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Preface

The present book includes extended and revised versions of a set of selected
papers from the First International Congress on Neurotechnology, Electronics and
Informatics (NEUROTECHNIX 2013), held in Vilamoura, Algarve, Portugal, from
18 to 20 September, 2013.

The purpose of the International Congress on Neurotechnology, Electronics and
Informatics is to bring together researchers and practitioners in order to exchange
ideas and develop synergies towards new advancements of neurotechnology either
in general or regarding a particular case, application or pathology.

NEUROTECHNIX 2013 was co-sponsored by INSTICC (Institute for Systems
and Technologies of Information, Control and Communication) and MedinRes –
Medical Information and Research, held in cooperation with Neurotech Network,
Nansen Neuroscience Network, Associação Portuguesa de EEG e Neurofisiologia
Clínica, Sociedade Portuguesa de Neurologia and Fp7 Project Enlightenment, and
held in collaboration with Antibodies Online.

The congress received submissions from 21 countries, in all continents. To
evaluate each submission, a double-blind paper review was performed by the
Program Committee, whose members are highly qualified researchers in the NEU-
ROTECHNIX topic areas.

NEUROTECHNIX’s program included panels and four invited talks delivered
by internationally distinguished speakers, namely Kevin Warwick (University of
Reading, United Kingdom), François Hug (University of Queensland, Australia),
Aldo Faisal (Imperial College London, United Kingdom) and Alexandre Castro-
Caldas (Universidade Católica Portuguesa, Portugal).

We would like to thank the authors, whose research and development efforts are
recorded here for future generations.

Lisboa, Portugal Ana Rita Londral
Lisboa, Portugal Pedro Encarnação
Madrid, Spain José Luis Pons Rovira
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Posturography Platform and Balance Control
Training and Research System Based on FES
and Muscle Synergies

Diego Galeano, Fernando Brunetti, Diego Torricelli, Stefano Piazza,
and José Luis Pons Rovira

Abstract Balance control plays a key role in neuromotor rehabilitation after stroke
or spinal cord injuries. Computerized Dynamic Posturography (CDP) is a classic
tool to assess the status of balance control and to identify potential disorders. In this
paper, we present the development of a low cost system and tool for the assessment
and training of balance based on static posturography and functional electrical
stimulation (FES). The assessment features are built upon a classic a CDP basis,
while for training routines, the system uses bioinspired FES patterns and algorithms
based on muscle synergies. This system includes low cost technology like the Wii
Fit Balance Board and the Kinect. The work described is this paper includes the
implementation of the system and first results as a CDP tool.

Keywords Posturography • FES • Muscle synergies • Kinect • Wii balance
board

1 Introduction

There are several diseases that can affect human balance and posture control.
Such diversity requires the participation of different specialists in the diagnosis
and treatment process like neurologists, otolaryngologists and ophthalmologists
among others. Posturography is defined as an objective assessment technique of
postural control based. In this way, the monitoring of the center of pressure of the
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2 D. Galeano et al.

person has proven to be an effective tool complementary to clinical diagnosis in
order to quantify this neuromotor disorder. This technique also can be used as a
complementary tool to help clinicians with the diagnosis of vertigo.

Posturography evaluates each of the sensory systems (visual, somatosensory and
vestibular) involved in the complex balance system. Its purpose is to isolate the
contribution of each of these systems to evaluate the status of each one separately.
It also assesses movement strategies for maintaining balance, and examines the
stability limits of the person and the ability to control voluntary movement.

Balance control is an important functional component of human gait. After
spinal cord injury (SCI) or stroke, balance control is one of the first rehabilitation
objectives towards the restoration of functional gait. In this scenario, posturography
plays a key role to evaluate the progress of the affected subject. Classic therapies of
posture control rehabilitation include exercises to improve stability limits or guided
movements to reinforce control efforts of patient.

Over the last years muscle synergies have been described for several composed
movements like those exerted during normal postural control. Muscle synergies can
be understood as functional muscle co-activation patterns [1]. This theory proposes
the existence of simplified mechanisms and signals that can control several muscles
at the same time. The most interesting aspect of this theory is the consistency
of these synergies among subjects, and its stability intra subject. The use of this
knowledge for rehabilitation is still a research goal, as well as the assessment of
muscle synergies in functional tasks after stroke or SCI [2].

The use of Functional Electrical Stimulation (FES) to interact with muscle
synergies during the rehabilitation of balance is a novel approach proposed by
Piazza et al. in 2009 [3]. This paper presents a low cost system that enables the
implementation of this novel rehabilitation paradigm. It is a posturography tool
to help with the assessment of postural control and its rehabilitation. The main
contribution of the work lies in its simplicity and its potential use in rehabilitation.
It is an exploratory device to study new rehabilitation approaches of balance control
while monitoring the status of human balance and postural control system. The
presented tool enables the evaluation of the effectiveness of current treatments and
the design of new ones. The paper presents technical details of the system and
preliminary results.

Further stages of this work include the validation of the designed posturography
system comparing to similar ones like the NedSVE/IBV® [4] of the Institute of
Biomechanics of Valencia, or the SMART Balance Master of Neurocom®. After
this validation, the design of new therapies based on FES and muscle synergies will
be possible and its evaluation in clinical environment.



Posturography Platform and Balance Control Training and Research System. . . 3

2 Assessment Methodology and Postural Control
Rehabilitation

In this section, balance assessment methods used in posturography are reviewed,
as well as the tests designed for this purpose. Finally existing proposals for
rehabilitation based on synergies are described.

2.1 The Computerized Dynamic Posturography (CDP)

Computerized Dynamic Posturography (CDP) was designed and developed by
Nashner. It was clinically studied in collaboration with Black [17] and Wall and
marketed in 1986 as Equitest by Neurocom Inc. [5].

The CDP is a technique that analyzes subject’s postural control in static standing
and his/her response to destabilizing conditions. It is based on the idea that the
center of gravity (COG) oscillations reflect postural instability. Generally CDPs are
based on dynamometric platforms. These systems analyze the postural oscillations
by recording the vertical projection of gravity force, known as Center of Pressure
(COP). More frequent tests made with similar platforms are:

– Sensory System or Romberg’s Test. It is aimed at determining the ability of the
patient to integrate the three systems responsible for assessing standing balance
and body sway while different sensory conditions are applied. The results of
this test are compared with results of normal subjects. It is performed with
eyes open and eyes closed, with and without foam on which the subject stands.
It can also be performed with the patient’s head retroflexed, causing distortion
in neck proprioceptors. These tests can also be used to evaluate proprioceptive
information by making patients to rely in vestibular information to maintain the
balance [6].

– Stability Limit Test. It assess the capacity of the subject to bring his COP to the
border of his/her stability limit. Basically, this test is used to assess the maximum
distance the patient can move his/her COP without changing the base of support,
i.e. without moving his/her feet. During the test, the subject can see his/her COP
representation on a computer screen in front of him, and he/she should move it
toward the stability limits without moving its base of support. The test includes
up to eight sequential different targets located around theoretical stability limits
(according to previous measurements with healthy subjects).

– Rhythmic and Directional Tests. These tests try to assess subject’s ability to
perform rhythmic movements around of its center of gravity (COG). The subject
is a asked to follow with his/her COP moving targets whose speed and range are
configurable. The target is moved to a percentage of the stability limit previously
calculated for the subject. This test is usually performed in the anteroposterior
and mediolateral directions.
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2.2 Hybrid Approaches in Assisted Neuromotor Rehabilitation

Hybrid exoskeletons have emerged as a way to improve motor assistance using the
benefits of FES and robotic exoskeletons. They overcome individual limitations of
the methods used separately. The FES uses natural muscles as actuators to generate
a movement, which provides not only functional benefits but also physiological.
Robotic exoskeletons artificial actuators are used to move the lims that can not be
fully or partially controlled voluntarily.

Generally, people affected by stroke and SCI have healthy muscles. The hybrid
approach proposes the use of their own muscles to complement the action of
the robotic exoskeleton. Muscles are activated coordinately with the exoskeleton
controller by means of an electrical stimulation system [7]. This approach results
in a reduction of energy demand and allows the exoskeleton to use lighter and less
powerful actuators. Moreover, this solution is considered more natural and help to
preserve existing biological structures. Main problem when using FES is that it can
produce muscle fatigue after long periods of stimulation. This problem limits the
time of use. This is not a problem when using exoskeletons, which can be used for
a longer time.

Balance control is an important not only when rehabilitating after stroke or SCI
but also when using exoskeletons. Hyper is a Spanish research project aimed at
developing new neurorobotics and neuroprosthetics therapies for people affected by
stroke or SCI. First clinical interventions include the rehabilitation of balance and
postural control. The use of hybrid approaches is well considered by clinicians but
they way they are used in this rehabilitation process and it effectiveness is not clear
yet for the scientific community.

The control of the assistive device is also not clear in terms of compensation
actions and movement routines. The most common approach over the last years
was the so called “assist-as-needed” (AAN) paradigm [8]. Following this paradigm,
the interaction between the assistive device and the natural involved mechanisms
in the considered task is given in terms of the final results, and not considering the
underlying status of biological control mechanisms. In this way, Hyper encourages
the study and development of new therapies to support classic ones. These novel
treatments are mainly driven by bioinspired mechanisms for better and deeper inter-
action between the assistive device and remaining neuromotor control structures, in
order to reinforce and rehabilitate them in a more natural way.

2.3 Muscle Synergies

The study of human control system is a open research field where there are still many
questions to answer. One of them is how is coded the information to control the
large number of degrees of freedom of human movements. More specifically, this
problem states that to generate a specific motor task, there are multiple combinations
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of muscle activations that can generate similar results. Muscle synergies theory is a
proposed answer to this question. The central nervous system can solve the complex
task by choosing a specific set of muscle activations through a combination of a
small set of neural patterns, called synergy [1].

Each muscle receives as input a modulating signal from higher neural centers,
and outputs a weighted activation signal to activate a set of muscles. The activation
of each muscle can be seen is a weighted sum of all synergies commands connected
to it [9]. Then, muscle synergies can translate small sets of variables coming
from the central nervous system into higher dimensional signals. They are strictly
correlated to the functional performance and their modulation are related with user
workspace. The most interesting characteristic of muscle synergies is that they are
consistent inter healthy subjects [1, 3].

Mathematically, as indicated in [9], muscle synergies are explained by the
following equation that describes the activation of a single muscle m,

m.t/ D
KX

i

ci .t/wi ; (1)

where m is the activation of the muscle function of time, c is the neutral command
i-th synergy function of time, w is the constant weight of the i-th synergy referred
to the m-muscle and K is the number of synergies.

The use of muscle synergies knowledge to rehabilitate postural control is still
not clear. However, their role in functional movements and their importance have
being already reported [10, 11]. This encourages Hyper scientific team to take them
into account to promote the development of more efficient rehabilitation therapies
by closely interacting with involved muscle synergies in balance control. In this
way, FES can be used to develop and interact with synergies and muscle activation
patterns.

3 Proposed System

In this section we describe the low-cost platform developed to perform static
posturography tests and explore new therapies based of FES and muscle synergies.
Balance control assessment platforms are usually not open and they are commer-
cially available only as a posturography tool. Thus, a novel low cost and open
posturography platform was developed to use it in this novel scenario. The main
objective of this platform is to support the development of novel balance control
rehabilitation therapies in the framework of the Spanish Hyper project.

Figure 1 shows the outline of the developed platform and a functional diagram
of the different components that are further described in next sections. The
platform is based on a centralized non real-time architecture, which includes several
components: the Posturography Controller, the Neuroprosthetic Controller, a Wii Fit
Balance Board, a Kinect camera and the TEREFES electrostimulation system [12].
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Fig. 1 (a) Proposed platform architectural and (b) the functional description diagram including
the different components: the posturography system (balance control assessment) and the FES
system (balance control training and rehabilitation)

3.1 Wii Fit Balance Board

Wii Fit balance board is an input device included in the Wii Fit from Nintendo®.
It is a wireless device that uses Bluetooth technology to communicate with the Wii
console. It is equipped with four resistive pressure sensors located in each corner of
the table. In effect, it measures the displacement of the center of pressure and the
weight of the user. It also gives an indication of the battery status.

Over the last years, the Wii Fit Balance Board have been used by the scientific
community, specially as computer interface for disabled [13]. This device has two
attractive features: it is wireless and low-cost. In our project, the Board will be used
to measure the COP.

Data from Wii Fit Balance Board is accessed through a Microsoft Visual Studio
C# application, using a library called WiimoteLib available at www.wiimotelib.
codeplex.com. Visual C# was chosen because it is also compatible with the Kinect
and its Windows Software Development Kit (SDK). Thus, the Wii Fit is connected
as a HID interface device. Provided services by the Board are detected using the
Service Discovery Protocol (SDP) of Bluetooth.

An important aspect to consider is the sampling frequency at which the Wii
Fit sends the data to the PC, or more specifically, how often the data arrives,
considering the nature of wireless transmission and the operating system behav-
ior. To answer this question, we measured the time interval between samples
using methods and public properties of the Microsoft Visual Studio C# class
System.Diagnostics.Stopwatch. The program is executed in a almost
dedicated HP Pavilion g6-1b70us Notebook (Intel Core i3 CPU M 370 @ 2.4 GHz,
4 GB of RAM) running 64-bit Windows 8. According to the obtained results, the
average sampling frequency is 100 samples/s.

The aim of this analysis it to know how deterministic is the access to the data of
the Board in terms of time. In other words, we want to know the probability that the

www.wiimotelib.codeplex.com
www.wiimotelib.codeplex.com
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Fig. 2 Cumulative distribution function as a function of the sampling period (s)

sampling period of the Wii Fit is less than or equal to any given time. Cumulative
distribution function for the Wii Fit data is depicted in Fig. 2. For example, the
probability that the sampling period remains less than or equal to 0.02 s is 94.02 %.

3.2 Microsoft Kinect

The Kinect device is a natural user interface, which allows users to interact with
games without physical contact. It was developed by PrimeSense Company. The
user becomes the controller itself, having to rely on movements, natural gestures
and voice commands to control game elements.

Kinect is equipped with an RGB-D camera that acquires images of 640 � 480

at 30 fps. It has a visual field range from 1.2 to 3.5 m, but can be reduced by
optical coupling, as Niko Zoom Lenses®. Furthermore, its viewing angle is 57ı
horizontally, and 43ı vertically. The vertical visual field can be expanded 27ı with
its servomotor. It is also equipped with an array of four microphones, each with a
recording resolution of 16 bits sampled at 16 kHz. It also contains a stack of signal
processing hardware that is able to handle all the data generated by cameras, infrared
light, and microphones. By combining the output of these sensors, a program can
track and recognize objects in front of it, determine the direction of the sound
signals, and isolate them from the background noise.
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The role of the Kinect in the platform is to enrich the visual feedback provided to
the patient. Common posturography platforms are limited to provide users informa-
tion about the center of pressure but the user does not know precisely his/her position
and how good it is for the intended task. In this way, the Kinect provides kinematic
information of full body segments, thus providing more complete information to
users as well to the Neuroprosthetic Controller enabling better actuation commands.

Both, the Wii Fit as the Kinect, help to give visual feedback to the evaluated sub-
ject, and the information generated can be used by the Neuroprosthetic Controller
to generate more precise and adequate stimulation patterns. A similar analysis done
with the Wii Fit Board, was carried out with Kinect to evaluate the jitter effect when
acquiring the frames.

The cumulative distribution function is shown in Fig. 3. For example, the
probability that the sampling frequency is maintained below 35 fps is 75 %,
approximately.

3.3 Posturography Controller

The Posturography Controller is implemented in a personal computer running
Windows 8 operating system. The developed software includes traditional posturog-
raphy tools and tests like Romberg’s test, test of the stability limits and the rhythmic
directional test.
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The software was developed for easy use by medical personnel. It includes
a database in which data of each patient is stored, allowing the physician to
evaluate subject progress after several sessions. It also helps to diagnose potential
diseases and program rehabilitation exercise routines for each evaluated subject. The
application is also able to generate Matlab scripts containing the center of pressure
points recorded during each rehabilitation session. In this way, the therapists can
analyze data recorded in previous sessions.

The Posturography Controller receives all the data from the Kinect camera
and the Wii Fit Balance Board. It fuses and displays the acquired data showing
information like the center of pressure, the rigid body kinematic chain of the
studied/analyzed subject, and information about current routines and tests. This con-
troller and the Neuroprosthetic Controller are implemented in the same computer.

In next sections details on the parameters used to quantify the results of each test
will be described [14].

– Romberg’s Test. The subject is positioned on the Wii Fit Balance Board in an
upright position with arms straight and close to the body trying not to move the
head in neutral position facing forward, bare feet at an angle Opening of 30ı. In
this position is assessed for T seconds (configurable by the doctor) their ability
to maintain balance in the following conditions:

� Eyes Open (REO) and Eyes Closed (REC).
� Foam on Wii Fit with Eyes Open (RGA) and Eyes Closed (RGC).

The parameters evaluated in each test are:

� Shift angle (degrees). The angle of the vector extending from the initial point
to the subject portion to the end point of the trajectory.

� Swept area (mm2). It estimates the area swept by the COP by mean of an
ellipse whose axes correspond to the maximum mediolateral and anteroposte-
rior displacement.

� Average speed (cm/s). It estimates the average speed, which is the ratio
between the displacement and time, T , that lasts the test.

� Maximum mediolateral and anteroposterior displacements (mm). These
parameters represent the longest displacement in the mediolateral and
anteroposterior axes during the exercise.

Figure 4 shows a screenshot during the execution of the application designed
in this project. Specifically, this screenshot corresponds to a REO Test. The
figure shows two visual feedbacks. The first one is the position of the center
of pressure on the Wii Fit Balance Board, and the second, provided by Kinect,
is the RGB image and a trace of its skeleton. The screen provides information
about subject’s skeleton (skeleton blue) and a given reference (red skeleton). The
reference indicates correct estimated position during the tests.

Some parameters are provided online by the application. For example,
regarding the Kinect, it monitors the status of the tracking task, which can be
Tracking (OK) or not skeleton (Subject not detected). Another parameter is the
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Fig. 4 Screenshot during the execution of REO Test. On the right, it is shown the center of
pressure on the Wii Fit while on the left the subject with his/her skeleton (blue lines) and the
given reference (red lines)

quality of the skeleton. This parameter indicates if the Kinect is showing the
complete skeleton of the subject (Good Quality). This will help the therapist to
point the camera in the correct position. Regarding the Wii Fit Balance Board,
the parameters observed are subject’s weight and the coordinates of the COP.

– Stability Limit Test. This test evaluates the following parameters:

� LE max (mm). It is the maximum value reached by the COP in the correspond-
ing direction (8 targets separated of 45ı and whose radial distance from the
origin is configurable).

� Stability zone (cm). It is approximately the mean distance at which the patient
is 90 % of time. It is calculated for each direction.

Figure 5 shows a screenshot during the execution of limit test. The displace-
ment of the COP on the Wii Fit for the Limit Test is depicted on the right side. The
red circle represents the current target to which the subject should direct his/her
COP, while the green ones represent those already targeted. Traces of COPs
in these directions have been deleted to not disturb the patient while reaching
current target.

– Rhythmic and Directional Test. In this test, the patient is asked to follow the
movements of a moving target (configurable frequency ) in mediolateral (ML)
and anteroposterior (AT) directions. The maximum excursion limit is calculated
based on the parameters of normal stability limits (previously recorded with
healthy subjects).

The following parameters are evaluated for each direction.

� Reaction time (s). It is defined as the time that the subject takes to bring his/her
center of gravity closer than two centimeters from the reference target.
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Fig. 5 Screenshot during the execution of the limit test. On the right side of the screen, the COP
on the Wii Fit is shown in real time. On the left side is shown the patient with his/her stickman
representation (blue lines)

� Tracking capability (%). It quantifies subject’s ability to follow the movement
of the target in ML or AT directions. This parameter is calculated as the mean
of error (DesiredCOP � MeasuredCOP), after the reaction time. If the error
is lower than 2 cm (configurable), in other words the COP is inside the target
circle, it is considered as zero for this sample.

� Directional control (%). It quantifies the subject’s ability to remain in the
expected direction of the test. For example, if the target moves in the axis ML,
the index is evaluated considering the AT axis error using the same process
for calculating the tracking capability.

