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ABSTRACT

This book has one objective: to join in one text all the practical information and phy
principles that permit a planar transmission line device to work properly. The eight appen
have been written with the aim of helping the reader review the theoretical concepts in t
chapters.

This book is intended for microwave engineers studying the design of microwave and 
frequency planar transmission line passive devices in industry, as well as for students in mic
and RF disciplines. More than 500 up-to-date references make this book a collection of th
recent studies on planar transmission line devices, a characteristic that also makes thi
attractive to researchers. 

Chapters are dedicated to the analysis of planar transmission lines and their related d
i.e., directional couplers, directional filters, phase shifters, circulators, and isolators. 

A special feature is a complete discussion of ferrimagnetic devices, such as phase s
isolators, and circulators, with three appendices completely dedicated to the theoretical as
ferrimagnetism. Also provided are more than 490 figures to simply and illustrate the input–o
transfer functions of a particular device, information that is otherwise difficult to find. 

This book is highly recommended for graduate students in RF and microwave engineer
well as professional designers.
©2000 CRC Press LLC
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PREFACE

By “planar transmission line” we mean a transmission line whose conductors are on p
Examples are microstrips and slotlines. By “device” we mean a component that is capable of 
some electrical property in addition to the obvious “RF” connecting characteristic. Example
directional couplers and phase shifters. All the devices we will study are made of planar transm
lines. By “network” we mean a set of complicated “RF” transmission lines without any additi
performance beyond interconnecting capability.

While the author has made an effort to explain in a simple way all the theoretical con
involved in this text, a graduate-level knowledge of electromagnetism and related scientific 
such as mathematical analysis and physics, is required. 

Chapter 1 introduces all the concepts of the general theory of transmission lines. Chap
dedicated to microstrip networks that are widely diffused in planar devices. Chapter 3 is ded
to the stripline, perhaps the first planar transmission line developed. Chapter 4 introduces th
problems that can be encountered in planar transmission line networks and devices like d
nuities and higher order modes. Chapter 5 is dedicated to a very important microstrip netwo
the coupled microstrip structure, while Chapter 6 is the stripline counterpart, i.e., the co
stripline structure. Chapter 7 is the largest chapter of this text. It introduces the most used mic
devices, like directional couplers, phase shifters, and more. Chapter 8 is the stripline coun
of Chapter 7, and stripline devices are studied. Chapter 9 introduces the slotline, a full 
transmission line, i.e., a transmission line with both conductors on the same plane. This c
also studies the most important devices that can be built with slotlines. Chapter 10 is dedic
the coplanar waveguide, another full planar transmission line. Also in this chapter, the most 
devices employing coplanar waveguides are studied. Finally, Chapter 11 introduces the co
strips transmission line, which is mainly suited for transmitting balanced signals, requiring a 
“PCB” area.

Appendix A1 reviews the theory of the solution methods for simple electrostatic probl
Appendix A2 introduces the most important concepts of wave theory. Appendix A3 is dedi
to the external properties of networks, like the “[s]” parameter matrix. Appendix A4 reviews
main concepts regarding resonant circuits. A common note holds for Appendices A5 and A6.
introduce only the main formulas and concepts for a proper understanding of Appendix A7
must not be evaluated as an alternative to dedicated texts on physics. Appendix A5 is dedic
physical relationships among charges, currents, and magnetic fields. Appendix A6 introduc
magnetic properties of materials. Appendix A7 is dedicated to the most important aspects
electromagnetic field inside ferrimagnetic materials. Finally, Appendix A8 reports all the sym
and some useful relationships used throughout in this text.

To further help the reader, at the end of each chapter and appendix are additional refe
where some particular issue is analyzed in more detail. If the reference is difficult to find, 
possible we have reported alternate texts where the topic under study can be found. 

Filters, other than planar transmission line devices, are not the goal of this text and a
included here.

The author hopes this text will help the reader understand the world of planar transmissio
networks and devices and will aid in deciding how to choose the proper device. The autho
hopes this text will stimulate the reader to study and research other new devices.

Franco Di Paolo
 January 2000
©2000 CRC Press LLC
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CHAPTER 1

Fundamental Theory of Transmission Lines

1.1 GENERALITIES

In telecommunication theory, “transmission line” means a region of the space where 
signals can propagate with the best compromise between minimum attenuation and available
of the space. The particular shape of the transmission line can suggest the frequency rang
the best compromise exists. In fact, depending on the transmission line shape, it will be bes
to transmit some frequencies and not others.

We can divide transmission lines* into four types:

1. Coupled wires
2. Parallel plates
3. Coaxial
4. Waveguide**

The first three types belong to a family usually called “two conductor” transmission lines 
while waveguides belong to “one conductor” transmission lines. Other types of t.l. can be inc
in one of the previous four types. For example, twisted wires lines, parallel wire lines, and slo
belong to type 1 above (slotlines will be studied in Chapter 9).

A two conductor transmission line can be “balanced” or “unbalanced.” An unbalanced t
mission line is characterized as having one conductor fixed to a potential, usually the groun
while the potential of the other conductor moves. A balanced transmission line is characteri
having both conductors as moving potentials with respect to ground potential. In general, the
of which t.l. to use depends on the type of the generator or load we have to connect to o
However, physical dimensions of the t.l. greatly influence the natural propagation mode of th
i.e., whether it is best suited for a balanced or unbalanced propagation.

Every transmission line permits only a fundamental particular polarization*** of the “RF” fie
and only a fundamental mode**** of propagation, and these characteristics can also be u
distinguish among lines. Of course, polarization and mode of propagation are strongly a freq
dependent phenomena, and at some frequencies other modes than the fundamental one c
agate.*****

* In this text transmission lines will be called “lines” or abbreviated with “t.l.”
** Waveguide transmission lines also are not strongly pertinent to the arguments of this text and will be discus
Appendix A2.
***  Polarization will be studied in Appendix A2.
****  Modes of propagation will be studied in Appendix A4.
*****  This multimode propagation will be discussed for any transmission line we will study in this text.
1

©2000 CRC Press LLC
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Two sets of equations exist that can be applied to every transmission line, which rela
voltage “v” and current “i” along the t.l. with its series impedance “Zs” for unit length (u.l.) and
its parallel admittance “Yp” for u.l. These equations are called “telegraphist’s equations” a
“transmission line equations” and will now be described.

1.2 “TELEGRAPHIST” AND “TRANSMISSION LINE” EQUATIONS

Let us examine Figure 1.2.1. In part (a) of this figure we have indicated a general representation
of a transmission line. The two long rectangular bars represent two conductors, one of w
called “hot conductor” (or simply “hot”)  and the other “cold conductor” (or simply “cold”). The
reader who is familiar with microstrip or stripline* circuits should not confuse the representation
in Figure 1.2.1 with two coupled lines.** Similarly, the reader who knows the waveguide mechanics
can be dubious about this representation, but we know that modes in waveguides can 
represented with an equivalent transmission line.***  So, Figure 1.2.1 can be used to generically
represent any transmission line. 

Let us define a positive direction “x” and take into consideration an infinitesimal piece 
of this coordinate. Let us consider the t.l. to be lossless, so that the line will only have a 
inductance “L” for u.l. and a shunt, or parallel, capacitance for u.l.

With these assumptions, a variation “di” in the time “dt” of the series current “i” will prod
a voltage drop “dv” given by:

(1.2.1)

where the minus sign is a consequence of the coordinate system of Figure 1.2.1. This signal also
means that a positive variation “di” of current produces a variation “dv” that contrasts such

Similarly, we can note that a variation “dv” in the time “dt” of the parallel voltage “v” w
produce a current variation “di” given by:

(1.2.2)

where the minus sign means that a positive variation “dv” of voltage produces a variation
which is in a direction opposite to the positive one. From the previous two equations w
recognize how “v” and “i” can be set as functions of coordinates and time, and so they c
written more appropriately as:

(1.2.3)

(1.2.4)

These last two equations are called “telegraphist’s equations,” and relate time variation of v
and current along a t.l. with its physical characteristics as inductance “L” and capacitance “C

*  Microstrip and stripline transmission lines will be studied in Chapter 2 and Chapter 3.
**  Generic coupled line theory will be studied later in this Chapter.
***  See Appendix A2 for transmission line equivalents to propagation modes in waveguide.

dv Ldx
di
dt

= −

di Cdx
dv
dt

= −

∂
∂

∂
∂

v
x

L
i
t

= −

∂
∂

∂
∂

i
x

C
v
t

= −
©2000 CRC Press LLC
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u.l. From Equations 1.2.3 and 1.2.4 it is possible to obtain two equations where only voltag
current exist. Deriving 1.2.3 with respect to coordinate “x” we have:

(1.2.5)

and inserting 1.2.4 it becomes:

(1.2.6)

Similarly, we can obtain an equation where only current appears:

(1.2.7)

Figure 1.2.1

x

dxI I+dI

I+dII

V V+dV

I

I

V

I+dI

V+dV

I+dI

(Z/2)dx

(Z/2)dx
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I
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I+dI

Ydx
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b)

c)
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∂
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∂
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x
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∂

∂
∂
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2

2

2
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So, voltage and current must satisfy the same equation. Whichever equation, 1.2.6 or 1.2
we take into consideration is called a “monodimensional generalized wave equation.” Since

(1.2.8)

it is common practice to set:**

(1.2.9)

and 1.2.7, for example, becomes:

(1.2.10)

where “v” is called “propagation velocity.”
A general solution for the monodimensional wave equations does not exist, and it mu

found case by case. The only general consequence that can occur is that the general solution
must satisfy the condition:

(1.2.11)

A very familiar aspect assumes the “monodimensional generalized wave equation” w
sinusoidal time variation exists. In this case the time dependence can be written with a multipl
by “e jωτ ,” where “ω” is the angular frequency of voltage or current. With this assumption, 
Equation 1.2.6, for example, becomes:

(1.2.12)

which is called the “monodimensional wave equation,” a particular case of the general “
equation” studied in Appendix A2. Of course, a similar equation holds for current, and ca
obtained substituting “v” with the current “i,” and in this case it is called the “monodimensi
wave equation.”

To introduce the “transmission line equations,”  let us evaluate part b of Figure 1.2.1. Now,
suppose that the t.l. also possesses a series resistance “R” and a parallel conductance “Gp” so that
we can write:

(1.2.13)

(1.2.14)

Applying the “Kirchhoff*** voltage loop law” at the network in Figure 1.2.1b, we can write:

*  Throughout this text, symbols inside square brackets are used to show dimensions. We think that confusion is 
if square brackets are used in equations. Unless otherwise stated, MKSA unit system will be used.
**  With the symbol “⊥–” we will indicate an equality set by definition.
***  Gustav Robert Kirchhoff, German physicist, born in Koenigsberg in 1824 and died in Berlin in 1887.

LC m[ ] ≡ ( )−
sec

2

LC v−⊥ 1 2/

∂
∂

∂
∂

2

2 2

2

2

1i
x v

i
t

=

F t x F t x v,( ) ≡ −( )

v x v e v ekx kx( ) ( ) ( )= −+ − −

Z R j Ls = + ω

Y G j Cp p= + ω
©2000 CRC Press LLC
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(1.2.15)

that is:

(1.2.16)

Applying the “Kirchhoff current law”  at the network in Figure 1.2.1c, we can write:

(1.2.17)

that is:

(1.2.18)

Equations 1.2.16 and 1.2.18 are called “transmission line equations” and, together wi
“telegraphist’s equations,” form a set of equations widely used in all transmission line prob
and in coupled line cases as will be shown in the next section. Of course, at high frequency, v
and currents along the lines are not determined in the same way,* i.e., these quantities 
obtained from the general relationships:

(1.2.19)

(1.2.20)

where “E” is the electric field vector, “d� ” is an increment vector, “J” is the surface current density
vector, and “ n” is a versor orthogonal to surface “S.” These equations are very important and
be of great help for many arguments in this text.

1.3 SOLUTIONS OF TRANSMISSION LINE EQUATIONS

From transmission line equations it is possible to obtain two equations where only voltag
current are present. Deriving with respect to “x” in Equation 1.2.16, we have:

(1.3.1)

and inserting Equation 1.2.18 it becomes:

(1.3.2)

*  See Appendix A2 to see how voltages and currents are defined along high frequency transmission lines.

v x i x Z dx v x dv x i x Z dxs s( ) = ( ) ( ) + ( ) + ( )[ ] + ( ) ( )2 2

dv x
dx

Z i xs

( ) = − ( )

i x v x Y dx i x di xp( ) = ( ) + ( ) + ( )[ ]

di x
dx

Y v xp

( ) = − ( )

∆v E d
a

b

= •∫ l

i J ndS
s

= •∫

d v x
dx

Z
di x
dxs

2

2

( ) = − ( )

d v
dx

Z Y vs p

2

2 =
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Of course, a similar equation can be obtained for current, i.e.:

(1.3.3)

The two previous equations are mathematically equivalent since they are examples of secon
linear differential equations. In mechanics theory, equations of this type are called “harmonic m
equations.” The solution of this equation is simple, and with reference to 1.3.3, can be foun
setting i(x) ⊥– iekx. With this substitution in 1.3.3 we have:

(1.3.4)

and the general solution is a linear combination of exponentials:

(1.3.5)

Equation 1.3.5 is not the only representation for the solution. Since hyperbolic sinus and c
are defined as 

the solution of 1.3.3 can also be set as a linear combination of hyperbolic sinus and cosinu

(1.3.6)

All the quantities “i+,” “i –,” “A,” and “B” are constants, in this case with the unit “Ampere
The quantity “k” obtained from Equation 1.3.4 is called the “propagation constant,” and its 
are “1/m” in MKSA. Note that with the insertion of 1.3.4 in 1.3.2 or 1.3.3, these equations
mathematically the same as those in the previous section, i.e., Equation 1.2.12.

Of interest is the case where the quantity “k” is imaginary, that is when “Zs” and “Yp” are only
imaginary, as a consequence of 1.3.4. In this case the solution of 1.3.3 is a linear combina
sinus and cosinus, i.e.:

(1.3.7)

Choosing the best solution between 1.3.5 and 1.3.7 depends on the known boundary con
of the electromagnetic problem. Exponential solution 1.3.5 is useful when one extreme of t
goes theoretically to infinity, while hyperbolic solutions are useful when considering limited le
transmission lines. The term that contains the negative exponential is called “progressive,”*
it decreases in amplitude in the positive direction of “x,” while the other is called “regress
which decreases in amplitude when “x” decreases in amplitude in the negative direction o
Note that this procedure can also be applied to obtain the solution 1.3.2.

Once the solution of 1.3.2 or 1.3.3 is extracted, it is possible to obtain the other ele
variable easily, i.e., current or voltage. If we employ the exponential solution of 1.3.5 for cu
we can obtain the voltage “v,” from 1.2.18 which is given by:

*  Note that the progressive term decrease in amplitude when “x” increases.

d i
dx

Z Y is p

2

2 =

Z Y k k Z Ys p s p= → = ( )2
0 5

!
.

i x i e i ekx kx( ) = ++ − −( ) ( )

cosh ( ) ( )x
e e

senh x
e ex x x x

− −⊥
−

⊥
−+ −

2 2

i x( ) = ( ) + ( )Acosh kx Bsenh kx

i x A k x B sen k x with k jkj j j( ) = ′ ( ) + ′ ( ) −⊥cos .
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(1.3.8)

If we had used the hyperbolic solution 1.3.6 for current, from Equation 1.2.18 we would 

(1.3.9)

The quantity:

(1.3.10)

is called “characteristic impedance” of the t.l.* Remembering 1.3.4, the previous equation c
transformed in a very well-known aspect, i.e.:

(1.3.11)

It is important not to confuse the characteristic impedance with the series impedance 
line; in fact, both series impedance and shunt admittance of the t.l. compose its charac
impedance. The reciprocal of this quantity is called “characteristic admittance” and is identifi
“σ.”

Note that with the introduction of “ζ,” the Equation 1.3.8 can be written as:

(1.3.12)

where

(1.3.13)

It is interesting at this point to note that from the solution of the monodimensional wave equ
for current 1.3.3, we obtained the exponential expression of current with a “+” sign between
and the exponential expression for voltage, i.e., 1.3.12, with a minus sign. If we had start
study by resolving the monodimensional wave equation for voltage, we would have obtain
exponential expression of voltage with a “+” sign and the exponential expression for curren
a minus sign. This sign diversity for the same equation for current or voltage is only analytic
has no influence in the physical problem. This is because the constants that appear in the exp
for current or voltage are generic, and the sign only depends on the effective physical pr
What is always true in the general case is that if in one exponential solution there is the si
between terms, there will be the sign “–” in the other exponential solution. In any case, th
sign will depend on the contour conditions of the particular electromagnetic problem.

For the case where losses can be neglected, useful relationships can be obtained from E
1.3.11. In fact, for the lossless case, 1.3.11 becomes:

(1.3.14)

and using 1.2.9 we have:

*  Sometimes we will simply named “impedance.”

v x i e i e k Ykx kx
p( ) = −[ ]+ − −( ) ( )

v x k Yp( ) = − ( ) + ( )[ ] ( )Asenh kx Bcosh kx

ζ −⊥ k Yp/

ζ −⊥ ( )Z Ys p/
.0 5

v x v e v ekx kx( ) ( ) ( )= −+ − −

v i and v i+ ⊥ + − ⊥ −− −ζ ζ

ζ −⊥ ( )L C/
.0 5
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(1.3.15)

Expressions 1.3.14 and 1.3.15 are used every time a particular transmission line is stud
are assumed to be in the most simple case of no losses.

1.4 PROPAGATION CONSTANT AND CHARACTERISTIC IMPEDANCE

The propagation constant “k” defined by Equation 1.3.4 is in general a complex nu
Inserting in that definition the general expression 1.2.13 for “Zs” 1.2.14 and “Yp” we have:

(1.4.1)

where “kr” and “kj” are real numbers. Remember that in the previous equation the quantities
“L,” “G p,” and “C” are defined for t.l. so that the dimension of “k” is [1/m]* more theoretica
exact [Neper/m]. The word “Neper” reminds us that “k” appears in an exponential form “e±kx.”
Consequently, to extract “k” we have to perform an operation of natural logarithm “ln.” In o
words, “k” is proportional to the natural logarithm of the signal amplitude along the t.l. Fro
value of “α” in [Neper/m], it is simple to calculate the value of “α dB” in [dB/m] using the obvious
relationship:

For example, 1 [Neper/m] = 8.686 [dB/m].
If now we square Equation 1.4.1 and equate real with real and imaginary with imaginary t

we have:

(1.4.2)

(1.4.3)

The ideal lossless lines are those where R = 0 = Gp, and in this case from 1.4.2 and 1.4.3:

(1.4.4)

In practice, lines are never without losses. So, the practical approximation to the lossles
is when the length “�” of the t.l. is so that:

(1.4.5)

*  Remember that unless otherwise stated we will use the MKSA system unit.

ζ = ≡Lv Cv1

k R j L G j C k jkp r j= +( ) +( )[ ] +−⊥ω ω
0 5.

α α
dB e= ( )20 * log

k RG LC RG LC RC LGr p p p= − + −( ) + +( )













ω ω ω2 2
2

2
2 0 5 0 5

2
. .

k LC RG RG LC RC LGj p p p= − + −( ) + +( )













ω ω ω2 2
2

2
2 0 5 0 5

2
. .

k j LCr j= = ( )0 0 5and k ω .

l l� �ζ σ/ /R and Gp
©2000 CRC Press LLC



    

rms for

                

the
ds the

      
When losses cannot be neglected it is possible to simply obtain an expression for “kr.” For this
purpose, let us evaluate the case of a very long t.l., so that we can only use progressive te
current and voltage and write:

(1.4.6)

The mean power “Wt” transmitted along the line will be:

(1.4.7)

and 1.4.6 becomes:

or, using 1.3.13:

(1.4.8)

The mean power “Wr” dissipated in “R” and “Wg” dissipated in “Gp” are given by:

(1.4.9)

and, remembering Equation 1.3.13, the total mean power “Wdt” dissipated will be:

(1.4.10)

The decrease along “x” of “Wt” will be equal to “Wdt,” so we can write:

which with 1.4.8 gives:

or, using 1.4.8 valuated simply for x = 0 and 1.4.10:

(1.4.11)

In the most general case, “kr” is given by the sum of two quantities, one dependent on 
conductor loss and one dependent on the dielectric loss, i.e., the medium that surroun
conductor that contains the e.m. field. These two quantities are indicated with “α c” and “α d,” and so:

(1.4.12)

i x i e e v x v e er
k x

j
jk x

r
k x

j
jk x( ) = ( ) =+ − − + − −( ) ( ) ( ) ( )and

W v x i xt
−⊥ ( ) ( )[ ]Re * 2

W v i et r
k x= + + −( )2 2

W v et r
k x= + −2 2 2( ) ζ

W R i and W G vr g p= ( ) = ( )+ +2 2
2 2

W G R vdt p= +( ) +ζ2 2 2

− =dW dx Wt dt

k W Wr dt t= 2

k G Rr p= +( )ζ ζ 2

kr c d= +α α
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(1.4.13)

where “Wc” is the mean power dissipated in the conductors and “Wd” is the mean power dissipated
in the dielectric. Appendix A2 shows that for any “TEM,” t.l. dielectric losses are governed b
same expression, while conductor losses are in general different.

A more general definition of the propagation constant can be obtained when the signal 
gates inside a medium with the following characteristics:

1. µ r = relative permeability
2. ε r = relative permittivity
3. g = conductivity

In this case, the propagation constant is given by:*

(1.4.14)

where:

µ  ⊥– µ 0µ r ε c
⊥– ε – jg/ω ε ⊥– ε 0 ε r

⊥–** ε ar – jε a j ε r
⊥– ε rr – jε r j (1.4.15)

Note that from the two previous definitions it follows:

(1.4.16)

and the second definition of 1.4.15 becomes:

(1.4.17)

For some simple transmission lines, for example, the coaxial cable, the equivalent indu
“L s,” and capacitance “C” can be simply related to “µ” and “ε.”*** The reader interested in the
relationships between general transmission line theory and wave propagation can read Appen
From 1.4.15 and 1.4.14 it is simple to recognize that if the medium is lossless, i.e., εr j = g = 0,
then “k” is purely imaginary, as in the case of 1.4.4. Other coincidences between wave
transmission lines can be obtained remembering the wave theory, as given in Appendix A2,
it is shown that for any mode of propagation it is possible to associate an equivalent transm
line. Not considering gyromagnetic dielectrics,**** from Equation 1.4.14 we note that “k”
imaginary until “εc” is a real quantity. Note that the dielectric constant “εr” is in general a complex
quantity, independent of the presence of a dielectric conductivity “g,” since “εr j” is due to a damping
phenomena associated with the dielectric polarizability.1,2,3***** Using this concept, a dielectric
is often characterized by a “tangent delta” “tanδ,” (also called a loss tangent) defined as:

*  See Appendix A2 for other expressions of propagation constant.
** The subscript “a” recalls the significance “absolute.”
***  The relative relationships among “Ls,” “C,” “ µ,” and “ε” for coaxial cable are given in Appendix A2.
****  Gyromagnetic materials will be studied in Appendix A7, while devices working with gyromagnetic materials
studied in the following chapters.
*****  Dielectric polarizability is assumed to be known to the reader. Fundamentals about this argument can be fo
the references at the end of this chapter.

α αc c t d d tW W and W W= =2 2

k j c= ( )ω µε
0 5.

ε ε ε ε ε εar rr aj rjand≡ ≡0 0

ε ε ε ωc ar ajj g−⊥ − +( )
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(1.4.18)

At µwave frequencies, usually ωεaj � g and “tanδ” assumes the well-known expression:

(1.4.19)

Sometimes the so-called “power factor” is used, indicated with “senδ.”
We want to conclude this section noting that impedance “ζ” can also be decomposed into rea

and imaginary parts. This means that inserting 1.2.13 and 1.2.14 into 1.3.11, in general we

(1.4.20)

while for a lossless transmission line from 1.3.14 we have ζ ≡ (L/C)0.5, i.e., it is a real quantity.
While all used transmission lines can be practically considered to have real impedances

following chapters we will study other transmission* lines where the impedance can be imag
and the propagation cannot take place.

1.5 TRANSMISSION LINES WITH TYPICAL TERMINATIONS

Quite often t.l. are terminated with short or open circuits. In both cases if this line is in s
to another line, then the short or open terminated t.l. is called a “stub.” It is important to study
cases of simple terminations since stubs are frequently employed in planar transmission line d
especially for tuning purposes.

We will study cases where these terminations are at the beginning of the t.l., and whe
are at the end. Since we are evaluating limited length transmission lines, we will use the hyp
form for current and voltage.

a. Terminations at the INPUT of the Line

Our environment is a transmission line of length “�” with a longitudinal axis “x” with origin
x = 0 at the beginning of the line.

a1. OPEN circuit at the INPUT
The current at x = 0 will be zero, while the voltage is known. From 1.3.6 we have:

(1.5.1)

The value of “B” cannot be defined with only the condition i(0) = 0. We need to have a furthe
condition. If we introduce the condition A = !0 in the hyperbolic voltage expression 1.3.9
evaluated for x = 0 we have:

(1.5.2)

Inserting 1.5.1 and 1.5.2 in 1.3.6 and 1.3.9 we have the expression of voltage and current al
the t.l.:

*  See Appendix A7 and, among others, chapters 7 and 8 where ferrimagnetic devices are studied.

tan Im Reδ ω ε ω ε ωε ωε−⊥ ( ) ( ) ≡ +( )c c aj arg

tanδ ε ε≡ rj rr

ζ ζ ζ= +r jj

i A and0 0 0( ) ≡ → = ! B = any finite value

B v= − ( )! 0 ζ
©2000 CRC Press LLC
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(1.5.3)

(1.5.4)

a2. SHORT circuit at the INPUT
The voltage at x = 0 will be zero, while the current is known. From 1.3.9 we have:

(1.5.5)

To define the value of “A” we introduce the condition B = !0 in the hyperbolic current expressio
1.3.6 evaluated for x = 0 we have:

(1.5.6)

Inserting 1.5.5 and 1.5.6 in 1.3.6 and 1.3.9 we have the expression of voltage and current al
the t.l.:

(1.5.7)

(1.5.8)

a3. GENERAL termination at the INPUT
In this case, a voltage “v(0)” and a current “i(0)” are present at the input. To have the express
of voltage and current along the t.l., as a function of the general termination at the input, 
can use the superposition effect principle and apply the solutions of the previous points a1 
a2. So, for this case we have:

(1.5.9)

(1.5.10)

b. Terminations at the OUTPUT of the Line

To have a simple expression for the constant “A” and “B” we will apply the transforma
variable:

(1.5.11)

to the hyperbolic expression of current, and write:

(1.5.12)

This transformation corresponds to having the new axis origin at the end of the t.l. an
positive direction of “x” in the opposite direction with respect to the previous case a. Der
1.5.12, i.e., applying the 1.2.18, we have:

(1.5.13)

i x v senh kx( ) = − ( ) ( )0 ζ

v x v osh kx( ) = ( ) ( )0 c

v B and A0 0 0( ) ≡ → = =! any finite value

A i= ( )! 0

i x i kx( ) = ( ) ( )0 cosh

v x i senh kx( ) = − ( ) ( )ζ 0

i x i kx v senh kx( ) = ( ) ( ) − ( ) ( )0 0cosh ζ

v x i senh kx v kx( ) = − ( ) ( ) + ( ) ( )ζ 0 0 cosh

′ −−⊥x xl

i x i x′( ) = ′( ) + ′( ) ≡ −( )Acosh kx Bsenh kx l

v x v x′( ) = ′( ) + ′( )[ ] ≡ −( )ζ Asenh kx Bcosh kx l
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With 1.5.12 and 1.5.13 we can repeat the previous points a1 through a3.

b1. OPEN circuit at the OUTPUT
The current at x′ = 0 will be zero, while the voltage is known. From 1.5.12 we have:

(1.5.14)

The value of “B” cannot be defined with only the condition i(0) = 0. We need to have a furthe
condition. If we introduce the condition A = !0 in the hyperbolic voltage expression 1.5.1
evaluated for x′ = 0 we have:

(1.5.15)

Inserting 1.5.14 and 1.5.15 in 1.5.12 and 1.5.13 we have the expression of voltage and cur
along the t.l.:

(1.5.16)

(1.5.17)

b2. SHORT circuit at the OUTPUT
The voltage at x′ = 0 will be zero while the current is known. From 1.5.13 we have:

(1.5.18)

To define the value of “A” we introduce the condition B=!0 in the hyperbolic current expressio
1.5.12 evaluated for x′ = 0 we have:

(1.5.19)

Inserting 1.5.18 and 1.5.19 in 1.5.12 and 1.5.13 we have the expression of voltage and cur
along the t.l.:

(1.5.20)

(1.5.21)

b3. GENERAL termination at the OUTPUT
In this case, a voltage “v(0)” and a current “i(0)” are present at the output. To have th
expression of voltage and current along the t.l., as a function of the general termination at 
input, we can use the superposition effect principle and apply the solutions of the previo
points b1 and b2. So, for this case we have:

(1.5.22)

(1.5.23)

i x i x A( ) ( ) !′ = ≡ = = → = =0 0 0l and B any finite value

B v x v= ′ =( ) ≡ ( )! 0 ζ ζl

i x x v( ) = −( )[ ] ( )senh k l l ζ

v x v( ) = ( ) −( )[ ]l lcosh k x

v x v x B and A′ =( ) ≡ = =( ) → = =0 0 0l ! any finite value

A i x i x= ′ =( ) ≡ =( )! 0 l

i x i k x( ) = ( ) −( )[ ]l lcosh

v x i senh k x( ) = ( ) −( )[ ]ζ l l

i x i k x senh k x v( ) = ( ) −( )[ ] + −( )[ ] ( )l l l lcosh ζ

v x i senh k x v k x( ) = ( ) −( )[ ] + ( ) −( )[ ]ζ l l l lcosh
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b4. Input impedance with known termination at the OUTPUT
It is useful to have the input impedance “Z(0)” when the load impedance “Z(� )” is known
and of finite value, i.e., when:

(1.5.24)

Calculating the ratio of 1.5.23 with 1.5.22, both evaluated for x = 0, and using 1.5.24 we hav

(1.5.25)

Of course, if we do the reciprocal of 1.5.24, we can also calculate the input admittance of 
t.l. “Y(0)” given by:

(1.5.26)

Particular cases of 1.5.25, or 1.5.26, are when:
b4a. Input impedance with open circuited line

In this case Z(� ) = ∞ and from 1.5.25:

(1.5.27)

b4b. Input impedance with short circuited line
In this case Z(� ) = 0 and from 1.5.25:

(1.5.28)

b4c. Input impedance with matched terminated line
A t.l. is said to be matched if the load impedance* “Z�” is so that:

(1.5.29)

Then, in this case Z(� ) = ζ and from 1.5.25:

(1.5.30)

When the lines can be approximated with the ideal case of zero losses we know fro
1.4.4 that k ≡ jk j , and:

(1.5.31)

(1.5.32)

In this case the expressions 1.5.25, 1.5.27, and 1.5.28 assume a very simple aspect g
by:

* A completely matched line has both source “Zg” and load “Z�” impedance equal to “ζ.”

v i Zl l l( ) ( ) ≡ ( )

Z
Z os

os Z sen
0

2

( ) = ( ) + ( ) ( )
( ) + ( ) ( )

ζ ζ
ζ

senh k c h k
c h k h k

l l l

l l l

Y
Y os

os Y sen
0

2

( ) = ( ) + ( ) ( )
( ) + ( ) ( )

σ σ
σ

senh k c h k
c h k h k

l l l

l l l

Zoc 0( ) ≡ ( )ζ cotgh kl

Zsc 0( ) ≡ ( )ζ tgh kl

Zl ≡ ζ

Z 0( ) ≡ ζ

senh jk x jsen k xj j( ) ≡ ( )
cosh cosjk x k xj j( ) ≡ ( )
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(1.5.34)

(1.5.35)

The last three expressions are widely used in many transmission line networks such as
and matching networks.

1.6 “TRANSMISSION” AND “IMPEDANCE” MATRICES

With “transmission matrices” we have a representation of the transmission line that s
relates input and output line excitations.

Let us examine Figure 1.6.1 a, where a t.l. of length “ �”  and characteristic impedance “ ζ ”  is
excitated at one extreme with voltage “vi” and current “ii .” The excitation extreme is set as th
origin of the “x” axis coordinate. We want to evaluate the voltage “v(x)” and current “i(x)” a
distance “x” from the origin. We can write:

(1.6.1)

(1.6.2)

from which (using 1.3.13) we have:

(1.6.3)

Figure 1.6.1

Z
j g Z

jZ tg
0

2

( ) =
( ) + ( )

+ ( ) ( )
ζ ζ

ζ

t k

k

j

j

l l

l l

Z j co goc 0( ) ≡ ( )ζ t k jl

Z j gsc 0( ) ≡ ( )ζ t k jl

v v vi
−⊥ + −−

i i ii
−⊥ + −+

v
i v

v
i vi i i i− =

−
=

+
+

ζ ζ
2 2

x

Ii Iu(x)

Vi Vu(x)

a)

b)

0

0

Iu

Vu

x

Ii(x)

Vi(x)
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From 1.3.5 and 1.3.13 and using the previous relationships we have:

(1.6.4)

Collecting together terms with “ii” and “vi” and remembering that:

(1.6.5)

(1.6.6)

Eq. 1.6.4 becomes:

(1.6.7)

Inserting 1.6.3 into 1.3.12, collecting together terms with “ii ” and “vi,” and applying 1.6.5 and
1.6.6 we have:

(1.6.8)

Equations 1.6.7 and 1.6.8 can be written as:

(1.6.9)

where the square matrix is indicated with “Tf” and called the “forward transmission matrix,” i.e.

(1.6.10)

Let us consider part b of Figure 1.6.1 and attempt to evaluate the input voltage “ vi(x)” and
current “ii (x),” with “v u” and “iu” known. This can be simply done by looking at Equation 1.6
We have:

(1.6.11)

So, inverting* the Equation 1.6.10 we have:

(1.6.12)

where the square matrix is indicated with “Tr” and called the “reverse transmission matrix,” i.e.

*  Matrix inversion operation can be found in many mathematical books.
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(1.6.13)

It is very important to say that transmission matrices are always relative to a well-de
orientation along the t.l. and a well-defined orientation of currents. Note that to define the “Tr,” we
have not changed the orientation in Figure 1.6.1b with respect to that in Figure 1.6.1a. In fact, there
is no input or output of a line until we do not define a positive direction for it. In other word
we do not define a positive direction for a transmission line, there is no reason to speak
forward or reverse transmission matrix. With these concepts clear, we can say that “Tf” and “Tr”
both give the voltage and current at the opposite extreme of the t.l., i.e., the extreme wher
is no excitation, but “Tf” is relative to the same direction defined as positive along the t.l. w
“Tr” is relative to the opposite direction. Note that “Tr” can be obtained with the same procedu
used to obtain “Tf,” i.e., using transmission line theory, instead of using the inversion ma
operation.

The reader who knows the “chain” or “ABCD” matrix representation of a two-port netwo
can recognize how “Tr” is the ABCD matrix of our transmission line. Voltage and current direct
used to define the chain matrix are the same as those we used to define “Tr.”

An interesting application of the transmission matrix, which is useful when analyzing cou
lines,** is the case of a lossless t.l. open terminated and excited by a current generator o
“i i .” The input voltage “vi ” will be:

(1.6.14)

and from the forward transmission matrix the output voltage “vu” will be: 

(1.6.15)

Another matrix that is sometimes used in transmission line problems is the impedance 
“[Z]” defined as:

(1.6.16)

where:

*  See Appendix A3 for ACBD matrix definition. 
**  This example will be used in Chapter 6

T
kx senh kx

senh kx kxr =
( ) ( )
( ) ( )
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Subscripts “1” and “2” indicate ports. Note that since the transmission line is a linear recip
device, it is only necessary to evaluate one term between “Z11” and “Z22” and one term between
“Z 12” and “Z21.”

Since to evaluate “Z11” or “Z 22” we have an open circuit at one extreme, these values 
simply be obtained from 1.5.27 as follows:

(1.6.17)

To evaluate the other parameters, we extract “I1” from the previous equation:

(1.6.18)

To obtain “V2” we use “Tf” and write:

(1.6.19)

which, with insertion of 1.6.18 becomes:

(1.6.20)

Performing the ratio of 1.6.20 with 1.6.18 we have:

(1.6.21)

and all the matrix “[Z]” parameters are now defined.

1.7 CONSIDERATIONS ABOUT MATCHING TRANSMISSION LINES

As we said before, transmission lines are quite often used for impedance matching. This 
will discuss operating “bandwidth” of such matching. First of all, the term “bandwidth” will
defined. The operating bandwidth of a device is the frequency interval where some, or all
frequency characteristics are evaluated as acceptable for the device purpose. For insta
operating bandwidth of a band pass filter is the frequency interval where the value of its atten
is included between the attenuation at center frequency and a number of dB, typically 1 or 3,
this value. Bandwidth is usually indicated in three manners:

a. Ratio of Bandwidth Limits — If we indicate with “fh” and “f l,” respectively, the maximum
and minimum frequency of the operating bandwidth, then:

where with the symbol “⊥–” we indicate an equality by definition.

Z V I gh k Z V I11 1 1 22 2 2
− −⊥ ⊥≡ ( ) =ζ cot l

I V tgh ki1 ≡ ( )l ζ

V V k I senh k2 1 1= ( ) − ( )cosh l lζ

V V k senh k tgh k2 1= ( ) − ( ) ( )[ ]cosh l l l

Z k Z21 12= ( ) =ζcosech l

n f fh
−⊥

1
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b. Fractional — It is defined as:

or:

if “in percent.” The relationship between the definition in point a and b is:

or:

if “ in percent.”

c. Octave — Each octave is a multiplication by “2.” For instance, if from a minimum freque
of 6 GHz the operating bandwidth extends for one octave, it means that the upper freque
the bandwidth is 12 GHz; if the operating bandwidth extends for two octaves, it means th
upper frequency of the bandwidth is 24 GHz, and so on. If one half an octave is added to a n
“o” of octave, the resulting multiplication number “moh” depends on “o” according to the following
relationship:

For instance, the multiplication factor “m1h” for one octave and a half is “3” while m2h = 6,
m3h = 12 and so on.

Of course, if “B” is known, the “n” may be obtained very simply by:

After these important definitions, let us rewrite Equation 1.4.12 evaluated for zero losse
have:

(1.7.1)

B
f f
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where “λ ” is the signal wavelength along the line.* With 1.7.1, Equations 1.5.34 and 1.5.35 bec

(1.7.2)

(1.7.3)

In Figure 1.7.1 the shape of  |Zoc(0)/ζ | and | Zsc(0)/ζ | is represented as a function of ρ ⊥– �/λ.
We see how any value of input impedance can be obtained, i.e., positive, negative, zero, or 
From this point of view, stubs work like transformers. If we assume that the wavelength o
signal is fixed, this figure represents the possible impedance values that we can report at th
of the stubs when varying the t.l. length “�.” If we want to operate in a region where toleranc
on the exact required value of “�” are permitted, we have to work in a region with a small slo
vs. “ρ.” This means that � ≈ (2n+1)λ /4 for open circuited stubs and � ≈ nλ /2 for short circuited
stubs, where “n” is an integer number. The same conclusions hold if we assume that the le
the stub is fixed while the wavelength of the signal is varied. In other words, the highe
transformation ratio that is needed, the lower the resulting operating bandwidth is, since
variations in frequency cause a large change in the reported impedance, which results in
matching.

Other important matching characteristics can be obtained from the general input impe
formula, i.e., Equation 1.5.25, which, with 1.7.1 becomes:

(1.7.4)

*  Unless otherwise stated, in this text signal wavelength will always be relative to a guided case, i.e., the signa
inside a transmission line.

Figure 1.7.1

Z joc 0 2( ) ≡ − ( )ζ π λcotg l
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Let us evaluate the following cases:

a. Line Length Equal to Integer Number of Half Wavelength — In this case we have:

(1.7.5)

which, inserted in 1.7.4 gives:

(1.7.6)

This means that whatever the characteristic impedance “ζ ” of a t.l. is, if Equation 1.7.5 holds,
the termination impedance “Z(�)” is reported at the input of the transmission line.

b. Line Length Equal to an Odd Number of Quarter Wavelength — In this case we have:

(1.7.7)

which, inserted in 1.7.4 gives:

(1.7.8)

This relationship represents the most useful effect of a stub that can be realized accor
1.7.8. This characteristic is also used to do simple filters. Suppose we need to remove a 
wavelength “λ” from a signal passing in a t.l. If we insert a stub open terminated, i.e., with �)
= ∞, then from the previous equation we have Z(0) = 0, which means that the desired sig
shorted to ground. Of course, problems arise if the signal to be shorted possesses a bandwid
this type of filtering is narrowband, as we said previously. Filter theory is not the topic of this
although in the next sections we will quite often study networks, which have characteristic
are near to filtering properties.

c. Line Terminated With Matched Load — In this case we have:

(1.7.9)

which, inserted in 1.7.4 gives:

(1.7.10)

This equation means that whichever is the length of the t.l. when the termination is eq
the characteristic impedance of the line, the input impedance is always equal to this charac
impedance. Note that since 1.7.10 is independent of frequency, the matching condition 
broadest possible bandwidth relationship for a transmission line.

1.8 REFLECTION COEFFICIENTS AND STANDING WAVE RATIO

In the previous paragraphs we have shown how a matched transmission line has the
operating bandwidth. In addition, matching condition is also helpful, which will now be discus

l = =n with nλ 2 1 2 3, , ...

Z Z0( ) ≡ ( )l

l = +( ) =2 1 4 1 2 3n with nλ , , ...

Z Z0 2( ) ≡ ( )ζ l

Z l( ) ≡ ζ

Z 0( ) ≡ ζ
©2000 CRC Press LLC
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Suppose that a transmission line of characteristic impedance “ζ ” is fed at one extreme by a generato
of impedance Rg = ζ and at the other extreme is terminated by a load of impedance Z� = ζ. In this
case the t.l. is completely matched, i.e., matched at both ends. It is useful to define an imp
“Z(x)” function of “x” given by:

(1.8.1)

Taking into account expressions 1.3.5 for “i(x)” and 1.3.12 for “v(x),” remembering 1.3
and assuming that only progressive terms exist, then:

(1.8.2)

while if only regressive terms exist, then:

(1.8.3)

So, Equation 1.8.1 gives the characteristic impedance “ζ” as a result, only if a monodirectiona
wave exists. The negative sign in 1.8.3 has no physical effect, since it comes out fro
conventional sign for “v+,” “v –,” “i +,” and “i–.” It is common practice to explain the different sign
in 1.8.2 and 1.8.3 as showing that voltage is a “parallel” quantity and doesn’t change sign
“x,” while current is a “longitudinal” quantity and does change sign with direction of “x.” Howev
if this explanation works to explain the signs in 1.8.2 and 1.8.3, sometimes the assumptio
“parallel” and “longitudinal” quantities can lead to error. To avoid such a possibility, it is alw
convenient to refer to the general expressions of “v(x)” and “i(x).” Equation 1.8.1 is also tr
the termination point, where the load is connected. At this coordinate, 1.8.1 means that 
voltage “v(x)” must be at the load terminals, and all the current “i(x)” must pass inside it. If
doesn’t happen, it means that at the termination there is not the proper impedance, i.e., Z� ≠ ζ. So,
if the t.l. is matched, no reflection exists, and consequently, in a matched transmission line
a monodirectional wave exists. These results could lead one to think it is possible to con
matched load in any section of the line without affecting the matching. This is not true. In fa
we insert a matched load Z� = ζ, for instance, at the middle coordinate “x = xh” of a matched
transmission line, we have the half line on the right report “ζ ” in parallel to Z� = ζ. This situation
is comparable to a transmission line with impedance “ζ” and length “xh” terminated with a load
Z� = ζ/2, which is not the matching condition for the t.l. The case when reflections exist ins
transmission line is said to be a “standing wave” phenomena.

After such introduction, let us suppose that the line of length “x” is terminated by a ge
load “Z�.” We can define a current “it ” passing inside the load and a voltage “vt ” between its
terminals and the following parameters:

voltage reflection coefficient: (1.8.4)

voltage transmission coefficient: (1.8.5

current reflection coefficient: (1.8.6)

current transmission coefficient: (1.8.7

All these parameters are, in general, complex quantities.

Z x v x i x( ) ( ) ( )−⊥

Z x( ) ≡ ζ

Z x( ) ≡ −ζ .

Γv
−⊥ v vr p

T v vt p
v

−⊥

Γi
−⊥ − +i i

T i it
i

−⊥ +
©2000 CRC Press LLC
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At the termination coordinate, current “it” passing across the load and voltage “vt ” at its
terminals must satisfy the following relationships:

(1.8.8)

(1.8.9)

where:

(1.8.10)

The quantities “vp” and “vr ” are respectively the amplitudes of the progressive and regres
or reflected waves, i.e., traveling in the positive and negative direction of “x.” Since Z�  ≡ vt / i t ,
Equation 1.8.8 with 1.8.10 becomes:

(1.8.11)

Indicating with “Z�n” the value of “Z�” normalized to “ζ,” the previous equation becomes:

(1.8.12)

Summing and subtracting the previous equation to 1.8.9 we have, respectively:

(1.8.13)

Using 1.8.6, the ratio of the two equations in 1.8.12 becomes:

(1.8.14)

Dividing 1.8.11 by “i+” and using 1.8.7 and 1.8.14, we have:

(1.8.15)

To extract “Γv” and “Tv” we can begin to rewrite 1.8.9 as:

(1.8.16)

or

(1.8.17)

Summing and subtracting the previous equation to 1.8.8, we can proceed in a manner 
to that used for 1.8.14 and 1.8.15, obtaining:

v v vt p r= +

i i it = ++ −

v i and v ip r− −⊥ + ⊥ −−ζ ζ

Z i i it
l = −+ −ζ ζ

Z i i in
t

l = −+ −

Z i i and Z i in t n tl l+( ) = −( ) = −+ −1 2 1 2

Γi
n

n

Z

Z
=
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+

1

1
l

l

T
Z Zi

i

n n

= − =
+

1 2
1

Γ

l l
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v Z v vt
n
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(1.8.18)

(1.8.19)

It is simple to evaluate the limits value for all transmission and reflection coefficients we
defined. Indicating with a subscript “M” or “m,” respectively, the maximum and minimum param
value and considering positive values for the normalized impedance,* we have:

The situation is different when the terminating impedances assume negative values fo
resistive parts. Passive components always have positive values of resistance, but active 
can possess negative resistances under particular conditions of bias and loading network.
case, let us suppose that an active device possesses an input impedance “Zi ” purely resistive and
of negative value, i.e., Zi ≡ –Ri, and that the source impedance “Zg” is also purely resistive and
positive, i.e., Zg ≡ Rg. Normalizing these impedances to “Rg,” from 1.8.18 we have:

from which we see that if:

then |Γv | > 1. Theoretically, if Zin = 1, then |Γv | = ∞.
The use of negative resistance presented by an active device is one of the main founda

oscillator circuits. Oscillators are one of the most attractive devices of all electronic circuits.
topic is not treated in this text, but the interested reader can refer to the articles and books in
in references.4,5,6,7,8,9

*  We will soon return to this assumption regarding positive values for terminating impedance.

Γ Γv
n

n
i

Z

Z
=

−
+

≡ −l

l

1

1

T
Z

Z
Z Tv v

n

n
n i= + =

+
=1

2

1
Γ l

l
l

Γ

Γ

Γ

Γ

v M n n

v m n

v M n

v m n

i M n n

i m n

i M n

v m n

for Z or Z

for Z

T for Z

T for Z

for Z or Z

for Z

T for Z

T for Z

= = = ∞

= =

= = ∞

= =

= = = ∞

= =

= =

= = ∞

1 0

0 1

2

0 0

1 0

0 1

2 0

0

l l

l

l

l

l l

l

l

l

Γv
in

in
in i g

Z

Z
with Z R R= +

−
−⊥

1

1

1 1− < +Z Zin in
©2000 CRC Press LLC



se we

)

 factor

 that let
It is possible to define transmission and reflection coefficients using power. In this ca
define:

power reflection coefficient: (1.8.20)

power transmission coefficient: (1.8.21

where transmitted “wt,” progressive “wp,” and reflected “wr ” powers must satisfy:

(1.8.22)

Note that inserting the previous equation in 1.8.20 we have:

(1.8.23)

These coefficients can easily be obtained from the previous ones. In fact, for “Tw” we have:

(1.8.24)

where “Ti
* ” is the complex conjugate of “Ti.” From 1.8.15 and 1.8.19 we have:

(1.8.25)

Inserting this last equality in Equation 1.8.23 we have:

(1.8.26)

and from 1.8.23:

(1.8.27)

Another parameter often used, especially in filter network theory, is the power attenuation
“Aw” defined by:

(1.8.28)

Reflections and transmission coefficients can also be obtained using admittances. To do
us rewrite Equation 1.8.8 as:

which, with the definition of normalized load admittance Y� n ⊥– Y� /σ it becomes:

Γw
r pw w−⊥

T w ww
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w w wp t r−⊥ +
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r p p t p
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(1.8.29)

Summing and subtracting this expression to 1.8.9 we have:

(1.8.30)

(1.8.31)

Calculating the ratio between 1.8.31 with 1.8.30 we have:

(1.8.32)

and directly from 1.8.30:

(1.8.33)

Rewriting 1.8.9 as:

and summing and subtracting this expression to 1.8.8 we can proceed as we did before, ob

(1.8.34)

(1.8.35)

It is interesting to observe that voltage, current reflection, and transmission coefficien
complex numbers if the impedances or admittances are complex. Power reflection and trans
coefficients are always real numbers, since they are related to the modulus of reflection coe
as indicated by 1.8.26 and 1.8.27.

After defining these parameters, it is very interesting to show that the reflection coeffi
“Γv (x)” along “x” has a simpler expression than “Z(x)” as we have seen in Section 1.7. L
take as the origin of axes “x,” the point where the load “Z�” is connected, and as negative directio
we choose the left side. This situation is indicated in Figure 1.8.1. 

If Γv  ⊥– Γv (0) is the reflection coefficient of the load, we can write:

(1.8.36)

The positive sign of the exponential is due to the fact that the negative sign in the expon
of vp(x) ⊥– vpe–kx has to be changed by the negative direction of propagation along “x.” Genera
the definition in 1.8.4 of “Γv” and inserting in it the dependence with “x,” we have:
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(1.8.37)

which is clearly a simpler expression than “ζ(x).” From 1.8.37 we can recognize how “Γv(x)”
moves along “x” with two times the dependence of “v(x).” This result will be very useful w
we use the Smith* chart to study matching problems.

The value of 1.8.37 also lies in the fact that from “Γv (x),” it is possible to have the normalized
impedance “ζ n(x)” presented by the t.l. at the coordinate “x,” still obtaining a simpler express
In fact, from the expression 1.8.18 of “Γv” we have:

(1.8.38)

The impedance and voltage reflection coefficient along “x” are strictly related from 1.8.1
course, similar to “ζ(x)” and “Γv,” “ Γv (x)” is, in general, a complex number.

Another important parameter is the voltage standing wave ratio, abbreviated with “VS
also indicated briefly with “SWR.” This is defined by:

(1.8.39)

where “| v |M” and “| v |m” indicate respectively the maximum and minimum of voltage modul
From 1.8.39 we can recognize that the VSWR is always a real number. Also this parameter
obtained from “Γv ,” and can be set as function of coordinate “x.” Let us start to rewrite 1.3
using 1.8.10, i.e.:

(1.8.40)

which, with the definition of “Γv” becomes:

(1.8.41)

Since “Γv” is a complex number, we can write:

(1.8.42)

Figure 1.8.1

*  Definition and use of the Smith chart will be studied in Section 1.12.
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Assuming a lossless t.l., (i.e., k ≡ jk j), inserting 1.8.42 in 1.8.41 and separating real a
imaginary parts, 1.8.41 becomes:

(1.8.43)

whose modulus is:

(1.8.44)

Using expression 1.7.1 for “kj,” Equation 1.8.44 can be written as:

(1.8.45)

where it is simple to recognize how the modulus of “v(x)” moves along “x” with a period “λ /2.”
In other words, every integer of half wavelength “ | v(x) | ” assumes the same value. Maximum
minimum of 1.8.45 correspond to the value of “1” or “– 1” for the cosinus. Consequently, we 

(1.8.46)

(1.8.47)

So, from the definition of VSWR we have:

(1.8.48)

Maximum VSWRM and minimum VSWRm value of VSWR can simply be evaluated since |Γv |M
and |Γv |m have been given before. Therefore, we have:

(1.8.49)

(1.8.50)

The measure of VSWR is sometimes used to determine the value of a load impedance 
is known if its value is higher or lower than the reference impedance. If it is not known tha
value of the load impedance is higher or lower than the reference impedance, then the me
ambiguous, due to presence in 1.8.48 of the modulus of “Γv .” Given a normalized load “Z�n” it is
simple to show that the associated “|Γv | ” is also obtained for another load Z� n′ = 1/Z� n. So,
denormalizing expression 1.8.18 for “Γv ” and inserting it into 1.8.48, we have that if Γv > 0, i.e.,
if Z � > ζ , then:

(1.8.51)
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1.2 to
while if Γv < 0, i.e., if Z� < ζ , then:

(1.8.52)

We can conclude this section noting that the measure of the reflection coefficient is very u
since impedances and VSWR are related to this parameter. We will show later how the refl
coefficient has an important role in the Smith chart.

1.9 NONUNIFORM TRANSMISSION LINES

A nonuniform transmission line is a line where characteristic impedance is a function 
longitudinal coordinate. If we want to use the concepts of line series impedance “Zs” and line
parallel admittance “Yp,” as we did in Section 1.2, in this case these quantities are also a fun
of coordinates. Nonuniform transmission lines are usually generically represented with a ta
profile, as indicated in Figure 1.9.1, just to remind one that characteristic impedance is a function
of “x.” The reader who is familiar with the representation with the technology of planar transmi
lines did not make the error of thinking of Figure 1.9.1 as the case of two coupled microstrip or
striplines. The two “conductors” indicated in Figure 1.9.1 just means that if  one conductor is the
hot one, then the other is the cold one as we used in Section 1.2 to describe the uniform trans
line. In the most general case, i.e., without restrictions about the shape of the t.l., the g
transmission line theory cannot be used in this case, since for this theory the characteristic 
ance must be constant along the line. Only the applications of Maxwell’s* equations are cor
our case. In this text, Maxwell’s equations are assumed to be known, but we have summ
them in Appendix A2. Complete explanations of these fundamental equations are found in a
texts on electromagnetism.10,11,12 To explain how these equations are important, we say that with
Maxwell’s equations, the whole of electromagnetism would still be an obscure physics argu

If we impose the restriction that for a coordinate increment “dx,” the new impedance “Z(x+
is only a small percent different than “Z(x),” then we can apply the theory used in Section 
the study of nonuniform transmission lines. So, in our case we can write:

(1.9.1)

*  James Clark Maxwell, English physicist, born in Edinburgh in 1831, died in Cambridge in 1879.

Figure 1.9.1

Z VSWRl = ζ

x

Generic non uniform line.
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(1.9.2)

Indicating the derivative operation with a prime “′ ” sign, and again deriving 1.9.1 it become

(1.9.3)

Inserting in this equation the value of “i(x)” dervied from 1.9.1 and the value of “i′(x)” derived
from 1.9.2, we have:

(1.9.4)

Of course, a similar equation can be obtained for current, resulting in:

(1.9.5)

In contrast with the case of uniform transmission lines, now there does not exist a g
simple solution “v(x)” or “i(x)” for the second order nonlinear differential Equations 1.9.4 or 1.
contrary to the simple exponential or hyperbolic solutions 1.3.5 or 1.3.6 for the uniform transm
lines. Simple solutions can only be found for particular expressions for “Zs(x)” and “Yp(x).” An
example is the “exponential” lossless t.l., i.e., a line where its series impedance and p
admittance can be written as:

(1.9.6)

where the constant “s” is related to the geometrical shape of the t.l. With 1.9.6, Equations 
and 1.9.5 become:

(1.9.7)

(1.9.8)

which are simple second order linear differential equations. Setting

(1.9.9)

respectively in 1.9.7 and 1.9.8 we have:

(1.9.10)

(1.9.11)

di x
dx

Y x v xp

( )
( ) ( )= −

′′ = − ′ + ′[ ]v x Z x i x Z x i xs s( ) ( ) ( ) ( ) ( )

′′ − ′ ′ − =v x
Z x

Z x
v x Z x Y x v xs

s
s p( )

( )

( )
( ) ( ) ( ) ( ) 0

′′ −
′

′ − =i x
Y x

Y x
i x Z x Y x i xp

p
s p( )

( )

( )
( ) ( ) ( ) ( ) 0

Z x j Le and Y x j Ces
sx

p
sx( ) ( )≡ ≡ −ω ω

′′ − ′ + =v x sv x LCv x( ) ( ) ( )ω2 0

′′ + ′ + =i x si x LCi x( ) ( ) ( )ω2 0

v x ve i x ie
k k

vx ix( ) ( )− −⊥ ⊥

k
s s LC

v =
± −( )2 2 0 5

4

2

ω
.

k
s s LC

i =
− ± −( )2 2 0 5

4

2

ω
.

©2000 CRC Press LLC



 is

gation.

me to

bout
line

.”
ose
ss.

pose
ted.

 small
Note that “kv” and “k i” are never completely imaginary, which means that propagation
affected by losses. In particular, for:

these quantities are purely real, which means that there will be a complete attenuated propa
The frequency:

(1.9.12)

is called the “cutoff frequency,” and represents the minimum frequency that must be overco
have propagation, also if attenuated.

It is possible to have an equation for a nonuniform t.l. that doesn’t require any limitation a
the variation of “ζ (x).” This equation relates the variation of reflection coefficient along the 
with the variation of its characteristic impedance. To do that, let us define with “Zi” the input
impedance of the t.l. at the coordinate “x,” and “Zi + dZi” the impedance at the coordinate “x + dx
The impedance “Zi + dZi” can be regarded as the load impedance for the line length “dx,” wh
input impedance “Zi” we want to evaluate. For simplicity we will suppose the t.l. to be lossle
From Equation 1.5.33 we have:

(1.9.13)

with “ ζ m” the mean value of the characteristic impedance in the element “dx.” We now sup
that “dx” is so small that tg(kjdx) ≈ kjdx and that the product of infinitesimal terms can be neglec
So, the previous equation becomes:

(1.9.14)

Now, expand the last term in the McLaurin series, stopping at the second term due to the
value of “dx.” We have:

which, inserted in 1.9.14 results in:

(1.9.15)

From 1.8.38, denormalized and applied to our case, we have:

(1.9.16)

which, inserted in 1.9.15 results in:

ω < ( )s LC2 0 5.

f s LCc = ( )4 0 5π .
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Deriving the Equation 1.9.16 with respect to the coordinate “x” we have:

(1.9.18)

Inserting 1.9.17 into 1.9.18 we have:

(1.9.19)

Similar to 1.9.4 or 1.9.5, a general simple solution of 1.9.19 doesn’t exist. The previous eq
is also said to be a Riccati* equation.

If we still apply the same restriction used above for variation of “ζ ” with coordinate, we can
simply evaluate the voltage reflection coefficient at the input of the nonuniform transmission
Let us examine Figure 1.9.2. Part a represents the original nonuniform t.l., while part b indicates
a possible approximation, made with steps of uniform lines. We can observe how an impe
variation “dζ ” moving from “x” at “x + dx” will generate a variation “dΓv” given by:

(1.9.20)

*  I.F. Riccati, Italian mathematician, born in Venezia in 1676 and died in Treviso in 1754.

Figure 1.9.2
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Assuming “dζ” is negligible with respect to “2ζ ,” the previous equation becomes:

(1.9.21)

Now, suppose the t.l. is lossless. According to 1.8.37, at the input of the section “dx
reflection coefficient “dΓvi ,” will be:

(1.9.22)

With respect to Equation 1.8.37, now the exponential changes sign, because in this the
distance “x” is considered an absolute sign while for 1.8.37 the distance “x” has a negative
as shown in Figure 1.8.1.

If we assume the multiple reflections along the t.l. are negligible, which still means ther
slow variation of “ζ ” with the coordinate, we can evaluate the input reflection coefficient “Γv” as
the continuous sum of the previous terms, i.e.:

(1.9.23)

where “�” is the length of the nonuniform t.l. When we study tapered directional couplers*
will use the previous formula to define the coupling for such important devices.

1.10 QUARTER WAVE TRANSFORMERS

The argument of the “quarter wave” transmission line transformers is of great importan
all RF and microwave devices. For this reason, we think it is necessary to go more deeply i
theory of this topic. We will only consider the ideal case of “TEM,” lossless transmission l
since the specialization of the general theory is carried out in the following chapters for 
planar transmission line used as a transformer.

As we said in Section 1.7, the matching between a load and a source using a quarte
transmission line is ideally perfect only at the design frequency, i.e., at that frequency whe
electrical length of the line is a quarter wavelength of the signal guided by the t.l. The ope
situation is indicated in Figure 1.10.1. The line is characterized by a characteristic impedance “ ζ ”
and an electrical length “θ,” and will be evaluated as lossless.

*  Directional coupler will be studied in Chapter 7 and Chapter 8.

Figure 1.10.1
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In most practical cases it is not required that the matching be exactly perfect, i.e., w
VSWR = 1, but usually it is required that the VSWR be lower than a fixed value. The conseq
of this less stringent requirement is that we no longer have a sole frequency for matchin
instead we have an operating bandwidth where the matching can be accepted. So, it is u
determine the frequency characteristics of the single quarter wave transformer. This can b
formed very easily, remembering expression 1.5.33, which gave us the input impedance “Zi” of a
transmission line of impedance “ζ” and electrical length “θ” terminated in a load “Z�.” We have:

(1.10.1)

and the voltage reflection coefficient “ Γ ”  and VSWR at its input, for the situation in Figure 1.10.1
are:

(1.10.2)

(1.10.3)

where “Zg”  is the impedance of the generator which feeds the transformer. In Figure 1.10.2 we
have represented the two previous equations vs. the normalized frequency “fn” for two values of
“R,” where R ⊥– Z� /Zg. “f n” is given by the ratio of the general variable frequency “f ” and th
frequency where the transmission line is λ /4 long. We see how the matching is exact for frequenc
where the transformer is an odd multiple of a quarter wavelength, regardless of the trans
ratio “R.” For frequencies outside the designed one, the “VSWR” value depends on the trans
ratio. This is simple to understand. Remember that if the load impedance is equal to the 
one from 1.7.8, it follows that the impedance of the transformer transmission line is equal t
value, and no mismatching occurs.

At this point, remembering what we have said in the previous sections, the reader should 
that no theoretical reason exists not to realize the matching using more than one section sin
section can transform the impedance in a value that can still be transformed to the desire
by the other quarter wavelength section. This situation is represented in Figure 1.10.3, where a
number of “s” sections of the quarter wave transformer are connected in series. In the most 
case, the only requirements between the impedances of the transmission line are given
following relationships:

(1.10.4)

(1.10.5)

i.e., an odd number “s” of sections, or

(1.10.6)

i.e., an even number “s” of sections. The symbol “∧ ” over the name of the impedances means th
their values are normalized to the system measurement impedance, usually 50 Ohm. It is cl
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in the case of a multiple quarter wavelength transmission line transformer, the design is not 
since it is theoretically possible to choose the impedances in an infinite number of ways, w
only requirements stated by Equations 1.10.5 and 1.10.6.

The first study on the problem to design the network indicated in Figure 1.10.3 was made by
R.E. Collin.13,14,15,16,17 In his work, Collin studied the case of synthesizing the network with a VS
in the matching bandwidth of Chebyshev shape. In Appendix A4 we have reported the expre
of Chebyshev polynomials, together with their shape. Here we report the first three Cheb
polynomials together with the recursion formula, as follows:

 (1.10.7)

Figure 1.10.2

Figure 1.10.3
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It is known that Chebyshev polynomials* can be used in the design of signal handling net
such as filters, directional couplers, transmission line transformers. The resulting network h
greatest possible useful bandwidth, after fixing an acceptable ripple in the desired band
Conversely, after fixing an operating bandwidth, the design with Chebyshev polynomials r
in a network with the lowest possible ripple in the bandwidth. It is also known that accept
higher value of ripple, the bandwidth increases. Applying these concepts to our case, we fi
when using a transformer as indicated in Figure 1.10.3, with s ≥ 2, it is possible to have a much
wider useful bandwidth with respect to the single quarter wave transformer, when a desired
of VSWR has been defined. In Figure 1.10.4 we have indicated the input VSWR of one, two, and
three sections of quarter wave transmission line transformer, with an impedance ratio R = 2
this figure it is evident that we have a large increase in the operating bandwidth when the n
of sections is increased.

To see how the synthesis of the network in Figure 1.10.3 can be performed using Chebyshev
polynomials, we will follow the original simplified theory of Collin. In this theory, it is assum
that the reflection coefficient value between each transition is so small that multiple reflection
to different transitions may be neglected. In other words, the reflection coefficient “Γ” at the input
of the network in Figure 1.10.3 can be written as:

(1.10.8)

Then, it is assumed that the reflection coefficients are symmetrical with respect to the m
of the transformer, so that we may write:

(1.10.9)

Figure 1.10.4

* See Appendix A4 for Chebyshev polynomials and their characteristics.
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It is important to observe that the previous relationship does not assume that the impe
value of the transmission lines used in the transformer is symmetrical with respect to its m
In fact, from 1.8.18, which defines the reflection coefficient, it is evident that two reflec
coefficients may also be equal if the impedance values are different. With the use of 1.10
Equation 1.10.7 may be written as:

(1.10.10)

where

for an odd number of sections, or

for an even number of sections. If now we remember the trigonometric relationship:

the Equation 1.10.10 may be rewritten as:

(1.10.11)

where

for an odd number of sections, or

for an even number of sections. In both of these situations, Equation 1.10.11 may also be re
as a polynomial in “cosθ” of degree “s” with “π“ as periodicity, and in the most general case w
only even or odd powers of “cosθ.” The reader who is familiar with network synthesis can remem
how a transfer function that has such a polynomial representation may be synthesized ac
to Chebyshev polynomials. So, in this case, we can also synthesize a multisection quarte
length transformer with a VSWR with a Chebyshev shape, as indicated in Figure 1.10.4. The first
thing to do is to transform the interval in “x” of extension “±1” in the interval “±θw” where “Γ ”
has an equal-ripple shape. To do that, we substitute the variable “x” in Tn(x) so that:

where “θ” is the electrical length and “θm” is the absolute bandwidth limit with θ = π/2 as reference.
So, the operating bandwidth is “π/2 ± θm.” Another definition of bandwidth used is called “fractiona
bandwidth” and is defined as 
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(1.10.12)

We can recognize that the Chebyshev function Tn(secθmcosθ) has an equal ripple shape wit
unity as the maximum value just in the operating bandwidth “π/2 ± θm.” We may now write:

(1.10.13)

where “ρm” is the maximum desired value of “Γ ” in the bandwidth. The value of “ρm” can be
easily related to the impedance ratio “R” and Chebyshev functions. In fact, for θ = 0 we have:

Now, from the series expansion:18

and remembering the hypothesis of small reflections, we may write:

(1.10.14)

Thus, from 1.10.13 for θ = 0 and 1.10.14 we have:

(1.10.15)

Note that since “θm” is known, it is clear from 1.10.7 that Tn(secθmcosθ) are polynomials of
degree “n” in cosθ. Since we have the relationship:

(1.10.16)

where “ci ” is the binomial coefficient, given by:

(1.10.17)
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for an even number of sections, Tn(secθmcosθ) may also be expressed as a polynomial in cos(θ)
with “n” as an integer number. So, from 1.10.7 and 1.10.16 for the first four Chebyshev polyno
we may write:

At this point, the synthesis of a Chebyshev transformer can be made equating the 
member of 1.10.11 with the second member of 1.10.13. As an example, let us assume 
section transformer with an impedance ratio of “2” and an operating bandwidth “BW” of 1. F
1.10.12 and 1.10.15 we have:

Then, using 1.10.11, 1.10.13, and 1.10.18 we have:

For a two section transformer with the same “BW” and “R” we have:

The dependence vs. “θ” of the reflection coefficient “Γ2” and “Γ3” for a two or three element
transformer is given in Figure 1.10.5. We can see how, for a fixed bandwidth, the three section
transformer gives a smaller ripple when compared to a two section transformer. We may also
to fix “ρm” and “R,” instead of “BW” and “R.” In this case, a typical situation is indicated in Figure
1.10.6. We see how for a fixed ripple, the three section transformer gives a wider operating
bandwidth when compared to the two element transformer.

We could suppose that it should be desirable to use a higher number of sections for 
transformer. It is rare that a number of sections higher than three is used due to the inc
attenuation and discontinuities that are encountered in this type of transformer. In the c
chapters we will see how every change of impedance in planar transmission line techno
always a source of discontinuity, and for this reason it is preferable to contain the number of s
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to a small value, in practice, lower than three. With the theory studied in this section the 
can easily synthesize a transformer for any desired “R” and “BW,” with up to four sections.

1.11 COUPLED TRANSMISSION LINES

Two lines are said to be coupled when the electromagnetic* field supported by a t.l. can 
an e.m. field on another t.l., whose intensity is defined as negligible. Theoretically, whe
electromagnetic field is emitted from a source, its intensity is zero only at an infinite distance
the source. So, any other structure that is able to support an e.m. field when placed in a
where an e.m. field exists will receive such a field, unless it is set at an infinite distance. In pr

Figure 1.10.5

Figure 1.10.6

*  The word “electromagnetic” will often be simply indicated with “e.m.”
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when the two structures, one of which generates an e.m. field, are at a distance for wh
induced e.m. to the other structure cannot be used due the low intensity, they are said
“practically electromagnetically isolated,” or simply “isolated.” So, the definition of e.m. coup
is always practical, and sometimes also subjective. Vice versa, as we said, if the induced 
not negligible, the two structures are said to be “coupled.”

In general, two t.l.s can be set in close proximity for two reasons:

a. Coupling is desired
b. It is not possible to separate more than a value these lines

For case a, the concept of coupling is used, while for case b, since the proximity is not d
the concept of “crosstalk”* is used. This argument will be studied at the end of this section

Examples where coupled lines are required are directional couplers,** filters, and to tra
differential signals in “ECL”*** circuits.

Coupled lines are simply indicated as shown in Figure 1.11.1. In general, since transmission
lines are built to have minimum losses, they have low e.m. radiation. So, coupling between
is obtained in mechanically different ways. For example, coaxial lines are not very suitable
simply coupled, and to do that requires opening the outer conductor to set the hot conduc
the two cables close together. In microstrip technology, coupling is much more simple, an
enough to set the two hot conductors close together.

Coupled lines can be studied using the general transmission line theory we describ
Section 1.2. In this case, in addition to the series impedance “Zs” and parallel admittance “Yp” of
each t.l., we also have mutual series admittance “Zsm” and mutual parallel admittance “Ypm.” These
last two new quantities are respectively representative of magnetic and electric coupling. In ad
if “Z s” and “Yp” are relative to each t.l. they are evaluated when the other line is present.

From the theory developed in Section 1.2 we can write:

(1.11.1)

(1.11.2)

(1.11.3)

*  The word “crosstalk” is often abbreviated with “xtalk.”
**  Directional couplers will be studied in next chapters.
***  “ECL” is the abbreviation of “Emitter Coupled Logic,” a logic circuitry used in fast digital devices.

Figure 1.11.1
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dances
(1.11.4)

Note that in analogy with Section 1.2, all the “Z” and “Y” are defined per u.l.
These equations can be simply extracted using Figure 1.11.2 as reference. In part a we have

assumed a single t.l., for example line “1,” with a voltage controlled generator of value “Zsmi 2,”
which represents the effect of the magnetic coupling. So, Equation 1.11.1 results from the
cation of the “Kirchoff voltage loop law”  at the network in Figure 1.11.2a. To obtain Equation
1.11.2 it is sufficient to apply the same law to Figure 1.11.2a, substituting every “1”  and “2”  with
“2” and “1.” In part b we have assumed a single t.l., for example line “1,” with a current contr
generator of value “Ypmv2,” which represents the effect of the voltage coupling. So, Equation 1.
results from the application of the “Kirchoff current law”  at the network in Figure 1.11.2b. To
obtain Equation 1.11.4 it is sufficient to apply the same law to Figure 1.11.2b, substituting every
“1” and “2” with “2” and “1.”

To obtain something similar to the monodimensional wave equation we defined in Sectio
let us start to derive Equations 1.11.1 and 1.11.2. Assuming uniform coupled lines, i.e., impe
and admittances do not vary with coordinate, we have:

(1.11.5)

(1.11.6)

Inserting Equations 1.11.3 and 1.11.4 in the previous two equations we have:

(1.11.7)

Figure 1.11.2
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(1.11.8)

where:

(1.11.9)

(1.11.10)

(1.11.11)

(1.11.12)

From 1.10.7 we have:

(1.11.13)

Extracting “v2(x)” from 1.11.8 we have:

(1.11.14)

and inserting 1.11.13 in this equation we have:

(1.11.15)

This equation is an example of a fourth order linear differential equation. The solution o
equation is simple and can be found by setting v1(x)  ⊥– v1ekx. With this substitution in 1.11.15, we
have four solutions for “k,” given by:

(1.11.16)

with:

(1.11.17)

(1.11.18)

So, the general solution is a linear combination of four exponentials, i.e.:

(1.11.19)

d v x

dx
a v x b v x

2
2

2 2 2 2 1 0
( ) − ( ) − ( ) =

a Y Z Y Zp s pm sm1 1 1
−⊥ +
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1.11.8,
It should be clear that proceeding in a similar way, it is possible to obtain equations sim
1.11.19 for voltage “v2(x)” and currents “i1(x)” and “i2(x).” Analogous to the case of a singl
transmission line, the exponentials with negative signs are called “progressive” terms, wh
exponentials with positive signs are called “regressive” terms. So, we can say that effective
have to evaluate only two propagation constants, “kc” and “kp.” This circumstance leads us to sa
that coupled transmission lines, in general, support two “modes of propagation,” that is, on
spatial dependences exist.

It is interesting to evaluate the voltage ratio “v2/v1,” since it will introduce one important study
method for coupled lines. Inserting the expression v2(x)  ⊥– v2ekx in 1.11.8 we have:

(1.11.20)

Evaluating this expression for the two cases of k = ± kc and k = ± kp, we have:

(1.11.21)

(1.11.22)

We can now obtain voltage “v2(x)” using the same parameters of 1.11.19, and write:

(1.11.23)

Of course, currents can be obtained inserting 1.11.19 and 1.11.23 into 1.11.7 and 
resulting in:

(1.11.24)

(1.11.25)

where:

(1.11.26)

(1.11.27)

(1.11.28)

(1.11.29)
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If the t.l. have the characteristic that:

(1.11.30)

then a2 ≡ a1 and b2 ≡ b1, and in this case:

(1.11.31)

When the conditions in 1.11.30 hold, the coupled lines are said to be “symmetrical.” In
case, the mode corresponding to Rc = 1 is said to be “even” since voltages on the two lines are
the same amplitude and phase. Conversely, the mode corresponding to Rp = –1 is said to be “odd”
since voltages on the two lines are of the same amplitude, but 180° out of phase. For symm
lines, Equations 1.11.26 ÷ 1.11.29 become:

(1.11.32)

(1.11.33)

and the propagation constants become:

(1.11.34)

(1.11.35)

Another important case is:

(1.11.36)

from which it follows that:

(1.11.37)

and the t.l. is said to be in a homogeneous media.
Using the concepts of “even” and “odd” modes for symmetrical lines, the results of Rc = 1 and

Rp = –1 have been generalized and, using the principle of superposition effects, any linear c
line structure, symmetrical or not, is studied using the “even-odd” excitation method. In this me
“ζe” is defined as the impedance of a t.l. to ground, considering the other line present, with a
excitation; similarly, “ζ o” is defined as the impedance of a t.l. to ground, considering the other
present, with an odd excitation. A representation of these impedances for the case of “side c
striplines”* is depicted in Figure 1.11.3, respectively, in parts a and b. Here, for simplicity, only
the electrical field is indicated.

*  Side coupled striplines will be studied in Chapter 6.
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In the “even-odd” excitation method, which we will use extensively in our text, any excita
to a coupled line can be decomposed as the sum of an even and odd excitation, and the 
characterized by their “even” and “odd” admittances or impedances, together with other “
and “odd” line characteristics like propagation constants and phase constants.

A generalized typical decomposition in even-odd excitations is depicted in Figure 1.11.4. In
part a an operative situation is indicated, where a generator is connected to a port with th
three ports correctly terminated. In part b, corresponding even excitation is indicated, whi
odd excitation is shown in part c. Note that the sum of even and odd excitations still gives th
excitation indicated in Figure 1.11.3a. It is important to observe that for every even and odd
excitation the lines are considered decoupled and respectively of impedance “ζ e”and “ζ o.” The even
and odd method will be used in the next chapters where coupled lines devices will be stud

Another very important topic of coupled line theory is the research of the conditions bet
“ζ e,” “ ζ o,” and termination impedance “Z�” to have a t.l. input impedance still equal to “Z�.” To
begin, let us assume the line to be lossless and to be in homogeneous media. Then w
kc ≡ kp ⊥– jk j , and the “[Z]” matrix of the line can be written as:

(1.11.38)

where “ζ m” can be “ζ e” or “ζ o” depending on how we apply 1.11.38. Applying the even-o
method, the input impedance “Zi”  of a single t.l., as indicated in Figure 1.11.4 can be written as:

(1.11.39)

Applying 1.11.38 at port “1” for the “even” excitation, we can write:

(1.11.40)

Figure 1.11.3
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i.e.:
while to have “v1o” we only need to change in the previous equation the subscript “e” with “o,” 

(1.11.41)

For port “1” we can write:

(1.11.42)

while for port “2” we have:

(1.11.43)

(1.11.44)

Figure 1.11.4
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Combining 1.11.42) ÷ 1.11.44 we have:

(1.11.45)

If now we insert 1.11.45 and 1.11.42 into 1.11.40 we have “v1e” as a function of impedances
only. As we said, we can repeat the same procedure for “v1o” and also for currents. The procedur
is quite tedious, but doing it and setting the condition:

(1.11.46)

we have that 1.11.46 is satisfied if:

(1.11.47)

which is a condition that is independent of frequency and length of the coupling region. Equ
1.11.47 is one of the most important relationships of coupled line theory and is fundamen
directional coupler devices.

In coupled line theory another parameter is frequently used, called a “voltage coupling fa
and indicated with “cv,” which is related to “ζ e” or “ ζ o” by the following relationship:

(1.11.48)

If “c v” is a defined value, for instance a request for some electronic system, then “ζe” or “ζo”
can be obtained by:

(1.11.49)

(1.11.50)

As we will study in the directional coupler theory,* “cv” is quite often the mean value of the
frequency variable coupling “cv(f),” defined as the ratio between the coupled electric field “Ec(f)”
and the input electric field “Ei(f),” i.e.:

(1.11.51)

In any case, the modulus of the coupling factors theoretically have unity as the maximum 
also if in practice the unity cannot be reached.

In many problems coupled lines can be evaluated as lossless, so that the coupling qu
reduce to mutual inductance “M” and mutual capacitance “Cm,”  as indicated in Figure 1.11.5. Here
we have also assumed that the two lines of the couple are the same. In such cases, and s
the structure supports a “TEM” mode, it is simple to relate “C,” “Cm,” “L,” and “M” to “ ζe” and

*  See Chapters 7 and 8 for directional coupler theory.
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“ζo.” To do that, first of all assume that the propagation along a single line has the longitu
dependence “e–jβx ” and apply the telegraphist’s equations. We have:

(1.11.52)

(1.11.53)

(1.11.54)

(1.11.55)

The previous equations can be rewritten as:

(1.11.56)

(1.11.57)

(1.11.58)

(1.11.59)

Now, let us apply the even and odd excitations at ports “1” and “4,” so that we write:

(1.11.60)

(1.11.61)

Inserting equations 1.11.60 and 1.11.61 into 1.11.56 through 1.11.59 we have the foll
two sets of homogeneous equations, respectively for the even and odd case:

(1.11.62)

(1.11.63)

Figure 1.11.5
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The solutions of these two sets are, respectively:

(1.11.64)

(1.11.65)

which represent the even and odd phase constants. The even and odd impedances can 
obtained. In fact, for even excitation “Cm” is between two equipotential points and the magne
coupling corresponds to having a single inductance of value of “L + M.” This situation is indic
in Figure 1.11.6. So, applying the definition 1.3.11 for characteristic impedance we have:

(1.11.66)

since Ype = ωC and Zse = ω(L + M).

The situation for odd excitation is indicated in Figure 1.11.7, from which we have:

(1.11.67)

since Ypo = ω(C + 2Cm) and Zso = ω(L – M). 
In the case of a “TEM” mode, “βe” and “βo” must satisfy the general condition for isotropi

and homogeneous media. In the case of progressive propagation, this constraint is written

(1.11.68)

(1.11.69)

from which we have:

Figure 1.11.6
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(1.11.70)

(1.11.71)

Inserting these last two equations into 1.11.66 and 1.11.67 we have:

(1.11.72)

(1.11.73)

From the two previous equations we can recognize that even impedance is always high
or equal to odd impedance. Once we know “ζ e” and “ζ o,” the four previous equations permi
evaluation of “C,” “Cm,”  “L”  and “M .”  For example, Figures 1.11.8 and 1.11.9 give respectively
the values of “C,” “Cm” in pf/cm and “L,” “M” in nH/cm, as functions of the coupling for a
directional coupler.

Xtalk is a phenomenon that represents the effect of a signal traveling in a t.l. toward a
t.l. So, crosstalk is an undesired phenomenon present when two or more t.l.s are set close t
The general theory of coupled t.l.s is perfectly applicable for the xtalk case. However, he
want to discuss this phenomenon from a “time domain” and “voltage” point of view, as is custo
in hardware digital technique. We will study the case of only two coupled t.l.s where only o
fed at one port, as indicated in Figure 1.11.1. The voltages induced at points “4”  and “3”  are
respectively named “backward,” or “near end,” and “forward,” or “far end” xtalk. In contrast to
case of a directional coupler where even “ζ e” and odd “ζ o” satisfy 1.11.47, with “Z�” the termination
impedance, in the present case this relationship in general is not verified, since the coup
undesired. In the following, unless otherwise stated, we will assume such a case, i.e., Z�

2 ≠ ζ eζ o.
Simple formulas are available to evaluate the xtalk if we suppose:

1. The two t.l.s are identical 
2. Each t.l. supports a pure “TEM” mode
3. The termination load is a pure resistance of value “R�,” equal at any port

Figure 1.11.7
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Figure 1.11.8

Figure 1.11.9
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In such a hypothesis, with reference to the circuit indicated in Figure 1.11.10, in the case where
the coupling length “�” is shorter than λg/4, backward “vb” and forward “vf” xtalk voltages are
approximately given by:

(1.11.74)

(1.11.75)

In Table 1.11.1 we have indicated some typical values for “C,”  “Cm,” “L,” and “M,” where
inductances are in nH/cm, capacitances in pF/cm, length in cm, “τd” in nS/cm, “τr” in nS, and
voltages in volt:

Even and odd impedances are easily related to the elements of the equivalent circuit 
coupled t.l.s, indicated in Figure 1.11.10, through the following equations:

F/m (1.11.76)

F/m (1.11.77)

H/m (1.11.78)

H/m (1.11.79)

Of course, if “�” is comparable to “λg” then the general equations of coupled t.l.s need to
used, inserting the corresponding “ζ e” and “ζ o” for the “w1,” “w 2,” “s,” and “h” employed for the
particular coupled µstrip lines. It is important to say that if the coupled t.l.s have “ζ e” and “ζ o” so
that R� ≡ (ζ eζ o)0.5 is satisfied and � = (2n + 1) λ /4 with “n” and odd number, then a directiona

Figure 1.11.10

Table 1.11.1

C Cm L M �d � �r V1 Vb Vf

0,4 0,17 8 4,12 0,0566 4 1 1 0,235 –0,0102
0,4 0,17 8 4,12 0,0566 10 1 1 0,235 –0,0255
0,4 0,17 8 4,12 0,0566 10 0,5 1 0,235 –0,0509
0,3 0,15 10 4,8 0,0548 4 1 1 0,245 0,0022
0,3 0,15 10 4,8 0,0548 10 1 1 0,245 0,0055
0,3 0,15 10 4,8 0,0548 10 0,5 1 0,245 0,0109
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��
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4 Line 2

Line 1

v v C C M Lb m= +( )0 25 1.

v v C C M Lf d m r= −( )0 5 1. τ τl

C r e e= ( )µε ε ζ0

0 5.

Cm r e o e= ( ) −( )0 5 1 10

0 5
.

.
µε ε ζ ζ

L C Ce o o m= +( ) +0 5 2 2 2. ζ ζ ζ

M C Ce o o m= −( ) −0 5 2 2 2. ζ ζ ζ
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coupler is realized, and the forward xtalk is theoretically always zero.* In Figure 1.11.11 we have
reported the case where ζe = 69.4Ω and ζo = 36Ω, corresponding to a coupling o
|cm| = | v4/v1| = –10 dB in a 50Ω system, vs. the electrical length “θ.” The values above “0” for
the vertical axis are in linear scale, while below zero they are in “dB.” The direct, coupled
isolated outputs are respectively indicated with “d(θ),” “c(θ),” and “i(θ),” and correspond to “v2,”
“v4,”  and “v3”  of Figure 1.11.10. For this figure, Equation 1.11.47 is supposed to be verified, and
we can see how the isolation is always infinite since i(θ) = 0 for every “θ.” The situation is different
if  Equation 1.11.47 is not verified, as we have indicated in Figure 1.11.12 where ζ e = 69.4Ω and
ζo = 18Ω. We see how “i(θ)” is no longer always zero.

The Xtalk theory shown here can be applied to any coupled line structure for which ever
supports a “TEM” propagation mode. An example is the coupled stripline structures as ind
in Figure 1.11.3 for the “BCS”** case. An example where this theory can be applied with so
approximation is the coupled µstrip studied in Chapter 5, since the µstrip does not support 
“TEM” mode.

*  This assertion will be verified in Chapter 7, when we will study µstrip directional couplers.

Figure 1.11.11

**  “BCS” means “Broad Side Coupled Stripline,” a coupled line structure studied in Chapter 6.
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1.12 THE SMITH CHART

All the formulas given in the previous paragraphs, even if they are not so complicated
require a calculator. To simplify these calculations, a helpful idea came to researcher P.H. S
who introduced a chart on which many transmission line problems can be easily represen
this section we will study how this chart works and what we can represent on it.

The Smith chart can be introduced starting with the relationship in 1.8.38 between the no
ized impedance “ζ n(x)” presented by the t.l. and voltage reflection coefficient “Γv(x).” We have:

(1.8.38)

where:

(1.8.37)

From 1.8.38 we can write:

Figure 1.11.12

*  P.H.Smith, American researcher, born in 1905 in Lexington and died there in 1987.
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(1.12.1)

Remember that 1.8.37 has been defined when the origin of the “x” axis is at the termi
load, and negative values of “x” are on the left. In this section we will use this reference sy
unless otherwise stated.

Since “Γv(x)” and “ζ n(x)” are, in general, complex numbers, we can write:

(1.12.2)

(1.12.3)

which, inserted into 1.8.38, results in:

(1.12.4)

Equating imaginary and real parts at both members, we have:

(1.12.5)

(1.12.6)

Writing the two previous expressions as functions of the variables “Γvr(x)” and “Γvj (x)” we
have:

(1.12.7)

(1.12.8)

Equation 1.12.7 in the Cartesian plane of abscissae “Γvr (x)” and ordinate “Γvj (x)” represents
a circle with center in:

(1.12.9)

and radius “r” so that:

(1.12.10)
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Figure 1.12.1 represents some circles given by 1.12.7 for some values of “ζ nr(x).” Note that the
maximum value of the radius is “1,” corresponding to ζ nr(x) = ∞.

In the same coordinate system, Equation 1.12.8 represents a circle with its center in:

(1.12.11)

with radius “r”:

(1.12.12)

Figure 1.12.2 represents some circles given by 1.12.8 for some values of “ζ nj(x).” 
Combining Figures 1.12.1 and 1.12.2 in the same graph we obtain the Smith chart, indicated

in Figure 1.12.3. So, circles represent normalized resistances while arcs represent normalized
reactances.

From the Smith chart, we can obtain the admittances in a very simple manner. From 1.8
have:

(1.12.13)

So, admittances can be simply obtained by rotating the point that represents the value ζ n(x)”
clockwise of “π,”  along a circle. As an example, in Figure 1.12.4 we have indicated a point Z = 1
+ j. To obtain its normalized admittance “Y,” it is enough to rotate clockwise of “π” on a circle,
to have the point Y = 0.5 – j0.5. Of course, the Smith chart is numbered for every circle dra
it, and in case we have not numbered the circle for simpler drawing purposes.

Figure 1.12.1
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To again simplify the passage between “Z” and “Y,” the Smith chart is represented with an
Smith chart on it, but just rotated of “π.”  This situation is indicated in Figure 1.12.5. For this figure,
point “A” has an impedance readable by circles and arcs starting from the right, while its admi
is readable by circles and arcs starting from the left. So, with this chart it is not necessary to
any rotation to pass between “Z” and “Y,” since it is the graph that is rotated. Note that left

Figure 1.12.2

Figure 1.12.3

Γ

Γ

vj

vrZnj=0

0.3 0.5 0.8 1 2

4

-4

-2

-1

-0.8-0.5

-0.3

vrΓ =1Γ vr =-1

Γ vj

vrΓ
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bvious,

part
i.e., susceptances, have negative and positive values respectively above and below the “Γvr” axis,
i.e., in an opposite manner with respect to right arcs, which represent reactances. But this is o
since a complex number “Y ⊥– G + jB,” which is the reciprocal of a complex number “Z ⊥– R +
jX,” i.e., Y ⊥– 1/Z, has the imaginary part “B” of opposite sign with respect to the imaginary 
“X” of the number “Z.”

Figure 1.12.4

Figure 1.12.5

Γ vr

vjΓ

Z

Y

Γ

Γ

vj

vr

A=1+j
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Another important topic on the Smith chart is the sign of the rotation. From 1.8.37 we se
moving toward the generator, the phase of “Γv(x)” decreases, since the coordinate is negative, wh
moving toward the load, the phase increases. For this reason, once the point “Γv(0)” is signed on
the Smith chart, the distance toward the generator must be measured moving clockwise, w
distance toward the load must be measured moving counterclockwise. This situation is ind
in Figure 1.12.6, where the zero angle is set by definition in Γvr = –1 and clockwise movement a
positive angle direction.

Inserting the real and imaginary part of “k” in 1.8.37 we have:

(1.12.14)

from which we can see that if kr = 0, i.e., losses are zero, then the vector “Γv(x)” describes a circle,
while if kr > 0* then “Γv(x)” describes a decreasing spiral. So, if losses are present and the
is theoretically of infinite length, then the reflection attenuates when returning to the input 
line, reaching the value of zero. Remembering Equation 1.7.1, i.e.,

we see how “Γv(x)” gets the same angle for every x = nλ /2, with “n” an integer number. This mean
that in the Smith chart, a turn corresponds to a distance “d” in the line equal to half wavel
For this reason, the outermost circumference is numbered in angles and/or in units of half wave

The Smith chart can also be used to measure “|Γv(x)|.” We know from Section 1.8 that
|Γv(x)| ≤ 1, which means that any value of “|Γv(x)|” is surely inside the value of the outermo
circle radius “r” given by 1.12.10. To simplify the reading of “|Γv(x)|” quite often another axis
parallel to the “Γvr” axis is drawn with its scale numbered from “0,” i.e., the center of the Sm
chart, and “1,” i.e., the maximum value of “|Γv(x)|,” or the maximum value of the outer circle o
the Smith chart.

Figure 1.12.6

*  Losses, i.e., “ kr ,” are represented with a positive number. Remember that 1.8.37, and therefore 1.12.10, hav
defined for x < 0. So “ekrx” is always negative for kr > 0.

Γ

Γ

vj

vr

Γv(0)

Toward generator

Toward load

Γ Γv v
k x jk x

x e er j( ) = ( )0 2 2

k j jj = ( ) =ω µε π λ0 5
2

.

©2000 CRC Press LLC



uation

d

at

luating
tically

is chart.

rans-
en the
on such
me of

as said
e values

e

Another parameter that can be measured on the Smith chart is the VSWR, given by Eq
1.8.48, i.e.:

(1.8.48)

Another axis parallel to that of the “Γvr” or “|Γv(x)| ” axis is drawn, with its scale numbere
from “1,” corresponding to the value |Γv(x) | = 0, and “∞,” corresponding to the value |Γv(x) | = 1.

Another parameter that can be measured is the line attenuation constant “kr.” We know that if
the line has attenuation, the extreme of “|Γv(x) |” describes a decaying spiral. So, if the line is 
least a wavelength long, it surely trespasses twice the “Γvr” axis, in two different positions whose
distance is proportional to “kr.”

From these arguments, we can recognize how the Smith chart is a formidable tool for eva
a lot of transmission line parameters. Note that the transformation of the Smith chart is theore
exact, so the unique source of error can be the manual drawing of points and paths along th
However, these errors can quite often be neglected.

Another graph that can be drawn in the Smith chart is the so-called “constant-Q” or “t
former” lines. These lines represent the points on the Smith chart where the ratio betwe
imaginary and real parts is constant. Ideal transformers are devices that move impedances 
lines. “Constant-Q” lines are used for matching using transformers or in filter synthesis. So
these lines are given in Figure 1.12.7 and are indicated with dashed lines.

The Smith chart can also be generalized to include negative values of resistance. As w
before, some active elements, under particular bias and load conditions, can present negativ
for input impedance. The generalized Smith chart is indicated in Figure 1.12.8. To draw this graph
it is enough to draw, with the desired negative value of “Znr,” the circles whose coordinates ar
given by 1.12.9 through 1.12.12. For example, the circle relative to Znr = –1 has a radius equal to
infinity, and in Figure 1.12.8 is indicated with the dashed line marked with “Z nr = –1.” Also note

Figure 1.12.7
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how any point with a negative real part gives a reflection coefficient greater than “1,” sinc
corresponding modulus of the vector “|Γv(x)|” is greater than the bigger radius of the Smith char
positive resistance circle, which is just equal to “1.”

On the Smith chart, a lot of other parameters can be drawn that are not representa
transmission line problems. These other parameters are “stability circles,” “noise figure cir
and “constant gain circles.” These parameters are pertinent to amplifier design and are not th
of this text. The reader interested in such topics can read specific books on these subjects19,20

The reader can recognize how the Smith chart is not only useful in resolving transmissio
problems, but can be used in every matching problem. Also, today, when in every problem w
use computer programs to help us, the Smith chart remains a very simple method which 
employed.

1.13 SOME EXAMPLES USING THE SMITH CHART

After having studied the Smith chart in the previous section, it is useful to show some exa
of practical problems that can be easily resolved by applying this chart. Of course, we cannot
exact result values, which would only be possible using a computer. Many readings in the 
chart necessarily have to be interpolated. Remember that the procedure for drawing the Smi
is absolutely mathematically correct, and the only error source is in the reading of the exact p
on the curve in the chart. Errors are quite often negligible.

The general way to use the Smith chart is to convert loads to reflection coefficients “Γv ,” to
draw this “Γv ,” and to choose a convenient path to realize the matching. Remember that if we
toward the generator we need to rotate clockwise, while if we move toward the load we h
rotate counterclockwise.

Some simple examples will better explain how to use the Smith chart. Unless otherwise 
by “reflection coefficient” we will mean the “voltage reflection coefficient.”

Figure 1.12.8
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a. Example I

Consider a coaxial cable with ζ = 50 ohm of characteristic impedance. Its length is � = 5 meters,
and its dielectric constant is εr = 2.3. In the cable, a signal with frequency f = 9 GHz is sent. T
cable is terminated with a load of impedance Z = 75 ohm. Evaluate the input impedance of the

Result

The load normalized impedance “Zn” and reflection coefficient “Γv” are:

(1.13.1)

The point corresponding to “Γv”  is indicated by “A”  in Figure 1.13.1. Now we draw a circle
with its center in the Smith chart center and radius equal to “Γv.” All the impedances presented
by the line will be on this circle. The “guided wavelength” “λg” is:

(1.13.2)

where “v0” is the light speed in the vacuum. The cable length is a number “n” of half wavele
given by:

(1.13.3)

Since from the previous section we know that a complete turn on the Smith chart corres
to moving a half wavelength along the line, we need to subtract from “n” its integer part, obta
n′ ⊥– 0.96. Multiplying “n′ ” for 360° we have the number of degrees “θ” we have to move
counterclockwise on the circle. In this case we have θ = n′ * 360° = 345.6°. The resulting point
is indicated with “B”  in Figure 1.13.1, which corresponds to a reading of:

Figure 1.13.1
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(1.13.4)

which represents the real and imaginary parts of the cable input impedance, normalized toζ.”

b. Example II

Let us consider a transmission line with ζ = 50 ohm of characteristic impedance. Its length
� = 10 centimeters and its dielectric constant is ε r = 4.3. The attenuation factor of this line
corresponds to kr = 0.3 m–1. In the line, a signal with frequency f = 12 GHz is sent. The line
terminated with a load of impedance Z = 75 ohm. Evaluate the input impedance of the line

Result

The load normalized impedance “Zn” and reflection coefficient “Γv” are:

(1.13.5)

The point corresponding to “Γv”  is indicated with “A”  in Figure 1.13.2. In contrast with the
previous Example I, now we cannot move on a circle radius equal to “Γ v,” since now the line is
lossy. What we have to do is to draw the circle corresponding to the final value “Γ f” of “ Γ v,” given
by equation 1.8.37, i.e.:

(1.8.37)

where “x” is a negative number, i.e., the length of the line changed in sign. In this case we

(1.13.6)

Figure 1.13.2
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Since the line is 10 cm long and “kr” is known, from 1.13.6 we have:

(1.13.7)

Now we draw a circle with its center in the Smith chart center and radius equal to “Γ f.” All the
impedances presented by the line will be on this circle. The “guided wavelength” “λ g” is:

(1.13.8)

The cable length is a number “n,” of half wavelength, given by:

(1.13.9)

obtaining n′ ⊥– 0.58 or θ = n′ * 360° ≈ 209°. The resulting point is indicated by “B”  in Figure 1.13.2,
which corresponds to a reading of:

(1.13.10)

which represent the normalized real and imaginary parts of the cable input impedance. 

c. Example III

Let us consider a generic network with an input normalized impedance equal to Z = 1.5
a frequency of f = 1 GHz. Match this network to 50 ohm.

Result

The point corresponding to “Z”  is indicated with “A”  in Figure 1.13.3. The matching problem
can be obtained in a several ways.

The first way is to move along a constant resistance circle, and reach the point “B.” Sin
move increasing reactance it means we are adding a series inductance “L.” The value of
equal to the reactance corresponding to the distance between point “A” and the “Γ vr” axis, evaluated
at “f,” i.e.:

(1.13.11)

At point “B” only a resistive impedance exists. Then we can move along the “Γ vr” axis until
reaching the value “1.” Since this movement results in decreasing the resistive part, it is equ
to inserting a parallel resistor “R.” The value of normalized “R,” “Rn,” is equal to the antiparallel
between the resistance “1.5” in “B,” and that in the arrival point “C,” i.e., “1.” So:

(1.13.12)

or R = 150 ohm. In Figure 1.13.3 we have indicated the procedure for matching.
Lossless matching at the desired frequency is quite often desired. The matching indica

Figure 1.13.3 is quite lossy, since it uses resistors.

Γf e= ≈−0 2 0 1882 0 3 0 1. .* . * .

λ
εg

r

v

f
mm= ≈0 12 06.

n g= ( ) =l λ 2 16 58.

z and Znr nj≈ ≈0 7 0 14. .

L f nH= ≈50 2 7 96π .

Rn = −( ) =1 5 1 1 5 1 3. * .
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The second way to match to 50 ohm is indicated in Figure 1.13.4. Using a 50-ohm line we can
move from point “A” to point “B,” choosing the line length “�” as indicated on the outermos
Smith chart circle. In this case � ≈ 0.033λ , as the difference between the “λ” corresponding to
point “A,” and point “B” being “λ” the guided signal wavelength. Then, moving on a const
resistance circle, we can reach point “C.” This movement is equivalent to inserting a 
inductance “L.” The value of “L” is equal to the reactance at point “B,” evaluated at “f.” At p
“B” the denormalized reactance “| XB| ” is near 44 ohm, so:

(1.13.13)

Of course, other ways exist to do the matching. Let us consider Figure 1.13.5. For instance we
can move from “A” to “B” on a constant conductance circle that corresponds to add a 
capacitor, and then reaches point “C ” moving on a constant resistance circle, i.e., adding a
inductor. Alternatively, we can move from point “A” to point “D” adding a shunt inductor, a
then from “D” to “C” adding a series capacitor. The corresponding matching sections are ind
in Figure 1.13.5, together with the proper values.

This example can show us that quite often, many matching sections can be found. Th
suitable can be chosen evaluating other parameters, like attenuation, physical constructio
and cost.

In many cases, simple low-pass or high-pass sections work quite well, especially if the ma
networks are not always that simple to build. For example, note as the low-pass section in
in Figure 1.13.5 has a capacitor of only 0.57 pF, which is quite a small value for a concentrated
element.

Figure 1.13.3
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Figure 1.13.4

Figure 1.13.5
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1.14 NOTES ON PLANAR TRANSMISSION LINE FABRICATION

In this section we want to outline two inevitable issues in planar t.l. fabrication which ne
be recognized in order to avoid failures in the designed device. We will concentrate on µwa
fabrication, but the following discussion applies to low frequency “PCB” as well, and of co
is applicable to any planar t.l. studied in this text.

A planar t.l. is built mainly in two ways: 

1. Wet chemical etching
2. Selective conductor plating

The first method uses exactly the same technology applied in low frequency “PCB” constru
Briefly, the areas where the conductor is desired are protected against the chemical etching
resin, as indicated in Figure 1.14.1a. Then the circuit is inserted inside the corrosive liquid,* which
removes the conductor from the unprotected area. A consequence of this process is that th
section of the planar t.l. hot conductor assumes a trapezoidal shape, as indicated in Figure 1.14.1b.
In practice, the conductor is smaller below the photoresist than the desired width “w,” while
the substrate, the real width is much closer to “w.” This phenomenon is called “undercut,” an
corresponding decrease in width has been indicated with “u”  in Figure 1.14.1b. Typical values of
“u” are very close to thickness “t.” In alumina circuits the conductor is gold, with t ≈ 4 ÷ 6 µm,
and excluding the case of directional couplers,** where “w” can be near some tens of µm
undercut can be neglected. In the case where copper is used as a conductor, its thickness is
17 µm or 30 µm and quite often the undercut cannot be neglected. In any case, when a t.l.
has to be built, it is convenient to know the exact values for undercut and photolithogr
tolerance. Once the undercut value is known, its effects can be compensated for by enlarg
t.l. of the undercut value only, so that once the t.l. is realized it will have a width very nea
theoretical designed value.

*  This liquid is quite often an acid, depending on the metal to be eroded.
**  These devices will be studied in Chapter 7.

Figure 1.14.1
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Another source of error arises in the photolithographic process used to attach the pho
to the conductor. In microwave technology, this error gives a typical imprecision of ±3 µm in

Selective conductor plating minimizes the undercut. In this case, the area where the con
is desired is left free of resin, while the rest is protected by some particular resin, as indica
Figure 1.14.2a. Then the conductor is grown using a galvanic process. Knowing the growth area,
the DC current and the metal density inside the galvanic bath, a very precise conductor thi
“t” can be grown. Then the protective resin is removed using a selective erosive liquid, and
the desired conductor remains, as shown in Figure 1.14.2b.

In low frequency “PCB” technology, a very diffused substrate is a glass-resin mixture, c
FR4, with a relative dielectric constant ranging from 3.5 to 6. Such boards can have dime
much wider than RF t.l. devices to be realized. Components on these PCBs are usually s
using a process called “wave soldering.” In practice, the entire board is warmed to 40 or 50 d
and is set in contact with a wave of soldering material, so that all components are soldere
few seconds. A large area of conductor is not recommended with this procedure, because
deform the board due to its heating when it is touched by the soldering wave. This could c
problem in t.l. devices where the ground plane should be continuous. The problem is solv
building the ground plane as a grid, so that the wider side of it is smaller than λ/10. For low
frequency signals the ground plane works as if it were continuous.
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CHAPTER 2

Microstrips

2.1 GEOMETRICAL CHARACTERISTICS

An illustration of a microstrip t.l.*  is provided in Figure 2.1.1 in a cross-sectional view.**  As
we can see, this t.l. is composed of two parallel plane conductors, separated by a dielectr
with dielectric constant “ε r” and permeability “µr.” The dielectric sheet is usually called th
“substrate.” In this chapter unless otherwise stated, we will evaluate the dielectric material 
ferro-ferrimagnetic, i.e., we will suppose µr = 1. The case where the dielectric material is a
ferrimagnetic will be studied in Chapter 7. One of the two conductors is much wider tha
other,***  and it has been indicated as “conductor II”  in Figure 2.1.1. The wider conductor is set
to the signal ground and for this reason it is also called the “cold conductor” or “ground condu
Conversely, the shorter conductor, indicated as “conductor I”  in Figure 2.1.1, is called the “hot
conductor.” For its physical construction, microstrips are employed as unbalanced t.l. W
indicate with:

1. “w” the width of the hot conductor
2. “h” the substrate height 
3. “t” the conductor’s thickness

Microstrips are the most widely used t.l. in all planar circuits, regardless of the frequency 
of the applied signals. Especially at lower frequency, let us say until some hundreds of 
microstrips are widely used in multilayer printed circuit boards. In these cases, the ground con
cannot coincide with the board metal housing or 0 Volt signal layer, but it can be a voltage
properly filtered. A possible four layers PCB is indicated in Figure 2.1.2. In this case, conductors
“M1” and “M2” are two microstrips with layer “2,” which is a power supply layer, while layer “
is available for other purposes. Such PCB configuration is widely used in ECL or TTL board
course, in microwave devices, microstrips are always two layers t.l., as indicated in Figure 2.1.1.

In Chapter 7 we will study some networks and devices employing microstrips, and in part
we will introduce nonreciprocal devices which use ferrimagnetic materials as substrate.

*  Quite often we will abbreviate the reference to the microstrip transmission line with only the word “microstrip” or “µs”
**  Whenever no confusion will arise, we will omit the obvious phrase “with a cross-sectional view.”
***  In the following chapter we will show that the ground conductor should at least be three times wider than th
conductor.
©2000 CRC Press LLC
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2.2 ELECTRIC AND MAGNETIC FIELD LINES

Some electric “e” and magnetic “h” field lines for the fundamental “qTEM” mode in microst
are indicated in Figure 2.2.1 in a defined cross-section and a defined time. In the fundamental mode
the hot conductor is equipotential. 

The real fields disposition inside a microstrip is frequency dependent. In fact, logitudinal 
components exist due to the substrate discontinuity, so that the resulting propagation mode i
the “hybrid mode.” Until near 10 GHz, these longitudinal components can be neglected, a
mode can be evaluated at a first approximation as a pure “TEM.” However, due the non- “
propagation, the microstrip is a dispersive* t.l., and this fact is particularly detrimental in wide
circuits operating at center frequencies above 10 GHz. Coupled line directional couplers, s
in Chapter 7, are the most dispersion-sensitive microstrip devices. For this reason, caution
to be used when employing microstrip devices in wideband precision devices. 

However, due to their technological simplicity, microstrip devices are the most widely emplo

Figure 2.1.1

Figure 2.1.2

*  Dispersion is studied in Appendix A2.
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2.3 SOLUTION TECHNIQUES FOR THE ELECTROMAGNETIC PROBLEM

Three theory groups are mainly employed to study microstrip t.l. They are:

1. Quasi static group, where the microstrip is evaluated as a parallel plate transmission line, supportin
a pure “TEM” mode. Examples of methods1 used in this group are the application of the finite
difference method for the Laplace equation2 or conformal transformation method,3 both studied in
Appendix A1.

2. Dispersion group, where the microstrip is for example evaluated as a particular coupling betwee
a “TEM” and “TE” t.l.4,5 or with other dispersion models.6,7,8

3. Full wave group, where no simplification is made and a full Maxwell’s equations solution is
found.9,10,11,12

The first two groups are quite simple to apply while the third requires more analytical applica
A common quantity for all three groups is “effective relative permittivity.”* The introducti

of this quantity can be done with reference to Figure 2.3.1. In part a, the microstrip has been
enclosed in a box, with dimensions such that its effect on the field distribution can be neg
In part b, the microstrip is surrounded by an homogeneous, isotropic dielectric medium
permittivity “ε re,”  so that the wave phase velocity is the same for cases in Figure 2.3.1 a and b.
“ε re” stands for “effective relative permittivity.” This quantity is evaluated as a constant in the q
static group, while for the other groups it is a frequency-dependent function, as it is in realit
for points 2 and 3 above, the phase velocity coincidence has to be considered as satisfied
frequency.

Figure 2.2.1

*  It is common practice to refer to “effective permittivity as εre.” However, since we think that the omission of the wor
“relative” can cause confusion, we will add this word.

Figure 2.3.1

=e
=h

ε r

ε re
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ε r =1
©2000 CRC Press LLC



     

n

   

 this
n. The

  

ed in a
anners,

       

h the

    

by the

   

 case,
whose

             
In general, the determination of “ε re(f)” is a very important point of any group of study. I
fact, once “ε re(f)” is known, the microstrip characteristic impedance can be evaluated inserting
function in any of the quasi static impedance expressions that we will give in the next sectio
result is that the µstrip impedance also will be a function of frequency.

In the next sections we will discuss each one of the three groups.

2.4 QUASI STATIC ANALYSIS METHODS

These methods consider the microstrip as a static problem, so that it can be transform
structure that resembles a parallel plate capacitor. These methods evaluate, in different m
the capacitance “C” of the µstrip, from which the characteristic impedance “ζ ” can be evaluated
as ζ = 1/Cv where “v” is the light speed in the media with effective dielectric constant “ε re.”

It is assumed that this parallel plate capacitor represents a “TEM” lossless t.l., for whic
characteristic impedance “ζ ” and phase constant “β” are evaluated as:

(2.4.1)

(2.4.2)

In these equations, the subscript “0” individuates quantities with the substrate replaced 
vacuum. The effective relative dielectric constant “ε re” is defined as: 

(2.4.3)

In the quasi static analysis, simple relations occur among the previous quantities. In this
the µstrip can also be considered ideally as a generic “TEM” lossless transmission line 
equivalent circuit is indicated in Figure 2.4.1. First of all, note that if  we assume the substrate to
be not ferrimagnetic,* the inductance “L” is independent of the substrate “ε r ,” i.e., L0 ≡ L. Phase
velocities “vp” and vp 0,” according to Chapter 1, in this case are:

(2.4.4)

from which, also using 2.4.3:

(2.4.5)

*  Ferrimagnetism is studied in Appendix A7.

Figure 2.4.1
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Since vp 0 = (µ0ε 0)–0.5, from 2.4.4 it also follows:

(2.4.6)

The µstrip characteristic impedance “ζ 0” for the case εr = 1, referring to the equivalent circui
represented in Figure 2.4.1 and according to Chapter 1, is given by:

(2.4.7)

where ζV ⊥– (µ 0/ε0)0.5 = 120π is the vacuum impedance. So, inserting 2.4.7 into 2.4.1, we ha

(2.4.8)

The quasi static method most suited to be computer executed is the finite difference m
abbreviated as “FDM,” applied to the solution of Laplace’s equation.* With this method,
microstrip is enclosed in a box, as indicated in Figure 2.3.1a and the potential “V”  on the hot
conductor is found according to the “FDM.” Once the potential “V” has been determined
electrical field is found using the well-known equation:

(2.4.9)

and the charge “q” on the hot conductor is:**

(2.4.10)

and consequently the capacity “C” per u.l. is:

(2.4.11)

In 2.4.10, “S” is the surface that contains a volume “Q ”; “n” is the “normal” to this surface
and directed outside the region under study.

Another method used to study the microstrip is the conformal transformation method,**
which the microstrip is transformed in a real parallel plate t.l. The researcher H.A. Wheeler13 was
the first to study the microstrip with this method, giving useful formulas for the evaluation o
effective relative dielectric constant once known as “ε r ” and the geometrical microstrip dimensions
Successively, Wheeler’s formulas have been improved by E.O. Hammerstad,14 resulting in the
following expression for “ε re”:

(2.4.12)

where for w/h ≤ 1:

*  See Appendix A1 for solution of Laplace’s equation through “FDM.”
**  See Appendix A1 for the Gauss’s law given by Equation 2.4.5.
***  See Appendix A1 for conformal transformation method.

LC0 0 0≡ µ ε

ζ µ ε ζ ε0 0

0 5

0 0

0 5
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. .

ζ ζ ε= ( )−
V CC0 0

0 5.

E V= −∇
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S
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(2.4.13)

while for w/h ≥ 1:

(2.4.14)

Expressions 2.4.12 through 2.4.14 have been proven to be accurate inside 1% for εr ≤ 16 and
0.05 ≤ w/h ≤ 20.

From the above expressions we note that the conductor thickness “t” is not taken into ac
Wheeler15 suggests considering the effect of “t” as an extra width “∆w” added to “w,” so that the
resulting “we” can still be evaluated with zero thickness. The quantity “we” is called the “effective
width” of the hot µstrip conductor, and is given by:

(2.4.15)

where “∆w” for any value of w/h but for t/w < 1 and t/h < 1 is given by:

(2.4.16)

where “r” is given by:

(2.4.17)

and “e” is the natural number. Other researchers have studied the effect of the strip thickn
we will discuss later. Note that with quasi static methods there are no t.l. characteristics th
frequency dependent. In the next sections we will study other methods where frequency a
as a variable.

It is important at this point to make a distinction if the substrate is ferro-ferrimagnetic. In 
cases, an effective permeability “µre” can be defined, according to:

(2.4.18)

where “L0” individuates the µstrip equivalent inductance when the substrate is evaluated as µr = 1,
i.e., the substrate is replaced by the vacuum. However, not a unique expression for “µre” exists
since this quantity is strongly dependent on the direction and intensity of the applied static ma
field and on its direction with respect to the “RF” magnetic field. These expressions are giv
Chapter 7 and Appendix A7. In particular, expressions 2.4.1 and 2.4.5 are replaced with:

(2.4.19)

(2.4.20)
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2.5 COUPLED MODES ANALYSIS METHOD

Among the dispersion group analysis methods, the coupled mode method is the most 
to be studied. With this method, the effective relative permittivity is a function of frequency,
consequently, impedance.

This method supposes that the real propagation mode in a microstrip can be obtained t
a coupling between a “TEM”  and “TE”  mode, as indicated respectively in Figure 2.5.1 parts a and
b with their equivalent t.l.* networks. This explanation of the microstrip propagation was 
suggested by the researcher H. J. Carlin.16 The choice of a “TEM” and “TE” line comes from the
fact that the fundamental mode can be approximated to a “TEM” while the first higher order 
has been evaluated to be a “TE.”  The elements’ values which appear in Figure 2.5.1 can be found
in Appendix A2. According to Carlin, the value of “kt

2” is:

(2.5.1)

where “ε re0” is the effective relative dielectric constant evaluated at DC, given for example
equation 2.4.7. So, the expression for “ε re(f)” is:

(2.5.2)

where “v0” is the light speed in the vacuum.

*  See Appendix A2 for equivalence between modes and t.l.

Figure 2.5.1
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2.6 FULL WAVE ANALYSIS METHOD

With this method, a solution of the Maxwell equations is found for a microstrip enclosed
box, applying the boundary conditions that the fields must satisfy. The enclosed microstr
indicated in Figure 2.6.1 is supposed to have cylindrical symmetry, and a Cartesian coordinate
system is applied. Following the classical methods of study for structures with such a symm
the electric “A” and magnetic “F” vector potentials are written as:

(2.6.1)

(2.6.2)

where “L(z)” is assumed to be in a lossless case and in a reflectionless propagation in th0”
direction, is given by:

(2.6.3)

Then, for every region i = 1,2 indicated in Figure 2.6.1 we suppose the propagation mode to
be composed of the sum of infinite “TM” and “TE” modes, obtained using equations A2.6.1
A2.6.2. So, we can write:**

due to “TM” mode (2.6.4)

due to “TE” mode (2.6.5)

*  See Appendix A2 for a general treatment on guided propagation.

