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Preface 

Electrical noise fundamentally limits the sensitivity and resolution of commu- 
nication, navigation, measurement, and other electronic systems. This book 
introduces the reader to  the most important noise mechanisms, the descrip- 
tion of noise phenomena in electrical circuits by means of equivalent sources 
and analytical or numerical methods. 

The consequences of noise in high-frequency systems are not always easy 
to  understand. There might be complicated interactions between different 
circuit parameters. Furthermore, often not only one noise mechanism has to 
be considered, but an interaction of various different processes. One example 
is the noise in frequency converters or mixers, respectively. In order to obtain 
a sensitive input stage, the noise figure, which is a measure for the internal 
noise of the system, should be as low as possible. The noise figure of the 
complete circuit can be improved by inserting a low-noise amplifier in front 
of the down converter, for example. If this preamplifier does not provide 
sufficient gain, then the noise figure of the cascade connection of the amplifier 
and the mixer can still be deteriorated by the mixer according to the cascade 
formula. Kevertheless, the amplifier is often omitted for cost reasons or in 
order to improve the dynamic range. In this case, a low noise figure for the 
mixer is of great importance. If the intermediate frequency of the mixer is low, 
then the so-called flicker- or l/f-noise can increase the noise figure significantly. 
A higher noise figure can also be caused by noise of the local oscillator. If 
the mixer is not perfectly balanced then the demodulated amplitude noise of 
the local oscillator increases the noise at the mixer output. An increase of 

xi 
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the noise figure is also observed, if the phase or frequency noise of the local 
oscillator is unintentionally discriminated by frequency selective circuits. In 
order to  minimize the disturbing effects of the noise in the whole system, 
knowledge of all these noise mechanisms, interactions. and dependencies is 
necessary. 

One objective of this text is to  convey a qualitative and quantitative com- 
prehension of the noise phenomena in linear and non-linear high-frequency 
circuits. The book, however, does not claim to be complete in the sense of a 
reference work. For example, a detailed presentation of the physical origin of 
thermal noise and the available noise power of resistors is omitted. 

The book contains a number of problems with a varying degree of difficulty. 
The solutions are given at the end of the book. 

This book is the result of many years of research and education. I t  is based 
on the course ”Noise in High Frequency Circuits and Oscillators”, which has 
been presented regularly a t  the Ruhr-University Bochum, Germany. The 
notes for that course were the basis for this book. 

This book addresses graduate students but should also be useful for aca- 
demics, engineers, and physicists. 

We wish to express our gratitude to  Bianca Will for her aid in the tech- 
nical editing of the manuscript, especially of the problem solutions and the 
proofreading. 

We wish to give special thanks to Dr. Steve Nightingale for proofreading 
and his many valuable suggestions for the improvement of the text. 

Appreciation is expressed for the steady encouragement and support by 
our colleagues Dr. Thomas Musch, Prof. Dr. Edgar Voges, Dr. Reinhard 
Stolle, Dr. Michael Gerding, Prof. Dr. Heinz Chaloupka, Prof. Dr. Volkert 
Hansen. Prof. Dr. Hermann Eul. Prof. Dr. Holger Heuermann. 

We are particularly grateful to Prof. Dr.-Ing. Dr.h.c.mult. Ulrich L. Rohde 
for his encouragement to write this book and his helpful suggestions. 

Comments from our reviewers were very much appreciated. 
Finally, we wish to  give special thanks to the many students over the years 

who have attended the course “Noise in High Frequency Circuits and Os- 
cillators” at the Ruhr-University Bochum, Germany, for their many fruitful 
questions and discussions. Special thanks go to Nils Pohl for proofreading. 

B. SCHIEK 
I. ROLFES 

H.-J. SIWERIS 

Bochum, Germany 



Math  em at i cal and 
System- oriented 

Fund a m  ent  als 
In this chapter the most important mathematical, statistical and system- 
oriented theoretical fundamentals are presented as they will be needed in the 
following chapters. However, a certain knowledge of the theory of probabilities 
and statistics will be anticipated. 

In this book, noise signals continuous in time will be considered predom- 
inantly. These are the kind of noise signals that  normally appear in high- 
frequency circuits. 

The time-dependent behavior of noise signals cannot be predicted in gen- 
eral. It is only possible to characterize their properties with the help of mean 
values, as for example the mean square value, i.e. the mean power. The 
noise power per unit bandwidth, the so-called spectrum. will turn out to be 
a particularly important quantity for the description of noise signals. This 
spectral representation is particularly useful and common for high-frequency 
techniques. Therefore, it is one aim of a noise description to determine the 
spectral distribution of the noise power, i.e. the spectrum, at any point of 
a circuit or a system quantitatively. For this purpose, one can either at- 
tempt to calculate the spectrum of the circuit or to measure it. However, 
both procedures have to be performed with care. The best way is to  make 
measurements as well as calculations and to bring both results into agree- 
ment. Having achieved this agreement it can be expected to some degree that 
the noise phenomena of the circuit or the system are understood quite well. 
On this basis it is often possible to take some measures to reduce the noise. 
Whether a noise reduction is necessary or not depends on the magnitude of 
the signal of interest in the circuit and furthermore on the required signal-to- 
noise ratio. These questions will be answered in depth in the following pages. 

1 
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2 MATHEMATICAL AND SYSTEM-ORIENTED FUNDAMENTALS 

However. some fundamentals are needed. which will be discussed in the first 
chapter. One significant result of this first chapter will be that the spectrum is 
transmitted within a circuit according to the magnitude squared value of the 
complex system transfer function. This statement will be of great importance 
for the noise analysis, as will be seen later on. 

1.1 INTRODUCTION 

1.1.1 Technical relevance of noise 

The term noise stems from the perception a person has when electrical jit- 
ter effects in the audio frequency range are amplified sufficiently and then 
are passed to  a loudspeaker. This phenomenon is generally known from a 
broadcast receiver, for example. Later, the term noise was extended to fre- 
quencies outside the audible range. In general, the electrical noise originates 
from current or voltage fluctuations in electronic circuits. One disturbing 
effect of noise is that  it limits the sensitivity of receivers of communication 
systems or reduces their transfer capacity. Furthermore, it limits the accu- 
racy of measurement systems. Without noise the transmitter power could be 
reduced down to a limit set by interference from communication channels. As 
a consequence the electrical noise has a large influence on the system design 
and thus on the costs. 

On the other hand, noise, considered as a physical phenomenon, often con- 
tains useful information. Temperature measurements can be performed with 
the help of thermal noise over large distances by means of antennas (Remote 
Sensing). In radio-astronomy weak noise signals can give information, e.g. on 
molecules in distant galaxies. For electronic devices the frequency behavior 
and the amplitude of the noise is often useful t o  evaluate the functionality 
and the quality of the device. 

1.1.2 Physical origins of noise 

This text mainly deals with the effects of noise in electronic circuits, partic- 
ularly in high-frequency circuits. Thus, the physical origins of noise will be 
discussed less extensively. One focus will be on the thermal noise in electri- 
cal conductors. Thermal noise, which always exists at non-zero temperatures. 
originates from vibrations of the lattice atoms. which are transferred to the 
free electrons. The electrons are thus performing an unsteady movement. be- 
ing interrupted by collisions. This unsteady movement leads to an irregularly 
fluctuating voltage between both ends of the conductor. I t  will be seen that 
the available noise power of a resistor only depends on the absolute tempera- 
ture of the resistor. The thermal noise is thus especially well suited to serve 
as a reference noise source. Other kinds of noise phenomena can be compared 
with it to advantage. Thermal noise is a relatively weak noise phenomenon. 



which can be further reduced by cooling. For many systems it is often suffi- 
cient, if the overall noise, referred to the input of the system, is of a similar 
level as the thermal noise. 

Another noise mechanism. which is particularly important for electronic 
devices, is the so-called shot noise. The transition of electrical potential 
barriers is a statistical process. because the charge of the carriers, electrons or 
ions, is always an integer multiple of the elementary charge. Consequently, the 
current emitted by a cathode at  constant temperature and voltage is not a pure 
d.c. current, rather it fluctuates around a time average. Because the emitted 
electrons arrive irregularly at the anode, the term shot noise became accepted 
for this phenomenon. A similar situation can be found for potential barriers in 
solid-state devices, i.e. junctions between semiconductors or between metals 
and semiconductors. Therefore, such junctions also show shot noise for the 
current flowing. Later on, it will be shown that a comparison between shot 
noise and thermal noise will lead to the conclusion that,  in general, shot noise 
has the smaller available noise power. 

Very high noise is generated by a semiconductor junction operated at break- 
down. This noise mechanism is called avalanche noise. Accelerated elec- 
trons generate new electron-hole pairs by collision. In particular, the electrons 
are able to generate further electron-hole pairs after an acceleration, so that 
the current increases very rapidly. In low-noise devices breakdown must be 
strictly avoided. On the other hand calibrated noise sources utilize the break- 
down mechanism of a pn- or Schottky-junction in order to achieve a high 
well-defined noise power for measurement purposes. 

The electrical properties of surfaces or boundary layers are influenced ener- 
getically by so-called boundary layer states, which are also subject to statisti- 
cal fluctuations. This leads to the so-called flicker noise or l/f-noise for the 
current flow. This kind of noise is especially observable a t  low frequencies and 
generally decreases with increasing frequency f according to a l/f law until 
it will be covered by frequency independent noise mechanisms, e.g. thermal 
noise or shot noise. I t  will be seen, that flicker noise is of great importance 
for high-frequency oscillators, because it can modulate the carrier frequency 
by non-linear processes. Unwanted amplitude and phase fluctuations with a 
flicker noise characteristic will, therefore, be impressed on the oscillator signal. 

Oscillators can be interpreted as amplifiers with a high-Q (quality factor) 
feedback network. The noise signals, which always exist, are amplified af- 
ter the supply voltage is turned on until finally saturation effects lead to an 
approximately sinusoidal oscillation with constant amplitude. 

1.1.3 

The time characteristic of noise signals can be displayed with the help of an 
oscilloscope, if: for example, the thermal noise voltage of a resistor is amplified 
sufficiently as shown in Fig. 1.1. The irregular time behavior of the signal is 
a characteristic property of electrical noise. A mathematical description in 

General characteristics of noise signals 
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oscilloscope 

R 

amplifier 

Fig. 1.1 Noise signal displayed by an oscilloscope 

the time domain obviously is not possible. Also, the future behavior of the 
signal cannot be predicted. In contrast to sinusoidal signals, the description 
of noise signals is thus restricted to different mean values. For this purpose, 
the methods of statistical signal theory are applied. 

In the frequency domain, the power of a sinusoidal signal is concentrated 
at  a single frequency. In contrast, for a noise signal the power at a single 
frequency is always zero. Power can only be measured for a non-zero band- 
width. This offers the possibility of a measurement to discriminate between 
sinusoidal signals and noise signals. 

1.2 MATHEMATICAL BASICS FOR T H E  DESCRIPTION OF 
NOISE SIGNALS 

In this section the most important mathematical fundamentals for the de- 
scription of noise signals will be discussed. More detailed introductions to the 
theory of probability and of stochastic processes can be found in the literature. 

1.2.1 

Figure 1.2 shows N equal resistors with R1 = R2 = . . . = RN = R at the same 
temperature T .  For each resistor the time dependent open circuit voltage is 
measured and recorded. 

Together, they form a 
stochastic process. Each single curve is a so-called realization of the 
stochastic process. If a specified time, for example t l ,  is considered, then 
the different realizations provide a sequence of voltage values U l t ( t l ) ,  i = 
1 , 2 , .  . . N .  Herein Ul( t1 )  is called a random variable. For general consid- 
erations a random variable will be denoted by Y in the following pages. If the 
random variable can only adopt a limited number of values, then Y is called 
a discrete random variable. If Y can adopt all values within a given interval, 
then Y is a continuous random variable. This text will deal predominantly 
with continuous random processes. The random variable Y can designate a 
voltage, a current, a noise wave or similar signals. The continuous random 

Stochastic process and probability density 

All noise voltages are recorded simultaneously. 
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c 

Rl@t) I I I I t 

I I 
I I 
I I 

Fig. 1.2 
with a = 1 , 2 , .  . . , N. 

Set of resistors with noise voltages Vl,(tl) and U z z ( t z ) ,  respectively, 

variable Y = Y ( t l ) ,  that  results, if the number N of realizations tends to- 
wards infinity, shows a certain amplitude distribution. The probability to find 
an amplitude value of the random variable Y at a time tl in the interval from 
y to ( y  + 4 y )  is described by p(Y = y) . 4 y  = p(y)  . A y  = p(t1, y)  . 4 y .  Here, 
p ( y )  is called the probability density or amplitude distribution density 
or distribution density or briefly density. The normalization condition 
requires 

Looking at  the probability wk that the amplitude is lower or equal to yi  at 
the time t l ,  then the following relation holds: 
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In the same way the following equation applies for the probability that the 
amplitude lies within the boundaries yi  and yy 

Wk{Yy 5 y 5 Y:) = p ( t l , y ) d y  with Y:’ < Y/1 * (1.3) 
Y:’ i’ 

Electrical noise phenomena often show an amplitude distribution, which is 
called normal distribution or Gaussian distribution. The normal distri- 
bution is given by the following probability density, which is also illustrated 

The normal distribution is an even function with respect to y. 

. I  

Fig. 1.3 Probability density of a normal distribution. 

Problem 

1.1 
of Eq. (1.1). 

Show that the normal distribution satisfies the normalization condition 

The parameter cr is also called statistical spread. The thermal noise and 
the shot noise show a normal amplitude distribution. This is due to  the 
following theorem: the central limit theorem of statistics states that ,  under 
certain assumptions, the sum of a large number of independent and random 
variables with an arbitrary distribution is again a random variable but with 
a normal or Gaussian distribution. For example, thermal noise arises from 
the not predictable thermal movement of many single electrons, which move 
independently from each other. From this it follows that the open-circuit 
voltage of a resistor with thermal noise is normally distributed. 
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1.2.2 

The term p(t1, y1; t2, y2)dyldyz stands for the compound probability density. 
This is the probability to find, for the same realization, at a time tl the 
amplitude in the interval dyl around y1 and at a time tz the amplitude in the 
interval dy2 around y2. 

The probability densities p ( t l ,  y1) and p(t2, y2) can be calculated from the 
compound probability density with 

Compound probability density and conditional probability 

A further quantity, which is commonly used for statistics is the so-called con- 
ditional probability. The term p(t2, y~ 1 t l  , yl)dy2 represents the probability, 
that  the amplitude at a time t2 can be found in an interval dy2 around yz, 
under the condition that it was in the interval dyl around y1 at a time t l .  For 
the conditional probability the normalization applies again: 

The compound probability density and the conditional probability density are 
related by the following equation: 

P(t2rYz;tlrYl) = P(tl,Yl) ,P(t2,Y2 Itl,Yl) . (1.8) 

If the amplitude at the time tz does not depend on the amplitude at  the 
time t l ,  then the random variables Y( t l )  and Y(t2) are called statistically 
independent. In this case, the conditional probability density is equal to the 
probability density 

Because of Eq. (1.9) the compound probability of statistically independent 
variables is given as follows: 

P(t2,Y2 l t l ,Yl )  =P(tz,Y2) ’ (1.9) 

P(tl ,  Y1;  t2, Yz)  = P(tl ,  Y 1 )  , At23 Y2)  , (1.10) 

i.e. the product of the probability densities of the single variables. 

1.2.3 Mean value and moments 

For noise processes the main interest is focused on mean values and their 
transfer characteristics in circuits. The ensemble average (Y ( t l ) )  or the 
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expected value E{Y(t,)} of the random variable Y at the time tl is defined 
by the following expression: 

+cc 

(1.11) 

-m 

The expected values of integer powers of Y are called moments of the distri- 
bution and are defined by 

Ax) 

E{Y"(tl)} = 1 y r  * p ( t l , ~ l ) d y l  with n = 1.2 ,3 , .  . . . (1.12) 
-ffi 

The first moment or the expected value E{Y} is equal to zero for many noise 
processes, as for example for thermal noise. This is due to the fact that 
the probability density p ( t l , y l )  of these processes is an even function of y1. 
The second moment E{Y2} is of particular interest, because, if Y represents 
currents, voltages or waves, then it is a measure for the mean noise power. 

The distribution of the random variables Y around their expected values 
is denoted by the central moments. This means that effectively only the 
alternating part is considered: 

E{(Y(tl)  - E{Y(tl)))n} = ( Y 1  - E{y( t l ) ) )n  .P(tl,Yl) dY1 . (1.13) 
--M I 

The second moment is called variance c2 and B itself is called statistical 
spread or standard deviation. 

The electrical fluctuation phenomena are mostly stationary processes. 
this means it can be assumed that the various densities, probabilities, mean 
values and moments do not change with time. A simple example for a non- 
stationary process can be imagined for the set of resistors of Fig. 1.2, if they 
are stored in a thermal bath,  the temperature of which is varied over time. 
For a stationary process, time can be omitted and Eq. (1.11) can be replaced 

E{Y} = 7.. P(Y) dY 

by 

(1.14) 

-m 

and for Eq. (1.12) and Eq. (1.13) the results are 

(1.15) 

-m 
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Moreover, this book will essentially deal with ergodic processes. An ergodic 
process is a stationary process where the time average is equal to the en- 
semble average. Then, in fact, it will generally be possible to observe noise 
processes with only one measurement curve (e.g. the curve of R1 in Fig. 1.2). 
In the following, the main interest will be focused on the time average. Ev- 
ery ergodic process is stationary, whereas the reversal is not necessarily true. 
The assumption that the time and the ensemble average are equal is a use- 
ful means to perform calculations, because it is often possible to predict the 
characteristics of densities in advance. By denoting the time average with a 
bar, Eq. (1.11) can be rewritten as follows for an ergodic and thus stationary 
process: 

In Eq. (1.17) the variable t describes the time dependence of the stochastic 
amplitude y(t). For the quadratic time average the result is 

- 
y2( t )  = lim __ . y 2 ( t )  d t  = E{Y2} = (1.18) 

T-co 2 .  T 
-y -02 

and the higher moments 

+oo 
(1.19) 

We get for the central moments of ergodic processes: 

In order to  emphasize it again: this book will deal nearly solely with continu- 
ous, stationary and ergodic noise processes. The quadratic time average will 
thus be of quite predominant interest. However, the relations above allow one 
to calculate time averages also by means of probability densities which might 
sometimes be advantageous. 

1.2.4 Auto- and cross-correlation function 

The autocorrelation function p(t1, t 2 )  defines the averaged product of the am- 
plitude values y(t1) at a time tl and y(t2) at a time t 2 .  For a stationary 
process this mean value only depends on the time difference B = t 2  - t l  . Con- 
sidering the compound probability density with tl = t and t 2  = t + B one can 
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write: 

(1.21) 
-cc 

For the last expression on the right side it was again made use of the fact that ,  
for a stationary process, the compound probability density only depends on 
the time difference. The determination of the autocorrelation function with 
the help of a probability density will be a useful calculation method. 

The autocorrelation function is always an even function of 0 for stationary 
processes. This is obvious. if the substitution t + 0 = T is introduced: 

P ( Q )  = Y ( t ) Y ( t  + 0) = Y(T)Y(T - 0) = P ( - Q )  . (1.22) 

For 0 = 0 the autocorrelation function is identical to the mean square value. 
The autocorrelation function is a measure of how strongly the value of the 

random variable at the time t is influenced by the values it had before. In 
other words. a large value of p ( 0 )  means that,  with the knowledge of y( t ) ,  the 
values y(t  zk 0) can be calculated with a higher probability than for a small or 
even vanishing correlation. 

If the averaging in Eq. (1.21) is not performed with two values of the 
same process but with two values of different processes X and Y .  then the 
cross-correlation function psy of these processes is obtained. For stationary 
processes it can be written, similar to Eq. (1.21): 

T 

-cc 

(1.23) 

In contrast to  the autocorrelation function, the cross-correlation function is, 
in general, not an even function. 
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The cross-correlation function of two signals X and Y describes how similar 
both signals are. The maximum magnitude is obtained, if both signals are 
identical except for a common factor, and if, for example, they are originating 
from the same noise source. Then the signals are completely correlated. On 
the other hand, the cross-correlation function is always equal to zero, if the 
signals originate from two physically completely independent sources, such as, 
for example, from two separate resistors with thermal noise. In this case, the 
signals are uncorrelated. 

1.2.5 

In the time domain noise signals are described by the auto- or cross-correlation 
functions. The auto correlation function for the time shift 0 = 0 is a measure 
for the quadratic time average and thus the signal power. In the frequency 
domain the description of the noise signals is performed with the help of the 
power spectral density or the power spectrum or briefly the spectrum 
W(f) for the frequency f .  Here, W( f ) d f  is the contribution of the frequency 
interval df at the frequency f to the mean square value or the signal power. 
The following relation thus applies: 

Description of noise signals in the frequency domain 

(1.24) 

Apart from the so-called one-sided spectrum W (  f), which only exists for 
positive frequencies, the two-sided spectrum W ( f )  is defined for positive as 
well as for negative frequencies as the Fourier transform of the autocorrelation 
function. Conversely, the autocorrelation function p ( 0 )  is the inverse Fourier 
transform of the spectrum W ( f ) .  

-00 

4-m 

(1.25) 

-m 

The autocorrelation function and the spectrum form a pair of Fourier trans- 
forms. These are the so-called Wiener-Khintchine-relations. The derivation 
is omitted here. These relations will be used extensively in the following 
chapters. Because p ( 0 )  is a real and even function in 0, it follows that the 
two-sided spectrum W ( f )  is also a real and even function in f .  The proof is 
easy. According to Eq. (1 .25) ,  the spectrum can be written as 

+m -00 

(1 .26)  
--03 -00 
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because p(6') = p(-6') is an even function. The substitution 6' = -r and an 
interchange of the integral boundaries leads to: 

+m 

W(f)  = / p(,)ej2;'rfTd, = W * ( f )  = W(-f)  . (1.27) 
- W  

Thus W ( f )  is a real and even function in f. 
The two-sided spectrum is often more convenient to use because of the 

symmetry of the transformations to and from the autocorrelation function. 
However, only the one-sided spectrum W(f), which is defined for positive 
frequencies only, has a physical relevance. The one-sided and the two-sided 
spectra, W(f) and W(f),  are related in a simple way: 

The difference in the factor 2 results from the different definitions of the 
integral boundaries. For example, the mean square value is given by 

1-m 30 a2 

112(t) = P ( 0  = 0 )  = / W(f)  df = 2 . 1  W ( f )  df = 1 W(f) df . (1.29) 

-0.2 0 0 

By analogy with Eq. (1.25), the cross-spectrum W12 and the cross-correlation 
function plZ(6') also form a pair of Fourier transforms: 

-m 

+oo 

(1.30) 

-m 

In general, the cross-correlation function is not an even function, but it is a 
real valued function. Hence, 

Thus, the real part of the cross-spectrum is an even function in f and the 
imaginary part is an odd function in f .  Furthermore, using the definition 
(1.30), it can be shown that 

PlZ(6') = P21(-6') . (1.32) 
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With the substitution r = -6:  an interchange of the integral boundaries leads 
to 

W12(f) = 

- - 

Furthermore, a comparison 

-m 
+cc / pZl ( -6)e-j21rfe d6 

-7p21(r)ej2TjT d7 = W;,(f) . 

of Eq. (1.31) and Eq. (1.33) yields 

W21(.f) = w;l(-f) * (1.34) 

-m 

(1.33) 

-m 

Note that, in general, the cross-spectrum is a complex valued function. 

1.2.6 Characteristic function and the central limit theorem 

The inverse Fourier transform of the probability density function p(z )  is called 
the characteristic function C(u).  This is equivalent to the statement that the 
characteristic function is the expected value of the function eJux: 

~ ( u )  = E(eJuz) = T .  eJuzp(z )  dz = ~ - ' ( p ( z ) )  . 

The characteristic function always exists, because leJuzl = 1 and p(z)  2 0 
and real. Thus, it is given by 

(1.35) 

-m 

+30 

IC(u)/ I / p(z)dz  = C(0)  = 1 . (1.36) 
-m 

Since p(z )  is real, the complex conjugate value of C is 

C*(u)  = C(-21) . (1.37) 

This means that Re{C} is an even and Im{C} is an odd function of u. If p(z)  
is an even function, then C ( u )  is also an even and thus a real function. If the 
characteristic function is known, then the corresponding probability density 
can be calculated by a Fourier transformation: 

f c c  

(1.38) 
-m 
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The characteristic function and the probability density form a pair of Fourier 
transforms. 

As an important example as well as an application of the characteristic 
function, the probability density of the sum of two independent random 
variables X and Y will be determined. The probability density p s ( s )  for the 
sum s = x + y of the two variables with the associated probability densities 
p l  (x) and p z  ( 9 )  is given by: 

+m 

PS(S) = 1 Pl (x) . P2 (3 - .) dx 
-c€ 

= T P 2 ( Y )  . Pl(S - Y) dY (1.39) 

-m 

The integral in Eq. (1.39) is a convolution integral. The appropriate extension 
to more than two independent random variables leads to  a multiple convolu- 
tion integral for p s ( s )  

P s ( s ) = P l * P 2 * P 3 * P 4 . . .  . (1.40) 

The order of the convolution can be chosen arbitrarily. According to a theorem 
of Fourier transformation, the characteristic function of p s ( s ) ,  namely, Cs(u), 
is obtained as the product of the characteristic functions Ca of the single 
probability densities p i ,  i = 1 , 2 , 3 . .  . : 

cs (u) = n Ca (u) 

The central limit theorem of statistics states that ,  under quite general condi- 
tions, the sum of a large number of statistically independent random variables 
shows a Gaussian distribution. This result is independent of the distributions 
of the single variables. In problem 1.2 it shall be shown with the help of the 
convolution theorem that,  even for the sum of only three variables with rect- 
angular distributions, a distribution quite similar to the Gaussian distribution 
results. 

n 

(1.41) 
z= 1 
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Problem 

1.2 
distributions p1(z),p2(y),p3(~), as shown in the figure. 

Calculate the distribution p,(s) = p s ( z  + y + 2 )  for three rectangular 

The probability densities are assumed to be independent of each other. 
Numerical example: x1 = 2; 2 2  = 4; y1 = 3; yz = 4; z1 = 1; z2 = 5 

For a very large number n of equal and independent distribution densities 
with a rectangular shape 

it can be shown analytically by using the characteristic function Cs(u), that 
the probability density of the sum p , ( s )  adopts a Gaussian distribution. The 
characteristic function of the single random variable Cl(u) is calculated as 

(1.43) 

and C,(u) with Eq. (1.41) as 

C , ( U )  = C Y ( U )  . (1.44) 

An inverse Fourier transformation yields the probability density p ,  ( s )  for the 
sum of n random variables with a rectangular distribution: 

(1.45) 

For large numbers of n the function sin(pu/2) is different from zero only in 
a small region of u = 0. Therefore, a series expansion for sin(PuL/2) may be 
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truncated beyond the first two elements: 

(I .46) 

However; for large n the last term is identical to  a Gaussian function, as can 
be shown by comparing the coefficients of the associated series expansions. 

(1.47) 

Thus, for p s ( s )  the following result is obtained by employing an integral table: 

-m 

(1.48) 

This is a Gaussian distribution with the standard deviation gn. The stan- 
dard deviation 01 for a single random variable with a rectangular distribution 
according to  Eq. (1.42) is given by: 

P 
dl5 

0 1  = - 

This leads to: 
cn = &i ' CJj 

(1.49) 

(1.50) 

It will be shown next, that  the result of Eq. (1.50) could have been expected 
due to general relations which hold for the sum of independent variables. For 
this purpose, the variance CT; of S = X + Y is considered. The expected value 
of S ,  E{S} = s, is equal to the sum of the expected values of X and Y ,  i.e. 
3 = 3 + y.  This leads to: 
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Thus it follows: 
2 2 2  us = OZ + f f V  . 

Obviously, the result of Eq. (1.51) can be extended to n variables: 

(1.52) 

n 

0: = c 0' . (1.53) 
i=l 

The variance of the random variable S ,  which results from the sum of the 
independent random variables X and Y ,  is equal to the sum of the variances 
of the individual random variables. Also, the mean value of the sum is equal 
to the sum of the mean values: 

n 

s = p , .  (1.54) 
i = l  

The only requirement the single random variables must meet is that  they are 
statistically independent from each other. However, the result does not de- 
pend on the individual distribution densities. Eq. (1.50) resulted from the 
summation of n equal distributions with the standard deviation 01. Hence, 
the standard deviation on of the sum of the variables is larger by a factor 6. 
The equations (1.52) and (1.53) are also valid for differences of random vari- 
ables. For independent random variables with a Gaussian distribution the 
validity of Eq. (1.52) can be shown by direct calculation with the help of the 
characteristic function (problem 1.3). 

Problem 

1.3 The independent random variables possess a Gaussian distribution. 
Show by direct calculation utilizing the characteristic function, that the vari- 
ance of the sum of the random variables is obtained from the sum of the 
individual variances. 

If the characteristic function is known, then the probability density can 
be calculated by a Fourier transform (Eq. (1.35)). Differentiating Eq. (1.35) 
once leads to 

(1.55) 
-00 
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From this it follows for u = 0 

(1.56) 

Repeating the differentiation process leads to 

(1.57) 

For a known characteristic function, the moments can thus be determined by 
differentiation. Quite often, the result proves to  be very useful. 

The definition of the characteristic function as the inverse Fourier transform 
of the density function can be extended to more variables. The characteristic 
function for two variables is given by a double Fourier integral: 

(1.58) 

Here, the bivariate probability density of the random variables X and Y is 
denoted by p(z ,  y). By inversion the bivariate probability density results from 
Eq. (1.58) 

+M 

-m 

Calculating the kth and Ith derivative of Eq. (1.58) with respect to u and II, 

the following relation for the mixed moments results: 

(1.60) 

Furthermore, Eq. (1.58) yields: 

C(u,O) = C(u) 

C(0 ,v )  = C ( v )  

and 
IC(u,w)l 5 C(0,O) = 1 . (1.61) 

If the random variables X and Y are statistically independent, then p(s, y)  = 

C(u,  v) = C(u)  . C(W) . (1.62) 
P ( Z )  . P(Y) and 



MATHEMATICAL BASICS FOR THE DESCRIPTION OFNOISE SIGNALS 19 

1.2.7 

In general, moments of different orders cannot be converted into one another. 
However, if the random variables X ( t i )  of a process are normally distributed 
for all times ti and, if they possess a normally distributed multivariate den- 
sity, then the higher order moments can be calculated from those of the first 
and second order. Processes of this type are called Gaussian processes. In 
the following, two random variables X l ( t l )  and Xp(t2) of different ergodic 
Gaussian processes with normally distributed densities p l ( s 1 )  at a time tl 
and ~ ~ ( 2 2 )  at a time t 2  are considered. The expected values are assumed to 
be zero. As will be shown in problem 1.4, the corresponding characteristic 
function is given by 

interrelationship between moments of different orders 

Here, p(s1,zp) is the Gaussian distributed bivariate density. 

Problem 

1.4 Derive equation Eq. (1.63). 

Using Eq. (1.60) it can be shown that p11 is the variance of X , ( t l ) ,  ,222 

is the variance of X z ( t ~ ) ,  and p12 is the so-called covariance of Xl ( t1 )  and 
Xz( t2) .  When applied to a single process with X1 = X2 = X for tl = t 2 ,  

then p12 = p 1 2 ( 8 )  is the autocorrelation function depending on 8 = t 2  - t l  
and p11 = pzz = plz(0 = 0 )  = p(0) is the autocorrelation function at 8 = 0. 
Equation (1.60) is useful to derive the following relation between the moment 
of 4th order E { X 2 ( t ) . X 2 ( t + 8 ) }  and the moment of 2nd order (problem 1.5):  

E { X 2 ( t )  . X 2 ( t  + O)} = p2(0) + 2p2(8) . (1.64) 

Problem 

1.5 Derive equation (1.64) using the equations (1.60) and (1.63). 

Equation (1.64) will be required later to calculate the standard deviation 
of noise power measurement results for a finite measurement time and a finite 
bandwidth. 
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1.3 TRANSFER OF NOISE SIGNALS BY LINEAR NETWORKS 

1.3.1 

A linear two-port is considered with an impulse response function h(t) .  

Impulse response and transfer function 

Fig. 1.4 Two-port network, characterized by its impulse response function. 

The voltage at the output ua(t)  is related to the voltage at  the input ue( t )  
by a convolution integral. 

U a ( t )  = h(t’)ue(t - t’) dt’ (1.65) 
-m ĵ 

For physical reasons, a property of the weighting function h(t)  is: 

h(t)  = 0 for t < 0 (1.66) 

because an effect cannot occur prior to its cause. This means that the system 
is causal. Choosing a sinusoidal input voltage in complex form with U,, Ua 
as complex phasors 

ue( t )  = Re { iUeiej# ejwt > {  = Re U, . ,jut} , (1.67) 

then the output signal has a sinusoidal form 

ua(t)  = Re Ua . dwt (1.68) { 1 
with 

u, . J w t  = T h ( t ’ )  . ue . ejwte-jwt’ dt‘ 

--oo 

= ue , . h(t’)e-jwt’ dt‘ . (1.69) 
-m jr 

With the definition 
-00 

(1.70) 
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where V(w) is the complex voltage amplification or complex transfer function 
of the two-port, the following complex notation can be applied 

u, = V ( w ) .  u, . (1.71) 

Obviously, h(t)  and V(w)  or V ( f ) ,  respectively, are a pair of Fourier trans- 
forms 

-‘x 

+m 

(1.72) 

The function h(t)  is used for calculations in the time domain, whereas V ( f )  
is preferred for calculations in the frequency domain. Since h( t )  is real, we 
have 

+‘x 

v*(f) = / h( t )  . e j z r f t  d t  = v(-f) (1.73) 

-m 

(1.74) 

Thus, the real part of V ( f )  is an even function of the frequency, whereas the 
imaginary part is an odd function. 

f 

Fig. 1.5 Real and imaginary part of a complex transfer function. 
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1.3.2 Transformation of the autocorrelation function and the 

power spectrum 

As already discussed in the previous section, it will be assumed in the follow- 
ing, that  the noise processes under investigation are stationary. This means 
that there is no time dependence of mean values. Furthermore, it will be 
assumed that the noise processes are ergodic, which means that a mean value 
at  a fixed time over a large ensemble of similar noise processes leads to the 
same result as the time average of a single noise process. 

The autocorrelation function pe(9)  of the input voltage ue(t)  is thus given 

by 

(1.75) 

A corresponding definition holds for pa, the autocorrelation function, at the 
output. The two autocorrelation functions pa and pe are related by a double 
convolution integral as will be shown in the following. First, we have 

ua(t)  ua(t + 9) 

jy. 
+cc 

= / h(t’) . ue(t - t’) dtl ’ h(t”) ue(t + 9 - t”) dt’l 

-cc --x 

+m 

= // h(t’”t’’) . ue(t - t’)ue(t - t” + 9) dt’dt‘‘ * (1.76) 

--x 

Now the mean value with respect to t is formed on both sides, making use of 
the fact that  the order of integration and the calculation of the mean value 
can be exchanged. The substitution r = t - t’ yields 

ue ( t  - t i )  . u, ( t  - t’/ + 9) 
= U,(T) ’ ue(r  + t’ - t” + 9) = pe(9 + t‘ - t ’ l )  . (1.77) 

In this way, a relation between pa and pe in the form of a double convolution 
integral finally results, which will be used later: 

(1.78) 

-cc 

pe as well as pa are even functions of 9. 
On the basis of the transformation of the autocorrelation function between 

the input and the output of the two-port (Eq. (1.78)), the transformation of 
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the power spectrum can also be calculated, i.e. the relation between the power 
spectrum We at the input and Wa at the output. W, is the power spectrum 
corresponding to the autocorrelation function pa. The relation (1.78) leads to 

+m 

Wa = J p a ( Q ) e - j 2 n f Q d Q  
--M 

= jr h(t‘)h(t“) . pe(Q + t’ - t“)e-j2j7fQdQdt‘dt‘‘ 

= //I h(t’)h(t”) . pe(Q + t’ - t”) 
-Kl 

The last step is just an extension of the previous expression. Next, the order of 
integration is changed. First, an integration over T = Q + t’ - t“ is performed, 
where t’ - t” is kept constant. The result is 

(1.80) 

V(f )  is the complex transfer function of the two-port, i.e. the Fourier trans- 
form of the impulse response h( t ) .  Thus, the power spectrum is shaped ac- 
cording to  the magnitude squared value of the corresponding transfer function. 

1.3.3 

A possible correlation between the input and the output noise signals of a 
two-port network is described by the cross-correlation function pea( Q): 

Correlation between input and output noise signals 

Pea ( Q )  = 21, ( t )  ua ( t  + Q )  

= T h ( t ’ )  pe(Q - t’)dt’ 
-Kl 

(1.81) 

Again, the order of the calculation of the mean value and the integral have 
been changed. Generally, the cross-correlation function is not an even func- 
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tion. By a Fourier transformation of Eq. (1.81) to the frequency domain the 
corresponding cross-spectrum We, (f) is obtained: 

-‘x 

= W e . V ( f )  * (1.82) 

As before: use was made of an extension of the equation and an interchange 
of the order of integration. 

In contrast to  We and W, the cross-spectrum We, is complex in general. 
Due to Wa = 1V12. We we also have 

w, wa 

1VI2 V* 
W,,(f) = - ’ v = - . (1.83) 

Furthermore, it can be shown that 

(1.84) wa w,, = w;, = we ’ v* = - v ’  
because 

and furthermore 

(1.85) 

-‘x 

Thus Wa, = We . V* = W&, which proves Eq. (1.84). The normalized cross- 
spectrum of the input and output signals of a two-port is defined by 

(1.87) 

The magnitude of the normalized cross-spectrum is equal to 1. This means 
that the input and output signals are completely correlated. This is not 
surprising since both signals stem from the same origin. 
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1.3.4 Superposition of partly correlated noise signals 

Fig. 1.6 Superposition of noise signals. 

By means of a three-port (Fig. 1.6) two noise voltages, uel and ue2,  which 
are partly correlated, are superimposed at the load impedance 2,. The auto- 
correlation function of the output voltage ua( t )  will be calculated. 

This equation consists of four parts: 

-m 
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Here, the first two parts describe the autocorrelation function and the last two 
parts represent the cross-correlation function. Finally, the Fourier transform 
of this expression is calculated and the order of integrations is changed. This 
leads to 

W a  
-cc 

= IV112 we1 + 1 ~ 2 1 ~  we2 

+ V: V2 Wele2 + V; * V1 W e 2 e l  . (1.90) 

Now, the noise voltages will be replaced by sinusoidal signals of the same 
frequency. According to the symbolic complex phasor notation the output 
voltage is 

or 

A comparison with Eq. (1.90) shows that there is a simple correspondence 
between the calculation with power and cross-spectra and the calculation with 
complex phasors. One simply has to replace lUeI2 by We, lU,I2 by W, and 
U:1Ue2 by Welea. However, it should be mentioned that,  generally, the cross- 
spectrum cannot be calculated from Uzl Ue2. This equivalence between spectra 
and complex phasors establishes a method to perform calculations with noise 
signals as comfortable as with sinusoidal signals. The main difference is that  
the correlation between the noise signals has to be taken into account. 

The substitution of spectra by the product of complex phasors will fre- 
quently be used in the following. Two signals can be completely correlated, 
if, for example, one originates from the other. They can be completely uncor- 
related or, which is the most general case, be partly correlated. If two signals 
are completely uncorrelated, then the powers or spectra can simply be added. 
It is not easy to  determine the correlation between two noise signals. However, 
if the correlation is known, then, linear circuit calculations with noise signals 
are no more difficult than with sinusoidal signals. 

Generally, the cross-correlation function pl2 (0) is not an even function, but 
certainly a real function. Because of Eq. (1.33): Eq. (1.90) can also be written 
in the following form: 

Thus, Wa always is a real valued function, a necessary condition for a power 
spectrum. 
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Problems 

1.6 Two non-overlapping frequency bands at  different frequencies are to be 
filtered out of a white noise signal. What is the correlation between these two 
noise signals? 

1.7 
with a rectangularly shaped spectrum. 

Calculate the autocorrelation function of a band limited noise signal 

1.8 Consider the low-pass filter in the figure below. Calculate the autocor- 
relation function of the output noise signal, if the input signal is white noise, 
generated by the resistor R. 

input R output 



2 
Noise of Linear One- and 

Two-Ports 

Thermal noise is one of the most fundamental noise phenomena. It is present 
in nearly every electronic circuit. Therefore, analytical methods for the calcu- 
lation of thermal noise and its effects in electronic circuits are of fundamental 
interest. 

The noise behavior of thermally noisy electronic devices can be described 
with the help of equivalent circuits. Typically, the thermal noise of one- or two- 
ports is represented by equivalent sources, for example current- and voltage 
sources and by noiseless two-ports or noiseless impedance networks. However, 
if different representations are to be transformed into one another one has 
to take into account that in addition to the magnitudes it is also necessary 
to  know the correlation between the different equivalent noise sources. For 
thermally noisy networks it will be seen that it is always possible to calculate 
the correlation of arbitrarily chosen sets of equivalent sources. 

A representation by equivalent noise sources and noiseless networks can 
also be adopted for non-thermally noisy linear networks. For example, linear 
amplifiers can be described with the help of noise current and noise voltage 
sources a t  the input and output. For this noise model the amplifier is assumed 
to  be noiseless while its gain and impedances remain unchanged. 

Another important representation of amplifier noise is based on the noise 
factor or noise figure. The noise figure describes the deterioration of the 
signal-to-noise ratio when a signal passes through the amplifier. The noise 
figure depends on the source impedance of the generator. Thus it is possible 
to minimize the noise figure of a two-port circuit by transforming the source 
impedance with the help of a lossless and noiseless network. However, such 
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a so-called noise matching is successful only if the loss of the transformation 
network is sufficiently low. 

2.1 NOISE OF ONE-PORTS 

2.1.1 Thermal noise of resistors 

The noise of resistors is caused by the thermal movement of the electrons 
or holes in metals or semiconductors. This noise phenomenon is also called 
Johnson noise or thermal noise. Experiments yield the following expression 
for the time average of the magnitude squared of the short circuit current in 
a frequency bandwidth A f : 

- 4 k T  
i2 ( t )  = - .  Af = 4 k T G .  Af . 

R 

The resistance is denoted by R and the conductance by G = 1/R, respectively. 
T is the absolute temperature in K and k is Boltzmann constant with 

k = 1 . 3 8 .  10-23W~/K . (2 .2)  

Similarly, it can be found by a voltage measurement of the open circuit noise 
volt age : 

The spectral density function W( f) represents the mean square value of the 
voltage or current, respectively, in 1 Hz bandwidth. Thus, we have 

- 
uz( t )  = 4 k T R  Af . (2 .3)  

W,(f) = 4 k T R  , 
Wi(f )  = 4 k T G  . 

For thermal noise the spectral density function does not depend on the fre- 
quency, if the frequency is not too high and if the temperature is not too low, 
as will be seen in the following. The time average of the squared voltage and 
the squared current can be calculated via W(f). In Eq. (2 .6)  f z  is the upper 
and fi the lower frequency boundary. 

i2(t) = J Wi(f)df 

fl  

The spectral density function is also called the spectral distribution or 
spectrum or power spectrum. 
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Fig. 2.1 
voltage source and (b) a current source. 

Noise equivalent circuits of a thermally noisy resistor with (a) a 

For a thermally noisy resistor the circuits shown in Fig. 2.1 are equivalent. 
In the equivalent circuits, the internal resistance R, and the internal conduc- 
tance Gi are noiseless. The voltage source is assumed to have zero internal 
resistance and the current source has infinite resistance. 

2.1.2 

If several resistors at the same temperature are combined, then an equivalent 
circuit can be defined for the resulting circuit. Whether the overall resistance 
is determined first and then an equivalent noise source is calculated or whether 
the equivalent noise source of all individual resistors are determined first and 
subsequently are combined, will lead to the same result. The same holds for 
a network of resistors. However, one necessary condition for this approach is 
that the noise sources are uncorrelated, i.e. that the root mean square values 
can be added. Later on, some examples will follow where this is not a valid 
assumption. 

Networks of resistors of identical temperature 

Problem 

2.1 Two resistors in series are connected to a third resistor in parallel, as 
depicted in the figure below. Show that the same overall noise equivalent 
circuit results, if 1) an overall resistance is calculated first or if 2) the noise 
equivalent source is determined first. Assume that TI = TZ = T3 = To. 
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UC (4 

Apparently, a resistor cannot be divided into arbitrarily small parts. The 
assumption of statistical independence might not be valid, for example, if the 
dimensions become smaller than the mean free path length of the electrons. 
However, under these extreme conditions, it is also no longer possible to define 
a resistor in the usual way. 

2.1.3 The RC-circuit 

As was shown in section 1.3.4, calculations of noisy linear networks can be 
performed by means of the well-known rules for sinusoidal signals. 

The noise spectra at the input and output of a device are related according 
to the magnitude squared of the transfer function V (  f ) .  As an example, the 
spectrum W,, at the output of the capacitor of the circuit in Fig. 2.2 will be 
calculated. Only the resistor R is assumed to generate thermal noise. 

Applying simple voltage divider relations leads to 

The spectral density W,, becomes frequency dependent because of the capac- 
itor. The mean square value of the voltage at the capacitor can be calculated 
by integration over the entire frequency range: 

2kT 33 

TC 0 
- . arctan 71 - - 
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Thus, the mean square voltage at the capacitor is finite, although the fre- 
quency range was supposed to be unlimited. The result is independent of R, 
which might be interpreted physically. 

2.1.4 

In a thought experiment a real-valued resistor R’ and a complex impedance 
Z( f )  are connected by a band-pass filter (BPF).  R’ and Z(f )  are assumed 

Thermal noise of complex impedances 

- P’ 
P- 

Fig. 2.3 For the explanation of the thermal noise of a complex impedance. 

to be at the same temperature T. The band-pass filter is assumed to be 
lossless, therefore, it does not contribute to the noise of the setup. In the 
thermodynamic equilibrium the noise power PI, which is transmitted by the 
resistor R‘ to the load Z(f ) ,  must be equal to the noise power P, which is 
transmitted by the impedance Z ( f )  to the load R’, i.e. P = P’. The noise 
powers are given by 

(2.9) 

(2.10) 

and, since P‘ = P, one can determine 

W, = 4 k T .  Re{ Z} . (2.11) 

Similarly, with Y = 1/Z, it is concluded that 

W, = 4 k T .  Re{Y} . (2.12) 

The noise sources for thermally noisy complex impedances or admittances 
are thus also known. Both representations or equivalent circuits in Fig. 2.4 are 
equivalent. For example, for the right-hand circuit in Fig. 2.4 the spectrum 
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(a) (b) 

W,, = 4kTRe{ '('g: Z }  

W, = 4 k T R e { Y } T T y  

Fig. 2.4 Equivalent representation of complex thermally noisy impedances. 

of the open circuit voltage Wl, is calculated as 

1 

Y ( f )  . y* ( f )  
= 4kT.Re{Y}.  

Y + Y *  
2 . Y . Y *  
1 
2 

= 4 k T .  

= 4 k T .  - . ($ + A) = 4kT Re{Z(f)} 

= wu . (2.13) 

The equivalent circuits of Fig. 2.4 for complex impedances and admittances 
remain valid, even for combinations of lumped elements and transmission 
lines. The lines can either be lossless or lossy. 

2.1.5 

The available noise power PaU is obtained if a circuit is terminated by the 
complex conjugate of the generator source impedance. In this case, the power 

Available noise power and equivalent noise temperature 

z* ( f )  

Fig. 2.5 For the explanation of the available noise power. 

PL transmitted to Z*(f) is given by 

wu Re{Z*).  Af /z + z*/2 PL = 
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- - wu . R e { Z } . A f  

- 4kT.Re{Z}.Re{Z}.Af  

= k T . A f  = P a ,  . (2.14) 

4 Re2{Z} 

- 
4 Re2{Z} 

The available noise power only depends on the temperature T. It is indepen- 
dent of the resistance value. The noise temperature can thus be used as a 
quantity to describe the noise behavior of a general lossy one-port network. 
The noise temperature T, is then called the equivalent noise temperature 
of a one-port. The definition can also be extended to non-thermally noisy 
one-port s. 

The so-called Nyquist-relation in Eq. (2.14) is not valid for all frequen- 
cies and temperatures, because it is derived from statistical thermodynamics. 
For high frequencies and/or low temperatures a quantum mechanical correc- 
tion factor has to  be introduced. This correction term results from Planck’s 
Radiation Law which applies to blackbody radiation. In the general case, 
Pa, = kTAf must be replaced by 

p a ,  = kTAf * P ( f ,  T) (2.15) 

with 

(2.16) 

and 
h = 6.626 . 10-34Ws2 (Planck’s constant) . (2.17) 

At room temperature and up to 10 GHz, p (  f ,  2’) x 1. The Planck correction 
of the Kyquist formula also prevents that the noise power becomes infinite for 
arbitrarily large bandwidths. 

I 
I I I Ib hf 

* 
0.01 0.1 1 - 

kT 

Fig. 2.6 
perat ure. 

Normalized radiation power as a function of frequency and tem- 
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2.1.6 

A network with impedances Z1,22 , 2 3  , . . . , 2, , which are at  different temper- 
atures TI, T2, T3,. . . , Tj, is now considered. Fig. 2.7 shows an example with 
three impedances. The network could be more complex than shown here. 
Furthermore, it might also include transmission line elements. The open cir- 

Networks with inhomogeneous temperature distribution 

Fig. 2.7 Noisy one-port with three temperatures. 

cuit noise source W, at the external terminals will be calculated. For this 
purpose, the superposition principle is applied, which is valid for all linear 
circuits. The internal noise sources WLj are consecutively transformed to the 
input. In this way, the equivalent circuit in Fig. 2.8 is obtained. Here, 2, is 

0 J 

Fig. 2.8 Equivalent sources to Fig. 2.7 .  

the input impedance of the one-port network, which is calculated by short- 
ing all noise sources. It can be assumed that the Wul, Wu2,. . . , W,j are all 
uncorrelated, because they originate from different , independent impedances. 
Thus 

(2.18) 
J 

The W,j are related to the W& by the magnitude squared of a transfer 
function, i.e. by a real coefficient. Consequently, the equivalent temperature 
T, of the one-port is a linear function of the individual Tj: 
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An obvious constraint for the real coefficients pj is that 

CPjj=l, 
j 

(2.20) 

because if all T3 are equal, then Tn = Tj must also hold. The noise tempera- 
ture T, can also be interpreted as the result of an averaging operation, which 
means that 

Tj>min I Tn 5 Tj,maz ' (2.21) 

2.1.7 Dissipation theorem 

For a reciprocal network the coefficients Pj can also be interpreted as the 
fraction of power absorbed by the impedance Re{Zj} when unity power is 
fed into the network. This so-called dissipation theorem will be proven first. 
Next, its application will be explained for some examples. 

21 a;l+o linear Rj = Re(Zj} 
network - 

Fig. 2.9 For the explanation of the dissipation theorem. 

According to Fig. 2.9, a resistor Rj with the temperature Tj is extracted 
from the linear and reciprocal one-port network. This resistor Rj can thus 
be considered as an external termination of a linear and reciprocal two-port. 
The impedance 21 and the noise voltage generator El describe the input side, 
the resistor Rj and the equivalent noise source Ej represent the output side. 
Due to reciprocity, the current I j ,  which is generated by El for Ej = 0, and 
the current I l ,  which is generated by Ej for El = 0, are related as 

(2.22) 

where y is a complex constant. The impedance 21 is chosen in order to 
achieve a power match to the input impedance Zi,, i.e. 2 1  = Z:,. In this 
case, the network should supply the available power Pa, to the impedance Z1 
according to Eq. (2.14). The noise power Pln1 transmitted from the thermally 
noisy resistor Rj to the real part of 2 1 ,  is equal to: 
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With the index n a noise value will be denoted. From Eq. (2.23) it follows 
that 

(2.24) P, = 4 .  R, . ly12 . Re(Z1) . 

This calculation can be performed for each thermally noisy element of the 
network. The sum of all power contributions must be equal to the overall 
available noise power Pav: 

(2.25) 

The p, are identical to  those of Eq. (2.19). It can also be shown that the 
term ,Bj represents the ratio of the power Pj, absorbed by R,, to the incident 
(available) power PI : 

(2.26) 

In other words, the relative contribution of a resistor R, at the temperature 
T, to the effective noise temperature Tn of the one-port, expressed by the 
coefficient p3, just amounts to  the power absorbed in the resistor R,, nor- 
malized to the power fed into the one-port. Thermal noise power is very 
closely related to power dissipation. A component, which cannot dissipate 
real power, cannot emit thermal noise power. The dissipation theorem was 
derived for circuits with lumped elements. However, it can be extended to 
circuits including distributed elements. 

Problems 

2.2 
with the help of the dissipation theorem. 
complex. 

Calculate the equivalent noise temperature T, of the circuit in Fig. 2.7 
The impedances Zl,Z2,23 are 

2.3 
using the dissipation theorem. 

Determine the input noise temperature T, of the circuit in Fig. 2.10 by 

at tenuator at t enuat or 
6dB, fixed a2, variable Z0,Ts = 1200K 

Ti = 77K T2 = 300K 

Fig. 2.10 
and a variable attenuator and a hot one-port device. 

A noise source with variable temperature consisting of a fixed 
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2.4 
rem for the antenna setup in Fig. 2.11. 

Calculate the equivalent noise temperature using the dissipation theo- 

reflection coefficient p 

Fig. 2.11 Determination of the noise temperature of an antenna. 

2.2 NOISE OF TWO-PORTS 

2.2.1 

The noise of linear two-ports can be described with the help of equivalent 
current or voltage sources at the input and/or output of the circuit. The 
two-port itself is assumed to be noiseless and it is described in the usual 
way by a matrix which linearly relates the currents and voltages a t  the input 
and output. In Fig. 2.12 an equivalent circuit of a noisy two-port with noise 
current sources at the input and output is shown. The noiseless two-port 
itself is represented by an admittance matrix [Y].  The currents and voltages 
are represented in a symbolic description by phasors which depend on the 
frequency f: 

Description of the internal noise by current and voltage sources 

Apart from the admittance matrix Y ,  various noise parameters must be known 
in order to  perform noise calculations. In the symbolic description the squared 
magnitudes of the noise current sources lInl/’, 1In2I2 are equal to the equiva- 
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Fig. 2.12 Xoise equivalent circuit of a two-port with noise current sources. 

lent two-sided spectral densities: 

11n112 = Wnl, 11n212 = wn2 (2.28) 

Furthermore, for the complete description of the noise behavior the cross- 
spectrum Wn12 must be known. In the symbolic description, Wn12 corre- 
sponds to: 

Wn12 = I:1 ' In2 . (2.29) 

Equation (2.29) does not normally serve as a rule for the calculation of Wn12. 

The cross-spectrum, in general, is a complex quantity and thus both its real 
and imaginary part must be known or its amplitude and phase, respectively. 
It is often not easy to determine the cross-spectrum. However, several ex- 
amples will follow where it is possible to  calculate the cross-spectrum. If the 
magnitudes of the noise equivalent sources as well as their cross-spectra are 
known, then all noise parameters of interest of linear circuits can be calculated 
in principle. 

In another description of a noisy two-port, noise voltage sources a t  the in- 
put and output of the circuit are used and the noiseless two-port is described 
by an impedance matrix [ Z ]  (Fig. 2.13). Different representations for the same 

Fig. 2.13 Noise equivalent circuit of a two-port with noise voltage sources. 

noisy two-port can be converted into one another. This will be demonstrated 
for the circuit arrangements in Figs. 2.12 and 2.13 as an example. For such 
transformations or other noise calculations it is convenient to define directions 
or oriented arrows for the equivalent noise currents and voltages as well as the 
terminal currents and voltages, respectively. Although, they can be chosen 
arbitrarily at first, it is necessary to adhere strictly to  the chosen directions 
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of the arrows in the following calculations. If a resulting solution has a neg- 
ative sign: this means that the actual directions of the currents or voltages 
are opposite to the direction defined as positive. Although the final aim is 
to calculate a noise spectrum, that is the magnitude squared of a current or 
voltage, which is certainly positive, the current or voltage of the entire cir- 
cuit often result from a superposition of single currents or voltages and this 
superposition has to be performed with the correct signs. 

For the representation with current sources in Fig. 2.12 and taking into 
account the chosen orientation of the arrows, the following two-port equations 
hold: 

or, in matrix form, 

(2.30) 

which may be written more compactly as 

[I1 = [Y] ' [V] + [Inn] . (2.31) 

For the description with voltage sources according to Fig. 2.13, the follow- 
ing two-port matrix equations apply, if first an admittance representation 
is chosen. Here, [Y] = [Z]-', because the transformation for the two-port 
parameters are independent of the noise sources. Therefore, 

or, in a matrix form, 

[I1 = [Yl [ul- [Y] [unl . (2.32) 

A comparison of Eq. (2.31) with Eq. (2.32) leads to a relationship between 
the noise sources: 

[ In]  = -[Y] * [unl (2.33) 

[unl = -121 [ In]  3 (2.34) 

respectively. With the help of Eq. (2.34) the spectra IUn1I2, iVn2i2 and the 
cross-spectrum Uzl Un2 of the noise sources can be calculated, provided that 
the cross-spectrum I;lIn2 and the power spectra lIn112 and lIn212 of the noise 
current sources are known. In detail, we have 

or 
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with 

(2.39) 

Here, the superscripts denote the complex conjugate matrix (*) and the trans- 
posed matrix ( T ) .  

For a two-port there are six possibilities to combine the currents and 
voltages and thus there are six different corresponding matrix descriptions. 
Accordingly, six different possibilities exist to arrange the equivalent noise 
sources. In addition to the two configurations in Fig. 2.12 and 2.13, the four 
configurations in Fig. 2.14 are possible. Consequently, there are 6.6 = 36 ways 
to combine the equivalent noise sources with the algebraic two-port matrix de- 
scriptions. Which one of these combinations is the most appropriate depends 
on the particular problem. As an example, a configuration based on current 

A more compact representation for the description results form the definition
of a correction matrix [Cu]
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Fig. 2.14 Further configurations for the noise equivalent sources. 

sources is favorably combined with an admittance description whereas a rep- 
resentation with voltage sources may be combined with an impedance matrix 
description. The configuration in Fig. 2 . 1 4 ~  is well suited for the calculation 
of the noise figure as will be seen later. 

The 36 different representations can be converted into each other, where, 
in general, the correlation of the noise sources will change as well. Instead 
of a description by noise currents and voltages it is also possible to perform 
the calculations on the basis of noise waves (section 2.2.3). This is often 
advantageous for high frequency circuits. 

Problems 

2.5 Convert the equivalent noise circuit below into the circuit shown in 
Fig. 2 . 1 4 ~ .  Calculate the correlation of the new noise current and voltage 
sources. 

u 
input output 

2.6 A noisy two-port, which is described by an equivalent noise circuit as 
shown in Fig. 2.12 is terminated at  its output by a complex admittance Yz 
which is noise-free. At the input of the circuit the complex admittance Yl 
is connected, the thermal noise of which is represented by a parallel current 
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source Ig. What is the magnitude of the noise power and the noise spectrum 
W2, respectively, at the output admittance Yz? 

2.2.2 Noise equivalent sources for thermally noisy two-ports at 

homogeneous temperature 

For the special case of thermally noisy two-ports at homogeneous temperature, 
the noise equivalent sources can be calculated in a general way on the basis 
of the two-port parameters. The term homogeneous temperature means that 
all losses of the two-ports network, for example resistances, dielectric losses of 
capacitors, the losses of eddy currents in iron, the cable losses and suchlike, 
are related to the same physical temperature T. The two-port is described by 
the admittance matrix [Y] and noise current sources at the input and output 
as shown in Fig. 2.12. The two-port considered here could as well characterize 
any two selected ports of a N-port network, where all other ports are assumed 
to  be terminated by an impedance, also at  the temperature T .  

The squared magnitudes of Inl and Inz can be calculated in a simple way 
by terminating the other port with a short and by considering the Nyquist- 
relation (two-sided spectrum): 

However, this does not give any information about the cross-spectrum Wi12 = 
I;l . Inz. In order to determine the cross-spectrum, the input admittance Yin 
at port 1 will be calculated under the condition that port 2 is terminated 
by an open circuit, I2 = 0. The resulting two-port will generate thermal 
noise a t  the temperature T. This two-port can be described with the help 
of an equivalent noise current source I& (Fig. 2.15), where Y,, is the input 
admittance at port 1. Therefore, we have 

lIA112 = 2 k T .  Re{&,} , (2.41) 

Fig. 2.15 Equivalent circuit of a one-port with an open circuit at port 2 

On the other hand, the noise current IA1 for an open circuit a t  port 2 in 
Fig. 2.12 can be calculated as well on the basis of the two noise sources I,1 
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and In2. For this purpose, the noise current Ilk for a short circuit at  the 
input, which means U1 = 0, and an open circuit at  the output, which means 
I 2  = 0, is determined. The matrix relation ( 2 . 3 1 )  

yields 

Ilk = y12 ' UZ + In1 

0 = YZJ ' u2 + I n 2  . 

In Eq. ( 2 . 4 3 )  U2 can be eliminated. This leads to 

It can be assumed that is equal to 

lI;l12 = 2 k T .  Re{Y,,} = 2 k T .  Re 

( 2 . 4 2 )  

( 2 . 4 3 )  

( 2 . 4 4 )  

( 2 . 4 5 )  

In Eq. ( 2 . 4 5 )  the term 2 k T .  Re(Yl1) can be eliminated so that finally the 
following relationship results: 

2 

= -  y12 s 2 k T .  Re(Y2,) + 2 k T  * Re { ____ y1b22y2'} . ( 2 . 4 6 )  
I y 2 2  I 

A very similar equation, however with exchanged indices 1 and 2 ,  can be 
derived, if the same calculation is performed for port 2 ,  that means that an 
open circuit is connected to port 1. Both resulting equations are linear with 
respect to the parameters I:1 * In2  and Inl . IA2. After some manipulations 
the following equation for the term I;1 . In2 results: 

I:1 . In2 = Wn12 = k T  . (Y;Z + Y21) . ( 2 . 4 7 )  

Similarly, the following relation is valid for a N-port considering the ports i 
and j: 

I;i . Inj = Wnij = k T  . (Y* 23 + q2) . ( 2 . 4 8 )  

These simple relations for the cross-spectrum of the noise current sources 
at the input and output of the circuit are valid for the case of thermally 



46 NOlSE OF LINEAR ONE- AND TWO-PORTS 

noisy two-ports at a homogeneous temperature. I t  is valid for reciprocal 
passive circuits, that means yZj = qi, as well as for non-reciprocal passive 
circuits. The relation (2.47) can be transformed into the other 35 description 
possibilities. If, on the other hand, the noise characteristics of a two-port 
or N-port are in accordance to Eqs. (2.40) and (2.47) or (2.48), respectively, 
then the device can be described by a homogeneous temperature. This often 
leads to a notably easy characterization of the noise behavior of a two-port. In 
Chapter 5 this property will be used for the calculation of the noise behavior of 
a frequency converter. A passive thermally noisy two-port at a homogeneous 
temperature is an example, where the calculation of the two-port equivalent 
noise sources including the correlation is possible. 

Problems 

2.7 Derive the relation for the cross-spectrum as given by Eq. (2.47). 

2.8 Describe a thermally noisy two-port at a homogeneous temperature T 
by the noise current sources I,1 and In2 at  the input and output. The input 
is terminated by a thermally noisy complex admittance Y1, which is also at 
the temperature T and which is represented by the noise current source I g .  
Derive a noise equivalent one-port circuit for the output port with the help 
of Eq. (2.40) and Eq. (2.47). 

two-port 
Yl 

2.2.3 Noise description by waves 

A matrix representation very common for high-frequency circuits, which is 
particularly suited to transmission line structures, is the scattering matrix. 
For this representation it is also possible to introduce noise equivalent sources. 
Apart from the noise waves A1,2 propagating towards the two-port and the 
waves B1,2 leaving the two-port, the noise equivalent waves X I , *  are intro- 
duced for the description of the intrinsic noise of the two-port. The waves, 
illustrated in Fig. 2.16, are defined according to 
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or in a matrix description 

[B] = [S] . [A] + [XI . (2.49) 

[S] denotes the scattering matrix of the two-port. A special symbol is not 
in common use for the noise equivalent waves XI, X2. In Fig. 2.16 oriented 

A2 
t 

A1 
--c 

0 
two-port 1 scatteri; matrix 1 '2 + a - X1 x2 - 

Fig. 2.16 
noise equivalent waves XI and Xz. 

Representation of a noisy two-port with a scattering matrix and 

arrows are used instead. In this context, the squared magnitudes of the noise 
waves A, B, X are supposed to  have the dimension of a spectral noise power 
density, that means power per bandwidth. 

The wave description can also be transformed into a representation with 
current or voltage sources. The following equations are used for this purpose: 

u1,2 

v% 
- -  - A12 + B1,2 , 

I 1 , 2  . = A1,2 - B1,2 , (2.50) 

The real-valued reference impedance is denoted by 20 and U, I are the currents 
and voltages of the current-voltage-representation. Problem 2.9 will clarify 
this transformation. 

Problem 

2.9 
representation with equivalent waves of Fig. 2.16. 

Transform the configuration in Fig. 2.12 with current sources into the 

2.2.4 Noise of circulators and isolators 

An ideal circulator, for example a 3-port-circulator, is perfectly matched at all 
of its 3 ports and it transmits without any losses from port I to port 11, from 
I1 to I11 and from 111 to I. The scattering matrix of an ideal 3-port circulator 
with the transfer phase cp is thus given by 

(2.51) 
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An ideal circulator is lossless and thus noiseless. Such an ideal circulator 
can be used advantageously for thought experiments. A real circulator using 
ferrites is generally not perfectly matched, it has finite transmission losses, 
and a finite isolation. But still a real circulator based on ferrites is passive 
and generates thermal noise only. 

If one port of the circulator is terminated by the reference impedance 2 0 ,  

the circuit works as an isolator as depicted in Fig. 2.17. 

wave termination 

0 I @  isolator 

Fig. 2.17 
nated by a wave impedance 2 0 .  

Isolator on the basis of a circulator with one port being termi- 

The scattering matrix of the isolator can be written as follows, if cp is 
assumed to  be an arbitrary phase: 

(2.52) 

In general, a real isolator based on ferrites has finite losses in a forward di- 
rection, but also a finite isolation in a backward direction. Under usual lab- 
oratory conditions, circulators as well as isolators will be at  a homogeneous 
temperature. 

It should be noted that isolators are usually not realized on the basis of 
circulators. Nevertheless, their noise behavior with respect to  the ports can 
accurately be represented by a circulator with one port terminated by a wave 
impedance 2 0 .  This model will be used with advantage later. 

2.2.5 Noise waves for thermally noisy two-ports a t  a homogeneous 
temperature 

In the following the thermally noisy two-port is assumed to be at  the homo- 
geneous temperature T .  It is the aim to derive a similar equation for the 
equivalent noise waves and scattering matrices as in Eq. (2.40) and (2.47) 
for the current sources. For this purpose, the two-port is terminated at its 
input and output with impedances 21 = 2 2  = 20, which also have the same 
temperature T (Fig. 2.18). 
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Fig. 2.18 
ture T, which is terminated on both sides by the impedance &. 

Two-port with scattering matrix [S] at a homogeneous tempera- 

Because of the thermodynamic equilibrium and because of the matched 
terminations at  the input and output, i.e. 

21 = 22 = zo , (2.53) 

we get 
IA1I2 = IB1l2 = /A2I2 = /B2I2 = kT . (2.54) 

The noise waves A1 and A2 originate from the terminating impedances 21 

and 2 2 .  Therefore. they are uncorrelated. that  is ATA2 = 0, and Al and A2 

are also uncorrelated with the equivalent noise waves XI and Xz of the two- 
port, because they are generated in different parts of the circuit. Therefore, 
it is A;,2 . X1,2 = 0. Under these conditions the following relationship can be 
derived for a two-port of a homogeneous temperature: 

lBlj2 = B1.B; 

= (S11 A1 + 5'12.  A2 + XI) (S;1 A; + S;,. AH + Xy) 
= ISllI2 ' IA1l2 + /S12I2  ' /A2I2 + /X1I2 . (2.55) 

From this and together with Eq. (2.54) it follows that 

IX1l2 = kT (1 - IS11l2 - /S12I2) 1 

IXzI2 = kT (1 - ISzzI2 - IS21I2) . (2.56) 

The squared magnitudes of the equivalent noise waves XI and X2 are thus 
determined. Finally, the cross-spectrum between X1 and X2 is needed, that 
is the term X; X2. For its calculation it is advantageous to choose a method 
which is very similar to  the solution based on the admittance matrix. For 
example, in Fig. 2.18 the termination of port 2 with an open and short circuit 
can be considered and then lB1I2 can be calculated for both cases. Under the 
condition of the thermodynamic equilibrium and for the termination of port 
1 with ZO. the parameter IB1I2 must be equal for both of the cases, namely 
either open or short connected to port 2. It is, in fact, jBlj2 = kT. This 
leads to a system of equations for X; . X2 and X1 . X;. The details of the 
calculation are left to problem 2.10. 
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Problem 

2.10 Derive the cross-spectrum X ; . X 2  in the representation with equivalent 
noise waves and the scattering matrix for a thermally noisy two-port a t  a 
homogeneous temperature. For this purpose, each port has to be terminated 
with an open or a short circuit. 

In the following, a more illustrative and shorter way will be presented in 
order to calculate the cross spectrum X; . X2. From Eq. (2.47) it can be 
concluded that the noise waves of an isolated two-port, that is a two-port 
with Y12 = Y21 = 0, are also uncorrelated, as long as the noise is of thermal 
origin at a homogeneous temperature. As will be seen for some examples, 
this often is not a trivial assertion. Assuming that this two-port is not only 
isolated but also matched at  both sides, then we have 

B , * ' B 2 = 0 ,  (2.57) 

because of B1 - I,1 and B2 N In2. According to Fig. 2.19 a two-port will 
be considered which is embedded between two ideal passive circulators. The 

wave termination wave termination 
at  temperature T at  temperature T 

circulator 

two-port 

temperature T 

0 0 

Fig. 2.19 
[S] and the temperature T ,  embedded between two ideal circulators. 

