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General symbols

Note: Simple dimensions (A for cross-sectional area, D or d for depth or diameter, H for 
height, R for radius and so on) and symbols used as arbitrary constants are not included. 
Subscripts are not listed where their meaning is clear (for example, crit for critical, max for 
maximum, ult for ultimate). Effective stresses and effective stress parameters are denoted 
in the text by a prime (′).

A Air content of unsaturated soil (Section 1.5); Activity (Section 1.11); A soil 
parameter used in the description of creep (Section 5.17)

Ac Projected area of cone in cone penetration test (Section 11.3.2)
An Fourier series coefficient (Section 4.8)
An Area of shaft of cone penetrometer
B Δu/Δσc in undrained isotropic loading (Chapter 5)
Bq Pore pressure ratio in cone penetration test (Section 11.3.2)
C Tunnel cover (depth of crown below ground surface) (Section 9.11)
C Parameter used in analysis of shallow foundations (Section 8.5)
Cc Compression index: slope of one-dimensional normal compression line on a 

graph of e against log10 σ′v
Cs Swelling index: slope of one dimensional unload/reload lines on a graph of e 

against log10 σ′v
Cn Correction factor applied to SPT blowcount (Section 11.3.1)
D Drag force (Section 1.8)
D10 etc. Largest particle size in smallest 10% etc. of particles by mass
E Young’s modulus. Subscripts may be used as follows: h (horizontal); 

v  (vertical); u (undrained)
′E0 One-dimensional stiffness modulus

E* Rate of increase of Young’s modulus with depth
E Horizontal side force in slope stability analysis (Section 8.10)
EI Bending stiffness of a retaining wall
Er Young’s modulus of raft foundation
Es Young’s modulus of soil
F Shear force
F Prop load (propped retaining wall)
F Factor of safety. A subscript may be used to indicate how the factor of safety 

is applied: see Section 9.4.
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Fr Normalized friction ratio in cone penetration test
Fs Factor of safety applied to soil strength
G Shear modulus
G* Modified shear modulus in the presence of shear/volumetric coupling 

(Section 6.10); Rate of increase of shear modulus with depth (Section 9.8)
Gs Relative density (= ρs/ρw) of soil grains (also known as the grain 

specific gravity)
H Rating on mineral hardness scale (Chapter 1)
H Horizontal load or force
H Overall head drop (for example, across flownet)
H Slope of Hvorslev surface on a graph of q against p′
H Hydraulic head at the radius of influence in a well pumping test
H Limiting lateral load on a pile (Section 8.9)
ID Density index
IL Liquidity index
IP Plasticity index (= wLL − wPL)
Iρ, Iσ Influence factor for settlement and stress respectively (Chapter 6)
J Parameter related to shear/volumetric coupling (Section 6.10)
K Intrinsic permeability (Chapter 3)
K Earth pressure coefficient, σ′h/σ′v. Subscripts may be used as follows: a 

(to denote active conditions); p (passive conditions); i (prior to excavation in 
front of a diaphragm-type retaining wall); 0 (in situ stress state in the ground); 
nc (for a normally consolidated clay); oc (for an overconsolidated clay)

K Elastic bulk modulus (subscript u denotes undrained)
K* Modified bulk modulus in the presence of shear/volumetric coupling 

(Section 6.10)
Kac, Kpc Multipliers applied to τu in the calculation of active and passive total 

 pressures respectively (undrained shear strength model)
KT Total stress earth pressure coefficient, σh/σv (Section 7.10)
L0 Distance of influence of a dewatering system idealized as a pumped well
LF Tunnel load factor (Section 9.11)
M Bending moment. Subscripts may be used as follows: des (to denote the design 

bending moment); le (retaining wall bending moment calculated from a limit 
equilibrium analysis); p or ult (fully plastic or ultimate bending moment of 
beam or retaining wall)

M Moment
M Mobilization factor on soil strength
M′0 Constrained or one-dimensional modulus
N Normal force, for example, on rupture surface or soil/structure interface
N SPT blowcount
Nk Cone factor relating qc and τu (Section 11.3.2)
N1 SPT blowcount normalized to a vertical effective stress of 100 kPa 

(Section 11.3.1)
N60 Corrected SPT blowcount, for an energy ratio of 60% (Section 11.3.1)
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N1, N2, N3 Interblock normal forces, mechanism analysis for shallow foundation 
(Section 10.9)

Nf, Nh Number of flowtubes and potential drops respectively in a flownet
Nc Basic bearing capacity factor: undrained shear strength analysis
Np Value of v at ln p′ = 0 on isotropic normal compression line on a graph of v 

against ln p′ (Chapter 5)
Nq Basic bearing capacity factor: frictional soil strength analysis
Nγ Term in bearing capacity equation to account for self-weight effects
OCR Overconsolidation ratio
P Prop load; tensile strength of reinforcement strip (reinforced soil 

retaining wall)
Q Ram load in triaxial test (Chapter 5)
Q Equivalent toe force in simplified stress analysis for unpropped retaining wall
Qt Normalized cone resistance in cone penetration test
R Proportional settlement ρ/ρult

R Resultant force, for example, on rupture surface or soil/structure interface
R Dimensionless flexibility number R = mρ (Section 9.8)
R Depth of tunnel axis below ground level (Section 9.11)
Rr, Rz Degree of consolidation due to radial and vertical flow alone, respectively 

(Section 4.9)
R0 Radius of influence of a pumped well
S, Sr Saturation ratio
s Slope of graph; drain spacing (Section 4.9); sensitivity (Section 5.15)
s Surface settlement due to tunnelling (Section 9.11)
T Total shear resistance of soil/pile interface (Section 2.11)
T Shear force, for example, on rupture surface or soil/structure interface
T Surface tension at air/water interface
T Dimensionless time factor cvt/d2 in consolidation problems
T Anchor load (anchored retaining wall)
T Torque
TC Tunnel stability number at collapse (Section 9.11)
Tdes Design anchor load (anchored retaining wall)
Tr Dimensionless time factor for radial consolidation chvt/r2

w

Tv Torque due to shear stress on vertical surfaces in shear vane test 
(Section 11.3.4)

U Coefficient of uniformity = D60/D10

U Average excess pore water pressure (consolidation problems)
U Force, for example, on rupture surface or soil/structure interface due to 

pore water pressure
Ue Pore water suction at air entry
Ur, Uz Average excess pore water pressure if drainage were by radial flow or vertical 

flow alone, respectively (Section 4.9)
V Volume (total)
V Electrical potential difference (voltage) (Section 3.19.5)
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V Vertical load or force
Va Volume of air voids in soil specimen
Vtunnel Nominal volume of tunnel (Section 9.11)
Vs Volume of soil solids in soil specimen
Vt Total volume occupied by a soil specimen
Vti Total volume of triaxial test specimen as prepared (Chapter 5)
Vto Total volume of triaxial test specimen at start of shear test (Chapter 5)
Vv Volume of voids in soil specimen
Vw Volume of water in soil specimen
VL Volume loss in tunnelling (Section 9.11)
W Weight of a block of soil
W Mass of falling weight used in heavy tamping (Section 11.5)
Wc Set of collapse loads for a structure (in plastic analysis)
Wt Total weight of a soil specimen
X Vertical side force in slope stability analysis (Section 8.11)
Z Coefficient of curvature = (D30)2/(D60 · D10)
Z Reference depth in a Newmark chart analysis (Chapter 6)
a Acceleration (Section 11.4)
a Area ratio An/Ac in cone penetration test (Section 11.3.2)
av Subscript indicating the average value of a parameter
b Parameter defining the intermediate principal stress (Section 5.10)
c Subscript denoting the initial state
c′ Intersection with τ -axis of extrapolated straight line joining peak strength 

states on a graph of τ against σ′
Chv, Cv Consolidation coefficient for vertical compression due to horizontal flow, and 

vertical compression due to vertical flow, respectively
crit Subscript denoting a critical condition
current Subscript indicating the current value of a parameter
d Equivalent particle size (Section 1.8.1)
d Prefix denoting infinitesimally small increment (for example, of stress, strain 

or length)
d Half depth of oedometer test specimen (maximum drainage path length)
dc, dc* Depth factors (bearing capacity analysis)
dq, dγ Depth factors (bearing capacity analysis)
ds Subscript indicating parameter measured in direct shear
e Void ratio
f Subscript used to denote ‘final’ conditions at the end of a test
f Frequency
fc Sleeve friction (stress) in cone penetration test (Section 11.3.2)
ft Corrected sleeve friction (stress) in CPT
f1 Parameter relating undrained shear strength to SPT blowcount 

(Section 11.3.1)
g Acceleration due to Earth’s gravity (= 9.81 m/s2)
g Constant used to define Hvorslev surface (Section 5.13)
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h Total or excess head, height of specimen in shearbox test
h Subscript: horizontal
hc Critical height of backfill in analysis of compaction stresses behind a 

 retaining wall (Section 7.10)
hcrit Critical hydraulic head drop across an element of soil at fluidization
he Excess head (consolidation analysis)
hi Height of triaxial test specimen as prepared (Chapter 5)
h0 Height of triaxial test specimen at start of shear test (Chapter 5)
h0 Initial depth of block of soil in analysis of settlement due to change in 

water content (Section 1.13); initial height of soil specimen in shearbox test; 
 drawdown at a line of ejector wells analysed as a pumped slot (Section 4.7.3)

hw Head in a pumped or equivalent well
i Hydraulic gradient: subscripts x, y or z may be used to indicate the direction
i Parameter quantifying width of settlement trough due to tunnelling 

(Section 9.11)
i Subscript denoting an initial state (the pre-excavation state in the case of an 

in situ retaining wall)
icrit Critical hydraulic gradient across an element of soil at fluidization
ie Electrical potential (voltage) gradient (Section 3.19.5)
k Permeability used in Darcy’s Law. Subscripts may be used as follows: h 

 (horizontal); v (vertical); x, y or z (x-, y- or z-direction), t (transformed 
Section); i or f (at start or end of a permeability test)

ke Electro-osmotic permeability (Section 3.19.5)
l Limit of range of a Fourier series (Section 4.8)
l Length of part of a slip surface (Sections 8.11 and 10.9)
m Soil stiffness parameter (Section 9.8); Rate of increase of soil Young’s 

 modulus with depth (Section 11.4)
m A soil parameter used in the description of creep (Section 5.17)
m Subscript denoting model (Section 11.4)
ma Mass of air in soil specimen
ms Mass of soil solids in soil specimen
mt Mass of tin or container
mw Mass of water in soil specimen
max Subscript indicating the maximum value of a parameter
n Porosity
n Overconsolidation ratio based on vertical effective stresses
n Number of ‘squares’ of Newmark chart covered by a loaded area (Chapter 6)
n Centrifuge model scale factor (Section 11.4)
np Overconsolidation ratio based on average effective stresses
p, p′ Average principal total and effective stress, respectively: p = {σ1 + σ2 + σ3}/3
p′0 Maximum previous value of p′; value of p′ at tip of current yield locus 

(Chapter 5)
pu, p′u Lateral load capacity (per metre depth) of a pile (Section 8.9)
p Subscript denoting prototype (Section 11.4)
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p Cavity pressure in pressuremeter test (Section 11.3.3)
pb Passive side earth pressure (Section 9.8)
p′e Equivalent consolidation pressure: value of p′ on isotropic normal 

 compression line at current specific volume (Chapter 5)
pL Extrapolated ‘limit pressure’ in analysis of the plastic phase of the 

 pressuremeter test (Section 11.3.3)
pp Cavity pressure at onset of plastic behaviour in pressuremeter test 

(Section 11.3.3)
ps Subscript indicating parameter measured in plane strain
q Deviator stress
q Volumetric flowrate
q Surface surcharge or line load
qc Measured cone resistance (stress) (Section 11.3.2)
qt Corrected cone resistance
r Wall roughness angle
re Radius of an equivalent well used to represent an excavation
rp Radius of plastic zone in the soil around a pressuremeter (Section 11.3.3)
ru Pore pressure ratio, ru = u/γz
rγ Reduction factor (bearing capacity analysis)
s Average total stress (σ1 + σ3)/2: locates centre of Mohr circle on a-axis
s [(1 sin )sin ]/(1 sin )peak peak+ ψ ′φ + ′φ  (Section 11.3.3)
sc , s*

c Shape factors (bearing capacity analysis)
sq , sy Shape factors (bearing capacity analysis)
s′ Average effective stress ′σ + ′σ( ) 21 3 l : locates centre of Mohr circle on σ′-axis
t Time
t Radius of Mohr circle of stress, t ( )/2 ( )/21 3 1 3= ′σ − ′σ = σ − σ
th, tm Parameters used in analysis of shallow foundations (Section 8.5)
tr Thickness of a raft foundation
tx Reference point on time axis used to determine consolidation coefficient cv 

from oedometer test data
u Pore water pressure
u Subscript: undrained
ue Excess pore water pressure (consolidation analysis)
ued Excess pore water pressure at mid-depth of an oedometer test specimen of 

total depth 2d (Chapter 4)
u2 Pore water pressure measured in cone penetration test
ult Subscript denoting the ultimate value of a parameter (for example, settlement)
v Specific volume
v Particle settlement velocity (Section 1.8); velocity of relative sliding 

(Section 10.9)
v Subscript: vertical
v, vD Darcy seepage velocity. Subscripts x, y or z may be used to indicate the 

direction
v0 Reference velocity for mechanism analysis (Section 10.9)
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vκ Intersection of unload/reload line with lnp′ = 0 axis
vtrue True average fluid seepage velocity
w Water content
w Weight of a soil element (Sections 8.10 and 9.11)
wLL, wPL Water content at liquid limit and plastic limit, respectively
x Relative horizontal movement in shearbox test
y Upward movement of shearbox lid
yc Outward movement of cavity wall in pressuremeter test (Section 11.3.3)
yrp Outward displacement of soil at the plastic radius rp in a pressuremeter test 

(Section 11.3.3)
z Depth coordinate
zc Critical layer thickness for compaction of soil behind a retaining wall 

(Section 7.10)
z0 Depth of tunnel axis below ground level (Section 9.11)
zp Depth of pivot point below formation level (unpropped embedded retaining 

wall)
Γ Value of v at lnp′ = 0 on critical state line on a graph of v against lnp′ 

(Chapter 5)
Δ Prefix denoting increment (for example, of stress, strain or length)
Δ Angle used in Mohr circle constructions for stress analyses (Chapter 10)
Δ Multipropped wall flexibility parameter (Chapter 9)
M Slope of critical state line on a graph of q against p′
ψ v − vc (Section 5.20)
ΔVtc, ΔVtq Volume change of triaxial test specimen during consolidation and shear, 

respectively (Chapter 5)
Δy, Δz Width and depth, respectively, of reinforced soil retaining wall facing panel
Δpu/r, max Maximum reduction in cavity pressure in a pressuremeter test that can be 

applied without causing plastic behaviour in unloading (Section 11.3.3)
α Transformation factor for flownet in a soil with anisotropic permeability 

(Chapter 3)
α A soil parameter used in the description of creep (Section 5.17)
α Angle of inclination of slip surface to the horizontal (Section 8.11)
α Term applied to one of the two characteristic directions, along which the full 

strength of the soil is mobilized (Chapter 10)
α Retained height ratio h/H of a retaining wall (Section 9.8)
α Soil/wall adhesion reduction factor
β Angle between flowline and the normal to an interface with a soil of different 

permeability
β Term applied to one of the two characteristic directions, along which the full 

strength of the soil is mobilized (Chapter 10)
β Slope angle
β Parameter quantifying the depth to the anchor for an anchored retaining wall 

(Section 9.8)
γ Engineering shear strain
γ Unit weight (= ρg)
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γdry Unit weight of soil at the same void ratio but zero water content
γf Unit weight of permeant fluid (Section 3.3)
γsat Unit weight of soil when saturated
γw Unit weight of water
δ Soil/wall interface friction angle
δ Strength mobilized along a discontinuity (Chapter 10)
δ Prefix denoting increment (for example, of stress, strain or length)
δ Displacement
δmob Mobilized soil/wall interface friction angle
ε Direct strain. Subscripts may be used to indicate the direction as follows: h 

(horizontal); v (vertical); r (radial); θ (circumferential)
εc Cavity strain in pressuremeter test (Section 11.3.3)
εq Triaxial shear strain εq = (2/3)(εv − εh)
εvol Volumetric strain
ε1, ε3 Major and minor principal strains, respectively
ε Electro-kinetic or zeta potential
η Stress ratio q/p′
ηf Dynamic viscosity
θ Rotation of stress path on a graph of q against p′
θ Rotation of principal stress directions; included angle in a fan zone 

(Chapter 10)
κ Slope of idealized unload/reload lines on a graph of v against lnp′
κo Slope of idealized unload/reload lines on a graph of v against lnσ′v
λ Slope of critical state line and of one-dimensional and isotropic normal 

 compression lines on a graph of v against lnp
λ Load factor in structural design
λ0 Slope of one-dimensional normal compression line on a graph of v against lnσ′v
μ Coefficient of friction
νr Poisson’s ratio of raft foundation
νs Poisson’s ratio of soil
ν Poisson’s ratio
νu Undrained Poisson’s ratio
ρ Mass density. Subscripts may be used as follows: b (for the overall or bulk 

density of a soil); s (for the density of the soil grains); w (for the density of 
water = 1000 kg/m at 4°C)

ρ Settlement
ρ Wall flexibility H/EI; a subscript c may be used to denote a critical value
ρ Cavity radius in pressuremeter test (Section 11.3.3); a subscript 0 may be 

used to denote the initial value
ρ Parameter used in analysis of shallow foundations (Section 8.5)
σ, σ′ Total and effective stress, respectively. Subscripts may be used to indicate the 

direction as follows: a (axial, in a triaxial test); h (horizontal); h0 (horizontal, 
in situ); v (vertical); v0 (vertical, maximum previous); r (radial); θ (circumfer-
ential); n (normal)
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σc Cell pressure in a triaxial test
σf, σ′f Normal total and effective stress (respectively) on a shallow foundation 

at failure

σ ′σ,0 0
Normal total and effective stress (respectively), acting on either side of a 
 shallow foundation at failure

σxx, σ′xx Total and effective stresses on the plane whose normal is in the x direction, 
acting in the x direction

σ ,1  σ ,2  σ ,3 Major, intermediate and minor principal total stress, respectively
′σ ′σ ′σ, ,1 2 3 Major, intermediate and minor principal effective stress, respectively

σT Tunnel support pressure (Section 9.11)
σCT Tunnel support pressure required just to prevent collapse (Section 9.11)
σuc Unconfined compressive strength
τ Shear stress
τc Shear stress at cavity wall in pressuremeter test (Section 11.3.3)
τu Undrained shear strength
τu, design Design value of undrained shear strength
τw Shear strength mobilized on soil/wall interface
τxy Shear stress on the plane whose normal is in the x direction, acting in the y 

direction
φ′ Soil strength or angle of shearing resistance (effective angle of friction)
φ′crit Critical state strength
φ′design Design strength
φ′mob Mobilized strength
φ′peak Peak strength
φ′tgt Slope of best-fit straight line joining peak strength states on a graph of τ 

against σ′
φ′w True friction angle between soil grain and wall materials
φ′μ True friction angle of soil grain material
x Parameter used in the description of unsaturated soil behaviour (Section 5.19)
ψ Angle of dilation
ω Angular velocity; angle of retaining wall batter (Chapter 10)
0 Subscript denoting an initial state (at t = 0), a value at x = 0 or z = 0, or the 

initial in situ state in the ground





xxv© 2010 Taylor & Francis Group, LLC

Preface

My original aims in writing this book were

• To encourage students of soil mechanics to develop an understanding of fundamental 
concepts, in contrast to the formula-driven approach used by some other authors

• To help students build a framework of basic ideas robust and adaptable enough to 
support and accommodate the more complex problems and analytical procedures that 
confront the practising geotechnical engineer

• To illustrate, with reference to real case histories, that the sensible application of  simple 
ideas and methods can give perfectly acceptable engineering solutions to many classes 
of geotechnical problem

• To avoid the unnecessary use of mathematics
• To cover in a single text, the soil mechanics and geotechnical engineering topics 

 usually included in typical MEng-level university courses in civil engineering and 
related  subjects, without too much in the way of additional clutter

However,

• Civil engineers must be numerate, and possess a reasonable degree of mathematical 
ability—they must be able to do sums

• Different lecturers will have different views on the content of a core syllabus in the soil 
mechanics/geotechnical engineering subject area

• Some material may not be suitable for formal presentation in lectures, but is nonethe-
less essential background reading

Thus, while perhaps 80% of the book is undoubtedly core material at MEng level, some 
sections are useful background, some sections might be covered in some courses but not in 
others, and one or two sections (for example, Section 4.8) are almost certainly for reference 
only.

I have not in general marked the non-core sections in the text, not least because (as indi-
cated above) different teachers will have their own ideas about what does and does not 
constitute core material. Instead, I have tried to ensure that separable topics and subtopics 
are covered in separate sections and subsections, with clear and unambiguous titles and 
subtitles. This should enable a university lecturer to draw up a bespoke reading schedule, 
appropriate to his or her own course.

The book is based on the undergraduate courses in soil mechanics and geotechnical 
engineering that I helped to develop initially at King’s and Queen Mary and Westfield 
Colleges (University of London) and more recently at the University of Southampton. 
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While the basic principles have not changed, the subject has developed over this time and 
 expectations in engineering education have evolved; the last perhaps most clearly evi-
denced by a master’s level degree (MEng) having become the norm for students aspiring 
towards chartered  engineer status.

Our undergraduate course structure in soil mechanics and geotechnical engineering at 
Southampton has likewise evolved over the years, as a result of advances in research, prac-
tice, and the availability of computational tools, and is now as follows. 

The material is, of course (along with Chapter 11), used and developed in design and 
individual projects in all years of the degree programme. Some of the early chapters are 
structured around the standard laboratory tests used to investigate a particular class of soil 
behaviour. These are Chapter 2 (the shearbox test; friction), Chapter 4 (the oedometer test; 
one-dimensional compression and consolidation) and Chapter 5 (the triaxial test; more gen-
eral aspects of soil behaviour). This approach is not new, but by no means is it universal. In 
my experience, the integration of the material covered in lectures with laboratory work by 
means of coursework assignments in which laboratory test results are used in an appropriate 
geotechnical engineering calculation is thoroughly beneficial.

The order in which the material is presented is based on the belief that students need time 
to assimilate new concepts, and that too many new ideas should not be introduced all at 
once. This may have led to the division of what might be seen as a single topic (for example, 
soil strength or retaining walls) between two chapters. Where this occurs, the topic is ini-
tially addressed at a fairly basic level, with more detailed or advanced coverage reserved for 
a later stage.

For example, while some authors deal with both the shearbox test and the triaxial test 
under the same heading (such as ‘laboratory testing of soils’ or ‘soil strength’), I have covered 
them separately. This is because the shearbox serves as a relatively straightforward introduc-
tion to the behaviour of soils at failure in terms of simple stress and volumetric parameters, 
and to the concept of a critical state. The triaxial test introduces more general stress states, 
the difference between isotropic compression and shear, the generation of pore water pres-
sures in undrained tests, and the behaviour of clay soils before and after yield. Similarly, I 
have endeavoured to establish the basic principles of earth pressures and collapse calcula-
tions with reference to relatively simple retaining walls in Chapter 7, before addressing more 
complex earth retaining structures in Chapter 9 and soil/wall friction more rigorously in 
Chapter 10. This is reflected in our course structure at Southampton.

Year of study Chapters in the book

Year 1: Chapter 1, within courses on engineering geology and/or civil and environmental 
engineering materials

Year 2: Chapter 2 up to and including Section 2.11; Chapter 3 up to and including Section 3.16; 
Chapter 4 up to and including parts of Section 4.7 (Section 4.8 is covered in parallel in 
the mathematics course on differential equations); Chapter 5 up to and including 
Section 5.13; Chapter 6 up to and including Section 6.5; and an introduction to 
retaining walls, foundations and slopes covering Sections 7.1 to 7.8, 8.1 to 8.4, and 8.10.

Year 3: Retaining walls, foundations and slopes in more detail, that is, the parts of Chapters 7 
and 8 not covered in the second year and Sections 9.1 to 9.10.

Year 4 (options): Advanced foundations (Sections 10.1 to 10.5), modelling and in situ testing (Sections 
11.3 and 11.4) and construction dewatering (Sections 3.17 to 3.19)
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The book assumes a knowledge of basic engineering mechanics (equilibrium of forces and 
moments, elastic and plastic material behaviour, Mohr circles of stress and strain and so on). 
Also, it is intended to be followed in sequence. Where necessary, a qualitative description of 
an aspect of soil behaviour that has not yet been covered is given to allow the development 
of a fuller understanding of another. For example, the generation of excess pore water pres-
sures during shear is mentioned qualitatively in Chapter 2 to explain the need for drained 
shear box tests on clay soils to be carried out slowly. For the more experienced reader, it 
is hoped that the section and subsection headings are sufficiently descriptive to enable the 
required information to be extracted with the minimum of effort.

In preparing the third edition of this book, I have:

• Added an introduction to suction/water content/permeability relationships for unsatu-
rated soils (Section 3.20)

• Improved the introduction to behavioural models for sands (Sections 5.20 and 5.21) 
and added a section on repeated or cyclic loading effects (Section 5.22)

• Reorganised material to give a more coherent and up to date coverage of gravity and 
embedded retaining walls (Chapters 7 and 9)

• Added an introduction to the use of laterally loaded piles for slope stabilization 
(Section 8.12)

• Improved the development of bearing capacity factors and interaction diagrams for 
shallow foundations subjected to inclined and eccentric loads (Sections 10.1 to 10.5)

• Added new material on site investigation (Sections 11.1 and 11.2)
• Made general updates to reflect changes in the interpretation of knowledge or design 

guidance
• Added some more worked examples and further sample questions at the ends of 

chapters
• Made the text broadly consistent with the design philosophy espoused in the most 

recent version of EC7. EC7 has changed significantly since the second edition of this 
book. It is now quite a confusing document, and may well be changed again before too 
long. For this reason, and because this book is concerned with fundamental principles 
that do not change, I have kept references to codes of practice to a minimum

More than 60 worked examples and case studies are now included within the text, 
with more than 90 further questions at the end of each chapter. Many of these are based 
on end-of-year examination questions I have set at King’s College, Queen Mary and 
Westfield College or the University of Southampton, and I am grateful to those institu-
tions for their permission to use these problems in this book. Some were provided by 
my colleagues Dr A. Zervos, Dr R.H. Bassett, Professor J.B. Burland, Dr M.R. Cooper, 
Dr N.W.M. John, Dr J.A. Smethurst and Dr R.N. Taylor, to whom I would also like to 
express my thanks. I apologise for any that I have inadvertently ‘borrowed’.

The book has been influenced by those from whom I have learnt and continue to learn 
about soil mechanics and geotechnical engineering, including (as teachers, colleagues or 
both) John Atkinson, Malcolm Bolton, David Muir-Wood, Toby Roberts, Andrew Schofield, 
Neil Taylor and Jim White. I am indebted to them, and also to the undergraduate and post-
graduate students at King’s College London, Queen Mary and Westfield College London, 
and the University of Southampton, from whom I have learnt a great deal about teaching 
soil mechanics and geotechnical engineering.

I am especially grateful to all those who have contributed to one or more of the editions of 
the book through their help with calculations, drawings and discussions on how to present 
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some of the more difficult topics. They include, in addition to those already mentioned, 
Roy Butterfield, Asim Gaba, Richard and John Harkness, Jeffrey Priest, David Richards, 
Brian Simpson and Antonis Zervos. Special mentions should go to Susan Gourvenec, Joel 
Smethurst and Sharif Ahmed who helped particularly with the collation and checking of 
material for the first, second and third editions respectively. And I am deeply indebted to 
Tony Moore, Senior Editor at CRC/Spon Press, whose dedication and enthusiasm has been 
unfailingly constant since the start of the project some two decades ago.

William Powrie
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Chapter 1

Origin and classification of soils

1.1 INTRODUCTION: WHAT IS SOIL MECHANICS?

Soil mechanics may be defined as the study of the engineering behaviour of soils, with 
respect to the design of civil engineering structures made on or within the earth. Examples 
of such structures include embankments and cuttings, dams, retaining walls, tunnels, base-
ments, subsurface waste repositories, and the foundations of buildings and bridges. An 
embankment, cutting or a retaining wall often represents a major component, if not the 
whole, of a civil engineering structure, and is usually (for better or for worse) clearly visible 
in its finished form (Figure 1.1). Tunnels and basements are generally only visible from inside 
the structure, while foundations and underground waste repositories—once completed—
are not usually visible at all. By definition, the foundation forms only a part of the structure 
that it supports. Although out of sight, it is nonetheless important: if it is deficient in design 
or construction, the entire building may be at risk (Figure 1.2).

Problems in soil mechanics came to be identified and addressed analytically by the begin-
ning of the eighteenth century (Heyman, 1972). Despite this, growth of the subject as a core 
discipline within civil engineering, being taught at universities with almost the same empha-
sis as structures and hydraulics, has taken place largely within the last 50 years or so. The 
expansion of the subject during this period has been very rapid, and the term geotechnical 
engineering has been introduced to describe the application of the principles of soil mechan-
ics to the analysis, design and construction of civil engineering structures which are in some 
way rooted or attached to the earth.

The development of geotechnical processes and techniques has been led primarily by 
innovation in construction practices. The terms ground engineering and geotechnology 
are often used to describe the study of geotechnical processes and practical issues, includ-
ing techniques for which the only available methods of assessment are either qualitative or 
empirical.

If these somewhat arbitrary definitions are accepted, the various terms cover a spectrum 
from soil mechanics (at the theoretical end), through geotechnical engineering (which is 
analytical but applied) to ground engineering and geotechnology, where the methods used 
in design may be largely empirical. This book is concerned primarily with soil mechanics 
and its application to geotechnical engineering (although some parts, e.g. Section 3.19 on 
groundwater control, could probably be classified as ground engineering or geotechnology). 
It describes the mechanical (e.g. strength and stress–strain) behaviour of soils in general 
terms, and shows how this knowledge may be used in the analysis of geotechnical engineer-
ing structures.

The book does not (apart from the very brief overview given in Section 1.3) cover engi-
neering geology; nor does it examine the mineralogy, physics, chemistry or materials sci-
ence of soils. The book takes a macroscopic view, and does not address at the microscopic 
level the issues which constitute what Mitchell and Soga (2005) call the why aspect of soil 
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Figure 1.1  A visible and, at the time of its construction controversial, road cutting (the M3 motorway at 
Twyford Down, near Winchester, Hampshire, England). (Photograph courtesy of Mott MacDonald.)

Figure 1.2 A well-known building with an inadequate foundation (Pisa, Italy). (Photograph courtesy of 
Professor John Burland.)



Origin and classification of soils 3

© 2010 Taylor & Francis Group, LLC

behaviour. This is not to say that these issues are unimportant. A study of engineering geol-
ogy, and the geological history of a site, will give an invaluable understanding of the struc-
ture and characteristics of the soil and rock formations present there. It might also lead the 
engineer to anticipate the presence of potentially troublesome features, such as buried river 
beds which form preferential paths for the flow of groundwater, and historic landslips which 
give rise to pre-existing planes of weakness in the ground. At least a basic knowledge of soil 
mineralogy and soil chemistry is essential for anyone involved in the increasingly important 
issue of the movement of contaminants (e.g. from landfill sites) through the ground.

These subjects are covered in more detail by Blyth and de Freitas (1984) and Waltham 
(2009)—engineering geology; Marshall et al. (1996), Hillel (1998) and Warrick (2002)—soil 
physics; and Mitchell and Soga (2005)—mineralogy and soil chemistry.

1.1.1 Objectives

After having worked through this chapter, you should understand:

• The origin, nature and mineralogy of soils (Sections 1.2 through 1.4)
• The influence of depositional and transport mechanisms and soil mineralogy on type 

of soil, structure and behaviour (Sections 1.3 and 1.4)
• The three-phase nature of soil, including the interphase relationships and how these 

are quantified (Sections 1.5 and 1.6)
• The need to separate total stress, σ, into the components of effective stress σ′ carried 

by the soil skeleton and the pore water pressure u, through Terzaghi’s equation, σ = 
σ′ + u (Section 1.7)

• The importance of soil description and classification with reference to particle size and 
index tests (Sections 1.8, 1.10 and 1.11) 

You should be able to

• Manipulate the phase relationships to obtain expressions for the unit weight of a soil 
(Section 1.6)

• Determine the water content, unit weight, grain specific gravity, and saturation ratio, 
liquid and plastic limits and optimum water content from laboratory test data (Sections 
1.5, 1.6, 1.11 and 1.12)

• Calculate the vertical total stress at a given depth in a soil deposit and, given the pore 
water pressure, the vertical effective stress (Section 1.7)

• Construct a particle size distribution curve from sieve and sedimentation test data 
(Section 1.8)

• Design a granular filter (Section 1.9)
• Apply the phase relationships to the practical situations like compaction of fill and the 

settlement of houses founded on clayey soils (Sections 1.12 and 1.13)

1.2 STRUCTURE OF THE EARTH

Robinson (1977) points out that the highest mountain (Mount Everest) has a height of 
8.7  km above mean sea level, while the deepest known part of the ocean (the Mariana 
Trench, off the island of Guam in the Pacific Ocean) has a depth of 11.3 km. This gives 
a total range of 20 km, or about 0.3% of the radius of the earth (which is approximately 
6440 km). If a cross-section through the earth were represented by a circle of diameter 
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10 cm, drawn using a reasonably sharp pencil, the variation in the position of the earth’s 
surface would be contained within the thickness of the pencil line. The depths of soil with 
which civil engineers are concerned—usually only a few tens of metres—are much smaller 
when compared to the radius of the earth. Even the deepest mines have not penetrated more 
than 6 km or so below the surface of the earth.

Although the civil engineer is primarily concerned with the behaviour of the soils and 
rocks within 50 m or so of the surface, an appreciation of the overall structure of the planet 
provides a useful starting point. In the descriptions that follow, note that the theories con-
cerning the nature and composition of the earth beyond a depth of a few kilometres are 
based mainly on geophysical tests and interpretation of geological evidence. They cannot 
be verified by direct visual observation, or even by the recovery and testing of material, and 
therefore remain, at least to some extent, conjectural.

The earth consists of a number of roughly concentric zones of varying composition and 
thickness. It has been possible to identify the three main zones—crust, mantle and core—
because of the changes in the resistance to the passage of seismic (earthquake) waves which 
occur at the interfaces. The interface between the crust and the mantle is known as the 
Mohorovic discontinuity (sometimes abbreviated to Moho), while the interface between the 
mantle and the core is known as the Gutenberg discontinuity. In both cases, the interfaces 
or discontinuities are named after their discoverers. The crust is approximately 32–48 km 
thick, and the mantle about 2850 km. The Gutenberg discontinuity is, therefore, about 
2890 km below the earth’s surface.

The crust and the core may each be subdivided into inner and outer layers. The outer crust 
is composed primarily of crystalline granitic rock, with a comparatively thin and discon-
tinuous covering of sedimentary rocks such as sandstone, limestone and shale.1 The rocks 
forming the outer crust are composed primarily of silica and aluminium, and have a rela-
tive density (or specific gravity) generally in the range 2.0–2.7 (i.e. they are 2.0 to 2.7 times 
denser than water). The outer crust is known as sial (‘Si’ for silica and ‘Al’ for aluminium). 
Below the outer crust, there is a layer of denser basaltic rocks, which have a specific gravity 
of about 2.7–3.0. These are composed primarily of silica and magnesium, and are known 
as sima (‘Si’ for silica and ‘Ma’ magnesium). The inner crust or sima is continuous, while 
the outer crust or sial is discontinuous, and appears to be confined to the continental land 
masses: it is not generally present under the sea. For this reason, the denser sima is known 
as oceanic crust, while the overlying sial is known as continental crust.

The mantle consists mainly of the mineral olivine, a dense silicate of iron and magnesium, 
possibly in a fairly fluid or plastic state. The specific gravity of the mantle increases from 
about 3 at the Mohorovic discontinuity to about 5 at the Gutenberg discontinuity.

The core is composed largely of an alloy of nickel and iron, which is sometimes given the 
acronym nife (from ‘Ni’ for nickel and ‘Fe’ for iron). As the core does not transmit the trans-
verse or S-waves which arise from earthquakes, it is believed a part of it must be in liquid form. 
There is some evidence that the outer core may be liquid, while the inner core (with a radius of 
1440 km or so) is solid. The temperature of the core is estimated to be greater than 2700°C. 
The specific gravity of the material forming the core varies from 5 to 13 or even higher.

According to the theory of plate tectonics, the crust is divided into a number of large 
slabs or plates, which float on the mantle and move relative to each other as a result of 
convection currents within the mantle. Although individual plates are fairly stable, relative 
movements at the plate boundaries are responsible for many geological processes. Sideways 
movements create tear faults and are responsible for earthquakes: an example of this is the 
San Andreas fault in California. Where the plates tend to move away from each other or 
diverge, new oceanic crust is formed by the emergence of molten material from the mantle 
through volcanoes. Where the plates tend to collide or converge, the oceanic plate (sima) is 
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forced down into the mantle where it tends to melt. The continental plate (sial) rides over 
the oceanic plate, and is crumpled and thickened to form a mountain chain (e.g. the Andes 
in South America). The geological process of mountain building is known as orogenesis.

1.3 ORIGIN OF SOILS

Soil is the term given to the non-bonded, granular material which covers much of the surface 
of the earth that is not under water. It is worth mentioning here that civil and geotechnical 
engineers are not usually interested in the properties of the top metre or so of soil—known 
as topsoil—in which plants grow, but only in the underlying layers or strata of rather older 
geological deposits. The topsoil is not generally suitable for use as an engineering material, 
as it is too variable in character, too near the surface, too loose and compressible, has too 
high an organic content and is too susceptible to the effects of plants and animals and to 
seasonal changes in the level of groundwater.

Soil consists primarily of solid particles, which may range in size from less than a micron 
to several millimetres. Because many aspects of the engineering behaviour of soils depend 
primarily on the typical particle size, civil engineers use this criterion to classify soils as 
clays, silts, sands or gravels. The system of soil classification used in Europe, based on par-
ticle size, is shown in Figure 1.3. Other systems in use around the world—in particular, in 
the USA—may be based on different sieve sizes (see, for example, Winterkorn and Fang, 
1991), but the principle is the same.

Most soils result from the breakdown of rocks which form the crust, by means of natural 
processes of weathering such as due to the action of the sun, rain, water, snow, ice and frost, 
and chemical and biological activity. The rock may be simply broken down into particles. 
It may also undergo changes that alter its chemical composition or mineralogy. If the soil 
retains the characteristics of the parent rock and remains at its place of origin, it is known 
as a residual soil. More usually, the weathered particles will be transported by wind, a river 
or a glacier to be deposited at some new location. During the transport process, the particles 
will probably be worn and broken down further, and sorted by size to some extent.

Many soil deposits may be up to 65 million years old. Geotechnical engineers fre-
quently encounter sedimentary rocks, such as chalk, limestone and sandstone, which may 
be hundreds of millions of years old. The earth itself is thought to be 4000–5000 million 
years old, and anything that occurred after the end of the last glacial period of the Ice 
Age (10,000 years ago) is described by geologists as recent. Soils and rocks are classified 
by geologists according to their age, with reference to a geological timescale divided into 
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2002, Geneva, International Organization for Standardization.)
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four eras. These eras are named according to the life forms that existed at the time. They 
are

• Archaeozoic (before any form of life, as evidenced by observable fossil remains, more 
usually known as pre-Cambrian): This period covers perhaps 3900 million years, from 
the creation of the earth up to about 570 million years before the present.

• Palaeozoic (ancient forms of life, also known as primary): 225–570 million years ago.
• Mesozoic (intermediate forms of life, also known as secondary): 65–225 million years ago.
• Cainozoic (recent forms of life): Commonly but probably artificially subdivided into 

the quaternary (0–2 million years ago) and tertiary (2–65 million years ago).

The four eras are subdivided into periods on the basis of the animal and plant fossils 
present. The periods are in turn subdivided into rock series. During a given period of time 
within an era, a series of rocks (e.g. shales, sandstones, limestones), containing certain types 
of fossil, was deposited.

The periods are named in different ways, which may describe the types of rock laid down 
(cretaceous for chalk, carboniferous for coal); the nature of the fossil content (e.g. holocene, 
meaning recent); the names of the places where the rocks were first sighted (e.g. Devonian 
for Devon, Cambrian for Wales); tribal names (Silurian from the Silures and Ordovician 
from the Ordovices, both ancient Celtic tribes in Wales); or the number of series within the 
period (e.g. Triassic for three). The names of the eras and periods, together with an indica-
tion of the major geological activities, rocks and forms of life, are given in Table 1.1.

In view of the age of most soil deposits, the environment in which a particular soil deposit 
was laid down is unlikely to have been the same as that prevailing there today. Nonetheless, 
the transport process and the depositional environment of a particular stratum or layer of 
soil have a significant influence on its structure and fabric, and probably on its engineering 
behaviour. They are, therefore, worthy of some comment.

1.3.1 Transport processes and depositional environments

1.3.1.1 Water

Small particles settle through water very slowly. They therefore tend to remain in suspen-
sion, enabling them to be transported much farther by rivers than larger particles. The larg-
est particles are carried—if at all—by being washed along the bed of a river, rather than in 
suspension. Pebbles, gravels and coarse sands tend to be deposited on the bed of the river 
along much of its length. As the river changes course due to the downstream migration of 
meanders (bends), or erodes a deeper channel in a process known as rejuvenation (follow-
ing, e.g. a fall in sea level), the coarse material is left behind to form a terrace. Silts and fine 
particles may also be deposited on either side of the river following a flood, because the 
flood water is comparatively still. A soil deposited along the flood plain of a river is known 
as alluvium, or an alluvial deposit.

A river tends to flow more rapidly in its upper reaches. For example, the Amazon has a 
gradient of about 1 in 70,000 in its lowest reaches, compared with gradients as high as 1 
in 100 in many of the upper streams (Robinson, 1977). This means that particles that were 
carried in suspension in the upper reaches of a river begin to be deposited downstream as the 
velocity of flow decreases. At the mouth of the river, sediment builds up on the river bed, and 
constant dredging is usually required if shipping channels are to remain navigable. Sediment 
is also carried into the sea and deposited: if it is not removed by the tide, a build-up of sedi-
ment known as a delta is formed, gradually extending seaward from the coast.
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The structure of a typical deltaic deposit is illustrated in Figure 1.4. The bottomset beds 
are made up of finer particles, which have been carried furthest in suspension beyond the 
slope of the delta before settling out. The foreset beds are made up of coarser material, 
which has been carried along the river bed before coming to rest on the advancing face of 
the delta. The topset beds are deposited on top of the foreset beds, in much the same way 
as the alluvial deposits further upstream. Deltaic deposits generally comprise clays and silts, 
with some sands and organic matter.

1.3.1.2 Wind

Approximately one-third of the Earth’s land surface is classified as arid or semi-arid. 
Although it is likely that the original weathering processes took place when the climate was 
more humid than it is now, the primary transport process for soils in desert regions is the 
wind. Sand dunes gradually migrate in the direction of the wind. Fine particles may be car-
ried for hundreds of kilometres as wind-borne dust. This may eventually arrive at a more 
humid area where it is washed out of the atmosphere by rain. It then settles and accumulates 
as a non-stratified, lightly cemented material known as loess. The cementing is due to the 
presence of deposits of calcium carbonate, derived from decayed vegetable matter. If the soil 
becomes saturated with water, the light cementing bonds are destroyed, and the structure 
of loess collapses. Extensive deposits of loess are found in north-western China. A soil that 
has been laid down by the wind is known as an aeolian deposit.

1.3.1.3 Ice

Ice sheets and valley glaciers are particularly efficient at both eroding rock and transporting 
the resulting debris. Material may be carried along on top of, within, and underneath an 
ice sheet or glacier as it advances. The effectiveness of ice as a mechanism of transportation 
does not (unlike water and wind) depend on particle size. It follows that deposits that have 
been laid down directly by the action of ice (known as moraines) are generally not sorted, 
and so encompass a large range of particle size. A mound deposited at the end of a glacier is 
termed a terminal moraine, while the sheet below the glacier is known as a ground moraine 
(Figure 1.5). Unsorted glacial moraine is known as glacial till or boulder clay. The particles 
found in glacial tills are generally fairly angular, in contrast to the more rounded particles 
associated with typical water-borne deposits.

1.3.1.4 Ice and water

Material from the top of or within a melting glacier or ice sheet might be carried away by 
the water before finally coming to rest. This would result in a degree of sorting according 

Stream bed

Bottomset beds
(fine materials)

Foreset beds
(coarser materials)

Topset beds

Water level

Stream bed

Bottomset beds
(fine materials)

Foreset beds
(coarser materials)

Topset beds

Water level

Figure 1.4  Structure of a deltaic deposit. (From Robinson, H. Morphology and Landscape, 3rd edn, Slough, 
University Tutorial Press, 1977. With permission.)
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to particle size, with the finer materials being carried further away from the end of the gla-
cier. Soils that have been transported, sorted and deposited in this manner are described as 
fluvio-glacial materials. The outwash from an ice sheet can cover a considerable area, form-
ing an extensive outwash plain of fluvio-glacial material (Figure 1.5).

In some cases, the till may be carried by the melting water into a lake formed near the 
end of the retreating glacier or ice sheet. The larger particles then settle relatively quickly, 
forming a well-defined layer at the bottom of the lake. The smaller particles settle down 
more slowly, but eventually form an overlying layer of finer material. With the next influx 
of water, the process is repeated. Eventually, a soil deposit builds up which consists of 
alternating layers of fine and coarse material, each perhaps only a few millimetres thick 
(Figure 3.15). This layered or varved structure can have a significant effect on the engineer-
ing behaviour of the soil, as discussed in Section 3.6.

Material transported by ice, and deposited either directly or sorted and relaid by outwash 
streams, is known as drift. The principal depositional mechanisms associated with glaciers 
and ice sheets are summarized in Figure 1.5.

In this section, we have discussed the breakdown of rocks into soils. We should note 
in passing that this is only one-half of the geological cycle. As soils become buried by the 
deposition of further material on top, they can be converted back into rocks (sedimentary 
or metamorphic) by the application of increased pressure, and perhaps chemical changes. 
They might also be converted into igneous rocks, by means of tectonic activity. However, 
this book is concerned with soils rather than rocks, and a discussion of the formation of 
rocks is beyond its scope.

1.4 SOIL MINERALOGY

1.4.1 Composition of soils

Soils are composed of minerals, which are in turn made of the elements present in the crust.2 
These elements are primarily oxygen (approximately 46.6% by mass),silicon (27.7%), alu-
minium (8.1%), iron (5%), calcium (3.6%), sodium (2.8%), potassium (2.6%) and mag-
nesium (2.1%) (Robinson, 1977; Blyth and de Freitas, 1984). Many of the other elements 
(such as gold, silver, tin and copper) are rare in a global sense, but are found in concentrated 
deposits from which they can be extracted economically. The most common elements occur 
in rocks as oxides; about 75% are oxides of silicon and aluminium.

Most soils are silicates, which are minerals comprising predominantly silicon and oxygen. 
The basic unit of a silicate is a group comprising one silicon ion surrounded by four oxygen 
ions at the corners of a regular tetrahedron: (SiO4)4−. The superscript 4− indicates that the 
silica tetrahedron has a net negative charge equivalent to four electrons, or valency −4. This 
is because the silicon ion is Si4+, while the oxygen ion is O2−. To become neutrally charged, 

Ground moraine

Debris transported on,
within and below the ice

Glacier
Terminal
moraine

Gravels
Outwash

Sands

Figure 1.5 Depositional mechanisms associated with glaciers and ice sheets.
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the silica tetrahedron would need to combine with, for example, two metal ions of valency 
+2, such as magnesium Mg2+, to give Mg2SiO4 (olivine).

The (SiO4)4− groups may link together in different ways with metal ions and with each 
other, to form different crystal structures. Although there are many silicate minerals, their 
properties (such as hardness and stability) depend primarily on their structure.

The (SiO4)4− tetrahedra may be independent—joined entirely with metal ions, rather 
than to each other—as in the olivine group of minerals. Alternatively, they may be joined 
at the corners to form pairs (amermanite: each silica tetrahedron shares one oxygen ion), 
single chains (pyroxenes: each tetrahedron shares two oxygen ions), double chains or bands 
(amphiboles: two or three oxygen ions shared, depending on the position of the tetrahedron 
in the band) or rings (beryl: two oxygen ions shared). Some of the silicon ions (Si4+) may be 
replaced by aluminium ions (Al3+), as in augite and hornblende. In this case, the additional 
negative charge (which arises because of the different valencies of aluminium and silicon) 
can be balanced by the incorporation of metal ions such as sodium Na+ and potassium K+.

Sheet silicates (also known as phyllosilicates or layer-lattice minerals), such as mica, chlo-
rite and the clay minerals, are formed when three of the four oxygen ions are shared with 
other tetrahedra. Sheet silicates are generally soft and flaky.

The strongest silicate minerals are those in which all the four oxygen ions of each (SiO4)4− tetra-
hedron are shared with other tetrahedra, resulting in a three-dimensional framework structure.

The arrangements of the silica tetrahedra found in the various silicate minerals are shown 
in Figure 1.6.

1.4.2 Clay minerals

The clay minerals represent an important subgroup of the sheet silicates or phyllosilicates. In 
soil mineralogy, the term clay is used to denote specific mineralogical properties, in addition to 
a small particle size. These include net negative charge, plasticity when mixed with water and 
high resistance to weathering. A further distinction between clay and non-clay minerals is that 
particles of the latter are generally bulky or rotund, while clay particles are usually flat or platey.

Essentially, the clay minerals can be considered to be made up of basic units or layers con-
taining two or three alternating sheets of silica, and either brucite [Mg3(OH)6] or gibbsite 
[Al2(OH)6]. Generally, the bonding between the sheets of silica and gibbsite or brucite 
within each layer is strong, but that between layers may be weak. (Note that the terms sheet 
and layer are quite distinct: a layer of the mineral is made up of two or three sheets of silica 
and gibbsite or brucite.) The most common clay mineral groups are kaolinite, montmoril-
lonite or smectite and illite. Some clay minerals contain loosely bonded metal ions (cations), 
which can easily be exchanged for other species (e.g. sodium is readily displaced by calcium), 
depending on local ion concentrations (e.g. in the water in the pores). This process is known 
as base exchange.

1.4.2.1 Kaolinite

Kaolinite has a two-sheet structure, made up of silica and gibbsite. It is the principal com-
ponent of china clay and results from the destruction of alkali feldspars (Section 1.4.3) 
under acidic conditions. It has few or no exchangeable cations, and the interlayer bonds are 
reasonably strong. For these reasons, kaolin might be described as the least clay-like of the 
clay minerals, and it tends to form particles which—for a clay—are relatively large. Particles 
of well-crystallised kaolin appear as hexagonal plates, with lateral dimensions in the range 
0.1–4 μm and thicknesses of 0.05–2 μm. Poorly crystallised kaolinite tends to form platey 
particles which are smaller and less distinctly hexagonal.
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1.4.2.2 Montmorillonite

The montmorillonite or smectite group of clay minerals has a three-sheet structure comprising 
a sheet of gibbsite sandwiched between two silica sheets. Montmorillonites (smectites) have 
a basic structure similar to that of a group of non-clay minerals known as pyrophyllites. The 
difference is that, in smectites, there is extensive substitution of silicon by aluminium in the 
silica sheets, and of aluminium by magnesium, iron, zinc, nickel, lithium and other cations in 
the gibbsite sheets. The additional negative charges resulting from these substitutions are bal-
anced by exchangeable cations, such as sodium and calcium, located between the layers and 
on the surfaces of the particles. The interlayer bonds are weak, and layers are easily separated 
by cleavage or by the adsorption of water. Thus smectite particles are very small (often only 
one layer or 1 nm thick), and can swell significantly by the adsorption of water. Soils that con-
tain montmorillonites (smectites) demonstrate a considerable potential for change in volume: 
because of this characteristic, they are sometimes known as expansive soils.

Bentonite is a type of montmorillonite which is used extensively in geotechnical engineer-
ing. A suspension of 5% bentonite (by mass) in water will form a viscous mud. Bentonite mud 
or slurry is used to support the sides of boreholes and trench excavations, which are later filled 
with concrete to create deep foundations (known as piles: Chapter 8) and certain types of soil-
retaining  walls. It has many other uses, such as sealing boreholes and constructing barriers to 
the flow of groundwater known as cut-off walls (Section 3.3, Example 3.1).

Particles of montmorillonite are generally 1–2 μm long. Particle thicknesses occur in mul-
tiples of 1 nm—the thickness of a single silica-gibbsite-silica layer—from 1 nm up to about 
1/100th of the particle length.

1.4.2.3 Illite

Illite also has a three-sheet structure, comprising a sheet of gibbsite sandwiched between 
two silica sheets. Here, the layers are separated by potassium ions, whereas in montmoril-
lonite, the layers are separated by cations in water. Illites have the same basic structure as 
the non-clay minerals like muscovite mica and pyrophyllite. Muscovite differs from pyro-
phyllite in that 25% of the silicon positions are taken up by aluminium, and the resulting 
excess negative charges are balanced by potassium ions between the layers. Illite differs from 
muscovite in that fewer of the Si4+ positions are taken up by Al3+, so that there is less potas-
sium between the layers. Also, the layers are more randomly stacked, and illite particles are 
smaller than mica particles. Illite may contain magnesium and iron as well as aluminium in 
the gibbsite sheet. Iron-rich illite, which has a distinctive green hue, is known as glauconite.

Illites usually occur as small, flaky particles mixed with other clay and non-clay minerals. 
The particles range generally from 0.1 μm to a few micrometres in length, and may be as 
small as 3 nm thick. Unlike kaolinite and montmorillonite, their occurrence in high-purity 
deposits is unknown.

1.4.2.4 Other clay minerals

There are two other groups of clay minerals: vermiculites, which have a tendency to swell 
similar to montmorillonites; and palygorskites, which are not common and have a chain 
(rather than a sheet) structure.

1.4.3 Non-clay minerals

The most abundant non-clay mineral in soils is generally quartz (SiO2). Quartz is a frame-
work silicate, in which the silica tetrahedra are grouped to form spirals. Small amounts of 
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feldspar and mica are sometimes present, but pyroxenes and amphiboles (single and double 
chain silicates) are rare. This is very different from the typical composition of igneous rock, 
the parent material from which many soils were broken down, which might be 60% feld-
spars, 17% pyroxenes and amphiboles, 12% quartz and 4% micas (Mitchell, 1993).

Quartz is quite hard (rated H = 7 on an arbitrary ten-point scale where diamond, the 
hardest, has H = 10 and talc, the softest, has H = 1) and resistant to abrasion. It is also 
chemically and mechanically very stable, as it is already an oxide and has a structure with-
out cleavage planes, along which a material can easily be split. These factors explain its 
persistence and prevalence in non-clay soils (sands and gravels), which have a comparatively 
large particle size.

Feldspars also have three-dimensional framework structures, but some of the silicon ions 
are replaced by aluminium. The resultant excess negative charge is balanced by the inclusion 
of cations such as potassium, sodium and calcium. This leads to a more open structure, with 
lower bond strengths between structural units. Thus feldspars are not as hard as quartz 
(they cleave or split along weakly bonded planes) and can be more easily broken down. This 
is why they are not as prevalent in soils as they are in igneous rocks. Pyroxenes, amphiboles 
and olivines are also relatively easily broken down, which is again why they are absent from 
many soils.

1.4.4 Surface forces

In any solid, atoms are bonded together in a three-dimensional structure. On the surface, 
the structure is interrupted, leaving unbalanced molecular forces.

Equilibrium across the surface may be restored by the attraction and adsorption of mol-
ecules from the adjacent phase (in soils, from water in the pores) or by cohesion (i.e. sticking 
together) with another mass of the same material or by the adjustment of the molecular 
structure at the surface of the solid.

An unbalanced force is significant in comparison to the weight of a molecule, but not 
compared with the weight of a soil particle as large as a grain of sand. However, as the 
particle size is reduced, the ratio of the surface area to the volume or mass of the particle 
increases dramatically, as indicated in Table 1.2. The total surface area of the particles in 
10 g of montmorillonite is equivalent to a football pitch.

It might, therefore, be supposed that surface forces could have a significant influence on the 
behaviour of clayey soils. At low stresses—for example, when clay particles are dispersed in a col-
umn of water—this is indeed the case, and many clays behave as colloids in these circumstances 
(i.e., the clay particles are able to remain suspended in water, because the forces which tend to sup-
port them are greater than the gravitational force which tends to cause them to settle out). This 
is partly due to the small size of the clay particles, and partly due to the electrical surface forces 
which result from the substitution of ions—for example, Al3+ for Si4+—within their structure.

Table 1.2 Specific surface area of sand and clay particles

Mineral group Particle length Particle thickness Specific surface area (m2/g)

Sand 2 mm 2 mm 5 × 10−4

Sand 1 mm 1 mm 10−3

Kaolinite 0.1–4 μm 0.05–2 μm 10–20
Illite 0.1–4 μm ≥ 3 nm 65–100
Montmorillonite 1–2 μm 1–20 nm up to 840

Source:  Mitchell, J.K. Fundamentals of Soil Behavior, 2nd edn, New York, John Wiley & Sons, 1993. With 
permission.
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In most geotechnical engineering applications, however, the appropriate comparison is 
between the surface forces and the gravitational force due not just to the mass of a single 
particle, but to the total mass of soil above the particle in a deposit. This is more or less 
the same, whether the deposit is sandy or clayey. Thus, in soil mechanics and geotechnical 
engineering, the surface forces between clay particles are not generally significant, and they 
do not have to be taken into account by means of some special form of analysis. Although 
surface forces and chemistry of pore water might influence the structure of newly deposited 
clay, in practical terms, the laws that apply to soils made up of clay particles as well as to 
those made up of non-clay particles are similar. Certain effects might be more pronounced 
in clays than in sands (see Chapter 4), but this is due to the difference in particle size, rather 
than to the influence of surface chemistry.

The strength of an assemblage of soil particles whether sand or clay, comes primarily 
from interparticle friction. In some natural deposits, the particles may be lightly cemented 
together, but this is more common in sands than in clays. Although a lump of moist clay 
can be moulded by hand (whereas a lump of moist sand would fall apart) this is not due to 
interparticle or ‘cohesive’ bonds. If it were, the clay would remain intact even after being 
immersed in water for a week or so. Unless the particles are cemented—in which case, the 
soil will probably be too hard or too brittle to mould by hand—a small lump of sand or 
clay will disintegrate very easily if it is kept immersed in water for long. Clay soils can be 
moulded in the hand because the spaces or voids between the particles are small enough to 
hold water at a negative pressure, essentially by capillary action. It may be, however, that 
the negative pore water pressures in a stiff paste recently made by mixing clay particles 
with water result from the tendency of water to adsorb on clay particles, and is therefore 
due to surface effects. Either way, this negative pore water pressure—or suction—pulls the 
particles together, giving the soil mass some shear strength. This concept is discussed in 
Section 1.7.

1.4.5 Organic or non-mineral soils

Some soils (notably peat) do not result from the breakdown of rocks, but from the decay of 
organic matter. Like topsoil, these soils are not suitable for engineering purposes. Peat is 
very highly compressible, and will often have a mass density which is only slightly greater 
than that of water. Unlike topsoil, organic soils may be naturally buried below the surface, 
and their presence is not necessarily obvious. This can make life difficult for the civil engi-
neer, because it is important that these soils are detected at an early stage of a project, and 
if necessary, removed. They should not be relied on for anything, except to cause trouble.

Much of the discussion in Sections 1.4.1 to 1.4.4 is based on the work of Mitchell (1993), 
to which book the reader is referred to for further details.

1.5 PHASE RELATIONSHIPS FOR SOILS

Soil is essentially made up of solid particles, with spaces or voids in between. The  assemblage 
of particles in contact is usually referred to as the soil matrix or the soil skeleton. In conven-
tional soil mechanics, it is assumed that the voids are, in general, occupied partly by water 
and partly by air. This means that an element of ‘soil’ (by which we mean the solid particles 
plus the substance(s) in the voids they enclose) may be a three-phase material, comprising 
some solid (the soil grains), some liquid (the pore water) and some gas (the pore air). This 
is illustrated schematically in Figure 1.7. A given mass of soil grains in particulate form 
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occupies a larger volume than it would if it were in a single solid lump, because of the vol-
ume taken up by the voids.

Figure 1.7 gives rise to a number of fundamental definitions, known as phase relation-
ships, which tell us about the relative volumes of solid, liquid and gas. The phase relation-
ships are important in characterising the state of the soil. They are:

 1. The void ratio, which is defined as the ratio of the volume of the voids to the volume 
of solids (i.e. the soil particles), and is conventionally given the symbol e:

 Void ratio, e = volume of voids ÷ volume of solids = Vv/Vs (1.1)

 2. The specific volume, which is defined as the actual volume occupied by a unit volume 
of soil solids; it is conventionally given the symbol v:

 Specific volume, v = total volume ÷ volume of solids
 = (Vs + Vv)/Vs = 1 + e (1.2)

 3. The porosity, which is defined as the volume of voids per unit total volume, and is 
given the symbol n:

 Porosity, n = volume of voids ÷ total volume
 = Vv /(Vs + Vv) = e/(1 + e) = (v − 1)/v (1.3)

 4. The saturation ratio, which is defined as the ratio of the volume of water to the volume 
of voids, and is usually given the symbol S or Sr:

 Saturation ratio, Sr = volume of water ÷ volume of voids
 = Vw/Vv (1.4)

  The saturation ratio must lie in the range 0 ≤ Sr ≤ 1. If the soil is dry, Sr = 0. If the 
soil is fully saturated, Sr = 1.

  Alternatively, the state of saturation of the soil may be quantified by means of the air 
content A, which is defined as the ratio of the volume of air to the total volume,

 Air content, A = volume of air ÷ total volume
 = Va/(Vs + Vv)

 Substituting Va = Vv − Vw, and dividing through the top and the bottom of the defini-
tion of A by the volume of voids Vv, it can be shown that

 A = (v − 1)(1 − Sr)/v = n(1 − Sr)

Soil
solids

+
voids

Soil
solids

Total
volume

Vt

Volume
of

solids

Void
volume

Air
WaterVv

Va ma = 0
mw

ms

Vw

VsVs

Volumes Masses

Figure 1.7 Soil as a three-phase material.
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 5. The water content (or moisture content), which is defined as the ratio of the mass of 
water to the mass of soil solids, and is given the symbol w:

 Water content, w = mw/ms 

The void ratio, specific volume and porosity are all indicators of the efficiency with which 
the soil particles are packed together. They are not independent: if one is known, the other 
two may be calculated. The choice of which one to use is largely a matter of personal 
preference. The specific volume v and the void ratio e are more commonly used than the 
 porosity n. The specific volume v is often the most mathematically convenient.

Sands normally have specific volumes in the range 1.3–2.0 (e = 0.3–1.0). For clays, the 
specific volume depends on the current stress state and stress history, and also the mineral-
ogy. The specific volume of a montmorillonite (such as the bentonite mud used as a tempo-
rary support for boreholes and trench excavations), in which surface forces are particularly 
significant, may be as high as 10 at low stresses. In contrast, the maximum specific volume 
of a kaolinite is unlikely to exceed 3.5. At high stresses, specific volumes as low as 1.3 can 
be achieved.

The specific volume and the saturation ratio cannot be measured directly. The water con-
tent is measured by taking a sample of the soil and weighing it to find its mass: this gives the 
mass of soil solids ms plus the mass of water mw. The soil sample is then dried in an oven at 
a temperature of 105°C for 24 hours, to evaporate the water. It is then re-weighed, to deter-
mine the mass of the soil particles ms. The water content of the original sample, mw/ms, may 
then be calculated. A typical calculation is shown in Example 1.1.

Example 1.1: Determination of water content

 1. Mass of container, empty (mt) = 21.32 g
 2. Mass of container + wet soil sample (mt + ms + mw) = 83.76 g
 3. Mass of container + dry soil sample (mt + ms) = 65.49 g

 Hence,
 4. Mass of soil solids, ms = (iii) − (i) = 65.49 g − 21.32 g = 44.17 g
 5. Mass of water mw = (ii) − (iii) = 83.76 g − 65.49 g = 18.27 g

water content w = mw ÷ ms = (v) ÷ (iv) = 18.27 g ÷ 44.17 g = 41.36%

In many practical situations, the voids are full of water. In this state, the saturation ratio 
Sr = 1 (because the volume of air Va = 0 and the volume of water Vw is equal to the total void 
volume Vv), and the soil is described as saturated or fully saturated. This reduces the number 
of phases present to two, which simplifies the description of the mechanical behaviour enor-
mously. In this book, except for Section 5.19 on unsaturated soils and elsewhere as explicitly 
stated, it is assumed that the soil is fully saturated.

If the soil is dry, Sr = 0 (because the volume of water Vw = 0). A dry soil can be treated 
as a single-phase material, and is usually easier to analyse than a saturated one. In tem-
perate regions, the natural soils which are of interest to civil engineers are usually below 
the water table or groundwater level, and are therefore effectively saturated. A further 
simplification arising from the soil being either saturated or dry is that the liquid or gas 
phase is then distributed uniformly throughout the soil element. In unsaturated soils this 
may not be the case, because as the soil dries, water will tend to retreat into the smallest 
pores.

Compression of a soil element requires a rearrangement of the soil particles relative to 
one another, to bring about a reduction in the void ratio of the soil skeleton. In principle, 
this could be accompanied by the compression of the soil grains and/or the compression 
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of the pore fluid (gas or liquid). In practice, except perhaps at very high stresses or with 
extremely dense soils, it is usually found that the soil particles and the water in the pores 
are incompressible in comparison to the soil skeleton. This means that any change in the 
overall volume of an element of fully saturated soil must be due to a change in the void ratio 
alone. Compression or expansion must, therefore, be accompanied by the flow of water 
out of or into the soil element. In an unsaturated (or partly saturated) soil, changes in 
void volume can be accommodated by the compression or expansion of the air. Air cannot 
reasonably be regarded as incompressible in comparison with the soil matrix. This is one 
reason why unsaturated or partly saturated soils are much more difficult to analyse than 
fully saturated ones.

The void ratio, specific volume and porosity are not soil properties or constants, but vary 
depending on whether the soil particles are densely or loosely packed. It will be seen in 
Section 4.2 that the void ratio of a saturated clay depends on the maximum vertical load 
to which it has been subjected to in the past, and the vertical load which is currently being 
applied—in other words, on its stress history and current stress state. For sands, the void 
ratio is not uniquely related to the stress state and stress history. One reason for this is that 
the initial void ratio of a sandy deposit depends largely on the conditions under which it was 
laid down (e.g. in air or under water). Subsequent densification of a sand is usually achieved 
more easily by vibration than by the application of a static stress.

Dense soils, which have low specific volumes, are generally stiffer than loose soils, which 
have high specific volumes. The initial judgement as to whether a particular specific vol-
ume v is ‘low’ or ‘high’ depends on where it lies in relation to the maximum and minimum 
achievable specific volumes vmax and vmin for the soil in question (Kolbuszewski, 1948). For 
sandy soils, this can be quantified by means of the density index (also known as the relative 
density), which is given the symbol ID:

 ID = (vmax − v)/(vmax − vmin) = (emax − e)/(emax − emin) (1.6)

If v = vmax, the sand is as loose as it can be and ID = 0. If v = vmin, the sand is as dense as 
it can be and ID = 1.

The foregoing discussion, the rest of this book and indeed most of conventional soil 
mechanics is based on the assumption that the particles are effectively incompressible and 
undegradable such that both the mass of solids, ms, and the volume of solids, vs, are constant. 
However for certain soil-like materials including some wastes, vs may change, or appear to 
change, because the particles are chemically or biologically degradable or compressible. In 
these conditions, a reduction in the volume of solids of Δvs may result in a reduction in total 
volume of anywhere between zero and Δvs, and possibly even more than Δvs if the structure 
collapses as a result of the loss of solid material.

McDougall and Pyrah (2004) proposed a constitutive relationship between the change in 
solid volume Δvs and the associated change in void volume Δvv, of the form Δvv = Λ.Δvs. 
If the total volume remains constant, the void volume must increase by an amount Δvs to 
compensate; the void ratio will then increase and the parameter Λ = −1. If the reduction in 
solid volume Δvs causes the total volume to change by the same amount, the void volume 
will remain the same but the void ratio will increase, and Λ = 0. If Λ > 0 the void volume 
decreases but by less than Δvs, so that the void ratio will increase. If Λ = e, the void ratio 
remains constant as the overall volume decreases. If Λ > e, the void ratio reduces because the 
loss of solid material leads to a proportionately greater reduction in void volume, perhaps as 
a result of structural collapse. This is a useful concept for dealing with materials where the 
volume and/or the mass of the solid matter is not conserved, but is not needed for the more 
conventional materials discussed in the rest of this book. 
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1.6 UNIT WEIGHT

The unit weight of a soil is defined as the weight of a unit volume, in kN/m3. It is con-
ventionally given the symbol γ. The unit weight is equal to the overall mass density of the 
soil—sometimes called the bulk density, ρb—(in kg/m3) multiplied by the gravitational con-
stant, g = 9.81 m/s2. In soil mechanics, the unit weight is usually used in preference to mass 
density. This is because it facilitates the calculation of vertical stresses at depth, which often 
arise primarily as a result of the weight of the overlying soil.

With reference to Figure 1.7, the unit weight γ can be calculated as follows:

 γ = (Total weight) ÷ (Total volume)
 = (g × Total mass) ÷ (Total volume)
 = g × (ms + mw + ma) ÷ (Vs + Vw + Va) (1.7)

Now, the mass of air ma ≈ 0, and the volume of water Vw added to the volume of air 
Va is equal to the volume of voids Vv. Also, Vv = e × Vs, where e is the void ratio from 
Equation 1.1, and mw = w × ms, where w is the water content from Equation 1.5.

Substituting these into Equation 1.7,

 γ = [g × (1 + w)ms] ÷ [Vs(1 + e)] = [g × ms/Vs] × [(1 + w)/(1 + e)]

But ms/Vs = ρs, where ρs is the density of the soil grains, and ρs = Gsρw where Gs is the 
density of the soil particles relative to that of water (Section 1.6.1) and ρw is the density of 
water (ρw = 1000 kg/m3 at a temperature of 4°C). Also, 1 + e = v. Thus,

 γ = [(gGsρw) × (1 + w)]/[v] = [Gs(1 + w)/v]γw (1.8)

where γw = gρw is the unit weight of water. (Taking ρw = 1000 kg/m3, γw = 9.81 kN/m3; γw is 
often taken as 10 kN/m3 in geotechnical engineering calculations.) Alternatively, we could 
substitute into Equation 1.7 as follows:

 ma ≈ 0

 Vw + Va = Vv

 Vv = e × Vs (from Equation 1.1)

 mw = ρw × Vw (mass of water = density of water × volume of water)

 Vw = Sr × Vv (from Equation 1.4)

 ms = Gs × ρw × Vs (mass of soil = density of soil × volume of soil)

giving

 γ = [(g × ρw × Vs)(Gs + eSr)] ÷ [Vs(1 + e)]

 = {[gρw][Gs + (v − 1)Sr]}/v

 = {[Gs + (v − 1)Sr]/v} γw (1.9)
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If Equations 1.8 and 1.9 are to be compatible,

 [(Gsγw) × (1 + w)] = [(γw)(Gs + eSr)]

Dividing both sides by Gsγw

 1 + w = 1 + (eSr/Gs)

giving

 w = eSr/Gs

or

 Sr = wGs/e = wGs/(v − 1) (1.10)

From Equation 1.4, Sr = Vw/Vv. But Vw = mw/ρw and Vv = eVs = ems/(Gsρw).
Substituting these into Equation 1.4

 Sr =  Vw/Vv = (mw/ρw) ÷ (ems/Gsρw) = (mw/ms)Gs/e = wGs/e and Equation 1.10 is shown 
to be correct.

If the soil is saturated, substitution of Sr = 1 into Equation 1.9 gives the saturated unit 
weight,

 γsat = [(Gs + v − 1)/v]γw (1.11)

Typically, γsat will be in the range 16–22 kN/m3, unless the soil particles are of predomi-
nantly organic origin (such as peat).

Also, for a saturated soil by substitution of Sr = 1 into Equation 1.10,

 v = 1 + wGs or e = wGs

If the soil is dry, substitution of w = 0 into Equation 1.8, or substitution of Sr = 0 into 
Equation 1.9, gives the dry unit weight γdry as

 γdry = Gsγw/v (1.12)

At a given specific volume or void ratio, the actual unit weight of a soil lies somewhere 
between γdry (if Sr = 0) and γsat (if Sr = 1).

Example 1.2:  Calculating the specific volume and saturation ratio from the water 
content and unit weight

A sample of soil has water content w = 14.7%, and a cube of dimensions 10 cm × 10 cm × 
10 cm weighs 18.4 N. The particle relative density Gs = 2.72. Calculate the unit weight, 
specific volume and saturation ratio. What would be the unit weight and water content if 
the soil had the same specific volume, but was saturated? What would be the unit weight 
if the soil had a water content of zero?
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The unit weight γ is given by the total weight divided by the total volume of the cube 
sample:

 γ = 18.4 N ÷ (0.1 × 0.1 × 0.1) m3 = 18, 400 N/m3 = 18.4 kN/m3

Rearranging Equation 1.8 to determine the specific volume v,

 v = [Gs × (1 + w)] ÷ (γ/γw)
 = (2.72 × 1.147) ÷ (18.4/9.81) = 1.663

The saturation ratio Sr is calculated using Equation 1.10:

 Sr = wGs/(v − 1)
 Sr = 0.147 × 2.72 ÷ 0.663 = 0.603 or 60.3%

If the soil were saturated at the same specific volume, the water content wsat would be 
given by Equation 1.10 with Sr = 1:

 wsat = (v − 1)/Gs = 0.663 ÷ 2.72 = 0.244 or 24.4%

The saturated unit weight γsat would be given by Equation 1.11:

 γsat = [(Gs + v − 1)/v]γw γsat = [(2.72 + 0.663)/1.663] × 9.81 kN/m3 = 19.96 kN/m3

The unit weight at the same specific volume but zero water content is the dry unit 
weight γdry, given by Equation 1.12:

 γdry = Gsγw/v
 γdry = [(2.72 × 9.81 kN/m3) ÷ 1.663] = 16.05 kN/m3

Although several of the Equations 1.8 to 1.12 have been used in Example 1.2, there is no 
point in trying to memorise them: they are too complex. If you try, you will almost certainly 
remember them incorrectly. What is important is that you should be able to derive Equations 
1.8 to 1.12 by yourself, starting from the conceptual model of soil as a three-phase material 
shown in Figure 1.7 and the phase relationships that arise from it.

1.6.1 Measuring the particle relative density Gs

The density of the soil grains relative to that of water (known as particle relative density 
or grain specific gravity, Gs,) is measured using a Eureka can, which is a metal container 
with an overflow device set at a certain level. The can is filled with water until it starts to 
overflow. After any excess water has drained off, a known mass of dry soil grains is poured 
gently into the can. The volume of water which overflows from the can due to the immer-
sion of the soil grains is measured: this is equal to the volume of the grains. The density and 
relative density of the soil grains can then be calculated.

An alternative procedure involves the use of a 500-ml gas jar or a conical-topped pyc-
nometer for coarse soils, or a narrow-necked 50-ml density bottle for fine soils. First, the 
empty container is weighed (m1). A quantity of dry soil is then placed in the container, and 
the total mass of the container and the dry soil is determined (m2). The soil sample is then 
flooded with de-aired water, and the container is agitated to remove air bubbles. The con-
tainer is filled to the top with water and weighed again (m3). The container is then washed 
out, filled to the top with water alone and weighed again (m4). The mass of the dry soil 
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particles is given by (m2 − m1). The difference between the mass of water required to fill the 
whole container (m4 − m1) and the mass of water required to fill the part of the container 
not occupied by the dry soil grains (m3 − m2) gives the mass of water displaced by the soil 
particles, (m4 − m1) − (m3 − m2). The relative density of the particles is equal to the mass of 
the dry soil particles divided by the mass of water they displace:

 Gs = (m2 − m1)/[(m4 − m1) − (m3 − m2)]

The accuracy of the second method depends on filling the container exactly to the top 
before weighing it to determine m3 and m4. The containers used are all designed to facili-
tate this. The narrow neck of the density bottle minimises the effect of unavoidable small 
 discrepancies in level. The top of a gas jar is closed off with a ground glass plate, slid into 
place over a ground glass top flange, in order to exclude air. A pycnometer has a conical top 
(like an inverted, cut-off funnel), which again minimises errors due to small discrepancies in 
the level to which the vessel is filled.

The relative density of the soil grains depends on their mineralogy. Gs ≈ 2.65 for quartz 
(Blyth and de Freitas, 1984), and most common soils have Gs in the range 2.6–2.8.

Example 1.3:  Determining the particle relative density, specific volume and 
unit weight from experimental results

 1. 2 kg of dry sand is poured into a Eureka can, where it displaces 755 cm3 of water. 
Calculate the relative density (specific gravity) of the sand particles.

 2. When 2 kg of the same sand is poured into a measuring cylinder of diameter 6 cm, 
it occupies a total volume of 1200 cm3. Calculate the specific volume and unit 
weight in this state.

 3. The measuring cylinder is carefully filled with water up to the level of the top of 
the sand, so that the total volume is still 1200 cm3. Calculate the unit weight of the 
saturated sand in this condition.

 4. The side of the measuring cylinder is tapped gently several times, and the level of 
the sand surface settles to an indicated volume of 1130 cm3. Calculate the specific 
volume and unit weight of the saturated sand in its dense state.

Take the unit weight of water γw as 9.81 kN/m3, and the mass density of water as 
1000 kg/m3.

SOluTIOn

 1. The Eureka can experiment tells us that the volume occupied by 2 kg of sand par-
ticles is 755 cm3. This does not change, irrespective of the overall volume occupied: 
changes in the total volume occur due to changes in the volume of the voids only.

The mass density of the sand particles is given by their mass divided by the vol-
ume actually occupied, ρs = 2 kg ÷ (755 × 10−6 m3) = 2649 kg/m3.

The relative density (specific gravity) of the soil particles Gs is equal to the mass 
density of the sand particles divided by the mass density of water,

 Gs = 2649 kg/m3 ÷ 1000 kg/m3 = 2.65

 2. In the loose state, the specific volume v (defined as the total volume occupied by a 
unit volume of soil particles) is given by

 v = Vt/Vs = 1200 cm3/755 cm3 = 1.589
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The void ratio e = v−1 = 0.589 and porosity n = (v−1)/v = 0.371. The unit 
weight γ is equal to the total weight divided by total volume:

 γ = (2 kg × 9.81 N/kg) ÷ (1200 × 10−6m3)
 = 16,350 N/m3 = 16.35 kN/m3

 3. The initial volume of voids is (1200 − 755) = 445 cm3. On flooding, there is no 
change in the volume of the sand sample, but the total weight has been increased 
by the weight of 445 cm3 of water, that is, 445 × 10−6 m3 × 1000 kg/m3 = 0.445 kg. 
The total weight of the soil is now 2.445 kg.

  The unit weight is now

 γ = Wt/Vt = (2.445 kg × 9.81 N/kg) ÷ (1200 × 10−6 m3)
 = 19,989 N/m3 = 19.99 kN/m3

 4. With the sand denser, the level of the water surface remains the same. In effect, the 
sand settles through the water. The new specific volume v is given by

 v = Vt/Vs = 1130 cm3/755 cm3 = 1.497

  (The void ratio e = v−1 = 0.497 and the porosity n = (v−1)/v = 0.332)
The unit weight γ is equal to the total weight divided by the total volume. The 

new volume of voids is (1130 − 755) = 375 cm3. The total weight of the sand 
sample, not including the surface water, is now 2 kg plus the weight of 375 cm3 of 
water, that is, 2.375 kg.

 γ = Wt/Vt = (2.375 kg × 9.81N/kg) ÷ (1130 × 10−6 m3)
 = 20,618 N/m3 = 20.62 kN/m3

1.7 EFFECTIVE STRESS

We have already established that a saturated soil comprises two phases: soil particles and 
pore water. The strengths of these two phases, in terms of their abilities to withstand shear 
stress (i.e. stress that acts parallel to a plane, causing a shearing distortion of the body to 
which it is applied), are very different. The shear strength of water is zero. The only form of 
stress that static water can sustain is an isotropic pressure, which is the same in all directions. 
The soil skeleton, however, can resist shear. It does so partly because of the interlocking of the 
particles, but mainly because of interparticle friction. The frictional nature of the strength of 
the soil skeleton means that the higher the normal stress pushing the particles together, the 
greater the shear stress that can be applied before relative slip between particles can occur.

Friction and interlocking are important concepts, to which we will return in Chapter 2. 
For the present, the main point is that because the strengths of the soil skeleton and pore 
water are so different, it is necessary to consider the stresses acting on each phase separately.

As the pore water cannot take shear, all shear stresses must be carried by the soil skeleton. 
The normal total stress applied to a soil element may be separated quite simply, by means of 
the principle of effective stress (Terzaghi, 1936). The effective stress, σ', is the component of 
normal stress taken by the soil skeleton. It is the effective stress which controls the volume 
and strength of the soil. For saturated soils, the effective stress σ' may be calculated from the 
total normal stress σ and the gauge3 pore water pressure u by Terzaghi’s equation (Figure 1.8):

 σ′ = σ − u (1.13)



Origin and classification of soils 23

© 2010 Taylor & Francis Group, LLC

Equation 1.13 is, without doubt, the most important equation in soil mechanics. There 
are not many equations in soil mechanics that need to be remembered, but this is one of 
them. Karl Terzaghi is universally regarded as the founder of modern soil mechanics: most 
of the techniques described in this book are underpinned by the concept of effective stress.

The important point about effective stress as defined by Equation 1.13 is that it controls 
the volumetric behaviour and strength of the soil. It is not intended to represent the inter-
granular pressure at the grain contact points, although in some texts the terms are treated as 
synonymous. Mitchell and Soga (2005) show that the intergranular pressure and Terzaghi’s 
effective stress, as shown in Equation 1.13 will be similar unless the ‘long-range’ interpar-
ticular forces (i.e. those such as van der Waal’s and electrostatic attractions and double layer 
repulsions, which do not depend on particle to particle contact) are significantly out of bal-
ance. In most soils (as discussed in Section 1.4.4), this is not the case.

It was shown by Skempton (1960) that strictly, the effective stress controlling shear 
strength in soils, concrete and rocks is
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where ac is the ratio of the interparticle contact area to the total cross-sectional area, ψ is 
the intrinsic friction angle of the material from which the solid particles are made and ψ′ 
is the effective friction angle of the soil. Normally in soils, ac · tan ψ is much smaller than 
tan ψ′ (mainly because ac is very small) and Terzaghi’s Equation holds. Similarly, the effec-
tive stress controlling volume change is
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where Cs is the compressibility of the soil grains and C is the overall compressibility of the 
soil matrix. Again, normally in soils, Cs is much smaller than C (i.e. the soil particles are 
comparatively incompressible) and the more rigorous expression reduces to Equation 1.13. 
In rocks and concrete, however, ac and Cs/C may not be small and Terzaghi’s effective stress 
equation will not then apply.

1.7.1 Calculating vertical stresses in the ground

The ability to calculate effective stresses in the ground is central to the application of the 
principle of effective stress in soil mechanics and geotechnical engineering. Effective stresses 
(σ′) are usually deduced from the total stress (σ) and the pore water pressure (u), using 
Equation 1.13.

σ´
σ

τ τ
u

Total stress      =       Effective stress       +         Pore water pressure

Figure 1.8 The principle of effective stress.
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Pore water pressures (u), and hence vertical effective stresses ( )′σv , are easy to calculate 
if the water in the soil pores is stationary and the depth below the soil surface at which 
the (gauge) pore water pressure is zero is known. (In the field, the natural pore water is 
termed groundwater. The depth at which the pore water pressure is zero is known as the 
 ground water level or the water table, or—in three dimensions—the piezometric surface.)

Figure 1.9a shows a soil element at a depth z below the ground surface. The water table, 
which indicates the level at which the pore water pressure u is zero, is at a depth, h. To cal-
culate the vertical total stress, σv, acting on the soil element, we need to imagine a column of 
soil above it as shown in Figure 1.9b. The cross-sectional area of this column is equal to the 
cross-sectional area of the element, A. The height of the column is z, and we assume that the 
unit weight of the soil, γ, is the same above the water table as below it.

There can be no vertical shear stress acting on the sides of the column, because symmetry 
requires that any shear stress present acts in the same direction on the adjacent column. The 
condition of equilibrium requires that it acts in the opposite direction. The conditions of 
symmetry and equilibrium can therefore only be satisfied if the shear stress is zero.

The weight of the column of soil is

 A (m2) × z (m) × γ (kN/m3)

The resultant force (kN) due to the total vertical stress, σv (kN/m2) acting on its base is

 A (m2) × σv (kN/m2)

If the column of soil is in vertical equilibrium, these are equal and

 σv = γz (kN/m2)

In geotechnical engineering, the usual unit of stress is the kiloPascal (kPa). One kilo Pascal 
(kPa) is identical to one kiloNewton per square metre (kN/m2), but the symbol is more con-
venient to write.

The rate of increase in vertical total stress with depth dσv/dz is equal to γ, the unit weight 
of the soil: these stress conditions are sometimes referred to as geostatic.

If the groundwater is stationary, the pore water pressure will (by a similar argument) be 
hydrostatic below the water table, giving

 u = γw(z − h)

If we assume that the groundwater is stationary, and in continuous contact through the 
pores, we can deduce that the pore water pressure is unaffected by the presence of soil 
particles. The pore water pressure at a depth (z − h) below the water table is the same as it 
would be at a depth (z − h) below the water surface in a lake or a swimming pool.

Groundwater level

Column of soil
area A, unit weight �

Soil
element

Soil
element

h

z z

σv
(a) (b)

Figure 1.9 Calculation of vertical stress. (a) Location of soil element and (b) column of soil above it.
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From Equation 1.13, the vertical effective stress σv is

 σv = σv − u = γz − γw(z − h)kPa (1.14)

Equation 1.14 should not be committed to memory: it does not represent a general case. 
The important thing is to understand how to calculate vertical total stresses and pore water 
pressures, and how to use Equation 1.13 to calculate the resulting effective stress.

In a coarse-grained soil (such as a sand or gravel), it is likely that the soil above the water 
table will not remain saturated. This will lead to a reduction in the unit weight γ of the soil 
above the water table, which would need to be taken into account in calculating the vertical 
total stress σv at depth z. A fine-grained soil (such as a silt or clay) might remain saturated 
above the water table by means of capillary action, in which case its unit weight will not be 
so different as to be significant. This point is discussed more fully in Section 3.2.

Surface loads due to embankments and buildings with shallow foundations will impose 
additional shear and vertical total stresses. Excavation processes will alter pore water pres-
sures and reduce vertical total stresses. The calculation of pore water pressures when the 
groundwater is not stationary—as will usually be the case in the vicinity of an excava-
tion—is addressed in Sections 3.3 to 3.12. The calculation of horizontal stresses, which are 
particularly important in the design of retaining walls, is addressed in Section 7.5.

Example 1.4: Calculating vertical total and effective stresses

The ground conditions at a particular site are as follows:

Depth below ground level (m) Description of stratum Unit weight (kN/m3)

0–1 Made ground/topsoil 17
1–3 Fine sand 18
3–6 Saturated fine sand 20
Below 6 Saturated stiff clay 19

Pore water pressures are initially hydrostatic below the groundwater level, which is at a 
depth of 3 m. Calculate the vertical total stress, pore water pressure and vertical effective 
stress at depths of:

 1. 1 m
 2. 3 m
 3. 6 m
 4. 10 m.

Take the unit weight of water as 10 kN/m3. Repeat the calculations for the condition 
when the water table rises to the top of the fine sand layer. (Assume that this increases the 
unit weight of the upper 2 m of the fine sand from 18 kN/m3 to 20 kN/m3 as a result of its 
becoming saturated). Plot graphs showing the variation in vertical total stress and pore 
water pressure with depth for both cases, indicating the vertical effective stress.

SOluTIOn

 1. With the water table at a depth of 3 m below ground level
 a. At a depth of 1 m, the vertical total stress σv due to the weight of overlying 

topsoil is 1 m × 17 kN/m3 = 17 kPa.
The soil here is above the water table, so assume that the pore water 

pressure, u = 0. Hence from Equation 1.13, the vertical effective stress 
′σ = σ − ′σ =u, giving 17 kPa.v v v

 b. At a depth of 3 m, the vertical total stress σv due to the weight of overlying 
topsoil and fine sand is (1 m × 17 kN/m3) + (2 m × 18 kN/m3) = 53 kPa.
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The soil here is at the water table level, so the pore water pressure, u = 0. 
Using Equation 1.13, the vertical effective stress σ′v = σv − u, giving σ′v = 53 kPa.

 c. At a depth of 6 m, the vertical total stress σv due to the weight of overlying top-
soil and fine sand is (1 m × 17 kN/m3) + (2 m × 18 kN/m3) + (3 m × 20 kN/m3) = 
113 kPa.

The soil here is 3 m below the water table level, so the pore water pressure 
u = 3 m × 10 kN/m3 = 30 kPa.

Using Equation 1.13, the vertical effective stress −′σ = σ uv v  = 113 kPa − 
30 kPa, giving ′σv = 83 kPa.

 d. At a depth of 10 m, the vertical total stress σv due to the weight of overlying topsoil, 
fine sand and clay is (1 m × 17 kN/m3) + (2 m × 18 kN/m3) + (3 m × 20 kN/m3) + 
(4 m × 19kN/m3) = 189 kPa.

The soil here is 7 m below the water table level, so the pore water pressure, 
u = 7 m × 10 kN/m3 = 70 kPa.

Using Equation 1.13, the vertical effective stress −′σ = σ uv v  = 189 kPa − 
70 kPa, giving σ' = 119 kPa.

 2. With the water table at a depth of 1 m below ground level
 a. At a depth of 1 m, there is no change from the previous situation, so that σv = 

17 kPa, u = 0 and σ′v = 17 kPa.
 b. At a depth of 3 m, the vertical total stress, σv due to the weight of overlying 

topsoil and fine sand is (1 m × 17 kN/m3) + (2 m × 20kN/m3) = 57 kPa.
This depth is now 2 m below the new water table, so the pore water pressure 

u = 2 m × 10 kN/m3 = 20 kPa. Using Equation.1.13, the vertical effective stress 
−′σ = σ uv v , giving ′σv = 37 kPa.

 c. At a depth of 6 m, the vertical total stress σv due to the weight of overlying top-
soil and saturated fine sand is (1 m × 17kN/m3) + (5 m × 20kN/m3) = 117 kPa. 

This depth is now 5 m below the water table level, so the pore water pres-
sure, u = 5 m × 10 kN/m3 = 50 kPa.

Using Equation 1.13, the vertical effective stress −′σ = σ uv v  = 117 kPa− 50 kPa, 
giving ′σv = 67 kPa.

 d. At a depth of 10 m, the vertical total stress σv due to the weight of overlying 
topsoil, fine sand and clay is (1 m × 17 kN/m3) + (5 m × 20 kN/m3) + (4 m × 
19 kN/m3) = 193 kPa.

This depth is now 9 m below the water table level, so the pore water pressure 
u = 9 m × 10 kN/m3 = 90 kPa.

Using Equation 1.13, the vertical effective stress −′σ = σ uv v  = 193 kPa − 
90 kPa, giving ′σv = 103 kPa.

Distributions of vertical total stress, pore water pressure and vertical effective stress for 
each case are plotted in Figure 1.10.
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Figure 1.10  Variation in vertical total stress σv and pore water pressure u with depth for the ground 
 conditions in Example 1.4: (a) water table at 3 m depth (b) water table at 1 m depth below the ground 
surface. Vertical effective stress σ′v is given by σ′v = σv – u and is shown shaded.
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1.8 PARTICLE SIZE DISTRIBUTIONS

We have already mentioned that civil engineers describe and classify soils according to the 
particle size, rather than according to their age, origin or mineralogy. The principal reason 
for this is that civil engineers are interested mainly in the mechanical behaviour of soils, 
which depends primarily on particle size.

We will see in Chapters 3 and 4 that one of the major features which distinguishes a sand 
from a clay in the mind of the engineer is the ease with which water may flow through the 
network of voids between the soil particles. This property is known as the permeability: it 
is defined more formally in Section 3.3. As the size of the voids is governed by the size of 
the smallest particles (because these can fit into the voids between the larger particles), the 
permeability of an unstructured soil is related approximately to the maximum size of the 
smallest 10% of particles by mass.

In sands and gravels, water flows very easily through the voids. The result is that a zone 
of sand or gravel will not be able to sustain a pore water pressure which is very different 
from that in the surrounding ground, provided it is free to drain. In clays, water can move 
through the voids only slowly. This means that the pore water pressure in a zone of clay 
might remain considerably above or below that of the surrounding ground for compara-
tively longer periods of time.

The application of a load (e.g. by the construction of a new building) to a saturated soil 
will tend to cause a transient (temporary) increase in pore water pressure within the loaded 
area. In a sand this additional pore water pressure will dissipate very quickly, but in a 
clay the process might take years or decades. As the pore pressure dissipates, the effective 
stresses increase and the soil is compressed. This process is known as consolidation. Clays 
are generally more compressible than sands and gravels, and therefore consolidate more, 
as well as more slowly. As a result of these two factors acting in combination, an engineer 
designing the foundations of a building on a clay soil would be concerned about the possibil-
ity of large settlements developing over a long period of time. In the design of a building on 
a sandy soil, the potential for large, delayed settlements would probably not be a concern.

In principle, both clays and sands consolidate in response to the application of load. In 
practice, sands consolidate immeasurably quickly, so that there is no point in attempting 
to carry out an analysis of the process, or even to quantify the parameters which con-
trol it. This is one of the reasons why, although the same fundamental rules govern the 
basic engineering behaviour of most soils, engineers prefer to try to categorise a soil as 
‘clay’ or ‘sand’.

When engineers classify a soil as clay, they do so on the basis of its particle size rather 
than its mineralogy. It is apparent from Section 1.4, however, that there is an approximate 
relationship between the size of a particle and its strength and toughness. This means that 
most clay-sized particles are, in fact, composed of clay minerals.

One common system of soil classification according to particle size was given in Figure 
1.3. Natural soils comprise an assortment of many different-sized particles, and should be 
described with reference to the range and frequency distribution of particle sizes they con-
tain. This is conventionally and conveniently achieved by means of a cumulative frequency 
curve, which shows the percentage (of the overall mass) of particles that are smaller than a 
particular size. Particle sizes are plotted to a logarithmic scale on the x-axis, and the per-
centage of the sample (by mass) smaller than a given particle size is plotted on the y-axis. 
In the UK, it is conventional to plot the particle size so that it increases from the left of the 
diagram to right. In the USA, the particle size increases from the right to the left. Typical 
particle size distribution curves (a term usually abbreviated to PSD), plotted using the UK 
convention, are shown in Figure 1.11.
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A soil which has a reasonable spread of particle size (represented by a smooth, concave 
PSD such as curve (1) in Figure 1.11) is conventionally described as well-graded. A soil which 
consists predominantly of a single particle size (whose PSD will have an almost vertical step, 
as in curve (2) in Figure 1.11) is described as uniform. A soil which contains small and large 
particles but fewer particles of intermediate size (whose PSD will have a horizontal step) is 
described as gap-graded. Uniform and gap-graded soils are sometimes described as poorly 
graded, but this last term is ambiguous and should be avoided. Even the term well-graded 
presupposes that the soil will need to be compacted: the soil is described as well-graded for 
this purpose because it contains a wide range of particle sizes, which will pack together 
well to fill all the voids. A soil suitable for use as a filter would probably be a predominantly 
single-sized sand or gravel.

Particle size distribution curves for sands, by which we mean the portion of a soil whose 
particle size is greater than 0.063 mm (63 μm), are obtained by running the sample through 
a stack of sieves. Each sieve has a mesh of a certain single size, so that it will only allow 
particles smaller than the holes in the mesh to pass through it. The sieves are arranged in 
order of mesh size, with the largest mesh at the top of the stack and a tray at the bottom to 
collect the particles that are smaller than the finest mesh, 63 μm. Sieving is usually carried 
out in a standard way on a sample of standard total dry mass for a standard time, by means 
of a mechanical shaker with a timing device. By weighing the mass of soil collected on each 
sieve, and expressing its mass as a percentage of the total, the particle size distribution curve 
is constructed.

The soil sample should be oven-dried before sieving to determine its dry mass. With 
many coarse grained soils, satisfactory results can be obtained by dry-sieving. Soils 
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containing fine particles, however, must usually be wet-sieved. This involves washing the 
sample through a 63-μm sieve in order to remove the fine particles, which could otherwise 
stick to each other and to the coarser particles, increasing the apparent particle size. The 
portion of the sample retained on the 63-μm sieve is then oven-dried and dry-sieved in the 
usual manner.

Particles smaller than 63 μm (i.e. smaller than fine sand) are too small for computing 
the size by sieving, hence a different technique—sedimentation—has traditionally been 
used but this is increasingly being substituted by more modern methods, principally laser 
diffraction. Laser diffraction relies on the principle that the angle at which incident light is 
deflected by a particle increases as the particle size reduces. Thus by measuring the angu-
lar variation in the intensity of light resulting from the scattering of a laser beam passed 
through a dispersed sample of particles, we can determine the range of particle sizes and 
their relative proportions. The sample may be dispersed in air, water or some other fluid: 
water is most usual for a soil. The particle size is determined as the diameter of a sphere 
having the same volume as the actual particle. Further details of the relevant principles 
and procedures are given in BS ISO 13320: 2009 (BSI, 2009).

Returning to the traditional sedimentation test, velocity v with which a particle settles 
through water decreases as its particle size increases. This is because the gravitational force, 
given by the buoyant unit weight multiplied by the volume, (γs − γw) × (4/3)π(d/2)3, is pro-
portional to the cube of the particle diameter, d, while the resistive drag force, D, is directly 
proportional to the particle diameter. From Stokes’ Law, D = 3πηvd, where η is the dynamic 
viscosity of water. Equating the gravitational and the drag forces, the relationship between 
the settlement velocity v of a spherical particle and its diameter d is

 v = {(γs − γw)/18η} d2 (1.15)

where γs is the unit weight of the soil grains and γw is the unit weight of water.
Equation 1.15 forms the basis of the sedimentation test. A soil sample containing an 

assortment of fine particles is shaken up in water to form a fully dispersed suspension, and 
left to settle out. Samples of the suspension are then taken from a fixed depth, z (usually 
100 mm), at various times after the start of sedimentation, using a pipette.

A pipette sample taken at a time, t, from a depth, z, will contain no particles that are set-
tling at a speed greater than z/t. Substituting v ≤ z/t into Equation 1.15,

 z/t ≥ {(γs − γw)/18η} d2

or

 d ≤ {[18 η z]/[(γs − γw)t]}1/2 (1.16)

Equation 1.16 gives the maximum particle size (expressed as an equivalent particle dia-
meter, d) present in a pipette sample taken at time, t from a depth, z. After the water has 
evaporated, the mass of solids which remains enables the proportion of particles having 
an equivalent diameter less than d within the original sample to be calculated. This is 
equivalent to the percentage of particles by mass which pass through a certain mesh size 
in a sieve analysis, and is used to construct the particle size distribution curve in exactly 
the same way.

Full details of the procedures which should be followed in the determination of par-
ticle size distributions using sieving and sedimentation will be found in BS1377 (1991) and 
 manuals such as Head (1992). In carrying out standard tests, such as soil grading, descrip-
tion and classification, it is important that standard procedures and methods are followed. 
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This is because the tests are not usually carried out by the people who use the results for 
engineering design. Indeed, it is extremely unlikely that all of the soil tests carried out in 
connection with anything but a fairly modest construction project would be carried out by 
the same person, or even in the same laboratory. Without standardisation, the designers 
would not know whether differences between results were due to differences in the soil, or 
that to the testing procedure. If you carry out soil tests, you should follow the procedures 
laid down in the appropriate standard (in the UK, BS1377, 1991; in the USA, ASTM D2487-
11, 2011). If you need to depart from these procedures for some reason, you should note this 
and explain the reasons in your report.

Sometimes, for the sake of brevity, it is tempting to attempt to describe a soil by means 
of a representative particle size, rather than by the entire particle size distribution curve. 
The term ‘representative’ has a variety of interpretations, depending on the application 
the engineer has in mind. For processes in which the pore size rather than the particle 
size is important, such as groundwater flow and permeability-related problems, the behav-
iour is controlled by the smallest 10% of the particles. Processes that rely on interparticle 
 contact—such as the generation of frictional strength—might depend on the smallest 25% 
of the particles. Contacts between larger particles become less frequent, as they are in effect 
suspended in a matrix of smaller particles. In filtration and clogging processes, that involve 
the movement or trapping of fine particles, particle sizes delineating other proportions of the 
overall mass are significant, as described in Section 1.9.

The largest particle size in the smallest 10% of particles is known as the D10 particle size. 
Similarly, the largest particle size in the smallest 25% of the sample is known as the D25 par-
ticle size. In general, n% of the soil by mass is smaller than the Dn particle size. The values of 
D10, D25 and so on may be read off from the horizontal axis of the particle size distribution 
graph (Figure 1.11), at the points on the curve that correspond to 10%, 25% and so on of 
the sample by mass on the vertical axis.

The information conveyed by quoting a representative particle size such as D10 or D25 is 
inevitably somewhat limited. A fuller description is sometimes attempted by quoting the 
uniformity coefficient U, and the coefficient of curvature, Z:

 U = D60/D10 (1.17a)

 Z = (D30)2/D60D10 (1.17b)

U is related to the general shape and slope of the particle size distribution curve. The 
higher the uniformity coefficient, the larger the range of particle size. According to 
the  Department of Transport (1993: Table 6/1), granular materials with a uniformity 
coefficient, U, of less than 10 may be regarded as uniformly graded, while granular mate-
rials with a uniformity coefficient U of more than 10 may be regarded as well-graded. 
A well-graded soil generally has a coefficient of curvature, Z in the range 1–3. For gen-
eral application, however, the representative particle sizes D10, D25 and so on, and the 
parameters U and Z are not acceptable substitutes for the full grading or particle size 
distribution curve.

Finally, it should be pointed out that the term ‘particle size’ as used in soil mechan-
ics refers to a notional dimension. Sieve apertures are square, whereas sand and gravel 
particles are bulky but irregular in shape, and often angular. Stokes’ Law assumes that 
soil particles are spherical, whereas clay particles are flat and platey. This does not really 
matter too much: provided that standard procedures are followed, errors are systematic, 
and reproduced and accepted by everyone. Discrepancies may, however, arise in trying to 
compare particle size data obtained using different techniques, for example sedimentation 
and laser diffraction.
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The construction of a particle size distribution curve from laboratory sieve and sedimen-
tation test data is illustrated in Example 1.5.

Example 1.5: Constructing a particle size distribution curve from laboratory test data

Table 1.3a gives the results of a sieve test on a sample of particulate material of total dry 
mass 236 g.

Table 1.3b gives the results of a sedimentation test carried out on a representative sub-
sample of the fine material (<63 μm). The mass of the subsample was 12 g, the volume of 
the pipette was 10 ml, and the overall volume of the suspension was 500 ml.

Plot the particle size distribution curve and describe the material.

SOluTIOn

The first point to notice is that the total mass given at the bottom of Table 1.3a is only 
233.36 g, compared with the initial sample mass of 236 g. The missing 2.64 g is prob-
ably lodged in the meshes of the sieves, and is known as a sieve loss. For the purpose of 
calculating the percentage passing each sieve size, the recovered sample mass of 233.36 g 
should be used. In effect, this distributes the sieve loss in proportion to the mass retained 
on each sieve. If the original mass were used, the particle size distribution curve would 
end at below 100% on the vertical axis. The mass of material passing each sieve, in grams 
and as a percentage of the total, is given in Table 1.4a.

The sedimentation test data are already in the required form for the construction of 
the particle size distribution curve. Each pipette sample gives the mass of particles of less 
than a certain size, which is effectively the same as the mass passing through an equiva-
lent sieve. It is, however, necessary to multiply the mass of material in each particle size 
category by the ratio of the volume of the suspension to the volume of the pipette sample 
(= 500 ml ÷ 10 ml = 50) in order to determine the mass present in the 12 g subsample. 
Each mass must then be multiplied by the ratio of the mass of fines in the original sample 
to the mass of the sub-sample (151.75 g ÷ 12 g = 12.646), and finally expressed as a per-
centage of the mass of the entire original sample (233.36 g) for inclusion in the particle 
size distribution. This is most easily achieved by determining each mass as a percentage of 
the 12 g sub-sample, and multiplying this by the percentage of fines in the original sample 
(65.03%), as indicated in Table 1.4b. These two procedures give exactly the same result. 

Table 1.3a Sieve test data

Sieve size (mm) Mass retained (g)

4.75 5.67
3.35 2.80
2.00 2.57
1.18 5.84
0.6 5.16
0.03 12.49
0.15 17.88
0.063 29.20
Fines (<0.063) 151.75
Total 233.36

Table 1.3b Sedimentation test data

Equivalent particle diameter (mm) Mass of sample in 10 ml pipette (g)

<0.02 0.08
<0.006 0.02
<0.002 0.01
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For a scaled mass (that is, the mass in the 500 ml suspension, which is 50 times the mass in 
the 10-ml pipette) of x, the first procedure gives a percentage passing of x × (151.75/12) ÷ 
233.36. The second procedure gives (x/12) × (151.75/233.36), which is identical.

The particle size distribution curve, plotted using the data in the last columns of Tables 
1.4a and b, is shown in Figure 1.12.

From Figure 1.12, the values of D10, D30 and D60 are

D10 = 0.010 mm
D30 = 0.025 mm
D60 = 0.053 mm

Hence, the uniformity coefficient U = D60/D10 (Equation 1.17a) is 0.053/0.010 = 5.3, 
and the coefficient of curvature Z = (D30)2/D60D10 (Equation 1.17b) is (0.025)2/(0.01 × 
0.053) = 1.18.

The sample consists mainly of silt-sized particles, with about 35% sand. It could, there-
fore, be just about described as a sandy silt, according to the soil description scheme given 
later in Table 1.5. In fact, the material is pulverised fuel ash, which is the residue from 
pulverised coal burned to generate electricity at coal-fired power stations.

1.9 SOIL FILTERS

Soil filters are used in the construction of drains and wells, as shown in Figure 1.13. They 
have two main uses:

 1. to allow water to drain freely out of the natural soil and in some cases to conduct the 
outflow away

 2. to support the natural soil and prevent it from being eroded by the water that drains 
out of it

Table 1.4a Sieve test data: mass passing each sieve

Sieve size (mm) Mass retained (g) Mass passing (g) Percentage passing, by mass

4.75 5.67 227.69 97.57
3.35 2.80 224.89 96.37
2.00 2.57 222.32 95.27
1.18 5.84 216.48 92.77
0.6 5.16 211.32 90.56
0.03 12.49 198.83 85.20
0.15 17.88 180.95 77.54
0.063 29.20 151.75 65.03
Fines (<0.063) 151.75
Total 233.36

Table 1.4b Sedimentation test data, scaled to account for the suspension: pipette volume ratio

Equivalent particle 
diameter (mm)

m1
Mass of sample 

in 10 ml 
pipette, (g)

m2
Mass of sample in 

500-ml suspension (g)
(= m1 × 50)

m3
Percentage of 

sub-sample (= m2/12)

m4
Percentage of total 
sample (= m3 × 

0.6503)

<0.02 0.08 4 33.33 21.67

<0.006 0.02 1 8.33 5.42

<0.002 0.01 0.5 4.17 2.71
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The efficiency with which the filter performs these functions depends primarily on its 
particle size distribution relative to the particle size distribution of the natural soil.

Some migration of fine particles within a limited interface zone between the natural 
soil and the filter is inevitable during the initial stages of water flow. Indeed, such an 
interface zone normally forms part of the overall filter system. After the initial stage 
of operation, however, the pore network of the filter must be small enough to prevent 
the continued loss of fine particles from the natural soil. In experiments carried out by 
Sherard et al. (1984), soil particles smaller than 0.1 × the D15 size of the filter were gener-
ally found to be able to pass through the filter. Work by Kenney et al. (1985) suggested 
that soil particles of up to 0.2 × the D15 size could pass through the filter. The apparent 
discrepancy between these results may be due to differences in type of the filter and/or 
flow pattern, but indicates the need for some conservatism when drawing up empirical 
rules concerning the relative grading of a filter and the natural soil. To prevent the con-
tinued migration of fines from the natural soil, Preene et al. (2000) suggest for sands and 
sandy silts with D85s ≥ 0.1 mm,

 D15f ≤ 5 × D85s (1.18)

where D15f is the D15- size of the filter (which is related to the effective aperture size of the 
filter), and D85s is the D85- size of the soil.

The filter must be more permeable than the natural soil. Otherwise it would act as a 
restriction to the flow, rather than as a preferential drainage path. This is achieved by having 
(Preene et al., 2000)

 D15f > 4 × D15s (1.19)

and additionally

 D5f ≥ 63 μm (1.20)

where D15s is the D15- size of the soil and D15f is the D15- size of the filter.
The filter material must be suitably graded, so as to prevent both the migration of fines 

from the filter and the segregation of the filter material before, during or after installation. 
To meet this performance criterion, Preene et al. (2000) suggest that the uniformity coef-
ficient U (= D60f/D10f) should be such that

 (D60f/D10f) < 3 (1.21)

although this requirement may be relaxed provided that Ufilter < Usoil.
Where a filter is placed in variable ground, it must be able to protect the finest soil pres-

ent. In layered soils, this may limit the capacity of the well. Preene et al. (2000) suggest that 
Equation 1.18 should be applied to the finest soil and Equation 1.19 to the coarsest. If the 
natural soil is gap-graded, the grading limits for the filter should be based only on the finer 
component of the natural soil. Where the natural soil contains a high proportion of gravel 
or larger sized particles, the filter might be designed on the basis of the grading curve of the 
portion of the natural soil finer than 19 mm. If the filter is to be placed against a slotted pipe 
(e.g. a wellscreen—as shown in Section 3.19), the D10 size of the filter (D10f) should be of a 
similar order to that of the maximum slot width.

In the design of a multistage filter, the above rules apply with the term ‘natural soil’ being 
taken to refer to the material used in the upstream filter stage.
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The application of the above filter rules to the specification of a granular filter grading 
envelope is illustrated in Example 1.6, which is based on wells installed in connection with 
the construction of the Conway Crossing in North Wales (see Example 3.9 and Section 
4.7.3).

Example 1.6: Specifying a grading envelope for a soil filter

Figure 1.14a shows a particle size distribution curve for a soil in which it is intended to 
install a number of wells of the type shown schematically in Figure 1.13a. Figure 1.14a is 
the particle size distribution curve of the granular glacial lake deposits at Conway, North 
Wales, shown in Figure 3.15. Using the filter rules given by Preene et al. (2000), construct 
the envelope within which the particle size distribution curve of the filter material should 
lie. The well liners will be plastic tubes with 0.5 mm wide slots.

SOluTIOn

The grading curve envelope is shown to the right of the particle size distribution curve for 
the soil in Figure 1.14b. It has been constructed so as to fulfil the following criteria. The 
letters refer to the points indicated on Figure 1.14b.

A: D15f ≤ 5 × D85s— to prevent loss of fines from the natural soil; Equation 1.18
B: D15f > 4 × D15s —to ensure that the filter is sufficiently permeable; Equation 1.19
C: D5f ≥ 63 μm—again, to ensure satisfactory filter permeability; Equation 1.20
D: D10f ≈ slot width, which in this case, is 0.5 mm
E: (D60f/D10f) < 3—Equation 1.21

Curve (b) in Figure 1.14b shows a suitable particle size distribution for the filter. It has 
simply been sketched to lie between the calculated limits. Curve (b) could be moved to 
the left or to the right, or altered slightly in shape. In practice, any readily available mate-
rial which met the filter requirements would suffice. In the case shown in Figure 1.14, the 
material actually used was sand from the on-site concrete batching plant.

1.10 SOIL DESCRIPTION

It has already been mentioned that civil engineers are concerned primarily with the mechan-
ical properties of a soil (such as its strength, compressibility and permeability). These prop-
erties are investigated using mechanical testing procedures, either in the field or in the 
laboratory, as described in Chapters 2 to 5 and Chapter 11. Nonetheless, a considerable 
amount of preliminary information can be conveyed by means of a visual description of the 
soil as it is found in the field. A systematic procedure for the field identification and descrip-
tion of soils is set out in BS 5930: 1999 (BSI, 2010), and is reproduced here as Table 1.5.

Table 1.5 shows how the soil can be graded (for example as a sand, silt or clay) with refer-
ence to the appearance and visibility of the particles to the naked eye, and other simple tests 
and observations (Column 4, headed Visual identification). Many natural soils contain more 
than one group of particle sizes: Column 9 (headed Composite type) defines the classifica-
tion system for mixed soils. Column 5 can be used to make an assessment of soil strength, 
using qualitative terms such as loose or dense, firm or soft. Columns 6 and 7 are concerned 
with the structure of the soil, for example, the presence, nature and spacing of laminations 
or fissures. We will see later that the structure of a soil—which can be destroyed during 
sampling and transportation back to the laboratory—will often have an important influence 
on many aspects of its mechanical behaviour. Other aspects of soil description include the 
colour, which can give an indication of its mineralogy or chemical composition, and—for 
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coarse soils—shape of the particles and their angularity. The property described as plastic-
ity, which is relevant to clay soils, is discussed in Section 1.11.

Table 1.5 demonstrates the need for standard procedures in the description and basic test-
ing of soils. In many cases, a geotechnical designer may never see the soil to which the design 
calculations relate. To develop a qualitative feeling for the nature of the soil in question, the 
designer usually relies entirely on a description prepared by a field or laboratory engineer 
or technician. In such circumstances, it is vital that if the field engineer describes the soil 
as a ‘firm clay’ or a ‘slightly silty sand’, the design engineer knows exactly what is meant. 
This can only be achieved if everyone adopts a standard system, in which the terms used to 
describe soils have a consistent meaning.

The word ‘cohesive’, which implies a strength which is non-frictional in its nature and is 
sometimes used to describe clay soils, should be avoided. Although, for the reasons given in 
Section 1.4, surface effects are much more significant in clays than in sands the former do 
not normally derive any significant engineering strength from interparticle bonds or cohe-
sive forces. Clay soils exhibit a property known as plasticity, which might be defined in this 
context as the ability to be worked and re-moulded in the hand. While surface effects may 
play some part in this (see Section 1.4.4), the main reason that clays can be moulded in the 
hand is that they can sustain large pore water suctions which may provide large effective 
stresses—and hence frictional strength—even if the total stress is zero.

1.11 INDEX TESTS AND CLASSIFICATION OF CLAY SOILS

A clay soil exhibits plasticity between certain limits of water content. If the water content is 
too low, the soil is dry and crumbly; if too high, it behaves almost like a liquid, squeezing 
out from between your fingers as you try to mould it.

The water content below which the clay is brittle and crumbly is known as the plastic 
limit, wPL. The water content above which the clay behaves as a liquid is known as the liquid 
limit, wLL. If the water content is greater than the plastic limit but less than the liquid limit, 
the soil behaves as a plastic material, and can be moulded in the hand without cracking or 
running out between the fingers. The range of water content over which the clay behaves in 
this way is known as the plasticity index IP:

 IP = wLL − wPL (1.22)

The liquid limit, plastic limit and plasticity index are related to both the mineralogy and 
amount of clay present in the soil. For example, a soil with a high proportion of kaolinite 
particles might have plasticity index similar to another soil with a smaller proportion of 
illite or smectite particles. The two effects can be separated by means of a parameter known 
as activity, A:

 A = IP/(percentage of the sample by mass with a particle size of <2 μm) (1.23)

(Skempton, 1953). For kaolinite, A ≈ 0.5; for illite, 0.5 ≤ A ≤ 1, and for smectite, 1 ≤ A 
≤ 7 (Mitchell and Soga, 2005).

The liquid and plastic limit tests are carried out on the portion of a soil sample smaller 
than 425 μm in size: this includes silt and some sand. Liquid and plastic limits cannot be 
determined for non-plastic soils.

The liquid limit test is carried out by mixing up a number of samples of the soil, each 
having a different water content. A small metal cup containing each sample in turn is placed 
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below a stainless steel cone of mass 80 g and apex angle 30°. The cone is supported with its 
apex just touching the surface of the soil sample. The cone is then allowed to fall, and the 
depth to which it has penetrated the sample after 5 seconds is recorded.

The results are plotted as a graph of cone penetration d (in mm) against the water con-
tent of the sample w. The liquid limit is defined (BS1377, 1990) as the water content at 
which the cone penetration is 20 mm. Provided that the range of penetration is not great, 
the liquid limit may be determined by drawing a best-fit straight line through the data 
points (Figure 1.15a). We will see in Section 5.16 that the relationship between the water 
content w and the cone penetration d is actually logarithmic, so that a better straight line 
relationship over a wider range of water content may be obtained by plotting w against 
ln(d) (Figure 1.15b).

The plastic limit is found by repeatedly rolling and re-rolling a sample of soil from a 
6-mm diameter thread to a 3-mm diameter one. As the test progresses, the soil dries out 
until eventually it just starts to split and crumble when the diameter of 3 mm is reached. The 
moisture content at this point defines the plastic limit. This method is not really satisfactory, 
as it relies too heavily on the judgement of the person carrying out the test. Despite the avail-
ability of alternative, less operator-sensitive techniques such as extrusion (Whyte, 1982), the 
rolling-out test is still the generally accepted procedure.

The liquid and plastic limit tests are in effect indicators of the shear strength4 of a clay 
soil, at two different water contents. The shear strength of the clay at the plastic limit 
is about 70 times that at the liquid limit (Whyte, 1982). In addition, it will be shown in 
Section 5.16 that the plasticity index is related directly to the compressibility of the soil. 
The concept of testing clay to determine the water contents at which it undergoes changes 
in consistency was originally proposed (using different apparatus) by Albert Atterberg 
(1911). For this reason, the liquid and plastic limits are sometimes referred to as the 
Atterberg limits.

It was mentioned in Section 1.5 that the void ratio of a natural clay soil depends to a large 
extent on its previous stress history (i.e. the maximum vertical load to which it has been 
subjected in the past) and its current stress state (i.e. the vertical load to which it is currently 
subjected). Also, it is not generally possible to densify saturated clay soils by the application 
of transient loads, for example, by means of a vibrating roller or a pneumatic compactor. 
The main reason for this is the time it takes for water to flow from the pores. Although ways 
of accelerating the process are discussed in Chapter 4, the only way of densifying a saturated 
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Figure 1.15  Determination of liquid limit from fall cone test data: (a) interpolation of wLL from a graph of 
w vs. d over a narrow range (b) linear relationship between w and ln(d).
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fine-grained soil is in effect to apply a large static load and wait—perhaps years—for the 
water to drain out of it.

For these reasons, the concept of a minimum or maximum attainable specific volume or 
void ratio—which was used to define the density index of a coarse-grained soil, Equation 
1.6—is inappropriate to clays. However, the liquid and plastic limits for a clay (which, for a 
saturated soil, may be related to the specific volume by means of Equation 1.10) with Sr = 1, 
giving v = 1 + wGs) represent likely limits to the water content or specific volume in practice. 
As such, they are analogous to the maximum and minimum attainable specific volumes of 
a coarse soil.

For a fine-grained soil, the nearest analogue to the density index ID of a coarse soil is the 
liquidity index IL, which, for a soil of water content w, is defined as

 IL = (w − wPL)/(wLL − wPL) (1.24)

[cf. Equation 1.6 for the density index: ID = (vmax − v)/(vmax − vmin)].
If w = wLL, the clay is at the liquid limit and IL = 1. If w = wPL, the clay is at the plastic 

limit and IL = 0. Thus the analogy is inverse, because the density index of a sand increases 
from 0 to 1 as the soil becomes denser, whereas the liquidity index of a clay increases from 
0 to 1 as the clay becomes more liquid (i.e. looser).

Fine-grained soils may be classified as clays or silts of low, intermediate or high plastic-
ity on the basis of their plasticity index and liquid limit, as indicated by the chart shown in 
Figure 1.16.

1.12 COMPACTION

When a soil is used as a structural material or a fill—for example, in the construction of an 
embankment, behind a retaining wall to create a raised terrace, or simply to fill in a trench 
(Figure 1.17)—it is generally compacted into place. This is usually in an attempt to minimise 
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the likelihood of settlement later. When trying to compact unsuitable soils into confined 
spaces, this may be something of a forlorn hope. Figure 1.18 shows the result of inadequate 
compaction of unsuitable backfill surrounding a soak-away drain in a supermarket car park; 
and most of us are familiar with the ruts and hollows which develop in a road or pavement 
within a few weeks of their having been dug up to re-lay a gas or water pipe or a telephone 
or electricity cable. In less confined spaces, particularly on large civil engineering projects 
where the client or the developer is prepared to pay for adequate supervision, it is quite 
possible to achieve satisfactory compaction of the fill material. Indeed, the adequacy of an 
embankment or an earth dam may depend on it.

Clay soils are generally considered unsuitable as backfill materials for retaining walls 
and trenches. Apart from the difficulty of expelling the water, clay soils excavated from 
the ground tend to be in the form of large clumps or clods. The overall volume occupied 
by a clay which has formed into clods might be half as much again as the volume occupied 
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Figure 1.17  Use of soil as a fill material: (a) in an embankment (b) behind a retaining wall (c) in a trench 
(d) in an earth dam.

Figure 1.18 Surface subsidence following inadequate compaction of backfill around a soak-away.
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in situ, due to the extra air voids between the clods. To recompact the material it is neces-
sary to remould the clods, which can require the application of unfeasibly high stresses. An 
additional problem associated with a predominantly clay fill is its potential for swelling in 
the long term: this is discussed in Section 7.10.2. Having said this, clean granular soils are 
expensive to buy if they are not already available on site, so that many general engineering 
fills may contain a proportion of clay-sized particles.

In some applications where a low permeability is required, such as the core of an earth 
dam (Figure 1.17d), the use of a clay fill is essential. It is equally essential that the clay core 
of a dam is placed with an appropriate degree of compaction and at an appropriate water 
content, without cracks and large voids which could impair its effectiveness and integrity.

In general, soils used as fills will not be saturated at the time of placement. The water 
content will depend on factors such as the proportion of clay present, the current climatic 
conditions and the period for which the soil has been exposed. It is unlikely, however, that 
the water content will be able to change quickly and it may, therefore, be assumed that 
compaction takes place at constant water content. The reduction in overall volume that is 
generally the aim of compaction must, therefore, be achieved by means of a reduction in the 
volume of the air voids.

The compaction characteristics of a particular soil are traditionally investigated in the 
laboratory by means of the Proctor compaction test. This involves the compaction of the 
soil sample (from which particles greater than 20 mm have been removed) into a cylindrical 
mould of capacity 1 litre and internal diameter 105 mm, by means of a standard rammer 
of mass 2.5 kg falling freely through a height of 300 mm, or by means of a heavy rammer 
of mass 4.5 kg falling freely through a height of 450 mm. In the first case, the soil is com-
pacted in three equal layers, each receiving 27 blows of the rammer. In the second case, the 
soil is compacted in five equal layers, again with 27 blows to each layer. A compaction test 
is carried out on at least five samples of the same soil, with each sample at a different water 
content.

Although the efficiency of the packing of the soil grains is fundamentally quantified by 
the specific volume or the void ratio, the degree of compaction is traditionally assessed with 
reference to its dry density—the density that the soil would have at the same void ratio but 
zero water content. From Equation 1.12, the dry unit weight is given by

 γdry = [Gsγw/v]

where Gs is the particle relative density, γw is the unit weight of water and v is the specific 
volume so that, dividing both sides by the gravitational acceleration g, the dry density ρdry is

 ρdry = Gsρw/v (1.25)

The aim of compaction is to reduce the void ratio and hence the specific volume, v. From 
Equation 1.25, it is clear that the dry density is inversely proportional to the the specific 
volume, so that either parameter will serve as a measure.

From Equation 1.8, the actual unit weight of the soil is

 γ = [Gsγw(1 + w)/v]

so that (again, dividing through by g), the actual density is

 ρ = [Gsρw(1 + w)/v] (1.26)



46 Soil mechanics: concepts and applications

© 2010 Taylor & Francis Group, LLC

Dividing Equation 1.25 by Equation 1.26,

 ρdry = ρ/(1 + w) 

This explains the traditional use of ρdry, rather than the more fundamental specific 
 volume v, as a measure of the success of a compaction process. The actual soil density in the 
wet state, ρ (equation 1.26) is easily determined from the known mass and volume of soil 
in the mould after compaction. The water content w has to be measured anyway, as this is 
the control variable. Then ρdry can be calculated directly from ρ and w using Equation 1.27, 
while the determination of v using Equation 1.26 requires knowledge of Gs.

When the results of the compaction test are plotted as a graph of dry density ρdry against 
water content w, curves of the form shown in Figure 1.19a should be obtained. These curves 
show that, as the water content is increased from a low value, the dry density increases to a 
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maximum and then starts to decrease again. This is because low water contents imply high 
suctions, resulting in a soil which is stiff and not readily compactable. At high water con-
tents, a limit to the degree of saturation achievable by compaction is reached. At Sr ≈ 0.9, 
any remaining air pockets will be surrounded by water, and virtually impossible to remove 
by compaction. The specific volume then increases (and the dry density decreases) with 
increasing water content. From Equation 1.10:

 v = 1 + wGs/Sr (1.28)

The water content at which the compacted soil has the greatest dry density (i.e. the lowest 
specific volume) is known as the optimum water content. This term is potentially mislead-
ing. A dense, dry soil may be brittle and prone to cracking, which would not usually be 
described as the optimum condition for a fill material. Moreover, a clayey fill which is placed 
dry might, in the long term, take in water and swell. This would certainly be undesirable if 
the fill had been placed behind a retaining wall (Section 7.10.2).

In Figure 1.19b, the compaction test data are plotted as specific volume v against water 
content w. The values of v have been calculated from ρdry using Equation 1.25 with Gs = 
2.65. Owing to the reciprocal relationship between ρdry and v, the scale for ρdry in Figure 
1.19b is non-linear. Lines of constant saturation ratio Sr are also indicated in Figure 1.19b, 
calculated using Equation 1.28 with Gs = 2.65.

The water content of the fill prior to placement and compaction can be regulated on site, 
in an attempt to control the density of the soil after compaction. As indicated in Figure 1.19, 
the dry density actually achieved for a given water content will, up to a certain limit, increase 
with the degree of compactive effort applied. The results of a laboratory compaction test 
are, therefore, not directly applicable in the field. However, the range of dry density pro-
duced by field compaction plant will probably lie within the limits given by the standard and 
heavy Proctor tests in the laboratory.

Example 1.7: Analysis of compaction test data

 1. The results of a heavy (4.5 kg) compaction test carried out on samples of soil A are 
given in Table 1.6a.

Determine:

 a. The maximum dry density
 b. The optimum water content
 c. The saturation ratio at the maximum dry density if the particle relative density 

Gs = 2.65
 2. A standard (2.5 kg) compaction test on a sample of soil B gave the following results:

Mass of empty container (g) 14
Mass of container + wet soil (g) 44
Mass of container + dry soil(g) 40
Density in compaction mould (kg/m3) 1800
Particle relative density, Gs 2.54
Which of soil A and soil B would you select for use in a highway embankment, 

and why? 

Table 1.6a Compaction test data for Example 1.7

Water content w (%) 8 11 13 15 19
Density ρ (kg/m3) 1945 2090 2120 2080 1990
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SOluTIOn

 1. Convert the measured densities to dry densities using Equation 1.27, ρdry = ρ/(1 + w) 
Table 1.6b. The data are plotted on a graph of ρdry against w in Figure 1.20. From 
this figure, we obtain the maximum dry density as about 18.90 kg/m3, which 
Occurs at a water content of 11.7%.

  The corresponding specific volume is given by rearranging Equation 1.25, v = 
Gsρw /ρdry, giving

 v = (2.65 × 1000 kg/m3) ÷ 1890 kg/m3 = 1.402

 Then, using Equation 1.10 to calculate the saturation ratio,

 Sr = (w × Gs)/(v − 1) = (0.117 × 2.65) ÷ 0.402

  = 0.771 = 77.1%

 These results are quite sensitive to the curve used to interpolate between the data 
points in Figure 1.20.
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Figure 1.20 Compaction test data for Example 1.7.

Table 1.6b Processed compaction test data

Water content w 0.08 0.11 0.13 0.15 0.19
Density ρ(kg/m3) 1945 2090 2120 2080 1990

Dry density: ρdry = 
ρ/(1 + w) (kg/m3)

1801 1883 1876 1809 1672
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 2. Assuming that the data given for soil B relate to the optimum water content in the 
standard test, the water content at the maximum dry density is given by

 w = (44 − 40) ÷ (40 − 14) = 0.154 = 15.4%

 The maximum dry density is given by Equation 1.27, ρdry = ρ/(1 + w):

 ρdry = 1800 kg/m3 ÷ 1.154 = 1560 kg/m3

 Using Equation 1.25,

 v = Gsρw/ρdry = (2.54 × 1000 kg/m3) ÷ 1560 kg/m3 = 1.628 and the saturation ratio

 Sr = (w × Gs)/(v − 1) = (0.154 × 2.54) ÷ 0.628

 = 0.623 = 62.3%

 Soil A is more suitable for use in a highway embankment because:
 a. It has a lower optimum water content, a lower specific volume, a higher maxi-

mum density and dry density, and a higher saturation ratio at the optimum 
water content than soil B. These factors indicate that, as a fill material, it will 
be denser and more stable than soil B.

 b. The grain specific gravity of soil B is comparatively low. This, together with 
its low maximum dry density, suggests that it may be at least partly of organic 
origin.

1.13 HOUSES BUILT ON CLAY

Some of the most densely populated areas of Britain (e.g. London and south-east England) 
and other parts of the world are built on deposits of clay soils. Many houses in these areas 
were built with foundations bearing directly onto the clay. As the water content of the clay 
decreases or increases the soil will shrink or swell, resulting in the movement of a house 
whose foundation it supports. This can cause damage to the house, ranging from small 
hairline cracks (which should be accepted as normal for an older house on a clay soil), to 
serious structural distress.

The equilibrium water content of the clay will depend on a number of factors, including 
the imposed vertical effective stress, the availability of water (e.g. from rainfall, soak-aways 
and leaking drains) and the rate at which water is taken from the soil by evaporation, veg-
etation and natural or engineered drainage. Small changes in water content may occur dur-
ing the year as a result of normal seasonal variations in rainfall, humidity and temperature. 
These changes become more significant during prolonged periods of wet or dry weather. 
The effects of seasonal or longer term climatic variations will be amplified considerably 
by the presence of vegetation: the water demand of some species of trees can be several hun-
dred litres per day in hot weather.

Changes in local vegetation also have an effect. An increase in the amount of vegetation 
tends to reduce the equilibrium water content of the clay, leading to shrinkage of the clay 
and settlement of the building. A decrease in the amount of vegetation tends to increase the 
equilibrium water content of the clay, leading to swelling of the clay and upward movement 
or heave of the building. Severe subsidence or heave of the foundation may result in the 
development of diagonal cracks in masonry walls, as shown in Figure 1.21.
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To confirm that movements in foundation are due to changes in the water content of the 
underlying clay, it is usual to investigate the variation of water content with depth in the soil 
near to where the building is cracked or otherwise damaged. If, as will often be the case, a 
localised cause (such as a tree) is suspected, the water content profile close to the building 
can be compared with that from a location far enough away to be unaffected. Although tree 
roots may cause mechanical damage to the underground parts of the structure, the main 
problem is usually that, in times of comparative drought, the roots will extend further and 
deeper in an attempt to obtain water from an already moisture-deficient soil.

Soil samples from various depths at each location are obtained from boreholes augered 
using portable, lightweight drilling equipment. The soil samples are sealed on site for trans-
portation to the laboratory, where the water content of each sample is determined by oven 
drying as described in Section 1.5.

The question which then arises is the amount of settlement associated with the water 
content deficiency measured. If the soil were to remain saturated and shrink in the vertical 
direction only, this could be estimated relatively easily from the reduction in water content 
as follows.

Let the average reduction in water content that occurs over a depth h0 be w from an initial 
water content of w0.

The total volume, Vt is related to the volume of soil particles, Vs by the specific volume v, 
which is defined as v = Vt/Vs, Equation 1.2:

 Vt = vVs (1.29)

As the volume occupied by the soil grains does not change, any change in total volume 
ΔVt must be entirely due to a change in specific volume, Δv. Writing Equation 1.29 in a dif-
ferent form

 ΔVt = ΔvVs (1.30)

Assuming that the soil remains saturated, the specific volume is related to the water con-
tent by Equation 1.10 with Sr = 1:

 v = 1 + wGs (1.31)

Writing Equation 1.31 in difference form

 Δv = ΔwGs (1.32)

Subsidence crack:
wider at top

(a) (b)

Heave crack:
wider at
bottom

Figure 1.21 Diagonal cracks in walls due to: (a) foundation subsidence (b) foundation heave.
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Substituting for v from Equation 1.32 into Equation 1.30

 ΔVt = ΔwGsVs (1.33)

Substituting for v from Equation 1.31 into Equation 1.29

 Vt = (1 + wGs)Vs

For a block of soil of unit area on the plan, depth h0 and water content w0,

 Vt = 1 × h0 = (1 + w0Gs)Vs

or

 Vs = h0/(1 + w0Gs) (1.34)

Substituting for Vs from Equation 1.34 into Equation 1.33,

 ρVt = (wGsh0)/(1 + w0Gs) (1.35)

As the block of soil has unit area on the plan, the change in total volume ΔVt is equal to the 
settlement ρ—assuming that all of the volume change is accommodated by vertical settlement. 
In reality, however, the clay tends to develop vertical shrinkage cracks as it dries out. This 
means that some of the volume change is accommodated by lateral shrinkage also, so that

 ΔVt = settlement ρ + lateral shrinkage

or

 ρ < ΔVt

Empirical evidence (Driscoll, 1983) suggests that

 ρ ≤ ΔVt/3 to ΔVt/4 (1.36)

ΔVt is a reduction in total volume per unit area. It is entirely due to the loss of water from the 
soil, and is sometimes known as the soil moisture deficit. Another way of looking at the soil 
moisture deficit is as the depth of effective rainfall (net of losses due to evapo- transpiration)—
also a volume per unit area—required to return the soil to its original water content.