3.4 Neuroprosthetic Controller

The Neuroprosthetic Controller is responsible for the generation of muscle activa-
tion patterns and control of the actuation system: the TEREFES electrostimulator.
It receives from the Posturography Controller all the kinematic data of the subject
(acquired with the Kinect) and the coordinates of the center of pressure (COP).
A driver decodes and converts the information into muscle activation patterns
and specific TEREFES commands according to previously programmed synergies
sets, theory and rehabilitation parameters. Full details of the proposed synergistic
controller can be found in [15]. The functional stimulator TEREFES must act
synchronously according with the exerted movements. Since Windows is not a
real time operating system, a best effort approach is used in the Neuroprosthetic
Controller. The TEREFES (real time system) is used to monitor possible delays
in the Neuroprosthetic Controller. In next stages, system timing should be further
analyzed.
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3.5 TEREFES

The TEREFES was proposed in the framework of the TERERE and Hyper projects
[12]. The TEREFES electrostimulator provides up to 32 stimulation channels driven
by controllable and stable and close loop current sources. In addition, the system
is portable and flexible. This functional stimulator is powered by 4 AA batteries
and includes a USB communication interface that allows its online configuration
through an external software. Monophasic and biphasic stimulation signals can be
obtained in its 32 available channels. These channels are divided in two independent
groups of 16 channels each, that can be sequentially activated.

4 Preliminary Results

In this section preliminary results of posturography software are presented.
Described results were obtained with six healthy people, four men and two women.
The purpose of this functional validation is to technically verify the platform and to
compare result between different subjects. Unfortunately, at this stage of the work,
the system could not be tested with previously diagnosed pathological subjects,
and the results could not be compared with those obtained with other commercial
platforms like Neurocom.

The procedures for the tests were explained in previous sections. REO and REC
tests were conducted, as well as Stability Limit and Rhythmic tests. All of them
were realized a couple of times in order to make sure that the subjects understand the
test but without producing fatigue or previous learning/training [14]. The sampling
frequency was 30 frames/s, enough to detect any COP displacement [16].

4.1 Romberg’s Test

Each Romberg’s test lasted 30 s. The results of the six subjects are shown in Table 1.
All proposed parameters were calculated and presented in Table 1. Results

suggest a decrease of fine postural control in most subjects when they close their
eyes. For both men and women, the displacement angle is usually in the second
quadrant, and no significant differences are found among REO and REC tests. In
fact, according to [14], this parameter does not change significantly under these test
conditions.

Figure 6 shows the results of subject 4. Using similar data, proposed parameters
were calculated for each subject.

Regarding the swept area, calculated according to [17], it does not reflect
noticeable changes with the changing sensory conditions. Balaguer, in his work,
[14], has suggested that the calculation by fitting a geometric figure may not be
adequate to quantify this parameter.
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Fig. 6 Subject 4 (S4) REC Romberg’s test plotted using Matlab. Parameters for S4 were calculated
with these data

Table 2 Stability limit test results

Average max. LE (cm) Average stability zone (cm)

Gender

Direction Male Female Male Female

Front 7.51 9.04 5.77 8.32

Front-right 9.68 9.695 8.05 8.73

Right 10.59 9.165 9.28 7.70

Rear-right 9.44 8.58 8.92 7.33

Rear 10.06 8.00 8.68 6.915

Rear-left 9.88 9.33 8.32 8.64

Left 11.01 10.05 9.00 8.35

Front-left 9.335 9.97 8.2675 8.55

Average values are shown. Similar data can be used to obtain
normality patterns

Finally, the average speed of displacement, is found to increase without visual
feedback. This same behavior is observed in the ML and AT displacement. There-
fore, these parameters are used to differentiate visual system impact and potential
dysfunction in balance control. Both men and women present larger variations in
the ML direction, being even larger in men in these particular tests.

4.2 Stability Limit Test

The stability limit test lasted 10 s for each direction, and each target was located at a
distance of 10 cm from the origin. The subject was asked to make his/her best effort
to reach the targets.

Figure 7 shows the results of subject 1. Using similar data, proposed parameters
were calculated for each subject (Table 2).
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Fig. 7 Subject 1 (S1) limit test in left direction results plotted using Matlab. Parameters for S1 are
calculated with these data

Table 3 Rhythmic control test results

Reaction time (s) Tracking capability (%) Directional control (%)

Subject Gender Years ML AT ML AT ML AT

1 M 23 0.037 0.50 81.86 85.7 81.7 99.9

2 M 26 0.119 0.039 80.55 70.44 90.17 99.05

3 M 34 0.12 1.059 87.7 63.8 78.22 99.83

4 M 47 0.198 1.046 79.6 57.8 77.51 99.92

Average 0.1185 0.66025 82.43 69.43 81.9 99.675

5 F 19 0.40 0.035 66.5 70.23 79.7 98.5

6 F 18 0.42 0.21 71.5 55.26 88.53 96.94

Average 0.4125 0.1225 69.0 62.74 84.11 97.72

According to these tests, areas of stability in both men and women vary with
direction. In general terms, there are no significant differences. These results agree
with [18]. However, a larger population is needed to obtain robust conclusions.
Balaguer found that subject owns subjective perception (Previous Q&A about
disability condition of the subject) of his/her skill or disabilities does not influence
the stability limits [14].

4.3 Rhythmic and Directional Control Test

For the rhythmic tests, windows of 10 cm (configurable) long were defined direc-
tionally, first in the ML direction and then in the AT one. The subject was asked to
follow a moving target traveling at a frequency of 0.25 Hz. Each test lasted 20 s. The
results are shown in Table 3 for each patient.

Figure 8 shows the results of subject 5 (S5). Similar results were used to calculate
all parameters for each subject.

According to these results, the reaction time increases with age. In addition, there
is a shorter reaction time in women. In men, the reaction time is better in the ML
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Fig. 8 Subject 5 (S5) rhythmic test results in the AT direction plotted using Matlab. Parameters
for S5 are calculated with these data

direction with respect to the AT direction. Although this work has not made a study
of subjects with specific pathologies [14] found that vestibular disorders can affect
rhythmic and directional control in disagreement with the findings of Cortés [18].

5 Discussions

Posturography helps to assess the influence of any vestibular dysfunction in postural
and balance control. However, a pathology that affects the balance in one patient,
in other word the vestibular-spinal reflex, not necessarily will have the same effect
it in another subject. In this case, tools like the one described in this work are not
effective to help the diagnosis of the impairment.

Regarding the tool presented in this paper, it i not very clear in the literature the
way how different assessment parameters are calculated. This lack of information
makes more difficult to compare results. However, overall conclusions and trends
obtained with this tool are similar to those reported in the literature and obtained
with other platforms.

Nowadays, there is still a discrepancy between scientists regarding the results
of each parameter and associated information. According to [14], this discrepancy
exits because it is difficult to find clear relationships between functional assessment
of balance and patient-perceived disability. Tests may be influenced by many factors
like social, professional, technical, psychological, affective, and cognitive ones.

The current drawback of classical static posturography is limited only to study the
subject during standing position, so it does not provide information on the dynamic
aspects of postural control. To solve this shortcoming, we have followed the line
proposed by García [14] and set dynamic tests, such as the rhythmic test.

Regarding the Neuroprosthetic Controller and the potential use of the system as
a tool for training the balance control, it is ready to be used. However, specific
scenarios and protocols should be defined to validate technically the tool in a
better way.
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6 Conclusions and Future Work

Postural rehabilitation boosts patient confidence and contribute to their self-
improvement. In addition, knowledge of the particular deficit in postural control
helps clinician and patient to develop prevention plans to avoid falls, and as
mentioned before, it is the first step towards the rehabilitation of more complex
processes like gait.

Current research projects in neuromotor rehabilitation like Hyper, are devoted
to develop novel bioinspired rehabilitation treatments. The use of hybrid solutions
including neurorobotics and neuroprosthetics devices has been shown as an efficient
approach. However, the use and development of modern rehabilitation therapies
based on novel knowledge need the support of non existing research tools.

We have seen how to make a low cost posturography system. It is based on a
Wii Fit Balance Board, the Microsoft Kinect and the TEREFES electrostimulator.
This tool can serve as a low cost balance control assessment tool and will allow
the implementation of novel therapies that could improve current ones for the
rehabilitation of balance control.

Future work includes the evaluation of the tool and developed system in clinical
environments. After this validation, the final integration of the Neuroprosthetic
Controller and the implementation of therapies based on muscle synergies will be
done.
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A Pilot Study on the Feasibility of Hybrid Gait
Training with Kinesis Overground Robot for
Persons with Incomplete Spinal Cord Injury

Antonio J. del-Ama, Ángel Gil-Agudo, José Luis Pons Rovira,
and Juan C. Moreno

Abstract Hybrid actuation and control have a considerable potential for walking
rehabilitation of neurologically impaired people, but there is a need of novel
hybrid control strategies that adequately manage the balance between functional
electrical stimulation (FES) and robotic controllers. A case-study of a hybrid co-
operative control strategy for overground gait training with a wearable robotic
exoskeleton for persons with incomplete spinal cord injury (SCI) is presented.
The feasibility of the control strategy to overcome muscular stimulation electro-
mechanical delay, deterioration of muscle performance over time, and to balance
muscular and robotic actuation cyclic overground walking is tested in one subject
with incomplete spinal cord injury (L4, AIS grade D). The results show that
the proposed hybrid cooperative control in Kinesis overground robot is able to
autonomously compensate a bilateral pathologic walking pattern and the suitability
of Kinesis hybrid gait training robot for conducting clinical experimentation.

Keywords Spinal cord injury • FES • Exoskeleton • Gait training

1 Introduction

Most therapies for rehabilitation of walking rely on the assumption that task-
oriented practice promotes mechanisms of neural plasticity, muscle strength and
learning of compensation strategies that increase walking ability of the person with
SCI. Robotic technology holds a considerable potential to drive such interventions.
Ambulatory robots, that have been developed mainly for functional compensation of
walking, can offer a challenging and rich walking therapy. Furthermore, functional
electrical stimulation can drive rehabilitation interventions of SCI providing several
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physiological and psychological benefits to the user through artificial activation of
paralyzed muscles. On the other hand, robotic exoskeletons can be used to manage
the unavoidable loss of performance of FES-driven muscles. Hybrid exoskeletons
are then regarded as a promising approach that blends complementary robotic
and neuroprosthetic technologies. The overview of the state of the art on hybrid
gait systems has demonstrated that such redundant actuated solutions can produce
feasible systems for accurate control of joint movement [1]. Also, it has shown
that diverse muscle fatigue management strategies could be applied for an effective
closed-loop control of FES.

Under this hybrid scenario, the assist-as-needed control strategy has been
proposed as a new redundant neuroprosthetic and robotic system that cooperates
to optimize the outcome of the active control of the motion of the knee joint while
providing assistance [2]. While various wearable exoskeletons were successful in
achieving gait in subjects with incomplete spinal cord injury (SCI) [3–5] this has
generally been proposed as a functional substitution. In this case study, we tested
the feasibility of a novel hybrid gait training approach with an overground robot on
a person with an incomplete SCI.

2 Material and Methods

2.1 Kinesis: Robotic Platform for Hybrid Therapy of Walking

Kinesis is a hybrid robotic device that has been developed for overground gait
training in incomplete spinal cord injuries. Incomplete lesions were targeted
because, first, prognosis of functional recovery of walking for these patients is that
the they can walk short distances but depending on the wheelchair for community
ambulation, therefore a successful hybrid walking therapy could provide benefits
to this population. Second, motor-incomplete lesions have preservation of lower
limb muscles innervation. This is a key feature when considering neuromuscu-
lar stimulation for therapy, because denervated muscles do not contract under
artificially-delivered electric pulses. Among the different syndromes of incomplete
spinal cord injury, target population is comprised by patients whose lesion is
categorized as Conus Medularis [6], and those patients whose lesion met the
functional characteristics of the Conus Medularis. These functional characteristics
are intact upper body function and hip function preserved, while the knee and ankle
muscles can vary from paralysis to healthy, depending on the specific characteristics
of the injury.

The Kinesis system is a bilateral wearable knee-ankle-foot orthosis. Hip joint was
not considered as the target population have preserved this function. Kinesis features
active actuators at the knee hinges (Maxon DC flat motor, 90 W with Harmonic-
Drive 100:1 gear) and a passive elastic actuator at the ankle. Force sensing resistors
are employed for monitoring floor contact and custom force sensors are available
to measure interaction torques. Kinesis has a PC-controlled stimulator (Rehastim,
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Hasomed GmbH) which delivers biphasic current-controlled rectangular pulses.
Rehastim can be pulse width and current controlled in real time.

The high-level control approach to achieve a cooperative behavior comprises four
main components: (1) a knee joint robotic controller, (2) FES controller, (3) muscle
fatigue estimator (MFE), and (4) a finite-state machine (FSM) that orchestrates
the FES and joint controllers. Further details on the implementation of the high-
level control can be found in [2, 7]. The cooperative behavior of Kinesis allows
obtaining adequate and personalized stimulation patterns, estimating muscle fatigue
and reducing robotic assistance during ambulatory walking. The ultimate goal is
to give priority to the muscle-generated torque during gait training. A finite-state
machine is employed to iteratively control the FES of knee muscles in a learning
scheme for each leg while adapting torque field stiffness for a reference kinematic
pattern. In this scheme, the resulting interaction torque (with added mass and inertia
of the leg) is monitored and used towards convergence of stimulation parameters.
The robot modulates its assistance by reducing joint stiffness, as shown in next
section, ensuring the target flexion angle for effective swing of the leg. A muscle
fatigue estimator is employed (based on the measurement of interaction torque)
to trigger a fatigue compensation strategy (change stimulation firing rate). More
details on the muscle fatigue monitoring and management strategy can be found in
[8, 9]. A more detailed descriptions of the technique for hybrid cooperative control
of Kinesis are discussed in [2, 7].

2.1.1 Robot Stiffness Modulation Strategy

The strategy to modulate the exoskeletal knee stiffness during cyclic walking is
described in this section. The efficacy of the FES controller to generate the knee
movement is inherently limited, due to the low efficiency of the force generated by
the stimulated muscles and the electromechanical delay between the stimulus and
the onset of joint movement. The goal of the hybrid control strategy was therefore to
exploit the joint movement generated by the stimulation controller while supporting
the movement through the joint controller. A controller was employed to provide
compliant assistance to the knee, depending upon the parameter Kk , the stiffness of
the force field applied around the trajectory.

Modulation of Kk was executed depending on the gait phase and the contribution
of the FES to the knee trajectory. Thus, gait phase and muscle contribution were
managed within a finite state machine (FSM), comprised of two FSMs operating
in parallel: one FSM runs in the time domain (t-FSM) while the other operates in
the cycle domain (c-FSM). The t-FSM detected the main walking states and the
transitions among them. The c-FSM operated with discrete values, during each
swing phase, that are related to performance of the stimulated muscle. Muscle
fatigue results in a decrease of muscle performance thus increasing the interaction
torque. This increase can be automatically compensated with the closed-loop FES
controller reducing the interaction torque. This allows to uncouple the closed-loop
control of stimulation from the muscle fatigue monitoring and management.
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The t-FSM modulated the force field stiffness Kk and set the kinematic pattern,
depending on the walking state. The compliant behavior of the exoskeleton was
achieved by controlling knee trajectory through a first order torque field imposed
around the joint trajectory. As a result, the joint torque imposed by the robot
depended on the deviation of the knee trajectory from the kinematic pattern and
the stiffness of the torque field Kk . The width of a virtual tunnel where the knee
can actually move could be adjusted along time. During stance, a high stiffness
torque field was imposed to provide support and avoid knee collapse. Conversely,
the supportive actions of the exoskeleton must be reduced during the swing phase to
allow for the contribution of stimulated muscles and passive dynamics. The former
requirement was achieved by reducing the support of the robot through a wider
virtual tunnel. At the end of each swing phase, prior to contacting the floor, the robot
gradually increased its support to ensure full knee extension, through a progressive
increment in the force field stiffness. However, this late stiffness for foot contact
is insufficient for weight support and therefore, a quick transition to high stiffness
required for stance was implemented.

2.2 Subject

A 43-year old male (75 kg and 1.77 m height) with a traumatic lesion at L4 (AIS
[10] grade D) volunteered for participating in the experiment. He had preserved hip
flexion ability, partial ability to generate voluntary knee extension and is in presence
of mild spasticity. As consequence of the accident, the patient had a limited articular
range of motion at both knees, which led to adaptation of the kinematic pattern of
the left leg to meet these physical constraints (Table 1). The joint angle for the stance
phase of the left leg was set at the maximum knee extension angle, and the kinematic
pattern for the swing phase was consequently adapted. The subject provided written
informed consent by signing a form that was approved by the Spinal Cord National
Hospital Review Board.

2.3 Protocol

The patient participated in the hybrid gait training testing session (HGTT) to
determine the feasibility of overground control of walking with Kinesis. Prior to the
HGTT, the patient underwent a stimulation test and a training session in separate
days. The stimulation test was employed to quantify the muscular response to the

Table 1 Articular range of
knee joint

Left leg Right leg

Range of movement 20–100ı 5–150ı
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Table 2 Stimulation test
results: maximum force-time
integral achieved (absolute
and normalized by patient’s
leg weight)

Movement direction Left leg Right leg

Extension (N) 60 (134 %) 70 (156 %)

PA (mA) 40 48

Flexion (N) 10 (22 %) 25 (56 %)

PA (mA) 60 58

Stimulation PD was set to 450 �s, train frequency
to 70 Hz, pulse train duration 14 s and duty cycle
43 %

muscle stimulation and also to get the patient used to the stimulation. Within this
stimulation test, both flexor and extensor knee muscle groups of both legs were
stimulated for 15 min. The results from the stimulation test are showed in Table 2.
The only noticeable finding was a reduced performance of the left leg’s flexor
muscles.

After the stimulation test, a training session took place in which the subject
carried out learning exercises with the Kinesis system. In this training session the
basic walking technique was explained to the user (bend to the side to lift the heel
prior to initiate a step and then pressing a manual button). Kinesis was adjusted to the
patient anthropometry within this session. Total time walking in this training session
did not exceed from 10 min. During HGTT kinesis hybrid-cooperative controller
modulated both stimulation and robotic assistance during walking.

3 Results

The analysis of feasibility was performed at the biomechanical level. We assessed
the actual knee joint kinematics and stiffness during overground hybrid control
of gait. In Fig. 1, the kinematic pattern designed to meet patient’s left knee
angular limitation is showed (blue curves, light blue curves are actual knee angle).
Looking at the right leg, high interaction forces towards flexion during stance were
appreciated (Fig. 1c, d red curve, leg over exoskeleton). These flexor forces reflected
on the kinematics, where the right knee is flexed during stance. In contrast, the
interaction forces of the left leg during stance were lower, and the actual knee angle
during stance remained close to the reference. Transition from stance to swing phase
of the right leg resulted also on a transition of the interaction forces from flexor
direction for stance, to markedly extensor direction for swing. Stimulation of flexor
muscles for both legs exhibited in general a saturated pattern for the swing phase
(black curves).
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Fig. 1 Pattern (blue curve, deg) and actual (light blue curve, deg) knee kinematics, interaction
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Maximum flexion angle of the right leg for the first learning period was slightly
lower than 60ı (Fig. 1c,1 blue and light blue curves). This was further compensated
during the first monitoring period by an increase in the stiffness (Fig. 2b). It was
also noticeable the difference in step cadence between the beginning and the end
of the walking experiment, which indicates that the patient increased expertise and
confidence on the use of Kinesis after a number of cycles (Fig. 1a–d respectively.)

1This is actually difficult to observe in the figures. During the first learning period, the maximum
flexion angle was 58ı in average.



A Pilot Study on the Feasibility of Hybrid Gait Training with Kinesis. . . 25

Fig. 3 Normalized
quadriceps stimulation during
stance phase of walking (both
legs). X axis: number of steps

Figure 2a, b shows the operation of Kinesis within cycles, thus the c-FSM
operation. The averaged interaction torque during the swing phase was obtained,
and divided by the first averaged interaction torque. This procedure allowed for
monitoring the cycle-to-cycle evolution of the physical interaction between the leg
and the exoskeleton (NTTI, red curve in the figure). Furthermore, the stimulation
controller output for knee flexor muscles was averaged for the entire swing phase
and divided by a saturated stimulation for the entire swing phase. The value obtained
reflect an scalar value that is representative of the stimulation intensity during the
swing phase (NILC, black curve in the figure).

NILC for both legs achieved the 70 % of the maximum achievable stimulation
intensity for the swing phase. After the first learning period of the right leg, a
decrease on NTTI is observed along with an increase on the stiffness. In cycle 27
fatigue was detected and a new learning period took place (Fig. 2b). Regarding the
left leg, a more moderated increase on stimulation intensity (Fig. 2, black curve) for
the first learning period was observed, reaching similar stimulation intensity than
for the right leg, corresponding with a decrease on NTTI. After the learning period,
the stiffness was slightly reduced.

Figure 3 shows the averaged quadriceps stimulation intensity for the stance
phases, for both legs, during the HGTT. These value was obtained similarly to
the NILC procedure. It is noticeable the high stimulation intensity applied to the
right leg, in response to the flexion posture exhibited by the patient during stance
phases. Furthermore, as the experiment progressed and more steps were taken, the
stimulation intensity progressively augmented until reaching a plateau (step 13),
although after step 22, stimulation intensity increased across cycles.