Thermally noisy mismatched two-port with the scattering matrix 

circuit in Fig. 2.19 is assumed to  be at  a homogeneous temperature T .  This 
assumption, in fact, applies to the whole circuit, that  is the two-port and the 
terminations of the circulators. The circulators are assumed to  be free of losses 
and they are thus noiseless. Eq. (2.57) can be applied to the circuit between 
port 1 and port 2 in Fig. 2.19, because the circuit between port 1 and 2 is 
isolated due to the ideal circulators and, furthermore, it is at a homogeneous 
temperature. As a consequence, Eqs. (2.49) and (2.57) yield 

Bf .B: ,  = 0 
= (S; ,  . A; + Sy, . A; + X f )  ( S Z I  . A1 + Sz2 A2 + X2)  
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and hence 

X ;  . X2 = - (S;1 . Szl + S;z . Szz) . kT . (2.58) 

The reasoning which led to Eq. (2.58) can directly be extended to a N-port. 
Therefore, the following relation for the cross-spectrum at the ports i , j  is 
obtained : 

X f  X j  = kT ([l] - [S*][SIT) .  . (2.59) 

Here, the unity matrix is denoted by [l] and [SIT is the transpose of the 
scattering matrix of the N-port. In Eq. (2.59) the element i,j of the matrix in 
the brackets is chosen. For i = j ,  Eq. (2.59) is identical to the already known 
result of Eq. (2.56). 

The correlation of the equivalent noise waves X ;  . X z  becomes zero ac- 
cording to  Eq. (2.58), if the ports of the two-port are isolated. This result 
could have been anticipated, because it was already implied as a precondition. 
However, an interesting new result arises, i.e. the correlation also disappears 
for the case that both ports are matched, that is for S11 = 522 = 0. As will be 
seen later, this characteristic of matched, passive two-ports a t  a homogeneous 
temperature is of great interest for noise measurement techniques and hence 
is often utilized. 

% , 3  

x1 - 
0 "0 

Fig. 2.20 T-attenuator with concentrated resistors. 

An example of such two-ports are attenuators, which are matched at both 
sides and which possess a homogeneous temperature distribution under labo- 
ratory conditions. It is not relevant, how the attenuators work in detail. The 
correlation of a n-attenuator with lumped resistors, as shown in Fig. 2.20, will 
be calculated explicitly in problem 2.11. As expected, the correlation becomes 
zero for a homogeneous temperature. 

Problem 

2.11 Calculate explicitly the cross-spectrum X;X2 of a matched n-attenua- 
tor as shown in Fig. 2.20. All three resistors are assumed to have the same 
temperature. 
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It might be astonishing that the correlation of the equivalent noise waves 
disappears, although the noise of the resistors R1 or Rz, respectively, is trans- 
mitted to port 1 as well as to port 2. 

A further example, which seems to contradict the theory, is shown in 
Fig. 2.21. The signal divider with X/4-lines is terminated at port 1 by a 
matched impedance. Also for this configuration, one might assume at first 

R ~ 2 . 2 0  

Fig. 2.21 Signal divider with X/4-lines and a R = 2 20 resistor for isolation. 

glance that there must be a correlation of the noise signals at port 2 and port 
3 due to the common noise source at  port 1. In fact, port 2 and port 3 are 
not coupled and they are matched at  the center frequency and, therefore, the 
noise equivalent waves of port 2 and 3 are not correlated. This can also be 
proven by a direct calculation, as shown in problem 2.12. 

Problem 

2.12 
is equal to zero, if the resistor R is at  the same temperature TO as the input 
resistor 20 at port 1. 

Show for the signal divider of Fig. 2.21 that the cross-spectrum X ;  

As a further example, two antennas are considered, the radiation patterns 
of which are directed in such a way that the antennas receive thermal noise 
from the same area of an absorber (Fig. 2.22). The noise waves which the 
antennas receive from the absorber are uncorrelated, if the absorber is at  a 
homogeneous temperature and if the antennas and the absorber, respectively, 
are well matched. Furthermore, the antennas will be well isolated, if the 
side lobe attenuation is high enough. In the relation for the cross-spectrum 
in Eq. (2.58) the reflections and the isolation enter multiplicatively, so that 
the correlation will be especially low. Another possible explanation is the 
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absorber, 

temperature TO 

4 90°/3 dB 90°/3 dB 1 > 1 

antenna 1 t 

-- 

an 
/ 

kenna 2 

Fig. 2.22 Two antennas receive noise from the same area of an absorber. 

following: the absorber radiates into different directions in space, whereby the 
correlation is destroyed. Both antennas must be placed at  different positions 
for geometrical reasons. 

2.2.6 

An amplifier is not a passive two-port at  a homogeneous temperature. There- 
fore, in general linear amplifiers of arbitrary design show a correlation between 
the input and output noise waves. For example, preamplifiers with low-noise 
bipolar transistors have a typical magnitude of the normalized cross spectrum 
of about 0.5. 

Equivalent noise waves for linear amplifiers 

Fig. 2.23 
90"- 3 dB couplers (balanced amplifier). 

Uncorrelated amplifier, based on a pair of amplifiers and two 
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In a variety of noise measurement problems it is desirable to use amplifiers 
with uncorrelated input and output noise waves, because the measurements 
often are simplified in this way. A possible realization of an amplifier with 
uncorrelated input and output noise waves is shown in Fig. 2.23. This setup 
consists of two matched amplifiers of the same kind, connected in parallel with 
the help of two 90"- 3 dB couplers. 

For the following consideration the couplers are assumed to be perfectly 
matched and lossless. The cross-spectrum X&Xout will be calculated and it 
will be shown that the cross-spectrum becomes zero for identical amplifiers 
and perfect couplers. Because of the 90°-couplers, which show a phase shift 
of +90°-j ,  the following relationships hold, where Xtn1,2 and Xout1,2 denote 
the input and output equivalent noise waves of the amplifiers: 

(2.60) 

Hence, the cross-spectrum is given by: 

1 
Xt",o,t = 5 (-jX,",1Xoutl +jX,*,,XO,t2 - jX;n l jXout~  +X,L,2Xoutl) . 

(2.61) 
Xtnl is uncorrelated with Xout:!, and Xzn2 is uncorrelated with XOutI,  which 
means X:n1XOUt2 = 0 and X&2Xoutl  = 0, because the noise waves origi- 
nate from two separate amplifiers. If, furthermore, the amplifiers have equal 
properties, then 

Xz*nlXoutl = X:n2Xout2 * (2.62) 

With these assumptions, Eq. (2.61) yields 

x,*,xout = 0 . (2.63) 

The noise from the termination I in Fig. 2.23 is not transferred to  the output. 
Hence, the overall noise figure of the uncorrelated amplifier is not changed as 
long as the couplers are lossless. 

2.3 NOISE FIGURE O F  LINEAR TWO-PORTS 

The noise factor or noise figure F of a two-port is a measure for the additional 
noise that results if a signal, which can also be a noise signal, passes through 
a two-port. Some examples of such two-ports are amplifiers, attenuators, 
transmission lines or filters. If the two-port is loss-free, then the noise figure 
is F = 1 or 0 dB. There are several equivalent definitions for the noise figure. 
Two of them will be explained in the following in more detail. 
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Tg; zg 
noisy 

linear 21 

two-port 
r. " 

W, = 4kT, . Re{Z,} 

Fig. 2.24 Basic setup for the definition of the noise figure. 

The noise figure is defined as the ratio of the power spectra at  the output 
resistor for a noisy two-port, W2, and for a noiseless two-port, W ~ O ,  

(2.64) 

For the definition of the noise figure the source resistor Z, is assumed to gen- 
erate thermal noise at  the ambient temperature Tg = TO. Hence, it generates 
the spectrum WZO which contributes t o  the spectrum W2. In general, it is 
assumed that Tg is at  room temperature and TO is 290 K. Describing by AW2 
that part of the power spectrum at the output resistor which is solely caused 
by the noisy two-port, then 

W2 = W20 + AW2 , (2.65) 

because both parts of the spectrum originate from different regions and are 
thus uncorrelated. With Eq. (2.65) the relation for the noise figure can also 
be written in the form 

AWZ F=1+-  
w20 

(2.66) 

2.3.1 

The one-sided power spectrum at the output or load impedance 2, of the 
two-port is denoted by Wz. The output impedance Zi is assumed to be 
noiseless in this definition. Moreover, it will be shown that the impedance 
value of 2~ does not influence the noise figure. This is not necessarily true 
for a practical circuit, where the output impedance will be noisy in general. 
For the measurement of the noise figure, it will be necessary to guarantee a 
negligible influence of the output resistance in order to be consistent with the 
definition of the noise figure. 

As already stated, Wz denotes the power spectrum at the output resistor 
21 of the two-port at  the frequency fo (Fig. 2.24). WZO represents the power 
spectrum, if the considered two-port is assumed to be noiseless. 

Definition of the noise figure 
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As the noise figure can be described by the ratio of spectra, the representation 
on the basis of one-sided spectra can just as well be replaced by two-sided 
spectra. With the same meaning of the indices. the noise figure is also given 
bv 

(2.67) 

Instead of a description by spectra, the noise figure can as well be defined 
by means of the associated noise powers P in the frequency band A f .  If the 
spectrum W is constant within the bandwidth A f ,  then 

P = W . A f ,  (2.68) 

otherwise 

(2.69) 

Hence, if the indices are again the same as for the spectra, the noise figure 
may be defined by 

F = - = l + -  p 2  AP2 
p20 p 2 0  

(2.70) 

For a further discussion of the noise figure, some definitions regarding the 
amplification of a linear two-port have to be introduced. 

The power gain G of a two-port represents the ratio of the power P2 deliv- 
ered to the load resistance and the power PI delivered to the two-port a t  its 
input. 

p2 

Pl 
power gain: G = - . (2.71) 

The gain G, denotes the ratio of the power P2 delivered to the load resistance 
to the available generator power Pg of the signal source: 

(2.72) p2 transducer power gain: G - - . 
- Pg 

The available gain describes the ratio of the available output power P2,, at 
the two-port’s output to the available generator power. The available output 
power P2a, results from choosing ZI such that a complex conjugate match is 
achieved at  the output, i.e. a power match. 

P2av 

p g  
available power gain: G,, = - . (2.73) 

As can be seen. these definitions of the power gain are not pure two-port 
quantities. They also depend on the circuitry around the two-port. 

In contrast, the maximum available power gain G,  is a pure two-port 
quantity. I t  can be achieved. if a power match is provided at  the input as well 
as a t  the output of the two-port. 
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With the definition of the gain G, according to Eq. (2.72), the spectrum 
W20 or the power P20 for a noiseless two-port can also be written as follows: 

W20 = G, . W, = G, . kTo (2.74) 

(2.75) 

Here, W, = kT0 is the available spectral power density of the generator. For 
the noise figure F ,  another notation can thus be derived 

(2.76) 

A further definition of the noise figure results, if the numerator and the de- 
nominator in Eq. (2.70) are multiplied by S,. S, denotes a signal power being 
available a t  the input and S2 denotes the associated signal power at the out- 
put or a t  the load resistance Zl, respectively. Using the following relation of 
the signal power and the gain, 

S2 = G, . S, , (2.77) 

the noise figure can be written as 

(2.78) 

From Eq. (2.78) it follows that the noise figure is equal to  the quotient of the 
signal-to-noise ratio at the input to the signal-to-noise ratio at the output. 
The noise figure can thus be interpreted as a quantity which describes the 
deterioration of the signal-to-noise ratio when a signal passes through a two- 
port. 

2.3.2 Calculation of the noise figure based on equivalent circuits 

The calculation of the noise figure of a linear two-port, represented by an 
equivalent circuit, can be performed on the basis of the symbolic notation. For 
this purpose, the correlation between the individual equivalent noise sources 
has to  be known. 

For a general discussion. the equivalent circuit with a current and voltage 
source at  the input (Fig. 2.25) is quite convenient. As the two-port itself 
is assumed to be noise-free. the noise figure can be determined at  the plane 
a - a' in front of the two-port, because a noiseless two-port connected in 
cascade does not change the noise figure of the whole setup. The calculation 
of the noise figure F of this circuit will be presented in the following. First. the 
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two-port 

Fig. 2.25 
noise figure. 

Equivalent circuit of a linear two-port for the calculation of the 

a' 

Fig. 2.26 
the current source. 

Equivalent circuit of Fig. 2.25 with a voltage source instead of 

current source I ,  will be converted into an equivalent voltage source according 
to the basic rules for electrical networks (Fig. 2.26). The oriented arrows of 
the current and voltage sources can be chosen arbitrarily at first. However, 
for the subsequent transformations and calculations, the rules concerning the 
orientation of the arrows have strictly to be obeyed, otherwise, the resulting 
sign of the cross spectra may be wrong. From Fig. 2.26 the voltages U, or 
U ~ O  for the noiseless case are obtained as 

and thus the noise figure F is 

(2.79) 

(2.80) 



NOISE FIGURE OF LINEAR TWO-PORTS 59 

By introducing spectra instead of current and voltage phasors according to 

the final result for the noise figure is 

W, + 1Z,12 . Wi + 2Re (2, . W,i} 
2 . kTo . Re { Z,} 

F = 1 +  (2.84) 

It  can be seen that the noise figure is independent of the load resistance 21 or 
the input impedance Z,,, while, on the other hand, it strongly depends on the 
source impedance 2,. Consequently, the noise figure is not a pure two-port 
quantity. I t  is, however, independent of the load resistance. 

As a further example, the noise figure of the circuit in Fig. 2.27 with current 
sources at both the input and the output will be calculated. 

admittance 

matrix 

[YI 

Fig. 2.27 
current sources. 

Calculation of the noise figure for an equivalent circuit with two 

According to problem 2.13, the following relationship can be derived for 
the noise figure of the circuit in Fig. 2.27 with W,l = /lnl12, W,, = 1In2j2 
and W,,, = I;1 . I,z: 

Problem 

2.13 Derive equation (2.85). 
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2.3.3 

Very simple relations result for thermally noisy passive two-ports at a ho- 
mogeneous temperature. As an example, a matched attenuator with a ho- 
mogeneous temperature TI and the power attenuation ~1 = /S21I2 shall be 
considered. The source resistance Z, is assumed to be matched to the real 
reference impedance 20, i.e. 2, = 20. Since the noise figure does not depend 
on the load resistance 21, the output load is also chosen to be matched with 
21 = 20 for simplicity (Fig. 2.28). 

Noise figure of two-ports with thermal noise 

two-port 

temperature TI 

attenuation R 1 

21 = zo 

TO 

Fig. 2.28 
homogeneous temperature TI being matched at  both sides. 

For the calculation of the noise figure of a passive two-port at  a 

If, for the moment, the temperature of the two-port is assumed to be TO, 
then the noise power PZ at the load resistance 21 is the available noise power 
for TO with P2 = kToAf. Here, a part P20 = tclkToAf originates from the 
generator and a second part AP2 = (1 - ~ ~ ) k 5 " ~ A  f stems from the two-port. 
This latter part changes to AP2 = (1 - ~1)kT1A f ,  if the temperature of the 
two-port is assumed to be at  T I .  Thus, the following relationship results for 
the noise figure: 

If the temperature of the matched two-port is equal to the reference temper- 
ature TO, then Eq. (2.86) yields 

1 
F = - for TI = To , (2.87) 

K l  

This means that an attenuator at  ambient temperature TO with an attenuation 
of, for example 6 dB. has a noise figure of 6 dB. The relationships (2.86) and 
(2.87) are also valid for a matched non-reciprocal passive two-port, as for 
example an isolator or a circulator with a matched termination. 

The noise figure of a passive and reciprocal two-port can also be determined 
by means of the dissipation theorem. This is a particularly useful approach if 
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the two-port consists of more than one temperature region. The part AP2 of 
the two-port a t  the load impedance is equal to 

AP2 = kT1PlA.f . (2.88) 

Here, the coefficient ,91 represents the fraction of the power absorbed in the 
two-port if a signal is fed in from the load side. Obviously, due to the assump- 
tions of reciprocity and output match, we have 

P 1 + r ; 1 = 1  , (2.89) 

which for the noise figure immediately leads to the result of Eq. (2.86). 
In a similar way, the calculation of the noise figure of a passive two-port 

at the homogeneous temperature TI can be performed if the two-port is not 
matched at  both ports and if, additionally, the generator and load resistances 
are not equal to  the real reference impedance 2 0 .  As the noise figure still 
does not depend on the load impedance Zl, again for simplicity a complex 
conjugate match or a power match, respectively, can be assumed for the load 
impedance at the output. 

If the temperature of the two-port is equal to TO for the time being, then 
the noise power P2 at the load impedance 21 is equal to P2 = kToA f .  Let 
the available power gain be denoted by Ga,, then the part P20 = GaUkToAf 
originates from the generator and the part AP2 = P2 - P20 = (1 - Ga,)kToA f 
stems from the two-port. The latter part becomes AP2 = (1 - G,,)kTIAf, 
if the temperature of the two-port is T I .  Thus, the noise figure is given by 

(2.90) 

Apparently, G,, replaces the term 6 1  in Eq. (2.86). For a match on all sides 
and thus ~1 = G,,, the equations (2.86) and (2.90) are equal. Eq. (2.90) is 
also valid for a non-reciprocal passive two-port . 

Also for the mismatched case, it is instructive to  determine the noise figure 
of a passive but reciprocal two-port with the help of the dissipation theorem. 
Equation (2.88) is again valid, and because of the reciprocity and the power 
match at the output, the absorption coefficient P1 is apparently related to the 
available gain G,, by 

(2.91) 

Here, use was made of the fact that for a reciprocal two-port the gain from 
port 1 to port 2 is equal to  the gain from port 2 to port 1. i.e. Gp12 = Gp21, 
as will be shown in problem 2.14. 

The calculation of the noise figure of a passive and reciprocal two-port with 
the help of the dissipation theorem is advantageous if the two-port consists 
of more than one temperature region. This will be demonstrated in problem 
2.15. 

G,, = 1 - 91 . 
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0 : -  F1; K1 F2; 6 2  

If the temperature of a passive two-port, reciprocal or not, is equal to the 
reference temperature TI = TO, then the noise figure according to Eq. (2.90) 
is 

F = - .  (2.92) 

In problem 2.16, Eq. (2.92) will be verified for an example by direct calcula- 
tion. 

1 

G,, 

F3; K3 0 

Problems 

2.14 
direct ion. 

Prove that the gain of a reciprocal network does not depend on the 

2.15 Two attenuators, being matched on both sides, with an insertion loss 
of 3 dB and 6 dB, respectively, are cascaded. The temperatures are TI and 
T2. What is the noise figure of the combination? 

2.16 Calculate the noise figure for the following equivalent circuit. Prove 
that the noise figure does not depend on the load impedance and that Eq. (2.92) 
is valid. R1, R2, Z, are assumed to be real. 

Ri ;  TI 

Fig. 2.29 The noise figure of two-ports in cascade connection. 

that  each two-port is terminated on both sides by the reference impedance 
Zo, thus no reflections occur. The source and the load impedances are also 

2.3.4 

For several two-ports in cascade connection with individual power gains or 
attenuations r;l, n2 ,n3 , .  . . and noise figures F1, F2, F3,.  . . the noise figure of 
the entire network can be calculated (Fig. 2.29). At first, it will be assumed 

Noise figure of cascaded two-ports 



NOlSE FlGURE OF LlNEAR TWO-PORTS 63 

assumed to be equal to 2,. This is a common design goal for high-frequency 
circuits since it usually results in a smooth frequency response of the gain. 
For two-ports, matched at both sides and connected to matched terminations, 
the following relation for the output noise contribution of the two-port can be 
derived from Eq. (2.76) and G, = K :  

A W = ( F - l ) . K . k T o .  (2.93) 

Thus the total or overall noise figure is given by 

(Fl - l ) K l K Z K 3 k T O  

K l  K 2  K3kTO 
Ft = I t  

(2.94) 

This form of the so-called cascade formula is valid only, if the same impedance 
conditions hold for the measurement or calculation of the individual noise 
figures and for the cascade connection. i.e. the match on both sides. 

The determination of the noise figure Ft for the whole circuit is more dif- 
ficult if arbitrarily mismatched two-ports are connected in cascade and i f ,  
additionally, the source and load impedances can also be chosen arbitrarily. 
Most of the difficulties are caused by the fact that ,  in general, the overall gain 
is not equal to the product of the individual gains. 

The following consideration will be restricted to the cascade connection of 
only two two-ports. However, the extension to more than two stages will be 
obvious. Let the noise powers at the output of the single stages, generated 
by their internal sources, be denoted by AP,, and AP,, and let Pg be the 
available source power (Fig. 2.30). 

Fig. 2.30 Derivation of the cascade formula for mismatched two-ports. 

Note that for the measurement or the definition of the noise figure. the 
load conditions for the single stages must be the same as for the cascade 
connection. If GI and G2 denote the gain of the first and second stage, 
respectively, (Fig. 2.30), the following equations hold for the individual noise 
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figures F1 and F2 of the first and second stage 

(2.95) 

provided that G2 and F2 are determined for the same source impedance which 
applies to the cascade connection. 

In the following, a relation between the noise figure of the whole circuit 
and the noise figure of the individual stages will be derived. For the overall 
noise figure Ft the following equation is obtained where index av denotes the 
available power: 

(2.96) 

Note that the first part of Eq. (2.96) is equal to the noise figure F1. Since the 
noise figure does not depend on the load impedance. the load can be chosen 
arbitrarily. For simplicity, a power match is assumed at the output. As a 
consequence, Fl of Eq. (2.95) can be written as: 

(2.97) 

The second term of Eq. (2.96) can be related to the available gain. According 
to the definition of the available gain we have: 

(G1 . pg)av = G l a v  ' pg . (2.98) 

Thus Eq. (2.96) yields: 

(2.99) 

This is the general relation between the overall noise figure Ft and the single 
noise figures F1 and F2. The influence of the noise figure of the second stage 
is reduced by the available gain of the first stage. However, if the first stage 
causes an attenuation, then GIav is smaller than one and the influence of the 
noise of the second stage will be large. 

The overall noise figure Ft3 of a three-stage setup can be found by consid- 
ering Ft of Eq. (2.99) as the first stage. The influence of F3 can be taken into 
account by applying Eq. (2.99) once again. If the gain of the first two stages 
is denoted by G1aav, we get 
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The available gain of two stages connected in cascade is equal to the product 
of the single available gains: 

G12av = Giav , Gzav  . (2.101) 

This is comprehensible, if the available power Pz,, at the output of the second 
stage is considered. For P2av it is by definition 

P2av = G2av (GI Pg),, = Glau . G2av Pg = G12av Pg > (2.102) 

which leads to Eq. (2.101). The cascade formula of the noise figure is thus 
given by: 

(2.103) 

For matched two-ports the relation (2.103) is equal to Eq. (2.94) due to n = 
G,,. 

Problem 

2.17 Two amplifiers or, more general, linear two-ports have noise figures 
F1 and F2 and available gains GIav and G2,,. In which order should the 
amplifiers be cascaded in order to achieve the lowest overall noise figure? 

A passive network at  the homogeneous temperature To with the available 
gain G,, is connected to the input of an amplifier with noise figure F2. Ac- 
cording to  the cascade formula, the following overall noise figure Ft results for 

(2.104) 

Expressing the noise figure in dB, then a lossy passive two-port, connected in 
front of a circuit, increases the noise figure by the dB-value of the available 
gain of the two-port. If the two-port represents a matched attenuator, then 
the noise figure in dB increases by the dB-value of the attenuation. In case of 
an unsymmetrical passive two-port, the available gain generally depends on 
the orientation of the device. The overall noise figure according to Eq. (2.104) 
may change, if the two-port is turned around. In addition, the noise figure F2 
of the amplifier generally depends on the output impedance of the two-port 
connected to its input. 

2.3.5 Noise matching 

For a given noisy two-port, the noise figure only depends on the source impe- 
dance 2,. Setting the generator impedance Zg to the value which minimizes 
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Fig. 2.31 For the discussion of noise matching. 

Based on the discussion of section 2.3.2 and using the definitions 

z = Z, = IZlejp , w,, = 1WUzJeJ’ (2.105) 

according to Eq. (2.84) the noise figure F is given by 

(2.106) 

We are looking for the minimum noise figure as a function of 2, f 2. For 
this purpose, the partial derivatives with respect to (Z1 and cp are calculated. 
One condition for noise matching is 

(2.107) 

From this the magnitude of the optimum source impedance Zopt is obtained: 

I Zopt 1 . w, = wu (2.108) 

or 

IZoptI = g (2.109) 
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the noise figure is called noise matching. If the source impedance cannot 
be changed directly, then an appropriate transformation circuit can be in- 
troduced between the generator and the device under test, which converts 
2, to its optimum value. The transformation can be performed with the 
help of transformers. reactances or transmission line elements. However, the 
loss of the transformation network should be as low as possible. In general, 
noise matching is not identical to power matching. For high frequencies and 
broadband amplifiers, systems are often designed for power matching. In the 
following, the noise matching will be discussed for an equivalent circuit with 
current and voltage sources a t  the input of the device under investigation, as 
shown in Fig. 2.31. 
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Thus the magnitude lZoptl does not depend on the correlation or the cross- 
spectrum W,,. From the second condition 

(2.110) 

and with 121 = jZoptl according to Eq. (2.109) we get 

The phase of the optimum source impedance only depends on the correlation 
of the noise sources. The minimum noise figure Fmin is obtained by inserting 
the optimum source impedance into Eq. (2.106): 

Fmin = 1 + 
kTo 

For the case of a zero correlation, i.e. k,i = 0 Eq. (2.112) yields 

(2.113) 

For the case of maximum correlation, i.e. lkutl = 1, and with 181 = 7r/2 the 
result F,,, = 1 is obtained from Eq. (2.112). This means that fully correlated 
noise sources may compensate each other. 

Another conclusion is that for either W, = 0 or W, = 0 the optimum noise 
figure can also be F,,, = 1. However, for these cases extreme impedance 
transformations are required, because due to Eq. (2.109), Zopt will either 
converge towards zero or infinity. 

Instead of considering the magnitude and phase of the source impedance, 
it is possible to perform a similar noise match derivation with respect to 
the real and imaginary part of the generator source admittance, G, and B,. 
The following equation for the noise figure is derived from Eq. (2.84) with 
w,, = c, + jc , :  

(Gi + Bi) . W, + W, + 2GgC, + 2BgC, 
4kToGg 

F = l +  (2.114) 

The derivative with respect to the conductance 

B iW,  + W, + 2BgC, 2 

-~ d F  - - w, + (-&) = o  (2.115) 
dG, 4kTo 4kTo 

as well as the derivative with respect to the susceptance 

d F  2BgW, + 2Ci 
8% ~ ~ T O G ,  

= o  - -- (2.1 16) 
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of the source admittance are set to zero in order to find the optimum source 
admittance. This leads straight to  the following relations: 

(2.11 7 )  

(2.118) 

or, similar to Eq. (2.109), leads to  the magnitude of the optimum source 
admittance: 

(2.119) 

Inserting these results into Eq. (2.114) yields a further expression for the 
minimum noise figure in dependence of the real and imaginary part of the 
source admittance 

(2.120) 

Based on the so-called noise parameters of a linear two-portl namely the 
optimum source admittance, the minimum noise figure and further on the 
so-called equivalent noise resistance defined by 

(2.121) 

a further noise representation of a linear two-port is obtained. This description 
is equivalent to the representation on the basis of the noise spectra: 

Wu = 4kToRn , (2.122) 

w, = 4kToRn1YoptI2 > (2.123) 

Cr = 2kT0 * , (Fmzn - 1 - 2RnGopt) 1 (2.124) 

C, = -4kToRnBopt . (2.125) 

Replacing the noise spectra in Eq. (2.114) by noise parameters leads to a 
further equation for the noise figure with a parabolic characteristic: 

2 (2.126) F = Fmtn + - iYg - Yoptj . 

Hence, this description will be called the parabolic noise figure relation in the 
following. 

For passive. thermally noisy two-ports at a homogeneous temperature the 
noise figure is equal to the reciprocal value of the available gain (Eq. (2.92)). 
The noise figure thus becomes minimal, if the available gain is equal to the 
maximum available gain G,, which can be achieved by power matching at 
both the input and the output. This is still valid if the homogeneous temper- 
ature differs from TO (Eq. (2.90)). 

Rn 

G, 
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For passive two-ports with more than one temperature region, i.e. an in- 
homogeneous temperature distribution, the power match on both sides must 
not necessarily be identical to  the noise match. However, for a passive, ther- 
mally noisy two-port at a homogeneous temperature the power match on both 
sides and the noise match are identical. Consequently, the optimum source 
impedance is 2, = Zopt. The minimum noise figure Fmin, which is achievable 
by the choice of Zopt, does not change, if the load impedance is varied, because 
the noise figure generally does not depend on the load impedance. For a load 
impedance deviating from the power match value at  the output, normally the 
power match at the input will also be removed. Therefore, a power match 
on one side only of a passive two-port with a homogeneous temperature must 
not necessarily be equal to  a minimum noise figure (noise matching). 

As can be shown (problem 2.18), the contours of constant noise figure 
for a given noisy two-port, which does not need to be passive, are circles 
in the complex plane of the source impedance 2,. These circles, which are 
not necessarily concentric, enclose the minimum noise figure Fmin. The same 
applies for a constant available gain in dependance of the source impedance 
2,. These contours are also non concentric circles, which confine the point of 
maximum available gain. 

Fig. 2.32 
able gain in the complex plane of the source impedance 2,. 

The contours (circles) of constant noise figure and constant avail- 

For a low degradation of the overall noise figure by the second stage in 
a cascade circuit, the available gain of the first stage should be as high as 
possible. Thus, 2, should be chosen such that the noise figure becomes as 
low as possible while the available gain should not become too small. As a 
compromise, 2, should thus preferably be chosen in the vicinity of Z(Fmzn) 
as well as Z(G,). 



70 NOlSE OF LlNEAR ONE- AND TWO-PORTS 

Problem 

2.18 
plex plane of the generator source impedance 2,. 

Prove that the contours of constant noise figure are circles in the com- 

The noise match can also be discussed in terms of noise waves. The noise 
figure as a function of the source reflection coefficient rg will be derived for 
a two-port where the noise is represented by the noise waves X I  and X2 

(Fig. 2.33). The noisy two-port is described by the scattering matrix [S] .  In 

Fig. 2.33 Noise figure description with noise waves. 

order to  simplify the calculations, the load impedance 2, is chosen equal to 
the reference impedance 20. The source reflection coefficient rg is related to 
2, by: 

(2.127) 

For the circuit in Fig. 2.33 the following expression can be found for the noise 
figure: 

ixl sZl . rg + (1 - sll . rg)x2j2 
kT0.  (1 - l r g 1 2 ) .  IS21l2 

F = I +  

(2.128) 

(2.129) 
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From 

(2.130) 

an equation for the magnitude of the optimum source reflection coefficient is 
obtained : 

Furthermore, from 

the optimum phase of the reflection coefficient is given by: 

(2.132) 

(2.133) 

If the two-port is matched on both sides with 5'11 = S22 = 0, then sin(191 - 
192) = 0 and for the magnitude we obtain: 

Wl + w2 h J(Wl + W2)2 - 4. IWl212 

2 ' IW121 
I rg,opt l  = 

For non-correlated two-port noise waves, i.e. W12 = 0, 
the optimum phase reduces to sin& = 0 and the magnitude 
reflection coefficient is 

( 2.134) 

Eq. (2.133) for 
of the optimum 

It can be observed that, for an existing correlation, the noise figure can 
be minimized by a certain mismatch of the generator, that is rg # 0. For 
thermally noisy two-ports at a homogeneous temperature being matched on 
both sides, it was noticed that the noise waves XI and X2 are uncorrelated. 
For a minimum noise figure, the choice rg = 0 and thus 2, = 2 0 ,  i.e. input 
matching, represents the best choice. This can also be derived from Eq. (2.131) 
with Sll = 0 and W12 = 0. 

Similar to the parabolic relation for the noise figure as a function of the 
source admittance, the noise figure can also be represented by an equivalent 
relationship as a function of the generator source reflection coefficient: 

(2.136) 
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Problem 

2.19 Prove that Eq. (2.126) and Eq. (2.136) are equivalent. 



3 
Measurement of Noise 

Parameters 

The accurate determination of noise parameters is principally based on the 
precise measurement of noise powers. However, the precise measurement of 
noise powers is challenging and requires some experience. This is among oth- 
ers due to  the fact that ,  in general, noise signals are very weak and can not 
be displayed without a sufficient preamplification. Furthermore, a band-pass 
filter is needed in order to identify the frequency dependence of the noise 
power. By applying, for example, a narrow band-pass filter with a variable 
center frequency, the noise power density as a function of frequency, i.e. the 
noise spectrum, can be measured. For a quantitative evaluation, obviously the 
pass-band shape of the filter has to be known. In order to calculate the avail- 
able noise power of a two-port, in addition to the overall gain the matching 
properties between the device under test and the amplifier are required. 

Concerning the necessary preamplification, one has to take into account 
that the first preamplifier also generates noise. in fact, often of the same order 
of magnitude as the device under test. As a consequence, it may be necessary 
to use special comparator circuits, so-called switching radiometers, for exam- 
ple, in order to eliminate the impact of the preamplifier noise as far as possible. 
In this situation, it is even more difficult to remove the noise contribution of 
the preamplifier, if the impedance of the device under test is unknown and 
frequency-dependent as well as complex. In this case, radiometers with a com- 
pensation circuit will be used. These radiometers require preamplifiers with 
not only uncorrelated input and output noise waves but also a well-defined 
input noise temperature. Then. the so-called available noise temperature of 
the device under test can be determined, which is a characteristic property 
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of the device under test and which does not depend on the matching of the 
device. 

An interesting variant of a radiometer is the so-called correlation radiome- 
ter, which, different from the previously mentioned switching radiometer, does 
not need a switch in front of the first preamplifier. Such a switch can influence 
the measurement results because of its non-ideal characteristics. For a cor- 
relation radiometer optional switches, preferably electronic switches, can be 
inserted advantageously after sufficient preamplification. Then the switches 
are less critical, because their noise contribution will be of minor importance 
as compared with the preamplified noise of the device under test. A section 
about the measurement of the cross spectrum and the cross correlation will 
help to improve the understanding of the correlation radiometer. 

The determination of the noise factor or noise figure, respectively, belongs 
to the routine measurements tasks in high-frequency engineering. It is impor- 
tant that  the measurement technique of the noise figure is closely linked to its 
definition. According to the definition of the noise figure the load resistance is 
assumed to be noise-free or noiseless. In practice. this can only be achieved by 
a sufficient amplification, so that the noise contribution of the load resistance 
can be neglected. However, the so-called post-amplifier influences the mea- 
sured noise figure. With the help of the cascade formula the influence of the 
post-amplifier can be taken into account, so that the noise figure of the device 
under test can be determined without the contribution of the post-amplifier. 
A correction of the noise figure can be omitted, if the device under test itself 
has enough gain. 

In addition to  the determination of the noise figure, different methods for 
the measurement of the set of noise parameters, which completely describe 
the noise behavior of a thermally noisy linear two-port. will be presented. As 
already explained for the measurement of the noise figure, the noise parame- 
ters such as the minimum noise figure and the optimum generator admittance 
usually can not be measured directly. Low-noise amplification of the weak 
noise signals is required, so that an error correction of the measured data be- 
comes necessary in order to determine the true parameters of the device under 
test. For this purpose, a so-called de-embedding method will be described. 

All presented noise measurement procedures, such as the measurement of 
the noise temperature with a radiometer or the measurement of the noise 
figure and the noise parameters, have in common that an arbitrarily precise 
measurement is not possible, even if the pre-amplification, the mismatching 
and the noise contribution of the amplifier are exactly known. This is due to  
the fact that  a principle error bound limits the precision of the measurements. 
This principle error bound results from the stochastic nature of the measure- 
ment signals. For a finite frequency bandwidth and a finite measurement time 
noise power can not be determined with arbitrary accuracy. The emerging 
error becomes smaller the larger the frequency bandwidth and the measure- 
ment time are. The high-frequency range is thus especially well suited for 
noise measurements. because large absolute bandwidths are in general avail- 
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able. This principle measurement error is the main difference between noise 
measurement techniques and measurements with coherent signals. A further 
important difference is that  for the noise measurements the inevitable am- 
plifier noise is generally of the same order of magnitude as the measurement 
quantity. 

In comparison to  this principle error bound, which cannot be avoided, all 
other uncertainties such as the post-amplifier noise, the mismatch of the device 
under test, the magnitude and drift of the amplifier gain can be kept arbitrar- 
ily small. It will thus be one aim to reduce these uncertainties down to the 
order of the principle measurement errors caused by the finite measurement 
time and bandwidth in order to  achieve highly accurate noise measurements. 

Furthermore, noise measurements can often become erroneous by cross 
talk and disturbing radiation. Such disturbing signals can influence the re- 
producibility of the measurements. It is thus necessary to pay attention to 
shielding and filtering in order t o  provide sufficient suppression of such inter- 
ferences. Under favorable conditions, noise measurements are comparable to 
measurements with deterministic signals, with respect to reproducibility and 
precision. 

In the following section, the measurement of the cross-correlation function 
and the cross-spectrum will be discussed first. The principle measurement 
error, which results from the finite measurement time and bandwidth, will be 
derived in section 3.1.8. 

3.1 MEASUREMENT OF NOISE POWER 

The accurate determination of noise parameters is principally based on the 
precise measurement of noise power. In this section, some of the most impor- 
tant methods for the measurement of the noise power will be presented. 

3.1.1 

This method is based on the measurement of an increase of temperature with 
the help of a thermocouple. A thermocouple is heated by an RF signal. The 
increase of temperature causes a dc voltage, which can be measured and which 
is proportional to  the absorbed RF power. 

Initially, metals like a combination of bismuth and antimony (Bi, Sb) and 
gold were used as the contact material, as shown in Fig. 3.1. For the ther- 
modynamic equilibrium, i.e. when all junctions are a t  the same temperature, 
all contact voltages will compensate. Then, no dc voltage can be measured 
between the outer connectors. However, if the Bi-Sb-junction is heated to  the 
temperature TI while the Sb-Au-junctions remain at the ambient temperature 
To, then a thermoelectric voltage can be measured at  the outer connectors, 
which is proportional to  the temperature difference TI - To. The proportion- 

Power measurement on the basis of a thermocouple 
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Au Bi Sb Au 

TO Tl TO 

Fig. 3.1 Setup of a thermocouple on the basis of bismuth and antimony. 

ality constant is called the thermoelectric coefficient. For the combination of 
Bi-Sb the thermoelectric coefficient is particularly high with a value of about 
11OpV/K. Obviously, the junction area Bi-Sb must have a high thermal re- 
sistance towards its environment, in order to obtain a reasonable increase of 
temperature even for low power inputs. 

On the other hand, the heat capacity must be sufficiently small, so that a 
temperature equilibrium can be reached quickly. For this reason, thin metal 
strips are used, which are arranged in such a way that the heated junction is 
not in contact with the substrate material (see Fig. 3.2).  For instance, the 
commonly used sapphire substrate has a good heat conductivity. Thus one 
can achieve cold outer junctions that are almost at the same temperature TO. 

V 
sapphire substrate 

Fig. 3.2 Thermocouple of metal strips on a sapphire substrate. 

The metal strips are designed with the aim to realize a constant high- 
frequency resistance of 100 R over a frequency range as broad as possible. 
The absorbed high-frequency power will be converted into heat, raising the 
temperature of the Bi-Sb-junction. The whole circuit can be realized as shown 
in Fig. 3.3. Preferably, two thermocouples are used, which are connected in 
series for the dc signals and in parallel for the RF-signals. In order to achieve 
an accurate match in a 50 R environment, a 100 R resistance is chosen. 

By the use of two thermocouples the need for an inductor as a filter el- 
ement can be avoided. This has the advantage that capacitors can be used 
instead of inductors. Capacitors can more easily be realized to cover a broad 
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Fig. 3.3 Power measurement with two thermocouples. 

frequency range. However, the Bi-Sb-thermocouple has a number of disad- 
vantages, e.g. bad reproducibility, poor match and a small overload capacity. 

State-of-the-art thermocouples with better performance are typically re- 
alized as metal-semiconductor devices in thin film technology. A standard 
structure is shown in Fig. 3.4. For this configuration a combination of highly 

Au feed lines 

Fig. 3.4 Metal-semiconductor thermocouple. 

doped silicon and tantalum nitride (n+-Si/TazN) is used as a thermocouple 
junction. The TazN-film also serves as a 100 R high-frequency resistor. 

The thermoelectric coefficient slightly depends on the doping. Hence, for 
a good reproducibility, a specific doping concentration has to be realized as 
precise as possible. The thermoelectric coefficient as designed for this appli- 
cation is about 250pV/K. It is thus higher than for Bi-Sb. There is a certain 
dependence between the thermoelectric voltage and the absolute temperature, 
which must be compensated. The thermal time constant, determined by the 
thermal resistance and the thermal capacity, is of the order of about 0.1 ms. 
In order to measure the low dc voltages, the dc signals are amplified and mod- 
ulated using, e.g. field effect transistors in a chopper amplifier with a clock 
frequency of e.g. 220 Hz. This chopper amplifier should be placed as close as 
possible to  the thermocouple sensor, ideally on the same substrate. In order 
to eliminate further unwanted thermoelectrical voltages, all conductors are 
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realized in gold. The ac signal of 220 Hz, which lies between the harmonics of 
50 Hz, is connected to a power meter instrument, where it is further amplified, 
transformed back to a dc votage by a phase sensitive detector, A/D-converted 
and displayed. 

220 Hz rectangular signal 

Fig. 3.5 Principle setup of a chopper amplifier. 

3.1.2 Thermistor bridge 

Thermistors are small samples of sintered metal oxide with contact wires on 
opposite sides of the sample. The resistance Rth of this material is strongly de- 
pendent on temperature, i.e. the resistance decreases with increasing tempera- 
ture (NTC-resistors, Negative Temperature Coefficient). Two thermistors are 
placed in a bridge circuit, as shown in Fig. 3.6. A high voltage gain factor and 
strong feedback result in a nearly zero voltage El at the input of the amplifier. 
This means that the bridge balances itself automatically, with 2Rth = R. The 
resistors R are temperature independent. The balance requires a sufficiently 
high current through the thermistor, so that direct current heating increases 
the temperature and reduces the resistance Rth. The voltage Ez at the bridge 
may be Ezo for the state of the bridge without RF-power. Then the dc power 
supplied to  the two thermistors is 

If RF-power is applied to the bridge, then the feedback again forces 2Rth = 
R, but now the dc current through the thermistors is lower. The dc power 
absorbed in the thermistors is 

The reduction in dc power must be equal to the applied RF-power Pl. 
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RF in I 
Fig. 3.6 Bridge circuit of a thermistor. 

In order to  account for variations of the ambient temperature, may be 
measured by a second identical bridge, to which no RF-power is applied. 

The thermistor bridge has a number of disadvantages compared with the 
thermocouple, e.g. a smaller dynamic range and a higher time constant. How- 
ever, the thermistor bridge has the advantage, that due to  the substitution 
principle, the RF-power measurement is an absolute power measurement. But 
this is not a real advantage for noise measurements, because most of the noise 
measurements, which are discussed in the next chapters, rely on relative power 
measurements only. 

3.1.3 Power measurements with Schottky-diodes 

A detector with Schottky-diodes can be used for highly sensitive power mea- 
surements, if the input signals are not too strong so that the detector is 
operated in the square-law region of the current-voltage characteristic of the 
diode. 

The use of Schottky-diodes instead of pn-diodes in high-frequency detectors 
is motivated by the fact that Schottky-diodes are based on a majority carrier 
effect and are thus very fast. The nonlinear current-voltage characteristic of a 
Schottky-diode, which is principally based on a metal-semiconductor junction, 
can be described to a good approximation by the following formula: 

f i  kT 
z(t) = Iss (enp (g) - 1) and U, = - 

4 
(3.4) 

with 
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i(t), u( t )  
Iss reverse saturation current 
VT 
T 
k Boltzmann constant 
n 
Q elementary charge 

current or voltage of the Schottky-diode 

temperature voltage (25.9 mV for Ti =1 and T=300 K) 
temperature of the depletion layer 

ideality factor, typically 1 .05. .  . 1.15 
I 

A detector diode in this application is generally operated without a bias 
voltage. The small signal conductance G j  for an unbiased operation is given 
bv 

(3 .5)  

The conductance G j  should preferably be high, so that as much high-frequency 
power as possible can reach the depletion layer. One possibility to achieve a 
high conductance is to  increase the saturation current Iss ,  which can be influ- 
enced, among others, by the contact potential. The contact potential basically 
depends on the metal type and the metallization conditions. In practice, the 
contact potential can be made small enough such that 1/Gj  is of the order of 
some kQ instead of the usual MR. Therefore, matching t o  a conventional 50 R- 
system is not possible without a narrow-band transformation circuit. Usually 
a brute-force match is achieved with the help of a resistor of approximately 
50 R, as shown in the equivalent circuit in Fig. 3.7. 

Fig. 3.7 Detector with resistor R1 for a brute-force matching. 

At the same time, the resistor R1 for the forced matching closes the dc cur- 
rent path. The capacitor C1 passes the high-frequency signal and blocks the 
dc voltage. The capacitor Cz acts as a short-circuit for the high-frequency 
signal. Such detectors are available for the frequency range of approximately 
0.1 MHz to more than 50 GHz. The lower frequency boundary is primarily 
determined by the capacitors C1 and C,, the upper frequency boundary is 
influenced by the parasitic elements of the Schottky diode. These parasitic 
elements consist of the bulk resistance. the depletion layer capacitance. the 
lead inductance and the package capacitance. In a practical detector circuit 
some compensation elements are introduced in order to obtain a flat frequency 
response up to  the desired upper frequency. 
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In the case of an amplitude modulated measurement signal, the sensitivity 
and the inherent matching of the detector can be improved by biasing the 
detector diode, however, a t  the expense of the added complexity of a bias 
supply. In the case of an unmodulated signal, the rectified current cannot be 
distinguished from the impressed bias current. 

For small input levels the video voltage is proportional to  the incoming 
high-frequency power and the characteristic of the Schottky-diode can be 
approximated by a quadratic law. For higher input levels noticeable linearity 
deviations occur. Assuming the high-frequency signals to be sinusoidal, then 
the linearity deviations can be compensated by e.g. a look-up table. 

For input signals with a sufficiently low signal level the Schottky diode 
is operated in the square-law region of its characteristic and the detector 
can be used for sensitive power measurements. Similar to the noise power 
measurements with a thermocouple, it is again recommended to transform 
the small dc voltages into ac signals with the help of a chopper circuit and to 
amplify the signals close to  the Schottky diode. Kndesired thermal voltages 
have again to be kept small. The further processing of the ac signals can be 
performed with a similar instrument to that used for the thermocouple sensor. 

Quantitatively the dependence of the video signal on the high-frequency 
input power can be described as follows. The high-frequency signal is sup- 
posed to be sinusoidal. Then the voltage at the Schottky diode will also be 
nearly sinusoidal, because the feeding is realized with a low source resistance 
compared with the junction resistance. The time dependent voltage u( t )  at 
the depletion layer can be approximated by 

u( t )  = uo + 01 cosat . (3 .6 )  

Here Uo is the existing bias voltage. With the voltage from Eq. (3.6) one 
obtains for the current i ( t )  through the Schottky diode by means of Eq. (3.4): 

We are interested in the dc current 10, i.e. the mean value versus time of i ( t ) .  
For this purpose, we must develop the expression exp[(U1/Ut) cosat]  into a 
Fourier series. 

In the last equation the functions Jo ,  J1, Jz are the modified Bessel functions. 
Under the condition that ~ / G L  >> R1, one obtains for the dc components of 
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the loop in Fig. 3.7: 

(3.9) 

This equation describes, although in an implicit form, the relationship between 
the detector voltage and the RF-signal amplitude Ul as a function of the load 
admittance GL and the reverse saturation current lss. For low amplitudes 
U l ,  i.e. Ul << Uo, this relation is of a quadratic characteristic, i.e. the detector 
output voltage is proportional to the RF input power. For higher RF input 
amplitudes the detector characteristic will deviate from a square law behavior. 

3.1.4 Power measurements with field effect transistors 

Field effect transistors on the basis of e.g. gallium arsenide with a metal semi- 
conductor contact as the gate (GaAs MESFET, GaAs metal-semiconductor 
field effect transistor) can also be utilized as detectors or power meters. The 
basic characteristics and the noise behavior of field effect transistors are pre- 
sented in some more detail in Section 4.6.1. 

The non-linear current-voltage characteristics of the drain source channel 
under the assumption of a constant gate bias can serve as a detector for high- 
frequency signals. The drain source path is operated without a bias voltage. 
Thus the transistor operates in its ohmic region. 

I 
I 

E 

Fig. 3.8 Detector with a field effect transistor. 

The gate bias can be chosen to achieve both a sensitive rectification and a 
good matching by a proper value of the channel resistance. A detector circuit 
as shown in Fig. 3.8 leads to  a characteristic for the rectified voltage UO as 
shown schematically in Fig. 3.9 as a function of the high-frequency signal 
amplitude Ul  and the gate bias voltage U, as a parameter. In the graph, the 
voltages are normalized to the pinch-off voltage Up%. The conductances are 
normalized to the channel conductance Gch. 

For low amplitudes U 1 ,  i.e. U 1  << Up, ,  the relation between U 1  and the 
detector dc output voltage Ulo is of a quadratic behavior, i.e. the detector 
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Fig. 3.9 Characteristics of the field effect transistor. 

dc output voltage is proportional to the input RF-power. For higher R F  
input amplitudes the detector characteristic will deviate from a square law 
behavior 

The saturation of the detector typically occurs a t  higher power levels than 
for the Schottky-diode detector. This is basically due to the fact that the 
pinch-off voltage U,i is typically of the order of some volts while the temper- 
ature voltage kT/q is much lower than 1 volt. 

Furthermore, a detector with a field effect transistor can be operated in 
a phase sensitive detector or a controlled rectifier mode. For this purpose, 
a part of the high-frequency signal is directed to  the gate via a 180" phase 
shifter. This phase shift is necessary in order to obtain a dc contribution with 
the same polarity as the part, which is directly rectified at  the channel. The 
principle is depicted in Fig. 3.10. 

c2 phase shifter 
dc video output 

R, 

RF signal generator gate bias voltage 

Fig. 3.10 
the gate. 

FET-detector with a 180" phase shifter between the input and 
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3.1.5 

Four-quadrant analog multipliers are known from electronic measurement 
techniques. Often they are realized with bipolar transistors. The analog 
multiplier can be used as a power detector, if the RF-signal is applied to both 
input ports of the multiplier simultaneously and if the output signal is filtered 
by a low-pass filter. To a first-order approximation, for very high frequencies, 
the double balanced mixer may be used as a substitute for an analog mul- 
tiplier. In this text, the ideal analog multiplier is sometimes employed as a 
component in an idealized system, that has to be analyzed. 

Power measurements with analog multipliers 

3.1.6 

The measurement of the noise power can also be performed digitally with the 
help of a digital detector. The block diagram of a possible setup is shown in 
Fig. 3.11. In this setup, the amplified noise signal of the device under test 
is bandpass-filtered and converted and digitized by an analog-to-digital con- 
verter (ADC). Behind the ADC, a digital signal processing algorithm can be 
performed, consisting of an additional digital band-pass filter (e.g. a FIR-BP, 
a finite impulse response bandpass filter), the calculation of the squared signal 
and its mean value. This digital signal processing can be performed by, e.g. a 
field programmable gate array (FPGA). Such a digital detector has the advan- 

Power measurements with a digital detector 

Fig. 3.11 Block diagram of the digital detector. 

tage of a high linearity over a wide dynamic range. This is of great importance, 
e.g. for the very precise measurements of noise parameters. Furthermore, the 
measurements by such a digital detector are quite fast. However, one has 
to keep in mind that the standard deviation of the measurements is inversely 
proportional to the square root of the product of bandwidth and measurement 
time, as will be discussed in detail in the following section. For this reason, 
the measurements cannot be performed arbitrarily fast, if a high accuracy is 
required. 

3.1.7 

Measurements of noise power can be performed very conveniently with the 
help of a spectrum analyzer and a detector a t  the intermediate frequency of 
the spectrum analyzer (Fig. 3.12). The spectrum analyzer performs the func- 

Power measurements with a spectrum analyzer 



MEASUREMENT OF NOlSE POWER 85 

analog 
detector 

r - - - -  

detect or 
signal 

Fig. 3.12 Power measurements with a spectrum analyzer and a detector. 

tion of a fixed narrow-band bandpass filter and, even more conveniently, the 
function of a wide-band tunable bandpass filter. The power detector at the in- 
termediate frequency fif of the spectrum analyzer may be realized according 
to an analog power measurement principle, as has been discussed before. The 
intermediate frequency far  often lies around 20 MHz or even lower. Thus, it 
is quite feasible to employ a digital detector as a power detector, as has been 
discussed above (Fig. 3.11). For an intermediate frequency of e.g. 20 MHz. 
a digital power detector with excellent linearity and dynamic properties is 
state-of-the-art. Also digital bandpass filtering with a digitally adjustable 
bandwidth at  the intermediate frequency faf  can be found in modern instru- 
ments but perhaps not in older ones. But practically all spectrum analyzers 
have an analog i.f. output port. Then it might be possible to use an external 
digital power detector, if an internal digital detector is not available. 

In the following section, different measurement systems for the determina- 
tion of noise parameters of one- and two-ports will be discussed. All described 
systems require the measurement of noise powers. The noise power measure- 
ments can be performed according to the methods described above. In the 
following, the method for the power measurement will not be specified and, 
therefore, the power detector will generally be symbolized simply by a detector 
diode. 

However, before the theory of radiometers is discussed in some more de- 
tail, a quantitative derivation of the errors of noise power measurements with 
limited measurement time and restricted bandwidth will be presented in the 
next section. The principle error of noise power measurements under these 
conditions is non-zero. As will be seen, for a limited measurement time the fre- 
quency bandwidth should be as large as possible. However, a large bandwidth 
has the disadvantage of providing spectrum measurements with a lower spec- 
trum resolution. For spectrum analyzers the maximum bandwidth is usually 
limited to a few MHz. 

3.1.8 

The noise power or the power spectrum or generally the mean square value of 
a stochastic signal can not be determined exactly, because the measurement 

Errors in noise power measurements 
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time and bandwidth are not unlimited. Therefore. a quantitative expression 
representing these uncertainties will be derived. A spectrometer, as used 
for the measurement of power spectra, is shown in a simplified version in 
Fig. 3.13. There, Wl,  W2, Wa denote the spectra and p1, p2 and pa denote 
the corresponding auto correlation functions. A spectrometer filters a noise 

squaring 

device 

Pa, g a  wn band-pass 

Fig. 3.13 Block diagram of a spectrometer. 

signal in the spectral domain and calculates the mean square value of the noise 
signal for a certain time r .  We are interested in the mean-square value of the 
output voltage ua(t)  or the mean-square value of samples of U,, respectively: 

m = cu,”, = E b m  = Pa(()) 

+a2 +oo 

= / W a ( f )  df = / w2(f) ivL(f)izdf * (3.10) 

-oo -’x 

In the last equation VL is the transfer function of the low-pass filter. 

values of the voltages, where c is a constant: 
The squaring device leads to the following equation for the instantaneous 

u2(t) = c .  u?(t)  . (3.11) 

The expected value of the output voltage ua( t )  is equal to 
- 

21,O = ( u a )  = E { U a ( t ) }  = VL(O) ~ 2 ( t )  

- - c .  VL(O) . T W l ( f )  df = c .  VL(O) . p1(0) . (3.12) 

-fx 

Next, a relation between the spectrum W2 and the spectrum W1 has to  be 
derived. Under the assumption of a Gaussian amplitude distribution the 
autocorrelation functions pz and p1 are related as follows (cf. Eq. (1.64)): 

P 2 ( e )  = u 2 ( t )  . u2( t  + e )  = ( u 2 ( t )  . U 2 ( t  + 0)) 

= c2 . uf ( t )  . $(t + e )  = c2 . ( ~ ; ( t )  . ~ ; ( t  + 0)) 

= c2 ( P m  + 2 P m )  ‘ (3.13) 
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By means of a Fourier transformation, W2 can be calculated from p2. Here, 
the term pf(8) in Eq. (3.13), which is a product in the 8-range, is represented 
by a convolution in the frequency domain 

Wz(f) = c2 . & ( O )  ‘ S ( f )  + 2c2 Wi(f’) Wl(f - f ’ ) d f /  . (3.14) 
-x 

T 
~~ 

convolution 

Based on Eq. (3.10) and Eq. (3.14) the variance ~2 of the output voltage ua(t)  
is obtained as follows: 

tx 

-m 

-x 

The bandwidth fL of the low-pass filter is much smaller than the bandwidth 
A f of the high-frequency band-pass filter, i.e. f L  << A f ,  so that in Eq. (3 .15)  
the term Wl(f - f ’ )  x Wl(- f ’ )  = W:(f’) = Wl(f’). Furthermore, under 
the assumptions that the spectrum W1 is constant within the pass-band Af 
of the band-pass filter and that the band-pass filter has a rectangular shape 
around the center frequency f o ,  Eq. (3.15) can be rewritten as 

u:(t) - ua( t )  = 2c2 . 2 .  W?(fo) . Af 1 i V ~ ( f ) 1 ~  df . 
A x  

2 -- 
(3.16) 

-x 

With the relative variance Fa of the output signal, which is normalized to  

u,(t) , it follows with Eq. (3.12): using the one-sided spectra: 
2 - 

1 - 
- 2’af 

An effective bandwidth 

(3.17) 
IVL(f)l2df 

VL” (0) 

AfL of the low-pass filter is defined as follows: 

(3.18) 
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Expressed by the fluctuation ATm of the noise temperature Tm and taking 
into account the system noise temperature Ta of the spectrometer , Eq. (3.17) 
becomes 

(3.19) 

For a rectangular low-pass characteristic with the cut-off frequency f L ,  we 
have fL = AfL and thus 

(3.20) 

If the low-pass filter is realized as an ideal integrator with an integration time 
r .  then 

with c, being a constant and 

1 
27  

A f L = - .  

In this case, Eq. 3.20 yields 

(3.21) 

(3.22) 

(3.23) 

This important relation was first derived by Rice in 1946. 
If the spectrum WI is not constant over the bandwidth Af or if the high- 

frequency band-pass filter does not have a rectangular shape, then Eq. (3.19) 
is still valid, if instead of Af an effective bandwidth Af,f is used; which is 
defined according to the following equation (cf. Fig. 3.13): 

Problem 

3.1 Derive Eq. (3.22). Which high-frequency bandwidth is required, if for 
an integration time of Is either 68% or 95% of all measurement values shall 
deviate less than 0.1K from a noise temperature of Tm=300K? 

3.2 MEASUREMENT OF T H E  CROSS-CORRELATION FUNCTION 
A N D  T H E  CROSS-SPECTRUM 

The measurement technique for the cross-correlation function or the cross- 
spectrum results from the definition of these parameters. An analog method 
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for the measurement of the correlation function in the high-frequency range is 
depicted in Fig. 3.14. One of the two input signals is delayed by an adjustable 

multiplier 

display 

t 

Fig. 3.14 Measurement of the cross-correlation function. 

delay time 0. The product of both signals is generated by means of an analog 
multiplier and the mean value is formed by a low-pass filter. In the high- 
frequency range an analog multiplier can be realized by a double balanced 
mixer. 

In the frequency range up to perhaps 100 MHz a digital processing might 
be preferred. Then, the amplitude characteristics of u l ( t )  and u2(t) are trans- 
formed by analog-to-digital converters and the following signal processing is 
performed completely digitally. 

The cross-spectrum can be measured with the circuit in Fig. 3.15. In 
contrast to the measurement of the correlation function. here narrow band- 
pass filters are used. The signals are described in the frequency domain. The 

vz 
Fig. 3.15 Measurement of the cross-spectrum. 

complex transfer functions of the band-pass filters including the amplifiers are 
denoted by V1 and V,. The phase switch has the complex transfer function 
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H4. For the cross-spectrum Wo12 at the output we have 

The cross-correlation function po12(0 = 0) is measured by the multiplier and 
the low-pass filter. Provided that the band-pass filters are sufficiently narrow, 
the output yields 

pOlz(6' = 0) = Wo1z(f) d f  (because of B = 0 and exp(j27rfO) = 1) 
-m i 
+ V:(-fo) 9 H;(- fo)  . Vz(-fo) . W%iz(-fo)]Af . (3.26) 

Here, fo represents the center frequency of the band-pass filters. For equal 
band-pass filters with V1 = V2 = V and for the phase switch in position 
4 = 0" or H4 = 1, it follows from Eq. (3.26) due to V(-fo) = V*(fo) and 
Hd-fo) = H $ ( f o ) :  

Po12 = IV(fo)I2 (wzlZ(f0) + w,*z(fo)) . Af  
= lV(f0)1~ 2 .  Re{Wil2(fo)} . Af . (3.27) 

For the switch position d, = 0", the result is equal to the real part of the input 
cross-spectrum except for a proportionality constant. For the switch position 
4 = 90' it follows from Eq. (3.26) with V1 = V2 = V and H o ( f 0 )  = j or 
H$(- fo )  = H@(fO) = j: 

Po12 = [-jlV(f0)l2. WzlZ(f0) +jlV(fO)l2.  W%XfO)]  . Af  
= IV(fo)12 ' 2 .  ~ m { ~ , l z ( f o ) )  . Af.  (3.28) 

For the switch position q5 = go", a value results that  is equal to the imaginary 
part of the input cross spectrum except for a proportionality constant which 
is the same as before. By varying the center frequency of the band-pass filter, 
both the real and the imaginary part of the cross spectrum can be measured 
as a function of frequency. For the calibration of the correlator the inputs can 
be supplied with two completely correlated noise signals. For d, = go', a zero 
output signal should result. With completely uncorrelated signals it can be 
verified for both switch positions, that zero output signals result. 

If the input signals of the measurement setup in Fig. 3.15 are identical, 
i.e. U1 = U, = U ,  then the cross spectrum is equal to  the power spectrum 
of U .  For the measurements of power spectra only, the phase switch and 
one band-pass filter can be omitted and the simplified circuit in Fig. 3.16 
results. Note that a multiplier with the input signals connected in parallel 
and a subsequent low-pass filter form a power meter as discussed before. 
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power meter 

Fig. 3.16 
respectively. 

Measurement of the spectrum with a multiplier or a power meter, 

For the measurement of the cross-spectrum according to Fig. 3.15 it is often 
difficult t o  realize two band-pass filters, especially variable band-pass filters, 
with a good tracking behavior. The problem can be solved by converting both 
input signals with the help of one voltage controlled oscillator signal with a 
variable frequency to two identical fixed intermediate frequencies (heterodyne 
principle or double spectrum analyzer setup). 

If only one variable band-pass filter is used, then the measurement can be 
performed sequentially in time on the basis of the setup in Fig. 3.17. At the 

meter 
coupler 

Fig. 3.17 Time serial measurement of the spectrum. 

output of a 180°-coupler the sum and the difference of the input signals U1 (f) 
and V,(f) are available. According to the mathematical identity (a  + b ) ,  - 
(a  - b ) ,  = 4ab, the spectra a t  the output of the 180°-coupler, representing the 
sum and the difference of the signals, are measured. Next, the difference of 
both measured values is calculated. In the symbolic notation, for the switch 
position q5 = 0" we have: 

= (u; . u2 + U1 . U;). /v12 

= 2lVI2 . Re{U;U2} = 2 /V/ '  . Re{Wil2} . (3.29) 
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This result is proportional to the real part of the cross-spectrum at the input. 
In the same way, the imaginary part can be obtained by changing the position 
of the phase switch to 90". If a 9O0-3dB-coupler instead of the 180" type is 
used, then the real part results for the 90" position and the imaginary part 
for the 0" position of the switch. 

Sometimes, however, the bandwidth of the band-pass filter is so wide, that 
the spectrum of the input signal is not constant within the pass-band. In 
this case, for the switch position 4 = 0" and with V1 = Vz = V according to 
Eq. (3.26) the measured value is proportional to the frequency average of the 
real part of the input cross spectrum. If f l  and f2  are the corner frequencies 
of the band-pass filter, then 

(3.30) 

where iV(f)i2 is a weighting function. A similar expression results for the 
switch position 4 = 90". 

3.3 ILLUSTRATIVE INTERPRETATION OF THE CORRELATION 

The correlation between two noise signals can be described by two equiv- 
alent functions, namely the cross-correlation function p12 or the cross- 
spectrum W12. For both representations a concise description of the corre- 
lation will be discussed in this section. 

At first, the cross-correlation will be considered. Let ul ( t )  and uZ(t) be 
continuous time signals, which are partly correlated. The signal u2(t) is sep- 
arated into two components 

uz(t)  = U : ( t )  + U i ( t )  1 (3.31) 

in such a way that uL(t) is identical in time to u1(t) except for a real propor- 
tionality factor y 

uL(t) = y. U l ( t )  . (3.32) 

Such a partition is always possible and, at  first, only represents a formal step. 
However, if y is chosen properly, namely, 

(3.33) 

then u i ( t )  is uncorrelated with ul ( t ) .  This can be shown directly by 

u'2/(t) ' U l ( t )  = ( u z ( t )  - ru1( t ) )  ' U l ( t )  

u2(t) ' Ul(t) - y .  u?(t)  
p12(e = 0) - 7 .  pll (e  = o) = o . 

- 
= 

= (3.34) 
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This consideration also works with two signals being shifted in time by 8 
relative to  each other. The cross-correlation function thus represents, except 
for a normalization factor, that part of u2(t) which is identical in time to u l ( t )  

and which could, therefore, be nulled by means of a balanced configuration, 
for example. As is generally known for an ac bridge, being supplied with 
sinusoidal signals, a complete balance to zero can be achieved due to the fact 
that  two signals with a phase difference of 180' are interfering destructively. 
Uncorrelated signals cannot be balanced with a bridge at  all, because for a 
superposition the signals have to be added according to the square root of the 
sum of the squares. For partly correlated signals, the completely correlated 
part u/2(t), which is described by p 1 2 ,  can be nulled by a balance, whereas 
for the uncorrelated parts uy(t)  and u1 ( t ) ,  the square-law summation applies. 
Also for a finite time shift 8 the signals can be separated into correlated and 
uncorrelated parts. The partition generally is a function of the time shift 8, 
similarly to the cross-correlation function, which generally depends on 8. 

For a representation in the frequency domain, the correlation can be in- 
terpreted in a similar way. For this purpose, the phasor notation is used. 
Let U l ( f )  and Uz(f) denote two partly correlated noise signals. Let Fi12 be 
a complex number, which represents that part of U2 which is identical to U1 

after an appropriate phase- and amplitude change: 

U2 = U; + Ut = k12 . U1 + U[ . (3.35) 

Again, it can be shown that U[ is uncorrelated with U1, if klz is chosen 
properly: 

U; . U; = U; (U2 - k 1 2 .  U1) = W12 - k 1 2 .  W1 . (3.36) 

Apparently. this relation is equal to zero, if kl2 is chosen as 

(3.37) 

3.4 MEASUREMENT OF THE EQUIVALENT NOISE 
TEMPERATURE OF A ONE-PORT 

In this section it will be described, how the available noise power or equiv- 
alent noise temperature of a one-port a t  the center frequency fo in a given 
bandwidth Af is measured as precisely as possible. 

The fundamental measurement system, which is also called a radiometer 
or a spectrometer, is shown in Fig. 3.18. In principle, the measurement sys- 
tem consists of at least one cascade of amplifiers with an extremely low-noise 
preamplifier in the first stage, a band-pass filter, and a power meter as dis- 
cussed in section 3.1. Such a noise measurement system poses a number of 
problems. First of all, the gain of the cascade of amplifiers has to be known 
exactly for the determination of the effective noise power of the device under 
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DUT 
Tm + 

display 

Fig. 3.18 Principle setup for noise temperature measurements. 

test. Furthermore, the necessary high gain of the cascade of amplifiers might 
change with time, i.e. it drifts. Moreover, the first preamplifier, although be- 
ing a low-noise type, also produces noise, which is often in the same order 
as the noise of the device under test. I t  is thus necessary to discriminate 
the preamplifier noise from the noise of the device under test. In addition, 
the measurement result should not depend on the gain. A possible setup to 
reduce these disturbing effects is illustrated in Fig. 3.19. Here. 2, denotes 
the impedance of the device under test at the temperature T, and Z,, is the 
input impedance of the amplifier. 2, and Z,, may be complex. The noise 

EgEg Ej?JTp Ta, Gp fo, Af 

calibration DUT amplifier 
normals 

Fig. 3.19 Radiometer with different calibration standards. 

contribution of the amplifier is also described by a temperature T, (system or 
amplifier temperature). The amplifier can be represented by a thermally noisy 
generator resistance with the temperature T, and the impedance Z,, which is 
supposed to produce the same noise a t  the load impedance Zi as the amplifier 
itself. For this model, the amplifier is assumed to be noise-free. In addition. 
two calibration standards with the known but different temperatures TI and 
T2 are needed, both having the same impedance 2, as the device under test. 
With the gain Gp of the amplifier, three noise powers can be measured at the 
output impedance 21. namely the noise power P, for the measurement of the 
device under test and the noise powers PI. Pz for the measurements of the 
two calibration standards: 

(3.38) 
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Solving this set of equations for Tm yields 

which only depends on the known temperatures TI and T2 and on the ratios 
of the noise powers PmlP1 = pml  and Pm/P2 = pm2. The result does not 
depend on the unknown gain G, and the temperature of the amplifier T,. 
It is advantageous to choose one of the temperatures equal to the ambient 
temperature To, e.g. T2 = To, because the available noise power or available 
temperature is then known a priori. 

One disadvantage of this method is that  the three single measurements 
might take a relatively long time. Consequently, since the gain has to be 
constant during the measurements, the amplifier needs a good long-term sta- 
bility. In Section 3.5 ,  other radiometer circuits with reduced requirements for 
the long-term stability of the amplifier will be discussed. 

Furthermore, the device under test might be mismatched and its impedance 
might be different from the impedance of the two calibration standards. Also 
for this case, radiometer circuits will be presented that may alleviate this 
problem. 

