the datum indicated in the intersection plane indicator with constraints ($0^{\circ}, 90^{\circ}$ or an explicitly stated angle) from the datum(s) of the tolerance frame. The datums in the tolerance frame are applied in the specified order before the datum given in the intersection plane indicator is established.

Figure 152

Figure 154

Figure 153

Figure 155

A datum indicator and an intersection plane indicator located to the right of the tolerance frame shall be used to indicate an intersection plane, as shown in Table 3.

Table 3

Tolerance frame	Intersection plane indicator	Datum feature indicator
a)	b)	A c)

The intersection plane indicator b) shall be placed to the right of the tolerance frame a). The intersection plane indicator shall indicate a datum letter in the second compartment. In the first compartment, a symbol is placed (parallel, perpendicular or symmetrical) and indicates how the intersection plane is related to the datum.

The datum corresponding to the datum letter allows building the intersection plane in accordance with the specified symbol.

The datum is defined from the datum feature identified by the datum feature indicator c).

Chapter 3

Graphical symbols for the indication of surface texture

3.1 Introduction

Surface texture requirements shall be indicated on technical product documentation by the use of several variants of a graphical symbol, each having its own significant meaning.

NOTE: For the purposes of this chapter, the definitions given in ISO 10209-1 and BS EN ISO 4287 are used.

3.2 The basic graphical symbol

The basic graphical symbol consists of two straight lines of unequal length inclined at approximately 60° to the line representing the considered surface, as shown in Figure 160 . This symbol should not be used without complementary information specifying collective indications, as illustrated in Figure 181.

Figure 160 - Basic graphical symbol to indicate surface texture

3.3 Expanded graphical symbols

When removal of material (for example, by machining) is required, a horizontal bar is added to the basic symbol, as illustrated in Figure 161. This symbol indicates that a particular surface is machined but does not specify any surface texture.

Figure 161 - Graphical symbol to indicate removal of material by machining

When removal of material is not permitted, a circle is added to the basic symbol, as illustrated in Figure 162. This symbol indicates no material removal from a particular surface, but does not specify any surface texture. This symbol can also be used to indicate that a surface should remain in the same state resulting from a previous manufacturing process.

Figure 162 - Graphical symbol to indicate no removal of material

When complementary requirements for surface texture characteristics are specified, a horizontal line is added to the symbol, as illustrated in Figure 163.

Figure 163 - Graphical symbol to indicate surface texture characteristics

When the same surface texture is required on all surfaces around a workpiece, a circle is added to the graphical symbol, as shown in Figure 164.

3.4 Mandatory positions for the indication of surface texture requirements

The indications of surface texture shall be placed relative to the graphical symbol as shown in Figure 165. Complementary surface texture requirements shall be in the form of:

- surface texture parameters;
- numerical values;
- sampling length/transmission band.

Figure 165 - Indications of surface texture relative to the graphical symbol

Key:

a - One single surface requirement. The surface texture parameter designation, the numerical value and the transmission band/sampling length should be indicated at position 'a'. To avoid misinterpretation, a double space (double blank) should be inserted between the parameter designation and the limit value. Generally, the transmission band or sampling length should be indicated followed by an oblique stroke ($/$), followed by the surface texture parameter designation followed by its numerical value.

Example I: $0,0025-0,8 / R z 6,8$ (example with transmission band indicated).
Example 2: 0,8/Rz 6,8 (example with only sampling length indicated).
Example 3: 0,008-0.5/I6/R 10 .
NOTE: Generally, the transmission band is the wavelength range between two defined filters (see BS EN ISO 3274 and BS EN ISO 11562), and for the motif method is the wavelength range between two defined limits (see BS EN ISO 12085).
a, b - Two or more surface texture requirements. The first surface texture requirement should be indicated at position ' a ' and the second at position ' b '. If a third or further requirement is to be indicated, the graphical symbol should be enlarged accordingly in the vertical direction, to make room for more lines. The positions ' a ' and ' b ' should be moved upwards, when the symbol is enlarged.
c - Manufacturing method. The manufacturing method, treatment, coatings or other requirements for the manufacturing process, etc., to produce the surface (e.g. turned, ground, plated) should be located at position ' c '.
d-Surface lay and orientation. Indicate the symbol of the required surface lay and the orientation, if any, of the surface lay, e.g. ' $=$ ', ' X ' and ' M '.
e - Machining allowance. Indicate the required machining allowance, if any, as a numerical value in millimetres (see BS ISO IOI35).

3.5 Surface texture parameters

Every surface of a workpiece has some form of texture, which varies according to the way it has been manufactured. Surface texture can be broken down into three main categories: surface roughness, waviness and form, which are defined as R, W and P profiles. The R profile series relates to roughness parameters, the W profile series to waviness parameters and the P profile series to form parameters.
$R a$ is the most used universally recognized international parameter of roughness. It is the arithmetic mean of the departures of the roughness profile from the mean, and applications of this parameter are illustrated in the various examples that follow.

Figures 166 to 169 illustrate the position of the chosen surface texture parameter value in conformation with ' a ' and ' b ' in Figure 165. When only one value is specified, it constitutes the upper limit of the surface roughness parameter. If it is necessary to specify upper and lower limits of the roughness parameter, both values should be given as illustrated in Figure 169, with the upper limit a1 above the lower limit a2.

Figure 166 - Surface texture parameter value added to basic graphical symbol

Figure 167 - Surface texture parameter value added to symbol for removal of material by machining

Figure 169 - Upper and lower surface texture parameter values added to basic graphical symbol

3.6 Indication of special surface texture characteristics

In certain circumstances, for functional reasons, it may be necessary to specify additional special requirements concerning surface texture.

When specifying how the surface texture is to be produced, that method shall be indicated in words (see ' c ' in Figure 165) on a line added to the longer arm of the symbols given in Figures 160 to 162, as shown in Figure 170.

Figure 170 - Method of producing surface texture indicated in words on graphical symbol

Any indications relating to treatment or coatings should also be given on this line. Unless otherwise stated, the numerical value of the roughness applies to the surface texture after treatment or coating. If it is necessary to define surface texture both before and after treatment, this should be explained in a note or in accordance with Figure 171.

Figure 171 - Treatment or coatings to surface texture on graphical symbol

If it is necessary to indicate the sampling length, this should be selected from the appropriate series given in BS EN ISO 4288 and stated, in millimetres, adjacent to the graphical symbol, as shown in Figure 172. If it is necessary to specify the surface lay by working (e.g. tool marks) the symbol should be added to the surface texture symbol, as shown for example in Figure 173. The graphical symbols for the common surface patterns are specified in Table 5.

Figure 172 - Indication of sampling length on graphical symbol

Figure 173 - Indication of surface lay by working on graphical symbol

Table 5 - Graphical symbols for common surface patterns

| Graphical
 symbol | |
| :--- | :--- | :--- |
| $=$ | Interpretation
 Projection of the view in which to the plane of
 the symbol is used |
| Perpendicular to the plane of | |
| projection of the view in which | |
| the symbol is used | |

Graphical symbol $^{\text {a }}$	Interpretation [Approximately circular relative to the centre of the surface to which the symbol applies	Example
R	Approximately radial relative to the centre of the surface to which the symbol applies	
P	Lay is particulate, non- directional or protuberant	

${ }^{3}$ If it is necessary to specify a surface pattern that is not clearly defined by these symbols, this should be achieved by the addition of a suitable note to the drawing

When indicating a machining allowance, the relative information is positioned on the symbol as shown by ' e ' in Figure 165. This allowance is generally indicated only where process stages are shown on the same drawing, i.e. on drawings of raw cast and forged workpieces, with the final workpiece depicted superimposed in the raw workpiece.

3.7 Indications on drawings

The general rule is that the graphical symbol together with the associated indications should be oriented so that they can be read from the bottom or the right-hand side of the drawing, as shown in Figure 174.

Figure 174 - Orientation of graphical symbols in relation to drawing views

However, if it is not practicable to adopt this general rule, the graphical symbol may be drawn in any position, but only if it does not carry any indications of special surface texture characteristics. Nevertheless, in such cases, the inscription defining the value of the arithmetical mean deviation 'Ra' (if present) should always be written in conformity with the general rule, as shown in Figure 174.

If necessary, the graphical symbol may be connected to the surface by a leader line terminating in an arrowhead.

As a general rule, the graphical symbol, or the leader line terminating in an arrowhead, shall point from outside the material of the piece, either to the line representing the surface or to an extension of it, as shown in Figure 175. However, if there is no risk of misinterpretation, the surface roughness requirement may be indicated in connection with the dimensions given, as shown in Figure 176.

Figure 175 - Graphical symbol connected to a surface by a leader line

Figure 176 - Surface roughness requirement indicated in connection with dimensions

The graphical symbol should be used only once for a given surface and, if possible, on the same view as the dimensions defining the size or position of the surface. Cylindrical as well as prismatic surfaces shall only be specified once if indicated by a centre-line, as shown in Figure 177. However, each prismatic surface shall be indicated separately if a different surface texture is required or if particular requirements are applicable, see Figure 178.

Figure 177 - Graphical symbol used only once for a given surface

Figure 178 - Separate indication of each prismatic surface

If the same surface texture is required on the majority of the surfaces of a part, this surface texture requirement should be placed near the title block or in a space provided in the title block of a drawing.

The general graphical symbol corresponding to this surface texture should be followed by:

- a basic graphical symbol in parentheses without any other indication as shown in Figure 179; or
- the graphical symbol or symbols in parentheses of the special deviating surface texture requirements in order to indicate requirements that deviate from the general surface texture requirement, as shown in Figure 179.

Symbols for surface textures that are exceptions to the general symbol should be indicated on the corresponding surfaces.

Figure 179 - Indication of the same surface texture on the majority of surfaces of a part

To avoid the necessity of repeating a complicated indication a number of times, or where space is limited, a simplified indication may be used on the surface, provided that its specification is explained near the part in question, near the title block or in the space devoted to general notes, as shown in Figure 180.

Figure 180 - Simplified indication of surface texture

If the same surface texture is required on a large number of surfaces of the part, the corresponding graphical symbol shown in Figures 160 to 162 may be used on the appropriate surface and its specification given on the drawing, near the title block or in the space devoted to general notes, as shown in Figure 181.

Figure 181 - Simplified indication of surface texture

3.8 Relevant standards

BS EN ISO 1302, Ceometrical Product Specifications (GPS) — Indication of surface texture in technical product documentation
BS EN ISO 3274, Geometric Product Specifications (GPS) - Surface texture: Profile method - Nominal characteristics of contact (sty/us) instruments
BS EN ISO 4287, Geometrical product specification (GPS) - Surface texture: Profile method - Terms, definitions and surface texture parameters
BS EN ISO 4288, Geometric Product Specification (GPS) - Surface texture - Profile method: Rules and procedures for the assessment of surface texture
BS EN ISO 8785, Geometrical Product Specification (GPS) - Surface imperfections - Terms, definitions and parameters
BS ISO 10135, Ceometrical product specifications (GPS) — Drawing indications for moulded parts in technical product documentation (TPD)
BS ISO 10209-1, Technical product documentation — Vocabulary - Terms relating to technical drawings: general and types of drawings
BS EN ISO 11562, Geometric product specifications (GPS) - Surface texture: Profile method. Metrological characteristics of phase correct filters
BS EN ISO 12085, Geometric Product Specification (GPS) - Surface texture: Profile method Motif parameters

Chapter 4

Welding, brazed and soldered joints Symbolic representation

4.1 Introduction

The illustrations on pages 125-133 are taken from wall chart BS 499-2C:1999, European Arc Welding Symbols, which is based on BS EN 22553, Welded, brazed and soldered joints - Symbolic representation on drawings.

NOTE: All drawings where these symbols are used are to be referenced BS EN 22553 (ISO 2553:1992).

1. ELEMENTARY SYMBOLS

| Type of weld | Illustration |
| :--- | :--- | :--- |
| Butt weld between plates with raised edges
 which are melted down completely | |
| Square butt weld | |
| Single-V butt weld | |
| Single-bevel butt weld | |

Type of weld

2. SUPPLEMENTARY SYMBOLS

Shape of weld surface or weld

3. REFERENCE LINES AND OTHER INFORMATION

Method of representation

The arrow may be used to indicate a welded joint on an elevation or cross section

Location of welding symbol on reference line

It is recommended that the arrow line is placed on the side of the joint to be welded unless there is not enough space

It is recommended that the welding symbol is placed on the reference line but this is not mandatory

4. WELD DIMENSIONS

Weld length
For continuous welds the length of weld is given to the right of the welding symbol
For intermittent welds, $I=$ weld length, $\mathrm{e}=$ distance between welds, $n=$ number of welds

$\frac{\operatorname{aor} Z}{a 0 r z} \ \frac{n \times l}{} \nmid$| (θ) |
| :--- |
| (θ) |

e.g. 10 staggered welds per side, leg length $6 \mathrm{~mm}, 100 \mathrm{~mm}$ long and 150 mm apart

5. EXAMPLES SHOWING THE USE OF SYMBOLS

Description

Description	
Double-bevel T-butt weld with reinforcing fillets	Illustration
Partial penetration T-butt weld (6 mm	
penetration both sides)	

4.2 Relevant standards

BS 499-2c:1999, European Arc Welding Symbols
BS EN 22553:1995, Welded, brazed and soldered joints - Symbolic representation on drawings

Chapter 5

Limits and fits

5.1 Introduction

The interchangeability of mass produced parts requires a system of limits and fits to ensure a correct functional fit between two mating parts such as a shaft in a hole. This is achieved by specifying limits of size (tolerances) for each part (or a feature on a part). The maximum and minimum deviations in these sizes characterize the type of fit, i.e. clearance, transition and interference.

The term 'hole' or 'shaft' is used to designate features of size of a cylinder (tolerancing of a hole or shaft) or the size between two parallel surfaces (thickness of a key or width of a slot).

5.2 Selected ISO fits - Hole basis

The content of this section, including the table on page 137, is taken from BS 4500A, Selected ISO Fits hole basis.

The ISO system provides a great many hole and shaft tolerances so as to cater for a very wide range of conditions. However, experience shows that the majority of fit conditions required for normal engineering products can be provided by a quite limited selection of tolerances.

The following selected hole and shaft tolerances have been found to be commonly applied: Selected hole tolerances: $\mathrm{H} 7 ; \mathrm{H} 8 ; \mathrm{H} 9 ; \mathrm{H} 11$
Selected shaft tolerances: c11; d10; e9; f7; g6; h6; k6; n6; p6; s6

The table in this data sheet shows a range of fits derived from these selected hole and shaft tolerances. As will be seen, it covers fits from loose clearance to heavy interference and it may therefore be found to be suitable for most normal requirements. Many users may in fact find that their needs are met by a further selection within this selected range.

It should be noted, however, that this table is offered only as an example of how a restricted selection of fits can be made. It is clearly impossible to recommend selection of fits which are appropriate to all sections of industry, but it must be emphasized that a user who decides upon a selected range will always enjoy the economic advantages this conveys. Once he has installed the necessary tooling and gauging facilities, he can combine his selected hole and shaft tolerances in different ways without any additional investment in tools and equipment.

For example, if it is assumed that the range of fits shown in the table has been adopted but that, for a particular application the fit $\mathrm{H} 8-\mathrm{f} 7$ is appropriate but provides rather too much variation, the hole tolerance H 7 could equally well be associated with the shaft f 7 and may provide exactly what is required without necessitating any additional tooling.

For most general applications it is usual to recommend hole basis fits as, except in the realm of very large sizes where the effects of temperature play a large part, it is usually considered easier to manufacture and measure the male member of a fit and it is thus desirable to be able to allocate the larger part of the tolerance available to the hole and adjust the shaft to suit.

In some circumstances, however, it may in fact be preferable to employ a shaft-basis. For example, in the case of driving shafts where a single shaft may gave to accommodate a variety of accessories such as couplings, bearings, collars, etc., it is preferable to maintain a constant diameter for the permanent member, which is the shaft, and vary the bore of the accessories. For use in applications of this kind, a selection of shaft basis fits is provided in Data Sheet 4500B.

5.3 Selected ISO fits - Shaft basis

The content of this section, including the table on page 139, is taken from BS 4500B, Selected ISO Fits shaft basis.

The ISO system provides a great many hole and shaft tolerances so as to cater for a very wide range of conditions. However, experience shows that the majority of fit conditions required for normal engineering products can be provided by a quite limited selection of tolerances.

The following selected hole and shaft tolerances have been found to be commonly applied:
Selected hole tolerances: $\mathrm{H} 7 ; \mathrm{H8} ; \mathrm{H9} ; \mathrm{H} 11$
Selected shaft tolerances: c11; d10; e9; f7; g6; h6; k6; n6; p6; s6

For most general applications it is usual to recommend hole basis fits, i.e. fits in which the design size for the hole is the basic size and variations in the grade of fit for any particular hole are obtained by varying the clearance and the tolerance on the shaft. Data Sheet 4500A gives a range of hole basis fits derived from the selected hole and shaft tolerances above.

In some circumstances, however, it may in fact be preferable to employ a shaft basis. For example, in the case of driving shafts where a single shaft may have to accommodate a variety of accessories such as couplings, bearings, collars, etc., it is preferable to maintain a constant diameter for the permanent member, which is the shaft, and vary the bore of the accessories. Shaft basis fits also provide a useful economy where bar stock material is available to standard shaft tolerances of the ISO system.

For the benefit of those wishing to use shaft basis fits, this data sheet shows the shaft basis equivalents of the hole basis fits in Data Sheet 4500A. They are all direct conversions except that the fit H9-d10, instead of being converted to D9-h10, is adjusted to D10-h9 to avoid introducing the additional shaft tolerance h10.

As will be seen, the table covers fits from loose clearance to heavy interference and may therefore be found suitable for most normal requirements. Many users may in fact find that their needs are met by a further selection within this selected range.

It should be noted, however, that this Table is offered only as an example of how a restricted selection of fits can be made. It is clearly impossible to recommend selections of fits which are appropriate to all sections of industry, but it must be emphasized that a user who decides upon a selected range will always enjoy the economic advantages this conveys. Once he has installed the necessary tooling and gauging facilities, he can combine his selected hole and shaft tolerances in different ways without any additional investment in tools and equipment.

For example, if it is assumed that the range of fits shown in the table has been adopted but that, for a particular application the fit F8-h7 is appropriate but provides rather too much variation, the shaft tolerance h6 could equally well be associated with the hole F8 and may provide exactly what is required without necessitating any additional tooling.

5.4 Methods of specifying required fits

Fits taken from BS 4500-1 and BS 4500-2 shall be designated on drawings by the methods shown in Figures 182 and 183.

Figure 182 - Fit designation - shafts

Figure 183 - Fit designation - holes

5.5 Relevant standards

BS 4500A Data Sheet: Selected ISO fits - hole basis
BS 4500B Data Sheet: Selected ISO fits - shaft basis
BS EN 20286-1, ISO system of limits and fits - Part 1: Bases of tolerances, deviations and fits
BS EN 20286-2, ISO system of limits and fits - Part 2: Tables of standard tolerance grades and limit deviations for holes and shafts

Chapter 6

Metric screw threads

6.1 Introduction

The table on pages 143-167 has been extracted from BS 3643-2, ISO metric screw threads - Part 2: Specification for selected limits of size. It specifies the fundamental deviations, tolerances and limits of size for the tolerance classes $4 \mathrm{H}, 5 \mathrm{H}, 6 \mathrm{H}$ and 7 H for internal threads and $4 \mathrm{~h}, 5 \mathrm{~h}, 6 \mathrm{~h}$ and 7 h for external threads for:

- the coarse pitch series, ranging from 1 mm to 68 mm diameter;
- the fine pitch series, ranging from 1 mm to 33 mm diameter;
- the constant pitch series, ranging from 8 mm to 125 mm diameter.

For constant pitch series between 125 mm diameter and 300 mm diameter, see BS 3643-2.

6.2 Thread designation

The complete designation for a screw thread shall comprise a thread system and tolerance class. The letter M signifies the metric thread system.

Examples

External thread
$\mathbf{M 1 0 - 6 g}$
Thread of 10 mm nominal diameter in the coarse thread series \qquad

Tolerance class for pitch and major diameters
$\mathbf{M 1 0 \times 1 - 6 g}$
Thread of 10 mm nominal diameter having a pitch of 1 mm \square

Internal thread

	M10-6H
Thread of 10 mm nominal diameter in the coarse thread series	
Tolerance class for pitch and major diameters	
	M10 $\times 1-6 \mathrm{H}$
Thread of 10 mm nominal diameter having a pitch of 1 mm	

NOTE: In the absence of a specified pitch in the thread designation, the default is the coarse thread series.
The following table gives the limits and tolerances for finished, uncoated ISO metric screw threads for normal length of engagement.