Foundation problems in residential buildings on clay soils are often associated with the 
presence of trees or other vegetation, which are the means reduction of water content. It is, 
therefore, tempting to suppose that the problem can be overcome by removing the offend-
ing trees. This is not so: the damage which can be caused to a building whose foundations 
heave (that is, move upward) following the removal of trees can be at least as serious as 
the damage caused by settlement. Ideally, the moisture demand of the tree should be kept 
as constant as possible, by regular pruning. Additional protection can be provided by the 
installation of a root barrier, which minimises the penetration of the roots under the house 
and its foundations.

The typical foundation depth of new houses on clay soils has gradually increased over the 
last few decades. Step increases in depth have usually followed a period of drought and a cor-
responding rise in the incidence of damage due to settlement. It is unlikely, however, that the 
specification of any reasonable foundation depth will be sufficient to provide absolute pro-
tection in all circumstances. Chandler et al. (1992) report a case of a house on London clay 
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which continued to suffer settlement damage even after the foundations had been deepened to 
3 m. The continuing problems were shown to be due to water content reductions in the clay 
at depths of up to 8 m, caused by a row of poplar trees at a distance of 10 m from the house.

Example 1.8: The unpruned cherry tree

In addition to the crack patterns shown in Figure 1.21, cracks may also develop between 
parts of buildings which have foundations of different depth or type. Many late Victorian 
and Edwardian (i.e., late nineteenth century and early twentieth century) houses have 
one- or two-storey bay windows, projecting from the front (and, less frequently, side 
or rear) elevations (Figure 1.22a and b). These bay windows were usually built on very 
shallow foundations; a depth of less than 0.5 m to the underside of the foundation is not 
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Figure 1.22  A typical late Victorian terraced house on London Clay: (a) general view (b) plan (c) cross-
section through foundation of the bay window.
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uncommon (Figure 1.22c). The foundations of the main house are usually somewhat 
deeper—especially if the house incorporates a cellar or a basement, in which case the 
foundation depth could be 2 m or more. Generally, the shallower the foundation, the more 
susceptible it is to changes in soil water content, which occur mainly near the  surface. 
The difference in foundation depth between the bay and the main house can lead to the 
development of vertical cracks at the junction between the bay and the main wall, as the 
bay settles and breaks away.

This type of damage is not necessarily serious. In the particular case shown in Figure 1.22, 
movement was actually due to the reactivation of an historic crack. The movement was 
noticed following a two-year period of particularly dry weather, which happened to coin-
cide with a time during which the local authority decided not to prune the street trees 
in their care. One of these—a mature cherry tree—was located approximately 4 m from 
the front corner of the house. Measured profiles of water content with depth, near and 
remote from the cherry tree, are shown in Figure 1.23. The remote or control borehole 
must be far enough away from the tree not to be affected by it, but close enough for the 
soil profile to be similar. In the present case, the control borehole was located in the back 
garden of the house.

Figure 1.23 suggests that, compared with the control borehole, the clay near the tree 
has suffered a reduction in water content of up to 10% over a depth range of 0.75 to 3.5 m 
below the ground surface.

Taking the desiccated depth h0 = 2.75 m, the average initial water content w0 = 30%, 
the average change in water content Δw = 6.8% and Gs = 2.75, Equations 1.35 and 1.36 
suggest a maximum settlement in the range 70–90 mm. While this figure is probably on 
the high side, the calculation does demonstrate that the settlements resulting from the 
reduction in water content would be sufficient to cause the failure of the bond between 
the bay and the main front wall of the house, and cracking of the structure.

It has in the past been standard practice to deepen the foundations of a house affected 
by settlement. This can be carried out by removing the soil from below the foundation 
and replacing it with concrete, a short length at a time, in a process known as underpin-
ning. It is expensive, and has some risk of collapse if it is not carried out very carefully. 
In the case described above, annual pruning of the cherry tree was resumed, and the 
crack widths were monitored for a period of 18 months or so. When it was certain that 
movement had stopped, repairs to the superstructure were carried out. These included 
the re-establishment of the brickwork bond between the bay window and the main front 
wall of the house, which had probably never been particularly effective, since the time 
the house was built.
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KEY POINTS

• In general, soil is a three-phase material, comprising solid particles with water and air 
in the voids in between them. The solid particles may be densely or loosely packed, as 
indicated by the void ratio e or the specific volume v.

• The relative proportions of the three phases are quantified by the void ratio e (voids to 
solids, by volume), the water content w (water to solids, by mass) and the saturation 
ratio Sr (water to total voids, by volume).

• Many soils are saturated (i.e. the voids are full of water). This reduces the number of 
phases to two, and simplifies analysis considerably.

• In a saturated soil, some of the applied normal stress is carried by the soil skeleton 
as effective stress, and some by the pore water pressure. It is essential to distinguish 
between these two components, because of the very different strength characteristics 
of the solid and liquid phases. The effective stress, σ′ is calculated from the total stress 
σ and the pore water pressure u using Terzaghi’s equation,

 σ′ = σ – u.

All shear stresses must be transmitted through the soil skeleton, as the pore water is inca-
pable of carrying shear.

SELF-ASSESSMENT AND LEARNING QUESTIONS

ORIGINS AND MINERALOGY OF SOILS

 1.1. Describe the main depositional environments and transport processes relevant to 
soils. Explain their influence on soil fabric and structure.

 1.2. Summarise the main effects of soil mineralogy on particle size and soil characteristics.

PHASE RELATIONSHIPS, UNIT WEIGHT AND 
CALCULATION OF EFFECTIVE STRESSES

 1.3. A density bottle test on a sample of dry soil gave the results indicated in Table 1.7.
 Calculate the relative density (specific gravity) of the soil particles. A 1 kg sam-

ple of the same soil taken from the ground has a natural water content of 27% 
and  occupies a total volume of 0.52 litre. Determine the unit weight, specific volume 
and saturation ratio of the soil in this state. Also calculate the water content and the 
unit weight that the soil would have if saturated at the same specific volume, and the 
unit weight at the same specific volume but zero water content.
 [Gs = 2.65; γ = 18.865 kN/m3; v = 1.75; Sr = 0.954; wsat = 28.3%; γsat = 19.06

  kN/m3; γdry = 14.86 kN/m3.]

Table 1.7 Density bottle test data for Question 1.3

Mass of 50 ml density bottle empty (g) 25.07

Mass of 50 ml density bottle + 20 g of dry soil particles (g) 45.07
Mass of 50 ml density bottle + 20 g of dry soil particles, with 
remainder of space in bottle filled with water (g)

87.55

Mass of 50 ml density bottle filled with water only (g) 75.10
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 1.4. An office block with an adjacent underground car park is to be built at a site where 
a 6 m thick layer of saturated clay (γ = 20 kN/m3) is overlain by 4 m of sands and 
gravels (γ = 18 kN/m3). The water table is at the top of the clay layer, and pore water 
pressures are hydrostatic below this depth. The foundation for the office block will 
exert a uniform surcharge of 90 kPa at the surface of the sands and gravels. The 
foundation for the car park will exert a surcharge of 40 kPa at the surface of the 
clay, following removal by excavation of the sands and gravels. Calculate the initial 
and final vertical total stress, pore water pressure and vertical effective stress, at the 
mid-depth of the clay layer,

 a. Beneath the office block
 b. Beneath the car park

 Take the unit weight of water as 9.81 kN/m3.
 [Initially σv = 132 kPa; u = 29.4 kPa; σ′v = 102.6 kPa. Finally, beneath the office 

block σv = 222 kPa; u = 29.4 kPa; σ′v = 192.6 kPa. Finally, beneath the car park, σv = 
100 kPa; u = 29.4 kPa; σ′v = 70.6 kPa.]

 1.5. For the measuring cylinder experiment described in Example 1.3, calculate:
 a. The vertical effective stress at the base of the column of sand in its loose, dry state
 b. The pore water pressure and vertical effective stress at the base of the column in 

its loose, saturated state
 c. The pore water pressure and vertical effective stress at the base of the column in 

its dense, saturated state
 d. The pore water pressure and vertical effective stress at the sand surface in the 

dense, saturated state
Take the unit weight of water as 9.81 kN/m3.

[(a) σ′v = 6.94 kPa (b) u = 4.16 kPa, σ′v = 4.31 kPa (c) u = 4.16 kPa, σ′v = 4.31 kPa (the 
weights of water and sand above the base of the column do not change); (d) u = 0.242 
kPa, σ′v = 0 (the water level in the column does not change: as the sand is densified, 
it settles through the water.)]

PARTICLE SIZE ANALYSIS AND SOIL FILTERS

 1.6. A sieve analysis on a soil sample of initial total mass 294 g gave the results shown in 
Table 1.8a.

A sedimentation test on 117 g of soil collected in the pan at the base of the sieve 
stack gave the results in Table 1.8b.

Plot the particle size distribution curve and classify the soil using the system given 
in Table 1.5. Determine the D10 particle size and the uniformity coefficient U, and 
comment on the grading curve.

Table 1.8a Sieve test data for Question 1.6

Sieve size (mm) 6.3 3.3 2.0 1.2 0.6 0.3 0.15 0.063
Mass retained (g) 0 0 30 39 28 28 16 11

Table 1.8b Sedimentation test data for Question 1.6

Size (μm) <2 2–6 6–15 15–30 30–63
% of pan sample 0 48 29 14 9
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[D10 = 0.0035 mm; D60 = 0.52 mm; U ≈ 150; soil is approximately 40% silt, 50% sand 
and 10% fine gravel: this makes it a sandy silt; soil is poorly graded, almost gap-graded.]

 1.7. A sieve analysis on a sample of initial total mass 411 g gave the the results shown in 
Table 1.9a:

A sedimentation test on 121 g of soil collected in the pan at the base of the sieve 
stack gave the results shown in Table 1.9b:

Plot the particle size distribution curve and classify the soil using the system given 
in Table 1.5. On the PSD diagram, sketch a suitable curve for a granular filter for use 
between this soil and a drainage pipe with 3 mm perforations.
[The soil is approximately 10% clay, 20% silt, 60% sand and 10% fine gravel: this 
makes it a clayey, very silty sand; D15s ≈ 0.007 mm, D85s ≈ 1.2 mm; filter PSD curve 
has D5f ≥ 0.063 mm; D15f ≤ 6 mm; D10f ≈ 3 mm and D60f ≈ 9 mm (U ≈ 3).]

INDEX TESTS AND CLASSIFICATION

 1.8. The results shown in Table 1.10 were obtained from a series of cone penetrometer 
tests using a standard 80 g, 30° cone:

Determine the water content w of each sample. Plot a graph of w against ln(d) 
and estimate the liquid limit wLL. If the soil has a plastic limit of 22%, calculate the 
plasticity index and classify the soil using the chart given in Figure 1.15.

 [wLL ≈ 65%; PI ≈ 43%; High plasticity clay (CH).]

COMPACTION

 1.9. The results shown in Table 1.11 were obtained from a standard (2.5 kg) Proctor 
compaction test:

Table 1.10 Fall cone test data for Question 1.8

Mass of tin empty (g) 18.2 19.1 17.7 18.6
Mass of tin + sample wet (g) 51.5 45.5 50.7 43.4
Mass of tin + sample dry (g) 37.8 35.6 39.7 36.3
Cone penetration d(mm) 25.0 14.2 8.5 5.1

Table 1.11 Proctor compaction test data for Question 1.9

Mass of tin empty (g) 14 14 14 14 14
Mass of tin + sample wet (g) 88 68 98 94 93
Mass of tin + sample dry (g) 81 62 87 82 80
Density (kg/m3) 1730 1950 2020 1930 1860

Table 1.9a Sieve test data for Question 1.7

Sieve size (mm) 6.3 1.2 0.3 0.063
Mass retained (g) 0 60 126 92

Table 1.9b Sedimentation test data for Question 1.7

Size (μm) <2 2–10 10–60
% of pan sample 33 24 43
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Plot a graph to determine:
 a. The maximum dry density
 b. The optimum water content
 c. The actual density at the optimum water content.

 If the particle relative density Gs = 2.65, calculate:
 d. The specific volume
 e. The saturation ratio at the maximum dry density:

[(a) about 1770 kg/m3; (b) 14%; (c) 2018 kg/m3; (d) 1.497; (e) 74.6%.]

NOTES

 1. Sedimentary rocks comprise particulate materials, which have been converted to rock by 
the application of vertical pressure as further material was deposited on top of them. Chalk 
and limestone are made up of the skeletal and shelly remains of tiny marine creatures, 
while sandstone is derived from sand, shale from clay and coal from peat. Crystalline 
rocks appear as a mass of interlocking crystalline units, fused together either by heat (e.g. 
in a volcano), in which case the rock is described as igneous; or by pressure and chemical 
processes occurring in the solid state, in which case the rock is described as metamorphic.

 2. A mineral may be defined as a structurally homogeneous solid of definite chemical 
composition, formed by the inorganic processes of nature (Whitten and Brooks, 1972). 
This definition includes ice, but excludes coal. Mercury, though liquid at normal tem-
peratures, is usually classed as a mineral. Minor variations in chemical composition 
between prescribed limits, which do not markedly alter the fundamental properties, 
are allowable, and indeed occur in many minerals.

 3. The gauge pressure is the pressure above atmospheric, which is the pressure that would 
be measured using a pressure gauge. In soil mechanics, we are concerned almost exclu-
sively with gauge pressures. The terms pore water pressure or even pore pressure are 
therefore used, and it is taken for granted that what is meant is actually the gauge, 
rather than the absolute, pressure.

 4. That is, the maximum shear stress which the soil can withstand when it is sheared und-
rained at constant volume and constant water content. This undrained shear strength 
is not the same as the more fundamental effective frictional strength, because the und-
rained shear strength depends on the magnitude of the effective stress. In the liquid 
and plastic limit tests, the total stress is virtually zero, so that any effective stress must 
be attributable to the presence of a negative pore water pressure. It will be shown in 
Chapter 5 that, for clay soils deforming at constant volume, the effective (normal and 
shear) stresses at failure—and hence the undrained shear strength—depend entirely on 
the water content.
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Chapter 2

Soil strength

2.1 INTRODUCTION

One of the key questions concerning any geotechnical structure is its safety. To answer this 
question, the geotechnical engineer must address two points:

• How are the applied loads (due to external agencies and the soil’s own weight) 
 distributed within the soil mass as stresses?

• Is the soil strong enough to withstand these stresses?

This chapter is concerned primarily with the quantification and measurement of soil 
strength, using a laboratory testing apparatus known as a shearbox. It is assumed that the 
reader has an understanding of the concepts of stress and strain, and is familiar with the 
representation of the states of stress and strain within a plane by means of Mohr circles. 
A brief summary of some of the elements of stress analysis is given in Section 2.2. Further 
details will be found in, for example, Case et al. (1999).

2.1.1 OBJECTIVES

After having worked through this chapter, you should understand that:

• Soil strength is due primarily to interparticle friction (Section 2.4).
• The ability of a soil to resist shear on a particular plane depends on the normal  effective 

stress acting on that plane (Section 2.4).
• Positive pore water pressures reduce the normal effective stress, and generally have a 

destabilising effect on a geotechnical structure (Section 2.4).
• When sheared, a soil will eventually reach a critical state in which unlimited shear 

strain could be applied without further changes in specific volume, normal effective 
stress or shear stress (Sections 2.7 and 2.8).

• The combination of specific volume, normal effective stress and shear stress at the criti-
cal state lies on a unique line—the critical state line—on a three-dimensional plot with 
axes representing specific volume, normal effective stress and shear stress (Section 2.8).

• A dense soil will develop a peak strength before reaching a critical state, because it 
must increase in volume or dilate to reach that state. The peak strength cannot be 
sustained indefinitely, because dilation must cease when the critical state is reached 
(Sections 2.7 through 2.9).

• For saturated clays sheared at constant volume, the shear stress at failure depends on 
the specific volume or the water content. This shear stress is known as the undrained 
shear strength, and can be used to define an alternative failure criterion in terms of 
total, rather than effective, stresses (Section 2.10).
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You should be able to

• Process data from a shearbox test and present results in engineering terms and units 
(Sections 2.5 and 2.6)

• Determine the critical state strength φ′crit, the peak strength φ′peak and the undrained 
shear strength τu, from processed shearbox test data (Sections 2.7 to 2.10)

• Use these strength parameters to investigate the failure of simple geotechnical struc-
tures, such as pull-out anchors and friction piles (Section 2.11)

Sections 2.12 and 2.13 contain material that is likely to be beyond the scope of an 
 introductory-level course in soil mechanics. If, however, these sections are included in your 
studies, they should help you to gain an appreciation of:

• The analysis of the shearbox test in terms of Mohr circles of stress and strain increment
• The uncertainties associated with the stresses and strains in a shearbox test sample, 

and the limitations of the conventional interpretation of the data obtained

2.2 STRESS ANALYSIS

2.2.1 General three-dimensional states of stress

The loads and forces applied to a solid body (such as a soil mass) are distributed within the 
body as stresses. Provided that there are no planes of weakness which might interrupt the 
transfer of stress, it is usually assumed that the stresses vary smoothly and continuously 
throughout the body, which is then described as a continuum.

If we were to imagine a cubical element within a three-dimensional body under a general 
state of stress, there could be up to three independent stresses acting on each pair of opposite 
faces, as shown in Figure 2.1. Two of the stresses on each face act parallel to the face, at right 
angles to each other: these are shear stresses, and are denoted by the symbol τ. The third 
stress acts perpendicular to the face of the cube: it is known as the normal (or direct) stress, 
and is given the symbol σ if it is a total stress, or σ′ if it is an effective stress. To distinguish 
between the various shear and normal stresses, a system of double subscripts is used, for 
example τxy. The first subscript (in this case, x) denotes the direction of the normal to the 
plane on which the stress acts, while the second subscript (in this case, y) denotes the direc-
tion in which the stress acts.

In soil mechanics, it is usual to take compressive direct stresses and strains, and anti-
clockwise (as viewed from inside the element) shear stresses and the associated shear strains, 
as positive. This is in contrast to structural mechanics, in which tensile direct stresses and 
strains, and clockwise shear stresses, are conventionally taken as positive. The reason we 
adopt the ‘compression is positive’ sign convention in soil mechanics is that soils are essentially 
particulate materials, which cannot sustain tensile stresses unless the particles are cemented 
together. Stresses in soil mechanics are, therefore, almost always compressive. A stress incre-
ment, however, can be tensile provided that the overall stress remains compressive. Tensile 
strains are also permissible, again provided that the overall stress remains compressive.

2.2.2 Principal stresses

By rotating the cube shown in Figure 2.1, we should be able to find one particular orientation 
in which all of the shear stresses acting across the faces of the cube are zero. The three planes 
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defined by the three pairs of parallel faces are the principal planes, and the normal stresses 
which act on the three planes are the principal stresses. By definition, the shear stress associated 
with a principal stress is zero, and a principal plane is a plane on which the shear stress is nil.

The largest principal stress is termed the major principal stress, the smallest principal stress 
is the minor principal stress, and the remaining principal stress is the intermediate principal 
stress. As an alternative to the system of double subscripts described in Section 2.2.1, the 
major, intermediate and minor principal stresses are sometimes denoted by subscripts 1, 2 
and 3 respectively.

2.2.3 Plane strain

In many geotechnical problems, there is no need to carry out a full three-dimensional stress 
analysis. Many embankments and retaining walls, and some types of foundation, are long 
in comparison with their width and height. One cross-sectional plane must, therefore, be 
identical to any other in all respects, including the stresses acting within it. Also, if the 
embankment, foundation or retaining wall is effectively infinitely long, any cross-sectional 
plane must be a plane of symmetry.

Imagine a long embankment, cut in half along a cross-sectional plane. Suppose that, on 
the left-hand half of the embankment, there is a shear stress acting in the plane of the cross-
section in some particular direction. The condition of equilibrium across the imaginary cut 
requires an equal and opposite shear stress to act on the right-hand side of the embankment, 
whereas the condition of symmetry requires the shear stress on the right-hand side to be 
 acting in the same direction. These two requirements can only be met if the shear stress on 
the cross-sectional plane were zero.

This means that the plane of the cross-section is a principal plane. In fact, it is almost 
always the plane on which the intermediate principal stress acts, and the major and minor 
principal stresses are contained within it.

τxy

τzy

τzx

τyx

τxz

τyz

σxx

σyy

σzz

z

y

x

Figure 2.1  General three-dimensional state of stress. The faces of the cubic element shown are termed the 
positive faces, because the outward normals are in the positive directions of x, y and z. On the 
faces not shown (the negative faces), the directions of the stresses are reversed in order to satisfy 
to condition of equilibrium.
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We shall see later in this chapter that the failure of soil is governed by the ratio of the 
major and minor principal effective stresses, or in certain conditions the difference between 
the major and minor principal total stresses. For geotechnical constructions that are long in 
comparison with their other dimensions, we can therefore concentrate our analysis on the 
plane of the cross-section, which contains the important major and minor principal stresses. 
The intermediate principal stress, which acts parallel to the length of the embankment, 
foundation or retaining wall, is generally of less importance and can often be ignored in 
analysis. This is particularly useful, because the intermediate principal stress is usually the 
most difficult to calculate.

A further consequence of the embankment, foundation or retaining wall being long in 
comparison with its height and width is that there is no strain in the longitudinal direction. 
If one section were to expand along its length, the adjacent section would have to contract 
so that the overall length remained the same. This would contravene the basic requirement 
that the stresses and strains must be identical at every cross-section. All deformation takes 
place within the cross-section of the structure, with the longitudinal (intermediate) princi-
pal stress taking up whatever value is necessary to ensure that the strain in the longitudinal 
direction is zero. This condition is known as plane strain.

In reality, geotechnical structures are of finite extent and there are bound to be differ-
ences in geometry and/or soil conditions along their length. Nonetheless, for retaining walls, 
embankments, foundations, excavations and other constructions which are long in compari-
son with their width and height, the assumption that deformation occurs in plane strain is a 
very useful and reasonable approximation, which simplifies the analysis enormously.

2.2.4 Axisymmetry

In some cases, the stress analysis of a geotechnical structure can be simplified in a  different 
way. For a single foundation formed from a circular cylinder of reinforced concrete installed 
in the ground with its axis vertical (known as a pile), or a pumped well, the conditions 
on any vertical plane that includes a diameter of the pile or the well must be the same 
(Figure 2.2). Using the same arguments as above, the diametrical plane is the principal plane 
that contains both the major and the minor principal stresses. The stress and strain condi-
tions have rotational symmetry about the vertical axis of the pile or well, and are termed 
axisymmetric. Stress analysis is focused on a typical diametrical plane, in the same way that 
a typical cross-sectional plane is used in the analysis of a plane strain problem.

It is not always possible to idealise a real problem as either plane strain or axisym-metric. 
In these cases, a full three-dimensional analysis may be required. This must usually be car-
ried out numerically by means of a finite element or finite difference analysis, as described 
in Section 11.4.1.

2.2.5 Mohr circle of stress

The normal and shear stresses σ and τ acting on an imaginary cut within a typical cross- 
sectional or diametrical plane will depend on the orientation of the cut with respect to 
the major and minor principal stress directions (Figure 2.3). If the cut is perpendicular to 
either the major or the minor principal stress, the shear stress acting in the direction of the 
cut will be zero. In general, however, there will be a shear stress acting along the cut, the 
magnitude of which increases as the cut is rotated away from the direction of the planes of 
principal stress.

The stress state within a plane containing the major and minor principal stresses (or 
indeed, within a plane containing any pair of principal stresses) is most conveniently 
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 represented by  means of a graphical construction known as the Mohr circle of stress 
(Figure 2.4). The Mohr circle is literally a circle, plotted on a graph of shear stress τ against 
normal stress, σ. The circle may be plotted for either total normal stresses, σ, or for effec-
tive normal stresses, σʹ. The total and effective shear stresses are the same, because all shear 
must be carried by the soil skeleton as effective stress.

The plane containing the major and minor principal stresses σ1 and σ3 may be referred to 
as the 1–3 plane, the plane containing the major and intermediate principal stresses σ1 and 
σ2 as the 1–2 plane, and the plane containing the intermediate and minor principal stresses 
σ2 and σ3 as the 2–3 plane.

The Mohr circle passes through the points representing the major and the minor principal 
stresses, with coordinates respectively of ( ′σ1, 0) and ( ′σ3, 0) for effective stresses and (σ1, 0) 
and (σ3, 0) for total stresses. The centre of the circle of effective stress is at [( )′σ + ′σ1 3 /2, 0], and 
the centre of the circle of total stress is at [(σ1 + σ3)/2, 0]. Recalling that σ = σ + u (where u is 
the pore water pressure), the centres of the circles of effective and total stress are separated by 
a distance equal to u along the normal stress axis. 1 3( )σ + σ′ ′ /2 is the average of the major and 
minor principal effective stresses, and is conventionally given the symbol s′. Similarly, (σ1 + 
σ3)/2 is the average of the major and minor principal total stresses, and is given the symbol s.

Stress and strain conditions
are the same on any vertical
plane through the diameter
of the pile

Vertical axis of pile

Figure 2.2 Axisymmetry.

σ′1

σ′3 σ′3

σ′

σ′

σ′1

ττ

θ

Figure 2.3  Normal and shear stresses acting on an imaginary cut within the cross-sectional plane of a long 
geotechnical construction.
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The radius of the circle of effective stress is 1 3( )σ − σ′ ′ /2, while the radius of the circle of total 
stress is (σ1 − σ3)/2. These are identical, because the pore water pressure u is cancelled out in the 
subtraction of the two principal effective stresses. The value 1 3( )σ − σ′ ′ /2 or (σ1 − σ3)/2 is equal to 
the maximum shear stress acting within the 1–3 plane, and is conventionally given the symbol t.

The stresses acting on an imaginary cut at an angle θ anticlockwise from the plane on 
which the major principal stress acts are found by drawing a line from the centre of the 
Mohr circle to the circumference, which makes an angle 2θ (measured anticlockwise) with 
the normal stress (σ or σ′) axis. The stresses on the ‘cut’, in effective stress terms, (σ′, τ), are 
given by the point where this diameter meets the circumference of the circle (Figure 2.4b).

The Mohr circle of stress shows that, unless the major and minor principal stresses are 
equal, there must be some shear stress acting somewhere within the plane under consider-
ation. The maximum shear stress within the plane is equal to the radius of the Mohr circle, 

1 3( )σ − σ′ ′ /2 = (σ1 − σ3)/2. It occurs at angles of ±90° to the normal stress axis on the Mohr 
diagram, indicating that in reality, the shear stress is largest on planes that are at ±45° to 
the planes on which the major and minor principal stresses act. (The angle, measured at the 
centre of the Mohr circle, between diameters representing different planes is twice the physi-
cal angle between those planes in reality).

2.2.6 Mohr circle of strain

Strain, like stress, may be classified as either direct or shear (Figure 2.5). Direct strain is 
given the symbol ε. Engineering shear strain, defined in Figure 2.5b, is given the symbol γ. 

Mohr circle of
effective stress
Centre at s′=     (σ′1 + σ′3)
Radius t =   (σ′1 – σ′3)

t t

u

(a)

(b)

O

Radius t =    (σ1 – σ3)1
2

1
2

Mohr circle of total stress
Centre at s =     (σ1 + σ3)1

21
2

τ

O

τ

σ′3

σ′3 σ′1 σ′

σ1σ′3
σ, σ′

σ3s′

s′=

s

(σ′, τ)

1
2 (σ′1 + σ′3)

2θ

Figure 2.4  Mohr circles of stress showing (a) the circles representing total and effective stress separated by 
the pore water pressure, u; and (b) the stress state on an imaginary 'cut' at an angle θ anticlock-
wise from the plane on which the major principal effective stress acts.
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The engineering shear strain, γ, is the overall decrease in the angle between the positive 
directions of two perpendicular lines—in the case of Figure 2.5, the x and y axes.) The same 
systems of subscripts are used as for stresses. If a material is elastic, the directions of the 
principal strain increments will coincide with the directions of the principal stress incre-
ments during an increment of loading. This may not be true in other cases.

The state of strain in a plane containing two principal strains may be represented by the 
Mohr circle of strain, as shown in Figure 2.6. This is exactly analogous to, and is used in the 
same way as, the Mohr circle of stress. However, to obtain a circle on the Mohr diagram of 
strain, the vertical ordinate is γ/2, not γ.

It is the behaviour of the material perpendicular (normal) to a plane that determines the 
strain related to that plane. For consistency with the sign convention in soil mechanics on 
stresses, the direct strain associated with a plane is taken as positive if the material in the 
normal direction is compressive. The shear strain is positive if this material rotates anti-
clockwise relative to the plane.

This is illustrated in Figure 2.7. For the x-plane in Figure 2.7, the rotation of the material 
normal to the plane is anticlockwise relative to the plane, and the associated shear strain 
γxy plots as positive on the Mohr circle of strain. For the y-plane in Figure 2.7, the rotation 

Direct strain ε = y/h0

Engineering shear strain γ = x/h0

(a)

(b)

h0

h0

y

x

x

y

y

x

γ

Figure 2.5 Strain: (a) direct strain and (b) engineering shear strain.
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Figure 2.6 Mohr circle of strain.
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of the material normal to the plane is clockwise relative to the plane, and the associated 
shear strain γyx plots as negative on the Mohr circle of strain. This is consistent with the sign 
convention for stresses. The deformation shown in Figure 2.7 would be caused by clockwise 
shear stresses τyx—which plot as negative on the Mohr circle of stress—acting on the top 
and bottom faces of the element. To fulfil the condition of equilibrium, the shear stresses on 
the vertical faces, τxy must be anticlockwise, plotting as positive on the Mohr circle of stress.

Figure 2.6 shows the Mohr circle of strain for an element of soil, subjected to compressive 
strains of ε1 in the vertical direction and ε3 in the horizontal. We can consider the overall 
strain pattern as being made up of a uniform compression (in both directions) of (ε1 + ε3)/2 
(Figure 2.8a), onto which is superimposed a shear deformation involving a further com-
pression of (ε1 − ε3)/2 in the vertical direction and expansion of the same magnitude in the 
horizontal (Figure 2.8b).

The strain pattern shown in Figure 2.8a causes a change in the area of the cross-section, 
without shear in the 1–3 plane. In plane strain, the prevention of out-of-plane strains will 
lead to the development of shear strains in the 1–2 and 2–3 planes. Conversely, the strain 
pattern shown in Figure 2.8b involves pure shear in the 1–3 plane, without changing the 
area of the cross-section. Figure 2.6 shows that the ‘volumetric’ strain component (ε1 + ε3)/2 
gives the location of the centre of the Mohr circle of strain, while the ‘distortional’ strain 
component (ε1 − ε3)/2 is equal to the radius. As with the Mohr circle of stress, the position 
of the centre is associated with direct effects, and the radius with shear.

y-plane

x-plane

Material originally
normal to y-plane

Normal to
y-plane

Normal to
x-plane

Material originally
normal to x-plane 

y

x

γ

γyx

γxy

Figure 2.7 True shear strain.
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Figure 2.8 (a) Uniform compression. (b) Pure shear.
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Magnitudes of stresses are absolute, but strains must always be expressed with  reference 
to some arbitrary and non-reproducible datum condition. In the analysis of a soil test, it is 
sometimes necessary to distinguish between the strain that has occurred since the start of 
the test and the strain that occurs between two stages, both of which are some way into the 
test. The strain that has occurred since the start of the test is generally described as simply 
the strain but sometimes, to remove any possibility of confusion, the term cumulative strain 
may be used. The strain between two stages, both some way into the test, is described as the 
incremental strain or a strain increment. Generally, an incremental quantity will be prefixed 
by a d, δ or Δ, as in dε, δε or Δε. Mohr circles of strain increment are used in the stress 
analysis of the shearbox sample given in Section 2.12.

For further discussion on the analysis of stresses and strains, including the mathematical 
arguments associated with their Mohr circle representations, the reader should refer to Case 
et al. (1999) and other textbooks on stress analysis.

2.3 SOIL STRENGTH

In soil mechanics and geotechnical engineering, strength may be defined as the ability to 
resist shear. It is the ability of a material to resist shear which enables the principal stresses 
to be different in different directions. This is indicated by the Mohr circle of stress for the 
plane containing the major and minor principal stresses, shown in Figure 2.9a. Fluids such 
as water and treacle cannot sustain shear stresses when they are stationary. The stress within 
a stationary fluid must therefore be the same in all directions, and the Mohr circle of stress 
is effectively a single point (Figure 2.9b). Unless a material can withstand shear stresses, it 
will not be possible to form and maintain non-horizontal surfaces such as embankment and 
cutting slopes.

Soil is able to withstand shear stresses, while water cannot. This is why it is necessary to 
distinguish the component of stress carried by the soil skeleton from the component carried 
by the pore water, according to the principle of effective stress

 σʹ = σ − u  (1.13)
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Figure 2.9  Mohr circles of stress for the plane containing the major and minor principal stresses. (a) Material 
which is able to resist shear stress. (b) Material which is unable to resist shear stress.
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Soil is able to withstand shear stresses as a result of interparticle friction. Although in 
some natural soils the particles may be lightly cemented, such bonds are brittle: once bro-
ken, their strength is gone forever. As mentioned in Section 1.4, surface forces in clays may 
be significant at low effective stresses, but at depths of more than a few centimetres they 
are generally small in comparison to the weight of the soil. Thus interparticle friction is the 
main source of strength for nearly all soils, whether they are predominantly sand, silt or clay.

2.4 FRICTION

Imagine a wooden block on a wooden table, as shown in Figure 2.10. An experiment is 
 carried out in which the normal load, N, is kept constant, and the sideways force, F, is 
 gradually increased until the block starts to slide. The value of F needed to make the block 
slide is recorded. The experiment is then repeated with different values of N. If the results 
are plotted as a graph of N against F at sliding, there will be a linear  relationship between 
them, which may be expressed in the form

 F = μN  (2.1a)

where μ is the coefficient of friction between the block and the table.
Alternatively, the coefficient of friction μ can usefully be expressed in terms of the angle 

of friction φ. The angle φ is the angle of inclination of the resultant force R on the sliding 
 interface, measured from the normal (Figure 2.11a). It is also the slope of the line joining 
possible combinations of F and N at sliding (Figure 2.11b). Substituting μ = tan φ into 
Equation 2.1a,

 F = N tan φ  (2.1b)

The wooden block could be taken to represent a retaining wall (i.e. a wall built to retain 
a mass of earth) of weight N, required to resist the lateral thrust F of the retained soil 
 without moving. The onset of continued sliding would then be regarded as the failure of the 
 structure. The line represented by Equation 2.1b defines combinations of N and F that must 
not be approached if failure is to be avoided. If F < N tan φ, the block will remain  stationary. 
If F = N tan φ, the block will be on the verge of sliding. If F > N tan φ, the block will accel-
erate away sideways under the action of a net lateral force. Equation 2.1b is a simple failure 
criterion, which defines the relationship between F and N at which failure will just occur.

The principle of the sliding block may be used to investigate the frictional strength of a 
soil. It is necessary to contain the sides of the block of soil to prevent it from collapsing into a 
heap. Steps should be taken to prevent the ‘block’ from ploughing into the ‘table’. The most 
practical way of testing a sample of soil in this way is to place the sample in a box divided 
horizontally into two halves, and to shear the top half of the sample across the bottom 

Wooden block

Table

N

F

Figure 2.10 Wooden block on a wooden table.
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(Figure 2.12). The basic apparatus for doing this is known as a shearbox, and is illustrated 
in Figure 2.14.

The results of a shearbox test on a sample of soil are analysed in terms of stresses, rather 
than forces. Also, the analysis must be carried out in terms of effective, rather than total, 
stresses. The shear stress τ = F/A and the (compressive) normal total stress σ = N/A are 
obtained by dividing F and N by the cross-sectional area of the soil sample, A. The normal 
effective stress, σ′, is obtained by subtracting the pore water pressure at the interface u from 
the total normal stress σ, according to Equation 1.13. If u = 0 (as is almost always the case 
in shearbox tests on sands, but not necessarily on clays), σ = σ′ = N/A and Equation 2.1b 
may be rewritten as

 τ = σ′ tan φ′ (2.2)

where the prime (′) is added to the angle of friction (φ) to indicate that it is a parameter 
which relates to effective stresses. A soil relying solely on interparticle friction for its strength 
would be expected to obey the failure criterion given in Equation 2.2.

Equation 2.2 defines combinations of shear stress, τ, and normal effective stress, σ′, which 
may not be exceeded. It is not possible for the soil to sustain a stress state whose Mohr 
circle of effective stress crosses the line τ = σ′ tan φ′ (Figure 2.13a). Permissible states of 
stress have Mohr circles either inside this line (Figure 2.13b), or touching it (Figure 2.13c). 
A stress condition represented by a Mohr circle which just touches the line τ = σ′ tan φ′ cor-
responds to a soil just on the verge of failure and is known as a limiting stress state. The line 
τ = σ′ tan φ′ is a tangent to the Mohr circles of stress representing all possible stress states 
at failure or limiting states of stress (Figure 2.13d); it is therefore termed a failure envelope. 
The condition τ = σ′ tan φ′ is sometimes referred to as a Mohr–Coulomb failure criterion.

According to the failure envelope shown in Figure 2.13d, the soil has zero strength when 
the normal effective stress σ′ is zero. If the soil grains are in reality cemented together, the 
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Figure 2.11  (a) Angle of inclination of resultant force on the interface; (b) relationship between F and N when 
the block starts to slide.
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Figure 2.12 Sliding interface (shearbox) test to investigate frictional characteristics of a soil.
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soil will have some strength at σ′ = 0, because some shear stress will be required to break the 
cementing bonds. As mentioned before, however, such bonds are brittle: once broken, their 
strength is lost completely. For this reason, it is generally unwise in geotechnical engineering 
design to rely on the strength of cementing bonds between soil particles, unless they are strong 
in comparison with the loads that are expected to be applied to the soil. If this is the case, the 
‘soil’ is fairly heavily cemented and may be more appropriately classed as a weak rock.

We shall see in Section 2.7 and later in this book that the behaviour of soil is somewhat 
more complicated than that of a wooden block sliding across a wooden table. One of the 
reasons for this is the tendency of the soil to change in volume as it is sheared. Along with a 
measure of the shear stress and a measure of the normal effective stress, the specific volume of 
the soil is an essential indicator of its state. It is important, therefore, to measure the changes in 
volume which occur during shear: the standard shearbox apparatus is designed to enable this.

As mentioned earlier, the frictional nature of soil is one of the reasons why it is nec-
essary to distinguish between the effective stress and pore water pressure. Water cannot 
resist shear, so that all of the applied shear stress must be carried by the soil skeleton. 
Furthermore, if the pore water pressure is positive, the normal effective stress, σ′, will be 
less than the applied normal total stress, σ. This will reduce the ability of the soil to resist 
shear, according to Equation 2.2 with σ′ = σ − u. This is important in all geotechnical appli-
cations, but is illustrated particularly clearly in the assessment of the stability of a slope, as 
described in Sections 8.10 and 8.11.

The angle of friction measured in a shearbox test on a soil sample is not the same as the 
true interparticle or material angle of friction. The latter can be measured by, for example, 
forcing two solid blocks, made from the same mineral as the soil particles, to slide across 
each other. In engineering applications, however, the angle of friction measured in the shear-
box test, which is sometimes termed the apparent or effective angle of friction or the angle 
of shearing resistance, is what matters. For an assemblage of particles of a given shape, the 
interparticle angle of friction may influence the effective angle of shearing resistance by 
altering the extent to which the particles move relative to each other by rolling rather than 
by sliding (Ni, 2003; Powrie et al., 2005).
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Figure 2.13  Combinations of shear stress and normal effective stress: (a) impossible stress state, (b)  permissible 
stress state with soil not at failure, and (c) permissible stress state with soil on verge of failure 
 (limiting stress state). (d) The lines τ = ±σ tan φ as an envelope to all possible limiting stress states.
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2.5 SHEARBOX OR DIRECT SHEAR APPARATUS

The standard laboratory shearbox (or direct shear) apparatus, illustrated in Figure 2.14, 
is perhaps the simplest way of investigating the shear strength and the shear stress–strain 
behaviour of a soil.

In a shearbox test, a soil sample of 20 mm thickness is placed inside a split metal box, 
of internal dimensions 60 mm × 60 mm on plan. A vertical stress is applied to the sample 
by means of weights on a hanger, which bears on the lid of the shearbox. The lid of the 
shearbox covers the entire sample, and distributes the hanger load, N, uniformly across it. 
Usually, the shearbox lid simply rests on the upper surface of the soil sample, so that it is 
free to move up or down as the volume of the sample changes. Initially, the two halves of the 
box are held together by two screws. Before the test commences, these screws are removed. 
The top half of the box is raised slightly (using a second pair of screws), so that there is no 
metal-to-metal contact during shear.

If the soil to be tested is a sand, it is usually necessary to recompact the sample into the 
shearbox at an appropriate specific volume. The initial specific volume, v0, may be deter-
mined provided that the dry mass of soil, ms, the specific gravity of the particles.

Gs, and the initial total volume Vt0 are known:

 Vt0 = Vs + Vv0 = Vs[1 + (Vv0/Vs)] = Vsv0

and (by definition)

 Vs = ms/ρs = ms/Gsρw

giving

 v0 = (Vt0 Gsρw)/ms (2.3)

The test is carried out by shearing the two halves of the sample relative to each other, 
by means of a motor-driven ram acting on the bottom half. The lateral force, F, needed to 
hold the top half of the shearbox stationary is measured by means of a proving ring or a 
load cell. A proving ring is a stiff steel spring in the form of a ring, whose spring constant 
(i.e.  force-to-deflection ratio) is determined by calibration before the shearbox test. During 
the test, the lateral force required to stop the lower half of the shearbox from moving is 
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Figure 2.14 Standard shearbox apparatus.
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transmitted across the diameter of the proving ring. The shear load can then be deduced 
from the diametrical compression of the proving ring, which is measured by means of a 
dial gauge or an electrical displacement transducer. The compression of the proving ring 
or load cell will result in a small displacement of the top half of the box. This is taken into 
account by calculating the shear strain from the relative displacement of the two halves of 
the shearbox (see Section 2.6). The upward vertical displacement y of the lid of the shear-
box, and the lateral displacement of the lower half of the shearbox, are measured using dial 
gauges or electrical displacement transducers known as lvdts (linearly variable differential 
transformers).

The displacement of the top half of the shearbox relative to the bottom half x is calculated 
as the absolute displacement of the bottom half of the shearbox, reduced by the  displacement 
(in the same direction) of the top half resulting from the compression of the proving ring 
or load cell. Alternatively, the lateral displacement transducer may be positioned so as to 
measure the relative displacement of the top half of the shear box directly. The quantities 
measured during shear are shown schematically in Figure 2.15.

We shall see in Chapter 4 that, when a soil is subjected to an increase in load, additional 
pore water pressures are generated. These additional pore water pressures dissipate with 
time. In a sand, in which water can flow relatively easily between the particles, the  additional 
pore water pressures usually dissipate almost instantaneously. In a clay, the additional or 
excess pore water pressures dissipate slowly. In a standard shearbox test, there is no facility 
to measure pore water pressures within the sample. To analyse the test in terms of effective 
stresses, it must be carried out slowly enough to prevent the development of significant pore 
water pressures. This will ensure that the entire applied vertical load is carried by the soil 
skeleton as an effective stress.

A test carried out under these conditions is termed a drained test. Sands, being  relatively free-
draining, may be tested quite quickly without causing the build-up of excess pore water pressure. 
Some sands may be satisfactorily tested dry, which eliminates the problem of drainage entirely. 
Clay soils, on the other hand, cannot be tested dry, and pore water pressures take much longer 
to dissipate. A shearbox test on a clay might, therefore, need to be carried out slowly over several 
days. Bolton (1991) suggests suitable shear rates for drained tests of approximately 1 mm/min 
for a sand, 0.01 mm/min for a silt and 0.001 mm/min for a clay. If in doubt, it is better to err on 
the side of caution. The test results should not be affected if the sample is sheared more slowly, 
while the results of a test which has been  carried out too quickly will be meaningless.

Upward vertical movement
of shearbox lid y

Vertical strain εv = volumetric strain
(a)

(b)
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shear strain
γ = x/h0
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Figure 2.15  Schematic deformation of shearbox sample, showing quantities measured during shear test: 
(a) actual deformation and (b) idealised deformation.
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2.6  PRESENTATION OF SHEARBOX TEST 
DATA IN ENGINEERING UNITS

Assuming that the pore water pressure within the sample is zero (either because the sample 
is dry, or because the test is being carried out sufficiently slowly), the vertical effective stress, 
σ′, and the shear stress, τ, acting on the central horizontal plane of the shearbox are obtained 
by dividing the forces N and F, respectively, by the cross-sectional area, A of the sample:

 σ′ = N/A (2.4)

 τ = F/A (2.5)

According to the idealised mode of deformation shown in Figure 2.15b, the engineering 
shear strain γ is given by

 γ = x/h0 (2.6)

where x is the relative horizontal displacement and h0 is the initial sample height.
As the cross-sectional area of the sample remains constant, any increase in sample volume 

must result in an upward movement y of the lid of the shearbox. The increase in sample total 
v olume ΔVt which corresponds to an upward movement y of the shearbox lid is

 ΔVt = Ay

In soil mechanics, it is conventional to take compression as positive. The volumetric 
 compression is − ΔVt, and the compressive volumetric strain εvol is given by

 εvol = − ΔVt/Vt0 = −(Ay)/(Ah0) = −y/h0 (2.7)

The specific volume of the sample at any stage of the test may be calculated using the 
general form of Equation 2.3,

 v = (VtGsρw)/ms

where

 Vt = Vt0 + Ay (2.8)

and y is measured positive upward.
Shearbox test data are conventionally plotted as graphs of shear stress τ or stress ratio τ/σ′ 

against shear strain γ, and volumetric strain εvol or specific volume v against shear strain γ, 
as shown in Figure 2.16. The stress ratio (τ/σ′) is used instead of the shear stress τ because, 
owing to the frictional nature of soil, the shear stresses generated in a shearbox test would be 
expected generally to increase in proportion to the applied normal effective stress. In dividing 
the shear stress by the normal effective stress at which the test is carried out, differences in 
data due to the effect of differences in σ′ alone are eliminated. The specific volume, v, is often 
preferred to the volumetric strain because it has an absolute value: the volumetric strain is 
measured relative to a datum which is arbitrarily set to zero at the start of the shearbox test.

An upward movement of the shearbox lid implies an increase in volume or dilation. 
This corresponds to a negative volumetric strain, according to the usual soil mechanics 
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convention that compressive normal stresses and strains, and anticlockwise shear stresses 
and strains, are positive. Figure 2.16b is plotted with the positive volumetric strain axis 
pointing downward. This reflects the actuality of the shearbox test, and means that the 
volumetric shear–strain relationship shown in Figure 2.16b has the same shape as the path 
followed by the shearbox lid as the test progresses.

2.7 VOLUME CHANGES DURING SHEAR

During a small time interval dt, the lid of the shearbox moves horizontally by a distance dx. 
If, during this time, it also moves vertically upward by distance dy, it is travelling at an angle 
ψ = tan−1(dy/dx) to the horizontal (Figure 2.17). Angle ψ is known as the angle of dilation, 
and is an indication of the rate at which the sample is changing in volume as it is sheared. 
If ψ is positive, the lid of the shearbox is moving upward and the sample is increasing in 
volume, or dilating. If ψ is negative, the lid of the shearbox is moving downward and the 
sample is reducing in volume, or compressing.

More formally, ψ is defined as the negative of the rate of increase of volumetric strain with 
shear strain,

 ψ = tan−1(−dεvol/dγ) (2.9)

The negative sign in Equation 2.9 is required so that a negative (i.e. expansive) change in 
volume corresponds to a positive rate of dilation.

For the shearbox test, dεvol (positive compression) = −dy/h0 and dγ = dx/h0 (writing 
Equations 2.6 and 2.7 in incremental form), so that ψ = tan−1(dy/dx), as in the text above.

So far, we have avoided the question of why the soil should change in volume (dilate or 
compress) as it is sheared. This behaviour arises because the soil is essentially a particulate 
material. The particles must take up a suitable arrangement of packing—corresponding 
to what is known as a critical void ratio—before continued shearing can take place. If the 
particles are initially more densely packed than the critical void ratio, some loosening occurs 
before steady shear can take place.

A loosening of the packing requires an increase in void ratio. This corresponds to an 
increase in the overall volume, that is, dilation, and an upward movement of the shearbox 
lid. If the particles are initially more loosely packed than the critical void ratio, densification 
of the sample takes place before the appropriate arrangement for steady shear is reached. 
Densification requires a reduction in void ratio, which corresponds to a compression of the 
sample and a downward movement of the shearbox lid.
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The concept of a degree of packing at which steady shear can take place can be illustrated 
schematically with reference to an imaginary assemblage of ball bearings. In Figure 2.18a, the 
ball bearings are initially loosely packed, with those in the upper layer resting on the peaks 
of those in the lower layer. On shearing, the ball bearings in the upper layer will have to 
move downward into the troughs, resulting in a reduction in overall volume  (compression). In 
Figure 2.18b, the ball bearings are initially densely packed, with the upper layer nestling in the 
troughs between the bearings in the lower layer. On shearing, the ball bearings in the upper 
layer will have to climb out of the troughs, resulting in an increase in overall volume (dilation).

The diagrams shown in Figure 2.18 have only two layers of ball bearings in regular pack-
ing arrangements, and are therefore much too simple for anything except a basic illustration 
of the concept. A real assemblage of ball bearings might have only a single particle size, but 
will be randomly packed. A soil will be randomly packed with a variety of particle sizes. The 
result of this is that, after dilation or contraction to a critical void ratio, continued shearing 
of a soil can take place at constant volume, without the lumpiness (as the top layer of ball 
bearings continues to fall into and climb out of the troughs in the lower layer) implied by 
the simple model of Figure 2.18.

Figure 2.19 gives a more realistic visualisation of the rearrangement of real soil particles 
during shear. Figure 2.19a shows an initially dense sample during the early stages of shear: 
the average particle velocity is inclined upwards, implying dilation. Figure 2.19b shows an 
initially loose sample: the average particle velocity is downward, implying compression. 
Figure 2.19c shows a sample deforming at the critical void ratio: some of the soil particles 
are moving upward and others downward, but the average movement is horizontal.

The dilation of a dense sand when sheared can be demonstrated quite graphically by 
means of a rubber bulb, filled with sand, on the end of a tube (Figure 2.20). The sand is 
saturated, and some excess water is added so that the tube is initially about three-quarters 
full of clear water (Figure 2.20a). When the bulb is squeezed, the sand is sheared and begins 
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Figure 2.19  Visualisation of rearrangement of soil particles during shear: (a) dilation; (b) contraction; (c) critical 
state. (Redrawn with permission from Bolton, M.D., A Guide to Soil Mechanics, M.D. & K. Bolton, 
Cambridge, 1991.)
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Figure 2.18 Conceptual model for: (a) compression and (b) dilation during shear.



76 Soil mechanics: concepts and applications

© 2010 Taylor & Francis Group, LLC

to dilate. This draws water into the bulb to fill the additional void space, resulting in a fall 
in the water level in the tube (Figure 2.20b). It follows from the behaviour shown in Figure 
2.20 that, in a saturated soil, a tendency to dilate is accompanied by the development of neg-
ative pore water pressures. It is these negative pore water pressures that are responsible for 
the drawing in of water from the surroundings. Conversely, a tendency to contract on shear-
ing will be associated with the generation of positive pore water pressures, which lead to the 
expulsion of water from the soil so as to attain the required reduction in specific volume.

2.8 CRITICAL STATES

The achievement of a critical void ratio or specific volume, at which continued shear can 
take place without change in volume, is illustrated by the idealised results from shearbox 
tests on dense and loose samples of sand shown in Figure 2.21. The normal effective stress 
σ′ is the same in each test.

In the test on the initially dense sample, the shear stress gradually increases with shear 
strain (Figure 2.21a). The shear stress increases to a peak at P before falling to a steady value 
at C, which is maintained as the shear strain is increased. The initially dense sample may 
undergo a small compression at the start of shear, but then begins to dilate (Figure 2.21b). 
The curve of εvol against γ becomes steeper, indicating that the rate of dilation −dεvol/dγ is 
increasing. The slope of the curve reaches a maximum at P, but with continued shear strain, 
the curve becomes less steep until at C it is horizontal. When the curve is horizontal dεvol/dγ 
is zero, indicating that dilation has ceased. The peak shear stress at P in Figure 2.21a coin-
cides with the maximum rate of dilation at P in Figure 2.21b. The steady state shear stress 
at C in Figure 2.21a corresponds to the achievement of the critical specific volume at C in 
Figure 2.21b.

The initially loose sample displays no peak strength, but eventually reaches the same 
critical shear stress as the initially dense sample (Figure 2.21a). Figure 2.21b shows that 
the initially loose sample does not dilate, but gradually compresses during shear until the 
critical specific volume is reached (i.e. the volumetric strain remains constant). Figure 2.21c 
shows that the critical specific volume is the same in each case.

The curves shown in Figure 2.21 indicate that, when sheared, a soil will eventually reach 
a critical void ratio, at which continued deformation can take place without further change 
in volume or stress. This condition, at which unlimited shear strain can be applied without 
further changes in specific volume v, shear stress τ and normal effective stress σ′, is known 
as a critical state. The critical state concept was originally recognized by Casagrande (1936), 
and developed by Roscoe et al. (1958).

Figure 2.21 also shows that the development of peak strength is inextricably linked to the 
dilation of the soil; this is discussed in Section 2.9.
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Figure 2.20  Demonstration of dilation: (a) rubber bulb full of saturated dense sand in undisturbed state; 
(b) what happens when the bulb is squeezed, causing the sand to shear and dilate.
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The critical state eventually reached depends on the normal effective stress at which the soil 
is sheared. Figure 2.22 shows idealised results of shearbox tests carried out at different nor-
mal effective stresses, on soil samples having the same initial void ratio. Test 1 was carried out 
at the lowest normal effective stress and test 4 at the highest. As the normal effective stress is 
different in each case, Figure 2.22a plots stress ratio τ/σ′, rather than  simply the shear stress 
τ, against shear strain γ. Also, Figure 2.22b is in terms of the specific volume rather than the 
volumetric strain, because the latter does not describe the state of the soil in absolute terms.

Figure 2.22a shows that, as the normal effective stress σ′ is increased, the maximum or 
peak stress ratio achieved is reduced, while the critical stress ratio is unaffected.

Figure 2.22b shows that the specific volume at the critical state is reduced as the normal 
effective stress is increased.

Figure 2.22c shows that the critical states lie on a straight line of gradient tan φ′crit on a 
graph of τ against σ′. The equation of this line may be written as

 τ = σ′ tan φ′crit (2.10)

It is worth emphasising here that, to define the state of a soil, three variables are required, quan-
tifying the specific volume, shear stress and normal effective stress. We will see later in the book 
that the exact definition of the shear and normal stress parameters used may vary depending 
on circumstances. However, the underlying principle remains the same.
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Figure 2.21 Idealised shearbox test results: (a) τ vs γ; (b) εvol vs γ; (c) v vs γ.
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Equation 2.10 is, as would be expected for an essentially frictional material, similar in 
form to Equation 2.2. However, we have now stated explicitly that the apparent angle of 
friction φ′ is measured at the critical state, rather than at the peak which might otherwise 
be described as the initial point of failure. In fact, we could not describe the peak strengths 
by means of an expression as simple as Equation 2.10, because the peak strength varies with 
the normal effective stress σ′.

Figure 2.22e shows that the critical states also lie on a straight line on a graph of v against 
ln(σ′). This line may be described by an equation of the form

 v = v0 − λ ln σ′ (2.11)

where v0 is the intersection of the line with the v-axis (i.e. the value of v on the critical state 
line at ln σ′ = 0 or σ′ = 1 kPa), and −λ is its slope.

The lines shown in Figures 2.22c and d are lines joining all possible critical states. 
They are in fact projections (onto the τ, σ′ and v, σ′ planes) of a single critical state line in 
 three-dimensional (σ′, τ, v) space (Figure 2.23).

The implication of Figure 2.23 is that, although the number of possible critical states is 
unlimited, there is only one critical state for any given value of σ′ (or τ or v). In other words, 
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Figure 2.22  Idealised results from shearbox tests, carried out at different normal effective stresses, on four 
samples having the same initial void ratio: (a) stress ratio τ/σ′ vs γ; (b) specific volume v vs γ; 
(c) critical states (end points of tests); τ vs σ′; (d) critical states; v vs σ′; (e) critical states; v vs ln σ′.



Soil strength 79

© 2010 Taylor & Francis Group, LLC

if we have carried out sufficient tests to locate the critical state line (or its projections onto 
the τ, σ′ and v, ln σ′ planes), we can predict the values of any two of the parameters σ′, τ and 
v at the critical state, provided that the third is known. Usually, in dealing with a sand, σ′ 
will be known so that τ and v can be predicted.

Sometimes, a clay soil is sheared quickly, so that (assuming it is saturated) it reaches the 
critical state without changing its specific volume. In these circumstances, v can be deter-
mined from the water content, using Equation 1.10 with Sr = 1:

 v = 1 + wGs  (2.12)

and the critical state model represented by Equations 2.10 and 2.11 can be used to predict 
the values of σ′ and (more importantly) τ at the critical state. This point is discussed in 
Section 2.10.

In Chapter 5, the critical state model is developed in terms of different stress parameters, 
to encompass more general stress states. The underlying principles, however, remain the 
same. These are as follows:

2.9 PEAK STRENGTHS AND DILATION

Figures 2.21 and 2.22 show that the ability of a soil to develop a peak strength before  reaching 
a critical state depends on its ability to increase in volume or dilate. In Figure 2.21, the maxi-
mum rate of dilation of the dense sample corresponded to the development of the peak shear 

 1. The state of a soil must be described by three parameters, which give an indication of the 
specific volume, normal effective stress and shear stress.

 2. When sheared, the soil will eventually reach a critical state in which unlimited shear strain 
could be applied without further changes in specific volume, normal effective stress or 
shear stress.

 3. The combination of specific volume, normal effective stress and shear stress at the critical 
state lies on a unique line—the critical state line—when plotted on a three-dimensional 
graph with axes representing specific volume, normal effective stress and shear stress.
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Figure 2.23 Critical state line in (σ′, τ, v) space with projections onto (τ, σ′) and (v, σ′) planes.
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stress, τpeak. The shear stress then fell as the rate of dilation decreased, until the  critical state 
was reached. The loose sample did not dilate, and did not exhibit a peak strength.

In Figure 2.22a, the peak stress ratio becomes smaller as the normal effective stress is 
increased. This is because the void ratio at the critical state reduces with increasing effective 
stress, resulting in a diminishing potential for dilation. The terms ‘dense’ and ‘loose’ should, 
therefore, be used in relation to the void ratio at the critical state at the normal effective 
stress under consideration. A soil of a certain initial specific volume may be dense at a nor-
mal effective stress of 10 kPa (because its initial void ratio is less than the critical-state void 
ratio at 10 kPa), but loose at an effective stress of 100 kPa (because its initial void ratio is 
greater than the critical-state void ratio at 100 kPa).

Although this might seem paradoxical, it is in principle possible to turn a ‘dense’ sand into 
a ‘loose’ one by increasing the normal effective stress at which it is tested. This is, in effect, 
shown in Figure 2.22a. In test 1, the soil is effectively dense and displays a peak strength. 
In test 4, the soil is sheared from the same initial void ratio but at a higher normal effective 
stress. It displays no peak strength, and behaves as if it were loose.

When the soil in a shearbox test dilates, the lid of the shearbox moves upward at the 
angle of dilation ψ (Figure 2.17). It might be argued that, although the macroscopic plane of 
shearing is horizontal, the microscopic planes of shearing are actually inclined at an angle 
of ψ to the horizontal. This can be visualised by imagining the two halves of the shearbox 
to be sliding along a series of saw teeth, as indicated in Figure 2.24a. If the actual angle of 
shearing resistance mobilised on the surfaces of the saw teeth is φ′crit, the angle of shearing 
resistance φ′current measured at some stage in the shearbox test (on the basis of assumed rela-
tive sliding on a horizontal plane) is given by

 φ′current = φ′crit + ψcurrent  (2.13)

Experimental evidence shows that Equation 2.13 overestimates the effect of dilation on 
peak strength. On the basis of a considerable volume of data from shear tests on sands, 
Bolton (1986) shows that in plane strain, the contribution of dilation to peak strength is 
more closely represented by the expression

 φ′peak = φ′crit + 0.8ψmax  (2.14)

The peak strength of a soil is transient and sustainable only while the soil is dilating. A 
soil cannot carry on dilating forever, and sooner or later its strength must fall to the critical 
state value, φ′crit. Furthermore, the peak strength is not a property of the soil in the way that 
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Figure 2.24  (a) ψcurrent is the current angle of dilation, (b) Sawtooth analogy for dilation. (From Bolton, M.D., 
A Guide to Soil Mechanics, M.D. & K. Bolton, Cambridge, 1991. With permission.)
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the strength at critical state is. The peak strength depends on the potential for dilation and, 
therefore (for a soil of given initial specific  volume), decreases as the normal effective stress 
increases, as shown in Figure 2.22a.

This point may be reinforced by plotting the peak strength data from Figure 2.22 on a 
graph of τ against σ′. Figure 2.25a shows that the envelope formed by the peak strength data 
is curved. In contrast to the critical state strength shown in Figure 2.22c, the peak strength 
data cannot accurately be described by a simple equation. Unfortunately, this does not stop 
some people from trying. In some books, you will find peak strength data described by 
means of a ‘best fit’ straight line, having an equation of the form

 τp = c′+ σ′ tan φ′tgt  (2.15)

as shown in Figure 2.25b, where c′ is the intersection of the line with the τ-axis, and tan 
φ′tgt is its slope. Such an approach is conceptually flawed. For at least three reasons, it is also 
potentially dangerous:

 1. It can lead to the overestimation of the actual peak strength at either low (Figure 2.25b) 
or high effective stresses, depending on where the ‘best fit’ straight line is drawn. The 
position of the best fit straight line will depend on the available data points, which—if 
the testing programme has not been specified with care—may be predominantly at 
either high or low normal effective stresses.

 2. The designer of a geotechnical engineering structure cannot guarantee that the peak 
strength will be uniformly mobilised simultaneously at every point it is needed. It is 
more likely that only some soil elements will reach their peak strength first. As addi-
tional strain is imposed on these elements, they will fail in a brittle manner as their 
strength falls towards the critical value. In doing so, they will shed load to their neigh-
bours, which will also then become overstressed and fail in a brittle manner. In this 
way, a progressive collapse can occur, which—like the propagation of a crack through 
glass—may be sudden and catastrophic. Experience suggests that progressive failure is 
potentially particularly important with embankments and slopes, and perhaps less of 
a problem with retaining walls and foundations.

 3. Quite apart from the possibility of progressive collapse, many of the design procedures 
used in geotechnical engineering assume that the soil can be relied on to behave in a 
ductile manner. When a ductile material fails, it will undergo continued deformation 
at constant load. This is in contrast to a brittle material, which at failure breaks and 
loses its carrying capacity. At the critical state, the behaviour of the soil is ductile: the 
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Figure 2.25  (a) Peak strength data, plotted as τ vs σ′, showing curved failure envelope and (b) error associ-
ated with simplistic interpretation of peak strength data.
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definition of the critical state is that unlimited shear strain can be applied without 
further changes in stress or specific volume. Between the peak strength and the critical 
state, however, the soil loses strength with continued strain.

In design, it is safer to use the strength of the critical state. It is also simpler  mathematically. 
It must be appreciated, however, that this has not always been standard practice. This means 
that procedures which have led to acceptable designs on the basis of the peak strength might err 
on the conservative side when used without modification for the strength at the critical state.

In cases where it is really necessary, the peak strength can be quantified with reference to 
the slope of the line joining the origin to the local peak stress state (τpeak, σ′):

 φ′peak = tan−1(τ/σ′)peak  (2.16)

The value of φ′peak defined in this way will gradually diminish with increasing normal 
effective stress σ′, until it eventually falls to φ′crit (as shown in test 4 in Figure 2.25a). At a 
given normal effective stress σ′, the value of φ′peak (calculated according to Equation 2.16) 
may be useful as an empirical indicator of density, and hence of the relative stiffness of the 
soil. This point is discussed further, in the context of retaining wall and foundation design, 
in Chapters 7 and 8.

Example 2.1: Analysis of shearbox test data and presentation in engineering units

Table 2.1 gives data from a standard shearbox test on a sample of 125 g of dry sand. 
The initial dimensions of the sample were 60 mm × 60 mm on plan and 20 mm in height. 
The test was carried out at a constant normal effective stress of 50 kPa.

Plot graphs of:

 1. Shear stress τ against shear strain γ
 2. Volumetric strain εvol against shear strain γ
 3. Specific volume v against shear strain γ.

Comment on these graphs, and estimate the peak and critical state effective angles of 
friction of the soil.

Take the specific gravity of the soil grains, Gs = 2.65.

Table 2.1 Shearbox test data

Relative horizontal 
displacement x (mm)

Upward vertical movement 
of shearbox lid y (mm) Shear stress τ (kPa)

0.00 0.000 0
0.02 0.002 19
0.04 0.008 34
0.06 0.016 43
0.08 0.026 47
0.20 0.064 56
0.32 0.128 51
0.48 0.192 46
0.64 0.256 41
0.80 0.288 37
0.96 0.320 34
1.12 0.321 33
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SOluTIOn

The tabulated values of x and y are converted to shear strain γ and volumetric strain εvol 
by dividing them by the initial sample height h0.

 γ = x/h0 (2.6)

 εvol = −y/h0 (2.7)

where compressive stresses and strains are taken as positive.
The initial specific volume of the sample v0 may be calculated using Equation 2.3:

 v0 = (Vt0Gsρw)/ms = [(0.06 × 0.06 × 0.02)m3 × 2.65 × 1000 kg/m3] ÷ 0.125 kg

 v0 = 1.526

The specific volume v at a general stage of the test is given by

 v = (VtGsρw)/ms

where

 Vt = Vt0 + Ay

or

 v = [(Vt0 + Ay)Gsρw}/ms = v0 + (AyGsρw)/ms

with A = (0.06 × 0.06) m2, Gs = 2.65, ρw = 1000 kg/m3 and ms = 0.125 kg, v = v0 + 
(0.07632y) with y in mm.

The calculated values of γ, εvol and v are given in Table 2.2. Graphs of shear stress τ 
against shear strain γ; volumetric strain εvol against shear strain γ; and specific volume v 
against shear strain γ are shown in Figure 2.26.

The shear stress rises rapidly to a peak of 56 kPa at a shear strain of 1%, before fall-
ing to a steady value of about 33 kPa (Figure 2.26a). The peak shear stress corresponds 
approximately to the maximum rate of dilation as indicated by Figures 2.26b and c. By 
the end of the test, dilation has ceased and deformation is taking place at constant shear 
stress, indicating that the critical state has probably been reached. From Figure 2.26a,

 τpeak = 56 kPa

Table 2.2 Processed shearbox test data

x (mm) γ (%) y (mm) εvol (%) v τ (kPa)

0.00 0.0 0.000 0.00 1.526 0
0.02 0.1 0.002 0.01 1.526 19
0.04 0.2 0.008 0.04 1.527 34
0.06 0.3 0.016 0.08 1.528 43
0.08 0.4 0.026 0.13 1.528 47
0.20 1.0 0.064 0.32 1.531 56
0.32 1.6 0.128 0.64 1.536 51
0.48 2.4 0.192 0.96 1.541 46
0.64 3.2 0.256 1.28 1.546 41
0.80 4.0 0.288 1.44 1.548 37
0.96 4.8 0.320 1.60 1.551 34
1.12 5.6 0.321 1.60 1.551 33
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giving

 φ′peak = tan−1(56/50) = 48°

 τcrit = 33 kPa

giving

 φ′crit = tan−1(33/50) = 33°

Note that φ′peak here has been calculated from the slope of the line joining the origin 
with the peak stress state, as suggested at the end of Section 2.9 (Equation 2.16).

From Figure 2.26b, the maximum rate of dilation −dεvol/dγ is approximately (0.75/1.5), 
giving an angle of dilation ψ = tan−1(0.5) = 26°. For φ′crit = 33° and ψ = 26°, Equation 2.14 
suggests a peak angle of friction of

 φ′peak = φ′crit + 0.8ψ = 33° + 21° + 54°

which is somewhat in excess of the observed value, φpeak = 48°.
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2.10 SHEARBOX TESTS ON CLAYS

Shearbox tests on clays that are carried out sufficiently slowly to prevent the generation 
of non-equilibrium or excess pore water pressures may be analysed in terms of effective 
stresses, in exactly the same way as shearbox tests on sands.

At the other extreme, it might be possible to test a clay with low permeability so quickly 
that it reaches the critical state without having time to expel or draw in water in response 
to the non-equilibrium pore water pressures generated during shear. In these circumstances, 
the simple critical state model given in Figure 2.22 predicts that the effective stress state at 
failure (i.e. at the critical state) will depend only on the specific volume, which is related to 
the water content in terms of Equation 2.12.

Although the normal total stress differs from the normal effective stress by the pore water 
pressure, the total shear stress is the same as the effective shear stress because all of the 
applied shear load must be carried by the soil skeleton. Thus, whatever the applied normal 
total stress, the applied shear stress cannot exceed a certain limit, which is dictated by the 
specific volume or the water content of the soil. This limit is known as the undrained shear 
strength, and defines an alternative failure criterion in terms of total stresses (Figure 2.27).

The undrained shear strength is conventionally given the symbol cu. However, for the 
reason given in Section 5.12, we will use the symbol τu. The undrained shear strength failure 
criterion is only applicable to a soil with low permeability with a particular water content, 
which is brought rapidly to failure without changing its specific volume.

As the undrained shear strength depends on the water content of the soil, it may vary 
significantly (most usually, increasing with depth) within a single soil deposit. It is nonethe-
less used in the analysis of the short-term undrained stability of geotechnical structures in 
terms of total—rather than effective—stresses. One of the reasons for this is that the initial, 
non-equilibrium pore water pressures generated by construction (loading) and excavation 
(unloading) processes in clay soils can be difficult to predict. If the pore water pressures are 
not known, the effective stresses cannot be calculated, and an effective stress analysis can-
not be carried out.

In attempting to measure the undrained shear strength of a clay in the shearbox, the usual 
uncertainties of disturbance during sampling, and whether or not the test specimen is large 
enough to be representative of the soil and its fabric in situ will arise. An additional risk is 
that, if the test is not carried out quickly enough, partial drainage may occur. If the test is 
truly undrained, the lid of the shearbox should move neither up nor down: however, a ten-
dency for the lid to rotate could mask whether this is, in fact, the case. Alternative methods 
of measuring the undrained shear strength of a clay include the triaxial test (Chapter 5), in 
which the sample is surrounded by a rubber membrane so that drainage may be physically 
prevented, and in situ using a field vane (Section 11.3.4).

Effective stress failure
envelope τ = σ′ tan φ′crit 

Envelope to Mohr circles
of total stress, τ = ± τu

τ

+τu

–τu

O σ′, σ

Figure 2.27  Envelope to all possible Mohr circles of total stress at failure for a clay sheared at constant 
volume.
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Undrained shear strengths are discussed more fully in Section 5.12. Methods of total 
stress analysis on the basis of the undrained shear strength are described in Chapters 7 
to 11. Also, we have seen in Section 1.11 that the liquid and plastic limit tests measure 
the undrained shear strength, and that the undrained shear strength at the plastic limit is 
approximately 70 times that at the liquid limit.

Example 2.2:  Development of a simple critical state model from shearbox test data

 1. Briefly explain the term “critical state” in soil mechanics.
 2. Data obtained from three slow shearbox tests on samples of saturated clay are 

given in Table 2.3. Comment on these data and use them to construct a simple 
critical state model in terms of the shear and normal effective stresses τ and σ′ on 
the horizontal plane of the apparatus, and the specific volume v.

 3. Estimate the values of undrained shear strength which would have been obtained if 
the tests had been conducted very quickly. Account for any difference between the 
shear stresses at the critical state in the quick and slow tests.

SOluTIOn

 1. When sheared, a soil will eventually reach a critical state in which continued defor-
mation takes place while the shear and normal effective stresses and the specific 
volume remain constant in the zone(s) of shear.

 2. Samples A and B have a larger specific volume at the end of the test than at the 
start. From this, it can be inferred that these samples dilate during shear, and that 
they are initially denser than at their respective critical states. Both samples exhibit 
peak shear strengths during dilation. Sample C has the same specific volume at the 
start of the test as at the critical state. It does not dilate during shear, and therefore, 
does not show a peak shear strength.

  The critical state data are plotted as τ against σʹ in Figure 2.28a, and as v against 
ln σ′ in Figure 2.28b.

  From Figure 2.28a, the graph of τ against σ′ is a straight line of slope 20°, so that 
the equation of the critical state line in the τ, σ′ plane is

 τ = σ′tan 20°

 or, φ′crit = 20° (cf. Equation 2.10 and Figure 2.22c).
  From Figure 2.28b, the graph of v against ln σ′ is a straight line of slope −λ and 

intercept v0 (at ln σ′ = 0, σ′ = 1 kPa), cf. Equation 2.11 and Figure 2.22e.
 The slope is given by

 λ = (2.417 − 2.209) ÷ (ln 100 − ln 25), or λ = 0.15

 v0 may be calculated from the specific volume at σ′ = 100 kPa, v100, as v0 = v100 + 
λ(ln 100 − ln 1), giving v0 = 2.9.

Table 2.3 Shearbox test data

Parameter

Sample

A B C

Vertical effective stress σ (kPa) 25 50 100
Peak shear stress τpeak (kPa) 11.7 21.2 36.4
Critical state shear stress τcrit (kPa) 9.1 18.2 36.4
Specific volume at start of test 2.209 2.209 2.209
Specific volume at end of test 2.417 2.313 2.209
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 3. If the tests had been carried out very quickly, the samples would have been forced 
to deform without change in water content and would all have failed at a specific 
 volume of 2.209. From Figure 2.28b, this implies an effective stress σ′ = 100 kPa at 
the critical state. From Figure 2.28a, the corresponding shear stress—the  undrained 
shear strength—is τu = 36 kPa.

The difference between the critical state shear stresses in the slow and quick tests 
for samples A and B is due to the generation of negative pore water pressures during 
rapid shear. The negative pore water pressures increase σ′ at the critical state and 
hence also the shear stress τ. In the slow tests, the tendency to develop negative pore 
water pressure results in the drawing in of water by the clay, which swells and softens 
to a critical state at a greater specific volume v, with correspondingly smaller values 
of σ′ and τ.

2.11 APPLICATIONS

The basic concepts of frictional strength and a criterion for frictional failure may be used 
to calculate the collapse loads of simple geotechnical structures, as illustrated by Examples 
2.3 and 2.4.
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Example 2.3: Calculation of the pull-out resistance of a grouted ground anchor

Figure 2.29 shows a cross-section through a grouted ground anchor, installed in a sandy 
gravel behind a retaining wall. Estimate the tensile load which will cause the anchor to 
fail by pulling out of the soil:

 1. If the soil is dry.
 2. If the pore water varies along the anchor from 40 kPa at a depth of 5.5 m to 70 kPa 

at a depth of 9 m. Assume that failure will occur by slippage between the grout 
and the surrounding soil, rather than between the steel tendon and the grout; that 
the angle of friction between the soil and the grout is the same as the critical state 
angle of friction of the soil and that the effective stress at any depth is the same in 
all directions.

SOluTIOn

 1. In a dry soil, pore water pressure is zero. The total tensile load at pull-out is 
given by

  T = τav × A

 where A is the total area of the soil-grout interface and τav is the average shear stress 
acting on it.

  From Equation 2.10, τav = σ′av tan φ′crit. φ′crit is uniform along length of the grouted 
anchor, while σ′ and hence τ increase with depth.

  At the top of the grouted length (depth z = 5.5 m), σ′ = 5.5 m × 20 kN/m3 = 
110 kPa.

  At the bottom of the grouted length (depth z = 9 m), σ′ = 9 m × 20 kN/m3 = 
180 kPa.

  Assuming that σ′ increases linearly with depth, and at any given depth is the 
same in all directions,

  σ′av = (110 + 180)/2 = 145 kPa

 Hence,

  τav = 145 kPa × tan φ′crit = 145 kPa × tan 35° = 101.5 kPa

  The surface area of the grout cylinder is

  π × 0.15 m × 8 m = 3.77 m2

Ground anchor
cable

Grouted length: 8 m
Diameter of grout plug: 150 mm

Sandy gravel
γ = 20 kN/m3

φ′crit = 35°

8 m

3.5 m

3.5 m

2 m

Figure 2.29 Cross-section through grouted ground anchor.
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 Thus,

  T = 101.5 kPa × 3.77 m2 ≈ 380 kN

 2. If the soil is saturated, the pore water pressures increase from 40 kPa to 70 kPa 
along the grouted length.

  At the top of the grouted length (depth z = 5.5 m), the normal total stress 
σ = 5.5 m × 20 kN/m3 = 110 kPa. The normal effective stress σ′ = σ − u = 110 
kPa − 40 kPa = 70 kPa.

  At the bottom of the grouted length (depth z = 9 m), the normal total stress 
σ = 9 m × 20 kN/m3 = 180 kPa. The normal effective stress σ′ = σ − u = 180 kPa − 
70 kPa = 110 kPa.

  Again, assuming that σ′ increases linearly with depth, and at any given depth is 
the same in all directions,

  σ′av = (70 + 110)/2 = 90 kPa

 Hence,

  τav = 90 kPa × tan 35° = 63 kPa

 and

  T = 63 kPa × 3.77 m2 ≈ 237 kN

The pore water pressure has led to a 38% reduction in the ultimate capacity of the anchor. 
In reality, the assumption that the interface between the grout and the soil is more criti-
cal than the interface between the grout and the tendon would need to be checked. Also, 
the horizontal effective stress in a sandy soil is usually somewhat lower than the  vertical 
 effective stress at the same depth: in this respect, the pull-out force T may have been 
overestimated.

Example 2.4: Short-term and long-term capacity of a friction pile in clay

A pile of circular cross-section, 15 m long and 0.5 m in diameter, is installed in a soft 
clay of unit weight 18 kN/m3. The pile is required to resist an applied upward vertical 
load by friction between the pile and the surrounding soil. Estimate the ultimate capacity 
of the pile:

 1. In the short term, if the undrained shear strength of the clay at the clay-pile inter-
face increases linearly from 0 at the soil surface to 30 kPa at the base of the pile.

 2. In the long term, if the clay-pile interface has an effective angle of friction of 20°, 
pore water pressures are hydrostatic below a water table at the soil surface, and 
the ratio of the horizontal effective stress to the vertical effective stress is 0.5 at all 
depths.

SOluTIOn

 1. The total shear resistance of the clay-pile interface is given by
  T = average shear stress × surface area of pile
  The average shear stress is the average undrained shear strength on the interface, 

so that
  T = [(0 + 30 kPa) ÷ 2] × [(π × 0.5 m) × 15 m] = 353 kN

 2. In the long term, the ultimate or limiting shear stress on the interface is given by

  τult = σ′h tan δ
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where σ′h = 0.5 × σ′v is the horizontal effective stress and δ is the effective angle of friction 
between the clay and the pile.
At a depth z,

 σv(kPa) = 18 (kN/m3) × z (m)

 u(kPa) = 9.81(kN/m3) × z (m)

 σ′v = σv − u

As before, T = average shear stress × surface area of pile
The shear stress on the soil-pile interface is now

 0.5 × σ′v tan δ

which increases linearly from 0 at the top of the pile to

  0.5 × [(18 kN/m3 × 15 m) − (9.81 kN/m3 × 15 m)] × tan 20° = 22.36 kPa at the base

Hence,

 T = [(0 + 22.36 kPa) ÷ 2] × [(π × 0.5 m) × 15 m] = 263 kN

The ultimate capacity of the pile in the long term is approximately 25% less than in 
the short term. This suggests that the clay has a tendency to generate negative pore water 
pressures and/or soften when sheared, that is, it is initially dense phase of the eventual 
critical state.

2.12 STRESS STATES IN THE SHEARBOX TEST

2.12.1 Conventional interpretation

In the analysis of a shearbox test, it is conventionally assumed that the stress state is uniform 
throughout the sample, and that the ratio of shear to normal effective stress (τ/σ′) is greatest 
on the horizontal plane. The plane of maximum stress ratio is sometimes called the plane of 
maximum stress obliquity, because it is the plane on which the resultant stress direction is 
furthest from the normal to the plane—that is, most oblique. These two assumptions enable 
the Mohr circle of effective stress to be drawn as shown in Figure 2.30, and the effective 
angle of friction or angle of shearing resistance φ′ of the soil to be calculated. In addition to 
the particular cases of φ′crit and φ′peak already examined, the parameter φ′mob, the mobilised 
angle of friction, may be used to describe the stress ratio at any stage of the shearbox test, 
φ′mob = tan−1(τ/σ′), where τ is not necessarily either τpeak or τcrit.

For the direction of shear shown in Figure 2.15, τyx is clockwise and therefore, plots as 
negative on the Mohr circle of stress.

A useful result which follows from the geometry of the Mohr circle of stress (Figure 2.30) 
is that

 sin φ′mob = t/s′

or

 φ′mob = sin−1(t/s′) (2.17)
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2.12.2 Alternative interpretation

Some engineering materials—particularly those used in structures, such as mild steel—are 
isotropic (i.e. they have the same properties in all directions) and, under normal working 
conditions, also elastic, that is, the strain is proportional to the applied stress. For these mate-
rials, the principal axes of the strain increment that results from an increase in applied load 
are coincident with the principal axes of the stress increment that caused it. In other words, 
an elastic material stretches or compresses in the direction in which it is pulled or pushed.

Materials at failure do not behave elastically. For example, a ductile material at failure 
will undergo increasing strain at constant stress. This type of behaviour is described as 
plastic. In an ideal plastic material, the principal axes of increment of plastic strain coincide 
with the principal axes of stress (Hill, 1950). This means that when an ideal plastic mate-
rial is brought to failure, it strains not in the direction of the last push, but in a direction 
governed by the overall loading pattern when failure occurs.

The behaviour of soil prior to failure is not elastic, but is sometimes assumed to be approx-
imately so (e.g. in the methods used to estimate settlements of foundations, as described in 
Chapter 6). The behaviour of the soil at failure, however, can in many  circumstances be 
reasonably regarded as approximately plastic. This has led people to believe that a more 
realistic assessment of the stress state in the shearbox could be made by assuming that the 
directions of the principal stresses are coincident with the directions of the principal plastic 
strain increments (Rowe, 1969; Jewell and Wroth, 1987).

Let us assume that the shearbox test has reached a stage where the soil is deforming 
essentially plastically. During a short time interval δt, the relative horizontal displacement 
is δx, and the upward movement of the lid of the shearbox is δy. The vertical effective stress 
is σ′yy, and the shear stress on the horizontal plane is τyx. In each case, the first subscript 
denotes the direction of the normal to the plane on which the stress acts, while the second 
subscript denotes the direction in which the stress acts. The plastic vertical strain increment 
δεyy is −δy/h0, and the plastic shear strain increment associated with the horizontal plane is 
δγyx = −δx/h0. These stresses and strain increments are shown schematically in Figure 2.31.

Figure 2.32 shows the Mohr circle of strain increment. The plane associated with the major 
principal strain increment is at an angle of (90° + ψ)/2 anticlockwise from the  horizontal 
plane, where ψ is the angle of dilation, ψ = tan−1(δy/δx).

Figure 2.33 shows the Mohr circle of effective stress corresponding to Figure 2.31a, drawn 
on the assumption that the plane associated with the major principal strain  increment is the 
same as that on which the major principal effective stress acts. The radius of the Mohr circle is 
t, and its centre is located at a distance s′ from the origin. With reference to the triangle OMs’,

 t = s′sin φ′ps (2.18)

Stress state on
horizontal plane

s′

t σ′

τ

φ′

Figure 2.30  Mohr circle of stress for shearbox sample, assuming that the horizontal plane is the plane of 
maximum stress ratio.
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where φ′ps (ps is for plane strain) is the effective angle of friction on the actual plane of maxi-
mum stress ratio, (τ/σ′)max.

Applying the sine rule to the triangle OHs,

 t/sin φ′ds = s′/sin[90° − (φ′ds − ψ)] (2.19)

σ′xx

σ′yy

σ′xx

σ′yy

τxy
τyx

τyx
τxy

δγ δεxx = 0

–δεyy

δx

δx

(b)(a)

δy

x

y
= h0

δy
=h0

Figure 2.31 For a shearbox test: (a) stresses and (b) plastic strain increments.
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=

Figure 2.32 Mohr circle of plastic strain increment for a shearbox test.
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(σ′yy, τyx)φ′ps
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φ′ps
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Figure 2.33  Mohr circle of effective stress for shearbox test, assuming that planes of major principal stress 
and major principal strain increment coincide.
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where φ′ds (ds is for direct shear) is the apparent angle of friction on the horizontal plane.
Combining Equations 2.18 and 2.19, and noting that sin(90° − θ) = cos θ, t/s′ = sin φ′ps = 

sin φ′ds/cos(φ′ds − ψ).
But cos(φ′ds − ψ) = (cos φ′ds cos ψ) + (sin φ′ds sin ψ), so that sin φ′ps = sin φ′ds/[(cos φ′ds cos ψ) + 

(sin φ′ds sin ψ)] or

 sin φ′ps = tan φ′ds/[cos ψ(1 + tan φ′ds tan ψ)] (2.20)

At the critical state, the angle of dilation ψ = 0, giving

 sin φ′ps = tan φ′ds (2.21)

According to this interpretation, the conventional assumption that the horizontal plane 
is the plane of maximum stress ratio will lead to the underestimation of the actual effective 
angle of friction in plane strain φ′ps. Jewell and Wroth (1987) show that the discrepancy 
between φ′ds and φ′ps according to Equation 2.20 is insensitive to the angle of dilation ψ. For 
ψ = 0, the values given in Table 2.4 apply (Equation 2.21).

From the Mohr circle of effective stress shown in Figure 2.33, the actual plane of maxi-
mum stress ratio is at an angle of (φ′ps − ψ)/2 clockwise (for the sense of shear shown in 
Figure 2.31) from the horizontal plane.

The question facing the geotechnical engineer is whether to use φ′ds or φ′ps in design. 
Equations 2.20 and 2.21 have been substantiated by comparing φds measured in shear-
box tests with φ′ps measured in different types of plane strain test (Rowe, 1969; Jewell and 
Wroth, 1987). However, many geotechnical analyses are based on the limiting equilibrium 
of a series of blocks of soil separated by presumed planes of failure. It might, therefore, be 
argued that in this context, φ′ds—which is measured along a plane of failure in the shearbox 
test—is more appropriate than φ′ps. As with many things in geotechnical engineering, the 
issue is not straightforward, and calls for the exercise of engineering judgement according 
to the circumstances of each case. If in doubt, it is safer to err on the side of caution and use 
the lower of the two values, that is, φ′ds.

2.12.3 Undrained tests on clays

The conventional interpretation of an undrained shearbox test on a clay soil is that the 
 horizontal plane is the plane on which the shear stress is greatest, so that the shear stress 
measured on this plane is the undrained shear strength, τu. The Mohr circle of total stress 
 corresponding to this assumption is shown in Figure 2.34. The assumption that the horizon-
tal plane is the plane of maximum shear stress is clearly incompatible with the assumption 
that it is the plane of maximum stress ratio. It is, however, consistent with the notion that 
the axes of principal stress and principal plastic strain increment coincide.

Table 2.4  Relationship between effective angle of friction 
on plane of maximum stress ratio φ′ps and 
effective angle of friction on horizontal plane of 
shearbox φ′ds according to Equation 2.21 (ψ = 0)

φ′ps (°) φ′ds (°) tan φ′ps/tan φ′ds

20 18.9 1.06
25 22.9 1.10
30 26.6 1.15
35 29.8 1.22
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For a clay tested undrained, the vertical strain εyy is zero. The Mohr circle of plastic strain 
increment is, therefore, as shown in Figure 2.35. This is essentially the same as that shown 
in Figure 2.32, with the angle of dilation ψ = 0. Figure 2.35 shows that the plane associ-
ated with the major principal plastic strain increment is at an angle of (90°)/2 = 45° anti-
clockwise from the horizontal plane. If this is also the plane on which the major  principal 
total stress acts, the maximum shear stress acts on the horizontal plane, as conventionally 
assumed (Figure 2.34).

Unfortunately, things may not be this simple. Wroth (1987) quotes experimental data 
from simple shear tests (Section 2.13) which suggest that the sequence of stress states 
 followed by a sample of clay tested undrained is quite complex, and that the shear stress 
on certain planes at various stages of the test will be greater than that on the horizontal 
plane at the end of the test. Practically, however, these complications are probably of little 
 significance. As Wroth (1987) himself notes, the important thing is the maximum shear 
stress  experienced by the potential failure surface in the clay, in a test in which the principal 
axes are free to rotate.

2.13 SIMPLE SHEAR APPARATUS

The actual deformation imposed on a specimen of soil in a conventional shearbox 
(Figure 2.15a) is rather different from the idealised deformation (Figure 2.15b). In fact, the 
relative  displacement between the top and the bottom of the shearbox is concentrated at the 
central horizontal plane. This means that the stress state within the specimen will be highly 
non-uniform, with stress concentrations leading to the possible development of a rupture 

(τu = τmax)

τ

O 90°

Major principal
total stress

(σyy, τyx): stress state
on horizontal plane

σ

Figure 2.34  Mohr circle of total stress for an undrained shearbox test on a clay, assuming that the horizontal 
plane is the plane of maximum shear stress.

Major principal
plastic strain
increment

Strains associated
with:
V = Vertical plane
H = Horizontal
 plane

H

V

90°

δεxx = 0

δεyy = 0

=
δγxy

2

δγplastic

δεplastic

2
δx
2h0

=
δγxy

2
–δx
2h0

Figure 2.35 Mohr circle of plastic strain increment for an undrained shearbox test on a clay.
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surface at the interface between the two sections (Ni et al., 2000). Indeed, the conventional 
shearbox was originally developed to investigate the well-defined rupture surfaces which are 
frequently associated with landslips in clay (Collin, 1846).

The main difficulty lies in the use of the average state of the specimen—as determined 
from measurements made at its boundaries—to describe the state of the soil, which may 
actually only be at failure in a thin rupture zone. This is a criticism which applies to other 
forms of soil test in which ruptures may develop—for example, the triaxial test described 
in Chapter 5. Although the data from the initial stages of a test may be substantially unaf-
fected, the development of a rupture at or near the peak stress would cast considerable doubt 
on the reliability of a strength parameter at the critical state as determined from measure-
ments made at the specimen boundaries.

In a simple shear apparatus, the idealised deformation pattern shown in Figure 2.13b 
is actually imposed on the soil. This may be achieved by containing the soil specimen 
within an arrangement of hinged and sliding platens (Roscoe, 1953), or within a stack of 
thin  Teflon-coated aluminium plates which slide over each other as shown in Figure 2.36 
(Kishida and Uesughi, 1987). Alternatively, a circular cylindrical specimen may be enclosed 
within a rubber membrane, reinforced with a helical wire spring (Kjellman, 1951; Dyvik 
et  al., 1987). Stress cells can be incorporated into the boundaries of these devices in an 
attempt to measure the stresses directly.

Although a simple shear apparatus can offer a greater degree of controllability 
over  specimen drainage, and can incorporate more sophisticated measuring devices, 
there is conflicting evidence as to its success in imposing a state of uniform stress on 
the soil (Airey and Wood, 1987). As in the case of the conventional shearbox, how-
ever, the  non-uniformities do not materially affect the consistency and the engineering 
 interpretation of the results. The term ‘simple shear’ relates to the mode of deformation 
imposed on the sample, rather than to the apparatus itself, which is mechanically quite 
complex. 

Example 2.5: Analysis of stresses and strains in simple shear

Figure 2.37 shows a research shearbox, and defines the stresses and displacements 
 measured during a test.

The stresses σ′yy, τyx, σ′xx and τxy are measured by means of load cells. The  displacements 
x and y are measured using displacement transducers. The data in Table 2.5 were obtained 
during a drained test on a dense sand.

Sign conventions: positive direct stresses are compressive; positive shear stresses (τxy) 
are anticlockwise; negative shear stresses (τyx) are clockwise; y is measured positive 
upward; x is measured positive in the direction shown in Figure 2.37b.

Top plate

Normal load N

Shear load F

Sample

Base plate

Stack of
Teflon-coated
aluminium
plates

Figure 2.36  Simple shear apparatus. (From Kishida, H. and Uesughi, M., Géotechnique, 37, 1,  45–52, 1987. 
With permission.)
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 1. Plot the Mohr circles of stress for stages a, b, c and e and determine the values of 
s′[(σ′1 + σ′3)/2] and t [(σ′1 − σ′3)/2] in each case.

 2. Determine also the ‘volumetric’ and ‘shear’ strain components εvol = (ε1 + ε3) and 
γmax = (ε1 − ε3), and plot graphs of (τ/σ′) against γmax and εvol against γmax.

 3. Plot the Mohr circle of strain increment between stages c and d, and estimate the 
peak angle of dilation ψmax.

 4. From (2), estimate φ′peak and φ′crit.

SOluTIOn

Note that the ‘x-plane’ refers to the plane initially perpendicular to the x-direction, that 
is, the plane that is vertical at the start of the test, and the ‘y-plane’ refers to the plane 
initially perpendicular to the y-direction, that is, the plane that is horizontal at the start 
of the test.

 1. For small displacements, the x and y planes remain approximately perpendicular. 
For larger displacements, this is not the case. The Mohr circles must, therefore, be 
constructed graphically. This is done by plotting the stress states associated with 
the x and y directions (σ′xx, τxy) and (σ′yy, τyx) on the (σ′, τ) axes, and using a pair of 
compasses to locate (by trial and error) the centre of the Mohr circle. The centre 
of the circle must lie on the σ′ axis, and it must be equidistant from the two stress 
points (σ′xx, τxy) and (σ′yy, τyx). The Mohr circles for each of the stages a, b, c and e 
are shown in Figure 2.38, and give the values of s′ and t shown in Table 2.6.

Table 2.5 Shear test data

Stage x (mm) σ′yy(kPa) τyx (kPa) σ′xx (kPa) τxy (kPa) y (mm)

a 0 70 − 30 0 0
b 0.30 70 0 71 31.0 − 0.50
c (peak) 2.50 70 31.3 145.5 43.3 + 0.60
d 3.00 70 − 49.0 90.6 24.5 + 0.82
e 10.00 − 32.0 + 1.5

Plane perpendicular to
y-direction (‘y-plane’)

(a) (b)
Note: in the direction shown:
τyx Is clockwise and therefore plots as negative on the Mohr circle of stress
τxy Is anticlockwise and therefore plots as positive on the Mohr circle of stress
γyx Involves a clockwise rotation of the material normal with respect to the
 y-plane normal, and therefore plots negative on the Mohr circle of strain (cf. Figure 2.7)
γyx Involves an anticlockwise rotation of the material normal with respect to the
 x-plane normal, and therefore plots as positive on the Mohr circle of strain

Plane perpendicular
to x-direction
(‘x-plane’)

Soil
sample

x

γ

y

x

y

τyx

τyx

σ′yy

σ′xx

h 0
 =

 2
6.

5 
m

m

Figure 2.37 Research shearbox: (a) at start of test and (b) during the test.
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Figure 2.38 Mohr circles of stress for Example 2.5.

Table 2.6 Values of s′, t and t/s′

Stage s′(kPa) t (kPa) t/s′
Change in angle between 

x and y planes (°)

a 50 20 0.40 0
b 70.5 31.2 0.44 ~ 0
c (peak) 103 60 0.58 5.25
e 70 32 0.46 21
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 2. The strains associated with the x and y planes are calculated using:

 εyy = −y/h0

 εxx = 0

 γxy = −γyx = x/h0

 (cf. Figure 2.31, ignoring the prefixes δ).
 From Figure 2.39, the centre of the Mohr circle of strain is at (ε1 + ε3)/2 = (y/2h0), 

giving εvol = (ε1 + ε3) = y/h0.
 Also, the diameter of the Mohr circle is equal to (ε1 − ε3) = γmax. Considering the 

triangle XAY,

 (XY)2 = (γmax)2 = (AY)2 + (AX)2

 But AY = (y/h0) and AX = (x/h0), giving

 (γmax)2 = (y/h0)2 + (x/h0)2.

 Using these expressions to calculate εvol and γmax, we obtain the data shown in Table 2.7. 
Sign convention: positive volumetric strain indicates compression.

 Graphs of (t/s′) against γmax and εvol against γmax are plotted in Figure 2.40.

 3. From Figure 2.32, the angle of dilation, ψ = tan−1(dy/dx), where dx and dy are the 
incremental changes in x and y between stages c and d, rather than the overall 
changes since the start of the test. From the data for stages c and d, dy = 0.22 mm 
and dx = 0.50 mm, giving

 ψmax = tan−1(dy/dx) = tan−1(0.22/0.50)

 or

 ψmax = 23.75°

 4. From the geometry of the Mohr circle of stress (Figure 2.30), the mobilised angle 
of shearing φ′mob at any stage of the test is given by

γ/2

γxy(εxy,

ε1
ε

ε3

2
= (0, x/2h0)

)

2
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2h0
=
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Figure 2.39 Geometry of Mohr circle of strain.
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φ′mob = sin−1(t/s′)

 Hence, φ′peak = sin−1(t/s′)peak and φ′crit = sin−1(t/s′)crit. From Figure 2.40,

(t/s′)peak ≈ 0.583, giving

 φ′peak ≈ 35.6°

 and (t/s′)crit (at the end of the test) ≈ 0.457, giving

 φ′crit ≈ 27.2°

 As in Example 2.1, the value of φ′peak calculated using Equation 2.14 with the mea-
sured values of φ′crit and ψ is somewhat high:

 φ′peak = φ′crit + 0.8ψ = 27.2° + (0.8 × 23.75°) = 46.2°
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Figure 2.40 Plots of: (a) (t/s′) against γmax and (b) εvol against γmax.

Table 2.7 ‘Volumetric’ and ‘shear’ strain components

Stage − y/h0 (= εyy) (%) x/h0 (= −γyx) (%) εvol (%) γmax (%)

a 0 0 0 0
b +1.89 1.13 +1.89 2.20
c −2.26 9.43 −2.26 9.70
d −3.09 11.32 −3.09 11.74
e −5.66 37.74 −5.66 38.16
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KEY POINTS

• The state of a soil must be described by three parameters, quantifying the specific 
volume, normal effective stress and shear stress.

• The strength of a soil is primarily due to interparticle friction. In terms of effective 
stresses, soils would be expected to obey a frictional failure criterion of the form

 τ = σ′ tan φ′

 where φ′ is the effective angle of friction or the angle of shearing resistance.
• When sheared, a soil eventually reaches a critical state in which further deformation 

takes place at constant specific volume, normal effective stress and shear stress.
• Although the number of possible critical states is infinite, the combination of specific 

volume v, normal effective stress σ′ and shear stress τ at each critical state is unique. If 
one of these parameters is known, the other two may be deduced using the equations 
that define the critical state line.

• The critical state line is the line that joins all possible critical states, on a three-dimen-
sional plot with axes σ′, τ and v. On a graph of τ against σ′, the critical state line 
appears as a straight line with the equation:

 τ = σ′tan φ′crit

and, on a graph of v against ln σ′, as a straight line of equation:

 v = v0 − λ ln σ′

• When a dense soil is sheared, it can develop a peak strength, τpeak before reaching a 
critical state. This is due to the effects of dilation, which cannot be sustained indefi-
nitely. As the rate of dilation decreases, the shear stress falls until the critical state is 
reached. Loose soils do not dilate, and do not exhibit a peak strength.

• For a soil of a given initial specific volume, the peak stress ratio (τ/σ′)peak becomes 
smaller as the normal effective stress, σ′ is increased. This is because the critical state 
void ratio decreases with increasing effective stress, resulting in a diminishing potential 
for dilation. A soil should, therefore, be categorised as ‘dense’ or ‘loose’ with reference 
to the critical state void ratio relevant to the normal effective stress under consideration.

• Clay soils sheared rapidly are forced to deform at constant specific volume. According 
to the critical state model, the specific volume will, in this case, define the effective 
stress state at failure. The limiting shear stress, or the undrained shear strength, τu, 
then defines an alternative failure criterion in terms of total stresses.

• The undrained shear strength failure criterion is only applicable to a soil with low per-
meability, brought rapidly to failure at constant volume. The undrained shear strength 
is not a soil property or constant, since its value depends on the specific volume (or 
water content) of the soil as sheared.

SELF-ASSESSMENT AND LEARNING QUESTIONS

SHEARBOX TEST

 2.1  Describe with the aid of a diagram the essential features of the conventional shearbox 
apparatus. Stating clearly the assumptions you need to make, show how the quantities 
measured during the test are related to the stresses and strains in the soil sample.
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 2.2  With the aid of sketches, describe, explain and contrast the results you would expect 
to obtain from conventional shearbox tests on samples of dry sand which were 
(a) initially loose and (b) initially dense. What factors would you take into account in 
selecting a parameter of soil strength for use in design?

Development of a critical state model

 2.3  Mining operations frequently generate large quantities of fine, particulate waste 
known as tailings. These are generally transported as slurries, and stored in res-
ervoirs impounded by embankments or dams made up from the material itself. To  
investigate the geotechnical behaviour of a particular tailings material (Gs = 2.70), 
an engineer carried out three slow, drained shear tests, each over a period of one day; 
and three fast, undrained shear tests, each over a period of two minutes, in a conven-
tional 60 mm × 60 mm shearbox apparatus.

  The three samples in each group were initially allowed to come into drained 
equilibrium under the application of vertical hanger loads of 100 N, 200 N and 
300 N. During each shear test, the hanger load was kept constant and the ulti-
mate shear force Fult recorded. Immediately after each test, a water content sample 
was taken from the centre of the rupture zone. All of the shear test samples were 
initially saturated, and all of the tests were carried out with the sample underwa-
ter in the shearbox.

  The test results are summarised in Table 2.8. Use the results of the drained tests to 
construct a critical state model in terms of the normal effective stress, σ′ and shear 
stress, τ on the shear plane, and the specific volume v. Give the values of φ′crit, v0 
and λ. Deduce a relationship between the undrained shear strength τu and the normal 
effective stress at the start of the test, and compare its predictions with the experi-
mental data from the undrained tests.
[φ′crit = 28°; v0 = 2.43; λ = 0.14; critical state model predicts undrained shear strength 
τu = exp[(v0 − v)/λ] tan φ′crit, where v = 1 + wGs, giving theoretical values of τu = 
14 kPa at V = 100 N, 27 kPa at 200 N and 39.8 kPa at 300 N. Measured values are 
smaller by about 16%, probably due to internal drainage and discontinuous sample 
behaviour.]

Determination of peak strengths

 2.4  Table 2.9 gives results obtained from a shearbox test on a 60 mm × 60 mm sample 
of dry sand of unit weight 18 kN/m3.

  One division on the dial gauge of the proving ring corresponds to a force of 1.1 N 
across the ring.

Table 2.8 Shearbox test data for Q2.3

Test type Vertical load V (N) Shear load Fult(N) Water content w (%)

Slow, drained 100 53 35.1
200 105 31.3
300 156 29.5

Fast, undrained 100 42 36.0
200 80 32.6
300 120 30.6
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 a. Plot the data on a graph of shear stress against normal effective stress, and sketch 
the peak strength failure envelope.

 b. What is the peak resistance to shear on a horizontal plane at a depth of 3 m below 
the top of a dry embankment made from this soil?

 c.  A model of the embankment is constructed from the same sand at a scale of 1 : 10. 
What is the peak resistance to shear on a horizontal plane at a depth of 300 mm 
below the top of the model?

 d. Would you expect the model to behave in the same way as the real embankment?
 [(a) The peak strength failure envelope is highly non-linear, with φ′peak = 55° at 

σ′ ≈ 8 kPa, falling to φ′peak = 34° at σ ≈ 55 kPa; (b) 36.4 kPa; (c) 7.7 kPa; (d) No, 
because the operational values of φ′peak at corresponding depths in the model and the 
real embankment are quite different.]

Use of strength data to calculate friction pile load capacity

 2.5  A friction pile, 300 mm in diameter, is driven to a depth of 25 m in dense sand of 
unit weight 19 kN/m3. The ratio of horizontal to vertical effective stresses is 0.5. The 
angle of friction between the pile and the sand is 26° and the resistance offered at the 
base of the pile may be ignored. The natural water table, below which the pore water 
pressures are hydrostatic, is 5 m below the ground level. During construction, the 
water table is temporarily lowered to a depth of 16 m by pumping from wells. A load 
test on the pile is carried out even while pumping to lower the groundwater level is in 
progress. Calculate the ultimate load capacity of the pile:

 a. observed in the test
 b. after pumping from the wells has stopped and the water table has recovered to its 

natural level.
 [(a) 1273 kN; (b) 914 kN.]

 2.6  The depth of the friction uplift pile described in Example 2.4 is increased to 20 m, 
where the undrained shear strength of the clay is 40 kPa. Calculate the short-term 
and long-term uplift resistance of the 20 m pile.
[(628 kN short-term; 468 kN long-term.)]

Stress analysis and interpretation of shearbox test data

 2.7  A drained shearbox test was carried out on a sample of saturated sand. The normal 
effective stress of 41.67 kPa was constant throughout the test, and the initial sample 
dimensions were 60 mm × 60 mm on plan and 30 mm deep. In the vicinity of the 
peak shear stress, the data recorded were as shown in Table 2.10.

 a. Draw the Mohr circle of stress for the soil sample when the shear stress is a maxi-
mum, stating the assumption that you need to make. Determine φ′peak, and the 
orientations of the planes of maximum stress ratio (τ/σ′)max. Draw the Mohr circle 

Table 2.9 Shearbox test data for Q2.4

Parameter
Reading on proving ring 

deflection dial gauge (divisions)

Zero force 91
Peak shear force for a hanger load of 3 kg 128
Peak shear force for a hanger load of 10 kg 162
Peak shear force for a hanger load of 20 kg 210
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of strain increment leading to the peak and, hence, determine the maximum angle 
of dilation, ψmax. Use an empirical relationship between φ′peak, ψmax and φ′crit to 
estimate the critical state friction angle, φ′crit.

 b.  Three further drained tests on similar samples of the same soil were carried out, at 
different normal effective stresses. The peak and critical state shear stresses were:

  For all four tests, plot the peak and critical state shear stresses τpeak and τcrit as 
functions of the normal effective stress σ′. Sketch failure envelopes for both peak 
and critical states, and comment briefly on their shapes. Which would you use for 
design, and why?

 [(a) φ′peak ≈ 46°; planes of maximum stress ratio (τ/σ′)max are at ± (90° −φpeak) = ±44° to 
the horizontal; ψmax ≈ 14°; estimate φ′crit as φ′peak − 0.8 ×ψmax = 34.8°; (b) φ′crit = 32.5°; 
peak strength failure envelope is curved, with lower peak strength at higher effective 
stresses, due to the suppression of dilation.]

 2.8  To investigate the drained strength of a natural silt containing thin clay laminations at 
a spacing of approximately 6 mm, an engineer carried out a series of shearbox tests. 
The clay laminations were inclined at various angles θ to the horizontal. With the 
laminations horizontal (θ = 0), the rupture formed entirely in the clay and the appar-
ent angle of shearing resistance was 18°. With the laminations at an angle θ = 60°, the 
rupture formed entirely in the silt and the apparent angle of shearing resistance was 
30°. Stating clearly the assumptions you need to make, construct Mohr circles of stress 
at failure for various values of apparent angle of shearing resistance, marking on each 
the stress state corresponding to the clay laminations. (Hint: The mobilised strength 
on the clay laminations must never exceed 18°.) Plot a graph showing the relationship 
between the angle θ and the apparent angle of shearing resistance of the soil.
[φ apparent = 30° for 31.9° ≤ θ ≤ 88.1° and 139.9° ≤ θ ≤ 160.1°, falling steeply 
between these plateaux to φ apparent = 18° at θ = 0°, 108° and 180°.]
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Chapter 3

Groundwater flow and control

3.1 INTRODUCTION

We saw in Chapter 1 that a saturated soil is a two-phase material, comprising soil particles 
and pore water. The influence of the pore water on the overall behaviour of the soil and of 
geotechnical engineering structures cannot be overstated. In particular:

• The effective stress depends on both the total stress and the pore water pressure. The 
effective stress state of the soil governs both its stress-strain behaviour and its proxim-
ity to failure.

• Pore water pressures often represent a significant proportion of the total load that the 
retaining walls and underground structures, such as tunnels and basements, must be 
able to withstand.

It might be argued, with some justification, that most problems in geotechnical  engineering 
practice are associated with groundwater. It is possible that groundwater conditions may 
have been misunderstood, or not as originally envisaged on the basis of the site investigation 
data. Unfortunately, ignorance, and a failure to appreciate the potentially calamitous effects 
of uncontrolled groundwater in excavations, also play a part.

To the engineer who has good site investigation data and a sound understanding of the 
principles of effective stress and groundwater flow and control, few  groundwater-related 
problems are truly unforeseeable. This chapter is concerned primarily with the study of 
steady state groundwater flow and the calculation of the associated pore water pressures 
and flow rates.

3.1.1 Objectives

After having worked through this chapter, you should know that:

• Groundwater flow through the soil pores is driven by a hydraulic gradient, i, which is 
defined as the (negative of the) rate of change of total head with distance (Section 3.3).

• The ease with which groundwater can flow through the soil pores is quantified by the 
soil permeability, k. Roughly, k is proportional to the square of the D10 size of the 
soil. It therefore varies over an enormous range for the soils commonly encountered in 
geotechnical engineering practice (Section 3.3).

• In most soil mechanics applications, the volumetric flow rate of water, q, through a 
soil element of cross-sectional area A is given by Darcy’s Law (Section 3.3), q = Aki.
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You should understand:

• The principles of plane flownet sketching (Sections 3.7 through 3.16)
• That the control of groundwater around an excavation is at least as much to do
• With pore water pressures and stability as with flow rates and the prevention of 

 flooding (Sections 3.10 to 3.12 and Section 3.16)

You should have an appreciation of:

• Natural groundwater conditions, and the likely influence of construction activities 
such as excavation (Section 3.2)

• The methods used to measure soil permeability, both in the laboratory and in the field, 
and the potential shortcomings of these methods (Sections 3.4 and 3.5)

• The influence of soil structure and fabric on permeability (Section 3.6)
• The mathematical equations governing groundwater flow (Section 3.7)

You should be able to

• Sketch plane flownets for a variety of boundary conditions in both confined and uncon-
fined situations (Sections 3.8, 3.9, 3.12, 3.13 and 3.16), including cases where the soil 
is anisotropic (Section 3.14)

• Use the flownet to calculate flow rates (Sections 3.8, 3.9 and 3.12) and pore water 
 pressures (Section 3.10), and to assess the stability of an excavation floor (Section 3.11) 
or sideslope (Sections 3.12 and 3.16)

• Calculate the deflection of flowlines as they cross between two zones of soil of  differing 
permeability (Sections 3.15 and 3.16)

Sections 3.17 to 3.20 are probably outside the scope of many first-degree courses in civil 
engineering. They nonetheless contain potentially useful information of direct practical 
applicability, and if you read through them you should gain an appreciation of:

• The use of well pumping formulae to estimate the required capacity of a construction 
dewatering system (Section 3.17)

• The use of numerical methods in the solution of problems in groundwater flow 
(Section 3.18)

• Methods of groundwater control in practice (Section 3.19)
• The relation between suction and moisture content in unsaturated soils, and the 

 implications of non-saturation for permeability and water flow (Section 3.20)

3.2 PORE WATER PRESSURES IN THE GROUND

3.2.1 Artesian conditions and underdrainage

We saw in Section 1.7 that if the groundwater is stationary, pore water pressures would be 
hydrostatic below the level at which the gauge pore water pressure was zero, that is, the 
water table.

Natural pore water pressures are not always hydrostatic. Figure 3.1a shows an old river 
valley in which an aquifer (i.e. a porous, water-bearing stratum) is overlain by a clay soil. 
The aquifer extends beyond the edges of the clay, up into the surrounding hills. In the valley, 
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Figure 3.1  A standpipe piezometer: (a) artesian conditions, (b) associated pore water pressures in clay, 
(c) underdrained conditions, and (d) associated pore water pressures in clay.
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the pore water pressures in the aquifer can be comparatively high, because the pore water 
can flow relatively easily through the aquifer from the hills while the clay acts as a seal.

The pore water pressure at a particular point within the ground may be measured by 
means of a simple device known as a standpipe piezometer. This is essentially a pipe 
with a small bore (usually about 20–25 mm in diameter) and a porous ceramic tip. After 
 installation, the water level in the piezometer rises until the pressure at the bottom of the col-
umn of water in the standpipe is the same as the pore water pressure in the ground just out-
side the tip. Owing to the volume of water that must flow into the standpipe before  pressure 
 equilibrium is achieved, the response time of the device increases as the permeability of 
the soil decreases. It is, therefore, unsuitable for measuring rapidly changing pore water 
 pressures in a  low-permeability soil, for which a different type of piezometer must be used.

A standpipe piezometer driven through the clay may indicate a groundwater level in the 
aquifer that is above the ground surface in the valley. If the standpipe is not tall enough, it 
will overflow, bringing water from the aquifer to the surface. These conditions, in which the 
pore water pressure head in a buried or confined aquifer rises to a level above the ground 
surface, are described as artesian. A borehole drilled to the aquifer through the overlying 
clay layer for the purpose of obtaining a water supply is known as an artesian well.

In artesian conditions, the pore water pressure within the clay layer increases gradually 
with depth, from zero at (say) the ground surface. At the base of the clay layer, the pore 
water pressure is the same as that at the top of the aquifer (Figure 3.1b). Groundwater flows 
upwards through the clay, but slower than it evaporates from the clay surface. The pore 
water pressures in the aquifer may well be hydrostatic, below the apparent ‘water table’, or 
piezometric level, indicated by the standpipe piezometer.

Figure 3.1b shows that the rate of increase of pore water pressure with depth in arte-
sian conditions is (within the clay) greater than in hydrostatic conditions; that is, with the 
groundwater being at rest. If an excavation is made into the clay, a depth may be reached 
at which weight of the remaining clay is insufficient to hold back the water pressure in the 
aquifer, and the base of the excavation will fail.

Figure 3.1c also shows a clay layer underlain by a porous aquifer, but in this case, there 
is a layer of gravel on top. The groundwater level in the gravel is maintained at the ground 
surface by recharge from the river. Pore water pressures in the underlying aquifer were origi-
nally artesian, but after many years of being pumped for water supply purposes, the ground-
water level in the aquifer is now significantly below that in the overlying gravel. There is, 
therefore, a slow but steady flow of water downward through the clay from the gravel to 
the underlying aquifer. The increase in pore water pressure with depth within the clay is 
less than hydrostatic, as shown in Figure 3.1d. In these conditions, the clay is described as 
underdrained.

Figure 3.1 is, in effect, an idealised representation of the hydrogeology of the London Basin 
in England. The underlying aquifer is the Chalk, the clay is the London Clay and the overlying 
gravels are the Thames Flood Plain or Terrace Gravels. Two hundred years ago, the pore water 
pressures in the chalk aquifer underlying the London Clay were artesian below the centre of 
the London Basin. With the industrialisation and growth of London in the late nineteenth 
and early twentieth centuries, the demand for water in the metropolis increased dramatically. 
The chalk aquifer was pumped to such an extent that the  groundwater level within it fell to 
below that in the overlying Thames Gravel, and the London Clay became underdrained.

In the post-industrial age, pumping rates were reduced considerably, with the result that 
the groundwater level in the chalk aquifer may now be gradually rising. The geotechnical 
implications of this could be very significant. Many foundations, and much of London’s 
underground rail network, were constructed during the period when the pore water  pressures 
in the London Clay were comparatively lower, owing to the effects of underdrainage.
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The engineering implications of the rising groundwater beneath London are examined in 
detail by Simpson et al. (1989), who also cite evidence of rising groundwater levels beneath 
 cities such as Paris, New York, Tokyo, Doha (Qatar), Birmingham, Liverpool and Nottingham.

3.2.2 Effect of construction activities

Even if the natural groundwater conditions are hydrostatic, they are likely to be altered at 
least locally by the construction of geotechnical features such as excavations. Consider, for 
example, the retaining wall shown in Figure 3.2. Behind the wall, the water table is in its 
original position, level with the retained soil surface. In front of the wall, the water table 
must be maintained at the level of the excavated soil surface to prevent the excavation from 
flooding. This is usually achieved by means of drains, or by pumping from wells. Assuming 
that the wall is impermeable, water will flow around the wall from the high groundwater 
level behind to the low groundwater level at the front.

In the design of a retaining wall like this, it would be necessary to estimate the pore water 
pressures acting on the structure. We could assume that the pore water pressures are hydro-
static below the different groundwater levels on each side of the wall—lines AD and BE in 
Figure 3.2. This would create an imbalance in the pore water pressure at the toe of the wall 
(C), and therefore seems unlikely. We could remove this imbalance by reducing the pore water 
pressures behind the wall and increasing them in front (lines AD and BE), so that the pore 
water pressure at the toe is the same on both sides of the wall. In doing this, the pore water 
pressures behind the wall have been reduced to below their hydrostatic values (consistent 
with downward flow), while those in front have been increased (consistent with upward flow).

At present, we have no theoretical justification for what we have done; however, the 
 techniques introduced in this chapter can be used to show that distribution of pore pressure 
that we would obtain is in many cases not unreasonable (see also Section 9.2.1).

We should also note at this stage that it is not differences in static pressure as such that 
drive groundwater flow. This can be demonstrated by the fact that the pore pressure at the 
soil surfaces behind and in front of the retaining wall (points A and B) is zero, yet water flows 
around the wall from A to B. In contrast, when the groundwater is stationary, the pore water 
pressures increase hydrostatically with depth z below the water table, u = γwz (Section 1.7.1). 
From this, we can infer that it is variations in pore water pressure away from the hydrostatic 
condition that cause groundwater to flow. This is discussed in more detail in Section 3.3.

Impermeable
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Groundwater
flow

Hydrostatic pore water pressure distribution below
GWL on each side of the wall: imbalance at toe
Pore water pressure distribution ‘adjusted’ to take
account of groundwater flow and equalise pore
water pressures on either side of the wall at the toe
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B

A

E EʹCD Dʹ

Figure 3.2  Groundwater flow around an embedded retaining wall.
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3.2.3 Pore water pressures above the water table

Pore water pressures can be negative (rather than positive), in which case, by Equation 1.13, 
the effective stress will be greater than the total stress. There is, however, a limit to the 
negative pore water pressure a soil can sustain without drawing in air (at atmospheric or 
zero gauge pressure) through any surface which is exposed to the atmosphere. This limiting 
negative pore water pressure is known as the air entry value: it will increase as the pore size 
of the soil decreases. This can be shown by the analysis in Figure 3.3a.

The gauge pore water suction Ue (i.e. the negative pore water pressure measured relative to 
ambient atmospheric pressure) at air entry may be estimated by considering the equilibrium 
of a water meniscus in the shape of a spherical cap occupying a circular pore of diameter d.

The force due to the surface tension around the rim of the meniscus is balanced by the 
force due to the difference in pressure between the pore water and the air:

 ( )π α = πcos /42dT d Ue

or

 = α4 cos /eU T d  (3.1)

where T is the surface tension of the water-air interface (= 7 × 10−5 kN/m at 10°C) and α is 
the contact angle between the meniscus and each particle, defined in Figure 3.3a. The angle 
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Figure 3.3  Analysis of pore water pressure: (a) surface tension analysis for the gauge pore water suction at 
air entry and (b) pore water pressures in a fine soil above the water table (groundwater at rest: 
the wiggly line in the unsaturated zone is meant to indicate uncertainty, rather than actual values).
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α is generally assumed to be approximately zero during drying, but is likely to be greater than 
zero in wetting. It is also affected by roughness of the surface and contamination. The effec-
tive pore size of a real soil is commonly taken as between D10 and 0.2 × D10 (where D10 is the 
D10 particle size, defined in Section 1.8). It may be shown (by substituting the appropriate 
values of D10 or 0.2 × D10 into Equation 3.1) that the gauge pore water suction at air entry 
for a coarse sand with D10 = 1 mm lies in the range 0.28 kPa to 1.4 kPa, while that for a 
clay with D10 = 0.001 mm is 1000 times greater. The consequence of this is that coarse soils 
above the water table or the phreatic surface, on which the gauge pore water pressure is zero, 
will tend to be unsaturated, with very little water retained in the pores by capillary action.

Fine soils (i.e. silts and clay) may remain saturated for several metres above the water 
table, with pore water pressures continuing to decrease until the value at air entry is reached 
(Figure 3.3b). If the groundwater is at rest, the rate of decrease of pore water pressure with 
height above the water table will be approximately hydrostatic (i.e. 9.81 kPa/m). In reality, 
flow through the capillary saturated and unsaturated zones may take place by the infiltra-
tion of rainwater (downwards), and by evaporation (upwards). Water is also lost from the 
soil by transpiration from plants.

3.3 DARCY’S LAW AND SOIL PERMEABILITY

If the pore water is at rest, the pore water pressure will increase with depth with the hydro-
static gradient, that is, ∂u/∂z = γw where γw is the unit weight of water. Conversely, any local-
ised change in pore water pressure away from the hydrostatic value will cause water to flow 
through the voids between the soil particles. Thus, it is not differences in pressure as such 
that drive groundwater flow, but differences in pressure over and above the hydrostatic value 
(a hydrostatic increase in pressure with depth is needed to keep the water stationary). This 
can be demonstrated by imagining two standpipe piezometers (see Section 3.2.1) installed in 
the ground so that their lower ends are at the points A and B (Figure 3.4).

If the groundwater is stationary, the absolute height to which water rises in each standpipe 
will be the same (Figure 3.4a). Water flows from A to B only if there is a difference between 
the water levels in the standpipes (Figure 3.4b). The rise in the standpipe piezometer may 
be measured from any convenient datum, but once the datum level has been chosen for the 
analysis of a particular problem it must not be changed.

Assuming that the velocity of groundwater flow is negligible, the height to which the 
water in the standpipe rises is an indication of the pressure difference over and above the 
hydrostatic value, which drives flow. It is known as the total head or the hydraulic poten-
tial, and may be considered as the sum of the pressure head (the component above the 
measurement point, uA/γw and uB/γw in Figure 3.4) and the elevational head (the distance of 
the measurement point above the arbitrary datum, zA and zB in Figure 3.4). The static pore 
water pressures at points A and B respectively are given by uA and uB. In soil mechanics, the 
total head is sometimes also called the excess head because it is a measure of the excess pore 
water pressure, over and above hydrostatic. However, the term excess head may also be used 
to indicate a head difference over and above a set of steady state conditions which are not 
hydrostatic, particularly in the analysis of transient flow (Chapter 4). For this reason, the 
terms total head, head and potential will generally be used in this chapter.

If the points A and B are at different levels and the groundwater is stationary, the pore 
water pressures at A and B will be different because of the increase in hydrostatic pressure 
with depth, though the total heads are the same (Figure 3.4a). If there is a difference in total 
head (potential) between the two points, their pore water pressures will again in general be 
different, but could be the same (Figure 3.4b).
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In 1836, Robert Stephenson used pumped wells to lower groundwater levels in order to 
enable the construction of the Kilsby tunnel on the London to Birmingham railway line in 
Northamptonshire. Stephenson observed that on pumping from one well, the water levels in 
adjacent wells dropped. He also recognised that the head difference between the wells was, 
for a given rate of pumping, an indication of the ease with which water could flow through 
the soil. However, it was Henri Darcy (1856) who, on the basis of a series of experiments 
carried out at Dijon in France, proposed what is now known as Darcy’s Law, which governs 
the flow of groundwater through soil (Figure 3.5):

 q = Aki (3.2)

where q (m3/s) is the volumetric flow rate of water, A (m2) is the cross-sectional area of the 
flow, i is the rate of decrease of total head (potential) with distance in the direction of the flow, 
−dh/dx, termed the hydraulic gradient, and k (m/s) is a soil parameter known as the coef-
ficient of permeability or the hydraulic conductivity.

Darcy’s Law is one of the equations in soil mechanics that you should learn. The negative 
sign in the definition of the hydraulic gradient is mathematically necessary because the flow 
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Figure 3.4  Soil permeability: (a) hydrostatic pore water pressures, no groundwater flow; (b) non-hydrostatic 
pore water pressures, groundwater flows.
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Figure 3.5  Groundwater flow according to Darcy’s Law.
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is always in the direction of decreasing head. If dh/dx is positive, the flow rate will be in the 
negative x direction. If dh/dx is negative, the flow rate will be in the positive x direction. 
In practice, the direction of flow is usually fairly obvious, and a pedantic insistence on the 
mathematical correctness of the equations can lead to confusion.

The Darcy coefficient of permeability depends on the properties of the permeating fluid 
as well as the soil matrix:

 /fk K f= γ η  (3.3)

where K (m2) is the intrinsic permeability of the soil matrix, which does not depend on the 
properties of the permeating fluid, γf(kN/m3) is the unit weight of the permeating fluid, and 
ηf (kNs/m2) is the dynamic viscosity of the permeating fluid. When the permeating fluid is 
water, the Darcy coefficient of permeability is more correctly termed the hydraulic conductiv-
ity, but in this book, the word ‘permeability’ is used.

Darcy’s Law is sometimes written in the form

 ν =D ki  (3.4)

where vD is known as the superficial or Darcy seepage velocity. It is calculated by  dividing 
the volumetric flow rate, q, by the total area (i.e., soil particles and voids) of the flow. The 
average true fluid velocity vtrue is obtained by dividing the flow rate q by the cross-sectional 
area of the voids alone. Assuming that the void ratio for the cross-section is the same as the 
volumetric void ratio, the cross-sectional area of the voids is smaller than the total area by 
a factor e/(1 + e). Thus,

 = +(1 e)/etrue Dv v  (3.5)

The factor e/(1 + e) is the porosity, n (Section 1.5).
The coefficient of permeability used in Darcy’s Law is a measure of the ease with which 

water can flow through the voids between the solid soil particles. For uniform soils, Darcy’s 
coefficient of permeability depends on a number of factors, including the void size, void 
ratio and viscosity of the pore fluid (which for water varies by a factor of about 2 between 
temperatures of 20–60°C). Void size (which is related to particle size) is by far the most sig-
nificant effect. This is shown by Hazen’s (1892) empirical relationship for clean filter sand:

 =k D(m s) 0.01 10
2  (3.6)

where D2
10 is the sieve size in millimetres which just allows 10% by mass of the soil particles 

to pass through it. Characteristic permeabilities for various types of ground are shown 
in Figure 3.6: the range is enormous. This point is reinforced by comparing the difference 
in permeability between pebbles and clays (a factor of perhaps 1010) with the difference in 
shear strength between high tensile steel and soft clay (about 105).

Darcy’s Law can be applied to both seepage of water at steady state through a non-
deforming soil skeleton and the transient case of water being squeezed out from between soil 
particles which are moving closer together as a result of an increase in effective stress. The 
main constraint is that the flow must be laminar, rather than turbulent. In soils having a par-
ticle size larger than a coarse gravel, groundwater velocities may in reality be large enough 
for turbulent flow. In most other geotechnical applications, flow will be laminar. In this 
chapter, it is assumed that the void ratio of the soil skeleton remains constant, and that con-
ditions of steady state seepage have been reached. Transient flow is discussed in Chapter 4.

It has been assumed in the foregoing discussion of permeability that the soil is saturated. 
The permeability of an unsaturated soil is altogether a different matter, and is considered 
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briefly in Section 3.20. Surface tension effects offer considerable resistance to flow, so that 
when a soil becomes unsaturated its permeability will fall by perhaps three orders of mag-
nitude (McWhorter, 1985). For this reason, in the groundwater flow problems considered in 
most of this chapter, the surface of zero gauge pore water pressure (the phreatic surface) will 
generally represent a flow boundary in coarse soils where the pore water suction at air entry 
is low—the soil above the phreatic surface being unsaturated and, therefore, of negligible 
permeability compared with the body of saturated soil that is the main focus of the analysis.

Example 3.1: Effectiveness of a slurry trench cut-off wall

Darcy’s Law may be applied directly in circumstances where the flow is one-dimensional, 
for example in the constant head permeameter, which is used to measure the perme-
ability of recompacted samples of coarse-grained soils in the laboratory (Section 3.4.1). 
A more practical application is the use of Darcy’s Law to investigate the effectiveness of 
the slurry trench cut-off wall shown in Figure 3.7. A slurry trench cut-off wall is made 
by excavating a trench, usually 600 mm wide, to the required depth and filling it with a 
low-permeability cement—bentonite grout. Such cut-off walls are often installed around 
landfills and other areas of contaminated land, in order to prevent the leakage of leachate 
or polluted groundwater into the surrounding soil.

In Figure 3.7

Δh = head drop across cut−off wall = 2 m
x = thickness of cut-off wall = 1 m
∴ hydraulic gradient i = Δh/x = 2

 permeability of cut-off wall material 10 m/s9k = = −

Hence, the rate of leakage q = Aki = (1) × 10−9 × 2 = 2 × 10−9 m3/s per square metre, 
which is equal to the Darcy seepage velocity vD (m/s).

Typical soil types
Qualitative
description

of permeability

Moderate

High

k, m/s

10–3

10–4

10–5

10–6

10–7

10–8

10–9

Clean gravels

Clean sand, sand/gravel mixtures
Fine and medium sands

Sandy silts
Very silty fine sand
Laminated/mixed strata of
silt/sand/clay

Fissured or
laminated
clays

Intact clays

Silty
sands

Practically
impermeable

Very low

Low

Figure 3.6  Range of soil permeability. (From Cashman, P.M. and Preene, M., Groundwater Lowering in 
Construction: A Practical Guide, 2nd edn, Boca Raton, CRC Press (Taylor & Francis), 2013. With 
permission.)
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If the void ratio of the cut-off wall material is uniform and constant and equal to 0.5, 
the actual average flow velocity is 3 (= 1.5/0.5) times greater and vtrue = 6 × 10−9 m/s. 
The time taken for the first particle of contaminated water to emerge on the clean side 
of the cut-off wall is thus (6 × 10−9)−1 seconds or about 5.3 years. While this may seem 
reasonably reassuring, the result of the calculation is critically dependent on the perme-
ability of the cut-off wall. If this is increased by a factor of 10, the time taken is reduced 
by the same factor. If the wall is in reality cracked, the calculation may be worthless.

3.4 LABORATORY MEASUREMENT OF PERMEABILITY

3.4.1 Constant head permeameter

The constant head permeameter (Figure 3.8) is perhaps the simplest method of measuring 
permeability. The soil specimen is contained within a Perspex tube with inlet and outlets 
and filters at the top and bottom. Water flows one-dimensionally through the specimen in 
the direction of its axis, and the hydraulic gradient required to maintain a flow rate q is 
determined from the head difference Δh indicated by manometers inserted at two points a 
distance L apart along the direction of flow.

Usually, the hydraulic gradient i = (Δh/L) is found for a number of different values for q. 
The flow rate q is determined using a measuring cylinder and a stopwatch. For a specimen 
of cross-sectional area A, Darcy’s Law may be applied directly:

 q = Aki = AkΔh/L (3.7)

so that a graph of q (m3/s) against Δh (m) has a gradient Ak/L (m2/s). The gradient is divided 
by A/L (m) to give the permeability k in m/s. The graph of q against Δh might not be a straight 
line if the volume (and hence, the void ratio) of the soil sample changes during the test.

The soil can be tested in either upward or downward flow. In the latter case, there may 
be a tendency for the soil to compact as the hydraulic gradient is increased. In upward flow, 
the soil sample will tend to decrease in density (become more loosely packed) until the 
 hydraulic gradient reaches a critical value at which the soil grains are effectively buoyant 
and are  fluidised (Section 3.11).

Example 3.2: Interpretation of constant head permeameter test data

Table 3.1 gives data from a constant head permeameter test on a specimen of initially dense 
sand in upward flow. Plot a graph of flow rate q against hydraulic gradient i, and estimate 
the initial permeability of the specimen. Cross-sectional area of specimen = 8000 mm2.

Water
level
inside
repository

Water table in
surrounding ground

2 m

1 m

Cut-o� wall
k = 10–9 m/s

Figure 3.7 Use of Darcy’s Law to estimate leakage through cut-off wall.