Figure 2.6.1

**  See Appendix A2 for general expressions of “TE” and “TM” modes.
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due to “TE + TM” modes (2.6.6)

due to “TE + TM” modes (2.6.7)

where 

(2.6.8)

and “∇ t” is the transverse gradient operator in the Cartesian system, as defined in Appendi
To consider in the expression of the field all the possible “TE” and “TM” modes, we can ex

the transverse potential vectors with a series of infinite terms. Of course, the resulting expre
for “A t” and “Ft” must verify the two-dimensional wave equation and the boundary conditions
the structure in Figure 2.6.1. To this purpose, with reference to Figure 2.6.1, the e.m. field compo-
nents have to verify:

1. for y = 0 and y = H, with | x | ≤ d/2, i.e., top and bottom shields: ex = !0 and ey = ! 0;
2. for x = ±d/2, with 0 ≤ y ≤ H, i.e., the lateral shields: ez = ! 0 and ey = ! 0
3. for y = h, with | x | ≤ w/2, i.e., the hot conductor: ex = ! 0 and ez = ! 0
4. for y = h, with w/2 ≤ | x | ≤ d/2, i.e., the dielectrics interface:

a. ex1 = ! ex2 and ez1 = ! ez2, i.e., continuous tangential electric components
b. ε1ey1 = ! ε2 ey2 – qs, i.e., variation of “d”* normal component is equal to surface charge

density “qs”
c. hy1 = ! hy2, i.e., continuous normal magnetic components
d. hx1 = ! hx2 + iz(x) and hz1 = ! hz2 – ix(x), i.e., variation of “ h” tangential component is

equal to linear current “i.”
Until this point, the relations are very simple and are a direct application of the boun

conditions to a cylindrical guiding structure that supports an e.m. field. Analytic difficulties 
when we apply the boundary conditions 1 through 4 above to the field expressions 2.6.4 t
2.6.7. The most common procedure is to transform the equations resulting from the applica
the boundary conditions to the field components,17,18,19 into a set of homogeneous equations, wi
“ β” as the unknown, whose solution is found zeroing the determinantal equation. The result 
procedure is that the guided wavelength** “λ g” is not linearly dependent to free space waveleng
“λ 0”  and frequency “f ,”  as indicated in Figure 2.6.2.

Concerning the t.l. characteristic impedance evaluation, it is common to all “full wave meth
to define this quantity through the equation regarding the traveling power “W,” i.e.:

*  d  ⊥– εe is the electric displacement vector.
**  See Appendix A2 for guided wavelength definition.

Figure 2.6.2
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where “iz” is the current flowing in the propagation direction “z.” This quantity can be obtai
integrating “iz(x)” along “x,” i.e.:

(2.6.10)

Similarly, the power “w” can be obtained integrating the Poynting vector* P ⊥– e ⊗  h* inside
the transverse surface of the structure indicated in Figure 2.6.1, i.e.:

(2.6.11)

The results of this procedure give an impedance increasing with frequency, as indica
Figure 2.6.3. However, caution needs to be used when comparing µstrip impedance vs. frequency
as obtained by some authors. In fact, these results are strongly dependent on the defi20

employed to extract the impedance, because the current and voltage definitions at µwave freq
are not the same.**

2.7 DESIGN EQUATIONS

A lot of researchers have studied the microstrip, resulting in a lot of closed form ana
equations. We will give the design equations produced by the researchers I. J. Bahl and R. 21

who have modified Hammerstad’s expressions given before to include the effect of the con
thickness.22,23,24 The effective relative dielectric constant is:

(2.7.1)

where “F” is given by 2.4.8 and 2.4.9.
To evaluate the impedance, we introduce the quantity “∆w” named “extra width” given by:

for w ≤ h/2π (2.7.2)

*  See Appendix A2 for Poynting vector definition.

Figure 2.6.3

**  See Appendix A2 for some definition of current and voltage at µwave frequencies.
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for w ≥ h/2π (2.7.3)

so that an effective strip width “we” can be defined as we ⊥– w + ∆w. The microstrip characteristic
impedance is:

for w ≤ h (2.7.4)

for w ≥ h (2.7.5)

The error produced by these equations has been evaluated as being less than 1% of the m
values.

Wheeler25 has also obtained microstrip synthesis equations, which give the ratio “w/h” 
function of the µstrip impedance “ζ” according to:

for w ≥ 2h

(2.7.6)

for w ≤ 2h (2.7.7)

where:

(2.7.8)

In the previous synthesis equations the conductor thickness is supposed to be infinitesim
it is neglected. To take into account the thickness effect, we can use equations 2.7.2 and 2
instead build the “w” defined by 2.7.6 or 2.7.7, as the quantity w′  ⊥– w – ∆w.

The effects on the µstrip electrical characteristics of a metallic shield over the structu
indicated in Figure 2.7.1, have been investigated by the researcher I. J. Bahl.26 The resulting new
expression for “ζ” is:

for w ≤ h (2.7.9)

for w ≥ h (2.7.10)

where:

(2.7.11)

(2.7.12)
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The resulting new expression for “ε re” is:

(2.7.13)

where “F” is given by 2.4.8 and 2.4.9, “we” as stated above and “C” is given by:

(2.7.14)

The accuracy of the Bahl’s equation has been proved to be near 99% compared w
numerical result of full wave analysis. The macroscopic effect of the top cover, as indica
Figure 2.7.1, is a decrease in the characteristic impedance with respect to the case of the isolated
µstrip structure. In any case, for h0/h ≥ 5 this effect is negligible. The effect of a complete bo
enclosing the µstrip has also been investigated.27 Indicating with “s” the distance between th
nearest lateral plane to the µstrip hot conductor edge, it has been proved that if s ≥ 4h the effect
of the side conductor on the µstrip impedance is negligible. 

We can recognize how all the previous formulas do not consider the dispersive nature 
microstrip since no equation contains the frequency as a variable. Dispersion has been ev
by the researchers M. Kirschning and R. H. Jansen28 who have given expressions for effectiv
relative dielectric constant and impedance as a function of frequency for t = 0. The res
expression is:

(2.7.15)

where:

(2.7.16)

(2.7.17)

Figure 2.7.1
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(2.7.18)

(2.7.19)

(2.7.20)

and “ε re” is the static effective relative dielectric constant, evaluated, for example, as indicat
Section 2.4.

In the previous formulas, “exp ( )” means the natural number exponential, i.e., “e( ).” The error
produced by the previous equations is below 1% from the exact values if 0.1 ≤ w/h ≤ 100,
1 ≤ εr ≤ 20, and 0 ≤ h/λ 0 ≤ 0.13, where the frequency “f ” is measured in GHz, “h” and “λ 0” in
cm, and “λ 0” is the signal wavelength in free space.

2.8 ATTENUATION

Any practical t.l. has three sources of attenuation, due to:

1. Finite conductibility of t.l. conductors
2. Finite resistivity of the substrate and its dumping phenomena
3. Radiation effects

Of course, we are not considering ferrimagnetic materials as substrates that could caus
netic resonance losses.*

Attenuations defined in points 1 and 2 above are analytically represented with two con
respectively indicated by “α c” and “α d” and called “conductor loss constant” and “dielectric lo
constant.”** Radiation losses are strongly dependent on the type of t.l. under test. For ex
waveguides have no radiation losses, while in our case, since the microstrip is an open t.l., ra
effects are surely present at any discontinuity section. However, for µstrip using high “εr” materials
and accurate conductor shape and matching, conductor and dielectric losses are predom
relation to the radiation losses. In the next chapter, radiation and other non- “TEM” effects in 
circuits will be studied.

Assuming a pure “TEM” mode in the µstrip, the evaluation of conductor losses29 can be
performed applying Wheeler’s30,31 incremental inductance rule. The foundation of this theory
that the e.m. energy penetrates inside the nonideal conductors.*** A “penetration depth (
introduced, given by:

(2.8.1)

for which the field amplitudes are reduced by “1/e.” In Equation 2.8.1, “f ” is the signal freque
“g” and “µc” are the conductor conductivity and absolute permeability, respectively. The effe
each penetration can be regarded as an introduction of an additional series inductance**** p
indicated with “Li ” and called “incremental inductance.” In this case, the evaluation of all 
penetration depths can be done observing that five sides of the conductor are involved 
phenomena as indicated in Figure 2.8.1. Here, with the dashed line we have indicated the penetration
depth in each conductor.

*  Foundations of magnetism applied to t.l. are introduced in Appendix A5, A6 and A7.
**  These quantities have been defined in Chapter 1.
***  See Appendix A2 for e.m. energy penetration inside nonperfect conductors.
****  Since we suppose the µstrip only supports a “TEM” mode, we are referring to the simple low pass equivalent n
for a line supporting a “TEM” mode. This argument is treated in Chapter 1.
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If “L” is the equivalent series inductance per u.l. of the lumped equivalent t.l. for the µs
given by:*

(2.8.2)

each “Li ” is:

(2.8.3)

where “µcr” is the conductor relative permeability and “∂n” is an infinitesimal penetration inside
the conductor, positive when the vector “n” is directed into the conductor. The associated rea
tance** “Ri” of “L i” is called “incremental resistance” per u.l., and is given by:

(2.8.4)

If we define the quantity “Rs,” called “sheet resistance” for the conductor, as:

*** (2.8.5)

Equation 2.8.4 becomes:

(2.8.6)

To obtain the whole additional inductance “ La” and resistance “Ra” we must include all the
incremental inductances and resistances in our calculations. With reference to Figure 2.8.1 and
using 2.8.3 and 2.8.6, we have:

(2.8.7)

Figure 2.8.1

*  See Chapter 1 for relations between t.l. characteristics quantities.
**  See Appendix A2 for definition of internal impedance for good conductors.
***  See Appendix A2 for measurement unit of “conductor resistance.”
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(2.8.8)

The conductor attenuation coefficient “α c”* is defined as:

(2.8.9)

where “Wc” and “Wt” are respectively the mean power dissipated in the conductor and the 
transmitted power, given by:

(2.8.10)

Consequently, the conductor attenuation constant does not depend by the additional indu
“L a.” Using 2.8.8 and 2.8.10, Equation 2.8.9 becomes:

(2.8.11)

From 2.8.2 we note that:

(2.8.12)

where ζ z ⊥– (µ reεre)0.5ζ. Note how “εre” and “µre” are also theoretically functions of µstrip
dimensions, and for this reason, these quantities need to be derived. This doesn’t happen 
“TEM” t.l., where the dielectric is homogeneous and the concept of effective dielectric con
does not have to be introduced. However, in a lot of cases no appreciable error is made if oζ”
is derived. 

Observing that µ0v0 = ζ 0 ≡ 120π and using Equation 2.8.12, equation 2.8.11 becomes:

(2.8.13)

Since the “ζ” and “εre” are also functions of “w,” “h,” and “t,” as was shown previously, th
derivative “∂ζz/∂n” is:

(2.8.14)

From Figure 2.8.1 we observe that:

dw = –2dn, dh = 2dn, dt = –2dn (2.8.15

*  We are assuming a longitudinal variation of conductor attenuation with e–αcz. See Chapter 1 for fundamental theory o
transmission lines.

R R R
L
na i j

j

j

s j
j

j

j

= ( ) = ( )
=

=

=

=

∑ ∑
1

5

0 1

5
1
µ

∂
∂

α c c tW W= 2

W R i W ic a t= =2 2
, ζ

α
µ ζ

∂
∂c s j

j

j

j

R
L
n

= ( )
=

=

∑1
2 0 1

5

∂
∂

∂ µ ε ζ

∂
∂ζ
∂

L
n v n v n

r e r e
z=

( )



 −⊥

1 1

0

0 5

0

.

α
ζ π

∂ζ
∂c s j

z

jj

j

R
n

= ( )
=

=

∑1
240

1

5

∂ζ
∂

∂ζ
∂

∂ζ
∂

∂ζ
∂

z z z z

n dn w
dw

h
dh

t
dt= + +





1

©2000 CRC Press LLC



ductor
ission
r for

-

are:

20
ective
:

W. F.

es.
and 2.8.13 becomes:*

(2.8.16)

The incremental inductance rule has been verified to give very accurate results for con
thickness greater than four times “p.” This condition is usually verified for every planar transm
line, since for the typical conductors used, the value of “p” is lower than some micromete
frequencies greater than 1 GHz.** Simple equations for “α c” just oriented to computer implemen
tation have been produced by the researchers R. A. Pucel, D. J. Massé, and C. P. Hartwig,32 simply
by applying Equation 2.8.16 to Wheeler’s impedance expressions. The resulting equations 

for w ≤ h/2π:

(2.8.17)

for h/2π ≤ w ≤ 2h:

(2.8.18)

for w ≥ 2h:

(2.8.19)

where:

(2.8.20)

and “e” is the natural number. The “α c” values obtained from Equations 2.8.17 through 2.8.
result in “dB/u.l.” These researchers suggest using a slightly modified expression for the eff
hot strip width “we,” (with respect to the expressions given previously), which are as follows

for w ≤ h/2π (2.8.21)

for w ≥ h/2π (2.8.22)

Concerning the dielectric losses, the researchers M. V. Schneider, B. Glance, and 
Bodtmann33 have given the value of “α d” in “dB/u.l.” for a nongyromagnetic substrate as:

*  We assume that the bottom conductor has the same surface resistivity as the hot conductor, which it usually do
**  See Appendix A2 for values of penetration depth inside good conductors.
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(2.8.23)

where “tanδ” is the substrate “tangent delta.”* Of course, the quantities “ε r” and “ε re” are all relative
to the real part of the substrate dielectric constant.** In general, for the typical substrates em
in MIC circuits, i.e., alumina and quartz, conductor losses are predominant, and “α c” in dB can
also be 10 times the value of “α d” in dB. Different is the case for semiconductor substrate, emplo
in MMIC devices, where “α d” is comparable to “α c.” For magnetic losses, the “α d” expression
can be formally modified multiplying by . However, this is only a way to remember tha
presence of any ferrimagnetic material will need to be evaluated. It is known, in fact, that 
ferrimagnetic material possesses an equivalent permeability that is dependent on many par
such as the reciprocal direction between e.m. energy propagation and direction of the a
magnetic field “Hdc,” fields’ intensity, signal frequency, ferrimagnetic composition, and more.*
So the symbol “µre” is quite often only a notational simplification. In Chapter 7 we will study so
µstrip devices that use the RF interaction with ferrimagnetic materials.

2.9 PRACTICAL CONSIDERATIONS

As we said earlier in this chapter, the µstrip is the most widely diffused “PCB” t.l. In gen
this µstrip is not only used in µwave devices but also in low frequency “PCB.”

The first thing to consider is the undercut phenomenon, which can cause problems i
impedance t.l. or coupled microstrips have to be built. The reasons for this phenomenon
discussed in Chapter 1 and will not be repeated here.

Another problem in low frequency µstrip devices is that, especially in high density board
ground plane is required to be as small as possible. In practice, it has been found34 that the microstrip
impedance “ζ′ ” with finite ground plane width “wg,” is practically equal to the value “ζ ” with
infinite width ground plane, until “wg”  is at least greater than 3w as indicated in Figure 2.9.1. 

The progressive reduction of the ground plane, as indicated in Figure 2.9.2a, passes from the
unbalanced µstrip structure to the balanced structure, used in mixer devices.35 The practical situation
is indicated in Figure 2.9.2b, and the balanced structure is called the “balanced broadside coupled
line.” We will simplify this name using the letters “BBCL.” Assuming the practical case for wh
a ≥ 5w and b ≥ 5h, where we can neglect the effect of the enclosure, the characteristic impe
“ζ” between the two conductors of this t.l. can be evaluated using Wheeler’s formulas:

*  See Chapter 1 for “tanδ” definition.
**  See Chapter 1 for complex permittivity definition.
***  See Appendix A7 for fundamentals of energy exchange between waves and ferrimagnetic materials.

Figure 2.9.1
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(2.9.2)

The researchers B. Bhartia and P. Pramanick36 have studied the transmission line characterist
of the boxed structure indicated in Figure 2.9.2 b considering the effect of the enclosure. 
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CHAPTER 3

Striplines

3.1 GEOMETRICAL CHARACTERISTICS

The geometric structure of a symmetric stripline is shown in Figure 3.1.1 with a cross-sectional
view. It requires three layers of conductors, and for this reason it is also called “triplate.”
internal conductor is commonly called the “hot conductor,” while the other two, always conn
at signal ground, are called “cold” or “ground” conductors. The hot conductor is embedded
homogeneous and isotropic dielectric, of dielectric constant “ε r .” So, unlike the case of µstrip, the
word “substrate” is not appropriate since the dielectric completely surrounds the hot cond
Similarly, there is no need to introduce the concept of “effective relative dielectric constant” w
for striplines, is very important. In the present chapter unless otherwise stated, we will not
the case of the ferrimagnetic dielectric, which is instead studied in Chapter 8.

The structure indicated in Figure 3.1.1 is called “symmetric”* stripline because the hot con-
ductor is at the middle of the distance “b” between the ground planes. However, striplines ca
be built in an asymmetric fashion, as indicated in Figure 3.1.2, so that the hot conductor is not a
the middle of the distance “b.” In this case the stripline is said to be “asymmetric” or “offset

In general, we will use the following variables:

1. “w,” the width of the hot conductor
2. “b,” the separation of the ground planes
3. “t,” the conductor’s thickness
4. “h,” the shorter distance between the hot conductor and one ground plane. If the stripline

symmetric and we neglect the strip thickness, then h = b/2.

Striplines are used in wideband networks and devices because of their low radiation, disp
and loss. Unfortunately, they present greater technological difficulties when compared to 
counterparts, and for this reason they are less diffused with respect to the same µstrip d
excluding the case where accurate and precise devices are needed.

A common characteristic of these striplines is the typical lower impedance of µstrip t.l.
not difficult to reach ζ = 20Ω, while for a µstrip this is an impractical value that can cause the 
of higher order modes.***

In the following sections we will give design equations for both types of striplines, 
symmetric and asymmetric. For simplicity, with the word “stripline” we will refer to the 
conductor of the stripline structure indicated in Figures 3.1.1 unless otherwise stated. In
addition, the dielectric is assumed to be homogenous, isotropic, and nongyromagnetic, com
surrounding the hot conductor.

*  The word “symmetric” is sometimes replaced with “balanced.”
**  Offset stripline will simply be called “OSL.”
***  See Chapter 4 for higher order modes in µstrips and striplines.
©2000 CRC Press LLC
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3.2 ELECTRIC AND MAGNETIC FIELD LINES

Due to the nearly homogenous substrate and a “TEM” propagation mode, the stripline 
less dispersive t.l. among the t.l.s. that we study in our text. Consequently, the stripline h
widest theoretical operative bandwidth. Devices where striplines can be advantageously em
are directional couplers and filters. However, when the device to be constructed needs some e
in shunt configuration or when the t.l. is dispersive, this t.l. is less practical than stripline.

Some electric “e” and magnetic “h” field lines for the fundamental “TEM” mode in stripl
are indicated in Figure 3.2.1, in a defined cross-section and a defined time. In the fundamental
mode the hot conductor is equipotential. High order modes in striplines will be studied in the
chapter.

3.3 SOLUTION TECHNIQUES FOR THE ELECTROMAGNETIC PROBLEM

Due to the intrinsic ability to support a “TEM” mode, stripline has been studied with q
static methods. Of course, it is also possible to use full wave methods. The most com
employed quasi static methods are:

Figure 3.1.1

Figure 3.1.2

Figuire 3.2.1
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1. The analytical solution of Laplace’s equation1

2. The finite difference method applied to the Laplace’s equation2

3. Conformal transformation.3

The conformal transformation and finite difference methods are reviewed in Appendix A1
next section will describe how to obtain the stripline characteristic impedance using the con
transformation method.

3.4 EXTRACTION OF STRIPLINE IMPEDANCE WITH A CONFORMAL 
TRANSFORMATION

The conformal transformation method belongs to the quasi static group for the analysis
e.m. structure. The stripline is regarded as a static problem so that it can be transforme
structure that resembles a parallel plate capacitor. The capacitance “C” of the stripline is eva
and the characteristic impedance “ζ” is obtained as ζ = 1/Cv where “v” is the light speed in the
media with dielectric constant “ε r .” 

It is assumed that this parallel plate capacitor represents a “TEM” lossless t.l. for whic
characteristic impedance “ζ” is evaluated as:

(3.4.1)

where “L” and “C” are the inductance and capacitance per unit length of the equivalent low
network for the “TEM” line,* and “v” is the phase velocity of the light in the medium, i.e.:

(3.4.2)

In these equations, the subscript “0” individuates quantities with the substrate replaced 
vacuum. Of course, with the q.s. hypothesis, other simple relations occur among the pr
quantities. These can be reviewed in Chapter 2 for the µstrip case and replacing “ε re” with “ ε r .”

The passages to transform the stripline in a parallel plate capacitor are indicated in Figure 3.4.1.
First, the stripline is divided into four regions, and only one is taken as the original structure to be
transformed. This situation is represented in part a of Figure 3.4.1. The two dashed lines labeled
“mw” represent two ideal magnetic walls, i.e., ideal walls where the RF tangential mag
component is zero. If “C” is the capacitance to ground of the stripline hot conductor, it is s
to recognize that the capacitance “C4” to ground for Figure 3.4.1a is C4 = C/4. Then a Cartesian
complex reference system is applied, as indicated in Figure 3.4.1b. A first Schwarz-Christoffel
transformation** is applied, which transforms the structure in Figure 3.4.1b into that in
Figure 3.4.1c. This transformation from “Z”  plane into “T”  plane is performed by:

(3.4.3)

Integrating this equation and using the correspondences z0 ↔ t0, z2 ↔ t2, and z3 ↔ t3 we have:

(3.4.4)

*  See Appendix A2 for networks equivalent to propagation modes.
**  See Appendix A1 for the theory of Schwarz-Christoffel transformation.

ζ = ≡Lv Cv1

v vr r r r= ( ) = ( )1 0 0
0 5

0
0 5µ µ ε ε µ ε. .

z = A1 t t dt B+( )[ ] +∫ −1 0 5
1

.

z = −( ) + +( )[ ] +b t t jbπ ln . .0 5 0 51 2
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(3.4.5)

A second Schwarz-Christoffel transformation is applied, which transforms the structu
Figure 3.4.1c into that in Figure 3.4.1d. This transformation from “T”  plane into “S”  plane is
performed by:

(3.4.6)

Unfortunately, this equation is not as simple to integrate as that in 3.4.3, but with the subst
t = –x2 we obtain:*

(3.4.7)

The integral of the previous equation can be transformed in the elliptic integral of first ki
“F(ξ,p),” so that equation 3.4.7 becomes:

(3.4.8)

where A2
⊥ 2jA/ . Using the correspondences t0 ↔ s0, t 2 ↔ s2, and t3 ↔ s3 in the previous

equation we have a system of three equations in three unknowns, “A2,” “B 2,” and “d,” from which
the distance “d”  of the plates in Figure 3.4.1d is obtained:

(3.4.9)

The quantity “K(p)” is the “complete elliptical integral of the first kind,” *** defined in Append
A8, and the parameters “p” and “p′ ” are:

Figure 3.4.1

*  “x” is, of course, a real number.
**  See Appendix A8 for definition of the elliptic integral of first kind “F(ξ,p)” and its relation to “K(p).”
***  Sometimes in literature “K(p′ )” is indicated with “K′ (p).” This is only a different symbology since operatively th
integral is evaluated for p′  = (1 – p2)0.5.

"S" plane

d)

b)

c)

a)

"T" plane

"Z" plane

s 4=jd 3=1+jds

0=0s 2s =1

jq

p

v=0

r

r
v=v

ε
µ

2=-1t
v=0

v=v

v=0

v=v

v=0

v=v

jv

u
3=0t t 4=

r

r

0t
t 1=-

µ
ε

=jb/23z

2z =0

0z =-w/2

4z =-

=-1z

jy

x
r

rε
 µb/2

w/2

rε
µ r

mw

mw

t w b0
2 2= ( )cosh π

s = A t t t t dt B+( ) +( )[ ] +∫ −
0

0 5
21 .

s =
2

1 1
0

2
2

0

0 5
2

jA
t

x
x
t

dx B−( ) −


















+∫ − .

s A F t
t

B= −








 +2

0
2

1
,

t
0

d K p K p= ( ) ′( )
©2000 CRC Press LLC



           

 of

ce is:

e next

  

nce of
 form
se the

      

evious

  

 which

      
(3.4.10)

(3.4.11)

Once we have found “d,” we can calculate the capacitance per unit length “C4” of the structure
indicated in Figure 3.4.1c, i.e., C4 = ε0ε r /d. Consequently, the capacitance “C” per unit length
the stripline indicated in Figure 3.1.1 is:

(3.4.12)

Inserting Equation 3.4.9 into 3.4.12 and using 3.4.1, the stripline characteristic impedan

(3.4.13)

Note that in this study the thickness “t” of the hot conductor is assumed to be zero. In th
section we will give formulas that take into account the nonzero value of “t.”

3.5 DESIGN EQUATIONS

The most simple design equations come directly from the stripline characteristic impeda
the previous section. In fact, the ratio of the elliptic integrals can be approximated in closed
with high accuracy,* typically some percent, according to the parameter range. In this ca
parameters “p” and “p′ ” essentially depend on the ratio “w/b.” So, if w/b ≤ 0.5 we have:

(3.5.1)

while if w/b ≥ 0.5

(3.5.2)

The previous two equations inserted into the stripline characteristic impedance of the pr
section permit the evaluation of “ζ” in a very simple way.

In the case of stripline, it is quite simple to have synthesis equations, i.e., equations from
we can derive the ratio “w/b” for a given “ζ” and “εr .” Using 3.5.1 and 3.4.13 we can write:

(3.5.3)

With simple manipulation, the previous equation gives:

*  See Appendix A8 for elliptic integrals and their approximations in closed form.
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(3.5.4)

where

(3.5.5)

Similarly, using 3.5.1 and 3.4.13 we can write:

(3.5.6)

With simple manipulation, the previous equation gives:

(3.5.7)

where

(3.5.8)

It has been observed that expression 3.5.7 gives the best mean value of “w/b” with res
3.5.4 and should be preferred.

The effect of strip thickness for a nongyromagnetic substrate has been evaluated by S.B4

with a new conformal transformation introducing the fringing capacities at the ends of the s
With the conditions t/w ≤ 0.11 and t/b ≤ 0.25, the new impedance expressions are:

for w/(b – t) ≤ 0.35

(3.5.9)

where “φ” is given by:

(3.5.10)

for w/(b – t) ≥ 0.35

(3.5.11)

where “Cf” is the fringing capacitance from one side of the hot conductor to one ground p
given by:
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(3.5.12)

All the previous formulas give an error under 2% when compared to the nonapproxim
equations.

3.6 ATTENUATION

Any practical stripline has three sources of attenuation, due to:

1. Finite conductivity of its conductors
2. Finite resistivity and dumping phenomena of the dielectric 
3. Magnetic resonances

In contrast to the µstrip case, or other open t.l., in this case radiation losses can be ne
with respect to the other source of attenuation because stripline is a closed t.l. Point 3 abo
be studied in Chapter 8 and Appendixes A5 through A7.*

Attenuations defined in points 1 and 2 above are analytically represented with two con
respectively indicated with “α c” and “α d” and called “conductor loss constant” and “dielectric lo
constant.” **

Assuming a pure “TEM” mode in the stripline, the evaluation of conductor losses ca
performed applying Wheeler’s5,6 incremental inductance rule. This way of evaluating the t.l. att
uation has been used throughout this text, and for this reason, we will only give the formula
that are characteristics of the stripline. For the other concepts and common formulas, see th
evaluation for the µstrip case in Chapter 2.

The additional inductance “La” and resistance “Ra,”  with reference Figure 3.6.1 are given by:

(3.6.1)

(3.6.2)

*  Foundations of magnetism applied to t.l. are introduced in Appendix A5, A6, and A7.
**  These quantities have been defined in Chapter 1.
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where:

a. “L i” is the “incremental inductance” per u.l.
b. “Ri” is the “incremental resistance” per u.l.
c. “p” is the “penetration depth” [u.l.]
d. “µc” is the conductor absolute permeability
e. “Rs” is the conductor “sheet resistance” [Ω/square]*

The conductor attenuation coefficient “α c” ** is defined as:

(3.6.3)

where “Wc” and “Wt” are respectively the mean power dissipated in the conductor and the 
transmitted power, given by:

(3.6.4)

Consequently, the conductor attenuation constant does not depend on the additional ind
“L a.” Using 3.6.2 and 3.6.4, Equation 3.6.3 becomes:

(3.6.5)

From 3.4.1 and 3.4.2 it follows that:

(3.6.6)

and so:

(3.6.7)

Observing that µ0v0 = ζ V ≡ 120π and using Equation 3.6.7, Equation 3.6.5 becomes:

(3.6.8)

Since the “ζ” is a function of “w,” “ t,” and “b,” as was shown in the previous section, t
derivative “∂ζ /∂n” is:

(3.6.9)

*  See Appendix A2 for measurement unit of “conductor resistance.”
**  We are assuming a longitudinal variation of conductor attenuation with e–αcz. See Chapter 1 for fundamental theory o
transmission lines.
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From Figure 3.6.1 we observe that:

(3.6.10)

and 3.6.8 becomes:*

(3.6.11)

Of course, the value given by “α c” is in neper/meter.**
Simple closed form equations for “α c” for a symmetrical stripline have been produced by t

researcher S. B. Cohn,7 by applying equation 3.6.11 to the impedance expressions. The resu
equations for “α c” in Neper/u.l. are:

for w/(b – t) ≥ 0.35:

(3.6.12)

where:

(3.6.13)

for w/(b – t) ≤ 0.35, t/b ≤ 0.35, t/w ≤ 0.11:

(3.6.14)

where:

(3.6.15)

where “d” is the radius of a cylindrical conductor equivalent to the hot stripline conduc8

Concerning the dielectric losses, we can use the general formula for dielectric losses in a “
t.l.,*** resulting in:

(3.6.16)

where “tanδ” is the substrate “tangent delta” **** for g = 0 in the substrate. Of course, the qua
“ ε r” is relative to the real part of the substrate dielectric constant.***** In general, for the typ
substrates employed in MIC stripline circuit conductor losses are predominant. 

*  We assume that top and bottom conductors have the same surface resistivity, as they usually do.
**  See Chapter 1 for attenuation constant dimensions.
***  See Appendix A2 for the procedure to have the attenuation constant “α d.”
****  See Chapter 1 for “tanδ” definition and conversion between Neper and dB.
*****  See Chapter 1 for complex permittivity definition.
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3.7 OFFSET STRIPLINES

The geometric structure of an offset stripline was depicted in Figure 3.1.2. From a general point
of view, there is no reason to use a single offset stripline, but in practice sometimes it can
avoided. This happens especially in high density multilayer “PCB,” used for low frequency a
cations, for instance below a given GHz. In such cases more than a layer can be used for DC
distribution, and if striplines are required, use of an offset stripline could be inevitable.

Such t.l. has been studied by the researcher P. Robrish,9,10,11,12,13 using conformal transformations
For 0.2 ≤ h/b ≤ 0.8, w > t, and t/b < 0.2 the resulting impedance formulas are:

for w/(b – t) ≤ 0.35

(3.7.1)

(3.7.2)

where “d” is given by 3.6.15);

for w/(b – t) ≥ 0.35

(3.7.3)

where:

(3.7.4)

“p” and “p′ ” are given in 3.4.11 and 3.4.12 and the ratio of the elliptical integrals are evalu
as in 3.5.1 and 3.5.2,

(3.7.5)

(3.7.6)

and “ƒ()” is a function defined as:

(3.7.7)

For the above specified range of validity, these formulas give a maximum error of 2% 
compared to the computer data using a finite difference method.

Explicit closed form formulas for losses are not available for the present case; howeve
expressions of the previous section can be applied in the present case as well.

3.8 PRACTICAL CONSIDERATIONS

As with any other planar t.l., stripline is also affected by the undercut* which needs 
compensated for when high impedance lines or coupled striplines are needed. As a result,

*  See Chapter 1 for undercut phenomenon.
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conductor is in general a trapezoidal one, as indicated in Figure 3.8.1, unless the selective conducting
plating is employed. 

Stripline is a three-layer configuration, obtained by overlaying two separate “PCBs”; one “P
has only the ground layer, while the other “PCB” has one ground layer and one layer of d
tracks. As a result, the dielectric surrounding the hot conductor is never theoretically homoge
as indicated in Figure 3.8.2, but the dishomogeneity introduced by the air gap can often be neglected.
In fact, typical values of the air gap when copper* conductors are employed are in the ra
20 to 40µm, and 3 to 8µm when gold conductors are used. However, this last value for “t” is re
to sputtered gold on ceramic substrates like alumina, seldom used in stripline devices. S
µwave devices the air gap tends to decrease departing from the hot conductor, because the
employed dielectrics are of soft type. In low frequency stripline devices, a very diffused sub
is a glass-resin mixture, called FR4, with a relative dielectric constant ranging from 4 to 6. In
boards the air gap is minimal since the board can be grown in height depositing a resin m
called “prepreg,” which works as an adhesive for the other layers. 

In contrast to other t.l.s studied in this text, striplines are not suitable for use in MMIC. 
is another reason why this t.l. has not been studied much in these last years, especially fr
point of view of equivalent circuits for discontinuities. In fact, there is no doubt that MMIC dev
are the most attractive components in µwave electronics today, where other t.l.s can be a
geously employed.

Stripline is more insensitive than µstrip to lateral ground planes of a metallic enclosure,
the e.m. field is strongly contained near the center conductor and the top–bottom ground 
This situation is indicated in Figure 3.8.3. For w′ ≥ 3w the effect of the sidewalls on “ ζ”  can be
neglected.

Concerning transitions between a stripline and other lines, the most common are µstrip
coaxial. Also if transitions with other lines are possible, only unstrips and coaxial are used 

Figure 3.8.1

*  In practice, at µwave frequencies, copper conductors are gold plated.

Figure 3.8.2

Air gap

h

h
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in height

gular

thods,
the bulky aspect of stripline devices. Transition with µstrip is indicated in Figure 3.8.4. The two
hot conductors are usually connected together using gold ribbons. The sharing of the same
plane between the two t.l.s is of course not assured, and at the transition section some step 
for the ground plane could be inevitable. Of course, ground continuity must be assured.

Transition with coaxial cable is indicated in Figure 3.8.5. Coaxial connectors are usually
employed in this transition since both t.l.s are bulky.
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CHAPTER 4

Higher Order Modes and Discontinuities
in �Strip and Stripline

4.1 RADIATION

Since the µstrip is an open t.l., some of the transmitted energy is not guided by the t.l.,
instead radiated in the surrounding space above the dielectric, as indicated in Figure 4.1.1. This
phenomenon is called “radiation.” For stripline, since it is a closed t.l., radiation can be negl
For this reason, unless otherwise stated this section radiation is only pertinent to µstrip dev

The loss of energy is dependent on the particular µstrip device. For example, µstrip an
are elements just constructed to radiate, but in the greatest number of devices this effec
desired. In general, every discontinuity is a radiation source that causes signal attenuation, un
coupling,* and crosstalk** among other µstrips, if any, that are near the radiation area.1 Also,
commonly used µstrip devices like filters, generate radiation,2 an effect that sometimes is forgotten
Radiation effects in GaAs MMIC have been studied by T. Rozzi, G. Cerri, and M. Mongiard3,4

In general, the study of the radiation caused by a discontinuity is made by evaluating the
radiated through the integration of the Poynting vector*** over a surface surrounding the di
tinuity.5,6 According to work by the researchers M. D. Abouzahra and L. Lewin,7 the normalized****
radiated power “Wr” is given by:

(4.1.1)

where:

“h” is the substrate thickness
“ ζ” is the µstrip impedance
“ λ 0” is the free space wavelength
“Fr[ε re]” is the “radiation function.”

The radiation function depends on the discontinuity type and the effective dielectric con
“ ε re” of the µstrip. For example,8 we have:

*  Devices working on coupling effects between µstrips will be studied in Chapter 7.
**  Crosstalk in µstrips can be studied according to the general theory explained in Chapter 1.
***  See Appendix A2 for Poynting vector definition and application.
****  The normalization is made with respect to the input power.
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a. open circuit:

(4.1.2)

b. series resistance:

(4.1.3)

where “Z” is the series impedance and “ζ” the microstrip characteristic impedance.

c. symmetric “T”: 
With reference to the network indicated in Figure 4.1.2:

(4.1.4)

d. change in width:
With reference to the network indicated in Figure 4.1.3:

(4.1.5)

Figure 4.1.1

Figure 4.1.2
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When the µstrip is enclosed in a box, as it is in the greatest number of cases, radiation
responsible for resonances, centered on frequencies whose exact value is quite difficult to p9

The study of this phenomenon is made by extrapolating that of some particular recta
waveguide modes* when they are partially filled with dielectric,10 as indicated in Figure 4.1.4 from
two view points. These modes are called “Longitudinal Section Electric-LSE” and “Longitud
Section Magnetic-LSM.” According to work from the researcher G. H. Robinson,11 the wavelength
“ λ gn”  of the “n-th”  resonance along the greatest width of a box as indicated in Figure 4.1.5 is
approximately given by:

(4.1.6)

where “n” is an integer number. To suppress these higher order modes, the researcher
Schneider and B. S. Glance12 suggest suspending the microstrip in the middle of the box thro
two lateral hollows so that they can be approximated to a shorter quarter wavelength trans
However, if some undesired resonance in the enclosed µstrip device is found, it can be dum
removed placing RF absorbing material beneath the top metallic cover and/or attaching it 
side walls.

4.2 SURFACE WAVES

Surface waves are e.m. waves that propagate on the dielectric interface layer of the µstr
to the practical homogeneity of stripline dielectric,  this phenomenon can also be neglected in s
devices. For this reason, this section is pertinent to µstrip t.l.s only. Surface waves are gene
any discontinuity of the microstrip. Once generated, they travel and generate, coupling with
µstrips of the circuit, decreasing isolation between different networks and signal attenuation. A 

Figure 4.1.3

*  See Appendix A2 for waveguide modes definition.

Figure 4.1.4 Figure 4.1.5
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representation of the propagation of these waves is indicated in Figure 4.2.1. Note that similar to the
case of radiation, these waves are not guided by the µstrip. Consequently, surface waves are
of crosstalk, coupling, and attenuation in a multiµstrip circuit. For these reasons the surface
are always an undesired phenomenon. The propagation modes of these surface waves are p
“TE m0” and “TMm0.” The second subscript of these modes is assumed to be zero since we e
µstrips for which h ≤ 0.1λ g, i.e., modes have no dependence on “y.” Surface wave modes have
investigated by some researchers.13,14,15 According to work by the researcher Vendelin,16 the cut-off
frequencies for these surface modes are given by:

m = 0,1,2,… (4.2.1)

m = 0,1,2,… (4.2.2)

In practice it has been verified that for each one of these surface modes, a frequency is
for which a maximum of coupling exists between the surface mode and the fundamental “q
mode. In such a case, a sharp attenuation of the desired “qTEM” signal is observed due to
exchange between these modes. Such a frequency is called the “frequency of synchronous c
(fs). The lowest “fs” is for the “TM0” mode and indicated with “fs,TM,” given by:

(4.2.3)

Note as the “TM0” surface mode has a theoretical cut-off frequency equal to zero. The s”
for the “TE0” mode is indicated with “ fs,TE0” and given by:

(4.2.4)

In Figure 4.2.2 we have shown the curves for the frequencies of synchronous coupling “ f s,TM0
”

and “fs,TE0,” together with the cut-off frequencies “fc,TM1
” and “fc,TE0

,” as functions of “h” in mm

Figure 4.2.1
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and with frequency expressed in GHz. The value of “ε r” is 10. Note the first surface mode to sta
is the “TE0,” but the first mode for a synchronous coupling is the “TM0.”

4.3 HIGHER ORDER MODES

In contrast to the case of surface waves, higher order modes are waves propagated
structure, but they do not start from zero frequency as the “qTEM” and “TEM” mode for µ
and stripline. For both of these t.l.s in general, when the guided signal wavelength is comp
or lower than some transverse dimension, i.e., “w,” “h,” or “b,” modes other than the fundam
one are possible, which are called “higher order modes.” In the most general case, these
are identified by the two subscripts “m” and “n,” as in the waveguide case.* The e.m. 
disposition of these higher order modes is similar to that of “TE” and “TM” modes, and for
reason they are called “qTE” and “qTM.” The integer numbers “m” and “n” give the numbe
half periods in the signal phase along the coordinates “x” and “y.” Higher order modes are a
undesired because they cause signal dispersion** and attenuation. We will now concentra
study on µstrip and stripline.

Figure 4.2.2

*  “TE” and “TM” modes in waveguide are studied in Appendix A2.
**  See Appendix A2 for dispersion definition.
©2000 CRC Press LLC
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4.3.1 �Strip Case

Since in actuality the dimension “h” is much smaller than the guided signal wavelength λ g,”
the higher order modes have no dependence on “y,” i.e., “n” is always equal to zero. Conseq
these modes can be identified by only one subscript “m,” i.e., they are “TEm” and “TMm.” In
addition, since these modes are not perfect “TE” and “TM,” they are sometimes noted as “m”
and “EHm,” where the first letter indicates the field with the greatest component along the p
gation direction “ z.”

The study of these high order modes has been performed by some researchers,17,18,19,20,21 mainly
applying the full wave analysis method to the µstrip geometry. The result is that the first h
order mode to start is the “qTE10,” whose cut-off frequency “fc,TE10” can be evaluated setting m = 1
in the following expression:

m = 1,2,… (4.3.1)

where “we” is the effective strip width defined in Chapter 2 and “v0” is the light speed in the
vacuum. Equation 4.3.1 gives the cut-off frequency of “qTEm0” modes. The electric field for these
modes for the cases of m = 1,2,3 are represented in Figure 4.3.1, in a cross-sectional view. The
graph of Equation 4.3.1 vs. “we” in mm, with ε re = 5.7, is reported in Figure 4.3.2, where frequency
is in GHz.

For the case of a µstrip line the previous equation is approximated, but gives a suffic
accurate result when w ≥ 10h. This condition is seldom verified in a typical µstrip 50Ω t.l. on
alumina substrate. In any case, Equation 4.2.1 can be used to determine a rough estimat
maximum “qTEM” signal propagation frequency and to avoid propagation with higher order m
From a comparison among Equations 4.3.1 and 4.2.1 through 4.2.4, we recognize how the dim
“h” strongly affects the surface modes while the dimension “w” affects the transverse reso
of the “qTE” modes.

Figure 4.3.1
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4.3.2 Stripline Case

A general study of stripline higher order modes has been done by some authors,22,23,24 special-
izing the wave equation to the stripline structure. With reference to Figure 4.3.3, “ TM”  modes are
generated when the signal frequency is in resonance with dimension “b.” Assuming the dim
“w” is negligible, for w/b ≤ 10, the lower order “TM” mode has a cut-off frequency “fc,TM”
approximately given by:

Figure 4.3.2

Figure 4.3.3
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(4.3.2)

“TE” modes are generated when the signal frequency is in resonance with dimension “
contrast to “TM” modes, the cut-off frequency is now dependent on “w” and “b.” In fact, the lo
order “TE” mode cut-off frequency is given by:25

(4.3.3)

From the previous two equations we have:

(4.3.4)

Since in practice “w/b” is quite often higher than 0.215 in such cases, fc,TE < fc,TM. The electric
field for the fundamental “TE01”  mode is represented in Figure 4.3.4, in a cross-sectional view.
The graph of Equation 4.3.3 vs. “b” in mm, with εr = 1 and w = 0.2,0.5, and 1, is reported 
Figure 4.3.5, where frequency is in GHz.

4.4 TYPICAL DISCONTINUITIES

Every time the center conductor encounters a dimensional variation and/or dielectric co
variation, we say that a “discontinuity” is present. It is important to observe that the discont
can be generated not only if the hot conductor is varied in some manner, but also if the g
plane is varied from its theoretically infinite, continuous extent.26 Of course, the discontinuity effec
on the traveling signal is directly proportional to its entity, for example the entity of hot cond
width variation. Here, and in the following sections, we will assume that the discontinuity is
generated by the hot conductor. We will study the equivalent circuits for discontinuities in µ
and stripline, giving for each t.l. the element’s value for the most used equivalent circuit t
discontinuity under test.

In Figure 4.4.1 we have represented the most frequent discontinuities in any circuit. For any
one of the networks there is a corresponding equivalent lumped network, composed of ind
and capacitors. We will describe each discontinuity separately in the following sections.

In the next sections we will use the letters “w,” “ε r ,” “h,” and “b” to indicate respectively the
strip width, the dielectric constant, and the substrate thickness, for the µstrip and stripline 
The reader can observe Figures 4.3.1 and 4.3.3 for a closer insight into the geometry of these t.l.s. 

While stripline discontinuities were studied earlier than their µstrip counterparts, the latter
been more fully investigated.27,28,29 This is because µstrips are more practical to use, and they req
a smaller PCB volume to be constructed. Unless otherwise stated, stripline discontinuities 
formulas used are those obtained by the researchers A. A. Oliner30 and H. M. Altschuler.31 All the
stripline discontinuities are relative to the symmetrical stripline, (see Figure 4.3.3).

Figure 4.3.4

TE 01
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In contrast to the stripline case, µstrip discontinuities design formulas have been obtain
a number of researchers, applying the equation procedures that best fit the measured data

The analysis methods of the references reported in this chapter belong to the quasi static
already discussed in Chapters 2 and 3. As a consequence of this method, dispersion is not e
and all the element values associated with the network have a constant value with res
frequency.

4.5 BENDS

Bends are the most frequently encountered discontinuities, and for the µstrip case the
been studied and measured by many authors.32,33,34,35

The most simple bend is the 90° bend, as indicated in Figure 4.5.1. This bend doesn’t work
well above some GHz, due to a high VSWR. The same holds true for bends with angles “α” greater
than 90°. Experiments on various bends have proven that a decrease in the input reflection
cients for network in Figure 4.5.1 can be achieved if  the corner is chamfered, as indicated in
Figure 4.5.2. In this case a “chamfer percentage” or “miter percentage” is defined as:

(4.5.1)

Figure 4.3.5

m S d−⊥ ( )100
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Measurements of the bends shown in Figures 4.5.1 and 4.5.2 yields the approximate equivalent
lumped network is that shown in Figure 4.5.3. Of course, the element values are different if  the
lumped network has to represent the bend in Figure 4.5.1 or 4.5.2.

4.5.1 �Strip Case

The researchers M. Kirschning, R. H. Jansen, and N. H. L. Koster36 have obtained the following
equations for the elements indicated in Figure 4.5.3 applied to Figure 4.5.1, i.e., a noncompensated
90° bend:

(4.5.2)

Figure 4.4.1

Figure 4.5.1
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(4.5.3)

while if  the network indicated in Figure 4.5.3 is applied to Figure 4.5.2 we have:

(4.5.4)

(4.5.5)

In the previous equations, “h” must be inserted in “mm,” and “C” and “L” give a value in “
and “nH.” The values given by these formulas have been proven to approximate very we
measured values, with a maximum error near some percent when 2 ≤ εr ≤ 13 and 0.2 ≤ w/h ≤ 6. The
authors R. J. P. Douville and D. S. James37 have obtained an optimum percent value for “m,” given b

(4.5.6)

which is applicable for 2.5 ≤ ε r ≤ 25 and w/h ≥ 25.

Figure 4.5.2

Figure 4.5.3

P2

45°

S

P1d

P1 P2

L L

C

L h w h= − − ( )( )[ ]0 22 1 1 35 0 18
1 39

. . exp .
.

C h w h w hr r= +( ) ( ) + +( ) ( )[ ]−10 3 93 0 62 7 6 3 83 2
. . . .ε ε

L h w h= − − ( )( )[ ]0 44 1 1 062 0 177
0 947

. . exp .
.

m w h= + −( )52 65 1 35exp . /
©2000 CRC Press LLC



       

uit

  

tio

      

 where
dicated

  

rcuit

 

pen
4.5.2 Stripline Case

The inductive “XL” and capacitive “XC” reactances for the elements of the equivalent circ
of Figure 4.5.3 for a noncompensated 90° bend are:

(4.5.7)

(4.5.8)

where:

(4.5.9)

(4.5.10)

and “ζ” is the stripline characteristic impedance.
“K(p)” is the complete elliptic integral of first kind, defined in Appendix A8. The ra

K(p)/K(p′ ) can be calculated using the tabulated values of the elliptic integrals,38 or using the
approximated equations we give in Appendix A8. 

4.6 OPEN END

Open ends are encountered any time a microstrip is open terminated. Typical devices
open ends are encountered are filters and matching stubs. An example is the low pass filter in
in Figure 4.6.1. Due to its diffusion, this µstrip open end discontinuity has been studied by many
authors.39,40,41 The general representation of this discontinuity together with its equivalent ci
are shown in Figure 4.6.2b. To the open end capacitance it is sometimes associated with, an extra
µstrip length “∆�” is attached to the original µstrip, permitting one to take into account the o
end effect. This relationship is indicated in Figure 4.6.3. In the next points of study we will  describe
how to evaluate such quantities.

4.6.1 �Strip Case

According to a study by P. Silvester and P. Benedek,40 the capacitance “C”  of Figure 4.6.2,
part b, can be obtained by:

(4.6.1)

Figure 4.6.1

X D DL ζ λ λ= + ( )[ ]2 0 878 2
2

.

X D DC ζ λ λ π= − − ( )[ ]1 0 114 2 2
2

.

D bK p K p−⊥ ( ) ′( )

p w b−⊥ ( )tanh π 2

Open end

C
w

a
w
hi

i l

i l

i

= 























−

=

=

∑exp . log2 3026
5

©2000 CRC Press LLC



The previous equation gives a result in pF/m, and the coefficients “ai” are functions of “ε r”
according to the following Table 4.6.1:

Once obtained from the previous equation, the capacitance Co  ⊥ C/w, in pF/m, this extra length
is given by:

(4.6.2)

If we add this “∆�” to the original µstrip length, the capacitance “Co” must not be added again
to the end of this extra length.

The researchers M. Kirschning, R. H. Jansen, and N. H. L. Koster42 have obtained a closed
form expression for “∆�,” through a curve fitting to full wave data analysis, according to:

(4.6.3)

(4.6.4)

(4.6.5)

(4.6.6)

(4.6.7)

Figure 4.6.2 Figure 4.6.3

Table 4.6.1

εεεεr = 1 εεεεr = 2.5 εεεεr = 4.2 εεεεr = 9.6 εεεεr = 16 εεεεr = 51

a1 1.11 1.295 1.443 1.738 1.938 2.403
a2 –0.2892 –0.2817 –0.2535 –0.2538 –0.2233 –0.222
a3 0.1815 0.1367 0.1062 0.1308 0.1317 0.217
a4 –0.0033 –0.0133 –0.026 –0.0087 –0.0267 –0.024
a5 –0.054 –0.0267 –0.0073 –0.0113 –0.0147 –0.084
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(4.6.8)

The error produced by these equations, compared to the full wave analysis data, is low
2.5% for ε r ≤ 50 and 0.01 ≤ w/h ≤ 100. 

4.6.2 Stripline Case

An equivalent extra length “∆�” is associated with the stripline open end discontinuity, 
indicated in Figure 4.6.3, given by:

(4.6.9)

(4.6.10

4.7 GAP

These types of discontinuities are encountered in filters and in DC blocks. An example 
band pass filter indicated in Figure 4.7.1. This discontinuity is quite diffused, and for the µstrip
case, it has been studied or measured by several authors.43,44,45 In Figure 4.7.2, part a, we represent
the generic geometric structure of the gap, while part b shows the equivalent circuit. 

Figure 4.7.1

Figure 4.7.2
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4.7.1 �Strip Case

According to work of the researchers M. Kirschning, R. H. Jansen, and N. H. L. Koster,46 the
element values in the network indicated in Figure 4.7.2 are given by:

in mS (4.7.1)

in mS (4.7.2)

in mS (4.7.3)

where the quantities Q1 through Q4 are given by:

(4.7.4)

(4.7.5)

(4.7.6)

(4.7.7)

In 4.7.2 and 4.7.3, “Co1” and “Co2” are the open end capacitances evaluated as in the prev
section.

In the above equations the frequency and dimensions must be inserted respectively in G
mm, and are applicable for the following ranges:

(4.7.8)

The values produced by Equations 4.7.1 through 4.7.3, when compared to the full wave a
method of the same authors,47 have an error lower than 0.1 mS for frequencies up to 18 GHz 
“f × h” product lower or equal to 12 GHz × mm.

Of course, as in the case of open end discontinuity, it is also possible to associate tw
lengths “∆�1” and “∆�2” with the two capacitances “Ch1” and “Ch2” respectively, inserting these
capacitances into Equation 4.6.2.

4.7.2 Stripline Case

Only symmetrical gap analysis equations are available, i.e., relative to the structure ind
in Figure 4.7.3. The susceptances “ Bg”  and “ Bh”  of the elements in Figure 4.7.3 are:

(4.7.9)
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(4.7.10)

where:

(4.7.11)

(4.7.12)

4.8 CHANGE OF WIDTH

This kind of discontinuity is found in many devices like quarter wavelength transform
multistep quarter wave directional couplers, and filters. An example is the four sections, λ /4 coupled
lines, asymmetrical directional coupler* shown in Figure 4.8.1. This discontinuity, for the µstrip
case, has also been studied by many authors,48,49,50,51 due to its high diffusion. A lot of changes o
width shapes are possible, but the symmetrical one indicated in Figure 4.8.2 is the simplest to build
and can be considered a good approximation for any other type.

4.8.1 �Strip Case

Figure 4.8.3 indicates the suggested equivalent circuit of the symmetrical step shown in
Figure 4.8.2. Simple formulas for the element’s values in the equivalent network have been obtained
by researchers,52,53,54 according to the following equations:

(4.8.1)

Figure 4.7.3

*  This type of directional coupler will be studied in the next Chapter 7.
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tive
where i = 1,2 and “ζ i” and “ε rei” are respectively, the characteristic impedance and effec
dielectric constant of a µstrip with width “wi ,”

in nH/m (4.8.2)

(4.8.3)

The equations above give an error of less than 5% for “w1/w2” ≥ 5 and w2/h = 1. The general
expression of capacitance, for ε r ≤ 10 and 1.5 ≤ w1/w2 ≤ 3.5, is given by:

in pF/m (4.8.4)

giving an error of less than 10%. For the case of alumina, i.e., ε r = 9.7, and 3.5 ≤ w1/w2 ≤ 10 we
have the following equation:

Figure 4.8.1

Figure 4.8.2

Figure 4.8.3
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rs,*

5.
in pF/m (4.8.5)

which gives a maximum error of 0.5% when compared to the measured values.

4.8.2 Stripline Case

Figure 4.8.4 shows the suggested equivalent circuit of the symmetrical step shown in
Figure 4.8.2. The reactance “ X L” of the inductance is given by:

(4.8.6)

where “D1” and “D2” are the application of equation 4.5.9 to the stripline of width “w1” and “w2.”

4.9 “T” JUNCTIONS

The geometry of the discontinuity under study is indicated in Figure 4.9.1 and is called the
“T-junction.” This discontinuity is found mainly in matching networks and directional couple
and especially for the µstrip case it has been studied and measured by many authors.55,56,57

Figure 4.8.4

*  Some directional couplers where “T-junctions” are used are the “branch line” and “rat-race,” studied in Chapter 
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In contrast with the “bend” discontinuity previously introduced, in the present case more
one equivalent circuit is suggested. In addition, care must be taken to associate the equivalen
with the reference plane’s position.

4.9.1 �Strip Case

For the particular case of symmetric “ T”  indicated in Figure 4.9.2 together with the reference
planes “T1,” “T 2,” and “T3,” the researcher E. O. Hammerstad58,59 suggests the equivalent circui
indicated in Figure 4.9.3. Note that it is a dynamic equivalent circuit, i.e., the DC is not propagated
by this equivalent circuit. The elements of this circuit are:

(4.9.1)

where “ζ i0” is the impedance of the µstrip “i” with the substrate replaced by the vacuum i.e.,
ε r = 1,

Figure 4.9.2

Figure 4.9.3
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s model.

re:
(4.9.2)

(4.9.3)

(4.9.4)

(4.9.5)

(4.9.6)

(4.9.7)

It is important to observe that this model only describes the “T-junction” according to
reference plane indicated in Figure 4.9.2. So, the effect of the eventual length and termination of
the lines connected at the reference planes have to be taken into account separately from thi
This is a typical procedure for any circuit simulation.

4.9.2 Stripline Case

With reference to Figure 4.9.4, the suggested equivalent network is indicated in Figure 4.9.5.
The inductive “XL” and capacitive “XC” reactances for the elements of the equivalent circuit a

Figure 4.9.4

Figure 4.9.5
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(4.9.8)

(4.9.9)

(4.9.10)

for D2 < 0.5D1 (4.9.11)

(4.9.12)

for D2 > 0.5D1 (4.9.13)

where “D1” and “D2” are the application of Equation 4.5.9 to the stripline of width “w1” and “w2.”
Note that the reference planes are different between Figures 4.9.2 and 4.9.4, producing different
equivalent circuits.

4.10 CROSS-JUNCTION

The geometry of this discontinuity is shown in Figure 4.10.1 and is called a “cross-junction.” *
Similar to the case of “T-junction,” this discontinuity is mainly found in matching networks 
filters, like the notch filter indicated in Figure 4.10.2. Nevertheless, the cross-junction has been
studied and measured only for the µstrip case.60,61

4.10.1 �Strip Case

In contrast with the case of “T-junction,” there is no particular reason to have all four po
different widths, i.e., different impedances, and for this reason the symmetric “X-junction,” sh
in Figure 4.10.3, has been studied more deeply than its fully  asymmetrical counterpart.62 With the
reference planes indicated in Figure 4.10.3, we have63 the suggested equivalent lumped eleme
circuit as indicated in Figure 4.10.4 with elements value given by:

*  We will indicate the “cross-junction” with “X-junction.”

Figure 4.10.1
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Figure 4.10.2

Figure 4.10.3

Figure 4.10.4
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in nH/m (4.10.2)

in nH/m (4.10.3)

in nH/m (4.10.4)

The previous equations were obtained as curves fitting the theoretical data, and are app
for ε r = 9.9; in particular, for capacitance “C” it is required that 0.3 ≤ w1/h ≤ 3 and 0.1 ≤ w2/h ≤ 3,
while for the inductances it is required that 0.5 ≤ (w1/h, w2/h) ≤ 2. In such a hypothesis, the erro
given by the previous equations is less than 5% with respect to the measured values.

4.10.1 Stripline Case

As we said before, no dedicated study of this discontinuity has been made. This is due
high diffusion of µstrip networks and devices with respect to stripline counterparts. Howev
first approximation of the loading of a transverse arm on a main line for a symmetric striplin
junction (indicated in Figure 4.10.3) can still be obtained using the equivalent circuit for the stripline
“T.”
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CHAPTER 5

Coupled Microstrips

5.1 GEOMETRICAL CHARACTERISTICS

An illustration of two coupled* µstrips is provided in Figure 5.1.1 in a cross-sectional view. In
general, more than two µstrips** can be e.m. coupled, but we will only study the case ind
in Figure 5.1.1, i.e., where only two µstrip are e.m. coupled. In addition, we will  assume that in
the coupling region, µstrips widths, their spacing, and substrate height will remain constan
we will assume uniform coupling.***

In this chapter we will consider that coupling between µstrip is desired. Crosstalk bet
coupled µstrips has been investigated by the researchers Y. Qian and E. Yamashita.1

Coupled µstrips**** provide a very important network with which a lot of devices can be b
such as directional couplers and filters. At lower frequencies “cµ” are employed to transmit d
information at a high rate of speed, typically hundreds of MHz where “ECL” devices are empl
“ECL” devices are in fact “differential logic,” where the best noise immunity and high speed
can be achieved just using coupled lines.

As we can see, this structure is composed by setting two µstrip hot conductors at a d
“s”, one of width “w1” and the other with width “w2.” Similar to the case of single µstrip, the
substrate can now be a ferrimagnetic material. However, unless otherwise stated we will a
the “cµ” to be on a nonferrimagnetic substrate, covering this argument in Chapter 7. 

In general, there is no particular reason to have different hot conductor widths, and the d
we will discuss in Chapter 7 that employ “cµ” are examples of this assertion. So, the follo
theory in this chapter will assume w1 ≡ w2,***** unless otherwise stated.

5.2 ELECTRIC AND MAGNETIC FIELD LINES

Some electric “e” and magnetic “h” field lines for the fundamental “qTEM” mode in microst
are indicated in Figure 5.2.1, in a defined cross-section and a defined time. In the fundamental
mode each hot conductor is equipotential. Note that as in the general theory of coupled line
supports two independent excitation modes, i.e., the “even” and the “odd” mode. See Cha
for definitions of even and odd excitation modes. The e.m. field line disposition is obviously diff
for each mode. Due to this phenomenon, the effective relative dielectric constant is differe

*  The concept of coupling, together with the general theory of coupled “TEM” lines, is explained in Chapter 1.
**  µstrips are studied in Chapter 2.
***  The general theory of nonuniform coupled lines is covered in Chapter 1. In Chapter 7 we will study µstrip devices
working on nonuniform coupling.
****  Coupled µstrip will be simply abbreviated with “cµ.”
*****  The case w1 ≡ w2 is named as symmetric “cµ.”
©2000 CRC Press LLC
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each mode. For this reason, we have an “even mode effective relative permitivity,” indicated
“ ε ree,” and an “odd mode effective relative permittivity,” indicated with “ε reo.” The introduction of
these quantities can be done similarly to the µstrip case studied in Chapter 2. With refere
Figure 5.2.2, in part a, the “cµ” with an even excitation has been enclosed in a box, with dimensions
such that its effect on the field distribution can be neglected. In part b, the “cµ” is surround
a homogeneous, isotropic dielectric medium, with permitivity “εree,” so that the wave phase velocity
is the same for cases in Figure 5.2.2 a and b. Of course, a similar discourse needs to be repeated
for “cµ” with odd excitation, so that we can define an “ε reo.” 

Figure 5.1.1

Figure 5.2.1

Figure 5.2.2
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In general, it is the difference between the numbers of field lines in the air and substra
creates the difference between the values of “ε ree” and “ε reo.” If this number of lines was equal,
as in the stripline case, there would not be any difference between “ε ree” and “ε reo.” These quantities
are considered as a constant in a quasi static group, while for the other groups they are fre
dependent functions, as they are in reality. In general, the determination of “ε ree(f)” and “ε reo(f)”
is a very important point of any group of study. In fact, once we know “ε re(f),” the even and odd
characteristic impedances can be evaluated inserting this function in any of the quasi static 
ance expressions that we will give in a later section. The result is that the “cµ” impedance
also be a function of frequency.

Similarly, we have an “even mode characteristic impedance,” indicated with “ζ e,” and an “odd
mode characteristic impedance,” indicated with “ζ o.” These impedances are defined as the imp
ance of each µstrip, with the other µstrip present and excited with the proper polarity. In Cha
we showed that ζ e ≥ ζ o and, in the present case, we have ε ree ≤ ε reo.

Unfortunately, “cµ” are not t.l. supporting pure “TEM” waves, and the e.m. field disposi
indicated in Figure 5.2.1 is only a good approximation for low frequency operation, let us say
below some GHz. Due to the non- “TEM” propagation, “cµ” is a dispersive* structure and ca
needs to be used when employing microstrip devices in wideband precision devices. Howev
to their technological simplicity, “cµ” devices like directional couplers and filters are wid
employed.

5.3 SOLUTION TECHNIQUES FOR THE ELECTROMAGNETIC PROBLEM

Three theory groups are mainly employed to study “cµ,” similar to the case of µstrip stu
in Chapter 3. They are:

1. Quasi static group, where the “cµ” is evaluated as being composed of the lines supporting a pu
“TEM” mode. Examples2,3 of methods used in this group are the solution of the Laplace equation4

or conformal transformation method,5,6 whose fundamental theory is studied in Appendix A1.
2. Dispersion group, where the “cµ” is evaluated as a particular coupling between a “TEM” and “TE”

t.l.7 or with other dispersion models.8

3. Full wave group, where no simplification is made and a full Maxwell’s equations solution is found.9

The first two groups are quite simple to apply, while the third requires more analytical a
cations.

The next sections will discuss each one of the three groups.

5.4 QUASI STATIC ANALYSIS METHODS

These methods consider the evaluation of “cµ” properties as an electrostatic problem, 
it can be studied with rules and equations of electrostatics. In the following text we will ind
with the subscript “0,” the quantities with the substrate replaced by the vacuum. It is assume
each µstrip only supports a “TEM” wave, and even-odd excitation is applied to the structu
this case, each µstrip has a characteristic impedance “ζm” and phase constants “βm,” with m = e,o
to identify the mode, given by:

with m = e,o (5.4.1)

*  Dispersion is studied in Appendix A2.

ζ ζ ζ εm m m m m r emC C= ( ) ( )−⊥
0 0

0 5

0

0 5. .
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with m = e,o (5.4.2)

Similar to the case of single µstrip studied in Chapter 2, we have:

with m = e,o (5.4.3)

where ζ V  ⊥– (µ0/ε0)0.5 = 120π. The effective relative dielectric constants “ε rem” are defined as: 

with m = e,o (5.4.4)

Among the quasi static methods10 we will refer to work by the researcher J. A. Weiss,11 based
on the determination of Green’s function* for the “cµ” structure. The geometry under stu
shown in Figure 5.4.1. As unitary charge, it is assumed to be an infinitesimal width “dw”  of the
µstrip conductor, with theoretically infinite longitudinal length, carrying a unitary charge per
This source is called the “line of charge.” The hot conductors and distance “s” are divided
number “M” of substrips. Consequently, each hot conductor is supposed to be composed 
lines of charge in parallel, so that the whole charge per unit area of the strip has a value “qs.” The
solution of the problem is to find the Green’s function for the line of charge, assuming a de
potential function inside the structure that satisfies the boundary conditions. The determina
this function requires some analytical practice, and for this reason we refer the reader to W
article. Therefore, to show the analytical key points of this theory we would assume that the G
function for a line source is known.

With reference to Figure 5.4.1, part a, let us indicate with “ gij” the Green’s function relative
to the line of charge “q� j” in position “xj ,” working on the substrip in position “xi .” Applying the
superposition principle, the potential “V” of each strip is:

*  The Green’s function, (solution of Poisson’s equation for a pulse charge), is studied in Appendix A1.

Figure 5.4.1

β β β εm m m m m r emC C= ( ) ( )−⊥
0 0

0 5

0

0 5. .

ζ ζ εm V m m m mC C v C C= ( ) ≡ ( )[ ]−
0 0

0 5

0 0

0 5
1

. .

ε r em m m
C C−⊥

0

- jlq
lq j

q

Odd mode

Even mode

MMM

MM M

x jx i

i,jg
i,3M+1-j-g

i,3M+1-j
g

i,j
g

x

b)

y

i jx x
x

y

a)

each strip
for lj

for one strip

for other strip
©2000 CRC Press LLC



  

n the
vious

        

rre-

        

g the

      

 such
others,
. It is
ed to

      

lest to
 as a

      
(5.4.5)

where only values of “i” corresponding to hot “cµ” conductors need to be inserted in 5.4.5. I
previous equation “+” and “–” signs correspond to the even and odd excitations. The pre
equation defines a system of “M” equations in the “M” unknowns “q� j” which has a solution. Once
found, the “q� j ” the charge “Q” for each strip is:

(5.4.6)

and consequently the capacity “C” per u.l. is:

(5.4.7)

where “Qm” is obtained from 5.4.6 when 5.4.5 is evaluated once with the “+” sign, which co
sponds to m ≡ e, and once with the “–” sign, which corresponds to m ≡ o. The procedure is then
repeated again using vacuum as dielectric, obtaining:

(5.4.8)

Once “Cm” and “C0m” are obtained, the even and odd impedances can be evaluated usin
equations at the beginning of this section. 

Similar to the case of single µstrip, an effective relative permeability “µrem” can be defined for
a ferrimagnetic substrate, according to:

(5.4.9)

where “ L0m” is the single µstrip equivalent inductance when the substrate is evaluated as µr = 1, 
i.e., the substrate replaced by the vacuum. In particular, expression 5.4.1 is replaced with:

(5.4.10)

However, relative permeability is quite often a complicated function of material properties,
as the intensity of the eventual applied static magnetic field, the power of the RF signal, and 
as will be described in Appendix 7. So, expression 5.4.9 is actually only an approximation
evident, from the above calculation, that with this method the conductor thickness is assum
be negligible. In practice, this hypothesis is approximated when t ≤ 0.1s and t ≤ 0.02h.

5.5 COUPLED MODES ANALYSIS METHOD

Among the types of dispersion group analysis, the coupled mode method is the simp
study. It permits evaluation of the effective relative permittivity for the even and odd modes
function of frequency. Consequently, the characteristic impedances “ζ e” and “ζο” will be frequency
dependent.

V q g gj i M j

j l

j M

i j
= ±( )+ −

=

=

∑ l , ,3 1

Q q j

j l

j M

=
=

=

∑ l

C Q Vm m=

C Q Vm m0 0=

µ rem m mL L−⊥
0

ζ ζ µ εm m re re= ( )0

0 5.
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This method supposes that the propagation mode in a “cµ” can be obtained through a co
between a “ TEM” and “ TE” lossless mode, as indicated in Figure 5.5.1 part a and b, respectively,
with their equivalent t.l.* networks. This explanation of the microstrip propagation was 
suggested by researchers H. J. Carlin and P. P. Civalleri.12 We have already encountered such meth
of study in Chapter 2 for single µstrip. In the present case, both the even and odd mod
represented by a couple of t.l., as indicated in Figure 5.5.1. Of course, the element’s values for
each mode are different. In the following, we will refer to the case of lossless t.l. Using the sub
“m” to identify the modes “e” and “o,” the elements of the equivalent t.l. have the following val

(5.5.1)

(5.5.2)

(5.5.3)

(5.5.4)

(5.5.5)

where:

dm is a parameter that depends on the transverse geometric dimensions of the “cµ”
ε re 0m is the static effective relative dielectric constant

ktm is the “TE” mode cutoff wave number, a generalization of the same parameter defin
in Chapter 2 for the single µstrip case, given by:

(5.5.6)

Figure 5.5.1

*  See Appendix A2 for equivalence between modes and t.l.
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In 5.5.6 the parameter “ζ am” is given by:

(5.5.7)

To evaluate the effective relative dielectric constants, the series impedance “[Zs(ω)]” and
parallel admittance “[Yp(ω)]” 4 × 4 matrices are written for each coupled t.l. for the “e” and “
modes, and the following matrix equation is solved in “k”:

(5.5.8)

where “[I]” is the 4 × 4 identity matrix. Note that the previous equation is a generalization of
scalar equation ZsYp = !k2 defined in Chapter 1. After the “km” value has been found, it is possibl
to extract the effective relative dielectric constant from the well-known relation* k = jω(µεc)0.5.
The resulting expression is:

(5.5.9)

where the coefficient “Cm” is given by:

with m = e,o (5.5.10)

and determines the values of the coupling capacitor “Cm” between the two t.l.s of Figure 5.5.1, i.e.:

with m = e,o (5.5.11)

The plus sign in 5.5.9 represents the fundamental “qTEM” even and odd modes, i.e., 
propagate from DC, while the minus sign represents other modes, which are the solution o
but have finite cutoff frequencies.

In general, the effecive relative dielectric constants increase with frequency, which mea
field is more and more contained inside the substrate.

5.6 FULL WAVE ANALYSIS METHOD

With this method, a solution of Maxwell’s equations is found for the “cµ” structure enclo
in the box, applying the boundary conditions that the fields must satisfy. We have already us
general method in Chapter 2 for the single µstrip case. The same procedure can be applie
starting, of course, with different boundary conditions. For this reason, in the present case o
we will only indicate the differences between this and the same procedure applied for single 
sending the reader to Chapter 2 for the analytical expressions.

 The enclosed “ cµ” as indicated in Figure 5.6.1 is supposed to have cylindrical symmetry, and
a Cartesian coordinate system is applied. Following the classical methods of study for stru
with such a symmetry,** the electric “A” and magnetic “F” vector potentials are written as:

*  See Chapter 1 for propagation constant and characteristic impedance relations.
**  See Appendix A2 for a general discussion of guided propagation.

ζ ζ ζ ζae e ao oand= =2 2
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ε ω ε
ω

ε
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(5.6.1)

(5.6.2)

where “L(z),” (assumed to be in a lossless case and in a reflectionless propagation in th0”
direction), is given by:

(5.6.3)

and “At” and “Ft” verify the transverse wave equation.
Then, for every region i = 1,2 indicated in Figure 5.6.1 we assume the propagation mode to be

composed of the sum of infinite “TM” and “TE” modes,* obtained using Equations A2.6.1
A2.6.2. Therefore, the e.m. field inside the structure can be written with the same expressi
gave in Chapter 2.

The condition to consider in the expression of the field of all the possible “TE” and “T
modes is performed expressing the transverse potential vectors with a series of infinite ter
course, the resulting expressions for “At” and “Ft” must verify the transverse wave equation an
the boundary conditions for the structure in Figure 5.6.1. To this purpose, with reference to
Figure 5.6.1, the e.m. field components must verify:

1. For y = 0 and y = H, with |x| ≤ d/2, i.e., top and bottom shields: ex = !0 and ey = !0;
2. For x = ±d/2, with 0 ≤ y ≤ H, i.e., the lateral shields: ez = !0 and ey = !0
3. For y = h, with s/2 ≤ x ≤ w, and –w ≤ x ≤ –s/2, i.e., the hot conductors: ex = !0 and ez = !0
4. For y = h, with |x| ≤ s/2, –d/2 ≤ x ≤ –s/2 – w, and s/2 + w ≤ x ≤ d/2, i.e., the dielectrics interface: 

a. ex1 = !ex2 and ez1 = !ez2, i.e., continuous tangential electric components
b. ε1ey1 = !ε2ey2 – qs, i.e., variation of “d”** normal component is equal to surface charge

density “qs”
c. hy1 = !hy2, i.e., continuous normal magnetic components
d. hx1 = !hx2 + iz (x) and hz1 = !hz2 – ix (x), i.e., variation of “h” tangential component is

equal to linear current “i.”

So, the difference in boundary conditions with respect to the single µstrip are in conditi
and 4 above. Until this point, the relations are very simple and they are a direct application
boundary conditions to a cylindrical guiding structure which supports an e.m. field. Ana

Figure 5.6.1

*  See Appendix A2 for general expressions of “TE” and “TM” modes.
**  d ⊥ εe is the electric displacement vector.
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difficulties arise when we apply the boundary conditions 1 through 4 above to the field expres
We refer the reader to Chapter 2 where a possible solution procedure13 was outlined, which can
still be adapted here.

The results of this procedure give an even and odd effective dielectric constant that inc
with frequency, as indicated in Figure 5.6.2, and that is the same as the “ ζ e” and “ζ o.” Consequently,
the even and odd phase velocities are different and the “cµ” is a dispersive structure, as the
µstrip we studied in Chapter 2.

5.7 DESIGN EQUATIONS

The most simple and widely used expressions for symmetric “cµ” synthesis are provid
researchers R. Garg and I. J. Bahl.14.15 These equations are extracted using a quasi static ana
of the “cµ” structure, together with a curve fitting to measured values, which permits obtainin
coupled lines’ capacitances. The capacitances involved are indicated in Figure 5.7.1. In detail, for
each hot conductor:

“C f” is the fringing capacitance of the more distant sides of the “cµ”
“C h” is the parallel capacitance of the hot conductors
“C fs” is the fringing capacitance of the nearest sides of the “cµ”
“C s” is the coupling capacitance, only considering the effect of “ε r”

“C s0” is the coupling capacitance, only considering the effect of “ε0”
“C t” is a coupling capacitance due the strip thickness “ t,” only considering the effect of “ε0”

All these capacitances are relative to a unit length. With these notations, the even “Ce” and odd
“C o” capacitances for each line are given by:

Figure 5.6.2

Figure 5.7.1
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ε ree
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s ww
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(5.7.2)

The capacitances “Ch” and “Ct” come from the parallel plate capacitance, simply given by

(5.7.3)

(5.7.4)

Fringing capacitance “Cf” is given by:

(5.7.5)

where “ζ s” and “ε res” are the impedance and effective relative dielectric constant for the sin
uncoupled µstrip of Figure 5.7.1. These two quantities can be evaluated as indicated in Chapter 2.

Fringing capacitance “Cfs” is given by:

(5.7.6)

where:

(5.7.7)

Coupling capacitance “Cs0” is given by:

for 0 ≤ p2 ≤ 0.5 (5.7.8)

for 0.5 ≤ p2 ≤ 1 (5.7.9)

where:

(5.7.10)

(5.7.11)

Coupling capacitance “Cs” is given by:

(5.7.12)

Once obtained “Ce” and “Co” are obtained, i.e., “Cm” with m = e,o, we can simply calculate
“ ζ m” and “ε rem” by applying the relations of Section 5.4, i.e., Equations 5.4.3 and 5.4.4. The e

C C C Ce h f fs= + +

C C C C C Co h f s s t= + + + +0

C w hh r= ε ε0
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2 0
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of strip thickness can be taken into account using the effective strip width* “we” which for the
particular case of “cµ” is:

(5.7.13)

(5.7.14)

(5.7.15)

And ∆w is given by 2.8.21 and 2.8.22.
In the ranges:

(5.7.16)

the previous formulas give a maximum error of 3% when the values are compared to the
rigorous analysis.16

Garg and Bahl have also given expressions to evaluate the effect of dispersion on “ε rem” and
“ ζ m,” based on a study for single µstrip by the researcher W. J. Getsinger.17 These are:

(5.7.17)

The quantities “Gm” and “fpm” are given by:

(5.7.18)

(5.7.19)

An expression similar to 5.10.17 is given for “ζ m(f)” resulting in:

(5.7.20)

where:

1. “Gm” and “fpm” are given by 5.7.18 and 5.7.19
2. “ζ sm” are the even and odd impedances of a side coupled stripline** with the same “w

and “s”  as our “cµ,”  and planes spacing b = 2h, as indicated in Figure 5.7.2. These “ ζ sm”
are simply given by:

(5.7.21)

with:

*  See Chapter 2 for the explanation of “effective strip width.”
**  Side coupled striplines will be studied in the next chapter.
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(5.7.22)

(5.7.23)

and pm′  ⊥  (1 – pm
2 ). The ratio “K(pm)/K(pm′ )” of the complete elliptic integrals of the first kind

can be evaluated using the tabulated values of the elliptic integrals.18 However, this ratio can be
simply approximated as we have indicated in Appendix A8. The values obtained by the disp
equations have been compared to the result of the full wave analysis,19 resulting in an error of less
than 5% for the same validity ranges given by 5.7.16.

The previous formulas are capable of taking into account the metal thickness and ar
simple. In the cases where thickness can be neglected, the most accurate formulas for e
relative dielectric constants have been obtained by the researchers M. Kirschning and R. H. J20

through a process where curves are fit to full wave analysis data. Defining:

(5.7.24)

the resulting equations for even and odd effective relative dielectric constants are:

(5.7.25)

(5.7.26)

(5.7.27)

(5.7.28)

(5.7.29)

(5.7.30)

Figure 5.7.2
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(5.7.32)

(5.7.33)

where the quantity “ε re” is the zero thickness effective relative dielectric constant for a sin
µstrip. This can be evaluated as we stated in Chapter 2, Equations 2.4.12 through 2.4.14.

Defining: 

(5.7.34)

with the frequency “f” in GHz and the substrate height in “mm,” the frequency dependen
“ ε rem” becomes:

(5.7.35)

where:

              (5.7.36)

(5.7.37)

(5.7.38)

(5.7.39)

(5.7.40)

(5.7.41)

(5.7.42)

(5.7.43)

             (5.7.44)

(5.7.45)

(5.7.46)
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(5.7.47)

(5.7.48)

(5.7.49)

(5.7.50)

(5.7.51)

(5.7.52)

The function “abs ( )” in the previous equation is a function that returns the absolute val
the argument “( ).” The validity ranges of the above formulas are:

(5.7.53)

giving an error of less than 1.5% with respect to the full wave data analysis.

5.8 ATTENUATION

Similar to the case of single µstrip, losses in “cµ” are due to four causes:

1. Nonperfect conductivity of the conductors, or “conductor loss” 
2. Nonzero conductivity of the dielectric, or “dielectric loss”
3. Substrate magnetic loss, if the substrate is a ferrimagnetic material
4. Radiation

Magnetic losses are mainly due to damping phenomena inside ferrimagnetic material 
the signal frequency is of an appropriate value, to resonance absorption.*

Radiation losses in “cµ” have not been investigated as well as their µstrip counterpart. Ho
as a first analysis, we can use the results of Chapter 4 to evaluate the equivalent network el
values for the discontinuity in a single µstrip of the “cµ” structure.

In this section we will study how to evaluate the first two causes of losses, which are di
related to the geometry of the “cµ” indicated in Figure 5.1.1. We consider the “cµ” as a t.l. only
supporting a “TEM” mode, so that we can apply the theory developed by researcher 
Wheeler.21,22 The procedure is similar to that used for the µstrip case in Chapter 2, and fo
reason, we will only outline the differences with respect to µstrips at this time. With the sub
“m” we indicate the generic mode, i.e., m = e or m = o, and all the attenuation constants
dimensions [nepers/u.l.] unless otherwise stated.

First, let us consider the attenuation due the nonperfect conductivity of the conductors. In
conditions, we know** that at a depth “p,” called the “penetration depth,” inside the condu
and given by:

*  See Appendix A7 for energy exchange phenomena between e.m. signal and ferrite.
**  See Appendix A2 for e.m. energy penetration inside nonperfect conductors.
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[meters*] (5.8.1)

the field amplitudes are reduced by “1/e.” In Equation 5.8.1 “f” is the signal frequency, and
and “µc” are the conductor conductivity and absolute permeability, respectively. The effect of
penetration can be regarded as the introduction of an additional series inductance and resis
per u.l., indicated respectively with “Lim” and “Rim” and called respectively, “incremental induc
tance” and “incremental resistance” for the m = e or m = o mode. The situation is depic
Figure 5.8.1, where the dashed line indicates the penetration depth. If  “ L m” is the equivalent series
inductance per u.l. of the lumped equivalent network of each µstrip of the “cµ,” given by:***

[Henry/meter] (5.8.2)

“L im” and “Rim” are:

[Henry/meter] (5.8.3)

[Ω/meter] (5.8.4)

where “µcr” is the conductor relative permeability and “∂n” is an infinitesimal penetration inside
the conductor, which is positive when the vector “n” is directed inside it. If we define the quantit
“R s,” called the “sheet resistance” for the conductor, as: 

[Ω/square]**** (5.8.5)

Equation 5.8.4 becomes:

(5.8.6)

Figure 5.8.1

* Remember that unless otherwise stated, in this book we will use the MKSA units reference system.
**  Since we assume the “cµ” only supports a “TEM” mode, we are referring to the simple low pass equivalent netw
for a line supporting a “TEM” mode. This argument is treated in Chapter 1.
***  See Chapter 1 for relationships between t.l. characteristics quantities.
**** See Appendix A2 for dimension unit of “conductor resistance.”
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We now have to take into account all the incremental inductances and resistances to ob
whole additional inductance “Lam”  and resistance “ Ram.” With reference to Figure 5.8.1 and using
Equations 5.8.3 and 5.8.6, we have:

(5.8.7)

(5.8.8)

The conductor attenuation coefficient “α cm” * is defined as:

(5.8.9)

where “Wcm” and “Wtm” are, respectively, the mean power dissipated in the conductor and
mean transmitted power, and are given by:

(5.8.10)

Using 5.8.8 and 5.8.10, Equation 5.8.9 becomes:

(5.8.11)

From 5.8.2 we note that:

(5.8.12)

where ζ zm ⊥– (µremεrem)0.5ζ m. Equation 5.8.11 then becomes:

(5.8.13)

Since “ζ m” and “εrem” are also functions of “w,” “s,” “t,” and “h,” as shown in the previou
paragraph, the derivative “∂ζ zm/∂n” is:

(5.8.14)

From Figure 5.8.1 we observe that:

*   We are assuming a longitudinal variation of conductor attenuation with e–αz. See Chapter 1 for the fundamental theory
of transmission lines.
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(5.8.15)

and 5.8.13 becomes:

(5.8.16)

Closed form formulas are not available, but the derivatives in the previous equation c
easily obtained numerically from the expressions of “ζ m” presented in previous sections. The resu
is that “α co” is always greater than “α ce,” and is four or five times the value in dB correspondin
to “α co.”

Dielectric losses “α dm” have been verified to be obtained for that of a single µstrip. In Chapt
we gave the closed form expression of such an attenuation constant, based on a study b
Schneider, B. Glance, and W. F. Bodtmann23 for a nongyromagnetic substrate. Applying th
equation to the even and odd mode,24 we have:

[db/u.l.] (5.8.17)

where “tanδ” is the dielectric loss tangent.* Of course, the quantities “ε r” and “ε rem” are all relative
to the real part of the substrate dielectric constant.** Similar to the case of single µstrip, 
most used substrates employed in MIC circuits, i.e., alumina and quartz, conductor loss
predominant. The situation is different in the case of semiconductor substrates employed in 
devices, like GaAs, where “α d” is comparable to “α c.”

5.9 A PARTICULAR COUPLED MICROSTRIP STRUCTURE:
THE MEANDER LINE

A particular type of “cµ” is the so-called “ meander line” structure indicated in Figure 5.9.1.
This structure is employed in phase shifters, as shown in Chapters 7 and 8 where phase
will be studied. The meander line can be thought of as being composed of a repeated sing
still called a “meander line” or “C”  section, indicated in Figure 5.9.2. In practice, the “C”  section
is built by connecting  the two nearest ports in short circuit. This cell is characterized by:

*  See Chapter 1 for “dielectric loss tangent” definition.
**  See Chapter 1 for complex permittivity definition.

Figure 5.9.1

ds dn dt dn dw dn dh dn= = − = − =2 2 2 2, , ,

α
ζ π

∂ζ
∂

∂ζ
∂

∂ζ
∂

∂ζ
∂cm

m
s

zm zm zm zmR
s w t h

= − − +





1
120

α π ε
ε

δ
λ

εdm
rem

r
rem= −

−
20

10

1 1

1 1 0ln
tan

P

a

L

©2000 CRC Press LLC



th

e
method

 phase
” and
a. A width “a” transverse to the longitudinal axis “z,” i.e., the mean value of the coupling leng
b. A spatial repetition period “P” along “z”
c. A phase shift ∆ϕ along “z,” per unit cell “P.” This is a consequence of point a.

A characteristic of the “C” section is that for ∆ϕ = π, the even and odd effective relativ
dielectric constants are equal. This can easily be shown using the even and odd excitation 
in Figure 5.9.3. In this case, since the “cµ” are connected together at one side, whenever a generator
is connected to one open extreme, the signal must arrive at the other extreme by shifting its
of the proper value along the “cµ.” So, using as connecting points those points labeled “1
“ 2” in Figure 5.9.3, the even excitation will  be identified by:

(5.9.1)

so that the phase difference “∆ϕ e” between these signals is 

(5.9.2)

Figure 5.9.2

Figure 5.9.3
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in accordance with the phase shift for the points “1” and “2.” The odd excitation will be ident
by:

(5.9.3)

so that the phase difference “∆ϕ e” between these signals is: 

(5.9.4)

i.e., not evaluating the obvious phase shift of “π” due to the odd excitation, still a phase shift o
∆ϕ /2. Setting ∆ϕ = π in 5.9.2 and 5.9.4, we note that |∆ϕ o| ≡ |∆ϕ e|. From the definition of effective
relative dielectric constants, the equivalence between even and odd phase differences me
ε ree ≡ ε reo.

Among the methods of study of “C” section25,26 we will refer to the quasi static method o
Weiss,27 which is similar to the method we used in Section 5.4 for the “cµ.” The geometry u
study is indicated in Figure 5.9.4. The procedure begins by finding a solution for the general
“homogeneous wave equation”:*

(5.9.5)

where “F” represents the electric or magnetic field and k2  ⊥– –ω2µεc . Due to the symmetry along
the “x” axis, we will find a field,** “F,” with a coordinate dependence given by:

(5.9.6)

Figure 5.9.4

*  See Appendix A2 for general definition of “wave equations.”
**  In the following, we will consider it obvious that the solution of the wave equation is, in this case, a field.
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Due to the hypothesis of “TEM” mode, “Vt” will satisfy the transverse wave equation: 

(5.9.7)

i.e., “Vt” is a solution of the Laplace* equation,** and for this reason it can be considered
potential for the structure. Due the periodicity along “z,” we assume:

(5.9.8)

where “ vt (y, z)” will also be periodic along “ z .” In our rectangular coordinate syste
Equations 5.9.7 and 5.9.8 are rewritten as:***

(5.9.9)

Due the periodicity of “vt,” this function can be expandend in Fourier series, i.e.:

(5.9.10)

Inserting this equation into:

a. Equation 5.9.8, we have:

(5.9.11)

b. Equation 5.9.9, we have the condition to be satisfied for the coefficients “vm(y)” of Equation 5.9.10,
i.e.:

(5.9.12)

with “ βm” given by:

(5.9.13)

Note that for every subscript “m,” Equation 5.9.12 represents the “harmonic motion” e
tion,**** whose useful solution is:

*  Pier Simon de Laplace, French mathematician, born in Beaumont en Auge in 1749 and died in Paris in 1827.
**  See Appendix A1 for the Laplace equation.
***  Of course, for simplicity, we will write “vt” for “v t(y,z).”
****  The “Harmonic motion” equation was introduced in Chapter 1.
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(5.9.14)

With appropriate boundary conditions it is possible to use only one term of the previous equ
so that Equation 5.9.11 becomes:

(5.9.15)

for 0 ≤ y ≤ h, and

(5.9.16)

for h ≤ y ≤ H. In our case, the boundary conditions are the unity of the potential at the inte
layer between air and dielectric, i.e.:

(5.9.17)

and the difference between the normal components of the electric displacement* vector “Dy
–” and

“D y
+” at the strips is equal to the strip charge “qs” and zero elsewhere, i.e.:

(5.9.18)

Once the expression of the potential “v” for the structure is found, the problem is to fin
coefficients “cm” and “dm” of the two previous equations. The problem has been solved by W
with a procedure similar to that used in Section 5.4 for the general quasi static study of “c
practice, each hot conductor is divided into “M” substrips, each with charge “q�” for u.l. The
determination of “cm” and “dm” permits the evaluation of Green’s function “g(y,z)” for a substri
Then, with a system of equations as indicated in Equation 5.4.5, the charge “q�” for each substrip
is found. At this point, the procedure is exactly as explained in Section 5.4 using Equations
through 5.4.10, and finally obtaining the even and odd characteristics for the meander lin

Figure 5.9.5

*  See Appendix A1 to find the definitions of other vector fields.
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interesting is to note that a graph of “ε ree”  and “ ε reo,”  in Figure 5.9.5 shows that when ∆ϕ = π,
then ε ree ≡ ε reo.

The meander line is an example in planar transmission line technology of the general 
for the “slow wave structure,”28,29 i.e., a structure where the e.m. field has a phase speed lower
the light speed in the vacuum. Another example of a commonly employed slow wave gu
structure is the helix inside a traveling wave tube.30* Other types of slow wave structures ar
possible as shown by some researchers.31

REFERENCES

1. Y. Qian, E. Yamashita, Characterization of picosecond pulse crosstalk between coupled mic
lines with arbitrary conductor width, IEEE Trans. on MTT, 1011, Jun/Jul 1993.

2. D. Homentcovschi, R. Oprea, Analytically determined quasi static parameters of shielded or
multiconductor microstrip lines, IEEE Trans. on MTT, 18, Jan. 1998.

3. F. Sellberg, Simple determination of all capacitances for a set of parallel microstrip lines, IEEE Trans.
on MTT, 195, Feb. 1998.

4. M. K. Krage, G. I. Haddad, Characteristics of coupled microstrip transmission lines-I, coupled 
formulation of inhomogeneous lines, IEEE Trans. on MTT, 217, April 1970 and Characteristics o
coupled microstrip transmission lines-II, evaluation of coupled line parameters, IEEE Trans on MTT,
222, April 1970.

5. S. Akhtarzad, T. R. Rowbotham, P. B. Johns, The design of coupled microstrip lines, IEEE Trans. on
MTT, 486, June 1975.

6. C. Wan, Analytically and accurately determined quasi static parameters of coupled microstrip
IEEE Trans. on MTT, 75, Jan. 1996.

7. H. J. Carlin, P. P. Civalleri, A coupled line model for dispersion in parallel coupled microstrips, IEEE
Trans. on MTT, 444, May 1975.

8. W. J. Getsinger, Dispersion of parallel coupled microstrip, IEEE Trans. on MTT, 144, Mar. 1973.
9. R. H. Jansen, High speed computation of single and coupled microstrip parameters including 

sion, high order modes, loss and finite strip thickness, IEEE Trans. on MTT, 75, Feb. 1978.
10. T. G. Bryant, J. A. Weiss, Parameters of microstrip transmission lines and a coupled pairs of mic

lines, IEEE Trans. on MTT, 1021, Dec. 1968.
11. J. A. Weiss, Microwave propagation on coupled pairs of microstrip transmission lines, Adv. Micro-

waves, 8, 295, 1974.
12. H. J. Carlin, P. P. Civalleri, A coupled line model for dispersion in parallel coupled microstrips, IEEE

Trans. on MTT, 444, May 1975.
13. M. K. Krage, G. I. Haddad, Frequency dependent characteristics of microstrip transmission

IEEE Trans. on MTT, 678, Oct. 1972.
14. R. Garg, I. J. Bahl, Characteristics of coupled microstriplines, IEEE Trans. on MTT, 700, July 1979.

See also, by the same authors, Correction to: Characteristics of coupled microstriplines, IEEE Trans.
on MTT, 272, March 1980.

15. K. C. Gupta, R. Garg, R. Chada, Computer Aided Design of Microwave Circuits, Artech House,
Norwood, MA, 1981. This book contains some revisited formulas introduced in the previous refe
of R. Garg, I. J. Bahl.

16. T. G. Bryant, J. A. Weiss, Parameters of microstrip transmission lines and a coupled pairs of mic
lines, IEEE Trans. on MTT, 1021, Dec. 1968.

17. W. J. Getsinger, Microstrip dispersion model, IEEE Trans. on MTT, 34, Jan. 1973.
18. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1970.
19. R. H. Jansen, High speed computation of single and coupled microstrip parameters including 

sion, high order modes, loss and finite strip thickness, IEEE Trans. on MTT, 75, Feb. 1978.
20. M. Kirschning, R. H. Jansen, Accurate wide range design equations for the frequency dep

characteristic of parallel coupled microstrip lines, IEEE Trans. on MTT, 83, Jan. 1984.
21. H. A. Wheeler, Formulas for the skin effect, Proc. of the IRE, 30, 412, 1942.

*  Traveling wave tubes are usually abbreviated “TWT.”
©2000 CRC Press LLC



ated

uplers

ction all

 

 

ure,
22. R. Sturdivant, Transmission line conductor loss and the incremental inductance rule, Microwave J.,
156, Sept. 1995.

23. M. V. Schneider, B. Glance, W. F. Bodtmann, Microwave and millimeter wave hybrid integr
circuits for radio systems, Bell System Tech. J., 1703, July-Aug. 1969.

24. B. R. Rao, Effect of loss and frequency dispersion on the performance of microstrip directional co
and coupled line filters, IEEE Trans. on MTT, 747, July 1974.

25. E. G. Cristal, Analysis and exact synthesis of cascaded commensurate transmission line C-se
pass networks, IEEE Trans. on MTT, 285, June 1966.

26. J. A. Weiss, Dispersion and field analysis of a microstrip meander line slow wave structure,IEEE
Trans. on MTT, 1194, Dec. 1974.

27. J. A. Weiss, Dispersion and field analysis of a microstrip meander line slow wave structure,IEEE
Trans. on MTT, 1194, Dec. 1974.

28. S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics, John Wiley,
NY, 1965.

29. A. F. Harvey, Periodic and guiding structures at microwave frequencies, IRE Trans. on MTT, 30, Jan.
1960.

30. A. S. Gilmour, Jr., Principles of Traveling Wave Tubes, Artech House, Norwood, MA, 1994.
31. Fei-Ran Yang, Yongxi Qian, R. Coccioli, T. Itoh, A novel low loss slow wave microstrip struct

IEEE MGWL, 372, Nov. 1998.
©2000 CRC Press LLC



DiPaolo, Franco, Ph.D. “Coupled Striplines” 
Networks and Devices Using Planar Transmission Lines
Boca Raton: CRC Press LLC,2000



     

onal
general

  

ies
 MHz,
 and

    

s, as

 be
ong the
offset

single

  

 case

 one.
strate,

evices
in this

      

the
t, i.e.,

     

vices
CHAPTER 6

Coupled Striplines

6.1 GEOMETRICAL CHARACTERISTICS

Coupled* striplines** are a very important network, employed in many devices like directi
couplers, filters, and phase shifters. These devices in stripline configuration are bigger, but in 
have better performances than the “cµ” counterpart studied in Chapter 5. Also at lower frequenc
they can be used to transmit digital information at a high rate of speed, typically hundreds of
where “ECL” devices are employed. In general, a high density PCB will contain striplines
µstrips as well.

In contrast to “cµ,” the present case allows more than one way to couple two stripline
indicated in Figures 6.1.1 through 6.1.3. Figure 6.1.1 represents a four layer structure, named
“broadside coupled stripline” (BCS). In practice, two hot stripline conductors, which can
assumed to belong to two otherwise isolated offset striplines, are set near each other al
widest dimension “w.” They share the same ground planes. A particular case of “BCS” is the “
broadside coupled stripline” or “OBCS,”  indicated in Figure 6.1.2. In the case of the OBCS, the
overlapping of hot conductors is not complete. 

Figure 6.1.3 represents the “classical” coupled stripline structure, called the “side coupled
striplines” or “SCS.” This structure preserves the already known three layers’ aspect for the 
stripline. For all three configurations it is common practice to indicate with:

a. “wi,” the i-th hot conductor width
b. “s,” the hot conductors separation
c. “t,” the hot conductors thickness
d. “b,” the ground plane spacing

In general, more than two striplines can be e.m. coupled, but we will only study the
indicated in Figure 6.1.1, where only two striplines are e.m. coupled.

Similar to the case of the single stripline, the dielectric material can be a ferrimagnetic
However, unless otherwise stated we will assume the “cs” to be on a nonferrimagnetic sub
and will cover this topic in Chapter 8. 

In general, there is no particular reason to have different hot conductor widths, and the d
discussed in Chapter 8 that employ “cs” are an example of this assertion. So, the theory 
chapter will assume w1 ≡ w2, unless otherwise stated. In addition, we will assume that in 
coupling region, stripline widths, their spacing, and backplane distance will remain constan
we will assume a uniform coupling.***

*  The concept of e.m. coupling among t.l.s is explained in Chapter 1.
**  Coupled µstrip will simply abbreviated with “cs.”
***  The general theory of nonuniform coupled lines is explained in Chapter 1. In Chapter 8 we will study stripline de
working on nonuniform coupling.
©2000 CRC Press LLC



  

tween

   

 time

n” and

 

In this chapter we will assume that coupling between striplines is desired. Crosstalk be
coupled striplines has been investigated by researchers Ponchak et al.1

6.2 ELECTRIC AND MAGNETIC FIELD LINES

Some electric “e” and magnetic “h” field lines in a defined cross-section and a defined
for the fundamental “TEM”  mode in the three configurations of “cs” are indicated in Figures 6.2.1
through 6.2.3. In the fundamental mode each hot conductor is equipotential. Note that as in the
general theory of coupled lines, cs supports two independent excitation modes, i.e., the “eve

Figure 6.1.1

Figure 6.1.2
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the “odd” mode.* This fields line comes directly from the local orthogonality between vector
and “h.” The e.m. field lines disposition is obviously different for each mode. 

Due to the homogeneity of the dielectric, even and odd phase constants are practically coi
in a wider bandwidth with respect to the “cµ” case. This characteristic made the “cs” very attracti
with respect to the “cµ,” especially in high precision and wide bandwidth devices, if “cs” ha
bigger size and weight. 

“BCS” and “OBCS” are mainly employed in devices where high coupling is required,
instance, inside the range –1 to –6 dB, while “SCS” are useful for a lower coupling.

Figure 6.1.3

*  See Chapter 1 for even and odd excitation mode definitions.

Figure 6.2.1
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6.3 SOLUTION TECHNIQUES FOR THE ELECTROMAGNETIC PROBLEM

Due to the intrinsic ability to support a “TEM” mode, “cs” have been studied with quasi s
methods. Of course, it is also possible to use full wave methods. The most employed quas
methods are:

1. Solution of Laplace’s equation2

2. Conformal transformation

The second method has been widely used. It is an application of the conformal transform
method, already applied to the single stripline, to the most general case of “cs,” i.e., “B3

“OBCS,” 4 or “SCS.”5,6,7 In contrast to the simple procedure for the single stripline, now for “ev
and “odd” excitation we need to apply a transformation, resulting in quite a lengthy procedur
the particular analytical steps can be found in the indicated references.

Figure 6.2.2

Figure 6.2.3
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6.4 DESIGN EQUATIONS

All the following formulas are a result of the conformal transformation method applied to
“cs” structure. We will give such formulas for any “cs” we introduced in section 6.1. 

6.4.1 SCS

The even “ζ e” and odd “ζ o”  characteristic impedances for the “SCS” indicated in Figure 6.1.3,
with the condition w1 ≡ w2 ⊥ w, are given by:8

(6.4.1)

with:

(6.4.2)

(6.4.3)

(6.4.4)

The operator “K( )” is the complete elliptic integral of first type, already encountered in
text. This integral has been defined in Appendix A8, together with its closed form formulas
approximated ranges, which can also be used here. 

Other used and simpler expressions have been obtained by Cohn9 using the even “Ce” and odd
“Co” capacitance for each strip, with the condition w/b ≥ 0.35. We have:

(6.4.5)

(6.4.6)

where

(6.4.7)

These last two expressions can be easily inverted for synthesis purposes as a function
strip voltage coupling “cv” for a matched system with system reference impedance “Zs.” The
resulting expressions are:

(6.4.8)

(6.4.9)

where “δ” is given by:
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Conductor thickness effect in the even and odd impedances has been evaluated by Coh10 For
w/b ≥ 0.35 and t/b ≤ 0.1 we have:

(6.4.11)

and the odd mode impedance for s ≥ 5t is:

(6.4.12)

while for s ≤ 5t is:

(6.4.13)

with “∆C” given by:

(6.4.14)

For the previous formulas we have:

1. ζ [w/b; t/b] single stripline impedance, with the same “w,” “t,” and “b” of the actual structure
It can be evaluated as indicated in Chapter 3.

2. ζ[w/b; 0] single stripline impedance, with the same “w” and “b” of the actual structure, bu
with t = 0. It can be evaluated as indicated in Chapter 3.

3. ζ m[w/b; 0; s/b] zero thickness “m” mode impedance, with the same “w,” “s,” and “b” of the
actual structure, but with t = 0. They can be evaluated for example as indicated in Equati
6.4.5 and 6.4.6.

4. Cf[t/b] is the single stripline fringing capacitance, with the same “w,” “b,” and “t” of the actua
structure. This expression has been given in Chapter 3, Equation 3.5.12.

5. Cf[0] is the fringing capacitance defined in point 4 above, evaluated with t = 0. We have:

(6.4.15)

6.4.2 BCS

These “cs” were first studied by S.B. Cohn,11 and the geometric structure is indicated 
Figure 6.1.1. With the conditions:

1. w1 ≡ w2 ⊥ w
2. w/s ≥ 0.35
3. w/(b – s) ≥ 0.35
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the even “ζ e” and odd “ζ o” characteristic impedances are given by:

(6.4.16)

(6.4.17)

where:

(6.4.18)

(6.4.19)

(6.4.20)

(6.4.21)

The expressions for “ζ e” and “ζ o” can easily be inverted for synthesis purposes, as we 
before for the “SCS.” The resulting expressions are:

(6.4.22)

(6.4.23)

Conductor thickness effect in the even and odd impedances has been evaluated by Co12 In
this case, he makes use of the total even “Ce” and odd “Co” capacitances for each strip, which ca
be obtained from “ζ e” and “ζ o” by:*

(6.4.24)

Of course, from the previous equation, if the capacitance is known, then we can evalua
impedance. 

For the odd mode, the total odd “Co” capacitance to be used is:

(6.4.25)

with “∆C[t/s]” and “b0” given by: 

(6.4.26)

(6.4.27)

*  Of course, a pure “TEM” propagation mode is assumed. See Chapter 1 on relations among “ζ” and t.l. capacitances.
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and “Co[w/b0; s/b0; 0]” is the odd capacitance for the zero thickness “BCS” with “w” and “s” 
Figure 6.1.1 and ground plane spacing given by 6.4.27. This capacitance is obtainable by the zero
thickness “ζ o” expression given above and using 6.4.24.

For the even mode, 
if t ≤ 5s, then:

(6.4.28)

where:

(6.4.29)

and “Ce[w/b; se/b; 0]” is the even capacitance for the zero thickness “BCS” with “w” and “b”
Figure 6.1.1 and hot conductors spacing given by 6.4.29. This capacitance is obtainable by the ze
thickness “ζ e” expression given above and using 6.4.24;

if t ≥ 5s then:

where:

and “C[w/b; te/b]” is the capacitance for the single symmetric stripline with thickness “te” given
by 6.4.29 and same “w”  and “b”  of Figure 6.1.1. This capacitance is obtainable by the “ ζ” expression
for a single stripline given in Chapter 3 and using 6.4.24.

6.4.3 OBCS

This structure was first studied by J. P. Shelton.13 The resulting equations are synthesis oriente
which means that “ζ e,” “ ζ o,” “ ε r,” and the system reference impedance “Zs” need to be known,
and the dimensions of Figure 6.1.2 are determined. We will  define ρ ⊥– ζ e/ζ o and assume the
“OBCS” is a matched “cs” for which ζ eζ o ≡ Z s

2. Two sets of equations are given, where ea
dimension is normalized to b = 1. To remember this, we will add the subscript “n” to the dimen
whenever necessary. A general constraint is given as:

(6.4.30)

One set is for tight coupling, where the following additional constraint must be verified:

* (6.4.31)

and the synthesis equations are:

* Since this equation is a ratio of two numbers, it is the same whether or not we use the normalized quantities.

C C w b s be e e= [ ]; ; 0

s s te
−⊥ + 2

C C w b t we e= [ ]0 5. ;

t s te
−⊥ + 2

w sn n1 0 35−( ) ≥ .

w sc ≥ 0 7.
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(6.4.32)

(6.4.33)

(6.4.34)

(6.4.35)

(6.4.36)

(6.4.37)

(6.4.38)

(6.4.39)

The other set of equations is for loose coupling, where the following constraint, togethe
that in Equation 6.4.30 must be verified:

(6.4.40)

and the synthesis equations are:

(6.4.41)

(6.4.42)

(6.4.43)

(6.4.44)

(6.4.45)

(6.4.46)
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(6.4.47)

(6.4.48)

From this study, a simple equation can be obtained in the case for max coupling, i.e
wo = 0.* We have:

(6.4.49)

However, for wo = 0, the original Cohn’s “BCS” equations given above have a greater ra
of validity, and those equations should be used. Thickness effect on these expressions has 
evaluated, but for t ≤ 0.1s it is believed that the error is negligible.

6.5 ATTENUATION

The sources of attenuation in a t.l. are well known and can be reviewed in Chapter 1 f
general case, or in Chapter 3 for the case of stripline, which applies to the “cs” as well. 

Magnetic losses will not be evaluated here; this topic will be studied in Chapter 8 and A
dices A5 through A7.

In contrast to the “cµ” case, or other open t.l., in this case radiation losses can be negl
with respect to the other source of attenuation, because “cs” is a closed structure. 

Assuming a pure “TEM” mode in the stripline, the evaluation of conductor losses ca
performed applying Wheeler’s14,15 incremental inductance rule. This way of proceeding to evalu
the t.l. attenuation has been used throughout this text, and for this reason we will only gi
formulas that are characteristics for the “cs” structure here. For the other concepts and co
formulas it is possible, for example, to see the losses evaluation for the stripline case in C
3. The following formulae apply equally to all three types of “cs” we have introduced. For exam
we will  refer to the “SCS” structure reported in Figure 6.5.1. 

Indicating with a subscript “m” the generic mode m = e,o, the additional inductance “La,m”
and resistance “Ra,m” are given by:

(6.5.1)

(6.5.2)

where:

a. “L i,m” is the “incremental inductance” per u.l.
b. “Ri,m” is the “incremental resistance” per u.l.
c. “p” is the “penetration depth,” [u.l.]
d. “µc” is the conductor absolute permeability 

*  Of course, for this limited case OBCS ≡ BCS.
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uctance
e. “Rs” is the conductor “sheet resistance,” [Ω/square]*

The conductor attenuation coefficient “α cm” ** is defined as:

(6.5.3)

where “Wcm” and “Wtm” are, respectively, the mean power dissipated in the conductor and
mean transmitted power, given by:

(6.5.4)

Consequently, the conductor attenuation constant does not depend on the additional ind
“L a.” Using 6.5.2 and 6.5.4, Equation 6.5.3 becomes:

(6.5.5)

Since we know*** that for a “TEM” t.l. we have:

(6.5.6)

then:

Figure 6.5.1

*  See Appendix A2 for measurement unit of “conductor resistance.”
**  We are assuming a longitudinal variation of conductor attenuation with e-αz. See Chapter 1 for the fundamental theory
of transmission lines.
***  See Chapter 1 for relations among t.l. characteristics.
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Observing that µ0v0 = ζ 0 ≡ 120π and using Equation 6.5.7, Equation 6.5.5 becomes:

(6.5.8)

The “ζ m” is a function of “w,” “t,” “s,” and “b,” as was shown in the previous section, and
the derivative “∂ζ m/∂n” is:

(6.5.9)

From Figure 6.5.1 we observe that:

(6.5.10)

and 6.5.8 becomes:*

(6.5.11)

Of course, the value given by “α cm” is in neper/meter.**
Simple closed form equations for “α cm” are not available, and when needed, the derivat

indicated in Equation 6.5.11 is numerically evaluated using a computer. In any case, it ha
verified that “α c o” is always greater then “α c e,” for a value near 10% the value of “α” in dB for
“BCS” and “OBCS” and near 5% for “SCS.”

Concerning the dielectric losses, we can use the general formula for dielectric losses in a “
t.l.,*** resulting in:

(6.5.12)

where “tanδ” is the substrate “tangent delta” **** for g = 0 in the substrate. Of course, the qua
“ε r” is relative to the real part of the substrate dielectric constant (see Chapter 1 for definit
permittivity). In general, for the typical substrates employed in “MIC,” stripline circuit conduc
losses are predominant. 

*  We assume that the top and bottom conductors have the same surface resistivity, as is usually the case.
**  See Chapter 1 for attenuation constants dimensions.
***  See Appendix A2 for the procedure to have the attenuation constant “αd.”
****  See Chapter 1 for “tanδ” definition and conversion between Neper and dB.
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6.6 A PARTICULAR COUPLED STRIPLINE STRUCTURE: THE MEANDER LINE

A particular case of “cs” is the “meander line” structure indicated in Figure 6.6.1. This structure
is employed in phase shifters, as we will see in Chapters 7 and 8 when we will study the
other devices. The meander line can be thought of as being composed of a repetition of a
cell, still named “meander line” or “C-section,” indicated in Figure 6.6.2. In practice, the “C-section”
is built connecting the two nearest ports of two “cs” with a short circuit. This cell is characterize

a. A width “a” transverse to the longitudinal axis “z,” i.e., the mean value of the coupling leng
b. A spatial repetition period “P” along “z”
c. A phase shift ∆ϕ along “z,” per unit cell “P.” This is a consequence of point a above.

We have already studied this network in Chapter 5, for the case of “cµ.” Of course, with a little
modification it is possible to use the theory we used in that chapter. However, here we will
this network using a theory directly applicable to the “cs” case, created by researchers J. T. B
and G. L. Matthaei.16

A typical construction of a meander line in stripline technology employs “SCS,” as indic
in Figure 6.6.3. This structure can be thought of as a particular case of an array of coupled t.l.,
which, for the moment, we will assume to be of infinite extent. Hence, the analytical mod
indicated in Figure 6.6.4. This is an infinite array of coupled lines, each one of characteristic
impedance “ζ” and fed by a current generator* with modulus “I.” The phase shift along 
dimension “a,” in the coupled case, will be indicated with “∆ϕ .” For this reason, each “cg” is phas
shifted by “∆ϕ” passing from one extreme “d” to “u.” 

Figure 6.6.1

Figure 6.6.2

*  In the following, the current generators will be simply indicated with “cg.”

L

a
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x

z

L

L/2
L/2
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Center

P
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Since a “cg” is an open circuit for the line, these are open terminated. From the general 
of t.l.,* the voltage at the extreme “d” of a generic t.l. of position “p” in the array is that see
6.6.1, due to the presence there of only the generator, 

(6.6.1)

Figure 6.6.3

Figure 6.6.4

*  See Chapter 1 for the foundations of the general theory of t.l.
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“β”  is the phase constant of a signal along a line of Figure 6.6.4, considered as uncoupled, and βa
⊥– θ. So, in the previous equation, the subscripts “p,” “ 0,” and “d,” respectively, denote a ge
line “p,” the fact that only a generator is present in the array, and that it is connected just 
line “p” at the extreme “d.”

Now, let us define the coupling voltage coefficient “cp,m” as the voltage at the line “p” when
only a generator exists and it is connected to line “m,” i.e.:

(6.6.2)

Note that for the complete geometric symmetry of the network, the coupling coefficient
so that:

Due to the linearity of the network, the total voltage at the extreme “d” of the line “p” is 
to the following induced voltages:

1. “Vp,m; d+” of the generators at the extremes “d” of the lines at the right of the line “p”:

(6.6.3)

2. “Vp,m; d–” of the generators at the extremes “d” of the lines at the left of the line “p”:

(6.6.4)

3. “Vp,0;du” of the generator at the extreme “u” of the line “p.” From the forward transmission matrix
of a t.l. :*

(6.6.5)

4. “Vp,m;du+” of the generators at the extremes “u” of the lines at the right of the line “p”

(6.6.6)

5. induced voltage “Vp,m;du–” by the generators at the extremes “u” of the lines at the left of the line “p”

(6.6.7)

*  See Chapter 1 for the transmission matrix of a t.l.
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These relationships have to be evaluated with the proper phases, since, due to the pha
along the length “A,” each “cg” is offset by “∆ϕ” in phase. So, the total voltage “Vp,d” at the extreme
“d” of a generic line “p” is given by:

(6.6.8)

Now the meander line can be obtained from Figure 6.6.4 practically as indicated in Figure 6.6.5,
i.e., alternatively connecting two extremes in short circuit. For example, it means that the pot
“V p,d” and “Vp–1,d” must be equal. Using this condition and the previous equation it is possib
have an important relationship between “∆ϕ” and “θ,” i.e.:

(6.6.9)

where:

(6.6.10)

(6.6.11)

Figure 6.6.5
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From equation 6.6.9 we can obtain the phase shift “ϕ” for a “C-section,” as a function of only
a coupling value “c”  between two coupled lines whose graph is depicted in Figure 6.6.6. Here we
have represented only two values for the coupling. This is a well-known graph for the phase 
designer.*

The input impedance evaluation can be done with the network indicated in Figure 6.6.7. Here,
the infinite array of coupled lines is limited at one side, which we will consider as the inpu
indicate with subscript “1; d.” Of course, a new network does not satisfy the original requirem
of an infinite number of coupled lines. However, it has been verified in practice that the cou
coefficient after the third or fourth line is so small as to be neglected in most practical ca
phase shifters.** So, if the meander line is longer than nearly ten coupled lines, it can be cons
as an infinity of coupled lines at a distance from the input or output wider than the three n
lines. In Figure 6.6.7, in this case to simplify the notation, we have named the bottom and upper
“cg” as “ I1; d,” “I 2; d,” … and “I1; u,” “I 2; u ,” … respectively. Note that due to the connections amo
lines, just to have a phase shifter, we can write:

Figure 6.6.6

*  Stripline phase shifter design is studied in Chapter 8.
**  The meander line is mainly used in phase shifters, as we will show in Chapter 8.
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(6.6.12)

(6.6.13)

Then, the input impedance “Zi” is found by the definition equation Zi = V1; d/I 1; d, with the
application of the previous two conditions. Of course, voltages and current can be found in a m
similar to that used to obtain Equation 6.6.8. Considering only five coupled lines significan
omitting the subscript “d” for simplicity, the input impedance is:

(6.6.14)

This equation is general, and is applicable to any “TEM” t.l. in a meander line structure
final expression is, however, dependent on the technology employed, since the coupling coef
are also.