3.5 SPECIAL RADIOMETER CIRCUITS 

3.5.1 Dicke-Radiometer 

With a Dicke-radiometer, also called switching radiometer, the noise of a 
one-port can be measured independently of the gain and the noise of the 
multistage amplifier. In Fig. 3.20 the block diagram is shown. By means of a 

Tm, zm 
DUT 

reference + BP 

m 
&‘HT& clock generator 

4 display 

Fig. 3.20 Dicke-radiometer for a known impedance of the device under test. 

switch, which should have low loss, the amplifier input is periodically switched 
between the one-port device under test with the unknown temperature Tm 



96 MEASUREMENT OF NOlSE PARAMETERS 

and the impedance 2, and a reference device with the variable temperature 
Tref and the impedance Zref. The noise signal a t  the output of the band-pass 
filter versus time, as shown in Fig. 3.21, is composed of the contributions of T, 
and T,,f, sequential in time, and of the contribution of the first preamplifier, 
which is constant in time. The noise signals of the device under test and 

P ( T m r  Ta) h n n r  
I b 

t 

Fig. 3.21 Output power of the radiometer versus time. 

the reference noise source are not correlated with the noise of the amplifier. 
However, the contribution of the amplifier is constant for both positions of the 
switch only, if the impedances of the device under test and the reference, 2, 
and Z,,f. are identical. This is a precondition for the correct measurement 
with this radiometer. After having passed the amplifier and the band-pass 
filter, the noise signal is square-law rectified and filtered with the low-pass 
filter. Next, the a x .  signal caused by the switching procedure (at ,  for example, 
a frequency of 1 kHz) is filtered with e.g. a phase sensitive detector (PSD) 
and then displayed. For the measurement of T, the reference temperature 
TTef is varied until the ac-signal vanishes. In this balanced case 

Since the additive noise contribution of the amplifier is equal for both switch 
positions, it does not influence the balance condition. Also drift effects of the 
gain do not affect the balance condition as long as they are slow by comparison 
with the period of the switching frequency. This is a noticeable advantage 
of the Dicke-radiometer by comparison with the fundamental radiometer of 
Fig. 3.18. The measurement time T of the Dicke-radiometer can be arbitrarily 
larger than the switching period. The measurement time will be chosen large 
enough, so that the related measurement error for the noise power will be 
sufficiently small. However, it is absolutely essential that  the power meter has 
a settling time much shorter than the switching period. 

Often the switch of the Dicke-radiometer will not have the same reflection 
coefficient for both positions. In this case, the circuit of Fig. 3.20 can be 
modified as shown in Fig. 3.22. First, the device under test is connected 
to port 1. With the reference noise source at the switch position I a zero 
compensation is performed which leads to the value T:ef. Next, the reference 
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T,l,'f; Z" re f  = Z m 

Fig. 3.22 Dicke-radiometer with two reference noise sources. 

noise source I1 is connected to port 1 and by varying Ti:f a further zero 
balance is performed. For equal impedances Z:if = Z,  the temperature of 
the device under test is given by 

T, = T::f . (3.41) 

In this way, equal input reflection coefficients for both switch positions are 
not necessary. Only the long-term stability of the input reflection is needed. 
The reference noise source I at port 2 does not need to be calibrated, it just 
has to be variable and stable. The impedance Zie f  may be different from the 
impedance of the device under test 2,. The impedance of the reference noise 
source 11, however, must be identical to the impedance of the device under 
test, i.e. Zm = Z,ILf. 

3.5.2 Problems with mismatched devices under test 

In the previous sections. measurement methods for the determination of the 
noise temperature of a matched device or devices with a known impedance 
were presented. In this context. the word known can also have the meaning 
that the impedance of the device under test is equal to the impedance of the 
noise source. However, if the device under test is mismatched and, further- 
more, its impedance is unknown, perhaps complex and frequency-dependent, 
then an exact measurement of the unknown noise temperature becomes more 
difficult because of two problems. 

First problem: Because of the mismatch of the device under test with 
the temperature T,, one does not measure the available noise power Pa, = 
k . T, . Af in the bandwidth A f ,  but a smaller power fi  given by 

f i  = (1 - 1 ~ 1 ' )  k . T, . A f , (3.42) 

where 1p1 denotes the magnitude of the reflection coefficient of the device 
under test. This relation will be derived next., 

In Fig. 3.23 the load resistance Zo, which also serves as the reference 
impedance, is assumed to be real. The noise power Pl at the load impedance 
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Fig. 3.23 
vice. 

Explanation of the measured noise power for a mismatched de- 

20. which is supposed to be noiseless, can be calculated as follows: 

4 k .  T, . Re{Z,} 
Pl = . Z o . A f  . 

120 + 2m12 
(3.43) 

With 

Eq. (3.43) yields: 

(3.44) 

= k T m A f ( l  - ipi2) = P,,,(l - Ipl') . (3.45) 

Here. P,, = k . T, ' A f is the available noise power of the device under test 
or the generator, respectively. The noise power Pl, which arrives at the load 
resistance 2 0 ,  is reduced by the reflected part P,., 

P,, = kTm . Af . lpi2 . (3.46) 

The term 1 - Ipl2 is equal to the gain G, of the circuit: 

(3.47) 

If, as depicted in Fig. 3.24, the impedance of the device under test or the 
generator with 2, = 2, as well as the load resistance 21 are complex and not 
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equal to the reference impedance 20, then the following well-known relation 
for the gain G, results: 

(3.48) 

In Eq. (3.48) rg and rl are the reflection coefficients of the generator and the 
load impedance, with respect to the real reference impedance (Fig. 3.24) 

(3.49) 

Equation (3.48) is not well suited for an illustrative explanation. Such an 

Fig. 3.24 Mismatched generator and load impedances. 

explanation can be derived similarly to  Eq. (3.45) and (3.46), if a modified 
reflection coefficient f i  is introduced, which is defined with respect to the 
generally complex generator impedance Zg G Z,. With 

it follows for the power Pl at t,he load resistance: 

(3.50) 

(3.51) 

as will be shown in problem 3.2. Here, Pa, = kTmAf is again the available 
noise power (or the available power in general) of the device under test or the 
generator, respectively. The power P,, with 

Pm = Pav - fi  = Pav 1 ~ 1 ~  , (3.52) 

can be interpreted as the reflected power, similar to Eq. (3.46). as will be seen 
more clearly later. The power Pl can be defined as the transmitted power. 
The available gain G, is again given by 

G, = 1 - i,6I2 . (3.53) 
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f 2  
T r e  f 1 2 0  

This term is identical to  the term for G, in Eq. (3.48) 

Problem 

isolator, To 

+------++ 
* 
2 0  1 

3.2 
Eq. (3.48). 

Verify the validity of Eq. (3.51) as well as the identity of Eq. (3.53) and 

I1 ' ' 
reference 

clock generator 

A second problem, which arises for a mismatched one-port device, is caused 
by a noise wave of the first preamplifier radiating toward the device under 
test. This noise wave can be reflected by the device under test and can thus 
return to the amplifier. In general, this reflected wave will be correlated with 
the noise wave at the output of the amplifier. For a measurement setup as 
shown in Fig. 3.20, the noise contributions of the amplifier are no longer equal 
for both positions of the switch and, consequently, it has an impact on the 
noise balance. This problem can be solved by connecting a matched ferrite 
isolator between the switch and the amplifier (Fig. 3.25). Such a passive 
non-reciprocal device of a homogenous temperature shows uncorrelated noise 
waves at its input and output, as has already been discussed. Additionally, 
its noise contribution at its input is known quantitatively, if the physical 
temperature of the isolator is known. Furthermore, the noise wave of the 

+I- 

1 
display 

PSD - 
Fig. 3.25 
fier. 

Radiometer setup with an isolator in front of the first preampli- 

preamplifier cannot reach the device under test, due to  the backward isolation 
of the isolator. 

If the radiometer is balanced. i.e. if the temperature of the matched refer- 
ence is tuned until the noise powers a t  the output of the cascade of amplifiers 
are equal for both positions of the switch corresponding to a zero output sig- 
nal of the phase-sensitive detector, then the noise powers at the input of the 
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isolator are given by: 

position I 
position I1 

PI = k . T, . A f . (1 - lpl') + k . To . /p(' . A f 
PII = k . TTef . A f . 

For position I the second term represents the contribution of the isolator. For 
a balance, that means PI = PII ,  we have 

Tm ' (1 - f TO ' /PI2 = TT€f (3.54) 

If /pi2 is known from measurements, then T, can be calculated for a known 
TT,f and a known temperature TO of the isolator by 

T T e f  - To . Id2 
1 - /PI2 

T, = (3.55) 

If a passive ferrite isolator is not available, as e.g. for frequencies below 500 
MHz, then the uncorrelated amplifier of Fig. 2.23 can be used. However, 
its temperature a t  its input has to be determined. If a high degree of de- 
correlation is needed, then it is also possible to  combine an isolator and an 
uncorrelated amplifier. 

An evaluation of Eq. (3.55) becomes difficult, if the reflection coefficient p 
depends on the frequency within the measurement bandwidth. Then, Ip( f)1' 
in Eq. (3.55) has to be replaced by its mean value. 

A more elegant way for the measurement of the noise temperature of mis- 
matched objects is to use so-called compensation radiometers, where the re- 
flection coefficient of the device under test does not need to be known, because 
it is not part of the balance condition. Such compensation radiometers will 
be discussed in the next section. 

3.5.3 Compensation radiometers 

As can be seen in Fig. 3.26, the device under test and the reference noise 
source are connected alternately to the input of the amplifier by a switch- 
able circulator. The direction of circulation can be reversed by changing the 
direction of the magnetizing field of the circulator. This, however, is not a 
very practical solution and therefore a more suitable circuit will be proposed 
later. For operation in position I ,  the noise power PI enters the input of the 
first preamplifier. The noise power PI consists of a noise contribution from 
the reference device: which is reflected by the device under test, and a second 
contribution from the device under test. Both contributions are uncorrelated. 
Because of the possible mismatch of the device under test, described by the 
reflection coefficient p: the noise power of the device under test is reduced by 
a factor of 1 - 1 ~ 1 ' .  

PI = k . TTef . /p I2  . A f + k . T, . (1 - /p i ' )  . A f . (3.56) 
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For the orientation I1 of the circulator and under the assumption of an ideal 
circulator, the noise power of the reference source is measured: 

PIT = k .  T,,f. Af . (3.57) 

By varying the reference temperature TTef the noise powers PI and PII are 
balanced for the two directions of circulation: 

From this relation it follows that 

T, = TTef 1 (3.59) 

provided that the magnitude of the reflection coefficient p of the device under 
test is not equal to one. The result of Eq. (3.59) does not depend on the value 
of the reflection coefficient p .  Hence, p may be frequency-dependent. This 
means that p(f)  may vary within the bandwidth of the measurements. The 
described method is called a compensation method, because the reduced noise 
contribution of the device under test, due to its mismatch, is compensated by 
an equivalent contribution of the reference. 

One can also argue in another way: the part of the circuit within the 
dashed box in Fig. 3.26 has an input noise temperature Ttn. If this part is at 
a homogeneous temperature TTef = T, and if, furthermore, the circulator is 
lossless, then T,, = TTef = Tm. 

The compensation principle will be explained once more with the help of 
Fig. 3.27. In this circuit, an isolator at the temperature To is placed between 
the device under test and the amplifier. For clarity reasons, this isolator is 
realized on the basis of an ideal circulator. One of the three ports of the 
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Fig. 3.27 Principle of the compensation radiometer. 

circulator is terminated by the real reference impedance 20, which is a t  the 
temperature To. One can recognize that a wave radiated from the input of the 
amplifier is absorbed at  port 3 of the circulator. The wave at  the output of 
the amplifier is constant and does not depend on the impedance of the device, 
2,. This output wave can be eliminated for the measurements. Another 
noise wave originates from the termination 20 of port 3 of the circulator. I t  
propagates towards the device under test where it is reflected. Then, it passes 
the circulator resulting in the power P,,, at the input of the amplifier 

P,, = k .  TO . Af . (p i2  = Pa, lpi2 . (3.60) 

The device under test emits the power Pl to the input of the amplifier. With 
T, = TO the power Pl is given by: 

= 

= Pav(1 - Ip12) * (3.61) 

This power is lower than the available power Pa,, due to the mismatch of the 
device under test. The missing part is compensated by P,,. Thus, the input 
circuit is described by the equivalent circuit of Fig. 3.23. 

Even if the load resistance 2, is mismatched, i.e. complex and not equal 
to a real reference impedance 20 but still a t  the temperature To, an exact 
compensation can be achieved. For this purpose, the circuit of Fig. 3.24 is 
considered. Extracting the lossless imaginary part jIm{ Z,} from the load 
resistance 21, Fig. 3.24 can be modified according to Fig. 3.28. Shifting the 
reference plane from 1-1’ to 2-2’ in Fig. 3.28, the magnitude of the reflection 
coefficient ,ij remains unchanged. Adopting the expression for ,ij from Eq. (3.50) 
leads to 

9 k , T, . A f . (1 - lp12) = k . TO A f . (1 - lpI2) 

At the reference plane 2-2’ the impedance is equal to 2, + jIm{Zl}. The 
impedance Re{Zi} can be chosen as a new real reference impedance with 
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2 load impedance 

zm = z, I 
I 
I 
I 
I 

Tm = To 

Fig. 3.28 
tance. 

Explanation of the compensation effect for a complex load resis- 

Re{ZL} E 20. Then, Eq. (3.60) and Eq. (3.61) can be applied and the case of 
a complex load resistance Zl is traced back to the case of a real load resistance 
20, to which the following considerations will be restricted. 

Instead of the switchable circulator, which will probably cause switching 
spikes and which might be limited to low switching rates, it is also possible to 
use a fixed circulator, a signal divider and an ordinary mechanical or electronic 
switch, as depicted in Fig. 3.29. 

circulator 
Tmr Z m  

divider DUT 

- P  reference 

preamplifier amplifier rectifier 

Fig. 3.29 
and a switch. 

Compensation radiometer with a fixed circulator, a signal divider 

A compensation radiometer can also be realized without a circulator, of 
which the real properties often differ noticeably from its ideal characteristics. 
The compensation radiometer can also be built by means of couplers, wave 
terminations, an attenuator. a switch and a non-reciprocal passive isolator, as 
shown in Fig. 3.30. 
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Fig. 3.30 
two reference sources. 

Compensating radiometer with couplers, a switch, an isolator and 

Problem 

3.3 Derive the balance condition for the radiometer of Fig. 3.30. The cou- 
plers are assumed to  be lossless with an attenuation IE for the power coupling. 
The matched attenuator has the power attenuation a = 1 - K .  All passive 
components are at the ambient temperature TO. Except for the device under 
test, which has the reflection coefficient p, all other components are matched. 
The variable reference noise source with the temperature Tref is available 
twice, with exact tracking of the two noise temperatures, i.e. T:ef = T::f. 

Provided that all passive components, i.e. all components within the dashed 
box in Fig. 3.30. including the isolator, are at the same homogenous tem- 
perature, e.g. To, then an arbitrarily mismatched device under test ( p  # 0) 
a t  the temperature T, = TO will necessarily be measured exactly with this 
temperature. This means that for Tm = To there is no offset error, even if 
e.g. the couplers and the connecting lines have losses. Such an offset test can 
be performed if, for example, a wave termination with the temperature TO is 
used as the device under test combined with a series or parallel reactance to 
cause a mismatch. The reactance may have losses, if these are also at the 
temperature TO. An offset error generally occurs, if the isolator or the input 
of the preamplifier are not at the temperature To. If the input temperature 
is lower than TO, then it can be raised artificially to the value TO by additive 
noise. 



106 MEASUREMENT OF NOlSE PARAMETERS 

An offset error can also be caused by correlation effects of the preampli- 
fier. The isolator/preamplifier combination itself radiates some noise power 
towards the device under test, i.e. a noise wave is emitted by the input of the 
isolator/preamplifier, reflected by the mismatched device under test and then 
returned to the isolator/preamplifier. In addition, the isolator/preamplifier 
generates a noise wave at  the output. For all radiometer setups discussed 
so far, it was assumed for the balance condition that the noise waves at the 
input and output are uncorrelated, and that the noise wave at the output 
thus only adds a constant contribution for both switch positions, which dis- 
appears in the final balance condition. This is true for a matched isolator 
a t  a homogenous temperature with sufficient reverse isolation. A low-noise 
preamplifier does generally not possess this characteristic except for the case 
of de-correlation, as for example the de-correlated amplifier of Fig. 2.23. In 
general, the isolator has a finite backward isolation. Therefore, the combina- 
tion of an isolator and a preamplifier can again possess a finite de-correlation 
only. In fact, a high degree of de-correlation is needed for the described com- 
pensation radiometers, in order to  keep the measurement errors small, as will 
also be shown in problem 3.4. 

Problem 

3.4 Consider the radiometer circuits of Figs. 3.26, 3.29 and 3.30. Which 
de-correlation of the preamplifier with isolator is required for a measurement 
error below l K ?  The reflection coefficient of the device under test is assumed 
to  be -6 dB. 

It may be necessary to utilize both isolators as well as de-correlated am- 
plifiers and there might even be the need for further provisions to reduce the 
effective correlation. For the correlators of Fig. 3.26 and 3.29, the circulator 
also reduces a possible correlation. The two variable reference noise sources 
in Fig. 3.30 must have a good tracking behavior. These two noise sources can 
also be realized by means of one noise source and a matched and decoupling 
signal divider or by means of one noise source and a switch. 

The compensating radiometer can be modified by adding a further variable 
noise source so that mismatched devices under test with a temperature below 
the ambient temperature To can be measured without using a cold noise source 
(cf. problem 3.5). 

Problem 

3.5 With one further hot noise source with Tau, > To the compensating 
radiometer according to Fig. 3.30 or Fig. 3.26, 3.29, respectively, can be ex- 
tended such that mismatched cold devices under test with T, < To can be 
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measured. The variable noise source with the temperature Tau, can be in- 
serted into the circuit of Fig. 3.30 via a further directional coupler in the 
measurement path, so that the overall noise in this branch is increased and a 
zero compensation by the reference temperature T,!',, becomes possible. Fur- 
thermore, the compensating branch is extended by an attenuator with the 
attenuation a2 = 1 - n2. After having increased the temperature Tau, in a 
defined way, e.g. by a factor 71, a second balance is performed by increasing the 
reference temperature T,!'if. Derive an equation to determine the temperature 
T, of the device from T,!:,. 

3.5.4 Correlation radiometer 

The operation of a correlation radiometer will first be explained for a matched 
device under test. The noise signal of the device under test with the temper- 
ature T,, described by the noise wave A,, is superimposed to the noise wave 
A,,f of the variable and matched reference noise source. The superposition 
is realized with a directional coupler, e.g. a 3 dB 180"-coupler, such that the 
sum of the signals A, and A,,, is obtained at one output port and the dif- 
ference of the signals A, and A,,f at the other output port (Fig. 3.31). The 

3dB- 1 80°-coupler 

(multiplier) 

Fig. 3.31 Principle setup of the correlation radiometer. 

noise waves of the 180"-coupler are amplified separately by amplifiers with the 
complex voltage amplification factors VI and Vz. The signals are correlated 
in the correlator, which can be described in the time domain as a multiplier 
with a subsequent low-pass filter, thus producing the function: ul ( t )  . uz(t) .  A 
description of the correlator in the frequency domain leads to the expression: 

(3.63) 

With 
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(3.64) 

(3.65) 

1 
2 

= - . k ( T m - T , , f ) . A f  .Re{V;.Vz} , (3.66) 

if A,  and A,,f are not correlated. For a circuit as in Fig. 3.31, one can 
expect that A, and A,,, are not correlated, because they originate from dif- 
ferent sources. A vanishing correlation, i.e. Re{WlZ} = 0 or a zero display 
at  the output of the correlator, respectively, corresponds to T, = T T e f ,  in- 
dependently of V1 or Vz. Thus, the balance of the correlation radiometer is, 
in principle, similar to the balance of the switching radiometer: the reference 
temperature is varied until a zero output signal is obtained. The significant 
advantage of the correlation radiometer by comparison with the switching 
radiometer is that no switch in front of the preamplifier is needed. Such a 
switch can produce measurement errors especially due to  its switching spikes, 
its non-zero and variable attenuation and its noise contribution. Nevertheless, 
the additional use of a switch might be advantageous even for a correlation 
radiometer, as shown in Fig. 3.32. In general. an analog multiplier shows a 
finite dc voltage as an offset at its output, even if the correlation is zero. For 
this reason, it is useful to introduce a 180O-phase shifter behind one of the 
two amplifiers of the correlation radiometer (Fig. 3.32), which periodically 
changes the polarity at a low frequency of, e.g. fif = 10 kHz. At the output 
of the multiplier (correlator) the resulting 10 kHz alternating signal is ampli- 
fied and displayed. By this provision, the influence of an offset voltage of the 
multiplier can be eliminated. 

For the zero balance it does not matter, if the 0"/18O0-phase shifter shows 
a slightly different attenuation in both switching positions as expressed by the 
amplification factor V{ = Vl . (1 - AV),  where AV is real. The amplitude 
of the 10 kHz signal a t  the output of the multiplier is proportional to the 
difference of Re(W12) for both of the phase states , i.e. 0' (I) and 180" (11) 
of the 180O-phase shifter (compare with Eq. (3.27)).  

Re{ W:,} - Re{ W::} 

= - . kAf . (T, - T,,f)Re{V;Vz - V{*Vz e-?1803} 

= - . kAf . (T, - T,,f)Re(V;Vz - V;(1 - AV)Vz 8 e--3180"} 

1 
2 
1 
2 
1 

2 
(3.67) = - . k A f .  (Tm - T,,f)Re{V;V2(2 - AV)} 
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Fig. 3.32 Correlation radiometer with a 180"-switch. 

Obviously, a balance again leads to T, = T,,f. However, if the correlator has 
a finite offset error, then a different attenuation for the two switching states 
of the 18O0-phase shifter leads to an error at  the output of the correlator. In 
other words, a parasitic amplitude modulation of the phase shifter leads to a 
measurement error, if the correlator is not exactly balanced. 

It should be mentioned that the 180' phase difference of the phase shifter 
is not critical and that for a deviation from the 180' phase shift the sensitivity 
is only marginally reduced. 

Instead of a 180"-coupler in the receiver stage of the correlation radiometer, 
a 90°-3dB-coupler can be employed as well. This will be discussed in more 
detail in problem 3.6. 

Problem 

3.6 The correlation radiometer will be realized on the basis of a 9O0-3dB- 
coupler at  the input. What further changes of the circuit are necessary in 
order to  measure noise temperatures wit,h such a setup? 

For mismatched devices under test the compensating methods derived for 
the switching radiometer can also be transferred to the correlation radiometer. 
For the correlation radiometer of Fig. 3.26, a modified version is depicted in 
Fig. 3.33 as an example. 

The relation for the balance of the radiometer circuit is equal to Eq. (3.58). 
The circulator can also be replaced by a directional coupler as depicted in 
Fig. 3.30. Two variable reference noise sources should have tracking properties 
as good as possible. However, the two noise sources should not be correlated. 
Therefore, it is not advisable to derive them from a single noise source with 
the help of a signal divider. For the radiometers discussed here, it is not 
necessary that the device under test and the reference noise source have the 
same amplitude st at  is t ics. 
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circulator 

radiometer 

Fig. 3.33 Compensation-correlation radiometer for a mismatched device 
under test. 

3.5.5 Fundamental errors of noise power or noise temperature 

measurements 

As already discussed in Section 3.1.8, the power of a stationary noise sig- 
nal cannot be measured without errors, because the available measurement 
time and the measurement bandwidth is limited. The standard deviation 
0, = AT, for a temperature measurement according to Eq. (3.23) is in- 
versely proportional to  the square root of the measurement time and the 
bandwidth B = A f. If Ta denotes the system temperature of the amplifier, 
then 

1 

(3.68) 

A switching radiometer compares the noise temperature T, (standard devia- 
tion ATm) of a one-port with the noise temperature T,,f (standard deviation 
AT,,f) of a reference one-port. The balance of the radiometer yields the re- 
sult T, = T,,f. However, this balance can be achieved only with an error 
ATbal (standard deviation), because the temperature of the DUT as well as 
the temperature of the reference are measured with an error. With Eq. (1 .52)  
for uncorrelated noise signals, the variance of the error for the balance of the 
temperature results as the sum of the variances of the measured temperatures 
of the device under test and the reference temperature. 

 AT;^^ = AT; +  AT;^, (3.69) 

For equal measurement times 7' for the reference and the measurement device 
and for a balance of the setup, we have AT, = AT,,, and 

(Tm+Ta) with B = A f  . (3.70) AT,,, = fi. AT, = - J2 
JlrT-B 
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Concerning the switching radiometer the measurement times 7' for the mea- 
surement device and the reference device will normally be identical. With a 
total measurement time T = 27' the temperature error AT,, increases by 3. 

factor of Jz to 

(3.7 

The total measurement time in general is independent of the switching fre- 
quency. The increase of the measurement error by a factor of 4 or 3 dB for 
an equal distribution of the measurement time between the object and the 
reference can be avoided, if a double or transfer switch and two amplifying 
channels are used as depicted in Fig. 3.34. The transfer switch consecutively 

clock v2 

Fig. 3.34 Two-channel radiometer with a transfer switch. 

contacts 1 with 2 and 1' with 2' or 1 with 2' and 1' with 2, respectively. The 
output signals of the two detectors or power meters are in phase and can be 
subtracted or, as shown in Fig. 3.34, can be added, if the polarity of one de- 
tector diode is reversed. This radiometer with two channels makes maximum 
use of the measurement time. The radiometer thus has a temperature error 
according to Eq. (3.70). This means an improvement of 3 dB by comparison 
with the simple switching radiometer. 

The temperature error increases, if the DUT with a reflection coefficient p 
is mismatched. This will be derived quantitatively in problem 3.7.  

Problem 

3.7 
picted in Fig. 3.26 as a function of the reflection coefficient p .  

Calculate the temperature error for a compensation radiometer as de- 

The previous error considerations are independent of the switching fre- 
quency. Alternatively, the necessary measurements can also be performed 
subsequently, the results can be stored and the differences can then be com- 
puted. 
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In addition to these principle errors, which can be kept small by choosing a 
large bandwidth, further errors arise due to, for example, drift effects, quan- 
tization errors, non-uniform heating, etc. The reasons for these errors can be 
as manifold as known from other measurement procedures. For mismatched 
devices under test further measurement errors might appear, if the input tem- 
perature of the preamplifier and the isolator are not precisely equal to  To and 
if the isolator-amplifier combination has partly correlated noise waves at  its 
input and output. 

For a switching radiometer with a zero balance, the characteristic of the de- 
tector has no influence, i.e. the detector must not necessarily have a quadratic 
characteristic, as long as the device under test and the reference have the 
same statistical amplitude behavior, for example, if they are both normally 
distributed. 

3.5.6 

One would expect that  a correlation radiometer has the same temperature 
error (Eq. 3.70) as a two-channel switching radiometer, because of their sim- 
ilarity. In fact. this is true as will be shown in problem 3.8. 

Principle errors of a correlation radiometer or correlator 

Problem 

3.8 Show for a correlation radiometer (Figs. 3.31 or 3.32) that it has the 
same principle measurement error as the radiometer with the double switch 
of Fig. 3.34. 

Furthermore, one can prove that also for a correlation radiometer the mul- 
tiplier within the correlator must not necessarily be ideal, if a zero balance 
is performed. In the GHz frequency range a broadband multiplier is realized 
e.g. as a double balanced mixer which shows some deviations from an ideal 
multiplier Characteristic. Under the balance condition and for an equal am- 
plitude distribution of the device under test and the reference. the correlator 
must not necessarily have a perfect multiplier Characteristic. This will be 
demonstrated in problem 3.9 by a direct calculation. 

Problem 

3.9 Show by using the characteristic function that vanishing correlation is 
measured correctly with a correlator, even if its characteristic deviates from 
an ideal multiplier. The correlator contains a 180O-phase shifter according to 
Fig. 3.32. 
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3.6 MEASUREMENT OF T H E  NOISE FIGURE 

According to  its definition the measurement of the noise figure is based on a 
variation of the generator’s noise power and the observation of a corresponding 
change of the noise power at  the output. For the 3dB-method an adjustable 
calibrated noise generator is needed, the temperature Tg of which should be 
known (Fig. 3.35). For the quantitative determination of the noise figure 

0 
amplifier 

20 (j-Jq-O-Jy 
generator detect or 

power P2 

Fig. 3.35 Principle setup for the measurement of the noise figure. 

F ,  the noise temperature Tg of the generator has to  be increased until the 
noise power P2 at  the output of the device under test or the post-amplifier, 
respectively, has doubled. The doubled noise power is denoted by Pi. The 
noise contribution of the two-port t o  the output noise is given by AP2 and the 
noise contribution of the generator with the temperature TO is represented by 
PZO with: 

Solving Eq. (3.72) for AP2, 

AP2 = P20 [ z  - 21 , 

and inserting the result into Eq. (2.70) for the noise figure yields 

( 3 . 7 2 )  

(3.73) 

(3.74) 

The expression Tg - TO is also called excess noise temperature Tex. The noise 
figure is thus proportional to the excess temperature of the noise generator 
normalized to TO, which is necessary for doubling the noise power at  the 
output. Instead of an increase by 3 dB of the output power it is also possible 
to choose any other arbitrary value. The noise figure is measured at  the center 
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frequency fa of the band-pass filter of the amplifier cascade, strictly speaking 
as a mean noise figure within the bandwidth A f of the filters. The noise figure 
is generally measured for the cascade of the device under test and the first 
amplifier. For the determination of the noise figure of the device under test 
itself, the contribution of the first amplifier has to be eliminated by using the 
cascade formula. This is not necessary, if the device under test is an amplifier 
with sufficient gain. Then, the noise contribution from the following stage can 
be neglected. The noise powers a t  the output of the device under test can also 
be measured directly by means of a radiometer. In this case, the noise figure 
of the following post-amplification stages will not influence the measurement 
result. 

For the Y-factor-method a noise generator with a fixed excess temper- 
ature Tg0 - TO is used, which can be switched on and off periodically. Such 
a noise source can be realized, for example, by an avalanche diode and a 
matched attenuator. A common value for T,o/To is 16 dB. For the on-state of 
the noise generator with the temperature Tg0 the amplified noise power shall 
be denoted by Pi. For the off-state of the noise generator with the tempera- 
ture To the noise power at  the output is assumed to  be P2. The ratio of Pi 
and Pz is called the Y-factor: 

(3.75) 

With Eq. (3.72) and Eq. (3.74) and a known Y ,  the following relation results 
for the noise figure 

(3.76) 

Similar to other noise parameters, the noise figure cannot be measured arbi- 
trarily precisely due to the finite measurement time and the restricted band- 
width. In problem 3.10 it will be shown that the error caused by the calcula- 
tion of the mean square value of the noise signals is of minor importance in 
comparison to the influence of the other measurement errors. 

Problems 

3.10 How large is the error due to the stochastic nature of the noise signal 
for a noise figure measurement in a bandwidth of 5MHz and for a measurement 
time of O.ls? The noise figure is assumed to be 6dB and the excess temperature 
has a value of 16dB. 

3.11 
figure meter? 

How can the gain of a device under test be determined with a noise 
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In addition to the measurement of the noise figure, the knowledge of the 
minimum noise figure and the optimum generator admittance of a linear two- 
port is of great interest for the design of low-noise circuits e.g low-noise am- 
plifiers. Based on the measured noise parameters, the noise behavior of a 
linear circuit can be simulated completely. In the following section, different 
methods for the measurement of the noise parameters of linear two-ports will 
be presented. 

- - 
amplifier 

BP 
DUT 

- - 

3.7 MEASUREMENT OF THE MINIMUM NOISE FIGURE AND 
OPTIMUM SOURCE IMPEDANCE 

Fig. 3.36 Block diagram of the noise parameter measurement setup. 

Similar to the measurement of the noise figure, the setup consists of a noise 
source with a cold and a hot state, described by the noise temperatures TO and 
T,,+To for the noise generator temperature Tg. At the output of the DUT the 
noise signals are amplified and band-pass-filtered and the noise power can be 
measured by a power meter. As already seen in Eq. (2.114) or Eq. (2.126), the 
relation between the noise figure and the noise parameters only depends on the 
generator admittance. The determination of the noise parameters can thus 
be performed with the help of an impedance tuner with different impedance 
states denoted by p ,  which transforms the generator admittance of the noise 
source into a variety of different admittances YgP. Such an impedance tuner 
can be inserted between the noise source and the device under test (DUT). 

A variety of methods for the measurement of the noise parameters of linear 
two-ports, i.e. the minimum noise figure Fmin, the optimum generator admit- 
tance Yopt = Gopt + jBopt and the equivalent noise resistance R, will now 
be discussed. Alternatively, in a spectral representation, the spectra W,, Wi, 
W,, = C, + jCi for the equivalent circuit will represent the noise parameters 
and have to be determined. 

In principle, all methods are based on noise power measurements. The 
simplified block diagram of the measurement setup is depicted in Fig. 3.36. 

noise impedance 
source tuner 

power 
detector 
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Besides changing the generator admittance, the tuner at  the temperature 
TO also causes a change of the generator temperature for the hot state of 
the source leading to an effective temperature T,, for the p-th state of the 
impedance tuner at  the input of the DUT. 

In order to determine the noise parameters of a linear two-port, it is possible 
to measure the noise figure of the DUT according to the Y-factor-method, as 
described above, and to vary the generator admittance by means of the tuner 
until a minimum of the noise figure is obtained. For this optimum state, 
the generator admittance can be measured with a network analyzer. This is 
quite a tedious and unprecise method for the noise parameter measurement, 
because on the one hand it might take quite some time to find the minimum 
for the noise figure and on the other hand the impedance range of the tuner 
may be restricted, so that the tuner may not necessarily be able to realize the 
optimum generator admittance. Furthermore, the noise temperature for the 
hot state of the noise generator may change with the position of the tuner, 
thus changing the measurement value of the noise figure. For these reasons, 
other methods for the measurement of the noise parameters will be presented 
in the following section, e.g. the hot-cold or paired method which is based on 
noise figure measurements and the cold or unpaired method as well as the 
7-state-method, which are based on noise power measurements. 

3.7.1 

The hot-cold or paired method for the determination of the noise parameters 
is based on noise figure measurements F, for a variety of different generator 
admittances Yg, = G,,+jB,,. As already introduced in Eq. (3.75), the mea- 
surement of the noise figure requires two noise power measurements according 
to the Y-factor method. For the p-th impedance position of the tuner with 
the corresponding generator admittance Y,,, the noise figure Fp can be calcu- 
lated from the noise power measurements Pc, and Ph, for the temperatures 
Tc, = TO and Th, = TO + Tes,. The noise figure of the p-th tuner position 
can be written as a function of the spectral noise parameters (Eq. (2.114)): 

Hot-cold method or paired method 

(3.77) /YgpI2Wu + W t  + 2GgpCr + 2BgpCt F ,= l+  
 TOG,, 

Rearranging this equation 

( F p  - 1)4kToGgp = IYgp12W, + W ,  + 2GgpCr + 2Bg,C, , (3.78) 

one obtains a linear equation for the spectral noise parameters W,, W, ,  Cr 
and C,. Thus, the measurement of the noise figure for different tuner positions 
leads to a system of linear equations for the determination of the unknown 
spectral noise parameters. For the calculation of the unknowns, at least four 
noise figure measurements for different generator admittances Y,, have to 
be performed. In order to minimize the measurement error, it is advanta- 
geous to perform more than the necessary four measurements, so that the 
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parameters can be determined on the basis of the least-squares method for an 
over-determined system of linear equations. Moreover, for the enhancement 
of the measurement accuracy, weighting factors can be introduced in order to 
reduce the influence of data which seem to be less accurate. 

The spectral noise parameters are thus known. The parabolic noise param- 
eters can directly be calculated with (cf. Section 2.3.5): 

L Bopt = -- 
w, 

C ,  
2kTo 

Fmin = 1 + 2 R n G o p t + -  . 

(3 .79)  

(3 .80)  

(3 .81)  

(3.82) 

For this hot-cold or paired method measurement errors arise, because the 
effective generator noise temperature Tgp for the hot state of the noise source 
has to be known exactly for the different source admittances Ysp. Further- 
more, the source reflection coefficient rgp has to  be the same for the hot and 
the cold state of the noise source. 

3.7.2 

The problems discussed above can be minimized by a determination of the 
noise parameters mainly from unpaired noise power measurements with a 
so-called cold noise source at the ambient temperature TO. For the noise 
equivalent circuit in Fig. 3.37, the noise power at  the output of the two-port 
can be calculated in the frequency band Af as follows: 

Cold method or unpaired method 

" 
m 

Here, tc represents the power gain and Yt, is the input admittance of the 
device under test. 

With Eq. (3.83) it follows that,  in contrast to the noise figure, the noise 
power also depends on the product of the power gain K, the real part of the 
load admittance YL and the bandwidth A f ,  all together abbreviated by a 
factor m. Furthermore. it depends on the unknown input admittance of the 
two-port Y,, . 

A partly unpaired method still needs one noise figure measurement, i.e. one 
paired noise power measurement. Based on this paired measurement with the 
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Fig. 3.37 
the load admittance YL. 

Yoise equivalent circuit for the calculation of the noise power at 

hot and cold noise power Ph and Pc for the generator temperature Th and T, 
and for the same generator admittance Yg 

m 
P, = (4kTcGg + iYgJ2Wu + Wi + 2GgCT + 2BgCi) (3.85) 

iY,n + Y g 1 2  

the factor m can be determined, if the input admittance Yin is known: 

(3.86) 

For the determination of all noise parameters, further noise power measure- 
ments, with e.g. the noise source operated at the ambient temperature TO, 
have to be considered. On the basis of cold noise power measurements for 
different tuner positions p,  one obtains with Eq. (3.85) 

a system of linear equations for the unknown parameters W,, Wi ,  C ,  and C i ,  

if Ytn is known. With at least one noise figure and four noise power measure- 
ments the noise parameters are calculable. 

Another algorithm makes it possible to  determine the noise parameters on 
the basis of unpaired noise power measurements only. For this purpose, at 
least five noise power measurements have to  be performed for different source 
admittances. For a t  least one of these measurements, the noise source has to 
be operated in its hot state. For this method identical values of the source 
admittance for the hot and cold state of the noise source are not necessary. 

For the determination of the noise parameters according to the unpaired 
method different ratios of the measured noise powers denoted by p , ,  n = 
1 . .  . 4 ,  for the p-th and v-th tuner position are considered. In this way, the 
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dependence on the load admittance YL and the power gain K or the factor rn 

(3.88) 

With the help of Eq. (3.83) the following linear relation as a function of the 
unknown spectral noise paramet,ers W,, W,, C r  and C ,  results: 

4k(PnTgvGgv - T g p G g p )  = 2 C r ( G g p  - P n G g v )  + 2 C i ( B g p  - P n B g v )  

+ Wu(IYgp1’ - P n I Y g v l ’ )  + w i ( 1 -  p n )  
(3.89) 

At least one noise power measurement has to be performed with the noise 
source operated at  a hot temperature different from the ambient tempera- 
ture T o ,  so that a system of four linearly independent equations results. As 
will be shown later, the optimum generator admittance Yopt can already be 
determined on the basis of cold noise power measurements only. 

For this unpaired or cold method, the input admittance y Z n  of the device 
under test has to be known. It can be determined with the help of a network 
analyzer. However, this additional measurement can lead to additional er- 
rors. For example, reproducibility errors might arise because of the necessary 
multiple connections and disconnections of the connectors. 

Also for these methods it is advantageous to perform more than just the 
minimum number of power measurements and to  calculate the unknown noise 
parameters on the basis of the least-squares method for over-determined linear 
equations. 

3.7.3 The 7-state-method 

The 7-state-method allows to determine the noise parameters on the basis of 
unpaired noise power measurements. The optimum generator admittance Yopt 
and the input admittance Y,, of the DUT can be calculated from cold noise 
power measurements only. The measurement of the DUT’s input admittance 
with a network analyzer is not necessary. The minimum noise figure F,,, 
and the equivalent noise resistance R, can be determined on the basis of 
cold noise power measurements only, except for the previously defined factor 
m. In order to determine the unknown factor m, one further noise power 
measurement with a hot noise source has to be performed. 

The theory of the 7-state method is based on noise power measurements 
according to Eq. (3.83). This relation can be rewritten as follows: 

leading to 
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(3.91) 

Tgp = To + T e z , p  . (3.92) 

For the different tuner positions p. a system of equations results, which 
depends non-linearly on the input admittance Y,, = G,, +jB,, at the input of 
the DUT and linearly on the noise parameters and the factor m. The products 
of the noise parameters and the factor m are substituted by normalized noise 
parameters W,, W, and e,, also called modified noise parameters. As the 
real part of the cross spectrum C, and the part of the noise temperature at 
ambient temperature, 4kT0, both depend on the real part of the source input 
admittance, they are combined as 5,. Thus, only the term ap5 in front of the 
factor m depends on the excess noise temperature TeZ+. 

The noise parameters, the input admittance and the factor m can be de- 
termined on the basis of eight noise power measurements, where at least one 
measurement has to be performed with a hot noise source temperature. In 
order to enhance the measurement accuracy with the help of the least-squares 
method a higher number of measurements is recommended. For the elimina- 
tion of the non-linear dependence on the DUT’s input admittance, the sum S 
of the squares of S, of Eq. (3.91) 

n 

s = p ;  (3.93) 
,= I 

is differentiated with respect to  the seven unknown terms consisting of the four 
normalized noise parameters, Wt, W,, 5, and c,, the real and the imaginary 
part of the input admittance. G,, and B,,, and the factor m. This leads to a 
set of seven equations: 

(3.94) 

(3.95) 

(3.96) 
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which can be solved for the unknown parameters. 
problem 3.12. 

Problem 

(3.97) 

(3.98) 

(3.99) 

(3.100) 

This is demonstrated in 

3.12 Derive a solution for the unknown parameter Gin with the help of 
the least square error minimization of Eqs. (3.94) to (3.100). Discuss the 
possibility to  determine Gin with the help of cold measurements only, i.e. with 
the generator temperature T,, = 0. 

As described in problem 3.12, eliminating B,, and solving for Gin leads to 
a polynomial of 8th degree with the coefficients h,, i = 1,. . . , 8, 

hgG;, + h7Gzn + hsG!n + hSG:, + + h3G:n + hzG?, + hlG tn + ho = 0 , 
(3.101) 

which is unambiguously solvable numerically. The determination of G,, or B,, 
can either be performed on the basis of only cold, only hot or a combination of 
both measurements. Using only cold noise power measurements with Tez,p = 
0 leads to ap5 = 0 in Eq. (3.91) and the unknown factor rn can thus be 
eliminated. Consequently, on the basis of cold noise power measurements, 
it is possible to calculate G,, and B,, and the normalized noise parameters 
Wt,W,, s, and s,. The spectral noise parameters are thus known, except for 
the factor rn. As the optimum generator admittance Yopt only depends on 
quotients of the spectral noise parameters, Yo,, is calculable using the results 
of the cold noise measurements only: 

(3.102) 

(3.103) 
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For the determination of the factor m at least one hot noise power measure- 
ment is necessary. For Tesp  # 0 it follows uPj # 0 in Eq. (3.91) and the factor 
m can be calculated: 
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The 7-state-method has the advantage that an additional measurement of 
the DUT's input admittance with a network analyzer is not necessary. Re- 
producibility errors due to multiple connections can thus be avoided. Fur- 
thermore, nearly all unknowns, as e.g. the DUT input admittance and the 
optimum generator admittance, can be determined on the basis of cold noise 
power measurements. The so-called cold measurements, which are performed 
at ambient temperature, help to  reduce measurement uncertainties because 
their noise temperature is well known by definition and is not influenced by 
the state of the tuner. Figure 3.38 shows experimental results for the noise 
parameters of a low noise high electron mobility transistor (HEMT) as an 
active element. 
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Fig. 3.38 Noise parameters ( i f  a high electron mobility transistor. 
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3.8 DE-EMBEDDING OF THE NOISE PARAMETERS 

In general, the weak noise signals of the device under test have to be ampli- 
fied sufficiently, so that a noise power measurement becomes possible. As a 
consequence, for the noise parameter measurement system in Fig. 3.36 only 
the noise parameters of the cascade connection of the device under test and 
the amplifier can be determined. The direct measurement of the DUT noise 
parameters is not possible. For the correction of the measurement data, in 
order t o  eliminate the influence of the preamplifier, a so-called de-embedding 
has to be performed. The following correction procedure is based on a noise 
correlation matrix description with chain matrices. For the equivalent circuit 
of a two-port a correlation matrix representation is derived. For the input 
and output currents and voltages we have: 

(3.105) 

where [Ad] represents the chain matrix of the two-port. The noise parameters 
are defined by a noise correlation matrix [CAI: 

where the dagger-sign (t) denotes the hermitian conjugate. The hermitian 
conjugate is equal to the transposed complex conjugate matrix. 

ud 

u1 u3 

Fig. 3.39 
under test and the preamplifier in the chain matrix representation. 

Noise equivalent circuit of the cascade connection of the device 

Based on the equivalent circuits in Fig. 3.39 and Fig. 3.40 for the cas- 
cade connection of the device under test and the preamplifier, the following 
relations can be derived with a chain matrix description. With Eq. (3.105) 
and 

(3.107) 

we get the following relation: 
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Fig. 3.40 Noise equivalent circuit of the device under test and the pream- 
plifier in cascade connection with noise equivalent sources at  the input of the 
cascade connection. 

for the noise equivalent circuit of Fig. 3.39. Further on, the noise equivalent 
circuit in Fig. 3.40 is described by: 

(3.109) 

A comparison of the coefficients of Eq. (3.108) and Eq. (3.109) leads to 

(3.110) 

For the determination of the spectral noise parameters the noise correlation 
matrix [C,] is calculated for the setup in Fig. 3.40: 

Finally, from Eq. (3.110) and Eq. (3.111), a relation for the correlation ma- 
trices [ C d ]  of the DUT and [Ck] of the preamplifier can be derived. We can 
benefit from the fact that u d ,  I d  and uk, I k  are uncorrelated. 

t 
= [ 7; ] [ 7; ] [ A d ] '  + [ yi ] [ yi ] - - 

[ c k l  [ c d l  

= [Ad] [ck] [ A d ] '  f [ c d ]  . (3.112) 

This equation can be solved for [ c d ]  so that the noise parameters of the device 
under test are calculated as follows: 
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if the noise parameters of the whole setup as well as the noise parameters of 
the preamplifier and additionally the chain matrix of the DUT are known. 
In order to  perform a de-embedding of the DUT noise parameters, it is thus 
necessary to perform noise measurements both with and without the DUT. 

The noise parameters of a device under test are thus calculable. As de- 
rived for this de-embedding procedure, a noise characterization of the setup 
itself has to be performed first, leading to the noise parameters of the pre- 
and postamplifier cascade of the measurement setup. Then, the DUT’s noise 
parameters can be determined. The noise behavior of the measurement setup 
will thus completely be characterized as part of the noise parameter determi- 
nation. 

3.9 ALTERNATIVE METHOD FOR THE DETERMINATION OF THE 
NOISE TEMPERATURE OF A ONE-PORT 

In addition to  the calculation of the noise parameters of two-port networks, the 
noise parameter measurement system can also be utilized for the measurement 
of noise temperatures of one-ports as has already been discussed previously 
on the basis of radiometers. 

With the knowledge of the noise parameters Wu, W,, C,, C , ,  the input 
impedance Y,, and the factor m of the measurement setup, the noise temper- 
ature of a one-port device can be calculated, for example, via (Eq. 3.114). On 
the basis of a noise power measurement 

(3.114) 
4kTgGg + IYgI2Wu + Wt + 2GgCr + 2BgCt 

P L = m .  
lyg + GI2 

the noise temperature can be determined by 

Contrary to the previously described radiometers, a decorrelation of the 
preamplifier is not necessary for this method, because the noise behavior of the 
amplifier is completely characterized and thus known, so that its contribution 
is accounted for correctly in this solution. 



Noise of Diodes and 
Transistors 

Apart from thermal noise, shot noise is one of the fundamental noise phe- 
nomena of electronic devices. Shot noise is closely related to the fact that the 
current does not flow continuously but in small portions, due to  the discrete 
charge of the electrons. Furthermore, the transition of the electrons takes 
place irregularly in time. A direct current is thus constant only as a time 
average but not for short periods of time. Consequently, the direct current 
is superimposed by a fluctuation current. The spectrum of the current fluc- 
tuations of high-frequency devices can be constant up to  high frequencies, 
similar to the thermal noise. As described by the so-called Schottky-relation, 
the spectrum depends on the value of the direct current. For example, pn- 
diodes and Schottky-diodes show shot noise. Relating the shot noise for a 
given direct current to the impedance of the diode allows one to introduce 
an effective noise temperature for the pn- and Schottky-diodes, similar to  the 
temperature description for thermally noisy resistors. On the following pages 
it will be shown that in most cases the thus defined noise temperature of 
Schottky diodes is lower than that of thermally noisy resistors at the same 
physical temperature. 

With the PIX-diode a device will be presented, which has a noise temper- 
ature nearly equal to the physical temperature. 

Noise equivalent circuits of bipolar and field effect transistors can mostly 
be based on thermal noise equivalent sources and on shot noise equivalent 
sources. In addition, passive elements and controlled sources are needed for 
the equivalent circuits. With the help of equivalent circuits, the devices can 
be implemented in the circuitry of e.g. amplifiers, so that complete equiva- 
lent circuits for small signal amplifiers can be found. On the basis of such 
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noise equivalent circuits, the noise figure of amplifiers can be calculated and 
compared with measurements. 

4.1 SHOT NOISE 

The current of electron tubes shows noise, because the transport of the elec- 
trons is not a continuous process, but rather it relies on discrete charges. Iioise 
arises because the flow of the electrons, i.e. their number per unit time, is not 
constant but is subject to statistical fluctuations. A fairly concise model is a 
vacuum tube or, more specifically. a vacuum diode in the saturation region. 
The entire current i ( t )  can be separated into a direct current l o  and an al- 
ternating current i s h ( t ) .  Let z denote the mean number of electrons per unit 
time and q the elementary charge. Then, we can write 

i(t) = I0 + i S h ( t )  (4.1) 

The time average of the alternating part of the current z ,h( t )  is assumed to  
be zero __ 

i , h ( t )  = 0 * (4.3) 

The alternating or noisy part i s h ( t )  of the current i ( t )  is assumed to be an 
ergodic fluctuation phenomenon. This means that the time average and the 
ensemble average are assumed to be equal. 

A vacuum diode with a metal cathode generates a saturation current, if 
it is operated at  a high anode voltage. The saturated diode is also a fairly 
concise model for a number of semiconductor devices, which show a similar 
noise behavior. For the model of the saturated vacuum diode, the following 
assumptions are valid to a large extent: 

a) The electrons are emitted from the hot cathode statistically independent 
from each other. 

b) The path-time characteristic of the single electron in the region between 
the cathode and the anode is independent of the presence of other elec- 
trons, i.e. the influence of a space charge is neglected. 

Furthermore, the following assumptions are made in order to simplify the 
model: 

c) The electrons have no thermal initial speed at  the cathode. 

d) All electrons follow the same path versus time. 

e) No secondary electrons are emitted at the anode. 
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Each electron, which passes through the vacuum diode, induces a current 
pulse of length ‘T in the outer circuit. Here, ‘T is the travel time of an electron 
from the cathode to the anode. 

The shape of the induced current pulse is equal for each electron according 
to the assumptions made and it is described by a function ( ( t ) .  In principle, 
<(t)  can be calculated if the voltage of the anode and the geometry of the 
vacuum diode are known. As will be seen, however, a detailed knowledge of 
( ( t )  is not necessary. It is assumed that ( ( t )  is equal to zero at the starting 
time of the electron. The electron starts its travel at 6 = 0 and ends its travel 
at 79 = T :  

E(8) = 0 for t9 5 0 and t9 2 7 . (4.4) 

Thus, the v-th current pulse, which starts at t,, has the following time char- 
acteristic: 

For some CUI 

i y ( t )  

i,(t) = q ’ ( ( t  - t v )  . (4.5) 

ent pulses the time characteristic is shown in Fig. 4.1. Each 

Fig. 4.1 Time characteristic of the current pulse in the outer circuit. 

electron transports the elementary charge q ,  so that a normalization condition 
can be formulated for the single current pulse: 

i,(t) d t  = q .  ( ( t  - tv) d t  = q (4.6) t7r t ,  t7r t ,  

or 

((29) d79 = 1 . i 0 
(4.7) 

The total current i ( t )  results from the superposition of the single current 
Dulses: 

i ( t )  = 1 0  + i S h ( t )  = q .  c { ( t  - 
u 
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Thus the direct current is given by 
7- 

0 

- 
Because of i s h ( t )  = 0, we get for the mean square values: 

i"(t)=g+-. (4.10) 
- 

In order to determine i:h(t), the variance of a statistically independent se- 
quence of single pulses has to  be calculated (the so-called Campbell theorem). 

It will be the aim to determine the autocorrelation function of i ( t ) .  An 
irregular pulse sequence p ( t )  (a so-called Poisson process), consisting of arbi- 
trarily starting but equal and normalized single pulses ( ( t  - t,). is considered. 
Let z . dt  be the probability that an impulse lies within an infinitesimal time 
interval d t .  Here, z is constant and independent of the position of the time 
interval. Furthermore, the pulses are assumed to  be independent from each 
other, i.e. the appearance of a pulse a t  a time t ,  has no influence on the 
appearance of further pulses. Arbitrary pulse overlaps are allowed. 

With the help of the Dirac or &function, the single pulse can also be 
represented by an integral form: 

f c c  

E(t - t,) = [ ( t ' )  . S ( t  - t ,  - t ') dt' J (4.11) 

--M 

For the pulse sequence p ( t ) ,  the following expression can be obtained if the 
order of summation and integration is changed: 

+-M 

p ( t )  = ( ( t ' )  . XJ(t - t ,  - t ' )  dt' 
J 

--oo Y 

= J ( ( t ' )  ' z ( t  - t ' )d t '  . 
--03 

(4.12) 

Here, z ( t )  stands for an irregular sequence of S-pulses. For the autocorrelation 
function p p ( 0 )  of p ( t )  the following expression results, where P(0)  denot,es the 
autocorrelation function of a sequence of &pulses: 

+-M 

(4.13) 

--M 
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The autocorrelation function of an irregular pulse sequence is thus expressed 
by the autocorrelation function of an irregular sequence of Dirac pulses. As 
can be anticipated and as will be shown in problem 4.1, the autocorrelation 
function P(0)  of an irregular sequence of Dirac impulses is again a Dirac 
function. 

P(0)  = 2 .  s ( e )  + 2 . (4.14) 

The term t2 on the right-hand side of Eq. (4.14) results from the constant 
term of E{z(t)}. For the term E{p(t)} we have: 

TM 
r 

E{p(t)} = J ( ( t ’ )  . E{z(t - t ’ ) }  dt’ 
-02 

- - t .  T < ( t ) d t = z  . (4.15) 

-M 

Considering only the fluctuating part Psh (0) of the autocorrelation function, 
we observe that this part consists of a pure Dirac function without constant 
terms: 

Problem 

4.1 Derive Eqs. (4.14) and (4.16). 

With the result of Eq. (4.14), i.e. the autocorrelation function for an ir- 
regular sequence of Dirac pulses, Eq. (4.13) can be evaluated. The result 
is 

t m  

p p ( e )  = 2 .  1 [ ( t )  ( ( t  + e) dt + 2 2  . (4.17) 

This relation is called Campbell’s theorem. The power spectrum W, of the 
irregular pulse sequence is obtained as the Fourier transform of the autocor- 
relation function p p ( 0 ) .  The Fourier transform of the single pulse <(t)  is 

--oo 

+M 

S(f) = 1 < ( t ) e - j 2 7 i f t d t  . (4.18) 
-m 

The power spectrum W, of this so-called Poisson process can thus be deter- 
mined immediately, because the Fourier transform of the convolution integral 
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in Eq. (4.17) is just lS(f)I2. Hence we have: 

(4.19) 

--03 

The frequency characteristic is solely determined by the shape of the single 
pulse. The spectrum becomes broader with shorter pulses. The term z2  . S ( f )  
in Eq. (4.19) describes the constant part and the term z .  lS(f)I2 represents 
the fluctuation part or the noise spectrum of the irregular pulse sequence, 
respectively. 

For a Poisson process the shape of the autocorrelation function or the power 
spectrum is entirely determined by the shape of the single pulse. The pulse 
density enters as a multiplying factor only. I t  is of no relevance whether there 
are overlapping pulses or not. In contrast, the amplitude distribution of the 
stochastic signals depends on the probability of pulse overlapping. Assuming 
that the single pulses have a rectangular shape with a rate that overlapping 
appears very rarely, then the amplitude distribution will have two values only, 
namely the two distinct values of the rectangular signals. For strong pulse 
overlapping it follows from the central limit theorem that the amplitude distri- 
bution can be approximated by a Gaussian distribution, independently of the 
shape of the single pulses. For the shot noise the case of an intense overlap- 
ping is practically always given. As a consequence. it can be assumed that the 
amplitude distribution is a Gaussian distribution. However, for the shape of 
the power spectrum the assumption of strong overlapping of the single pulses 
is without relevance, as has already been discussed. With the fluctuation part 

(4.20) 

Equation (4.19) yields the one-sided power spectrum Wsh of the current fluc- 
tuations, i.e. the spectrum of the shot noise: 

(4.21) 

The frequency dependence of the noise is determined by the form of the single 
pulse and its spectrum lS(f)l2. 

For the region of low frequencies, i.e. frequencies f that  are small compared 
to the reciprocal time length T of the pulses, i.e. 

f <<r-l , (4.22) 

the noise can be calculated without knowledge of the particular pulse shape. 
For this case we have: 

I T  
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t ( 0 ) d O  s 0 

N N = 1 for f . 0  z 0  . (4.23) 

The low-frequency part of the noise spectrum W,h is thus independent of the 
pulse form and entirely determined by the direct current Io: 

Wsh = 2q ' I0 . (4.24) 

This so-called Schottky relation is of great practical relevance, because it can 
be applied to a multitude of devices. Especially for very fast semiconductor 
devices, the Schottky relation is valid up to  very high frequencies. The spec- 
trum iS(f)i2 only weakly depends on the pulse shape. Typically, it shows a 
characteristic similar to a si2 function as shown in Fig. 4.2. 

f 
Fig. 4.2 Typical characteristic of the pulse spectrum. 

4.2 SHOT NOISE OF SCHOTTKY DIODES 

In the following section, metal-semiconductor junctions, so-called Schottky- 
diodes, will be considered. Because these diodes are based on an effect of 
majority carriers, they are fast enough that the Schottky relation in its fre- 
quency independent form is valid up to very high frequencies (e.g. x 100 
GHz). First, a Schottky diode without bulk resistance is considered. The 
following relation holds between the current I and the voltage U :  

I = I,, (exp (E) f i  kT - 1) , (4.25) 

In Eq. (4.25) I,, is the so-called saturation current, T is the physical tempera- 
ture of the depletion layer and f i  is an empirical so-called ideality factor, which 
describes a deviation from the ideal exponential behavior. Typical values are 
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fi = 1.02..  .1.3. The current I0 for the bias voltage UO can be considered to 
be composed of a current in the forward direction If and a current I ,  in the 
reverse direction. The current in the forward direction consists of an elec- 
tron current from the conduction band of the semiconductor to the metal. 
With increasing bias voltage this electron current finds a decreasing potential 
barrier from the semiconductor to the metal. The current in the reverse direc- 
tion consists of an electron current from the metal to the semiconductor. In 
this case, the electrons have to surmount a nearly constant potential barrier 
from the metal to the semiconductor. For reverse voltages, the barrier from 
the semiconductor to  the metal increases rapidly, so that the current in the 
forward direction becomes so small that it can be neglected. The current in 
the reverse direction, that is the electron current from the metal to the semi- 
conductor, remains nearly constant. Therefore, the saturation current I,, is 
approximately equal to  the reverse current I,, i.e. 

Ir = I,, and If = I0 +I,, . (4.26) 

Without a bias voltage the magnitudes of the currents in the forward and 
reverse directions are equal. For the current in the forward direction as well 
as for the current in the reverse direction similar assumptions apply as for 
the vacuum diode, which led to the derivation of the Schottky relation. As 
long as the charge carriers move in regions with relatively large numbers of 
fixed charges, the interaction of the mobile charge carriers will remain small. 
Therefore, both the current in the forward direction as well as the current in 
the reverse direction show shot noise, which is uncorrelated from each other. 
For the corresponding noise spectra of the forward current, Wf, the reverse 
current, W,, and the total current, Wi,, the following relations apply: 

(4.27) 

As long as the transit time and the life time of the carriers can be neglected, 
that  is up to frequencies in the mm-wave region, the small signal conductance 
G, of the Schottky diode is given by: 

(4.28) 

With the small signal conductance G, as the source conductance and the 
noise spectrum Wi, of an ideal current source a noise equivalent circuit of 
a Schottky diode can be specified (Fig. 4.3). The noise equivalent circuit 
according to Fig. 4.3 can be extended by a thermally noisy bulk resistance 
Rb with the temperature T (Fig. 4.4). With the source conductance G, the 
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Fig. 4.3 
tance. 

Noise equivalent circuit of a Schottky diode without bulk resis- 

Fig. 4.4 
Rb. 

Noise equivalent circuit of a Schottky diode with bulk resistance 

shot noise of a Schottky diode can be described by an effective temperature, 
similar to  the thermal noise. This temperature will be named the effective 
temperature T,f .  According to Eq. (4.28) the spectrum of the shot noise W,, 
can be represented by the small signal conductance G,. Thus 

W,, = 2iikT. G, + 2 .  q .  I,, . (4.29) 

As for the thermal noise, the effective temperature is defined by the following 
equation: 

W,, = 4 k .  Tef . G, , (4.30) 

from which Tef can be determined: 

(4.31) 

In practice, the second term on the right side of Eq. (4.31) is negligible for 
an operating point in the conduction region with I0 >> I,,. Consequently, 
the interesting result can be obtained that a Schottky diode with a negligible 
bulk or series resistance behaves like a thermally noisy impedance with the 
temperature ii + T/2. The available noise power Pa, in the bandwidth Af is 
independent of the frequency and equal to 

1 -  
2 

Pa, = - n .  k T .  Af . (4.32) 

Here, T is the thermodynamic or physical temperature of the junction of the 
Schottky diode. 
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For thermodynamic equilibrium, i.e. I0 = 0, the effective temperature is 
expected to be equal to  the ambient temperature with Tef = T .  In Eq. (4.31) 
this is true for f i  = 1, however, it does not apply for f i  > 1. This is a hint of 
the heuristic approach when introducing the ideality factor f i .  

Figure 4.5 shows the effective noise temperature of a Schottky diode as a 
function of the bias current in forward direction. In problem 4.2 it is shown 
that this characteristic can be described quite well by a model as depicted in 
Fig. 4.4 with one noise source for the shot noise and another for the thermal 
noise of the bulk resistor Rb . 

4' 

0.5 1 - 
0 014 0!8 112 1.6 I0 / mA 

Fig. 4.5 
the bias current. 

Effective noise temperature of a Schottky diode as a function of 

Problem 

4.2 
with Rb = 9.8R, fi=1.2 and I,, = 8nA according to the model in Fig. 4.4. 

Calculate the effective temperature Tef  of a commercial Schottky diode 

As can be deduced from Fig. 4.5. with Schottky diodes it is possible to 
realize un-cooled noise generators with noise temperatures below room tem- 
perature. 

At low frequencies, for example below 1 MHz, additional noise mechanisms 
might appear for instance as flicker or llf-noise and recombination noise. As a 
consequence, the effective temperature can increase even above To. Generally, 
the flicker noise is more distinct for gallium arsenide (GaAs) diodes than for 
silicon (Si) devices. 

A considerably increased noise level can be observed if the reverse voltage 
is increased into the region of the breakdown. This so-called avalanche noise is 
virtually independent of frequency, similar to the shot noise and the thermal 
noise. 
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4.3 SHOT NOISE OF PN-DIODES 

The current I of a pn-junction can be assumed to be composed of four parts: 
First, a current of the majority carriers, which pass through the depletion 

region and become minority carriers in the adjacent diffusion region, where 
they recombine. The current of the majority carriers can consist of a current 
of holes, Ipf, as well as a current of electrons, 1.f. For an unsymmetrical 
pn-junction one carrier type will dominate. 

Second, a current of minority carriers, which pass through the depletion 
region and recombine in the adjacent diffusion regions. The currents are Ipr 
and I.,,, respectively. 

For each of these four partial currents a situation known from the vacuum 
diode applies: The transition of the carriers through the depletion region is 
subject to statistical fluctuations. An interaction of the carriers rarely occurs, 
because in the depletion region the density of the mobile charge carriers gener- 
ally is much smaller than the density of the fixed ionized acceptors or donors. 
The adjacent p -  and n-regions are electrically neutral. Consequently, the 
four listed currents generate shot noise contributions, which are uncorrelated. 
The corresponding shot noise spectra are: 

The saturation I,, current in the reverse direction usually is very small. The 
shot noise spectra thus possess the same spectral form as observed for the 
Schottky diode. The equations (4.25) and (4.29) are also valid. However, 
pn-junctions show, even at moderate frequencies, for example a few 100 MHz, 
a noticeable deviation of the small signal conductance G ( f )  from the low 
frequency value. 

Under certain restricting conditions, the shot noise spectrum can be de- 
scribed empirically but in accordance with the experiment as follows: 

It  is thus assumed that the part of the conductance G ( f ) ,  which differs from 
the low-frequency conductance Gch, i.e. G(f )  - Gch, generates thermal noise. 
Consequently, the effective noise temperature increases. 

4.4 NOISE OF PIN DIODES 

A PIX diode made of silicon consists of the series connection of a p-zone, an 
intrinsic i-zone and a n-zone (Fig. 4.6). If the PIN-diode is biased in forward 
direction, then holes and electrons from the p- and n-regions are injected into 



138 NOISE OF DIODES AND TRANSISTORS 
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Fig. 4.6 PIX-structure in the forward conduction state. 

the i-zone. Temporarily, they are stored in the i-zone until they contribute to 
a current due to recombination. However, part of the recombination also takes 
place in the boundary regions and the contacts. Neglecting the recombination 
in the bulk regions, then in principle, the current a t  the pi-junction consists 
of holes, which are injected into the i-zone. This current 10 is equal to the 
total charge Q p  of all holes divided by their life time rp. 

(4.35) 

Here, A, is the area, q is the elementary charge, p is the mean density of the 
charge carriers in the i-zone and wa is the width of the i-zone. A corresponding 
term can be written for the in-junction. 

(4.36) 

Both types of charge carriers in the i-zone are in a charge equilibrium, i.e. the 
resulting space charge is zero. Furthermore, it is assumed that the i-zone 
is free of fixed space charges. Because the holes and the electrons mainly 
recombine with one another in the i-zone, we have 

n z p ,  r p z r n = r , .  (4.37) 

The high-frequency resistance R, of the i-zone can approximately be calcu- 
lated via the specific conductivity oa. If p p  is the mobility of the holes, pn the 
mobility of the electrons in the 2-zone and p, their mean value, ( p p  + p n ) / 2 ,  
we get 

(4.38) 

The high-frequency resistance R, of the i-zone is thus given by 

ga = 4 ( ~ p  P + Pn . n)  = 24112 ' P  . 

-- - W ," (4.39) w, - W," - R, = - 
~ a * A t  2qptp.At.Wa 2PtTaIo ' 
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The higher the current, the more mobile charge carriers will be in the i-zone 
and the lower the high frequency resistance will be. In order to realize small 
high-frequency resistances, the width WJ, should be small and the life time 7, 

should be large. The total resistance of the adjacent bulk regions also should 
be as small as possible. 

The minority carriers stored in the bulk regions cause diffusion capaci- 
tances. For alternating signals these capacitances can be assumed to be 
connected in series to the resistance of the i-zone. Beyond some kHz the 
impedance of the diffusion capacitances becomes so small that  it can be ne- 
glected compared with the bulk resistance Rb and the resistance of the i-zone 
R, . 

Fig. 4.7 Equivalent circuit of a PIX-diode for alternating signals. 

For a reverse biased PIN-junction, a small and virtually voltage indepen- 
dent depletion capacitance C, arises, which is determined by the width w, 
of the a-zone, its area A,, and its dielectric constant E,. Fig. 4.7 shows an 
equivalent circuit which applies for high-frequency signals. The PIN-diode is 
highly resistive under reverse bias and of low resistance in forward direction. 
The resistance can be controlled by the current and is proportional to  1 / 1 0  
(Eq. 4.39). For a sufficiently high current 10 the resistance R, becomes small 
compared with the bulk resistance Rb. 

PIN-diodes can thus be used as electronically controlled high-frequency 
switches or as continuously controlled high-frequency resistances or as atten- 
uators. 

Due to the equilibrium of the space charges in the i-zone it is expected 
that the high-frequency resistance R, of the i-zone shows thermal noise. This 
means that it is thermally noisy with the physical temperature of the i-zone. 
This can be confirmed fairly well by the experiment. Figure 4.8 shows the 
effective noise temperature of a PIN-diode as a function of the control current. 
Within the measurement accuracy the effective noise temperature is equal to  
the physical temperature T .  This is caused by the fact that the bulk resistance 
and the i-zone show the same noise temperature. Thus, the temperature 
partition between the bulk resistance and the PIN junction does not change 
as a function of the bias current 10. This is a different situation compared 
with the Schottky diode in Fig. 4.5. 
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Fig. 4.8 
bias current l o .  