Table 1 ISO metric screw threads - Limits and tolerances for finished uncoated threads for normal length of engagement
All dimensions are in millimetres.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Nominal diameter	Pitch			External threads									Internal threads								
	Coarse	Fine	Constant	Tolerance class	$\begin{aligned} & \text { Fund } \\ & \text { dev. } \end{aligned}$	Major diameter			Pitch diameter			Minor diameter min.	Tolerance class	Fund dev.	Major diameter min.	Pitch diameter			Minor diameter		
						max.	tol.	min.	max.	tol.	min.					max.	tol.	min.	max.	tol.	min.
$\overline{1}$		0.2		$\begin{aligned} & 4 \mathrm{~h} \\ & 6 \mathrm{~g} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.017 \end{aligned}$	$\begin{aligned} & \hline 1.000 \\ & 0.983 \end{aligned}$	$\begin{aligned} & 0.036 \\ & 0.056 \end{aligned}$	$\begin{aligned} & 0.964 \\ & 0.927 \end{aligned}$	$\begin{aligned} & 0.870 \\ & 0.853 \end{aligned}$	$\begin{aligned} & 0.030 \\ & 0.048 \end{aligned}$	$\begin{aligned} & 0.840 \\ & 0.805 \end{aligned}$	$\begin{aligned} & \hline 0.717 \\ & 0.682 \end{aligned}$	4H	0	1.000	0.910	0.040	0.870	0.821	0.038	0.783
	0.25			$\begin{aligned} & \hline 4 \mathrm{~h} \\ & 6 \mathrm{~g} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.018 \end{aligned}$	$\begin{aligned} & 1.000 \\ & 0.982 \end{aligned}$	$\begin{aligned} & 0.042 \\ & 0.067 \end{aligned}$	$\begin{aligned} & 0.958 \\ & 0.915 \end{aligned}$	$\begin{aligned} & \hline 0.838 \\ & 0.820 \end{aligned}$	$\begin{aligned} & 0.034 \\ & 0.053 \end{aligned}$	$\begin{aligned} & 0.804 \\ & 0.767 \end{aligned}$	$\begin{aligned} & \hline 0.649 \\ & 0.613 \end{aligned}$	$\begin{aligned} & 4 \mathrm{H} \\ & 5 \mathrm{H} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1.000 \\ & 1.000 \end{aligned}$	$\begin{aligned} & 0.883 \\ & 0.894 \end{aligned}$	$\begin{aligned} & 0.045 \\ & 0.056 \end{aligned}$	$\begin{aligned} & 0.838 \\ & 0.838 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.774 \\ 0.785 \end{array}$	$\begin{aligned} & 0.045 \\ & 0.056 \end{aligned}$	$\begin{aligned} & 0.729 \\ & 0.729 \end{aligned}$
1.1		0.2		$\begin{aligned} & \hline 4 \mathrm{~h} \\ & 6 \mathrm{~g} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.017 \end{aligned}$	$\begin{aligned} & 1.100 \\ & 1.083 \end{aligned}$	$\begin{aligned} & 0.036 \\ & 0.056 \end{aligned}$	$\begin{aligned} & 1.064 \\ & 1.027 \end{aligned}$	$\begin{aligned} & \hline 0.970 \\ & 0.953 \end{aligned}$	$\begin{aligned} & 0.030 \\ & 0.048 \end{aligned}$	$\begin{aligned} & 0.940 \\ & 0.905 \end{aligned}$	$\begin{aligned} & 0.817 \\ & 0.782 \end{aligned}$	4H	0	1.100	1.010	0.040	0.970	0.921	0.038	0.883
	0.25			$\begin{aligned} & \hline 4 \mathrm{~h} \\ & 6 \mathrm{~g} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.018 \end{aligned}$	$\begin{aligned} & 1.100 \\ & 1.082 \end{aligned}$	$\begin{aligned} & 0.042 \\ & 0.067 \end{aligned}$	$\begin{aligned} & 1.058 \\ & 1.015 \end{aligned}$	$\begin{aligned} & 0.938 \\ & 0.920 \end{aligned}$	$\begin{aligned} & 0.034 \\ & 0.053 \end{aligned}$	$\begin{aligned} & 0.904 \\ & 0.867 \end{aligned}$	$\begin{aligned} & 0.750 \\ & 0.713 \end{aligned}$	$\begin{aligned} & \hline 4 \mathrm{H} \\ & 5 \mathrm{H} \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \end{aligned}\right.$	$\begin{aligned} & \hline 1.100 \\ & 1.100 \end{aligned}$	$\begin{aligned} & 0.983 \\ & 0.994 \end{aligned}$	$\begin{aligned} & 0.045 \\ & 0.056 \end{aligned}$	$\begin{aligned} & 0.938 \\ & 0.938 \end{aligned}$	$\begin{aligned} & 0.874 \\ & 0.885 \end{aligned}$	$\begin{aligned} & 0.045 \\ & 0.056 \end{aligned}$	$\begin{aligned} & 0.829 \\ & 0.829 \end{aligned}$
1.2		0.2		$\begin{aligned} & 4 \mathrm{~h} \\ & 6 \mathrm{~g} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.017 \end{aligned}$	$\begin{aligned} & \hline 1.200 \\ & 1.183 \end{aligned}$	$\begin{aligned} & 0.036 \\ & 0.056 \end{aligned}$	$\begin{aligned} & \hline 1.164 \\ & 1.127 \end{aligned}$	$\begin{aligned} & \hline 1.070 \\ & 1.053 \end{aligned}$	$\begin{aligned} & 0.030 \\ & 0.048 \end{aligned}$	$\begin{aligned} & 1.040 \\ & 1.005 \end{aligned}$	$\begin{aligned} & \hline 0.917 \\ & 0.882 \end{aligned}$	4H	0	1.200	1.110	0.040	1.070	1.021	0.038	0.983
	0.25			$\begin{aligned} & 4 \mathrm{~h} \\ & 6 \mathrm{~g} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.018 \end{aligned}$	$\begin{aligned} & \hline 1.200 \\ & 1.182 \end{aligned}$	$\begin{aligned} & 0.042 \\ & 0.067 \end{aligned}$	$\begin{aligned} & 1.158 \\ & 1.115 \end{aligned}$	$\begin{aligned} & \hline 1.038 \\ & 1.020 \end{aligned}$	$\begin{aligned} & 0.034 \\ & 0.053 \end{aligned}$	$\begin{aligned} & 1.004 \\ & 0.967 \end{aligned}$	$\begin{aligned} & \hline 0.850 \\ & 0.813 \end{aligned}$	$\begin{aligned} & 4 \mathrm{H} \\ & 5 \mathrm{H} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1.200 \\ & 1.200 \end{aligned}$	$\begin{aligned} & 1.083 \\ & 1.094 \end{aligned}$	$\begin{aligned} & 0.045 \\ & 0.056 \end{aligned}$	$\begin{aligned} & \hline 1.038 \\ & 1.038 \end{aligned}$	$\begin{aligned} & 0.974 \\ & 0.985 \end{aligned}$	$\begin{aligned} & 0.045 \\ & 0.056 \end{aligned}$	$\begin{aligned} & 0.929 \\ & 0.929 \end{aligned}$
1.4		0.2		$\begin{array}{\|l} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.017 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1.400 \\ 1.383 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.036 \\ 0.056 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1.364 \\ 1.327 \\ \hline \end{array}$	$\begin{aligned} & \hline 1.270 \\ & 1.253 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.030 \\ 0.048 \\ \hline \end{array}$	$\begin{aligned} & 1.240 \\ & 1.205 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.117 \\ & 1.082 \\ & \hline \end{aligned}$	4H	0	1.400	1.310	0.040	1.270	1.221	0.038	1.183
	0.3			$\begin{aligned} & \hline 4 \mathrm{~h} \\ & 6 \mathrm{~g} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.018 \end{aligned}$	$\begin{aligned} & \hline 1.400 \\ & 1.382 \end{aligned}$	$\begin{aligned} & 0.048 \\ & 0.075 \end{aligned}$	$\begin{aligned} & 1.352 \\ & 1.307 \end{aligned}$	$\begin{aligned} & \hline 1.205 \\ & 1.187 \end{aligned}$	$\begin{aligned} & 0.036 \\ & 0.056 \end{aligned}$	$\begin{aligned} & 1.169 \\ & 1.131 \end{aligned}$	$\begin{aligned} & \hline 0.984 \\ & 0.946 \end{aligned}$	$\begin{aligned} & 4 \mathrm{H} \\ & 5 \mathrm{H} \\ & 6 \mathrm{H} \end{aligned}$	0 0 0	$\begin{aligned} & 1.400 \\ & 1.400 \\ & 1.400 \end{aligned}$	$\begin{aligned} & 1.253 \\ & 1.265 \\ & 1.280 \end{aligned}$	$\begin{aligned} & \hline 0.048 \\ & 0.060 \\ & 0.075 \end{aligned}$	$\begin{aligned} & 1.205 \\ & 1.205 \\ & 1.205 \end{aligned}$	$\begin{aligned} & \hline 1.128 \\ & 1.142 \\ & 1.160 \end{aligned}$	$\begin{aligned} & 0.053 \\ & 0.067 \\ & 0.085 \end{aligned}$	$\begin{aligned} & 1.075 \\ & 1.075 \\ & 1.075 \end{aligned}$
1.6		0.2		$\begin{aligned} & \hline 4 \mathrm{~h} \\ & 6 \mathrm{~g} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.017 \end{aligned}$	$\begin{aligned} & 1.600 \\ & 1.583 \end{aligned}$	$\begin{aligned} & 0.036 \\ & 0.056 \end{aligned}$	$\begin{aligned} & 1.564 \\ & 1.527 \end{aligned}$	$\begin{aligned} & \hline 1.470 \\ & 1.453 \end{aligned}$	$\begin{aligned} & 0.032 \\ & 0.050 \end{aligned}$	$\begin{aligned} & 1.438 \\ & 1.403 \end{aligned}$	$\begin{aligned} & \hline 1.315 \\ & 1.280 \end{aligned}$	4H	0	1.600	1.512	0.042	1.470	1.421	0.038	1.383
	0.35			$\begin{aligned} & 4 \mathrm{~h} \\ & 6 \mathrm{~g} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.019 \end{aligned}$	$\begin{aligned} & 1.600 \\ & 1.581 \end{aligned}$	$\begin{array}{l\|} \hline 0.053 \\ 0.085 \end{array}$	$\begin{aligned} & 1.547 \\ & 1.496 \end{aligned}$	$\begin{aligned} & \hline 1.373 \\ & 1.354 \end{aligned}$	$\begin{aligned} & 0.040 \\ & 0.063 \end{aligned}$	$\begin{aligned} & 1.333 \\ & 1.291 \end{aligned}$	$\begin{aligned} & \hline 1.117 \\ & 1.075 \end{aligned}$	$\begin{aligned} & \hline 4 \mathrm{H} \\ & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1.600 \\ & 1.600 \\ & 1.600 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.426 \\ & 1.440 \\ & 1.458 \end{aligned}$	$\begin{aligned} & 0.053 \\ & 0.067 \\ & 0.085 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.373 \\ & 1.373 \\ & 1.373 \end{aligned}$	$\begin{array}{\|l\|} \hline 1.284 \\ 1.301 \\ 1.321 \\ \hline \end{array}$	$\begin{aligned} & 0.063 \\ & 0.080 \\ & 0.100 \end{aligned}$	$\begin{aligned} & \hline 1.221 \\ & 1.221 \\ & 1.221 \\ & \hline \end{aligned}$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Nominal diameter	Pitch			External threads									Internal threads								
	Coarse	Fine	Constant	Tolerance class	Fund dev.	Major diameter			Pitch diameter			Minor diameter min.	Tolerance class	Fund dev.	Major diameter min.	Pitch diameter			Minor diameter		
						max.	tol.	min.	max.	tol.	min.					max.	tol.	min.	max.	tol.	min.
1.8		0.2		$\begin{aligned} & \hline 4 \mathrm{~h} \\ & 6 \mathrm{~g} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.017 \end{aligned}$	$\begin{aligned} & 1.800 \\ & 1.783 \end{aligned}$	$\begin{aligned} & 0.036 \\ & 0.056 \end{aligned}$	$\begin{aligned} & \hline 1.764 \\ & 1.727 \end{aligned}$	$\begin{array}{\|l\|} \hline 1.670 \\ 1.653 \end{array}$	$\begin{aligned} & 0.032 \\ & 0.050 \end{aligned}$	$\begin{aligned} & 1.638 \\ & 1.603 \end{aligned}$	$\begin{aligned} & \hline 1.515 \\ & 1.480 \end{aligned}$	4H	0	1.800	1.712	0.042	1.670	1.621	0.038	1.583
	0.35			$\begin{aligned} & 4 \mathrm{~h} \\ & 6 \mathrm{~g} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.019 \end{aligned}$	$\begin{aligned} & 1.800 \\ & 1.781 \end{aligned}$	$\begin{aligned} & 0.053 \\ & 0.085 \end{aligned}$	$\begin{aligned} & \hline 1.747 \\ & 1.696 \end{aligned}$	$\begin{aligned} & \hline 1.573 \\ & 1.554 \end{aligned}$	$\begin{aligned} & 0.040 \\ & 0.063 \end{aligned}$	$\begin{aligned} & 1.533 \\ & 1.491 \end{aligned}$	$\begin{aligned} & 1.317 \\ & 1.275 \end{aligned}$	$\begin{array}{\|l\|} \hline 4 \mathrm{H} \\ 5 \mathrm{H} \\ 6 \mathrm{H} \\ \hline \end{array}$	0 0 0	$\begin{aligned} & 1.800 \\ & 1.800 \\ & 1.800 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1.626 \\ 1.640 \\ 1.658 \\ \hline \end{array}$	$\begin{aligned} & 0.053 \\ & 0.067 \\ & 0.085 \\ & \hline \end{aligned}$	1.573 1.573 1.573	$\begin{array}{\|l\|} \hline 1.484 \\ 1.501 \\ 1.521 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.063 \\ & 0.080 \\ & 0.100 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1.421 \\ 1.421 \\ 1.421 \\ \hline \end{array}$
$\overline{2}$		0.25		$\begin{aligned} & 4 \mathrm{~h} \\ & 6 \mathrm{~g} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0.018 \end{array}$	$\begin{aligned} & \hline 2.000 \\ & 1.982 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.042 \\ 0.067 \end{array}$	$\begin{aligned} & 1.958 \\ & 1.915 \end{aligned}$	$\begin{array}{\|l\|} \hline 1.838 \\ 1.820 \end{array}$	$\begin{aligned} & \hline 0.036 \\ & 0.056 \end{aligned}$	$\begin{aligned} & \hline 1.802 \\ & 1.764 \end{aligned}$	$\begin{aligned} & 1.648 \\ & 1.610 \end{aligned}$	$\begin{aligned} & 4 \mathrm{H} \\ & 5 \mathrm{H} \end{aligned}$	$\left.\right\|_{0} ^{0}$	$\begin{aligned} & 2.000 \\ & 2.000 \end{aligned}$	$\begin{aligned} & \hline 1.886 \\ & 1.898 \end{aligned}$	$\begin{aligned} & 0.048 \\ & 0.060 \end{aligned}$	$\begin{aligned} & \hline 1.838 \\ & 1.838 \end{aligned}$	$\begin{aligned} & 1.774 \\ & 1.785 \end{aligned}$	$\begin{aligned} & 0.045 \\ & 0.056 \end{aligned}$	$\begin{aligned} & \hline 1.729 \\ & 1.729 \end{aligned}$
	0.4			$\begin{aligned} & 4 \mathrm{~h} \\ & 6 \mathrm{~g} \end{aligned}$	$\begin{aligned} & 0 \\ & 0.019 \end{aligned}$	$\begin{aligned} & 2.000 \\ & 1.981 \end{aligned}$	$\begin{aligned} & 0.060 \\ & 0.095 \end{aligned}$	$\begin{aligned} & 1.940 \\ & 1.886 \end{aligned}$	$\begin{aligned} & 1.740 \\ & 1.721 \end{aligned}$	$\begin{aligned} & 0.042 \\ & 0.067 \end{aligned}$	$\begin{aligned} & 1.698 \\ & 1.654 \end{aligned}$	$\begin{aligned} & 1.452 \\ & 1.408 \end{aligned}$	$\begin{aligned} & \hline 4 \mathrm{H} \\ & 5 \mathrm{H} \\ & 6 \mathrm{H} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2.000 \\ & 2.000 \\ & 2.000 \end{aligned}$	$\begin{aligned} & 1.796 \\ & 1.811 \\ & 1.830 \end{aligned}$	$\begin{aligned} & 0.056 \\ & 0.071 \\ & 0.090 \end{aligned}$	1.740 1.740 1.740	$\begin{aligned} & 1.638 \\ & 1.657 \\ & 1.679 \end{aligned}$	$\begin{aligned} & 0.071 \\ & 0.090 \\ & 0.112 \end{aligned}$	1.567 1.567 1.567
$\overline{2.2}$		0.25		$\begin{aligned} & 4 \mathrm{~h} \\ & 6 \mathrm{~g} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0.018 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2.200 \\ 2.182 \\ \hline \end{array}$	$\begin{aligned} & 0.042 \\ & 0.067 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 2.158 \\ 2.115 \\ \hline \end{array}$	$\begin{aligned} & 2.038 \\ & 2.020 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.036 \\ & 0.056 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.002 \\ & 1.964 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.848 \\ & 1.810 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \mathrm{H} \\ & 5 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|l\|} \hline 2.200 \\ 2.200 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2.086 \\ 2.098 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.048 \\ 0.060 \\ \hline \end{array}$	$\begin{aligned} & 2.038 \\ & 2.038 \end{aligned}$	$\begin{array}{\|l\|} \hline 1.974 \\ 1.985 \\ \hline \end{array}$	$\begin{aligned} & 0.045 \\ & 0.056 \end{aligned}$	$\begin{aligned} & \hline 1.929 \\ & 1.929 \end{aligned}$
	0.45			$\begin{aligned} & 4 \mathrm{~h} \\ & 6 \mathrm{~g} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.020 \end{aligned}$	$\begin{aligned} & 2.200 \\ & 2.180 \end{aligned}$	$\begin{aligned} & 0.063 \\ & 0.100 \end{aligned}$	$\begin{aligned} & 2.137 \\ & 2.080 \end{aligned}$	$\begin{aligned} & 1.908 \\ & 1.888 \end{aligned}$	$\begin{aligned} & 0.045 \\ & 0.071 \end{aligned}$	$\begin{aligned} & 1.863 \\ & 1.817 \end{aligned}$	$\begin{aligned} & \hline 1.585 \\ & 1.539 \end{aligned}$	$\begin{aligned} & 4 \mathrm{H} \\ & 5 \mathrm{H} \\ & 6 \mathrm{H} \end{aligned}$	$\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right.$	$\begin{array}{\|l\|} \hline 2.200 \\ 2.200 \\ 2.200 \\ \hline \end{array}$	$\begin{aligned} & 1.968 \\ & 1.983 \\ & 2.003 \end{aligned}$	$\begin{aligned} & 0.060 \\ & 0.075 \\ & 0.095 \end{aligned}$	$\begin{aligned} & 1.908 \\ & 1.908 \\ & 1.908 \end{aligned}$	$\begin{aligned} & 1.793 \\ & 1.813 \\ & 1.838 \end{aligned}$	$\begin{aligned} & 0.080 \\ & 0.100 \\ & 0.125 \end{aligned}$	$\begin{aligned} & \hline 1.713 \\ & 1.713 \\ & 1.713 \\ & \hline \end{aligned}$
2.5		0.35		$\begin{aligned} & 4 \mathrm{~h} \\ & 6 \mathrm{~g} \end{aligned}$	$\begin{aligned} & 0 \\ & 0.019 \end{aligned}$	$\begin{aligned} & 2.500 \\ & 2.481 \end{aligned}$	$\begin{aligned} & 0.053 \\ & 0.085 \end{aligned}$	$\begin{aligned} & 2.447 \\ & 2.396 \end{aligned}$	$\begin{aligned} & 2.273 \\ & 2.254 \end{aligned}$	$\begin{aligned} & 0.040 \\ & 0.063 \end{aligned}$	$\begin{aligned} & 2.233 \\ & 2.191 \end{aligned}$	$\begin{aligned} & \hline 2.017 \\ & 1.975 \end{aligned}$	$\begin{aligned} & \hline 4 \mathrm{H} \\ & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{array}{\|l} 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 2.500 \\ 2.500 \\ 2.500 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2.326 \\ 2.340 \\ 2.358 \\ \hline \end{array}$	0.053 0.067 0.085	$\begin{aligned} & 2.273 \\ & 2.273 \\ & 2.273 \\ & \hline \end{aligned}$	2.184 2.201 2.221	$\begin{array}{\|l} \hline 0.063 \\ 0.080 \\ 0.100 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2.121 \\ 2.121 \\ 2.121 \\ \hline \end{array}$
	0.45			$\begin{aligned} & 4 \mathrm{~h} \\ & 6 \mathrm{~g} \end{aligned}$	$\begin{aligned} & 0 \\ & 0.020 \end{aligned}$	$\begin{aligned} & 2.500 \\ & 2.480 \end{aligned}$	$\begin{aligned} & \hline 0.063 \\ & 0.100 \end{aligned}$	$\begin{aligned} & 2.437 \\ & 2.380 \end{aligned}$	$\begin{aligned} & 2.208 \\ & 2.188 \end{aligned}$	$\begin{aligned} & \hline 0.045 \\ & 0.071 \end{aligned}$	$\begin{aligned} & 2.163 \\ & 2.117 \end{aligned}$	$\begin{aligned} & 1.885 \\ & 1.839 \end{aligned}$	$\begin{aligned} & \hline 4 \mathrm{H} \\ & 5 \mathrm{H} \\ & 6 \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.500 \\ & 2.500 \\ & 2.500 \\ & \hline \end{aligned}$	2.268 2.283 2.303	0.060 0.075 0.095	$\begin{aligned} & 2.208 \\ & 2.208 \\ & 2.208 \end{aligned}$	2.093 2.113 2.138	0.080 0.100 0.125	$\begin{aligned} & \hline 2.013 \\ & 2.013 \\ & 2.013 \\ & \hline \end{aligned}$
$\overline{3}$		0.35		$\begin{aligned} & 4 \mathrm{~h} \\ & 6 \mathrm{~g} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0.019 \end{array}$	$\begin{aligned} & 3.000 \\ & 2.981 \end{aligned}$	$\begin{aligned} & 0.053 \\ & 0.085 \end{aligned}$	$\begin{aligned} & 2.947 \\ & 2.896 \end{aligned}$	$\begin{aligned} & 2.773 \\ & 2.754 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.042 \\ 0.067 \end{array}$	$\begin{aligned} & 2.731 \\ & 2.687 \end{aligned}$	$\begin{aligned} & 2.515 \\ & 2.471 \end{aligned}$	$\begin{array}{\|l\|} \hline 4 \mathrm{H} \\ 5 \mathrm{H} \\ 6 \mathrm{H} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 3.000 \\ 3.000 \\ 3.000 \\ \hline \end{array}$	2.829 2.844 2.863	$\begin{array}{\|l\|} \hline 0.056 \\ 0.071 \\ 0.090 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 2.773 \\ 2.773 \\ 2.773 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.684 \\ & 2.701 \\ & 2.721 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.063 \\ 0.080 \\ 0.100 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2.621 \\ 2.621 \\ 2.621 \\ \hline \end{array}$
	0.5			$\begin{aligned} & 4 \mathrm{~h} \\ & 6 \mathrm{~g} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.020 \end{aligned}$	$\begin{aligned} & 3.000 \\ & 2.980 \end{aligned}$	$\begin{aligned} & 0.067 \\ & 0.106 \end{aligned}$	$\begin{aligned} & 2.933 \\ & 2.874 \end{aligned}$	$\begin{aligned} & 2.675 \\ & 2.655 \end{aligned}$	$\begin{aligned} & 0.048 \\ & 0.075 \end{aligned}$	$\begin{aligned} & 2.627 \\ & 2.580 \end{aligned}$	$\begin{aligned} & 2.319 \\ & 2.272 \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	0	$\begin{aligned} & 3.000 \\ & 3.000 \\ & 3.000 \end{aligned}$	2.755 2.775 2.800	0.080 0.100 0.125	2.675 2.675 2.675	$\begin{aligned} & \hline 2.571 \\ & 2.599 \\ & 2.639 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.112 \\ & 0.140 \\ & 0.180 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.459 \\ & 2.459 \\ & 2.459 \\ & \hline \end{aligned}$