Figure 6.6.7
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6.7 PRACTICAL CONSIDERATIONS

As with any other planar t.l., “cs” are also affected by the undercut,* which needs t
compensated for when high coupling values are required. As a result, the hot conductors 
general, of trapezoidal shape. 

“SCS” is a three layer t.l. structure, obtained by overlaying two separate “PCBs;” one “P
has only the ground layer, while the other “PCB” has one ground layer and one layer of d
tracks. From this technological point of view it is equal to the single stripline.

“BCS” or “OBCS” is a four layer structure. It is usually built with a sandwich of three “PCB
The two external “PCBs” have only the ground planes, while the internal “PCB” has the req
tracks. This situation is indicated in Figure 6.7.1. The dishomogeneity introduced by the air gap
can often be neglected, since typical values of air gap when copper** conductors are em
are inside the range 20 to 40µm, and 3 to 8µm when gold conductors are used. In addition, f
µwave devices, the air gap tends to decrease departing from the hot conductor, since the t
employed dielectrics are of a soft type.

“Cs” are more insensitive than “cµ” to lateral ground planes of a metallic enclosure since 
e.m. field is strongly contained near the center conductor and the top–bottom ground plane
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*  See Chapter 1 for undercut phenomenon.
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Air gap

h

Air gap

hi

h

b

©2000 CRC Press LLC



rallel
7. J. D. Horgan, Coupled strip transmission lines with rectangular inner conductors, IRE Trans. on MTT,
92, April 1957.

8. S. B. Cohn, Shielded coupled strip transmission line, IRE Trans. on MTT, 29, Oct. 1955.
9. S. B. Cohn, Shielded coupled strip transmission line, IRE Trans. on MTT, 29, Oct. 1955.

10. S. B. Cohn, Shielded coupled strip transmission line, IRE Trans. on MTT, 29, Oct. 1955.
11. S. B. Cohn, Characteristic impedances of broadside coupled strip transmission line, IRE Trans. on

MTT, 633, Nov. 1960.
12. S. B. Cohn, Thickness corrections for capacitive obstacles and strip conductors, IRE Trans. on MTT,

638, Nov. 1960.
13. J. P. Shelton, Jr., Impedances of offset parallel coupled strip transmission line, IEEE Trans. on MTT,

7, Jan. 1966.
14. H. A. Wheeler, Formulas for the skin effect, Proc. of the IRE, 30, 412, 1942.
15. R. Sturdivant, Transmission line conductor loss and the incremental inductance rule, Microwave J.,

156, Sept. 1995.
16. J. T. Bolljahn and G. L. Matthaei, A study of the phase and filter properties of arrays of pa

conductors between ground planes, Proc. of the IRE, 299, March 1962.
©2000 CRC Press LLC



DiPaolo, Franco, Ph.D. “Microstrip Devices” 
Networks and Devices Using Planar Transmission Lines
Boca Raton: CRC Press LLC,2000



     

parts,
rs may
mped
eturns”
ork is
 when

osses

nd the
t below
or one
nts are
umped
umped

e GHz,
le. Let

    

“Z

         

as it is

     

ith

     

pared
n with
ted to
CHAPTER 7

Microstrip Devices

7.1 SIMPLE TWO PORT NETWORKS

Many lumped networks used in electronic fields have their microstrip technology counter
usually called distributed elements. For instance, inductors, capacitors, filters, and tranforme
be built with microstrips. It is very important to note that the greatest difference between a lu
network and its distributed counterpart is that a great number of the latter have the so-called “r
while the former do not. The “returns” are frequency bands where the behavior of the netw
quite similar to that obtained in the desired bandwidth. Consequently, caution must be used
employing a distributed network. In the course of the book we will show networks that p
returns.

The choice to build or not build these distributed devices depends on frequency value a
available space. Using the frequency as the technology selection criteria, we may say tha
two or three hundred MHz, the lumped devices are preferred. From near 300 MHz to one 
and a half GHz, both technologies may be used, but most commonly the inductive eleme
substituted with microstrip counterparts. From near one and a half GHz and above, all the l
elements indicated are realized with distributed elements, with the capacitors as the only l
elements that may still be used up to 4 or 5 GHz.

If we use the board space as the technology selection criteria, we may say that below on
the lumped devices are preferred. We may easily recognize this assumption with an examp
us suppose we want to realize an impedance transformer from 50 Ω to 100 Ω. As we know from
the transmission line theory studied in Chapter 1, with the coordinate origin in the load �”
position, if we move toward the generator along a distance (2n + 1)λ /4, the following relation holds:

(7.1.1)

where “λ” is the signal wavelength in the microstrip, “n” is an integer number, and “ζ t” is the
impedance of the microstrip connected between the load and the generator. For n = 1, 
usually done, we have ζ t = 70.71 Ω . Using a signal at f = 100 MHz and a “FR4” substrate w
ε r = 4.7, as usually employed at these frequencies, the “λ /4” transformer is 42.19 cm long, a
dimension that cannot be considered for today’s small electronic circuits.

A general characteristic of microstrip elements is the higher thermal stability when com
to the lumped devices. For instance, a typical lumped inductor has an inductance variatio
temperature near 100 ppm/°C at least, while for a microstrip inductor this value is restric
near 5 to 10 ppm/°C, usually depending on the dielectric employed.

Z Z n tl 2 1 4 2+( )[ ] =λ ζ
©2000 CRC Press LLC
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Let us start by showing which kind of networks are usually built with microstrip technol
Figures 7.1.1 and 7.1.2 represent some lumped networks, or the ideal network, and their microstrip
counterparts. To simplify the drawings, we have represented the microstrips only with th
conductor* and from a top view, without indicating the substrate. It is very important to rem
the reader that we studied more exact correspondences between microstrip discontinuities 
equivalent lumped networks in Chapter 4. So, what we are going to explain in this section i
a simple representation of typical networks that can be built with microstrips, while the com
equivalent networks may be found in Chapter 4.

We can now begin to speak about the single networks that appear in the figures.

a. Stubs — Figure 7.1.1a comes directly from the transmission line theory. Once the matching
stub impedance is defined, usually using the Smith chart,** it may be realized working o
microstrip hot conductor “w” and/or substrate height “h,” *** since the dielectric constant “ε r” of
the substrate cannot be easily changed, as desired, inside the same substrate. In the m
region, “h” is also very difficult to change as desired, since the typical values are 128, 254
and 635 micrometers, and consequently the change in “h” is always discontinuous, a situati
should be avoided in the microwave region. The height “h” can easily be changed in RF b
as indicated in Figure 7.1.3 where the number of layers may be a multiple of two. In Figure 7.1.3

Figure 7.1.1

* See Chapter 2 for definitions on microstrips.
** See Chapter I for definition and use of the Smith chart.
*** We assume the reader knows the definitions of microstrips, as indicated in Chapter 2.

f)

e)

d)

c)

b)

a)
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Inductor
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Open stub

Short to ground
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we have assumed that layer “2” is the ground for the whole board. If the impedance value re
by the stub is too high to be realized with ground to layer “2,” then the ground can be mov
layer “3” using metallized holes that connect layer “2” to a ground strip in layer “3,” which wo
as a cold conductor for the microstrip stub. The width “w0” of the cold conductor should n
lower than 3w* to avoid error in the realization of the impedance values.

What was said about the open stub is equally applicable to the short stub indica
Figure 7.1.1b. The connection to ground is realized with a metallized hole, both in RF and in
microwave printed circuit board and, in this last case, the connection to ground is simply called

An interesting result can be extracted from the previous discussion if we remember
Chapter 1 that the impedance “Zo” of an open stub with length “�” is:

(7.1.2)

while the impedance “Zs” of a short circuited stub of the same length is:

(7.1.3)

where:

1. “β” is the phase constant along the microstrip, i.e.:

(7.1.4)

where “f” is the signal frequency, “c” the speed of light, and “ε re” the effective** dielectric constant
of the microstrip.

2. “ζ t” is the impedance of the microstrip realizing the stub.
Note that since “Zo” and “Zs” are only imaginary, they are reactances. We know that 

reactance “X�” of an inductor of inductance “L” is X� = ωL, and the reactance “Xc” of a capacitor
of capacitance “C” is Xc = –1/ωC. Comparing these formulas with 7.1.2 and 7.1.3 we may concl
that if β� < π/2 then the open stub is equivalent to a capacitor of capacitance:

 

while the short stub is equivalent to an inductor of inductance:

Note that “Co” and “Ls” are functions of frequency, while true ideal capacitors and induct
are not. If β� << π/2, the variability with frequency can quite often be tolerated and, in m
matching networks, even desired. Note that to have high values of “Ls” we need high values of
“ θ,” while the contrary holds when we need high values of “Co.” High values of “θ” mean small
microstrip width “w,” and/or high values of “h,” and/or small values of “ε r .” If we assume the
small available value of “ε r ,” as we said in the previous item a, “h” is usually limited in its ran
of variability. The same happens for “w,” which is limited by the technology used. In RF bo

* See Chapter 2 for proper dimensioning of microstrip lines.
** See Chapter 2 for microstrip parameter definitions.

Z j t0 = − ( )ζ βcotg l

Z js t= − ( )ζ βtg l

β π ε= ( )2 0 5f
c r e

,

C go t= ( )[ ] −( )ζ ω βcot l 1

L tgs t= ( )[ ]ζ β ωl
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the minimum reliable width “w” is near 100 µm, while in microwave circuits the minimum va
of “w” is near 10 µm.

b. Series INDUCTORS — This situation is indicated in Figure 7.1.1c. The existence of a series
inductor may be understood if we approximate the “qTEM” fundamental mode of the micros
with a pure “TEM.” In this case the impedance “ζ” of the microstrip is:

(7.1.5)

If we roughly evaluate the capacitance “C” of the microstrip using the known “parallel p
formula,” i.e.:

(7.1.6)

once we have defined the impedance realized for the microstrip, we can easily extract fro
previous formula the equivalent inductance, that is:

(7.1.7)

Note that high values of “L” correspond to realized high values of “ζ ,” as needed in the previous
item a to have a high value of shunt inductance. So, the same limitations on “h” and “w” h
this case.

c. Series CAPACITORS — This case is represented in Figure 7.1.1d. Since this situation is
exactly what we have studied in Chapter 4, Section 4.2, we send the reader to that chapter
study of this layout example.

d. TRANSFORMERS — This situation is represented in Figure 7.1.1e. Note that a more correct
name for this network should be “autotransformer,” since no DC isolation is performed bet
input and output of the microstrip network. Nevertheless, this network is called “transforme
“ λ /4 transformer.” The general theory for this device is treated in Chapter 1, so we send the
there to see how these networks may be synthesized.

e. RESONATORS — As represented in Figure 7.1.1f, any piece of microstrip of length “ �” can
be evaluated as a resonator, that is, like a system that is able to have oscillation modes in
Microstrip resonators are usually built with straight lines or circular rings. 

For the straight resonators, the resonance is possible when the following condition hold

(7.1.8)

with s = 1,2,3,... and “β” defined as in 7.1.4. Note that the previous condition is true both for o
end resonators and short circuited ends. Once we have defined the frequency of the signal t
the microstrip straight resonator has to resonate, the length of the microstrip will be:

(7.1.9)

* See Appendix A2 for propagation mode definition and Chapter 2 for application to microstrips.

ζ = ( )( )L C
1 2/

C
w
hr r e= ε ε l

L C= ζ2

β πl = s

l = ( )s
c

f r e2 0 5ε .
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An interesting observation can be made if we assume a given length “�” of the microstrip and
try to obtain the frequency where it resonates. This can easily be done if we extract “f” fro
previous equation, obtaining:

(7.1.10)

From this relation we may observe that a given length “�” of microstrip has infinite frequencies
of resonance, since “s” is an integer number greater than or equal to one. Of course, as st
Chapter 3, if the operating frequency increases, then the radiation effects in the microstr
increase, so that the quality factor* of the resonator decreases. For this reason, above near 
microstrip resonators are seldom used.

For the ring resonator, the condition for resonance is:

(7.1.11)

where “rm” is the medium radius of the ring. Once the frequency of the signal to which the micro
ring resonator has to resonate is defined, the medium radius of the ring will be:

(7.1.12)

Of course, the ring resonator also possesses infinite frequencies of resonance. 
Microstrip straight resonators are used in filters, as we will see in item f below, or to me

the dielectric constant of the substrate. In this last case, the ring resonator that is not affe
the end discontinuities is preferred.** To evaluate the effective dielectric constant using a
resonator, it is enough to measure an s-nth resonance frequency “fr,s” and extract “ε re,s” by the
previous formula, obtaining:

(7.1.13)

The measure of the resonance frequency is usually made using a network analyzer, cou
the ring resonator with two 50Ω microstrip lines, which couple to the resonator through gaps.

Of particular importance is the “Q” of the resonators. This value is dependent on its geo
on the losses of the dielectric used as substrate, and on the losses in the conductor. If we 
with “Qc” the quality factor of the conductor, with “Qd” the quality factor of the dielectric, and
with “Qr” the quality factor of the resonator, the total quality factor “Q0” fulfills the following
relation:

(7.1.14)

The expression of “Qr” is dependent on the geometry of the resonator, and this argumen
been studied by many researchers.1,2,3,4 For the straight resonator with open ends and long λ /2, E.
J. Denlinger5 gives the following formula for “Qr :”

* See Appendix A4 for definition of the “quality factor” of a resonator.
** See Chapter 4 for microstrip discontinuities.
*** See Chapter 4 for microstrip gap.
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(7.1.15)

where:

(7.1.16)

and “λ 0” is the free space wavelength.
For the case of a straight resonator with short circuited ends and long λ /2, we have:

(7.1.17)

where:

(7.1.18)

For the ring resonator, L. J. Van der Pauw6 gives the following expression for “Qr”:

(7.1.19)

The values of “Qc” and “Qd” do not, of course, depend on the geometry of the resonators,
they are given by:

(7.1.20)

(7.1.21)

where “αc” and “αd” are the attenuation constants* per u.l. of the conductor and dielec
respectively.

The theoretical value of the resonators is usually higher than what can actually be ob
due to substrate dishomogeneity, conductor roughness, and mechanical tolerances. It h
proven that the practical values of the “Q0” are 50 to 80% of the theoretical ones. To give som
values, we may say that with a low loss substrate, like alumina or silica quartz, values of0”
near 200 can be reached for frequencies of 5 or 6 GHz.

* See Chapter 1 for definitions on the attenuation constants.

Q Q
h

r r
−⊥ =

( )0

0

2
240 0

ζ
πρ λ

ε

ρ
ε

ε

ε

ε
ε
εε0

2

1 5

0 5

0 5

1 1

2

1

1
=

+
−

−( ) +
−













r e

r e

r e

r e

r e

r e
( . )

( . )

( . )ln

Q Q
h

r rs

s

−⊥ =
( )

ζ
πρ λε240 0

2

ρ
ε ε

ε
ε

ε
εεs

r e r e

r e

r e

r e

r e

= − − +










− +
−













3
1

3
1 1

2

1

10 5

0 5

0 5( . )

( . )

( . )ln

Q
h

r
r e

r r

=
( ) − ( ) + ( )[ ]

ζε

π λ ε ε120 1 4 3 8 153
0

2 2

Qc
r e

c

=
πε
α λ

( . )0 5

0

Qd
r e

d

=
πε
α λ

( . )0 5

0

©2000 CRC Press LLC



   

adest
eory,
 good
bjects
ties,
nough
d in
r the
veral

  

e
etwork
These
ostrip

    

to 18
s, the

han the

  

d”
alanced

  

or

  

thout
nductor
ncing

  

r
pering
. The

tching

      

n

     

e first
sion
n, to

 

f. FILTERS — It is absolutely necessary to inform the reader that filter theory is one of the bro
theories of network synthesis. To give all the fundamental information for this very useful th
it would be necessary to write at least another book the size of this one. In addition, a
knowledge of mathematical analysis is required. Filter theory and technology are not the su
of this book. Since in this book we will study networks that also have filtering capabili
Appendix A4 introduces the reader to the fundamental concepts of filter theory, which are e
for our networks, but not for pure filters. So, in this item we will show typical filters realize
microstrip technology just to give the reader the capability to recognize which type of filte
microstrip topology will realize. Good general network filter synthesis may be found in se
references,7,8,9 together with specialized filter technology.

Microstrip filters of the type shown in Figure 7.1.2 are realized joining together, in an opportune
way, the single networks represented in Figure 7.1.1. It is a characteristic of all transmission lin
filters to have “returns,” that is, bands of frequencies, higher than the desired one, where the n
has a behavior similar to the one for which it is designed in the desired frequency band. 
effects are not present in a lumped filter network. For instance, the parallel coupled micr
bandpass filter indicated in Figure 7.1.2c and designed for a center frequency “ fc,” will give similar
bandpass shape at center frequencies “fcs” given by:

(7.1.22)

For instance, if the desired center frequency is at 6 GHz, the network will give returns 
GHz, 30 GHz, ... according to Equation 7.1.22. Of course, when the frequency increase
intrinsic losses, dispersion, and radiation also increase, and the return shape is worse t
designed one at the original frequency. 

g. BALUN — The word “balun” is created from the two words “BALanced” and “UNbalance
and, as the words suggest, it is used to move the e.m. energy from an unbalanced line to a b
one.* Balanced microstrips are usually used in mixers10,11 and to feed microstrip antennas, and f
this reason baluns are important devices.12,13 A simple microstrip balun is indicated in Figure 7.1.4a.
To simplify, in this figure we have only represented the two conductors of the lines, wi
indicating the substrate between them. As we see, the connection to ground of the cold co
of the microstrip is abruptly removed at a desired axial coordinate, where it begins the bala
procedure. This is usually done tapering for a length “�,” equal to an odd number of quarte
wavelengths, the bottom conductor of the microstrip, or both the conductors. Usually, the ta
shape is a microwave art, and it has been originally realized with a “cut and try” procedure
shape of the tapering is very important for operating bandwidth and return loss values.

The synthesis procedure can start, at first approximation, with looking at the balun as a ma
line between the load impedance value “Z�” and the source generator impedance “Zg,” as indicated
in Figure 7.1.4b. This procedure is a typical problem of the “λ /4 transformer.” In this case, as see
in Chapter 1, the impedance “ζ t” of the λ/4 transformer is:

(7.1.23)

The practical situation looking at the balanced line side of Figure 7.1.4a is indicated in
Figure 7.1.5. This kind of guiding structure is called a “balanced broadside coupled line,”  or
“broadside coupled line,” or “suspended substrate broadside coupled line.” We will refer to th
type of structure and will abbreviate with “BBCL.” This structure is clearly not a planar transmis
line, essentially due to the mechanical construction required to hold the “BBCL.” In additio

* See Chapter 1 for definitions of balanced and unbalanced lines.

f s fcs c= +( )2 1

ζ t gZ Z= ( )l

0 5.
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have good balancing characteristics from the balun of Figure 7.1.4a, it is extremely important that
the even impedance “ζ e” of the “BBCL” is realized at as high a value as possible, at least 10 ti
the odd impedance “ζ o.” 14 This means that the walls of the metal box shielding the balun, wh
also create the ground connection for the microstrip line feeding the balun, must be far awa
the “BBCL,” at least 10 times “w.” If this condition is satisfied, we may use the easier form
given by Wheeler,15 as indicated in Chapter 2 where we studied microstrip theory. If the dimens
“a” and “b” may not be evaluated as infinite when compared to “w” and “h,” some research16

have studied the transmission line characteristics of the boxed structure indicated in Figure 7.1.5,
giving formulas for the even and odd impedances, which are also functions of the thickness

Figure 7.1.4

Figure 7.1.5

b)

a)

L

g

Z

Z

GND

GND

Coupled strips

(Unbalanced structure)
Microstrip

λ/4

λ/4

(Balanced structure)

w

b

h

a

w

ε r
©2000 CRC Press LLC



    

.

  

ciate
create
 for the
nd we

cks
mped

 under-
ry and
trans-
 main

upler,
.e., the

  

s of

strip
t must

pport
3, that

ample
these

 with
cause
 signal
 one

forward
rally

 they
t. In the

  

rking
the balanced conductors. It has been proven that when t/b ≤ 0.02, the effect of “t” may be neglected
The typical operating bandwidth of microstrip baluns are near one octave and a half.

7.2 DIRECTIONAL COUPLERS

In the previous section we studied typical microstrip networks for which it is simple to asso
the equivalent lumped network. In other words, looking at the dimensions of the lines that 
the network, we can easily understand where a capacitor or an inductor may be associated
lumped equivalent network. However, for the transformer this association is not so simple, a
need to have knowledge of transmission line theory as discussed in Chapter 1.

In this section we will study other very important microstrip networks that are building blo
of every RF and microwave system, for which it is not so simple to associate the equivalent lu
network. As was the case in the transformer study of the previous section, to have a deep
standing of directional couplers we need to have a good knowledge of transmission line theo
to know how networks may be analytically represented. As said, Chapter 1 is available for 
mission line fundamentals, but we also suggest the reader see Appendix A3 where the
mathematical representations of networks are indicated. 

As we have outlined in Appendix A3, we want to remind the reader that any directional co
regardless its realization, has two important parameters that characterize the coupler, i
isolation “I” and the directivity “D,” which are combined with the coupling “cv” by the well-known
formula:

(7.2.1)

where all the quantities are in dB. In the following points of study we will give typical value
isolation for the various couplers. 

In all the figures we will show later, we have only drawn the hot conductor of the micro
network, for simplicity purposes. Of course, the substrate and the ground conductor below i
be assumed to be effectively present in the practical device.

In addition, the microstrip network will be considered in this paragraph as a line that can su
a pure “TEM” mode, unless otherwise noted. We know, after the reading of Chapters 2 and 
this assumption is not true, but it will help us to obtain some design formulas quite simply.

Directional couplers are used where power division or addition is required, or where a s
of the signal must be analyzed. In the next points we will study all the characteristics of 
important networks.

An important class of directional couplers is one in which these devices are realized
coupled lines. These couplers are said to be “backward couplers” or “contraflow couplers” be
the coupled port is the one that is geometrically nearest to the input one, and the coupled
exits from this port. Opposite to this class is one in which the coupled port is not the
geometrically nearest to the input one, and the devices belonging to this class are named to “
couplers” or “coflow couplers.” As a general rule, all coupled line directional couplers are natu
“backward couplers.” However, “forward couplers” are also possible with coupled µstrips, but
are seldom used due to the longer extension when compared to the contraflow counterpar
following we will study all such devices.

7.2.1 Branch Line

In Figure 7.2.1 parts a and b are two representations of the branch line coupler. The network
in part b is sometimes called a “ring hybrid,” but of course it is a branch line and the wo

D I Cv= −
©2000 CRC Press LLC
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principle is the same. Referring for simplicity to Figure 7.2.1a, two parallel lines are connected
together in two sections, which are a quarter wavelength apart, through two pieces of line a 
wavelength long. The reference wavelength is that guided by the microstrip, at the center freq
of the desired bandwidth.

The working principle of the branch line coupler may be easily explained using the superpo
effects theory, due to the linearity of the network. So, with reference to Figure 7.2.2a, we first feed
the network with two generators of equal amplitude and in phase. We will call this situation 
excitation.” With this feeding, we note that at the longitudinal symmetry line, we have a vo
maximum, that corresponds to having an infinite impedance at these points. This means th
even excitation, the branch line is equivalent to a network composed of half of the original b
line, with the transversal lines λ /8 long and open terminated. Then, with reference to Figure 7.2.2b,
we feed the network with two generators of equal amplitude but 180° out of phase. We wi
this situation “odd excitation.” With this feeding, we note that at the longitudinal symmetry 
we have a voltage zero that corresponds to having a zero impedance at these points. Thi
that with an odd excitation, the branch line is equivalent to a network composed with half 
original branch line, with the transversal lines λ/8 long and short circuit terminated. Due to th
symmetry and the series/shunt configuration of the branch line coupler, it is typical to use 
matrices,” * also called “ABCD matrices,” to study how it works. We know that for a shorte
stub of electrical length “θ” and of line impedance “ζ,” the ABCD matrix is:

Figure 7.2.1

* See Appendix A3 for chain matrix, or ABCD matrix, definition.
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OUT1 IN
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tities
(7.2.2)

while for an opened stub of the same characteristics:

(7.2.3)

and for a piece of transmission line of the same characteristics:

(7.2.4)

When the elements of the ABCD matrix are known, we may easily obtain the quan
necessary to have the voltage phasors at each port. In particular, the voltage phasors “V2” and “V3”
at ports “2” and “3” can be obtained from the transmission coefficient “t21” of the matrix “T,” *
while “V4” may be obtained from the reflection coefficient “s11” at port “4.” As seen in Appendix
A3, these quantities are related to the ABCD matrix by the following relations:

(7.2.5)

(7.2.6)

Figure 7.2.2

* See Appendix A3 for transmission matrix definition.
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The output voltage phasors, normalized to the input ones at the ports of the complete ne
may be obtained as the superposition of the previous quantities relative to the even an
excitation. In particular, we have:

(7.2.7)

(7.2.8)

(7.2.9)

(7.2.10)

So, to evaluate the phasors “Voi” with i = 1, 2, 3, 4 we have to obtain the ABCDe and ABCDo

matrices for the even and odd excitations. To do this, we start the evaluation of this matrix
the center on the “ T”  connection between the series and shunt arm of Figure 7.2.1a, proceed along
the series line, and terminate at the next center on the “T” connection of the same side. Fr
start to the end we encounter a shunt line, a series line, and still another shunt arm. We now
we are at center frequency because in this manner, the frequency dependence may not be co
and, in addition, interesting relationships between arm impedances can easily be found. Pro
with the even and odd excitation, the shunt arm will be λ /8 long, as previously mentioned, while
the series line will be λ /4 long. Now, keeping this fact in mind and remembering from Appen
A3 that the ABCD matrix of a network is given by the products of the ABCD matrix of 
components; indicating with ζn�  ⊥– 1/Yn� and ζnt  ⊥– 1/Ynt, respectively, the normalized* impedanc
of the series or longitudinal, and shunt or transversal arm of the branch line coupler, and
7.2.2 through 7.2.4 evaluated at center frequency we have:

(7.2.11)

(7.2.12)

By definition, an ideal directional coupler must be matched and perfectly directive. This m
that feeding at any port, no signal must be reflected at this port, and no signal must appear a
at the adjacent port. Supposing to feed at port “1”  of Figure 7.2.1b, we must have VO1 = !0 and
VO4 = !0. This means, from 7.2.7 and 7.2.10, that:

(7.2.13)

Evaluating these expressions using 7.2.6 we have the condition that for perfect matchin
directivity we must have:

(7.2.14)

Evaluating “Vo2” and “Vo3” using 7.2.8 and 7.2.9 and the previous condition, we have:

* See Chapter 1 for impedance and admittance normalizations.

V s so e o1 11 110 5 0 5= +. ., ,

V s so e o2 21 210 5 0 5= +. ., ,

V s so e o3 21 210 5 0 5= −. ., ,

V s so e o4 11 110 5 0 5= −. ., ,
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(7.2.15)

(7.2.16)

From the previous two equations we may note that the signal phasors “Vo2” and “Vo3” at the
output of the ports “2” and “3” are in quadrature, due the presence of “j” in “Vo2.” The case when
Yn� =  and Ynt = 1 is very interesting. In this case, the expression 7.2.14 is satisfied and
the two previous equations we have |Vo2| = 1/  ≡ |Vo3|. This means that with this condition th
branch line coupler is a 3 dB power divider and, of course, is perfectly matched and directi
give some values of impedance, using the classical 50Ω line as input and output connection line
it results that the 3 dB coupler will have ζn� = (50/ )Ω and ζnt = 50Ω. The capability of this
network to reach a 3 dB splitting with such an easily realized value of microstrip impedance m
it very useful. We will show later that other networks can be built to reach a 3 dB of coupling
the impedance values of the microstrips are very high for this technology, i.e., near 130Ω or more.

We now want to see the behavior of the branch line coupler vs. frequency. To do this, we
the previous procedure used to create 7.2.11 and 7.2.12, but we will use 7.2.2 through 7.2.4 
any imposition on the value of “θ.” The result is:

(7.2.17)

and

(7.2.18)

In the two previous equations we have used the following abbreviations:

The graphs of the normalized output signals “Vo2,” “V o3,” and “Vo4,” at ports “2,” “3,” and “4”
relative to Figure 7.2.1b are given in Figure 7.2.3, where the input port is port “1.”  In this figure,
the values above and below “0” are linear and dB, respectively, and in the case of a 3 dB c
We have used this notation because the signal at the output of the isolated port is theor
exactly zero at center frequency, and consequently, the value in dB will be –∞ . In the abscissae
we have indicated the normalized frequency “fn,” given by the ratio of the general variable frequen
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and that frequency where each arm of the “square” of the branch line is λ /4 long. In Figure 7.2.4
we have indicated the phases of the signals “Vo2,” “V o3,” and “Vo4.” From this figure we may
recognize how the phase difference between the output signals “Vo2” and “Vo3” differ exactly of
90° at center band.

The counterpart of the high simplicity to reach the 3 dB coupling is the relatively na
operating bandwidth. Limiting the useful bandwidth to that where the directivity is higher tha
dB, the bandwidth of practical microstrip branch line couplers is near 15%. To increas
bandwidth sometimes two or three branch lines are connected in tandem,17 a situation that permits
reaching an operating bandwidth of 20%. To study such tandem devices we may apply the m
used for the single branch line coupler. As said before, other devices may be used to incre
operating bandwidth. These are the Wilkinson and Lange networks, which will be discussed

7.2.2. “Rat Race” or “Magic T”

The geometry of the rat race coupler is indicated in Figure 7.2.5. This network is also called
the “magic T,” analogous to the “magic T” built-in waveguide technology and shown in Appe
A3. It is created using a microstrip ring with 3λ /2 of circumference. On half of this ring, four port
are connected, each one λ /4 in distance from the previous one. The “rat race” device has 
important characteristics: 

1. Exactly in phase power distribution between one input port and two output ports. The fou
port is isolated.

2. Exactly 180° out of phase power distribution between one input port and two output por
The fourth port is isolated.

Figure 7.2.3
©2000 CRC Press LLC



r “3”
and the
hase
The two previous characteristics depend on the port chosen as input. 
The situation indicated in characteristic 1 is reached when the internal ports, i.e., “2” o

are used as inputs. In this case, the two ports nearest to the input one are the outputs, 
remaining port is isolated. For instance, if we enter in port “2,” ports “1” and “3” are the in p
outputs and “4” is isolated. 

Figure 7.2.4

Figure 7.2.5
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The situation indicated in characteristic 2 is reached when the two ports, which are diamet
opposed, i.e., “1” or “4,” are used as input. In this case, choosing one input port, the two ad
ports are the 180° phase difference output ones, while the remaining port is isolated. For in
if we enter in port “4,” ports “1” and “3” are the 180° phase difference outputs ones, while
“2” is isolated. 

To study analytically how the rat race works, we can apply the superposition effects prin
as we did in the section 7.2.1 for the branch line. In this case, the situation relative to the ev
odd excitation is indicated in Figure 7.2.6, assuming the original excitation is applied to port “2.”
In parts a and c, we have indicated with a dashed line, the symmetry axes where the netwo
be separated in two equal parts, each one indicated in parts b and d of the figure, depen
the type of excitation.

To obtain the matrices (ABCDe) and (ABCDo) for these networks, we have to customiz
Equations 7.2.2 through 7.2.4 to the length indicated in Figure 7.2.6 parts b and d. Note that the
only difference between the chain matrices of a stub λ /8 long and of another stub 3λ /8 long is the
sign in the “C” element, where the stub 3λ /8 long has the negative sign. With this note, we ha

(7.2.19)

and

Figure 7.2.6
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(7.2.20)

where the subscript “n” added to “Ya,” “Y b,” and “ζ a,” which appears in Equations 7.2.19 an
7.2.20 and indicates the normalization of these quantities to the reference admittance or imp
To proceed with the evaluation of the electrical properties of the “magic T,” we now suppo
begin with, that we need a perfectly matched device. This means that feeding at any port, no
must be reflected at this port. Assuming a feed at port “2,”  as indicated in Figure 7.2.6, we must have:

Evaluating this expression using 7.2.6 we have the condition that for perfect matchin
directivity we must have:

(7.2.21)

Of course, similar relations to Equations 7.2.7 through 7.2.10 may be used for our 
obtaining:

(7.2.22)

(7.2.23)

(7.2.24)

(7.2.25)

Using Equations 7.2.24, 7.2.6, and 7.2.19 through 7.2.21, the normalized phasor for the
at port “3” is:

(7.2.26)

and similarly, using Equations 7.2.22, 7.2.5, and 7.2.19 through 7.2.21, the normalized ph
port “1” is:

(7.2.27)

From the two previous equations we recognize that when feeding at port “2,” the sign
ports “1” and “3” are in phase, since they are purely imaginary numbers, but in general they
different amplitude. The isolation of port “4” may be easily seen using 7.2.25, 7.2.5, and 7
through 7.2.21, obtaining Vo4 = 0. Now, remembering that the power at port “i” is proportional
|Voi |2, from 7.2.26 and 7.2.27 it follows that:

(7.2.28)

that is, the sum of the power exiting from port “1” and port “3” must be equal to the power
enters into port “2.” This is a consequence of the lossless hypothesis on the network unde
Always applying the concept of power, if we denormalize 7.2.26 and 7.2.27 we have:
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(7.2.29)

(7.2.30)

So, if we want to create a power divider we must have W3/W2 = !0.5 and W1/W2 = !0.5, and
consequently from the two previous equations we need to create the line admittances so th

To study the behavior of the rat race hybrid vs. frequency, we may follow the same proc
used for the branch line coupler. We assume that we insert the signal in port “2,” as we ha
done for our study. The results for the case of a 3 dB splitter are depicted in Figures 7.2.7 and
7.2.8. Comparing Figure 7.2.7 with Figure 7.2.3 we may see that the bandwidth where the splitti
is closer to 3 dB is now slightly higher than the corresponding case of the branch line coup
fact, if we limit the useful bandwidth to that where the directivity is higher than 15 dB, the bandw
of a practical microstrip rat race 3 dB divider is near 18%. In Figure 7.2.7 the values above and
below “0” are linear and dB, respectively, and in the abscissae we have indicated the norm
frequency “fn,” given by the ratio of the general variable frequency and that frequency where
line among the ports “1” through “4” of the rat race is λ /4 long.

The phase of the signals at the ports are indicated in Figure 7.2.8, where we may see how the
signals at the ports “1” and “3” are exactly equiphase at center frequency, and delayed 90
reference to the input port “2.”

It is important to say that all the previous formulas may be simply modified in the subs
to study the case when the signal is applied to port “3”; it is enough to replace subscripts “2
“3,” “1” with “2,” and “3” with “4.”

The practical limitations on the minimum width of the microstrips, typically 15µm due
radiation phenomena* and effects of fabrication tolerances,** limit the use of this network

Figure 7.2.7

* See Chapter 4 for theory of higher order effects of microstrip lines.
** See Chapter 2 for information on fabrication tolerances of microstrip lines.

W W Y Yb3 2 0

2
= ( )

W W Y Ya1 2 0
2= ( )

Υ Υ Υb a≡ =! 0 2
©2000 CRC Press LLC



er can
f the

ermit

) is
s.
nson
ission

 of a
r again

 of its

work
 fourth
ice is
d “3”

 at all

 also
. 
maximum power ratio of 6/1, i.e., near 8 dB. Using expressions 7.2.29 and 7.2.30 the read
easily recognize how higher values of the splitting ratio lead to impractically small values o
width of the microstrip hot conductor. Different configurations for the rat race coupler, which p
a better matching and isolation, have been investigated by some researchers.18,19 

7.2.3 “In-Line” or “Wilkinson”

This type of directional coupler (and with the “Lange” type, which we will discuss later
one of the most famous and most used of all the planar transmission line directional coupler20,21,22

The original study and experiments of this type of network are due to researcher E. J. Wilki23

who studied and created a divider by 8 network in coaxial technology. The planar transm
line counterpart is indicated in Figure 7.2.9a and, in this simple form, it is always a power divider
by two. As we can see, the input line of impedance “ζ 0” is divided into two lines, each of them
of impedance “ζ ,” with a shape that reminds one of a “ring.” These two lines are a quarter
wavelength long for the designed operating frequency and, after this length, they join togethe
through a resistor of value “R.” At this point, two lines of impedance “ζ 0” depart, which creates
the output of the network. Using the value of 50Ω as the reference impedance “Rs,” the impedance
value of the lines for the planar Wilkinson power divider are indicated in Figure 7.2.9b. We will
show next how these values of impedances and resistances are calculated.

The geometrical aspect of the Wilkinson power divider suggests some qualitative topics
electromagnetic properties to be treated. 

First of all we want to invite the reader to pay attention to the fact that the Wilkinson net
is a four port network, and not a three port device as it could appear at first sight. In fact, the
port of this device is balanced and is connected to the resistor “R.” In addition, this dev
theoretically perfectly matched at center frequency at all the three used ports “1,” “2,” an
indicated in Figure 7.2.9, as we will  show later. Then, since we know from Appendix A3 that it is
not possible to realize a three port device, which, among other thing, is perfectly matched
the three ports, the Wilkinson power divider must be a four port one. 

Second, due to the nature of codirectional flow of the energy, the Wilkinson network is
called an “in-line” power divider, with the signals at the outputs ports, which are equiphase

Figure 7.2.8
©2000 CRC Press LLC
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Third, since the input signal at port “1” is split in two equal paths, then at the terminals o
resistor “ R,”  indicated in Figure 7.2.9a, there is no voltage drop. As a consequence, this resistor
never dissipates energy.

Fourth, there is no dramatic reason that the splitting mechanism should not substantially
at other frequencies different from which it is designed. We will show later that the signals 
outputs are always very near –3 dB, with the input signal as reference, also at frequencies far
from the design frequency. The counterpart of this wideband splitting is that isolation betwe
output ports the matching deteriorate quickly as the frequency changes from the optimum
Nevertheless, the Wilkinson power divider has the widest operating band of all the networks s
before.

After these simple considerations, it is important to say that the particular shape of the λ /4”
lines, which resemble a circle, is due to the fact that optimum performances are obtained

Figure 7.2.9
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these two lines are electromagnetically decoupled, that is when the even “ζ e” and the odd “ζ o”
characteristic impedances of this structure are coincident. The reader is referred to Chapter 5
the coupled microstrips network topic is studied and “ζ e” and “ζ o” are defined. For the moment
it is enough to remember that the two “λ /4” lines must be as decoupled as possible. From t
consideration the ring shape follows.

Although this device can be studied with the superposition principle, that is with “even”
“odd” excitations as we did in sections 7.2.1 and 7.2.2, due to the nongeometrical four port top
of this device, we will study this network with the original theory of Wilkinson. We will on
specialize this theory to the simple microstrip network shown in Figure 7.2.9a. We will  use the
even and odd excitations soon when we will analyze the bandwidth performance of the Wilk
divider. 

Let us start to represent Figure 7.2.9a with the schematic shown in Figure 7.2.9c. The resistor
of value “R” in part a is divided in two resistors in series, each one of value “Rx,” in part c. We
now want to determine the condition which “ζ,” “ ζ o,” and “Rx” must satisfy so that the network
in Figure 7.2.9c is matched at all the ports, and ports “2”  and “3”  are isolated between them. If
we remember the forward transmission matrix “Tf” seen in Chapter 1, for the transmission lin
“1–2” in Figure 7.2.9c, with “Va” and “I2a′ ” as input quantities, we may write:

(7.2.31)

(7.2.32)

that, for θ = π/2 become:

(7.2.33)

(7.2.34)

Similar relations may be obtained for line “3–1.” Considering “V3” and “I3a” as input quantities,
we may write for θ = π/2:

(7.2.35)

(7.2.36)

Applying the Kirchhoff* current law we have:

for node “1” (7.2.37)

for node “3” (7.2.38)

for node “2” (7.2.39)

The voltage between nodes “2” and “3” is according to Ohm law, i.e.:

(7.2.40)

*  Gustav Robert Kirchhoff, German physicist, born in Koenigsberg in 1824 and died in Berlin in 1887.

V V j sena a2 2= + ′cosθ ζ θΙ

Ι Υ Ι2 2a a aj V sen= + ′θ θcos

V j a2 2= ′ζΙ

Ι Υ2a aj V=

V ja a= ζΙ 3

′ =Ι Υ3 3a j V

′ = + ′Ι Ι2 0 3a a aV R!

Ι Ι3 3 0 2a bV R= −!

Ι Ι2 2 2 0a b V V R+ = −( )!

V V Rx b2 3 22− = Ι
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Performing a system of equations with 7.2.35, 7.2.38, and 7.2.40 we may write:

(7.2.41)

Performing a system of equations with 7.2.34, 7.2.39, and 7.2.40 we may write:

(7.2.42)

Performing a system of equations with 7.2.33, 7.2.36, and 7.2.37 we may write:

(7.2.43)

We now impose the condition that port “3” be isolated from port “2,” in the situation
Figure 7.2.9 c. It means we must set V3 = !0. With this hypothesis, we have:

from 7.2.41 (7.2.44)

                                              from 7.2.42 (7.2.4

            from 7.2.43 (7.2.46)

Inserting the previous equation:

in 7.2.44, we have:

(7.2.47)

in 7.2.45, we have:

(7.2.48)

We now impose the condition that port “2” be matched. It means that:

(7.2.49)

Doing a system of equations with 7.2.39, 7.2.48, and 7.2.49 it follows that:

(7.2.50)

and, inserting the 7.2.50 in 7.2.47, we have:

(7.2.51)

jV R R R V R R Va x x0 0 3 0 21 2 2 0ζ + +( ) − ( ) =

jV R R R V R R V Va x x0 0 2 0 31 2 2ζ + +( ) − ( ) =

V j R V j R Va + ( ) + ( ) =0 3 0 2 0ζ ζ

jV R R R Va x0 0 22 0ζ = ( ) =!

jV R R R V Va x0 0 21 2ζ + +( ) =!

V j R Va = − ( )! 0 2ζ

R R Rx0

2

0 2ζ( ) =!

1 0 2+ =R R V Vx !

V Ra b2 2 2 0Ι Ι+( ) =!

R Rx =! 0

ζ = ! R0 2
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The two previous equations show the relations that must be satisfied between the imp
and resistance of the network shown in Figure 7.2.9a, to assure that it be perfectly matched to all
ports and with ports “2” and “3” isolated. Note that for the symmetry of the device, if port “2
matched and isolated from port “3,” then port “3” is also isolated from “2” and matched. Note
since ports “2” and “3” are matched, port “1” is also matched. Remembering the effect of thλ /4
transformer studied in Chapter 1, each matched load “R0” connected to ports “2” and “3” is
transformed toward port “1” in a load of value “2R0,” with the result that the parallel of thes
resistors is still a matched load of value “R0.” 

As a consequence of the perfect matching, isolation, and the lack of power dissipation i
if  we assume an ideal lossless transmission line in the Wilkinson network shown in Figure 7.2.9,
then the following relation must be satisfied at center frequency:

(7.2.52)

The importance of the resistor “R” is to assure the termination of the fourth balanced p
the network, so assuring the isolation of the output ports. For this reason, the resistor “R” 
called or known as the “isolation resistor.”

Wilkinson’s original study, which we have just shown, is oriented to synthesis of the de
and no theoretical information about acceptable bandwidth is given. Useful information abou
important requirement can be obtained with a study of the device oriented to analysis. This
can be performed with the even and odd mode excitation procedure, just like we did to stu
previous “branch line” and “rat race” devices. Let us examine Figure 7.2.10. In parts a and c, we
have indicated the even and odd excitations at ports “2” and “3.” The superposition of thes

Figure 7.2.10
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excitations is equivalent to one excitation to port “2.” In parts b and d we have indicate
equivalent networks for even and odd excitations, respectively. Note that for the even exci
no current flows in the resistor “R,” and consequently the network in part a can be divided
part b with the “2ζ 0” load required since when the two networks in part b are connected tog
at the input, the resultant load is still “Z0,” as in part a. For odd excitation, note that at one h
of the resistor “R,” there is a short circuit, since for this excitation the generators have 
amplitude but phase reversal. For the same reason, at the input of the network, an equivale
circuit is present. This situation is represented in part d. Note that from Figure 7.2.10 part b and
d, the output phasor “V 32” at port “3” when the input is at port “2” is:

(7.2.53)

For the reciprocity of this network, the signal exiting at port “2” with the excitation at port
is equivalent to the signal exiting at port “1” with the excitation at port “2.” This last one ca
obtained just using the excitation in Figure 7.2.10. Note that only the even excitation creates an
output signal at port “1” and from the conservation energy theorem* we may write:

(7.2.54)

From the previous two equations it is clear that all the electrical characteristics of the ne
can be evaluated knowing the reflection coefficients for the even and odd excitations. To det
these quantities is very simple. In fact, for the even excitation, the input impedance “Zie2” at port
“2” is that of a length “θ” of transmission line of impedance “ζ” terminated with a load of impedance
“Z �” of value “2ζ 0.” From Chapter 1 we know that this impedance is:

(7.2.55)

and the corresponding reflection coefficient is:

(7.2.56)

For the odd case we note that the input impedance “Zio2” at port “2” is the parallel of a resistor
with value “R/2” and the impedance of a shorted stub of impedance “ζ” and length “θ.”

From the theory seen in Chapter 1 we may write:

(7.2.57)

and the correspondent reflection coefficient is:

(7.2.58)

* Remember that we are considering a lossless, reciprocal “TEM” mode network.
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Inserting the values determined with the synthesis of Wilkinson in Equations 7.2.55 thr
7.2.58 and applying 7.2.53 and 7.2.54 we have the result indicated in Figures 7.2.11 through 7.2.13.
As in sections 7.2.1 and 7.2.2, for these figures we have used the normalized frequency 
the independent variable, and the values above and below “0” are linear and dB, respectiv
addition, the lowercase variable “v32(fn)” is evaluated in dB while the uppercase one is a linear va

In Figure 7.2.12 we made a larger sweep for “ fn,” where we may see the interesting result th
the Wilkinson divider is always capable of dividing the input power near to three dB also ve

Figure 7.2.11

Figure 7.2.12
©2000 CRC Press LLC
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from the designed frequency, but the isolation is no more acceptable. The useful bandwidth
isolation of 20 dB is near 44%. In Figure 7.2.13 we have indicated the reflection coefficients at
ports “1” and “2.” We may see how port “2” (and consequently port “3”) is much less refle
than port “1” outside the designed frequency.

Note that the study we have made until now assumes in the case of lossless devices and
“TEM” * transmission lines. While the first hypothesis is never satisfied for any practical de
the “TEM” hypothesis is only approximated by microstrips, as was said in Chapter 3. In add
the effects of discontinuities in the device have not been evaluated, as the input bifurcation
step in width where the resistor “R” is connected. For this purpose, the reader can consult C
4, where microstrip discontinuities are treated. As a result of the physical realization in micr
technology of the Wilkinson power divider, we have losses, isolation, power division by two
matching degrade with the increasing of the design frequency. Limiting the bandwidth to the
where isolation is at least 20 dB, the typical bandwidth for a microstrip Wilkinson power div
indicated in Figure 7.2.9b is near 38%, i.e., n = 1.5, until center frequencies of approximately 10
GHz. 

To increase the bandwidth, it is possible to create the power divider using more rings, as ind
in Figure 7.2.14a. The synthesis of these devices has been performed by researcher S.B. Cohn,24

under the hypothesis of “TEM”  mode propagation. For the case of Figure 7.2.14a, the synthesis of
the network can be performed directly using Cohn’s expressions, i.e.:

(7.2.59)

where:

Figure 7.2.13

* See Appendix A2 for propagation mode definition and Chapter 2 for applications to microstrips.
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(7.2.60)

(7.2.61)

where Fh and F� are the higher and lower frequencies, respectively, of the operating bandwid
In the three previous equations, all the “Ri” and “ζ i” are normalized to the reference impedanc

i.e., 50Ω practically. The analysis of this network can be performed in the same manner with r
to Figure 7.2.10. The most important characteristics of the network in Figure 7.2.13a is that it can
be designed for a bandwidth operation of Chebyshev shape,* contrary to the original Wilk
divider in which the bandwidth shape is fixed. As we know, once a ripple is fixed in the bandw
the Chebyshev shape has the widest bandwidth or, conversely, once a bandwidth is fix
Chebyshev shape has the lowest ripple. This characteristic can be deduced from Figure 7.2.10a,

Figure 7.2.14

* See Appendix A4 for Chebyshev polynomials and their characteristics.
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where the analysis using the even excitation is simply a matching problem between a load o
“2ζ 0” and a source of impedance “ζ 0.” We have seen in Chapter 1 how this problem can be reso
with a Chebyshev design. Consequently, the multiring Wilkinson divider can be designed withζ1”
and “ζ 2” according to a Chebyshev shape. For instance, let us attempt to create a two step Wi
3 dB divider in an operating bandwidth of B = 1, with a return loss ripple for the prototype e
to 0.025. From the theory studied in Chapter 1 and referring to Figure 7.2.14a, we have ζ1 = 1.203
and ζ 2 = 1.654. Then, from 7.2.59 through 7.2.61 we have R1 = 5.2 and R2 = 1.882. Iteratively
applying the same theory given for 7.2.55 through 7.2.58 to the case of Figure 7.2.14a, for this
example we have the results shown in Figure 7.2.15. We see how each electrical parameter has a
Chebyshev shape, and how there is an increase in the operating bandwidth with respec
single section divider shown in Figure 7.2.11. In fact, a two section microstrip Wilkinson divider
has a useful bandwidth near 70% for center frequency up to10 or 15 GHz, where “useful band
means the frequency region where the return loss “s11” is higher or equal to 15 dB.

Of course, a still higher operating bandwidth can be reached if a higher ripple is accept
the quarter wavelength transformer prototype, since it is a characteristic of the Chebyshev 

A higher number of sections does not have a simple synthesis procedure like the single
section case. The Wilkinson power divider can be found working in operating bandwidths o
or more, which are realized with six or more sections. These devices are synthesized using co
optimization procedures, until a quasi-Chebyshev behavior is reached.

A very important variation of the Wilkinson divider has been studied by Parad and Moynih25

and the resultant network is indicated in Figure 7.2.14b. The important characteristic is that this
network is able to divide the input power, not only equally for the two outputs, but also 
different values of signal power at the two outputs. In any case, the higher signal power is p
at the port connected to the branch where the lower impedance is present. So, in Figure 7.2.14 the
signal at port “3” has higher power than signal at port “2.” In addition, as in the Wilkinson div
the resistor “R” never dissipates energy.

The theoretical study of this network can be performed in the same manner we used 
simple Wilkinson power divider, i.e., with the even and odd mode excitations. According to
theory, Parad and Moynihan give the following design formula for the network in Figure 7.2.14b:

Figure 7.2.15
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(7.2.62)

(7.2.63)

(7.2.64)

(7.2.65)

(7.2.66)

(7.2.67)

(7.2.68)

Of course, all the “R” and “ζ” in Equations 7.2.62 through 7.2.68 are normalized to the sys
reference impedance, i.e., 50 Ohm. It is important to say that this kind of network is suitab
a ratio between the output power until 8 dB maximum, since for higher values the micr
impedances become physically impractical. Note that in the previous formulas, there is no
retical limitation on the value of “cv ,”  and for this reason the device in Figure 7.2.14b can also be
synthesized for equal power output. In this case we simply have cv2 = 1, and 7.2.62 through 7.2.68
become:

The denormalized values to 50 Ohm for the previous formula give the network in Figure 7.2.14c.
Due to the additional transformers introduced in the network shown in Figure 7.2.14b with respect
to the single section Wilkinson network shown in Figure 7.2.9a, the unequal power divider has an
operating bandwidth near 30%, which is considerably lower than the single section Wilkinson 
divider.

It is interesting to observe that both such networks are dividers, i.e., only two used outpu
present. It is possible to realize planar in-line multioutput dividers, as shown in Figure 7.2.16 for
an in-line six output divider. All the lines with impedance “ζ” are a quarter wavelength long at th
center of the operating bandwidth. Unlike the Wilkinson network, this kind of hybrid does
perform theoretical infinite isolation and matching at the ports, if these values can be reas
optimized to an acceptable value.26,27 Also, although the network in Figure 7.2.16 is very attractive
from a theoretical point of view, it is seldom used in practice, and a cascade of Wilkinson p
dividers are preferred when more than two outputs are required. 

7.2.4 Step Coupled Lines

The simplest DC decoupled directional coupler is indicated in Figure 7.2.17. It is simply realized
setting at a distance “s,” two microstrip lines of width “w” and length “�,” which is a quarter
wavelength long at center frequency. After the length “�,” the two lines are set more distant tha
possible, to remove any type of coupling after “�.” The characteristic of this coupler is that th
coupled port is geometrically nearest to the input one; the direct port is that which lies on the
line of the input port, while the isolated port is the remaining one. This type of coupler belon
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Figure 7.2.16

Figure 7.2.17
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the class of “backward couplers.” This situation is completely different from the previous cou
we have studied, where the energy flow of the coupled signal has the same direction as th
one. So, with reference to Figure 7.2.17a, if  the input signal is connected to port “1,”  then the
coupled port is port “2”  while port “3”  is the direct port. In Figure 7.2.17b, the direct port has been
reversed using an “air bridge,” i.e., a connection that passes over another line. Of cours
always a “backward coupler.” The network in part b is seldom used in practice, but it is a bu
block of a very important microstrip coupler we will discuss later, i.e., the Lange coupler.

The electromagnetic situation indicated in Figure 7.2.17 is very different from the previous
situations we have studied. In fact, we are now dealing with coupled lines. Coupled µstrip theory
is studied in detail in Chapter 5, and now we will review only the concepts necessary to unde
the working principle of this coupler. Every time two lines come in proximity, each one cha
the characteristic impedance it had when it was alone, and the new situation must be stud
lone electromagnetic ambient. The impedance of each line is dependent on the amplitude an
of the signal that is present on the other line. Of course, the two lines must be terminated w
equal impedance “Z�.” Two impedances are defined:

a. The “even” impedance “ζe,” which is defined as the characteristic impedance that a line
presents to ground when two equiphase, equiamplitude, and equal impedance generator
connected to each line.

b. The “odd” impedance “ζo ,” which is defined as the characteristic impedance that a line presen
to ground when two out of phase, equiamplitude, and equal impedance generators are 
nected to each line.

Theoretically, two lines are never electromagnetically isolated, since the electromagneti
produced by each line is zero only at the infinite, but in microstrip practice, two lines ca
evaluated as electromagnetically decoupled when the distance “s” between their nearest bo
is at least three times their width “w.”

Assuming the situation indicated in Figure 7.2.17a, a center band voltage coupling coefficient
“c0v” is defined as:

(7.2.69)

where “E1” and “E2” are the electric fields at the input port “1” and output port “2.” The coupl
coefficient is, in general, a complex number, with a modulus value between 0 and one. Fro
coupled line theory* it is possible to show that the following two relations hold:

(7.2.70)

(7.2.71)

From 7.2.70 and 7.2.71 it follows that:

(7.2.72)

* See Chapter 1 for coupled line theory fundamentals.
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In Figure 7.2.18 we have reported the dependence of “ ζ e” and “ζ o” vs. “cv ,” with “cv” evaluated
in dB and Z� = 1 Ohm. In microstrip technology it is very difficult to realize the coupler
Figure 7.2.18 with “cv” higher than –6 dB because the values of “ζ e” and “ζ o” are so different,
and in particular “ζ e” so high that spacing “s” smaller than 10 micrometers should be reali
The only solution to realize a –3 dB coupled line coupler is to employ the Lange coupler, w
we will study later. 

The reader who wants to create the coupler in Figure 7.2.17 needs first to define the required
coupling value. Then, from Figure 7.2.18, find the corresponding values of “ ζ e” and “ζ o,” and
finally find the values of “s” and “w” for the defined substrate.

The study of the networks in Figure 7.2.17 can be performed using the well-known superposition
principle, as was done in the previous items studied. The situation is indicated in Figure 7.2.19. In
part a of the figure is represented the situation obtained with the superposition of the even exc
indicated in part b, and with the odd excitation indicated in part c. We may write:

(7.2.73)

(7.2.74)

(7.2.75)

(7.2.76)

From the previous four equations we see that there are four system variables, i.e., “V1e,” “V 1o,”
“V 3e,” and “V3o.” These variables can be found very easily. Using the subscript “m” to indi
the mode of excitation we have:

Figure 7.2.18

V V Ve o1 1 1= +

V V V V Ve o e o2 2 2 1 1= + ≡ −

V V Ve o3 3 3= +

V V V V Ve o e o4 4 4 3 3= + ≡ −
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m

(7.2.77)

and the current at port “1” will be:

(7.2.78)

The quantity “Z1m” is the impedance we see at the input of port “1” with excitation “m.” Fro
the general line theory seen in Chapter 1, we have:

Figure 7.2.19
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with m = e,o (7.2.79)

where “ θ” is the electrical length of the coupled region of the coupler in Figure 7.2.17. The voltage
and current at port “3” can be found using the “forward transmission matrix” defined in Chap
So we can write:

with m = e,o (7.2.80)

Since we have determined all variables, we may evaluate the direct transmission “dv ,” the
coupling “cv” and the isolation “iv .” We have:

(7.2.81)

(7.2.82)

(7.2.83)

In Figure 7.2.20 we have represented the dependence with the electrical length “ θ”  of the
modulus of the above equations, for the case of a coupling factor of –10 dB and “θ” sweeping
from zero to 2π. The values above “1” on the ordinate axis are in linear value, while the va
below “1” are in dB. We have used the linear values for this figure to show that the value 
isolation is theoretically always zero. This means that the quarter wavelength coupled lines
tional coupler is able to isolate a port outside the frequency where it has been dimension
exactly for every real frequency from zero to infinite. Note that this result is only theoreti
valid since discontinuities in the structure and the nonperfect “TEM” propagation mode i
microstrip generate signals in the theoretically isolated port. Typical isolation values are ne
or 20 dB for frequencies up to 20 GHz, decreasing to 10 or 15 dB for higher frequencies. 

In Figure 7.2.21 we have reported the dependence with the electrical length “ θ”  of the phase
of the above equations. We see that for θ = (2n + 1) 90°, where “n” is an integer, the signal at po
“2” is equiphase with that at port “1” while the signal at port “3” is 90° delayed. It is also intere
to note that the phase difference between signals at port “ 2” and “3” is always near 90
modulus of these signals, i.e., the coupling, does not have the wideband characteristic 
recognize in Figure 7.2.20.

The expressions for “cv(θ)” and “dv(θ)” can also be reported as functions of “c0v,” using 7.2.79,
7.2.70, and 7.2.71. We have:

(7.2.84)

(7.2.85)
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Figure 7.2.20

Figure 7.2.21
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The reader can easily understand that defining an operating bandwidth for such a cou
quite subjective. In addition, the bandwidth where the coupling is near its center frequency
is a function of the coupling value as indicated in Figure 7.2.22. In this figure every coupling vs.
“ θ” has been normalized to its maximum value, reached for θ = π/2. We see how the increase i
the coupling increases the bandwidth where the coupling is near its maximum value. The
used parameter to define a bandwidth is the isolation, and if a value not lower than 15 dB is
as reference, the bandwidth is near 40% for coupling values below –10 dB. Assuming we
build a 3 dB microstrip coupler of the type under study, the operating bandwidth could reach

As we did for the Wilkinson power divider, if we increase the number of coupled sectio
is possible to have an equiripple shape of the coupling, and so to use a bandwidth definition 
to equal ripple coupling. Two types of multisection coupled line coupler are possible, the sym
rical and asymmetrical, as indicated in Figure 7.2.23. Only the asymmetrical coupler can be
synthesized using Chebyshev polynomials. We will also show later that if the symmetrical co
have an equiripple shape of the coupling, they cannot be synthesized with Chebyshev polyn
This means that asymmetrical couplers are more bandwidth efficient compared to symm
versions, when a layout space and coupling ripple are fixed.

Note also that although for every section we have reported both the even and odd imped
it is enough to indicate only one of these, since the Equation 7.2.72 must be satisfied. The
of this network can be done in the same manner used for the single section coupler. But a
simple method exists, which is very suitable to be used with a computer. With this metho
“ABCD,” or chain, matrix* is associated with every section of coupled line. Then the whole “ABC
matrix is simply evaluated by multiplying each single section matrix. Finally, using the conve
formulas, it is possible to evaluate all the desired scattering parameters.

Figure 7.2.22

* See Appendix A3 for definition of “ABCD,” or “chain,” matrix.
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Let us do an example for a three section symmetrical coupler. For the terminal “t” co
lines, the chain matrix (Cm) t will be:

(7.2.86)

and for the center “c” section:

(7.2.87)

where m = e,o and “̂Zmt,”  “ Ŷ mt,”  “ Ẑmc,”  and “Ŷ mc,”  are the normalized impedances and adm
tances. The chain matrix of the whole coupler will be:

(7.2.88)

Now, let us examine Figure 7.2.24, which is Figure 7.2.19 from another point of view. We may
write:

(7.2.89)

(7.2.90)

(7.2.91)

Figure 7.2.23
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(7.2.92)

where the generic “Γ i” is the voltage reflection coefficient at port “ i.” From the previous equatio
we may recognize that to study the network in Figure 7.2.24 we only need the scattering parameters
“s11,e,” “s11,o,” “s 21,e,” and “s21,o.” The same conclusions hold for our three element coupler, 
from the conversion formulas given in Appendix A3 we have:

(7.2.93)

(7.2.94)

Resolving the expressions 7.2.88 through 7.2.94 for the case ζ et = 56.05 and ζ ec = 107.35 we
have the graphs of Figure 7.2.25. It is important to inform the reader that in the case of multisection
step coupled line couplers, the determination of the impedance values of the coupled lines
so simple as the single step coupler. We will return later to this topic. In Figure 7.2.25 we may see
how these values of “ζ et” and “ζ ec” give a directional coupler with – 6 dB of coupling, with 
coupling ripple of ±0.2 dB. It is interesting to show that the phase difference between sign
ports “ 2” and “ 3” is always of π/2, as indicated in Figure 7.2.26. This phase difference is the same
in all symmetrical directional couplers, regardless the number of sections. Note also that if th

Figure 7.2.24
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Figure 7.2.25

Figure 7.2.26
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ring Wilkinson power divider and the coupler under study have two completely different la
aspects, both these networks are able to follow a Chebyshev characteristic, which means
equiripple behavior exists. From this point of view, such networks are completely equal t
other network that can be synthesized using Chebyshev polynomials. 

It is interesting to observe that an asymmetrical directional coupler with “n” sections, with
an even number, has approximately the same bandwidth as a symmetrical coupler with “
sections. If “n” is an odd number, then the bandwidth of the asymmetrical directional coup
approximately equal to the bandwidth of a symmetrical coupler with “n + 2” sections. This
be shown in Figure 7.2.27, where we have drawn the linear coupling coefficient “ cv2as” for a two
section asymmetrical coupler and “cv3si” for a three section symmetrical 6 dB coupler. We see h
approximately the same bandwidth can be reached with proper design. This means the asym
coupler is shorter when a bandwidth and a ripple are fixed.

A large difference exists between the symmetrical and asymmetrical coupler. While the f
always has a phase difference of π/2 between the signals at the direct and coupled ports, 
asymmetrical coupler has no such characteristic. This result is shown in Figure 7.2.28, where with
“ φ2” and “φ3” we have respectively represented the phase of the signals at ports “2” and “3
the two section asymmetrical coupler whose coupling coefficient “cv2a s” is represented in
Figure 7.2.27.

With the chain matrix procedure we can study all multisection couplers. For instance, in figures
7.2.29 and 7.2.30 we have respectively represented the coupling “cv”  and direct “dv”  coefficients,
the phase “φc” for coupled and “φd” direct coefficient for a five section asymmetrical coupler. 
this example, the coupling has been synthesized for –6 dB and ripple ±0.2 dB.

The determination of the impedance values of the coupled line sections is not a simple 28

compared to the synthesis of the previous networks we have studied. For this purpose it is ne
to have great confidence in the general theory of electrical networks synthesis. It is not poss
treat a theory of this size in our book, since typical books on this topic29,30,31 are composed of
nearly one thousand pages. For these reasons, we will only study the most important s
synthesizing such multisection couplers. However, for the reader who has familiarity with elec

Figure 7.2.27
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network synthesis, in Appendix A4 we have reported the fundamental concepts of this imp
branch of electrical engineering. 

The first step in network synthesis is to find a mathematical function that is able to rep
the desired transfer function shape, the coupling in our case. Finding this is not, in general, a
thing, but in our case we may simplify this task using an analytical equivalence between th
transmission line transformers, which we have studied in Chapter 1, and our network. This si
is indicated in Figure 7.2.31, where the step transformer is a symmetric network composed of a
series of step-up and step-down transformers, or vice versa, in order to realize a symmetric n
In fact, it is possible to show32 that the square |Γ |2 of the voltage reflection coefficient of the ste

Figure 7.2.28

Figure 7.2.29
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transformer has the same analytical form as the coupling “cv” for the symmetrical coupler. So, it
is possible to write:

(7.2.95)

and consequently, from the energy conservation theorem:

Figure 7.2.30

Figure 7.2.31
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Further help comes from a theorem applicable to symmetric networks, as in the coupler family
under study. It is known from the filter network theory that a symmetric “n” section transmis
line network is characterized as having an insertion loss function “L(θ)” given by:

(7.2.96)

where “θ” is the line’s electrical length and “Pn(senθ)” is an odd polynomial of degree “n.” So
the order “n” of the polynomial is an odd number, as of course the number “n” of sections 
symmetrical coupler must be. From the insertion loss function 7.2.96, we can obtain the squ
the modulus of the voltage reflection coefficient “Γ (θ)” from:

(7.2.97)

which in our case becomes:

As it is known from network theory, and also from the previous points of study, a prefe
shape for “cv” is the Chebyshev type. Crystal and Young33 have shown that symmetrical coupler
can be synthesized with an equiripple shape for “cv” but not responding to the Chebyshev typ
The asymmetrical couplers, which we will study later, can instead be synthesized with Cheb
polynomials, and this is the reason why asymmetrical directional couplers with “n” sections
approximately the same bandwidth as a symmetrical coupler with “n + 1” or “n + 2” sect
depending on whether “n” is an even or odd number. In fact, it is known from network theor
any electrical network synthesized with a Chebyshev polynomial has the widest useful band
of any other synthesis when a ripple in the bandwidth is fixed. Crystal and Young have use
own equiripple polynomials Pn(x), which approach the value 1 for values of “x” in the interv
0 through 1. In Figure 7.2.32 we have indicated four odd polynomials used for the synthesis
in the case of Chebyshev polynomials, in this case, if we accept a higher value of coupling 
the useful bandwidth increases for a fixed number of sections.

These two researchers have found the normalized values of the coupled line impedan
the most used values of coupling “cv ,” coupling peak ripple “δp,” and fractional bandwidth “B.”
In Tables 7.2.1 and 7.2.2 we report their results for three and five sections.

The reason that only the even impedances are reported in the previous tables is due to 
that for the multistep couplers indicated in Figure 7.2.31b, the known formula 7.2.72 must be
satisfied. In addition, since the “n” section coupler is symmetrical, it is necessary to specify
(n + 1)/2 values of impedance. It is also important to remember that all the “ζ ei,” with i = 1,2,3,
in the previous tables are normalized to the system reference impedance. Of course, as it 
in all electrical networks where an equiripple behavior can be found, the useful bandwidth fo
couplers is defined as the frequency interval where the equiripple value of “cv” is assured. The
reason why a value of cv = –8.34 dB is inserted in the tables will be discussed later when
discuss the 3 dB coupled line coupler. The reader should remember that in microstrip thi
technology, it is not possible to reach a coupling higher than –6 dB using only tandem of co
lines, and for this reason the presence of cv = –3 dB in the previous table could appear stran
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Figure 7.2.32

Table 7.2.1 Three Sections, Symmetrical

cv(dB) δδδδp(dB) ζζζζe1 ζζζζe2 B%

0.1 1.171 3.26 100
–3 0.3 1.24 3.543 127

0.5 1.3 3.785 141
0.1 1.103 2.094 92

–6 0.3 1.136 2.19 117
0.5 1.164 2.265 130
0.1 1.074 1.719 89

–8.34 0.3 1.097 1.773 114
0.5 1.115 1.815 127

–10 0.5 1.091 1.621 126
–20 0.5 1.027 1.16 124

1 1.035 1.172 141

Table 7.2.2 Five Sections, Symmetrical

cv(dB) δδδδp(dB) ζζζζe1 ζζζζe2 ζζζζe3 B%

0.1 1.078 1.373 3.976 132
–3 0.3 1.136 1.495 4.401 153

0.5 1.189 1.592 4.742 162
0.1 1.045 1.22 2.38 125

–6 0.3 1.074 1.28 2.52 145
0.5 1.098 1.323 2.62 155
0.1 1.032 1.157 1.89 123

–8.34 0.3 1.043 1.180 1.934 135
0.5 1.068 1.225 2.022 152

–10 0.5 1.054 1.179 1.772 150
–20 0.5 1.016 1.051 1.191 149

1 1.024 1.063 1.206 162
©2000 CRC Press LLC
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But we have reported this value in light of stripline transmission line technology, which we
study in a following chapter. Tables 7.2.1 and 7.2.2 and the following Tables 7.2.3 through 7.2.5
assume a pure “TEM” propagation mode and for this reason these tables are valid for str
too. In addition, we will see that using striplines, we can reach a 3 dB coupling with broa
coupled striplines. So, all these tables can also be used for striplines. 

An asymmetrical step coupled lines directional coupler shown in Figure 7.2.23b has the advan-
tage that it can be synthesized using Chebyshev polynomials for the loss function “ L(θ).” These
kinds of couplers have been studied by many researchers, but one of the most complete
was done by R. Levy,34 who reported the synthesis procedure for these networks. Levy has a

Table 7.2.3 Two Sections, Asymmetrical

cv(dB) δδδδp(dB) ζζζζe1 ζζζζe2 B%

0.13 3.129 1.321 100
–3 0.29 3.289 1.423 120

0.48 3.445 1.532 133
0.03 1.987 1.148 66.6

–6 0.19 2.06 1.205 100
0.44 2.129 1.268 120
0.04 1.641 1.108 66.6

–8.34 0.22 1.685 1.149 100
0.5 1.726 1.194 120

–10 0.53 1.573 1.157 120
–20 0.58 1.145 1.047 120

0.96 1.156 1.057 133

Table 7.2.4 Three Sections, Asymmetrical

cv(dB) δδδδp(dB) ζζζζe1 ζζζζe2 ζζζζe3 B%

0.08 3.525 1.639 1.138 120
–3 0.27 3.767 1.863 1.252 143

0.51 3.983 2.074 1.38 155
0.11 2.224 1.387 1.092 120

–6 0.24 2.275 1.45 1.128 133
0.58 2.365 1.568 1.206 150
0.13 1.779 1.275 1.063 120

–8.34 0.27 1.808 1.318 1.094 133
0.45 1.835 1.358 1.123 143

–10 0.48 1.656 1.287 1.1 143
–20 0.53 1.168 1.082 1.03 143

1 1.175 1.096 1.044 155

Table 7.2.5 Four Sections, Asymmetrical

cv(dB) δδδδp(dB) ζζζζe1 ζζζζe2 ζζζζe3 ζζζζe4 B%

0.1 3.921 2.047 1.379 1.111 143
–3 0.25 4.097 2.252 1.518 1.188 155

0.43 4.256 2.438 1.656 1.275 164
0.16 2.379 1.603 1.241 1.075 143

–6 0.38 2.446 1.706 1.325 1.126 155
0.64 2.505 1.796 1.405 1.183 164
0.18 1.865 1.417 1.175 1.056 143

–8.34 0.43 1.902 1.483 1.234 1.094 155
0.73 1.934 1.539 1.289 1.135 164

–10 0.45 1.708 1.384 1.189 1.077 155
–20 0.5 1.179 1.106 1.055 1.023 155

1.2 1.189 1.126 1.078 1.043 169
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shown that an analytical equivalence between an asymmetrical network of quarter wave
transmission lines and an asymmetrical step coupler exists, in the same manner as Young ha
for symmetrical step couplers. This situation is indicated in Figure 7.2.33. With this analytical
equivalence we may use 7.2.95 and 7.2.97 for the synthesis procedure, to evaluate the c
function of the coupler. For these kinds of asymmetrical couplers, Levy has shown that the in
loss function “L(θ)” may be written as:

(7.2.98)

where “β,” “h,” and “θ0” are three constants that are related to the mean value and ripple of “Lθ),”
while Tn(cosθ/cosθ0) in the Chebyshev polynomial of the first kind and order “n.” Also in th
case, the order “n” corresponds to the number of coupled sections used in the coupler.

We report Tables 7.2.3 through 7.2.5 for two, three, and four sections of coupled lines asym-
metrical coupler as reported by Levy in his tables.15 We have used the notation to indicate with th
subscript “1,” the most coupled section, and consequently the higher subscript number will in
the section with the smallest coupling.

Of course, in Tables 7.2.3 through 7.2.5 we have only given the normalized even impedances
of the lines since for this coupler the general relation Z� ≡ (ζ eζ o) 0.5 holds. The reader should
remember that in practice, a number higher than three or four for the coupled sections is 
used. In fact, the theoretical increase of bandwidth is limited by the increasing source of d
tinuity in each step of the coupler, as we have seen in Chapter 4. The increase in the num
discontinuities has the undesirable effect of decreasing the isolation that is a very imp
parameter in any directional coupler. Of course, this effect is common for both the symme
and asymmetrical coupler. It is for this reason that another type of coupler, based on couple
has been developed, as we are going to study in the next section.

Maximum isolation values for these microstrip coupled lines couplers are near –25 
10 GHz, regardless the value of coupling. So, to have a good directivity, which is the most de
characteristic of a directional coupler, from 7.2.97 it follows that the coupling cannot be m
lower than –15 dB or –20 dB, otherwise the coupler will have a very small directivity.

Figure 7.2.33
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7.2.5 Tapered Coupling

To decrease the discontinuities effects due to step transitions of the step coupled lines dire
couplers, the step coupling has been replaced with a continuous increase and/or decreas
coupling. This means that the distance between the microstrips decreases and/or increa
continuous way. The networks that realize this type of coupling are indicated in Figure 7.2.34. Part
a shows the asymmetrical version, while part b shows the symmetrical network. These ne
are backward couplers like the previous ones, but in addition, they do not have higher order op
bands for the coupling. These couplers are also indicated as “nonuniform coupled line dire
couplers,” but in our study we will refer to these networks as “tapered coupling directional cou
or simply “tapered couplers.” The analytical formula that gives the distance “s (x)” betwee
conductors, with “x” the longitudinal variable, can theoretically be of any type, but always 
tinuous. An often used shape is the exponential one.

In general, these networks have higher isolation than the step coupled line directional co
we have just studied.36,37 When a “cv” is defined, the tapered coupling couplers are a little long
and the highest coupling between the lines is a little higher than the length and the highest c
value of the previous couplers we studied.

The most evident difference with the step coupled couplers is that now there must e
mathematical equation that describes the variation of “cv” with the longitudinal variable “x.” This
function must be continued inside the values |x| < d, where “d” is the absolute length of the c
For the tapered coupling directional couplers, the general relations 7.2.70 and 7.2.71 stil
with the difference that now the center band coupling is a function of “x.” So we may write:

(7.2.99)

(7.2.100)

Figure 7.2.34
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Actually, for these kinds of couplers, the concept of center band coupling is not general
these couplers can also have a theoretically high pass shape for the coupling. In such a
center band does not exist, and “c0v(x)” assumes the value “cv(x)” of the coupling in the high pass
band. We will show later how these couplers may have the high pass shape for the couplin

For the tapered coupling directional couplers, researcher C. B. Sharpe38 has reported an ana
lytical equivalence with a nonuniform transmission line in the same manner as L. Young a
Levy have reported for symmetrical and asymmetrical step coupled lines directional couplers
equivalence is indicated in Figure 7.2.35, for symmetrical and asymmetrical cases.

So, expressions 7.2.95 and 7.2.97 still hold for our case, and we may concentrate our s
the simple transmission line networks indicated in Figure 7.2.35c and d. In this case, from the
theory of nonuniform transmission lines studied in Chapter 1, the voltage reflection coeffi
“Γ(β)” for the general nonuniform transmission line can be written as:

(7.2.101)

where “v” is the speed of the electromagnetic wave along the line. Note that we assume ou
to be a case of pure “TEM” wave, while we know that microstrips only approximate such a m
Later we will see the consequences of the “qTEM” microstrip propagation mode for such a co

In addition to the previous equation, to study a tapered coupling directional coupler we
use the theory developed by B.M. Oliver,39 which is one of the first theories regarding the gene
electromagnetic coupling between lines. Starting from the telegraphists equations, that we 
in Chapter 1, B. M. Oliver has shown that the resulting coupling value “cv(β)” of the coupler is
related to the punctual coupling “Cv(x)” through the equation:

(7.2.102)

Both the 7.2.101 and 7.2.102 can be used for the overall coupling, and the choice depe
what distribution f(x) we specify for the coupler.

Figure 7.2.35
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Concerning the voltage reflection coefficient “Γ(x)” along the equivalent line, it can be simpl
evaluated as seen in Chapter 1, and is given by:

(7.2.103)

where “ζ n(x)” is the normalized impedance of the equivalent line, which is equivalent to
normalized even impedance expression “ζ e(x)” along the coupler. Remembering the equivalen
represented by 7.2.95, Equation 7.2.101 also gives the voltage coupling coefficient “cv(β)” for the
tapered coupler. In addition, the normalized line impedance “ζ n(x),” which appears in 7.2.103 is
equivalent to the even normalized line impedance “ζ ne(x)” of the coupler. So, given a “Γ(x)” we
can obtain the “ζ ne(x)” through a simple integration and subsequent exponentation of the prev
relation.

It is important to remember from Chapter 1 that 7.2.101 and 7.2.102 have been obtained
an assumption of small reflections along the tapered line. Typically these equations are a
for coupling below –10 dB. Researcher C. P. Tresselt, who has performed one of the most im
studies on the tapered couplers,40 has shown that the previous expression can be modified to inc
the case of higher coupling, obtaining:

(7.2.104)

After the expression 7.2.101, which is strongly related to the coupled transmission lines 
given in Chapter 1, it is very simple to show how the tapered couplers have a high pass be
for the coupling. First of all, let us assume a symmetric tapered coupler. Then, shift the ori
the “x” axis to the middle of the coupler so that its length is from x = –l/2 up to x = l/2. T
normalize each half of the coupler so that its length is from x = –1 up to x = 1. Then, use a fu
“Γ(x)” given by:

(7.2.105)

This function is depicted in Figure 7.2.36. Inserting 7.2.104 in 7.2.101 we have the graph
Figure 7.2.37, where θ  ⊥– βd/π. Note the coupling has a high pass shape, which is comple
different from any other directional coupler we have studied. Equation 7.2.105 cannot be phy
synthesized since for x = 0 this expression assumes an infinite value. For this purpos
considerations need to be made: first of all, nothing exists in physics that is infinite; in add
from 7.2.103 it follows that the infinite value of “Γ(x)” also means that “ζ e” is infinite, with the
consequence that a local coupling value of “1” exists. In fact, from 7.2.99 it follows that: 

(7.2.106)

Γ x
d x

dx

n( )
( )( )([ ]

−⊥
ln ζ

2

c

x e dx

x e dx

v

j x

d

j x

d
β

β

β

( ) =

( )

+ ( )

−

−

∫

∫

Γ

Γ

2

0

2

0

1
2

Γ
Γ
Γ

x
x x x for x

x x x for x
M

p

( ) ≡
− + − ≤ <
− − < ≤

( ) ⊥ ( )
( ) ⊥ ( )

−

−

0 201 1 2 1 0

0 201 1 2 0 1

.

.

c x
x

xv
en

en
0

2

2

1

1
( ) = ( ) −

( ) +
ζ
ζ

©2000 CRC Press LLC



upling
 instead
from which we can see that when the normalized even impedance “ζ en
2 (x)” is infinite, then

|c0v(x)| = 1. So, it is clear that we need to truncate “Γ(x)” to some realizable value. In Figure 7.2.38
we have the coupling shape “clθ” when the function 7.2.105 is modified as:

(7.2.107)

with g = 0.005, so that Γ(0) = 20. For comparison we have also reported the coupling “cθ” when
we use the function 7.2.105. From this figure we see how using the limited function, the co
has a strong negative slope, which causes a decrease in the –10 dB coupling value. It is

Figure 7.2.36

Figure 7.2.37
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possible to have a good band pass shape with proper weighting of the limited function “Γ(x).” This
situation is indicated in Figure 7.2.39, where with “ccθ“ we have reported the coupling with an
opportunely weighted “Γ(x)” given by 7.2.107 with g = 0.001. To this value of “g,” integrating a
exponentiating 7.2.103, corresponds a value of normalized even impedance ζ en(x) = 3.28, which
is the practical upper limit for microstrip technology. Note as the coupling “clθ” for the limited
function 7.2.107 with g = 0.001 is better than the case reported in Figure 7.2.38 when g = 0.005,
but a deep slope always exists.

From these figures we should recognize that in a tapered coupling symmetrical direc
coupler a perfect high pass behavior for the coupling is only theoretical, and only band pass

Figure 7.2.38

Figure 7.2.39
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are physically realizable. We will show later that with asymmetrical couplers it is instead pos
to have a good high pass shape for the coupling.

In order to realize a band pass equal ripple shape for the coupling of symmetrical ta
coupling couplers, Tresselt has found a family of functions “Γ(x)” which are very suitable to the
purpose. One of them is the function:

(7.2.108)

where “k” is a constant to transform in angle the length “x,” and “A” is a scale factor. The pre
function is represented in Figure 7.2.40, with k = π and A = 1. Note that the previous function
also have theoretically an infinite length, with the consequence that the symmetrical direc
coupler will have a maximum local coupling value equal to one. So, also in this case we h
limit 7.2.108. In Figure 7.2.41 we have reported the linear value of the coupling “|c4(β)|” and
“| c8(β)|,” when we have limited to 4 and 8, respectively, the total lobes number of 7.2.108
the sum of left half plane and right half plane lobes. For this case A = 0.98. Note that the 
of the coupling in the pass band is not an equiripple, but if the number of the lobes used is inc
the pass band shape assumes an equiripple aspect. To improve the equiripple shape, Tre
performed a weighting of 7.2.108 for any lobe used, which produces a very good result.

Practical applications of the band pass coupling shape tapered couplers have shown th
devices have their lower reciprocal distance “s” and width “w,” which is somewhat smaller
the value of “s” and “w” for the case of step couplers with the same coupling value and ope
bandwidth. Also the overall length of the tapered case is somewhat longer than its stepped 
counterpart.

Another method of studying the tapered coupling directional couplers is based on the 
ABCD matrices. In this case, the length “d” of the coupler is divided in many segments for w
the variation of impedance along “x” may be evaluated as constant. In other words, with this m
the coupler is evaluated as composed of “N” stepped directional couplers, as we studied in 
7.2.4, with the difference that their lengths need not be a quarter wavelength long. C. P. T

Figure 7.2.40

Γ x A
sen kx

kx
( ) = ( )2
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has used41 this method to study some asymmetrical tapered coupling directional couplers. U
the even impedance distribution function:

 

which corresponds to a coupling value “cv” of –8.34 dB, we obtain the result given in Figure 7.2.42.
We see how the asymmetrical tapered coupler has a high pass shape, and in our case, this
is obtained for a maximum coupling value of 0.668, which is a reachable value in micro

Figure 7.2.41

Figure 7.2.42

ζe
x dx e( ) = +[ . . ( ) ]0 024192 0 7822 2
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technology. Of course, radiation phenomena and the non- “TEM” propagation mode in the m
trip will practically limit the high pass shape of the coupling. With this method it is very impor
to use a large number of sections to form the whole coupler, usually some hundreds, otherw
error in the result cannot be acceptable with respect to the exact result obtained with the i
analysis given by 7.2.101. For example, the graph in Figure 7.2.44 has been obtained with N = 300
subdivision of the asymmetrical tapered coupler.

Another important aid in designing tapered line directional couplers comes from F. Arnd42,43

who has studied the case of a high pass shape of the coupling in an asymmetrical coupler.
applied the integral theory given in 7.2.102 to coupling functions “Cv(x)” given by an n-th order
polynomial, i.e.:

 (7.2.109)

where the coefficients “am” are functions of the desired operating bandwidth coupling. Arndt 
given some tables for the case of n = 6, where we can find the coefficients “ai” of the previous
equation, for the most used coupling values. We report some of his results in the following Table 7.2.6:

In this table we have indicated the peak value of the coupling ripple with “δp”, with respect to
the mean value “cv(dB).” Using the values in the previous table and expression 7.2.109
Figure 7.2.43 we have reported the coupling functions “C6(xn)” and “C20(xn),” respectively, for the
case of 6 dB and 20 dB of coupling, for “δp” near 0.25 dB in both cases. With “xn” we have indicated
the normalized length of the asymmetrical coupler indicated in Figure 7.2.34a. Characteristic of
Arndt’s polynomials is that the resulting “cv(β)” has an almost equal ripple shape in the high pa
band. As an example, in Figure 7.2.44 we have indicated the coupling “c20(β)” for the case –20 dB
of coupling and 0.25 dB of ripple peak, whose polynomial coefficients are given in Table 7.2.6. The
phase “φ20(β)”  behavior of the signal at the coupled port is interesting, indicated in Figure 7.2.45.

Due to small discontinuities in the structure, the consequent high directivity, and the ab
of higher unwanted operating bandwidth, the tapered couplers are the preferred choice whe
performance microstrip directional couplers are required.

Of course, a practical limitation in the operating bandwidth exists, due to dispersion
radiation phenomena in the microstrip structure. The most detrimental cause for bandwidth 
tion is the difference between the even “βe” and odd “βo” phase constants in coupled µstrips, a
we studied in Chapter 5, and consequently the different phase velocities. A method to eq
such velocities has been suggested by S. Uysal and H. Aghvami,44 resulting in the structure indicated
in Figure 7.2.46, where the coupled side of the µstrips are wiggled. With a tandem configuration
of two of these couplers, each one with cv = –8.34 dB, they have built a 3 dB coupler 

Table 7.2.6 Six Order, Asymmetrical, Tapered Polynomial-Coupling, Directional Coupler
cv(dB) δδδδp(dB) a0 a1 a2 a3 a4 a5 a6

–3 0.08 0.943 –0.494 –0.969 –3.911 11.094 –9.326 2.693
0.34 0.944 –0.38 –0.645 –1.625 3.534 –2.12 0.407

–6 0.23 0.8 –0.752 –0.791 0.438 1.507 –1.686 0.524
0.4 0.8 –0.682 –0.617 0.193 1.227 –1.199 0.344

–8.34 0.17 0.669 –0.889 –0.487 1.106 –0.043 –0.583 0.246
0.42 0.669 –0.759 –0.324 0.555 0.184 –0.426 0.147

–10 0.26 0.575 –0.814 –0.159 0.7 –0.184 –0.187 0.091
0.6 0.575 –0.687 –0.105 0.376 –0.025 –0.134 0.05

–20 0.25 0.198 –0.354 0.141 0.058 –0.023 –0.027   0.013
0.42 0.198 –0.323 0.118 0.04 –0.008 –0.024   0.01
0.82 0.198 –0.275 0.088 0.014 –0.005 –0.013   0.003

C x av m
m

m

n

x( ) =
=

∏
0
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operating bandwidth of 2 to 18 GHz with good characteristics. Of course, wiggled lines can
be used for step couplers.45

Tapered coupling couplers have also been investigated for forward coupling by P. Ikalaine
G. Matthaei.46 Employing asymmetric width coupled µstrips in a structure similar to that indica
in Figure 7.2.35b, they have built a 3 dB forward coupler with an operating bandwidth of 5
However, due to the longer extension compared to other 3dB couplers, as will be seen in th
section, this structure could be attractive in the millimeter wave region.

7.2.6 Interdigital or “Lange”

The “Lange coupler” is the only compact, wideband, microstrip directional coupler that is
to easily reach –3 dB of coupling or even more. This network was proposed for the first tim
J. Lange,47 and it is perhaps one of the most used microstrip networks. Its physical realizatio
indicated in Figure 7.2.47, where the network in part a is the original one developed by Lang

We see that a number “n” of coupled lines with length λ /4 are connected together at eac
extreme. In the case of part a of the figure, the two λ /8 lines form one λ /4 line for those frequencies
where the length of the connecting wires may be neglected. The connections are indica
Figure 7.2.47 with solid thick lines and are called “air bridges.” The number “n” of coupled lin
is usually an even number, typically four or six, although in theory it is possible to use three li48

The Lange coupler is also called an “interdigital coupler” or simply “hybrid.” With the hypoth
of neglecting the length of the air bridges, the Lange coupler may be thought of as many q
wavelength directional couplers connected in parallel. So, to explain the path of a signal en
the coupler we may use the theory studied in section 7.2.4. As a consequence of this coinc
the Lange coupler is a backward type. For example, and with reference to Figure 7.2.47a, a signal
entering in port “1” has the coupled port “2” and the direct port “4,” while port “3” is isolated
addition, phase shift between signals at direct and coupled ports is 90°. For this reason, the
coupler is also called a “3 dB quadrature hybrid.”

Figure 7.2.43
©2000 CRC Press LLC



Figure 7.2.44

Figure 7.2.45
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Figure 7.2.46

Figure 7.2.47
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The network in Figure 7.2.47b still belongs to the Lange coupler family shown in part a of t
figure. It was first suggested by R. Waugh and D. Lacombe.49 It is usually called an “unfolded
Lange coupler,” and the difference between these two networks is that they exchange the i
and direct port, as we see in Figure 7.2.47 parts a and b. For both the versions, each of the couple
lines is called a “finger” in the normal practice.

Due to the multicoupling effect between the fingers, with the Lange coupler it is possib
reach 3 dB of coupling or even more with the consequence that this network is the only 
quadrature microstrip coupler” employed in practice in wide bandwidth circuits. In fact, for
four fingers network and 2.5 dB of center band coupling, it is possible to reach operating ban
of 100%, i.e., 3:1 between the limits of the frequency band. Theoretically, coupling increase
the number of fingers, but in practice only four fingers are used, especially for center frequ
above 10 GHz. The theoretical increase of coupling is limited by the increase in the num
discontinuities encountered using a higher number of fingers. As we will see later, with the 
coupler it is also possible to have coupling lower than –3 dB, but in this case other networ
be simply used for this purpose.

One of the simplest studies on the Lange coupler was made by Wen Pin Ou.50 In this method
the equivalence of the coupler is used with an array of coupled transmission lines, as indic
Figure 7.2.48a. Since we think that it is important to have a theoretical view of the Lange cou
we will discuss such a method of study. Let us suppose that coupling between the couple
of Figure 7.2.48a only exists among adjacent lines, so that, for example, line “2” is only affe
by lines “1” and “3.” Each line has its own admittance “Y,” which depends on its position in
array. If a line would be alone and short circuited at one extreme it would have an input adm
“Y( θ)” given by:

Figure 7.2.48
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where “Y�” is the admittance of the line. The fact that the lines in Figure 7.2.48a are not an infinite
distance apart changes this situation, and the input admittance “Ymm(θ)” for the generic line “m” is:

where “Ymm” depends on the position in the array of the line “m.” In fact, for the first “1” and 
“n” line, the input admittance is:

(7.2.110)

For any other line “m,” that is with m ≠ 1 or m ≠ n, we have:

(7.2.111)

where “Yc” is the mutual admittance between two adjacent lines, that is:

(7.2.112)

Now, let us evaluate the current entering in one extreme, for example the “d” extreme
current will be affected by the “d” generators and “u” generators. Since the system under s
a linear one, we can use the superposition effects principle.

Let us start to evaluate the system when only the lower generators are present. The 
“I md” entering in the lower extreme of the line “m” will be due to three terms:

I1. The current “Immd(θ)” due to the generator “Vmd”:

(7.2.113)

I2. The current “I+md(θ)” due to the generator “V(m+1)d”:

(7.2.114)

where “Yc(θ)” is given by:

I3. The current “I–md(θ)” due to the generator “V(m–1)d” current, which is equal to the previous
“I +md(θ),” that is:

(7.2.115)

Then, let us continue to evaluate the effect on the current “Imd” caused by the upper generator
This effect can be evaluated using the transmission matrix, studied in Chapter 1. There w
three currents due to the upper generators:

I4. The current “Immdu(θ)” due to the generator “Vmu”:

Y Y Pmm mmθ θ( ) ( )−⊥

Y Y Ynn11≡ =! ll

Y Y Y Ymm c= +ll ll
2

Y Y Ym m m m c, , !+ −≡ =1 1

I V Ymmd md mmθ θ( ) = ( )

I V Ymd m d c+ +( )( ) = ( )θ θ
1

Y Y Pc cθ θ( ) ( )−⊥

I V Y Imd m d c md− −( ) +( ) = ( ) ≡ ( )θ θ θ
1
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Since Immu ≡ –Immd, using 7.2.113 the previous equation becomes:

(7.2.116)

I5. The current “I+mdu(θ)” due to the generator “V(m+1)u”:

(7.2.117)

I6. The current “I–mdu(θ)” due to the generator “V(m-1)u,” current which is equal to the previous
“I +mdu(θ),” that is:

(7.2.118)

So, the current “Imd(θ)” at the lower extreme “d” of the generic line “m” is:

(7.2.119)

From 7.2.119 it is possible to evaluate the current “Imu(θ)” at the upper extreme “u” of the
generic line “m” only changing “d” with “s,” obtaining:

(7.2.120)

With 7.2.118 and 7.2.119 we have completely determined the coupled line system indica
Figure 7.2.48a. This theory is the general one, which we can apply to the network indicate
Figure 7.2.48b, which represents the case of the four fingers unfolded Lange coupler. Note that as
a consequence of the physical connections between the lines, the admittance “Yp” to ground of
each line is:

 

and the overall coupling admittance “Ya” of each line will be:

The two previous formulas can be simply adapted to the case of “n” coupled lines, wit
an even number, always connected as indicated in Figure 7.2.48b so that we always have a fou
port network. In such a case “Yp” and “Ya” become:

(7.2.121)

(7.2.122)

For the case of such a network, the relation for perfect isolation and matching is:

I jV Y sen Immdu mu mm mmuθ θ θ θ( ) = ( ) + cos

I jV Y ec V Y Tmmdu mu mm mu mmθ θ θ θ θ( ) = ( ) ( ) ( )−⊥cos

I V Y Tmdu m u c+ +( )( ) = ( )θ θ
1

I V Y T Imdu m u c mdu− −( ) +( ) = ( ) ≡ ( )θ θ θ
1

I I I I I I Imd mmd md md mmdu mdu mduθ θ θ θ θ θ θ( ) = ( ) + ( ) + ( ) + ( ) + ( ) + ( )+ − + −

I I I I I I Imu mmu mu mu mmud mud mudθ θ θ θ θ θ θ( ) = ( ) + ( ) + ( ) + ( ) + ( ) + ( )+ − + −

Y Y Y Yp c= +2 2
ll ll

Y Ya c= 3

Y n Y n Y Yp
n

c
( ) = ( ) + −( )2 2 1 2

ll ll

Y n Ya
n

c
( ) = −( )1
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(7.2.123)

where “Y” is the system reference load admittance connected to each port. So, rememberin
we said to obtain the previous points I1 through I6, for the case of Figure 7.2.48b we can write
the following relation:

(7.2.124)

Setting θ = π/2 in the previous matrix and designating port “1” as the input port we can ob

(7.2.125)

(7.2.126)

(7.2.127)

from which we can recognize that the network connected as in Figure 7.2.48 b. The quantities “Y��”
and “Yc” can be related to the even “Ye” and odd “Yo” admittance using the following relations:

(7.2.128)

(7.2.129)

Inserting the two previous equations in 7.2.121 and 7.2.122, 7.2.123 and 7.2.125 becom

(7.2.130)

(7.2.131)

After this study, it should be clear that the air bridges that connect the coupled line
Figure 7.2.48 in parallel must be evaluated with zero length in order to study the Lange co
with this method. In such a case all the lines connected in parallel are equipotential at the con
points. In particular, with Figure 7.2.48a as reference, the two λ /8 lines are connected in series
with a zero length connection. Note that point “A” belongs to the λ /4 line, which is in parallel to
the series of the two λ/8 lines, and since these lines are equipotential for any transversal se
the connection at the point “A” has no electromagnetic effect. So, the connection of the air 
at point “A” only has the effect of creating a mechanically stronger connection with the wires.
discussion is obviously valuable only until that frequency where the wire connections have a 
which is no more than a 1/10 of the quarter wavelength coupled lines.

From Equations 7.2.130 and 7.2.131, R. M. Osmani51 has obtained other formulas that ar
among the first and simplest dedicated to the design of a Lange coupler. According to O
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from the previous formula we can obtain the relationships between “ζ e,” “ ζ o,” and “Z” for any
adjacent pair of lines in the array:

(7.2.132)

(7.2.133)

where:

(7.2.134)

Equations 7.2.132 and 7.2.133 have been depicted in Figure 7.2.49 for coupling values between
3 dB and 6 dB in abscissae and for four and six coupled lines. It is interesting to note that 
Lange coupler, which is formed with λ /4 long coupled lines, the general formula ζ eζ o = Z2 does
not hold as we can see from 7.2.132 through 7.2.134.

From Figure 7.2.49, once the coupling “cv,” the reference system admittance “Z,” and th
number “n” of coupled lines are defined, it is possible to evaluate the even and odd admittan
synthesize the coupler.

Although the Lange coupler is the most used 3 dB wideband microstrip directional coupl
physical realization always requires quite a small line width “w” and coupling spacing “s.”
example, a Lange coupler centered at 12 GHz with a BW% = 100% and a center band co

Figure 7.2.49
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of 2.5 dB, requires coupled microstrip dimensions near s = 18 µm and w = 35 µm, with a con
thickness t = 4µm and alumina substrate of height h = 508 µm.

The shape of the coupling vs. frequency of the Lange coupler and the phase relation b
the output signals are the same as the single quarter wavelength coupled line coupler that we
in section 7.2.4. So, also in this case the equations for coupled “cv” and direct “dv” ports are the
same as given in 7.2.84 and 7.2.85, which we report here:

(7.2.84)

(7.2.85)

The graphs for coupled and direct ports are depicted in Figure 7.2.50 for the case of a center
band coupling c0v = –2.5 dB. Of course, in all these discussions the radiative phenomena, the
“TEM” propagation mode and losses have not been taken into consideration. In practice, al
undesirable effects will cause some bandwidth reduction and increasing attenuation with freq

7.3 SIGNAL COMBINERS

If we recall the conditions used in the previous section to study the directional couplers
lossless devices and “TEM” propagation mode, all the previous networks also work as 
combiners. This hypothesis will be considered as true in the rest of this section, unless oth
stated. This means that when two signals enter in two ports, some combination of these 
must appear at the other ports, with the condition that all the power entering must be equa
the power leaving the network. In addition, we will assume that the ports are perfectly matc

Figure 7.2.50

d
c

c jsenv
v

v

θ
θ θ

( ) =
−( )

−( ) +

1 0 5

1

0
2

0
2 0 5

.

cos.

c
j c sen

c jsenv
v

v

θ
θ
θ θ

( ) =
−( ) +

0

0
2 0 51 . cos
©2000 CRC Press LLC



nalyze
ignal
ignals
 such a

d at
tudy of
center

 it can
 of its
he path,

tput

 signal

ion
is

 of the
offset

plete
of its
Some particular notes are needed to better understand how they work. Therefore, we will a
the networks in the previous section from the point of view of their ability to realize a s
combining. A common rule for any power combiner we are going to study is that the applied s
must be connected to the isolated ports of each directional coupler used as a combiner. In
case, the two generators are not influenced by each other.

7.3.1 Branch Line

Let us examine Figure 7.3.1. Let us suppose that two signals that are 90° out of phase an
the same frequency enter at the two adjacent ports of the branch line coupler. From the s
the previous section we know that the adjacent ports of this coupler are decoupled at 
frequency. So, these two signals do not alter each other. 

The rigorous analysis of the branch line coupler is indicated in the previous section and
be used for the case of the branch line working as a combiner. A qualitative interpretation
behavior as a signal combiner can be given representing the phases of each signal along t
as indicated in Figure 7.3.1. So, the signal “E1” entering port “1” comes out at port “4” as “E41”
and at port “3” as “E31.” The same applies to signal “E2,” which exits at port “4” as “E41” and at
port “3” as “E31.” Assuming the network is lossless and propagating pure “TEM” modes, the ou
signals add at port “4” and subtract at port “3.” If, in addition, the signals “E1” and “E2” have the
same amplitude and the network is supposed to be lossless, then at port “3” there will be no
and at port “4” there will be available the sum of the available power of the signals “E1” and “E2.”
This situation is represented in Figure 7.3.2, where we have also indicated the power as a funct
of “θ” exiting at all the ports, where “θ” is the electrical length of the branch line arms. For th
figure we have assumed a 3 dB branch line with the signals applied to the network being
same amplitude. The π/2 factor that appears in the expressions in the ordinate is the phase 
between the two input signals according to Figure 7.3.1. In any case, the output port of the branch
line combiner is always in front of the port where the most delayed signal is connected.

7.3.2 “Rat Race” or “Magic T”

The study of the “rat race” working as a signal combiner can be performed using the com
analysis of the “magic T” that was given in the previous section. A qualitative interpretation 

Figure 7.3.1
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behavior as a signal combiner can be given representing the phases of each signal along the 
as indicated in Figure 7.3.3. The generators are of course applied to the isolated ports, in this
ports 1 through 3, but also ports 2 to 4 could be used. We see that depending on the phase d
“∆ϕ” of the signals “E1” and “E3” the output and isolated ports can be “2” and “4” when ∆ϕ = 0
or “4”  and “2”  when ∆ϕ = π. In Figure 7.3.4 we have drawn the powers exiting at ports “2”  and
“4”  for the case of ∆ϕ = 0 or ∆ϕ = π, while in Figure 7.3.5 we have drawn the powers exiting at
all ports. We see that when the electrical distance “θ” between ports 1 through 4 is equal to 90
then there is no reflection against the generators, and they are completely isolated b
them.

Also note that when the signals have a phase offset of “π” the operating bandwidth is a little
wider than the case of ∆ϕ = 0. Of course, for both Figures 7.3.4 and 7.3.5 we have assumed a 3
dB rat race device with the signals applied to the network being of the same amplitude.

7.3.3 “In Line” or “Wilkinson”

The case of the Wilkinson directional coupler working as a power combiner is represen
Figure 7.3.6. With the hypothesis of a lossless and pure supporting “TEM”  mode network and
remembering from the previous section that all the ports are perfectly matched and ports “

Figure 7.3.2
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of the
“3” isolated at center frequency, we find that the sum of the power entering appears at th
port “1.” Of course, from this result the two input signals must be in phase, otherwise a fra
of the power will be dissipated in the resistor “R.” An evaluation of the power lost “Pw” in the
isolation resistor is given in Figure 7.3.7, as a function of the phase offset “∆ϕ” between the input
signals. Here we have assumed that the signals at ports “2” and “3” have equal power “P
see that when ∆ϕ = π the sum of the available power of the generators is lost in “R” and consequ
no power will  be available at port “1.”  In Figure 7.3.7 with Pw(∆ϕ ,1,1) we have indicated the powe
lost in “R” when both the input signals are connected, while with Pw(∆ϕ,1,0) we have indicated
the power lost in “R” when only one input signal is connected. In this last case, one half 
input power is lost in “R” and consequently the other half exits from port “1.” 

Figure 7.3.3
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Particular attention must be paid to this fact when dimensioning the size of the isolation re
in a Wilkinson adder. In other words, “R” must be able to dissipate all the power occurring
possible phase offset between the inputs or when one input is no longer present.

7.3.4 Step Coupled Lines

The situation of a single step coupled line directional coupler working as a signal ad
indicated in Figure 7.3.8. Assuming that the network has been designed for 3 dB of coupling and
remembering what we said in section 7.2.4 we find that the power available at ports “2” an
have the shape indicated in Figure 7.3.9. Here we have assumed that the input signals have the
same amplitude and phase offset of 90°. We see that when the electrical length “θ” of the coupled
lines is equal to 90° there is only one output from which all the power is available. If we inc
the frequency, power appears at the output ports. Note that since the coupled line coupler is p
matched at all frequencies, no reflection coefficient exists at the input ports. This means t
sum of the power at the output ports is equal to the sum of the powers entering the networ
situation is very different from the previous cases studied in sections 7.3.1 and 7.3.2. 
Figure 7.3.9 we also see that when the frequency of the signals is three times the frequency where
the coupling length is 90° long, the sum and difference ports reverse.

We now want to come back to Tables 7.2.1 and 7.2.2 where we gave the impedances to build
multistep directional couplers with a coupling value of –8.34 dB. To this purpose, let us exa
Figure 7.3.10. With “c”  and “d”  we have indicated the modulus of the “coupling” and “direct
coefficient.” For the moment, “c” and “d” are unknowns. We know that “c” and “d” must sat
the condition:

Figure 7.3.4
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(7.3.1)

Now, we want the signals at ports “1” and “3” to have the same amplitude, i.e.:

(7.3.2)

Combining 7.3.1 and 7.3.2 we have:

(7.3.3)

Figure 7.3.5

Figure 7.3.6
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Figure 7.3.7

Figure 7.3.8
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This equation has four solutions, i.e.:

(7.3.4)

While “c1” and “c2” give a coupling value of –0.686 dB, which cannot be reached in micros
“MIC” technology, “c3” and “c4” give a coupling value of –8.34 dB, which is quite simple to realiz
From the fact that all the power entering in port “4” must be equal to the sum of the output p
at ports “1” and “3,” and from the condition in 7.3.2 it follows that the network in Figure 7.3.10
is equivalent to a 3 dB directional coupler. This is the reason why we have inserted the 
values for –8.34 dB of coupling in Tables 7.2.1 and 7.2.2.

The reader should recognize that this explanation is also true for the multistep symm
directional couplers and Lange couplers, while multistep asymmetrical directional couple
seldom used, due to the fact that they are not 90° out of phase between the outputs. At th
it is important to remember that since the Lange coupler permits the construction of 3 dB direc
couplers, the network shown in Figure 7.3.11 is seldom used.

A typical application of 3 dB 90° directional couplers is to give a sufficient match to a so
when we also need to use reflective devices. Let us examine Figure 7.3.11. In part a of the figure
the two shunt diodes give a high reflection coefficient “s11” when they are biased forward. The tw

Figure 7.3.9
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reflected signals “s11Vu” and “s11Vd” in part b of the figure, sum at the terminated port of the inp
hybrid while subtracting at the input port, with the consequence that the reflections do not a
at the input. Of course, this is theoretically true only if all the ports of the hybrid are mat
while in practice this is not the case because the diodes are reflecting. Nevertheless, the hyb
gives an isolation, and a value of 10 dB for the overall input return loss is possible in the h
operating bandwidth.

After we have seen the working principles of the multistep and Lange directional couple
power combiner-divider networks, we want to show a network that employs all the concep
have studied until now. In practice this network is not used, but it is an example of how the 
for wider bandwidth 3 dB directional couplers has stimulated researchers. 

The original network is indicated in Figure 7.3.12. It was designed by G. Kemp and others52

A three step symmetrical directional coupler has been modified so that the inner section is com
of two Lange couplers connected in tandem. One Lange hybrid works as a signal divider, th
as signal adder. With this network the researchers have overcome the difficulty of creatin
microstrips, the high coupling value of the inner section for wide bandwidths, as we can 
Tables 7.2.1 and 7.2.3. In fact, performing the same calculations used for the series connections
of the two coupled line directional coupler shown in Figure 7.3.10, and indicating with “c” the
coupling value for the single Lange coupler in Figure 7.3.12, we have the tandem connections of
the two hybrids giving a resultant coupling value of “cs” if:

Figure 7.3.10
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(7.3.5)

Other solutions are analytically possible, but they give values of “c” higher than “cs.”
As an example, let us attempt to build a 3 dB, 0.1 dB ripple, B = 100%, three step direc

coupler. From Table 7.2.1 we have for the highest coupling region, ζ e2 = 3.26. To this value of
“ζ e” corresponds a value for the odd impedance of ζ o2 = 0.307, and consequently a coupling valu
of cs = 0.828. Using this value of “cs” in 7.3.4 we obtain c = 0.469, or c = –6.583 dB which is t
coupling value for any hybrid that appears at the center of the coupler shown in Figure 7.3.12. As
was said before, this type of network is seldom used because the use of a Kemp type couple
in a bandwidth reduction with respect to the theoretical band of the original step coupled co
This bandwidth reduction has been evaluated as being near 10% by J. L. B. Walker.53 This network
is an example of how very desirable a wideband 3 dB – 90° directional coupler is.

Figure 7.3.11
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7.4 DIRECTIONAL FILTERS

Directional filters are widely used networks in systems where a lot of narrowband signals
to be treated. They have the ability to simultaneously realize a band pass filter in one directi
a stop band filter in another direction. Variations of this type of directional filter, also in waveg
technology, can be found in references 54,55,56.

Examples of applications are in signal mux-demux and phase lock systems.

7.4.1 Resonant Ring

The most used microstrip directional filter is indicated in Figure 7.4.1, and is called a “resonan
ring” or “resonant loop” directional filter. As we can see, two single step coupled directional cou
are connected “in parallel” to form something similar to an inner ring with two coupled lines.
network must satisfy the condition that the length “� = !λ /4” of each directional coupler plus the
length “D1” and “D2” of each matched connecting line be an integer multiple “n” of wavele
in the microstrips. Usually D1 = D2  ⊥– D, and for analytical simplicity, notation in our study w
will assume that D ≡ λ /4.

Figure 7.3.12

Figure 7.4.1
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So, let us start indicating with “θ” the electrical length of the two couplers, and consequen
βD ≡ θ. Let us place the phase reference planes at the middle of the directional coupler as in
in Figure 7.4.2 by the dashed lines and assume as reference phase that corresponding to th
signal “d0v.” With this notation, every signal crossing the coupling region transversely and lo
tudinally will be given by “j |c0v|” and “|d0v|,” respectively. 

The signal “V2” at port “2” will be given by the sum of infinite terms traveling along the rin
For instance, the first three terms “V′ 2,0,” “V ′ 2,1,” and “V′ 2,2” of the sum, for the zero, first, and
second rounds in the loop are:

(7.4.1)

It is simple to recognize that the generic term “V2,k” of the sum can be written as:

(7.4.2)

and consequently:

(7.4.3)

The series in 7.4.2 when k → ∞ , as also required from our study and expressed in 7.4.3, 
case of a canonical one, the geometric series, whose result is well known and can be found 
mathematics books.57 As a consequence, Equation 7.4.3 has the result:

(7.4.4)

Figure 7.4.2
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Also the signal “V3” at port “3” will be given by the sum of infinite terms traveling along th
ring. For instance, the first three terms “V′ 3,0,” “V ′ 3,1,” and “V′ 3,2,” of the sum, for the zero, first,
and second rounds in the loop are:

(7.4.5)

The reason why only odd exponents exist for “d” in 7.4.5 depends on the fact that whe
signal travels in the loop and exits from port “3,” it only exceeds the 2 – 4 reference plane b
the 1 – 3 one. In any case, for every travel in the loop, a phase change of “4θ” exists.

It is simple to recognize that the generic term “V3,k” of the sum can be written as:

(7.4.6)

and consequently:

(7.4.7)

From the previous equation and the well-known sum of the geometric series we have:

(7.4.8)

Note that 7.4.4 and 7.4.8 have been obtained as if they were at the center band of the c
and the phase term “e(jxθ)” only gives the phase change along the loop. To have complete solu
for 7.4.4 and 7.4.8 with “θ” as a variable, it is only necessary to replace “|c0v|” and “| d0v|” with
“|c(θ)|” and “|d(θ)|” given by 7.2.84 and 7.2.85. The resulting shape of “|V2|” and “|V3|” is indicated
in Figure 7.4.3, with c0v,dB = –3.

Interesting is the case when losses inside the loop are evaluated. To show what happen
indicate with “|c01|” and “|c02|” the two center band voltage coupling values of the two qua
wavelength couplers and indicate with “α” the u.l. attenuation factor. With these notation
Equation 7.4.8 becomes:

(7.4.9)

where “�” is the length of each arm of the ring, which for simplicity we have already assume
be of equal length. At resonance, i.e., at θ = π/2, we want V3 = 0. Inserting these two conditions
into the previous equation, we have the following relation that must be satisfied:

(7.4.10)
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Due to the presence of losses, the two couplings cannot be equal. Unfortunately, the p
condition does not agree with the condition | c01| = | c02| for maximum “V2” at resonance. So, some
compromise is necessary.

It is interesting to observe that if we studied this device using transmission line theory, it 
also be regarded as a filter. In fact, the ring inside the two lines “1 – 3” and “2 – 4” can be eva
as a resonant circuit, and with the two coupling regions as two coupling capacitances towa
resonant circuit, one at the input and one at the output. From the general filter theory, 
fundamentals are reported in Appendix A4, we know that the pass bandwidth of a band pas
is narrower when the coupling capacitances, to the resonant elements are smaller. If we reg
coupling region as capacitances as stated, we should note that when decreasing the coup
band pass of the directional filter will decrease. This is exactly what happens for this ring direc
coupler. The situation is represented in Figure 7.4.4 where the shape in dB of “V2” and “V3” is
drawn for three values of coupling, i.e., –3, –6, and –9 dB. Always from the analogy with
general filter theory, the bandwidth of this device is that of a single resonant circuit and its
is dependent on the “Q” of the resonant element. In this case, bandwidth is near 10% for frequ
up to 15 GHz while it increases for higher center frequency.

 Some modifications of this device can be performed remembering from filter theory
bandwidth and rejection of a filter can be increased if we increase the number of resonant ele
This is exactly what we can do if we realize the device indicated in Figure 7.4.5. Two full wavelength
resonant rings are coupled to form a double ring directional filter. This device can be stud
was the case of single ring, or by the use of general filter theory where various pass band
can be performed. A theory for a directional ring filter with generic number “n” of resonant 
can be found in reference 58. Multiring directional filters are seldom used in practice since if
bandwidths that need to be filtered are wider than some percent, a multiplex filter is prefer

Figure 7.4.3
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It is interesting to observe from Figure 7.4.3 how this device has the same behavior for o
harmonics of the designed center frequency, a characteristic in common with the step c
directional couplers studied in section 7.2.4.

7.4.2 Transverse Resonant Lines

Another type of microstrip directional filter is indicated in Figure 7.4.6, the “transversal resonan
lines” directional filter. Two parallel lines, “1 – 3” and “2 – 4,” are coupled to two half wavelen

Figure 7.4.4

Figure 7.4.5
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 “
lines usually called “transversal resonators” and indicated with “R1” and “R2.” For the lines
coupling distance to “R1” and “R2” is different so that for one line, the distance is λ /4 and for the
other, the distance is 3λ /4. This type of network is not as widely used as the “resonant ring” ty
but sometimes it is employed in low microwave regions, let us say up to some GHz. Its stud
good example of the application of the general transmission line theory discussed in Chapte
the “even-odd” technique widely used to study all symmetrical, reciprocal, passive network

Let us start our study using the even-odd excitation method, as indicated in Figure 7.4.7.
Assuming that port “1” is the input, let us apply an even excitation at reference planes “T1
“T2”  as indicated in part b of Figure 7.4.7. We can recognize that at resonator “R2”  these two
excitations arrive with opposite phase, and “R2” can resonate while “R1” cannot. For the
excitation indicated in Figure 7.4.7c, the situation is reversed, i.e., “R1” can resonate while “R
cannot. Note that at resonance the middle of any resonator is at zero potential.