Effective noise temperature of a PIN-diode as a function of the 

4.5 NOISE EQUIVALENT CIRCUITS OF BIPOLAR TRANSISTORS 

In the following, a pnp-transistor will be considered, the basic structure of 
which is shown in Fig. 4.9. It is assumed that the operating frequency is so 
high that low-frequency noise effects as flicker noise or recombination noise are 
negligible. The basic remaining noise mechanisms are shot noise and thermal 
noise. Some of the symbols used in the following section are given first: 

F ,  P ,  i. 

direct current of the emitter, base or collector node 
emitter saturation current 
collector saturation current 
noise spectrum of the emitter-base junction 
noise spectrum of the collector-base junction 
small signal conductance of the emitter-base junction 
emitter-base direct voltage 
direct current gain 
cross spectrum of the emitter and collector noise currents 
base bulk resistance 
emitter, base, collector noise currents in a symbolic 
oriented arrow notation 
signal currents of emitter, base and collector 

The emitter-base junction is a forward biased pn-junction, which shows 
shot noise according to the Schottky-relation. Furthermore, I ,  is the emitter 
current and I,, is the emitter saturation current. For the shot noise spectrum 
Wp, Eq. (4.27) yields 

WE = 2q(Ie + Iee) + 2q.  Iee = 2q(Ie + 2 .  lee) = / I y  . (4.40) 

In the usual way, the noise spectrum Wt is set equivalent to the magnitude 
squared of the corresponding oriented arrow, lIeI2. Xote that the dimension of 



N O H  EQUIVALENT CIRCUlTS O f  BIPOLAR TRANSlSTORS 141 

d Ib 

Fig. 4.9 Schematic setup of a pnp-transistor. 

the symbolic oriented arrow I" - or corresponding arrows - does not necessarily 
belong to  a current. However, for the case of a current the dimension of W :  
is equal to A2 . s and thus the dimension of I e  is equal to  A . &. 

The index i indicates that WF = jI"/* represents a noise current source, 
which is connected in parallel with the conductance GeO in the equivalent 
circuit of Fig. 4.10. The spectrum Wg can as well be expressed with the help 
of the small signal conductance GeO of the emitter base junction. With 

and 

G dIe - - 4 . I,, . exp (e) = m ( I e  4 + I,,) (4.41) 
dU,b kT  eO - 

we have 

WE = 2q(Ie + 2 * I,,) = 4 k T .  G,o - 2 q .  I ,  

x 2kT .Gee for I,, << I ,  . (4.42) 

The forward current of the emitter-base junction proceeds to the base-collector 
junction except for some minor recombination losses. This is described by the 
current gain CYO. Thus, the term ao(I ,  +Ice) is the main part of the collector 
current. A small additional part is given by the collector reverse current 
(saturation current) Ice. The collector current is thus given by 

-Ic = ao(Ie + Ice) + Icc . (4.43) 

The minus sign for I ,  results from the current direction defined in Fig. 4.9. 
Both parts of the collector current consist of minority carriers (here holes). 
For this reason, the spectrum is calculated as 

W :  = 2q/Icj = 2q~r0(1, + + 2q1cc = 1 1 ~ 1 '  . (4.44) 

The noise currents I e  and I c  are strongly correlated. It can be anticipated 
that the cross-spectrum 

w;c = ( I " )*  . I" (4.45) 
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Fig. 4.10 
noise sources. 

Noise equivalent circuit of a bipolar transistor with correlated 

is proportional to the power spectrum of the noise of the common forward 
current 

I1?I2 = 24(1e + l e e )  . (4.46) 

Thus the cross-spectrum is given by 

wiec = -(I?)* ' 0 0  . 1; = -ao/Ifl e 2  

= -0l02q(I, + lee) = - 2 k T .  00 . GeO . (4.47) 

The minus sign follows from the definition of the direction of Ic .  In Fig. 4.10 
the thermal noise of the bulk resistance Rb of the base zone is taken into 
account by a voltage source. The bulk resistances of the emitter and collector 
zone are neglected. 

A drawback of the equivalent circuit in Fig. 4.10 is that  the noise sources are 
largely correlated. In this respect, the equivalent circuit in Fig. 4.11 is more 
convenient, where two noise current sources with CYO . I" and I c  are combined 
into one, i.e. la. Furthermore, the noise current source I" is converted into a 
noise voltage source U".  The following relation results for the spectrum: 

(4.48) 

Furthermore, the spectrum Wg can be derived by means of the equations 
(4.42), (4.44) and (4.47): 

wg = / I y  = (aol" + IC)* ' (00I" + I " )  
= ai11"/2 + 11c/2 + 2 .  a0 . Re{(I")* . I " }  
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Fig. 4.11 
noise sources. 

Noise equivalent circuit of a bipolar transistor with uncorrelated 

Finally, the cross-spectrum W z  becomes: 

With the approximation of Eq. (4.42) one can find that W z  is approximately 
zero: 

w z z o .  (4.51) 

The equivalent circuit of Fig. 4.11 thus has the convenient characteristic, 
that the three equivalent noise sources are uncorrelated. With the help of 
noise equivalent circuits such as the one of Fig. 4.11. for example, the noise 
figure of a small signal amplifier can be calculated. Figure 4.12 shows a 
common emitter circuit. For simplification, the small conductance YCo has 
been neglected. 



144 NOISE OF DIODES AND TRANSISTORS 

Fig. 4.12 
noise sources. 

Small signal amplifier as a common emitter circuit with equivalent 

As will be shown in problem 4.3, the following solution results from a small 
signal noise calculation: 

(4.52) 

Problems 

4.3 Determine for the equivalent circuit in Fig. 4.12 the noise figure as 
well as the optimum noise figure. Calculate the minimum noise figure for 
ReO = 15R, Rb = 40R, QO = 0.98 and ( Q ~ I , ,  + I cc ) / ( I e  + I,,) = lo-’. 

4.4 Calculate with the same data as in problem 4.3 and with the noise 
equivalent circuit of Fig. 4.11 the noise figure and the optimum noise figure 
for a small signal amplifier in common base configuration. 

For high frequencies; the transit time of the carriers in the pn-junction as 
well as in the base zone have to be taken into account. All parameters will. 
in general, be frequency dependent and complex. The conductance of the 
emitter-base junction, Y E ( f ) ,  split into a real and an imaginary part, G, and 
Be,  can be written as 

and 
(4.53) 
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According to Eq. (4.34), it is assumed that the part deviating from G,o, that 
is G , ( f )  - G,o, shows thermal noise. For the spectra of the noise equivalent 
circuit in Fig. 4.10 we get: 

W : ( f )  = ( I e ) *  . I" = 4kT G e ( f )  - 2q I" 
W t ( f )  = (IC)* ' I C  = 2q.  iIcl 

W:' ( f )  = (I")* . I' = - 2 k T .  ~ ( f )  Y e ( f )  . (4.54) 

For the current gain with the cut-off frequency f a  we have: 

(4.55) 

Finally. the frequency dependent spectra for the noise equivalent circuit in 
Fig. 4.11 can be determined. 

The spectrum for the noise voltage U" can be written as 

w:(f) = ( 4 k ~ '  G e ( f )  - 2~ 1") Ize(f)12 . (4.56) 

The spectrum of I" ,  that  is W:, can be derived from the equivalent circuit in 
Fig. 4.12 with the parallel connection of a . I' and I" and with WF, Wt and 
W:c from Eq. (4.54). 

Wf(f) = (QI" + IC)*. (QI" + IC) 
= Ia12W,"(f) + wt: 4- a(W,"'( f))* + a*W,'"(f) 
= jal2(4kT * G e ( f )  - 2 q .  I,) + 2q .  JIcj - 1 ~ / ~ 2 k T .  2 .  Re{Y,(f)} 

= 2q(IIc/ - /a12 Ie) 9 (4.57) 

With the result for iIcl of Eq. (4.43) we get: 

w?(f) = 2~(0O(le + l e e )  + I c c  - I a i 2 1 e )  

= 2qle(ao  - la(f)12) + 2q(aoIee + Ice) * (4.58) 

The last equation still missing is the cross-spectrum W z  between the noise 
voltage U" and the noise current I" :  

W Z ( f )  = ( I"  . Ze)* . (are + 1') = 2: ' a .  w," + 2,. ' WfC 

- 2kT . jB" ( f ) )  

= ~ ( f )  . 2:(4kT. G e ( f )  - 2q.  Ie - 2 k T .  G e ( f )  

= ~ ( f )  Z , " ( f )  . (2kT Y,*(f)  - 2q Ie) . (4.59) 

Thus frequency-dependent spectra for the noise equivalent circuit according 
to Fig. 4.11 have also been derived. 

However; it should be noted that such equivalent circuits can offer an em- 
pirical approximation only. A refinement of the model should as well consider 
parasitic circuit elements of the transistor case and the connection of the 
transistor to the case. 

However. the linear parasitic circuit elements can also be combined with 
the external linear circuitry of the transistor. A further approximation of the 
models discussed is the neglected feedback of the output to the input. 
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4.6 NOISE O F  FIELD EFFECT TRANSISTORS 

4.6.1 

Field effect transistors (FETs) of different types are utilized in numerous 
high frequency circuits. Although amplifiers are the main field of application, 
FETs are also suited for the realization of oscillators, mixers, switches and 
other circuits. Field effect transistors made of gallium arsenide with Schottky- 
type gates (GaAs-MEtal Semiconductor FET,  GaAs-MESFET) can be used 
at frequencies up to  the mm-wave range (> 100 GHz). 

The analysis of the noise behavior of FETs is closely related to  the principle 
of operation of the device. Therefore, we will start with a description of the 
static and small signal behavior of the FET.  Due to  its dominant role in 
RF-applications, only the junction FET will be considered. 

Figure 4.13 shows the basic structure of a junction FET. On a substrate 

Static characteristics and small signal behavior 

source drain 

substrate 

Fig. 4.13 Principal setup of an n-channel-junction field effect transistor. 

there is an active semiconductor layer, which in most high frequency tran- 
sistors is n-doped. In this layer a current flows from the drain to the source 
contact. The gate contact and the n-conducting channel form a junction, 
i.e. either a pn-junction (Junction Field Effect Transistor, JFET) or a Schot- 
tky junction (MESFET). Via the gate potential the current flow between the 
drain and source can be controlled. 

A detailed analysis will be restricted to the inner FET,  i.e. the region below 
the gate contact. Figure 4.14 shows a cross-section view of the inner FET, 
the dimensions of which are specified by the length 1 and width a of the gate 
and the thickness d of the active layer. 

A quantitative relation between the drain current I d  as a function of the 
gate-source voltage u, and the drain-source voltage ud was first given by 
Shockley in 1952. The theory of Shockley is based on two assumptions. With 
the so called gradual channel approximation it is assumed that the width 
w(x) of the space charge region smoothly changes along the channel and, 
therefore, the electrical field E approximately has a y-component only in the 
space charge region and a x-component only within the conducting channel 
(see Fig. 4.14). Furthermore, an ohmic behavior is assumed in the channel, 
i.e. proportionality between the current density and the electric field. This 
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source 

Y 

gate 

d drain I 
Fig. 4.14 Cross-section of the inner FET.  

means that the mobility p of the electrons is assumed to be constant. In 
particular, this latter assumption is not really valid for gallium arsenide and 
related compound FETs. A number of models have been developed to take 
into account the dependence of the carrier mobility on the electric field. How- 
ever, these models will not be discussed here, because a simple analytical noise 
theory for the F E T  so far only exists for the Shockley model. 

Using the assumptions of the Shockley model, the drain current is given 
by the expression 

Id = -qpND a(d - w(x))Ez(x) 7 (4.60) 

with q as the elementary charge and N D  as the doping density. The electrical 
field E, in x-direction and the depletion layer width w depend on the voltage 
U(x) in the channel: 

(4.61) 

(4.62) 

with €0 as the vacuum permittivity and E ,  as the relative dielectric constant 
of the semiconductor material. The quantity UDf is the so-called diffusion 
voltage or built-in barrier potential of the gate contact. 

With the definitions of the pinch-off voltage 

and the normalized voltage V(x) according to 

the depletion layer width and the drain current may be expressed as 

(4.63) 

(4.64) 

(4.65) 
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(4.66) 

The solution of the differential equation Eq. (4.66) is 

Here, 

(4.68) 

is the conductance of the channel for vanishing depletion layer ( w ( x )  = 0) 
and the function Fl is defined by 

F 1 ( V ) = V  ( : )  1--@ - v  g( 1 - n  ; 9 >  (4.69) 

The quantities V, and vd are the normalized voltages a t  both ends of the 
conducting channel: 

V D f  - ug v, = V(z = 0) = 
Upa 

? (4.70) 

(4.71) 

For a constant gate voltage ug the drain current I d  increases with an increasing 
drain voltage ud until ud is equal to the saturation value 

Udsat  = upi - V D f  -t Ug . (4.72) 

For ud = Udsat  we have V ( 1 )  = 1 and therefore w(1) = d .  At the drain side 
end of the channel the depletion layer extends across the total thickness d of 
the active layer. In the simple Shockley model, it is assumed that a further 
increase of the drain current is not possible and that for u d  > Udsat  the 
current Id remains at the saturation value: 

Idsa t  = I d ( U d s a t )  = GchUpz Fl(1) . (4.73) 

The drain current I d  can be controlled by the gate voltage U,. The drain 
current decreases if U, becomes more negative. For U, = UO, - Up, the drain 
current is zero, i.e. I d  = 0, independent of the drain voltage. In this case, 
the transistor is completely switched off. For U, = U D f  the maximum drain 
current I d  = GchUpZ/3 is obtained. Then, w(0)  = 0 and a further increase of 
the gate voltage will cause significant current flow across the gate. Usually, 
this state is avoided by a proper choice of the bias voltages and the signal 
amplitudes. 

As an example. the Fig. 4.15 shows the typical I-V characteristics of a 
field effect transistor. The range with Ud < U d s a t  is called the linear or 
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ohmic region. The range of the characteristics with ud > Udsat  is called the 
saturation region. For an amplifier, the bias points are always chosen within 
the saturation region. 

For silicon devices the characteristics calculated with the Shockley model 
show quite good agreement with measurements. However, a slight devia- 
tion from the model may be observed in the saturation region, because the 
drain current still increases somewhat with increasing drain-source voltage. 
Although the characteristics of GaAs devices are qualitatively similar to the 
curves in Fig. 4.15, a precise quantitative calculation is not possible with the 
Shockley model. 

Id ohmic / saturation region T region 
, , , 

I 

I 

b 

Ud 

Fig. 4.15 I-V characteristics of a field effect transistor. 

cd 

gate 0 - m  drain 

source 

Fig. 4.16 Small signal equivalent circuit of the inner FET 

If we superimpose small signal voltages ug and ?& on the bias voltages 
Ug and Ud, then the behavior of the inner FET for the small signals can be 
described by the equivalent circuit of Fig. 4.16. The transconductance gm and 
the output conductance g d  are obtained as partial derivatives of Eq. (4.67): 
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In a similar way, the gate-source capacitance Cg and the drain-gate capaci- 
tance c d  are derived from the charge Qg on the gate contact: 

(4.76) 

with 

Qo = q N D a d l  (4.77) 

and the function 

F 2 ( V )  = v (;fi - 1.) - vg (; & - ;vg) (4.78) 

Via the partial derivatives of Eq. (4.76) with respect to U, and u d  we get the 
gate and drain capacitances: 

with 

(4.81) 

All elements of the equivalent circuit are functions of the voltages ug and u d .  

Of particular interest are the values for u d  = U d s a t :  i.e. along the boundary 
of the saturation region. As for the drain current, one can also assume for 
the quantities g m ,  g d ,  cg and c d ,  that  their values are not changed essentially 
by a further increase of the drain voltage. Setting v d  = 1 in equations (4.74), 
(4.75) and (4.79), (4.80) yields: 

(4.82) 

(4.83) 

(4.84) 

C d ( U d s a t )  = 0 . (4.85) 

Thus, for an operating point in the saturation region, the small signal equiva- 
lent circuit of the inner FET is approximately reduced to the capacitance Cg 
at  the input and a voltage controlled current source with the transconductance 
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gm.  The ratio of both values is defined as the transit or cut-off frequency at,. 
of the transistor: 

Sm 
W t r  = -- . 

c9 
(4.86) 

At the angular frequency atr the current gain of the inner FET has decreased 
to one. 

4.6.2 

According to the Shockley model, within the channel the current density and 
the electric field are proportional to each other, i.e. they follow Ohm’s law. 
Therefore, thermal noise will be generated in the channel. But since the chan- 
nel does not have constant cross section dimensions due to  the active behavior 
of the FET,  the relationship between the inherent physical noise sources and 
the resulting equivalent noise sources referred to the outer terminals is rather 
complicated. 

With respect to its small signal properties. the transistor can be regarded 
as a linear two-port. Therefore, the usual two-port equivalent circuits with 
two noise sources can also be applied to  the field effect transistor. For a fixed 
operating point the noise properties are completely described by the spectra 
and cross-spectra of these two noise sources. Often a model with two current 
noise sources as shown in Fig. 4.17 is chosen for the FET. 

Thermal noise of the inner FET 

inner FET 

noiseless 

inner FET 4g 5- 4 
0 1 - 0 

Fig. 4.17 Noise equivalent circuit of the inner FET.  

We will proceed with the description of a general method to calculate the 
equivalent short circuit noise currents i, and i d  with the help of the Shockley 
relations. This calculation is based on the so-called two-transistor model. In 
this approach an infinitesimal channel section of length d x  at a distance x from 
the source is considered, as depicted in Fig. 4.18a. The thermal noise of this 
channel section induces noise currents d ig  and did in the external short circuit. 
For their calculation. the transistor is separated into two noise-free transistors 
with gate lengths x and 1 - x ,  respectively. As shown in Fig. 4.18b, the noise 
of the infinitesimal channel section is described by a noise voltage source du 
at  the interface between the two sub-transistors. If for each sub-transistor an 
equivalent circuit as shown in Fig. 4.16 is assumed, then the spectra d W g ,  d W d  
and dW,d of the currents d ig  and did can be calculated from the spectrum 
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a) d i ,  

TRANSISTORS 

b, di, 
I--+-- 
I , 

did 

Fig. 4.18 Calculation of the FET noise with the two-transistor model. 

dW, of the noise voltage source. The spectra W,, Wd and the cross-spectrum 
W g d  of the complete noise currents ag and id are obtained by an integration 
over the noise contributions of all infinitesimal channel sections. For this 
integration, the assumption is made that the noise voltages d u  from different 
positions x in the channel are uncorrelated. 

The values of the equivalent circuit elements of both sub-transistors depend 
on the position x of the interface. Eqs. (4.74). (4.75) and (4.79), (4.80) can 
be applied, if the different geometries and voltages of the sub-transistors are 
correctly accounted for. With V as the normalized voltage at the position -2. 

we obtain for the source-sided sub-transistor: 

(4.87) 

(4.88) 

For the drain-sided sub-transistor we get: 

(4.91) 

(4.92) 
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Since the ohmic region usually is not used for amplification. we can restrict 
the further discussion to  the case vd = 1. This yields 

g d 2  = c d 2  = 0 . (4.95) 

Due to the external short circuit between gate and source of the source-sided 
sub-transistor, the elements C g l  and gml become ineffective. For the calcu- 
lation of the short circuit noise currents we can use the equivalent circuit of 
Fig. 4.19. Because the circuit is linear, a noise analysis can be performed with 

source 

Fig. 4.19 
short circuit noise currents. 

Yoise equivalent circuit of the FET for the calculation of the 

the usual complex phasors dU? dIg and did. The result is 

(4.96) 

(4.97) 
grnZ(gdl -t j w c d l )  dU . dId = 

gm2 f gdl + j w ( c d l  f c g 2 )  

If the above relations for the equivalent circuit elements are inserted into these 
equations, the resulting expressions are very complicated. So far, a closed form 
analytical solution on the basis of the Eqs. (4.96) and (4.97) is not known. 
The expressions are simplified by low frequency approximations. With 

and 

(4.98) 

(4.99) 

Eqs. (4.96) and (4.97) are reduced to 

(4.101) 



154 NOlSE O f  DlODES AND TRANSlSTORS 

The conditions (4.98) and (4.99) are only met if frequencies below the transit 
frequency utr according to Eq. (4.86) are considered. With the Eqs. (4.82), 
(4.84), (4.88), (4.90), (4.91). (4.93) and 

one finally obtains 

(4.102) 

(4.104) 

For the corresponding power spectra dWg, dWd, and the cross-spectrum dWgd 
we get: 

( l - J v ) ( y - J v )  
dW, , (4.105) 

( 1 - f l H r - 4 5 )  
dWg = (WC,)’ 

(4.106) 

Here, the abbreviation 

(4.108) 

was used. According to 
Eq. (4.76) y is the ratio of the space charge -Qg of the depletion layer to 
the maximum charge Qo, or the averaged normalized depletion layer charge 
width a/d of the inner FET. The noise dWu of the noise voltage source is 
the thermal noise of the infinitesimal channel section of length dx with the 
resistance dR: 

The quantity y has a simple physical meaning. 

dW, = 2kTdR , (4.109) 
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with 

(4.110) 

From Eqs. (4.66) to (4.68) a relationship between dx and dV is obtained: 

1 
dx = - (1 - a) dV . 

Fl(1) 

This leads to an expression for the resistance of the channel section: 

(4.1 11) 

(4.112) 

Of the three spectra w,, wd and Wgd the power spectrum of the noise current 
zd is the easiest to  calculate. By insertion of the Eqs. (4.109) and (4.112) into 
the Eq. (4.106) we get 

The integration results in 

wd = / d w d  

(4.113) 

After some algebraic manipulations the result can be expressed as 

wd = 2kTgmP(Vg) (4.115) 

with the function 

(4.116) 
( 1 + 3 & ) ( 1 - f l ) 2  - - 1 1 + 3 &  P(Vg) = - 
2 ( 1 - V g ( 3 - 2 f l ) )  2 1 + 2 &  ' 

In a similar way, however with more effort, the spectra wg and w g d  can be 
calculated. The results are: 

(WC j2  - 
W, = 2kT---8R(Vg) 

Sm 
(4.11 7 )  
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with 

4 1 
y y 1  - V,) - -y(l  + y) (1 - v,””) i- 2 ( 1 +  4y  + r 2 ) ( 1  - v,”, 

R(V,) = 3 

Fl (1 )  (1 - v q  (7 - m2 
4 1 
-(1+ y)(l - V y )  - 3(l - V,”) 

Fl(1) (1 - d m  (7 - dmZ 
- 5 

and 

wid = -2kTjwC,Q(V,) 

with 

2 
3 

1 2 

y( 1 - V,) - - (1 + 2y)( 1 - V y )  

Fl(1) (1 - a) (y - A) 

+ 2  

Q(v9) = 

- ( 2  + y)(l - V,”) - 5(l - vy, 
Fl(1) (1 - A) (7 - a) 

(4.118) 

(4.119) 

(4.120) 

Finally, the correlation between i, and id is best described by the normalized 
cross-spectrum kgd: 

Problem 

4.5 
of the normalized cross-spectrum in the range 0 5 V, 5 1. 

Calculate the function 6(Vg).  Determine the upper and lower bounds 

Figure 4.20 shows the quantities P ,  Q, R and e, which have been introduced 
above as a function of the normalized voltage V,. All parameters only weakly 
depend on the gate-voltage and can even be considered to be constant for a 
first-order approximation. For low noise amplifiers, operating points at low 
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drain currents are preferred. The corresponding V, values typically range 
from 0.5 to 1. Therefore, a good approximation for the noise parameters is 

2 
3 ’  

P(V,) = - 

1 
R(V,) % - 

4 ’  

C(V,) % 0.4 . 

t 

(4.122) 

(4.123) 

(4.124) 

(4.125) 

0.5 

0 

Fig. 4.20 
ized gate voltage V,. 

FET noise parameters I‘, Q, R and 6 as a function of the normal- 

The above calculation of the noise spectra is based on the Shockley model. 
As was already mentioned, this model cannot be applied to GaAs FETs. For 
these devices the electric field in the channel can be so high that the electron 
mobility can no longer be considered to be constant. For a more realistic 
transistor model. it is assumed that Ohm’s law holds in a part of the channel 
only and that the electrons move with a constant saturated drift velocity in 
the remaining channel region. 

The strong electrical fields in the channel also require a more complicated 
noise model. In the relations for the thermal noise, e.g. Eq. (4.109), the 
physical temperature of the device can not be used anymore, because the 
electrons are no longer in thermal equilibrium with the crystal lattice. The 
actual electron temperature is typically higher than the lattice temperature 
(hot electrons). In the region of the saturated drift velocity, the current 
fluctuations cannot be considered as thermal noise but must be treated more 
generally as so-called diffusion noise. 

The general equivalent circuit of Fig. 4.17 is valid for any linear circuit, 
i.e. also for GaAs FETs. Equations (4.115)’ (4.117) and (4.119) for the noise 
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spectra can be used for GaAs FETs as well. except that  the functions I', Q 
and R are different from the relations given by the constant mobility model. 
Among others, an important difference from the results obtained so far is 
that  the noise currents i, and id are almost completely correlated. Thus, the 
values of the quantity 6 in Eq. (4.121) are close to 1, compared with 0.4 for 
the constant mobility model. 

4.6.3 

In addition to the inner FET,  several parasitic resistances contribute to  the 
noise of the complete FET.  These are in particular the gate resistance R, 
and the source resistance R,. A more detailed noise equivalent circuit of 
the complete FET is shown in Fig. 4.21. The thermal noise of the parasitic 

Noise figure of the complete FET 

Fig. 4.21 Koise equivalent circuit of the complete FET 

resistances is described by noise voltage sources with the complex phasors U, 
and Us.  The complex impedance 20 = Ro + j X 0  is the source impedance of 
the signal source. The noise of the signal source is designated by the voltage 
phasor UO.  

The different noise phasors cause a short circuit noise current at the output 
with the complex amplitude Il,  which can easily be determined from the 
equivalent circuit of Fig. 4.21: 

-UO - Ug + Us - Ig(Zo + Rg -I- R,) 
1 

R, + -(1 +jwC,(Zo + R, + R,)) 
Sm 
Id 
-(1 + jwC,(Zo + R, + R,)) 

R, + -(1 +jwC,(Zo + Rg + R,)) 

I1 = 

(4.126) 
1 

Sm 

+ Sm 
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The squared magnitude of the phasor Il yields the corresponding power spec- 
trum at the output. Only the correlation between the currents I9 and Id must 
be taken into account. Then, the noise figure F of the FET is given by 

Apart from the transistor properties, the noise figure also depends on the 
source impedance 2 0  = Ro + jX,. For an optimum source impedance Zopt = 
Rapt + jXopt  the minimum noise figure Fm,, is obtained. The partial deriva- 
tives of Eq. 4.127 yield the real and imaginary parts of the optimum source 
impedance: 

(4.128) 

1 P - Q  

WCg P + R - 2Q 
X o p t  = (4.129) 

The resulting minimum noise figure is given by 

Fmtn = 1 + 2 m ( R o p t  + Rg + Rs)(P + R - 2 Q )  (4.130) 
Sm 

or 

( W C  ) 2  
F,,, = 1 + 2 ( P  + R - 2 Q ) 2 ( R g  + R,) 

P R ( 1 -  C2) + gm(Rg + Rs)(P + R - 2 Q )  

wCg(Rg + R,)(P + R - 2Q))2 

(4.131) 

Problem 

4.6 
figure and the optimum source impedance. 

Derive the expressions Eqs. (4.128) and (4.131) for the minimum noise 

For frequencies that are small compared to the transit frequency of the 
transistor, we have wCg << gm and thus the quotient under the square root 
in Eq. (4.131) is much larger than one. This leads to a simplified relation for 
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2 

1 

0 

the minimum noise figure: 

Fmin = 1 + 2 " " ' C 9 d P R ( l - E 2 ) + g m ( R g  + R s ) ( . F + R - 2 Q )  
Sm 

0.15pm GaAs PHEMT 
-- 

-- 

1 , 

+ 2 H ( R g  + R,) (p  + I? - 2Q) . 
Sm 

(4.132) 

Equation (4.132) shows that the minimum noise figure far below the tran- 
sit frequency increases linearly with frequency. Approaching the transit fre- 
quency. F,,, increases faster due to the quadratic term in Eq. (4.132). The 
parasitic resistances Rg and R, contribute substantially to this frequency be- 
havior. If only the inner FET is considered, i.e. for Rg = R, = 0, we get the 
simple expression 

F,,, = 1 + 2d-s . (4.133) 

As has already been mentioned, the two noise currents of the inner FET are 
strongly correlated for GaAs-FETs. With c zz 1. the expression PR(l - c2) 
under the square root of Eq. (4.132) can be neglected with respect to the 
second term. If, furthermore the quadratic term in frequency is omitted. then 

Sm 

noise figure [dB] 3 r  

the noise figure is given by 

Rg + Rs 
Fmin = 1 + KwCg (4.134) 
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with 

K=24-. (4.135) 

The general dependence of the noise figure on the bias point can be derived 
from Eq. (4.134). If V, becomes more negative. then C, as well as gm decrease. 
Also the ratio wC,/& and thus the noise figure decreases at first. But if 
the transconductance finally approaches zero close to  the pinch-off point, the 
noise figure increases again. Therefore. an optimum for the noise figure is 
observed at  a certain drain current. For a GaAs FET the optimum gate 
voltage typically is close to the pinch-off voltage. 

Problem 

4.7 Determine the normalized gate voltage which yields the minimum noise 
figure, if gm and C, are described by the relations derived from the Shockley 
model. 

Figure 4.22 shows typical noise figure values versus frequency curves of state 
of the art  FETs, fabricated on GaAs or indium phosphide (InP) material. The 
best devices today achieve minimum noise figures close to 1 dB at  100 GHz. 



5 
Parametric Circuits 

For a very important class of non-linear circuits the drive signal of the non- 
linear device (or devices) is a time-periodic pump voltage up( t )  of a relatively 
large amplitude and with the fundamental frequency f,. Furthermore, there 
are a number of signals, Au(t) .  superimposed on the non-linear device, which 
are much smaller in amplitude than the pump signal and which normally have 
frequencies different from fp. The so-called parametric approach is based on 
the assumption that the instantaneous properties of the non-linear device are 
determined exclusively by the periodic pump signal. It is assumed that the 
small signals do not influence the device behavior. As a first example, we 
will treat the Schottky diode with its unambiguous non-linear current-voltage 
characteristic. Then, we will transfer the parametric approach to other non- 
linear devices such as the field effect transistor or the varactor diode with its 
non-linear charge-voltage characteristic. We will see that parametric circuits 
can be treated quasi-linearly which simplifies the derivation of a noise model. 

5.1 PARAMETRIC THEORY 

The non-linear device relates the current I and the voltage U by an unambigu- 
ous current-voltage characteristic 1 = I ( U ) .  The non-linear device is driven 
by a periodic signal up( t )  of a relatively large amplitude. A small signal Au(t)  
is superimposed on the large signal. If the amplitudes of Au(t)  are very small 
compared with the amplitudes of up( t j ,  then a good approximation is given 
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by the parametric approach: 

= I ( u p ( t ) )  + Ai(t) . (5 .1)  

The small signal voltage Au( t )  causes a small signal current Ai(t) and both 
are related via the time dependent admittance g ( u p ( t ) ) :  

The instantaneous admittance only depends on the large signal up@)  and is 
the parameter, which is changed by the large signal. It should be noted that 
the small signal currents and voltages Az and Au are related linearly, because 
they do not influence the function g ( t ) .  Therefore, the superposition principle 
holds for the small signal quantities. However, because the admittance g ( t )  
is time dependent, new frequency components will appear. The relationship 
between the different frequency components may be seen more clearly by using 
a phasor description. We will assume in the following derivation that the pump 
or local oscillator signal is periodic with the angular frequency wp = 2nfp . 
Then, the instantaneous admittance g ( t )  is also periodic with wp and can be 
developed into a Fourier series: 

1-03 

n=--ca 

(5 .3)  
1 

Gn = - 277 / g ( u p ( t ) )  exp(-jnw,t)d(w,t) . 
- 7 r  

Because g ( t )  is a real function, we have 

G-, = GA (5.4) 

and Go is real. If we assume for the moment that Au(t)  is sinusoidal with 
the angular frequency ws = 27rfs, then we conclude from Eq. ( 5 . 2 )  that Ai(t) 
appears at all combination frequencies i fs&n.fpl  , n = 0 ,1 ,  2 , 3  etc. The small 
signal approximation has the consequence that harmonic frequencies of f s  can 
not appear. The small signal currents at  the different combination frequencies 
lead to  small signal voltages at these frequencies if the load impedances at 
these frequencies are not equal to zero. 

At the moment, we will assume for the small signals that apart from the 
current at the signal frequency f s  only a current at the intermediate frequency 
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fi = f s  - f p  flows through the two-terminal non-linear device. At all other 
combination frequencies the load impedance is high enough to prevent any 
current flow. In a phasor description with the complex current phasors I,, I ,  
at the signal and the intermediate frequency, respectively, we then may write 
for the small signal current 

1 
Az(t) = - 2 ( I ,  ,just + I: ,-just + I ,  ,Jutt + I,* ,-jutt) , ( 5 . 5 )  

Only the voltage phasors a t  the frequencies f s  and f t  together with the cor- 
responding current phasors give rise to a power flow at  the non-linear two- 
terminal element. We therefore introduce components only at the frequencies 
fs and fi also for Au(t):  

If we insert Eqs. ( 5 . 3 ) ,  ( 5 . 5 )  and ( 5 . 6 )  into Eq. ( 5 . 2 )  and arrange according to  
frequency components, we obtain the following two equations in matrix form 

( 5 . 7 )  

for f s  > f p  . 
We can see that the complex current and voltage phasors are linearly related 

via an admittance matrix. However, in contrast to time-invariant linear two- 
ports, the phasors belonging to different indexes s and i also belong to  different 
frequencies, f s  and fi.  

The amplitude of the pump signal does not enter into the equations explic- 
itly. However, it determines the magnitude of the matrix elements Go, G,. 

In contrast to the upper sideband conversion discussed so far (Fig. S.la),  
for the lower sideband conversion we have f t  = f p  - f, (Fig. 5.lb).  

' spectrum spectrum 

For the 

__c 
I 

f i  f P  f s  f fi f s  f P  f 
I 

Fig. 5.1 (a) Upper sideband conversion; (b) Lower sideband conversion. 

case of the lower sideband conversion we obtain the following matrix equation 
for the current and voltage phasors: 
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for f s  f p  . 
If the large signal time function up( t ) ,  for a proper choice of the time origin, 

is an even function around t = 0, which e.g. is true for a cosine function, then 
the Fourier coefficients G, in Eq. ( 5 . 3 )  are real. In this case, the admittance 
matrix [GI is symmetrical and the corresponding two-port is reciprocal. Up- 
and down-conversion lead to the same conversion gain or conversion loss. If 
the large signal time function up( t )  is an arbitrary function of time, then 
the Fourier coefficients G, in Eq. (5.3) are normally complex. Due to the 
special form of the admittance matrix [GI the corresponding two-port is quasi- 
reciprocal and up- and down-conversion lead to the same conversion gain or 
conversion loss. 

The size of the admittance matrix increases with the number of combination 
frequencies allowed. For instance, a 3x3 matrix is obtained if the image 
frequency fim = fp 5 fi is additionally taken into account. 

5.2 DOWN CONVERTERS WITH SCHOTTKY DIODES 

Schottky diodes are particularly well suited for the heterodyne reception at  
high frequencies, because they have a high cut-off frequency. As Schottky 
diodes are passive components, the stability of the mixer circuits is practically 
always guaranteed. As we will see in this chapter, frequency converters with 
Schottky diodes also have low noise figures. In general, circuits of down- 

Schottky- 
diode 

band-Das- 

I I 

Fig. 5.2 Basic down converter circuit. 

converters have a structure as shown in Fig. 5 . 2 .  For the band-pass filters 
BP shown, it is assumed that only the specified frequency is passed while all 
other frequencies are suppressed. Also, the input impedance of the band-pass 
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filter is assumed to be very high at these other frequencies. In particular, it is 
assumed that all band-pass filters have a high input impedance at  the image 
frequency f i m ,  a t  least for the circuit of Fig. 5.2. As a consequence no current 
will flow through the Schottky diode at the image frequency. 

In a dual manner, for a Schottky diode connected in series. the band-pass 
filters should have a short circuit as input impedance at all frequencies outside 
the pass band. It is evident from these assumptions that only currents and 
voltages a t  the signal frequency f, and the intermediate frequency f, have to  
be taken into account. Therefore, the matrix relation Eq. (5 .7 )  can be applied. 
Let Ys be the source admittance, Y, the load admittance and Iss the signal 
generator current source, then we obtain the equations: 

Iss = us . Y s  + Is  
0 = U , . Y , + I , .  

(5.10) 

(5.11) 

Figure 5.3 shows a two-port equivalent circuit in an admittance description 
with current and voltage phasors and a source and a load impedance. The 

Fig. 5.3 Two-port equivalent circuit of a down converter. 

elements of the admittance matrix Go,G1 are the Fourier coefficients of the 
periodic time function of g ( t )  of the Schottky diode according to Eq. (5.3). 
We will assume that a sinusoidal voltage Up from the pump signal or local 
oscillator drives the Schottky diode at the angular frequency wp = 2 ’ ~ ~ f ~ .  In 
addition, a d.c. bias voltage UO is applied to the Schottky diode. Then, the 
voltage u p ( t )  across the diode is given by 

up( t )  = Uo + up . cos w p t  . (5.12) 

Because up( t )  is an even function of time, all Fourier coefficients are real. For 
an exponential current-voltage characteristic according to 

I = I,, . (exp ( g )  - 1) (5.13) 
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and with 
u,> I - -nkT/q - 

the Fourier coefficients are obtained as 

Is, 

UT 
G, = - exp(Uo/Ur) 

(5.14) 

) 
7-a 

. -L / exp ($ . cos(w, t )  cos(niu', t )  d(w, t )  . (5.15) 
27r 

--x 

The integral in Eq. (5.15) represents a modified Bessel function of the n-th 
order, f,(o,/U~). Therefore, the Fourier coefficients may also be written as 

(5.16) 

According to this model the Fourier coefficients only depend on the peak value 
of the pump signal 0,. Figure 5.4 shows a typical time characteristic of the 
admittance g ( t ) .  For the following discussions, we will assume that Go is real 

Fig. 5.4 Time characteristic of the admittance g ( t ) .  

and positive and that G1 and possibly G2 etc. are allowed to be complex 
but have a positive real part. All Go, GI ,  G2 etc. are known, because the 
pump level is assumed to be known. Xormally, for a fundamental frequency 
converter, the relation Go > GI > GZ holds. With known Go and GI and with 
known source and load admittances Y, and Y,  we can determine the power gain 
or simply gain G,, the available gain G,, and the maximum available gain 
G, of the equivalent mixer circuit of Fig. 5.3. The gain of the down-converter 
is the ratio of the output power lU,I2 . Re(Y,)/2 to the available source power 
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iIsgi2/(8' Re(Ys)).  The ratio Ui/ Is ,  can conveniently be determined from the 
extended matrix \GI, in which the Eqs. (5.9) to (5.11) are combined: 

or 

Equation (5.18) yields 

[ ? ]  = [ G I ?  [ '71 . 

which leads to an expression for the gain G, : 

(5.18) 

(5.19) 

4 Re(Y,) Re(Y,) . jG1 j 2  (5.20) - - 
I(Go + %)(Go + Y,)  - /G1/2 /2  ' 

For mixer or frequency converter circuits the available gain G,, is often re- 
quired, which is the ratio of the available output power to the available source 
power. The available output power is obtained, if the load admittance Y, 
is chosen equal to the complex conjugate of the input admittance Y,i of the 
mixer circuit as seen from the load side at the intermediate frequency f ,  : 

y=Y,;. (5.21) 

Conveniently, the input admittance U,, is computed from admittance matrix 
[G,] extended by the source admittance Y, only: 

(5.22) 

or 

(5.23) 

From Eq. (5.23) the input admittance Y,, at the intermediate frequency or 
load side is obtained as 

(5.24) 

With Y,, from Eq. (5.24) and Y,  = Y,: the available gain is calculated in the 
same way as in Eq. (5.20), with U, replaced by U,: : 

(5.25) 
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The available gain does not depend on the load admittance Y,. The reciprocal 
value of the available gain G,, will be denoted as conversion loss La,  : 

1 
La,  = - * 

G a u  
(5.26) 

The maximum available gainavailable gain, maximum available gain G, = 
l /Lm is obtained when an impedance match is provided at  the mixer input as 
well as a t  the mixer output side. Since the gain is symmetrical with respect 
to the quantities Y, and Y,, we must have Y, = Y,  for the maximum available 
gain. For the input admittance at the source side, Y,,, we get, by similarity 
to Eq. (5.24)) 

With impedance match at the source side, i.e. Y, = Y,*, we obtain 

(5.27) 

(5.28) 

(5.29) 

and 

Im{Y,} = Im{K} = 0 (5.30) 

and therefore, 

(5.31) 

and Y, and Y, are real quantities. If these results for Y, and Y, are inserted 
into the relation Eq. (5.20) for the gain, then, after some manipulations the 
following expression is obtained for the maximum available gain G,: 

l 2  Gm = (W + 41- /G112/G; 
1 

(5.32) 

The maximum available gain G, only depends on the ratio of /G1//Go < 1. 
Therefore, the maximum available gain is smaller than 1. 

In the extreme case of a mixer driven by very narrow pulses, so-called Dirac 
impulses, jG11 M Go and thus G, M 1. However, under these conditions the 
input admittance Y,, approaches zero and thus an impedance match is no 
longer possible. Practical mixers with Schottky diodes exhibit conversion 
losses in the range of 5 dB to 10 dB. The series resistance or bulk resistance 
of the Schottky diode, which has been neglected so far, is the reason for the 
somewhat higher conversion losses. Figure 5.5 shows an equivalent mixer 
circuit that has been supplemented by a series resistance R b .  
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Fig. 5.5 Equivalent circuit of a down converter with a series resistance Rb. 

Problem 

5.1 Calculate the power gain, the available gain and the maximum available 
gain for the mixer circuit of Fig. 5.5 by taking into account the series resistance 
Rh . 

For the down-converter, which has been discussed so far. we implicitly as- 
sumed that at the image frequency fim = f,- fi the load admittance is a short 
circuit, because we assumed the voltage U,, at fim to be zero. Frequently, 
mixers do not have a short circuit a t  the image frequency, in particular, if the 
intermediate frequency fi is low. In this case, the image frequency f a ,  and 
the signal frequency f ,  are so close to each other that  in practice it is difficult 
to supply a match at  the signal frequency and simultaneously a short circuit 
a t  the image frequency. These practical difficulties become even more severe, 
if the pump frequency has to be tuned over a wide frequency range. For such 
a so-called broadband mixer, the load impedance at the signal frequency and 
the image frequency are nearly equal, at the price of a higher conversion loss. 
Figure 5.6 shows the equivalent circuit of a down-converter, where the load 
admittance at the image frequency, Y,,, has the same value as the load ad- 
mittance Y, at the signal frequency, i.e. Yam = Y,. For fs > f ,  the currents 
and voltages are related via a 3-port admittance matrix [GI as given by the 
following equation: 

Go GI G2 [ 2 ] = [ G; Go GI ] . [ 2 ] for f s  > f p  . (5.33) 

I& G4 GF Go U;rn 

Again the gains for up- and down-conversion are equal. For a feed signal from 
the intermediate frequency side, due to symmetry the signal power is evenly 
divided between the signal and the image port. However, because the power 
at the image load admittance Yam is useless power with respect to the intended 
mode of operation, the conversion loss for the up- and down-conversion is at 
least 3 dB. Therefore, in practice, the conversion loss of a broadband mixer 
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Fig. 5.6 
tance Y,, at  the image frequency. 

3-port equivalent circuit of a down-converter with a load admit- 

is higher than the conversion loss of a mixer which is terminated by a lossless 
load admittance at the image frequency, e.g. a short circuit. 

Problem 

5.2 Calculate the power gain and the available gain for the case that the 
image frequency is terminated by the same complex load admittance as the 
signal frequency, 5, = Y, . 

5.3 M I X E R  CIRCUITS 

5.3.1 Single diode mixer 

The single diode or one-diode mixer is particularly simple in its design and 
can achieve a broad bandwidth. A typical realization is shown in Fig. 5.7. The 
signal and the pump signal are combined via a coupler. The details of the 
coupler are not important. In Fig. 5.7 a transmission line coupler is drawn. 
The circuit has losses for the R F  signal as well as for the pump signal. By 
the choice of the coupling factor, the losses can be shifted between the R F  
signal and the pump signal. If a 10 dB coupling is selected, then the pump 
signal is attenuated by 10 dB while the signal is attenuated by 0.46 dB. The 
high-pass filter HP must pass the high-frequency signal and the pump signal, 
and suppress the intermediate frequency, which is assumed to be much lower 
than the R F  and the pump frequencies. The low-pass filter LP must pass the 
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RF signal - LP ~ HP 
fs (line-) coupler 

IF 

f i  

- 

Fig. 5.7 Block diagram of a single diode mixer. 

e.g. / 

intermediate frequency and stop the RF signal and the pump frequency. On 
the diode side the low-pass filter must have a high impedance for the high- 
frequency components, while the high pass filter a t  the diode side must show 
a high impedance at the intermediate frequency. 

=z 

R F  signal 
N 

~ HP LP 

Fig. 5.8 Block diagram of a series connected one-diode mixer 

IF - 

Instead of operating the diode in shunt configuration, one may connect the 
diode in series, as shown in Fig. 5.8. For a series connected diode the low-pass 
filter on the diode side must act as a short circuit against ground for the high- 
frequency signals and the high-pass filter as a short circuit against ground for 
the intermediate signal. Due to the rectification of the pump signal, a direct 
current will flow through the diode, if the current path is closed, driving the 
diode into a low impedance state. Therefore, normally, an additional bias 
voltage needs not to  be applied to the diode. 

5.3.2 Two-diode mixer or balanced mixer 

The balanced mixer needs a 3dB coupler of the 90"- or 180O-type and two 
diodes. Figure 5.9 shows a circuit with shunt diodes. 

Similarly, the circuit can be built with series connected diodes. The bal- 
anced mixer circuit does not show additional losses, because for lossless cou- 
plers and filters the full power gets to the diodes. As an example we will 
consider a 3dB-90" coupler. At the input of the coupler the signal and the 
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LO ~ 

fp 90°(1800) 
- 

3 dB 
- 

signal 

diode I 
H P  L P  

IF 

f i  

4- 

H P  L P  . 

Fig. 5.9 Principal block diagram of a balanced mixer with two diodes. 

pump signal are assumed to  have the following time behavior: 

us( t )  = us ' cos (us t + $bS) 

2Lp(t) = up .cos(w,t) . (5.34) 

Then, we will observe the following signals a t  the diode I or diode 11, respec- 
tively: 

1 1 
- us ' cos (w, t + 90" + &) + - up ' cos (wp  t )  Jz Jz diode I : 

1 1 
- us . cos (w, t + &) + - up . cos (up t + goo) . (5.35) Jz Jz 

diode I1 : 

With the conversion factor K we obtain the intermediate frequency signal u i ( t )  
for the diode I: 

diode I : uf = K GI Us cos (wi t + 90' + q5s) . (5.36) 

Because the polarity is reversed for the diode 11, the admittance function g ( t )  
has been shifted by half a period or 180" at  the pump frequency f,. Thus, we 
obtain for the diode I1 the expression: 

diode I1 : uar = IE G1 Us cos (ui t - 90' + 180' + #s)  

= K G1 Us cos (wi t + 90" + q5s) . (5.37) 

We assumed that the diodes are well paired, i.e. that  they are equal. Then, 
both intermediate frequency signals are equal with respect to  the phase and 
amplitude and they can be added, as it is shown in the circuit of Fig. 5.9. In 
total, the mixer circuit does not have additional signal and pump losses. 

Problem 

5.3 Show that a mixer with two diodes and a 180°-coupler does not exhibit 
additional signal or pump signal losses. What is the difference between a 
mixer with a 9O0-coupler and a 180"-coupler? 
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The statement that a mixer is balanced has the following meaning. A pump 
oscillator signal normally shows irregular amplitude fluctuations, which are 
also denoted as amplitude noise. Such amplitude fluctuations are of stochas- 
tic nature and typically cover a broad frequency spectrum, which may also 
include spectral components in the intermediate frequency range. The origin 
of the amplitude noise will be discussed in detail in Chapters 6 and 7. The 
Schottky diodes of the mixer rectify the pump oscillator signal. Therefore. 
a direct voltage appears across the diodes, which also shows small irregu- 
lar fluctuations, similar to the amplitude fluctuations of the pump oscillator. 
Spectral components of these fluctuations may fall into the frequency range 
of the intermediate frequency signal. Xormally, the amplitude noise spectrum 
decreases with increasing offset frequency and, therefore, its contribution to  
the total noise may be negligible at high offset frequencies. 

A mixer with two nearly identical diodes with opposite polarity and a su- 
perposition of the output signals as shown in Fig. 5.9 allows one to cancel 
the amplitude fluctuations independent of time. An identical small irregu- 
lar fluctuation signal appears a t  the second diode, but due to the reversal 
of the second diode, this fluctuation signal has the opposite polarity versus 
time. When added these noise contributions of the pump oscillator signal 
will cancel. We will denote this balancing effect also as a noise balance. The 
radio frequency signal. in contrast, does not contribute substantially to the 
amplitude fluctuations, because it is much smaller than the pump signal and, 
therefore, all spectral contributions are transferred linearly without being rec- 
tified. On the other hand, the two intermediate frequency signals will add, as 
has been explained before. 

For practical mixers the balancing effect is in the order of 20 to  40 dB. This 
is normally sufficient to  eliminate the influence of the pump signal amplitude 
noise to the noise figure of the mixer. Then, the measured noise figure of the 
mixer as determined by its intrinsic noise is in agreement with the theory, 
which will be shown in the next sections. 

A single diode mixer is not noise balanced, of course. A so-called double 
balanced mixer or ring modulator with four diodes arranged in a ring shows 
a similar noise balancing effect as the two-diode mixer. 

5.3.3 Four-diode double balanced mixer 

An example of a so-called double balanced mixer is the ring mixer as shown in 
Fig. 5.10. The name stems from the fact that the four diodes are arranged in a 
ring configuration, if one follows their topology in the direction of e.g. forward 
conduction. The two transformers cause a ground-symmetrical excitation of 
the four diodes for the radio frequency signals and the pump signal. The 
center tapping of the transformers acts as a direct galvanic connection to the 
diodes for the low intermediate frequency. We may introduce directed arrows 
to indicate the polarity of the radio frequency (RF) signal and the pump 
signal or local oscillator (LO) signal. We will make the assumption that 
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- 

Fig. 5.11 
of Fig. 5.10. 

Directed arrows for the IF-signals of the double balanced mixer 

At higher frequencies, the transformers of Fig. 5.10 might be replaced by 
180" - 3 d B  couplers as shown in Fig. 5.12.  In this figure, the 180" - 3 d B  
couplers are realized by 90" branch-line couplers with additional 90" phase 
shifters (PS). The low-pass filters should have a high impedance for the high- 
frequency signals at the diodes side. The R F  and LO ports are isolated. 

a LO directed arrow in the forward conduction direction of a diode. i.e. in 
the direction of the tip of the diode symbol, represents an admittance time 
characteristic with a phase of 0" relative to the LO-signal, a directed arrow 
against the diode tip for a phase of 180". The phase of the intermediate 
frequency signal (IF) results from the difference of the RF-phase and the 
phase of the admittance time characteristic. With these representations the 
resulting directed arrows for the IF-signals give the result shown in Fig. 5.11. 
We notice that all four arrows for the IF-signal are parallel and thus sum up. 
Due to the bridge arrangement of the diodes the RF port and the LO port 
are isolated, provided that the diodes are well paired. We may thus speak 
of a signal balancing of these ports. Similarly, for symmetry reasons. the IF 
port is isolated from the R F  and LO ports, which may also be called a signal 
balancing. The double balanced mixer is noise balanced, because the rectified 
LO-signals cancel, due to  their opposite polarities. 
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Fig. 5.12 Double balanced mixer with two 90" branch-line couplers. 

5.4 NOISE EQUIVALENT CIRCUIT OF PUMPED SCHOTTKY 
DIODES 

The sensitivity of a down-converter for the reception of weak high-frequency 
signals depends on the conversion loss, ultimately however, it is the noise 
figure which determines the deterioration of the signal-to-noise ratio a t  the 
intermediate frequency output of the mixer. In order to calculate the noise 
figure of the mixer, we need a noise equivalent circuit of the mixer. We will 
choose an equivalent circuit with a parallel noise current source Ins = In, for 
the signal input port a t  the frequency f s  and a second noise current source 
I,, = I n 2  for the intermediate frequency output port a t  the frequency f, 
(Fig. 5.13) .  The down converter is assumed to have a short circuit as a 
load admittance at  the image frequency and all other relevant combination 
frequencies. The two-port with the admittance matrix [GI itself is noise-free, 
GI is assumed to be real for the initial discussion. Later on, it may also 
be complex. The difference to equivalent circuits of normal linear circuits is 

Fig. 5.13 
tky diode. 

Noise equivalent circuit of a down converter with an ideal Schot- 

that the ports 1 and 2 refer to  different frequencies. In order to  simplify the 
following discussion, we will neglect the noise contribution of the small reverse 
saturation current I s s .  Furthermore. we will neglect the thermal noise of the 
series resistance of the Schottky diode, but will add this contribution later on. 
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If we neglect the contribution of the reverse saturation current, then the 
Fourier coefficients of the current, I,, and of the admittance, G,, are pro- 
portional to each other, because the corresponding time characteristics are 
proportional to each other. We get 

-03 

i(t) = C I~ . exp ( J  puiJpt)  = UT g ( t )  
p = - m  

and 

I p  = Uy* . G, . (5.38) 

The power spectra of the noise current sources are easily calculated. With 
a short circuit at port 2 ,  the input admittance at port 1 is just Go, and the 
current source shows shot-noise according to the mean value of the current, 
I,-,, or the mean admittance, Go. With the ideality factor ii for the Schottky 
diode the two-sided spectra Wnl and Wn2 are given by 

2 Wnl = 1Inll2 = Q * I0 = 2 k .  -nT . Go = Wn2 = /In21 . (5.39) c -  ) 
Here, as before, k is the Boltzmann constant and T is the absolute tempera- 
ture. 

The considerations concerning the cross-spectrum are more difficult. If the 
pump amplitude is equal to zero, then GI is also equal to zero and the ports 
1 and 2 are isolated. According to  the mathematical definition of correlation. 
signals of different, non-overlapping frequency bands are always uncorrelated. 
However, in the context of noise in mixers, the evaluation of the correlation 
requires to  shift one of the two frequency bands in frequency such that both 
frequency bands perfectly overlap. For the unmodulated shot noise of the 
Schottky diode, i.e. GI = 0, there is no correlation even after a frequency 
translation for the purpose of achieving a frequency coincidence. This will be 
shown in problem (5.4). 

Problem 

5.4 Prove for white unmodulated noise that the noise signals a t  the output 
of two band-pass filters are uncorrelated, as long as the pass bands do not 
overlap. For the calculation of the correlation, first a frequency translation 
for the purpose of frequency coincidence should be performed. 

We will normally observe a correlation if the shot noise of the Schottky 
diode is modulated by the pump signal, because the modulation generates 
noise sidebands at corresponding frequencies. After the frequency translation 
towards frequency coincidence, there are noise components from the same 
origin, which may lead to a correlation. 
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The unmodulated white shot noise is assumed to have the time character- 
istic s ( t ) .  The autocorrelation function of s ( t ) ,  i.e. p, is assumed to be a Dirac 
function 6( . r ) :  

p (7 )  = E{s(t) . ~ ( t  + T ) }  = PO * 6(7) . (5.40) 

The modulated shot noise is assumed to have the time characteristic sm( t ) .  
For the following considerations, we will make the fundamental assumption 
that the instantaneous power &(t)  of the modulated noise is proportional to 
the instantaneous current i ( t )  through the diode or admittance of the diode 
dt): 

2 2 i(t) s,(t) = s ( t )  - 
1 0  

1 2 I2 
= s2(t )  . 1 + - cos(w,t) + - cos(2upt) + .  . . [ 22 1 0  

] (5.41) 
2 GI 2 G2 = 2 ( t )  . 1 + - cos(u,t) + - cos(2upt) + . . ’ [ Go GO 

or 

(5.42) 2 GI 2 G2 
GO GO 

sm( t )  = s ( t )  . 1 + - cos(w,t) + - cos(2wpt) + . . . 
As shown in Fig. 5.14, we will discuss the correlation between the rectangularly 
band-pass filtered noise signals X , ( t )  at the frequency f, and X,( t )  at the 
frequency fs, with fs - fi = fp. We assume that the bandwidths Af of the 
band-pass filters are equal and small. In the following, only the term GI will 

spectrum frequency translation 
by f p  

fi fP f s  f 

Fig. 5.14 Illustration of the correlation between two frequency bands 
around fi and fs. 

be taken into account, because further terms, e.g Gz,  do not contribute to 
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~ S m ( t )  o 

the correlation, as may be shown. The functions h,(t) and h,(t) denote the 
impulse responses of the ideal band-pass filters with the center frequencies f ,  
and fs. Then, we obtain the band-pass filtered signals X , ( t )  and X , ( t )  from 
s,(t) by a convolution of the impulse responses h,(t) and h,(t): 

fi X$t)  XS(i) 
fi and sum- 
frequency 

f s  

multiplier 
bandpass 

X , ( t )  = h,(t’) . s,(t - t’) dt’ 
-02 T 

= j a h l ( L ’ )  . s( t  - t’) . /r 1 + - cos[wp(t - t’)] dt’ 

= T h s ( t ” )  ’ s ( t  - t”) ’ 1 + - cos[wp(t - t”)] dt” * 

-m rz----- 

-02 

X , ( t )  = 7 h s ( t ’ ’ )  . S,(t - t”) dt” 

-cc 

(5.43) 

Fig. 5.15 Ideal frequency translator. 

difference frequency. The difference frequency falls into the frequency band 
at f,, as intended, while the sum frequency f, + fs does not contribute to 
the correlation. The signals X,(t)  and X, both have spectral components in 
the vicinity of fi and can be considered as the input signals of a correlator as 
shown in Fig. 3.15. Then, the correlation E { X , ( t )  . X s ( t ) }  is obtained from 
the following expression, in which the integration and time averaging have 

The signal X, ( t )  includes spectral components around fs. In order to calculate 
the correlation, a frequency translation or frequency shift by the amount or 
distance f, from the frequency band at  fs to the frequency band at  fi must 
be performed. As illustrated in Fig. 5.15,  such a frequency translation can 
be realized with the help of an ideal analog multiplier and a band-pass filter. 
We obtain the signal xs(t )  after the ideal frequency shift of the signal X , ( t )  
by the frequency distance f, . The analog multiplier creates the sum and the 
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already been exchanged: 
fffi 

-cc 

2 .  cosw,t. ~ ( t  - t’) . 

a s( t  - t”) . /-} dt‘dt‘’ . 
(5.44) 

We note that the expected value of the expression in the curly brackets, de- 
noted by E { Z } ,  becomes identical to zero for t’ # t”, for similar reasons as 
p ( ~ )  in Eq. (5.40) for T # 0. We therefore analyze the expression E{Z}  for 
t’ = t”: 

= E { 2 . cos w,t , s 2 ( t  - t’)} + 

E { 5 . cosw,t~ cos[w,(t - t’)] . s2( t  - t’) 
GO 

= E { 2 . ~ 0 ~ w , t . s ~ ( t - t ’ ) } + E  COSWPt’ . s2( t  - t’) 

cos[2wpt - wpt’] . s2(t - t’) 

E{Z}  = 0 for t’ # t” . (5.45) 

The first and the third expression on the right hand side of Eq. (5.45) are 
zero, because s2( t  - t’) is multiplied by an alternating and limited weighting 
function. Therefore, the final result is 

coswpt‘ ’ s 2 ( t  - t’) E{Z}=E{ %. cosw,t’.E{s2(t - t’)} 
t‘=t” 

E{Z}=O for t’ # t” 

or with Eq. (5.40): 

(5.46) 

cos wpt’ . po . 6(t” - t’) . 2 G1 E{Z}  = _ _ .  
Go 

(5.47) 

We therefore can write for Eq. (5.44): 

E { X i ( t )  . X , ( t ) }  = 17 hi (t’) h, (t“) 

--oo 
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COS(W,~’) PO b(t” - t’) dt’ dt” 2 G1 
GO 

- .  

tM 

= P o ’ - ’  G1 1 h,(t’) . h,(t’) cos(w,t’) dt’ . (5.48) 
GO 

-m 

In the following, we will calculate the normalized correlation coefficient, i.e. the 
correlation coefficient normalized to the autocorrelation coefficient E{X, ( t )  . 
X , ( t ) )  in the band with the center frequency fi. This ratio is equal to the 
ratio of the cross-spectrum to the auto spectrum, (I;1 . In2)/lIn1)2,  because, 
according to the assumption made, the crossspectrum of the current sources 
is real due to the real [GI-matrix. Thus the imaginary part of I;lIn2 is zero 
( c j .  problem (5.5)). Therefore, we can write: 

2G1 -O0 

P o . - .  Go 1, h,(t’) h,(t’) cos(w,t’) dt’ 
- - 

+m 

P O  1, h? (t‘) dt‘ 

(5.49) 

For further evaluation of Eq. (5.49) we will use the explicit expressions for 
the impulse responses h,(t) and h,(t) for a rectangular band-pass filter, as 
already known from a similar calculation in problem 1.7: 

h,,+ = 2 A f . cos(27r f , , ,  . t )  . si(7r A f t )  . (5.50) 

For a small value of A j  the integrals in Eq. (5.49) are almost zero, if the 
products of cosine functions in front of the term si2(7r A j .  t’) are alternating 
weighting functions. A contribution of the integrals only occurs if the products 
of cosine functions results in a constant term ( c j .  problem 5.5). With this 
knowledge Eq. (5.49) yields: 

E{X*(t) . X&)) - - IA1 ’ In2 
E{X22(t)) 1In1I2 

F’rom Eqs. (5.39) and (5.51) we finally get the requested cross-spectrum 
. Inz = I ; i .  I,, : 

(5.52) 
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We notice that the cross-spectrum of two frequency bands that are related by 
the pump frequency fp, are proportional to the Fourier coefficient GI This is 
for instance true for the frequency ranges fi and fs  or fi and fzm.  Similarly, 
the cross-spectrum of two frequency ranges that are related by twice the pump 
frequency 2fp. as for instance f s  and f t m .  are proportional to the Fourier 
coefficient Gz : 

(5.53) 

Thus, the so-called correlation matrix for the equivalent noise current sources 
of an ideally pumped Schottky diode has the same structure as that of a pas- 
sive noisy two-port with only thermal noise at a homogeneous temperature 
T. This equivalent passive two-port is also described by its admittance ma- 
trix [Y] and with current sources (see also Eq. (2.47) and Eq. (2.48)). The 
Fourier coefficient Go corresponds to the admittance matrix element Yll and 
the element GI corresponds to the admittance matrix element Yzl = Y12. 
However, instead of the temperature T for the passive circuit with thermal 
noise, we have to  use the temperature iiT/2, i.e. the effective temperature 
already known from the Schottky diode with a bias current but without series 
resistance. The correlation matrix which corresponds to Eq. (2.32) is: 

1;s Ins 1:s Inz ‘ Go G1 G2 
I ; % . I n S  I ; i . In i  I ; z . I ; , z m  ] =2k(f iT/2) . [G7 Go G I ]  . 

In,im ’ Ins In,,, ’ Ini In,,, G; G7 Go 

(5.54) 

We can state that the mixer noise correlation matrix is proportional to the 
correlation matrix of a passive time-invariant thermally noisy multi-port of a 
homogeneous temperature and the same admittance matrix. The proportion- 
ality constant is fiT/2. This statement remains valid if some of the elements 
of the G-matrix are complex, due to a non-even pump-drive of the mixer, as 
will be shown in problem 5.5. The Eq. (5.54) has been given in complex form. 

Problem 

5 .5  Determine the correlation spectra of an ideally pumped Schottky diode 
for the case of complex elements GI,  Gz of the G-matrix, due to a non-even 
pump-drive. 

The noise model of the mixer of Fig. 5.13 can be extended in such a way 
that it includes the thermal noise of the time invariant series or bulk resistance 
Rb (Fig. 5.16). Since the series resistance is time invariant, the noise sources 
W,1 and Wu2 are uncorrelated. For the noise sources Inl and I,,, the relations 
Eq. (5.39) and Eq. (5.40) remain valid. The noise sources I,1 and In2 are not 
correlated with the noise sources ubl and u b 2 .  
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0 --, 
Fig. 5.16 
resistance Rb. 

Noise equivalent circuit of a pumped Schottky diode with a series 

5.5 NOISE FIGURE OF DOWN-CONVERTERS W I T H  SCHOTTKY 
DIODES 

For the moment, we will neglect the series or bulk resistance Rb. In this 
case. the calculation of the noise figure is quite straightforward. Because the 
equivalent circuit with current sources and an admittance matrix has the same 
structure and the same form of the correlation matrix as a thermally noisy 
two-port a t  a homogeneous temperature T, we can adopt the results of time- 
invariant passive noisy two-ports with thermal noise only. The difference for 
the Schottky diode mixer is that  we have to use the effective temperature 
Tef = fiT/2 and not the physical temperature T of the semiconductor. Here, 
6 is again the ideality factor of the diode. 

With Eq. (2.90) from chapter 2 and TI = T,J = fiT/2, with the available 
gain G,, = l / L a u ,  and the ambient temperature TO. the noise figure Fm of 
the mixer is obtained as 

(5.55) 
ii T l - G a u  75T 
2 TO G a u  2 To 

F - l + - . - - - = l + - - ( ( L a , - l ) .  m -  

One may determine the available gain from Eq. (5.25). The relation for the 
noise figure Eq. (5.55) applies, if the image frequency and all further combi- 
nation frequencies of secondary importance are terminated by a short circuit 
or an open circuit or more generally by a lossless admittance. The relation for 
the noise figure is valid for a down-converter as well as for an up-converter. for 
a lower sideband up-converter as well as for an upper sideband up-converter. 

Equation (5.55) may also be proven directly, i.e. with the equivalent circuit 
of Fig. 5.13 and Eqs. (5.39) and (5.52). One has to express the noise figure 
as a function of the available gain (problem 5.6). 

Problem 

5.6 Calculate the noise figure of a down-converter with a short circuit at 
the image frequency with the help of the equivalent circuit of Fig. 5.13 and 
derive Eq. (5.55). 
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For the maximum available gain the noise figure attains its minimum value 
F,,,. Theoretically, for a narrow-band mixer and in the limit of an ideal 
impulse pump drive, the noise figure may approach the value of 1 or 0 dB. 

The noise figure increases if the series resistance of the diode is taken into 
account, as will be shown in problem 5.7 .  

Problem 

5.7 
of the Schottky diode with the help of the equivalent circuit of Fig. 5.16. 

Calculate the noise figure of a down-converter with a series resistance 

The mixer with a Schottky diode and a series resistance can also be de- 
scribed by a two-temperature model, i.e. with a temperature fiT/2 of the ideal 
Schottky junction and the temperature T of the series or bulk resistance Rb . 
In general, we may write for the noise figure of a two-temperature two-port: 

(5 .56)  

Here, p, and p3 are the relative dissipated powers in the series resistance 
and junction, respectively, when feeding from the load side and assuming 
reciprocity. 

Problem 

5.8 Calculate the noise figure of a down-converter with a series resistance as 
in problem 5.7 via the relation Eq. (5.56) and with the help of the dissipation 
theorem. 

The broadband mixer according to Fig. 5.6 can also be treated as a two- 
temperature problem. It  is assumed that the same load admittance is effective 
at the image frequency fim and at the signal frequency fs. For the moment, 
the series resistance will be neglected. The part in the dashed box of the 
circuit in Fig. 5.6  contains the noisy two-port of the mixer with the ports 
1 and 2 .  This two-port consists of two temperature regions. i.e. the load 
admittance Y,, = Y, at the image frequency with the ambient temperature 
To and the Schottky diode junction with the temperature fiT/2. Therefore. 
the noise figure expression is similar to Eq. (5 .56):  

(5 .57)  

Here, p,, is the relative power dissipated in the admittance xm, when feeding 
from the load side. i.e. from the intermediate frequency side. If La, = l /Gau 
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is the conversion loss from port 1 to  port 2 ,  then, due to reciprocity, the 
conversion loss from port 2 to port 1 is the same. For reasons of symmetry. 
we have 

P,, = L,, . (5.58) 

The part of the total power which is not absorbed in the load admittance Y,, 
at  the image frequency or the generator admittance Y, remains in the diode 
junction. According to the dissipation theorem, the feeding occurs from the 
intermediate frequency port. We therefore conclude that 

1 

(5.59) 

With this result for pJ we obtain for the noise figure of the broadband down- 
converter from Eqs. (5.57) and (5.58) 

-To 1 + (1 - $-). L T  n 
La, 2 f i T  

= 2 + (Lan - 2 ) .  - - . (5.60) F = l +  
TO ' 1/Lav 2 To 

Because La, 2 2 ,  the lower limit for the minimum noise figure of the broad- 
band mixer is 3 dB. 

5.6 MIXERS WITH FIELD EFFECT TRANSISTORS 

The circuit structure of a mixer with a field effect transistor (FET) as the non- 
linear element is particularly simple, because the FET as a three-terminal 
component already provides an inherent isolation between the RF and LO 
port or the gate and drain. respectively. The pump signal (LO) is fed to the 
gate. The LO-signal periodically alters the value of the drain-source channel 
admittance and thus determines the admittance time function g ( t ) .  Normally, 
the field-effect transistor is operated passively, i.e. without a drain-source bias 
voltage and within the ohmic part of the current-voltage characteristic. This 
type of operation has the advantage that the mixer has good large signal prop- 
erties, is unconditionally stable and, to a first approximation. does not exhibit 
l/f-noise. The bias voltage together with the pump signal amplitude at  the 
gate typically are chosen such that the modulation of the channel admittance 
varies between the open and the closed channel conditions. The parametric 
mixer theory of this chapter can be applied to the FET mixer without change. 
In Section 4.6 it was described how the admittance time characteristic g ( t )  
can be determined for a given gate signal (LO-signal) according to the ap- 
proximate Shockley model. Figure 5.18 shows the cross-section through the 
idealized FET for the case that the drain-source bias voltage is zero. i.e. a 
'cold' operation of the FET mixer. In contrast to Fig. 4.14. now the interface 
of the space charge region and the conducting channel is a horizontal straight 
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Fig. 5.17 Basic equivalent circuit of a single FET mixer. 

gate 
1 k 

W ( X ) = t  space 'i' 
const. charge region I * I d drain 

-Id 
y i  U(X) channel 

X 

Fig. 5.18 
voltage. 