1 Nominal diameter	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
	Pitch			External threads									Internal threads								
	Coarse	Fine	Constant	Tolerance	Fund	Major diameter			Pitch diameter			Minor diameter min.	Tolerance class	Fund dev.	Major diameter min.	Pitch diameter			Minor diameter		
						max.	tol.	min.	max.	tol.	min.					max.	tol.	min.	max.	tol.	min.
6		0.75		$\begin{aligned} & \hline 4 \mathrm{~h} \\ & 6 \mathrm{~g} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.022 \end{aligned}$	$\begin{aligned} & 6.000 \\ & 5.978 \end{aligned}$	$\begin{aligned} & 0.090 \\ & 0.140 \end{aligned}$	$\begin{aligned} & 5.910 \\ & 5.838 \end{aligned}$	$\begin{aligned} & 5.513 \\ & 5.491 \end{aligned}$	$\begin{aligned} & 0.063 \\ & 0.100 \end{aligned}$	$\begin{aligned} & 5.450 \\ & 5.391 \end{aligned}$	$\begin{aligned} & \hline 4.988 \\ & 4.929 \end{aligned}$	$\begin{array}{\|l\|} \hline 5 \mathrm{H} \\ 6 \mathrm{H} \\ 7 \mathrm{H} \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 6.000 \\ & 6.000 \\ & 6.000 \end{aligned}$	$\begin{aligned} & 5.619 \\ & 5.645 \\ & 5.683 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.106 \\ 0.132 \\ 0.170 \\ \hline \end{array}$	$\begin{aligned} & 5.513 \\ & 5.513 \\ & 5.513 \end{aligned}$	$\begin{aligned} & 5.338 \\ & 5.378 \\ & 5.424 \end{aligned}$	$\begin{aligned} & \hline 0.150 \\ & 0.190 \\ & 0.236 \end{aligned}$	$\begin{aligned} & 5.188 \\ & 5.188 \\ & 5.188 \end{aligned}$
	1			$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.026 \\ 0.026 \end{array}$	$\begin{aligned} & 6.000 \\ & 5.974 \\ & 5.974 \\ & \hline \end{aligned}$	$\begin{array}{l\|} \hline 0.112 \\ 0.180 \\ 0.280 \end{array}$	$\begin{aligned} & 5.888 \\ & 5.794 \\ & 5.694 \end{aligned}$	$\begin{aligned} & 5.350 \\ & 5.324 \\ & 5.324 \end{aligned}$	$\begin{array}{l\|} \hline 0.071 \\ 0.112 \\ 0.180 \end{array}$	$\begin{aligned} & 5.279 \\ & 5.212 \\ & 5.144 \end{aligned}$	$\begin{aligned} & 4.663 \\ & 4.597 \\ & 4.528 \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\begin{aligned} & 6.000 \\ & 6.000 \\ & 6.000 \end{aligned}$	$\begin{aligned} & 5.468 \\ & 5.500 \\ & 5.540 \end{aligned}$	$\begin{aligned} & 0.118 \\ & 0.150 \\ & 0.190 \end{aligned}$	$\begin{aligned} & 5.350 \\ & 5.350 \\ & 5.350 \end{aligned}$	$\begin{aligned} & 5.107 \\ & 5.153 \\ & 5.217 \end{aligned}$	$\begin{aligned} & 0.190 \\ & 0.236 \\ & 0.300 \end{aligned}$	$\begin{aligned} & 4.917 \\ & 4.917 \\ & 4.917 \end{aligned}$
$\overline{7}$		0.75		$\begin{aligned} & \hline 4 \mathrm{~h} \\ & 6 \mathrm{~g} \end{aligned}$	$\begin{aligned} & 0 \\ & 0.022 \end{aligned}$	$\begin{aligned} & 7.000 \\ & 6.978 \end{aligned}$	$\begin{aligned} & 0.090 \\ & \hline .140 \end{aligned}$	$\begin{aligned} & 6.910 \\ & 6.838 \end{aligned}$	$\begin{aligned} & 6.513 \\ & 6.491 \end{aligned}$	$\begin{aligned} & 0.063 \\ & 0.100 \end{aligned}$	$\begin{aligned} & 6.450 \\ & 6.391 \end{aligned}$	$\begin{aligned} & 5.988 \\ & 5.929 \end{aligned}$	$\begin{aligned} & \hline 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 7.000 \\ 7.000 \\ 7.000 \\ \hline \end{array}$	$\begin{aligned} & 6.619 \\ & 6.645 \\ & 6.683 \\ & \hline \end{aligned}$	0.106 0.132 0.170	6.513 6.513 6.513	$\begin{aligned} & \hline 6.338 \\ & 6.378 \\ & 6.424 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.150 \\ 0.190 \\ 0.236 \\ \hline \end{array}$	$\begin{aligned} & \hline 6.188 \\ & 6.188 \\ & 6.188 \\ & \hline \end{aligned}$
	1			$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	0 0.026 0.026	7.000 6.974 6.974	$\begin{aligned} & \hline 0.112 \\ & 0.180 \\ & 0.280 \end{aligned}$	6.888 6.794 6.694	6.350 6.324 6.324	0.071 0.112 0.180	$\begin{aligned} & \hline 6.279 \\ & 6.212 \\ & 6.144 \\ & \hline \end{aligned}$	5.663 5.596 5.528	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	7.000 7.000 7.000	6.468 6.500 6.540	$\begin{aligned} & \hline 0.118 \\ & 0.150 \\ & 0.190 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.350 \\ & 6.350 \\ & 6.350 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.107 \\ & 6.153 \\ & 6.217 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.190 \\ 0.236 \\ 0.300 \\ \hline \end{array}$	$\begin{aligned} & 5.917 \\ & 5.917 \\ & 5.917 \\ & \hline \end{aligned}$
8			0.75	$\begin{aligned} & \hline 4 \mathrm{~h} \\ & 6 \mathrm{~g} \end{aligned}$	$\begin{aligned} & 0 \\ & 0.022 \end{aligned}$	$\begin{aligned} & 8.000 \\ & 7.978 \end{aligned}$	$\begin{aligned} & 0.090 \\ & \hline .140 \end{aligned}$	$\begin{aligned} & 7.910 \\ & 7.838 \end{aligned}$	$\begin{aligned} & 7.513 \\ & 7.491 \end{aligned}$	$\begin{aligned} & 0.063 \\ & 0.100 \end{aligned}$	$\begin{aligned} & 7.450 \\ & 7.391 \end{aligned}$	$\begin{aligned} & 6.988 \\ & 6.929 \end{aligned}$	$\begin{aligned} & \hline 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.000 \\ & 8.000 \\ & 8.000 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.619 \\ & 7.645 \\ & 7.683 \\ & \hline \end{aligned}$	0.106 0.132 0.170	7.513 7.513 7.513	$\begin{array}{\|l\|} \hline 7.338 \\ 7.378 \\ 7.424 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.150 \\ & 0.190 \\ & 0.236 \\ & \hline \end{aligned}$	7.188 7.188 7.188
		1		$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.026 \\ 0.026 \end{array}$	$\begin{aligned} & 8.000 \\ & 7.974 \\ & 7.974 \end{aligned}$	$\begin{array}{l\|} \hline 0.112 \\ 0.180 \\ 0.280 \end{array}$	$\begin{aligned} & 7.888 \\ & 7.794 \\ & 7.694 \end{aligned}$	$\begin{aligned} & 7.350 \\ & 7.324 \\ & 7.324 \end{aligned}$	$\begin{array}{l\|} \hline 0.071 \\ 0.112 \\ 0.180 \end{array}$	$\begin{aligned} & \hline 7.279 \\ & 7.212 \\ & 7.144 \end{aligned}$	$\begin{aligned} & 6.663 \\ & 6.596 \\ & 6.528 \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\begin{aligned} & 8.000 \\ & 8.000 \\ & 8.000 \end{aligned}$	$\begin{array}{l\|} \hline 7.468 \\ 7.500 \\ 7.540 \end{array}$	$\begin{aligned} & 0.118 \\ & 0.150 \\ & 0.190 \end{aligned}$	$\begin{aligned} & 7.350 \\ & 7.350 \\ & 7.350 \end{aligned}$	$\begin{aligned} & 7.107 \\ & 7.153 \\ & 7.217 \end{aligned}$	$\begin{aligned} & 0.190 \\ & 0.236 \\ & 0.300 \end{aligned}$	$\begin{aligned} & 6.917 \\ & 6.917 \\ & 6.917 \end{aligned}$
	1.25			$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.028 \\ 0.028 \\ \hline \end{array}$	$\begin{aligned} & 8.000 \\ & 7.972 \\ & 7.972 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.132 \\ & 0.212 \\ & 0.335 \\ & \hline \end{aligned}$	7.868 7.760 7.637	7.188 7.160 7.160	$\begin{aligned} & 0.075 \\ & 0.118 \\ & 0.190 \end{aligned}$	7.113 7.042 6.970	6.343 6.272 6.200	$\begin{aligned} & \hline 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	0 0 0	$\begin{aligned} & 8.000 \\ & 8.000 \\ & 8.000 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.313 \\ & 7.348 \\ & 7.388 \\ & \hline \end{aligned}$	0.125 0.160 0.200	7.188 7.188 7.188	$\begin{aligned} & \hline 6.859 \\ & 6.912 \\ & 6.982 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.212 \\ & 0.265 \\ & 0.335 \\ & \hline \end{aligned}$	6.647 6.647 6.647
$\overline{9}$			0.75	$\begin{aligned} & \hline 4 \mathrm{~h} \\ & 6 \mathrm{~g} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0.022 \end{array}$	$\begin{aligned} & 9.000 \\ & 8.978 \end{aligned}$	$\begin{aligned} & 0.090 \\ & 0.140 \end{aligned}$	$\begin{aligned} & 8.910 \\ & 8.838 \end{aligned}$	$\begin{aligned} & 8.513 \\ & 8.491 \end{aligned}$	$\begin{aligned} & 0.063 \\ & 0.100 \end{aligned}$	$\begin{aligned} & 8.450 \\ & 8.391 \end{aligned}$	$\begin{aligned} & \hline 7.988 \\ & 7.929 \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 9.000 \\ & 9.000 \\ & 9.000 \end{aligned}$	8.619 8.645 8.683 8.488	0.106 0.132 0.170	8.513 8.513 8.513	8.338 8.378 8.424	$\begin{array}{\|l\|} \hline 0.150 \\ 0.190 \\ 0.236 \\ \hline \end{array}$	8.188 8.188 8.188
			1	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0.026 \\ & 0.026 \end{aligned}$	$\begin{aligned} & 9.000 \\ & 8.974 \\ & 8.974 \end{aligned}$	$\begin{aligned} & 0.112 \\ & 0.180 \\ & 0.280 \end{aligned}$	$\begin{aligned} & 8.888 \\ & 8.794 \\ & 8.694 \end{aligned}$	$\begin{aligned} & 8.350 \\ & 8.324 \\ & 8.324 \end{aligned}$	$\begin{aligned} & 0.071 \\ & 0.112 \\ & 0.180 \end{aligned}$	$\begin{aligned} & 8.279 \\ & 8.212 \\ & 8.144 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.663 \\ & 7.596 \\ & 7.528 \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 9.000 \\ & 9.000 \\ & 9.000 \end{aligned}$	$\begin{aligned} & 8.468 \\ & 8.500 \\ & 8.540 \end{aligned}$	$\begin{aligned} & \hline 0.118 \\ & 0.150 \\ & 0.190 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 8.350 \\ 8.350 \\ 8.350 \\ \hline \end{array}$	$\begin{aligned} & \hline 8.107 \\ & 8.153 \\ & 8.217 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.190 \\ & 0.236 \\ & 0.300 \end{aligned}$	$\begin{aligned} & 7.917 \\ & 7.917 \\ & 7.917 \end{aligned}$
	1.25			$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.028 \\ 0.028 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 9.000 \\ 8.972 \\ 8.972 \\ \hline \end{array}$	$\begin{aligned} & 0.132 \\ & 0.212 \\ & 0.335 \\ & \hline \end{aligned}$	8.868 8.760 8.637	$\begin{aligned} & 8.188 \\ & 8.160 \\ & 8.160 \\ & \hline \end{aligned}$	0.075 0.118 0.190	8.113 8.042 7.970	7.343 7.272 7.200	$\begin{aligned} & \hline 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 9.000 \\ & 9.000 \\ & 9.000 \end{aligned}$	$\begin{aligned} & 8.313 \\ & 8.348 \\ & 8.388 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.125 \\ & 0.160 \\ & 0.200 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.188 \\ & 8.188 \\ & 8.188 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7.859 \\ & 7.912 \\ & 7.982 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.212 \\ & 0.265 \\ & 0.335 \\ & \hline \end{aligned}$	7.647 7.647 7.647

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Nominal diameter	Pitch			External threads									Internal threads								
	Coarse	Fine	Constant	Tolerance class	Fund dev.	Major diameter			Pitch diameter			Minor diameter min.	Tolerance class	Fund dev.	Major diameter min.	Pitch diameter			Minor diameter		
						max.	tol.	min.	max.	tol.	min.					max.	tol.	min.	max.	tol.	min.
10			0.75	$\begin{aligned} & 4 \mathrm{~h} \\ & 6 \mathrm{~g} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.022 \end{aligned}$	$\begin{array}{\|r\|} \hline 10.000 \\ 9.978 \end{array}$	$\begin{aligned} & 0.090 \\ & 0.140 \end{aligned}$	$\begin{aligned} & 9.910 \\ & 9.838 \end{aligned}$	$\begin{aligned} & 9.513 \\ & 9.491 \end{aligned}$	$\begin{aligned} & 0.063 \\ & 0.100 \end{aligned}$	$\begin{aligned} & 9.450 \\ & 9.391 \end{aligned}$	$\begin{aligned} & 8.988 \\ & 8.929 \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 10.000 \\ & 10.000 \\ & 10.000 \\ & \hline \end{aligned}$	9.619 9.645 9.683	$\begin{array}{\|l\|} \hline 0.106 \\ 0.132 \\ 0.170 \\ \hline \end{array}$	$\begin{aligned} & \hline 9.513 \\ & 9.513 \\ & 9.513 \end{aligned}$	9.338 9.378 9.424	$\begin{aligned} & 0.150 \\ & 0.190 \\ & 0.236 \end{aligned}$	9.188 9.188 9.188 8.917
			1	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.026 \\ 0.026 \\ \hline \end{array}$	$\begin{array}{r} \hline 10.000 \\ 9.974 \\ 9.974 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.112 \\ 0.180 \\ 0.280 \\ \hline \end{array}$	$\begin{aligned} & 9.888 \\ & 9.794 \\ & 9.694 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.350 \\ & 9.324 \\ & 9.324 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.071 \\ 0.112 \\ 0.180 \\ \hline \end{array}$	$\begin{aligned} & 9.279 \\ & 9.212 \\ & 9.144 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.663 \\ & 8.596 \\ & 8.528 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 5 \mathrm{H} \\ 6 \mathrm{H} \\ 7 \mathrm{H} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 10.000 \\ 10.000 \\ 10.000 \\ \hline \end{array}$	$\begin{aligned} & \hline 9.468 \\ & 9.500 \\ & 9.540 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.118 \\ 0.150 \\ 0.190 \\ \hline \end{array}$	$\begin{aligned} & \hline 9.350 \\ & 9.350 \\ & 9.350 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9.107 \\ & 9.153 \\ & 9.217 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.190 \\ & 0.236 \\ & 0.300 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.917 \\ & 8.917 \\ & 8.917 \\ & \hline \end{aligned}$
		1.25		$\begin{array}{\|l} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \end{array}$	$\begin{array}{\|l} \hline 0 \\ 0.028 \\ 0.028 \\ \hline \end{array}$	$\|r\|$ 9.972 9.972	$\begin{aligned} & \hline 0.132 \\ & 0.212 \\ & 0.335 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.868 \\ & 9.760 \\ & 9.637 \end{aligned}$	$\begin{aligned} & 9.188 \\ & 9.160 \\ & 9.160 \end{aligned}$	$\begin{aligned} & 0.075 \\ & 0.118 \\ & 0.190 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9.113 \\ & 9.042 \\ & 8.970 \end{aligned}$	$\begin{aligned} & \hline 8.343 \\ & 8.272 \\ & 8.200 \end{aligned}$	$\begin{aligned} & \hline 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 10.000 \\ & 10.000 \\ & 10.000 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.313 \\ & 9.348 \\ & 9.388 \end{aligned}$	$\begin{aligned} & \hline 0.125 \\ & 0.160 \\ & 0.200 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.188 \\ & 9.188 \\ & 9.188 \end{aligned}$	$\begin{aligned} & 8.859 \\ & 8.912 \\ & 8.982 \end{aligned}$	$\begin{aligned} & 0.212 \\ & 0.265 \\ & 0.335 \end{aligned}$	$\begin{aligned} & 8.647 \\ & 8.647 \\ & 8.647 \end{aligned}$
	1.5			$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	0 0.032 0.032	10.000 9.968 9.968	0.150 0.236 0.375	9.850 9.732 9.593	$\begin{aligned} & 9.026 \\ & 8.994 \\ & 8.994 \end{aligned}$	0.085 0.132 0.212	$\begin{aligned} & \hline 8.941 \\ & 8.862 \\ & 8.782 \end{aligned}$	$\begin{aligned} & 8.018 \\ & 7.938 \\ & 7.858 \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	10.000 10.000 10.000	$\begin{aligned} & 9.166 \\ & 9.206 \\ & 9.250 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.140 \\ 0.180 \\ 0.224 \\ \hline \end{array}$	$\begin{aligned} & \hline 9.026 \\ & 9.026 \\ & 9.026 \end{aligned}$	8.612 8.676 8.751	$\begin{aligned} & \hline 0.236 \\ & 0.300 \\ & 0.375 \\ & \hline \end{aligned}$	8.376 8.376 8.376
11			0.75	$\begin{aligned} & \hline 4 \mathrm{~h} \\ & 6 \mathrm{~g} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.022 \end{aligned}$	$\begin{aligned} & 11.000 \\ & 10.978 \end{aligned}$	$\begin{aligned} & 0.090 \\ & 0.140 \end{aligned}$	$\begin{array}{\|l} \hline 10.910 \\ 10.838 \end{array}$	$\begin{aligned} & \hline 10.513 \\ & 10.491 \end{aligned}$	$\begin{aligned} & 0.063 \\ & 0.100 \end{aligned}$	$\begin{aligned} & 10.450 \\ & 10.391 \end{aligned}$	$\begin{aligned} & 9.988 \\ & 9.929 \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	$\bar{l} \begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 11.000 \\ & 11.000 \\ & 11.000 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.619 \\ & 10.645 \\ & 10.683 \end{aligned}$	$\begin{aligned} & \hline 0.106 \\ & 0.132 \\ & 0.170 \end{aligned}$	$\begin{aligned} & 10.513 \\ & 10.513 \\ & 10.513 \end{aligned}$	$\begin{aligned} & 10.338 \\ & 10.378 \\ & 10.424 \end{aligned}$	$\begin{aligned} & \hline 0.150 \\ & 0.190 \\ & 0.236 \end{aligned}$	10.188 10.188 10.188
			1	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.026 \\ 0.026 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11.000 \\ 10.974 \\ 10.974 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.112 \\ 0.180 \\ 0.280 \\ \hline \end{array}$	10.888 10.794 10.694	$\begin{array}{\|l\|} \hline 10.350 \\ 10.324 \\ 10.324 \end{array}$	$\begin{array}{\|l\|} \hline 0.071 \\ 0.112 \\ 0.180 \\ \hline \end{array}$	$\begin{aligned} & \hline 10.279 \\ & 10.212 \\ & 10.144 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.663 \\ & 9.596 \\ & 9.528 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 5 \mathrm{H} \\ 6 \mathrm{H} \\ 7 \mathrm{H} \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11.000 \\ 11.000 \\ 11.000 \\ \hline \end{array}$	10.468 10.500 10.540	$\begin{array}{\|l\|} \hline 0.118 \\ 0.150 \\ 0.190 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 10.350 \\ 10.350 \\ 10.350 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 10.107 \\ 10.153 \\ 10.217 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.190 \\ & 0.236 \\ & 0.300 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.917 \\ & 9.917 \\ & 9.917 \\ & \hline \end{aligned}$
	1.5			$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	0 0.032 0.032	$\begin{array}{\|l} \hline 11.000 \\ 10.968 \\ 10.968 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.150 \\ & 0.236 \\ & 0.375 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 10.850 \\ 10.732 \\ 10.593 \\ \hline \end{array}$	$\begin{array}{r} 10.026 \\ 9.994 \\ 9.994 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.085 \\ & 0.132 \\ & 0.212 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.941 \\ & 9.862 \\ & 9.782 \end{aligned}$	$\begin{aligned} & \hline 9.018 \\ & 8.938 \\ & 8.858 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11.000 \\ 11.000 \\ 11.000 \\ \hline \end{array}$	10.166 10.206 10.250	$\begin{array}{\|l\|} \hline 0.140 \\ 0.180 \\ 0.224 \\ \hline \end{array}$	10.026 10.026 10.026	$\begin{aligned} & 9.612 \\ & 9.676 \\ & 9.751 \end{aligned}$	$\begin{aligned} & 0.236 \\ & 0.300 \\ & 0.375 \end{aligned}$	$\begin{aligned} & 9.376 \\ & 9.376 \\ & 9.376 \end{aligned}$
12			1	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.026 \\ 0.026 \\ \hline \end{array}$	12.000 11.974 11.974	$\begin{aligned} & 0.112 \\ & 0.180 \\ & 0.280 \\ & \hline \end{aligned}$	11.888 11.794 11.694	$\begin{aligned} & \hline 11.350 \\ & 11.324 \\ & 11.324 \end{aligned}$	$\begin{aligned} & 0.075 \\ & 0.118 \\ & 0.190 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 11.275 \\ 11.206 \\ 11.134 \\ \hline \end{array}$	$\begin{aligned} & 10.659 \\ & 10.590 \\ & 10.518 \end{aligned}$	$\begin{aligned} & \hline 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 12.000 \\ & 12.000 \\ & 12.000 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.475 \\ & 11.510 \\ & 11.550 \end{aligned}$	$\begin{array}{\|l} \hline 0.125 \\ 0.160 \\ 0.200 \\ \hline \end{array}$	$\begin{aligned} & \hline 11.350 \\ & 11.350 \\ & 11.350 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 11.107 \\ & 11.153 \\ & 11.217 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.190 \\ & 0.236 \\ & 0.300 \end{aligned}$	$\begin{array}{\|l\|} \hline 10.917 \\ 10.917 \\ 10.917 \\ \hline \end{array}$
		1.25		$\begin{array}{\|l} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.028 \\ 0.028 \\ \hline \end{array}$	$\begin{aligned} & 12.000 \\ & 11.972 \\ & 11.972 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.132 \\ 0.212 \\ 0.335 \\ \hline \end{array}$	11.868 11.760 11.637	$\begin{aligned} & 11.188 \\ & 11.160 \\ & 11.160 \end{aligned}$	$\begin{aligned} & 0.085 \\ & 0.132 \\ & 0.212 \end{aligned}$	$\begin{aligned} & 11.103 \\ & 11.028 \\ & 10.948 \end{aligned}$	10.333 10.257 10.177	$\begin{aligned} & \hline 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 12.000 \\ & 12.000 \\ & 12.000 \end{aligned}$	$\begin{aligned} & 11.328 \\ & 11.368 \\ & 11.412 \end{aligned}$	$\begin{array}{\|l} \hline 0.140 \\ 0.180 \\ 0.224 \\ \hline \end{array}$	11.188 11.188 11.188	$\begin{aligned} & 10.859 \\ & 10.912 \\ & 10.982 \end{aligned}$	$\begin{aligned} & 0.212 \\ & 0.265 \\ & 0.335 \end{aligned}$	$\begin{aligned} & 10.647 \\ & 10.647 \\ & 10.647 \end{aligned}$
			1.5	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.032 \\ 0.032 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 12.000 \\ 11.968 \\ 11.968 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.150 \\ 0.236 \\ 0.375 \\ \hline \end{array}$	11.850 11.732 11.593	$\begin{array}{\|l\|} \hline 11.026 \\ 10.994 \\ 10.994 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.090 \\ & 0.140 \\ & 0.224 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 10.936 \\ 10.854 \\ 10.770 \\ \hline \end{array}$	$\begin{array}{r} \hline 10.012 \\ 9.930 \\ 9.846 \end{array}$	$\begin{array}{\|l\|} \hline 5 \mathrm{H} \\ 6 \mathrm{H} \\ 7 \mathrm{H} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	12.000 12.000 12.000	$\begin{array}{\|l\|} \hline 11.176 \\ 11.216 \\ 11.262 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.150 \\ 0.190 \\ 0.236 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11.026 \\ 11.026 \\ 11.026 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 10.612 \\ 10.676 \\ 10.751 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.236 \\ & 0.300 \\ & 0.375 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 10.376 \\ 10.376 \\ 10.376 \\ \hline \end{array}$
	1.75			$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	0 0.034 0.034	12.000 11.966 11.966	0.170 0.265 0.425	11.830 11.701 11.541	10.863 10.829 10.829	0.095 0.150 0.236	10.768 10.679 10.593	$\begin{aligned} & 9.692 \\ & 9.602 \\ & 9.516 \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.000 \\ & 12.000 \\ & 12.000 \\ & \hline \end{aligned}$	11.023 11.063 11.113	$\begin{aligned} & \hline 0.160 \\ & 0.200 \\ & 0.250 \\ & \hline \end{aligned}$	10.863 10.863 10.863	$\begin{array}{\|l} \hline 10.371 \\ 10.441 \\ 10.531 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.265 \\ & 0.335 \\ & 0.425 \end{aligned}$	10.106 10.106 10.106