4 Discussion

During and after the HGTT, no adverse effects were observed, and the patient
reported neither uncomfortable nor excessive physical demand. He was able to learn
the use of the system after 1 day of practice, although increases in the number of
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steps were observed in the experiment, which could be related to gaining expertise
in the use of Kinesis.

The specific functional deficit of the subject lead to a limitation on the maximum
(left) knee extension, which caused the patient to exert compensating actions.
These compensations were effectively counteracted by the hybrid gait control.
The compensating actions differed for both side and stance and swing phases of
gait. During stance, on average, the patient flexed the right knee in an attempt to
compensate for the flexion angle of the left knee. The robotic actuation compensated
the stimulation as needed: the displayed stiffness was sufficient to provide compliant
but adequate support during stance phases. We also noticed that during pre-swing
phases, the subject consistently changed from flexion to extension, probably as a
response to the limited range of movement of the right knee.

The results from the case study presented here supports performing a more
detailed clinical study in order to investigate the impact of the HGTT in the walking
ability of an adequate sample of spinal cord injured patients.

5 Conclusion

The HGTT delivered by Kinesis was tolerated by the patient, completing the
6 min of walking test. Mutual adaptations were observed between the patient and
Kinesis that were assessed through the analysis of the physical interaction. The
hybrid cooperative control in Kinesis is able to compensate a bilateral pathologic
walking pattern by autonomously increasing the stimulation of the flexor muscles
and increasing the displayed stiffness of the robotic actuator.
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Human-Like Sensor Fusion Implemented
in the Posture Control of a Bipedal Robot

Georg Hettich, Vittorio Lippi, and Thomas Mergner

Abstract Posture control represents the basis for many human sensorimotor
activities such as standing, walking or reaching. It involves inputs from joint angle,
joint torque, vestibular and visual sensors as well as fusions of the sensor data.
Roboticists may draw inspirations from the human posture control methods when
building devices that interact with humans such as prostheses or exoskeletons. This
study describes multisensory fusion mechanisms that were derived from human
perception of ego-motion. They were implemented in a posture control model
that describes human balancing of biped stance during external disturbances. The
fusions are used for estimating the disturbances and the estimates, in turn, command
joint servo controls to compensate them (disturbance estimation and compensation,
DEC, concept). An emergent property of the network of sensory estimators is an
automatic adaptation to changes in disturbance type and magnitude and in sensor
availability. Previously, the model described human and robot balancing about the
ankle joints in the sagittal plane. Here, the approach is extended to include the
hip joints. The extended human-derived model is again re-embodied in a biped
posture control robot constructed with human anthropometrics. The robot is tested
in direct comparison with human subjects. Results on hip and ankle sway responses
to support surface rotation are described. Basic resemblance of the results suggests
that the robot’s DEC controls capture important aspects of the human balancing.

Keywords Sensor fusion • Postural control • Sensory feedback • Humanoid
robot

1 Introduction

Sensors and sensor fusion play a fundamental role in the sensorimotor behavior of
animals and humans. Their use offloads computational burdens to the periphery and
early processing stages of the central nervous system (CNS; e.g. [1]). Furthermore,
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sensor data fusions represent the basis for the perceptual reconstruction of the
external world and the interaction with it. Current understanding of the involved
mechanisms in humans owes mainly to sensory physiology and to psychophysics, a
research method that relates the perception to the physical stimuli it evokes, allowing
inferences on the underlying information processing. The founders were, more than
a century ago, Fechner and Weber (see [2]) and major contributions dealt with visual
and vestibular mechanisms. Cybernetics then introduced engineering methods of
describing information processing and control into biomedical research [3]. The
present study uses psychophysical findings on human ego-motion perception and
their model-based descriptions for the sensorimotor control of a humanoid robot.
This represents a neurorobotics approach where neuroscientists apply engineering
methods to unveil human neural control and roboticists draw inspirations from the
human control methods [4].

Human sensorimotor control involves not only movement planning and move-
ment commanding, but also posture control. Posture control is an instrumental
constituent of skeletal motor activity. It copes with inter-segmental coupling torques
and movement coordination, adequate buttressing of movements (e.g. push off),
maintaining balance, and automatizing the compensation of external disturbances.
Posture control functions may be selectively impaired in neurological patients as
witnessed by disabling consequences. Both, sensory loss and cerebellar lesions
cause ataxia with jerkiness of movements, dysmetria (inappropriate metrics), falls,
and motor timing problems [5]. In basal ganglia diseases such as Parkinson’s
disease, the posture control impairment causes falls, akinesia (difficulties in move-
ment execution), movement freezing, impaired motor adaptability to external
disturbances, and muscular stiffness (‘rigor’) [6].

Modeling the role of sensors and sensor fusions in human posture control has
been successful only recently. The problem to overcome was how humans manage
to deal with sensory feedback despite long neural time delays (see [7]). Before, it
was often held that passive joint stiffness and viscosity, stemming from intrinsic
musculoskeletal properties and acting virtually without time delay, play a major
role, for example in stabilizing biped stance [8]. Later work showed, however, that
this owes primarily to the neural reflexes (ankle joint: [9, 10]; ankle, knee and hip
joint: [11, 12]). Several types of reflexes appear to be involved, some with short time
delay (40–80 ms) and others with long time delay (>100 ms), and this applies not
only to proprioceptive reflexes, but also to the vestibular reflexes [13].

The total time delay of the reflexive feedback mechanisms in biped balancing is
approximately 180 ms (e.g. [10]). Yet the neural control of biped balancing in the
ankle joints is stable, owing mainly to the fact that the loop gain is very low, hardly
exceeding the minimum required for the balancing [10, 14]. The sensory feedback
stems primarily from joint angle and torque proprioception, the vestibular system
and vision (see [15]). The underlying neural sensor fusions, often referred to as
‘multi-sensory integration’, allow humans to adapt their posture control to changes
in the environmental conditions and to the availability of sensory information.
They do so mainly by changing sensory weights, which has been called ‘sensory
reweighting’ [10, 14, 16–18]. The sensory integration and reweighting mechanisms
are still a topic of on-going research.
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This paper presents a concept of human-derived sensor fusion mechanisms for
use in the posture control of a humanoid robot that balances biped stance. In the
following, basic aspects of the multi-sensory fusions are explained, before their use
in the human posture control model is described and the model is implemented in
a humanoid robot for balancing biped stance in the ankle joints. The model is then
extended to include the hip joints in the balancing and is again re-embodied into
a robot for direct robot-human comparisons. Finally, an outlook is given on how
the control concept can further be extended in a modular control architecture for
humanoid robots that we expect to show human-like characteristics when interacting
behaviorally with humans or in the form of prostheses or exoskeletons.

2 Sensor Fusion and Posture Control Mechanisms

Sensor fusion is an important technical issue. Position tracking design technologies
rely heavily on the integration of several sensors: e.g. inertial measuring units
(IMUs) integrates gyros and accelerometers, and IMUs output itself is often fused
with global positioning system (GPS) data. Published work on sensor fusion for
postural control in robots typically used Kalman filters [19–22]. Simulation models
for human posture control [23, 24] also implemented Kalman filters, combining
in ‘sensory integration centers’ multiple sensory signals with centrally generated
information (motor command) to find the most accurate sensory representation for
a given environmental situation. Drawbacks of these approaches are high demands
on computational power in multi degree of freedom (DoF) systems and problems of
control stability if the plant is not accurately reflected in the model.

A different disturbance estimation method was used in the posture control
model considered here. It proceeded from psychophysical work that investigated
(i) which sensory information are humans using for their ego-motion perception
during passive motion of the body or parts of it (e.g. head, trunk, legs, feet
with respect to each or in space), (ii) how humans fuse sensor data to obtain
information that is not directly available from their sensors (e.g. trunk motion in
space), and (iii) how they obtain estimates of external disturbances that may affect
the ego-motion. The approach was model-based and originally aimed to formally
describe the experimentally obtained human responses in the form of time series
and performance data.

The psychophysical studies showed, for example, that humans involve joint
proprioceptive information when using the vestibular information arising in the
head for estimating the kinematic state of the trunk and legs in space as well as of
the haptically experienced body support. From this information, humans internally
reconstruct the external disturbances, which in the experiments consisted of support
surface rotation and translation, and experienced their self-motion as a consequence
of these external physical stimuli (see [25, 26]).

The concept of external disturbance estimation was extended to include field
forces such as gravity or Coriolis forces (e.g. [27]) and to contact forces such
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as a push against, or a pull on the body [17, 28]. Neural correlates of some of
the observed sensor fusions were found in neuron recordings in the vestibular
nuclei [29, 30] and in cortical vestibular centers [31]. Furthermore, down and up
channeling of vestibular signals in pathways of the spinal cord and their convergence
with proprioceptive signals, have been described [32]. Also, representations of
processed sensory signals in terms of kinematic variables have been observed in
spino-cerebellar pathways [33–35].

It was hypothesized that humans use the same or similar sensory information
as observed in, or inferred from the psychophysical studies also for their sensori-
motor control, at least as concerns re-active (sensor-driven) responses to external
disturbances. On this basis, human posture control experiments were performed and
modeled, leading to a disturbance estimation and compensation, DEC, concept.

2.1 Sensor Fusion in the DEC Concept

The DEC concept involves essentially two steps of sensor fusion, schematically
illustrated in Fig. 1. In the first step, information from several sensory transducers is
fused to obtain measures of kinematic and kinetic variables. In the second step, these
physical variables are combined to yield estimates of the external disturbances.

2.1.1 Fusion of Sensory Transducer Data

An example of the first step is the human sense of joint angle proprioception.
It combines information from several sensory transducers such as muscle spindles,
Golgi tendon organs and cutaneous receptors [36]. This also applies to the human
perception of head on trunk rotation, which in addition is complicated by the
fact that rotations between several segments of the cervical vertebral column are

Fig. 1 Schematic illustration of the sensor fusion mechanisms. Information of sensory transducer
signals is fused in the first step to yield physical variables. These variables are used in the second
step to reconstruct external disturbances
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involved. Yet, the result is a sense of angular head-on-trunk velocity and position,
as if an angular rate sensor and a goniometer in a single joint were measuring head-
trunk speed and rotation, respectively [37, 38].

Another example for the first step, well known to engineers who work with IMUs,
is the fusion of angular and linear accelerometer signals. A problem with linear
accelerometers is that they do not distinguish between inertial and gravitational
forces (i.e. between linear acceleration and tilt of the sensor). There exists also
a problem with the angular accelerometers, often used in the form of gyros that
measure angular velocity. They show low frequency signal variations over time
(‘drifts’). Both problems can be solved for the earth vertical planes by fusing the
inputs from the two sensors in an appropriate way. This has an analogy in the
human vestibular system that is located in the inner ears. Its otolith organs and
canal systems represent biological equivalents of linear and angular accelerometers,
respectively [39]. The solutions for both, the technical system and its biological
equivalent involve information of the gravitational vector. In the horizontal transla-
tional and rotational planes, however, there is no such information available, so that
further sources of information are required. In technical systems, often the GPS is
used. Humans usually use the visual system for this purpose.

In the following we will speak of joint angle and angular velocity sensors and by
this we mean virtual sensors that result from step one. The same applies when we
refer to the vestibular sensor and its three output measures, i.e. 3D angular velocity
and linear acceleration in space and 2D orientation with respect to the gravitational
vertical. These measures of the physical variables represent the inputs to the second
step of the sensor fusions.

2.1.2 Disturbance Estimation

In the second step of Fig. 1, the signals of the variables resulting from step one
are combined to reconstruct external disturbances that have impact on the body. In
the DEC concept, it is assumed that four physical quantities suffice to define the
external disturbances that affect human balancing in moderate stimulus conditions
(body sway amplitudes and velocities, <8ı and <80ı/s; frequencies, <3 Hz). The
four types of external disturbances are: (1) Support surface rotation, (2) support
surface translational acceleration, (3) field forces such as gravity, and (4) contact
forces such as a pull on, or push against the body.

The second step in Fig. 1 was originally motivated by reports of the subjects
in the aforementioned psychophysical experiments. When asked to report their
percepts during passive rotations on a rotation chair, subjects typically started the
report with the rotation of the chair, even though the percept primarily stems from
the vestibular system in the head. Thus, without being aware of it, the subjects
reconstructed the physical cause of their body rotation, i.e. the chair rotation in
space, by internally reversing the linkages from the vestibular signal ‘head rotation
in space’ via the proprioceptive signal ‘trunk rotation relative to the head’ to the
haptical information of ‘sitting on the chair’. This can formally be described in
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terms of a transformation by which the trunk and chair kinematics are referenced to
the vestibular derived notion of inertial space [25]. The concept applies to both, the
vestibular-able subjects’ estimation of ‘support rotation’ and ‘support translational
acceleration’ in Fig. 1 (formal description in Sect. 2.2).

Vestibular-able subjects furthermore use vestibular information for estimating
body lean with respect to the earth vertical when balancing stance in the sagittal
plane. From lean of the whole-body’s center of mass (COMB) above the ankle joints
and knowledge about body mass and COM height they to estimate the required
ankle joint torque to compensate for the gravity effect. For field forces in general,
it is known that subjects, when presented with a new aspect of a field force, they
perceive it and readily learn to counteract its impact on the body. Thereafter, they
no longer perceive it consciously, as has been shown in Coriolis force experiments
by Lackner and DiZio [27]. The subconscious estimation and compensation of field
forces makes it difficult to study them psychophysically.

Estimation of contact force effects on the ankle joint balancing requires internal
measurement of the overall ankle torque (or related measures such as the center of
pressure, COP, shift) and the distinct contributions to the ankle torque such as active
torque and the gravitational torque. Details have been described before [40] for
sagittal plane balancing of moderate disturbances, where the balancing is performed
predominantly in the ankle joints (‘ankle strategy’; [41, 42]). In such situations, a
single inverted pendulum, SIP, can approximately mimic human biomechanics.

2.1.3 Feedback Control Model

The two steps of sensor fusion are used for feedback control of one joint (Fig. 2).
Its lower half represents a servo control consisting of a negative joint angle
proprioceptive feedback and a controller with a proportional and a derivative factor
(PD controller). The controller provides the motor command that is transformed by
the muscles into joint torque (not shown in Fig. 2). Given appropriate parameters

Fig. 2 Simplified feedback control scheme of the Disturbance Estimation and Compensation
(DEC) concept. The Proprioceptive Feedback loop yields a servo control, by which actual joint
angle approximately equals the desired joint angle. Signals from the Disturbance Estimation part
command the servo to compensate the disturbances
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of the servo control, actual joint angle approximately equals the desired joint
angle without requiring a feed forward of plant dynamics. Feedback from passive
stiffness and viscosity with virtual zero delay is assumed to amount to 10 % of the
proprioceptive feedback (not shown in Fig. 2).

Noticeably, in the SIP scenario, the P and D factors identified in human
stance control are surprisingly low [10, 14, 43]. They appear to be geared to the
pendulum mass m, the height h of the COM, and gravitational acceleration g (mgh;
P � mgh; D � mgh/4). The values that humans use for balancing are only slightly
higher. A consequence is that the servo alone is insufficient to cope with external
disturbances such as gravity or a push against the body.

The upper half of Fig. 2 shows schematically the loop that carries the estimates
of the external disturbances and compensates for them. To insure control stability
in face of the neural time delays, the field and contact force estimates are not
used directly, but in the form of body-space angle equivalents. For example, the
estimate of body lean commands the servo to compensate for the gravitational
torque it produces. Then, the loop gain (at the level of the controller) is raised
accordingly. Noticeably, the increase occurs only at the time of, and to the extent
that the disturbance has impact. Note furthermore that disturbance compensation
applies even with superposition of several disturbances as well as with superposition
of disturbances and voluntary movements [39].

The DEC loops are not simply representing additional sensory feedback loops,
but are thought to represent long-latency loops through basal ganglia and cerebral
cortex [40]. They contain central detection thresholds and allow for voluntary
scaling the disturbance compensations and for predictions of the disturbance
estimates (e.g. self-produced disturbances during voluntary movements).

It has been shown by comparing human data with model simulations that the
DEC concept describes the human ankle joint balancing in a variety of disturbance
scenarios. Furthermore, the control automatically adapts to changes in disturbance
scenario and magnitude as well as sensor availability. This also applied when
the model was implemented in a humanoid robot with ankle joint actuation, and
tested in the human experimental setup (PostuRob I; overview [39, 40]). These
experiments demonstrated that the DEC concept is robust against real world
problems such as inaccurate and noisy sensors and mechanical dead zones.

The following describes an extension of the DEC concept to include the hip
joints in the balancing. The hip joints contribute considerably when strong transient
disturbances are applied (‘hip strategy’; [41, 42]). Then humans may use hip joint
accelerations to produce shear forces under the feet to counteract body COM
excursions. Another, more common involvement of the hip joints deals with adding
to the task of body COM balancing a secondary task of keeping the orientation of
the upper body upright. This ‘head stabilization in space’ task is thought to improve
under dynamic conditions such as walking the sensory feedback from the vestibular
and visual cues arising in the head [44, 45].
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2.2 Extended DEC Concept: Sensor Fusion in Ankle
and Hip Joint

The extension of the DEC concept for including the hip joints entails that double
inverted pendulum (DIP) rather than SIP biomechanics are considered, and with
this the occurrence of inter-segmental coupling torques [46]. In an extended DEC
concept for DIP biomechanics, we postulated two DEC controls, one for the hip
joint and the other for the ankle joint. This approach allowed to use again the above
described sensor fusion principles for disturbance estimation.

2.2.1 DIP Biomechanics

The DIP biomechanical model is shown in Fig. 3. In Fig. 3a, COMT , COML and
COMB stand for the COM of the trunk (including head and arms), leg and whole
body, respectively. Leg length is given by lL, the trunk and leg COM heights are
given by hT and hL, respectively. Figure 3b shows the angular excursion of the trunk
and leg segments with respect to earth vertical (trunk-space angle ˛TS, leg-space
angle ˛LS). Angular excursion of COMB is defined as body-space angle ˛BS. The
foot has firm contact with the support surface, therefore platform tilt angle equals
foot angle with respect to earth horizontal (foot-space angle ˛FS). The trunk-leg joint
angle is ˛TL and the leg-foot joint angle is ˛LF. In perfectly upright body position,
all angles are 0ı. Angular speed during reactive human balancing can be assumed
to be slow enough such that the Coriolis and centrifugal forces can be neglected; the
model can be linearized using small angle approximation, assuming that the subject
is maintaining his upright position close to the vertical.

Fig. 3 DIP biomechanics a b
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Maintaining upright stance in the situation of a support surface tilt in the sagittal
plane requires corrective joint torque in the ankle and hip joints. This torque can be
expressed by the following equations for hip torque TH

TH D �
JT C mT h2

T C mT lLhT

� R̨LS C �
JT C mT h2

T

� R̨TL � .mT ghT /˛LS

� .mT ghT /˛TL (1)

and for ankle torque TA

TA D �
JL C JT C mLh2

L C mT .l2
L C h2

T C 2lLhT /
� R̨LS

C �
JT C mT h2

T C mT lLhT

� R̨TL � .mLghL C mT glL C mT ghT / ˛LS

� .mT ghT /˛TL (2)

where R̨LS , and R̨TL represent angular accelerations, mL and mT are the segment
masses, and JL and JT the segment moments of inertia (details in Al Bakri [47]).

In the extended DEC concept for the DIP, the hip joint is used for orienting
and balancing the trunk segment and the ankle joint for balancing the whole-body
using two separate controls. The vestibular-derived signals used for the controls are:
the trunk-space angle ˛ts, trunk-space angular velocity P̨ ts , and head translational
acceleration RxHead . The proprioceptive signals are: the trunk-leg angle ˛tl and
the trunk-leg angular velocity P̨ t l ; the leg-foot angle ˛lf and the leg-foot angular
velocity P̨ lf . Uppercase letters in the angle subscripts indicate physical angles,
lowercase letters the sensory derived representations of these angles.

2.2.2 Hip Joint Control

The DEC control of the trunk reflects the principles described already above for the
SIP biomechanics. Considering the support surface tilt scenario in the sagittal plane
shown in Fig. 3, the legs tend to rotate somewhat with the platform, due to passive
ankle joint stiffness and a imperfect tilt compensation that is typical in humans with
eyes closed. Since the legs represent the support base for the trunk, an eccentric hip
rotation represents:

(a) A support base tilt disturbance for the trunk, evoked by the leg rotation, ˛LS.
(b) A hip translational acceleration RxHip . It produces a hip torque (TH_in) in relation

to mT , hT and JT . This torque is treated here as if it were an external disturbance
rather than an inter-segmental coupling effect.

Furthermore, trunk lean is associated with a gravitational hip torque disturbance
(TH_grav).

These three disturbances are estimated in the DEC control of the hip joint control
in the following form:
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(i) Estimation of leg tilt, b̨LS . This estimate is derived from fusing the vestibular
velocity signal P̨ ts with the proprioceptive velocity signal P̨ t l by P̨ ls D P̨ ts � P̨ t l

(Assumption: these transformations are performed as vector summations of
co-planar rotations, separately for the three body planes). b̨LS is obtained by
applying to the signal a detection threshold and a mathematical integration.