Now let us suppose that at resonance a complete reflection exists at the coupling regio
to a reported zero impedance by the resonator. Later we will see the conditions for such a supp
With this hypothesis, Figure 7.4.8 describes the symbolic waveforms of the reflected signals. In 
figure, the referement time is the same as that used in Figure 7.4.7. For the even case, indicated i
Figure 7.4.8a, “ET4′ ” and “ET3′ ” represent the signals reflected by the resonator “R2,” while “ET1R”
and “ET2R” represent the signals reflected by the resonator “R2” and coming back at port “1
“2.” For convenience, in part a we have drawn with dashed line the waveform of “ET2R” up to the
referement time, just to show the steady state situation. In Figure 7.4.8b “ET1′” and “ET2′” represent
the signals reflected by the resonator “R1” and coming back at port “1” and “2” respectively. 
Figure 7.4.8 we can recognize how at complete reflections, that is at resonance, the reflectio
at port “2” and cancel at port “1.” This means that a signal entering at port “1” at resonanc
be completely transferred to port “2,” and nothing will exit from ports “3” and “4.” Conversel
signal entering at port “1” out of resonance will be completely transferred to port “3” and no
will exit from the other ports.

It is now interesting to study if and when a complete reflection can exist at the reference 
“T1” → ”T4.” To this purpose, Figure 7.4.9 represents the equivalent circuit of our network at t
resonance, i.e., when the middle of the resonators is at zero potential, between ports “1” a
For the preceding discussion, this equivalent network is also applicable to ports “2” and “4.”
“1” and “3” are of course properly terminated. Note that being “�” the length of the resonators
now the length of the stub in Figure 7.4.9 is “�/2,” and its electrical length will be indicated with
“θ.” The impedance of any line is set equal to “Z.” The coupling region of the resonators to
lines has been simplified to a single capacitance “C.” We studied in Chapter 4 that as our co
regions can be approximated, a gap between microstrips has a good approximation in aπ” of

Figure 7.4.6
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capacitors. The series capacitor is a reduced equivalent circuit, which is enough for our stud
reference to Figure 7.4.9, we can write:

(7.4.11)

(7.4.12)

(7.4.13)

and the voltage reflection coefficient “ρ” looking from port “1” to “T1” will be:

(7.4.14)

A complete reflection exists when |ρ| = 1, and from 7.4.14 it happens when X = 0 or:

(7.4.15)

Since θ = (ω/v)�, with “v” being the speed of e.m. energy in the microstrip, it is possible fr
the previous equation to have the length “�” of half resonator when a resonance frequency “fr” is
chosen. In fact we have:

Figure 7.4.7
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Figure 7.4.8

Figure 7.4.9
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(7.4.16)

Figure 7.4.10 represents the previous equation vs. frequency in GHz with the capacitanc
in pF and “n” as a parameter. The capacitance has been set equal to 0.1, 0.2, and 0.5 pF w
is always equal to zero. The ordinate is the length “�” in meters of half resonator.

Using frequency as a dependent variable, Equation 7.4.15 is implicit since frequency a
in both terms. In fact we have:

(7.4.17)

For our study Equation 7.4.17 can be solved in “f” graphically in a very easy manner
situation is indicated in Figure 7.4.11, where g1(f,� )  ⊥– 2πf�/v and g2(f,C,n)  ⊥– atg(1/2πfCζ 0) + nπ.
The intersection points between these functions give the resonant frequency of our device. F
figure, values of “�” are in mm, “C” in pF, and “f” in GHz.

The frequency response of the transversal resonant lines directional filter is the same 
shown in Figure 7.4.4, but there is not the simple tuning of bandwidth reachable with the reso

Figure 7.4.10
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ring directional filter. In addition, difficulties of tuning and difficulties of synthesizing a pro
coupling gap make this network usable in the low microwave region where, of course, the re
ring directional filter can also be used.

7.5 PHASE SHIFTERS

Quite often in transmission systems it is required that two signals have a precise phase dif
between them. Examples are signals to be sent in a mixer or signals used in interfore
measurements. We already have seen in previous sections that some power dividers give
phase offset between output signals, and this characteristic can be used to build phase s59

In this section we will show that such dividers are not the only networks that can be used to
a phase shift between signals.

7.5.1 Coupled Lines or “Schiffman”

The most well-known and used family of phase shifter networks are the Schiffman types s
first by B. M. Schiffman.60 They all are 90° phase shifters and all have in common the s
theoretical arguments, i.e., how the phase of a signal changes in a coupled line. Due to its wid
use, this device has been widely discussed in literature.61,62

Figure 7.4.11
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The fundamental cell of Schiffman’s shifters is indicated in Figure 7.5.1. This shape is called
a “C section” or “meander line” in the literature. It consists of a length “�” of coupled µstrips,
connected in short circuit at an extreme. Coupled microstrips have been studied in de
Chapter 5, but we don’t need the complete theory to understand the Schiffman shifter. It is e
to remember the introduction to coupled line theory given with regard to quarter wavelengt
coupled line directional couplers in Section 7.2. Of course, the length of the connection be
the two coupled microstrips must be considered in determining the proper length “�” of coupling
region. This is usually done in an empirical way, tuning the length “�,” which we will now describe,
until the proper phase shift is reached. Also in this case, unless otherwise stated, to simp
study, we will assume that the microstrip supports a pure “TEM” mode in an omogeneous die
medium. With this hypothesis, phase change “ϕ” along the length “�” of coupled microstrips is
given by:

(7.5.1)

where “θ” is the electrical length of a single isolated microstrip of length “�.” Figure 7.5.2 reports
the previous equation vs. the electrical length “θ,” with ρ  ⊥– ζ e/ζ o as a parameter. Note that sinc
the voltage coupling coefficient “cv” is given by:

it follows that:

(7.5.2)

Coupled microstrips are, of course, realized so that the matching condition ζ eζ o = Z2 is
respected, “Z” being the system reference impedance.

Figure 7.5.1
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As known from the theory of coupled lines, the value ρ = 1 means completely uncoupled lines
From Figure 7.5.2 we see that as the coupling between the microstrips increases, the phase 
along the network assumes a pseudosinusoidal shape along the line for ρ = 1. 

The working principle of Schiffman shifters is all inside this figure. For example, measur
phase difference between a signal that exits from a coupled line of length “�” and an isolated line
of length “3�.” A possible network is indicated, for example, in Figure 7.5.3 where all the compo-
nents are already known. This figure is only an example since the number of rings for a Wilk
divider can also be greater than that shown in this figure. The electrical performance of s
network, with respect to the phase difference “∆ϕ” between the two signals at ports “2” and “3,
is indicated in Figure 7.5.4 for ρ = 3.7 and � = λ /4. The value of � = λ /4 is always used in all
Schiffman’s phase shifters and this value will be assumed for these networks, unless oth
noted. 

We see how the phase difference stays for a bandwidth ∆θ = θ2 – θ1 inside a window “∆a”
centered at ∆ϕ = 90°. In this case the operating bandwidth is 3:1, with ∆a = 20°. Operating
bandwidth can be increased if a greater “∆a” is accepted, which physically traduces in a high
value of “ρ.” However, ρ = 3.7 is near the maximum value for coupled microstrips in typi
microstrip technology, and Figure 7.5.4 represents the maximum “∆θ”  for the network indicated
in Figure 7.5.3. The Schiffman shifter in Figure 7.5.3 is based on a single coupled line plus a single
line and is called “type A.”

More complicated shifters can be obtained, with the aim of decreasing the ripple “∆a” without
noticeably reducing the bandwidth. Schiffman suggests using a correction network compose
coupled line and a single line of lengths “n�” and “2n�,” respectively. From what we have sai

Figure 7.5.2
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about the theory of Schiffman’s shifter, such a structure has a phase difference around ∆ϕ = 90°,
with a ripple depending on “ρ.” Since there are two ways to connect such a correction networ
a “type A” shifter, two new phase shifters are possible, called “type B” and “type “C.” 

A type “B” phase shifter is indicated in Figure 7.5.5 where the value “n” of the correction
network has been chosen equal to “3.” In this figure, and in this paragraph, the required 
divider in front of the shifter is omitted for simplicity. An example of “∆a” reduction by this
network is represented in Figure 7.5.6 by its phase characteristics. In this figure, for the “type 

Figure 7.5.3

Figure 7.5.4
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network ρ = 3 has been set, while for the error correction we have ρ = 1.18. Note that the “type
A” shifter has a ripple of ∆a = ±4.8° in BW = 2.33:1, while the “type B” network has ∆a = ±0.8°
max. in approximately the same BW.

The “type C” phase shifter is indicated in Figure 7.5.7 where the value “n” of the correction
network has been chosen equal to “2.” The original Schiffman’s example of “∆a” reduction by this

Figure 7.5.5

Figure 7.5.6
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network is represented in Figure 7.5.8 by its phase characteristics. In this figure, for the “type 
network ρ = 5.83 has been set, while for the error correction ρ = 2.35. The value ρ = 5.83 is clearly
not realizable in microstrip technology, but the “type C” network can of course be used with 
values of “ρ” to compensate for the “∆a” for the “type A” shifter. Note that the “type A” shifter
has a ripple of ∆a = ± 22.7° in BW = 4.6:1, while the “type C” network has ∆a = ± 5° max. in
approximately the same BW.

Another compact Schiffman’s shifter is the “type F” indicated in Figure 7.5.9. In this network,
two coupled microstrip sections are employed in a series configuration, and phase is comp

Figure 7.5.7

Figure 7.5.8
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that of a single microstrip. Phase change “ϕ 2” along two sections of coupled microstrips connect
in series is given by:

(7.5.3)

where “θ1” and “θ2” are the electrical lengths of two isolated microstrips with the same phys
length “�1” and “�2” of each coupled section while “ρ1” and “ρ2” are the ratio of ζ e/ζ o for each
coupled section. The “type F” phase shifter is realized with �1 = �2. The original Schiffman’s
example of “∆a” reduction by this network is represented in Figure 7.5.10 by its phase character-
istics. In this figure, for the “type A,” network ρ = 6.2 has been set while for “type F,” ρ1 = 1.6
and ρ1 = 6.2. The value ρ = 6.2 is clearly not realizable in microstrip technology, but the “type
network can of course be used with other values of “ρ” to compensate for the “∆a” for the “type
A” shifter. Note that the “type A” shifter has a ripple of ∆a = ± 24.4° in BW = 4.8:1 while the
“type F” network has ∆a = ± 2.8° max. in a BW = 3.2:1.

At this point it is interesting to see an example of the synthesis of the most simple Schi
network, i.e., the “type A” shifter. We assume that the ripple “∆a” and the operating bandwidth
“BW” are known. The first thing to do is to evaluate whether “∆a” and “BW” can be made with
a “type A” network. In our example we will assume this is possible. Then, applying the proc
explained in Figure 7.5.4 with some values of “ρ,” the proper value of this parameter is foun
Now, since the matching condition ζ eζ o = Z2 must be satisfied and the value of “ρ” is known, it
follows that “ζ e” and “ζ o” are determined. Now, using the microstrip coupled theory studied
Chapter 5, the value of width “w” and spacing “s” of the coupled microstrip region can be obta
when the height “h” and relative dielectric constant “ε r” are known.

The original Schiffman work only describes 90° phase shifters, but with these networks,
mean values of phase can also be reached. An interesting work on this subject has been de
by B. Schiek and J. Köhler.63 Figure 7.5.11 indicates, for instance, the phase characteristic of a 
phase shifter, realized with a coupled line section with ρ = 3.2 and a reference line of length � =
5λ /8. The resulting bandwidth is BW = 3.2 and the phase amplitude window is ∆a = ±4.5°.

Figure 7.5.12 indicates the phase characteristic of a 180° phase shifter, realized with two coupled
line sections, both with ρ = 2.82. The resulting bandwidth is BW = 2.1 and the phase amplit
window is ∆a = ±10.6°.

Figure 7.5.9
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In their study, Schiek and Köhler have also given a procedure to increase the matching Ω
of the coupled line sections. In fact, from the coupled µstrips theory studied in Chapter 5
possible to understand that the dishomogeneity of the dielectric medium for the micr
networks causes the difference between phase constants “βe” and “βo.” This fact is responsible
for the high frequency mismatch of the structure. The method used by Schiek and Köhle
divide the single coupled line section of length of � = λ /4 in two coupled sections in series, eac
of length � = λ /8. This method allowed them to build a 180° shifter with a matching of be
than 20 dB in the band of 4 to 8 GHz.

7.5.2 Transverse Stubs or “Wilds”

Another type of simple phase shifter has been reported by R.B. Wilds64 and is indicated in
Figure 7.5.13. The phase shifting is measured between the output of an isolated reference mic
of length λ /2 + x, where “x” will be defined next, and the output of a microstrip, called the “cros
line” of length λ /2 with two shunt stubs of equal length λ /8, one open and one short circuited 
the middle of its length. The reference line has an impedance “ζ ” equal to the system reference
impedance, the two stubs have equal impedance “ζ t,” while the other lines have equal impedanc
“ζ �.” The length “x” is chosen to be proportional to the desired phase shifting “∆ϕ,” so that βx =
∆ϕ with “β” the phase constant of the signal along the reference line. Figure 7.5.13 assumes the
feeding element of the device, for instance a Wilkinson divider. Wilds has shown that “ζ �” and
“ζ t” are in relation to the mean value “∆ϕ m” of “ ∆ϕ” through the following equation:

Figure 7.5.10
©2000 CRC Press LLC
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The network in Figure 7.5.13 can easily be studied using “ABCD” matrices, as were used,
instance, in the analysis of the branch line coupler. When the resulting matrix of the crosse
is obtained, it is simple to compare the elements of the ABCD matrix of the reference line
those of the ABCD matrix of the crossed line. 

The phase characteristic of this phase shifter is indicated in Figure 7.5.14, as a function of the
electrical angle “θ” where x = λ /4, ζ = 50 and ζ � ≡ ζ t = 31Ω. The resulting operating bandwidth
“BW” is near 2:1. In any case, the “BW” of this kind of shifter is limited near 3:1, and can
reach the value of 4:1 (or more) of some Schiffman’s networks. The limitation is due to the 
of the return loss more than the high value of the ripple in the phase difference. Note that
the Schiffman shifter is theoretically always matched, since the matching condition ζ eζ o = Z2 is
satisfied, Wilds’ shifter uses resonant lines and transformers for matching. So, we can expec
resonances in the “s11” value of the Wilds’ shifter. 

A typical shape for “s11” is shown in Figure 7.5.15, where we can see how a perfect matchi
only exists at some frequencies, or if an equiripple bandwidth can be found. It is interest
show how at center frequency, the network in Figure 7.5.13 is always matched. In fact, at cente
frequency the shortened stub reports to the connection point an admittance value of Ys = –jYt while
the open stub reports an admittance value Yo = jYt . So, the sum of these two admittances is ze
and the resultant situation is that of a λ /2 line of impedance “ζ �” that connects the load to the
generator. From the general transmission line studied in Chapter 1, we know that a line λ /2 long

Figure 7.5.11

90 ∆ϕ ζ ζm t= l
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Figure 7.5.12

Figure 7.5.13
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connects the load to the generator, regardless of its impedance. Consequently, at center fr
the network in Figure 7.5.13 is always matched. Out of resonance, only some values of “ζ �” and
“ζ t” give a reasonable bandwidth. To this purpose, Table 7.5.1 indicates the normalized values o
“ζ �” and “ζ t” for 90° phase shifters, with bandwidths ranging from 2:1 up to 3:1.

Figures 7.5.4 and 7.5.15 show that center frequency of the network corresponds to the frequ
where the stubs are λ /8 long. In any case, Wilds’ shifters give a better matching than the Schiff
counterpart, with the same “BW” of course, due to the most simple construction.

7.5.3 Reflection Type

The Lange coupler discussed in section 7.2 is well suited to be used as a building bloc
phase shifter. This may be easily understood remembering how a practical 3 dB/90° splitter, u
called “hybrid,” works as a divider or an adder. This was studied in sections 7.5.2 and 7.5.3

Let us start to examine Figure 7.5.16 where a practical 3 dB/90° Lange coupler divider 
indicated. Assuming:

 1. Infinite isolation of hybrid
 2. Ports perfectly matched

The waveforms indicated in the figure represent the signal situation when the coupler is 
at only one port, port “1” in the figure, i.e., it is working as a divider. We see that signal outp
at ports “2” and “3” are in quadrature between them, while port “4” is isolated and no sign
exits from this port.

The signal situation when the Lange coupler works as a power adder is indicated 
Figure 7.5.17. Assuming that the same previous hypotheses 1 and 2 hold, we see that feeding
the coupler at two adjacent ports with two signal generators of equal amplitude but with 9
phase offset, the signal appears at only one port of the remaining two, while the last one
isolated. In the case of Figure 7.5.17, port “2” is the isolated one, since the signals at this port
are 180° out of phase between them.

Figure 7.5.14
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A mixed situation between Figures 7.5.16 and 7.5.17 can be created if the output signals
“E 21” and “E31” of Figure 7.5.16 are allowed to enter again at these ports. To realize this
situation, a complete reflection must be created at ports “2” and “3.” In this case, a sign
entering at port “1” divides equally at ports “2” and “3,” reflecst back, enters again in thes
ports, and finally a signal exits from port “4” while at port “1” no signal appears. If, in addition
to the previous two hypotheses, we assume:

3. A lossless device,
4. Complete reflection at ports “2” and “3,”

Then we have the result that the output signal at port “4” has the same amplitude as the in
one at port “1,” but with a phase offset that is dependent on the phase of the reflection coeffic
created at ports “2” and “3” to realize the complete reflection. Note that it is very importa
that a complete reflection be realized at these ports, since any resistive load different fr
zero or infinite will cause energy absorption, with the consequence that the output signal w
be attenuated.

With reference to Figure 7.5.18 indicating with “E1” the signal at the input port “1” and with
“ Γ(Z)” the reflection coefficient created by the load “Z,” the signal output “E4” to port “4” is given by:

(7.5.5)

As previously said, it is necessary to have a complete reflection at the coupled and direc
of the hybrid. Any pure reactance, working in a defined bandwidth, can perform a good ap
mation to a complete reflection. In addition, if we want to create a tunable phase shifter we

Figure 7.5.15

E jE Z4 1= ( )Γ



Figure 7.5.16

Table 7.5.1

Bϕϕϕϕ Bγγγγ ζζζζ t ζζζζllll s11M,dB ∆∆∆∆a°

2.2:1 2.1:1 0.6 0.6 –18.3 ±2
2.5:1 2.6:1 0.6 0.55 –15.3 ±3.2

3:1 3.2:1 0.6 0.48 –10.1 ±5.5

Figure 7.5.17
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to change the value of this reactance in an easy manner. In the microwave frequency regio
tunable reactance may be obtained with varactor diodes, whose capacitance value “C” is dep
on the applied voltage “V.”

A block diagram of a phase shifter using a hybrid and ideal capacitors is indicate
Figure 7.5.19. Ports “1” and “4” are the input and isolated ports, or vice versa, and ports “2”
“3” are the coupled and direct ports, or vice versa, of the splitter. In this case, choosing a ref
value “Vr” of the applied control voltage to the varactors from 7.5.5 we find that if we want
output signal changes only for a phase “ϕ” at the control voltage “V,” with respect to the outpu
signal for “Vr,” the reflection coefficients must be related by:

(7.5.6)

If the previous equation holds, signal “E4” will not be affected by amplitude variation when
varying the control voltage, but only its phase will change.

Also in this case of ideal hybrid and ideal capacitors, the bandwidth of the phase flatn
the tuneable phase shifter is limited by the frequency dependence of the capacitive reactan
can be simply shown by evaluating the reflection coefficient “Γ (C)” created by the capacitor “C”
of Figure 7.5.19, that is:

(7.5.7)

Figure 7.5.18

Figure 7.5.19
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where Xc = 1/ωC and “Zh” is the impedance presented by the hybrid to the capacitor. Then, app
7.5.6 with “V” and “Vr” replaced by two values of capacitance, it is possible to evaluate
differential phase shifting inserted on the signal. The graphical results are represen
Figure 7.5.20, where in abscissae we have frequency in GHz and in ordinates the phase shif
degree. Here, we have chosen three values of phase shifting at 12 GHz, nearly 20°, 40,° a
In this figure the smaller values of capacitance are 0.5pF, 0.33pF, and 0.12pF, respectively
the higher value of capacitance, that is the reference value, is 0.8pF. We see how a desire
shifting can be obtained just by changing the values of the capacitors, but the phase flatn
compromise with the operating bandwidth. Using some reactance compensation it is poss
flatten the phase shifting somewhat. Note that all the components in the calculations hav
considered ideal. 

Another source of error is due to the limited value of isolation of the hybrid. Typical va
are near 20 dB for the Lange coupler working in the 6 to 18 GHz band, or 25 dB using
technological accuracy. Adapting the results of some researchers65 to the case of Figure 7.5.19, the
maximum peak phase error “εpk” due to the finite isolation “I” of the hybrid is given by:

(7.5.8)

In our case of phase shifter we desire |Γ(Z)| = 1, as previously assumed in point 4. The graphi
result of Equation 7.5.8 is given in Figure 7.5.21 for the case of |Γ(Z)| = 1, where in abscissae we
have isolation in dB and in ordinate the peak phase shifting error in degree. Note as with 
of isolation the maximum peak phase error is near 23°. With care in choosing a matching n

Figure 7.5.20
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between the reflective elements of Figure 7.5.18 and the hybrid, it is possible to reduce this cau
of error. Unfortunately, these matching networks have a narrower bandwidth with respect 
Lange hybrid and, in addition, can perform good phase precision only for some values of Γ(Z).
As a result, for a wide bandwidth phase shifter some compromise is needed between phase 
tunability, and available layout area. Due to the simple construction and small required a
reflection phase shifter is well suited to be realized in MMIC technology.66 Of course, the same
discourse can be applied to any 3 dB/90° divider, as for example the branch line divider. Ho
this last device has a narrower band in comparison to the Lange coupler.

7.6 THE THREE PORT CIRCULATOR

Very interesting transmission properties can be obtained when microstrips come near,
realized on, ferrimagnetic materials.* The most commonly used material for this purpose is 
“ferrite,” but effectively under this name there are a lot of ferrimagnetic materials** each of w
is best suited for a particular application and/or operating bandwidth. In this section we wi
the term “ferrite” to mean a generic ferrimagnetic material, unless we indicate an otherwise c
specified material.

A microstrip circulator is a three port device using ferrite in some part, with the characte
that for any input “I” port there is only one output “O” port; in addition, (and it is the m
characteristic that makes the circulator unique) exchanging “I” with “O” there is no transmis

Figure 7.5.21

*  See Appendices A5, A6, and A7 for energy interactions between the e.m. field and ferrimagnetic materials.
**  See Appendix A7 for definitions of ferrimagnetic materials.
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In other words, connection between two ports is circular with a well-defined direction.* Sinc
interest in these devices is very high, circulators are not only stand-alone devices, but the
also been inserted in MMIC.67,68

With this definition, the circulator is represented with a symbol indicated in Figure 7.6.1. If
port “1” is the input, then port “3” is the output; if port “2” is the input, then port “3” is the outp
finally, if port “3” is the input, then port “1” is the output. So, the “rotation” of the signal ins
the circulator is possible only in the direction “1 → 2 → 3 → 1,” and not in the opposite direction
i.e., “1 → 3 → 2 → 1.” A physical realization of a microstrip circulator is indicated in Figure 7.6.2.
In part a it is indicated in a cross-sectional view, while part b indicates a top view of the d
Three microstrips are connected together with a circular disk, so that the lines are 120° fro
nearest line. This structure is constructed on ferrite as a substrate, at least beneath the circ
and part of the microstrips. Finally, a magnet must properly and uniformly magnetize the f
through a static magnetic field “Hdc.” Usually, a microstrip circulator is a “drop-in” device, i.e., 
stand-alone component that is inserted in another microstrip circuit, whichever it is. The d
indicated in Figure 7.6.2 is also called a “junction circulator.”

A lot of theory, especially regarding the physics of ferrimagnetic materials, is necessa
explain why this device works as a circulator. The reader who is not clear about the e
interaction phenomena between the e.m. field and ferrite is strongly encouraged to read 
Appendix A7 where we have reported the fundamental concepts on this topic. These conce
also be necessary for the coming sections where we will discuss other microstrip devices w
through energy interactions with ferrimagnetic materials. In addition, Appendices A5 and A6 co
the fundamental concepts required to understand Appendix A7. However, when necessary, 
recall the most important topics regarding the interaction between the e.m. field and ferrite th
necessary to explain the circulator operation mode. 

From the theory developed in Chapter 2, we know that the fundamental propagation m
the microstrip is the “qTEM.” Here we will assume that this mode can be replaced with a
“TEM.” So, before the connection between the microstrip and the circular disk, “h” is linearly
polarized and parallel to “w” of the microstrip. Consequently, the internal static magnetic 
“H s” is orthogonal to “h.” From this fact, and from the fact that the wave is propagating i
direction orthogonal to “Hs,” we know** that the “TEM” mode divides itself into “TE” and “TM”
modes having circular magnetic polarization, that in our case is as perfect as the wave is n
center of the disk. In this circumstance, the ferrite presents a permeability “µeq⊥ .”

Figure 7.6.1

*  We will see later how the circular direction between ports can be changed.
**  See Appendix A7 for the theory.
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After these simple fundamental notes regarding the energy interaction between ferrite an
waves, we can begin to study the electromagnetic structure extracted from that of the circ
This situation is indicated in Figure 7.6.3. Two conductor disks are separated by a ferrite cylind
of height “h.”* For the present case of the microstrips, we assume that all the “RF” field e
is contained inside this structure. With this hypothesis, we don’t need to evaluate effective p
eters like permeability or permeability effective values.**

The analytical study to find the solution of Maxwell’s equations for this geometry is q
involved with mathematics. In fact we have to resolve these equations in a medium with ten
permeability, applying the boundary condition to a system with a cylindrical coordinate sys
Some theories to explain the circulator behavior can be found in the literature.69,70,71,72,73,74,75,76,77

Here, we will show the fundamental steps that are necessary to understand the operation
junction circulator. We will suppose that the e.m. field has no dependence on the coordina
i.e., we assume that the value of “h” is much smaller than the wavelength of the signal 
the ferrite.

Figure 7.6.2

*  In this text “h” is used throughout to indicate substrate height. Here it will also be used to indicate the magnet
of the wave. We think that the objects are so different that no confusion will arise.
**  See Chapter 2 for definitions of microstrip effective parameters.
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To find the natural oscillation frequencies of this structure, we have to resolve Maxw
equations. So, the wave equation* for the electrical field “ez” for the structure indicated in
Figure 7.6.3 can be written as:

(7.6.1)

where “kte⊥
2 ” and “µeq⊥ ” are given by **:

(7.6.2)

(7.6.3)

Analogous with the case of rectangular coordinates, to find a solution of 7.6.1 we app
“separation variable” method. We assume the field “ez” to be the product of a function of “r” only
and a function of “θ” only, i.e., ez(r,θ) ⊥– fr(r) fθ(θ). With this hypothesis, the solution of 7.6.1 is

(7.6.4)

where “Jn(kte⊥ r)” is the Bessel function of the first kind and of order “n,” and “an” and “bn” are
two constants to be determined when the boundary conditions are defined. Then, inserti
expression into Maxwell’s equation:

(7.6.5)

Figure 7.6.3

*  See Appendix A2 for the “Wave equation.”
**  See Appendix A7 for definitions of these quantities.
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we can obtain the field “hθ,” given by:

(7.6.6)

By analogy to the wave equation in Cartesian coordinate, we can recognize in the pr
equation the existence of two terms propagating in opposite directions. The first one:

(7.6.7)

represents a wave that propagates along “θ.” We will call this mode “progressive.” The other one

(7.6.8)

represents a wave that propagates along “–θ .” We will call this mode “regressive.” Note that fo
n = 1 these two modes have a sinusoidal amplitude dependence along the coordinate “θ,” making
exactly one amplitude period in a revolution on the circulator periphery. 

It has been experimentally verified by C. E. Fay and R. L. Comstock78 that an electric field
stationary wave pattern around the periphery of the disk exists. The shape of the rf electr
normalized to its maximum value “eyn” in absence of the static magnetic field can be approxima
by the equation:

(7.6.9)

The shape of “eyn(θ)” is indicated in Figure 7.6.4 with the dashed line, in logarithmic vertica
values. With the input port as angular reference θ = 0, we see that an electric field exists at t
angular positions of the other ports, i.e., θ = 120° and θ = 240°. So, when no “Hdc” is applied, the
circulator works as some power dividers, not matching well. But the fact that ferrite is magne
sensitive can be used to our purpose. In fact, from 7.6.7 and 7.6.8 we see how these fields
on the ratio r(σ,p)  ⊥   µ� /µp which is a function of the applied “Hdc” as indicated in Figure 7.6.5.
Symbols used in this figure are defined as follows:

(7.6.10)

For 7.6.10 we have that:

1. “M s” is the ferrite magnetization saturation, a value that is strongly dependent on ferri
material and chemical composition.

2. “Hs” is the saturating ferrite internal DC magnetic field, in practice* coincident with the
externally applied DC magnetic field.

3. “ γT µ” is the “gyromagnetic ratio.”**

*  See Appendix A7 for the relation between external and internal DC magnetic fields.
**  See Appendix A6 for definition of “γTµ.”
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The value of “ γ T µ”  is known and in the “MKSA” unit system is – 2.21(10)5

(rad./sec)/(A.t/meter). Quite often it is more useful to speak about frequencies rather than a
frequencies, and in technical literature “ γT µ”  is given the value –3.52(10)4 Hz/(A.t/m) or –2.8
MHz/Oe in “CGS” system unit. When we use frequencies instead of pulsations we will us
“frequency gyromagnetic ratio,” indicated with “γT µ ′” and defined as γT µ  ⊥– 2πγT µ ′ .

It is common practice in magnetism to use the “CGS” unit system, where magnetic field
measured in Oersted (Oe) and magnetic flux density in Gauss. The relations between these q
and the corresponding quantities in “MKSA” are: 

(7.6.11)

(7.6.12)

where “A.t/m” means “Ampere.turn/meter” and “Web/m2” means “Weber/square meters.”
Returning to Figure 7.6.5, in practice values of σ > 1 are associated with operations abo

resonance,* while for σ < 1 we are below resonance. Since the required value of “Hdc” when σ < 1
is lower than the value for σ > 1, the below resonance circulator operation is preferred. The va
of “r(σ,p)” near σ = 0 can be reached theoretically in two ways, as can be recognized b
definition of “σ” in 7.6.10: one for Hs = 0 and the other for ω = ∞. Of these two possibilities, only
Hs = 0 can be physically obtained. So, at left of σ = 0 the values of “σ” should be associated with
an operating case of zero static magnetic field; if required, “ω” can also be varied. Just to reca
what we have studied in Appendix A7, the ferrite operating at such a low DC bias** field ind

Figure 7.6.4

*  See Appendices A6 and A7 for resonance definitions and associated theory.
**  The “DC” magnetic field will also be simply called the “bias field.”

1 10 43Oe A t m= π .

1 10 4 2Gauss Web m= −
©2000 CRC Press LLC
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losses in the passing e.m. wave. Appendix A7 has formulas for the case of an unsatura
magnetic field, which characterizes the ferrite in such situations well. In the present study, in
all the formulas are relative to a DC magnetic field saturating the ferrite, which is the ope
situation of the circulator. It is important to observe that the same absolute value of “r(σ,p)” can
be obtained above or below resonance. However, since the sign changes for this value, pro
and regressive modes exchange places.

The consequence of this dependence of the “RF” fields on the ferrite “DC” magnetic stat
indicated in Figure 7.6.5) is that with a particular value of “Hdc,” the stationary wave pattern o
Figure 7.6.4 rotates. When the rotation is near 30° a null of the field can be placed at a port, causing
the isolation of that port. This situation is indicated in Figure 7.6.4 with the solid line. Of course,
as a consequence of the change of sign (but same value) of “r(σ,p)” for above or below resonance
the circulation direction changes if we operate above or below resonance. We have the same
in circulation direction if we reverse the direction of application of “Hdc.”

After this brief explanation of the circulator working principle, we want to find the fi
components inside this device when we use the boundary conditions where no generator a
This is the case relative to the “natural oscillation frequencies.” These boundary conditions

(7.6.13)

Figure 7.6.5

h for r Rθ = =!0
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Inserting this condition in 7.6.7 and 7.6.8, for the progressive and regressive modes we
respectively:

(7.6.14)

(7.6.15)

The fact that these equations give the resonant frequencies depends on the definition 
of “k te⊥ ,” where the frequency appears and from the fact that “R” is known. The solutions o
two previous equations can be easily obtained graphically, after a value of “n” has been d
In Figure 7.6.6 we have represented the case of n = 1, µ� /µp = – 0.5, i.e., below resonance operatio
and with x  ⊥   kte⊥ R. Note that for below resonance operation, i.e., σ < 1, the progressive mode ha
a higher resonant frequency than the regressive one, while for σ > 1 the opposite is true. The
difference between the resonant frequencies of the two modes depends on the value of t
“µ � /µp,” whose shape is a function of the applied internal DC magnetic field “Hs” as indicated in
Figure 7.6.5. Operatively, it has been discovered that circulation is present when the freque
of these two modes are nearly the same. This situation is called “mode degeneracy.” So, ind
with “f p” and “fr ,” respectively, the resonance frequency of the progressive and regressive m
the circulation frequency “fc” is something near the value of the following equation:

(7.6.16)

Figure 7.6.6

J k R nJ k R k Rn te n te te p− ⊥ ⊥ ⊥( ) = ( )[ ] +( )1 1! µ µl

J k R nJ k R k Rn te n te te p− ⊥ ⊥ ⊥( ) = ( )[ ] −( )1 1! µ µl

f f fc p r≈ +( ) 2
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The nonexact correspondence between the values of the two members of equation
depends on the approximations we did in considering only the case of n = 1 and a perfect 
mode supported by the microstrip.

It is interesting to study the case when a generator is applied to the structure in 7.6.3
manner indicated in Figure 7.6.2 for our microstrip network. With the generator connected at p
1, the boundary condition becomes:

(7.6.17)

(7.6.18)

(7.6.19)

and similar relations for the field “ez.” Inserting the three previous conditions in 7.6.6 we find th
the resonant frequencies are given by:

(7.6.20)

This equation can easily be solved as we did for the evaluation of the natural oscil
frequencies, i.e., graphically. Since every Bessel function of the first kind and of every or
known, the first root for Equation 7.6.20 for n = 1 is:

(7.6.21)

Practical circulator synthesis is always a “cut and try” procedure, where experience and 
work closely together. For example, it is often necessary to adjust the input port impedan
that of the connecting lines. Experience suggests that conductor disk diameter “d” is smalle
magnet diameter “D,” according to:79

(7.6.22)

where “D” is given by:

(7.6.23)

and “c” is the speed of light in the vacuum. Note that 7.6.22 is also a consequence of the fa
a uniform DC magnetic bias is required in all the ferrite inside the conductor disk. If the m
were of the same diameter as the disk, some DC magnetic disuniformity would exist in the per

Practical synthesis design starts with the definition of the operating fractional bandwidth
and VSWR, which are closely related, and then we define the value of “µ� /µp.” 80 In fact, from
VSWR we extract the angle parameter “τ” from:

(7.6.24)

From this value, we have the loaded quality factor “Q�”* using:

*  See Appendix A4 for quality factor definitions.

h h at input port i e forθ α αθ≡ − < <1 , . .,

h h at output port i e forθ α αθ≡ ° − + °< <1 120 120, . .,

h otherwiseθ = 0

J k R J k R k Rn te n te te− ⊥ ⊥ ⊥( ) = ( ) ( )1 !

k Rte⊥
= 1 84.

d D= 0 8.

D
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r eq
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(7.6.25)

and the value of “µ� /µp” is:

(7.6.26)

Usually, when the value of |r(σ,p)| = |µ� /µp| from the previous equation, a value of “p” i
chosen so that the corresponding value of “σ” is as small as possible so as to have the sma
value of “Hdc.” Note that the disk diameter can also be obtained with this procedure. In fact,
the value of “σ” and “p” are defined, we can extract the value of “µeq⊥ ” from Figure 7.6.7. After
“µ eq⊥ ” is known, from 7.6.2 we extract the value of “kte⊥ ,” and from 7.6.21 we have the value “R
of the disc conductor.

It is important at this point to inform the reader that other methods are possible for stu
the circulator operation. For instance, some researchers81,82 have used the “s” parameter metho
the empirical circular rotating waves method,83 or the phase shifter method.84 We have decided to
study the circulator with the classical Maxwell’s equation method for two reasons. First, it i
only method applicable to all electromagnetic situations even if other methods are simpler 
and second, this is a practical application of the electromagnetic theory in Appendix A2.

The circulator performances are strongly related to their operating bandwidths. These d
can operate on narrow bandwidth (for “B,” something below 10%), a moderate bandwidth
near 20%), or a wide bandwidth (“B” near 70%). In any case, insertion loss is below 2 dB
isolation is higher than 15 dB. Narrow band devices can have an improvement of these valu
of 50%. Center frequencies “fc” are limited by size for frequencies fc < 1 GHz, and for fc > 25
GHz, by microstrip dispersion phenomena,* ferrite losses, and tolerances accuracy. For ex
a typical circulator working at 1 GHz has a disk diameter d ≈ 2.5 mm, while d ≈ 2.5 cm for fc =
15 GHz. The need for this type of device in any transmission-reception unit has moved the re

Figure 7.6.7

*  See Chapter 4 for higher order effects in microstrip.

Q Bl = ( )tan τ

µ µl lp Q= 0 71.
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to produce circulators with fc ≈ 90GHz.85 The power handling capability of these devices 
dependent on the ferrite mass; peak power of some hundreds of watts and CW power o
tenths of watts are typical.

In general, for the operation of this device it is not required that the biasing magnet alwa
present mainly for two reasons: first, because it is quite heavy, and second, because the em
ferrite has low saturation magnetization, so that it can simply be permanently magnetized
last operation mode is usually called “latched operation.” Experiments on latched circulators
been made by some researchers86,87 with good results. This operation mode has the character
of being more sensitive to external magnetic fields.

In this section we have tried to simply explain the operating principle of one of the 
attractive and commonly used microwave nonreciprocal passive devices. However, this is 
fraction of the quantity of scientific disciplines required to understand all the phenomena inv
in the circulation. For instance, the influence of the chemical composition of ferrite and its 
regarding the electrical performances have been ignored here. Nevertheless, chemistry is as
tant as physics, mathematics, and electromagnetism to really understand the circulator op
principle.

7.7 FERRIMAGNETIC PHASE SHIFTERS

Ferrimagnetic phase shifters can be realized in two configurations: reciprocal and nonreci
The former type have nonferrimagnetic counterparts, as we studied in section 7.5, while the
type is unique. However, every ferrimagnetic phase shifter has a unique characteristic, i.
possibility of changing the phase shifting continuously, changing the intensity of the applied 
magnetic field. Also these devices are attractive in microwave communication systems, and 
reason studies to increase performance are continuing.88,89

7.7.1 Reciprocal

Microstrip reciprocal ferrimagnetic phase shifters are characterized by the fact that 
shifting is insensitive to the wave direction of propagation inside the structure. In contrast 
fixed phase shifter studied in Section 7.5, where for one input there exist two outputs, here
difference is always evaluated using the same signal path. Of course, the reason why a
difference exists lies in the energy interaction between the e.m. wave and static magnet
“Hdc.” In practice, the phase difference is evaluated changing the direction of “Hdc” in two positions:
the first one corresponding to the maximum interaction between the “RF” magnetic field “h
“H dc,” and the second one corresponding to the minimum interaction. A typical top view 
reciprocal ferrimagnetic phase shifter is indicated in Figure 7.7.1.

The microstrip hot conductor is folded many times with a serpentine shape. This folded str
is usually called the “meander line.” In this case, the meander line is realized so that the co
between any two lines can be neglected.* Let us suppose that a conductor coil is realized 
the winding inside the slots “F2 – F2′.” If a current is now sent in the wire, a static magnetic fie
“Hdc” is generated,** whose field lines can be approximated by the lines indicated with “Hdc” in
Figure 7.7.1. Of course, the direction of the field along these lines depends on the current dir
in the coil. If the conductor coil is inserted in the holes “F1 – F1′ ” and a current is sent inside it
then the generated static magnetic field is rotated 90° with respect to the lines represente
figure. For any microstrip parallel to “Hdc” the magnetic situation for the coil in “F2 – F2′ ” is
indicated in Figure 7.7.2 in a crossed view. In this figure we have also indicated the “RF” magn
field lines of the microstrip, and we have assumed that the static magnetic field is entering

*  See Chapter 2 for uncoupled microstrip conditions.
**  See Appendix A5 for relations between currents and magnetic fields.
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paper. If we approximate the wave supported by the microstrip to a “TEM” in a homogen
ferrimagnetic media, this is the same electromagnetic situation covered in Appendix A7. Wit
hypothesis for the wave magnetic field “h” and the static magnetic field “Hdc” we can write:

(7.7.1)

(7.7.2)

where “Hz” is the internal saturating static magnetic field. This is a case where a “TEM” li
polarized wave propagates inside an isodirectional magnetized ferrite, with orthogonality be
“RF” and “DC” magnetic fields.

Studies made by some researchers90 have shown that in the practical case of residual magn
zation* the relative permeability “µr” for the situation indicated in Figure 7.7.2 is:

(7.7.3)

where all the magnetic quantities are already defined in the previous sections or in Append

Figure 7.7.1

*  See Appendix A7 for secondary effects for a magnetized ferrite.

Figure 7.7.2
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Quite often these devices work with residual magnetization or are magnetized below satu
and for this magnetic state, more exact formulas for “µ�” and “µp” are:

(7.7.4)

(7.7.5)

where “µpH0” is the value of “µp” when no “Hdc” field is applied. In such conditions we have:

(7.7.6)

Note that since “µeq⊥ ” is a function of “µ�” and “µp,” as given by 7.6.3, the previous formula
completely fix Equation 7.7.3. So, when “µr” is known, D. J. Massé and R. A. Pucel92 have shown
that the effective permeability for the case indicated in Figure 7.7.2 is given by:

(7.7.7)

for the case w/h ≤ 2. If w/h ≥ 2:

(7.7.8)

The constants “A,” “B,” “C,” and “D” are given by:

(7.7.9)

(7.7.10)

(7.7.11)

(7.7.12)

(7.7.13)

At this point the effective permeability is known, and we can evaluate the phase constanβz”
for the approximated “TEM”  wave inside the structure indicated in Figure 7.7.2, given by:

(7.7.14)
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So, when “Hdc”  is directed as indicated in Figure 7.7.1, the previous equation gives the appro-
priate phase constant for the “TEM” wave. Instead, when “Hdc” is directed at 90° with respect to
the magnetic lines indicated in Figure 7.7.1, i.e., the coil is inserted in the slots “F1 – F1′,”  the
ferrite presents a relative permeability equal to 1, and the phase constant is:

(7.7.15)

Then, with a fixed length “�” of the phase shifter, i.e., the length of the longer parallel microst
in Figure 7.7.1, the phase shifting “∆θ”  is:

(7.7.16)

where “n” is the number of parallel microstrips. The quantity “∆θ” is usually called “differential
phase shift.” This parameter in the most general case can change sign in two circumstance

a. there is a change in phase constant when changing the direction of propagation. For ferrim
netic phase shifters, this condition also assumes that the direction of “Hdc” is fixed for the
two directions of propagation.

b. there is a change in phase constant when changing the direction of “Hdc.” For ferrimagnetic
phase shifters, this condition also assumes that the direction of propagation is fixed for 
two directions of the static magnetic field.

In the present case, condition b holds.
A parameter that is frequently used to classify phase shifters is the “figure of merit.” It i

available phase change for each dB of attenuation introduced by the phase shifter when it c
the phase.

With these concepts in mind, it is clear that the device in Figure 7.7.1 refects the following
Table 7.7.1:

It is not required that the current into the winding always be present for this device to op
mainly for two reasons: first, because some amount of energy is required to permit the curre
and it cannot always be available; second, because the employed ferrite has low saturation 
tization, so that it can simply be permanently magnetized. This last operation mode is usually
“latched operation.” Experiments on microstrips ferrimagnetic reciprocal phase shifters have
made by G. T. Roome and H. A. Hair93 using latching operation. As a result, this device has
narrow bandwidth, near some percent, with a figure of merit of 40°/dB at 2 GHz. Since 
ferrimagnetic phase shifters exist that can give a higher figure of merit, as we will see in th
section, the ferrimagnetic reciprocal phase shifter is not widely used.

7.7.2 Nonreciprocal

Nonreciprocal ferrimagnetic phase shifters can be built using the following two distinct phy
phenomena:

Table 7.7.1

Coil in: ��

F2 – F2′ Maximum
F1 – F1′ Minimum

β ω µ ε εz r e0 0 0

0 5
= ( ) .

∆θ β β∝ −( )n z z0 l
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1. The interaction between biased ferrite and an “RF” magnetic field with circular polarizatio
2. Impenetrability of ferrite, a physical phenomena called “field displacement”

a. Using a Circular Polarized “RF” Magnetic Field

In contrast to the previous case in 7.7.1, the nonreciprocal ferrimagnetic phase shifter h
characteristic of presenting to the wave traveling inside it, different phase constants for
direction of propagation. Alternatively, for a fixed direction of propagation there is a chang
phase constant for each change in the application direction of static “Hdc” magnetic field.

The microstrip construction of this device is very similar to its reciprocal counterpart, a
possible microstrip realization is indicated in Figure 7.7.3.

We see how the meander line is now more compact so that e.m. interactions between a
lines cannot be avoided. However, in our case this interaction is desirable, as we will show
significant difference exists between the symmetrical and asymmetrical ferrimagnetic shifte
former uses an uncoupled meander line only to decrease the required dimensions, the latt
use a coupled microstrip structure just to work properly. In fact, this structure presents ins
points with circular polarization of the “RF” magnetic field, which can be used for our p
shifting problem. The slots named “F1 – F1′ ” in Figure 7.7.3 need to insert the winding of a coi
to create a “DC” magnetic field “Hdc” that biases the device. The direction of “Hdc” is indicated
in Figure 7.7.3 where we can see how it is aligned with the coupling region of the meander
The reason why in the present case, “Hdc” also needs to be so directed, can be understood
observing Figure 7.7.4. Part a of the figure represents the hot conductor of Figure 7.7.3, where we
have imposed the condition:

(7.7.17)

Part b of Figure 7.7.4 indicates a transverse view of part a taken from the section A_A. We see
how inside the ferrite, somewhere in the middle of the microstrips separation “s,” points “Cj” exist
where the “RF” magnetic field “h” is circular polarized. The loci of the “RF” magnetic field 
any µstrip are represented by the elliptic dashed lines, as was explained in Chapter 2. The
for the existence of these “Cj” points lies in Equation 7.7.17, which also means that at cen
frequency between each middle of the meander line, a 90° phase offset exists. Figure 7.7.4 indicates

Figure 7.7.3
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how such polarization comes out. Starting at a generic time “tx” where only a vector “hj” exists,
after a time “t′ ” the vector “hj+1” starts to appear: the resulting vector “h” rotates. After a time
“t x + T/4,” with “T” the period of the signal passing in the meander line, the vector “hj+1” is at
maximum while “hj”is zero: the resulting vector “h” rotates 90° with respect to the position a
time “tx.” This behavior continues, so that “h” is circular polarized. The direction of such pola
ization depends on the direction of propagation; so, if we have the left circular polarizati
Figure 7.7.4c when the signal travels from left to right, a right circular polarization arises w
the signal travels from right to left.

 Of course, to consider the e.m. coupling composed only by coupling a line with positio
with lines of positions “j – 1” and “j + 1” is a simplification. However, experiments show that
much error arises using such a method, and at points “Cj ,” a circular polarization exists.

We know from the theory of e.m. energy inside ferrimagnetic materials* that when a “T
circular polarized wave travels inside an isodirectional magnetized ferrite, it meets two perm
ities called “concordant” “µc” and “discordant” “µd,” given by:

(7.7.18)

(7.7.19)

The shapes of the previous equations for zero losses vs. angular frequency “ω” are given in
Figure A7.5.2 (from Appendix A7), which we report here for simplicity. Associated with the t
previous permeabilities there are two phase constants “βc” and “βd” given by:

Figure 7.7.4

*  See Appendix A7 for energy exchange between e.m. waves and ferrimagnetic materials.
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(7.7.20)

(7.7.21)

where ε ⊥  ε0 εrε So:

1. If we approximate the wave passing in the meander line as a “TEM” one,
2. If  we statically magnetize the device as indicated in Figure 7.7.3,

then a fixed direction of “Hdc” the wave will have a phase constant “βc” in one direction of
propagation and a phase constant “βd” in the opposite direction of propagation. In such a case 
differential phase shift “∆θ” will be:

(7.7.22)

since “2�” is the length of a meander line. Of course, the same differential phase shift ca
obtained if we fix a direction of propagation and change the direction of “Hdc.” It is important to
remember that in our case of microstrip technology the practical values of differential phas
are quite different from those obtained from Equation 7.8.6. This is mainly because wave 
gation in a microstrip is not in homogeneous media. So, also in this case it is necessary to e
an effective permeability “µre.” To do this, it is possible to use the equations we gave in sec
7.7.1, with attention to evaluating two effective permeabilities, one “µcre” relative to the case when
the wave encounters a “µc,” and one “µdre” when the wave encounters a “µd.” Note that in this
case it is also possible to use this device with a residual, or “latching” magnetization, sim
the reciprocal phase shifter.

As we said before, in the present case the coupled meander line is a particular exam
coupled microstrip theory that we have already encountered in this chapter.* The general 
of the meander line is more deeply studied in Chapter 5, where we treat just about all the c
µstrip types. The reader is directed to that chapter for a closer study of this coupled lines ne
especially concerning the impedance matching of this device. This is always a critical task b

Figure A7.5.2

*  See sections 7.24 through 7.2.6, 7.3.4, 7.4.1, and especially section 7.5.1 where Schiffman’s shifter is studied.

β ω µ µ εc c
−⊥ ( )0

0 5.

β ω µ µ εd d
−⊥ ( )0

0 5.

∆θ β β∝ −( )n c d 2l
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high values of “∆θ” come with high values of VSWR, which need to be eliminated. So, the st
of optimum performance of the meander line phase shifter is quite often done with measure
and manual optimization, starting from an initial device theoretically synthesized. For inst
after having found an optimum shifting, it is often necessary to adjust the input port imped
to the system reference impedance. This is usually done using the final “λ /4” lines, working as
impedance transformers.*

Experiments94 made with these devices have given figures of merit near 300°/dB and differe
phase shift of 140°/cm95 for an “Hdc” biased operation, or 200°/dB for a latching operation. The
values are almost three times the reachable values for the reciprocal phase shifter we 
previously. This means that interactions between ferrite and wave circular polarization are a 
effective phenomena. Operating bandwidth is always quite narrow and comparable to the rec
phase shifter, i.e., near some percent. Caution must be used with the maximum operating fre
independent of the ferrite properties. According to meander line theory,96 stop band behavior of
this structure can happen at those frequencies where, with reference Figure 7.8.2, the length “2�”
satisfies:

(7.7.23)

Actually, the coupled meander line microstrip phase shifter is a widely used device, wh
preferred to its reciprocal counterpart.

b. Using “Field Displacement”

The “field displacement” is an effect produced by ferrite when particular conditions exist am

1. “DC” magnetic field strength
2. Direction of “DC” magnetic field
3. Signal frequency 
4. Direction of “RF” magnetic field

When these four conditions hold, the field displacement effect consists of a ferrite “RF
signal impenetrability. We will study the field displacement theory, effects, and associat
waveguide devices in Appendix A7. Here we will see how this theory can be applied 
microstrips and how to build phase shifter devices. One of the first studies on microstrip fie
displacement effect was performed by M. E. Hines,97 who has applied Maxwell’s equations
to the microstrip structure. We will follow this method, which is an application of the genera
theory developed in Appendices A2 and A7.

Examine Figure 7.7.5. Here a microstrip built on a ferrimagnetic substrate is biased trans
versely to the direction of propagation with a static field “Hdc.” Let us suppose that dimension
“w” is much higher than dimension “h,” i.e., 

(7.7.24)

This condition makes it possible to study propagation along “x,” in addition to the obviou
propagation along “z.” With this hypothesis, and assuming

5. to be in an homogeneous media
6. to evaluate only the propagation along “ z0,” 

the “RF” fields “h” and “e” have the following expressions, in accordance with the theor
given in Appendix A7:

*  See Chapter 1 for “λ/4” lines used as impedance transformers.

β π2 2 1 2 3l K= =n with n , ,

w h>>
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(A7.14.3)

(A7.14.4)

(A7.14.9)

with the condition:

(7.7.25)

where “P,” “P′,” “R,” “R ′,” “e+,” and “e–” are generic constants with the dimensions of
Volt/m. For a better understanding of changes of sign of these quantities as a function
direction of propagation or direction of “Hdc,” A7.14.3 and A7.14.4 can be rewritten as:

(7.7.26)

(7.7.27)

Now we impose the conditions of having attenuation along “x0” and no attenuation along “z.”
This results in* “kx” being real and “kz” being imaginary. So we set:

Figure 7.7.5

*  See Appendix A2 for relations among propagation constants.
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(7.7.28)

(7.7.29)

(7.7.30)

With these three conditions, the “RF” field components become:

(7.7.31)

(7.7.32)

(7.7.33)

Now, with reference Figure 7.7.5, we can recognize how propagation outside the dimens
“w” depends on the fields “ey” and “hz.” So if we impose:

(7.7.34)

it means we don’t want propagation outside “w.” 
Inserting expressions 7.7.28 through 7.7.30 and 7.7.34 in 7.7.31 through 7.7.33 we havα x”

and “βz” must verify the following equations: 

(7.7.35)

(7.7.36)

Combining the two previous equations it follows that:

(7.7.37)

It is interesting to evaluate the wave impedance* “θ” along “z.” Then, inserting 7.7.35 and
7.7.36 in 7.7.31 and 7.7.33 we have:

(7.7.38)

Since “µp” can also assume negative values for some bias field “Hdc,” when it happens we have
an imaginary impedance that corresponds to an impenetrability of ferrite to “RF” fields. 

The graph of “µp” is indicated for the case of zero ferrite losses in Figure A7.4.1b reported
here for simplicity. The electromagnetic situation when “θ” assumes a negative value is indicate
in Figure 7.7.6. The nonreciprocity of the field displacement phenomena can be easily understood
knowing** that “µ�” changes sign if “Hdc” changes direction of application, while “βz” changes

*  See Appendix A2 for wave impedance definitions.
**  See Appendix A7 for descriptions of permeability quantities and their signs.
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sign if we change direction of propagation.* Since the sign of “α x” depends on the product of
“µ �βz,” as given by 7.7.37, we can conclude that if we change the direction of propagati
direction of “Hdc,” then we have the change of the side of “w” where the wave propagates, 
two changes of sign of course do not change the propagation side. Note that in Figure 7.7.6 the
“initial state” of the field displacement effects is represented. In other words, it exactly repre
the side where the wave propagates when Hdc ≡ Hyy0 and the direction of propagation is alon
“z 0.” The required value of “Hdc” for proper field displacement operation has been evaluated as
value that slightly saturates the ferrite and also generates a negative value of “µp.”

Note that all the theory we have discussed here is founded on an assumption of homog
propagation media. Microstrip technology does not satisfy such an assumption. So, for a ri
theoretical analysis a lot of theory needs to be developed to use some effective permeability
field displacement microstrip devices. As a first approximation it is possible to use the equ
we gave previously in Section 7.7.1. However, in this case the construction of a final field dis
ment phase shifter is a goal reached with a lot a tuning on various prototypes.

After explanation of the field displacement microstrip effect, it is simple to understand t
nonreciprocal phase shifter can be easily realized with an opportune dielectric loading of on
of the field displacement area. This situation can be observed in Figure 7.7.7. In part a we have
represented a hot microstrip conductor built on a ferrite substrate when, at a desired po
width is increased many times with respect to the substrate height. We will call the area 

Figure A7.4.1b

*  See Appendix A2 for propagation constants and their signs.

Figure 7.7.6
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.7.36

, or
w >> h the “field displacement area.” Note that since this area is a zone of low impedance, ty
20 to 30 Ohm, some matching to the reference system impedance of 50 Ohm is necessary
usually done by tapering the “field displacement area” width to the dimension of the 50 Ohm
or using λ /4 transformers.*

In part b we presented the case where a side of the field displacement area is loaded wi
of insulating material with dielectric constant “ε r� .” We can see how in the direction of propagatio
where energy is concentrated on the loaded side, the propagation constant “β�” will be similar to
7.7.36. After explicating the effective quantities and considering the dielectric loading, 7
becomes:

(7.7.39)

In this equation, “µpre” is the effective permeability obtained using “µp” in the formulas of
section 7.7.1, while “ε re�” is the effective permeability. In the opposite direction of propagation
when “Hdc” changes direction, the propagation constant “β0” will be:

(7.7.40)

where we have introduced the effective quantities. So the differential phase shift “∆θ” will be:

(7.7.41)

where “�” is the dielectric loading bar length.

Figure 7.7.7

*  See Chapter 1 for λ/4 transformers.
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Typical differential phase shift values are near 50°/cm, with a figure of merit of 50°/dB. T
values are smaller than those obtainable with coupled meander line phase shifters, and 
reason the latter devices are the preferred, especially when a high figure of merit is require

7.8 FERRIMAGNETIC ISOLATORS

Microstrip ferrimagnetic isolators are mostly found as terminated circulators. From the th
we gave in Section 7.6, it is evident that if we terminate a port, the three port circulator be
an isolator. However, isolators can also be built with other physical phenomena. These are t
displacement isolator and the resonance isolator, which will now be discussed.

7.8.1 Field Displacement Isolator

In the previous section we studied field displacement phenomena. With that theory in m
is clear that a device built as indicated in Figure 7.7.7 and with the dielectric bar replaced with
absorptive material works as an isolator.98 In the direction of propagation where energy is conce
trated on the loaded side, the signal will encounter additional losses introduced by the loadi
while in the opposite direction of propagation, or when “Hdc” changes direction, the signal will
pass practically unattenuated.

M.E. Hines99 has built a microstrip isolator working from 6 GHz to 12 GHz with a reve
attenuation greater than 20 dB and a direct insertion loss lower than 1.5 dB.

7.8.2 Resonance Isolator

Any ferrimagnetic device has the ability, under particular conditions, to insert attenuation
signal passing inside it. If the frequency “ωp” given by:

(7.8.1)

where “H” is the internal static magnetic field is the same as the signal frequency, then a po
energy phenomena absorption exists.* This absorption is maximum if the signal has a c
polarization direction coincident with the spin electron magnetic moment precession motion
absorption is very selective in frequency, and for this reason the resonance isolators are very
band devices, typically with a “BW” near 10% of center frequency.

Based on this concept, G. R. Harrison, G. H. Robinson, B. R. Savage, and D. R. Taft100 have
built a microstrip isolator using the circular polarization of the magnetic field in the air–diele
boundary region near the edge of the hot conductor. The circular polarization lies in a longit
plane, i.e., aligned to the direction of propagation. Their device is indicated in Figure 7.8.1. Near
the edge of the microstrip is posed a bar of ferrite biased transversely by “Hdc.” In the direction
where the “RF” magnetic circular polarization is coincident with the induced electron spin mag
moments precession motion inside the ferrite, the wave gives its energy to the ferrite, which
to warm up. In the opposite direction of propagation, or when “Hdc” changes direction, the signa
passes along the line quite unattenuated. G. R. Harrison, G. H. Robinson, B. R. Savage, an
Taft report on a microstrip resonance isolator centered at 6.1 GHz, with a resonance atte
near 30 dB and an insertion loss in the unattenuated direction lower than 1 dB.

With the concepts of resonance absorption, it is simple to understand that the coupled m
line phase shifter can also become an isolator. To do that, it is necessary to bias the devi

*  See Appendix A7 for the theory of energy absorption at ferrimagnetic resonance.

ω γ µp T H−⊥ −
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an “Hdc” so that 7.8.1 holds, and for a signal with “ωp” passing in one direction will be maximally
attenuated, while in the opposite direction, or when “Hdc” changes direction, the signal will have
the minimal attenuation.

7.9 COMPARISON AMONG FERRIMAGNETIC PHASE SHIFTERS

After studying the most used ferrimagnetic phase shifters in the previous sections, we t
is useful to do a comparison among these devices, so that readers can simply choose th
shifter most suited to their purpose. As discussion topics we will use the phase shifter charact
most often used to choose such devices.

a. Simplicity of mechanical construction
From this point of view, all the devices we have studied are practically the same. So

better choice can be made using operation simplicity and flexibility. From this point of view
the meander line phase shifters are simpler to operate. They also work in latching opera
and it is simple to change the direction of “Hdc,” as indicated in Figures 7.7.1 and 7.7.3. In
the field displacement phase shifter it is not as simple to change the direction of “Hdc.” In
fact, this direction must always be orthogonal to the direction of propagation, and for th
reason, it is not simple to open a slot inside the ferrite, as we made in Figures 7.7.1 and 7.7.3.

b. Differential phase shifting value
The higher differential phase shifting value belongs to the nonreciprocal meander line ph

shifter, with near 140°/cm. Following are the field displacement and meander line reciproc
devices, with near 50°/cm.

c. Figure of merit
The highest figure of merit belongs to the nonreciprocal meander line phase shifter, w

near 300°/dB. The meander line reciprocal devices come next with near 80°/dB and fina
field displacement devices come with near 50°/dB.

d. Operating bandwidth
The highest operating bandwidth belongs to field displacement devices, with near 15%

bandwidth. Following are the meander line phase shifters equipped with both reciprocal a
nonreciprocal, with near 10% of bandwidth.

Figure 7.8.1
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CHAPTER 8

Stripline Devices

8.1 INTRODUCTION

This chapter will cover the most important stripline devices and will complete the study b
in Chapter 7 regarding µstrip devices. All the theory we have developed in that chapter ass
whenever possible, to approximate the “qTEM” propagation mode in µstrip with a pure “TE
Since striplines are instead t.l.s that can be assumed to propagate a real “TEM” wave, all the
developed in Chapter 7 applies to the present case as well.

A lot of devices already studied in Chapter 7 can also be built in stripline technology. Fo
reason, in this chapter we will refer, whenever possible, to the same devices studied in Cha
but will indicate only the differences between the device in µstrip and stripline. Of course, a g
remark can be made for the present case. In fact, due to the equal phase velocity betwe
and odd waves in “cs” devices, these will have better performances than their “cµ” counter

8.2 TYPICAL TWO PORT NETWORKS

The same typical networks we indicated for the µstrip case can also be built in stripline
following notes apply:

a. Resonators: Ring resonators, frequently used in µstrip technology, are in our case seldom u
due to the difficulty in holding such circular conductors. Consequently, stripline resonators a
practically always made with straight t.l.s. 

b. Balun: Although rarely used, a stripline balun is always coplanar with the hot conductor, 
indicated in Figure 8.2.1. 

c. Stubs: Shortened stubs are more difficult to realize since they require some metallic hol
connected to top and bottom conductors at the end of the stub.

8.3 DIRECTIONAL COUPLERS

The same directional couplers studied in Chapter 7 can be equally constructed in stripl
particular, all the design tables given in Chapter 7 still hold for the stripline counterpart.
following notes apply:
©2000 CRC Press LLC
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a. “In-line” or “Wilkinson” — This kind of coupler is quite impractical since the isolation resistor is
of course difficult to insert. For this reason, these couplers are usually employed at low frequenc
let us say below 5 GHz.

b. “Wiggly” — These couplers are useless in stripline, since now the phase velocities are natura
equalized.

c. “Interdigital” or “Lange” — It is impractical and it is never used. 
d. “Step coupled lines” and “tapered coupling” — a “BCS” or “OBCS” configuration is often used

so that it is possible to have a 3 dB coupling, or a single step coupler. For example, a single 
coupler is indicated in Figure 8.3.1, where in part b, a transversal section is depicted to show the
“BCS” configuration.

8.4 SIGNAL COMBINERS

The notes for sections 8.2 and 8.3 apply here.

8.5 DIRECTIONAL FILTERS

All the directional filters studied in Chapter 7 can be equally used in striplines. “BCS” can
be used for ring directional couplers of course, and in this case input and output lines are “

8.6 PHASE SHIFTERS

The following notes apply:

a. Schiffman’s phase shifters — The use of “BCS” is theoretically possible, but in practice its use
limited due to the difficulty posed by two short circuits at one extreme the “BCS.” A possibl
solution is indicated in Figure 8.6.1a with a top view and in part b with a lateral view. For example,
a type “C” Schiffman’s shifter is indicated in Figure 8.6.2.* In this case, input, output, and reference
lines are “OSL,” while the two coupled lines are “BCS.”

However, a short circuit between “BCS” is good only at low frequencies, let us say below 
GHz. So, “SCS” are preferred for Schiffman’s shifters.

b. Reflection type — Of course, the Lange coupler cannot be used. So, the only divider to be use
the branch line.

Figure 8.2.1 Figure 8.3.1

*  See Chapter 7 for design notes on Schiffman’s phase shifters.

Unbalanced

Balanced
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λ/4
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A
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8.7 THE THREE PORT CIRCULATOR

The theory discussed in Chapter 7 applies to the present case as well.1,2 A typical construction
of a stripline circulator is indicated in Figure 8.7.1. Part a shows a transversal section of the devi
Two ferrite cylinders “F1” and “F2” are posed on each side of a circular conductor, with diam
not greater than the diameters of the ferrite cylinders. This circular conductor has three str
“L 1,” “L 2,” and “L3” attached on its border, each one forming an angle of 120° with the ne
stripline. On the other side of the ferrite cylinders ground planes “M1” and “M2” are attac
each for ferrite. These ground planes create the stripline technology of the device. Of c
surrounding the ferrites there is the desired substrate. External to the ground planes, two m
generate the proper static magnetic field that biases the ferrites. Sometimes it is used as a
only. 

Figure 8.6.1

Figure 8.6.2

Ribbon or 

a)

b)

Slot

Dielectric

"via hole"

IN

OUT1

OUT2

BCSBCS
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A top view of the device is drawn in Figure 8.7.1b with the upper magnet, the top ground plan
“M1,” and the top ferrite “F1” removed. The dashed line represents the ferrite “F2” under the
conductor. We have indicated the origin of the angles “θ” at the angular center of port in “L1.” 

The general theory and design guidelines given in Chapter 7 also apply in this case
additional dimension to be designed is the height “h” of each ferrite cylinder. In fact, the dis
“b” between ground planes is dictated by the required performances of the circulator.* In thi
we have:3

(8.7.1)

where:

a. “ε” is the absolute ferrite permittivity
b. “R” is the ferrite cylinder diameter, which practically coincides with the central conducto

radius
c. “ω” is the center bandwidth signal angular frequency
d. “Q�” is the loaded “Q” of the circulator
e. “G” is the circulator conductance at the port disk periphery

Figure 8.7.1

*  The circulator is usually a “drop in” device, which requires the surrounding electronics to be adapted to its dime
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Electrical performances of stripline circulators are practically the same as their µstrip co
parts, reported in Chapter 7.

8.8 FERRIMAGNETIC PHASE SHIFTERS

The same phase shifter* configurations we studied for µstrip technology, i.e., reciproca
nonreciprocal, can be constructed in stripline. The quasi-homogeneous structure of the die
permits these devices to be analyzed with simple analytical methods.4 The resulting devices are o
course bulky, but the performances are in general better than the µstrip counterpart due the
interaction with ferrite. The following notes apply:

8.8.1 Reciprocal

The structure of a µstrip reciprocal “ps” studied in Chapter 7 can be also applied to the st
case. Alternatively, a stripline reciprocal ferrimagnetic phase shifter is indicated in Figure 8.8.1. A
ferrite toroid has two apertures “A1” and “A2” where a coil for each aperture is wound. Nea
hot conductor, a wire conductor “C” is passed. This conductor could also be avoided and sub
with the hot conductor itself, if proper biasing with high impedance wire is used. When a cu
“I” feeds the coils in the apertures, a static magnetic “Hdc” field is generated as indicated in
Figure 8.8.2, i.e., to the magnetic “RF”  field “h.”  When instead a current “I”  feeds the wire “C,”
then a magnetic “Hdc”  field is generated as indicated in Figure 8.8.3, i.e., parallel to the magnetic
“RF” field “h.”

In these cases the ferrite, respectively, presents to the wave a permeability “µeq⊥ ”** and “1,”
and the phase shifting “∆θ” is:

(8.8.1)

where “ε r” is the ferrite permittivity, “�” is approximately the length of the apertures “A1” an
“A2,” and:

Figure 8.8.1

*  Phase shifters will simply be called “ps.”
**  This quantity is defined in Chapter 7 and Appendix A7.

A1

A2

C

∆θ β β∝ −( )z z0 l
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(8.8.3)

Typical performances of this device in band 8.2 to 12.4 GHz are5 a differential phase shift of
30°/cm and a figure of merit near 300°/dB. For latched operation,* these values decrea
approximately 25%. In any case, they are typically two times higher than the values for the 
counterpart device. 

8.8.2 Nonreciprocal

Similar to the case of the µstrip, a stripline nonreciprocal “ps” can be built using two dis
physical phenomena, i.e.: 

1. using the interaction between biased ferrite and “RF” magnetic field with circular polarization
2. impenetrability of ferrite, physical phenomena called “field displacement”

Figure 8.8.2

Figure 8.8.3

*  Latched operation for ferrite devices are explained in Chapter 7.

II

H H

A1 A2

dcdc

H_Ferrite

I

dc

β ω µ µ ε εz eq r= ( )⊥0 0
0 5.

β ω µ ε εz r0 0 0
0 5= ( ) .
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a. Using Circular Polarized “RF” Magnetic Field

Also in this case, the “ps” employs a meander line. This particular configuration of cou
striplines has been studied in Chapter 7. A nonreciprocal stripline “ps” is indicated in Figure 8.8.4.
This is a top view, where the top ground plane “M1” has been partially removed. We see a 
toroid and inside it a stripline meander line. A conductor wire “C” travels near the hot condu
as indicated. In Figure 8.8.5 a cross-sectional view is shown.

When a current “I” feeds the wire “C,” then a static magnetic “Hdc” field is generated as indicated
in Figure 8.8.6, i.e., orthogonal to the circularly polarized magnetic “RF” field “h.”* We know fro
the theory of e.m. energy inside ferrimagnetic materials** that when a “TEM” circular polar
wave travels inside an isodirectional magnetized ferrite, it meets two permeabilities, “µc” and “µd.”
Associated with the two previous permeabilities there are two phase constants “βc” and “βd” given
by:

Figure 8.8.4

Figure 8.8.5

*  See Chapter 7 to recognize how the magnetic field inside the meander line is circularly polarized.
**  See Appendix A7 for energy exchange between wave and ferrimagnetic materials.

M1

M1

I

�

a
Ferrite

C

Ferrite

a
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(8.8.4)

(8.8.5)

So if we statically magnetize the device as indicated in Figure 8.8.6, then fix a direction of
“H dc,” the wave will have a phase constant “βc” in one direction of propagation and a phase const
“βd” in the opposite direction of propagation. In such a case the differential phase shift “∆θ” will be:

(8.8.6)

where “a” is the length of a complete meander line and “n” is the number of “C-sections” emp
in the meander line. Of course, we obtain the same differential phase shift if we fix a direct
propagation and change the direction of “Hdc.” Typical performances of this device centered 
5.2 GHz with latched operation are6 a differential phase shift of 70°/cm and a figure of merit ne
80°/dB. The operating bandwidth is near 10%. 

A variation of this device employs a dielectric surrounding the hot conductor and the w
indicated in Figure 8.8.7. Characteristic values for this “ps” are7 a figure of merit near 310°/dB
and a differential phase shift of 40°/cm, in the operating bandwidth of 9 to 10 GHz.

The coupled meander line stripline phase shifter is a widely used device, which is pre
over its reciprocal counterpart.

b. Using “Field Displacement”

The same theory in Chapter 7 can be applied to the stripline case. So, if the following con
are properly satisfied:*

Figure 8.8.6

Figure 8.8.7

*  See Chapter 7 and Appendix A7 for field displacement theory.

_H
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M2

dc

β ω µ µ εc c
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1. “DC” magnetic field “Hdc” strength 
2. Direction of “DC” magnetic field
3. Signal frequency 
4. Direction of “RF” magnetic field

a “field displacement” effect is established in the propagation. The electromagnetic situat
indicated in Figure 8.8.8. 

It is simple to understand that a nonreciprocal phase shifter can be easily realized w
opportune dielectric loading of one edge of the field displacement area. This situation c
observed in Figure 8.8.9. In one side of the field displacement area, a bar of low loss diele
material is placed, with dielectric constant “ε r�.” We can realize how, in the direction of propagatio
where energy is concentrated on the loaded side, the propagation constant “β�” will be:

*(8.8.7)

In the opposite direction of propagation, or when “Hdc” changes direction, the propagatio
constant “β0” will be:

(8.8.8)

where “ε r” is the ferrite dielectric constant.

Figure 8.8.8

*  “µp” is the element of the principal diagonal of the ferrite permeability matrix. See Appendix A7.

Figure 8.8.9
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So the differential phase shift “∆θ” will be:

(8.8.9)

where “�” is the dielectric loading bar length. Typical differential phase shift values are8 near
50°/cm, with figure of merit of 60°/dB, at a frequency of 3.25 GHz and bandwidth near 10%

To improve these performances, some studies9 have stated that the configuration indicated 
Figure 8.8.10 should have better performance. It is called toroidal field displacement stripline 
Typical values of this “ps” are10 a differential phase shift of 40°/cm and a figure of merit ne
500°/dB, centered at a frequency of 5.4 GHz. Of course, the required magnetization is ob
feeding the wire “c” with a current, as indicated in Figure 8.8.11, assuming the current is enterin
in the plane of this page.

8.9 FERRIMAGNETIC ISOLATORS

Stripline ferrimagnetic isolators are mostly found as terminated circulators. However, the
also found with other physical phenomena devices where only isolating performances can b
They are the field displacement isolator and the resonance isolator, which we will now disc

8.9.1 Field Displacement

If in the device shown in Figure 8.8.9, we replace the dielectric bar with an absorptive mater
we can create an isolator. In the direction of propagation where energy is concentrated 
loaded side, the signal will encounter additional losses introduced by the loading bar, while

Figure 8.8.10

Figure 8.8.11

Ferrite

C

∆θ β β∝ −( )l l0

xI-
H_
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opposite direction of propagation, or when “Hdc” changes direction, the signal will pass practical
unattenuated. The performances of this isolator are essentially the same as the µstrip coun

8.9.2 Resonance

A way to cause resonance absorption is to generate circular polarization inside the str
As we have studied in the previous section, such polarization can be obtained using a m
line. So, if we bias such a device at the resonance, we can have energy absorption. Howe
author is not aware of any results reported in the literature for such a device. 

8.10 COMPARISON AMONG FERRIMAGNETIC PHASE SHIFTERS

After having studied the most used ferrimagnetic phase shifters in the previous section
think it is useful to do a comparison among all these devices, so that readers can simply 
the phase shifter most suited to their purpose. As discussion topics we will use the phase
characteristics most often used to choose such devices.

a. Simplicity of mechanical construction — The meander line phase shifters can be evaluated as
most complicated to build, followed by the field displacement and reciprocal “ps.” 

b. Differential phase shifting value — The higher differential phase shifting value belongs to th
nonreciprocal meander line phase shifter, with near 100°/cm. Then, there are field displacem
and reciprocal devices, with near 50°/cm.

c. Figure of merit — The highest figure of merit belongs to the toroidal nonreciprocal field displac
ment “ps” with near 500°/dB. Then, the nonreciprocal dielectric loaded meander line and t
reciprocal devices come, with near 300°/dB. Then, there is the nonreciprocal meander line “p
with nearly 80°/dB. Finally, there are field displacement nontoroidal devices, with near 60°/dB.

d. Operating bandwidth — The highest operating bandwidth belongs to the toroidal nonrecipro
field displacement “ps” with near 15% of bandwidth. Then the meander line and the reciproc
phase shifters, with near 10% of bandwidth.

We think it is useful to conclude this section with a general comparison among µstrip
stripline “ps.”

a. Simplicity of mechanical construction — The most simple “ps” to build is the µstrip device.
b. Differential phase shifting value — The highest differential phase shift value belongs to th

nonreciprocal meander line µstrip phase shifter,11 with near 130°/cm, followed by the stripline
counterpart, with near 100°/cm. Then, all the other types of “ps” come, with nearly 50°/cm.

c. Figure of merit — The highest figure of merit belongs to the toroidal nonreciprocal field displac
ment “ps,” with near 500°/dB, followed by the nonreciprocal dielectric loaded stripline meande
line, the nonreciprocal µstrip meander line12 “ps,” and the reciprocal stripline devices with near
300°/dB. Then, the nonreciprocal stripline meander line and the µstrip reciprocal “ps” follow, wit
nearly 80°/dB. Finally, all the other types of “ps” come, with nearly 50°/dB. 

d. Operating bandwidth — In practice, all the “ps” have the same bandwidth.
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CHAPTER 9

Slot Lines

9.1 GEOMETRICAL CHARACTERISTICS

The physical realization of a slot line is indicated in Figure  9.1.1. This t.l. was first studied by
S.B. Cohn,1 and recently by others.2,3 It is simple to note that this t.l. is the complement of t
microstrip we studied in Chapter 2. In fact, here the conductors are present where they a
the microstrip. In contrast to the microstrip case, the slot line is a full planar t.l. since there
bottom ground conductor. From this point of view, the slot line is very similar to the “CPW”
will study in Chapter 10. 

As we can see in Figure  9.1.1, this t.l. is composed of an opening slot of width “s” in a plan
conductor so that two conductors are generated. The two conductors of thickness “t” are 
on a dielectric slab of height “h” and dielectric and magnetic constants “ε r” and “µr.” The extension
“�1” and “�2” of the two lateral conductors is assumed to be infinite, and in practice, is many 
the length of the signal wavelength. If the lateral conductors cannot satisfy this condition, th
t.l. can be regarded as a coplanar strip “CPS” (studied in Chapter 11). 

According to the discussion on propagation modes in Appendix A2, the slot line doe
support a “TEM” mode4,5,6 but it has a zero cutoff frequency. Its fundamental mode is a “qTE
with the magnetic field elliptically polarized in longitudinal planes, especially near the air-sub
interface.7 For this reason the slot line is well suited to be used in ferrimagnetic devices, a
will show later.

Because the number of the electric and magnetic field lines in the air is higher than the n
of the same lines for the microstrip case, the slot line effective dielectric constant “ε re” is typically
15% lower than in the microstrip “ε re.” Consequently, the maximum reachable characteris
impedance values are higher than in the microstrip case. Of course, the minimum slot line 
ance** value is higher than in the microstrip case, typically 60% higher. 

To avoid e.m. radiation in the air, it is very important to use substrates with high diele
constants, let us say from a value greater than 10, so that the e.m. field is mainly conce
inside the dielectric. 

Excluding some devices composed only of slot lines, like directional couplers or filters, ju
show the possibilities for employing such t.l.s, slot lines present advantages with respect to m
trips or striplines in balanced mixer circuits and in antenna feeding. This subject will be disc
later in this chapter.

9.2 ELECTRIC AND MAGNETIC FIELD LINES

Some electric “e” and magnetic “h” field lines for the fundamental “qTE” mode in the slot
are indicated in Figure  9.2.1, in a defined cross-section and a defined time. Depending on

*  “qTE” means “quasi TE,” where quasi (Italian word) means “almost.”
**  Sometimes with “impedance” we will mean “characteristic impedance,” especially when no confusion will arise
©2000 CRC Press LLC
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feeding method, the slot line can be a balanced or an unbalanced t.l. From this point of vie
slot line assumes the characteristics of the feeding line.

The field lines indicated in Figure  9.2.1 are a simplification, especially for the magnetic fiel
In fact, since the magnetic field lines always try to turn around conductors, they cannot do t
the two lateral conductors of the slot line. So, they are distorted moving on “x” from the cen
the slot, and are not in the plane of the figure. For this reason, with a “•” we indicate a v
exiting from the plane of the figure, while with an “x” we indicate a vector entering into this pl
A more defined representation of the magnetic field lines for the fundamental “qTE” mo
indicated in Figure  9.2.2. Note that the slot line’s magnetic field lines are quite similar to those in
the coplanar waveguide case to be studied in Chapter 10, in which a “qTEM” propagation
is also not possible. Slot line electric field lines are instead quite dissimilar to those of “C
since in this case there is not a central conductor.

There is a very interesting result reported by S.B. Cohn8 that indicates the intensity of “hz” and
“hy” fields in the center of the slot vs. the vertical coordinate “y,” as depicted in Figure 9.2.3. We
see how, near the slots, the fields have their maximum intensity. In addition, since “hz” and “hy”
are never equal in magnitude, the resulting magnetic field is never perfectly circular polarize
if near the slot, this can be approximated quite well.

Figure 9.1.1

Figure 9.2.1
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9.3 SOLUTION TECHNIQUES FOR THE ELECTROMAGNETIC PROBLEM

Some of the first analysis methods for the slot line e.m. problem were developed by S.B. 9

We will follow his guidelines, reporting two methods that can be called the “line of magn
current” and the “transverse resonant” methods. The first method has the advantage of bei
simple in its formulation and giving a picture of the slot line as a radiating structure. How
we cannot obtain the characteristic impedance of the line with this method. The second m
is instead quite involved in its formulation, but it gives us the expression of the characte
impedance. Both Cohn’s methods assume the conductors have negligible thickness.

Figure 9.2.2

Figure 9.2.3
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Full wave slot line analysis has been performed by some researchers10,11 and the effect of
conductor thickness by others.12

a. Line of Magnetic Current Method

With this method, the e.m. field produced by the slot line is approximated with that comp
of a hypothetical conductor passed through a magnetic current “im.” Note as the electric field has
only the “eθ” component, while the magnetic field has the components “hz” and “hr.” Using a
cylindrical reference system with axis “r,θ,z,”  this situation is indicated in Figure  9.3.1.

According to Cohn, as the first approximation we can use the concept of effective re
permittivity, already introduced in our text, and assume that the slot line is surrounded
homogeneous isotropic dielectric, with:

(9.3.1)

With the introduction of “εre,” the slot wavelength “λ s” is:

(9.3.2)

The expressions for “hz,” “h r,” and “eθ” for the situation in Figure  9.3.1 are:

(9.3.3)

where “A” is a generic constant and the quantity “kt” can be regarded as the coefficient of th
transverse wave equation. Supposing a lossless propagation along “z,”* “kt” is given by:**

Figure 9.3.1

*  Using the notation of Appendix A2, this condition means kz ≡ jβz .
**  In Appendix A2 we have shown that “kt

2” is a negative real number.
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so that:

(9.3.4)

The other field components are:

(9.3.5)

(9.3.6)

where “H0
(1)” and “H1

(1)” are the Hankel functions of the first kind, respectively of order zero 
one. The functions13 “Hn

(1)(v)” and “Hn
(2)(v)” of the first and second kind of order “n” are define

using the Bessel functions*14,15,16 according to:

(9.3.7)

(9.3.8)

For an imaginary argument “jv” with “v” a real variable >>1, the Hankel functions “Hn
(1)(v)”

can be approximated as:

(9.3.9)

If we want to apply this equality to the field expressions, so that the field decay is as
outside the slot, it is necessary that “kt r” be imaginary, i.e., (λ 0/λ s) > 1 from 9.3.4. From
Equation 9.3.2 this corresponds to use of a dielectric with ε r > 1, to contain radiation. Of course
the higher the “ε r ,” the lower the radiation. Cohn has shown that the ratio of the voltage “V
across a half circumference of the electrical field indicated in Figure  9.2.1 and the voltage “V”
across the slot is given by:

(9.3.10)

To give some value, for an alumina substrate with ε r = 9.8 we have 20 dB of attenuation at 
distance r ≈ 0.3λ 0.

The result is interesting for the polarization evaluation. In fact, if we do the ratio betweenz”
and “hr” using 9.3.1 and 9.3.2 we have:

(9.3.11)

*  See Appendix A2 where the Bessel functions are introduced for a practical example. Deep insight into these fu
can be found in books indicated in the references at the end of this chapter.
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Since it is possible to show17 that |H1
(1) (jv)/H0

(1) (jv)| > 1 and since the last member is le
than one to assure low radiation, and so “kr” is imaginary, with this hypothesis there is no solutio
to the previous equation. This means that a perfect circular polarization of the magnetic fiel
not exist, but only elliptical. Note that the direction of elliptical polarization is dependent on
direction of propagation, i.e., if we change the direction of propagation from “z0” to “–z0” then the
magnetic field changes, the direction of rotation.

b. Transverse Resonance Method

With this method the e.m. study of the slot line is transferred to that of a particular loa
used in waveguide, called “iris” and represented in Figure  9.3.2 for a rectangular waveguide. Iris
loading is a waveguide technique used to build filters and coupling between resonators.18,19,20

The transformation of the slot line in a case representing an iris is performed in the follo
manner. First, it is assumed that propagation in the slot is in the most general case, i.e., 
directions.* Then, two conducting planes at a distance z = λ s/2 and perpendicular to the surfac
are inserted into the slot line. These two planes do not change the field distributions since fo
λ s/2 a null of “εz” exists. Then, two conducting planes perpendicular to the surface are inser
a distance “xd,” symmetrical with respect to the center of the slot, into the slot line. The dist
“x d” is chosen to be a distance where the intensity of the fields are negligible. These passa
indicated in Figure  9.3.3. Since the slot line is not a TEM t.l. then the characteristic impeda
definition is not unique. In these cases it is usual to define the impedance according to the fo
relationship:

(9.3.11a)

where “V” is the peak voltage across the slot and “W” is the power supported by the wave.
Waveguide iris theory is outside the scope of this text and can be found in the literature. C21

has customized the general theory to this case, arriving at the expression of the slot line imp
We will see in the next section how the Cohn expression for slot line impedance has been
fitted, obtaining closed form expressions.

Figure 9.3.2

*  See Chapter 1 for general theory of transmission line.

ζ = V W2 2
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9.4 CLOSED FORM EQUATIONS FOR SLOT LINE
CHARACTERISTIC IMPEDANCE

The closed form we give here has been obtained by curve fitting22 the results of Cohn’s transvers
resonant method described in the previous section. These formulas are accurate inside an
2% when the slot line physical characteristics are inside these ranges:

(9.4.1)

So, if 0.02 ≤ s/h ≤ 0.2 we have:

(9.4.2)

(9.4.3)

(9.4.4)

(9.4.5)

(9.4.6)

(9.4.7)

If 0.2 ≤ s/h ≤ 1 we have:

(9.4.8)

Figure 9.3.3

z

z

x h

z

x

a)

b)
c)

s

s

s

d

d

9 7 20 0 02 1 0 01 0 25 10

0 5
. , . , . .

.
≤ ≤ ≤ ≤ ≤ ≤ −( )ε λ εr rs h h

λ λ ε λs rog s h s h h0 00 923 0 4481 0 2 0 29 0 047 100= − + − +( ) ( ). . . . . log

Z og h s s h s hr1 72 62 35 191 50 0 02 0 1= − + ( ) −( ) −( ). . . .ε

Z og s hr2 44 28 19 581 100= −( ) ( ). . logε

α ε ε= − + ( ) +( )0 321 0 11 1 071 1 44. . . .og s h ogr r

β ε λ= − −( )11 4 6 071 100 0

2
. . og hr

ζ αβ= + −Z Z1 2

r og s hr r1 0 987 0 4831 0 111 0 0022= − + ( ) −( ). . . .ε ε
©2000 CRC Press LLC



  

that

                    

d D. H.

  

ing

                      
(9.4.9)

(9.4.10)

                 (9.4.11)

(9.4.12)

(9.4.13)

(9.4.14)

(9.4.15)

In the previous equation with “log” we have indicated the logarithm in base “10.” Note 
since it is known, the frequency of the signal we apply in the slot, i.e., “λ 0” is known, from 9.4.2
and 9.4.10 we also obtain “ε re,” since we know that λ s = λ 0/(µreε re)0.5 with µre = 1 for non-
ferrimagnetic substrates.*

Formulas for lower permittivity have been obtained by the researchers R. Janaswamy an
Schaubert,23 through a curve fitting to a full wave analysis. The general condition for the follow
expression is 0.006 ≤ h/λ 0 ≤ 0.06. Then, for 2.22 ≤ ε r ≤ 3.8 we have:

for 0.0015 ≤ s/λ 0 ≤ 0.075:

(9.4.16)

(9.4.17)

(9.4.18)

(9.4.19)

(9.4.20)

(9.4.21)

(9.4.22)

(9.4.23)

*  The case of ferrimagnetic substrates will be studied later in this chapter.
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For 0.075 ≤ s/λ 0 ≤ 1:

(9.4.24)

(9.4.25)

(9.4.26)

(9.4.27)

(9.4.28)

(9.4.29)

(9.4.30)

(9.4.31)

For 3.8 ≤ ε r ≤ 9.8 we have:

for 0.0015 ≤ s/λ 0 ≤ 0.075:

(9.4.32)

(9.4.33)

(9.4.34)

(9.4.35)

(9.4.36)

(9.4.37)

(9.4.38)

(9.4.39)
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for 0.075 ≤ s/λ 0 ≤ 1:

(9.4.40)

(9.4.41)

(9.4.42)

(9.4.43)

(9.4.44)

(9.4.45)

(9.4.46)

(9.4.47)

(9.4.48)

Note as in all the previous formulas the conductor thickness “t” doesn’t appear. Resu
conductor thickness “t” analysis24 have shown that the effects on impedance and phase con
produce a change near some percent, with respect to the case t = 0, until t ≤ 0.02s. 

Regarding slot line attenuation, experiments performed by some researchers25 have shown that
attenuation is similar to that presented by a microstrip with 50 Ohm of impedance on the
substrate. So, the formulas we gave for microstrips can also be used for slot lines. Some disc
can arise when using very narrow slots, below 100 µm. 

No closed formulas for slot line attenuation are available. Also, because of the non- “T
propagation mode, the Wheeler incremental inductance theory26 cannot be rigorously applied.

The case of possible magnetic losses, due to the use of ferrimagnetic substrates, will be 
later in this chapter.

9.5 CONNECTIONS BETWEEN SLOT LINES AND OTHER LINES

We think it is important to discuss the most suitable and simple transitions between slo
and the other most used transmission lines. Every transition always introduces a discontinu
a general rule, a transition between t.l.s is practically evaluated as acceptable when the re
reflection coefficient is typically below 10 dB. Studies on slot line discontinuities27,28,29 permit
evaluation of how one transition can be better than another.

A single slot on an electric plane can be regarded as a particular case of slotline, 
conjunction with a feeding line, this slot becomes an antenna.30 A real slot line is widely used as
a feeding line of a printed antenna called “Vivaldi,” indicated in Figure  9.5.1a31,32 for the single-
sided and in Figure  9.5.1 b for the double-sided cases. These antennas have been formerly fed
with coaxial cables, but now they are usually fed with microstrips or striplines, with transitio
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we will now indicate. A slotline is also used to build a balanced mixer in conjunction with cop
waveguides.*

a. Connection with Coaxial Cable

This transition is indicated in Figure  9.5.2. For a good transition it is important that the out
conductor of the coaxial cable be short connected to one plane of the slot line. The center co
of the coaxial cable is of course short connected to the other plane. The transition shown
figure works quite well until some GHz,33 but adding some tapering to this transition, an operat
bandwidth of 4 to 22 GHz has been reported.34 Today this transition is seldom used, and microstri
and striplines are employed.

b. Connection with Microstrip

The simplest transition between these two lines is indicated in Figure  9.5.3. With a dashed line
we have indicated the bottom conductor while a solid line indicates the upper conductor. A

Figure 9.5.1

*  Coplanar waveguides are abbreviated with “CPW.”

b)

a)ε r

rε
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can see, this transition needs a substrate with both surfaces etched. On one side ther
microstrip, while on the other side there is the slot line. Note that the microstrip is open term
while the slot line is short terminated, both at a distance approximately a quarter of wave
long after the crossing. Also note that this transition does not work for DC.

Typical operating bandwidths35 for the transition indicated in Figure  9.5.3 are near 1.5:1. Using
a multistep transformer* for the microstrip line and radial open-ended stubs for both lines, a
bandwidth near 3 to 18 GHz has been reported.36

Another type of transition, quite compact, is shown in Figure  9.5.4. Note as in this case the
microstrip is short circuit terminated through the via hole indicated in the drawing, while the
line is open circuit terminated. In fact, slot line open circuits are usually made with a circ

Figure 9.5.2

*  Microstrip step transformers are studied in Chapter 5.

Figure 9.5.3
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radius many times the lowest wavelength of the signal traveling the slot. Slotline-µstrip tran
is currently a research topic, with the aim to reach wider operating bandwidths.37,38

c. Connection with Stripline

This transition is built with the configuration indicated in Figure  9.5.3, but of course inserted
in the middle of the substrate, as the symmetrical stripline geometry requires. This transi
used to feed the double-sided “Vivaldi” antenna indicated in Figure  9.5.1. Performing the same
tapering we used for the microstrip case, an operating bandwidth near that of the microstr
has been reported.39

d. Connection with Coplanar Waveguide

Two possible transitions between these two lines are indicated in Figures  9.5.5 and 9.5.6. Since
for a complete understanding of these transitions a knowledge of the “CPW” propagation m

Figure 9.5.4

Figure 9.5.5

Top
 stripµ
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is required, we refer the reader to Chapter 10 where “CPW” is studied and these transitio
explained in more detail.

9.6 TYPICAL NONFERRIMAGNETIC DEVICES USING SLOT LINES

Some interesting devices can be built employing slot lines, especially when they are use
other t.l.s. The resulting devices are in general smaller with respect to the usual construct
this section we will discuss such devices.

a. 180° Reciprocal Phase Shifters

Such a device is indicated in Figure  9.6.1. It is built using a slot line and two microstrips, wit
transitions as indicated in Figure  9.5.3. This device has the characteristic that a signal enterin
one microstrip comes out from the other with 180° phase reversal. Of course, to work co
the bottom conductors must be disconnected from ground, at least near the slot. Expe
performed with short digital pulses40 have shown an operating bandwidth near one GHz.

Figure 9.5.6

Figure 9.6.1

µ strip
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IN/OUT
 stripµ

slot line
Bottom
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The phase shifting principle is indicated in Figure  9.6.2. Observe that the 180° phase revers
is quite independent from the frequency, so this phase shifter is a high bandwidth device,
any case with a bandwidth lower than its multistep Shiffman counterpart.* This device can a
realized using the microstrip-slot line transition indicated in Figure  9.5.4.

b. Magic “T”

Using the 180° phase shifter device studied in section “a” above, a new type of magic 
can be built. It is indicated in Figure  9.6.3. We can see how the 270° microstrip line has been
substituted with a 90° slot line with the transitions indicated in the previous points that perfo

Figure 9.6.2

*  Shiffman phase shifters are studied in Chapter 5.
**  Microstrip magic “T” is studied in Chapter 5.

Figure 9.6.3

IN/OUT microstrip
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180°, resulting in a 270° phase shifting. This device is consequently smaller than the t
microstrip magic “T.” Measurements performed on this device41 have shown that the operating
bandwidth can reach 100%, which is near four times the operating bandwidth of the usual mic
magic “T.” Another type of magic “T” has been investigated by L. Fan, C. H. Ho, S. Kanama
and K. Chang,42 which also employs a coplanar waveguide.

c. Mixers

One of the first uses of slot lines in mixers was by the researchers L. E. Dickens and
Maki.43 They have used a “CPW-slot line” transition, as indicated in Figure  9.5.5, together with
a “CPW-microstrip,” which we will study in Chapter 10. The characteristics of their mixer ar
follows:

RF bandwidth: 8.9 to 9.9 GHz
LO frequency: 7.8 GHz
IF bandwidth: DC to 1 GHz

Conversion loss: 3.15 dB, max
Image freq. isol: 25 dB, min

Another interesting use of slot lines has been reported by J. A. Eisenberg, J. S. Panelli, 
Ou.44 They have employed the transition shown in Figure  9.6.4 to pass from an unbalanced “CPW
to a balanced transmission line called a “coplanar strip” (CPS).* Note they perform such 
operations just using a slot line. Using the balun shown in Figure  9.6.4 they have built a double
balanced mixer with the following main characteristics:

RF bandwidth: 6 to 16 GHz
LO bandwidth: 6 to 16 GHz
IF bandwidth: DC to 1.5 GHz

Conversion loss: 9.1 dB, max
Isol. any port: 18 dB, min

In addition to the good performances of such mixers, these devices have the ability to b
planar, i.e., the conductors to guide the e.m. energy are on one plane only. 

Due to the high interest in mixer devices for communications systems, use of slot line
these devices is always a research topic.45,46

*  Coplanar strips will be studied in Chapter 11.

Figure 9.6.4

Slotline

CPS

CPW
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d. Directional Couplers

One of the first experiments on directional couplers employing slot lines was made by 
Mariani and J. P. Agrios.47 The resulting network is shown in Figure  9.6.5. This is a single λ /4
step directional coupler. The results of a device working at 2.74 GHz give an operating band
comparable to that of a single λ /4 step directional coupler in microstrip technology. However, w
this configuration it is possible to reach a 3 dB coupling, a value very difficult to achieve us
microstrip.* Other directional couplers can be obtained using a “CPW” in conjunction wi
slotline.48

e. Filters

The same researchers49 for the directional coupler discussed in the above section “d” have b
a band stop filter using transitions between microstrips and slot lines, as indicated in Figure  9.6.6.
The results of a device working at 3.1 GHz have not given particular advantages with resp
the microstrip counterpart. For this reason slot line filters are seldom used in practice, bu
study is very interesting from an e.m. point of view.50

9.7 MAGNETIZATION OF SLOT LINES ON FERRIMAGNETIC SUBSTRATES

As a result of the discussion in Section 9.2 we know that an elliptic polarization of the mag
field exists near the region of the slot, with the plane of polarization oriented longitudinally
existence of this polarization can be used to build nonreciprocal ferrimagnetic devices51,52,53 like
isolators or phase shifters,** as we will study in the next section. The complex argument of e
interaction between e.m. energy and ferrimagnetic materials is discussed in Appendixes A
and A7. The reader who is not familiar with these topics can read these Appendixes to revi
fundamentals of this branch of physics.

Figure 9.6.5

*  See Chapter 5 for practical coupling values of microstrip step couplers.

Figure 9.6.6

**  Isolators are always nonreciprocal devices, while phase shifters can be, in general, also reciprocal devices.
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Indicating with:

“H dc” a static magnetic field, 
“h” the “RF” magnetic field,
“ β”* a direction of propagation

the key points of energy interactions between an “h” elliptically polarized inside a magne
ferrimagnetic material are:

1. It is “direction sensitive,” i.e., if we fixed a direction for “Hdc,” for “β” we have the maximum
energy exchange while for “–β” we have the minimum. The same happens if we fix a direction of
“ β” and change the direction of “Hdc.”

2. It is dependent, among other things, on precise relationships between signal frequency, “Hdc”
intensity, and substrate physical characteristics.

The previous points 1 and 2 are, of course, a high simplification of complex physics interac
which result in macroscopic effects like “resonance” and “field displacement.”**

Once the plane position of elliptical polarization for “h” is known, it is simple to recogn
that the direction of “Hdc” for maximum energy exchange is as indicated in Figure  9.7.1a. In fact,
with these orientations between the “h” polarization plane and “Hdc,” the induced spin magnetic
vector precession motion can interact with “h.” For the case of microstrips or striplines we hav
studied how the “Hdc”  direction shown in Figure  9.7.1a is used to demagnetize a reciprocal
ferrimagnetic phase shifter.***

The second situation for which an energy exchange is possible is indicated in Figure  9.7.1b.
In fact, from Section 9.2 we know that an “rf” magnetic field orthogonal to “Hdc” exists. This
component is “hx.” Since “hx” is not elliptical polarized, with this type of magnetization it is possib
to build reciprocal phase shifters, as we studied in Chapter 7 or 8 for microstrips or strip
However, this component is lower than the same component for microstrips or stripline
consequently whenever a reciprocal phase shifter is needed, these last two t.l.s are emplo

Figure 9.7.1

*  With “β” in this case we mean “z0” or “–z0.”
**  See Appendix A7 to read about these two phenomenons. The “field displacement” phrase will be abbreviated wit
***  See Chapters 5 and 7 for ferrimagnetic microstrip or stripline devices.
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In the third direction of application for “Hdc,” indicated in Figure  9.7.1c, the energy exchange
is at a minimum, regardless of the reciprocal directions of “Hdc,” “ β,” or signal frequency, “Hdc”
intensity and substrate physical characteristics.

It is important to observe that when no external magnetic field is applied, and “RF” s
amplitude is not excessive to self bias the substrate, ferrite is a good dielectric with low atten
without any particular evident ferrimagnetic effect.

We can conclude these preliminary notes observing that for slotlines the most useful fer
netic devices are always nonreciprocal, and external magnetization is orthogonal to the di
of propagation, just to use the elliptical polarization of “h.” In the next sections we will show
it is not necessary to build a slotline directly on ferrimagnetic materials, even if it is preferab
fact, it is possible to have a nonferrimagnetic material as substrate and add slabs of ferrim
material on the conductors.

In the next section we will assume the reader is familiar with an isolator or phase s
Appendix A7 defines such devices. 

9.8 SLOT LINE ISOLATORS

Slot line isolators can be built using two energy exchange phenomena, i.e., the “reson
and the “field displacement” effects.*

9.8.1 Resonance Isolator

A slot line resonance isolator can be built as indicated in Figure  9.8.1. Near the slot of the slot
line a cylinder of ferrimagnetic material is positioned. An external static magnetic field “dc”
uniformly magnetizes the cylinder, centered** at the signal frequency where the isolation is de
Of course, the cylinder can also be substituted with a single slab of ferrite*** positioned a
the slot.

The same isolation property can be achieved with the isolator configuration shown in Figure
9.8.2, where the entire slot line is built on ferrimagnetic material.

Of course, some matching is required to adjust the input impedance of these devices
usual 50 Ohm, since their input impedance is usually lower than this value.

*  See Appendix A7 for fundamentals about these two important effects of energy exchange.
**  By “centered” we mean that the “Hdc” intensity is just what is required to have a precession frequency motion e
to that signal frequency we want to stop. See Appendix A7 for more deep insight into ferrimagnetic energy excha
***  “Ferrite” is a particular ferrimagnetic material, like others as “YIG.” We will use this term to indicate a gen
ferrimagnetic material.

Figure 9.8.1
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9.8.2 Field Displacement Isolator

A field displacement (f.d.) slot line isolator can be realized as indicated in Figure  9.8.3. A slot
line is built on ferrite, and at the other face, an absorptive material is attached. A static ma
field “Hdc” is applied orthogonally to the direction of propagation “z0.”

To study such a device we need to apply some simplifications to the geometry indica
Figure  9.8.3 to use the theory we developed in Appendix A7. So we assume:

1. all the e.m. energy is contained inside the ferrite
2. in the slots only the components “hy” and “hz” exist, and that they don’t vary with the coordinate

“x;”* i.e., the fields are uniform
3. only a “TE” mode is supported by the “slot line”

With this hypothesis, we know from Appendix A7 that:
a. the ferrite presents a permeability “[µx]” given by:

(9.8.1)

Figure 9.8.2

*  Using the well-known notation described in Appendix A2 and Chapter 1, this hypothesis means kx = 0.

Figure 9.8.3
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b. the propagation constants “ky” and “kz” are related by:*

(9.8.2)

with the “equivalent permeability (µeq⊥ )” given by:

(9.8.3)

For a “TE” mode the field components “hy” and “hz” can be written as a function of the transvers
electric field “ex”** i.e.:

(9.8.4)

(9.8.5)

Since we assume energy propagation only inside the ferrite, for y = hf there must be:

(9.8.6)

The previous equation can be simply understood forcing, for our hypothesis, the Poy
vector*** to be zero for y ≥ hf.

We now force the condition to have a real value “α y” for “k y” and an imaginary value “βz” for
“k z,” i.e.:

(9.8.7)

(9.8.8)

Inserting 9.8.3 and the two previous equations into 9.8.4, the condition 9.8.6 is verified 

(9.8.9)

Inserting the three previous equations into 9.8.2 we have:

(9.8.10)

So, if we permit the two previous equations to be verified, then the propagation will be atten
along “y” and unattenuated along “z.”

*  Remember we have assumed that the e.m. fields have zero dependence on the “x” axis, i.e., kx = 0.
**  See Appendices A2 and A7 for field expressions of various modes.
***  See Appendix A2 for the definition of Poynting vector.
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In addition, if we do the ratio “ex /hz,” we have the characteristic impedance given by:

(9.8.11)

From the graph (A7.4.1) of “µp” reported in Appendix A7, we can observe how for a particu
field intensity “Hdc”* and a particular frequency it is possible to generate a negative value of p”
and consequently an imaginary impedance. This means that under these circumstances th
is swept away from the ferrite.

The dependence of the field displacement effect on the directions “βz” and “Hdc” can be
understood observing Table A7.7.1, here reported for simplicity:

Note that since the sign of “α y” given by 9.8.9 depends on the product “µ�βz,” using the previous
table we note how changing directions of  both “βz” and “Hdc” the guiding edge for the e.m. energ
doesn’t change.

The theoretical concepts we have just reported are graphically represented in Figure  9.8.4. Part
a indicates the electrical field lines when the field displacement causes the e.m. energy to be

*  “H dc” intensities for field displacement operation are lower than the values for resonance.

Table A7.7.1

Change of sign when H  changes dir. Change of sign when prop. changes dir.

“µp” NO “µp” NO
“µ�” YES “µ�” NO
“µeq⊥ ” NO “µeq⊥ ” NO
“βz” NO “βz” YES

Figure 9.8.4
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on the top surface, i.e., the conductor’s surface. This situation is different from the typical n
rimagnetic slot line, where the field lines are mainly concentrated in the dielectric. From
equations we gave before, this situation happens when “Hdc” is directed along “x0” and propagation
is along “z0.” Figure  9.8.4b represents what happens when, with respect to part a of the fig
we change the propagation direction or “Hdc” direction. From this figure it is simple to understan
that if we attach an “RF” absorptive material on the bottom of the slot line, in the direction
the field travels on this surface a signal attenuation will arise. Consequently, when a change
is made to “Hdc” or to the propagation direction, then no loss will be added by this material, s
signal propagation is on the opposite surface. Of course, if we move the resistive material 
conductor’s surface, we always have a field displacement isolator, but now we have revers
attenuation direction.

Field displacement isolators are of a wider bandwidth than the resonance isolators and 
lower intensity of “Hdc.” They do not reach the isolation values of the resonance counter
Experiments54 on an f.d. isolator similar to that indicated in Figure  9.8.3 have given an isolation
of minimum 20 dB and an insertion loss of maximum 3 dB in the 3 to 6 GHz band.

However, in general, devices that only perform isolation are not so widely used, and term
circulators are preferred due to their high versatility. Slot line circulators have also been inves
in the literature,55 but no improvements have been given with respect to other planar transm
line circulators.

9.9 SLOT LINE FERRIMAGNETIC PHASE SHIFTERS

Two groups of slot line ferrimagnetic phase shifters* are possible: one that uses the di
phase constants “βc” and “βd” between the “concordant” and “discordant” waves,** and one th
uses the field displacement effect. We will call the first device a “Discon” phase shifter an
second one a “field displacement” phase shifter.

With respect to microstrip or stripline counterparts, slot line phase shifters have the adva
that circular polarization doesn’t need to be artificially created. In fact, we know that for micro
or striplines, circular polarization is obtained with a meander line; but, while all the meande
length is responsible for attenuation, only approximately 65% of its length is responsible for ci
polarization. This circumstance results in a higher length for meander line devices with resp
a slot line p.s. A meander line stripline or microstrip p.s. has higher absolute values of fig
merit than the corresponding slot line counterpart, but a slot line device usually has s
dimensions for the same electrical parameters.

9.9.1 “Discon” Phase Shifter

One of the first experiments performed on this kind of phase shifter was made by G. H. Ro
and J. L. Allen.56 The common physical principle is the different value of “βc” and “βd” and their
dependence on “Hdc” and the direction of propagation. These two phase constants are relat
the elements of the ferrite permeability matrix by the relationships:

(9.9.1)

(9.9.2)

*  We will use the letters “p.s.” to denote a “phase shifter.”
**  See Appendix A7 for definitions of “concordant” and “discordant” waves.

β ω µ ε µ µd p
−⊥ ( ) −( )0

0 5 0 5. .

l

β ω µ ε µ µc p
−⊥ ( ) +( )0

0 5 0 5. .

l
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One possible construction of a “discon” p.s. is indicated in Figure  9.9.1. Note that the situation
is practically coincident with that indicated in Figure  9.8.1. The presence of a ferrite slab, as in
this case, or ferrite cylinder makes no magnetic difference. The very important difference i
for the isolator case, the “Hdc” value is for resonance, while in this case we are not in resona
obviously. Caution must be used not to bring ferrite into the field displacement region us
wrong value of “Hdc.”* For the “discon” p.s., typical “Hdc” values have lower intensity than the
required values for a f.d. effect.** Of course, a p.s. can also be realized as indicated in Figure
9.8.2, again with “Hdc” out of resonance.

An interesting alternative to the planar p.s. structure is the parallelepipedal type, indica
Figure  9.9.2. This device uses the ferrite residual magnetization.*** A slot line is built on a surface
of a hollow ferrite parallelepiped. A conductor wire “W” is inserted inside the cavity. Whe

Figure 9.9.1

*  The proper values of “Hdc” depend on the ferrite parameters inserted in the figures of “βc” and “βd” we gave in Appendix A7.
**  Theoretically a “discon” p.s. can also work with “Hdc” values above resonance, but such a high value is only emplo
for high RF power devices.
***  See appendix A7 for ferrite residual, or permanent, magnetization.

Figure 9.9.2
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current pulse “I” passes inside the wire, a magnetic field is generated* that, if of proper inte
can permanently magnetize the ferrite with a residual field “Hdc.” Changing the direction of “I” is
equivalent to changing the direction of “Hdc.” Devices working on residual magnetization are call
“latching devices.” Note that the latching p.s. indicated in Figure  9.9.2 having a closing path for
“Hdc” does not disperse this static field very much.

Experiments57 on a “discon” p.s. shown in Figure  9.9.1 working in the frequency range of 8
to 10 GHz have given differential phase shift** “∆ϕ” values near 12°/cm and figure of merit***
near 100°/dB. Other experiments58 on the “discon” p.s. composed as shown in Figure  9.8.2, with
“H dc” of course not in resonance, have given differential phase shift values near 30°/cm and
of merit near 200°/dB for a signal working at 9.5 GHz. A latching59 p.s. has given differential
phase shift values near 20°/cm and figure of merit near 150°/dB, i.e., comparable value
respect to the nonlatching “discon.”

9.9.2 Field Displacement Phase Shifter

The operating principles of a field displacement p.s. are exactly the same as those for 
isolator. So, Figure  9.8.4 can represent the construction of an f.d. phase shifter, but for the pr
operation it is necessary to change the slab of absorptive material to one with a low loss die
slab with permittivity “ε r�”  as indicated in Figure  9.9.3. In fact, since the phase constant “βz”  along
“z” is given by 9.8.10, i.e.:

*  Fundamental theory of magnetic fields generated by current in conductors is reviewed in Appendix A6.
**  “Differential phase shift” is defined in Appendix A7.
***  See Appendix A7 for p.s. quality parameters definitions.

Figure 9.9.3
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(9.9.3)

then when the wave is guided by the edge where the dilectric slab is disposed, the value oε re”
will be:

(9.9.4)

while when the wave is guided by the opposite edge, the value of “ε re” will be:

(9.9.5)

resulting in a differential phase shifting. In 9.9.4 and 9.9.5 “εf” is of course the ferrite permittivity.
Note that if we move the added dielectric slab on the conductor surface we always have 
displacement p.s., but now we have reversed the phase shifting sign. Experiments60 on a f.d.p.s. of
the type shown in Figure  9.9.3 have given ∆ϕ ≈ 20°/cm in the 6 to 10 GHz bandwidth, and pea
near 40°/cm at 10 GHz.61

It is important to conclude this section remembering from the general discussion in App
A7, that the distinction between “discon” and f.d. phase shifters is only dependent on the int
of the applied “Hdc” since the two mechanical constructions can be very similar.

9.10 COUPLED SLOT LINES

Coupled slot lines are seldom employed in planar transmission line circuits. In practice,
is no advantage to using such coupled line structures instead of other coupled t.l.s we have
in this text such as microstrips or striplines. However, we think it is useful to discuss this part
coupled line circuit since it will be recalled in Chapter 10 when we will study coplanar wavegu
Due to the geometric similitude to the “CPW,” coupled slot lines are a topic of study.62,63

9.10.1 General Characteristics

The geometric structure of side coupled slot lines, simply called “SCSL” is indicated in Figure
9.10.1. In practice, two slot lines share a common conductor as one of the two conductors required
for a single slot line. The e.m. field lines can be assumed to be composed by the superpos
the field distribution of the even and odd excitation.* The field distribution for these excitat
also called “modes,”  is schematically reported in Figure  9.10.2, respectively in parts a and b.
Referring to the potential of the separation conductor “w,”** we define as:*** 

*  See Chapter 1 for the even and odd excitation method of studying coupled lines.

Figure 9.10.1

**  “w” is the width of the separation conductor. For simplicity, with “w” we will also name this conductor.
*** The following definitions a and b are not so general as for the case of Cµ or CS, studied in Chapters 5 and 6, respective
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a. “Even” mode, that one for which “w” can be evaluated as equipotential, 
b. “Odd” mode, that one for which “w” can be evaluated as not equipotential.

Note that the even mode also possesses some magnetic field lines that surround the se
conductor, and the e.m. field lines resemble those of the fundamental mode for “CPW.”

A structure that can resemble a broad side coupled slot line, simply called “BCSL,” is indi
in Figure  9.10.3. This “BCSL” has been studied, using a full wave analysis, by R. Janaswa64

but no closed formulas are available. This t.l. has not found applications in practice, since a
Vivaldi antenna, discussed in Section 9.5, cannot be considered a “BCSL” since the distan
is not constant.

9.10.2 Analysis

One of the first studies on coupled slot lines was performed by J. B. Knorr and K. D. Kuch65

They used a full wave analysis on this structure. In practice, they have evaluated the Po
vector* “Pz” along “z,” given by:

(9.10.1)

Figure 9.10.2

Figure 9.10.3

*  See Appendix A2 for Poynting vector definition.
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with the assumption:

(9.10.2)

Then, to define the impedance “ζ”* of this structure they have used the relationship:

(9.10.3)

where “v” is the peak voltage along the slot and “W” the mean “rf” power. This procedu
repeated for each mode, giving us the even “ζ e” and odd “ζ o” characteristic impedances. The
solution of 9.10.3 is not simple since it requires the integration on a surface for “Pz” and along a
line for “e.” This procedure does not give a closed form expression for the evaluation of imped
What these researchers have obtained are graphs as indicated in Figures 9.10.4 and 9.10.5, where
we have reported “ζ e” and “ζ o,” and “ε re” and “ε ro,” respectively. Note that when “w” increases
the even and odd impedances have a common value as a limit since the two slots become de

*  Since two propagation modes are possible, we will have an even “ζe” and odd “ζo” impedance.

Figure 9.10.4
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CHAPTER 10

Coplanar Waveguides

10.1 GEOMETRICAL CHARACTERISTICS

The physical realization of a coplanar waveguide* is indicated in Figure 10.1.1. This t.l. was
first studied by C.P. Wen.1 It is important to note that if the word “waveguide” appears in th
transmission line name, in this case, there is no similarity to the well-known “waveguides” disc
in Appendix A2. “CPW” is a full planar t.l., since in contrast to the microstrip case, here the
no bottom ground conductor.** From this point of view, the “CPW” is very similar to the slot 
studied in Chapter 9. As shown in Figure 10.1.1, this t.l. is composed of a central conductor 
width “w,” separated from two lateral conductors by a distance “s” called the “slot.” All 
conductors of thickness “t,” are placed on a dielectric slab of height “h” and dielectric and ma
constant “er” and “µr.” The extension “w�1” and “w�2” of the two lateral conductors is suppose
to be infinite, but in practice is many times the length of the signal wavelength.***

According to the discussion in Appendix A2, the “CPW” has a zero cut-off frequency, bu
low order propagation mode is indicated with “qTEM”**** because it is not a real “TEM.” Howev
the error we make in evaluating the fundamental propagation mode as a pure “TEM” is neg
for frequencies up to some tens of GHz.2,3,4 After this limit, dispersion arises and the propagatio
mode tends to be nearly a “TE,”***** with the magnetic field elliptically polarized along longi
dinal planes. From this point of view, there is a big difference between microstrips and stri
studied in Chapters 2 and 3, while there is some similarity with the slot line propagation 
since this t.l. does not support a real “TEM” mode. Due to the elliptical magnetic field polariza
the “CPW” is a t.l. well suited to have energy exchange with ferrimagnetic materials, as w
show later.