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Nominal diameter	Pitch			External threads									Internal threads								
	Coarse	Fine	Constant	Tolerance class	Fund dev.	Major diameter			Pitch diameter			Minor diameter min.	Tolerance class	Fund dev.	Major diameter min.	Pitch diameter			Minor diameter		
						max.	tol.	min.	max.	tol.	min.					max.	tol.	min.	max.	tol.	min.
26			1.5	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{aligned} & \hline 0 \\ & 0.032 \\ & 0.032 \end{aligned}$	$\begin{aligned} & 26.000 \\ & 25.968 \\ & 25.968 \end{aligned}$	$\begin{aligned} & 0.150 \\ & 0.236 \\ & 0.375 \end{aligned}$	$\begin{aligned} & 25.850 \\ & 25.732 \\ & 25.593 \end{aligned}$	$\begin{aligned} & 25.026 \\ & 24.994 \\ & 24.994 \end{aligned}$	$\begin{aligned} & 0.095 \\ & 0.150 \\ & 0.236 \end{aligned}$	24.931 24.844 24.758	$\begin{aligned} & 24.007 \\ & 23.920 \\ & 23.834 \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 26.000 \\ & 26.000 \\ & 26.000 \end{aligned}$	$\begin{aligned} & 25.186 \\ & 25.226 \\ & 25.276 \end{aligned}$	$\begin{aligned} & 0.160 \\ & 0.200 \\ & 0.250 \end{aligned}$	$\begin{aligned} & 25.026 \\ & 25.026 \\ & 25.026 \end{aligned}$	$\begin{aligned} & 24.612 \\ & 24.676 \\ & 24.751 \end{aligned}$	$\begin{aligned} & 0.236 \\ & 0.300 \\ & 0.375 \\ & \hline \end{aligned}$	$\begin{aligned} & 24.376 \\ & 24.376 \\ & 24.376 \end{aligned}$
27			1	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{aligned} & \hline 0 \\ & 0.026 \\ & 0.026 \end{aligned}$	$\begin{aligned} & 27.000 \\ & 26.974 \\ & 26.974 \end{aligned}$	$\begin{aligned} & 0.112 \\ & 0.180 \\ & 0.280 \end{aligned}$	26.888 26.794 26.694	26.350 26.324 26.324	$\begin{aligned} & 0.080 \\ & 0.125 \\ & 0.200 \end{aligned}$	$\begin{aligned} & 26.270 \\ & 26.199 \\ & 26.124 \end{aligned}$	$\begin{aligned} & 25.654 \\ & 25.583 \\ & 25.508 \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 27.000 \\ & 27.000 \\ & 27.000 \end{aligned}$	26.482 26.520 26.562	$\begin{aligned} & 0.132 \\ & 0.170 \\ & 0.212 \end{aligned}$	$\begin{aligned} & 26.350 \\ & 26.350 \\ & 26.350 \end{aligned}$	$\begin{aligned} & 26.107 \\ & 26.153 \\ & 26.217 \end{aligned}$	$\begin{aligned} & \hline 0.190 \\ & 0.236 \\ & 0.300 \\ & \hline \end{aligned}$	$\begin{aligned} & 25.917 \\ & 25.917 \\ & 25.917 \end{aligned}$
			1.5	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	0 0.032 0.032	$\begin{array}{\|l\|} \hline 27.000 \\ 26.968 \\ 26.968 \\ \hline \end{array}$	$\begin{aligned} & 0.150 \\ & 0.236 \\ & 0.375 \\ & \hline \end{aligned}$	26.850 26.732 26.593	$\begin{array}{\|l} \hline 26.026 \\ 25.994 \\ 25.994 \\ \hline \end{array}$	0.095 0.150 0.236	25.931 25.844 25.758	25.007 24.920 24.834	$\begin{array}{\|l\|} \hline 5 \mathrm{H} \\ 6 \mathrm{H} \\ 7 \mathrm{H} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 27.000 \\ & 27.000 \\ & 27.000 \\ & \hline \end{aligned}$	26.186 26.226 26.276	0.160 0.200 0.250	$\begin{aligned} & 26.026 \\ & 26.026 \\ & 26.026 \\ & \hline \end{aligned}$	$\begin{aligned} & 25.612 \\ & 25.676 \\ & 25.751 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.236 \\ & 0.300 \\ & 0.375 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 25.376 \\ 25.376 \\ 25.376 \\ \hline \end{array}$
		2		$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{aligned} & \hline 0 \\ & 0.038 \\ & 0.038 \end{aligned}$	$\begin{aligned} & 27.000 \\ & 26.962 \\ & 26.962 \end{aligned}$	$\begin{aligned} & 0.180 \\ & 0.280 \\ & 0.450 \end{aligned}$	$\begin{aligned} & 26.820 \\ & 26.682 \\ & 26.512 \end{aligned}$	$\begin{aligned} & 25.701 \\ & 25.663 \\ & 25.663 \end{aligned}$	$\begin{aligned} & 0.106 \\ & 0.170 \\ & 0.265 \end{aligned}$	25.595 25.493 25.398	24.363 24.261 24.166	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 27.000 \\ & 27.000 \\ & 27.000 \end{aligned}$	25.881 25.925 25.981	$\begin{aligned} & 0.180 \\ & 0.224 \\ & 0.280 \end{aligned}$	$\begin{aligned} & 25.701 \\ & 25.701 \\ & 25.701 \\ & \hline \end{aligned}$	$\begin{aligned} & 25.135 \\ & 25.210 \\ & 25.310 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.300 \\ 0.375 \\ 0.475 \\ \hline \end{array}$	24.835 24.835 24.835
	3			$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	0 0.048 0.048	$\begin{array}{\|l\|} \hline 27.000 \\ 26.952 \\ 26.952 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.236 \\ & 0.375 \\ & 0.600 \\ & \hline \end{aligned}$	26.764 26.577 26.352	25.051 25.003 25.003 27.350	$\begin{aligned} & 0.125 \\ & 0.200 \\ & 0.315 \\ & \hline \end{aligned}$	24.926 24.803 24.688	$\begin{array}{\|l\|} \hline 23.078 \\ 22.955 \\ 22.840 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5 \mathrm{H} \\ 6 \mathrm{H} \\ 7 \mathrm{H} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \hline 27.000 \\ & 27.000 \\ & 27.000 \\ & \hline \end{aligned}$	25.263 25.316 25.386	$\begin{aligned} & 0.212 \\ & 0.265 \\ & 0.335 \\ & \hline \end{aligned}$	$\begin{aligned} & 25.051 \\ & 25.051 \\ & 25.051 \\ & \hline \end{aligned}$	24.152 24.252 24.382	$\begin{aligned} & 0.400 \\ & 0.500 \\ & 0.630 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 23.752 \\ 23.752 \\ 23.752 \\ \hline \end{array}$
28			1	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	0 0.026 0.026	$\begin{array}{\|l\|} \hline 28.000 \\ 27.974 \\ 27.974 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.112 \\ 0.180 \\ 0.280 \\ \hline \end{array}$	$\begin{aligned} & 27.888 \\ & 27.794 \\ & 27.694 \end{aligned}$	$\begin{aligned} & 27.350 \\ & 27.324 \\ & 27.324 \end{aligned}$	$\begin{aligned} & \hline 0.080 \\ & 0.125 \\ & 0.200 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 27.270 \\ & 27.199 \\ & 27.124 \end{aligned}$	$\begin{aligned} & 26.654 \\ & 26.583 \\ & 26.508 \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 28.000 \\ & 28.000 \\ & 28.000 \end{aligned}$	27.482 27.520 27.562	0.132 0.170 0.212	$\begin{aligned} & \hline 27.350 \\ & 27.350 \\ & 27.350 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 27.107 \\ & 27.153 \\ & 27.217 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.190 \\ & 0.236 \\ & 0.300 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 26.917 \\ 26.917 \\ 26.917 \\ \hline \end{array}$
			1.5	$\begin{aligned} & \hline 4 \mathrm{~h} \\ & 6 \mathrm{~g} \\ & 8 \mathrm{~g} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.032 \\ & 0.032 \end{aligned}$	$\begin{aligned} & 28.000 \\ & 27.968 \\ & 27.968 \end{aligned}$	$\begin{aligned} & 0.150 \\ & 0.236 \\ & 0.375 \end{aligned}$	$\begin{aligned} & 27.850 \\ & 27.732 \\ & 27.593 \end{aligned}$	$\begin{array}{\|l\|} \hline 27.026 \\ 26.994 \\ 26.994 \end{array}$	$\begin{aligned} & 0.095 \\ & 0.150 \\ & 0.236 \end{aligned}$	$\begin{aligned} & 26.931 \\ & 26.844 \\ & 26.758 \end{aligned}$	$\begin{aligned} & 26.007 \\ & 25.920 \\ & 25.834 \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 28.000 \\ & 28.000 \\ & 28.000 \end{aligned}$	$\begin{aligned} & 27.186 \\ & 27.226 \\ & 27.276 \end{aligned}$	$\begin{aligned} & 0.160 \\ & 0.200 \\ & 0.250 \end{aligned}$	$\begin{aligned} & 27.026 \\ & 27.026 \\ & 27.026 \end{aligned}$	$\begin{aligned} & 26.612 \\ & 26.676 \\ & 26.751 \end{aligned}$	$\begin{aligned} & 0.236 \\ & 0.300 \\ & 0.375 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 26.376 \\ 26.376 \\ 26.376 \end{array}$
			2	$\begin{aligned} & \hline 4 \mathrm{~h} \\ & 6 \mathrm{~g} \\ & 8 \mathrm{~g} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.038 \\ & 0.038 \end{aligned}$	$\begin{aligned} & 28.000 \\ & 27.962 \\ & 27.962 \end{aligned}$	$\begin{aligned} & 0.180 \\ & 0.280 \\ & 0.450 \end{aligned}$	$\begin{aligned} & 27.820 \\ & 27.682 \\ & 27.512 \end{aligned}$	$\begin{aligned} & 26.701 \\ & 26.663 \\ & 26.663 \end{aligned}$	$\begin{aligned} & 0.106 \\ & 0.170 \\ & 0.265 \end{aligned}$	26.595 26.493 26.390	$\begin{aligned} & 25.363 \\ & 25.261 \\ & 25.166 \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 28.000 \\ & 28.000 \\ & 28.000 \end{aligned}$	26.881 26.925 26.981	$\begin{aligned} & 0.180 \\ & 0.224 \\ & 0.280 \end{aligned}$	$\begin{aligned} & 26.701 \\ & 26.701 \\ & 26.701 \end{aligned}$	$\begin{aligned} & 26.135 \\ & 26.210 \\ & 26.310 \end{aligned}$	$\begin{aligned} & 0.300 \\ & 0.375 \\ & 0.475 \\ & \hline \end{aligned}$	$\begin{aligned} & 25.835 \\ & 25.835 \\ & 25.835 \end{aligned}$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Nominal diameter	Pitch			External threads									Internal threads								
	Coarse	Fine	Constant	Tolerance class	Fund dev.	Major diameter			Pitch diameter			Minor diameter min.	Tolerance class	Fund dev.	Major diameter min.	Pitch diameter			Minor diameter		
						max.	tol.	min.	max.	tol.	min.					max.	tol.	min.	max.	tol.	min.
30			1	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.026 \\ 0.026 \end{array}$	30.000 29.974 29.974	$\begin{array}{\|l\|} \hline 0.112 \\ 0.180 \\ 0.280 \\ \hline \end{array}$	$\begin{aligned} & 29.888 \\ & 29.794 \\ & 29.694 \\ & \hline \end{aligned}$	$\begin{aligned} & 29.350 \\ & 29.324 \\ & 29.324 \\ & \hline \end{aligned}$	0.080 0.125 0.200	29.270 29.199 29.124	$\begin{aligned} & 28.654 \\ & 28.583 \\ & 28.508 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 30.000 \\ & 30.000 \\ & 30.000 \end{aligned}$	29.482 29.520 29.562	$\begin{aligned} & \hline 0.132 \\ & 0.170 \\ & 0.212 \\ & \hline \end{aligned}$	$\begin{aligned} & 29.350 \\ & 29.350 \\ & 29.350 \\ & \hline \end{aligned}$	29.107 29.153 29.217	$\begin{aligned} & \hline 0.190 \\ & 0.236 \\ & 0.300 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.917 \\ & 28.917 \\ & 28.917 \\ & \hline \end{aligned}$
			1.5	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.032 \\ 0.032 \\ \hline \end{array}$	$\begin{aligned} & 30.000 \\ & 29.968 \\ & 29.968 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.150 \\ 0.236 \\ 0.375 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 29.850 \\ 29.732 \\ 29.593 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 29.026 \\ 28.994 \\ 28.994 \\ \hline \end{array}$	$\begin{aligned} & 0.095 \\ & 0.150 \\ & 0.236 \\ & \hline \end{aligned}$	28.931 28.844 28.758	$\begin{array}{\|l\|} \hline 28.007 \\ 27.920 \\ 27.834 \\ \hline \end{array}$	$\begin{aligned} & \hline 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 30.000 \\ 30.000 \\ 30.000 \\ \hline \end{array}$	$\begin{aligned} & 29.186 \\ & 29.226 \\ & 29.276 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.160 \\ 0.200 \\ 0.250 \\ \hline \end{array}$	$\begin{aligned} & 29.026 \\ & 29.026 \\ & 29.026 \end{aligned}$	$\begin{array}{\|l\|} \hline 28.612 \\ 28.676 \\ 28.751 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.236 \\ 0.300 \\ 0.375 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 28.376 \\ 28.376 \\ 28.376 \\ \hline \end{array}$
		2		$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.038 \\ 0.038 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 30.000 \\ 29.962 \\ 29.962 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.180 \\ 0.280 \\ 0.450 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 29.820 \\ 29.682 \\ 29.512 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 28.701 \\ 28.663 \\ 28.663 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.106 \\ & 0.170 \\ & 0.265 \\ & \hline \end{aligned}$	28.595 28.493 28.398	$\begin{array}{\|l\|} \hline 27.363 \\ 27.261 \\ 27.166 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5 \mathrm{H} \\ 6 \mathrm{H} \\ 7 \mathrm{H} \\ \hline \end{array}$	0 0 0	30.000 30.000 30.000	28.881 28.925 28.981	$\begin{aligned} & \hline 0.180 \\ & 0.224 \\ & 0.280 \\ & \hline \end{aligned}$	28.701 28.701 28.701	28.135 28.210 28.310	$\begin{aligned} & 0.300 \\ & 0.375 \\ & 0.475 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 27.835 \\ 27.835 \\ 27.835 \\ \hline \end{array}$
			3	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.048 \\ 0.048 \end{array}$	30.000 29.952 29.952	$\begin{array}{\|l\|} \hline 0.236 \\ 0.375 \\ 0.600 \\ \hline \end{array}$	$\begin{aligned} & 29.764 \\ & 29.577 \\ & 29.352 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.051 \\ & 28.003 \\ & 28.003 \\ & \hline \end{aligned}$	0.125 0.200 0.315	27.926 27.803 27.688	$\begin{array}{\|l\|} \hline 26.078 \\ 25.955 \\ 25.840 \\ \hline \end{array}$	$\begin{aligned} & \hline 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 30.000 \\ & 30.000 \\ & 30.000 \end{aligned}$	28.263 28.316 28.386	$\begin{aligned} & 0.212 \\ & 0.265 \\ & 0.335 \\ & \hline \end{aligned}$	28.051 28.051 28.051	27.152 27.252 27.382	$\begin{aligned} & \hline 0.400 \\ & 0.500 \\ & 0.630 \\ & \hline \end{aligned}$	26.752 26.752 26.752
	3.5			$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.053 \\ 0.053 \end{array}$	30.000 29.947 29.947	0.265 0.425 0.670	29.735 29.522 29.277	27.727 27.674 27.674	0.132 0.212 0.335	27.595 27.462 27.339	25.438 25.305 25.182	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	30.000 30.000 30.000	27.951 28.007 28.082	$\begin{aligned} & \hline 0.224 \\ & 0.280 \\ & 0.355 \\ & \hline \end{aligned}$	27.727 27.727 27.727	26.661 26.771 26.921	$\begin{array}{\|l\|} \hline 0.450 \\ 0.560 \\ 0.710 \\ \hline \end{array}$	26.211 26.211 26.211
32			1.5	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.032 \\ 0.032 \\ \hline \end{array}$	32.000 31.968 31.968	$\begin{array}{\|l\|} \hline 0.150 \\ 0.236 \\ 0.375 \\ \hline \end{array}$	31.850 31.732 31.593	31.026 30.994 30.994	0.095 0.150 0.236	30.931 30.844 30.758	30.007 29.920 29.834	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	32.000 32.000 32.000	31.186 31.226 31.276	0.160 0.200 0.250	31.026 31.026 31.026	$\begin{array}{\|l\|} \hline 30.612 \\ 30.676 \\ 30.751 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.236 \\ 0.300 \\ 0.375 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 30.376 \\ 30.376 \\ 30.376 \\ \hline \end{array}$
			2	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.038 \\ 0.038 \\ \hline \end{array}$	32.000 31.962 31.962	$\begin{aligned} & \hline 0.180 \\ & 0.280 \\ & 0.450 \\ & \hline \end{aligned}$	31.820 31.682 31.512	30.701 30.663 30.663	0.106 0.170 0.265	30.595 30.493 30.398	29.363 29.261 29.166	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	32.000 32.000 32.000	30.881 30.925 30.981	0.180 0.224 0.280	30.701 30.701 30.701	30.135 30.210 30.310	$\begin{aligned} & 0.300 \\ & 0.375 \\ & 0.475 \\ & \hline \end{aligned}$	29.835 29.835 29.835
33			1.5	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.032 \\ 0.032 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 33.000 \\ 32.968 \\ 32.968 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.150 \\ 0.236 \\ 0.375 \\ \hline \end{array}$	32.850 32.732 32.593	$\begin{aligned} & 32.026 \\ & 31.994 \\ & 31.994 \\ & \hline \end{aligned}$	0.095 0.150 0.236	31.931 31.844 31.758	$\begin{aligned} & \hline 31.007 \\ & 30.920 \\ & 30.834 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 33.000 \\ & 33.000 \\ & 33.000 \\ & \hline \end{aligned}$	32.186 32.226 32.276	$\begin{array}{\|l\|} \hline 0.160 \\ 0.200 \\ 0.250 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 32.026 \\ 32.026 \\ 32.026 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 31.612 \\ 31.676 \\ 31.751 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.236 \\ & 0.300 \\ & 0.375 \\ & \hline \end{aligned}$	$\begin{aligned} & 31.376 \\ & 31.376 \\ & 31.376 \\ & \hline \end{aligned}$
		2		$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.038 \\ 0.038 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 33.000 \\ 32.962 \\ 32.962 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.180 \\ 0.280 \\ 0.450 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 32.820 \\ 32.682 \\ 32.512 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 31.701 \\ 31.663 \\ 31.663 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.106 \\ 0.170 \\ 0.265 \\ \hline \end{array}$	31.595 31.493 31.398	30.363 30.261 30.166	$\begin{array}{\|l} \hline 5 \mathrm{H} \\ 6 \mathrm{H} \\ 7 \mathrm{H} \\ \hline \end{array}$	0 0 0	33.000 33.000 33.000	31.881 31.925 31.981	$\begin{aligned} & 0.180 \\ & 0.224 \\ & 0.280 \end{aligned}$	31.701 31.701 31.701	31.135 31.210 31.310 1.152	$\begin{array}{\|l\|} \hline 0.300 \\ 0.375 \\ 0.475 \\ \hline \end{array}$	30.835 30.835 30.835
			3	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.048 \\ 0.048 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 33.000 \\ 32.952 \\ 32.952 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.236 \\ 0.375 \\ 0.600 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 32.764 \\ 32.577 \\ 32.352 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 31.051 \\ 31.003 \\ 31.003 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.125 \\ & 0.200 \\ & 0.315 \\ & \hline \end{aligned}$	$\begin{aligned} & 30.926 \\ & 30.803 \\ & 30.688 \end{aligned}$	$\begin{array}{\|l\|} \hline 29.078 \\ 28.955 \\ 28.840 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5 \mathrm{H} \\ 6 \mathrm{H} \\ 7 \mathrm{H} \\ \hline \end{array}$	$\begin{array}{\|l} 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 33.000 \\ & 33.000 \\ & 33.000 \\ & \hline \end{aligned}$	$\begin{aligned} & 31.263 \\ & 31.316 \\ & 31.386 \end{aligned}$	$\begin{aligned} & \hline 0.212 \\ & 0.265 \\ & 0.335 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 31.051 \\ 31.051 \\ 31.051 \\ \hline \end{array}$	$\begin{aligned} & 31.152 \\ & 30.252 \\ & 30.382 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.400 \\ 0.500 \\ 0.630 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 29.752 \\ 29.752 \\ 29.752 \\ \hline \end{array}$
	3.5			$\begin{aligned} & 4 \mathrm{~h} \\ & 6 \mathrm{~g} \\ & 8 \mathrm{~g} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0.053 \\ 0.053 \\ \hline \end{array}$	33.000 32.947 32.947	0.265 0.425 0.670	32.735 32.522 32.277	30.727 30.674 30.674	0.132 0.212 0.335	30.595 30.462 30.339	28.438 28.305 28.182	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 33.000 \\ & 33.000 \\ & 33.000 \\ & \hline \end{aligned}$	30.951 31.007 31.082	$\begin{aligned} & \hline 0.224 \\ & 0.280 \\ & 0.355 \\ & \hline \end{aligned}$	30.727 30.727 30.727	29.661 29.771 29.921	0.450 0.560 0.710	29.211 29.211 29.211