Cross-section through the inner FET for a zero drain-source bias 

line, which moves up and down with the applied gate voltage. In the equiv- 
alent circuit of Fig. 5.17 the capacitance C1 blocks the gate bias voltage, the 
inductance L1 and the capacitance Cz separate the gate bias voltage U, from 
the LO-circuit. The low-pass filter should have a high input impedance for 
the RF-signal, the high pass filter should have a high input impedance for the 
intermediate frequency signal. 

A single FET mixer is inherently noise balanced, because the LO-signal 
a t  the gate is not rectified. This, however, is no longer true for very high 
frequencies, because a part of the LO-signal may couple into the drain-source 
conducting channel via the gate-drain capacitance and may be rectified there 
by means of non-linear current voltage relations. Therefore, a t  high frequen- 
cies, the noise balance effect will decrease by 20 dB/decade with increasing 
frequency. 

A mixer with two FETs has additional degrees of freedom and enables, 
e.g. by the use of symmetries, a better isolation of the LO port and the R F  
port, as shown for the mixer-circuit in Fig. 5.19, which employs, as an example, 
a 3 dB-0' and a 3 dB-180' coupler. Field effect transistors are unipolar devices 
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t i P - - O U g  

Fig. 5.19 Example of an equivalent circuit of a two-FET mixer. 

and, therefore, it is not possible, as for Schottky diodes, to  change the polarity 
by reversing the device. Within the circuit of Fig. 5.19 it is thus necessary to 
combine the intermediate frequency signals by a differential amplifier. There 
is a twofold noise balance. First, we get a reduction of the pump signal 
amplitude noise by taking the difference of both FET intermediate frequency 
signals. Second, the FET is inherently noise balanced, as has been discussed 
before. Both noise reduction effects add up. 

The conversion loss of a FET mixer is comparable to that of a Schottky 
diode mixer. Typical values are 5 to 10 dB for broadband mixers. 

5.7 NOISE FIGURE OF DOWN CONVERTERS WITH FIELD EFFECT 
TRANSISTORS 

If a FET mixer is operated in the ohmic or cold mode, i.e. without a drain- 
source bias voltage or quasi-passively, then we can assume that the channel 
admittance generates thermal noise only, according to its physical tempera- 
ture T .  Because the value of the admittance g ( t )  of the channel is changed 
periodically by the pump-signal at  the gate, we can adopt the parametric 
Schottky diode mixer theory for the FET mixer, provided that the signals 
at the channel admittance are small enough. In particular, the correlation 
matrix is proportional to the admittance matrix. In the FET case. however, 
the proportionality constant is given by the physical channel temperature T .  
Thus one obtains for the noise figure Fjet the same expressions as for the 
Schottky diode mixer. Only the temperature nT/2 for the Schottky diode 
must be replaced by the temperature T of the FET channel. With the source 
temperature To and the mixer conversion loss La, = l/Gav, which is by def- 
inition the inverse of the available gain, we obtain for the noise figure of the 
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FET mixer: 

(5.61) 
T narrow-band mixer, 

TO 
Ffet = 1 t - (Lau - 1) filter at the image frequency 

T 
TO 

Ffet = 2 + - (Lau - 2 )  broadband mixer (5.62) 

If the channel temperature T is equal to  the generator source temperature TO, 
then the relation for the noise figure further simplifies to  the expression 

(5.63) 

This latter relation holds for a mixer with a filter at the image frequency 
(narrow-band mixer) as well as for a broadband mixer. The relation even 
remains valid if additional resistive losses occur in the FET and the surround- 
ing mixer circuit, provided that these losses also relate to  the temperature 
To. Equation (5.63) thus applies to FET-mixers quite generally, in agreement 
with measurements. 

The quasi-passive or cold operation of a FET-mixer, i.e. the operation of 
the mixer without a drain-source bias current, has the important advantage, 
as has been mentioned before, that 1/ f-noise is practically not induced. 1/ f -  
noise is rather pronounced in GaAs devices if a continuous current flows in 
the channel. The 1/ f -noise power increases approximately quadratically with 
an increasing continuous current. 

5.8 HARMONIC MIXERS 

For the harmonic mixer or sampling mixer a pump signal is employed which 
consists of a periodic sequence of small pulses, i.e. nearly &pulses, with the 
pulse repetition frequency f,. Then, the admittance time function g ( t ) ,  which 
relates the small signals according to Eq. ( 5 . 2 ) ,  also has a periodic and pulse- 
like behavior with the pump signal frequency f,. The Fourier series coefficients 
of the admittance time function g ( t )  are approximately constant up to an 
upper cut-off frequency f h  and approximately zero above the cut-off frequency. 
Thus we have 

g ( t )  = C Gn e x ~ ( j n u p t )  (5.64) 
N 

n=-N 

with jGn/ = constant = Go for n 5 N 

and lGnl = 0 for n > N  . 

In Fig. 5.20, a sketch of the line spectrum of such a periodic admittance time 
characteristic g ( t )  is shown. 
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The upper frequency limit fh only depends on the shape of the pulse, but 
not on the repetition frequency f,. However, the value of /G,I decreases 
proportional to  1/N, while the conversion loss as expressed by power ratios 
even decreases proportional to 1/N2. On the other hand, for a constant pulse 
shape, the maximum harmonic number N increases proportional to l/fp. 
The conversion efficiencies at all harmonic spectral lines up to the maximum 
harmonic number N are approximately equal. One obtains an intermediate 
frequency signal whenever the equation 

i f s  - n . f,l = f z .  rz = 1 , 2 , 3  . . . N (5.65) 

is fulfilled. 
The conversion loss of a harmonic mixer is higher than of a fundamental 

mixer and increases with an increasing maximum harmonic number N .  Thus, 
the conversion loss also increases for a given shape of the pulse but a lowered 
repetition frequency of the pump signal. 

1 M I 
K 

n=O 1 2 3 N order n 

Fig. 5.20 
monic mixer. 

Line spectrum of the admittance time characteristics for a har- 

A possible circuit of a harmonic mixer is shown in Fig. 5.21 in the form of 
a two-wire equivalent circuit. Over a certain length 1, the ground wire is split 
into two parallel lines that may serve as a two-wire transmission line. This 
two-wire transmission line is marked with thick lines in Fig. 5.21. 

The two-wire transmission line or double line forms a section of a sym- 
metrical transmission line which is short circuited at  both ends. The leading 
edge of the pump pulse drives the diodes into a conducting state. The pump 
pulse travels along the two-wire transmission line and is reflected at the short 
circuits and travels back with the opposite pulse polarity. By the reversed 
pump pulse the diodes are switched off. The travel time and thus the length 
I ,  must be adapted to the pulse width. The signal line is isolated from the 
LO-pulse line over a large bandwidth. Therefore, the circuit in Fig. 5.21 is 
signal- and noise-balanced. The capacitors C are filter elements and separate 
the low intermediate frequency signals from the high frequency signals and 
pulses. 

We should add the remark that such a harmonic mixer circuit may also 
serve as a sampler or sampling unit in a sampling oscilloscope. The two-wire 
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two wire 
transmission line impulse (LO) 

of 

1 
IF I I 

h 

IF 

1 -  > 
1 / I , ,  input 

signal 

L 

II ,I I \ of the double line 
short circuit 
the double line 

A 

IF 
Fig. 5.21 Equivalent circuit of a harmonic mixer wit,h two Schottky diodes. 

transmission line is often realized as a slot line in the metallized ground plane 
of a microstrip circuit. 

The realization of a harmonic mixer is even simpler with a field effect 
transistor (FET) as the non-linear device; because the FET is a three-terminal 
device. Figure 5 . 2 2  shows a harmonic mixer circuit with one FET. The pump 

11 I 

UR4 I 

Tug I 
Fig. 5.22 Equivalent circuit of a harmonic mixer with one FET. 

signal is applied to the gate, the RF-signal and the intermediate signal are 
applied to the drain or taken from the gate, respectively. The pump signal 
is inherently isolated from the RF-signal and the intermediate signal. The 
RF-signal and the intermediate signal are isolated by RC-filters. Typically, 
the gate bias voltage is adjusted to pinch off in the channel when no pump 
pulse is applied, while the pump pulses have a polarity to  open the channel for 
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a short time. This mode of operation leads to a conveniently high impedance 
level a t  the intermediate frequency. 

The circuit of Fig. 5.23 utilizes two identical FETs, of which one FET 
is employed as a dummy component for the purpose of compensating any 
residual direct voltages. This occurs at the expense of an additional 3 dB 
insertion loss. 

For the quantitative description of a harmonic mixer, we will start from 
an idealized equivalent circuit similar to the one in Fig. 5.6, but with a much 
higher number of ports to be taken into account. For the calculation of the 

R4 h 
T 

R1o I 

Fig. 5.23 Equivalent circuit of a harmonic mixer with two FETs. 

insertion loss of a harmonic mixer we may proceed in a similar way as for the 
broadband mixer and start from an equation similar to Eq. ( 5 . 3 3 ) ,  but with 
a higher order of the extended admittance matrix: 

G1 
Go + Y ,  

G; 
. . .  
. .  . . .  

GN . . .  

. . ,  . . .  

. . ,  G o +  . . .  

Equation (5.66) is not well suited for the analytical determination of the 
conversion loss or gain of a harmonic mixer because the order of the matrix 
may be very high, up to  several hundred or even a few thousand. However. 
the expression Eq. (5.66) is quite convenient for a numerical evaluation. 
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If all small signal components are terminated with the same real load ad- 
mittance YO, then we may find a much simpler solution for the harmonic 
mixer in the time domain. The assumption of a common load at all frequen- 
cies might be a good approximation for a broadband harmonic mixer. The 
equivalent circuit for the mixer shown in Fig. 5.24 consists of only one loop. 

Fig. 5.24 Equivalent circuit for a harmonic mixer in the time domain. 

The admittance Yo is the source admittance as well as the load admittance 
for all small signal frequency components. The admittance time function g ( t )  
is periodic with the angular pump frequency or pulse repetition frequency 
up. We thus obtain the following relationship between the signal generator 
voltage us, and the small signal currents Ai(t): 

with 

(5.67) 

(5.68) 

Because g(t) is also a periodic function of time, it may be expanded into a 
Fourier series. For simplicity we assume that i j ( t )  is an even function of time 
and can be written as 

Lxt) = 

- - 

a Fourier series with cosine terms only. 

G o  + G I  ' cos(wp t )  + . . . t Gn . cos(nwp t )  
N 

C G, . cos(n wp t )  . (5.69) 
n=O 

Without loss of generality we can write for the source voltage usg(t)  

usg( t )  = v,, . cos(w, t )  (5.70) 

and then obtain the small signal current Ai(t) by inserting Eq. (5.70) into 
Eq. (5.69) 

N 

Ai(t) = V,, . COS(W, t )  C Gn cos(nwp t )  
n=O 

(5.71) 
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If we are only interested in the spectral current component a t  the intermediate 
frequency wi = w, - nwp, then one term of the sum of Eq. (5.71) is sufficient 
to determine the intermediate frequency current i i ( t ) :  

1 I 

i i ( t )  = - V,, G, C O S ( W ~  t )  . (5.72) 
2 

With the knowledge of the intermediate frequency current i z ( t ) ,  the Fourier 
coefficient Gn and the source voltage Esg ,  it is straightforward to calculate the 
conversion loss or gain. One may wonder why the calculation of the gain of 
the harmonic mixer is so much simpler than the calculation in the frequency 
domain via Eq. (5.66). The answer is that  the values of the Fourier coefficients 
G, and Gn are different. These Fourier coefficients are related via Eq. (5.68). 
Taking the fundamental mixer as an example, it can be demonstrated in which 
way the Fourier coefficients differ from each other. 

The fundamental mixer described in the frequency domain needs one Fou- 
rier coefficient G1 only, which for simplicity is assumed to be real: 

g ( t )  = Go + 2G1 C O S ( W , ~ )  . (5.73) 

The Fourier series for the mixer described in the time domain is given by 

S ( t )  = G o  + 2 G I  . cos(wp t )  + ’ ’ ’ . (5.74) 

According to the relation Eq. (5.68) we may formulate two equations by the 
method of harmonic balance, linking the Fourier coefficients GI and G1: 

G o  (Go + Yo) = Go Yo - G1G1 

G I  (Go +Yo) = 2YoG1 - 2G1Go . (5.75) 

These two equations can be solved for GI: 

(5.76) 

We obtain for the voltage U, at the intermediate frequency: 

(5.77) 

which is the same expression as for a calculation in the frequency domain, 
given by Eq. (5.18). 

5.9 NOISE FIGURE OF HARMONIC MIXERS 

We will assume that the harmonic mixer has the same real load admittance 
YO at all frequencies involved. Furthermore, in this section we will neglect any 
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bulk resistance Rb and employ an effective noise temperature T,f = 6T/2 for 
the Schottky diode. For the calculation of the noise figure we make use of the 
dissipation theorem and the reciprocity of the available gain. For the applica- 
tion of the dissipation theorem we have to feed the harmonic mixer from the 
intermediate frequency side, although we consider a down converter. Feeding 
the harmonic mixer with a sinusoidal signal at the intermediate frequency will 
produce a spectrum as shown in Fig. 5.25, with pairs of spectral signal lines 
below and above all harmonics of the pump or pulse repetition frequency dP. 
We assume that the Fourier series coefficients of the admittance time function 
g ( t )  are approximately constant up to an upper cut-off frequency fh and are 
approximately zero above the cut-off frequency. With constant real Fourier 

T 

n = O 1  2 3 4 5 6 N order n 

Fig. 5.25 
the intermediate frequency port. 

Spectrum of a harmonic mixer fed with a sinusoidal signal from 

coefficients up to  a maximum harmonic number of N and a total of 2N - 1 
spectral signal lines we can also assume that the available conversion gain from 
the intermediate frequency side to all spectral signal lines is approximately 
the same and equal to  Ga,, Then, we obtain for the noise figure Ft of a 
Schottky diode harmonic mixer with a junction temperature T in accordance 
with Eq. (5.57): 

I 

n 
( 2 N -  1) .Ga, .To + (1 - 2NGa,) TT 

Gau ' TO 
F t = l +  (5.78) 

The corresponding expression for the noise figure Ft of the harmonic mixer 
using a field effect transistor (FET) with the channel temperature T is 

( 2 N - 1 ) . G a , . T ~ t ( 1 - 2 1 V G a , ) T  
F t = l +  (5.79) 

Ga, . To 
Finally, for the case that the channel temperature of the field effect transistor 
is at the ambient temperature To? the expression for the noise figure of the 
harmonic mixer simplifies to 

1 
F t = - - - - ,  (5.80) 

Ga, 
as expected. 
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5.10 NOISE FIGURE MEASUREMENTS O F  D O W N  CONVERTERS 

Since a down-converter has loss and not gain, a low noise figure of the first 
intermediate frequency amplifier is very important for a low overall noise 
figure. An alternative solution is a low noise amplifier already in front of the 
mixer. 

For the noise figure measurement of the down-converter there is a peculiar- 
ity which has to  be noted. Because the noise sources which are employed are 
typically broadband sources, a broadband down-converter will receive noise 
power from the noise generator not only at the signal frequency but also at  
the image frequency. Thus, the noise power of the noise generator seems to 
have doubled. Therefore, the measured noise figure value, measured e.g. with 
the Y-factor method, has to be increased by 3 dB. Except for the addition of 
3 dB, the measurement of the noise figure of the mixer and a post-amplifier 
does not differ from the noise figure measurement of an ordinary linear two- 
port, apart from the fact that  the input and output frequencies are not the 
same. The effective bandwidth is normally determined by a band-pass filter 
with a center frequency fi and a bandwidth Af at  the intermediate frequency. 
Then, for a broadband mixer two frequency bands above and below the pump 
frequency at f p  + fi and f ,  - fi with a bandwidth of Af enter into the mea- 
surement. If the mixer properties are somewhat frequency dependent, then 
the intermediate frequency should not be too high in order to ensure that the 
noise figure does not change significantly between the upper and lower side- 
band. If the amplifier-converter stage already includes a sufficiently narrow 
radio frequency (RF) band-pass filter, then the measured noise figure may be 
the correct one and 3 dB must not be added to  the measured noise figure. 

5.11 NOISE FIGURE OF A PARAMETRIC AMPLIFIER 

Reverse biased pn-diodes have a capacitance which is not constant but de- 
pends on the reverse bias voltage Uyu .  These so called varactorvaractor diodes 
or simply varactorsvaractor, varactor diode can be applied for a number of 
functions in the high frequency area, e.g. for frequency up-converters and 
frequency multipliers of relatively high powers. Also parametric amplifiers 
have been realized with low noise figures. Although parametric amplifiers are 
no longer of practical importance, their principle of operation is of general 
interest. Often a voltage controlled oscillator with a varactor diode as the 
frequency controlling device shows instabilities due to parametric amplifica- 
tion. A good comprehension of the mechanism of the parametric instability 
in conjunction with the varactor diode may help t o  avoid this effect. 
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5.11.1 

The voltage swing of the varactor is assumed to occur only in the depletion 
region. Then, the pn-junction is mainly a variable capacitance that depends 
on the bias voltage VO. We will limit the discussion to the simple case of 
an abrupt pn-junction with a constant doping of the p- and n-regions. For 
the case of a piecewise constant donor and acceptor doping, ND and NA,  the 
space charge p(z) ,  the electric field E ( z )  and the potential @(z) are shown in 
Fig. 5.26. Here, UD denotes the diffusion voltage, x is the spacial coordinate in 
the one-dimensional model, q is the elementary charge, and E is the dielectric 
constant in the semiconductor. Twofold integration of the Poisson equation, 

Characteristics and parameters of depletion layer varactors 

x = o  

steady field and potential behavior at x = 0 and vanishing electrical field in 
the neighboring bulk regions yields with U,, = -Uo a relationship between 
the reverse bias voltage UTU. the doping levels ND and N A  and the space 
charge widths w, and wp: 
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(5.81) 

From this expression one obtains for the total space charge width wt = w, + 
wp : 

(5.82) 

In order to  determine the differential junction capacitance C(UTv) one has to 
know the charge of one polarity of the total charge, for instance the charge 
Qn of the n-region: 

Q n = q s A . w n . N D .  (5.83) 

In the latter equation, A is the area of the semiconductor device. The differ- 
ential capacitance C(UT,) follows from a differentiation of the charge Qn with 
respect to the voltage U,,: 

Let QD = Qn(liT,  = 0 )  be the charge of one polarity without an applied 
reverse bias voltage: 

Let Q,, be the additional charge Qn - Q D  
Q,, 2 0 and U,, 2 0. Then we get for the 

r 

(5.85) 

at a reverse bias voltage U,, with 
additional charge Qr,: 

Rearranged, this equation can be written as 

u,, + U D  Q T ,  + Q D  (5.87) 

Except for additive constants this last equation establishes a quadratic re- 
lationship between the charge Q,, and the voltage U,,. For the differential 
capacitance C(U,,) we obtain from Eq. (5.86): 

U D  = (  Q D  )' ' 

(5.88) 
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Instead of the differential capacitance C(U,,) it may sometimes be more con- 
venient to perform the mathematical calculations with the inverse of the ca- 
pacitance, the so called differential elastance S(U,,) or S(QT,).  because then 
one obtains a linear relationship between the elastance S and the charge QT, : 

For the reverse bias operation the capacitance of the space charge region fol- 
lows any voltage changes nearly instantaneously, because the growth and the 
decay of the space charge region is a majority carrier effect. The maximum 
voltage swing is limited by the breakdown voltage Ug. The charge correspond- 
ing to Ug may be Q g .  Figure 5.27 shows the capacitance and elastance as a 
function of the reverse bias voltage U,, or charge Q,,, respectively. Losses are 

Fig. 5.27 
abrupt pn-junction. 

Capacitance versus voltage and elastance versus charge for an 

introduced by the constant, i.e. voltage independent bulk or series resistance 
Rb. We define a cut-off frequency fc as the frequency, at which the maximum 
capacitive reactance, as given by the minimum capacitance Cmin, is equal to 
Rh : 

(5.90) 

5.11.2 

Often a varactor is operated parametrically, i.e. a strong pump signal a t  the 
frequency f, determines the instantaneous operating point for a variety of 
small signals. If the pump signal as described by the charge as a function 
of time, Q,(t), is a periodic function of time, then also the elastance S ( t )  
is a periodic function of time and can be developed into a Fourier series. 
For an abrupt pn-junction, S ( t )  and Qp(t)  are linearly related according to 

Parametric operation of a varactor 
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Eq. (5.89). If Q p ( t )  is an even function of time. which we will always assume 
in this section, then S ( t )  can be expressed as a Fourier series with cosine terms 
only: 

(5.91) 

We will assume small signal phasors for the voltage U and the charge Q at 
three different frequencies, namely the upper sideband at the frequency f u  
with the phasors U, and Q u ,  the lower sideband at the frequency fd with the 
phasors u d  and Qd and the intermediate frequency at the frequency f ,  with 
the phasors U, and Q 2 .  The following relationships hold between the different 
frequencies: 

S( t )  = so + 2 s 1  cosLdpt + 2 s 2  cos2wpt f . . . . 

(5.92) 

As for the mixer. the small signal phasors are related to the real Fourier 
coefficients So, S1, S2 via a linear set of equations. 

so s1 s2 

s 2  4 s o  
(5.93) 

The current and charge phasors are related by 

Then, the relation of voltage and current phasors is given by 

The relation between currents and voltages at the varactor is no longer recip- 
rocal. Among others, one result from this fact is that down- and up-conversion 
do not have the same conversion loss or gain. 

Problem 

5.9 
function of time? 

What does Eq. (5.93) look like if the pump drive is a general periodic 

5.11.3 Parametric amplifier 

The parametric amplifier requires the same frequency scheme as a lower side- 
band up-converter (Fig. 5.28). 
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0 fi fd f p  f 

Fig. 5.28 Frequency scheme of the parametric amplifier. 

The amplification occurs at the frequency fi. One needs an auxiliary reso- 
nant circuit at the frequency fd, which needs not be accessible from outside. 
At the frequency f, one must provide a high impedance termination. Then 
the current at this frequency is negligibly small, i.e. I ,  = 0. The current and 
voltage phasors u,, ud and I,, Id are related via an impedance matrix [z] in 
accordance with the matrix of Eq. (5.95): 

The equivalent circuit of a parametric amplifier is shown in Fig. 5.29. The 

[z] I u d  

t I 

Fig. 5.29 Equivalent circuit of a parametric amplifier. 

large signal drive of the elastance is assumed to be cosinusoidal a t  the pump 
frequency f,, i.e. Sz = 0. The lower sideband with the frequency fd serves 
as an auxiliary circuit and is terminated by the inductive reactance jxd. 
Furthermore, the input circuit is extended by the inductive reactance jX , .  
Both the inductive reactances j x d  and j X ,  are chosen in such a way that 
the capacitive reactances So/jwd and So/ jwl  are tuned or compensated in the 
form of a series resonance by j x d  and j X , ,  respectively. This.proves to be 
expedient in order to optimize the gain of the parametric amplifier. 
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- - Rb - S l / j W d  ] [ ;; ] [ S l / j w a  Rb 

The input impedance 2, at the frequency f g  is given by 

(5.97) 

(5.98) 

The input impedance 2, is real and for a sufficiently large S1 it becomes neg- 
ative. The possible amplification for a negative resistance Zi can be expressed 
by the reflection coefficient p: 

(5.99) 

In the above equation 20 is the characteristic impedance of the reference 
transmission line. For Re(&) < 0 the reflection coefficient becomes greater 
than one, i.e. IpI > 1, which means that the reflected wave is larger than the 
incident wave. One may employ a lossless transformer in order to increase 
the negative impedance. This, however may reduce the bandwidth. The 
amplification grows beyond all limits, i.e. the amplifier oscillates, if 2, = 2 0 .  

Practically, a gain of 15 dB to 20 dB is possible. Normally, the pump signal 
amplitude must be controlled in order to keep 5’1 and thus the gain constant. 
The separation of the incident and reflected waves may be accomplished by a 
circulator, as outlined in Fig. 5.30. 

pump signal 1 
4 

matching 
circuit 

input signal circulator 

parametric 
amplifier 

signal 

Fig. 5.30 Parametric amplifier with a circulator. 

One can estimate the minimum cut-off frequency of the varactor, which is 
necessary to balance the negative and positive resistance. For this purpose, the 
expression in the parentheses of Eq. (5.98) must be negative, corresponding 
to 

Sf > W i W d  Ri . (5.100) 
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I 

For a cosinusoidal charge pump at the frequency f p ,  the elastance time 
function has a cosine form also and 5'2 and Ss are zero. The Fourier coeffi- 
cient S1 becomes maximum for the largest possible excitation, i.e. when S ( t )  
approaches the values zero and SmaX. Then, this maximum S1 is 

1 

1 1 

(5.101) 

The inequality Eq. (5.100) can be expressed by the cut-off frequency fc:  

(5.102) 

In reality, the cut-off frequency must even be higher than described by equa- 
tion (5.102) in order to compensate for circuit losses and also guarantee a 
positive gain. 

5.11.4 

The equivalent circuit of a parametric amplifier is extended by a thermally 
noisy generator with the real source impedance R, as shown in Fig. 5.31. In 
this equivalent circuit, the real load impedance R1 is identical to the source 
impedance R,, i.e. R1 = R,. In a practical circuit, the corresponding signals 
must be separated, e.g. by a circulator as shown in Fig. 5.30. The only noise 

Noise figure of the parametric amplifier 

Fig. 5.31 For the explanation of the noise figure of a parametric amplifier. 

considered in the parametric amplifier is the thermal noise of the series or 
bulk resistor Rb3 namely at  the auxiliary or image frequency f d  and the inter- 
mediate or generator frequency ft. The noise contributions of the thermally 
noisy bulk resistance as expressed by the noise voltages ubt and u b d  at these 
two frequencies are uncorrelated. because the bulk resistance is assumed to be 
constant versus time, i.e. not modulated by the pump signal. The non-linear 
capacitance is a lossless pure reactance and thus it is noise-free. With these 
assumptions the calculation of the noise figure does not pose any particular 
problem. We will again make the assumption that the two inductive reac- 
tances compensate for the capacitive reactances of the varactor so that the 
input impedance of the varactor is real. With Z,  from Eq. (5.103) one obtains 
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for the squared magnitude of the current I z l ,  caused by the noise voltage ubz: 

(5.103) 

The noise current 1 2 2 ,  caused by the noise voltage U b d ,  is conveniently evalu- 
ated via the following extended matrix: 

From this extended matrix we obtain: 

(5.104) 

(5.105) 

Thus, we find for the spectrum AW2 of the noisy two-port at the load resis- 
tance Rl with the contributions of the noisy bulk resistance Rb at the tem- 
perature T :  

(5.106) 

The spectrum W20 is the amplified source spectrum supplied to the load re- 
sistance R1 via the circulator. For this calculation the parametric amplifier is 
assumed to be noise-free. Regarding Rg as the real reference impedance 20, 
then we have 

(5.107) 

With R1 = Rg the Eqs. (5.106) and (5.107) yield the noise figure Ft: 

For a low noise figure it is apparently favorable to choose the auxiliary fre- 
quency fd as high as possible. 
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Problem 

5.10 Show that the gain and the noise figure become optimum, if the in- 
ductive reactances j X i  and j X d  just compensate the capacitive reactances 
Sol ju t  and Sgljud. 

For a correct operation, the parametric amplifier only shows the relatively 
low thermal noise of the bulk resistance Rb with the temperature T .  By cool- 
ing the amplifier, the temperature T and thus the noise figure can be reduced. 
Uncooled parametric amplifiers achieve system temperatures T, = (Ft - 1) TO 
of about 150 to 200 K at several GHz. Cooled amplifiers, cooled down to the 
temperature of liquid helium at  4.2 K ,  may have system temperatures as low 
as 5 to 10 K. The varactor diodes must be made of GaAs, because for sili- 
con at very low temperatures there are not enough electrons available in the 
conduction band. For low noise figures also the circuit around the varactor 
diode should be cooled, in order to reduce circuit losses and thermal noise. 
Parametric amplifiers have been installed e.g. in satellite and astronomical re- 
ceivers and some are still in operation, but are no longer considered in modern 
systems due to their only moderately low noise figures, their complexity and 
narrow bandwidth. 

An oscillator tuned in frequency by a varactor diode, may show additional 
spurious oscillations, because unintentionally one may have realized an un- 
stable parametric amplifier. This, however, must strictly be avoided because 
then additional spurious spectral lines can appear and the noise spectrum may 
deteriorate. For a large tuning range of a voltage controlled oscillator (VCO), 
the varactor diode must tightly be coupled to the oscillator, which may lead 
to a large voltage excursion at the diode. This is a situation which is favorable 
for the excitation of parametric self oscillations. Among others, stability can 
be improved by also terminating the sum frequency fu = f, + fi by a suitable 
impedance, which helps to reduce the gain of the parametric circuit. 

5.12 UP-CONVERTERS WITH VARACTORS 

The frequency scheme of the upper sideband up-converter is the same as 
in Fig. 5.la. Feeding takes place at the intermediate frequency fz and for 
reasons of stability the output power is taken at the upper sideband only. 
Small signals may be present a t  the intermediate frequency fz and the upper 
sideband frequency fu, while at the pump frequency fp = fu - fi a large 
voltage excursion is necessary. An equivalent circuit of the upper sideband 
up-converter is shown in Fig. 5.32. 

Also for this circuit it proves to be advantageous to choose the inductive 
reactances j X ,  and j X ,  in such a way that the capacitive reactances of the 
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Fig. 5.32 Equivalent circuit of an upper sideband up-converter. 

varactor diode S o l j w ,  and S ~ / j w ,  are compensated. From the extended ma- 
trix with the real load and source or generator impedances R, and R, 

(5.109) 

we can determine the gain G, . We get 

Up-converters with varactors show good efficiencies and may even have gain 
and handle large powers. They have been used when post-amplification was 
difficult. Also the noise figure is low. However, the circuit is narrow-band 
and an up-converter with Schottky diodes or field effect transistors (FETs) is 
usually preferred. 

Problem 

5.11 
upper sideband up-converter with a varactor diode? 

What is the maximum gain G, and the noise figure Ft for the above 



Noise in Non-linear 
Cz re u i t s 

6.1 INTRODUCTION 

The two-ports that  have been treated so far were linear with respect to the 
input and output signals. The parametric systems like mixers and parametric 
amplifiers of Chapter 5 are based on devices operated in a non-linear mode, 
but the relationship between the input and output phasors, although assigned 
to  different frequencies, is still quasi linear. For all linear two-ports the noise 
figure or noise factor is the most commonly used quantity for the characteriza- 
tion of the noise behavior. The noise figure can be determined from the signal 
and noise powers a t  the input and the output of the two-port under investi- 
gation. The situation is illustrated in Fig. 6.1. A signal with the signal power 

Fig. 6.1 Illustration of signal and noise powers of linear two-ports. 

P, is fed to the input of a two-port. Furthermore, the signal source supplies 
the noise power P,. The operating bandwidth is assumed to be small enough 
that the properties of the two-port do not change within this frequency band. 
For a noise-free two-port with power gain G, we get a signal power G, . P, 
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and a noise power G, P, at the output. Therefore, the ratio of the signal 
power to the noise power has not changed while passing through the linear 
two-port. For a noisy two-port the noise power at the output is raised by the 
noise contribution AP,, which stems from the internal noise sources of the 
two-port. The noise figure is defined by 

Here, the noise temperature of the signal source has the fixed value To, e.g. 290 
K.  

According to Eq. (6.1) the noise figure does not depend on the signal power. 
This statement, however, is only valid on the premise that the quantities AP, 
and Gp are independent of the signal power. This condition is met by linear 
two-ports but not by non-linear ones. Together with some further effects this 
leads to  the situation that the noise figure and similar quantities from the 
linear regime are not suitable for the description of non-linear networks. This 
will be discussed in this chapter. 

6.2 PROBLEMS WITH T H E  NOISE CHARACTERIZATION OF 
NON-LINEAR TWO-PORTS 

A very important practical example of a non-linear two-port is an amplifier 
under large signal conditions. If the input power, starting from small values. 
is steadily increased then the output power cannot grow forever at the same 
rate but will finally reach a saturation value, which mainly depends on the 
characteristics of the active components used. This means that the power gain 
will eventually decrease, once the input power has passed a certain threshold 
value. Then also the noise figure will depend on the input power. Generally. 
however, not only the power gain will change under large signal conditions 
but also the noise power AP, generated within the two-port. There are 
two different reasons for this situation. Firstly, under large signal conditions. 
parameters may vary which directly influence the physical reason for the noise, 
e.g. temperatures may change and thus the thermal noise or dc currents and 
thus the shot noise. Secondly. a non-linear operation can lead to frequency 
conversions, similar to that in mixers. Generally. for a large signal drive at 
an angular frequency Ro the noise can be shifted in frequency by kNR0 with 
N = 1 , 2 , 3 , .  . .. Therefore, it is theoretically possible to  observe noise at the 
output of a non-linear two-port a t  an angular frequency Ro, even without any 
physical noise sources existing at this frequency. 

This discussion shows that the interrelations between signals and noise are 
much more complicated for non-linear two-ports than for linear circuits. Kev- 
ertheless. it might seem possible to use the concept of noise figures for the 
characterization of non-linear networks as well, if in each case the input and 
output signal power levels are specified. too. However, the noise signal at the 
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output of a non-linear two-port shows two additional particularities. which 
are not directly covered by the noise power AP, and. therefore. do not en- 
ter into the noise figure. Firstly, due to the frequency translations. spectral 
components at different frequencies are not necessarily uncorrelated, as is the 
case in linear circuits. This in particular is true for spectral components that 
are located symmetrically with respect to  the signal frequency Ro. It is thus 
possible that a low frequency noise signal a t  a frequency w with w << gives 
rise to noise components a t  the frequencies Ro - w and Ro + w at the output 
of the two-port by mixing with the carrier signal. These noise components 
are fully correlated. since they have their origin in the same physical source. 
The detailed and quantitative knowledge of this correlation is very impor- 
tant for the assessment of how this noise interferes with other signals. The 
second particularity concerns the frequency dependence of the noise power 
spectral density. So far, we have dealt with noise processes with nearly white 
spectra, i.e. nearly frequency independent power spectral densities. This in 
most cases is true for the output noise of linear two-ports, if the operating 
bandwidth is so small that the frequency dependence within this range can be 
neglected. For non-linear two-ports. however, one often observes noise spectra 
as in Fig. 6.2, where the power spectral density close to  the high-frequency or 
RF signal changes rapidly. For many systems the disturbing effect of the noise 
also depends upon the frequency difference to  the R F  signal, so that again 
a specification of the total noise power alone is not sufficient for a proper 
characterization of the noisy system. 

Fig. 6.2 
non-linear two-port . 

Typical spectrum of a RF signal plus noise a t  the output of a 

In conclusion, we can state that the noise figure is a meaningful quantity for 
the description of the noise behavior of linear two-ports only. For non-linear 
two-ports additional properties of the noise have to be considered that require 
a different kind of characterization. Before we introduce new parameters for 
this purpose we first shall discuss the reasons for the frequency dependent 
noise spectra as depicted schematically in Fig. 6.2. 

6.3 1/F-NOISE 

The physical noise processes that have been treated so far, can be described 
by almost white i.e. nearly frequency independent spectra. However. in many 
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materials carrying a direct current, in particular in all semiconductor compo- 
nents, an additional noise mechanism occurs with a spectrum approximately 
inversely proportional to the frequency. All these noise mechanisms are col- 
lectively called 1/ f-noise or flicker-noise. A combination of 1/ f-noise and 
white noise may lead to a spectrum as in Fig. 6.3. At low frequencies the 

I 

I -c 

f b  f 

Fig. 6.3 Noise spectrum with a l/f-component (logarithmic scale). 

l/f-component dominates, while a t  high frequencies only the white noise is 
apparent. The boundary between both regions, where both contributions are 
equal, is designated as the noise corner frequency f b .  The corner frequencies 
of semiconductor components range from below 1 kHz up to approximately 
100 MHz. A particularly strong l/f-noise is observed in compound semi- 
conductors, e.g. gallium arsenide. This semiconductor is very important for 
microwave applications because, e.g. amplifiers with GaAs field effect tran- 
sistors can operate up to mm-wave frequencies. 

For all linear applications of electronic components, e.g. small signal am- 
plifiers, the l/f-noise is of no concern, if the frequency range of interest lies 
above the corner frequency. The situation changes drastically when non-linear 
effects have to  be taken into account, as for power amplifiers, mixers or oscil- 
lators. By the non-linear interaction between the low frequency noise and the 
large high-frequency signal, the low frequency noise is upconverted resulting 
in lower and upper noise sidebands around the RF signal. Another view is 
that  the RF signal is modulated by the 1/ f-noise. In this way, we can obtain 
spectra like the one in Fig. 6.2. 

The physical origin of the l/f-noise still is not completely understood. 
Only in special cases, it has been possible to develop satisfactory models for 
the 1/ f-noise. The 1/ f-noise does not seem to have one unique origin. It 
appears that  quite a number of different fluctuation processes may lead to  a 
l/f type spectrum. In particular, this frequency dependence is difficult to  
model. An analysis of physical fluctuation phenomena often leads to spectra 
of the form 
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where f i p  is a characteristic corner frequency. It is possible to show. however, 
that  in a limited frequency range the superposition of many spectra of the 
type of Eq. (6.2) with different corner frequencies f i p  may approximately lead 
to a l/f-spectrum. It is not known if there is a lower limit of the l/f-noise 
spectrum. In experimental investigations, the l/f-law of the noise spectrum 
could be confirmed even at frequencies as low as Hz. 

Apart from models for certain electronic components there are also theo- 
ries to  explain the l/f-noise as a universal phenomenon. An experimental 
observation for the power spectrum W,( f )  of the low frequency fluctuations 
of a current I through a homogeneous metal or semiconductor sample is the 

(6.3) 

Here, N is the total number of free electrons in the sample, f is the frequency 
and CYH is a proportionality factor (Hooge's constant), which approximately 
equals 2 . for a number of materials. However, it does not seem to be 
possible to extend this relation, which is approximately valid for homogeneous 
samples, to more complicated structures like semiconductor components. 

6.4 A M P L I T U D E  A N D  PHASE NOISE 

Because the usual description of linear two-ports is not well suited for non- 
linear circuits, new quantities will be introduced now that are better suited 
to noise in non-linear circuits. 

6.4.1 Noise modulation 

The spectrum of a sinusoidal carrier signal with an underlying small noise 
spectrum, which may also include small coherent signals, typically has the 
form as shown in Fig. 6.2. It will be assumed throughout this chapter that 
the noise spectrum is band limited to the range Ro - As20 to 00 + ARo. It 
is further assumed that the bandwidth 2As20 of the small-signal noise-band 
is smaller than the carrier frequency Q,. If an ideal sinusoidal carrier passes 
through a linear or non-linear two-port, either high-frequency noise may add 
or by some sort of modulation, low-frequency noise may be up-converted to 
the carrier, e.g. by amplitude or phase modulation or both. The same may 
happen with small coherent signals which may also add to  the noise signals. 
A signal z ( t )  is supposed to consist of a sinusoidal carrier signal XO cos(s2ot + 
40) and a superimposed small noise-signal n(t).  The noise-signal n(t)  may 
also include spurious coherent signals but, nevertheless, we shall refer to it as 
a noise signal. We thus can write: 
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Here, the influence of the noise signal n(t)  on the carrier is described by 
random amplitude and phase fluctuations of the sinusoidal carrier. This may 
also be regarded as amplitude noise and phase noise of the carrier signal z ( t ) .  
The mean values of the amplitude and phase fluctuations are supposed to be 
zero: _ _ -  

Az(t) = A$(t) = 0 . 
In complex form Eq. (6.4) reads: 

The amplitude and phase fluctuations normally are very small with Ax(t)/Xo 
<< 1 and A$(t) << 1. Therefore, Az(t) . A@(t)/Xo E 0, because this product 
is small of higher order, and also: 

ejA$(t) = 1 + j ~ # ( t )  . (6.7) 

With these approximations the equation (6.6) simplifies to 

~ ( t )  = Re { X [ 1 + - A;:) + jA$(t)] ejQot} , 

where 
X = Xoej4O 

is the complex phasor of the carrier. In order to find a relation between the 
high-frequency noise signal n(t)  and the amplitude and phase fluctuations 
Ax(t)  and A4(t) we shall first analyze the case of small sinusoidal fluctuation 
signals. Later on this can easily be extended to arbitrary signal waveforms, 
because all fluctuation quantities are related by linear equations. 

6.4.2 

Sinusoidal amplitude and phase fluctuations with a frequency w << R can be 
described by complex phasors AX and A@: 

Sinusoidal amplitude and phase modulation 

Az(t) = Re {AXejwt AXejwt + AX*e-jwt) , (6.10) 

A$(t) = Re { A@ejwt + A@*e-jwt ) . (6.11) 

Inserting the equations (6.10) and (6.11) into Eq. (6.8) we obtain: 
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We note that the amplitude and phase modulation leads to  two sideband 
signals at a distance w from the carrier. For the complex phasors X i  (1- 
lower sideband) and Xu (u- upper sideband) we get the following equations 
from Eq. (6.12): 

or, in matrix notation, 

By inversion of the matrix Eq. (6.14) the amplitude and phase fluctuations 
may be expressed as a function of the lower and upper sideband phasors: 

(6.15) 

Generally, the relations (6.14) and (6.15) can not directly be transferred to the 
corresponding spectra by forming the squared magnitude of the phasors. This 
is due t o  the fact that  the phasors belong to  different frequencies. The problem 
can be avoided by assigning equivalent baseband phasors a t  the frequency w 
to  the sideband phasors at the frequencies Slo  3z w .  With an electronic circuit 
consisting of ideal filters and an ideal mixer or analog multiplier the sideband 
signals can be converted to  baseband signals and vice versa. Figure 6.4 shows 

2 cos(Ro. t )  

%( t )  O--T--+&--Eb Z d t )  
mixer or 

sideband filter multiplier low-pass filter 

Fig. 6.4 Ideal single sideband converter. 

a possible realization of a single sideband convertersingle sideband converter 
The circuit can operate in both directions. When operated as a single sideband 
receiver, a high-frequency signal zl,u(t) is fed from the left-hand side, which 
may or may not include both sidebands: 

(6.16) 

The sideband or bandpass filter suppresses either the lower or the upper side- 
band. By mixing with the local oscillator signal 2 cos Clot in an ideal mixer or 
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analog multiplier and subsequent filtering with a low-pass filter, the resulting 
output signal in the baseband is either 

xlb(t) = Re{X;ejdt} (6.17) 

or 
Zub(t) = Re{X,ejwt} , (6.18) 

depending on the sideband that is passed by the filter. In complex phasor 
notation we thus can write 

Xlb = x; (6.19) 

and 
X,b=Xu . (6.20) 

If the low frequency baseband signal Zb(t) is the input signal to the circuit 
of Fig. 6.4, then the circuit operates as a single sideband modulator. The 
output signal is a sinusoidal signal at  the frequency Ro - u or no + w.  The 
corresponding image sideband is suppressed by the band-pass filter. The 
relation between the complex phasors of the corresponding signals still is 
given by Eq. (6.19) and Eq. (6.20). 

Problem 

6.1 Prove the equations (6.17) through (6.20). 

If in Eqs. (6.14) and (6.15) the sideband phasors X l , X ,  are replaced by 
the equivalent baseband phasors Xlb, Xub, then we only deal with phasors 
of the same frequency w ,  which are related by linear expressions. We there- 
fore can apply the known methods for linear circuits and the corresponding 
transformation rules for the noise spectra. 

6.4.3 

Let Wlb and Wub be the spectra of the equivalent baseband signal and let W, 
and W, be the spectra of the phase noise phasor A@ and of the normalized 
amplitude noise phasor AX/Xo, respectively. Then. with the corresponding 
cross spectra WlUb and w,$, Eqs. (6.14) and (6.15) yield: 

Spectra of the amplitude and phase noise 

(6.21) 
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Notice: Although in the above equations (6.21) through (6.24) double-sided 
spectra have been used; the relations are valid for positive frequencies only. 
For negative frequencies some signs would have to  be changed. This is due 
to the fact that for negative frequencies the matrix elements in the equations 
(6.14) and (6.15) must be replaced by their complex conjugates. In order to 
simplify the equations. only the version for positive frequencies will be given 
in the following. 

Problem 

6.2 Prove the equations (6.21) through (6.24). 

Finally, the relation between the baseband spectra WLb, Wub and the spec- 
trum W, of the high-frequency noise signal n( t )  is of interest. Similar to the 
description of the sinusoidal sideband signals it is also appropriate to split the 
noise signal n( t )  into a lower and an upper sideband signal: 

n(t)  = nl(t) + nu(t)  . (6.25) 

The corresponding spectra W&,, Wub and W, are related by 

W,(Q) for R < RO 
else > (6.26) 

(6.27) 

The relation between the high-frequency spectra Wl, W, and the correspond- 
ing baseband spectra WLb, Wub can be calculated by means of the ideal single 
sideband converter of Fig. 6.4. Instead of a rigorous derivation only an illus- 
trative explanation will be given here. The single sideband converter links 
the baseband components a t  the frequency w to the sideband signals at the 
frequencies 00 - w or Ro + w in a quasi linear way. Therefore, we may expect 
the relationships: 

Wl(fl0 - w )  = Wlb(w)  (6.28) 

(6.29) 

This is confirmed by a more rigorous treatment. The relations between the 
different spectra are shown schematically in Fig. 6.5. 

By inserting the equations (6.26) to (6.29) into (6.21) to (6.24) we obtain 
the required relationships between the high-frequency noise and the amplitude 
and phase noise: 
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Fig. 6.5 
band spectra W i b :  Wub. 

High-frequency noise spectra W Z ,  W, and the corresponding base- 

+ 2 Re { eCj240Wub(u)}] , (6.32) 

1 
W,(w) = - [Wn(Qo - w) + Wn(0, + w) x,z 

- 2Re { e - j 2 $ 0 W u b ( w ) } ]  . (6.33) 

Only for the cross-spectrum Wlub there is no equivalent expression, because 
signals with different and non overlapping frequency ranges, in this case the 
lower and upper high-frequency noise sidebands. are always uncorrelated ac- 
cording to the mathematical definition. A comparison of the equations (6.30) 
to (6.33) with the equations (6.14) and (6.15) shows, that again we can de- 
scribe the carrier amplitude and phase noise or the carrier sideband noise by 
complex phasors. The squared magnitudes of these phasors are equivalent to 
the corresponding noise spectra. We may observe. however, that in contrast 
to  linear systems we often calculate spectra by combing phasors of different 
frequency bands. Furthermore, as an example, the phasor product X l X ,  and 
not XTX, stands for the cross-spectrum Wlub. With the power spectra W,(w) 
and W,(w) of the amplitude and phase noise as well as their cross-spectrum 
Wad the noise properties of a non-linear two-port are described completely 
and much more in detail than by the concept of the noise figure. The fre- 
quency w is named the baseband or offset frequency. Normally, all spectra 
will change, if one parameter of the input signal is changed, e.g. the frequency, 
the amplitude. or the form of the signal. 

6.5 NORMALIZED SINGLE SIDEBAND NOISE POWER DENSITY 

As has been shown in the preceding sections, the noise behavior of a non- 
linear two-port with a noise-free and precisely specified periodic input signal 
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or an input signal with known noise fluctuations is fully characterized by 
the noise spectra W,, W, and Wa4. However. these quantities can not be 
measured directly by a sensitive spectrum analyzer. as is possible for the 
highfrequency noise spectra. According to the equations (6.30) and (6.31) 
the noise sidebands depend upon the amplitude and phase noise in a rather 
complicated way. The relations simplify essentially, if one of the two kinds 
of fluctuations can be neglected. Quite often the phase noise dominates and 
the amplitude noise can be neglected. In this case, the equations (6.30) and 
(6.31) simplify to 

(6.34) 

or for a one-sided noise spectrum to 

W,(Ro i w )  = -W,(w) x,2 . 
4 

(6.35) 

The term X,2/2 is a measure of the power P, of the carrier: W,(Q, i w) is a 
measure of the noise power Pssb of one sideband in 1 Hz bandwidth and at an 
offset-frequency w from the carrier. Figure 6.6 schematically shows the powers 

Ro R o + w  

Fig. 6.6 Illustration of the normalized single sideband noise power. 

P, and Pssb within the spectrum of a large sinusoidal signal plus noise. The 
ratio Ps,b/P, is the normalized single sideband noise power. With Eq. (6.35) 
we obtain for a carrier with phase noise: 

(%)$ = ,W,(w) 1 = W,(w) (6.36) 

A similar relation may be given for the case where the noise sidebands are 
caused by amplitude fluctuations only: 

(9) = 2w"(w) 1 = Wa(w) 
ff 

(6.37) 
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The equations (6.36) and (6.37) may also be regarded as definitions for the 
equivalent normalized single sideband noise power of the amplitude and phase 
noise, when both kinds of fluctuations are present simultaneously. The noise 
powers then are no longer identical to  the physical high-frequency noise side- 
bands. However, the ratios ( P s s b / P c ) a  and ( P s s b / P c ) @  can be used for the 
characterization of the carrier noise instead of the spectra W, and W,, as 
is often done in practice. The power ratios are usually given logarithmically 
in dBc/Hz as a function of the offset frequency w.  The correlation between 
amplitude and phase noise usually is not specified in data sheets. The cross- 
spectrum Wad is less important and is also difficult to measure. 

6.6 AMPLITUDE A N D  PHASE NOISE O F  AMPLIFIERS 

In the following, we will discuss the amplitude noise and the phase noise of 
amplifiers for various drive levels. If the noise-free sinusoidal input signal with 
the angular frequency QO and the amplitude XO is small enough so that non- 
linear effects will not occur in the amplifier, then only a white noise signal with 
the constant spectral density WO is superimposed to the carrier. Since there 
is no interaction between the carrier and the noise signal, the noise spectrum 
remains unchanged and we obtain for the noise sidebands 

W,(Ro - w) = W,(RO + w) = Wo = const. (6.38) 

Furthermore, both sidebands are independent of each other, because no cou- 
pling occurs via the carrier. Therefore, the equivalent baseband signals are 
uncorrelated: 

W l u b ( w )  = 0 . (6.39) 

With the equations (6.32), (6.33) and (6.38), (6.39) we obtain for the spectra 
of the amplitude and phase fluctuations the simple result 

(6.40) 
2 

W,(w) = W,(w) = -W, . 
x,z 

Thus we see that the superposition of white noise to  a sinusoidal carrier leads 
to  amplitude and phase noise with identical white spectra. Starting from 
Eq. (6.15) we are also able to calculate the cross-spectrum of the amplitude 
and phase noise. We obtain: 

(6.41) 

With the equations (6.38) and (6.39) the result for the cross-spectrum from 
Eq. (6.41) is 

1 
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We thus conclude that,  for the assumptions made, the phase noise and the 
amplitude noise are completely uncorrelated. 

Within the limits of linear amplification the amplitude and phase noise 
may also be expressed by the noise figure F .  If both the carrier and the noise 
signals are referred to the amplifier input port, then Xt/2 corresponds to the 
carrier input power P,, and FkTo is the one-sided spectral power density of 
the white noise, which is referred to the carrier at the input port. Then 

1 FkTo 

2 Pin 
W,(w) = W,(w) = -- 

or with the equations (6.36), (6.37) 

1 FkTo ( $ ) a = ( % )  = -- 
4 2 Ptn 

(6.43) 

(6.44) 

For example, for a noise figure of F = 2 G 3  dB and P,, = 1 p W  A - 30 
dBm Eq. (6.44) yields -144 dBc/Hz, independent of the offset frequency w.  
Apparently, the amplitude and phase noise can be reduced by increasing the 
input power. A limit is reached when the amplifier is driven into saturation 
and thus the linear range is left. 

In the strongly non-linear region, the amplifier may approximately be 
treated as if the carrier is modulated in amplitude and phase by a single 
low frequency noise process. Therefore, one may write for the fluctuations in 
complex form: 

(6.45) 

(6.46) 

Here. the phasor M describes the low frequency noise process, which is linked 
to  the amplitude and phase noise of the carrier by the complex frequency- 
independent modulation factors m, and md. With lM2/^Wm the spectra are 
given by 

(6.47) 

(6.48) 

Since both kinds of fluctuations are caused by the same noise source, we 
expect that the amplitude and phase noise are perfectly correlated. This is 
confirmed by a direct calculation via the equations (6.45) and (6.46). From 
(AX/Xo)*A@ we conclude 

Wol4(w) = m: m$Wm(w) 3 (6.49) 

and the normalized cross-spectrum 

(6.50) 
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has a magnitude of one. 

noise sidebands are obtained as 
With the equations (6.30) and (6.31) the spectra of the high-frequency 

The imaginary part of the product mT, m4 disappears if the amplitude and 
phase modulation have the same phase. Then, the high-frequency noise spec- 
trum is symmetrical with respect to the carrier frequency f l o .  If one of the 
two kinds of modulation dominates, the spectrum also is symmetrical. In 
general, however, the noise sidebands may differ in magnitude. With the help 
of Eq. (6.14) we are able to determine the cross-spectrum of the equivalent 
base band signals. From 

+ j e j 2 4 0  (%) AX * A@ + jej240-A@*] AX (6.53) 
XO 

we get for the cross-spectrum from the equations (6.47) to (6.49) 

2 

Wlub(w)  = ?ej240 [im,12 - Irn4l2 + 2jRe{m: m,}] W m ( w )  . (6.54) 

From equations (6.51), (6.52) and (6.54) the normalized cross-spectrum can 
be calculated: 

A more detailed analysis of Eq. (6.55) shows that also the normalized cross- 
spectrum of the noise sidebands has a unit magnitude, as was to be expected 
from the analogy to the spectrum W,@. 

Problem 

6.3 
of one. 

Prove that the normalized cross-spectrum of Eq. (6.55) has a magnitude 
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Finally, the normalized single sideband noise powers are obtained from 
equations (6.36), (6.37) and (6.47), (6.48): 

(6.56) 

(6.57) 

Physically, the spectrum Wm(w) often corresponds to the l/f-noise of semi- 
conductor components within the amplifier. Then, also the amplitude and 
phase fluctuations show a l/f-spectrum. For a strongly non-linear mode of 
operation, the input power only has a minor influence on the noise of the out- 
put signal. A practical large signal amplifier is usually operated somewhere 
between the extreme cases regarded here. Therefore, the amplitude and phase 
noise in general will partly be correlated and the spectra will show a l/f-region 
as well as a frequency independent region at higher offset frequencies. 

6.7 TRANSFORMATION O F  AMPLITUDE A N D  PHASE NOISE IN 
LINEAR TWO-PORTS 

Up to now we have assumed that the amplitude and phase noise fluctuations 
which appear a t  the output of a two-port are entirely caused by noise processes 
within the two-port, i.e. we assumed that the input carrier signal is noise-free. 
This situation will never occur in practice. At least a certain noise floor will 
be superimposed on the input signal, for instance the thermal noise from the 
signal source. Generally, amplitude and phase fluctuations are altered when 
the signal passes through the system, if this system is frequency dependent. 
Therefore, the amplitude and phase fluctuations of the output signal consist 
of a noise contribution from the two-port itself and a contribution by the input 
signal. 

Fig. 6.7 Linear system with the transfer function H(R). 

In this section, a linear system with the transfer function H ( G )  as depicted 
in Fig. 6.7 will be considered. For the derivation of a conversion matrix we 
start from Eq. (6.14), assuming that the system itself is noise-free. With the 
phase angle $0 and the magnitude Xo of the complex input carrier signal 
X ,  = Xoexp(j40) the likewise complex amplitude and phase fluctuations 
A X / X o  and A@ can be transformed into the complex sideband phasors X1 
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and X,: 

A similar relation holds for the complex carrier signal a t  the output Y, = 
YO exp(j$o) with the complex amplitude and phase fluctuations AY/Yo and 
A@: 

Since the network with the transfer function H is linear. the corresponding 
sidebands are at the same frequency and are linked via the transfer functions 
Hl and H,, while the carrier signals a t  the input and output of the network 
are linked by the transfer function H,: 

From equations (6.58) to (6.61) we get 

and with Eq. (6.62) 

With 

(6.64) 
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one finally obtains: 

AY 

AQ - + 
(6.65) 

In this way, all elements of the conversion matrix can be calculated from the 
transfer function. We may observe from Eq. (6.65) that the amplitude and 
phase fluctuations of the input signal are transferred to the output by the 
same factor. The two factors for the AM-PM- and PM-AM-conversion differ 
by the sign only. For a symmetrical transfer function with respect to the 
carrier frequency, i.e. for H u / H c  = (HL/Hc)*,  there is no mutual conversion 
with respect of the two kinds of fluctuations. The same is true for a frequency 
independent network. 

6.8 TRANSFORMATION O F  AMPLITUDE A N D  PHASE NOISE IN 
NON-LINEAR TWO-PORTS 

6.8.1 Conversion matrix 

In this section, the transformation of the amplitude and phase noise in a non- 
linear system will be discussed. Again, the noise fluctuations of the output 
signal consist of a noise contribution by the non-linear network in addition 
to the noise contribution from the input signal. However, by passing through 
the non-linear two-port, these fluctuations do not remain constant but are 
subject to a certain change, with a possible conversion of amplitude noise to 
phase noise and vice versa. If we denote the fluctuations of the input signal 
by A X / X o  and A@, and those of the output signal by AY/Yo and AQ, then 
we can express the relation between these quantities by the following matrix 
equation: 

The elements of the conversion matrix YK] describe the way in which the 
fluctuations of the input signal are changed by passing through the non-linear 
network, while the quantities AY,/Yo and AQ, describe the contribution of 
the internal noise of the two-port. These contributions have been dealt with 
in a preceding section. In the following, we will discuss some of the properties 
of the conversion matrix. The discussion is not only valid for noisy signals 
but also includes the case that the fluctuations are caused by a deterministic 
modulation, intentional or not. as long as the fluctuations are small, i.e. as 
long as jAX/Xol << 1 and A@ << 1. 
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While linear two-ports can be described by a complex transfer function, 
non-linear networks can be characterized by the so-called describing func- 
tion. For the definition, we assume at  the input a perfect sinusoidal signal of 
angular frequency Ro with the complex amplitude X .  Due to the non-linear 
properties of the two-port the output signal normally is no longer sinusoidal, 
however, it remains periodic with the angular frequency Ro and it will typi- 
cally include higher harmonics. The output signal can therefore be described 
as a Fourier series with a complex amplitude Y for the fundamental angular 
frequency Ro. We will again denote Y as a phasor quantity. The ratio of the 
complex phasors X and Y defines the describing function, denoted by D: 

(6.67) 

The describing function does not directly depend on the higher harmonics of 
the output signal. In contrast to  the transfer function of linear two-ports. 
the describing function not only is a function of the frequency but also of the 
amplitude of the input signal. With X O  = 1x1 we can write for the describing 
function D with respect to  the amplitude and phase: 

Y 
X 

D = - .  

Do is defined as a real-valued quantity. 

Problem 

(6.68) 

6.4 A piecewise linear relation as shown in the figure below shall describe 
the relation between the input voltage uln(t )  and the output voltage uout(t)  of 
an amplifier. Calculate the describing function in dependence of the amplitude 
Xo of the input signal. 

For the amplitude and phase noise, the interesting angular offset frequencies 
LJ usually are small compared to  the angular carrier frequency 00. Because 
we consider active non-linear devices that have a relatively large bandwidth 
around the center frequency Ro and due to the assumption that w << Ro we 
shall neglect the frequency dependence of the active non-linear two-port in 



AMPLITUDE AND PHASE NOISE IN NON-LINEAR TWO-PORTS 225 

the small frequency region of 00 * w .  With X = XOeJ40 and Y = YOeJ?Lo the 
amplitude and phase of the input signal and the amplitude and phase of the 
fundamental frequency component of the output signal are related by 

(6.69) 

(6.70) 

If the amplitude and phase of the input signal change by small amounts Ax 
and A#, then the resulting changes Ay and A$ of the output signal may be 
calculated by a linear Taylor approximation of the describing function: 

(6.72) 

With Eqs. (6.69), (6.70) and by neglecting the term   AX)^ in Eq. (6.71). which 
is of higher order small, we obtain 

(6.73) 

(6.74) 

Assuming that the relations (6.73) and (6.74), which were derived for static 
amplitude and phase variations, are also valid for low-frequency time-variant 
fluctuations, the elements of the conversion matrix directly follow as 

(6.75) 

KQ$J = I (6.76) 

K++ = I 

(6.77) 

(6.78) 

With derivations with respect to amplitude and phase of the describing func- 
tion, we can define an amplitude compression factor k, and an AM-PM con- 
version factor k,: 

(6.79) 

(6.80) 
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We can thus write the conversion matrix in the following form: 

(6.81) 

In the linear case we have k ,  = k@ = 0. The amplitude and phase fluctuations 
of the input signal are not changed by the two-port, under the assumption. 
however. that  the frequency dependence of the two-port can be neglected. 

Problem 

6.5 
ple of the problem (6.4). What is the value of k$? 

Determine the amplitude compression factor k ,  for the amplifier exam- 

6.8.2 Large signal amplifiers 

For an amplifier under large signal conditions, the amplitude compression is 
the main effect of the non-linear operation. The AM-PM conversion may be 
important since it can cause crosstalk, if the carrier is subject to a combined 
amplitude and phase modulation. For noise considerations the conversion 
factor k4 is of minor importance. In practical systems the phase noise usually 
dominates. Then it is of no concern if a part of the much smaller amplitude 
noise is converted into phase noise. For this reason. the AM-PM conversion 
factor k4 will be neglected in the following. 

For a large number of amplifiers, the dependence of the power gain G, as 
a function of the signal input power P, may approximately be described by 
the following empirical equation: 

(6.82) 

Here, Go is the small signal power gain and Psat the saturation value of the 
output power. For P, << PSat/Go we get G, = Go. With Eq. (6 .82)  we 
are able to  determine the compression factor k,. If we assume a real input 
impedance 2, of the amplifier and a voltage amplitude X ,  of the input signal, 
then P, = X,2/(2Z,). The corresponding describing function 
follows from the equation (6.82): 

of the amplifier 

(6.83) 
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With Eqs. (6.79) and (6.83) the amplitude compression factor k ,  is obtained 
as : 

or 

(6.85) 

For small input powers: i.e. for P, << Psat/Go, we see that k ,  z 0 and 
an amplitude compression does not occur. With increasing input power the 
exponential function in Eq. (6.85) converges to zero and k ,  approaches the 
value one. For k ,  = 1 all amplitude fluctuations of the input signal will be 
perfectly suppressed, the amplitude of the output signal is constant. 

In order to estimate typical values of k ,  within the limits 0 and 1, it should 
be clarified which input power is a suitable or perhaps optimum choice for a 
large signal amplifier. For a power amplifier one often attempts to optimize 
the difference between the output power GpPs and the input power P,, i.e. the 
added power AP,. With Eq. (6 .82)  we obtain for this power difference: 

GO p, AP, = GpPs - P, = Psat 

Differentiation with respect to P, yields 

From this result we obtain the optimum input power 

The power gain at this point of operation is 

Finally, we get for the corresponding amplitude compression factor 

(6.86) 

(6.87) 

(6.88) 

(6.89) 

(6.90) 

In Fig. 6.8 we can see this relation in a graphical form. For a typical small 
signal gain usually between 6 dB and 20 dB, we observe a strong amplitude 
compression if the amplifier is operated as a power amplifier with optimum 
drive level. Because this compression partly also suppresses amplitude fluctu- 
ations that are generated in the amplifier itself, the amplitude noise is usually 
smaller than the phase noise. The phase noise is nearly uneffected by non- 
linear effects, due to  Kqd = 1. 
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Fig. 6.8 Amplitude compression factor for an optimal operation point. 

6.8.3 Frequency multipliers and dividers 

Up to now, the input and output signals of the non-linear two-ports had the 
same frequency. Because of K,, = 1 the phase fluctuations of the input signal 
are transferred to the output without change, except for internal noise and 
possibly additional noise contributions due to AM-PM conversion. This is no 
longer true if the output frequency changes due to  frequency multiplication 
or frequency division. 

If the input signal of a frequency multiplier is described by 

z ( t )  = xo c o s p t  + Aqqt); , (6.91) 

then the output signal is given by 

y ( t )  = Yo C O S [ N R ~  + N A @ ( t ) ]  , (6.92) 

with N as the multiplication factor. The ratio of the amplitudes YO and XO 
depends upon the conversion loss or the gain, respectively, of the frequency 
multiplier. As a consequence of the frequency multiplication all phase ex- 
cursions are amplified by the factor N. too. If the phase fluctuations of the 
output signal are denoted by A$(t), then Eq. (6.92) yields 

A$(t) = N .  A$(t) (6.93) 

or 
K , , = N .  (6.94) 

This linear relationship can be transformed directly into a relation of the cor- 
responding spectra, i.e. the input spectrum W,(w)  and the output spectrum 

W,(LJ) = N 2  W,(w) . (6.95) 

Due to Eq. (6.36) the factor N 2  is also valid for the normalized single sideband 
noise powers. Then. e.g. for a multiplication by a factor of 10, the ratio of the 

W,(w): 
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single sideband noise power to the carrier power deteriorates by 20 dB. This 
effect normally is crucial for the phase noise of the output signal. The contri- 
bution from the internal noise of the multiplier can often be neglected. Good 
practical frequency multipliers, e.g. multipliers with step recovery diodes, usu- 
ally only show an internal noise slightly above thermal noise and also low 1/ f 
noise cut-off frequencies. 

For the generation of microwave signals with good long term frequency 
stability, the output signal of a quartz crystal oscillator is often multiplied 
by a chain of multipliers up to the required frequency. In this way, the total 
multiplication factor can be rather high and, therefore, a strong phase noise of 
the output signal can result. If, e.g. , the crystal oscillator has a frequency of 
10 MHz and an output power of 10 dBm and if one assumes that -as the best 
possible situation- only thermal noise of -174 dBm/Hz is added to the carrier, 
then the phase noise of the crystal oscillator is (PSSb/pc),$ = -187 dBc/Hz. 
This value results from Eq. (6.44) with F = 1 and Pin = 10 dBm. By a 
multiplication to  a frequency of e.g. 10 GHz the normalized single sideband 
noise power deteriorates by 60 dB to (Pssb/Pc)$, = -127 dBc/Hz. 

For frequency dividers with the division ratio N we observe just the inverse 
relationships. If, again, we denote the phase fluctuations of the input signal 
by A@(t) and those of the output signal by A$(t), then we have 

(6.96) 

or 
1 

N ’  
K,, = - (6.97) 

Again, this linear relationship can be transformed into a relation of the cor- 
responding spectra: 

(6.98) 

Because the phase fluctuations of the input signal are reduced in magnitude at  
the output. the contribution of the internal noise of the divider to the output 
phase noise will typically be of relevance. Therefore, for frequency dividers 
the magnitude of the internal noise is of greater importance than for frequency 
multipliers and is more likely to contribute to the overall noise performance 
of a system. 

Problem 

6.6 The input signal of a frequency divider with a division ratio of N consists 
of two sinusoidal components with the small frequency difference A f = f2 - fl 
and the large amplitude ratio A1IA2 >> 1 according to the figure below. What 
does the spectrum of the output signal look like? The same question should 
be answered for a frequency multiplier with a multiplication factor of N .  
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fl f 2  f 

6.8.4 Frequency converters or mixers 

For a shift in frequency of a carrier signal with small phase fluctuations by 
means of a frequency converter or mixer the situation is particularly simple, 
if we can assume that the mixer is operated quasi linearly or parametrically. 
Under this and the further assumption that the local oscillator signal is ideal 
and free of noise and neglecting the noise contribution of the mixer itself, it 
follows that the output phase noise A$@) is equal to the input phase noise 
A4(t), independent of the frequencies involved: 

A$(t) = A4(t) (6.99) 

and 
K ~ d = 1 .  (6.100) 

From this result we conclude that the corresponding spectra are equal: 

W,(w) = W,(w) ’ (6.101) 

Under the assumption of quasi-linearity of the mixer also the amplitude fluc- 
tuations will linearly be transposed in frequency. If, however, we do not ne- 
glect the phase fluctuations of the local oscillator AQe, with the corresponding 
spectrum W,, then the equation (6.101) will read as 

.cv,(w) = W,(w) + WC(y.t) , (6.102) 

provided that the local oscillator signal is free of amplitude fluctuations and 
that its phase noise is not correlated with the phase noise of the other signals. 
The last equation (6.102) is even valid under large signal conditions for all 
signals involved at the mixer, as long as the signals are free of amplitude 
fluctuations. Furthermore, we must require, as before, that the signals due to 
phase fluctuations are small relative to the carrier signals. 

6.9 MEASUREMENT OF THE PHASE NOISE 

The amplitude noise of a non-linear two-port is not measured very often, 
because it is not as important as the phase noise and because its measurement 
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two-port 

u( t )  
phase 

detector x ( t )  

Fig. 6.9 Measurement of the phase noise of non-linear two-ports. 

is less straightforward. The phase noise, on the other hand can be determined 
relatively easy. The measurement principle is demonstrated in Fig. 6.9. 

The input signal z ( t )  and the output signal y ( t )  of a non-linear two-port 
are both connected to the input ports of a phase detector. With x ( t )  = 
X O  cos[Slot + Ac#J(t)] and y(t) = Yo cos[Rot + A$(t)] the voltage u(t)  at  the 
output of the phase detector is proportional to  the difference of the phase 
fluctuations of z ( t )  and y ( t ) .  The proportionality constant is named K P D :  

u( t )  = KPD[A$(t) - Ac#J(t)] . (6.103) 

The phase fluctuations A$(t)  of the output signal include the fluctuations 
Ac#J(t) of the input signal and the noise contribution A$,(t) of the noisy two- 
port under test: 

A$J(~)  = A#(t) + A$~n(t) . (6.104) 

We can thus write for the spectrum of u( t ) :  

W,(W) = K;D . W $ n ( ~ )  . (6.105) 

Therefore, the spectrum W, is a replica of the spectrum W,, of the internal 
noise fluctuations of the two-port under test. After a sufficient amplification 
it can be displayed, e.g. with a spectrum analyzer. 