116 Soil mechanics: concepts and applications

© 2010 Taylor & Francis Group, LLC

SOluTIOn

The graph of q (y-axis) against i (x-axis) is shown in Figure 3.9. Here, q is plotted in m3/s 
(1 cm3/s = 1 × 10−6 m3/s), and i is dimensionless.

Applying Darcy’s Law, q = Aki, to the permeameter test specimen, the graph of q 
against i has gradient s = dq/di = Ak. The slope of the graph increases with increasing 
flow rate, indicating an increasing permeability. This is due to the gradual loosening of 
the specimen, as the upward hydraulic gradient is increased.

At the beginning of the test, the slope of the graph si is approximately

 s q i Ak( )= ≈ × ≈ × =− −d /d 1 10 m /s /0.2 5 10 m /si
6 3 6 3

i

De-aired water
Constant
head supply
tank

Filter

Standpipe
manometers

Soil sample in tube of
cross-sectional area A

Constant
head outlet

Measuring cylinder

Stopwatch

L

Δh

Figure 3.8 Constant head permeameter.

Table 3.1 Data from constant head permeameter test

Hydraulic gradient i 0 0.2 0.4 0.6 0.8
Flow rate q (cm3/s) 0 1.00 2.20 3.75 5.80

0.2
0

1

2

3

q 
(×

10
–6

 m
3 /

s) 4

5

6

10–6

0 0.2 0.4
i

0.6 0.8

Initial
slope

Figure 3.9 Flow rate q against hydraulic gradient i for Example 3.2.
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The cross-sectional area A = 8000 mm2 = 8 × 10−3 m2, giving initial permeability

 / 6.25 10 m/si i
4k S A= ≈ × −

3.4.2 Falling head permeameter

The constant head permeameter is not suitable for investigating the permeability of fine-
grained (with low permeability) soils where the flow rates are so small that evaporation from 
the measuring cylinder could lead to significant error. For fine soils, a falling head perme-
ameter is used (Figure 3.10). Water flows from a small-bore tube of cross-sectional area A2, 
through the soil specimen that is contained within a larger tube of cross-sectional area A1.

At the start of the test (time t = 0), the water level in the upper (small-bore) tube is at a 
height h1 above the outlet of the permeameter. The water level in the upper tube then falls 
as water flows through the soil sample. At the end of the test (time t = T), the water level in 
the upper tube has fallen to a height h2 above the outlet.

At a general time t (0 < t < T), the water level is at a general height h (h1 > h > h2). 
Applying Darcy’s Law at a general time t to the soil specimen in the large tube,

 /1q Aki A kh L= =  (3.8)

In the small-bore tube, the flow rate is given by the cross-sectional area multiplied by the 
velocity

 q A v2=

but the velocity v = −dh/dt, so

 d /d2q A h t= −  (3.9)

Upper tube
cross-sectional area A2

Stopwatch

h = h1 at t = 0
h = h2 at t = T

Filter

Outlet level with
bottom of sample

Datum for h at
bottom of sample

h

L
Soil sample in tube
of cross-sectional
area A1

Figure 3.10 Falling head permeameter.
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(the negative sign is needed because υ has been taken as positive downward, while h is 
 measured as positive upward).

Equating (3.8) and (3.9)

 d d ( )( )1 2h t A A k L h= −

Integrating between limits of h = h1 at t = 0 and h = h2 at t = T:

 d / d
1

2 1

2
0∫ ∫= −







h h
A
A

k
L

t
h

h T
 (3.10)

Hence,

 ln( / ) ( / )( / )2 1 1 2h h A A k L T= −

or

 ( / )ln( / )2 1 1 2k A L A T h h=  (3.11)

In general terms, a graph of ln (h1/h) against t will have slope s = (kA1/A2L) (shown in 
Example 3.3).

Example 3.3: Interpretation of falling head permeameter test data

In an attempt to investigate the overall vertical permeability of a layered deposit, an 
engineer carries out a falling head permeability test on an artificial specimen comprising 
100 mm of silt overlying 100 mm of sand. The results from this test are given in Table 3.2.

 1. Plot a graph of ln (h1/h) against t, and explain its shape based on the changes to the 
overall vertical permeability of the specimen during the test. Explain the physical 
phenomenon underlying the results.

 2. Estimate the overall vertical permeability at the start and at the end of the test.

 A =Cross-sectional area of specimen 8000mm1
2

 Cross-sectional area of the upper tube 10mm2
2A =

SOluTIOn

 1. The processed data are given in Table 3.3 and plotted as a graph of ln (h1/h) against 
t in Figure 3.11 (h1 = 1 m).

  The graph is curved, indicating a reduction in overall vertical permeability as the 
test progresses. Physically, this might be due to the migration of silt particles into 
the sand.

 2. Rewriting Equation 3.11 with T = t, h1 = h1 and h2 = h,

 ln( / ) ( / )1 1 2h h kA A L t= ×

 so that the graph of ln (h1/h) (y-axis) against time t (x-axis) has slope

 d[ln( / )] /d ( / )1 1 2s h h t kA A L= =

Table 3.2 Data from falling head permeameter test

Time t since start of test (s) 0 40 100 190 330 600
Height of water in top tube h (m) 1.00 0.85 0.70 0.55 0.40 0.25
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 or

 ( / )2 1k A L A S= ×

 From the graph, the initial slope si = d ln (h1/h)/dt = 0.5/116 = 4.3 × 10−3 s−1.
 Substituting A1 = 8000 mm2, A2 = 10 mm2 and L = 200 mm,

 A L A = × ÷ = × −( / ) (10 200 8000)mm 0.25 10 m2 1
3

 giving

 = = × × ×− −( / ) (0.25 10 ) (4.3 10 )m/si 2 1 i
3 3k A L A S

 1.075 10 m/si
6k⇒ = × −

 Similarly, the final slope, sf = 0.12/100 = 1.2 × 10−3 s−1, giving kf = 3.0 × 10−7 m/s

3.5 FIELD MEASUREMENT OF PERMEABILITY

The laboratory methods described above might give a reasonable estimate of the in situ 
permeability of a uniform isotropic soil, provided that the sample has been selected and 
taken with care and that some attempt has been made to replicate its field density in the per-
meameter. The loss of fine particles on sampling is often a problem, because it will lead to 
an overestimation, perhaps by more than an order of magnitude, of the permeability of the 
soil in the field. The soil structure and fabric (e.g. fissures, and anisotropy due to layering as 
described in Section 3.6) may be destroyed during sampling and cannot easily be replicated 
in the laboratory. In many cases, these features will contribute significantly to the effective 
bulk permeability of even a homogeneous soil in the field (Rowe, 1972). Large-scale inho-
mogeneities, such as high permeability lenses, are an additional complicating factor.

Table 3.3 Processed data for Example 3.3

t (s) 0 40 100 190 330 600
h1/h 1 1.176 1.429 1.819 2.500 4.000
ln(h1/h) 0 0.163 0.357 0.598 0.916 1.386

0
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Figure 3.11 ln(h1/h) against time for Example 3.3.
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In practice, the effective permeability of a soil stratum in situ may be investigated by means 
of a pumping test. Water is pumped from one well and the resulting fall in the groundwa-
ter level is monitored at a number of locations using standpipe piezometers or observation 
wells. Pumping tests can be expensive, but if properly planned and executed, represent the 
most reliable method of determining a suitable value of permeability for design.

Observation wells differ from standpipe piezometers in that an observation well is open 
to the soil (via a slotted wellscreen and a granular filter) over a significant proportion of its 
length, whereas a standpipe piezometer is open to the soil over only a short length (typically 
150–300 mm) at the bottom. In general, a standpipe piezometer measures the pore water pres-
sure at a point, whereas an observation well might measure the maximum value of total head 
over its open length. For the pumping tests described in Sections 3.5.1 and 3.5.2, the flow of 
groundwater is horizontal so that the head is the same along any vertical line. In these circum-
stances, observation well records the same water level as a standpipe piezometer, but this will 
not in general be the case. The importance of using standpipe piezometers with a well-defined 
response zone, rather than observation wells, to measure pore pressures at discrete points in 
heterogeneous materials with complex flow fields is highlighted by Beaven et al. (2007).

In fine-grained soils, water levels may continue to fall for days or even weeks after the 
commencement of pumping. In coarse soils, steady state conditions may be reached much 
more quickly. Different methods of test and analysis are appropriate for different situations. 
The execution and analysis of well pumping tests is a subject in its own right, on which 
many papers and entire books have been written (e.g. Cooper and Jacob, 1946; Clark, 1977; 
Kruseman and De Ridder, 1983; BS ISO 14686: 2003). As examples, we will here consider 
the steady state analysis of pumping tests in two highly idealised situations.

3.5.1 Well pumping test in an ideal confined aquifer

The aquifer shown in Figure 3.12 is described as confined because it is bounded at the top 
and bottom by relatively impermeable strata. These prevent any water from entering or 
leaving the aquifer in vertical flow. The initial piezometric surface is defined by the levels 
to which water rises in an array of standpipe piezometers, and is above the upper surface of 
the aquifer. In this respect, the piezometric surface is subtly different from the water table 
or phreatic surface introduced in Section 3.2.3, because the phreatic surface must always be 
contained within the body of the aquifer. The piezometric surface is the level to which the 
water in the confined aquifer would rise if it were free to do so.

Datum for h
Pumped well, �ow rate q

Observation wells Impermeable

Con�ned aquifer

Piezometric level
in con�ned aquifer

Impermeable

Original
groundwater

level

R0r2r1rw

hw

h1 h2 H

LC

Figure 3.12 Well pumping test in a confined aquifer.
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For the following analysis to be valid, the piezometric surface must remain above the top 
of the aquifer during pumping. This requires that the water level in the well must not be 
drawn down below the top of the aquifer. It is also assumed that the well penetrates to the 
bottom of the aquifer, and that all flow is horizontal towards the well.

The flow area at a general radius r is 2πrD, where D is the thickness of the aquifer. The 
hydraulic gradient i = −dh/dr. Applying Darcy’s Law, the flow rate into the well is Equation

 q = Aki = 2π rDk dh/dr (3.12)

(The negative sign has been omitted from the hydraulic gradient in Equation 3.12 because 
we are interested in the flow into the well, which is in the r negative direction.)

At the steady state, q is equal to the known pumped flow rate from the well. The drawdown 
(defined as the depth of the new piezometric surface below the initial piezometric surface) 
decreases with increasing distance from the well. Eventually, at a radius R0, the drawdown is 
zero (i.e. the initial groundwater level beyond R0 is unaffected by pumping). R0 is termed the 
radius or distance of influence of the well. Rearranging Equation 3.12 and integrating between 
limits of (h = H, r = R0) at the distance of influence, and (h = h, r = r) at a general radius r

 
d

(2 / ) d
0 r

r
Dk q h

r

R

h

H

∫ ∫= π  (3.13)

Hence,

 ln( / ) (2 / )( ) ( ) [( /2 )ln ] [ /2 ]ln0 0R r Dk q H h H h q Dk R q Dk r= π − ⇒ − = π − π  (3.14)

A graph of the drawdown (H − h) (on the y-axis) against the natural logarithm of the radial 
distance r (on the x-axis), plotted from the data from the observation well, will have a nega-
tive slope of magnitude s = q/2πDk. The permeability k is given by

 k = q/2π Ds (3.15)

The radius of influence, R0 may be read off from the graph at zero drawdown (Figure 3.13). 
It will generally be found that the drawdown in the soil given by the graph at r = rw (the 
radius of the well) is less than the measured drawdown inside the well. This is due to head 
losses at entry into, and vertical flow components in the vicinity of, the well, which are 
ignored in the idealized analysis shown in Figure 3.12.

If the graph of drawdown against radial distance is plotted directly onto log10–linear 
graph paper, Equation 3.15 becomes

 2.3 /2 10k q Ds= π  (3.16)

Data from
observation
wells

Best �t
straight
line

s
I

In r
In R0In rw

Drawdown
(H–h)

Drawdown
in soil just

outside well

Figure 3.13 Analysis of data from a pumping test in a confined aquifer.
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This is because log10 r = 2.3 ln r: the slope of the graph of (H − h) against log10 r is  therefore 
s10 = 2.3q/2π Dk.

3.5.2 Well pumping test in an ideal unconfined aquifer

If the aquifer is not overlain by an impermeable layer, the surface of zero gauge pore water 
pressure will be drawn down into the body of the aquifer to form a phreatic surface when 
pumping starts. In this case, the aquifer is described as an unconfined or a water table 
aquifer. It is still assumed that flow is essentially horizontal (which in practice means that 
the drawdown must be small in comparison with the thickness of the aquifer), and that 
the pumped well penetrates the entire depth of the aquifer. These conditions are shown in 
Figure 3.14.

The important difference between Figure 3.14 and Figure 3.12 is that in the case of 
the unconfined aquifer, the area available for flow diminishes more rapidly as the well is 
approached. This is because both the radius and thickness of the saturated aquifer, rather 
than just the radius, decrease. It is assumed that the soil above the surface of zero gauge 
pore pressure has become unsaturated, and there is, therefore, no flow within this zone. This 
assumption is reasonable for a coarse soil, but not necessarily appropriate for a fine-grained 
soil where flow may still take place in the capillary saturated zone. 

At a general radius r, the area available for flow is 2π rh, where h now varies with r. 
Applying Darcy’s Law

 q = Aki = 2π rhk dh/dr (3.17)

Flow into the well is again taken as positive. Rearranging Equation 3.17 and integrating 
between limits of h = H, r = R0 at the distance of influence, and h = h, r = r at a general point
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∫ ∫= π

Hence,

 = π −ln( / ) ( / )( )0
2 2R r k q H h

 ( ) [( / )ln ] [ / ]ln2 2
0H h q k R q k r⇒ − = π − π  (3.18)
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Figure 3.14 Well pumping test in an unconfined aquifer.
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To estimate the permeability in this case, it is necessary to plot the data from the observa-
tion wells as a graph of (H2 − h2) against the natural logarithm of the radial distance r. The 
slope is again negative, but of magnitude s = q/π k, so that the permeability k is given by

 k = q/π s (3.19)

If the data are plotted as (H2 − h2) against log10 r, k = 2.3q/π s10 because log10 r = 2.3 ln r, 
as before.

In practice, the well may not penetrate the full thickness of the aquifer. Correction  factors 
that may be applied to take this into account are given in Leonards (1962). Also, vertical flow 
components will generally in reality be significant in the vicinity of the well. Equations 3.14 
and 3.18 therefore tend to overestimate the drawdown at distances closer to the well than 
about 1.5 times the depth of the aquifer. Vertical flow does not seem to affect the flowrate 
significantly.

In three dimensions, the drawn down phreatic or piezometric surface around a well takes 
the shape of an inverted, concave-sided cone, termed the cone of depression. Consideration 
of the cone of depression is important in the design of an array of pumped wells to lower the 
groundwater level in the vicinity of an excavation. The wells must be installed close enough 
to ensure that the required drawdown is achieved at the mid-points between every pair of 
adjacent wells. Generally, cones of depression are steeper in low-permeability soils than in 
high-permeability soils. Further details are given by Preene et al. (2000).

3.6 PERMEABILITY OF LAMINATED SOILS

We saw in Section 1.3 that, as a result of the environment in which they were deposited, 
some soils exhibit a varved or layered structure, comprising alternating bands of fine and 
coarse material. This is particularly true of soils that were originally laid down over many 
years in glacial lakes. Each season’s meltwater would bring with it soil particles of vari-
ous sizes: the coarser particles would settle quite quickly to form one layer, and the finer 
particles would settle more slowly to form the next. A glacial lake deposit with this type of 
structure was encountered during the construction of the immersed tube tunnel crossing of 
the River Conwy in North Wales in 1989 (Figure 3.15).

The layered structure of a varved deposit can lead to a difference of several orders of 
magnitude between the bulk permeabilities in the vertical and horizontal directions. A 
material having different values of certain properties in different directions is described as 
 anisotropic. Where the two horizontal directions are indistinguishable, as is often the case 
for soils owing to their deposition in layers (even if a varved fabric is not readily identifiable), 
the term cross-anisotropic is sometimes used.

To construct the Conwy tunnel, three large excavations up to 15 m deep (below mean 
sea level) with a total perimeter of 2.6 km were made adjacent to the Conwy estuary. The 
stability of these excavations depended on the maintenance of low pore water pressures in 
the slopes and the base throughout the construction period: this was achieved by means 
of pumped wells around each excavation. One of the factors influencing the design of the 
well systems was the anisotropic permeability of the Glacial Lake Deposits. The way in 
which the marked difference between the horizontal and vertical permeabilities of a layered 
deposit arises can be investigated using the idealised model shown in Figure 3.16.

In horizontal flow (i.e. flow parallel to the laminations), the hydraulic gradient between 
A  and B is the same for both layers. The total flowrate, qT is the sum of the flowrates 
through the individual layers. We seek an expression of the form

 =q A k iT T h
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where kh is the overall (bulk) permeability in the horizontal direction and AT is the total area 
available for flow. For a unit depth perpendicular to the plane of the paper,

 T 1 2A d d= +

Applying Darcy’s Law to each layer in turn,

 and1 1 1 2 2 2q d k i q d k i= =

Hence,

 ( )T 1 2 1 1 2 2q q q d k d k i= + = +

(a) (b)

Figure 3.15  Laminated glacial lake deposits (100 mm diameter samples) from Conwy, North Wales. 
(a) 19.30–19.75 m below original ground level: silty clay with regular thin partings of silty fine 
sand. (b) 22.65–23.10 m below original ground level, showing a transition to a more uniform fine 
sand near the bottom of the stratum. Note disturbance due to sampling. (From Powrie, W. and 
Roberts, T.O.L., Q. J. Eng. Geol., 23, 169–85, 1990. With permission.)

Soil 1, k1

Soil 2, k2

A B

Same for both soils

Δx

Δx Δx
Δh

Δh = hB – hB

d2
d1

q2

i = =

q1

hA hB

hA – hB

Figure 3.16 Horizontal flow through a layered soil.
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and by comparison with the initial expression kh = qT/(ATi), the overall horizontal  permeability 
is given by

 k d k d k d d= + +( )/( )h 1 1 2 2 1 2  (3.20)

In vertical flow (i.e. flow perpendicular to the laminations), the same flow passes through 
each layer and the overall head drop ΔhT is the sum of the head drops across the individual 
layers (Figure 3.17).

The hydraulic gradients across each layer are i1 = Δh1/d1, and i2 = Δh2/d2. The flow area 
A is the same for all layers, and we seek an expression of the form

 T v Tq Ak i=

where the overall hydraulic gradient iT = (Δh1 + Δh2)/(d1 + d2) and kv is the overall vertical 
permeability. Since the flowrate through each layer is the same (and equal to qT),

 = ∆ = ∆/ /T 1 1 1 1 2 2 2q Ak h d A k h d

and

 h h q A d k d kT∆ + ∆ = +( / )[( / ) ( / )]1 2 1 1 2 2

Hence,

 = ∆ + ∆ + = + +( )/( ) ( / )[( / ) ( / )]/( )T 1 2 1 2 T 1 1 2 2 1 2i h h d d q A d k d k d d

Comparison of this the initial expression kv = qT/AiT gives the overall vertical permeability as

 = + +( )/[( / / )]v 1 2 1 1 2 2k d d d k d k  (3.21)

For a system of n layers, each having a different thickness and permeability, the horizontal 
and vertical permeabilities are given by the generalized forms of Equations 3.20 and 3.21:
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Figure 3.17 Vertical flow through a layered soil.
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and
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r n
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r n

∑ ∑=










=

=

=

= −

 (3.22)

Example 3.4:  Calculating the bulk horizontal and vertical 
permeabilities of a laminated deposit

A laminated soil consists of alternating bands of clay 15 mm thick and sandy silt 3 mm thick. 
These materials in isolation have permeabilities of 10−8 m/s and 10−6 m/s respectively. Calculate 
the bulk permeability in the directions parallel and perpendicular to the laminations.

SOluTIOn

 1. kh parallel to laminations = (d1k1 + d2k2)/(d1 + d2)

 

0.015 10 0.003 10
0.018

m/s
8 6

= × + ×− −

 so

 1.75 10 m/sh
7k = × −

 2. kv perpendicular to laminations = (d1 + d2)/[(d1/k1) + (d2/k2)]

 = +− −0.018/[(0.015/10 ) (0.003/10 )]m/s8 6

 so

 1.2 10 m/sv
8k = × −

3.7 MATHEMATICS OF GROUNDWATER FLOW

The differential equation governing the flow of groundwater is rarely used explicitly to 
obtain closed form solutions to geotechnical engineering problems. The assumptions under-
lying it, however, must be appreciated, because it underpins the graphical and numerical 
methods that are used on a daily basis in the solution of groundwater flow problems. In this 
section, we will look at the derivation of the differential equation governing groundwater 
flow. Do not worry if you find yourself unable to remember this derivation: the important 
thing is to develop an understanding of the principles, assumptions and limitations involved.

The differential equation governing the flow of groundwater is derived with reference to 
an element of soil having dimensions δx, δy and δz in the directions of the x-, y- and z-axes, 
respectively (Figure 3.18). The space coordinates of the soil element are (x, y, z) and the total 
head or potential at this location is h.

The total flowrate into the soil element is

 ( ) ( ) ( ) ( )in inq vA v y z v x z v x yx y z∑= = δ δ + δ δ + δ δ  (3.23)

The total flowrate out of the soil element is

 

q v v v x x y z v v y y x z v v z z x y

q x y z v x v y v z
x x y y z z

x y z

( A) [ ( / ) ] [ ( / ) ] [ ( / ) ]

( )( / / / )
out out

in

∑= = + ∂ ∂ δ δ δ + + ∂ ∂ δ δ δ + + ∂ ∂ δ δ δ

= + δ δ δ ∂ ∂ + ∂ ∂ + ∂ ∂  (3.24)
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If steady state conditions have been reached the volume of the soil element is constant, so

 in outq q=

or from Equation 3.24

 v x v y v zx y z/ / / 0∂ ∂ + ∂ ∂ + ∂ ∂ =  (3.25)

The expressions ∂vx/∂x, ∂vy/∂y and ∂vz/∂z are partial derivatives. A partial derivative is used 
when a quantity—in this case, vx, vy or vz—is a function of more than one variable. In this 
case, vx, vy and vz are each functions of all three space coordinates, x, y and z. The notation 
∂vx/∂x is used to mean the rate of change of vx with distance in the x-direction only, and simi-
larly with ∂vy/∂y and ∂vz/∂z in the y- and z-directions respectively.

Darcy’s Law applies in each of the three independent directions:

 , andv k i v k i v k ix x x y y y z z z= = =  (3.26)

where kx is the soil permeability and ix is the hydraulic gradient in the x-direction and so 
on. Also,

 / , / and /i h x i h y i h zx y z= − ∂ ∂ = − ∂ ∂ = − ∂ ∂  (3.27)

Substitution of Equations 3.26 and 3.27 into Equation 3.25 yields

 / / / 02 2 2 2 2 2k h x k h y k h zx y z∂ ∂ + ∂ ∂ + ∂ ∂ =  (3.28)

This is the differential equation governing the flow of groundwater through a rigid soil 
skeleton. If the permeability of the soil is the same in all directions, Equation 3.28 can be 
simplified to Laplace’s Equation,

 / / / 02 2 2 2 2 2h x h y h z∂ ∂ + ∂ ∂ + ∂ ∂ =  (3.29)
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Figure 3.18 Flow through a soil element.
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3.8 PLANE FLOW

We have seen in Chapter 2 that in earthworks such as excavations, cuttings and embank-
ments that are long in comparison with their other dimensions, the deformation in the lon-
gitudinal direction is (by symmetry) approximately zero. Exactly the same argument applies 
for seepage flow, with significant flow occurring only in the plane of the cross-section. 
The problem is, therefore, reduced to two dimensions, in which Laplace’s Equation may be 
solved graphically using a technique known as flownet sketching.

A flownet is a network of flowlines, which represent the trajectories of individual fluid 
particles, and equipotentials, along which the total head or potential is constant and, there-
fore, there is no flow. As well as providing a graphical representation of the flow pattern, the 
flownet may be used to calculate the seepage flowrate and pore water pressures at any point 
on the cross-section.

The flownet is constructed by trial and error so as to satisfy the following conditions:

 1. Flowlines cross equipotentials at right angles. This is because there is, by definition, no 
flow along an equipotential, which means that all of the flow must be at 90° to it.

 2. Flowlines cannot cross other flowlines as this would require two molecules of water to 
occupy the same space at the same time, which is impossible.

 3. Equipotentials cannot cross other equipotentials, because this would require one point 
to have two different values of total head, which is impossible.

 4. Impermeable boundaries and lines of symmetry are flowlines: as there is no flow 
across an impermeable boundary, all of the flow must be along it. Flow across a 
line of symmetry would require flowlines from opposite sides to cross, which is 
impossible.

 5. Bodies of water such as reservoirs are equipotentials. Try imagining standpipe piezom-
eters inserted at a number of different locations within a lake: the water level in all of 
the standpipes will coincide with the water level in the lake.

 6. Although the number of flowlines and equipotentials that could be sketched 
is  infinite, the flownet must be constructed so that each element is a curvilinear 
square. Although its sides may be curved, a curvilinear square is as broad as it is 
long, so that a circle may be inscribed within it. If this condition is fulfilled, the 
drop in head between any two consecutive equipotentials is the same, and the flow-
rate through all flowtubes is the same. A flowtube is the channel defined by two 
adjacent flowlines.

Consideration of the flow through a single flow element (Figure 3.19) shows that, for a 
flownet constructed according to these rules, the total flowrate q per metre run in the lon-
gitudinal direction is

 q kHN N(m /sper metre) /3
F H=  (3.30)

where k is the permeability of the soil (in m/s), H is the overall head drop (in metres) between 
the first and last equipotentials, NF is the number of flowtubes (i.e. the number of spaces 
between flowlines) and NH is the number of equipotential drops (i.e. the number of spaces 
between equipotentials). Equation 3.30 is quite straightforward, and is worth committing 
to memory.
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3.9 CONFINED FLOWNETS

If all the boundaries to the flow regime are known at the outset, the flownet is described as 
confined. The construction of a confined flownet is illustrated below by means of a worked 
example based on a case study.

Example 3.5: Confined flownet for a long cofferdam

Figure 3.20 shows a cross-section through a long excavation in Norwich Crag, a fine 
sand of mean permeability k = 1.5 × 10−4 m/s. The sides of the excavation are sup-
ported by steel sheet piles: a structure known as a cofferdam. The purpose of the exca-
vation is to enable the construction of a cooling water outfall pipe for a coastal power 
station. The excavation is to be made across a beach, so that the ground  surface out-
side the sheet pile cofferdam must be assumed to be flooded with seawater to a depth 

q

b

l

For NF flowtubes, NH equipotential drops
and an overall head drop of H (metres),

per metre length

qT = NFq
and Δh = H/NH

so qT = kHNF/NH

For one element, q = Aki
 = bk
 = kΔh if b = l

Δh

Δh

l

Figure 3.19 Flow through a single flow element.
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Figure 3.20 Geometry for confined flownet in Example 3.5: excavation for cooling water outfall pipe.
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of 2 m at high tide. Estimate the rate (per metre length of the excavation) at which 
water must be removed from the floor of the excavation in order to prevent flooding.

Newcomers to flownet sketching are often nervous about making a start, in case they 
make a mistake. It is at this stage that you must bear in mind that flownet sketching is an 
iterative process: it is only by making mistakes, which are then corrected, that a satisfactory 
solution is approached. It takes practice! The flownet should be constructed methodically, 
and the following procedure should enable you to make a reasonable start. Remember also 
that the person who never made a mistake rarely made anything: do not be afraid to try.

 1. Is the geometry of a given problem symmetrical about the centreline? If so—as 
in this case—it is only necessary to sketch one half of the flownet. Remember, 
however, that if only half the flownet is sketched, the number of flowtubes must be 
multiplied by two to calculate the flowrate per metre length.

 2. Identify where the water is going to: the sink. Sketch in the bottom equipotential, 
that is, the one with the smallest value of total head h—in this case, the excava-
tion floor, which we shall assume remains just covered in a shallow depth of water. 
Make this (or some other convenient point) the datum level from which the total 
head or potential is measured (Figure 3.21a).

 3. Identify where the water is coming from: the source. Sketch in the top equipotential 
that is, the one with the greatest value of total head h— in this case, the flooded beach 
on either side of the excavation (only the left-hand side is shown in Figure 3.21a).

  In Figure 3.21, the top equipotential has a value of 16 m relative to the floor of
 the excavation, even though the beach is only 14 m above the floor of the excava-

tion. This is because the beach is flooded to a depth of 2 m. (Imagine a standpipe 
piezometer placed with its tip at the retained soil surface. Water rises in the stand-
pipe to the level of the free water surface, which is 2 m above the piezometer tip and 
16 m above the floor of the excavation.)

 4. Identify the bounding flowlines. In this case, one flowline runs from the the beach 
down the back of each of the sheet pile walls, round the bottom of the wall and into 
the excavation. The underlying London Clay has a permeability of less than 10−10 m/s 
and, in comparison with the Norwich Crag, is effectively impermeable. Bounding 
flowlines, therefore, follow the interface between the Norwich Crag and the London 
Clay, coming in from the left (and right) and turning through 90° to follow the cen-
treline up to the floor of the excavation (Figure 3.21a: only the left-hand side is shown).

 5. Starting with zones where the flow pattern is reasonably well-defined (in this case 
between the sheet pile walls of the cofferdam), begin to sketch in equipotentials and 
flowlines within the boundaries you have now defined (Figure 3.21b and c). Keep 
it simple: in this case, one intermediate flowline is sufficient, at least for a start. 
You can always go back and subdivide large flow elements by sketching in further 
flowlines and equipotentials as a check, but if you start off by being too ambitious, 
you will get into a hopeless mess.

 6. If some flowlines and equipotentials do not cross at right angles, or if some flow ele-
ments are not ‘square’, rub out the offending lines and redraw them so that the signifi-
cant errors are gradually eliminated. The flownet does not have to be perfect. You will 
soon reach a stage where further improvements make very little practical difference.

 7. When you are satisfied with the flownet (Figure 3.21d), count the number of flowtubes 
NF (i.e. the spaces between the flowlines, not the flowlines themselves) and the number 
of head drops NH (again, the spaces between the equipotentials, not the equipotentials 
themselves). The head on each equipotential is calculated using the fact that the head 
drop between adjacent equipotentials is H/NH, where H is the overall head drop. 
Equation 3.30 is used to calculate the flowrate— remembering in this case to multiply 
the number of flowtubes by two because we have only sketched half the flownet.

The required flowrate is given by

 q kHN N(m /sper metre) /3
F H=
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Figure 3.21  Construction of flownet for cooling water outfall pipe excavation: (a) identify the sink, the 
source and the bounding flowlines (b) and (c) start to sketch in simpler intermediate flowlines 
and equipotentials (d) the finished flownet.
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with

 1.4 10 m/s4k = × −

 H = 16 m

 2 2for symmetry 4FN = × =

 8NH =

 (1.4 10 )(m/s) 16(m) (4/8)4q⇒ = × × ×−

 = × −1.2 10 m /s per metre length3 3

Perhaps the two most common mistakes committed in calculating the flowrate from a 
completed flownet are:

• Dimensional inconsistencies; always work in SI units, that is, metres and seconds, with 
permeability in m/s. If appropriate, the answer can be changed to more meaningful 
units (e.g. litres/second, litres/hour, m3/hour or m3/day) at the end of the calculation.

• Using the number of flowlines (instead of the number of flowtubes) for NF, and/or 
the number of equipotentials (instead of the number of head drops) for NH. Think of 
fence posts and fence panels: the number of panels (flowtubes or head drops) is always 
one less than the number of posts (flowlines or equipotentials).

If the geometry of the cross-section is not symmetrical, the whole flownet will need to be 
sketched, as in Example 3.6.

Example 3.6: An asymmetric confined flownet

Figure 3.22a shows a cross-section through a long excavation, situated within the infilled 
channel of an old river. The infill material, in which the excavation is made, is a silty fine 
sand of permeability 1.5 × 10−5 m/s. The surrounding rock is of permeability 10−12 m/s. 
The natural groundwater level is at the original soil surface.

 1. Stating carefully the assumptions you make and the conditions you are attempt-
ing to fulfil, estimate by means of a carefully sketched flownet the capacity of the 
dewatering system required to keep dry a 100 m length of the excavation.

 2. If the pumps were to fail, how long would it take for the cofferdam to flood to a 
depth of 1 m?

SOluTIOn

 1. The main assumptions are that:
a. The rock is impermeable in comparison with the sand.
b. The sand is isotropic and homogeneous.
c. The water table outside the excavation is maintained (by rainfall and other 

sources of recharge) at its original level.
d. The groundwater level inside the excavation is maintained (by the pumped 

dewatering system) at the excavated soil surface.
e. The side walls are impermeable.
f. End effects may be neglected.

  In addition to the boundary conditions that follow from the above assump-
tions, the flownet must be sketched in accordance with the usual rules:
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i. All flowlines must cross all equipotentials at right angles.
ii. Flowlines must not merge with or cross other flowlines, and equipotentials 

must not merge with or cross other equipotentials.
iii. Each flow element should be a curvilinear square, that is, each element 

should be as broad as it is long.

  The flownet is sketched following the procedure described for Example 3.5. In 
this case:

 1. The problem geometry is not symmetrical about the centreline. The entire 
flownet must, therefore, be sketched.

 2. Where is the water going to? The sink or lowest equipotential, and the datum 
for measurement of hydraulic head h, is the excavation floor, between the side 
walls (Figure 3.22b).

 3. Where is the water coming from? As far as the soil is concerned, it is coming 
from the flooded soil surfaces on either side of the cofferdam. These are the top 
equipotentials, with the highest values of h. If we imagine a stand-pipe piezom-
eter with its tip at any point along these equipotentials, the water level in the 
standpipe will not rise at all above the position of the tip. This is, however, 6 m 
above our datum for the measurement of h, and the value of h along the top 
equipotentials is therefore 6 m (Figure 3.22b).

 4. Identify the bounding flowlines. As before, one flowline runs down the back 
of each of the side walls, round the bottom of the wall and into the excava-
tion. Bounding flowlines also start from B and E, and follow the impermeable 
boundary between the sand and the rock. At some point C, they will turn 
through approximately 90° and run side-by-side up to the floor of the excava-
tion at D (Figures 3.22c and d).

  The flowpath CD separates the flow from the left and right sides of the cross-
section, and must be located by trial and error. The criterion to be met is that 
every flowline must cross the same number of equipotentials, whichever side of 
the flownet it starts from. This is because the change in head between any pair 
of equipotentials must be the same. In this case (Figure 3.22d), there are seven 
equipotentials (i.e. six equipotential drops) on each side of the cross-section. 
A flownet with, say, six equipotentials on the left side and seven on the right 
would be wrong, because it would be necessary to assign two conflicting values 
of head to the common equipotentials between the sheet piles.

  The finished flownet, Figure 3.22d, was arrived at gradually, starting with 
zones where the flow pattern is reasonably well defined (Figure 3.22c). Where, 
during initial attempts, flowlines and equipotentials did not cross at right 
angles or flow elements were not ‘square’, the lines were redrawn until signifi-
cant errors were eliminated.

 The flow rate is given by

 =(m /sper metre) /3
F Hq kHN N

 with

 1.5 10 m/s5k = × −

 H = 6 m

 4FN =

 6HN =

 

⇒ = × × ×
= ×

−

−

(1.5 10 ) (m /s) 6 (m) (4 / 6)

6 10 m /s per metre length

5

5 3

q
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Figure 3.22  Asymmetric confined flownet: (a) geometry; (b) identify the sink, the source and the bounding 
flowlines (c) sketch in intermediate flowlines and equipotentials (d) the finished flownet.
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 For a 100 m length, q100 = 6 × 10−5 m3/s per m × 100 m

 ⇒ = × =−6 10 m /s 21.6m /h100
3 3 3q

 2. If the pumps should fail, the water level within the excavation will start to rise. 
Provided that the excavated surface remains flooded, the geometry of the flownet 
does not change. What happens is that the value of h on the lowest equipotential 
starts to rise, so that the overall head drop H, and the corresponding flow rate q 
calculated according to Equation 3.30, decrease.

  Suppose that, at a time t after pumping ceased, the excavation is flooded to a 
height z above the excavation floor. The value of h on the lowest potential is then 
z (metres), and the overall head drop across the flownet H = (6−z) m. The flowrate 
is still given by Equation 3.30 with k = 1.5 × 10−5 m/s; H = (6−z) m; NF = 4 and 
NH = 6:

 10 (6 ) m /s per metre5 3q z= −−

  The flowrate q is related to the rate at which the water level within the excavation 
rises, dz/dt, because dz/dt = q/A, where A is the area of the excavation. For a 1 m 
length, A is equal to the width of the excavation, 12 m. Hence,

 d /d 10 (6 ) 12(m/s)5z t z= × − ÷−

  This can be integrated between limits of z = 0 at t = 0, and a general depth z at 
a general time t, to give
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 ⇒ = × × −(12 10 ) ln[6/(6 )] s5t z

For z = 1 m, this gives

 = × × =(12 10 ) ln(1.2)s 60h5t

  This might seem reassuring. However, the main danger with excavations in low 
permeability soils is not flooding, but instability due to uncontrolled pore water 
pressures. This is discussed in Section 3.11.

In the flownets shown in Figures 3.21 and 3.22 we have taken the reduced water table 
inside the excavation to be level with the excavated soil surface. In reality, the water level 
inside the excavation will be lowered by means of a dewatering system, comprising an array 
of wells penetrating some way below the level of the excavation floor (often termed “for-
mation level”), and probably installed outside the excavation. The water level in each well 
will be lower than in the surrounding ground, as a result of vertical flow in the vicinity of 
the well head losses at entry into the well, and—especially in less permeable soils—cone of 
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depression effects (Section 3.5), because there will be some recovery of groundwater levels 
in between the wells.

Experience suggests that (subject to a reasonable estimate of the effective soil  permeability) 
the approach adopted in Figures 3.21 and 3.22 will in most circumstances lead to a realistic 
estimate of the pumping rate required to achieve an overall drawdown inside the excavation 
to formation level. The detailed flow pattern near the wells need not normally be considered. 
The potentially limiting factors of well capacity and performance should, however, be inves-
tigated in their own right. In some cases, a test well or a pumping trial might be required.

3.10  CALCULATION OF PORE WATER PRESSURES 
USING FLOWNETS

Subject to the limitation outlined above concerning the detailed flow pattern in the vicinity 
of an individual well, the pore water pressure at any point may be calculated from a flownet 
by interpolation between equipotentials.

Example 3.7: Calculating pore water pressures from a flownet

Calculate the pore water pressure at the point marked A on the flownet shown in 
Figure 3.22.

SOluTIOn

The first step is to calculate the total head h at the point A, by linear interpolation 
between the equipotential lines on the flownet. By scaling from Figure 3.22, the point A 
is approximately 2 m from the 5 m equipotential (h = 5 m), in a region where the equipo-
tentials at 5 m and 4 m are separated by a distance of about 6 m (Figure 3.23a).

The potential at A is, therefore, given by

 5m [(2/6) 1m] 4.67 mAh = − × =

This must now be converted to a pore pressure head uA /γw, by subtracting the elevation 
of the point A above the datum for the measurement of h:

 ( )A w A Au h z= γ −  (3.31)

(Figure 3.23b: uA is the gauge pore water pressure at A, hA is the total head at A and zA 
is the elevation of A above the datum used for the calculation of total head.)

(a)

6 m

2 m
h = 5 m

h = 4 m

hA ≈ 4⅔ m

(from Figure 3.22)

A

hA ≈ 4⅔ m

uA = γw (4⅔–[–3])
uA ≈ 75 kPa
(cf. 88 kPa if hydrostatic)

A
zA = –3 m

h, z

(b)

Figure 3.23  Calculating pore water pressure from a flownet: (a) determining the total head hA and 
(b)  relationship between total head and pore water pressure.
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In this case, the point A is approximately 3 m below the datum for h, so zA is negative: 
zA = −3 m. Hence,

 = γ − = × − −( ) 9.81kN/m [4.67 m ( 3m)]A w A A
3u h z

 75kPaAu⇒ ≈

In hydrostatic conditions, the pore water pressure at a depth of 9 m below the water 
table would be approximately 88 kPa. This example illustrates the effect of down-
ward seepage in reducing pore water pressures, compared with hydrostatic conditions. 
Conversely, upward seepage will increase pore water pressures, perhaps to such an extent 
that the soil fluidises or ‘boils’. This is discussed in Section 3.11.

3.11 QUICKSAND

In regions of strong upward flow—for example, in front of the retaining walls shown 
in Figures 3.21 and 3.22—the soil may fluidise or boil if the uplift force due to seepage 
exceeds the weight of the soil, that is, if the effective stress falls to zero. This condition is 
also known as quicksand if it occurs over a large area, and piping if it occurs in localised 
channels.

We can investigate fluidisation by considering the forces acting on a block of soil that is 
on the verge of uplift (Figure 3.24). Neglecting side friction, uplift will just occur when the 
pore water pressure rise above the surface reaches a critical head hcrit, such that the upward 
force due to the pore water pressure acting on the base [Aγw(z + hcrit)] balances and begins 
to exceed the weight of the block of soil (Aγz):

 (z h ) zw critγ + = γ

This may be rearranged to give a critical upward hydraulic gradient, icrit, which is just 
sufficient to cause fluidisation:

 / ( )/crit crit w wi h z= = γ − γ γ  (3.32)

z

hcrit

Datum for h

Plug of soil area A, unit weight γ
Weight Azγ
Upthrust due to pore water pressure
Aγw (hcrit + z)

Figure 3.24 Forces on a block of soil on the verge of uplift.
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Example 3.8: Assessing the potential for fluidisation of the floor of an excavation

Figure 3.25 shows a cross-section through a proposed excavation for a pumping station 
near Weston-super-Mare, England. Investigate the possibility of fluidisation of the base 
(quicksand) as the excavation progresses. If there is a potential difficulty, suggest how it 
might be overcome.

SOluTIOn

The pore water pressure on the base of the soft clayey silt below the excavation floor is 
13 m × 10 kN/m3 = 130 kPa. This will be equal to the overburden pressure resulting 
from the weight of the clayey silt remaining when this if of thickness z such that z (m) × 
18 kN/m3 = 130 kPa giving

z = 130 kPa ÷ 18 kN/m3 = 7.22 m

[A calculation based on reaching a critical hydraulic gradient of (γ − γw)/γw = 0.8 in 
this case also gives the same answer: the head drop is (13 − z) m and the distance over 
which it occurs is z m, giving (13 − z) m ÷ z m = 0.8 according to Equation 3.32). Hence, 
z = 13 m ÷ 1.8 = 7.22 m.]

Given that the proposed depth of excavation of 8 m would leave just 6 m of clayey silt 
in place above the top of the silty sand (with a corresponding overburden stress of 6 m × 
18 kN/m3 = 108 kPa), there clearly is a problem with basal instability. This could be 
prevented by installing a pumped well dewatering system into the underlying silty sand, 
to lower the pore water pressures in this stratum prior to excavation. Simply driving the 
sheet pile side walls deeper into the silty sand would not be sufficient in this case as it 
would affect the pore water pressures in that stratum.

Typically, the dewatering system would have to lower the pore water pressures in the 
silty sand sufficiently to give a ratio of stabilising to destabilising forces of 1.5, limiting 
the pore water pressure at any depth to a maximum of 2/3 of the overburden1. Some 
upward movement of the excavated soil surface must still be anticipated, owing to the 
reduction in vertical effective stess which results from the removal of overburden.

Depth m
below OGL

0
1

4
5

8

14
15Silty sand

Soft clayey silt with
some sand lenses

Clay unit weight ~ 1.8 kN/m3 (maximum)

Peat

Soft to firm silty clay

Figure 3.25  Cross-section through proposed excavation showing soil strata and initial groundwater level 
in the silty sand.
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In reality, the contractor attempted to remove soil to the full depth of the excavation 
without taking steps to reduce the pore water pressures in the underlying silty sand. As 
formation level was approached, the base became unstable and the excavation filled with 
water. This was quite predictable, as illustrated by the calculation above. The remedial 
works necessitated by the failure were substantially more expensive than the cost of a pre-
emptive groundwater control scheme, quite apart from the damage to the plant and the 
potential for injury or loss of life, which in this case, fortunately, did not occur.

3.12 UNCONFINED FLOWNETS

In the examples given in Section 3.9 (Figures 3.21 and 3.22), the boundaries to the flownet 
were known at the outset. In an unconfined or water table aquifer in which the soil sur-
face does not remain flooded, this is not the case, because the surface of zero gauge pore 
water pressure—the phreatic surface—will be drawn down into the body of the aquifer. 
Neglecting capillary effects, there is no flow in the region above the phreatic surface. This is 
because the gauge pore water pressure would be less than zero in this zone, which as a result 
will become unsaturated and effectively impermeable. In cross-section, the phreatic surface, 
therefore represents the upper flow boundary or the top flowline.

The position of the top flowline depends on the flow regime as represented by the flownet, 
while the flownet depends on the position of the top flowline. The only way forward is to 
sketch the flownet by trial and error, including the determination of the position of the top 
flowline or phreatic surface in the iterative process. Because of the additional requirement 
(sometimes called the phreatic surface condition) to locate the top flowline, unconfined 
flownets are generally more difficult to sketch than confined flownets. Sketching unconfined 
flownets may seem daunting at first, but—as with confined flownet sketching—becomes 
easier with practice and experience.

The position of the top flowline is located using the fact that the gauge pore water pressure 
at any point on it is zero. This means that the total head h at any point is equal to the eleva-
tion of that point above the datum for measurement of h. For example, the 3 m equipotential 
intersects the top flowline at an elevation of 3 m above datum level, and so on. Fulfilment of 
this additional condition (as with the rest of the flownet, by trial and error) will ensure that 
the top flowline or phreatic surface is correctly located.

The construction of an unconfined flownet is illustrated in Example 3.9.

Example 3.9: An unconfined flownet

The cross-section shown in Figure 3.26 is based on one of the excavations for the A55 
Conwy Crossing in North Wales. Water flows through the earth bund from the river estu-
ary to the line of wellpoints (here assumed to act as a continuous slot), so that the top and 
bottom equipotentials (i.e. the source and sink) are clearly defined. The interface between 
the bund and the underlying impermeable stratum represents one bounding flowline, but 
the position of the top flowline is not initially known.

The unconfined flownet was constructed as follows:

• Can we use symmetry? In this case, no.
• In this case, the datum for the measurement of total head h is taken to coincide 

with Ordnance Datum, OD. This is to achieve consistency with the construction 
drawings and procedures for the job as a whole.

• The water is flowing from the river (h = +3 m OD) to the wellpoint line (h = −7.5 m 
OD). If we imagine a standpipe piezometer with its tip at any point along the sub-
merged river bed, the water level in the standpipe will rise to the level of the water 
surface at +3 m OD. The river bed is the top equipotential (the source), and the 
wellpoint line is the bottom equipotential (the sink) (Figure 3.26a).
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Figure 3.26  Unconfined seepage flownet: (a) identify the source and the sink; identify the bottom boundary 
flowline; (b) draw horizontal lines at key elevations to assist in locating the phreatic surface; 
sketch in a trial phreatic surface and start to draw the flownet, modifying lines as required; 
(c) the finished flownet.



Groundwater flow and control 141

© 2010 Taylor & Francis Group, LLC

• Identify the bottom boundary flowline: this follows the impermeable boundary 
between the sand and the boulder clay, coming in from the right-hand side of the 
diagram towards the wellpoint line (Figure 3.26a).

• When starting to sketch an unconfined flownet, you will find it useful to draw hori-
zontal lines at elevations corresponding to the total head along key equipotentials 
(Figure 3.26b). The intersection point between the top flowline and each horizontal 
line must also be the intersection point between the top flowline and the equipoten-
tial in question (Figures 3.26 b and c).

• The finished flownet, Figure 3.26c, was again arrived at gradually. The initial guess for 
the shape of the phreatic surface was developed as the first trial flownet was sketched 
in, starting from the top equipotential. The phreatic surface in an embankment dam 
such as this is usually approximately parabolic in shape, with the convex side upward 
as shown in Figure 3.22c. With experience, you can use this knowledge to make your 
initial guess at the top flowline quite close to the correct position. It does not really mat-
ter too much, however, what shape you start with: you will soon discover that you have 
to alter the shape of the top flowline, to fulfil the requirements of curvilinear square 
flownet elements, equipotentials crossing flowlines at right angles, and the condition of 
zero gauge pore water pressure on the phreatic surface. The important point is to start 
off with something, which then forms a basis for iteration towards the correct solution.

As with the previous examples (Examples 3.5 and 3.6), errors were gradually eliminated 
by relocating flowlines and equipotentials that did not cross at right angles or that resulted 
in ‘non-square’ flow elements or non-zero pore water pressures on the phreatic surface.

The purpose of the dewatering system shown in Figure 3.26 is threefold. It prevents 
instability of the slope by reducing pore water pressures and increasing effective stresses; it 
prevents erosion of the bund as a result of the emergence of the top flowline on the down-
stream face; and it also prevents the excavation from flooding.

The phreatic surface is a flow boundary in coarse-grained soils, which become unsaturated 
at gauge pore water pressures only slightly less than zero. In a fine-grained soil, in which capil-
lary effects are not negligible, the surface of zero gauge pore water pressure will not in general 
represent a boundary to the flownet. In a fine-grained soil, an appropriate procedure might 
be to draw the flownet assuming that the upper surface of the soil represents the top flowline, 
and then check that the resulting pore water suctions do not exceed the air entry value.

3.13 DISTANCE OF INFLUENCE

In practice, the boundaries to most flownets are unlikely to be as well-defined as those 
in Figures 3.21 and 3.22. While underlying more permeable or impermeable strata do 
occur, flooded soil surfaces defining the source equipotential or recharge boundary are less 
 common (although that in Figure 3.21 was real). A more realistic situation for a reasonably 
uniform soil is that the effective recharge boundaries will be located at some uncertain dis-
tance and depth from the excavation, beyond which the in situ pore water pressures are not 
affected—the distance of influence.

The distance of influence will depend on the permeability of the soil and the drawdown 
at the excavation, and must be estimated before the flownet can be drawn. To estimate the 
lateral distance of influence, Sichardt’s empirical formula

 0L C h k= ∆  (3.33)

may be used, where L0 is the distance of influence in metres (measured from the edge of the 
excavation), k is the soil permeability in m/s, h is the drawdown in metres and C is a fac-
tor of between 1500 and 2000 (m/s)−1/2 for plane flow: the units of L0, k and h must be as 
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stated. Although the fact that the constant C in Equation 3.33 is not dimensionless is intel-
lectually unsatisfactory, the approach generally seems to work reasonably well in practice. 
Unfortunately, although it is addressed by Powrie and Roberts (1995), there is generally 
little or no guidance in the literature as to the depth of influence in cases where no natural 
boundary is present. This topic is discussed in more detail by White (1981).

3.14 SOILS WITH ANISOTROPIC PERMEABILITY

If the soil is anisotropic with kx not equal to kz, the differential equation governing plane 
flow is (from Equation 3.28, ignoring the y-direction)

 / / 02 2 2 2k h x k h zx z∂ ∂ + ∂ ∂ =  (3.34)

This equation in the (x, z) plane can be reduced to the simpler Laplace equation in a dis-
torted (x′, z) plane by means of the transformation x x′ = α  where α = √(kz/kx).

 /x x= ′ α

so

 /x x∂ = ∂ ′ α

Therefore,

 / / and / /2 2 2 2 2h x h x h x h x∂ ∂ = α ∂ ∂ ′ ∂ ∂ = α ∂ ∂ ′  (3.35)

If α2 = kz/kx, substitution of Equation 3.35 into Equation 3.34 gives

 ∂ ∂ ′ + ∂ ∂ =( / )( / ) / 02 2 2 2k k k h x k h zx z x z

or

 / / 02 2 2 2h x h z∂ ∂ ′ + ∂ ∂ =  (3.36)

This enables the flownet sketching technique to be used for soils having kx not equal to kz, pro-
vided that the true cross-section is first redrawn in the distorted coordinate system (x′, z), where 
x′ = αx√(kz/kx). Usually, the permeability in the horizontal (x) direction is greater than that in the 
vertical (z) direction. Multiplication of horizontal distances by √(kz/kx) then, leads to the com-
pression of the horizontal scale. The use of this transformation is illustrated in Example 3.10.

Example 3.10: Flownet in an anisotropic soil

A sheet-piled excavation, which is square on plan and whose actual dimensions are shown 
in Figure 3.27a, is to be made in a laminated soil with horizontal permeability kx = 5 × 
10−5 m/s and vertical permeability kz = 5 × 10−6 m/s. Estimate the capacity (per metre 
perimeter) of the dewatering system required to prevent the excavation from flooding. 
Assume that the distance of influence of the dewatered excavation is 100 m horizontally 
and 50 m vertically, measured from the side and the floor of the excavation respectively.

SOluTIOn

The transformation factor, α = √(kz/kx) = √(5 × 10−6 ÷ 5 × 10−5) = √ (1/10) = 0.316. 
The transformed cross-section, with the horizontal dimensions reduced following 
 multiplication by the transformation factor 0.316, is shown in Figure 3.27b. On the 
transformed cross-section, the scales for both the true horizontal distances x and the 
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reduced horizontal distances x′, are shown. A true the horizontal distance of 12.65 m 
reduces to a transformed horizontal distance of 0.316 × 12.65 m = 4 m, as indicated by 
the horizontal scale.

The flownet was sketched on the transformed cross-section in the usual way, with flowlines 
crossing equipotentials at right angles and ‘square’ flow elements, and fulfilling the phreatic 
surface condition of zero gauge pore water pressure on the top flowline between A and B.

It would, in reality, be necessary to check that the aquifer really was deep enough to 
act as a recharge boundary at a depth of 50 m below the floor of the excavation. If the 
aquifer is deep but of decreasing permeability with depth, the assumption of an imperme-
able lower boundary to the flownet might be more appropriate. On the other hand, an 
underlying more permeable stratum would almost certainly act as a source of recharge. 
The sensitivity of the calculated flow rate to alternative assumptions concerning the depth 
and nature of the bottom boundary to a flownet is discussed with reference to an excava-
tion in chalk by Powrie and Roberts (1995).
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Figure 3.27 Flownet in a soil with kx not equal to kz: (a) actual geometry; (b) flownet on transformed section.
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The flow rate is calculated from the transformed section in the usual way, using the effec-
tive permeability of the transformed section kt. A general expression for kt in terms of kx and 
kz may be deduced by equating the flow rate through a soil element in transformed space to 
the flow rate through the corresponding element in real space (Figure 3.28).

Applying Darcy’s Law to each element,

 / /tq xk h z xk h zz= α =

so,

 /tk kz= α

Recalling that α = √(kz/kx)

 = ⋅tk k kz z  (3.37)

Example 3.11:  Calculating the flow rate from the transformed-section 
flownet shown in Figure 3.27

For the excavation shown in Figure 3.27, the total flow rate is given by

( / ) perimetert F Hq k H N N= ×

with

= × × × = ×− − −(5 10 5 10 )m/s 1.58 10 m/st
5 6 5k

H = 10m

4FN =

7.5HN =

perimeter = 4 × 80 m = 320 m, giving

(1.58 10 )(m/s) 10(m) (4/7.5) 320m 0.027 m /s5 3q = × × × × =−

or

97 m /hour3q ≈

z

q

x

kz (vertical
flow)

Δh

z

q

kt

Δh

αx
(a) (b)

Figure 3.28  Calculation of equivalent permeability of a transformed cross-section: (a) true geometry and 
(b) transformed geometry.
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For square, symmetrical excavations it is usual to calculate the flowrate in m3/s per metre 
for one-half of the cross-section (as in Figure 3.27), which is then multiplied by the length 
of the perimeter to determine the overall flow rate, as in Example 3.11. In doing this, the 
additional flow to the corners has been neglected. Finite element analyses by Powrie and 
Preene (1992) suggest that this is reasonable if the distance of influence L0 (measured from 
the edge of the excavation) is small in comparison with of the excavation a(L0/a < 0.3). In 
the present case, L0/a = 100/80 = 1.25, so that the neglect of corner effects will lead to an 
underestimation of the required flow rate.

3.15 ZONES OF DIFFERENT PERMEABILITY

When flowlines pass from a zone of permeability k1 into a zone of different permeability k2, 
they are deflected through an angle (β1 − β2) as shown in Figure 3.29.

Applying Darcy’s Law in zone 1

 (cos ) ( )/sin1 1 1 1 1 1 1 2 1q A k i k h h= = β − β  (3.38)

and in zone 2

 = = β − β(cos ) ( )/sin2 2 2 2 2 2 1 2 2q A k i k h h  (3.39)

Since flowlines cannot cross other flowlines, the flow rate through any flowtube remains 
constant and q1 = q2. Hence,

 β = β/tan /tan1 1 2 2k k q

or

 tan /tan /1 2 1 2k kβ β =  (3.40)

q1

q2

h2

β1

β1

β2
β2

h1
Equipotentials

l

Flowlines

Deflection
β1 – β2

Zone 2
k2

Zone 1
k1

Figure 3.29 Deflection of flowlines on passing between zones of different permeability.
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The direction of the deflection of the flowlines must be such that the equipotentials are 
closer together in the zone of lower permeability, because a higher hydraulic gradient is 
required to drive the same flowrate.

A comprehensive guide to flownet sketching for complex cross-sections is given by 
Cedergren (1989).

3.16 BOUNDARY CONDITIONS FOR FLOW INTO DRAINS

In the flownet shown in Figure 3.26, one of the purposes of the dewatering system was to 
ensure that the top flowline remained below the surface of the slope at all points. In prac-
tice, a dewatering system of this type would comprise a line of small wells known as well 
points, installed at a spacing of 1–3 m. This spacing is sufficiently close for the recovery of 
the groundwater level between the wellpoints to be small, so that the flownet analysis shown 
in Figure 3.26, in which the line of discrete wellpoints is treated as if it were a continuous 
pumped slot, is reasonable.

The earth bund shown in Figure 3.26 is essentially a dam, preventing the water in the 
Conwy estuary from flooding the excavation. In this case, the dam was needed for a period 
of only 18 months or so, and the requirement to operate the dewatering system continuously 
during this time was not particularly onerous. Similar embankments are used worldwide as 
permanent dams; in such circumstances, a dewatering system which must be continuously 
actively pumped is undesirable.

There are about 2000 dams in the UK alone, many of which are embankment or earth 
dams. Seepage patterns in earth dams are usually controlled by means of a horizontal toe 
drain, as shown in Figure 3.30. A passive toe drain like this could not have been installed at 
Conwy, partly because the slope was formed by the excavation of material rather than being 
built up, and partly because the excavation was below sea level, so that pumping would still 
have been required to remove the water from the drain.

Figure 3.30 has been drawn on the assumption that the horizontal toe drain remains 
flooded, so that it acts as a reservoir or an equipotential. This is because the gravel drain is 
more permeable by several orders of magnitude than the earth dam, enabling water to flow 
through it without any significant loss of head.

Vertical drains will not in general be flooded (unless they are blocked), and so must be 
treated somewhat differently. Figure 3.31 shows the flow pattern from a reservoir through 
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(�ooded)

Earth dam

Phreatic surface (u = 0)
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Figure 3.30 Seepage control in an earth dam by means of a horizontal toe drain.
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an earth embankment, supported by a retaining wall with a vertical drain behind it. The 
gravel can be viewed as a medium of effectively infinite permeability in comparison with the 
material from which the embankment is constructed. On entering the drain, the flowlines 
will, therefore, experience a deflection consistent with Equation 3.40.

However, the actual angle of deflection is indeterminate, because β2 → 90° (so that tan 
β2 → ∞). Furthermore, the flowlines in the drain will effectively merge: if the permeability is 
infinite, the width of the flowtubes must be infinitesimal, so that the flow rate through each 
flowtube is the same as it was in the soil. Finally, the phreatic surface condition must be 
fulfilled at the interface between the soil and the drain, where the gauge pore water pressure, 
u = 0. The flownet is sketched by trial and error, in the usual way.

Figure 3.31 has been drawn assuming that water will emerge from the soil pores at atmo-
spheric pressure. This is reasonable for coarse soils. However, there is some evidence (e.g. 
Hall, 1955) that in fine soils, where the pore size is small, a pressure difference between the 
pore water and atmospheric air will be required for water to drain out of the soil. This is 
known as the water exit effect. It is analogous to the air entry effect illustrated in Figure 
3.3, but its magnitude is smaller: the water exit pressure is perhaps 15–50% of the air entry 
pressure for the same soil (Preene, 1992).
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Figure 3.31  Flow into an unsaturated vertical drain: (a) actual dimensions (not to scale) and (b) flownet on 
transformed-section. (Image courtesy of Dr. R.H. Bassett.)
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3.17  APPLICATION OF WELL PUMPING FORMULAE 
TO CONSTRUCTION DEWATERING

Construction dewatering is the term applied to the process of lowering the groundwater 
level by means of a system of pumped wells, so that an excavation below the natural water 
table will remain dry and stable. The first stage in the design of a construction dewatering 
system is to estimate the flow rate that must be pumped to achieve the required drawdown. 
We have already seen how flownet sketching can be used to do this for plane flow problems 
in Figures 3.21, 3.22, 3.26 and 3.27.

In some circumstances, flow may be essentially radial rather than plane. If information 
on pore water pressures is not required, a rectangular dewatering system of plan dimen-
sions a × b may then be idealised as a large single equivalent well of radius re = (a + b)/π. 
The radius of the equivalent circular well re is chosen so that the perimeter of the equivalent 
well is 2(a + b), which is the same as that of the actual dewatering system. The standard 
well pumping formulae derived in Section 3.5 can then be used to estimate the pumping 
rate required to achieve the specified drawdown. At the edge of the excavation, the required 
drawdown in the soil corresponds to a head h = hw at the equivalent radius r = re. For a 
confined aquifer, substitution of these values into Equation 3.14 yields

 ( ) ( /2 )ln( / )w 0 eH h q Dk R r− = π

or

 2 ( )/ln( / )w 0 eq Dk H h R r= π =  (3.41)

For an unconfined aquifer, substitution of h = hw at r = re into Equation 3.18 gives

 ( ) ( / ) ln( / )2
w
2

0 eH h q k R r− = π

or

 ( )/ln( / )2
w
2

0 eq k H h R r= π −  (3.42)

The approximate mode of flow (i.e. radial or plane) to a construction dewatering system 
of dimensions a × b will depend on both the aspect ratio a/b and the relative distance of 
influence L0/a. Three possible idealisations are shown in Figure 3.32. L0 is measured from 
the edge of the excavation, rather than from the centre of the well as it was in Section 3.5.

For horizontal flow in a confined aquifer, Powrie and Preene (1992) suggested the follow-
ing guidelines on the basis of finite element analyses:

 1. For long excavations (a/b > 10) with close recharge boundaries (L0/a < 0.1), plane flow 
to the long sides dominates and end effects may be neglected.

 2. For rectangular excavations with 1 < a/b < 5 and close recharge boundaries (L0/a 
< 0.3), plane flow to the sides dominates and corner effects may be neglected.

 3. For rectangular excavations with 1 < a/b < 5 and more distant recharge boundaries 
(L0/a > 3), flow is essentially radial and flow rates may be estimated using Equation 3.41 
with the radius of the equivalent well, re = (a + b)/π and R0 = L0 + (a/2) ≈ L0.

For other geometries, Powrie and Preene (1992) present a chart which enables the flow rate to 
be estimated at a glance. This chart is reproduced here as Figure 3.33. It plots the dimensionless 
flow rate q/kD(H − hw) as a function of L0/a for various aspect ratios a/b. Figure 3.33 is based 
on horizontal flow to a fully penetrating equivalent well in a uniform confined aquifer.
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In geotechnical engineering, it is usually necessary to make gross simplifications to arrive at 
a conceptual model of a real situation which is amenable to analysis. The secret of success is 
not to ignore any factor that could destroy the applicability of the conceptual model adopted.

In groundwater flow problems, permeable strata and lenses which could act as close 
sources of recharge are likely to be very significant. Plane flownet sketching can be difficult 
if more than one stratum is present, unless the flow pattern of interest is contained within 
a single aquifer because the other soil layers present are effectively either impermeable or of 
infinite permeability. The calculated flow rate is sensitive to the soil permeability k, which 
can be difficult to estimate even to within a factor of 3 either way. In many cases, it is 
also necessary to estimate the distance of influence of the dewatering system L0 before the 
flownet can be sketched. If Sichardt’s formula (Equation 3.33) is used, the dependency of the 
calculation on the estimated permeability may be increased.

Flow rates calculated using the equivalent well approach are also heavily dependent on 
the soil permeability and the distance of influence. In addition, it is assumed that the aquifer 
is uniform and homogeneous, that all flow is horizontal, and that the equivalent well fully 
penetrates the aquifer. In short, the equivalent well approach probably involves a higher 
degree of idealisation than flownet sketching.

An alternative possibility is to use the principle of superposition to calculate the drawdown 
pattern produced by pumping at a certain flow rate from a number of wells, on the basis of 
the drawdown pattern produced by pumping at the same flow rate from a single test well. The 
advantage of this method is that there is no need to estimate the effective soil permeability, or 
indeed to worry too much about the ground conditions. However, it is only theoretically cor-
rect if the relationship between flow rate and drawdown remains linear. In practical terms, 
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Figure 3.32  Idealised flow patterns towards excavations treated as single equivalent wells: (a) flow to a long 
well, (b) radial flow to a rectangular well with a distant recharge boundary, and (c) plane and 
radial flow to a rectangular well with a close recharge boundary. (From Powrie, W. and Preene, 
M., Géotechnique, 42,4, 635–9, 1992. With permission.)
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this means that the wells must fully penetrate a confined aquifer of uniform thickness. The 
distance of influence must be independent of drawdown (which according to Equation 3.33 
it is not), and the drawdown must never be so large that the aquifer becomes unconfined.

The method of superposition seems to work quite well in practice, provided that these 
conditions are satisfied approximately. The tendency of the distance of influence to increase 
with drawdown means that the method should err on the conservative side, in that flow 
rates will be overestimated at higher drawdowns.

3.18 NUMERICAL METHODS

The differential equation governing groundwater flow (Equation 3.28) may be solved 
numerically for given boundary conditions using finite element analysis or a finite difference 
technique. In some cases, the simplifying assumptions that enable problems to be solved by 
techniques such as flownet sketching and equivalent well analysis cannot be justified, and a 
numerical approach is the only analytical alternative.

A finite difference solution involves the division of the flow field into a network of nodes. 
The variation in total head is assumed to be linear between adjacent nodes. The flow rate into 
a node is then calculated in terms of the head difference between itself and the surrounding 
nodes, using Equation 3.28 in finite difference form. In principle, values of total head at each 
node which satisfy Equation 3.28 could be calculated iteratively by hand; it is more usual to 
assemble the nodal equations into matrix form and solve them using a computer.

In finite element analysis, the region of flow is divided into discrete (finite) elements with  common 
nodes. An approximate solution to the differential equation governing the flow of groundwater 
is obtained numerically for the specified geometry and boundary conditions. The solution in this 
case is defined over the entire flow field, in contrast to the finite difference method in which only 
nodal values are found. The variation in head over a finite element need not be linear.

A further advantage of finite element analysis over finite difference methods for ground-
water flow is their ability to calculate the strains and deformations associated with the 
changes in effective stress which result from lowering the groundwater level. This is par-
ticularly useful in modelling the effects of dewatering systems in fine-grained soils, where 
compression or swelling resulting from changes in effective stress is likely to be important.

Numerical methods can be useful in the analysis of dewatering systems in all soils, partic-
ularly where the ground conditions are complex or where the presence of a singularity such 
as a lens of higher permeability is suspected. Examples of the application of finite element 
analysis to such problems are given by Powrie et al. (1989) and Bevan et al. (2010)—the 
latter in connection with the HS1 Channel Tunnel Rail Link Thames Tunnel. Interestingly, 
both suggest that one stratum may be considered to be perfectly permeable (in effect, to act 
as an equipotential) with respect to another if its permeability is more than about 2.5 orders 
of magnitude greater (i.e. a factor of more than about 400).

3.19 GROUNDWATER CONTROL

It has already been mentioned that groundwater lowering is usually carried out by pumping 
from an array of wells known as a construction dewatering system. The number and type 
of wells, and the pumping devices used, will depend primarily on the drawdown required 
and the soil type and permeability.

In soils with very high permeability (k > 5 × 10−3 m/s or so), construction dewatering may 
not be feasible because the pumped flow rate required to achieve anything more than a mod-
est drawdown will probably be excessive. In these circumstances, a physical cut-off formed 
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by a sheet pile or a slurry trench wall, grout injection or ground freezing might be required, 
either on its own or in combination with a pumped well system to pick up residual seepage 
or prevent piping. In soils of low permeability (k less than about 10−7 m/s), groundwater flow 
may be induced by the application of an electric potential rather than a hydraulic potential, 
using a technique known as electro-osmosis (Section 3.19.5).

Indicative limits (in terms of soil permeability and drawdown) for the successful applica-
tion of groundwater control techniques involving pumping are given in Figure 3.34.

3.19.1 Wellpoint system

Wellpoint systems represent perhaps the most common method of groundwater control 
using pumped wells. Wellpoints are essentially small wells, with wellscreens2 of approxi-
mately 50 mm diameter and up to 1 m in length connected by a riser pipe to a common 
header main from which water is removed by means of a vacuum pump (Figure 3.35).
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In wellpoints, the vacuum is used to raise the water from the bottom of the well. It is not 
actually applied to the soil: water drains from the soil into the well mainly by gravity. Owing 
to the limitations of suction lift, the maximum drawdown achievable by a wellpoint system is 
approximately 6 m. If a deeper drawdown is required, it may be possible to use a multistage 
wellpoint system. The first stage of wellpoints enables excavation to proceed to a certain 
depth, from which the second stage is installed. The feasibility of this procedure depends 
mainly on the available space within the excavation and on programming constraints.

Wellpoints are comparatively inexpensive, and are usually installed at a spacing of 1 m 
to 3 m. Because generally wellpoints are not normally used in soil of permeability less than 
about 10−5 m/s and drawdowns are generally small, well losses (i.e. the difference between 
the water levels in the well and in the ground immediately around it) are not usually sig-
nificant. The close spacing of the wellpoints means that cone of depression effects (i.e. the 
recovery of groundwater levels in between extraction points; see Section 3.9) along the line 
of the wellpoints do not normally need to be considered.

3.19.2 Deep wells

For drawdowns in excess of 6 m in soils where the water will drain into the wells under 
gravity alone, and where a multistage wellpoint system is not feasible, a system of deep wells 
is often used (Figure 3.36).

Deep wells are of much larger diameter than wellpoints—200 mm diameter liners and 
wellscreens inside 350 mm diameter bores are quite normal—and are, therefore, much more 
expensive to install. Each well is pumped using an individual submersible electric pump, 
lowered to within perhaps 2 m of the bottom of the well. Deep wells are spaced wider 
than wellpoints: spacings of 15 m to 20 m are not uncommon. Both well losses and cone 
of depression effects are likely to be significant, so that the groundwater level between the 
wells will probably be very much higher than the water levels inside the well casings. For 
this reason, deep wells must generally be installed to a depth considerably in excess of the 
required drawdown: a well depth of 20 m for a drawdown of 10 m would not be unusual.
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Figure 3.36 Cross-section through a typical deep well.
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As the pore size of the soil is reduced, capillary (water exit) effects become more  significant, 
and drainage of pore water under gravity alone becomes very slow or even non-existent. In 
soils where the pore size is small—which in practice means soils of permeability less than 
about 10−5 m/s—it may be necessary to apply a vacuum at the interface between the soil and 
the well in order to promote drainage. This can be achieved with a deep well system by seal-
ing the top of the well and pumping all the air from the well using a second pump in order 
to create a vacuum. This is known as a deep well system with vacuum. Usually, all of the 
wells in the system would be connected to one or two vacuum pumps. Each well must still 
be provided with an individual submersible pump in order to remove the water.

3.19.3 Ejectors

If the soil permeability is low enough to warrant the application of vacuum, the flow rates 
into each well are likely to be very small. Since many types of submersible electric pump 
rely on a reasonable flow of water to cool the bearings and to support the impeller shaft, 
the practical operation of deep well systems with vacuum can be difficult. For groundwater 
and pore pressure control in low-permeability soils, an ejector system may be preferable. An 
ejector (also known as an eductor) is a nozzle and venturi device that acts as a small water-
driven jet pump (Figure 3.37).

Water is pumped at high pressure through a supply pipe to the nozzle. The supply stream 
emerges from the nozzle with a high velocity and an absolute static pressure close to zero (i.e. 
a gauge pressure of nearly −100 kPa). Groundwater is drawn from the well and entrained 
into the supply stream, and carried up out of the well through a return riser. If the water 
level in the well is drawn down to the intake of the ejector, it pumps air as well as water to 
create a vacuum inside the well, provided that the well is sealed.

Ejector wells are of smaller diameter than deep wells pumped by electric submersible pumps, 
and are therefore cheaper to install. Cone of depression effects and well losses generally increase 
with decreasing soil permeability, so that ejector wells must usually be deep in comparison with 
the drawdown required. Spacings of 5–15 m are typical. Each well is connected to a supply main 
and a return main, with one pumping station for perhaps up to 60 or so individual ejector wells.

3.19.4 Well design

Typical construction details for wellpoints, deep wells and wells pumped using ejectors are 
shown schematically in Figures 3.35, 3.36 and 3.37 respectively. The granular material used 
in the filter between the wellscreen and the natural soil must be selected so that it neither 
impedes the flow of water nor allows fine particles to be drawn into the well from the sur-
rounding ground. Similarly, the slots or holes in the wellscreen must be large enough not to 
impede flow, but small enough to retain the material of the filter pack. Design rules relating 
to the particle size distribution curves for the natural soil and the filter were given in Section 
1.9: these must be used to ensure that both the filter and the wellscreen perform satisfactorily.

Further details of construction dewatering systems in theory and in practice are given by 
Powers (1992), Roberts and Preene (1994), Preene et al. (2000) and Cashman and Preene (2013). 
Case studies are described by Powrie and Roberts, 1990 (Conwy, ejectors); Powrie and Roberts, 
1995 (Winchester, deep wells with recharge); and Bevan et al., 2010 (Dartford, deep wells).

3.19.5 Electro-osmosis

Groundwater will flow in response to an electrical (as well as a hydraulic) potential differ-
ence: this process is known as electro-osmosis. In the application of electro-osmosis in soils, 
metal rods or electrodes are inserted into the ground and an electrical potential (voltage) 
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difference is maintained between them. The positive electrode is termed the anode, and the 
negative electrode is termed the cathode. In most soils, water flows towards the cathode 
(i.e. from positive to negative, in the direction of conventional electric current). A typical 
arrangement is shown schematically in Figure 3.38.

Applications of electro-osmosis include the control of pore water pressures to maintain 
the stability of excavations, consolidation of soil around piles and foundations to improve 
their load-carrying capacity, and inducing an increase in water content around a pile to 
facilitate driving or extraction.

Excess water is removed from the cathode well by pumping. If required, a greater  average 
degree of consolidation can be obtained by reversing the polarity of the electrodes after 
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Figure 3.37  Details of well design: (a) schematic cross-section through an ejector; (b) cross-section through 
typical single-pipe ejector body. In some installations, the well casing and slotted wellscreen 
may be  omitted. The surface of zero gauge pore water pressure may be below the bottom of 
the well, with flow can still able to take place through soil that remains saturated even though 
the pore water pressures are negative.
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initial equilibrium has been achieved. Although there will be an increase in water content 
near the new cathode, the reduction in water content at the new anode will more than 
compensate for this. There is some evidence (Jaecklin, 1968) that in clays, the increase in 
strength and stiffness following a certain reduction in water content by electro-osmosis 
may be greater than that which would result from the same reduction in water content by 
another method. This could be due to physical and chemical changes induced in the soil, 
aided by the release of positively charged ions such as Na+, K+ and Ca2+ (termed cations, 
because they are attracted to the cathode), as the anode corrodes. This aspect of the process 
is sometimes known as electrochemical hardening or electrogrouting (Hausmann, 1990).

Electro-osmosis works because a typical soil particle in water has a negatively charged 
surface, which attracts positively charged ions (cations). The concentration of ions in the 
pore fluid decreases rapidly with distance from the particle surface. The positive ions imme-
diately adjacent to the particle surface are quite firmly attached. Immediately beyond the 
surface layer, the ion concentration is still reasonably high, but the ions are relatively mobile. 
The system of the negatively charged particle surface and the high concentration of posi-
tive ions in the pore water immediately adjacent to it is known as the diffuse double layer 
(Figure 3.39a). Beyond the diffuse double layer, the ion concentration falls to that of the 
pore water (Figure 3.39b).

Water molecules are bipolar, with a positive charge at one end and a negative charge at the 
other. The positive ions in the diffuse layer around a clay particle are surrounded by bipolar 
water molecules as shown in Figure 3.39c. When an electrical potential difference is applied 
to the soil, the positive ions move towards the cathode, carrying the water molecules with 
them. Ion (and hence water) movement occurs primarily within the diffuse layer surround-
ing the soil particle.

The rate of movement of pore water depends on the voltage gradient applied (in volts per 
metre, V/m) and the electro-osmotic coefficient of permeability ke (which has units of m/s per 
V/m, or m2/Vs). In turn, ke depends on the porosity of the soil, and viscosity, electrical permit-
tivity (also known as the dielectric constant) and the electro-kinetic potential (also known as 
the zeta potential, ζ) of the pore water. The zeta potential depends on the concentration of 
electrolytes, which does not vary significantly for most natural silicaceous soils (an electro-
lyte is a solution that conducts electricity—in this case, the ions dissolved in the pore water). 
Thus, for many natural soils (montmorillonite being a notable exception), ke is of the order of 
0.5 × 10−8 m/s per V/m (Mitchell and Soga, 2005). If the concentration of electrolytes in the 
pore water is high, electro-osmosis will not work because the zeta potential will be too small. 
In extreme cases, for example in soils composed of calcium carbonates and some industrial 
wastes, the direction of flow will be reversed so that water flows from the cathode to the anode.

According to the generally accepted Helmholtz–Smoluchowski theory of electro-osmosis 
(e.g. Mitchell and Soga, 2005), the electro-osmotic permeability ke does not depend on 
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Figure 3.38 Schematic arrangement of electro-osmosis.
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the size of the pore. This is in contrast to the hydraulic permeability used in Darcy’s Law 
(Equation 3.2). The Helmholtz–Smoluchowski theory is based on a large-pore model, which 
neglects the intrusion of the cation layer into the pores. An alternative model, proposed by 
Schmid (Mitchell and Soga, 2005), which takes into account intrusion of the cation layer 
into the pore space, suggests that ke should be proportional to the square of the pore size. 
In practice, however, the Helmholtz model gives generally more realistic results for soils. 
This may be because most clays form aggregations of particles, so that electro-osmotic flow 
is governed by the larger pores between the aggregations, rather than by the smaller pores 
between the individual particles (Mitchell and Soga, 2005).

By analogy with Darcy’s Law, the electro-osmotic flow rate qe (m3/s) may be written as

 qe = Akeie (3.43)

where A(m2) is the gross cross-sectional area of flow, ke (m2/Vs) is the electro-osmotic per-
meability and ie is the electrical potential gradient −∂V/∂x (V/m). The flow rate per unit 
area v = q/A due to the combined effects of an electrical potential gradient and a hydraulic 
potential gradient is

 v = −[kh∂h/∂x] − [ke∂V/∂x] (3.44)

(assuming horizontal flow; kh (m/s) is the hydraulic permeability in the horizontal 
direction).
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Following the application of a voltage gradient ∂V/∂x, the pore water pressures will change 
until an equilibrium is reached, in which the pore water flow due to electro-osmosis is 
exactly balanced by a flow in the opposite direction due to the hydraulic gradient established 
thereby. When there is no net flow, v = 0 in Equation 3.44 and

 [kh∂h/∂x] = −[ke∂V/∂x]

or

 kh∂h = − ke∂V

which may be integrated to give

 khh = − keV + C

where C is a constant of integration. Assuming that V = 0 and h = 0 at the cathode, and 
writing (at constant elevation along a horizontal flowline) h = u/γw,

 u = −(ke/kh)γwV (3.45)

Equation 3.45 shows that the magnitude of the reduction in pore water pressure (and 
hence, if the total stress remains constant, the increase in effective stress) will increase with 
ke/kh. As ke is approximately constant across a range of soils, it follows that the largest 
increases in effective stress can be achieved in soils where the hydraulic permeability kh is 
relatively small, that is, silts and clays.

The rate of consolidation during electro-osmosis may be investigated by using 
Equation 3.44 instead of Darcy’s Law in the derivation of the one-dimensional consolida-
tion equation (Section 4.8: you will need to read Chapter 4 before continuing further with 
Section 3.19.5). A solution for one-dimensional flow (Johnston and Butterfield, 1977) is 
shown in Figure 3.40. A solution for radial flow is given by Esrig (1968). These solutions 
are similar in form to, and can be used in the same way as, the solutions to the conventional 
consolidation problems presented in Chapter 4.

When expressed as a percentage of the eventual settlement or volume change, the rate 
of proportional consolidation depends only on the consolidation coefficient governing 
 vertical compression due to horizontal flow, chv = khE 0́/γw: it is independent of the electro-
osmotic permeability ke. In many applications, however, it is the absolute change in pore 
water  pressure or the absolute settlement that is important. If electro-osmosis increases 
the overall amount of consolidation by a certain factor, the absolute rate of settlement or 
pore pressure change also increases by the same factor, even though the rate of change 
expressed as a proportion of that which ultimately results is unaltered. This could be ben-
eficial in pore pressure reduction or pre-loading schemes in low-permeability soils, where 
 consolidation is slow.

Electro-osmosis is only economically viable in soils of low permeability. This is partly 
because, as indicated by Equation 3.45, the change in pore water pressure achievable 
becomes insignificant when kh >> ke. Also, the electrical energy used is proportional to the 
volume of water removed, which in high-permeability soils is very large. Typical voltage 
differences used in electro-osmosis are generally in the range 50–100 V, with potential gra-
dients usually less than 50 V/m.

Further details of the mechanisms and effects of electro-osmosis are given by Mitchell and 
Soga (2005) and Hausmann (1990).
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3.19.6 Ground freezing

In principle, ground freezing can be used to stabilise almost any excavation regardless of 
depth and soil permeability, provided that the initial groundwater flow velocities are small. 
For large, comparatively shallow excavations, however, the technique is generally more 
expensive than conventional dewatering and is therefore not commonly used. Typical appli-
cations include the construction of deep shafts of small diameter—Powers (1992) quotes 
3–5 m diameter and up to 800 m deep—in which a freezewall (i.e. a ‘wall’ of frozen ground) 
temporarily supports the sides of the excavation in addition to excluding groundwater.

The freezewall is created by pumping a refrigerant through freezepipes installed in the 
ground, typically at a spacing of 1 m or so. Common refrigerants include calcium chlo-
ride solution (known as brine), which is recirculated through a cooler; and liquid nitrogen, 
which is disposed of by venting it to the atmosphere after use. As the temperature of liquid 
nitrogen (−196°C) is much lower than that of brine (−55°C), freezing occurs much more 
rapidly (for the same well spacing) with liquid nitrogen as a refrigerant. The liquid nitrogen 
method is more expensive to operate, even if the liquid nitrogen is passed through more than 
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Figure 3.40  (a) Isochrones of pore water pressure. (Data from Johnston, I.W. and Butterfield, R., Australian 
Geomech. J., 21–32, 1977. With permission.) (b) Average degree of consolidation U versus 
time  factor T for one-dimensional electro-osmotic consolidation with lateral flow. (Data from 
Hausmann, M.R., Engineering Principles of Ground Modification, New York, McGraw-Hill, 1990. 
With permission.) L is the distance between the anode and the cathode. It is assumed that 
excess water is removed from the cathode without changing the pore water pressure there. 
The final reduction in pore water pressure at the anode is (ke/kh)γwV (Equation 3.45), where V is 
the applied voltage. chv = kh E'0/γw (Section 4.7.3).



Groundwater flow and control 159

© 2010 Taylor & Francis Group, LLC

one freezepipe before being vented to the atmosphere, but it can be economically viable for 
short-term projects or in an emergency.

Figure 3.41a illustrates schematically the development of a freezewall as the pore water in 
the ground around each freezepipe becomes frozen.

Groundwater flow velocities in excess of about 1 m/day (10−5 m/s) can make ground freez-
ing impracticable because of the increased volume of groundwater that must be chilled and 
the additional cooling capacity this requires (Powers, 1992). Natural groundwater veloci-
ties are generally smaller than 1 m/day, but in many circumstances the groundwater regime 
is altered by the presence of the excavation (e.g. Figure 3.21). Also, dewatering wells may 
be needed to maintain the stability of the base of the excavation, leading to locally high 
groundwater velocities. In these cases, the additional load on the refrigeration plant must be 
taken into account at the planning stage.

The time taken to form a freezewall depends on the soil type, its water content, tempera-
ture of the coolant and spacing of the freezepipe as indicated in Figure 3.41b.

Isotherms at t = t2
Isotherms at t = t1

Freeze
pipes

Isotherms indicate extent of
frozen ground around each
freezepipe at time t1 etc.
(t1 < t2 < t3)

Isotherms at t = t3
overlalp, and continuous
freezewall is formed

(a)

Water content =
30% by vol.

40

30
T = –15ºC

–20
–25

–25

–15
–20

20

10

Re
qu

ire
d 

fre
ez

in
g 

tim
e (

da
ys

)

0

40

30

20

10

Re
qu

ire
d 

fre
ez

in
g 

tim
e (

da
ys

)

0

50%

Water content
by volume

40%

30%

30%
20%

50%

0.6 0.8 1.0
Freezepipe spacing (m)

1.2 1.4 0.6 0.8 1.0
Freezepipe spacing (m)

Sand, �ne-medium
Clay

1.2 1.4

Brine temperature =
–20°C

(b)

(ii)(i)

Figure 3.41  (a) Development of freezewall around freezepipes (plan view), (b) required freezing time as 
a function of freezepipe spacing, (i) water content = 30% by volume, −25°C < T < −15°C 
(ii) T = −20°C, various water contents by volume. (Data from Hausmann, M.R., Engineering 
Principles of Ground Modification, New York, McGraw-Hill, 1990. With permission; Jessberger, 
H.L., in Ground Engineers’ Reference Book (ed. F.G. Bell), Chapter 31, London, Butterworths, 
1987. With permission; Stoss, K., The application of ground freezing for securing and sealing of pits, 
Vortrag bei der Gesellschaft für Technik und Wirtschaft, Dortmund, 1976.)
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3.19.7 Grouting

A physical barrier to groundwater flow may be created by injecting a fluidised material such 
as a cement paste suspension or a chemical solution known as a grout into the soil. The 
grout fills the pores and then sets or hardens, bonding the soil particles together and block-
ing the flow of groundwater. Cement-based grouts are adequate for coarse materials such 
as gravels and fissured rock, but will not penetrate a material finer than a very coarse sand 
because the particle size is too large in relation to the soil pores and the viscocity of the fluid 
grout is too high. However, for groundwater control purposes this does not usually matter 
too much, because a reasonably effective water barrier can be formed as long as the coarser 
materials are penetrated. Further information is given by Bell (2012).

3.20 UNSATURATED SOILS

3.20.1 Unsaturated soil as a three-phase material

We saw in Section 1.5 that soils may in principle generally contain up to three phases: solid 
(soil particles), liquid (water) and gas (air). A soil containing no water (that is, whose voids 
are filled with air) is said to be dry; while a soil containing no air (that is, whose voids are 
filled with water) is said to be saturated. A dry or saturated soil contains only two phases 
(solid and gas, or solid and liquid) and is much easier to analyse than an unsaturated soil, 
which contains all three (solid, liquid and gas).

However, there are some circumstances in which a full understanding of the relevant 
behaviour of a soil or a soil-like material can be gained only if its unsaturated nature is 
taken into account. Examples include assessment of the effects of climate and vegetation on 
the seasonal shrinkage and swelling of embankments made of clay; and calculation of gas 
and liquid flows in waste landfills. As the discipline of soil mechanics matures, practitioners 
are beginning to tackle problems such as these which even ten years ago would have been 
considered too difficult to address analytically in routine design.

The degree of saturation of a soil is described quantitatively by means of the saturation 
ratio, Sr, defined as the volume of water per unit volume of voids;

 Sr = Vw/Vv

(Equation 1.4). However, this simple parameter cannot capture any information about 
how the air voids are distributed, which may have a significant effect on the gas and liquid 
transport properties of the medium.

We saw in Section 3.2.3 how a soil can sustain a negative pore water pressure (relative 
to the ambient air) and yet remain saturated as a result of surface tension at the water-air 
interface. However, there comes a point at which the pressure difference can no longer be 
sustained and air will be drawn into the soil. The simple analysis given in Figure 3.3a gave 
a relative pore water suction at air entry, Ue, of

 Ue = 4Tcos α/d (3.1)

where T is the surface tension of the water-air interface (= 7 × 10−5 kN/m at 10°C), α is the 
contact angle between the meniscus and the solid particles and d is the pore diameter.

As shown in Section 3.2.3, the relative pore water suction at air entry decreases rapidly 
as the pore size increases. In reality, most soils will contain a variety of particle and pore 
sizes. As the pore suction is increased beyond the initial air entry value (that is, the pore pres-
sure becomes more negative) water will drain from the largest pores first, provided there is 
a through connection to the drainage boundary. As the suction is increased further, the 
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remaining water retreats into smaller and smaller voids and the water content reduces. It is 
possible to determine, for a given soil, a relationship between the water content and the rela-
tive suction, (ua − uw), where ua is the pore air pressure and uw is the pore water pressure. If 
the soil is in suction, uw is itself negative; hence, the relative suction, sometimes also called 
the matric suction (ua − uw), is positive. The relative or matric suction may be expressed as 
an equivalent head in metres, ψ = uw/γw assuming ua = 0: if uw is negative (i.e. a matric suc-
tion), then so is ψ.

3.20.2 Relationship between soil suction and water content

The relationship between water content and relative suction may be investigated using a 
pressure plate apparatus. This is essentially a sealed chamber with a porous plate at its 
base onto which a number of soil specimens are placed. The relative suction is increased by 
increasing the air pressure in the chamber (and hence in the soil pores) rather than by reduc-
ing the pore water pressure in the soil, and monitoring the resulting outflow of pore water. 
When the water content has reached equilibrium, a specimen is removed from the chamber 
and its water content determined by oven drying. The chamber is then re-sealed, the air 
pressure increased and the process repeated. In this way, a series of data points of relative 
suction and corresponding water content and hence a suction-water content characteristic 
curve (SWCC) are obtained. The SWCC for a given soil is not unique, but depends on the 
initial density or void ratio. The SWCC is also different in wetting and drying, owing to 
hysteretic effects which arise because voids will start to fill and empty at different relative 
suctions. A discussion of this, and of the pressure plate and other ways in which the SWCC 
may be determined, is given by Hillel (1998) and Warrick (2002).

The SWCC is traditionally plotted in terms of the volumetric water content, θ, rather than 
the gravimetric water content, w. The volumetric water content is defined as the ratio of the 
volume of water, Vw, to the total volume, Vt, and is, therefore, given by
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Recalling that the void ratio e, saturation ratio Sr, particle relative density Gs and the 
gravimetric water content w are related by Equation 1.10, e ⋅ Sr = w ⋅ Gs, the volumetric water 
content θ is related to the gravimetric water content w by

 θ = ⋅
+1

sw G
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 (3.47)

A degree of normalisation can be achieved by plotting a suction water content character-
istic curve in terms of the suction (on the y-axis) against the degree of saturation Sr, rather 
than the volumetric water content θ, on the x-axis (Zardava et al., 2009).

A suction-water content characteristic curve is essentially hyperbolic, between limits 
given by the suction at air entry Ue (at a water content θs, at which the soil is just still satu-
rated, Sr = 1) and the residual or irreducible water content, θr, which represents water that 
cannot be removed from the soil in this way and to which the SWCC becomes asymptotic 
at high values of suction. It has already been mentioned that different curves are obtained 
in wetting and drying because the voids behave differently on filling and draining, result-
ing in hysteresis. If the direction of wetting or drying is reversed, the suction water content 
relation follows a scanning curve between the main wetting and drying curves. The typical 
form of soil water characteristic curves in wetting and drying, including scanning curves, is 
indicated in Figure 3.42. Curves for a given soil may also depend on the density, as well as 
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on the water content at the start of wetting or drying and whether the process is a reversal 
or a continuation of the immediately preceding trend.

Various curve-fitting equations have been suggested for the suction-water content charac-
teristic curve, but the most popular is that proposed by van Genuchten (1980), which takes 
the form
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s r

n m
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 (3.48)

The parameter α is related to the inverse of the suction at air entry Ue; the parameter n (n ≥ 1) 
is related to the pore size distribution; and m is an indication of the asymmetry (skewness) of the 
curve. The parameter m is often taken to be equal to 1 – (1/n) (Mualem, 1976; van Genuchten, 
1980). Expressions such as Equation 3.48 are used, together with a relation between the unsat-
urated soil permeability and the water content, in the numerical solution of Richards’ Equation, 
which governs water flow in unsaturated soils (Section 3.20.4). Typical values of the parameters 
α and n for use in Equation 3.48 for different soils are given in Table 3.4.
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Figure 3.42  Typical form of soil suction water content characteristic curves. (From Hillel, D., Environmental 
Soil Physics. New York, Academic Press, 1998. With permission.)

Table 3.4  Values of the parameters θs, θr, α and n (together with the 
saturated hydraulic conductivity ks) from curve-fits to 
experimental data using Equation 3.48

Soil name θs θr α, (m−1) n ks (m/s)

Hygiene sandstone 0.250 0.153 0.79 10.4 1.25 × 10−5

Touchet silt loam 0.469 0.190 0.50 7.09 3.5 × 10−5

Guelph loam (drying) 0.520 0.218 1.15 2.03 3.7 × 10−6

Guelph loam 
(wetting)

0.434 0.218 2.00 2.76 –

Beit netofa clay 0.446 0.0 0.152 1.17 9.5 × 10−9

Source: van Genuchten, M. T., Soil Science Society of America Journal 44, 5, 892–98, 
1980.



Groundwater flow and control 163

© 2010 Taylor & Francis Group, LLC

3.20.3 Permeability of unsaturated soils

As an unsaturated soil has both air and water in the voids, in principle it has two 
permeabilities—one for water and another for air. However, for either phase to be able to 
flow through the soil, it must be continuous within the pore space. Thus, a near-saturated 
soil may still be impermeable to air (because the air present does not offer a continuous 
pathway). Likewise, a near-dry soil may still have water present but not be permeable (at 
least, not until water entering the soil raises the water content to the extent that the liquid 
phase becomes continuous, but that is a different matter).

As a soil de-saturates, water drains from the largest pores first. Because these are the most 
important for water flow, the water permeability will fall quite rapidly. Once the point is 
reached at which the water phase is no longer continuous, or the water remaining in the soil 
is in pores so small that it is effectively immobile, the water permeability (hydraulic conduc-
tivity) will be zero. The air permeability of a saturated soil is effectively zero; and will remain 
so as the soil de-saturates until the air phase has become continuous in the larger pores, 
when it rises dramatically. After that, de-saturation of the smaller pores will not make much 
difference to the air permeability. This behaviour is illustrated schematically in Figure 3.43; 
permeabilities are expressed as relative permeabilities krw and kra, where krw = kw/ks and kra = 
ka/kd; kw is the water permeability and ka the air permeability at the current water content 
θ, ks is the (maximum) water permeability when the soil is saturated (θ = θs), and kd is the 
(maximum) air permeability when the soil is at the residual water content, θr.

The water permeability (hydraulic conductivity) may be expressed as a function of the 
water content by means of Equation 3.49:
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where Θ is the dimensionless water content,
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and m is the same as in Equation 3.48. Substitution of Equation 3.48 into Equation 3.49 
then gives the water permeability as a function of the matric suction equivalent head ψ (van 
Genuchten, 1980).

krg (gas)

1.0

Relative
permeability kr

krw
(water)

0 residual
saturation
ratio at θr

0.2 0.4 0.6
Saturation ratio Sr

0.8 1.0

Figure 3.43  Variation of water and air permeability with degree of soil saturation. (From Scanlon, B. R., 
Nicot, J-P. and Massmann, J. W., in Soil Physics Companion, ed. A. W. Warrick, Chapter 8, Boca 
Raton, CRC Press, 2002. With permission.)
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3.20.4 Water flow in unsaturated soils

The first derivation of the differential equation governing the flow of water through an 
unsaturated soil is generally credited to Lorenzo A. Richards (1931), and it is often, there-
fore, referred to as Richards’ Equation. The two key differences between this derivation and 
Equations 3.28 and 3.29 for flow through a non-consolidating saturated soil (Section 3.7) 
are that:

 1. Although the soil skeleton is still assumed to be rigid, the flow rate of water into the 
soil element show in Figure 3.18 may be different from the flow rate out, as the volu-
metric water content θ (= Vw/Vt) may be changing

 2. The total head h is usually written as the sum of the elevation z and the matric suction 
equivalent head ψ, h = (ψ + z)

Thus the rate of increase in the volume of stored water, (∂θ/∂t) ⋅ Vt, is equal to the differ-
ence between the flow rate in and the flow rate out and Equation 3.25 becomes
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Applying Darcy’s Law as v = k ⋅ i in each of the x, y and z directions and writing the total 
head h as the sum of the elevation z and the matric suction equivalent head ψ so that ix = 
−∂(ψ + z)/∂x and so on, we have
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where the θ in brackets after each permeability k indicates that the permeability is now a 
function of the water content θ, and the subscripts x, y and z remind us that in principle 
the permeability might vary with direction as well as with θ. Noting that ∂z/∂x = ∂z/∂y = 0 
while ∂z/∂z = 1, we have
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Equation 3.51 could be simplified further if the soil were uniform and isotropic; how-
ever, this is unlikely to be the case because of the dependence of the permeability on water 
content, which will generally vary with time and position. This makes solving Richard’s 
(Equation 3.51) such a challenge, necessitating the use of expressions relating the unsatu-
rated soil permeability to the water content and thence to the suction using (for  example) 
Equations 3.49 and 3.48 to do so numerically.
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KEY POINTS

• Water in the ground may be stationary, in which case the pore water pressures will be 
hydrostatic. Otherwise, it will flow through the soil pores in response to a hydraulic 
gradient which may be defined as the (negative of the) rate of change of total head with 
distance, in the direction of flow.

• The ease with which water can flow through a soil is quantified by the soil permeabil-
ity, k. The permeability can be measured in the laboratory or in the field. Laboratory 
tests involve disturbance to the soil structure and void ratio, and cannot take account 
of large-scale dishomogeneities such as high permeability lenses and effects of soil 
fabric such as fissures.

• The flow of water through soil is governed by Darcy’s Law,

 q = Aki (3.2)

 where q(m3/s) is the volumetric flowrate, A(m2) is the total cross-sectional area of the 
flow, k (m/s) is the soil permeability and i is the hydraulic gradient.

• The plane flow patterns associated with long earthworks and excavations can be inves-
tigated using the technique of flownet sketching. A flownet may be used to calculate 
pore water pressures, and also flow rates using the equation

 (m /m/s) /3
F Hq kHN N=  (3.30)

 where H (m) is the overall head drop and NF and NH are the numbers of flowtubes and 
equipotential drops determined from the flownet.

• Flownets may be confined (if all of the flow boundaries are known at the outset) or 
unconfined (if the top flowline is defined by the phreatic surface, on which the gauge 
pore water pressure is zero). Flownet sketching can be applied in anisotropic soils, by 
means of an appropriate transformation of the cross-section.

• The groundwater in the vicinity of an excavation must be properly controlled by means 
of a suitable construction dewatering system. The purpose of a dewatering system is in 
general threefold. It prevents instability of a slope or the base of an excavation by reducing 
pore water pressures and increasing effective stresses; it prevents the erosion of soil due 
to uncontrolled seepage; and it prevents the excavation from flooding by groundwater.

• The applicability of a pumped groundwater control system depends on the permeability 
of the soil and the drawdown required. In very low permeability soils, pore water pres-
sures may be controlled by electro-osmosis. In very high permeability soils, a physical 
barrier formed by freezing the groundwater or grouting the soil pores might be used.

• Analysis of flow in unsaturated soils (Equation 3.51) is especially challenging, not 
least because of the inter-relationships between pore water suction, water content and 
permeability encapsulated in equations such as Equations 3.48 and 3.49.

SELF-ASSESSMENT AND LEARNING QUESTIONS

LABORATORY MEASUREMENT OF PERMEABILITY; 
FLUIDISATION; LAYERED SOILS

 3.1  Describe by means of an annotated diagram the principal features of a constant 
head permeameter. Give three reasons why this laboratory test might not lead to an 
accurate determination of the effective permeability of a large volume of soil in the 
ground. Suggest how each of these problems might be overcome.
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 3.2  Describe by means of an annotated diagram the principal features of a falling head 
permeameter.
 Show that the water level in the top tube h would be expected to change with time 
t according to the following equation:

 ln( / ) ( / )1 1 2h h kA A L t= −
where h1 is the initial water level in the top tube, A1 is the cross-sectional area of 
the soil specimen and L is its length, k is the soil permeability and A2 is the cross-
sectional area of the top tube.
 Give two reasons why this laboratory test might not lead to an accurate determi-
nation of the effective permeability of a large volume of soil in the ground.

 3.3  In the constant head permeameter test described in Example 3.2, the specimen was 
found to fluidise in upward flow at a hydraulic gradient of 0.84. Estimate the unit 
weight of the soil in its loosest state.

 [18.05kN/m .]3

 3.4  An engineer wishes to investigate the bulk permeability of a layered soil compris-
ing alternating bands of fine sand (5 mm thick) and silt (3 mm thick). The engi-
neer makes a special constant head permeameter of square cross-section (internal 
dimensions 112 mm × 112 mm) and carries out two tests on undisturbed samples. 
In one test, the flow is parallel to the laminations; in the other test, the flow is per-
pendicular to the laminations. The data recorded in downward flow are as given in 
Table 3.5.
 Unfortunately, the engineer is not very careful in keeping a laboratory notebook, 
and omits to record the orientation of the sample in each test.
 Estimate the permeability of the fine sand and the silt. Estimate also the flow rates 
at which fluidisation would just occur in upward flow, both parallel and perpen-
dicular to the laminations. Derive from first principles any formulae you use.
[ksand = 10−5 m/s; ksilt = 10−7 m/s; flow rates at fluidisation in upward flow are 
3.3 mm3/s perpendicular to the laminations, and 79 mm3/s parallel to the lamina-
tions, assuming γsoil = 2 × γw. You need to derive Equations 3.20 to 3.32.]

 3.5   The data given below and in Table 3.6 were obtained from a constant head perme-
ameter test in downward flow on a specimen of medium sand.
 Relative density of soil particles (specific gravity of soil grain) Gs = 2.65
 Cross-sectional area of permeameter A = 8000 mm2

 Distance between pressure tappings L = 120 mm

Table 3.5 Constant head permeameter data for Q3.4

Hydraulic gradient i 0 1 2 5 10
Flow rate, test 1 (mm3/s) 0 79 158 395 –
Flow rate, test 2 (mm3/s) 0 – – 16 33

Table 3.6 Constant head permeameter data for Q3.5

Measured flow rate q (cm3/s) 2.0 3.0 4.0 5.0 6.0
Head difference between 
manometer tappings Δh (mm)

18.8 31.0 45.1 60.0 75.0

Sample height z (mm) 180 175 170 165 160
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 Prior to the test, the specimen had been brought to its loosest possible state— 
corresponding to a specimen height of 180 mm—by fluidisation in upward flow. At 
fluidisation, the upward flow rate was 11.725 cm3/s and the head difference between 
the manometer tappings was 109.9 mm.
 Plot a graph of flow rate q against hydraulic gradient i for downward flow, and 
explain its shape. Estimate the maximum and minimum permeability k and the 
specific volume v of the specimen during this part of the test.
[kmax = 1.6 × 10−3 m/s, vmax = 1.8 at start of downward flow; kmin = 1.2 × 10−3 m/s, 
vmin = 1.6 at the end of the test.]

WELL PUMPING TEST FOR FIELD MEASUREMENT 
OF PERMEABILITY

 3.6  A well pumping test was carried out to determine the bulk permeability of a con-
fined aquifer. The aquifer was overlain by a clay layer of thickness 4 m, the depth of 
the aquifer was 20 m, and the initial piezometric level in the aquifer was 2 m below 
ground level. After a period of pumping, steady state conditions had been reached 
and the observations recorded in Table 3.7 were made.
 Deriving from first principles any equations you need to use, determine the bulk 
permeability of the aquifer. Would your analysis still apply for a drawdown in the 
well of 4 m?
[You need to derive Equation 3.12 and integrate between limits of (h = 21.8 m at 
r = 100 m) and (h = 22.0 m at r = 0.1 m); k = 5 × 10−5 m/s; no, because the aquifer 
would become unconfined.]

CONFINED FLOWNETS AND QUICKSAND

 3.7  Figure 3.44 shows a cross-section through a square excavation at a site where the 
ground conditions are as indicated. Assuming that the water levels in the overlying 
gravels, the underlying fractured bedrock and the medium sand outside the excava-
tion do not change, estimate by means of a carefully sketched flownet the capacity 
of the required dewatering system.
 What proportion of the extracted groundwater must be re-circulated through 
the medium sand and the gravels in order to maintain the initial groundwater level 
outside the excavation, if there is no other close source of recharge?
 Do you foresee any problem concerning the stability of the base of the excavation?
[q ≈ 160 l/s extraction; recharge ≈ 66%, based on the proportion of flowtubes 
starting from the sand; maximum upward hydraulic gradient is approximately 0.7, 
which should not be a problem.]

Table 3.7 Well pumping test data for Q3.6

Pumped flowrate q 1.637 l/s
Well radius 0.1 m
Drawdown just outside well 2 m
Drawdown in piezometer at 100 m distance 
from well

0.2 m
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 3.8  Figure 3.45 shows a plan view of an excavation underlain by a confined aquifer of 
uniform thickness 20 m. The aquifer is bounded on two sides by a river having a 
water level h = 12 m above datum level. On the third side, the effective recharge 
boundary to the aquifer is as indicated. A sheet pile cut-off wall is installed along 
the edge of the river adjacent to the excavation, extending for a certain distance on 
either side. The datum level for the measurement of hydraulic head is at the upper 
surface of the aquifer.
 Estimate by means of a carefully sketched flownet the rate at which water must be 
pumped from a dewatering system, to reduce the groundwater level at the excava-
tion to datum level. (The permeability of the aquifer is 3.6 × 10−4 m/s).
 Explain why your analysis would be invalid for drawdowns at the excavation to 
below datum level.
[q ≈ 238 l/s from a plan flownet. The aquifer would become unconfined if the 
groundwater level were drawn down to below datum level.]

Extent of
cut-o�

Excavation
h = 0

Recharge
boundary
h = 12 m

River, h = 12 m

Figure 3.45 Plan view of excavation and surrounding aquifer, Q3.8.
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Figure 3.44 Cross-section through excavation, Q3.7.
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UNCONFINED FLOWNET

 3.9  Figure 3.46 shows a cross-section through a long canal embankment. Explaining 
carefully the conditions you are attempting to fulfil, estimate by means of a flownet 
the rate at which water must be pumped from the drainage ditch back into the 
canal, in litres per hour per metre length.
 Describe qualitatively what might happen if the drain beneath the toe of the 
embankment became blocked.
[q ≈ 29 l/h per metre length; if the toe drain becomes blocked, the top flowline 
would emerge on the surface of the embankment leading to erosion and failure.]

FLOWNETS IN ANISOTROPIC SOILS

 3.10  Figure 3.47 shows a true cross-section through a long cofferdam. It is proposed to 
dewater the cofferdam by lowering the water level inside to the floor of the excava-
tion. Investigate the suitability of this proposal by means of a carefully sketched 
flownet on an appropriately transformed cross-section (horizontal scale factor α = 
√(kv/kh)). How can you ensure the stability of the base?

Canal (impermeable sides, leaky base)
8 m

6 m
4 m

2 m

–2 m

–4 m

0

Embankment, k = 10–6 m/s

Impermeable Drain

Ditch

0
Scale

2 m

LC

Figure 3.46 Cross-section through canal embankment, Q3.9.
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Figure 3.47 Cross-section through cofferdam, Q3.10.
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[Transformation factor α = 0.5; transformed permeability kt = 5 × 10−5 m/s; flow 
rate q ≈ 0.3 l/s per metre length; hydraulic gradient below formation level ≈ 1, so 
there is a danger of instability of base. Need to drive sheet piles into impermeable 
clay, or pump at a higher flow rate to reduce groundwater level within excavation 
to below formation level.]

 3.11  Figure 3.48 shows a true cross-section through a sheet-piled excavation in a lami-
nated soil of permeability kv = 10−6 m/s (vertically) and kh = 1.6 × 10−5 m/s (hori-
zontally). The laminated soil is overlain by 4 m of highly permeable gravels, and 
the natural groundwater level is 2 m below the soil surface. By means of a flownet 
sketched on a suitably modified cross-section estimate:

 a. The minimum capacity required of the dewatering system
 b. The pore water pressure at the point A

Comment briefly on the stability of the base of the excavation. (Transformation 
factor α = √kv/kh)

   [Transformation factor α = 0.25; transformed permeability kt = 4 × 10−6 m/s; flow 
rate q ≈ 0.025 l/s per metre length; pore water pressure at A is approx imately 
300 kPa; upward hydraulic gradient between the sheet piles below formation level 
is ≈ 0.42, so there should be no danger of base instability.]

NOTES

 1. The hydraulic gradient or pore water pressures determined from a flownet is not, how-
ever, the criterion for deciding whether a pumped well dewatering system is needed: 
the flownets in this chapter have all been drawn on the assumption that a dewatering 
system capable of lowering the groundwater level within the excavation to below for-
mation level is already in place.

 2. Well bores are usually lined or cased to prevent the sides of the borehole from falling 
in. Where it is intended that water should be able to flow into the casing, the casing is 
slotted and possibly wrapped round with a fine-meshed plastic material known as a 
geotextile. The slotted portion of the casing is termed the wellscreen.
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Figure 3.48 Cross-section through excavation, Q3.11.
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Chapter 4

One-dimensional compression 
and consolidation

4.1 INTRODUCTION AND OBJECTIVES

One-dimensional compression, in which deformation takes place only in the direction of 
loading, has a special significance in soil mechanics and foundation engineering. The natural 
loading and unloading of a soil stratum—for example, during the deposition and erosion of 
overlying material—generally take place under conditions of one-dimensional compression, 
because lateral strains are prevented by the surrounding soil. This mode of deformation is 
often assumed to be approximately appropriate for soil subjected to vertical loads from pad, 
strip and especially raft foundations (Figure 4.1).

If the soil is of low permeability, the application of a surface load results initially in an 
increase in the pore water pressure. This gives rise to a hydraulic gradient, in response to 
which pore water flows out of the soil and the soil deforms. As the water flows out of the 
soil, the pore water pressures gradually return to their equilibrium values, after which no 
further deformation takes place. The process of deformation of the soil over time due to the 
dissipation of non-equilibrium pore water pressures is termed as consolidation. The term 
compression is used more generally to describe changes in volume due to changes in effec-
tive stress, without reference to the timescale over which they occur.

To estimate the settlement of a foundation beneath which the soil can be assumed to 
deform in one-dimensional compression, a relationship between vertical effective stress v′σ  
and vertical strain εv is required. To calculate the time taken for these settlements to occur, 
details of the consolidation characteristics of the soil are needed. These parameters are tradi-
tionally obtained by testing soil elements in the laboratory in conditions of one-dimensional 
compression, in an apparatus called the oedometer (from the Greek word oedema,  meaning 
“swelling”). The device appears to have been developed by J. Frontard in France, in or 
around 1910; and Karl Terzaghi’s discovery of the principle of effective stress was based 
on the results of a series of experiments using oedometers, carried out in the early 1920s at 
Robert College in Istanbul, Turkey (Skempton, 1960; Clayton et al., 1995).

In this chapter, the oedometer test is used as a basis for the examination of the behaviour 
of soil in one-dimensional compression and swelling and for the analysis of consolidation. 
Several examples are given of the application of oedometer test data and consolidation the-
ory to field problems where deformation occurs primarily in the vertical direction. Particular 
emphasis is placed on the time-dependent process of consolidation, with the calculation of 
ultimate settlements being covered in more detail in Chapter 6.
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4.1.1 Objectives

After having worked through this chapter, you should understand that:

• On first loading, the main component of soil deformation is irrecoverable or  plastic, 
while on unloading or reloading, deformation is primarily recoverable or elastic 
(Section 4.2).

• The apparent stiffness of a soil depends on its stress history and stress state, and the 
change in stress to which it is subjected (Section 4.2).

• Following a change in total stress or boundary pore water pressure, a soil with low 
permeability responds over a period of time by consolidation (Section 4.3).

• The distribution of non-equilibrium or excess pore water pressure within a clay layer 
during consolidation is represented by an isochrone (Sections 4.3 and 4.4).

• The timescale for consolidation increases with reducing soil permeability k and reducing 
soil stiffness E0′, and with increasing drainage path length (Sections 4.3 through 4.5).

You should be able to

• Determine the properties relevant to the one-dimensional compression and consolida-
tion of a soil from oedometer test data (Sections 4.2 and 4.6).

• Use one-dimensional compression and consolidation theory, together with oedometer 
test data, to estimate ultimate settlements and rates of settlement in field situations 
corresponding approximately to one-dimensional conditions (Sections 4.7.1 and 4.7.2).

You should have an appreciation of

• The use of vertical drains to reduce consolidation times in the field by encouraging 
horizontal (radial) flow and reducing the drainage path length (Section 4.9).

• The limitations of the conceptual models introduced in this chapter (Section 4.10).

The details covered in Sections 4.5, 4.7.2, 4.7.3, and 4.7.4 may be, and Section 4.8 (which is 
included primarily for reference purposes) almost certainly is, outside the scope of a first course 
in soil mechanics. However, if you do work through these sections, you should be able to

• Analyse the one-dimensional consolidation process in an oedometer test specimen, 
assuming that the isochrones are parabolic in shape (Section 4.5).

• Apply the parabolic isochrone approximation to other field conditions (Sections 4.7.2 
to 4.7.4).

New material deposited
as overburden

(a) (b)

Building with
raft foundation

Soil element

Soil element

Deformation of
soil element

Figure 4.1  Field situations in which the mode of soil deformation approximates to one-dimensional 
c ompression: (a) geological deposition and (b) surface loads from wide foundations.
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You should also gain an understanding of

• The general analysis of one-dimensional consolidation problems, starting with the 
derivation of the governing differential equation (Section 4.8).

4.2 ONE-DIMENSIONAL COMPRESSION: THE OEDOMETER TEST

The oedometer test is used to investigate the stress-strain behaviour of a low-permeability 
soil (i.e. a clay or a silt), in one-dimensional vertical compression and swelling. A soil speci-
men, usually approximately 75 mm in diameter and 20 mm in height, is retained in a steel 
confining ring and immersed in a water bath. It is subjected to a compressive stress by the 
application of a vertical load, which is assumed to act uniformly over the area of the speci-
men. Two-way drainage is permitted through porous discs at the top and bottom (Figure 4.2).

The soil does not respond instantaneously to an increase in vertical total stress, but contin-
ues to compress or settle for some time after the load is applied (Figure 4.3). This is because 
any increase in effective stress must be accompanied by the compression of the soil skeleton, 
that is, by a decrease in the void ratio or specific volume. If the soil is saturated, water must 
escape from the pores for a decrease in void ratio to take place. The rate of  drainage—and 
hence the rate at which the soil deforms—is controlled by the permeability of the soil k and 
the length of the maximum drainage path d. In an oedometer test with two-way drainage, 
d is equal to half the specimen thickness.

Because the void ratio cannot change instantaneously, neither can the effective stress. 
The increase in the total vertical stress applied to the oedometer specimen at the start of a 
loading stage is, therefore, taken initially entirely by an increase in the pore water pressure. 
As water then gradually bleeds out from between the pores and the soil skeleton consoli-
dates, the additional or excess pore water pressure dissipates. The vertical effective stress 

Vertical load via lever arm

Piston

Soil sample

Steel confining ring

Water bath
Porous stones
allowing drainage

Compression of sample
measured using dial gauge
or electronic transducer

Figure 4.2 Schematic diagram of an oedometer test cell.

Settlement

Time after
application
of load

O

Figure 4.3 Response of a soil element to an increase in vertical total stress.
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increases in accordance with Equation 1.13, which may be rewritten in terms of changes in 
vertical effective stress v∆ ′σ , total stress v∆σ  and pore water pressure Δu to give Equation 4.1 
(Figure 4.4):

 ∆ ′σ + ∆ = ∆σuv v   (4.1)

The transient process of dissipation of pore water pressure and change in void ratio of 
the specimen at constant total stress is known as consolidation. The vertical effective stress 
can be determined only after consolidation in response to an increment of external load has 
ceased, and the pore water pressures have returned to their equilibrium values.

Transient flow occurs in all saturated soils subjected to a change in external load or a 
change in the boundary pore water pressures. In sands and gravels of permeability greater 
than 10−4 m/s, the process is usually very rapid—unless perhaps the drainage path length 
is extremely long. Also, the settlements that occur due to changes in volume in sands and 
gravels are generally much smaller than those which occur in clays and silts, because sands 
and gravels are usually (but not always) relatively stiffer. The term consolidation is, there-
fore, used almost exclusively with clays and possibly silts in mind, and oedometer tests are 
usually carried out on these relatively compressible, slow-draining soils.

An oedometer test normally consists of a number of stages in which the vertical load on 
the specimen is increased (or decreased), and the resulting settlement (or swelling) moni-
tored. Two types of data are obtained from an oedometer test:

 1. Following each load change, a graph may be plotted of settlement against time. This 
will tell us about the consolidation characteristics of the soil, and the data may be used 
to estimate how long it will take for settlements to develop in reality when the soil in 
the field is subjected to an increase in external load. The analysis of consolidation pro-
cesses is discussed in Sections 4.3 to 4.9.

 2. The end points from several increments (or decrements) in load may be plotted on a 
single graph of vertical strain against vertical effective stress, to give a vertical effec-
tive stress-strain relationship for the soil in one-dimensional compression. These data 
may be used to estimate the eventual magnitude of settlements in the field, but give no 
information about how long the settlements will take to develop.

The end points from a number of loading and unloading stages of an oedometer test are 
shown plotted as a conventional stress-strain curve in Figure 4.5. The increment of vertical 
strain v∆ε  that occurs during each loading stage is given by

 ∆ε = ∆h h/v 0   (4.2)

Change in
total stress

Time
(load Δσv added at t = 0) 

0 0

= +

0Time Time

Change in
e�ective stress

Change in pore
water pressure

Δσv

Δ
σ v

Δσv′ Δu

Figure 4.4  Corresponding rates of increase in vertical effective stress and decrease in pore water pressure 
during one-dimensional consolidation at constant vertical total stress.
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where Δh is the incremental settlement, that is, the change in specimen height due to an 
increase in vertical effective stress of ∆ ′σv and h0 is the height of the specimen at the start of 
the loading or unloading stage. It does not usually make much difference if h0 is taken as the 
specimen height at the start of the entire test.

In Figure 4.5, the cumulative strain (i.e. the total strain since the start of the test) is plot-
ted as a function of the current vertical effective stress. The strain datum may be set at some 
convenient point—in this case, the specimen height at the first known effective stress state 
is taken to correspond to zero strain. However, the curve does not start from zero effective 
stress, but from the initial load under which the specimen is allowed to come into equilib-
rium at the start of the oedometer test.

A specimen in which the effective stress was zero would be a slurry with no strength, and 
could not be tested in a standard oedometer. Usually, the specimen used in an oedometer test 
has been prepared from a core taken from a site investigation borehole. The total stresses 
acting on the specimen as prepared are zero, and the pore water pressures in it are negative 
but unknown. The effective stress is equal in magnitude to the unknown pore water suction. 
The specimen must be allowed to swell or compress to a known effective stress state, with 
zero pore water pressures and a vertical effective stress provided by a known external load, 
as the first step in an oedometer test.

The apparent stiffness of the soil in one-dimensional compression E0′ over each load 
 increment (or decrement) may be calculated from the incremental vertical strain that results 
from the increase (or decrease) in the vertical effective stress. By definition,

 ′ = ∆ ′σ ∆ ε ∆ ε = ∆E h h/ , where /0 v v v 0   (4.3)

E0′ is sometimes known as the constrained modulus and given the symbol M0′; and its inverse 
(1/E′0) the volumetric compressibility, mv (m2/kN).

Figure 4.5 demonstrates quite clearly that the concept of an elastic stiffness modulus for 
a soil is no more than a convenient fiction. Soil is not an elastic material (at least, not in the 
conventional sense) because

• Its stiffness increases with effective stress
• Its stiffness on unloading or reloading will be different from its stiffness during first 

loading, even over the same stress range

In addition, the stiffness of the soil may change if the stress or strain path is changed: 
in the oedometer test, the mode of deformation (i.e. one-dimensional compression) does 

Vertical
strain 
εv

Vertical
e�ective
stress σv′

F

O

H G

Figure 4.5 Oedometer test data plotted as v′σ  vs . vε .
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not vary. Despite all this, it might in some circumstances be acceptable to model soil as an 
elastic material:

• The stiffness modulus must have been determined in a test in which the soil has been 
subjected to the same changes in stress as are anticipated in the field.

• Ideally, the recent stress history of the soil in the field will also have been reproduced 
in the laboratory test.

• The soil should be on an unload/reload line; or there should be no reversal in the 
 direction of the stress path, which could give rise to a sudden change in stiffness: 
 compare the stiffness during loading from F to G in Figure 4.5 with the stiffness 
 during unloading over the same stress range from G to H.

• The changes in stress and strain must be small.

It was mentioned earlier that the strain datum (at which the strain is zero) could be set at 
any convenient point. In Figure 4.5, the height of the specimen in its first known effective 
stress state at the start of the oedometer test has been taken to correspond to zero strain. 
We might equally have decided to set the strain datum to correspond to the state of the soil 
when it was first laid down as a loose deposit in prehistoric times. In this case, the strain at 
the start of the oedometer test—which will usually be chosen to represent the current state 
of the soil in the ground—could easily be 50% or more. For the purpose of engineering 
calculations such as soil settlements, this would not be a particularly sensible approach. It 
is more appropriate to describe the volumetric state of the soil in terms of the void ratio e or 
the specific volume v. This is because these parameters—unlike strain—do not depend on 
the selection of some arbitrary datum or reference point.

The specific volume v may be related to the height of the oedometer test specimen as fol-
lows. The total specimen volume Vt at any stage of the test is equal to the specimen area A 
multiplied by the current specimen height h

 V Aht =

Also, the total volume is equal to the volume of voids Vv plus the volume of soil grains or 
solids Vs

 = + = + =V V V V V V V v(1 / ) .t s v s v s s

Hence,

 V V v h. At s= =

or

 v A Vh/ / constants= =   

Assuming that the specimen is fully saturated at the end of the test, the final specimen 
height hf can be related to the final specific volume vf by measurement of the final moisture 
content wf

 =e w Gf f s

Hence,

 v w G1f f s= +
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and

 ( / ) [(1 )/ ]f f f s fv h v h h w G h= = +  (4.4)

It is conventional to plot specific volume as a function of the natural logarithm (ln) of the 
vertical effective stress (Figure 4.6), because the soil tends to become stiffer as the vertical 
effective stress is increased.

For a soil being compressed for the first time, there should be a unique relationship 
between the specific volume v (= 1 + e) and ln v′σ ,

 ln0 0 vv v= − λ ′σλ  (4.5)

This is a straight line with slope −λ0 on the graph of v against ln v′σ . It is known as the 
normal compression line in one-dimensional compression (or 1-d ncl for short).

On unloading (and also on reloading) the soil will be found to be much stiffer, following 
a hysteresis loop on a graph of v against ln v′σ  which is usually idealised to a straight line 
of slope −κ0. Unlike the normal compression line, there is no unique unload/reload line. It 
can begin from any point on the normal compression line at which the specimen starts to 
be unloaded.

When the soil moves from a reload line onto the normal compression line, there will be a 
marked change in slope on the graph of v against ln v′σ . This point should indicate the max-
imum previous vertical effective stress to which the specimen has been subjected, which 
is termed the preconsolidation pressure. In the field, the soil may at this point exhibit a 
marked change in stiffness: settlements calculated on the basis of the stiffness in reloading 
might be too small perhaps by a factor of 5. This is yet another reason why it is important 
that soil parameters used in engineering calculations should be relevant to the stress his-
tory, stress state and anticipated changes in stress and strain of the soil in the field.

You might see oedometer test data plotted as a graph of void ratio e against log ( )10 v′σ , 
rather than specific volume v against ln v′σ . A unique one-dimensional normal compression 
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behaviour: hysteresis loop 

Equation v = vλ0
– λ0 ln σv́
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behaviour: slope – �0

Slope – λ0

σv́ (max prev)σv́ (current)

OCR n = σv́ (max prev)/σv́ (current)
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ln σv́ = 0

ln σv́

vλ0

Figure 4.6 Oedometer test data plotted as v against ln v′σ .
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line and an infinite number of possible unload/reload lines are still obtained, but the slopes 
are conventionally given the symbols Cc and Cs respectively. The slope Cc is known as the 
compression index, and is numerically equal to 2.3 × λ0. This is because λ = − ′σvd /d(ln )0 v  
and = − ′σC ed /d(log )c 10 v ; dv = de and ′σ = × ′σd(ln ) 2.3 d(log )v 10 v . Cs is known as the swelling 
index, and is (by a similar argument) numerically equal to 2.3 × κ0.

If a soil lies on the normal compression line, it means that it has never before been sub-
jected to a vertical effective stress greater than the current value. In this state, a soil is 
described as normally consolidated. A soil that has previously been consolidated to a verti-
cal effective stress greater than the current value is overconsolidated, with an overconsoli-
dation ratio (OCR or n) given by

 = ′σ ′σn /v(max prev) v(current)   (4.6)

The overconsolidation ratio is a simple but important indicator of the stress state of the 
soil in relation to its previous stress history.

During normal compression, the greater part of the deformation is due to slippage of 
the soil particles as the soil skeleton rearranges itself to accommodate higher loads. This 
component of deformation is irrecoverable or plastic. On an unload/reload line, changes 
in stress can be accommodated without the need for a rearrangement of the soil skeleton. 
Deformation is primarily due to distortion of the soil particles. It is recovered on unloading 
and may, in this sense, be described as elastic.

The behaviour of soil in one-dimensional compression and unloading can be illustrated 
with reference to a tub full of rubber balls. Initially, the rubber balls are quite loosely packed 
(Figure 4.7a). If someone stands on a platform resting on the upper surface of the rubber 
balls, the platform will move downward as the rubber balls (1) rearrange themselves to a 
more dense packing which enables the applied load to be carried by interball contact forces, 
and (2) distort in shape, without change in volume (Figure 4.7b).

If the person steps off the platform, it will move back up, but not by so much as to return 
to its earlier position. This is because although the rubber balls will rebound to their origi-
nal shapes, they will not rearrange themselves back into their initial packing (Figure 4.7c). 
The component of deformation due to particle distortion without slip is elastic in the sense 
that it is recoverable on unloading, while the component of deformation due to rearrange-
ment of the particles (re-packing) is plastic, or not recoverable on unloading.

If the person then steps back onto the platform, it will move to its previous position under 
the same load. The settlement due to distortion is re-established, but there is no need for 
further rearrangement of the rubber balls because their packing is already such that the load 
due to one person can be carried by interparticle forces.

If a second person also steps onto the platform, further rearrangement of the rubber balls 
will be necessary in order to carry the increased applied load. However, the amount of addi-
tional particle rearrangement will not be as great as that which was required to carry the 
weight of the first person alone, because the more densely packed the particles are, the more 

ρ r

(c)(b)(a)

Figure 4.7  Rubber balls analogy: (a) balls are loosely packed, no load applied; (b) compression ρ in first loading due 
to (i) particle rearrangement and (ii) particle distortion; (c) rebound r on unloading due to recovery 
of particle shape. Component of compression due to particle rearrangement is irrecoverable.
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difficult it is to push them closer together. A graph of settlement against load for a tub of 
rubber balls is shown in Figure 4.8. In essence, this behaviour is the same as that observed 
in clays during one-dimensional compression and unloading.

In summary, soils are stiffer in unloading or reloading because the deformation is  primarily 
elastic or recoverable. An initially overconsolidated soil, which is loaded past its maximum 
previous effective stress so that it becomes normally consolidated, may exhibit a marked 
reduction in stiffness as it moves from a reload line back onto the normal compression line.

Example 4.1: Analysis and interpretation of one-dimensional compression test data

Table 4.1 gives data from an oedometer test on a sample of Weald clay.
Initial sample height: 20 mm

Gs = 2.75

Moisture content data at the end of the test:
Calculate the water content and void ratio at the end of the test, assuming that the 

sample is then fully saturated. Show that the specific volume v is related to the sample 
height h by the expression

v/h = constant

Hence, plot a graph of specific volume against the natural logarithm (ln) of the vertical 
effective stress. Explain the shape of this graph. Calculate the preconsolidation pres-
sure and the slopes of the one-dimensional normal compression line and the unloading/
reloading lines. For each loading/unloading step, calculate the apparent one-dimensional 
modulus E0′.

Comment briefly on the significance of these results for the selection of parameters for 
use in design. Explaining your choice of E0′, estimate the compression of a 2-m thick layer 
of clay located at a depth of 4–6 m below ground level, which results from the application 
of a uniform increase in vertical effective stress of 50 kPa.

Settlement

Reloading First loading

First loading

Load
(people)

21O

Unloading

Unloading

Figure 4.8 Settlement against load for a tub of rubber balls.

Table 4.1a Oedometer test data at equilibrium states for Example 4.1

Vertical effective stress v′σ  (kPa) 50 100 150 200 250 200 150
Equilibrium sample height (mm) 20.23 19.89 19.70 19.35 19.07 19.18 19.32

Table 4.1b  Moisture content measurement data for Example 4.1

mass of tin empty 4.97 g
mass of tin + wet sample 23.85 g

mass of tin + dry sample 20.52 g



182 Soil mechanics: concepts and applications

© 2010 Taylor & Francis Group, LLC

SOluTIOn

 

= = + + − +
+ −

= −
−

=

m
m

m m m m m
m m m

Water contentatendof test
( ) ( )

( )

(23.85g 20.52g)
(20.52g 4.97g)

21.415%

w

s

t w s t s

t s t

(mt = mass of tin, mw = mass of pore water, ms = mass of soil particles). If saturated, 
e = wGs = 0.21415 × 2.75 = 0.589.

 = + = + =V V V V V V V vv vTotal volume (1 / )t s s s s

Hence,

 V V v Aht s= =

or

 

v h A V

A V v h v h

/ / constant

/ ( / ) (1.589/19.32) mm so
1.589
19.32

s

s atendof test
1

= =

= = =−

The processed data are given in Table 4.2 and plotted as a graph of v against ln( )v′σ  in 
Figure 4.9. The graph reveals the following stages.

AB: Reloading to pre-consolidation stress at B, approximately 150 kPa. It represents 
‘elastic’ compression of soil matrix, without slippage of the particles.

BC: One-dimensional normal compression line, with plastic deformation taking place 
due to particle slippage and rearrangement of the soil skeleton to carry higher 
loads, in addition to ‘elastic’ deformation of particles.

CD: Unloading during which the ‘elastic’ deformations that occurred during phase 
BC are recovered.

From the graph, the slope of the unload/reload lines AB and CD is

 v/ ln (0.620 0.664)/(5.011 3.912) 0.04( )v 0∆ ∆ ′σ = − − = − = −κ

(check that AB and CD have the same slope). Similarly, the slope of the one-dimensional 
normal compression line BC is

 v/ ln (0.568 0.620)/(5.521 5.011) 0.102( )v 0∆ ∆ ′σ = − − = − = −λ

The change in slope occurs at B, indicating the pre-consolidation pressure

 ′σ ≈ 150kPav,maxprev

The one-dimensional modulus E0′ is given by the ratio ∆ ′σ ∆ε/v v for each load increment 
or decrement, where ∆ε = ∆h h/v 0. Values are given in Table 4.3.

The data show that the soil is stiffer in unloading or reloading than during first loading 
(normal compression), and provided the soil remains on either the normal compression 
line (slope −λ0) or on an unload/reload line (slope −κ0), it becomes stiffer as v′σ  increases. 
In design calculations, parameters (in this case, the value of E0′) appropriate to the stress 
state, stress history and anticipated stress and strain paths should be used.
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The centre of the clay layer is at 5 m below ground level. Assuming that the ground-
water level is at the soil surface, pore water pressures are hydrostatic, and the unit weight 
of the clay and the overlying soil is 20 kN/m3, the initial vertical effective stress at the 
centre of the clay layer is

 (5m 20 kN/m ) (5m 10 kN/m ) 50kPa3 3× − × =

(taking the unit weight of water as 10 kN/m3).
The eventual increase in vertical effective stress is 50 kPa, so that the appropriate stress 

range for the measurement of ′E0 is 50–100 kPa, 2,974 3,000 kPa0E′ = ≈ .
The eventual settlement of the clay layer, ρult is obtained from the definition of E0′,

 

′ = ∆ ′σ ρ
⇒ ρ = ∆ ′σ ′
E h

h E

( / )

/
0 v ult 0

ult v 0 0

Hence,

 50(kPa) 2(m) 2,800(kPa) 0.0357 m 36 mmultρ = × ÷ = ≈  
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Figure 4.9 Plot of v against ln( )v′σ  for Example 4.1.