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Nominal diameter	Pitch			External threads									Internal threads								
	Coarse	Fine	Constant	Tolerance class	Fund dev.	Major diameter			Pitch diameter			Minor diameter min.	Tolerance class	Fund dev.	Major diameter min.	Pitch diameter			Minor diameter		
						max.	tol.	min.	max.	tol.	min.					max.	tol.	min.	max.	tol.	min.
35			1.5	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	0 0.032 0.032	$\begin{array}{\|l\|} \hline 35.000 \\ 34.968 \\ 34.968 \\ \hline \end{array}$	$\begin{aligned} & 0.150 \\ & 0.236 \\ & 0.375 \\ & \hline \end{aligned}$	34.850 34.732 34.593	34.026 33.994 33.994	0.095 0.150 0.236	33.931 33.844 33.758	$\begin{aligned} & 33.007 \\ & 32.920 \\ & 32.834 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 35.000 \\ & 35.000 \\ & 35.000 \\ & \hline \end{aligned}$	34.186 34.226 34.276	0.160 0.200 0.250	34.026 34.026 34.026	33.612 33.676 33.751	$\begin{aligned} & \hline 0.236 \\ & 0.300 \\ & 0.375 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 33.376 \\ 33.376 \\ 33.376 \\ \hline \end{array}$
36			1.5	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.032 \\ 0.032 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 36.000 \\ 35.968 \\ 35.968 \\ \hline \end{array}$	$\begin{aligned} & 0.150 \\ & 0.236 \\ & 0.375 \\ & \hline \end{aligned}$	35.850 35.732 35.593	35.026 34.994 34.994	$\begin{aligned} & \hline 0.095 \\ & 0.150 \\ & 0.236 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 34.931 \\ 34.844 \\ 34.758 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 34.007 \\ 33.920 \\ 33.834 \\ \hline \end{array}$	5 H 6 H 7 H	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l} 36.000 \\ 36.000 \\ 36.000 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 35.186 \\ 35.226 \\ 35.276 \\ \hline \end{array}$	$\begin{aligned} & 0.160 \\ & 0.200 \\ & 0.250 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 35.026 \\ 35.026 \\ 35.026 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 34.612 \\ 34.676 \\ 34.751 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.236 \\ 0.300 \\ 0.375 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 34.376 \\ 34.376 \\ 34.376 \\ \hline \end{array}$
			2	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.038 \\ 0.038 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 36.000 \\ 35.962 \\ 35.962 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.180 \\ & 0.280 \\ & 0.450 \\ & \hline \end{aligned}$	35.820 35.682 35.512	34.701 34.663 34.663	$\begin{array}{\|l\|} \hline 0.106 \\ 0.170 \\ 0.265 \\ \hline \end{array}$	34.595 34.493 34.398	33.363 33.261 33.166	5 H 6 H 7 H	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l} 36.000 \\ 36.000 \\ 36.000 \\ \hline \end{array}$	34.881 34.925 34.981	$\begin{array}{\|l\|} \hline 0.180 \\ 0.224 \\ 0.280 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 34.701 \\ 34.701 \\ 34.701 \\ \hline \end{array}$	34.135 34.210 34.310	$\begin{array}{\|l\|} \hline 0.300 \\ 0.375 \\ 0.475 \\ \hline \end{array}$	33.835 33.835 33.835
			3	$\begin{array}{\|l} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.048 \\ 0.048 \end{array}$	36.000 35.952 35.952	$\begin{aligned} & 0.236 \\ & 0.375 \\ & 0.600 \\ & \hline \end{aligned}$	$\begin{aligned} & 35.764 \\ & 35.577 \\ & 35.352 \\ & \hline \end{aligned}$	34.051 34.003 34.003	$\begin{aligned} & 0.125 \\ & 0.200 \\ & 0.315 \\ & \hline \end{aligned}$	33.926 33.803 33.688	$\begin{aligned} & 32.078 \\ & 31.955 \\ & 31.840 \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 36.000 \\ & 36.000 \\ & 36.000 \end{aligned}$	34.263 34.316 34.386	0.212 0.265 0.335	$\begin{aligned} & 34.051 \\ & 34.051 \\ & 34.051 \end{aligned}$	33.152 33.252 33.382	$\begin{aligned} & \hline 0.400 \\ & 0.500 \\ & 0.630 \\ & \hline \end{aligned}$	32.752 32.752 32.752
	4			$\begin{array}{\|l} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.060 \\ 0.060 \\ \hline \end{array}$	36.000 35.940 35.940	0.300 0.475 0.750	$\begin{aligned} & 35.700 \\ & 35.465 \\ & 35.190 \end{aligned}$	$\begin{aligned} & 33.402 \\ & 33.342 \\ & 33.342 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.140 \\ 0.224 \\ 0.355 \\ \hline \end{array}$	$\begin{aligned} & 33.262 \\ & 33.118 \\ & 32.987 \end{aligned}$	30.798 30.654 30.523	$\begin{array}{\|l\|} \hline 5 \mathrm{H} \\ 6 \mathrm{H} \\ 7 \mathrm{H} \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 36.000 \\ & 36.000 \\ & 36.000 \end{aligned}$	33.638 33.702 33.777	0.236 0.300 0.375	33.402 33.402 33.402	$\begin{aligned} & 32.145 \\ & 32.270 \\ & 32.420 \end{aligned}$	0.475 0.600 0.750	31.670 31.670 31.670
38			1.5	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.032 \\ 0.032 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 38.000 \\ 37.968 \\ 37.968 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.150 \\ & 0.236 \\ & 0.376 \\ & \hline \end{aligned}$	37.850 37.732 37.593	37.026 36.994 36.994	$\begin{aligned} & \hline 0.095 \\ & 0.150 \\ & 0.236 \\ & \hline \end{aligned}$	36.931 36.844 36.758	36.007 35.920 35.834	$\begin{aligned} & \hline 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 38.000 \\ & 38.000 \\ & 38.000 \\ & \hline \end{aligned}$	37.186 37.226 37.276	$\begin{aligned} & \hline 0.160 \\ & 0.200 \\ & 0.250 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 37.026 \\ 37.026 \\ 37.026 \\ \hline \end{array}$	33.612 36.676 36.751	$\begin{array}{\|l\|} \hline 0.236 \\ 0.300 \\ 0.375 \\ \hline \end{array}$	31.876 36.376 36.376
39			1.5	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.032 \\ 0.032 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 39.000 \\ 38.968 \\ 38.968 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.150 \\ & 0.263 \\ & 0.375 \\ & \hline \end{aligned}$	38.850 38.732 37.593	$\begin{array}{\|l\|} \hline 38.026 \\ 37.994 \\ 37.994 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.095 \\ & 0.150 \\ & 0.236 \\ & \hline \end{aligned}$	37.931 37.844 37.758	37.007 36.920 36.834	5 H 6 H 7 H	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 39.000 \\ & 39.000 \\ & 39.000 \\ & \hline \end{aligned}$	38.186 38.226 38.276	$\begin{aligned} & \hline 0.160 \\ & 0.200 \\ & 0.250 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 38.026 \\ 38.026 \\ 38.026 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 37.612 \\ 37.676 \\ 37.751 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.236 \\ & 0.300 \\ & 0.375 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 37.376 \\ 37.376 \\ 37.376 \\ \hline \end{array}$
			2	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	0 0.038 0.038	39.000 38.962 38.962	0.180 0.280 0.450	38.820 38.682 38.512	37.701 37.663 37.663	$\begin{array}{\|l\|} \hline 0.106 \\ 0.170 \\ 0.265 \\ \hline \end{array}$	37.595 37.493 37.398	36.363 36.261 36.166	$\begin{aligned} & \hline 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	39.000 39.000 39.000	37.881 37.925 37.981	0.180 0.224 0.280	37.701 37.701 37.701	37.135 37.210 37.310	0.300 0.375 0.475	36.835 36.835 36.835
			3	$\begin{aligned} & 4 \mathrm{~h} \\ & 6 \mathrm{~g} \\ & 8 \mathrm{~g} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0.048 \\ 0.048 \end{array}$	$\begin{aligned} & 39.000 \\ & 38.952 \\ & 38.952 \end{aligned}$	$\begin{aligned} & 0.236 \\ & 0.375 \\ & 0.600 \end{aligned}$	$\begin{aligned} & 38.764 \\ & 38.577 \\ & 38.352 \end{aligned}$	$\begin{aligned} & 37.051 \\ & 37.003 \\ & 37.003 \end{aligned}$	$\begin{aligned} & 0.125 \\ & 0.200 \\ & 0.315 \\ & \hline \end{aligned}$	36.926 36.803 36.688	$\begin{aligned} & 35.078 \\ & 34.955 \\ & 34.840 \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 39.000 \\ & 39.000 \\ & 39.000 \end{aligned}$	37.263 37.316 37.386	$\begin{aligned} & 0.212 \\ & 0.265 \\ & 0.335 \\ & \hline \end{aligned}$	$\begin{aligned} & 37.051 \\ & 37.051 \\ & 37.051 \end{aligned}$	$\begin{aligned} & 36.152 \\ & 36.252 \\ & 36.382 \end{aligned}$	$\begin{aligned} & \hline 0.400 \\ & 0.500 \\ & 0.630 \\ & \hline \end{aligned}$	$\begin{aligned} & 35.752 \\ & 35.752 \\ & 35.752 \end{aligned}$
	4			$\begin{aligned} & \hline 4 \mathrm{~h} \\ & 6 \mathrm{~g} \\ & 8 \mathrm{~g} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0.060 \\ 0.060 \\ \hline \end{array}$	39.000 38.940 38.940	$\begin{aligned} & 0.300 \\ & 0.475 \\ & 0.750 \\ & \hline \end{aligned}$	38.700 38.465 38.190	36.402 36.342 36.342	$\begin{aligned} & 0.140 \\ & 0.224 \\ & 0.355 \\ & \hline \end{aligned}$	36.262 36.118 35.987	33.798 33.654 33.523	5H 6 H 7 H	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 39.000 \\ 39.000 \\ 39.000 \\ \hline \end{array}$	\square	$\begin{aligned} & 0.236 \\ & 0.300 \\ & 0.375 \\ & \hline \end{aligned}$	36.402 36.402 36.402	$\begin{array}{\|l\|} \hline 35.145 \\ 35.270 \\ 35.420 \\ \hline \end{array}$	$\begin{aligned} & 0.475 \\ & 0.600 \\ & 0.750 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 34.670 \\ 34.670 \\ 34.670 \\ \hline \end{array}$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Nominal diameter	Pitch			External threads									Internal threads								
	Coarse	Fine	Constant	Tolerance class	Fund dev.	Major diameter			Pitch diameter			Minor diameter min.	Tolerance class	Fund dev.	Major diameter min.	Pitch diameter			Minor diameter		
						max.	tol.	min.	max.	tol.	min.					max.	tol.	min.	max.	tol.	min.
40			1.5	$\begin{aligned} & \hline 4 \mathrm{~h} \\ & 6 \mathrm{~g} \\ & 8 \mathrm{~g} \\ & \hline \end{aligned}$	0 0.032 0.032	40.000 39.968 39.968	0.150 0.236 0.375	39.850 39.732 39.593	39.026 38.994 38.994	0.095 0.150 0.236	38.931 38.844 38.758	38.007 37.920 37.834	5H 6 H 7 H	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	40.000 40.000 40.000	39.186 39.226 39.276	$\begin{array}{\|l\|} \hline 0.160 \\ 0.200 \\ 0.250 \\ \hline \end{array}$	39.026 39.026 39.026	38.612 38.676 38.751	0.236 0.300 0.375	38.376 38.376 38.376
			2	$\begin{array}{\|l} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.038 \\ 0.038 \end{array}$	$\begin{aligned} & 40.000 \\ & 39.962 \\ & 39.962 \end{aligned}$	$\begin{aligned} & \hline 0.180 \\ & 0.280 \\ & 0.450 \\ & \hline \end{aligned}$	39.820 39.682 39.512	38.701 38.663 38.663	$\begin{array}{\|l\|} \hline 0.106 \\ 0.170 \\ 0.265 \\ \hline \end{array}$	$\begin{aligned} & 38.595 \\ & 38.493 \\ & 38.398 \end{aligned}$	$\begin{aligned} & 37.363 \\ & 37.261 \\ & 37.166 \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 40.000 \\ & 40.000 \\ & 40.000 \end{aligned}$	$\begin{aligned} & 38.881 \\ & 38.925 \\ & 38.981 \end{aligned}$	0.180 0.224 0.280	38.701 38.701 38.701	$\begin{aligned} & 38.135 \\ & 38.210 \\ & 38.310 \end{aligned}$	$\begin{aligned} & 0.300 \\ & 0.375 \\ & 0.475 \end{aligned}$	37.835 37.835 37.835
			3	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.048 \\ 0.048 \\ \hline \end{array}$	$\begin{aligned} & \hline 40.000 \\ & 39.952 \\ & 39.952 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.236 \\ & 0.375 \\ & 0.600 \\ & \hline \end{aligned}$	$\begin{aligned} & 39.764 \\ & 39.577 \\ & 39.352 \\ & \hline \end{aligned}$	38.051 38.003 38.003	$\begin{array}{\|l\|} \hline 0.125 \\ 0.200 \\ 0.315 \\ \hline \end{array}$	37.926 37.803 37.688	$\begin{aligned} & 36.078 \\ & 35.955 \\ & 35.840 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 40.000 \\ 40.000 \\ 40.000 \\ \hline \end{array}$	38.263 38.316 38.386	$\begin{aligned} & 0.212 \\ & 0.265 \\ & 0.335 \\ & \hline \end{aligned}$	38.051 38.051 38.051	37.152 37.252 37.382	$\begin{aligned} & 0.400 \\ & 0.500 \\ & 0.630 \end{aligned}$	36.752 36.752 36.752
$\overline{42}$			1.5	8 h 6 g 8 g	0 0.032 0.032	$\begin{array}{\|l\|} \hline 42.000 \\ 41.968 \\ 41.968 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.150 \\ 0.236 \\ 0.375 \\ \hline \end{array}$	41.850 41.732 41.593	41.026 40.994 40.994	$\begin{aligned} & \hline 0.095 \\ & 0.150 \\ & 0.236 \\ & \hline \end{aligned}$	40.931 40.844 40.758	$\begin{array}{\|l\|} \hline 40.007 \\ 39.920 \\ 39.834 \\ \hline \end{array}$	$\begin{aligned} & \hline 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	0 0 0	42.000 42.000 42.000	$\begin{array}{\|l\|} \hline 41.186 \\ 41.226 \\ 41.276 \\ \hline \end{array}$	0.160 0.200 0.250	41.026 41.026 41.026	40.612 40.676 40.751	$\begin{aligned} & \hline 0.236 \\ & 0.300 \\ & 0.375 \\ & \hline \end{aligned}$	40.376 40.376 40.376
			2	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.038 \\ 0.038 \\ \hline \end{array}$	42.000 41.962 41.962	$\begin{aligned} & 0.180 \\ & 0.280 \\ & 0.450 \\ & \hline \end{aligned}$	41.820 41.682 41.512	40.701 40.663 40.663	$\begin{aligned} & \hline 0.106 \\ & 0.170 \\ & 0.265 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 40.595 \\ 40.493 \\ 40.398 \\ \hline \end{array}$	39.363 39.261 39.166	$\begin{aligned} & \hline 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	0 0 0	42.000 42.000 42.000	40.881 40.925 40.981	0.180 0.224 0.280	$\begin{array}{\|l} \hline 40.701 \\ 40.701 \\ 40.701 \\ \hline \end{array}$	40.135 40.210 40.310	$\begin{aligned} & 0.300 \\ & 0.375 \\ & 0.475 \\ & \hline \end{aligned}$	39.835 39.835 39.835
			3	4 h 6 g 8 g	$\begin{array}{\|l\|} \hline 0 \\ 0.048 \\ 0.048 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 42.000 \\ 41.952 \\ 41.952 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.236 \\ 0.375 \\ 0.600 \\ \hline \end{array}$	41.764 41.577 41.352	$\begin{array}{\|l\|} \hline 40.051 \\ 40.003 \\ 40.003 \\ \hline \end{array}$	0.125 0.200 0.315	39.926 39.803 39.688	38.078 37.955 37.840	5 H 6 H 7 H	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 42.000 \\ 42.000 \\ 42.000 \\ \hline \end{array}$	40.263 40.316 40.386	0.212 0.265 0.335	40.051 40.051 40.051	39.152 39.252 39.382	$\begin{aligned} & \hline 0.400 \\ & 0.500 \\ & 0.630 \\ & \hline \end{aligned}$	38.752 38.752 38.752 37.670
			4	$\begin{aligned} & 4 \mathrm{~h} \\ & 6 \mathrm{~g} \\ & 8 \mathrm{~g} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.060 \\ & 0.060 \end{aligned}$	$\begin{aligned} & 42.000 \\ & 41.940 \\ & 41.940 \\ & \hline \end{aligned}$	0.300 0.475 0.750	41.700 41.465 41.190	39.402 39.342 39.342	0.140 0.224 0.355	39.262 39.118 38.987	36.798 36.654 36.523	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 42.000 \\ & 42.000 \\ & 42.000 \end{aligned}$	39.638 39.702 39.777	$\begin{aligned} & 0.236 \\ & 0.300 \\ & 0.375 \end{aligned}$	39.402 39.402 39.402	$\begin{aligned} & 38.145 \\ & 38.270 \\ & 38.420 \end{aligned}$	$\begin{aligned} & 0.475 \\ & 0.600 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 37.670 \\ & 37.670 \\ & 37.670 \end{aligned}$
	4.5			$\begin{aligned} & \hline 4 \mathrm{~h} \\ & 6 \mathrm{~g} \\ & 8 \mathrm{~g} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0.063 \\ 0.063 \\ \hline \end{array}$	$\begin{aligned} & \hline 42.000 \\ & 41.937 \\ & 41.937 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.315 \\ & 0.500 \\ & 0.800 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 41.685 \\ & 41.437 \\ & 41.137 \\ & \hline \end{aligned}$	39.077 39.014 39.014	$\begin{array}{\|l\|} \hline 0.150 \\ 0.236 \\ 0.375 \\ \hline \end{array}$	$\begin{aligned} & 38.927 \\ & 38.778 \\ & 38.639 \\ & \hline \end{aligned}$	36.155 36.006 35.867	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 42.000 \\ & 42.000 \\ & 42.000 \\ & \hline \end{aligned}$	39.327 39.392 39.477	0.250 0.315 0.400	$\begin{aligned} & 39.077 \\ & 39.077 \\ & 39.077 \\ & \hline \end{aligned}$	37.659 37.799 37.979	$\begin{aligned} & \hline 0.530 \\ & 0.670 \\ & 0.850 \\ & \hline \end{aligned}$	37.129 37.129 37.129