For a quantitative measurement we need to know the product of the phase 
detector constant Kpg and the amplification factor between the phase de- 
tector and the display system. This product can be determined e.g. by a 
calibration measurement. For this purpose, two sinusoidal signals of the same 
frequency can be applied to the inputs of the phase detector. One of these 
signals is phase modulated in a well defined manner. The frequency and am- 
plitude of the calibration signals must be identical to those of the measurement 
signals, because otherwise the detector constant Kpg may change. 

For not too high frequencies, integrated digital circuits are available as 
phase detectors. For even higher frequencies one can employ balanced mixers 
for this purpose. The sensitivity then depends according to a sinus function 
on the phase difference of the two input signals. In order to  adjust the sys- 
tem for maximum sensitivity, the circuit in Fig. 6.9 must be extended by a 
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variable phase shifter a t  one of the input ports of the phase detector. In 
practice, however, and for convenience one should first try to perform the 
phase noise measurement directly with a sensitive high-frequency spectrum 
analyzer instead of using a measurement circuit as shown in Fig. 6.9. This 
requires that  the amplitude fluctuations are small enough which often is the 
case. The spectrum analyzer offers the additional advantage of a spectrum 
power calibration. 

Problem 

6.7 
mine the phase detector constant K ~ D .  

A balanced mixer can be treated as an ideal analog multiplier. Deter- 

The circuit in Fig. 6.9 can only be applied if no frequency translation occurs 
within the non-linear two-port under test. In order to perform also measure- 
ments with frequency multipliers and frequency dividers we must extend the 
circuit according to  Fig. 6.10. In this measurement setup instead of one circuit 

Fig. 6.10 
linear two-ports. 

Measurement circuit for the phase noise with two identical non- 

under test, two samples of the two-port under test are required with proper- 
ties as similar as possible. The input signal z ( t )  is applied to both two-ports. 
The phase fluctuations A&(t) and A+Z(t) of the output signals both contain 
a contribution of the input noise signal and the internal noises A$,l(t) and 
A h 2  ( t ) :  

A$i(t) = N .  A4(t )  + A $ n ~ ( t )  3 (6.106) 

A+z(t) = N '  a4(t) + A$n2(t) . (6.107) 

For frequency multipliers and frequency dividers, the frequency multiplication 
factor or division factor N is different from one, i.e. N # 1. For the spectrum 
W, the equations (6.103), (6.106) and (6.107) yield 

W u ( w )  = K;D [W$nl(U) + W+n2(4] > (6.108) 
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because the noise contributions of both two-ports under test are uncorrelated 
and because the phase fluctuations A$(t) of the input signals cancel. As a 
result the measurement delivers the sum of both phase noises of the two- 
ports under test. For equal or nearly equal noise properties of the two-ports, 
we therefore obtain the result of the individual two-port simply by reducing 
the total measurement result of the spectrum by 3 dB. If the two-ports are 
unequal, then the spectrum of any of the two two-ports is smaller than the 
measured total spectrum. Furthermore, if available, the second measurement 
object may be replaced by a frequency multiplier or frequency divider with 
much lower noise. In this case, the total measured output noise directly yields 
the phase noise of the device under test. Finally, as will be shown in the next 
problem, one can use three possibly different devices under test and perform 
three paired measurements in order to determine all individual phase noise 
spectra. 

Problem 

6.8 Three samples of a frequency divider (frequency multiplier) with equal 
or unequal noise properties are available. Determine the individual noise prop- 
erties of the dividers (multipliers) from the result of sequential measurements 
of all possible pairs of the samples. 

Again, in practice, and for convenience, one will usually first try to  per- 
form the phase noise measurement directly with a sensitive high-frequency 
spectrum analyzer and not use a measurement circuit as in Fig. 6.10. Again 
the requirement for this procedure is that the amplitude fluctuations are small 
enough compared with the phase fluctuations, which very often is the case. 
Furthermore, it is required that the phase noises of the internal sources of 
the spectrum analyzer are smaller than the phase noise to be measured. The 
spectrum analyzer offers the additional advantage of an easy spectrum power 
calibration. Fig. 6.11 shows examples of typical measured results of the in- 
ternal phase noise for an amplifier and a frequency divider in a schematic 
represent at ion. 
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7 
Noise in Oscillators 

The output signal of an ideal oscillator has an exactly periodic, for high- 
frequency oscillators usually a sinusoidal, function of time. The frequency 
and the amplitude of the output signal are constant with time, except for 
possible slow drift effects, e.g. by temperature changes or aging effects. For a 
real oscillator, the noise processes within the circuit lead to small disturbances 
of the frequency or phase and the amplitude of the output signal. As for the 
nonlinear two-ports of Chapter 6, we will describe the disturbing effects of the 
noise on the output signal by amplitude and phase fluctuations of the carrier 
signal. Therefore, we can fully adopt the concepts of this former chapter, 
e.g. the concept of single sideband noise power. 

In this chapter, we will discuss models that allow one to  describe the influ- 
ence of the different circuit parameters on the noise behavior of the oscillator. 
Furthermore, we will introduce possible concepts for the practical realization 
of low-noise signal sources. Finally, we will deal with the appropriate mea- 
surement techniques. 

7.1 TWO-PORT A N D  ONE-PORT OSCILLATORS 

Each oscillator consists of an active amplifying part and a passive network 
with a frequency selective feedback circuit that determines the oscillation fre- 
quency and a signal divider part to  branch off the output signal. Principally, 
there are two different classes of oscillators. A two-port oscillator consists of an 
active two-port, that provides amplification, and a passive, resonant and thus 
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frequency selective feedback network, which together with the output port 
may be described as a three-port (Fig. 7.1). One-port oscillators are based 
on an active one-port with a negative real part of its terminal impedance and 
a passive frequency selective circuit, which is usually a two-port. One-port 
oscillators are the typical choice in the mm-wave region, while at lower fre- 
quencies both types of oscillators are employed. Often it only depends on the 
point of view, whether the oscillator topology is considered as a one-port or 
a two-port oscillator. Most common active elements are bipolar transistors 
and field effect transistors. Gunn and Impatt diodes are sometimes found in 
existing mm-wave oscillators but are now more and more replaced by bipolar 
and field effect transistors. Vacuum tubes are still very important for oscilla- 
tors with high powers and high frequencies but will not be discussed in this 
text. 

I r  I I 

two-port 

Fig. 7.1 Block diagram of (a) a two-port and (b) a one-port oscillator. 

7.2 OSCILLATION CONDITION 

Both kinds of oscillators can be described by the flow graph shown in Fig. 7.2 .  
The active element is operated under large signal conditions and, therefore, 
must be treated as a non-linear network. The relationship between the com- 
plex input phasor X with 1x1 = Xo,  a signal with a sinusoidal waveform, and 
the complex phasor of the output Y ,  a signal component at the fundamental 
frequency which, therefore, also has a sinusoidal wave form, is given by the 
describing function D 

Y = D ( X 0 ) X  (7.1) 

We will assume throughout this chapter that  the describing function of the 
active element of an oscillator, operating at  a fixed frequency, only depends 
on the amplitude of the input signal and not on the frequency. 

For oscillators this assumption is usually justified, because the frequency 
dependence of the active part normally is negligible compared with the strongly 
frequency dependent passive part of the circuit, which typically has the prop- 
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feedback network 

lq+-l-j-i+ 
active network output network 

Fig. 7.2 General block diagram of oscillators. 

erties of a resonator. For the two-port oscillator the phasors X and Y describe 
the input and output signals of the active two-port, e.g. the input and output 
signals of a bipolar or field effect transistor. With respect to  the dimension 
these signals may be voltages, currents or waves. If quantities of the same 
dimension are used for the input and output signal, then the describing func- 
tion is dimensionless. For a one-port oscillator the describing function for 
the active element usually has a dimension. If the input signal is chosen as 
a current and the output signal as a voltage at the terminals of the active 
one-port, then the describing function has the dimension of an impedance. A 
dimensionless describing function results for the one-port, if the signals at  the 
interface between the active and passive parts of the circuit are introduced 
as waves propagating towards and back from the active impedance. Then, 
the describing function corresponds to the reflection coefficient of the active 
one-port . 

The properties of the passive network of both the two-port oscillator and 
the one-port oscillator are described by frequency dependent transfer functions 
in the signal flow diagram. The transfer function H(R) designates the fraction 
of the output signal Y of the active element which is coupled back to its input 
as a signal X ,  in order to maintain a stationary oscillation. The transfer 
function A(R) specifies the relationship between the output signal Y and the 
signal Z at the external load impedance of the oscillator. Regarding the 
dimension of the transfer function, the same considerations hold as for the 
describing function. From Fig. 7 . 2  we get 

x = H ( R ) Y  ( 7 4  

and 
Z = A ( f l ) Y  . 

Combining the equations (7.1) and (7 .2)  yields 

(7.3) 

D(Xfj)H(R) = 1 . (7.4) 
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This last equation is known as the oscillation condition. This condition 
states that  the oscillator can not oscillate with arbitrary amplitude and fre- 
quency but only with those combinations of X o z , R z ,  which meet the condi- 
tion Eq. (7.4).  For a given oscillator circuit with known functions D ( X o )  and 
H(R), all possible modes of oscillation can be found by solving Eq. (7.4). On 
the other hand, the oscillation condition can be used as a basis for the sys- 
tematic design of the oscillator circuit. For this purpose, one may start with 
a proper selection of the signal amplitude Xo at the active element. Quite 
appropriate is the amplitude which maximizes the difference between the in- 
put and the output power (see Section 6.8.2). From the corresponding value 
of the describing function and Eq. (7.4), the feedback transfer function at the 
specified oscillation frequency is obtained. With this result the passive net- 
work can be designed. Then, with Eq. (7.4); the circuit can be analyzed once 
again in order to check if the oscillation condition has additional solutions at 
other frequencies. This must be avoided, since in this case unwanted parasitic 
oscillations at other frequencies are possible. If necessary, the circuit design 
has to be modified until a single frequency oscillation is guaranteed. 

A particularly important and difficult issue in the design process is the 
accurate description of the active element and the describing function, either 
by measurement or by simulation or both. Often the description of the active 
element is based on a small signal characterization, which is easier to accom- 
plish but may lead to a non-optimum output power performance. In such a 
situation, it is common practice to improve the performance of the oscillator 
empirically. 

The oscillation condition is a necessary but not a sufficient condition for 
stationary oscillations. A further condition is that the mode of oscillation 
is stable, which means that,  after a disturbance, the oscillation amplitude 
automatically returns to  its former steady state value. The stability condition 
will be discussed later on, using results of the noise analysis. 

7.3 NOISE ANALYSIS 

The aim of the following noise analysis is the general calculation of the am- 
plitude and phase noise of oscillators. For the amplitude and phase noise of 
linear and non-linear active networks the results can directly be taken from 
chapter 6. For convenience, the most important results will be repeated here. 

If we denote the amplitudes of the input and output signals by X O  and 
Yo ~ respectively, and the corresponding amplitude and phase fluctuations by 
A X / X o  and AY/Yo or A@ and A Q ,  then we can write 
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The quantities AY,/Yo and A*, describe the contribution of the internal 
noise of the active network to the amplitude and phase noise of the output 
signal. The matrix elements of [K]  denote the changes of the fluctuations 
of the input signal when passing through the non-linear network. For the 
calculation of the oscillator noise it is normally sufficient to  take into account 
the amplitude compression only. With the amplitude compression factor k ,  
(see section 6.7.1) we get from Eq. (7.5): 

As already discussed in Section 6.6, the contributions of the internal noise of 
the active element depend on the drive level. For a weak drive level i.e. quasi- 
linear operation, we can determine the spectra of the amplitude and phase 
noise approximately from the noise figure F and the input power P,, of the 
active network according to the relation 

Fk To wan = w,, = - 
2 Pin (7.7) 

The spectra are approximately independent of frequency, i.e. white, and the 
amplitude and phase fluctuations are not correlated. 

For a strongly non-linear mode of operation, in many oscillator circuits 
the internal noise can be described approximately by a low frequency noise 
process and a frequency up-conversion. We then may write 

(7.9) 
with the modulation factors ma and m#. The low frequency spectrum W, 
typically has a more or less pronounced l/f-characteristic. Amplitude and 
phase noise are fully correlated according to this model. 

The quantitative determination of the spectra W,, and W,, for a non- 
linear network is complicated and requires accurate models for the non-linear 
elements. If the spectra can not be determined by measurements, the following 
empirical approach may be used, which results from a slight modification of 
the relations for the linear case: 

(7.10) 

(7.11) 

with 

(7.12) 
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The spectrum WO corresponds to the noise in the linear case, however, with an 
effective large signal noise figure F,f ,  which usually is higher than the small 
signal noise figure F .  Typical values for Fef  might range from 2 dB to 20 dB. 
The factor (1 + f c o / f )  accounts for the l/f-noise of the active component. 
The noise corner frequency fco has already been introduced in Section 6.3 and 
typically is found in the range of 1 kHz to 100 MHz. The spectrum Wan may 
be multiplied by the factor (1 - ko1)2 if it can be assumed that the amplitude 
noise mainly originates from the input section of the non-linear network and 
that it therefore will be subject to an amplitude compression. A possible 
correlation between amplitude and phase noise is normally neglected. 

The relationships between the amplitude and phase fluctuations of the 
input and the output of the linear network with the transfer function H of 
the block diagram of Fig. 7.2 have already been given in chapter 6, Eq. (6.20). 
However, it must be noticed that the meanings of X and Y are interchanged 
in Fig. 7.2. With the abbreviations H, = H(Ro),  Hl = H(R0 - w) and 
H, =-H(Ro + W )  re have: 

(7.13) 

For convenience the intrinsic thermal noise of the passive feedback circuit is 
neglected because it is typically small compared with the noise of the active 
circuit. However, in principle, it would not raise any problem to consider also 
the thermal noise of the passive circuitry. 

Similar to Eq. (6.16) we obtain a conversion matrix for the linear output 
network to the load of Fig. 7 . 2  with the transfer function A(R). For the 
amplitude and phase fluctuations at  the output, AZ/Zo and A@, we get the 
matrix equation 

with the abbreviations A, = A(Ro), Al = A(& - w) and A, = A(R0 + w). 
With the results described above, the noise of the complete oscillator can 

be calculated in a general form. once the feedback loop is closed (see Fig. 7.2). 
Here, the feedback loop is closed via the phasors of the amplitude and 

phase fluctuations. Using alternative algebra, which. however. delivers exactly 
identical results, one may use the upper and lower sideband phasors, in order 
to close the loop. 
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Combining Eqs. (7.6) and (7.13), we get 

With the abbreviations 

and 

we get 

(7.16) 

Solving for AY/Yo and AQ we obtain: 

. (7.19) 11 - (1 -  HE] AQn - j  HA(AYn/Yo) 
(1 - H E )  [l - (1 - k,)H-j] - (1 - IC,)Hi 

AQ = 

The amplitude and phase fluctuations each depend on the noise contributions 
AYn/Yo as well as AQn of the active network, because in the linear circuit 
a mutual conversion of both kinds of fluctuations is possible. As was already 
mentioned, this conversion vanishes if the passive resonance circuit has a 
symmetry in the sense that H u / H c  = (Hl/H,)*.  With H-j = H u / H ,  and 
H a  = 0 the Eqs. (7.18) and (7.19) simplify to 

(7.20) AY - 1 AYn 
YO 1 - (1 - ka)Hu/H,  yo ' 
- -  

1 
AQ = AQ, . (7.21) 

1 - &/He 
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With Eqs. (7.13) and (7.14) it is possible to  calculate from AY/Yo and AQ 
the amplitude and phase fluctuations at the input of the active network as 
well as a t  the load output of the oscillator. 

By forming the squared magnitude. the above relations can be transformed 
into equations for the corresponding spectra. Apart from the spectra We and 
W,. the spectrum for the frequency fluctuations Wf is sometimes also given. 
The frequency fluctuations, i.e. the deviations of the instantaneous frequency 
from the mean value 02,/27r are obtained by a differentiation with respect 
to time of the phase fluctuations and a division by 27r. The phasor of the 
frequency fluctuations is denoted by A F .  Then. in complex notation we can 
write 

(7.22) jd A F = - A @ .  
27r 

Therefore, the relation between the spectra is given by 

(7.23) 

7.4 STABILITY CONDITION 

In Section 7.2, it was already mentioned that the oscillation condition (7.4) is 
not a sufficient condition for a stable oscillation at a certain frequency. The 
stability is only guaranteed if the oscillation amplitude is insensitive to dis- 
turbances. This requires that the oscillation amplitude returns to its former 
value after a disturbance stops. Only such a behavior corresponds to a sta- 
ble mode of operation. If the amplitude deviation remains constant or even 
increases over time, then the oscillation mode is unstable. 

The stability of the oscillation amplitude can be checked with the help 
of Eq. (7.18). This equation is not restricted to noise signals but relates 
in a general manner disturbances of the amplitude and phase in the active 
network to the resultant amplitude changes of the oscillator. The relation is 
linear and Eq. (7.18) can be considered as the transfer function of a linear 
system. Therefore, well-known methods can be employed in order to test for 
stability of the system. If we denote the denominator of the equation (7.18) as 
De,  then De is a complex function of the offset frequency w or De = De(jw).  
For a stability test we will replace the expression j w  by the complex frequency 
p = CT + jw. Subsequently, we will search for the solutions p ,  of the equation 

D e ( p )  = 0 . (7.24) 

The transfer function (7.18) belongs to a stable system, if for all solutions p ,  
of Eq. (7.24): 

Re{p,) < 0 . ( 7 . 2 5 )  

In this case, the oscillation amplitude of the oscillator is stable. 
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7.5 EXAMPLES 

7.5.1 Two-port oscillator with transmission resonator 

resonator - 
amplifier power 

divider 

Fig. 7.3 Two-port oscillator with a transmission resonator. 

As an example of a two-port oscillator we will analyze the circuit in Fig. 7 . 3 .  
The output signal of a large signal amplifier is applied via a signal divider to 
the input of a transmission resonator. The transmitted and filtered signal is 
fed back to the input of the amplifier, thus closing the feedback loop. 

I t  is expedient to describe the circuit by scattering wave parameters. We 
will assume for convenience that all components are matched around the os- 
cillation frequency so that reflections do not occur. Furthermore, all signal 
delays and attenuations caused by interconnecting lines are neglected. They 
are thought to be included in the amplifier, the signal divider, or resonator. 

The non-linear properties of the large signal amplifier have already been 
treated in Section 6.8 .2 .  The power gain G, decreases monotonously with in- 
creasing input power P, and approaches zero asymptotically. Quantitatively, 
this dependence of the amplifier gain G, as a function of the input power P, 
can be described by the approximate empirical expression: 

( 7 . 2 6 )  

Here, GsO is the small signal gain of the amplifier and Psat is the saturated 
output power of the amplifier. We can thus write for the describing function 
D of the nonlinear amplifier circuit: 

D(X0)  = /- ( 7 . 2 7 )  

The phasor amplitude XO in the above equation now belongs to a wave quan- 
tity. 
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The scattering parameters S 2 1  and 5 1 2  of the transmission resonator can 
be written in a general form as 

with QO as the unloaded quality factor and R, as the resonance frequency 
of the resonator. For R = R, the scattering parameters S12 and S 2 1  are 
real and have their maximum magnitude. The positive and real quantities P1 
and /32 are the coupling factors of the input and the output of the resonator. 
In the following, we will assume a symmetrical coupling, i.e. = P 2  = p. 
Furthermore, we will use for the resonator the approximation that (R/R, - 
R,/S2) = 2w/R, for w << R and with w = R - 0,. Then, Eq. (7.28) simplifies 
to the expression 

(7.29) 

We assume that the signal divider has a frequency independent transfer func- 
tion of 1/& for both output ports. Thus we obtain for the two transfer 
functions of Fig. 7.2 

(7.30) J z P  H(R)  = H ( w + R , )  = 
1 + 2 p + j 2 & o w / R r  ’ 

1 
A(R) = - . Jz (7.31) 

The oscillation condition (7.4) together with the equations (7.27) and (7.30) 
reads: 

Since the imaginary part of the oscillation condition must be zero, we conclude 
that the oscillation frequency Ro = w + R, is equal to the resonance frequency 
0, of the oscillator, i.e. w = 0. Squaring the real part of the oscillation 
condition yields: 

(7.33) 

For given circuit parameters, this equation allows one to determine the oscil- 
lation amplitude Xo and thus also the output power P, of the amplifier. If the 
amplitude of the amplifier input signal Xo has been fixed, then the necessary 
coupling factor 4 of the resonator can be determined with Eq. (7.33). 
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Problem 

7.1 An amplifier has the saturated output power Psat = 20dBm and the 
small signal gain GsO = 15dB. Which signal input power Psopt leads to a 
maximum difference between the output and input power? What is the value 
of the coupling factor /3 in order to meet the oscillation condition Eq. (7.33) 
for this optimum drive level? What is the value of the corresponding output 
power? 

For the amplifier characteristic according to Eq. (7.26) the amplitude com- 
pression factor k, has already been determined in Section 6.8.2: 

(7.34) 

Furthermore, for the calculation of the noise we need the quantities Hc and 
H A  from Eq. (7.16). With Eq. (7.30) we obtain 

(7.35) 

H a  = 0 .  (7.36) 

With Eqs. (7.20) and (7.21) the amplitude and phase fluctuations at the out- 
put of the amplifier are given by 

(7.37) 
1+2 /3+ j2Qow/ f l r  . -  AY, - 

AY 

YO k a ( l + 2 P ) + j 2 Q o w / Q r  YO ’ 
- -  

(7.38) 

Because the transfer function of the signal divider is assumed to be frequency 
independent, the output coupling network does not change the noise. There- 
fore, the amplitude and phase fluctuations of the output signal of the oscillator 
are identical to those at  the output of the amplifier. With the assumptions 

and 
W,, = wo 

(7.39) 

(7.40) 

for the internal noise of the amplifier we obtain for the spectra of the oscillator 
noise: 

(7.42) 
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From the Eqs. (7.41) and (7.42) two corner frequencies may be derived, de- 
noted by at1 and wt2 (see Fig. 7.4): 

(7.43) 

(7.44) 

Because k, < 1 we have a t l  < wt2. Therefore, for offset frequencies below wtl 

we observe a frequency independent amplitude noise: 

2 

W,(w) = (& - 1) wo , w << W t l  . (7.45) 

Between wtl and wt2 the amplitude noise decreases with increasing offset fre- 
quency by up to 20 dB/decade, before it again approaches a constant level 
above wt2: 

W,(w) = (l-lC,)2 w, , w >>iJt2 , (7.46) 

The phase noise decreases with 20 dB/decade up to the corner frequency wt2 . 
For even higher offset frequencies, the spectrum W, approaches the constant 
value WO. Thus, we qualitatively observe a noise behavior of the two-port 
oscillator, as shown in Fig. 7.4a. 

\-30 dB/decade 

\-20 dB/decade 

I I !  b 
wb Wtl Wt2 W 

Fig. 7.4 
oscillator (a) without 1/ f-noise and (b) with 1/ f-noise. 

Qualitative spectra of the amplitude and phase noise of a two-port 

If a 1/ f-noise contribution is included in the spectra W,, and W,,, then 
the form of the spectra changes as shown in Fig. 7.4b, assuming that the 
l lf-noise corner frequency W b  < w t l .  A quantitative noise calculation is to be 
performed in the next problem. 
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Problem 

7.2 Calculate the noise spectra W, and WQ for the data of the two-port 
oscillator of problem 7.1. The amplifier is assumed to  have an effective noise 
figure of F,f=20 dB and a 1/ f-noise corner frequency fb of 0.1 MHz. The res- 
onance frequency of the resonator is assumed to be 10 GHz, and the unloaded 
quality or Q-factor 1000. 

Of crucial importance for the phase noise is the resonator quality factor 
Qo. For small offset frequencies, a doubling of the quality factor leads to  a 
reduction of the phase noise by 6 dB. Therefore, for a practical realization of 
an oscillator circuit, a high resonator quality factor is of prime importance. 

An improvement of the phase noise can also be achieved by a reduction of 
the coupling factor p, i.e. by a weaker coupling of the resonator. However, 
the range of possible coupling factors is rather small because, according to 
Eq. (7.29), a smaller coupling of the resonator also leads to a higher trans- 
mission loss of the resonator. 

The amplitude noise is only slightly affected by the properties of the res- 
onator. The two limits according to Eqs. (7.45) and (7.46) only depend on the 
properties of the amplifier. A change of the resonator parameters just leads 
to a shift of the two corner frequencies wt l  and wt2. 

The spectra of the two-port oscillator also depend on the position of the 
output coupling circuit as is shown in the next problem. 

Problem 

7.3 The circuit of a two-port oscillator as shown in Fig. 7.5 is modified in 
such a way that the output coupling network is located at the output of the 
resonator or the input of the amplifier, respectively. Calculate the spectra 
of the amplitude and phase noise with the same numerical values as in the 
problems 7.1 and 7.2. 

The stability of the two-port oscillator can be analyzed by means of the 
denominator of Eq. (7.37). With the complex offset frequency p, a zero of the 
denominator occurs at the complex offset frequency p l :  

(7.47) 

Because k, > 0 and p > 0 the zero lies in the left half of the complex 
p-plane. The solutions of the oscillation condition (7.32) thus correspond to 
stable oscillation modes. 
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1 % : Q o  4 

7.5.2 

As a second example we will examine the circuit in Fig. 7.6. The active 
element is a one-port, which in the equivalent circuit is described by a real 
resistance R. Between the amplitudes of the current and the voltage there is 
a non-linear relationship. Therefore, the resistance is not constant. 

One-port oscillator with a series resonator 

1 

R c 

output * 

L 

* D -  - 

C 

Fig. 7.6 One-port oscillator with a series resonator 

Figure 7.7 shows typical curves for the dependence of the voltage amplitude 
and the resistance on the current amplitude. For small amplitudes the active 
two-port has a nearly constant negative terminal resistance. Therefore, high- 
frequency power can be delivered to the load. With increasing current or volt- 
age amplitudes the magnitude of the negative resistance will decrease. similar 
to the decrease of the gain in a saturated amplifier. There are, however, also 
some differences between a one-port with a negative terminal resistance and 
an amplifier. While the output signal of an amplifier increases monotonously 
with the input signal. for a one-port also a decrease of, e.g. the voltage ampli- 
tude with an increasing current amplitude may be observed. Therefore, the 
resistance can drop to zero already for a finite current amplitude, while for 
an amplifier the zero gain is only reached asymptotically. 
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Fig. 7.7 
of the current. 

(a) Voltage and (b) resistance of the active two-port as a function 

With oriented arrows for the current and voltage phasors as defined in 

U = - R I .  (7.48) 

If we consider the current phasor I as the input signal and the voltage phasor 
U as the output signal of the non-linear network, then the negative resis- 
tance -R corresponds to the describing function D of Fig. 7.2. By means of 
Eq. (6.79) we can determine the amplitude compression factor k, from the 
current dependence of R according to Fig. 7.7. With I 0  = 111 we obtain 

Fig. 7.6 we can write 

(7.49) 

Due to dR/dI, > 0, k, > 0 for R < 0. For amplifiers. k, is also smaller 
than one. This restriction does not apply to active one-ports. Because of 
Eq. (7.49), k, may even become arbitrarily large in the vicinity of the zero 
crossing of the R-function. Even without an exact knowledge of the function 
R ( I )  the value of the compression factor k, > 0 leading to maximum output 
power can be estimated, as will be shown in the next problem. 

Problem 

7.4 For an active non-linear two-port the amplitudes of the current and the 
voltage have been chosen such that the power transferred from the active one- 
port to  the load becomes maximum. What is the value of the compression 
factor k, > 0 in this case? 

The linear network of the oscillator or its equivalent circuit consists of a 
resonator with an inductance L and a capacitance C in series and additionally 
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the load resistance Ro. For the linear network the voltage U is considered as 
the input signal and the current I as the output signal. Therefore, the transfer 
function H(R) of Fig. 7.2 is identical to  the admittance of the series connection 
of L ,  C and Ro: 

(7.50) 

If we consider the voltage at Ro as the output signal, then the transfer function 
A(R) of the output coupling network is given by 

1 
H(R) = 

R o + j R L + l / j R C  ' 

RO A(R) = 
Ro + j R L + l / j  R C ' 

The oscillation condition (7.4) for this equivalent circuit yields 

-R( I )  = 1 .  

R o + j  ( R L - A )  

(7.51) 

(7.52) 

From the real part of Eq. (7.52) a condition for the oscillation amplitude I0 
is obtained: 

-R(Io) = Ro . (7.53) 

An oscillation amplitude I0 will build up with a corresponding negative re- 
sistance value of the active element which in its steady state is equal to  the 
load resistance Ro. The imaginary part of the oscillation condition Eq. (7.52) 
shows that the oscillation frequency Ro is equal to the resonance frequency 
R, of the series resonance circuit: 

1 
Ro = ___ m = R T  

With Eq. (7.54), Eq. (7.50) yields 

and with R = R, + w and w << R we get 

1 
H(R) = 

R o + j 2 w L  ' 

For the quantities HZ and Ha we then obtain 

Hu - RO HZ = - - 
Ho Ro+j2wL ' 

(7.54) 

(7.55) 

(7.56) 

(7.57) 

(7.58) H A  = 0 .  
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The corresponding elements of the output coupling network A(R) are 

RO 
Ro+j2wL 

A(R) = 

and 

(7.59) 

(7.60) 

AA = 0 (7.61) 

By insertion of Eqs. (7.57) and (7.58) into Eqs. (7.20) and (7.21) we obtain 
the amplitude and phase fluctuations of the voltage U :  

- . -  A un (7.62) 1 - - AU 
uo RO uo 1 - (1 - ka) 

Ro + j 2wL 

. A s n .  (7.63) 
1 
RO 

Ro + j 2 w L  

AiJ = 
1-  

The fluctuations at the load resistance AUR/URo and A@ are related to 
the fluctuations AU/Uo and AQ according to Eqs. (7.14), (7.59), (7.60) and 
(7.61): 

Inserting AU/Uo and AQ from the Eqs. (7.62) and (7.63) into Eq. (7.64) we 
obtain 

(7.65) 

(7.66) 

For the spectra of the amplitude and phase noise of the active one-port we 
can use a description according to the Eqs. (7.10) to (7.12). If we neglect the 
l /f-part  of the noise (fb = 0) and if we set Wan = W,, = WO, then we obtain 
as a final result for the amplitude and phase noise of the oscillator: 

(7.67) 

W,(w) = ~ Ri wo . 
( 2 w L ) 2  

(7.68) 
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Note that the amplitude and phase noise differently depend on the offset 
frequency w (see Fig. 7.5). The phase noise constantly decreases with growing 
distance from the carrier by 20 dB/decade. In practice, this decay is ultimately 
limited by the thermal noise, e.g. the thermal noise of the load resistor, which 
has not been included in the above formulas. For the amplitude noise we can 
identify an angular corner frequency W t  from the Eq. (7.65): 

For w << wt the Eq. (7.67) leads to 

1 
W , ( W )  = 7j- w o  , w << W t  

ka 

(7.69) 

(7.70) 

For offset frequencies below the corner frequency wt ,  the amplitude noise is 
constant. Far above the corner frequency, the second term in the denominator 
of Eq. (7.67) dominates: 

W a ( W )  = ___ Ri w o  , w > w t  
(2 w L ) 2  

(7.71) 

For high offset frequencies the amplitude noise also decreases by 20dBldecade 
and has, in this model, the same spectral density as the phase noise. Quali- 
tatively, the noise spectra versus frequency are depicted in Fig. 7.8a. 

W t  W 

\-30 dB/decade 

W 

Fig. 7.8 
oscillator (a) without 1/ f-noise and (b) with 1/ f-noise. 

Qualitative spectra of the amplitude and phase noise of a one-port 
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Problem 

7.5 A one-port oscillator has the element values L = l p H ,  C = 0.1 pF, 
Ro = 50R, k, = 2, Pi, = l m W ,  F,f = 12dB. Calculate the oscillation 
frequency and the spectra of the amplitude and phase noise. 

The shape of the spectra changes, if with f b  # 0 also a contribution of the 
1/ f-noise is considered. Qualitatively, for this case the noise spectra versus 
frequency are depicted in Fig. 7.8b. 

Finally, we will inspect the circuit for stability. After the introduction of a 
complex frequency p ,  the denominator De(p) of Eq. (7.65) reads 

De(p)  = k,Ro + 2pL . (7.72) 

From De(pl)=O it follows 

(7.73) 

The zero of the denominator De(p)  is negative real. Therefore, the solution 
of the oscillation condition (7.52) corresponds to a stable oscillation mode of 
the oscillator. 

Problem 

7.6 In the oscillator circuit of Fig. 7.6 the series resonance circuit is replaced 
by the parallel resonance circuit of Fig. 7.9. Prove that this oscillator circuit is 
not stable. What modification of the U-I-characteristic of Fig. 7.7 is necessary 
in order to obtain stable oscillations? 

Fig. 7.9 Oscillator circuit with a parallel resonator. 

Some oscillator circuits may be considered as one-port or two-port oscilla- 
tors, simply by defining the interface between the active and the passive part 
of the circuitry accordingly. An example is given in Fig. 7.10, where the active 
element is an operational amplifier. 
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Generally, the interface should be chosen such that the active part includes 
all active components and only passive components with weak frequency de- 
pendence. The passive part should contain only passive components including 
the resonant part of the passive circuitry. Then, the convenient approximation 
is justified that the active part can be considered as frequency independent 
with respect to the small offset frequency range close to the carrier frequency. 
The passive part does not depend on the oscillation amplitude. Cnder these 
assumptions, the interface between these two main parts of the oscillator cir- 
cuit is arbitrary and any choice will lead to  the same result. 

A negative input resistance or a negative real part of an input impedance 
is needed for the operation of a one-port oscillator. Such negative resistances 
can be realized with transistors. Figure 7.11 shows the idealized small signal 
equivalent circuit of a bipolar transistor with a voltage controlled current 
source, controlled by the voltage u b e .  and with the trans-conductance g m .  
As will be shown in the problem 7.7. the real part of the small signal input 
admittance Ye, becomes negative, if the load admittance at  the base. YE,  is 
an inductive reactance and the collector admittance Yc is real. The circuit 
can oscillate, if a resonator circuit is connected to the emitter terminal, of 
which the real part of the admittance is smaller than the real part of the input 
admittance Re{Y,,}. A similar argument applies to the small signal equivalent 
circuit of a field effect transistor. as shown in Fig. 7.12. The calculation of 
the input admittance Y,, at the source can be performed in a similar way to 
that described in problem 7.7. 

FIg. 7.10  An example of an oscillator, which may equally well be considered
as (a) a two-port or (b) a one-port oscillator.
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Fig. 7.11 
bipolar transistor. 

Small signal equivalent circuit of a negative resistance with a 

Fig. 7.12 
effect transistor. 

Small signal equivalent circuit of a negative resistance with a field 

Problem 

7.7 
become negative for an inductive reactance at  the base. 

Calculate the input admittances Ye, of Fig. 7.11 and show that it can 

7.5.3 Voltage controlled oscillator (VCO) 

A voltage controlled oscillator (VCO) is tunable with respect to the oscillation 
frequency via a varactor or capacitance diode, which changes the resonance 
frequency of the passive part of the circuitry. A one-port equivalent circuit of 
a VCO is shown in Fig. 7.13. The active element is a bipolar high-frequency 
transistor. For a given oscillation frequency the noise theory of the VCO 
does not differ from the noise theory of a fixed tuned oscillator, which has 
been presented above. The varactor diode can be treated as a passive lossy 
capacitor, of which the instantaneous capacitance is determined by the bias 
voltage of the varactor. The losses of the varactor give rise to thermal noise 
with a noise temperature, which is equivalent to the physical junction tem- 
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a 

amplifier - 1 - resonator varactor load 
resist or Yact  ; Ypas 

a’ 

Fig. 7.13 A one-port equivalent circuit of a VCO. 

perature of the varactor. A necessary condition for such a noise behavior is a 
low noise bias supply of the varactor. The bias and tuning voltage should be 
well filtered, stabilized and the bias voltage source impedance should be low. 
If these precautions are taken, then the excess noise of the varactor due to a 
frequency modulation by the bias circuit can be negligible as compared with 
the thermal noise of the capacitance diode and the other passive circuitry. 

Across the tuning range of the VCO the small signal real part of the active 
admittance Yact, as seen from the plane a-a’ in Fig. 7.13, must be higher than 
the real part of the admittance of the passive branch Y,,, of the one-port 
oscillator. According to a rule of thumb it should be at least about twice 
as high, i.e. across the intended tuning range. The oscillation frequency is 
determined by the condition that the imaginary parts of the admittances are 
of opposite sign. Figure 7.14 shows the simulated small signal admittances 
versus frequency of a VCO with a structure as shown in Fig. 7.13, which is 
tunable from 5 to 9 GHz. 

7.6 NOISE IN PHASE-LOCKED LOOP CIRCUITS 

Figure 7.15 shows the principal structure of a phase locked loop circuit. The 
oscillator to be stabilized must be tunable, i.e. it must be a VCO. a volt- 
age controlled oscillator. The VCO signal with the frequency f,, is divided 
in frequency by a factor of N by means of a programmable divider and is 
then compared with the phase of a reference signal with the frequency fief. 
The phase comparison is performed with a so called phase detector, which 
generates an output voltage that is proportional to  the phase difference of 
the divided VCO signal and the reference signal. The reference signal often 
is derived from a quartz crystal oscillator signal. possibly after a frequency 
division. In the locked mode of the phase control loop, the phase of the VCO 
signal is rigidly locked to the phase of the reference signal in such a way that 
the phase difference is constant and typically small. Then the divided VCO 
angular frequency flu = 27r f %  is equal to the reference angular frequency 
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Fig. 7.14 
circuit of the VCO. 

Small signal admittances Yact of the active and Y,,, of the passive 

loop 

~-F+-L-- output signal 
1 

divider 

Fig. 7.15 Block diagram of a phase locked loop circuit. 

(7.74) 

or 
fv = N f r e f  . (7 .75)  

The frequency stability of the VCO output signal only depends on the stability 
of the reference signal and the properties of the control loop. This feature is 
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the essential reason for the great importance of phase locked loops for the 
realization of stable signal sources at high frequencies. The long term and 
partly also the short term frequency stability of a crystal oscillator can thus 
be transferred e.g. to  microwave frequencies, where crystal oscillators are not 
available. In addition, the frequency of the VCO signal can be changed in 
steps, simply by a variation of the division ratio N in integer steps. Thus, 
a huge number of different frequencies can be generated in equal frequency 
steps. all with the same relative long term stability as the crystal oscillator 
signal. 

Besides the long term frequency stability, the short term stability or phase 
or frequency noise of an oscillator can also be improved. Figure 7.16 shows 
two signal flow diagrams for the phase fluctuations corresponding to Fig. 7.15. 
In this section about phase locked loops, only phase fluctuations will be con- 

(.) 

A 

A@,,, ---c PD - F ( j w )  

Fig. 7.16 
locked loop circuit. 

Signal flow diagrams for the phase fluctuations within a phase 

sidered, amplitude fluctuations will be neglected, because their influence nor- 
mally is of minor importance. The phase fluctuations of the free-running VCO 
will be denoted by the phasor those of the reference oscillator by the 
phasor A6,,f and the phase noise of the stabilized VCO output signal by the 
phasor Aevco (Fig. 7.16a). Furthermore. the equivalent phase noise produced 
by a noisy phase discriminator including the loop filter and amplifier as re- 
ferred to the divide-by-N output port will be described by the phasor A6,d. 
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Finally, the equivalent phase noise of the divide-by-N circuit, also referred to 
the output port of the divider, will be described by the phasor A8dz,. We 
can introduce a resultant phasor AQtot, referred to the plane of the reference 
oscillator with 

AQtot = -AQref f AQpd + Aedzu , (7.76) 

where A&,t describes the total equivalent phase noise at the input of the phase 
detector (Fig. 7.16b). The noise phasors AQ,,, and AQ,d and AQdz, typically 
are all mutually uncorrelated. Therefore, we can write for the corresponding 

(7.77) 

The frequency divider also reduces the amplitude of the phase fluctuations 
by a factor of N (compare with Section 6.8.3). The sensitivity of the phase 
detector is described by the constant Kpd. The loop filter has a transfer 
function F ( j w ) ,  which normally is frequency dependent. The VCO may have 
the constant tuning sensitivity K,,,. which is assumed to be independent 
of the offset frequency w.  The transfer function of the control voltage at 
the tuning input of the VCO to the phase of the VCO is given by Kuc0/jw.  
This is because the frequency of the oscillator as controlled by the tuning 
voltage is the time derivative of the phase. We therefore obtain the following 
relationship from the flow diagram of Fig. 7.16: 

(7.78) 
The control behavior strongly depends on the open loop gain V(jw): 

(7.79) 

A loop filter may be designed by means of an operational amplifier according 
to the schematic diagram in Fig. 7.17 and with the transfer function F ( j w ) :  

with and (7.80) 

The magnitude of the transfer function lF ( jw) l  of the loop filter as a func- 
tion of frequency is schematically shown in Fig. 7.18. Typically the open 
loop gain will show a low-pass behavior. Let us define an angular corner fre- 
quency w,,, of the loop filter such that ~V(jucon)l  = 1. For IV(jw)l >> 1, i.e. 
w << w,,,, the phase noise of the oscillator output signal AQUco is determined 
by the phase fluctuations of the reference signal plus the equivalent noise of 
the frequency divider and the phase discriminator plus the control circuit, 
i.e. AQtot 1 

AQvco = N .  AQtot for w << w,,, , (7.81) 
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Fig. 7.17 
amplification factor Vo x ca. 

Equivalent circuit of an active loop filter of first order with the 

A 

Fig. 7.18 Transfer function F ( j w )  of the loop filter versus frequency. 

For lV( jw) l  << 1 and w >> w,,, the phase noise of the oscillator output is 
equal to  the phase noise of the free running VCO, 

A8vco = Aenv for w >> w,,, . (7.82) 

In summary, a phase locked loop circuit offers the possibility to  reduce the 
phase noise of a tunable oscillator almost to the level of the reference oscillator, 
but only for offset frequencies J that are small with respect to the angular 
corner frequency dcon of the open loop gain. 

The reference oscillator will often be a quartz crystal oscillator with rather 
low phase noise and a low 1/ f-noise corner frequency. Further noise will add, 
e.g. noise from the phase detector and the frequency divider. In the follow- 
ing text, we will denote the total phase noise A8tot by the name reference 
oscillator phase noise or reference phase noise for simplicity. Typically, this 
reference phase noise will show a rather flat and frequency independent be- 
havior, although in absolute terms the noise level will increase considerably 
due to  the times AT multiplication factor, as predicted by Eq. (7.81). On 
the other hand, the internal phase noise of the free-running VCO will typi- 
cally drop with increasing offset frequencies by 20 dB/decade. Therefore, we 
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will normally observe an intersection of the multiplied reference phase noise 
curve and the free-running VCO phase noise curve. Let us call the angular 
frequency belonging to this intercept frequency wtnt. A loop filter angular 
corner frequency w,,,, which is approximately equal to  wintr may be a good 
choice in many circumstances and will give an overall phase noise behavior 
versus offset frequency as shown qualitatively in Fig. 7.19. 

WJ VCO 
h \. free running vco \. 

\. 

oscillator 

I I b 
W c o n  w 

Fig. 7.19 
Wcon Kz W z n t .  

Qualitative phase noise spectrum of a PLL stabilized VCO with 

If we choose the cut-off frequency of the open loop gain w,,, smaller than 
the intercept frequency wint, i.e. w,,, < wint, then we will observe a phase 
noise behavior versus offset frequency as shown in Fig. 7.20. We observe 
an increase of the phase noise of the stabilized oscillator around the inter- 
cept frequency wint, because the phase noise of the free running VCO is now 
dominating around the offset frequency wCon. If we choose the cut-off fre- 

I I b 
wcon W 

Fig. 7.20 Qualitative phase noise spectrum of a PLL stabilized VCO with 
Wcon < W z n t .  

quency of the open loop gain wCon greater than the intercept frequency wint, 
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i.e. w,,, > wint ,  then we will observe a phase noise function versus offset 
frequency as shown in Fig. 7.21. We observe an increase of the phase noise of 
the stabilized oscillator above the intercept frequency wznt,  because the phase 
noise of the reference oscillator is now dominating around the offset frequency 
wco,. In summary, within the loop bandwidth, a VCO stabilized by a phase 

I b 
Wcon W 

Fig. 7.21 
Wcon > W z n t .  

Qualitative phase noise spectrum of a PLL stabilized VCO with 

locked loop behaves much like a frequency multiplier concerning the input and 
output phase noise. Because the input phase noise spectrum is multiplied by 
the division factor N 2 ,  care should be taken to  keep the reference frequency 
as high as possible. If this does not comply with the desired frequency step, 
a solution with more than one loop has to be chosen. 

7.7 M E A S U R E M E N T  OF T H E  OSCILLATOR NOISE 

7.7.1 Amplitude noise 

An apparently obvious method for the measurement of the amplitude noise, 
namely the application of a spectrum analyzer, does not work because the 
phase noise is dominant and covers the amplitude noise. Therefore. we need 
a selective method to measure the amplitude noise. 

In the simplest case, the amplitude noise can be measured with a setup 
as shown in Fig. 7.22. The amplitude noise detector consists of a rectifier 
diode, which can be a Schottky diode, a low pass filter and an amplifier. The 
output voltage u( t )  is proportional to  the time dependent amplitude of the 
input signal z ( t ) .  With z ( t )  = [ X O  + Az(t)] cos[Rot + A@(t)] the relation 

u ( t )  = Kad[XO f Az(t)] (7.83) 

may be formulated for the output signal u ( t )  of the amplitude detector. Here, 
Kad is a proportionality constant characterizing the sensitivity of the ampli- 
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amplitude- 

Fig. 7.22 Simple circuit for the measurement of amplitude noise. 

tude detector. The output signal consists of a constant part UO = Kadxo and 
a time dependent part Au( t )  = KadAx(t). We obtain the spectrum W,(w) 
of the normalized amplitude fluctuations A x ( t ) / X o  from the d.c. voltage Uo 
and the spectrum W,(w) of the signal part Au(t):  

Wa(w) = I W , ( w )  . (7.84) 
u,z 

In this form, the measurement method is only partly useful in practice. The 
amplitude noise of most oscillators is so weak, that it will give rise to a detector 
output signal of only the same order of magnitude as the internal detector 
noise. In order to achieve a better sensitivity, it is necessary to determine the 
internal detector noise first and then subtract it from the measured total noise 
spectrum W,. Because the internal noise depends upon the carrier drive level, 
it would be necessary to drive the detector with a noise-free carrier signal of 
the same amplitude and frequency. This, however, is not possible in practice. 
The problem can be solved with a measurement circuit as shown in Fig. 7.23 .  
The oscillator signal is split into two equal signals by means of a signal divider 

Fig. 7.23 
tors. 

Measurement of the amplitude noise with two amplitude detec- 

and is then applied to a couple of paired amplitude detectors. We then obtain 
for the output signals or voltages 
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where the signals unl and u n 2  describe the internal noise of the detectors. 
The output voltage can either be the sum or the difference of the voltages u 1  

or u2: 

The voltage ux includes a d.c. component Uo = 2K,dXo, while the voltage 
U A  only consists of the internal noise of the detectors. Because the noise 
contributions from the two detectors are uncorrelated, it follows for the spectra 
of the time dependent parts: 

wux(w) = ( 2   ad ~ 0 ) '  wcx(~) + w n 1 +  w n 2  (7.89) 

w u A ( U )  = wnl + wn2 . (7.90) 

Then, we obtain the spectrum Wa(w) of the normalized amplitude fluctuations 
Az(t)/Xo by the algebraic operation 

1 

(7.91) 
"0 

In this manner, the influence of the internal detector noise can be eliminated 
to a large extent. 

Alternatively, the influence of the detector noise may also be eliminated 
by calculating the cross-correlation of the signals ul( t )  and u2(t), instead of 
taking the sum and difference of the signals. 

As an example, Fig. 7.24 schematically shows the measured amplitude noise 
of an oscillator with a GaAs field effect transistor as the active element. The 
oscillation frequency is approximately 10 GHz. 

Because the amplitude noise is less important for practical applications 
than the phase noise, it is seldom measured and in most cases not specified 
in data sheets. 

7.7.2 Phase noise 

The most convenient method in order to measure the phase noise of an os- 
cillator is by means of a high quality spectrum analyzer as has already been 
mentioned in Section 6.9. There are, however, some restrictions on the use of 
a spectrum analyzer, as has also been discussed in Section 6.9. A successful 
measurement is only possible if the amplitude noise is sufficiently small and if 
the internal phase noise of the spectrum analyzer is lower than the phase noise 
to be measured. Here, we will examine other possibilities for the measurement 
of phase noise, which do not need a spectrum analyzer. 

The first method needs a second oscillator, e.g. a t  the same frequency. The 
measurement principle shows similarities with the measurement of the phase 
noise of two-ports. described in Section 6.9. Figure 7 . 2 5  shows a block diagram 
of the measurement circuit. 
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The phase fluctuations of the output signals of the device under test and 
the reference oscillator are compared by a linear phase detector. With A@(t) 
as the phase fluctuations of the measurement oscillator and A@,,,f(t) as the 
phase fluctuations of the reference oscillator, we can write for the signal u ( t )  
at the output of the phase detector 

U ( t )  = Kpd [A@(t) - A@p,.ef(t)] i (7.92) 

or for the corresponding spectra, respectively, 

W U ( W )  = K;d [W,(W) + Wref(41 . (7.93) 

locked PLL 
I 

PD W 4 t )  

t 

N 

Fig. 7.24 Schematic diagram of the measured amplitude noise of a GaAs
field effect transistor oscillator with an oscillation frequency of approximately
10 GHz.

Fig. 7.25      Measurement of the phase noise with a reference oscillator.
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The constant Kpd again describes the sensitivity of the phase detector. The 
condition for the validity of the Eqs. (7.92) and (7.93) is that both sources 
oscillate at exactly the same frequency. Furthermore, the phase difference of 
these two oscillators must either be constant or show only small and slow vari- 
ations in time. The stringent requirements regarding the frequency equality 
of the two oscillators normally can not be met with free running oscillators 
but rather requires a phase locked loop system for stabilization. Therefore, 
either the measurement oscillator or the reference oscillator needs to be tun- 
able in frequency. It is important that the corner frequency of the phased 
locked loop system is smaller than the smallest offset frequency to be mea- 
sured. Otherwise the phase fluctuations of both oscillators are equal and due 
to  A@(t) = A@.,,.(t) the output signal of the phase detector becomes zero 
according to  Eq. (7.92). The input signals of the phase detector may also be 
derived from the oscillator signals by frequency division, if the oscillation fre- 
quencies are too high as direct inputs to  a highly linear digital phase detector. 

The spectrum W,(w) can be analyzed with a low frequency spectrum an- 
alyzer after a proper low noise amplification. A high-frequency spectrum 
analyzer may be used for an absolute calibration. According to Eq. (7.92) the 
spectrum W,(w) is the sum of the phase noise spectra of the measurement 
oscillator and the reference oscillator. Therefore, it is obvious to use a refer- 
ence oscillator with a very low phase noise so that its contribution to  W, can 
be neglected. Otherwise the measurement procedures discussed in section 6.9 
can also be applied to  oscillator measurements. Thus, the reference oscillator 
may be replaced by a second measurement oscillator. closely matched to the 
first one, which requires a correction of the measurement result by 3 dB, or 
one needs to  evaluate the combined noise of the three possible pairs of three 
different oscillators (see problem 6.8). 

The calibration of the different discriminator circuits can be performed by 
modulating the oscillator under test in frequency or in phase at a given off- 
set frequency w .  For this purpose, also a sinusoidal calibration signal may be 
introduced by phase or frequency modulating the tunable oscillator. The mod- 
ulation index and thus the calibration factor can be determined via the gen- 
erated carrier sidebands. The sidebands can be observed on a high-frequency 
spectrum analyzer. In case that the oscillator under test is not tunable. a 
modulation of the reference oscillator might be necessary. Then, a tunable 
reference oscillator is needed. 

The use of a reference oscillator and a frequency stabilizing circuit is some- 
what disadvantageous because of the high effort involved required for its re- 
alization. The next method does not need a reference oscillator because the 
oscillator signal is directly applied to a frequency discriminator, where the 
phase or frequency fluctuations of the oscillator under test are converted to a 
low frequency noise signal. 

The working principle of most frequency discriminators relies on the con- 
version of phase or frequency fluctuations of the discriminator input signal 
into amplitude fluctuations, which then can be measured quite easily with 
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oscillator 

an amplitude discriminator. Figure 7.26 shows a block diagram of the basic 
setup of such frequency discriminators. The output signal of the oscillator 
under test is divided by a signal divider into two parts and is applied to two 
linear networks with strongly different transfer functions H ( j n )  and G(jR).  
In the following section, H(jR) is assumed to  be the transfer function of a 
transmission type resonator with a high quality factor and G(jR) is assumed 
to be the transfer function of a frequency independent phase shift network. 
The output signals of the two networks H and G are added and yield a sum 

amplitude 
H(jQ2) 

(DCT) 

Fig. 7.26 
of phase noise. 

Block diagram of a frequency discriminator for the measurement 

detect or 

signal phasor Y with the amplitude Yo. The amplitude detector converts the 
amplitude fluctuations Ay(t)  of this sum signal to the output signal u( t ) .  

Up to the amplitude detector input, the discriminator is a linear system 
with the transfer function H(jR) + G(jR).  The normalized amplitude fluctu- 
ations can therefore be calculated with Eq. (7.14) in complex form: 

] A@ . AY j H(R, + W )  + G(R, + W )  H*(R, - W )  + G*(R, - W )  - = - [  - 
yo 2 H(R,)  + G(R,) H*(R,) + G*(Q,) 

(7.94) 
In this equation, the amplitude noise of the sinusoidal carrier signal under 
test has been neglected. 

The relation between the amplitude fluctuations Ay(t)  of the sum signal 
and the output signal u( t )  of the detector can again be described by means 
of Eq. ( 7 . 8 3 ) .  The output signal consists of a DC part UO = K&YO and a 
fluctuating part Au(t)  = Kad . Ay(t) .  We are only interested in the time de- 
pendent part Au(t)  or the discriminated phase noise and obtain the following 
expression for the spectrum W U ( w ) :  
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As an example for a frequency discriminator we will examine the circuit of 
Fig. 7.27 in more detail. Here, the frequency dependent network H(R) consists 
of a circulator and a reflection type resonator, which is tuned to the oscillation 
frequency of the oscillator under test. This circuit structure has a particularly 
high discrimination efficiency. If the signals are assumed to  be wave quantities, 

- 
phase shifter 

Fig. 7.27 Frequency discriminator with a reflection type resonator. 

then the transfer function H(jR) is identical to  the reflection coefficient of the 
resonator: 

In the last equation, ,B > 1 is the coupling factor to the resonator and QO is 
the quality factor of the unloaded resonator. With R = 0, + w and w << 0, 
Eq. (7.96) simplifies to 

B -  1 - j 2 Q o w / R r  
4 + 1 + j 2 Q o ~ / R r  ' 

H(R, + w )  = ' (7.97) 

The other linear network is a phase shifter with a frequency independent 
transfer function 

G(jR) = ej' . (7.98) 

It follows from the Eqs. (7.95), (7.97) and (7.98) 
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By forming the derivative with respect to I9 we can find the optimum setting 
of the phase shifter, as a function of the coupling factor P. The conversion 
efficiency of the discriminator becomes maximum for 

I9 = 290 = arccos (7.101) 

A variation of the coupling factor p between 0 and 30 causes a change of the 
optimum phase shift value 290 between 0" and 180". For a very weak coupling 
(P x 0) as well as for a very strong coupling ( p  >> l), the discrimination 
efficiency becomes very small. In between there exists an optimum coupling 
value of P = 1, i.e. H(jR,) = 0. This coupling is also called critical coupling. 
The corresponding phase shift value is 60 = 90". 

If we limit the discussion to offset frequencies that are small compared 
with the 3-dB bandwidth of the resonator, then 2 QO W I G r  << 1 is valid. For 
a constant phase angle I9 = 90" we obtain from Eq. (7.100) 

(7.102) 

It also follows from Eq. (7.102) that the critically coupled resonator (P = 1) 
has the best discrimination efficiency. Once the coupling P and the phase angle 
I9 have optimally been chosen, the discrimination efficiency entirely depends 
on the unloaded Q-factor of the resonator. Therefore, for the measurement of 
low-noise oscillators the Q-factor of the resonator should be sufficiently high. 

If a circulator in the circuit of Fig. 7.27 is not available or not suitable, one 
may employ a 3 dB coupler instead, however at  the expense of 6 dB additional 
loss in conversion efficiency. 
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The ratio of W, and W, is proportional to  the square of the offset frequency 
w ,  as may be seen from Eq. (7.102). This shows that the circuit basically 
acts as a frequency discriminator and not as a phase discriminator. If in 
Eq. (7.102) the spectrum W, is replaced by the frequency noise spectrum 
W f  = ( ~ / 2 7 r ) ~  W,, then the conversion efficiency is independent of the offset 
frequency. 

The circuit of Fig. 7.27 may be simplified by using a transmission type 
resonator, as shown in Fig. 7.28. In this case, the transmission line bypass with 
the phase shifter 6’ is not needed. However, for this configuration the carrier 

amplitude 
resonat or detector 

Fig. 7.28 Frequency discriminator with a transmission type resonator. 

frequency must not coincide with the resonance frequency of the resonator 
but should rather be positioned on the slope of the resonance curve. There is 
an optimum frequency position which has to be found in the next problem. 
The discrimination efficiency is lower than that of the circuit of Fig. 7.27. The 
details are left to  problem 7.8. 

Problem 

7.8 Calculate the discrimination efficiency for the circuit of Fig. 7.28. At 
what offset frequency relative to  the resonance frequency of the resonator 
does the maximum discrimination efficiency occur? What is the degradation 
in efficiency relative to  the circuit of Fig. 7.27, if we assume the same unloaded 
Q-factor for both circuits? 

A frequency discriminator can also be realized with a delay line as shown 
in Fig. 7.29. The discriminator circuit is similar to the one in Fig. 7.27. 
It is assumed that the delay line has a length 1 and an attenuation factor 
cy = a’ . 1. Furthermore, we will assume that the total length of the is an 
integer multiple n of the wavelength at the oscillation frequency. As will be 
shown in problem 7.9, the relation between the spectra W, and W, is given 
by the expression 

where v = 00 ll(n27r) is the phase velocity of the transmission or delay line. 
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phase shifter 

Fig. 7.29 Frequency discriminator with a delay line. 

Problem 

7.9 
discriminat ion efficiency? 

Derive Eq. (7.103). Which length of the delay line leads to the highest 

Up to now we have assumed that the oscillator signal to  be measured 
is free of amplitude fluctuations. If this approximation is not valid, then 
the measurement circuit of Fig. 7.27 can be modified by substituting the 
amplitude detector by a balanced mixer (see Fig. 7.30). 

amplitude 
detectors 

circulator 

A x ( t )  coupler u ( t )  A @ ( t )  

balanced 
mixer 

phase shifter 

Frequency discriminator with a balanced mixer. Fig. 7.30 

The balanced mixer allows one to reduce the impact of the amplitude noise 
significantly, as is proven in problem 7.10. 
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Problem 

7.10 Show that for the balanced discriminator circuit of Fig. 7.30 the am- 
plitude noise Az(t) of the carrier signal does not contribute to the output 
signal u( t )  for a perfectly balanced mixer. 

The calibration of the different discriminator circuits can be performed by 
modulating the oscillator under test in frequency or in phase at a given offset 
frequency w .  As has been discussed before, the modulation index and thus 
the calibration factor can be determined via the generated carrier sidebands. 
The sidebands can be measured by a high-frequency spectrum analyzer. In 
the case that the oscillator under test is not tunable. a frequency modulation 
of the resonator might be an alternative. Because only a very small modula- 
tion index is needed, the resonator may loosely be coupled to  e.g. a varactor 
diode. without deteriorating the quality factor of the resonator significantly. 
The calibration factor of the resonator, which is modulated in its resonance 
frequency, can be determined by a substitution measurement with a tunable 
oscillator of the same frequency and output power. The comparison is done 
on the basis of equal low frequency signals at the output of the discriminator. 
The calibrations should be evaluated as a function of the offset frequency w .  

High-frequency systems, for instance radar systems or parts of radar sys- 
tems. often have a structure similar to the circuit shown in the figures 7.26 to 
7.30. Therefore, it is possible that a circuit in the system acts as a frequency 
or phase discriminator and converts the phase noise of oscillator or carrier 
signals into low frequency noise signals. These noise signals are sometimes 
considerably stronger than the internal noise of preamplifiers or mixers. A 
reduction of the carrier phase noise may then be necessary. 

7.7.3 Injection locking 

For the method of injection locking, the signal of an auxiliary oscillator or an 
injecting oscillator or a reference oscillator is directly injected or coupled into 
the main oscillator. One may use an amplifier and a circulator or a coupler 
to isolate the auxiliary oscillator from the main oscillator and the output as 
shown in Fig. 7.31. If the fixed frequency 0, of the auxiliary oscillator and the 
frequency 0 0  of the free running main oscillator are sufficiently close together, 
then the main oscillator will also oscillate at exactly the frequency 0,. i.e. the 
frequency of the reference oscillator. We can observe that the main oscillator 
is synchronized by the reference oscillator. For a quantitative analysis of this 
effect we must extend the signal flow diagram of Fig. 7.2 as shown in Fig. 7.32. 
The injecting oscillator signal 2, is coupled to the oscillation circuit via the 
coupling network E ( R )  and induces the signal Y,  into the oscillation loop. 
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Fig. 7.31 Circuit for injection locking of an oscillator. 

feedback network coupling network 

active network output network 

Fig. 7.32 Signal flow diagram for an injection locked oscillator 

This modification alters the oscillation condition. With the definition 

(7.104) 

we obtain for the oscillation condition 

D ( X )  H(Ri) (1 + yi #) = 1 . (7.105) 

Despite the formal similarity to Eq. (7.4). a substantial difference exists be- 
tween both oscillation conditions. For the case of the free running oscillator. 
the oscillation condition determines the oscillation frequency and the ampli- 
tude. For the case of injection locking, the frequency of the main oscillator is 
equal to  the frequency Rz of the auxiliary oscillator and thus is known. But 
now the angle 7.9 appears as an unknown quantity. which describes the phase 
difference between the injecting signal Y, and the oscillation signal Y .  
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By means of Eq. (7.105) some general properties of an injection locked 
oscillator can be derived. For this purpose, we will assume in the following 
section that the oscillation condition has a solution with the amplitude Xo 
and the angular frequency Ro for qi = 0, i.e. for the free running case. For 
qi # 0, generally both the amplitude and the frequency of the oscillation will 
change. However, usually the changes are small. Therefore, we assume that 
due to X FZ XO and Ri FZ Ro the describing function D ( X )  will only change 
its magnitude and the transfer function H(R) will only change its phase. 

Under these conditions we will first consider the case Ri = Ro, i.e. the 
injection locked oscillator has the same frequency as the reference oscillator. 
Then, D ( X ) H ( R i )  = D ( X ) H ( R o )  is real and due to Eq. (7.105) also the 

factor 1 + q2 ej' must be real. Thus, the only solutions for the angle 19 are 0 
and h. For 29 = 0, we have 1 + qi e j @  > 1 and the magnitude of D(X) must 
decrease as compared to the free running case. For the amplifier, this will lead 
to an increased drive level and also to  an increased oscillation amplitude. For 
I9 = 1 7 i ,  the relations will reverse. However, this operating point is unstable 
and, therefore, will not appear in practice. If the frequency of the reference 
oscillator is changed, then the product D(X) H(Ri)  becomes complex, and 
therefore 1 + qi ej' must also become complex. From this we conclude I9 # 0. 
Because of qi < 1, the phase angle of the expression 1 + qi e j g  is limited. The 
largest angle occurs for 19 = 190' and is equal to arctan qi. This operating 
point corresponds to  the largest phase change of the function H(Ri) and, 
therefore: to  the largest deviation of the frequency Ri from Ro. If the reference 
frequency deviates even further from 00, then Eq. (7.105) no longer has a 
solution. Thus, only a limited frequency range RO * hat, exists, within 
which an injection locking or a phase synchronization of the main oscillator is 
possible. By varying Ri within this range, the phase 19 will change from -90" 
via 0" at R, = RO to +go". 

The synchronization range is proportional to  qi and thus to Jm, where 
Pi is the injected power and PO is the output power of the main oscillator. 
Furthermore, the frequency dependence of H(R) is important. The less the 
phase of H(S1) changes as a function of R, the wider the synchronization range 
2AR, becomes. For a resonator the phase slope is proportional to the quality 
factor Q. Therefore, we expect a relationship of the type 

(7.106) 

For a more rigorous evaluation of the synchronization range, we will con- 
sider the one-port oscillator with the series resonance circuit of Section 7.5. 
Figure 7.33 shows the circuit which has been supplemented by the voltage 
source Ui, which corresponds to  the injection signal Y, of Fig. 7.32. We thus 
have UilU = qi exp(jd),  and therefore the oscillation condition with respect 
to  the real and imaginary part is given by: 

Ro + R(I ) (1  + qic0~19) = 0 , (7.107) 
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Fig. 7.33 Phase synchronization of a one-port oscillator. 

2 ( R , - R o )  L+R(I)qis in19 = 0 . (7.108) 

At the limits of the synchronization range we obtain from Ri - Ro = i A R ,  
and 19 = 190': 

Ro+ R ( I )  = 0 , (7.109) 

2 . A f 1 2 , . L + R ( I ) . q i  = 0 .  (7.110) 

The output power of the oscillator is given by 

and with Eq. (7.109) we get 

(7.111) 

(7.112) 

If we define as injection power Pi the available power of the voltage source Ui 
with the resistance Ro, then 

(7.113) 

and with the Eqs. (7.109) and (7.110): 

(7.114) 

(7.11 5) 

For a resonator it is customary to define an external quality factor Qext by 

(7.116) 
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If we insert this into Eq. (7.115) we obtain 

(7.117) 

This is a very useful equation for the determination of the external quality 
factor of an oscillator by means of a measurement of the synchronization 
range. 

Problem 

7.11 In the circuit of a two-port oscillator with a transmission resonator 

resonator 

amplifier 

as shown in Fig. 7.3 the signal divider is replaced by an ideal 3dB coupler. 
The injection signal with the available power P, is fed into one of the ports 
(see figure). By analogy with Eq. (7.117) derive for this oscillator circuit a 
relationship between the parameters AR,, P,, PO and the properties of the 
resonator. 

A general determination of the amplitude and phase noise for the injection 
locked oscillator with the signal flow diagram of Fig. 7.32 is tedious. Therefore, 
we will only treat the special case that R, = Ro, i.e. the frequency of the free 
running main oscillator is equal to the frequency of the reference oscillator. 
Then, we have 19 = 0. Furthermore, the amplitude noise will be neglected and 
only the phase noise will be discussed. 

If the phase fluctuations of the signal Y are denoted by AQ and those of 
the signal Y, by AQ,, then Eqs. (7.6), (7.14) and (7.15) yield 

AQ = HE AQ, + AQn . (7.118) 

Due to t9 = 0 and thus Y, = (1 + q,)Y the phase fluctuations AQ, can 
be determined from the fluctuations AQ and the fluctuations AQt of the 
injecting signal. Figure 7.34 illustrates the situation for the case that only the 
injecting signal has phase fluctuations A@%. Since the sum signal Y, has an 
amplitude which is larger by (1 + q t ) / q 2 ,  the corresponding phase disturbance 
is reduced by approximately the same factor. A similar reasoning applies to 
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Fig. 7.34 Superposition of a noisy injecting signal. 

the phase fluctuations A@ of the signal Y. In summary, we obtain the result 

From the Eqs. (7.118) and (7.119) we get 

(7.119) 

(7.120) 

For a better insight into the last equation we will again consider the one- 
port oscillator with a series resonant circuit. With Eq. (7.57) and taking into 
account the output network, we obtain for the phase fluctuations A@ at  the 
load resistance 

For qi -+ 0 the Eq. (7.121) coincides with the Eq. (7.66). 

simplifies to 
If the phase noise of the injection signal can be neglected, then Eq. (7.121) 

(7.122) 

In contrast to the free running oscillator, we observe for the synchronized 
oscillator a corner frequency wc,  which is given by the expression 

(7.123) 

Above the corner frequency, the phase noise approaches the value of the free 
running oscillator. For offset frequencies below the corner frequency, i.e. w < 
w,, the noise level approaches the constant value 
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if the injection signal is assumed to be noise-free. If the injection signal has 
phase noise itself, then for frequencies w < wc we obtain from Eq. (7.121) the 
expression 

(7.125) 

Thus, the injected phase noise can simply be added to the case without noise 
from the injection signal, as given by Eq. (7.124). Qualitatively, we may ob- 
serve noise spectra as shown in Fig. 7.35, if we assume that the phase noise 
of the injection oscillator is much lower than that of the main oscillator. For 
small offset frequencies, the total phase noise of the synchronized main oscilla- 
tor approaches the noise of the injection oscillator, for high offset frequencies 
it approaches the noise of the free running oscillator. In between there is a 
range of nearly constant phase noise. Thus, the situation is very similar to  a 
phase locked loop circuit. 

\. w4J A 
onized\. free running VCO 

\. 
\. 

\ 
\ 

injecting \ 
signal \ \  

, 

Fig. 7.35 Noise spectra of an injection locked oscillator. 

Injection locking has not received technical importance for the stabilization 
of oscillators. However, the effect of injection locking can occur unintention- 
ally, if two ore more oscillators operate at  frequencies that are close to each 
other. Particularly critical is the situation when a swept source temporarily 
gets close to the frequency of a fixed frequency oscillator. If for instance the 
isolation between the two oscillators is not sufficient! they may synchronize 
each other and oscillate at the same frequency for a short time. From a system 
point of view, such a situation may be quite disastrous and normally must be 
avoided, e.g. by means of a bet,ter isolation of the sources. 
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7.8 DISTURBING EFFECTS OF OSCILLATOR NOISE 

In this section, we will discuss some examples for the deteriorating effects of 
oscillator noise, i.e. mainly of oscillator phase noise. in high-frequency circuits 
and systems. 