(ii) Estimation of hip translational acceleration bRxHip . The estimate is derived from
fusing the vestibular signals P̨ ts and RxHead in the form

bRxHip D RxHead � d . P̨ ts/

dt
lT ; (3)

where the trunk length lT gives the height of the vestibular system above the
hip. bRxHip is, in turn, used to estimate the inertial disturbance torque in the
form of

bT H_in D bRxHipmT hT : (4)

(iii) Estimation of gravitational hip torque bT H_grav. Using the vestibular signal ˛ts,
the third and fourth term of Eq. (1) becomes

bT H_grav D mT ghT ˛ts: (5)

2.2.3 Ankle Joint Control

The DEC control of the ankle joints is used to balance the whole body above the
ankle joint. To this end, it combines the leg and trunk angular excursions in the
form of COMB excursions in space, ˛BS. In this respect, also the DEC control of
the ankle deals with a SIP. The following three disturbances that have impact on the
ankle torque during support surface tilts are:

(a) The support surface tilt, ˛FS.
(b) The gravitational ankle torque, TA_grav. It results from ˛BS.
(c) Inter-segmental coupling torque in the ankle joint, TA_coup. It arises with angular

acceleration of the trunk segment.

For the estimation of these disturbances, the DEC control of the ankle fuses sen-
sory signals from the vestibular system and the hip and ankle joint proprioception.
To this end, sensory signals from the hip DEC control are transmitted (“down-
channeled”) to the ankle joint DEC control. The estimates are:

(i) Estimation of foot-space rotation, b̨FS . This estimate uses a down-channeled
version of P̨ ls and combines it with the ankle joint angular velocity signal P̨ lf

in the form

P̨f s D P̨ ls � P̨ lf : (6)
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Analogous to b̨LS , the estimate b̨FS contains a detection threshold and a
mathematical integration.

(ii) Estimation of gravitational ankle torque, bT A_grav. This estimate relates to
the third and fourth term of Eq. (2), which are mathematically combined
in the COMB excursion ’bs. From this, the gravitational torque is obtained in
the form

bT A_grav D mBghB’bs (7)

where mB represents whole-body mass and hB represents COMB height. Small
angular excursions allow approximating hB by a constant value.

(iii) Estimation of the inter-segmental coupling torque, bT A_coup. This torque arises
upon trunk rotational acceleration and tends to evoke a leg counter-rotation.
In view of the DEC concept, the trunk acceleration exerts a ‘push’ against
the hip like a contact force disturbance (compare external torque estimate in
[40]). This disturbance is expressed by the second component of Eq. (2). Since
its implementation was not critical for the stability of the DIP control in the
present context (compare [48]), it is omitted in the following.

The hip and the ankle DEC controls can be viewed as separate control modules
that are interconnected by ‘down-channeling’ of sensory information from the hip
DEC control to the ankle DEC control. Recent experimental evidence suggests
in addition an “up-channeling” of information between them (details in [49]).
A schematic illustration of the DIP control is given in Fig. 4.

Fig. 4 Basic aspects of the DIP control concept used for PostuRob II. CH and CA are the hip
and ankle controllers, Vest. is the vestibular input while Hip Prop. and Ankle Prop. are the
proprioceptive inputs
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3 Human and Robot Experiments

The extended DEC concept was tested experimentally by comparing sway to
support surface tilt in the sagittal plane with sway of a bipedal robot (PostuRob
II) in a human posturography laboratory.

3.1 Bipedal Robot PostuRob II

PostuRob II consists of mechanical, mechatronic, and computer control parts. The
mechanical part comprises one trunk segment, two legs and two feet, with a total
mass of 59 kg and a total height of 1.78 m. Two hip joints and two ankle joints
connect the segments (4 DOF in the sagittal plane; Fig. 5). The mechatronic part
comprises an artificial vestibular sensor [39] that is fixed to the trunk segment. Arti-
ficial pneumatic ‘muscles’ (FESTO, Esslingen, Germany; Typ MAS20) connected
with serial springs (spring rate 25 N/mm) are used for actuation. An electronic inner
torque control loop ensures that actual torque equals approximately desired torque.
Sensory signals are sampled at 200 Hz by an acquisition board. Computer control is
performed through a real time PC that executes a compiled Simulink model using
Real-Time Windows Target (The Math Works Inc., Natick, USA).

Fig. 5 PostuRob II. The
robot consists of trunk, leg,
and foot segments
interconnected by the hip
joints (a) and ankle joints (b).
Sensory information stems
from artificial vestibular
system (c) and ankle and hip
joint angle and angular
velocity sensors. Actuation is
through pneumatic ‘muscles’
(d). PostuRob II stands freely
on a motion platform (e)

a

c

e

b

d
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a b

Fig. 6 Tilt stimulus and angular excursion responses of body in space and trunk in space from one
representative subject (a) and of PostuRob II (b)

3.2 Experimental Methods

Seven healthy human subjects (3 female; mean age, 28 ˙ 3 years) participated after
giving their informed consent. The subjects (eyes closed) and the robot stood freely
on a motion platform (see Fig. 5), while six successive pseudorandom ternary tilt
sequences, each 60.5 s long, with peak-to-peak amplitude of 4ı were applied (PRTS
stimulus; frequency range 0.017–2.2 Hz; [10]). The first rows in Fig. 6a, b show one
60.5 s long tilt stimulus sequence.

Trunk, leg, and COMB angular excursions in space were calculated on the
basis of opto-electronically measured marker data (Optotrak 3020

®
; Waterloo,

Canada) that were recorded with a sampling frequency of 100 Hz. Data analysis
took into account human anthropometric measures [50] and was performed using
custom-made software programmed in Matlab (The MathWorks, Natick, USA). The
responses were expressed as gain and phase from the frequency response function
[10] in a form where zero gain means no body excursion and unity gain means
that body angular excursion equals platform tilt. Phase represents the temporal
relationship between stimulus and response. Variability of averaged values was
expressed as 95 % confidence limits [51].
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a b

Fig. 7 Tilt responses in terms of gain, phase and coherence curves of human subjects (a; 7
subjects, medians ˙95 confidence intervals) and PostuRob II (b)

3.3 Results

Subjects and PostuRob II balanced the tilts in similar ways. Time series of the
responses of one subject and the robot are shown in Fig. 6. Note that the responses
resemble each other, both for the body-space and the trunk-space responses. As
shown in Fig. 7, the resemblance also holds for the mean gain and phase curves of
the human subjects and the robot. In both, the gain values of trunk-space (TS) and of
body-space (BS) vary similarly with stimulus frequency. In the low frequency range
(<0.3 Hz), TS gain is lower than BS gain. In contrast, in the high frequency range
(>0.3 Hz), TS gain exceeds BS gain, while the phase shows a larger phase lag.

4 Conclusions

The here proposed feedback control system of a bipedal robot takes advantage of
the sensor fusion and posture control mechanisms that were derived from findings in
human experiments. The disturbance estimators that were used are non-iterative and
remarkably simpler than estimators that were used in Kalman filters. Furthermore,
the multi-sensory feedback control is performed without integrating any dynamic
model of the whole body in the control architecture. Filtering the estimates through
a nonlinear operation provided by a deadband threshold tends to reduce noise, which
appears to stem mainly from vestibular signals [39]. The noise shows 1/f properties
and therefore overlaps with the bandwidth of human sensorimotor behavior. The
threshold shuts off any estimator if there is no corresponding disturbance, which
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in a multi-DoF system may help to prevent accumulation of noise. The threshold
also explains a non-linear behavior in the human disturbance responses that were
observed with increase in stimulus magnitude [14]. Due to the non-linearity, small
stimuli yield relatively smaller responses than larger stimuli. This is an aspect of
the automatic sensory re-weightings, which emerged from the sensory network of
estimators. Other important aspects of it are that the control automatically adjusts to
changes in disturbance type and to sensor availability (for SIP, see [40]).

The here obtained good match of the data between the human subjects and
PostuRob II suggests that the proposed sensor fusion and posture control mechanism
capture important constituents of the human balancing system. The application of
the extended DEC concept to the balancing of upright stance using hip and ankle
joints in terms of a DIP required the integration of sensory signals from almost
the whole body. In a recent study that used this approach, coordination between
hip and ankle joint emerged from the multi-sensory feedback control [49]. These
experiences with the extended DEC concept led us explore its usefulness with
further DoF in a modular control architecture. In the generalized description, each
DoF is controlled by one DEC control, which stabilizes a SIP (defined by the
COM and moment of inertia of the segments above) on a moving support (given
by the upper end of the segment below). Adjoining DEC controls are synergistically
interconnected to exchange sensory information and disturbance estimates [52].

Taken together, although optimizing the DEC concept and its control parameters
is still under research, the concept proved to have several promising features. These
include: (i) a computationally very simple implementation, since almost all sensor
fusions are based on algebraic operations; (ii) the control complexity scales linearly
with the number of joints, since every joint is controlled as if a SIP and the
signals are exchanged only between adjoining modules; (iii) noise rejection makes
it possible to fuse the input of an high number of sensors; and (iv) the system,
originally proposed for its predictive power of human behavior, can be employed
to control actuated prostheses and exoskeletons to provide users with a human-like
feeling.
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Microchannel Scaffolds for Neural Signal
Acquisition and Analysis

Rouhollah Habibey, Asiyeh Golabchi, and Axel Blau

Abstract Replica-casting finds wide application in soft lithography and microflu-
idics. Most commonly, structures are molded with micro- to nano-patterned pho-
toresists as master casts into polydimethylsiloxane (PDMS). PDMS features many
favorable properties. It reproduces geometric details with nanometer fidelity, has
low cytotoxicity and is transparent in the visible spectrum. It is furthermore
biostable both in vitro and in vivo, can be plasma-bonded to itself, has low water
permeability and is easy to handle and process. After curing, the PDMS can be
peeled from the master and latter usually be reused if patterns are not undercut.
Here, we describe the straightforward replica-molding process for devices that can
be exploited either as perforated microchannel scaffolds for the in vitro use in
axonal guidance and regeneration studies on microelectrode arrays (MEAs) or for
the production of tissue-conformal in vivo MEAs for neuroprosthetic applications.

Keywords Neuroengineering • Microchannel confinements • Polymer composite
neuroprosthetics • Multi-level photolithography • Polydimethylsiloxane (PDMS)

1 Introduction

In microfluidics, PDMS microchannel systems [21, 23, 24] inspired by Taylor et al.,
allow the separation of somata from their axons in two different fluidic environments
[1]. Over the last decade, devices like these have been extensively utilized for study-
ing axonal injury and regeneration, myelination, protein and mRNA synthesis, as
well as transport phenomena [2–6]. Inexpensive microlithography techniques [22]
for the generation of microtunnels have been used recently to structure networks
in variable spatial designs. They allow microwell-confined populations of neural
networks to connect through microchannels [7]. Microchannels can also be utilized
in electrophysiological studies of neural networks in vitro by placing cells in specific
substrate locations including the electrodes [8, 9]. By combining microchannels
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with microelectrode arrays (MEAs), activity can be selectively recorded from axons.
In addition, amplitudes of extracellularly recorded signals from neurites are usually
amplified by two orders of magnitude (millivolts instead of tens of microvolts) [10,
11]. In a non-conventional fabrication scheme, microchannel devices can also be
transformed into MEAs. Filling the cavities of multi-level microchannel scaffolds
with electrically conductive polymers or composite materials is a rapid prototyping
approach for the design of various in vitro and in vivo recording and stimulation
devices [12]. This opens the door for both application-specific prototyping as well as
mass production of more tissue-mimetic neuroprosthetic recording and stimulation
devices. After a brief methodological description of the general device fabrication
steps, we present exemplary results on device exploitation as physical cell culture
guidance cues and as MEAs for neuroprosthetics.

2 Methods

2.1 Fabrication of Multi-level PDMS Microchannel Devices

Bi-level patterns can be casted into high-aspect ratio negative photoresist (e.g.,
SU-8) in a two-step photolithography technique using separate masks (Expert,
Silvaco). To generate both microchannels and perforating vias, the first mask
defines all features, whereas the second mask delineates the through-holes only.
The principle fabrication steps and overall process flow are depicted in Fig. 1: A
clean silicon wafer (a) is spin-coated with the first photo resin layer (<150 �m)
(b) and photo cross-linked through a first photomask to define both the channels
and the sockets for vias (c). The procedure is repeated in (d) and (e) for the second
photoresist layer (<150 �m) to define the via through-holes. After removing the
uncured photoresin in a developing step (f), the bi-level microstructure (g) can
be covered with PDMS pre-polymer (h), cured after its leveling, and be peeled
off to result in a microchannel scaffold with via holes (i). Such microchannels
can either be used as physical guidance cues for axons and dendrites or be filled
with conductive polymers (e.g., PEDOT:PSS, carbon-polymer composites) (j) and
backside-insulated (k) to yield all-polymer MEAs (polyMEAs) with electrodes and
contact pads at the via holes for their application in vitro or in vivo (l).

2.2 Conductive Materials

If not stated differently, all materials were purchased from Sigma-Aldrich. A com-
posite of carbon, graphite, and poly (3,4-ethylenedioxythiophene):polystyrene
sodium sulfonate (PEDOT:PSS) (p Jet 700, Clevios) with up to 5 % of conductivity
enhancers was used as a rubber-like electrode-, conductive track- and connection
pad-filling. The carbon/graphite/PEDOT:PSS composite was mixed into pre-mixed
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Fig. 1 Process flow of master generation (a–f) and microchannel replica molding from master
in PDMS (g–i). The scaffold can either be used directly in neural guidance studies or be
functionalized e.g., with conductive polymers (j–l)

PDMS prepolymer and curing agent (Sylgard 184, Dow Corning) in a 1:1:3 ratio
until its DC resistivity dropped below 10 k� over a distance of 5 mm. The track-,
contact pad- and electrode-cavities were filled with the conductive material by
spreading it onto the polyMEA scaffold. Excess material was removed by first
swiping the surface with the edge of a ruler, then with a cotton swab and filter paper.
This procedure removed the shortcuts between pads and tracks. In a final step, the
surface of the polyMEA was cleaned by rolling a lint remover over it. To ensure
that no shortcuts had remained, adjacent contact pads were probed by an ohmmeter.
The conductive composite was cured at 120 ıC for one hour. The polyMEAs were
then backside-insulated by a second layer of PDMS. The contact pads of in vivo
polyMEA probes were slid between the pins of Omnetics connectors. A folded
laser transparency between the folded polyMEA helped in pressing the pads against
the connector pins, thereby establishing electrical contact. A thin PDMS coat can
be used for pad/pin insulation thereafter. Device biocompatibility was tested in
cell culture. The electrical characteristics were determined by electrical impedance
spectroscopy. PolyMEA recording functionality was validated with cortical cultures
after 7 days in vitro (DIV).
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2.3 Electrochemical Characterization of polyMEA Electrodes

The electrodes of polyMEAs were characterized by electrochemical impedance
spectroscopy (EIS). The polyMEAs were placed in a custom-made Faraday box and
their pads sequentially connected by a gold-coated spring-contact probe. The elec-
trodes were immersed in saturated KCl at room temperature. A silver/silver chloride
wire (Ø1 mm) was used as a reference electrode and a Pt sheet (�2 � 3 mm2) as the
counter electrode. Impedance spectroscopy was performed at frequencies between
1 Hz and 100 kHz (Perstat 2273, Princeton Applied Research).

2.4 Cell Culture

If not stated differently, all cell culture chemicals were purchased from Invitrogen.
PDMS in vitro polyMEAs and commercial MEAs (Multi Channel Systems), PDMS
caps [13] and PDMS microchannel tiles were autoclaved at 120 ıC for 20 min
before being moved to the sterile hood. To increase their surface hydrophilicity,
MEAs and polyMEAs were exposed to oxygen plasma (0.5–2 min, 50 W, 2.45 GHz,
0.3 mbar O2) [femto, Diener]. Their central surface was then coated with 20 �L of
0.1 mg/mL poly-D-lysine (PDL) and 0.05 mg/mL laminin, which was allowed to dry
in vacuum. To remove soluble PDL, MEAs were rinsed twice with sterile ultrapure
water and dried. After complete water evaporation, the PDMS microchannels were
aligned on the surface of the commercial MEAs using a sterile water droplet. The
crossing points of the microchannels were placed on the electrodes. Therefore, every
microchannel included eight electrodes in one row or column (e.g., 68 to 61 in
Fig. 2). Cell suspensions (rat E18) were prepared following standard protocols [2].
For microchannel devices on commercial MEAs, a small drop (�5 �L; 10,600
cortical neurons/�L, �50,000 cells per device) was placed into just one out of
four reservoirs. On polyMEAs, about 100,000 cells were plated onto their central
electrode area. Cells were allowed to settle for 30 min in a cell culture incubator
(5 % CO2, 37 ıC, 95 % RH) before adding 1 mL of serum-free medium (Neurobasal
medium, B27 2 %, Glutamax 1 %, penicillin/streptomycin 1 %). Cultures were
protected by a PDMS cap against evaporation and contamination [13] and stored
in the incubator. Every week, 450 �L of media was exchanged with fresh warm
media. Cultures were imaged once a week on an inverted microscope (DMIL, Leica
Microsystems) equipped with a 5 MP camera (DFC420C, Leica Microsystems).

2.5 Electrophysiology

Extracellular signals were recorded with a 60-channel filter-amplifier (MEA60-Up,
Multi Channel Systems), featuring a built-in thermal sensor and heating element.
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Fig. 2 PDMS microchannel tiles on MEAs for neural network compartmentalization. (a) A
schematic cross-section of a microchannel and the reservoirs shows how microchannels selectively
let axons grow on top of an electrode row while preventing cell bodies to enter. (b) PDMS
microstructure including four big reservoirs interconnected by an 8 � 8 matrix of channels. (c)
Cells seeded in a somal compartment (left) had grown their axons after 9 DIV through the entire
length of a microchannel into the empty axonal compartment. (d) Magnified view of the axons
inside the channels between electrodes 15-14 and 25-24. (e) Magnified view of axons entering the
axonal compartment. Black arrows indicate an electrode and green arrows point at axons

For microchannel tiles, acquired activity (MC_Rack, Multi Channel Systems) was
filtered and analyzed offline. The low frequency noise, which was augmented by
the microchannels, was removed by a second-order Bessel high-pass filter (cut-off
at 200 Hz). Spikes were detected in the filtered data stream by passing a negative
threshold set to –4.5 StDev of the peak-to-peak noise. Only downward threshold-
crossings were analyzed.

2.6 Statistical Analysis

Spike trains from microchannel tile recordings were transformed to timestamps
(NeuroExplorer, Nex Technologies) for mean frequency and burst analysis. Indi-
vidual units on each electrode were detected by k-means clustering (Offline Sorter,
Plexon). Thereafter, sorted units were checked visually to merge the same units
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or exclude unsorted rare signals from analysis. Numerical results were further
analyzed by a one-way repeated measures analysis of variance (ANOVA) or
a two-way ANOVA, followed by a Bonferroni post-test for all groups (Prism,
GraphPad). A probability of p < 0.05 was considered significant. Data are expressed
as mean ˙ SEM or as quartiles (Whisker-bars) with maximum and minimum values.

3 Results

3.1 Recording Activity from Microchannel-Confined Axons

Cells started to grow their neurites into the microchannels after 3 DIV. After 9 DIV,
axons had almost passed through the entire channel and entered into one of the three
axonal compartments (Fig. 2). The neuronal tissue mass inside the channels was
increasing up to 27 DIV. Afterward, neural tissue inside the channels and the axonal
compartments started to degenerate and thick axonal bundles appeared (Fig. 8c).

Because the microchannels were aligned with the electrodes, axons were forced
to grow over the electrodes. The small microchannel cross sections (40 �m � 5 �m)
increased the electrical resistance to ground, thereby amplifying the weak extracel-
lular axonal signals. At 9 DIV, first signals could be recorded. They were similar
in shape to random networks, but had higher amplitudes (>100 �V; Fig. 3a). The

Fig. 3 Sample recording
from electrodes in channel 2
at 30 DIV. The right panel
shows the magnified
propagating signal along the
full length of the channel
from electrode 28 toward
electrode 21 (see Fig. 2c)
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signal amplitudes increased up to 600 �V after 20 DIV (Fig. 3b). The microchannels
not only allowed to record from axons, but also forced the same axon to pass over
or nearby all electrodes in one row of the electrode array (Fig. 2c; e.g., electrodes 28
to 21). This made it possible to record from the same axon at its different lengths.
Therefore, the same signal appeared with short delay on subsequent electrodes as it
propagated along the axon (Fig. 3).