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Nominal diameter	Pitch			External threads									Internal threads								
	Coarse	Fine	Constant	Tolerance class	Fund dev.	Major diameter			Pitch diameter			Minor diameter min.	Tolerance class	Fund dev.	Major diameter min.	Pitch diameter			Minor diameter		
						max.	tol.	min.	max.	tol.	min.					max.	tol.	min.	max.	tol.	min.
55			1.5	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.032 \\ 0.032 \\ \hline \end{array}$	55.000 54.968 54.968	$\begin{aligned} & \hline 0.150 \\ & 0.236 \\ & 0.375 \\ & \hline \end{aligned}$	54.850 54.732 54.593	$\begin{array}{\|l\|} \hline 54.026 \\ 53.994 \\ 53.994 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.100 \\ 0.160 \\ 0.250 \\ \hline \end{array}$	53.926 53.834 53.744	53.002 52.910 52.820	$\begin{array}{\|l\|} \hline 5 \mathrm{H} \\ 6 \mathrm{H} \\ 7 \mathrm{H} \\ \hline \end{array}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	55.000 55.000 55.000	54.196 54.238 54.291	$\begin{array}{\|l\|} \hline 0.170 \\ 0.212 \\ 0.265 \\ \hline \end{array}$	54.026 54.026 54.026	$\begin{array}{\|l\|} \hline 53.612 \\ 53.676 \\ 53.751 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.236 \\ 0.300 \\ 0.375 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 53.376 \\ 53.376 \\ 53.376 \\ \hline \end{array}$
			2.0	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.038 \\ 0.038 \end{array}$	$\begin{aligned} & 55.000 \\ & 54.962 \\ & 54.962 \end{aligned}$	$\begin{aligned} & 0.180 \\ & 0.280 \\ & 0.450 \end{aligned}$	$\begin{array}{\|l\|} \hline 54.820 \\ 54.682 \\ 54.512 \\ \hline \end{array}$	$\begin{aligned} & 53.701 \\ & 53.663 \\ & 53.663 \end{aligned}$	$\begin{aligned} & 0.112 \\ & 0.180 \\ & 0.280 \end{aligned}$	53.589 53.483 53.383	$\begin{array}{\|l} 52.357 \\ 52.251 \\ 52.151 \end{array}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	55.000 55.000 55.000	$\begin{array}{\|l} \hline 53.891 \\ 53.937 \\ 54.001 \\ \hline \end{array}$	$\begin{aligned} & 0.190 \\ & 0.236 \\ & 0.300 \end{aligned}$	$\begin{aligned} & 53.701 \\ & 53.701 \\ & 53.701 \end{aligned}$	$\begin{aligned} & 53.135 \\ & 53.210 \\ & 53.310 \end{aligned}$	$\begin{aligned} & 0.300 \\ & 0.375 \\ & 0.475 \end{aligned}$	$\begin{aligned} & 52.835 \\ & 52.835 \\ & 52.835 \end{aligned}$
			3.0	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	0 0.048 0.048	55.000 54.952 54.952	$\begin{array}{\|l\|} \hline 0.236 \\ 0.375 \\ 0.600 \\ \hline \end{array}$	54.764 54.577 54.352	53.051 53.003 53.003	0.132 0.212 0.335	$\begin{array}{\|l\|} \hline 52.919 \\ 52.791 \\ 52.668 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 51.071 \\ 50.943 \\ 50.820 \\ \hline \end{array}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	55.000 55.000 55.000	$\begin{aligned} & 53.275 \\ & 53.331 \\ & 53.406 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.224 \\ 0.280 \\ 0.355 \\ \hline \end{array}$	$\begin{aligned} & 53.051 \\ & 53.051 \\ & 53.051 \end{aligned}$	52.152 52.252 52.382	$\begin{aligned} & \hline 0.400 \\ & 0.500 \\ & 0.630 \\ & \hline \end{aligned}$	51.752 51.752 51.752
			4.0	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	0 0.060 0.060	55.000 54.940 54.940	0.300 0.475 0.750	54.700 54.465 54.190	52.402 52.342 52.342	$\begin{array}{\|l\|} \hline 0.150 \\ 0.236 \\ 0.375 \\ \hline \end{array}$	52.252 52.106 51.967	49.788 49.642 49.503	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right.$	55.000 55.000 55.000	$\begin{array}{\|l\|} 52.652 \\ 52.717 \\ 52.802 \\ \hline \end{array}$	$\begin{aligned} & 0.250 \\ & 0.315 \\ & 0.400 \\ & \hline \end{aligned}$	$\begin{aligned} & 52.402 \\ & 52.402 \\ & 52.402 \end{aligned}$	$\begin{array}{\|l\|} 51.145 \\ 51.270 \\ 51.420 \end{array}$	$\begin{aligned} & \hline 0.475 \\ & 0.600 \\ & 0.750 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 50.670 \\ 50.670 \\ 50.670 \\ \hline \end{array}$
$\overline{56}$			1.5	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{aligned} & \hline 0 \\ & 0.032 \\ & 0.032 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 56.000 \\ 55.968 \\ 55.968 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.150 \\ & 0.236 \\ & 0.375 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 55.850 \\ 55.732 \\ 55.593 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 55.026 \\ 54.994 \\ 54.994 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.100 \\ 0.160 \\ 0.250 \\ \hline \end{array}$	54.926 54.834 54.744	$\begin{aligned} & 54.002 \\ & 53.910 \\ & 53.820 \end{aligned}$	$\begin{array}{\|l\|} \hline 5 \mathrm{H} \\ 6 \mathrm{H} \\ 7 \mathrm{H} \\ \hline \end{array}$	0 0 0	$\begin{aligned} & 56.000 \\ & 56.000 \\ & 56.000 \end{aligned}$	55.196 55.238 55.291	$\begin{array}{\|l\|} \hline 0.170 \\ 0.212 \\ 0.265 \\ \hline \end{array}$	55.026 55.026 55.026	$\begin{aligned} & \hline 54.612 \\ & 54.676 \\ & 54.751 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.236 \\ & 0.300 \\ & 0.375 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 54.376 \\ 54.376 \\ 54.376 \\ \hline \end{array}$
			2.0	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	0 0.038 0.038	56.000 55.962 55.962	$\begin{array}{\|l\|} \hline 0.180 \\ 0.280 \\ 0.450 \\ \hline \end{array}$	55.820 55.682 55.512	54.701 54.663 54.663	$\begin{array}{\|l\|} \hline 0.112 \\ 0.180 \\ 0.280 \\ \hline \end{array}$	54.589 54.483 54.383	53.357 53.251 53.151	$\begin{array}{\|l\|} \hline 5 \mathrm{H} \\ 6 \mathrm{H} \\ 7 \mathrm{H} \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	56.000 56.000 56.000	54.891 54.937 55.001	$\begin{array}{\|l\|} \hline 0.190 \\ 0.236 \\ 0.300 \\ \hline \end{array}$	54.701 54.701 54.701	54.135 54.210 54.310	$\begin{array}{\|l\|} \hline 0.300 \\ 0.375 \\ 0.475 \\ \hline \end{array}$	53.835 53.835 53.835
			3.0	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.048 \\ 0.048 \\ \hline \end{array}$	56.000 55.952 55.952	$\begin{array}{\|l\|} \hline 0.236 \\ 0.375 \\ 0.600 \\ \hline \end{array}$	55.764 55.577 55.352	54.051 54.003 54.003	$\begin{array}{\|l\|} \hline 0.132 \\ 0.212 \\ 0.335 \\ \hline \end{array}$	53.919 53.791 53.668	$\begin{aligned} & 52.071 \\ & 51.943 \\ & 51.820 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	56.000 56.000 56.000	54.275 54.331 54.406	$\begin{array}{\|l\|} \hline 0.224 \\ 0.280 \\ 0.355 \\ \hline \end{array}$	54.051 54.051 54.051	53.152 53.252 53.382	$\begin{array}{\|l\|} \hline 0.400 \\ 0.500 \\ 0.630 \\ \hline \end{array}$	52.752 52.752 52.752
			4.0	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{aligned} & \hline 0 \\ & 0.060 \\ & 0.060 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 56.000 \\ 55.940 \\ 55.940 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.300 \\ 0.475 \\ 0.750 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 55.700 \\ 55.465 \\ 55.190 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 53.402 \\ 53.342 \\ 53.342 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.150 \\ 0.236 \\ 0.375 \\ \hline \end{array}$	53.252 53.106 52.967	50.788 50.642 50.503	$\begin{array}{\|l\|} \hline 5 \mathrm{H} \\ 6 \mathrm{H} \\ 7 \mathrm{H} \\ \hline \end{array}$	0 0 0	56.000 56.000 56.000	53.652 53.717 53.802	$\begin{aligned} & 0.250 \\ & 0.315 \\ & 0.400 \end{aligned}$	$\begin{array}{\|l\|} \hline 53.402 \\ 53.402 \\ 53.402 \\ \hline \end{array}$	$\begin{aligned} & 52.145 \\ & 52.270 \\ & 52.430 \end{aligned}$	$\begin{aligned} & \hline 0.475 \\ & 0.600 \\ & 0.750 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 51.670 \\ 51.670 \\ 51.670 \\ \hline \end{array}$
	5.5			$\begin{aligned} & \hline 4 \mathrm{~h} \\ & 6 \mathrm{~g} \\ & 8 \mathrm{~g} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.075 \\ & 0.075 \\ & \hline \end{aligned}$	56.000 55.925 55.925	$\begin{aligned} & 0.355 \\ & 0.560 \\ & 0.900 \\ & \hline \end{aligned}$	$\begin{aligned} & 55.645 \\ & 55.365 \\ & 55.025 \\ & \hline \end{aligned}$	$\begin{aligned} & 52.428 \\ & 52.353 \\ & 52.353 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.170 \\ & 0.265 \\ & 0.425 \\ & \hline \end{aligned}$	52.258 52.088 51.928	$\begin{array}{\|l\|} \hline 48.870 \\ 48.700 \\ 48.540 \\ \hline \end{array}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	56.000 56.000 56.000	$\begin{array}{\|l\|} \hline 52.708 \\ 52.783 \\ 52.878 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.280 \\ & 0.355 \\ & 0.450 \\ & \hline \end{aligned}$	$\begin{aligned} & 52.428 \\ & 52.428 \\ & 52.428 \\ & \hline \end{aligned}$	$\begin{aligned} & 50.646 \\ & 50.796 \\ & 50.996 \end{aligned}$	$\begin{aligned} & 0.600 \\ & 0.750 \\ & 0.950 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 50.046 \\ 50.046 \\ 50.046 \\ \hline \end{array}$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Nominal diameter	Pitch			External threads									Internal threads								
	Coarse	Fine	Constant	Tolerance class	Fund dev.	Major diameter			Pitch diameter			Minor diameter min.	Tolerance class	Fund dev.	Major diameter min.	Pitch diameter			Minor diameter		
						max.	tol.	min.	max.	tol.	min.					max.	tol.	min.	max.	tol.	min.
58			1.5	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	O 0.032 0.032	58.000 57.968 57.968	$\begin{array}{\|l\|} \hline 0.150 \\ 0.236 \\ 0.375 \\ \hline \end{array}$	57.850 57.732 57.593	57.026 56.994 56.994	$\begin{array}{\|l\|} \hline 0.100 \\ 0.160 \\ 0.250 \\ \hline \end{array}$	56.926 56.834 56.744	56.002 55.910 55.820	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 58.000 \\ 58.000 \\ 58.000 \\ \hline \end{array}$	57.196 57.238 57.291	$\begin{array}{\|l\|} \hline 0.170 \\ 0.212 \\ 0.265 \\ \hline \end{array}$	57.026 57.026 57.026	56.612 56.676 56.751	$\begin{array}{\|l\|} \hline 0.236 \\ 0.300 \\ 0.375 \\ \hline \end{array}$	56.376 56.376 56.376
			2.0	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.038 \\ 0.038 \\ \hline \end{array}$	58.000 57.962 57.962	$\begin{aligned} & \hline 0.180 \\ & 0.280 \\ & 0.450 \\ & \hline \end{aligned}$	57.820 57.682 57.512 57.764	56.701 56.663 56.663	$\begin{aligned} & 0.112 \\ & 0.180 \\ & 0.280 \\ & \hline \end{aligned}$	56.589 56.483 56.383	55.357 55.251 55.151	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l} 0 \\ 0 \\ 0 \\ 0 \end{array}$	58.000 58.000 58.000	56.891 56.937 57.001	$\begin{array}{\|l\|} \hline 0.190 \\ 0.236 \\ 0.300 \\ \hline \end{array}$	56.701 56.701 56.701	56.135 56.210 56.310	$\begin{aligned} & \hline 0.300 \\ & 0.375 \\ & 0.475 \\ & \hline \end{aligned}$	55.835 55.835 55.835
			3.0	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	0 0.048 0.048	58.000 57.952 57.952	$\begin{aligned} & 0.236 \\ & 0.375 \\ & 0.600 \end{aligned}$	57.764 57.577 57.352	56.051 56.003 56.003	0.132 0.212 0.335	55.919 55.791 55.668	54.071 53.943 53.820	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	58.000 58.000 58.000	56.275 56.331 56.406	$\begin{aligned} & \hline 0.224 \\ & 0.280 \\ & 0.355 \\ & \hline \end{aligned}$	56.051 56.051 56.051	55.152 55.252 55.382	0.400 0.500 0.630 0.475	54.752 54.752 54.752
			4.0	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	0 0.060 0.060	58.000 57.940 57.940	0.300 0.475 0.750	57.700 57.465 57.190	55.402 55.342 55.342	0.150 0.236 0.375	55.252 55.106 54.967	52.788 52.642 52.503	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	58.000 58.000 58.000	55.652 55.717 55.802	$\begin{aligned} & \hline 0.250 \\ & 0.315 \\ & 0.400 \\ & \hline \end{aligned}$	55.402 55.402 55.402	54.145 54.270 54.420	$\begin{aligned} & \hline 0.475 \\ & 0.600 \\ & 0.750 \\ & \hline \end{aligned}$	$\begin{aligned} & 53.670 \\ & 53.670 \\ & 53.670 \\ & \hline \end{aligned}$
60			1.5	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	0 0.032 0.032	60.000 59.968 59.968	0.150 0.236 0.375	59.850 59.732 59.593	59.026 58.994 58.994	0.100 0.160 0.250	58.926 58.834 58.744	58.002 57.910 57.820	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 60.000 \\ & 60.000 \\ & 60.000 \\ & \hline \end{aligned}$	59.196 59.238 59.291	0.170 0.212 0.265	59.026 59.026 59.026	$\begin{aligned} & 58.612 \\ & 58.676 \\ & 58.751 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.236 \\ & 0.300 \\ & 0.375 \\ & \hline \end{aligned}$	58.376 58.376 58.376
			2.0	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.038 \\ 0.038 \\ \hline \end{array}$	60.000 59.962 59.962	$\begin{aligned} & \hline 0.180 \\ & 0.280 \\ & 0.450 \\ & \hline \end{aligned}$	$\begin{aligned} & 59.820 \\ & 59.682 \\ & 59.512 \end{aligned}$	58.701 58.663 58.663	$\begin{aligned} & 0.112 \\ & 0.180 \\ & 0.280 \end{aligned}$	58.589 54.483 58.383	$\begin{aligned} & 57.357 \\ & 57.251 \\ & 57.151 \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 60.000 \\ & 60.000 \\ & 60.000 \end{aligned}$	$\begin{array}{\|l\|} \hline 58.891 \\ 58.937 \\ 59.001 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.190 \\ & 0.236 \\ & 0.300 \\ & \hline \end{aligned}$	$\begin{aligned} & 58.701 \\ & 58.701 \\ & 58.701 \end{aligned}$	$\begin{array}{\|l} \hline 58.135 \\ 58.210 \\ 58.310 \\ \hline \end{array}$	$\begin{aligned} & 0.300 \\ & 0.375 \\ & 0.475 \\ & \hline \end{aligned}$	57.835 57.835 57.835
			3.0	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.048 \\ 0.048 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 60.000 \\ 59.952 \\ 59.952 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.236 \\ 0.375 \\ 0.600 \\ \hline \end{array}$	59.764 59.577 59.352	58.051 58.003 58.003	0.132 0.212 0.335	\square	56.071 55.943 55.820	$\begin{aligned} & \hline 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 60.000 \\ 60.000 \\ 60.000 \\ \hline \end{array}$	58.275 58.331 58.406	$\begin{array}{\|l\|} \hline 0.224 \\ 0.280 \\ 0.355 \\ \hline \end{array}$	58.051 58.051 58.051	57.152 57.252 57.382	$\begin{aligned} & \hline 0.400 \\ & 0.500 \\ & 0.630 \\ & \hline \end{aligned}$	56.752 56.752 56.752
			4.0	$\begin{array}{\|l} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{aligned} & \hline 0 \\ & 0.060 \\ & 0.060 \end{aligned}$	$\begin{aligned} & 60.000 \\ & 59.940 \\ & 59.940 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.300 \\ 0.475 \\ 0.750 \\ \hline \end{array}$	59.700 59.465 59.190	57.402 57.342 57.342	0.150 0.236 0.375	57.252 57.106 56.967	54.788 54.642 54.503	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 60.000 \\ 60.000 \\ 60.000 \\ \hline \end{array}$	57.652 57.717 57.802	0.250 0.315 0.400	57.402 57.402 57.402	56.145 56.270 56.420	$\begin{aligned} & \hline 0.475 \\ & 0.600 \\ & 0.750 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 55.670 \\ 55.670 \\ 55.670 \\ \hline \end{array}$
	5.5			$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \end{array}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0.075 \\ & 0.075 \end{aligned}\right.$	60.000 59.925 59.925	$\begin{aligned} & 0.355 \\ & 0.560 \\ & 0.900 \end{aligned}$	59.645 59.365 59.025	56.428 56.353 56.353	0.170 0.265 0.425	56.258 56.088 55.928	$\begin{aligned} & 52.870 \\ & 52.700 \\ & 52.540 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right.$	60.000 60.000 60.000	56.708 56.783 56.878	$\begin{aligned} & 0.280 \\ & 0.355 \\ & 0.450 \\ & \hline \end{aligned}$	56.428 56.428 56.428	$\begin{array}{\|l} 54.646 \\ 54.796 \\ 54.996 \\ \hline \end{array}$	$\begin{aligned} & 0.600 \\ & 0.750 \\ & 0.950 \\ & \hline \end{aligned}$	54.046 54.046 54.046