Since the number of the electric and magnetic field lines in the air is higher than the n
of the same lines in the microstrip case, the effective dielectric constant “εre” of “CPW” is typically
15% lower than the “εre” for microstrips. Consequently, the maximum reachable character
impedance values are higher than the microstrip values. In addition, to avoid field radiation
air, it is very important to use substrates with a high dielectric constant, let us say from a
greater than 10, so that the e.m. field is mainly concentrated inside the dielectric.

A coplanar waveguide, together with a µstrip, is the most studied t.l. due to its “qT
propagation mode and its planar structure.5,6,7,8

*  For simplicity the coplanar waveguide transmission line will be simply indicated with “CPW.”
**  The case of a bottom ground conductor will be studied later.
***  The effect of the limited extension of the lateral ground planes will be studied later.
****  “qTEM” means “quasi TEM.”
*****  The fact that the propagation mode always tends to be a “TE” mode depends on the natural disposition 
electric field inside the “CPW.” Electric field lines are shown in the next section.
©2000 CRC Press LLC
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10.2 ELECTRIC AND MAGNETIC FIELD LINES

Some electric “e” and magnetic “h” field lines for the fundamental “qTEM” mode in “CP
are indicated in Figure 10.2.1 in a defined cross-section and a defined time. In the fundame
mode, the lateral planes are at signal ground potential and for all the dimensions “w,” the c
conductor is equipotential. In this case, the “CPW” is an unbalanced t.l. Of course, this is n
only propagation mode for the “CPW” and other modes are possible that are also depend
the particular feeding line. Later we will show other propagation modes for the “CPW.”

The field lines indicated in Figure 10.2.1 are a simplification, especially for the magnetic fiel
In fact, since where an electric time varying field exists, a magnetic field also exists, then ma
field lines must exist on the left and right of Figure 10.2.1, in the slots. These magnetic lines are
not in the plane of the figure since “h” tries to close its field lines on the two lateral sides w
the two ground conductors are placed. For this reason, with a “• ” we indicate a vector exiting from
the plane of the figure, while with an “x” we indicate a vector entering into this plane.

A more defined representation of the magnetic field lines for the fundamental “qTEM” m
is indicated in Figure 10.2.2. Note the field lines of coplanar waveguide are quite similar to th
for the slot line case studied in Chapter 9, and in this case a “qTEM” propagation mode is po

Figure 10.1.1

Figure 10.2.1
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10.3 SOLUTION TECHNIQUES FOR THE ELECTROMAGNETIC PROBLEM

As we have said in a previous section regarding other transmission lines, in this case the 
can also be studied using quasi static methods*10,11 or full wave methods: FWM.12,13,14,15 While full
wave methods are at the same time the most accurate tools for obtaining the t.l. characteris
the most analytically extensive, q.s. methods are quite simple but do not threaten the dis
nature of a generic t.l. Consequently, the approximation of the q.s. method becomes worse
t.l. becomes dispersive. It is known that the error in the q.s. method increases if the t.l. do
support a “TEM” or “qTEM” mode. In our case the approximation is very good until 20 GHz 
since “CPW” supports a “qTEM” mode. For this reason, we will study this line employing 
simple q.s. methods, i.e., the “conformal transformations”** and “finite differences.” However
will mainly concentrate our attention on the the “conformal transformations” method since it 
simplest and most often used q.s. method.

a. Conformal Transformation Method: CTM

As we will study in Appendix A1, with the conformal transformation method the origi
geometric structure is transformed into a more simple one. With this method, the “CPW
transformed in a structure that resembles a parallel plate capacitor, for which the capacit
simply evaluated as C = εS/d, where “S” is the area of the plate and “d” its distance. Then 
assumed that this parallel plate capacitor represents a “TEM” lossless t.l. with the same capa
“C,” but effective permittivity “εre” and effective permeability “µre” given by:

(10.3.1)

(10.3.2)

Figure 10.2.2

*  Quasi static methods will be simply indicated with “q.s.” methods. See Appendix A1 for fundamentals on reso
techniques for electrostatic problems.
**  The “conformal transformation” is also called “conformal mapping.”

h

Fundamental mode:
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i.e., the medium value between the air relative dielectric and magnetic constants and those
substrate. The reader who is familiar with propagation of e.m. energy through ferrimag
materials can recognize that “µre” given by 10.3.2 is only a simplification. In fact, e.m. propagati
inside such materials is, from a theoretical point of view, one of the most formidable branch
physics. We know that every ferrimagnetic material possesses an equivalent permeability 
dependent on many parameters, like reciprocal direction between e.m. energy propagati
direction of the applied magnetic field “Hdc,” field intensity, signal frequency, ferrimagnetic com
position, and more.* We will return to this topic when we discuss ferrimagnetic devices in “C
technology. For the moment, the expression of “µre” in the following formulas will remind us that
the presence of any ferrimagnetic material will need to be evaluated.

If “v” is the velocity** of the wave in this “TEM” lossless line, from the value “C” of th
capacitance by u.l., the line impedance “ζ” is evaluated by:***

(10.3.3)

where “v” is the light phase speed given by:

(10.3.4)

where “v0” is the speed of light in a vacuum.
The application of this procedure to our case is indicated in Figure 10.3.1. The “CPW” is

assumed with infinite substrate height “h”  and negligible conductor thickness “t .”  In Figure 10.3.1a,
the “CPW” is associated with a complex Cartesian coordinate system in the plane “W.” Specia
the Schwarz-Christoffel transformation (see Appendix A1) to the structure in Figure 10.3.1a, we
can transform the v < 0 half plane into the parallel plate capacitor indicated in Figure 10.3.1b,
which lies in a complex plane “Z.” The resulting transformation is given by the following relat
ship:16

(10.3.5)

where “A” is a constant. With reference to Figure 10.3.1b, note as the capacitance “Cb”**** per
u.l. of this structure is given by:

(10.3.6)

The ratio “a5/d” is given by:17

(10.3.7)

where “K(p)” is the complete elliptic integral of the first kind, defined in Appendix A8, and 
parameters “p” and “p′ ” are defined as:*****

*  See Appendix A7 for fundamental information on energy exchange between waves and ferrimagnetic materials
**  In quasi static methods the t.l. are evaluated as nondispersive, so that group and phase velocity coincides.
***  See Chapter 1 for t.l. parameters definitions.
****  The subscript “b” is used to remind we refer to the bottom side of the “CPW” indicated in Figure 10.3.1 a.
*****  Sometimes in literature “K(p′)” is indicated with “K′(p).” This is only a different symbology, since operatively th
integral is evaluated for p’=(1-p2)0.5.
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Using 10.3.6 and 10.3.7, the capacitance “Cb” per u.l. of the transmission line indicated i
Figure 10.3.1b is:

(10.3.9)

At this point, the conformal transformation is repeated for the v > 0 half plane and, proce
similarly as we did for the case v < 0, the capacitance “Ct”* per u.l. of the transmission line
indicated in Figure 10.3.1b with “εr” replaced with “ε0” is:

(10.3.10)

Once we know “Cb” and “Ct,” the “CPW” will have an associated capacitance “C” per u
given by:

(10.3.11)

So, using the previous equation in the general definition of the effective relative diele
constant for the quasi static case,** we have:

(10.3.12)

Figure 10.3.1

*  The subscript “t” is used to remind us that we refer to the top side of the “CPW.”
**  See for example Section 2.4 of Chapter 2.
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Inserting 10.3.11 in 10.3.3 and performing simple calculations, we obtain the “CPW
impedance:

(10.3.13)

The effect of finite substrate height “h” has been studied by M. E. Davis, E. W. Williams
A. C. Celestini,18 always using conformal mapping. From their studies we have the result tha
simple conformal transformation we did disagrees with the values they obtained; within 
percent up to h > 2s, while for h = s the error reaches 10%.

The effect of a lower ground plane19 in the “CPW” was first investigated by G. Ghione and 
Naldi,20 applying two conformal transformations to the structure indicated in Figure 10.3.2. The
characteristic impedance for this t.l. is given by:

(10.3.14)

where:

(10.3.15)

(10.3.16)

(10.3.17)

The effect of the lower ground plane is, among other things,* to decrease the impedance
original “CPW” indicated in Figure 10.3.1.

Note that the conformal transformations methods always assume the thickness “t” of th
conductors to be zero. In the next section we will see the effects caused by t > 0 on the “
characteristics.

b. Finite Difference Method: FDM

As we can see in Appendix A1, with the finite difference methods the original geom
structure is evaluated enclosed in a metallic box so that all the e.m. fields can be considere
inside the box. This geometric situation is indicated in Figure 10.3.3.

*  We will return later to the effects of a bottom ground plane in an “CPW.”

Figure 10.3.2
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The general procedure is to obtain the potential “V(x,y,z)” inside this structure and then
a simple derivative operation, extract the electric field “E” from the well-known21,22 relationship*
E = –∇ V. Once the electric field is found, the charge “Q” on the central conductor can be f
using the electrostatic Gauss23 law:

(10.3.18)

where “S” is a surface surrounding the internal conductor and “n” is the normal to this surface and
directed outside. At this point, the capacity of the t.l. is simply evaluated by the well-kn
relationship C = Q/V. Then using 10.3.1 through 10.3.4, the t.l. characteristics can be obtai

Results obtained with this analysis method24 have produced an error below 3% with respect
the measured values.

We can conclude this section observing that the “CTM” permits closed forms of “CPW,” w
the “FDM” cannot do this, as we will see later. This last method is more general and accura
the “CTM.”

10.4 CLOSED FORM EQUATIONS FOR “CPW” 
CHARACTERISTIC IMPEDANCE

The closed forms we give here have been obtained using the “CTM” described in the pr
section. For all the “CPW” dimensions, we will  refer to Figure 10.4.1, assuming the dimensions
“w�1” and “w�2” to be infinite. Since “CTM” assumes the conductors to be of zero thickness, s
correction needs to be made.

To consider the metal thickness “t” we can use the theory employed in Chapter 2 and as
to a metal thickness “t” an extra width “dw” given by:

(10.4.1)

So, we define the following new notations:

Figure 10.3.3

*  See Appendix A8 for delta operator “∇ ” definition.
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(10.4.2)

and the parameter “p” now becomes:

(10.4.3)

A better expression of “εre” with respect to the value (εr + 1)/2 has been obtained with a curv
fitting procedure performed by I. J. Bahl25 on the measurement values obtained by M. E. Dav
E. W. Williams, and A. C. Celestini,26 resulting in:

(10.4.4)

(10.4.5)

(10.4.6)

where “p” is defined by 10.3.8. Note how equation 10.4.6 includes the limited extension o
The effect of “t” on “εre” was first evaluated by T. Kitazawa, Y. Hayashi, and M. Suzuki27,28,29 and
were closed form fitted by K. C. Gupta, R. Garg, and I. J. Bahl.30 We obtain:

(10.4.7)

At this point we have all the relationships required to calculate the characteristic impe
and dielectric constant of our “CPW.” In fact, the characteristic impedance is given by 10.3.13
the insertion of the previous equation and using the parameter “pt” defined in 10.4.3. Specifically,
we have:

(10.4.8)

where “εre” is given by 10.4.7. In a lot of these formulas, the ratio of the complete elliptic inte
of the first kind appears. This ratio can be calculated using the approximated expressions g
Appendix A8.

The value of “ζ” and “εre” produced by the previous formulas has an accuracy better than
compared with the measurement results of M. E. Davis, E. W. Williams, and A. C. Celes31

whenever the condition

(10.4.9)

is satisfied. In practice, equation 10.4.9 is quite often used.
Other closed form expressions, based on “CTM” with the assumption t = 0, have been ob

by T. Q. Deng, M. S. Leong, P. S. Kooi, and T. S. Yeo32 and compared with “FWM.” The result is
that when the condition 10.4.9 is verified, the formulas are very accurate up to 20 to 30 GH
dispersion can be neglected.

w w dw s s dwt t= + = −,

p p w w s and p pt t t t t t→ +( ) ′ −( )− −⊥ ⊥2 1 2 0 5.

ε1 1 785 1 75−⊥ ( ) +[ ]tanh . ln .h s

ε ε2 0 04 0 7 0 01 1 0 1 0 25−⊥ ( ) − + −( ) +( )[ ]ps h p pr. . . . .

ε ε ε εre r
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re t s
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10.5 CLOSED FORM EQUATIONS FOR “CPW” ATTENUATION

As many other t.l.s, the “CPW” losses are due to three causes:

1. Nonperfect conductivity of the conductors, or “conductor loss”
2. Dielectric nonzero conductivity and dumping phenomena
3. Substrate magnetic loss, if the substrate is a ferrimagnetic material
4. Radiation

In this section we will study how to evaluate the first two causes of losses, which are di
related to the geometry of the “CPW” indicated in Figure 10.1.1. Magnetic losses are mainly du
to damping phenomena inside ferrimagnetic material and, if the signal frequency is of appro
value, to resonance absorption.* Radiation losses are strongly depedendent on the surro
structure near the “CPW” and cannot simply be treated in a general way.

For the present case, if we consider the “CPW” as a t.l. only supporting a “TEM” mode
can apply the theory developed by H.A. Wheeler.33,34 The procedure is similar to that used for th
µstrip case in Chapter 2, and for this reason, here we will only outline the differences with re
to µstrips. First, consider the attenuation due the nonperfect conductivity of the conductors. In
conditions, we know** that the e.m. energy will penetrate inside the conductors and at the
etration depth -p-” given by:

[meters***] (10.5.1)

the field amplitudes are reduced by “1/e.” In Equation 10.5.1, “f” is the signal frequency, an
and “µc” are the conductor conductivity and absolute permeability, respectively. The effect of
penetration can be regarded as the introduction of an additional series inductance and resista
per u.l., indicated respectively with “Li” and “Ri” and called respectively “incremental inductance
and “incremental resistance.” The situation is depicted in Figure 10.5.1. If “L” is the equivalent
series inductance per u.l. of the lumped equivalent t.l. for the “CPW,” given by:*****

[Henry/meter] (10.5.2)

*  See Appendix A7 for energy exchange phenomena between e.m. signal and ferrite.
**  See Appendix A2 for e.m. energy penetration inside nonperfect conductors.
***  Remember that unless otherwise stated, in this book we will use the MKSA unit reference system.
****  Since we assume the “CPW” only to support a “TEM” mode, we are referring to the simple low pass equiv
network for a line supporting a “TEM” mode. This topic is covered in Chapter 1.
*****  See Chapter 1 for relationships between t.l. characteristics quantities.

Figure 10.5.1
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−⊥

−( )π µ
0 5.

L v vr e r e= = ( )ζ µ ε/
.0 5

0

rµ

6n 2n 4n 9n
8n

10n3n7n

5n 1n

rε
©2000 CRC Press LLC



            

ty

    

tain the

           

mean

       
each “Li” and “Ri” are given by:

[Henry/meter] (10.5.3)

[Ω/meter] (10.5.4)

where “µcr” is the conductor’s relative permeability and “∂n” is an infinitesimal penetration inside
the conductor, positive when the vector “n” is directed into the conductor. If we define the quanti
“Rs,” called the “sheet resistance” for the conductor, as:

[Ω/square]* (10.5.5)

Equation 10.5.4 becomes:

(10.5.6)

We now have to take into account all the incremental inductances and resistances, to ob
whole additional inductance “La” and resistance “Ra.” With reference to Figure 10.5.1 and using
10.5.3 and 10.5.6, we have:

(10.5.7)

(10.5.8)

The conductor attenuation coefficient “αc”** is defined as:

(10.5.9)

where “Wc” and “Wt” are respectively the mean power dissipated in the conductor and the 
transmitted power, given by:

(10.5.10)

Using 10.5.8 and 10.5.10, Equation 10.5.9 becomes:

(10.5.11)

*  See Appendix A2 for dimension unit of “conductor resistance.”
**  We are assuming a longitudinal variation of conductor attenuation with e-αcζ. See Chapter 1 for fundamental theory of
transmission lines.
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From 10.5.2 we note that:

(10.5.12)

and so Equation 10.5.11 becomes:

(10.5.13)

Since the characteristic impedance “ζ” is also a function of “w,” “s,” and “t,”* as was shown
in the previous paragraph, the derivative “∂ζz/∂n” is:

(10.5.14)

From Figure 10.5.1 we observe that:

(10.5.15)

and 10.5.13 becomes:

(10.5.16)

Inserting the expression of “ζ” given in the previous section, I.J. Bahl35 has obtained the
following expression of “αc” which gives a value in dB per u.l.:

(10.5.17)

where the parameters “p” and “p′” are defined by 10.3.8, and:

(10.5.18)

(10.5.19)

Of course, in 10.5.17 and 10.5.19 the proper values of the ratio must be inserted betwe
complete elliptic integrals of the first kind as given in 10.4.10 and 10.4.11. The quantities “N
“D” are defined as follows:

(10.5.20)

*  In this theory substrate height “h” is assumed to be theoretically infinite.
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(10.5.21)

Note that the “u.l.” dimension in 10.5.17 is given by the quantity “s,” i.e., the spacing o
lateral ground planes as indicated in Figure 10.1.1.

The incremental inductance rule has been verified to give very accurate results for con
thicknesses greater than four times “p.” This condition is usually verified for every planar t
mission line since for the typical conductors, using the value of “p” is lower than some micro
for frequencies greater than 1 GHz.*

Dielectric loss can be evaluated as has been done for microstrip in Chapter 2, resulting
same expression:

(10.5.22)

which gives a value of dB/u.l. In the previous equation, “εre” is given by 10.4.5 through 10.4.7 and
“tanδ” is the dielectric “tangent delta.”** Of course, the quantities “εr” and “εre” are all relative to
the real part of the substrate dielectric constant.*** Also in this case, remember that to ev
magnetic losses, the “αd” expression can be formally modified multiplying by . Howeve
from the discourse in section 10.3 we know that such multiplication is quite often only a nota
simplification. In the next section we will study some “CPW” devices that use the RF intera
with ferrimagnetic materials.

Due to the increasing use of “CPW” in microwave circuits, losses in these t.l.s. are cur
a topic of study.16,37

10.6 CONNECTIONS BETWEEN “CPW” AND OTHER LINES

We think it is important to discuss the most suitable and simple transitions between “C
and the other most often used transmission lines. Of course, every transition introduces a 
tinuity, and a study of such discontinuities38,39,40 can help in deciding which transition is better. I
general, a transition is evaluated as acceptable when the resulting reflection coefficient is ty
below 10 dB.

a. Connection with Coaxial Cable

This transition is indicated in Figure 10.6.1, where we have represented a top view. For a go
transition it is important that the outer conductor of the coaxial cable be short connected 
two ground planes of the “CPW.” The center conductor of the coaxial cable is of course
connected to the center conductor of the “CPW.”

b. Connection with Microstrip

Two transitions are possible between these two lines. The first one is indicated in Figure 10.6.2.
This transition is characterized as having the hot conductors of these two lines on the op
surfaces of the dielectric substrates. The two hot conductors are connected together thr
conducting hole, called a “via hole.” With this transition, the two lines share the same ground

*  See Appendix A2 for values of penetration depth inside good conductors.
**  See Chapter 1 for “tanδ” definition.
***  See Chapter 1 for complex permittivity definition.
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The second transition is indicated in Figure 10.6.3. This transition is characterized as havin
the cold conductors of these two lines on the opposite surfaces of the dielectric substrate
important that the ground conductor be connected together at the same potential. The tw
conductors are connected together using “via holes.” With this transition, the two lines sha
same hot conductor. Note the tapering for the cold conductors.

In section 10.3 we discussed the possibility of having a “CPW” with an opposite gro
conductor, as indicated in Figure 10.3.2. We will return in the next section to this topic, but for th
moment we say that whenever the “CPW” has a bottom ground conductor, the transition in 
can be simplified avoiding the tapering in the bottom conductor.

c. Connection with Slot Line

This transition is indicated in Figure 10.6.4, where we have represented a top view. Th
connection, along with the others previously shown, is the most simple since both the “CPW
slot line are uniplanar lines. For this reason, “CPW-slotline” transition is currently investigat
improve performances.41,42,43

This transition has the characteristic that the signal coming from the slot line doesn’t exc
fundamental mode toward the “CPW” while the fundamental mode coming from the “CPW” ca
propagate toward the slot line. This situation is indicated in Figure 10.6.5, respectively in parts a
and b. Note that in the case of Figure 10.6.5a the signal generated inside the “CPW” is such th

Figure 10.6.1

Figure 10.6.2

Coax
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the center conductor is not equipotential. If we use the “potential” function along the dime
“w,” we can recognize how in part a, the potential is an odd function for a reference cen
“w/2.” For this reason, we will note the electric field lines distribution in the “CPW” indicated
Figure 10.6.5 as corresponding to an “ODD” mode. Conversely, the electric field line distribu
corresponding to the fundamental mode will be called the “EVEN” mode since the potential fun
is even along “w” for a reference center in “w/2.” In the next section we will show an applica
that uses such transition.

Another possible transition between the “CPW” and slot line is indicated in Figure 10.6.6.
Comparing this transition with that shown in Figure 10.6.4 we can observe how in Figure 10.6.4
the coupling between the lines can be regarded as an “electrical” one, while for Figure 10.6.6 the
coupling can be regarded as “magnetic.” Of course, for every transition that involves the “C
it is important to assure good continuity to every ground and hot common conductor. This c
accomplished using via holes whenever possible. Note that in the case of Figure 10.6.6, the
connection between the two lateral ground planes of the “CPW” to assure the equipotential
be performed with an air bridge, a typical technology for “MIC” and “MMIC.”

Figure 10.6.3

Figure 10.6.4
©2000 CRC Press LLC
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10.7 TYPICAL NONFERRIMAGNETIC DEVICES USING “CPW”

We think it is important to discuss some devices that can also be built employing “CPWs”
often giving better results with respect to the use of other t.l.s.

a. Mixers

The use of the “CPW” in mixers was treated in Chapter 9 when introducing the most imp
slot line networks. For this reason we refer the reader back to Chapter 9. Note that since bo
lines are planar, this transition is the most attractive.

Such full planar devices have been proved to work well inside the millimetric wavele
region.44,45

Figure 10.6.5

Figure 10.6.6

b)

a)

OUT (Lossy) IN

OUT IN
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b. Directional Couplers

One of the first experiments on directional couplers employing “CPWs” was made by
Wen.46 The resulting network is shown in Figure 10.7.1. Coupled “CWGs” of the type indicated
in Figure 10.7.1 are said to be side coupled “CPWs,” which we will abbreviate with “SCCPW

 This is a single λ/4 step directional coupler. The operating bandwidth reported by Wen is hi
than a single λ/4 step directional coupler in microstrip technology. This can be explained no
that even and odd modes* have phase velocities that are closer with respect to the phase v
of even and odd modes in microstrip because in the “CPW,” the number of field lines in the
more comparable to the number of field lines in the dielectric. In fact, for microstrips the gre
number of field lines is in the dielectric, since the field is “attracted” by the bottom condu
while for the “CPW,” the field line is “attracted” by the lateral conductor, as shown in Figure 10.2.1.
Defining the operating bandwidth as the frequency range where the coupling is below 10%
the designed center frequency value, the performances of the Wen coupler are as indicated

RF bandwidth: 1.5 to 2.5 GHz
Mean coupling: 11 dB

Directivity: >15 dB
Insertion loss: 1 dB max

Of course, more than one section can be used for the coupler as we have shown in the p
chapters. Approximating the propagation mode as a pure “TEM” mode, the tables given in C
7 can be used for this purpose.

Interesting is a work presented by F. Hanna,47 where the directional coupler indicated with 
top view in Figure 10.7.1 is evaluated with a ground plane at the bottom. This structure is dep
with a cross-sectional view in Figure 10.7.2 and is called a “side coupled coplanar waveguide w
ground” or simply “SCCPWG.” If we define the following parameters:

(10.7.1)

for the odd mode case we have:

Figure 10.7.1

*  See Chapter 1 for even and odd mode theory used in coupled lines.

Figure 10.7.2
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(10.7.2)

(10.7.3)

(10.7.4)

(10.7.5)

(10.7.6)

(10.7.7)

For the even mode case we have:

(10.7.8)

(10.7.9)

(10.7.10)

(10.7.11)

(10.7.12)

(10.7.13)

In all the previous formulas the quantity “K()” represents the complete elliptic integral o
first kind, already defined in Section 10.5. In addition, any primed quantity “α′ ” is related to the
nonprimed quantity “α” by the known relationship α′  = (1 – α2).0.5 Using the tables in Chapter 7
for coupled “TEM” t.l.s, the previous formulas give us the ability to synthesize such a coupler
author suggests that the condition:

(10.7.14)

must be satisfied to assure a coupled coplanar waveguide mode. CPW directional couplers 
interesting devices, currently being investigated48,49 which may have better performances.

Modes inside a “SCCPW” will also be discussed in the next section.
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c. Filters

J.K.A. Everard and K.M.K. Cheng50 have built a “CPW” band pass filter centered at 4.6 GH
The filter is composed of six sections of the shape indicated in Figure 10.7.3 connected together.
The result of their work shows that the radiation of this filter is much lower than a typical 
pass filter built with coupled microstrip lines.*

In addition, the “Q”  of each resonator indicated in Figure 10.7.3 is higher than the “Q”  of
microstrip resonators, resulting in a lower loss and sharper edged filter.

Note that the narrow shunt lines connected to the lateral ground planes represent a
inductance while the connecting lines perform a impedance transformation.

Also coplanar waveguide filters are currently being theoretically investigated,51,52,53 especially
with the aim of having an accurate synthesis procedure applicable to this t.l.

What we have reported in this section are only some examples of devices where “CPW
be used with performances at least comparable to the same devices built with other t.l.s. “C
have also found applications in MMIC amplifiers54,55,56 and other MIC devices, passive57 and active,58

always giving good performances.

10.8 MAGNETIZATION OF “CPW” ON FERRIMAGNETIC SUBSTRATES

As a result of the discussion in Section 10.2 we know that an elliptic polarization of the mag
field exists near the region of the “CPW” slots, with the plane of polarization oriented longitudin
The existence of this polarization can be used to build nonreciprocal ferrimagnetic device
isolators or phase shifters,**59 as we will study in the next section. The complex topic of ene
interaction between e.m. energy and ferrimagnetic materials is discussed in Appendices A
and A7. The reader who is not familiar with these topics can read these Appendices to revi
fundamentals of this branch of physics.

Figure 10.7.3

*  See Chapter 5 for typical microstrip networks.
**  Isolators are always nonreciprocal devices, while phase shifters can also be, in general, reciprocal devices.
©2000 CRC Press LLC
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The applications of those concepts to the “CPW” case can be done as we did in Chapte
the slot line, since both t.l.s have magnetic elliptical polarization in practically the same pos
So, we refer the reader back to Chapter 9 to review the direction in which a “CPW” ca
magnetized.

10.9 “CPW” ISOLATORS

The “CPW” isolators can be built using two energy exchange phenomenas, i.e., the “reso
and the “field displacement” effects.*

10.9.1 Resonance Isolator

A “CPWs” resonance isolator can be built as indicated in Figure 10.9.1. Near the two slots of
the “CPW,” two cylinders of ferrimagnetic material are set. An external static magnetic field “dc”
uniformly magnetizes the two cylinders, centered** at the signal frequency at which the iso
is desired. The two cylinders can be also substituted with a single slab of ferrite*** positi
above the two slots.

The same isolation property can be achieved with the isolator configuration show
Figure 10.9.2, where all the “CPW” is built on a ferrimagnetic material.

One experiment60 on an isolator of the type shown in Figure 10.9.1 has given an attenuation
value of 37 dB centered at 6 GHz and a maximum insertion loss of 2 dB.

Of course, some matching is required to adjust the input impedance of these devices
usual 50Ω since their imput impedance is usually lower than this value.

10.9.2 Field Displacement Isolator

An f.d. “CPW” isolator can be realized as indicated in Figure 10.9.3. A “CPW” is built on
ferrite, and at the other face, an absorbtive material is attached. A static magnetic field “Hdc” is
applied orthogonally in the direction of propagation “z0.”

Figure 10.9.1

*  See Appendix A7 for fundamentals on these two important effects of energy exchange.
**  By “centered” we mean that the “Hdc” intensity is just what is required to have a precession frequency motion e
to that signal frequency we want to stop. See Appendix A7 for more deep insight into ferrimagnetic energy excha
***  “Ferrite” is a particular ferrimagnetic material, similar to “YIG.” We will use this term to indicate a generic ferrimagntic
material. 
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The f.d. “CPW” phase shifter can be studied in a manner similar to that used in Chapte
slot lines. In this case it is also necessary to assume some simplifications to the geometry in
in Figure 10.9.3, in order to use the theory we developed in Appendix A7. In particular we ass

1. All the e.m. energy is contained inside the ferrite
2. In the slots, only the components “hy” and “hz” exist, and they don’t vary with the coordinate

“x,” * i.e., the fields are uniform
3. Only a “TE” mode is supported by the “CPW”

With these hypotheses, we refer the reader back to Chapter 9 since the same analytical pr
can be used here.

So, an f.d. isolator can be graphically represented as in Figure 10.9.4. In part a we have indicated
the electrical field lines when the field displacement causes the e.m. energy to be mainly 
top surface, i.e., the conductor’s surface. This situation is different from the typical nonferrimag
“CPW,” where the field lines are mainly concentrated in the dielectric. From the equations we
before, this situation happens when “Hdc” is directed along “x0” and propagation is along “z0.”
Figure 10.9.4b represents what happens when, with respect to part a of the figure, we chan
propagation direction or “Hdc” direction. From this figure it is easy to understand that if we atta
an “RF” absorbtive material on the bottom of the “CPW,” a signal attenuation will arise in
direction in which the field travels on this surface. Consequently, when a change of sign is
to “Hdc” or to the propagation direction, then no loss will be added by this material since s
propagation is on the opposite surface. Of course, if we move the resisitive material o

Figure 10.9.2

Figure 10.9.3

*  Using the well-known notation described in Appendix A2 and Chapter 1, this hypothesis means kx=0.
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conductor’s surface we always have a field displacement isolator, but now we have revers
attenuation direction.

Field displacement isolators are wider bandwidth than the resonance isolators, and need 
intensity of “Hdc.” They do not reach the isolation values of the resonance counterpart.

However, in general, devices that only perform isolation are not very widely used, rega
of the technology by which they are realized, and terminated circulators are preferred due t
high versatility. Whether “CPW” circulators are theoretically possible is not reported in the 
ature. This is because the microstrip circulator* is a very simple device with good elec
characteristics and the necessity for another technology is not needed.

10.10 “CPW” FERRIMAGNETIC PHASE SHIFTERS

Two groups of “CPW” ferrimagnetic phase shifters** are possible: one of which uses
different phase constants “βc” and “βd” between the “concordant” and “discordant” waves,*** an
one that uses the field displacement effect. We will call the first device a “Discon” phase s
and the second one a “field displacement” phase shifter.

With respect to their microstrip or stripline counterparts, “CPW” phase shifters have
advantage that circular polarization doesn’t need to be artificially created. In fact, we know
for microstrip or stripline, circular polarization is obtained with a meander line, but, while al
meander line length is responsible for attenuation, only 65% of its length is responsible for c
polarization. This circumstance results in a higher length for meander line devices with resp
a “CPW” p.s. Meander line stripline or microstrip p.s.s have higher absolute values of figu

Figure 10.9.4

*  See Chapter 5 for microstrip circulator technology.
**  We will use the letters “p.s.” to indicate a “phase shifter.”
***  See Appendix A7 for definitions of “concordant” and “discordant” waves.
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merit than the corresonding “CPW” counterpart, but “CPW” devices usually have smaller di
sions for the same electrical parameters.

10.10.1 “Discon” Phase Shifter

Many configurations and reported values are available for this kind of phase shifter.61,62,63 The
common physical principle is the different value of “βc” and “βd” and their dependence on “Hdc”
and direction of propagation. These two phase constants are related to the elements of th
permeability matrix by the relationships:

(10.10.1)

(10.10.2)

One possible construction of a “discon” p.s. is indicated in Figure 10.10.1. Note that the situation
is practically identical to that indicated in Figure 10.9.1. The presence of a ferrite slab, as in this
case, or ferrite cylinders, gives no magnetic difference. The very important difference is th
the isolator case, the “Hdc” value is for resonance, while in this case we are not in resona
Caution must be taken to not bring ferrite in the field displacement region using a wrong va
“Hdc.”* For a “discon” p.s., typical “Hdc” values have lower intensity than the required values 
f.d. effect.** Of course a p.s. can also be realized as indicated in Figure 10.9.2, again with “Hdc”
out of resonance.

An interesting alternative to the planar p.s. structure is the parallelepipedal type indicated in
Figure 10.10.2. This device uses the ferrite residual magnetization (see Appendix A7). A “CPW”
is built on a surface of hollow ferrite parallelepiped. Inside the cavity a conductor wire “W
inserted. When a current pulse “I” passes inside the wire, a magnetic field is generated*** w
if of proper intensity, can permanently magnetize the ferrite with a residual field “Hdc.” Changing
the direction of “I” is equivalent to changing the direction of “Hdc.” Devices working on residual
magnetization are called “latching devices.” Note that the latching p.s. indicated in Figure 10.10.2
having a closing path for “Hdc” does not disperse this static field much.

Experiments64 on a “discon” p.s. shown in Figure 10.10.1 working in the frequency range 5 to
7 GHz have given differential phase shift****  “∆ϕ”  values near 30°/cm and figures of merit*****
near 120°/dB. Other experiments65 on the “discon” p.s. composed as shown in Figure 10.9.2, with
“Hdc” not in resonance, have given differential phase shift values near 25°/cm and figures of
near 200°/dB for a signal working at 10 GHz. The latching p.s. indicated in Figure 10.10.2 has
given differential phase shift values near 8°/cm,66 quite low with respect to the nonlatching “discon
we have just reported.

10.10.2 Field Displacement Phase Shifter

The operating principles of a field displacement p.s. are exactly the same as those w
regarding the f.d. isolator. So, Figure 10.9.4 can represent the construction of a f.d. phase shif
but for the proper operation it is necessary to replace the slab of absorbent material with a lo

*  The proper values of “Hdc” depend by the ferrite parameters inserted in the figures of “βc” and “βd” we gave in Appendix A7.
**  Theoretically a “discon” p.s. can also work with “Hdc” values above resonance, but such a high value is only emplo
for high RF power devices.
***  Fundamental theory of magnetic fields generated by current in conductors is reviewed in Appendix A6.
****  “Differential phase shift” is defined in Appendix A7.
*****  See Appendix A7 for p.s. quality parameters definitions.

β ω µ ε µ µd p
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dielectric slab with permittivity “εr�” as indicated in Figure 10.10.3. In fact, since the phase constan
“βz” along “z” is given by:

(10.10.3)

then when the wave is guided by the edge where the dielectric slab is disposed, the value εre”
will be:

(10.10.4)

Figure 10.10.1

Figure 10.10.2
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while when the wave is guided by the opposite edge, the value of “εre” will be:

(10.10.5)

resulting in a differential phase shifting. In 10.10.4 and 10.10.5 “εf” is the ferrite permittivity. Note
that if we move the added dielectric slab on the conductor’s surface, we always have 
displacement p.s., but now we have reversed the phase shifting sign.

Experiments67 on an f.d.p.s. of the type shown in Figure 10.10.3 has given ∆ϕ ≈ 30°/cm and
∆ϕ ≈ 45°/cm at 10 GHz, respectively, with εr� = 16 and εr� = 25, both with hd = 1mm.

10.11 PRACTICAL CONSIDERATIONS

The “CPW” t.l. shown in Figure 10.1.1 is seldom employed as it is indicated. In fact, this t
necessarily has to be connected with other t.l.s which requires at least a bottom ground plan
a microstrip or stripline. In addition, the extension “w�1” and “w�2” of the two lateral conductors
is seldom as long as required by the ideal definition of “CPW.” For these reasons, we thin
important to discuss these two practical aspects of “CPW” use.

10.11.1 The “CPW” with Bottom Ground Conductor

This practical situation is indicated in Figure 10.11.1 with a transverse view, which we will
refer to as “CPWG.”** Part a represents only the electrical field lines for simplicity, where

Figure 10.10.3

*  This text discusses planar t.l. For this reason, other transitions are not considered.
** This structure is also called “conductor backed CPW” (CBCPW).
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have indicated the fundamental “CPW” mode, while in part b another possible mode indicat
microstrip mode. Signal propagation through more than one mode is not desired since this
signal loss and distortion at the receiver end.*68,69 So if the receiver is built to detect the fundamen
“CPW” mode, the other modes must be avoided. This can be performed by setting the b
ground plane at a distance “h” so that:

(10.11.1)

We have already studied this case in Section 10.3 where we gave the characteristic imp
formulas.

10.11.2 “CPW” with Bottom Ground Conductor and Lateral Planes 
with Limited Extension

This situation is represented in Figure 10.11.2. Some researchers70 have studied this t.l. as the
case of three coupled microstrips. The result of their studies is that the coupled microstrip
can be suppressed if “h” and “wg” are such that:

(10.11.2)

Figure 10.11.1

*  See Appendix A2 for this important aspect of information transmission.

Figure 10.11.2
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Of course, other modes are possible, for example the coupled slot mode.* The rise of this
can be reduced by connecting the two ground conductors with an air bridge, especially if 
is many wavelengths long. In this last case, more than one connection should be used.

Studies have also been performed on “CPW” without bottom conductors but with lateral g
of limited extension.71,72

10.12 COUPLED COPLANAR WAVEGUIDES

Coupled “CPWs” are seldom employed in planar transmission line circuits. In practice, 
is no advantage to using such coupled line structures instead of other coupled t.l.s we have
in this text like microstrips or striplines. In previous sections we have seen some applicatio
coupled “CPW” like directional couplers.

Since in Chapter 9 we have studied the coupled coplanar slot lines, we think it is use
discuss some similarities between these two structures.

10.12.1 General Characteristics

The geometric structure of the side coupled “CPW,” simply abbreviated with “SCCPW
depicted in Figure 10.12.1. If w1 = w2 and s1 = s3 this structure is said to be a “symmetr
SCCPW,” abbreviated as “SSCCPW,” otherwise it is said to be an “asymmetrical SCCPW” s
times called an “ASCCPW.”

Do not confuse this structure with the “SCCPWG” indicated in Figure 10.7.2. Note in fact that
in this case no bottom ground conductor is present. In practice, the two center conductors 1”**
and “w2” of each otherwise isolated “CPW” are set close together at a distance “s2.” As in many
cases of the coupled line theory, the e.m. field lines can be assumed to be composed
superposition of the field distribution of the even and odd excitation.*** The field distributions
these excitations, also called “modes,” are schematically reported in Figure 10.12.2, respectively
in parts a and b. Referring to the potential of the internal conductors we define as:

a. “Even” mode that one for which “w1” and “w2” have equal potential
b. “Odd” mode that one for which “w1” and “w2” have potentials with the opposite sign. Note

that the even mode also possesses some magnetic field lines that surround the internal 
ductors.

A particular structure, which in some way can be regarded as broadside coupled co
waveguides, simply called “BCCPW,” is indicated in Figure 10.12.3. No practical application of
“BCCPW” reported in the literature is known by the author.

*  Coupled slot modes are discussed with more detail in Chapter 9.
**  “w 1” and “w2” is the width of each center conductor. For simplicity, we will also name these conductors “w1” and “w2”.
***  See Chapter 1 for the even and odd excitation method to study coupled lines.

Figure 10.12.1

w1 w2
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s3h
rε
rµ x
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10.12.2 Analysis

One of the first studies on “SSCCPW” was done by C.P. Wen.73 As in the single “CPW,” he
has applied the “CTM” to the structure indicated in Figure 10.12.1. T. Hatsuda74 has used the finite
difference method to study this structure, while T. Kitazawa, Y. Hayashi, and R. Mittra75 have also
studied the case for nonisotropic dielectrics. In any case, no closed formulas are available f
and odd characteristics.

With reference to Figure 10.12.1, for the case of w1 = w2
⊥– w and s1 = s3

⊥– s Hatsuda has given
some graphs for even “ζe” and odd “ζo” characteristic impedances, as indicated in Figure 10.12.4.
Losses in “SSCCPW” have been studied by G.Ghione and M.Goano76 through a “CTM,” while
“ASCCPWG” has been investigated by K.K.M.Cheng.77

S. S. Bedair and I. Wolff78 have studied an enclosed “BCCPW” structure, using “CTM” indica
in Figure 10.12.5. The closed form equations for the t.l. characterisitics of the even and odd m
with reference to the symbols indicated in that figure, are as follows:

for the odd mode:

(10.12.1)

(10.12.2)

(10.12.3)

Figure 10.12.2

Figure 10.12.3
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For the even mode:

(10.12.4)

(10.12.5)

(10.12.6)

Then, the characteristic impedances and effective dielectric constants are given by:

Figure 10.12.4

Figure 10.12.5
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(10.12.7)

(10.12.8)

where m = e,o, “v0” is the light speed in the free space, and “C0m” are given by 10.12.1 and 10.12.4
when 10.12.3 and 10.12.6 are evaluated with εri = 1.
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CHAPTER 11

Coplanar Strips

11.1 GEOMETRICAL CHARACTERISTICS

The physical realization of a coplanar strip* is indicated in Figure 11.1.1. This t.l. was first
studied by C.P. Wen.1 It is realized by setting two conductor strips of width “w1” and “w2” in close
proximity supported by a dielectric of thickness “h.” Note that on the other side of the diele
there is no ground plane. If w1≠w2 the structure is said to be an “asymmetric CPS,” simply cal
“ACPS.” Unless otherwise stated we will assume w1=w2, i.e., the symmetric case, still simply calle
“CPS.”

“CPS” can be regarded as the complement of the “CPW” since conductors are present
they are absent in “CPW.” Do not confuse “CPS” with two coupled lines. In this case, each con
is not a single t.l., but both conductors are a single t.l. instead. There will always be a g
conductor, for example, that corresponds to the enclosed box, but “CPS” is theoretically as
to be suspended on an infinite, thick dielectric.** This condition is in practice approximate
h > 5(s+2w).

“CPS” is a full planar t.l., similar to slot lines or “CPW.” According to the discussion in Appen
A2, the “CPS” has a zero cutoff frequency, but its low order propagation mode is not a real “T
due to the bottom and top dielectric discontinuity. The fundamental mode is then indicated
“qTEM”*** because it resembles a “TEM” mode since the longitudinal field components 
smaller than the transverse ones, and quite often they can be neglected. This is true until freq
of some GHz. After this limit, dispersion arises and the propagation mode tends to be ne
“TE.”**** Similar to the “CPW” case, the magnetic field can be considered elliptically polariz
along longitudinal planes. Due to the elliptical magnetic field polarization, the “CPS” should
t.l. suited to energy exchange with ferrimagnetic materials. Nevertheless, the minimal use 
t.l. is due mainly to the difficulty with µstrips***** and consequently there are no reports of th
use of ferrimagnetic materials.

Because the number of the electric and magnetic field lines in the air is higher than the n
of the same lines in the microstrip case, the effective dielectric constant “εre” of “CPS” is typically
20% lower than the “εre” for microstrips. Consequently, the maximum reachable character
impedance values are higher than the microstrip values. In addition, to avoid field radiation
air, it is very important to use substrates with high dielectric constants, let us say from a
greater than 10, so that the e.m. field is mainly concentrated inside the dielectric.

*  For simplicity the coplanar strips transmission line will be simply indicated with “CPS.”
**  The effect of finite dielectric thickness will be studied later. 
***  “qTEM” means “quasi TEM” where quasi = almost.
****  The fact that the propagation mode always tends to be a “TE” mode depends on the natural disposition of the 
field inside the “CPS.” Electric field lines are shown in the next section.
*****  Transitions among “CPS” and other lines are studied later in this chapter.
©2000 CRC Press LLC
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11.2 ELECTRIC AND MAGNETIC FIELD LINES

Some electric “e” and magnetic “h” field lines for the fundamental “qTEM” mode in “CP
are indicated in Figure 11.2.1, in a defined cross-section and a defined time. In the fundame
mode, both conductors are equipotential. Different from the case of “CPW,” this t.l. is natu
“balanced.” So, the feeding and the loading of this t.l. need to be balanced, as indica
Figure 11.2.1. We have already seen* how to balance µstrips, but in that case the resulting ba
t.l. is not planar. In this case, instead, we have a planar balanced line.

If a ground conductor is present, some µstrip mode could arise. We have already encounte
this phenomenon in “CPW.” Applying the results for “CPW” of some researchers,2,3,4 these
unwanted modes can be limited setting the bottom ground plane at a distance “h” so that:

(11.2.1)

The previous equation is quite conservative, but in practice it is often used.

11.3 SOLUTION TECHNIQUES FOR THE ELECTROMAGNETIC PROBLEM

As we said in the previous section regarding other transmission lines, the “CPS” can be s
using quasi static methods5,6** or full wave methods: “FWM.”7,8

Figure 11.1.1

*  See Chapter 7 for µstrip devices.

Figure 11.2.1

**  See Appendix A1 for quasi static analysis methods.
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In this section we will study the “CPS” with a quasi static method mainly because the “C
is the geometric complement of “CPW.” So, we can adapt the quasi static study of “CPW” t
problem, using the same conformal transformation.

With this method the original geometric structure is transformed into a more simple on
particular, the “CPS” is transformed in a structure that resembles a parallel plate capacit
which the capacitance is simply evaluated as C = εS/d, where “S” is the area of the plate and “d
the distance. The required analytical transformation is the same we used in Chapter 10 for “
The transformation of the plane for “CPS” case is reported in Figure 11.3.1 parts b and c, together
with the “CPW” case indicated in part a.

We can repeat all the analytical steps given for “CPW” case, where the substrate is su
to be of infinite extent below the strips and w1 ≡ w2. The most important difference is that no
the capacitance “C” of the parallel plate structure in Figure 11.3.1c is:

Figure 11.2.2

Figure 11.3.1
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(11.3.1)

where:

(11.3.2)

(11.3.3)

So, applying the transformation for both half planes of Figure 11.3.1b, the resulting capacitance
“C” by unit length of the associated “TEM” t.l. for our “CPS” is:

(11.3.4)

In addition, the equivalent “TEM” t.l. will have an effective permittivity “εre” and effective
permeability “µre” given by:

(11.3.5)

(11.3.6)

i.e., the medium value between the air relative dielectric and magnetic constants and those
substrate. Expression 11.3.5 for “εre” can be obtained as we did in Chapter 10 for the “CPW” cas
Equation 11.3.4 is only a simplification of the real “µre” since this quantity is dependent on man
parameters like reciprocal direction between e.m. energy propagation and direction of the a
magnetic field “Hdc,” field intensity, signal frequency, ferrimagnetic composition, and more.** F
the moment, the expression of “µre” in the following formulas will remind us that the presence 
any ferrimagnetic material will need to be evaluated.

Now, from the well-known relation for “TEM” t.l***:

(11.3.7)

where “v” is the light phase speed given by:

(11.3.8)

we can simply evaluate the “CPS” characteristic impedance. We have

(11.3.9)

The effect of finite substrate height “h” has been studied by some researchers9,10 always using
a conformal mapping. From this analysis we have the same impedance expression of the p
equation, but with a value of “εre” and a new parameter “p1” given by:

*  The expression for “µre” can also be obtained for duality, if it is a simplification.
**  See Appendix A7 for fundamental on energy exchange between waves and ferrimagnetic materials.
***  See Chapter 1 for t.l. parameters definitions.
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(11.3.11)

Comparisons among impedance values with or without considering the finite value of sub
height have shown that the effective dielectric constant and impedance variation are neglig
the following condition is verified:

(11.3.12)

The expressions in this section do not contain any approximations, excluding the assum
of negligible strip thickness and “TEM” propagation mode. Regarding the ratio of elliptic integ
approximated closed form expressions are given in Appendix A8.

Results of full wave analysis suggest that when increasing the operating frequency, the 

ance and the ratio  both decrease.

In the next section we will give simple design formulas that also take into account the “cond
thickness “t.”

11.4 DESIGN EQUATIONS

The closed form we give here has been obtained using the “CTM” described in the pre
section. For all the “CPS” dimensions we will refer to Figure 11.1.1.

To consider the metal thickness “t,” we can use the theory employed in Chapter 2 and as
an extra width “dw” to a metal thickness “t” given by:

(11.4.1)

So, we define the following new notations:

(11.4.2)

and the parameter “p” now becomes:

(11.4.3)

A better value of “εre” with respect to the value (εr + 1)/2 can be obtained using the sam
expression we got for “CPW” with proper variable substitution s ↔ w, resulting in:

(11.4.4)

(11.4.5)
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(11.4.6)

where “p” is defined by 11.3.3. Note how Equation 10.4.6 includes the limited extension o
So, to evaluate “ζ” we can use expression 11.3.9, where “p” and “εre” are respectively substituted
by “pt” and the previous equation.

The effect of “t” on “εre” can be evaluated using an expression similar to that used for
“CPW.” We obtain11:

(11.4.7)

At this point we have all the relationships required to calculate the “ζ” and “εre” of our “CPS”
as function of all geometric parameters. In fact, the characteristic impedance is given by 1
with the insertion of the previous equation and using the parameter “pt” defined in 11.4.3. Specif-
ically, we have:

(11.4.8)

where “εre” is given by 11.4.7.
In this case, “pt” and “p,” which respectively appear in the “ζ” and “εre” expressions, are the
parameters to be evaluated for choosing the best approximation for the elliptic integral ratio
in the “ζ” and “εre” expressions.

The value of “ζ” and “εre” produced by the previous formulas has an accuracy of better 
5% compared with the measurement results of Knorr and Kuchler,12 which assume t = 0.

11.5 ATTENUATION

As with many other t.l.s, the “CPS” losses are due to three causes:

1. Imperfect conductivity of the conductors, or “conductor loss”
2. Dielectric nonzero conductivity and dumping phenomena
3. Substrate magnetic loss, if the substrate is a ferrimagnetic material
4. Radiation

This section will present how to evaluate the first two causes of losses, which are directly r
to the geometry of the “CPS” indicated in Figure 11.1.1. Magnetic losses are mainly due to dampin
phenomena inside ferrimagnetic material and, if the signal frequency is of appropriate val
resonance absorption.* Radiation losses are strongly dependent on the surrounding structu
the “CPS” and cannot be simply treated in a general way.

For the present case, if we consider the “CPS” as a t.l. only supporting a “TEM” mode w
apply the theory developed by H.A. Wheeler.13,14 The procedure is similar to that for the µstrip
case in Chapter 2, and for this reason here we will only outline the differences with resp
“CPW.” For the other concepts and common formulas it is possible, for example, to see th
evaluation for the “CPW” case in Chapter 2.

The additional inductance “La” and resistance “Ra” with reference to Figure 11.5.1, are given by:

*  See Appendix A7 for energy exchange phenomena between e.m. signal and ferrite.
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(11.5.1)

(11.5.2)

where:

a. “Li” is the “incremental inductance” per u.l.
b. “Ri” is the “incremental resistance” per u.l.
c. “p” is the “penetration depth,” [u.l.]
d. “µc” is the conductor absolute permeability
e. “Rs” is the conductor “sheet resistance,” [Ω/square]*
The conductor attenuation coefficient “αc”** is defined as:

(11.5.3)

where “Wc” and “Wt” are respectively the mean power dissipated in the conductor and the 
transmitted power, given by:

(11.5.4)

Consequently, the conductor attenuation constant does not depend on the additional ind
“L a.” Using 11.5.2 and 11.5.4, Equation 11.5.3 becomes:

(11.5.5)

From 3.4.1 and 3.4.2 it follows that:

(11.5.6)

Figure 11.5.1

*  See Appendix A2 for measurement unit of “conductor resistance.”
**  We are assuming a longitudinal variation of conductor attenuation with e-αcz. See Chapter 1 for fundamental theory of
transmission lines.
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and so:

(11.5.7)

where ζz  ⊥– (µreεre)0.5ζ. Observing that µ0v0 = ζv ≡ 120π and using Equation 11.5.7, Equation 11.5
becomes:

(11.5.8)

Since the “ζ” is a function of “w,” “t,” and “s,”* as was shown in the previous section, t
derivative “∂ζz/∂n” is:

(11.5.9)

From Figure 11.5.1 we observe that:

(11.5.10)

and 11.5.8 becomes:

(11.5.11)

Of course, the value given by “αc” is in neper/meter.**
Now using in 11.5.11 the expression “ζ” given in the previous section, Bahl and others15 have

obtained the following expression for “αc” which provides the value of the attenuation in dB fo
unit of length:

(11.5.12)

where:

(11.5.13)

(11.5.14)

and “Q” is given by:

*  In this theory substrate height “h” is assumed to be theoretically infinite.
**  See Chapter 1 for attenuation constants dimensions.
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(11.5.16)

The incremental inductance rule has been verified to give very accurate results for con
thickness greater than four times the penetration “p.” This condition is usually verified for e
planar transmission line since for the typical conductors used, the value of the penetration
lower than some micrometer for frequencies greater than 1 GHz.*

Dielectric loss can be evaluated as already done for the microstrip in Chapter 2, resul
the same expression:

(11.5.17)

which gives a value of dB/u.l. In the previous equation “εre” is given by 11.4.4 through 11.4.7 and
“tanδ” is the dielectric “tangent delta.”** Of course, the quantities “εr” and “εre” are all relative to
the real part of the substrate dielectric constant.*** Remember that magnetic losses could be 

in the dielectric, the previous expression for “αd” can be formally modified multiplying by .

We know that it is a simplification, as we explained in Chapter 10 for “CPW.”

11.6 CONNECTIONS BETWEEN “CPS” AND OTHER LINES

Excluding some “artistical” connection with t.l. composed of more than one layer, like µ
or stripline, “CPS” is suited to be connected with full planar t.l.s. These are slot line, essent
balanced t.l., and “CPW,” which is in origin a unbalanced t.l. The study of discontinuities16,17 places
an important role on realizing a proper transition between t.l.s. In this section we will indica
most simple interconnections between “CPW,” slot line, and “CPS.” In general, a transition be
t.l.s. is practically evaluated as acceptable when the resulting reflection coefficient is typically 
10 dB in the operating bandwidth.

“CPS-slotline” and “CPW-CPS”18 transitions are indicated respectively in Figures 11.6.1 and
11.6.2. The proper tapering for both transitions is often a practical work, since no closed formulas
for such transition designs are available.

11.7 USE OF “CPS”

There are not many applications of “CPS” that cannot be achieved with other t.l.s. A u
application is in the “mixer” devices19 in conjunction with other planar t.l.s, as we have alrea
introduced in Chapter 9.

Another use of “CPS” is like a guiding structure for balanced signals, like the “ECL” dev
These have complementary outputs that can be transmitted and received in a balanced way.
cases, “CPS” are well suited to the purpose.20,21

*  See Appendix A2 for values of penetration depth inside good conductors.
**  See Chapter 1 for “tanδ” definition.
***  See Chapter 1 for complex permittivity definition.
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Use of “CPS” has also been made in filters22,23 and MMIC.24

As we noticed at the beginning of this section, another potential use is in building gyroma
devices. However, no experiment in literature is known to the author of this text. This lack i
to the little use of this t.l., mainly because “CPS” is not well-suited to transitions with µstrip
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APPENDIX A1

Solution Methods for Electrostatic Problems

A1.1 THE FUNDAMENTAL EQUATIONS OF ELECTROSTATICS

Electrostatics is that branch of physics that studies the forces among electric charges t
fixed in the reference system. A lot of formulas are used as foundations of this branch. As in
Appendixes of this text, here we will discuss just those relationships that are necessary to
understand our text. The reader interested in a broader knowledge of these topics can refe
texts reported in the bibliography.1,2,3

a. Equations for Electric “E” and Electric Flux Density “D” Fields

The two fundamental equations for such fields are:

(A1.1.1)

(A1.1.2)

where symbols “∇ ⊗ ” and “∇ • ” are respectively the “curl” and the “divergence,” defined 
Appendix A8, while “ρ” is the volumetric charge density. The vector “D” is related to “E” by the
well-known formula:

(A1.1.3)

In the most general case, the medium permittivity “ε” is a function of coordinates and of the
applied electric field “E” strength. The vector “D” is also called the “electric displacement vect

b. Poisson * and Laplace ** Equations

Remembering the well-known result that:***

(A1.1.4)

where “s” is a scalar function, for A1.1.1 we can set:

*  Denis Poisson, French mathematician, born in Pithiviers in 1781 and died in Paris in 1840.
**  Pier Simon de Laplace, French mathematician, born in Beaumont an Auge in 1749 and died in Paris in 1827.
***  The “gradient operation -∇ -” is defined in Appendix A8.

∇ ⊗ =E 0

∇ • =D ρ

D E= ε

∇⊗ ∇ ( ) =s 0
©2000 CRC Press LLC
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(A1.1.5)

where “V” is a scalar function called “potential.”
Inserting A1.1.3 into A1.1.2 and applying the relationship:

(A1.1.6)

where “s” is a scalar function and “v” a vector, we have:

(A1.1.7)

where ∇ 2  ⊥– ∇  • ∇ . Now, let us assume a medium where “ε” is not a function of coordinates. Then
from A1.1.7 we have:

(A1.1.8)

and using A1.1.2 we have:

(A1.1.9)

which is called “Poisson’s equation.” If the previous equation is evaluated in a region whe
charges are placed, then we have:

(A1.1.10)

which is called “Laplace’s equation.”

c. Boundary Conditions

If some discontinuities exist in the medium where “E” and “D” are present, they must sa
the following conditions:

(A1.1.11)

(A1.1.12)

where “qs” is the charge surface density, measured in Coulomb/m2 in MKSA reference system
unit,* and “n” is the normal to the discontinuity surface. The two previous equations are expla
saying that the tangential component of the “E” is continuous crossing the discontinuity, while th
normal component of “D” changes by a quantity “qs.”

Equations A1.1.11 and A1.1.12 can be rewritten where only the potential is envolved, just
Equations A1.1.3 and A1.1.5. In fact, we have:

(A1.1.13)

*  Unless otherwise stated, we will use the MKSA reference system.

E V−⊥ −∇

∇ • = • ∇ + ∇ •sv v s s v

∇ • = • ∇ − ∇ε ε εE E V2

∇ • ≡ ∇ • = − ∇ε εE D V2

∇ = −2 V ρ ε

∇ =2 0V

n E E⊗ −( ) −⊥2 1 0

n D D qs• −( ) −⊥2 1

n E E n V V⊗ −( ) ≡ ⊗ ∇ − ∇( )2 1 1 2
©2000 CRC Press LLC
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(A1.1.14)

In some electrostatic problems it is more convenient to write the boundary conditions as
two previous equations.

d. Green’s* Function

Green’s function is the name of the solution function of the Poisson’s equation when the c
volumetric density is theoretically a pulse, called as “Dirac’s** function” and indicated with δ.”
This ideal situation is represented in practice when charges are of negligible dimension with r
to the region under study and the observation distance from the charge. In the case of a
Dirac charge density we will show that it is easy to extract the Green’s function. In fact, in
case we have:

(A1.1.15)

where “δ” is the Dirac pulse function to which we give the dimension of 1 Coulomb/m3. Let us
set a spherical coordinate system with the origin in the charge position, as indicated in Figure A1.1.1.
For reasons of geometric symmetry we can write:

(A1.1.16)

Using the expression of “∇ 2” in spherical coordinates given in Appendix A8 and applying t
previous condition to A1.1.15 we have:

(A1.1.17)

where “r” is the distance of the observation point from the charge. Since the elementary
volume “dv” is:

(A1.1.18)

*  George Green, English mathematician, born in Sneinton in 1793 and died there in 1841.
**  Paul Dirac, English physicist, born in Bristol in 1902 and died in Tallahassee, FL, U.S.A., in 1984.

Figure A1.1.1

n D D n V V• −( ) ≡ • ∇ − ∇( )2 1 1 1 2 2ε ε

∇ = − ∇−⊥2 2V Gδ ε
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r
d
dr
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integrating Equation A1.1.17 in the whole volume we have:

(A1.1.19)

The second member of the previous equation comes from the fact that:

(A1.1.20)

From A1.1.19 we have:

(A1.1.21)

which, integrated in “r” and setting G = !0 at infinity, gives:

(A1.1.22)

which is Green’s function for our free space system. Green’s function is assumed as the po
distribution in the space due to a unitary charge positioned in any desired place. Since Po
equation is linear, if the charge has a value “q,” it is sufficient to multiply the second memb
the previous equation times “q.” 

Applying Equation A1.1.5 at A1.1.22 we obtain the electric field distribution given by:

(A1.1.23)

Another situation where it is easy to solve the Poisson’s equation is where the charge distr
can be evaluated as a line of charge. In this case “δ” is the two-dimensional Dirac pulse function
to which we give the dimension of 1 Coulomb/m. A practical representation is indicate
Figure A1.1.2, where a generic structure with cylindrical symmetry is represented. Let us assume
the line of charge to be parallel to the longitudinal symmetry axis, so that “P” is the interce
the line charge with the cross-sectional view of the geometry. Also in this case, for reaso
geometric symmetry we can write:

(A1.1.24)

Using the expression of “∇ 2” in cylindrical coordinates given in Appendix A8 and applyin
the previous condition to A1.1.15 we have:

(A1.1.25)

where “r” is the distance of the observation point from the line of charge. Since the eleme
surface “dS” of the cross-sectional surface indicated in Figure A1.1.2 is:

(A1.1.26)

1 1
2

0

2

00

2 2

r
d
dr

r
dG
dr

r sen drd d

r ππ

θ θ ϕ
ε∫∫∫ 





= −

δdv
V

=∫ 1

4 12π εr d G dr = −

G r r( ) = 1 4πε

E r q r( ) = 4 2πε

∂ ∂θ ∂ ∂= =z 0
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r

d
dr
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dG
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= − δ ε

dS rd dr= θ
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integrating Equation A1.1.25 on the whole surface we have:

(A1.1.27)

The second member of the previous equation comes from the fact that:

(A1.1.28)

From A1.1.27 we have:

(A1.1.29)

where integrated in “r” and setting G = !0 at a distance “ra” we have:

(A1.1.30)

Since the Poisson’s equation is linear, if the line of charge has a value “q�”* it is sufficient to
multiply the second member of the previous equation times “q�.” 

Of course, in this case we can also apply Equation A1.1.5 to the previous equation to 
the electric field.

e. Gauss’s Law

Applying the well-known divergence, or Gauss’s** theorem, to A1.1.2 we have the fam
Gauss’ law, i.e.:

Figure A1.1.2

*  [q� ] = Coulomb/meter.
**  Carl Friedrich Gauss, German physicist, born in Brunswick in 1777 and died in Gottingen in 1855.
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δdS
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=∫ 1

2 1π εrd G dr = −
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(A1.1.31)

where “S” is a surface that contains a volume “V,” “n” the “normal” to this surface and directed
outside the region under study, and “q” the whole charge contained in the volume “V.” Gaus
is widely used to evaluate the impedance of the t.l. in a lot of transmission line problems supp
a “TEM” mode.

A1.2 GENERALITIES ON SOLUTION METHODS
FOR ELECTROSTATIC PROBLEMS

In practice it is possible to specify some electrostatic problem whose geometric aspe
charge distribution suggest to us that it is best studied with one method rather than another
section we will try to define such electrostatic problems and will briefly discuss what typ
solution methods exist, while in the next section we will study each method more deeply. 

These methods give an exact solution for an electrostatic problem. Sometimes, due t
relative simplicity, these methods are applied to time varying problems. In these cases it is u
said that the problem is studied using a “quasi* static” method.** This extension is not theoret
exact, but their use can give approximated results, with a little effort, for the real situation
should be studied with Maxwell’s equations*** and involving a lot of mathematics. In our tex
have often used these methods to evaluate transmission line characteristics, like chara
impedance and effective dielectric constant.

a. Finite Difference Method

The power of the finite difference method**** is that it gives an approximate solution
problems where the exact solution appears to be difficult. This method is particularly sui
problems where the geometric structure is limited with known boundary electrical conditions
the equation to be resolved is a differential equation. This type of equation is very common 
problems and for this reason this method is the most frequently used. 

The solution is simpler to reach if the limiting structure has a simple geometric shape, 
rectangle. 

b. Image Charge Method

Contrary to the finite difference method, this is an exact method. It is particularly suited 
problems where the electrostatic situation is composed of charges and planes.

c. Conformal Transformation Method *****

This method is also an exact one. It consists of transforming the original geometric stru
under study into a simpler one, where the electric field in all desired points can be ob
immediately. This geometrical transformation is usually performed through differential equa
Once the problem for the simpler structure is solved, with some simple change of variab
solution for the original structure can be found.

*  “Quasi” means “almost.”
**  The word “quasi static” is simply abbreviated with “qstatic.”
***  Maxwell’s equations are reviewed in Appendix A2.
****  The finite difference method is simply abbreviated with “FDM.”
*****  Conformal transformation method is simply abbreviated with “CTM.”

D ndS q
s
∫ • =
©2000 CRC Press LLC
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We want to conclude this introduction noting that the finite difference method is the sim
to execute with an electronic computer.

A1.3 FINITE DIFFERENCE METHOD

As an example of this method, let us suppose to want to obtain the potential inside the st
indicated in Figure A1.3.1. Since no charges are assigned in this structure we have to solve the
Laplace equation ∇ 2V = 0. Let us start with a rectangular Cartesian reference system and d
the internal structure into small rectangular areas called “meshes,” given by the intersections
horizontal rows, and “c” vertical columns. The higher the number of these meshes the bet
approximation, but the longer the time required to reach the solution.

To simplify the explanation of this method we will assume that the potential does not vary
“z” as the geometrical symmetry suggests to us, i.e.:

(A1.3.1)

and consequently the equation to solve is:

(A1.3.2)

However, the finite difference method can also be applied to full three-dimensional prob
Now, let us assume we know the potential in a generic point “Px,y” with coordinates “x,y” in the
grid, and evaluate the potential in a point at a distance “±x′” and “±y′.” “x ′” and “y′” are respectively
the horizontal and vertical dimension of the mesh. Using Taylor’s expansion, we have:

(A1.3.3)

Figure A1.3.1
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(A1.3.4)

(A1.3.5)

(A1.3.6)

Now we do the approximation that the potential does not vary so abruptly to consider a
infinite derivatives in the previous equation. Then we stop the derivatives to the second or
that, for example, A1.3.4 and A1.3.5 can be rewritten as:

(A1.3.7)

(A1.3.8)

Summing the two previous equations we have:

(A1.3.9)

Similarly, we can have a derivative with respect to “x,” i.e.:

(A1.3.10)

Using the two previous equations, A1.3.2 can be rewritten as:

(A1.3.11)

which is, of course, an approximation of A1.3.2, but well suited to be implemented on a com
Just to show how Equation A1.3.11 can be used, let us evaluate the potential “V11” at the first
intersection point “P11.” We have:

(A1.3.12)

from which, using A1.3.11, it follows that V11 = 12.5. For example, for the point “P12” we can write:

(A1.3.13)

from which, using A1.3.12, it follows that V12 = 13.125.
So, proceeding as we have indicated, all the potentials inside the structure in Figure A1.3.1 can

be evaluated. This procedure is repeated many times, increasing the accuracy of the potentia
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obtained. Of course, a procedure is needed to terminate the iteration. It is common practice
the “relaxation method” to achieve such termination. With this method a residual “Rij,k” for the
position “i,j” at the “k-th” iteration is defined as:

(A1.3.14)

Once the residual is obtained, the potential at the “k-th” iteration is evaluated as:

(A1.3.15)

where “Γ” is a constant called the “relaxation constant.” The situation when values of “Γ” increase
or decrease the residual are called, respectively, “super relaxation” or “under relaxation.” S
procedure is obviously stopped when the residual is under a minimum value and is almos
for any point of the grid.

A1.4 IMAGE CHARGE METHOD

With this method, fictitious charges are inserted in particular points of the geometry under
so that together with the assigned charges, the boundary conditions are verified but the p
can be simplified. To do an example, let us study the situation represented in Figure A4.1.1. A
charge “q” is positioned at a distance “d” from an infinite conducting plane, and we want to ev
the potential at any points of the half semiplane where the charge “q” is positioned.

The boundary condition on the perfect conducting wall forces the potential to be null. W
observe that the same condition can be verified if we set a charge of value “–q” at a distanc
from the wall, as indicated in Figure A1.4.2. We know, as we have studied in Section A1.1, th
the electric potential “V(r)” produced by a charge is:

(A1.4.1)

Figure A1.4.1
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Using this result, in our case the solution is very simple, since applying the superpo
principle we can write:

(A1.4.2)

where:

(A1.4.3)

(A1.4.4)

Equation A1.4.2, with the insertion of A1.4.3 and A1.4.4, is the solution of our prob
However, note that for x < 0 the two electrostatic problems indicated in Figures A1.4.1 and A1.4.2
do not give the same result. So, with the image charge method, caution must be used in ev
the field in regions not involved in the original problem and/or where boundary conditions ar
satisfied.

Another problem where the application of this method is profitable is indicated in Figure A1.4.3.
Here two media exist, indicated with “1” and “2,” the first with dielectric constant “ε1” and the
other with dielectric constant “ε2.” The separation interface between the two media is evaluate
a perfect plane, which different from the previous example is not a conducting one. A charg
is placed in media “2” at a distance “d” from the interface layer. We want to evaluate the pot
in any portion of this structure. Indicating with “V1” and “V2” the potentials respectively in regions
“1” and “2,” since on the interface layer there are no charges, the contour conditions on this pla

(A1.4.5)

(A1.4.6)

Figure A1.4.2
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The representation of vectors is indicated in Figure A1.4.4. Here “P”  is a generic point on the
interface layer, “Pr” and “P�” are the positions of the right and left charges and “α” is the angle
between the normal “n1” in “P” and the versor “r01.” To resolve our problem we use the superpositi
principle. So, we will apply the following procedure:

1. fill the space with only the media “1” plus a ficticious charge “qr” in the same position “x0” of “q.”
2. fill the space with only the media “2” plus a ficticious charge “q�” as image of “q” i.e., at the

position “–x0” from the origin of the reference system.

The potential “V1” immediately at the left of the separation plane for this case is:

(A1.4.7)

Figure A1.4.3

Figure A1.4.4
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The potential “V2” immediately at the right of the separation plane is:

(A1.4.8)

Equations A1.4.5 and A1.4.6 are then rewritten as:

(A1.4.9)

(A1.4.10)

From these last two equations we have:

(A1.4.11)

(A1.4.12)

So, once these two charges are defined, the electric field in any position can be ev
applying the superposition principle.

A1.5 FUNDAMENTALS ON FUNCTIONS WITH COMPLEX VARIABLES

We know that a complex number “z” can be represented in two ways:

1. with real “x” and imaginary “y,” using the notation:

(A1.5.1)

2. with modulus “r” and phase angle “θ,” using the notation:

(A1.5.2)

So, a generic function “f(z)” working on a complex number “z” can in general be represe
as a transformation from a plane “z” to a plane “w” obtained by w = f(z). In general, the nu
“w” is also complex, i.e., we can set:

(A1.5.3)

where both “u” and “v” are functions of “x” and “y,” i.e., we can set:

(A1.5.4)

V r q r q r2 2 24 4( ) = +l πε πε

q r q r q rrl 4 4 42 2 1πε πε πε+ =!

ε θ πε πε ε θ πε2 2
2

2
2

1 1
24 4 4cos ! cosq r q r q rr−[ ] =l

q ql = −
+

ε ε
ε ε

2 1

2 1

q qr =
+

2 1

2 1

ε
ε ε

z x jy−⊥ +

z rej= θ

w u jv−⊥ +

u u x y v v x y= ( ) = ( ), ,
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Among the infinite functions in electromagnetism, the analytic functions* are a very impo
class. It is possible to show that a function w = f(z) is analytic if the transforming functions A
satisfy the following Cauchy**-Riemann*** conditions:

(A1.5.5)

Deriving the first of A1.5.5 with respect to “x,” the second with respect to “y,” and combin
them we have:

(A1.5.6)

Similarly, if we derive the first of A1.5.5 with respect to “y,” the second with respect to 
and combine we have:

(A1.5.7)

From A1.5.6 and A1.5.7 we can deduce that the real and imaginary parts of an analytic fu
are a solution of the two-dimensional Laplace equation. From an electromagnetic point of v
means that these functions can represent a potential function. It is simple to verify that the e
fields obtained from the real and imaginary parts of an analytic function are orthogonal. In
using the functions “u” and “v” in Equation A1.1.5 we can write:

(A1.5.8)

(A1.5.9)

If now we do the scalar product “Eu •  Ev” and apply the Cauchy-Riemann conditions, we ha
Eu •  Ev = 0, i.e., these electric fields are orthogonal.

Another important characteristic of “u” and “v” functions is that once defined, one of the
to represent the potential while the other is proportional to the flux “ϕ u” of the electric flux density
“Du” through a line. In fact, with reference the Figure A1.5.1 and using the function “u” to represen
the potential, we can write:

*  An analytic function is a complex one whose derivative is unique and independent of the phase angle “θ” of which we
arrive at the derivative point.
**  Augustine Cauchy, French mathematician, born in Paris in 1789 and died in Sceaux in 1857.
***  Bernhard Riemann, German mathematician, born in Breselenz in 1826 and died in Selasca in 1866.

Figure A1.5.1

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂u x v y u y v x= = −,

∂ ∂ ∂ ∂2 2 2 2 0u x u y+ =

∂ ∂ ∂ ∂2 2 2 2 0v x v y+ =

E u u x x u y yu = − ∇ = − ( ) −( )∂ ∂ ∂ ∂0 0

E v v x x v y yv = − ∇ = − ( ) −( )∂ ∂ ∂ ∂0 0

0

u

jv

z
t

n

ds
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(A1.5.10)

Observing that:

(A1.5.11)

Equation A1.5.10 becomes:

(A1.5.12)

Inserting in the previous equation, the expression A1.5.8 and the Cauchy-Riemann cond
from Equation A1.5.12 we have:*

(A1.5.13)

from which we see how the flux “ϕu” of “D u” is just proportional to the “v” function.
Another important characteristic of the analytic functions is that they preserve, in the tra

mation, the value of the original angle. To show that, let us refer to Figure A1.5.2. Here in the “Z”
plane two generic curves “C1z” and “C2z” are represented, transformed in the “W” plane in t
curves “C1w” and “C2w.” Due to the condition on the derivative of an analytic function, for t
intersection points “z” and “w” it must be:

(A1.5.14)

*  Note that jx0 = y0 and jy0 = –x0.

Figure A1.5.2

ϕ εu u

z

u

z

D nds E nds= • ≡ •∫ ∫
0 0

n jt tds x dx y dy= − = +, 0 0

ϕ εu u

z

j E x dx y dy= − • +( )∫
0

0 0

ϕ ε ∂
∂

∂
∂

εu

z
v
y

dy
v
x

dx v z v= − +






= − ( ) − ( )[ ]∫ 0
0

lim !
lim

∆
∆
∆ ∆

∆
∆1

1

1 2

2

2
0 0z

w

z z

w

z
→ = →

∆ 1z

2z∆
z C1z

2zC C

w

∆ 2w

2w

1w
1w∆

C

x u

jvjy

"Z" plane "W" planew=f(z)

∆
∆ϕ

�

©2000 CRC Press LLC



ulus

 those
s
dity of
ions.”
thod,

static
tudied
ation
m can
, the

xists,

rmed
upper
Now, let us write the complex numbers in the “Z” and “W” planes, respectively, with mod
“r” and angle “θ” and with modulus “γ” and angle “ϕ .” So, the previous equation becomes:

(A1.5.15)

This equation is surely verified if:

(A1.5.16)

or, just rewriting the previous equation in a different way,

(A1.5.17)

and

(A1.5.18)

Equation A1.5.17 says that in the “W” plane the modulus increments are obtained from
of the “Z” plane just after a scaling factor A  ⊥– ∆1γ\∆1r ≡ ∆2γ\∆2r. Equ A1.5.18 says that the angle
between locally intersecting lines are preserved between the two planes. Due to the vali
Equations A1.5.17 and A1.5.18 the analytic functions are also called “conformal transformat
In the next two sections we will see some applications for the conformal transformation me
using these analytic functions.

A1.6 CONFORMAL TRANSFORMATION METHOD

Conformal transformation techniques are a very powerful tool to resolve many electro
problems. Under some particular approximations, many electrodynamic problems can be s
with this method also. For example, in our text we have applied the conformal transform
method to study coplanar waveguides. Here, we will see how a typical electrostatic proble
be studied with this method. In the next section we will study a particular transformation
Schwarz*-Christoffel** transformation.

Let us examine the situation indicated in Figure A1.6.1. Here, an empty cylinder with circular
section of radius “r” is held to a zero potential. Inside it a longitudinal distribution of charge e
located at the point “z�.” We want to evaluate the potential inside the cylinder. 

Let us apply the following functional transformation to the structure indicated in Figure A1.6.1a:

(A1.6.1)

so that we transform the original geometry indicated in Figure A1.6.1b. The previous equation is
called “bilinear transformation.” In particular, the circumference in part a of the figure is transfo
in the real axis “u” in part b, and the internal part of the circumference is transformed in the 
half plane of the “W” plane. The point “z�” is transformed in the imaginary point “jv� .” So, the

*  Karl Schwarz, German mathematician, born in Hermsdorf in 1843 and died in Berlin in 1921.
**  Elwin Christoffel, German mathematician, born in Montjoie in 1829 and died in Strasburg in 1900.

lim ! lim
∆

∆
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−( ) −( )γ ϕ θ γ ϕ θ

∆ ∆ ∆ ∆1 1 2 2 1 1 2 2γ γ ϕ θ ϕ θ\ \r r and≡ − ≡ −
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original problem of finding the potential inside the cylinder is transformed in the problem to fin
the potential in the upper plane of Figure A1.6.1b. In this case, the solution can be found by applyi
the “image charge” method, studied in section A1.4. So, we insert a line of charge in the po
“–jv �” so that the boundary condition of zero potential on the “u” axis is respected. Then, w
the superposition principle, employing the potential expression we got for the structures
cylindric symmetry, given in Equation A1.1.30. So, in our case we have:

(A1.6.2)

from which the potential in the original structure indicated in Figure A1.6.1a is obtained by
substituting for “w,” resulting in:

(A1.6.3)

The real part of the previous equation is the potential inside the structure indicat
Figure A1.6.1a. This is true applying the boundary conditions to the conclusions obtained in se
A1.5 regarding real and imaginary parts of an analytical function. In fact, in that section we sh
that the real and imaginary parts of an analytic function are solutions of Laplace’s equation

A1.7 THE SCHWARZ-CHRISTOFFEL TRANSFORMATION

The Schwarz-Christoffel transformation is a powerful tool to study electrostatic problems w
geometry can be regarded as a polygon. Is is also assumed that the polygon can be opened
side. The internal region of the original structure is transformed into the upper complex hal
plane, while the bounding perimeter is transformed in the real axis of the “W” plane. This situ
is represented in Figure A1.7.1. The function that permits the transformation between the two pla
is:

(A1.7.1)

Figure A1.6.1
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where “A” and “C” are two complex constants, the first proportional to the polygon dimension
orientation in the “Z” plane, the second proportional to the position of such polygon. The p
“w i” can theoretically be arbitrarily chosen to lie on the “u” axis; a proper choice of their pos
can simplify the solution of the problem.

Moving counterclockwise on the polygon corresponds to moving from left to right on the
axis. Particular attention is required to measure the angles. Note in fact that the angles are m
let us say, in a counterclockwise manner, i.e., from the hypothetical line that extends the se
just covered and the nearest segment at left. As we have said, the transformation is also ap
to open polygons, and also if some point “wi” is chosen to be at infinity on the “u” axis; in thi
last case it does not appear in Equation A1.7.1.

To do an example of the Schwarz-Christoffel transformation, let us evaluate the equipo
lines at the end of a parallel plate capacitor, indicated in Figure A1.7.2a. To simplify the analytical
representation, let us suppose the plates to be of infinite extent for x < 0. We want to tran
the capacitor upper and lower plates respectively into the u < 0 and u > 0 half axis. In this
the following positions hold:

(A1.7.2)

(A1.7.3)

(A1.7.4)

Figure A1.7.1

Figure A1.7.2

α

α

α

α

α
1

2

3

4

n

z
z

z
z

z

1

2

3
4

n

w1 2w w3 w4 wnx

jy jv

u

"Z" plane "W" plane

a) b)

α π2 2 2 1= − = → −−⊥, z jd w

α π3 3 3 0= = − ∞ → −⊥, z w

α π4 4 40 1= − = → −⊥, z w

z1=-
z1'=-

z

z '=-3

=-3

x

jy

=jd

α π2 =-

α =-4

2z

4z =0

α =3 π

u

jv

2w 1w 4w1w 3w3w=- =

V

0

V

"Z" plane "W" plane

-1 1

a) b)

0
π

©2000 CRC Press LLC



 have:

1.7.2,

is
sks. To

ence,
tible,
Inserting the previous points into equ. A1.7.1 we have:

(A1.7.5)

which, integrated, gives:

(A1.7.6)

If we insert in Equation A1.7.6 the points correspondence indicated in Equation A1.7.4 we

(A1.7.7)

Now, let us set w = |w|ejϕ , so that Equation A1.7.6 becomes:

(A1.7.8)

If we insert in the previous equation the points correspondence indicated in Equation A
observing that w2 = –1, the phase angle is ϕ = π, we have:

(A1.7.9)

and so Equation A.1.7.6 becomes:

(A1.7.10)

This equation permits the transformation between parts a and b of Figure A1.7.2, but unfortu-
natly it is neither simple to invert nor simple to relate “x” and “y” with “u” and “v.” So, it 
convenient to apply another transformation to the previous equation, which permits these ta
this purpose, we use the following equation:

(A1.7.11)

which transforms Figure A1.7.2b as indicated in Figure A1.7.3b. For simplicity, in Figure A1.7.3a
we have reported Figure A1.7.2b. Note as Equation A1.7.11 transforms the negative and positive
half axis of the “W” plane respectively in the p = 0 and p = V axis of the “S” plane. As a consequ
the resulting structure is still a parallel plate capacitor. Equation A1.7.11 is simply inver
obtaining:

(A1.7.12)

and inserted into A1.7.10 gives:

(A1.7.13)

z A w w w dw C
w

= +( ) −( ) +∫ −1 11

z A w A w c= ( ) − ( ) +2 2 ln

c A−⊥ − 2

z A w A w j C= ( ) − +( ) +2 2 ln ϕ

A d−⊥ − π

z d w w= ( ) −( ) + ( )[ ]π 1 22 ln

s p jq V j w−⊥ + = ( ) ( )π ln

w ej s V= π

z d e j s Vj s V= ( ) −( ) +[ ]π ππ0 5 1 2.
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Now, since z  ⊥– x + jy and s  ⊥– p + jq, equating real with real and imaginary with imagina
parts at both members of previous equation, we have:

(A1.7.14)

(A1.7.15)

The two previous equations represent the coordinates in the “Z” plane of potential and e
flux density, as a function of coordinates “p” and “q” in the “S” plane. From Figure A1.7.3b we
recognize that if we fix a value for “p” it means to fix a potential; so, in these conditions i
vary “q”  we have the potential lines for Figure A1.7.2a. Similarly, we recognize that if  we fix a
value for “q” it means to fix an electric flux. So, in these conditions if we vary “p” we have
electric flux lines for Figure A1.7.2a. 

In Figure A1.7.4 we have reported, (drawn as explained) some of these lines near the end of
the parallel plate capacitor, for a normalized d = 1 and V = 1. Here, equipotential lines and

Figure A1.7.3

Figure A1.7.4
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-1 1
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x d e p V dg Vj s V= ( ) − ( )[ ] −2 1 22π ππ cos
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cause
called
 open
electric flux lines are respectively indicated with dashed and continuous lines. Note that be
the capacitor is not closed, field lines go beyond the plates. This is the well-known effect 
the “end effect,” which is applicable for any structure that realizes a capacitor, for example an
end microstrip. As it is known, the end effect causes an increase of capacitance.
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APPENDIX A2

Wave Equations, Waves, and Dispersion

A2.1 INTRODUCTION

In this Appendix we will review the most important analytical electromagnetic relationsh
which are fundamentals of this text. Of course, we do not want to treat all the topics that a
source of these relationships because we do not want to make a text on electromagne
complete treatment of these topics would require a book of at least the same length as th
For this reason, it is required that the reader know the following arguments for a proper re
of this appendix:

1. Fundamental theory of electromagnetism, particularly regarding the following point 2
2. Theory of Maxwell’s* equations
3. Matrix and vectorial algebra

Concerning points 1, 2, and 3, we will indicate, in the following sections, good texts wher
reader can find background information. Since we think that the reader of this text surely h
background required for points 1 and 2, we have inserted in Appendix A8 all the nece
definitions on matrix and vector algebra required for a proper reading of this appendix.

A2.2 MAXWELL’S EQUATIONS AND BOUNDARY CONDITIONS

For an isotropic system not in motion, the Maxwell’s equations are:

(A2.2.1)

(A2.2.2)

(A2.2.3)

(A2.2.4)

where “J” is the current surface density impressed by the generators, measured in Amp/m2. If the
medium is also homogeneous and isotropic, then “ε” and “µ” can be set outside the operators; fo
example, Equation A2.2.1 becomes:

*  James Clark Maxwell, English physicist, born in Edinburgh in 1831, died in Cambridge in 1879.

∇ • ( ) =ε ρe

∇ • ( ) =b 0

∇ ⊗ = −e b t∂ ∂

∇ ⊗ ( ) = ( ) +b e t Jµ ∂ ε ∂
©2000 CRC Press LLC
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(A2.2.5)

The e.m. field must satisfy some conditions at dielectric interfaces and on conductors. 
conditions are called “boundary conditions” and once satisfied, assure that the solution 
Maxwell equation is unique. We will give such boundary conditions without proof, sending
reader to the voluminous literature on the subject.1,2,3,4,5 In the following equations, “n” is the norma
at the interface surface under study, while subscripts “1” and “2” individuate the fields in
regions “1” and “2.”

a. Condition for the electrical displacement field vector “d:”

(A2.2.6)

i.e., the difference between the normal components to the local interface surface is equal to
surface charge “qs.”*

b. Condition for the electrical field vector “e:”

(A2.2.7)

i.e., the difference between the tangential components to the local interface surface is continu
The case where one of the two media is a perfect conductor is interesting; in this case, the ele
field is zero inside the conductor and from the previous equation we have n ⊗  e2 = 0, i.e., the
tangential electric field is zero on a perfect conductor.

c. Condition for the magnetic induction field vector “b:”

(A2.2.8)

i.e., the difference between the normal components to the local interface surface is zero. T
condition can also be obtained using the “duality principle” applied to Equation A2.2.6. Thi
principle states that when a solution of the Maxwell’s equation for a field is known, it is possib
to have the solution for the other field if we make the following substitutions:

(A2.2.9)

where “J,” “ρ,” “Jm,” and “ρm” are, respectively, the general surface current and volumetric charge
respectively, for the electric and magnetic case. Also, if the solution obtained with the dual
principle is surely a solution of the Maxwell’s equations, this solution could not correspond to
physical case. For this reason, it is always necessary to verify that the new solution is applica
to the original physical problem. In this case, observing that magnetic free charges are not kno
in practice, applying the “duality principle” to Equation A2.2.6 we have Equation A2.2.8.

d. Condition for the magnetic field vector “h:”

(A2.2.10)

*  Since we use MKSA reference system unless otherwise stated, [qs] = Coulomb/m2.

∇ • =e ρ ε

n d d qs• −( ) =2 1

n e e⊗ −( ) =2 1 0

n b b• −( ) =2 1 0

e h h e J J J Jm m m m→ → − ↔ → → − → → −, , , , , ,µ ε ρ ρ ρ ρ

n h h i⊗ −( ) =2 1 l
©2000 CRC Press LLC



 

 the

  

n
ave

             

re at

2.3.2
neous
ions.”

   

alent,
 losing
:

e will
M” is

     

.

i.e., the difference between the tangential components to the local interface surface is equal to
linear current “i�.”* The case where one of the two media is a perfect conductor is interesting; i
this case, the magnetic field is zero inside the conductor and from the previous equation we h
n ⊗  h2 = i�, i.e., the tangential magnetic field is zero on a perfect conductor.

A2.3 WAVE EQUATIONS IN HARMONIC TIME DEPENDENCE

In homogeneous, isotropic, and linear media where relative permeability “µr,” relative permit-
tivity “ ε r” and conductivity “g” are space, time, and field intensity invariant, if field sources a
the infinite, then magnetic “h” and electric “e” field vectors satisfy the following equations:

(A2.3.1)

(A2.3.2)

where:

(A2.3.3)

and “f” is the signal frequency. Note that “k” is, in general, a complex quantity. A2.3.1 and A
are called “homogeneous wave equations in harmonic time dependence” or simply “homoge
wave equations.” Sometimes, Equations A2.3.1 and A2.3.2 are also called “Helmholtz** equat
In these equations, with “∇ 2” we mean the “Laplacian*** operator” or simply “Laplacian,” which
is defined in Appendix A8. Note that Equations A2.3.1 and A2.3.2 are mathematically equiv
so to find the solutions of wave equations we can concentrate only on one equation, without
the generality of the solution. We will use A2.3.2. So, representing “h” in Cartesian coordinates, i.e.

(A2.3.4)

and applying Equation A2.3.4 into A2.3.2 we have that this equation is satisfied if:

(A2.3.5)

(A2.3.6)

(A2.3.7)

Also in this case equations A2.3.5 through A2.3.7 are mathematically equivalent, and w
concentrate only on A2.3.7. To solve such an equation, the “variable separation method, VS
generally used, which consists of finding a function “hz(x,y,z)” given by the product of functions
of only a variable, i.e.:

(A2.3.8)

*  [i �] = Amp/m.
**  H.L.F. Von Helmholtz, German physicist, born in 1821 in Potsdam and died in Charlottensburg in 1894.
***  Pier Simon de Laplace, French mathematician, born in Beaumont en Auge in 1749 and died in Paris in 1827

∇ ( ) =2 2e k e

∇ ( ) =2 2h k h

k jg j j fc r c r ar a j r r r r j
2 2

0 0 2− − − − − − −⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥− − − −ω µε µ µ µ ε ε ω ε ε ε ε ε ε ε ε ω π

h h x h y h zx y z
−⊥ + +0 0 0

∇ =2 2h k hx x

∇ =2 2h k hy y

∇ =2 2h k hz z

h x y z h X x Y y Z zz z, ,( ) ( ) ( ) ( )−⊥
0

©2000 CRC Press LLC
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Now, to simplify the notation, we will omit the coordinate dependence every time so we
not generate confusion. So, inserting A2.3.8 into A2.3.7 we have:

(A2.3.9)

from which, with simple passages:

(A2.3.10)

Equation A2.3.10 is surely satisfied if:

(A2.3.11)

with the condition:

(A2.3.12)

Since “k” is in general a complex number, the same holds for “kx,” “k y,” and “kz.” Also in this
case all equations in A2.3.11 are mathematically equivalent, and we will concentrate only 
last one. In mechanics theory, equations of this type are called “harmonic motion equations
solution of this equation is simple and can be found by setting Z(z)  ⊥– Mzek zz, where “Mz” is a
scalar and “kz” is called the “propagation constant” with dimensions “1/m” in MKSA system un
So, in our case the general solution is a linear combination of exponentials:

(A2.3.13)

or a linear combination of hyperbolic sinus and cosinus:

(A2.3.14)

since hyperbolic sinus and cosinus are defined as:

that is, like a linear combination of exponentials. Also for Equation A2.3.14, the quantities
and “B” are scalars. 

The case where the quantity “kz” is imaginary, i.e., kz ≡ jk zj  is interesting. In this case the
solution of equations like A2.3.11 is a linear combination of sinus and cosinus, i.e.:

*  Unless otherwise stated we will use MKSA system unit.
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The choice of which kind of solution between A2.3.13 and A2.3.14 it is better to em
depends on the known boundary conditions of the electromagnetic problem. Exponential so
is useful when one extreme of the sources is theoretically to the infinite, while hyperbolic sol
are useful when considering a limited region of space. The term that contains the negative
nential is called “progressive,” since it decreases in amplitude in the positive direction of “z” w
the other is called “regressive,” which decreases in amplitude when “z” decreases in amplit
the negative direction of “z.” 

Using only the progressive terms for the exponential form for “X(x),” “Y(y),” and “Z(z
Equation A2.3.8 can be rewritten as:

(A2.3.16)

and the associated vector “hz(x,y,z)” will be:

(A2.3.17)

So, the magnetic field vector “h(x,y,z)” in the Cartesian system unit will be:

(A2.3.18)

and similarly, for the electric field:

(A2.3.19)

The vectors “h0” and “e0” are, in general, complex and contain the time dependence. This t
will be treated next.

It is useful at this point to indicate another simple and compact representation for Equ
A2.3.18 and A2.3.19. If we define “k” and position “r” vectors as:

(A2.3.20)

Equations A2.3.18 and A2.3.19 become:

(A2.3.21)

where with “k •  r” we indicate the product vector between “k” and “r .” The vector “h0” and “e0”
are, in general, complex, and we can write:

(A2.3.22)

We can also associate the responsibility of time dependence to “h0” and “e0”. 
In the next section we will make a closer study of the propagation vectors and their relation

Z z A k z B sen k z with k jkz j z j z z j( ) = ′ ( ) + ′ ( ) −⊥cos

h x y z h ez z

k x k y k zx y z, ,( ) −⊥
− − −

0

h x y z h e zz z

k x k y k zx y z, ,( ) −⊥
− − −

0 0

h x y z h x y z h x y z h x y z h ex y z
k x k y k zx y z, , , , , , , ,( ) ≡ ( ) + ( ) + ( ) −⊥

− − −
0

e x y z e x y z e x y z e x y z e ex y z

k x k y k zx y z, , , , , , , ,( ) ≡ ( ) + ( ) + ( ) −⊥
− − −

0

k k x k y k z and r r x r y r zx y z x y z
− −⊥ ⊥+ + + +0 0 0 0 0 0

h x y z h e and e x y z e ek r k r, , , ,( ) ≡ ( ) ≡− −• •
0 0

h h jh and e e jer j r j0 0 0 0 0 0− −⊥ ⊥+ +
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A2.4 THE PROPAGATION VECTORS AND THEIR RELATIONSHIPS
WITH ELECTRIC AND MAGNETIC FIELDS

The most known propagation vector “k” is composed of the propagation constants we gave
the previous section. In the Cartesian coordinate system it is defined as:

(A2.4.1)

being “x0,” “y 0,” and “z0” the axis versors of our reference system. By definition of vector prod
we have:

(A2.4.2)

According to A2.3.3, “k” is in general a complex quantity, and we set:

(A2.4.3)

In general, “k” is dependent on the physical characteristics of the propagation mediu
Chapter 1, where we studied the general theory of transmission lines, we gave the expres
“k” as:

(1.4.1)

where “R,” “L,” “Gp,” and “C” are, respectively, the series resistance, series inductance, pa
conductance, and parallel capacitance for the unit length of the line, so that the dimensions
are 1/m. But also in our case, the dimensions of “k” are 1/m, since the following dimensions
for “µ,” “ ε,” and “ω:”*

(A2.4.4)

Expressions A2.4.3 and 1.4.1 can always be set equal to each other, but the procedure
quite tedious. For example, in a lossless ideal coaxial cable with dielectric with parameters “ε” and
“µ,” the capacitance and inductance per unit length are:6,7

(A2.4.5)

where “log” is the logarithm in base “10.” If we insert Equations A2.4.5 into 1.4.1 we have
same expression A2.4.3 evaluated with “g = 0,” i.e., with zero losses.

Squaring A2.4.3 and equating imaginary and real parts at both members, we have:

(A2.4.6)

*  Whenever confusion will not arise, we will indicate the variable dimensions with square brackets.

k x k y k z kx y z0 0 0+ + −⊥

k k k k k kx y z• ≡ + + ≡2 2 2 2

k j j jg k jkc r j= ( ) ≡ −( )[ ] +−⊥ω µε ω µ ε ω
0 5 0 5. .

k R j L G j C k jkp r j= +( ) +( )[ ] +−⊥ω ω 0 5.

µ ε ω[ ] = [ ] = [ ] =Ω Ω.sec sec secm m 1

C r r L r re i e i= ( ) = ( )2 2πε µ µlog log

k dr ar ar= + ( )( ) −













ω µε ε0 5 1 1
2 0 5

0 5

.
.

.
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(A2.4.7)

where d  ⊥– εaj + g/ω. For an ideal lossless dielectric, i.e., with ε r j = 0 and g = 0, we have:

(A2.4.8)

For a good dielectric, i.e., those used for guided propagation, the product “ωεaj” is much higher
than “g” and d/εar ≈ tanδ* so that from A2.4.6 we have:

(A2.4.9)

Then, supposing ε r j << ε rr , we can expand with McLaurin** series the previous equation, a
terminating the expansion to the third term we have:

(A2.4.10)

The previous expression, representing only the dielectric losses, can be applied to a
supporting a “TEM” mode, for example a stripline or a coaxial cable. Conductor losses are st
dependent on the cross-section of the t.l., and for this reason, “TEM” t.l.s with different c
sections have in general different expressions and values of conductor loss. 

Another expression for “k” is the so called “alphabeta k vector,” given by:

(A2.4.11)

where “α” and “β” are called “attenuation vector” and “phase vector,” respectively, both 
numbers. The “alphabeta k vector” can be easily set in relationship to “kr” and “kj .” We can write:

(A2.4.12)

Then, explicating and equating imaginary and real parts at both members of the pre
equation we have:

(A2.4.13)

(A2.4.14)

Note that if “α” and “β” vectors are parallel, then α •  β ≡ αβ that with A2.4.13 results in:

(A2.4.15)

*  The quantity “tanδ” was defined in Chapter 1.
**  Colin McLaurin, English mathematician, born in Kilmodan in 1698 and died in Edinburgh in 1746.
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In the next section we will define various types of waves according to the value of the v
product “α •  β.” 

With the introduction of the “alphabeta k vector,” Equation A2.3.21 becomes:

(A2.4.16)

Note the term “e–α •  r” is responsible for the field amplitude variation, while the term “e–jβ • r”
is responsible for the field phase variation. Considering “α” and “β” as reference vectors, the
condition:

(A2.4.17)

represents a plane orthogonal to the vector “α,” and it is called an “equiamplitude plane.” Similarly
the condition:

(A2.4.18)

represents a plane orthogonal to the vector “β” and it is called an “equiphase plane.” It is for th
reason that fields given by expressions A2.4.16 are said to represent a “plane wave.” If the pro
of vector “r” along “α” or “β” has to be constant, then the extreme of “r” must be on a plane
orthogonal to “α” or “β.” 

Important relationships hold between vectors “k,” “h ,” and “e.” To show them, we need to star
from the two Maxwell’s equations in harmonic time dependence, i.e.:

(A2.4.19)

Then, applying the “curl operator” definition given in Appendix A8, the first of A2.4.19 becom

(A2.4.20)

and so, using the expression A2.3.21, we have:

(A2.4.21)

Similarly proceeding with the second of A2.4.19 we have:

(A2.4.22)

Doing the scalar product between “k” and the first members of A2.4.21 and A2.4.22 we c
write:

(A2.4.23)

(A2.4.24)

h x y z h e and e x y z e ej r j r, , , ,( ) ( )( ) ≡ ( ) ≡− + − +• •

0 0
α β α β

α • =r constant

β • =r constant

∇ ⊗ = − ∇ ⊗ =e j h and h j ecωµ ωε

∇ ⊗ ≡ − − −
















≡ − ⊗ = −e

x y z

k k k

e e e

k e j hx y z

x y z

0 0 0

ωµ

k e j h⊗ −⊥0 0ωµ

k h j e⊗ −−⊥0 0ωε

k h• =0 0

k e• =0 0
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Equations A2.4.21 through A2.4.24 are very important relationships for plane waves. W
see later some examples where their use will give us important results.

A2.5 THE TIME DEPENDENCE

In all this text, as already stated, we will assume that time dependence of our electroma
field is sinusoidal, i.e., of the form:

(A2.5.1)

with “ω” the signal angular frequency, “ϕ” the initial phase, and “M” a generic real constant. F
simplicity, we will set the origin of the time in a point where the initial phase is zero. Since
sinus function is proportional to the imaginary part of the exponential, it is easy to see t
extract the time dependence from any wave expression it is enough to multiply the function
“ejωt” and extract the imaginary part.

For example, to have the time dependence explicated for the magnetic field given in A
we can multiply time “ejωt” and extract the imaginary part. So:

(A2.5.2)

or:

(A2.5.3)

A similar expression can be obtained for the electric field in A2.4.16. However, anytime w
not consider it important, the time dependence will be omitted.

A2.6 PLANE WAVE DEFINITIONS

Plane wave definitions are related to the result of the scalar product of “α” and “β” given in
Section A2.4. Of course, the existence of these plane waves can be rigorously shown startin
the general Maxwell’s equation and can be found in many texts.8,9,10

a. Uniform Plane Wave This is a plane wave for which equiamplitude and equiphase pla
are parallel. Consequently α •  b ≠ !0 since, as was shown in Section A2.4, α ≡ kr and β ≡ kj when
“α” and “β” vectors are parallel. Examples of uniform plane waves are the electromagnetic
at great distance from a dipole.

Uniform plane waves are usually simply called “UPW.”
b. Unattenuated Uniform Plane WaveThis is a uniform plane wave that propagates in a lossl

media, i.e., a media with g = 0. Since in this case kr ≡ 0, then α •  β = !0 because, according to
point a, now a ≡ 0.

c. Nonuniform Plane WaveThis is a plane wave for which equiamplitude and equiphase pla
are not parallel. The possible case of “α  ⊥   β” is given next in item d.

Nonuniform plane waves are usually simply called as “NUPW.”
d. Unattenuated Nonuniform Plane WaveThis is a nonuniform plane wave that propagates

a lossless media, i.e., a media with g = 0. Since kr ≡ 0 for g = 0, then α •  β = !0, as in item b.
From the wave theory used in electromagnetism, “β” represents the phase constant and it can

z t Msen t( ) +( )−⊥ ω ϕ

h x y z t h e e
j r j t, , , Im

( )( ) ≡ ( )− + •

0
α β ω

h x y z t e h sen t r h t rr
r j, , , cos( ) ≡ −( ) + −( ){ }− •

• •
α ω β ω β0 0
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be zero, otherwise we do not have propagation through waves. So, the condition α •  β = !0 can
be satisfied for:

1. α = 0, and β ≠ 0, which results in a particular case of uniform plane wave discussed in item 
Since α = 0, the constant phase plane is also surely a constant amplitude plane, which is 
condition for a uniform plane wave.

2. α ⊥  β, with α ≠ 0 and β ≠ 0, which represents our case, d.

Note that condition 2 results in a wave whose amplitude decreases exponentially in
direction, with constant “α” if it propagates in a lossless media. 

e. “TEM” Wave The “TEM” wave is a plane wave with the characteristic that electric a
magnetic fields have only transverse components, with respect to the direction of propa
“TEM” is the acronym for “Transverse Electric and Magnetic” wave.

f. “TE” Wave The “TE” wave is a plane wave with the characteristic that the electric fiel
the only field with transverse components, with respect to the direction of propagation. “T
the acronym for “Transverse Electric” wave.

g. “TM” Wave The “TM” wave is a plane wave with the characteristic that the magnetic fi
is the only field with transverse components, with respect to the direction of propagation. 
is the acronym for “Transverse Magnetic” wave.

h. Standing WavesAll the previous waves defined above can be progressive, regressive
combination of both. When both progressive and regressive waves exist, it is common prac
say that a standing wave phenomenon exists. From the general line theory we discussed in Ch
we know that standing waves exist every time a mismatching exists in a transmission line.
case of waves, the same holds, with the addition that since wave propagation can also be s
in the vacuum, it is possible to have standing waves if a progressive wave is reflected from a s
As an example, let us suppose that the electric field “e” of an unattenuated “UPW” coincides on
a perfect plane conductor parallel to the electric field. The Cartesian coordinate system is a
with the direction “x” coincident to the linear polarized electric field, and the direction “z
coincident with the direction of propagation. The “y” axis is aligned to the direction of the mag
field, and the origin of the reference system is on the conductor plane. We can write:

(A2.6.1)

If we indicate with “ζ” the characteristic impedance of the “UPW,”* for the magnetic field 
can write:**

(A2.6.2)

In this case, we know that the electric field must be zero on the conductor surface, and
z = 0 we have:

(A2.6.3)

Inserting A2.6.3 into A2.6.1 and A2.6.2 we have:

*  We will see in Section A2.11 that for the case of an “UPW” we have ζ = (µ/εc )0.5.
**  See Section 1.3 of Chapter 1, since the representation A2.6.1 is the same as that developed for voltage in a
transmission line.

e e e e ex
j z j z= ++ − −β β

h e e e ey
j z j z= −[ ]+ − −β β ζ

e e A+ − ⊥= − −!
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(A2.6.4)

(A2.6.5)

Note as in this case of stationary waves, the amplitude of the electric field has a coor
shape proportional to “sen(βz),” while the amplitude of the magnetic field has a coordinate sh
proportional to “cos(βz).” This means that for these fields, zeros exist in a precise coordina
the propagation axis, which do not change positions. For example, “ex” is zero every βz = 2nπ,
with “n” an integer number. It is for this reason that a situation like this is said to be a “statio
wave phenomenon.” In addition, “ex” and “hy” are in space quadrature, since one moves with “sin
and the other with “cosinus” and in time quadrature due to the presence of the term “j.”

A2.7 EVALUATION OF ELECTROMAGNETIC ENERGY

Every electromagnetic wave brings energy with itself. To make a practical example of
important it is to evaluate the e.m. energy, we can simply think of a microwave oven, whe
electromagnetic field near some GHz is able to cook foods. The determination of e.m. en
also very important to evaluate possible risks for electromagnetic compatibility, i.e., how muc
device can radiate energy outside the area where the energy should be confined.

A very important relationship in electromagnetism is the “Poynting* theorem.” This theo
represents in electromagnetism the general principle of energy conservation. To introduce s
important result, we have to begin our study with the general Maxwell’s equations:

(A2.7.1)

(A2.7.2)

The terms “Jie” and “Jim” represent the surface current density impressed by the genera
respectively of “electric” and “magnetic” types. Of course, the term “Jim” is used to satisfy the
“duality principle.”

Multiplying scalarly time “h” A2.7.1 and time “e” A2.7.2, and subtracting, we have:

(A2.7.3)

Since we know that:

(A2.7.4)

Equation A2.7.3 can be rewritten as:

(A2.7.5)

*  J.H. Poynting, English physicist, born in Monton in 1852 and died in Birmingham in 1914.

e A e e jAsen zx
j z j z= −[ ] ≡ − ( )− β β β2
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Since the dimensions of “∇  • (e ⊗  h)” are so that:

(A2.7.6)

if we integrate Equation A2.7.5 in the volume “V,” which contains the region under study, we 
a power as result. To simplify the calculations, we can apply the “divergence theorem,”* also 
“Gauss’ theorem,” which states:

(A2.7.7)

where “v” is a generic vector, “S” is the surface that contains the volume “V,” and “n” is the
“normal” to this surface and directed outside the region under study. Using A2.7.7, A2.7.5 bec

(A2.7.8)

Equation A2.7.8 is the “Poynting theorem.” Taking in analysis the first member of this equa
we have that:

1. The first integral represents the e.m. power leaving the surface “S,” and it is called the “fl
of Poynting vector”

2. The second integral represents the e.m. power that is stored inside the region “S”
3. The third integral represents the power lost in dissipation

At the second member we have the power that is impressed by the generators. So, fro
analysis it is simple to understand how the Poynting theorem is an application to the electrom
case of the general energy conservation principle.

The vector:

(A2.7.9)

is called the “Poynting vector,” with dimensions W/m2. Sometimes, this vector is associated wi
the dimension of W/unit surface, but this is not theoretically correct, since the application of A
has to be performed on closed surfaces “S.” In other words, there could be situations in wh
Poynting vector is different from zero, while its integral on a closed surface is zero. A pra
situation like this is a region where electrostatic charges and magnetostatic fields exist. Here
subregions exist where static electric and magnetic fields exist and are not parallel. Conse
the Poynting vector here is different than zero.** But if we integrate on a closed surface, the
is zero. Since inside this surface there does not exist currents for our electrostatic pr
consequently:

(A2.7.10)

So, remembering A2.7.4 we have:

*  The divergence, or Gauss theorem is defined in Appendix A8 together other important vectorial relationships.
** Of course, in this electrostatic example, the power flux has little meaning.

∇ ⊗( )[ ] =• e h W m3

∇ =• •∫ ∫vdV v ndS
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e h ndS h
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e
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im ie

VV
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+ = − +( )• • • • •∫ ∫ ∫∫∂
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∇ ⊗ ≡ ∇ ⊗ ≡e and h0 0
©2000 CRC Press LLC



zero.
urface.

here
nother
ot of

onal
n axis,
posed

ion of a

dition,

most
nt a

nds
region
 on
otential
(A2.7.11)

i.e., the flux of the Poynting vector is zero, and locally the Poynting vector is different from 
So, caution must be taken when evaluating the flux of the Poynting vector through an open s

A2.8 WAVES IN GUIDING STRUCTURES WITH CURVILINEAR ORTHOGONAL 
COORDINATE REFERENCE SYSTEM

We will call a “guiding structure” every structure that is able to guide e.m. energy, and w
some energy can be lost during the path inside the guiding structure. Of course, this is a
definition of the “transmission line” we gave in Chapter 1. In our text we have studied a l
these guiding structures, like microstrips, striplines, slotlines, etc.

A general definition of a guiding structure where it is useful to apply a “curvilinear orthog
coordinate reference system” is where this structure is obtained as the translation along a
called the “longitudinal axis,” of a conductor ring of any shape. This reference system is com
of a longitudinal coordinate with versor “�0” and two transversal coordinates with versors “t10”
and “t20,” these last being on a plane that is orthogonal to the direction “�.” Practical examples of
such a reference system are the cylindrical or Cartesian reference system. A representat
generic guiding structure and its associated coordinate system is indicated in Figure A2.8.1. With
“S” we indicate the area of a transversal surface, whose perimeter is indicated with “p.” In ad
“t” is an axis that is always locally tangent to “p” and always orthogonal to “�,” and “n” is an axis
orthogonal to “t.” So, “n” and “t” form a Cartesian coordinate reference system, while in the 
general case “�,” “t 1” and “t 2” are curvilinear coordinates and do not necessarily represe
Cartesian coordinate system.

Solving the Maxwell’s equations for a structure as indicated in Figure A2.8.1, it is possible to
show that only “TE” and “TM” modes can exist inside this structure. The word “mode” inte
the natural possible configurations of the e.m. field inside a region without sources, i.e., a 
like our guiding structure indicated in Figure A2.8.1 where the sources are assumed to be only
the extreme terminals. The fields associated with these modes can be obtained using a p

Figure A2.8.1

e h ndS
S

⊗( ) ≡∫ • 0

p=Perimeter of S

S=Transverse section surface

p

S

l

t

t1

2

t

n
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function.* In a system with such a coordinate system, every potential function “P(t1,t2,� )” which
can generate an e.m. field, for instance the “vector potential function -A-” for a “TM” wav
defined as being composed of the product of a function that only depends on a transverse co
with a function that only depends on the longitudinal coordinate. Indicating with “T(t1,t2)” and
“L( � )” respectively, the first and second function, we will write:

(A2.8.1)

Functions “T” and “L” can be in general complex. Note Equation A2.8.1 is an aspect o
VSM we have previously introduced. 

In an e.m. ambient defined for the homogeneous wave equation in Section A2.4, 
“P(t1,t2,� )” must satisfy the homogeneous wave equation, i.e.:

(A2.8.2)

In our reference coordinate system it is possible to write the Laplacian as:

(A2.8.3)

where “∇ t
2( ),”  called the “transverse Laplacian,” is defined when the cross-section of the gu

structure is specified. Some expressions for Laplacian operator in the most used coordinate 
can be found in Appendix A8. We will see in the next sections some solutions of this equat

Combining together A2.8.1 through A2.8.3 we have:

(A2.8.4)

Proceeding as we did regarding the wave equation, we can set:

(A2.8.5)

with the condition:

(A2.8.6)

The first equation in A2.8.5, i.e.:

(A2.8.7)

*  The use of electrodynamic “potential functions” is an e.m. theory method to develop the e.m. fields in a region. “P
functions” theory can be found in the following texts:
R.E. Collin, Foundations for Microwave Engineering. McGraw Hill, 56, 1992.
G. Barzilai, Fondamenti di elettromagnetismo, Siderea editore, 292, 1975.
G. Gerosa, Appunti di microonde, Università di Roma, “La Sapienza,” I-28, 1980.
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is called the “transverse wave equation,” and in general its solution is not very simple, sinc
strongly dependent on the cross-section of the guiding structure. In addition, due to the di
condition that the function “T” has to verify on the boundary of the region where the fie
contained, the values of “kt” are in general different for the various propagation modes inside
region. For this reason, also “k�” values obtained from A2.8.6 are in general different among mod
The parameter “kt” is called the “cut-off wave number” or “transverse wave number.”

Contrarily, the solution of the second equation of A2.8.5 is very simple, since it is the so-c
“harmonic motion equation” we have already encountered in this appendix. So, the general s
is a linear combination of exponentials:

(A2.8.8)

Using the potential function procedure, the equations for a “TM” mode inside the stru
indicated in Figure A2.8.1 are:

(A2.8.9)

(A2.8.10)

(A2.8.11)

(A2.8.12)

where the subscript “(m)” denotes a generic “TM” mode. The operator “∇ t( )” is called the
“transverse gradient” and is defined when the cross-section of the guiding structure is spe
Some expressions for gradient operator in the most used coordinate systems can be fo
Appendix A8. If we are in the case where only the progressive wave exists, then in the pr
equation the term k�(m)/ jωεc ⊥– ζ TM appears, which is called “TM mode impedance.”

The equations for “TE” modes can be found directly from A2.8.9 through A2.8.12, appl
the duality principle expressed in A2.2.9. So, we can write:

(A2.8.13)

(A2.8.14)

(A2.8.15)

(A2.8.16)

where the subscript “[m]” denotes a generic “TE” mode. If we are in the case where onl
progressive wave exists, then in the previous equation the term jωµ/k� [m]  ⊥– ζ TE appears, which is
called “TE mode impedance.”

Of course, the boundary conditions that “T” must verify on the guiding structure contou
different from a “TE” or “TM” mode. In fact, the general boundary condition is that the elec
field tangential component on the contour “s” of the guiding structure must be zero. So, for
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1. “TM” mode, it means that:

(A2.8.17)

Since L ≠ !0 to have propagation, and kt(m)
2 ≠ !0 inside a guiding structure for a not null mode,

from the first of A2.8.17 it follows that:

. (A2.8.18)

From the second of A2.8.17 we have:

(A2.8.19)

but (∂T(m)/∂t)=0 if T(m) = 0, as stated in A2.8.18. So, T(m) = 0 on “p” is the necessary and sufficient
contour condition that “T(m)” must satisfy for “TM” modes inside a guiding structure.

2. “TE” mode, it means that:

(A2.8.20)

And so:

(A2.8.21)

It is very interesting to show that with the conditions A2.8.18 and A2.8.19 for “T,” the param
“k t

2” is a negative real number. Applying the Green two dimensions identity given in Appendi
to the functions “T” and “T*” we have:

(A2.8.22)

The first member is always zero, since for a “TM” mode T = 0 while for a “TE” mo
∂T/∂n ≡ ∂T*/∂n = 0. So, the previous equation becomes:

(A2.8.23)

From A2.8.7 it follows that “T*” must satisfy:

(A2.8.24)

A2.8.23 with the use of A2.8.24 becomes:
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(A2.8.25)

Since the functions that appear in the above integrals are positive, the same is true for th
of the integral. So “kt2* ” is a real negative number and, being real we have that kt

2 ≡  k t
2* ; conse-

quently, also “kt
2” is a real negative number, for every mode.