Compared to the diameter of an axon (�1 �m), the width of a microchannel
was sufficiently large (40 �m) to let different axonal branches from the same
network enter into it. Therefore, every electrode inside the microchannel could
simultaneously record from different axons. Signals were sorted by shape to
distinguish between the different axons (sources) (Fig. 4a–c). In general, two
main signal categories were detected inside the microchannels; monophasic signals
(mainly with negative wave) and biphasic signals (mainly with a negative followed
by a positive wave). In contrast to quickly decaying biphasic signals, monophasic

Fig. 4 Signals with different amplitudes and shapes were propagating in channels. (a) Signal
sorting for electrode 67 shows five different waveforms that were recorded by this electrode. (b)
Shape and propagation length of monophasic and biphasic signals in channel 6 from electrode 67
to 63. (c, d) Overlaid signals recorded from electrodes 67 to 63 show the propagation delays for a
signal traveling within an axon over sequential electrodes
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signals could propagate to distant electrodes inside a microchannel. This feature was
amplitude-independent (Fig. 4b). Overlaying the signals recorded from subsequent
electrodes inside the same channel showed the propagation delay and how the signal
shape varied with location (Fig. 4c).

To analyze the network activity evolution and the propagation velocity along the
axons inside the microchannels over time, the electrical activity at 10, 20, 30 and
53 DIV was compared. To evaluate how activity levels change over time or along
channels, two subsequent electrodes in a channel were considered as one segment,
thereby dividing every channel into the following four segments: Seg 1 (0–250 �m),
Seg 2 (250–650 �m), Seg 3 (650–1,050 �m) and Seg 4 (1,050–1,300 �m) (Fig. 5a).
Because the amplifiers for electrodes 27, 52 and 62 were switched off at 10 and
20 DIV, data for the respective segments was collected on these two days from
one electrode only. A comparison of the overall number of spikes per minute in
the proximal segments of all considered channels with that of their distal segments
showed that the signal frequency decreases along the channel for all recording days
(p < 0.001 at 10 and 30 DIV, p < 0.01 at 20 DIV; Fig. 5b). Monitoring the mean
signal frequency in each segment over time (Fig. 4c) showed a significant decrease
at 53 DIV compared to 10 DIV in segments 1, 2 and 3 (p < 0.05).

Signal frequencies and propagation velocities were evaluated in detail for three
selected channels (channel 2 (electrodes 21–28), 5 (electrodes 51–58) and 6
(electrodes 61–68)). The mean signal frequency for each channel was calculated by
averaging all recorded signals from any of the electrodes inside a single channel. The
mean signal frequency for each channel tended to decrease over time. This decrease
was significant between 10 DIV and the subsequent DIVs for channel 5 (p < 0.05
vs. 20 and 30 DIV, and p < 0.001 vs. 53 DIV; Fig. 6a) and channel 6 (p < 0.05 vs.
30 DIV and p < 0.01 vs. 53 DIV; Fig. 5a). The propagation velocity was calculated
by dividing the constant distance between a pair of electrodes (200 �m) by the
temporal delay of the signal appearance on two subsequent electrodes. The mean
propagation velocity for each channel was calculated by averaging the propagation
velocities of all subsequent electrode pairs in a channel. For electrodes from which
no signals were acquired in 10 and 20 DIV (electrodes 27, 52 and 62), the average
velocity was calculated for the two nearest electrodes (channel 2; electrodes 28 and
26, and channel 6; electrodes 63 and 61). The mean propagation velocity tended to
increase with culture age, which was contrary to the observed decrease in the spike
frequency (Fig. 6a, b). Propagation velocity clearly increased with respect to 10
DIV in channel 2 (p < 0.001 vs. 20 DIV and p < 0.01 vs. 53 DIV; Fig. 6b), channel
5 (p < 0.05, p < 0.001 and p < 0.001 vs. 20, 30 and 53 DIV, respectively; Fig. 6b)
and channel 6 (p < 0.001 vs. 20, 30 and 53 DIV; Fig. 6b). This increase was also
significant when compared between 20 DIV and the subsequent recording days at
30 and 53 DIV in all channels (p < 0.001; Fig. 6b).

In addition to determining the mean propagation velocity, the changes in the
propagation velocity along the axon was calculated by comparing the velocity
propagation between subsequent electrode pairs (Fig. 7). In channel 5, only few
signals propagated along the entire length of the channel at 10, 20 and 53 DIV.
Therefore, these DIVs were excluded from the analysis. Despite variations in the
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Fig. 5 The spike frequency decreased along a channel and over time. (a) Each microchannel was
divided into four sections for a spike frequency analysis in the following way: segment 1 (Seg
1 D 250 �m from channel entrance), Seg 2 (250–650 �m), Seg 3 (650–1,050 �m), Seg 4 (1,050–
1,300 �m). Each segment represents data that was collected from two adjacent electrodes. (b)
Spike frequency along the channel. Each bar represents the spike frequency range in one segment
(color) on the mentioned day. The mean spike frequency was calculated by averaging the number
of spikes per minute in a selected segment of channels 2, 5 and 6. A two-way ANOVA was applied
for comparing the mean values between different segments on the mentioned day. * vs. Seg 4 and #
vs. Seg 3 at the same DIV. (c) Spike frequency evolution over time. Each line represents the changes
in the mean spike frequency of the same segment (averaged over three channels) at different days.
A one-way repeated measures ANOVA was applied for analyzing the mean frequency between
different DIVs in each segment. * vs. DIV 30 and # vs. DIV 53 of the same segment. * or #p < 0.05,
** or ##p < 0.01 and *** or ###p < 0.001
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Fig. 6 Different profiles for spike frequency and propagation velocity in three evaluated channels
over time. (a) Each bar represents the range of spike frequencies in one channel on the mentioned
day. x-axis denominators code for the channel number followed by the DIV on which the recording
was performed. One-way repeated measures ANOVA applied for analyzing the mean frequency
between different DIVs in each channel. * vs. DIV 10 and # vs. DIV 20 in same channel. (b)
Mean propagation speed in each channel for a given DIV. After calculating the velocity between
each electrode pair in a channel, the mean propagation speed was determined by averaging the
velocities of all pairs. Each bar represents the range of propagation speed in one channel at the
mentioned day. One-way repeated measures ANOVA applied for analyzing the mean velocity
between different DIVs in each channel. * vs. DIV 10, # vs. DIV 20 and C vs. DIV 30 in same
channel. * or #p < 0.05, ** or ##p < 0.01 and ***, ### and CCCp < 0.001. Electrodes 27, 52 and
62 did not record any spikes at 10 and 20 DIV. Therefore, the velocity was estimated by dividing
the time delay between two nearby electrodes by a distance of 400 �m
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Fig. 7 Changes in the signal
propagation velocity along
the axon in different
channels. The propagation
velocity was calculated by
dividing the constant distance
between each electrode pair
by the temporal delay
between time stamps. (a, b)
In channels 2 and 5: no
significant differences in the
propagation velocity between
two subsequent electrode
pairs could be detected. (c) In
channel 6, however, the
velocity decreased or
increased significantly along
the axon at different days.
One-way repeated measures
ANOVA was applied for
analyzing the mean
propagation velocity between
two subsequent electrode
pairs at the mentioned day.
*p < 0.05, **p < 0.01 and
***p < 0.001 vs. mean
propagation speed between
previous electrode pairs. For
all channels, the propagation
speed was calculated for 30
randomly selected
propagating signals at
different time points during
the recording window (1 min)

propagation velocities along channels 2 and 5, they were not significant between two
adjacent segments on any of the recording DIVs (Fig. 7a, b). However, in channel
6, significant changes in the propagation velocity were observed between different
segments, which could either decrease (e.g., p < 0.001 from 68-67 to 67-66 at 30
DIV; Fig. 7c) or increase (e.g., p < 0.001 from 68-67 to 67-66 at 53 DIV; Fig. 7c).
Besides the local fluctuations in velocity, an increase in velocity over time is clearly
evident for all channels in Fig. 7.
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Fig. 8 Burst propagation along channels. (a) Raw signals from channel 6 (electrodes 68-61) at
different DIVs. (b) Mean burst frequency in different segments of three channels. After burst
detection, the burst frequency was calculated for each channel segment of channels 2, 5 and 6,
and then averaged for all three channels. Each bar represents the burst frequency range in one
segment of all three channels. Two-way ANOVA applied for analyzing the mean burst rate between
two segments of the same channel at the mentioned day. * vs. seg 1 and # vs. seg 2. *p < 0.05,
**p < 0.01 and *** or ###p < 0.001. (c) Changes in morphology along channel 6 (electrodes 68–
61) over 53 DIV

Bursts propagation was analyzed for channels 2, 5 and 6 using the following
criteria in NeuroExplorer: maximal interval to start burst D 0.02 s, maximal interval
to end burst D 0.01 s, minimal interval between bursts D 0.01 s, minimal duration of
burst D 0.02 s, minimal number of spikes in burst D 4, and bin size D 1 s). Figure 8
summarizes the mean burst rate in different segments of channels 2, 5 and 6. At 10
DIV, only a few bursts were detected (Fig. 8b). The burst frequency (bursts/min)
increased over time and reached its maximum value after 30 DIV (Fig. 8b). A burst
rate analysis for each segment of these three channels showed that bursts faded
after 400-600 �m propagation length within a channel (Fig. 8b). The burst rate in
segments 3 and 4 was significantly lower than in segment 1 (p < 0.01 and p < 0.05
at 20 DIV, p < 0.001 at 30 DIV, and p < 0.001 at 53 DIV; Fig. 8b).
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3.2 polyMEA Features and Device Characteristics

Most deep brain implants are designed to record from biological tissue at near
cellular resolution. This requires the electrode diameters to be on a similar scale. The
design considerations for the implantable polymer microelectrode arrays included:
(1) compatibility to commercial or custom-made signal processing electronics; (2)
preferably a seamless, flexible and stable connection between implanted electrodes
and the electronic platform; (3) an insertion depth control that may be defined by
the probe geometry and guidance features (e.g., shaft edges, stoppers, : : : ).

Once geometries and boundary conditions are defined, photomasks can be
designed by any microelectromechanical systems (MEMS) layout editor (e.g.,
Expert, Silvaco; CleWin, WieWeb). Exemplarily, five different polyMEA designs
for different brain areas are depicted in Fig. 9. Overall device features and the
connecting scheme for a low-density electrode polyMEA are shown in Fig. 10. Its
feature sizes are summarized in Table 1.

Fig. 9 Five polyMEA design examples for recording from various brain areas. The number of
electrodes is the same in a–c (18) and in d, e (28). Design B with two separate electrode fields
is suitable for the local recording at two specific depths while designs a, c, d and e are universal
probes with equal electrode pitches along their insertion shafts. The sharpened probe tips in designs
b, c and e may facilitate probe insertion into the brain. Electrode pitch and diameter, wire widths
and pitches are different in these designs
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Fig. 10 Overall device layout and connecting scheme for an in vivo polyMEA with 2 � 9 electrode
array. (a) CAD design and resulting device with tracks and electrodes made from a conductive
polymer composite; pad width: 414 �m. (b–d) polyMEA squeeze-clamped between an Omnetics
(A79006-001) 0.757 mm pitch, double-row pin connector (front, back and side). In this case, no
extra PDMS sealing coat was applied to the connector and the polyMEA yet. (e) Cross section
views of the polyMEA electrodes (left), pads (middle) and buried tracks (right). Scale bars: 1 mm
(b–d), 100 �m (e)

Table 1 Feature sizes of a universal in vivo polyMEA with 2 � 9
electrode array

Parameter Size (�m)

Maximum electrode site diameter 130
Minimum electrode site diameter 50
Vertical electrode center-to-center pitch 300
Horizontal electrode center-to-center pitch 300
Vertical electrode array dimension (center-to-center) 2,400
Shaft width 5,370
Shaft thickness 280.6
Shaft length 3,920
Track width 50

3.3 Electrical Characteristics of Carbon-, Graphite-,
PEDOT:PSS-in-PDMS Composite Electrodes

In the in vivo polyMEA featuring a 2 � 9 electrode array, all 18 microelectrodes
were functional. The average and extreme electrode impedance distribution between
1 Hz and 100 kHz is depicted in Fig. 11. Impedances ranged between 5 M� at
low frequencies and several hundred k� at 1 kHz. Electrodes had almost resistive
character at 1 kHz.
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Fig. 11 Impedance
characteristics of a polyMEA
with a 2 � 9 electrode array.
Electrode diameters ranged
from 50 to 130 �m by 10 �m
increments. Comparison of
the average (Avg.) and
extreme (Min., Max.)
electrode impedances in a
Bode magnitude plot (top)
and of their
capacitive-resistive
characteristics in a phase plot
(bottom)

4 Discussion

The presented examples demonstrated how a straightforward replica-molding pro-
cess for PDMS sheets generates perforated microchannel scaffolds for diverse
applications. We exemplarily discussed their in vitro use in axonal guidance and
regeneration studies on microelectrode arrays (MEAs) and the production of tissue-
conformal in vivo MEAs for neuroprosthetic applications.

4.1 PDMS Microchannels for Axon Guidance
and Electrophysiology

We showed that axons can be easily guided in microchannels that were aligned on
top of the recording electrodes of a MEA. This allowed the detailed evaluation of
axonal morphology, the different types of activity and their propagation velocity
along channels over time.
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We found that the signal frequency decreased between proximal and distal
segments of a microchannel. This could have two reasons: the signal could be fading
along the channel as it was evident in most cases (Fig. 3b). Furthermore, axons may
leave the straight path by changing their growth direction at the channel crossing
points (Fig. 2b).

The effect of microchannel geometry on signal quality has been evaluated by
Wang et al. [11]. They showed that in microchannels with lengths between 200
and 3,000 �m the signal amplitude decreases along the channel length. Therefore,
signals could become too small to be detected by electrodes in distal sections. In
accordance with Fig. 3, large amplitude signals in proximal sections (electrode
68) decreased as they propagated within the channel. In line with the findings
by Wang et al. [11], the high microchannel resistance combined with its stray
capacitance acted like a first-order low-pass filter that attenuate high frequency
signal amplitudes (i.e., the negative peaks of an action potential). Equally, the
channel cross-section can affect signal properties [11]. Although all microchannels
had the same cross-section, the number of axons and the thickness of the axon
bundles inside the microchannel varied with channel depth and over time, thereby
changing the total cross-section of a microchannel at different channel locations. In
2009, Dworak and Wheeler showed that the growth of neurites inside microchannels
(750 � 10 � 3 �m3) increased the resistivity from 75 � cm of empty channels to
300 � cm for microchannels filled with neural tissue due to an effective decrease of
the channel cross-section [10].

The increase of neural tissue mass inside the microchannels between 20 and 30
DIVs (Fig. 8c) could be correlated with an increased spike frequency for almost
all channels and all channel segments (Figs. 5 and 6). Equally, a decrease in neural
tissue density after 53 DIV led to a decrease in the firing frequency in all channels
(Figs. 5 and 6). A significant decrease of the signal frequency after 30 DIV in all
segments could be related to the axonal degeneration and the formation of axonal
bundles (Fig. 8c).

Recording an action potential from subsequent electrodes along a microchannel
enabled us to determine the propagation velocity and direction. The propagation
velocities varied between 0.1 to 2.5 m/s, which is in same range as previously
reported by Pan et al. (0.18–1.14 m s�1 in unmyelinated axons) [14]. In this study,
we also evaluated changes in the propagation velocities in different segments of
the same channel as well as in the same segment or channel over time. Changes in
action potential velocity along the axon could be related to changes in thickness and
curvature along the axon. We also observed an increased propagation velocity in
all channels between 30 and 53 DIVs, which could possibly be related to increased
axonal diameters or the fasciculation of axons. Such spatial and temporal changes
in stimulus-driven action potential propagation velocity have been reported recently
by Bakkum et al., however in random cultures on dense microelectrode arrays [15].
In the present study, we evaluated the propagation velocity of signals derived from
spontaneous network activity over time.

Bursts are spike flares within a short time window. Bursts are usually recorded
simultaneously from different MEA electrodes, which shows that burst activity
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involves and propagates within large parts of the network [16]. We also evaluated
how bursts propagate inside the microchannels. While individual monophasic spikes
are able to propagate over long distances within a channel, bursts failed in reaching
the microchannel endings in most cases (Fig. 8a). A significant difference in burst
frequency on electrodes in proximal and distal parts of the microchannels confirmed
the observed burst propagation fading along the microchannel (Fig. 8b). Because
bursts are composed of individual spikes with different shapes, each of them will
have its specific half-life for traveling along the channel. Fading spikes inside a
burst will cause the burst to disintegrate along the channel. In consequence, a spike
sequence that was categorized as a burst at the proximal end of a channel may not
be recognized as a burst anymore at the distal end of a channel. Another mechanism
for burst fading could be based on a phase cancelation effect. Signals with different
shapes and phases can cancel each other out while traveling along the channel [11].

4.2 PDMS Microchannels for the Production
of Tissue-Conformal in vivo MEAs for Neuroprosthetic
Applications

Compared to stiff implants, flexible probes will more easily relieve the strain
caused by micromotion forces that result from the relative displacement between
the implant and the brain tissue. This may minimize chronic tissue damage or
inflammation due to a better match in the stiffness of the probe and the brain
microenvironment [17]. In this context, PDMS has potential as a scaffold material
for neural interfaces [18, 19]. As thin sheets it can follow the curvature of a tissue
and provide a uniform and tight contact [20]. Here, we exemplarily depicted the
design and fabrication of a flexible polyMEA with 18 recording sites that can
be implanted into the brain tissue. Impedance characteristics indicated that the
electrodes performed well even in the low frequency range. At 1 kHz, their average
impedance stayed at several hundred k� with an almost resistive behavior.
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Brain-Controlled Selection of Objects Combined
with Autonomous Robotic Grasping

Christoph Reichert, Matthias Kennel, Rudolf Kruse, Hans-Jochen Heinze,
Ulrich Schmucker, Hermann Hinrichs, and Jochem W. Rieger

Abstract A Brain–Computer Interface (BCI) could help to restore mobility of
severely paralyzed patients, for instance by prosthesis control. However, the cur-
rently achievable information transfer rate of noninvasive BCIs is insufficient to
control complex prostheses continuously in many degrees of freedom. In this paper
we present an autonomous system for grasping natural objects that compensates the
low information flow from noninvasive BCIs. Using this system, one out of several
objects can be grasped without any muscle activity. Rather, the grasp is initiated
by decoded voluntary brain wave modulations. Object selection and grasping are
performed in a virtual reality environment. A universal grasp planning algorithm
calculates the trajectory of a gripper online. The system can be controlled after less
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than 10 min of training. We found that decoding accuracy increases over time and
that an increased sense of agency achieved by permitting free selections renders the
system to work most reliably.

Keywords Brain–computer interface (BCI) • P300 • Oddball paradigm
• Grasp robot • Magnetoencephalogram (MEG) • Virtual reality (VR) • Gaze
independence

1 Introduction

Brain–Computer Interfaces (BCI) can serve as a communication channel between
the human brain and a computational or robotic device by translating human brain
activity to machine commands [1]. Due to the independence from muscles and
peripheral nerves they are in the focus of research to replace motor functions of
severely paralyzed patients. In the recent years, highly invasive techniques were
applied to control prosthetic devices by voluntary modulation of brain activity
[2, 3]. In humans, the use of noninvasive techniques, like the electroencephalogram
(EEG), is preferable over invasive recordings. However, only a small number of
commands can be discriminated with noninvasively assessed brain activity and,
as a consequence, noninvasive systems do not allow for full control of complex
manipulators with many degrees of freedom. Here we report progress in our
development of a noninvasive BCI that enables users to grasp natural objects with
a complex manipulator. Our approach combines the development of both efficient
brain decoding techniques and autonomous actuator control to overcome the limited
information transfer from noninvasive BCIs.

A commonly used control signal for movement related BCIs is the so-called
�-rhythm [4], which can be measured during motor imagery. However, a consid-
erable percentage of people are unable to control motor imagery BCIs [5, 6]. In
contrast, it was shown that a larger fraction of people is able to select items in
speller paradigms using an oddball task [7]. The widely used matrix speller, which
relies on the oddball task, was first introduced by Farwell and Donchin [8]. In this
paradigm a P300, a positive EEG deflection, is evoked when a rare target stimulus
appears in a series of irrelevant stimuli. While it is often assumed that the accuracy
of visually stimulated P300 speller is independent of gaze direction, it has recently
been shown that the performance of the matrix speller drops significantly if the eyes
are not moved toward the target [9]. The reason is that two EEG components, the
P300 and the N200, contribute information when the centre of regard is moved to
the target [10], whereas only the P300 is present if the eyes don’t move. This could
render the P300 paradigm less useful for patients who cannot move their eyes.