1 Nominal diameter	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
	Pitch			External threads									Internal threads								
	Coarse	Fine	Constant	Tolerance class	Fund dev.	Major diameter			Pitch diameter			Minor diameter min.	Tolerance class	Fund dev.	Major diameter min.	Pitch diameter			Minor diameter		
						max.	tol.	min.	max.	tol.	min.					max.	tol.	min.	max.	tol.	min.
62			1.5	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.032 \\ 0.032 \\ \hline \end{array}$	62.000 61.968 61.968	$\begin{array}{\|l\|} \hline 0.150 \\ 0.236 \\ 0.375 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 61.850 \\ 61.732 \\ 61.593 \\ \hline \end{array}$	61.026 60.994 60.994	$\begin{array}{\|l\|} \hline 0.100 \\ 0.160 \\ 0.250 \\ \hline \end{array}$	60.926 60.834 60.744	60.002 59.910 59.820	$\begin{aligned} & \hline 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 62.000 \\ 62.000 \\ 62.000 \\ \hline \end{array}$	61.196 61.238 61.291	$\begin{array}{\|l\|} \hline 0.170 \\ 0.212 \\ 0.265 \\ \hline \end{array}$	61.026 61.026 61.026	60.612 60.676 60.751	$\begin{array}{\|l\|} \hline 0.236 \\ 0.300 \\ 0.375 \\ \hline \end{array}$	$\begin{aligned} & 60.376 \\ & 60.376 \\ & 60.376 \end{aligned}$
			2	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.038 \\ 0.038 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 62.000 \\ 61.962 \\ 61.962 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.180 \\ 0.280 \\ 0.450 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 61.820 \\ 61.682 \\ 61.512 \\ \hline \end{array}$	60.701 60.663 60.663	$\begin{aligned} & 0.112 \\ & 0.180 \\ & 0.280 \\ & \hline \end{aligned}$	60.589 60.483 60.383	59.357 59.251 59.151	$\begin{aligned} & \hline 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 62.000 \\ & 62.000 \\ & 62.000 \\ & \hline \end{aligned}$	60.891 60.937 61.001	$\begin{aligned} & \hline 0.190 \\ & 0.236 \\ & 0.300 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 60.701 \\ 60.701 \\ 60.701 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 60.135 \\ 60.210 \\ 60.310 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.300 \\ 0.375 \\ 0.475 \\ \hline \end{array}$	59.835 59.835 59.835
			3	$\begin{array}{\|l} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.048 \\ 0.048 \\ \hline \end{array}$	62.000 61.952 61.952	$\begin{array}{\|l\|} \hline 0.236 \\ 0.375 \\ 0.600 \\ \hline \end{array}$	61.764 61.577 61.352 61.700	60.051 60.003 60.003 59.402	$\begin{array}{\|l\|} \hline 0.132 \\ 0.212 \\ 0.335 \\ \hline \end{array}$	59.919 59.791 59.668	$\begin{array}{\|l} 58.071 \\ 57.943 \\ 57.820 \end{array}$	$\begin{aligned} & \hline 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 62.000 \\ 62.000 \\ 62.000 \\ \hline \end{array}$	$\begin{aligned} & 60.275 \\ & 60.331 \\ & 60.406 \end{aligned}$	$\begin{aligned} & \hline 0.224 \\ & 0.280 \\ & 0.355 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 60.051 \\ 60.051 \\ 60.051 \\ \hline \end{array}$	59.152 59.252 59.382	$\begin{array}{\|l\|} \hline 0.400 \\ 0.500 \\ 0.630 \\ \hline \end{array}$	58.752 58.752 58.752
			4	$\begin{aligned} & \hline 4 \mathrm{~h} \\ & 6 \mathrm{~g} \\ & 8 \mathrm{~g} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.060 \\ & 0.060 \end{aligned}$	62.000 61.940 61.940	$\begin{aligned} & 0.300 \\ & 0.475 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 61.700 \\ & 61.465 \\ & 61.190 \end{aligned}$	$\begin{aligned} & 59.402 \\ & 59.342 \\ & 59.342 \end{aligned}$	$\begin{aligned} & 0.150 \\ & 0.236 \\ & 0.375 \end{aligned}$	$\begin{aligned} & 59.252 \\ & 59.106 \\ & 58.967 \end{aligned}$	$\begin{aligned} & 56.788 \\ & 56.642 \\ & 56.503 \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\begin{aligned} & 62.000 \\ & 62.000 \\ & 62.000 \end{aligned}$	$\begin{aligned} & 59.652 \\ & 59.717 \\ & 59.802 \end{aligned}$	$\begin{aligned} & 0.250 \\ & 0.315 \\ & 0.400 \end{aligned}$	$\begin{array}{\|l} 59.402 \\ 59.402 \\ 59.402 \end{array}$	58.145 58.270 58.420	$\begin{aligned} & 0.475 \\ & 0.600 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 57.670 \\ & 57.670 \\ & 57.670 \end{aligned}$
64			1.5	$\begin{aligned} & \hline 4 \mathrm{~h} \\ & 6 \mathrm{~g} \\ & 8 \mathrm{~g} \\ & \hline \end{aligned}$	0 0.032 0.032	$\begin{array}{\|l\|} \hline 64.000 \\ 63.968 \\ 63.968 \\ \hline \end{array}$	$\begin{aligned} & 0.150 \\ & 0.236 \\ & 0.375 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 63.850 \\ 63.732 \\ 63.593 \\ \hline \end{array}$	63.026 62.994 62.994	$\begin{aligned} & 0.100 \\ & 0.160 \\ & 0.250 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 62.926 \\ 62.834 \\ 62.744 \\ \hline \end{array}$	62.002 61.910 61.820	$\begin{aligned} & \hline 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 64.000 \\ & 64.000 \\ & 64.000 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 63.196 \\ 63.238 \\ 63.291 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.170 \\ 0.212 \\ 0.265 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 63.026 \\ 63.026 \\ 63.026 \\ \hline \end{array}$	$\begin{aligned} & 62.612 \\ & 62.676 \\ & 62.751 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.236 \\ 0.300 \\ 0.375 \\ \hline \end{array}$	$\begin{aligned} & \hline 62.376 \\ & 62.376 \\ & 62.376 \\ & \hline \end{aligned}$
			2	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.038 \\ 0.038 \\ \hline \end{array}$	64.000 63.962 63.962	$\begin{array}{\|l\|} \hline 0.180 \\ 0.280 \\ 0.450 \\ \hline \end{array}$	$\begin{aligned} & 63.820 \\ & 63.682 \\ & 63.512 \\ & \hline \end{aligned}$	62.701 62.663 62.663	$\begin{array}{\|l\|} \hline 0.112 \\ 0.180 \\ 0.280 \\ \hline \end{array}$	62.589 62.483 62.383	$\begin{aligned} & 61.357 \\ & 61.251 \\ & 61.151 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	64.000 64.000 64.000	62.891 62.937 63.001	$\begin{array}{\|l\|} \hline 0.190 \\ 0.236 \\ 0.300 \\ \hline \end{array}$	62.701 62.701 62.701	$\begin{aligned} & 62.135 \\ & 62.210 \\ & 62.310 \\ & \hline \end{aligned}$	0.300 0.375 0.475	61.835 61.835 61.835
			3	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.048 \\ 0.048 \\ \hline \end{array}$	64.000 63.952 63.952	$\begin{array}{\|l\|} \hline 0.236 \\ 0.375 \\ 0.600 \\ \hline \end{array}$	63.764 63.577 63.352	62.051 62.003 62.003 61.402	$\begin{aligned} & 0.132 \\ & 0.212 \\ & 0.335 \\ & \hline \end{aligned}$	61.919 61.791 61.668	60.071 59.943 59.820	5 H 6 H 7 H	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 64.000 \\ 64.000 \\ 64.000 \\ \hline \end{array}$	$\begin{aligned} & 62.275 \\ & 62.331 \\ & 62.406 \end{aligned}$	$\begin{aligned} & \hline 0.224 \\ & 0.280 \\ & 0.355 \\ & \hline \end{aligned}$	$\begin{aligned} & 62.051 \\ & 62.051 \\ & 62.051 \end{aligned}$	61.152 61.252 61.382	$\begin{array}{\|l\|} \hline 0.400 \\ 0.500 \\ 0.630 \\ \hline \end{array}$	60.752 60.752 60.752
			4	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.060 \\ 0.060 \\ \hline \end{array}$	64.000 63.940 63.940	$\begin{array}{\|l\|} \hline 0.300 \\ 0.475 \\ 0.750 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 63.700 \\ 63.465 \\ 63.190 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 0.150 \\ 0.236 \\ 0.375 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 61.252 \\ 61.106 \\ 60.967 \\ \hline \end{array}$	58.788 58.642 58.503	$\begin{aligned} & \hline 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 64.000 \\ 64.000 \\ 64.000 \\ \hline \end{array}$		$\begin{aligned} & \hline 0.250 \\ & 0.315 \\ & 0.400 \\ & \hline \end{aligned}$	61.402 61.402 61.402	60.145 60.270 60.420	$\begin{array}{\|l\|} \hline 0.475 \\ 0.600 \\ 0.750 \\ \hline \end{array}$	$\begin{aligned} & 59.670 \\ & 59.670 \\ & 59.670 \end{aligned}$
	6			$\begin{aligned} & \hline 4 \mathrm{~h} \\ & 6 \mathrm{~g} \\ & 8 \mathrm{~g} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.080 \\ & 0.080 \end{aligned}$	$\begin{aligned} & 64.000 \\ & 63.920 \\ & 63.920 \end{aligned}$	$\begin{aligned} & 0.375 \\ & 0.600 \\ & 0.950 \end{aligned}$	$\begin{aligned} & 63.625 \\ & 63.320 \\ & 62.970 \end{aligned}$	$\begin{aligned} & \hline 60.103 \\ & 60.023 \\ & 60.023 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.180 \\ & 0.280 \\ & 0.450 \end{aligned}$	$\begin{aligned} & 59.923 \\ & 59.743 \\ & 59.573 \end{aligned}$	$\begin{aligned} & 56.227 \\ & 56.047 \\ & 55.877 \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 64.000 \\ & 64.000 \\ & 64.000 \\ & \hline \end{aligned}$	$\begin{aligned} & 60.403 \\ & 60.478 \\ & 60.578 \end{aligned}$	$\begin{aligned} & 0.300 \\ & 0.375 \\ & 0.475 \end{aligned}$	$\begin{aligned} & \hline 60.103 \\ & 60.103 \\ & 60.103 \end{aligned}$	$\begin{aligned} & 58.135 \\ & 58.305 \\ & 58.505 \end{aligned}$	$\begin{aligned} & \hline 0.630 \\ & 0.800 \\ & 1.000 \end{aligned}$	$\begin{aligned} & 57.505 \\ & 57.505 \\ & 57.505 \end{aligned}$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Nominal diameter	Pitch			External threads									Internal threads								
	Coarse	Fine	Constant	Tolerance class	Fund dev.	Major diameter			Pitch diameter			Minor diameter min.	Tolerance class	Fund dev.	Major diameter min.	Pitch diameter			Minor diameter		
						max.	tol.	min.	max.	tol.	min.					max.	tol.	min.	max.	tol.	min.
70			1.5	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	0 0.032 0.032	$\begin{array}{\|l\|} \hline 70.000 \\ 69.968 \\ 69.968 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.150 \\ & 0.236 \\ & 0.375 \\ & \hline \end{aligned}$	$\begin{aligned} & 69.850 \\ & 69.732 \\ & 69.593 \\ & \hline \end{aligned}$	69.026 68.994 68.994	$\begin{array}{\|l\|} \hline 0.100 \\ 0.160 \\ 0.250 \\ \hline \end{array}$	68.926 68.834 68.744	68.002 67.910 67.820	$\begin{array}{\|l\|} \hline 5 \mathrm{H} \\ 6 \mathrm{H} \\ 7 \mathrm{H} \\ \hline \end{array}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 70.000 \\ 70.000 \\ 70.000 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 69.196 \\ 69.238 \\ 69.291 \\ \hline \end{array}$	$\begin{aligned} & 0.170 \\ & 0.212 \\ & 0.265 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 69.026 \\ 69.026 \\ 69.026 \\ \hline \end{array}$	68.612 68.676 68.751	$\begin{array}{\|l\|} \hline 0.236 \\ 0.300 \\ 0.375 \\ \hline \end{array}$	68.376 68.376 68.376
			2	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.038 \\ 0.038 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 70.000 \\ 69.962 \\ 69.962 \\ \hline \end{array}$	$\begin{aligned} & 0.180 \\ & 0.280 \\ & 0.450 \\ & \hline \end{aligned}$	$\begin{aligned} & 69.820 \\ & 69.682 \\ & 69.512 \end{aligned}$	68.701 68.663 68.663	$\begin{array}{\|l\|} \hline 0.112 \\ 0.180 \\ 0.280 \\ \hline \end{array}$	68.589 68.483 68.383	$\begin{array}{\|l\|} \hline 67.357 \\ 67.251 \\ 67.151 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5 \mathrm{H} \\ 6 \mathrm{H} \\ 7 \mathrm{H} \\ \hline \end{array}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 70.000 \\ 70.000 \\ 70.000 \\ \hline \end{array}$	68.891 68.937 69.001	$\begin{aligned} & 0.190 \\ & 0.236 \\ & 0.300 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 68.701 \\ 68.701 \\ 68.701 \\ \hline \end{array}$	68.135 68.210 68.310	$\begin{array}{\|l\|} \hline 0.300 \\ 0.375 \\ 0.475 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 67.835 \\ 67.835 \\ 67.835 \\ \hline \end{array}$
			3	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	0 0.048 0.048	70.000 69.952 69.952	0.236 0.375 0.600	69.764 69.577 69.352	68.051 68.003 68.003	0.132 0.212 0.335	67.919 67.791 67.668	$\begin{aligned} & 66.071 \\ & 65.943 \\ & 65.820 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	70.000 70.000 70.000	68.275 68.331 68.406	$\begin{aligned} & 0.224 \\ & 0.280 \\ & 0.355 \end{aligned}$	68.051 68.051 68.051	67.152 67.252 67.382	0.400 0.500 0.630	66.752 66.752 66.752
			4	$\begin{array}{\|l} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{aligned} & \hline 0 \\ & 0.060 \\ & 0.060 \end{aligned}$	$\begin{aligned} & 70.000 \\ & 69.940 \\ & 69.940 \end{aligned}$	$\begin{aligned} & 0.300 \\ & 0.475 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 69.700 \\ & 69.465 \\ & 69.190 \end{aligned}$	67.402 67.342 67.342	$\begin{aligned} & 0.150 \\ & 0.236 \\ & 0.375 \\ & \hline \end{aligned}$	$\begin{aligned} & 67.252 \\ & 67.106 \\ & 66.967 \end{aligned}$	64.788 64.642 64.503	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l} 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 70.000 \\ & 70.000 \\ & 70.000 \end{aligned}$	$\begin{aligned} & 67.652 \\ & 67.717 \\ & 67.802 \end{aligned}$	$\begin{aligned} & 0.250 \\ & 0.315 \\ & 0.400 \end{aligned}$	67.402 67.402 67.402	66.145 66.270 66.420	$\begin{aligned} & 0.475 \\ & 0.600 \\ & 0.750 \\ & \hline \end{aligned}$	$\begin{aligned} & 65.670 \\ & 65.670 \\ & 65.670 \end{aligned}$
			6	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.080 \\ 0.080 \end{array}$	$\begin{array}{\|l\|} \hline 70.000 \\ 69.920 \\ 69.920 \\ \hline \end{array}$	$\begin{aligned} & 0.375 \\ & 0.600 \\ & 0.950 \end{aligned}$	$\begin{aligned} & 69.625 \\ & 69.320 \\ & 68.970 \end{aligned}$	$\begin{aligned} & 66.103 \\ & 66.023 \\ & 66.023 \end{aligned}$	$\begin{aligned} & 0.180 \\ & 0.280 \\ & 0.450 \end{aligned}$	$\begin{aligned} & 65.923 \\ & 65.743 \\ & 65.573 \end{aligned}$	$\begin{aligned} & 62.227 \\ & 62.047 \\ & 61.877 \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|l\|} \hline 70.000 \\ 70.000 \\ 70.000 \end{array}$	$\begin{aligned} & 66.403 \\ & 66.478 \\ & 66.578 \end{aligned}$	$\begin{aligned} & \hline 0.300 \\ & 0.375 \\ & 0.475 \end{aligned}$	$\begin{aligned} & 66.103 \\ & 66.103 \\ & 66.103 \end{aligned}$	$\begin{aligned} & 64.135 \\ & 64.305 \\ & 64.505 \end{aligned}$	$\begin{aligned} & 0.630 \\ & 0.800 \\ & 1.000 \end{aligned}$	63.505 63.505 63.505
72			1.5	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	0 0.032 0.032	$\begin{array}{\|l\|} \hline 72.000 \\ 71.968 \\ 71.968 \\ \hline \end{array}$	$\begin{aligned} & 0.150 \\ & 0.236 \\ & 0.375 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 71.850 \\ 71.732 \\ 71.593 \\ \hline \end{array}$	71.026 70.994 70.994	$\begin{aligned} & \hline 0.100 \\ & 0.160 \\ & 0.250 \\ & \hline \end{aligned}$	70.926 70.834 70.744	$\begin{array}{\|l\|} \hline 70.002 \\ 69.910 \\ 69.820 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5 \mathrm{H} \\ 6 \mathrm{H} \\ 7 \mathrm{H} \\ \hline \end{array}$	0 0 0	$\begin{array}{\|l\|} \hline 72.000 \\ 72.000 \\ 72.000 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 71.196 \\ 71.238 \\ 71.291 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.170 \\ 0.212 \\ 0.265 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 71.026 \\ 71.026 \\ 71.026 \\ \hline \end{array}$	70.612 70.676 70.751	$\begin{aligned} & \hline 0.236 \\ & 0.300 \\ & 0.375 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 70.376 \\ 70.376 \\ 70.376 \\ \hline \end{array}$
			2	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	0 0.038 0.038	72.000 71.962 71.962	0.180 0.280 0.450	71.820 71.682 71.512	70.701 70.663 70.663	$\begin{aligned} & \hline 0.112 \\ & 0.180 \\ & 0.280 \\ & \hline \end{aligned}$	70.589 70.483 70.383	69.357 69.251 69.151	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	72.000 72.000 72.000	70.891 70.937 71.001	$\begin{aligned} & \hline 0.190 \\ & 0.236 \\ & 0.300 \end{aligned}$	70.701 70.701 70.701 70.051	70.135 70.210 70.310	0.300 0.375 0.475	69.835 69.835 69.835 68.752
			3	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.048 \\ 0.048 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 72.000 \\ 71.952 \\ 71.952 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.236 \\ 0.375 \\ 0.600 \\ \hline \end{array}$		70.051 70.003 70.003	$\begin{array}{\|l\|} \hline 0.132 \\ 0.212 \\ 0.335 \\ \hline \end{array}$	$\begin{aligned} & 69.919 \\ & 69.791 \\ & 69.668 \end{aligned}$	$\begin{array}{\|l\|} \hline 68.071 \\ 67.943 \\ 67.820 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5 \mathrm{H} \\ 6 \mathrm{H} \\ 7 \mathrm{H} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \hline 72.000 \\ & 72.000 \\ & 72.000 \end{aligned}$	$\begin{array}{\|l\|} \hline 70.275 \\ 70.331 \\ 70.406 \\ \hline \end{array}$	$\begin{aligned} & 0.224 \\ & 0.280 \\ & 0.355 \\ & \hline \end{aligned}$	70.051 70.051 70.051	69.152 69.252 69.382	$\begin{array}{\|l\|} \hline 0.400 \\ 0.500 \\ 0.630 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 68.752 \\ 68.752 \\ 68.752 \\ \hline \end{array}$
			4	$\begin{aligned} & \hline 4 \mathrm{~h} \\ & 6 \mathrm{~g} \\ & 8 \mathrm{~g} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.060 \\ & 0.060 \end{aligned}$	$\begin{aligned} & 72.000 \\ & 71.940 \\ & 71.940 \end{aligned}$	$\begin{aligned} & 0.300 \\ & 0.475 \\ & 0.750 \end{aligned}$		$\begin{aligned} & 69.402 \\ & 69.342 \\ & 69.342 \end{aligned}$	$\begin{aligned} & 0.150 \\ & 0.236 \\ & 0.375 \end{aligned}$	$\begin{aligned} & 69.252 \\ & 69.106 \\ & 69.967 \end{aligned}$	$\begin{array}{\|l\|} \hline 66.788 \\ 66.642 \\ 66.503 \end{array}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 72.000 \\ & 72.000 \\ & 72.000 \end{aligned}$	$\begin{aligned} & 69.652 \\ & 69.717 \\ & 69.802 \end{aligned}$	$\begin{aligned} & \hline 0.250 \\ & 0.315 \\ & 0.400 \end{aligned}$	$\begin{aligned} & 69.402 \\ & 69.402 \\ & 69.402 \end{aligned}$	$\begin{aligned} & 68.145 \\ & 68.270 \\ & 68.420 \end{aligned}$	$\begin{aligned} & 0.475 \\ & 0.600 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 67.670 \\ & 67.670 \\ & 67.670 \end{aligned}$
			6	$\begin{aligned} & \hline 4 \mathrm{~h} \\ & 6 \mathrm{~g} \\ & 8 \mathrm{~g} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.080 \\ & 0.080 \end{aligned}$	$\begin{aligned} & \hline 72.000 \\ & 71.920 \\ & 71.920 \end{aligned}$	$\begin{aligned} & 0.375 \\ & 0.600 \\ & 0.950 \\ & \hline \end{aligned}$		68.103 68.023 68.023	$\begin{aligned} & 0.180 \\ & 0.280 \\ & 0.450 \end{aligned}$	$\begin{aligned} & 67.923 \\ & 67.743 \\ & 67.573 \end{aligned}$		$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l} 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \hline 72.000 \\ & 72.000 \\ & 72.000 \end{aligned}$	$\begin{aligned} & \hline 68.403 \\ & 68.478 \\ & 68.578 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.300 \\ & 0.375 \\ & 0.475 \end{aligned}$	$\begin{aligned} & 68.103 \\ & 68.103 \\ & 68.103 \end{aligned}$	$\begin{aligned} & 66.135 \\ & 66.305 \\ & 66.505 \end{aligned}$	$\begin{aligned} & 0.630 \\ & 0.800 \\ & 1.000 \end{aligned}$	$\begin{aligned} & 65.505 \\ & 65.505 \\ & 65.505 \end{aligned}$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Nominal diameter	Pitch			External threads									Internal threads								
	Coarse	Fine	Constant	Tolerance class	Fund dev.	Major diameter			Pitch diameter			Minor diameter min.	Tolerance class	Fund dev.	Major diameter min.	Pitch diameter			Minor diameter		
						max.	tol.	min.	max.	tol.	min.					max.	tol.	min.	max.	tol.	min.
110			2	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.038 \\ 0.038 \end{array}$	110.000 109.962 109.962 1	$\begin{aligned} & \hline 0.180 \\ & 0.280 \\ & 0.450 \\ & \hline \end{aligned}$	$\begin{array}{l\|} \hline 109.820 \\ 109.682 \\ 109.512 \\ \hline \end{array}$	108.701 108.663 108.663	$\begin{aligned} & 0.118 \\ & 0.190 \\ & 0.300 \end{aligned}$	$\begin{array}{\|l\|} \hline 108.583 \\ 108.473 \\ 108.363 \\ \hline \end{array}$	107.351 107.241 107.131	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	110.000 110.000 110.000	$\begin{array}{\|l\|} \hline 108.901 \\ 108.951 \\ 109.016 \\ \hline \end{array}$	$\begin{aligned} & 0.200 \\ & 0.250 \\ & 0.315 \end{aligned}$	$\begin{aligned} & \hline 108.701 \\ & 108.701 \\ & 108.701 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 108.135 \\ 108.210 \\ 108.310 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.300 \\ & 0.375 \\ & 0.475 \\ & \hline \end{aligned}$	107.835 107.835 107.835
			3	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.048 \\ 0.048 \end{array}$	110.000 109.952 109.952 10.000	$\begin{aligned} & \hline 0.236 \\ & 0.375 \\ & 0.600 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 109.764 \\ 109.577 \\ 109.352 \\ \hline \end{array}$	108.051 108.003 108.003	$\begin{aligned} & 0.140 \\ & 0.224 \\ & 0.355 \\ & \hline \end{aligned}$	107.911 107.779 107.648	$\begin{aligned} & \hline 106.063 \\ & 105.931 \\ & 105.800 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 110.000 \\ & 110.000 \\ & 110.000 \\ & \hline \end{aligned}$	108.287 108.351 108.426	$\begin{aligned} & 0.236 \\ & 0.300 \\ & 0.375 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 108.051 \\ 108.051 \\ 108.051 \\ \hline \end{array}$	107.152 107.252 107.382	$\begin{array}{\|l\|} \hline 0.400 \\ 0.500 \\ 0.630 \\ \hline \end{array}$	106.752 106.752 106.752
			4	8 h 6 g 8 g	$\begin{array}{\|l\|} \hline 0 \\ 0.060 \\ 0.060 \\ \hline \end{array}$	110.000 109.940 109.940	$\begin{aligned} & \hline 0.300 \\ & 0.475 \\ & 0.750 \\ & \hline \end{aligned}$	109.700 109.465 109.190		$\begin{array}{\|l\|} \hline 0.160 \\ 0.250 \\ 0.400 \\ \hline \end{array}$	107.242 107.092 106.942		$\begin{aligned} & \hline 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	\square		$\begin{array}{\|l\|} \hline 0.265 \\ 0.335 \\ 0.425 \\ \hline \end{array}$		106.145 106.270 106.420	$\begin{array}{\|l\|} \hline 0.475 \\ 0.600 \\ 0.750 \\ \hline \end{array}$	105.670 105.670 105.670
			6	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.080 \\ 0.080 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 110.000 \\ 109.920 \\ 109.920 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.375 \\ 0.600 \\ 0.950 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 106.103 \\ 106.023 \\ 106.023 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.190 \\ 0.300 \\ 0.475 \\ \hline \end{array}$	105.913 105.723 105.548	$\begin{aligned} & 102.217 \\ & 102.027 \\ & 101.852 \end{aligned}$	$\begin{aligned} & \hline 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	\square	106.418 106.503 106.603	0.315 0.400 0.500		104.135 104.305 104.505	$\begin{aligned} & \hline 0.630 \\ & 0.800 \\ & 1.000 \\ & \hline \end{aligned}$	103.505 103.505 103.505 112.835
$\overline{115}$			2	4 h 6 g 8 g	$\begin{array}{\|l\|} \hline 0 \\ 0.038 \\ 0.038 \\ \hline \end{array}$		$\begin{aligned} & \hline 0.180 \\ & 0.280 \\ & 0.450 \\ & \hline \end{aligned}$			$\begin{array}{\|l\|} \hline 0.118 \\ 0.190 \\ 0.300 \\ \hline \end{array}$	113.583 113.473 113.363		$\begin{aligned} & \hline 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	\square		$\begin{array}{\|l\|} \hline 0.200 \\ 0.250 \\ 0.315 \\ \hline \end{array}$		113.135 113.210 113.310	$\begin{array}{\|l\|} \hline 0.300 \\ 0.375 \\ 0.475 \\ \hline \end{array}$	112.835 112.835 112.835 112.752
			3	$\begin{array}{\|l\|} \hline 4 \mathrm{~h} \\ 6 \mathrm{~g} \\ 8 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0.048 \\ 0.048 \end{array}$	115.000 114.952 114.952 115.000	$\begin{aligned} & \hline 0.236 \\ & 0.375 \\ & 0.600 \\ & \hline \end{aligned}$	114.764 114.577 114.352	113.051 113.003 113.003	$\begin{aligned} & 0.140 \\ & 0.224 \\ & 0.355 \\ & \hline \end{aligned}$	112.911 112.779 112.648	111.063 110.931 110.800 109.778	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 115.000 \\ & 115.000 \\ & 115.000 \\ & \hline \end{aligned}$	113.287 113.351 113.426	$\begin{aligned} & \hline 0.236 \\ & 0.300 \\ & 0.375 \\ & \hline \end{aligned}$	113.051 113.051 113.051	$\begin{array}{\|l\|} \hline 112.152 \\ 112.252 \\ 112.382 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.400 \\ 0.500 \\ 0.630 \\ \hline \end{array}$	111.752 111.752 111.752
			4	4 h 6 g 8 g	$\begin{array}{\|l\|} \hline 0 \\ 0.060 \\ 0.060 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 0.300 \\ 0.475 \\ 0.750 \\ \hline \end{array}$			$\begin{array}{\|l\|} \hline 0.160 \\ 0.250 \\ 0.400 \\ \hline \end{array}$	112.242 112.092 111.942		$\begin{aligned} & \hline 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{array}{\|l} 0 \\ 0 \\ 0 \\ 0 \end{array}$	115.000 115.000 115.000		0.265 0.335 0.425		111.145 111.270 111.420	$\begin{array}{\|l\|} \hline 0.475 \\ 0.600 \\ 0.750 \\ \hline \end{array}$	110.670 110.670 110.670
			6	$\begin{aligned} & \hline 4 \mathrm{~h} \\ & 6 \mathrm{~g} \\ & 8 \mathrm{~g} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0.080 \\ & 0.080 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.375 \\ & 0.600 \\ & 0.950 \end{aligned}$			$\begin{aligned} & 0.190 \\ & 0.300 \\ & 0.475 \end{aligned}$	110.913 110.723 110.548	107.217 107.027 106.852	$\begin{aligned} & 5 \mathrm{H} \\ & 6 \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$		$\begin{aligned} & 115.000 \\ & 115.000 \\ & 115.000 \end{aligned}$		$\begin{aligned} & 0.315 \\ & 0.400 \\ & 0.500 \\ & \hline \end{aligned}$		109.135 109.305 109.505	$\begin{aligned} & \hline 0.630 \\ & 0.800 \\ & 1.000 \\ & \hline \end{aligned}$	108.505 108.505 108.505