Table 4.2 Processed oedometer test data for Example 4.1

v′σ  (kPa) 50 100 150 200 250 200 150
V 1.664 1.636 1.620 1.591 1.568 1.577 1.589
ln( )v′σ 3.912 4.605 5.011 5.298 5.521 5.298 5.011

Table 4.3 Values of one-dimensional modulus for each loading and unloading stage for Example 4.1

Load (kPa) 50–100 100–150 150–200 200–250 250–200 200–150

v∆ ′σ  (kPa) 50 50 50 50 −50 −50

Δh (mm) 0.34 0.19 0.35 0.28 −0.11 −0.14
h0 (mm) 20.23 19.89 19.70 19.35 19.07 19.18
ρεv (%) 1.681 0.955 1.777 1.447 −0.577 −0.730

0E′ (kPa) 2974 5236 2814 3455 8666 6849

Note: Δh = change in sample height during load increment/decrement; h0 = sample height at the start of increment or 
decrement of load; negative signs denote reductions in stress, and heave (i.e. upward movement) rather than settlement.
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4.3 ONE-DIMENSIONAL CONSOLIDATION

It is often important to be able to estimate not only the settlements that will eventually result 
from an increase in the load applied to a clay or a silt, but also how long these settlements 
will take to occur. An example of this is found in the construction of an embankment on 
soft clay (Figure 4.10a). It may not be possible to construct such an embankment entirely 
in a single operation, because the loads that would be applied to the surface of the soft clay 
would cause the clay to fail.

This problem can be circumvented by constructing the embankment in a number of stages 
(Figure 4.10b). The additional load imposed at each stage is insufficient to cause failure, 
but the soft clay must be allowed to consolidate between stages so that its void ratio is 
reduced and its undrained shear strength (which governs rapid failure) is increased. The 
period between stages (which could be several months) will be vital to the design of the 
embankment and the programming of its construction sequence.

Although there are many problems in attempting to predict the behaviour of a large mass 
of soil in the field from the results of laboratory tests on small soil elements, laboratory test 
data usually represent at least a starting point for design. Parameters relevant to the pro-
cesses of transient flow and consolidation are obtained from graphs of settlement against 
time for the appropriate stages of an oedometer test.

Before the application of an increment of external load, the oedometer test specimen is in 
equilibrium with the pore water pressures hydrostatic. As the specimen is only 20 mm thick, 
the variation in pore water pressure between the top and the bottom is only 1000 (kg/m3) × 
9.81 × 10−3 (kN/kg) × 0.02 (m) = 0.2 kPa. This is negligible in comparison with the applied 
loads (which are usually tens or even hundreds of kPa), and it is conventional to assume that 
in an oedometer test specimen the pore water pressures at equilibrium are effectively zero.

Before the start of a load increment, the vertical effective stress σv throughout the speci-
men is equal to the vertical total stress applied at the surface. Effective stresses cannot 
increase unless there is a compression of the soil skeleton. This requires water to flow from 
the pores, which cannot occur instantaneously because the permeability of the soil is finite.

As the effective stresses cannot change instantaneously, the increase in external load at the 
start of a loading increment must result initially in an increase in pore water pressure through-
out the specimen. Because there now exists a pressure gradient over and above hydrostatic—
the pressure in the water bath surrounding the specimen has not changed—water begins to 
flow from the soil pores. As water flows out of the specimen, the pore water pressures start 
to fall and the effective stresses start to increase, and the process of consolidation begins.

Embankment

Soft clay foundation
Possible
slip
failure(a)

Soft clay foundation

�ird stage
Second stage

(b)

First stage

Figure 4.10  Multistage construction of embankment on a soft clay foundation: (a) embankment constructed 
quickly and (b) embankment constructed in three stages, with clay foundation allowed to con-
solidate between the stages.
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Figure 4.11 shows a conceptual model of the consolidation process. The piston runs 
smoothly in the cylinder, but a seal around its circumference prevents water from leaking 
between the piston and the cylinder wall. Water can only escape through the piston via the 
bleed valve. The space below the piston is filled with water, and there is also a compression 
spring between the underside of the piston and the base of the cylinder.

Initially, the spring is unstressed, the gauge pressure in the water is zero and the bleed 
valve is closed (Figure 4.11a). A load is applied to the top of the piston. As no water can 
escape, the piston cannot move down and the spring cannot compress. All of the applied 
load must, therefore, be carried by an increase in the water pressure (Figure 4.11b). Now the 
bleed valve is opened so that water can slowly escape (Figure 4.11c). As the water escapes, 
the water pressure below the piston is reduced and the piston sinks. The spring compresses 
as it takes up the load. Eventually, the water pressure returns to zero and the applied load is 
carried entirely by the compression of the spring (Figure 4.11d). To enable the spring to take 
the load, there has been a reduction in the volume enclosed below the piston.

The time taken to reach the steady conditions shown in Figure 4.11d will depend on the 
size of the bleed valve hole, which governs the rate at which water can escape and is analo-
gous to the permeability of the soil, and the stiffness of the spring, which governs how much 
compression must take place and is analogous to the stiffness of the soil in one-dimensional 
compression, E0′. The time taken to reach the steady state does not, however, depend on 
the magnitude of the applied load. Although more compression is needed for the spring to 
carry a larger applied load, the water can escape more quickly because the pressure gradient 
across the bleed valve is increased in proportion to the applied load.

The consolidation of soil is actually rather more complicated than suggested by Figure 4.11. 
Even if the soil is reasonably uniform and the directions of drainage and compression are well 
defined (as in the oedometer test), the drop in water pressure or head which in Figure 4.11 
occurs across the bleed valve will in a soil be distributed through the specimen. Consolidation 
is inextricably linked to the changes in effective stress that result from changes in pore water 
pressure as water flows out of the soil. To analyse quantitatively the consolidation process, it 
is necessary to consider these changes in pore water pressure in some detail.

Cylinder
Bleed valve
Piston
Spring

Water

Bleed valve open

(c) (d)

(a) (b)

Water pressure
falls

Water pressure
zero

ρult
ρ

Load applied
Bleed valve closed

Water pressure
increases

All load taken
by spring

Spring compresses
and piston sinks

Pressure gauge
(measures water
pressure)

Figure 4.11 Conceptual model for consolidation: (a) system at rest; (b) a load is applied, raising the water  
 pressure; (c) the water pressure falls as the spring compresses; (d) a new equilibrium state is 
reached.
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At any stage of the consolidation process, the pore water pressures will vary within 
the thickness of the specimen. We are really interested in the excess pore water pressures 
ue (i.e.  the pressures over and above the hydrostatic equilibrium condition), because it 
is  these that cause seepage flow, according to Darcy’s Law. The excess head, defined 
as he = ue/γw, is in effect, the same as the hydraulic total head h used in the analysis of 
groundwater flow in Chapter 3.1

In the oedometer test, analysis is relatively straightforward, because the hydrostatic equi-
librium pore water pressures are small enough in comparison with the applied loads to be 
neglected. In field problems, however, excess pore water pressures must be calculated by 
subtracting the hydrostatic component from the actual pore water pressure at each point.

The distribution of excess pore water pressure within an oedometer specimen at any given 
time after an increase in the external load is represented by a line known as an  isochrone. 
The excess pore water pressure varies only with depth and time: it does not vary over the 
cross-section of the specimen. Each isochrone is a graph of excess pore water pressure 
(which, in the case of the oedometer test, is for practical purposes the same as the actual 
pore water pressure) against depth at a fixed time t.

4.4 PROPERTIES OF ISOCHRONES

For the upper half of an oedometer test specimen of total thickness 2d with two-way drain-
age (or for a specimen of thickness d with one-way drainage), Figure 4.12 depicts schemati-
cally the succession of isochrones which indicate the progress of consolidation and excess 
pore water pressure dissipation in response to an increase in the applied vertical stress of Δσv.

Isochrones have two important properties:

 1. The slope of the isochrone at any point is ∂ue/∂z. This is equal to γw times the magni-
tude of the hydraulic gradient ∂he/∂z, where γw is the unit weight of water; he is the total 
or excess head, he = ue/γw.2

 2. The compression δρ of a layer of thickness δz at a depth z below the surface of the spec-
imen and at a time t after the start of consolidation is obtained from the expression

 ε = δρ δ = ∆ ′σ ′z E/ /v v 0   (4.7)

where εv = δρ/δz is the vertical strain in the layer, v∆ ′σ  is the increase in vertical effective 
stress at time t, and E0′ is the stiffness of the soil in one-dimensional compression.

The increase in effective stress is equal to the applied increase in vertical total stress minus 
the excess pore water pressure remaining at time t (Figure 4.13):

 uv v e∆ ′σ = ∆σ −   (4.8)

Depth z
d

O Excess pore water
pressure ue

0 < t1 < t2 etc.

Δσv

t = ∞

t = t5 t = t4 t = t3

t = t2

t = t1

t = 0

Figure 4.12  Isochrones of excess pore water pressure in an oedometer test specimen at various times 
 during consolidation.
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Substituting Equation 4.8 into Equation 4.7 and rearranging,

 δρ = ′ ∆ ′σ − δE u z(1/ )( ))0 v e   (4.9a)

The overall compression, measured at the surface of the specimen, at an elapsed time t is 
given by integration of Equation 4.9a, over the half-depth of the specimen (0 ≤ z ≤ d),

 
E

u z
z1
( )

0
v e0∫ρ =

′
∆ ′σ − ∂   (4.9b)

The integral on the right-hand side of Equation 4.9b is equal to ′E1/ 0 times the area swept 
out by the isochrone at time t (i.e. the area bounded by the isochrones at time zero and 
time t). This area is shown shaded in Figure 4.14.

The first of these properties arises by definition, and is always true. The second applies 
in this form only in cases of vertical consolidation with vertical drainage where settlements 
are uniform across the entire soil surface. A more general statement of the second property 
is that the volume change per unit area of outflow is equal to ′E1/ 0 times the area bounded 
by the isochrone at t = 0 and the current isochrone. An example of the use of the second 
property in its more general form is given in Section 4.7.3.

4.5  ONE-DIMENSIONAL CONSOLIDATION: SOLUTION 
USING PARABOLIC ISOCHRONES

The exact analysis of the process of one-dimensional consolidation is presented in Section 4.8. 
It is rather mathematical, and may lie outside the scope of many first-degree courses in soil 
mechanics. As an alternative, the consolidation of an oedometer test specimen (and also a 
number of other consolidation problems) may be analysed approximately by assuming that 

Δσv

Δσv' = Δσv–ue
Increase in vertical effective
stress at depth z at time t

O

z
ue

ue

Isochrone
at time tDepth

Figure 4.13 Increase in effective stress at a depth z.

Δσv

Isochrone at t = 0

Settlement at surface
= I/E0'  × this area

O ue

Isochrone
at time tDepth

Figure 4.14 Calculation of settlement from isochrone.
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the isochrones are parabolic in shape. The justification for this is that the results match the 
exact solution very closely, with errors generally less than 5% of the ultimate settlement 
for many plane flow problems. In comparison with the other assumptions made in both 
analyses—in particular that the soil is uniform and that the soil parameters k and E0′ are 
constant—an error of 5% is insignificant.

Once it is assumed that the isochrones are parabolic, the properties described in Section 4.4 
can be quantified very easily by considering the geometry of a general parabola, as shown 
in Figure 4.15.

For the consolidation of an oedometer specimen, the initial isochrones are characterised 
by the distance L from the drainage boundary beyond which the excess pore water pressures 
have not yet begun to dissipate (Figure 4.16).

Assuming that the soil particles and the pore water are incompressible, changes in volume 
must be due to changes in void ratio as water flows out of (or into) the soil specimen. The 
rate of reduction of volume due to water flowing from the top half of the specimen is given 
by Darcy’s Law:

 q = Aki  (4.10)
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Figure 4.15 Geometrical properties of a general parabola: (a) relationship between the slope of the tangent and 
the slope of the chord; (b) ratio of areas above and below the curve.
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Figure 4.16  Characterisation of first set of isochrones, upper half of an oedometer test specimen with 
 two-way drainage.
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where i is the hydraulic gradient at the drainage boundary [which is equal to 1/γw × σv/(L/2), 
as shown in Figure 4.16] and A is the cross-sectional area of the specimen.3

As the surface settlement is uniform, the rate of reduction in volume is equal to A × the 
rate of settlement ∂ρ/∂t. Hence,

 ∂ρ ∂ = = ∆σ γ = ∆σ γ=t ki k L k Lz/ ( )/( /2) 2 /0 v w v w   (4.11)

The settlement at time t is given by ′E1/ 0 × the area swept out by the isochrone (Figure 4.16),

 ρ = ′ ∆σ = ∆σ ′E L L E(1/ )( /3) /30 v v 0   (4.12)

Differentiating Equation 4.12 and setting the result equal to Equation 4.11,

 ∂ρ ∂ = ∆σ ′ ∂ ∂ = ∆σ γt E L t k L/ ( /3 ) / 2 /v 0 v w   (4.13)

Hence,

 ∂ = ′ γ ∂L L kE t(6 / )0 w

Integrating between limits of (L = 0 at t = 0) and a general point (L = L at t = t),

 = ′ γL kE t( )/2 (6 / )2
0 w

or

 L c t(12 )v=   (4.14)

where /v 0 wc kE= ′ γ  is known as the coefficient of consolidation. Substituting this expression 
for L into Equation 4.12 gives

 ρ = ∆σ ′E c t( / ) (4 /3)v 0 v   (4.15)

which applies until L = d or t = d2/12cv.
For a specimen of depth 2d with two-way drainage, this is the settlement due to the com-

pression of the upper half of the specimen only. To obtain the total settlement of the whole 
specimen, we must multiply the expression given in Equation 4.15 by 2.

After this time (t = d2/12cv), the isochrones are characterised by the excess pore water 
pressure ued remaining at the central horizontal plane—or, in the case of a specimen with 
only one-way drainage, at the base of the specimen (Figure 4.17).
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Figure 4.17  Characterisation of second set of isochrones, upper half of oedometer test specimen with 
 two-way drainage.
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The hydraulic gradient at the central horizontal plane is zero (i.e. the isochrones are 
 vertical), because by symmetry there can be no flow across it. Similarly the hydraulic gradi-
ent at the impermeable base of a specimen with one-way drainage is zero, because again 
there is no flow.

For one of the second set of isochrones, the hydraulic gradient at the drainage boundary 
is ued/(γwd/2) (Figure 4.17), so that at time t the rate of water outflow is

 = γq Aku d2 /( )ed w

and the rate of settlement is

 ∂ρ ∂ = γt ku d/ (2 )/ed w   (4.16)

The area swept out is (dΔσv − 2dued/3) (Figure 4.17), so the settlement at time t (t > 
d2/12cv) is

 (1/ )( 2 /3)0 v edE d duρ = ′ ∆σ −   (4.17)

Differentiating Equation 4.17 and setting the result equal to Equation 4.16,

 ∂ρ ∂ = − ′ ∂ ∂ = γt d E u t ku d/ (2 /3 ) / 2 /0 ed ed w   (4.18)

Hence,

 ∂ = − ′ γ ∂u u kE d t(1/ ) (3 / )ed ed 0 w
2

Integrating between limits of (ued = Δσv at t = d2/12cv), and a general point (ued = ued 
at t = t),

 ln( / ) 1/4 (3 / )ed v v
2u c t d∆σ = −

or

 = ∆σ −u c t dexp(1/4 3 / )ed v v
2   (4.19)

Substituting Equation 4.19 into Equation 4.17

 / )[1 (2/3)exp(1/4 3 / )]v 0 v
2d E c t dρ = ∆σ ′ − −   (4.20)

for t > d2/12cv.
Again, this result is for the upper half of the specimen only, and for a specimen of total 

thickness 2d with two-way drainage we must multiply it by 2.
Equations 4.15 and 4.20 may be rewritten in terms of dimensionless parameters R and T. 

R is the proportional settlement ρ/ρult, where ρult is the settlement at t = ∞. For the upper half 
only of a specimen of thickness 2d with two-way drainage, /ult v 0d Eρ = ∆σ ′. R is also known 
as the degree of consolidation. T is the time factor, given by T = cvt/d2.
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Substitution of the expressions / , /ult ult v 0R d E= ρ ρ ρ = ∆σ ′ and T = cvt/d2 into Equations 4.15 
and 4.20 yields

 (4 /3) for 0 1/12R T T= < <   (4.21)

and

 R = 1−(2/3)exp(1/4−3T) for T>1/12  (4.22)

R is plotted as a function of T in Figure 4.18.
We have derived Figure 4.18 for the case of one-dimensional vertical consolidation of a 

layer of soil in response to an initial, non-equilibrium excess pore water pressure distribu-
tion that is uniform with depth. Drainage may be either one-way, in which case the drainage 
path length is equal to the whole specimen thickness, or two-way, in which case the drain-
age path length is equal to one-half the thickness of the specimen. It will be shown in Section 
4.8 that Figure 4.18 also applies to the consolidation of a soil specimen with two-way drain-
age, in which the distribution of the initial non-equilibrium excess pore water pressure is not 
uniform, but varies linearly with depth.

The applicability of Figure 4.18 depends on the validity of our assumption that the 
isochrones are parabolic in shape. Comparison with the ‘exact’ solutions developed in 
Section 4.8 shows that the error in R is always less than approximately 0.05, which in soil 
mechanics terms—given the likely uncertainties concerning the values of permeability k and 
stiffness E0′—is quite acceptable.

4.6  DETERMINING THE CONSOLIDATION COEFFICIENT 
cV FROM OEDOMETER TEST DATA

The behaviour of the soil element during one-dimensional consolidation in response to a 
single load increment in an oedometer test is investigated by plotting a graph of settlement 
against time or—more usefully—settlement against the square root of time. According 
to the analysis of the consolidation process presented in Section 4.5, a graph of settle-
ment ρ against t  should have initial slope S (4 /3 )ult v

2c d= ρ  (substitute ρ = ∆σ ′Ed /ult v 0 into 
Equation 4.15). This can be used to determine the consolidation coefficient experimentally 
(Figure 4.19 and Example 4.2). Remember that d = h/2 for a specimen of height h with 
two-way drainage.

1.0
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0.4
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0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 T

Figure 4.18  Non-dimensional settlement R as a function of time factor T during one-dimensional vertical 
consolidation: uniform change in excess pore pressure with one-way or two-way drainage, and 
change in excess pore pressure varying linearly with-depth with two-way drainage.
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Example 4.2: Analysis of settlement/time data from an oedometer test

 1. Table 4.4 gives data from an oedometer test on a sample of peat, following an 
increase in vertical stress of 10 kPa. Plot a graph of settlement against √time, and 
determine the values of ,v 0c E′ and k for the soil over this load increment.
Initial sample thickness 20 mm, with two-way drainage through porous stones.

 c t3d /4v
2

x

 2. Explain briefly, without attempting the calculation, how you would use the data 
given in Table 4.4 to estimate the rate of consolidation of a 4-m thick stratum of 
the same peat in the field, following a uniform increase in vertical stress of 10 kPa, 
with two-way vertical drainage from the peat layer. What factors would you take 
into account in assessing the applicability of the laboratory parameters to the field 
situation?

SOluTIOn

 1. The data given in Table 4.4 are re-presented in Table 4.5, and plotted in Figure 4.20, 
as settlement against √time.

  From Figure 4.20, √tx = 3.42 min1/2; tx = 11.7 min

 tx = 3d2/4cv; d = 20/2 = 10 mm
 cv = 3d2/4tx = 3 × 102/4 × 11.7 = 6.41 mm2/min (= 1.07 × 10−7 m2/s)

  At the end of the load increment, the vertical strain εv = 1 mm/20 mm = 0.05 
(5%). For this load increment, the one-dimensional modulus E0′ is given by

 E / 10 kPa/0.05 200 kPa0 v v′ = ∆ ′σ ε = =

  Calculate the permeability k by inference from = ′ γ = γ ′c kE k c E/ ; /v 0 w w v 0:

 
k

(9.81 kN/m 1.07 10 m /s)
200 kN/m

5.2 10 m/s
3 7 2

2
9=

× ×
= ×

−
−

 2. The graph of R(= ρ/ρult) against T(= cvt/d2) will in theory be the same for the 
 oedometer test sample as for the 4 m thick peat layer in the field. In the field, d = 2 m 
(half the layer thickness, because there is two-way drainage) and ρult is given by

From graph, S =ρult/

O

slope S =

Initial data
points lie on a
straight line with

3d2/4cv

4cv/3d2

ttx
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Figure 4.19 Determination of consolidation coefficient cv from oedometer test data.

Table 4.4 Oedometer test data: consolidation phase for Example 4.2

Time (min) 0 0.32 0.64 1.28 2.40 4.80 9.60 16.00
Settlement (mm) 0 0.16 0.23 0.33 0.45 0.65 0.86 0.96
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 /d/

/2 / or

2 4 m 10 kPa 200 kPa 0.2 m

v ult v 0

ult v 0

d E

E

ε = ρ = ∆σ ′

ρ = ∆σ ′ = × ÷ =

The development of settlement with time in the field may be investigated by 
re-plotting the experimental data as R against T, then calculating corresponding 
values of ρ and t for the field situation using ρult = 0.2 m and d = 2 m. In effect, the 
data from the oedometer test are multiplied by the ratio of the sample thicknesses 
(4,000 mm ÷ 20 mm = 200) for the settlement ρ, and by the ratio of the drainage 
path lengths squared (2002 = 40000) for the time t, to arrive at the corresponding 
field values (see also Section 4.7.1).

We have assumed that the values of cv and E0′ are the same in the field as those 
measured in the laboratory test. This would require that the stress history and 
stress state of the sample in the laboratory test are the same as those of the soil in 
the field, and that the laboratory test sample is subjected to the same changes in 
stress and strain as are expected to occur in the field.

4.7  APPLICATION OF CONSOLIDATION TESTING 
AND THEORY TO FIELD PROBLEMS

In many field situations, drainage and consolidation are not unidirectional, so that the appli-
cation of one-dimensional consolidation theory is, at best, an approximation. However, the 
main difficulty with field consolidation problems is often the identification of boundaries, 
drainage path lengths and soil parameters; so that the error introduced in assuming one-
dimensional consolidation may not be that significant.

In some cases, one-dimensional consolidation theory will be entirely appropriate and 
straightforward to apply, as in the case studies and examples that follow. In the first exam-
ple, the soil in the field is subjected to the same drainage conditions and changes in effective 
stress as an oedometer specimen, and the solution developed in Section 4.5 may be applied 
directly. In the remaining examples, either the drainage boundary conditions or the changes 
in effective stress (or both) are different, but the principles used to derive appropriate rela-
tionships between settlement and time are the same.

Table 4.5 Processed settlement data for Example 4.2

Time (min) 0 0.32 0.64 1.28 2.40 4.80 9.60 16.00
√ Time (min1/2) 0 0.57 0.80 1.13 1.55 2.19 3.10 4.00
Settlement (mm) 0 0.16 0.23 0.33 0.45 0.65 0.86 0.96

1.0
0.8
0.6

0.4
0.2

0
0 1 2 3 tx 4√ √t (min1/2)

ρ (mm)

Figure 4.20 Settlement against √time for oedometer test, Example 4.2.
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4.7.1  Consolidation due to an increase in effective 
stress following groundwater lowering

In the oedometer, increases in effective stress result from increases in total stress while the 
steady state pore water pressure regime remains unaltered. In a field problem, changes in 
effective stress are just as likely to result from changes in the pore water pressure regime, 
while the total stress remains approximately constant. This is illustrated in Example 4.3.

Example 4.3:  using one-dimensional consolidation theory and oedometer test data 
to estimate field rates of settlement due to construction dewatering

 1. Figure 4.21 shows a cross-section through a site at which it is proposed to lower 
the groundwater level by 2 m as indicated. Sketch the initial and final distribu-
tions of pore water pressure (whose variation with depth may be assumed to be 
hydrostatic) in the soft clay layer. Sketch also the initial and final distributions of 
excess pore pressure, together with three or four isochrones in between. Take the 
unit weight of water γw = 10 kN/m3, and the datum for the measurement of excess 
head as shown.

 2. Table 4.6 gives data from an oedometer test on a sample of the soft clay. Plot a 
graph of settlement against √time, and determine the values of c Ev 0′ and k for the 
soft clay over this load increment.

Estimate the final compression of the soft clay layer shown in Figure 4.21 that will 
result from the proposed reduction in groundwater level. It is estimated that a compres-
sion of the clay layer in excess of 40 mm might cause damage to existing buildings. For 
how long could the dewatering system be operated before this occurs?

Original groundwater level

Soft alluvial
clay

Sand and gravel

10

0
1

3
Sand and gravel

4

D
ep

th
 (m

)

Final groundwater level and
datum for measurement
of excess head

Figure 4.21 Soil profile at site for groundwater lowering for Example 4.3.

Table 4.6 Oedometer test data, Example 4.3

Time(s) 0 6 24 48 120 240 600
Settlement (mm) 0 0.096 0.184 0.264 0.424 0.592 0.768

 Note: Vertical stress increment 20 kPa
Initial sample thickness 20 mm, with two-way drainage through porous stones

3d /4v
2c tx=
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Initial and final pore pressure distributions, together with isochrones of excess pore pressure 
referred to the datum indicated in Figure 4.21, are shown in Figure 4.22. The pattern of 
isochrones of excess pore water pressure is exactly the same as for an oedometer test sample.

The settlement versus √time data are given in Table 4.7 and plotted in Figure 4.23.
Take ρult = 0.8 mm:

 E / 20 kPa/(0.8/20) 500 kPa0 v v′ = ∆ ′σ ε = =

From Figure 4.23, √tx ≈ 20 s½ and cv = 3d2/4tx:

d = 10 mm (maximum drainage path length)
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Figure 4.22  (a) Initial and final pore water pressure distributions and (b) isochrones of excess pore water 
pressure.

Table 4.7 Processed settlement data for Example 4.3

Time (s) 0 6 24 48 120 240 600
√time (s1/2) 0 2.45 4.89 6.93 10.95 15.5 24.5
ρ (mm) 0 0.096 0.184 0.264 0.424 0.592 0.768

3020 √
—t (s½)

√
—tx

100
0

0.2
(0.133)
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0.6

0.8
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Figure 4.23 Settlement versus √time for Example 4.3.
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so

 k 4 10 m/s9= × −

The final compression of clay layer in the field is

 2 / (20 kPa 6,000 mm)/500 kPa 240 mmv 0d E∆ ′σ ′ = × =

[Alternatively, the settlements scale according to the thickness of the clay, giving 
(6,000/20) × 0.8 mm = 240 mm. (6,000/20) is the ratio of the thickness of the clay layer 
in the field to the thickness of the oedometer test sample, and 0.8 mm is the settlement 
of the sample in the oedometer under the same increase in vertical effective stress. Either 
way, we have assumed that the one-dimensional modulus of the soil is the same in the 
field as in the laboratory test.]

When the compression in the field is 40 mm, the proportional settlement R = ρ/ρult is 
40/240 = 0.167. The corresponding settlement in the oedometer test is 0.167 × 0.8 mm = 
0.133 mm. This occurs at an elapsed time t = (3.3)2 s = 10.9 s (scaling from Figure 4.23). 
The time factor T = cvt/d2 will be the same in the field as in the laboratory. Assuming that 
cv is the same in the laboratory as in the field, the ratio t/d2 must also be the same. Thus,

 

t d t d t d d t

d d t

/ / or ( / )

3000mm, 10 mm and 10.9s
field

2
field lab

2
lab field field lab

2
lab

field lab lab

= = ×
= = =

Therefore,

 (3,000/10) 10.9 s 11.3 daysfield
2t = × =

This is unlikely to be a very accurate prediction, not least because of the inevitable 
errors at the start of the increment of consolidation due to the impossibility of increasing 
the load on the oedometer sample instantaneously, and the magnification of any discrep-
ancy by a scaling factor of (300)2.

4.7.2 Underdrainage of a compressible layer

In Example 4.3, the alluvial clay layer remained submerged throughout the consolidation 
process. The final pore water pressures were, therefore, still hydrostatic below the reduced 
groundwater level. For this reason, the change in excess pore water pressure in the alluvial 
clay during consolidation was uniform with depth, exactly as in the oedometer test.

If the groundwater level were lowered to the base of the alluvial clay layer, the situation 
would be somewhat different. Steady state conditions in the clay would no longer be hydro-
static, but would correspond to downward seepage into the underlying sand and gravel. The 
clay would eventually become underdrained, as discussed in Section 3.2.1 (Figures 3.1c and d).

The underdrainage of a compressible layer is actually quite an interesting application of 
one-dimensional consolidation theory, which is discussed in Example 4.4 with reference to 
a case study.

Example 4.4: underdrainage of a compressible layer

A firm of civil engineering contractors installs a wellpoint dewatering system at one of 
their sites, to lower the groundwater level during the construction in open excavation 
of a subsurface pumping chamber. After the dewatering system has been in continuous 
operation for a period of four weeks or so, the owners of buildings up to a distance of 
500 m from the site file claims against the contractor for stuctural damage arising from 
ground movements which they allege are the result of the dewatering operation. Advise 
the contractor. A borehole log is given in Figure 4.24.
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We will assume that the pore water pressure at the upper surface of the compressible 
layer is maintained (by rainfall and natural or artificial recharge) at zero. The initial pore 
water pressures may be assumed to be hydrostatic below the water table indicated in Figure 
4.24. At the start of pumping, the pore water pressure in the sand and gravel aquifer at the 
base of the compressible peat and clay will be reduced very quickly to zero. Eventually, the 
pore water pressures within the peat and clay will also fall to zero, corresponding to steady 
downward seepage with a hydraulic gradient of unity. Thus the steady state pore pressure 
regime is not hydrostatic, and does not correspond to conditions of zero flow. As the total 
vertical stress remains constant, the changes in pore water pressure must be accompanied 
by changes in vertical effective stress. These can only occur as the clay and peat consolidate.

The analysis of the consolidation process for a two-layer system is quite complicated, 
and is beyond the scope of this book. However, an approximate analysis, in which the 
discontinuity in hydraulic gradient between the two layers (which will occur because they 
have different permeabilities and compressibilities) is ignored, will still give some insight 
into the problem. Furthermore, the available soils data are somewhat limited, and do not 
justify the use of a sophisticated analysis. Unfortunately, this is often the case, especially 
where the geotechnical engineer is called upon to investigate something that went wrong. 
In back-analysis—but not in design—it is quite reasonable to estimate parameters for 
which measured values are not available, provided that this limitation is borne in mind in 
assessing the significance and reliability of the calculations.

Assuming that the peat and the clay can be considered to behave as a single layer, iso-
chrones of pore water pressure u and excess pore water pressure ue as functions of depth 
z are shown in Figure 4.25. The excess pore water pressure ue is related to the pore water 
pressure u by the expression

 u u ze w= − γ  (4.23)

where the datum for and the direction of z are as shown in Figure 4.25.
We could solve the problem from first principles, by assuming that the curved parts 

of the isochrones of excess pore water pressure are parabolic in shape. Alternatively, we 
might save ourselves some work by considering very carefully the drainage boundary 
conditions. Although pore water drains from the two compressible strata in downward 
flow only, the important point is that the boundary conditions are such that if water 
wanted to escape from the top of the layer, it could. This means that we are dealing 
in effect with the one-dimensional consolidation of a compressible layer with two-way 
drainage, in response to a change in excess pore water pressure which varies linearly 
with depth. We may therefore use Figure 4.18, with the maximum drainage path length 
d = half the thickness of the compressible layer. (If you do not think that this is obvi-
ous, it is demonstrated mathematically in Section 4.8.3, case (c).) All we need to do is to 
 calculate the ultimate settlement of the peat-clay system, and use Figure 4.18 to investi-
gate how it develops with time.

Groundwater level
Depth (m)

Peat

0

1.7

3.7

Soft peaty
clay (alluvium)

Glacial sand
and gravel

Peat: γ = 11 kN/m3

Peaty clay: γ = 16 kN/m3

Sand and gravel:
γ = 20 kN/m3

Figure 4.24 Borehole log: one-dimensional consolidation due to underdrainage.
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Take the unit weight of the clay as 16 kN/m3, the unit weight of the peat as 11 kN/m3, 
and the unit weight of water as 10 kN/m3. Assume also that the soil remains saturated 
even though the pore water pressure is zero, and that the unit weights remain approxi-
mately constant. Calculate the ultimate changes in vertical effective stress at key depths 
(i.e. at the top and bottom of each stratum), from the total vertical stress and the initial 
and final pore water pressures (Table 4.8).

The average long-term increases in vertical effective stress are (0 + 17)/2 = 8.5 kPa in 
the peat, and (17 + 37)/2 = 27 kPa in the clay.

Oedometer tests on each soil gave the E0′ values in Table 4.9.
Taking E 200 kPa0′ =  for the peat, and E 500 kPa0′ =  for the clay, the ultimate settlement 

ρ may be calculated. For each layer,

 ε = ∆ ′σ ′ = ρE hv / /v,av 0

where h is the thickness of the layer, so

 /v,av 0h Eρ = ∆ ′σ ′

For the peat, E 200 kPa, 8.5 kPa0 v,av′ = ∆ ′σ =  and h = 1.7 m, giving ρ = 0.072 m or 72 mm. 
For the clay, E 500 kPa. 27 kPa0 v,av′ = ∆ ′σ =  and h = 2 m, giving ρ = 0.108 m or 108 mm.

Table 4.8 Changes in vertical effective stress with depth for Example 4.4

Depth (m) Stratum σv (kPa) Initial u (kPa) Final u (kPa) Initial v′σ  (kPa) Final v′σ  (kPa) v∆ ′σ  (kPa)

0 Peat 0 0 0 0 0 0
1.7 Peat/clay 18.7 17.0 0 1.7 18.7 17.0
3.7 Clay 50.7 37.0 0 13.7 50.7 37.0
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Figure 4.25  (a) Idealised geometry and isochrones of (b) pore water pressure and (c) excess pore water 
pressure for Example 4.4.

Table 4.9 0E′ from oedometer tests, Example 4.4

Stratum Range of v′σ  (kPa) 0E′ (kPa)

Peat 16–21 194
Clay 16–21 416
Clay 21–27 435
Clay 27–38 488
Clay 38–59 666
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Thus the total ultimate settlement is 180 mm. The next question is how quickly this 
will occur—and in particular, how much settlement will have occurred after four weeks, 
which is when the alleged damage to nearby buildings began to occur. Unfortunately, 
values of consolidation coefficient were not included in the site investigation report. 
However, if it is accepted that the rate of consolidation is controlled by the clay (as the less 
permeable of the two strata, and the stratum closest to the drainage boundary), the con-
solidation coefficient may be estimated by assuming a value for the permeability. The per-
meability of the clay is likely to be in the range 10−7 to 10−10 m/s. Rather than  assuming 
just one value, it is more useful to carry out the calculation for a number of values in the 
likely range, to investigate the sensitivity of the result to this uncertainty.

The values of consolidation coefficient = ′ γc kE( / )v 0 w , and time factor T(= cvt/d2) after 
t  =  4 weeks (= 2.42 × 106 s) corresponding to permeabilities of 10−7, 10−8, 10−9 and 
10−10 m/s, are indicated in Table 4.10. Remember that in this case drainage is (or could 
be) two-way, so that the maximum drainage path length d = 3.7 m/2 = 1.85 m. The 
proportional settlements R (= ρ/ρult) corresponding to the values of T according to Figure 
4.18 are also shown, as are the actual settlements calculated from R using ρult = 180 mm.

The likely settlement after four weeks is at least 12 mm, and probably nearer to 40 mm. 
Buildings are more susceptible to damage from differential than from uniform settlements. 
The settlements we have calculated should in theory extend uniformly across a wide area. 
This is because of the boundary conditions to the compressible layer in this case, which 
make it in effect like a huge oedometer test. (If the peat and the clay had been pumped 
directly, however, instead of via the underlying aquifer, this would not be so. Pumping 
from the peat and clay directly would lead to vertical compression due to horizontal flow, 
which would result in non-uniform settlements. This is discussed in Section 4.7.3.)

In practice, there are several reasons why differential settlements might occur in the 
present case. It is extremely unlikely that the thickness of compressible soil is uniform 
across the entire site. If the thickness of the compressible layer is reduced, then so is the 
surface settlement. Different parts of the same building might have different types of 
foundation, resting either on the clay (which will be affected by the dewatering-induced 
settlements), or on the underlying sand and gravel (which is comparatively stiff, and 
will not settle significantly). Thus, on balance it seems likely that the alleged damage to 
nearby buildings is probably attributable to the dewatering system.

Should the dewatering system be switched off to prevent further damage? If the perme-
ability of the clay is closer to 10−7 m/s, there is probably no point, because consolidation 
has ceased. If, on the other hand, the permeability of the clay is closer to 10−9 m/s or 
10−10 m/s, there is every point because perhaps 80% or 90% of the settlement has yet to 
occur. Unfortunately, in the absence of the appropriate soil data (and better still, the moni-
toring of ground movements or buildings during construction activities), there is no way 
of knowing. This demonstrates a salutary point concerning the need to obtain soil data 
before work on a site commences, rather than waiting until after a problem has arisen.

A further complication concerns our initial assumption that the long-term pore pressures 
would be maintained at zero due to recharge and downward percolation: this may not be 
correct. The amount of recharge required per unit area of the surface is equal to the perme-
ability of the soil (from Darcy’s Law, q/A = ki with the hydraulic gradient i = 1). A perme-
ability of 10−7 m/s corresponds to a rate of recharge of 9 mm/day or 3.15 m per annum.

Table 4.10 Results of consolidation analysis, Example 4.4

Permeability k 
(m/s)

Consolidation 
coefficient cv (m2/s)

Time factor T 
after 4 weeks

Proportional 
settlement R

Settlement ρ (mm) 
after 4 weeks

10−7 5.1 × 10−6 3.6 1 180
10−8 5.1 × 10−7 0.36 0.71 128
10−9 5.1 × 10−8 0.036 0.22 39
10−10 5.1 × 10−9 0.0036 0.069 12
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Excluding the mountainous areas, average annual rainfall in the UK does not generally 
exceed 1,500 mm which corresponds to a permeability of approximately 5 × 10−8 m/s. In 
many parts of southeastern England, the annual rainfall is less than 635 mm or 2 × 10−8 m/s. 
Thus where the vertical permeability of the soil is greater than about 10−8 m/s, rainfall 
alone is unlikely to maintain long-term conditions of downward percolation with zero pore 
water pressures. What may happen instead is that the pore water pressures near the surface 
become negative, increasing the effective stresses (and hence the settlements) still further.

If it is assumed that the steady state pore water pressures vary linearly with a hydro-
static gradient from zero at the bottom of the compressible layer to some negative value 
(which does not exceed in magnitude the air entry value of pore water suction derived in 
Section 3.2.3) at the top, then the average increase in vertical effective stress within the 
compressible layer is doubled (Figure 4.26). So, too, is the ultimate settlement. The iso-
chrones are now exactly the same as those in Figure 4.12, so to use Figure 4.18 to predict 
the rate of settlement we have to assume that there is only one-way drainage, with the 
maximum drainage path length equal to the full thickness of the layer, 3.7 m in this case.

Interestingly, the rate at which settlement begins to occur is the same in each case. 
This is because initially =R T(4 /3). If the effective drainage path length d is doubled, 
T(= cvt/d2) is reduced by a factor of 4 at a given elapsed time t. R, being initially pro-
portional to the square root of T, is reduced by a factor of 2. However, ρult has also been 
doubled. Thus the actual settlement ρ after an elapsed time t remains the same, provided 
that T (based on the increased drainage path length) is less than 1/12.

Unfortunately, it is not possible to be sure what will happen after T = 1/12 until after 
the event, unless positive steps (such as installation of a recharge system) are taken to 
ensure that the first set of boundary conditions considered is actually imposed.

One final point concerns the very wide area over which the alleged settlement damage 
occurred in this case. The distance of influence of the dewatering system would have 
been controlled by the sand and gravel aquifer, rather than by the peat and clay. Using 
Sichardt’s formula (Equation 3.34) with C = 1,500–2,000 (m/s)−1/2, h = 3.7 m and k = 
4 × 10−3 m/s, the distance of influence would have been expected to have been in the range 
350–470 m. In fact, piezometers installed to investigate the problem (after the event) 
indicated no significant variation in drawdown up to a distance of 250 m from the site, 
suggesting an effective distance of influence substantially in excess of 500 m. The reason 
for this is probably that the aquifer was confined laterally by impermeable boundaries, 
rather than having effectively infinite extent as assumed by the use of Equation 3.34. The 
slow rate of recovery of the groundwater level in the aquifer after the dewatering system 
was switched off would tend to confirm this. The unexpectedly wide area over which a 
significant drawdown was produced in the sand and gravel aquifer, together with the fact 
that many of the buildings had mixed or otherwise unsuitable foundations, undoubtedly 
contributed to the extent of the alleged damage to property in this case.
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Figure 4.26  Isochrones of: (a) pore water pressure and (b) excess pore water pressure with steady state 
suctions and no recharge.



One-dimensional compression and consolidation 201

© 2010 Taylor & Francis Group, LLC

Is the contractor liable for the damage that might have been caused? Surprisingly, the 
answer under current English law is probably not. The owner of a property is entitled 
to support from the underlying soil, but not from water which flows in undefined chan-
nels through the soil. Thus a contractor who excavated a trench too close to a build-
ing, and thereby removed or reduced the support of the soil, would be liable for any 
damage so caused. The operator of an incorrectly installed dewatering system, which 
damaged buildings by removing soil particles as well as water from the ground (e.g. due 
to inadequate filters or wellscreens, Section 3.19.4), would probably be similarly liable. 
However, if the dewatering system merely removes water flowing in undefined channels 
(i.e. groundwater), the contractor is unlikely to be held legally liable for any damage 
caused to the property.

This position has developed over the last 150 years or so on the basis of cases (origi-
nally concerned with pumping rights for water supply) brought to court. The most 
recent ruling was in the Court of Appeal, and there is a possibility that the general legal 
position could one day be reversed by a House of Lords decision in some future case. 
Contractors—or at least their insurers—are probably aware of this, because in practice 
bona fide claims for subsidence damage due to groundwater extraction seem often to 
elicit a sympathetic response.

4.7.3 Vertical compression due to plane horizontal flow

The Conwy Crossing project was mentioned in Chapter 3, in connection with the control of 
pore water pressures and groundwater by means of pumped wells. Figure 3.26, which shows 
an idealised cross-section through one of the large temporary excavations adjacent to the 
Conwy estuary and is concerned with the control of groundwater in the alluvial sands and 
gravels, tells only part of the story. Below the ‘impermeable’ boulder clay lies the stratum 
of laminated glacial lake deposits, illustrated in Figure 3.15. A full soil profile is given in 
Figure 4.27a. The glacial lake deposits are strongly anisotropic, with estimated permeabili-
ties of kh ≈ 2 × 10−7 m/s horizontally and kν ≈ 10−10 or 10−11 m/s vertically. This horizontal 
permeability was high enough to necessitate the installation of a pore pressure control sys-
tem to ensure that the base of the excavation remained stable throughout the approximately 
two-year construction period of the Conwy tunnel. Calculated flow rates were very low, and 
an ejector well system was therefore used (Section 3.19.3; Figure 4.27b).

The stratum of lake deposits was expected to remain saturated and to drain by consoli-
dation rather than by air entry. One of the key questions that had to be addressed during 
the design of the dewatering system and the programming of the project in general was the 
length of time it would take for the ejector system to reduce pore water pressures sufficiently 
for excavation to proceed safely.
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Figure 4.27 (a) Ground conditions and (b) ejector well installation at Conwy, North Wales
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If it is assumed that flow within the lake deposits is entirely horizontal, it follows that the 
equipotentials are vertical and that the excess pore water pressure within the stratum at any 
time after the start of pumping varies only with horizontal distance, and not with depth. 
Assuming also that ejector wells are close enough together to behave as a pumped slot, the 
distribution of excess pore water pressure ue within the stratum at any time may be represented 
by an isochrone showing ue as a function of distance from the line of ejector wells (Figure 4.28).

The datum for the measurement of excess head he = ue/γw is taken as the reduced (final) 
piezometric level at the line of ejector wells. If this is below the top of the stratum of glacial 
lake deposits, then the assumption of purely horizontal flow will not be valid, at least in the 
vicinity of the wells.

Although the lake deposits drain by horizontal flow, the accompanying change in volume 
results in vertical settlements. The surface settlements will be non-uniform, owing to the 
variation of excess pore water pressure (and hence of vertical effective stress) with distance 
from the ejector line.

Assume that the isochrones are parabolic in shape, and extend a distance L (at a given 
time t) into the stratum of lake deposits. At x = L, the slope of the isochrone ∂ue/∂x is zero. 
Consider a thin horizontal layer at a depth z, of thickness δz. Then (per unit length of the slot 
perpendicular to the plane of the paper), the rate of outflow of water is given by Darcy’s Law:

 =q Ak ih 0

where i0 is the hydraulic gradient at x = 0, kh is the horizontal permeability of the soil and 
A is the area through which flow takes place: A = 1 × δz in this case. From the geometric 
properties of the parabolic isochrones (Figure 4.15),

 = =i h L h L/( /2) 2 /0 0 0

where h0 = u0/δw is the drawdown imposed at the ejector line.
Hence, the rate of change in volume is given by

 = = δ = − ∂ ∂q Ak i zk h L V t2 / /h 0 h 0   (4.24)

where the negative sign indicates that the volume is reducing as the soil compresses.
The reduction in volume of an element of the lake deposits of thickness δz, width δx and 

unit length in the horizontal direction parallel to the pumped slot, located at a distance 
x(0 < x < L) from the slot, is given by

 V x( )( )δ ∆ = δρδ

where δρ is the vertical compression, δρ = ∆ ′σ δ ′z E/v 0.

Excess pore
water pressure

Isochrone at t = 0

Isochrone
at t =∞

Distance x from
line of ejector wells

O

t = t1

ue

h0γw

t = t2

L1 L2

Figure 4.28 Isochrones for horizontal plane flow to a pumped slot.
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The increase in vertical effective stress v∆ ′σ  at time t and distance x is equal to (h0γw − ue) 
(Figure 4.29).

In the limit as δV → ∂V and δx → ∂x, the total change in volume in the layer of thickness 
δz which has occurred by a time t after the start of pumping is given by
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which is equal to δ ′ ×z E( / )0  the area above the isochrone at time t (Figure 4.29).
From the general properties of a parabola (Figure 4.15), the area above the isochrone at 

time t is (γwh0L/3). Thus,

 ∆ = γ δ ′V h L z E/3w 0 0

and the total volume of the layer at time t is

 = − ∆ = − γ δ ′V V V V h L z E/30 0 w 0 0   (4.25)

where V0 is the volume at t = 0.
Differentiating Equation 4.25 and setting the result equal to Equation 4.24, we have

 ∂ ∂ = − γ δ ′ ∂ ∂ = −δV t h z E L t zk h L/ ( /3 ) / 2 /w 0 0 h 0

or

 ∂ = ′ γ ∂L L k E t(6 / )h 0 w

Integrating between limits of (L = 0 at t = 0) and a general point (L = L at t = t),
we have,

 = ′ γL k E t( )/2 (6 / )2
h 0 w

or

 L c t(12 )hv=  (4.26)

where = ′ γc k E( / )hv h 0 w  is the coefficient of consolidation in one-dimensional vertical  compression 
due to horizontal drainage.
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Figure 4.29  Calculation of volume change at a time t after the start of pumping, horizontal plane flow to a 
pumped slot.
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The key question in a dewatering application is how long it will take for the pore water 
pressure to fall by a given amount at a certain distance from the line of wells. In the case of 
vertical compression due to horizontal flow, the general form of the equation of the para-
bolic isochrone at time t is

 u Ax Bx Ce
2= + +

The boundary conditions are

 

0 at 0

at
e

e w 0

u x

u h x L

= =
= γ =

and

 ∂ ∂ = =u x x L/ 0 ate

which give A = −γwh0/L2, B = 2γwh0/L and C = 0. Thus, the equation of the isochrone of 
excess pore water pressure ue at time t is

 
= γ − =u h x L x L L c t(2 / / ) where (12 )e w 0

2 2
hv  

(4.27)

The pore water pressure response at a distance x from the line of wells may be calculated 
as a function of time using Equation 4.27. Equation 4.27 is not valid for x > L, because 
the pore water pressure at a distance x from the line of wells will not begin to fall until 
x c t(12 )hv=  or =t x c/122

hv.
Figure 4.30 compares the measured response of a piezometer at a distance of 18 m from 

the ejector line at Conwy with that calculated using Equation 4.27 with h0 = 6.73 m and 
chv = 2.3 × 10−4 m2/s. In Figure 4.30, excess head he = ue/γw is plotted rather than excess 
pore water pressure: this is common in dewatering applications, because the drawdown 
achieved provides the most obvious indicator of the performance of the dewatering sys-
tem. Also, the excess head is plotted relative to or above ordnance datum (AOD). The 
initial water level was−1 m AOD, with a drawdown to −7.73 m AOD along the line of 
ejector wells.
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Figure 4.30  Piezometric level against time at a distance of 18 m from a line of ejector wells. (From Powrie, 
W. and Roberts, T.O.L., Q. J. Eng. Geo., 23, 169–85, 1990. With permission.)
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4.7.4 Self-weight consolidation: hydraulic fill

In some situations, a soil or a soil-like material may be deposited as a slurry, in which the 
soil particles are not initially in contact and the effective stress is zero. The total weight of 
the slurry must therefore be carried by the pore water pressure, which as a result will be 
greater than hydrostatic. Initially, the particles will settle through the water at constant 
velocity, according to Equation 1.15, until they begin to come into contact with each other. 
After this time, the excess pore water pressures will dissipate as the soil consolidates to carry 
part of its own weight via interparticle contact forces as effective stress. Soil placed in this 
way is sometimes known as hydraulic fill; although the use of the technique in the construc-
tion of water retention dams effectively ended following the major failure of the Fort Peck 
Dam in the USA in 1938 (Jefferies and Been, 2006).

Materials such as mine wastes and pulverised fuel ash from coal-fired power stations are 
often pumped as slurries into storage lagoons, where they are left to consolidate under their 
own weight. In any of these cases, it may be important to be able to estimate how long the 
consolidation process will take. If the base of the lagoon is permeable, pore water may escape 
through it so that consolidation takes place by two-way drainage, and Figure 4.18 can be 
used. However, if the base of the lagoon is impermeable, drainage takes place only through 
the upper surface of the material: as the change in pore water pressure that occurs during 
consolidation varies linearly with depth, and there is only one-way drainage (Figure 4.31), 
Figure 4.18 does not apply. This is the situation we will analyse in this section.

Until the soil particles come into contact, the vertical effective stress must be zero. At the 
start of consolidation, the initial pore water pressure ui must at any depth z be equal to the 
vertical total stress,

 = σ = γu zi v

where γ is the unit weight of the slurry. Eventually, at the end of consolidation, the pore 
water pressures will be hydrostatic below the surface of the consolidated material,

 u zf w= γ

(assuming that any surplus water is drained off). The final excess pore water pressures (which 
are related to the pore water pressures using Equation 4.23) are zero, so the initial excess 
pore water pressure distribution is uei = (γ − γw)z (Figure 4.31). (We have tacitly assumed 
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Figure 4.31  (a) Initial and final distributions of pore water pressure and (b) isochrones of excess pore water 
pressure: self-weight consolidation with drainage through the upper surface only.
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that the overall settlement of the soil surface is small, so that changes in  geometry—and soil 
properties—during consolidation can be neglected. The solution, therefore, applies only to 
situations in which the strains are small.)

Because the base of the lagoon is impermeable, the slope of the isochrone ∂ue/∂z must be 
zero at this depth, at all stages during the consolidation process. The general geometrical 
properties given in Figure 4.15 show that a parabola OP which has a slope ∂ue/∂z = (γ − γw) 
at the surface (z = 0), and zero slope at the base, will intersect the bottom of the lagoon at 
ue = 0.5(γ − γw)d, where d is the depth of the consolidating layer (Figure 4.32). This means 
that only the lower part of the initial isochrones can be parabolic, and that the slope of the 
isochrone at the surface remains unchanged until the isochrone OP applies. Until this time, 
the isochrones may be characterised by the depth L below the surface at which the hydraulic 
gradient begins to change (i.e. the transition between the straight and parabolic sections of 
the isochrone: Figure 4.32).

The flow rate of water out of the layer is given by Darcy’s Law, q = Aki:

 = ∂ ∂ =q V t Aki/ 0   (4.28)

where i0 is the hydraulic gradient at the surface, i0 = (1/γw) × (γ − γw) initially, A is the 
 surface area, and −∂V/∂t is the rate of change of volume (as in Section 4.7.3, the negative sign 
denotes that the volume of the soil is decreasing).

As the surface settlement is uniform, the rate of reduction in the volume of the layer is 
equal to A × the rate of settlement ∂ρ/∂t. Thus,

 ∂ρ ∂ = γ γ − γt k/ ( / )( )w w   (4.29)

Rearranging Equation 4.29 and integrating between limits of (ρ = 0 at t = 0) and (ρ = ρ 
at t = t),

 {( )/ }w wk tρ = γ − γ γ   (4.30)

Equation 4.30 applies until the isochrone OP (Figure 4.32) is reached, at which time the 
settlement is ′ ×E1/ 0  {the area between the isochrone at t = 0 and the isochrone OP}

 ρ = ′ × γ − γ − γ − γ
= γ − γ ′

E d d

d E

1/ {[ ( )/2] [(2/3) ( )/2]}

( )/6
0

2
w

2
w

2
w 0

  (4.31)
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Figure 4.32 Characterisation of initial isochrones during self-weight consolidation.
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As the rate of settlement until this point is uniform, the time at which the isochrone OP is 
reached may be calculated by dividing Equation 4.31 by Equation 4.30:

 = γ ′ =t d kE d c/6 /62
w 0

2
v   (4.32)

After this time, the slope of the isochrone at the surface of the soil layer begins to decrease. 
The second set of isochrones may be characterised by the excess pore water pressure ued 
remaining at the base of the lagoon (Figure 4.33).

The slope of the isochrone at z = 0 is 2ued/d, and the rate of settlement is

 ∂ρ ∂ = = γt ki k u d/ ( / )(2 / )0 w ed   (4.33)

The settlement that has occurred up until this time is given by ′ ×E1/ 0  {the area between the 
isochrone at t = 0 and the current isochrone},

 (1/ ) {[ ( )/2] [(2/3)d ]}0
2

w edE d uρ = ′ × γ − γ −   (4.34)

Differentiating Equation 4.34 and setting the result equal to Equation 4.33,

 ∂ρ ∂ = γ = − ′ ∂ ∂t k u d E d u t/ ( / )(2 / ) (2/3 ) /w ed 0 ed

Rearranging and integrating between limits of = γ − γ = γ ′u d t d kE( ( ) /2 at /6 )ed w
2

w 0

and (ued = ued at t = t), we have

 
∫ ∫

∂ = − ′
γ

∂
γ −γ γ ′

u
u
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d

t
d

u

d kE

t 3ed

ed
( ) /2

0

w
2/6w

ed

2
w 0

or

 [ ( )/2] exp[(1/2) 3 / ]ed w v
2u d c t d= γ − γ −   (4.35)

where = ′ γc kE /v 0 w as before.
Substituting Equation 4.35 into Equation 4.34

 ρ = γ − γ ′ − −d E c t d{ ( )/ }{(1/2) (1/3) exp [(1/2) 3 / ]}2
w 0 v

2   (4.36)

which applies for t ≥ d2/6cv.
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Figure 4.33 Characterisation of second set of isochrones during self-weight consolidation.
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Noting that the ultimate settlement ρult is E d(1/ ) [ ( )/2]0
2

w′ × γ − γ , Equations 4.30 and 4.36 
may be written in terms of the non-dimensional quantities R = ρ/ρult and T = cvt/d2,

 R = 2T for 0 ≤ T ≤ 1/6  (4.37)

 = − −



 ≥R T T1

2
3

exp
1
2

3 for 1/6   (4.38)

Equations 4.37 and 4.38 are plotted in Figure 4.34. Although in this example,  consolidation 
was due to the self-weight of the soil deposited as an hydraulic fill, this is not a necessary 
assumption for the solution presented. Figure 4.34 applies, therefore, to all cases of one-
dimensional consolidation due to a change in excess pore water pressure which increases 
linearly with depth, with one-way drainage through the upper surface only.

4.8 ONE-DIMENSIONAL CONSOLIDATION: EXACT SOLUTIONS

As mentioned in the introduction to this chapter, the ‘exact’ solution of the one-dimensional 
consolidation problem is somewhat mathematical, and might very reasonably be omitted 
from a first course in soil mechanics. In a wider context, the classical consolidation theory 
presented in this section is important for three reasons:

 1. It forms the basis of the dimensionless plots of proportional settlement R against time 
factor T commonly used to predict rates of consolidation in practice. (These are given 
in Figure 4.37.)

 2. It provides the justification for the approximate solutions based on parabolic iso-
chrones, presented in Sections 4.5 and 4.7.

 3. In its generalised three-dimensional form (Biot, 1941), it is used extensively in the 
numerical analysis of geotechnical engineering problems.

4.8.1  Derivation of the differential equation 
governing one-dimensional consolidation

In this section, we shall assume that consolidation is taking place with vertical settlements 
and vertical flow.
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Figure 4.34  Non-dimensional settlement as a function of time factor for consolidation during a change 
in excess pore water pressure that increases with depth, with one-way drainage through the 
upper surface only.
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Consider a thin layer of saturated soil of thickness δz at a depth z below the soil surface, 
during a time increment δt at a time t after the start of consolidation (Figure 4.35).

The reduction in thickness of the layer δρ caused by an increase in effective stress vδ ′σ  is

 δρ = δ ′σ δ ′z E( )/v 0   (4.39)

where ( / )v v t tδ ′σ = ∂ ′σ ∂ ⋅δ , and ∂ ′σ ∂t/v  is the rate of change of effective stress with time. For a 
unit area perpendicular to the direction of flow (A = 1), δρ is also the reduction in volume, 
and the rate of settlement ∂ρ/∂t is equal to the rate of reduction of volume or the net outward 
flowrate of pore water, qout,net.

The flow rate into the layer per unit area is equal to the seepage velocity v (= q/A). The 
change in seepage velocity v across the layer is (∂v/∂z) · δz, so that the net rate of outflow from 
the layer per unit area is given by

 
[ ( / ) ]

( / )
out,net out inq q q v v z z v

v z z

= − = + ∂ ∂ δ −

= ∂ ∂ ⋅δ
  (4.40)

Dividing both sides of Equation 4.39 by δt and setting the result equal to Equation 4.40, 
and noting that in the limit δt→∂t, δρ→∂ρ and v vδ ′σ → ∂ ′σ ,

 ( / ) ( / ) / ( / )out,net v 0q t t z E v z z= ∂ρ ∂ = ∂ ′σ ∂ ⋅δ ′ = ∂ ∂ ⋅δ   (4.41)

Hence

 ∂ ′σ ∂ = ′ ∂ ∂t E v z/ /v 0

Now, at constant total stress, the increase in effective stress vδ ′σ  is equal to the reduction 
in excess pore water pressure δue, so that

 ∂ ′σ ∂ = − ∂ ∂t u t/ /v e

and using Darcy’s Law

 v = ki

v = seepage velocity

z z
v

∂z
∂v

δz

δzv +

Figure 4.35 Geometry of one-dimensional consolidation for derivation of governing differential equation.
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where

 = − γ ∂ ∂i u z(1/ ) /w e

(the negative sign is required, i = −∂he/∂z, because v is defined as positive in the z-positive 
direction in Figure 4.35) so that

 = γ ∂ ′σ ∂v k z( / ) /w v   (4.42)

Substituting Equation 4.42 into Equation 4.41 to eliminate v,

 ∂ ′σ ∂ = ′ ∂ γ ∂ ′σ ∂ ∂ = ′ γ ∂ ′σ ∂t E k z z kE z/ {( / ) / }/ ( / ) /v 0 w v 0 w
2

v
2

or

 ∂ ∂ = ∂ ∂u t c u z/ /e v
2

e
2   (4.43)

where cv is the consolidation coefficient, kE0 w′γ . This is the differential equation governing 
one-dimensional consolidation and the dissipation of excess pore water pressures.

4.8.2 General solution to the consolidation equation

Equation 4.43 can be solved if it is assumed that the excess pore water pressure ue can be 
expressed as a separable function of the two variables z and t, that is

 u f z g t( ) ( )e =   (4.44)

where f(z) is a function of z and not t, and g(t) is a function of t and not z. Substitution of 
Equation 4.44 into Equation 4.43 yields

 ∂ ∂ = ∂ ∂f g t c g f z( / ) /v
2 2

or

 ∂ ∂ = ∂ ∂f f z c g g t(1/ ) / (1/[ ])( / )2 2
v   (4.45)

The left-hand side is now a function of f alone, and the right-hand side is a function of g 
alone. If Equation 4.45 is valid for all values of z and t, then each side must be a constant. 
Let the constant be equal to −λ2. Then,

 ∂ ∂ = −λ = ∂ ∂f f z c g g t(1/ ) / [1/( )]( / )2 2 2
v

or

 ∂ ∂ + λ =f z f/ 02 2 2   (4.46a)

and

 ∂ ∂ + λ =g t c g/ 02
v   (4.46b)
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The solutions to Equations 4.46 are

 f = A sin(λz)+B cos(λz)

and

 = − λg c texp( )v
2

so that

 = λ + λ − λu A z B z c t[ sin( ) cos( )]exp( )e v
2

Equation 4.43 is also satisfied by the solution

 = +u Cz De

where C and D are constants. The general solution to the one-dimensional consolidation 
equation is therefore

 = λ + λ − λ + +u A z B z c t Cz D[ sin( ) cos( )]exp( )e v
2

  (4.47)

4.8.3  Solutions for particular boundary 
conditions using Fourier series

The values of the constants A, B, C, D and λ in Equation 4.47 depend on the drainage 
boundary conditions and the initial and final distributions of excess pore water pressure. We 
will now consider the three cases of one-dimensional vertical consolidation examined using 
parabolic isochrones in Sections 4.5, 4.7.1, 4.7.2 and 4.7.4.

 1. The oedometer test specimen: consolidation during an increment in effective stress 
that is uniform with depth and of magnitude Δσv, with one-way or two-way drain-
age (cf. Section 4.5, The oedometer test, and Section 4.7.1, Consolidation due to an 
increase in effective stress following groundwater lowering).

  Considering again the top half of a soil layer of thickness 2d with two-way drainage 
from the top and the bottom, or a soil layer of thickness d with one-way drainage through 
the upper surface only, the succession of isochrones is as indicated in Figure 4.12. The 
boundary conditions that apply to the isochrones at all times are

0 at 0 and / 0 ate eu z u z z d= = ∂ ∂ = =

  If the first of these conditions is to apply for all values of t, then B and D in 
Equation 4.47 must be zero. Differentiating Equation 4.47 and setting B = D = 0,

 u z A z c t Cz/ cos( ) exp( )e v
2∂ ∂ = λ λ − λ +⋅

  If the second boundary condition is to apply for all values of t, C must be zero and 
(assuming A is non-zero) cos λd = 0. This implies that λd = π/2, 3π/2, 5π/2 etc., or in 
general λ = nπ/2d where n is odd. Thus, taking into account all possible solutions,
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 where T = cvt/d2. The values of the constants An may be found by considering the dis-
tribution of excess pore water pressure at t = 0,

 ∑= ∆σ = π
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u A
n z
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n

sin
2e,t 0 v n

1
odd

  (4.49)

  Any function f(z) may be represented over its range 0 ≤ z ≤ l by a summation of sine waves 
known as a Fourier series,
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  Equation 4.50 is the same as Equation 4.49 with f(z) = Δσv and l = 2d, so that
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  Substituting this into Equation 4.48, and noting that because (1 − cos nπ) = 2 when 
n is odd and zero when n is even there is now no need to specify that the summation is 
carried out for odd values of n only,
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  (4.51)

For a given time factor T(= cvt/d2), Equation 4.51 may be used to calculate the 
excess pore water pressure remaining at any depth z (0 ≤ z ≤ d). In this way, iso-
chrones showing the variation of excess pore water pressure with depth may also 
be produced. The summation must be carried out to calculate each individual value 
of pore water pressure; fortunately, the terms in the summation decay quite rapidly 
with n because of the term in exp (−n2).

The surface settlement ρ may be calculated as follows. From Equation 4.9b (for the 
top half of a specimen of thickness 2d with two-way drainage, or for the whole of a 
specimen of thickness d with one-way drainage),

 ∫ρ =
′

∆ ′σ − ∂
E

u z
d1

( )
0

v e0
  (4.9b)
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Substituting Equation 4.51 into Equation 4.9b and carrying out the appropriate 
integration gives
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Recalling that the ultimate settlement ρult = dΔσv/E0 and evaluating the significant 
terms of the summation,

 R T T T/ 1 (8/ )[exp{ /4} (1/9)exp{ 9 /4} (1/25)exp{ 25 /4}]ult
2 2 2 2= ρ ρ = − π −π + − π + − π   (4.53)

 2. Consolidation during an increment in effective stress that increases linearly with 
depth (triangular distribution, with one-way drainage towards the thin end of the 
triangle: cf. Section 4.7.4, Self-weight consolidation/hydraulic fill).

  The boundary conditions in this case are exactly the same as in (1) above, so that the 
solution presented above applies as far as Equation 4.48.

  The difference between the two situations is that the initial excess pore water pres-
sure distribution used to evaluate the constants An is now triangular. This means that 
the isochrones during the first part of the consolidation process will be different in 
shape (Figure 4.31). Also, when it comes to evaluating the coefficients An, it is neces-
sary to define the initial pore water pressure distribution—f(z) in Equation 4.50—over 
a depth 2d, even though the depth of the clay layer in this case is only d. As the slope 
of any isochrone ∂ue/∂z is zero at z = d, f(z) must be symmetrical about z = d. In the 
case of self-weight consolidation, the initial excess pore water pressure distribution is, 
for 0 ≤ z ≤ d

 = = γ − γ=f z u z( ) ( )e,t 0 w

 so that to meet the requirement of symmetry,
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 which must be integrated by parts to give

 A d n n= γ − γ π π[8( ) /( )]sin( /2)n w
2 2   (4.54)

 so that
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 The surface settlement at time t is

 
∫ρ =

′
γ − γ − ∂

E
z u z

d1
[( ) ]

0
w e0

  Substituting Equation 4.55 into Equation 4.56, integrating, and dividing both sides 
by the ultimate settlement ρ = γ − γ ′d E( ) /2ult w

2
0 we obtain
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  (4.57)

 Evaluating the significant terms,

 R T T T1 (32/ ){exp( /4) (1/27)exp( 9 /4) (1/125)exp( 25 / 4)}3 2 2 2= − π −π − − π + − π   (4.58)

  Equation 4.58 applies to all cases of one-dimensional vertical consolidation by one 
way drainage to the surface, during a change in effective stress that increases linearly 
with depth.

 3. Consolidation due to underdrainage of a stratum with initially hydrostatic pore water 
pressures, during an increment of effective stress that increases with depth (triangu-
lar distribution, with apparently one-way drainage through the base of the stratum 
towards the thick end of the triangle; cf. Section 4.7.2, Underdrainage of a compress-
ible stratum).

  The boundary conditions in this case are different from those in (a) and (b). 
A further slight complication is that the excess pore water pressures decay from zero 
to negative values in the steady state, as indicated in Figure 4.25. This is due to the 
definition of excess pore water pressure used in this book, which is that excess pore 
water pressure drives seepage flow in general, rather than consolidation in particular. 
In the situations described in Sections 4.8.3 (1) (and 4.5 and 4.7.1), 4.8.3 (2) (and 
4.7.4) and 4.8.3 (4), the definition of excess pore water pressure used makes no dif-
ference because the steady state pore water pressures are hydrostatic, so that there is 
zero seepage flow at the end of consolidation. In the present case, the definition of 
excess pore water pressure, once chosen, must be followed with care if mistakes in the 
analysis are to be avoided.

  Taking the thickness of the soil layer as 2d, the boundary conditions that apply at 
all times are

 = = = − γ =u z u d z d0 at 0, and 2 at 2e e w

  If the first of these conditions is to apply for all values of t, then B and D in 
Equation 4.45 must be zero. The second boundary condition then requires that

 = − γ = λ − λ +=u d A d c t Cdd 2 sin2 exp{ } 2e,z 2 w v
2

  If the second boundary condition is to apply for all values of t, C must be equal to 
−γw and (assuming A and λ are non-zero) sin 2λd = 0. This implies that 2λd = π, 2π, 
3π etc., or in general λ = nπ/2d. Thus,
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 where T = cvt/d2. The values of the constants An may again be found by considering 
the distribution of excess pore water pressures at t = 0,
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 so that
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  From Equation 4.23,

 = − γu u ze w

 so that f(z) is the actual pore water pressure, u = ue + γwz, at t = 0. Evaluation of the 
Fourier coefficients An is carried out as before,
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  Integration by parts gives
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  Substituting Equation 4.61 into Equation 4.60,
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  The surface settlement ρ is given by
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  In this case, the increase in effective stress v∆ ′σ  is equal to the decrease in pore water 
pressure, which is equal to −ue (Figure 4.25). Thus,

 
E

u z
d

∫ρ =
′

− ∂
1

0
e0

  (4.64)



216 Soil mechanics: concepts and applications

© 2010 Taylor & Francis Group, LLC

  Substituting Equation 4.62 into Equation 4.64 and integrating,

 
d

E n
n n

n T

n
∑ρ =

γ
′







+
π







− π π ×
− π























=

∞2
1

4
(1 cos )(cos ) exp

4
w

2

0
2 2

2 2

1

  (4.65)

  Dividing by the ultimate settlement ρult = 2γw . d2/E '0 (remember that the layer has 
thickness 2d) and evaluating the significant terms of the summation,

 / 1 (8/ )[exp{ /4}

(1/9)exp{ 9 /4} (1/25)exp{ 25 /4}]
ult

2 2

2 2

R T

T T

= ρ ρ = − π −π
+ − π + − π

  (4.66)

 which is exactly the same as Equation 4.53.
Because we have calculated T using a maximum drainage path length of one-half 

of the specimen thickness, this demonstrates that the underdrained layer does indeed 
behave as if the drainage were two-way. In Section 4.7.2 it was stated that the impor-
tant point was that two-way drainage could occur if it needed to; it was just that all of 
the pore water drained to the bottom of the stratum under the particular conditions 
of consolidation due to underpumping. It also shows that the relationship between 
non-dimensional surface settlement and time factor for a layer with two-way drainage 
is the same whether the change in excess pore water pressure driving consolidation 
is uniform, or varies linearly with depth. It therefore follows that Figure 4.18 and 
Equation 4.53 may be applied to the consolidation of a layer with two-way drainage 
following any trapezoidal change in excess pore water pressure. This is because a trap-
ezoidal excess pore water pressure distribution may be derived by the superposition of 
a distribution which varies with depth onto a distribution which is uniform.

 4. Consolidation of a specimen with one-way upward drainage during an increment in 
effective stress that decreases with depth (triangular distribution, with upward drain-
age towards the thick end of the triangle).

  There is one further case of one-dimensional consolidation which it is worth men-
tioning briefly. It will be seen in Chapter 6 that the vertical stresses imposed on the 
soil by a surface load tend to decrease with depth. A load applied near the surface 
of a layer of clay soil, for example by an earth embankment or the foundation of a 
building, would therefore be expected to give rise to an initial distribution of excess 
pore water pressure that decreases with depth. If the compressible layer is underlain 
by an impermeable stratum, the excess pore water pressures must dissipate by upward 
drainage alone, at least near the centre of the loaded area. (Away from the centre, lat-
eral drainage will probably be more significant, because the horizontal permeability is 
likely to be greater than the vertical permeability. Also, the horizontal drainage path 
lengths may be shorter.)

Assuming vertical flow and one-dimensional vertical consolidation, initial and final 
 distributions of excess pore water pressure for this case are shown in Figure 4.36, together 
with some intermediate isochrones. Drainage is towards the thick end of the triangle repre-
senting the initial excess pore water pressure distribution at the start of consolidation. This 
is different from the case of hydraulic fill (Sections 4.7.4, 4.8.3(2) and Figure 4.31), where 
drainage was to the thin end of the triangle. It is also different from Sections 4.7.2, 4.8.3(3) 
and Figure 4.25, because these cases had effectively two-way drainage. The boundary con-
dition at the thin end of the triangle in Sections 4.7.2 and 4.8.3(3) was ue = 0, whereas in 
the present case it is ∂ue/∂z = 0.
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It may be seen from Figure 4.36 that, during the initial stages of consolidation, there is 
some downward flow, which results in a transient increase in excess pore water near the 
impermeable base of the stratum. This gradually decays, as eventually the pore water must 
drain through the top of the layer. The shapes of the intermediate isochrones in this case are 
such that the problem is not really amenable to the parabolic isochrones approximation. In 
the solution of Equation 4.43 using the Fourier series approach, the same boundary condi-
tions apply as in Section 4.8.3(2). The initial pore water pressure distribution must again be 
defined symmetrically over the range 0 ≤ z ≤ 2d:
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Setting l = 2d in Equation 4.50, and integrating by parts to evaluate the constants An; 
using Equation 4.63 with ∆ ′σ = ∆σ − −z d u(1 [ / ])v v e and integrating between limits of 0 ≤ z ≤ d 
to evaluate the surface settlement; and noting that /2ult v 0d Eρ = ∆σ ′ where Δσv is the eventual 
increase in vertical effective stress at the surface of the clay layer,
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Evaluating the significant terms,
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If the consolidating layer were underlain by a permeable stratum, Equation 4.53 and 
Figure 4.18 would apply, with the maximum drainage path length equal to half the thick-
ness of the layer.
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Figure 4.36  Isochrones of excess pore water pressure: initially triangular excess pore pressure distribution 
that decreases linearly with depth, with drainage towards the upper surface only.
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Equations 4.53, 4.58 and 4.68, which represent the exact mathematical solutions to the 
one-dimensional consolidation equation (Equation 4.43) for the various situations consid-
ered, are shown graphically in Figure 4.37. Comparison of Figures 4.18 and 4.34 shows that, 
for an increase in effective stress that is uniform with depth and the case of hydraulic fill, 
the results obtained using the parabolic isochrones approximation are practically identical.

The solutions (using both the parabolic isochrones approximation and the Fourier 
series approach) to most of the problems of one-dimensional consolidation presented in 
Sections 4.5 to 4.8 (and many others) are given by Terzaghi and Fröhlich (1936). This, how-
ever, is a text for the enthusiast and is difficult to obtain.

4.9 RADIAL DRAINAGE

In Section 4.7.3, the problem of vertical compression due to plane horizontal flow to a 
pumped slot was examined. In some cases, vertical compression will occur due to horizontal 
flow that is not plane but radial, for example to an individual pumped well. The mathemat-
ics for radial flow is more complicated than for plane flow, because the decrease in flow 
area with radius must be taken into account. A solution for the flowrate to a single pumped 
well withdrawing water from a soil stratum that consolidates was presented by Jacob and 
Lohman (1952), but their solution is not in a suitable form for estimating how long it will 
take for a given drawdown to be achieved at a certain distance from the well.

In the case of a construction dewatering or pore pressure control system in a low perme-
ability soil analysed as a single equivalent well (as in Section 3.17), the time taken to achieve 
the required drawdown over the area of the site is likely to be a more important design 
consideration than the flow rate. The consolidation equation for radial flow was solved 
numerically by Rao (1973), whose isochrones of drawdown (i.e. reduction in head) h as a 
function of radial distance r from the edge of the excavation or equivalent well (normalised 
with respect to the drawdown at the well h0 and the radius of the well rw respectively) may be 
used for this purpose (Figure 4.38). The time factor used in radial flow is Tr = chvt/r2

w, where 
= ′ γc k E /hv h 0 w is the coefficient of consolidation for vertical compression and horizontal flow.

Where a stratum of soil of low permeability is to be loaded, for example by the construc-
tion of an embankment, it is quite common to install a large number of vertical drains in a 
grid pattern, so that vertical consolidation takes place primarily by the horizontal flow of 
pore water to the drains. This results in a significant reduction in the consolidation time, 
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Figure 4.37  Non-dimensional settlement R as a function of time factor T for consolidation in response 
to different patterns of effective stress increment and different boundary conditions (exact 
solutions).
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both because the maximum drainage path length is reduced (to approximately half the dis-
tance between the vertical drains), and because the horizontal permeability is usually appre-
ciably higher than the vertical. Originally, the vertical drains were boreholes backfilled with 
sand, but prefabricated porous plastic or fabric band drains, which are easier and cheaper 
to install, are now more common.

Isochrones of the form shown in Figure 4.38 will apply initially, but only until the pat-
terns of excess pore pressure reduction due to adjacent vertical drains begin to interfere. 
In this application, it is not usually necessary to know the pore water pressure distribution 
between individual drains. What is important is the time taken for significant consolidation 
(say 90%) to occur. This is expressed by the proportional average settlement R = ρav/ρav,ult, 
which is really the proportional volume change Δ V/Δ Vult or the degree of consolidation. 
(The average settlement has to be used because the settlement at the surface during consoli-
dation is not uniform. The excess pore water pressure remaining increases, and hence the 
increase in effective stress decreases, with radial distance from each drain.)

Solutions for the degree of consolidation as a function of time factor Tr for radial horizon-
tal flow from a cylinder of clay of radius r0 to a central vertical drain of radius rw are given in 
Figure 4.39, for various values of radius ratio n = r0/rw. This solution is due to Barron (1948), 
who used a time factor TD = chvt/D2, where D = 2r0 is the diameter of the clay cylinder. For 
this reason, the values on the horizontal axis of Barron’s original graph are a factor of 4 
smaller than in Figure 4.39.

In the analysis leading to Figure 4.39, it was assumed that the initial excess pore water 
pressure is uniform with depth; that ue = 0 at r = rw for t > 0; that no flow occurs across the 
external boundary at r = r0, (i.e. ∂ue/∂r = 0 at r = r0); and that the soil surface is free to settle 
non-uniformly with time (cf. Section 4.7.3). Barron states (but does not prove) that where 
excess pore water pressures are able to dissipate by both vertical and radial flow, the excess 
pore water pressure ue remaining at any point within the soil mass at any time is given by

 =u u u u( )/e e,r e,z e0   (4.69)

where ue,r is the excess pore water pressure which would remain in the case of radial drain-
age alone, ue,z is the excess pore water pressure which would remain in the case of vertical 
drainage alone, and ue0 is the initial excess pore water pressure. The same applies to the 
average excess pore water pressure U,
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 U U U Uz= ⋅( )/r 0   (4.70)

As the initial excess pore water pressure distribution is uniform with depth, the average 
settlement ρav is given by

 E d Uρ = ′ ∆σ −(1/ ) ( )av 0 v

and the ultimate settlement ρult by

 
E dρ = ′ ∆σ(1/ )av,ult 0 v

where σv is the applied surface load and d is the depth of the clay layer. Hence the degree of 
consolidation R = ρav/ρav,ult is equal to 1 − U/Δσv. As Δσv = U0,

 = − = −R U U U U R1 / , or / 10 0   (4.71)

Similarly, Uz/U0 = 1−Rz, and Ur/U0 = 1−Rr, where Rz is the degree of consolidation due 
to vertical flow alone and Rr is the degree of consolidation due to radial flow alone. Dividing 
both sides of Equation 4.70 by U0 and rewriting it in terms of R, Rr and Rz,

 − = − −R R R(1 ) (1 )(1 )r z   (4.72)

where Rr may be obtained using Figure 4.39 and Rz using Figure 4.18 or Figure 4.37 
(Equation 4.53).

Vertical drains are usually installed in a square grid, in which case the cylinder of clay 
they drain is square on plan, or in a triangular grid, in which case the cylinder is hexagonal 
on plan. In either case, the radius of the equivalent circular cylinder r0 is calculated on the 
assumption that its plan area is the same as that of the real cylinder. Thus, for a square grid, 
r0 = s√(1/π) = 0.564s, and for a triangular grid r0 = s√[6/(4π tan 60°)] = 0.525s, where s is 
the distance between adjacent drains.
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Barron (1948) also gives solutions for the case where the load is rigid so that uniform 
strains are imposed. This analysis is complicated by the fact that it can no longer be assumed 
that all volume change is due to vertical settlement, and radial strains must be permitted to 
develop within the soil mass (see also Al-Tabbaa and Muir-Wood, 1991). Barron presents 
further analyses, taking account of the effects of smear during well drain installation. Smear 
might result in a zone of reduced permeability in the immediate vicinity of the drain, and a 
consequent slowing of consolidation.

4.10  LIMITATIONS OF THE SIMPLE MODELS FOR THE 
BEHAVIOUR OF SOILS IN ONE-DIMENSIONAL 
COMPRESSION AND CONSOLIDATION

One of the aims of the various examples presented in this book is to show that simple ideas 
and models can be used successfully in the analysis of real geotechnical problems. However, 
the model must encapsulate the dominant aspects of field behaviour, and it is important that 
nothing significant is overlooked.

To be certain that a model is genuinely suitable for a potential real application, you must 
be aware of its shortcomings and inherent assumptions. In this section, some of the main 
limitations of the models for the behaviour of clay soils in one-dimensional compression and 
consolidation are reiterated.

4.10.1  Model for one-dimensional compression and 
swelling: specific volume against σσ′ln( )v

It was mentioned in Section 4.2 that the unload/reload path in the v, lnσ′v plane is in real-
ity a hysteresis loop (Figure 4.6), and the slope κ0 is not constant. The one-dimensional 
normal compression line also displays some variation in slope at low values of σ′v. This can 
be substantially eliminated by plotting ln v against lnσ′v (Butterfield, 1979). However, the 
curvature of the one-dimensional normal compression line is much less pronounced than 
that of the unload/reload lines, and for most practical purposes the model described herein 
is quite adequate.

The soil particles and the pore water are assumed to be incompressible in themselves, so 
that any change in volume results from a rearrangement of the soil skeleton and an accom-
panying change in void ratio. For most soils, this assumption is reasonable, unless stresses 
are high enough to cause significant particle crushing, which can be the case especially 
where there are stress concentrations or the soil grains are fragile.

In practice, sample disturbance may result in a curved transition from a reload line to 
the one-dimensional normal compression line: this makes the identification of the pre- 
consolidation pressure somewhat subjective.

4.10.2 One-dimensional consolidation solutions

The underlying assumptions in the analyses of one-dimensional consolidation presented 
in this chapter are that the physical properties of the soil (k, E′0, cv and the unit weight γ) 
remain constant while consolidation takes place; and that the compression which occurs 
does not significantly affect the geometry (primarily the thickness of the specimen or the 
consolidating layer and the drainage path length). It is well known that the physical proper-
ties of the soil depend on the effective stress; thus they will change during consolidation. 
In many cases, however, the effect of this is not too significant, provided that the effective 
stress is not increased or decreased by a factor of more than approximately two. In the 
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self-weight consolidation of a slurry or an hydraulic fill, the initial effective stresses are close 
to zero, and the effective stress is almost certain to increase during consolidation by a factor 
of considerably more than two. Furthermore, the settlements during self-weight consolida-
tion will bring about significant changes in geometry. In these circumstances, the theories 
presented in this chapter must be viewed as even more than usually approximate. A rigorous 
mathematical treatment of the consolidation process, in which changes in geometry and soil 
properties are taken into account, is given by Gibson et al. (1967).

The use of a consolidation coefficient in the calculations based on oedometer tests in 
vertical flow must be expected to underestimate consolidation times considerably in field 
conditions where horizontal flow is important. This is demonstrated by the probable three 
orders of magnitude difference between the vertical and the horizontal permeabilities of the 
glacial lake deposits at Conwy (Section 4.7.3). The value of = ′ γc k E /hv h 0 w used to calculate 
the piezometer response shown in Figure 4.30 was reasonably consistent with values of kh 
measured in a field pumping test and E0′ measured in an oedometer. The value of ′ γc k E /v v 0 w 
obtained from the oedometer test would have been too small by a factor of 1,000 or so, 
because of the difference between kh and kv.

Consolidation in the field may also be accelerated by macro-fabric effects (such as fissures 
and sand partings), which represent preferential drainage paths that cannot be reproduced 
in small-scale laboratory tests.

4.10.3  Horizontal stresses in one-dimensional 
compression and swelling

One significant limitation of a conventional oedometer is that it has no facility for the mea-
surement of horizontal stress. This is mainly because of the additional complexity that this 
would entail, and the considerable difficulties associated with obtaining reliable measure-
ments of stresses in soils. Nonetheless, the horizontal stress in a natural soil deposit due to 
a geological stress history of one-dimensional compression and swelling can be an impor-
tant consideration in the analysis of underground structures such as in situ retaining walls 
(Chapter 9).

One-dimensional compression tests carried out in modified oedometers equipped with 
lateral stress transducers (Brooker and Ireland, 1965; Mayne and Kulhawy, 1982) have gen-
erally shown that, for normally consolidated soils, the horizontal effective stress h′σ  increases 
in proportion to the vertical effective stress v′σ , with

 (1 sin )h v′σ = − ′ϕ × ′σ   (4.73)

as originally suggested by Jaky (1944). (φʹ is the effective angle of friction or the angle of 
shearing resistance of the soil.)

The ratio ′σ ′σ/h v is conventionally given the symbol K, and is known as the earth pressure 
coefficient. The subscript 0 (as in K0) is used to indicate the natural, undisturbed earth pres-
sure coefficient in a soil deposit in situ. The earth pressure coefficient of a normally consoli-
dated soil is sometimes denoted Knc: from Equation 4.73, K (1 sin )nc = − ′ϕ .

On unloading, the horizontal effective stress tends to remain ‘locked in’ as the vertical 
effective stress is reduced. Thus the earth pressure coefficient gradually increases with over-
consolidation ratio (OCR) as the soil is unloaded. On the basis of experimental data, Mayne 
and Kulhawy (1982) suggest the relationship

 K (1 sin ) (OCR)oc
sin= − ′ϕ × ′ϕ   (4.74)
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in one-dimensional swelling. Equation 4.74 applies up to a limit of = + ′ϕ − ′ϕK (1 sin )/(1 sin )p , at 
which the full strength of the soil is mobilised (Section 7.3). The subscript oc denotes that the soil 
is overconsolidated. In natural clay deposits, K0 = Koc and can be—and indeed often is—greater 
than one.

KEY POINTS

• During natural deposition and unloading due to the removal of overburden, beneath 
many foundations and in certain other circumstances, soil compresses or swells pri-
marily in the vertical direction. This mode of deformation, in which direct strain 
occurs only in the direction of loading or unloading, is described as one-dimensional.

• The behaviour of a soil in one-dimensional loading and unloading is investigated in 
an oedometer test. Two types of data are obtained from an oedometer test, relating to 
(a) equilibrium states, after consolidation has ceased and (b) consolidation or swelling 
during each loading or unloading stage.

• For a soil that is being compressed for the first time, equilibrium states lie on a unique 
straight line—the one-dimensional normal compression line—on a graph of specific 
volume v against the natural logarithm of the vertical effective stress, ln( )v′σ :

 v v ln0 0 v= − λ ′σλ  (4.5)

• On unloading and reloading, the soil is much stiffer, following a hysteresis loop in v, 
ln( )v′σ  space, which is usually idealised to a straight, unload/reload line of slope −κ0.

• On a graph of void ratio e against log10 v′σ , the one-dimensional compression line has 
slope −Cc (where Cc is the compression index, Cs = 2.3λ0) and an unload/reload line 
has slope −Cs (the swelling index, Cs = 2.3κ0).

• Deformation in first loading is mainly plastic or irrecoverable, while deformation in 
unloading and reloading is essentially elastic or recoverable.

• A soil on the normal compression line is described as normally consolidated. On an 
unload/reload line, the soil is described as overconsolidated, with an overconsolida-
tion ratio n defined as

 /v(max previous) v(current)n = ′σ ′σ   (4.6)

• The soil stiffness may be characterised by means of the one-dimensional modulus, E0′ 
Overconsolidated soils are stiffer than normally consolidated soils over the same stress 
range and E0′ increases with effective stress, unless the soil moves from a reloading line 
onto the normal compression line.

• The idealisation of a soil as an almost elastic material requires that the changes in 
stress and strain are small; the stiffness modulus has been determined over an appro-
priate stress range and from a realistic initial stress state; and that the soil is overcon-
solidated (or there is no reversal in the direction of the stress path).

• A soil with low permeability does not respond immediately to an increase in total 
stress, because the effective stress cannot increase unless the soil skeleton compresses. 
For the soil skeleton to compress, water must flow from the pores. The rate at which 
this can occur depends on the permeability of the soil.

• As the effective stresses cannot change instantaneously, an increase in boundary stress 
is carried initially by an increase in pore water pressure. This sets up a non-equilibrium 
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pore water pressure gradient, in response to which water begins to flow from the soil 
pores. As water flows from the pores, the pore water pressure starts to fall, the effec-
tive stresses start to increase, and the soil consolidates.

• The rate of consolidation of a soil increases as the permeability k and one-dimensional 
modulus E0 increase. In addition to the soil properties, consolidation times in the field 
depend on the problem geometry, increasing in proportion to the square of the drain-
age path length, d.

SELF-ASSESSMENT AND LEARNING QUESTIONS

ANALYSIS AND INTERPRETATION OF ONE-DIMENSIONAL 
COMPRESSION TEST DATA

4.1 a. What factors govern the relevance of the parameters obtained from an oedometer 
test to a given design situation?

 b. Data from an oedometer test are given in Table 4.11. Show that the specific volume 
v is related to the sample height h by the expression (v/h) = constant. Plot a graph 
of specific volume v against the natural logarithm of the vertical effective stress, 
ln( )v′σ , and explain its shape. Calculate the values of κ0 and λ0.

 c. Figure 4.40 shows the ground conditions at the site of a proposed new office build-
ing. The office building will have a raft foundation, the effect of which will be to 
increase the vertical effective stress in the clay layer by 50 kPa throughout its depth. 
The oedometer test sample was taken from the mid-depth of the clay layer, that is, 
5 m below ground level. Explaining your choice of one-dimensional modulus E0, 
estimate the eventual settlement of the clay layer. What, qualitatively, would be the 
effect if the foundation load were to be increased by a further 50 kPa?
[(b) κ0 = 0.035; λ0 = 0.094; (c) 74 mm.]

4.2 a. Describe with the aid of a diagram the important features of a conventional oedom-
eter, and define the parameters that this apparatus is used to measure.

 b. Data from an oedometer test on a specimen of clay are given in Table 4.12.
  Calculate the specific volume at the end of the test, assuming Sr = 1 and w = 

32.84% at this stage. What was the saturation ratio at the start of the test, if the 
initial water content was 45.14%?

  Show that the specific volume is related to the specimen height by the expression 
v/h = A/Vs = constant, where A is the cross-sectional area of the specimen and Vs 
is the volume occupied by the soil grains.

  Plot a graph of the specific volume against the natural logarithm of the verti-
cal effective stress. Explain the shape of this graph. Calculate the preconsolida-
tion pressure and the slopes of the one-dimensional normal compression line and 
unloading/reloading lines.

 [(b) v = 1.857; Sr = 99% initially; preconsolidation pressure 200 kPav,max prev′σ = ; 
λ0 = 0.221; κ0 = 0.039.]

Table 4.11 Oedometer test data for Q4.1

v′σ  (kPa) 25 50 100 200 100 50
Equilibrium sample height h after 
consolidation has ceased (mm) 19.86 19.56 19.27 18.48 18.79 19.08

Note: Water content of specimen at the end of the test ( 50 kPav′σ = , h = 19.08 mm): 
20.88%.Particle relative density (grain specific gravity) Gs = 2.75.
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4.3  For the oedometer test described in Question 4.2b, plot a graph of vertical effective 
stress v′σ  against vertical strain εv. For each of the loading and unloading steps, cal-
culate the one-dimensional modulus E / (0 v v v′ = ∆ ′σ ∆ε ∆ ′σ  and Δεv are the changes in 
vertical effective stress and strain that occur during the loading or unloading step). 
Comment briefly on the significance of these results in the context of the selection of 
parameters for design.
[Answers given in the form load increment/decrement (kPa), E0́ (MPa): 50–100 kPa, 4.06 
MPa; 100–200 kPa, 8.02 MPa; 200–400 kPa, 2.77 MPa; 400–800 kPa, 5.18 MPa; 
800–600 kPa, 31.78 MPa; 600–400 kPa, 21.97 MPa.]

ANALYSIS OF DATA FROM THE CONSOLIDATION PHASE

4.4 a. Data from one stage of an oedometer test are given in Table 4.13.
  For this load increment, estimate the one-dimensional modulus E0′, the con-

solidation coefficient cv, and the vertical permeability of the soil kv. (It may be 
assumed that the initial slope of a graph of proportional settlement R = ρ/ρult 
against the square root of the time factor T = cvt/d2 is equal to (4/3), that is, 
R T(4 /3)= .)

  What factors would you take into account in the laboratory determination of 
E c,0 v′  and kv for use in design? What difficulties might you encounter in attempting 
to use oedometer test results to predict rates of settlement in the field?

 [ 2.22 MPa; 1.265 mm /min; 3.35 10 m/s.]0 u
2

u
7E c k′ = = = × −

4.5  An engineer carries out an oedometer consolidation test on a sample of stiff clay, in 
connection with the design of a proposed grain silo. The results from this test are given 
in Table 4.14.

Water table (all strata)

Sandy gravel

Clay

0

2.5

5.0D
ep

th
 (m

)

7.5
Firm bedrock

(depth of  oedometer
test sample)

All soils have γ = 20 kN/m3

γw = 10 kN/m3

Figure 4.40 Ground conditions at proposed construction site, Q4.1.

Table 4.12 Oedometer test data for Q4.2

v′σ  (kPa) 50 100 200 400 800 600 400

Equilibrium specimen 
height h (mm)

17.123 16.912 16.701 15.496 14.300 14.390 14.521

Note: Cross-sectional area of specimen = 80000 mm2; Gs = 2.61; Two-way specimen drainage.



226 Soil mechanics: concepts and applications

© 2010 Taylor & Francis Group, LLC

  Suggest a reason for the initial settlement of 0.02 mm. Estimate the one- 
dimensional modulus E0′ and the consolidation coefficient cv for the clay over the 
stress range under consideration. (It may be assumed that a graph of the consolida-
tion settlement ρ against the square root of the elapsed time t has an initial slope 
of (4 /3 )ult v

2c dρ  that is, that c t d(4 /3 ).)ult v
2ρ = ρ

  [Initial settlement is probably due to trapped air (careless sample preparation), 
therefore use a datum of 0.02 mm for calculating the true consolidation settle-
ments. ′ ≈ ≈E c10 MPa; 2.1 mm /min0 v

2 .]

APPLICATION OF ONE-DIMENSIONAL COMPRESSION 
AND CONSOLIDATION THEORY TO FIELD PROBLEMS

4.6 Figure 4.41 shows a cross-section through a long sheet-piled excavation. The width of 
the excavation is b, its depth is h and the sheet piles penetrate a further depth d to a 
permeable aquifer. A standpipe piezometer is driven into the aquifer, and the water in 
the standpipe rises to a height H above the bottom of the sheet piles.

 a. Show that the base of the excavation will become unstable if H > Hcrit, where 
Hcrit = dγ/γw.

 (Note: this is a quicksand problem: see Section 3.11.)
 b. Some time after the excavation has been made, and steady state seepage from the 

aquifer to the excavation floor has been established, it is found that H is indeed 
very close to Hcrit. To reduce the risk of instability of the base, it is decided to reduce 
the head in the aquifer to H/2 by pumping. This is done very rapidly. Explain 
why the pore water pressures in the soil between the sheet piles cannot respond 
instantaneously.

 c. Taking d = 10 m, γ = 20 kN/m3 and γw = 10 kN/m3, draw diagrams to show the 
initial and final distributions of pore water pressure with depth in the soil between 
the sheet piles. Draw also the initial and final distributions of excess pore water 
pressure with depth, and sketch in three or four isochrones at various stages in 
between.

 d. The soil between the sheet piles has a one-dimensional modulus E0́ that increases 
linearly with depth from 5 MPa at the excavated surface to 45 MPa at the interface 
with the aquifer. Estimate the settlement that ultimately results from the reduction 
in pore water pressure due to pumping.

Table 4.14 Oedometer test data for Q4.5

Time (min) 0 0.5 1 2 4 8 16 32 64

Settlement (mm) 0.020 0.044 0.052 0.066 0.086 0.110 0.150 0.192 0.2

Note: Load increment 100–200 kPa; Initial sample thickness 20 mm; Two-way drainage.

Table 4.13 Oedometer test data for Q4.4

Time (min) 0.25 1 4 9 16 25
Settlement (mm) 0.063 0.075 0.103 0.133 0.160 0.185
Time (min) 36 49 64 81 100 196
Settlement (mm) 0.210 0.228 0.240 0.250 0.258 0.265

Note: Load increment 25–50 kPa; Specimen diameter 76 mm; Initial specimen 
thickness 20 mm; Two-way drainage.
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 [(c) Initial pore water pressure = 0 at excavation floor, increasing linearly to 200 kPa 
at the upper surface of the aquifer. Final pore water pressure = 0 at excavation floor, 
increasing linearly to 100 kPa at the upper surface of the aquifer. Excess pore water 
pressures are calculated by subtracting hydrostatic component: initial excess pore 
water pressure increases linearly from 0 at the excavation floor to 100 kPa at the upper 
surface of the aquifer. Final pore water pressures are hydrostatic below excavation 
floor, so final excess pore water pressures are zero.
(d) Settlement = 19 mm (by integration).]

4.7 Figure 4.42 shows the ground conditions at the site of the Jubilee Line Extension 
station at Canary Wharf, in East London. During construction of the station, it was 
necessary to lower the groundwater level at the top of the Thanet Sands to 84 m above 
site datum.

 a. Assuming that the groundwater level in the Thames Gravels is unaffected, and that 
the groundwater level at the top of the chalk is reduced by only 35 kPa, construct a 
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Figure 4.41 Sheet-piled cofferdam, Q4.6.
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Figure 4.42 Ground conditions at Canary Wharf station construction site, Q4.7.
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table showing the initial and final vertical effective stresses at the ground surface and 
at the interface levels between each of the strata, in the soil behind the retaining wall.

 b. Using the geotechnical data given in Figure 4.42, estimate:
 i. The immediate settlement of the soil surface
 ii. The long-term settlement of the soil surface
 iii. The settlement after a period of 18 months, using the relation between R and 

T given in Figure 4.18.
  Take the unit weight of water γw = 10 kN/m3.
  [(a)  Long-term increment of vertical effective stress is zero above the top of the 

Woolwich and Reading beds (94 m above site datum), increasing linearly to 95 kPa 
at the base of the Woolwich and Reading beds (84 m above site datum), then reduc-
ing linearly to 35 kPa at the top of the chalk (70 m above site datum). 

  (b)  (i) 4.6 mm (due to effectively immediate compression of Thanet Sands);  (ii) 16.5 
mm (after full consolidation of Woolwich and Reading beds);  (iii) 11.4 mm.]

4.8 Data from a consolidation stage of an oedometer test on a specimen of brown silty clay 
are given in Table 4.15.

  Plot a graph of the settlement ρ against the square root of the elapsed time √t. 
Calculate the consolidation coefficient cv and the one-dimensional modulus E '0 over 
this stress range. Giving your reasons, would you expect the value of E '0 over the stress 
range 120–180 kPa to be greater or less than that calculated above, (i) if the soil is 
initially normally consolidated, and (ii) if the soil is initially (i.e. at a vertical effective 
stress of 60 kPa) overconsolidated with OCR = 2? Estimate the eventual settlement of 
a 2 m thick stratum of the silty brown clay in the field, if the average vertical effective 
stress increases from 60 to 120 kPa. How long would it take for a settlement of 90 mm 
to occur (assume two-way drainage)?

 [cv = 1.95 mm2/minute = 3.25 × 10−8 m2/s, E′0 = 960 kPa over the stress range 
60–120kPa; (i) greater because the soil is on the normal consolidation line in both 
cases; (ii) less because the soil will move from an unload/reload line to the ncl at 
σ′v = 120 kPa; eventual settlement = 125 mm; 90 mm represents R = 0.72 which cor-
responds to T = cv.t/d2 = 0.5265 giving t ~190 days.]

NOTES

 1. As mentioned in Chapter 3, there are, unfortunately, two different definitions of the 
term excess pore water pressure. In this chapter, the term is used to mean pore water 
pressures over and above hydrostatic. This means that zero excess pore water  pressures 
correspond to zero flow. If the excess pore water pressures are non-zero, flow may be 
either transient (in which case consolidation is taking place) or steady (in which case it 
is not). The equivalence between excess head he and hydraulic total head h is dependent 
on the adoption of this definition of excess pore water pressure.

  In some texts, the term excess pore water pressure is used to mean pore water pres-
sures over and above those at the steady state, which may or may not be hydrostatic. 

Table 4.15 Oedometer test data for Q4.8

Elapsed time t (min) 1 4 11 18.75 36 64 100

Settlement ρ (mm) 0.20 0.40 0.67 0.84 1.11 1.24 1.25

Note:  Load increment from 60 kPa to 120 kPa; Specimen height at start of load increment = 20.00 mm; 
Two-way drainage; cv = 3d2/4tx.
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Using the second definition, zero excess pore water pressures will indicate that consoli-
dation has ceased. Steady state flow, however, may still be taking place.

  The fact that there are two alternative definitions of the term excess pore pressure is 
confusing, but is unlikely to lead to errors except in the analysis of problems in which 
the steady state conditions are not hydrostatic. An example of such a problem is given 
in Section 4.7.2. A full discussion of the implications of each definition is given by 
Gibson et al. (1989).

 2. In the analysis of consolidation problems, the excess pore water pressure ue and 
the quantities related to it are functions of both depth z and time t. It is there-
fore appropriate to express differentials using partial notation, for example, ∂ue/∂z 
rather than due/dz. The term ∂ue/∂z signifies the rate of change of ue with z at con-
stant t.

 3. Note that there is no need to specify the hydraulic gradient as −∂he/∂z, because the 
flow rate has been taken as positive upwards, which is in the z-negative direction.
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Chapter 5

Triaxial test and soil behaviour

5.1 INTRODUCTION

The triaxial test is widely used, both in industry and research, to investigate the stress-strain 
behaviour of soils. In this chapter, the triaxial test apparatus and standard testing proce-
dures, and the analysis of triaxial test data, are described. The triaxial test is then used to 
introduce the more general behaviour of soils, especially saturated clays. At the end of this 
chapter, issues such as anisotropy, creep and partial saturation, which are not taken into 
account in simple models of soil behaviour, are addressed.

Some of the later sections—and possibly the numerical parts of Section 5.12 on state 
paths during shear—may be outside the scope of some courses in soil mechanics at first 
degree level.

5.1.1 OBJECTIVES

After having worked through this chapter, you should understand

• The standard procedures adopted in the triaxial testing of soils, in particular the dis-
tinctions between the isotropic compression and shear stages of a test, and between 
drained and undrained shear tests (Sections 5.2 to 5.9).

• That in the triaxial test, the appropriate indicators of the state of the soil are the  specific 
volume v, average principal effective stress p′ and deviator stress q (Section 5.3).

• The methods of analysis used, and their underlying assumptions and limitations 
(Sections 5.4 to 5.9).

• The distinction between failure and yield, and the concept of a yield locus in three-
dimensional v, p′, q space (Sections 5.10 and 5.11).

• That when sheared, a loose or lightly overconsolidated soil will tend to contract or 
generate positive pore water pressures following yield. It will eventually reach a criti-
cal state in which further shear strain occurs at constant v, p′ and q (Sections 5.10 
to 5.12).

• That a dense or heavily overconsolidated soil will tend to dilate or generate negative 
pore water pressures following yield. It will develop a peak strength, and will then 
probably fail by rupture before reaching a uniform critical state. The possible combi-
nations of v, p′ and q at rupture represent a three-dimensional surface—the Hvorslev 
surface—in (v, p′, q) space (Section 5.13).
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You should be able to

• Process data from a triaxial test, and present results as graphs of q, q/p, mobilised 
strength φ′mob, and pore water pressure change u or volumetric strain εvol against axial 
strain εa or shear strain γ (Sections 5.3 and 5.4)

• Plot and interpret state paths on graphs of v against p′; v against ln p′; q against p′ and 
q against p′ (Sections 5.3 and 5.4)

• Draw Mohr circles of stress and strain for triaxial test specimens, sketch peak and 
critical state strength failure envelopes, and determine the mobilised strength at any 
stage φ′mob, the critical state strength φ′crit, the peak strength φ′peak, and the undrained 
shear strength τu (Sections 5.4 to 5.6, 5.10, and 5.13)

• Predict the state paths followed by triaxial test specimens, using the Cam clay model 
and/or other triaxial test data (Sections 5.12 and 5.13)

You should have an appreciation of

• The limitations of the Cam clay and critical state models, with regard to the develop-
ment of ruptures (Sections 5.13 and 5.14), soil structure effects and sensitivity (Section 
5.15), creep (Section 5.17) and anisotropy (Section 5.18)

• The correlation between critical state parameters and index tests (Section 5.16)
• The difficulties associated with unsaturated soils (Section 5.19)
• The application of critical state models to sands (Section 5.20)
• The availability of more sophisticated and realistic models, developed from Cam clay, 

for use in numerical analysis (Section 5.21)

5.2 TRIAXIAL TEST

5.2.1 Apparatus

The triaxial test apparatus is illustrated in Figure 5.1. The test is based on a cylindrical 
specimen of soil with a height:diameter ratio of 2. Commonly, specimens are either 38 mm 
or 100 mm in diameter, but other sizes are sometimes used. In general, larger specimens 
provide a better representation of the in situ behaviour of the soil, as they contain more of 
it. Specimens of 38-mm diameter are only really suitable for homogeneous soils, without sig-
nificant fabric or fissuring. A 38-mm diameter specimen may be small enough to fit between 
the fissures present in a real deposit, and hence may give an unduly optimistic indication of 
the bulk soil strength (Marsland, 1972).

The specimen is enclosed by a thin rubber membrane and placed inside the triaxial cell, 
where it can be subjected independently to an all-round isotropic pressure from the cell fluid 
(known as the cell pressure), and a vertical force acting through a piston. If the force through 
the piston (the ram load) is compressive, as is usually the case, its effect is to increase the 
axial (vertical) stress to a value greater than the radial (horizontal) stress applied by the cell 
pressure. The axial (vertical) stress will then be the major principal stress, and the radial 
(horizontal) stress the minor. A ram load that is tensile will reduce the axial (vertical) stress 
to a value less than the cell pressure, but is still compressive: in this case, the radial stress is 
the major principal stress, and the axial stress the minor.

Modern versions of the triaxial apparatus are computer-controlled. The cell pressure, 
pore water pressure, axial load, axial strain, volumetric strain and combinations thereof can 
be varied so as to subject the specimen to almost any desired pattern of loading or unload-
ing. However, the imposed stress state is always axisymmetric (i.e. has rotational symmetry 
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about the vertical axis of the specimen: Section 2.2.4), whereas conditions of plane strain 
would be more suitable for many civil engineering applications. Plane strain conditions are 
found (at least approximately) in geotechnical engineering constructions such as embank-
ments, cuttings, trenches and retaining walls, which may reasonably be considered to be 
long in comparison with their width and height (Section 2.2.3).
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Figure 5.1  Triaxial test apparatus: (a) schematic and (b) hydraulically operated cell. (From Bishop, A.W. and 
Wesley, L.D., Géotechnique, 25, 4, 657–70, 1975. With permission.)
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5.2.2 Procedures

There are normally two stages in a conventional triaxial test. In the compression or con-
solidation stage, the cell pressure alone is increased to some desired value which represents 
the starting point for the shear test. In the shear test, an additional axial stress (which may 
be either compressive or tensile) is applied vertically via the ram. Before the development of 
computer control, the triaxial apparatus was usually used to carry out shear tests in which 
the cell pressure was kept constant while the axial stress was increased until the specimen 
failed. For this largely historical reason, such a procedure is known as a conventional triax-
ial compression test. Less commonly, a triaxial extension test might be carried out, in which 
the cell pressure is kept constant while the axial stress is reduced (by means of a tensile ram 
load) until the specimen fails.

During a triaxial shear test, the drainage taps to the specimen can be kept either open or 
closed. With the drainage taps closed, water cannot move out of or into the specimen: such 
a test is described as undrained. An undrained test in which the specimen has been allowed 
to consolidate or swell to its equilibrium moisture content during the application of the cell 
pressure prior to shear, is known as a consolidated–undrained test. A test in which no drain-
age into or out of the specimen prior to shear has been allowed (i.e. the drainage taps have 
remained closed during the application of the cell pressure, preventing consolidation from 
taking place) is termed an unconsolidated–undrained test. Unconsolidated–undrained tri-
axial tests are usually carried out—if at all—on ′undisturbed′ samples of soil from the field, 
in an arguably misguided attempt to estimate the undrained shear strength of the soil in situ.

In an undrained test, deformation takes place at constant volume (making the usual soil 
mechanics assumption that the soil particles and the pore water are incompressible), and 
excess or non-equlibrium pore water pressures will be generated during shear. These pore 
water pressures should be measured using an appropriate transducer, so that the results of 
the test may be analysed in terms of effective stresses. Undrained tests should be carried out 
sufficiently slowly for the distribution of pore water pressure within the specimen to remain 
uniform. Typically, a high-quality undrained shear test on a clay specimen of 38-mm diam-
eter would be carried out over a working day.

With the drainage taps open, water is free to flow out of or into the test specimen: this 
is known as a drained test. Such tests are always carried out on specimens that have been 
allowed to consolidate or swell to a moisture content in equilibrium with the test cell pres-
sure. Drained tests must be carried out slowly enough not to allow significant excess pore 
water pressures to develop within the specimen, at the point furthest from the drainage 
boundary. The rate of testing will depend on the permeability and size of the specimen and 
on the drainage arrangements: typically, a high-quality conventional drained shear test on a 
clay specimen of 38-mm diameter would take a week or more. Tests for research purposes, 
in which the specimen is prepared in the triaxial cell and subjected to a variety of complex 
stress or strain paths before being brought finally to failure, may take months.

Analysis of the behaviour of soils that are unsaturated (i.e. neither dry not fully satu-
rated) is possible, but difficult (Section 5.19). Below the water table in temperate zones, an 
unsaturated specimen is probably the result of poor sampling and preparation rather than 
representative of reality. Difficulties with unsaturated conditions can be avoided by ensuring 
that any air present remains dissolved in the pore water; this is achieved by preparing and 
testing specimens at an increased pore water pressure known as a back pressure. The cell 
pressure must be increased by the same amount as the pore water pressure, if the effective 
confining stress is to remain unaltered.

Following consolidation of the specimen in the triaxial cell, it is good practice to check 
the degree of saturation by measuring the increase in pore water pressure, Δu, in response to 
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an increase in cell pressure, Δσc, with the drainage taps closed. If the specimen is fully satu-
rated, the ratio Δu/Δσc (known as the B-value) should be equal to 1. A B-value of less than 
1 indicates that air is present in the soil pores, and the back pressure should be increased 
further to dissolve it. The relation between the B-value and the degree of saturation, Sr, 
depends on the stiffness of the soil. A B-value of 0.95 might indicate a saturation ratio, Sr, of 
99.9% in a stiff clay, but a saturation ratio of only 96% in a soft clay (Black and Lee, 1973).

5.3 STRESS PARAMETERS

5.3.1 Stress invariants

We have already seen (in Section 2.8) how a complete description of the state of a soil 
requires information concerning the shear stress, the normal effective stress and the void 
ratio or the specific volume. In the shearbox test, the shear stress and normal effective stress 
acting on the central horizontal shear plane were deduced from the external normal and 
shear loads applied to the specimen. The specific volume or void ratio was determined from 
the total volume of the specimen at any stage (monitored by measuring the specimen height) 
and the known volume of soil grains.

A knowledge of the stress state on just one plane alone is not sufficient to define the stress 
state of a specimen completely, even if we confine our attention to the major and minor prin-
cipal effective stresses σ′1 and σ′3, and neglect the intermediate principal effective stress σ′2. In 
the analysis of the shearbox test in Chapter 2, it was necessary to assume, for example, that 
the shear plane is the plane of maximum stress ratio—that is, the plane on which the ratio 
of shear to normal effective stress (τ/σ′) is the greatest. This enabled the Mohr circle of stress 
to be drawn as shown in Figure 5.2.

In general to draw a Mohr circle of stress, the major and minor principal effective stresses 
σ′1  and σ′3—or alternatively the radius and the location of its centre on the σ′ axis—must 
be known. From the geometry of the Mohr circle shown in Figure 5.2, its radius is equal to 
(σ′1 − σ′3)/2 and its centre is at (σ′1 + σ′3)/2. These parameters are known as the two-dimensional 
stress invariants, and are conventionally given the symbols t and s′ respectively:

 t = (σ′1 − σ′3)/2  (5.1)

 s′ = (σ′1 + σ′3)/2  (5.2)

s′ is the average effective stress and t is the maximum shear stress within the specimen. 
Since the parameters t and s′ provide indications of shear and normal effective stresses, 
respectively, they may be used (together with the void ratio e or the specific volume v) to 
define the state of a soil.
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Figure 5.2 Mohr circle of stress for a shearbox specimen.
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State paths, indicating how the state of a soil element changes as it is loaded or unloaded, 
may be plotted as graphs of t against s′ and s′ against v. These graphs are, in fact, two-
dimensional projections of a three-dimensional state path being followed in (t, s′, v) space. 
The stress parameters t and s′ are particularly appropriate to conditions of plane strain, in 
which the intermediate principal effective stress is often considered to be of only secondary 
importance.

The stress state in a plane may be defined completely either by the principal stresses σ′1 
and σ′3, or by the parameters t and s′. Another way of looking at the parameters t and s′ 
is to consider a stress state represented as a point on a graph of σ′3 against σ′1 (Figure 5.3). 
This point may be reached either by travelling a distance σ′1 in the x-direction, followed by 
a distance σ′3 in the y-direction; or by travelling a distance a along the line σ′3 = σ′1, followed 
by a distance b along a line at 90°. It may be shown that the distance a along the line σ′3 = 
σ′1 is equal to √2(s′)while the distance b is equal to √2(t).

Conditions in the triaxial test do not correspond to plane strain, and the intermediate 
principal effective stress is known. In a conventional triaxial compression test, the interme-
diate principal total stress σ2 is equal to the minor principal total stress σ3, which is provided 
by the cell pressure. Effective stresses are calculated by subtracting the pore water pressure: 
since this is the same in all directions, σ′2 = σ′3.

In an extension test, the ram load is tensile so that the vertical stress on the specimen is 
lesser than the cell pressure σc (but still positive or compressive overall). The intermediate 
principal stress is again equal to the cell pressure. However, in an extension test, the cell 
pressure is the major principal stress, so that σ′2 = σ′1 = σc − u.

In general, if the intermediate principal effective stress is known, and the mode of defor-
mation is not plane strain, it is appropriate to use the three-dimensional stress invariants 
q and p′:

 1/ 2 1 2
2

1 3
2

2 3
2{ }( ) ( ) ( )( )= ′σ − ′σ + ′σ − ′σ + ′σ − ′σq

  
(5.3a)

and

 p′ = (1/3)(σ′1 + σ′2 + σ′3)  (5.3b)

The parameters q and p′ provide an indication of the shear and normal stresses respec-
tively, and so may be used (together with e or v) to define stress states and plot state paths. 
p′ is the mean or average principal effective stress, and is directly analogous to s′. The inter-
pretation of q, which is termed the deviator stress, is more difficult. A three-dimensional 
stress state can be defined by the three principal stresses, so that stress states may be rep-
resented by points in a three-dimensional coordinate system whose axes are σ′1, σ′2 and σ′3 
(Figure 5.4a).

Referring to Figure 5.4, the stress point may be reached by travelling along the hydrostatic 
axis σ′1 = σ′2 = σ′3 for a distance a, and then along a line perpendicular to the hydrostatic axis 

σ3́

σ1́

σ3́
σ1́

σ1́  = σ3́

a b

O

Figure 5.3 Representation of a plane stress state on a graph of σ′3 against σ′1.
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for a distance b. It may be shown that the distance a along the hydrostatic axis is equal to 
√3(p′), while the distance b along the perpendicular is equal to 1/ 2( )q. A third parameter 
is needed to specify the stress state completely: this is the Lode angle θ, which indicates the 
orientation of the line perpendicular to the hydrostatic axis (Figure 5.4b). For the axisym-
metric conditions imposed on the soil specimen in the triaxial test, σ′2 is equal to either σ′1 or 
σ′3, and the general expression for q (Equation 5.3a) becomes

 q = σ′1 − σ′3  (5.4)

It is conventional to use the state parameters q, p′ and v to describe the behaviour of a soil 
specimen in the triaxial test. State paths are plotted as graphs of q against p′, and v against 
p′ or the natural logarithm of p′. Again, these are two-dimensional projections of three-
dimensional state paths being followed by the soil in (q, p′, v) space. In addition, the imposed 
total stress path is plotted in terms of q and p. Section 5.4 is concerned with converting the 
raw data measured in the triaxial test to the state parameters q, p′and v. A clear and concise 
summary of the various stress parameters, and their application to common civil engineer-
ing situations, is given by Wood (1984).

5.3.2 Notation

It is perhaps worth mentioning at this point the systems of subscripts used to describe stresses. 
In the ground, we will usually be interested in the vertical and horizontal effective stresses, 
which are denoted by the subscripts v and h, respectively. In the triaxial test, the relevant 
stresses are axial and radial, which are given the subscripts a and r, respectively. Usually, if 
a sample is taken from the ground and placed in the triaxial cell, the vertical stress in the 
ground will correspond to the axial stress in the triaxial cell. The radial stress in the triaxial 
cell then represents the horizontal stress in the ground.

In some cases, it is convenient to refer to the effective stresses by the numerical subscripts 
1, 2 and 3. This system is used when the stresses are principal stresses (i.e. they act on planes 
on which there is no shear stress). The numbers do not in general correspond to unique physi-
cal directions. In the triaxial test, however, the axial and radial stresses will always be princi-
pal stresses, because there is no facility to apply direct shear to the specimen on a vertical or 
a horizontal plane. In a conventional triaxial compression test, the axial effective stress is the 
major principal effective stress, σ′1 = σ′a, while the cell pressure provides both the intermedi-
ate and the minor principal effective stresses, σ′2 = σ′3 = σ′r = σ′c−u. In a triaxial extension test, 
the axial effective stress is the minor principal effective stress, σ′3 = σ′a, while the cell pressure 
provides both the intermediate and the major principal stresses, σ′2 = σ′1 = σ′r = σ′c−u.

σ1́ = σ2́ = σ3́
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σ1́
σ1́

σ1́

σ2́

σ3́

θ

σ3́

σ3́
b

b
a

(a) (b)

Figure 5.4  (a) Representation of a three-dimensional stress state in σ′1, σ′2, σ′3 space (orthogonal view). 
(b) View along the hydrostatic σ′1 = σ′2 = σ′3.
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A further source of potential confusion arises in the exact definition of the deviator 
stress q. Equation 5.4 defines q in terms of major and minor principal effective stresses. This 
means that q is always positive because (by definition) σ′1 ≥ σ′3. In interpreting triaxial tests 
and soil behaviour in general, it is often useful to distinguish between conditions of triaxial 
compression (with σ′a ≥ σ′r) and triaxial extension (with σ′a ≤ σ′r). (These correspond to con-
ditions in the field where σ′v ≥ σ′h and σv ≤ σ′h respectively.) It is, therefore, quite common to 
define the deviator stress q as

 q = σ′a − σ′r  (5.5)

so that state paths on a graph of q against p′ plot above the p′ axis (q positive) for triaxial 
compression, and below the p′ axis (q negative) for triaxial extension.

5.4 STRESS ANALYSIS OF THE TRIAXIAL TEST

5.4.1 Assumptions

The principal assumptions made in the stress analysis of the triaxial test are that the 
specimen deforms as an upright circular cylinder with stresses and strains uniform and 
continuous, and that the principal stresses are axial (vertical) and radial (horizontal). In 
practice, the specimen may barrel or rupture, invalidating these assumptions. Barrelling 
might occur due to friction on the end platens. Inaccuracies resulting from this effect can 
be minimised by the measurement of strains over a short gauge length at the centre of the 
specimen, using instruments mounted on the specimen inside the cell. The onset of rupture 
will unavoidably invalidate the continuum analysis, because stresses and strains are no 
longer uniform throughout the specimen. This is particularly important in the interpreta-
tion of measurements made at or across the specimen ends, which relies on the validity of 
a continuum analysis.

5.4.2 Measured quantities

The quantities measured in a triaxial test are

• The cell pressure σc (kPa)
• The ram load Q (kN)
• The pore water pressure u (kPa) 
• The change in specimen height Δh, or the movement over a small gauge length at the 

centre of the specimen (mm)
• The change in specimen volume ΔVt (mm3)

The cell pressure σc provides the minor principal total stress σ3 in a triaxial compression 
test, or the major principal total stress σ1 in an extension test, as already discussed.1

The ram load Q is used to determine the difference between the axial stress σa and the cell 
pressure σc, which is the deviator stress defined according to Equation 5.5, q = (σ′a − σ′c) = 
(σa − σc) = Q/A, where A is the current cross-sectional area of the specimen. σ′c is the effec-
tive cell pressure, defined as σ′c = σc − u (i.e. the difference between the cell pressure and the 
pore water pressure).2

The pore water pressure u is needed to calculate the effective stresses acting on the soil 
skeleton.
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The axial strain εa is calculated as Δh/h0, and the volumetric strain εvol as ΔVt/Vt0, where 
h0 and Vt0 are the height and total volume respectively of the specimen at the start of the 
shear test.

The radial strain εr may be calculated from the axial and volumetric strains, assuming 
that the specimen remains cylindrical in shape (Equation 5.13). Alternatively, it might be 
attempted to measure εr directly, using a strain-gauged clip designed for this purpose.

5.4.3  Converting measurements to stress, 
strain and state parameters

The specimen height and volume at the start of the shear test (h0 and Vt0) will not in general 
be the same as the height and volume of the specimen as prepared (hi and Vti), because of the 
change in volume which occurs during the application of the cell pressure. Unconsolidated–
undrained triaxial tests are an exception, because the drainage taps are closed while the cell 
pressure is applied, preventing any change in volume from taking place. The value of Vt0 
may be calculated provided that Vti and the volume of water expelled during consolidation 
ΔVtc are known:

 Vt0 = Vti − ΔVtc  (5.6)

The volumetric strain during consolidation is ΔVtc/Vti. Assuming that the specimen 
deforms isotropically during this stage, the linear strain in all three directions must be the 
same and equal to (ΔVtc/Vti)/3. This is because for small strains, εvol = ε1 + ε2 + ε3 where ε1, 
ε2 and ε3 are the principal strains. Thus,

 h0 = hi[1 – (ΔVtc/3Vti)]   (5.7)

To convert the readings of axial force or ram load Q into deviator stress q (= σa − σc), 
it is necessary to divide by the current true area of the specimen A. Taking compression 
positive,

 Vt = (Vt0 − ΔVtq) = A (h0 − h)

and

 q = Q/A = Q (h0 − Δh)/(Vt0 − ΔVtq)

where ΔVtq is the volume of water expelled during shear. Since

 h0 − h = h0(1 − h/h0) = h0(1 − εa),

and

 (Vt0 − ΔVtq) = Vt0(1 − ΔVtq/Vt0) = Vt0(1 − εvol)

the expression for the deviator stress q becomes

 q = Qh0(1 − εa)/Vt0(1 − εvol)

and since Vt0 = A0h0,

 q = (Q/A0)(1 − εa)/(1 − εvol)  (5.8)
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For a drained test, the volumetric strain, εvol may be found from the volume of water 
expelled, which is measured in a burette or a volume gauge. For an undrained test, εvol = 0 
and q = (Q/A0)(1 − εa).

It is also necessary to calculate from the measured quantities the average effective stress, 
p′ which is in general terms equal to (σ′1 + σ′2 + σ′3)/3. In the triaxial test, two of the principal 
stresses are given by the cell pressure, hence p = [(σa + 2σc)/3] − u. As σa = σc + q,

 p′ = σc − u + q/3 (5.9)

The average total stress p = (σ1 + σ2 + σ3)/3 is given by p′ + u, hence

 p = σc + q/3 (5.10)

The specific volume at the end of the test vf may be determined from the dry mass of the 
specimen ms and its final total volume Vtf (which should be equal to the volume of the speci-
men as prepared Vti minus by the volume of water expelled during consolidation ΔVtc and 
shear ΔVtq, Vtf = Vti − ΔVtc − ΔVtq), provided that the relative density of the soil particles (the 
grain specific gravity) Gs is known:

 Vtf = Vs + Vvf = Vs(1 + Vvf/Vs) = Vs(1 + ef) = Vsvf

where Vs is the volume of soil solids and Vvf is the final volume of voids. Also,

 Vs = ms/ρs = ms/(Gsρw)

Hence,

 vf = VtfGsρw/ms  (5.11)

Measurement of the final water content wf provides a check, assuming that the specimen 
is saturated:

 ef = wfGs

so

 vf = 1 + wfGs  (5.12)

In practice, it can be difficult to remove the specimen cleanly from the membrane to mea-
sure the dry specimen mass ms, so that Equation 5.12 will usually give a more reliable result 
than Equation 5.11.

In addition to plotting the state paths followed in terms of q, p′ and v—usually, as graphs 
of q against p′ and specific volume v against ln(p′)—test data may also be presented as 
graphs of q (or stress ratio η = q/p′) against axial strain εa, and volumetric strain εvol (for 
a drained test) or change in pore water pressure Δu (for an undrained test) against εa. The 
usual sign convention is that compressive volumetric strains and increases in pore water 
pressure are positive, but plotted below the horizontal axis (Figure 5.5).
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5.4.4 Mohr circles of stress

We have already seen that the stress state imposed on the soil specimen in a triaxial test is 
radially symmetric rather than plane strain. However, two-dimensional Mohr circles of stress 
and strain can still be plotted, representing the conditions on any vertical plane containing a 
diameter (as in Figure 2.2). The Mohr circle of effective stress is shown in Figure 5.6.

In a conventional triaxial compression test, σ3 is equal to the cell pressure and σ1 = σ3 + q. 
The effective stresses are σ′1 = σ1   u and σ′3 = σ3 − u; in an undrained test, or in a drained test 
carried out against a back pressure, u is not equal to zero. The maximum stress ratio (τ/σ′) 
mobilised in the specimen corresponds to a mobilised strength or a mobilised angle of shear-
ing, φ′mob = sin−1(σ′1 − σ′3)/(σ′1 + σ′3). Angle φ′mob is defined by the tangent to the Mohr circle that 
passes through the origin, and is a measure of the strength used or mobilised to enable the 
soil to carry the applied stresses. If the soil had only this strength, it would be on the verge of 
failure. The concept of mobilised strength is discussed further in Chapters 7 to 9.
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Figure 5.5  Typical triaxial test data: (a) deviator stress q and volumetric strain εvol against axial strain for a 
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5.4.5 Mohr circles of strain

In an undrained test, εvol = ε1 + ε2 + ε3 = εa + 2εr = 0. Therefore,

 εr = −(1/2)εa  (5.13a)

and the maximum shear strain is γmax = 1.5εa, as shown by the Mohr circle of strain in 
Figure 5.7.

In a drained test, εvol is non-zero, so that

 εr = (1/2)(εvol − εa)  (5.13b)

and the maximum shear strain γmax is equal to (3εa − εvol)/2. (Figure 5.8)

5.4.6 Other ways of presenting shear test data

Triaxial shear test data can also usefully be presented as graphs of mobilised angle of shear-
ing φ′mob, and volumetric strain εvol (in a drained test) or change in pore water pressure Δu 
(in an undrained test), as functions of shear strain γ, as shown in Figure 5.9. It is shown in 
Section 5.10.1 that, in triaxial compression, the mobilised angle of shearing φ′mob is related 
to the stress ratio q/p′ by

 
sin =

3 /
6 /mob′ϕ

′
+ ′
q p
q p

 
(5.14)

An alternative shear strain parameter is the triaxial shear strain εq, which is defined as

 ( )ε = ε − ε
2
3q a r

  (5.15)
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Figure 5.7 Mohr circle of strain for an undrained triaxial compression test specimen.
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Figure 5.8 Mohr circle of strain for a drained triaxial compression test specimen.
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The triaxial shear strain εq is defined in this way so that the increment of work done, ΔW 
when a triaxial test specimen is subjected to small increments of shear strain δεq and volu-
metric strain δεvol is given by

 ΔW = q . δεq + p′ . δεvol  (5.16)

(see e.g. Muir-Wood, 1990).
It is shown in Section 6.2.3 that, if the soil is assumed to be isotropic, the Young′s modu-

lus can be obtained from a graph of q against εa. For both isotropic and anisotropic soils, the 
shear modulus may be obtained from a graph of q against γ or εq measured in an undrained 
test, and the bulk modulus from a graph of εvol against p′ in compression or swelling without 
shear (Section 6.10).

Example 5.1: Mohr circle analysis of triaxial test data

 1.  Stating the assumptions you need to make, show that the deviator stress q is 
related to the quantities measured in a drained triaxial compression test by the 
expression

 q = Q(h0 − Δh)/(Vt0 − ΔVtq)

 where Q is the ram load, h0 and Vt0 are the specimen height and total volume at the 
start of the shear test, and h and Vtq are the changes in specimen height and total 
volume measured during the shear test.
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 2. An engineer wanted to investigate the drained strength of a natural sandy silt hav-
ing thin laminations of clay at intervals of approximately 20 mm. The engineer 
decided to take cores through the deposit at various angles, so that the lamina-
tions were inclined at different angles β to the horizontal when each specimen was 
installed in the triaxial cell. A number of very slow drained tests at zero pore water 
pressure were carried out at a cell pressure of 100 kPa. The maximum measured 
values of Q for each test are given in Table 5.1, along with the corresponding values 
of β. Specimens 2 and 3 ruptured along a clay lamination at peak strength: other-
wise the specimens remained cylindrical.

Plot Mohr circles of effective stress at failure for each of the tests, and mark the points 
that indicate the stress states on the clay laminations.

What are the individual values of φ′ at failure for the sandy silt and the clay laminations?

SOluTIOn

 1. Assume that the specimen deforms as a right circular cylinder with stresses and 
strains uniform and continuous, up to the moment of rupture, and that the princi-
pal strains and stresses are radial and axial. Ignore any tendency to distortion that 
would probably in practice result from anisotropy of the soil.

  The deviator stress q = Q/A, where A is the current cross-sectional area of the 
specimen. The current volume = Vt0 − ΔVtq = A(h0 − h), and

 q = Q/A = Q(h0 − Δh)/(Vt0 − ΔVtq)

 2. For the test specimens, h0 = 200 mm and Vt0 = (π1002/4 × 200) = 1,570,796 mm3.

The calculated deviator stresses at failure in each test are given in Table 5.2.
These are drained tests, so u = 0. The Mohr circles of stress are shown in Figure 5.10. 

The circles are drawn with the minor principal effective stress σ′3 equal to the cell pressure 
(100 kPa), and the major principal effective stress σ′1 equal to the cell pressure plus the 
deviator stress, σc + q. The centre of the Mohr circle is at (100 + q/2) kPa and the radius 
is (q/2) kPa.

The major principal effective stress acts on the horizontal plane. The stress state on 
the clay laminations (which are at an inclination β to the horizontal) is found by rotat-
ing through an angle 2β at the centre of the Mohr circle. (In Figure 5.10, β is taken as 
anticlockwise.)

Specimens 1 and 4 give φ′ = 35° for the sandy silt; specimens 2 and 3 give φ′ = 25° for 
the clay laminations.

Table 5.1 Triaxial test data (conditions at failure), for Example 5.1

Test no. β (degrees) Q(N) Δh(mm) ΔVtq(cm3)

1 0 2230 18.5 67.5
2 45 1410 8.2 32.2
3 60 1170 3.0 11.8
4 90 2200 18.0 62.0

Table 5.2 Processed data (conditions at failure) for Example 5.1

Test number

1 2 3 4

q (kPa) 269.2 175.8 147.8 265.4
β (degrees) 0 45 60 90

Note: Specimen dimensions at start of shear: height h0 = 200 mm, diameter = 100 mm.
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5.5  DETERMINING THE EFFECTIVE ANGLE OF SHEARING 
RESISTANCE φ′ FROM TRIAXIAL SHEAR TESTS

Figure 5.9 shows that the mobilised angle of shearing φ′mob may increase with shear strain γ to 
a peak value φ′peak before falling to a lower, steady state value φ′crit which is then maintained 
with continued shearing. Examination of the associated volumetric strain data shows that 
the peak strength coincides with the maximum rate of dilation (defined as the rate of change 
of volumetric strain with shear strain, dεvol/dγ), and that there is no further change in speci-
men volume once the steady state has been reached.

The steady state corresponds to the critical state already seen in shearbox tests in Section 2.8, 
and discussed further with respect to the triaxial test in Section 5.10. For the time being, the 
important point is that when we come to determine the strength of a soil from triaxial test 
data, we must be very careful to specify whether we are talking about the strength at the peak 
or at the critical state. In fact, for clay soils that have been extensively sheared along a slip 
plane on which the particles have become aligned with the direction of shear, a third, lower 
strength—termed the residual strength—may operate. This is discussed in Section 5.14.