Using A2.8.25 it is simple to show that a “TEM” mode cannot exist inside a guiding struc
as indicated in Figure A2.8.1, unless it is null. A “TEM” mode can be obtained for example start
with a “TM” mode and setting e� = !0. So, from A2.8.11 we have:

(A2.8.26)

The functions “L” and “T(m)” cannot be zero in any point of “S,” otherwise no wave cou
exist. Consequently, kt

2  = !0. But, from A2.8.25 it would follow that “∇ tT(m)” must be zero on the
section “S,” and from A2.8.10 and A2.8.12 it should follow that all the field is zero. So, a non
“TEM”  mode cannot exist inside the guiding structure indicated in Figure A2.8.1. In general, a
“TEM” mode can exist inside guiding structures where the field is contained inside two sep
conductors and at least one of these conductors has limited extension. For example, the c
waveguide “CPW”* can support a “TEM” wave, at least in a limited bandwidth, while slot li
cannot have a “TEM” mode. “CPW” has the central conductor with limited extension while
slot line also having the field guided between two conductors, has theoretically infinite exten

In the next sections we will show the two most used guiding structures, which belong 
general discussion made here. They are the rectangular and circular waveguide.

We want to conclude this section giving some properties relative to function “T” for the ge
structure indicated in Figure A2.8.1. Note from Figure A2.8.1 that “S”  is the transverse section of
the guiding structure. The properties are:

a. orthogonality of functions “T”

(A2.8.27)

(A2.8.28)

for kt(m)
2 ≠ kt(n)

2 and kt[m]
2 ≠ kt[n]

2.

b. orthogonality of vectors “∇ tT”

(A2.8.29)

(A2.8.30)

for kt(m)
2 ≠ kt(n)

2 and kt[m]
2 ≠ kt[n]

2.

*  Coplanar waveguide transmission line is studied in Chapter 10.

k
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c. generic properties

(A2.8.31)

(A2.8.32)

(A2.8.33)

Note that Equations A2.8.27 through A2.8.30 are only true when we use different valu
“k t” for each mode, while Equations A2.8.31 through A2.8.33 are always true. In the next s
we will use such relationships.

A2.9 “TE” AND “TM” MODES IN RECTANGULAR WAVEGUIDE

A rectangular waveguide is an e.m. guiding structure whose transverse section is a rectan
representation is indicated in Figure A2.9.1. The most useful coordinate system is the Cartesian o

The waveguide is usually made of aluminium, copper, or brass, and sometimes the in
faces are covered with a thin layer of gold or silver to increase their conductivity.

According to the introduction of this appendix, we will not give here all the passages to 
the solution, leaving this job to dedicated texts.11,12

To have the expressions of “TE” and “TM” modes in rectangular waveguide, we have to
the function “T” for the structure in Figure A2.9.1. The function “T” has to satisfy the transvers
wave equation A2.8.7. So, applying the VSM to “T” and writing:

(A2.9.1)

and expressing the “∇ t
2”  in Cartesian coordinate system, A2.8.7 with simple passages becom

Figure A2.9.1

∇ ∇ ⊗ =•∫ t m t n
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T T dS( ) ( ) l0 0

∇ ∇ ⊗ =•∫ t m t n
S

T T dS( ) [ ] l0 0

∇ ∇ ⊗ =•∫ t m t n
S

T T dS[ ] ( ) l0 0

T x y X x Y y,( ) ( ) ( )−⊥

x

y

z

a

b
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where for notational simplicity we have omitted the variable dependence for “X” and 
Equation A2.9.2 is surely satisfied if:

(A2.9.3)

with the condition:

(A2.9.4)

Since “kt
2”  is a negative real number, then “kxx” and “kyy” are imaginary, and we set:

(A2.9.5)

with “k x” and “ky” as real numbers. Then, Equation A2.9.2 becomes:

(A2.9.6)

with the condition:

(A2.9.7)

Equations A2.9.6 are the “harmonic motion equations,” and its solution is a linear combin
of sinus and cosinus, i.e.:

(A2.9.8)

(A2.9.9)

The longitudinal function “L(�)” in the Cartesian coordinate system indicated in Figure A2.9.1
becomes:

(A2.9.10)

where “kz,” using condition A2.9.7, must satisfy:

(A2.9.11)

So, applying the contour conditions A2.8.18 and A2.8.21 to the structure indicate
Figure A2.9.1 we can specify the function “T”  for each mode and finally the expressions for the
fields. We have:

d X
Xdx

d Y
Ydy

kt

2

2

2

2
2+ =

d X
Xdx

k and
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Ydy

kxx yy

2

2
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2.9.14
1. TE Mode

The function “T” and “kt
2” are:

(A2.9.12)

(A2.9.13)

where “m” and “n” are two real, integer and positive numbers never both equal to zero, an1”
is a generic constant. Inserting A2.9.13 into A2.9.11 we have:

(A2.9.14)

So, “TE” modes in rectangular waveguides are indicated as “TEmn.” Inserting A2.9.12 into
A2.8.13 through A2.8.16 we have the fields for a “TEmn” mode:

(A2.9.15)

(A2.9.16)

(A2.9.17)

(A2.9.18)

(A2.9.19)

(A2.9.20)

where the term “ζ TEmn” is the “TEmn” wave impedance, given by:

(A2.9.21)

and “C” is a generic constant. All the field expressions, considering for simplicity to be only
progressive propagation, need to be multiplied by “e–kz,mnz.” 

From the “TEmn” field expressions it is simple to recognize how, for the “TE10,” the only non-
zero fields “ey ,” “hx,” and “hz” have the shape indicated in Figure A2.9.2. Here we have adopted
the convention that with lines of different lengths, we indicate the different strength of the 
For example, the electric field component “ey” is maximum at the center of the waveguide and n
at x = 0 and x = a. Note two coordinates x = xc1 and x = xc2 exist where the transverse magnet
components “hx” and “hz” have equal amplitude and in time quadrature. This means that in t
two longitudinal planes, the magnetic field is circularly polarized, and this characteristic is us
build ferrimagnetic devices, as isolators or phase shifters, which are studied in Appendix A7
note how at x = a/2 the magnetic field is instead linearly polarized, since only the componenx”
exists, while the electric field is always linearly polarized.

It is interesting to show an important characteristic of rectangular waveguides, i.e., their
pass filter property. Assuming the medium inside the waveguide to be lossless, we see from A
that “kz” can be real, null, or imaginary if:

T x y q m x a n y b, cos cos( ) = ( ) ( )1 π π

k k m a n bt t mn
2 2 2 2→ = −( ) − ( ), π π

k m a n bz mn c,

.
= ( ) + ( ) −[ ]π π ω µε2 2 2 0 5

ez = 0

e C n b m x a sen n y b xx = ( ) ( ) ( )π π πcos 0

e C m a sen m x a n y b yy = − ( ) ( ) ( )π π πcos
0

h e xx y TEmn= −( )ζ 0

h e yy x TEmn= −( )ζ
0

h C k j m x a n y b zz t= −( ) ( ) ( )2
0ωµ π πcos cos

ζ ωµTEmn z mnj k−⊥
,
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The propagation along “z” without attenuation corresponds to an imaginary “kz,” and from the
previous equation, we can see that it happens above a frequency “fc,” called the “cut-off frequency,”
given by:

(A2.9.22)

From A2.9.22 we see that every mode has its own cut-off frequency, which means th
frequency of the signal we send into the waveguide must be higher than the cut-off freque
the mode we want to use. Assuming we feed the waveguide using its widest side, from the p
equation we see that the mode with the lowest “fc,mn” is the “TE10,” and for this reason it is called
the “dominant mode.” It is simple to recognize that if we increase the frequency of the signa
travels inside the waveguide, then it changes its mode of propagation, because the fre
overcomes the cut-off frequencies of higher order modes. This is not a desirable phenomeno
every mode of propagation has its own polarization and the receiver is usually optimized to 
only one polarization, to increase the sensitivity. So, caution must be used in choosing the 
waveguide for the signal frequency that travels inside it. To this purpose, a lot of waveguide
with dimensions “a” and “b” just optimized for a dedicated bandwidth.

Since the “TE10” is quite often the most used mode in a rectangular waveguide, we think
useful to indicate the fields of this mode, obtained from expressions A2.9.15 through A2.9.2
m = 1 and n = 0. Indicating only the nonnull fields, we have:

(A2.9.23)

Figure A2.9.2
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zh (x)

y (x)e

mode
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y

x

a
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f k m a n bc mn t,

. . .= −( ) ≡ ( ) + ( )[ ] ( )2 0 5 2 2 0 5 0 5
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(A2.9.24)

(A2.9.25)

Note that from A2.9.22 we have:

(A2.9.26)

with v ⊥– 1/(µε)0.5, i.e., the light speed in the dielectric that fills the waveguide.
With the introduction of A2.9.22, “kz,mn” and “ζ TEmn” are expressed as functions of “fc,mn.”

Assuming the case of lossless dielectric, i.e., εc ≡ ε, inserting A2.9.22 into A2.9.14, with εc ≡ ε,
we have:

(A2.9.27)

and inserting this equation into A2.9.21:

(A2.9.28)

where “ζ” is the impedance presented to a plane wave by the dielectric that fills the waveg
i.e., ζ ⊥– (µ/ε)0.5.

Using A2.9.26 through A2.9.28 and introducing a constant “A” defined as A  ⊥– –Cωc,10/v with
dimensions V/m, Equations A2.9.23 through A2.9.25 can be set as functions of cut-off wavel
i.e.: 

(A2.9.29)

(A2.9.30)

(A2.9.31)

All the field expressions A2.9.29 through A2.9.31, considering for simplicity as only bein
a progressive propagation, need to be multiplied by “e–kz,10z.”

2. “TM” Mode

The function “T” is: 

(A2.9.32)

where “m” and “n” are two real, integer and positive numbers never equal to zero, and “q2” is a
generic constant. “kt2” has the same expression we gave for “TE” modes, and consequently
“k z,mn.” Since “m” and “n” are never equal to zero, the lower order “TM” mode in a rectang
waveguide is a “TM11.”

Inserting A2.9.32 into A2.8.9 through A2.8.12 we have the fields for a “TMmn” mode:

h e xx y TE= −( )ζ 10 0

h C j a x a zz = ( ) ( )π ωµ π2 2
0cos

f v a ac c, ,10 102 2= → =λ

k jz mn c mn,

.

,

.
= ( ) −( )ω µε ω ω0 5 2 2 0 5

1

ζ ζ ω ωTEmn c mn
−⊥

−
−( )1 2 2 0 5

,

.

e Asen x a yy = ( )π
0

h e xx y c= − −( )





1 10
2 2 0 5

0ω ω ζ,

.

h j A x a zz c= ( ) ( )ω ωζ π, cos10 0

T x y q sen m x a sen n y b,( ) = ( ) ( )2 π π
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(A2.9.34)

(A2.9.35)

(A2.9.36)

(A2.9.37)

                                             (A2.9.38

where the term “ζTMmn” is the “TMmn” wave impedance, given by:

(A2.9.39)

and “D” is a generic constant. All the field expressions, considering for simplicity as only b
in a progressive propagation, need to be multiplied by “e–kz,mnz.” 

From the “TMmn” field expression it is simple to recognize how, for the “TM11,” the field
components “hx” and “hy” have the shape indicated in Figure A2.9.3. Note that in this case these
components also have dependence along the coordinate “y.”

Excluding the field component expressions given in A2.9.33 through A2.9.39, for modes 
we can repeat the same discussions we made above for modes “TE.” In particular, we w
observe that modes “TE” and “TM” with equal subscripts “mn” have equal cut-off frequency,
since for “TE” modes one subscript can be zero, then the lowest cut-off frequency belongs to 10”
mode, i.e., the dominant mode.

Figure A2.9.3

hz = 0
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A2.10 “TE” AND “TM” MODES IN CIRCULAR WAVEGUIDE

Circular waveguides are another guiding structure often used in microwave technology,
cially to feed antennas for radar systems. Appendix A7 also shows some applications o
waveguides to build isolators, phase shifters, and circulators. As for the rectangular wave
here the metals used to build this waveguide are usually aluminium, copper, or brass, som
with the internal faces covered with a thin layer of gold or silver to increase their conductiv

A mechanical representation of this waveguide is indicated in Figure A2.10.1a, while in part b
we have indicated the most useful reference system for this structure, i.e., the cylindrical s
This reference system is composed of a longitudinal axis “z,” a radial axis “r,” and an angula
“θ,” so that “z,” “r,” and “θ” are orthogonal to each other. Of course, the versors are “z0,” “r 0,” and
“θ0,” respectively.

To have the expressions of “TE” and “TM” modes in circular waveguide we have to find
function “T” (defined in Section A2.8) for the structure in Figure A2.10.1. The function “T” has
to satisfy the transverse wave equation A2.8.7. So, applying the VSM to “T” and writing:

(A2.10.1)

and expressing the “∇ t
2” in cylindrical coordinate system,* A2.8.7 with simple passages becom

Figure A2.10.1

*  See Appendix A8 for some representation of “∇ t
2.”

b)

a)

0

0

�

r

� r

z
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where for notational simplicity we have omitted the variable dependence for “R” and “Θ.” Different
from the case we studied for the rectangular waveguides, now the second member is not a c
since it depends on the product “r2k t

2.” So, let us rewrite the previous equation moving the seco
member to first one, i.e.:

(A2.10.3)

Note that since:

a. The first three terms are only dependent on “r” while…
b. The fourth term is only dependent on “θ,” and…
c. The sum of the terms must be zero

then these two groups of terms must be equal to a constant. So let us write:

(A2.10.4)

with “n” a real number. This equation is again the “harmonic motion equation,” and in this 
the solution is a linear combination of sinus and cosinus, i.e.:

(A2.10.5)

where “C1” and “C2” are generic constants. From Figure A2.10.1 we recognize that function “Θ(θ)”
is periodic in “2π,” and consequently “n” in addition to being a real number, must also be an int
It is convenient to rewrite Equation A2.10.5 as:

(A2.10.6)

where “P” and “ϕ” are generic constants. Then, inserting A2.10.4 into A2.10.3, for what we h
said there must be:

(A2.10.7)

Since in Section A2.8 we said that “kt
2” is a real and negative number, we set:

(A2.10.8)

with “K” a real number. Equation A2.10.7 with simple passages can be written as:

r
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where
(A2.10.9)

which is the Bessel differential equation of the first kind and order “n.” The solution of A2.
can be set as a linear combination of Bessel functions of first “Jn(Kr)” and second “Yn(Kr)” kind
of order “n.”  Bessel equations and functions are very important and used in many electromagnetic
problems. They can be found in a lot of mathematical books.13,14,15 So, the general solution of
A2.10.9 is:

(A2.10.10)

where “D1”  and “D2”  are generic constants. In Figures A2.10.2 and A2.10.3 we have indicated the
shapes of the first four Bessel functions of the first and second kind. We see how all the “n(x)”
goes to infinity for x = 0. For this reason, this function cannot represent our physical case, 
all the fields have finite value. It means that in our case the constant D2 = !0, and consequently
the solution of A2.10.9 is:

(A2.10.11)

and the resulting transverse function is:

Figure A2.10.2

d R
K dr

dR
K rdr

n Kr R
2

2 2 2

2
1 0+ + − ( )[ ] =

R Kr D J Kr D Y Krn n( ) = ( ) + ( )1 2

R Kr D J Krn( ) = ( )1
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Note that the value of the subscript “n” that appears in the Bessel function “Jn(Kr)” is the same
as the number “n” that appears inside “cos(nθ + ϕ ).” 

Once we have found the function “T” for our circular waveguide, to find the field express
we can apply the boundary conditions A2.8.18 and A2.8.21 to the structure indicat
Figure A2.10.1. We have:

1. TE Mode

The “k t
2”  is given by: 

(A2.10.13)

where “m” and “n” are two real, integer and positive numbers, “a” is the waveguide radius
“zmn′ ” is the m-th zero of the derivative of “Jn(Kr).” So, “TE” modes in circular waveguides are
indicated as “TEmn.” Since, conventionally, the roots “zmn′ ” of the derivative of “Jn(Kr)” are indicated
starting with “1,” then “m” cannot be equal to “0,” while “n” can be.* Some values of “zmn’” are
listed in Table A2.10.1**.

Figure A2.10.3

*  In some literature “TE” modes in circular waveguides are indicated as “TEnm.” Since the m-th zero always starts
conventionally with “1,” with this notation it is the second subscript that cannot be equal to zero.
**  It is common practice to set comma as superscript to indicate a derivative. So, “J0′(x)” means the derivative respect
“x” of “J 0(x).” Of course, the comma as superscript to “zmn” reminds one that these zeros are relative to “J0′(x).” This
notation has been adapted into Table A2.10.1.

T r CJ Kr nn, cosθ θ ϕ( ) ( ) +( )−⊥

k K k K z at t mn mn mn
2 2 2 2 2

− −⊥ ⊥− → − = − ′( ),
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So, inserting A2.10.13 into Equation A2.8.6 it is possible to evaluate “kz,” given by:

(A2.10.14)

and the cut-off frequency, with a lossless dielectric filling the waveguide, will be:

(A2.10.15)

From the previous equation and the values given in Table A2.10.1 we recognize that the lower
cut-off “TE” mode for circular waveguides is the “TE11.” When we discuss the “TM” modes for
our waveguide, we will verify that the “TE11” is the dominant mode, i.e., it has the lowest cut-o
frequency of any mode in the circular waveguide.

Inserting A2.10.12 into A2.8.13 through A2.8.16 we have the fields for a “TEmn” mode, given by:

(A2.10.16)

(A2.10.17)

(A2.10.18)

(A2.10.19)

(A2.10.20)

(A2.10.21)

where the term “ζ TEmn” is the “TEmn” wave impedance given by A2.9.21:

(A2.9.21)

and “C” is a generic constant. All the field expressions, considered for simplicity as being o
a progressive propagation, need to be multiplied by “e–kz,mnz.” 

Since the “TE11” is quite often the most used mode in a circular waveguide, we think 
useful to indicate the fields of this mode, obtained from the expressions A2.10.16 through A2
with m = n = 1. Indicating only the nonnull fields, we have:

(A2.10.22)

Table A2.10.1

Derivative of Bessel function: First three zeros

J0
′(x) z10

′ = 3.832 z20
′ = 7.016 z30

′ = 10.174
J1

′(x) z11
′ = 1.841 z21

′ = 5.331 z31
′ = 8.536

J2
′(x) z12

′ = 3.054 z22
′ = 6.706 z32

′ = 9.970

k z az mn mn c,

.
= ′( ) −[ ]2 2

0 5
ω µε

f k z ac mn t mn,

. .= −( ) ≡ ′ ( )2 0 5 0 5
2 2µε π π µε

ez = 0

e C n r J K r sen n rr n mn= ( ) ( ) +( )θ ϕ 0

e CKJ K r nn mnθ θ ϕ θ= ′ ( ) +( )cos 0

h e rr TEmn= −( )θ ζ 0

h e yr TEmnθ ζ= ( ) 0

h C K j J K r n zz mn n mn= ( ) ( ) +( )2
0ωµ θ ϕcos

ζ ωµTEmn z mnj k−⊥
,

e C r J K r sen rr = ( ) ( ) +( )1 11 0θ ϕ
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(A2.10.23)

(A2.10.24)

(A2.10.25)

(A2.10.26)

Note that from A2.10.15 we have:

(A2.10.27)

with v  ⊥– 1/(µε)0.5, i.e., the light speed in the dielectric that fills the waveguide. From the “TE11”
field expressions it is simple to recognize how the electric and transverse magnetic field lin
ϕ = 0, have the shape indicated in Figure A2.10.4, parts a and b, respectively. For the electric fie
lines, note how for the θ = 0 or θ = π line, i.e., the “horizontal”* line, the electric field has onl
the “eθ” component, while for the θ = π/2 or θ = –π/2 line, i.e., the “vertical”** line, the electric
field has only the “er” component. In any other position, both components exist. Of course,

“eθ” component for the θ = 0 and θ = π line is zero for r = 1 since we are considering that t

*  Of course, for a circular cross-section it is not a well-defined “horizontal” axis. However, here we mean one of t
Cartesian axes with the origin centered in the center of the circular cross-section.
**  We can repeat what we said for the “horizontal” axis. In this case we refer to the remaining axis. Of course, v
and horizontal axes need to be related to the feeding axis of the circular waveguide.

Figure A2.10.4

e CKJ K rθ θ ϕ θ= ′ ( ) +( )1 11 0cos

h e rr TE= −( )θ ζ 11 0

h e yr TEθ ζ= ( )11 0

h C K j J K r zz = ( ) ( ) +( )11
2

1 11 0ωµ θ ϕcos

f v a ac c, ,. .11 111 841 2 3 41= → ≈π λ

mode11TE

c)

b)a)
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field linesfield lines
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waveguide is built with a perfect conductor. For electric field lines, note also that if the tang
component is always zero on the waveguide internal surface, the remaining radial com
changes its intensity with “θ” according to “senθ;” so for θ = 0 and θ = π we also have er = 0,
together with the already known eθ = 0. The magnetic fields lines can be drawn reminding one 
it is always locally orthogonal to the electric field. In Figure A2.10.4c we have indicated all the
transverse field lines. Note that the shape of the field lines for ϕ ≠ 0 can be obtained from tha
indicated in Figure A2.10.4 by applying an angular rotation of “ϕ” to that shape. 

Modes with n = 0 are called “electrical circular modes” because the electric field has “eθ” as
the only nonzero component. These modes have “eθ,” “h r,” and “hz” as the only nonzero field
components. In Figure A2.10.5 we have represented the components “eθ” and “hr” for “TE10” mode.
We see in Figure A2.10.5a how the electric field is just circumferential, but its intensity is zero
r = 0 and r = a, if “a” is the waveguide radius. The intensity dependence with “r” is indicated
the curve and horizontal lines in part “a.” This representation follows the same format use
rectangular waveguides. However, if we use the notation to condense more lines where the in
of the field is higher, then we have the representation indicated in Figure A2.10.5b, where we can
see how the lines are condensed at r = a/2. The magnetic field lines are indicated in Figure A2.10.5c,
where we see how they are only radial, i.e., always orthogonal to “eθ,” with the intensity along “r”
as that of “eθ.” Electrical circular modes are very attractive for energy propagation along 
waveguide. Note that theoretically, longitudinal currents are zero since hθ = 0, and the same happen
for circumferential currents due to “hr” since hr = 0 for r = a. The last magnetic component “hz”
gives a circumferential current that has the ability to be zero for f → ∞. So these modes are attractiv
to transmit signals with low attenuation, provided they use very high frequencies. In pract
small amount of current on the internal surface of the waveguide will always exist due to wave
finite conductivity, but in any case these modes encounter the lowest attenuation insid

Figure A2.10.5

mode10TE

Electric

field lines

c)

b)a)

Magnetic

field lines

field lines

Electric
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waveguide. However, note that “TEm0” modes are nonfundamentals, so they always propag
together with the fundamental mode “TE11.” In Figure A2.10.6 we have indicated the electric field
lines for “TE20” mode, for convenience.

2. TM Mode

The “kt
2” is given by: 

(A2.10.28)

where “m” and “n” are two real, integer and positive numbers, “a” is the waveguide radius
“zmn” is the m-th zero of “Jn(Kr).” So, also the “TM” modes in circular waveguides are indicat
as “TMmn,” and the main difference with “TE” modes is in the different values of “kt

2” given by
A2.10.28. Since, conventionally, also the roots “zmn” of “Jn(Kr)” are indicated starting with “1,”
then “m” cannot be equal to “0,” while “n” can be.* Some values of “zmn” are listed in Table A2.10.2.

So, inserting A2.10.28 into Equation A2.8.6, it is possible to evaluate “kz,” given by:

(A2.10.29)

and the cut-off frequency, with a lossless dielectric filling the waveguide, will be:

(A2.10.30)

Figure A2.10.6

Table A2.10.2

Bessel function: First three zeros

J0(x) z10 = 2.405 z20 = 5.520 z30 = 8.654
J1(x) z11 = 3.832 z21 = 7.016 z31 = 10.174
J2(x) z12 = 5.135 z22 = 8.417 z32 = 11.620

*  In some literature “TM” modes in circular waveguides are indicated as “TMnm.” Since the m-th zero always starts
conventionally with “1,” with this notation it is the second subscript that cannot be equal to zero. 

Electric

field lines

a) b)

field lines

Electric

TE20 mode

k K k K z at t mn mn mn
2 2 2 2 2

− −⊥ ⊥− → − = −( ),

k z az mn mn c,

.
= ( ) −[ ]2 2

0 5
ω µε

f k z ac mn t mn,

. .= −( ) ≡ ( )2 0 5 0 5
2 2µε π π µε
©2000 CRC Press LLC



nly in
Using the previous equation and the values given in Table A2.10.2 we confirm that the dominant
mode for circular waveguides is the “TE11.”

Using A2.10.12 into A2.8.9 through A2.8.12 we have the fields for a “TMmn” mode, given by:

(A2.10.31)

(A2.10.32)

(A2.10.33)

(A2.10.34)

(A2.10.35)

(A2.10.36)

where the term “ζ TMmn” is the “TMmn” wave impedance given by A2.9.39:

(A2.9.39)

and “C” is a generic constant. All the field expressions, considered for simplicity as being o
a progressive propagation, need to be multiplied by “e–kz,mnz.” 

The “TM” counterpart of electric circular modes are the “TMm0” modes, called “magnetic
circular modes.” The field lines for “TM10” are indicated in Figure A2.10.7, whose explanation
follows what we said regarding Figure A2.10.5.

Figure A2.10.7

hz = 0

h C n r J K r sen n rr n mn= − ( ) ( ) +( )θ ϕ 0

h CKJ K r nn mnθ θ ϕ θ= ′ ( ) +( )cos 0

e h rr TMmn= ζ θ 0

e h yTMmn rθ ζ= −
0

h C K j J K r n zz mn c n mn= ( ) ( ) +( )2
0ωε θ ϕcos

ζ ωεTMmn z mn ck j−⊥
,

field lines

Magnetic

mode10TM

c)

b)a)

Magnetic

field lines

field lines
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A2.11 UNIFORM PLANE WAVES AND “TEM” EQUATIONS

Signal transmission is made in two ways, i.e., “guided” or “nonguided.” The most used 
agation mode in the guided case is the “TEM” mode in some suitable transmission line, wh
the nonguided case it is the uniform plane wave “UPW” through air or vacuum. For the “U
transmission mode, we saw that this wave is what we receive, at a distance much higher t
signal wavelength, from an antenna transmitting the signal. It is simple to recognize how “U
is diffused, thinking of how many transmissions are made using antennas. Also for the “TEM
it is simple to recognize how it is diffused, noting for instance how many televisions are i
world, each one connected to the antenna using a coaxial cable, and the coaxial cab
transmission line that can support “TEM” mode, as we will show later. 

In this section we will study the related equations of these transmission modes and ho
can be generated. 

A2.11.1 Modes Inside a Coaxial Cable

The coaxial cable is represented in Figure A2.11.1. As the name suggests, it is realized usi
two concentric circular conductors, the internal with radius “ri” and the external with radius “re.”
The internal conductor does not need to be solid, since it is employed at frequencies where it
become a circular waveguide. Sometimes, this conductor is not really a cylinder, but instea
made of a conductor plait. The same can happen for the outer conductor. The e.m. field is com
contained inside the medium between the two concentric conductors, which also support the i
conductor. This medium is made of low loss dielectric. 

The study of the propagation modes inside the coaxial cable follows what we did in Se
A2.8 and A2.10. So, for the transverse function “T” we can use Equation A2.10.1, i.e.:

(A2.10.1)

Figure A2.11.1

re

ri b)

a)

0

0r

�

�
r

z

c)
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p

n

T r R r,θ θ( ) ( ) ( )−⊥ Θ
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(A2.10.6)

(A2.10.10)

(A2.10.8)

In this case, we cannot impose “D2” equal to zero since the value r = 0 where Yn(Kr) = ∞ is
outside the region where the fields can be.* We will now study which modes can exist ins
coaxial cable.

a. “TM” Mode

The contour condition for “T” is:

(A2.8.18)

The perimeter of the structure is, in our case, composed of two parts and so the pr
condition becomes:

(A2.11.1)

(A2.11.2)

that combined together give:

(A2.11.3)

The solution in “K” of A2.11.3 is not simple analytically, but it can be obtained simply 
with good approximation using a graphic method. An example of this method is indicat
Figure A2.11.2, where we have used n = 0 and assumed re/ri = 3. From these graphs we have t
read the values of “k” given by the intersections of the curves Jn(Kri)/Yn(Kri) with the curves
Jn(Kre)/Yn(Kre). Note that we have infinite “TM” modes, which we will indicate as “TMmn,” where
“m” represents the index of that “K” value that verifies Equation A2.11.3 and “n” is the orde
the Bessel functions. 

Once we obtain “K,” using Equation A2.10.8 we have the “kt
2” for every “TM” mode, and

consequently we can extract all its field components. 

b. “TE” Mode

The contour condition for “T” is:

(A2.8.21)

*  Unless otherwise stated we are evaluating the case of perfect conductors. So, from the contour conditions it i
that an e.m. field cannot exist inside a perfect conductor.

Θ θ θ ϕ( ) = +( )P ncos

R Kr D J Kr D Y Krn n( ) = ( ) + ( )1 2

− −⊥k Kt
2 2

T onm( ) != 0  ™p∫ for a ™TM∫ mode

D J Kr D Y Krn i n i1 2 0( ) + ( ) =!

D J Kr D Y Krn e n e1 2 0( ) + ( ) =!

J Kr

Y Kr

J Kr

Y Kr
n e

n e

n i

n i

( )
( ) = ( )

( )!

∂ ∂T nm[ ] != 0 on ™p∫ for a ™TE∫ mode.
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which in our case becomes:

(A2.11.4)

Since:

(A2.11.5)

A2.8.21 becomes:

(A2.11.6)

(A2.11.7)

which, combined, give:

Figure A2.11.2

∂ ∂R r or r r and r ri e= = =! .0 f

∂ ∂R r K D J Kr D Y Krn n= ′ ( ) + ′ ( )[ ]1 2

K D J Kr D Y Krn i n i1 2 0′ ( ) + ′ ( )[ ] =!

K D J Kr D Y Krn e n e1 2 0′ ( ) + ′ ( )[ ] =!
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(A2.11.8)

The previous equation can be solved with good approximation using a graphic method,
did for “TM” modes. The resulting graph of A2.11.8 is indicated in Figure A2.11.3 where we have
used n = 0 and supposed re/ri = 3. Note that now we also have infinite “TE” modes, which we w
indicate as “TEmn.”

Also in this case, once we obtain “K,” using Equation A2.10.8 we have the “kt
2” for every “TE”

mode, and consequently we can extract all its field components.

c. “TEM” Mode

In general, a “TEM” mode can be thought to be generated by a:

1. “TE” mode forcing hz = !0
2. “TM” mode forcing ez = !0

Figure A2.11.3

′ ( )
′ ( ) =

′ ( )
′ ( )
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Remembering the field Equation A2.8.11 for “ez” in a “TM” mode and A2.8.15 for
“h z” in a “TE” mode, the previous conditions 1 and 2 bring kt = ! 0 for a “TEM” mode.
This condition gives us an important result. Since in this case kt = 0, then for a lossless
cable: 

which means that for a “TEM” mode the cut-off frequency is zero, since “kz” is always
imaginary.

The condition kt = 0 does not assure the real existence of a “TEM” mode, and to th
purpose it is necessary to find a “T” function that satisfies the contour conditions for su
a mode. Using the previous point 2 as the beginning condition to search a “TEM” mode
we know that for the electric “e” field of a “TM” mode in general, we have:

(A2.11.9)

Now, since:

3. ez = ! 0 to have a “TEM” mode
4. the tangential component “eτ” of the electric field must be zero on the contour

then from A2.11.9 we have:

(A2.11.10)

The field “et” can be obtained from Equation A2.8.12 applied to our coordinate system, an

(A2.11.11)

Inserting this Equation into A2.11.10 we have the condition that function “T” must ha
“TEM” mode inside the structure in Figure A2.11.1, i.e.:

(A2.11.12)

This equation means that “T” must be constant on our contour, i.e., T = Ti and T = Te on internal
and external “p.”** Noting that ∂p = r∂θ and using Equation A2.10.1, the application of A2.11.
to our case results in:

(A2.11.13)

The condition:

cannot be accepted,*** then necessarily:

*  It is possible to prove that a “TEM” mode cannot be generated by a “TE” mode in a structure limited by electric
**  Condition “∂T/∂p =!0 on ‘p’ ” theoretically does not mean that “T” must assume two different values “Ti ” and “Te ”
on r = ri and r = re, but it is possible to prove that if Ti = Te then the “TEM” field must be zero.
***  We said that it is possible to prove that if Ti = Te then the “TEM” field must be zero.

k k k kt z z
2 2 2 2 2+ ≡ = = −! ω µε

e e et z= +

e e ptτ = =• ! 0

e
j

L
z

Tt
c

t= ∇1
ωε

∂
∂

∇ ≡ =•t T p T p on p for a TEM∂ ∂ ! ™∫ ™ ∫ .0 mode

R r and R ri e( ) ′ ( ) = ( ) ′ ( ) =Θ Θθ θ! !0 0

R r R ri e( ) = ( ) = 0
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where “Q” is a constant. Then from A2.10.6 it follows that n = ! 0. Equation. A2.11.14 means
“T” does not vary with “θ.” Since “Θ(θ)” is known,* it remains to evaluate “R(r).” From
Equation A2.10.7 evaluated with kt

2 = 0 and n = 0 we have:

(A2.11.15)

where “C” is a generic constant. From the expression of “∇ tT” in cylindric coordinate given in
Appendix A8 and noting that from A2.11.12 it follows** that ∂T/∂θ = 0; we have ∇ tT ≡ (∂T/∂r)r0.
Since as a result of this discussion we have T = ΘR(r); then using A2.11.15 we have:

(A2.11.16)

where D = CQ is a constant.
At this point, since we have all the functions to evaluate the “TEM” mode from “TM” Equati

A2.8.9 through A2.8.12 inside the coaxial cable, we have that the field components are:

(A2.11.17)

(A2.11.18)

(A2.11.19)

(A2.11.20)

If we assume a case of progressive propagation, we have L(z) = e–jkzz. In this case it is simple
to define the “TEM” impedance “ζTEM” given by:

(A2.11.21)

where the last quantity comes from the fact that since kt = 0 then:

(A2.11.22)

It is interesting to conclude this study on coaxial cable saying that the first non- “TEM” m
to start at high frequency, as we are going to specify, is the “TE11.” An approximate relationship
that gives the limit wavelength “λc” below which this mode starts to propagate is:

(A2.11.23)

*  We said that “Θ(θ)” must be a constant, whose value will be determined by the contour conditions.
** From A2.11.14 we recognize that “T” is constant with “θ.”

′ ( ) = → ( ) =Θ Θθ θ! 0 Q

r
d R
dr

r
dR
dr

d
dr

r
dR
dr

rR C2
2

2 0 0+ = → 



 = → ′ =

dR
dr Q

dT
dr

C
r

T D r rt≡ = → ∇ ≡ ( )1
0

ez = 0

hz = 0

h r z D
L z

rt ,( ) = − ( ) θ0

e r z
D

rj
dL z

dz
rt

c

,( ) = ( )
ωε 0

ζ ωε µ εTEM z c ck j−⊥ ≡ ( )0 5.
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whose error is inside some percent up to re ≤ 5ri. To do an example, let us assume a coaxial ca
with ri = 0.5mm, re = 1.8mm filled with a lossless dielectric with ε r = 2. From the previous equation
we have λ c ≈ 7.2mm, which corresponds to a frequency “fc” of f c ≈ 29.4 GHz. We see how highe
order modes usually start at frequencies where coaxial cables are seldom used. However, if a
cable should be used, its dimension could be adjusted to avoid the growth of non- “TEM” m

A2.11.2 Uniform Plane Wave

A pure uniform plane wave can be thought to propagate inside the space between two 
parallel conductors. This wave is also what we have at great distance from a dipole antenna, ty
many times the antenna length.

A simple analytical way to generate a uniform plane wave is to solve the Maxwell’s equa
for the field produced in the space by a time-varying current “K” on a conductor plane, as ind
in Figure A2.11.4. To show that, let us start applying the boundary condition for the magnetic 
on the conductor surface. Indicating with “ht

+” and “ht
–” the tangential components on the plan

of the magnetic field, respectively, for z = 0+ and z = 0– we have:

(A2.11.24)

where the negative sign of the second member comes out from the direction of “K.” Note that
[K] = Amp/m. Since the plane with current is symmetrical with respect to z = 0, we have ht

+ ≡ – ht
–

and the previous equation becomes:

(A2.11.25)

from which we see that:

(A2.11.26)

This is the result of the boundary condition for the structure indicated in Figure A2.11.4, and
represents the source of the field. Now we want to solve the Maxwell’s equation for the sem
extending from z = 0 to z = ∞, forcing the fields to be null at this infinite distance. The equatio
to be solved are the A2.4.19, i.e.:

(A2.4.19)

Figure A2.11.4

z h h Kxt t0 0⊗ −( ) = −+ − !

2 0 0z h Kxt⊗ = −+ !

h K yt
+ = ( )2

0

∇ ⊗ = − ∇ ⊗ =e j h and h j ecωµ ωε

x y

z
K
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since we are supposing that “K” moves with time in a sinusoidal shape. Permeability “µ”
complex permittivity “εc” are relative to the medium that surrounds the plane. So, for symm
we see that:

and the first and second equations in A2.4.19 become:*

(A2.11.27)

(A2.11.28)

Note that among Equations A2.11.27 and A2.11.28 it is possible to find two pairs of equa
one formed with “ex” and “hy” and the other with “ey” and “hx.” In any case, these two pairs
represent the same wave, the only difference being the different polarization. For this reas
can use only one pair and say that a uniform plane wave is represented by:

(A2.11.29)

Another very important thing to observe is that since the plane wave at distance from a 
antenna is locally a “TEM,” similar to what we have obtained with Equations A2.11.27 and A2.1
where hz = ez = 0, we can say that a “UPW” is also a “TEM” wave.

From Equation A2.11.27 we can note an analytical analogy with the generic transmissio
equations we studied in Chapter 1. Note that if we substitute to “ex,” “hy,” “j ωµ,” and “jωεc”
respectively, “v,” “i,” “Zs,” and “Yp” we have exactly the transmission line Equations 1.2.16 a
1.2.18, with the only notational difference that in the case of a transmission line the direct
propagation has been indicated with “x” and here with “z.”** From this analogy, to obtain
solutions of these equations we can proceed as we did in Chapter 1. Proceeding speedi
Equation A2.11.27 we can obtain:

(A2.11.30)

whose general solution is:

(A2.11.31)

with:

(A2.11.32)

*  See Appendix A8 for “∇  ⊗ ( )” in Cartesian coordinate.
**  Usually, in wave theory the direction of propagation is indicated with “z.” By analogy, the same “z” could be us
Chapter 1 when speaking about transmission lines. Anyway, there we have preferred to use “x” instead of “z,” to no
confusion with “Zs” which represents the line series impedance.
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Inserting Equation A2.11.31 into the second of A2.11.29 we have:

(A2.11.33)

or:

(A2.11.34)

with:

(A2.11.35)

To the quantity “ζUPW” given by:

(A2.11.36)

is given the name of “uniform plane wave impedance,” which coincides with the ratio “e+/h+” as
we can recognize from the first of A2.11.35. Note as A2.11.36 is the same expression we h
a “TEM” mode, indicated in A2.11.21.

A2.12 DISPERSION

To describe the dispersion phenomena it is necessary to define the phase and group ve
a wave. To this purpose, let us evaluate a wave with a phase dependence, as a function of 
coordinate, of the type:

(A2.12.1)

“z” being the direction of propagation, and the other variables now well known. 
They are defined:

1. “phase velocity” — the quantity “vp” given by:

(A2.12.2)

2. “group velocity” — the quantity “vg” given by:

(A2.12.3)

A lot of transmission lines, and electrical networks,* have a linear relationship between 
constant and frequency, i.e., “ω.” In this case vp ≡ vg. But also a lot of transmission lines an
networks exist where the relationship between phase constant and frequency is not linear.

*  Dispersion phenomena is not only a transmission line characteristic, but it also appears in a lot of electrical ne
for example filters.

h z
j

k e e k e ey z

k z

z

k z
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k z k zz z( ) = ++ − −( ) ( )

h e and h ec c
+ ⊥ + − ⊥ −− −( ) − ( )ε µ ε µ

0 5 0 5. .
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−⊥ ( )0 5.
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last case the device is said to be “dispersive,” or to cause dispersion. The reason for this na
in one of the greatest effects of dispersion. To explain it, let us consider the transmission
impulse in a dispersive transmission line. As we know from the signal analysis theory, su
impulse can be represented by a Fourier series, where each term is a sinusoidal factor 
amplitude and frequency. Each one of these factors can be evaluated by its “vp” and, since the line
is dispersive, the term will have different “vp.” These components will also travel with differen
speeds inside the line, and at the receiving side the resulting impulse will be distorted. This
most undesirable effect of the dispersive network, that is the distortion of the impulses that
inside them. This effect is more evident as the bandwidth of the transformed impulse is h
i.e., as the rise and fall time of the impulses are shorter. Dispersion is said to be “normal”
variation of “vp” with frequency is of opposite sign with respect to the variation of frequency, 
if dvp/dω < 0, otherwise the dispersion is said to be “anomalous.”

An interesting diagram to represent the dispersion is the “ωβ” diagram. The analytical procedure
is generally simple for filters, while for transmission lines it becomes simple after we hav
equivalent filter circuit.* To do an example, let us evaluate the “ωβ” diagram for the transmission
line indicated in Figure A2.12.1. Remembering the theory developed in Chapter 1, we have:

(A2.12.4)

Setting rc ⊥– C2/C1 we can write:

(A2.12.5)

and we can have the following three cases:

a. rc = ω2 LC2

In this case k ≡ 0 and α = β = 0. This situation is obtained for an angular frequency “ωc” given by:

(A2.12.6)

b. rc < ω2 LC2 or, using A2.12.6, ω > ωc.
In this case k ≡ jβ, with:

(A2.12.7)

c. rc > ω2 LC2 or, using A2.12.6, ω < ωc.
In this case k ≡ α, with:

Figure A2.12.1

*  We will study in the next section the networks representative of transmission lines.

2
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(A2.12.8)

Note that the line indicated in Figure A2.12.1 also introduces attenuation for ω < ωc if it is
lossless.

Connecting in one graph the solutions A2.12.6 through A2.12.8 we have the result ind
in Figure A2.12.2.

To make another example, it is simple to recognize that for a simple “LC” low pass los
filter, i.e., represented by the network in Figure A2.12.1 without the capacitor “C1,” the “ωβ”
diagram is as represented in Figure A2.12.3.

Using the “ωβ” diagram we can give a graphical representation of “vp” and “vg.” From the
definitions of these quantities given in A2.12.2 and A2.12.3, it is simple to recognize that:

I. “v p” is given by the tangent of the angle formed between the “β” axis and the line that starts from
the axis origin and the desired point “Q” on the “ωβ” diagram. In Figure A2.12.4 we have indicated
this angle with “θp”

II. “v g” is given by the tangent at the desired point “Q” on the “ωβ” diagram. The angle formed
between the “β” axis and the tangent in “Q” has been indicated with “θg.”

Note that for the point “I” in Figure A2.12.4 phase velocity is infinite and θp = 90°, while group
velocity is zero and θg = 0. Waves that posses vp > (µ0ε0)0.5 are said to be “fast,” otherwise are sa

Figure A2.12.2

Figure A2.12.3

α ω ω ω ω= −( ) = −( )[ ]r LC LCc c
2

2

0 5

2
2 2

0 5
1

. .

α

ω

β

β

ω
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to be “slow.” Note that an infinite value for “vp” does not have a physical meaning since the ph
is not a physical quantity, and consequently this result does not contradict the relativistic res
the maximum speed for a physical quantity is equal to the speed of light. Dispersive line
characterized by vp ≠ vg, at least for some values of “ω.” Dispersive lines can have frequency rang
where “vp” and “vg” are equal or very similar. For example, the network indicated in Figure A2.12.2
for ω >> ωc has vp ≈ vg, i.e., the “ωβ” diagram becomes a line.

A2.13 ELECTRICAL NETWORKS ASSOCIATED
WITH PROPAGATION MODES

It is interesting to explain how the transmission modes studied previously can be asso
with lumped networks, through some manipulation of their characteristic analytical formulas
common procedure is to transform in some way the field equations in the general transmissi
equations we studied in Chapter 1, i.e.:

(1.2.16)

(1.2.18)

The starting points are the propagation modes inside structures with curvilinear ortho
coordinate reference systems, i.e., the “TM” and “TE” modes of Section A2.8 and the “T
mode of Section A2.11. In particular, only the transverse component of each mode can be 
obtain the equivalent transmission line equations. The longitudinal axis will be indicated with
We will also see how the “UPW” can be associated with its lumped network.

1. Associated Network for a “TM” Mode

To extract the equivalent network for such a mode it is necessary to rewrite the Max
equations in a way that only the transverse field components are involved. To do that, inse
A2.4.19 the expression of “delta” operator specifying its transverse and longitudinal compo
We have:

Figure A2.12.4

I
Q

g pθ θ

ω

β

dv x
dx

z i xs
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di x
dx

y v xp

( ) = − ( )
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(A2.13.1)

(A2.13.2)

Now, let us do for A2.13.1 a left vector product with “z0” and for A2.13.2 a scalar produc
with “z 0.” We have:

(A2.13.3)

(A2.13.4)

Executing the calculations,* the previous two equations become:

(A2.13.5)

(A2.13.6)

Extracting “ez” from A2.13.6 and inserting into A2.13.5 we have:

(A2.13.7)

from which, for duality, we can have the equivalent equation for the magnetic field, i.e.:

(A2.13.8)

Equations A2.13.7 and A2.13.8 are the desired expressions of Maxwell’s equations wher
the transverse fields appear.

Now, for Equations A2.8.10 and A2.8.12 of “TM” modes let us set:

** (A2.13.9)

With these positions, Equations A2.8.10 and A2.8.12 can be rewritten as:***

(A2.13.10)

(A2.13.11)

*  See Appendix A8 for the operation a ⊗ b ⊗ c.
** The partial derivative has been substituted with absolute derivative, since for our geometry “L” is only dependent 
***  For notation simplicity we will omit for “i” and “v” their dependence with “z.”
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For Equations A2.8.14 and A2.8.16 of “TE” modes let us set:

(A2.13.12)

With these positions, Equations A2.8.14 and A2.8.16 for “TE” modes can be rewritten a

(A2.13.13)

(A2.13.14)

Now, let us suppose that inside our guiding structure the electric and magnetic tran
components are given as the sum of the whole “TE” and “TM” fields. With the notation us
Section A2.8, we have:

(A2.13.15)

(A2.13.16)

Inserting the two previous equations into A2.13.7, we have:*

(A2.13.17)

where we have used the following simplifications: 

a. (∇ tT ⊗  z0) ⊗  z0 ≡ –∇ tT
b. ∇ t ∇ t •  ∑(n) i(n)∇ tT(n) = ∇ t∑(n)i(n)∇ t •  ∇ tT(n) = ∇ t ∑(n)i(n)∇ t

2T(n) = ∑(n)i(n)kt
2
(n) ∇ tT(n)

c. ∇ t∇ t •  ∑[n]i[n] (∇ tT[n] ⊗  z0) = ∇ t∑[n]i[n]∇ t •  (∇ tT[n] ⊗  z0) = 0

Now, for A2.13.17 let us do a scalar product with “∇ tT(m)”** and integrate on a transverse
section “S” of our guiding structure. We have:

(A2.13.18)

*  The partial derivatives can now be substituted with absolute derivatives, since “v” and “i” are only dependent to
**  The subscript “(m)” represents a generic “TM” mode.
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Using the relationships given in Section A2.8 it is simple to recognize that the only non
elements are:

a. The first term at first member, if m ≡ n
b. The first and third term at second member, if m ≡ n.

To simplify the notation, we can set:

(A2.13.19)

which does not limit the generality of the solution, since the previous equation set to “1
constant that appears in “T,” but we can insert the constants generality to the constant that 
in “L(z).” So, using A2.13.19, the orthogonality properties given in Section A2.8, A2.13.18 beco

(A2.13.20)

To obtain an equivalent relationship for the current “i(m)” we have to insert Equations A2.13.1
and A2.13.16 into A2.13.8. Then we do a scalar product with “∇ tT(m) ⊗  z0” and integrate on a
transverse section “S” of our guiding structure. We have:

(A2.13.21)

From Equations A2.13.20 and A2.13.21 we can recognize that the associated network
“TM” mode inside our guiding structure with curvilinear orthogonal coordinates reference sy
is as indicated in Figure A2.13.1. The element’s values are:

(A2.13.22)

It is interesting to observe that if we insert into the definition of propagation constant giv
Chapter 1, i.e.:

Figure A2.13.1
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(1.3.4)

the expression of “Zs” and “Yp” given by A2.13.20 and A2.13.21, i.e.:

(A2.13.23)

we have:

(A2.13.24)

So, the value of “k” for the network indicated in Figure A2.13.1 coincides with the value of
“k z” for the “TM” mode inside the guiding structure, obtained by A2.8.6 when evaluated for �0 ≡ z0.
Similarly, inserting A2.13.23 into the definition of transmission line impedance we gav
Chapter 1, we have:

(A2.13.25)

which is equal to the “TM” mode impedance “ζTM” we gave in Section A2.8.

2. Associated Network for a “TE” Mode

For the “TE” mode in the previous point 1 we have set:

(A2.13.12)

For A2.13.17 let us do a scalar product with “∇ tT[m] ⊗  z0”* and integrate on a transverse sectio
“S” of our guiding structure. Then, using A2.13.19, the orthogonality properties give
Section A2.8, m = n, we have:**

(A2.13.26)

To obtain an equivalent relationship for the current “i[m]” we have to insert Equations A2.13.1
and A2.13.16 into A2.13.8. Then we do a scalar product with “∇ tT[m]” and integrate on a transvers
section “S” of our guiding structure. We have:

(A2.13.27)

*  The subscript “[m]” represents a generic “TE” mode.
**  The procedure is similar to what we did in previous point 1 for “TM” mode.
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From Equations A2.13.26 and A2.13.27 we can recognize that the associated network
“TE” mode inside our guiding structure with curvilinear orthogonal coordinates reference sy
is as indicated in Figure A2.13.2. The element’s values are:

(A2.13.28)

Similar to the case of “TM” mode, it is possible to verify that also in this case using the v
of “Zs” and “Yp” obtained from A2.13.26 and A2.13.27, the values of “k” and “ζ” for the network
indicated in Figure A2.13.2 are coincident with “kz” and “ζTE,” when evaluated for �0 ≡ z0, we gave
in Section A2.8.

3. Associated Network for a “TEM” Mode

For a “TEM” mode we set:

(A2.13.29)

In this case “i(z)” and “v(z)” satisfy the transmission line equations, and so it is very sim
to associate an equivalent network. Inserting the first equation into the second equation of A2
we have:

(A2.13.30)

Deriving in “z” assuming this equation and supposing to have only the progressive wav
have:

(A2.13.31)

from which:

(A2.13.32)

Figure A2.13.2
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From Equations A2.13.30 and A2.13.32 we can recognize that the associated network
“TEM” mode inside our guiding structure with curvilinear orthogonal coordinates reference sy
is as indicated in Figure A2.13.3. The element’s values are:

(A2.13.33)

For the “TEM” case it is simple to verify that using the values of “Yp” and “Zs” obtained from
A2.13.30 and A2.13.32, the values of “k” and “ζ” for the network indicated in Figure A2.13.3 are:

(A2.13.34)

(A2.13.35)

coincident with the “kz” and “ζTEM” values we gave in A2.11.22 and A2.11.21 for the “TEM” mod
inside a coaxial cable.

4. Associated Network for a “UPW”

For a “UPW” it is easy to extract the associated network. From Equations A2.11.29 sett

(A2.13.36)

we have:

(A2.13.37)

From Equation A2.13.37 we can recognize that the associated network for a “UPW” ins
medium with permeability “µ” and permittivity “εc” with a Cartesian coordinate system is a
indicated in Figure A2.13.4. The element’s values are:

Figure A2.13.3

Figure A2.13.4
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(A2.13.38)

Confronting Figure A2.13.3 and A2.13.4 we recognize how a “TEM”  mode and an “UPW”
have the same type of associated network. Also in this case it is simple to verify that usi
values of “Yp” and “Zs” obtained from A2.13.37, the values of “k” and “ζ” for the network indicated
in Figure A2.13.4 are again given by A2.13.34 and A2.13.35, i.e., coincident with the “kz” and
“ζUPW” values we gave in A2.11.32 and A2.11.36 for an “UPW.”

A2.14 FIELD PENETRATION INSIDE NONIDEAL CONDUCTORS

In all the previous paragraphs we have assumed that all the conductors guiding the e.m
are perfect, i.e., they have infinite conductivity, i.e., g = ∞. In this section we will study how the
e.m. fields penetrate inside a real conductor that is characterized by a finite value of “g.” 
that, let us write the Maxwell homogeneous equations:

(A2.14.1)

Doing the “curl” to both members and applying the identity:

(A2.14.2)

A2.14.1 becomes:

(A2.14.3)

Since also inside a nonideal conductor there is no volumetric free charge* then ∇  •  e = 0, In
addition, in a good conductor g >> ωε, and so we can neglect the first term in the second equa
of A2.14.1. With these introductions, the previous equation becomes:

(A2.14.4)

Let us resolve A2.14.4 assuming the electric field is dependent only on a coordinate, an
in the practical situation reported in Figure A2.14.1. The Cartesian coordinate system is as indicat
and the electric field is only dependent on “x.” In this case, Equation A2.14.4 becomes:

(A2.14.5)

Note that the previous equation is similar to what we have resolved in Section A2.3. The
general solution is:

(A2.14.6)

The constants “C1” and “C2” can be determined observing that for:

*  Of course, also if we are considering a nonperfect conductor we would always treat with a good conductor, for
the volumetric free charge may be neglected.

L C R g= = =µ ε, , 1

∇ ⊗ = − ∇ ⊗ = − +e j h and h j e geωµ ωε

∇ ⊗ ∇ ⊗ = ∇∇ − ∇ •e e e2

∇∇ − ∇ = − ∇ ⊗• e e j h2 ωµ

∇ = ∇ ⊗2e j hωµ

d e

dx
j ge k e with k j gz

z z

2

2
2 2= ⊥ =ωµ ωµ,  

e C e C ez
kx kx= +−

1 2
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a. x = ∞ the field must be zero. So: C2 =! 0. 
b. x = 0 the field must be equal to the incident value, that we will indicate as “e0.” So: C1 = e0.

Consequently, A2.14.6 becomes:

(A2.14.7)

Applying the identity  to the definition of “k” given in A2.14.5 we have:

(A2.14.8)

where the quantity “p,” called “penetration depth,” is given by:

(A2.14.9)

with dimensions [meter]. Note that the quantity “p” gives the amplitude decay rate of the el
field inside the good conductor. Note that the smaller the “p” value is, the smaller is the pene
depth, and the higher the “k” value is, the higher is the decay rate.

It is interesting to note that for the magnetic field “h” and the surface current “J” an equ
similar A2.14.4 holds. In fact, for the magnetic field we have:

(A2.14.10)

Since:

1. from the Maxwell’s equations ∇  •  h = 0
2. in a good conductor g >> ωε

Figure A2.14.1

y

z

x

Real conductor

e e ez
kx= −

0

j j= +( )1 2

k k jk j pr j= + = +( )1

p f g−⊥
−( )π µ 0 5.

∇ ⊗ ∇ ⊗ = ∇∇ − ∇ = ∇ ⊗ + ∇ ⊗•h h h j e g e2 ωε
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using the first of A2.14.1 the previous equation becomes:

(A2.14.11)

For the surface current density “J” using the first of A2.14.1 we have:

(A2.14.12)

Then 

(A2.14.13)

Since in a good conductor:

3. ∇  •  J = 0
4. g >> ωε

using the second of A2.14.1 the previous equation becomes:

(A2.14.14)

So, solutions of the form A2.14.6 and A2.14.7 are also applicable for magnetic field and s
current density.

In our case of nonideal conductors, but still “good” ones, an internal impedance “ζ i” is defined
as the ratio between the electric field on the surface and the total current in the conducto
reference to Figure A2.14.1, the electric field on the surface, i.e., x = 0, is ez0 = J0/g. Consequently,
the total current “Iz” per unit width of the conductor is:

(A2.14.15)

with dimensions [Α/meter]. So, the internal impedance “ζ i” is:

(A2.14.16)

From this equation we note “ζ i” has the real part is equal to the imaginary part, which means t

(A2.14.17)

The quantity “Rs” is called the “sheet resistance” of the conductor. In literature it is poss
to find “Rs” called “surface resistance.” We think that this name can generate confusion sinces”
has [Ω] as physical dimension and not [Ω/unit surface]. In practice, “Rs” is measured as [Ω/square].
The word “square” means that the value of “Rs” is a function of the ratio between the longitudina
“�” and transverse “t” absolute length of the conductor. For example, if one conductor has � = 2t
its “Rs” along the direction “�0” is twice that of the same conductor with � = t along the direction
“�0.”

∇ =2h j ghωµ

J ge J g e j gh= → ∇ ⊗ = ∇ ⊗ = − ωµ

∇ ⊗ ∇ ⊗ = ∇∇ − ∇ = − ∇ ⊗•J J J j g h2 ωµ

∇ =2J j gJωµ

I J x dx J e dx J
p

jz z

j
p

x

= ( ) = =
+

∞ ∞

∫ ∫
+

0

0

0

0

1

1

ζ ωi z z s ie I R j L j pg− −⊥ ⊥ + = +( ) [ ]0 1 Ω

R L pgs i≡ = [ ]ω 1 Ω
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Inserting A2.14.9 into A2.14.17 we have:

(A2.14.18)

Alternatively, if we extract from A2.14.9 the value of “g” and we insert it into A2.14.17 we ha

(A2.14.19)

In Table A2.14.1 we report the conductivity, penetration depth, and “Rs” for typical conductors
used in transmission lines:

It is interesting to observe how copper, which is readily available, has a conductivity se
only to silver. However copper oxidizes, and for this reason it is covered with gold when 
transmission lines are needed.

Figures A2.14.2 and A2.14.3 report the penetration depth “p”  in meters as a function of
frequency in MHz, for Silver (Ag), Copper (Cu), and Gold (Au). Note that starting from 
frequency of 1 GHz, the penetration depth inside such conductors are only some micromet
decrease with frequency.

Table A2.14.1

Metal g(Sie/m) p (m) Rs(ΩΩΩΩ)

Silver 6.17*107 0.0642/ 2.52*10–7

Copper 5.8*107 0.066/ 2.61*10–7

Gold 4.35*107 0.0763/ 3.01*10–7

Aluminum 3.72*107 0.0826/ 3.26*10–7

Brass 1.57*107 0.127/ 5.01*10–7

R f g squares = ( ) [ ]πµ 0 5. Ω

R fp squares = [ ]πµ Ω

f f

f f

f f

f f

f f
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APPENDIX A3

Diffusion Parameters and Multiport Devices

A3.1 SIMPLE ANALYTICAL NETWORK REPRESENTATIONS

A generic “n” port electrical network* can be analytically represented using many param
The choice of which parameter to use is strongly dependent on the signal frequency that pa
the network. Here we want to introduce the most used representations, two of which are 
dedicated to the low frequency range, while in the next section we will introduce a represen
universally employed at high frequency. For simplicity, we will refer mainly to two port netwo

a. [Z] Matrix

The [Z] matrix is the most intuitive representation of a network since it uses the conce
impedances, currents, and voltages. In this case, the representation for a two port network

(A3.1.1)

(A3.1.2)

where the parameters** “Z,” “I,” and “V” are, respectively, impedances, currents, and volta
Note that for the measure of any parameter “Zij” an open circuit needs to be made at a port. F
example, the evaluation of “Z11” needs an open circuit at port “2.” For this reason, the “Z” parame
are also called “open circuit parameters.” Using matrix notation, the previous system of equ
can be rewritten as:***

(A3.1.3)

b. [Y] Matrix

 In this case, the representation for a two port network is:

(A3.1.4)

(A3.1.5)

*  In this Appendix, and in this text unless otherwise stated, “network” means an “electrical network.”
**  For simplicity we omit the subscripts. We will do it every time so no confusion will arise.
***  We assume the reader knows how to transform a system of equations in matrix notation.

V Z I Z I1 11 1 12 2= +

V Z I Z I2 21 1 22 2= +

V Z I[ ] = [ ] [ ]

I Y V Y V1 11 1 12 2= +

I Y V Y V2 21 1 22 2= +
©2000 CRC Press LLC
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where the parameters “I” and “V” are defined as in the previous case a, while the parameteij”
are the admittances between ports “ij” of the network. Note that for the measure of any par
“Y ij” a short circuit needs to be made at a port. For example, the evaluation of “Y11” needs a short
circuit at port “2.” For this reason, the “Y” parameters are also called “short circuit parame
Using matrix notation, the previous system of equation can be rewritten as:

(A3.1.6)

c. ABCD or “Chain” Matrix

The “chain” matrix is of greatest interest when it is needed to evaluate the transfer funct
a network that is composed of many single two ports connected in series. We have alread
the chain matrix in this text, for example in Chapter 5 to study directional couplers. 

This representation relates the voltage and current at a port to voltage and current to th
port, according to the following equations:

(A3.1.7)

(A3.1.8)

First of all, we want to draw the reader’s attention to the sign of the two previous equa
and the general convention of voltages and currents on a two port network, indicat
Figure A3.1.1. We recognize that the “ABCD” matrix relates the input current at a port with
output current to the other. From this point of view, the chain matrix is the lumped net
equivalent of the “reverse transmission matrix” used in transmission line problems.* An
important observation is that the parameters A through C do not have the same dimension
in fact that “A” and “D” are dimensionless while “B” is an impedance and “C” is an admittan

It is simple to show how the chain matrix of a network composed of the series connect
two subnetworks, each individuated with a chain matrix, is given by the product of the two 
matrices of the subnetworks. Indicating with a subscript “a” and “b” the two subnetworks and
reference to Figure A3.1.2 we can write, directly from the definition of chain matrix:

*  See Chapter 1 for transmission line matrices.

Figure A3.1.1

Figure A3.1.2

I Y V[ ] = [ ] [ ]

V AV BI1 2 2= +

I CV DI1 2 2= −

network

2 portsV

I

V

I

+ +1

1 2

2

"A" "B"

Network
V

I

V

I

1a

1a 2a

2a = V1b

I1b = 2a-I

2bV

2bI

Network
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(A3.1.9)

But V2a ≡ V1b and –I2a ≡ I2b, and so:

(A3.1.10)

However, among “V1b,” “I 1b,” and “V2b,” “I 2b” a relationship similar to that in A3.1.9 exists, jus
by changing the subscripts “a” with “b,” to yield:

(A3.1.11)

which is what we should verify. 
Of course, this result can be generalized to the tandem connection of “n” two ports; the co

chain matrix will be the multiplication of the single “n” chain matrices. Just for an applicatio
the chain matrix definition, the reader can simply verify that the chain matrices “[M1]” and “[M
of the two networks indicated in Figure A3.1.3 parts a and b are given respectively by:

(A3.1.12)

(A3.1.13)

A3.2 SCATTERING PARAMETERS AND CONVERSION FORMULAS

The parameters we have indicated in the previous section are not well suited for high freq
networks, especially if they are wide bandwidth. This is because it is quite difficult to build a
open or short circuit at these frequencies, and it is practically impossible if the frequency ra

Figure A3.1.3
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more than one octave. In practice, “[Z],” “[Y],” and chain matrices are only employed for na
band operation, while for wide band representation new parameters are introduced, called
tering parameters” and indicated with “sij.” They are in general complex numbers, and are rep
sented indifferently with modulus and phase or real and imaginary parts. The associated m
of course indicated with “scattering matrix.” The input and output port quantities, which are re
to “s” parameters, are the incident and reflected waves, respectively indicated with “a” and 
representation for a three port device is indicated in Figure A3.2.1. We know that the definition of
voltage and current is not unique when high frequency guided signals are involved.* For this r
the incident “ai” and reflected “bi” wave at port “i” are defined as:

(A3.2.1)

where “vi
+” and “vi

–” are the incident and reflected voltages at port “i,” and “Zi” is a reference
impedance. Note that “vi

+” and “vi
–” are in general complex quantities. Usually, all the “Zi” are set

equal among them and normalized to the measurement system impedance “Zs,” usually 50Ω. Note
that with the positions A3.2.1, the incident “Wi

+” and reflected “Wi
–” powers are:

(A3.2.2)

(A3.2.3)

The “ai” and “bi” are defined to a reference plane where the field can be assumed 
unimodal,** i.e., the eventual interferences among modes can be neglected. At this referenc
we can write:

(A3.2.4)

where the last coincidence comes from the use of A3.2.1. At the same reference plane, us
transmission line equations we can write:

(A3.2.5)

Figure A3.2.1

*  See Appendix A2 for definitions on voltages and currents associated to high frequency signals.
**  See Appendix A2 for propagation mode definitions.

NETWORK
3 PORTSa1

b1

a2b2

a3

b3

Port 1

Port 2

Port 3

a v Z b v Zi i i i i i
− −⊥ + ⊥ −

W ai i
+ = 2 2

W bi i
− = 2 2

v v v a b Zi i i i i i
−⊥ + −+ ≡ +( )

i v v Z a b Zi i i i i i i
−⊥ + −−( ) ≡ −( )
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where the last coincidence comes from the use of A3.2.1. Normalizing the “Zi” to “Zs,” i.e., setting
Zi = 1, we have the following relationships:

(A3.2.6)

(A3.2.7)

After these definitions, the scattering representation of a two port network is:

(A3.2.8)

(A3.2.9)

from which we can say that the scattering parameters relate the output waves at each port 
the input waves. Note that the measurement of the “s” parameters require a matching term
of the network under test. With the convention to set all the “Zi” equal to “Zs” the perfect matching
is achieved when the ports are terminated with a load of impedance equal to the system re
impedance. For example, the parameter “s21” is given by:

(A3.2.10)

and a2 = 0 if port “2” is terminated with a load of impedance equal to the system refer
impedance “Zs.” We can recognize that “s11” and “s22” are the reflection coefficients* at ports “1”
and “2,” with the other ports terminated in “Zs.” With our convention to use “Zs” as the reference
impedance, the measurements to evaluate the “sii” parameters give values that represent how 
from “Zs” the port impedance is. 

Parameters “s21” and “|s21|2” are known as “forward gain” and “power gain,” while “s12” is
known as “reverse gain.” In general, parameters “s21” and “s12” are also known as “transmission
coefficients.”

It is simple to verify that the scattering representation doesn’t permit the simple multiplic
rule to obtain the scattering matrix of a bigger network, like the chain matrix permits. To a
this difficulty, a new representation related the scattering one is introduced, called “transm
representation.” In the case of a two port networks we write:

(A3.2.11)

(A3.2.12)

from which we can say that the transmission parameters relate the input waves at one po
the output waves at the other port. Proceeding as we did for the “[ABCD]” matrix, it is simp
recognize that the “[T]” matrix of a network composed with the series connection “n” subnetw
each individuated with a “[T]” matrix, is given by the product of the “n” “[T]” matrices of t
subnetworks. A lot of conversion relationships are possible between the most used ana
network representation.1 Here we will relate “s,” “t,” “z,” and chain parameters. Note that sin
“s” and “t” parameters are dimensionless, then all the chain parameters must be normalize
related to these parameters. The normalization is performed with respect to the system re
impedance, according to the following relationship:

*  See Chapter 1 for reflection coefficient definition.

v a bi i i= +

i a bi i i= −

b s a s ai = +11 1 12 2

b s a s a2 21 1 22 2= +

s b a when a21 2 1 2 0= =

a t b t a1 11 2 12 2= +

b t b t a1 21 2 22 2= +
©2000 CRC Press LLC
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(A3.2.13)

where the subscript “n” indicates the normalization.

a. Conversion from “[ABCD]” to “[s]”

(A3.2.14)

(A3.2.15)

b. Conversion from “[s]” to “[ABCD]”

(A3.2.16)

(A3.2.17)

In the above conversions we assume the same load impedance at both ports. If this co
is not satisfied in A3.2.14 and A3.2.15 we have to insert the following “an,” “bn,” “cn,” and “dn”
instead of “An,” “B n,” “C n,” and “Dn”:

(A3.2.18)

where “R1” and “R2” are the terminating resistances at ports “1” and “2.” Of course, also for A3.
and A3.2.17, Equation A3.2.18 holds, and it is enough to do the following notational substitu

(A3.2.19)

c. Conversion from “[ABCD]” to “[Z]”

(A3.2.20)

(A3.2.21)

d. Conversion from “[Z]” to “[ABCD]”

(A3.2.22)

(A3.2.23)

A A B B Z C CZ D Dn n s n s n≡ = ≡−⊥, , ,

s
A B C D

A B C D
s

A D B C

A B C D
n n n n

n n n n

n n n n

n n n n
11 12

2
= + − −

+ + +
=

−( )
+ + +

,

s
A B C D

s
A B C D

A B C Dn n n n

n n n n

n n n n
21 22

2=
+ + +

= − + − +
+ + +

,

A
s s s s

s
B

s s s s

sn n=
+( ) −( ) +

=
+( ) +( ) −1 1

2

1 1

2
11 22 12 21

21

11 22 12 21

21

,

C
s s s s

s
D

s s s s

sn n=
−( ) −( ) −

=
−( ) +( ) +1 1

2

1 1

2
11 22 12 21

21

11 22 12 21

21

,

a A R R b B R R c C R R b D R Rn n n n= ( ) = ( ) = ( ) = ( )2 1

0 5

1 2

0 5

1 2

0 5

1 2

0 5. . . .
, , ,

A A R R B B R R C C R R D D R Rn n n n= ( ) = ( ) = ( ) = ( )2 1

0 5

1 2

0 5

1 2

0 5

1 2

0 5. . . .
, , ,

Z A C Z AD BC C11 12= = −,

Z C Z D C21 221= =,

A Z Z B Z Z Z Z Z= = −( )11 21 11 22 12 21 21,

C Z D Z Z= =1 21 22 21,
©2000 CRC Press LLC
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e. Conversion from “[t]” to “[s]”

(A3.2.24)

(A3.2.25)

f. Conversion from “[s]” to “[t]”

(A3.2.26)

(A3.2.27)

A3.3 CONDITIONS ON SCATTERING MATRIX FOR RECIPROCAL
AND LOSSLESS NETWORKS

The most general definition of reciprocal network has been given by Lorentz.* It states 
reciprocal region is where the following relationship is satisfied:

(A3.3.1)

where subscripts “a” and “b” specify the fields produced by two sources at same frequenc
operator “∇ ” performs the “divergence,” and it is defined in Appendix A8. Applying the previo
relationship to a network, it is possible to show that it is reciprocal if its matrix “[M]” is symmetri
i.e., the following relationship holds:

(A3.3.2)

where the superscript “T” specifies the transpose operation. 
If the network is lossless, it is possible to verify that the following relationship holds:

(A3.3.3)

where the superscript “*” specifies the complex conjugate operation and “[I]” is the unitar
identity matrix, i.e., the matrix with the only nonzero elements on the principal diagonal. O
tively, the previous equation is developed as follows:

1. For every matrix row: the sum of the square of the modulus for any element must be equal to 
2. For any two matrix rows: the product of one element for the complex conjugate of the correspond

element of another row must be equal to zero.
The condition of reciprocity and/or lossless reduces the number of the independent element

“[s],” i.e., the number of tests required to evaluate all the elements of the matrix. In general, 
n × n scattering matrix requires n2 complex elements or 2n2 real elements to be determined. In fact,
if the network is reciprocal, then a reduction factor “r” for complex quantities can be introduce
given by:

(A3.3.4)

*  Hendrik Antoon Lorentz, Dutch physicist, born in Arnhem in 1853 and died in Haarlem in 1928.

s t t s t t t t11 21 11 12 22 21 12 11= = −,

s t s t t21 11 22 12 111= = −,

t s t s s11 21 12 22 211= = −,

t s s t s s s s21 11 21 22 12 11 22 21= = −,

∇ • ⊗ − ⊗( ) =E H E Ha b b a 0

M MT[ ] ≡ [ ]

s s IT[ ] [ ] ≡ [ ]*

r n n= −( )1 2
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that is the number of possible combinations of two different elements, the subscripts “i” and “
in a group of “n” elements. The resulting independent complex elements in this case will be:

(A3.3.5)

If the network is lossless, we have two reduction factors “�1” and “�2,” and exactly:
3. �1 = n real equations, given by point 1 above:
4. �2 = n(n – 1) /2 complex equations given by point 2 above.

In conclusion, the reduction factor “�” for real quantities is: 

(A3.3.6)

and the independent real elements in this case will be:

(A3.3.7)

Of course, if the network is lossless and reciprocal, then we have the reduction factors “
“�” defined above, resulting in a reduction factor “t” for real quantities given by:

(A3.3.8)

The number of real quantities for the scattering matrix in this case is:

(A3.3.9)

We see how a great reduction of measurements is possible if the network under test 
approximated as lossless and reciprocal.

A3.4 THREE PORT NETWORKS

We want to verify that a lossless three port network cannot isolate two ports without o
these ports also being isolated with the third. Using the condition A3.3.2 into A3.3.3 we ha

(A3.4.1)

(A3.4.2)

(A3.4.3)

(A3.4.4)

(A3.4.5)

(A3.4.6)

n r n n2 1 2− = +( )

l l l= + ≡1 2
22 n

2 2 2n n− =l

t r n n= + = −2 2 2l

2 2n t n− =

s s s11
2

12
2

13
2 1+ + =!

s s s12
2

22
2

23
2 1+ + =!

s s s13
2

23
2

33
2 1+ + =!

s s s s s s11 12 12 22 13 23 0∗ ∗ ∗+ + =!

s s s s s s11 13 12 23 13 33 0∗ ∗ ∗+ + =!

s s s s s s12 13 22 23 23 33 0∗ ∗ ∗+ + =!
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Now let us assume ports “1” and “2” are isolated, i.e., s12 = 0. Then from A3.4.4 we have
s13s23* = ! 0, which implies that s13 = ! 0 or s23* = ! 0, i.e., at least one of ports “1” and “2” is als
isolated with port “3.” This result is of course in contrast with the starting hypothesis.

The most well-known three port devices are called “T,” due to the “T” shape of such de
in waveguide technology. Two types of “T” are possible in rectangular waveguides called 
E-plane” and “T in H-plane” and indicated respectively in Figures A3.4.1 and A3.4.2. These names
comes from the fact that the “T” is built in the plane where the “E” or “H” field of the “TE10”
mode lies.* Ports “2” and “3” are called “longitudinal ports” while port “1” is called a “transve
port.” These devices, evaluated as reciprocal and lossless, are characterized by a scatterin
of the form:

(A3.4.7)

Using the lossless condition for the modulus we have:

(A3.4.8)

(A3.4.9)

(A3.4.10)

Figure A3.4.1

Figure A3.4.2

*  See Appendix A2 for rectangular waveguide modes.
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Note that from A3.4.9 and A3.4.10 we have that |s12|2 = ! |s13|2, and inserting this condition into
A3.4.8 we have:

(A3.4.11)

i.e., the “T” is a power divider, from the port where s11 = 0.
Using the lossless condition for the phases we have:

(A3.4.12)

(A3.4.13)

(A3.4.14)

Conditions A3.4.12 and A3.4.13 can be rewritten as:

(A3.4.15)

This condition can be verified if:

(A3.4.16)

i.e., the signals at the output ports have 180° phase shift, or if s22* = –s23* which, inserted into
A3.4.12, results in

(A3.4.17)

i.e., the signals at the output ports have zero phase shift. 
Observing Figures A3.4.1 and A3.4.2 we can say that a “T in E-plane” respects the conditi

A3.4.16 entering in port “1,” while a “T in H-plane” respects the condition A3.4.17 enterin
port “1.” So, we have the result that a three port passive, reciprocal, and lossless device is a
divider whose reflection coefficient is zero only at one port, and signals at the output ports 
in phase or 180° out of phase, depending on the physical construction. 

Another important three port network is the circulator, already encountered in our text.
device has the characteristic that connection between ports is directive, in a circular mann
schematic symbol is indicated in Figure A3.4.3, while in Figure A3.4.4 we have represented this
device in rectangular waveguide technology. It is built with three rectangular waveguides, j
together at 120°, with a magnetized cylinder post at the center of the common junction. The g
circulation principle is studied in detail in Appendix A7, and for this reason we will not e
deeply into this operating principle at this time. We will instead show that a lossless circulato
a scattering matrix that can be obtained by:

(A3.4.18)

s s12 13 1 2= =! !

s s s s12 22 13 23 0∗ ∗+ =!

s s s s12 23 13 22 0∗ ∗+ =!

s s s s s s12 13 22 23 23 22 0∗ ∗ ∗+ + =!

s s s s12 13 23 22 0+( ) +( ) =∗ ∗ !
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s s12 13=
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s s
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Since we assume the circulator to be lossless, we have the following conditions:

(A3.4.19)

(A3.4.20)

(A3.4.21)

(A3.4.22)

Since we have a system of five equations* in six unknowns, we can resolve this system
if we define some value a priori. So, setting s21 ≠ 0 we have:

Figure A3.4.3

*  Equation A3.4.22 is complex, and corresponds to two real equations.

Figure A3.4.4
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from A3.4.22 (A3.4.23)

from A3.4.21 (A3.4.24)

from A3.4.22 (A3.4.25)

from A3.4.19 (A3.4.26)

from A3.4.22 (A3.4.27)

from A3.4.20 (A3.4.28)

From Equations A3.4.23 through A3.4.28 we can recognize how the connection betwe
input and output port is circular, in the direction 1 → 3 → 2 → 1, as indicated in Figure A3.4.3.

A3.5 FOUR PORT NETWORKS

Among the many four port networks, we are interested in the class of directional coupler
will assume that these devices are correctly terminated on their own output impedance. 

The most general characteristic is that they are always four port and reciprocal devices,
ports can be divided into two couples, with the following characteristics:

a. Each port is perfectly matched 
b. Two ports of any couple are perfectly isolated and 
c. Transmission is only possible between ports of different couples. 

To do an example, in Figure A3.5.1 we have reported a Lange coupler, microstrip devic
studied in Chapter 7. If port “1” is the input, then port “2” is isolated, port “3” is the DC connec
or direct port, and port “4” is the coupled port. So, a directional coupler with such port numb
has a scattering matrix in general given by:

Figure A3.5.1

s31 0=!

s32 1=!

s12 0=!

s13 1=!

s23 0=!

s21 1=!

λ/4
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4

2
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λ/8
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(A3.5.1)

Applying the lossless condition, we have:

(A3.5.2)

(A3.5.3)

(A3.5.4)

(A3.5.5)

(A3.5.6)

(A3.5.7)

From A3.5.2 and A3.5.4 we have:

(A3.5.8)

which, inserted into A3.5.2 and compared with A3.5.3, gives:

(A3.5.9)

The previous two equations together with A3.5.2 form a system of three equations in
unknowns, which can be resolved only if we define some modulus value a priori. In addition,
transforming Equations A3.5.6 and A3.5.7 into modulus and phase and using A3.5.8, it is po
to show that Equations A3.5.6 and A3.5.7 result in an equation with four unknown phases
system can be resolved only if we define three phase values a priori. Depending on these arbitrary
values, a directional coupler can be classified according to the following cases where w
assume the port numbering and physical meaning as defined above.

a. Hybrid — in this case, connecting the source at port “1” the signals at the output ports “
and “d” have 180° phase offset. Connecting the source at port “b” the signals at the out
ports are in phase.

b. “Magic T” — in this case, together with the previous condition, a, the output signals hav
equal output power.

c. Symmetric — in this case, connecting the source at port “a” the signals at the output po
“c” and “d” have 90° phase offset.

d. Perfectly symmetric — in this case, together with the previous condition, c, the output sign
have equal output power.

Among these directional couplers, the “magic T” is widely used, particularly in mixer circ
A typical construction of this device in rectangular waveguide technology is indicate
Figure A3.5.2. We can observe that it can be considered as the union of a “T in E” with a “
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H,” studied in the previous section. Of course, matching circuits like iris and septs are emp
which for simplicity are not indicated in the figure. Now, let us assume application of a sign
the fundamental mode at the transverse port of the “T in E” as indicated in Figure A3.5.3. We see
that signals of equal amplitude but 180° out of phase are available at the longitudinal ports
“T in E”,* while ideally no signal is available in the transverse port of the “T in H.” Now, let
assume application of the signal at the transverse port of the “T in H,” as indicated in Figure A3.5.4.
We see that signals of equal amplitude and phase are available at the longitudinal ports of
in H,”** while ideally no signal is available in the transverse port of the “T in E.” So, the scatte
matrix of an ideal “magic T” is given by:

(A3.5.10)

Of course, since this directional coupler is reciprocal, it can also be used as a signal add
if in Figure A3.5.3 two generators at the same frequency but 180° out of phase are applied 
longitudinal ports, then a signal with power equal to the sum of the input power appears 
transverse port of “T in E.” Of course, a similar discourse can be applied to the devi
Figure A3.5.4; in this case, the input signals must be equiphase, and the sum signal com
from the transverse port of the “T in H.” 

A3.6 QUALITY PARAMETERS FOR DIRECTIONAL COUPLERS

From the previous section we know that a directional coupler is a four port device, with part
characteristics. Operatively, to measure if the device under test is directional, we apply the 

Figure A3.5.2

*  These ports are also the longitudinal ports of the “T in H.”
**  These ports are also the longitudinal ports of the “T in E.”

s( ) =
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generator to a port and measure the signal at the other ports. Let us number the port eval
input with “1.” The following points must be verified:

1. One port exists where the signal has the maximum value between the other ports, at least 
the point of view of widest bandwidth. We mean that if we find two output ports with the sam
signal amplitude,* then expanding the bandwidth only, one of these out ports still continues t
have the maximum signal. Let us number this port as “3” and name it as “direct port.”

2. One port exists where the signal has an amplitude lower than the amplitude at port “3” at le
from the point of view of widest bandwidth. Let us number this port as “4” and name it th
“coupled port.”

3. The remaining port “2” is isolated.

As an example of port numbering of a directional coupler, Figure A3.6.1 indicates a single step,
quarter wavelength, microstrip directional coupler, studied in Chapter 5. Of course, since the 
is reciprocal, the previous points 1 to 3 must be verified for any input port, with proper numb
However, the individuation of a directional coupler may not be so simple, since points 1 to 3 
are frequency dependent. In the following points we will use the port numbering as indica
Figure A3.6.1.

Figure A3.5.3

Figure A3.5.4

*  This is the case for 3 dB directional couplers, for example.
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Now, let us define the quality parameters of these important devices.

a. Coupling. Power coupling “cwdB” in “dB” is defined as:

(A3.6.1)

where the letter “W” individuates powers and “log” is the logarithm in base 10. Coupling can
be defined using voltages “v” or electric fields “E,” and in this case we have:

(A3.6.2)

Note “cw” and “cv” are related by cv2 = cw. Note that with the previous definitions A3.6.1 an
A3.6.2 the coupling is a positive number. However, if for the coupling definition the ratios “W4/W1”
and “E4/E1” are used, then the result is a negative number. We think that the use of a ne
number, in logarithmic scale, for the coupling is more intuitive, since a coupling on a passive 
can never generate a signal stronger than the source signal. However, positive values for the c
are more referenced than the negative ones.

b. Isolation. The isolation “idB” in “dB” is defined as:

(A3.6.3)

For an ideal directional coupler the isolation should be infinite. In practice, the isolation
function of the coupler technology and mechanical tolerances. This means that the isolation
is also a function of frequency. In waveguide, mean isolation values can be near 30 dB, in s
near 25 dB, and in microstrip near 20 dB. Note that with the previous definition, the isolatio
positive number. 

Figure A3.6.1
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c. Directivity. The directivity “ddB” in “dB” is defined as:

(A3.6.4)

Comparing expressions A3.6.1, A3.6.3, and A3.6.4 it is simple to observe that the follo
relationship holds:

(A3.6.5)

For an ideal directional coupler, the directivity should be infinite. In practice, similar to
isolation case, the reachable value is a function of the coupler technology and mechanical tole
but also of the designed coupling value. In fact, the higher the coupling in modulus, the low
directivity. For example, a microstrip 10 dB of coupling directional coupler has a directivity ne
dB at 10 GHz; if we increase the coupling modulus to 20 dB then the directivity decreases t
10 dB.

A3.7 SCATTERING PARAMETERS IN UNMATCHED CASE

In Section A3.2 we have defined the scattering parameters, observing that they can be
defined in the case of matched terminations at the ports, i.e., using the reference system im
“Zs.” Let us use Figure A3.7.1 as a general “[s]” representation of a two port network. 

If the termination load “Z2” at port “2” is not equal to “Zs,” then the “s11,u”* measured value
is related to the defined “sii” by the following relationship:

(A3.7.1)

where the port “2” load reflection coefficient is defined as:**

(A3.7.2)

Figure 3.7.1

*  The subscript “u” will remind us that the measurement is made in the case of unmatched termination, i.e., a term
with different impedance from “Zs.” 
**  See Chapter 1 for reflection coefficient definition.
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Note that if the network is unilateral, i.e., with only the transmission coefficient s21 ≠ 0, then
independently from the presence of a “Γ2” we have s11,u ≡ s11. Of course, a similar result can b
obtained if we want to evaluate the “s22” and we connect a load “Z1 ≠ Zs” at port “1.” In this case
we have:

(A3.7.3)

where the port “1” load reflection coefficient is defined as: 

(A3.7.4)

So, caution needs to be exercised if a load different from “Zs” is used to measure the reflectio
coefficients of two port devices.

These results can of course be generalized to the case of an “n” port device.
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APPENDIX A4

Resonant Elements, “Q,” Losses

A4.1 THE INTRINSIC LOSSES OF REAL ELEMENTS

Every reactive element possesses a resistive component that is responsible for energy los
this element. The most evident effect of this resistance is the warming up of the componen
an RF signal passes through it. But also in DC we can observe the presence of a loss. For e
a charged capacitor that ideally should conserve such voltage forever, in practice discharg
finite time, due to a lossy intrinsic parallel resistor that represents the nonzero conductiven
the capacitor dielectric. Another example is the inevitable DC resistance of an air conducto
due to the noninfinite conductivity of the real conductors. So, for DC signals, any real cap
and inductor can be represented as indicated in Figure A4.1.1, parts a and b.

Such simple equivalent circuits become more complicated when the signal frequency incr
In this case, mainly parasitic reactive components arise, which in some cases can transfo
component behavior. For example, an inductor can behave as a capacitor and a resistan
capacitor, or any other combination depending on the frequency of the signal. For exa
Figure A4.1.2 represents the equivalent circuit of a capacitor at high frequency. For such a c
we have:

1. The inductors “L′ ” and “L′ ′ ” represent the wire connection to the concentrated* capacitor
2. “R′ ” and “R′ ′ ” represent the resistances of “L′ ” and “L′ ′ ”**
3. “R” represents the DC lossy dielectric 
4. “C ′ ” represents the stray capacitance due to capacitor housing or any other coupling.

A frequency response for the “|s21|”*** parameter of the network indicated on the right side 
Figure A4.1.2 and for an ideal capacitor are represented in Figure A4.1.3. Here, we have the
following values for the elements of Figure A4.1.2: C = 0.5 pF, R = 10 KΩ, L′  ≡ L′ ′  = 1 nH,
R′  ≡ R′ ′  = 1 Ω, C′  = 1 pF. Of course, some parasitic elements can be neglected or not, depe
on the signal frequency, the capacitor technology, and its housing.

Similar to the equivalent circuit for a capacitor, we can introduce the equivalent circuit fo
inductor, as indicated in Figure A4.1.4. The capacitor “C”  represents the interwinding stray capac-
itance of the coil, while the other elements are already defined for Figure A4.1.2. In Figure A4.1.5
we have represented the frequency response for “|s21|” parameter of the network in Figure A4.1.4

*  The definition of a pure capacitor is dependent on the signal frequency. For example, in the GHz region every 
is evaluated as a transmission line network. In this case, with “concentrated” element we mean that element without e
lengths but with only electrical properties.
**  At high frequency, “R′ ” and “R′ ′ ” also are frequency dependent, due to the skin effect. See Appendix A2 for 
effect discussions.
***  See Appendix A3 for “s” parameter definition.
©2000 CRC Press LLC
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and for an ideal inductor. Here, we have the following values for the elements of Figure A4.1.4: L
= 5nH, C ≡ C′  = 0.2 pF, L′  ≡ L′ ′  = 1nH, R′  ≡ R′ ′  = 1Ω.

Finally, in Figure A4.1.6 we have represented an equivalent circuit for a resistor.

A4.2 THE QUALITY FACTOR “Q”

To any reactive element is associated a number “Q” called the “quality factor,” whic
representative of its losses. The most general definition of “Q” is:

(A4.2.1)

where “E” is the energy accumulated in the element, “W” is the dissipated power, and “ω” the
angular frequency at which the “Q” measurement is made. The evaluation of “Q” is not a

Figure A4.1.1

Figure A4.1.2
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simple, especially when the losses of the system are not so simple to evaluate. For other 
the procedure is instead simple. To do an example, let us evaluate the “Q” of the series 
circuit indicated in Figure A4.2.1. The resistor “R” can represent the coil’s losses. Applying 
Kirchhoff* current loop we can write:**

Figure A4.1.3

Figure A4.1.4

*  Gustav Robert Kirchhoff, German physicist, born in Koenigsberg in 1824 and died in Berlin in 1887.
**  For simplicity, we will indicate indifferently with “R,” “L” and “C” a physical resistor, inductor, and capacitor or
resistance, inductance, and capacitance, since in what we are going to study we think there should not be confus
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(A4.2.2)

which, again derived with respect to the time and omitting time dependence for simplicity:

(A4.2.3)

Figure A4.1.5

Figure A4.1.6
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This homogeneous, linear, second order differential equation can be easily solved by se

(A4.2.4)

and applying the known initial conditions to obtain the proper constant value. So, inse
Equation A4.2.4 into A4.2.3 we have:

(A4.2.5)

where:

(A4.2.6)

Using the previous positions, another solution of A4.2.3 is:

(A4.2.7)

where “D” is a constant. Once the current is known, the maximum energy “E” accumulated in the
circuit is:

(A4.2.8)

and the power “W” dissipated is:

(A4.2.9)

Inserting the two previous equations into A4.2.1 we have:

(A4.2.10)

or, using A4.2.6:

 

Figure A4.2.1
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Theoretically, a “Q” can be defined for any reactive element, just relating its reactance w
losses. For example, a real inductor can be simply thought of as a series between an ideal 
“L” plus a resistance “Rs,” and its “Q” can be defined as:

(A4.2.11)

If this inductor is loaded with a parallel resistance “Rp” and its “Rs” can be neglected, anothe
“Q” can be defined, called loaded “Q,” defined as:

(A4.2.12)

Similarly, for a capacitor with in series a conductance “Gs” its “Q” is:

(A4.2.13)

while if the capacitor is loaded with a parallel conductance “Gp” its “Q” is:

(4.2.14)

In particular circuits, it is simple to relate some network function with the “Q” of the circ
To do an example, let us study the parallel resonant circuit indicated in Figure A4.2.2, evaluating
the ratio of the current “Ir” in the resistor with the current “Ig” of the generator. We have:

(A4.2.15)

that with the definition of ω0
2 ⊥– 1/LC becomes:

(A4.2.16)

where the quality factor “Q” of the parallel resonant circuit indicated in Figure A4.2.2 is defined as:

(A4.2.17)

Figure A4.2.2
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Note that the “Q” coincides with the loaded “Q” for the inductor or capacitor, reporte
Equations A4.2.12 and A4.2.14. In other words, the resistor “R” of the parallel resonant circu
be associated to a loaded capacitor, with an ideal inductor in parallel, or a loaded inducto
an ideal capacitor in parallel.

For the case of the series resonant circuit indicated in Figure A4.2.1 we can obtain for the ratio
“V r / Vg” an expression similar to A4.2.16, with “Q” defined as:

(A4.2.18)

In this case, the “Q” of the circuit can be evaluated from the “Q” of an inductor with a s
resistance, with an ideal capacitor in series, or from the “Q” of a capacitor with a series resis
with an ideal inductor in series. 

When the “Q” of a circuit is at least greater than 10, it can be easily evaluated measu
frequency response of some proper circuit function, like “Ir / Ig” or “V r / Vg” respectively, for a
parallel or series resonant circuit. In this case, it is possible to verify that the “Q” is approxim
given by:

(A4.2.19)

where “f+3dB” and “f–3dB” are respectively the two frequencies, one above and one below the c
frequency “f0” where the response magnitude is below 3 dB from the amplitude at “f0.” As center
frequency “f0,” the frequency at which there is the maximum peak of the circuit function is assu
To do an example, in Figure A4.2.3 we have represented the modulus of A4.2.16, for “Q” valu
of 2, 5, and 10. Here we can see how if the “Q” is not higher than 10, then the modulus 

Figure A4.2.3
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symmetric with respect to “ω0” and the value extracted from A4.2.19 is not accurate. The 3
points are individuated by the crossing of the line at “1/ ” ordinate with each modulus. So,
a measure like that indicated in Figure A4.2.3 we can extract the “Q” using A4.2.19. 

For some circuits it is simple to relate the “Q” of the single component with the “Q” of
whole circuit. To show this, let us examine the series circuits indicated in Figure A4.2.4, where
each reactive element has its loss. Using definitions A4.2.11 and A4.2.13 for the “Q” of the ele
we can write:

(A4.2.20)

(A4.2.21)

The whole resistance of the circuit is:

(A4.2.22)

Associating such “R” only to “L” we have a “Q” given by:

(A4.2.23)

Then, inserting A4.2.20 and A4.2.21 into A4.2.22 we have:

(A4.2.24)

and equating the last equation in A4.2.23 with A4.2.24 we obtain:

(A4.2.25)

This expression is true for all forms of resonant circuit, where any component has its own

A4.3 ELEMENTS OF FILTER THEORY

For every filtering structure we have indicated in the text, if it is built using distributed dev
its transfer function must also belong to the general filter theory.

In this section we will review the most general definitions of functions and their relations
for filter theory. Since our text is not oriented to filter theory and synthesis, and also becau

Figure A4.2.4

R� L C Rc

2

R L Ql l= ω0

R CQc c= 1 0ω

R R R L Q CQc c= + = +l lω ω0 01

Q L R R L Q= → =ω ω0 0

R L Q CQc= +ω ω0 01l

1 1 1Q Q Qc= +l
©2000 CRC Press LLC



  

reader
r theory

  

es an
lates

  

wer

                

the

 for

iprocal

  

A4.3.5

ted to
ssion

 

impossible to cover in just a few pages the large amount of filter theory, we assume the 
knows these concepts, here reported for convenience. Texts entirely dedicated to general filte
and synthesis are indicated in the bibliography.1,2,3,4,5

A general passive, reciprocal network, studied from a filter theory point of view, possess
input and an output port. It can be electrically individuated by a transfer function, which re
the power available “Wa” from the generator connected to the network input port and the po
“W2” given by the network to a load connected at its output port.

So, a function “H(s)” called the “transmission function” is defined as:

(A4.3.1)

where “s” is the Laplace variable.* Since W2 ≤ Wa then |H(s)|2 ≥ 1, and for this reason the
characteristic function is set as:

(A4.3.2)

where |K(s)|2 ≥ 0 and “K(s)” is called the “characteristic function” of the filter. In this case, 
attenuation “A(s)” in dB inserted by the filter is:

(A4.3.3)

where “log” is the logarithm in base 10.
The determination of “K(s)” is the most important, and in general quite difficult, action

filter synthesis. 
The transmission function of the filter terminated on reference impedances is just the rec

of the “s21(s)”** of the filter, so that we can write:

(A4.3.4)

where “C” is a generic constant. From A4.3.2 we have:

(A4.3.5)

From the general transmission line theory described in Chapter 1, the last member of 
is just equal to the square of the reflection coefficient, and so we can write:

(A4.3.6)

Using A4.3.4 and the previous equation we have:

(A4.3.7)

where “D” is a generic constant. So we have the result that the characteristic function is rela
the ratio of two important “s” parameters of any network, i.e., the reflection and transmi
coefficients. 

*  Pier Simon de Laplace, French scientist, born in Beaumont en Auge in 1749 and died in Paris in 1827.
**  See Appendix A3 for “s” parameter definitions.

H s W Wa( ) −⊥2
2

H s K s( ) + ( )−⊥2 21

A s K s( ) + ( )( )−⊥ 10 1 2log

H s C s s( ) ( )−⊥2
21

2

K s H s H s W Wa( ) ( ) = − ( ) = −2 2 2
21 1 1

s s W W K s H sa11
2

2
2 21( ) = − = ( ) ( )

K s Ds s s s( ) = ( ) ( )11 21
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Is is possible to show that in the most general case the functions “H(s)” and “K(s)” are ra
functions and, since from A4.3.2 it follows that these functions have the same denominato
can be written as:

(A4.3.8)

and from A4.3.6:

(A4.3.9)

with “e(s),” “f(s),” and “p(s)” polynomials with real coefficients. Using A4.3.8 into A4.3.2 we ha

(A4.3.10)

Relationships A4.3.8 through A4.3.10 are very important in filter theory and can be us
simplify the synthesis procedure, also using the following conditions, that we give without pr6

that “e(s)” and “p(s)” must satisfy:

1. The zeros of “e(s)” must have negative real parts, i.e., “e(s)” is said to be an Hurwit
polynomial.

2. The degree of “e(s)” must be at least equal to that of “f(s)” or “p(s)”
3. “p(s)” must be an even or odd polynomial

In the next section we will describe how the synthesis procedure can be greatly simpli
the desired filter belongs to one of three general groups, for which many tables are availab7,8

A4.4 BUTTERWORTH, CHEBYSHEV, AND CAUER LOW PASS FILTERS

To simplify the filter synthesis procedure, tables are available in the literature9,10 where poles
and zeros of attenuation functions are defined, according to three families of functions call
Butterworth, Chebyshev,** and Cauer functions. These attenuation functions are all relative 
pass shapes, since with opportune variable transformation, any other filter shape can be obta
from a low pass prototype. These families produce different attenuation shapes that can be
according to the system requirements where the filter is employed.

Before we describe the frequency characteristics of any family, we need to define three
which are common among them.

1. Band Pass Region — It is defined as that frequency range where the attenuation is lower than
specified value. Since we are dealing with low pass filters, the lower frequency of the pass ban
the DC. The highest acceptable frequency of the band pass region is called the “cut-off” frequen

2. Stop Band Region — It is defined as that frequency range where the attenuation is higher than
specified value. Since we are dealing with low pass filters, the highest frequency of the stop b
is at infinity.

*  Adolf Hurwitz, German mathematician, born in Hannover in 1859 and died in Zurig 1919.
**  Pafnutij Chebyshev, Russian mathematician, born in Okatovo in 1821 and died in Petersburg in 1894.
***  This will be discussed in the next section.

H s e s p s K s f s p s( ) ( ) ( ) ( ) ( ) ( )− −⊥ ⊥

s s f s e s11( ) = ( ) ( )

e s p s f s( ) ( ) + ( )−⊥2 2 2
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3. Transition Band Region — It is defined as that frequency range between the band pass re
and stop band regions. The increase of attenuation in the transition band is strongly depen
the filter topology, as will be discussed later. 

Now, we will define the attenuation characteristics of any family, specializing in the ca
low pass filter. We will normalize the cut-off frequency to a unitary value.

a. Butterworth filters.
These filters are characterized as having the attenuation in the pass band region without 

ripple, i.e., “maximally flat” as it is normally said. Any filter of this family introduces an attenuation
of 3 dB at the cut-off frequency. These filters are characterized by an attenuation function “AB(f)”
in dB given by:

(A4.4.1)

The number “n” is called the “order” of the filter. It can be an even or odd number and give
the total number of reactive elements employed in the filter. In Figure A4.4.1 parts a and b we have
represented the two possible general structures of a low pass filter. We assume an odd numb
elements, as in the great number of cases. However, an even number of sections is also pos
if this is not a preferred solution. Note in the part b topology, the minimum number of inducto
are needed for a fixed order “n.” The filter structures indicated in Figure A4.4.1 can be used to
synthesize both Butterworth and Chebychev type, described in the next point. The attenuation sh
in dB for Butterworth low pass filters for order “2” to “5” is indicated in Figure A4.4.2. 

b. Chebyshev filters
These filters have the same topology as the Butterworth type, indicated in Figure A4.4.1, parts

a and b. The characteristic of this family is that in the pass band the attenuation has an equi-ri
shape, and the cut-off frequency is defined as the highest frequency for the equi-ripple. Above
cut-off frequency, the attenuation increases indefinitely, with a higher rate than the Butterwo
counterpart. It can be shown that the Chebyshev filters have the widest band pass bandwidt
any other filter, assuming that:
b1. the attenuation has to increase monotonically above the pass band 
b2. a fixed maximum attenuation, or ripple, in the pass band is defined.

Figure A4.4.1
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If the previous point b1 is removed, then another family of filters exists, which has a still sharp
increase of attenuation in the transition band. These are the “Cauer filters” discussed in the n
point.

The attenuation introduced by these filters depends on the Chebychev polynomials “Tn(x)”
defined as:

(A4.4.2)

where “n” is the filter order and gives the total number of reactive elements employed in the filt
The attenuation function “AT(f)” in dB is given by:

(A4.4.3)

where the quantity “ε” is related to the band pass ripple through the relationship:

(A4.4.4)

The positive real number “r” plays an important role in Chebyschev filters, and represents t
peak undulation in dB in the pass band. These filters also have the characteristic that once the 
order “n” is defined, if the ripple in the pass band is increased, then the rate of the attenuation

Figure A4.4.2

T f n a fn ( ) ∗ ( )[ ]−⊥ cos cos

A f T fT n( ) = + ( )[ ]{ }10 1 2log ε
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the transition band also increases. To show it, in Figure A4.4.3 we have reported the attenuation
for a third order filter, once with ε = 1 and indicated with “AT31(f) ,” and the other with ε = 0.5
and indicated with “AT305(f).” In Figure A4.4.4 we have instead represented the attenuation for
filters from second to fifth order. Note Chebyschev filters are individuated by two parameters, i.
the filter order and the ripple.

c. Cauer filters
These filters, also named “elliptic filters”* are characterized by:
c1. a pass band shape that is similar to the Chebyschev case
c2. a minimum attenuation in the stop band.

To achieve such performances, the low pass filter topology is different from the types sho
in Figure A4.4.1. In the present case, resonant elements are used, and each one of these coun
“1” in the final filter order “n.” Cauer filter topologies are shown in Figure A4.4.5, where in parts
a1, a2 and b1, b2 are respectively represented in the cases for “n” odd or even. Note that inde
dently from the filter order, the topologies with parallel resonant circuits need the minimum numb
of inductors.

In Figure A4.4.6 we have reported the attenuation graphs for a Chebyshev and Cauer
order low pass filter, respectively indicated with “AT3(f)” and “AC3(f).” Ripple has been defined nea
0.3 dB, and for the Cauer filter a minimum attenuation value of 42 dB has been used. Not
the bandwidth, and also until 10% above the cut-off frequency, the two filters give practical
same shape. In Figure A4.4.7 we have reported the same attenuation functions, but in a w

Figure A4.4.3

*  This name comes from the position in the complex plane of the zeros of the rational attenuation function.
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frequency range. Note how the two attenuations are different. In fact, the Chebyshev filter inc
attenuation indefinitely, while to the Cauer filter can be associated a stop band with atten
value never lower than a defined quantity. Also note that the Cauer filter gives a higher atten
slope in the transition band, which makes this filter family the preferred choice of all the elec
equipment where a multicarrier communication system is employed.

Every Cauer filter attenuation function presents at least a biquadratic term “B(s)” of the 

(A4.4.5)

Odd order filters together with the previous elementary biquadratic expression also have a
multiplying linear factor “L(s)” given by:

(A4.4.6)

For example, a third order Cauer filter is represented by the following characteristic fun

(A4.4.7)

Figure A4.4.4
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where factors “α1,” “ α,” “ τ,” “ ο,” and “C” are tabulated in many of the filter design texts indicat
in the bibliography, depending on the desired attenuation shape. Note also that Cauer filt
individuated by two parameters, i.e., the filter order and the pass band ripple. In Figures A4.4.8
and A4.4.9 we have drawn the attenuations for a Cauer filter of 3, 4, 5, and 6 order, respectively,
for a frequency sweep up to the stop band and in the pass band only. To fix some reference pa
we have chosen all the filters for 0.3 dB of peak ripple and 60 dB of minimum attenuation 
According to the use of the elementary biquadratic and linear functions reported in Equ
A4.4.5 and A4.4.6, the attenuations for these filters are:

(A4.4.8)

Figure A4.4.5
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(A4.4.9)

(A4.4.10)

Of course, the relationship between the characteristic function and the attenuation is:

(A4.4.11)

All the coefficients that appear in the previous equations are tabulated, and are different 
expressions, and for notational simplicity we have used the same subscripts for different atten
functions.

We conclude this overview on filter families noting that other filters are possible, which res
to different analytical elementary functions. These are, for example, Gaussian or Bessel 
However, the families we have reported here are surely the most used in filtering devices.

A4.5 FILTER GENERATION FROM A NORMALIZED LOW PASS

The extraction of elements value for any filter whose shape belongs to one of the three p
families can be simply performed using tables, indicated in the bibliography, for normalized
pass filter values.

Figure A4.4.6
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The normalization has proved to be very useful for synthesizing any kind of filter, be it a
pass, high pass, band pass, or band stop type. The normalization procedure starts in fi
reference frequency “fr” and a reference resistor “Rr.” “f r” is assumed to be the cut-off frequenc
of the high or low pass filter, or the center frequency of the band pass or band stop filter. Ar”
it is assumed to be the generator impedance. With these choices of reference quantities, a r
inductor “Lr” and reference capacitor “Cr” are defined according to the following positions:

(A4.5.1)

(A4.5.2)

Once such reference quantities are found, the normalization procedure is simply done acc
to the following positions:

(A4.5.3)

Since the tabulated attenuation functions are relative to normalized low pass, any desir
pass filter can be simply designed by choosing the desired response and denormalizing the e
values. The other filter topologies require a change in the frequency variable of the resp
attenuation function, which we are going to discuss.

Figure A4.4.7

L R fr r r
−⊥ 2π

C f Rr r r
−⊥ 1 2π
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Figure A4.4.8

Figure A4.4.9
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a. High Pass Filters

These filters can be designed using the following variable transformation:

(A4.5.4)

where “shp” is the variable of the high pass attenuation function. For example, applying the pre
equation to the Cauer low pass functions A4.4.7 through A4.4.10 we have the attenuation 
reported in Figure A4.5.1. The electric circuit for high pass filters can be easily obtained from
simple low pass circuits indicated in Figure A4.4.1 exchanging in it the positions of inductors with
those of capacitors. For example, an elliptical high pass filter is indicated in Figure A4.5.2. Of
course, element values cannot be exchanged so easily, and opportune transformation is ne

Figure A4.5.1

Figure A4.5.2

s shp= 1
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b. Band Pass Filters

Band pass filters can be obtained by applying the following variable transformation:

(A4.5.5)

where “sbp” is the variable of the band pass attenuation function and “∆f” is the pass band width,
given by: 

(A4.5.6)

where “fh” and “f�” are, respectively, the upper and lower frequencies of the pass band. F
synthesized with this procedure have “fh” and “f�” related in geometric symmetry, i.e.:

(A4.5.7)

Consequently, the left side of the band pass attenuation response will have a higher atte
slope with respect to the right side.

The electric circuit for Chebyshev or Butterworth band pass filters can be easily obtained
the simple low pass circuits indicated in Figure A4.4.1, substituting every inductor with a serie
resonant circuit and every capacitor with a parallel resonant circuit. An example is indica
Figure A4.5.3a. However, such direct transformation can produce unpractical element values. To
avoid such difficulty, a useful circuit variation is indicated in Figure A4.5.3b, called a “coupled
parallel resonator band pass filter.” These kinds of filters are synthesized in a very simpl
using dedicated tables of normalized values, called “K and Q values.” 

Elliptical band pass filters can also be obtained with the element transformations ind
above, but since the direct resulting circuit has a great number of inductors, it is modified to r
this number to a minimum. The resulting unit cell can be represented as indicated in Figure A4.5.4,
and for its extraction, we send the reader to the specified filter texts.

c. Band Stop Filters

These filters can be obtained applying the following variable transformation:

(A4.5.8)

Figure A4.5.3
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where “sbs” is the variable for the band stop attenuation function. In this case “fh” and “f�” are
respectively the lower frequency of the upper pass band and higher frequency of the lowe
band. Also band stop filters synthesized with this procedure have “fh” and “f�” related in geometric
symmetry. Consequently, the left side of the stop band response will have a higher atten
slope with respect to the right side.

Using A4.5.8, the resulting band stop filter topology can be obtained from the low pass pro
substituting every inductor with a parallel resonant circuit and every capacitor with a series re
circuit as reported in Figure A4.5.5. Also in this case, elliptical band stop filter circuits can 
obtained with this element transformation, but some modification is needed to reduce the n
of coils.11,12

We want to conclude these brief notes on filter theory and practice noting that the s
variable transformation in the low pass attenuation functions always leads to manipulation 
low pass prototype tabulated values for poles and zeros, from which the desired filter c
designed.

A4.6 FILTERS WITH LOSSY ELEMENTS

Every real reactive component has losses, as already discussed at the beginning of this ap
These losses cause a lot of problems in filters. In fact, the attenuation shapes of typical filter
in the previous section are obtained in the ideal case, i.e., with no losses in the reactive ele

In practice, inductors have higher losses with respect to capacitors. For example, inductor
10 to 100 MHz range have typical “Q” inside 100 to 50, while capacitors have “Q” values in
1000 to 500. This means that losses are quite often due only to the inductors. For this reas
preferable to use filters with a minimum number of coils. In addition, coils also have higher te
ature variation than capacitors. To do an example, in Figure A4.6.1 we have represented the transf
function vs. frequency in MHz of a third order Chebyshev low pass filter of the type shown in
Figure A4.4.1 b, i.e., “CLC”  sequence.* The solid and dashed lines, respectively, indicate the ideal

Figure A4.5.4

Figure A4.5.5

*  We mean “capacitor, inductor, capacitor” as first, second, and third element of the low pass.
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case of no losses and the practical case of Qc = 100 and Q� = 50. Figure A4.6.2 instead represents
the transfer function vs. frequency in MHz of a third order Chebyshev low pass filter of the
shown in Figure A4.4.1 a, i.e., “LCL”  sequence. With solid and dashed lines we have respectively
indicated the ideal case of no losses and the practical case of Qc = 100 and Q� = 50. Note the case
of higher disequalization of attenuation in the pass band of this last case with respect to the 
sequence of Figure A4.6.1.

In general, losses give the following effects for a filter:

1. Increase attenuation in the pass band
2. Rounded transition points between pass band and transition band
3. Finite values at the attenuation peaks*

Points 1 and 2 above are more and more evident when decreasing the pass band and/or in
the filter order. 

The effect of losses are even more evident in band pass filters. For example, Figure A4.6.3
reports the transfer function vs. frequency in MHz of a third order Chebyshev coupled res
band pass filter. Note the effect of Qc = 100 and Q� = 50 indicated with the dashed line with respe
to the ideal case indicated with the solid line.

In practice it has been verified that the minimum “Q” that reactive elements need to
depends on the center frequency “fc” and bandwidth “∆f” of the band pass or band stop filte
through the following expression:

(A4.6.1)

For any practical filter the previous expression is easily satisfied by capacitors, whil
inductors Equation A4.6.1 is seldom verified.

Figure A4.6.1

*  For example, the values of attenuation peaks for Cauer filters are theoretically infinite.

Q f fc≥ 20 ∆
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APPENDIX A5

Charges, Currents, Magnetic Fields, and Forces

A5.1 INTRODUCTION

In many chapters of this book we discuss ferrimagnetic devices. Appendix A7 covers the
behavior of ferrite inside magnetic fields. For a proper reading of that appendix, it is important to
know some fundamental concepts of magnetism and atomic physics. This appendix will discuss
the fundamental elements of atomic physics, required for the reader to properly understand Appen-
dix A7. Unless otherwise stated, the MKSA reference unit system will be used.

 It is assumed the reader knows the topics which we are going to discuss, so that it is only
necessary to remind the reader of the most important relationships. In addition, since our text is
not a book on physics, many expressions will be given without proof. Deeper insight into this
branch of physics can be obtained from the books indicated in references.1,2,3

In Appendix A6 we will study the foundations of magnetism.

A5.2 SOME IMPORTANT RELATIONSHIPS OF CLASSIC MECHANICS

Classic mechanics is that branch of physics that deals with the motion and forces on bodies.
The formulas obtained with these mechanics are continuous and deterministic, i.e., at any time it
is possible to determine the speed, position, and mass of a body. In the following discussion, the
reference system is considered “inertial,” i.e., completely fixed. In addition, the dimensions of the
quantity we will define are assumed to be known by the reader and, in general, they will not be given.

We will now discuss concepts and formulas that will be useful in this context. Let us begin
with the three principles of dynamics, according to I. Newton.*

a. First Principle of Dynamics

Every body not subjected to forces stays in its status, be it quiet or rectilinear, uniform motion.

b. Second Principle of Dynamics

The acceleration “a” of a body in motion is due to a force “F” so that F = ma , where “m” is
the mass of the body. “a” is measured in m/sec2 “F” in newtons, and “m” in kilos.

c. Third Principle of Dynamics

The mutual forces between two bodies have equal intensities but opposite directions. This
principle is also known as the “action and reaction principle.”

Now we will give some general definitions that will be successively useful.

*  Isaac Newton, English physicist, born in Woolsthorpe in 1642 and died in Kensington in 1727.
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1. Work of a Force

Given a force “F,” the work “L12” to move a body from position “P1” to position “P2” is given by:

(A5.2.1)

2. Momentum of Inertia of a Body with Respect to an Axis

Given a body of mass “m,” homogeneous with constant density, its “momentum of inertia � ”
with respect to an axis passing through the body is:

(A5.2.2)

where “r” is the distance from “a” of the infinitesimal mass “dm.” Of course, it is required that the
integral in A5.2.2 be finite. In the case of a sphere with radius “r” and mass “m,” its momentum
of inertia with respect to an axis passing through its center is

(A5.2.3)

In the case of a torus of mass “m” and mean radius “r,” whose section has negligible dimension
compared to “r,” its “�” with respect to an axis orthogonal to the torus plane and passing for its
center is:

(A5.2.4)

The previous expression is also valid for a mass “m” moving in a circular orbit of radius “r”
when the mass has negligible dimensions compared to “r.” This is the case of an electron moving
around its atomic nucleus.

3. “Vector Momentum” of a Vector

Define a point “o” in the space, the origin of a reference system. Also define a point “p” where
a vector “f” presents its action. The “vector momentum M” of the vector “f” with respect to “o”
the quantity is defined as:

(A5.2.5)

where “r” is the distance between “o” and “p.” By extension, if the point “o” is on an axis the 
previous result is called, “axial vector momentum.”

4. Couple and Momentum of a Couple

A “Couple” is defined as the set of two parallel vectors “f1” and “f2,” with same modulus but
oriented in different directions, working on two points “P1” and “P2” so that the segment “P1P2” is
not parallel to “f1.”* Figure A5.2.1 represents the situation.