7.8.1 Heterodyne reception 

Receivers for high-frequency signals are usually realized using the heterodyne 
principle. By means of a mixer the signal spectrum of input frequencies is 
mixed with the sinusoidal signal of a so-called local oscillator, which is often 
tunable in frequency, and thus converted to a lower intermediate frequency 
band (i.f. band). The wanted i.f. signal is filtered by a fixed i.f. band-pass filter 
and separated from the unwanted signals. Figure 7.36 illustrates the situation 
with the help of two sinusoidal input signals at angular frequencies Rsl and 
QS2 but significantly different amplitudes. By the frequency conversion with 

t 

t 

Fig. 7.36 
oscillator. 

Heterodyne reception with a noise-free (a) and a noisy (b) local 

the local oscillator of frequency QLO two intermediate frequency signals with 
angular frequencies R,fl  = R,I -  LO and Q i f 2  = QS2 - C ~ L O  will appear at 
the mixer i.f. output. Any amplitude noise of the local oscillator can be made 
ineffective by the use of a well balanced mixer. However, the phase noise of 
the local oscillator signal will lead to i.f. spectra as shown in Fig. 7.36. The 
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noise sidebands are transferred to the i.f. signals through the mixing process. 
Then, it might happen that noise sidebands of the strong i.f. signal cover 
the weaker i.f. signal, so that a detection of the weak i.f. signal is no longer 
possible. Here, the phase noise of the local oscillator ultimately leads to a 
reduction of the input sensitivity and the dynamic range of the receiver. 

7.8.2 

A block diagram of a standard spectrum analyzer system with a frequency 
range of approximately 100 kHz to 4 GHz is shown in Fig. 7.37. Typical rel- 
evant frequencies are given for clarity. Let us assume that the input signal 

Sensitivity of a spectrum analyzer 

input 

2nd LO 
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fixed 

1. LO 
5 . . . 9  GHz 

variable 

display +--Kyx# 3rd mixer 

3rd LO @ 
480 MHz 

fixed 

Fig. 7.37 Block diagram of a 4 GHz spectrum analyzer. 

is an ideal sinusoidal signal of 2.2 GHz. i.e. an input carrier signal without 
noise sidebands. Then, nevertheless, we will observe a line spectrum with 
noise sidebands on the display, as shown schematically in Fig. 7.38. The noise 
sidebands originate from the phase noise sidebands of the internal VCO and 
the fixed local oscillators of the spectrum analyzer. Their phase or frequency 
fluctuations are transferred to  the intermediate frequency range by linear fre- 
quency conversions in such a way that the phase deviations remain invariant 
and thus also the noise-to-carrier ratio. This result has already been discussed 
in Section 6.8.3. Therefore, the phase noise of the internal oscillators of the 
spectrum analyzer will determine the limiting sensitivity, if the phase noise of 
carrier signals are measured. 

Typically the VCO will contribute the most significant part of the internal 
phase noise of the spectrum analyzer. A YIG-tuned oscillator instead of a 
VCO will be found in high quality instruments, if a particularly good phase 
noise behavior is required. A small YIG (Yttrium Iron Garnet) sphere is used 
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. 
f 

Fig. 7.38 
spectrum analyzer. 

Idealized spectrum of a sinusoidal carrier signal displayed on a 

as a high quality resonator, which determines the resonant frequency of the 
tunable oscillator. The resonant frequency is controlled by a magnetic bias 
field. 

7.8.3 Distance measurements 

Because electromagnetic waves propagate with the speed of light c, they can 
be utilized for the measurement of the distance 1 to a reflecting object. If a 
signal 

q ( t )  = x1 cos[$(t)] = XI cos[Rot] (7.126) 

is radiated by the transmitting antenna, then we obtain a time delayed signal 
of the form 

Q ( t )  = x2 cos[+(t - r ) ]  = XI cos[Ro(t - r] (7.127) 

a t  the receiving antenna. Here, 

2 1  
r = -  (7.128) 

C 

is the propagation time of the signal forth to the object and back to  the 
antenna. The distance information is given by the phase difference between 
the transmitted and received signal: 

(7.129) 

because for a noise-free system we can write 

4( t )  - $h(t - 7 )  = Ro T . (7.130) 

If the transmitted signal has phase fluctuations A4> then Eq. (7.130) should 
be substituted by 

$( t )  - $(t  - T )  = Ro T + A4(t)  - A#(t - T )  . (7.13 1) 
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We conclude from the last equation that for Aq5(t) # 0 the measured distance 
1 will also show fluctuations which can be determined by means of Eq. (7.129). 
Quantitatively the measurement error can be described by the standard de- 
viation 0 1 .  Due to Eq. (7.129) we have 

(7.132) 

where, according to Eq. (7.131), u d  is the standard deviation of the phase 
difference. Generally the standard deviation O X  of a stochastic variable X 
can be determined from different mean values: 

(7.133) 

Equations (7.131) and (7.133) yield 

02 = [A$(t)I2 + [A$(t - 7)12 - 2 A$(t) A$(t - T )  . (7.134) 

If the products of the phase fluctuation functions are expressed by their au- 
tocorrelation functions Rm, we obtain for the standard deviation 04 

0: = 2 [Rm(O) - R#(7)] . (7.135) 

The autocorrelation function R4 can be expressed by the spectrum W+ via a 
Fourier transformation: 

u; - (7.136) 

= 2 1 W,(f) [l - cos(2nf7)] df . (7.13 7 )  
--oo 

The error in the measurement of the distance results as a weighted integral 
of the spectrum W,. The stronger the phase noise of the signal source, the 
greater is the statistical error in the distance measurement. 

7.8.4 Velocity measurements 

Using the principle described in the preceding section, it is also possible to 
determine the velocity u of a reflecting object that  moves parallel to the di- 
rection of the electromagnetic wave. This is a practical application of the 
doppler effect. For a transmitted signal according to Eq. (7.126) we obtain 
for the received signal: 

~ ( t )  = X2 cos [Rz . ( t  - T ) ]  = X2 cos 1 - - 0 0 .  ( t  - T ) ]  (7.138) I( 
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In the noise-free case, we have 

with 

and 

(7.139) 

R1 = Ro = const. (7.140) 

0 2  = (1 - ;) Ro . (7.141) 

For a signal source with phase noise the frequencies 01 and R2 are given by 

d 
01 = 00 + [&@)I = Ro + AR(t) , (7.142) 

d 
R2 = (I-:) ( R O + ~ [ A ~ ( ~ - T ) ; )  

= (1 - :) [no + AR(t - T)j . (7.143) 

Due to the phase noise the measured velocity v, also shows statistical fluc- 
t uations: 

(1 - :) [Ro + AR(t - T ) ]  

Ro + Aa(t)  
v, = c [1- 

AR(t) - AR(t - T )  + 
0 0  

[Ro + AR(t - T ) ]  
N C - c  

C v = - [AR(t) - AR(t - 7 )  + ; Ro] . (7.144) 
0 0  

For the last approximations, use has been made of the relations AR << Ro and 
v << c. This leads to a measurement error which depends on the frequency 
fluctuations of the signal source: 

C 
V, - 21 = - [AR(t) - AR(t - 7 ) ]  . (7.145) 

RO 

Problem 

7.12 Calculate, by analogy with Eq. (7.137), the standard deviation ou of 
the measured velocity v, as a function of the phase noise spectrum W, of the 
signal source. 

Apart from the above measurement error, a doppler radar for the measure- 
ment of speed is affected by another disturbing effect. The Eq. (7.145) also 
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holds for 'u = 0. This implies that a fixed object can give rise to a noise signal 
at  the output of the receiver, due to the mechanism of phase or frequency dis- 
crimination of the delayed signal. Such discriminated noise signals, if caused 
by strong reflectors, can disturb or even cover the signals from small moving 
objects. In radar systems this type of noise is called clutter noise. 

7.8.5 Transmission of information by a frequency or phase modulated 
carrier signal 

For frequency or phase modulation in a communication system, the frequency 
or phase of a highfrequency carrier signal is controlled in a well defined manner 
by the information to  be transmitted. In the receiver the information can be 
retrieved by a proper demodulation process. Since the demodulator can not 
distinguish between the intentional changes of the phase or frequency by the 
modulation and the unintentional phase noise, the phase fluctuations will lead 
to a disturbing noise signal at  the output of the demodulator. Furthermore, 
in a practical system, the phase noise contributions of several oscillators may 
add up, due to multiple mixing processes. 

fluctuations 
due to 

e' phase noise , 
+ 

Fig. 7.39 Phase states for a QPSK-modulation 

fte 

in a complex plane. 

These discussions not only apply to analog but also to digital communi- 
cation systems. In digital systems the phase noise will increase the bit error 
rate. Figure 7.39 shows as an example the modulation states of a QPSK- 
system (Quarternary Phase Shift  Keying). For this modulation method 
the amplitude remains constant while the phase of the carrier signal is changed 
according to  the digital modulation. The phase difference between adjacent 
states is 90'. The four states can be described by points in the complex plane, 
equally distributed on a circle. However, the oscillators are not ideal but show 
statistical fluctuations of their phase. If the resultant phase error exceeds 45', 
then the actual state cannot correctly be detected and a bit error results. The 
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stronger the phase noise, the higher the probability that a bit error occurs. 
The stability requirements of the source become even higher, if more sophis- 
ticated modulation methods are employed. E.g. , the 64 QAM-modulation 
(Quadrature Amplitude Modulation) consists of a combination of 64 am- 
plitude and phase states of the carrier. Accordingly, already smaller phase 
disturbances may lead to a bit error. 

7.8.6 Measurement system for the microwave gas spectroscopy 

Figure 7.40 shows a block diagram of a microwave gas spectroscopy system. 
A sinusoidal microwave signal is transmitted through a gas cell and rectified 

wave guide with Hlo-mode 
as a gas cell 

Stark modulation 

1 
gas cell i6- 

generator detect or 
Stark electrode 

Fig. 7.40 Block diagram of a microwave gas spectroscopy system. 

by a microwave detector. In the gas cell, the gas to be analyzed has a low 
pressure. The frequency of the microwave signal coincides with the resonance 
absorption frequency of the gas. In the gas cell a periodic change of the electric 
field, the so-called Stark field, e.g. with a frequency of 30 kHz, will also shift 
periodically the gas resonance absorption frequency by a very small amount. 
This may lead to a weak periodic amplitude modulation of the microwave 
signal, which is demodulated by the detector. The sensitivity of the detector 
may be limited e.g. by the shot noise of the diode. 

The transmission behavior of the gas cell including the coupling networks 
may show some irregularities versus frequency, i.e. the magnitude of the trans- 
fer function may have a ripple. This can lead to  a discrimination of the phase 
noise of the microwave source, which then is converted into amplitude noise 
and also measured by the detector. For this example, the important contri- 
bution of the phase noise stems from an offset frequency of 30 kHz, i.e. the 
Stark modulation frequency. Under unfavorable circumstances the discrimi- 
nated phase noise may be stronger than the intrinsic noise at the detector. 

In order to improve the sensitivity, the gas cell may be converted into a 
long resonator by placing short circuits at both ends of the gas cell. Such a 
resonator gas cell tends to  discriminate phase noise even more effectively. 



Quantization Noise 

8.1 Q U A N T I Z A T  I0 N N 0 IS E 0 F A N  A L 0 G-TO- D I G 1 TA L 
CONVERTERS 

A simple but useful model of a quantizer is shown in Fig. 8.1. In this model 
the quantization error is treated as an additive noise signal with a constant 
frequency spectrum. 

" Q  

Fig. 8.1 Quantization error model with additive white noise. 

The analog signal V ( w )  which has been analog-to-digital (A/D) converted 
is assumed to  be limited in frequency by a low pass filter with the corner 
frequency f i p .  Furthermore, it is assumed that the band limited analog signal 
has been sampled with a sampling frequency fs, which is at least twice the 
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frequency of fi,. The statistical description of the quantization noise is based 
on the following assumptions: 

1) The error sequence n~ is a stationary random process. 
2)  The error sequence is uncorrelated with the sampled sequence ~ ( k ) .  
3) The spectrum of the error sequence can be described as white noise. 
4) The amplitude density distribution of the error sequence is constant 

The AID converter may have m quantization bits, a full range excursion 
across the range of the quantization error. 

of X,, and a quantization step of A. Then we can write 

X,, = 2 m .  A . (8.1) 

For small values of A and large values of m it is justified to assume that T ~ Q  is 
a stochastic variable which is evenly distributed in the range -A12 to i-A/2, 
as shown in Fig. 8.2. 

2 2 
Fig. 8.2 Probability density distribution of the quantization 

Then, the expected value of nQ is zero and its variance 0," is 

+ - .  A2 
12 

Assuming a full range excitation by a sinusoidal signal with a peak-to-peak 
amplitude of X,, and an effective value of 4 / 2  X p p ,  the ratio Rsn of the 
signal power to the quantization noise power is given by 

12 x;, 
8 A2 Rsn = 

3 ' 22m - - 
2 '  

In decibels the signal to  noise ratio is thus given by 10 log R,, = m.6.02 dB t 
1.76dB. 

With the assumption of a constant or white spectrum and 
frequency band of half the sampling frequency f s a ,  the spectrum 
tization noise W,, is given by 

an effective 
of the quan- 
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fref : 

reference 

In a practical circuit the influence of the quantization noise can be reduced 
to an insignificant level, simply by increasing the quantization bit number m. 
An insignificant noise level of the quantization noise is definitely reached when 
it is lower than the noise level of the other physical noise sources, e.g. the 
amplified thermal noise. 

Another possibility to reduce the level of the quantization noise is to  in- 
crease the sampling frequency fsa and to apply subsequently a low-pass filter 
with the corner frequency f i p  to the signal V ( w )  containing the information. 
The low-pass filter may also be a digital filter. 

The influence of the quantization noise is much more pronounced in the 
example of the next section, namely the example of a fractional divider phase 
locked loop system. Here, the quantization noise is inherently connected to 
the solution of the given problem and its influence can only be reduced by 
increasing the number of stages and, thus, also increasing the complexity of 
the system. 

P D  F ( s )  

8.2 QUANTIZATION NOISE OF FRACTIONAL DIVIDER PHASE 
LOCKED LOOPS 

Fig. 8.3 Block diagram of a single loop PLL. 

frequency fi, changes by a frequency step of A f ,  if the integer division factor 
N is changed by an integer unit to  N & l .  Thus. we can recognize a dilemma of 
the single loop PLL, namely that a reduction of the frequency step width can 
only be achieved via a reduction of the reference frequency fief. A reduction 
of the reference frequency, however, has a number of disadvantages, e.g. a 
smaller control loop bandwidth and a longer turn-on time of the loop and 
also a higher total multiplication factor with an associated higher phase noise 
level. One alternative of a single phase locked loop circuit is the use of several 

For a phase locked loop (PLL) circuit consisting of a single loop the smallest 
achievable frequency step is equal to the reference frequency fief. Fig. 8.3 
shows a block diagram of a simple PLL-circuit. In the locked mode the VCO 
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interlocked loops at  the price of a higher complexity. Still another method 
applies a fractional divider concept, in order to  create fractions of the reference 
frequency as step width. With the integer division factor P in front of the 
decimal point and the fractional division factor F behind the decimal point 
we obtain for the VCO-frequency f u :  

f u  = P . F .  f r e f  ( 8 . 5 )  

The fractional part F is generated by a variation versus time of the integer 
division factor N. A simple possibility for the variation of the division factor 
is shown in Fig. 8.4. 

I division 
factor 1 

M T = -  
f r e r  

tc 

M - 1 N + 1  

N 

I I c 

t T 2T 

Fig. 8.4 Periodical variation of the division factor. 

During M cycles of a period T ,  the integer division factor N is switched 
once from N to N + 1. i.e. for the duration of one period of the reference 
frequency fief. We obtain for the mean value of N ,  i.e. fl the expression: 

- N ( M - l ) $ ( N + l ) . l  1 
N =  M = N + G .  (8.6) 

Within one period T, it is possible to  change the division factor N to the 
division factor N + 1 just n-times; with n = 0 , 1 , 2 , .  . . , M .  In this case, we 
get for the mean value of N: 

- N ( M  - n) + ( N  + 1) .  n n 
N =  = N + ; ~ . I ,  n E N, 0 I n 5 hl . (8.7) 

M 

We see that the division factor can be varied in steps of 11111. Then, the VCO 
frequency of the phase locked loop can take on the values 

f u  = ( N +  ;) fief . 

The realization of a fractional division ratio by a periodic variation of the 
division ratio is, however, not a practical solution for a PLL-system. Due to 
the periodic switching of the division ratio, a strong periodic phase modula- 
tion of the carrier signal occurs, which leads to intolerably strong disturbing 
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spectral lines in the vicinity of the carrier signal. This disturbing spectrum 
changes its shape with the fractional division factor F and can not be removed 
by filtering, because the spectral lines often lie close to the carrier frequency. 
Apparently, the division factor variation should not be performed periodically 
but in a pseudo-random manner. such that the mean value of the division fac- 
tor exactly equals the value P.F. Furthermore, the broad spectrum which 
arises from the pseudo-random switching of the division factor should be per- 
formed in such a way that the spectral density close to the carrier frequency 
becomes small. A circuit concept, which fulfills all these requirements, can be 
derived from the so-called Sigma-Delta (Z/A) modulation. 

8.2.1 

Figure 8.5 shows a block diagram of the sigma-delta modulation. After the 
integrator and an analog-to-digital converter (ADC), an integer digital sig- 
nal y(k) is derived, which due to the analog-to-digital conversion possesses a 
quantization error n ~ .  The digital output signal y(k) is fed back to the input 
with a time delay. The feedback signal, a t  least in principle, must again be 
converted to  an analog signal (DAC. digital-to-analog converter), because the 
input signal z ( t )  was assumed to be an analog signal. In order to obtain a 

Application of the Sigma-Delta modulation 

Fig. 8.5 Block diagram of the sigma-delta modulation. 

fully digital circuit, already the input signal z ( t ) .  which describes the frac- 
tional part F of the mean division factor, is a high resolution digital signal. 
This digital signal is applied to the adder, which now also operates digitally. 
The D/A converter shown in Fig. 8.5 can thus be omitted. 

The output signal of the adder is first integrated. which is accomplished 
digitally (symbol I ) .  before it is applied to the integer quantization (Fig. 8.6). 
Again the error signal is described by TIQ. This error signal n~ serves for 
a mathematical description. it is not a signal which is added to the circuit. 
The mathematical description of the circuit is performed with the aid of the 
Z-transformation. This transformation can advantageously be applied for the 
description of discrete-time signals, as is the case here. 
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The different components of Fig. 8.6 are designated by the corresponding 
transfer functions of the variable z = exp(jw) of the 2-transformation. Here, 
w is a normalized angular frequency. The delay element d is related to  z via 
d = 2-l .  The output signal Y ( z )  of the one-stage system is obtained as 

One may recognize that the mean value of Y ,  i.e. Y ( z ( w  = 0)) or Y(1), is 

Fig. 8.6 Block diagram of a one-stage fractional digital circuit. 

exactly equal to  F .  Furthermore, one may notice that the quantization er- 
ror TLQ is differentiated once. On a logarithmic scale this corresponds to  a 
decrease of the quantization noise spectrum by 6 dB/octave when approach- 
ing the carrier frequency. In the scale of the angular offset frequency w the 
carrier frequency is at  w = 0. For the case that F is a fractional number, 
the discrete-time signal y( k )  has a non-periodic quasi-stochastic, noise-like 
character. Therefore, the spectral power density of the quantization noise is 
approximately white, i.e. frequency independent. Due to the differentiation, 
however, we observe a decrease of the spectrum of the signal y(k) towards 
the carrier by 6 dB/octave, as has been mentioned before. If the reciprocal 
value of the fractional number F is an integer number, then the corresponding 
spectrum is a line spectrum. 

8.2.2 Multiple integration 

In order to reduce the phase or frequency noise in the vicinity of the carrier. 
one may employ multistage circuits. As an example, Fig. 8.7 shows a three- 
stage circuit. This circuit has the property that the quantization noise of the 
first and the second stage is compensated exactly and just the quantization 
noise of the third stage remains. For this three-stage circuit the noise spectrum 
decreases by 3 . 6  dB = 18 dB/octave toward the carrier frequency. 
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Y 1  
(2 

U y3r 

Fig. 8.7 Block diagram of a cascade three-stage fractional digital circuit. 

In this multistage system the quantization error signal is fed to  the input of 
the following stage. With the transfer function of a differentiation D = 1-z-I 
and D2 and D3 as a double and a triple differentiation, respectively, we can 
write 

Y = Y1 + Yz’ + Y3// (8.10) 

and, furthermore, 
Y I = F + n Q i . D .  (8.11) 

We also find that 
xz = Y1- nQ1- Yl = -nQ1 

y2 = (X, - 2-l  . Y ~ )  I + nQ2 

YL = - n Q i * D + n ~ 2 . D ’  (8.12) 

and 

and similarly 

From the above equations we finally get the result 

Y” 3 = - n ~ 2 .  D2 + n ~ 3 .  D3 . (8.13) 

Y = F f n Q 3 . D 3  . (8.14) 

We see that the quantization noise of the first and second stage is compensated 
and the quantization noise of the third and last stage is multiplied by D3,  
which leads to a decrease of the spectrum toward the carrier by the already 
mentioned 18dB/octave. Again the mean value of Y is exactly equal to F .  
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Figure 8.8 shows a spectrum W ( f )  as it results from a simulation of the 
three-stage circuit of Fig. 8.7 with F = 0.05. The output frequency is exactly 
equal to  f ,/P.F, where fv is the VCO-frequency. The deviations of the divi- 
sion factor A N  are, for example, for a certain period of time: 1, -1, 0,  0, 1, 
-1, 0, - 2 ,  3, -2 . .  . .  

In the tree-stage configuration, the deviations of the division factor A N  
stay in the range from -3 to +4. In the two-sl age configuration, they remain 
in the range -1, 0, 1, 2 and in the one-stage configuration the deviations of 
the division factor are 0, 1. This is proven in problem 8.1. 

Problem 

8.1 Show that for a one-stage configuration the possible division factor de- 
viations A N  are 0 and 1, for a two-stage configuration -1, 0, 1, and 2 and 
for a three stage configuration -3, - 2 ,  -1, 0, 1, 2 ,  3, and 4. 

The high noise level which appears further away from the carrier frequency. 
must strongly be reduced by analog filtering in the loop filter of the PLL. It 
is interesting to note that this filtering can only be performed by an analog 
filter and not with a digital filter. 

Another possible configuration for the generation of the sequence of division 
factors is shown in Fig. 8.9. This circuit will be designated as a chain circuit in 
contrast to the cascade circuit of Fig. 8.7. Again a three-stage configuration is 
shown which. however, in addition contains multipliers with the real weighting 

Fig. 8 .8 Simulated noise spectrum of a three-stage fractional divider circuit.
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factors 6 1 ,  ~2 and 63. For this circuit we obtain for the output signal Y ( z )  as 

nQ 

Fig. 8.9 
factors in the feedback pathes. 

Block diagram of a chain circuit of integrators with weighting 

a function of z :  

(8.16) 
. F + nQ . D3 
K 3  + D .  ~2 + 61) 2-l 

Y ( z )  = 
D3 + ( D 2  

As will be shown in the next section, the cascade circuit of Fig. 8.7 and the 
chain circuit of Fig. 8.9 provide identical results for coefficients 6 1  = K? = 
n3 = 1 in the chain circuit. This not only is true for a three-stage circuit but 
for any number of stages. The identity also holds for the time sequence of the 
output values of y(k) and, therefore, for the division factor deviations. Thus, 
the possible deviations of AN range from -3  to 4 also for the three-stage 
chain circuit, provided that the weighting coefficients IC are all equal to one. 

8.2.3 

It  is possible to  transfer both the chain circuit of Fig. 8.9 and the cascade 
circuit of Fig. 8.7 into another circuit, which is identical to both circuits. For 
this purpose, the weighting factors K% with i = 1 , 2 , 3 . .  . are set equal to one 
in the chain circuit: 

K l  = I C 2  = K 3  = 1  . (8.17) 

The chain circuit can be simplified in several steps, which are self-explanatory, 
as shown by the following figures. 

The feedback signals are quantized and remain quantized after passing 
through the delay and the integration units. Under the assumption of in- 
finitely wide quantizers which, however, are not realizable in practice, the 
signals pass the quantizer without a further quantization. For already quan- 
tized signals the quantizer has no effect. Therefore, the feedback paths can 

Identity of the cascade and the chain circuit 
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Fig. 8.10 Some simplifications of the chain circuit. 

also be located directly behind the quantizer. This fact is used for the next 
conversion steps as shown in Fig. 8.11. A last evident conversion leads to 
the final circuit of Fig. 8.12 which, however, is not a practical circuit, as was 
mentioned before. 

Next, the chain circuit will be simplified. For this purpose, the first stage is 
considered. The already quantized signals are transferred with the transfer 
factor one by the integrator of the second stage. Thus, the quantized signals 
of the first and second stage directly reach the differentiator at  the output 
of the second stage. Similarly, the signals of the third stage directly reach 
the double differentiator. After several conversion steps one obtains the same 
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- 13 - Q -  

- 

Fig. 8.11 Further conversions of the chain circuit 

I 3  - Q -  

- 13 - 
Fig. 8.12 Conversion of the chain circuit to the final circuit. 

Q -  D3 - 

block diagram for the cascade circuit as for the chain circuit. Thus: it is shown 
that both logic circuits can be transformed into each other, which proves that 
they are identical. 
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L ... L ... L ... 

Fig. 8.13 Conversion steps for the cascade circuit. 

Fig. 8.14 Further conversion steps of the cascade circuit 

8.2.4 

The weighting factors ~1 to  ~3 of the chain circuit can not be chosen arbi- 
trarily. It has to be guaranteed that the denominator of the polynomial in 
Eq. (8.16) is stable. As is to  be verified in problem 8.2, a choice of the weight- 
ing coefficients according to  e.g. ~1 = 1/4, ~2 = 1 / 2  and ~3 = 1 leads to  a 
stable system. With respect to  the z-plane the system is stable if all zeros z ,  
of the denominator polynomial lie within the unit circle, i.e. if 

Chain circuit with weighting coefficients 

14 < 1 . (8.18) 
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I t 
1 

I 2-1 

Fig. 8.15 Further conversion steps of the cascade circuit. 

Fig. 8.16 Further conversion steps of the cascade circuit. 

Fig. 8.17 Final conversion steps of the cascade circuit. 

Problem 

8.2 
tc2 = 1/2 and tc3 = 1 of Fig. 8.9 leads to a stable system. 

Show that a choice of the weighting coefficients according to K~ = 1/4, 
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-160 - 

-180- 
-200 

The variation of the division factor in integer steps around the mean divi- 
sion factor leads to a corresponding phase modulation at the output of the 
divider chain. At the output of the phase discriminator of the phase locked 
loop circuit these phase fluctuations are transferred to  corresponding volt- 
age fluctuations, which are proportional to  the time dependent variations of 
the division factor. In order to achieve a rapid decrease of the quantization 
noise close to the carrier frequency, it is essential that the phase discriminator 
has a very high linearity between the input phase and the output voltage. 
Non-linear effects in the phase discriminator may lead to  a strong increase of 
the quantization noise close to  the carrier frequency due to non-linear mixing 
processes. Then, the noise spectrum of Fig. 8.8 may change to a spectrum as 
shown in Fig. 8.18. The influence of the non-linear effects in the phase discrim- 

I I I b 

inator can be reduced by reducing the peak-to-peak division factor variation 
A N .  For the example of the three-stage chain circuit with rcl = 114, rc2 = 1/2  
and rc3 = 1 the division factors a t  the output of the fractional divider vary 
in a range between -1 . . .2 ,  corresponding to a peak-to-peak deviation of 3, 
which is a significant reduction compared with the value of 7 for the three 
stage system with unity coefficients. Thus, the peak-to-peak variation of the 
d '  ivision .: 
circuit with unity weighting factors. 

additional delay element in the integrator chain. 

K4 = 1. This leads to a stable circuit. 

factor has been reduced by a factor of 2.3, as compared to the chain 

The circuit of Fig. 8.19 shows a four-stage fractional logic core with an 

The weighting coefficients are chosen as ~1 = 3/16, ~2 = 112, K 3  = 1 and 

inator 

Noise spectrum of a fractional divider circuit with increased close-
to-carrier noise due to non-linear effects in the phase disriminator.
Fig. 8.18
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nq P 

Fig. 8.19 
in the integrator chain. 

A four-stage fractional logic core with an additional delay element 

Problem 

8.3 Show that a choice of the weighting coefficients of Fig. 8.19 according 
to nl = 3/16, n2 = 1/2,  n3 = 1 and 6 4  = 1 and an additional delay element 
in the integrator chain leads to  a stable system. 

The additional delay element in the logic core behind an integrator al- 
lows one to  increase the maximum clock frequency of the logic circuit. This 
delay does not alter significantly the frequency characteristic of the trans- 
fer function compared with a four-stage circuit without this additional delay 
element. Stability is guaranteed by the proper choice of the weighting fac- 
tors. This four-stage circuit shows a decrease towards the carrier frequency of 
4.6dB = 24 dB/octave. With an average division ratio = 20.05 the division 
factors at the output of the fractional divider vary in a range from 18 5 22. 
Thus, the peak-to-peak variation of the division factor has been reduced by a 
factor of 3.75 compared with the four-stage chain circuit with unity weighting 
factors, which has a peak-to-peak deviation of 15. 

The numerical calculation of first the sequence and then the spectrum is 
straightforward and not particularly difficult. Figure 8.20 shows a typical 
phase noise spectrum of a VCO stabilized by a four-stage fractional divider 
circuit. 

Instead of determining the sequence of division factors in real time, it is also 
possible to determine all division factors once in advance and to store them in 
a fast digital memory. This procedure is possible due to another remarkable 
property of the sequence of division factors, namely that it is periodic with a 
period of the length nmaI. The length of the period depends on the number of 
stages Q and on the bit length m of the fractional part F and is approximately 
given by 

nma, 2[ld(Q) + ml . (8.19) 

The bracket in the exponent in the last equation denotes a rounding to the 
nearest integer number. The fact that the sequence is not much longer than 
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Fig. 8.20 
four-stage fractional divider circuit. 

Typical phase noise spectrum of a 8 GHz VCO stabilized by a 

the inverse of the fractional part of the division factor F makes it in some 
cases feasible to  build fractional synthesizers on the basis of fast digital mem- 
ories. One can take advantage of the relatively short period of the sequence 
and store exactly one sequence period in the memory. The memory is read 
out periodically, in order to  realize, for example, one fixed frequency. An- 
other fixed frequency makes it necessary to store and read out another stored 
sequence. 

8.2.5 

When starting a real time fractional logic circuit, some initial starting values 
are assigned to the integrators and delay units and normally all these values 
will be zero. We may arrange all these contents and in addition the output 
signal in the form of a vector and we name this a vector element [V] of the 
chain circuit. A sequence consists of a number of consecutive vector elements 
[V], ,  [V],, [V] ,  . . . [V]l, that are exactly reproduced in the following period of 
the sequence. Depending on the chosen weighting coefficients K ~ ,  however, the 
associated starting zero vector element [V],, may not be an element of the 
sequence. If nevertheless one starts with [VIst, then a transitory behavior is 
observed with a limited number t ,  of steps which is always smaller than the 
length of the sequence. 

After t ,  steps a transitory vector element will become necessarily identical 
to a vector element of the sequence. Once this has happened, the transient 
path will be left and the vector elements will follow those of the sequence 
with its periodicity. However, a large number of different sequences exist that  
do not have any vector element in common, but the same length and the 

Transient behavior of a fractional logic circuit 
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same statistical properties, e.g. identical spectra. Which one of the different 
sequences the transient path will cross and then follow. depends on the starting 
vector element. However, in case of the chain circuit with unity coefficients 
the zero starting vector element is an element of one of the sequences. The 
same is true for the cascade circuit. 

In order to illustrate the transient behavior, we choose the following numer- 
ical example: A three-stage chain circuit has the coefficients K I  = 114, ~2 = 
112, n3 = 1 and the input signal F = 2-8 + 2-13. The length of the sequence 
is 1 = s17 and with a zero starting vector [V],, the transient path length turns 
out to be t ,  = 30. 

8.2.6 

Figure 8.21 shows a fractional divider circuit without a phase locked loop. 
An oscillator with the fixed frequency fv is divided in frequency by the vari- 

Fractional divider without a PLL 

fV1P.F 
output 

logic with 

Fig. 8.21 Fractional divider circuit without a phase locked loop. 

able division factor N .  The sequence of the division factor versus time may 
e.g. be the one produced by the fractional division factor generator as shown in 
Fig. 8.7 or 8.9. One might expect to observe a spectrum as shown in Fig. 8.8. 
Passing the output signal through a narrow band-pass filter such a circuit 
could find use as a fine tunable oscillator signal. Cnfortunately, however, the 
output signal has a spectrum as shown in Fig. 8.22. The phase modulation of 
the output signal also leads to  a parasitic amplitude modulation which does 
not decrease towards the carrier frequency and which considerably raises the 
noise floor in the vicinity of the carrier frequency. Therefore the qualitative 
shape of the spectrum looks like the spectrum shown in Fig. 8.22. 

The reason for the parasitic amplitude modulation is the constant peak 
signal amplitude at  the divider output, which together with the phase modu- 
lation or pulse width modulation leads to an amplitude modulation and thus 
stochastic amplitude fluctuations with an approximately constant spectrum. 
Numerically, it is not particularly difficult to  calculate first the sequence and 
then the spectrum at the output, while an analytical solution is more difficult 
and needs some simplifications. 
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Fig. 8.22 
locked loop. 

Noise spectrum of a fractional divider circuit without a phase 



Appendix A 
Solutions to  the 

problems of Chapter I 

Chapter 1 

Problem 1.1 
The normalization condition is given by Eq. (1.1). With the normal distribu- 
tion given by Eq. (1.4) the following equation holds: 

-m L J 

This can be transformed with the substitution 

z = -  ’-’ and d y = a . d z  . 
0 

Inserting Eq. (A.2) into Eq. ( A . l )  leads to 

-m +m 
1 1 p(y )  dy = __ / exp [- i z ’ ]  dz . 

-m 
Jz;; 

-02 

(A.3)  
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The integral can either be solved by using an integral table or by squaring 
and converting into polar coordinates. The latter method yields 

103 

= / /c"p (- y) dzdv . 
-cc 

With a transformation into polar coordinates according to z = r C O S ~  and 
v = r . s i n 4 a n d d z . d v = r . d r . d 4 ,  weobtain 

The integration over 4 yields a factor of 2 n  and the substitution r 2 / 2  = s 
leads to 

03 
2 tm [/ exp ( - i . z 2 )  d i ]  = 27r. / exp( -s )ds  = 2n . ( A 4  

-03 0 

Thus, for a normal distribution, 

which means that the normalization condition is fulfilled. 

Problem 1.2 
The probability density of the sum variables can directly be written as a 
convolution of the probability densities by using Eq. (1.40). But the result- 
ing convolution integrals are rather complicated. Therefore, the probability 
density will be calculated with the help of the convolution theorem and the 
characteristic function. Each of the rectangular distributions must meet the 
normalization condition Eq. (1.1). Thus we have for the density of the rect- 
angular distribution p l  ( 2 ) :  

1 for IC > 0 
with u(x) = 
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The characteristic function of the rectangular distribution pl (x) is given by 

Similar expressions are obtained for the rectangular distributions p2(x) and 
p ~ ( x ) .  The characteristic function C,(u) of the sum variable is given by 
Eq. (1.41) as the product of the individual characteristic functions. Inserting 
the numerical values leads to  the following expression for C,(u): 

An inverse Fourier transformation yields for p ,  (s): 

1 

16 
p , ( s )  = - [ (s - 6)2 u(s  - 6) - (s - 7)2u( s  - 7 )  - (s - 8)2u(s  - 8) 

+ (s - 9)2u(s - 9) - (s - 10)2u(s - 10) + (s - 11)2u(s - 11) 

+ (s - 12)2u(s - 12) - (s - 13)2u(s - 13)] . ( A . l l )  

In Fig. A. l  a graphical representation of p , ( s )  is shown. For comparison a 
graph of the normal distribution is also shown in the figure. For the calculation 

S 

Fig. A . l  

of the variance u," the sum of the individual variances was used. 



308 SOLUTIONS TO THE PROBLEMS OF CHAPTER 1 

Problem 1.3 
If X is a random variable with a Gaussian distribution, the characteristic 
function of X is 

1 
cX(u) = exp jup,  - 2u: . u2) . ( (A.12) 

Proof: Inserting p(x) as given by Eq. (1.4) into the Eq. (1.35) of the charac- 
teristic function, the exponent of the integrand is given by 

-1 
h ( x )  = 2 [(x - px)2  - 2jua:x1 

2UX 
(A.13) 

I t  follows by a quadratic complement: 

The second term is independent of x and can be placed in front of the integral. 
With the substitution z = x - p, - juu; and an intermediate result from 
problem 1.1, we obtain for the first term: 

This leads to the statement: 

-02 

(A.15) 

(A.16) 

For the random variable Y ,  which is independent of X,  we correspondingly 
obtain: 

(A.17) 

For the characteristic function of the sum of the random variables the following 
equation holds: 

1 U 2  
C,(u) = Cx(u) . Cy(u) = exp (p ,  + py) - - (u: + u;) . (A.18) 2 
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With pLs = pz + py and g,“ = 02 + 0; the characteristic function of a Gaussian 
distributed random variable is given by 

(A.19) 

Thus the inverse Fourier transformation leads to a Gaussian distribution with 
the variance 0,” and the mean value pLs. 

Problem 1.4 
For the proof of Eq. (1.63) two random variables Yl and Y2 are introduced. 
Y1 and Y2 are assumed to  be statistically independent of each other and in 
addition to  be normally distributed, that is E{Y} = 0 and 0’ = 1. For a 
random variable with these properties Eq. (1.63) could easily be shown. But 
for X1 and X2 the statistical independence was not assumed. In order to get 
an expression for C(u1, uz), nevertheless, the variables X1 and X2 with 

(A.20) 

are expressed by the statistically independent variables Y1 and Y2. Because 
of 

the random variables X I  and X2 have zero expectation values. According 
to a theorem of probability theory, a random variable resulting from a linear 
combination of normal distributed random variables is normally distributed 
again. But the quality of statistical independence and the value of the vari- 
ance are not maintained. Therefore the assumptions made for X1 and X2 in 
conjunction with Eq. (1.63) are valid. For the following steps it is convenient 
to use matrices: 

Thus we have 

X = A . Y .  (A.23) 

On rather general conditions the inverse matrix A-’ exists and Eq. (A.23) 
can be written as 

Y = A - ’ . X  . (A.24) 
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With the transposed matrix Y T  the quadratic matrix 

(A.25) 

can be formed. Replacing the matrix elements X Y k  by the respective expecta- 
tion values E { X Y k }  leads to the covariance matrix py = E{YYT}. The main 
diagonal of this matrix consists of the variances E { Y , Y k } i 2 = k  and the matrix 
also contains all covariances E { K Y k } , z f k .  E{YYT} = py is identical to  the 
unit matrix I due to  the assumptions made €or Y,. The covariance matrix p x  
of the variable X, is given by 

px = E{XXT} 

= E{AY(AY)'} = E { A Y Y ~ ' A ~ }  = A E { Y Y ~ ) A ~  
= A I A ~  = A A ~ .  (A.26) 

For the statistically independent variables Y 1  and Y 2  the characteristic func- 
tion of the bivariate Gaussian distribution can be written as the product of 
the characteristic functions of the variables Yl and Y 2 :  

+m 

= exp (-1.1.) . (A.27) 

By switching to the variables X 1  and X 2  the expression exp (jv'y) becomes 
exp (jvTA-'x). In order to return to  the form of Eq. (1.59) the following 
substitutions are made: 

Then we have 

= exp (- ZUTAATU) 1 

= exp (-;u'pru) . (A.29) 
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Since the covariance matrix px is a symmetric matrix, this equation is identical 
to Eq. (1.63) and can easily be extended to multivariate Gaussian distribu- 
tions. 

Problem 1.5 
As mentioned earlier in problem 1.4, Eq. (1.63) can easily be extended to e.g. 
four variables. Thus 

(A.30) 

In order to obtain the specified moment, an equation similar to  Eq. (1.57) has 
to be solved: 

Thus the moment of fourth order is 

For the special case tl = t2 = t and t3 = t 4  = t + 6 this relation is reduced to 

(A.33) E{X2(t)  . X 2 ( t  + 6)) = p2(0) + 2p2(6) . 

Problem 1.6 
According to  the definition of the correlation the noise signals of two fre- 
quency bands at different frequencies filtered from arbitrary broadband noise 
are totally uncorrelated. The noise signals filtered from white noise are even 
uncorrelated, if they are transferred to the same frequency band by frequency 
translations. 

Problem 1.7 
Rectangularly shaped white noise has the following power density spectrum: 

with W, > 0 and real. 
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By application of an inverse Fourier transformation the corresponding au- 
tocorrelation function p ( 0 )  is obtained: 

-00 

p(8)  = / Wb( f )  ' exp ( j 2 T f 0 )  df 
-cx 

WO 
j 2 T 0  

710 

WoA f . 2  . cos (2718 f o )  . si (TAf8) 

with f o  = ~ 

= - (exp (327i j20)  - exp ( j 2 T f 1 0 )  + exp ( - j27rf10)  - exp (-3271f20)) 

- - 3 (sin (2.irf20) - sin p T f l e ) )  

= (A.35) 

and Af = f 2 -  f1 . fl + f 2  

2 
In the figure below the autocorrelation function and its envelope are drawn. 

29 

Fig. A.2 

Problem 1.8 
With Eq. (1.80) the power spectrum of the output noise is given by 

WO W,(w) = 
1 + w 2 R 2 C 2  ' 

with the following transfer function V ( w )  of the low pass filter: 

(A.36) 

(-4.37) 
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In order to apply the Fourier transform correspondence 

(A.38) 

the result for Wa(w) is rewritten as 

2 

Thus the autocorrelation function of the output noise is given by 

(A.40) 



Appendix B 
Solutions to  the 

Problems of Chapter 2 

Chapter 2 

Problem 2.1 
1) The overall resistance Ri of the parallel connection of R3 and the two 
resistors R1 and R2 in series can be calculated as follows: 

Thus the following noise equivalent circuit with the spectrum W ,  of the noise 
equivalent voltage source can directly be specified: 

2)  Determining the noise equivalent source first, each of the resistors is re- 
placed by a noise equivalent circuit. 

The spectra of the noise equivalent voltage sources are given as follows: 

W,1 = 4kTiR1 

315 

Noise in High-Frequency Circuits and Oscillators 
Burkhard Schiek, Ilona Rolfes and Heinz-Jiirgen Siweris 

Copyright 0 2006 by John Wiley & Sons, Inc. 
 by



316 SOLUTIONS T O  THE PROBLEMS OF CHAPTER 2 

Fig. B.l Noise equivalent circuit. 

T 

) wu3 

1 R3 

Fig. B.2 Noise equivalent circuit. 

In order to calculate the resulting noise equivalent source. each source has to 
be transformed towards the input of the circuit. For that purpose, all other 
sources are short circuited. Furthermore, note that the spectra are related 
according to the squared magnitude of the corresponding voltage transfer 
functions: 

w’l = wul (R1 + 

w‘2 = wu2 (R1 + 

w‘3 = wu3 ( R ,  R 1 + R 2  + R2 + R 3  ) 2  ‘ 

This leads to the following noise equivalent circuit: 
In order to calculate the resulting noise equivalent voltage source W,, the 

three spectra have to be summed up: 

w, = W’,+W~,+W’, 
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Fig. B.3 Noise equivalent circuit. 

(B.5) - - 4k (TiRiR; + T2RzR; + T ~ R ~ ( R I +  R z ) ~ )  
(R1 + R2 + R3I2 

So far, the calculations also apply to different temperatures TJ .  The special 
case TI = T2 = T3 = To leads to  the following equation: 

Thus the same overall noise equivalent circuit results for 1) and 2 ) .  

Problem 2.2 
The ratio of the real power PJ dissipated in each impedance Z = 1/Y and 
the total real power Pt has to be calculated. First the real power dissipated 
by a complex impedance is calculated in general as a function of the voltage 
phasor U and the current phasor I 

= Re{/UI2 Y " }  = jUI2 Re{Y*} = / U I 2 .  Re{Y} . (B.7) 

Fig. B.4 Noise equivalent circuit. 

With LTt and Uj as shown in Fig. B.4, we obtain for the coefficients pi: 
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where Pt is the total power dissipated in the circuit. By using Eq. (2.19) the 
equivalent noise temperature T, can be calculated. For the circuit in Fig. 2.7 
the result is as follows: 

( B . l l )  

Problem 2.3 
The input temperature is the equivalent temperature of the noise equivalent 
source of the overall circuit. T, can be calculated by using Eq.(2.19): 

According to the dissipation theorem the coefficients P:, can be derived from 
the real power, dissipated in the lossy elements of the circuit. The attenuator 
with a fixed attenuation of 6 d B  dissipates a fraction of 0.75 of the injected 
power. The variable attenuator dissipates the fraction (1 - a2) of the remain- 
ing power. The remaining real power is dissipated in the impedance 20. Thus 
the input temperature is given by 

3 1 1 
4 4 4 

Tn = - .77K + - (1 - ~ 2 ) .  300K + - . C Y ~  1200K . (B.14) 

Problem 2.4 
With p as the reflection coefficient of the absorber, a fraction (1 - / p  ') of 
the radiated power of the antenna is converted into heat in the absorber. 
The reflected part of the radiated power is absorbed by the background. The 
dissipation theorem leads to the following equation for the noise temperature: 

The part of the power reentering the antenna is assumed to be negligibly 
small. 
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Problem 2.5 
For a noise-free two-port, described by impedance parameters, we have 

u1 = 211. I1 + 2 1 2 .  I2 

u2 = 2 2 1  ' I1 + 2 2 2  * I 2  . (B.16) 

Adding the noise source Un leads to 

u1 = Zll . I1 + 2 1 2 .  I2 
u2 - un = z 2 1  . I1  + 2 2 2 .  I 2  . (B.17) 

The directions for the new noise sources to be calculated are chosen according 
to Fig. B.5. 

Fig. B.5 Noise equivalent circuit. 

Then the circuit can be described by 

Solving Eqs. (B.17) and (B.18) for U1 and U2, respectively, equating and 
reorganizing leads to 

1 

(B.19) 

Next, the correlation between the sources has to be determined. Using the 
symbolic description for the cross-spectrum of the new noise current and volt- 
age sources we have 

WZI = uil 'In1 
- - (5. & ) * .  (2. un) 

z 2  1 2 2  1 

(B.20) 
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The magnitude of the related normalized cross-spectrum is equal to one, be- 
cause Unl and Inl are completely correlated: 

(B.21) 

Problem 2.6 
As depicted in Fig. B.6. the current sources Ig and Inl, which are connected 
in parallel, can be combined to  one current source Icl = Inl + Ig. 

Fig. B.6 Noise equivalent circuit. 

In an admittance representation we get the two-port equations: 

11 
I2 = Y21 . u1 + Y22 ‘ u2 + In2 (B.22) 

= Yl1 , Ul + Y12 . u2 + Id 

The following equations apply for the currents and voltages at the input and 
output of the given circuit: 

I1 = -Y1 , U1 and I2 = -Y2. U2 . (B.23) 

Equation (B.22) can be solved for U2: 

In2 with Y:, = Yll + Yl . (B.24) y:1 
’ Icl - ___ ’ 

y2 1 
u2 = ~ 

det[Y’] det[Y’] 

Here, det[Y’] is the determinant of the matrix 

(B.25) 
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According to the rules of the symbolic calculus of Chapter 1 the squared 
magnitude of Eq. (B.25) can be calculated by multiplying with the complex 
conjugate: 

Thus the noise power at the load admittance Y2 is known. A conversion to 
spectra leads to 

With Eq. (1.33) we can write 

(B.28) 

Next. the noise spectrum Wcl is considered. The calculation of the squared 
absolute values of Icl = 1,1 + Ig and a conversion to the spectra leads to 

Wcl = Wnl + wg + wqnl + Wnlg = w,, + wq , (B.29) 

because for the given example the two sources Inl and Ig are completely 
uncorrelated. Also the thermal noise of the complex admittance Yl is com- 
pletely uncorrelated with the equivalent noise source In2 at  the output. The 
final result for the spectrum Wu, at the load admittance is 

Problem 2.7 
We have the following equations: 

y12y21 + 2kT.Re { -} y 2 2  (B.31) 
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and 

I:lIn2 (2)* + e { y l l >  

+ 2kT.Re {y} . (B.32) 

This system of equations has to be solved for IjtlIn2. For this purpose the 
first equation is multiplied by Yz,/Y11 and the second equation is multiplied 
by (Y12/Y22)*. Taking the difference of the two equations leads to 

Thus we have 

Finally, we obtain 

the solution of Eq. (2.47). 

Problem 2.8 
This problem can be understood as a continuation of problem 2.6, if the open 
circuit at the output is included in the matrix [Y'] by setting Y2 = 0. The 
direction of the current Ig  has no relevance in this case because the sources 
Ig  and Inl are uncorrelated. The solution of problem 2.6 

1 w -  (1Y2il2, (Wrni + 2kT' Re(Y1)) + iy{1j2WIn2 
u2 - IdetjY/]I2 

-2 Re{Y{1Y;1Wlnlln2)) (B.36) 
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is modified by inserting the equations (2.40) and (2.47): 

2 k T  
wu2 = /det [Y ‘1 1 ( IY2112 . Re{Y{1} + lY{, j 2  . Re(Y22) 

- Re{Y:,Y,*(y;2 + Y21)>) (B.37) 

2kT 
- - (lY{112. Re{Y22} - R ~ { Y I ’ ~ Y ~ ~ Y ~ * ~ } )  . (B.38) 

/det[Y’]12 

With Re{Y{1Y;1Y;2} = Re{Y:TY21Y12} a short calculation leads to 

. Re{Y{f . det[Y‘]} 
2kT 

/det [Y‘] l 2  wu2 = 

- kT(Y{,” . det[Y’] + Y:, . det[Y”]) 
det[Y’] . det[Y/*] 

- 

kTY:; kTY:, 
det[Y’*; det[Y/] 

+- .  - -  - 

Introducing the input admittance from the load side Yi,, 

(B.39) 

(B.40) 

one finally obtains: 

kT kT 
Wu2 = - + -  = 2 k T , R e  

yn Y,, 

This result was expected because l /Xn is the source impedance related to 
port 2. Thus it is possible to describe the resultant one-port by a thermally 
noisy resistor with the temperature T. 

Problem 2.9 
In order to facilitate the following calculation, the two-port equations (2.31) 
are transferred into a normalized form. For this purpose normalized currents 
and voltages are introduced: 

The elements of the admittance matrix are also normalized to  the real refer- 
ence conductance Yo = 1/20: 
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For the normalized representation of the two-port, Eq. (2.31), a matrix form 
results: 

[i] = [y]:u] t [in] . (B.43) 

Equation (B.43) can be rewritten with Eq. (2.50) in the following way: 

[A1 - PI = [Yl([Al -k PI) + [tnl . (B.44) 

This equation can be converted according to  Eq. (2.49): 

1-41 - [BI = [Yl(!Al PI) + [in1 
[B] -t [y][B] = [A] - [y][A] - [in] . (B.45) 

Introducing the unity matrix [I] yields 

A comparison with Eq. (2.49) leads to 

Thus the known noise current sources from Fig. 2.12 can be transformed into 
noise waves using these equations. 

Problem 2.10 
The parameters as shown in Fig. B.7 are used for the following calculations: 

I v v I 

Fig. B.7 Noise equivalent circuit on the basis of noise waves. 

The noise waves of the two-port are denoted by X1,Xz, those of the load 
impedances by L1, L2. The load impedances are at the same temperature 
as the two-port. Equation (2.56) thus holds for the noise powers 1x11~ and 
/X2j2. The noise powers of the load impedances are defined according to the 
dissipation theorem: 

IL1l2 = k T ( 1  - /p112) and lLzlz = kT(1  - lpz / ' )  . (B.48) 
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Here p 1 , p 2  are the reflection coefficients of the load impedances. The noise 
waves of the two-port are not correlated with the noise waves of the load 
impedances. The noise waves of the circuit are given by 

Bi = X I  + S i i A l +  S12A2 B 2  = x 2  + ' 2 Z A 2  $- ' 2 1 A l  (B.49) 
A1 = L1+ PlB1 Az = Lz + pzBz . 

First. an open circuit is assumed at port 2 ,  and port 1 is terminated by a 
matched load: 

The following relation results for B1 after a short calculation: 

(B.51) 
s 1 2  

Bi = Xi + Si iLi  + - 
1 - s 2 2  

Gnder the condition of thermodynamic equilibrium, Eq. (2.54) applies to the 
noise waves of the circuit. With 

( X z  + SziLi) . 

jB1I2 = / L 1 / 2  = kT (B.52) 

and Eq. (2.56) some manipulations yield 

sy2 x,x; s12 

1 - s 2 2  
x;x2 + ___ 

1 - s;, (B.53) 

Next? port 2 is shorted and port 1 is terminated by a matched load: 

p1=0!  p z =  -1, L2 = O  =+ A1 =L1 (B.54) 

A similar calculation as above leads to a second equation for X;X2 and XIXi: 

(B.55) 

Both equations establish a system of linear equations for X;X2 and X1X,*. 
After some calculations the equations can be solved for XTX2: 

X r X 2  = -kT(S;1S21 + S;2S22) . (B.56) 

This is the result for the cross-correlation already given by Eq. (2.58) 
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Fig. B.8 Noise sources of the two-port. 

Problem 2.11 
The noise of each of the three real admittances is described by an equivalent 
noise current source as shown in the following picture: 

The source Inz can be replaced by two sources, one connected in parallel 
to In l ,  the other one connected in parallel to Ins. This leads to the following 
circuit: 

Fig. B.9 Noise equivalent circuit of the two-port. 

The purpose of this problem is not to get the correlation I$ IA2 ( it could 
easily be calculated with Eq. (2.47) as 1211A2 = -2kTG2), but to calcu- 
late the correlation I;I2 of the currents flowing through the two terminating 
impedances with the impedance values 2 0 .  Generally, we can write for the 
currents Il and 1 2 :  

I1 = VIIAl + VzIA2 

I2 = V11L2 + V21A1 (B.57) 

Here V1 and Vz are real transfer functions. Forming the correlation I;Iz and 
using the following equations: 

Ic11A2 = 2kT . Re(Y12) = - 2 k T  G2 = IAlIE2 

lIAil2 = 2 k T .  Re{Y,i} = 2 k T .  ( G I  + G2) i = 1 , 2  (B.58) 

yields after a short calculation: 

1;12 = -2kT (-2VlVzG1 + (Vl - V2)*G2) . (B.59) 
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The n-attenuator shall be matched on both sides. Then the input impedance 
on both sides is equal to 20. Therefore, half of the currents IA1 and IA2 
flows into the attenuator, the other half flows into the terminating impedance. 
The current flowing into the attenuator is transferred by the current transfer 
function 

ZoGl-  1 s =  
ZoG1+1 ’ 

The transfer functions V1 and V2 are given by 

(B.60) 

1 1 v,=-- 2 v , = - s .  2 (B.61) 

For a simultaneous match at  both ports, G2 in dependence of G1 is given by 

(B.62) 

With these relations for V,, V2 and G2 and Vl = -112 the bracket term in 
Eq. (B.59) can be written as follows: 

= 0 .  (B.63) 

Thus it holds that the correlation I;I2 is equal to zero. 

Problem 2.12 
The noise generated by R and 20 will be analyzed separately and afterwards 
summed up according to the principle of superposition. First, the influence 
of the noise generated by R at port 2 and port 3 will be calculated. For this 
purpose an equivalent noise current source for the resistor R is implemented 
(Fig. B.lOa). Fig. B.lOb shows an equivalent circuit with two identical current 
sources. The wire in the symmetry plane carries no current. Thus it can be 
connected directly to the ground potential and the ports 2 and 3 are operating 
in the odd mode. Therefore, the entire symmetry plane of the transmission 
line structure can be connected to ground. The resulting short circuit at the 
end of the line is transformed into an open circuit at the input by means of a 
X/4 transformation, so that for port 2 and port 3, respectively, the equivalent 
circuits in Fig. B.lOc and B.lOd are obtained. 
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Q)\ x i 4  , ,  , 

@ Izo t2 

4. 
A 

-1 T 

Fig. B.10 Noise equivalent sources of the signal divider. 

Similarly, the noise of 20 can be expressed by an equivalent noise current 
source IAz, with 11A2/2 = 2kTiZo.  The signal of the source IA2 is transferred 
to the ports 2 and 3, being attenuated by 4, because of the 0-degree and 3 
dB-signal divider. The noise of Z, can also be described by two equivalent 
sources (Fig. B.lOe,f) 

I - -Inz 1 ,  (B.64) 
n2 - Jz 

at port 2 and port 3. Using the isolation condition R = 2Z0, the squared 
magnitude of the noise equivalent sources are related by 

IIn1i2 = 11n212 . (B.65) 
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Furthermore, the sources are uncorrelated: 

I&I,Z = I;& = 0 . (B.66) 

The equivalent sources resulting from the superposition at port 2 and port 3 
are also uncorrelated, because 

x;xz = (In1 + In2)*(In2 - 1,1) = 0 . (B.67) 

Problem 2.13 
Replacing the equivalent noise voltage source of the generator resistance by 
an equivalent noise current source leads to the same relations as given by 
problem 2.6, if the conductance Y1 is replaced by Yg. The noise figure is given 
by 

(B.68) 

AWz is the noise a t  the output as induced by the two-port. This spectrum is 
given by the result of problem 2.6, if Yg is considered to be noise-free, leading 
to WA1 = Wnl. Thus 

WZO is the noise a t  the output caused solely by Yg. This spectrum is given 
by the result of problem 2.6, if the two-port is assumed to be noise-free, i.e. 
W,,,W,z and Wnlz are chosen to be zero. This leads to 

1 

jdet[Y'] j 2  
. ~ Y z I ~ ~  .2kToRe{Yg} . wzo = (B.70) 

Inserting the result into Eq. (B.68) leads to Eq. (2.85). 

Problem 2.14 
First. the gain of the two-port will be described by scattering parameters. 
According to Eq. 2.72 the gain is given by 

p2 G - - .  
- Pg (B.71) 

With the designations introduced in Fig. B . l l  the real power PZ dissipated 
by the load 21 is 

pz = i.)Zl2 - id = / . )212 .  (1 - lTli2) 1 
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where r1 = a 2 / b 2  is the reflection coefficient of the load. In order to calculate 
the available generator power P,, the incident wave a1 of the two-port is 
examined. I t  is the sum of the part ag generated by the source, and a part 
r g b l ,  reflected by the generator, where rg is the reflection coefficient of the 
internal generator impedance: 

al = a, + r,bl . (B.72) 

Then the available generator power is given by: 

(B.73) 

Thus the gain is obtained as 

(B.74) 

With Eq. (B.72). the definition of r1, and 

PI = [sl[aI (B.75) 

a short calculation leads to an equation for the ratio bz/a,. By inserting this 
ratio into the equation for the gain we obtain 

In order to show that the gain of a reciprocal two-port is independent of the 
direction, the voltage source in Fig B . l l  is placed at  port 2 and the power 
transfer from port 2 to port 1 is examined (2, and 2, remain in place). For the 
determination of G,lz the same calculation as for Gp21 has to be performed. 
A comparison with the calculation above shows that the index 2 has to  be 
replaced by the index 1 (and vice versa) and the index g has to be replaced 
by the index 1 (and vice versa). This leads to 
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For reciprocal two-ports S12 = S21, and thus the gain is independent of the 
direct ion. 

Problem 2.15 
The cascade connection of the two attenuators can be considered as one single 
two-port with two temperature regions. Equation (2.70) is used for the de- 
termination of the noise figure of the two-port. AP, is composed of the part 
 APT^ generated in temperature region 1 and the corresponding part APi-2 
for the region 2 .  We thus have 

AP2 =  APT^ +  APT^ (B.78) 

with 

(B.79) 

For the part P20 from the generator we obtain with Kto t  = ~1 . ~ 2 :  

P 2 0  = ~ 1 ~ 2 k T o A f  . (B.80) 

The coefficients p, are equal to the power fractions absorbed in the respective 
temperature regions i = 1 , 2 ,  if the power is fed in from the output side: 

Inserting these expressions into Eq. (2.70) leads to: 

(B.81) 

(B.82) 

With the numerical values nl = 0.5 and ~2 = 0.25 we obtain for the noise 
figure: 

Tl T2 F = l + - + 6 -  
To To 

(B.83) 

Problem 2.16 
If the whole circuit (R1, R2, Z,, ZL) is taken as one resistive network with two 
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temperature regions, namely, with the temperatures TO and T I ,  the spectrum 
W20 at  Zl as caused exclusively by Zg is given by 

(B.84) 

Z1 is assumed as noise-free. The inclusion of the noise contributions of R1. 
R2 and Zg leads to the spectrum W2: 

(B.85) 

Calculating the ratio of these terms leads to the following expression for the 
noise figure: 

(B.86) 

Thus it is evident, that the noise figure is independent of the value of the load 
resistance. To show the validity of Eq. (2.92), the available gain must directly 
be calculated. Ga, is defined as the ratio of the available output power Pz,, 
to the available generator power Pg. We have 

l4I2 Pg = - 
4 2 ,  

and 

(B.87) 

(B.88) 

For the ratio of both terms a short calculation leads to 

This result is equal to equation (2.92). 

Problem 2.17 
According to Eq. (2.99) it is more advantageous to  place the first amplifier in 
front of the second amplifier, if the condition 

(B.90) 



333 

is fulfilled. A short conversion leads to an equation, which is more useful in 
practice: 

FI - 1 
1 

1-- 

Fz - 1 

1-- 
1 ’  < 

Glav G2CLtl 

The terms compared here are called ”noise measure”. 

(B.91) 

Problem 2.18 
In order to calculate the circles with a constant noise figure in the complex 
generator impedance plane, equation (2.106) is modified as follows: 

W, + lZ1’Wi + 2Re{Z. Wui} 
2kTo . Re{ Z }  

F = const = 1 + (B.92) 

Setting Z = R + j X  leads to 

. (B.93) 
W, + (R2 + X2)Wz + 2 ( R .  Re{W,,} - X a Im{Wuz}) 

F = l +  
2kToR 

A short transformation yields 

-W, = R’Wi T 2R (kTo (1 - F )  + Re{Wui}) 

+ x2wi - 2~ .Im{w,i} (B.94) 

Further algebraic manipulations lead to 

kTo (1 - F )  + Re{ W,,} 

)’ - (kTo(1 - F )  + Re{W,,} 
= ( R +  Wi Wi 

(B.95) 

and 

resulting in 

C = ( R  - Ro)’ + (X - Xo)’ . (B.97) 
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A further calculation shows that the constant C is greater or equal to zero for 
all cases which are physically possible. Thus the solution is the equation of a 
circle. Because the centers (Ro, Xo) of the circles depend on the noise figure 
F .  the circles generally are not concentric. 

Problem 2.19 
Equating Eq. (2.126) with Eq. (2.136) leads to the following expression, which 
should be fulfilled: 

or, equivalently, 

A short transformation leads to 

4Gg. Ir, - roptj2 = zo.  IY, - yopt/2. p + r optt2(1 - irgI2) . (BN) 

Inserting the equations: 

1 - YgZ0 1 - y o p t z o  r -  r o p t  = 
g - l + Y , Z o  ’ 1 - y o p t z o  

and 

G, = Re{ Yg } 

(B. 100) 

(B.lO1) 

leads to: 

1(1 - Y,ZO)(l + YoptZ0) - ( 1  + YgZo)(l - y o , t ~ o ) 1 2  

i(l+ Y,ZO) . ( 1  + Yo,tZ0)l2 4G9 

Simplifying this expression by using / X i 2  = X * X* leads to the following 
equation: 

G, - 4Z:jY, - YoPtl2 = Zo . ‘Yg - Yoptj2 . 4GgZo . 

Thus it is proven that Eq. (2.126) is identical to Eq. (2 .136) .  

(B. 103) 
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Solutions to  the 

Problems of Chapter 3 

Chapter 3 

Problem 3.1 
With 

c," . r2 s i2( r f t )  and lim si(nft) = 1 (C.1) 
f--0 

IVLI2 = 

we get 

2 2  lVL(0)l2 = ci . 7 

Thus Eq. (3.18) can be simplified as follows: 
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The substitution f’ = r f r  leads to 

We will take an integration time of r=1s as a numerical example. A part of 
all measured values shall have an accuracy better than O.lK, that means that 
the variance has to reach a given value. The measured values are normally 
distributed, thus the number X of measured values, which are located around 
Tm in an interval of 2AT is given by 

With the substitution 

T - Tm 

ATm 
-- - T‘ 

and accounting for symmetry leads to 

The integral can be calculated numerically with different integration limits. 
With X = 0.68 we find 

-- - 1  
AT 

ATm 

With AT=O.lK and Eq. (3.23) the necessary bandwidth is given by 

2 

A f  = 1 (”> =9MHz . 
r AT, 

With X = 0.95 and AT/AT,  = 2 and AT =0.1K we obtain 

Af = 3GMHz . (C.10) 

The result clearly shows the dependence of the measurement precision on the 
bandwidth for a given measurement time. 
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Problem 3.2 
With 

and 

and 

(2, + ~ o ) ( ~ l +  2 0 )  - (2, - ~ o ) ( ~ i  - 2 0 )  i 2  
(2, + ZO)(Zl + 2 0 )  

12, + ZoI2l~, + ZOl2 
- - I2Zo(Z, f 21)12 

the fraction on the right-hand side of Eq. (3.48) is given by 

((2.12) 

(C.13) 

(1 - lr,12)(1 - LI2) - 42;(2, + Z,*)(Zl+ 2;) 
- 

11 - rgrl!2 42,212, + 2iI2 

- - 4Re{ Z,} 3 Re{ Zl} 
(C.14) 

Using the definition of Eq. (3.50) leads to the following term for the right-hand 
side of Eq. (3.53): 

12, + 21 12 

121 + 2,1* - 121 - 2 * / 2  9 

121 + 2 g l 2  

2, 2; + 2; 2, + zl* 2; + 21 2, 
121 + 2912 

1 - IF12 = 

- - 

(C.15) - 4Re{ 2,) . Re{ 21} 
- 

121 + 291’ 

A comparison yields the identity of the equations ( 3 . 5 3 )  and (3.48): 

((2.16) 

The power, absorbed by Zl, can be calculated from the current 11 flowing 
through 21: 

f i  = 11112 Re{Z,} . ((2.17) 

The current 11 is given by 
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Then Pl can be written as follows: 

4Re{ Z,} . Re{ 2,) 
Pl = Pa, . 

121 + Zg12 

A comparison with Eq. (C.15) shows that 

9 = PmJ(1 - 1DI2) 

((2.19) 

(C.20) 

and thus the validity of Eq. (3.51). 

Problem 3.3 
As for the compensating radiometer in Fig. 3.26 the switching states I and 
11 are treated separately. According to  the dissipation theorem the power PI 
reaching the amplifier in switching state I is given by 

PI = kAf . [To(l - ~ ) c i  + T,,~KQ + (1 - &)To] . (C.21) 

The terms relate to  2 0 ,  the reference, and the attenuator, respectively. Simi- 
larly, we obtain for switching state 11: 

Here, the noise powers derived from 2 0 ,  the reference, the measurement object 
and from the isolator have been added. The noise wave emitted by the isolator 
passes through the coupler twice and is reflected by the measurement object. 
A balance of the measured powers, PI = PII ,  is achieved by a variation of the 
temperature of the reference noise source. Taking into account the losses of 
the attenuator and the coupler we get: 

(C.23) 

(C.24) 

(C.25) 

(C.26) 
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This expression is independent of the reflection coefficient p of the measure- 
ment object. If the ambient temperature and the temperature of the reference 
are known. the temperature of the measurement object can be determined. 

Problem 3.4 
For the determination of the correlation between the input and output noise 
waves of the preamplifier with isolator, the powers PI and PII must be cal- 
culated at the output of the preamplifier. 

Fig. C.1 Noise waves at the amplifier with isolator. 

Therefore, we must determine the squared magnitude of the total noise 
wave Xtot in terms of the quantities shown in Fig. (C.1). 

Here, Xzn/out are the input and output equivalent noise waves of the pream- 
plifier with isolator, r is the source reflection coefficient, X ,  is the noise wave 
with contributions from the reference source and the measurement object, and 
V is the voltage gain of the amplifier. We obtain 

pf/I, = /Xtoti2 = IXoutI2 + /Xin /2 / r /2 /V/2  + ix,/2/v12 
+ 2 .  Re {I?* . X & .  X o u t .  V * }  . (C.27) 

The term IXout12 is constant and will be neglected in the following. The last 
term in Eq. C.27 describes the effect of the correlation X &  . Xout.  

For the derivation of the balance condition of the circuit in Fig. 3.26 the 
switchable circulator was assumed to be lossless so that the term IXinI2 . 
jrj2/Vi2 did not need to be considered. In the case of a lossy isolator with the 
temperature To the balance condition is given by 

lP12 
1 - lP12 

Tm = TTef - To . - . ((2.28) 

If the combination of amplifier and isolator is completely de-correlated, the 
temperature of the measurement object T, can be determined by using 
Eq. (C.28), on the basis of a known temperature of the isolator and a known 
reflection coefficient of the measurement object. If the amplifier and the iso- 
lator are not completely de-correlated, the balance condition reads: 

correlation term 
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The correlation term in Eq. (C.29) describes the measurement error resulting 
from a finite de-correlation i.e. X &  XOUt # 0 .  For the circuit of Fig. 3.30 we 
have 

correlation term 

A comparison of Eq. (C.30) with the result of problem 3.3 shows that the 
correlation term describes the resulting measurement error. 