As in the shearbox test, the peak strength can only be maintained while the specimen is 
dilating. Also as in the shearbox test, the potential for a specimen to dilate depends on the 
initial specific volume relative to that at the critical state. The specific volume at the critical 
state depends in turn on the confining stress (the normal effective stress in the shearbox or 
the effective cell pressure in the triaxial test) at which the test is carried out. For a saturated 
soil, the specific volume v is linked to the water content w by Equation 2.12: v = 1 + wGs. 
Thus the peak angle of shearing resistance of a saturated clay must be expected to depend 
on both the water content of the specimen as tested and the cell pressure at which the test is 
carried out: it is not a soil property or constant. In contrast, the steady or critical state angle 
of shearing resistance should be purely frictional in nature and hence independent of both 
the water content of the clay as tested and the cell pressure at which the test is carried out.

Apart from their inherent variability, peak strengths can be unreliable for use in design 
because the soil strength falls with continuing strain after the peak has been passed. 
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This leads to the possibility of progressive failure, in which the first zone of soil to fail 
sheds load to its neighbour, causing the next zone of soil to fail and shed load and so 
on throughout the soil mass. Having said this, the numerical values of factors of safety 
recommended in some of the traditional codes of practice used in design may have been 
specified on the assumption that they will be applied to the peak strength: in this case, 
the application to the critical state strength of high factors of safety intended for use with 
peak strengths could lead to an uneconomical design. Strength parameters for use in 
design are discussed in Chapters 7 to 11.

Soil strengths expressed as angles of shearing resistance have traditionally been deter-
mined by carrying out three conventional triaxial compression tests on similar specimens at 
different cell pressures; plotting the Mohr circles of effective stress at either the peak or the 
critical state angle of shearing (or stress ratio q/p′); drawing the tangent of best fit; and using 
this to define a failure envelope (Figure 5.11).

At the critical state, the failure envelope represented by the tangent to the Mohr circles 
of effective stress should be a straight line through the origin, as shown in Equation 2.10

 τ = σ′ . tan φ′crit

(Figure 5.11a). This corresponds exactly with the shearbox test data discussed in 
Section 2.8.

Determination of the corresponding failure envelope in terms of peak strengths is more 
problematic, because the peak angle of shearing resistance will depend on the ability of the 
specimen to dilate, which in turn depends on the specific volume of the specimen in relation 
to that at the eventual critical state. If three specimens of the same soil, each having the 
same initial specific volume, are tested at different cell pressures, the peak angle of shearing 
resistance will be found to decrease with increasing cell pressure because the ability of the 
soil to dilate is reduced. Thus the failure envelope in terms of peak strengths will be curved, 
as indicated below the σ′ axis in Figure 5.11b.
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Figure 5.11  Failure envelopes determined from Mohr circles of stress: (a) at critical state and (b) at peak 
stress ratios in triaxial tests.
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Despite this, it is regrettably quite common practice to attempt to describe the peak 
strength failure envelope by means of a ′best-fit′ straight line having an equation of the form 
given by Equation 2.15

 τp = c′ + σ′ . tan φ′tgt  (2.15)

(Figure 5.11b).
Equation 2.15 has a number of serious shortcomings:

• The physical interpretation of Equation 2.15, with c′ as a cohesion (that is an ability 
to withstand shear stresses at zero effective stress) and φ′tgt as a friction angle, is incor-
rect. In the absence of particle bonding, the soil cannot withstand shear stresses at zero 
effective stress. For unbonded soils, therefore, c′ = 0.

• Equation 2.15 takes no account of differences in stress history and specific volume/
water content, which would be expected to alter the potential for dilation and hence 
the peak strength achieved.

• As a consequence of this, the scatter in the values of c′and φ′tgt obtained from similar 
sets of specimens can be very wide.

• Although it represents a peak strength failure envelope, the parameter φ′tgt is actually 
smaller than the critical state strength φ′crit. Thus, there will be a point to the right of 
the graph of τ against σ′ at which the peak strength failure envelope intersects, and 
then lies below, the critical state failure envelope τ = σ′ tan φ′crit.

• It is too easy to apply Equation 2.15 outside the range of stresses for which it has been 
determined. At the left-hand end, the peak strength failure envelope is limited at best by the 
Mohr circle corresponding to a minor principle effective stress σ′3 = 0. This is because an 
unbonded soil is unable to carry tension so that a Mohr circle crossing the τ axis (i.e. having 
σ′3 < 0) represents an impossible stress state. At the right-hand end, the peak strength failure 
envelope is limited by its point of intersection with the critical state line τ = σ′.tan φ′crit.

On a Mohr diagram, the peak strength is best defined by the straight line tangent, passing 
through the origin, to the Mohr circle representing the stress state at the peak effective angle 
of shearing resistance. This is equivalent to joining the point of maximum stress obliquity 
(τ/σ′)max to the origin, as in Section 2.9:

 φ′peak = tan−1(τ/σ′)peak  (2.16)

A more satisfactory interpretation of peak strength data from a number of tests, which 
uses a normalisation procedure to account for differences in the specific volume of speci-
mens relative to their critical states, is given in Section 5.13.3.

Example 5.2:  Interpretation of strength data from triaxial 
tests using Mohr circles of stress

Table 5.3 gives data from consolidated–undrained triaxial compression tests on three 
specimens of a particular type of clay. Explaining your reasoning, identify the peak and 
the critical state strengths for each test. Why is it not possible to identify a critical state 
strength test 3? Plot the Mohr circles of stress at the peak strength for all three tests, and 
sketch the peak strength failure envelope. On a separate diagram, plot the Mohr circles 
of stress at the critical state for tests 1 and 2, and estimate the critical state strength φ′crit.

SOluTIOn

To draw the Mohr circles of stress, we must first calculate the values of major and minor 
principal effective stress σ′1 and σ′3 at each stage. As this is an undrained compression test, 
the minor principal effective stress σ′3 is given by

 σ′3 = σc − u
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where σc is the cell pressure, and the major principal effective stress σ1 is given by

 σ′1 = σ′3 + q

(Section 5.3)
The mobilised strength φ′mob is given by

 φ′mob = sin−1(σ′1 − σ′3)/(σ′1 + σ′3) 

(Figure 5.6).
The calculated values of σ′3, σ′1 and φ′′mob for each stage of all three tests are given in 

Table 5.4.
The peak strengths are given by the maximum values of φ′mob in each test. These are 

indicated (peak) in Table 5.4. The peak strength, expressed as a ratio of shear to normal 
effective stress, does not necessarily coincide with the peak deviator stress, qmax.

The critical state should be indicated by a period of shearing at a constant stress state, 
that is, the values of σ′1 and σ′3 should not change. From Table 5.4, it would appear that 
the specimens in tests 1 and 2 do reach critical states, because the stress states for the last 
two data points in each case are more or less the same.

In test 3, however, a critical state is not achieved, probably because the specimen 
 ruptures at or near the peak strength. With continued shearing, deformation occurs by 
relative sliding on the rupture surface, rather than by straining as a continuum. The 
soil in the vicinity of the rupture softens as it draws in water from the rest of the speci-
men. Eventually, the rupture surface will become polished, and its strength will fall to a 
residual value as described in Section 5.14.

All three specimens are overconsolidated and dry of the relevant critical state, as 
 evidenced by the reducing pore water pressures during shear as failure is approached.

Mohr circles of stress for the three tests at the point at which the peak strength is devel-
oped are plotted in Figure 5.12a. The peak strength failure envelope is curved, indicating 
a reducing peak strength (defined as φ′′peak = tan−1(τ/σ′)peak; Equation 2.16) with increasing 
effective stress σ′, owing to the reduced potential for dilation.

Mohr circles of stress at critical states are plotted for tests 1 and 2 (but not test 3, for 
which a critical state cannot be identified) in Figure 5.12b. This is a straight line through 
the origin, with a critical state angle of shearing resistance φ′′crit ≈ 22.5°.

Table 5.3 Triaxial test data for Example 5.2

Axial
strain εa (%)

Deviator 
stress q (kPa)

Pore water 
pressure u (kPa)

Test 1 3.89 207.9 235.1
Cell pressure 410 kPa 4.56 219.2 230.5
Initial back pressure 200 kPa 5.68 232.5 222.7

6.74 240.5 215.8
7.91 241.0 216.2

Test 2 6.87 132.4 349.6
Cell pressure 450 kPa 7.36 138.8 346.7
Initial back pressure 310 kPa 8.44 145.3 339.8

9.40 151.3 333.0
10.38 152.6 329.0
11.63 152.8 329.2

Test 3 2.05 72.7 371.4
Cell pressure 420 kPa 3.34 87.4 367.0
Initial back pressure 340 kPa 4.18 95.9 363.3

5.80 91.8 351.1
6.60 83.5 345.7
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Table 5.4 Processed triaxial test data for Example 5.2: Specimen A

Axial strain 
εax (%)

Deviator 
stress q 
(kPa)

Pore water 
pressure u 

(kPa)

Minor 
principal 
effective 
stress σ′3 

(kPa)
(= σc − u)

Major principal 
effective stress 

σ′1 (kPa)
(= σ′3 + q) φ′′mob (°)

Test 1 3.89 207.9 235.1 174.9 382.8 21.9
σc = 410 kPa 4.56 219.2 230.5 179.5 398.7 22.3

5.68 232.5 222.7 187.3 419.8 22.5 (peak)
6.74 240.5 215.8 194.2 434.7 22.5
7.91 241.0 216.2 193.8 434.8 22.5 (crit)

Test 2 6.87 132.4 349.6 100.4 232.8 23.4
σc = 450 kPa 7.36 138.8 346.7 103.0 242.1 23.7 (peak)

8.44 145.3 339.8 110.2 255.5 23.4
9.40 151.3 333.0 117.0 268.3 23.1

10.38 152.6 329.0 121.0 273.6 22.8
11.63 152.8 329.2 120.8 273.6 22.8 (crit)

Test 3 2.05 72.7 371.4 48.6 121.3 25.3
σc = 420 kPa 3.34 87.4 367.0 53.0 140.4 26.9

4.18 95.9 363.3 56.7 152.6 27.3 (peak)
5.80 91.8 351.1 68.9 160.7 23.6
6.60 83.5 345.7 74.3 157.8 21.1
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Figure 5.12 Mohr circles of stress: (a) peak strengths (b) at critical states for Example 5.2.
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5.6 UNDRAINED SHEAR STRENGTHS OF CLAY SOILS

So far, we have discussed failure envelopes for soils in terms of effective stresses. If these 
failure criteria are to be applied to a practical situation, it is necessary to determine the 
effective stresses, which means that the pore water pressures must be known or calculated.

Steady state pore water pressures can be estimated using techniques such as flownet 
sketching (Chapter 3). However, we have seen in Chapter 4 that clay soils will take some 
time to respond to a change in loading or hydraulic boundary conditions. Changes in exter-
nal loads are carried initially by changes in pore water pressure. The pore water pressures 
then move slowly towards their long-term steady state values as the clay consolidates or 
swells, allowing changes in effective stress to occur. Except for the simple geometry of 
one-dimensional consolidation, the non-equilibrium pore water pressures—and hence the 
 effective stresses—in a clay soil can be difficult to predict using simple methods.

Fortunately, the critical state framework provides an alternative way of investigating the 
strength of a clay soil in the short term, assuming that the clay is sheared quickly in com-
parison with the time it takes for drainage of pore water to occur. Such conditions are 
conventionally termed undrained, as there is no drainage of pore water into or out of the 
soil skeleton, and hence (provided that the soil is saturated) no change in specific volume 
during shear.

In Section 2.8 we saw that, when sheared, a soil will eventually reach a critical state in 
which continued shear may take place without any further changes in shear stress, normal 
effective stress or specific volume. Possible combinations of shear stress, normal effective 
stress and specific volume at critical states form a unique line—the critical state line—
when plotted on a three-dimensional graph with axes representing shear stress, normal 
effective stress and specific volume. If the value of any one of these parameters at a critical 
state is known, the other two may be determined from the equations that define the critical 
state line.

For a clay soil sheared undrained, there is no change in specific volume and the initial spe-
cific volume of the specimen (which, assuming that the soil is saturated, may be determined 
from the water content—Equation 2.12) fixes the point at which failure on the critical state 
line is reached, and hence the shear stress at failure, τc. The effective stress state at failure on 
the critical state line will be the same, irrespective of the external changes in stress applied, 
and the pore water pressure u will take up the difference between the total stress σ and the 
effective stress σ′.

For a specimen of clay sheared undrained to failure, there is only one possible Mohr circle 
of effective stress. The diameter of this Mohr circle—and hence its position on the σ′ axis, 
given that it must touch the failure envelope τ = σ′tan φ′′crit—is equal to twice the shear stress 
at failure τc, and is a function of the specific volume of the clay as sheared. The position of 
the Mohr circle of total stress depends on the applied loading and the pore water pressures 
(which may be negative or positive) generated. However, the diameter of the Mohr circle 
of total stress must be the same as the diameter of the Mohr circle of effective stress. The 
envelope to all possible Mohr circles of total stress is given by

 τmax = ±τu  (5.17)

where τmax is the maximum shear stress within the specimen, and τu is the undrained shear 
strength of the clay (Figure 5.13).3

From the geometry of the Mohr circle of total stress, the maximum shear stress within the 
specimen τmax is related to the major and minor principal total stresses σ1 and σ3 by

 τmax = (σ1 − σ3)/2 = q/2
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where q is the deviator stress. Hence,

 τu = qc/2 (5.18)

where qc is the deviator stress at (undrained) failure.
The τu model for failure in terms of total stresses represents a special case, and is appli-

cable only to clay soils sheared at constant volume. Shearing at constant volume may take 
place in an undrained triaxial test, or in an actual construction where failure occurs rapidly. 
In either case, the applicability of the model may be invalidated by development of a rupture 
surface, which could result in local drainage and the clay in the immediate vicinity of the 
rupture surface softening preferentially by taking in water from the surrounding soil.

With clays, it is often necessary to investigate the possibility of failure in both the short term 
and the long term. The long-term calculation must be carried out in terms of effective stresses 
and pore water pressures. Where the applied load results in an increase in average effective 
stress p′, as in the case of a foundation, the short-term condition is likely to be more critical. It 
will be shown in Example 5.6 that for normally consolidated or lightly overconsolidated clays, 
the deviator stress at failure qc is much smaller in undrained loading than in drained load-
ing, where the clay is given time to consolidate. Where the applied change in load results in a 
decrease in the average effective stress p′, as in the case of an excavation, the long-term condi-
tion may be more critical, because the clay will swell and qc is reduced. The failure of free-
draining soils must always be analysed in terms of effective stresses and pore water pressures.

The undrained shear strength τu of a clay of a given specific volume is traditionally inves-
tigated by carrying out unconsolidated–undrained triaxial tests at three different cell pres-
sures. When the Mohr circles of total stress are plotted, they should all have the same 
radius, τu. Their common tangent should be horizontal, intercepting the τ-axis at τ = τu 
(Figure 5.14a).

If the common tangent is not horizontal (Figure 5.14b), the inference is that the specimens 
as tested did not have the same specific volume at failure. This would occur if the specimens 
had been allowed to consolidate to equilibrium at the test cell pressure before the start of 
shear (i.e. the tests carried out were consolidated–undrained, rather than unconsolidated–
undrained). In this case, the test results provide an indication of the increase in τu with 
decreasing water content due to increasing initial stress, perhaps corresponding to increas-
ing depth in the field.

Alternatively, the specimens may not have been fully saturated. In this case, the air is 
compressed and dissolved in the pore water as the cell pressure is increased, so that changes 
in specimen volume and void ratio occur without the passage of pore fluid (air or water) into 
or out of the specimen.
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Figure 5.13  Mohr circle representation of undrained shear strength failure criterion, for clay sheared und-
rained at constant specific volume.
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The notion that test results such as those shown in Figure 5.14b may be described in 
terms of an “undrained friction angle” φu and an “undrained cohesion intercept” cu, though 
regrettably still found in some textbooks, is fundamentally flawed.

Example 5.3: Determining the undrained shear strength from triaxial test data

For each of the three tests described in Example 5.2, determine the undrained shear 
strength. Explain why this is different for each case. Suggest a relationship between 
undrained shear strength and depth, in a uniform bed of this clay having unit weight 
18 kN/m3 and a water table at the surface of the deposit.

SOluTIOn

The maximum shear stress in the specimen at any stage of the test is given by the radius 
of the Mohr circle of stress, τmax = (σ′1 − σ′3)/2. In a triaxial test, the deviator stress q = 
(σ′1 − σ′3), so that the maximum shear stress is equal to q/2. In tests 1 and 2, the maximum 
deviator stress occurs at the critical state, qmax = 241 kPa (test 1), and qmax = 152.8 kPa 
(test 2). In test 3, there is no obvious critical state, but the peak deviator stress is 95.9 kPa. 
Dividing these values of qmax by 2 to obtain the undrained shear strength τu in each case

 τu = 120.5 kPa (test 1, critical state)

 τu = 76.4 kPa (test 2, critical state)

 τu = 48.0 kPa (test 3, peak)

The undrained shear strengths are different because each specimen has been tested at 
a different water content. The trend of increasing undrained shear strength with increas-
ing initial effective stress p′ or decreasing water content is exactly as would be expected.

The depth to which each specimen corresponds depends on its stress state at the start 
of the test. (The final effective stress state, both in the triaxial tests and in the field, 
depends—according to the critical state model—on the water content.) Assuming that the 
stress state within the deposit is such that σ′h = σ′v (due to the effects of overconsolidation: 
Section 4.10.3), the in situ variation in average effective stress p′ with depth is given by

 σ′v = σ′h = p′ = (γ.z − γw.z) = (18.z − 9.81.z) kPa = 8.19.z kPa

The initial value of p′ in each test is given by subtracting the initial back pressure from 
the cell pressure. The corresponding field depth z (in m) is obtained by dividing the initial 
value of p′ (in kPa) by 8.19 kPa/m. Values of τu, initial p′ and corresponding depth z for 
each test are given in Table 5.5. τu is plotted against depth in Figure 5.15, which gives the 
relationship

 τu (kPa) = 4.73 (kPa/m) × z (m)

τ

τu

σ

τ

σ

(a) (b)

Figure 5.14  Correct and incorrect determinations of the undrained shear strength τu of a clay of given 
specific volume: (a) circles all the same size, radius τu; (b) diameter of the circle increases with 
 confining pressure; specimens not saturated or of different specific volumes.
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5.7 ISOTROPIC COMPRESSION AND SWELLING

Traditionally, triaxial test specimens were brought to the starting point for the shear test 
by increasing (and in some cases then reducing) the cell pressure, without the application 
of a deviator stress q through the ram. Provided that the drainage taps are left open, the 
specimen is able to expel or take in water until its specific volume is in equilibrium with the 
applied cell pressure. As the applied stress is the same in all three directions, the specimen 
undergoes isotropic compression or swelling as the cell pressure is increased or reduced. 
State paths during isotropic compression and swelling may be plotted on a graph of v against 
ln p′ (Figure 5.16). For clay specimens, these are analogous to the graphs of v against lnσ′v 
plotted for equilibrium states in the oedometer (Figure 4.6).

For a clay being compressed for the first time, there is a unique relationship between 
the  specific volume v and the mean normal effective stress p′. This is represented by a 
straight line on the graph of v against ln p′ known as the isotropic normal compression line 
(Iso NCL),

 v = Np − λ ln p′  (5.19)

The behaviour of the soil on unloading and reloading is generally idealised as straight line 
of slope −κ (Figure 5.16b).

During first loading, strains are substantially plastic and irrecoverable: during unloading 
and reloading, the strains are elastic (but not linearly so) and recoverable. This behaviour is 
essentially the same as already seen in the oedometer, except that the modes of deformation 
are different.

τu = 4.73 × z

+

+

τu (kPa)
0 50

Test 1, cs (120.5 kPa)

Test 2, cs (76.4 kPa)

Test 3, peak (48.0 kPa)10

20

30

D
ep

th
 (m

)

100 150

Figure 5.15 Undrained shear strength against equivalent depth for Example 5.3.

Table 5.5  Undrained shear strengths, initial p′ and corresponding 
specimen depths for Example 5.3

Test τu (kPa) Initial p′ (kPa) z (m)

1 120.5 210 25.6
2 76.4 135 16.5
3 48.0 80 9.8
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In isotropic compression and swelling, the overconsolidation ratio, or OCR, np is defined 
in terms of p′ rather than σ′v:

 np = p′0/p′  (5.20)

where p′ is the current value of the average effective stress, and p′0 is the maximum value 
of average effective stress to which the specimen has previously been subjected. As in one-
dimensional compression and swelling, a normally consolidated soil (which has np = 1) has 
never before been subjected to a higher value of p′ than that which currently acts. A soil that 
has in the past been subjected to a higher value of p′ than the current value has np > 1, and 
is described as overconsolidated.

5.8  SPECIMEN PREPARATION BY ONE-DIMENSIONAL 
COMPRESSION AND SWELLING: K0 CONSOLIDATION

The preparation of triaxial test specimens by isotropic compression and swelling in the triaxial 
cell, so that the shear test starts from a deviator stress of zero, is a convention which arose pri-
marily because it was a convenient procedure for a triaxial apparatus without computer control.

In high-quality tests, specimens are now often prepared by increasing (and then possibly 
decreasing) the cell pressure and the deviator stress in a ratio that results in zero horizontal 
strain (i.e. one-dimensional compression), so as to mimic the stress history and stress state of 
an undisturbed soil element in the ground—or in an oedometer.4 This technique is known as K0 
consolidation, K0 being the symbol used to denote the in situ earth pressure coefficient (i.e. the 
ratio of the horizontal to vertical effective stress, σ′h/σ′v) in undisturbed soil (Section 4.10.3). 
For a specimen prepared in this way, the deviator stress is non-zero at the start of the shear test.

The stress path followed in terms of q and p′ during K0 consolidation may be estimated 
by means of Jaky’s (1944) empirical relationship between horizontal and vertical effective 
stress in one-dimensional normal compression (Section 4.10.3):

Taking the radial effective stress σ′r to represent the horizontal effective stress σ′h in the 
ground, and the axial effective stress σ′a to represent the vertical effective stress σ′v,

 σ′h = (1 − sin φ′)σ′v  (4.73)

 σ′r = (1 − sin φ′)σ′a  (5.21)
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Figure 5.16  Normal compression line and elastic unload/reload lines plotted as v against ln p′—isotropic 
compression and swelling: (a) actual data (From Allman, M.A. and Atkinson, J.H., Géotechnique, 
42, 2, 531–40, 1992. With permission.) (b) Idealisation.
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Hence,

 q = σ′a − σ′r = σ′a[1 − (1 sin φ′)] = σ′a sin φ′  (5.22a)

and

 p′ = (σ′a + 2σ′r)/3 = σ′a (3 − 2 sin φ′)/3  (5.22b)

giving

 q/p′ = (3 sin φ′/)(3 − 2 sin φ′) (5.22c)

(Figure 5.17a).
As p′ is proportional to σ′a (σ′v) (from Equation 5.22b) during one-dimensional compres-

sion, the slope of the one-dimensional normal compression line (Section 4.2: Figure 4.6) 
should be the same as that of the isotropic normal compression line (in either a v, ln p′ or 
a v, lnσ′v plot). However, the intercept of the normal compression line with the v-axis (at ln 
p′ = 0 or p′ = 1 kPa), will be different. In general, the normal compression line for consoli-
dation at any constant stress ratio η (= q/p′) will on a graph of v against ln p′ have slope −λ, 
but the intercept with the v-axis will depend on the stress ratio η. The one-dimensional and 
isotropic compression lines in the v, ln p′ plane are therefore separated by a constant vertical 
distance (Figure 5.17b).

In one-dimensional swelling, the ratio σ′h/σ′v is not constant, but increases as  unloading 
continues. Hence the ratio σ′v /p′ changes during unloading, and the one-dimensional and 
isotropic unload/reload lines are not parallel when plotted on a graph of v against ln p′.

5.9 CONDITIONS IMPOSED IN SHEAR TESTS

In a conventional undrained triaxial compression test, the specimen deforms in response to 
changes in deviator stress q and average effective stress p′ at constant specific volume v (assuming 
that it is saturated), so that the state path on a graph of v against ln p′ is horizontal (Figure 5.18). 
On a graph of q against p′, the total stress path ascends with gradient dq/dp′ = 3 from the 
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Figure 5.17  Comparison of state paths on graphs of (a) q against p′ and (b) v against ln p′ during isotropic 
and one-dimensional compression (K0 consolidation).
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starting point (p = σc, q = 0) according to Equation 5.10. The average effective stress p′ must be 
calculated by subtracting the pore water pressure from p. In an extension test, Equation 5.10 is 
still valid, but the changes in q and p are negative. Some common total stress paths are illustrated 
in Figure 5.19.

In a drained triaxial test, the change in pore water pressure is zero. The effective stress 
path is, therefore, parallel to the total stress path, with slope dq/dp′ = dq/dp = 3 from 
the starting points (p = σc, p′ = σc − u0, q = 0), where u0 is the constant back pressure. If 
u0 = 0, the effective and total stress paths are coincident. To plot the state path in terms of 
v against ln p′, the specific volume v must be determined at each stage of the test from the 
total volume of the specimen at the start of the shear test Vt0 (Equation 5.6) and the volume 
of water expelled since the start of the shear test, ΔVtq. Equation 5.11 may be written in 
general terms to relate the total volume Vt = Vt0 − ΔVtq and the specific volume v at any 
stage of the test:

 v = (Vt0 − ΔVtq)Gsρw/ms  (5.23)

The term (Gsρw/ms) is calculated from the final water content wf, using Equations 5.11 
and 5.12:

 (Gsρw/ms) = vf /Vtf = (1 + wfGs)/Vtf (5.24)

Substituting Equation 5.24 into Equation 5.23,

 v = (Vt0 − ΔVtq)(1 + wfGs)/(Vtf)  (5.25)

v = constant
(undrained)

v

ln pʹ

Figure 5.18 State path on a graph of v against ln p′ for undrained triaxial compression.
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Figure 5.19 Total stress paths in the q, p plane for triaxial compression and extension.
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5.10 CRITICAL STATES

Figure 5.20 shows idealised graphs of stress ratio q/p′, εvol and v as functions of shear strain 
γ for two drained triaxial compression tests on specimens of clay having different initial 
water contents, corresponding to dense and loose states of particle packing. Although the 
denser specimen (i.e. the one with the lower initial moisture content) displays a higher peak 
strength, this is only sustainable while the clay is dilating (i.e. the volume is increasing and 
εvol is becoming more negative). The stress ratio q/p′ at the end of each test is the same, and 
the difference between the peak and the final strength at any stage of the test is related to 
the rate of dilation, dεvol/dγ. The end points of both tests lie on straight lines on graphs of 
q against p′ and v against ln p′. The end points of other tests on the same type of soil— 
whether drained or undrained—would also lie on these lines (Figure 5.21).

Figure 5.21 shows two-dimensional projections (onto the q, p′ and v, p′ planes) of what is 
in reality a single line in three-dimensional q, p′, v plot. The critical state line is parallel to 
the isotropic normal compression line on the v, ln p′ plot, and is located a distance (λ − κ) 
vertically below it. Recalling that the isotropic normal compression line has quation v = 
Np − λ ln p′ (Equation 5.19), and considering the separation of the iso-NCL and the CSL at 
p′ = 1 kPa (ln p′ = 0), we have

 Np − Γ = λ − κ

or

 Np = Γ + λ − κ  (5.28)

The critical state line shown in Figure 5.21 is exactly analogous to that developed in 
Chapter 2 from the results of shearbox tests. The deviator stress q is a measure of the shear 

The end points of the shear tests represent critical states, in which the soil continues to deform 
at constant stress ratio q/p′ and constant specific volume v. The line joining critical states (often 
referred to as the critical state line or CSL) has equations

q = Mp′ (5.26)

and

v = Γ − λ ln p′ (5.27)

where M and λ are parameters whose values depend on the soil type, and are determined from 
triaxial tests.
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Figure 5.20  q/p′, εvol and v against γ for drained triaxial compression tests on clays at different initial water 
contents (schematic).
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stress acting on the soil, which was characterised in the shearbox test by the shear stress τ 
on the central horizontal plane. The average effective stress p′ is analogous to the effective 
stress σ′ on the central horizontal plane of the shearbox. The critical state parameter M is a 
measure of the ratio of shear to normal effective stresses at failure, and is therefore related 
to the effective soil friction angle φ′crit.

5.10.1 Relation between M and φ′crit

From Figure 5.6,

 sin φ′mob = t/s′ = (σ′1 − σ′3)/(σ′1 + σ′3)  (5.29)

In triaxial compression,

 σ′a = σ′1, σ′r = σ′3

 q = (σ′a − σ′r) = (σ′1 − σ′3)

and

 p′ = (σ′a + 2σ′r)/3 = (σ′1 + 2σ′3)/3

Hence,

 (σ′1 − σ′3) = q  (5.30a)

and

 (σ′1 + σ′3) = (6p′ + q)/3 (5.30b)

CSL

CSL
400

200

0

0 200 400 600

–200

Drained compression

Drained extension
Undrained extension

Undrained compression

(a) (b)
pʹ (kPa)

3
1.6

1.8

2.0

Sp
ec

ifi
c v

ol
um

e

2.2

2.4

K0 NCL
CSL

4 5 6 7

40020010050

In pʹ (kPa)

qʹ
 (k

Pa
)
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(From Allman, M.A. and Atkinson, J.H., Géotechnique, 42, 2 531–40, 1992. With permission.)
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Substituting Equations 5.30 into Equation 5.29, with φ′mob = φ′crit and q/p′ = M at the 
critical state,

 sin φ′crit = 3M/(6 + M)  (5.31a)

or

 M = 6 sin φ′crit /(3 − sinφ′crit)  (5.31b)

At a general stage of the test prior to failure when the stress ratio q/p′ = η, the mobilised 
effective angle of shearing φ′mob is given by

 
sin =

3
6mob′ϕ η

+ η
  

(5.31c)

In triaxial extension,

 σ′a = σ′3, σ′r = σ′1

 q = (σ′a − σ′r) = (σ′3 − σ′1)

and

 p′ = (σ′a + 2σ′r)/3 = (σ′3 + 2σ′1)/3

Hence,

 (σ′1 − σ′3) = −q  (5.32a)

and

 (σ′1 + σ′3) = (6′p + q)/3  (5.32b)

Substituting Equations 5.32 into Equation 5.29, with φ′mob = φ′crit and q/p′ = M at the criti-
cal state,

 sin φ′crit = 3M/(6 − M)  (5.33a)

or

 M = 6 sin φ′crit/(3 + sin φ′crit)  (5.33b)

At a general stage of the test prior to failure, when the stress ratio q/p′ = η, the mobilised 
effective angle of shearing φ′mob is given by

 sin =
3

6mob′ϕ η
− η   (5.33c)
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Comparison of Equations 5.33 with Equations 5.31 shows that the relation between M 
and φ′crit depends on the mode of deformation, and is different for triaxial compression and 
extension. More specifically, the relation between M and φ′crit depends on the value of the 
intermediate principal effective stress σ′2. Starting with the full definitions of q and p′ given 
in Equations 5.3, and writing the intermediate principal effective stress in terms of the 
parameter

 b = (σ′2 − σ′3)/(σ′1 − σ′3)  (5.34)

Bishop (1971) showed that

 
sin 3 / 6 1 2 1crit

2{ }( ) ( )′ϕ = − +



 − − M b b b M

  
(5.35)

In triaxial compression, σ′2 = σ′3 and b = 0, so that Equation 5.35 reduces to Equation 
5.31a. In triaxial extension, σ′2 = σ′1 and b = 1, so that Equation 5.35 reduces to Equation 
5.33a. The relation between φ′crit and M in plane strain is often estimated using Equation 5.35 
with b = 0.5.

5.11 YIELD

A material yields when its stress-strain behaviour changes from being purely elastic to partly 
plastic in other words, when the deformation stops being recoverable in unloading. Yield 
and failure are not synonymous, and in general are not coincident.

Figure 5.22 illustrates the stress-strain behaviour of a copper wire during a cyclic tensile 
test. At very small strains, the behaviour of the material is truly elastic. If it is loaded to a 
point such as A and then unloaded, all of the deformation is recovered. This is what is meant 
by the term elastic.

If the wire is loaded to a point such as A1, not all of the deformation is recovered on 
unloading (to B1). The material has deformed plastically, so that it retains a permanent set. 
However, on second loading, the behaviour of the copper wire is purely elastic until the 
initial loading point A1 is reached. Only when the load is increased beyond this point (to 
A2, say) is further plastic strain induced, increasing the permanent set on unloading (e.g. 
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Figure 5.22  Tension test on copper wire. (Redrawn with permission from Muir-Wood, 1990; data from 
Taylor and Quinney, 1931, reworked by D. Muir-Wood from original data published in the 
Proceedings of the Royal Society.)
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from A2 to B2). On third loading, yield does not occur until A2. As the load is increased 
further, the stress-strain curve becomes gradually flatter. Eventually a point may be reached 
at which the material is fully plastic, and continues to deform at constant stress. This point 
represents the failure of the specimen.

Between yield and failure, the capacity of the material to sustain an increasing stress with 
increasing plastic strain is known as work hardening. Mild steel, one of the most common 
engineering materials, is perhaps unusual in that it does not work harden to any significant 
extent, with the result that yield and failure do occur effectively simultaneously. Metals such 
as mild steel that undergo ductile failure continue to deform under constant load, in contrast 
to brittle materials such as cast iron or glass which fail by fracture, with the sudden loss of 
all their load-carrying ability.

In soils, the onset of a critical state at which deformation continues at constant stress ratio 
and volume represents the failure of the material. The failure of the soil is usually undesir-
able in geotechnical engineering. It is, therefore, important to be able to predict combina-
tions of q and p′ (or shear and normal effective stress) that will cause failure. The critical 
state concepts described in Chapter 2 and Section 5.10 provide the means to do this. It is 
also necessary to be able to predict combinations of q and p′ that will cause yield, at which 
rates of deformation may be expected to increase significantly.

We have seen in Sections 4.2 and 5.7 that a soil that is loaded, unloaded and reloaded 
either one-dimensionally or isotropically will deform plastically during loading if it is nor-
mally consolidated (i.e. has an OCR of unity, and has not previously been subjected to a 
higher value of p′ or σ′v than that which currently acts). During unloading and reloading, 
when the soil is overconsolidated (i.e. it has an OCR of more than 1, and has previously been 
subjected to a higher value of p′ or σ′v than that which now acts), it behaves elastically, in the 
sense that deformation is substantially recoverable.

Figure 5.22 looks rather like Figure 4.6 or Figure 5.11 turned on its side, except that the 
slope of the normal compression lines does not flatten off because failure cannot be achieved 
in either one-dimensional or isotropic compression. In isotropic or one-dimensional load-
ing, an overconsolidated soil will yield when the preconsolidation pressure is exceeded 
(Figure 5.23).

Most real stress paths will involve the application of a non-zero deviator stress q. It is 
therefore necessary to be able to predict the combination of stresses (p′ and q) that will 
cause a soil, which has previously been isotropically (or one-dimensionally) compressed to 
a preconsolidation pressure p′0 (or σ′v0), to yield. This may be investigated experimentally 
by subjecting similar specimens of soil with the same stress history to different exploratory 
stress paths in the q, p′ plane (Figure 5.24).
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The need to predict combinations of types of stress or load that will cause a material to 
yield is not confined to soil mechanics. In 1931, Taylor and Quinney published the results 
of tests in which thin-walled copper tubes were subjected to combined tension P and  torsion 
Q, to determine the line representing combinations of P and Q that would cause yield 
(Figure 5.25). This line is known as the yield locus.

For soils, Roscoe and Schofield (1963) proposed a model incorporating yield, known as Cam 
clay.5 In Cam clay, the yield locus defining the combinations of deviator stress q and average 
effective stress p′ that would cause yield of a soil pre- consolidated isotropically to an average 
effective stress p′0 is given by the expression (Figure 5.26)

 q/Mp′+ ln (p′/p′0) = 0  (5.36)

Soils are more complex than most metals, not least because their specific volume must be 
taken into consideration as well as their stress state. The yield locus defined by Equation 
5.36 is associated not with a constant specific volume, but with the particular unload/reload 
line that intersects the isotropic normal compression line at p′ = p′0. The yield locus may be 
imagined as suspended above the unload/reload line in three-dimensional q, p′, v space: the 
succession of yield loci associated with the infinite number of possible unload reload lines 
represents a three-dimensional yield surface (Figure 5.27).

The Cam clay model comprises the yield locus (Equation 5.36), the isotropic normal com-
pression line (Equations 5.19 and 5.28) and the critical state line (Equations 5.26 and 5.27), 
and is fully defined by the soil properties λ, κ and M.

Equation 5.36 may be derived, following Roscoe and Schofield (1963), by considering the 
energy dissipated when a soil specimen is loaded slowly in a drained triaxial test. First note 
that the work done ΔW in straining a unit cube of material by small amounts of δε1, δε2 
and δε3 in the directions of the major, intermediate and minor principal effective stresses 

, and1 2 3′σ ′σ ′σ  respectively is given by

 ( )( ) ( )= ′σ ⋅δε + ′σ ⋅δε + ′σ ⋅δε1 1 2 2 3 3W  (5.37)

This is because work = force × distance, and for a unit cube with a principal stress acting 
on each face, the force is equal to the stress and the distance moved in the direction of the 
force is equal to the increase in strain, δε, associated with that stress. The changes in strain 
must be small enough not to affect significantly the areas of the faces of the cube. To cause 
the changes in strain, the principal effective stresses , and1 2 3′σ ′σ ′σ  will themselves have had 
to increase: provide the increases in principal effective stress , and1 2 3δ ′σ δ ′σ δ ′σ  are small, 
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Figure 5.24  Exploratory stress paths to determine combinations of q and p′ that will cause an overconsoli-
dated soil to yield.
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Equation 5.37 still holds because the work associated with them is the product of two small 
quantities (δσ′1⋅δε1 etc.) and may be neglected.

In a triaxial compression test, the intermediate and minor principal effective stresses are 
equal, σ′2 = σ′3. Hence Equation 5.37 can be rewritten in terms of the triaxial stress param-
eters p′ (= (σ′1 + σ′2 + σ′3)/3) and q (= σ′1 − σ′3), the volumetric strain increment δεvol (= δε1 + 
2δε3) and the triaxial shear strain increment, δεq (= 2/3[δε1 − δε3]) see Section 5.4.6 and 
Equation 5.15 as

 ΔW = q ⋅ δεq + p′ ⋅ δεvol  (5.16)
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Figure 5.25  Yield of thin walled copper tubes under combined tension and torsion. P0 is the axial load which, 
acting alone, causes yield. (Redrawn with permission from Muir-Wood, 1990; data from Taylor 
and Quinney, 1931, reworked by D. Muir-Wood from original data published in the Proceedings 
of the Royal Society.)
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This can be demonstrated by substituting the above expressions for p′, δεvol, q and δεq in 
terms of σ′1, σ′3, ε1 and ε3 into Equation 5.16 and multiplying out the terms, which should 
give Equation 5.37 with σ′2 = σ′3. As with Equation 5.37, it is assumed that the changes in 
strain δεvol and δεq and the stress increments δ ′p  and δq applied to cause them are very small.

Now, let us assume that all of the work done in shear, that is, the deviatoric compo-
nent q ,q⋅δε  is dissipated. This is equivalent to assuming that shear strains are irreversible. 
Volumetric strains, on the other hand, are partly elastic (recoverable) and partly plastic 
(irrecoverable). Writing the plastic or irrecoverable component of the volumetric strain as 
δεvol,plastic we obtain an expression for the component of the work done on the soil element 
that is dissipated,

 W q pq +dissipated vol,plastic∆ = ⋅δε ′ ⋅ δε  (5.38)

Let us also assume that the work dissipated is lost in overcoming interparticle friction to 
cause shear. The work dissipated dissipated∆W  will then be proportional to the amount of shear 
that has taken place, : .q dissipated qδε ∆ ∝ δεW  As interparticle frictional forces increase the 
harder the particles are pushed together, the work dissipated in friction will also increase in 
proportion to the average effective stress p′: that is, ΔWdissipated ∝ p′. If the overall constant of 
proportionality is M, the work dissipated in overcoming friction during shear is

 W M pdissipated q∆ = ⋅ ′ ⋅ δε   (5.39)

Combining Equations 5.38 and 5.39 and dividing through by ( ′ ⋅ δεp vol,plastic ), we have

 1q

vol,plastic

q

vol,plastic

q
p

M
′
⋅

δε
δε

+ = ⋅
δε

δε

or, writing ′q p  as the stress ratio η,

 M 1q

vol,plastic

( )− η ⋅
δε

δε
=  (5.40)

The final assumption required to derive the equation of the Cam clay yield locus (Equation 
5.36) is that the soil exhibits a property known as normality. This means that the direction 
of the plastic strain increment vector is normal (i.e. at right angles) to the yield locus when the 
stress and strain axes are superimposed. In the present case, the relevant stress axes are p′ and 
q, and the corresponding plastic or irrecoverable strain axes are εq and εvol,plastic (Figure 5.28).

The normality condition leads to the relationship
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δε

= −
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d
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  (5.41)

and is sometimes termed ‘associated flow’. Substitution of Equation 5.41 into Equation 5.40 
allows the strain increments to be eliminated, giving
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or

 η = +
′

M
q
p

d
d

  (5.42)

Differentiating the expression = η ′q p  with respect to p′, we obtain
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= η + ′ ⋅
η
′

q
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p

d
d

d
d

  (5.43)

Substituting Equation 5.43 into Equation 5.42,

 η = + η + ′ ⋅
η
′

M p
p

d
d

or

 
′
′

= −
η ηp

p M
d d d

  (5.44)

Integrating Equation 5.44 between limits of ( ′ = ′p p0, η = 0) in isotropic normal compres-
sion (that is, the tip of the yield locus) and a general point (p′, η),
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Substituting η = q/p′ and rearranging,
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Figure 5.28  Normality of the strain increment vector to the yield locus (From Bolton, M.D., A Guide to Soil 
Mechanics, Cambridge, M.D. & K. Bolton, 1991. With permission.)
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More detailed derivations of the equation for the Cam clay yield locus may be found in 
Schofield and Wroth (1968) and Bolton (1991).

In Sections 5.12 and 5.13, we will use the concept of the yield locus represented by 
Equation 5.36 and Figure 5.25 to predict the state paths followed by triaxial test speci-
mens during shear. The methods used to predict these state paths are equally applicable to 
soil elements in the ground, which undergo changes in stress as a result of construction or 
excavation activities. Their application in this way is more difficult to visualise, because of 
the large number of soil elements being subjected to a variety of different stress paths. In 
practice, predictions of the behaviour of geotechnical engineering structures using Cam 
clay-type models are usually made by means of a finite element analysis (e.g. Britto and 
Gunn, 1987).

The Cam clay model is astonishingly elegant, and represents a hugely important contri-
bution to modern soil mechanics. It does have some shortcomings. It is unable to distin-
guish between one-dimensional and isotropic compression, and the shape of the yield locus 
may bear little resemblance to those obtained experimentally for many natural soils (Muir-
Wood, 1990). The first of these was addressed by Roscoe and Burland (1968), who proposed 
a variation to the original model, known as Modified Cam clay. Modified Cam clay has an 
elliptical yield locus, given by

 /0
2 2 2( )′ ′ = + ηp p M M   (5.45)

where 0′p  is the equivalent isotropic preconsolidation pressure and η is the stress ratio q p′  
(Figure 5.29).

The imperfections of the Cam clay model are, however, insignificant in comparison with 
the importance of the concepts it introduces and embodies.

Example 5.4: Determination of Cam clay parameters from experimental data

 1. Show that the total stress path followed in the q, p plane during a conventional 
triaxial compression test at constant cell pressure is given by

 dq/dp = 3

  from any starting point (p, 0).

 2. A specimen of saturated kaolin (Gs = 2.61) undergoes isotropic normal compres-
sion in a triaxial cell to a cell pressure of 200 kPa. At this stage, its total volume 
is 86 × 103 mm3 and its water content is 61.28%. The cell pressure is increased to 
400 kPa, and 5,956 mm3 of water is expelled. The cell pressure is then reduced 
to 300 kPa, and the volume of the specimen increases by 476 mm3. Use these data 
to determine the Cam clay parameters Γ, λ and κ.

q

O

Critical state line
q = Mpʹ

Yield locus M2

(M2 + η2)

Pʹ0Pʹ0/2
pʹ

pʹ
p0́

=

Figure 5.29 Modified Cam clay yield locus.
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SOluTIOn

 1. The average total stress p = (σ1 + σ2 + σ3)/3 = (2σr + σa)/3 and the deviator stress q = 
(σa − σr).

In a conventional triaxial compression test, the cell pressure σr is constant and 
changes in p and q are related to changes in σa by

 dp = dσa/3; dq = dσa so that

 dq/dp = 3

 2. It is necessary to relate changes in overall volume Vt to changes in the specific vol-
ume Δv.

 Vt = Vs + Vv = Vs(1 + Vv/Vs) = Vs(1 + e) = Vsv

 Therefore, ΔVt = Vs Δv.
  At a cell pressure of 200 kPa, w = 0.6128 and e = wGs, so that e = 0.6128 × 2.61 = 

1.599. Thus, v = 1 + e = 2.599.
  Hence, the volume of solids Vs = Vt/v = 86,000/2.599 = 33,090 mm3.
  Compressing to 400 kPa, the change in total volume is 5,956 mm3. Hence, the 

change in specific volume Δv is

 Δv = ΔVt/Vs = 5,956/33,090 = 0.180

 From the Cam clay model, on the isotropic normal compression line6

 Δv = λ Δ ln p′ = λ ln(400/200)

 λ = 0.18/(ln 2) = 0.26

 Swelling back from 400 to 300 kPa on an unloading line,

 Δv = ΔVt/Vs = 476/33,090 = 0.01439

 Δv = κ Δln p′ = κ ln(400/300)

 κ = 0.01439/(ln 4/3) = 0.05

 On the isotropic normal compression line, v = Np − λ ln p′ and Np = (Γ + λ − κ), so

 2.599 = Np − 0.26 ln 200

 and

 Np = (Γ + 0.26 − 0.05) = 3.977, so

 Γ = 3.767
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5.12  STATE PATHS DURING SHEAR: NORMALLY CONSOLIDATED 
AND LIGHTLY OVERCONSOLIDATED CLAYS

5.12.1 Drained tests

During a conventional drained triaxial compression test, the effective stress path in terms 
of q and p′ has no option but to follow the imposed changes in total stress. Assuming that 
there is no back pressure, u = 0 and (from Equations 5.9 and 5.10),

 p′ = p = σc + q/3

This stress path is shown in Figure 5.30.
If the specimen is initially normally consolidated, the stress path starts from the tip 

of the initial yield locus at (p′ = p′0, q = 0), as shown in Figure 5.30a. The stress state of 
the  specimen can never lie outside the current yield locus: as the deviator stress is increased, 
the yield locus expands so that the current stress state is always on the current yield locus. 
The soil work hardens (in that it is able to withstand higher and higher stress ratios q/p′) as 
it deforms plastically, until it eventually fails when the stress path intersects the critical state 
line. By failure, we mean that the specimen has reached a critical state, in which deformation 
continues at constant specific volume and constant stress.

For a specimen that is initially lightly overconsolidated, the early stages of the stress 
path lie within the initial yield locus, as shown in Figure 5.30b. While the soil remains 
within the yield locus, its behaviour is described as elastic in the sense that deformations 
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Figure 5.30  State paths in the q, p′ plane during conventional drained triaxial compression tests: (a) on 
normally consolidated and (b) lightly overconsolidated clay specimens.
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are recoverable. If we chose to describe the behaviour of the soil using conventional elastic 
parameters such as Young′s modulus, the values of these would not be constant.

Increases in q after reaching the initial yield locus cause the yield locus to expand, so that 
the current stress state after yield always lies on the current yield locus. Eventually, failure 
occurs when the stress path reaches the critical state line.

Using the Cam clay model, it is possible to predict the changes in specific volume that 
occur during a drained test. In the v, ln p′ plane, the state path for a normally consolidated 
specimen crosses a succession of κ-lines (i.e. unload/reload lines), each of which corresponds 
to a yield locus in the q, p′ plane (Figure 5.31a). At any given deviator stress q, the current 
value of p′ may be calculated from Equation 5.9. The current value of 0′p  (at the tip of the 
yield locus) may be found using the equation of the yield locus in the q, p′ plane (Equation 
5.36 for Cam clay; Equation 5.45 for Modified Cam clay). The current specific volume can 
then be calculated from the Cam clay model in the v, ln p′ plane (Figure 5.31b):

 N ln ln( /p )p 0 0= − λ ′ + κ ′ ′v p p   (5.46)

The volume of water expelled at any stage since the start of shear may be calculated from 
the change in specific volume, using Equation 5.11 written in difference form:

 ΔVtq = (ms Δv)/(Gsρw)
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Figure 5.31  State paths in the v, ln p′ plane during conventional drained triaxial compression tests: (a) on 
normally consolidated clay specimen (c) on lightly overconsolidated clay specimen. Part (b) 
shows the calculation of the specific volume.
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For a specimen that is initially lightly overconsolidated, the state path in the v, ln p′ plane 
remains on the original κ-line until the initial yield locus is reached as in Figure 5.30b.

After yield, the yield locus expands so that the soil state is always on the current locus, as 
for a normally consolidated specimen (Figure 5.31c).

5.12.2 Undrained tests

In an undrained test, the state path in the v, ln p′ plane must be horizontal, because there 
can be no change in specific volume (Figure 5.18). However, the specimen is able to gener-
ate either positive or negative pore water pressures, which means that in the q, p′ plane the 
effective stress path followed differs from the imposed total stress path, p = σc + q/3.

The pore water pressure is given by the distance between the total (q, p) and effective 
(q, p′) stress paths when these are drawn on the same diagram (Figure 5.33c).

As the test progresses, the state path in the v, ln p′ plane crosses a succession of κ-lines as it 
moves towards the critical state line (Figure 5.32a). Each κ-line corresponds to a yield locus in 
the q, p′ plane which has an associated value of ′p0, given by the intersection of the κ-line with 
the isotropic normal compression line. The initial value of ′p0 (labelled simply ′p0 in Figure 5.32) is 
known from the stress history of the specimen. The value of ′p0 corresponding to the critical state 
(p′0f in Figure 5.32) may be calculated from the equation of the critical state line (Equation 5.27) 
and the known, constant specific volume of the specimen being sheared. For intermediate values 
of ′p0, the corresponding values of p′ and q may be calculated using Equation 5.46 (with the 
 specific volume as tested) and Equation 5.36 respectively. The effective stress path followed on 
a graph of q against p′ by an initially normally consolidated specimen is shown in Figure 5.32b.

For a specimen that is initially lightly overconsolidated, the early part of the state path lies 
inside the initial yield locus in the q, p′ plane. This means that in the v, ln p′ plane, the state 
path remains on the initial κ-line. As the test is undrained, the state path in the v, ln p′ plane 
must also be horizontal. These two requirements can only be fulfilled if the state path stays 
in the same place in the v, ln p′ plane -that is, it has p′ = constant until the initial yield locus 
is reached (Figure 5.33). If p′ is not to change, it follows from Equation 5.9 (p′ = σc − u + 
q/3) that, if the test is carried out at constant cell pressure, the increase in pore water pres-
sure u must be equal to one third of the increase in deviator stress, Δu = Δq/3.

After yield, the specimen follows the same state path to the critical state as an initially nor-
mally consolidated specimen of the same specific volume. Between yield and failure, the increase 
in pore water pressure with deviator stress du/dq accelerates, that is, Δu > Δq/3 (Figure 5.33b). 
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Figure 5.32  State paths in (a) the v, ln p′ and (b) the q, p′ plane during a conventional undrained triaxial 
compression tests on a normally consolidated clay specimen.



Triaxial test and soil behaviour 271

© 2010 Taylor & Francis Group, LLC

In construction works (such as embankments) that involve the application of a large surcharge 
to a normally consolidated or lightly overconsolidated clay, the pore water pressures within the 
clay are usually monitored. A rise in the rate of increase in pore water pressure with surcharge 
load would indicate that the clay had begun to yield, providing a warning to halt or at least 
slow down the rate of construction in order to avoid the undrained failure of the clay.

The state path followed between yield and failure is a projection of the three- dimensional 
yield locus onto a v = constant plane, and is known as the undrained state boundary 
(Figure 5.34). The position of the undrained state boundary in the q, p′ plane depends on 
the specific volume of the specimen, but it always has the same shape. This follows because 
the Cam clay yield loci associated with individual κ-lines are geometrically similar. Thus, if 
q and p′ are normalised with respect to some suitable reference stress, the undrained state 
boundary may be described as a single line.

Two alternative reference stresses are commonly used. These are the value of p′ on the 
critical state line at the current specific volume p′c, and the value of p′ at the current specific 
volume on the isotropic normal compression line, p′e (Figure 5.35). The value p′e is known as 
the equivalent consolidation pressure. Atkinson (1993) argues that it is preferable to nor-
malise with respect to p′c, because the critical state line is unique, whereas the position of the 
normal compression line depends on the type of loading (e.g. isotropic or one-dimensional). 
The normalised undrained state boundary and the critical state are shown in Figure 5.36. 
On this normalised plot, the critical state reduces to a point at p′/p′c = 1, q/p′c = M.

During conventional triaxial compression, a normally consolidated or lightly overconsoli-
dated specimen tends to generate positive pore water pressures at an increasing rate between 
yield and failure. In a drained test, where these pore water pressures are not allowed to build 
up, the specimen will expel water as it reduces in volume to the critical state. The initial 
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states of normally consolidated and lightly overconsolidated specimens lie between the criti-
cal state line and the isotropic normal compression line in the v, ln p′ plane and are some-
times described as being on the wet side of the critical state.

Example 5.5:  Determination of Cam clay parameters; prediction of state paths 
during shear using Cam clay concepts; comparison between 
normally consolidated and lightly overconsolidated specimens

 1. Define in terms of principal stresses the parameters q, p and p′. Indicate how they 
relate to the quantities measured during a conventional undrained triaxial com-
pression test.

Isotropic normal
compression line

CSL q

Undrained state
boundary: section
through yield surface
at v = constant

ṕ

v = constant

v

Figure 5.34  Three dimensional view of yield locus in q, p′, v space showing undrained state boundary surface 
as a projection onto a v = constant plane.

Stress state
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Iso NCL

v

v

CSL

p ć p é In ṕ

Figure 5.35 Definition of p′c and equivalent consolidation pressure p′e.

Critical state point

Undrained
state
boundary

10

M
q/pć

p /́pć

Figure 5.36 Undrained state boundary surface and critical state point in the q/p′c, p′/p′c plane.
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 2. Table 5.6 gives data from both consolidation and shear stages of an undrained tri-
axial compression test on a specimen (Specimen A) of reconstituted London Clay.

  Plot the state paths followed by the specimen on graphs of q against p′ and v 
against ln p′, and explain their shapes. Stating clearly the assumptions you need to 
make, estimate the soil parameters M, Γand λ.

  It is intended to prepare an identical specimen (Specimen B) in exactly the same 
way as Specimen A, but the cell pressure is accidentally increased during isotropic 
compression to a maximum of 115 kPa. To bring Specimen B to the same specific 
volume as Specimen A (v = 2.018), it is found necessary to reduce the cell pressure to 
80 kPa. Estimate the parameter κ.

  Sketch and explain the shape of the effective stress path followed by Specimen B 
on the graph of q against p′, when it is subjected to an undrained triaxial compres-
sion test from a cell pressure of 80 kPa.

SOluTIOn

 1. q = deviator stress = σ′1 − σ′3 = σ1 − σ3

 p = mean total stress = (σ1 + σ2 + σ3)/3
 p′ = mean effective stress = p − u

In a conventional triaxial compression test, σ2 = σ3 = the cell pressure, the pore 
water pressure u is measured directly, and q = Q/A, where Q is the ram load and A 
is the current cross-sectional area of the specimen.

The area A is inferred from the axial strain and the assumed deformation of the 
specimen as a right circular cylinder of constant total volume Vt0:

 A = Vt0/h = A0h0/h; and h/h0 = (h0 − h)/h0 = (1 − εa),
 so A = A0/(1 − εa), where εa is the axial strain.

 2. From the data in Table 5.6, calculate p′ using

 p′ = q/3 + CP − u

  Also, v = constant during undrained shear. The calculated values of p′, v and 
ln p′ at each stage of the test are given in Table 5.7.

  The state paths followed in the q, p′ and v, ln p′ planes are shown in Figure 5.37.

  A to B: Isotropic normal compression, with no shear stress applied. The specimen 
is being loaded for the first time, so that changes in specific volume are mainly plastic.

  B to C: Undrained compression to failure, with gradually increasing shear stress. 
It is an undrained test, therefore v = constant. As the specimen is initially normally 
consolidated, it yields immediately shear is applied, and remains on the current yield 
locus until the critical state is reached. This path is a section through the three- 
dimensional state boundary surface at v = constant, and will be followed between 
yield and failure by any specimen on the wet side of the critical state having a specific 
volume of 2.018.

  Assuming that the shear test ends on the critical state line, q = Mp′ at the end of 
the test, hence

 M = 48.9/53.9 = 0.91

Table 5.6 Triaxial test data, Example 5.5, Specimen A

CP (kPa) 50 75 100 100 100 100 100 100
q (kPa) 0 0 0 13.4 25.5 35.9 44.1 48.9
u (kPa) 0 0 0 14.5 28.5 42.0 54.7 62.4
v 2.129 2.064 2.018 2.018 2.018 2.018 2.018 2.018

CP: cell pressure; q: deviator stress; u: pore water pressure; v: specific volume.
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λ is the slope of the isotropic normal compression line:

 λ = | Δv/Δln p′| = (2.129 − 2.018)/(4.605 − 3.912)

 λ = 0.16

Γ may be calculated from the equation of the critical state line in the v, ln p′ plane:

 v = Γ−λ ln p′

so that γ

 2.018 = Γ − 0.16 × ln(53.9)

 Γ = 2.656

The state path followed by Specimen B in the v, ln p′ plane is shown in Figure 5.38a. 
The increase in specific volume on swelling back to p′ = 80 kPa from the overstress point 
B (115 kPa) is equal to the reduction in specific volume following the isotropic normal 
compression line from 100 to 115 kPa. Thus,

 Δv = λ ln(115/100) = κ ln(115/80)

so that

 κ = λ ln(115/100)/ln(115/80) = 0.385 × λ

 κ = 0.062

The state paths followed by Specimen B are shown in Figure 5.38.

′A  to ′B : Isotropic normal compression, as before.
′B  to ′C : Isotropic unloading: only the ′elastic′ component of the deformation during 

isotropic normal compression (from 80 to 115 kPa) is recovered.
′C  to Y: Application of deviator stress q at constant specific volume, within the exist-

ing yield locus; p′ = constant.
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Figure 5.37 State paths in (a) the q, p′ and (b) the v, ln p′ plane for Example 5.5: Specimen A.

Table 5.7 Processed triaxial test data for Example 5.5: Specimen A

q (kPa) 0 0 0 13.4 25.5 35.9 44.1 48.9
p′(kPa) 50 75 100 90 80 70 60 53.9
v 2.129 2.064 2.018 2.018 2.018 2.018 2.018 2.018
ln p′ 3.912 4.317 4.605 4.500 4.382 4.248 4.094 3.987
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Y: Soil yields on reaching initial yield locus.
Y to F: Soil follows undrained state boundary (i.e. the same path as Specimen A) from 

yield to failure on the critical state line.
F: The critical state is reached, and any further deformation would take place at con-

stant stresses q and p′.

Example 5.6:  numerical prediction of state paths using the Cam clay model; 
contrast between undrained and drained state paths

 1. With the cell pressure at 300 kPa, the drainage taps are closed and the specimen 
in Example 5.4 is subjected to a conventional undrained compression test. Use the 
Cam clay model with M = 1.02 to sketch the state paths (in q, p′; q, p and v, ln p′ 
planes) followed by the specimen during the test. Give the values of q, p′ and u at 
yield and at failure, and obtain some numerical values along the state path between 
these points.

 2. A second, identical specimen is treated similarly, except that it is subjected to a 
drained (rather than an undrained) shear test from an effective cell pressure of 
300 kPa. Show that yield should occur at q = 70 kPa. Predict the values of q and p′ 
at failure.

 3. What is the engineering significance of the difference between the two results?
 4. Explain briefly why you would expect the Cam clay predictions to be less realistic 

if the specimens had been allowed to swell back to 50 kPa before the start of the 
shear tests.

SOluTIOn

 1. The state path followed in the q, p plane is given by the expression dq/dp = 3. The 
state paths followed in q, p′ and v, ln p′ planes are as shown in Figure 5.33. While 
the state of the specimen remains within the initial yield locus, the requirement that 
deformation takes place on the same κ-line (in the v, ln p′ plane) and at constant 
specific volume means that p′ = constant (= 300 kPa) until yield. The equation of 
the Cam clay yield locus is

 q/Mp′ + ln(p′/p′0) = 0

 with p′0 = 400 kPa initially. Thus, the value of q at yield, qy, may be calculated as:

 qy/(1.02 × 300) + ln(300/400) = 0
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ln ṕ (kPa)
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Figure 5.38 State paths in (a) the v, ln p′ and (b) the q, p′ planes followed by Specimen B, Example 5.5.
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 Hence,

 qy = 88 kPa (p′y = 300 kPa; py = 300 + qy/3 = 329.3 kPa; and uy = py − p′y = 29.3 kPa)

Eventually, the specimen reaches the critical state line and fails. On the critical 
state line, q = Mp′ and v = − λ ln p′. We can calculate p′ at the critical state from the 
equation of the critical state line in the v, ln p′ plane, because v, Γ and λ are known.

 The specific volume during undrained shear is (from Example 5.4)

 v = 2.599 − 0.18 + 0.01439 = 2.433

Using the subscript c to denote the critical state, the equation of the critical state 
line in the v, ln p′ plane is vc= Γ − λ ln p′c, so λ ln p′c = 3.767 − 2.433

 Hence,

 p′c = 169.1 kPa

 From the equation of the CSL in the q, p′ plane,

 qc = 1.02p′c = 172.5 kPa

 The value of pc is given by pc = 300 + qc/3 = 357.5 kPa, and uc = pc − p′c = 188.4 Pa.
At any stage between yield and failure on the critical state line, the current state 

of the specimen lies on a κ-line (in the v, ln p′ plane) and on a yield locus associated 
with a particular value of p′0. The value of p′0 at the critical state, p′0c, is given by

 qc/Mp′c + ln(p′c/p′0c) = 0

 or

 ln(p′0c/p′c) = 1

 that is, p′0c = 2.72p′c = 460 kPa in this case.
The easiest way of calculating a state point between yield and failure is to choose 

a value of p′0 between the initial value of 400 kPa and the value at the critical state, 
460 kPa. The corresponding value of p′ may then be calculated from the relation 
between v, p′0 and p′ in the v, ln p′plane

 v = (Γ + λ − κ) − λ ln p′0 + κ ln(p′0/p′)

 (Figure 5.30b), with v = 2.433 and the known values of Γ λ κ.
Knowing p′and p′0, the value of q may be calculated from the expression for the 

current yield locus in the q, p′ plane

 q/Mp′ + ln(p′/p′0) = 0

The average total stress is p = 300 + q/3, and the pore water pressure is u = p − p′. 
Values of p′0, p′, q, p and u between yield and failure calculated in this way are given 
in Table 5.8.

Table 5.8 Values of p′0, p′, q, p and u between yield and failure for Example 5.6

Yield Failure

p′0 (kPa) 400 410 420 430 440 450 460
p′ (kPa) 300 273.7 247.4 224.1 203.5 185.1 169.1
q (kPa) 88.1 112.8 133.6 149.0 160.1 167.7 172.5
p (kPa) 329.3 337.6 344.5 349.7 353.4 355.9 357.5
u (kPa) 29.3 63.9 97.1 125.6 149.9 170.8 188.4
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The state paths followed in the q, p′, q, p and v, ln p′ planes are plotted in 
Figure 5.39.

 2. For a specimen subjected to a drained shear test, the pore water pressures are zero 
and the effective stress path is the same as the total stress path, p′ = 300 + q/3. The 
specimen will yield when the initial yield locus is reached, so that

 p′y = 300 + qy/3

 and

 qy /Mp′y + ln(p′y/p′0) = 0

 or

 qy /[1.02 × (300 + qy/3)] + ln[(300 + qy/3)/400] = 0

By trial and error, this equation is satisfied when qy = 70 kPa (p′y = 300 + qy/3 = 
323.3 kPa).

At failure, qc = Mp′c and pc = 300 + qc/3:

 qc = 1.02 × 300 + 1.02qc/3 = 463.6 kPa; p′c = 454.5 kPa at drained failure.

 3. The value of qc for drained failure is much greater than in the undrained case. The 
engineering significance of this is that constructions involving rapid loading of a 
clay soil might cause undrained failure, whereas if time were allowed for pore water 
pressures to dissipate, failure could be avoided. This is particularly applicable to 
embankments on soft clay, which are often stage-constructed (cf. Figure 4.10) for 
this reason.

 4. A specimen that had been allowed to swell back to a cell pressure of 50 kPa 
would have an overconsolidation ratio np of 400/50 = 8. This would bring the 
soil onto the dry side of the critical state. Failure would be expected to occur by 
rupture (Section 5.13), rather than by continuum yield as assumed in the Cam 
clay model.
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5.13 PEAK STRENGTHS

5.13.1 Predictions using Cam clay

The state paths followed by a more heavily overconsolidated specimen during conventional 
triaxial compression may in principle be predicted using the Cam clay model, by means of 
exactly the same procedures as for a normally consolidated or a lightly over-consolidated 
specimen (Section 5.12). The state paths followed in the q, p′ and v, ln p′ planes during 
drained and undrained triaxial tests are shown in Figures 5.40 and 5.41.

For a heavily overconsolidated specimen, the Cam clay model predicts that yield will 
occur at a stress ratio q/p′ in excess of the critical state value M. The strength of the speci-
men will then reduce as it ′softens′ to the critical state (Figures 5.40 and 5.41). Between 
yield and failure, the state path crosses a series of κ-lines that intersect the isotropic normal 
compression line at decreasing values of p′0, so that the associated current yield loci viewed 
in the q, p′ plane appear to contract.
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During undrained triaxial compression, a heavily overconsolidated specimen generates 
positive pore water pressures given by ρ u = q/3 until yield, because of the requirement p′ = 
constant. After yield, the pore water pressures decrease dramatically, and may well become 
negative (Figure 5.41c). In a drained test, the specimen would suck in water to enable it to 
dilate to the critical state. The initial states of such specimens lie to the left of the critical 
state line in the v, ln p′plane, and are described as dry of critical.

The apparent overconsolidation ratio at failure that divides wet or lightly overconsoli-
dated specimens from dry or heavily overconsolidated specimens is given by p′0c/p′c = 2.72 
(from Figure 5.26). For undrained tests, which follow the undrained state boundary to the 
critical state, the ratio between the average effective stress at failure p′c and the initial pre-
consolidation pressure p′0i is approximately 1.86: Figure 5.36.

The Cam clay models are based on the assumption that the soil deforms as a continuum, 
with stresses and strains that are uniform throughout the specimen. In practice, the prog-
ress of a heavily overconsolidated specimen towards the initial yield locus is likely to be 
interrupted by the formation of a rupture zone. As the test continues, deformations become 
concentrated in the rupture zone, and the state of the soil within the rupture zone may not 
be the same as that in the rest of the specimen. This makes the analysis of the postrupture 
behaviour of a triaxial specimen somewhat difficult, although it might be argued that the 
continuum analysis is applicable until the rupture occurs. Post peak stresses and strains 
in the triaxial test cannot reliably be calculated on the basis of loads and displacements 
measured at the boundaries of a ruptured specimen: such data should therefore be treated 
with caution. Non-uniformity of strains in a triaxial test specimen can be assessed opti-
cally using digital image analysis, as discussed by Bhandari et al. (2012) and Bhandari and 
Powrie (2013). 

5.13.2 Hvorslev rupture and tensile fracture

Muir-Wood (1990) shows that data of peak strengths from carefully conducted tests on 
overconsolidated clays fall on a line on a normalised q, p′ plot of the form

 (q/p′c) = H [(p′/p′c) + g]  (5.47)

(Figure 5.42). This may be used to estimate peak strengths of  overconsolidated specimens 
that are dry of critical. In q, p′, v space, Equation 5.47 represents a  three- dimensional  surface 
defining possible failure states. It is known as the Hvorslev surface, after the geotechnical 
engineer M. J. Hvorslev who carried out pioneering work on the peak strengths of overcon-
solidated clays in the 1930s.
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Figure 5.42  Tensile cut-off, Hvorslev surface, critical state point and Cam clay undrained state boundary in 
a normalised (q/p′c, p′/p′c) plot.
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Three important points concerning the Hvorslev surface line should be noted:

 1. It applies only to the left of the critical state point on the (q/p′c, p′/p′c) diagram. If the 
stress state of the specimen lies to the right of the critical state point, the specimen is 
either normally consolidated or lightly overconsolidated. It will not then exhibit a peak 
strength, but will yield and move along the undrained state boundary towards failure 
on the critical state line.

 2. The extent of the Hvorslev line on the left-hand side of the (q/p′c, p′/p′c) diagram is also 
limited. A drained triaxial compression test starting from an effective cell pressure of 
zero would follow the line q = 3p′, from Equation 5.10 with σc − u = 0 (Figure 5.42). A 
stress state to the right of this line implies an effective cell pressure of greater than zero, 
while a stress state to the left of this line implies an effective cell pressure that is negative. 
As soil cannot withstand tensile stresses, this is impossible. Thus the line q = 3p′ repre-
sents a third possible failure condition (in addition to the critical state and the Hvorslev 
line), corresponding to tensile fracture. (In conditions other than triaxial compression, 
the equation of the tensile cut-off would be slightly different, but the same principle 
applies.)

 3. In Figure 5.42, the stress state (q, p′) has been normalised with respect to p′c. The value 
of p′c depends on the specific volume of the specimen. Thus, peak strengths measured 
in practice must also be expected to depend on the specific volume (or the water con-
tent) of the specimen.

Figure 5.42 depicts the limiting states of stress to which a soil element can be subjected, 
defined by the mode of failure appropriate to the stress history and stress state of the soil, 
in normalised (q/p′c, p′/p′c) terms. Normally consolidated and lightly overconsolidated speci-
mens will display continuum yield as predicted by a Cam clay-type model, eventually reach-
ing failure at a critical state. More heavily overconsolidated specimens will probably rupture 
on planes of maximum stress ratio, according to a Hvorslev-type failure criterion (Equation 
5.47). At very low effective stresses, failure would be expected to occur by tensile fracture. 
This behavioural regime is discussed in more detail by Schofield (1980).

5.13.3 Interpreting peak strength data

A traditional interpretation of peak strengths, based on drawing a best-fit common tan-
gent to a series of Mohr circles of stress, was described in Section 5.5. Muir-Wood (1990) 
shows that the interpretation of peak strength data obtained by plotting q/p′e against 
p′/p′e at peak stress ratio q/p′ is much more satisfactory (Figure 5.43). The value p′e is the 
equivalent consolidation pressure defined in Figure 5.35, but normalisation with respect 
to p′c would be at least as acceptable. In this way, the dependence of peak strength on 
stress history and specific volume/water content is to some extent taken into account, 
and the scatter in the results is considerably reduced (Figure 5.43). Figure 5.43 also dem-
onstrates very clearly the departure of the peak strength envelope from Equation 5.47 
at low effective stresses, as it curves round to the no-tension cut-off and passes through 
the origin.

5.13.4 Stress ratio-rate of dilation plots

We saw in Chapter 2 that for typical unbonded or uncemented soils, the mobilisation of a 
strength in excess of critical (i.e. a peak strength) depends on the ability of the soil to dilate. 
We can investigate the relationship between strength and dilation for a given soil by plotting 
a graph of the current mobilised strength or stress ratio against the current rate of dilation, 
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measured in an element test. This can then be compared with an empirical or theoretical 
stress–dilatancy relationship, such as that given by Equation 2.14,

 0.8critϕ′ = ϕ′ + ψ   (2.14)

where φ′ is the current mobilised effective angle of shearing resistance, φ′crit is the critical 
state value, and ψ is the current rate of dilation. A theoretical stress–dilatancy relationship 
was derived by Rowe (1962):
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(given in this form by Bolton, 1991), where σ′1 and σ′3 are the major and minor principal 
effective stresses respectively, the subscript crit denotes values at the critical state, εvol,plastic 
is the plastic volumetric strain, ε1 is the major principal strain, and the rate of dilation d is 
defined as −dεvol,plastic/dε1.

It is possible but awkward to write Rowe′s Equation 5.48 in terms of the triaxial test 
parameters q and p′. The Cam clay model provides a convenient (but slightly different) 
 alternative in Equation 5.40, which may be written as
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d

d
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where η (= q/p′) is the current stress ratio, Μ is the stress ratio at the critical state, εvol,plastic is 
the plastic volumetric strain, εq = 2/3 (ε1—ε3) is the triaxial shear strain and d = –dεvol,plastic/
dεq is the relevant rate of dilation in this case (note this definition is different from that used 
in Equation 5.48).

Example stress ratio-rate of dilation plots are given in Figure 5.44. These are for pluvi-
ated specimens of Leighton Buzzard sand and Reigate Silver Sand, and an intact specimen of 
Reigate Silver Sand, all tested at a cell pressure of 100 kPa. The pluviated materials approach 
the Cam clay stress–dilatancy relationship from below, while the intact material approaches 
it from above. In other words, the intact material mobilises higher stress ratios at lower 
dilation rates than the theory would suggest. This is characteristic of very dense materials 
having an interlocked structure (like the Reigate Silver Sand) and also of lightly cemented 
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Figure 5.43  How and how not to interpret peak strength data from tests on clay soils: (a) range of values 
of c′ and φ′tgt from drained triaxial tests on London Clay, interpreted according to Figure 5.11b; 
(b) the same raw data as (a) interpreted and plotted in normalised (q/p′e, p′/p′e) terms.
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materials such as weak sandstones. It is a reflection of the additional work that has to be 
done to overcome the interlocked structure or break the cement bonds between particles, 
which is not accounted for in the stress–dilatancy theories (Cuccovillo and Coop, 1999; 
Cecconi et al., 2002; Cresswell and Powrie, 2004; Bhandari and Powrie, 2013).

5.14 RESIDUAL STRENGTH

The Cam clay model and critical state soil mechanics are concerned with soil that deforms 
as a continuum. Peak strengths (by which we really mean peak stress ratios τ/σ′ or q/p′) will 
be observed due to the effects of dilation, which occurs in dense (heavily overconsolidated) 
soils because the particles need more room to move relative to one another. Dilation cannot 
continue indefinitely, so that the soil eventually reaches a condition in which deformation 
continues at constant stress ratio and constant specific volume—the critical state.

In dense soils, deformation may become concentrated in a very thin band as a  rupture 
surface develops. Stress states at rupture are indicated by the Hvorslev line shown in 
Figure 5.42. Once a rupture surface has developed, the specimen no longer behaves as a 
continuum. Movement occurs by relative sliding across the rupture, and the shearing of the 
rupture zone generates negative pore water pressures, enabling the rupture zone to soften 
by drawing in water from the surrounding soil. With continued shearing, the plate-like clay 
particles become aligned along the direction of the rupture surface. The rupture surface 
becomes polished, and the shear strength gradually falls to the residual value, φ′r.

The relative movement required to polish a rupture to the extent that the shear strength 
falls to φ′r is rather more than can be accommodated in a shearbox or a triaxial  apparatus. 
Residual strengths are investigated using a device known as a ring shear apparatus 
(Figure 5.45). This is rather like a shearbox in which the specimen is in the shape of a ring, 
and is sheared by applying a torque that twists the top half of the specimen relative to the 
bottom. Unlike the shearbox, the ring shear apparatus does not run out of travel, and the 
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Figure 5.44  Stress ratio η against rate of dilation d = –dεvol,plastic/dεq measured in triaxial tests at a cell pres-
sure of 100 kPa on intact and pluviated specimens of Reigate Silver Sand (RSS) and a pluviated 
specimen of Leighton Buzzard sand Fraction B, compared with the Cam clay stress-dilatancy 
rule (Equation 5.49) with M = 1.24. (From Bhandari, A. R. and Powrie, W., Granular Matter, 
in press.) 
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relative displacement of the two halves can be continued indefinitely. Typical data from a 
ring shear test, including both the peak and residual states, are shown in Figure 5.46.

The movements associated with the reduction of the strength of a clay from the critical to the 
residual state would be unacceptably large for a geotechnical structure in practice. Unfortunately, 
it cannot be guaranteed that the clay at a particular site does not have pre-existing shear sur-
faces, on which the residual strength has already been reached due to ground movements (such 
as landslides) in the past. Skempton (1964) showed that the stability of many natural slopes 
in London Clay is governed by the residual strength (φ′r ≈ 16°) on historic slip surfaces, rather 
than the critical state strength (φ′crit ≈ 20°) of the intact material. This significant reduction in 
strength must be taken into account in the design of cuttings, embankments or foundations for 
buildings on ground that is already of marginal stability. Although it might seem odd to build 
a house on the site of an old landslide, many areas of marginal stability, such as the Kent and 
Essex coasts in England, are attractive places to live, with pleasant views of the sea.

Undulations in the surface of the ground are sometimes indicative of historic slip surfaces. 
Careful examination of soil cores retrieved intact from trial boreholes may reveal to the 
experienced eye the presence of ruptures, as greasy-wet or ′slickensided′ discontinuities.

5.15 SENSITIVE SOILS

Real clays are usually sampled from the ground and tested in the triaxial apparatus with as 
little disturbance as possible. Although a degree of disturbance is inevitable, at least some 
of the natural structure of the soil will remain. The soil parameters determined from tests 
on natural or undisturbed samples may be different from those determined from tests on 

τ

σʹ

τ

Figure 5.45 Schematic diagram of ring shear apparatus.

0
0 5 10 15 20 25 30 35 40 45 50

Average displacement (mm)

Ring shear test
Undisturbed Blue London Clay
Nominal normal stress σń = 207 kPa
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the material after it has been remoulded or reconstituted (i.e. dried to a powder, mixed with 
water to form a slurry, and recompressed to give the desired stress history), because the 
natural structure is destroyed in remoulding or reconstitution.

Structured natural soils may be more compressible than remoulded soils when tested in 
an oedometer, because of the additional deformation associated with the breakdown of 
their structure (Burland, 1990). The slow deposition of soil particles through still water 
tends to give rise to an open structure, and a relation between specific volume and lnσ′v— 
the sedimentation compression line—which lies above and approximately parallel to the 
one-dimensional normal compression line for reconstituted soils. If a natural soil having an 
open structure is sampled and then tested in an oedometer, its state will move from the sedi-
mentation compression line to the one-dimensional normal compression line as the vertical 
effective stress is increased, leading to an increase in its apparent compressibility.

Strength parameters determined from natural samples may be unreliable, if the compo-
nents of shear resistance associated with soil structure and interparticle bonds are only tran-
sitory. Neglecting the effects of specimen disturbance, the strength parameters determined 
from tests on remoulded soils will usually err on the safe side, because the contribution of 
any natural structure or cementing of the particles is neglected.

The sensitivity S of a clay is a measure of the ratio of the undrained shear strength of the 
structured material to that in the remoulded state, at the same water content,

 S = τu,peak/τu,remoulded  (5.50)

If S ≈ 1, the clay is insensitive, and the peak and remoulded strengths are similar. However, 
the sensitivity S can be as high as 1,000. Figure 5.47 (from Crawford, 1963) illustrates quite 

Figure 5.47  Effect of remoulding on the undrained shear strength of a sensitive soil (Leda Clay). (From 
Crawford, C.B., Géotechnique, 13, 2, 132–46, 1963. With permission.)
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graphically the effect of remoulding on a sensitive clay. An undisturbed specimen capable of 
supporting a reasonable load is reduced to a slurry by remoulding at the same water content, 
due to the loss of its natural structure.

Sensitive clays are often geologically recent (postglacial), and normally consolidated (that 
is, they have never been subjected to the removal of overburden). A sensitive structure might 
arise from a cementing of the soil particles in the natural condition, or the leaching out of 
some component of the material as deposited—for example, the replacement of salt water 
by fresh water. The differences between natural and remoulded soils are discussed in detail 
by Mitchell and Soga (2005) and Burland (1990).

5.16  CORRELATION OF CRITICAL STATE PARAMETERS 
WITH INDEX TESTS

The liquid and plastic limit tests described in Section 1.11 are in effect indicators of the und-
rained shear strength of the soil. It is generally accepted that the undrained shear strength at 
the liquid limit τu,LL is of order 1.6 kPa. At the plastic limit, τu,PL is approximately 110 kPa, 
or 70 times greater (Whyte, 1982; Skempton and Northey, 1953). Critical states of remoulded 
soils are given by Equations 5.26 and 5.27,

 q = Mp′  (5.26)

and

 v = Γ− λ ln p′  (5.27)

Recalling that the water content is related to the specific volume by

 v = (1 + e) = (1 + wGs)

and assuming that the relation between qc and τu in the triaxial test, τu = qc/2, is appropriate 
to the liquid and plastic limit tests, then

 (1 + wGs) = Γ − λ ln (2τu/M)

so that

 wGs = Γ− 1 + λ ln (M/2) − λ ln (τu),

or

 w = C − (λ/Gs) ln (τu)  (5.51)

where C is a constant. Noting that the plasticity index IP is equal to wLL − wPL, we have 
(using Equation 5.49):

 wLL = C − (λ/Gs) ln(τu,LL)

 wPL = C − (λ/Gs) ln (τuPL)
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so that

 wLL − wPL = (λ/Gs) ln(τu,PL/τuLL)

and

 IP = (λ/Gs) ln 70, λ = IPGs/ln 70, or

 λ ≈ 0.63 × IP, taking Gs = 2.7 (5.52)

Equation 5.52 may be used to estimate the slope of the normal compression line in the v, ln 
p′(or v, ln σ′v) plane from the results of the index tests described in Section 1.11. Muir-Wood 
(1990) shows that, if the liquid limit tests are carried out using the fall cone apparatus, there 
is a further correlation between the water content of the specimen and the cone penetration 
d. For a given cone mass and geometry and for soils of the same type, dimensional analysis 
shows that τu α 1/d2 (Wood and Wroth, 1978). Thus,

 ln (τu) = D − 2 ln d  (5.53)

where D is a constant. Substituting Equation 5.53 into Equation 5.51 to eliminate τu,

 w = C − (λ/Gs)(D − 2 ln d)

 ⇒ w = E + (2λ/Gs) ln d  (5.54)

where E is a constant (E = C −[Dλ/Gs]). Thus a graph of water content w against the natu-
ral logarithm of the cone penetration d may be used to determine the parameter λ from the 
slope, which should be equal to 2λ/Gs, or (taking Gs = 2.7) approximately 0.74λ.

Further correlations that can be made from the results of fall cone tests in which cones of 
different mass are used are detailed by Muir-Wood (1990).

5.17 CREEP

Throughout this book, and in most conventional soil mechanics theory, it is generally 
assumed that deformation of soil occurs only as a result of changes in effective stress. In 
reality, some soils continue to deform when the effective stresses are not changing: this 
behaviour is known as creep.

Creep may be investigated experimentally by maintaining a triaxial test specimen at a 
constant stress state (q and p′), and observing the development of continuing deformation 
(e.g. axial strain) with time. Data from creep tests presented by Bishop and Lovenbury 
(1969) are shown in Figure 5.48. All except the uppermost of these curves take the form of 
a straight line when the strain is plotted as a function of the logarithm of the elapsed time, 
indicating that the same creep strain occurs over each log cycle of time.

In general, the development of creep strains with time (at constant effective stress) may 
be described mathematically by an equation of the form (Mesri et al., 1981; Mitchell and 
Soga, 2005), where t1 is a reference time (e.g. 1 minute or 1 hour), qc is the deviator stress at 
failure, and A, m and α are soil parameters.

 εcreep = [At1/(1 − m)] exp (αq/qc)[t/t1](1−m) (m ≠ 1)  (5.55a)
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or

 εcreep = At1 exp(αq/qc) ln[t/t1] (m = 1)  (5.55b)

Most of the data shown in Figure 5.48 illustrate a reasonably stable condition, in which 
the rate of increase of shear strain (in real time) is decreasing. In some situations, particu-
larly with high shear stress ratios q/qc and/or sensitive, structured soils, the stress state is 
unsustainable and creep strains accelerate, leading to creep rupture. This is indicated by 
the uppermost curve in Figure 5.48, and would be associated with a value of the parameter 
m < 1 in Equation 5.55. Equation 5.55 suggests that creep is likely to be more significant 
when the soil is closer to shear failure, that is, at higher values of q/qc: this is confirmed by 
the data of Figure 5.48.

Creep may also affect the results of oedometer tests, and triaxial tests carried out at a 
constant rate of strain. The slower the test, the more opportunity there is for creep strains 
to develop, resulting in a softer response (i.e. more deformation at a given load). If the strain 
rate is changed during a test, the state of the soil will jump to the stress-strain relation 
appropriate to the new strain rate (Figure 5.49).

The effects of creep can lead to the indication of a false pre-consolidation pressure in 
oedometer tests where the rate of testing is faster than the rate of deposition in the field, as 
indicated in Figure 5.50.

In practice, creep is not a significant problem with many soils. If it were, the surface 
of the earth would be locally completely flat. The influence of creep on the stress-strain 
relationship of a soil can usually be overcome by not carrying out tests too quickly. For 
example, the load on an oedometer test specimen might be increased at daily, rather than 
at hourly intervals. Creep is only usually troublesome with soils that are unstable owing 
to their structure (e.g. sensitive soils), or are subjected to unsustainable (close to peak) 
stress states.
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5.18 ANISOTROPY

We saw in Section 3.6 that some soils exibit a layered structure, as a result of the way in 
which they were originally deposited. Soils such as the glacial lake deposits shown in Figure 
3.15 will be anisotropic (i.e. they will not have the same properties in every direction) in 
terms of their stress-strain response as well as their permeability. The properties associated 
with the two horizontal directions are different from the properties associated with the ver-
tical direction, but indistinguishable from each other. The term cross-anisotropic is used to 
describe this special form of anisotropy.

In fact, most natural soils will be cross-anisotropic to some extent, even if their structure 
is not as obviously layered as that shown in Figure 3.15. This is because the particles will 
tend to become aligned with the plane of deposition. The effect is more pronounced with 
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flat particles (i.e. clays) than with more rotund particles (i.e. sands): clay particles deposited 
through water settle onto their flat faces, not their edges.

Few of the simple conceptual models for the behaviour of soils take anisotropy into 
account directly. One reason for this is that it is difficult to obtain the parameters required 
to describe it. When a specimen that has been cored vertically is tested in the triaxial cell, 
the horizontal stresses imposed during the test are aligned with the directions that were hor-
izontal during deposition in the field. The axes of structural anisotropy (resulting from the 
direction of deposition in the field) and stress anisotropy in the triaxial cell are coincident, 
and conditions of axisymmetry are preserved. If a specimen is cored with its axis horizontal, 
one of the horizontal directions in the triaxial cell will be aligned with what was originally 
the vertical direction in the field. Complete symmetry will be then lost, and the specimen 
will almost certainly deform in a non-cylindrical manner.

Anisotropy is probably usually neglected because it is difficult to quantify and model, rather 
than because it is unimportant. In soil deposits where the structure is not obviously anisotro-
pic, however, it seems that structural anisotropy resulting from the alignment of the particles 
with the plane of deposition affects the stiffness more than the soil strength. Thus calcula-
tions based on soil strength (discussed in Chapters 7 to 10) are unlikely to be affected signifi-
cantly by depositional anisotropy. In calculations based on soil stiffness (which are discussed in 
Chapter 6), the direction of loading and deformation may be reasonably well-defined in advance 
(e.g. vertical compression), so that the parameters can be determined and used accordingly.

In soils having an obvious layered structure, layers of softer materials (such as normally 
consolidated clay) represent planes of potential weakness, which must be taken into account 
in the assessment of strength parameters for design. Old slip surfaces, and fissures or joints 
in rocks, represent perhaps more serious planes of weakness, because their orientation is 
unlikely to be primarily horizontal. (Example 5.1 in Section 5.4 indicates that planes of 
weakness will have a more significant effect on the strength of the soil mass when they are 
inclined at angles nearer 45° to the direction of the principle effective stress.)

5.19 UNSATURATED SOILS

It is usually assumed in conventional soil mechanics theory that the soil is either saturated or 
dry. In practice, there are situations where the soil is unsaturated: that is, some of the voids 
are filled with water and some with air.

A saturated soil is a two-phase material, comprising solid soil particles and water. Its 
behaviour is controlled by the effective stress, defined as σ − u where σ is the total stress 
and u is the pore water pressure. An unsaturated soil is a three-phase material, comprising 
soil particles, water and air. Leaving aside the complication that the distribution of air and 
water may be non-uniform, unsaturated soil behaviour is controlled by two stress param-
eters, (σ − ua) and (ua − uw), where σ is the total stress, uw is the pore water pressure and ua 
is the pore air pressure.

Bishop and Donald (1961) described the shear behaviour of an unsaturated soil in terms 
of a stress σ′i, where

 σ′i = (σ − ua) + χ(ua − uw)  (5.56)

and χ is a parameter whose value was expected to depend on the saturation ratio, Sr. 
However, the approach was later shown not to account for the volumetric compression 
(often termed collapse) that can occur on increasing the water content of an unsaturated 
soil at constant total stress, if the initial water content is below a certain critical degree of 
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saturation. This critical degree of saturation depends on the grain characteristics and may 
be as low as 20% for coarse granular soils, 40–50% for silts and as high as 90% for clays 
(Jennings and Burland, 1962). An increase in the water content implies an increase in uw 
hence a reduction in σ′i, which if σ′i really were a effective stress should result in volumetric 
expansion (swelling) rather than the volumetric compression (collapse) actually observed. 
Thus, σ′i cannot be viewed as an effective stress, in the sense that an effective stress controls 
completely both the shear and volumetric behaviour of a soil; consideration must also be 
given to the matric or relative suction, s = ua−uw (Section 3.20).

The collapse of soils on wetting occurs because when the degree of saturation is low the 
water remaining in the soil retreats to the smallest voids, generally at the interparticle con-
tacts. The curvature of the menisci and hence the pore water suctions are therefore high (d in 
Equation 3.1 is small), which combined with their location at the particle contacts enables a 
very open structure to be maintained. As the water content is increased the water moves out 
into the the larger pores, the curvature of the menisci is reduced and the bonding effect is lost. 
The open structure cannot be sustained and the soil collapses. This is an illustration of the 
importance of the distribution of the pore water within a soil, which—especially at low degrees 
of saturation—is likely to be non-uniform. Another is the tendency of compacted clay soils to 
aggregate, forming packets or lumps of relatively high water content with air voids in between.

Toll (1990) presents a critical state framework for the behaviour of unsaturated soils in 
terms of five state variables. These are the deviator stress q, the specific volume v, the satu-
ration ratio Sr, and the isotropic stress parameters (p − ua) and (ua − uw). Critical states are 
defined by the Equations,

 q = Ma(p − ua) + Mw(ua − uw)  (5.57)

and

 v = Γaw − λa ln(p − ua) − λw ln(ua − uw)  (5.58)

where the five soil parameters Ma, Mw, Γaw, λa and λw depend on the saturation ratio, Sr. The 
dependence of Ma, Mw, Γaw, λa and λw on Sr must be determined experimentally.

Wheeler (1991) points out that Toll′s (1990) critical state framework for unsaturated soils 
cannot be used as a predictive tool, because Sr (and hence the values of the parameters Ma, 
Mw, Γaw, λa and λw) will change as the soil is sheared. Wheeler (1991) proposes an alternative 
critical state framework that overcomes this shortcoming, but with some loss of simplicity.

Houlsby (1997) shows that a stress parameter similar to σ′i, given by Equation 5.56, with 
the parameter χ replaced by the degree of saturation, Sr, does have a physical significance 
in unsaturated soils as the work conjugate to the relevant strain (i.e. when the two are mul-
tiplied together, the result is the work done during an increment of strain). An additional 
component of work is given by a modified suction, ns (where n is the porosity and s = ua – uw) 
multiplied by the negative of the change in saturation ratio, Sr. Thus, a simple and appropri-
ate form of stress parameter for an unsaturated soil is given by

 u S u ui w r a w( ) ( )′σ = σ − + −   (5.59)

which is work conjugate to the strain, together with a modified suction

 s n u u* a w )(= −   (5.60)

which is work conjugate to the negative of the change in the saturation ratio Sr.
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A review of the concepts appropriate to unsaturated soils is given by Fredlund (1979). 
Soils are rarely significantly unsaturated below the groundwater level. In temperate regions 
(such as the UK), the soil above the groundwater level is often avoided for engineering 
purposes, and the concepts of conventional (saturated) soil mechanics are generally suf-
ficient. In warmer and more arid climates, the water table may be very deep, and the need 
to consider the effects of non-saturation is rather more important. Non-saturation may also 
be important in attempting to describe the mechanical behaviour of biologically active sedi-
ments (Sills et al., 1991) and wastes (Hudson et al., 2004) in which on going degradation 
leads to the generation of methane gas within the deposit.

5.20 CRITICAL STATE MODEL APPLIED TO SANDS

Although there is no doubt that a critical state for sands exists in much the same way as 
the critical state for clays (witness the shearbox tests of Chapter 2), the full Cam clay-type 
model is more difficult to apply. This is primarily because it is not possible to identify a 
normal compression line (i.e. a unique relation between specific volume and p′or σ′v in first 
compression), in the same way that it is for clays. There has also been some discussion in 
the literature as to whether the critical state line, which is usually determined on the basis 
of drained tests on dense specimens, is actually the same as the so-called steady state line, 
which is usually determined on the basis of undrained tests on loose specimens. For practi-
cal purposes, it seems that it probably is (Been et al., 1991).

The critical state line determined for Erksak 330/0.7 sand by Been et al. (1991) is shown 
in Figure 5.51. The change in slope of the line, which occurs at p′≈ 1000 kPa, is due to the 
onset of particle crushing at high confining pressures.

The behaviour of a sand specimen during shear before reaching the critical state depends 
on its specific volume relative to the specific volume on the critical state line at the current 
average effective stress p′. Specimens that are initially loose will compress, while specimens 
that are initially dense will dilate. In this context, the terms ′loose′ and ′dense′ must be 
defined with respect to the specific volume at the critical state, at the confining pressure at 
which the shear test is carried out. You can (in principle at least) turn a dense sand into a 
loose sand (relative to its critical state) by testing it at a high enough confining stress (see, 
e.g. Cresswell and Powrie, 2004).
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Been and Jefferies (1985) proposed the use of a state parameter ψ = v − vc to describe the 
state of a sand, where vc is the specific volume at the critical state (Figure 5.52). This is more 
satisfactory than the density index ID = (e − emin)/(emax − emin), because ψ takes into account 
the effects of the confining pressure p′. Muir-Wood (1990) suggests that the influence of 
mineralogy, angularity and particle size could be accounted for by normalising ψ by divid-
ing it by (vmax − vmin).

Jefferies (1993) went on to develop a critical state model for sand called Nor-Sand, which 
separates the volumetric state of the soil from the degree of overconsolidation and uses a 
hardening law based on ψ rather than on the specific volume v to define the size of the cur-
rent yield surface. A conceptually simpler example of a critical-state based model for sand, 
with essentially similar features to Nor-Sand, was proposed by Muir-Wood et al. (1994) 
and is summarised in Section 5.21.

5.21 NON-LINEAR SOIL MODELS

Soils only behave truly elastically at very small strains (Simpson et al., 1979). Furthermore, 
the stiffness of soil decreases rapidly with increasing strain following a change in the direc-
tion of the stress path (e.g. loading followed by unloading): Jardine et al. (1984); Atkinson 
et al. (1990). If realistic predictions of the deformations associated with complex geotechni-
cal constructions are required, it is necessary to take these factors into account in the model 
used to describe the stress-strain behaviour of the soil.

One possibility is to relate the shear stiffness of the soil to the current stress and the strain 
following the last reversal in the direction of the stress path, by means of an empirical curve 
fitted to triaxial stress-strain data (Duncan and Chang, 1970; Jardine et al., 1986). Usually 
the shape of the curve is hyperbolic, expressed in the form

 
ε

( )σ − σ =
ε

+a b1 3
1

1
  (5.61)

where σ1 and σ3 are the major and minor principal (total or effective) stresses, ε1 is the major 
principal strain (i.e. the axial strain in a triaxial compression test), and a and b are curve-fit 
parameters determined empirically (Duncan and Chang, 1970, following Kondner, 1963; 
Kondner and Zelasko, 1963).

A drawback of this approach is that it does not allow for the development of a peak 
strength, as the final strength is approached asymptotically with increasing strain. This can 

Ψ = v – vc

p′ ln p′O

Current mean
effective
stress

Critical
state line

Typical
state point

v

v

vc

Figure 5.52 Definition of the state parameter ψ for sand.
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be overcome by introducing a hardening relationship as in the model summarised below. In 
a numerical model the assumption of a single hyperbolic stress-strain law might be an avoid-
able oversimplification; the stiffness of a soil may be stress path dependent and the stress 
paths followed by soil elements in the vicinity of a geotechnical engineering construction 
will not all be the same (see Section 6.2).

Muir-Wood et al. (1994) set out the basis for a reasonably simple model for sands that 
reproduces both a non-linear elastic stiffness and strain softening behaviour (i.e. the pos-
sibility of a peak strength). The elements of this model are

 1. A relationship between the current value of the available peak stress ratio, Μp, 
towards which the stress state is heading; the critical state stress ratio, Μ, and the state 
 parameter, ψ:

 kΜ Μ= − ψ.p  (5.62)

 where k is a constant.
 2. A hardening relationship, linking the current stress ratio, η, to the triaxial shear strain, 

εq, assuming that the sand is striving to attain the current value of the available peak 
stress ratio Μp:

 
BΜ ( )

η =
ε
+ εp

q

q

 (5.63)

 where B is a constant.
 3. A stress-dilatancy relationship or flow rule:

 A ( )δε
δε

= Μ − η.vol,plastic

q

  (5.64)

 where δεvol,plastic is the increment of plastic volumetric strain, δεq is the increment of 
triaxial shear strain and A is a constant. When A = 1, Equation 5.64 is the same as the 
Cam clay flow rule, Equation 5.49.

Muir-Wood et al. (1994) show that the model will produce non-linear monotonic stress-
strain curves typical of sands, with peak strengths and dilation to a critical state for speci-
mens initially dense of critical and volumetric compression with no peak strength for 
specimens that initially loose. The model was subsequently developed into Severn-Trent 
sand by Gajo and Muir-Wood (1999).

A more general approach for implementation in a numerical model involves a develop-
ment of the Cam clay model with three special surfaces (Stallebrass, 1990; Atkinson and 
Stallebrass, 1991), as shown in Figure 5.53.

While the stress state of the soil lies within the innermost surface, its behaviour is truly 
elastic. The innermost surface may therefore be termed the yield surface. The middle surface 
helps to define (in conjunction with the stress path) the region within which the stress state is 
influenced by the recent stress history of the soil (e.g. a change in the stress path direction). 
The outermost surface is established by the geological or historic stress history of the soil, in 
the same way as the yield surface in the Cam clay model.

The three surfaces are similar in shape (elliptical, as in Modified Cam clay), and the two 
inner surfaces expand or contract with the outer surface, so that their sizes are always in the 
same proportion. In addition, the inner surfaces can move around within the outer surface, 
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depending on the stress state and stress history of the soil: for this reason they are termed 
kinematic.

Figure 5.54 shows the translation of the two inner surfaces as an overconsolidated soil is 
loaded along the stress path OH (Figure 5.54d). The stress state O has been reached via the 
stress path AO (Figure 5.54b). The stress state of the soil at O lies on the boundaries of both 
of the inner surfaces, which have a common tangent at this point. Whether this is the case 
in general depends on the length of the stress path AO. As the stress state moves towards 
H, the innermost yield surface does not start to move until the stress path has traversed it 
completely (the point Y: Figure 5.54b).

While the stress state is still inside the innermost yield surface, the behaviour of the soil 
is truly elastic. As the stress path continues from Y towards H, the innermost (yield) surface 
moves with it until the middle surface is reached (Figure 5.54c). As loading continues, both 
surfaces move and the influence of the previous stress path AO (i.e. the recent stress history 
effect) is apparent until the two inner surfaces are aligned with their common tangent at 
some angle to the current stress path OH (Figure 5.54d). Figure 5.54a shows the variation 
in shear stiffness modulus G with deviator stress q predicted by the model.

The three-surface model uses the same parameters as the Cam clay model, together with 
three new parameters. The three additional parameters are the size ratios of the kinematic 
surfaces, and a parameter relating the change in shear stiffness G to the movement of the 
kinematic surfaces. An example of the use of the three surface model in an axisymmetric 
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finite element analysis is given by Stallebrass and Taylor (1997), who compare the calculated 
soil movements with those measured in a centrifuge model test on a circular footing and an 
analysis based on modified Cam clay.

5.22 REPEATED OR CYCLIC LOADING

So far in this chapter, we have discussed the behaviour of (mainly) clay soils in element 
tests in which specimens were subjected essentially to monotonic loading. By this, we mean 
that the load applied was increased steadily from the start through to the end of the test. 
Although we have considered, in a limited way, the effect of isotropic compression (loading) 
followed by swelling (unloading) and then reloading, we have generally assumed that during 
the shear stage of a test the deviator stress is increased continuously from the start of shear 
until the specimen fails.

In a real situation, we would wish to ensure that the stresses to which the soil is subjected 
are safely remote from those that would cause failure. However, there are many circum-
stances in which the soil is subjected to repeated cycles of loading and unloading—for exam-
ple, around the foundations of an offshore platform or a wind turbine, or below a railway 
line. There is then a concern that the structure might fail through the build-up of excessive 
plastic strains within the soil as a result of the cumulative effect of perhaps millions of cycles 
of a load that, if applied just once (monotonically), would not have had any adverse effect. 
In other words, a load insufficient to cause failure of the soil when applied once might do so 
when applied and removed many times in succession.

This can be investigated in cyclic tests, in which a load is applied, removed and then 
re-applied as many times as required. Care must be taken with the frequency of cycling to 
ensure that the rate of loading and unloading in the test is consistent with that in the field. 
The chief concern here is whether a soil will remain substantially undrained or have suf-
ficient time to drain during or between each load cycle. This can be assessed with reference 
to the timescale of consolidation or excess pore pressure dissipation; and for a clay soil is 
essentially about making sure that the ratio t/d2 (where t is the cycle time and d is the maxi-
mum drainage path length) is similar in the test and in the field (Chapter 4).

Strains in a cyclic test may be categorised as either plastic or resilient. Plastic strains may 
be either incremental (i.e. occuring during a given load cycle) or cumulative (i.e. the total 
plastic strain that has accumulated through all of the loading cycles so far). The resilient 
strain is the elastic or recoverable strain that occurs during a single cycle (Figure 5.55): 
the ratio of the change in stress to the resilient strain during a single cycle is known as the 
 resilient modulus.

Plastic strains will usually accumulate during the first few loading/unloading cycles, after 
which the specimen will generally behave in one of two ways. The specimen may settle into 
a stable state in which additional loading cycles cause no further accumulation of plastic 
strain. This is known as shakedown. Alternatively, the cumulative plastic strain might con-
tinue to increase with each load cycle, perhaps at an accelerating rate until a type of fatigue 
failure occurs.

In undrained conditions, cyclic loading may result a gradual build-up of pore water pres-
sure and failure due to liquefaction. A comprehensive discussion of liquefaction, its causes 
and analysis is given by Jefferies and Been (2006).

Figure 5.56 shows data from an undrained cyclic triaxial test on a specimen of remoulded 
boulder clay, starting from an effective cell pressure of 35 kPa. The deviator stress was ini-
tially cycled between 0 and 30 kPa. After 10,000 cycles, it was clear that a stable state had 
been reached such that the plastic strain occurring within each cycle was zero (shakedown). 
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The maximum cyclic deviator stress was increased to 35 kPa and a further 10,000 load 
cycles applied. A second stable state was reached, so the maximum cyclic deviator stress was 
increased to 40 kPa for 10,000 cycles, then 45 kPa for 100,000 cycles. In each case a substan-
tially stable state was reached. On increasing the maximum cyclic deviator stress to 50 kPa, 
substantial plastic strain began to accumulate relatively rapidly within each cycle. A stable 
state could not be achieved and the specimen failed after less than 5,000 cycles.

Design against failure in repeated cyclic loading may require adopting reduced or factored 
strength parameters. Limiting cumulative deformations can be challenging. For example, 
railway ballast and the soil below a railway can be subjected to millions of loading cycles 
each year: a plastic settlement as small as a few nanometres (10–9 m) per loading cycle could 
still then result in an unacceptably large permanent deformation over time. The avoidance 
of large cumulative settlements may require a limit on the cyclic strain. Vucetic (1994) links 
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Figure 5.55 Plastic (incremental and cumulative) and resilient strains during cyclic loading.
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Figure 5.56  Development of stable states (shakedown) and eventual accumulation of plastic strain to 
failure: undrained cyclic triaxial tests on a specimen of reconstituted boulder clay (courtesy 
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the tendency for plastic volumetric strain to accumulate in drained cyclic loading, or pore 
pressures to build up in undrained cyclic loading, to irreversible damage to the microstruc-
ture of the soil. He identifies a cyclic shear strain amplitude, which he terms the volumetric 
cyclic threshold shear strain, γtv, below which this will not occur and plastic volumetric 
strains will not accumulate. Thus, γtv (which according to Vucetic (1994) varies from 0.01% 
to 0.1% for soils of plasticiy index from zero to 60%) represents the dividing point between 
cyclically stable behaviour (shakedown) and gradual degradation under repeated cyclic 
loading.

KEY POINTS

• The triaxial test is used extensively in industry and in research to investigate the stress-
strain behaviour of soils.

• The specimen is usually first consolidated by increasing the cell pressure to a known 
isotropic stress state, from which it is sheared by the application of a deviator stress q.

• Triaxial shear tests may be carried out either drained, in which case the specimen 
expels or takes in water and there is no build-up of pore water presure during shear, or 
undrained, in which case the specimen is prevented from changing in volume so that 
either positive or negative pore water pressures are generated.

• Triaxial test data may be presented as graphs of deviator stress q and either pore water 
pressure change Δu (in an undrained test) or volumetric strain εvol (in a drained test) 
against the axial strain εa or the shear strain γ. As alternatives to q, the stress ratio q/p′ 
or the mobilised strength φ′mob may be used. The point of maximum deviator stress q 
will not in general correspond to the peak mobilised strength φ′peak or the maximum 
stress ratio (q/p′)max.

• In addition, state paths may be plotted on graphs of q against p′ (and p), and specific 
volume v against the natural logarithm of the average effective stress, ln p′. The devia-
tor stress q quantifies the shear stress, the average effective stress p′ quantifies the nor-
mal effective stress, and the specific volume v quantifies the volumetric state of the soil.

• Peak and critical state strength envelopes can be determined by plotting Mohr circles of 
stress on a diagram of shear stress τ against normal effective stress σ′. For an uncemented 
soil, the peak strength envelope is curved, and passes through the origin. Peak strengths 
may be represented as φ′peak = tan−1(τ/σ′)peak. At a given specific volume, the peak strength 
increases at low effective stresses due to the increased potential for dilation.

• For clays sheared undrained, the deviator stress at failure depends on the specific vol-
ume or the water content. The limiting shear stress, or the undrained shear strength τu, 
is equal to half the deviator stress at failure, and defines an alternative failure criterion 
in terms of total stresses.

• The undrained shear strength failure criterion is applicable only to a low perme ability 
soil, brought rapidly to failure at constant volume. The undrained shear strength is not 
a soil constant, because its value depends on the specific volume (or water content) of 
the soil as sheared.

• When sheared, a lightly overconsolidated specimen will behave elastically (in the sense 
that deformation is recoverable, but not in the sense that the elastic parameters are 
constant) until it yields. This requires p′ = constant, and in a conventional undrained 
compression test the change in pore water pressure Δu = Δq/3. The combinations of 
q, p′ and v that cause yield define a three-dimensional yield surface, whose magnitude 
depends on the stress history of the soil. A normally consolidated soil is already on the 
yield surface, and will continue to yield immediately on further loading.
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• Provided that the specimen does not rupture, it should on being sheared eventually 
fail by reaching a critical state, at which deformation continues at constant q, p′ and v.

• Between yield and failure, the pore water pressure in an undrained shear test on a 
lightly overconsolidated specimen increases more rapidly than during the initial stage 
of the shear test, prior to yield. In a drained test, the specimen will compress or reduce 
in volume to reach the critical state. Such a specimen is described as being on the wet 
side of the critical state.

• In an undrained shear test on a heavily overconsolidated specimen, the pore water 
pressures will start to decrease at yield. In a drained test, the specimen will dilate or 
increase in volume to reach the critical state. Such a specimen is described as being on 
the dry side of the critical state.

• In practice, a heavily overconsolidated soil will probably rupture before yield, or 
between yield and the critical state. Combinations of q, p′ and v at rupture define a 
three-dimensional surface in v, p′, q plane, known as the Hvorslev surface. At very low 
effective stresses, failure will occur by tensile fracture.

• The comparatively simple soil behavioural models described in this chapter do not take 
into account the effects of soil structure and sensitivity, creep, anisotropy, unsaturation 
or repeated loading, each of which may be important in some soils and/or situations.

SELF-ASSESSMENT AND LEARNING QUESTIONS

INTERPRETATION OF TRIAXIAL TEST RESULTS

5.1  Data from a conventional, consolidated–undrained triaxial compression test, car-
ried out a constant cell pressure of 400kPa, are given in Table 5.9.

Plot graphs of mobilised strength φ′mob and pore water pressure change Δu against 
shear strain γ. Plot also the total and effective stress paths in the q, p and q, p′ planes. 
Comment on these curves, and estimate the critical state strength φ′crit. Is the speci-
men lightly or heavily overconsolidated?

   [φ′crit ≈ 20.5°. No peak strength, and specimen has positive pore water pressures at 
failure: specimen is, therefore, wet of critical, that is, lightly overconsolidated.]

5.2  Two further consolidated–undrained triaxial compression tests are carried out on 
specimens of the same clay as in Question 5.1, giving the results shown in Table 5.10.

Table 5.9 Triaxial test data for Q5.1

Axial strain εa (%) 0 0.05 0.09 0.18 0.39 0.69
Deviator stress q (kPa) 0 10.9 22.3 33.5 45.0 53.5
Pore water pressure u (kPa) 274.6 280.3 284.6 290.8 300.0 307.6
Axial strain εa (%) 1.51 3.22 4.74 6.13 7.89 9.39 11.03
Deviator stress q (kPa) 65.4 79.0 85.7 89.6 91.4 93.9 94.0
Pore water pressure u (kPa) 314.4 317.0 315.1 312.6 312.1 312.7 312.8

Table 5.10 Additional triaxial test data for Q5.2

s′at φ′peak t at φ′peak s′ at φ′crit t at φ′crit
Test 2 88 kPa 35.8 kPa 90 kPa 31.5 kPa
Test 3 43 kPa 19.5 kPa 45 kPa 15.8 kPa
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Using data from all three tests, plot peak and critical state strength failure enve-
lopes on a graph of τ against σ′, and comment on the data.
[φ′crit = 20.5°; φ′peak decreases from 27° in test 3 to 20.5° in test 1.]

5.3  Using the data from Tables 5.9 and 5.10 (Questions 5.1 and 5.2), determine the 
equations of the critical state line in the q, p′ and v, ln p′ planes. (The as-tested 
water contents were 41.7% for specimen 1; 45.5% for specimen 2; and 52.0% for 
specimen 3. Take Gs = 2.65.) Hence predict the undrained shear strength of a fourth 
specimen of the same clay, when subjected to a conventional undrained triaxial 
compression test at a water content of 35%.
[Γ = 3.3; λ = 0.25; M = 0.793; τu of fourth specimen = 96.1 kPa.]

DETERMINATION OF CRITICAL STATE AND 
CAM CLAY PARAMETERS

5.4  Define the parameters q, p and p′, in terms of principal stresses and the quantities 
measured during a conventional undrained compression test.

Data from both consolidation and shear stages of an undrained triaxial compres-
sion test on a specimen of reconstituted London Clay are given in Table 5.11. Plot 
the state paths followed by the specimen on graphs of q vs p′, q vs p and v vs ln p′, 
and explain their shapes.

Stating clearly the assumptions you need to make, estimate the soil parameters M, 
λ, κ and φ′crit.
[M = 0.89; λ = 0.161; κ = 0.063; φ′crit = 22.8°.]

5.5  Define the parameters q, p and p′, in terms of principal stresses. Show also how q, p 
and p′ are related to the quantities measured during a conventional undrained com-
pression test.

Data from the shear stage of an undrained triaxial compression test on a specimen of 
kaolin clay are given in Table 5.12. Plot the state paths followed by the specimen in the q, 
p′ and q, p planes, and explain their shapes. Stating clearly the assumptions you need to 
make, estimate the slope of the critical state line M and the corresponding value of φ′crit.

A second, identical, specimen is subjected to a drained compression test starting 
from a cell pressure of 100 kPa. Estimate the value of q at failure, and show the 
effective stress path followed (in the q, p′ plane) on the diagram you have already 
drawn for the first specimen.
[M = 1.02; φ′crit = 25.8°; qc for drained test = 154.5 kPa.]

Table 5.11 Triaxial test data for Q5.4

CP (kPa) 50 100 200 150 150 150 150 150
q (kPa) 0 0 0 0 21 39 61 86
u (kPa) 0 0 0 0 7 13 43 82
v 2.228 2.116 2.005 2.023 2.023 2.023 2.023 2.023

CP: cell pressure; q: deviator stress; u: pore water pressure; v: specific volume.

Table 5.12 Triaxial test data for Q5.5

q (kPa) 0 13.8 27.5 41.3 53.0 59.5 63.0
u (kPa) 0 4.6 9.2 13.8 33.6 48.0 59.3

Cell pressure = 100 kPa; q: deviator stress; u: pore water pressure.
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ANALYSIS AND PREDICTION OF STATE PATHS 
USING CAM CLAY CONCEPTS

5.6  A specimen of saturated kaolin (Gs = 2.61) was compressed isotropically in a tri-
axial cell to an effective cell pressure of 300 kPa. In this state, the cylindrical 
specimen had a height of 80 mm and a diameter of 38 mm. The drainage taps were 
closed and the specimen was subjected to a conventional undrained compression 
test to failure at a constant cell pressure of 300 kPa. The values of deviator stress 
q and pore water pressure u are recorded in Table 5.13.

 At the end of the test, the water content of the specimen was found to be 57.2%.
 a.  Plot and explain the significance of the stress paths followed in the q, p′ and q, 

p planes.
It was intended to prepare a second specimen of kaolin in an identical manner, 

but the specimen was accidentally over-stressed to an effective cell pressure of 
320 kPa during isotropic compression. To make the water content of the second 
specimen the same as that of the first, it was necessary to reduce the effective cell 
pressure to 229 kPa. During swelling from p′ = 320 kPa to 229 kPa, the specimen 
took in 618 mm3 of water.

 b. Use all of these data to calculate the parameters Γ, λ, κ, M and φ′crit.
 c. The second specimen was subjected to a conventional undrained compression test 

from an effective cell pressure of 229 kPa. Sketch the stress paths followed in terms 
of q vs p′ and q vs p, giving the values of q at yield and at failure.

 d. If the first specimen had been subjected to a drained (rather than an undrained) 
test, what would have been the value of q at failure? Comment briefly on the engi-
neering significance of this result.

[(b) = 3.766; λ = 0.26; κ = 0.05; M = 1.02; φcrit = 25.8°. (c) For test 2, qyield = 78.3 
kPa and qc = 136.5 kPa. (d) for drained test qc = 464 kPa.]

 5.7 a.  Define the triaxial stress parameters p′ and q in terms of the principal stresses and 
the quantities measured in a conventional triaxial test.

Two saturated triaxial test specimens, each containing 116.3 g of dry clay pow-
der (Gs = 2.70), were prepared for shear testing by isotropic compression in the 
triaxial cell. For specimen A, the cell pressure was gradually raised from 25 kPa 
to 174 kPa, with full drainage occurring throughout the process. At 174 kPa, the 
specimen had a diameter of 40 mm and a height of 120 mm. The drainage taps 
were then closed, the cell pressure was increased to 274 kPa and the specimen was 
subjected to an undrained compression test to failure. The data recorded during 
consolidation are shown in Table 5.14a.
The data recorded during shear are given in Table 5.14b.

Table 5.14a Triaxial test data during consolidation, Q5.7

Cell pressure (kPa) 25 50 75 100 150 174
Pore water pressure (kPa) 0 0 0 0 0 0
Volume of water expelled 
(cm3) (cumulative)

0 22.4 34.47 43.08 56.01 60.31

Table 5.13 Triaxial test data for Q5.6

Deviator stress
q (= σ′1 − σ′3) (kPa)

0 24.5 45.4 63.2 78.3 101.6 117.7 136.5

Pore water pressure 
u (kPa)

0 30.2 53.6 76.6 97.3 132.8 161.8 211.8
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 b. Plot the state paths followed by specimen A in the q, p′ and v, ln p′ planes, and 
comment on their significance.

Specimen B was consolidated in the same manner as specimen A, but at the last 
increment of cell pressure was inadvertantly overstressed to 200 kPa. To achieve 
the same void ratio at the start of the shear test, the cell pressure was reduced to 
140 kPa and the specimen was allowed to swell slightly as indicated in Table 5.14c. 
The drainage taps were then closed, the cell pressure was increased to 240 kPa, and 
the undrained shear test was commenced.

 c. Predict the state paths followed by specimen B in terms of q vs p′and v vs ln p′ dur-
ing the shear test, giving values of q, p′ and pore water pressure u at yield and at 
failure.

 d. If specimen B had been subjected to a drained shear test at a constant cell pressure 
of 140 kPa, estimate the values of q and p′at which failure would have occurred, 
and the volume of water that would have been expelled during the shear test.

[(c) For specimen B, qyield = 35 kPa; p′yield = 140 kPa; uyield = 117.7 kPa and qc = 45 kPa; 
pc = 100 kPa; uc = 155 kPa. (d) For drained test qc = 74.1 kPa; pc = 164.7 kPa, Vt = 
15.5 cm3.]

5.8  Table 5.15 gives data of cell pressure (σcell), deviator stress (q), pore water pres-
sure (u) and water content (w) from both isotropic compression/swelling and shear 
stages of a triaxial test on a specimen of Vienna Clay (Gs = 2.7). Plot the state path 
followed by the specimen on graphs of q against p′ and v against ln p′. Estimate the 
critical state parameters Γ, λ, κ and Μ.

A second specimen of the same soil is prepared by isotropic compression and 
swelling as indicated in Table 5.15 (data columns 1–4). It is then subjected to a 
drained shear test from a cell pressure of 120 kPa. Sketch the state paths followed 
during drained shear on graphs of q against p′ and v against ln p′. Calculate the 
values of q and p′ and the water content at failure in the second test.

[Γ = 2.366; λ = 0.123; κ = 0.028; Μ = 1.0; at failure in the second test qcs = 180 kPa; 
p′cs = 180 kPa; vcs = 1.727; wcs = 26.9%.]

 5.9 a.  Describe by means of an annotated diagram the main features of the conventional 
triaxial compression test apparatus.

Table 5.14b Triaxial test data during shear for Q5.7

Cell pressure (kPa) 274 274 274 274 274 274
Pore water pressure (kPa) 100 104 114 132 162 189
Deviator stress q (kPa) 0 10 20 30 40 45

Table 5.14c Triaxial test data for specimen 2 Q5.7

Cell pressure (kPa) 150 200 140 240
Pore water pressure (kPa) 0 0 0 100
Volume of water expelled (cm3) (cumulative) 56.01 64.62 60.31 —

Table 5.15 Triaxial test data during consolidation/swelling and shear for Q5.8

σcell (kPa) 40 80 160 120 120 (Yield) 120 120 120
(Failure)

q (kPa) 0 0 0 0 36 54 64 69
u (kPa) 0 0 0 0 12 40 59 74
w,% 37.3 34.1 31.0 31.3 31.3 31.3 31.3 31.3
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 b. A specimen of London Clay is prepared by isotropic normal compression in a 
triaxial cell to an average effective stress p′ = 400 kPa, at which point its total 
volume is 86 × 103 mm3. The drainage taps are then closed and the specimen is 
subjected to a special compression test in which the cell pressure is reduced as the 
deviator stress is increased so that the average total stress p remains constant. 
Sketch the state paths followed, in the q, p′, q, p and v, ln p′ planes. Give values 
of cell pressure, q, p, u, p′ and specific volume v at the start of the test and at fail-
ure. (You must also calculate some intermediate values to sketch the state paths 
satisfactorily.)

How do the values of undrained shear strength τu and pore water pressure at 
failure compare with those that would have been measured in a conventional com-
pression test?

Use the Cam clay model with numerical values Γ = 2.759, λ = 0.161, κ = 0.062, 
M = 0.89 and Gs = 2.75.

[At the start of the test, CP = 400 kPa; q = 0; p = 400 kPa; u = 0; p′ = 400 kPa; v = 
1.893. At failure, CP = 335.7 kPa; q = 192.9; p = 400 kPa; u = 183.2 kPa; p′ = 216.8 
kPa; v = 1.893. Undrained shear strength would be the same (because it is assumed that 
the critical state reached depends only on water content). Pore water pressure would be 
q/3 greater, so that effective stresses p′ at failure were the same in each case, giving u = 
247.5 kPa.]

NOTES

 1. As the specimen is compressed, the rubber membrane stretches. The resulting hoop 
tension, σt = εrEm applies an additional radial pressure of approximately 2tmσt/d, where 
Em is the Young′s modulus of the membrane, tm is the thickness of the membrane, εr is 
the radial strain and d is the current diameter of the specimen. In accurate work or at 
large strains, the cell pressure must be corrected to allow for this effect. Details are 
given by Henkel and Gilbert (1952) and Bishop and Henkel (1962). A full discussion 
of this and other approaches to membrane effect correction is given by Fukushima and 
Tatsuoka (1984).

 2. Q is conventionally taken as the ram load needed to produce a difference between the 
axial stress σa and the cell pressure σc. If Q = 0, σa = σc. To calculate the axial stress, 
the cell pressure must be added to the deviator stress q, σa = σc + q.

 3. The undrained shear strength was traditionally denoted by the symbol cu. More recent 
authors, disliking the use of the symbol cu because of its connotation of cohesion, 
have used the symbol su where the s stands for strength and the u for undrained. 
Unfortunately, the letter s is already associated with the average principal total stress, 
(σ1 + σ3)/2: to label the radius of a Mohr circle of total stress su and the distance to 
its centre s is potentially quite confusing. I have adopted the symbol τu, because τ is 
associated with shear stress, which is what τu is.

 4. In the oedometer, the horizontal stresses needed to prevent horizontal strains are pro-
vided by the steel confining ring. The oedometer test specimen has a strain-controlled 
horizontal boundary, while the triaxial test specimen has a stress-controlled horizon-
tal boundary. Provided that the horizontal stresses applied to the triaxial specimen 
are the same as those that would be experienced in an oedometer, conditions of zero 
lateral strain can still be obtained.

 5. You cannot go out into the field and dig up a sample of Cam clay: it is not a real soil. 
Cam clay is the name given to the theoretical model for soil behaviour, developed 
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by Roscoe and Schofield and their colleagues at Cambridge University. The model 
is named after the River Cam, which flows past the engineering laboratories in 
Cambridge where Roscoe′s group carried out their work.

 6. Between p′ = p′1 and p′ = p′2 (p′2 > p′1), Δ (ln p′) = ln(p′2) − ln(p′1) = ln(p′2/p′1).
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Chapter 6

Calculation of soil settlements 
using elasticity methods

6.1 INTRODUCTION

Geotechnical engineers must design foundations, retaining walls and other soil  constructions 
which are not only safe (that is, they will not collapse) but also serviceable, in the sense that 
they do not deform excessively under working conditions. The definition of ‘excessively’ 
will depend on the nature of the construction under consideration. In general, a need to 
limit soil movements will arise where there is a likelihood of damage to structures made of 
 comparatively brittle materials, which may crack at tensile strains as small as 0.075%.

Damage to buildings is more likely to arise from differential than uniform settlements. 
Guidelines developed by Burland and Wroth (1975) relate the maximum permissible 
 deflection ratio (defined in Figure 6.1) to the length : height ratio of the building L/H and 
the nature of its construction (infilled frame, load-bearing wall in sagging and load-bearing 
wall in hogging). This approach is developed further by Burland (2001) and summarised by 
Gaba et al. (2003). Uniform settlements are usually much less damaging, and in many cases, 
several tens of millimetres might be acceptable.

One way in which designers have sought to ensure that the in-service deformations of a 
building are small is to apply a factor (traditionally termed a ‘factor of safety’) to either the 
failure load or the soil strength in a limit equilibrium calculation. This is advantageous in 
that the calculation does not require a detailed knowledge of the stress-strain behaviour 
of the soil. Disadvantages are that knowledge of the value of the load or strength factor 
required depends largely on previous experience, that the suitability of the accepted pro-
cedures depends on the relevance of the knowledge base, and that deformations are not 
calculated or quantified explicitly. Calculations based on conditions at collapse, and their 
application to design, are discussed in Chapters 7 to 10 for a number of geotechnical con-
structions, including foundations.

As an alternative to the factor of safety approach, the stress-strain or constitutive relation-
ship for the soil may be used in a calculation based on the stresses under working conditions, 
in an attempt to estimate the associated strains and deformations directly. Unfortunately, 
stress-strain relationships for soils cannot easily be described in simple yet accurate terms. 
We have already seen in Chapters 4 and 5 that soil does not behave as an elastic material.

It is nonetheless tempting to assign to the soil a Young’s modulus and a Poisson’s ratio. 
This enables the vast number of solutions for the stresses and displacements resulting from 
the application of various patterns of load to the surface of an elastic material of infinite 
depth and lateral extent (known as an elastic half-space) to be accessed by the geotechnical 
engineer (see e.g. Poulos and Davis, 1974).

This chapter is concerned with the application of elasticity-based methods to calculate the 
vertical stress increases and soil settlements associated with shallow foundations and other 
surface loads.
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6.1.1 Objectives

After having worked through this chapter, you should understand that

• Although soil is not an elastic material, it is often treated as one for the purpose of 
 calculating increases in stress and settlements resulting from surface loads such as 
shallow foundations. One of the attractions of doing this is the large number of stan-
dard  solutions and methods of analysis for elastic materials that can then be used.

• The settlements calculated using elasticity methods depend on the elastic  parameters 
used to characterise the soil—in particular, the stiffness modulus. The stiffness 
 modulus depends on the stress history and the stress state of the soil, and on the 
applied stress path. All of these should be taken into account in selecting appropriate 
soil stiffness values for use in settlement calculations (Section 6.2).

• There is a distinction between the immediate settlement due to shear at constant 
 volume, and the ultimate settlement that includes a component due to consolidation 
(Sections 6.2 and 6.8).

• The vertical stress increment caused by the application of a surface surcharge decreases 
with depth, owing to the spreading out of the load into the surrounding soil (Section 6.3).

You should be able to

• Estimate increases in vertical stress at any depth, resulting from any pattern of applied 
surface load, using Newmark’s chart (Section 6.4), or Fadum’s chart (Section 6.6) for 
rectangular surcharges

• Use these increases in vertical stress to estimate the associated long-term settlements, 
assuming that compression is predominantly one-dimensional (Section 6.5)

• Use standard formulae and charts to estimate stress increases and settlements due to 
surface loads of simple geometry (Sections 6.3, 6.7 and 6.9)
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Figure 6.1  Limits to the deflection ratio Δ/L of a building foundation as a function of the length-to-height 
ratio L/H in order to prevent structural damage. (From Burland, J.B. and Wroth, C.P., Proceedings 
of the British Geotechnical Society Conference on Settlement of Structures, 611–54, 1975, Pentech 
Press. With permission.)
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You should have an appreciation of

• The potentially heavy damaging effects of differential settlements, as opposed to uni-
form settlements on buildings (Section 6.1)

• The main shortcomings of an elasticity-based approach, especially for the calculation 
of settlements (Sections 6.2 to 6.10)

• The effect on calculated settlements of a soil stiffness that increases with depth 
(Section 6.9)

• The interdependence or cross-coupling of shear and volumetric effects in an anisotro-
pic soil (Section 6.10)

6.2 SELECTION OF ELASTIC PARAMETERS

6.2.1 Approximations and shortcomings of a simple elastic model

The main difficulty in ascribing a unique, ‘elastic’ stiffness modulus to a soil is illustrated 
by Figure 6.2, which shows the steady decrease in shear stiffness modulus G (which for an 
 elastic material = E′/2(1 + ν′), where E′ is Young’s modulus and ν′ is Poisson’s ratio) with 
increasing triaxial shear strain εq (defined in Section 5.4.6), measured in triaxial tests. Soil 
is clearly not an elastic material: if it were, G would remain constant with increasing shear 
strain. Nonetheless, elastic calculations, combined with judiciously selected elastic para-
meters, can often lead to reasonable estimates of the soil settlements associated with founda-
tions and other near-surface loads. In particular:
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Figure 6.2  Stiffness of reconstituted London Clay following a change in the direction of the stress path. 
(From Atkinson, J.H., Richardson, D. and Stallebrass, S.E., Géotechnique, 40, 4, 531–40, 1990. 
With permission.)
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The elastic modulus depends on the change in strain, and also on the direction of the new 
stress path relative to the direction of the immediately preceding stress path. The second 
of these is known as the recent stress history effect (Atkinson et al., 1990). The extreme 
example of this is when the stress path is reversed, giving a stress path rotation of 180°. 
Stress path reversals are not uncommon in practice. For example, during the construction 
of a basement, the soil below the building is first unloaded vertically during excavation, and 
then re-loaded as the basement is built. Figure 6.2 shows that the stiffness of the soil imme-
diately following a change in the direction of the stress path (θ = 180°) can be relatively 
very high.

There is some debate about whether the recent stress history effect is an artifact of the 
testing procedure. Clayton and Heyman (2001) present data from tests on Bothkennar Clay 
indicating that it ceases to be apparent if a sufficient period of time is allowed to elapse 
between the end of one stress path and the start of the next, suggesting that it is linked to 
rate effects or creep. However, a much higher stiffness on unloading a soil (i.e. following a 
180° reversal of the stress path) is generally well established and seen in many other elasto-
plastic or strain hardening solids including copper (Figure 5.22).

If the stress-strain curve is not linear, there are two alternative definitions of the effective 
stiffness modulus that may be used. These are illustrated in Figure 6.3. The secant modulus 
is given by the line joining the origin to the current stress-strain point (σ′, ε), and is defined 
as the ratio of the change in stress to the change in strain measured from the datum point, 

′ = σ′ ε/secantE . Similarly, the secant shear modulus Gsecant is defined as τ/γ, where τ is the shear 
stress and γ is the corresponding shear strain. The tangent modulus, which is equal to the 
slope of the stress-strain curve at the point under consideration, is defined as the rate of 
change of stress with strain, E′tangent = dσ′/dε. The tangent shear modulus Gtangent is defined as 
the rate of change of shear stress with shear strain, = τ γd /dtangentG .) For an elastic material, 
G/E′ = constant, as shown in Section 6.2.2.

In an elastic calculation, the strain depends on both the stress and the modulus. If the 
soil modulus depends on the strain, an iterative procedure must be adopted, in which the 

The elastic modulus should be appropriate to the stress and strain paths to which the soil is 
subjected, as well as the initial stress state and the expected changes in stress and strain. The 
soil should be on an unload/reload line (Sections 4.2 and 5.7)—or there should be no reversal 
in the direction of the stress path—and the changes in stress and strain must be small.
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calculation is repeated until the strain is consistent with the value of the modulus used to 
obtain it. For this purpose, it is easier to use the secant, rather than the tangent, modulus.

It is also necessary to take into account the fact that soil stiffness is likely to increase with 
increasing effective stress. This effect is often modelled by assuming that the soil stiffness is 
proportional to the depth. In reality, there may be a sequence of different strata of different 
stiffnesses, all of which may contribute to the observed settlement at the ground surface. 
Most of the standard solutions for stresses and displacements are for an elastic material that 
is uniform and isotropic, and so, do not take into account the effect of a modulus that varies 
with depth. Some solutions for an elastic half-space whose stiffness increases linearly with 
depth are presented by Gibson (1974), and are discussed briefly in Section 6.9.

A further approximation inherent in the use of nearly all of the standard formulae and 
methods is that the foundation is assumed either to be rigid in comparison with the soil 
(so that the settlement is uniform), or to be perfectly flexible (so that the stress distribution 
is uniform).

The concept of consolidation discussed in Chapter 4 is also relevant here. Indeed, 
one-dimensional consolidation is a special case of the use of elasticity to estimate soil 
settlements. It is special in that there is no opportunity for the load to spread out into the 
surrounding ground, because the soil is subjected to a uniform increase in stress over its 
entire surface area.

The application of a surface load causes an immediate increase in total stress, and an 
eventual increase in effective stress when the pore water pressures have returned to their 
equilibrium values. If the soil beneath a foundation is a clay, settlements will develop over 
a period of time as the excess pore water pressures generated by the application of the load 
dissipate and the clay consolidates. Elasticity calculations may be used to estimate either the 
initial (undrained) or the long-term (fully drained) soil movements. To estimate the immedi-
ate (undrained) soil movements, the elastic parameters E (Young’s modulus) and ν (Poisson’s 
ratio) must be obtained from undrained tests and defined in terms of total stresses. They 
are given the subscript ‘u’ to indicate that they are undrained, or total stress, parameters. 
To estimate the long-term (drained) soil movements, the elastic parameters E and ν must be 
obtained from drained tests and defined in terms of effective stresses. They are given a prime 
(′) to indicate that they are effective stress parameters.