In this work we demonstrate that the visual oddball paradigm can be successfully
applied to initiate targeted grasps in a visually complex virtual environment with
multiple realistic objects. Importantly, we show that the paradigm developed here
works independent of the user’s ability to direct gaze towards the target object. This
is of high relevance for the targeted user group.
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The development of an efficient noninvasive brain decoder is complemented
by the development of a robotic manipulator with the ability to manipulate in
an intelligent and autonomous way predefined objects. Here we propose a new
analytical grasp planning algorithm to achieve autonomous grasping of arbitrary
objects. In contrast to other motion planning algorithms, our algorithm is not based
on Learning by Demonstration (for a review see [11]) and involves, but is not limited
to, the robot’s kinematics.

2 Materials and Methods

2.1 General Procedure

In this study we decoded in real-time the magnetoencephalogram (MEG) of 17
subjects (9 male, 8 female, mean age: 26.6 years) to determine their intention to
select one of six selectable realistic objects for grasping. We used the decoding
results to initiate a grasp of a robotic gripper. All subjects gave written informed
consent. The study was approved by the ethics committee of the Medical Faculty of
the Otto-von-Guericke University of Magdeburg.

2.2 Virtual Environment

We presented six objects placed at fixed positions in a virtual reality environment as
shown in Fig. 1. The visual angle between outmost left and right objects was 8.5ı.
We used circular regions around the objects on the table to provide cue flashes for
the P300 paradigm and to provide feedback by coloring the region’s shape. A photo
transistor placed on the screen was used to synchronize the ongoing MEG with
the events displayed on the screen. To provide realistic feedback, the model of a
robot (Mitsubishi RV E2) equipped with a three finger gripper (Schunk SDH) was
part of the scene. The robot in the virtual reality scene visualized the autonomously
calculated grasp to the selected object mimicking the movements of the real robot.

2.3 Paradigm

The oddball paradigm we employed is designed to elicit a P300 potential which
is a deflection of sensor values evoked approximately 300 ms after a rare target
stimulus occurs in a series of irrelevant stimuli. The goal for the brain decoder is to
reliably detect the P300 to generate a control signal for the robot. In our variant of
the paradigm, we marked objects by flashing their background for 100 ms. Objects
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Fig. 1 VR scenario used for
visual stimulation. This
snapshot shows one flash
event of an object

Table 1 Number of runs the
subjects performed in
different selection modes

Instructed
Subject # Training Decoder Free Grasp

1 2 5 – –
2 4 4 1 –
3 3 4 – –
4–6 3 4 1 1
7 2 4 2 1
8 3 3 2 1
9 2 4 2 1
10 2 4 2 –
11 2 4 2 1
12 2 5 2 –
13–17 2 4 2 1

were marked in random order with an interstimulus interval of 300 ms. Each object
was marked five times per selection trial resulting in a stimulation interval length
of 10 s.

Subjects were instructed to fixate the black cross centred to the objects and to
count how often the target object was marked. The counting ensured that attention
was maintained on the stimulus stream. In addition, subjects were instructed to avoid
eye movements and blinking during the stimulation interval.

Each subject performed a minimum of seven runs with 18 selection trials per run.
The runs were performed in three different modes that served different purposes.
The number of runs each subject performed in each mode is listed in Table 1. We
started with the instructed selection mode. In this mode, the target object was cued
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by a light grey circle at the beginning of a trial and subjects were instructed to
attend the cued object. Instructed selection was used in the initial training runs in
which we collected data to train the classifier. In this mode true classifier labels are
available which are required to train the classifier. We provided random feedback
during training runs because no classifier was available in these initial runs. After
the training runs, each subject performed several instructed runs with feedback. We
denote the second selection mode free selection. In this mode, subjects were free to
choose the target object. In instructed selection mode and in free selection mode, a
green circle was presented at the end of the trial on the decoded object as feedback.
All other objects were marked by red circles. Free selection runs were performed
after the instructed selection runs. In the third mode, the grasp selection mode, the
virtual robot grasped and lifted the decoded target for feedback. Grasp selection
runs were performed after free selection runs. In both modes, the free selection and
grasp selection mode, the subject said “no” to signal that the classifier decoded the
wrong object and did not respond otherwise.

The results reported in this paper arise from online experiments. We did not
exclude subjects participating in early sessions, causing slight changes in the
experimental protocol during the study (Table 1). The number of runs performed in
the different modes depended on cross validated classifier performance estimation
and the development of detection accuracy. In total, five subjects performed three,
one subject four and the remaining 11 subjects two initial training runs. Two subjects
performed only instructed selections. Twelve of the subjects performed one run in
the grasp selection mode. Here, only six instead of 18 trials were performed, due to
the longer feedback duration.

2.4 Data Acquisition and Processing

The MEG was recorded with a whole-head BTi Magnes 248-sensors system
(4D-Neuroimaging, San Diego, CA, USA) at a sampling rate of 678.17 Hz. Simul-
taneously, the electrooculogram (EOG) was recorded for subsequent inspection of
eye movements. MEG data and event channels were instantaneously forwarded to a
second workstation capable of processing the data in real-time. The data stream was
cut into intervals including only the stimulation sequence. The MEG data were then
band-pass filtered between 1 and 12 Hz and down sampled to 32 Hz sampling rate.
Then, the stimulation interval was cut in overlapping 1,000 ms segments starting at
each flash event. In instructed selection mode, the segments were labelled as target
or nontarget segments depending on whether the target or a nontarget object was
marked.

We used a linear support vector machine (SVM) as classifier because it proved
to reliably provide high performance in single trial MEG discrimination [12, 13].
These previous studies showed that linear SVM is capable of selecting appropriate
features in high dimensional MEG feature spaces. We performed classification in
the time domain, meaning that we used the magnetic flux measured in 32 time steps
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as classifier input. To reduce the dimensionality of the feature space, we excluded 96
sensors located farthest from the vertex (the midline sensor at the position halfway
between inion and nasion) which is the expected site of the P300 response. We
further reduced the number of sensors by selecting the 64 sensors providing the
highest sum of weights per channel in an initial SVM training on all preselected
152 sensors of the training run data. The selected feature set (64 sensors � 32
samples D 2,048 features) was then used to train the classifier again and retrain the
classifier after each run conducted in instructed selection mode.

2.5 Grasping Algorithm

In this section we describe the general procedure of our grasp planning algorithm,
whereas we present the mathematical details in the Appendix. The algorithm was
developed to physically drive a robot arm, but in this experiment it was used
to provide virtual reality feedback. Importantly, in this strategy the robot serves
as an intelligent, autonomous actuator and does not drive predefined trajectories.
The algorithm assumes that object position and shape coordinates relative to the
manipulator are known to the system. In this experiment, coordinates of CAD-
modelled objects were used. However, coordinates could as well be generated by
a 3D object recognition system.

Central to our approach is that the contact surfaces of the gripper’s fingers and
the surfaces of the objects were rasterized with virtual point poles. We assumed an
imaginary force field between the poles on the manipulator and the poles on the
target object (see Appendix for details). The goal of the algorithm is to initially
generate a manipulator posture that ensures a force closure grasp. The following
grasp is organized by closing the hand in a real world scenario and by locking the
object coordinates relative to the finger surface coordinates in the virtual scenario.

3 Results

3.1 Decoder Accuracy

We determined the decoding accuracy as the ratio of correctly decoded objects
divided by the total number of object selections. All subjects performed the task
reliably above guessing level which was 16.7 % according to the six objects on the
table. On average, the intended object selections were correctly decoded from the
MEG data in 77.7 % of all trials performed. Single subject accuracies ranged from
55.6 to 92.1 %. In the instructed selection mode the average accuracy was 73.9 and
85.9 % in the free selection mode. A Wilcoxon rank sum test revealed a p-value
of 0.03 which indicates that the performance difference between the instructed and



Brain-Controlled Selection of Objects Combined with Autonomous Robotic Grasping 71

Fig. 2 Performance histograms. The ordinate indicates the number of subjects who achieved the
respective decoding performance out of 19 possible percentage bins, equally spaced from 0 to
100 %. The histograms show data from different runs, chronologically ordered from top to bottom.
The run modes are coded by color. Vertical dashed lines indicate the guessing level and thick solid
lines indicate the average decoding accuracies over subjects. Standard error is marked grey

the free selection mode is statistically significant with higher performance in the
free selection mode. When subjects received feedback by moving the virtual robot
to the grasp target, the average accuracy was even higher and reached 91.2 %.
Figure 2 depicts the evolution of decoding accuracies over runs. The height of
the bars indicates the number of subjects (y-axis) who achieved the respective
decoding performance out of 19 possible percentage bins. Each histogram shows
the results from one run and the performance bins are equally spaced from 0 to
100 %. The histograms are chronologically ordered from top to bottom. Yellow bars
indicate results from instructed selection runs, blue bars indicate free selection run
results and red bars indicate results in runs with grasp feedback. Vertical dashed
lines indicate the guessing level and thick solid lines indicate the average decoding
accuracies over subjects whereas the standard error is marked grey. The average
decoding accuracy increases gradually over the course of the experiment. Moreover,
the histograms show that the highest accuracy over subjects was achieved in free
selection runs. Note that our system achieved perfect detection in 8 of the 12 subjects
who received virtual grasp feedback. However, only six selections were performed
by each subject in these grasp selection runs.
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An established measure for the comparison of BCIs is the information transfer
rate (ITR) which combines decoding accuracy and number of alternatives to a
unique measure. We calculated the ITR according to the method of Wolpaw et al.
[14] at 3.4–12.0 bit/min for single subjects and 8.1 bit/min on average. Note that the
maximum achievable bit rate with the applied stimulation scheme is 15.5 bit/min.

For online eye movement control, we observed the subjects’ eyes on a video
screen. In addition, we inspected the EOG measurements offline. Both methods
confirmed that subjects followed the instruction to keep fixation.

3.2 Grasping Performance

We evaluated the execution duration of the online grasp calculation for different
setups and objects. We implemented our grasping algorithm with the ability to
distribute force computations to several parallel threads. Here, we permitted five
threads employing a 2.8 GHz AMD Opteron 8220 SE processor. We calculated
grasps of the six objects shown in Fig. 1. To assess effects of object position, we
arranged the objects at different positions within the limits of our demonstrating
robot’s work space. Each object was placed once at each of the positions depicted
in Fig. 1. The time needed to plan the trajectory and execute the grasp until
reaching force closure is listed in Table 2 for each object/position combination.
Calculation times ranged from 11 to 72.6 s depending on the object and the position.
The diagonal of Table 2 represents the actual object/position setup during our
experiment.

The results indicate that the duration of grasp planning depends on many
parameters. The most important determinant of execution time is the number of
point poles (O(n2)) which depends on the level of detail of the object surface. This
is reflected in the high variation of the average calculation time of objects 1–6 over
positions (18, 50.3, 12.9, 15.3, 26.1, 39.4 s). The execution times also depend on the
physical constraints of the robot and object position. We observed that even minimal
differences in object arrangement appear to have strong influence on force closure
termination. This is also indicated by different execution times of identical objects
at symmetric positions (e.g. left/right). We consider it likely that these differences

Table 2 Duration of grasp
planning calculation for all
object/position combinations
in seconds

Object #
Object position #1 #2 #3 #4 #5 #6

Left 33.0 68.5 11.0 14.1 16.0 24.5
Upper left 25.5 34.0 16.5 13.5 39.0 46.7
Lower left 11.0 72.6 11.0 18.0 22.5 65.0
Upper right 15.5 42.5 15.0 12.5 37.0 46.0
Lower right 12.0 48.5 11.0 19.0 22.5 24.5
Right 11.0 35.6 13.0 14.5 19.5 29.5

Bold numbers indicate the object positions used in the online
experiment
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are caused by numerical precision issues due to the high number of summations in
Eqs. (3) and (4) (see Appendix).

4 Discussion

In the present work we demonstrated that the oddball paradigm is well suited for
use in a BCI to reliably select one of several objects for grasping. In a previous
study we showed that other selection paradigms also are suitable to select virtual
reality objects [15]. The advantage of the present study over the previous study is
that the selection of objects was achieved independent from eye movements to the
target and realistic grasp feedback was presented. Importantly, our results suggest
that performance improves with training and the improvement is even higher when
subjects obtain more control by permitting free selections and when realistic visual
feedback was presented. This suggests that BCI control in our P300 paradigm is
improved with an increase of the subject’s sense of agency. A gaze independent
BCI based on directing covert attention is a fundamental requirement for patients
who cannot easily orient gaze to the target object.

Earlier reports suggested that eye movements greatly improve performance in
a P300 speller [9, 10, 16], due to contribution from visual areas to brain wave
classification [17]. We extend these previous studies and show that the P300
paradigm is well suited for a gaze independent object grasping BCI. We achieved
independence from visual components by instructing our subjects to fixate and by
excluding occipital sensors from the analysis. This approach simulates a realistic
setting with patients who cannot move their eyes and are therefore dependent on
covert attention shift based activation for control. To date, only a small number
of studies successfully implemented such a more restrictive covert attention P300
approach [18–20].

We observed increasing decoder accuracy during the course of the experiment.
This suggests that the increasing amount of training is beneficial for performance in
our BCI paradigm. However, due to classifier updates performed in the course of the
experiment, the learning process is likely bilateral and involves both the subjects and
the classifier [21]. Importantly, when subjects were free to select the target object,
the decoding success was significantly higher compared to the instructed selections.
This suggests a strong role for task involvement and the sense of agency in our
paradigm. When subjects performed runs receiving grasp feedback, most of them
achieved perfect decoding accuracy. We expect the reliability of the system to be
further increased by extending the stimulation interval [18, 22]. Note that system
reliability is often more important for the user than a rapid but error prone detection
of intention. Furthermore, the system presented here is efficient for use with nearly
no training. Most subjects performed less than 10 min of training in order to provide
data to the decoding algorithm. This is a very small effort compared to motor
imagery based systems aiming to control movement in a few degrees of freedom
[2, 23].
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In order to reduce the burden of controlling a complex manipulator with many
degrees of freedom by voluntary modulation of brain activity, we combined a P300
BCI with a grasping system that autonomously executes the grasp requiring only
a very low input bit rate, namely the command to grasp an object known to the
system. To execute the grasp intended by the BCI user, we developed an algorithm
for autonomous grasp planning that can place a reliable grasp on natural objects.
The execution times we achieved were practical for the proposed task but can be
further reduced in future work. We should note that we did not focus on timing
optimization in this work but on reliable placement of the grasp. Moreover, the
proposed algorithm is universal in the sense that it is not restricted to a specific
manipulator. Consequently, this algorithm should also be easily transferable to
arbitrary prosthetic devices suitable for grasping potential target objects with a force
closure grasp.

In online closed-loop BCI studies the decoding algorithm has to be fixed
before the start of the experiment. We decided to use SVM classification because
this is an established classifier for high dimensional feature spaces that provides
high and robust generalization by upweighting informative and downweighting
uninformative features [24]. Furthermore, it was shown that linear SVM was equally
accurate for P300 detection compared to Fisher’s linear discriminant and stepwise
linear discriminant analysis [25]. Several existing studies make use of extended
linear discriminant analysis algorithms applied to EEG data [19, 20]. However,
because MEG data are based on a much larger number of sensors, these approaches
are not applicable in a suitable time.

As input brain signal for the BCI, we used the MEG. This noninvasive technique
measures magnetic fields of cortical dipoles. While the dynamic signal characteris-
tics are comparable to those in EEG, MEG tends to provide higher spatial resolution
[26]. We are aware that this modality is not suitable for daily use and particularly
not for use of a prosthetic device. In fact, we consider our study basic research, and
to our knowledge, this is the first implementation of a MEG based P300 closed loop
BCI. In this study, we tested our system with healthy subjects. A confirmation of
our results with patients is an open issue for future work.

5 Conclusions

In this paper we showed that noninvasive BCI in combination with an intelligent
actuator can be used in real world settings to grasp and manipulate objects. This is an
important step towards the development of assistive systems for severely impaired
patients.

Acknowledgements This work has been supported by the EU project ECHORD number 231143
from the 7th Framework Programme and by Land-Sachsen-Anhalt Grant MK48-2009/003.
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Appendix

In Sect. 2.4 we stated the rasterizing of the object and gripper surfaces with virtual
point poles. Here we describe the algorithm in more detail.

Our grasp planning algorithm is organized by simulating the action of forces
between target object and manipulator in consecutive time frames. While the object
poles PO are defined as positive, the manipulator poles PM are defined as negative.
In accordance with Khatib [27], we assume that opposite poles attract each other
while like poles do not interact. The magnitude of the force between two poles PO

i
and PM

j we calculated as
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exponential function limits F to a maximum of 1 unit. This avoids infinite forces
at collision scenarios and provides a suitable scaling to instantiate both propulsive
forces between manipulator and object and repulsive forces to reject manipulator
poles that penetrate the object’s boundary.
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The manipulator’s effective joint torque �!� can be calculated by means of the
Jacobian J generated from the joint angles �!q and the point poles PM [28] by
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where external moments are considered
�!
M D �!

0 . In order to simulate the
manipulator movement, we calculated the new joint angle qk(t) of an axis k by
solving the equation system
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Pqk.t/ D Pqk .t � �t/ C �t � �k
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qk.t/ D qk .t � �t/ C �t � Pqk.t/ (6)

where I
��!q

�
is the inertia tensor of the robot’s solid elements and �!ak defines one

of the manipulator axes. We chose a heuristically dynamic calculation of the time
frame length �t which is proportional to the mean distance between the set of point
poles PM and PO.

Collision detection was performed for the new posture before a new time frame
was assigned to be valid and the position update was sent to the manipulator. We
used standard techniques [29] to detect surface intersections. If intersections were
detected, repulsive forces were calculated for the affected point poles directing to
their position of the last valid time frame and satisfying Eq. (1). If no intersections
were detected, the robot moved to the new coordinates. This procedure was repeated
until the force closure condition [30] was satisfied.
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The Merging of Humans and Machines

Kevin Warwick

Abstract In this article a look is taken at some ways in which humans and machines
are merging together to become one entity. A look is taken at culturing biological
neurons and embodying them within a robot body, the use of implants to link a
human nervous system with the internet and recent results from Turing’s Imitation
Game which concentrates on differences in human communication. In each case the
background is described, practical results are discussed and implications and future
directions are considered.

Keywords Cyborgs • Implant technology • Bio-tech hybrids • Human
enhancement • Turing test

1 Introduction

As technology improves and human dependence on that technology increases so
humans and machines are rapidly merging into one. The focus of attention has
hence been placed on interfaces between technology and the human brain. This
is done from a practical perspective with applications in mind, however some of
the implications are also considered. Results from experiments are considered here
in terms of their meaning and application possibilities. The article is written from
the perspective of scientific experimentation opening up realistic possibilities to be
faced in the future rather than providing conclusive comments. Human implantation
and the merger of biology and technology are important elements, in the next two
sections at least.

In this article different experiments in linking biology and technology together
in a cybernetic fashion, essentially ultimately combining humans and machines in a
relatively permanent merger, are considered. However a look is also taken, by means
of the Turing test, at conversational abilities and how easy or difficult it is to tell the
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difference between humans and machines. Each of the sections involves practical
experiments as something that have been actually realised, i.e. we are looking here
at actual real world experiments as opposed to mere philosophical speculations.

Each different experiment is described in its own section. Whilst there is distinct
overlap between the sections, they all throw up individual considerations. Following
a description of each investigation some pertinent issues on the topic are therefore
discussed.

2 Biological Brains in a Robot Body

When one thinks of linking a brain with technology then it is probably in terms of
a brain already functioning within its own body. Here however we consider the
possibility of a fresh merger where a brain, consisting of biological neurons, is
grown and then given its own body in which to operate.

An experimental control platform, a robot body, can move around in a defined
area purely under the control of such a network and the effects of the brain,
controlling the body, can be witnessed. Investigations can therefore be performed
into memory formation, habituation and reward/punishment scenarios—elements
that underpin the functioning and growth mechanisms of a brain.

Growing (culturing) networks of brain cells (up to 150,000) in vitro begins
by using enzymes to separate neurons obtained from foetal rodent cortical tissue.
They are then grown in a specialised chamber, in which they can be provided with
controlled environmental conditions (e.g. appropriate temperature) and nutrients
[1, 2]. An array of electrodes embedded in the base of the chamber (a Multi
Electrode Array; MEA—see Fig. 1) acts as a bi-directional electrical interface with
which to provide signals to the culture and to monitor signals from the culture. This
allows for electrical signals to be supplied both for input stimulation and also for
recordings to be taken as outputs from the culture. The neurons in such cultures
spontaneously connect, communicate and develop, within a few weeks.

With the MEA it is possible to separate the firings of small groups of neurons by
monitoring the output signals on the electrodes. Thereby a picture of the global
activity of the brain network can be formed. It is also possible to electrically
stimulate the culture via any of the electrodes to induce neural activity. The multi-
electrode array therefore forms a bi-directional interface with the cultured neurons
[3, 4].