If the preamplifier and the isolator are at  the same temperature TO, the 
deviation iAT,,1 of the measured temperature of the measurement object 
as compared to the correlation Xtn . Xout can be evaluated. With the de- 
correlation Q (0 5 IQi 5 1) defined as 

and K -i 0 in Fig. 3.30 we obtain 

A 
With p = 112 = 6dB the maximum measurement error is given by’ 

iATmlmaz =1K and TO =290K leads to  IQi = 0.26%. 

Problem 3.5 
Figure (2.2 shows the extended measurement circuit. 

The powers PI and PII are obtained as 

+To (1 - n1)2(1 - K 2 )  + (1 - n2)m + K 2 ]  [ 

((2.31) 

(C.32) 

(C.33) 

((2.34) 

(C.35) 
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14 I isolator 

Fig. C.2 Compensated radiometer for measuring low noise temperatures. 

After a procedure similar to problem 3.3, equating and solving the equation 
for T, leads to 

(C.36) 

This result is not sufficient to calculate Tm, because IpI2 is unknown. The 
following procedure leads to a system of equations for T, and lpi2: 

The first step is to adjust Trefl to the ambient temperature (Trefl = TO). 
Then Tau, is raised until the balance condition is fulfilled. This leads to a 
first equation for T,: 

(C.37) 

The second step is to  raise the excess temperature of the auxiliary noise source 
in a defined manner by a factor of n (Taus2 - To = n(TaUzl - To)). The 
temperature of the reference noise source is raised to  Tr,f2 until the balance 
condition is fulfilled. This leads to a second equation for T,: 

((2.38) 
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Multiplying the first equation by n and subtracting both equations leads to 
the following result: 

(C.39) 

With the circuit described above it is possible to measure temperatures in 
the range of OK < T, < To. With n = 2 a fixed 3dB attenuator can be 
inserted in front of the auxiliary noise source in a first step. In a second step 
this attenuator is bypassed. There is no need to calibrate the auxiliary noise 
source. It just has to be variable and stable during the measuring time. 

Problem 3.6 
The lossless 3dB-90' coupler has the phase relations shown in Fig. C.3. 

u1, 7 input y ,"'z 

u4 Nu3 output 

Fig. C.3 

We get for the correlation between the output voltages: 

1 1 .  
u4*u3 = -(Ul + jU2)*-(jU1 + u ~ )  Jz Jz 

1 .  1 .  
= - J I ~ 1 l 2  2 - ,JlU212 1 ((2.40) 

because U1 and U2 are uncorrelated. This shows that for a correlation ra- 
diometer with a 90"-coupler the real part of the correlation at the output is 
always zero. Thus the zero balance must be performed on the basis of the 
imaginary part of the correlation. As shown in the figure below this requires 
a further 90" phase shifter. 

Problem 3.7 
In Fig. 3.26 the circulator can be replaced by an isolator as shown in Fig. C.5:  

The isolator is assumed to have the same temperature as the reference noise 
source. A zero balance is obtained for 

((2.41) Tvef = ~ v e f / ~ i ~  + T m ( 1 -  Ip12) 3 
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HI-  / - balance goo- 

Fig. C.5 

leading directly to: 

Tm = TTef . ((2.42) 

The noise signals at the output of the preamplifier are uncorrelated for both 
switch positions. Thus the absolute error of the switching radiometer is given 
bY 

Inserting the balance equation C.41 into the error term AT,, leads to 

Tvef AT,, = TTef IPI2 + ~ r n ( 1 -  1 ~ 1 ’ )  . (C.44) 

Solving this equation for Tm leads to 

(C.45) 

The temperature of the measurement object is measured with the following 
error: 

((2.46) 
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For the relative error we get 

APm AP.,, 1 -- - . ~  - 
Tm Tm 1 - / P I ’  ’ 

For -+ 1 the relative error becomes arbitrarily large. 

(C.47) 

Problem 3.8 
For the evaluation of a temperature error an equation for the correlation 
radiometer corresponding to  Eq. (3.16) has to be determined. The following 
calculation is based on Fig. C.6. 

Fig. C.6 Principle circuit of the correlation radiometer. 

The average squared output voltage is calculated according to Section 3.2.2 
as follows: 

((3.48) 

For the calculation of the spectrum W,( f )  with 

P 3 ( 4  = U 3 ( t ) .  u3(t + 4 
= c2 ual(t) . Ud(t + O ) u a , ( t )  . u a z ( t  + 0) (C.49) 

the results of Section 1.2.7 and accordingly problem 1.5 have to be extended 
to the form that is needed here. Under the assumptions made there, we have 

P 3 ( @ )  = c2 [P212(0) + Pa1(6)Pa2(0) f PalZ(Q)PaZl(Q)] . (C.50) 

A Fourier transformation of Eq. (C.50) leads to  an expression for W,(f): 

W 3 ( f )  = c2P:lz(o)w) 

+ c2 J y  [Wal(fl) . W a Z ( f  - f’) f W a l Z ( f 9  . WaZl(f - f” df’ 
-w 

(C.51) 
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With W ( f )  = W ( - f )  for the power spectra and W,,(f) = W,,(-f) for the 
cross spectra, Eq. (C.51) can be written as follows: 

W3(f) = c2P:12(0)w) 

With 

the variance 0: can be calculated similar to the calculation in Eq. (3.15): 

2 7  2 - -  2 2  a,=u:(t) - ua(t)  = c PalZ(0) IVL(f ) l2Wdf  
-m 

+ 217 IVL(f)I2 Wal(f’)WaZ(f’ - f) + Wal2(f’)Wal2(f’ - f)l df’df 
-03 

- (CVL(0) ‘ Pa12(o) )2  

+03 

= c y /  tVL(f)l2 [%,(f’)Wa2(f‘ - f )  + %12(fWal2(f l  - f)l df’df . 
-02 

(C.54) 

With the same approximations as made in Section 3.1.8 for the voltage gains 
V1 and V2 of both channels we get 

(C.55) 

-03 J 

Because of 

we have 
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and 

(C.58) 

and hence 
w w 

-m - W  

W 

= 2 1 Re {W2( f ) )  df 
0 

Then, the equation for 02 can be written as follows: 

m 

0: = 2 . 2  1 lVL(f)I2df 

0 

(C.59) 

(C.60) 

With the assumption Vl = V2 = V and rectangularly shaped band-pass filters 
Eq. (C.60) can be written as 

00 

CJ: = 2 .  c2 1 IVL(f)l2df 

0 
m 
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-2 
The normalized variance of ua(t)  is given by 

- - Wl(fO)W2(fO) + Re2 {WldfO)} - Im2 {WlZ(fO)) . a f L  
Re2 {WlZ(fO)) Af 

or, using the normalized cross spectrum kl2 defined in Eq. (1.87): 

(C.63) 

(C.64) 

The output signal of the correlation radiometer is proportional to the real 
part of the cross-spectrum W12 at the band-pass center frequency fo: 

Inserting into (C.64) leads to 

2 
ua 2 = 52 ' zl,o (C.66) 

= C2 [2Re2 {W12(f0)) Wl(fo)Wz(fo) - /W12(fo)l~)] af AfL . 

The zero balance condition is 

= 0 * Re2 {W12(f0)} = 0 . (C.67) 

After adjusting for zero balance we get for the variance of the output voltage: 

((2.68) 

Using the symbolic notation leads to the following expression for the spectra: 

w ~ ( f o ) A f  = UIU; = kAf(Trn + T w f )  (C.69) 

= 2k A f T, for zero balance 

g: = c2 [W(fO)W2(fO) - IWl2(f0)l2)] af AfL * 

= u2u; = WZ(f0)Af 

and 

Wl2(fo)Af = k Af(Tm - T x f )  ((2.70) 
= 0 forzerobalance . 
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The error of the output voltage can be interpreted as a temperature error: 

= C2(kAf)2(Tm - Tvef)2 = C2(kAf) 'AT2 

(C.71) 

Using an ideal integrator with the integration time T as a low-pass filter we 
get with Eq. (3.22): 

(C.72) 

This result is identical to  Eq. (3.70). 

A direct calculation of the temperature error is explained in the following. 
The balance indicator signal BI of the correlator is proportional to the real 
part of the cross spectrum of its input variables: 

(C.73) 

Using the identity 

(C.74) 
1 
4 

Re{ab*} = - ( la + bI2 - la - bj2)  

leads to 

Thus the expected proportionality 

BI N (Tm - T r e f )  (C.76) 

results. For the variance of the temperature error under balance conditions 
the Equations (3.69) and (3.70) apply. 
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Problem 3.9 
A correlation radiometer as given in figure 3.31 with a non ideal multiplier 
does not provide a zero indication under a zero balance condition (T,,f = T,) 
even if the measurement object and the reference are completely uncorrelated 
sources. The resulting direct voltage error shall be calculated in the following. 

The output signal y of a non ideal multiplier can be described in general 
by a power series: 

m=O n=O 

At the output of the low pass filter the time average is given by 

For uncorrelated gaussian distributed input variables u1 and u2 Eqs. (3.69) 
and (3.72) lead to 

2 
For the n-th derivative of the function eav  it holds: 

A 

(C.80) 

n 
- if n is even 

2 

with k =  { n 2  1 (C.81) 
- if n is odd . 

As can be shown, the term (uy . u g )  becomes zero if either m or n are odd. If 
n and m are even. m can be replaced by m = 2k and n by n = 21. This leads 
to the following result for the output signal of the correlator: 

A dc offset appears at the output which depends on the power of the input 
variables. 

Using a periodical phase shift as shown in figure 3.32, the coefficients ( u ; " ~ ; )  
also become periodical functions of time. However, the time average (y )  re- 
mains constant. As in the unmodulated case the resulting error is a pure 



350 SOLUTIONS TO THE PROBLEMS OF CHAPTER 3 

direct voltage error. Using a phase-sensitive detector a t  the switching fre- 
quency of e.g. fi = lOkHz, only the correlation term makes a contribution at  
the frequency fi. Then the display shows a zero for a vanishing correlation, 
independent of the type of multiplier. 

Problem 3.10 
Using Eqs. (3.75) and (3.68) we obtain for the Y-factor for small relative 
errors: 

The error of the Y-factor causes an error of the noise figure: 

z Te5 To Y - 1  1 ---(If-- Y-1-  ) = F - ~ A F  

For the given numerical example with 

A T e z  A 
A f  = 5h/lHz; T = 0.lns; F = 6dB = 4; - = 16dB = 40 

TO 

and 

we get for the relative error of the noise figure: 

- = 0.0031 
AF 
F 

(C.83) 

(C.84) 

(C.85) 

(C.86) 

(C.87) 

(C.88) 

Problem 3.11 
With computer-controlled equipment for the measurement of noise figures of 
linear two-ports it is possible to measure the powers P2 and Pi both with and 
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without a measurement object. If Go is the gain of the measurement circuit 
without a measurement object, the measured noise powers are 

((2.89) 

Here T,o - TO is the excess noise temperature of the noise generator and Ta 
is the system temperature of the preamplifier. 

If Gtot = Gobj . Go is the gain of the cascade of the measurement object 
and the measurement circuit, we get with the modified system temperature 
T; : 

Thus the gain Gobj of the object under test is given by 

Problem 3.12 

((2.90) 

(C.91) 

For the determination of the input admittance Yzn the Eqs. (3.96) to (3.100) 
are combined in a matrix and vector form. With the matrix 

and the symmetrical matrix 

[K21 = 

(C.92) 

(C.93) 
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it follows: 

For better clarity, the boundaries of the sum symbols have been omitted in 
this representation. By multiplication with the inverse of the symmetrical 
matrix [Kz] a relation for the modified noise parameters and the factor m 
results: 

(C.95) 

Equation (3.94) and (3.95) can also be converted into a matrix and vector 
form: 

with 

((2.98) 

‘1 = 2 [ C a ~ 4 4 3 5  c a J 4 a ] 6  C a 3 4 a 3 7  c a ] 4 a 3 8  c a 3 4 a 3 9 ]  (c‘99) 

v, - - 2 [ c a ] 4 a 3 1  ca]4a32 c u 3 4 4 3 3  cuP4] * (C. 100) 

With Eq. ((2.95) and Eq. ((2.96) the unknown noise parameters and the factor 
m can be eliminated. The following equations result for the determination of 
the real and imaginary part of the input admittance of the device under test. 
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With the terms 

[K5] = [ K ~ ] [ K z ] - ~ [ K ~ ]  - [K4] , (C. 102) 

/3 = / l i ~ z l - l [ ~ l l  - / z  , (C.103) 

Equation (C.101) can be rewritten as follows: 

The other coefficients ho to h7 can be derived similarly. 



Appendix D 
Solutions to  the 

Problems of Chapter 4 

Chapter 4 

Problem 4.1 
In order to derive the auto-correlation function of an irregular sequence of 6- 
impulses, the auto-correlation function of an irregular sequence of rectangular 
impulses is calculated first. Such a sequence y(t) shall have the following 
properties: 

with 

1 for 1x1 5 1 
0 for 1x1 > 1 

rect{x} = 

Noise in High-Frequency Circuits and Oscillators 
Burkhard Schiek, Ilona Rolfes and Heinz-Jiirgen Siweris 
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Thus the rectangular impulses have the same momentum as the &impulses: 

tm tm i’ u(t)dt = i’ 6(t)dt = 1 . 
-m -m 

The auto-correlation function of the sequence of rectangular functions, 

PYV(6) = E M t )  ‘ Y(t - 6)) 1 P . 4 )  

will be calculated. Therefore the time intervals 1, 2 and 3 of Fig. D . l  are 
considered, in each of which a defined number mi of impulses starts. With 

1 1 
and y(t) = 7 (ml + m2) y( t  + 0) = - (m2 + m3) (D.5) 

7 

the auto-correlation function is given by 

1 
Py@) = $q(ml + m2) . (m2 + m3)) ’ (D.6) 

Fig. D.l  

Because of the assumed independence of the impulses we have 

E{m1m21= E(m1). E{mz} 1 (D.7) 

and corresponding equations for the other products. Furthermore, with the 
impulse density z we have E{ml} = E{m3} = z .  0 and E{mz} = z ( r  - 0) .  
Because of 

E{mi} = E{mz} + E { ~ z } ~  P . 8 )  

P . 9 )  

we obtain 

E{vz~} = Z ( T  - 6’) + z 2 ( .  - 0)2 . 

For a positive B and 0 5 T ,  insertion of these variables into Eq. D.6 leads to 

z 
Pyy(e) = - (T - 0) + z 2  for Q 5 -7 . (D.lO) 

7 2  
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If 0 2 r only the intervals with the length IT before y( t )  and y(t + Q), respec- 
tively, have to be considered and thus 

& ( e )  = z2  for 6 > T . ( D . l l )  

Because the auto-correlation function of a stationary process is an even func- 
tion, the following equation holds: 

(D.12) 

Thus the auto-correlation function is constant for 101 > r and has a triangular 
shape for 101 5 T .  The maximum value occurs at 6 = 0: 

(D.13) 
i 

T 
Pyy(6 = 0) = - + z2  . 

The shape of this auto-correlation function is shown in Fig. D.2. 

Fig. D.2 Auto-correlation function of rectangular impulses. 

For the limit r + 0 or y(t) + z ( t ) .  the auto-correlation function assumes 
the shape of a &function superimposed by the constant value z 2 .  Then the 
auto-correlation function of a sequence of rectangular impulses merges into 
the auto-correlation function of a sequence of &impulses: 

P,,(0) = z .  d(6) + z2 . (D.14) 

Thus Eq. (4.14) has been derived. In Eq. (D.12) the constant component 
z 2 ,  which is independent of 0, appears for both 161 > T and 101 5 r. Such 
a component can only result, if the considered process has a constant term. 
Thus the term z2 becomes negligible if only the oscillating component of y(t) 
is considered and we obtain 

(D.15) 
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In the limit for T i 0, this function also approaches a Dirac-impulse with the 
weighting z :  

Psh(e)  = z .  s(e) . (D.16) 

Thus Eq. (4.16) has been derived as well. 

Problem 4.2 
First the noisy diode will be replaced by an equivalent thermal noise source 
WuO and an internal resistance R,. For the elements of this source, according 
to Fig. 4.4, we have 

(D.17) 

and 

1 
(D.18) 

TLf is the effective noise temperature of the Schottky diode with a negligible 
bulk resistance and with 

Wis 
G: G, 

WUD = WTJ + - = 4kTRb f 4kT,'f. - . 

(D.19) 

as given by Eq. (4.31) we obtain, because of WUD = 4kTefR,: 

(D.20) 

With G, as given by Eq. (4.28) and the given values, the numbers in the 
following table are calculated for T = 300K. For I0 > 0,2mA the results well 
agree with measured values. 

lo/mA 1 0.1 1 0.2 1 0.4 1 0.8 1 1.2 1 1.6 
(D.21) 

T,f/T 1 0.61 I 0.62 1 0.64 1 0.68 1 0.71 1 0.73 

Problem 4.3 
The noise figure of a two-port is defined as the ratio of the output noise 
spectrum of the noisy two-port and that of the noise-free two-port. First, the 
two spectra are calculated. 

Because of Eq. (4.48) we have for the spectrum related to  lie 

jUeI2 = 2kTReo . (D.22) 
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With the currents f b  and fe taken as mesh currents it follows for the voltage 
u1 in the left mesh as induced by the noise sources: 

(D.23)  U 1  = (Rg + Rb + R e o )  ' I b  + R e o f c  . 

Here fc is given by: 

fc = - I" f a o f e )  = - ( I "  - Q O ( l b  + fc)) . (D.24)  ( 
Thus with R = R, + Rb + ReO we have 

~1 = Rfb + & o f c  

(D.25) 

Solving the first equation for f b ,  inserting the result into the second equation 
and solving the second equation for fc leads to 

Using a symbolic notation we get 

(D.26)  

Here the mixed terms are omitted because the sources are uncorrelated. Writ- 
ing the parts of lul l2 separately, leads to 

l I e i 2  = w 2 2  (D.28)  

The output spectrum for the noisy transistor is thus calculated. In order to 
get the spectrum of a noise-free transistor, the spectra Wp, lUb12 and !UeI2  
just have to be set to zero: 

. [ 4 k T R g ]  . (D.29)  
1 

w i 2 0  = 

(Reo + €2 (i - 1)) 

Taking the ratio of both spectra leads to the noise figure: 

4 k T  

4 k T R g  
W i 2  - F = -  - 

w 2 2 0  
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With Eq. (4.49) and Eq. (4.47) the result of Eq. (4.52) is confirmed. Thus the 
noise figure depends on the internal generator resistance as expected. For the 
value Rgopt the noise figure F has its minimum value. In order to calculate 
Rgopt the derivative dF/dRg of Eq. (4.52) has to be calculated and set to  
zero. We thus obtain: 

. (D.31) 
ReoQi 

R:opt = (Rb f ReO)’ + (2Rb f ReO) ’ (QiL + I c e )  
ao(1 - Qo) + 

1, + 

After inserting this result into Eq. (4.52). a short calculation leads to the 
following expression for the minimum noise figure: 

For the given numerical values the results are 

Rg,opt = 222R , (D.33) 

and 

Fmin = 1.57 or F,,, = 2 dB . (D.34) 

Problem 4.4 
The calculation of the noise figure of a common-base circuit starts from the 
equivalent circuit shown below. The calculation is performed in analogy to 
problem 4.3. 

- 
Fig. D.3 
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Solving Eq. (D.35) for 7, and inserting into Eq. (D.36) leads to: 

1 L  
- - Rb 
QO 

(D.37) 

(D.38) 

for the squared magnitude. If Wz2 and W220 are determined, the same relation 
for the noise figure is obtained as in problem 4.3. 

Thus the noise figure and the optimum noise figure for the common-emitter 
circuit and the common-base circuit are equal under the assumptions made. 

Problem 4.5 
Equations (4.115), (4.117), (4.119)> and (4.121) yield 

and hence 

Inserting Eq. 4.116, 4.118 and 4.120 leads to 

(D.39) 

(D.40) 

For V, = 0 the function c(V,) has the numerical value 0.447 and continuously 
decreases to the numerical value 0.395 at V, = 1. Thus, the normalized cross- 
spectrum is almost independent of the operating point. 
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Problem 4.6 
The differentiation of Eq. (4.127) with respect to  X O  leads to  

From this the reactive part of the optimum source impedance follows as 

1 P - Q  
Xopt = - . 

wcg P t R - 2 8 ‘  
(D.43) 

By inserting Eq. (4.127) we obtain 

+ (wCg)2(Ro + R, + Rs)2 (P  + R - 2Q) . (D.44) 1 
The differentiation of this function with respect to  Ro leads to 

R, + Rs - -  dF(X0,t) - 
dR0 Ri 

f [2gmR0(wCg)~(R0 + Rg + Rs)(P + R - 2Q) 
(gmR0)’ 

P R  - Q2 

P - t R - 2 Q  
- S m  - 

- gm(wCg)’(RO + Rg + RS)’(P + R - 2Q) . (D.45) 1 
From the condition dF(XOpt)/dRo = 0 for the real part of the optimum source 
impedance we get 

(WCg)’ (Rapt + Rg + &) (&,t - Rg - R,) ( P  + - 2Q) 

Using Qz = G2FR from Eq. 4.121 the result for Rapt is 

Insertion of 

= ( w C , ) ~ R & ~ ( P  f R - 2Q) (D.48) 



363 

into the equation for F ( X O p t )  leads to 

Fm,, = 1 + 2 .  ___ (wcg)2 (Rapt + R, + Rs) (F  + R - 2Q) , (D.49) 
Sm 

and with the result for Rapt, Eq. (4.131) follows directly. 

Problem 4.7 
Inserting Eq. (4.82) and Eq. (4.84) into Eq. (4.134) leads to the minimum 
noise figure: 

Setting x = A, the evaluation of the optimum operating point is equivalent 
to finding the minimum of the following function: 

Setting the derivative to 

l+x 
(1 + 2x)24=5 ' 

zero leads to 

(D.51) 

G ( 1  + 22) - 

and after some algebraic 
tion: 

conversions we obtain the following quadratic equa- 

(D.53) 
5 
6 

x 2 + - ( Z - l ) = O .  

The solution to t,his equation is 

1 7 
x =  z ( m - 5 ) E  - 12 ' (D.54) 

from which the optimum value of the normalized voltage V, follows as 

(D.55) 

For this calculation the factor K in Eq. (4.134) was taken as constant. Ac- 
counting for the V,-dependence of K as described by Eq. (4.135) results in a 
marginally different value for the normalized voltage: 

2 
Vgopt = (7) J 5 - 1  E 0.3 . 

(D.56) 



Appendix E 
Solutions to  the 

Problems of Chapter 5 

Chapter 5 

Problem 5.1 
If the resistors Rb are interpreted as the external circuit of the two-port with 
the admittance matrix [GI, a short calculation with 

leads to 

1 [ k ] = (1 + G O R ~ ) ~  - G:Ri 

= [G’I [ ] 
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Extending [G’] by Y,  and Y,  leads to the matrix [@I ,  from which the ratio 
Ui/Isg can be calculated: 

Thus the gain is given by 

4Re{Ys} . Re{%} . G: 

1 det [ @] 1 G, = 

With the matrix [GL], extended by the generator admittance only, we obtain 
for the input admittance: 

Inserting Yi = U,., in Eq. (E.4) yields an expression for the available gain. For 
a power match at the input and output we have 

A short calculation leads to 

By inserting this relation into Eq. (E.4), an expression for the maximum 
available gain results after some manipulations: 

. (E.8) I; G: 1 
G -  

rn - (Rb(G; - G:) + Go)’ 

(Rb(Gi - G:) + Go)2 

This result can also be derived directly by a comparison of Eq. (E.2) and 
Eq. (5.9). Replacing Go in Eq. (5.32) by 

Rb(G; - G:) + Go 

leads to (E.8). 
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Problem 5.2 
The ratio U,/Isg as needed for the determination of the gain, can be calculated 
with the matrix [GI extended by Y,, Y ,  and Y,,. Because of 

I s ,  = YsUs + 1 s  , 0 = Y,Va + I , ,  0 = Y,*,U,*, + I:,, (E.9) 

we have 

and thus 

With Eq. (5.20) we obtain for the gain 

(E.lO) 

(E . l l )  

(E.12) 

For the calculation of the available gain, the input admittance of the inter- 
mediate frequency port has to be determined. Therefore, the matrix [GI is 
extended by Y, and Y,",: 

Go+Ys GI  G2 

G1 
(E.13) G1 Go [!I=[ G2 G1 Go+Y,*, 

Thus the input admittance Y,, is given by 

(E.14) 

Inserting Y ,  = Y,', into Eq. (E.12) leads to an expression for the available 
gain. 

Problem 5.3 
For a 180' coupler we observe the following signals a t  diode I and diode 11, 
respectively: 

1 

1 

- ( Us . cos (w, t t 180" + 4.) + Up . cos (up t ) )  

- ( 0, . cos (w, t + 4,) + Up . cos (up t ) )  . 

4 

Jz 

diode I : 

diode I1 : (E.15) 
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The intermediate frequency signal of diode I is: 

diode I : uf N GI Us cos (w, t + 180" + ds) for w, > wp , (E.16) 

and because the polarity has been changed for the diode I1 . 
diode I1 : uf' N 

= 

-GI Us cos (wz t + 48) 
G1 Us cos (w, t + 180" + 4s) . (E.17) 

Thus the intermediate frequency signals a t  both diodes are in phase also for 
a 180" coupler. The difference between the 90" and the 180" coupler is the 
following: For similar mismatched diodes and a 90" coupler the signal path 
and the pump oscillator path are not isolated. but they are both matched. In 
contrast both paths are isolated, if a 180" coupler is used, but the reflection 
might have increased in this case. Thus it has to  be decided which coupler is 
more advantageous for the given application. 

Problem 5.4 
With rectangularly shaped band-pass filters the signals X1 ( t )  at the frequency 
fl and X , ( t )  at the frequency f 2  are filtered from unmodulated white Gaussian 
noise. The bandwidth of the band-pass filters is assumed to be small with 
respect to  the frequency offset f z  - f l .  The bandpass filtered signals can be 
written as the convolution of the unmodulated white Gaussian noise signal 
s ( t )  with the corresponding impulse responses hl(t) and hz ( t ) ,  respectively: 

X1 ( t )  = 7 hl(t ' )  . s( t  - t / )d t '  
-m 

w 
r 

X,( t )  = J hz(t") . s ( t  - t")dt" (E.18) 

-m 

The signal X z ( t )  shall be shifted in frequency by f 2  - f l .  This is possible, 
for example. by an ideal multiplication with 2 . cos[27r(f2 - f l ) t ] .  Thus the 
resulting signal X, ( t )  has frequency components a t  f1. In addition to X , ( t ) .  
it can be considered as an input signal of a correlator as shown in Fig. 3.15. 
If integration and averaging in time are interchanged, then the correlation is 
given by 

(E.19) 

The average over s(t - t ' ) s ( t  - t") yields a non-zero contribution only for 
t' = t", because s ( t )  is a white Gaussian noise process. Thus, the expression 
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in angular brackets has to  be evaluated for t‘ = t’’ only: 

( 2 .  COS(U,~) . ~ ( t  - t’)s(t - t ’ ’ ) ) / t t = t f I  = (2 I COS(U,~)  * ?(t  - t’))  . (E.20) 

The time average of a function multiplied with cos(wt) is always zero. Thus, 
the real part of the cross-spectrum of X l ( t )  and 2 2 ( t )  vanishes. In the same 
way, it can be shown that the imaginary part also disappears. 

Problem 5.5 
First, it will be shown that the imaginary part of the cross spectrum disap- 
pears for an even pump drive signal. For the measurement of the imaginary 
part with a circuit as shown in Fig. 3.15 a phase shift by 90” has to be per- 
formed in one path. In the case discussed here, this 90” phase shift may 
be achieved by means of an ideal frequency shifter and by multiplying with 
2 sin(wpt) instead of 2 cos(w,t). 
similar to Eq. (5.47) results: 

Then an expression, abbreviated by AT, 

2G1 
Go 

AT1 = - sin(w,t’)pod(t’ - t”) . (E.21) 

For the ratio of the cross-spectrum and the power spectrum we obtain 

( X t ( t )  ’ X&)) - - Im { 1; 1 In2 } 
( X W )  IInl l 2  

hi(t’)hS(t’’) . sin(w,t’)dt’ 
- - f a  . (E.22) 

po . h?(t’)dt’ I-, 
As can easily be shown, the integral in the numerator is zero because the 
expression 

COS(W,~’ )  . cos(wst’) . sin(w,t’) 

= -[sin(2wPt’) + sin(2w,t’) + sin(2w,t’)] 
1 

4 
(E.23) 

has no constant term. 

For a mixed even-odd pump drive signal the following relation results instead 
of Eq. (5.42): 

. cos(w,t) - 21m{G1’ . sin(wpt) . (E.24) 
Go 

Obviously, the integration in Eq. (5.48) yields a contribution different from 
zero only, if Eq. (5.47) includes a cosine function. For the calculation of the 
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real part, i.e. by multiplying with 2 cos(w,t), an expression, abbreviated by 
AT2, similar to Eq. (5.47) results as follows: 

AT2 = po .6( t ’  - t”) [ 2Rzr1’ . cos(w,t’) + 21m{G1} . sin(w,t’) . 
GO 1 

(E.25) 

Only the first part in the bracket yields a contribution. A calculation similar 
to the one for an even pump drive leads to 

(E.26) 

For the calculation of the imaginary part, i.e. the multiplication with 2 sin(w,t), 
we obtain an expression corresponding to Eq. (5.47) : 

. sin(w,t/) - 21m{G1) . cos(w,t’) . (E.27) 
GO 1 AT3 = po d(t’ - t”) 

In this case, only the second part in the bracket results in a contribution and 
we have 

Inserting Eq. (5.39) leads to the wanted result: 

= 2k(:T)G; 

(E.28) 

(E.29) 

. For the other matrix elements we obtain with Eq. (5.54): 

If the correlation matrix of the Schottky diode mixer for a mixed even-odd 
pump drive is compared with the correlation matrix of a passive thermally 
noisy N-port network at  a homogeneous temperature (Eq. (2.45)), i.e. 

(E.31) 
2 Re{Y11} Y;2 + Y21 Y;”3 + y31 
y;1 + y12 . . .  . . .  

. . .  . . .  . . .  
k . T  [ 



with 

[GI 

the proportionality of both matrices is obvious. 

Fig. E . l  

With 

for a real GI and 

we have 

Solving for U, leads to 

u, = 

- - 

Thus the noise figure F is 

With Eqs. (5.39) and (5.52) a short calculation with a real Y, leads to 

3 71 

(E.32) 

(E.33) 

(E.34) 
(E.35) 

(E.36) 

(E.37) 

(E.38) 
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With Eqs. (5.25) and (5.24) the last equation can be rearranged to 

F = l + - - ( & - I )  f i T  . 
2 To 

(E.40) 

From this. the wanted result. Eq. (5.55). follows directly. A similar calculation 
with complex G I  and Y, leads to the same result. 

Problem 5.7 
The circuit in Fig. 5.16 can be interpreted as a cascade connection of three 
noisy two-ports. Two two-ports consist of a noisy series resistor Rb at the 
temperature T .  The mixer at the temperature ET/2 without a series resis- 
tance with the noise figure F and the available gain Ga,  is embedded between 
these two-ports. With the noise figures Fbl, Fb2 and the available gains Gavl  
and Gav2 of the series resistors, the total noise factor Ft follows by means of 
the cascade formula Eq. (2.100): 

(E.41) 

For the noise figures Fbl and Fb2 of the two-ports, formed by the series resis- 
tors, Eq. (2.90) yields 

Inserting Eq. (5.55) into (E.41) and manipulating the expression leads to 
I 

(E.43) 

The available gain Ga, of the mixer without losses from the series resistance 
can be calculated by means of Eq. (5.25). For the available gain of the circuits 
with series resistors as a function of the load resistance at the input we obtain 

1 .  
n 

T 
F t = 1 + -  

TO 

1 - Gav2 + Gau~Gau(1 - Gaul) + 5Gau2(1 - Gaul 

Gaul Gav2Gau ( 

(E.44) 

For the first series resistor we have R1 = Z,, i.e. Rl is equal to the source 
resistance on the signal side. For the second series resistor we have R2 = 
Z,,, where Z,, is the real input resistance of the mixer a t  the intermediate 
frequency side. 
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Problem 5.8 
The mixer is interpreted as a cascade connection of three two-ports as in 
problem 5.7. The dissipation theorem yields for the cascade connection of N 
two-ports: 

N 

Here, the coefficients ,Bj denote the normalized dissipated power in the differ- 
ent temperature regions. 

reverse direction 

Fig. E.2 

For convenience, as the noise figure is independent of the load resistance. a 
power match is assumed for 21 at the output. For the normalized real power, 
dissipated by the N-th two-port if the feeding is performed from the output 
side, we have 

(E.46) 

Here, G k N  is the power gain of the N-th two-port in reverse direction and 
Pg is the available source power. Furthermore, we obtain for the (N-1)-th 
two-port: 

and, in general, 

(E.48) 

In order to calculate ,Bj as a function of the available gains in forward direction, 
we will utilize the fact that the gain is independent of the direction (problem 
2.14). 
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I 

I 

Fig. E.3 

Taking any of the cascaded two-ports Fig. E.3, the power transferred in 

Pj = G;(j (1 - I P ~  1 2 )  Pa, * (E.49) 

Here, Pau is the available power and p, is the reflection coefficient according 
to  a mismatch. Eq. (E.49) can also be written as 

Pj = Gk, ‘Pa ,  (E.50) 

where GLj is the gain in reverse direction. With Eqs. (E.49) and (E.50) we 
obtain 

reverse direction by this two-port is given by 

(E.51) 

For power match on the right hand side ( 2 2  = Zopt, p, = 0) we have G k j  = 
G 6 .  The complex conjugate match on the generator side, which is assumed 
for the definition of the gain, is considered in Eq. (E.51). In a similar way a 
relation between the gain and the available gain in forward direction can be 
derived: 

G;, = (1 - Ip,i2). G:uj . (E.52) 

With the gain being independent of the direction (Gk = Gg), Eqs. (E.51) and 
(E.52) yield 

Gk, = G:u, . (E.53) 

Thus, for every reciprocal two-port. the available gain Gauj is equal in forward 
and reverse direction. 

Inserting (E.53) into (E.48) leads to the ,!3, of the series connection of three 
two-ports. With the relations of problem 5.7 we have 

(E.54) 

(E.55) 

(E.56) 
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Insertion into Eq. (E.45) leads to the result for the noise figure of a down 
converter with a series resistance, already known from problem 5.7: 

(E.58) 

Problem 5.9 
With 

n=-m 

and 

S-, = 5’: ( s ( t )  real) 

we get according to  Eq. (5.66): 

(E.59) 

(E.60) 

(E.61) 

Problem 5.10 
The gain in Eq. (5.97) becomes maximum if 2, approaches the negative ref- 
erence impedance -20. 20 is assumed to be real and, for example, equal to 
R,. Thus, the imaginary part of 2, must vanish. This can be achieved by a 
match at  both the input and the output. If the gain is very high, then -2, 
is close to 20 = R,. Inserting -2i % R, = Rl into Eq. (5.106) leads to  the 
noise figure: 

(E.62) 

As can be seen by Eqs. (5.96) and (5.97), we obtain for a high gain, i.e. 

> 1 ,  (€3.63) s: 
WzWd Ri 
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for the noise figure 

(E.64) 

Differentiating the expression in brackets with respect to Wd leads to the op- 
timum frequency wd o p t :  

(E.65) 

Inserting W d o p t  into Eq. (E.64) leads to the optimum noise figure: 

2 . T  W ,  
Fopt = 1 + -- . (E.66) 

TO w d o p t  

Problem 5.11 
In order to  determine the available and the maximum gain, the input re- 
sistances at  the signal and at  the load side have to be calculated. With a 
compensation of the inductive reactances we have 

r 

For a power match at  the output, R, has to be equal to the real input 
impedance Z,, on the load side. We have 

(E.68) 

Inserting R, into Eq. (5.108) leads to  the following expression for the available 
gain: 

Assuming symmetry and a match at both ends. 

(E.69) 

(E.70) 

we get 

(E.71) 
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Inserting Eq.  (E.70) into Eq.  (E.69) leads to the maximum gain: 

S2 1 G -1. m -  (E.72) 

For the calculation of the noise figure. a power match at the output is as- 
sumed. The noise contribution of the series resistance is taken into account 
by two noise sources IUbl2 = 4 k T R b A f  connected in series. The sources are 
uncorrelated because they operate at different frequencies. The noise of the 
resistor a t  the signal side is transmitted to the load side according to the 
squared magnitude of the corresponding transfer function. For the available 
power at the load resistance caused by the noise of the series resistance we 
obtain 

(E.73) 

With R, from Eq. (E.68) and the available gain from Eq. (E.71) some calcu- 
lations lead to  the noise figure of the up-converter: 

AW2 F = I + -  Aw2 = 1 + - 
w20 G,,kTO 

(E.74)  



Appendix F 
Solutions to  the 

Problems of Chapter 6 

Chapter 6 

Problem 6.1 
At the output of the sideband filter either the lower sideband xl(t) or the 
upper sideband IC, ( t )  appears: 

zl ( t )  = Re { X l  . expjj(R0 - w ) t ] }  
1 

2 

1 
2 

= - {  X L  . exp[j(Ro - w ) t ]  + X ;  . exp[-j(Qo - w)tl} , 

= - { X u  . exp[j(Ro + w ) t ]  + X ;  . exp[-j(2Ro + w ) t ] }  . (F.2) 

(F.I) 

z,(t) = Re { X u  . exp[j(Ro + w ) t ] }  

These signals are multiplied by 2 . cosR0t = exp(jR0t) + exp(-jRot) in the 
mixer. The mixing product for the lower sideband results as 
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+Xl exp(-jut)  + X; . exp[-j(Ro - w ) t ] }  . (F.3) 

A similar expression follows for the upper sideband: 

+ Xu . exp(jwt) + X: . exp [-(2Oo + w)t]  } . (F.4) 

The low-pass filter suppresses the frequency components at 2Ro =k w .  Thus 
the output signal is either given by 

1 
2 

Zlb(t) = - [X; exp(jwt) + Xl exp(-jw)t] 

= Re{X: exp(jwt)} = Re{Xlb exp(jwt)} (F.5) 

or 

1 

2 
z,b(t) = - [Xu exp(jut)  + X: exp(-jwt)] 

= Re{X, exp(jwt)} = Re{X,b exp(jwt)} . (F.6) 

The circuit can be calculated in a similar way, if used as a single sideband 
modulator. 

Problem 6.2 
With Eq. (6.19) and Eq. (6.20), Eq. (6.14) yields 

Replacing the phasor products by the corresponding spectra leads to Eq. (6.21) 
and Eq. (6.22). 
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With Eq. (6.19), Eq. (6.20) and Eq. (6.15) we get 

Problem 6.3 
For the squared magnitude of the normalized cross-spectrum we obtain: 

l 2  
~ J W Q O  - w). Wn(% + w )  j 

I wl u b ( w ) 

- - ((moil2 - lmd2)* + 4Re2(m;m@} 

(/moil2 + i m ~ l ~ ) ~  - 41m2{mT,m@} 

(imoil + lmd2) - 41moi121m~i2 +4Re2{m;ma} 

(Imoi12 + - 41m2{m;lm@} 

2 2 

. (F.13) - - 

With 

Imoi1*1m@l2 = lm:12im@12 
= Im;m@j 2 

(F.14) - - Re2 { m:mo} + Im2 { m:m+} , 

we conclude that the squared magnitude is equal to one. 
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Problem 6.4 
We have uin(t)  = Qi, coswt.  Then the output voltage is given by 

V O Q i n C O S W t  , / U i n /  I uo 
U i n  > UO (F.15) 

U i ,  < -uo 
u o u t ( t )  = 

with the small-signal gain 

urn 
UO 

v ,=- .  (F.16) 

For QZn 5 uo the amplifier operates in a linear range and the describing 
function D is equal to the small-signal gain VO: 

D = VO for Qi, 5 uo . (F.17) 

For uin > uo the waveform of uout(t) is shown in the figure below. 

Fig. F.1 

The boundary point a between the linear range and the saturation range 
follows from 

as 

urn 210 a = arccos - = arccos 7 . 
V O U i n  U i n  

The output voltage can be written as a Fourier series: 

(F.19) 

uOut(t) = C uout . cos nwt . (F.20) 
n=l  
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The amplitude of the fundamental wave is given by 

27: 
1 

uOut = - 1 uout(t) . cos wt dwt 
7r 

0 

7:/2 

- - 4 1 uOut(t) . cos wt dwt 
7r 

0 

With 

and 

we obtain 

210 cosa = - 
Gin 

(F.22) 

The describing function finally is given by 

(F.25) 

At the transition to  the linear range, i.e. if C,, = UO, we get D = VO, as 
expected. For C,, -+ co, D approaches zero and uoutl approaches 4/7r.u,. In 
summary, the describing function depends on the input drive level as shown 
in Fig. F.2. D is continuously differentiable, even at the transition to the 
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I + 
I 

1 2 3 4 5 6 7 8 9  Gin 

UO 

Fig. F.2 

saturation range. 

Problem 6.5 
Using the notation of problem 6.4 we obtain 

The derivative of the describing function is given by 

d D  - 
dQin 

1 

(F.26) 

Un 1 _- 

/&j 

2 
4 'u.0 (F.27) 
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1 

0.5-- 

Thus we get 

-- 

b 

(F.28) 

At the boundary to  the linear range, that means uzn = U O ,  we have k, = 0. 
For Q,, >> uo and thus arcsinuo/Qzn x uO/Qln and with 

/ l - ( $ x l  (F.29) 

In this example, there is no phase shift between the input signal and the 
output signal, independent of the amplitude. Thus the phase g of the describ- 
ing function is g = const = 0 and consequently k, = 0. 

we obtain k, x 1. In the linear range we have D = V,  =const and accordingly 
k, = 0. In summary, the curve of the amplitude compression coefficient is 
shown in Fig. F.3. If the linear range is exceeded, k, rapidly rises to values 
close to one. 
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Problem 6.6 
The input signal can be considered as a combination of a carrier signal a t  f l  

and an upper sideband at  f l  + Af .  The sideband causes both an amplitude 
modulation and a phase modulation of the carrier with the modulation fre- 
quency A f = f2  - f l .  Both types of modulation can be treated separately, if 
the upper sideband is split into two in-phase components with the amplitude 
A/2 and if two antiphase signals with the same amplitudes are added at  the 
lower sideband frequency f1 - A f (Fig. F.5). 

f l  f i  + Af f 

i' 
f i  f i + A f  f 

fi - A f  
Fig. F.4 

Since Az/Al >> 1, the in-phase pair of sideband signals causes a pure am- 
plitude modulation, the other pair a pure phase modulation. In a non-linear 
system with hard amplitude clipping the amplitude modulation is almost com- 
pletely suppressed so that a t  the output only the carrier and the sideband 
signals of the phase modulation will appear. If the peak phase deviation of 
the modulation remains constant, the relation of the sideband to the carrier 
amplitudes does not change and with an amplification factor V the following 
spectrum is observed at the output: 

4 .................... ..................... > V.42 + fa 

Fig. F.5 
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If for a frequency multiplier or frequency divider the phase deviations are 
multiplied or divided by the factor N,  the sidebands amplitudes are changed 
by the same factor relative to the carrier. The resulting spectra are shown in 
Fig. F.6. 

2 N  

Nfl - - -42 
V-42 
2 N  N N V -  

2 

frequency divider frequency multiplier 

Fig. F.6 

Note that by a multiplication or division the phase or frequency deviations 
change but not the modulation frequency. Thus the sidebands of the output 
signals have the same offset Af to the carrier as the component A2 of the 
input signal. 

Problem 6.7 
We will assume that the signal z ( t )  is not directly fed into the mixer but via 
a phase shifter with the phase shift @o. Then we have 

~ ( t )  = Xo . cos [Rot + @o + A@(t)] , (F.30) 

y ( t )  = Yo. cos[Rot t AQ(t)] . (F.31) 

If the mixer is treated as a multiplier with the multiplier constant K M ,  the 
output signal is given by 

~ ( t )  = KM . z ( t ) .  y ( t )  
= KM . XoYo cos [Clot + @o + A@(t)] . cos [Rot + AQ(t)] 

1 
-KMXOYO{COS [A@(t) - A@(t) - @o] 
2 
+ cos [2Rot + @o + A@(t) + AQ(t )]}  (F.32) 

The second term, which is a high-frequency component, is suppressed by a 
low-pass filter. With jAQ(t) - A@(t)l << 1 we obtain 

= 

1 
u ( t )  = - K ~ X O Y O { C O S @ O  COS[AQ(~)  - A@(t)] 

2 
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+ sin @o sin[AQ(t) - A@(t)]} 
1 
2 

= - K ~ X o Y o { c o s  + sin @o . [AQ(t) - A@(t)]} . (F.33) 

The output signal consists of a dc and an alternating voltage which is propor- 
tional to the difference of the phase fluctuations of both input signals. The 
phase detector constant Kpg  thus follows as 

1 
2 

Kpg = - K M X ~ Y ~  . sin . (F.34) 

For @o = 0 we get Kpg = 0. The highest sensitivity is obtained if both input 
signals have a phase difference of 90". In this case, the d.c. voltage of the 
output signal is zero. By monitoring the d.c. voltage while tuning a variable 
phase shifter, a balanced mixer can be adjusted for maximum phase detector 
sensitivity. 

Problem 6.8 
The three measurement objects shall have the noise spectra W$nl. W$n2 and 
L V Q ~ ~ .  If for all pairs of objects the phase jitter is measured with the circuit 
shown in Fig. 6.10. the following noise spectra of the output voltage u( t )  are 
obtained: 

Wul = KiD(WQn1 + w ~ n 2 )  1 (F.35) 

wu2 = KiD(WGn1 + WGn3) > (F.36) 

wu3 = KiD(W$n2 + WGn3) . (F.37) 

This linear system of equations can be solved for the unknown spectra W,,,, 
i = 1 ,2 ,3 :  

1 

(F.38) 

(F.39) 

(F.40) 



Appendix G 
Solutions to  the 

Problems of Chapter 7 

Chapter 7 

Problem 7.1 
The optimum signal power can be determined with Eq. (6.88). 

In Go = (5dBm) ln(15dB) = 10.4dBm . (G. l )  
Psat 
GO 

Psopt = - . 

The gain for this signal power is 

Therefore, the power at the output is 19.9 dBm. Due to  the signal divider 
the output power of the oscillator is reduced to 16.9 dBm = 50 mW. 

Equation (5.91) leads to 
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or 

This quadratic equation has the solution 

Problem 7.2 
According to Eq. (6.90) the amplitude compression factor is 

With FT = QT/(2n),  the corner frequencies f t l  = wtl/2.rr and f t 2  = ut2/2n 
are given by 

The spectral power density WO is calculated as 

F kT0 
2 pi, 

wo = ef = (-174 + 20 - 3 - 10.4) dB/Hz = -167.4dB/Hz . (G.8) 

Without consideration of the 1/ f -noise, the amplitude noise a t  frequencies 
below f t l  is 

Wo = -185.3dB/Hz (G.9) 

and above f t 2  it is 

W, = (1 - /c,)~ Wo = -186.3dB/Hz . (G.lO) 

For strong amplitude compression both corner frequencies are close to each 
other. Then. the drop in amplitude noise is not very pronounced. 

Without 1/ f-noise the phase noise is given by 

( G . l l )  

At f =1 kHz and in 1 Hz bandwidth we obtain the numerical value W = -87.8 
dB/Hz. With the 1/ f-noise included all numerical values for the spectra are 
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1:; 1 \w4 -30 dB/decade 

-110 
I ::::I 

-170 

-20 dB/decade 

~ ; '... '.. ... .. 
' ..,,( '.. ._ 

" ..,.,, " ......, 
f c !  t 1 j i f t 2 ''.... ...\,, "' " ....,,, , , , 

103 104 l o 5  lo6 107 los  f 

Fig. G . l  
port oscillator with llf-noise included. 

Quantitative spectra of the amplitude and phase noise of a two- 

multiplied by (1 + f b / f ) .  The result is shown in Fig. G.l. 

Problem 7.3 
Interchanging the positions of the resonator and the signal divider does not 
change the function H(R). Thus, also the oscillation condition remains un- 
changed and therefore the values for the oscillation amplitude, the coupling 
factor /3 and the amplitude compression factor k ,  are the same as those of the 
problems 7.1 and 7.2. However, by modifying the output coupling network, 
the function A(R) is no longer frequency independent but is given by 

A(R) = H(S1) . (G.12) 

With the Eq. (7.14) we obtain for the amplitude and phase fluctuations of the 
output signal: 

with 
1+2p 

1 + 2 / 3 + j 2 & o w / R ,  
HZ = 

and 
H A  = 0 

(G.13) 

(G.14) 

(G.15) 
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Hence we get 

(G.17) 

with the spectra 

(G.19) 

A comparison with the Eqs. (7.41) and (7.42) shows that there is no corner 
frequency wt2 any more. The phase noise decreases steadily by 20 dB/decade. 
The same holds for the amplitude noise a t  offset frequencies above utl. Below 
the corner frequency wt1=8.43 MHz we obtain the same quantitative values 
for the spectra W, and WQ as in 7.2. The constant decrease by 20 dB/decade 
for f >> ftl leads to the dotted curves in Fig. G. l .  

Problem 7.4 
With U and I real, we have R = -U/ I  and 

The output power is given by 

(G.21) 
1 

P = - U I .  
2 

For the maximum power the derivative of the power with respect to the current 
amplitude I equals zero: 

dP 
(G.22) 

Hence 

(G.23) 
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This means that the maximum of the output power occurs in the descending 
part of the U / I  characteristic of Fig. 7.7a. We obtain for the compression 
factor a t  this operating point 

k , = 2 .  (G.24) 

Problem 7.5 
The oscillation condition follows from Eq. (7.54): 

1 
2 

f12,/2.ir = - n m  = 503.3MHz . 

With kT0 = -174 dBm/Hz and Eq. (7.12) we obtain for W,: 

(G.25) 

(G.26) 
F,f . kTo (-174 + 20) dBm/Hz 

W, = - - = -157dB/Hz . 
2 pzrl 3 dBm 

The corner frequency ft = wt/2.ir is given by 

k, Ro - 2 . 5 0  
Hz = 7.96MHz . - 

ft = zz 477.10-6 

For f << ft the amplitude noise has the constant value 

1 
W, = y Wo = (-157 - 6) dB/Hz = -163dB/Hz . 

k, 

The phase noise at an offset frequency of 1 kHz is calculated as 
I 

(G.27) 

(G.28) 

2500 
(-157dB/Hz) = -85 dB/Hz . 

R2 w, = 0 
(2wL)Z Wo = ( 4 r .  103 . i o - 6 ) 2  

(G.29) 
The corresponding spectra W, and W, are shown in Fig. G.2 . 
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I , I I b 
103 104 105 lo6 ft 107 108 f 

[Hzl 
Fig. G.2 

Problem 7.6 
The function H(R) of Eq. (7.50) is given by 

1 1 

(G.30) 

By inserting this relation into the oscillation condition we obtain the same 
expressions as for the series resonance circuit given by the Eqs. (7.53) and 
(7.54). The oscillation frequency and amplitude are equal for both circuits. 
The voltage U is identical to the voltage at the load resistance, hence A(R) = 
1. With C2 = RO + w and w << 00 we obtain 

1 

H(R) = f j 2 w C  , (G.31) 
RO 

and 
H c = l + j 2 w R O C ,  H a = O .  (G.32) 

The results for the amplitude and phase fluctuations are 

- 1 AUn AuR - AU - - - - 
URO Vo k , - j2wRoC(1-ka)  VO ’ 

1 

32wRi3C A0 = A Q = - ,  AQ7l 

The stability can be checked with the function 

(G.33) 

De(p)  = k, - 2 Ro C(1 - k a ) p  . (G.34) 
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+ 
IUI 

From De(p1) = 0 we get 

b 

(G.35) 

Compared to Fig. 7.7 current and voltage have been exchanged. Then, 
the circuit with the parallel resonance circuit can be calculated in exactly the 
same way as the circuit with the series resonance circuit by exchanging the 
quantities current and voltage. 

Problem 7.7 
The calculation of the input admittance of the circuit in Fig. 7.11 can be 
performed as follows. The input admittance at the emitter is given by: 

i y . - . 2 .  ea - 
u e  

For the currents ib and i, we have 

The voltage ue and the current ie  at the emitter port are given by 

ue = - ( u b e  f i b Z B )  3 

i e  = - ( i b  ti,-) 

with ZB = ~ / Y B .  Inserting Eq. (G.37) and Eq. (G.38) leads to  

(G.36) 

(G.37) 

(G.38) 

(G.39) 

(G.40) 

For 0 < k, < 1 we have p l  > 0. Thus, in general, the circuit is not stable. 
However, one-port oscillators are stable if the active one-port has a charac- 
teristic of the form shown in Fig. G.3  
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Thus the input admittance at  the emitter can be calculated as 

(G.43) 

Considering Z B  as a pure reactance with Z ~ ( j w )  = j X ~ ( w )  and separating 
Ye, into its real and imaginary parts leads to 

The requirement of a negative real part of the input admittance can be met 
if X,(w) > 0. The base of the transistor should be connected to  an inductive 
circuit with Z g ( j . j )  = ~ X B ( W ) .  

Problem 7.8 
The transfer function of the symmetrical transmission resonator was already 
given by Eq. (7.28). With /31 = ,!32 = p as the coupling factor, R, as the 
angular resonance frequency, R1 as the angular input carrier frequency and 
QO as the unloaded Q-factor we get for the transmission coefficient S21 or 
transfer function H :  

(G.45) 2P 
5’12 = 5’21 = H ( R 1 )  = 

1+2p+jQo (2  - 2) ’ 
The input angular carrier frequency R1 differs from the angular resonance 
frequency Rr by the angular displacement frequency AR,, i.e. R1 = Rr +AR,. 
With w as the angular offset frequency of the noise sidebands and with the 
assumption that QO w/R, << 1 and ARr/RT << 1 we can write for Eq. (7.16): 
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(G.47) 

There is no useful optimum choice for the coupling factor p. Although the 
magnitude of Ha has a maximum at /3 = 0, this choice for ,8 is not practical. 
However, 2QoART/RT = 1 + 2,!3 leads to an optimum value with respect to 
the angular displacement frequency ART. Then. we get for the spectrum the 
expression: 

(G.48) 

For a practical choice of the coupling factor of P = 0.5 leading to a transmis- 
sion loss of the transmission resonator of 6dB. we get for the spectra: 

(G.49) 

Comparing this result with the circuit of Fig. 7.27, i.e. Eq. (7.102), one may 
argue that the transmission resonator type discriminator shows a degradation 
of the discrimination efficiency by 6dB as compared to  the circuit with the 
reflection type resonator and the by-pass phase shifter. 

Problem 7.9 
The delay line has the transfer function 

~ ( n ) = e x p [ - ( a ’ + j t )  11 = e x p [ - ( c i + j  ”-”) V l ]  , (G.50) 

where v is the phase velocity of the line. Because 1 is assumed to be an 
integer multiple n of the wavelength at  the oscillation frequency 00, we have 
R l f v  = n2n and thus 

In conjunction with G(R) = j we obtain from Eq. (7.95): 

(G.51) 
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2 

(G.52) 

After some further manipulations we finally obtain 
2 

sin - 

cosh a’l 
WU(w) = ( K a d Y ~ ) 2  [Gl WQ(W) . (G.53) 

The optimum length lopt can be determined by means of a differentiation 
of the expression within the brackets with respect to the length 1. With 
the approximation sin w 1/2v = w 1/2v for low offset frequencies the optimum 
length lopt follows from the condition 

a’lopt tanh(a’lOpt) = 1 . (G.54) 

This transcendental equation has the approximate solution 

a’lopt FZ 1.2 or lopt FZ 1.2/aipt . (G.55) 

Problem 7.10 
The resonator is assumed to be critically coupled so that the frequency dis- 
criminator has its maximum sensitivity. With p = 1 Eq. (7.97) yields 

H(RrJ) = 0, H(Q0 + w) = H”(R0 - w) . (G.56) 

If a 3 dB-180” coupler is employed, then at one output the sum and at the 
other output the difference of the input signals is obtained. The amplitude 
fluctuations of both output signals are calculated with Eq. (7.14): 

1 H(R0 + u ) + e x p ( j y )  + H(% + ~ ) + e x p ( - j y )  A X  1 %  
1 

- A Yi = - [  
+ j  2 [ 

YO 2 exp(J.7) exP(-jT) 

H(QO + w) + exp(j7) H(Ro + w )  + exP(-jT) *@ - 
exp(.in/) exP(-j7) 

A X  
= [1+H(R0+w).cosy] - -  + H ( R o + w ) . s i n y . A @  , 

XO 
(G.57) 



399 

H(R0 +w)- exp(jy) + H(Ro +w)-exp(- jy)  

YO 2 - exp(j7) - exP(-jy) 

- H(R0 + w) - exp(-jy) 
- exp(-jy) 

AX 
= [ l - H ( R o + w ) . c o s y ] -  - H ( R o + w ) . s i n y . A @  . 

XO 
(G.58) 

The output voltage u( t )  is the difference of the voltages of both detectors, 
which are proportional to  the amplitude fluctuations AYllYo and A Y2/Yo. 
We thus obtain 

A Y1 - A Y2 AX 
u( t )  YO + s i n y A @ )  . (G.59) 

We note that the contribution of the amplitude fluctuations of the input signal 
vanishes for y = 90" while the conversion efficiency for the detection of phase 
fluctuations reaches its maximum. If a 3dB-90" coupler is employed, the same 
result is achieved for y = 0. 

Problem 7.11 
For the output signal of the amplifier, the 3 dB coupler has the same effect as 
the signal divider in Fig. 7.3 .  Therefore, the transfer functions H(R) and A(R) 
do not change. The transfer function E(R)  of the input coupling network 
of Fig. 7.32 has the constant value l / f i  as A(R). With Y, = Zi/f i and 
Z = Y I A  we have 

and 

(G.60) 

(G.61) 

Since according to Eq. (7.27) D ( X )  is real, the imaginary part of the oscillation 
condition, Eq. (7.105). leads to 

(1 + 4% cos 19) = 0 a, - Ro (1 + 2 P) qz sind - 2 QO- 
a0 

(G.62) 

At the boundaries of the synchronization range we have R, - Ro = +An, 
and I9 = i.90". This results in 

and 

(G.64) 
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Problem 7.12 
With Eq. (7.145) the standard deviation of the measured velocity is given by 

(G.65) 

with OR as the standard deviation of the angular frequency difference. Similar 
to the calculation of u ~ ,  the standard deviation can be determined by an 
integral of the corresponding spectrum: 

W a ( f )  [l - C O S ( ~ T ~ T ) ]  df . (G.66) 

-03 

Because of 
d 

An@) = - [A@@)] 
d t  

the relation between the spectra Wa and WQ is given by 

(G.67) 

wa = (27r f ) 2  w, . (G.68) 

This leads to 

wn = 2 7 ( 2 . f ) 2  W@(f)  [l - cos(27rf7)] df (G.69) 

--33 



Appendix H 
Solutions to  the 

Problems of Chapter 8 

Chapter 8 

Problem 8.1 
The cascade circuit generates impulse like signals behind the 1-bit quantizer 
at the positions y l ,  y2 and y3 with amplitude values of zero or one. A signal 
with the amplitude value one for one time step shall be denoted as unity 
impulse or simply impulse. For the first stage a unity impulse (y1 in Fig. 8.7), 
is directly transmitted to the output y.  After the second and third stage 
the unity impulses (y2 and y3 in Fig. 8.7) are differentiated once or twice, 
respectively, and also transmitted to the output (y  in Fig. 8.7), where all 
three signals ( y l ,  y; and y; in Fig. 8.7) are summed up. 

The Z-transformed transfer functions of the three differentiation networks 
are given in the table. By a reverse Z-transformation into the time domain 
one obtains the corresponding finite impulse responses h(k), also given in the 
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(1 - 2 - 1 ) O  = 1 
(1 - z- l ) l  = 1 - 2-1 

(1 - 2 - 1 ) 2  = 1 - 22-1 + 2-2 
6 ( k )  (H.1) 

6 ( k )  - 6 ( k  - 1) 
b ( k )  - 2 6 ( k  - 1) + S ( k  - 2 )  

1. stage 2 .  stage 3.  stage 

deviation deviation deviation +lp+:b+:-; -1 0 -1 -1 

- 2  - 2  - 2  

Fig. H.1 

For instance, with the appearance of an impulse at  the position y 3 ,  an 
increase of the division factor N behind the differentiator of second order 
by +l is induced, a decrease in the succeeding clock cycle by - 2  and once 
again an increase by +l in the following clock cycle. Because the impulses 
of the different stages can arrive either simultaneously or at earlier or later 
clock cycles and because the differentiation networks are linear circuits, the 
maximum division factor deviation can attain the value +4 for a three-stage 
configuration. This situation occurs if an impulse is produced by all three 
stages simultaneously and in addition an impulse signal already appeared two 
clock cycles earlier. The minimum deviation of the division factor is obtained 
when at  least the second and the third stage produce impulses simultaneously 
in front of the differentiation networks, but not the first stage. The sum of -1 
and - 2  leads to the maximum negative deviation of -3. Similar reasoning 
results in division factor deviations of -1 to + 2  for the two-stage and 0 to +1 
for the one-stage configuration. 

Problem 8.2 
The transfer function H ( z )  is given by 
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1 
- 4 

- 

T 4  'I 1 
(1 - 2-1)2  + ?(l - 2-1) ' 2-1 

- 

1 
- Z 2  
4 
r 

Thus the zeros 21,2 of the denominator are 

2 1 , 2  

or 

1 

8 
- ( - 5 & j f i )  

We conclude that the zeros lie within the unit circle and stability is guaran- 
teed. 

Problem 8.3 
The transfer function H ( z )  is given by 

yo H ( z )  = 
F 

- - 
27 1 

16 2 
z 3  - 2 z2 + - Z  - - 

The zeros of the denominator are 

Again we conclude that the zeros lie within the unit circle and stability is 
guaranteed. 
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l/f-noise, 3, 210 
3 dB-method, 113 
A/D converter, 288 
Admittance matrix, 39 
AXI-PM conversion factor, 225 
Amplifier, 53 

uncorrelated amplifier, 54 
Amplitude compression factor, 225 
Amplitude detector, 270 
Amplitude distribution, 5-6 
Amplitude distribution density, 5 
Amplitude modulation, 109 
Amplitude noise, 175, 211, 230, 252 

of amplifiers, 218 
of oscillators, 238 

Analog-to-digital converter ADC, 287, 291 
Analog multiplier, 89 
Antenna noise, 52 
Attenuator, 51 
Autocorrelation function, 9-10, 22 

Auxiliary oscillator, 272 
Available gain, 168, 170 

transformation of the,  22 

maximum available gain, 170 
of the down converter, 168 

Available noise power, 34 
Avalanche diode, 114 
Avalanche noise, 3, 136 
Balanced mixer, 173. 271 
Baseband phasor, 213 
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equivalent baseband phasor, 213 
Bipolar transistor, 140, 236 
Bivariate probability density, 18 
Boltzmann constant, 30 
Broadband mixer, 171 
Campbell theorem, 130 
Cascade circuit, 295 
Cascade formula, 63 
Central limit theorern, 6, 14 
Central moment, 8 
Chain circuit, 295 
Characteristic function, 13 
Circulator, 47, 272 
Clutter noise, 284 
Cold or unpaired method, 117 
Cornbination frequencies, 164 
Compensation radiometer, 101 
Complex transfer function, 21 
Compound probability, 7 
Conditional probability, 7 
Conditional probability density, 7 
Control loop bandwidth, 289 
Conversion loss, 170 
Conversion niatrix, 223, 240 

of linear networks, 240 
Corner frequency. 252 
Correlation, 10, 92. 178 
Correlation niatrix, 183 
Correlation radiometer, 107, 112 
Correlator, 107, 109 
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Coupling factor, 268 
Covariance, 19 
Critical coupling, 269 
Cross-correlation function, 10, 92 
Cross-spectrum, 92 
De-embedding, 123 
Delay line, 270 
Describing function, 224, 236 
Dicke-radiometer, 95 
Discrimination efficiency, 268 
Dissipation theorem, 37, 60 
Distance measurenierit, 281 
Down converter, 166-167, 188 

two-port equivalent circuit, 167 
with field effect transistor FET. 188 

Effective bandwidth, 87 
Effective noise temperature, 135 
Elastance, 199 
Ensemble average, 7 
Equivalent circuit, 171 

of a down converter, 171 
Equivalent current source, 39 
Equivalent noise source, 46 
Equivalent noise temperature, 35, 93 

measurement of the, 93 
Equivalent voltage source, 39 
Ergodic process, 9 
Expected value, 8 
Field effect transistor FET,  146, 236 
Flicker noise, 3, 136, 210 
Fourier transform, 13 
Fourier transformation, 13, 87 
Fractional divider circuit, 301 
Fractional divider phase locked loop, 289 
Fractional division factor, 291 
Fractional division ratio, 290 
Fractional logic circuit, 302 
Free running oscillator, 272 
Frequency converter, 230 
Frcquency discriminator, 266 
Frequency divider, 228 
Frequency domain, 21 
Frequency modulation, 284 
Frequency multiplier, 228 
Frcquency translation, 180, 209 
Gain, 56 

available power gain, 56 
maximum available power gain, 56 
of the down converter; 168 
power gain, 56 
transducer power gain, 56 

Gallium arsenide (GaAs) diode, 136 
Gaussian distribution, 6 
Gaussian process, 19 
Gunn diode, 236 
Harmonic frequency, 164 

Harmonic mixer, 189, 194 
Heterodyne principle, 279 
Heterodyne reception, 279-280 
Hot-cold noise measurement method, 116 
Image frequency, 166-167 
Impatt diodc, 236 
Impedance matrix, 40 
Impulse response, 20 
Injection locking, 272 
Injection power, 275 
Intermediate frequency. 165 
Inverse Fourier transform, 13 
Isolator, 48 
Johnson noise, 30 
Large signal amplifier, 226 
Local oscillator signal, 164 
Lower sideband conversion, 165 
Majority carrier, 133 
Maximum available gain, 168 

of the down converter. 168 
‘Mean noise power, 8 
Measurement, 88, 262 

of amplitude noise, 262 
of oscillator noise, 262 
of phase noise, 264 
of the cross correlation function, 88 
of the cross spectrum, 88 

Microwave gas spectroscopy, 285 
Minimum noise figure, 159 
Mixer, 230 
Noise corner frequency, 210 
Noise factor. 54 
Noise figure, 54, 60, 65, 184, 207 
Noise figure measurement, 114, 196 
Noise figure 

minimum noise figure, 66 
of the parametric amplifier, 200 
total noise figure, 63 

Noise match, 69 
Noise matching, 66 
Noise modulation, 211 
Koise power measurements, 85 
Noise sidebands, 210 
Noise tempcrature, 35, 110 
Noise wave, 46 
Normal distribution, 6 
Normalization condition, 5 
Normalized cross-spectrum, 24 
Nyquist-relation, 35 
Offset frequency, 216, 252 
Ohmic region, 149 
One-port oscillator. 235, 248 
One-sided spectrum, 11 
Oscillation condition, 238 
Paired noise measurement method, 116 
Parametric amplifier, 196, 200 
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Parametric approach, 164 
Phase detector, 231 

Phase locked loop, 256 

Phase modulation, 284 
Phase noise, 211, 276 

of oscillators, 238 
Phase shift, 269 
Phasor description, 164 
PIN diode, 137 
Pinch-off voltage, 147 
Planck correction, 35 
PLL, 261 
PM-AM conversion factor, 225 
PN-diode, 127, 137 
PN-junction, 137 
Poisson process, 130 
Power gain, 168 
Power meter, 90 
Power spectral density, 11 
Power spectrum, 11, 30 
Probability density, 5 
Pump level, 168 
Pump signal, 164 
Pump voltage, 163 
Quantization bits, 288 
Quantization error, 287 
Quantization noise, 288-289 

Quantization step, 288 
Quantizer, 287 
Radiometer, 93, 111 

phase detector constant, 231 

phase locked loop circuit, 256 

quantization noise power, 288 

switching radiometer, 93 
two-channel radiometer, 111 

continuous random variable, 4 
discrete random variable, 4 

Random variable, 4 

Reference impedance, 47 
Reference oscillator, 272 
Reflection coefficient, 99 
Reflection type resonator, 268 
Resonator quality factor, 247 
Sampling frequency, 287 
Sampling mixer, 189 
Saturation region, 149 
Scattering matrix, 47 
Schottky diode, 127, 133, 170 
Schottky relation, 133 
Shockley model, 147 
Shot noise, 3. 128, 132, 178 
Sigma-delta modulation, 291 
Signal-to-noise ratio, 57 

Signal divider, 52, 267 
Silicon (Si) device, 136 
Single sideband converter, 213 
Sinusoidal voltage, 167 
Source impedance 

Spectral density function, 30 
Spectral distribution, 30 
Spectrometer, 93 
Spectrum, 11, 30 

optimum source impedance, 69 

one-sided spectrum, 11 
two-sided spectrum, 11 

Stability condition, 242 
Standard deviation, 8 
Stark modulation, 285 
Stationary process, 8 
Stationary random process, 288 
Statistical independence, 7 
Statistical spread, 6,  8 
Stochastic process, 4 
Superposition principle, 164 
Synchronization range, 274 
System temperature, 110 
Thermal noise, 2, 30 
Time domain, 21 
Transformation, 23 

of the power spectrum, 23 
Transient behavior, 302 
Transmission resonator, 276 
Two-channcl radiometer, 111 
Two-port, 208 
Two-port equivalent circuit 

of a down converter, 167 
Two-port oscillator, 235, 243 
Two-port 

non-linear two-port, 208 
linear two-port, 209 

Two-sided spectrum, 11 
Two-transistor model, 151 
Up-converter, 205 
Upper sideband conversion, 165 
Vacuum diode, 128 
Vacuum tube, 128, 236 
Varactor, 196 

varactor diode, 196 
Variance, 8 
Velocity measurement, 282 
Voltage controlled oscillator VCO, 255 
Weighting coefficients, 298 
Weighting function, 20 
Wiener-Khintchine-relations, 11 
Y-factor-method, 114 
YIG-tuned oscillator, 280 
Z-transformation, 292 