6.3 Relevant standards

BS 3643-1, ISO metric screw threads - Part 1: Principles and basic data
BS 3643-2, ISO metric screw threads - Part 2: Specification for selected limits of size

Chapter 7

Illustrated index to BS 8888

Normative references

Table A.1, on the following pages, is extracted (and adapted slightly) from BS 8888:2008. It lists standards containing requirements which need to be met in order to claim compliance with BS 8888. Where available, the table also gives a typical example of an illustration from each standard.

Abbreviations used in the table

GPP: General principles of presentation
GPS: Geometrical product specifications
GT: Geometrical tolerancing
HCTI: Handling of computer-based technical information
SQUS: Specification for quantities, units and symbols
STTP: Screw threads and threaded parts
TD: Technical drawings
TPD: Technical product documentation

Table A. 1 Normative references

BS 8888 (sub)clause	Standard referenced	Title of the standard	Typical illustration
4.1, 4.2.4	BS EN ISO 1	Standard reference temperature for geometrical product specification and verification	Not available
12.1.2, 15.3.2	BS ISO 31-0	Quantities and units	Not available
12.1.2	BS ISO 31-1	SQUS - Part 1: Space and time	Not available
12.1.2	BS ISO 31-2	SQUS - Part 2: Periodic and related phenomena	Not available
12.1.2	BS ISO 31-3	SQUS - Part 3: Mechanics	Not available
12.1.2	BS ISO 31-4	SQUS - Part 4: Heat	Not available
12.1.2	BS ISO 31-5	SQUS - Part 5: Electricity and magnetism	Not available
12.1.2	BS ISO 31-6	SQUS - Part 6: Light and related electromagnetic radiations	Not available
12.1.2	BS ISO 31-7	SQUS - Part 7: Acoustics	Not available
12.1.2	BS ISO 31-8	SQUS - Part 8: Physical chemistry and molecular physics	Not available
12.1.2	BS ISO 31-9	SQUS - Part 9: Atomic and nuclear physics	Not available
12.1.2	BS ISO 31-10	SQUS - Part 10: Nuclear reactions and ionizing radiations	Not available
12.1.2	BS ISO 31-11	SQUS - Part 11: Mathematical signs and symbols for use in physical sciences and technology	Not available
12.1 .2	BS ISO 31-12	SQUS - Part 12: Characteristic numbers	Not available
12.1.2	BS ISO 31-13	SQUS - Part 13: Solid state physics	Not available

Table A. 1 Normative references (continued)

BS 8888 (sub)clause	Standard referenced	Title of the standard	Typical illustration	
7.1	BS EN ISO 128-20	TD - GPP - Part 20: Basic conventions for lines	-	continuous line
			----------	dashed line
			- - - - -	dashed spaced line
7.1	BS EN ISO 128-21	TD - GPP - Part 21: Preparation of lines by CAD systems	Not available	
7.1	BS ISO 128-22	TD - GPP - Part 22: Basic conventions and applications for leader lines and reference lines		
7.1	BS ISO 128-23	TD - GPP - Part 23: Lines on construction drawings	Dashed narrow line	existing contours on landscape drawings
				subdivision of plant beds/grass
				hidden outlines
7.1	BS ISO 128-24	TD - GPP - Part 24: Lines on mechanical engineering drawings	Long-dashed dotted wide line	indication of (limited) required areas of surface treatment, e.g. heat treatment
				position of cutting planes
7.1	BS ISO 128-25	TD - GPP - Part 25: Lines on shipbuilding drawings	Dashed narrow line-_-_------	hidden edges
				hidden profiles

Table A. 1 Normative references (continued)

Table A. 1 Normative references (continued)

Table A. 1 Normative references (continued)

BS 8888 (sub)clause	Standard referenced	Title of the standard
$\mathbf{1 1}$	BS ISO 128-50	TD-GPP - Part 50: Basic conventions for representing areas on cuts and sections
$4.3,7.2,15.2$	BS ISO 129-1	TD-Indications of dimensions and
tolerances - Part 1: General principles		
15.2	BS ISO 406	

Table A. 1 Normative references (continued)

Table A. 1 Normative references (continued)

BS 8888 (sub)clause	Standard referenced	Title of the standard
$\mathbf{1 5 . 2}$	BS EN ISO 1660	TD - Dimensioning and tolerancing of
profiles		

Table A. 1 Normative references (continued)

Table A. 1 Normative references (continued)

BS 8888 (sub)clause	Standard referenced	Title of the standard	Typical illustration
14.1	BS EN ISO 2203	TD - Conventional representation of gears	
16	BS EN ISO 2692	GPS - GT-Maximum material requirement (MMR), least material requirement (LMR) and reciprocity requirement ($R P R$)	(M1) MMC (L) LMC
19.2	BS 2795	Specification for dial test indicators (lever type) for linear measurement	Not available
14.1	BS 2917-1	Graphic symbols and circuit diagrams for fluid power systems and components - Part 1: Specification for graphic symbols	Not available
15.2	BS ISO 3040	TD - Dimensioning and tolerancing - Cones	
8.1	BS EN ISO 3098-0	TPD - Lettering - Part 0: General requirements	Not available

Table A. 1 Normative references (continued)

BS 8888 (sub)clause	Standard referenced	Title of the standard	Typical illustration
8.1	BS EN ISO 3098-2	TPD - Lettering - Part 2: Latin alphabet, numerals and marks	
			NOTE BS 8888 non-preferred. Annex H of BS 8888:2008 gives preferred options for dimensioning, tolerancing and lettering.
8.1	BS EN ISO 3098-3	TPD - Lettering - Part 3: Greek alphabet	
8.1	BS EN ISO 3098-4	TPD - Lettering - Part 4: Diacritical and particular marks for the Latin alphabet	
8.1	BS EN ISO 3098-5	TPD - Lettering - Part 5: CAD lettering of the Latin alphabet, numerals and marks	

Table A. 1 Normative references (continued)

BS 8888 (sub)clause	Standard referenced	Title of the standard	Typical illustration
8.1	BS EN ISO 3098-6	TPD - Lettering - Part 6: Cyrillic alphabet	
14.1	BS 3238-1	Graphical symbols for components of servo-mechanisms - Part 1: Transducers and magnetic amplifiers	
14.1	BS 3238-2	Graphical symbols for components of servo-mechanisms - Part 2: General servo-mechanisms	
17	BS EN ISO 3274	GPS - Surface texture: Profile method Nominal characteristics of contact (stylus) instruments	Not available
13	BS EN ISO 4063	Welding and allied processes - Nomenclature of processes and reference numbers	Not available
17	BS EN ISO 4287	GPS - Surface texture: Profile method Terms, definitions and surface texture parameters	Not available

Table A. 1 Normative references (continued)

BS 8888 (sub)clause	Standard referenced	Title of the standard		Typical illustration	
17	BS EN ISO 4288	GPS - Surface texture: profile method - Rules and procedures for the assessment of surface texture		Not available	
15.2	BS 4500-4	ISO limits and fits - Specification for system of cone (taper) fits for cones from $C=1: 3$ to 1:500, lengths from 6 mm to 630 mm and diameters up to 500 mm		Not available	
15.2	BS 4500-5	ISO limits and fits - Specification for system of cone tolerances for cones from $C=1: 3$ to 1:500, lengths from 6 mm to 630 mm		Not available	
5.4	BS 5070-1	Engineering diagram drawing practice Part 1: Recommendations for general principles		Not available	
5.4	BS 5070-3	Engineering diagram drawing practice Part 3: Recommendations for mechanicall fluid flow diagrams		Not available	
5.4	BS 5070-4	Engineering diagram drawing practice Part 4: Recommendations for logic diagrams		Not available	
13	BS EN ISO 5261	TD - Simplified representation of bars and profile sections	Angle section		Alternate symbol: L
6	BS EN ISO 5455	TD - Scales		Not available	

Table A. 1 Normative references (continued)

Table A. 1 Normative references (continued)

Table A. 1 Normative references (continued)

BS 8888 (sub)clause	Standard referenced	Title of the standard	Typical illustration
15.2, 16	BS EN ISO 5458	GPS - GT - Positional tolerancing	
16	BS ISO 5459	TD - GT - Datums and datum-systems for geometrical tolerances	NOTE Annex H of BS 8888:2008 gives preferred options for dimensioning, tolerancing and lettering.
13, 14.1	BS EN ISO 5845-1	TD - Simplified representation of the assembly of parts with fasteners - Part 1: General principles	
13, 14.1, 15.2	BS EN ISO 6410-1	TD - STTP - Part 1: General conventions	

Table A. 1 Normative references (continued)

BS 8888 (sub)clause	Standard referenced	Title of the standard	Typical illustration
13, 14.1	BS EN ISO 6410-2	TD - STTP - Part 2: Screw thread inserts	Detailed Conventional Simplified
13, 14.1	BS EN ISO 6410-3	TD - STTP - Part 3: Simplified representation	Hexagon head screw
13	BS EN ISO 6411	TD - Simplified representation of centre holes	

Table A. 1 Normative references (continued)

Table A. 1 Normative references (continued)

BS 8888 (sub)clause	Standard referenced	Title of the standard	Typical illustration
14.1	BS EN ISO 6412-3	TD - Simplified representation of pipelines Part 3: Terminal features of ventilation and drainage systems	
13	BS EN ISO 6413	TD - Representations of splines and serrations	
21	BS EN ISO 6428	TD-Requirements for microcopying	Not available
4.1	PD 6461-1	General metrology - Part 1: Basic and general terms (VIM)	Not available
4.1	PD 6461-3	General metrology - Part 3: Guide to the expression of uncertainty in measurement (GUM)	Not available
15.2	BS 6615	Specification for dimensional tolerances for metal and metal alloy castings	Not available
15.2, 16	BS EN ISO 7083	TD - Symbols for geometrical tolerancing Proportions and dimensions	

Table A. 1 Normative references (continued)

BS 8888 (sub)clause	Standard referenced	Title of the standard	Typical illustration
5.2.1	BS EN ISO 7200:2004	TPD - Data fields in title blocks and document headers	Not available
15.1.1, 15.2	BS ISO 8015	TD - Fundamental tolerancing principle	(E)
14.2	BS EN ISO 8062-1	GPS - Dimensional and geometrical tolerances for moulded parts - Vocabulary	Not available
14.2	BS EN ISO 8062-3	GPS - Dimensional and geometrical tolerances for moulded parts - General dimensional and geometrical tolerances and machine allowances for casting	Not available
17	BS EN ISO 8785	GPS - Surface imperfections - Terms, definitions and parameters	
14.1	BS EN ISO 8826-2	TD - Rolling bearings - Part 2: Detailed simplified representation	
14.1	BS EN ISO 9222-1	TD - Seals for dynamic application - Part 1: General simplified representation	

Table A. 1 Normative references (continued)

BS 8888 (sub)clause	Standard referenced	Title of the standard	Typical illustration
14.1	BS EN ISO 9222-2	TD - Seals for dynamic application - Part 2: Detailed simplified representation	
14.2,17	BS ISO 10135	GPS - Drawing indications for moulded parts in technical product documentation (TPD)	
3	BS ISO 10209-1	TPD - Vocabulary - Part 1: Terms relating to technical drawings: general and types of drawing	Not available
3,9	BS EN ISO 10209-2	TPD - Vocabulary - Part 2: Terms relating to projection methods	Not available
16	BS ISO 10578	TD - Tolerancing of orientation and location Projected tolerance zone	

Table A. 1 Normative references (continued)

BS 8888 (sub)clause	Standard referenced	Title of the standard	Typical illustration
4.1, 15.2	BS ISO 10579	TD - Dimensioning and tolerancing - Nonrigid parts	
20.2, 21	BS EN ISO 11442	TPD - Document management	Not available
17	BS EN ISO 11562	GPS - Surface texture: Profile method Metrological characteristics of phase correct filters	Not available
17	BS EN ISO 12085	GPS - Surface texture: Profile method - Motif parameters	Not available
16	DD CEN/ISO TS 12180-1	GPS - Cylindricity - Part 1: Vocabulary and parameters of cylindrical form	Not available
16	DD CEN/ISO TS 12180-2	GPS - Cylindricity - Part 2: Specification operators	Not available
16	DD CEN/ISO TS 12181-1	GPS - Roundness - Part 1: Vocabulary and parameters of roundness	Not available
16	DD CEN/ISO TS 12181-2	GPS - Roundness - Part 2: Specification operators	Not available

Table A. 1 Normative references (continued)

BS 8888 (sub)clause	Standard referenced	Title of the standard	Typical illustration
16	DD CEN/ISO TS 12780-1	GPS - Straightness - Part 1: Vocabulary and parameters of straightness	Not available
16	DD CEN/ISO TS 12780-2	GPS - Straightness - Part 2: Specification operators	Not available
16	DD CEN/ISO TS 12781-1	GPS - Flatness - Part 1: Vocabulary and parameters of flatness	Not available
16	DD CEN/ISO TS 12781-2	GPS - Flatness - Part 2: Specification operators	Not available
17	BS EN ISO 13565-1	GPS - Surface texture: Profile method Surfaces having stratified functional properties - Part 1: Filtering and general measurement conditions	Not available
17	BS EN ISO 13565-2	GPS - Surface texture: Profile method Part 2: Height characterization using the linear material ration curve	Not available
17	BS EN ISO 13565-3	GPS - Surface texture: Profile method Part 3: Height characterization using the material probability curve	Not available
13	BS ISO 13715	TD - Edges of undefined shape - Vocabulary and indications	Not available
15.2	BS EN ISO 13920	Welding - General tolerances for welded constructions - Dimensions for length and angles - Shape and position	Not available

Table A. 1 Normative references (continued)

BS 8888 (sub)clause	Standard referenced	Title of the standard	Typical illustration
4.1, 17, 19.1	BS EN ISO 14253-1	GPS - Inspection by measurement of	
		workpieces and measuring equipment - Part 1: Decision rules for proving conformance or non-conformance with specifications	

4.1, 19.1	DD ENV ISO 14253-2	GPS - Inspection by measurement of workpieces and measuring equipment - Part 2: Guide to the estimation of uncertainty in GPS measurement, in calibration of measuring equipment and in product verification
$\mathbf{1 9 . 1}$	DD CEN/ISO TS 14253-3	GPS - Inspection by measurement of workpieces and measuring equipment - Part 3: Guidelines for achieving agreements on measurement uncertainty statements
3,15.1.1,17	GPS - Geometrical features - Part 1: General terms and definitions	

Table A. 1 Normative references (continued)

BS 8888 (sub)clause	Standard referenced	Title of the standard	Typical illustration			
15.1.1	BS EN ISO 14660-2	GPS - Geometrical features - Part 2: Extracted median line of a cylinder and a cone, extracted median surface, local size of an extracted feature	Not available			
19.2	BS EN ISO 14978	GPS - General concepts and requirements for GPS measuring equipment	Not available			
19.2	DD CEN/ISO TS 15530-3	GPS - Coordinate measuring machines (CMM): Technique for determining the uncertainty of measurement - Part 3: Use of calibrated workpieces or stands	Not available			
13	BS EN ISO 15785	TD - Symbolic presentation and indication of adhesive, fold and pressed joints	Fold			
17	DD ISO/TS 16610-1	GPS - Filtration - Part 1: Overview and basic concepts			Not available	
17	DD ISO/TS 16610-20	GPS - Filtration - Part 20: Linear profile filters: Basic concepts			Not available	
17	DD ISO/TS 16610-22	GPS - Filtration - Part 22: Linear profile filters: Spline filters			Not available	
17	DD ISO/TS 16610-29	GPS - Filtration - Part 29: Linear profile filters: Spline wavelets			Not available	
17	DD ISO/TS 16610-40	GPS - Filtration - Part 40: Morphological profile filters: Basic concepts			Not available	

Table A. 1 Normative references (continued)

BS 8888 (sub)clause	Standard referenced	Title of the standard	Typical illustration
17	DD ISO/TS 16610-41	GPS - Filtration - Part 1: Morphological profile filters: Disk and horizontal linesegment filters	Not available
17	DD ISO/TS 16610-49	GPS - Filtration - Part 1: Morphological profile filters: Scale space techniques	Not available
18	BS ISO 16792	TPD - Digital product documentation Digital product definition data practices	Not available
4.1	DD CEN/ISO TS 17450-1	GPS - Part 1: General concepts - Part 1: Model for geometrical specification and verification	Not available
4.1	DD ISO/TS 17450-2	GPS - Part 2: Operators and uncertainties	Not available
15.2, F. 5	BS EN 20286-1	ISO system of limits and fits - Part 1: Bases of tolerances, deviations and fits	A toG
15.2	BS EN 20286-2	ISO system of limits and fits - Part 2: Tables of standard tolerance grades and limit deviations for holes and shafts	

Table A. 1 Normative references (continued)

BS $\mathbf{8 8 8 8}$ (sub)clause	Standard referenced	Title of the standard
$\mathbf{1 3}$	BS EN 22553	Welded, brazed and soldered joints - Symbolic representation on drawings
15.7		General tolerances - Part 1: Tolerances for linear and angular dimensions without individual tolerance indications
$\mathbf{1 5 . 7}$	BS EN 22768-1	General tolerances - Part 2: Tolerances for features without individual tolerance indications
19.1	GPS - Guidelines for the evaluation of coordinate measuring machine (CMM) test uncertainty	Not

Introduction

This guide has been produced as a companion to BS 8888, presenting up-to-date information based on the technical product specification aspects of BS 8888 and the essential standards it references.

Its aim is to offer straightforward guidance together with pictorial representations, to all practitioners of technical product specification, i.e. those currently using BS 8888 and those who, in a bid to conform to global ISO practices, are making or wish to make, the transition from the old BS 308 to BS 8888.

Its scope is to provide the necessary tools to enable engineers engaged in design specification, manufacturing and verification with the essential basic information required for specifying a product or component.

It includes comprehensive sections extracted from and referenced to international standards relating to linear, geometric and surface texture dimensioning and tolerancing, together with the practice of welding symbology, limits and fits and thread data. It also includes an illustrated index to all standards referenced in BS 8888.

This guide does not replace BS 8888 which is the definitive standard for technical product realization.
Any element of BS 8888 not included in this guide should not be considered as less important to technical specification than those included.

Most of the drawings in this guide have been extracted (and adapted) from the following BSI publications: BS EN ISO 1101, BS EN ISO 1302, BS ISO 5459, BS 8888 and PP 8888, Parts 1 and 2.