The cultured brain is, typically after 7–10 days, coupled to its physical robot
body [5]. Sensory data fed back from the robot is delivered to the culture, thereby
closing the robot-culture loop. The processing of signals can be broken down into
two discrete sections (a) ‘culture to robot’, in which live neuronal activity is used as
the decision making mechanism for robot control, and (b) ‘robot to culture’, which
involves an input mapping process, from robot sensor to stimulate the culture.

The actual number of neurons in a brain depends on natural density variations in
seeding the culture in the first place. The electrochemical activity of the culture is
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Fig. 1 (a) A Multi Electrode Array (MEA) showing the electrodes. (b) Electrodes in the centre of
the MEA seen under an optical microscope (c) An MEA at � 40 magnification, showing neuronal
cells in close proximity to an electrode

sampled and is used as input to the robot’s wheels. The robot’s (ultrasonic) sensor
readings are converted into stimulation signals received by the culture, closing the
feedback loop.

Once the brain has grown for several days, an existing neuronal pathway through
the culture is identified by searching for strong relationships between (input–output)
pairs of electrodes. A rough input–output response map of the culture can be
created by cycling through the electrodes in turn. In this way, a suitable input/output
electrode pair can be chosen in order to provide an initial decision making pathway
for the robot. This is then employed to control the robot body—for example if
the ultrasonic sensor is active and we wish the response to cause the robot to turn
away from the object being located ultrasonically (possibly a wall) in order to keep
moving.

For experimentation purposes at this time, the robot is required to follow a
forward path until it nears a wall, at which point the front sonar value decreases
below a threshold, triggering a stimulating pulse. If the responding/output electrode



82 K. Warwick

registers activity within a few milliseconds then the robot turns to avoid the wall.
The most relevant result is the occurrence of the chain of events: wall detection–
stimulation–response. However from a neurological perspective it is also interesting
to speculate why there is activity on the response electrode when no stimulating
pulse has been applied.

The cultured brain acts as the sole decision making entity within the overall
feedback loop, any computers involved are merely employed for networking
arrangements. Clearly one important aspect involves neural pathway changes, with
respect to time, in the culture between the stimulating and recording electrodes.
Learning and memory investigations are generally at an early stage. However the
robot can be witnessed to improve its performance over time in terms of its wall
avoidance ability in the sense that neural pathways that bring about a satisfactory
action tend to strengthen purely though the process of being habitually performed—
learning due to habit.

The number of variables involved is considerable and the plasticity process,
which occurs over quite a period of time, is dependent on such factors as initial
seeding and growth near electrodes as well as environmental transients such as
temperature and humidity. Learning by reinforcement—rewarding good actions and
punishing bad is merely investigative research at this time.

We have witnessed through this research that a robot can successfully have
a biological brain with which to make its ‘decisions’. The size of the culture is
merely due to the present day limitations of the experimentation described. Indeed
3 dimensional structures are presently being investigated. Increasing the complexity
from 2 dimensions to 3 dimensions realises a figure of over 30 million neurons for
the 3 dimensional case—not yet reaching the 100 billion neurons of a perfect human
brain, but well in tune with the brain size of many other animals.

Not only is the number of cultured neurons increasing, but the range of sensory
input is being expanded to include audio and visual. Such richness of stimulation
will no doubt have a dramatic effect on culture development. The potential of such
systems, including the range of tasks they can deal with, also means that the physical
body can take on different forms. There is no reason, for example, that the body
could not be a two legged walking robot, with rotating head and the ability to walk
around.

At present rat neurons are usually employed in studies. However human neurons
are also now being cultured, allowing for the possibility of a robot with a human
neuron brain. If this brain then consists of billions of neurons, many social and
ethical questions will need to be asked [6]. For example—If the robot brain
has roughly the same number of human neurons as a typical human brain then
could/should it have similar rights to humans? Also—What if such creatures had far
more human neurons than in a typical human brain—e.g. a million times more—
would they make all future decisions rather than regular humans?
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3 Braingate Implant

It is more often the case that brain-computer interfaces are used for therapeutic
purposes, to overcome a medical/neurological problem such as Parkinson’s Disease
[21, 22] or Epilepsy. However there is also the possibility of employing such
technology to give individuals abilities not normally possessed by humans. Human
Enhancement!

Some of the most impressive human enhancement research to date in this area
has been carried out using the microelectrode array, shown in Fig. 2. The individual
electrodes are 1.5 mm long and taper to a tip diameter of a few micrometers.
Although a number of trials not using humans as a test subject have occurred, human
tests are at present limited to a small group of studies. In some of these the array
has been employed in a recording only role, most notably as part of (what was then
called) the ‘Braingate’ system.

Electrical activity from a few neurons monitored by the array electrodes was
decoded into a signal to direct cursor movement. This enabled an individual to
position a cursor on a computer screen, using neural signals for control combined
with visual feedback. The same technique was later employed to allow the individual
recipient, who was paralysed, to operate a robot arm [7, 8].

The first use of the Braingate microelectrode array (shown in Fig. 2) in a human
has though considerably broader implications which extend the capabilities of the
human recipient. The array was implanted into the median nerve fibers of a healthy
human individual (the author) during two hours of neurosurgery in order to test
bidirectional functionality in a series of experiments. A stimulation current directly
into the nervous system allowed information to be received, while control signals
were decoded from neural activity in the region of the electrodes [9, 10]. A number
of experimental trials were successfully concluded [11, 12]: In particular:

1. Extra sensory (ultrasonic) input was successfully implemented.
2. Extended control of a robotic hand across the internet was achieved, with

feedback from the robotic fingertips being sent back as neural stimulation to give
a sense of force being applied to an object (this was achieved between Columbia
University, New York (USA) and Reading University, England).

Fig. 2 A 100 electrode,
4 � 4 mm Microelectrode
Array, shown on a UK 1
pence piece for scale
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3. A primitive form of telegraphic communication directly between the nervous
systems of two humans (the author’s wife assisted) was performed [12].

4. A wheelchair was successfully driven around by means of neural signals.
5. The color of jewelry was changed as a result of neural signals—also the behavior

of a collection of small robots.

In all of the above cases it can be regarded that the trial proved useful for purely
therapeutic reasons, e.g. the ultrasonic sense could be useful for an individual who
is blind or the telegraphic communication could be useful for those with certain
forms of Motor Neurone Disease. However each trial can also be seen as a potential
form of enhancement beyond the human norm for an individual. The author did not
need to have the implant for medical purposes to overcome a problem but rather for
scientific exploration.

It is clear, from these experiments, that extra sensory input is one practical
possibility that has been successfully attempted, however improving memory,
thinking in many more dimensions and communication by thought alone are other
distinct potential, yet realistic, benefits, with the latter of these also having been
investigated to an extent. To be precise—all these things appear to be possible (from
a technical viewpoint at least) for humans in general.

An individual human connected in this way can potentially also benefit from
some of the advantages of machine/artificial intelligence, for example rapid and
highly accurate mathematical abilities in terms of ‘number crunching’, a high speed,
almost infinite, internet knowledge base, and accurate long term memory. Humans
are also limited in that presently they can only visualise and understand the world
around them in terms of a limited 3 dimensional perception, whereas computers are
quite capable of dealing with hundreds of dimensions.

The human means of communication, essentially transferring a complex electro-
chemical signal from one brain to another via an intermediate, often mechanical
slow and error prone medium (e.g. speech), is extremely poor in comparison with
technological communication, particularly in terms of speed, power and precision.
It is clear that connecting a human brain, by means of an implant, with a computer
network could in the long term open up the distinct advantages of machine
intelligence, communication and sensing abilities to the implanted individual.

4 Turing’s Imitation Game

The final area to be looked at here is that of practical Turing tests which give an
indication of how easy or difficult it is to distinguish between humans and machines
in terms of conversational ability. This article is focused on what has become
commonly known as the Turing test, although it was originally described by Turing
as his Imitation Game [13]. It is worth remembering that Turing originally proposed
the test as a replacement for the question “Can Machines Think?” [13], however
here we are more concerned with the practical nature of the test rather than in any
philosophical argument with regard to its meaning.
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The test was described by Turing himself in 1952 as: “The idea of the test is that
a machine has to try and pretend to be a man, by answering questions put to it, and
it will only pass if the pretence is reasonably convincing. A considerable portion of
a jury, who should not be expert about machines, must be taken in by the pretence”
[14, p. 495].

The Turing test involves a machine which pretends to be a human in terms of
conversational abilities. In a paired comparison the attempt is for the machine to
appear to be more human than the human against whom it is paired. To conform to
Turing’s original wording in his 1950 paper [13] we refer here to 5 min long tests
only, although we are well aware that there are those who take issue over a suitable
timing and what Turing actually meant [15]—that is considered to be an argument
for another day, it does not alter the point made here.

What is presented here are four specific transcripts selected from a day of actual,
practical Turing tests which were held under strictly timed conditions with many
external viewers at Bletchley Park, England on 23rd June 2012. The date marked
the 100th anniversary of Turing’s birth and the venue was that at which amongst
other things, during the Second World War, Turing led a team of codebreakers who
cracked the German Enigma machine cypher. Five different machines took part in
the tests during the day along with 30 different judges and numerous hidden humans
against which the machines were compared in terms of their conversational ability.

What we focus on here is not how good or bad the machines were at deception
or how human the hidden humans were but rather the decisions taken by the judges
and how these might compare with your own selections. So this article is more a
look at the differences between the hidden entities and how easy or difficult it can
be to tell which is human and which is machine.

What follows are three separate transcripts. These represent actual transcripts
taken on the morning of 23rd June 2012 at Bletchley Park, England between
different human judges/interrogators and hidden entities. Each conversation lasted
for a total of 5 min exactly and no more, just as Turing stipulated [13]. There was a
hard cut off at that time and no partial sentences were transmitted. Once a sentence
had been transmitted it could not be altered or retracted in any way. Hence all
wording and spelling is exactly as it was at the time—any spelling mistakes are
those which actually occurred in the test, they are not due to poor editing.

Judges were asked to decide if the entity was human, machine or if they were
unsure. The hidden humans meanwhile were asked to be themselves—human—
they were asked not to make it easy for the machines because it was the machines
which were competing against them for humanness [16]. They were however asked
not to reveal personal details about themselves that could in any way give away their
actual identity to a judge. It is probably a good idea for the reader to firstly consider
each transcript themselves and to come to a decision with regard to the nature of the
hidden entity.

What we show below are four selected transcripts on their own, i.e. not in parallel
paired fashion [17]. The reason for this is that the aim here is not to make a direct
comparison between these transcripts and any others, but rather to analyse these
transcripts in their own right.
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At the end of this section the judges conclusions on each transcript are given.
These were the conclusions actually drawn by those judges. They do not reflect any
personal conclusions on each of the transcripts. Following this the true identity of
each entity is given. In each case the transcript involved a different judge. But the
reader will then be able to check their own decision to see if they were correct or
not on each occasion and if they agreed with the judge’s decision. Each judge had
no extra information to go on in making their decision.

Transcript 1 (Taken from [18])

• Judge: My favourite music is contemporary Jazz, what do youy prefer
• Entity: To be short I’ll only say that I HATE Britney Spears. All other music is OK

compared to her.
• Judge: do you like to play any musical instruments
• Entity: I’m tone-deaf, but my guinea pig likes to squeal Beethoven’s “Ode to Joy” every

morning. I suspect our neighbors want to cut his throat : : : Could you tell me about your
job, by the way?

• Judge: Guine pig/are you an animal lover
• Entity: Yeah. A nice little guinea pig. Not some annoying chatter bot.
• Judge: do you live with anyone else?
• Entity: Yes I do. But better ask something else. And I forgot to ask you where you are

from : : :

• Judge: Ireland? geen patures and too much rain! How about you

Transcript 2 (Taken from [19])

• Judge: hey, just to lighten the mood a little, what’s brown and sticky?
• Entity: no idea, what’s the answer?
• Judge: a stick : : : so anyway what’s your name?
• Entity: Sheldon Cooper, what’s yours?
• Judge: as in the guy off the big bang theory?
• Entity: I don’t believe in the big bang
• Judge: so are you religious then?
• Entity: aren’t we all?
• Judge: well i like to consider myself an agnostic, which religion is it you follow then if

you dont mind me asking?
• Entity: you can ask what you like, it’s a free world, who am I to mind?

Transcript 3

• Judge: Hello. How are you?
• Entity: Hey.
• Judge: How do you like Bletchley Park?
• Entity: lol.
• Judge: Are you from England?
• Entity: They have Wi-Fi here in the pub.
• Judge: Which pub?
• Entity: I’m just down the pub.
• Judge: Have you ever been in a Turing Test before?
• Entity: Will this be the 5 min argument, or were you thinking of going for the full half

hour.
• Judge: Very funny. You sound suspiciously human. Do you like the Beatles?
• Entity: I’d like to get the next Dread the Fear tape.
• Judge: What is Dread the Fear?
• Entity: Dread the fear has that Steve Henderson guy in it.
• Judge: What sort of music is that? Or is it comedy?
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Transcript 4 (Taken from [20])

• Judge: Why hello there!
• Entity: Why hello to you too!
• Judge: How are you feeling on this fine day?
• Entity: To be quite honest a little rejected, I thought you were never going to reply :(
• Judge: Oh, I’m very sorry, it will not happen again.
• Entity: It just did!
• Judge: Oh, I lied then.
• Entity: Thats a great shame indeed.
• Judge: It is. Are you following the Euro 2012’s at the moment?
• Entity: Yeah quite closely actually. I am Cristiano Ronaldo.

Solutions

In transcript 1 the judge was a male medical science professor and clinician. Here he decided
that the hidden entity was a human. In fact the entity was machine. In transcript 2, with a
different judge, the decision was that the entity was a machine whereas in reality it was a
human—the author of this article in fact. In transcript 3 meanwhile the judge’s decision was
that the hidden entity was a male human whereas it was in fact a machine. In transcript 4
the judge correctly identified the hidden entity as being human, despite the entity’s lie about
them being Cristiano Ronaldo. So how did you do?

5 Conclusions

In this article a look has been taken at different ways in which the human-machine
divide is diminishing. It has to be said that these are all perhaps a curious selection
as examples and many other instances exist, particularly so in everyday life. Rather
than focus merely on theory, here practical experimental cases have been reported
on. Further details for each of these can be found in a variety of publications e.g.
[23, 24]. In each case questions arise as a result.

When considering robots with biological brains, this could ultimately mean
human brains operating in a robot body. Therefore, should such a robot be given
rights of some kind? If one was switched off would this be deemed as cruelty
to robots? More importantly at this time—should such research forge ahead
regardless? Before too long we may well have robots with brains made up of human
neurons that have the same sort of capabilities as those of the human brain—is this
acceptable?

In the section focussing on the Braingate implant as a general purpose invasive
brain implant, as well as its employment for therapy a look was taken at the poten-
tial for human enhancement. Already extra-sensory input has been scientifically
achieved, extending the nervous system over the internet and a basic form of thought
communication. So if many humans upgrade and become part machine (Cyborgs)
themselves, what would be wrong with that? If ordinary (non-implanted) humans
are left behind as a result then what is the problem? If you could be enhanced,
would you have any problem with it?
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In the final section some of the latest results from the Turing test were presented.
In three of the four cases mentioned the judge drew an incorrect conclusion. Even if
you did manage to give all four correct answers hopefully you are able to agree, with
these transcripts as examples, that machine conversation is now getting to the stage
where it is difficult for an external observer to decide which is human and which is
machine. It has to be said though that this is just as much down to the fallibility of
humans as it is to the present-day wonders of machine communication.
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Learning from the Past: Postprocessing
of Classification Scores to Find a More
Accurate and Earlier Movement Prediction

Sirko Straube, David Feess, and Anett Seeland

Abstract Brain–computer interfaces performing movement prediction are useful
in a variety of application fields from telemanipulation to rehabilitation. However,
current systems still struggle with a level of unreliability requiring improvement,
so that the full potential of these systems can be used in the future. Here,
we suggest to improve the performance and robustness of classification outcomes
by postprocessing the raw score values with the history of previous classifications.
For this several postprocessing methods that operate on the classification outcomes
are investigated. In particular, the data was classified after preprocessing using a
support vector machine (SVM). The output of the SVM, i.e. the raw score values,
were postprocessed using previously obtained scores to account for trends in the
classification result. The respective methods differ in the way the transformation is
performed. The idea is to use trends, like the rise of the score values approaching an
upcoming movement, to yield a better prediction in terms of detection accuracy
and/or an earlier time point. We present results from different subjects where
upcoming voluntary movements of the right arm were predicted using movement
related cortical potentials from the EEG. The results illustrate that better and earlier
predictions are indeed possible with the suggested methods. However, the best
postprocessing method was rather subject-specific. Finally, we use straightforward
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ensemble approaches to exemplify how the methods can be directly used in an
application and how this can influence the overall movement prediction perfor-
mance. Depending on the requirements of the application at hand, postprocessing
the classification scores as suggested here can be used to find the best compromise
between prediction accuracy and time point.

Keywords EEG • LRP • Brain–computer interface • Classification score
• Movement prediction • Online prediction • Ensemble

1 Introduction

Movement prediction using the electroencephalogram (EEG) has a long standing
history in the field of brain–computer interfaces (BCIs) since the discovery of
readiness potentials [1, 2], which build up long before the actual movement
can occur. Since readiness potentials reflect preparatory activity and movement
preparation can be aborted, these potentials can also disappear after a short build-
up without any movement occurring. However, the closer such a recorded potential
gets to the actual movement, the stronger it is and the less likely will a prepared
movement be cancelled [3, for a summary]. When the movement is finally executed
a corresponding motor potential can be recorded that reflects signalling to the
muscles. For movement prediction, different signals have been applied, from the
readiness potential itself over the lateralized readiness potential (LRP) which is
closer to the movement and cannot easily be aborted [4], to specific frequency
components in the EEG reflecting neural synchronization or desynchronization [5].

Movement prediction can be used as a powerful tool in various fields, with
the most prominent being assistance during rehabilitation. Here BCIs predicting
a movement can be used to close the gap between a patient’s intention to move and
the actual movement which can result in more intuitive responses of orthoses [6–8].
Other fields include non-medical applications, e.g., during telemanipulation of a
robotic device the user can be supported using a movement prediction based on EEG
data [9–11]. The idea is that the human operator experiences a smoother interaction
with the telemanipulation device, which knows about an upcoming movement. As
in the present study, the movement prediction is often based on the LRP.

Decisions in a movement predicting BCI come from some kind of classifier
which has to make the prediction. However, the output of the classifier is again noisy,
so recent approaches try to apply a postprocessing to minimize classification errors
[12–15]. Here, we follow this rationale by applying simple online-capable functions
to modify the classifier output according to knowledge about its progression. The
scenario is the following: After processing, the classifier which is a support vector
machine (SVM) assigns a value, the classification score, to each data instance [16].
The range of these score values depends on the data at hand and on the classifier and
can largely fluctuate as can be seen in Fig. 1. A score of zero denotes the borderline
between the two classes. The figure illustrates the high fluctuations in single trials
and the consistent trend in the data: When the median score is considered, the score
is constantly staying below zero, i.e., no movement is classified, until the scores rise
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Fig. 1 Example data from single subject prior to a movement. Depicted are 4 s of data with the
movement onset at the very right (0 ms). (a) The bold black line shows the median of all recorded
epochs. Dashed lines are ten exemplary single trials. (b) Data of the same subject as (a) illustrated
as 32/68 percentiles (black) and 5/95 percentiles (dark grey). The white line denotes time ranges
where the data is labelled differently for evaluation: no movement (no mv) from �4;000 ms to
�1;050 ms and movement (mv) from �50 ms to 0 ms. In between, data is ignored for true labels
(see text)
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approximately 500 ms before the movement and cross zero approximately at 250 ms
before onset. The rise in classification scores before movement onset can consis-
tently be observed across subjects. This means that the rise in score values alone may
signal an upcoming movement so that the progression of the score values itself can
be interpreted as being loosely correlated to the changes in movement probability.

The question now is whether we can use the knowledge about this rise in
classification scores to make the prediction more stable and/or predict the upcom-
ing movement earlier. In trying to answer this question we were seeking for a
postprocessing method that dampens fast fluctuations in classification scores and
stabilizes long rises. To this aim, we applied several methods that modify the current
classification scores by taking into account previous scores with a certain weight
(see Sect. 2). To demonstrate the applicability and the benefit of these methods, we
use all investigated methods in two simple ensemble approaches directly integrated
in the signal processing chain (Sect. 6).

To summarize, if an LRP can be detected by high levels of the classification
score, it could potentially just as well be predicted earlier by detecting the rise that
leads to that elevated level. In the following we will describe the postprocessing
methods that we have applied. After a description of the experimental data used, the
results will be presented and discussed.