6.2.2 Relationships between elastic constants

Writing Hooke’s Law in matrix form for an isotropic elastic material in terms of general 
elastic parameters Young’s modulus E and Poisson’s ratio ν, and changes in principal stress 
Δσ1, 2, 3 and changes in principal strain Δε1, 2, 3, we obtain:
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If the principal strain increments are small, they may be added to give the volumetric 
strain increment, ∆ε vol :

 ∆ε + ∆ε + ∆ε = ∆ε = − ν
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But

 ∆σ + ∆σ + ∆σ = ∆p( ) 31 2 3

(where Δp is the change in the average principal total stress), so that

 K
Ep

3(1 2 )vol

∆
∆ε

= =
− ν

 (6.2)

where Δp/Δεvol is the definition of the bulk modulus K.
Equations 6.1 and 6.2 may be written either in terms of total stress changes Δσ and Δp, 

and undrained or total stress elastic parameters Eu, Ku and νu; or in terms of effective stress 
changes Δσ′ and Δp′, and effective stress or drained elastic parameters E′, K′ and ν′.

It is generally assumed that the soil can only compress by means of a reduction in the void 
ratio. In a saturated soil, this cannot happen unless water is expelled from the pores. In the 
short term as the soil deforms without drainage of pore water, there is no change in volume 
(Δεvol = 0), and the undrained bulk modulus Ku is infinite. This requires that the undrained 
Poisson’s ratio νu = 0.5.

The effective and total stress Young’s modulus and Poisson’s ratio are linked by the shear 
modulus G. As the pore water is unable to take shear, all of the shear stress must be carried 
by the soil skeleton. Thus the effective shear stress is the same as the total shear stress, and 
the effective stress shear modulus G′ is equal to the total stress shear modulus Gu.

In a conventional triaxial compression test, there is no change in the cell pressure so that 
Δσ2 = Δσ3 = 0. Substituting these values into Equation 6.1,

 E(1/ )( )1 u 1∆ε = ∆σ   (6.3a)

 E vu(1/ )( )2 3 u 1∆ε = ∆ε = − ∆σ   (6.3b)

From the Mohr circles of stress and strain increment shown in Figure 6.4 (with Δσ3 = 0),

 
v E
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( ) [(1 )/ ]
1

1 3 u u 1

∆τ = ∆σ
∆γ = ∆ε − ∆ε = + ∆σ

Thus,

 / /2(1 )u u uG E v= ∆τ ∆γ = +   (6.4)

Similarly, in terms of effective stresses,

 / /2(1 )G E v′ = ∆τ ∆γ = ′ + ′   (6.5)
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Figure 6.4  Mohr circles of: (a) stress and (b) strain increment for a conventional undrained triaxial compres-
sion test.



Calculation of soil settlements using elasticity methods 313

© 2010 Taylor & Francis Group, LLC

so that

 /2(1 ) /2(1 )u u uG G G E v E v= = ′ = + = ′ + ′   (6.6)

There is one more elastic parameter we should investigate; this is the one-dimensional 
modulus, E′0, which is used in the investigation of soil settlement in response to a surface load 
described in Section 6.5. E′0 is defined as the ratio of the change in vertical effective stress Δσ′v 
to the corresponding change in vertical strain Δεv during one-dimensional loading or unload-
ing (Equation 4.3). The value of E′0 for a soil may be obtained directly from an oedometer test 
stage over the appropriate increment or decrement of vertical stress (Section 4.2), and may be 
related to the more fundamental elastic parameters E′ and ν′ as follows.

Writing Equation 6.1 in terms of effective stresses with Δσ′1 = Δσ′v and Δσ′2 = Δσ′3 = Δσ′h,
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In one-dimensional compression the horizontal strain increment ∆ε = 0h , so that
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  (6.8)

For undrained conditions, substitution of the undrained total stress parameters Eu and νu 
into Equation 6.8 in place of the drained, effective stress parameters E′ and v′ demonstrates 
that the undrained one-dimensional modulus is infinite, because νu = 0.5. This is consistent 
with the fact that volume cannot change without drainage of pore water. In  one-dimensional 
compression, in which the horizontal strain is by definition zero, a change in volume must 
be accompanied by vertical strain.

6.2.3  Determining elastic moduli from triaxial compression 
test data

In a conventional undrained triaxial compression test, the change in deviator stress Δq 
is equal to the change in major principal total stress Δσ1. In a drained test, the change in 
deviator stress Δq is equal to the change in major principal effective stress 1∆σ′ . Thus, from 
Equation 6.3a, a graph of q (y-axis) against axial strain ε1 (x-axis) for an undrained test has 
slope Eu. If the data are from a drained test, the slope of the graph is E′.

As Δσ1 = Δq, the change in shear stress Δτ = Δq/2. From Equation 6.4, a graph of deviator 
stress q (y-axis) against shear strain γ (x-axis) has slope 2G, whether the test is drained or 
 undrained. A graph of q against triaxial shear strain εq = 2γ/3 has slope 3G, i.e. G = (dq/dεq)/3.

The effective stress bulk modulus K′ may be obtained from the slope of a graph of average 
effective stress p′(y-axis) against volumetric strain εvol (x-axis), since by definition K pd /d vol′ = ′ ε .
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The one-dimensional modulus, E′0, may be determined directly from an oedometer test 
stage over an appropriate increment or decrement of vertical stress (Section 4.2). In  principle, 
E′0 may also be determined from a triaxial test by modifying the Young’s modulus using 
Poisson’s ratio in accordance with Equation 6.8. However, Poisson’s ratio—like the  stiffness—
will likely vary throughout the test and can be difficult to determine with confidence.

In all cases, the tangent modulus is obtained from the local slope of the graph, while the secant 
modulus at a point is given by slope of the line joining that point to the origin (Figure 6.3).

The form of Hooke’s Law given in Equation 6.1 applies only to isotropic elastic materials. 
Most soils are anisotropic, which results in an interdependence or coupling of volumetric 
and shear effects (Section 6.10). This has important implications for the determination of 
elastic parameters for a soil: in particular, the rather simplistic approach described above is 
invalid as explained in Section 6.10.

6.3 BOUSSINESQ’S SOLUTION

Boussinesq (1885) used the conditions of equilibrium and compatibility, together with the 
stress-strain relationship for the material, to determine the stresses and strains at any point 
within an isotropic (i.e. having the same properties in all directions), homogeneous (i.e. 
having the same properties at any point) elastic half-space (i.e. a body of infinite depth and 
lateral extent, so that it occupies half of all possible space) resulting from the application of 
a point load at the surface (Figure 6.5).

Boussinesq’s solution may be integrated for a collection of point loads acting over any 
given area of the surface of the half-space to determine the stresses and strains arising 
from the application of any pattern of applied load. In some cases, it is possible to derive a 
mathematical expression for the stresses and strains at any point, but it is often necessary to 
calculate them numerically.

In the case of a uniform surcharge of magnitude q acting over a circular area of radius 
R at the surface of the half-space, integration of Boussinesq’s solution gives the expression,

 {1 [1 ( / ) ] }z
2 3/2q R z∆σ = − + −  (6.9)

for the increase in vertical stress Δσz at a depth z below the centreline. This expression is 
 plotted non-dimensionally in Figure 6.6. It may be seen that the increase in vertical stress 
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Figure 6.5  Stress and displacements due to a point load at the surface of an elastic half-space. (From Poulos, 
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permission.)
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falls to below 10% of the surface value at a depth of approximately twice the diameter 
of the footing. This is a result of the spreading of the loaded area with depth: in the case 
of a strip footing, where spreading can only occur in the direction perpendicular to the 
line of the foundation, the increase in vertical stress falls to 10% of the surface value at 
a depth of approximately six times the width of the footing (Figure 6.7). Surcharge loads 
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Figure 6.6  Increase in vertical stress below the centreline of a uniform circular surcharge.
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are traditionally given the same symbol q as the deviator stress in the triaxial test. This is 
 reasonable, because the effect in both cases is to increase the stress difference = σ − σ′ ′

v h.
Although it would be necessary to use the soil stiffness to calculate strains and displace-

ments, the stiffness of the material does not feature in the expressions for increases in stress. 
It is perhaps not unreasonable, therefore, to suppose that the vertical effective stresses within 
the soil mass that result from the application of some pattern of loading at the surface will 
remain substantially unaffected, even if the soil is not truly elastic.

Burland et al. (1977) quote ample evidence to show that the distribution of vertical stress 
within a soil mass resulting from the application of a surface load does not differ hugely 
from the Boussinesq solution in cases where the stress-strain relationship of the soil is non-
linear, or where the stiffness of the soil increases with depth. Thus the Boussinesq-type 
stress distributions can still be useful if there is a general increase in stiffness with depth, or 
if several distinct horizontal layers of different types of soil are present.

Significant deviation from the Boussinesq vertical stress distributions would be expected 
to occur if the applied loads were high enough to cause extensive yielding; or in the case 
of an inclusion or lens of soil of higher or lower stiffness, which was not continuous 
across an entire horizon. This is because the stiffer inclusion would attract more than its 
fair share of the load. The vertical stress distribution will also differ from the Boussinesq 
solution in cases where a stiff surface layer overlies a more compressible soil stratum, 
because such a layer will redistribute the load to some extent. For practical purposes, 
however, the Boussinesq distribution of vertical stress is reasonably accurate in most 
other ground conditions.

Formulae and charts based on the idealisation of the soil as a uniform isotropic elas-
tic half-space can also be used to estimate settlements beneath surface loads and foot-
ings. However, the settlements depend on the elastic parameters used to characterise the 
soil (i.e. its Young’s modulus and Poisson’s ratio), and also on the calculated horizontal 
stresses, which are more sensitive to factors such as changes in soil stiffness with depth. 
The  settlements calculated in this way are not, therefore, as reliable as the vertical stress 
distributions. A more  versatile and general approach to the calculation of settlements, 
based on the ad hoc conversion of stresses to vertical strains by dividing the soil into dis-
crete layers and using a different  stiffness modulus at each depth, is outlined in Sections 
6.4 to 6.6.

6.4 NEWMARK’S CHART AND ESTIMATION OF VERTICAL STRESS

The Newmark chart [originally devised by Nathan M. Newmark (1942); Figure 6.8] is 
 essentially a plan view of the surface of an infinite half-space, divided into n elements. The 
 loading of any individual element by a uniform stress q will result in an increase in vertical 
stress of q/n at a depth Z below the centre of the chart. The depth Z is linked to the scale of 
the chart, and must be shown on it.

The chart shown in Figure 6.8 is divided by nine concentric circles into ten annuli, each 
of which is subdivided into 20 segments, giving 200 elements in total. The loading of any 
single element by a uniform surface stress of q will result in an increase in vertical stress of 
q/200 or 0.005q at a depth Z below the centre of the chart.

The radii of the concentric circles were calculated using Equation 6.7. As there are ten 
annuli (the outermost of which actually extends to infinity), the loading of each  annulus 
by a uniform stress q must result in an increase in vertical stress 0.1q at the depth Z. 
The  innermost circle must have radius R1/Z such that (from Equation 6.7)

 0.1 {1 [1 ( / ) ] }Z 1
2 3/2q q R Z∆σ = = − + −
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or

 [1 ( / ) ] 0.91
2 3/2R Z+ =−

or

 / (0.9 1) 0.271
2/3R Z = − =

Similarly, the second circle must have radius R2/Z such that

 ∆σ = = − + −q q R Z0.2 {1 [1 ( / ) ] }Z 2
2 3/2

or

 [1 ( / ) ] 0.82
2 3/2R Z+ =−

or

 / (0.8 1) 0.402
2/3R Z = − =−

and so on. To construct the chart, a scale must be chosen for Z (e.g. Z ≈ 12 mm in 
Figure 6.8; Z = 40 mm is convenient for a chart occupying a full A4 sheet), which must 
be shown on the finished diagram.

Scale for Z

Figure 6.8  Influence chart or Newmark chart for vertical stress increment. (From Newmark, N.M., Bulletin 
No. 338, University of Illinois Engineering Experimental Station, 1942. With permission.)
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The Newmark chart may be used to calculate the increase in vertical stress at any location 
within the soil mass due to the application of any surface load, applied over an area of any 
size and shape. This is done by drawing a plan view of the loaded area on the chart to the 
appropriate scale (which is found by setting Z = the depth under investigation), positioned 
with the point of interest (which may be either below or to the side of the loaded area) above 
the centre of the chart. The increase in vertical stress is estimated from the number of ele-
ments covered by the loaded area and the stress acting on each, as in Example 6.1.

Example 6.1:  Calculating increases in vertical stress at depth below 
a surface surcharge using newmark’s chart

Figure 6.9 shows a plan and a cross-section of a proposed reinforced earth road embank-
ment. Use the Newmark chart to estimate the increase in vertical stress along the exist-
ing pipeline A A− ′, which runs perpendicular to the new road at a depth of 8 m below 
original ground level (OGL). The embankment may be treated as a uniform surcharge 
of 100 kPa acting over a width of 8 m. State one major potential shortcoming of your 
analysis.

SOluTIOn

It is necessary to determine the increases in vertical stress at a number of points along 
the line A A− ′, both beneath and on either side of the embankment. Making use of sym-
metry, draw scale views of the embankment (on plan) on the lower part of the Newmark 
chart, as shown in Figure 6.10. In each case, the point of interest (A, B, C, D, E or F in 
Figure 6.10) is at the centre of the chart, and the ‘scale for Z’ has been set to the depth 
under investigation, which is 8 m.

The increase in vertical stress at each point is given by

 ∆σ = ×( /200)n qz

where q is the surface surcharge (100 kPa) and n is the number of squares covered in each 
case.

In plan view, the embankment (idealised as a uniform surcharge over a width of 8 m) 
runs from the top to the bottom of the Newmark chart. Only one-half of the Newmark 
chart is shown in Figure 6.10: the total number of squares covered by the embankment is, 
therefore, twice that counted from any of the half-charts shown in Figure 6.10.

Values of n and Δσz are given for each of the points A–F (see Figure 6.10) in Table 6.1, and 
the profile of increase in vertical stress Δσz along the line A A− ′ is plotted in Figure 6.11. 
(The calculation is approximate, and some degree of variability—say ± 5%—is inevitable, 
due to differing estimates of the contributions of partly covered ‘squares’. Do not worry, 
therefore, if the answers you obtain to the worked examples and the problems at the end 
of this chapter are slightly different from those given.)

Cross-section

OGL

1 m 1 m7 m

Embankment

Plan

A

Pipeline

Lc Lc

A A'

A'
5 m

8 m
Fill

γ = 20 kN/m3

Pipeline

Figure 6.9 Problem geometry for Example 6.1.
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A B C D E

Lc

F

2 m

8 m

A
and
Aʹ

B
and
BʹE

and
Eʹ

C
and
CʹD

and
Dʹ

8 m

F

Scale for Z

8 m
Scale for Z

8 m
Scale for Z

2 m

4 m
4 m

4 m
4 m

8 m

Eʹ Dʹ Cʹ Bʹ Aʹ

Figure 6.10 Use of Newmark chart for Example 6.1.

Table 6.1 Values of n and increase in vertical stress for Example 6.1

Point

A B C D E F

n 3 6 40 81 100 110
Δσz (kPa) 1.5 8 20 40.5 50 55
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Apart from the reservations about the use of elastic stress distributions already men-
tioned, the calculation assumes that the presence of the pipeline does not alter the stress 
distribution within the soil. Since the pipeline is likely to be stiffer than the surrounding 
soil, it may well attract higher loads than indicated in Figure 6.11.

6.5 SETTLEMENTS DUE TO SURFACE LOADS AND FOUNDATIONS

Charts and tables are available for the calculation of surface settlements resulting from 
the application of various loads to the surface of an elastic half-space. It has already been 
 mentioned, however, that the effect of heterogeneity (i.e. the likely increase in soil stiffness 
with depth) on settlements is much more significant than it is on stresses, so that such charts 
and tables may be of only limited value.

Terzaghi (1943) suggested that settlements could be calculated by assuming soil  movements 
to be predominantly vertical, so that the relationship between vertical stress and strain 
increments is governed by the one-dimensional modulus, E0. Variations in stiffness with 
depth can then be taken into account by dividing the soil into a number of layers, according 
to the following procedure:

 1. Identify a number of different layers within the soil, each of which may be character-
ised approximately by a uniform one-dimensional modulus ′E0, and a uniform increase 
in vertical stress Δσv. Even if there is only one soil type present, this procedure can be 
used to take account, in a step-wise fashion, of an increase in modulus (or a decrease 
in stress increment) with depth. Since stresses change quite rapidly at shallow depths, 
the layers used in the analysis should in general be thinner near the soil surface.

 2. Using the Newmark chart as described in Sections 6.4 and 6.5, calculate a  representative 
increase in vertical stress Δσv for each layer at each point (on plan) at which the 
 settlement is to be estimated. This might be the increase in vertical stress at the centre 
of the layer, or the average of the increase in vertical stress at the top and at the bottom.

 3. Assuming that strains are primarily one-dimensional, estimate the settlement of each 
layer Δρ from

  E h/ ; /0 v v v′ = ∆ ′σ ε ε = δρ

  Hence,

  /v 0h Eδρ = ∆ ′σ ′   (6.10)

 where h is the thickness of the layer.
 4. For each point (on plan), add the settlements of each individual layer to give an  estimate 

of the settlement at the soil surface.

AʹBʹCʹDʹEʹEDCBA F

Δσz(kPa) 60

40

20

Distance from L (m)
20161284048121620

c

Figure 6.11 Increase in vertical stress along pipeline A–A' for Example 6.1.
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It was shown in Section 6.2.2 that the undrained one-dimensional modulus is infinite. 
Thus, only the long-term or ultimate settlements, calculated from the long-term changes in 
effective stress, can be found using the one-dimensional modulus. In reality, some immediate 
settlement due to shear deformation will probably occur, because shear deformation takes 
place without any change in volume. This confirms the approximate nature of the approach. 
Methods of estimating immediate settlements due to shear are discussed in Section 6.8.

In many cases, the loading pattern exerted by the building on its foundation is  different 
from that transmitted by the foundation to the soil, because the foundation itself has  a stiff-
ness in bending. The foundation will tend to redistribute the stresses so that the  settlements 
beneath it are more uniform. The settlements calculated using the pattern of loads imposed by 
the superstructure on the foundation (rather than by the foundation on the soil)  correspond to 
a perfectly flexible foundation, which is unrealistic. The settlement of a rigid foundation could 
be estimated by determining the settlement of the flexible  foundation at a number of points, 
and taking the average. More rigorously, the stiffness of a raft of plan dimensions L × B and 
thickness tr made of a material having Young’s modulus Er and Poisson’s ratio νr on soil of 
Young’s modulus Es and Poisson’s ratio νs may be characterised by the raft–soil stiffness ratio,

 K
E Bt v
E L v

4 (1 )
3 (1 )rs

r r
3

s
2

s
4

r
2

= −
π −

which in practice may range in value from 0.001 to 10 (Clancy and Randolph, 1996).
Methods of correcting the settlements calculated using the one-dimensional approach for 

the effects of lateral strain have been proposed, and in some cases are reasonably widely used 
(e.g. Skempton and Bjerrum, 1957). However, more significant errors are likely to arise from the 
careless determination and/or selection of soil parameters than from the approximations inherent 
in the one-dimensional approach. In their review of the  behaviour of foundations and structures, 
Burland et al. (1977) concluded that for soils that are approximately elastic in their response to 
monotonically increasing stresses, total settlements obtained from the one-dimensional method 
of analysis compare very favourably with values obtained using more sophisticated methods.

Example 6.2: Estimation of soil settlements below a shallow foundation

Figure 6.12 shows a plan view of the loads transmitted to the soil by the raft foundation 
of a new industrial building, together with the soil profile at the proposed construction 
site. Use the Newmark chart to estimate the increase in vertical stress at depths of 6 m 
and 16 m below the points marked X and Y on Figure 6.12.

Depth (m)

0

12

Firm sand
and gravel

6 m

6 m

6 m

X Y

6 m

Loose sand
E0́ = 10 MPa

Alluvial clay
E0́ = 2.5 MPa

50 kPa

50 kPa

(a) (b)

100 kPa

20

Figure 6.12 (a) Plan view of proposed industrial building and (b) soil profile at the construction site for 
Example 6.2.
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Hence, estimate the expected eventual settlement of the foundation at the points 
X and Y. Suggest two possible shortcomings of your analysis.

SOluTIOn

Draw plan views of the foundation with the scale for Z set to (a) 6 m and (b) 16 m, with 
the points (i) X and (ii) Y located over the centre of the chart (see Figure 6.13).

6 m

(i)
(a)

(ii)

(i)
(b)

(ii)

Scale for Z

100 50
50 kPa

6 m
Scale for Z

100 50
50 kPa

16 m
Scale for Z

100 50
50 kPa

16 m
Scale for Z

100 50
50 kPa

Figure 6.13  Newmark charts for Example 6.2: (a) 6 m depth (i) the point X (ii) the point Y (b) 16 m depth 
(i) the point X (ii) the point Y.
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The increase in vertical stress at each point is given by

 ∆σ = × + ×[( /200) 50 kPa] [( /200) 100 kPa]v 50 100n n

where n50 is the number of elements covered by the area over which the surface load is 
50 kPa, and n100 is the number of elements covered by the area over which the surface 
load is 100 kPa.

The values of n50, n100 and the increases in vertical stress at each depth and location 
are given in Table 6.2.

The settlement of each layer is given by Equation 6.10:

 δρ = ∆ ′σ ′/v 0h E

Taking the layers as 0–12 m below ground level (loose sand, E 10 MPa0′ = ) and 12–20 m 
below ground level (alluvial clay, E 2.5 MPa0′ = ), the total settlement at X is

 (12 m 43.5 kPa 10,000 kPa) (8 m 12.5 kPa 2,500 kPa)

92 mm

ρ = × ÷ + × ÷
=

The total settlement at Y is

 
ρ = × ÷ + × ÷

=
(12 m 28.25 kPa 10,000 kPa) (8 m 10.5 kPa 2,500 kPa)

68 mm

The potential shortcomings of the analysis are

 1. It has been assumed that the predominant mode of deformation is vertical com-
pression, so that short-term settlements (resulting from shear at constant volume) 
cannot be calculated.

 2. The division of the soil into only two layers is somewhat crude; the use of more 
layers (each with a different value of E0

′  and Δσv) would be preferable.

6.6 INFLUENCE FACTORS FOR STRESS

Although the Newmark chart is versatile, its use can be time consuming, particularly in 
analyses where the soil is divided into several layers. In many practical cases, founda-
tions are rectangular on plan, at least to a reasonable approximation. Increases in verti-
cal stress at a depth Z below the corner of a uniformly loaded rectangular surcharge of 
length L and breadth B may be calculated using a chart originally devised by Ralph E. 
Fadum (1948).

Table 6.2 Values of n and increase in vertical stress for Example 6.2

Number of elements 
@ 50 kPa (n50)

Number. of elements 
@ 100 kPa (n100)

Δσv = [(n50/200) × 
50]+[(n100/200) × 100] kPa

X, depth 6 m 18 × 2 = 36 17.25 × 4 = 69 43.5
Y, depth 6 m 69 + 8 = 77 18 28.25
X, depth 16 m 9 × 2 = 18 4 × 4 = 16 12.5
Y, depth 16 m 16 + 8 = 24 9 10.5
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Fadum’s chart (Figure 6.14) gives values of an influence factor, Iσ, in terms of the dimen-
sionless parameters m = L/Z and n = B/Z. The increase in vertical stress Δσv at a depth Z 
below the corner of a uniform surcharge of length L and breadth B is

 ∆σ = σqIv   (6.11)

One of the attractive features of elasticity calculations is that the principle of superposi-
tion applies. This means that Fadum’s chart can be used to calculate the increase in vertical 
stress below any point within the loaded area by dividing the loaded area into four and 
adding the increases in vertical stress due to each of the four small rectangles individually 
(Figure 6.15a). Similarly, the judicious superposition of positive and negative loads enables 
Fadum’s chart to be used to calculate the increase in vertical stress at points outside the 
loaded area (Figure 6.15b).

Rectangular area
uniformly loaded
Boussinesq case

y

B
q

x

Z
σv

z

Note: m = L/Z
 n = L/Z
m and n are
interchangeable

per unit area
0.25
0.24
0.23
0.22
0.21
0.20

0.19
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0.17
0.16
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0.10
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0.08
0.07
0.06
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0.04
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0.02
0.01
0.00
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m = 0.3

m = 0.2

m = 0.1

m = 1

n = B/Z

Figure 6.14  Influence factors for the increase in vertical stress below the corner of a uniform rectangular 
surcharge. (From Fadum, R.E., Proceedings of the Second International Conference on Soil Mechanics 
and Foundation Engineering, Rotterdam, 3, 77–84, 1948. With permission.)
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The use of Fadum’s chart is illustrated in Example 6.3, which is an idealisation of a case 
record presented by Somerville and Shelton (1972).

Example 6.3: Settlement of high-rise buildings in Glasgow

Five 15-storey blocks of flats were constructed during 1968 in the Parkhead and Bridgeton 
districts of Glasgow. The foundations are underlain by deep alluvial deposits consisting 
of laminated clays and silts, and coal measures rocks. In view of the compressibility of 
the alluvial deposits, piled foundations would normally have been adopted for high-rise 
buildings of this nature. However, because the coal measures had been extensively mined 
during the 1800s, it was considered inadvisable to concentrate foundation loads using 
piles terminating on or just above the rockhead.

It was therefore decided to use semi-buoyant raft foundations to reduce the bearing 
pressure on the clays and silts to a value that provided an adequate margin of safety 
against failure. Nonetheless, there was considerable concern over the magnitude of 
 possible settlements, and detailed settlement analyses were carried out. Settlements 
were monitored during and for some time after construction, and compared with the 
 predicted values.

The foundation of each block of flats may be idealised as a rectangle 33.55 m × 22.22 m 
on plan. The gross bearing pressure is approximately 135 kPa, but by utilising the  buoyancy 
of cellular rafts placed 4.3 m below ground level, the net effective bearing pressure was 
reduced to 53.5 kPa. (The net effective bearing pressure is calculated from the weight of 
the building and the raft divided by the area of the foundation, reduced by the upthrust 
on the base of the foundation due to the pore water pressure at that depth, further reduced 
by the effective surcharge due to the soil above founding level that was removed to create 
the  foundation.) A soil profile, giving the variation in coefficient of compressibility mv as 
a  function of depth as used by the designers, is given in Figure 6.16. The coefficient of 
compressibility mv is equal to the reciprocal of the one-dimensional modulus, = ′m E1/v 0. 
Estimate the eventual settlement at the centre of the raft and at the middle of the longer side.

SOluTIOn

Divide the compressible strata into 2-m thick layers. Use Fadum’s chart (Figure 6.14) to 
estimate the increase in vertical stress at the centre of each layer, below the centre of the 
foundation and the middle of the longer side. Using superposition, the increase in stress 
below the centre of the raft is four times the increase in stress below the corner of a foun-
dation of dimensions 16.78 m × 11.11 m, and the increase in stress below the middle of the 
longer side is twice the increase in stress below the corner of a foundation of dimensions 
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+q +q
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+q +q

+q +q
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Figure 6.15  Use of (a) positive and (b) negative superposition to calculate the increase in stress at any point 
using Fadum’s chart.
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16.78 m × 22.22 m as shown in Figure 6.17. Read off the value of mv at the centre of each 
2-m layer from Figure 6.16, and calculate the settlement of each layer using Equation 6.8:

 h E hm/v 0 v vδρ = ∆ ′σ ′ = ∆ ′σ

The total settlement is the sum of the settlements of each individual layer. The ground 
has been assumed to be effectively incompressible below a depth of 18.3 m, where the clay 
becomes very stiff with gravel, cobbles and boulders. Bedrock is reached at 25 m below 
ground level. The calculation is detailed in Tables 6.3 and 6.4.

The calculated and measured settlements are compared in Figure 6.18. Agreement is 
reasonably close in terms of the general order of magnitude, but the effect of the stiff-
ness of the foundation (which was neglected in the calculations) in reducing differential 
settlements is clear. Further details given by Somerville and Shelton (1972) include the 
settlement contours, and the observed settlement-time curves.

Ground conditions cannot in reality be expected to be perfectly uniform and as a result 
of variations in ground conditions across each of the two sites, the settlement contours 
were not focused on the centre of the building. The rates of settlement were such that 90% 

0 0.1
Coefficient of volume compressibility (mv) (m2/MN)

0.2 0.3

Typical soil conditions

Description of strata
Fill (gravel, brick rubble)

Firm laminated brown
silty clay with parting
of fine sand

Soft to firm, becoming stiff,
grey-brown clayey silt with
occasional bands of soft
laminated brown clay

Stiff to very stiff, becoming
hard, dark grey sandy clay
with gravel, cobbles and
boulders (glacial drift)

Bedrock (Productive
coal measures)52.20

25.00

17.80

11.00

3.50

1.50
Firm mottled brown and grey
silty clay with traces of sand

Change of strata
Legend Depth (m)

Parkhead

D
ep

th
 (m

)

0

2

4

6

8

10

12

14

16

18

20

22

24

Figure 6.16  Soil profile and mv( 1/E0) as a function of depth, Example 6.3. (From Somerville, S.H. and Shelton, 
J.C., Géotechnique, 22, 3, 513–20, 1972. With permission.)

Figure 6.17 Use of symmetry with Fadum’s chart for Example 6.3.
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of the ultimate movement had occurred after 12–15 months, whereas one- dimensional 
consolidation theory using an oedometer test value of cv would have suggested a period 
of 25 years. The reason for this discrepancy was the laminated nature of the deposits. As 
discussed in Sections 3.6, 3.14 and 4.7.3, a laminated soil must be expected to be signifi-
cantly more permeable in the horizontal direction than in the vertical, so that excess pore 
water pressures dissipate primarily by horizontal flow.

6.7  STANDARD SOLUTIONS FOR SURFACE SETTLEMENTS ON 
AN ISOTROPIC, HOMOGENEOUS, ELASTIC HALF-SPACE

Formulae and charts are available for the settlements that result from various patterns 
of surface load, calculated assuming that the soil behaves as a uniform, isotropic elastic 
material (e.g. Steinbrenner, 1934; Giroud, 1968). It has already been mentioned that 
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Figure 6.18  Comparison of measured and calculated settlements: blocks of flats at Parkhead and Bridgeton 
for Example 6.3.

Table 6.3  Calculation of settlement below centre of raft for Example 6.3

Depth below 
ground level (m)

Depth Z 
below 

founding 
level (m)

mv (= 1/E'0) 
(m2/MN) B/Z = n L/Z = m

Iσ (from 
Figure 
6.14)

δρ = q × 
4Iσ × mv × h 

(m)

5.3 1.0 0.166 11.11 16.78 0.250 0.0178
7.3 3.0 0.129 3.70 5.59 0.248 0.0137
9.3 5.0 0.094 2.22 3.36 0.242 0.0097

11.3 7.0 0.066 1.59 2.40 0.229 0.0065
13.3 9.0 0.048 1.23 1.86 0.211 0.0043
15.3 11.0 0.039 1.01 1.53 0.194 0.0032
17.3 13.0 0.033 0.85 1.29 0.175 0.0025

Total 58 mm

Table 6.4  Calculation of settlement below middle of longer side for Example 6.3

Depth below 
ground level (m)

Depth below 
founding level 

Z (m)
mv (= 1/E'0) 
(m2/MN) B/Z = n L/Z = m

Iσ (from 
Figure 6.14)

δρ = q × 2Iσ  × 
mv × h (m)

5.3 1.0 0.166 16.78 22.22 0.250 0.0089
7.3 3.0 0.129 5.59 7.41 0.250 0.0069
9.3 5.0 0.094 3.36 4.44 0.247 0.0050

11.3 7.0 0.066 2.40 3.17 0.242 0.0034
13.3 9.0 0.048 1.86 2.47 0.235 0.0024
15.3 11.0 0.039 1.53 2.02 0.225 0.0019
17.3 13.0 0.033 1.29 1.71 0.212 0.0015

Total 30 mm
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settlements calculated in this way are considerably less robust than distributions of 
vertical effective stress, being much more sensitive to the elastic parameters assigned 
to the soil and factors such as anisotropy and the likely increase in soil stiffness with 
depth. It is, however, sometimes convenient to make use of these solutions because of 
the limitations of the one-dimensional approach—for instance in the calculation of ini-
tial undrained settlements due to shear rather than the eventual settlements following 
consolidation. As an example, Table 6.5 gives formulae for the settlements below the 
centre and edge of a uniform circular surcharge of diameter B and the settlement of a 
rigid circular plate.

The surface settlement below the corner of a uniform rectangular surcharge of magnitude 
q and plan dimensions L × B (where L ≥ B), on a uniform isotropic elastic half-space, is 
given by Equation 6.15, with the appropriate value of influence factor Iρ from Table 6.6.

 qB v E I[ (1 )/ ]c
2ρ = − ρ   (6.15)

Many more formulae, tables and charts, for foundations of different shapes, taking into 
account non-uniform loading, finite soil depth, anisotropy, inhomogeneity, and in some 
cases, the stiffness of the foundation, are given—together with original references—by 
Poulos and Davis (1974).

6.8 ESTIMATION OF IMMEDIATE SETTLEMENTS

It is often useful to be able to separate the component of the overall settlement that occurs 
immediately (due to shear, without change in volume) from that which occurs in the long 
term, as the soil consolidates.

 ρ = ρ + ρt i c   (6.16)

Table 6.5  Formulae for soil surface settlements: circular foundation of diameter B on a uniform, isotropic 
elastic half-space

Uniform vertical stress q, settlement below the 
centre

ρc = qB(1 − ν2)/E Equation 6.12

Uniform vertical stress q, settlement below the 
edge (at radius B/2)

ρe = (2/π)qB(1 − ν2)/E Equation 6.13

Rigid circular plate, total load Q(= πB2q/4) ρ = Q(1 − ν2)/EB = π(1 − ν2)qB/4E Equation 6.14

Table 6.6  Influence factors for calculating the settlement below the corner of a uniformly 
loaded rectangular area at the surface of a homogeneous, isotropic elastic 
half-space (for use with Equation 6.15)

L/B Iρ L/B Iρ L/B Iρ L/B Iρ
1.0 0.561 1.6 0.698 2.4 0.822 5.0 1.052
1.1 0.588 1.7 0.716 2.5 0.835 6.0 1.110
1.2 0.613 1.8 0.734 3.0 0.892 7.0 1.159
1.3 0.636 1.9 0.750 3.5 0.940 8.0 1.201
1.4 0.658 2.0 0.766 4.0 0.982 9.0 1.239
1.5 0.679 2.2 0.795 4.5 1.019 10.0 1.272

Source:  J.-P. Giroud, Proc. ASCE (SM4), 1968. With permission.



Calculation of soil settlements using elasticity methods 329

© 2010 Taylor & Francis Group, LLC

where ρt is the total settlement, ρi is the immediate undrained settlement and ρc is the 
 settlement due to consolidation which develops in the long term. One reason for making 
this distinction is that, it is only the deformation which develops after a brittle component 
has been fixed to a building that is likely to lead to damage.

Immediate settlements may be estimated by using values representing the undrained 
Young’s modulus and Poisson’s ratio (νu = 0.5) in formulae such as those given in Tables 
6.5 and 6.6. Alternatively, the proportion of the total settlement (calculated using the 
 one-dimensional method) that occurs effectively instantaneously (i.e. over the time period 
of construction) might be estimated empirically, on the basis of previous experience.

For stiff, overconsolidated clays, case data presented by Simons and Som (1970) indicate 
values of the ratio of settlement at the end of construction to total settlement in the range 
0.32–0.74, with an average of 0.58. Morton and Au (1975) give a range of 0.4–0.82, with 
an average of 0.63, for buildings on London Clay.

For soft, normally consolidated clays, Simons and Som (1970) present further data with 
ratios of settlement at the end of construction to total settlement in the range 0.08–0.21, 
with an average of 0.16. Since in all cases, the settlement at the end of construction will 
probably include some settlement due to consolidation, Burland et al. (1977) suggest that 
the ratio ρi/ρt for soft clays will normally be less than 0.1.

6.9 EFFECT OF HETEROGENEITY

Gibson (1974) discusses the effect of an increase in soil stiffness with depth on the stresses 
and settlements calculated using elasticity theory. Such a soil is described as heterogeneous 
(as opposed to homogeneous), and is sometimes known as a Gibson soil.

The Young’s modulus of the soil at a depth z below the ground surface is given by

 E E zz 0= + λ   (6.17)

The degree of heterogeneity is characterised by the parameter E0/λR, where R is a dimen-
sion representative of the loaded area. Settlement patterns (normalised with respect to the 
settlement at the centre of the loaded area, ρc) due to a uniformly loaded circular area of 
radius R at the surface of an elastic half-space are shown in Figure 6.19, for various values 
of E0/λR.

For a homogeneous soil, whose stiffness does not increase with depth (i.e. λ = 0, E0/
λR = ∞), the zone of significant surface settlement extends well beyond the loaded area. As 
the degree of heterogeneity is increased (i.e. E0/λR decreases), the extent of the settlement 
zone is reduced. When E0 = 0, the settlements beneath the loaded area are uniform and 
one-dimensional. Figure 6.19 is presented by Gibson (1974) for an incompressible soil with 
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Figure 6.19  Normalised surface settlement profiles due to a uniformly loaded circular area of radius R on a 
heterogeneous elastic half space. (From Gibson, R.E., Géotechnique, 24, 2, 115–40, 1974. With 
permission.)
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Poisson’s ratio ν = 0.5, which corresponds to undrained conditions. He states, however, 
that the results obtained for other values of ν are practically indistinguishable. Perhaps the 
most important point demonstrated by Figure 6.19 is that the pattern of soil surface settle-
ments around a shallow foundation is likely to be very sensitive to the rate at which the soil 
 stiffness increases with depth.

Gibson (1974) also shows that when E0 = 0 and ν = 0.5, the settlement beneath a uni-
formly loaded area of any shape is given by

 ρ = 3q/2λ  (6.18)

(where q is the applied surface load), and is zero elsewhere. The settlement at the centre of a 
uniformly loaded circular area of radius R when E0 is non-zero and Poisson’s ratio ν = 0.5 
is given approximately by

 qR E R3 /2( )0ρ = + λ   (6.19)

where q is the applied surface load (Poulos and Davis, 1974). On substituting E0 = 0 into 
Equation 6.19, Equation 6.18 is recovered.

6.10  CROSS-COUPLING OF SHEAR AND VOLUMETRIC 
EFFECTS DUE TO ANISOTROPY

Hooke’s Law (Equation 6.1) may be written in terms of the bulk modulus K′ and the shear 
modulus G′ (rather than Young’s modulus E′ and Poisson’s ratio v′), in order to separate 
shear and volumetric effects. For an isotropic elastic material under the stress conditions 
imposed in the triaxial test, Muir-Wood (1990) shows that the stress-strain relationship may 
be written in matrix form as
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where Δεp = Δεa + 2Δεr is the incremental volumetric strain, Δεq = (2/3)(Δεa − Δεr) is the incre-
mental triaxial shear strain, K′ is the effective stress bulk modulus, G′ is the shear modulus, 
∆ ′ = ∆σ + ∆σp 2a r is the increment of average effective stress, and Δq = Δσa − Δσr is the incre-
ment of deviatoric stress. The off-diagonal zeros in the 2 × 2 compliance matrix of Equation 
6.20 show that shear and volumetric deformations may be considered independently.

Two independent parameters are required to describe the stress-strain response of an 
isotropic elastic material. A material that is cross-anisotropic (i.e. has the same properties 
in both horizontal directions but different properties in the vertical direction, as do many 
soils) requires five independent parameters to describe its behaviour, while a material that 
is fully anisotropic requires 21. This is discussed by Muir-Wood (1990) and Graham and 
Houlsby (1983), who also show that the stiffness of a cross-anisotropic elastic material may 
be written in the form:
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where K* and G* are modified bulk and shear moduli. The non-zero off-diagonal terms 
J indicate that shear and volumetric effects are now coupled (i.e. that each has some  influence 
on the other), and cannot be considered in isolation.

In practice, most soils are cross-anisotropic, and must be expected to display some degree 
of coupling between shear and volumetric strains. One practical result of this is that the 
modified shear modulus G* should be obtained from an undrained triaxial shear test in 
which the change in volumetric strain Δεp is zero, so that Δq = 3G* Δεq. The modified bulk 
modulus K* should be obtained from a drained test in which the applied changes in p′ and 
q cause no resultant shear strain, Δεq = 0, so that ∆ ′ = ∆εp K* p.

KEY POINTS

• To calculate the settlements of shallow foundations, it is common to assign isotropic 
elastic properties such as stiffness to the soil. However, soil is usually anisotropic, 
and its stiffness depends on its stress history, stress state and the stress path to which 
it is subjected. Stiffness increases with increasing effective stress and decreases with 
strain following the last change in the direction of the strain path. Over a given 
stress range, overconsolidated soils are stiffer than normally consolidated soils. 
In selecting  parameters for an elastic analysis, all of these points should be borne 
in mind.

• The vertical stresses within an elastic body of infinite depth and lateral extent—an 
infinite elastic half-space—resulting from a surface load are comparatively insensitive 
to the elastic material properties. Experience has shown that the distribution of verti-
cal stress within a soil mass due to the application of a surface load does not differ 
enormously from the elastic solution in cases where the stress-strain relationship of the 
soil is non-linear, or where the stiffness of the soil increases with depth.

• Vertical stress distributions calculated using elasticity-based methods are reason-
ably applicable to layered soils and for those whose stiffness increases with depth. 
Significant deviation from the elastic solution may occur if the applied loads are high 
enough to cause extensive yielding, or if there is a discontinuous inclusion of higher or 
lower stiffness, or a stiff surface layer.

• Increases in vertical stress at any depth, resulting from any pattern of applied surface 
load, can be calculated relatively easily using Newmark’s chart, or, for rectangular 
buildings, Fadum’s chart.

• Standard solutions are available for settlements calculated on the basis that the soil 
can be idealised as an elastic half-space. However, these are much more sensitive to 
the elastic properties assigned to the soil. Except possibly for solutions that allow for 
an increase in soil stiffness with depth (that is, a Gibson soil), they are probably of 
limited value.

• Settlements may be calculated by assuming that soil movements are predominantly 
vertical, so that the relationship between vertical stress and strain increments is given 
by the one-dimensional modulus, ′0E . Variations in stiffness with depth can be taken 
into account by dividing the soil into a number of layers. The contribution of each 
layer to the overall settlement is then calculated on the basis of the average stiffness 
and stress increment within that layer.

• For soils that are approximately elastic in their response to monotonously increasing 
stresses, total settlements calculated using the one-dimensional approach are generally 
similar to those obtained using more sophisticated methods.
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SELF-ASSESSMENT AND LEARNING QUESTIONS

Questions 6.2 to 6.5 and 6.7 may be answered using either the Newmark chart (Figure 6.8), 
or Fadum’s chart (Figure 6.14), or both. Question 6.6 is based on Example 6.3, and should, 
therefore, be answered using the Newmark chart.

DETERMINING ELASTIC PARAMETERS 
FROM LABORATORY TEST DATA

 6.1 a.  Write down Hooke’s Law in incremental form in three dimensions and show 
that for undrained deformations Poisson’s ratio νu = 0.5. Assuming that the 
behaviour of soil can be described in terms of conventional elastic parameters, 
show that in undrained plane compression (that is, Δε2 = 0), the undrained 
Young’s modulus Eu is given by 0.75 × the slope of a graph of deviator stress q 
(defined as σ1 − σ3) against axial strain ε1. Show also that the maximum shear 
strain is equal to twice the axial strain, and that the shear modulus G = 0.25 × 
(q/ε1).

 b. Figure 6.20 shows graphs of deviator stress q and pore water pressure u against 
axial strain ε1 for an undrained plane compression test carried out at a constant 
cell pressure of 122 kPa. Comment on these curves and explain the relationship 
between them. Calculate and contrast the shear and Young’s moduli at 1% shear 
strain and at 10% shear strain. Which would be the more suitable for use in design, 
and why?

  [(b) Secant shear moduli are 3.4 MPa at γ = 1% and 0.4 MPa at γ = 10%. 
Corresponding Young’s moduli are three times these values; tangent moduli at 
10% shear strain are negative.]
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Figure 6.20 Undrained plane compression test data for Q6.1.
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CALCULATION OF INCREASES IN VERTICAL EFFECTIVE 
STRESS BELOW A SURFACE SURCHARGE

 6.2 The foundation of a new building may be represented by a raft of plan dimensions 
10 m × 6 m, which exerts a uniform vertical stress of 50 kPa at founding level. A pipe-
line A A− ′ runs along the edge of the building at a depth of 2 m below founding level, 
as indicated in plan view in Figure 6.21.

Estimate the increase in vertical stress at a number of points along the pipeline 
A A− ′, resulting from the construction of the new building. Present your results as a 
graph of increase in vertical stress against distance along the pipeline A A− ′, indicating 
the extent of the foundation on the graph.

What is the main potential shortcoming of your analysis?
[Increase in vertical stress calculated using a Newmark chart is 24.5 kPa beneath the 
midside, reducing to 12.5 kPa below the corner, and to less than 1 kPa at a distance 
of 4 m from the corner.]

 6.3 A building is to be constructed on a raft foundation of plan dimensions 90 m × 45 m, 
with imposed loadings as shown in Figure 6.22. A water supply tunnel is located at a 
depth of 30 m below the underside of the foundation, and runs beneath the new building 
as shown. The soil at the site is London Clay, with a unit weight of 20 kN/m3. Pore water 
pressures are hydrostatic below the groundwater level at the original soil surface: (a) Use 
the Newmark chart (Figure 6.8) to estimate the increases in vertical stress at various 
points along the water supply tunnel. Indicate clearly the extent of the building on your 
diagram; and (b) Discuss briefly the limitations and shortcomings of your analysis.

  [Increase in vertical stress calculated using a Newmark chart is ~42 kPa below the corner 
of the raft, rising to a maximum of ~91 kPa and then falling to ~41 kPa where the pipe 
exits the footprint of the building. Effects of the pipe and foundation stiffness are ignored.]

A AʹPipeline 2 m deep

Raft foundation
50 kPa

6 m

10 m

Figure 6.21 Plan view of foundation and pipeline for Q6.2.

30 m 30 m 30 m

200 kPa 80 kPa 100 kPa 45 m

Line of water supply
tunnel at 30 m depth

Figure 6.22 Plan view of foundation and water supply tunnel, Q6.3.
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CALCULATION OF INCREASES IN VERTICAL EFFECTIVE 
STRESS AND RESULTING SOIL SETTLEMENTS

 6.4 a.  In what circumstances might an elastic analysis be used to calculate the changes in 
stress within the body of the soil due to the application of a surface surcharge?

 b. Figure 6.23 shows a cross-section through a long causeway. Using the Newmark 
chart or otherwise, sketch the long-term settlement profile along a line perpendicu-
lar to the causeway. Given time, how might your analysis be refined?
[The settlement calculated using a Newmark chart is approximately 3 mm at a 
distance of 22.5 m from the centreline, increasing to 21 mm at 7.5 m from the 
centreline; 85 mm at the edge of the causeway, and 130 mm at the centre.]

 6.5 a.  When might an elastic analysis reasonably be used to calculate the settlement of a 
foundation? Briefly outline the main difficulties encountered in converting stresses 
into strains and settlements.

 b. A square raft foundation of plan dimensions 5 m × 5 m is to carry a uniformly 
 distributed load of 50 kPa. A site investigation indicates that the soil has a 
 one-dimensional modulus given by ′ = +E z(10 6 ) kPa0 , where z is the depth below 
the ground surface in metres. Use a suitable approximate method to estimate the 
 ultimate settlement of the raft.
[Settlements calculated using a Newmark chart with the soil divided horizontally 
into three layers are approximately 9 mm below centre, 3 mm below corner, and 
5 mm below mid-side, giving an average (for a rigid foundation) of about 5 mm.]

 6.6 The foundations of a new building may be represented by a raft of plan dimensions 
24 m × 32 m, which exerts a uniform vertical stress of 53.5 kPa at founding level. 
The soil at the site comprises laminated silty clay underlain by firm rock. The esti-
mated stiffness in one-dimensional compression ′E0 increases with depth as indicated 
in Table 6.7.

Use the Newmark chart (Figure 6.8) to estimate the increase in vertical stress at 
depths of 4 m, 10 m and 20 m below the centre of the raft. Hence estimate the 
expected eventual settlement of the centre of the foundation. Suggest two possible 
shortcomings of your analysis.

5 m

35 m
z

5 m
Fill, γ = 20 kN/m3

Sheet piles with tie rods

Firm bedrock

Soft clay, E0́ = 2000 + 1000 z kN/m2

Figure 6.23 Cross-section through causeway, Q6.4.

Table 6.7 Soil stiffness data for Q6.6

Depth below founding level (m) ′E0 (MPa)

0–4 5
4–10 10
10–20 25
Below 20 Very stiff
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[Increases in stress are 53.5 kPa at 4 m depth; 43.6 kPa at 10 m, and 25.7 kPa at 20 m. 
Total settlement ≈ 86 mm.]

 6.7 A building is to be constructed on a raft foundation of plan dimensions 20 m × 30 m. 
One-half of the raft (that is, a rectangle 20 m × 15 m on plan) will be subjected to 
a vertical load of 100 kPa, and the other half to a vertical load of 200 kPa. Ground 
conditions at the site are indicated in Table 6.8.

Use the Newmark chart (Figure 6.8) to estimate the increases in vertical stress 
below the centre of each half of the raft at depths of 10 m, 20 m and 30 m. Hence 
estimate the surface settlement at each of these two locations. Give two shortcomings 
of your analysis. What potential major problem do you foresee with the proposed 
foundation, and how might these be overcome?

 [Increases in stress below the centre of the 100 kPa loading are ~81 kPa at 10 m 
depth; ~51 kPa at 20 m, and ~30 kPa at 30 m. Total settlement ~38 mm. Increases in stress 
below the centre of the 200 kPa loading are ~133.5 kPa at 10 m depth; ~66 kPa at 20 m, 
and ~34.5 kPa at 30 m. Total settlement ~63 mm. Stiffness of foundation neglected, cannot 
calculate short-term settlements, division into layers somewhat crude. Differential settle-
ment: could use settlement reducing piles or a hollow foundation for the 200 kPa load.]

USE OF STANDARD FORMULAE IN CONJUNCTION WITH 
ONE-DIMENSIONAL CONSOLIDATION THEORY (CHAPTER 4)

 6.8 a.  To estimate the ultimate settlement of the grain silo described in Question 4.5, the 
engineer decides to assume that the soil behaviour is elastic, with the same proper-
ties in loading and unloading. In what circumstances might this be justified?

 b. The proposed silo will be founded on a rigid circular foundation of diameter 10 m. 
Under normal conditions, the net or additional load imposed on the soil by the founda-
tion, the silo and its contents will be 5 MN. What is the ultimate settlement due to this 
load? (It may be assumed that the settlement ρ of a rigid circular footing of diameter 
B carrying a vertical load Q at the surface of an elastic half-space of one-dimensional 
modulus ′E0 and Poisson’s ratio v′ is given by ′ − ′ − ′Q E B v v( / )[(1 ) /(1 2 )]0

2 . Take ′ =v 0.2.)
 c. To reduce the time taken for the settlement to reach its ultimate value, it is proposed 

to overload the foundation initially by 5 MN, the additional load being removed when 
the settlement has reached 90% of the predicted ultimate value. In practice, this occurs 
after six months have elapsed, and the additional load is then removed. Giving two or 
three actual values, sketch a graph showing the settlement of the silo as a function of 
time. (Assume that the principle of superposition can be applied, and use the curve of 
R against T given in Figure 4.18.) State briefly the main shortcomings of your analysis.
[ρult = 53 mm; occurrence of 90% settlement after 6 months suggests  drainage path 
length of 1.9 m, assuming one-dimensional vertical  consolidation. Superimpose 
one-dimensional consolidation solutions for loads of +10 MN at t = 0 and −5 MN 
at t = 6 months to obtain settlement-time plot; resultant  settlement is 45 mm after 
one year, 50 mm after two years and 51 mm after three years.]

Table 6.8 Ground conditions and soil stiffness data for Q6.7

Soil type Depth below base of foundation (m) Representative one-dimensional modulus, E'0, (kPa)

Medium sand 0–10 40
Dense sand 10–20 80
Stiff clay 20–30 60
Bedrock >30 Incompressible
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Chapter 7

Plasticity and limit equilibrium methods 
for earth pressures and retaining walls

7.1 ENGINEERING PLASTICITY

Many of the traditional methods of geotechnical engineering design are based on the con-
cepts of plasticity rather than elasticity. Typically, conditions at collapse (the collapse limit 
state) are investigated, and a factor is applied to one of the parameters involved in the cal-
culation to arrive at the final design. This factor was conventionally known as the factor of 
safety, and given the symbol F. This was something of a misnomer, because its purpose was 
not only to distance the structure from collapse, but also to ensure that deformations under 
working conditions would be small.

In structural engineering, we would call this procedure plastic design. The justifications 
for its use are that (particularly for complex frames) it is easier than an elastic calcula-
tion, and that an elastic calculation is in any case imperfect because of the effects of, for 
example foundation settlements and partially fixed joints, which are difficult or impossible 
to quantify. In its simplest form, a single factor F may be applied either to the strength of a 
structural frame or to the loads acting on it; so that either the permissible maximum bend-
ing moment under working conditions is Mp/F, or the permissible loads are Wc/F, where Mp 
is the fully plastic moment for the frame and Wc is the set of loads which causes collapse.

We have already seen in Chapters 4–6 that the engineering behaviour of soil is rather 
more complex than that of structural materials such as mild steel. The constitutive (stress–
strain) relationship for a soil element depends on both its geological and recent stress history 
and the stress and strain paths to which it is subjected. It is probable that the soil elements 
at different locations in the vicinity of a geotechnical structure such as a retaining wall or a 
foundation will all have different stress–strain responses.

In these circumstances, plasticity solutions have the additional attraction that only the 
soil strength needs to be known, rather than the full stress–strain relation. Critical state soil 
strengths are reasonably easy to determine, since they are relatively insensitive to state path 
and stress history. The principal disadvantage of classical plasticity methods is that they give 
no information on deformations. Therefore, it is necessary to rely on experience and engi-
neering judgement in choosing appropriate numerical value(s) for the factor(s) applied to the 
collapse calculation to ensure satisfactory performance (especially in terms of deformations) 
under working conditions, thereby avoiding a serviceability limit state.

In modern geotechnical engineering practice, individual factors known as partial factors 
(generally given the symbol γ and a suitable subscript) are applied to different combinations 
of actions (i.e. loads), materials properties (principally in geotechnical engineering, the soil 
or interface strength) and/or resistances to arrive at the final design. Thus the notion of a 
single ‘factor of safety’ has been superceded by a series of partial factors that are applied 
individually to the combinations of actions, materials properties and resistances specified in 
a design code to guard against a variety of possible limit states. In the past, factors have also 
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sometimes applied to the other parameters—for example, to the depth of embedment of an 
embedded retaining wall. This can give highly misleading results, and should be avoided.

In this chapter, the concepts of engineering plasticity are summarised. They are then used 
to calculate limiting horizontal soil stresses, and in the analysis of simple gravity, embedded 
and reinforced soil retaining walls. The aim of this book is to provide a thorough grounding 
in fundamental soil mechanics principles, not to act as an introduction or a guide to a par-
ticular design code. Thus, the emphasis is on conditions at collapse, but the concept of partial 
factors applied to soil strengths, loads (actions) and sometimes resistances is introduced where 
appropriate. The final section considers the potential for the development of enhanced lateral 
stresses behind a retaining wall, as a result of the compaction of the backfill.

7.1.1 Objectives

After having worked through this chapter, you should understand that

• The concepts of engineering plasticity can be used to calculate lateral earth pressures 
and analyse a structure such as a retaining wall on the verge of collapse (Sections 
7.1–7.8).

• A lower bound solution, based on a system of stresses that is in equilibrium and does 
not violate the failure criterion for the soil, tends to err on the safe side (Section 7.2).

• An upper bound solution based on an assumed mechanism of collapse tends to err on 
the unsafe side (Section 7.2).

• Soils fail according to a frictional failure criterion expressed in terms of effective 
stresses: τ ′σ = ′ϕ( / ) tanmax  (Section 7.3.1).

• As a special case, the undrained failure of clay soils which are sheared at constant vol-
ume may be analysed in terms of a total stress failure criterion: τmax = τu (Section 7.3.3).

You should be able to

• Calculate, for a given vertical effective or total stress, the minimum possible (active) 
and maximum possible (passive) horizontal effective or total stress that can be applied 
to an element of soil (Section 7.3).

• Use the concept of active and passive zones to calculate the lateral stress distributions 
on retaining walls, and the resulting prop loads and bending moments, when the soil 
is at active and/or passive failure (Section 7.5).

• Calculate the depth of embedment and prop load required to maintain an embedded 
cantilever retaining wall in equilibrium for a specified mobilised strength in the sur-
rounding soil (Section 7.6).

• Investigate the stability of mass retaining walls, in both the short term and the long 
term, by analysing the statical equilibrium of assumed sliding wedges both behind and 
in front of the wall, and then of the wall itself (Section 7.8).

• Investigate the failure of reinforced soil retaining walls, using limit equilibrium methods 
(Section 7.9).

• Estimate the lateral stresses behind a retaining wall following compaction of a granu-
lar backfill. (Section 7.10).

You should have an appreciation of

• The various common types of retaining wall, and the way in which each resists the 
lateral thrust of the retained soil (Section 7.4).

• The origins and importance of soil/wall friction (Section 7.7).
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• The shortcomings of calculations based on conditions at collapse (Sections 7.5–7.8).
• The use of partial factors on the soil strength in design calculations, possibly in com-

bination with other devices, to distance the working state of a real wall from collapse 
(Sections 7.5–7.8).

7.2  UPPER AND LOWER BOUNDS (SAFE AND 
UNSAFE SOLUTIONS)

The rigorous analysis of soil constructions such as foundations, slopes and retaining walls 
at collapse is based on the upper- and lower-bound theorems of plasticity (see Baker and 
Heyman [1969]; and for a full treatment of their use in soil mechanics, see Atkinson [1981]).

The lower-bound theorem states that if a system of stresses within the soil mass can be 
found which is in equilibrium with the external loads and body forces (i.e. self-weight), and 
nowhere violates the failure criterion for the soil, then the external loads and body forces repre-
sent a lower bound to those that will actually cause collapse. Any error will be on the safe side, 
since it may be that a different system of stresses will carry even higher loads without violating 
the failure criterion. In short, if it can be shown that the soil can carry the loads, then it will.

The upper-bound theorem states that if a mechanism can be found such that the work 
done by the external loads and body forces is equal to the energy dissipated within the soil 
mass as it deforms, then the external loads and body forces represent an upper bound to 
those that will cause collapse. Any error will be on the unsafe side, since it may be that a 
different mechanism will already have been responsible for collapse at a lower load. In short, 
if it can be shown that the soil can fail, then it will.

The terms ‘upper bound’ and ‘lower bound’ relate to the collapse load, and are potentially 
ambiguous in soil mechanics applications such as an embedded retaining wall where a col-
lapse load not the output of the calculation. For this reason, upper and lower bounds are 
sometimes referred to as unsafe and safe solutions, respectively.

The bound theorems apply strictly to perfectly plastic materials whose stress–strain rela-
tionship exhibits plastic plateau; that is, there is no brittleness or tendency to shed load as 
deformation continues after failure (Figure 7.1). In soil mechanics, this would suggest the 
use of critical state, rather than peak, strengths.

A further requirement for the validity of the bound theorems is that the material exhibits 
a property known as normality. This was defined in Section 5.11 and is discussed again in 
Section 7.7.

In the solution of problems in engineering mechanics using elasticity-based methods, we 
can use the conditions of equilibrium (of forces and stresses), compatibility (of strains and 
displacements) and the stress–strain relationship for the material. (If the problem can be 
solved using the condition of equilibrium alone, it is said to be statically determinate.) In 
plasticity, a lower bound (‘safe’) solution will satisfy the condition of equilibrium, and a 

Stress

Strain

A: Cast iron
B: Mild steel
C: Dense sand; over
 consolidated clay
D: Loose sand; normally
 consolidated clay

A
Fracture

Plastic plateau B

C Critical
state

D

×

Figure 7.1 Brittle and plastic materials.
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material property-based condition (that the failure criterion is not violated) analogous to the 
stress–strain relationship in an elastic analysis. An upper bound (‘unsafe’) solution involving 
a kinematically admissible mechanism satisfies a displacement-based criterion, analogous to 
compatibility.

If we are able to find upper and lower bounds that give the same answer, we have satisfied 
all three criteria (equilibrium, kinematic admissibility/compatibility and conformance with 
the failure criterion/stress–strain law), and the solution is theoretically correct. Unsafe and 
safe solutions that do not coincide will give an indication of the range within which the cor-
rect answer lies. If the range is reasonably narrow, this is likely to be sufficient in most cases.

7.3 FAILURE CRITERIA FOR SOILS

7.3.1 ( )/ tanmaxττ σσ == ϕϕ′ ′ failure criterion

All soils derive their strength from interparticle friction. In natural soils, cementing between 
the particles may also be present, but such bonds will be brittle and enhance the peak 
strength, not that at the critical state. In terms of effective stresses, most soils obey the 
purely frictional failure criterion developed in Chapter 2,

 τ = ′σ ′ϕtan  (7.1)

on the plane of maximum stress ratio (Figure 7.2). In Equation 7.1, the frictional failure crite-
rion is expressed in terms of the stresses in a plane. This is more useful for the analysis of essen-
tially plane problems such as long retaining walls or foundations than the analogous expression 
q = Mp′ in terms of the triaxial stress parameters, which was developed in Chapter 5.

From the geometry of the Mohr circle of stress for an element of soil obeying the 
τ ′σ = ′ϕ( / ) tanmax  failure criterion that is on the verge of failure, the maximum possible ratio 
of principal effective stresses is

 ′σ
′σ

=
+ ′ϕ
− ′ϕ

1 sin
1 sin

1

3

 (7.2)

For a given vertical effective stress ′σv, the smallest horizontal effective stress ′σh that must 
be applied to the soil to prevent the Mohr circle from crossing the failure envelope occurs 

sʹ = 1
2 (σ1 + σ3)

t = 1
2 (σ1 – σ3)

sin φ = t/s
φʹ

φʹ

σ3́ σ1́
σʹ

τ
τ = σ ́tan φʹ

(σ1́ + σ3́) sin φʹ = (σ1́ – σ3́)

t

sʹ

or =σ1́
σ3́

1 + sin φʹ
1 – sin φʹ

ʹ ʹ

ʹ ʹ

ʹ ʹ

Figure 7.2  Frictional failure criterion in terms of effective stresses, showing the Mohr circle of effective 
stress for an element of soil at failure.
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when ′σv is the major principal effective stress ′σ1, and ′σh is the minor principal effective 
stress ′σ3. Substituting ′σ = ′σ1 v  and ′σ = ′σ3 h into Equation 7.2,

 K
1 sin
1 sin

h

v min

a
′σ
′σ







= − ′ϕ
+ ′ϕ







=  (7.3)

This state is described as the active condition, and Ka is termed as the active earth pres-
sure coefficient. Active failure will eventually occur if the vertical effective stress is increased 
while the horizontal effective stress remains approximately constant or increases less quickly 
(e.g. in the soil beneath a foundation); or where the horizontal stress is reduced while the 
vertical stress remains constant (e.g. behind a retaining wall) (Figure 7.3).

For a given vertical effective stress ′σv, the maximum horizontal effective stress ′σ h that can 
be applied before the Mohr circle touches the failure envelope occurs when ′σv is the minor 
principal effective stress ′σ3, and ′σh is the major principal effective stress ′σ1. Substituting 

′σ = ′σ1 h and ′σ = ′σ3 v into Equation 7.2,

 ′σ
′σ







= + ′ϕ
− ′ϕ







=1 sin
1 sin

h

v max

pK  (7.4)

This state is described as the passive condition, and Kp is the passive earth pressure coeffi-
cient. Passive failure will eventually occur if the horizontal effective stress is increased while 
the vertical effective stress remains constant or is reduced (e.g. in the soil to one side of a 
foundation, or in front of a retaining wall); or where the vertical stress is reduced while the 
horizontal stress remains approximately constant (Figure 7.4).

p

σv́ increasing quickly
σh́ increasing slowly

(a) (b)

σv́ constant
σh́ reducing

Figure 7.3  Zones of soil tending towards active failure ′σ > ′σ( )v h . (a) Below a foundation; (b) behind a 
retaining wall.
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Figure 7.4  Zones of soil tending towards passive failure ′σ > ′σ( )h v . (a) On either side of a foundation; (b) in 
front of a retaining wall; (c) below the floor of an excavation.
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7.3.2 critϕϕ′  or peakϕϕ′ ?

In using the failure criterion τ ′σ = ′ϕ( / ) tanmax  in a design application, the value of φ′ could be 
taken to represent either the peak or the critical state strength. The main reasons for using 
the critical state strength are that

• For a given soil, the value of ′ϕcrit is a constant. ′ϕpeak, on the other hand, depends on 
the potential for dilation, which in turn depends on the soil density and the average 
effective stress at failure.

• ′ϕpeak can only be maintained while the soil continues to dilate. With continued defor-
mation, ′ϕpeak falls and the soil strain softens. The upper and lower bound theorems of 
plasticity, which require that the material exhibits a plastic plateau (Figure 7.1), do not 
apply to a strain-softening material. A strain-softening material is prone to progressive 
failure, as described in Section 2.9.

• For embedded retaining walls, the use of ′ϕcrit in calculations seems to give a rea-
sonable indication of the onset of large deformations (Bolton and Powrie, 1987; 
Powrie, 1996); and therefore to govern a geotechnical limit state involving failure 
or excessive deformation of the ground. [This is particularly relevant to a design 
following the current UK code of practice EC7 (BSI 2004), which requires that ‘the 
characteristic value of a geotechnical parameter shall be … a cautious estimate of the 
value affecting the occurrence of the limit state’. In this context, the term ‘cautious’ 
relates to the statistical likelihood of the strength being less than the chosen value; 
see e.g. Gaba et al. (2003), their Section 5.9. It is completely independent of the soil 
mechanics distinctions that must be made between peak, critical state and residual 
strengths.]

The advantage of using the peak strength is that it gives an indication of the stiffness of 
the soil. At a given effective stress, denser soils tend to have both higher stiffness and higher 
peak strength. Thus if critical state strengths are used in the collapse calculation, a higher 
partial factor on strength would be needed for a retaining wall in a loose soil than for the 
same wall in a dense soil, if the deformations under working conditions were to be the same. 
However, retaining walls are not usually as deformation-critical as foundations; and in any 
case-specific consideration should be given to avoiding excessive displacements (and a poten-
tial serviceability limit state) in circumstances that require it.

If a peak strength based on laboratory test data is to be used in design, it must be mea-
sured at the maximum effective stress experienced by the soil in the field. The laboratory test 
specimen must have a representative void ratio and/or stress history. With deep retaining 
walls, it may be that the effective stresses below the base are high enough to suppress dila-
tion completely, so that the peak strength is the critical state strength.

7.3.3 τmax = τu failure criterion

Clay soils can be brought to failure quickly, without any change in the specific volume 
(Sections 2.10 and 5.6). The critical state model expressed in terms of the plane stress 
parameters s′ and t (Figure 7.5a) shows that the effective stresses at failure are then deter-
mined by the initial specific volume. The radius tf and the centre s′f  of the Mohr circle 
of effective stress at failure are independent of the total stress path, with the difference 
between the applied average total stress at failure sf and the average effective stress at fail-
ure s′f being made up by the pore water pressure uf (which may be either positive or nega-
tive), s s u′ = −f f f (Figure 7.5b).
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The radii of the Mohr circles of total and effective stress are the same, because water 
cannot take shear. Since the excess pore water pressures generated during undrained load-
ing can be difficult to quantify, it is convenient to use an alternative failure criterion for the 
short-term (undrained) failure of clay soils, based on total stresses. On the plane of maxi-
mum shear stress,

 τ = τmax u
 (7.5)

where τu (often denoted cu and sometimes su) is the undrained shear strength (Figure 7.5c). 
As discussed in Section 5.6, τu is not a soil property in the way that ′ϕcrit is. τu is a function 
of the specific volume, and hence the stress state and stress history of the soil.

For a soil obeying the ‘maximum shear stress’ failure criterion τ = τmax u, the maximum 
possible difference between the vertical and horizontal total stresses may be obtained by con-
sidering Mohr circles of total stress at failure (Figure 7.6). For a given vertical total stress σv, 
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Figure 7.5  Development of failure criterion in terms of total stresses for the undrained loading or  unloading 
of clay soils. (a) Lines joining critical states in terms of (v, ln s′) and (t, s′); (b) Mohr circles of 
effective and total stress at undrained failure for two different loading paths; (c) ‘Maximum shear 
stress’ failure criterion.
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the horizontal total stress σh cannot be less than (σv − 2τu), nor can it exceed (σv + 2τu). These 
values are the active and passive limits to the total lateral stress:

 σ = σ − τ2 (active)h, min v u  (7.6a)

 σ = σ − τ2 (passive)h, max v u  (7.6b)

The undrained shear strength failure criterion and Equation (7.6) apply only in the case of 
clay soils brought rapidly to undrained failure, at constant specific volume.

7.4 RETAINING WALLS

Figures 7.7 to 7.11 show some of the more common types of earth retaining structure, 
grouped according to the way in which they function:

• Gravity or mass retaining walls (Figure 7.7) rely primarily on their weight to prevent 
failure by sliding or overturning (toppling).

• L- and T-cantilever walls (Figure 7.8) resist the lateral pressure of the retained soil by 
bending. Sliding and overturning are prevented by the weight of the retained soil act-
ing on a platform behind the wall, which projects beneath the backfill (Figure 7.8a and 
b); or by means of a piled foundation to the base (Figure 7.8c).

• Embedded retaining walls, which may be made of steel sheet piles, reinforced con-
crete piles or reinforced concrete diaphragm wall panels (Figure 7.9), are supported by 
the lateral pressure of the soil in front of the wall, and possibly by props or tie-back 
anchors at one or more levels.

• The facing panels of reinforced soil retaining walls (Figure 7.10) are held in place 
by the weight of the backfill acting on ties at various depths: these structures are 
described in more detail in Section 7.9.

Figure 7.11 indicates two ways in which bending moments in L-, T- and embedded can-
tilever walls (all of which, as structures, carry the loads imposed by the retained soil in 
bending) can be reduced. The downward load on a relieving platform behind an L- or 
T-cantilever (Figure 7.11a), and the upward load on a platform in front of an embedded wall 
(Figure 7.11b), will both apply bending moments in the opposite sense to those caused by 
the lateral stress of the retained soil. The relieving platform behind the L- or T-cantilever 
has the additional advantage of reducing the lateral stresses acting on the wall stem below it.

τu

τ Total stress failure
envelope τmax = τu

τu

2τu 2τu

σ

σh, min = σv – 2τu σh, max = σv + 2τuσv

Figure 7.6  Mohr circles of total stress showing active and passive states for a soil obeying the ‘maximum 
shear stress’ failure criterion τmax = τu.
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A further distinction may be made between walls where the difference in level is created 
by removing soil from in front (sometimes called excavated walls), and walls where the 
difference in level is created by building up the retained height of the soil behind (back-
filled walls). Gravity walls, L- and T-cantilever walls, and reinforced soil walls are usually 
backfilled, while embedded walls are installed from the original ground surface and the 
difference in level is formed by excavating soil from in front. Variants or combinations of 
retaining wall type may be used for particular applications, depending on the individual 
circumstances on site.

Cribs (timber boxes) filled
with coarse earth and often
planted with vegetation

(c)

Gabions
(wire cages filled with
cobbles and boulders)

(b)

Original
ground level

3.6 m

6 m

Probable
line of
failure

Brown
London Clay

Weep hole
Ballast

Drain
(a)

Figure 7.7  Mass retaining walls (masonry or concrete, or built up from gabions or timber cribs). (a) Kensal 
Green, London; built in 1913, failed 1942. (Reproduced from Institution of Structural Engineers, 
1951.) (b) Gabions; (c) timber cribs.
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The type of retaining structure selected for a given design application will depend on a 
number of criteria. For example, L-cantilevers with piled foundations are often used for 
bridge abutments so that the relative vertical movement between the bridge deck and the 
retained soil (which would create an unacceptable step) is effectively eliminated. Embedded 
walls made from steel sheet piles are often used to form cofferdams to retain the sides of 
excavations in granular soils.

For deep excavations in clay soils in built-up areas, where a stiff wall must be constructed 
with the minimum of disturbance to the surrounding ground, in situ concrete walls made 
from bored piles or diaphragm wall panels are often used, although heavy-section steel sheet 
piles are available for this purpose. Embedded walls are frequently unpropped over retained 
heights of less than 4–5 m, but for deep excavations props or anchors are often installed at 
one or more levels. Temporary props may be used to support the wall at a high level, until 
the excavation has reached a sufficient depth for lower level permanent props to be installed.

For backfilled walls where relative movement between the wall and the retained soil is 
unimportant, reinforced soil walls may be the most economical form of construction.

Whatever form of construction is adopted, it should be checked against the possibility of 
at least three classes of collapse:

• Failure of the wall as a single rigid block (a monolith), for example sliding or overturn-
ing of a gravity wall or a cantilever L- or T-wall; and rotational or vertical instability 
of an embedded cantilever wall.

(c)
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Figure 7.8  L- or T-cantilever walls in reinforced concrete. (a) L-cantilever; (b) T-cantilever; (c) T-cantilever 
with piled foundation: Section through the M3 motorway near Junction 1. (Redrawn from Mawditt, 
J.M., Proceedings of the Institution of Civil Engineers Pt 1, 86, 980–986, 1989. With permission.)
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Figure 7.9  Embedded wall. May act as a free cantilever, or be propped or anchored at one or more levels. 
Constructed in situ using reinforced concrete (contiguous or secant piles or diaphragm wall 
panels/barrettes), or from steel sheet piles. (a) Typical application of in situ and sheet pile embed-
ded retaining walls: construction of Canary Wharf station, Jubilee Line extension, east London 
(London Underground Limited); (b) contiguous piles (plan view); (c) secant piles (plan view); 
(d) diaphragm wall, excavated and cast in panels or barrettes.
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• Local structural failure, for example yield of props or anchors, or the failure in bend-
ing of reinforced concrete and sheet pile walls. For reinforced soil walls, the internal 
stability of the wall (i.e. the resistance of the reinforcement strips to breakage or pull-
out) must be assessed: this is discussed in Section 7.9.

• Inclusion in a landslide (Figure 7.12), which could be triggered by the changes in stress 
(loading and/or unloading) resulting from the construction of the retaining wall. This 
is particularly important for walls in sloping ground.

Further information on earth retaining systems, including many practical examples, may 
be found in Puller (1996).
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Figure 7.10 Reinforced soil wall.
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Figure 7.11  Walls with moment-reduction platforms. (a) Backfilled wall with relieving platform (Tsagareli, 
1967); (b) in situ embedded wall with stabilizing base or stub prop.
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7.5 CALCULATION OF LIMITING LATERAL EARTH PRESSURES

By identifying zones of soil in either the active or the passive condition, a stress field around 
a retaining wall, which satisfies the requirements of equilibrium and does not violate the 
failure criterion for the soil (and therefore represents a lower bound or inherently safe solu-
tion), can be developed. This approach was originally proposed by Rankine (1857), and is 
illustrated in Example 7.1.

Example 7.1 is relatively straightforward, because we need only to consider the soil behind 
the retaining wall, which at failure will be in the active state (Figure 7.3b). There are, how-
ever, two different soil types—a sand and a clay—to which different short-term failure 
criteria are applied.

Example 7.1: lateral stresses on a well-propped retaining wall

 a. Figure 7.13 shows a cross-section through an excavation supported by a braced 
retaining wall. What is the minimum thrust (in kN/m) due to the retained ground 
that the retaining wall must, in the short term, be able to resist? (Assume that the 
retaining wall is frictionless, and that the pore water pressures in the sandy soil are 
hydrostatic. Take the unit weight of water as 10 kN/m3.) Is your answer reliable for 
use in design?

Soft clay

Rock surface 15 0 15
Scale

Sand

Sand

Profile
after slip

Profile after
dredging

Centre of rotation

30 m

Figure 7.12  Failure of the quay wall at Gothenburg harbour. (Redrawn with permission from Skempton, 
1946; after Fellenius, 1916; Petterson, 1916.)
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Groundwater level

Sandy soil: γs = 20 kN/m3, φ′ = 30˚

Sandy clay: γs = 18 kN/m3, τu = 25 kPa5 m

5 m

Figure 7.13 Cross-section through braced excavation, Example 7.1.
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 b. If the middle prop were accidentally removed, what would be the loads (in kN/m) 
in the remaining props?

 c. Why would it in reality be necessary to embed the wall to some depth below forma-
tion level?

SOluTIOn

 a. Assume active conditions behind the retaining wall. This will give the minimum 
lateral thrust that must be resisted if collapse is to be avoided. It is a short-term 
calculation, so that the undrained shear strength failure criterion (τmax = τu) may 
be used in the soft clay. In the overlying sand, the effective stresses and pore water 
pressures must be considered separately. Remember, however, that it is the total 
stress (σ′h + u) that acts on the wall.

  In the overlying sand, σ′h = Kaσ′v where Ka = (1 − sin φ′crit)/(1 + sin φ′crit) with 30crit′ϕ = °, 
that is Ka = 1/3. σ′v = σv − u, where at depth z, σv = γsz and u = γwz, assuming that the pore 
water pressures are hydrostatic. σh is calculated as σh = σ′h + u.

  In the clay, σh is calculated directly as σh = σv − 2τu, where σv = 5 × γs + (z − 5) × γc 
at a depth z (z > 5 m) below original ground level (γs is the unit weight of the sandy 
soil, and γc is the unit weight of the clay).

  Table 7.1 gives the values of σv, u, σ′v, σ′h and σh at key depths, at which there is 
a change in soil type or groundwater conditions. Between these key depths, the 
lateral stress varies linearly.

  The active stress in the clay is greater than or equal to the hydrostatic water pres-
sure at all depths. If this were not the case, a flooded tension crack could develop, 
and the thrust on the wall would have to be calculated on that basis.

  The distribution of total lateral stress is shown in Figure 7.14.
  The total lateral thrust is given by:

 [66.67 kPa/2] × 5 m + [(50 kPa + 140 kPa)/2] × 5 m = 641.7 kN/m

  Although the answer has been obtained from a stress field in which the effect of 
soil/wall friction has been ignored, it may be too low for use in design because:

 (i). It is the minimum thrust that must be applied to the soil to prevent failure: a 
larger thrust might be necessary to prevent excessive movements (i.e. we have 
not applied any partial factors to the calculation).

Table 7.1 Calculated active stresses, Example 7.1

Depth, z (m)
σv (due to 

overburden) (kPa) U (kPa) σ′v( = σv−u) (kPa) σ′h (kPa) σh (kPa)

Sandy soil 0 0 0 0 0 0
Sandy soil 5 100 50 50 16.67 66.67
Clay 5 100 (50) – – 50
Clay 10 190 (100) – – 140

50

14010 m

5 m

0 m 0

66.67

D
ep

th

σh (kPa)

Figure 7.14 Calculated distribution of lateral total stress, Example 7.1.
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 (ii). The period of time for which the undrained shear strength of the clay can be 
relied upon is uncertain. The clay has ready access to water from the overly-
ing more permeable sandy soil, and may well begin to swell and soften quite 
quickly. This would increase the lateral stresses to the above those calculated 
assuming that the clay retains its original undrained shear strength.

 b. With three props the system is statically indeterminate, because there are three 
unknowns (the prop loads) and only two equations of equilibrium that can be used. 
Thus, the prop loads cannot be calculated.

  If the middle prop were removed, there would be only two unknowns. The  system 
would be statically determinate, and the prop loads can be calculated.

  Taking moments about the position of the top prop to calculate the load PL in the 
lower prop:
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  From the condition of horizontal equilibrium, the sum of the prop loads must be 
equal to the total lateral thrust per metre run,

 P P

P

+ =
⇒ = − =
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641.7 430.6 kN/m 211.1 kN/m.
U L
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  As a check, PU can be calculated by taking moments about the position of the lower 
prop:
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 c. It would in practice be necessary to embed the wall to some depth below formation 
level to prevent the soil below the toe of the wall from undergoing a bearing failure, 
owing  to the weight of the soil outside the excavation, as described in Section 7.6.

7.6  DEVELOPMENT OF SIMPLE STRESS FIELD SOLUTIONS FOR 
A PROPPED EMBEDDED CANTILEVER RETAINING WALL

In Example 7.1, the retaining wall was supported entirely by the props, and did not pen-
etrate below the excavation floor or formation level. A more common form of structure 
is the embedded wall, as shown in Figure 7.9. Embedded walls are often designed to act 
as propped cantilevers. Although supported at or near the top by stiff props, the passive 

U
FM

|4
84

94
2|

14
35

61
47

30



352 Soil mechanics: concepts and applications

© 2010 Taylor & Francis Group, LLC

resistance of the soil in front of the wall below excavation level is required to maintain the 
wall in moment equilibrium. The passive resistance must be sufficient to prevent the wall 
from failing by rotation about the prop, and one of the key questions facing the designer is 
the depth of wall embedment needed to achieve this.

In Examples 7.2 and 7.3, the concept of active and passive zones is used to calculate the 
depth of embedment required just to prevent a propped cantilever retaining wall from fail-
ing by rotation about the prop. These are not design calculations, because the calculated 
depth of embedment is such that the wall is on the verge of failure, or at the collapse limit 
state. In other words, we are not yet applying any partial factors to distance the construc-
tion from collapse.

7.6.1 (τ/σ′)max = tan φ′ failure criterion

Figure 7.15 shows a stiff, frictionless embedded wall propped at the crest, retaining a height 
h of dry sandy soil. A conservative estimate (i.e. one which errs on the safe side) of the depth 
of embedment d required just to prevent collapse can be obtained by means of a stress field 
solution, based on zones of soil at active and passive failure.

The first step is to imagine that the soil is divided into four zones by vertical frictionless 
planes on either side of the wall, and a horizontal frictionless plane at the level of the toe of 
the wall, as indicated in Figure 7.15. These frictionless planes are called stress  discontinuities 
because they divide regions in which the stress states (as represented by Mohr circles of 
stress) are different: in other words, the stresses are discontinuous across them.

A stiff wall will tend to fail by rotation about the prop. In the soil behind the wall (zone 1), 
the horizontal stress is reduced as the wall moves away, while in front of the wall (zone 2) 
the horizontal stress is increased as the wall moves into the soil. At failure, the soil in zone 1 
will be in the active state and the soil in zone 2 in the passive state. The resulting stress field 
can be used to calculate the depth of embedment and prop load just to maintain equilibrium 
of the wall, as shown in Example 7.2.

Example 7.2:  Calculating the depth of embedment at collapse 
of a propped cantilever retaining wall

By dividing the soil into active and passive zones, calculate the depth of embedment d 
required just to maintain the stability of the propped embedded cantilever retaining wall 
shown in Figure 7.15. The soil has φ′crit = 30° and γ = 20 kN/m3, and the retained height 
h = 5 m. Calculate the corresponding prop load F.

Rigid
prop Wall rotation

Zone 1

Stiff, frictionless
retaining wall

Frictionless
discontinuities

Zone 3Zone 4

h

d Zone 2

Figure 7.15 Stiff, frictionless embedded cantilever retaining wall propped at the crest.
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SOluTIOn

The vertical total stress at any point on either side of the wall is given by the unit 
weight of the soil γ multiplied by the depth below the appropriate soil surface. The 
vertical effective stress is obtained by subtracting the pore water pressure, which in 
this case is zero because the soil is dry. The horizontal effective stresses at a depth 
z below either soil surface are Kaσ′v in the active zone (behind the wall) and Kpσ′v in 
the passive zone (in front of the wall). Ka and Kp are the active and passive earth 
pressure coefficients, which for a frictionless wall are as defined in Equations 7.3 
and 7.4.

It follows that, in this case, both the vertical and the horizontal effective stresses 
increase linearly with depth on each side of the wall, as shown in Figure 7.16.

Behind the wall, the vertical effective stress at the bottom of the wall (usually called the 
toe) is γ × (h + d) = 20 kN/m3 × (5 + d) m, and the horizontal effective stress σ′h is Ka (the 
active earth pressure coefficient) times this, σ′h = Kaγ (h + d).

In front of the wall, the vertical effective stress at the toe is γ × d = 20 kN/m3 × d m 
(in kPa), and the horizontal effective stress σ′h is Kp (the passive earth pressure coefficient) 
times this, σ′h = Kpγ d.

The horizontal stresses acting on each side of the wall are shown, together with sche-
matic Mohr circles of stress, in Figure 7.16.

The depth of embedment d required just to prevent collapse is calculated by taking 
moments about the prop. The prop load then follows from the condition of horizontal 
force equilibrium.

In soil mechanics, stress distributions are often either triangular (increasing linearly 
with depth), or rectangular (uniform with depth). For the purpose of taking moments, 
the resultant force acts through the centre of pressure, which is at the geometric centroid 
of the shape defining the stress distribution. In the case of a triangular stress distribution 
of overall depth D, the centre of pressure is at a depth of 2D/3 from the tip of the triangle 
(Figure 7.17a). In the case of a rectangular stress distribution of overall depth D, the cen-
tre of pressure is at mid-depth, D/2 (Figure 7.17b).

For the stress distribution shown in Figure 7.16, and considering a 1 m length of the 
wall perpendicular to the plane of the paper, taking moments about the prop gives:

 K h d
h d

K d h
d[ ]γ + ×
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(that is, [Force due to active lateral stresses] × [Lever arm about prop] = [Force due to 
passive lateral stresses] × [Lever arm about prop])

h

F

d
critφ′ 

σ′
τ

φ′crit

σ′h

σ′h = Kaγ (h + d)
σ′h = Kpγd

σ′v

σ′
τ

Passive

ActiveDry
sand
φ′crit = 30˚
γ= 20 kN/m3

σ′h
σ′v

Figure 7.16  Lateral stress distributions for calculating the limiting depth of embedment for a stiff, propped 
embedded wall, Example 7.2.
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For φ′crit = 30° and soil/wall friction δ = 0, Ka = 0.333 and Kp = 3. With h = 5 m and 
γ = 20 kN/m3,
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(with d in metres). Solution by trial and error gives

 d ≈ 2 m

For horizontal force equilibrium,

 [0.5.Ka · γ · (h + d)2] = [0.5Kp ⋅ γ ⋅ d2] + F

(that is,

 [Force due to active lateral stresses] = [Force due to passive lateral stresses] + Prop load)

 For the values of Ka, Kp, γ and h given, and d = 2 m as calculated,

 

[0.5 0.333 20 kN/m 7 m ] [0.5 3 20 kN/m 2 m ] kN/m

163.33 kN/m 120 kN/m kN/m
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3 2 2 3 2 2 F
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× × × = × × × +
⇒ = +
⇒ =

The prop load is expressed in kN per metre length of wall, kN/m. Similarly, bending 
moments calculated from a plane strain analysis would be in kNm per metre length of 
wall, kNm/m.

A full lower-bound plasticity solution requires us to show that the failure condition is 
not violated in the soil in zones 3 and 4 (below the toe of the wall). For equilibrium across 
the vertical frictionless stress discontinuity separating these two zones, the horizontal 
stress at any level must be the same in each zone, even though the vertical stress at any 
level is different in each zone.

At a general depth z below the retained soil surface, the vertical effective stress in 
zone 3 (behind the wall) is γz. The horizontal stress is σh, which must be greater than or 
equal to the active limit, Kaγz.

At the same level in zone 4, the vertical effective stress is γ(z − h). The horizontal stress 
σh must be less than or equal to the passive limit, Kpγ (z − h). Thus, equilibrium can be 
achieved without violating the failure condition provided that

 K zh a′σ ≥ γ

Lateral stress
σb

Lateral stress
σb

(a) (b)

D
2

Resultant
force
0.5 ×σb × D

Resultant
force
=σb × D

D
22D

3

D
3

Figure 7.17 Taking moments: (a) triangular pressure distribution; (b) rectangular pressure distribution.
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and

 K z h( )h p′σ ≤ γ −

This means that

 K z h K z( )p aγ − ≥ γ

or

 .p

p a

z
K

K K
h≥

−












With the current values of Ka = 1/3 and Kp = 3 (corresponding to 30′ϕ = °), this requires 
z(=h + d) ≥ 1.125h, or d ≥ 0.125h. If h = 5 m, d ≥ 0.625 m.

If this condition is not fulfilled, the soil in zones 3 and 4 will be unable to support the 
weight of the soil behind the wall in zone 1, and will undergo what is termed as a bearing (or 
bearing capacity) failure. This will result in large settlements behind the wall, while the soil 
in front of the wall will be pushed upward into the excavation. In Example 7.2, the depth of 
embedment required to prevent a bearing failure (d = 0.625 m) is less than that required to 
prevent rotational failure, d = 2 m as already calculated. With multipropped walls, or walls 
with low level props, this is not always the case, and it is in general important to investigate 
the possibility of a bearing as well as a rotational failure.

It is worth setting out the shortcomings of the calculation we have just done.

• Pore water pressures have been assumed to be zero. In practice, it will usually be neces-
sary to estimate pore water pressures, possibly corresponding to steady state seepage 
from a high water table behind the wall to a lower level in front. This can be done by 
means of a flownet (Chapter 3). A common alternative approach, which is useful in 
analysis, is to assume that the overall drop in excess heat is distributed linearly around 
the wall (Section 9.2.1). However, this method can lead to significant errors, particularly 
in assessing the potential for base instability due to fluidization (Section 3.11), when the 
embedded wall forms one side of a narrow cofferdam (Williams and Waite, 1993).

• Wall friction has been overlooked. This is inherently conservative, but will in real-
ity lead to uneconomical designs. Stress field solutions can be obtained which 
allow for the rotation in the direction of the principal stresses between the soil sur-
face and the wall that must occur when wall friction is present (see Chapter 10). 

It is important to remember that the failure of the soil depends upon the effective stress state. 
The earth pressure coefficients Ka and Kp are therefore applied to the vertical effective stresses. 
The horizontal effective stress at a given depth z is equal to Ka or Kp times the vertical effective 
stress. In the absence of wall friction, the vertical effective stress is equal to γz − u, where u is 
the local pore water pressure.

The wall, however, experiences the effect of both the pore water pressures and the effective 
stresses, and is unable to distinguish between them. The equilibrium of the wall is therefore 
maintained by the total horizontal stress distributions – that is, the effective stresses and the 
pore water pressures acting together.
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Alternatively, tables are available (e.g. Caquot and Kerisel (1948), Kerisel and Absi (1990), 
Section 9.3.1 and Chapter 10) which give modified numerical values of the coefficients 
Ka and Kp for given angles of soil friction φ′ and soil/wall friction δ, taking account of a 
non-horizontal backfill and a retaining wall with a sloping or battered back if desired. 
Such tables can be very useful, but care should be taken to interpret them correctly. In 
Caquot and Kerisel (1948), for example, the tabulated earth pressure coefficients are σ′h/
(γz − u), not σ′h/σ′v (σv is not equal to γz if the wall is frictional): and values of the resultant 
thrust (inclined at the angle of wall friction δ) and its horizontal component are tabulated 
separately. Some of the published earth pressure coefficients result from true lower bound 
calculations, but others may be based on some degree of empiricism. A further problem 
is that considering soil/wall friction makes it more difficult to investigate rigorously 
the stress state in the soil below the wall (zones 3 and 4 in Figure 7.15). As a result, the 
answers obtained can no longer be classed as true lower bounds: they are known as 
limit equilibrium solutions. The possibility of a structural failure of the prop or off the 
wall itself has not been considered.

• Bending of the wall has been neglected, the assumed mode of wall deformation being 
rigid body rotation about the prop.

• The calculation tells us nothing about the deformations needed to reach the collapse 
condition. It would certainly not be acceptable to design a wall to be on the verge of 
collapse, and a design calculation must be modified to prevent this. In Eurocode 7 (BSI 
2004), the current UK code of practice for earth retaining structures, remoteness from 
collapse is achieved by:
a. Reducing the soil strength used to calculate the active and passive pressures 

(Section 7.3.2).
b. Increasing the retained height by 10% (or in the case of a propped wall, by 10% of 

the depth below the lowest support level), up to a maximum of 0.5 m, to represent 
a possible over-excavation.

  The former UK design standard, BS8002 (BSI 2001), also required an additional 
uniform surcharge of 10 kPa to be taken to act on the retained soil surface, but this 
does not feature in EC7. Design calculations for embedded retaining walls are dis-
cussed in Chapter 9.

The stress field solution could easily be modified to take account of the effect of a uniform 
surcharge on one or both of the free soil surfaces. The vertical stress in the underlying soil is 
simply increased by the amount of the surcharge. The effect of a line load or a strip load is 
more easily taken into account by analysing potential mechanisms of failure, although one 
possible approach using the stress field type of calculation is given in Section 9.9.

Although the calculation would provide a lower bound to a set of collapse loads, it gives 
an upper limit to the depth of embedment required just to prevent collapse. For this reason, 
it is probably less ambiguous to refer to a rigorous stress-field calculation as a ‘safe’ solution, 
rather than a ‘lower bound’.

7.6.2 τmax = τu failure criterion

A similar stress field may be constructed from the limiting active and passive pressures for a 
soil obeying the ‘maximum shear stress’ failure criterion τmax = τu. This would be applicable 
to intact clays, of low bulk permeability, in the short term. It was shown in Figure 7.6 that, 
for a given vertical total stress σv, the horizontal total stress σh must lie between (σv − 2τu) 
and (σv + 2τu) (Equation 7.6). These values give the active and passive limits to the total 
lateral stress.
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In the absence of a surface surcharge, the active stress σv − 2τu is equal to γz − 2τu, which 
is in theory negative for depths z less than 2τu/γ. For design purposes, the interface between 
the ground and the wall would not normally be relied upon to transmit tensile stresses. This 
‘no-tension’ criterion requires that σh ≥ 0. A dry tension crack, in which there is no contact 
between the wall and the soil so that σh = 0, could develop to a depth of 2τu/γ below the soil 
surface on the active side of the wall.

If there is any possibility that the tension crack might flood, the lateral stress in the tension 
crack should be taken as γwz, where γw is the unit weight of water. Sources of water to flood 
the crack might include a burst pipe or a more permeable stratum of soil, such as a layer of 
gravel. A flooded tension cracks can remain open to the depth at which σh = γwz = γ z − 2τu 
or z = 2τu/(γ − γw). If τu is constant and γ = 2γw, this is twice the depth to which a dry tension 
crack will remain open. If τu increases with depth (which is more common in practice than 
τu = constant), the difference between the dry and the flooded tension crack depths will be 
even bigger. Criteria for deciding whether and how to allow for the possibility of flooded 
tension cracks in design are discussed by Gaba et al. (2003).

Example 7.3:  Calculating the depth of embedment at undrained collapse 
of a propped cantilever retaining wall in a clay

Assuming that tension cracks remain dry, calculate the depth of embedment required just 
to prevent rotational failure of a frictionless, rigid, embedded cantilever wall, propped at 
the top, in a uniform clay soil of undrained shear strength τu = 40 kPa and unit weight 
γ = 20 kN/m3. The retained height is 5 m, and there is a uniform surface surcharge of 
q = 40 kPa on the retained side.

SOluTIOn

Behind the wall, the vertical total stress σv is given by the unit weight of the soil γ multi-
plied by the depth z below the soil surface, plus the surface surcharge q, σv = q + γ z. The 
active horizontal total stress σh is (σv − 2τu) = (q + γz −2τu) (Equation 7.6a), subject to 
the requirement that σh ≥ 0. A dry tension crack can remain open to the depth at which

 q z 2 0h uσ = + γ − τ =

The dry tension crack depth is therefore (2τu − q)/γ.
At the toe of the wall, σh = [q + γ (h + d) − 2τu] = [40 + 20 × (5 + d) − 2 × 40] kPa. 

The total horizontal stress behind the wall increases linearly from zero at a depth of 
(2τu − q)/γ to (q + γ z − 2τu) at the toe.

At a depth z below the soil surface in front of the wall, the vertical total stress σv is 
given by γz (kPa), and σh = σv + 2τu (Equation 7.6b). At the toe, σv = γ × d = 20 kN/m3 × 
d m (kPa), and σh = (20d + 2τu) kPa.

The horizontal total stresses acting on each side of the wall are shown, together with 
schematic Mohr circles of stress, in Figure 7.18.

Taking moments about the prop to find the depth of embedment d:
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(To take moments, the passive stress block must be split into TWO components, one rect-
angular (of magnitude 2τud and lever arm about the prop h + d/2), and one triangular (of 
magnitude 0.5γ d2 and lever arm h + 2d/3).)

For τu = 40 kPa, q = 40 kPa, h = 5 m and γ = 20 kN/m3, the maximum depth of a dry 
tension crack (2τu − q)/γ = 2 m and
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Solution by trial and error gives

 2.8 md =

For horizontal equilibrium,
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Figure 7.18  Total stress distributions for calculating the limiting depth of embedment of a stiff, propped 
embedded wall in a clay soil: short-term (undrained) conditions.
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For τu = 40 kPa, q = 40 kPa, h = 5 m, γ = 20 kN/m3, (2τu − q)/γ = 2 m and d = 2.8 m 
as just calculated,
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For equilibrium across the frictionless stress discontinuity separating zones 3 and 4 
in Figure 7.15, the horizontal total stress at any level must be the same in each zone, 
although the corresponding vertical total stresses are different.

At a general depth z below the retained soil surface, the vertical total stress in zone 3 
(behind the wall) is q + γz. The horizontal total stress is σh, which must be greater than or 
equal to the active limit, σh ≥ q + γz − 2τu. At the same level in zone 4, the vertical total 
stress is γ (z − h). The horizontal total stress σh must be less than or equal to the passive 
limit in zone 4, σh ≤ γ (z − h) + 2τu. Thus, equilibrium can be achieved without violating 
the failure criterion provided that

 σ ≥ + γ − 2τq zh u

and

 z h(h uσ ≤ γ − ) + 2τ

This means that

 γ − + τ ≥ + γ − τz h q z( ) 2 2u u

or

 ≤ τ −
γ

h
q4 u

 (7.7)

With the current values of τu = 40 kPa, q = 40 kPa and γ = 20 kN/m3, this requires that 
h ≤ 6 m, irrespective of the depth of embedment d. Owing to the neglect of wall friction 
and the true strength of the soil along the vertical discontinuity separating zones 3 and 
4, this solution will err on the conservative side. Nonetheless, it illustrates an important 
point: in a soft clay, the stability of the base of an excavation may well be more critical 
than the rotational stability of the sidewalls.

For the general case of an embedded wall propped at the crest, of retained height h and 
depth of embedment d in a uniform clay of undrained shear strength τu with unit weight γ in 
the range 1.6γw to 2.0γw (i.e. γ/γw = 1.6 to 2.0, where γw is the unit weight of water) but no 
surface surcharge, Figure 7.19 shows how the embedment ratio d/h at collapse varies with 
the normalized undrained shear strength τu/γh, and how the normalized prop load F/0.5γh2 
varies with the embedment ratio d/h at collapse.

Figure 7.20 shows the corresponding relationship between the normalized undrained 
shear strength τu/γh and the embedment ratio d/h at collapse for unpropped embedded can-
tilever walls. Figures 7.19 and 7.20 should err on the conservative side, as they are true 
lower-bound calculations in which soil/wall friction has been ignored. The increase in the 
depth of embedment required when tension cracks are flooded rather than dry is clear, par-
ticularly for unpropped walls. In both cases, the limiting retained height in the absence of 
a surface surcharge (i.e. q = 0 in Equation 7.7), is hmax = 4τu/γ (τu/γh ≥ 0.25 on the graph).
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In Example 7.3, adhesion between the wall and the soil τw (which is analogous to soil/
wall friction δ in the analysis based on the frictional failure criterion (τ/σ)max = tan φ′crit) 
has been neglected. As in Section 7.6.1, the possibility of a structural failure of the prop 
or the wall itself has not been considered. A uniform surcharge has been easily taken into 
account, because it simply increases the vertical total stresses below it. The effect of a line 
load, however, is again more easily dealt with in an analysis based on potential mechanisms 
of collapse (Section 7.7). The extension of the stress field method to include the effects of 
wall adhesion, a non-horizontal backfill and a sloping or battered wall back is addressed in 
Chapter 10.

A further important point concerning an analysis based on undrained shear strengths is 
that it is only valid for the period during which the specific volume and hence the water con-
tent of the clay does not change. In problems involving the excavation of clay, for example 
an in situ retaining wall, the long-term effective stresses are generally smaller than those 
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in the undisturbed ground. This means that the clay will tend to take in water, swell and 
soften, leading to a reduction in undrained shear strength with time. The rate of softening 
in practice will depend on

• The bulk permeability of the soil (which may be increased by the effect of fissures that 
open up on unloading).

• The soil stiffness (which affects the consolidation coefficient cv, and might be quite 
high following a change in the direction of the stress path).

• The availability of water (potential sources include rainfall, surface run-off, natural 
water courses, leaking pipes, gravel aquifers and sand lenses, waste-water from hosing 
down construction plant etc.).

In assessing the applicability of the undrained shear strength model, all of these factors 
must be considered in relation to the time-scale over which the excavation is expected to 
remain open.

The depth L below the excavation to which the soil is affected by softening after an 
elapsed time t, is the same as the depth to which the isochrone of excess pore water pressure 
dissipation has penetrated. The parabolic isochrones approximation described in Sections 
4.5 and 4.7.3 may be used [Equation (4.15)] to estimate the depth L:

 = 12 vL c t  (7.8)

where cv is the consolidation coefficient. This assumes—perhaps pessimistically—that the 
excavated soil surface acts as a recharge boundary. In London Clay, the effects of softening 
are sometimes allowed for by applying a factor of 0.7–0.8 to the value of τu, and assuming 
that τu falls linearly to zero over a disturbed zone immediately below the excavated soil 
surface. Gaba et al. (2003) suggest that the depth of this disturbed zone could be taken as 
√12cvt (Equation 7.8) where groundwater recharge can occur at excavation level but not 
within the soil, or 0.5 m in the absence of any recharge. They also note that the 20%–30% 
reduction in the value of τu in London Clay often applied globally in the restraining soil in 
front of the wall might be too severe in some cases, and stress the importance of drawing on 
relevant previous experience wherever possible.

It is worth emphasizing again that so far we have investigated depths of embedment that 
are just sufficient for the wall to be on the verge of collapse. In design, it is necessary to fac-
tor the calculation so that the wall is remote from collapse. In the design of retaining walls 
according to EC7 (BSI 2004), the undrained shear strength is reduced by a partial factor of 
1.5, in addition to the requirement to increase the excavation depth.

7.7 SOIL/WALL FRICTION

The simple lower-bound solutions developed in Section 7.6 are too conservative for use in 
design, because the effects of soil/wall friction or adhesion were neglected. The generation 
of shear stresses at the soil/wall interface is usually of considerable benefit to wall stability.

A wall surface on which there is insignificant opportunity for dilation, but whose rough-
ness is comparable with the typical particle size of the soil (D50), might be expected to mobi-
lize a maximum possible soil/wall friction angle δmax equal to the critical state soil strength, 
δmax = φ′crit. If the wall is very rough, so that a rupture surface is forced to develop within the 
body of the soil rather than exactly along the interface, some or all of the dilatant strength 
of the soil might be mobilized, giving an upper limit of δmax = φ′peak. In laboratory tests 
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in modified shearboxes, this is only apparent when the soil is compacted against the wall 
material (Subba Rao et al., 1998). If the soil adjacent to the wall is loosened or disturbed 
by wall installation, the upper limit to the soil/wall friction angle is δmax = φ′crit. In general, 
the maximum soil/wall friction angle is likely to be given by δmax = φ′crit; a conclusion also 
reached by Rowe (1963) on the basis of a microstructural argument.

In addition to the soil strength and the interface friction properties, the mobilized soil/
wall friction δmob will depend on the direction and degree of wall movement relative to the 
ground (Rowe and Peaker, 1965). For sheet pile walls in the sand where the wall moves 
down relative to the soil, Rowe and Peaker (1965) found that the maximum soil/wall fric-
tion could be generated on the passive side. For sheet pile walls bearing onto rock, however, 
the magnitude of downward wall movement is likely to be small and δmob is much reduced.

All this is reflected in EC7 (BSI 2004), which suggests a design soil/wall interface strength 
δdes not exceeding the design (i.e. factored) critical state soil strength, φ′crit,design for concrete 
walls cast into the ground; and δdesign ≤ 2/3 φ′crit,design for precast concrete or steel sheet piles. 
BS8002 (BSI 2001) differs slightly in specifying tan δdesign ≤ 0.75 tan φ′design. EC7 also explic-
itly requires that the ability of a wall to support any vertical forces resulting from wall fric-
tion or adhesion is considered.

The same arguments regarding the roughness of the wall relative to the particle size of 
the soil would apply in principle to a total stress analysis. In design, the maximum soil/wall 
adhesion τw is often assumed to be a proportion α of the undrained shear strength of the 
soil τu (i.e. τw = α × τu). This is primarily to account for softening of the soil at the soil/wall 
interface during wall construction or installation, and to allow for the fact that the relative 
motion between the wall and the soil may be insufficient to mobilize the full shear strength 
of the interface. BS8002 (BSI 2001) allows a maximum value of α of 0.5 (τw = 0.75 × τu,design 
and τu,design = τu,actual/1.5), while Gaba et al. (2003) specify τw = 0.5 × τu,design and τu,design = 
τu,actual/1.5, equivalent to α = 0.33. EC7 (BSI 2004) offers no guidance on τw, other than to 
say that ‘for a steel sheet pile in clay under undrained conditions immediately after driving, 
no adhesive or frictional resistance should be assumed’ – in other words, α = 0 for driven 
steel sheet piles.

A fuller discussion of soil/wall friction is given by Powrie (1996)

7.8  MECHANISM-BASED KINEMATIC AND EQUILIBRIUM 
SOLUTIONS FOR GRAVITY RETAINING WALLS

In addition to the non-brittle type of stress–strain behaviour shown in Figure 7.1, a further 
requirement for the validity of the upper and lower bound theorems is that the material 
exhibits a property known as normality. This means that the direction of the plastic strain 
increment vector must be normal to the surface defining the failure criterion when the defor-
mation and stress axes are superimposed (Figure 7.21).

If the normality condition applies, a material obeying the maximum shear stress failure 
criterion τmax = τ will move parallel to a surface along which the failure condition is reached 
(Figure 7.21a). This implies that the soil is deforming at constant volume, which is consistent 
with the notion of a critical state, and suggests that clay soils brought rapidly to failure at 
constant volume/water content can in this respect reasonably be regarded as perfectly plastic 
materials.

For a soil obeying the maximum stress ratio failure criterion (τ/σ′)max = tan φ′, however, 
the normality condition requires relative movement at an angle of φ′ to the failure surface 
(Figure 7.21b): that is, the soil has an angle of dilation ψ=φ′. This means that kinematically 
admissible rupture surfaces (i.e. rupture surfaces that allow the necessary soil movement 
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physically to take place) may be straight lines and circles for τmax = τu materials, while for 
( / ) tanmaxτ ′σ = ′ϕ  materials they are straight lines and logarithmic spirals (Figure 7.22).

The assumption that the angle of dilation ψ is equal to the soil strength φ′ at failure is 
unrealistic. The whole point about the critical state is that the soil is deforming at constant 
volume, that is ψ = 0. However, the assumption ψ = φ′ = φ′crit can be shown to lead to true 
upper bounds, in the sense that loads causing collapse calculated on this basis will be greater 
than or equal to those for a real soil for which ψ = 0 at the critical state (e.g. Atkinson, 
1981). Although there is no proof, it is usually just assumed that lower bounds (which apply 
strictly to soils with ψ = φ′) are also lower bounds for soils with ψ = 0 at the critical state.

Strictly, there is no requirement that a plasticity solution based on an assumed mechanism 
of collapse should necessarily correspond to an equilibrium state. However, a non-equilib-
rium mechanism will have two degrees of freedom (i.e. it will be necessary to specify two 
independent parameters to define its position at any stage) and will therefore be unusable for 
the purpose of plasticity analysis (e.g. Baker and Heyman, 1969).
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The upper bound theorem as stated in Section 7.2 implies that the mechanism of col-
lapse should be analysed in terms of a work balance. This requires the construction of a 
velocity diagram or hodograph—a vector diagram showing the relative velocities of all 
the components of the mechanism in terms of some reference velocity v0, and providing a 
check on kinematic admissibility (i.e. that the deformations associated with the assumed 
mechanism can actually physically occur). Drescher and Detournay (1993) show that the 
same answer may be obtained using the condition of statical equilibrium, provided that 
the assumed mechanism really is a mechanism (i.e. that it is kinematically admissible). 
This is the approach that will be adopted in this section. Its main drawback is that there is 
no automatic check on kinematic admissibility (as there is with the work balance approach 
because of the requirement to construct a hodograph). Thus it is possible to apply the 
method to a system of sliding bocks that either does not constitute a mechanism at all or 
requires one or more of the blocks to distort (rather than remain rigid) as movement takes 
place. An example of a mechanism that includes a distorting or shearing zone is given in 
Section 10.9.

Solutions that are not true upper or lower bounds (e.g. stress fields that are not extended 
to infinity, or systems of blocks that do not represent kinematically admissible mechanisms) 
are known as limit equilibrium analyses. They are actually much more common in geotech-
nical engineering than true plasticity solutions.

The analysis of retaining walls based on an assumed mechanism of failure was originated 
by the military engineer Charles-Augustin de Coulomb (Coulomb, 1776; Heyman, 1972). 
As an extended worked example, we will consider the mass concrete retaining wall shown in 
Figure 7.23a. This is an idealization of a real wall on the St Pancras–Sheffield railway line at 
Cricklewood, North London (Figure 7.23b), which was described by Skempton (1946). It is 
also mentioned, together with a number of other interesting case histories, in Appendix E of 
the former British Code of Practice on retaining wall design, CP2 (Institution of Structural 
Engineers 1951).

In the worked examples that follow, we will determine the minimum (i.e. active) lateral 
thrust that the wall shown in Figure 7.23a must be able to withstand, and the maximum 
(i.e. passive) resistance available in front of the wall, both in the ‘as-built’ condition. We will 
then investigate the stability of the wall in terms of (i) sliding along the base and (ii) toppling 
or overturning about the front corner. If the wall is satisfactory in both these respects, we 
will go on to calculate the pressures exerted by the wall on the soil below it – the first step 
in checking that the bearing capacity of the foundation is adequate. Both the short-term 
condition (using the τmax = τu failure criterion in terms of total stresses) and the long-term 
condition (using the (τ/σ′max) = tan φ′crit failure criterion in terms of effective stresses) will 
be considered. Because we are analysing and possibly trying to explain the failure of a real 
wall, we will use the actual soil strengths in our calculations. If we were designing a new 
wall, we would reduce the soil strengths by an appropriate partial factor and make certain 
other adjustments to ensure that the wall we design remains stable and serviceable, in both 
the short and the long term. In the examples that follow, the differences between a design 
calculation and our analysis are highlighted as appropriate.

Example 7.4:  Determining the forces exerted by the soil on the 
Cricklewood retaining wall in the short term, using the 
undrained shear strength (τmax = τu) failure criterion

In general, retaining wall problems such as these are best tackled by scale drawing on a 
sheet of graph paper. The retained (‘active’) and excavated (‘passive’) sides of the wall will 
initially be investigated separately.
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1. BEhInD ThE WAll (ACTIvE SIDE)

The first step is to assume a failure mechanism. This will probably involve a block of soil 
such as OABC sliding down a slip plane such as AB, which is at a general angle θ (θ1 in 
Figure 7.23a) to the horizontal (Figures 7.23a and 7.24a).

The second step is to investigate the forces acting on the block of soil OABCO. These 
are (Figure 7.24a):

 a. The weight W of the block acting vertically downward. For a 1 m run perpendicu-
lar to the plane of the paper, the weight in kN/m is simply the area of the block (m2) 
multiplied by the unit weight of the soil (kN/m3).

 b. Any known external forces, for example surcharges or water in a flooded tension 
crack. In this case, there is no surcharge on the active side, and we will assume that 
the tension cracks (which may form to a depth 2τu/γ) remain dry.

 c. The shear force TR along the assumed rupture plane, which is known in both direc-
tion (parallel to the slip surface, acting so as to oppose motion) and magnitude (τu 
multiplied by the length of the slip line BA below the tension crack CB if τu is uniform, 
or the summed effect if—as in this case—τu is not uniform over the entire depth).

 d. The shear force TW between the wall and the sliding block, which is also known 
in both direction (parallel to the interface, acting so as to oppose motion) and 
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Figure 7.23  Mass retaining wall, Cricklewood: (a) idealization; (b) actual wall geometry. (Redrawn from 
Skempton, A.W., Principles and Applications of Soil Mechanics. Lecture II: EarthPressure and the 
Stability of Slopes, Institution of Civil Engineers, London, 1946. With permission.)
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magnitude (τw multiplied by the length of the interface ZA below the tension crack 
OZ if the wall adhesion τw is uniform, or the summed effect of wall adhesion along 
the length of the slip line if—as in this case—τw is not uniform).

 e. The normal component NR of the reaction at the assumed slip surface, which 
is known in direction (it acts at right-angles to the slip surface), but not in 
magnitude.

 f. The normal component NW of the reaction between the wall and the soil, which is 
again known in direction (right-angles to the wall) but not in magnitude.

Since this is a total stress analysis, pore water pressures are not considered separately.
The forces acting on the active-side sliding block of soil OABCO are shown in 

Figure 7.24a.
In design, it is usual to use values of wall adhesion τw that are less than the undrained 

shear strength of the soil τu. This is to allow for the possible effects of softening due to 
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and NW, Example 7.4(a)
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wall construction effects, and for the fact that full wall friction may not be mobilized—
for example, if there is insufficient relative movement between the soil and the wall. In 
this example (which is an after-the-event back-analysis rather than a design), we will 
assume that τw = 0.5 τu.

The main difference between the analysis we are about to do and a design analysis is 
that a design analysis would be carried out with the undrained shear strength of the soil 
reduced by a partial factor Fs: EC7 (BSI 2004) requires a value of Fs = 1.4 to be used 
on total stress soil strength parameters, that is τu,design = τu,actual/1.4. Also, as the wall is 
embedded to some extent, the retained height would be increased by 0.5 m for design 
purposes.

The third step is to construct the polygon of forces for the block of soil taking part in 
the assumed failure mechanism.

The force polygon is shown in Figure 7.24b: in practice it is best drawn to scale on graph 
paper. The lateral thrust on the retaining wall that corresponds to the assumed failure 
mechanism is given by the horizontal component of the total stress reaction between the 
sliding wedge and the wall, which is in this case normal to the back of the wall and – scaling 
from the force polygon – equal to 75 kN/m.

The answer we have just found will only be correct if the failure mechanism we have 
assumed is also correct. Furthermore, the error in our answer will be on the unsafe side, 
i.e. we have probably underestimated the minimum lateral thrust that the wall must be 
able to resist to maintain the stability of the retained soil. This is because it might be 
necessary for the wall to provide a larger lateral thrust to prevent failure from occurring 
by sliding on a different slip plane. We must therefore repeat the calculation for different 
failure planes, such as AD and AF (Figure 7.25), until the failure plane that gives the great-
est lateral thrust is identified. In practice, this is not too tedious if it is done methodically.

The triangles ABD, ADF etc., have the same base distance (BD = DF etc. = 2 m in this 
case) and height (AZ = 9.5 m), so that each extends the width of the sliding block of soil 
by the same amount. Each new volume ABCEDA, ADEGFA etc. therefore adds the same 
weight (465 kN/m in this case) to the original block. The shear force TW at the soil/wall 
interface will not change, and the shear force on the rupture is given by [30 kPa × (3.5 m/
sin θ)] + [60 kPa × (6 m/sin θ)] = [465/sin θ] kN/m. Force polygons for each new mecha-
nism can be constructed quickly by scaling angles from the space diagram (Figure 7.25). 
Force polygons may be superimposed as shown in Figure 7.26, so that the failure surface 
leading to the maximum lateral thrust is easily identifiable. The values of W, θ and TR 
used in the construction of the force polygons in Figure 7.26, and the resulting values of 
active thrust NW, are given in Table 7.2.

From Figure 7.26 and Table 7.2, it may be seen that the maximum active lateral thrust 
is approximately 335 kN/m, occurring when θ ≈ 38.4°.

For a vertical wall back and a horizontal retained soil surface with no surcharge, it 
can be shown relatively easily using trigonometry and calculus that the maximum lat-
eral thrust occurs when the assumed slip plane is at an angle α to the horizontal, where 
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Figure 7.25 Succession of trial blocks for retaining wall analysis (active side), Example 7.4(a).
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cot α = √[1 + (τw/τu)] (e.g. Whitlow, 1995). For more complex geometries, the mathemati-
cal approach becomes rather more difficult. In the present case with (τw/τu) = 0.5, this 
equation gives α = 39.2°, which is close enough to the value of 38.4° just calculated.

2. In FrOnT OF ThE WAll (PASSIvE SIDE)

The procedure must now be repeated for the soil pushed up in front of the retaining wall 
as the wall moves forwards. The forces acting on the assumed wedge (Figure 7.27a) are 
in principle the same as on the retained side, but there is now no need to consider tension 
cracks: as the wall is being pushed into the soil, there is no possibility that a tension crack 
will form. The shear forces on the rupture plane and at the soil/wall interface again act so 
as to resist the supposed soil movement, but while the block of soil behind the wall slides 
downward, the wedge of soil in front is pushed upward.

The shear force on the wall is the same for all wedges, and is given by TW = 30 kPa × 
(3/ cos 9.8°) m = 91 kN/m. The shear force on the rupture surface is TR = 60 kPa × 
(3/ sin θ) m. The ballast (a coarse granular aggregate, with a typical particle size of 40 mm 
or more, which is traditionally used as a bedding material for railway tracks) that sup-
ports the railway tracks has been modelled by a uniform surcharge of 10 kPa (i.e. a 0.5 m 
depth × a unit weight of 20 kN/m3). The forces acting on a typical wedge PQRP are 
shown in Figure 7.27a, and the succession of trial wedges PQRP, PQSP, etc. is shown in 
Figure 7.27b.

As the soil in front of the wall helps to prevent failure, it is necessary to find the mini-
mum lateral thrust that the passive wedge can be relied upon to provide.

Table 7.2  Numerical values used in and obtained from Figure 7.26 (active side of wall, short-term analysis), 
Example 7.4(a)

Block Weight, W (kN/m) tan θ θ (degrees) Tr = (465/sin θ) (kN/m)
NW (kN/m) from 

Figure 7.26

ABCOA 930 9.5/6 57.7 550 75
ADEOA 1395 9.5/9 46.5 641 295
AFGOA 1860 9.5/12 38.4 749 335
AHJOA 2325 9.5/15 32.3 869 295
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Figure 7.26  Graphical construction for ‘least optimistic’ sliding wedge failure mechanism: superposition of 
force polygons (active side), Example 7.4(a).
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The force polygons associated with each of the trial wedges are superimposed in 
Figure 7.28, from which the critical rupture plane can be identified. The values of W, θ, 
TR and NW used in and calculated from Figure 7.28 are given in Table 7.3.

From Figure 7.28 and Table 7.3, it may be seen that the minimum passive lateral thrust 
is approximately 480 kN/m, occurring when θ ≈ 45°.

Having determined the minimum lateral thrust that the wall must be able to withstand 
for stability (which is the largest of the values calculated, 335 kN/m), and the maximum 
lateral resistance that can be contributed by the passive wedge in front of the wall (which is 
the smallest of the values calculated, 480 kN/m), we need to investigate the stability of the 
wall in terms of failure by toppling (i.e. rotation about the point Q), and by sliding along 
the base AQ. It is also necessary to consider the possibility of a bearing capacity failure, 
which could result from the application of an excessive vertical stress to the soil beneath 
the base of the wall AQ.
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(passive side), Example 7.4(b).
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Figure 7.28  Graphical construction for ‘least optimistic’ sliding wedge failure mechanism: superposition of 
force polygons (passive side), Example 7.4(b).
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Example 7.5: Investigating the short-term stability of the Cricklewood wall

The first step in our investigation of the stability of the wall is to draw a free body 
 diagram showing all of the forces acting on the wall, to check that the wall is or can be 
in equilibrium (Figure 7.29). The normal stress distribution on the base of the wall is usu-
ally assumed to be of the form shown. The values of the stresses σA (at A) and σQ (at Q) 
are needed to assess the possibility of a bearing failure, but not to investigate sliding and 
toppling. The calculation of σA and σQ is described in (c) below.

a. SlIDInG

In our back-analysis, we can investigate the safety of the wall against sliding by compar-
ing the magnitude of the lateral active thrust with the total available resistance, which 
comes from the passive pressure of the soil in front of the wall and the shear force TB 
along the base.

The lateral active thrust is 335 kN/m. The maximum base shear force is given by

 (4.4m ) (4.4 m 30 kPa) 132 k /m.Bmax w= × τ = × =T N

Table 7.3  Numerical values used in and obtained from Figure 7.28 (passive side of wall, short-term 
analysis), example 7.4(b)

Block
Weight W 
(kN/m)

Force due to 
surcharge (kN/m) tan θ θ (degrees)

Tr = (180/sin θ) 
(kN/m)

NW (kN/m) from 
Figure 7.28

PQRP 165 55 3/5 31.0 350 525
PQSP 135 45 3/4 36.9 300 495
PQTP 105 35 3/3 45.0 255 480
PQUP 75 25 3/2 56.3 216 500

2.25 m

12.5 m

O M

A N

4.4 m

Assumed
distribution
of normal
stress on base

Q

NW, active
= 335 kN/m

TW, active
= 232 kN/m

W1

W2

TB

TW, passive = 91 kN/m

NW, passive
= 480 kN/m

9.8˚ (= tan–1 2.15/12.5)

σA
σQ

Figure 7.29  Free body diagram for the wall, showing calculated limiting soil thrusts and the assumed total 
normal stress distribution along the base (short term, undrained analysis), Example 7.5.
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The lateral component of the passive pressure forces TW,passive and NW,passive is calculated 
by resolving in the horizontal direction:

 ( cos9.8 ) ( sin9.8 ) 489 kN/mW,passive W,passive× ° + × ° =N T

This gives a maximum possible resisting force of 489 kN/m + 132 kN/m = 621 kN/m, 
which is considerably in excess of the destabilizing active thrust of 335 kN/m.

Although the wall should not fail by sliding along the base in the short term, it must 
be remembered that the calculated active and passive thrusts represent minimum and 
maximum values, respectively, which might only be mobilized following an unaccept-
able amount of wall movement. In a design analysis following EC7 (BSI 2004) one of 
the ways by which the wall is distanced from collapse is by calculating the active and 
passive thrusts using a reduced design shear strength of τu,design = τu,actual/F. This leads 
to an increase in the destabilizing active thrust and a decrease in the available passive 
resistance. The maximum available base resistance would perhaps be calculated using a 
base adhesion τw of between 0.5 × τu,design and 0.75 × τu,design, although the code is silent 
on this point.

By assembling the equations representing the forces shown in Figures 7.26 and 7.28 
(in terms of the slip plane angles θ on each side of the wall) into a spreadsheet, the opera-
tional partial factor on the soil strength or strength mobilization factor M needed to 
maintain the wall in horizontal equilibrium may be investigated. The mobilized shear 
strength τmob is then τu/M in each of the soil strata on both sides of the wall, and the 
mobilized soil/wall adhesion τw is 0.75 × τmob on both sides of the wall and on the base. 
Solution by trial and error gives a value of M in the case of the Cricklewood wall of 1.36, 
which is just less than the partial factor on undrained shear strength of 1.4 required by 
EC7. However, the values of undrained shear strength used in the calculation are prob-
ably on the conservative side for London Clay: Watson (1956) cites values of τu in the 
range 80–140 kPa in connection with another retaining wall failure at Uxbridge.

The water pressure regime used in a design calculation should also be the most onerous 
that could reasonably possibly occur in reality. In general, this might involve a flooded 
tension crack between the wall and the soil, in the absence (or following a blockage) of 
the weepholes. (Weepholes are drainage pipes set into the wall as shown in Figure 7.23(a) 
to prevent the build-up of pore water pressures in the retained soil.)

In this case, if the weepholes were to become blocked a flooded tension crack could 
remain open to a depth of approximately 2τu/(γ − γw) = 12 m, exerting a lateral thrust of 
0.5 × 10 kN/m3 × 12 m × 12 m = 720 kN/m, which is greater than the maximum avail-
able resistance of 621 kN/m.

b. TOPPlInG

If the wall were on the verge of toppling by rotation about Q, the vertical stresses on 
the base AQ would be zero. For the purpose of our back-analysis, the safety of the 
wall against toppling may be investigated by comparing the disturbing and resisting 
moments Q, ignoring the base bearing pressure.

To take moments about Q, it is necessary to know the point of action of the active and 
passive normal soil thrusts NW.

It is generally assumed that the component of thrust resulting from the weight of the 
soil is associated with a stress distribution that is triangular over the depth of soil in 
contact with the wall. The effect of a surcharge would be to raise the centre of pressure 
slightly.

In this case, the active thrust is due entirely to the weight of the soil, and may therefore 
be considered to act at a height AZ/3 above A.

In front of the wall, we will assume that the component of pressure resulting from 
the surcharge is uniformly distributed with depth. We will also assume that the compo-
nents of the normal force NW due to both the weight of soil and the surcharge load are 
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proportional to the vertical forces W and V causing them. The centre of pressure z* of the 
overall normal stress distribution can then be found by taking moments about the toe of 
the wall Q:

 

z W V
d

V
d

W

z
d

V W
V W

× + = 





+ 





⇒ =
+
+

* ( )
2 3

* ( /2) ( /3)

where d is the depth of soil in front of the wall. In the present case, V = 35 kPa and 
W = 105 kPa, giving z* = 0.375d.

For taking moments, the weight of the wall must be considered in two parts:
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2.25 m 12.5 m 24 kN/m 675 kN/m,
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The disturbing moment about Q is due to NW,active, and is equal to

 9.5 m
3

335 kN/m 3.167 m 1061 kNm/mW,active × = × =N

The resisting moment is due to the combined effects of the weight of the wall, NW,passive 
and TW,active, and is equal to

 

× + × + ×
°

×






+ ×

= × + ×
+ × + ×

=

( 3.275 m) ( 1.43 m)
3 m

cos9.8
0.375 ( 4.4 m)

(675 kN/m 3.275 m) (322.5 kN/m 1.43 m)

(480 kN/m 1.142 m) (232 kN/m 4.4 m)

4241 kNm/m

1 2 W,passive W,activeW W N T

The resisting moment of 4241 kNm/m is comfortably in excess of the disturbing 
moment of 1061 kNm/m, but the proviso concerning the wall movement required to 
mobilize the full soil strength of the soil still applies.

If a 12 m deep tension crack between the wall and the retained soil is assumed to fill 
with water, TW,active is substantially eliminated and the value of NW,active is increased to 
(0.5 × 12 m × 10 kN/m3 × 12 m) = 720 kN/m, acting at a height of 0.5 m + 12 m/3 = 
4.5 m above A. The effect of this is to increase the overturning moment to 720 kN/m × 
4.5 m = 3240 kNm/m. (The effect of the stresses between the wall and the 0.5 m of soil 
that remains in contact with the wall below the bottom of the tension crack is negligible 
in comparison.)

The ratio of the potential resisting moment to the disturbing moment could be (and 
traditionally has been) viewed as a measure of the remoteness of the wall from toppling 
failure. In this case it is equal to 4241/1061 = 4 if the tension crack remains dry, but is 
reduced to 4241/3240 = 1.31 if the tension crack floods.
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c. CAlCulATInG ThE BASE BEArInG PrESSurES

The third possible mode of failure involves the bearing failure of the soil below the base 
of the retaining wall if the imposed vertical stresses are too high. To investigate this, it is 
necessary to calculate the stresses σA and σQ (Figure 7.29).

The wall must be in equilibrium under the action of the forces on it, which are as 
indicated in Figure 7.29. If it is assumed that the active and passive thrusts calculated in 
Example 7.4 act simultaneously, then the value of the shearing force TB on the basis of the 
wall required for horizontal equilibrium is given by

 
( cos9.8 ) ( sin9.8 )

335 489 154 kN/m
B W,active W,passive W, passive= − × ° + × °

= − = −

T N N T

which is (a) in the opposite direction from that shown in Figure 7.29, and (b) slightly in 
excess of the limiting value of 0.5 × τu × 4.4 m = 132 kN/m with τu = 60 kPa. Thus, it is 
not possible for the calculated active and passive thrusts to be acting on the wall at the 
same time with the wall in a plausible equilibrium state.

There are two relatively straightforward adjustments we could make to ensure that the 
forces on the wall represent a potentially reasonable equilibrium state, enabling the base 
bearing pressures to be calculated. We could either

 i. Multiply the minimum possible (fully active) disturbing force NW,active, and divide 
the maximum available resisting forces NW,passive, TW,passive and TB by the same fac-
tor F to distance them all roughly equally from failure. The factor we would need 
to use in this case would be the square root of the ratio of the maximum possible 
resisting force to the minimum possible disturbing force, that is F = √1.854 = 
1.362. This is the same as the strength mobilization factor M = 1.36 (calculated 
earlier) which, when applied to the undrained shear strength in the soil on both 
sides of the wall, will maintain the wall in horizontal equilibrium with a soil/wall 
adhesion of 0.75 × τmob.

 ii. Assume that the lateral force behind the wall has fallen to the active limit, and 
divide the passive forces in front of the wall and the maximum available base slid-
ing resistance by a factor equal to the ratio of the maximum possible (fully pas-
sive) resisting force to the minimum possible (fully active) disturbing force, that is 
(489 + 132)/335 = 1.854. This might be considered reasonable on the basis that 
the wall movement required to reduce the lateral stresses to the active limit is very 
much smaller than that needed to increase them to the passive limit in many soils 
(this point is discussed in relation to embedded walls in overconsolidated clays in 
Section 9.6.2). This would leave the value of NW,active unaltered at 335 kN/m, while 
reducing NW,passive and TW,passive by the factor 1.854 to values of 259 and 49 kN/m 
respectively, so that (NW,passive × cos 9.8°) + (TW,passive × sin 9.8°) = 264 kN/m. The 
base friction force TB is 1/1.854 times the maximum possible value of 132 kN/m, 
giving TB = 71 kN/m acting from right to left as shown in Figure 7.29.

Taking the first option as being nearer in spirit to the modern approach of applying 
a partial factor to the soil strength, the values of σA and σQ that define the total stress 
distribution on the base of the wall are calculated as follows. For vertical equilibrium:

 

sin9.8 cos9.8

( 4.4m) 0.5( ) 4.4m

W,active
1 2 W,passive W,passive

Q A

T

F
W W N

F
T

F






+ + + × °



 − × °





= σ × + σ − σ × Α

(Note that the effect of the factor F is similar to that of a factor on soil strength Fs or 
a strength mobilization factor M, which reduces the strength being used or mobilized 
to keep the wall in equilibrium to below the full strength of the soil or of the soil/wall 
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interface. A reduced mobilized soil strength will increase the value of NW,active but will 
result in the reduction of all of the other soil forces – that is, NW,passive and the soil/wall 
shear forces on both sides of the wall, TW,active and TW,passive. Thus the value of TW,active has 
been divided by F to account for the smaller adhesion mobilized on the soil/wall interface, 
τw = 0.5 × τu,mobilized = 0.5 × τu/F). Substituting in the numerical values for F, TW,active, W1, 
W2, NW,passive and TW,passive:

 

(232kN/m 1.362) 675kN/m 322.5 kN/m

(480 kN/m 0.17 1.362) (91 kN/m 0.985 1.362)

1161.9 kN/m 4.4 m 2.2 m ( )

0.5( ) 264.1 kPa
A Q A

A Q A

÷ + +
+ × ÷ − × ÷
= = × σ + × σ − σ

⇒ σ + σ − σ =
 

(7.9)

Taking moments about Q,
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+ × + ×
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− × ×
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4.4 m ( 3.275 m) ( 1.43m)

3 m
cos9.8

0.375
9.5 m

3

[( 4.4 m) 2.2 m] 0.5 ( ) 4.4 m
4.4 m

3

W,active
1 2

W,passive
W,active

Q
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W W

N

F
N F

A

Substituting in the numerical values,

 

÷ × + ×
+ × + ÷ ×
− × ×
= = σ × + σ − σ ×

⇒ σ + σ − σ =

(232 kN/m 1.362 4.4 m) (675 kN/m 3.275 m)

(322.5 kN/m 1.43 m) (480 kN/m 1.362 1.142 m)

(335 kN/m 1.362 3.167 m)

2378.7 kN ( 9.68 m ) [( ) 3.225 m ]

0.333 ( ) 245.7 kPa
A

2
Q A

2

A Q A  

(7.10)

Subtracting Equation 7.10 from Equation 7.9,

 0.167( kPa or ( kPaQ Qσ − σ ) = 18.37 , σ − σ ) = 110.2Α Α

From Equation 7.9,

 kPaσ = 209Α

Hence

 319 kPa.Qσ =

If the same calculation is carried out without reducing the active side soil/wall interface 
force TW,active by the factor F = 1.362, the calculated base bearing pressures are σA = 265 kPa 
and σQ = 291 kPa.