*  Since “f1” is parallel to “f2” it is enough to refer to one vector.
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The momentum of a couple is also defined, and since “f1” and “f 2” have the same modulus
only a vector can be considered. To this purpose, we define an orientation for the segment “P1P2,”
i.e., the segment “P1P2” becomes a vector “r,” then the vector momentum “M” of the couple is
defined as:

 

5. Vector “Quantity of Motion” and Vector “Angular Orbital Momentum
of the Quantity of Motion”

A body of mass “m” with speed “v” possesses a vector “quantity of motion p” given by:

(A5.2.6)

If we derive the time “t” with respect to the previous equation we have:

(A5.2.7)

Then, not considering the variation of mass with time* we have:

(A5.2.8)

which is a different representation of the second principle of dynamics. With point “o” defined as
the origin of the reference system, this body possesses a momentum “L” of quantity of motion
given by:

(A5.2.9)

Note that “L” is orthogonal to the plane formed by “r” and “p.” If the body moves with a
circular uniform motion with tangential speed “v” from the previous equation we have the modulus:

(A5.2.10)

Figure 5.2.1

*  This text does not aim to be a text on physics. Consequently, the relativistic effects concerning “dm/dt” are not evaluated.
In general, in this appendix, and in the following A6, only the relativistic effects strictly necessary to Appendix A7 will be
treated.
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In this case “L” is called the “angular orbital momentum of the quantity of motion,” and it is
directed orthogonally and at the center of the plane of the body orbit. In the study of circular motion
in orbits with radius “r,” the angular speed “ω” is used, defined as:

(A5.2.11)

whose vector “ω” is orthogonal and at the center of the plane of the body orbit and directed where
the body appears to move counterclockwise. The acceleration “a” is:

(A5.2.12)

Using the definition of “ω,” A5.2.9 can be written as:

(A5.2.13)

Note as “mr2” is the momentum of inertia of the mass “m” in circular uniform motion, so
A5.2.13 can be rewritten as:

(A5.2.14)

This expression is quite general, and can be applied to a body rotating on axis passing through
it. In this case we can define a new vector, as defined in the next point.

6. Vector “Angular Intrinsic Momentum of the Quantity of Motion”

A body of mass “m” rotating on an axis passing through its center of mass possesses an “angular
intrinsic momentum of the quantity of motion,”* with respect to this axis, called “spin” and indicated
with “S.”** For the case of a sphere of radius “r” rotating with angular speed “ω” we have:

(A5.2.15)

7. The Theorem of the Quantity of Motion

Let us consider an origin “o” of a fixed reference system. The vector “r” with origin in “o,”
points to a body of mass “m” with speed “v.” Using A5.2.8, multiplied at left vectorally by “r,”
we have:

(A5.2.16)

Deriving the time with respect to A5.2.9 we have:

(A5.2.17)

Since v = dr /dt, the first term in A5.2.17 is zero, and we can write:

(A5.2.18)

*  Note how with respect to the case studied in point 5, now the word “orbital” does not appear.
**  “Spin” is used only when discussing the quantity of motion; otherwise “S” is also called “spin quantity of motion.”
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The previous relationship represents the theorem of the quantity of motion, and can also be
applied to a reference axis to evaluate all the moments.

8. Centrifugal and Centripetal Force

A mass “m” moving on a circular orbit or radius “r” and angular speed “ω” possesses a
centrifugal force “Ff” given by:

(A5.2.19)

To stay on this orbit the body must be held by a force of same modulus of “Ff” but directed in
the opposite direction, called centripetal force “Fc” given by:

(A5.2.20)

Using A5.2.11, if we take the tangential speed “v” as an example, then the previous two
equations become:

(A5.2.21)

The proper sign of A5.2.19 through A5.2.21 depends on the positive direction assumed for “r,”
but in any case “Ff” and “Fc” have opposite signs.

9. Kinetics Energy

A body of mass “m” moving with speed “v” possesses a kinetic energy “E k” given by:

(A5.2.22)

where the last equality has been obtained using the definition of quantity of motion given in A5.2.6.
If the mass moves with angular speed “ω” on a circular orbit of radius “r,” then the previous

equation becomes:

(A5.2.23)

or, using A5.2.4:

(A5.2.24)

After these definitions, we will discuss what kind of forces act on bodies that possess charges.

A5.3 FORCES WORKING ON LONE ELECTRIC CHARGES

Bodies can possess an electric charge in addition to a mass. In this case other forces can arise,
in addition to those we have indicated in the previous section, usually in general called “electrical
forces.”

F m rf = ω2

F m rc = − ω2

F mv r F mv rf p= = −2 2

Ek mv p m= ≡2 22 2

Ek m r= ( )ω 2 2

E Ik = ω2 2
©2000 CRC Press LLC



                         
1. Coulomb* Force

Given two bodies with charges “q1” and “q2” set at a distance “r,” they exchange a force “Fc”
given by:

(A5.3.1)

where “ε” is the absolute dielectric constant of the medium that surrounds the charges. Note in the
Coulomb force the masses of the bodies have no influence, but it is assumed that their dimensions
are negligible with respect to the distance “r.” Coulomb force can be attractive or repulsive
depending on whether the charges “q1” and “q2” have different or equal signs. Every lone charge
“q” is responsible to generate an electric field “E” given by:

(A5.3.2)

2. Couple Working on an Electric Dipole and Its Energy

“Electric dipole” is defined as a set of two charges with equal intensity but different signs, set
at a reciprocal distance “r.” When the electric dipole is inside a region where an electric field
exists,** then the Coulomb force acts on each charge, which creates a couple, as defined in the
previous section. Defined as positive the direction “r” from the negative to the positive charge, the
vector momentum “d” of the electric dipole is defined as:

(A5.3.3)

From A5.2.5 the mechanical torque that works on the electrical dipole inside the electric field
“E” is:

(A5.3.4)

The torque tends to align “d” to “E.” If for any reason “d” and “E” form an angle “θ,” the
electrical dipole possesses a potential energy “E e” given by:

(A5.3.5)

Note that the energy in the dipole has its minimum negative value when “d” and “E” are aligned.

3. Lorentz*** Force

Every time a charge moves it creates a field of magnetic induction “B.” If the medium that
surrounds the charge is isotropic, then another vector can simply be defined, called magnetic field
“H,” given by:

(A5.3.6)

*  Charles de Coulomb, French physicist, born in Aungouleme in 1736 and died in Paris in 1806.
**  Note that the Coulomb force for a nonzero charge is null at the infinite and the same holds for “E.” Consequently, the
existence of an electric field is quite often associated to that field intensity that can move a charge.
***  Hendrik Antoon Lorentz, Dutch physicist, born in Arnhem in 1853 and died in Haarlem in 1928.
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The Lorentz force “F�” works on a charge “q” whenever it moves with speed “v” inside a region
where a field “B” exists, and it is given by:

(A5.3.7)

In practice “F�” is always orthogonal to “v,” generating a normal acceleration to “q” and
consequently forcing the charge motion to be circular. Keeping the directions of “B” and “v”*fixed,
the Lorentz force changes sign according to the charge polarity. Considering “B” and “v” orthogonal
and that no other forces work on the charge, from the previous equation and applying the second
principle of dynamics we have:

(A5.3.8)

Since the Lorentz force works as a centripetal force, forcing the charge to move on a circular
motion with tangential speed “v,” we can apply the definition A5.2.12 for the acceleration “a” and
write:

(A5.3.9)

The angular speed, using Equation A5.2.11, is:

(A5.3.10)

4. Potential Energy of a Charge

If a charge “q1” is fixed at a distance “r” from another charge “q2” then it possesses a potential
energy “Eq” given by:

(A5.3.11)

Another expression used for “Eq” is obtained making reference to the potential difference, or
voltage difference “∆V,” defined as the work done by the electric field to move a unity charge from
the position “P1” to the position “P2,” i.e.:

(A5.3.12)

In this case, fixing a potential conventionally as the reference, for example “V(P1),” we have:

(A5.3.13)

where “V” is the potential in “P2,” and [E q] = Joule.** When the charge “q” is an electron, another 
unit to measure the electron energy has been introduced, called “electronvolt” and indicated with 
“eV,” so that:

(A5.3.14)

The “eV” is used every time atomic energy is under study.

*  In this case the direction of “v” is that before the entering into the region of “B.”
**  James Joule, English physicist, born in Salford in 1818 and died in Sale in 1889.
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A5.4 FORCES WORKING ON ELECTRICAL CURRENTS

We now want to discuss which kind of forces work on a big quantity of charges moving all
together, i.e., a current inside a magnetic field.

1. Electromotive Force

Every voltage generator possesses an energy “E” that separates charges at its two terminal
conductors. The “electro motive force, e.m.f.” is defined as the energy variation “dE” required to
move a charge quantity “dq” from one pole to the other, i.e.:

(A5.4.1)

with [e.m.f.] = Volt.

2. Magnetic Force on a Current

Let us indicate with “N” the number of charges per unit volume inside a wire* conductor of
section “S.” All the charges are supposed to be of the same polarity and value “q,” moving all
together with a speed “v.” Assuming that the induction magnetic vector “B” is uniform in the region
of the conductor, we define as magnetic force “Fm” the Lorentz force working on the charges “n”
inside a length “�” of the wire diameter, i.e.:

(A5.4.2)

Now, let us define the vector “�” so that � ⊥    v . sec, with [�] = meters. The previous equation
becomes:

or, since the current “i” is i = NS�q/sec,

(A5.4.3)

3. Vector “Magnetic Momentum” Produced by a Current in a Closed Wire

For every closed conductor of any shape, but with the constriction to be on a plane, if “A” is
the surface enclosed by the wire and “i” is the current running through this wire; it is defined as
vector “magnetic momentum, µ L”:

(A5.4.4)

where “n” is the normal passing inside the region of area “A” and directed toward that region
where the current moves counterclockwise. Another definition of “µ L” is:

*  Sometimes we will abbreviate the phrase “wire conductor” with only “wire.”
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(A5.4.5)

which comes out if “H” is used instead of “B.” When we will use “µ L,” we will refer to A5.4.4,
unless otherwise noted.

4. Couple on a Magnetic Momentum and Its Energy

Given a magnetic momentum “µ L” inside a region where a uniform “B” exists, then a mechanical
torque “Mm” works on “µ L” given by:

(A5.4.6)

which tends to align “µ L” with “B.” Similar to the situation of the electrical dipole, we now have
that, if for any reason “µ L” and “B” form an angle “θ,” the magnetic momentum possesses a
potential energy “Em” given by:

(A5.4.7)

Note that the energy has its minimum negative value when “µ L” and “B” are aligned.

5. Faraday,* Neumann,** Lenz*** Law

This law states that when a variation “dΦ(B)/dt” in the time “dt” of the “B” vector flux****
“Φ(B)” exists in the area inside a closed conductor, then an “e.m.f.” is induced in it according to:

(A5.4.8)

The minus sign is associated with the fact that the induced current, which flows in the conduct,
or creates a magnetic field that is in the opposite direction to that of “B.” The creation of magnetic
fields due to electrical currents will be discussed in the next section.

A5.5 MAGNETIC INDUCTION GENERATED BY CURRENTS

A lot of experiments at the beginning of the 20th century have led to the discovery of a magnetic
induction vector “B” generated by currents. We will briefly review the most important relationships,
which will be useful in Appendix A7 when discussing ferrite magnetization.

1. Laplace***** Expression

Let us suppose that a wire with “d�” as infinitesimal length, is traveled by a current “i.” The
elementary induction magnetic vector “dB” produced by “d�” in a point “P” at a distance “r” many
times the wire diameter “d” is:

*  Michael Faraday, English physicist, born in Newington in 1791 and died in Hampton Court in 1867.
**  Franz Ernst Neumann, German physicist, born in Joachimsthal in 1798 and died in Koenigsberg in 1895.
***  Emilij Christianovic Lenz, Russian physicist, born in Dorpat in 1804 and died in Roma in 1865.
****  The flux of a vector is defined in Appendix A8.
*****  Pier Simon de Laplace, French mathematician, born in Beaumont en Auge in 1749, died in Paris in 1827.
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(A5.5.1)

Note that “dB” is always orthogonal to the plane determined by “d�” and “r.” This means that
if “r” moves on a circle, “B” does the same resulting in the lines of “B” being continuous, closed
lines, orthogonal to “d� .” As a consequence, the flux of “B” in a closed surface “S” is zero, since
every induction line of “B” that enters “S” must also exit from “S.” Integrating the A5.5.1 on the
whole closed conductor, we can evaluate the whole magnetic induction in a point “P” located by
“r,” provided that r >> d.

2. Biot* e Savart** Expression

These two French physicists experimentally found one expression for “B” in the case of a very
long straight wire supporting a current “i.” Given a point “P” whose orthogonal distance from the
wire is “r,” then in “P” the magnetic induction “B” is:

(A5.5.2)

where “µ” is the absolute permeability of the medium surrounding the wire. 
It is possible to show that applying the Laplace Equation A5.5.1 to this particular case of straight

conductor leads to the Biot e Savart expression.

3. Ampere’s*** Expression

Let us assume a region exists where “n” wires are carrying currents, and consider a closed loop
“c” surrounding these wires. Ampere’s law states that:

(A5.5.3)

The currents “ik” need to be evaluated according to a defined direction assumed as positive for
the closed loop “c.” In other words, if a current generates a magnetic induction whose line forces
are concordant to the defined positive direction, then it must be evaluated with the positive sign,
otherwise it will be considered with a negative sign. Of course, this expression can also be obtained
by the application of the Laplace equation to our particular case, but the application of A5.5.3 can
sometimes simplify the calculations. An example is the evaluation of “B” inside a solenoid. 

Ampere’s law can be transformed in a differential expression using the Stokes theorem.****
Let us consider the surface “S” whose perimeter is the closed line “c” used at the first member of
Equation A5.5.3. Associating with each current “ik” its current density “Jk,” with [Jk] = Amp/m2,
we can write:

(A5.5.4)

*  Jean Baptiste Biot, French physicist, born in Paris in 1797 and died there in 1862.
**  Felix Savart, French scientist, born in Mezieres an Auge in 1791 and died in Paris in 1841.
***  Andrè Marie Ampere, French scientist, born in Lyon in 1775 and died in Marseilles in 1836.
****  See Appendix A8 for the Stokes theorem.
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since J ≠ 0 only on the surface intersection between wires and “S.” “n” is the normal to the surface
“S” directed where the path on “c” is seen counterclockwise. Then A5.5.3 is written as:

(A5.5.5)

Applying the Stokes* theorem to Equation A5.5.5 we have:

(A5.5.6)

from which it must be:

(A5.5.7)

The previous equation is also called the “differential Ampere’s law.”

A5.6 TWO IMPORTANT RELATIONSHIPS OF QUANTUM MECHANICS

Quantum mechanics states that many of the classical mechanics equations given before cannot
be evaluated as continuous when applied to the atomic structure. In fact the values that they can
attain are a multiple of a minimum quantity, called “quanta” and are given by:

(A5.6.1)

where “h” is Planck’s** constant, equal to 6.62*10 –34 Joule.sec. 
We will now give some important relationships of quantum mechanics that will be used later

and in the following appendices.

1. Indetermination Principle

This principle was formulated by W. Heisenberg,*** and states that for a body the indetermi-
nations “∆r” in the exact location “r” and “∆p” for its quantity of motion cannot be reduced to
zero, but instead:

(A5.6.2)

Due to the small value of the Planck’s constant, for the bodies, speeds, and distances that one
uses, the previous equation has little utility, while for the atomic structure the Heisenberg’s inde-
termination principle is of extraordinary importance.

2. The Energy-Frequency Relationship

This principle was formulated by A. Einstein,**** and states that the energy quantum “E” of
a radiation with frequency “f” is given by:

* George Gabriel Stokes, English mathematician, born in 1819, died in Cambridge in 1903.
**  Max Planck, German physicist, born in Kiel in 1858 and died in Gottinga in 1947.
***  Werner Heisenberg, German physicist, born in Wuerzburg in 1901 and died in Monaco in 1976.
****  Albert Einstein, German physicist, born in Ulm in 1879 and died in Princeton in 1955.
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(A5.6.3)

This energy quantum is associated with a particle called a “foton,” i.e., the radiation is considered
as composed of massive bodies. This interpretation of the radiation is known as the “corpuscular
nature of light.” We will return later to this topic. The previous equation is of fundamental
importance to explain the emission of discrete frequencies when atoms are excited by energy. 

A5.7 THE FOUNDATIONS OF ATOM THEORY

The first theory of atom mechanics was formulated by E. Rutherford,* who defined the atom
as composed of a gravitational system: a nucleus at the center, of positive charge and mass
practically coincident with the mass of the whole atom, surrounded by electrons moving in circular
orbits near the nucleus. This interpretation did not explain why electrons moving in these orbits
did not lose energy and decay on the nucleus. An improvement in this theory came from the Danish
physicist N. Bohr,** who supposed that electrons move on particular orbits, called “stationary,”
where no energy is lost. Successively, he applied quantum mechanics to his theory, formulating
that the classical mechanics “angular orbital quantity of motion momentum”*** L = mvr be:

(A5.7.1)

where “m,” “v,” and “r” are respectively the mass, radial speed, and orbital radius of the electron.
The integer positive number “n” is called the “principal quantic number.” Note that the previous
equation brings the consequence that the orbital radius, electron speed, and its energy are also
quantized. In fact, since the electron centripetal force can be evaluated as generated by the Coulomb
force between the nucleus and electron, we can write:

(A5.7.2)

where “e” is the electron charge. Then, using A5.7.1 and A5.7.2 we have:

(A5.7.3)

(A5.7.4)

that show how “r” and “v” depend on the principal quantic number. If we now evaluate the total
energy “E t” of the electron as composed of its kinetics and potential energy we can write:

(A5.7.5)

and inserting A5.7.3 and A5.7.4 we have:

(A5.7.6)

*  Ernest Rutherford, English physicist, born in Nelson, New Zealand, in 1871, and died in Cambridge in 1937.
**  Niels Bohr, Danish physicist, born in Copenhagen in 1885 and died there in 1961.
***  The “angular orbital quantity of motion momentum” is also called “orbital quantity of motion momentum.”
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Further improvement in this theory was done by the physicist A. Sommerfeld.* He stated that
the electron moved on elliptical orbits, and the atom nucleus was on a focus. A second quantic
number “� e” was then introduced, called the “elliptical angular quantic number” and given by:

(A5.7.7)

In the next section, where we will introduce the most important quantum mechanics relation-
ships applied to atoms, we will show how “n” and “�e” are substituted with a single quantic number
to quantize “L.”

Nevertheless, some experiments performed on excited atoms inside magnetic fields by the
physician P. Zeeman** could not be explained using only “n” and “�e.” Further improvements were
made considering the associated current “i” due to the orbital movement of the electron. In fact,
if “ωe” is the angular speed of the electron around its orbit, then the associated current is:

(A5.7.8)

and using A5.4.4 its “orbital magnetic momentum” is:

(A5.7.9)

Note that due to the negative electron charge, “µ L” is directed contrary to “L,” as indicated in
Figure A5.7.1. The ratio between the orbital magnetic momentum and the orbital quantity of motion
momentum “L” is called “orbital gyromagnetic ratio, γL” given by:

(A5.7.10)

If we had used A5.4.5 for “µ L,” in the previous equation “µ 0” would appear as multiplier at
second member.

*  Arnold Sommerfeld, German physicist, born in Konisberg in 1868 and died in Monaco in 1951.
**  Pieter Zeeman, Dutch physicist, born in Zonnemarie in 1865 and died in Amsterdam in 1943.

Figure A5.7.1

l Ke n= −( )0 1 2 1, , ,

i e e= − ω π2

µ ω
L ee r n−⊥ −( )2 2

γ µL L L e m−⊥ = − 2

e

L

y

n

µ

ω

z

x
L

Electronic
orbit

Electron

v

e

©2000 CRC Press LLC



A new quantic number was then introduced, just to quantize “L” when the atom is inside an
induction magnetic field “B.” In this case “L” is written as “LB” and set:

(A5.7.11)

where “mL” is called the “magnetic quantic number,” given by:

(A5.7.12)

Due to other experiments, the electron was supposed to rotate around an axis passing through
its center with angular speed “ωS” and a “spin quantity of motion momentum, S” and a “spin
magnetic momentum, µS” were introduced. “S” was then quantized according to a number “mS”
called the “spin magnetic quantic number,” of values:

(A5.7.13)

The ratio between the spin magnetic momentum and the spin quantity of motion momentum
“S” is called “spin gyromagnetic ratio, γS,”* i.e.:

(A5.7.14)

and its value was determined by the physicist P. Dirac.** If for the determination of magnetic
moments “H” is used instead of “B,” in the previous equation there would appear “µ0” as multiplier
at last member. 

So, when the atom is inside an induction magnetic field “B,” then “S” is written as “SB,” and set:

(A5.7.15)

It is interesting to observe that “L,” “ωe” and “µ L” are oriented in the same direction and pass
through the orbit center, while “S” and “µS” are oriented in opposite directions and pass through
the electron center. Due to the principle of minimum energy of natural systems, also according to
A5.4.7, “µ L” and “µ s” have equal direction. 

When dealing with the hydrogen atom, which has only one electron, a total magnetic momentum
“µT” and a total quantity of motion momentum “T” are defined as:

(A5.7.16)

(A5.7.17)

Caution needs to be used when applying the previous two relationships with atoms with more
than one electron, since it is not certain that “µ L” and “µs” are parallel, and consequently “µT”
cannot be parallel to “T.”

We conclude this brief introduction to atom theory giving values of mass and charge for the
quiet electron and some values for the hydrogen atom. Note that 1Å = 10–7 mm:

*  The “spin gyromagnetic ratio” is also simply called “gyromagnetic ratio.”
**  Paul Dirac, English physicist, born in Bristol in 1902 and died in Tallahassee, FL, U.S., in 1984.
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A5.8 THE ATOM STRUCTURE IN QUANTUM MECHANICS

Some of the first quantic expressions developed by Bohr and Sommerfeld have been successively
modified to improve the accuracy of the results of experiments on excited atoms. The quantity of
motion momentum “L” associated with the electron elliptical orbit is quantized according to:

(A5.8.1)

Note it is different from the original expression of Bohr given in A5.7.1. The number “�” is
called the “orbital quantic number.” 

Using Equation A5.8.1 and the orbital gyromagnetic ratio “γL” given by A5.7.10 we obtain the
new expression of the orbital magnetic momentum “µL:”

(A5.8.2)

The factor “|γL|h” is called “Bohr’s magneton” and is indicated with “µb,” i.e.:

(A5.8.3)

with µb = 0.927*10–23 and dimensions [A*m2 ≡ Joule*m2/Weber].*
With the introduction of the orbital quantic number given in A5.8.1 the magnetic quantic number

“mL” given by A5.7.11 now assumes another set of values, given by:

(A5.8.4)

and it is interpreted as an index that represents the projections of “L” along the direction of the
applied magnetic field. These projections “LB” are given by:

(A5.8.5)

where “b0” is the versor of “B.” A case for � = 3 is represented in Figure A5.8.1.
The spin quantity of motion momentum is still quantized along the direction of the applied

magnetic field according to A5.7.14, and to “S” is associated a modulus given by:

Electron

Mass: 9.1066*10 –28 grams
Charge: 1.6*10 –19 Coulomb

Hydrogen Atom

Quantic number “n” Mean orbit radius (Å) EEEEt/10—23 erg

1 0.53 –217.3
2 2.12 –54.3
3 4.77 –24.2

*  Wilhelm Eduard Weber, German physicist, born in Wittenberg 1804 and died in Gottingen in 1891.
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(A5.8.6)

where the number s = 1/2. Similar to the case shown in Figure A5.8.1, the spin quantic number
“ms” is interpreted as an index that represents the projections “SB” of “S” along the direction of
the applied magnetic field. In this case, only two projections are possible since ms = ±1/2, given by:

(A5.8.7)

Note that different from the case of “L,” where each atom has a value of “�,” here “S” is
invariant with the atoms, i.e., this value is equal for any atom. Using Equation A5.8.6 and the spin
gyromagnetic ratio “γs” given by A5.7.14, we obtain the new expression of the spin magnetic
momentum “µs:”

(A5.8.8)

and the components “µSB” of “µS” along the direction of the applied magnetic field are given by:

(A5.8.9)

Also the total quantity of motion momentum “T” defined in A5.7.17 is quantized, according
to the relationship:

(A5.8.10)

where “j” is called the “total angular momentum quantic number.” The values that “j” can have
depend on the type of atom. For example, for a hydrogen atom:

(A5.8.11)

Figure A5.8.1
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It is important at this point refer to an important principle verified in practice and formulated
by the physicist W. Pauli,* which states that two electrons with the same spin direction cannot
exist in an orbit. Due to this principle, for a complete atom** there is no net contribution of spin
magnetic momentum, and of course no net contribution of spin quantity of motion momentum.

Concerning the total magnetic momentum “µ T” defined in A5.7.16, for atoms with more than
one electron, it is possible to define a projection “µ TT” of “µ T” along “T” since it is not assured
that “µ T” is parallel to “T.” This projection is:

(A5.8.12)

where “g” is the Lande*** factor given by:

(A5.8.13)

In some texts “µ TT” is simply indicated with “µ T,” but we prefer to use the double subscript
to emphasize the concept of projection. The quantity “total gyromagnetic ratio, γT” is defined as:

(A5.8.14)

Using A5.8.3 and A5.8.10 the modulus of A5.8.12 becomes:

(A5.8.15)

Similar to “L” and “S,” “T” also assumes discrete projections along the direction of the applied
magnetic field, with a picture similar to that shown in Figure A5.8.1. So, a new quantic number
“mT” is introduced, called the “total magnetic quantum number” given by:

(A5.8.16)

and it is interpreted as an index that represents the components “TB” of “T” along the direction of
the applied magnetic field, given by:

(A5.8.17)

Using the total gyromagnetic ratio “γT,” the projections “µ TB” of “µ T” along “B,” are given by:

(A5.8.18)

In general, in an atom “µ T” can be due to both “µ L” and “µ S” or only one of them. In the cases
when “µ T” is due to “µ S” it is interesting to show that the previous equation evaluated for the case
of a single electron gives the same value of Equation A5.8.9. In fact, in this case we have � = 0
and from A5.8.11 it follows that j ≡ s and from A5.8.13 we have g = 2. Since we only have one
electron, then mT ≡ ms, and the previous equation is coincident with A5.8.9.

*  Wolfgang Pauli, Swiss physicist, born in Vienna in 1900 and died in Zurich in 1958.
**  With “complete atom” it is intended an atom with every orbit occupied with two electrons.
***  Alfred Lande, German physicist, born in Elberfeld in 1888 and died in Columbus in 1976.
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We want to conclude this brief introduction to the four quantic numbers for atom theory with
an important result obtained from a work of the physicist Heisenberg. In fact, he has shown that
the energy interactions between electrons are not only due to magnetic and electrostatic energy,
but also to a particular energy called “exchange energy” indicated with “E x.” If we indicate with
“S10” and “S20” the spin quantity of motion momentum versors of two electrons, the exchange
energy is given by:

(A5.8.19)

where “Jx” is called the “exchange integral” and depends on the probability that the electrons
exchange their orbits. In Appendix A6 we will show how the exchange energy plays an important
role in determining the magnetic properties of materials.

A5.9 THE PRECESSION MOTION OF THE ATOMIC MAGNETIC MOMENTUM

Let us suppose an electron with mass “m” and charge “e” moving with angular frequency “ωL”
on its orbit of radius “r.”* Consider the medium be the vacuum, i.e., homogeneous and isotropic,
so that we can set B ≡ µ0H. “H” is a static magnetic field applied orthogonally to the electron orbit
plane and directed as “ωL.” For the balance of force, the centripetal force is equal to the sum of
the Coulomb and Lorentz forces, so that:

(A5.9.1)

Resolving in “ωL” we have:

(A5.9.2)

where “ωp� ,” called the “Larmor** angular frequency,”*** is defined as:

(A5.9.3)

The last equality comes from the fact that γL ⊥   –e/2m, as defined in A5.7.10. As a consequence
of the static magnetic field application, the angular frequency of the electron has been increased
of “ωp� .” This is an already known result from Section A5.3, where the Lorentz force was introduced.

A particular case is when “B” and “µT” present an angle “θ” between them, as indicated in
Figure A5.9.1. During the time “∆t” when the applied magnetic field “H” reaches its final value,
an “e.m.f.” is induced in the equivalent wire loop representing the electron in orbit, due to the
Faraday-Neumann-Lenz law we discussed in Section A5.4. This “e.m.f.” tends to increase the
electron speed. This increase also generates a variation “∆T” in total quantity of motion momentum
“T,” whose direction is given by the couple “C” working on the total magnetic momentum “µ T.”
In this case C = µT ⊗  B. Passing to the infinitesimal variations and applying the theorem of quantity
of motion we gave in A5.2.18 we have:

*  We will assume the orbit to be purely circular.
**  Joseph Larmor, English physicist, born in Magheragall in 1857 and died in Hollywood in 1942.
***  Note that rigorously “ωp�” is an angular frequency since it is the solution of Equation A5.9.1. Nevertheless, “ωp�” is
also called the “Larmor frequency.”
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(A5.9.4)

Now:

a. indicating with “n” the number of atoms per unit length whose total magnetic momentum “µT” are
aligned 

b. using the total gyromagnetic ratio “γT” multiplying Equation A5.9.4 by “nγT” we have:

(A5.9.5)

where “M ” is given by:

(A5.9.6)

The previous equation defines the vector “M ” called the “magnetization vector,”* which
represents the material in its general aspect and not more microscopically. In fact, it can happen
that a material has M  = 0 if µT ≠ 0. Equation A5.9.5 is called the “magnetization equation,” and
will be one of the most important equations used in Appendix A7 to study ferrites. Specifying
Equation A5.9.5 to the case indicated in Figure A5.9.1, i.e., where B ≡ Bzz0, and equating the
components along the same axis for both equation members we have:

(A5.9.7)

(A5.9.8)

(A5.9.9)

Figure A5.9.1

*  “M ” is also simply called “magnetization.”
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where “ωp,” called the “precession angular frequency,”* is defined as:

(A5.9.10)

The last equality in A5.9.10 comes from the fact we are evaluating the medium as homogeneous
and isotrophic. In literature, sometimes the previous equation is simply written as ω = –γH, with:

in MKSA (A5.9.11)

in CGSA (A5.9.12)

In these cases, the reported value for “γ” is really the product “γTµ0,” which we define as:

(A5.9.13)

which will be used in this text when we discuss ferrimagnetic devices.
Equation A5.9.9 says that the magnetization component along “z” doesn’t change with time,

while Equations A5.9.7 and A5.9.8 have a well-known form, similar to that defined in Chapter 1
for the transmission line equations. Proceeding in the same way as in Chapter 1, Equations A5.9.7
and A5.9.8 can be transformed in an equation where only “M x” or “M y” appear. Using “M x” we
have:

(A5.9.14)

whose solution, using the sinusoidal form, is:

(A5.9.15)

Supposing that at the initial time t = 0 only the “M x” component exists, then Equation A5.9.15
becomes:

(A5.9.16)

which inserted in A5.9.7 results in:

(A5.9.17)

The two previous equations tell us that “M ” rotates along the direction of “H” with an angular
frequency “ωp,” and this motion is called “precession motion.” This situation is represented in
Figure A5.9.2. Note that if θ = 0 there is not precession motion, but the electrons increase or
decrease their angular speed, depending on the direction of the applied static magnetic field.

In practice, this phenomena is more complex than we have shown. In fact, if the “H” intensity
is higher than a value, which depends on the material under test, then “M ” aligns on “H” and the

*  Different from the case of “ωp�,” here “ωp” doesn’t come from an equation where angular frequencies are used. We
have employed the symbol “ω,” used for angular frequencies, just for analogy to the case of “ωp�.” 

ω γ γ µp T Z T ZB H−⊥ − ≡ − 0
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precession motion stops. This situation is called “saturation.” The cause of this effect has been
investigated by the physicists L. Landau* and M. Lifshitz,**,4 who introduced a damping momen-
tum couple “m d” given by:

(A5.9.18)

to take into account the alignment of “M ” on “H.” In this equation “α” is called the “damping
factor” and “M ” is the modulus of “M .” Note that since “γT” is a negative number “md” is always
directed orthogonally to “M ” and toward the “H” axis, as indicated in Figure A5.9.3. For good
ferrimagnetic materials of the type we employed in the ferrimagnetic networks and devices studied
in this text, typical values of “α” are lower than 0.1. Taking into account also “md,” the magnetization
equation becomes:

(A5.9.19)

Proceeding to evaluate the vectorial products of the previous equation and equating the com-
ponents along the same axis for both the members we have:

(A5.9.20)

(A5.9.21)

(A5.9.22)

Figure A5.9.2

*  Lev Landau, Russian physicist born in Baku in 1908 and died in Moscow in 1968.
**  Michajlovic Lifshitz, Russian physicist born in Kharkow in 1915 and died in Moscow in 1985.
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The equation of main interest is the third because it gives the variation with time of the
component along the direction “z” of the applied magnetic field. We could simply resolve it if we
could consider a constant the “M z” that appears in Equations A5.9.20 and A5.9.21. We can do that
if we observe that:

1. “α” is a small number
2. We know that ferro-ferrimagnetic* materials can surely be magnetized, and so “M x” and “M y”

decay in a time to a very small value, theoretically zero.

For these reasons, we cannot cause appreciable error if we substitute into A5.9.20 and A5.9.21
some constant value “M zc” to “M z .” Doing that, Equations A5.9.20 and A5.9.21 are solution
independent from Equation A5.9.22, and can be rewritten as:

(A5.9.23)

(A5.9.24)

where C ⊥   αωpM zc /M . Due to the previous hypothesis 2, we can suppose an exponential time
dependence for “M x” and “M y,” and write:

Figure A5.9.3

*  Ferromagnetic and ferrimagnetic materials will be studied in Appendices A6 and A7. For the moment we say that these
materials can be magnetized to the point that if the external field is removed a net magnetization remains. Ferro-ferrimagnetic
materials are also called “gyromagnetic” materials.
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(A5.9.25)

(A5.9.26)

Inserting these last two equations into A5.9.23 and A5.9.24 we have:

(A5.9.27)

(A5.9.28)

This system has nonzero solutions if:

(A5.9.29)

that inserted into A5.9.25 and A5.9.26 give us the desired solution. For example, A5.9.25 writes as:

(A5.9.30)

with “D,” “E,” and “F” constants. Inserting this equation into A5.9.23 we have:

(A5.9.31)

Inserting these last two equations into A5.9.22 we have:

(A5.9.32)

which, when integrated gives:

(A5.9.33)

The constant “B” is determined by setting the modulus of “M ” obtained as “M x
2 + M y

2 + M z
2”

as equal to “M” for t = ∞. Performing this calculation we have B ≡ M , and so the previous equation
becomes:

(A5.9.34)

Note that this equation tells us that for t = ∞ the component “M z” along “z” just coincides with
“M ,” i.e., “M ” and “B” are aligned. This situation is represented in Figure A5.9.4.

We want to conclude this section observing that the use of the equation of classical mechanics
is acceptable in this case since we are dealing with a macroscopic characteristic of the materials,
i.e., the magnetization. Note that in any case, quantum mechanics is not contrary to classical
mechanics since the former mainly states the quantization of the formulas for microscopic bodies
like atoms and molecules.
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A5.10 PRINCIPLES OF WAVE MECHANICS

This last section of this appendix is not really used in other parts of this text, but we could not
conclude our discussions on atom structure without introducing the most innovative atom theory,
which has its foundations in “wave mechanics.”*

With this theory, an atom loses the deterministic structure and assumes a probabilistic nature.
The electrons have no more precise orbits, but instead they are defined with a function “Φ”** that
permits evaluation of the probability of finding the electron. The Heisenberg indetermination
principle given in Section A5.6 assumes in this theory a big importance, since in wave mechanics
there is never the absolute certainty to find the electron in a defined position.

If we combine the energy-frequency relationship “E = hf” given in A5.6.3 with the famous
Einstein absolute energy relationship:

(A5.10.1)

where “c” is the speed of light in a vacuum.
We have

(A5.10.2)

Wave mechanics just assumes that every body of mass “m” can be regarded with its wave with
wavelength “λ.” One of the first studies on wave mechanics was made by L. De Broglie,*** who
generalized the previous equation to every body with speed “v.” In addition, wave mechanics applied
to the atom assume that the wave function “Φ(x,y,z)” is governed by an equation similar to the
“wave equation” we have defined in Appendix A2. Since no loss of energy is supposed to be
radiated by the electron in its orbital movement, the electron wave is supposed to be a stationary

Figure A5.9.4

*  “Wave mechanics” is also indicated with “undulatory mechanics.”
**  The function “Φ” is called the “wave function” or “probability function” for reasons we will introduce later.
***  Louis De Broglie, French physicist, born in Dieppe in 1892 and died in Louveciennes in 1987.
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wave, i.e., a wave that doesn’t propagate energy. It is usual to indicate such a stationary wave as
represented in Figure A5.10.1 with the sinusoidal curve centered on the electron’s most probable
orbit of radius “r.” To have a stationary wave on this orbit it is necessary that:

(A5.10.3)

From the previous equation it is simple to show how the Bohr assumption given in A5.7.1 can
still be obtained. In fact, inserting the second of A5.10.2 evaluated for a speed “v” in
Equation A5.10.3 we have mvr = nh, which is exactly Bohr’s assumption.

The analytical relationship connecting the function “Φ” to a generic “wave equation” has been
performed by the physicist E. Schroedinger,* resulting in:

(A5.10.4)

where “E” and “E p” are respectively the total and potential electron energy, and “ ∇ 2” is the
“Laplacian” operator defined in Appendix A8. Equation A5.10.4 is called “Schroedinger’s equation.”
Note that in the previous equation the time doesn’t appear. However, Schroedinger also gave an
equation where the time appeared, resulting in:

(A5.10.5)

where the total energy is now also a function of time “t” in addition to its dependence on the
coordinates. Equation A5.10.5 is called the “time dependent Schroedinger’s equation.”

Figure A5.10.1

*  Erwin Schroedinger, Swiss physicist, born in Vienna in 1887 and died there in 1961.
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Since the function “Φ” is representative of the probability of finding the electron in the space,
to the integral of “Φ2” extended to an infinite volume “V” is associated the certainty of finding the
electron, i.e.:

(A5.10.6)

The solutions of the Schroedinger equation, which also satisfy the previous equation, are chosen
as the solutions of the wave mechanics applied to atomic structure. These solutions are called
“orbitals” and are individualized by four parameters, as in the case of quantum mechanics. For this
reason the four parameters are associated with the same four letters used in quantum mechanics,
i.e., “n,” “� ,” “m�” and “ms,” with values:

(A5.10.7)

(A5.10.8)

(A5.10.9)

(A5.10.10)

Since the fourth number is known a priori in its value, it is usually not employed in the notation
of the orbital, unless two electrons are on the same orbital. So, each orbital is generally indicated
with “Φn ,� ,m� ,” with a specified value for the three subscripts. It is possible to show that the index
“n” quantizes the electron energy, as Bohr did with Equation A5.7.6, while the index “�” strongly
affects the orbital shape. Depending on the values of “�,” the orbitals are named according to the
following Table A5.10.1:

and from �  ≥ 4 the orbitals are called as the letters of the alphabet after “f,” i.e., “g,” “h,”…. Orbitals
that have the same values of “n” and “� ,” i.e., they only differ for “m�” and/or “ms,” are called
“degenerate,” since they have practically the same energy. For any value of “n” a number of “n2”
orbitals exists, and since a maximum of two electrons are possible for each orbital, then the
maximum number “Z” of electrons is Z = 2n2. A list of some orbitals are indicated in the following
Table A5.10.2 where we have indicated the degenerate orbitals with underlined symbols.

When some possible degenerate orbitals have no electrons, the electrons that enter first occupy
all these orbitals with same direction magnetic spin, of course one electron for one orbital according
to Pauli’s principle discussed before. When other electrons enter in these orbitals, they complete
each orbital with their spin magnetic momentum in the opposite direction to the spin of the already
present electron. This principle is called the “maximum multiplicity principle,” according to the
physicist F. Hund.* For example, the oxygen atom has 8 electrons: two are in “1s” orbital, two in

Table A5.10.1

llll Orbital name

0 s (sharp)
1 p (principal)
2 d (diffuse)
3 f (fundamental)

*  Friedrich Hund, German physicist, born in Karlsruhe in 1896 and died in Gottingen in 1997.
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“2s,” the remaining 4 electrons are 3 in each “2p” degenerate orbitals, and the remaining completes
the first degenerate orbital.

Different from classical or quantum mechanics, in wave mechanics electron orbits are not only
spherical or elliptical. In Figures A5.10.2 through A5.10.4 we have represented some orbitals. The
areas with more concentrated dots indicate where the probability of finding electrons is
greatest.

Table A5.10.2

n llll mllll Notation Name

0 0 0 Not possible
1 0 0 Φ100 1s
2 0 0 Φ200 2s

1 –1 Φ21—1 2p
1 0 Φ210 2p
1 1 Φ211 2p

3 0 0 Φ300 3s
1 –1 Φ31-1 3p
1 0 Φ310 3p
1 1 Φ311 3p
2 –2 Φ32—2 3d
2 –1 Φ32-1 3d
2 0 Φ320 3d
2 1 Φ321 3d
2 2 Φ322 3d

4 0 0 Φ400 4s
1 –1 Φ41-1 4p
1 0 Φ410 4p
1 1 Φ411 4p
2 –2 Φ42-2 4d
2 –1 Φ42-1 4d
2 0 Φ420 4d
2 1 Φ421 4d
2 2 Φ422 4d
3 –3 Φ43-3 4f
3 –2 Φ43-2 4f
3 –1 Φ43-1 4f
3 0 Φ430 4f
3 1 Φ431 4f
3 2 Φ432 4f
3 3 Φ433 4f

Figure A5.10.2
©2000 CRC Press LLC



Figure A5.10.3

Figure A5.10.4
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Orbitals “s” always have spherical symmetry, and in Figure A5.10.2 we have represented for
simplicity a cross-sectional view.

In contrast, “p” orbitals can be approximated with a ring shape, each one lying on a plane, and
some transverse sections are represented in Figure A5.10.3.

“d” orbitals have more complicated shapes, in general combinations of rings oriented in more
planes.

Of course, all the shapes depend on the values of the letters “n,” “� ,” and “m�.” 
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APPENDIX A6

The Magnetic Properties of Materials

A6.1 INTRODUCTION

The study of the magnetic properties of materials and interactions of magnetic fields
materials requires a lot of knowledge of physics and chemistry. It is not possible to concentr
these science branches in only a few pages, and this is not a physics or chemistry text. Neve
in many chapters of our book we discuss ferrimagnetic devices, particularly in Appendix A7 w
we study the behavior of ferrite inside magnetic fields. For a proper reading of that append
important to know some fundamental concepts of magnetism and atomic physics. This las
has been discussed in Appendix A5, while in this appendix we will discuss the fundamental ele
concerning the macroscopic physical properties of materials inside magnetic fields. We will 
only the relationships required to introduce the reader to properly understanding Appendix A
to make a bridge between Appendix A5 and A7. It is assumed that the reader knows the top
we are going to discuss, so that it is only necessary to remind him or her of the relationship
indicated. Deeper insight into this branch of physics can be obtained from the books indica
the references.1,2,3

We will concentrate our study on ferromagnetic and ferrimagnetic devices, and we will 
how they are closely related. The other materials classifications and characteristics from a m
point of view will be briefly discussed, while deeper insights can be found in specific texts.4

A6.2 FUNDAMENTAL RELATIONSHIPS FOR STATIC
MAGNETIC FIELDS AND MATERIALS

Every time in a free space pervaded with a static induction magnetic field “B0” a material is
inserted, a new magnetic situation arises. In the free space, the magnetic situation is com
defined with the two equations:

(A6.2.1)

(A6.2.2)

i.e., one of the static Maxwell’s equations* and the Ampere’s law.** When a homogeneous
is inserted in this space, we also have to evaluate the current density “Ja” representing the whole
atomic current density that generates the body magnetization “M.”*** So, Equation A6.2.2
becomes:

*  See Appendix A2 for Maxwell’s equations definitions.
**  See Appendix A5 for Ampere’s law.
***  See Appendix A5 for magnetization definition.

∇ • =B0 0

∇ ⊗ =B J0 0µ
©2000 CRC Press LLC
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(A6.2.3)

where “B” represents the new induction magnetic field, given by:

(A6.2.4)

Inserting Equation A6.2.4 into A6.2.3 we have:

(A6.2.5)

It is usual to set the magnetization as:

(A6.2.6)

where “N” is the number of atoms, or in general “particles,” per unit of volume and “µ~
T”* the

total mean time magnetic moment per particles and oriented along “B.” To simplify the notation,
“magnetic field, H” is defined as:

(A6.2.7)

from which we have:

(A6.2.8)

which is similar to Equation A6.2.2, but in this case the magnetic field “H” possesses inside
magnetic properties of the material. For isotropic materials, which we will assume to use 
otherwise stated, the relationship between “H” and “M” is:

(A6.2.9)

where “χ” is called “susceptibility,” a dimensionless quantity. For ferromagnetic and ferrimagn
materials, which will be studied later, “χ” depends on the applied magnetic field. In the “CG
unit system, quite diffused in magnetism, the magnetization is indicated with “4 π M” and measured
in “Gauss,”** while if it is measured in “Oersted”*** the magnetization is indicated with “M.” 
“MKSA” the magnetization is measured with “Amp.t/m.” Inserting the previous equation in A6
we have:

(A6.2.10)

with:

(A6.2.11)

*  See Appendix A5 for atomic magnetic moment.
**  Carl Friedrich Gauss, German physicist, born in Brunswick in 1777 and died in Gottingen in 1855.
***  Hans Christian Oersted, Danish physicist, born in Rudkoeping in 1777 and died in Copenhagen in 1851.

∇ ⊗ = +( )B J Jaµ0

B B−⊥ +0 0µ M

∇ ⊗ =M Ja

M = N Tµ~

H
B

−⊥
− µ
µ

0

0

M

∇ ⊗ =H J

M = χH

B H H Hr= +( ) − −⊥ ⊥µ χ µ µ µ0 01

µ χ µ µ µr rand− −⊥ ⊥+1 0
©2000 CRC Press LLC
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called respectively “relative” and “absolute” permeability. Inserting Equation A6.2.10 into A6
and assuming the medium is also isotropic we can write:

(A6.2.12)

and since the induction magnetic field always has null divergence:

(A6.2.13)

The two previous equations are completely similar to A6.2.1 and A6.2.2 since the characte
of the material inserted there, “B0”, are included inside the definition of “B” or “µ.”

A6.3 THE DEFINITIONS OF MATERIALS IN MAGNETISM

Materials are likely to be defined according their electrical properties, also from the mag
point of view they can be divided mainly into four groups, i.e.: diamagnetic, paramagnetic, 
magnetic, or ferrimagnetic materials. The characterization is done according to the behavior χ,”
as we will now define.

a. Diamagnetic Materials

Diamagnetic materials can be considered as the magnetic equivalent of the dielectric c
parts. These materials present a small value of “χ,” typically inside the range –10–4 to –10–3, and
consequently their relative permeability, using Equation A6.2.11, is nearly closed to one. 
Equation A6.2.9, the magnetization “M” is also –10–4 to –10–3 times smaller than “H.” Note that
“χ” is negative, meaning that “M” is in the opposite direction to the applied field. Diamagne
materials also have the characteristic that “χ” is nearly independent of temperature, which is
unique characteristic, dependent on the fact that they are quite insensitive to magnetic fields
materials belonging to the diamagnetic family are copper (Cu), silver (Ag), water (H2O), bismuth
(Bi), lead (Pb).

b. Paramagnetic Materials

These materials have positive values of susceptibility that are nearly ten times those 
paramagnetic counterparts, i.e., in the range 10–3 to 10–2. Paramagnetic materials have “χ” moving
in temperature nearly according to Curie’s* law:

(A6.3.1)

The constant “C,” called “Curie’s constant,” is measured experimentally for each materi
as to match experimental values to Equation A6.3.1. For temperatures closer to T = 0 Curie
doesn’t accurately represent the behavior of “χ” since the susceptibility tends to a constant valu
Typical paramagnetic materials are platinum (Pt), aluminium (Al), magnesium (Mg), and air

c. Ferromagnetic Materials

For these materials the susceptibility reaches the highest value, typically some units o4.
Together with the ferrimagnetic materials that we will discuss later, ferromagnetic materials

*  Pierre Curie, French physicist, born in Paris in 1859 and died there in 1906.

∇ ⊗ =B Jµ

∇ • =B 0

χ = C T
©2000 CRC Press LLC
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the ability to retain memory of previous magnetization with respect to the magnetic exper
we make, but only if the antecedent applied magnetic field has been stronger than a value.
high values of “χ” are obtained for operating temperatures lower than a precise one “Tcf,” called
the “ferromagnetic Curie’s temperature.” For temperatures higher than “Tcf” ferromagnetic materials
become paramagnetic. A lot of ferromagnetic materials are good conductors, different from
ferrimagnetic counterparts, which are good insulators. Typical ferromagnetic materials are iro
with Tcf = 775 °C, nickel (Ni) with Tcf = 360 °C, cobalt (Co) with Tcf = 1100 °C.

d. Antiferromagetic Materials

To this family belong all those materials that have equal macroscopic characteristics of 
magnetic materials, like molecular structure, but have no ferromagnetic properties, and c
evaluated as paramagnetic. Typical antiferromagnetic materials are manganese (Mn) and 
(Cr), also if bonded with other materials, the resulting one is ferromagnetic.

e. Ferrimagnetic Materials

Ferrimagnetic materials take their name from the chemical compound of iron (Fe) with 
substances like oxygen (O), magnesium (Mg), manganese (Mn), and nickel (Ni). The first d
ered natural ferrimagnetic material was called “magnetite” whose chemical composition is F3O4.
A generic ferrimagnetic material is usually called “ferrite,” also if ferrite is only a particu
ferrimagnetic material. Unless otherwise stated, we also use this convention. One charac
common to all ferrites is the fact that they are good insulators, typically 10–6 times the conductibility
of ferromagnetic materials. But in any case, their susceptibility is very high, typically near 
thousand. 

Due to their wide use in high frequency signal conditioning, the following Appendix A
completely dedicated to theory and applications of ferrite, while in this appendix we will tr
define the physical reasons that permit the material to be ferro-ferrimagnetic. 

A6.4 STATISTICS FUNCTIONS FOR PARTICLE
DISTRIBUTION IN ENERGY LEVELS 

The oldest magnetic materials to be studied are the ferromagnetic ones. Of course, in RF 
these materials have no comparable use with that of ferrites, but the study of ferromagnetic m
has guided researchers to find a theory for the ferrimagnetic ones. In nature all ferroma
materials are metals, i.e., good conductors. Since in this appendix we study the macro
characteristics of materials inside a magnetic field, in this case we have to introduce what is a

A metal is composed of a lot of small geometric cells, like cubes,** where atoms are p
at the vertices. A structure of this kind is in general said to be a crystal. From an electrica
of view, one of the first interpretations of metals was made by the physicist P. Drude.**
supposed the metal to be composed of an electron’s gas confined in the metal, where atom
electrons between them. Until today Drude’s interpretation of metals is still employed. For
metals used in electrical circuits like copper (Cu), silver (Ag), gold (Au), aluminium (Al),**
every atom typically shares 2 electrons with the other atoms. The electrical and magnetic 
scopic properties of such a system, composed of many particles of the same kind, have to be

*  We will return later to this topic.
**  Not all metals have such a simple, unitary geometric cell.
***  Paul Drude, German physicist, born in Brunswick in 1863 and died in Berlin in 1906.
****  Such metals are also used to make networks and devices using transmission lines.
©2000 CRC Press LLC



  

ases.
d we
 these
nergy

                      

rticles

                                                  

rticles
e will
, we will
statistically. For this reason, Drude applied to this system the Boltzmann* distribution** for g
In this section we will introduce the three most used distribution functions for gases, an

will discuss which function is best suited to represent a metal. A common characteristic of all
distribution functions is that it is possible to evaluate the number of particles inside an e
interval “E” and “E + dE.”

a. Boltzmann Function

Let us indicate with “LB(E)” the number of possible different energy levels in the interval “E”
and “E + dE,” given by:

(A6.4.1)

with “wB(E)” a weight function that depends on the system under test. Then, the number of pa
“nB(E) dE” inside the energy interval “E” and “E + dE” is given by:

(A6.4.2)

where “k” is the Boltzmann constant, equal to 1.38*10–23 Joule***/°K in MKSA. The energy value
“EB” is determined assuming that the sum of all particles located in any energy “E” are equal to the
total number “N” of particles. The ratio of “nB(E)/LB(E)” is called the “Boltzmann’s function,”****
i.e.:

(A6.4.3)

This function belongs to the subject of classical mechanics.*****

b. Bose******-Einstein******* Function

The number of particles “nBE(E)” inside the energy interval “E” and “E + dE” is given by:

(A6.4.4)

where “LBE(E)” is the number of possible different energy levels in the interval “E” and “E + dE,”
given by:

(A6.4.5)

*  Ludwig Boltzmann, Austrian physicist, born in Vienna in 1844 and died in Duino in 1906.
**  Unless otherwise stated, in this appendix the word “distribution” will mean “a function that represents the pa
distribution in the available energy levels.” In our case “particle” means “electron,” but since the distributions w
introduce can be applied to any system that can be defined as a “gas,” which could not be formed with electrons
continue to use the word “particle.”
***  James Joule, English physicist, born in Salford in 1818 and died in Sale in 1889. 
****  Boltzmann function will be simply indicated with “B-function.”
*****  See Appendix A5 for classical mechanics assumptions.
******  Satyendra Nath Bose, Indian physicist, born in Barthi in 1894 and died in Calcutta in 1974.
*******  Albert Einstein, German physicist, born in Ulm in 1879 and died in Princeton in 1955.
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with “wBE(E)” a weight function that depends on the system under test. The energy value “EBE” is
determined as “EB.” The ratio of “nBE(E)/LBE(E)” is called the “Bose-Einstein function,”* i.e.:

(A6.4.6)

This function belongs to the subject of quantum mechanics.**

c. Fermi***-Dirac**** Function

The number of particles “nFD(E)” inside the energy interval “E” and “E + dE” is given by:

(A6.4.7)

where “LFD(E)” is the number of possible different energy levels in the interval “E” and “E + dE,”
given by:

(A6.4.8)

with “wFD(E)” a weight function that depends on the system under test. The energy value EF,”
called “Fermi’s energy,” is determined proceeding as indicated for “EB.” The ratio of “nFD(E)/LFD(E)”
is called the “Fermi-Dirac function,”***** i.e.:

(A6.4.9)

Similar to the “B-E” function, this one also belongs to quantum mechanics.
In Figure A6.4.1 we have represented the three distribution functions, for a hypothetica

for which EB ≡ EBE ≡ EF ⊥   E0 so that ∆E /kT is equal for all the functions. “∆E” is of course defined
as “E-E0.” From this figure we can make some observations.

First of all note for ∆E /kT > 2 all the distributions practically assume the same value. S
every function has been defined as the ratio “nXY(E)/LXY(E)”****** if we are using a gas where

******* (A6.4.10)

then the quantitative functions must have a value higher than “1” in the denominator. Conseq
the exponential term is preponderant with respect to “1” and they can be approximated 
function equal to the Boltzmann one. We obtain the result that for gases where A6.4.10 hol
B-function is a good approximation of the quantitative ones. This coincidence among sta
functions when A6.4.10 holds can also be explained observing that high values of “∆E /kT”
correspond to having ∆E  >> kT. It means that the probability of finding particles at high ene

*  The Bose-Einstein function will be simply indicated with “B-E function.”
**  See Appendix A5 for quantum mechanics assumptions.
***  Enrico Fermi, Italian physicist, born in Rome in 1901 and died in Chicago in 1954.
****  Paul Dirac, English physicist, born in Bristol in 1902 and died in Tallahassee, FL, U.S., in 1984.
*****  The Fermi-Dirac function will be simply indicated with “F-D function.”
******  “X” and “Y” represent “B,” “BE,” or “FD.”
******* When the condition nXY(E) << LXY(E) holds the system is said to have, improperly, a “low density.”
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levels is lower than the probability for low energy levels. So the principle that at high energy 
we have a low probability of finding particles is respected for all statistics. Conversely, at ver
temperature, typically some Kelvin degrees,* some gases liquefy and A6.4.10 is not valid. C
quently, B-function is not accurate to predict particles’ distribution, while it has been proved
“f BE(E)” is the best choice. Particles belonging to a system that obeys the “B-E” function are 
“bosons.” At temperatures higher than some tens of Kelvin degrees every real gas** c
approximately represented with the B-function. 

From Figure A6.4.1 we can also observe how the “fBE(E)” is infinite for E ≡ EBE. It means that
this statistic doesn’t assume energy values lower than “EBE,” which is also the energy level to hav
the highest probability of being occupied. Conversely, neither “fFD(E)” nor “fB(E)” has a low energy
limit.

The “F-D” distribution has the characteristic that energy level E ≡ EF has equal probability to
be free or occupied by a particle since fFD(EF) = 0.5. Particles belonging to a system that obe
the “B-E” function are called “fermions.” The best example of a gas represented by the “
distribution is the electron gas inside a metal. This system is equivalent to a real gas only fr
point of view of the particle motion while the particles’ quantity and particle mass are 
respectively extremely higher and lower than any particle of a real gas, also at ambient tempe
From this other point of view, the electron gas is a high density system at ambient tempe
and in this case the other two functions fall in error. Due to the high importance of the “
function in the systems with which we are dealing,*** we think it is important to evaluate the EF”
expression, since it assumes a large importance in the application of the “F-D” functio
Figure A6.4.2 we have represented this function with EF = 5eV**** at three temperatures, i.e., 1

Figure A6.4.1

*  William Thomson Kelvin, English physicist, born in Belfast in 1824 and died in Netherhall in 1907.
**  With “real gas” we mean not an electron gas.
***  Do not forget that all natural ferromagnetic materials are good conductors which are represented as metals.
©2000 CRC Press LLC
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3000, and 6000 °K, with in abscissae the energy in eV. First of all we can observe that at
all the energy levels below or above “EF” are respectively completely full and completely empt
Since the values of “kT”  at some temperatures are as indicated in the following Table A6.4.1:

from Figure A6.4.2 we recognize how at any practical temperature for a ∆E ≈ 5kT centered at E ≡ EF

the possible energy levels for the electrons pass from to be completely full to completely em
The evaluation of the Fermi energy “EF0” at 0°K can be easily pursued. Let us define a Cartes

coordinate system in the space of the electron gas, and at any axis we associate the qu
motion. So, we will have the three axes numbered with “px,” “py,” and “pz.” Electrons on a sphere
with radius “p” will have the same kinetics energy “E” given by:*

(A6.4.11)

****  1eV = 1.6*10–19 Joule. This energy unit has been defined in Appendix A5.

Figure A6.4.2

Table A6.4.1

T (°K) kT (eV)

1 8.629*10–5

300 2.589*10–2

3000 0.259
6000 0.518

*  See Appendix A5 for definition of various energies.

E = p m2 2
©2000 CRC Press LLC
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where “m” is the electron mass. The Heisenberg’s indetermination principle* in this space c
written as:

(A6.4.12)

from which we can evaluate the minimum undetermined quantized volume ∆V = ∆px∆py∆pz in the
space “pxpypz” as:

(A6.4.13)

where V = ∆x∆y∆z is the geometric quantized volume. Dividing the volume of the sphere “s”
whose radius “p” is given by A6.4.11 with the quantized volume “∆V” given by A6.4.13 we have
the number “LFD(E)” of possible different energy levels, i.e.:

(A6.4.14)

At E = EF0 the previous equation must give the number “N” of electrons. So, applying
concept to A6.4.14 we have:

(A6.4.15)

The values of “EF0” at some temperatures are as indicated in the following Table A6.4.2:

It is possible to show that the Fermi energy in the temperature range 100° to 400 °K is prac
constant and coincident with the value “EF0.” This result permits us to deduce that for this ran
of temperatures the Fermi energy is always higher than “kT.”

After this discussion we can conclude that every statistic can be applied to particular sy
depending on their physical constitution, like particle nature, temperature, and density. Som
it is possible to find in literature the Boltzmann and Bose-Einstein distributions simply as:

(A6.4.16)

(A6.4.17)

where the constants “C” and “D” are evaluated with the well-known procedure that the sum
the particles at any energy must be equal to the total number of particles and “E” is an energy

*  This principle was introduced in Appendix A5.

Table A6.4.2

Metal EEEEF0 (eV)

Copper 7.04
Silver 5.51
Gold 5.54
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interval. With the two notations indicated above the number of particles given by these distrib
assumes expressions like the two previous.

A6.5 STATISTIC EVALUATION OF ATOMIC MAGNETIC MOMENTS

Appendix A5 discussed the atomic magnetic moments, which we recommend reading s
the following relationship will be more simple. The concepts studied in Appendix A5 were m
dedicated to single atoms. In the present case we want to study how these atomic magnetic m
act to create some macroscopic magnetic property of the materials. This discussion is 
orientated to introduce the ferromagnetic behavior studied more deeply in the next sections.
case we are not studying a single atom, but instead the whole material is under study and 
reason the distribution statistics of the previous section will be useful. 

Let us assume that an induction magnetic field “B” is applied to a material along a directio
“z 0,” i.e., B = Bzz0. Indicating with:

“mT” the “total magnetic quantum number”
“µb” the “Bohr’s magneton”
“g” the “Lande’s factor”

the projection “µTz” along the direction “z0” of the atomic total magnetic moment “µT”* is:

(A6.5.1)

and its mechanical magnetic potential energy “E” is:

(A6.5.2)

Now let us suppose that the Boltzmann distribution can be applied for our material com
of “N” atoms per unit of volume. In this case the probability “pE” that one atom possesses th
energy given by the previous equation:

(A6.5.3)

where the constant “C” is evaluated as indicated for A6.4.16. Similar to A6.5.3, the probabilit
that the atoms have other energies is: 

(A6.5.4)

The ratio between “pE” and “p” give the number “n” of atoms that have the energy A6.5.2, i

(A6.5.5)

*  Note that “µT” is for one atom only. See Appendix A5 for atomic magnetic moments.
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The total magnetic moment associated with “n” is obtained by the product “nµTz ⊥   µTzn,” where
“µTz” is given by A6.5.1. But since the atoms can have any “mT” inside the possible range,* the
product “nµTz” must be considered for any “mT.” So:

(A6.5.6)

Note that “µTzn” can be regarded as the mean value of “µTz” along the direction of “B.” The
second member of the previous equation has been resolved by the physicist M. Brillo
obtaining:

(A6.5.7)

where “Bj(x)” is the Brillouin function, given by:

(A6.5.8)

and “x” is defined as:

(A6.5.9)

Graphs of the Brillouin function for j = 1,2,5 are indicated in Figure A6.5.1. Note that for
|x| < 1 the “Bj(x)” can be approximated with a straight line, i.e.:

(A6.5.10)

This approximation is frequently used because practical values of “x” are below “1.” In 
since:

1. The product “gj” assumes typical values lower than 10, 
2. Some values of the ratio “µb/kT” are given in the following Table A6.5.1

then the “x” value given in A6.5.9 is less than “1,” except at temperatures below 100 °K a
“B” values higher than 100 Weber/m.2,*** ,**** From the expression A6.5.7 we can obtain th
magnetization “M” of the material under test, simply multiplying “µTzn” by the number “N” of
atoms per unit volume. We have:

(A6.5.11)

*  The range of possible values for “mT” depend by the type of atom.
**  Marcel Brillouin, French physicist, born in S.Martin de Melle in 1854 and died in Paris in 1948.
***  100 Weber/m2 is an high strength field.
****  Wilhelm Eduard Weber, German physicist, born in Wittenberg 1804 and died in Gottingen in 1891.
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or, using Equation A6.5.9 and the approximation A6.5.10,

(A6.5.12)

Note that from the procedure we followed to arrive at A6.5.11 and from the graphs repres
in Figure A6.5.1, the Brillouin function represents the percentage of the number of the ma
atoms that have a “µT” oriented along “B.” Assuming a medium for which µr ≈ 1, we can set B ≡
µ0H, as indicated in A6.2.10, and the previous equation becomes:

(A6.5.13)

Figure A6.5.1

Table A6.5.1

T (°K) µµµµb/kT

1 0.671
100 6.714*10–3

300 2.238*10–3
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The susceptibility obtained by Equation A6.5.13 has been verified to be accurate for par
netic materials, also if the Boltzmann distribution statistic for the material’s atoms has been
In general, the total macroscopic magnetic moment obtained from A6.5.7 gives values th
practically coincident with those measured for paramagnetic materials. Also for ferromag
materials a good coincidence is verified, but it is necessary to use the spin magnetic momeS”
instead of “µT,” i.e., µT ≡ µS. This fact has been explained assuming that in metals the chem
bond is mainly performed by the most external orbitals. Since these orbitals share electrons
them, these also create an orbital magnetic momentum “µL .” However, these orbitals are involved
just in the chemical binding, and they cannot move the plane of their orbitals to align “µL” with
“B.” The spin momentum can instead do that and this causes µT ≡ µS. The phenomenon of the
external orbital blocking is called “quenching.”

The extension to the ferromagnetic materials of the Brillouin result to explain the paramag
effect of these materials brings high errors if another internal field is not taken into account
internal field is called the “molecular magnetic field” and will be studied in a next section.

A6.6 ANISOTROPY, MAGNETOSTRICTION, DEMAGNETIZATION
IN FERROMAGNETIC MATERIALS

In this section we will discuss some important properties of ferromagnetic materials, w
cause these materials to be unique in the area of magnetism.

a. Magnetization Anisotropy

It has been verified in practice that for any ferromagnetic material the energy “E” required to
magnetize it in a direction can be different from that required energy to magnetize it in an
direction. The directions for which the minimum “Em” and maximum “EM” are necessary are called
the “direction of easy magnetization” and “direction of difficult magnetization.” The energy 
ference “Ea” between “EM” and “Em” is called “anysotropy energy,” and it has been verified th
this value decreases if the material is composed of hypersymmetric* geometric microscopic
ture. For example, iron, which possesses a cubic crystalline structure has lower “Ea” than cobalt,
which possesses an axial crystalline structure.

The explanation of this behavior has been done assuming that the “quenching” is not u
with the applied direction of the external magnetic field.

b. Magnetostriction

This effect could be thought of as the magnetic counterpart of the dielectric effect. W
magnetic field is applied to a ferromagnetic material, it modifies its geometric structure, typ
inside a variation range ∆l = 10 to 30 ppm. These movements are not the same for any ferromag
materials, since some lengthen and others shorten. In addition, these behaviors are also de
on the direction and strength of the applied magnetic field. For example, in the direction o
and difficult magnetization, iron possesses respectively a positive and negative “∆l.” Conversely,
nickel always possesses a negative “∆l.” The explanation of this behavior is still under investigatio
but it is assumed that an internal magnetic energy exists, which the ferromagnetic material 
release when placed inside a magnetic field. The magnetostriction process ends when a ba
reached between the reduction of the internal magnetic energy and the increase of the p
energy due to the material deformation. 

*  By hypersymmetrism we mean a symmetry in many directions.
©2000 CRC Press LLC
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c. Demagnetizing Field

It has been verified that when a magnetized ferromagnetic material is placed inside a ma
induction field “B0” an internal magnetic field “Hd” arises. This field is related to the magnetizatio
through a relationship similar to A6.2.9 but with a different constant, according to:

(A6.6.1)

where “Nd” is called the “demagnetization factor.” “Nd” depends on the shape of material alon
the “Be” direction, and in general its determination is complicated. For example, a sphe
ferromagnetic material uniformly magnetized has Nd = –1/3. This negative value of “Nd” means
that “Hd” and “M” have opposite directions inside the material. Associated to the “Hd” field a
demagnetizing energy “Ed” is defined, given by:

(A6.6.2)

Rewriting expression A6.2.7 as:

(A6.6.3)

and inserting the value Hd = –M/3 for sphere we have:

(A6.6.4)

Note how “M” has the same direction of “B” inside the material, as the experience has ver
while “Hd” is opposite to “M.” This situation is indicated in Figure A6.6.1, where a uniformly
magnetized sphere is placed in the vacuum. In part a we have represented the induction “B
lines, while in part b the magnetic “H” field lines, both produced by the magnetized sphere.
that outside the sphere the general relationship B = µH given in A6.2.10, from which we deduce
that “B” and “H” have the same direction, is valid. If an unmagnetized ferrimagnetic sphe
placed inside a region where an induction “B0” magnetic field exists, the line fields are no long
as indicated in Figure A6.6.1. In this case, the field is the sum of “B0” and “H0,” respectively, with
“Bs” and “Hs” produced by the sphere. In general, for a ferromagnetic material, the expre
between the internal “H” and external “H0” magnetic fields is:

(A6.6.5)

because in addition to “Hd” the anisotropy field “Ha” also exists.
However, for a first approximation to the solution of a magnetic problem involving ferrom

netic materials, the demagnetizing and anysotropy fields are neglected. 

A6.7 THE WEISS DOMAINS IN FERROMAGNETIC MATERIALS

The first theory to explain the most evident characteristics of ferromagnetic materials
introduced by the physicist P. Weiss.* He supposed the ferromagnetic materials to be com
of many small volumes, called “domains,” each one spontaneously magnetized along a dir

*  Pierre Weiss, French physicist, born in Mulhouse in 1865 and died in Lyon in 1940.

H Nd d= M

E Md dN= 2 2

B H= +( )µ0 M

B = 2 30µ M

H H H Hd a= + +0
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Typical domains have a volume ranging from 10–2 to 10–6 cm3, and a single crystal of the
ferromagnetic material is composed of many domains. These self-magnetizations have r
directions in each crystal, so that a net macroscopic magnetization due to the whole dom
zero. Weiss supposed that the origins of this spontaneous magnetization were in an intern
called the “molecular field, Bm,” which is able to align the spin magnetic moments* of the electro
inside each domain. The field “Bm” is proportional to the spontaneous** magnetization “M” through
a simple relationship:

(A6.7.1)

where the constant “Cw” is called the “Weiss’ constant” and depends on the composition of
ferromagnetic material. Of course, if this material is placed in a “B” field the resulting total t”
induction field inside the material is:

(A6.7.2)

Since the crystal is composed of many domains, we can deduce that a small ferroma
volume should exist between two domains, to allow the magnetization to change direction. 
regions have been verified in practice, similar to the existence of the Weiss’ domains, an
been called “Bloch’s*** wall.” These walls are very thin, typically near some fraction of a micro
ter, and contain a magnetic energy due to the change of direction for magnetization, due

Figure A6.6.1

*  In Section A6.5 we have discussed how the magnetization in ferrimagnetic materials can be explained assuming
spin magnetic moment is responsible for the magnetization.
**  The word “spontaneous” can also be found replaced with “natural.” We will sometimes do the same.
***  Felix Bloch, Swiss physicist, born in Zurich in 1905 and died there in 1983.

B

H

Hd

a)

b)

µ 0

µ 0

B Cm w= µ0 M

B H Bt m= +µ0
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different orientation in each domain. This energy, called “wall’s energy, EB,” grows with the square
of one crystal dimension and its typical value is near 10–3J/m2. It is interesting to discuss the shape
of typical domains of ferromagnetic materials. Suppose that a single ferromagnetic crystal
be represented as indicated in Figure A6.7.1a. This situation is not one of saving more energy f
the crystal. In fact, the magnetic energy is in general given by:

(A6.7.3)

where the volume “V” is where “B” and “H” exist. Note that “E” grows with the cube of one
crystal dimension. In the case of Figure A6.7.1a, assuming a squared section, there is a lo
magnetic energy lost in the volume surrounding the crystal, near 106 Joule/m3. So, as the crystal
grows in dimension it possesses a lower magnetic energy if it divides in many domains, si
this case it minimizes the energy “E + EB.” Of course, other energies enter in this phenomen
like anysotropy and magnetostriction. For these reasons, a crystal tries to divide itself in a n
of domains so as to reduce the number of field lines in the air and minimize the total energ
procedure is as indicated in Figure A6.7.1, parts b and c. In general, the resulting typical domain
distribution in a ferromagnetic crystal is indicated in Figure A6.7.1d, where the longer domains
are relative to regions where “M” is aligned to the direction of easy magnetization. 

A6.8 APPLICATION OF WEISS’ THEORY TO SOME
FERROMAGNETIC PHENOMENA

In this section we will show how Weiss’ theory explains some of the most evident ferromag
behaviors.

Figure A6.7.1

a) b)

c) d)

E = •∫1
2

B HdV
V
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a. Spontaneous Magnetization and Curie’s Temperature

It is possible to give an expression for spontaneous magnetization, using the magnet
expression obtained in A6.5.11, i.e.:

(A6.5.11)

where now the parameter “x” is given by:

(A6.8.1)

i.e., we have considered the “B” field only due to the molecular field introduced by Weiss
given by A6.7.1. From the previous equation we have:

(A6.8.2)

So the spontaneous magnetization can be obtained by finding the common solution b
A6.5.11 and A6.8.2. The analytical procedure required for this solution is quite involved, w
its graphical representation is very simple and is shown in Figure A6.8.1. Here we have represente
A6.5.11 and A6.8.2 for three different values of temperature. We recognize that a tempe
“T cf” can exist which limits two regions, one for T > Tcf and the other for T < Tcf. Note that for

Figure A6.8.1

M x N jgB xb j( ) = ( )µ

x
jg

kT
Cb

w
−⊥

µ
µ0 M

M = ( )−⊥
kT

jg C
x m x

b wµ µ0
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temperatures higher than “Tcf” no common solution can exist, while for T < Tcf there is always a
solution. The temperature “Tcf” is called the “ferromagnetic Curie’s temperature,” and is t
maximum temperature above which the ferromagnetic behavior ceases. For a small applie
we can use the approximation A6.5.10 for the Brillouin function, and the magnetization A6
becomes:

(A6.8.3)

Equating A6.8.2, evaluated for T = Tcf, with A6.8.3 it is possible to obtain an expression betwe
the Weiss’ constant and “Tcf” given by:

(A6.8.4)

b. Ferromagnetic Paramagnetism

From Figure A6.8.1 we see that for T > Tcf the ferromagnetic material loses this characterist
and it has been proved that it becomes paramagnetic. This means that only if we apply a m
field “H0” the material assumes magnetization. In these conditions, the resulting susceptibiliχ”
at these temperatures can be easily obtained using Equation A6.8.3 and the general expres
“x” given by A6.5.9, with “B” according to A6.7.2, i.e.:

(A6.8.5)

So, from A6.8.3 and A6.8.5 we have:

(A6.8.6)

where “C” is the quantitative expression of the Curie’s constant we introduced in Section 
defined as:

(A6.8.7)

and “Tcp” is called “Curie’s paramagnetic temperature,” defined as:

(A6.8.8)

So, using Weiss’ theory we have the result that the temperature “Tcf” where the ferromagnetic
characteristic ceases coincides with the temperature “Tcp” where the paramagnetic behavior begin
This coincidence is not verified in practice, and “Tcp” results near 10 to 20 °C higher than “Tcf.”
Equation A6.8.6 is called the “Curie-Weiss law.”

M = +
N g
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c. First Magnetization Curve and Hysteresis Loop

If we take a ferromagnetic material never magnetized and we begin to apply a static ma
field “H,” then a magnetization begins to appear, following the line indicated with “OC”
Figure A6.8.2.

If we remove the magnetic field until “H” magnitude is below that relative to point “A” 
material returns to its starting status, i.e., practically without a net magnetization. This mean
below a defined value of magnetic field, the movements of Bloch walls are reversible. Inste
we decrease the external magnetic field when it has a magnitude greater than that corres
to point “A,” the magnetization follows the dashed curves indicated in the figure, until interse
the ordinate axis at a point with a value called the “residual magnetization.” The ferromag
material has become permanently magnetized, i.e., it is a magnet. This is what happens 
removal point inside the path “AC” as indicated by the dashed curves in the segment “AC
the relative residual magnetization is usually indicated with “M r.” This behavior can be understoo
observing Figure A6.8.3, where we have represented a typical graph of total energy “E t” of the

Figure A6.8.2

Figure A6.8.3
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crystal varying the position “s” of Bloch’s wall. We see that some minimums are possible. In
when Bloch’s wall moves, a potential energy arises due to material compression. This e
produces heat, which is partially lost if no other compression is performed, i.e., if the applied
doesn’t increase. Due to this energy loss, there can be a new minimal total energy, which corre
to overcoming a peak of Figure A6.8.3 and falling into another valley. Of course, other energ
are involved in this procedure, like magnetostriction and anysotropy, but the result can alw
represented as indicated in Figure A6.8.3.

Increasing the strength of the applied field “H”  from point “A”  in Figure A6.8.2 we move
toward point “B,” i.e., near the flex of the first magnetization curve. At this point all of the Blo
wall is at the final position, i.e., all the crystals have only one domain. At point “C” the magnetiz
has reached the maximum value for the ferromagnetic material under test, and this value is
the “saturation magnetization” usually indicated with “Ms.” At this point, all the domains are aligned
in the same direction of “H.” The resulting values of “Ms” are strongly dependent on the materi
under test. For some compounds, as we will study later, the residual magnetization can b
high, near 5000 Gauss in “CGSA” units system, or in the “MKSA” units system the correspon
value “µ0Mr” ranges between 0.5 Weber/m2. It is important to note that while the “Ms” value is
unique for that material, since it depends on its molecular structure, this does not happen foM r”
because this value is relative to the value of the external field before its removal. In our 
with “ M r” we have indicated the residual magnetization relative to “Ms.”

If we now reverse the direction of “H,” that is we apply the external field in the opposi
direction of “Ms,” the magnetization moves on the curve indicated with “ MrC′ ” until it reaches a
value of zero for an external magnetic field of value “Hc,” called the “coercive field.” At point “C′ ”
the magnetization is that of saturation, and if we remove the external field we still have a re
magnetization “M r′ ,” following the path “C′ M r′ ,” usually equal in value to “M r” but obviously in
the opposite direction. If we now reverse again the direction of the external magnetic field w
again set the magnetization to zero when the external field has a value “Hc′.” If we increase the
value of “He” we again reach the point “C” but, as is evident from the figure, the path “OC
never more covered. This is called the “hysteresis loop” the path “CM rC′ Mr′ C,” while the path
“OC” is called the “first magnetization curve.” The aspect of the hysteresis loop changes wi
characteristics of ferrimagnetic material, so that higher crystalline purity materials have a
rectangular shape, always symmetrical with respect to the origin of the axis drawn in Figure A6.8.2.
It is important to note that the aspect is also dependent on the frequency of “H” since for frequ
above some hundreds Hertz of the external magnetic field, ferromagnetic materials present i
ing losses.*

With reference to Figure A6.8.2, two values of permeability are defined. One, called “initial
permeability” and indicated with “µi” is defined as the slope of the tangent to the initial magn
zation curve at the point H = 0. Values of “µi” range from some units to some thousands, depend
on the material. The other, called “maximum permeability” and indicated with “µm,” is defined as
the slope of the line passing through the origin of the coordinate and tangent to the higher k
the first magnetization curve. Of course “µm” has higher values of “µi” also reaching values of
some tens of thousands. 

A6.9 THE HEISENBERG THEORY FOR THE MOLECULAR FIELD

Weiss’ molecular field “Bm” has been extremely important in explaining some ferromagn
characteristics, but no reason was formulated to permit the existence of such a field. The p
W. Heisenberg** was the first to formulate a theory that can explain the existence of “Bm” and
also other important magnetic characteristics of materials. According to Heisenberg, indicatin

*  A similar argument for ferrites will be studied in Appendix A7.
**  Werner Heisenberg, German physicist, born in Wuerzburg in 1901 and died in Monaco in 1976.
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“S10” and “S20” the spin quantity of motion momentum versors of two electrons, they excha
an energy “Ex” given by:

(A6.9.1)

where “Jx” is called the “exchange integral” and depends on the probability that the elec
exchange their orbits and the distance between atoms. A positive, maximum value for “Jx” results
in a minimum of energy, which corresponds* to have the spin aligned in the same dire
Conversely, a negative, maximum value for “Jx” corresponds a maximum of energy, which corr
sponds** to having the spin aligned in the opposite direction. Two atoms “1” and “2” can 
more than one electron each, and we have to evaluate the total spin quantity of motion “ST” as:

(A6.9.2)

where “e” is the number of electrons for the atom. So, for two atoms A6.9.1 becomes:

(A6.9.3)

where “ST10” and “ST20” are the total spin quantity of motion momentum versors of two ato
Generalizing the previous expression to the case of a ferromagnetic material with “N” atom
unit volume, Heisenberg assumes that a mean time value has to be valued for the “z” atoms
surrounding an arbitrary atom “i.” He also supposes that in the crystal, all the atoms have
mean time value for the total spin quantity of motion momentum. Equation A6.9.1 is then g
alized as:

(A6.9.4)

where “S*
Tk0” and “STi0” are the momentum versors of, respectively, the mean time value o

total spin quantity of motion and the total spin quantity of motion of the material atoms alon
direction of “B.” According to Heisenberg’s assumptions, the magnetization of a ferrimagn
material with “N” atoms per unit volume is proportional to “S*

Tk0,” and so:

***(A6.9.5)

To “S*
 Ti0” will correspond a magnetic moment along the direction of “B:”

****(A6.9.6)

A6.9.4 then can be rewritten as:

(A6.9.7)

*  See Appendix A5 for various types of energies associated to magnetic moments.
**  See Appendix A5 for various types of energies associated to magnetic moments.
*** Since “S*

Tk0”already represent the component along “B,” we do not need to insert “mT” to evaluate “M.”
**** Since “STi0”already represent the component along “B,” we do not need to insert “mT” to evaluate “µ.”
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Since the magnetic energy “E” of a magnetic moment “µ” inside a field “B” is E = –µ •  B ,*
using Weiss’ concept of a molecular field “Bm” from the previous equation we extract such “Bm” as:

(A6.9.8)

So, with the Heisenberg theory, Weiss’ constant becomes:

(A6.9.9)

A typical graph of the exchange integral as a function of the atom’s distance “d” is indic
in Figure A6.9.1. We see how when the atoms are very close to each other “Jx” assumes a very
negative value, which corresponds to a high “Ex.” This means that the probability is high that tw
electrons are in the same orbit. Whenever this happens, Pauli’s principle** holds, and the ma
spins cannot be directed in the same direction. In this situation the material is not ferroma
Conversely, when the atomic distance increases, “Jx” assumes positive values, which correspon
to a low “Ex.” This means that the probability is low that two electrons are in the same orbit
so the magnetic spin can be aligned in the same direction. The circumstance that some co
like Mn-Bi and Mn-As of nonferromagnetic materials, just as Mn, Bi, and As, becomes ferro
netic can be explained using “Jx.” In fact, measurements on these compounds have given the r
indicating with “R3d” the mean radius of the orbital “3d”*** to have a ferromagnetic materia
is necessary that the distances between the atoms be slightly higher than “R3d.”

Figure A6.9.1

*  See Appendix A5 for other atomic energies.
**  See Appendix A5 for Pauli’s principle.
***  See Appendix A5 for orbital definitions.
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A6.10 FERROMAGNETIC MATERIALS AND THEIR APPLICATIONS

Ferromagnetic materials can be divided in two groups, depending on how easily the m
can be magnetized. This net division in two groups is not found in natural ferromagnetic mat
and for this reason these materials are chemical compounds. These two groups are calle
and “hard” materials whose characteristics we are going to discuss.

1. “Soft” Materials

These materials require a small intensity external field to be saturated, and maintain low re
magnetization, near some tenths of Weber/m2. Their hysteresis loop is quite rectangular, whic
corresponds to having a very pure crystal as the compound unit cell. The permeability is ver
usually near some tens of thousands. Typical materials of this group are nickel-iron comp
For example, the so called “permalloy” is made of 80% nickel and 20% iron and its permea
is near 20.000. The “supermalloy” is composed of 80% nickel, 15% iron, and 5% molybde
and possesses a permeability near some hundreds of thousands. All these high permeabi
obtainable up to some KHz of the applied signal. Consequently, the applications of these ma
are in low frequency devices, like audio transformers and microphones. When high pow
required, for example in low frequency transformers like those used to convert the 220V A
lower voltage, some compound of iron and silica is employed.

a. Hard Materials

These materials can be regarded as the reciprocal of the “soft” counterpart. In fact,
materials require a high intensity external field to be saturated and maintain high residual m
tization. Their hysteresis loop is quite wide. Typical materials of this group are compoun
aluminium-nickel-cobalt, called “Alnico,” or platinum-cobalt. The “Alnico” compounds are in
cated by a number, which gives the percentage of the single materials. For example, “Alnic
capable of 0.1 Weber/m2 of residual magnetization, while some compounds of platinum-co
reach 0.5 Weber/m2. The use of these materials is in the realization of permanent magnets. T
devices are also used in the field of transmission line devices like in ferrimagnetic circulat
phase shifters, as studied in our text. Magnets are also used in high power microwave tubes 
to focus the electron beam.

A6.11 ANTIFERROMAGNETISM

One of the first studies of antiferromagnetism was made by the physicist L. Neel.* He sup
that in antiferromagnetic materials the magnetic atomic spin was antiparallel, resulting in a
tically null net magnetization. Later, Heisenberg with his theory on molecular fields gav
important interpretation of this phenomenon. Evaluating the exchange integral for typical a
romagnetic materials like manganese, chrome, and palladium, its value is negative. This corre
to a high exchange energy, which results in an antiferromagnetism, for the reasons discu
Section A6.9.

Neel also observed that the small residual magnetization moves with temperature, incr
its value until we reach a particular temperature “TNa” called “Neel’s antiferromagnetic tempera
ture.” Typical “TNa” are below 200 °C. For example, the manganese oxide, MnO, posses
TNa = 120 °C. For temperatures higher than “TNa” the antiferromagnetic materials become par
magnetic. Neel has suggested an expression for the susceptibility “χ” above “TNa” given by:

*  Louis Neel, French physicist, born in Lyon in 1904.
©2000 CRC Press LLC
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The previous expression has proved to give accurate results for T > TN, properly choosing the
“Neel’s constant, CN,” after measurements on the material.

Neel’ expression A6.11.1 is empirical, and a complete study to analytically evaluate 
expression, together with “TN,” still needs to be developed.

A6.12 FERRIMAGNETISM

It is usual to name any material of this family with the same term “ferrite” and if we h
already said that the “ferrite” is a particular ferromagnetic material. Ferrimagnetic materials p
the same static properties of their ferromagnetic counterparts, but with less intensity. Two c
teristics are really only relative to ferrimagnetic materials:

a. All the ferrites are insulators, with a resistivity 104 to 1010 times the resistivity of the ferro-
magnetic materials

b. Considering an applied time varying magnetic field, ferrites maintain a high permeability f
a wider bandwidth than the ferromagnetic materials. 

The previous point b will be discussed in Appendix A7, which is completely dedicate
ferrites. Here we only say that for this reason ferrites are widely employed in RF and micro
devices, as we have discussed in our text.

Characteristics like domains of spontaneous magnetization, hysteresis loop, magnetost
and anisotropy are also pertinent to ferrites. The reason for the low magnetization values
case of ferrites can be explained with the Neel interpretation of ferrimagnetism. Neel sup
that the total magnetic spin vectors for each atom are disposed in an antiparallel configu
among them, as in the antiferromagnetic materials. However, in this case a net magnetizatio
because the intensities of the antiparallel atoms do not have the same value. A qualitative
sentation of this interpretation is indicated in Figure A6.12.1.

Similar to the ferromagnetic case, a temperature “TNf” exists over which the ferrite become
paramagnetic. This “TNf” is called “Neel’s ferrimagnetic temperature.” Typical “TNf” are below
200 °C. The evaluation of “TNf” follows, in general, the procedure we used for the ferromagn
materials, but it is more complicated since all ferrites are compounds and the chemical bond
must be known. This procedure can be found in the specified literature.5

χ =
+
C

T T
N

Na
©2000 CRC Press LLC
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Figure A6.12.1

a) Ferromagnetism

b) Antiferromagnetism

c) Ferrimagnetism
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APPENDIX A7

The Electromagnetic Field
and the Ferrite

A7.1 INTRODUCTION

To understand the behavior of ferrite inside a magnetic field, static or time varying, it is impo
to know some fundamental concepts of magnetism and atomic physics. In this appendix w
assume that the reader knows these fundamental concepts well, but for those who desire
these concepts again, we refer them to Appendices A5 and A6 where we have treated all th
that we assume are needed to understand what is going to be covered here.

For a complete analysis of the ferrites, it is necessary to also have fundamental conc
chemistry since the magnetic properties of these materials change when their components 
A book to introduce the reader to chemistry is indicated in the reference section,1 together with
other books that speak about the general theory of ferrites.2,3

In addition, when we cover the problem of propagation of electromagnetic waves insid
ferrite, we have to know the fundamental concepts of electromagnetism, and for this purpo
refer the reader to Appendix A2. In that appendix we have written everything necessary to intr
the electromagnetic wave propagation for the understanding of what is said in this book. 
reader wants to know the whole theory of electromagnetic wave propagation, some boo
indicated in the references.4,5,6

At this point the reader will recognize how many physics topics are included in the term “fer
This appendix will discuss the first application of ferrite in the field of microwaves, i.e

devices using waveguides, as well as the modern use of ferrite in planar transmission lin
will do it in a theoretical approach, since the specific applications together with practical co
erations are treated in the chapters of this book.

A7.2 THE CHEMICAL COMPOSITION OF FERRITES

“Ferrite” means a material composed of particular substances so that the final compos
magnetic properties that are similar to that of ferromagnetic materials,* but with a resistivity
can be 1010 times the resistivity of the latter, which instead are good conductors. Ferrites
consequently realized as good insulator materials, with a quite complicated molecular geo
aspect. Simplifying, the general chemical formula can be indicated as:

* See Appendix A6 for foundations on magnetism.
©2000 CRC Press LLC
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(A7.2.1)

where “Me” is a metal, like iron “Fe,” nickel “Ni,” cobalt “Co,” copper “Cu,” aluminium “Al,”
magnesium “Mg,” or their composites, and “O” is the oxygen. From A7.2.1 we can deduce 
is the big quantity of metal oxides that induce in ferrites its high resistivity. If, in the prev
equation, iron is substituted for Me, we obtain the only natural ferrimagnetic material, i.e., 
netite, whose chemical formula is Fe3O4.

All ferrites possess a grey or grey-black color with a smooth surface, and result in a
material with no flexibility at all. Consequently, if we try to bend ferrites they break very ea
As told, the geometric aspect of the ferrite molecule is quite complicated, resembling a c
shape, and to this structure is given the name “spinel.” In particular, the oxygen atoms c
together to form a plane and the whole material is constructed with vertical connections o
planes, so that oxygen atoms of each plane fit the spaces between the oxygen atoms of t
layers. The remaining atoms that form the complete molecule lie in the remaining space be
the oxygen atoms. A look inside this geometric structure shows us that two crystalline form
possible, one tetrahedral and one octahedral, both with oxygen atoms at the corners. The m
situation is that the atoms interact in an antiferromagnetic way, as is said in Appendix A6, fo
a net magnetic moment in microscopic areas, called “domains.” As a result, ferrites have a m
domain organization like ferromagnetic materials.

A7.3 THE FERRITE INSIDE A STATIC MAGNETIC FIELD

In this Section we want to summarize the behavior of ferrite inside a magnetic field, be it
or time varying. More in-depth explanations on these topics may be found in Appendix A6
remind the reader that underlined letters refer to vectors.

a. Permanent Magnetization

All ferrites may be permanently magnetized if introduced inside a magnetic field of sui
strength. In this case they become magnets, generating a residual magnetic field of induction
“Br” with a magnitude called “magnetization” which will be indicated with “M.” If the “MKSA”
unit system is used, “M” has the same dimensions as the magnetic field “H,” i.e., Amp.turn/me
and “M” is usually indicated with “M.” If the “CGSA” unit system is used, “M” is measured in
“Gauss,”* and “M” is usually indicated with “4 π M.” The value of “M” depends on the type of
ferrite, usually ranging from some hundredth to some tenth of Weber/m.2,** In ferrite magnetics
the “CGSA” units system is most used, where magnetic fields “H” are measured in Oerst
(Oe) and the magnetization “4 π M” is measured in “Gauss.” In this case “M” ranges from some
hundreds to some thousands of “Gauss.” It is important to note that ferrites are not made
used as permanent magnets, since ferromagnetic magnets produce a stronger field if the
restricted to power electronics and low frequency applications. For instance, ferromagnetic m
are used to magnetize ferrites in circulators, as has been seen in Chapter 7 for microstrip d
or to guide an electron beam in a Travelling Wave Tube, TWT.

If ferrites never come inside a magnetic field, they do not present a macroscopic net ma
field, and if inside a “domain” a magnetic field exists due to the natural presence of the mol
field, as stated in Appendix A6.

*  Carl Friedrich Gauss, German physicist, born in Brunswick in 1777 and died in Gottingen in 1855.
**  Wilhelm Eduard Weber, German physicist, born in Wittenberg 1804 and died in Gottingen in 1891.
***  Hans Christian Oersted, Danish physicist, born in Rudkoping in 1777 and died in Copenhagen in 1851.

Me FeΟ Ο2 3
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b. First Magnetization Curve and Hysteresis Loop

The definition and physical aspects of this most important behavior of ferrites are the sa
that studied in Appendix A6 for ferromagnetic materials, synthetically indicated in Figure A7.3.1.
Only the following differences need to be outlined:

1. Typical values of “Ms” in the “CGSA” unit system range between 1500 to 5000 “Gauss,” or in
the “MKSA” units system the corresponding value “µ0Ms” ranges between 0.15 and 0.5 Weber/m2.

2. Also for the ferrimagnetic case the hysteresis loop is dependent on the frequency of the app
external magnetic field “He.” In addition, as will be explained later, in our case for some frequencies
of “He” ferrites present energy absorption. In particular applications, as in radio frequency circui
ferrites are constructed to be insensitive to the frequency of the magnetic field applied so t
wideband circuits may be realized.

3. Typical values for “initial permeability” range from some units to some thousands, depending 
the material, while the “maximum permeability” reaches values of some tens of thousands.

c. Paramagnetism

The characteristics of the previous two points a and b are verified until the ferrite tempe
is below a particular value “Tn” called the “Neel* temperature” while if the temperature is high
than “Tn,” ferrite becomes paramagnetic.** The name of this temperature is taken from the 
of French physicist Louis Neel, in honor of his work and study in this field. Neel was one o
first scientists to suppose that the origin of ferrimagnetism was in the antiparallel alignme
atomic magnetic moments. Sometimes in ferrimagnetism, Neel’s temperature is improperly 
“Curie’s temperature,” in honor of the French physicist Pierre Curie,*** who experiment
discovered the variation with temperature of susceptibility for ferrimagnetic materials. Neel
perature ranges between 100 °C and 500 °C. Usually these values of temperature do no
problems in commercial devices, while attention is required in space or military devices th
subject to severe environmental forces.

Figure A7.3.1

*  Louis Neel, French physicist, born in Lyons in 1904.
**  See Appendix A6 for paramagnetic behavior of ferromagnetic materials.
***  Pierre Curie, French physicist, born in Paris in 1859 and died there in 1906.
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d. Precession Motion

As known from Appendix A6, the spontaneous magnetization inside ferrite domains is d
an alignment of electron spin magnetic moments “µs” of the material. This alignment is formed
by the action of the natural induction magnetic field, called the “molecular field,” inside the dom
When the ferrite is inside an external magnetic field, the spin magnetic moment vector be
precession motion around the direction of the external field and consequently the magnet
does the same. This motion is subjected to loss inside the material and, as a conseque
extreme of the spin magnetic moment vector describes a spiral motion, as indicated in Figure A7.3.2.

It is known that the angular frequency “ωp” is proportional to the internal magnetic field “H”
induced by the externally applied field “He.” For an electron moving around an atomic nucleus,
generating an orbital magnetic moment, we have:

(A7.3.1)

where “µ0” is vacuum permeability and “γs” is the electron spin gyromagnetic ratio, given by:

(A7.3.2)

where “e” is the electron charge and “m” its mass. Note that “γs” is a negative number. Both “e”
and “m” are known, so the gyromagnetic ratio in the “MKSA” units system has a valu
–1.75696×(10)11 Coulomb/Kg.

It is interesting to obtain from A7.3.1 the value of “ωp” for a typical induction magnetic field,
let us say 0.1 Weber/m2. Multiplying this value by the gyromagnetic ratio we hav
ωp = 1.75696×(10)10 radians/sec, which is 2.7977 GHz. We see how we can simply reach prece
frequencies in the microwave regions. We know* that the precession motion is damped 

Figure A7.3.2

*  Precession motion is studied in more detail in Appendix A5.

ω µ γp sH= − 0

γs e m=
©2000 CRC Press LLC
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attenuation constant “α,” and at the inverse of “αωp” is called “decay time, td.” For our example
and assuming α = 0.1, the decay time is td ≈ 0.569nS.

A7.4 THE PERMEABILITY TENSOR OF FERRITES

Let us assume that a time varying magnetic field “h” exists inside a saturated ferrite with in
static magnetic field “Hs.” We will evaluate the general condition in which “h” has all the three
components in the Cartesian coordinate system of versors “x0,y0,z0.” We will align the “z” axis
along the direction of “Hs” so that we may write:

and “h” will be written as:

Now, the total field “Hh” inside the ferrite in the most general case will be:

(A7.4.1)

A similar equation may be written for the total magnetization vector “M m,” exactly:

(A7.4.2)

where “Msz” is the ferrite magnetization due to “Hsz.” If we apply the theorem of quantity of
motion, as seen in Appendix A5, to the force system inside the ferrite and if we use the La
Lifshitz formula for the precession damping, as seen in Appendix A5, for our isotropic ferrit
may write:

(A7.4.3)

where the symbol “⊗ ” indicates a vector product. This is the equation we want to resolve, usu
called the “magnetization equation,” to obtain the relation between “h” and “m.” But before w
it we have to discuss some preliminary notes.

First of all, let us start to define the terms that appear in the previous equation. We hav

1. “α” is the damping factor, a dimensionless quantity, which is a function of the energy loss insi
the crystalline material of ferrite. For typical materials used in RF and microwaves, “α” ranges
between 0.01 and 0.1.

2. “γT” is the total gyromagnetic ratio,* which is related to the orbital gyromagnetic ratio “γL” by the
following relation:

(A7.4.4)

3. “g” is the Lande** factor, that is:

*  See Appendix A5 for atomic theory principles and definitions.
**  Alfred Lande, German physicist, born in Elberfeld in 1888 and died in Columbus in 1976.

H H zs sz≡ 0

h h x h y h zx y z≡ + +0 0 0

Hh h x h y h H zx y z sz≡ + + +( )0 0 0

M Mm m x m y m zx y z sz≡ + + +( )0 0 0

d m
dt

m Hh
m
m

m HhT T

M
M

M

M
M= ⊗( ) + ⊗ ⊗( )µ γ αµ γ0 0

γ γT Lg=
©2000 CRC Press LLC
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(A7.4.5)

where “�,” “s,” and “j” are respectively the orbital, spin, and total quantum number. These quan
are defined in Appendix A5.

For our saturated ferrite the angular precession frequency “ωp” is given by:

(A7.4.6)

or, more concisely:

(A7.4.7)

where:

(A7.4.8)

The value of “γTµ” is known, and in the “MKSA” unit system its value is –2.21(10)5 (radians/sec)/
(Amp.turn/meter). Quite often it is more useful to speak about frequencies rather than a
frequencies, and in technical literature to “γTµ” is given the value –3.52(10)4 Hz/(Amp.turn/m), or
–2.8 MHz/Oe in “CGS” system unit. This value is not the real physical value of “γTµ,” but it is
the value obtained dividing “γTµ” by “2π,” since it is known that f = ω/2π. So, caution must be
used when the gyromagnetic ratio is encountered since to this symbol sometimes is assig
dimensions for frequency and sometimes the dimensions for pulsation. Whenever possible, 
differ these two values, indicating with “γTµ ′” the “frequency gyromagnetic ratio,” so that γTµ ⊥   2πTµ ′.

It is important to explain why a difference exists between the second members of A7.3.
A7.4.6 while the first members are equal. From these two expressions we could assume that γs = ! γT ,
where with the symbol “= !” we mean an equality that must be satisfied. In the case under
this is true, since a saturated ferrite can be studied as a unique macrodomain where all m
moments of electrons are aligned, so that we may assume that only one vector magnetic m
exists. If now we remember that for only one electron g = 2 and that

(A5.7.10)

as seen in Appendix A5, from A7.4.4 we have γT = –e/m, which is exactly the electron spi
gyromagnetic ratio “γs” given in A7.3.2. So, when in the next sections we speak about ang
precession frequency in a saturated ferrite we will refer to A7.4.7, and g = 2 will hold. Note
A7.4.7 is the most general expression for “ωp,” which is valid for any magnetic material, saturate
or not.

With these explanations, the calculi of the vector products in A7.4.3, not considering the pro
of factors that contain two lowercase terms* due to their very low magnitude, are as follow

(A7.4.9)

* The products of factors that contain two lowercase terms will be called “mixed products.” Here we are conside
small amplitude, time varying “h.” The case when mixed products cannot be neglected will be treated later in this ap

g
j j s s

j j
= +

+( ) + +( ) − +( )
+( )1

1 1 1

2 1

l l

ω µ γp TH= − 0

ω γ µp T H= −

γ µ γµT T
−⊥

0

γL e m= − 2

M M Mm Hh m H h x h m H yy zs y sz x zs x sz⊗ = −( ) + −( )0 0
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If we observe with attention the above equations we may see that they do not contain th
“h z.” This means that with the hypothesis of “h” as small compared to “Hsz” we may have the same
result if we assume a time varying magnetic field with “hx” and “hy” as the only nonzero component
that propagate along the “z” axis. As seen in Appendix A2, a wave with such a magnetic fi
said to be “TM.”

Let us assume a sinusoidal time varying system, so that we may give the time varying d
dence to each variable simply multiplying it times “ejωt,” as it is known from Appendix A2.
Remembering our assumption that “h” is much lower than “Hsz” so that the same holds for “m”
when compared to the static magnetization “M ,” we may consider the direction of “Mm” to be
coincident with that of “Msz;” we have that A7.4.3 can be reduced in equations in its compon
as follows:

(A7.4.11)

(A7.4.12)

(A7.4.13)

The last equation is a consequence of an “m” much lower than “M” so that the component
along “z” of “Mm” coincides with “Msz.” A7.4.11 and A7.4.12 form a system of independe
equations in the two unknowns “mx” and “my” which may be resolved for instance with the Cram
rule. We obtain:

(A7.4.14)

(A7.4.15)

where:

(A7.4.16)

(A7.4.17)

From A7.4.14 and A7.4.15 we may recognize that the vectors “m” and “h” are not parallel
since both “mx” and “my” are dependent on “hx” and “hy.” These equations may be represented
matrix form as:

(A7.4.18)

where:

M M M M Mm m Hh m H h x m H h yzs x zs x sz y zs y sz⊗ ⊗( ) = −( ) + −( ) )[ ]0 0

j m m h m hx p y T y sz x p T x szω ω γ α ω αγµ µ= − − − −M M

j m m h m hy p x T x sz y p T y szω ω γ α ω αγµ µ= + − −M M

j mzω = 0

m
N
D

h j
D

hx T sz x T sz y= −γ ωγµ µM M
1

m j
D

h
N
D

hy T sz x T sz y= +ωγ γµ µM M
1

N j p p
−⊥ − +( ) −α ω αω ω

D j p p
−⊥ +( ) +ω αω ω

2
2

m

m

m

x x

x x

h

h

h

x

y

z

xx xy

yx yy

x
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0
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(A7.4.20)

Since “xxx” and “xyy” are coincident, we may simplify the notation of A7.4.18 setting to “xp”
these equal values, by definition. The subscript “p” in “xp” will remind us that this term lies in the
principal diagonal of the matrix. In others words, we will set:

(A7.4.21)

where “xpr” and “xpj” are respectively the real and imaginary parts, the only one in which α”
appears, of “xp.” Note that both “N” and “D” are complex quantities, and so the same happen
A7.4.19.

Similarly, we define:

(A7.4.22)

where “xlr” and “xlj” are respectively the real and imaginary parts, the only one in which α”
appears, of “xl.” The subscript “l” in “x l” will remind us that these terms lie in the “lateral
diagonals of the matrix. Note “xp” and “xl” are dimensionless quantities.

With the notations of A7.4.21 and A7.4.22, A7.4.18 may be rewritten in the most known as

(A7.4.23)

or, concisely,

(A7.4.24)

The matrix “[χ z]” above is called the “susceptibility matrix” or “susceptibility tensor,” and t
subscript “z” we have added will remind us that this is obtained for the case when the static in
magnetic field is oriented along the “z” axis. It is very important to observe as the eleme
“[ χ z],” i.e., “xp” and “xl” implicitly contain all the quantities of our problem, that is “ω,” “H s,”
and “Ms.” Also note A7.4.24 is similar to the equation:

(A7.4.25)

obtained in Appendix A6, which applies to diamagnetic and paramagnetic materials but whe
susceptibility “χ” is a scalar while in the present case “[χ z]” is a matrix.

From “[χ z]” we can obtain very simply the ferrite permeability tensor “[µz]” remembering
from Appendix A6 that:

x
N
D

xxx T sz yy
−⊥ ≡γ µ M

x j
D

xxy T sz yx
−⊥ − ≡ −ωγ µ M

1

x
N
D

x jxp T sz pr pj
− −⊥ ⊥ +γ µ M

x
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x jxT sz r jl l l
− −⊥ ⊥− +ωγ µ M
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As we said, in ferrimagnetic materials the susceptibility is a matrix, that in our cas
isodirectional propagation becomes “[χ z].” So, transforming the previous equation in matrices, w
have:

(A7.4.27)

where “[ i ]” is the unit matrix, i.e., the matrix that has nonzero elements, the elements that 
the main diagonal, which are all equal to one. Doing calculations involved in the previous equ
we have:

(A7.4.28)

where obviously:

(A7.4.29)

(A7.4.30)

(A7.4.31)

The last matrix of A7.4.28, with the notations A7.4.29 to A7.4.31, is usually indicated as “[ µfz],”
that is:

(A7.4.32)

It is very important to observe that the elements of “[µfz],” as the elements of “[χ z],” implicitly
contain all the quantities of our problem, that is “ω,” “H s,” and “Ms.” It is now the case to note as
with our hypothesis of statically saturated ferrite with small time varying magnetic field “h,” the
ferrite does not respond to any variation of “h” along the direction, “z0” in our study, of static
saturating magnetic field “Hs.” This fact corresponds to having xzz = 0 and µzz = 1 inside the matrix.
The hypothesis of statically saturated ferrite reflects some practical useful behavior of this m
in such magnetic conditions when used in electromagnetic devices, as we will see later. Ho
note that in the other directions, that is “x0” and “y0” in our coordinate system, the ferrite is sensitiv
to “h” since the matrix elements for these axes are nonzero.

We now want to see what the denominator “D,” which appears in A7.4.21 and A7.4.22, bec
when “α” is negligible with respect to one. In this case, A7.4.17 becomes:

A7.4.33)
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7.4.15
so that if we let a magnetic field of angular frequency “ω” equal to “ωp” propagate, we have D = 0
and as a consequence:

(A7.4.34)

(A7.4.35)

These results show us that when ω ≡ ωp and the ferrite is lossless, then an infinite magnetizat
grows up inside it, i.e., there is enough infinitesimal energy of the magnetic time varying fie
magnetize the ferrite with “h.” Also note that for α = 0 together with the infinity value of “xp,”
“x l,” “µ p,” and “µl” we have the fact that these values are real. This means that the matrices χ z]”
and “[µz]” have real elements on the main diagonal while they have conjugate imaginary on
the adjacent diagonals. In our case this kind of matrix is called a “hermitian matrix.”* Practic
the degree of the time varying magnetization inside the ferrite increases as the losses decre
now want to remember that similar energetic behaviors can be seen in electrical circuits. 
examine the example of a capacitor and an inductor connected together in parallel, both lo
If we connect in parallel to this circuit an alternate current generator, when its frequency is
to the resonance frequency of the parallel circuit we have an infinite voltage across it. By an
the precession frequency “ωp” caused by “H” of the ferrite is also called the “resonance frequen
because when ω ≡ ωp its susceptibility and permeability becomes infinite. A characteristic of 
precession frequency inside the ferrite is that its value may be widely changed, also three o
simply changing the intensity of the static saturating magnetic field “Hs.” The general expressions
for “xp” and “xl” in the case of zero losses may be determined from A7.4.16, A7.4.17, A7.
and A7.4.22 with α = 0, obtaining:

(A7.4.36)

(A7.4.37)

where:

(A7.4.38)

The previous notation is widely used, so that the general expressions A7.4.14 and A
become:

(A7.4.39)

(A7.4.40)

Always in the case for zero losses, A7.4.29 and A7.4.30 become:

*  In honor of the French mathematician Charles Hermite, born in Dieuze in 1822 and died in Paris in 1901.

x xp ≡ ∞ ≡ l

µ µp ≡ ∞ ≡ l
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(A7.4.41)

(A7.4.42)

The graphs of the two previous equations, as a function of “ω” or function of “Hs,” are
represented in the following Figures A7.4.1 and A7.4.2. Concerning Figures A7.4.2a and b, it is
very important to remember that the range of variability of “H” must have a minimum value
is greater than the minimum value required to saturate the ferrite.

A situation that often happens in applications of ferromagnetic devices is where “Hsz” and “h”
are still parallel, but each point in the opposite direction. We will show that in this case
susceptibility matrix changes form from the one “[χ z]” seen in A7.4.23. Then, if “Hsz” and “h” are
parallel but point in opposite directions, A7.4.1 and A7.4.2 become:

(A7.4.43)

Figure A7.4.1a

Figure A7.4.1b

T

T

T

µ µ α ω
ω

ω ωp p m
p

p
0 2 20 1− −⊥ ⊥=( ) +

−

µ µ α ω ω
ω ωl l0 2 20− −⊥ ⊥=( )

−m
p

Hh h x h y h H zx y z sz= + + −( )0 0 0
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(A7.4.44)

Similarly, the equivalents to A7.4.11 through A7.4.13 are:

(A7.4.45)

(A7.4.46)

(A7.4.47)

Resolving the previous equation system we have:

(A7.4.48)

Figure A7.4.2a

Figure A7.4.2b
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where “xp” and “xl” are defined as above, i.e., from A7.4.21 and A7.4.22. Observing the prev
susceptibility matrix and comparing with that in A7.4.23 we may realize that in this case, t
when “Hs” and “h” are still parallel but each point in the opposite direction, the diagonal elem
are the only ones that change their sign. Remembering equations A7.4.29 through A7.4.31, 
may say that a similar change of sign is for the diagonal elements of “[µz]” while the main diagonal
elements do not change their sign. It is important to say that the change of sign happens onl
having fixed a direction of “Hs,” we change it. In others words, if we change the direction of “”
having fixed that of “H,” i.e., if with respect to A7.4.1 and A7.4.2 we study the case in which

(A7.4.49)

(A7.4.50)

we have the result that the elements in the susceptibility matrix “[χ z]” do not change sign. This
result can be easily proved by the reader, similar to what we have done for A7.4.1.

It is important to show how the susceptibility tensor assumes different aspects depend
the orientation of the static magnetic field in the particular coordinate reference system. Let 
a Cartesian coordinate system, and write:

for the static magnetic field:

(A7.4.51)

for the magnetic field of the wave:

(A7.4.52)

Similarly, proceeding as we did to have A7.4.48, the total magnetic field inside the ferrit

(A7.4.53)

and the total magnetization vector “Mm” is:

(A7.4.54)

where “Msy” is the ferrite magnetization due to “Hsy.” The equation of atomic moments is alway
the same seen in A7.4.3. The calculi of the vector products in A7.4.3, not considering the pr
of factors that contain two lowercase terms* due to their very low magnitude, are as follow

(A7.4.55)

(A7.4.56)

* Remember that we are considering a small time varying “h” when compared to “H.” The case of “h” comparable 
will be treated later.

Hh h x h y H h zx y sz z= + + −( )0 0 0

M Mm m x m y m zx y sz z= + + −( )0 0 0

H H ys sy=
0

h h x h y h zx y z= + +0 0 0

Hh h x h H y h zx y sy z= + +( ) +0 0 0

M Mm m x m y m zx y sy z= + +( ) +0 0 0

M M Mm Hh h m H x m H h ysy z z sy x sy x sy⊗ = −( ) + −( )0 0

M M M M Mm m Hh m H h x h m H ysy x sy x sy sy z z sy⊗ ⊗( ) = −( ) + −( ) )[ ]0 0
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Let us assume a sinusoidal time varying system, so that we may give the time varying d
dence to each variable simply multiplying it times “ejwt” as it is known from Appendix A2. Inserting
the two previous equations in A7.4.3 we have:

(A7.4.57)

(A7.4.58)

(A7.4.59)

The last equation is a consequence of “m” much lower than “M” so that the component along
“y” of “ Mm” coincides with “Msy.” The A7.4.57 and A7.4.58 form a system of independe
equations in the two unknowns “mx” and “mz.” Resolving the system we obtain:

(A7.4.60)

(A7.4.61)

where “N” and “D” are given by A7.4.16 and A7.4.17. In matrix form A7.4.59 to A7.4.61 beco

(A7.4.62)

where “xp” and “xl” are given by A7.4.21 and A7.4.22. Concisely, A7.4.62 will be written:

(A7.4.63)

where the subscript “y” in “[χ ]” will remind us that this is obtained for the case of Hs = Hsyy0.
From “[χ y]” we may obtain very simply the ferrite permeability tensor “[µy ],” given by:

(A7.4.64)

where obviously:

(A7.4.65)

(A7.4.66)

The last case to study for the aspect of the permeability matrix is that where the static sat
magnetic field is directed along the “x” axis, so that we can write Hs = Hsxx0. Proceeding in the
same way as we did to obtain “[χ z]” or “[ χ y]” it is possible to show that in this case we have:
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(A7.4.67)

and consequently:

(A7.4.68)

From A7.4.28, A7.4.64, and A7.4.68 we recognize how in all the permeability matrice
same terms always appear but changed in position. Also note that to extract these matrices 
not mentioned the reciprocal orientation between “H” and “h” or fixed a particular polarization for
“h.” The choice of which of these matrices we have to use is dependent on how we name t
of magnetization in our electromagnetic problem geometry. Later we will use some of these di
forms of permeability matrices.

We now want to conclude this section doing an important consideration. Here we have s
a material whose magnetization is saturated under a static magnetic field “Hs,” and in which a time
varying magnetic field “h” has been impressed. Note also that we have not specified a va
“ω.” From these points of view, the ferrite is not the only one possible material to employ i
experiments and studies, since the ferromagnetic materials have the same properties. But if 
to “ω” a value greater than a few kHz times 2π, the ferrite becomes the only one material to 
successfully employed. This is because, as known, ferrimagnetic materials are good insu
while the ferromagnetic ones are good conductors, so that electromagnetic energy at high fre
can propagate through ferrites while it cannot propagate inside ferromagnetic materials. This
reason why ferrites are so widely employed in RF and microwave devices as we will see la
course, other types of losses exist inside ferrites, which will be studied in Section A7.11.

A7.5 “TEM” WAVE INSIDE AN ISODIRECTIONAL MAGNETIZED FERRITE

In the previous section we extracted the expressions of dynamic susceptibility and perme
of ferrites, while they are statically magnetized at saturation from a magnetic field “Hs.”

Here we want to study the case when a “TEM” wave* with magnetic field “h” propagates in
a ferrite, saturated with internal static magnetic field “Hs.” Let us also assume that the direction o
propagation of the wave is coincident with the direction of the saturating internal field “Hs.” We
will refer to this situation as the case of an electromagnetic wave inside an “isodirectional m
tized” ferrite. Since ferrites are sensitive to magnetic fields, we concentrate our study o
magnetic field of the “TEM” wave, which we will write as:

(A7.5.1)

where:

(A7.5.2)

*  See Appendix A2 for wave definitions.
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This situation is geometrically indicated in Figure A7.5.1. As A7.5.1 shows, we introduce a
Cartesian coordinate system, where the “TEM” wave propagates along the “z” axis and the
magnetic field “Hsz” is also directed along “z.” Of course, we will suppose that the time variab
of “h(z)” will be sinusoidal so that when we want to obtain the time dependence, it is enou
multiply the quantity times “e(jωt)” where “ω” is the angular frequency. Another expression f
“h(z)” often used may be obtained by inserting A7.5.2 in A7.5.1 and doing multiplication. We
have:

(A7.5.3)

where:

If we also want to obtain the expression that contains the time dependence we may ap
procedure seen in Appendix A2 in Section A2.3. Since this aspect is not important here, w
not do it.