2 Postprocessing Methods

From the perspective of a movement prediction application it is most desirable to
perform robust, binary decisions: A movement will either occur or it will not. This
decision should be made as reliably and early as possible. From the large margin
classification perspective, this means that the classification score St at some point
in time t would have to be compared against some threshold b so that a movement
mv is predicted when

mv iff St 	 b: (1)

Yet, as illustrated in Fig. 1, the score sometimes suddenly crosses the threshold
when the actual movement is still far away, but then only for a short time. This
behaviour hinders reliable prediction when it is purely based on the raw value of St

crossing b. Looking at the average score progression over time reveals a continuous
rise of the score values before the actual movement. Here, we exploit this systematic
behaviour to find a function F that is able to generate better movement predictions
based on past values of S , such that

mv iff F.St ; St�1; : : : ; St�.k�1// 	 bF (2)

for some specific threshold bF . k is defined as the number of scores that are used in
F with the current score being at k D 1. In principle, there are no constraints on the
functional form of F .
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In the present study we apply weights to the current and previous k � 1

classification outcomes to transform the current score St . These weights decay with
the number of steps looked into the past. We also followed an alternative approach
by transforming the current score with the average slope of the past samples.
A detailed description is given in Sect. 2.2. Both types of functions (weighting and
slope approach) can be expressed as

F.St ; St�1; : : : ; St�.k�1// D w1St C w2St�1 C � � � C wkSt�.k�1/ (3)

with some predefined weights w. With this methodology we try to boost the score
value when previous scores were similar in value and at the same time penalize
scores when previous ones showed a completely different trend. The approaches are
described in more detail in the following.

2.1 Fixed Weighting

In this set of functions the weights are generated by very simple functions, each
of which assigns a high weight to the most current classification score sample, and
decreasing weights to older samples.

The functions used are depicted in Fig. 2. All functions have in common that the
weights add up to one. The coefficients for the uniform, linear, square, and
cubic method are all generated by evaluating
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Fig. 2 Comparison of the functions used for classification score postprocessing using k D 6

coefficients, i.e., the current score and five instances back in time
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w� D �p

Pk
iD1 ip

; � 2 f1; : : : ; kg; (4)

respectively, with the number of k coefficients used and the exponent p according to
the corresponding function type. The exp coefficients are accordingly calculated as

w� D exp �
Pk

iD1 exp i
; � 2 f1; : : : ; kg: (5)

Besides these rather universal functions for choosing the weight we added two
variants where we explicitly forced the current value to have a much higher weight
than the scores corresponding to the previous instances, since the idea behind the
postprocessing was exactly this: to transform the current score with its history to
weaken fast fluctuations and strengthen longer trends. Again, the weights were set
so that they add up to one. In the X+uniform method, the first coefficient gets
assigned a weight of X%. The remaining weight of Œ1 � .X=100/� is then equally
distributed across the remaining coefficients.

2.2 Slope Approaches

Since the objective is to identify a rise in the classification score progression over
time we also looked at modifications of the score value using local slopes or
averaged slope over the last k samples (i.e., the current sample and k � 1 instances
back in time). Considering two samples, a local slope �S1

t can be computed as

�S1
t D St � St�1

t � .t � 1/
D St � St�1: (6)

Therefore, the average slope �Sk�1
t over k samples is

�Sk�1
t D 1

.k � 1/

k�1X

iD1

.St�iC1 � St�i /: (7)

which is a telescope sum and boils down to

�Sk�1
t / .St � St�.k�1//: (8)

The corresponding weighting coefficients for this postprocessing are then

w1 D 1; wk D �1; w� D 0 8� … f1; kg; or w D .1; 0; : : : ; 0; �1/: (9)

In pilot experiments (not shown) this slope method was tested and perfor-
mance levels were consistently far below the performance obtained without any
postprocessing. Due to these performances losses of at least 0.15 points of balanced
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accuracy (BA, see Sect. 4.1) and in worst cases a performance around the probability
of guessing this method was skipped for the current study.

Nevertheless, since we were looking for stabilizing a slope, we chose another
promising and simple variant. Instead of using only the slopes, we modulate the
current score with the slope approach in a 2:1 fashion (score:slope), so that we
obtain a weight vector w of

w D .1:5; 0; : : : ; �0:5/: (10)

In other words, in this approach we take the current score value with 100 % and add
the slope weighted with 0:5. This variant is called 150+slope.

3 Data and Preprocessing

The data used for evaluation has been described in detail previously [8, 17].
Originally, muscle activity has been recorded simultaneously with the EEG. Here,
evaluation has been restricted to EEG data. For processing the data, the software
pySPACE has been used [18].

3.1 Experimental Data

Eight right-handed male subjects (age: 29.9 ˙ 3.3 years) participated in the study.
They gave written consent to participate and could abort the experiment at any
time. The study was conducted in accordance with the Declaration of Helsinki.
The subjects were sitting in a comfortable chair in front of a table with a monitor
showing a fixation cross and giving occasional feedback. They executed self-paced,
intentional movements with their right arm by releasing a button and pressing
another one situated 30 cm to the right. A resting period of 5 s between movements
had to be performed for a movement to be counted as valid. Subjects were not
informed about this time constraint, instead negative feedback was provided (a red
circle around the fixation cross) when they performed a movement too quickly after
another. In each session 120 correctly performed movements were recorded, divided
into three runs (40 movements per run).

3.2 Preprocessing

The EEG was acquired with 5 kHz, filtered between 0.1 Hz and 1 kHz using the
BrainAmp DC amplifier [Brain Products GmbH, Munich, Germany]. Recordings
were performed using a 128-channel (extended 10–20) actiCap system (reference
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at FCz). Electrodes I1, OI1h, OI2h and I2 were used for electrooculography and
thus not placed on the scalp. For detection of the physical movement onset a
motion capturing system consisting of three cameras (ProReflex 1000; Qualisys
AB, Gothenburg, Sweden) was used at 500 Hz. After synchronization of the two
data streams, the movement onsets were marked in the EEG.

Preprocessing was performed on overlapping windows of 1 s length cut every
10 ms in a range from �4;000 ms to 0 ms before a movement. Consequently,
a total of 401 score values were computed per executed movement. Data were
standardized channel-wise (subtraction of mean and division by standard deviation)
and decimated to 20 Hz. Next, a FFT band-pass filter with a pass band of 0:1–
4 Hz was applied. Since the prediction should be based on the most recent data, we
proceeded with the last 200 ms of each window that were processed by an xDAWN
spatial filter [19] with 4 channels retained. For feature extraction, raw voltage values
were used, standardized (mean zero, variance one) and classified by a SVM [20]
with linear kernel.

For trainable components in the signal processing chain (xDAWN, feature nor-
malization and SVM) windows ending at �100 and 0 ms were labeled as movement.
Training windows for no movement originated from non-overlapping windows (1 s
length) that were continuously cut from the data stream, if no movement occurred
1 s before and 2 s after this window. In addition, a parameter optimization for the
complexity parameter of the SVM was performed using a grid search (tested values:
100; 10�1; : : : ; 10�6). A threefold cross-validation, onefold corresponding to one
experimental run, was applied and classifier scores were stored for both, training
and test data.

4 Evaluation

As the aim is to detect movements more accurately and/or earlier, there are basically
two criteria for a good postprocessing. One is the detection accuracy, the other the
time point of detection. Both are considered for evaluation.

4.1 Movement Detection Accuracy

The prediction of unique events comes along with unbalanced proportions of the two
classes no movement and movement, i.e., class instances of data containing the LRP
(in our case) will be underrepresented. The evaluation of the movement detection
accuracy has to take this into account. Thus, the simple accuracy is misleading [21,
22, for discussion], so a metric is required which is insensitive to imbalanced classes.

One of the most intuitive measures existing in such a case is the balanced
accuracy (BA) which is defined as the mean of true positive rate (TPR) and true
negative rate (TNR):
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BA D TPR C TNR

2
: (11)

One of the challenges here is to define a ground truth of when the relevant signal
(i.e., the LRP) is actually present in the data. While we can postulate that there
must be an LRP prior to each movement, we still do not know the precise onset of
this signal. To cope with this issue and thereby get unambiguously labelled data for
evaluation, we split the time before a movement into three phases (compare Fig. 1), a
no movement phase from �4;000 ms to �1;050 ms, a movement phase from �50 ms
to 0 ms, and the phase in between (�1;050 ms to �50 ms) where the data is ignored
and not labelled at all. With this approach we obtain a clear labeling in phases where
we are sure that the relevant signal is indeed contained in the data. This signal is, of
course, also present in the ignored time range, but since we do not know the exact
onset this range is skipped. In the actual application where no data are skipped, a
movement is predicted whenever the classifier score crosses the threshold.

4.2 Time Point of Detection

The onset of the signal related to movement (here, the LRP) occurs at an unknown
point in time before the actual movement. This transition out of noise is typical for
event-related potentials and it is reflected in the rise of classification scores that we
intend to stabilize with the postprocessing approaches introduced here. Concerning
the application, i.e., the prediction of an upcoming movement, the exact time point
is of less importance than a reliable and stable prediction by the classifier. For this, it
remains to define when exactly we consider the LRP as detected—the classification
score might at any time rise over a given threshold for a short period of time due
to noise. For the same reason, the score might fall below the threshold for some
samples although the LRP has—supposedly—already been correctly detected. To
make sure that we base our evaluation on a stable prediction, the LRP onset was
defined as the point in time where the classification scores do not drop below the
threshold for N predictions. This point was found by going back in time from the
actual movement onset until the first time where this criterion was not met. With
this method, the LRP onset used for evaluation is then defined as the first score
sample crossing the threshold after the set of samples staying below threshold for
N predictions.

The choice of N depends on the level of noise, on the classification scores, on
the sampling rate, and on the characteristics of the signal applied for movement
prediction. Here, the relevant signal has a length of approximately 1 s [3], so we
chose N D 10 as a good compromise between robustness (higher N ) and reliability
(lower N ), i.e., we tolerate false classifications during periods shorter than 100 ms.
Increasing the robustness here means to allow an earlier estimation of the time
point of detection, because fluctuations in the score progression are more and more
ignored with increasing N . On the contrary, a decrease of N increases the reliability,
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Fig. 3 Single trial example for determination of LRP onset with N D 10 specifying the number
of samples a false negative classification is tolerated. The dashed red lines delimit the feasible
(transition) area, the solid green line indicates the detected LRP onset. Setting N D 10 provokes
that the small dip around �200 ms is ignored

because fewer classifications of no movement can occur after the estimated time
point of detection, but this comes at the cost of a higher sensitivity to outliers. To
give an alternative view on the value of N : setting N D 10 in our data means that
the movement onset is defined as the first score sample crossing the threshold after
a 100 ms window without any predicted movement (viewed backwards from the
actual movement onset). The approach is illustrated in Fig. 3.

4.3 Evaluation Procedure

For each subject and cross-validation fold two data sets exist: one training data
set (80 movements) and one test data set (40 movements). The training set is the
one used to train the classifier producing the classification scores. Due to the fact
that the postprocessing methods introduced here change the absolute value of the
classification score, the score thresholds (transition from one class to the other) were
re-adjusted for each method, respectively, using the training data, before evaluation
was performed on the test data. The results presented in the following show the
performance in terms of detection accuracy and time point of detection on the test
data.
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5 Results and Discussion

All investigated methods introduced in Sect. 2 and illustrated in Fig. 2 were tested
for different values of the parameter k 2 f1; 2; 4; 8; 12; 16; 20; 40; 60; 100g which
is the number of scores used with the respective method. Since a key motivation for
the current work was to modify the current score by the values of the neighbouring
scores, we chose a finer granularity for sampling near the current score. Without
postprocessing, the movements were predicted on average over all subjects 180 ms
before the movement onset with a balanced accuracy of 0.8. Since we were
interested in performance improvements concerning these two measures, the results
are illustrated as relative changes according to these reference performances in
Fig. 4a. The figure shows the average result for all methods applied for the two
criteria detection accuracy and time point of detection (see Sect. 4). Here each data
point corresponds to a particular value for k, with k D 100 being the first data point
on the lower left of the plot and the next smaller value for k being the next on the
connecting line. Finally, all methods meet at k D 1 on the upper right at a relative
prediction onset of 0 ms and a relative performance of 1, because all of these have an
identical weight vector of w D .1/. This point (highlighted as white spot in Fig. 4)
with k D 1 is equal to the reference performance without any postprocessing.

The results in Fig. 4a indicate that the performance obtained when using the raw
score values was already on a high level regarding the time point of detection and
the classification accuracy. In the figure, a postprocessing method outperforming
this reference would be on the upper left relative to this point. This we observed only
for the slope approach 150+slope, where we found configurations for k 2 f2; 4g
that revealed a slight improvement on average in both, accuracy and time point.

From the figure, it is far more apparent that most methods enabled an earlier
prediction of the movement on the cost of (mostly) slight performance drops. In
the most extreme case for the uniform approach with k D 100, this means more
than 300 ms earlier prediction at a loss of 18 % of the initial performance. Overall
improvements in classification accuracy on the average level were only revealed for
the 150+slope approach.

The reason for the large standard deviations depicted in Fig. 4a is disclosed by
illustration of the single-subject results in Fig. 4b. The benefit of the applied method
strongly differed between subjects, so that the results in Fig. 4a only show the rough
trend. On the single-subject level we observed slight improvements for both, time
point and accuracy. However, the best method was subject-specific. Again, most
extreme differences where achieved using the uniform approach: Using k D 100

we could detect the movement nearly 800 ms earlier without any performance
loss for one subject, while the same configuration resulted in only 100 ms earlier
detection at a loss of 30 % of the initial performance for another. In the analysis,
especially subjects with a worse performance on the raw scores could benefit from
the postprocessing.

To summarize, the postprocessing methods presented here provide a tool to
modify mainly the earliness of the prediction and to a little extent the classification



102 S. Straube et al.

−500 −400 −300 −200 −100 0

0.75

0.8

0.85

0.9

0.95

1

1.05

relative prediction onset [ms]

a

b

re
la

tiv
e 

pe
rf

or
m

an
ce

 [B
A

]

uniform
linear
square
cubic
exp
50+uniform
75+uniform
150+slope

−800 −700 −600 −500 −400 −300 −200 −100 0 100

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

 relative prediction onset [ms]

re
la

tiv
e 

pe
rf

or
m

an
ce

 [B
A

]

Fig. 4 Performance changes (BA and onset time) of postprocessing methods. The results are
illustrated relative to the case where the scores were not further processed, illustrated as a white
dot at (0,1). Each data point corresponds to a different k 2 f1; 2; 4; 8; 12; 16; 20; 40; 60; 100g (see
text). In (a) the grand average results over all subjects are shown as mean and standard deviation
for each k, respectively. Thus, there is one line for each method applied. In (b) the same results are
shown for all subjects, separately

accuracy. The 150+slope method with k 2 f2; 4g worked best on the average
level and enhanced both, time point of detection and accuracy. On the single-subject
level, the individual best method differed, so that the spectrum presented here can
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serve as a general framework to adjust the movement prediction according to the
respective application and/or the data of the individual subject.

6 Application: Ensemble Classification

This section illustrates how the postprocessing methods described here can be
directly used in an application without additional investigations or prior knowledge.
It should be noted that various alternative ways exist to use the outlined or similar
postprocessing methods depending on the exact application with the respective
constraints. Here, we try to give an intuition on their applicability using simple and
straightforward approaches.

With the results presented in Sect. 5 we end up with two characteristics of
the discussed methods for movement prediction: the best method is unknown in
advance and a high subject-specificity is observed. One possibility to deal with this
uncertainty in an application is to use all methods in an ensemble learning approach.
Here, we apply this approach on the data (training and testing) described in Sect. 3.
Accordingly, the ensemble consisted of 73 members (all eight postprocessing
methods with nine values for k plus the reference point without postprocessing
being equal to k D 1).

6.1 Procedure

Two simple ensemble strategies were used independently during training to obtain a
single decision from all outputs of the ensemble members during testing: either the
best individual method from the training was selected for the decision in a winner-
take-all fashion (which is equal to viewing the ensemble learning as a grid search
optimization), or the weights were distributed proportionally over all methods
according to their individual behaviour on the training data. This evaluation has been
performed after the re-adjustment of the score thresholds as described in Sect. 4.3.
For each ensemble strategy (winner-take-all or distributed), three optimization
criteria were respectively used: the individual classification performance (BA), the
onset of the movement prediction (time), or a combination of both. For the latter,
we added a value of 0.05 to the BA obtained for each 100 ms that the movement has
been detected earlier. This means, that a perfect BA of 1.0 obtained 1,000 ms earlier
would result in a total metric value of 1.5. The value of 0.05 has been arbitrarily
determined from the overall results of all methods (Fig. 4) with the rationale that the
performance did hardly improve, but instead dropped quickly in most cases, when
the prediction has been made earlier. Therefore, we forced the combination to rely
mainly on the classification performance getting a bonus when the classification
has been correctly made earlier. Depending on the constraints of the individual
application, this value may be chosen differently.
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Fig. 5 Performance of the two ensemble approaches (mean and standard deviation) relative to
reference performance. The ensemble was optimized according to best performance (filled square),
earliest classification (white square) or a combination of the two (striped square, see text). The
reference is marked with a cross at [0,1] (a) winner-take-all (b) distributed weighting

6.2 Ensemble: Results and Discussion

The resulting classification performances and prediction times of the ensemble
approaches are depicted in Fig. 5. As is most obvious for the winner-take-all
configuration, the ensemble is able to compensate for subject-specific differences
in the best method, so that the postprocessing results on average in an earlier
prediction. In the case of optimizing for time, the prediction was even about 400 ms
earlier than the reference at the cost of accuracy. The figure also illustrates two
more important factors when using ensembles: the optimization criterion and the
distribution of the weights. The distributed weighting ensemble made the prediction
slightly earlier when time was (at least partly) a criterion, but it failed when
optimizing according to BA, because then the classification behaviour was governed
by too many methods resulting in an overall later prediction with lower certainty.

7 Conclusions

Without any postprocessing, the classification of each window is performed inde-
pendently of the neighbouring windows. However, we can see in the distributions
of these classification outcomes that they intrinsically carry information about the
probability of an upcoming event, like the rise in scores illustrated in Fig. 1. Here, we
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use simple methods that can easily be applied during online movement prediction to
make use of this knowledge and stabilize a single classification by the surrounding
ones. As we have shown for individual methods and in the combined approach using
the ensemble, the methodology introduced here can be used as a tool to improve
classification outcomes.

On average we could observe an improvement of both, time point of detection
and accuracy, using the 150+slope method with small values of k. However,
we found the most pronounced effects on the single-subject level: the proposed
methods performed individually different. In general we could show that the applied
postprocessing methods succeed for individual subjects in improving the accuracy
and/or time point of prediction, but we could not find one straightforward solution in
the current study for all subjects investigated. For most methods we found a trade-off
between classification performance and the time point of prediction. This means for
the application of such a movement predicting system, that one can indeed enhance
the system, but has to carefully chose the postprocessing method and/or combination
approach according to the requirements of the intended application. The finding of a
subject specificity is consistent with results from other postprocessing methods [13],
but it is still an open question where these effects particularly originate from. So far,
existing postprocessing methods operate rather blindly on the data which may cause
the individual differences.

From the view of an application, such a high subject-specificity can be principally
dealt with using two strategies: either extra calibration time is used to find the best
individual method, or the prediction itself is integrated in the application in a way
that is flexible or robust enough to make use of the possible benefits illustrated
here. Since the predictions obtained without postprocessing can serve as a reliable
fallback option, this could be realized, e.g., by using a number of the proposed
approaches on top and making the final prediction from the ensemble as we have
exemplified in Sect. 6. As we have shown, a general approach can be implemented
by performing a subject-specific optimization with an ensemble approach instead
of using one method for all subjects. Then the performance can indeed be boosted
resulting, e.g., in an earlier time point of prediction on the average level.

While most research is dedicated to improvement of the classifier and/or prepro-
cessing algorithms, the idea of postprocessing classification outcomes as such is not
completely new. Techniques for incorporating preceding probabilities to enhance
the current prediction have been proposed [12, 15], but neither been evaluated
in the way we did in the present study, nor been tested in an ensemble learning
approach. Therefore and since SVM scores do not directly represent probabilities
like in a Bayesian framework, a direct comparison with the methods we proposed
is difficult. However, from the technical point of view, all of these methods have
in common that they actually manipulate single prediction outcomes making use
of the individual prediction history. Other techniques exist for postprocessing that
rather operate on the global level by changing the decision criterion of the classifier
or using additional thresholds. Here, threshold selection, dwell time optimization or
debiasing of the score time course have been proposed [13, 14]. Due to their different
nature, these techniques can be easily combined with what we proposed here, as
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we already implicitly did by including threshold optimization (see Sect. 4.3) and
selecting a stability criterion of 100 ms (N D 10; see Sect. 4.2 and Fig. 3), which
can be interpreted as a kind of dwell time.

With the approach outlined here, other and more complex algorithms can of
course be used, although they might have the possible drawback of being too
computationally complex for an online predicting system. Generally, the methods
applied here are not specific for the context of movement prediction, so they can be
used in any context where such postprocessing may be helpful.
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