If we had taken the first option of assuming that the forces behind the wall had reached 
the active limit (with fully mobilized soil strengths τu and wall adhesion τw = 0.5 × τu), 
and reduced the forces in front of the wall NW,passive and TW,passive and the available base 
friction TB by the factor 1.854, the calculated base bearing pressures would have been 
σA = 350.4 kPa and σQ = 206.4 kPa.

The ability of the soil beneath the retaining wall to sustain the calculated base stresses 
without suffering a bearing capacity failure must be investigated using the methods 



Plasticity and limit equilibrium methods for earth pressures and retaining walls 375

© 2010 Taylor & Francis Group, LLC

described in Sections 8.3–8.5 and 10.5. Note that the wall exerts a moment (evidenced 
by the non-uniform distribution of vertical stress) and a horizontal force on the underly-
ing soil, as well as a vertical load. These must be taken into account in the calculation, as 
they may seriously reduce the bearing capacity of the wall foundation compared with the 
case of a purely vertical load. This point is addressed in Sections 8.5 and 10.5.

It is possible that σA will be found to be negative (i.e. tensile) as initially calculated. If 
this occurs, the calculation must be repeated using the base pressure distribution shown 
in Figure 7.30, in which the unknowns are σQ and the extent of wall/soil separation x. 
For example, the base pressure distribution shown in Figure 7.30 will be found to apply if 
TW,active is set to zero and NW,active to 720 kN/m (corresponding to a flooded tension crack).

The calculations we have just carried out have indicated that the wall is most vulner-
able to failure or excessive movement by sliding. The Cricklewood retaining wall shown 
in Figure 7.23b did not actually fail until 1943, 41 years after its construction in 1902. 
We will now investigate the long-term stability of the Cricklewood wall in terms of effec-
tive stresses, with pore water pressures corresponding to a steady-state seepage regime.

Example 7.6:  Determining the forces exerted by the soil on the 
Cricklewood retaining wall in the long term, using the 
effective stress (τ/σ′)max = tan φ′crit failure criterion

a. BEhInD ThE WAll (ACTIvE SIDE)

The procedure is essentially similar to that for the short-term analysis, but in this case 
the pore water pressures and effective stresses must be considered separately. As in 
Example 7.4, the first step is to assume a failure mechanism such as sliding along the 
plane AB, which is at a general angle θ (θ1 in Figure 7.31) to the horizontal. The second 
step is to investigate the forces acting on the wedge of soil OAB. These now are

 1. The weight W of the wedge of soil itself (including the weight of water in the pores 
where present), which acts vertically downward.

 2. The pore water reaction from the wall, UW. This must be calculated from the pore 
water pressure distribution. UW acts at right-angles to the wall, as water cannot 
take shear.

  At Cricklewood, weepholes were incorporated into the wall at a depth of about 
9 m below ground level, to draw down the ground-water level in the vicinity of the 
wall and reduce the pore water pressures against it. This is in general sound engi-
neering practice, provided that the weepholes are sufficiently close together to be 
effective and can be relied on to continue to function over the design life (perhaps 
120 years or more) of the wall. The reduction in pore water pressure in the retained 
soil will aid wall stability, but at the expense of increased effective stresses and pos-
sibly consolidation settlements. At a greenfield site, consolidation settlements due 
to groundwater lowering are unlikely to be of primary importance, but in an urban 
area the effect on nearby buildings must be considered.

  In the present case, we will use the pore water pressures measured at Cricklewood 
to define the piezometric surface (along which the gauge pore water pressure is 
zero), as shown in Figure 7.31. This indicates that the weep-holes were effective in 
reducing the water table at the wall to approximately 7 m below ground level. From 

A Q

X

σQ

Figure 7.30 Amended base bearing pressure distribution when there is a tendency to tension near A.
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Figure 7.31, assuming hydrostatic conditions below the water table, the pore water 
reaction from the wall is in this case equal to 0.5 × (5.5 m × 10 kN/m3) × 5.5 m = 
151.25 kN/m, taking the unit weight of water as 10 kN/m3.

  In general, long-term pore water pressures should be estimated by drawing 
a steady state seepage flownet; pore water pressures are unlikely to be hydro-
static below the water table, owing to the effects of seepage. In the case of the 
Cricklewood wall, however, the difference in hydraulic head between the two sides 
of the wall is not great, so the error introduced by assuming hydrostatic conditions 
behind the wall should be modest.

 3. The pore water reaction from the assumed rupture surface, UR. In general, this 
must also be calculated from the steady state flownet, but in the present case we 
will use the idealized water table shown in Figure 7.31.

  Again assuming that pore water pressures are approximately hydrostatic below 
the water table, the pore water pressure at any point on the assumed slip surface is 
given by γw × the depth of the slip surface below the piezometric surface at that point.

  For wedges such as OABO, where the rupture plane intersects the reduced water 
table before it has recovered to its original level, the pore water reaction from the 
assumed rupture surface is equal to 0.5 × 55 kPa × the length of the rupture surface 
below the water table, which can be scaled off the space diagram (Figure 7.31 or 
Figure 7.33a). For wedges where the rupture plane intersects the water table at a 
distance of more than 9 m from the wall, account must be taken of the bilinear pore 
water pressure distribution on the rupture surface (see Figure 7.33a and Table 7.4 
for details). The pore water reaction from the rupture surface acts at right-angles 
to the rupture surface.

 4. The effective stress reaction from the wall, R′W, which is unknown in magnitude 
but acts at an angle δ to the normal to the wall, where δ is the angle of soil/wall 
friction. We will here assume that the angle of soil/wall friction is equal to the criti-
cal state strength of the soil, φ′crit ( = 20° in this case). This is quite reasonable for a 
wall that is rough in comparison with the representative soil particle size (D50), pro-
vided there is sufficient relative movement at the interface, in the appropriate direc-
tion. However, codes of practice generally recommend the use of soil/wall friction 
angles less than φ′ in design. Soil/wall friction is discussed further in Sections 9.3.

 5. The effective stress reaction from the rupture surface, R′R, which is again unknown 
in magnitude but acts at an angle φ′( = 20° in this case) to the normal to the rupture 
surface.

For the long-term analysis, the forces acting on the active-side wedge of soil OABO are 
shown in Figure 7.32a. The polygon of forces is shown in Figure 7.32b.

O
B

7 m

9 m

1.5 m GWL

GWLSurcharge 10 kPa

RP

A Q

θ1 θ2

Figure 7.31  Idealized water table for Cricklewood retaining wall, showing trial wedges for long-term analy-
sis, Example 7.6(a).
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As before, the most critical failure surface is that associated with the largest lateral 
thrust, and it is necessary to repeat the calculation with different trial wedges until this 
has been found.

Figure 7.33a shows the array of sliding wedges investigated, and Figure 7.33b shows 
the corresponding force polygons. The values of W, θ, UR and R′W used in and obtained 
from each force polygon are detailed in Table 7.4.

From Figure 7.33 and Table 7.4, the maximum active lateral effective thrust is approxi-
mately 700 kN/m, occurring when θ ≈ 39.8°. For a vertical, frictionless wall retaining 
dry soil with a horizontal retained surface and no surcharge, the critical slip plane in 
active conditions is at an angle of 45° + φ′crit/2 (= 55° in this case) to the horizontal: e.g. 
Bolton (1991).

b. In FrOnT OF ThE WAll (PASSIvE SIDE)

As with the undrained analysis, the procedure must be repeated for the soil in front of 
the retaining wall.

Area OAB =     × 6 m × 12.5 m =37.5 m2

A
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W = 37.5 m2 × 20 kN/m3 = 750 kN/m

UR =     × 55 kPa × 9.2 m = 253 kN/m
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R′WR′R
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δ (= φ′crit)
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θ

Figure 7.32  (a) Forces acting on the sliding block of soil OABO on the retained side of the wall and (b) polygon 
of forces, long-term analysis (assumed failure surface is the plane AB), Example 7.6(a). φ′crit = 20°.
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Figure 7.33  (a) Array of potential sliding wedges and (b) corresponding force polygons, retained side of wall, 
long-term analysis, Example 7.6(a).

Table 7.4  Numerical values used in and obtained from Figure 7.33b (active side of wall, long-term analysis), 
Example 7.6(a)

Block
Weight, W 
(kN/m) tan θ θ (degrees)

90° – θ 
(degrees) UR (kN/m)

R′w (kN/m) 
from Figure 

7.33b

ABOA 750 12.5/6 64.4 25.6 253 550
ACOA 1125 12.5/9 54.2 35.8 330 640
ADOA 1500 12.5/12 46.2 43.8 479a 670
AEOA 1875 12.5/15 39.8 50.2 625b 700
AFOA 2250 12.5/18 34.8 55.2 758c 690

a Calculated as [13 m × 0.5 × (55 kPa + 16 kPa)] + [2.2 m × 0.5 × 16 kPa].
b Calculated as [11.8 m × 0.5 × (55 kPa + 35 kPa)] + [5.4 m × 0.5 × 35 kPa].
c Calculated as [11 m × 0.5 × (55 kPa + 47 kPa)] + [8.4 m × 0.5 × 47 kPa] 
in all three cases to allow for the bilinear pore water pressure distribution on the rupture surface.
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The shear forces on the rupture plane and at the soil/wall interface again act so as to 
resist the supposed soil movement, giving effective stress reactions R′W and R′R acting in 
the directions shown in Figure 7.34a. The ballast that supports the railway tracks has 
again been modelled by a uniform surcharge of 10 kPa.

The pore water pressure reaction from the wall UW is 0.5 × γw × 3 m × (3 m/cos 9.8°) = 
45.7 kN/m, taking γw = 10 kN/m3. The pore water reaction from the rupture UR is 
30 kPa × 0.5 × the length of the rupture, which is 3 m/sin θ where θ is the angle of 
inclination of the rupture to the horizontal (Figure 7.34a). Figure 7.34b shows that the 
horizontal components of UR and UW cancel each other out exactly: this must be the case 
if the pore water pressures are hydrostatic below a level water table. The forces acting 
on a typical wedge PQRP are shown in Figure 7.34a, and the corresponding polygon of 
forces is shown in Figure 7.34b.

It is again necessary to find the minimum lateral thrust that the passive wedge can be 
relied upon to provide.

The sequence of trial wedges and the force polygons associated with each wedge are 
shown in Figure 7.35, from which the critical rupture plane can be identified. The values 
of W, θ, UR and RW used in and calculated from Figure 7.35 are given in Table 7.5.

From Figure 7.35b and Table 7.5, the minimum passive thrust is approximately 
210 kN/m, occurring when θ ≈ 23°. (For a vertical, frictionless wall in dry soil with a 
level surface and no surcharge, the critical passive-side slip plane would be at an angle of 
45 − φ′crit/2 (= 35° in this case) to the horizontal: see e.g. Bolton (1991).)
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R Ŕ
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Figure 7.34  (a) Forces acting on a typical passive-side wedge and (b) polygon of forces, long-term analysis 
(φ′crit = 20°), Example 7.6(b).
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Example 7.7: Investigating the long-term stability of the Cricklewood wall

We can assess the stability of the wall in terms of failure by toppling and sliding, with 
reference to the free body diagram shown in Figure 7.36.

It is immediately obvious that the wall is much less stable in the long term, because the 
active (destabilizing) thrust calculated is larger than in the short-term analysis, while the 
passive (resisting) thrust is much smaller.
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Figure 7.35  Graphical construction for ‘least optimistic’ sliding wedge failure mechanism: (a)  succession 
of trial wedges and (b) superposition of force polygons (passive side, long-term analysis), 
Example 7.6(b).

Table 7.5  Numerical values used in and obtained from Figure 7.35(b) (passive side of wall, long-term 
analysis), Example 7.6(b)

Block
Weight, W 
(kN/m)

Force due to 
surcharge (kN/m) tan θ

θ 
(degrees)

90° – θ 
(degrees)

UR = 45/sin 
θ (kN/m)

R′W (kN/m) from 
Figure 7.35b

PQRP 105 35 3/3 45 45 64 305
PQSP 165 55 3/5 31 59 87 215
PQTP 225 75 3/7 23 67 114 210
PQUP 285 95 3/9 19 71 135 230
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a. SlIDInG

The safety of the wall against sliding can again be investigated by comparing the magni-
tude of the lateral active thrust with the total available resistance, which occurs from the 
passive pressure of the soil in front of the wall and the shear force TB along the base. In 
an effective stress analysis, the maximum base shear force TBmax depends on the effective 
normal reaction on the base of the wall, N′B. N′B may be calculated from the condition 
of vertical equilibrium,

 
[ sin ] sin( 9.8 )

[ sin9.8 ] 0.5 ( ) 4.4m ,

W,active 1 2 W,passive

W,passive B A Q

R W W R

U N u u

′ × δ + + − ′ × δ − ° 
+ × ° = ′ + × + × 

where 0.5 × (uA + uQ) × 4.4 m is the pore water reaction on the base UB, calculated 
according to the idealized pore water pressure distribution shown in Figure 7.37.

Substituting the numerical values already calculated (with δ = φ′crit = 20°),

 
× + + − ×

+ × = = ′ × +
(700 kN/m 0.342) 675 kN/m 322.5 kN/m (210 kN/m 0.177)

(46 kN/m 0.17) 1207.6 kN/m + [2.2 m (55 30)]BN

or N′B = 1021 kN/m. Thus the maximum base shear force TBmax = N′B × tan δ = 
371.6 kN/m (with δ = 20°).

The total horizontal thrust exerted by the retained soil and groundwater is

 ′ × δ = × ° =+ ( cos ) 151kN/m+ (700kN/m cos20 ) 809kN/m.W,active W,activeU R

The lateral component of the passive side forces UW,passive and R′W,passive is

 
× ° + ′ × δ − °

= × ° + × ° =

( cos 9.8 ) ( cos( 9.8 )

(46kN/m cos9.8 ) (210kN/m cos10.2 ) 252kN/m
W,passive W,passiveU R

The available resisting force of (252 + 372) kN/m = 624 kN/m is now significantly 
less than the destabilizing active thrust of 809 kN/m, with a ratio of 627/809 = 0.77. 
This implies that even the maximum possible resistance is insufficient to prevent sliding: 
equilibrium of the wall cannot be maintained under the action of the active and passive 
forces calculated.

UW, passive
= 46 kN/m

R'W, passive
= 210 kN/m

R'W, active
= 700 kN/m

UW, active
= 151 kN/m

Q

W

A
TB

N'BUB

δ

δ

Figure 7.36 Free body diagram for the wall (long term analysis), Example 7.7.
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b. TOPPlInG

The safety of the wall against toppling may again be investigated by comparing the resist-
ing and disturbing moments about Q, ignoring the effective stress reaction on the base, 
N′B, which would be zero if the wall were on the verge of overturning. The pore water 
pressure reaction might also reasonably be ignored in a clay soil, but should probably 
be included in the calculation in the case of a sand: it is a question of whether the water 
would be able to fill the opening gap between the base of the wall and the underlying soil 
quickly enough to maintain the equilibrium pore water pressures.

The destabilizing moment about Q (ignoring UB) is

 
×



 + ′ × δ ×





= ×



 + × ° ×





=

5.5m
3

cos
12.5m

3

151 kN/m
5.5m

3
700 kN/m cos 20

12.5 m
3

3018 kNm/m

W,active W,activeU R

(12.5 m/3 is a slight underestimate of the lever arm, as the lateral effective stress distribu-
tion will be approximately bilinear, with the rate of increase of lateral stress with depth 
greater above the groundwater level than below it.)

The resisting moment about Q is

 

× + × + ′ × δ ×

+ ×
°





 + ′ × δ × ×

°






= × + × + ×
+ + × + × ×
=

( 3.275 m) ( 1.43 m) ( sin 4.4 m)

3 m
3 cos 9.8

cos 0.375
3 m

cos 9.8

(675 kN/m 3.275 m) (322.5 kN/m 1.43 m) (700 kN/m 0.342

4.4 m) (46 kN/m 1.015 m) (146 kN/m 0.94 1.142 m)

3928 kNm/m

1 2 W,active

W, passive W,passive

W W R

U R

assuming that the resultant passive thrust again acts at a height of 0.375 × d above the 
toe of the wall, where d = 3 m is the depth of soil in front of the wall. The calculation 
shows that the available resisting moment is greater than the overturning moment, so that 
the wall would not be expected to fail by toppling. However, this is immaterial because 
the horizontal equilibrium calculation indicates that the wall should have been expected 
to fail by sliding some time after construction, probably before steady state pore water 
pressures had been established.

It is in principle also necessary to check that the vertical effective stresses along the 
base AQ will not be large enough to cause a bearing capacity failure. In the present case, 
however, there is no point, because the wall cannot be in equilibrium under the combined 
action of the limiting soil forces calculated.

In a true upper bound solution, the mechanism analysed must be kinematically  admissible—
that is, able physically to occur. In addition to the requirements of normality, other restraints 

uQ = 30 kPa Pore water
pressures and
normal effective
stresses on base

uA = 55 kPa

σ′Q
σ′A

Figure 7.37  Assumed distributions of pore water pressure and effective stress on the base of the retaining 
wall, long-term analysis, Example 7.7.
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may be imposed by the shape of the structure under consideration. Kinematic admissibility 
should be investigated by drawing a vector diagram showing the velocities of all of the com-
ponents of the mechanism, in terms of a reference velocity assigned to one of the components. 
Such a diagram is known as a velocity diagram or a hodograph.

In Examples 7.4 and 7.6, the assumed sliding blocks all remain undistorted. Sometimes 
to maintain kinematic admissibility, it is necessary for a block to distort by shearing as it 
moves. If this occurs, additional energy will be dissipated within the block, as illustrated in 
Section 10.9.

Figure 7.38 shows the most critical failure mechanisms identified for the Cricklewood 
retaining wall, in both short-term and the long-term conditions. To construct the hodo-
graph, it is necessary to imagine that the velocity of the sliding block behind the wall has a 
certain magnitude VA = v0, in terms of which the magnitudes of all other velocities can be 
calculated. Hodographs for the two mechanisms are presented in Figure 7.39.
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Figure 7.38 Critical failure mechanisms for Cricklewood wall. (a) Short- and (b) long-term analyses.
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Figure 7.39  Hodographs for Cricklewood retaining wall. (a) Short-term mechanism; (b) long-term  mechanism, 
assuming zero dilation at soil/wall interfaces.
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We could have analysed the assumed failure mechanisms by comparing the rate at which 
work is done by the external forces to the rate at which internal energy is dissipated during 
a small movement of the mechanism, with the relative rates of displacement determined 
from the hodographs (as in Section 10.9). Repetition of the hodograph calculation to find 
the most critical mechanism is, however, rather more tiresome than the superposition of 
force polygons used in the equilibrium approach (Figures 7.26, 7.28, 7.33b and 7.35b). Also, 
provided that the mechanism is true (i.e. that it is kinematically admissible), the answer 
obtained using the limit equilibrium approach should be the same.

Apart from its inherent optimism (i.e. the solutions tend to err on the unsafe side), the 
main shortcoming of the mechanism analysis is that it gives a resultant thrust rather than 
a  distribution of pressure on the retaining wall. This can be overcome to some extent by 
assuming that the calculated thrust results from a stress distribution that increases  linearly 
with depth down the wall. Indeed, having obtained the resultant thrust, it was necessary to 
make this assumption (together with a suitable modification for the effect of the surcharge 
in front of the wall) to proceed with the investigation of the safety of the wall against 
toppling.

The mechanism or equilibrium of blocks approach is particularly useful for dealing with 
features such as line loads and strip surcharges running parallel to the wall, which cannot 
easily be taken into consideration in a stress field analysis.

In both the short-term and the long-term cases, we have only investigated failure mecha-
nisms comprising plane slip surfaces. If in reality the shape of the slip surface is different, 
our solution will err on the unsafe side. This is generally more likely to be significant on 
the passive side (i.e. in front) of a retaining wall than on the active side (i.e. behind); passive 
side slip surfaces are generally curved, as indicated in Figure 7.23 for the Cricklewood wall.

7.9 REINFORCED SOIL WALLS

Soil reinforcement is a technique in which a reinforcing material (usually either metal or 
plastic strips) is placed within the soil to improve its durability and hardness. A reinforced 
soil retaining wall is made up of a number of vertical or near-vertical facing panels, con-
nected to strips of reinforcement embedded within the soil backfill (Figure 7.10). The verti-
cal stress acting on the reinforcement (resulting from the weight of soil above it) allows the 
reinforcement to develop a tensile load, which resists the lateral pressure exerted by the soil 
on the facing panel. The reinforced soil technique can provide an economical method of 
 constructing a backfilled retaining wall, provided that slightly larger than usual wall move-
ments can be tolerated.

It was noted in Section 7.4 that the designer of any type of retaining wall must investigate 
a number of potential modes of collapse, including monolithic rotation or sliding, trigger-
ing a landslide, and the failure of the materials used to construct the wall. In the case of a 
reinforced soil wall, the last of these includes the possibility of the failure of the reinforce-
ment, either in tension or by pull-out (i.e. by slippage between the reinforcement and the 
surrounding soil).

The internal stability of a reinforced soil wall may be investigated by means of the stress 
analysis shown in Figure 7.40. This involves considering the limiting equilibrium of a block 
of soil ABCD, which extends to a distance L (where L is the length of the reinforcement 
strips) behind the face of the retaining wall.

The block of soil ABCD has a general depth z. It is assumed that the vertical boundar-
ies BC and AD are frictionless, and that the horizontal effective stress σ′h on BC increases 
linearly with depth z, with σ′h = Kaσ′v. In the absence of pore water pressures, σ′v = γz along 
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BC, where γ is the unit weight of the retained soil, Ka = (1 – sin φ′)/(1 + sin φ′) is the active 
earth pressure coefficient and φ′ is the angle of shearing resistance (effective angle of fric-
tion) of the soil.

As the lateral stress acting on the front face of the retaining wall AD is zero, the vertical 
effective stress distribution along the base of the block of soil (CD) must provide a moment 
to balance the effect of the triangular lateral stress distribution on BC. It is assumed that the 
vertical effective stress on CD decreases linearly from (γz + Δσ′v) at the back of the facing 
panels to (γz − Δσ′v) at the end of the reinforcement, with a mean value of γz. The value of 
Δσ′v may be obtained from the condition of moment equilibrium about M, the mid-point of 
CD. From Figure 7.40,

 K z z
z L L

× × γ × × 





= × × ∆σ ×





× ×





′[0.5 ] [ ]
3

2 0.5
2 2

2
3a v

that is,

 [Average lateral stressonBC] [DepthBC] [Lever arm] [moment due to ]v× × = ∆ ′σ

(Remember that the lateral stress on the front face of the retaining wall, AD, is zero.) Hence
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and the vertical effective stress adjacent to the wall at a depth z is given by
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Figure 7.40  Investigation of the possible failure of a reinforced soil retaining wall by pull-out or breakage of 
the reinforcement strips. (Redrawn with permission from Bolton and Pang, 1982.)
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so that the horizontal effective stress acting on the facing panel at depth z, at conditions of 
limiting equilibrium, is

 1h a v a
a

2

2
K K z

K z
L

′σ = ′σ = γ +





The horizontal load on a facing panel of width Δy and depth Δz at a depth z is therefore

 ( ) 1 ( ).a
a

2

2
K z

K z
L

y zγ × +





× ∆ × ∆  (7.13)

At the joint between the facing panel and the reinforcement strip, all of this load must 
be taken by tension in the reinforcement. The load P that will cause reinforcement strips of 
breadth b and thickness t to fail in tension is given by the cross sectional area of the strip, bt, 
multiplied by the yield stress σy of the material from which the strip is made. Tensile failure 
of the reinfocement would then be expected to occur when

 P bt K z y z
K z
L

( ) 1 .y a
a

2

2
⋅= σ = γ ∆ ∆ +













 (7.14)

The vertical effective stress, averaged over the entire length of a reinforcement strip at 
depth z, is γz. If b is the width of a reinforcement strip and δ is the angle of friction between 
a reinforcement strip and the soil, the horizontal load at the joint with the panel needed to 
pull the reinforcement strip out of the soil is

 tan [2 ]bL zδ × γ

and pull-out failure would be expected to occur when
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  (7.15)

On the basis of a series of centrifuge model tests on reinforced soil retaining walls in dry 
sand, Bolton and Pang (1982) found that:

• Pull-out failure was generally well-predicted using Equation 7.15. However, the use 
of the peak (rather than the critical state) soil strength in Equation 7.15 resulted in 
a tendency to err on the unsafe side. The use of the critical state soil strength would 
eliminate this, and is probably therefore to be recommended in design.

• Tensile failure was only well-predicted by Equation 7.14 for walls with narrow rein-
forced zones (i.e. with L/H ≤ 0.5, where H is the overall height of the wall), that were 
already close to pull-out failure. Otherwise, Equation 7.14 was somewhat conserva-
tive, even if peak strengths were used.

To investigate the apparent overconservatism of Equation 7.14, Bolton and Pang (1982) 
carried out further tests, in which the model wall was built on a rigid foundation layer 
rather than on sand. In these tests, the largest tensions were measured in the reinforce-
ment strips at a depth of 0.75H below the retained soil surface. Equation 7.13 led to the 
overestimation of the tension in the layer of reinforcement nearest to the base of the wall 
by a factor of about 1.4. This was probably a result of a reduction in vertical effective stress 
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adjacent to the  facing panels, owing to shear between the facing panels and the soil. The 
frictional  resistance of the foundation may also have contributed to the reduction in load in 
the  reinforcement strips nearest the base of the wall.

The reduction in vertical effective stress at the base of the wall is one of the reasons why 
Equation 7.14 is overconservative in its prediction of tensile failure. However, the vertical 
stress reduction would probably not occur if the facing panel were smooth or flexible, or if 
the foundation layer were comparatively compressible, so that significant friction between 
the facing panels and the retained soil was not developed.

The second reason for the over-conservatism of Equation 7.14 is that, as the most heavily 
loaded reinforcement strips reach their ultimate tensile strength, additional load may be 
carried by the less heavily loaded reinforcement strips in a process known as plastic stress 
redistribution. This will delay the complete collapse of the wall. However, if the reinforce-
ment is effectively brittle (e.g. due to local corrosion or a weak joint with the facing panel), 
or close to pull-out failure (Equation 7.15), plastic stress redistribution will not be able to 
occur.

A further point is that reinforced soil walls remote from pull-out failure may be subjected 
to higher lateral earth pressures under working conditions, perhaps with σ′h = Kncσ′v acting 
along BC (where Knc = 1 − sin φ′), rather than σ′h = Kaσ′v.

In summary, the collapse of reinforced soil retaining walls in granular materials can be 
conservatively predicted using the stress analysis shown in Figure 7.40. The degree of con-
servatism varies from case to case, and cannot be relied on as it is due to factors such as the 
exact details of wall construction, which may be difficult to quantify or control.

Furthermore, a degree of conservatism in design may be desirable with this type of 
 construction. In the centrifuge model tests carried out by Bolton and Pang (1982), there was 
no warning of incipient failure, for example from an increase in the rate of wall movement, 
as the collapse was approached. Empirical modifications to the stress analysis of Figure 
7.40, involving for example the assumption of a ‘mechanism’ of failure, have been proposed 
by several authors. In many cases, these may be inappropriate, and should therefore be used 
(if at all) with caution.

Lee et al. (1994) highlight the importance of the quality of construction on the perfor-
mance of a reinforced soil wall in practice, with reference to a number of wall failures in 
eastern Tennessee, USA.

7.10 COMPACTION STRESSES BEHIND BACKFILLED WALLS

The soil behind a backfilled retaining wall is often placed and compacted in layers. This 
can result in higher-than-active lateral stresses in the retained soil – a possibility that should 
be considered in the design. Assuming that compaction is properly implemented out with 
appropriate compaction plant and in layers that are sufficiently thin, the magnitudes of the 
‘locked-in’ lateral stresses will depend on several factors. These include the flexibility of 
the structural system, and whether the backfill is free-draining or behaves as a clay with 
respect to the generation of excess pore water pressures during placement and compaction. 
In this section, the simpler theories that have been proposed for the estimation of compac-
tion stresses for design purposes are discussed.

7.10.1 Free-draining soils

The following analysis is for free-draining soils, in which excess pore water pressures are 
not generated during compaction, and follows Broms (1971) and Ingold (1979).
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Consider an element of soil of unit weight γ at a depth z below the surface. The pore water 
pressure is zero, so that the initial vertical effective stress is γz. It is assumed that sufficient 
lateral wall movement has occured to mobilize the full strength of the soil, so that the soil is 
in the active condition with h a vK′σ = ′σ .

As a result of the application during compaction of a line load of intensity q (kN/m) at the 
soil surface vertically above it, the soil element experiences an increase in vertical  effective 
stress of v∆ ′σ . It is assumed that during loading, the lateral movement of the wall is  sufficient 
to maintain the soil in the active condition; and that on unloading (when the line load q 
is removed), the horizontal stress remains constant until the passive failure  condition is 
reached (Figure 7.41a). For a given initial stress state γz, there will be a value of v∆ ′σ  just large 
enough to result in passive failure on unloading (Figure 7.41(b)). Since the required value of 

v∆ ′σ  increases with γz, it follows that a cycle of vertical effective stress of given magnitude 
will lead to the development of passive conditions only in the soil above a certain critical 
depth, zc.

It may be seen from Figure 7.41b that

 ( )p c a c vK z K zγ = γ + ∆ ′σ

so that the relationship between the increase in vertical effective stress and the critical 
depth is

 ( 1)v c p
2z K∆ ′σ = γ −  (7.16)

This reduces to

 z K∆ ′σ = γv c p
2  (7.17)

if γzc is small in relation to v∆ ′σ .
According to an elastic analysis (Holl, 1941), the increase in vertical effective stress 

(assuming zero pore water pressure, u = 0) at a depth z below an infinitely long line load of 
intensity q kN/m is
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π
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Assuming this to be applicable here, Equations 7.17 and 7.18 may be combined to give the 
critical depth as a function of the surface line load q:
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Figure 7.41  (a) Assumed stress path for a soil element at a depth z on loading and unloading during compaction, 
and (b) relationship between ∆ ′σv and zc.
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Noting from Figure 7.41(b) that at the critical depth, the residual increase in horizontal 
effective stress s h∆ ′σ  due to compaction is a vK ∆ ′σ , and substituting for v∆ ′σ  from Equation 7.18, 
with =z zc as given by Equation 7.19, we have

 z
q

∆ ′σ =
γ

π
(at )

2
h c  (7.20)

which is independent of the soil strength parameter φ′.
The increase in lateral stress resulting from the compaction of a granular backfill by means 

of a rolling line load of intensity q at the surface is shown in Figure 7.42a. The maximum 
increase in horizontal effective stress occurs at z = zc. Above this depth, passive conditions 
are reached and the lateral stress increases with depth z, with h p vK′σ = × ′σ . Below zc, the 
increase in vertical effective stress is insufficient for the residual lateral stress to reach the 
passive limit, and h∆ ′σ  reduces with depth.

In reality, the fill is likely to be placed and compacted in layers thin enough to generate the 
maximum increase in horizontal stress all the way down the wall, as shown in Figure 7.42b. 
As more and more fill is placed, a point will eventually be reached where the active stresses 
below a certain depth hc are greater than the lateral stresses induced by compaction when 
the layer was placed. This depth is given by the condition

 q
K h′σ =
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= γ
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h a c
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1 2
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 (7.21)

In the above analysis, it has been assumed that the lateral movement of the wall is suf-
ficient to mobilize the full strength of the soil, so that active and passive conditions are 
developed at various stages of placement and compaction of the fill. If the wall is effectively 
rigid, Ka would be replaced throughout by the earth pressure coefficient in one-dimensional 
compression ( 1 sin )ncK = − ′ϕ , and Kp by 1/Knc.

Ingold (1979) presents three case histories where the measured stresses conform reason-
ably well to those calculated using the Ka/Kp procedure for yielding walls, but suggests that 
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Figure 7.42  (a) Idealized distribution of increase in horizontal effective stresses due to compaction of a 
single layer; (b) distribution of horizontal stresses in backfill compacted in a number of layers.
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the rotation or translation required to reduce stresses to the active limit is of the order of 
only h/500, where h is the height of the wall.

Symons and Murray (1988) present data from inverted T-cantilever walls forming bridge 
abutments at Guildford and Loudwater. At Guildford, deformations were apparently suf-
ficient to destroy the increased lateral stresses due to compaction except near the base. 
At Loudwater, the fill was lightweight pulverized fuel ash and the structural system was 
much more rigid: although lateral stresses considerably in excess of the design values were 
recorded, this probably reflects primarily on the design parameters used. The lateral stresses 
at both Guildford and Loudwater varied significantly with changes in ambient temperature.

Example 7.8:  Calculating the lateral stresses behind a retaining 
wall, due to compaction of a granular backfill

Figure 7.43 shows a cross-section through a bridge abutment, formed of an inverted 
T-cantilever wall with a piled foundation. The fill material is to be compacted by a vibrat-
ing roller that applies a maximum line load of 25 kN/m.

 a. Calculate the maximum thickness of the layers in which the fill may be compacted 
if fully passive conditions are to be achieved.

 b. Assuming that this procedure is followed on site, estimate the final stress distribu-
tion which acts on the back of the wall at the end of placement and compaction of 
the fill.

 c. Comment briefly on the applicability of this stress distribution, particularly near 
the top and the bottom of the retaining wall.

This example is based on the bridge abutment at Guildford described by Symons and 
Murray (1988).

SOluTIOn

 a. Assuming that the wall moves sufficiently during compaction of the fill for the 
 idealized stress path shown in Figure 7.41 to apply, the maximum thickness of 
the layers in which the fill may be compacted if fully passive conditions are to be 
achieved is equal to the critical depth given by Equation 7.19:

 2
πc az K
q

=
γ

  In the present case, Ka = (1 − sin 35°)/(1 + sin 35°) = 0.271; q = 25 kN/m and 
γ = 20 kN/m3. Substituting these values into Equation 7.19, the maximum layer 
 thickness is

 0.271
2 25

20
0.24mcZ = ×

×
π ×







=

Granular fill

Groundwater level

Natural ground

Inverted T-cantilever
with piled base

6 mγ = 20 kN/m3
φ ćrit = 35˚

Figure 7.43 Cross-section through inverted T-cantilever retaining wall, Example 7.8.
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 b. The horizontal effective stress at the critical depth zc (ignoring the effects of 
 self-weight during placement of the layer) is given by Equation 7.20:

 ∆ ′σ = γ
(at )

2
πh cz
q

 (7.20)

  In this case,

 ′σ = × × =(at )
2 25 20

π
17.8 kPah cz

  This is the lateral effective stress until the depth hc (given by Equation 7.21) is 
reached, at which the active lateral stress due to the weight of overburden will 
begin to exceed the lateral stress due to compaction:

 =
γ

1 2
πc

a

h
K

q
 (7.21)

  or hc = (1/Ka)2 × zc. In the present case,
  hc = (1/0.271)2 × 0.24 m = 3.3 m
  Below hc, the lateral stress increases linearly with depth until the base of the wall is 

reached, where

 K z 0.271 20kN/m 6m 32.5kPah a
3′σ = γ = × × =

  The resulting lateral stress distribution is shown in Figure 7.44.
 c. Near the bottom of the retaining wall, the freedom of the wall to rotate or move 

laterally is quite restricted. Although at 6 m depth the effects of compaction are less 
than the increase in lateral stress due to the placement of overburden, it may be that 
the lateral stresses near the base of the wall approach 0 vK × ′σ  (where K0 = 1−sin φ′), 
rather than Ka × σ′v as assumed in the analysis, as there may be insufficient move-
ment to generate fully active lateral stresses.

   At mid-height, the lateral stresses established during compaction might be elimi-
nated by further movement of the wall during the placement of the upper layers 
of fill. At the top of the wall, conditions might be expected to be reasonably close 
to those assumed in the analysis. However, the lateral stresses would probably be 
reduced to the active limit by a comparatively small movement of the wall in service 
(6 m/500 = 12 mm). Also, the theory is highly idealized, and the in-service lateral 
stresses will be very strongly influenced by other effects, such as the loads transmit-
ted by a bridge deck as it tends to expand and contract with varying temperature.

2qγ/π√ = 17.8 kPa
40 30 20 10 0

1
2
3
4
5
6
Depth (m)

σ h́ (kPa)

σ h́ = 17.8 kPa

σ h́ = 32.5 kPa

zc = 0.24 m

hc = 3.3 m

Figure 7.44  Lateral stress distribution after compaction of backfill in layers for the wall shown in Figure 7.43, 
Example 7.8.
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7.10.2 Clays

Clayton et al. (1991) presented an analysis of the compaction process of clay soils, in which 
changes in volume are slow so that the ‘undrained shear strength’ failure criterion τmax = τu 
is appropriate.

In general terms, the analysis is similar in principle to that for free-draining soils given 
in Section 7.10.1. It is assumed that the application and removal of a surface load results 
in residual passive conditions down to a critical depth zc below the surface, and that at 
depths z > zc the increase in horizontal stress may be derived from an elastic analysis 
(Figure 7.45a). The higher the value of τu, the smaller the critical depth zc. Clayton et al. 
(1991) show that zc is likely to vary between 100 mm for τu = 50 kPa and 30 mm for τu = 
400 kPa. At these small depths, σv may be neglected and the passive total stress may be 
taken as 2τu.

If it is assumed that the clay fill is placed and compacted in layers of thickness zc or 
less, the maximum horizontal stress will be generated all down the wall to a depth hc, 
given by

 τ = γ2 u T cK h

or

 = τ
γ

2
c

u

T

h
K

 (7.22)

where KT is the ratio of total stresses (=σh/σv) in the absence of compaction. This leads to the 
overall distribution of horizontal total stress shown in Figure 7.45b.

The tendency of excavated clay to form lumps or clods may make it difficult to place for 
compaction in thin layers, since the clods could well be more than 100 mm in diameter. The 
bulk undrained shear strength of the assemblage of clods will be less than the undrained 
shear strength of the intact clay: it is the former that should be used for the calculation of 
lateral stresses due to compaction.

Perhaps the most significant difference between the results of the two analyses is that the 
maximum lateral stress generated by compaction in granular soils (=√[2qγ/π]) is indepen-
dent of the strength of the soil, whereas in the case of clays it is proportional to the bulk 
undrained shear strength.

Depth
z

Depth
z

zc

hc σh = KTσv

Δσh σhO

(a) (b)

O2τu 2τu

Figure 7.45  (a) Increase in horizontal total stress with depth following placement and compaction of a single 
layer of clay; (b) distribution of horizontal total stress in backfill compacted in layers.
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Carder et al. (1980) describe an experiment carried out at the UK Transport Research 
Laboratory on a retaining wall backfilled with silty clay, in which a deflection at the top 
of the wall of only h/1000 was sufficient to reduce the lateral stresses in the fill to their 
active limit.

A perhaps more important factor that should be allowed for in the design of walls with 
clay backfill is the possible development of high stresses due to swelling. If the clay fill is 
overconsolidated and/or has been excavated from some depth, the pore water pressures 
may be strongly negative relative to their long-term equilibrium values. With time, the 
negative excess pore water pressures may dissipate and the clay may swell. Although this 
may involve a reduction in the horizontal effective stress, the increase in pore water pres-
sure is far more significant and the net result is an increase in the total horizontal stress 
acting on the wall.

Mawditt (1989) presents a case history of swelling pressures developed in clay fill retained 
between 9 m-high reinforced concrete inverted T-cantilever walls with piled bases on the 
M3 motorway at Sunbury Cross, near London (Figure 7.8c). The clay fill had been obtained 
from 14 different sites (mostly deep excavations) across London, including the 30 m deep 
tunnels for the Victoria Line on the London Underground railway network. In this case, the 
dissipation of negative excess pore water pressures led to lateral stresses significantly greater 
than those assumed in the initial design.

KEY POINTS

• The concepts of engineering plasticity can be used to analyse a structure such as a 
retaining wall on the verge of collapse. Solutions may be either lower bounds, based on 
a system of stresses that is in equilibrium and does not violate the failure criterion for 
the soil, that err on the safe side, or upper bounds, based on an assumed mechanism 
of collapse, which err on the unsafe side.

• Soils fail according to a frictional failure criterion expressed in terms of effective 
stresses: 

 tan
max

τ
′σ





 = ′ϕ  (7.1)

 where φ′ is the effective angle of friction or the angle of shearing resistance of the soil. 
For retaining walls, the appropriate strength to use in collapse calculations is the criti-
cal state strength, crit′ϕ .

• As a special case, the undrained failure of clay soils, which are sheared at constant 
volume may be analysed in terms of a total stress failure criterion

 max uτ = τ  (7.5)

 where τu is the undrained shear strength.
• By considering Mohr circles of effective stress at failure, it is possible to calculate the 

minimum and maximum possible ratios of horizontal to vertical effective stress. The 
minimum ratio is quantified by the active earth pressure coefficient Ka, and applies 
when the vertical stress is being increased or the horizontal stress is being reduced, 
such as in the zone of soil behind a retaining wall. The maximum ratio is quantified 
by the passive earth pressure coefficient Kp, and applies when the vertical stress is 
being reduced or the horizontal stress is being increased, such as in the zone of soil 
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in front of an embedded retaining wall. For a frictionless retaining wall, it is easy to 
calculate the values of Ka and Kp: 

 
1 1 sin

1 sina
p

K
K

= = − ′ϕ
+ ′ϕ






 (7.3, 7.4)

 When soil/wall friction is present, the active and passive earth pressure coefficients Ka 
and Kp are not as easy to calculate, and tabulated values are generally used.

• For a soil obeying the maximum shear stress failure criterion τmax = τu, the minimum 
and maximum total stresses are given by

 σ = σ − τ2 (Minimum, Active)h,min v u  (7.6a)

 σ = σ + τ2 (Maximum,Passive)h,max v u  (7.6b)

 for a frictionless wall.
• Stress fields based on active and passive zones can be used to investigate failure 

 conditions for retaining walls. However, it may not be easy to extend the stress field to 
infinity, and it is common in practice to focus on the stresses acting on the wall. This 
leads to a limit equilibrium solution, rather than a true lower bound.

• Retaining walls on the verge of failure can also be analysed by considering a potential 
mechanism of failure, which involves blocks of the soil sliding along plane rupture sur-
faces. Analysis of the sliding blocks by statical equilibrium should give the same result 
as an analysis based on an energy or work balance, provided that the mechanism is 
kinematically admissible. If the system of sliding blocks does not form a kinematically 
admissible mechanism, analysis using the condition of equilibrium will again lead to a 
limit equilibrium solution rather than a true upper bound.

• Because the mechanism-based approach is inherently unsafe, it is necessary to repeat 
the calculation until the least unsafe solution – for example, the largest calculated 
active thrust, and the smallest calculated passive thrust – is found.

• In design, the wall must be sufficiently remote from collapse not to move excessively 
under working conditions. One of the ways in which this is achieved is by carrying out 
the collapse calculation with the soil strength reduced by a factor Fs. This is addressed 
more fully in Section 9.4.

• A reinforced soil retaining wall may fail by either breakage or pull-out of the reinforc-
ing strips. These failure modes can be assessed by means of a simple limit equilibrium 
analysis (Equations 7.14 and 7.15). Pull-out failure is generally well-predicted using 
Equation 7.15. Tensile failure is only well-predicted by Equation 7.14 for walls that are 
already close to pull-out failure. Otherwise, Equation 7.14 is somewhat conservative, 
owing to the plastic redistribution of stresses between the reinforcement strips; verti-
cal stress reduction as a result of shear stresses on the back of the wall; and sliding 
resistance at the bottom of the backfill.

• Compaction of the soil behind a retaining wall can lead to increased lateral stresses in the 
backfill. In theory, the maximum lateral stress induced in a granular backfill, placed in thin 
layers and compacted by means of a roller that applies a line load of intensity q (kN/m), is

 2qγ
π

 (7.20)

 In practice, the lateral stresses may be reduced to the active limit by a small outward 
movement of the wall, after compaction.
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SELF-ASSESSMENT AND LEARNING QUESTIONS

CALCULATION OF LATERAL EARTH 
PRESSURES AND PROP LOADS

 7.1 a.  Explain the terms ‘active’ and ‘passive’ in the context of a soil retaining wall.
  b.  Figure 7.46 shows a cross-section through a trench support system, formed of 

a rigid reinforced concrete U-section. Assuming that the retained soil is in the 
active state, and that the interface friction between the soil and the wall is zero, 
calculate and sketch the short-term distributions of horizontal total and effective 
stress and pore water pressure acting on the vertical member AB.

  c.  Hence calculate the axial load (in kN per metre length of the trench) in the hori-
zontal member BC, and the bending moment (in kNm/m) at B.

  d.  Would you expect the axial load in BC and the bending moment at B to increase 
or decrease in the long term, and why?

 [(c) Axial load in BC = 237.4 kN/m; bending moment at B = 528 kN/m based on 
fully active stresses in the retained soil.]

STRESS FIELD LIMIT EQUILIBRIUM ANALYSIS 
OF AN EMBEDDED RETAINING WALL

 7.2 a.  Figure 7.47 shows a cross-section through a frictionless embedded retaining wall, 
propped at the crest. Show that the wall would be on the verge of failure if the 
strength (effective angle of friction) of the soil were 18°. (Take the unit weight of 
water γw = 10 kN/m3.)

  b.  Sketch the distributions of lateral stress on both sides of the wall, and calculate 
the bending moment at formation level and the prop force.

  c.  If in fact the critical state strength of the soil is 24°, calculate the strength mobi-
lization factor M = tan φ′crit/tan φ′mob.

 [(b) Prop load = 555 kN/m; bending moment at formation level = 3791 kNm/m; 
(c) M = 1.37.]

 7.3  Figure 7.48 shows a cross-section through a long excavation whose sides are sup-
ported by propped cantilever retaining walls.

GWL

4 m

2 m
C B

A

cL
Surcharge 20 kPa

Sandy gravel
φ′crit = 35˚, γ = 20 kN/m3

Soft clay 
τu = 30 kPa, γ = 17 kN/m3

Figure 7.46 Cross-section through trench support system, Q7.1.
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 Calculate the depth of embedment needed just to prevent undrained failure by rotation 
about the prop if the groundwater level behind the wall is

 i. Below formation level
 ii. At original ground level
 Neglect the effects of friction/adhesion at the soil/wall interface, and take the unit 

weight of water as 10 kN/m3. What is the strut load in each case?
 [(i).  Embedment 0.01 m; strut load 9 kN/m (clay is self-supporting with a dry  tension 

crack) (ii). embedment 2.09 m; strut load 137.5 kN/m (assuming flooded tension crack.)]

MECHANISM-BASED LIMIT EQUILIBRIUM 
ANALYSIS OF RETAINING WALLS

7.4 a. Explain, in the context of a retaining wall, the terms active and passive.
  b.  Figure 7.49 shows a cross section through an embedded retaining wall in a clay 

soil. To improve the stability of the wall, it is decided to leave a bank of clay 
(known as a berm) in place against the retaining wall, as indicated. By considering 
the limiting equilibrium of a series of potential passive sliding wedges starting at 
the toe of the wall, calculate the maximum short-term horizontal resisting force H1 
that can be provided in the short term by the soil in front of the wall and the berm 
together.

Uniform soil
γ = 20 kN/m3

Prop

Groundwater level

Smooth retaining wall

10 m

15.2 m

Figure 7.47 Cross-section through embedded retaining wall, Q7.2.
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Prop

Gravel

Clay
8 m

φ′crit = 35˚
γ = 22 kN/m3 saturated
γ = 20 kN/m3 unsaturated

τu = 80 kPa, γ = 20 kN/m3

Figure 7.48 Cross-section through embedded retaining wall, Q7.3.
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  c.  Again by considering the limiting equilibrium of a series of potential passive sliding wedges 
starting at the toe of the wall, calculate the maximum horizontal resisting force H2 that 
can be provided in the long term by the soil in front of the wall and the berm together.

  Relevant materials and interface properties are indicated in Figure 7.49: do not 
apply any partial factors to these values for either part (b) or part (c). For the long-
term calculation in part (c), assume that the pore water pressures are hydrostatic 
below the groundwater level indicated in front of the wall.

  d.  Are your answers suitable for use in design, and why? (give two reasons). State one 
further calculation that you would need to carry out on the berm in the long term.

 HINT: Try critical angles of the rupture plane to the horizontal in the approxi-
mate ranges 32° to 16° in the short term and 16° to 8° in the long term.

  [(b). Short term minimum value of NW is 1060 kN/m for a wedge angle θ ~ 22°. 
(c). Long term minimum value of R′W is 717 kN/m for a wedge angle θ ~ 10 (hori-
zontal component 693 kN/m). (d) Not as they stand – they are based on assumed 
mechanisms of collapse which might be wrong, and no partial factors have been 
applied. The stability of the berm would also need to be checked.)]

7.5. Figure 7.50 shows a cross section through a masonry retaining wall.
  a. List four ways in which a wall like this might fail.
  b.  Define and explain the forces acting on a typical potential sliding wedge in the soil 

behind the wall, at limiting equilibrium. By considering a series of such wedges, 
calculate the minimum horizontal force that the wall must be able to withstand. 
(You may solve the problem either graphically by means of force vector diagrams, 
or algebraically by resolving forces. Relevant materials and interface properties are 
indicated in Figure 7.50: do not apply any partial factors to these values. In answer-
ing parts (a), (b) and (c), ignore the anchors. Assume that the pore water pressures are 
hydrostatic below the groundwater levels indicated behind and in front of the wall).

  c.  Draw a free body diagram for the wall, carefully labelling all of the forces and 
stresses acting on it. Assume that the effective stress reaction from the soil acts 
on the wall at a height of H/3 above the base, where H is the retained height 
of soil. State any further assumptions you need to make. Hence calculate the force 
R′ resulting from the normal effective stresses on the base of the wall, and the 
distance e at which it acts, measured horizontally from the toe (i.e., the bottom 
of the front) of the wall. Does your calculated value of e indicate that the entire 
interface is in compression? Comment on the implication of this.

2 m

2 m 8 m

4 m

4 m

GWL

CLAY:

Undrained
Drained

Soil/wall interface:
δ = 15˚
τw = 30 kPa

τu = 50 kPa
γ = 20 kN/m3

φ′ = 20˚

Figure 7.49 Cross section through an embedded retaining wall with an earth berm, Q7.4
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  d.  The stability of the wall could be improved by means of a line of horizontal 
anchors of length L (measured from the front face of the wall), installed through 
the wall at a height of 1 m above the toe and spaced at 1 m centres along the 
length of the wall. Calculate the length L of the anchors needed just to bring the 
interface between the base of the wall and the underlying soil into compression, 
along its entire width. Assume that the anchors are made of flat strips of width 
100 mm, that the angle of friction between the anchor and the surrounding soil 
is 30°, and that only the length of anchor embedded in the soil beyond the critical 
failure surface is effective in generating an anchor force.

  e.  Give one way in which you might ensure that the required anchor load could be 
generated without excessive additional wall movements taking place; and one 
other anchor failure mechanism it would be necessary to consider.

  f.  With the anchors in place, assess the possibility of failure of the wall (i) by sliding, 
and (ii) by overturning.

 This question is based on a real wall at Nant Ffrancon, north Wales (Johnson and 
Card, 1998; O’Reilly and Perry, 2009).

 [(b)R′W = 25.2 kN/m for a wedge angle θ = 61.6°; horizontal component ~22 kN/m. 
(c) R′ = 35.1 kN/m and e = 0.08 m in front of the toe, indicating that the wall will 
topple. (d) Anchor load T = 9.83 kN/m; L = 4.21 m. (f) with the anchors the wall 
is safe from either sliding or toppling.]

 7.6 a.  Figure 7.51 shows a cross-section through a mass retaining wall. By means of a 
graphical construction, estimate the minimum lateral thrust that the wall must be 
able to resist. (Assume that the angle of friction between the soil and the concrete 
is 0.67 × φ′crit.)

  b.  If the available frictional resistance against sliding on the base of the wall must 
be twice the active lateral thrust, calculate the necessary mass and width of the 
wall. (Take the unit weight of concrete as 24 kN/m3.)

  c.  What other checks would you need to carry out before the design of the wall 
could be considered to be acceptable?

 [(a) Horizontal component of thrust is approximately 24 kN/m, with the slip 
plane at an angle of 53° to the horizontal. (b) Required width of wall is 1.36 m.]

 7.7 a.  Figure 7.52 shows a cross-section through a masonry retaining wall, with a partly 
sloping backfill subjected to a line load of 100 kN/m as indicated. Use a graphi-
cal construction to estimate the lateral thrust that must be resisted by friction on 
the base of the wall to prevent failure by the formation of a slip plane extending 
upward from the base of the wall, such as OA.

0.4 m

0.6 m

1.0 m

AnchorH = 2.5 m

Wall
γ = 18 kN/m3

Soil/wall interface
δ = 30˚

Silty sand
φ = 40˚
γ = 18 kN/m3

GWLGWL

Figure 7.50 Cross section through unmortared (drystone) masonry retaining wall, Q7.5.
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  b.  Is your answer likely to be greater or less than the true value, and why?
  c.  Suggest one way in which the ability of the wall to resist the thrust from the back-

fill could be improved.
 [(a) Lateral component of active thrust is approximately 98 kN/m when slip plane 

OA is at 45° to the horizontal]
 7.8 Figure 7.53 shows a cross-section through a mass concrete retaining wall. Estimate 

the minimum lateral thrust that the wall must be able to resist to maintain the sta-
bility of the retained soil. Hence investigate the safety of the wall against sliding.

 [Horizontal thrust (including pore water pressure component) is approximately 
98 kN/m, with the slip plane at an angle of approximately 50° to the horizon-
tal. Maximum available resistance to sliding is about 107.5 kN/m (depending on 
assumed pore water pressures on base and whether downward force from backfill 
is taken into account), so the wall is unacceptably close to sliding failure.]

 7.9 a.  Figure 7.54a shows a cross-section through a gravity wall retaining a partly  sloping 
backfill of soft clay. By means of a graphical construction, estimate the minimum 
(active) lateral thrust that the wall must be able to resist in the short term. How 
does this compare with the maximum available sliding resistance on the base?

 (Assume that the limiting adhesion between the wall and the clay is equal to 0.4 × 
the undrained shear strength τu, and that the angle of soil/wall friction between the 
wall and the underlying sand is equal to 0.67 × φ′.)

Concrete
retaining
wall

Granular soil
φ′crit = 36˚
γ = 20 kN/m3

3

3 m

Groundwater level

1

Figure 7.51 Cross-section through mass retaining wall, Q7.6.
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Figure 7.52 Cross-section through masonry retaining wall, Q7.7.
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 b.  If the thrust from the backfill acts on the back of the wall at a distance of one-third 
of the height of the wall above the base, and the normal total stress distribution on 
the base is as shown in Figure 7.54b, calculate the values of σL and σR.

 c.  What further investigations would you need to carry out, before the design of the 
wall could be considered acceptable?
[(a) Horizontal thrust is approximately 134 kN/m, with the slip plane at an angle 
of approximately 45° to the horizontal. Maximum available resistance to sliding is 
about 182.5 kN/m (including the effect of the downward shear force on the back 
of the wall). (b) σL = 80.7 kPa; σR = 192.6 kPa.]

7.10 Figure 7.55 shows a cross section through a drystone (unmortared) masonry retaining 
wall. The wall is made of slate blocks and has bulk unit weight 21 kN/m3.
 a.  Draw a diagram to show and explain the forces acting on a typical potential sliding 

wedge in the soil behind the wall, at limiting equilibrium. By considering a series of 
such wedges, calculate the minimum horizontal force that the wall must be able to 
withstand. (You may solve the problem either graphically by means of force vector dia-
grams, or algebraically by resolving forces. Relevant materials and interface properties 
are indicated in Figure 7.55: do not apply any partial factors to these values. Assume 
that the pore water pressures are hydrostatic below the groundwater level indicated).

 b.  Draw a free body diagram for the wall, carefully labelling all of the forces acting 
on it. Assume that the effective stress reaction from the soil acts on the wall at 
a height of H/3 above the base, where H is the retained height of soil. State any 
further assumptions you need to make. Use the free body diagram to calculate the 
force R′ resulting from the normal effective stresses on the base of the wall, and the 
distance e at which it acts, measured horizontally from the toe (i.e. the bottom of 
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150 kN/m
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Water table σL
σR
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Figure 7.54  (a) Cross-section through gravity retaining wall and (b) form of normal total stress distribution 
on the base, Q7.9.
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Figure 7.53 Cross-section through mass concrete retaining wall, Q7.8.
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the front) of the wall. Assess the possibility of failure of the wall (i) by sliding and 
(ii) by overturning.

 c.  Give three other ways in which a wall like this could fail.
 This question is based on a real wall at Blaenau Ffestiniog, north Wales: see 

Figure 8.41 and Question 8.4, Chapter 8).
[(a) R′W = 23.97 kN/m for a wedge angle θ = 55°, giving a horizontal component 
of 21.72. (b) R′ = 73.13 kN/m, e = 0.272 m. Wall is safe from toppling but the 
line of action of R′ is outside the middle third. The wall is also safe from sliding. 
(c) landslide, internal structural failure (e.g. sliding of the slate blocks), bearing 
failure.]

REINFORCED SOIL RETAINING WALLS

7.11  A 4 m-high reinforced soil retaining wall is constructed, using galvanized strip rein-
forcements 3.5 m long, with a cross-section of 3 mm × 80 mm. The ultimate tensile 
strength of the strips is 190 N/mm2, and the design must allow for an overall loss of 
thickness of 0.75 mm due to corrosion during the anticipated working life of the struc-
ture. The strips are spaced at 1 m vertically and 0.3 m horizontally. The uppermost 
reinforcement is 0.5 m below the top of the wall. The surface of the backfill is horizon-
tal. The backfill material has unit weight γ = 18 kN/m3 and friction angle φ′ = 30°. The 
angle of friction δ between the backfill and the reinforcement is 20° (i.e. the coefficient 
of friction µ = tan 20°). Calculate:

 a. The ultimate tensile load of a single reinforcement strip, before corrosion.
 b.  The ultimate tensile load of a single reinforcement strip, after corrosion.
   Hence investigate
 c. The closeness of the wall to tensile failure of the reinforcement strips.
 d.  The closeness of the wall to failure by pull-out of the reinforcement strips.

   Comment on the adequacy of the design.
[(a) 45.6 kN. (b) 34.2 kN. (c) the available tensile strength is 3.31 times that 
required, on the basis of the corroded cross section. (d) the available pull-out resis-
tance is 1.42 times that required.]

Slate rubble backfill
φ = 30˚
γ = 18 kN/m3

Soil/wall interface
δ = 25˚

Wall
γ = 21 kN/m3

H = 3.0 m

1.0 m

1.0 m

GWL GWL

Figure 7.55 Cross section through unmortared slate block retaining wall, Q7.10.
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COMPACTION STRESSES

7.12 Stating carefully the assumptions you make, develop the argument that granular soil 
of unit weight γ at a depth z behind a yielding retaining wall may be brought to 
passive failure by the application of a cycle of vertical effective stress of magnitude 
Δσ′v = γzK2

p, where Kp is the passive earth pressure coefficient (1 + sin φ′)/(1 − sin φ′).
   Hence derive the lateral stress distribution behind a yielding retaining wall where 

the backfill has been compacted in thin layers by the application of a surface line load 
of magnitude q kN/m (It may be assumed that the increase in vertical effective stress 
at a depth z below the line load is 2q/πz.).

   Sketch the lateral stress distribution in the case of an L-cantilever wall having a 
retained height H = 5 m, with a backfill of unit weight γ = 18 kN/m3 and φ′ = 30°, 
compacted using a vibrating roller capable of applying an equivalent line load q of 20 
kN/m. Calculate the shear force and bending moment at the corner of the ‘L’.

  [Shear force 92 kN/m; Bending moment 194 kNm/m.]
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Chapter 8

Foundations and slopes

8.1 INTRODUCTION AND OBJECTIVES

In this chapter, the concepts of engineering plasticity introduced in Chapter 7 are used to 
calculate the ultimate (i.e. collapse) loads of different types of foundation, and also to assess 
the stability of slopes.

This chapter is divided into three sub-areas: shallow foundations, deep foundations and 
slopes. The fundamental aspects of these topics are covered in Sections 8.2–8.7 and 8.10. 
The material in Sections 8.8 (pile groups and piled rafts), 8.9 (lateral loading of piles), 8.11 
(general slope analysis) and 8.12 (the use of laerally loaded piles in slope stabilization) is 
more advanced, and in most first degree courses will probably be taught at a later stage. 
Sections 8.8, 8.9, 8.11 and 8.12 could therefore justifiably be omitted on first reading. For 
completeness, the objectives given below relate to this entire chapter.

8.1.1 Objectives

After having worked through this chapter, you should be able to

• Apply the concepts of engineering plasticity to calculate upper and lower bounds to the 
collapse loads of idealized shallow strip foundations or footings (Sections 8.2 and 8.3)

• Use empirical enhancement factors that take account of the effects of foundation shape 
and depth to estimate the ultimate (i.e. collapse) and working loads of more realistic 
foundations (Section 8.4)

• Calculate the ultimate and working loads of single piles and isolated deep foundations 
(Section 8.6)

• Assess the stability of long uniform slopes, using the infinite slope analysis (Section 8.10)

You should have an appreciation of

• The effects of horizontal and moment loading on shallow foundations (Section 8.5)
• The potential interaction effects between closely spaced piles in pile groups (Section 8.8)
• The potential benefits in terms of improved economy and reduced settlements of using 

a piled raft (Section 8.8)
• The methods used to estimate the lateral load capacity of an individual pile (Section 8.9)
• The overwhelming importance of groundwater and pore water pressures on slope 

 stability (Section 8.10)
• The methods used to investigate the stability of slopes that cannot reasonably be ide-

alized as being long and uniform, and the approximations these entail (Section 8.11)
• The use of laterally loaded piles to stabilize slopes (Section 8.12)
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8.2  SHALLOW STRIP FOUNDATIONS (FOOTINGS): 
SIMPLE LOWER BOUND (SAFE) SOLUTIONS

The walls of domestic buildings and other low-rise structures on reasonably firm soil are 
often founded on concrete strip foundations or footings, extending to a depth of 1–2 m 
below ground level. Design loads for foundations of this type may be based on the collapse 
loads calculated using a reduced soil strength—that is, the actual soil strength tan φ′ or τu 
divided by a suitable partial factor Fs—together perhaps with a partial factor applied to 
some or all of the expected loading. In this section, we shall use the concepts of engineering 
plasticity to calculate collapse loads for simple shallow foundations.

Figure 8.1a shows a schematic cross-section through a typical shallow foundation. For 
the purpose of analysis, the foundation is idealized as shown in Figure 8.1b: the soil above 
the bearing level or founding plane is modelled as a surcharge of σ0 = γ D on either side of the 
foundation. In an effective stress analysis, the effective surcharge on either side of the foun-
dation ′σ0 is obtained by subtracting the pore water pressure at bearing level, ′σ = γ − .0 D u

8.2.1 Effective stress analysis: tan/( )maxττ σσ′′ == ϕϕ′′  failure criterion

The collapse load of a long strip footing in a soil obeying the effective stress (frictional) 
failure criterion ( / ) tanmaxτ σ′ = ϕ′  may be investigated using an idealized stress field made 
up of active and passive zones, separated by frictionless stress discontinuities, as shown in 
Figure 8.2. (Stress discontinuities were used in the analysis of an embedded retaining wall 
in Section 7.6, and are discussed in more detail in Sections 10.1–10.8.)

Immediately below the founding plane in zone 2, the vertical effective stress is equal to 
′σ f. At failure, this will be an active zone (cf. Figure 7.3a), and the horizontal effective stress 

will be equal to × ′σa fK . In zone 1 at the same level, the vertical effective stress is equal to 
′σ0. At failure, zone 1 will be a passive zone (cf. Figure 7.4a), and the horizontal effective 

stress will be equal to × ′σp 0K . For equilibrium across the frictionless stress  discontinuity, 
these two horizontal stresses must be the same, ′σ = × ′σ = × ′σh a f p 0K K ,  giving a ratio of 
surface stresses at failure of

 
K

K
K Nf

0

p

a
p
2

q
′σ
′σ

= = =  (8.1)

where N ( / )q f 0= ′σ ′σ  is termed the bearing capacity factor.

(a)

(b)
Founding plane

Effective
founding
plane

Wall of building

Concrete footing

Surcharge representing weight
of soil above founding plane

Surcharge imposed
by foundation and 
superstructure

Depth of
burial of
footing
D

Figure 8.1 (a) Schematic cross-section and (b) idealization of a typical shallow footing.
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The solution shown in Figure 8.2 is over-conservative (because of the introduction of the 
frictionless stress discontinuities) and may easily be improved. However, the form of the 
solution, ′σ = ′σf 0 qN , remains the same. It is shown in Section 10.2 that the least conservative 
lower bound solution gives

 N K eq p
πtan= ′ϕ  (8.2)

where Kp is the passive earth pressure coefficient, Kp = (1 + sin φ′)/(1 − sin φ′).
Various empirical adjustments may then be applied to the basic bearing capacity factor Nq, to 

take account of features not considered in the analysis. These include the self-weight of the soil 
(which causes ′σ0 and hence ′σ f to increase with depth below the founding plane), the strength 
of the soil above foundation level, and the finite length of many real foundations. Some of these 
are discussed in Section 8.4: a more comprehensive account is given by Bowles (1996).

8.2.2 Short-term total stress analysis: τmax = τu failure criterion

The corresponding stress field for the rapid (undrained) failure of a clay having undrained 
shear strength τu is shown in Figure 8.3. At a depth z below the founding plane in zone 2, the 
vertical total stress is equal to σf + γz. At failure, zone 2 is an active zone, and the horizontal 
total stress at depth z is equal to (σf + γz) − 2τu. In zone 1 at the same level, the vertical total 
stress is equal to σ0 + γz. At failure, zone 1 is a passive zone, and the horizontal total stress 
is equal to (σ0 + γz) + 2τu. For equilibrium, these two horizontal stresses must be the same, 
σh = (σf + γ z) − 2τu = (σ0 + γz) + 2τu, giving a difference between the stresses below the 
founding plane at failure of

 ( ) 4πf 0 uσ = σ = τ  (8.3a)

In this case, the solution is of the form

 Nf 0 c uσ − σ = τ  (8.3b)

where Nc is the bearing capacity factor.
As before, the stress field shown in Figure 8.3 can easily be improved, and further empiri-

cal modifications may be made to the value of Nc to account for the shape of the founda-
tion and the strength of the soil above the founding plane. In contrast to the effective stress 
analysis, the increase in vertical stress with depth below the founding plane owing to the 

Passive
zone 1

Frictionless stress
discontinuities

(a) (b)

Passive
zone 1

Active
zone 2

σ 0́ σ 0́
σh́

σ v́ =σ f́

σ v́ =σ 0́

σʹ

τ =σʹ tan φʹ

σ f́

τ

φʹ

Figure 8.2  Simple stress field for a long strip footing in a soil obeying the failure criterion τ ′σ = ′ϕ( / ) tanmax . 
(a) Division of soil into active and passive zones; (b) Mohr circles of effective stress just below the 
founding plane.
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self-weight of the soil is of no benefit, because the bearing capacity is expressed in terms of 
the difference between the vertical total stresses in zones 1 and 2.

8.3  SIMPLE UPPER BOUND (UNSAFE) SOLUTIONS FOR 
SHALLOW STRIP FOOTINGS

8.3.1 Short-term total stress analysis: τmax = τu failure criterion

In Section 8.2.2, the bearing capacity σf − σ0 = Ncτu of a long strip footing on a clay soil 
of undrained shear strength τu was calculated using a lower bound plasticity approach. 
This involved a stress field in equilibrium with the applied loads, which did not violate the 
 failure criterion τmax = τu. The bearing capacity may also be calculated using an upper bound 
 plasticity approach, by considering an assumed mechanism of collapse.

Kinematically admissible mechanisms for plastic materials characterized by the fail-
ure criterion τmax = τu are made up of straight lines or circles, as outlined in Section 7.7. 
In the case of a footing, the simplest class of mechanism is a slip circle as shown in Figure 8.4. 
The mechanism shown in Figure 8.4 may be analysed by considering the static equilibrium 
of the semicircle of soil AOCA, or by equating the rate at which work is done by the exter-
nal forces to the rate at which energy is dissipated along the slip surface as the mechanism 
rotates. The same answer is obtained in each case.

 i. By equilibrium, taking moments about the centre of the slip circle at O. For a unit length 
of the footing perpendicular to the plane of the paper, the destabilizing moment is

[σf × B] × [B/2] that is,
[load on foundation AO] × [lever arm of the centre of pressure about O]
The resisting moment is

 
B

B
B B[ ]

2
{[ ] [ ]},0 uσ × ×








+ τ × π ×

that is,

 B

{[loadonOC] [leverarm]}

{[shear stressonslipsurface lengthof slipsurface]

[lever arm,whichis theradiusof theslip circle, ]}

×
+ ×
×

Frictionless
stress
discontinuities

τ
σh

σ

σv =σ0 + γz σv =σf + γz

τu τ = τu
Passive
zone 1

Passive
zone 1

Active
zone 2

(a) (b)

σ0

σf

Figure 8.3  Simple stress field for a long strip footing on a clay soil of undrained shear strength τu. 
(a) Division of soil into active and passive zones; (b) Mohr circles of total stress at a depth z 
below  the founding plane.
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Equating these

 
B

2
B

2
[ π ]f

2
0

2

u
2B

σ × = σ × + τ ×

or

 ( ) 2πf 0 uσ − σ = τ

so that the bearing capacity factor

 N 2πc
f 0

u

= σ − σ
τ









 =  (8.4)

 ii. Alternatively, by considering the rates of work and energy dissipation as the slip mech-
anism rotates about O at an angular velocity ω, and recalling that work = force × 
distance moved, so that work rate (= power) = force × velocity:

   The rate of work done by the foundation load AO as it falls with a centroidal velocity 
of ωB/2 downward is [σf × B] × [ωB/2].

   The rate of work done against the surcharge σ0 on OC as it is raised at a centroidal 
velocity of ωB/2 is [σ0B] × [ωB/2]. Thus, the net rate at which work is done by the 
external loads is

 
[( ) ]

2f 0σ − σ × ×
ω

B
B

e

   The rate at which energy is dissipated at the slip surface is [τu × πB] × [ωB] (i.e. the 
total force on slip surface × the relative velocity of slip).

   Equating the net rate at which work is done by the external forces to the rate at 
which energy is dissipated at the slip surface:

 
( )

2
[ π ]f 0

2

u
2B

Bσ − σ × ω





= τ ×

  or

 ( ) 2πf 0 uσ − σ = τ

exactly as from the equilibrium analysis.

Rate of rotation
ω

B
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(a) (b)
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resists rotation

Velocity of any point X
on slip surface = ωB
at rigth angles to OX
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X

σ0
VC = ωB

VA = ωB

σ0

σf

VX

Figure 8.4  (a) Assumed slip circle failure mechanism and (b) hodograph for a long strip footing on a clay soil 
of undrained shear strength τu.
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The problem with the upper bound calculation is that, if we have identified the wrong (i.e. 
not the most critical) failure mechanism, the solution obtained will err on the unsafe side. 
Some indication of the error in the solutions we have so far derived for a long strip footing 
on a clay soil may be obtained by comparison of the two results:

Lower bound (stress field):

 
N 4 (from Equation 8.3)c

f 0

u

= σ − σ
τ

=

Upper bound (mechanism):

 
N 2π 6.28 (from Equation 8.4)c

f 0

u

= σ − σ
τ

= =

The upper bound solution may be improved by searching for a more critical mechanism, 
in which the centre of the circular slip is located at some distance vertically above the edge 
of the foundation as shown in Figure 8.5. The slip surface is no longer a complete semicircle, 
but subtends an angle 2α at the centre of the arc.

Again considering a unit length of the footing perpendicular to the plane of the paper, the 
destabilizing moment about the centre of the slip circle is

 
B

B
[ ]

2fσ × ×

that is,

[load on foundation AO] × [perpendicular distance from O to the line of action of the 
resultant force]. The resisting moment is

 
[ ]

2
{[ 2 ] [ ]}0 uσ × ×








+ τ × α ×B
B

R R

that is,

 R

{[loadonOC]

[perpendiculardistance fromOtothelineof actionof theresultant force]}

{[shear stressonslipsurface lengthof slipsurface]

[lever arm,whichis theradius of theslipcircle]}.

×
+ ×
×

Resisting shear stress τu

Foundation width B = R sin α

A O C

B

Slip circle radius R
α

Figure 8.5  Analytical method of finding the most critical circular slip whose centre lies on the vertical line 
through the edge of the strip footing.
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In this case, the length of the slip surface is equal to the radius R × the angle 2α. From the 
geometry of the mechanism, R = B/sin α.

Substituting for R in terms of B and α, and equating the destabilizing and resisting 
moments,

 
( )

2
2

sinf 0

2

u 2
2B

Bσ − σ ×





= τ × α
α

×





or

 
( ) 4

sinf 0 u 2
σ − σ = τ × α

α

The most critical mechanism within the range currently under investigation is the one 
giving the smallest value of (σf − σ0), which in turn requires that the expression (α/sin2α) = 
(α cosec2α) is a minimum.

This occurs when
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= α − α α α

which is zero when 2α cot α = 1, or tan α = 2α (α in radians). This occurs at α ≈ 1.17 radian 
≈ 67°, giving a bearing capacity factor Nc = [(σf − σ0)/τu] = 5.52.

This narrows the range for Nc to 4 < Nc < 5.52. The correct solution (which may be 
obtained by means of either the lower or upper bound approach: see Sections 10.3 and 
10.9.1) is

 N 2 π 5.14c = + =

8.3.2 Effective stress analysis: ( / ) tanmaxττ σσ == ϕϕ′′ ′′  failure criterion

If the condition of normality is assumed to apply to a soil obeying the effective stress failure 
criterion ( / ) tanmaxτ ′σ = ′ϕ , the implied angle of dilation at failure is ψ = ′ϕ  (Section 7.7). This 
means that a slip circle is not a kinematically admissible mechanism, because it does not 
allow for dilation.

The consequence of the application of the normality condition to the frictional failure 
criterion is that, as relative sliding takes place along an assumed slip surface, the direction 
of motion is not parallel to the slip surface (as it is with the τmax = τu failure criterion), but 
is at an angle ψ = ′ϕ  to it (Figure 8.6a). To accommodate this movement, a slip surface must 
always be at an angle of φ′ to the direction of motion; a curved slip surface must always be 
at an angle of (90 )° + ′ϕ  to the radius of rotation, as indicated in Figure 8.6b. As we move 
through an angle dθ at the centre of rotation, the radius increases by an amount dr as shown 
in Figure 8.6c. From the geometry of Figure 8.6c with dθ → 0,
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Integrating this between limits of r = r0 at the start of the curve θ = 0, and a general radius 
r = r at an angle of θ to r0,

 
ln tan

0

r
r

= θ ′ϕ

or

 e0
tan= θ ′ϕr r  (8.5)

The curve defined by Equation 8.5 is known as a logarithmic spiral.
The logarithmic spiral failure surface, in combination with the ( / ) tanmaxτ ′σ = ′ϕ  failure 

criterion, has two particular consequences for analysis:

• The resultant of the stresses (τ and σ′) on the slip surface is always directed towards 
the centre of rotation (Figure 8.7). This means that the moment of the stresses on the 
slip surface about the centre of rotation is zero.

• The resultant stress at any point on the slip surface is perpendicular to the direction of 
movement. This means that no energy is dissipated along the slip line as relative move-
ment takes place, because the component of movement in the direction of the resultant 
stress is zero (Figure 8.7).

Figure 8.8 shows a mechanism of failure, comprising a single logarithmic spiral slip sur-
face, for a shallow foundation on a soil obeying the ( / ) tanmaxτ ′σ = ′ϕ  failure criterion. This 
failure mechanism is analogous to the simple slip circle investigated for the τmax = τu failure 
criterion in Section 8.3.1.

Centre
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r

Direction
of motionShear

surface
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to shear
surface

Direction of
relative motion

Shear plane
(a)

(b)

(c)
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Radius r + dr

rdθ
dθ

Slip
surface
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φ′

φ′

ψ = φ′

Figure 8.6  (a) Effect of normality applied to the ( / ) tanmaxτ ′σ = ′ϕ  failure criterion; (b) relative orientation of 
curved failure surface and radius of rotation; (c) geometry of curved failure surface.
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Ignoring the self-weight of the soil, and making use of the fact that the moment about 
O of the stresses on the slip surface is zero, the relationship between fσ′  and 0′σ  may be 
 determined from the condition of moment equilibrium about O:

 ( ) (0.5 ) ( e ) (0.5 e )f
π tan

0
π tanB B B B′σ × = ′σ ×′ϕ ′ϕ

or

 N eq
f

0

2πtan= ′σ
′σ

= ′ϕ  (8.6)

Alternatively, equating the rate at which potential energy is lost by the foundation load f′σ  
to the rate at which potential energy is gained by the surcharge on the surrounding soil 0′σ  as 
the soil mass within the slip surface rotates at an angular velocity ω:

 ( ) (0.5 ) ( e ) (0.5 e )f
π tan

0
πtanB B B B′σ × ω = ′σ × ω′ϕ ′ϕ

or

 
N eq

f

0

2π tan= ′σ
′σ

= ′ϕ

which is exactly the same as Equation 8.6. In the work balance calculation, we have again 
neglected the self-weight of the soil, and also made use of the fact that the energy dissipated 
along the slip surface is zero.

We have now bounded the solution between a lower bound of =q p
2N K  (Equation 8.1) and 

N eq
2πtan= ′ϕ  (Equation 8.6). It is shown in Chapter 10 that the correct solution is between 

these lower and upper bounds, N K eq p
πtan= ′ϕ (Equation 8.2).

Center of
rotation

O
Slip

surface

Direction
of motion

Resultant
stress

φ′

φ′
τ

σ′

Figure 8.7 Resultant stress and direction of movement on slip surface, ( / ) tanmaxτ ′σ = ′ϕ  failure criterion.

Resultant of shear and
normal stress on slip
surface is always
directed towards O

Centre of rotation

B Be(π tanφ′)

Angular velocity
ω

φ′σ′f
σ′0

Figure 8.8 Logarithmic spiral failure mechanism for a shallow foundation, ( / ) tanmaxτ ′σ = ′ϕ  failure criterion.
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8.4  BEARING CAPACITY ENHANCEMENT FACTORS TO ACCOUNT 
FOR FOUNDATION SHAPE AND DEPTH, AND SOIL WEIGHT

8.4.1 Effective stress analysis: ( / ) tanmaxττ σσ == ϕϕ′ ′ failure criterion

The bearing capacity equation, which we have derived using a simplified but rigorous theo-
retical analysis as f q 0N′σ = × ′σ , may be used in practice in the form

 N s d N s d r B u{ } { [0.5 ]}f q q q 0′σ = × × × ′σ + × × × × γ − ∆γ γ γ γ  (8.7)

where

• Nq is the bearing capacity factor (generally taken as ep
tanK π ′ϕ ).

• sq (the shape factor) is an enhancement factor to allow for the fact that the footing is 
in reality not infinitely long.

• dq (the depth factor) is an enhancement factor which takes account of the fact that, in 
reality, the soil above the founding plane has some strength and therefore does more 
than just act as a surcharge.

The purpose of the second term on the right-hand side of Equation 8.7 is as follows. In 
the derivation of Equations 8.1 and 8.2, the collapse load was calculated on the basis of 
the stress state immediately below the founding plane. This was equivalent to assuming 
that the entire footing would collapse if the failure condition for the soil were reached 
at the level of the founding plane. In reality this is not the case, because a kinematically 
admissible  failure mechanism will occupy a depth approximately equal to the foundation 
width, B. As 0′σ  increases with depth below the founding plane (owing to the self-weight 
of the soil), so does f′σ . The bearing capacity factor Nq is significantly greater than one, so 
that f′σ  increases much more rapidly with depth than 0′σ .

The consequence of this is that the first term on the right-hand side of Equation 8.7, 
which is based on the vertical effective stress 0′σ  on either side of the footing at the level 
of the founding plane, will significantly underestimate the actual bearing capacity of the 
foundation. Assuming that the soil must be brought to failure over a depth of approxi-
mately one footing width B for a mechanism of collapse to form, the average vertical effec-
tive stress in the failure zone is (0.5 )0 B u′σ + γ − ∆ , where γ is the unit weight of the soil and 
Δu is the increase in pore water pressure between the founding plane and a depth of B/2 
below it. The purpose of the second term on the right-hand side of Equation 8.7 is, there-
fore, to enhance the bearing capacity to take account of the difference between the vertical 
effective stress at the level of the founding plane and the average vertical effective stress 
in the failure zone (0.5γB − u). In the second term on the right-hand side of Equation 8.7,

• Nγ is analogous to the bearing capacity factor Nq

• sγ is a shape factor, which is analogous to sq but applied to Nγ
• dγ is a depth factor, which is analogous to dq but applied to Nγ
• rγ is a reduction factor, to account for the fact that the Nγ effect does not increase 

indefinitely with the width of the footing B, as the second part of the right-hand side 
of Equation 8.7 would otherwise imply

An alternative approach to the quantification of the increase in bearing capacity owing to 
the increase in vertical effective stress below the founding plane is given by Bolton (1991). 
He suggests that the second term on the right-hand side of Equation 8.7 should be ignored, 
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and the values of 0′σ  and f′σ  in the first term on the right-hand side should be taken as those 
on an equivalent founding plane, at a depth of B/2 below the base of the actual foundation. 
This leads to the expression

 {( ) } ( )f q q q e e 0′σ = × × × ′σ − ′σ − ′σN s d  (8.8)

where [ / 2 ]e 0 B u′σ = ′σ + γ − ∆ , and Δu is the increase in pore water pressure between the base 
of the foundation and a depth B/2 below it. Bolton’s approach is arguably more elegant and 
conceptually transparent, but could lead to the overestimation of the bearing capacity of a 
wide foundation, because the reduction factor rγ of Equation 8.7 is omitted.

In some texts and codes of practice [including Annex D of Eurocode 7 Part 1 (BSI, 2004)], 
you may see the term (0.5γB − Δu) written as 0.5 B′γ  where w′γ = γ − γ . This assumes that 
the increase in pore water pressure below the founding plane is hydrostatic with depth, and 
that the water table is at or above the base of the foundation so that Δu = 0.5Bγw. Neither 
of these assumptions is necessarily correct.

Numerical values and expressions for sq, dq, Nγ, sγ and dγ suggested by Meyerhof (1963) 
and Brinch Hansen (1970), which are commonly used in the calculation of the ultimate 
 bearing capacity of shallow foundations, are given in Table 8.1. Bowles (1996) details sev-
eral  others. These enhancement factors are generally empirical, being based on model test 
results together with a degree of field experience. The most significant discrepancies between 
the various suggested numerical values occur with the parameters associated with Nγ, which 
are intended to account for the increase in bearing capacity with depth below the founding 
plane owing to the self-weight of the soil.

8.4.2 Short-term total stress analysis: τmax = τu

For the total stress analysis on the basis of the undrained shear strength τu, Equation 8.3b is 
conventionally modified and used in the form

 N s d( ) { }f 0 c c c uσ − σ = × × × τ  (8.9)

where Nc = 5.14 is the bearing capacity factor, and sc and dc are enhancement factors to take 
account of the shape and depth of the footing, respectively. In this case, there is no Nγ effect 

Table 8.1 Bearing capacity enhancement factors, (τ/σ′)max = tan φ′ failure criterion

Parameter Meyerhof (l963) Brinch Hansen (1970)

Shape factor, sq 1 + 0.1 Kp (B/L) B L1 ( / ) tan+ ′ϕ
Depth factor, dq K D B1 0.1 ( / )p+ + ′ϕ − ′ϕ k1 2 tan (1 sin )

γN N( 1)tan(1.4 )q − ′ϕ × − ′ϕN1.5 ( 1)tanq

Shape factor, sγ (for Nγ) = sq 1 − 0.4(B/L)
Depth factor, dγ (for Nγ) = dq 1

Notes: Meyerhof’s expressions apply for ′ϕ > °10

 k = D/B if D/B ≤ 1; k = tan−1 (D/B) (in radians) if D/B > 1.

 K (1 sin )/(1 sin ).p = + ′ϕ − ′ϕ

 rγ = 1 − 0.25 log10 (B/2) for B ≥ 2 m (Bowles, 1996).

 Foundation length L, breadth B and depth D.
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because the difference between the total stresses σf and σ0 is unaffected by the  self-weight of 
the soil. Brinch Hansen (1970) suggests an equation of the form

 N s d( ) {1 }f 0 c c
*

c
*

uσ − σ = × + + × τ  (8.10)

Values and expressions for , ,c c c
*s d s  and c

*d  suggested by Skempton (1951), Meyerhof (1963) 
and Brinch Hansen (1970) are given in Table 8.2.

Brinch Hansen (1970) also gives adjustment factors that take account of non-vertical 
loads, non-horizontal footing bases and inclined founding planes. These are detailed by 
Bowles (1996). Annex D of Eurocode 7 Part 1 (BSI, 2004) gives equations of a similar form 
to Equations 8.7 and 8.9, with factors iq and ic intended to account for the effect of inclined 
loads, but with the depth factors dq and dc omitted. However, a completely general bearing 
capacity equation, in which parameter values are inserted as required to suit individual cir-
cumstances, can lead to confusion. Furthermore, it will be seen in Chapter 10 that inclined 
loads, non-horizontal footing bases and sloping natural ground will alter the numerical 
value of the bearing capacity factor Nq or Nc in a way that can be quantified analytically, 
without needing to resort to empirical adjustment factors.

Moments and horizontal loads, which may either be applied to a foundation directly 
(Figure 8.9) or result from an inclined point load that does not act through the centre 
of the footing (Figure 8.10), can have an important destabilizing effect and must be 
considered in design. Shallow foundations subjected to horizontal and moment loads 
are discussed in Section 8.5.

Table 8.2 Bearing capacity enhancement factors, τmax = τu failure criterion

Parameter Skempton (1951) Meyerhof (l963) Brinch Hansen (1970)

Shape factor, sc 1 + 0.2(B/L) 1 + 0.2(B/L) =s B L0.2 /c
*

Depth factor, dc + D B1 0.23 ( / ), up to a 
maximum of 1.46 ([D/B] = 4)

1 + 0.2(D/B) =d k0.4c
*

k = D/B if D/B ≤ 1;
k = tan–1 (D/B) (in radians) if D/B > 1

Note: Foundation length L, breadth B and depth D.

M

H

V

R
W

O

(a) (b)

Figure 8.9  Combined vertical, horizontal and moment loads on a shallow foundation: (a) forces on a 
 gravity retaining wall; (b) schematic representation of loads on the foundation. (Redrawn from 
Butterfield, R., in Retaining Structures, ed. C.R.I. Clayton, 721–30, Thomas Telford, London, 1993.)
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8.5  SHALLOW FOUNDATIONS SUBJECTED TO 
HORIZONTAL AND MOMENT LOADS

In Sections 8.1–8.4, we have investigated the failure of shallow foundations subjected to a 
vertical load acting through the centroid, which might reasonably be represented as a uniform 
vertical stress at the underside of the footing. In reality, many foundations may be required to 
carry horizontal and moment loads as well. For example, the pressures exerted by the wind on 
a wall, by waves and currents on the legs of an offshore wind turbine, or by the soil behind a 
gravity retaining wall will all result in the application of both a horizontal force and a moment 
to the foundation (Figure 8.9).

An inclined point load that does not act through the centre of the foundation is statically 
equivalent to combined horizontal, vertical and moment loads acting through or about the 
centroid (Figure 8.10). Example 8.1 illustrates this with reference to the stresses on the base 
of the gravity retaining wall analysed in Section 7.8.

Example 8.1:  Equivalent loads and pressure distributions on 
the base of a gravity retaining wall

Figure 8.11 shows the distribution of normal and shear stresses needed for short-term 
equilibrium of the Cricklewood retaining wall shown in Figure 7.23, as calculated 
in Example 7.5 with the fully passive normal force NW,passive, the maximum available 
base friction TBmax, and the soil/wall interface forces on both sides of the wall TW,passive 
and TW,active all reduced by the factor 1.362, and the fully active normal force NW,active 
increased by the same amount. (This gives values of normal contact stress σA = 209 kPa, 
σQ = 319 kPa, and 30 kPa/1.362 22 kPabτ = = .) Calculate (a) the equivalent vertical force, 
 horizontal force and moment acting through the mid-point of the base of the wall, and 
(b) the eccentricity e and the angle of inclination to the vertical α of the equivalent single 
point load.

SOluTIOn

 a. The equivalent horizontal force H is given by the mobilized interface shear stress τb 
multiplied by the width of the wall base:

 a22 kP 4.4 m 96.8 kN/m= × =H

B

α
R M

V
H

e

(a) (b)

Figure 8.10  Statical equivalence of (a) an eccentric, inclined point load and (b) combined vertical, horizontal, 
and moment loading through the centroid of a shallow foundation. (Redrawn from Gottardi and 
Butterfield, Soils and Foundations, 33, 3, 68–79, 1993.)
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  The equivalent vertical force V is given by the average vertical pressure 
1/2(σA + σQ) multiplied by the width of the wall base:

 

209 319 kPa

2
4.4 m 1161.6 kN/m

( )
=

+
× =V e

  The equivalent moment M is given by the turning effect of the difference between 
the actual pressure distribution and the average line, indicated by the shaded tri-
angles in Figure 8.11:

 
2 1/2

(319 209) kPa
2

2.2 m (2.2 m 2/3) 177.5 kNm/m= × ×
−

× × × =M

 b. From Figure 8.10, if the resultant force is R acting at an angle α to the vertical at an 
eccentricity e to the right of the centre of the base of the wall:

 H R  sin 97 kN/m= α =

 V R  cos 1162 kN / m= α =

 tan ( / ) tan (97/1162) 4.81 1⇒ α = = ⇒ α = °− −H V

 
R V R/cos 1166 kN/m= α ⇒ =

 M R e Vecos= α × =

 
e

M
V

e
177.5 kN m

1162 kN
0.153 m⇒ = = ⇒ =

  The adequacy of the foundation of the wall under this loading system is assessed 
in Example 10.5.

In the general case of an eccentric point load V acting vertically at a distance e from the 
centre of a foundation of width B, the contact stress between the foundation and the soil 
may be thought of as varying from (σa − σb) at one side to (σa + σb) at the other (Figure 8.12). 
σa is the average vertical total stress, and σb is the component of vertical total stress associ-
ated with the eccentricity e that balances the moment V·e about the centroid.

Vertical equilibrium of the footing requires that

 a= σ ⋅V B (8.11)

B = 4.4 m

σQ= 319 kPa

σA = 209 kPa

τb = 22 kPa

Figure 8.11  Equilibrium short-term total stress distribution on the base of the Cricklewood retaining wall 
(from Chapter 7), Example 8.1.
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while the condition of moment equilibrium gives

 M
B B

B V e2
2 2

2
3 2

1
6

b
b

2= × σ × × ⋅ = ⋅ σ ⋅ = ⋅  (8.12)

If the contact stress is to be greater than zero everywhere below the footing, σa must be 
greater than σb (so that (σa − σb) remains positive). Hence

 
V
B

V e
B

e
B6

or
62

> ⋅ <  (8.13)

Thus, there is an overall range of B/3 (B/6 on either side of the centre) within which a 
vertical point load must act if it is not to cause a tendency towards tensile stresses and/or 
separation at one edge of the footing. This is traditionally known as the middle third rule.

Having determined the components of load (either H, M and V or R, e and α) to which a 
foundation will be subjected, it is necessary to check that the footing will have a  sufficient 
margin of safety against collapse and will also not deform excessively under working 
 conditions. As already mentioned in Section 8.4, Annex D of Eurocode 7 Part 1 (BSI, 2004) 
gives bearing capacity equations similar to Equations 8.7 and 8.9, with an additional  factor 
to account for the inclination of the load. Eurocode 7 Part 1 also requires that ‘special 
precautions shall be taken where the eccentricity of loading exceeds 1/3 of the width of a 
rectangular footing or 0.6 of the radius of a circular footing’.

An approach to calculating the bearing capacity of a surface footing subjected to 
 simultaneous vertical (V), horizontal (H) and moment (M) loads is given by Butterfield and 
Gottardi (1994), on the basis of a large number of small-scale (model) tests to  investigate 
combinations of V, H and M that would cause failure. They showed that combinations of 
H, M and V at failure lay on a unique surface or three-dimensional failure envelope when 
 plotted on a three-dimensional graph with axes V, M/B and H where B is the breadth (i.e. the 
width) of the footing. Division of the moment M (in kN m) by the footing width B (in m) 
is necessary to make the units of the three axes the same (kN). The failure surface may be 
described as cigar or rugby-ball shaped, and is parabolic when viewed in either the V, H or 
the V, M/B plane (Figure 8.13).

Butterfield and Gottardi (1994) normalized the experimental values of V, H and M/B 
with respect to the vertical load Vmax that would cause failure of the footing when acting on 

B/2B/2

e
V

B

σaσa

σb

σb

Figure 8.12  Contact stresses below a rigid footing subject to a point vertical load V acting at a distance e 
from the centre of the footing.
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its own. For a foundation placed directly on the soil surface, the bearing capacity in pure 
vertical loading ′σ f may be calculated using Equation 8.7 with the surcharge on either side 
owing to the weight of soil above the founding plane 00′σ = . The depth factor dγ and the 
associated reduction factor rγ are also omitted, because the depth of burial of the foundation 
D is zero, giving

 N s B u(kPa) (0.5 )f′σ = × × γ − ∆γ γ  (8.14)

If the foundation is of width B and length L, the vertical load at failure, acting through 
the centroid, is

 V B L N s B u B L(kN) (0.5 )max f= ′σ ⋅ ⋅ = ⋅ ⋅ γ − ∆ ⋅ ⋅γ γ  (8.15)

H/Vmax

M/BVmax

ρ

M/B

Vmax
V

H

Failure envelope

(a)

(b)

(c)

Maximum

H or M/B

Vmax V
tt

Figure 8.13  Failure envelopes for a shallow footing: (a) H or M/B against V; (b) three-dimensional view 
in (V, M/B, H) space; (c) normalized cross-section perpendicular to the V axis at V = Vmax/2. 
(Redrawn from Butterfield and Gottardi, Géotechnique, 44, 1, 181–184, 1994.)
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The parabolas representing the views of the three-dimensional failure surface in the V, H 
and V, M/B planes have equations

 
H
t

V
V V

V
·

h

max

max

= −
 (8.16a)

and

 
M B
t

V
V V

V
/

·
m

max

max

= −
 (8.16b)

where th and tm are the slopes of the parabolas at the origin in the V, H and V, M/B planes, 
respectively (Figure 8.13a). Failure at low loads with M = 0 will be governed by sliding of the 
footing, H = V. tan δ where δ is the angle of friction between the footing and the underlying 
soil. This line represents the tangent to the failure surface at V = 0, hence th = tan δ. For 
Butterfield and Gottardi’s experiments, Hmax ≈ Vmax/8 and (M/B)max ≈ Vmax/11, correspond-
ing to th ≈ 0.5 and tm ≈ 0.36. Hmax is defined at M/B = 0, (M/B)max is defined at H = 0, and 
both occur at V = Vmax/2. Sections through the failure surface in the M/B, H plane (i.e. when 
viewed along the V axis) are ellipses, rotated through an angle ρ from the H axis towards the 
positive M/B axis (Figure 8.13c). The reason for this rotation is that, depending on its direc-
tion, H can act either to reinforce or to oppose the effect of M/B: if H and M/B act in the 
directions shown in Figure 8.10b, the horizontal load at failure will be much smaller than 
if either H or M/B is reversed. The three-dimensional failure surface may be represented by 
an equation of the form

H V
t

M B V
t

C M B V H V
t t

V
V

V
V

/ /( ) 2 { /( )} { }
1max

h

2

max

m

2
max max

h m max max

2








 + ⋅







 − ⋅ ⋅ ⋅ ⋅ ⋅

⋅








 = ⋅ −















  (8.17)

where the constant C is a function of th, tm and the inclination ρ to the H axis of the 
major axis of the cross-sectional ellipse. The data from three series of plane strain tests 
on  foundations of different widths on different types of sand and/or with different density 
indices have a best fit failure surface represented by Equation 8.17 with th = 0.52, tm = 0.35, 
ρ = 14° and C = 0.22.

The main practical implications of this are

• Surface footings are particularly vulnerable to horizontal and moment loading, 
with H ≈ Vmax/8 or M/B ≈ Vmax/11 being sufficient to cause failure. For this reason, 
 foundations that are required to carry significant horizontal or moment loads are gen-
erally piled (see Sections 8.6–8.9), or at least buried to some extent.

• The remoteness from the failure surface of a point on the (V, M/B, H) diagram 
 representing a general load will depend on the load path followed from the current state 
to failure. This makes it difficult to define a meaningful and general margin of safety.

• If a surface footing is to be as safe as possible when subjected to a general load 
 increment, the design vertical load should be about Vmax/2.

It is difficult to ensure that a shallow foundation subjected to a load path involving an 
increase in H or M coupled with a reduction in V will remain remote from failure, in terms of 
the ratio of the load at failure to the current loading state. This is illustrated in Example 8.2.
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Example 8.2:  Assessment of a shallow foundation subject to 
vertical, horizontal and moment loading

Figure 8.14 shows a schematic cross-section through an offshore platform, supported by four 
legs each bearing onto the centre of a square pad foundation on the seabed. In plan view, the 
pad foundations are located with their centres at the corners of a square of side length 56 m. 
The dead load acting vertically is 52 MN, distributed equally between the four foundations. 
Wave and wind loading give rise to a design horizontal load of 8 MN, acting at a height 
of 98 m above the seabed through the centroid of the platform, as  indicated. (In designing 
against a geotechnical ultimate limit state (ULS) involving failure in the ground according 
to Eurocode 7 with factored soil strengths, unfavourable variable actions would also be 
increased by a partial factor of 1.3. This means that our design value for the wind and wave 
loading of 8 MN corresponds to an expected value of 8 MN/1.3 ≈ 6 MN. We will return 
briefly to this later.) The seabed soil has an effective angle of shearing resistance ′ϕ = °36  
and saturated unit weight γ = 20 kN/m3. Determine the size of foundations if a partial fac-
tor on soil strength Fs = 1.25 applied to tan φ′ is required in the most adverse design loading 
condition in the cross-sectional plane shown in Figure 8.14. Construct the failure envelope 
for the foundation you propose, and sketch on it the load paths followed by both the left-
hand and the right-hand footings as the wind and wave load increases from zero to its design 
value. Assume that the failure envelope for combined horizontal and vertical loading is given 
by Equation 8.16a, with th = 0.5 when the full strength of the soil is used (i.e. Fs = 1).

SOluTIOn

The steady component of vertical load that must be carried by each foundation pad is given by

 V 52 MN/4 13 MN.= =

The horizontal 8 MN wind and wave loading is shared equally between the four pads, 
giving a horizontal load on each pad of

 H 8 MN/4 2 MN= =

The 8 MN wind and wave load also exerts a moment of 8 MN × 98 m = 784 MNm 
about the seabed. This causes an increase in the vertical load of ΔV on the two right-hand 
pads, and a corresponding decrease on the left-hand pads, where

 V V2     56 m 784 MNm 7 MN (per pad)× ∆ × = ⇒ ∆ =

8 MN

98 m

52 MN

56 m

Figure 8.14  Schematic cross-section through an offshore platform with pad foundations below each leg, 
Example 8.2.
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Hence there are two possible loading cases we must consider:

 i. For the left-hand pads, (V − ΔV) = 6 MN and H = 2 MN
 ii. For the right-hand pads, (V + ΔV) = 20 MN and H = 2 MN

All four pads must be designed to withstand the more onerous of these, as the wind 
and wave loading could act in either direction (actually, the most critical case is when the 
wind and wave loading acts along the diagonal—real life is three dimensional!).

We can use the equation of the factored failure surface in the V−H plane to calculate 
the required bearing capacity of the footing in pure vertical loading, Vmax, on the basis of 
the allowable mobilized soil strength, in each loading case:

 
H
t

V
V V

V
·

h

max

max

= −
 (8.16a)

As th = tan δ, this too must be divided by the partial factor on soil Fs = 1.25 giving

 

0.5
1.25

0.4h,design = =t

Case (i): H = 2 MN and V = 6 MN

 

V
V

V V V

2
0.4

6
6

5 6 36 36 MN

max

max

max max max

= ⋅ −

⇒ ⋅ = ⋅ − ⇒ =

Case (ii): H = 2 MN and V = 20 MN

 

V
V

V V V

2
0.4

20
20

5 20 400
400
15

27 MN

max

max

max max max

= ⋅ −

⇒ ⋅ = ⋅ − ⇒ = ≈

Hence the foundation pads that are being unloaded (i.e. on the left-hand side of the 
platform as shown in Figure 8.14) are the more critical, and all four pads must be designed 
for Vmax = 36 MN.

Vmax may be calculated using Equation 8.15 with the foundation length L = B:

 V N s B u B(kN) (0.5 )max
2= ⋅ ⋅ γ − ∆ ⋅γ γ  (8.18)

where the various factors including Nγ are based on the allowable mobilized strength 
′ϕmob  which is given by

 
tan

tan
1.25mob

1′ϕ = ′ϕ







−

 Taking 36 , tan (0.5812) 30mob
1′ϕ = ° ′ϕ = ≈ °−

Using the expressions for Nγ and sγ given by Meyerhof (1963: Table 8.1) with 
B L K30 , , (1 sin )/(1 sin ) 3mob p′ϕ = ′ϕ = ° = = + ′ϕ − ′ϕ = , and, = ⋅ ⋅ ′ϕ =N K exp{π tan } 18.4q p ,
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 N N( 1) tan(1.4 ) 17.4 tan42 15.67q= − ⋅ ′ϕ = × ° =γ

 
s s K

B
L

1 0.1 1.3q p= = + ⋅ ⋅ =γ

Assuming that the increase in pore water pressure below the seabed is hydrostatic, 
Δu in Equation 8.18 = γw × 0.5B = 5B (kPa). Substituting the numerical values calculated 
above into Equation 8.18 with γ = 20 kN/m3 gives

 

(kN) (0.5 ) 15.67 1.3 5

101.86 with in metres
max

2 3

3

= ⋅ ⋅ γ − ∆ ⋅ = × ×

=
γ γV N s B u B B

B B

Hence, Vmax = 36 MN = 0.102B3

 
353m or 7.07 m3 3⇒ = =B B

The actual failure load of this foundation in pure vertical loading may be  calculated 
using Equation 8.18 with values of Nγ and sγ on the basis of the full soil strength of  36°. 
With K N N36 ; 3.852, 37.75, 44.42p q′ϕ = ° = = =γ  and sγ = 1.385 giving (kN)max =V

(0.5 ) 44.42 1.385 5 307.62 3 3⋅ ⋅ γ − ∆ ⋅ = × × =γ γN s B u B B B  or, with B = 7.07 m,

 V 109 MNmax ≈

Note how with ′ϕ = °36 , the partial factor of 1.25 on ′ϕtan  is equivalent to a load factor 
on Vmax of 109/36 ≈ 3, not including the load factor of 1.3 already applied to unfavour-
able variable actions. A load factor of 3 might seem comforting, but overestimating φ′ by 
as little as one or two degrees would result in a foundation being much closer to failure 
than the designer intended.

Failure envelopes in the (V, H) plane according to Equation 8.16a are plotted in Figure 
8.15 for (i) Vmax = 36 MN, th = 0.4 and (ii) Vmax = 109 MN, th = 0.5. Loading paths for 
both the left-hand (L) and right-hand (R) foundation pads from the point (V = 13 MN, 
H = 0), representing the dead load only, to the points representing the full design wind 
and wave loading (V = 6 MN, H = 2 MN) and (V = 20 MN, H = 2 MN) are also 
shown. The load path followed by the left-hand footing ends on the limiting enve-
lope based on the factored soil strength ( 30′ϕ = °) corresponding to Vmax = 36 MN and 
th = 0.4, while the load path for the right-hand footing ends well within it. The remoteness 
of the footing from failure under the design loading is indicated by the distance between 
the ends of the load paths and the true failure envelope based on the full strength of the 
soil ( 36′ϕ = °) with Vmax = 109 MN and th = 0.5.

It may be seen that, in terms of a factor on the horizontal load, the left-hand footing 
is very much closer to failure than that on the right-hand side. The value of H at failure 
in each case may be calculated from the intersection of the failure surface with the rel-
evant loading path. The equation of the real failure surface (with th = 0.5 and Vmax = 
109 MN) is

 V H V V V2 ( )max max⋅ ⋅ = ⋅ −

or in this case, setting Vmax = 109 MN

 H V V218 (109 )⋅ = ⋅ −
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Considering the geometry of Figure 8.14 for a general wind and wave loading force of 
4H, the loading path for each footing may be expressed as

 
V

H
H13MN

98 4
112

13MN 3.5= ± × = ±

Solving these equations gives values at failure of (H = 2.3 MN, V = 4.9 MN) for the 
left-hand footing, and (H = 13.5 MN, V = 60.2 MN) for the right-hand footing. For the 
left-hand footing, the resulting load ratio (Hfailure/Hdesign) is only 1.16, although this is in 
addition to the partial load factor of 1.3 already applied to H, which gives a real load 
ratio (Hfailure/Hexpected) = 1.16 × 1.3 = 1.5. For the right-hand footing, these ratios are a 
rather more comfortable 6.74 and 8.76, respectively. It can be seen from the relative posi-
tions of the actual and factored failure surfaces in Figure 8.15 that a foundation of this 
type will always be more vulnerable to failure in a loading path that involves an increase 
in H and a decrease in V, whatever partial factors are applied. We must also remember 
that we have not analysed the most critical case, which is when the wind and wave load 
acts along a diagonal.

Note: This example is based on one originally given by Georgiadis (1985).

Three-dimensional undrained failure envelopes for skirted foundations in combined 
 vertical, horizontal and moment loading are given by Gourvenec and Barnett (2011).

8.6  SIMPLE PILED FOUNDATIONS: ULTIMATE AXIAL 
LOADS OF SINGLE PILES

In masonry buildings, significant line loads arise as a result of the self-weight of the walls. 
Live loads are also transmitted to the foundations through the walls, and strip footings rep-
resent an appropriate method of load transfer into the underlying soil. In steel or concrete 
framed buildings, however, the structural loads are transferred downward through the col-
umns, resulting in the application of a series of high-intensity point loads to the underlying 
soil. These loads are more effectively transferred to the soil by means of in-ground concrete 
columns or piles. The depth to which the pile penetrates below ground or basement level 
will depend primarily on the magnitude and nature of the imposed loads and on the stiffness 
and strength of the soil.

Actual failure surface
with Vmax = 109 MN, th = 0.5
218H = V (109–V )

12

10
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6H
 (M

N
)
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2
L R

0
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V (MN)
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Factored failure surface
with Vmax = 36 MN, th = 0.4
90H = V (36–V )

Vmax

Figure 8.15  Failure envelopes and load paths for the offshore platform foundations under the loading condi-
tions indicated in Figure 8.14, Example 8.2.
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Piles were traditionally designed so that the net load under working conditions was a factor 
of 2.5–3 times smaller than the net load at failure, experience having shown this to be suf-
ficient to avoid excessive deformations (i.e. a serviceability limit state or an SLS) under work-
ing conditions. (The net load is the applied load plus the weight of the pile, minus the weight 
of soil displaced. The latter two items may be disregarded if they approximately cancel each 
other out.) Modern design codes such as Eurocode 7 (BSI, 2004) have sought to distinguish 
more clearly between ultimate limit state (ULS) and SLS calculations. As a consequence, the 
overall load factor resulting from a ULS calculation may be less than that associated with a 
traditional approach and perhaps insufficient to avoid a SLS, which the code requires to be 
investigated separately (Driscoll et al., 2008).

In the design of piles in axial loading to avoid a geotechnical ULS involving failure or 
excessive deformation of the ground, Eurocode 7 generally requires partial factors to be 
applied to actions (loads) and resistances, rather than to soil strengths. As already men-
tioned in Section 7.1, this book is concerned primarily with fundamental principles rather 
than codes of practice. Having said this, we will follow some of the approaches specified in 
EC7 (BSI, 2004) in applying combinations of partial factors to loads, soil strengths and/or 
resistances in considering designs for the avoidance of a geotechnical ULS.

It is important to realise that the calculations presented in this book do not in any sense 
represent the complete design process, which would require additional calculations involv-
ing different combinations of partial factors and the consideration of other ultimate and 
serviceability limit states. Guidance to design according to EC7 is given by Driscoll et al. 
(2008) and Bond and Harris (2008). The wider principles of pile design are discussed by 
Tomlinson (1995).

Figure 8.16 illustrates how the load on a pile foundation is taken partly by the skin fric-
tion between the pile and the surrounding soil, and partly by the bearing pressure on the pile 
base. (In EC7 terms, both of these would be classed as resistances.) In sandy soils, an effec-
tive stress analysis must be carried out. In clay soils, it will usually be necessary to calculate 
the  capacity of the pile in both the undrained condition (using a total stress analysis and the 
undrained shear strength failure criterion), and in the long term (using effective stresses and 
the frictional failure criterion).

The bearing capacity at the base of the pile can be calculated using the bearing capacity 
factors Nc (undrained) and Nq (in terms of effective stresses), modified to take account of the 
depth of the pile D and its plan dimensions B × L (where L is greater than or equal to B) using 
the depth and shape factors given by Skempton (1951) or Brinch Hansen (1970), as indicated 
in Tables 8.1 or 8.2. (The Meyerhof depth factors given in Tables 8.1 and 8.2 are not suitable 
for piles. They were intended for shallow foundations, and have no apparent limit as the D/B 
ratio is increased.)

Skin friction

Base bearing

Applied load Q

W = pile weight

Figure 8.16 Skin friction and base bearing resistances for a single pile.
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For piles, the Nγ term is generally ignored unless the base is under-reamed (i.e. opened out 
into a bell-shape), because the foundation width B is small in comparison with the depth D.

Empirical correlations have been suggested between the base bearing resistance of piles 
and the blowcount measured in a Standard Penetration Test (see Section 11.3.1) by Meyerhof 
(1976), and the resistance measured in a cone penetrometer test (see Section 11.3.2) by Heijnen 
(1974) and Thorburn and Buchanan (1979). Accounts of these are given by Whitlow (1995) 
and Burland (2012).

Usually, the pile tends to settle relative to the surrounding soil, so that skin friction 
between the pile and the soil generally helps to support the imposed load. However, this may 
not always be the case. For example, if the soil around the pile is subjected to a surcharge 
loading or groundwater lowering, it may tend to settle relative to the pile: skin friction then 
acts with, rather than against, the external load and both must be resisted by the base bear-
ing pressure. This is likely to reduce the load carrying capacity of the pile, and may increase 
the pile settlement at which it is reached.

In a total stress analysis, a reduction factor α is applied to the undrained shear strength of the 
soil to take account of disturbance and softening resulting from the effects of pile  installation. 
In an effective stress analysis, it is necessary to estimate the  post-installation lateral stresses 
to determine the contribution of pile/soil friction. The expression K / 1 sinh v= ′σ ′σ = − ′ϕ  
 [originally proposed by Jaky, 1944] is generally accepted to give a reasonable estimate of 
the in situ lateral effective stresses in normally consolidated soils. In overconsolidated soils, 
the in situ earth pressure coefficient may be estimated using K / (1 sin )h v= ′σ ′σ = − ′ϕ . OCRsin ′ϕ  
(Mayne and Kulhawy, 1982), up to the passive limit K (1 sin )/(1 sin )p = + ′ϕ − ′ϕ  (Section 
4.10.3). However, the expression (1 sin )K = − ′ϕ  is often used to account for possible stress 
relief during installation.

For bored piles, which are made from reinforced concrete cast in a pre-drilled hole in the 
ground, the skin friction may be fully mobilized at rather smaller displacements than the 
base bearing pressure. For driven piles, which are hammered into the ground and may be 
made of timber, steel or precast reinforced concrete, the rates of mobilization of skin friction 
and base bearing resistance are likely to be similar and rapid. These points are illustrated by 
Figure 8.17, which gives data from load tests on model piles, carried out in a geotechnical 
centrifuge.

The calculation of the ultimate and design loads for a deep foundation, in both the short 
term and the long term, is illustrated in Example 8.3.
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Figure 8.17  Mobilization of skin friction and base bearing pressure with pile displacement. (Redrawn from 
Fioravante et al., in Centrifuge 94, eds. C.F. Leung, F.H. Lee and T.S. Tan, 455–60, A.A. Balkema, 
Rotterdam, 1994. With permission.)
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8.7 ?ϕϕ ϕϕ′ ′orcrit peak

The arguments in favour of using crit′ϕ  rather than peak′ϕ  in calculating the ultimate loads of 
foundations are broadly the same as those given in Section 7.3.2 for retaining walls; that is, 

crit′ϕ is constant for a given soil whereas peak′ϕ  depends on the ability of the soil to dilate and 
hence on its initial density and stress, and the use of crit′ϕ  guards against the possibility of 
progressive failure in a strain-softening soil. Also, in a design according to Eurocode 7 (BSI, 
2004), the strength used should be ‘a cautious estimate of the value affecting the occurrence 
of the [relevant] limit state’; and ‘the stress level of the problem imposed’ should be consid-
ered when selecting the value of φ′.

All this would suggest that the critical state or ultimate strength should be used in a cal-
culation relating to a ULS involving failure in the ground. Examination of the literature sug-
gests that peak strengths have generally often been used in the design of foundations using 
traditional methods involving the application of a load factor of 2.5–3 to the calculated 
ultimate capacity. However, this was probably because the calculation also served to design 
against a SLS resulting from excessive pile movements. In that case, the peak strength would 
have served as a proxy for soil stiffness, because if a given soil has a higher peak strength 
(owing to its greater density), it also likely has a higher stiffness. In attempting to limit 
displacements on the basis of collapse conditions assessed using the critical state strength, 
a higher load factor would be needed for a foundation on a loose soil than for an identical 
foundation on a dense soil with a higher peak strength and stiffness, if the settlements under 
working conditions were to be the same.

If peak strengths are used in ULS design calculations, they must be selected with care. 
Owing to the exponential term in Equation 8.2, the over-estimation of φ′ by only a few 
degrees could be catastrophic, especially when 30′ϕ > ° or so. Substituting 30′ϕ = ° into 
Equation 8.2 ( N K eq p

tan= ⋅ π ′ϕ ) gives Nq = 18.4; with 33′ϕ = °, Nq = 26.1. In other words, 
a 10% increase in φ′ leads to a 42% increase in the calculated value of Nq. When based on 
laboratory test data, the peak strength must be measured at the maximum effective stress 
experienced by the soil in the field, on samples having a representative void ratio and/or 
stress history. With piles and deep foundations, the effective stresses below the base could 
be high enough to suppress dilation completely, so that the peak strength may be the critical 
state strength.

In a design following Eurocode 7 (BSI, 2004), the possibility of a SLS—for example, 
structural damage resulting from excessive movement of the foundation—would also need 
to be considered. In cases where the load factor (i.e. the load that would cause failure divided 
by the working or design load) obtained from or used in the collapse calculation is relatively 
small, the requirement to avoid a SLS may well govern the design (Driscoll et al., 2008).

Example 8.3: Calculating the ultimate and design loads for a deep foundation

  (a) Explain briefly the two principal mechanisms by which a deep or piled foun-
dation transmits loads to the soil. Are they both always reliable? Figure 8.18 
shows a deep foundation, which consists of a single diaphragm wall panel or 
barrette. Using the data given in Tables 8.2 (Skempton, 1951) and 8.1 (Brinch 
Hansen, 1970), estimate (b) the short-term and (c) long-term ultimate vertical 
loads. Also calculate and comment on (d) the short-term and (e) long-term ULS 
design permanent applied loads, if partial factors of 2.24 on the base bearing 
resistance, 1.82 on the skin (shaft) friction and 2.1 overall are required. (These 
partial factors are made up of a ‘model factor of 1.4’, which accounts for uncer-
tainty in the method of analysis, multiplied by partial factors of 1.6 on the base 
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bearing resistance, 1.3 on the shaft (skin) friction in compression, and 1.5 on the 
total, as specified in EC7 for a bored pile.)

  In the short term, assume that the soil/pile adhesion τw is equal to 0.5 × the 
undrained shear strength of the clay τu, and that the undrained shear strength of 
the clay increases linearly from 50 kPa at a depth of 5 m to 100 kPa at the base of 
the pile. In the long term, assume that the horizontal effective stress at any depth 
is equal to − ′ϕ(1 sin )crit  times the vertical effective stress at the same depth, that the 
angle of friction δ between the concrete and the soil is equal to ′ϕcrit, and that the 
long-term pore water pressures are hydrostatic below the indicated water table. 
Take the unit weight of water as 10 kN/m3, Nc = 5.14 and = ′ϕeq p

πtan critN K , where 
K (1 sin )/(1 sin )p crit crit= + ′ϕ − ′ϕ .

  (f) Comment briefly on the assumptions ′σ − − ′ϕ ′σ δ = ′ϕ(1 sin ) ,h crit v crit and τw = 0.5τu.

SOluTIOn

 a. Load transfer is by (i) skin friction and (ii) base bearing. Skin friction can only be 
relied on to support the applied vertical load if the pile tends to settle with respect 
to the surrounding soil. This may not always be the case, for example if the sur-
rounding ground is surcharged or dewatered so that it compresses or consolidates. 
Assume in this case that skin friction helps to support the applied vertical load, 
that is, acts upwards on the pile. The ultimate loads are calculated using the full 
strengths of the soils.

 b. Short-term analysis using τmax = τu failure criterion for the clay. In the sands and 
gravels, the skin friction is given by τ = ′σ δtanw h . The pore water pressures are 
hydrostatic below groundwater table, and τw is calculated as follows.

  The vertical total stress σv is calculated from the weight of overburden, using 
γ = 20 kN/m3 in the sands and gravels, and γ = 18 kN/m3 in the clay.

  The vertical effective stress ′σ = σ −v v u
  The horizontal effective stress ′σ = − ′ϕ × ′σ(1 sin )h crit v

  The angle of soil/pile friction δ = ′ϕcrit

  The soil/pile shear stress τ = ′σ × ′ϕtanw h crit

  In the clay in the short term, τw = 0.5τu, so that over the depth of 5–10 m 
τw increases linearly from 0.5 × 50 = 25 kPa (at 5 m) to 0.5 × 100 = 50 kPa 
(at 10 m).

  The values of vertical and horizontal total and effective stress, δ and τw for the 
sands and gravels, and τw for the clay in the short term, are given in Table 8.3. 
The skin friction increases linearly in the depth range of 0–2 m, 2–5 m and 
5–10 m.

Concrete barrette
γ = 24 kN/m3

Sands and gravels
γ = 20 kN/m3

Clay γ = 18 kN/m3

0.6 m

0.
6 

m

3 m

Plan of barrette
5 m

3 m

2 m W.T.

Cross-section (not to scale)
τu= 100 kPa

τu = 50 kPa
φćrit = 30°

φćrit = 20°

Figure 8.18 Dimensions of barrette foundation and soil profile, Example 8.3.



430 Soil mechanics: concepts and application

© 2010 Taylor & Francis Group, LLC

  The force due to skin friction is equal to the surface (perimeter) area of the bar-
rette × the average shear stress τw,av in each zone. The linear distance around the 
perimeter of the barrette is 2 × (3 m + 0.6 m) = 7.2 m.

  Thus the total load which may be taken in skin friction is

 

[2m 7.2m 0.5 (11.5kPa)] [3m 7.2m 0.5 (11.55kPa 20.21kPa)]

[5m 7.2 m 0.5 (25kPa 50kPa)]

83kN 343kN 1350kN 1776kN

× × × + × × × +
+ × × × +
= + + =

  The base bearing pressure is calculated using Equation 8.9:

 N s d( ) { }f 0 c c c uσ − σ = × × × τ

 where σf and σ0 are the vertical total stresses below and to one side of the pile base 
at failure (Figure 8.19a).

  For the barrette, D = 10 m, B = 0.6 m and L = 3 m, so that the shape factor sc 
from Table 8.2 (Skempton, 1951) = (1 + 0.2 B/L) = (1 + 0.2 × 0.6/3) = 1.04. The 
depth: breadth ratio D/B = 16.7, so that the limiting value of depth factor dc = 1.46 
applies. τu at the base of the pile is 100 kPa, σ0 = 190 kPa (from Table 8.3), and 
Nc = 5.14.

  Thus

 ( 190kPa) 5.14 1.04 1.46 100kPafσ −  =  ×   ×   × 

  or

 970kPafσ =

  This corresponds to a total base load of 970 kPa × 0.6 m × 3 m = 1746 kN.
  The ultimate total load is therefore 1776 kN + 1746 kN = 3522 kN. This includes 

the weight of the concrete used to form the foundation, which must be subtracted 
from the ultimate total load to obtain the ultimate applied load. The weight of the 
foundation is [10 m × 0.6 m × 3 m × 24 kN/m3] = 432 kN.

  Thus, the ultimate applied load is 3522 kN − 432 kN = 3090 kN in the short term.
 c. Long-term analysis, using ( / ) tanmax critτ ′σ = ′ϕ  failure criterion. In both strata, the 

long-term skin friction is given by τ = ′σ δtanw h . The long-term values of vertical and 
horizontal total and effective stress, δ and τw for both the sands and gravels and the 
clay are given in Table 8.4. These were calculated using exactly the same principles 
as for the sands and gravels in the short-term analysis.

 u; (1 sin ) ; ; tanv v h crit v crit w h crit′σ = σ − ′σ = − ′ϕ × ′σ δ = ′ϕ τ = ′σ × ′ϕ

Table 8.3 Short-term soil/pile shear stresses at key depths, Example 8.3

Stratum and depth (m)
σv 

(kPa)
u 

(kPa)
vσ ′

(kPa)
hσ ′

(kPa) δ (degrees) τw (kPa)

Sand and gravel, 0 0 0 0 0 30 0
Sand and gravel, 2 40 0 40 20 30 11.55
Sand and gravel, 5 100 30 70 35 30 20.21
Clay, 5 100 – – – – 25
Clay, 10 190 – – – – 50
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  As before, the total skin friction force in the long term is given by the surface area 
of the barrette × the average shear stress τw,av in each soil zone:

 

Skin friction force [2m 7.2m 0.5 (11.55kPa)]

[3m 7.2m 0.5 (11.55kPa 20.21kPa)]

[5m 7.2m 0.5 (16.78kPa 26.35kPa)]

83kN 343kN 776kN 1202kN

= × × ×
+ × × × +
+ × × × +
= + + =

  The base bearing pressure is calculated using Equation 8.7, neglecting the Nγ 
component:

 N s d{ }f q q q 0′σ = × × × ′σ

 where f′σ  and 0′σ  are the vertical effective stresses below and to one side of the pile 
base at failure (Figure 8.19b).

  With D = 10 m, B = 0.6 m and L = 3 m, the shape factor sq from Table 8.1 
B L(BrinchHansen,1970) [1 ( / ) tan ] (1 0.2 tan20 ) 1.073crit= + ′ϕ = + × ° = .

  The depth: breadth ratio D/B = 16.7, so that the depth factor 
d k[1 2tan (1 sin ) ]q crit crit= + ′ϕ − ′ϕ  with k D Btan ( / ) 1.511= = . Thus

 d [1 2 tan20 (1 sin20 ) 1.51] 1.723q = + × ° − ° × =

  0′σ  at the base of the pile = 110 kPa, from Table 8.4, and N K e 6.4q p
πtan crit= =′ϕ . Hence

  6.4 1.073 1.723 110kPa 1301kPaf′σ = × × × =

  giving a base load due to the effective stress of

 1301kPa 0.6m 3m 2343kN× × =

  In addition to this, there is an upthrust resulting from the pore water pressure of 
3 m × 0.6 m × 80 kPa = 144 kN.

  The ultimate total load is therefore 1202 kN + 2343 kN + 144 kN = 3689 kN.

σ0 σ0 σ′0

σ′f
σ′0

σf

(a) (b)

Figure 8.19  Schematic diagram of vertical stresses below and to one side of foundation base: (a) short-term 
analysis; (b) long-term analysis, Example 8.3.

Table 8.4 Long-term soil/pile shear stress at key depths, Example 8.3

Stratum and depth (m) σv (kPa) u (kPa) vσ ′ (kPa) hσ ′ (kPa) δ (degrees) τw (kPa)

Sand and gravel, 0 0 0 0 0 30 0
Sand and gravel, 2 40 0 40 20 30 11.55
Sand and gravel, 5 100 30 70 35 30 20.21
Clay, 5 100 30 70 46.1 20 16.78
Clay, 10 190 80 110 72.4 20 26.35

Notes: Vertical total stress, σv calculated from weight of overburden.
 Pore water pressures are hydrostatic below groundwater table.
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  As before, the weight of the concrete used to form the foundation must be 
 subtracted from the ultimate total load to obtain the ultimate applied load, 
giving

 3689kN 432kN 3257 kNin thelong term− =

The ULS design loads are calculated from the values calculated in parts (b) and 
(c), as follows.

 d. Short term
  Ultimate base bearing resistance calculated using full soil strength parameters = 

1746 kN
  Factored base bearing resistance = 1746 kN divided by a factor of 2.24 (= 1.4 × 

1.6) = 779.4 kN
  Ultimate skin friction resistance calculated using full soil strength parameters = 

1776 kN
  Factored skin friction resistance = 1776 kN divided by a factor of 1.82 (= 1.4 × 

1.3) = 975.8 kN
  Factored total resistance calculated as the sum of the above = 779.4 kN + 

975.8 kN = 1755 kN
  Ultimate total resistance calculated using full soil strength parameters = 1746 

kN + 1776 kN = 3522 kN
  Factored total resistance = 3522 kN divided by a factor of 2.1 (= 1.4 × 1.5) = 

1677 kN
  This is less than the total of the individually factored resistances, and so governs 

the design.
  We must also subtract the load owing to the weight of concrete in the pile (432 kN), 

giving a short-term ULS design applied load of

 Q 1677 kN – 432kN 1245kNult,design,short-term = =

 e. Long term
  Ultimate effective stress base bearing resistance calculated using full soil strength 

parameters = 2343 kN
  Factored-base bearing resistance = 2343 kN divided by a factor of 2.24 (= 1.4 × 

1.6) = 1046.0 kN
  Ultimate skin friction resistance calculated using full soil strength parameters = 

1202 kN
  Factored skin friction resistance = 1202 kN divided by a factor of 1.82 (= 1.4 × 

1.3) = 660.4 kN
  Factored total resistance calculated as the sum of the above = 1046.0 kN + 660.4 

kN = 1706 kN
  Ultimate total resistance calculated using full soil strength parameters = 2343 

kN + 1202 kN = 3545 kN
  Factored total resistance = 3545 kN divided by a factor of 2.1 (= 1.4 × 1.5) = 

1688 kN
  This is less than the total of the individually factored resistances, and so governs 

the design.
  We must also subtract the load owing to the weight of concrete in the pile (432 kN) 

and add the uplift force owing to pore water pressure on the base (144 kN), giving 
a long-term ULS design load of

 Q N1688kN – 432kN 144k 1397 kNult,design,long-term = + =

The calculations we have carried out in (d) and (e) ensure that the foundation will 
not fail under the expected loading, that is, that a geotechnical collapse or ULS will 
not occur. The load factors (i.e. the actual ultimate load/design ultimate load) of (3090 
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kN/1245 kN) ≈ 2.4 in the short term and (3257 kN/1688 kN) ≈ 1.9 in the long term are 
at the low end or less than the range of values of 2.5–3 that might have been applied in a 
traditional design. (Were it not for the application of the ‘model factor’ of 1.4, they would 
have been even lower.)

As already mentioned, the traditional approach was based on the application of a large 
enough load factor to the ULS calculation to ensure more or less automatically that a SLS 
did not occur. Eurocode 7 (BSI, 2004) attempts to separate ultimate from serviceability 
limit states more explicitly, and requires a designer to check separately to ensure that a SLS 
will not occur. A SLS might involve, for example, a building becoming unserviceable as 
a result of cracking or other structural damage because the foundations settle too much.

The SLS calculation would involve assessing the settlement of the pile, and where the 
effective load factor determined from or used in the ULS calculation is relatively low, it 
is likely that the requirement to avoid excessive settlement of the foundation (i.e. the SLS 
calculation) would govern the design. Thus for design purposes, we cannot assume that 
the loads calculated in (d) and (e) represent allowable working loads without also making 
sure that they will not cause excessive settlement and hence a SLS. The terms ‘ULS’ and 
‘SLS’ are defined more formally in Sections 10.2 and 10.3.

(f) The in situ horizontal effective stresses in an overconsolidated clay may well be 
greater than − ′ϕ(1 sin )crit  times ′σv, as we assumed in part (c). In general, the assumption 

′σ = − ′ϕ ′σ(1 sin )h crit v should give a conservative estimate of the lateral stresses, and may 
allow for some stress reduction during pile installation.

As the interface between the soils and the concrete is likely to be comparatively rough, 
the assumption of full soil/pile friction δ = ′ϕmob is probably reasonable: (for retaining walls, 
Eurocode 7 (BSI, 2004) and Gaba et al. (2003) suggest δ ≤ ϕcrit for rough concrete and 
δ ≤ ′ϕ0.67 crit for smooth (e.g. precast) concrete and steel sheet piles. As the barette is cast 
in place, the interface between the concrete and the soil is likely to be rough). Also, criti-
cal state soil strengths (which are more conservative than peak strengths, but would be 
expected to govern a ULS involving failure in the ground) have been used in the calculation.

The assumption τw,mob = 0.5τu,mob is to take account of local softening at the pile/soil 
interface during construction—but see also the comments relating to this in Section 7.7.

8.8 PILE GROUPS AND PILED RAFTS

Piles are often installed in groups. In investigating the most critical failure mechanism of 
a pile group, it is necessary to consider the possibility that some or all of the piles will fail 
together as a block. Examples of block failure mechanisms are shown in Figure 8.20.

In principle, the analysis of the failing block is exactly the same as the analysis of an individ-
ual pile described in Section 8.6 and Example 8.3, with the following alterations to the detail.

 1. The total ‘skin friction’ is calculated on the basis of the perimeter area of the entire block.
 2. Similarly, the total base bearing force is calculated using the total base area of the block.
 3. In an undrained shear strength (total stress) analysis, the full shear strength of the soil 

may usually be taken to act on the perimeter boundary where there is shearing of soil 

(a) (b)

Figure 8.20 Failure of (a) a group and (b) a sub-group of piles en bloc.

pj
w

st
k|

40
20

64
|1

43
57

22
42

5



434 Soil mechanics: concepts and application

© 2010 Taylor & Francis Group, LLC

against soil. (Where the sliding boundary follows the soil/pile interface, for example at 
the corners or the ends of the blocks in Figure 8.20, the reduced value of soil/pile shear 
stress τw should still be used.)

 4. In an effective stress analysis where the sliding boundary passes through the soil, 
there is probably no need to reduce the lateral earth pressure to below the in situ 
value to take account of disturbance during pile installation. (Again, where the sliding 
 boundary follows the soil/pile interface, a reduced value of lateral effective stress will 
probably still be appropriate.)

 5. In an effective stress analysis, the Nγ effect will no longer be negligible if the equivalent 
foundation is now wide in comparison with its depth. Fleming et al. (1994) suggest 
that the base bearing stress at failure will be increased by an amount

 B u N0.8 [0.5 ]× γ − ∆ × γ (8.19)
  which is equivalent to taking (sγ × dγ × rγ) = 0.8 in Equation 8.7.

Fleming et al. (1994) point out that for piles in clay soils, the end bearing pressure qb is 
generally of order 10–20 times the average skin friction shear stress τw. Thus, block  failure 
is only likely to occur when the increase in base bearing area Ab is offset by a much larger 
 (10–20 times) decrease in the surface area of the sliding block As. This means that block 
failure is more likely to be a problem with a large number of long piles than with a smaller 
 number of shorter piles at the same spacing. In sands, the ratio qb/τw may be of order 50–200, 
and block failure is even less likely to occur.

Current trends in foundation design tend to favour the use of fewer, more widely spaced 
piles. In these circumstances, it is unlikely that the failure load calculated assuming failure as a 
block will be lower than the sum of the failure loads calculated for the piles acting individually. 
It may therefore be advantageous to prevent the failure of single piles, by ensuring that failure 
can only occur en bloc. For example, a combined pile and raft foundation might be installed, 
in which the main aim of the piles would be to limit differential settlements to acceptable lev-
els. Randolph and Clancy (1993) suggest that, for this purpose, a small number of piles should 
be concentrated in the central 25% of the raft area. Horikoshi and Randolph (1996) demon-
strated that just nine piles so placed were sufficient to reduce substantially the differential set-
tlement of a raft foundation that, according to a conventional calculation in which the bearing 
capacity of the raft was ignored, would require 69 piles to support. The complex interactions 
that take place between the raft, the piles and the soil in a piled raft foundation are difficult to 
analyse, but some simplified design tools are discussed by Clancy and Randolph (1996).

For piles of irregular shape, consideration may need to be given to alternative mechanisms 
of failure, even in the case of an isolated pile. An example of this is a steel pile formed of 
a universal column, which is H-shaped in cross-section. Failure might take place either by 
sliding between the steel and the soil (Figure 8.21a), or by the formation of slip surfaces 
between the tips of the flanges (Figure 8.21b). In the second case, the area of the shear 

Slip surfaces
between
steel and
soil

(a) (b)

Slip surfaces
in soil between
flange tips

Slip
between
steel
and
soilτw

τw τw
τu

Figure 8.21  Alternative failure mechanisms for a steel H-section pile: (a) soil on steel around the section; 
(b) through the soil between the flange tips.
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surface is reduced, but the strength mobilized on the shear surface (taken as τu, rather than 
the reduced value at the soil/pile interface τw) is greater. It is not, therefore, immediately 
obvious which of the failure mechanisms is the more critical.