We now want to remember that in matrix form the vector “[h]” is written as:

(A7.5.4)

and we will define “versor matrix [u]” with the following notation:

(A7.5.5)

After these discussions, the Maxwell* equations to be resolved in our system are:

Figure A7.5.1

*  James Clark Maxwell, English physicist, born in Edinburgh in 1831, died in Cambridge in 1879.
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(A7.5.6)

(A7.5.7)

In A7.5.6 the “component matrix [h]” is defined as:

(A7.5.8)

while in A7.5.7 “ε” is the dielectric constant of ferrite. The operators we have used above
defined in Appendix A8. To resolve the Maxwell’s equations we may proceed similarly to 
we have done in Appendix A2 when discussing wave equations. In our case we have 
equations. So, applying the curl operator to A7.5.7 and inserting in the expression A7.5.6 we

(A7.5.9)

It is known that the following relationship holds:

(A7.5.10)

Remembering our hypothesis of “TEM” wave with transversal components independent t
and “y” it is simple to recognize that ∇  • h = 0, and A7.5.9, A7.5.10 become:

(A7.5.11)

Using the “Laplacian” expression in Cartesian coordinates given in Appendix A8, inse
A7.4.28 and equating the components along the same axis, A7.5.11 becomes:

(A7.5.12)

(A7.5.13)

These last two equations form a homogeneous system, with “hx” and “hy” as unknowns. Setting
to zero the determinant of the coefficients, we have:

(A7.5.14)

The first double sign “±” is relative to the two possible directions of propagations of the 
along the “z” axis. The second double sign “m” means instead that two possible waves are genera
inside the ferrite. In other words, a fixed direction of propagation inside the ferrite, for ins
the one corresponding to the “+” sign in the “±” of A7.5.14; when a “TEM” wave is launche
the isodirectional magnetically saturated material this wave divides itself into two waves,* one
phase constant

* This is called “birefringence.”

∇ ⊗ ( ) = − [ ] [ ] [ ]e j u hzω µ

∇ ⊗ ( ) =h j eωε
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(A7.5.15)

and the other with phase constant

(A7.5.16)

We will return shortly to the subscripts “d” and “c.” It is very important at this point to 
that since “µp” and “µl” are in general complex quantities, as seen in the previous section, the
has to be said regarding “βd” and “βc.” It follows that, since the propagation factor is “e(–jβz)” when
“β” (that is “βd” and “βc”) becomes imaginary negative, the exponent in the propagation fa
becomes real negative, which means that the wave is attenuated exponentially through prop
inside the ferrite. Applications of this phenomenon will be studied later in this appendix.

If we now insert A7.5.13 in A7.5.12 we obtain:

(A7.5.17)

Since a minus “–” means a phase shift of 180° and “j” means a phase shift of 90°, the pr
equation shows us that inside the ferrite the two waves are both spatially circularly polarize
one clockwise and the other counterclockwise. These directions of rotation are relative when l
in the same direction of propagation of the wave. We will call the counterclockwise rotation, w
is relative to “+” sign in A7.5.17, the “discordant wave” while the remaining one will be ca
the “concordant wave.” These names are relative to the concordance or discordance of the d
of the circular polarization with the direction of the precession motion of the total magnetic mo
of the ferrite, when looking in the same direction of propagation of the wave. The discordant
has phase constant “βd” given in A7.5.15 while the concordant wave has phase constant “βc” given
in A7.5.16. It is now interesting to evaluate “µp ± µl” in the case of negligible losses. Using A7.4.4
and A7.4.42 we have:

(A7.5.18)

(A7.5.19)

and the graphs of these functions vs. “ω” are represented in Figure A7.5.2. From this figure we
may see that the permeability presented to the concordant wave becomes infinite when the fre
of the “TEM” wave is equal to the precession frequency created by “Hsz.” Also note that since “µd”
and “µc” are functions of frequency, from A7.5.15 and A7.5.16 it follows that the diagram “ω/β”
is not constant with the frequency, which means that magnetized ferrite is a dispersive m
To have the graphs of A7.5.18 and A7.5.19 as functions of “H” we have to remember wh
said about Figure A7.4.2, i.e., the range of variability of “H” must have a minimum value that
greater than the minimum value required to saturate the ferrite. If we also want to exami
behavior of the previous equations, we must consider the effect of “H” and magnetization. I
analysis, we may use the hysteresis diagram seen in A7.3 point b, to remember the relat
between “M” and “H.” If we denote with “M(H)” the function representing the curve “OC” o
Figure A7.3.1, the two previous equations may be synthetically written as:

β ω µ ε µ µd p
−⊥ ( ) −( )0

0 5 0 5. .

l

β ω µ ε µ µc p
−⊥ ( ) +( )0

0 5 0 5. .

l

h jhy x= ±

µ µ µ µ ω
ω ω

µαp p
m

p
d−( ) ≡ − = +

+=( )
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l l0 0 0 01

µ µ µ µ ω
ω ω

µαp p
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p
c+( ) ≡ + = +

−=( )
⊥−

l l0 0 0 01
©2000 CRC Press LLC



ency
e

(A7.5.20)

In Figure A7.5.3 the graphs of “µd0” and “µc0” are drawn as a function of “H” with a fixed
value of “ω.”

From this figure we may see that as the value of “H” reaches a value Hp = ω/ |γTµ| then “µc0”
becomes infinite, because with H = Hp the precession frequency generated is equal to the frequ
of the wave. The graphs at left of the point “NdMs” are relative to values of “H” too low to saturat

Figure A7.5.2

Figure A7.5.3

µ µ
γ

γ ω
µ

µ
p

T

T

H

H
0 0 1± = +

( )
( ) ±l

M
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the ferrite, since “NdMs” is the minimum value of the static magnetic external field for saturati
This concept will be treated in more detail in Sections A7.8 and A7.9. For the moment we sa
“Nd” is called the “demagnetization factor” and has a value between zero and one, an
relationship between internal “H” and external “He” magnetic fields is:

Other concepts regarding the demagnetization factor and its values may be fou
Appendix A6. Exact formulas representing the behavior of ferrite inside a nonsaturating stati
and a time varying magnetic field are not well defined mainly because the ferrite cannot be 
as a unique macro domain.

For practical ferrites, where losses are never zero, typical behaviors of “µd” and “µc” as functions
of “H” are drawn in the Figures A7.5.4 and A7.5.5. Here, the imaginary components “µdj,” “µ cj”
and the real components “µdr,” “µ cr” of “µ d” and “µc” are drawn. It is interesting to note that “µdj”
has a small and flat value varying “H” with the result that the discordant wave is subjecte
quite constant and small attenuation. This is not the case for the concordant wave which is su
to deep attenuation when the applied magnetic field is Hp = ω/ |γTµ|, “ω” being the angular frequency
of the “TEM” wave. Another interesting point of view to explain the attenuation encountere
the concordant wave may be obtained with reference to the medium impedance. As seen in Ap
A2, in this case the medium impedance “θ” is:

(A7.5.21)

where “µ” may be “µd” or “µ c.” So, values of “H” that create negative values of “µc” will create
imaginary values of “θ” to the concordant wave, which means that the signal will try to stop
wave from propagating inside the ferrite. This phenomenon is called “cut-off” of the ferrit

Figure A7.5.4

H H Ne d= − M

θ µ ε= ( )0 5.
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analogy to the terminology used for waveguide as seen in Appendix A2, and will be use
synthetically explain the field displacement effect of ferrites as will be seen later in Section A

Another interesting point of view may be obtained by drawing the phase velocity o
concordant and discordant waves. From A7.5.15 and A7.5.16, and remembering from App
A2 that the phase velocity “vf” is given by:

we may calculate the ratio “Rf” between the phase velocity and the speed of light in the fer
when this is evaluated like a medium with “εr” and µr = 1. We obtain:

(A7.5.22)

(A7.5.23)

The graphs of these two equations, in the case of zero losses, are represented in Figure A7.5.6.
Since the imaginary part of “Rfd0” is always zero, it has not indicated in the figure. As it 

clear from the figure, when the frequency of the wave is equal to precession one created b
then vfd = 0. This means that the concordant wave is locked inside the ferrite. In addition, an
frequency “ωp + ωm” exists where vfd = ∞. This last result, of course, does not mean that ene
propagates at infinite speed, since it should be clear from Appendix A2 that electromagnetic 
propagates at group speed. It is also interesting to note that the phase velocities tend to re
speed of light in the medium for higher and higher frequencies.

It is important at this point to say that all these concepts, which are relative to circular pola
concordant and discordant waves generated from the “TEM” wave, are also valid if a ci

Figure A7.5.5

Vf
−⊥ ω β

Rfd d≡ 1 µ

Rfc c≡ 1 µ
©2000 CRC Press LLC



depen-
tional

 the

ear
nstant
ysical
lariza-

to find
©2000 CRC Press LLC

polarized wave is traveling inside the ferrite. That is, the effects we have studied are true in
dently of how a circular polarized electromagnetic wave is generated inside an isodirec
magnetized ferrite.

We now want to show that the division in circularly polarized waves only depends on
existence of both the two transverse components of “h.” In fact, supposing ht ≡ hxx0 from A7.5.12
and A7.5.13 we have:

(A7.5.24)

(A7.5.25)

From A7.5.24, which is the only physical solution, we can say that if our “TEM” wave is lin
polarized inside the ferrite it remains linear polarized along its travel, and only one phase co
exists. However, we will show in the next section that in this case another important ph
phenomena occurs, the so-called “Faraday rotation,” i.e., the rotation of the plane of linear po
tion.

To conclude this section we have to say that in some literature on the topic it is possible 
the ferrite described by a 2 × 2 matrix of the form:

(A7.5.26)

Figure A7.5.6
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This happens because the hz = 0 for the “TEM” wave in our coordinate system, so that all t
fields may be represented by two element vectors; for instance, the “h” field may be written as:

(A7.5.27)

Anyway, we prefer to use the 3 × 3 matrices defined previously since the 2 × 2 can confuse
the reader in other studies where non- “TEM” waves or nonisodirectional propagation are inv

A7.6 LINEAR POLARIZED, UNIFORM PLANE WAVE INSIDE AN ISODIRECTIONAL 
MAGNETIZED FERRITE: THE FARADAY ROTATION

In this section we will study an important phenomenon of ferrite called the “Faraday rota
Let us consider a plane wave with linear polarization, which after its propagation in the vac

starts to travel inside an isodirectional magnetized ferrite. The static magnetic field is, of c
of enough strength to saturate the ferrite, as we intend when we speak about “magnetized 
unless otherwise noted. Let us introduce a Cartesian coordinate system, with the static m
field “Hsz” oriented in the “z” direction and with the transverse magnetic field “ht” of the wave
oriented along “x” so that we may write:

(A7.6.1)

Note that “ht” is orthogonal to “Hz.”
The spatial dependence is defined by the usual factor “e(–jβz),” writing:

(A7.6.2)

“hx” is the only magnetic component of our wave since by hypothesis we are examining a
polarized plane wave. It is clear that we do not make an error if we introduce a null “hy” field so
written:

(A7.6.3)

Summing this field to A7.6.1 we may write:

(A7.6.4)

We may recognize in this equation two circular contro-polarized waves, that when propa
inside the ferrite are given by:

(A7.6.5)
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(A7.6.6)

where “βc” and “βd” are given by A7.5.15 and A7.5.16.
It is important to observe that a difference exists between these circular polarized wave

the two ones we have studied in the previous section. There, from a “TEM” wave, two cir
polarized waves are effectively generated inside the ferrite. Here, we have rewritten a 
polarized wave as the sum of two circular contro-polarized waves; this notation, mathema
exact, will help us to understand the Faraday rotation encountered by our linear polarized
wave inside an isodirectional magnetized ferrite.

After this note, let us rewrite the two previous equations joining together the components
the same axis. We have:

(A7.6.7)

(A7.6.8)

If now we rewrite “βd” and “βc” according to:

(A7.6.9)

(A7.6.10)

where, of course, we have:

(A7.6.11)

(A7.6.12)

and insert them in A7.6.7 and A7.6.8, after doing simplifications we obtain:

(A7.6.13)

(A7.6.14)

It is now important to note that the spatial phase terms of “hx” and “hy” are the same for both
these vectors, since they are “β+z” and “β–z.” Note that since “hx” moves as cosinus while “hy”
moves as sinus the resultant vector rotates clockwise moving along the direction of propa
“z,”  as shown in Figure A7.6.1.

This is the phenomenon called the “Faraday rotation,” in honor of the English physicis
chemist Michael Faraday, (born at Newington in 1791 and died at Hampton Court in 1867)
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was the first to prove the movement of electrical circuits when inside magnetic fields. D
confuse this movement of the propagation plane with a circular polarization of the wave. In
temporarily we have that the resultant vector “h” inside the ferrite always moves on a line, i.e., 
is always linearly polarized. In fact we have:

(A7.6.15)

and, as seen in Appendix A2:

(A7.6.16)

Executing the calculations at the right member of the previous equation we have:

(A7.6.17)

from which it is clear that when a point “z” is fixed, then “h(z,t)” has only one sinusoidal time
dependence, i.e., it moves linearly polarized.

Two important points have now to be studied, which show us that the direction of rotat
only dependent on the direction of the static saturating magnetic field “Hzs” and not on the direction
of propagation of the wave “z0.” Let us start to note from A7.4.41 and A7.4.42 that “µp0” does not
change sign if we reverse the direction of “Hsz” since both “ωp” and “ωm” change their sign, while
“µ l0” changes its sign. From A7.5.15 and A7.5.16 it follows that “βd0” and “βc0” interchange, and
consequently from A7.6.11 and A7.6.12 “β+” does not change its sign while “β–” does. Remem-
bering now that the cosinus function does not change its sign if we change the sign to its arg
while the sinus function does, from A7.6.17 we may recognize that if we change the direct
“Hsz” then the “h” field inside the ferrite becomes:

(A7.6.18)

Figure A7.6.1

h z h z x z y ex
j z( ) = ( ) − ( )[ ]− −

− +( )cos sinβ β β
0 0

h z t h z e j t, Im( ) ≡ ( )[ ]−( )ω

h z t h z x z y t j zx, cos sin sin( ) = ( ) − ( )[ ] −( )− − +β β ω β0 0

h z t h z x z y t j zx, cos sin sin( ) = ( ) + ( )[ ] −( )− − +β β ω β0 0
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which is a field that rotates counterclockwise along the direction of propagation “z0.” If now we
remember the definition of tangent, for the angle “θ” of “h” with respect to “y0” we may write:

(A7.6.19)

Using A7.6.13 and A7.6.14 in the previous equation we have:

(A7.6.20)

Let us define as the positive direction of the angle the clockwise one, when looking in the
direction of propagation. In this case we have that if the wave propagates toward “–z0” but we are
looking toward “z0” then from our point of view “θ” changes its sign. In addition, when w
introduced A7.5.14 we said that both “βd” and “βc” change their signs when the waves propaga
toward “–z0.” The result is that the double change of sign in A7.6.20 when the wave change
direction of propagation makes the angle “θ” independent of this direction. This important nonre
ciprocal effect of the Faraday rotation has been widely used to realize ferrite isolators, as w
show later.

We want to conclude this section indicating to the reader that the entity of rotation by
length is dependent on the intensity of the applied static magnetic field. The nonreciprocal
is maximum when the ferrite is statically magnetized to saturation. A typical graph of “θ” as
function of “H” is given in Figure A7.6.2.

We see that as the applied static magnetic field reaches a value “Hp” which creates a precession
frequency equal to the frequency of the electromagnetic wave, then the rotation becomes i
of course theoretically, and in the case of zero losses.

When the Farady rotation is used for a particular device, the applied magnetic field must
in the values required for saturation of ferrite, but with a frequency intensity equal to that o
electromagnetic wave, otherwise the device will not work.

Figure A7.6.2
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A7.7 ELECTROMAGNETIC WAVE INSIDE A TRANSVERSE 
MAGNETIZED FERRITE

In this section we will show that some physical properties of ferrite are only dependent o
reciprocal orientation between the time varying magnetic field “h” and the static magnetic field “Hs.”

Let us assume that an electromagnetic wave propagates inside a saturated ferrite with 
static magnetic field “Hs.” Let us use a Cartesian coordinate system and write:

for the static magnetic field:

(A7.7.1)

for the magnetic field of the wave:

(A7.7.2)

                 (A7.7.3)

Of course, the electric field of the wave will have equations similar to the two previous 
Note the result of A7.7.3 is that a wave is propagating orthogonally to the direction “y0” of the
static saturating internal magnetic field “Hs” and the wave has no spatial dependence along “0.”
We will call this situation the case of an electromagnetic wave inside a “transverse magne
ferrite. This scenario may be graphically represented as that in Figure A7.7.1. Since we have decided
to mark as “y” the axis where “H” is directed, we have to use “[µy]” in our problem. So, the
Maxwell’s equations to be resolved in our system are:

(A7.7.4)

(A7.7.5)

Figure A7.7.1

x

z

y

Hsy

Ferrite

H H ys sy=
0

h h x h y h zx y z= + +0 0 0

h x z he kxX kzZ,( ) = − −( )

∇ ⊗ ( ) = − [ ] [ ] [ ]e j u hyω µ

∇ ⊗ ( ) =h j eωε
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where “[µy]” is the ferrite permeability matrix given by A7.4.64. So executing calculations
A7.7.4 and equating terms with same components along the coordinate axis, we have:

(A7.7.6)

(A7.7.7)

(A7.7.8)

Doing similar calculations for A7.7.5 we have:

(A7.7.9)

(A7.7.10)

(A7.7.11)

In the previous six equations we may recognize two groups, one that only contains “hx,” “hz”
and “ey” and another that only contains “ex,” “ez,” and “hy.” The wave that contains “hx,” “hz,” and
“ey” is a “TE”* wave since the only transverse component to the direction of propagation i
electric field “ey.” This situation is represented in Figure A7.7.2. Similarly, the wave that contains
“ex,” “e z,” and “hy” is a “TM” wave, since the only transversal component to the direction
propagation is the electric field “hy.” This situation is indicated in Figure A7.7.3. So, the first result
we have is that our wave when propagating inside the ferrite, with spatial independence
orthogonal to the direction of the applied static field, has divided itself in two waves, a result s
to that deduced in Section A7.5. So, we may expect that these two waves are subjected to d
actions by the saturated ferrite. To examine what happens, let us begin to resolve the sy
equations for the “TE” wave, that is the group of Equations A7.7.6, A7.7.8, and A7.7.10. T
an homogeneous system of equations, which has a nonzero solution when the determinan
coefficient is zero. Doing such calculations we obtain the condition that has to satisfy “kx” and
“kz”** to assure the solution of Maxwell’s equation, that is:

*  See Appendix A2 for definition.

Figure A7.7.2

**  Remember we have assumed that the e.m. fields have zero dependence with the “y” axis, i.e., ky = 0, as indicated by A7.7.3.

k e x j h j h xz y x p z0 0 0= − −( )! ωµ µ µl

k e k e y j h yx z z x y−( ) = −
0 0 0

! ωµ

− = − +( )k e z j h jh zx y z p x0 0 0! ωµ µ µl

k h x j e xz y x0 0= −! ωε

k h k h y j e yx z z x y−( ) =
0 0

! ωε

− =k h z j e zx y z0 0! ωε

x

z

y

e

h

h

y

x

z
y=0, plane of propagation

TE wave
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(A7.7.12)

The term that indicates the permeabilities ratio in A7.7.12 is called the “equivalent permea
and is indicated with “µeq⊥ ,” i.e.:

A7.7.13)

The subscript “⊥ ” we have used in the two previous equations will remind us that th
expressions are obtained for the case of “h” which is orthogonal to “Hs.” Also note from A7.7.12
that “kteq⊥

2” is a negative number. Observing Figure A7.7.1 and Figure A7.7.2 we note that the
“TE” mode of our electromagnetic wave has the magnetic field that is orthogonal to the dire
of application of the static magnetic field “Hs.”

Let us now resolve the equation system for the “TM” mode, that is the group of Equa
A7.7.7, A7.7.9 and A7.7.11. Proceeding in a similar way to what we did for the “TE” mode
obtain:

(A7.7.14)

Note that in this equation any term of the permeability matrix “[µy],”does not appear, which
means that this mode propagates inside a ferrite as if it was a nonferrimagnetic medium
relative permeability equal to one. From A7.7.14 we see that also “kt

2” is a negative number, as
“k teq⊥

2.” Observing Figure A7.7.1 and Figure A7.7.3 we note that the “TM” mode of our electro
magnetic wave has the magnetic field that is parallel to the direction of application of the 
magnetic field “Hs.”

The graph of “µeq⊥ ” as a function of frequency, and with no losses in the ferrite, is given
Figure A7.7.4. We have indicated this quantity as “µeq⊥ 0.” Note that at the precession frequenc
“µeq⊥ 0” is not infinite, while this happens at the frequency “ω∞” which is higher than “ωp.”

The graph of “µeq⊥ 0” as a function of “H” is indicated in Figure A7.7.5, where frequency is
assumed to be constant. We must repeat here what was said at the time of Figure A7.5.3, that is,
the graph at the left of the point “NdMs” is relative to values of “H” too low to saturate the ferrite

Figure A7.7.3
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In analogy to Figure A7.7.4, we have that at the precession field “Hp” the permeability “µeq⊥ 0” is
not infinite while this happens at the value “H∞.”

It is very important to note the equivalence between the graph of “µc0” in Figure A7.5.2 and
that of “µeq⊥ 0” in Figure A7.7.4. This is not a coincidence since the circular polarized concord
wave inside an isodirectional magnetized ferrite has the magnetic field that is orthogonal 
directions of propagation and that of “Hs.” But this also is the case for our “TE” wave in a transvers
magnetized ferrite, as may be recognized after viewing Figures A7.7.1 and A7.7.2.

We now want to show that “µeq⊥ ” is only dependent on the reciprocal orientation among “Hs,”
the direction of propagation of the wave, and the directions of the nonzero spatial depende
the wave. This situation is contrary to what happens for “[χ ]” and “[µ],” which are dependent on
the coordinate system. Let us suppose the following expression for the magnetic field of the

Figure A7.7.4

Figure A7.7.5

T

T
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(A7.7.15)

i.e., the wave is propagating orthogonally to the direction “x0.” The vector “h” is still given by
A7.7.2. In the same direction “x0” we apply the static saturating internal magnetic field “Hs.” Now:

1. Employing “[µx],” given in A7.4.68, and inserting A7.7.15 in the Maxwell’s equations A7.7.4)
2. Proceeding as we did in obtaining A7.7.6 through A7.7.11,

we have two groups of equations, one that only contains “hy,” “h z,” and “ex” relative to “TE” mode
and another that only contains “ey,” “ez,” and “hx” relative to “TM” mode. The conditions that have
to satisfy “ky” and “kz” to assure the solution of Maxwell’s equations are:

(A7.7.16)

(A7.7.17)

respectively for “TE” and “TM” modes. These two equations are equal respectively to Equa
A7.7.12 and A7.7.14, from which we may see that “µeq⊥ ” is independent of the coordinate system
while it only depends on the reciprocal orientation between “Hs” and the magnetic field of the wave

Of course, equations for “kteq⊥
2” and “kt

2” similar to A7.7.16 and A7.7.17 can be obtained usin
“[µ z]” and a wave whose magnetic field is given by h(x,y) = he(–kxX –kyY), resulting in:

(A7.7.18)

(A7.7.19)

It is important to show that the existence of “[µeq⊥ ]” is in general a function of the number o
“h” components in the coordinate and the transverse spatial dependence of the original wa
show it, let us assume the electromagnetic case governed by Equations A7.7.6 through A
and write h = hxx0. A7.7.6 through A7.7.11 become:

(A7.7.20)

(A7.7.21)

(A7.7.22)

which represent a “TE” wave for our reference system shown in Figure A7.7.1. Note that in this
case there is no wave splitting. Simply manipulating these equations we have:

(A7.7.23)

(A7.7.24)
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(A7.7.25)

that is A7.7.12, also if the original wave has only one magnetic component “hx.” Similarly, for our
reference system shown in Figure A7.7.1 let us write h = hyy0. The Equations A7.7.6 through
A7.7.11 become:

(A7.7.26)

(A7.7.27)

(A7.7.28)

which represent a “TM” wave. Note that also in this case there is no wave splitting. Si
manipulating these equations we have:

(A7.7.29)

that is the same result of A7.7.14.
We can conclude these notes recognizing that in all ferrimagnetic problems it is very imp

to know the direction of the applied static magnetic field, the number of the electromagnetic
components, and the wave spatial dependence. It is important to give a table where we sum
all the change of signs for the ferrite permeability elements and for the wave elements, whe”
or the propagation change direction, since it will be very useful in our studies. So, we ha
following Table A7.7.1:

Also note it is not difficult to realize the reciprocal directions between all these vectors, a
shown in the figures of this section. Think of the fundamental mode “qTEM”* in a micros
realized on a substrate of ferrite. If we magnetize with “Hs” in a direction orthogonal to the ground
plane, then the magnetic field of the wave is “µeq⊥ .” In this way we may create interesting
nonreciprocal devices, as seen in Chapter 7, called “field displacement devices.” Of course, 
components may be realized in stripline, as shown in Chapter 8, since the fundamental mo
stripline is the “TEM.” In this appendix in Section A7.14 we will analyze field displacement dev
in waveguide technology, the first microwave components using this phenomenon.

A7.8 CONSIDERATIONS ON DEMAGNETIZATION AND ANISOTROPY

In Section A6.6 of Appendix A6 we discussed the demagnetization field, anisotropy,
magnetostriction inside ferromagnetic materials. These concepts equally apply to ferrima

Table A7.7.1

Change of sign when H  change dir. Change of sign when prop. change dir.

“µp” N0 “µp” NO
“µ�” YES “µ�” NO
“µeq⊥ ” NO “µeq⊥ ” NO
“βz” NO “βz” YES

*  “qTEM” means “quasi TEM,” where quasi means almost.

k k kz x
p

p
teq
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−⊥ ⊥ω µ ε
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materials, like ferrite, since mainly the difference between ferro- and ferrimagnetic materials 
the last are good insulators.

We also have to say that in the study we made concerning ferrite we assumed that the 
fields are uniform. In principle this is not always true, since demagnetization and anisotropy
are strongly dependent on the geometric aspect of our ferrimagnetic material and usually th
not uniform inside the specimen. The relationship inside the ferrite among demagnetizationd,”
anisotropy “Ha,” and external “He” magnetic fields is as follow:

(A7.8.1)

where “H” is the total internal magnetic field. Usually “Ha” is lower than “Hd” and may be neglected.
From this equation we recognize that if “Hd” and “Ha” are nonuniform, the same happens for “H,”
also if “He” is uniform inside the ferrite.

The most important consequence of not considering the fields “Hd” and “Ha” is that the
precession frequency has a slightly different value from what we have from the known relatio

(A7.4.7)

If we take into account high crystalline ferrites so that anisotropy effects may be neglec
is not very complicated conceptually to obtain the new precession frequency. Then, let us co
the two fundamental relationships between magnetic induction “b,” magnetic field “h,” and 
netization “m,” which in our case of ferrite, are:

(A7.8.2)

(A7.8.3)

where the matrices “[b],” “[h],” and “[m]” are column 1 × 3 and “[µ]” is squared 3 × 3. Let us
assume in the physical situation of A7.4.1, i.e., with “H = Hszz0.” Then, using for “[µ]” the expression
of “[µ z]” given in A7.4.28, the previous equations become:

(A7.8.4)

(A7.8.5)

(A7.8.6)

(A7.8.7)

(A7.8.8)

(A7.8.9)

Inserting the second members of A7.8.7 through A7.8.9 in the first members of A7.8.4 th
A7.8.6 we have:

(A7.8.10)

H H H He d a= + +

ω γ µp T H= −

b h[ ] = [ ] [ ]µ

b h m[ ] = [ ] + [ ]( )µ0

b x h j x hx p x y= +( ) +µ µ0 01 l

b j x h x hy x p y= − + +( )µ µ0 0 1l

b hz z= µ0

b h mx x x= +( )µ0

b h my y y= +( )µ0

b hz z= µ0

h m x h jx hx x p x y+ = +( ) +1 l
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(A7.8.11)

If we rewrite A7.8.1 for time varying fields and we assume the anisotropy field to be neglig
we have:

(A7.8.12)

(A7.8.13)

where “Nx” and “Ny” are the demagnetization factors along the directions “x” and “y” as we defi
in Appendix A6. Inserting the two previous equations in A7.8.10 and A7.8.11 we have:

(A7.8.14)

(A7.8.15)

Remember from section A7.4 as “xp” and “xl” implicitly contain all the quantities of our
problem, that is, “ω,” “H sz,” and “Msz.” Resolving in “mx” and “my,” we have that all the expression
have the same denominator “D′ ” given by:

(A7.8.16)

So, if we resolve in “ω” the equation D′ = 0 we may obtain the new precession angular freque
“ωp′ ,” defined as that frequency where the magnetizations “mx” and “my” are infinite. This is not
a simple task, since A7.8.16 contains complex quantities.

Deeper studies have been made by the physicist Charles Kittel7 who has determined “ωp′ ” as:

(A7.8.17)

where:

(A7.8.18)

Along the direction of application of “H,” assumed as the “z” axis, for the static magnetic 
we may write an equation similar to A7.8.12 and A7.8.13, i.e.:

(A7.8.19)

where the quantity “NzMz” is the demagnetizing field along the “z” direction. This equation m
be considered as a simplification of A7.8.18. In this case, the beginning of saturation is defi
that value of “Hze” such that Hze = NzMz. Practically a minimum value of Hze = 0.6 NzMz is used
to force saturation inside the ferrite since for fields below this value, ferrites become rela
lossy. These kinds of losses are defined as “low field losses,” which we will treat in the next se

h m jx h x hy y x p y+ = − + +( )l 1

h h N mx xe x x= −

h h N my ye y y= −

1+( ) + = +x N m jx N m x h jx hp x x y y p xe yel l

jx N m x N m jx h x hx x p y y xe p yel l+ +( ) = − +1

′ +( ) +( ) −−⊥D x N x N x N Np x p y x y1 1 2
l

′ = −ω γ µp T H

H H N N H N Neff ze x y z ze y z z
−⊥ + −( )[ ] + −( )[ ][ ]M M

0 5.

H H Nz ze z z= − M
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As a result of this section remember that precession frequency is not independent 
geometrical aspect of ferrite, as may be recognized from A7.8.17 and A7.8.18, and the dem
tization factors play an important role in defining “ωp.” Some typical geometric forms for ferrite
and their “Nx,” “N y,” and “Nz” factors are given below:

a. sphere

(A7.8.20)

So, from A7.8.19 we have:

(A7.8.21)

where “M” is the magnetization of the ferrite along the direction of “He.”

b. thin disc, orthogonal to “He:”

(A7.8.22)

So, from A7.8.19 we have:

(A7.8.23)

c. circular cylinder, of infinite length along “He:”

(A7.8.24)

So, from A7.8.19 we have:

(A7.8.25)

Note that all the previous quantities are quantized for the “MKSA” unit system. If we wa
use the demagnetization factors in the “CGSA” unit system, we have to substitute 4π to one. For
instance, in the case of the previous point b, the precession angular frequency becomes:

(A7.8.26)

where “γTµ” is equal to –2.8 MHz/Oe in the “CGSA.”
If we also want to take into account the small anisotropy field, we have to introduce an

effective field, and we again send the reader to the work of Kittel.8

In all our studies concerning ferrites we will always assume that the fields are internal 
material, and that it is infinite in extension. So we will use expression A7.4.7 to evaluat
precession frequency, i.e., ωp = –γTµH. What we have said in this section must be well understo
since these phenomena are what really happens inside a magnetized ferrite.

N N Nx y z≡ ≡ =1 3

ω γ µp T eH= − −( )M 3

N N and Nx y z≡ = =0 1

ω γ µp T eH= − −( )M

N N and Nx y z≡ = =0 1 2

ω γ µp T eH= − −( )M 2

ω γ πµp T eH M= − −( )4
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A7.9 THE BEHAVIOR OF NOT STATICALLY SATURATED FERRITE

It is very important to discuss the elements of “[χ ]” given in A7.4.23 and the starting hypothesi
used. The most important condition we assumed was the existence of a static saturating m
field “Hs” applied in a direction of a Cartesian coordinate system used inside the ferrite,
direction that we assumed to be “z.” If we remember the fundamental concepts of magnetism
in Appendix A6, when a static saturating field is applied to a ferrite, all the Bloch boundaries
moved and distorted in order to realize a whole macro domain inside the ferrite. In additio
molecular field “Bm” of the macro domain becomes aligned with the direction of “Hs.” Ferrites
used in microwave devices, which usually require a static saturation, are known to require an
reachable value of “Hs” for saturating, typically ranging from some tenths to some hundred
A.t/m (Ampere.turn/meter).

We now want to ask ourselves what happens when “Hs” is not strong enough to saturate, or 
is just null.

In the case of Hs = 0, observing A7.4.21 and A7.4.22 we could conclude that “xp” and “xl” are
both equal to zero since Ms = 0 if Hs = 0, because we have defined “Ms” as the saturation
magnetization reached by the application of “Hs.” A similar discussion may be done for “[µz]”
given in A7.4.28, from A7.4.29 to A7.4.31 obtaining that µp ≡ 1 and µl ≡ 0. But the conclusions
xp = 0, xl = 0, µl ≡ 0, and µp ≡ 1 would be generated by a conceptual error, since the form
were created with the assumption of an existing “Hs” not equal to zero.

Important studies have been made9 for the behavior of ferrites when Hs = 0 which show that
“µ l” is really equal to zero, while “µp” assumes the value:

(A7.9.1)

where “ωπm” is the value of “ωm” in the “CGSA” system, i.e.:

(A7.9.2)

The value “Ms” in the previous equation, and which implicitly appears through “ωπm” in A7.9.1,
cannot be the magnetization created by a static magnetic field, since now Hs = 0, but it is the
reachable magnetization of the ferrite under test. All the quantities in A7.9.1 and A7.9.2 m
measured with the “CGSA” unit system, so in A7.9.2 “Ms” must be measured in “Oersted.” We
want to remember again that caution must be used when using the “CGSA” or “MKSA”
systems. For instance, the relationship between Oersted and Amp.t/m is:

(A7.9.3)

In addition, in “CGSA” the quantity “4πMs” is called “magnetization,” and its measurin
dimension is the “Gauss.” The relationship between Gauss and Weber/m2 of “MKSA” is:

(A7.9.4)

Remember that in “MKSA” the dimension of magnetization is Amp.t/m, i.e., like the magn
fields.

* See Appendix A5.

µ ω ωπpH m0
2 2 0 5

1 3 1 2 1= + −( )[ ].

ω γ ππ µm T sM= − ( )4

1 10 43Oersted Amp t m= π .

1 10 4 2Gauss Web m= −
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One important aspect of A7.9.1 is that for an angular frequency “ω” below “ωπm” the quantity
“µpH0” is complex. This means that an electromagnetic wave with ω < ωπm that propagates spatially
inside this ferrite according to “e–jβz” with β = ω(µpH0ε)0.5, will have attenuation due to the fac
that when “µpH0” is complex “β” also becomes complex, and the term “e–jβz” will become the
product of two exponentials, one real and one imaginary, with the real one responsible for
uation. These magnetic losses must not be confused with the losses due to the resistivity
material.

Another characteristic of ferrites when no static magnetic field has been applied may be de
from its hysteresis loop. As has been seen in A7.3 point b, when H = 0 the work point of fe
is in the region where the permeability is defined as “initial.” This operating region is mainly 
in RF and UHF applications, as Section A7.15 will show. The initial permeability “µi” is a complex
quantity that can be written as:

(A7.9.5)

with “µ ir” and “µ ij ,” respectively, the real and imaginary parts of “µi .” Exact formulation of “µi ”
does not exist due to the complex connections among physics, chemistry, and magnetism in
in ferrites. Typical behavior of “µi” as a function of frequency may be deduced after experime
giving graphs as indicated in Figure A7.9.1. The expression A7.9.1 represents in some way 
graph of Figure A7.9.1 in that range of frequency where “µ ir” grows to reach the value “1.” Today
the maximum frequency where “µij” starts to rise is near 2.5 GHz, also depending on the type
ferrite. For instance, some ferrites optimized for audio frequency applications have a rise p
“µ ij” near some MHz. From Figure A7.9.1 it is interesting to note that a region exists for “µir”
where it does not change so much with frequency. This means, remembering what we 
Appendix A2, that ferrite is not dispersive. This characteristic is very important when ferr
used for wideband circuits in the UHF region, as Section A7.15 will show.

Let us discuss the case when the static magnetic field is not zero, but not enough to s
the ferrite. If we remember the topics of magnetism treated in Appendix A6, it is evident th
cannot treat the ferrite as only one macro domain. In this case we have to define a magne
vector “Mnsz” which is an average along the direction “z” of application of “H.” In this situati
“xp” is negligible with respect to “xl” which assumes the expression:

Figure A7.9.1

µ µ µi ir ijj−⊥ +
©2000 CRC Press LLC
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(A7.9.6)

Important studies on these arguments10,11 have shown that, in our case of low field, the perm
ability elements become:

(A7.9.7)

(A7.9.8)

(A7.9.9)

where “M ” is the magnetization corresponding to the value of the applied “H.” In all the form
A7.9.6 through A7.9.9 the CGSA dimensions must be used. In addition, all these expressio
valid if the ferrite is in the state of residual magnetization, i.e., it has been under a static ma
field that has magnetized the material permanently. In this case we have to substitute the r
value “M r” of the magnetization with “M.”

Sometimes ferrite is evaluated as lossless. In these cases, if the applied static magnetic
just equal to the demagnetizing field* it is assumed that the resulting internal field is ze
resulting from Equation A7.8.19. In such cases:

and the value of “µeq⊥ ” in A7.7.13 becomes:

(A7.9.10)

We want to conclude this section informing that, from Figure A7.9.1, the range of frequency
where “µij” is not zero is called the “region of low field losses,” just to remember that we a
the condition of null or low value for external static magnetic fields.

A7.10 THE QUALITY FACTOR OF FERRITES AT RESONANCE

In the previous sections we have seen that a statically saturated lossless ferrite pres
infinite permeability to an electromagnetic wave inside it when its frequency is equal to
precession frequency of the atomic magnetic moment “µj.” We know that losses can never be zer
and what really happens, for instance for the matrix susceptibility element “xl” versus the frequency
of the wave, may be represented in Figure A7.10.1. “Quality factor ‘Q’” or “line width ‘∆H’” of
ferrite is defined as the difference between the static magnetic fields that correspond to freq
“f L” and “fH” where “xl j” reaches a value which is half of the maximum value “xl jm” assumed at
resonance. Taking the expression of “xl j ” from A7.4.22 and setting this value equal to “xl jm/2” we
obtain a second degree equation in “f” from which we may extract “fL” and “fH.” Then, from
Equation A7.4.7, which states the relationship between static field and precession frequen
may obtain the relationship of linewidth “∆H:”

(A7.10.1)

*  Some ferrimagnetic devices, like phase shifters and circulators, can be magnetized in such situations.

x ns T nszl = γ ωµ M

µ µ µpns pH pH s= + −( ) ( )0 0

1 5
1 M M

.

µ γ π ωµlns T M= 4

µ µzz pH s= + −( )0

2 5
1 M M

.

ω µ µ ω ωp p m≈ ≈ ≈0 1, , l

µ ω ωeq m⊥
⊥− −( )1

2

∆H T= −2ω α γ µ
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From the previous equation we may see that the lower the loss factor, “α,” the thinner the line
width with the characteristic that when α = 0 the “xl j ” is null everywhere with the exception o
resonance, where it becomes infinite.

A characteristic of all ferrites is that “α” increases as their crystal purity decreases, as
polycrystalline ferrites, with the consequent increase of linewidth. In contrast, monocryst
ferrites have very narrow linewidth due to their high crystal purity and material homogen
Remember from Section A7.3 and A6.8c that low loss ferrites also have very narrow and
hysteresis diagrams.

Studies concerning the origins of losses and their relationships with the chemical compo
of ferrites are still under development due to confluence in these subjects of many scientific br
like chemistry and magnetism. To a first approximation, losses are due to energy exchange b
atomic spins, and between atoms and the crystal that composes the ferrite. In the next sec
will define the most important losses inside ferrite.

A7.11 LOSSES IN FERRITES

In the most general case, the total loss “Lt” in a ferro-ferri-magnetic material is due to th
actions of three terms,12 i.e.:

(A7.11.1)

where “Lc” are losses due to induced conduction current, “Li” are losses inside the hysteresis loo
and “Lr” are losses due to movements and resonances of Bloch boundaries.* Sometimes “r” are
called “residual losses.” Let us start to define in more detail the single components of A7.1

a. The Conduction Losses “L c”

These losses are directly proportional to the frequency “f” of the electromagnetic wave 
agating inside the material and inversely proportional to its resistivity “ρ” according to the
relationship:

(A7.11.2)

Figure A7.10.1

*  See Appendix A5 for Bloch’s wall theory.

�j

�j

�j

L L L Lt c i r= + +

L k fc c= 2 ρ
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where “kc” is a factor that is dependent on the geometric aspect of the material. This mean
different material geometries (also if they are the same chemical material and are posed in th
position) may cause different attenuation to the electromagnetic wave propagating in the 
From the previous equation, remembering that the ratio between ferrite resistivity to ferroma
material may approach 1010 for some ferrites used in the microwave region, it is evident how “c”
of ferrite is negligible with respect to the “Lc” for ferromagnetic materials. In any case, conductio
losses are also negligible in ferrimagnetic materials, when compared to the other origin of 

b. The Hysteresis Loop Losses “L i”

Refer to the hysteresis loop indicated in Figure A7.3.1. In Appendix A6 we stated that the
external static field “H” must work against the forces inside the material when creating the hys
loop. A similar case is when “H” moves the Bloch boundaries of the magnetic material. Reme
that for a diamagnetic material, the field “H” does not do any work since diamagnetic mat
have no hysteresis loop.

When we go along the hysteresis loop, the dissipated energy “Ed” inside the volume “V” is
proportional to the area of this path, according to:

(A7.11.3)

where the circular integral must be done on the hysteresis loop. From the previous equati
evident that to lower the energy dissipated inside the material (energy that is taken from “
is desirable to have a material with no hysteresis. This is not possible, due to the existence
Bloch boundaries between magnetic domains. So, what we can do is to use material with a hy
loop as sharp as possible, reducing more and more the impurity particles that do not belong
material crystal. By controlling the manufacturing process, we can have low loss ferrites w
sharp and quite rectangular shape of the hysteresis. This kind of material is mainly used 
transformers that require a high linearity between input and output, which cannot be reache
hysteresis loop possesses the curved shape indicated in Figure A7.3.1. For a sinusoidal time varying
relationship of “H” in the primary winding, a same time varying relationship of “B” inside 
ferrite does not correspond just because the graph of Figure A7.3.1 is not linear. So, at the secondar
winding the induced voltage is not of an exact sinusoidal time varying relationship. It is als
case that when the material is very linear, if too much signal is applied to the winding o
transformer the ferrite will saturate, distorting the output signal.

In any case the losses “Li” are proportional to the frequency “f ” of the signal, according to t
following relationship:

(A7.11.4)

where “ki” is a factor that is dependent on the geometric aspect of the material.

c. The Residual Losses “L r”

These losses are relative to movements and resonances of the Bloch boundaries. Expe
on nonmagnetized ferrite has shown that the imaginary part “µij” of the initial permeability versus
the frequency of the applied “RF” signal presents two peaks; one in the range of 10 to 10
and the other between 1 GHz and 2 GHz. This situation has been drawn in Figure A7.9.1. The
position of these peaks may be changed, inside the specified range, by proper chemical com
of ferrite. Experimentally it has been shown that the higher the purity of the material, the 
the first peak. This result has led to the idea that the highest peak is due to the rotations o

E V HdBd = ∫

L k fi i=
©2000 CRC Press LLC
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boundaries, since the behavior in the peak is as if the ferrite were composed of a big macrod
a situation that is nearer to the concept of the rotation of all the boundaries rather than the res
of them. So, the first peak is attributed to the resonances of the Bloch boundaries.

Similar to the case of “Li ,” the losses “Lr” are proportional to the frequency “f ” of the signa
according to the following relationship:

(A7.11.5)

where “kr” is a factor that is dependent on the geometric aspect of the material.
The determination of the coefficients “kc” “k i” and “kr” is quite complicated, and the procedure

are still under study.

A7.12 ISOLATORS, PHASE SHIFTERS, CIRCULATORS IN WAVEGUIDE
WITH ISODIRECTIONAL MAGNETIZATION

The first transmission lines used in the microwave region were the waveguides. As sho
Appendix A2, waveguides are really nonplanar transmission lines so, from this point of view,
study is outside the object of this book. It is not possible to avoid their study because in ou
the analysis of waveguide loaded with ferrite, can help us to better understand the beha
planar transmission lines loaded with ferrite which are also studied in our book. Note
waveguides are not dead since in the case of high power applications, let us say for power
higher than 100 watts, and where low loss microwave transmission lines are required, wave
are still the better solution.

So, let us start with the first historically used device in waveguides loaded with ferrite, w
uses the Faraday effect.

To have a good understanding of what we are going to explain, it is important to kno
concepts of electromagnetic propagation inside a waveguide. To this purpose, the reader 
Appendix A2 where all the necessary information is given.

a. Nonreciprocal Isolators

A “nonreciprocal isolator,” or only “isolator,” is defined as a device that is able to permi
propagation of the e.m. energy in one direction while presenting the highest attenuation 
opposite direction. The nonreciprocal nature of the device is evident.

In the previous sections we have seen how ferrite presents a nonreciprocal effect, i.e., the
rotation, when a linear polarized wave propagates inside it. The waveguide isolator just us
phenomenon in a classical geometrical configuration indicated in Figure A7.12.1. A circular
waveguide is connected at its extremes to two rectangular waveguides, so that these two 
angle of 45 degrees between their major axes. At the center of the circular waveguide is in
a cylinder of ferrite, supported in this position by low loss material, of length near one half o
of the circular waveguide. The ferrite is magnetized, not at saturation, using a permanent m
surrounding the circular waveguide or using a solenoid, wound on this waveguide. The u
solenoid permits more flexibility since by reversing the direction of current flowing in the sole
the direction of the magnetic field may be reversed. To explain the behavior of the isolato
usual to refer to the electrical field propagating in the waveguides. This is not a problem sin
electrical and magnetic fields propagating the energy are orthogonal, and to obtain the direc
the magnetic field it is enough to rotate 90 degrees.

Remembering the explanation of the Farady effect seen in Section A7.6 it is simple to unde
how the device works. Suppose that the static magnetic field magnetizing the ferrite cylinde
the direction indicated by the arrow in Figure A7.12.1a and that the fundamental mode “TE10” in

L k fi r=
©2000 CRC Press LLC
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the rectangular waveguide is in isodirectional propagation. From Appendix A2 we remembe
the magnetic field is linearly polarized in the center of the circular waveguide, and the same h
for the magnetic field in the middle of the rectangular waveguide. In this case, the wave,
passing from the rectangular waveguide to the circular one, will mainly generate inside 
fundamental mode “TE11” which, as seen in Appendix A2, has the magnetic field linearly polari
in the center of the circular waveguide. When propagating inside this waveguide, this 
polarized magnetic field also propagates inside the ferrite where it starts to rotate. With the 
choice of “H” and/or length of the circular waveguide, the magnetic field will arrive to the ape
“B2” of the rectangular waveguide “2” rotated clockwise 45 degrees, i.e., in the proper dire
to generate the fundamental mode “TE10.” As a result, when the signal propagates in the direct
of the applied field “H,” in this case in the direction “1–2,” the e.m. wave will encounter 
attenuation, typically in the range 1 to 2 dB depending on the frequency of the signal. Wh
signal propagates in the direction “2–1,” the magnetic field still rotates clockwise 45 degree
the reasons seen in Section A7.6, and when it arrives at the aperture “B1” it is under cut-o
cannot generate propagation inside the rectangular waveguide “1.” So, the reflected signal s
travel in the direction “1–2,” passes another time in the ferrite, rotates 45 degrees and arr
“B2” under cut-off. It is still reflected at “B2,” starts to travel in the direction “2–1,” passes ano
time in the ferrite, rotates 45 degrees and arrives at “B1” in the proper direction to genera
fundamental mode “TE10” but in opposition of phase to the “TE10” applied in “1.” If we could not
apply a remedy to this phenomenon, some distortion on the passing signal would be gener
the isolator, and its isolation in the direction “2–1” would be low. To this purpose, one sep
each transition between rectangular to circular waveguides is applied, as indicat
Figure A7.12.1b. We can see how the septs are in the proper positions* to attenuate the e

Figure A7.12.1

* See Appendix A2 for “TE10” mode field components.

a)

b)S2
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field, which tries to enter below cut-off in the rectangular waveguides and is consequently re
back. In this explanation we have referred to magnetic field rotation, but in the literatur
explanation can be found using the electric field as the reference field. Of course, this i
another way to explain the working principle, since to every rotation of magnetic field is asso
a rotation of the electric field, due to the local orthogonality of these fields.

To give some number, a Faraday isolator working at 10 GHz has a loss near 1.5 dB 
direction 1–2 and 30 dB in the direction 2–1, with a bandwidth of at least 20 dB of attenu
near 10%, as indicated in Figure A7.12.2. Note that this graph is similar to that of Figure A7.5.4,
which is relative to “µdj” and “µcj.” In Section A7.5 we said the imaginary parts of “µ” insert lo
in the propagation of the e.m. wave. We do not confuse the peak in Figure A7.5.4 with that in
Figure A7.12.2 since in the former figure we use resonance inside the ferrite, while now the
is due to exact 45° rotation, two reflections for cut-off and two attenuations of the septs “S1
“S2” indicated in Figure A7.12.1b. In other words, in the Faraday isolator we do not use resona
phenomena.

Typical applications of isolators are to separate an oscillator from the load, since quite o
microwave oscillator has a frequency that is dependent on the value of load, if no par
expedient is applied.

b. Nonreciprocal Phase Shifters

To introduce this device let us start with a consideration of the Farady isolator studied 
previous point. Note that the magnetic field rotates passing through the ferrite. So, if for ins
we regulate the intensity of “H” and the length of the ferrite, we may rotate 180° the field 
port “B1” to port “B2,” that is we have created a 180° phase shifting between input and outp
this case, to use the shifted signal the output rectangular waveguide must be in the same 
as the input one. Only this value of phase shifting can be done with such a device since to pro
the fundamental mode, we need the electric field to be aligned with the shorter walls 
rectangular waveguide. As a result, the Faraday rotation may be used to insert phase shifting b
signals, but the device indicated in Figure A7.12.1 is not well suited and it is only used as an isolat

A more commonly used waveguide phase shifter based on the Faraday effect is indica
Figure A7.12.3 b. This device uses the circular polarization of the magnetic field inside the
tangular waveguide, as seen in Appendix A2. The signal in the rectangular waveguide is c
to the circular waveguide through a hole at the center of the end surface of the circular wave

Figure A7.12.2
©2000 CRC Press LLC
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so that the hole has its center on the axis of magnetic circular polarization for the recta
waveguide. In this way, the wave propagating in the rectangular waveguide is able to lau
circularly polarized magnetic field inside the circular waveguide. So, we can expect that two 
constants will exist, depending on the direction of propagation or direction of “H” as studied in
Section A7.5. This is why phase shifters are called “differential phase shifters” since the me
that is done with such devices is the difference between the phases of the same wave pa
the two directions. The measurement unit for a differential phase shifter is usually degrees p
length of the device.

As indicated in detail in Figure A7.12.3a, each rectangular waveguide is short circuited at o
quarter of wavelength after the coupling hole, thus assuring an electric field maximum 
coupling hole. With such an arrangement, energy traveling in the rectangular waveguide pa
the circular waveguide, travels inside the ferrite cylinder and comes out to the other recta
waveguide. The cylinder is held with low loss material, as in the isolators, and the magneti
can be obtained in the same way, that is using a permanent magnet or a solenoid wound
circular waveguide. The structure indicated in Figure A7.12.3 is not the only possible mounting,13

even if it is one of the most used. Note that in this arrangement the devices do not suffer fr
limitation of the Faraday isolator thought of as a phase shifter. In this case, whichever the

Figure A7.12.3
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shifting is, the wave is always circular polarized in the transition points, and so the energy exc
between the waveguides is always at its maximum.

If we indicate with “βc” and “βd” the phase constants respectively in the same or oppo
direction of “H,” the differential phase shift “∆θ” will be:

(A7.12.1)

where “l ” is the length of the ferrite cylinder. We may arrive at the same value of differential p
shifting if we leave the wave to pass in a fixed direction but do two measurements of phase
for a fixed direction of “H.” This kind of nonreciprocal phase shifter, in spite of its big size, i
research topic to increase the operating bandwidth and decrease its dimensions.14

c. Circulators

By “circulator” we mean a transmission line device with the characteristic that there is p
gation between the lines only in one circular direction, while in the opposite circular direction 
is more attenuation than possible. A typical system block diagram is indicated in Figure A7.12.4a.
In waveguide components, the circulator is realized by adding a third rectangular waveguide
isolator, as indicated in Figure A7.12.4b, which is orthogonal to port “1.”  A signal “TE10” coming
from “1” rotates its electric field clockwise and exits from port “2” for the reason explained in
previous point a. A signal coming from port “2” is reflected to port “1” and when coming bac
is in the proper orientation to exit from port “3.” A signal coming from port “3” rotates s
clockwise toward port “1” and arrives there under cut-off. So it is reflected back, arrives a
“2” rotating clockwise 45° and still under cut-off. It is reflected to port “2” and finally it arriv
at port “1” in the proper orientation to exit from this port. So, in the connection between po
1” we may attend a little more attenuation in with respect to the other possible connections
and “2–3.”

Typical applications of circulators are to connect one antenna to a receiver and a trans
For instance, the antenna is connected to port “2,” the transmitter to port “1,” and the rece
port “3.” Sometimes they are also used as isolators, connecting a load to one port. The v
the isolation is a little less than a pure isolator, mainly due to a little increase of mismatch to the

Figure A7.12.4
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A7.13 ISOLATORS, PHASE SHIFTERS, AND CIRCULATORS IN WAVEGUIDES
WITH TRANSVERSE MAGNETIZATION

Appendix A2 showed that in rectangular waveguides two longitudinal axes exist wher
“TE10” has its magnetic field circular polarized. We have used these points to realize the 
shifter in Figure A7.12.3 which also employs isodirectional propagation inside the circu
waveguide.

This section will show how these points of circular polarization may be used to realize de
in transversal propagation.

a. Nonreciprocal Isolators

An isolator that uses propagation in transversal magnetized ferrite is indicated in Figure A7.13.1.
A slab of ferrite is located along one axis of circular polarization, and it is magnetized along0,”
that is in transversal direction to “z0,” which is the direction of propagation. The intensity of “H
is to create a precession frequency equal to that of the passing signal. For this reason, this
isolator is often called a “resonance isolator.” So, this static magnetic situation is comp
different from that employed for the isodirectional isolator studied in the previous section w
the static magnetic field does not create resonance phenomena, that is the coincidence
precession frequency with the frequency of the signal. If this were the case, in Figure A7.12.1 the
signal would be attenuated for both the directions of propagations. In our case instead, the 
polarized magnetic field, which lies in a plane orthogonal to “Hy,” has right and left rotation in the
two axes of circular polarization, which interchange when changing the direction of propag
So, in the direction of propagation where the magnetic field has the same direction of the pre
motion, the e.m. energy is passed to the ferrite, while in the opposite direction the signal
with minimal attenuation. Note that when the ferrite absorbs the e.m. energy, it starts to in
its temperature, so care must be taken when this kind of isolator is used in high power applic
The heating of ferrite in this device is a phenomenon not present in the isolator with isodirec
propagation seen in the previous section. If we want to change the attenuated direction of

Figure A7.13.1
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gation, we may move the ferrite slab to the other axis of circular polarization or, alternat
reverse the direction of “H.”

A characteristic of this resonance isolator is that the ratio between attenuated and nonattte
value is greater than the Faraday isolator. The length of the Faraday isolator is smaller com
to the type under study since here the value of the attenuation introduced on the signal d
on the length of the slab. Typically, the normalized value of attenuation for the resonance is
is 6 or 7 dB per centimeter.

b. Phase Shifters

Using transverse magnetization it is possible to realize both nonreciprocal and reciproca
phase shifters, resulting in a greater versatility with respect to the Faraday phase shifters.

A typical nonreciprocal phase shifter is indicated in Figure A7.13.2. Note it is very similar to
the resonance isolator with the difference that in this case two ferrite slabs are used and the i
of “H” must not create resonance with the frequency of the signal to be phase shifted. It is imp
to see that the static magnetic field in one slab is in the opposite direction in comparison
static field in the other slab. This is done just to phase shift the wave passing in only one di
since for each axis of circular polarization “h” changes the direction of rotation. So, with a 
direction of propagation where we insert phase shifting, we have to change the direction o
inside each slab if we want to change the direction of propagation where we insert the highe
shifting.

To understand how this device works, study Figure A7.13.3. Remember from the Appendix A2
that the magnetic field of the fundamental mode “TE10” lies in a plane orthogonal to the “y” axis
This means we are in the magnetic situation studied in Section A7.5.

Part a of Figure A7.13.3 represents the situation where the wave propagates along “z0.” In this
case, in the left slab the magnetic field of the wave is clockwise circular polarized, while i
right slab it is counterclockwise polarized. Then the wave is subjected to “βd,” since in each slab
the direction of circular polarization is discordant to the direction of the precession motion.

Figure A7.13.2
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Part b of Figure A7.13.3 represents the situation where the wave propagates along “–z0.” It is
simple to recognize that the wave is subjected to “βc” since in each slab the direction of circula
polarization is concordant to the direction of the precession motion.

So, the differential phase shift “∆ϕ” for the device indicated in Figure A7.13.2 will be:

(A7.13.1)

If we would realize a reciprocal phase shifter it is enough to magnetize the two ferrite 
with a magnetic static field in the same direction for each slab. In this way the wave will hav
same phase shifting for each direction of propagation, and the differential phase shift “∆ϕ” will be
zero. From a practical point of view, such devices are seldom used since it is the differential
shift that is important more than the absolute phase shifting.

While the Faraday isolator is usually preferred to the resonance one, in the case of phase
the contrary holds and the transverse magnetization type is preferred due to the smaller siz
device under study. Waveguide phase shifters due to their importance in high quality te
systems are a research topic.15

c. Circulators

A circulator with transversal magnetization is bigger than the Faraday counterpart, and u
the last is preferred. Anyway, we will show how in our case a circulator may be built and h
works.

Such a device can be built using two 90 degree 3 dB splitter/adders, of the type seen in Ap
A3, and two phase shifters studied in the previous point b. The device is schematically ind

Figure A7.13.3
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in Figure A7.13.4. With the blocks indicated as “3dB/90° Dir. Cou.” we intend a directional coup
so that for any port considered as input, the signal outgoing from the direct opposite por
phase with the input signal while the signal outgoing from the other opposite port is 90° de
with the input signal. If the phase shifters are tuned to realize the phase shifting indicated
figure, not considering any multiple of 2π, it is simple to recognize that the device is a circula
in the direction “1 → 4.” Suppose that a signal is entering port “1.” It is equally divided at po
“1′ ” and “3′,” with the phase at this port 90° delayed with respect to port “1′.” A signal will arrive
at port “2′ ” 180° delayed, while the other will arrive at port “4′ ” 90° delayed. This last signal will
arrive at port “2” with a total 180° of delay, so in phase with the signal that from port “2′ ” arrive
at port “2.” In addition, the signal in “2′ ” will also arrive at port “4” 280° delayed while the signa
from “4′ ” will also arrive at port “4” 90° delayed, that is in phase opposition with the signal com
from “2′ .” As a result, the signals in “2′ ” and “4′ ” at port “2” will enter while at port “4” no signal
ideally will exit.

Similarly proceeding for the other ports valuated as inputs, it is possible to verify the circu
in the direction “1 → 4.”

This kind of isolator is seldom used, mainly due to the wide dimensions. The literature re
other constructions to reduce the dimensions, which partially avoid the use of ferrite and 
use of magnets.16

A7.14 FIELD DISPLACEMENT ISOLATORS AND PHASE SHIFTERS

The field displacement effect of ferrites is a nonreciprocal behavior of these elements 
usually employed so that in a direction of propagation of the e.m. energy, the maximum fie
the wave are pushed on one extreme of ferrite, while in the opposite direction of propaga
the same position there is now the minimum fields.

The first device to employ the field displacement effect was built in a rectangular wave
and this appendix will cover such a device, while the chapters of this book have covered the
counterparts of the waveguide ones. Before studying the field displacement effect we pref
to show in Figure A7.14.1, how this phenomenon acts on the electric field of the fundamental m
“TE10” inside the rectangular waveguide. We have represented a transversal section of a rect
waveguide. A slab of ferrite is positioned inside it in a precise position that is not necessar
position of circular polarization of “h,” as it is instead used for the devices studied in the pre
section. The dashed and solid curved lines represent the intensity along “x” of the componey”
of the electric field of the wave.* The ferrite is opportunally magnetized, without creating reson

Figure A7.13.4

* See Appendix A2 for the representation of the fields inside a rectangular waveguide.
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with the signal passing in the waveguide. What happens is that for a direction of propagati
electric field has its maximum on a side of the slab, as indicated by the dashed lines, while
opposite direction in this position, there is a minimum of the field, as indicated by the solid 
Note that an analogy with the devices of the previous section exists, since also now we are
case of propagation inside a transversal magnetized ferrite.

Theoretically, this effect may be explained with the cut-off phenomenon of ferrite, as sta
Section A7.5. Here we will fix the exact formulation of the problem, but we have to say tha
a complete understanding of what we are going to say it is important to clearly understa
basis of the wave propagation and the representation of the modes inside a rectangular wav
The reader can read Appendix A2 for the necessary background.

So, let us examine the situation represented in Figure A7.14.2. Part a indicates a three dimen
sional representation of the device we use to study the field displacement effect, while 
indicates a cross-sectional view. Referring to part b of Figure A7.14.2, the saturating static magnetic
field “H” is uniform and internal to the ferrite slab. In the waveguide part where the slab is pr
we define three regions where we have to find the e.m. fields — two air regions “A1” and 
and one region “F1” filled by the slab, that is the inside of the slab. We assume inside the wave
and far away from the slab, only the fundamental mode “TE10 exists.” This mode has the only
nonzero field components “hx,” “h z,” and “ey” with coordinate dependence along only the “x” an
“z” axes. Since the propagation of the wave is inside a transversal magnetized ferrite, w
recognize that we are in the same situation studied in Section A7.7, where “µeq⊥ ” was defined. The
fields of the wave must so respect the “TE” modes equations defined in Section A7.7, that 

(A7.7.6)

(A7.7.8)

(A7.7.10)

From A7.7.6 and A7.7.8 we may obtain:

Figure A7.14.1
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(A7.14.1)

(A7.14.2)

Now we have to remember that A7.7.6, A7.7.8, and A7.7.10 have been determined ass
that only the progressive* wave exists because we assume a homogeneous and uniform med
with ferrite. In our case, we want to evaluate the most general case where both the progress
the regressive wave exists along the “x” axis. In this case, the two previous equations beco

(A7.14.3)

(A7.14.4)

where “P,” “P′,” “R,” and “R′ ” are generic constants, with the dimensions of Volt/m. Refer
Appendix A2 to see how these formulas come from A7.14.1 and A7.14.2. The explanation l
how the operation ∇  ⊗  (V) changes when the generic vector “V” has the coordinate dependenc
e(±∑iKii) with i = x,y,z, as we now assume to be the case along the “x” axis.

To evaluate “ey” we may proceed with the variable separation method, i.e., we will supp
that the dependence of this field on “x” and “z” may be written as:

Figure A7.14.2

* See Chapter 1 for wave definitions.
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Proceeding as in Appendix A2, we may say that the generic function ey(i ) with i = x,z will
respect the equation:

(A7.14.6)

with the condition

(A7.14.7)

inside the ferrite region “F1” and

(A7.14.8)

inside the air regions “A1” and “A2.” As seen in Chapter 1 and Appendix A2, two equivalent fo
of solutions exist for A7.14.6. We will give both forms, i.e.:

(A7.14.9)

(A7.14.10)

where the constants “e+,” “e–,” “E+,” “E–,” “k x,” and “kz” will be determined applying the conditions
that the e.m. field must satisfy on the border of the structure. Of course, “e+,” “e–,” “E+,” and “E–”
have dimensions of Volt/m. Note that in the two previous equations we have assumed on
progressive wave inside the waveguide while, as we said, we are considering both the wav
the “x” axis. It is more useful to use A7.14.9 inside the ferrite slab “F1” and to use the A7.1
on the air regions “A1” and “A2.”

So, in “F1” and along “x” we will write:

(A7.14.11)

The constant “kxf” is in general a complex number that is also a function of “H” since “µeq⊥ ”
is just a function of “H” as we saw in Section A7.7.

In the regions “A1” and “A2” and along “x” we may write, from A7.14.10:”

(A7.14.12)

(A7.14.13)

where the constants “C,” “D,” “E,” and “F” will be determined applying the conditions that 
e.m. field must satisfy on the border of the structure while “kx0” is known from A7.14.8, which
assuming the absence of loss, can be rewritten as:

e x y e x e yy y y,( ) = ( ) ( )

∂
∂

2

2
2e i

i
k e iy

i y

( )
= ( )

k kxf z eq
2 2 2

0+ = − ⊥! ω µ µ ε

k kx z0
2 2 2

0 0+ = −! ω µ ε

e x z e e e e ey
k X k X k Zx x z,( ) = +[ ]+ ( ) − ( ) ( )− − −

e x z E senh k x E k x ey x x
k Zz, cosh( ) = ( ) + ( )[ ]+ − ( )−

e x Ae Beyf
k x k xxf xf( ) = +−( ) ( )

e x Csenh k x D k xy x x1 0 0( ) = ( ) + ( )cosh

e x Esenh k x F k xy x x2 0 0( ) = ( ) + ( )cosh
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since for zero losses

(A7.14.15)

Considering the rectangular waveguide as a perfect conductor we know that “ey” must be zero
for x = 0 and x = a. So, from A7.14.12 for x = 0 it follows that D = ! 0, and we have:

(A7.14.16)

From A7.14.13 for x = a it follows that F = ! 0, and we have:

(A7.14.17)

The other border conditions the e.m. field must satisfy are that the tangential magnet
electric field at the air-ferrite separation must be continuous since the ferrite is valuated
insulator. The tangential electric field at this boundary is “ey,” which is known from A7.14.11,
A7.14.16, and A7.14.17. The tangential magnetic field is “hzf” which we can obtain from A7.14.4
after inserting “eyf” from A7.14.11, resulting:

(A7.14.18)

where:

(A7.14.19)

(A7.14.20)

The last field we have to evaluate is “hz” inside the regions “A1” and “A2.” We can get help
from the general Maxwell’s equation:

which, is applied to A7.14.16 and A7.14.17, gives:

(A7.14.21)

(A7.14.22)

kx z0
2 2 2

0 0= −! β ω µ ε

k jz z≡ β

e x Csenh k xy x1 0( ) ≡ ( )

e x Esenh k a xy x2 0( ) ≡ −( )[ ]
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h x
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We may now use the boundary conditions we have just stated for the air-ferrite sepa
obtaining:

for the continuity of the electric field in x = d,

; (A7.14.23)

for the continuity of the electric field in x = d + f,

; A7.14.24)

for the continuity of the magnetic field in x = d,

; (A7.14.25)

for the continuity of the magnetic field in x = d + f,

(A7.14.26)

As a result, we have four homogeneous equations in the four unknowns “A,” “B,” “C,” 
“E.” To have solutions to this system of equations the determinant of the coefficient, i.e.:

must be zero. Evaluating this determinant we obtain a trascendental equation, which is a fu
of the geometry of the structure (shown in Figure A7.14.2) of the static magnetic field “H,” of the
ferrite characteristics, and of the phase constant of the wave. One important quantity that a
in the transcendental equation is “µlβz” which, remembering Table A7.7.1, is the only one that can
change the sign of the transcendental equation. In other words this means that we ha
nonreciprocity of the field displacement effect if we change the direction of propagation o
direction of “H,” not both, since in this case the product “µlβz” will not change sign.

One very important graph relative to field displacement effect is indicated in Figure A7.14.3.
In this figure we have represented the dependence of the phase constants “βz+” and “βz–,” i.e., along
the two directions of propagation “z0” and “–z0,” respectively, by the distance “d” of the ferrite
slab from a side of the rectangular waveguide. We see it is possible to find a value of “d” for 
in one direction of propagation, we have an imaginary value for “kx0,” while in the opposite direction
we have a real value of “kx0.” If we now remember that for a generic real number “α” we have:
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(A7.14.27)

from the expressions A7.14.16 and A7.14.17 we may recognize that when “kx0” is real, then the
electric field starts to have exponential shape along the “x” axis, as shown by the dotted 
Figure A7.14.1. Conversely, when “kx0” is imaginary from A7.14.27 it follows that the electric fiel
starts to have a sinusoidal shape along the “x” axis, as shown by the solid line in Figure A7.14.1.
As a consequence, by carefully tuning the device it is possible to have on a side of the fe
maximum of the electric field in a direction of propagation, and a minimum of this field for
opposite direction of propagation.

After such a brief theoretical explanation of the field displacement effect, let us start to ex
what kind of device we can build using this effect.

a. Nonreciprocal Isolators

An isolator using the field displacement effect is realized, as the first thing, finding the po
“d” where the maximum ratio exists between the strength of the electric field in the two direc
of propagation. As a first approximation, this value of “d” may be found setting x = d + f, i.e

From A7.14.17 it follows that:

Inserting this condition in the transcendental equation we may obtain the coordinate “d” (w
to place the ferrite slab). The exact position to maximize the ratio of the electric field in the
directions of propagation has to be found experimentally since for a perfect operation, too
tolerance on the value of “d.” K.J. Button has shown17 that for a waveguide with a = 4 cm, th
maximum tolerance it is not allowed on “d” is near one millimeter. In any case, the position
is always near one side of the waveguide, typically near the 10% or less of the dimension “a
thickness “f” of the ferrite slab is inversely proportional to the difficulty in finding the exact pos
“d” since the thinner the slab, the more critical is the exact position “d.”

Once the proper value “d” has been found, to build an isolator it is enough to place a sh
resistive material on the side where the ratio of the electric field is maximized, as sho
Figure A7.14.4a. In such a case, in the direction of propagation where the electric field is maxi
the signal will be absorbed by the resistive sheet, while in the opposite direction the sign
pass with small attenuation since it has been displaced from the slab, as shown in Figure A7.14.1.
To give some value of the field displacement isolater shown in Figure A7.14.4a, experiments report
a maximum attenuation in the pass direction near 1 dB for a device working at 10 GHz, a min
attenuation in the stop direction near 40 dB, and a bandwidth near 10%.

To increase the ratio of attenuations between the two directions of propagation it is poss
use two slabs of ferrite, doubling the field displacement effect. This situation is indicate
Figure A7.14.4 part b. We see that the two ferrite slabs “F1” and “F2” are magnetized oppo
each other. S. Weisbaum and H. Boyet have realized18 such a device working at 11 GHz reachin
a maximum attenuation in the pass direction of 1.2 dB, a minimum attenuation in the stop dir
of 64 dB, and a bandwidth of 10%.

The field displacement isolator can handle more power than the Faraday counterpart, with
handling capability similar to that of the resonance isolator. Due to the difficulty in finding
exact value of “d,” the field displacement isolator is seldom used, especially in low power 

senh j jsenα α( ) ≡ ( )

e d fy2 0+( ) =

k a d fx0 0− −( ) =!
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cations, and the Faraday isolator is preferred. Nevertheless, experiments on f.d. isolato
continuing19 to improve the performances of this device.

Caution must be used to attribute a physical mechanism for a device depicted 
Figure A7.14.4. Note how this construction is very similar to the resonance isolator indicate
Figure A7.13.1. So, at first sight the two devices may be confused in the physical mechanism
involved for the nonreciprocal isolation, but note that the resonance and the field displac
effects are completely different. Usually, the field displacement isolator may be recognized 
the little distance “d” from the side wall of the waveguide and the slab, typically of some millim
or maximum a 10% of the dimension “a.”

b. Phase Shifters

It is simple to understand that nonreciprocal phase shifters may be realized using th
displacement effect. Note from Figure A7.14.3 how some values of “d” exist where it is possib
to have quite different values of “βz+” and “βz–.” Placing the magnetized ferrite slab in such position
the differential phase shift “∆φ” for a given slab length “l ” will be:

(A7.14.28)

It is not necessary to place the slab in the position for the maximum ratio between the e
fields in the two directions of propagation. If this position is used, sometimes on the surface
slab where the field ratio is maximum, a little sheet of high dielectric constant material is a
to increase the phase constant of the wave in the direction of propagation where the electr
is maximum. In such a way, the differential phase shift is increased for a given slab length l.”

While the Faraday isolator is usually preferred to the field displacement one, in the ca
phase shifters, the contrary holds and the field displacement type is preferred due to the 
size of the device under study.

Figure A7.14.3

∆φ β β= −( )+ −z z l
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A7.15 THE FERRITE IN PLANAR TRANSMISSION LINES

As seen in the chapters of this book, ferrite is also widely used in planar transmission
Circulators, phase shifters, and isolators are typical devices used in a lot of transmission equ
and their use is growing. For instance, many cellular phones use circulators or isolators in mic
technology.

In the chapters of this book we have described how these devices are built and where t
used. Since in this Appendix we have described the behavior of ferrite under static and time v
magnetic fields, in this section we will study these devices from a more theoretical point of
using all the concepts we have introduced up to now. The complete vision of all the po
ferrimagnetic devices can be seen in the chapters of this book.

Let us start with the case of the ferrite used as substrate in microstrip transmission lin
presence or less of static magnetic field, since microstrips are the most used planar trans
lines. This subject was not treated in Chapter 7, which is completely dedicated to microstrip d
since the case of zero or moderate static magnetic field is not often used in practice. But th
is very important to join together all the concepts we have studied in this Appendix with pra
microstrip ferrite devices.

a. The Ferrite As Microstrip Substrate

A study of the case of microstrips using ferrite as a substrate has been done by D. J.
and R. A. Pucel20 for the case of nonmagnetized or at residual magnetization ferrites. In the
of residual magnetization, the ferrite has been magnetized with a static magnetic field with dir
parallel to the substrate and in the direction of the hot conductor.* To understand their resu

Figure A7.14.4

* See Chapter 2 for mechanic construction of microstrip transmission lines.
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need to remember what we have studied in Section A7.9 about the partially or nonmagn
ferrites, in particular the formulae A7.9.1 and A7.9.7, i.e.:

(A7.9.1)

A7.9.7)

We know from Section A7.9 that when ω < ωπm both these quantities become complex quantit
and as a consequence, the signal inside the ferrite is strongly attenuated.

From these concepts we can easily understand the results of these two researchers w
proved graphs of attenuation and impedance of the microstrips versus frequency as indic
Figure A7.15.1 parts a and b, respectively. As we said, the attenuation graph can be easily exp
with the complex behavior of “µpH0”  or “µpns.”  Concerning Figure A7.15.1b, note that both “µpH0”
and “µpns” have their minimum real value when ω = ωπm. So if we assume, at first approximation
that the fundamental mode “qTEM” in a microstrip may be approximated with a pure “TEM,
have that the impedance “ζ” of the microstrip for this mode is:

(A7.15.1)

Consequently, where the minimum of “µpH0” or “µpns” exists there will exist a minimum of the
impedance as it appears in Figure A7.15.1b.

Figure A7.15.1

µ ω ωπpH m0
2 2 0 5

1 3 1 2 1= + −( )[ ].

µ µ µpns pH pH s= + −( ) ( )0 0

1 5
1 M M

.

ζ ζ= ( ) = ( )µ ε µ εpH pnsor0

0 5 0 5. .
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For the graphs at the left of the line at “fm” the behavior of ferrite has no meaning since th
impedance of the microstrip becomes complex, i.e., it is reactive to the propagation of the 

The studies made by D. J. Massè and R. A. Pucel may be considered as the fundamen
to understand the behavior of partially magnetized ferrite or under residual magnetization. W
seen in Chapter 7 for microstrips and Chapter 8 for striplines how many devices are use
employ residual magnetization.

b. Nonreciprocal Isolators

A clear example of how we can get directional behavior using a planar transmission line
be obtained with reference to a coplanar waveguide, CPW, that we have studied in Chapter 
us examine the situation indicated in Figure A7.15.2. A coplanar waveguide has a cylinder of ferrit
posed in a slot. A static magnetic field “H” magnetizes the ferrite at resonance. In this case 
the elliptical polarization of the magnetic field “h,” which lies on planes passing along the 
The loci of elliptical polarization for “h” are represented in Figure A7.15.2.* The reader may
recognize that the magnetic situations, that is the vectorial relationships between “h,” “H ” and the
direction of propagation, are as we studied for the waveguide resonance isolator. That is, 
in the case of propagation in transversal magnetized ferrite. In fact, in both situations the ma
field “h” is polarized on a plane orthogonal to “H” and the wave propagates orthogonally to “H.”

In our case, the right and left directions of rotation of the elliptically polarized magnetic 
interchange when changing the direction of propagation. So, in the direction of propagation 
the magnetic field has the same rotation as the precession motion the e.m. energy is pass
ferrite, while in the opposite direction the signal flows with minimum attenuation. The attenu
in the two directions of propagation will have a graph of the type indicated in Figure A7.12.2 for
the resonance isolator in waveguide.

The fact that an elliptical polarization of “h” may be employed must not surprise the re
In fact, what is important about having energy absorption in the ferrite is that the direction 
rotation of the precession motion of the total atomic moment of the ferrite is concordant wi

Figure A7.15.2

* See Chapter 10 for “CPW” characteristics.
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direction of rotation of the magnetic field of the wave and, of course, the frequency of these m
is the same. In addition, in coplanar waveguides there exists some point where the eccentr
the elliptical polarization is very low and the polarization of “h” may be valuated as circular.

Many experiments on “CPW” using ferrite have been done by C. P. Wen,21 from which it
appears that the “CPW” is a planar transmission line that is very suitable to building nonreci
devices.

In Chapter 10 we saw other constructions of “CPW” isolators and other devices using f
The reader may refer to that chapter to have a global view on devices using this kind of transm
line.

c. Phase Shifters

Using all the concepts we have introduced concerning ferrites under magnetic fields, the
may recognize that the circular polarization of the RF magnetic field is the phenomenon 
best suited to realize phase shifters. Some planar transmission lines do not have this polar
such as microstrips, for instance. We have seen that it is possible, however, to create 
polarization in microstrips, using meander lines. As we have seen in Chapter 7 with micr
meander lines on ferrite substrate we can build phase shifters. We know that other planar tra
sion lines have elliptical polarization of the signal magnetic field, which is also suitable to int
in some way with precession motion of magnetized ferrite. These are coplanar waveguid
slotlines.* We will refer to “CPW,” in analogy to the previous point b.

C. P. Wen22 has made experiments on a “CPW” realized with ferrite as the substrate
transversely magnetized, as indicated in Figure A7.15.3a, measuring the differential phase shi
“∆ϕ”  in the frequency range 5 to 7 GHz. The results are indicated in Figure A7.15.3b. Note also
in this case that we are in transversal magnetized ferrite, like in the case of the waveguide
shifters studied in Section A7.13 or like in the previous point b, and the differential phase
will be a function of “βd” and “βc” according to:

where “l ” is the length of the ferrite cylinders.

d. Three Port Circulators

A typical stripline three port circulator is indicated in Figure A7.15.4. In part a we have drawn
a transversal view of the device. Two ferrite cylinders “F1” and “F2” are posed on each sid
circular conductor of maximum diameter not greater than the diameters of the ferrites. This c
conductor has attached on its border three striplines “L1,” “L 2,” and “L3,” each one forming an
angle of 120° with the nearest stripline. On the other side of the ferrite cylinders, a ground
“M1” and “M2” is attached, each for ferrite. These ground planes realize the stripline techn
of the device. At the external of the ground planes, two magnets generate the proper static m
field that biased the ferrites. Sometimes it is used as a magnet only.

A top view of the device is drawn in Figure A7.15.4b with the upper magnet, the top groun
plane “M1,” and the top ferrite “F1” removed. The dashed line represents the ferrite “F2” u
the disk conductor. We have indicated the origin of the angles “θ” at the angular center of port in
“L 1.”

After these mechanical considerations, we want to explain how the circulator works.
Let us start with the analysis of the structure indicated in Figure A7.15.4 with the ferrite never

magnetized, that is valuated with its “µr” end “εr.” It is possible to demonstrate that the sign

* See Chapter 9 on slotline characteristics.

∆ϕ β β= −( )d c l
©2000 CRC Press LLC
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coming from any of the ports “Li ,” with i = 1 to 3, generates a pattern of stationary wave, w
angular shape as indicated in Figure A7.15.5. Here we have assumed to connect the signal sou
to port “L1.” On the ordinate axis we have indicated the ratio “E1/Eθ” between the field intensity
“E1” at port “L1” and the field intensity “Eθ” at a generic angle “θ.” We see in Figure A7.15.5a
how the signal at ports “L2” and “L3” have the same amplitude. Since this is true for any p
valuated as input, we conclude that in this situation a signal coming into any port will exit 
the other two ports with the same amplitude.

If we apply a suitable intensity of “H” it is possible to offset the pattern of standing wav
30°, as indicated in Figure A7.15.5b. In this case we see how at port “L2” a signal exists, while at
port “L3” we have a minimum of signal. In this case, a signal incoming at port “L1” will exit at
port “L2” but will be strongly attenuated at port “L3.” This is true for any input port so, for instance
if the signal is injected in port “L3” it will exit at port “L1” and will be strongly attenuated at por
“L 2.” The device is clearly a circulator. Of course, the direction of rotation depends on the dire
of “H.”

The theoretical explanation of this phenomenon may be obtained using the concepts o
agation in striplines, studied in Chapter 3, and the theory of ferrites we have studied in this app
In particular, the magnetic field “h” of the wave is parallel to the conductors and the wave prop
in a transversely magnetized ferrite. So, according to the theory treated in Section A7.7, thi
will be under the effect of “µeq⊥ ” and will be composed of a “TE” and a “TM” wave. In addition
from Chapter 3 we know that the fundamental propagation mode of the stripline is the “T
mode. So, remembering the theory treated in Section A7.5 we know that the two waves in 
this “TEM” mode divides, that is the “TE” and the “TM” modes, have two phase constants
function of “H,” that is “βc” and “βd.” In the sensitivity to “H” of these two phase constants is t

Figure A7.15.5
©2000 CRC Press LLC
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explanation of the rotation of the standing wave pattern when “H” is applied to the structure. 
is more than a theory to explain the operation principle of the circulator, usually different fo
technology of the device23,24,25,26,27 as these aspects are treated in the chapters of this book fo
particular transmission line involved in the circulator.

A7.16 OTHER USES OF FERRITE IN THE MICROWAVE REGION

In this section we will indicate other devices that still use ferrites but they do not have n
ciprocal behavior in contrast to the devices studied in the previous section. These devices 
studied in the chapters because they are not strictly connected to the planar transmission li
think that the study of these subjects in the appendix will help in a complete understanding
ferrite world.

a. Variable Frequency Oscillators “VFO”

The most used type of ferrite for these devices is a particular crystal configuration called “g
composed of yttrium and iron with the formula Y3Fe5O12. The final composite is called “YIG,” an
abbreviation of “Yttrium Iron Garnet.” This ferrite has very low losses which makes it very suit
for microwave applications. VFO using YIG are commonly called “YIG oscillators.” These o
lators use the very low line width* of YIG to stabilize the oscillation frequency. The most empl
form of the ferrite used is the sphere, for two reasons: first, the sphere reduces the critical
positioning it inside the electronic circuit because the demagnetizing factors are independ
the direction of the applied static magnetic field, as was stated in Section A7.8; second, a 
is not as difficult to realize with good precision. Care must be taken to pose the sphere in a
of uniform static magnetic field, otherwise spurious oscillation can take place. The static ma
field is realized with a solenoid, sometimes wound on a ferromagnetic material to increas
concentrate the intensity on the sphere. The electronic circuit is usually coupled to the YIG 
through a magnetic feedback loop, as in the classical theory of oscillators.

Since it is known from this appendix that the precession frequency may be changed by v
the intensity of the applied static magnetic field “H,” to change the oscillation frequency (w
is stabilized from the sphere) it is enough to change the intensity of “H.”

Typical data of a YIG oscillator are:

Of course other YIG oscillators are available, more or less optimized for the required band
To conclude this point, we have to say that when a tunability of more than two octav

required, YIG oscillators have no competitors.

b. Tunable Filters

Good band filters, i.e., stop-band or pass-band, may be realized with ferrites. Also in this
the most commonly used ferrite is the YIG type, and these filters are called “YIG filters.” The 
care of the previous point must be taken for ferrite, i.e., to use a sphere of this material 
place it in a uniform “H.”

* See Section A7.10 for definition of line width.

Bandwidth 2…18 GHz
Current variation for tunability 800 mA
Output power 15 dBm, on 50 Ω
Phase noise, a 10 kHz from carr. –90 dBc/Hz
Spurious and harmonics –15 dBc
©2000 CRC Press LLC
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To understand the operating principle of the YIG filters, let us examine the structure ind
in Figure A7.16.1a. At the loop in the plane, x = 0 is connected to a signal generator; we will
this loop the “x-loop.” At the loop in the plane, y = 0 is connected a load; we will call this 
the “y-loop.” As is indicated, the two loops are orthogonal. The magnetic field produced by t
loop has the lines of strength as indicated in Figure A7.16.1b, and it is orthogonal to the y-loop
Consequently, as it is known from Appendix A6, no induced current will go in the load. Now
us insert at the center of the Cartesian coordinate system a sphere of ferrite of such dimen
that the generated field “h” is uniform inside the sphere. From the situation indicate
Figure A7.16.1c we may recognize that we are in a situation where the linear polarized mag
field “h” is orthogonal to “H,” that is a situation similar to the one studied in Section A7.6. 
difference is that in this case we do not have propagation inside the ferrite sphere. From Sectio
we know that the magnetic field “h” begins to rotate along the “z” axis, and when the frequ
of “h” is equal to the precession frequency induced in the sphere by “H,” the frequency of ro
becomes theoretically infinite as indicated in Figure A7.6.2. Associated to “h,” the ferrite create
a magnetization “m” and, in particular, components along the “y” axis appear. This situati
indicated in Figure A7.16.2a. It is this component that is able to create an induced current into
“y”-loop, current that is proportional to the input current, and consequently to transmit the i
mation of the input signal to the load. A concentrated constants equivalent circuit to this ph
enon is indicated in Figure A7.16.2b. The two transformers “T1”  and “T2”  represent the energy
exchange due to ferrimagnetic coupling while the resonance phenomena is represented
resonant circuit “RLC.”

A simplified stripline YIG band pass filter is indicated in Figure A7.16.2c. The two center
conductors of the striplines are set at 90° to minimize the coupling when not desired. 
intermediate ground plane “M2” a small aperture is created where a ferrite sphere “S” is lo

Figure A7.16.1
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suspended by low loss material. When a band pass function at a desired frequency “f” is d
between the two strip lines, a static magnetic field “H” is applied, so as to create in the fe
precession frequency “fp” of the total atomic moment equal to “f.”

The typical tunability of YIG filters are near two octaves, with “Q” around some hundr
with maximum central frequencies near 20 GHz.

A7.17 USE OF FERRITE UNTIL UHF

What we have studied up to now is only a particular use of ferrite, mainly in the transmi
line field and in microwave region. In this section we will discuss the use of ferrite below
microwave region, that is starting from some hundreds of kHz until the maximum frequen
the UHF band, i.e., 3 GHz. The number of applications of ferrite in this region of frequency ex
that in the microwave region.

In this band of frequency it is usual to employ ferrite without any static magnetic field, an
most used characteristics of these elements are the value of the initial permeability and the
of the hysteresis loop. These magnetic characteristics are in common with the ferroma
materials, but what makes ferrimagnetic materials the preferred ones is their low loss comp
losses in the ferromagnetic ones, especially the induced current losses as we have stu
Section A7.11. As a result, above some kHz the ferrites are the only used magnetic materi

One of the first applications of ferrite was as a holder for wire wound antennas in pocket r
As studied in Appendix A5, the high permeability of ferrite concentrates the magnetic indu
inside it, and consequently the induced voltage on the loops around it will be higher compa
that induced in the same loops without the ferrite as a holder.

Another application of ferrites employed as material of high permeability is in transform
For this application a high constancy of “µi” with frequency is required, at least in the band of t
signal to be applied to the transformer, and also small losses or at least a constancy of loss
frequency. From Section A7.9, we know that losses are created by the imaginary part “µij” of “ µi.”
Some typical shapes of initial permeabilities are drawn in Figure A7.9.1.

Figure A7.16.2
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Other applications are in high “Q” inductors in filters, but in this case caution must be 
because the initial permeability is very sensitive to temperature variations, and inductance var
of ± 200ppm/°C are not rare.

The research of a ferrite with high permeability, low loss, high usable bandwidth is acti
many chemical and physical laboratories in the world. Today, the maximum frequency where f
are useful is near 2 GHz.

A7.18 HARMONIC SIGNAL GENERATION IN FERRITE

In all the previous equations concerning ferrites we have always assumed an invarianc
characteristics from the strength of the time varying signal. The dependence of these charac
on the static magnetic field “H” are instead governed by the hysteresis loop, studied in Section

To begin this study, we want to pick up two fundamental concepts of the theory of ferrite, 
in Section A7.3, and indicated in a and b below.

a. Let us take again the magnetization equation A7.4.3, i.e.:

(A7.4.3)

For the resolution of this equation we have applied the following three hypotheses in a Cartes
coordinate system, with the static saturating magnetic field “Hs” applied along “z”:
a.1 a sinusoidal time varying form of the signal, represented with the term e(jωt)

a.2 the magnetic field “h” of the signal is represented by:

a.3 mixed products are negligible compared to single time varying components.
b. With these hypotheses the magnetization Equation A7.4.3 becomes:

(A7.4.11)

(A7.4.12)

(A7.4.13)

In this section we will study one of the most remarkable phenomena created by the ferrite wh
the mixed products of second order cannot be neglected compared to single lowercase term. 
phenomenon is the generation of the second harmonic of the signal. We still set two simplificatio
in our analytical procedure as a consequence of a partial removal of previous point a.3, i.e.:

i. We will assume that the time varying field along the direction of “Hsz” will be negligible
compared to “Hsz”
ii. We will not consider mixed products of order equal to or greater than three.

With these two hypotheses, we have:

(A7.18.1)

d m

dt
m Hh

m

m
m HhT T

MM
MM

MM

MM
MM= ⊗( ) + ⊗ ⊗( )µ γ αµ γ0 0

h h x h y h z ex y z
k Zz≡ + +( ) −

0 0 0
( )

j m m h m hx p y T y sz x p T x szω ω γ α ω αγµ µ= − − − −MM MM

j m m h m hy p x T x sz y p T y szω ω γ α ω αγµ µ= + − −MM MM

j mzω = 0

MM MM MMm Hh m H h x h m H y m h h m zy zs y sz x zs x sz x y x y⊗ = −( ) + −( ) + −( )0 0 0
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(A7.4.10)

and the magnetization equation will become:

(A7.4.11)

(A7.4.12)

(A7.18.2)

From A7.4.11 and A7.4.12 we obtain “mx” and “my,” and according to Section A7.4 we have

(A7.18.3)

(A7.18.4)

Inserting these quantities in A7.18.2 we have:

(A7.18.5)

The previous equation is the analytical representation of the frequency doubling we wan
prove. In fact, if the signal has an angular frequency “ω,” it follows that both “hx” and “hy” will
have the same angular frequency. Consequently “hx

2” and “hy
2” will have a time dependence o

“2ω” and, for A7.18.5, “mz” will have the same value of angular frequency. Note that since µl ≡ xl,
as we saw in Section A7.4, the previous equations may be rewritten without errors with “µl” instead
of “xl.”

It is important to make two statements about A7.18.5. First, note that if the magnetic fie
the wave is circularly polarized, i.e., if hx = ±jhy, then mz = 0 and this result shows us that circular
polarized waves should generate lower levels of second harmonics. Second, from the grapl
≡ xl in Section A7.4 we know that when ω ≡ ωp the value of “µl” is maximum, and this lets us
assume that at ω ≡ ωp the levels of second harmonics should be higher than for other frequen

The theoretical result given by A7.18.5 has guided some researchers to find a practical
cation of the frequency doubling. One of the best-known test devices has been a recta
waveguide frequency doubler.28 It has been built with a low pass filter at the input of the wavegu
so that only the signal generator can travel in this port, and a high pass filter at the output 
only higher harmonics of the signal can travel in the output port. Between the two filters a 
cylinder is attached to a side wall of the waveguide, and transversely magnetized with res
the direction of propagation. A phase adjustment is provided between the two filters to op
the efficiency of the device. The performances of this device have been:

Input power: 32 KW
Output power: 8 KW
Input frequency: 9 GHz
Output frequency: 18 GHz
Conversion loss: 6 dB

MM MM MM MM MMm m Hh m H h x m H h yzs x zs x sz y zs y sz⊗ ⊗( ) = −( ) + −( )[ ]0 0

j m m h m hx p y T y sz x p T x szω ω γ α ω αγµ µ= − − − −MM MM

j m m h m hy p x T y sz y p T y szω ω γ α ω αγµ µ= + − −MM MM

j m m h h mz x y x yω = −

m x h jx hx p x y= + l

m jx h x hy y p y= − +l

m
x

h hz
T

x y= +( )γ
ω
µ l 2 2
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Also even though these results are good, this device has not been used much since w
improvement in technology today it is possible to directly generate such output frequencie
output powers without the need to duplicate any frequency.

Another device that can be realized using A7.18.5 is a detector. If “hx” and “hy” have different
frequencies, for instance one of these two components is modulated, in “mz” will be present sum
and difference frequencies. Some researchers29 have built test devices to prove this theory an
effectively they have obtained a ferrite detector, both in circular and rectangular waveguide
even if these assemblies are very creative from a mechanical point of view, they have not
much practical success, due the advent of semiconductor detectors in the period (1958)
experiments.

A7.19 MAIN RESONANCE REDUCTION AND SECONDARY
RESONANCE IN FERRITE

Some researchers30 noted that when high power signals were applied to ferrites, some ef
not directly correlated to small signal theory appeared in the ferrite behavior. First of all, the
value of the signal absorption at resonance was lower and wider; in addition a new small abs
peak appeared for a value “H2” of “H” lower than the value “Hp” for the main resonance. Graphically
the situation of these effects is represented in Figure A7.19.1, where the dashed line graph is relative
to the small RF signal case and the solid line one is relative to the high power of RF signa
new absorption peak is called the “secondary resonance” or “auxiliary resonance.” This phen
begins quite abruptly when the RF signal exceeds a critical value “hc” which is dependent on the
shape of the ferrite specimen.

The theory that can explain these phenomena is known as the “theory of spin waves,” dev
by the two physicists C. Herring and C. Kittel31 in approximately 1951. This formidable theor
requires, for a deep understanding, a high familiarity with physical relationships and mathem
analysis. Appendix A5 can help the reader with a review of the fundamental concepts invol

Figure A7.19.1
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this theory, but in addition, good books on mathematical analysis are needed. In this Appen
will report the fundamental relationships of the spin wave theory, which can help us to unde
these new two phenomena in ferrite at high power signal levels. Other full studies on this
may be found in reference 32.

The spin waves are spatial waves generated by the chaotic perturbation on the alignmen
spin magnetic moments inside the ferrite. As a first evidence, the spin wave theory remov
concept of the complete alignment of all the spin magnetic moments. In the high power ca
at resonance, this new concept can be easily understood. In fact, when we send an RF sig
ferrite at resonance, the signal power is taken by the ferrite, which begins to warm up, incr
temperature more and more when increasing the signal level. So, the thermal agitation ins
ferrite can be an explanation for the spin waves. The spatial dependence of the spin w
assumed to be a damped sinusoid, with damping factor “α,” which is the same we have used fo
the magnetization equation in Section A7.4. For instance, along the “x” axis the spatial depen
of the spin wave will be:

(A7.19.1)

with “kx” the propagation constant along “x.” The angular frequency of the spin wave is “ωk,” given
by:33

(A7.19.2)

where:

1. “Nd” is the demagnetizing factor along the direction of “H”
2. “l” is the distance between atoms in the crystal lattice, assumed to be cubic
3. “k” is the propagation constant of the spin wave
4. “ωx” is the angular frequency generated by the exchange field “Hx,” i.e.:

(A7.19.3)

All the other quantities in A7.19.2 are well known at this point. The exchange field is corre
to the exchange energy in the crystal lattice, as we have studied in Appendix A5. In the ca
cubic crystal lattice, as in our case, we have:

(A7.19.4)

In this equation, “Jx” is the exchange integral and “S” the quantity of motion moment of 
spin, both defined in Appendix A5. “M” is the magnetization of the ferrite.

What we have defined up to now is the common part of the spin wave theory which is co
to both the secondary resonance and the reduction of main resonance. At this point, it is b
divide the two phenomena, each one with its particular explanation.

a. Main Resonance Peak Reduction

The damped oscillatory waveform of the spin waves is in some way coupled to the prec
motion, so that these two phenomena have quite similar frequencies. The coupling coefficien
to increase when the frequency of the signal is coincident with “ωk,” and it increases exponentially
when the magnetic field of the signal begins to exceed a particular critical value “hc” given by:

e k xx
x

( ) cos− ( )α

ω ω ω ωk p d m z x zN m m k−⊥ − + ( )l
2

ω γ µx T xH= −

H
J S

x
x= 4 2

2
MMll
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(A7.19.5)

where “∆H” is the linewidth of ferrite, defined in Section A7.10. In the same manner “∆Hk” is
defined with “ωk” instead of “ω,” i.e.:

(A7.19.6)

From A7.19.2 and A7.19.6 we may note that since “ωk” increases with “k,” that is, it increases
when decreasing the spatial wavelength of the spin wave, we have the result that the linew
the spin waves increases for small spatial wavelength spin waves. This means that these
with high “ωk” are the most attenuated. The value of “hc” given by A7.19.5 is the smallest for any
possible spin wave.

It is just this coupling between precession and spin waves that creates a reduction and w
of the main resonance peak. For h > hc and at resonance, the energy captured by the ferrit
passed to spin waves which, not being synchronous, reduce and widen the shape of the ab
peak.

H. Suhl34 has verified in experiments a good agreement between the values of “hc” evaluated
with A7.19.5 and that effectively measured to have the reduction and widening of the main reso
peak.

b. Secondary Resonance

The secondary resonance peak is due to the spin waves that are not directed along the d
of application of “H.” The static magnetic field “H2” corresponding to the secondary peak is give
by:

(A7.19.7)

The critical value “hc2” for the “RF” magnetic field is given by:

(A7.19.8)

In this expression we have:

1. g(θ) is a function proportional to the incidence angle of “h” with the vector “k” associated with
spatial propagation constant “k” of the spin wave.* The value of this function is usually set to on

2. “ωp′ ” is the Kittel precession frequency given in Section A7.8, i.e.:

(A7.8.17)

where:

(A7.8.18)

* See Appendix A2 for wave propagation vectors.
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Experimentally, the researcher H. Suhl35 has proved that the value of “H2” can also be half of
“H,” but in any case a good agreement exists between the theoretical value of A7.19.7 a
measured value.

Different from the previous point a, the secondary resonance is a phenomenon that 
advantageously used to build power limiters. If we apply the static magnetic field “H2” to ferrite,
no attenuation takes place until the input power creates a magnetic field equal to or great
“hc2” given in A7.19.8, above which the attenuation will increase sharply. Such a device has
built36 originally to perform some experiments to verify the theory discussed here. This d
appears as a Faraday isolator that is as a cylindrical waveguide with a pole of ferrite held
center. A power attenuation of 5 dB has been obtained for an input power near 9 kW at a fre
of 9.375 GHz. The ferrite cylinder was 5.08 cm long with a diameter of 1.27 cm, and longitud
magnetized with 450 Oe. From this experiment the characteristic appeared that the value
attenuation increases with input signal level, so that the output power does not increase w
input power increases. Other experiments made by Soohoo37 in a rectangular waveguide have show
that values of 10 dB of attenuation are possible. This experiment has been made with a s
9.6 GHz, and the minimum input power to reach at least 5 dB is 1.3 kW.

Anyway the power levels indicated in these experiments are destructive for modern solid
circuits, and for these circuits power limiters near some watts maximum are required. We ma
that the values of “hc” and “hcs” are the internal fields, and in all these expressions the demagnet
factors appear. So, it is logical to think that the type and shape of the ferrite and its place
device can affect the performances of the power limiter. Soohoo has made an experime
rectangular waveguide in which the limiting action starts near one watt for a signal frequen
“x” band, i.e., 8.2 to 12.4 GHz.

Other experiments have been made trying the realization of power limiters in micro
technology. The researchers Roome and Hair38 have made experiments of microstrips with ferri
as substrate. They have found the critical signal magnetic field “hcs” for secondary resonance is
given by:

(A7.19.9)

and the associated critical power “Wcs” is:

(A7.19.10)

In the previous equation “w” is the width of microstrip in centimeters, “hcs” must be measured
in Oersted, and “ζ” is the microstrip impedance. Their experiments have also proved a g
agreement between the values of the theoretical and practical fields. In particular, for a freq
of 2.2 GHz they have obtained a value of “hcs” corresponding to a power near 2 watts.
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APPENDIX A8

Symbols, Operator Definitions
and Analytical Expressions

A8.1 INTRODUCTION

In many parts of the book we use symbols that we think are generally known to the r
Other symbols are defined by the author of this book, because he thinks that they can h
reader to remember or to understand the analytical relations where they appear.

In addition, in this book we use some mathematical operators that should also be kno
the reader.

In any case, in this Appendix we will collect all these symbols and mathematical operato
order to help the reader to read this book. 

Of course, this book is neither a mathematical nor a physical one, and consequently w
only indicate the operators we use in the text, leaving to other books the rigorous verificatio
related physical aspects.

A8.2 DEFINITIONS OF SYMBOLS AND ABBREVIATIONS

Here the symbol character identification follows, with its name and its definition. This wi
done dividing the objects by topic.

A8.2.1 Associated to Vectors

_ (underline): vector. Every time a symbol is underlined it is represented as a vector.

underline + subscript 0: versor. The versor is a particular vector that only gives a direction. Con
quently, it has no dimensions and its modulus is the unity. For instance, if the vector “e” is directed
along the “x” axis, then we can write e = ex x 0, with “x 0” the versor of the “x” axis.

⊥ : orthogonality between vectors. So, if “ v1” and “ v2” are two vectors, then “v1 ⊥  v2” means that
“v 1” and “v2” are orthogonal.

⊗ : vector product. If “ v1” and “v2” are two vectors, then “v1 ⊥  v2” represents the vector product
between “ v1” and “v2.” The result is of course a vector.

“• ” : scalar product. If “ v1” and “v2” are two vectors, then “ v1• v2” represents the scalar product
between “ v1” and “v2.” The result is of course a scalar. Sometimes the symbol “• ” is applied at
the point of an arrow representing a vector. In this case we mean that the vector is directed w
the arrow toward us; it is pointing toward us.
©2000 CRC Press LLC



 

we

   

ore

    

th

      

t a
.

  

ed.

  

fer

  

 the

                                           
x : Sometimes the letter “x” is applied at the end of an arrow representing a vector. In this case 
mean that the vector is going away from us.

A8.2.2 Mathematical

≡ : coincidence. This symbol is inserted in any equation that results as a particular case of a m
general expression. For example, if we have a general equation y = 2x + 1 if x = 2 then y ≡ 5.

⊥ equality by definition. This symbol is used every time that an expression is defined simply wi
another symbol or name. For example cosh(z) ⊥    (ez + e–z) /2.

= ! : forced equality. This symbol is employed in any equation that must be assured to permi
consequence. For example, if we want Equation y = 2x +1 to be equal to zero, then x = ! –1/2

≠ ! : forced inequality. By extension of the forced equality.

tg, tan: tangent function. If an “h” is appended, the hyperbolic counterparts are involved.

atg, atan: arc tangent function. If an “h” is appended, the hyperbolic counterparts are involved.

ctg, cotg: cotangent function. If an “h” is appended, the hyperbolic counterparts are involved.

actg, acot: arc cotangent function. If an “h” is appended, the hyperbolic counterparts are involv

quantity in square brackets: dimensions. For example, if “R” is a resistance, then [R] = Ohm.

ln, �n: natural logarithm

log, lgt: base 10 logarithm

superscript *: complex conjugate. Every time a star “*” is used as superscript to a letter, we re
to its complex conjugate, i.e., “n*” is the complex conjugate of “n.”

→: becomes. The expression on the left of the arrow becomes the expression on the right of
arrow.

′ (prime): derivative. For example, given the function “f(x)” then df(x)/dx ⊥– f′ (x). The symbol
“ ′ ” as derivative is obviously used where we think no misunderstanding can arise.

^ : raise to a power. For example a^2 means “a” raised to the square.

exp( ): natural number “e” raised to ( ).

A8.2.3 General

ul, u.l.: unit length

e.m.: electromagnetic

c or v0 : vacuum light speed. Numerically c ⊥– 1/(µ0ε0)0.5 = v0

t.l. : transmission line.

P.C.B.: printed circuit board.

ω: angular frequency, measured in radians/sec

f: frequency. It is known that ω ⊥– 2πf.

λ: wavelength

ζ v : vacuum characteristic impedanceζ v = 120π Ω

ε r : relative dielectric constant*

*  The dielectric constant is also called “permittivity.”
©2000 CRC Press LLC
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ε0: vacuum dielectric constant

ε : absolute dielectric constant: ε ⊥– ε0εr

µr : relative permeability

µ0: vacuum permeability

µ : absolute permeability: µ ⊥  µ0µr

MIC : Microwave Integrated Circuit. In practice it is a circuit, passive or active, built with discrete
and separate components and working in the microwave frequency region, i.e., f > 1GHz.

MMIC or MIMIC: Microwave Monolithic Integrated Circuit. It is a circuit, passive or active, built
on a single piece of substrate using IC techniques. The components employed are not discrete
cannot be taken off the circuit without destroying it.

q : quasi. Quasi means almost. It is generally used in e.m. theory in conjunction with modes abb
viation to indicate the practical similitude to the exact mode. As an example, “qTE” means th
the mode is “quasi” a “TE” one.

CTM : Conformal Transformation Method

VSM: Variable Speed Method

lower case, upper case letter: a time varying or static quantity, respectively

A8.3 OPERATOR DEFINITIONS AND ASSOCIATED IDENTITIES

Here follow operators’ character identification, name, and definition.

ΑΑΑΑ8888....3333....1111 �: Vector Operator Nabla or Vector Operator Delta

The aspect of the mathematical operations performed by this operator are strongly depen
the reference system employed in the region under study. This is what we will discuss in th
sections. However, a definition independent of the particular reference system is possible,
given by:

(A8.3.1)

where:
“p” is the generic parameter where “delta” operates*
“v” is a volume contained by the surface “S”
“n” is the normal to the surface “S,” directed outside “S”
“Delta operator” has no practical effect alone, while it assumes importance when
operates on scalars or on vectors, in this last case through scalar or vector produ
In general, when delta operates on
1. scalars “s,” the resulting operation is called the “gradient.” For example, the gradient of “

is indicated as “∇ s.” The result is a vector.
2. vectors “v,” the resulting operation is said to be a:

a. “divergence,” if we do a scalar product with the vector. For example, the divergence 
“v” is indicated as “∇ • v.” The result is a scalar.

b. “curl,” if we do a vector product with the vector. For example, the curl of “v” is indicated
as “∇  ⊗ v.” The result is a vector.

Note that since in our symbology we underline a quantity to mean it is a vector, we d
same for the “delta” operator.

*  We will show later that “p” can be a scalar or a vector function.

∇ ( ) =
→ ∫p

v
pndS

v
s

lim
0

1
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ΑΑΑΑ8888....3333....2222 �2: Laplacian or Square Delta

The Laplacian is simply defined as:

(A8.3.2)

This operator is also strongly dependent on the reference system employed in the region
study. Note that ∇ 2 is a scalar operator and for this reason when it operates on vectors, it do
need a scalar or vector product. For this reason, when ∇ 2 operates on scalar the result is a scal
and when it operates on vector the result is a vector. The expressions of ∇ 2 will be given later.

A8.3.3 Operator identities.

The most used identities applicable to “∇ ” and vectorial identities are:

(A8.3.3)

(A8.3.4)

(A8.3.5)

(A8.3.6)

(A8.3.7)

(A8.3.8)

(A8.3.9)

(A8.3.10)

A8.4 DELTA OPERATOR FUNCTIONS IN CARTESIAN
ORTHOGONAL COORDINATE SYSTEM

In this reference system a vector “v” is indicated as:

(A8.4.1)

where:

and a scalar is represented in the most general way as f = f(x,y,z).
The “delta” is given by:

(A8.4.2)

∇ • ∇ ∇−⊥ 2

∇ ⊗ ∇ ⊗ = ∇∇ • − ∇v v v2

∇ • ∇ ⊗ = v 0

∇ ⊗ ∇ = s 0

∇ ⊗ = ∇ ⊗ + ∇ ⊗sv s v s v

∇ • = • ∇ + ∇ •sv v s s v

∇ • ⊗ = • ∇ ⊗ − • ∇ ⊗A B B A A B

A B C B A C C A B⊗ ⊗ = •( ) − •( )

A B C C A B B C A• ⊗ = • ⊗ = • ⊗

v v x v y v zx y z= + +0 0 0

v v x y z v v x y z v v x y zx x y y z z= ( ) = ( ) = ( ), , , , , , , ,

∇ + +−⊥
∂
∂

∂
∂

∂
∂x y z

x y z0 0 0
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The “Laplacian” is:

(A8.4.3)

As was stated previously, the Laplacian may be applied to a scalar, returning a scalar, 
vector, returning a vector. The application of this operator to scalars is immediate, resulting

(A8.4.4)

and the application to vector “v” is defined as:

(A8.4.5)

In a lot of e.m. problems, the geometric structure has a cylindrical symmetry. In this cas
always possible to evaluate “∇ ” and “∇ 2” as the sum of a transverse operator plus a longitudi
one. For example, if “x” and “y” are the transverse coordinates we can write:

(A8.4.6)

(A8.4.7)

where:

(A8.4.8)

(A8.4.9)

An example where we have used such composition is the case of rectangular wavegui
indicated in Figure A8.4.1. Quite often, when such a composition is employed, the function where
delta operates has the longitudinal component dependent only on the longitudinal coordina
When this is true the partial derivative in A8.4.6 and A8.4.7 can be replaced with the ab
derivative.

The “gradient” is of course the direct application to a scalar of the “delta” operator indic
in A8.4.2, i.e.:

(A8.4.10)

The “divergence” is:

∇ + +−⊥2
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(A8.4.11)

The “curl” corresponds to the determinant of the following matrix:

(A8.4.12)

A8.5 DELTA OPERATOR FUNCTIONS IN A CYLINDRICAL
COORDINATE SYSTEM

In this reference system a vector “v” is indicated as:

(A8.5.1)

where:

and a scalar is represented in the most general way as f = f(r,θ,z).
The “delta” is given by:

(A8.5.2)

Concerning Laplacian, it is necessary to define if it is applied to a scalar or to a vector. 
have:

Laplacian applied to a scalar:

Figure A8.4.1
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(A8.5.3)

Laplacian applied to a vector:

(A8.5.4)

Also in this case it is always possible to evaluate “∇ ” and “∇ 2” as the sum of a transverse
operator plus a longitudinal one. For example, if “r” and “θ” are the transverse coordinates, w
can write:

(A8.5.5)

(A8.5.6)

where:

(A8.5.7)

(A8.5.8)

An example where we have used such decomposition is the case of circular waveguid
indicated in Figure A8.5.1.

The “gradient” is the direct application to a scalar of the delta operator indicated in A8.5.2

(A8.5.9)

The “divergence” is:

(A8.5.10)

The “curl” is the determinant of the following matrix:

(A8.5.11)

with the position ∂r/∂z = 0
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A8.6 DELTA OPERATOR FUNCTIONS IN A SPHERICAL
COORDINATE SYSTEM

In this reference system, represented in Figure A8.6.1, a vector “v” is indicated as:

(A8.6.1)

where:

and a scalar is represented in the most general way as f = f(r,θ,ϕ).
The “delta” is given by:

(A8.6.2)

Concerning Laplacian, it is necessary to define if it is applied to a scalar or to a vector. 
have:

Figure A8.5.1
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Laplacian applied to a scalar:

(A8.6.3)

Laplacian applied to a vector:
In this case, it is convenient to apply the vector identity given in A8.3.3, from which we hav

(A8.3.3)

where the divergence and curl will be given later.
Also in this case it is always possible to evaluate “∇ ” and “∇ 2” as the sum of a transverse

operator plus a longitudinal one. For example, if “ϕ” and “θ” are the transverse coordinates w
can write:

(A8.6.4)

(A8.6.5)

where:

(A8.6.6)

(A8.6.7)

The gradient is the direct application to a scalar of the delta operator indicated in A8.6.2

(A8.6.8)

Figure A8.6.1
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The divergence is:

(A8.6.9)

The curl is the determinant of the following matrix:

(A8.6.10)

with the positions ∂r/∂θ = ∂r/∂ϕ = 0

A8.7 THE DIVERGENCE AND STOKES THEOREMS
AND GREEN IDENTITIES

In this section we will give some important relationships for the delta operator. In this tex
have used the divergence theorem in Appendix A2 to evaluate the Poynting* vector, while w
not directly used the Stokes** theorem. Nevertheless, this last theorem is very important and s
and for this reason we decide to introduce it.

The Green*** identities are other integral relationships regarding the delta operator. We
used the Green identity in two dimensions in Appendix A2, where we have shown that the par
“k t

2” is a real negative number. In the following we will indicate with “v” a generic vector and
with “f” and “g” two scalar functions, continuous in a volume “Q” and on its surface “S” and w
their derivatives at least piecewise continuous in “Q” and “S.”

a. Divergence, or Gauss’s**** Theorem

(A8.7.1)

where “S” is the surface that contains the volume “Q” and “n” is the “normal” to this surface and
directed outside the region under study. The integral on the right hand of A8.7.1 is called fl
the vector “v” through the surface “S.”

b. Stokes Theorem

(A8.7.2)

where “S” is the surface surrounded by the line “�,” “n” is the “normal” to this surface directed
outside the region under study, and “t” is the tangential versor to “�.” The reciprocal orientation
of the vectors used in A8.7.2 is indicated in Figure A8.7.1. In common practice, it is said that with
the Stokes theorem a line integral can be transformed in a surface integral.

*  John Henry Poynting, English physicist, born in Monton in 1852 and died in Birmingham in 1914.
**  George Gabriel Stokes, English physicist, born in Bornat Skreen in 1819 and died in Cambridge in 1903.
***  George Green, English mathematician, born in Sneinton in 1793 and died there in 1841.
****  Carl Friedrich Gauss, German physicist, born in Brunswick in 1777 and died in Gottingen in 1855.
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c. Green First Identity

(A8.7.3)

d. Green Second Identity

(A8.7.4)

For both points c and d the definitions of “S,” “Q,” and “n” are the same we have used fo
Gauss theorem.

e. Green Two Dimensional First Identity

(A8.7.5)

f. Green Two Dimensional Second Identity

(A8.7.6)

For both points e and f the definitions of “�,” “S,” and “n” are the same we have used for th
Stokes theorem.

Figure A8.7.1
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A8.8 ELLIPTIC INTEGRALS AND THEIR APPROXIMATIONS

In many chapters of this text we have encountered the complete elliptic integral of first
in particular in expressions where the ratio of these integrals appears. This integral is a fu
of a parameter “p,” and one definition* is:

(A8.8.1)

This integral appears in solutions of electromagnetic problems through the conformal tra
mation method, studied in Appendix A3. Depending on the particular e.m. problem, the para
“p” can assume different expressions. Associated with “p” there is the complementary para
“p′,” defined as:**

(A8.8.2)

The ratio K(p)/K(p′) can be calculated using the tabulated values of the elliptic integrals,1 but
they have been approximated by the researcher W. Hilberg2 with closed form expressions as follows

(A8.8.3)

(A8.8.4)

These expressions are widely used in our text. Sometimes, the range limit 1/  is var
0.5, for a simple notation. This does not affect the approximation much.

The complete elliptic integral of first kind is a particular case of the “elliptic integral of 
kind,”3 indicated with:

(A8.8.5)

and the following relationships hold:

(A8.8.6)

(A8.8.7)

*  Our text is not a book of mathematical analysis. So we will define the elliptic integral in one of the most used expre
Rigorous definitions of elliptic integrals can be found in mathematical analysis books or mathematical handbooks.
example: M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1970.
**  Sometimes in literature “K(p′)” is indicated with “K′(p).” This is only a different symbology since operatively th
integral is evaluated for p′ = (1 – p2)0.5.
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