In the design of piled foundations, it is often necessary to estimate settlements. This is 
particularly important in the case of large buildings, which may have a combination of piled 
and raft foundations. The estimation of pile movements under various applied loads is cov-
ered in detail by Fleming et al. (2009).

8.9 LATERAL LOADS ON PILES

Nearly all foundations are subject to some degree of horizontal loading. In a building, this might 
be induced by the wind; in an offshore oil platform, by wave action; and in a bridge abutment, 
by vehicle braking or acceleration loads transmitted through the deck. Where the horizontal 
loads are significant, angled or raking piles were often used in the past in an attempt to ensure 
that the resultant load acted along the axis of the pile. This is expensive and generally unneces-
sary, because the capacity of piles to carry lateral loads (i.e. loads perpendicular to their axis) 
is quite high. It is now more usual to rely on the lateral capacity of vertical piles to carry the 
horizontal component of the imposed load, unless the horizontal loads are particularly large.

In addition to cases where the load is applied to the top of the pile from the super- structure, 
piles may be subjected to lateral loading because there is a tendency for the ground to move 
while the pile remains stationary. Examples of this include a piled foundation behind a 
retaining wall, and piles installed to stabilize slopes as outlined in Section 8.12.

For a single pile that is unrestrained at the surface, failure in lateral loading may take 
place in one of two modes. Short piles will tend to fail by rotation about some point near the 
toe, as indicated in Figure 8.22a. Long piles will tend to form a plastic hinge at some depth 
below the surface, as indicated in Figure 8.22b. In general, the lateral load H may act at a 
height or eccentricity e above the soil surface, as shown in Figure 8.22.

If the pile is restrained at the surface by a slab (known as a pile cap) that remains horizontal, 
there are three possible modes of failure in lateral loading. A short, stiff pile could either translate, 
as indicated in Figure 8.23a, or it could fail by the formation of a single plastic hinge just below 
the pile cap (Figure 8.23b). A long, slender pile will tend to fail by the formation of two plastic 
hinges, one just below the pile cap and the other at some depth zp, as shown in Figure 8.23c.

The magnitude of the lateral load at failure may be calculated by assuming that the soil is 
in the passive condition in zones where the pile is being pushed into the soil, and in the active 
condition in zones where the pile is moving away from the soil.

Plastic
hinge
MP

ee

(a) (b)

Pivot

HH

I
zPzP

Figure 8.22  Failure modes of single piles in lateral loading: (a) short pile, in rotation; (b) long pile, with one 
plastic hinge. (Redrawn from Fleming, W.G.K., et al., Piling Engineering, 2nd edn., Blackie and Son, 
Bishopbriggs, 1994. With permission.)
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In each of the situations shown in Figures 8.22 and 8.23b and c, there are two unknowns. 
These are the value of H at failure, and the depth zp to the pivot or the plastic hinge. The values of 
the two unknowns may be calculated using the equations of horizontal and moment equilibrium 
for the pile, together with the assumed stress distributions. In Figure 8.23a, there is apparently 
only one unknown, H, which is calculated from the condition of horizontal equilibrium. The 
moment exerted at the top of the pile by the pile cap maintains the pile in moment equilibrium. 
This moment, which arises from the distribution of vertical stresses on the underside of the pile 
cap, must be taken into account in the design of the pile cap and the pile to pile cap connection.

In principle, the calculation of the limiting lateral load H is similar to the procedures 
described in Sections 7.6 and 10.2 for embedded cantilever retaining walls. However, the 
three-dimensional nature of the pile problem results in a tendency for failure at depth to 
occur by the plastic flow of the soil around the pile. This means that the limiting lateral 
stresses calculated for the plane strain conditions of the retaining wall analysis will tend to 
underestimate the net passive resistance at depth.

8.9.1 Effective stress analysis: (τ/σ′)max = tan φ′ failure criterion

In an effective stress analysis, the limiting lateral effective force per metre length of pile pu 
may be taken as

 p K z dd at depths 1.5u p v′ = ′σ ≤  (8.19a)

and

 p K z dd atdepths 1.5 ,u p
2

v′ = ′σ ≥  (8.19b)

where d is the pile diameter, Kp is the passive earth pressure coefficient (1 sin )/(1 sin )+ ′ϕ − ′ϕ , 
and v′σ  is the vertical effective stress at depth z. The limiting lateral load at shallow depths 
corresponds to the formation of a passive type wedge, as in a retaining wall analysis. 
At greater depths, the mechanism of deformation is horizontal plastic flow, and the limiting 
lateral load is considerably higher.

Equations 8.19 are to some extent empirical. Fleming et al. (1994) quote centrifuge model 
test data from Barton (1982) that are consistent with equations (8.19): it is probable that the 
peak strength, rather than the critical state strength, was used in the computation of Kp. On 
the basis of Equations 8.19, Fleming et al. (1994) give charts from which the ultimate lateral 
load H may be determined for each of the situations shown in Figures 8.22 and 8.23. These 
charts are reproduced here as Figure 8.24.

For short, stiff piles with no pile cap, which fail as shown in Figure 8.22a by rotation about 
a point near the toe without the formation of a plastic hinge, the solid lines in Figure 8.24a 
give values of the non-dimensionalized lateral load at failure H K d/( * )p

2 3γ  as a  function of 

Plastic hinge
MP

Pivot

(a) (b) (c)

HH
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Plastic
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Figure 8.23  Failure modes of single piles in lateral loading: piles restrained at the surface by a pile cap: 
(a) short pile, in translation; (b) intermediate length pile, with one plastic hinge; (c) long pile, 
with two plastic hinges. (Redrawn from Fleming, W.G.K., et al., Piling Engineering, 2nd edn., 
Blackie and Son, Bishopbriggs, 1994. With permission.)
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the pile length to diameter ratio l/d, for various values of non-dimensionalized height above 
ground level at which the lateral load acts, e/d. For short, stiff piles restrained by a pile cap, 
which fail either in translation as shown in Figure 8.23a or by the formation of a plastic 
hinge at the joint between the pile and the cap as shown in Figure 8.23b, the dotted lines 
in Figure 8.24a give values of the non-dimensionalized lateral load at failure H K d/( * )p

2 3γ  
as a function of the pile length to diameter ratio l/d, for various values of the dimensionless 
parameter M K d/( * )p p

2 4γ . (Mp is the ultimate or fully plastic bending moment of the pile at 
which the entire cross-section is at failure, and γ* is the effective unit weight as discussed 
below.) It may be seen that for short piles with caps, the failure mechanism (i.e. lateral trans-
lation with no hinges, or the formation of one hinge just below the pile cap) depends on the 
value of M K d/( * )p p

2 4γ  in combination with the length:diameter ratio l/d.
Longer piles without caps fail by the formation of a single plastic hinge as shown 

in Figure 8.22b. For these piles, the solid lines in Figure 8.24b give values of the non- 
dimensionalized lateral load at failure H K d/( * )p

2 3γ , as a function of the non-dimensional-
ized pile plastic moment M K d/( * )p p

2 4γ , for various values of the nondimensionalized height 
at which the lateral load H acts, e/d. Longer piles with pile caps fail by the formation 
of two plastic hinges as shown in Figure 8.23c. In this case, the dotted line in Figure 
8.24b gives the non-dimensionalized lateral load at failure H K d/( * )p

2 3γ , as a function of the 
 non-dimensionalized pile plastic moment M K d/( * )p p

2 4γ .
In using the charts given in Figure 8.24, the value of the effective unit weight γ* must 

take account of the effect of pore water pressures in reducing the effective stress. If the 
soil is dry or the pore water  pressures are zero, the soil bulk unit weight γs is used. If the 
pore water pressures are hydrostatic, the value of γ* must be taken as γs − γw. If there is 
vertical seepage, γ* = (γs − du/dz), where du/dz is the rate of increase of pore water pres-
sure with depth.

8.9.2 Total stress analysis: τmax = τu failure criterion

Randolph and Houlsby (1984) investigated the lateral load required to push a long circular 
cylinder through a clay soil of undrained shear strength τu, using a lower bound plasticity 
(stress field) analysis. This solution, which is applicable to the undrained failure of a laterally 
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Figure 8.24  Charts giving the ultimate lateral load for piles in non-plastic soils (φ′ analysis), both  unrestrained 
and restrained at the surface by a pile cap. (a) Short (stiff) piles; (b) long (flexible) piles. 
(Redrawn from Fleming et al., Piling Engineering, 2nd ed., Blackie and Son, Bishopbriggs, 1994. 
With permission.)
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loaded circular pile in a clay soil, gives a value for the total net lateral load per metre length 
at failure pu of between 9.14 dτu (if the pile is frictionless) and 11.94 dτu (if the pile is rough 
with pile/soil adhesion τw = τu), where d is the diameter of the pile. On the basis of this and 
previous work by Broms (1964), Fleming et al. (1994) suggest that the net lateral force at 
failure per metre length (pu), acting on a pile moving through a clay of undrained shear 
strength τu, is given by

 2 at thesoil surface, 0u up d z= τ =  (8.20a)

 p
z
d

d z d2
7
3

for depths 3u u= +





τ ≤  (8.20b)

 9 for depths 3u u= τ ≥p d z d  (8.20c)

As with Equation 8.19, the net lateral resisting load at shallow depths corresponds to the 
formation of a passive wedge, as in a retaining wall analysis. At depths below three times 
the pile diameter d, the failure mechanism analysed by Randolph and Houlsby (1984) will 
be developed.

Charts, based on Equation 8.20, showing the lateral load that will cause the short-term 
failure of piles in clay soils of undrained shear strength τu, are given by Fleming et al. (1994) 
and are reproduced in Figure 8.25.

For short, stiff piles without pile caps, the solid lines shown in Figure 8.25a give values 
of the non-dimensionalized lateral load at failure H/(τud2) as a function of the pile length 
to diameter ratio l/d, for various values of the non-dimensionalized height at which the 
lateral load H acts, e/d. Short stiff piles with caps may fail either by translation or by the 
formation of a single plastic hinge. For these piles, the dotted lines in Figure 8.25a give non- 
dimensionalized lateral loads at failure H/(τud2) as a function of the pile length to diameter 
ratio l/d, for various values of non-dimensionalized pile plastic moment Mp/(τud3). As before, 
the failure mechanism for a short pile with a pile cap depends on both the non-dimensional-
ized plastic moment (in this case, Mp/[τud3]) and the length:diameter ratio l/d.
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Figure 8.25  Charts for the ultimate undrained lateral load of piles in clay soils (τu analysis), both unre-
strained and restrained at the surface by a pile cap: (a) short (stiff) piles; (b) long (flexible) piles. 
(Redrawn from Fleming et al., Piling Engineering, 2nd ed., Blackie and Son, Bishopbriggs, 1994. 
With permission.)
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For longer piles without caps, the solid lines shown in Figure 8.25b give values of the non-
dimensionalized lateral load at failure H/(τud2) as a function of the non-dimensionalized pile 
plastic moment Mp/(τud3), for various values of the nondimensionalized height at which the 
lateral load H acts, e/d. Longer piles with pile caps fail by the formation of two plastic hinges: 
in this case, the dotted line shown in Figure 8.25b gives the non-dimensionalized lateral load 
at failure H/(τud2) as a function of the non-dimensionalized pile plastic moment Mp/(τud3).

Figures 8.24 and 8.25 give lateral loads at failure. The design load, as with the axial 
capacity investigated in Section 8.6 and Example 8.3, would be based on the failure load cal-
culated using a design value of soil strength, obtained by reducing the actual soil strength by 
an appropriate partial factor together with further partial factors applied to loads (actions) 
as specified in the code being followed.

An example of the use of charts such as those in Figures 8.24 and 8.25 in the design of 
laterally loaded piles for a slope stabilisation scheme is given in Example 8.6 (Section 8.12).

8.10 INTRODUCTORY SLOPE STABILITY: THE INFINITE SLOPE

The stability of slopes in sands and the long-term stability of slopes in clays may be  investigated 
by idealizing the slope as infinite and uniform, and considering the effective stresses acting 
on a plane parallel to the surface of the slope and a depth z below it (Figure 8.26).

For a unit length down a slope at an angle β to the horizontal, the weight W of the block 
of soil ABCD is W = γ z cos β. The side forces X are by symmetry equal and opposite, so 
that the shear stress τ and the normal total stress σ′ acting on the plane at a depth z below 
the soil surface may be found by resolution parallel and perpendicular to the slope:

 sin cos sinW zτ = β = γ β β

 W zcos cos2σ = β = γ β

The normal effective stress σ′ is given by σ′−u where u is the pore water pressure. The 
mobilized soil strength mob′ϕ  required to maintain the stability of the slope is given by
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Figure 8.26 Infinite slope analysis.
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The ratio of the available strength tan crit′ϕ  to the strength needed to be mobilized to 
maintain stability of the slope, tan mob′ϕ , gives the strength mobilization factor M or the 
operational partial factor on soil strength Fs:
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u
z

tan
tan

1
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mob

2
crit

= ′ϕ
′ϕ

= −
γ β







× ′ϕ
β

 (8.22)

The greater Fs, the safer the slope, but as Fs approaches 1 the slope will become unstable. 
As with other geotechnical structures, the question arises as to the nature of the strength 
available to prevent collapse. For first-time slides, the long-term stability of slopes is gov-
erned by the critical state strength of the soil, crit′ϕ , which is therefore the appropriate strength 
parameter to use in an ultimate limit state (collapse) calculation and in Equation 8.22. If 
there is a pre-existing slip surface, the long-term stability of a slope is likely to be governed 
by the residual strength of the soil, r′ϕ  (see Section 5.14). This is demonstrated by Skempton 
(1964), with reference to a number of case studies in London Clay.

The importance of pore water pressures cannot be overstated. If u = 0 (i.e. the slope is dry 
or there is vertical percolation of water to a drain or an underlying more permeable stratum, 
Figure 8.27a), then mob′ϕ  is equal to the slope angle β, and the maximum slope angle is equal 
to the full (critical state) strength of the soil.

If, at the other extreme, the slope is waterlogged with seepage parallel to the slope 
(Figure 8.27b), u = γwz cos2 β. (This is explained in Example 8.4 and Figure 8.30.) If γ = 2γw, 
tan 2tanmob′ϕ = β and the maximum slope angle βmax is only approximately half the strength 
of the soil crit′ϕ . A slope which is placed dry, but without adequate drainage so that it may 
later become waterlogged, is a disaster waiting to happen (e.g. the Stava tailings dam failure; 
Chandler and Tosatti, 1995) and the cost in human terms can be immense and last for gen-
erations (e.g. Aberfan; McLean and Johnes, 2000; Jefferies and Been, 2006).

Example 8.4: Stability of a long slope

Figure 8.28 shows a cross-section through part of a long slope at an angle of inclination 
to the horizontal β, through which water is flowing at an inclination θ.

 a. By considering the equipotentials associated with the flow lines shown in Figure 8.28, 
show that the pore water pressure on a potential failure plane at a depth z vertically 
below the surface of the slope is given by
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Figure 8.27 Seepage regimes for waterlogged slopes. (a) Downward seepage; (b) flow parallel to slope.
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 b. By considering the limiting equilibrium of an element of the slope, derive an expres-
sion relating θ and β to the effective angle of friction of the soil crit′ϕ  when the slope 
is on the verge of failure. The saturated unit weight of the soil is γ.

 c. What does your expression reduce to in the particular cases
θ = 90°  (downward percolation, u = 0)
θ = β  (flow parallel to the slope)
and what is the engineering significance of this result?

 d. Figure 8.29 shows a cross-section through a waste tip, which is initially dry. After 
a prolonged period of heavy rain, the material becomes saturated with water and 
a shallow pond develops on the top horizontal surface. Assuming that subsequent 
rainfall is sufficient to keep the top horizontal surface under a thin layer of water, 
sketch the steady state seepage flownet corresponding to these new groundwater 
conditions. Hence show that, if crit′ϕ  = 35° and γ = 18 kN/m3, the waste tip will fail.

SOluTIOn

 a. Figure 8.30 shows the equipotentials associated with the flowlines indicated in 
Figure 8.28.

  The pore water pressure at the point A, which lies on the potential failure plane 
at a depth z below the surface of the slope, may be calculated by imagining a stand-
pipe piezometer inserted with its tip at A, in which the water level will rise to B. B 
is at the same level as O. The pore water pressure at A is given by

 uA ABw= γ ×

  Considering the triangle OAB in Figure 8.30, OB = AB × tan θ.
  From the triangle OBC, BC = OB × tan β, so that BC = AB tan θ tan β. But BC = 

(z − AB) so that

 tan tan− = θ βz AB AB

Potential
failure surface

Depth z

Slope angleFlowlines
β

θ

Figure 8.28 Generalized seepage through an infinite slope, Example 8.4.
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Figure 8.29 Cross-section through waste tip, Example 8.4.
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 or

 
=

+ θ β1 tan tan
AB

z

 and
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z
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w

1 tan tan
= γ

+ θ β

  Since A is a perfectly general point, this is the pore water pressure at any position 
along the potential failure plane at a depth z below the surface of the slope.

 b. From Figure 8.26, the weight W of an element of unit width (into the paper), 
unit length down the slope and depth z is W = γ z cosβ. The side forces cancel, 
and the shear stress τ and the normal total stress σ′ acting on the plane at a 
depth z below the soil surface are found by resolution parallel and perpendicu-
lar to the slope:

 τ = β = γ β βsin cos sinW z

 σ = β = γ βcos cos2W z

  The normal effective stress σ′ is given by σ − u where u is the pore water pressure 
calculated in (a). The soil is in limiting equilibrium when
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Figure 8.30 Equipotentials and calculation of pore water pressures for infinite slope analysis, Example 8.4.
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  and failure will occur when

 tan
tan

1 [ (1 tan )]/[ (1 tan tan )]crit
w

2
′ϕ = β

− γ + β γ + θ β
 (8.23)

 c. If θ = 90°, u = 0 and β = ′ϕcrit.
  If θ = β, 

  

tan
tan

1 [ (1 tan )]/[ (1 tan tan )]

tan
1 [ / ]

crit
w

2
′ϕ =

β
− γ + β γ + β β

=
β

− γ γw

  or β = ′ϕtan 0.5tan crit if (γw/γ) ≈ 0.5.

  The engineering significance of this result is that a waterlogged slope will fail at 
about half the angle of inclination of a drained slope.

 d. Figure 8.31 shows a flownet for the waste tip, sketched according to the procedures 
given in Sections 3.8 and 3.12.

  By inspection, the flowlines emerge at between approximately zero and 5° to the 
horizontal. Substituting tan θ = 0, γ/γw = 1.8 and ′ϕ = °35crit  into Equation 8.23, we have

 

tan35 0.7
tan

1 [(1 tan ) / 1.8]

0.388tan tan 0.311 0

tan 0.28

16

2

2

° = = β
− + β

⇒ β + β − =
⇒ β =
⇒ β ≈ °

  This is the maximum stable slope under the seepage regime shown in Figure 8.31. 
As it is considerably less than the actual slope of 30°, the waste tip will certainly fail 
before steady state seepage has been established.

8.11 ANALYSIS OF A MORE GENERAL SLOPE

The infinite slope analysis presented in Section 8.10 is appropriate for long, uniform slopes. 
However, many slopes cannot reasonably be idealized as either long or uniform. Also, it is 
often important to be able to investigate the essentially localized destabilizing effect of activi-
ties such as the construction of a building at the top of a slope, or the formation of an exca-
vation near the bottom. In these cases, the infinite slope analysis is not sufficiently detailed 
and it is necessary to use alternative methods, which enable variations in slope and/or ground 
conditions, and the effects of external loads and surcharges, to be taken into account.

Impermeable

2 m
2 m
2 m
2 m
2 m

Lc

Figure 8.31 Flownet for waterlogged waste tip, Example 8.4.
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8.11.1  Total stress analysis for undrained 
stability of slopes in clays

The short-term stability of slopes in clay soils is usually investigated by assuming that if 
failure occurs, the slip surface will be circular in cross-section (Figure 8.32).

If the slipping mass of soil defined by the wedge OAB in Figure 8.32 is in equilibrium, the 
sum of the disturbing moments about the centre of the circle O must be equal to the sum of 
the resisting moments. For the particular slope and slip circle shown in Figure 8.32, taking 
moments about O gives

 X W R P R Q R {AB}W P Q mob+ − = τ  (8.24)

where τmob is the shear stress needed to prevent the slope from failing in this particular 
mechanism and {AB} is the arc length along the circumference of the slip circle from A to B.

If the slope is on the verge of failure, the mobilized soil strength τmob is equal to τu, the 
undrained shear strength of the soil. If the slope is not on the verge of failure τmob may be 
expressed as τu/Fs, where Fs is the operational partial factor on soil strength against failure 
of the slope by the particular mechanism shown in Figure 8.32.

The slip circle analysis is essentially an upper bound approach. A number of different slip 
circles must therefore be investigated to find the most critical mechanism, which is the one 
with the lowest operational strength factor (partial factor on soil strength) Fs.

Irregular slopes, including those with an undrained shear strength that varies with depth, 
may be investigated by subdividing the mass of soil above the assumed slip surface into a 
number of slices of width b (Figure 8.33). The weight w of each slice may be calculated using 
the trapezium rule, w = [γ b(z1 + z2)/2]. Then, with reference to Equation 8.24,

 X W x wW w∑=  (8.25)

where xw is the lever arm of the weight of the individual slice, and

 {AB}
1

d
1

mob
s

u
s

u∑∫τ =






τ ≈






τ
F

l
F

l
B

A

 (8.26)

where the term F l(1/ )s u∑τ  is the sum of the mobilized shear strength times the length of the 
base for each slice. In taking Fs outside the summation sign, we have assumed that Fs has the 
same numerical value for every slice.

Moment about O
of shear stress on
slip circle
=R �mob ×
arc length AB

Shear
stress on
slip circle
�mob

RQ

Xw

Rp

Q
Weight

W

Slip circle
radius R

A
P

O

B

Figure 8.32 Generalized slip circle failure mechanism.
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In the absence of surface loads such as P and Q, substitution of Equations 8.25 and 8.26 
into Equation 8.24 gives the operational strength factor Fs(= τu/τmob):

 F
R l

x ws
u

w

∑
∑

=
τ

 (8.27)

It must be remembered that the distance xw for each individual slice may be positive 
or negative, depending on whether it is to the left or to the right of the centre of the slip 
circle O. The sign of xw must be taken into account in evaluating the term x ww∑ .

Repetition of the calculation to find the slip circle having the lowest operational strength 
 factor is extremely tedious, and is now almost invariably carried out using a  computer pro-
gram. In the days when these calculations were carried out by hand, it was important to work 
methodically. One common approach was to find Fs for a series of circles of given radius, 
whose centres lay in a grid pattern as indicated in Figure 8.34. After a few trials had been 
made, contours of Fs could be plotted and used as a guide to the likely  position of the centre of 
the most critical slip circle. The process had then to be repeated for slip circles of different radii.

Design charts are available for certain idealized slopes. Figure 8.35a shows a slope of 
height H and angle β underlain at a depth Y below the toe by a much stronger and stiffer stra-
tum of soil or rock. This problem was investigated by Taylor (1948), who developed curves 
(reproduced in Figure 8.35b) showing the relationship between the  dimensionless groups 
τu/FsγH and Y/H for various slope angles β, based on the most critical slip circle. The dimen-
sionless group τu/γ H is often known as the stability number.

Although some slopes can reasonably be represented by a standard case such as that 
analysed by Taylor (1948), it is now much more common to use one of the many available 
computer programs for slip circle analysis, which can complete the search for the critical slip 
circle very quickly. The primary role of the engineer is then to understand the problem and 
make it amenable to analysis, so that the results of the analysis are reliable and meaningful.

z2

Xw

Fs
z1

w

l
b

O

l

τmob =τu/Fs

ΣXwW = Σ
τu

Figure 8.33 Subdivision of slipping soil mass into slices.

Figure 8.34 Method of searching for the critical slip circle.
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8.11.2  Effective stress analysis of a general 
slope with a circular slip surface

The generalized slope stability analysis using the total stress failure criterion τmax = τu is 
relatively straightforward (the requirement to search for the most critical slip circle being 
tedious rather than difficult), because there is no need to investigate the stress acting per-
pendicular to the failure surface. The normal stress has no moment about O, and does not 
affect the shear stress on the assumed failure surface.

In an effective stress analysis, the shear stress τ on the assumed failure surface depends on 
the normal effective stress σ′. At failure, ( / ) tan critτ ′σ = ′ϕ  if it is assumed that the stress ratio 
is greatest on the slip surface. If the slope has an operational partial factor on soil strength 
F tan /tans crit mob= ′ϕ ′ϕ , the mobilized shear stress on the slip surface under investigation is

 
F

tan
mob

crit

s

τ = ′σ ′ϕ  (8.28)

Although the normal effective stress σ′ has no moment about O, it must be calculated to 
determine the shear stress.

As with the total stress analysis, it is first necessary to divide the sliding mass of soil into 
a number of slices. The forces acting on an individual slice are shown in Figure 8.36a, and 
the location of the slice within the slipping soil mass in Figure 8.36b.

Assuming that the pore water pressure distribution can be calculated from a flownet, there 
are at first sight seven unknowns in Figure 8.36a, even if it is assumed that the side forces act 
at one-third of the height from the slip surface. These are the horizontal side forces E1 and 
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Figure 8.35  (a) Idealized slope geometry studied by Taylor. (Data from Taylor, Fundamentals of Soil Mechanics, 
John Wiley, New York, 1948. With permission.) (b) Slope stability charts.
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E2, the vertical side forces X1 and X2, the effective stress reaction normal to the slip surface 
N′(= σ′ × l, where l is the length of the slip surface along the base of the slice), the shear force 
on the slip surface T(= τmob × l), and the operational strength factor (partial factor on soil 
strength) Fs. (E1, E2, X1 and X2 are associated with the total stresses acting on the sides of the 
slice. N and T are the effective stress resultants, and U is the pore water force, on the base.)

As we have no interest in the side forces, other than to calculate the base reactions N′ 
and T, we can group the resultants (E1 − E2) and (X1 − X2) together, leaving us with five 
real unknowns. Unfortunately, we have only four equations relating these unknowns. These 
are the equations of horizontal and vertical force equilibrium, the equation of moment 
 equilibrium (usually about O), and Equation 8.28, which may be used to relate N′, T and Fs:

 l l F( ) ( ) tan /mob crit sτ × = ′σ × × ′ϕ

or

 T
N

F
tan crit

s

= ′ ′ϕ
 (8.29)

As we have only four equations in five unknowns, it is necessary to make an additional 
simplifying assumption. Various different simplifying assumptions have been proposed by 
different authors: we will now look briefly at the two most common.

8.11.2.1 Swedish method: Fellenius (1927)

In this method, it is assumed that the inter-slice forces are equal and opposite, so that 
(E1 − E2) = (X1 − X2) = 0. For Figure 8.36a with (E1 − E2) = (X1 − X2) = 0, resolving 
forces perpendicular to the assumed slip surface,

 w N Ucosα = ′ +  (8.30)

where α is the average angle of inclination of the base of the slice. In this case, α is measured 
clockwise from the horizontal. Resolving forces parallel to the assumed slip surface,

w sin α = T

X2

X1

E2

xw = R sin α

xw
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W
T
Nʹ

U

l

b

α

α

α

α

cos � = b/l

(a) (b)

O
Centre of
slip circle

R

Figure 8.36   (a) Forces acting on a single slice in an effective stress slope stability analysis; (b) location of 
slice within slipping soil mass.
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The disturbing moment about O is

 x w R wsinw∑ = ∑ α ⋅

and the resisting moment is

 TR∑

which (from Equation 8.29) is equal to

 N
F

R
tan crit

s
∑ ′ ϕ





 (8.31)

Substituting for N′ from Equation 8.30 into Equation 8.31, and equating the disturbing 
and restoring moments about O,
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Assuming that R and Fs are the same for all slices,

 
( cos )tan

( sin )s
crit∑

∑
[ ]
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α − ′ϕ

α
F

w U

w
 (8.32)

For a slice of breadth b, average height h and unit weight γ, the weight w is equal to γbh. From 
Figure 8.36, the length of the base of the slice measured along the slip surface l = b/cos α. In 
slope stability analysis, the pore water pressure u is usually written as

 u= γu r h

where ru is termed as the pore pressure ratio. ru is in effect the pore water pressure expressed 
as a proportion of the average total vertical stress due to the weight of the soil above the slip 
surface, ru = u/γh. Making these substitutions into Equation 8.32, with the pore water force 
U = u × l = ub/cos α = γhrub/cos α, we have

 
[( cos ) ( /cos )]tan

sins
u crit∑

∑( )=
γ α − γ α ′ϕ

γ α
F

bh hr b

bh
 (8.33a)

If the slice width b is the same for all slices, this can be simplified to:

 
{[( cos ) /cos ]tan }

( sin )s
crit∑

∑
=

γ α − γ α ′ϕ
γ α

F
h hr

h
u  (8.33b)

and if γ is the same for all slices,

 
{[ cos ( /cos )]tan }

( sin )s
u crit∑

∑
=

α − α ′ϕ
α

F
h hr

h
 (8.33c)

For the infinite slope analysed in Section 8.10, h is constant and equal to z. The pore pres-
sure ratio ru = u/γh, and the slip surface angle α is equal to the slope angle β.
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For any number of slices n, Equation 8.33 may then be written as
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which is identical to Equation 8.22. This is not surprising, because the basic assumption made 
by Fellenius (i.e. that the side forces on each slice cancel each other out exactly) is the same 
as that used in the infinite slope analysis of Section 8.10. We may therefore conclude that 
Fellenius’ method is a reasonable approximation to use when conditions resemble an infinite 
slope. Essentially, the slope must be substantially uniform (and therefore probably shallow), 
with little variation in pore water pressure (i.e. α and ru are approximately constant).

Equation 8.32 may also be used in the analysis of a non-circular slip, idealized as a series 
of sliding blocks (Question 8.9).

8.11.2.2 Bishop’s simplified or routine method: Bishop (1955)

Fellenius’ assumption that (E1 − E2) = (X1 − X2) = 0 is unnecessarily brutal, because it 
eliminates two unknowns instead of only the one required to make the problem statically 
determinate. As an alternative, Bishop (1955) suggested that the vertical components of the 
inter-slice forces might be assumed to be equal and opposite, so that (X1−X2) = 0, while the 
horizontal components need not be assumed to cancel out, i.e. (E1 − E2) ≠ 0. Making this 
assumption, and (again with reference to Figure 8.36a) resolving forces vertically,

 w N U Tcos cos sin= ′ α + α + α

From Equation 8.29,
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If the effect of the unbalanced side forces on the first and last slices is ignored, the disturb-
ing moment about O for a slipping mass made up of a number of slices is, as in (a) above,

 x w R wsinw∑ ∑= α

and the resisting moment is again

 TR∑

which (from Equation 8.29) is equal to

 

N
F

R
tan crit

s
∑ ′ ϕ

Substituting for N′ from Equation 8.34 into Equation 8.31, and equating the disturbing 
and restoring moments about O,
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Assuming that Fs and R are the same for all slices, and writing the pore water force U in 
terms of the average pore water pressure u on the base of the slice, U = ul = ub/cos α,

 F
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w ub
F

1
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 (8.35a)

For slices of the same breadth b and unit weight γ, with an average height h and expressing 
the pore water pressure as u = ruγ h, Equation 8.35a may be simplified to

 F
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h r
F

1
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[ (1 )tan ]
1

cos (tan sin / )s u crit
crit s∑ ∑ [ ]=
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× − ′ϕ ×

α + ′ϕ α

















 (8.35b)

which, since Fs appears on both sides of the equation, must be solved by trial and error, as 
in Example 8.5. For brevity of notation, the expression

 F
1

cos (tan sin / )crit sα + ′ϕ α






is often given the symbol nα.
Both Fellenius’ method and Bishop’s simplified method are limit equilibrium solutions 

based on an assumed circular slip surface. In principle, they can be applied when the slip 
passes through more than one soil stratum. However, if the soil unit weight γ and the 
slice width b are not constant, these terms cannot be taken out of the summation. The 
expressions for the operational strength factor Fs cannot then be simplified to the extent of 
Equations 8.33c and 8.35b. Where γ and/or b vary from slice to slice, Equations 8.32, 8.33a 
and 8.35a should be used.
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Also, the effects of external forces have not been taken into account in the derivation of 
Equations 8.32, 8.33 and 8.35. If external loads are present, they must be introduced into the 
calculation at the stage when moments are taken about the centre of the circle O. In evaluat-
ing Equations 8.32, 8.33 and 8.35, it is important to take account of the sign of sin α, which 
may be either positive or negative.

In Fellenius’ method, it is assumed that the resultant of the inter-slice forces acting 
on any one slice is zero. In Bishop’s simplified method, it is assumed that the resultant 
of the inter-slice forces is horizontal. Spencer (1967) carried out an analysis of circular 
slip surfaces, in which it was assumed that the direction of the resultant of the inter-slice 
forces was the same for all slices, but not necessarily horizontal (i.e. that the inter-slice 
forces were all parallel). Spencer showed that the calculation was comparatively insen-
sitive to the angle at which the inter-slice forces act, so that the assumption made in 
Bishop’s simplified method (that the inter-slice forces are horizontal) should not gener-
ally lead to any significant error.

8.11.3 Non-circular slips

Non-circular slips may be particularly important where there are reasonably well-defined 
pre-existing planes of weakness, as in the case of the Carsington dam (Skempton and Coats, 
1985; Rowe, 1991). Such planes might correspond to natural layers of weak material, or 
they may result from the shearing action of compaction plant during the construction of an 
artificial embankment.

Although derived in Section 8.11.2a by considering the moment equilibrium of a mass 
of soil about the centre of a circular slip, Equation 8.33a can also be obtained by resolving 
forces parallel to the slip surface for each slice, provided it is assumed that the resultant of 
the inter-slice forces is zero. Equation 8.33a may therefore be used in the analysis of a non-
circular slip divided into a number of conveniently shaped sliding blocks, as in Question 8.9.

Morgenstern and Price (1965) presented a completely general solution for slip surfaces of 
any shape, in which a functional relationship is introduced between the side shear forces X 
and the effective stress components of the normal inter-slice forces E.

A method of slices suitable for general routine use was presented by Janbu (1973). 
By resolving the forces acting on each slice (Figure 8.36a) horizontally and vertically, and 
assuming (as in the Bishop simplified method) that the resultant of the inter-slice forces is 
horizontal,
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 (8.36)

The main concerns in a slope stability analysis are

• The appropriate characterization of the soil layers actually present
• The accurate estimation of pore water pressures

Practically, it will in most cases not be feasible to carry out the search for the most critical 
slip surface without the aid of a computer program. There are many such programs avail-
able. In deciding which one to use, the ability of the program to take account of pore water 
pressures in a realistic manner is paramount.

A full discussion of slope stability analysis, and slope engineering in general, is given by 
Bromhead (1998).
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Example 8.5: Analysis of a circular slip using the Bishop routine method

The details of a partly completed stability analysis of the slope shown in Figure 8.37a, 
using the Bishop routine method, are given in Table 8.5. The configurations of slices 5 
and 6 are given in Figure 8.37b. Complete the analysis to find the operational strength 
factor Fs, to an accuracy of ±0.1.

SOluTIOn

The first step is to work out the values of w, α, ub and nα for slices 5 and 6, with the trial 
operational strength factor Fs = 2. Idealizing slice 6 as a triangle, the weight of slice 6, 
w6, is given by

 w 0.5 6m 9.3m 20kN/m 0.56MN / m6
3= × × × =

The weight of slice 5, idealized as a trapezium, is

 w 0.5 (6m 12.1m) 8.0m 20kN/m 1.45MN/m5
3= × + × × =

Soil B

Soil A
123

4

(a)

56

Scale

Slice 6
Soil A:
φćrit = 27°
γ = 20 kN/m3

Soil B:

Slice 5
6.0 m

8.0 m

GWL

12.1 m
8 m

9.3 m
Horizontal

0 2 4 6 8 10 m

(b)
γ = 20 kN/m3φćrit = 34˚

Figure 8.37 (a) Cross-section through slope for stability analysis; (b) detail of slices 5 and 6, Example 8.5.

Table 8.5  Details of partly completed Bishop routine analysis of a circular slip: trial 
Fs = 2.0, Example 8.5

Slice Weight, w (MN/m) sin α (w − ub) tan critϕ′  (MN/m) nα

1 0.61 0.88 0.31 1.44
2 1.42 0.69 0.66 1.11
3 2.59 0.43 1.52 0.95
4 1.57 0.12 0.62 0.97
5 −0.19
6 −0.53

Note: 1
cos (tan sin / )crit s

n
F

=
α + ′ϕ αα
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(Although slice 5 is partly in soil A and partly in soil B, both soils have the same unit 
weight, so there is no need to consider them separately in calculating the weight w5.)

The pore water pressure acting on the base of slice 6 is zero at the left-hand edge. 
Scaling from the space diagram (Figure 8.37b) and taking the unit weight of water γw as 
10 kN/m3, the pore water pressure at the right-hand edge is 6 m × 10 kN/m3 = 60 kPa. 
The average pore water pressure acting on the base of slice 6 is therefore 30 kPa, giving 
(ub)6 = 30 kPa × 9.3 m = 279 kN/m = 0.28 MN/m.

Similarly, the average pore water pressure acting on the base of slice 5 is 0.5 × (60 kPa + 
80 kPa) = 70 kPa, giving (ub)5 = 70 kPa × 8 m = 0.56 MN/m.

The assumed slip surface at the base of slice 6 passes through soil A, with ′ϕ = °27crit . 
For slice 5, 34crit′ϕ = ° on the base, which is in soil B.

α, the inclination of the base of each slice to the horizontal, is measured from 
Figure 8.37b, giving α6 = −32° and α5 = −11°.

The values of nα for each slice with Fs = 2.0 are calculated using the expression given 
at the foot of Table 8.5.

We now have sufficient information to calculate both the numerator (i.e. the expres-
sion on the top) and the denominator (i.e. the expression on the bottom) of Equation 
8.35a. If our assumed value of Fs = 2.0 is correct, we should find that the numerator, 

w ub n{( ) tan }crit∑ − ′ϕ α , divided by the denominator w{ sin }∑ − α , is equal to the assumed 
operational strength factor Fs, in accordance with Equation 8.35a. If this is not the case, 
we must repeat the procedure with new estimates of Fs, until we find the value of Fs that 
satisfies Equation 8.35a. Iteration is relatively straightforward, and convergence should 
be achieved quite rapidly if the calculated value of

 

∑
∑

− ′ϕ
− α

α{( ) tan }

{ sin }
critw ub n
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is used as the next estimate of Fs.
The calculation is detailed in Table 8.6. In this case, the initial guess of Fs = 2.0 is 

slightly too high. An acceptable value of Fs = 1.80 is obtained on the second iteration.
With Fs = 2.0,

 

{( ) tan }

{ sin }
4.09MN/m
2.25 MN/m

1.82
crit∑

∑
− ′ϕ

α
= =αw ub n

w

Table 8.6 Completed Bishop routine analysis of a circular slip, Example 8.5

Slice
Weight, w 
(MN/m) α

w sin α 
(MN/m)

ub 
MN/m

(w–ub)· 
critϕ′tan

(MN/m)
nα 

(Fs = 2.0)
nα 

(Fs = 1.8)

nα × 
(w–ub)· 
tanϕ ′crit 

(Fs = 2.0) 
(MN/m)

nα × 
(w–ub)· 

ϕ ′tan crit  
(Fs = 1.8) 
(MN/m)

1 0.61 62 0.54 0.31 1.44 1.39 0.45 0.44
2 1.42 43.5 0.98 0.66 1.11 1.09 0.73 0.72
3 2.59 25.5 1.12 1.52 0.95 0.94 1.44 1.43
4 1.57 7 0.19 0.62 0.97 0.96 0.60 0.60
5 1.46 –11 –0.28 0.56 0.60 1.09 1.10 0.65 0.66
6 0.56 –32 –0.30 0.28 0.16 1.40 1.43 0.20 0.20

Σ = 2.25 Σ = 4.09 Σ = 4.05

Note: The entries in bold type have been calculated; the data in normal type were given in Table 8.5 or 
Figure 8.37.
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Repeating the calculation with Fs = 1.8 gives
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1.80crit∑
∑
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Thus Equation 8.35a is satisfied, and

 F 1.8s =

In reality, we would have to repeat the entire calculation for a number of different slip circles to find 
the most critical potential failure mechanism (i.e. the one with the lowest operational strength factor).

8.12 LATERALLY LOADED PILES FOR SLOPE STABILISATION

Laterally loaded piles are increasingly being used for the stabilisation of infrastructure and 
natural slopes (Smethurst and Powrie, 2007). This application, together with the use of 
Figure 8.25 as a design or ‘look-up’ chart, is illustrated in Example 8.6.

Example 8.6: laterally loaded piles for slope stabilisation

Figure 8.38 shows a cross section through a residential building constructed on a slope. 
The building has shown signs of distress, and it is proposed to install a number of 0.6 m 
diameter circular section piles through the ground floor slab vertically into the slope, both 

Building

60 kPa

London clay
τu = 49 kPa
γ = 19 kN/m3

Position of installed piles

Centroid of
slipping mass

Cross sectional area of
slipping soil = 292 m2

Centre of
failure
circle

10.0 m

12.0 m

24.0 m

18.40 m16.82 m

13.15 m

13.25 m

Figure 8.38  Cross-section through residential building on a slope and proposed pile remediation scheme, 
Example 8.6.
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to take some of the weight of the building and to provide lateral support to the slipping 
soil mass.

 a. Stating clearly any simplifying assumptions you make, calculate the pile depth 
needed to guard against a geotechnical ULS in short-term (undrained) vertical 
loading. Each pile has to carry a vertical load of 390 kN and the clay has a uniform 
undrained shear strength of 49 kPa. Take the pile/soil interface adhesion as 0.5 × 
the soil undrained shear strength. The pile can carry load in base bearing, and 
in skin friction below the critical slip surface only. Minimum partial factors on 
resistances of 2.24 on base bearing, 1.82 on skin friction and 2.1 on the total are 
required.

 b. In the unremediated state, the building exerts a surcharge on the soil surface of 
60 kPa. Calculate the lateral force that must be exerted by each pile on the slipping 
soil mass shown in Figure 8.38, acting at one-third the local height above the slip 
surface, to give equilibrium with a partial factor of 1.4 on the soil undrained shear 
strength τu in undrained conditions. Assume that the piles are installed in a row 
along the slope with a distance between centres of 2 m, and that the 60 kPa sur-
charge acts over the rear (upslope) half of the building only because the weight of 
the front half of the building is carried by the piles. For this part of the calculation, 
ignore the effect of the axial load in the pile.

 c. Use the design charts given in Figure 8.25 to estimate (i) the required depth 
of pile below the slip surface, assuming failure would occur in the mechanism 
shown in Figure 8.22a; and (ii) the minimum fully plastic moment (Mp) required 
of the pile section, so that failure in the mechanism shown in Figure 8.22b does 
not occur. There is no need to apply a partial factor to the lateral load calculated 
in part (b).

 d. What further issues would you need to investigate before finalising your design, 
and why?

The undrained bearing capacity at the base of a pile foundation of depth D and  diameter 
B may be taken as (σf − σ0) = {Nc × sc × dc} × τu, where Nc = 5.14; the shape  factor sc = 1.2; 
and the depth factor dc = 1 + 0.23√(D/B), up to a maximum of 1.46 ([D/B] = 4). Take the 
unit weight of the pile material (reinforced concrete) as 24 kN/m3.

SOluTIOn

 a. The piles carry load by skin friction and base bearing. Ignore the effects of the slope 
and the surcharge exerted by the building on the ‘bench’ (i.e. the levelled-out por-
tion of the slope). We will calculate the base bearing and skin friction resistances 
on the basis of the full (unfactored) soil strength, and then apply the required par-
tial factors to these calculated resistances.

The interface shear stress is τw = (0.5 × τu) = 24.5 kPa.
Let the required pile length (depth) be D below the slip surface.
The ultimate interface friction resistance is then

 π π 0.6m 24.5kPa 46.2 (kN)w× × × τ = × × × =d D D D

The base bearing capacity is given by

 ( – ) { }f 0 c c c uσ σ = τN s d

  where Nc = 5.14; shape factor sc = 1.2; depth factor dc = 1 + 0.23√(D/B), up 
to a maximum of 1.46 ([D/B] = 4). Ignoring the effects of the slope and the 
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surcharge due to the building, the vertical total stress in the ground around the 
pile base is

 19( 13.25)kPa0σ = γ ⋅ = +D D

The total pile depth must be greater than 4B, otherwise it would not penetrate 
below the slip surface. Thus, we can take dc as its maximum value, 1.46.

 

{ } 19( 13.25)kPa (5.14 1.2 1.46 49kPa)

19( 13.25)kPa 441.26kPa 19 693kPa
f 0 c c c u

f

σ = σ + τ = + + × × ×
⇒ σ = + + = +

N s d D

D D

Multiplying this by the cross-sectional area of the pile (π × 0.62/4) = 0.2827 m2, 
the ultimate base bearing resistance is 5.372D + 195.94 kN

The available resistance is the lesser of
 i. (the ultimate base bearing resistance ÷ 2.24) + (the skin friction resistance ÷ 

1.82); and
 ii. (the base bearing resistance + the skin friction resistance) ÷ 2.1

that is, the lesser of
(1) {(5.4D + 195.94) ÷ 2.24 kN + (46.2D ÷ 1.82)} kN and (2) (195.94 + 51.6D) 
÷ 2.1 kN
or
(1) (27.8D + 87.5) kN and (2) (24.6D + 93.3) kN

The load needing to be carried is the applied vertical load of 390 kN plus the 
weight of the pile, which is (π × 0.62 ÷ 4)m2 × Dm × 24 kN/m3 = 6.8D kN

Equating this to the resistance calculated in (1) above gives

 
D D D27.8 87.5 6.8 390or

302.5
21

14.4m+ = + = =

Equating this to the resistance calculated in (2) above gives

 
D D D24.6 93.3 6.8 390 or

296.7
17.8

16.67 m+ = + = =

Case (2) is the more critical, giving a total pile depth of 16.67 + 13.25 ≈ 30 m

 b. The radius of the slip circle is determined from the geometry of circle centre point:

 r (13.15 16.82 ) 21.35m2 2= √ + =

The length of the failure surface = rθ, where θ is the angle of the circle segment 
(see Figure 8.39 for the definition of angles θ1 and θ2)

 
tan

13.15m
16.82m

38.021
1θ = = °−

 
tan

16.82 12.0
34 – 13.5

tan
4.82m
20.85m

13.022
1 1θ = −



 =







= °− −

 θ = + θ θ = ° + ° ° = °90 – 90 38.02 – 13.02 1151 2

rθ = 21.35 m × (115°/360°) × 2π = 42.85 m: this is also the area of the failure 
surface, in m2 per metre length of the slope (m2/m)
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We can now calculate the lateral force the pile must provide to stabilize the slope. 
Taking moments about the centre point of the slip surface (for a 1 m width of slope)

The overturning moment resulting from the weight of soil is

 292m /m 19kN/m (18.40m – 13.15m) 29,127 kNm/m3 3× × =

The overturning moment from the weight of the rear half of the building is

 60kPa 5m /m (24m 7.5m – 13.15m) 5505kNm/m2× × + =

The stabilising moment from the mobilized (factored) shearing resistance along the 
slip surface is

 (49kPa/1.4) 42.85m /m 21.35m 32,020kNm/m2× × =

The stabilizing moment from piles, assuming the stabilizing force H in kN/m 
acts horizontally at two-thirds of the depth of the soil mass and on the line of the 
piles, is

 H HkN/m (16.82 m – 12.0m [2/3 13.25m]) kN/m 13.65m× + × = ×

Equating moments (all in kNm/m)

 + =H32,020 13.65 – 5505 – 29,127 0

 H H13.65m kN/m 2612kNm/m 191.4kN/m× = ⇒ =

This is the pile force per metre width of the slope, and must therefore be multi-
plied by 2.0 as each pile carries a 2.0 m width of the slope, giving a force per pile of

 191.4kN / m 2.0m 383kNpile = × =H

10.0 m24.0 m

13.15 m

12.0 m
16.82 m

Centre of
failure
circle

θ2

θ1

θ

Figure 8.39 Definition of angles θ1 and θ2, Example 8.6.
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 c. We will now calculate the length of pile, assuming that failure is in mechanism (a) 
in Figure 8.22. Taking the effective top of the pile as level with the slip surface, the 
eccentricity e at which the force acts above the effective top of the pile is

 e 13.25m/3 4.42m= =

Hence e/d = 4.42 m/0.6 m = 7.37 and Hpile/τud2 = 383 kN/[(49 kPa/1.4) × 0.62] 
= 383 kN/12.6 kN = 30.4

From Figure 8.25a for the failure mechanism shown in Figure 8.22a, Hpile/τud2 = 
30.4 at e/d = 7.4 requires l/d ~ 16, and the length of the pile required to carry the 
lateral force, l = 16 × 0.6 m = 9.6 m.

This is the depth of pile below the slip surface. The full length of pile required 
is = 9.6 m + 13.25 m = 22.85 m.

The minimum fully plastic moment each pile needs to provide to ensure that 
failure occurs by rigid body rotation (the mechanism in Figure 8.22a) rather than 
formation of a plastic hinge (as in Figure 8.22b) is calculated from the chart in 
Figure 8.25b as follows.

For H/τud2 = 30.4 and e/d = 7.37 and the mechanism shown in Figure 8.22b, 
Figure 8.25b gives Mp/τud3 ~ 340. As long as Mp is in reality greater than this, for-
mation of a plastic hinge in the pile will not occur. Thus the minimum value of pile 
fully plastic moment required is

 Mp = 340 × (49 kPa/1.4) × 0.63 = 2570 kNm

(Note: This is quite large and might be difficult to achieve with a pile of only 
600 mm in diameter.)

 d. The following issues would also need to be investigated, for the reasons given in 
each case.

 i. The stability of the scheme in the long term, using effective stress analysis 
and long-term equilibrium pore pressure conditions; because the analysis we 
have carried out assumes that the clay does not change in specific volume or 
water content—i.e. it ignores any swelling and softening that may occur in 
the long term.

 ii. The potential interaction between the two loading modes; because the vertical 
load carrying capacity relies quite heavily on skin friction, which assumes that 
the pile/soil shear stress is mobilized in the vertical direction; whereas the pres-
sures assumed in calculating the lateral capacity are based on the shear stresses 
being horizontal. This should be investigated more carefully.

 iii. The pile settlements and lateral movements needed to mobilize the required 
vertical and horizontal forces; because these could be large enough to damage 
the building (i.e. a SLS calculation would need to be carried out).

 iv. Interaction between the piles in the row; because this could reduce the lateral 
carrying capacity of each pile (although they are more than three diameters 
centre to centre and therefore probably act more or less independently).

KEY POINTS

• The concepts of engineering plasticity can be used to calculate rigorous upper and 
lower bounds to the vertical loads that will cause the collapse of idealized shallow strip 
foundations or footings.

• Real foundations are not infinitely long. Also, the strength of the soil above the foun-
dation plane is neglected in the idealized plasticity calculations. In an effective stress 
analysis, the increase in vertical stress with depth below the foundation may add 
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considerably to the bearing capacity. These effects are taken into account by means 
of empirical factors, whose numerical values depend on the shape and depth of the 
foundation.

• In general, a foundation may be subjected to a combination of vertical, horizontal and 
moment loads V, H and M. For a shallow footing of width B, the interaction between 
them may be investigated by means of a failure surface on a three-dimensional graph 
with axes V, H and M/B.

• Deep foundations such as piles carry some load by skin friction, and some in base 
bearing. They may also have a significant capacity to carry a lateral load. The ultimate 
axial load of a single pile can be estimated by considering the effects of skin friction 
and base bearing acting together, using a suitably modified form of the bearing capac-
ity equation to calculate the pressure on the base. The ultimate lateral load of a single 
pile, with or without a pile cap, can be calculated using modified limiting (active and 
passive) stress distributions in combination with an idealized mode of movement at 
failure.

• The behaviour of a pile group will be influenced by the interaction between neighbour-
ing piles and by the pile cap or, in the case of a piled raft foundation, the raft.

• The stability of a long uniform slope can be investigated using the infinite slope anal-
ysis. More generally, the stability of a slope of any shape and finite extent can be 
analysed by means of a limit equilibrium analysis, in which the soil is divided into a 
number of slices. The slices are statically indeterminate, so that a simplifying assump-
tion must usually be made. The requirement to search for the most critical slip surface 
makes the calculation rather tedious: it is best carried out using a computer program.

• The stability of any slope is heavily dependent on the groundwater regime and the 
associated pore water pressures. The maximum stable angle of a saturated slope with 
seepage may be only half that of a dry slope. If a steep, dry slope becomes waterlogged, 
the effects are likely to be catastrophic.

• Laterally loaded piles may be used to stabilize slopes.

SELF-ASSESSMENT AND LEARNING QUESTIONS

SHALLOW FOUNDATIONS

 8.1  Figure 8.40 shows a cross-section through a shallow strip footing. Estimate lower 
and upper bounds to the vertical load Q (per metre length) that will result in the 
rapid (undrained) failure of the footing.
[Lower bound Q = 236 kN/m; upper bound Q = 312 kN/m.]

 8.2 a.  Explain briefly the essential features of upper and lower bound plasticity  analyses 
as applied to problems in geotechnical engineering.

Q

Concrete
strip footing

2 m

1 m Clay
τu = 25 kN/m3

γ = 18 kN/m3

Figure 8.40 Cross-section through shallow strip footing. Q8.1.
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 b.  A long foundation of depth D and width B is built on a clay soil of saturated 
unit weight γ, undrained shear strength τu and effective angle of friction φ′. The 
water table is at a depth D below the soil surface. Show that the vertical load Q, 
uniformly distributed across the foundation, that will cause failure is at least

 ( / ) ( 4 )uQ B D= γ + τ

  in the short term, and at least

 
( )p

2Q
B

K D≥ γ

  in the long term, where Kp is the passive earth pressure coefficient,

 

1 sin
1 sin

.pK = + ′ϕ
− ′ϕ

 c.  If γ = 20 kN/m3, τu = 25 kPa, φ′ = 22° and D = 1.5 m, is the foundation safer 
in the short term or in the long term?

 d.  Lower bounds to loads at collapse are 130 kPa (short term) and 145 kPa (long 
term).

 8.3  A long concrete strip footing founded at a depth of 1 m below ground level is to 
carry an applied load (not including its own weight) of 300 kN/m. The soil is a clay, 
with undrained shear strength τu = 42 kPa, effective angle of friction φ′ = 24°, and 
unit weight γ = 20 kN/m3. Calculate the width of the foundation required to give 
operational strength factors of 1.25 (on tan φ′) and 1.4 (on τu). Both short-term 
(undrained) and long-term (drained) conditions should be  considered. The water 
table is 1 m below ground level.
Use Equation 8.9, with Nc = (2 + π), and a depth factor dc as given by Skempton 
(Table 8.2), and Equation 8.7, with Nq = Kpeπ tanφ′ where Kp = (1+sin φ′)/(1−sin 
φ′), with dq, Nγ, dγ and rγ as given by Meyerhof and Bowles (Table 8.1). Take the 
unit weight of concrete as 24 kN/m3.
[Undrained analysis: required width ≈ 1.93 m. Drained analysis: required width 
≈ 2.18 m. As depth factors, etc. depend on footing width, the solutions must be 
obtained by iteration. Also, it is unusual that the drained analysis gives a more 
critical result than the undrained analysis.]

 8.4 a.  The long-term bearing capacity of a long, surface foundation subjected to a 
vertical load is traditionally calculated using the equation:

 
( ) ( [0.5 ])f q 0′σ = × ′σ + × × γ − ∆γ γN N r B u

Explain what, physically, each of the two main terms (i.e. the two terms in 
curved brackets) represents.

 b.  Calculate the maximum vertical load Vmax (in kN/m), acting in isolation, that 
the base of the wall shown in Figure 7.55 (Question 7.10, Chapter 7) could with-
stand, if it is required to act as its own foundation. Take Nγ = (Nq–1).tan(1.4φ′); 
Nq = Kp.exp{π.tan φ′}; Kp = (1+sinφ′)/(1–sin φ′) and in this case rγ = 1.

 c.  Using your answers from part (b) of Question 7.10, determine the equivalent 
horizontal force H, vertical force V and moment M applied to the base of the 
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wall. Hence investigate the potential for failure of the foundation, given that 
the envelope of loads at failure is defined by
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with tm = 0.35, th = 0.466 and C = 0.2.
 d.  Figure 8.41 shows a photograph of a section of this wall, taken many years 

after construction. Comment on the deformed shape in the context of the 
analyses you have just carried out.

   [(b) Vmax = 140.94 kN/m; (c) V = 73.13 kN/m, H = 21.72 kN/m, and 
M = 11.55 kNm/m; this combination of loads indicates that bearing failure is 
likely; (d) bulge is consistent with bearing failure at toe but probably also acts 
to  stabilise the wall to some extent.]

DEEP FOUNDATIONS

 8.5.  A foundation for the anchor cables for an offshore oil and gas platform is to be 
formed from a ring of eight, 1.8 m diameter hollow circular steel driven piles whose 
centres are spaced equidistantly around the perimeter of a circle 18 m in diameter. 
The piles are rigidly connected at the head by means of a pile cap. The total upward 
load that the pile group must be designed to resist is 240 MN, acting at the centre 
of the pile cap (assume that this is a permanent action and that no further partial 
factor needs to be applied). Ground conditions are as indicated in Table 8.7; all soils 
have a unit weight of 20 kN/m3. Ignore the weight of the foundation.

 a.  Calculate the design pile depth needed to resist the specified vertical load, in 
both short-term (undrained) and long-term conditions. Apply a partial factor 
of 2.24 to the ultimate skin friction resistance in tension. Partial factors do 
not need to be applied to soil strengths. Assume that failure will occur at the 

Figure 8.41 Masonry retaining wall analysed in Q7.10 and Q8.4.
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interface between each individual pile and the surrounding ground, with an 
interface adhesion τw of 0.5 × τu and/or an interface friction angle δ given by 
tan δ = 0.6 × tan φ′. Ignore the effect of any soil that becomes trapped inside 
the piles during driving.

 b.  Comment on the reasonableness of your assumptions regarding soil/pile inter-
face friction and the use of the in situ ratio of horizontal to vertical effective 
stress (K0 in Table 8.7).

 c.  Suggest one possible alternative mechanism of failure, and investigate by means 
of a brief but quantitative argument whether it might be the critical mechanism 
in this case.

 d.  At some stage in the future, it may be required to use the foundation to carry 
a downward, rather than an upward load. State briefly whether your assess-
ment of its capacity in downward loading would be different from the 240 MN 
design load in upward loading, and why.

 [(a) Pile length ~ 100 m (short term and long term); (c) failure as a group with a 
circle circumscribed around the piles forming the slip surface is less critical, but 
only slightly so in the long term; (d) real additional capacity would result from the 
development of base bearing resistance if the open ends of the piles plug.]

 8.6.  Figure 8.42 shows a soil profile in which it is proposed to install a foundation 
made up of a number of circular concrete piles of 1.5 m diameter and 10 m depth. 
Estimate the long-term design vertical load (acting downward) for a single pile, if 
minimum partial factors on resistances of 2.24 on base bearing, 1.82 on skin fric-
tion and 2.1 on the total are required.

  (Assume that the horizontal effective stress at any depth is equal to (1−sin φ′) 
times the vertical effective stress at the same depth, that the angle of friction δ 
between the concrete and the soil is equal to 0.67φ′, and that the long-term pore 

Table 8.7  Ground conditions for tension pile foundation, Q8.5. This question is based on the 
Hutton tension leg platform in the North Sea between the Shetland Islands (Scotland) 
and Norway; Jardine et al. (1988)

Depth below sea bed, m Layer description τu , kPa φ′,° Ko

0–20 Stiff laminated clay 98 at 0 m increasing to 196 at 20 m 30 1.6
20–40 Dense to very 

dense sand
– 35 0.8

>40 Hard to very stiff 
clay

280 30 0.6

Depth (m)
0

2
Groundwater level

Sands and gravels
γ = 20 kN/m3

φʹ = 30˚

Clay
γ = 18 kN/m3

φʹ = 20˚

5

Figure 8.42 Soil profile for deep foundation, Q8.6.



Foundations and slopes 463

© 2010 Taylor & Francis Group, LLC

water pressures are hydrostatic below the indicated water table. Take the unit 
weight of water as 10 kN/m3, and the unit weight of concrete as 24 kN/m3.

  Data:
  Bearing capacity factor = Kpeπ tan φ′× depth factor × shape factor, where:

 
= + 











Depthfactor 1 0.2 uptoalimit of1.5
D
B

 
= + 











Shapefactor 1 0.2
B
L

 

1 sin
1 – sinpK = + ′ϕ

′ϕ

 and the foundation has width B, length L and depth D.
  Comment briefly on the assumptions (1 sin )h v′σ = − ′ϕ ′σ  and δ = 0.67φ′. Why in 

reality might it be necessary to reduce the allowable load per pile?
 [Design applied load = 995 kN. Interaction between piles and the need to limit 

settlements to guard against a SLS could reduce this value.]

LATERALLY LOADED PILES

 8.7.  A foundation for an offshore ocean current turbine is to be formed from a single, 
uncapped reinforced concrete pile 1.5 m in diameter. The turbine will apply to the 
foundation the design loads indicated in Figure 8.43; after the application of any 
required partial factors, they are V = 100 kN; H = 2000 kN and e = 6 m. V is the 
buoyant weight of the installation.

 a. Sketch two possible failure mechanisms for the pile as a result of the horizontal 
load H alone. What parameters govern which of these two mechanisms would 
be the more likely to occur in reality?

H

e

Pile
1.5 m diameter

Depth z
Silty clay
φʹ = 22˚
τu = 70 kPa
γ = 18 kN/m3

V

Figure 8.43  Design (factored) loading and ground conditions for proposed ocean current turbine founda-
tion, Q8.7.
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 b. Using the charts given in Figures 8.24 and 8.25, calculate the design pile depth 
and the minimum pile fully plastic moment Mp needed to resist the horizontal 
load H acting in isolation, in both short-term (undrained) and long-term condi-
tions. Use partial factors on soil strength of Fs = 1.4 for the undrained shear 
strength (τu) and Fs = 1.25 for tan φ′.

 c. State the two ways in which the pile might transfer the vertical load V into the 
soil.

 d. Calculate the design pile depth needed to resist the vertical load V acting in 
isolation, in both short-term (undrained) and long-term conditions. Assume 
that the vertical load V is carried entirely in base bearing, and base your cal-
culation on the full strength of the soil and a partial factor on the base bearing 
resistance of 2.24. Use the following data:

  undrained bearing capacity (σf – σ0) = {Nc × sc × dc} × τu, where Nc = 5.14; 
the shape factor sc = 1.2; the depth factor dc = 1 + 0.23√(D/B), up to a maxi-
mum of 1.46 ([D/B] = 4); and the foundation has depth D, and diameter B

  long-term bearing capacity ( /f 0′σ ′σ ) = {Nq × sq × dq}, where =Nq  
⋅ ′ϕK exp{πtan };p des  shape factor sq = (1 + 0.1 Kp); depth factor dq = 1 + (0.1 × 

(D/B) × √Kp); K (1 sin )/(1– sin )p des des= + ′ϕ ′ϕ
  unit weight of concrete 24 kN/m3

 e. On the basis of your calculations, identify a suitable design depth for the pile. 
Give two further checks you would need to make.

  [(b) Pile length l = 22.7 m, Mp ≥ 18.46 MNm undrained; l = 21.4 m, Mp ≥ 14.3 
MNm long term; (c) skin friction and base bearing; (d) l = 0 undrained, l = 2 m 
long term; (e) undrained lateral loading governs the design requiring l ~ 23 m; also 
need to check displacements are acceptable and there is no tendency for progressive 
accumulation of displacements or fatigue failure owing to repeated loading.]

SLOPES

 8.8  An incomplete stability analysis using the Bishop routine method is given in 
Table 8.8 below. The configuration of the remaining slice (slice 4) and other rel-
evant data are given in Figure 8.44. Abstract the necessary additional data from 
Figure 8.40, and determine the operational strength factor of the slope for this slip 
circle.

 [ ]=F 1.3.s

 8.9  A slope failure can be represented by the four-slice system shown in Figure 8.45. 
By considering the equilibrium of a typical slice (resolving forces parallel and 

Table 8.8 Incomplete slope stability analysis, Q8.8

Slice Weight, w (kN/m) ub (kN/m) ϕ′ °crit ,

nα × (w–ub) tan critϕ′
(kN/m) for Fs = 1.45

1 390 0 25 196.5
2 635 90 25 251.8
3 691 163 25 235.1
4 ? ? 30 ?
5 472 130 30 198.9
6 236 20 30 137.7
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perpendicular to the local slip surface), and assuming that the resultant of the 
inter-slice forces is zero, show that the operational strength factor for the slope 
F tan /tans crit mob= ′ϕ ′ϕ  may be calculated as

 
F

w ub

w

( cos )tan

( sin )
,s

crit∑
∑

[ ]
=

α − ′ϕ
α

 where the symbols have their usual meanings.
  If the pore pressure conditions that caused failure of the slope shown in Figure 

8.45 can be represented by average pore water pressures of 20, 30, 90 and 40 kPa 
on AB, BC, CD and DE, respectively, estimate the value of crit′ϕ  alongcr the failure 
surface DE.

 [ crit′ϕ  on DE = 23°]

1

46˚

34˚
22˚

1˚ 11˚

2
3

4

(a)

5 6

10˚

(b)

1.6 m

1.4 m7 m

5 m

Groundwater
level

Slice 4
� = 20 kN/m3

φʹ = 25˚

Figure 8.44 (a) Cross-section through slope for stability analysis; (b) detail of slice 4, Q8.8.

12˚

25˚

47˚

5˚
D

C

B

A

12 m

16 m

14 m
25 m8 m

10 m

14 m

E

γ = 18 kN/m3

φʹ = to be determined

γ = 20 kN/m3

φʹ = 25°

γ = 18 kN/m3

φʹ = 20˚

Figure 8.45 Cross-section through non-circular slip, Q8.9.
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Chapter 9

In-ground retaining structures: 
embedded walls and tunnels

9.1 INTRODUCTION AND OBJECTIVES

This chapter develops the concepts of limit equilibrium analysis introduced in Section 7.6 
for embedded retaining walls and addresses some other aspects of their behaviour that have 
to be taken into account in design. Methods of analysis for a second and rather different 
class of in-ground retaining structure—tunnels—are also introduced.

9.1.1 Objectives

After having worked through this chapter, you should be able to

• Estimate the long-term pore water pressures acting on an embedded retaining wall, 
using the linear seepage approximation (Section 9.2.1)

• Use, where appropriate in limit equilibrium calculations, tabulated earth  pressure 
 coefficients that take account of the effects of soil/wall friction or adhesion (Sections 9.2 
and 9.3)

• Calculate the depth of embedment of an embedded retaining wall for an ultimate 
limit state (ULS) design, by means of a suitably factored limit equilibrium calculation 
(Sections 9.3 and 9.4)

• Assess the potential reduction in bending moment and prop load in an embedded 
retaining wall, resulting in wall flexibility effects (Section 9.8)

• Allow for the effects of a line or strip surcharge in the stress analysis of a retaining 
wall (Section 9.9)

• Carry out an approximate stress analysis of a multi-propped retaining wall at any 
stage during its construction (Section 9.10)

• Carry out a stress analysis of a cross-section through a circular tunnel at collapse 
(Sections 9.11.1 to 9.11.3)

• Assess the remoteness from collapse of a tunnel heading in a clay soil (Section 9.11.4)

You should have an appreciation of

• The shortcomings of the linear seepage approximation for steady state pore water 
pressures (Section 9.2.1)

• The ‘limit-state’ design philosophy adopted by modern codes of practice, and the 
application of a partial factor to the soil strength to distance a limit equilibrium calcu-
lation from actual collapse (Sections 9.4 and 9.5)

• The shortcomings of some earlier methods of factoring a limit equilibrium calculation 
for an embedded retaining wall (Section 9.4)
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• The distinction between the working or in-service stress distributions and the stress 
distributions used in ULS design calculations (Sections 9.4 and 9.5)

• The particular problems associated with embedded retaining walls in clay soils 
(Section 9.6)

• The linkage between wall movement and mobilized soil strength for an embedded 
retaining wall (Section 9.7)

• The way in which ground movements owing to tunnelling can be estimated (Section 
9.11.5)

9.2  LIMIT EQUILIBRIUM STRESS DISTRIBUTIONS FOR EMBEDDED
RETAINING WALLS

9.2.1 Long-term pore water pressures

The long-term stability of permanent structures must be investigated by means of an effective 
stress analysis. It is necessary, therefore, at the design stage to estimate the long-term equilibrium 
pore water pressure distribution around an embedded retaining wall. In the case of an imper-
meable wall in a uniform soil, where weepholes or other drainage measures are not installed, 
the long-term equilibrium pore water pressure distribution should correspond to steady state 
seepage from a high water table behind the wall to a reduced groundwater level in front. The 
pore water pressure distribution may be obtained by sketching a flownet, but an approximation 
in which the fall in hydraulic head is assumed to be distributed linearly around the wall is often 
close enough for design purposes (Symons, 1983). This is illustrated in Figure 9.1.

Figure 9.1 shows an impermeable embedded wall in a uniform soil. The retained height is 
h and the depth of embedment is d. The water tables behind and in front of the wall may be 
below the respective ground surfaces, so that the water table in front of the wall is at a height 
d′ above the toe and the water table behind the wall is a height h′ above the water table in 
front. Setting the datum for the measurement of total head at the level of the water table in 
front of the wall, the total head at the water table in front of the wall is zero and that at the 
water table behind the wall is h′.

Imagine now a flowline that follows the impermeable wall starting from water table in 
the retained soil, down the back of the wall to the toe, and back up the front face of the wall 
to the water table below the excavation floor. The distance along this flowline is (2d′ + h′). 
As we follow the flowline in reverse, the head increases from zero at the water table in front 
of the wall to h′ at the water table in the retained soil. Starting from the water table in front 
of the wall, when we reach the wall toe, we have travelled a distance along the flowline of d′. 
Assuming that the head rises in proportion to the distance travelled, the head at the toe or 
the bottom of the wall, hb, is given by the overall head rise h′ multiplied by the ratio of the 
distance we have travelled along the flowline so far, d′, to the total distance we need to travel 
along the flowline, (2d′ + h′), to achieve the full increase in head, h′. That is,

 
2bh h

d
d h

= ′ × ′
′ + ′

 (9.1a)

The total head hb is the level to which water in a standpipe piezometer will rise above 
datum level. To calculate the pressure head, we need to add the depth of the measurement 
point below datum level (in this case, d′). To calculate the pore pressure at the toe, ub, we 
need to multiply the pressure head by the unit weight of water, γw. Thus

 
2b w= γ × ′+ ′ ⋅ ′

′+ ′






u d

h d
d h

 (9.1b)
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The linear rise in total head as we travel around the wall, from zero at the water table in 
front to h′ at the water table behind, is illustrated in Figure 9.1b.

The idealized pore water pressure distribution shown in Figure 9.1 is known as the linear 
seepage approximation. Its advantage in calculations is that it gives the pore pressure at the 
toe of the wall, ub, in terms of the other wall geometry parameters h and d (or h′ and d′). 
This expression can be used directly in the limit equilibrium calculations a designer has to 
carry out to find the required depth of wall embedment d for a given retained height h. The 
alternative would be to guess a value of d, draw a flownet to find ub, investigate whether limit 
equilibrium can be achieved with these values and then iterate the whole process (including 
re-drawing the flownet) until the correct value of d is found.

Although it is useful in saving a lot of tedious repetition in the calculation, we must 
remember that the linear seepage approximation is only applicable to wide excavations in 
fairly uniform, isotropic soils. It does not generally apply if

• The excavation is narrow (cf. Figures 3.20 and 3.21): strong upward seepage may then 
lead to much higher pore water pressures than indicated by the linear seepage approxi-
mation, and the danger of boiling or piping.

• Layers of soil of different permeability are present: for example, a clay underlain by an 
aquifer in which pore water pressures remain high following excavation (Example 3.8), 
or an aquifer over a clay layer (Example 9.1).

Total head = h  ́
pwp u = 0

Datum for
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of total head

Total head = h  ́

(above datum)

×

Total head = 0
pwp u = 0
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Dh

d

h  ́

d  ́

d  ́
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Distance from A
measured around
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2dʹ + h  ́ 2dʹdʹ
A
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B C D

h  ́

Figure 9.1  (a) Approximate steady state seepage pore water pressure distribution, corresponding to 
(b) change in hydraulic head distributed linearly around the wall.
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• The wall is permeable, for example because it is made of contiguous bored piles with 
ungrouted gaps piles leading to horizontal flow towards the wall and evaporation of 
water through the exposed soil between the piles; the wall has weepholes; or ground 
drainage has been installed behind or in front of the wall.

• The soil is anisotropic.

If in doubt, the groundwater regime should be investigated by drawing a flownet or by 
means of a numerical model.

9.2.2 Unpropped embedded walls: fixed earth support conditions

Unpropped embedded walls rely entirely for their stability on an adequate depth of embed-
ment: they are not supported in any other way. They will tend to fail by rotation about a pivot 
point near the toe. The idealized stress distribution at failure is shown in Figure 9.2. Active 
and passive zones develop where the wall moves away from and into the soil, respectively.

The conditions represented by the stress distribution in Figure 9.2a are sometimes known 
as fixed earth support, because the depth of embedment must be large enough to prevent 
free translational movement of the toe. The wall acts as an unpropped cantilever, built into 
the ground.

Given the retained height h and the soil strength φ′, there are two unknowns that must 
be calculated in an investigation of conditions at collapse. These are the depth of embed-
ment, d, required just to prevent collapse, and the depth of the pivot point (about which the 
wall can be imagined to rotate) below formation level, zp. The equations of horizontal and 
moment equilibrium can be used to find these two unknowns, so the system is statically 
determinate.

If the linear approximation to the steady state pore water pressure distribution is used, the 
two equilibrium equations are simultaneous and quartic in the two unknowns, and it is nec-
essary to adopt an iterative solution technique such as that outlined by Bolton and Powrie 
(1987). The inconvenience of the iterative solution in the days before personal computers, 
programmable calculators and spreadsheets led to the development by Blum (1931) of an 
approximation to the exact calculation, in which the resultant of the stresses below the pivot 
point is replaced by a single point force Q acting at the pivot (Figure 9.3).

The portion of the wall below the pivot does not feature in the approximate analysis. 
The two unknowns are now the depth to the pivot zp and the equivalent point force Q. 

zp

h

d

Passive
Active

(a) (b)

Active

Pivot

Passive
ub = γwd [1 + ]h

2d + h  

Figure 9.2  Idealized stress distribution for an unpropped embedded cantilever wall at failure: (a) effective 
stresses; (b) pore water pressures.
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Solution is simpler in this case, because moments can be taken about the pivot, eliminat-
ing Q from the moment equilibrium equation. The value obtained for zp is increased by 
an empirical factor (usually 1.2) to arrive at the overall depth of embedment d. This factor 
of 1.2 is applied not to distance the wall from collapse, but because the calculation is not 
rigorously correct. If the simplified procedure is used, then a check should be carried out 
to ensure that the added depth is sufficient to mobilize at least the calculated value of Q 
(Figure 9.3c).

9.2.3  Embedded walls propped at the crest: free and fixed 
earth support conditions

If the possibility of a structural failure of the wall or the props is neglected, an embedded 
wall propped at the crest will tend to fail by rigid-body rotation about the position of the 
prop, as discussed in Section 7.6. The idealized effective stress distribution at failure is 
reproduced in Figure 9.4a. Pore water pressures according to the linear seepage approxima-
tion are shown in Figure 9.4b.

The conditions giving rise to the effective stress distribution shown in Figure 9.4a are 
sometimes known as free earth support, because the toe of the wall is relatively free to move 
laterally. In other words, no fixity is developed at the toe. In this case, the two unknowns 
are the prop force F and the depth of embedment d required just to prevent failure. As in 
Section 7.6, the depth of embedment d can be calculated by taking moments about the prop, 
and F then follows from the condition of horizontal force equilibrium. The application of a 
partial factor to the soil strength to calculate the depth of embedment in a design calculation 
has already been mentioned, and is discussed in Section 9.4.

Some authors (e.g. Williams and Waite, 1993) describe the use of a ‘fixed earth support’ 
calculation for a propped cantilever wall. The idealized and simplified effective stress distri-
butions associated with this are shown in Figure 9.5.

Passive

Passive

Pivot

Pivot

(a) (b)

(c)

Active

Active

0.2

ub = γwzP [1 + ]h
2zP + h  

h

zP

zP

Figure 9.3  Approximate stress analysis for unpropped walls: (a) effective stresses; (b) pore water pressures; 
(c) check that added depth can mobilize at least the required point load Q.
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Although in a rigid wall, this stress distribution might correspond to a mechanism of fail-
ure involving the formation of a plastic hinge at the point of maximum bending moment, this 
is not really the intention. The approach is usually adopted in an attempt to take account of 
the effects of wall bending, which may result in a reversal in the sign of the bending moment 
if the wall is sufficiently flexible. For stiff walls in clay soils, the use of the fixed earth sup-
port analysis is not generally considered appropriate (Gaba et al., 2003).

In the absence of a true plastic hinge (which would define the wall bending moment at 
this point), both the idealized and the simplified stress distributions shown in Figure 9.5 are 
statically indeterminate. To calculate the prop force and the depth of embedment, it is neces-
sary to assume, for example, that the point of contraflexure, at which the bending moment 
is zero, occurs at the level where the net pressure acting on the wall is zero (Williams and 
Waite, 1993).

The stress distribution shown in Figure 9.5 would correspond to the ‘correct’ failure 
mechanism for a propped wall where the prop yields at a constant load. Such a system is 
statically determinate, provided that the prop yield load is known.

(a) (b)

u = γwd [1 + ]h
2d + h  

Passive Active

P

Rotation

h

d

Figure 9.4  Idealized stress distribution at failure for a stiff wall propped rigidly at the crest: (a) effective 
stresses; (b) pore water pressures.
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Figure 9.5  ‘Fixed earth support’ effective stress distributions and deformations for a propped embedded 
wall: (a) idealized stresses; (b) simplified stresses; (c) deformed shape.
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9.3  EARTH PRESSURE COEFFICIENTS TAKING ACCOUNT 
OF SHEAR STRESSES AT THE SOIL/WALL INTERFACE

9.3.1 Effects of soil/wall friction

The earth pressure coefficients derived in Section 7.3 for a frictionless wall will lead to 
uneconomical designs when friction can reliably be mobilized at the soil/wall interface. In 
Section 10.6, we will see how the stress field analyses can be extended to account for wall 
friction (for the ( / ) tanmax critτ ′σ = ′ϕ  failure criterion) or adhesion (for the τmax = τu failure 
criterion). It is common, however—particularly in an effective stress analysis—to use tabu-
lated values of earth pressure coefficients, such as those given by Caquot and Kerisel (1948), 
Kerisel and Absi (1990), and in this book.

It was argued in Section 7.7 that if the surface of a retaining wall is rough in comparison 
with the typical soil particle size, full wall friction critδ = ′ϕ  would be expected to be mobi-
lized following sufficient relative movement at the interface. That the onset of large defor-
mations of embedded retaining walls which are either unpropped or propped near the crest 
seems to be reasonably well-predicted by the limit equilibrium stress distributions shown 
in Figures 9.2 and 9.4, using earth pressure coefficients based on critical state angles of soil 
friction with wall friction angle critδ = ′ϕ = ′ϕ  on both sides of the wall (Bolton and Powrie, 
1987; Powrie, 1996), tends to confirm this.

Design guidance has traditionally advocated the use of values of soil/wall friction angles 
δ that are somewhat less than the full soil strength φ′. This is partly because such advice 
dates back to the days when the differences between peak and critical state strengths were 
not fully appreciated: if peak′ϕ  were used as a design parameter, an assumed soil/wall fric-
tion angle of peakδ = ′ϕ  would be unrealistically high in most circumstances. The assumption 
δ < φ′ could also take account of the fact that the relative movement between the soil and 
the wall may be insufficient to generate full soil/wall friction. For thin walls (e.g. sheet piles), 
the generation of full friction on both sides of the wall might not be compatible with the 
vertical equilibrium of the wall; modern codes of practice require an explicit check on this.

Design guidance relating to the mobilization of soil/wall friction has varied over time 
and from one author to another. Terzaghi (1954) recommended δ = φ′/2 behind the wall and 
δ = 2φ′/3 in front. BS 8002 (BSI, 2001) recommended tan 0.75 tan mobδ = × ′ϕ  both behind and 
in front of the wall, where mob′ϕ  is the soil strength that must be mobilized to maintain equilib-
rium of the wall. Gaba et al. (2003) state that design values of δ should be selected on the basis 
of factors including the wall roughness, the magnitude and direction of relative soil/wall move-
ment, and the need to be able to maintain vertical equilibrium of the wall. Gaba et al. (2003) 
and Eurocode 7 (BSI, 2004) give limiting values of max critδ = ′ϕ  for rough (cast in situ) concrete, 
and 0.67max critδ = ′ϕ  for smooth (precast) concrete or sheet piling supporting sand and gravel.

In terms of the numerical values of earth pressure coefficients, the assumption of a smaller 
angle of soil/wall friction is equivalent to a reduction in the operational or mobilized soil 
strength if in actuality mobδ = ′ϕ , or an additional partial strength factor in a limit state design. 
For example, inspection of Caquot and Kerisel’s (1948) tables suggests that calculating the 
earth pressure coefficients using /2mobδ = ′ϕ  (rather than mobδ = ′ϕ ) is approximately equivalent 
to an 11% reduction in the mobilized soil strength (i.e. an additional partial factor on soil 
strength of ~1.11) over the range 18 36mob° < ′ϕ < °, compared with taking δ = φ′mob. Using 
δ = 2φ′mob/3, the equivalent reduction in mobilized strength compared with using mobδ = ′ϕ  is 
~5% (i.e. the additional partial factor on soil strength is ~1.05). Owing to the non-linearity 
of the relationship, however (Rowe and Peaker, 1965), the additional effective strength fac-
tor with tan 0.75 tan mobδ = × ′ϕ  is small; on the passive side, it decreases from 1.02 to less 
than 1.01 as mob′ϕ  increases from 15° to 35°, and on the active side it is about 1.03.
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For vertical walls and level backfills, active and passive earth pressure coefficients 
/( )h z u′σ γ −  with δ = φ′, tan δ = 0.75 × tan φ′, δ = 0.67φ′, δ = 0.5φ′ and δ = 0 (the last cor-

responding to Equations 7.3 and 7.4) are reproduced in Tables 9.1 and 9.2. It is assumed in 
these tables that the soil moves downward relative to the wall on the active side, and upward 
on the passive side. If these directions of relative soil/wall movement are reversed, the active 
earth pressure coefficients are increased and the passive pressure coefficients are reduced 
very considerably. This emphasizes the need to consider the likely magnitude and direction 
of relative soil/wall movement before invoking interface friction to help support the wall, as 
pointed out by Rowe and Peaker (1965).

The earth pressure coefficients given in Tables 9.1 and 9.2 were calculated by Richard and 
John Harkness using the method proposed by Sokolovskii (1960). They are generally consis-
tent with the earth pressure charts given in Figures A1 and A2 in Annex A of BS8002 (BSI, 
2001) and with the tables by Kerisel and Absi (1990). Discrepancies between these values 

Table 9.1  Active earth pressure coefficients ( )′σ γ/ –h z u  calculated using the method given by Sokolovskii 
(1960) for various angles of soil/wall friction angle δ (vertical wall and level backfill, component 
of reaction normal to the wall)

φ′ (°)
Ka with δ = 0 
(Equation 7.3)

Ka with δ = 
φ′/2

Ka with δ = 2φ′/3 (Gaba 
et al. and EC7, steel and 

precast concrete)

Ka with tan δ = 
0.75 × tan φ′ 

(BS8002)
Ka with δ = φ′ (EC7, 

in situ concrete)

12 0.6558 0.6112 0.6003 0.5952 0.5842
13 0.6327 0.5870 0.5758 0.5706 0.5593
14 0.6104 0.5638 0.5524 0.5470 0.5355
15 0.5888 0.5416 0.5300 0.5244 0.5128
16 0.5678 0.5202 0.5085 0.5028 0.4910
17 0.5475 0.4996 0.4879 0.4821 0.4702
18 0.5279 0.4799 0.4681 0.4622 0.4503
19 0.5088 0.4609 0.4491 0.4431 0.4312
20 0.4903 0.4426 0.4308 0.4248 0.4129
21 0.4724 0.4250 0.4133 0.4072 0.3954
22 0.4550 0.4081 0.3964 0.3903 0.3786
23 0.4381 0.3918 0.3802 0.3740 0.3624
24 0.4217 0.3760 0.3647 0.3584 0.3470
25 0.4059 0.3609 0.3497 0.3434 0.3321
26 0.3905 0.3463 0.3352 0.3289 0.3178
27 0.3755 0.3322 0.3213 0.3150 0.3041
28 0.3610 0.3187 0.3080 0.3016 0.2909
29 0.3470 0.3056 0.2951 0.2887 0.2783
30 0.3333 0.2930 0.2827 0.2763 0.2661
31 0.3201 0.2808 0.2707 0.2644 0.2543
32 0.3073 0.2691 0.2592 0.2528 0.2431
33 0.2948 0.2577 0.2481 0.2417 0.2322
34 0.2827 0.2468 0.2374 0.2311 0.2218
35 0.2710 0.2362 0.2270 0.2207 0.2117
36 0.2596 0.2260 0.2171 0.2108 0.2021
37 0.2486 0.2161 0.2074 0.2012 0.1927
38 0.2379 0.2066 0.1982 0.1920 0.1838
39 0.2275 0.1974 0.1892 0.1831 0.1751
40 0.2174 0.1885 0.1806 0.1745 0.1668
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and those given in Caquot and Kerisel (1948) are generally less than 5% for the passive case 
and 0.5% for the active case when φ′ is less than 30°.

Annex C of Eurocode 7 (BSI, 2004), and Appendix A6 of Gaba et al. (2003) give charts 
of active and passive earth pressure coefficients calculated using a form of Equations 10.32 
and 10.36, which are developed in Chapter 10. Numerical values of these earth pressure 
coefficients, which are slightly more conservative than those given in Tables 9.1 and 9.2 
(i.e. the active earth pressure coefficients are larger and the passive earth pressure coeffi-
cients are smaller) may be found in Tables 10.7 and 10.8 (Section 10.6) of this book.

The influence of soil/wall friction on the stability of embedded walls is illustrated in 
Figure  9.6. This figure gives the results of the limit equilibrium calculation shown in 
Figure 9.2 for unpropped cantilever walls retaining a soil of unit weight γ = 2γw, and for 
wall friction angles δ = 0 and δ = ′ϕmob. The results are shown in terms of the mobilized 
soil strength required for stability ′ϕmob, and the normalized pivot depth (h + zp)/(h + d), as 

Table 9.2  Passive earth pressure coefficients ( )′σ γ/ –h z u  calculated using the method given by Sokolovskii 
(1960) for various angles of soil/wall friction angle δ (vertical wall and level backfill, component of 
reaction normal to the wall)

φ′ (°)
Kp with δ = 0 
(Equation 7.4)

Kp with δ 
= φ′/2

Kp with δ = 2φ′/3 (Gaba 
et al. and EC7, steel and 

precast concrete)

Kp with tan δ = 
0.75 × tan φ′ 

(BS8002)

Kp with δ = φ′ (Gaba 
et al. and EC7, in situ 

concrete)

12 1.5250 1.6993 1.7458 1.7674 1.8128
13 1.5805 1.7811 1.8351 1.8605 1.9130
14 1.6383 1.8680 1.9303 1.9600 2.0204
15 1.6984 1.9603 2.0320 2.0665 2.1357
16 1.7610 2.0585 2.1406 2.1807 2.2596
17 1.8263 2.1630 2.2568 2.3033 2.3931
18 1.8944 2.2743 2.3814 2.4351 2.5370
19 1.9655 2.3932 2.5150 2.5770 2.6925
20 2.0396 2.5203 2.6586 2.7302 2.8608
21 2.1171 2.6562 2.8132 2.8958 3.0433
22 2.1980 2.8019 2.9799 3.0751 3.2414
23 2.2826 2.9583 3.1599 3.2696 3.4571
24 2.3712 3.1264 3.3546 3.4812 3.6923
25 2.4639 3.3073 3.5657 3.7116 3.9493
26 2.5611 3.5024 3.7949 3.9633 4.2309
27 2.6629 3.7131 4.0443 4.2388 4.5399
28 2.7698 3.9411 4.3163 4.5411 4.8801
29 2.8821 4.1883 4.6135 4.8736 5.2553
30 3.0000 4.4568 4.9390 5.2404 5.6704
31 3.1240 4.7491 5.2963 5.6460 6.1309
32 3.2546 5.0679 5.6896 6.0960 6.6432
33 3.3921 5.4164 6.1237 6.5967 7.2148
34 3.5371 5.7983 6.6039 7.1557 7.8547
35 3.6902 6.2178 7.1369 7.7818 8.5734
36 3.8518 6.6798 7.7302 8.4855 9.3836
37 4.0228 7.1901 8.3927 9.2796 10.300
38 4.2037 7.7551 9.1350 10.179 11.341
39 4.3955 8.3838 9.9687 11.202 12.529
40 4.5989 9.0823 10.912 12.371 13.889
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functions of the embedment to retained height ratio d/h. Two different depths a to the water 
table on the retained side are considered: a = 0 and a = h. With a full height groundwater 
level (a/h = 0), pore water pressures were calculated using the linear seepage model. With 
the groundwater level at formation level (a/h = 1), pore water pressures were assumed to be 
hydrostatic below the water table, and zero above it.

For an embedded wall propped at the crest, Figure 9.7 shows the mobilized soil strength 
′ϕmob required for equilibrium and the normalized prop load F/0·5γh2 (F has units of kN/m, 

i.e. kN per metre run of the wall) as functions of the embedment to retained height ratio, 
d/h, according to the stress analysis shown in Figure 9.4. Again, curves are given for δ = 
0 and δ = ′ϕmob, and groundwater levels on the retained side at depths a/h = 0 (i.e. at the 
retained soil surface) and a/h = 1 (i.e. at formation level). The soil has unit weight γ = 2γw.

9.3.2 Effects of soil/wall adhesion

For a total stress analysis with wall adhesion τw, modified expressions for the relationship 
between the vertical and horizontal total stresses at the active and passive limits are derived 
in Section 10.6.2. Alternatively, expressions for the active and passive limits to the horizon-
tal total stress may be derived from the analysis of sliding wedges of unit depth, following 
the method described in Section 7.8. For a level backfill and a vertical wall, where γ is the 
unit weight of the soil, z is the depth and q is the surface surcharge,

 ( + ) 2 1 (Active)h, min
w

u
uz qσ = γ − + τ

τ








 × τ  (9.2a)

 σ = γ + τ
τ









 × τ( + )+ 2 1 (Passive)h, max

w

u
uz q  (9.2b)

Equations 9.2 are less cumbersome than those derived from the stress field analysis of 
Section 10.6.2. BS 8002 (BSI, 2001) suggests that the mobilized wall adhesion τw may be 
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Figure 9.6  (a) Mobilized soil strength ′ϕmob and (b) normalized pivot depth (h + zp)/(h + d), as functions of the 
embedment to retained height ratio d/h for unpropped embedded walls in uniform soil. (Redrawn 
with permission from Bolton et al., 1990.)
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taken as 0.75 × the mobilized undrained shear strength τmob . τmob is limited to τu/1.5, giving a 
maximum value of τw,mob of τw,max = τu/2. More conservatively, Gaba et al. (2003) suggest that 
the maximum value of τw should be τw,max = 0.5 τu,design with τu,design = τu/1.5, i.e. τw,max = τu/3. 
EC7 (2004) is relatively silent on values of τw, other than to state that it (along with soil/wall 
friction δ) should be taken as zero for sheet pile walls in clay immediately after driving.

The expression + τ τ 2 (1 / )w u  is sometimes called a total stress earth pressure coeffi-
cient, and given the symbol Kac (for active conditions) or Kpc (for passive conditions). On the 
active side of the wall, the depth to which a tension crack may remain open is usually taken 
as 2Kac/γ (dry) or 2Kac/[γ − γw] (flooded). This is not entirely satisfactory; the first requires 
the soil close to the wall to be able to carry a tensile stress in some direction other than the 
horizontal [because the Mohr circle of total stress intersects the τ axis at the points (0, ±τw)], 
while the second requires the flooded interface to carry a shear stress.

9.4  LIMIT EQUILIBRIUM CALCULATIONS FOR EMBEDDED 
RETAINING WALLS AND ULTIMATE LIMIT STATE DESIGN

9.4.1 Brief history of embedded retaining wall design

The limiting stress states introduced in Section 7.3 were used in Section 7.6 to develop stress 
fields or stress distributions that enabled us to calculate the depth of embedment required 
just to prevent collapse of a propped cantilever retaining wall. In the stress distributions 
shown in Figures 7.16 and 7.18, the stresses behind the wall are at their minimum possible 

Embedment ratio d/h
(a)

(b)

γw

γ

10 2 3 4 5

Embedment ratio d/h
10

0

1

2

3

2 3 4 5

δ/φ ́ = 1, a/h = 1  

δ/φʹ = 0, a/h = 0  
δ/φʹ = 0, a/h = 1  
δ/φʹ = 1, a/h = 0  

δ/φʹ = 1, a/h = 0  

δ/φʹ = 1, a/h = 1  
δ/φʹ = 0, a/h = 1  

δ/φʹ = 0, a/h = 0  

= 2.0

25

20

15

10

5

0

φ
 ́ mo

b (
de

gr
ee

s)

F
γh21

2

Figure 9.7  (a) Mobilized soil strength ′ϕmob and (b) normalized prop load F/0.5γh2, as functions of the embedment 
to retained height ratio d/h for embedded walls in uniform soil, propped at the crest. (Redrawn from 
Bolton et al., Ground Engineering, 22, 8, 44–48; 22, 9, 34–40; and 23, 2, 22–28, 1990. With permission.)
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values (the active limit), while the stresses in front of the wall are at their maximum possible 
values (the passive limit). The same is true of the idealized stress distributions for propped 
and unpropped cantilever walls shown in Figures 9.2 to 9.5.

Obviously, a real wall must not collapse under working conditions. It is therefore neces-
sary to increase the design depth of embedment beyond that required merely to prevent col-
lapse. This was traditionally achieved by applying a factor of safety—conventionally given 
the symbol F—to one or more of the parameters in the collapse calculation. In fact, the aim 
of the factor of safety in a traditional design was not just to ensure that the wall would not 
collapse, but also to ensure that it would perform satisfactorily under working conditions. 
These two distinct ways in which the wall might fail have come to be termed limit states. 
Outright collapse is an ultimate limit state (ULS), while a failure to meet a specific service 
requirement is termed a serviceability limit state (SLS). The modes of failure described at 
the end of Section 7.4 are all examples of ULSs involving breakage or collapse. Possible SLSs 
for embedded retaining walls include excessive wall deflection and associated ground move-
ments, and the unwanted leakage of groundwater through or beneath the wall.

In modern design guidance for embedded retaining walls including BS8002 (BSI, 2001), 
CIRIA report C580 (Gaba et al., 2003) and Eurocode 7 (BSI, 2004), the factor of safety 
is applied primarily to the soil strength. For convenience, we will give this the symbol Fs, 
although that is not now used in codes and design guides. (In BS8002, it is termed a strength 
mobilization factor and given the symbol M; in CIRIA report C580 and EC7 it is one of a 
number of factors potentially applied to the design and is therefore termed a partial factor, 
given the symbol γ and a suitable subscript. Certain other measures may also be applied, 
including an increase in the design excavation depth of up to 0.5 m to allow for possible 
accidental overdig, and in the case of BS8002 an additional unexpected surcharge of 10 kPa 
to be applied to the retained soil surface. There is also a requirement to use the most onerous 
reasonably foreseeable pore water pressure regime.)

Before the early 1990s, factors of safety were sometimes applied to parameters other than 
the soil strength in embedded wall design including

 a. The depth of embedment, which was multiplied by a factor Fd

 b. Passive earth pressure coefficients, which were reduced by a factor Fp

 c. The moment of the net resisting pressure, which was reduced by a factor Fnp

Certain of these are potentially unsafe; and for embedded retaining walls, all are now out of 
date. (a) and (c) are not discussed in this book. Further details may be found in Burland et al. 
(1981), and extensive comparative calculations are presented by Gaba et al. (2003, Appendix A7). 
A brief discussion of (b) is included, as it provides a useful historical perspective in the context of 
wall bending moments and prop loads under working conditions, discussed later in Section 9.5.

Reducing the passive earth pressure coefficient(s) by the factor Fp (method (b) above) 
was the traditional procedure given in the original UK code of practice for retaining walls, 
CP2 (IStructE, 1951), and up until the late 1970s when it started to be called into question 
would probably have been used as a matter of routine. Wall bending moments calculated 
from equilibrium stress distributions with fully-active earth pressure coefficients Ka behind 
the wall and Kp/Fp in front would probably have been used as an estimate of those under 
working conditions. This was because most embedded walls were installed in soils (often 
sands) in which the in situ lateral earth pressure coefficient /o h vK = ′σ ′σ  was already quite 
close to the active limit; so that the stresses in the soil behind the wall would fall to their 
active values after only a small movement of the wall, while much larger movements were 
needed for the lateral stresses in front of the wall to rise to the passive limit. In addition, the 
numerical values of Fp used had been developed on the basis of experience with these soils, 
whose angles of effective shearing resistance were generally somewhat in excess of 30°.
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The advent of diaphragm and bored pile wall technology, which enabled embedded walls 
to be installed in overconsolidated clays having much smaller values of φ′ of ~20°, high-
lighted two problems with this approach. First, the in situ lateral stresses in overconsoli-
dated clays are, for the reasons explained in Section 9.6.2, likely to be quite high—perhaps 
approaching the passive limit. It was therefore thought that the wall movement needed to 
reduce the horizontal stresses behind the wall to the active limit could be rather greater than 
that needed for the soil in front to reach passive conditions—exactly the opposite of what 
is assumed in the traditional design procedure. This is a cause for concern if the bending 
moments obtained from the factored limit equilibrium calculation are used for the struc-
tural design of the wall. We will return to this point in Section 9.6.2. However, it is not now 
considered likely that the in-service bending moments in an embedded retaining wall in a 
clay soil could exceed those obtained from a ULS calculation with the soil strength reduced 
by the appropriate strength mobilization factor on both sides of the wall, or possibly even 
with fully active stresses unless the wall and its support system are very stiff.

The second and perhaps more significant problem with the traditional method is that the 
application of the factor of safety to the earth pressure coefficient, rather than to the soil 
strength directly, can be misleading especially if the same numerical value is applied over a 
wide range of effective soil strengths φ′. For example, in terms of the earth pressure coef-
ficients, a value of Fp = 1.5 is equivalent to a factor of safety on soil strength Fs = 1.2 when 

′ϕ = °35  (assuming full wall friction δ = ′ϕ  and using the values of passive pressure coefficient 
given by Caquot and Kerisel, 1948), but to Fs = 1.6 when ′ϕ = °20 . Thus, the application of 
the traditional value of Fp = 1.5 to diaphragm walls in clay soils (with ′ϕ ≈ °20 ) led to the 
calculation of excessive and uneconomical embedment depths. This point was demonstrated 
and explained by Burland et al. (1981).

The parametric study carried out by Burland et al. (1981) showed that the most consistent 
approach for an embedded retaining wall is to apply the factor of safety to the soil strength 
directly. This is the approach adopted in BS8002 (BSI, 2001), Eurocode 7 (2004) and CIRIA 
Report C580 (Gaba et al., 2003), once the possibility of an additional unplanned excavation and 
possibly an unforeseen surcharge on the retained soil surface have been taken into account. Gaba 
et al. (2003) further recommend consideration of the use of numerical soil-structure interaction 
analysis (with factored soil strength parameters) rather than simple limit equilibrium calcula-
tions in designing against a ULS—particularly for complex structures that are statically inde-
terminate (e.g. multi-propped walls), where the potential mechanism of collapse is not obvious, 
or where the construction sequence must be taken into account (e.g. walls with low level props).

Publication of the current version of Eurocode 7 (BSI, 2004) represented a further subtle 
but important shift in design philosophy. Before this, up to and including BS8002 (BSI, 2001), 
design against a SLS generally relied on the application of suitable factors to a ULS (collapse) 
calculation. EC7 (BSI, 2004) has sought to separate serviceability (SLS) and ultimate (ULS) limit 
state calculations more explicitly, with the result that the partial factors specified to avoid a ULS 
may not be sufficient to avoid a SLS, and separate checks are required (Driscoll et al., 2008).

It is clear from the above discussion that the requirements of the various modern codes of 
practice, although similar in principle, differ in detail. It is not the purpose of this book to 
act as a guide to codes of practice and other design documents, and it is important in carry-
ing out a design calculation to follow fully the procedure specified. The brief summaries and 
philosophical discussions given in this book do not capture the detail and complexity of the 
various cases that must be considered in carrying out an actual design.

This book is not a substitute for a code of practice or a design guide. If you need to design 
a retaining wall or any other geotechnical structure, you must obtain a copy of the relevant 
code and follow completely the procedure it recommends. It is important to realise that the 
success of the design depends on the combination of measures specified, which in addition to 
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the application of a partial factor to the soil strength may include an increase in the retained 
height to allow for unexpected overdig, an unplanned surcharge on the retained soil surface, 
application of the most onerous credible pore pressure regime, and the use of reduced soil/
wall friction. All of these contribute to distancing the wall from collapse, and all must be 
taken into account in the design.

9.4.2 ULS limit equilibrium calculations

In this section, we will look at two examples to illustrate the way in which limit equilibrium 
calculations based on the idealised lateral stress distributions shown in Figure 9.4 can be 
adapted to form the basis of a ULS design of an embedded retaining wall propped at the crest.

The first, Example 9.1, is simpler geometrically in that there are only two soil strata 
present (a ‘sand’ overlying a ‘clay’) and we will consider only the long term conditions. 
It  is based very loosely on the geometry and ground conditions encountered during con-
struction of the Channel Tunnel Rail Link (now HS1) in a cutting retained by propped bored 
contiguous pile sidewalls at Ashford, Kent, UK (see, for example, Richards et al., 2007). 
The ‘sand’ represents made ground and the relatively permeable Hythe Beds and the ‘clay’ 
the Atherfield Clay and the underlying Weald Clay. To simplify the problem, I have taken 
liberties with the excavated depth and the level of the interface between the Hythe Beds and 
the Atherfield Clay (which is in reality about 4 m below ground level), and assumed that 
the wall is impermeable (whereas in reality there is evidence of long-term horizontal flow 
and seepage through it). Also, the finished structure is propped at formation level, as well 
as near the crest. Figure 9.8 shows a photograph taken during construction, with the upper 
level of square-section reinforced concrete permanent props in place together with a row of 
temporary steel tubular props.

We will carry out the calculation in Example 9.1 broadly in accordance with one of the 
calculations specified in the current version of Eurocode 7 (BSI, 2004), which involves

• The application of a partial factor of 1.25 to the relevant soil strength  parameter, 
tan φ′—that is, the value of tan φ′ we use in the design calculation is given by 
tan tan /1.25design crit′ϕ = ′ϕ . (As we are investigating a potential ULS, we take the soil 
strength to which the factor is applied as the critical state strength because this is the 
strength relevant to the limit state being considered.) As the wall is made of in situ 
concrete, we can assume in the calculation that the angle of soil/wall friction δ is equal 
to the operational soil strength, δ = φ′mob, in looking up the earth pressure coefficients.

• Increasing the retained height by 0.5 m (this has already been done in the geometry 
shown in Figure 9.9).

Figure 9.8  Contiguous bored pile retaining wall with permanent reinforced concrete and temporary tubular 
steel props during construction. (Courtesy of Professor D.J. Richards.)
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This is the calculation for a geotechnical limit state (designated GEO by EC7), and is just 
one of six potential limit states that EC7 requires is considered. The others are a loss of 
static equilibrium not involving the ground (EQU), structural failure (STR), fatigue failure 
(FAT), failure by uplift (UPL), and hydraulic heave (HYD). In addition, the design must also 
consider potential SLSs. Thus, while the calculation in Example 9.1 is broadly consistent 
with the philosophy of EC7, it is far from being a complete design.

It is also worth noting that Example 9.1 represents a case in which the linear seepage 
approximation for long term pore pressures is not appropriate, owing to the presence of two 
distinct soil strata of widely different permeabilities.

Example 9.1:  Calculating the ulS design depth of embedment of an embedded 
retaining wall

Figure 9.9 shows a cross-section through an in situ concrete embedded retaining wall, 
propped at its crest. (The retained height has been increased from an expected 7.5 m to 8 m 
as shown, as required in a geotechnical ULS design to EC7.)

 a. Suggest a suitable assumption concerning the long term pore water pressures in the 
vicinity of the wall, for the design geometry as indicated.

 b. Calculate the effective stresses and pore water pressure at key depths behind and 
in front of the wall between which changes in stress may be treated as linear with 
depth. (A key depth is where there is a jump in the magnitude of the lateral stress, 
or a change in the slope of a graph of lateral stress against depth. The variation in 
lateral stress with depth will be linear between key depths. Key depths may occur 
where there is a change in the strength, unit weight or permeability of the soil, at 
the ground water level, or where the mode of soil deformation switches from active 
to passive for example at a pivot point). Use your assumed pore water pressure 
distribution and earth pressure coefficients ( )′σ γ/ –h z u  of 0.3110 (active, sand); 
0.4503 (active, clay); and 2.537 (passive, clay). Show that these earth pressure coef-
ficients correspond to a partial factor on the soil strength, tan φ′, of 1.25 and wall 
friction δ = ′ϕmob on both sides of the wall.

 c. Hence show that the design depth of embedment needed to guard against this par-
ticular potential ULS is in the region of 11.6 m, and calculate the corresponding 
prop load.

4 m

4 m

d

GWL

GWL

PROP
Sand φʹ = 32˚
γ = 18 kN/m3  

Clay φʹ= 22˚
γ = 18 kN/m3  

Sand φʹ = 32˚
γ = 20 kN/m3  

Figure 9.9  Cross-section through propped embedded retaining wall (including an unexpected additional 
excavation of 0.5 m in front of the wall), Example 9.1.
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SOluTIOn

 a. To calculate the long term pore water pressures, we will assume a steady state 
groundwater regime of seepage from the water table 4 m above formation level 
behind the wall to a water table at formation level in front. As the clay is very much 
less permeable than the sand, all of the head loss will occur as the water flows 
through the clay. Pore water pressures in the sand will be essentially hydrostatic 
down to the interface with the underlying clay. This implies that flow takes place 
through the sand with negligible head loss in comparison with that in the clay, 
because of the much greater permeability of the sand. We will further assume that 
the head loss in the clay (from a head of 4 m at the clay surface behind the wall to 
zero at the excavated surface in front) is distributed linearly around the wall—this 
is in effect the linear seepage approximation, adapted to suit the non-homogeneous 
ground conditions at this site. The head at the toe of the wall (depth d) is then 2 m, 
and the pore water pressure at depth d is (d + 2) m × γw. (This is a neat result that 
simplifies the calculation significantly, as the head at the τ is independent of the 
depth of wall embedment).

 b. The factored earth pressure coefficients are determined as indicated in Table 9.3b. 
These are based on mobilized strengths ′ϕmob given by tan tan /1.25mob crit′ϕ = ′ϕ , 
rounded to the nearest 0.5°. Earth pressure coefficients are taken from Tables 9.1 
and 9.2, for wall friction angle δ = ′ϕmob, extrapolating between whole numbers of 
degrees where needed.

The values of nominal vertical total stress γz, pore water pressure and horizontal 
total and effective stresses at key depths behind and in front of the wall are given in 
Table 9.3b, in terms of the (unknown) depth of embedment d. The active and pas-
sive earth pressure coefficients (based on mobilised strengths) KaS = 0.3110; KaC = 
0.4503 and KpC = 2.537 have been used in each stratum as appropriate.

The resulting stress distributions, divided into the stress blocks that will be used 
in the analysis, are shown in Figure 9.10.

Table 9.3a  Earth pressure coefficients based on factored soil strengths for effective stress analysis of an 
embedded retaining wall, Example 9.1

Stratum  ′ϕcrit (°) ′ϕtan crit

′ϕ =tan mob  
′ϕtan /1.25crit

′ϕmob (°) (rounded to 
nearest half degree)

Ka based on 
δ = ′ϕmob (Table 9.1)

Kp based on 
δ = ′ϕmob (Table 9.2)

Sand 32 0.625 0.5 26.5 0.3110 –
Clay 22 0.404 0.323 18.0 0.4503 2.537

Table 9.3b  Vertical and lateral effective stresses and pore water pressures at key depths behind and in 
front of the embedded retaining wall, Example 9.1

Depth (m) behind wall γz (kPa)
Pore water 

pressure, u (kPa)
( )′σ = γ −K z uh a  

(kPa) σ = ′σ + uh h  (kPa)

0, Sand 0 0 0 0
4, Sand 72 0 22.39 22.39
8, Sand 152 40 34.83 74.83
8, Clay 152 40 50.43 90.43
8 + d, Clay 152 + 18d 20 + 10d 59.44 + 3.6d 79.44 + 13.6d

Depth (m) in front of wall γz (kPa)
Pore water 

pressure, u (kPa)
( )′σ = γK z u–h p  

(kPa) σ = ′σ + uh h  (kPa)

0 0 0 0 0
d 18d 20 + 10d 20.3d − 50.74 30.3d − 30.74
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 c. The design depth of embedment may be found by taking moments about the prop. 
The resultant forces and lever arms for each stress block shown in Figure 9.10 are 
given in Table 9.4. In each case, the resultant force (in kN/m) is calculated as the 
average stress (in kPa) multiplied by the depth over which the average stress acts 
(in m). The moment of each stress block is then the resultant force multiplied by the 
lever arm.

For moment equilibrium about the prop, the sum of the clockwise moments (i.e. the 
forces acting behind the wall multiplied by their respective lever arms) must be equal to 
the sum of the anticlockwise moments (i.e. the forces acting in front of the wall multiplied 
by their respective lever arms). Multiplying out and gathering up the terms in the relevant 
boxes in Table 9.4,

 [119.41] + [537.36] + [699.55] + [723.44d + 45.22d2] = [5.59d3 + 60.19d2 − 78.96d]

(the term on the right hand side represents the effect of stress block 6 minus stress block 
5; units are such that d is in metres)

 ⇒ 5.59d3 + 14.97d2 − 802.4d = 1356.32

By trial and error, the condition of moment equilibrium is satisfied with

 d ≈ 11.56 m

4m

4m

d
30.3d–30.74

F

22.39 kPa

74.83 kPa

90.43 kPa

79.44 + 13.6d

1

2 3

4

56

Figure 9.10  Lateral total stresses (= effective stress + pore water pressure at each depth, from Table 9.3) 
on embedded retaining wall, Example 9.1.

Table 9.4  Average stresses, resultant forces and lever arms about prop for the stress blocks shown in 
Figure 9.10, Example 9.1

Stress 
block

Average stress within 
stress block (kPa)

Depth of 
stress 

block (m)
Resultant 

force (kN/m)
Lever arm about prop 

(m)

Moment about 
prop = force × lever 

arm (kNm/m)

1 22.39/2 = 11.20 4 44.78 4 × 2/3 = 2.67 119.41
2 22.39 4 89.56 4 + (4/2) = 6 537.36
3 (74.83 − 22.39)/2 = 26.22 4 104.88 4 + (4 × 2/3) = 6.67 699.66
4 90.43 d 90.43d 8 + d/2 723.44d + 45.22d2

5 (79.44 + 13.6d − 
90.43)/2 = (6.8d − 5.5)

d 6.8d2 − 5.5d 8 + 2d/3 (6.8d2 − 5.5d) × 
(8 + 2d/3)

6 (30.3d − 30.74)/2 = 
(15.15d − 15.37)

d 15.15d2 
− 15.37d

8 + 2d/3 (15.15d2 − 15.37d) × 
(8 + 2d/3)
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The corresponding prop load is calculated from the condition of horizontal force 
equilibrium for the wall. Substituting d = 11.56 m into the expressions for the forces in 
Table 9.4, and subtracting the force in front of the wall (stress block 6) from the sum of the 
forces behind the wall (stress blocks 1–5), we obtain (with units such that F is in kN/m)

 
= + + + × + × ×

× ×
⇒ =

F

F

[44.78] [89.56] [104.88] [90.43 11.56] [(6.8 11.56 ) – (5.5 11.56)]

– [(15.15 11.56 ) – (15.37 11.56)]

282.85 kN/m

2

2

The second example, Example 9.2 is rather more complicated as it involves three soil strata 
and we will investigate both short term and long term conditions, using the undrained shear 
strength (τu) and effective stress (φ′) failure criteria respectively. We will again carry out a ULS 
calculation broadly in accordance with EC7 (BSI, 2004), although we will in addition allow 
for a surcharge of 10 kPa on the retained soil surface (not shown in Figure 9.11). EC7 requires 
a partial factor of 1.4 on the undrained shear strength (i.e. τdesign = τmob = τu/1.4), but is silent 
about the value of wall adhesion τw. We will assume a short term wall adhesion τw of 0.5 × 
the mobilized (design) undrained shear strength, τmob, in accordance with Gaba et al. (2003).

Example 9.2 is based on the cut-and-cover tunnel on the M25 London orbital motorway 
at Bell Common, which is described by Hubbard et al. (1984) and Tedd et al. (1984).

Example 9.2:  Calculating the ulS design depth of embedment of an 
embedded retaining wall in more complex soil conditions

Figure 9.11 shows a cross-section through the retaining wall on one side of a cut-and-
cover tunnel. The side walls are embedded cantilevers, propped apart at the crest by 
a roof slab. Stating carefully the assumptions you make concerning wall friction, pore 
water pressures, tension cracks, etc., and giving reasons for your choice of factor of safety, 
calculate the depth of embedment required for a design based on a geotechnical ULS.

SOluTIOn

(A) ShOrT-TErM (TOTAl STrESS) AnAlySIS

The ULS design depth of embedment will be calculated broadly in accordance with EC7 
(BSI, 2004). The recommended partial factor on undrained shear strength τu is 1.4. The 
wall adhesion τw is taken as 0.5 × τmob, in accordance with Gaba et al. (2003).

The minimum (active) and maximum (passive) lateral total stresses are given by 
Equations 9.2 using the factored values of soil strength τmob.

 2 1 ( )h,min
w

mob
mob ac mobq z q z Kσ = + γ − + τ

τ


















× τ = + γ − × τ  (Active, 9.2a)

 2 1 ( )h,max
w

mob
mob pc mobz z Kσ = γ + + τ

τ


















× τ = γ + × τ  (Passive, 9.2b)

With τw/τmob = 0.5, Equations 9.2 give Kac = Kpc = 2.√(1.5) = 2.45.
We will allow for a surface surcharge q of 10 kPa acting at the soil surface on the retained 

side of the wall. This might represent general construction activities in the short term. On 
the excavated side of the wall, the 15 kPa surcharge indicated in Figure 9.11 represents the 
carriageway. As the carriageway has a stabilizing effect, the most critical design condition 
in the short term is when the excavation is open to the full depth, before the carriageway 
has been placed. The 15 kPa surcharge is therefore not included in the short-term analysis.
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For design purposes, the retained height is increased by 0.5 m (10% of the retained 
height being greater than this maximum) to 9.175 m (EC7, 2004). The calculated wall 
embedment x is then the depth of embedment required below the design excavation level, 
that is, the total wall length H is 9.175 m + x.

The first step is to calculate the values of τmob, τw, Kpc, σv and σh at key depths (i.e. 
wherever there is a change in the linearity of the stress distribution), behind and in front 
of the wall. These are tabulated in Table 9.5. The pressure utc that would be exerted by 
water in a flooded tension crack behind the wall is given, assuming that the water level in 
the tension crack is maintained at the natural groundwater level, 3 m below the retained 
soil surface. Table 9.5 also includes the stresses on both sides of the wall at a general 
depth x below the design excavation level; that is, at (9.175 + x) m below the retained 
soil surface.

Table 9.5 shows that in the Claygate Beds (CB) (neglecting the small negative value 
at 3 m depth), the active lateral total stress is greater than the hydrostatic pressure of 
water in a tension crack that floods to the water table level, 3 m below the retained soil 
surface. This means that a tension crack, either flooded or dry, cannot remain open in 
the Claygate Beds.

In the London Clay (LC), the hydrostatic pressure exerted by water in a flooded ten-
sion crack is greater than the active lateral total stress until a depth of 12.685 m below 
the retained soil surface is reached. This means that a flooded tension crack could remain 
open in the London Clay to this depth. In the Older Head (OH), which is entirely above 
the water table, a tension crack could form but will be assumed to remain dry. (In real-
ity, the prop is likely to prevent a flooded tension crack from opening so our assumption 
that a flooded tension crack could develop is somewhat pessimistic. However, the design 
depth of embedment will be governed by the long term effective stress calculation.)

The lateral stress distributions in Table 9.5 are illustrated in Figure 9.12a. Figure 9.12b 
shows the division of the lateral stress distributions into rectangular and triangular stress 
blocks, together with the lever arm (about the prop) of the centre of pressure in each case.

The value x required for short-term (undrained) equilibrium may be calculated by tak-
ing moments about the prop. Assuming that x ≤ 2.51 m, the moment owing to the active 
pressures is:

 [0.5 × 54.9 kPa × 5.5 m] × [3 m + (5.5 m × 2/3)] (stress block 1 in Figure 9.12b)

 + [0.5 × (71.75 + 10x) kPa] × [(7.175 + x) m] × [3 m + {(2/3) × [(7.175 + x) m}]

 (stress block 2 in Figure 9.12b),

9.
67

5 
m

Prop

Surcharge 15 kPa

London Clay

Older Head
Claygate Beds
London Clay

25˚
30˚
20˚

50
50
95

London Clay

Claygate Beds

Older HeadWater table

All soils have γ = 20 kN/m3

τu (kPa)

3 m

5.5 m

φ ćrit  

Figure 9.11 Cross-section through retaining wall, Example 9.2.
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which for equilibrium must be equal to the moment of the passive pressures:

 [166.36 kPa × x m] × [(10.175 + x/2) m] (stress block 3 in Figure 9.12b)

 + [0.5 × 20x kPa × x m]

 × [(10.175 + 2x/3) m] (stress block 4 in Figure 9.12b)

Solution by trial and error gives

 x ≈ 2.45 m

The initial assumption x ≤ 2.51 m is therefore justified. The overall wall length H is

 H = (10.175 + 2.45) m = 12.625 m

Table 9.5  Mobilized undrained soil strengths, vertical and horizontal total stresses, etc. at key depths 
behind and in front of the wall shown in Figure 9.12, Example 9.2

Depth (m) 
behind wall

Soil 
stratum

τu 
(kPa)

τmob 
(kPa)

τw 
(kPa) Kac

q + γz 
(kPa)

σh, min (active) = q + 
γz − (Kac × τmob) (kPa) utc (kPa)

0 O H 50 35.7 25 2.45 10 [− 77.47] 0
3 O H 50 35.7 25 2.45 70 [− 17.47] 0
3 C B 40 28.6 20 2.45 70 [− 0.07] ≈ 0 0
8.5 C B 40 28.6 20 2.45 180 109.9 55
8.5 L C 95 67.9 47.5 2.45 180 13.65 55
10.175 + 
x

L C 95 67.9 47.5 2.45 213.5 + 
20x

46.65 + 20x 71.75 + 
10x

12.685 L C 95 67.9 47.5 2.45 265.2 96.85 96.85
Depth (m) 
in front of 
wall

Soil 
stratum

τu 
(kPa)

τmob 
(kPa)

τw 
(kPa) Kpc

γz 
(kPa)

σh, max (passive) = 
γz − (Kpc × τmob) (kPa) utc (kPa)

0 L C 95 67.9 47.5 2.45 0 166.36 n/a
x L C 95 67.9 47.5 2.45 20x 166.36 + 20x n/a

10
.1

75
 m

10
.1

75
 m

(1
0.

17
5 

+ 
2x

/3
) m

(1
0.

17
5 

+ 
x/

2)
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en
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σh = 0
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= 166.36 kPa
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F4 F3
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Active pressure
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Figure 9.12  (a) Total lateral stress distribution based on factored soil strengths; (b) division into stress 
blocks, showing lever arms for calculation of moments about prop, Example 9.2.
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The wall embedment d at the expected excavation depth of 9.675 m is

 d = (12.625 − 9.675) m

 ⇒ d = 2.95 m

The short-term prop load F is calculated from the condition of horizontal equilibrium:

 F = [0.5 × 54.9 kPa × 5.5 m] (stress block 1 in Figure 9.12b)

 + [0.5 × (71.75 + 10x) kPa × (7.175 + x) m] (stress block 2 in Figure 9.12b)

 − [166.4 kPa × x m] (stress block 3 in Figure 9.12b)

 − [0.5 × 20x kPa × x m] (stress block 4 in Figure 9.12b)

Substituting x = 2.45 m,

 F ≈ 146.5 kN/m

In the case of a temporary structure, it would be prudent to allow for a degree of 
softening of the clay near the excavated soil surface, for example as described in Section 
9.6.1 and at the end of Section 7.6. This would lead to an increase in the calculated depth 
of embedment.

In the case of a permanent structure involving an excavation in overconsolidated clay, 
the long-term condition is almost certain to be more critical from a design point of view. 
Provided that an effective stress analysis which represents fully softened conditions is car-
ried out and found to be more critical, there is no real need to allow for partial softening 
in the total stress analysis, unless the support conditions change during construction so 
that the stability of the wall is more critical in the short term than in the long term.

SOluTIOn

(B) lOnG-TErM (EFFECTIvE STrESS) AnAlySIS

Again following EC7 (BSI, 2004), the overall wall length H is calculated on the basis of 
an excavation depth of 9.675 + 0.5 = 9.175 m. In addition, we will allow for a 10 kPa 
surcharge acting on the retained soil surface, representing general long-term landscaping, 
etc. Partial factors on soil strength (tan φ′) of 1.25 are required, with the soil strength 
being that relevant to the limit state under consideration. Thus the design or mobilized 
soil strength is given by ′ϕ = ′ϕtan tan / 1.25mob crit . For a rough wall, soil/wall friction δ 
may be taken to be the same as the mobilized soil strength, δ = ′ϕmob.

Values of active and passive earth pressure coefficients corresponding to the design 
mobilized soil strengths with δ = ′ϕmob are given in Table 9.6. (These are taken from Tables 
9.1 and 9.2, with values of ′ϕmob rounded to the nearest 0.5°.)

The next step is to calculate the long-term pore water pressures. In this case, the exca-
vation is fairly wide. In the absence of actual data, we will assume that the permeability 
of the Claygate Beds is similar to that of the London Clay, so that the linear seepage 
model may be used.

Figure 9.13a shows the pore water pressures calculated using the linear seepage assum-
ption, at key depths on both sides of the wall, for a general wall embedment x. Writing 
y = (2x + 14.35)/(2x + 7.175), the pore water pressure at the base of the wall is γwxy (kPa), 
and the pore water pressure at the interface between the Claygate Beds and the London 
Clay  is 5.5γwxy/(x + 7.175)  (kPa). The effective vertical and horizontal stresses at key 
depths behind and in front of the wall are given in Table 9.7 in terms of x and y; the active 
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earth pressure coefficients in each stratum KaOH, KaCB and KaLC; and the passive pressure 
coefficient in the London Clay KpLC. The effective stress blocks that must be considered 
in the analysis are shown in Figure 9.13b. The ULS design depth of embedment for long-
term conditions may be found by taking moments about the prop.

The resultant forces and the lever arms for each stress block shown in Figure 9.13 are 
given in Table 9.8. In each case, the resultant force (in kN/m) is calculated as the aver-
age stress (in kPa or kN/m2), multiplied by the depth over which the average stress acts 
(in m). The moment of each stress block is given by the resultant force multiplied by the 
lever arm.

For moment equilibrium about the prop, the sum of the clockwise moments (in this 
case, the forces acting behind the wall multiplied by their respective lever arms) must be 
equal to the anticlockwise moments (in this case, the sum of the forces acting in front 
of the wall multiplied by their respective lever arms). By trial and error, the condition of 
moment equilibrium is satisfied with

 x ≈ 13 m

Table 9.6  Earth pressure coefficients based on factored soil strengths for effective stress analysis of 
embedded retaining wall, Example 9.2

Stratum
′ϕ = ′ϕ( )crit max

(°) ′ϕtan crit

′ϕ =tan mob  
′ϕtan /1.25crit

′ϕmob (°) (rounded 
to nearest half 

degree)

Ka based on ′ϕmob 
and δ = ′ϕmob 
(Table 9.1)

Kp based on ′ϕmob 
and δ = ′ϕmob 
(Table 9.2)

OH 25 0.466 0.373 20.5 0.404 (2.95)
CB 30 0.577 0.462 25 0.332 (3.95)
LC 20 0.364 0.291 16 0.491 2.26

Prop

Datum for
measurement
of total head

10

7

Surcharge 10 kPa

Surcharge 15 kPa

Passive

10
.1

75
 m

Total head = 7.175 m
u = 0

u = × ub
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5.5 m
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x

5.5
x + 7.175

Total head = 7.175 m × x
2x + 7.175

ub = γwx [1 + ]7.175
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Figure 9.13  (a) Pore water pressure distribution using linear seepage approximation, and (b) effective stress 
distribution based on factored soil strengths, Example 9.2.
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This gives an overall wall length H = 10.175 m + 13 m = 23.175 m. For the anticipated 
retained height h = 9.675 m, the depth of embedment d is

 d = 23.175 m − 9.675 m

 ⇒ d ≈ 13.5 m.

The prop load will be greater in the long term than in the short term. The ULS design 
prop load may be calculated from the condition of horizontal force equilibrium for the 
wall, with the ULS design excavation depth of 10.175 m. Subtracting the sum of the 
forces in front of the wall from the sum of the forces behind the wall (Table 9.8, column 
4 with x = 12.98 m and y = 1.2222), we obtain

 F ≈ 500 kN/m.

Table 9.7 Lateral effective stresses at key depths behind and in front of the wall, Example 9.2

Depth (m) behind wall γz + 10 (kPa) Pore water pressure, u (kPa) ′σ = γ + −( 10 )( )h aK z u kPa

0 OH 10 0 10KaOH

3 OH 70 0 70KaOH

3 CB 70 0 70KaCB

8.5 CB 180 55xy/(x + 7.175) [180 − 55xy/(x + 7.175)] × KaCB

8.5 LC 180 55xy/(x + 7.175) [180 − 55xy/(x + 7.175)] × KaLC

9.175 + x LC 213.5 + 20x 10xy [213.5 + 20x + 10xy] × KaLC

Depth (m) in front of wall γz + 15 (kPa) Pore water pressure, u (kPa) ′σ = γ + −( 15 )( )h pLCK z u kPa

0 LC 15 0 15KpLC

x LC 15 + 20x 10xy [20x + 15 − 10xy] × KpLC

The unit weight of water has been taken as 10 kN/m3.

Table 9.8 Resultant forces and lever arms for stress blocks shown in Figure 9.13, Example 9.2

Stress block 
(see Figure 
9.13)

Average stress within 
stress block (kPa)

Depth of 
stress 

block (m) Resultant force (kN/m) Lever arm about prop

Stresses and pore water pressure behind the wall
1 10KaOH 3 30KaOH 3 m/2 = 1.5 m
2 0.5 × 60KaOH 3 90KaOH 3 m × (2/3) = 2 m
3 70 × KaCB 5.5 385KaCB 3 m + (5.5 m/2) = 5.75 m
4 0.5 × [110 − {55xy/

(x + 7.175)}] × KaCB

5.5 2.75 × [110 − {55xy/(x + 
7.175)}] × KaCB

3 m + (5.5 m × 2/3) = 
6.67 m

5 [180 − {55xy/(x + 
7.175)}] × KaLC

x + 
1.675

(x + 1.675) × [180 − {55xy/
(x + 7.175)}] × KaLC

8.5 m + [(1.675 + x) 
m/2 = (9.338 + x/2) m

6 0.5 × [33.5 + 20x 
− {10xy(x + 1.675)/
(x + 7.175)}] × KaLC

x + 
1.675

(x + 1.675) × 0.5 × [33.5 
+ 20x − {10xy(x + 1.675)/
(x + 7.175)}] × KaLC

8.5 m + 2(x + 1.675) 
m/3 = (9.62 + 2x/3) m

7 (pwp) 0.5 × 10xy x + 
7.175

(0.5 × 10xy) × (x + 7.175) 3 m + (2/3)×(7.175 + x) 
m = (7.783 + 2x/3) m

Stresses and pore water pressure in front of wall
8 15KpLC x 15x × KpLC 10.175 + x/2 m
9 0.5 × KpLC × (20x −10xy) x x × KpLC × (10x − 5xy) 10.175 + 2x/3 m
10 (pwp) 0.5 × 10xy x 0.5x × 10xy 10.175 + 2x/3 m
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The easiest way of carrying out analyses such as this is to assemble the equations in a 
spreadsheet. An iterative solution can then be obtained very rapidly.

9.5  CALCULATION OF BENDING MOMENTS AND 
PROP LOADS: SERVICEABILITY LIMIT STATES

A ULS calculation following the procedures given in EC7 (BSI, 2004) or BS8002 (BSI, 2001) 
for an embedded retaining wall will give a stress distribution that is in equilibrium and 
(because of the factor(s) applied to the soil strength, the increased embedment depth, and in 
the case of B8002 the 10 kPa surcharge behind the wall) remote from collapse. However, it 
is unlikely to represent the actual stress distribution under working conditions except pos-
sibly for a stiff, unpropped wall. This is because the soil strengths actually mobilized may 
be different on each side of the wall, depending on the post-installation stress state and the 
stress–strain response of the soil in the different stress paths followed; and because wall 
flexibility and other soil–structure interaction effects will lead to a variation in soil strain 
(and hence mobilized soil strength) with depth. Ways in which the basic limit equilibrium 
calculation might be modified to take account of different rates of strength mobilization 
with wall movement and wall flexibility are discussed in Sections 9.6 to 9.8.

The approach to SLS calculations recommended by Gaba et al. (2003) is to carry out some 
form of numerical analysis that takes account of soil–structure interaction effects. Such an 
analysis would be based on the actual wall geometry (i.e. without the unplanned depth of 
excavation) and the actual (unfactored) soil strength parameters: it would also be necessary 
to specify wall and soil stiffnesses and (depending on the complexity of the analysis) other 
parameters as well. Detailed guidance is given in Gaba et al. (2003).

For embedded walls with a single level of props near the top, Gaba et al. (2003) point 
out that a limit equilibrium approach will tend to overestimate wall bending moments 
and underestimate prop or anchor loads in comparison with a soil–structure interaction 
analysis. If the limit equilibrium approach is adopted, they suggest that an estimate of 
the in-service or SLS bending moment diagram for an embedded wall propped at the top 
may be obtained using the procedure illustrated in Figure 9.14. First, the bending moment 
distribution at true limiting equilibrium is calculated, that is, with the wall having the 
embedment needed just to prevent collapse with unfactored soil strengths, an increased 
excavation depth and additional external loads as required by the code. The in-service 

Prop

Bending moment
diagram at limiting
equilibrium Depth of wall

at limiting
equilibrium

Design depth of
embedment

Design bending
moment diagram

Figure 9.14  Estimating the in-service bending moments for an embedded wall propped near the crest from 
limit equilibrium calculations, according to CIRIA Report C580. (Adapted from Gaba et al., 
Embedded retaining walls—guidance for economic design, CIRIA Report C580, Construction 
Industry Research and Information Association, London, 2003.)
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bending moment diagram is then estimated by simply sketching it in between the maxi-
mum of the limit equilibrium distribution with unfactored soil strengths and the actual 
toe of the wall. The reasoning behind this procedure, and its consequent limitations, are 
discussed in Section 9.6.2.

Limit equilibrium methods tend to underestimate prop loads in comparison with 
 soil–structure interaction analyses; Gaba et al. (2003) therefore recommend the application 
of an additional factor to prop loads calculated from a factored geotechnical ULS analysis 
or on the basis of the approach shown in Figure 9.14, for use in structural design. Gaba 
et al. (2003) also emphasize the need for the designer to ensure that the accidental loss of 
a prop will not result in the sequential overloading and progressive failure of the props all 
the way along the wall, and to check the ability of the props to withstand an increase in 
load resulting from a rise in temperature (their Section 7.1.3). Full details are given in Gaba 
et al. (2003).

It is usually necessary to stiffen the wall along its length at the levels at which the props 
act, by means of longitudinal beams known as walings. In this way, the effects of minor 
local variations in ground or loading conditions can to some extent be spread along the wall. 
The detailed design of the system of props and walings is very important: see, for example, 
Williams and Waite (1993) or Twine and Roscoe (1999) or Twine and Roscoe (1999).

9.6 EMBEDDED WALLS RETAINING CLAY SOILS

9.6.1 Time-scale over which undrained conditions apply

There are two main problems facing the designer of an embedded wall in a clay soil that 
are unlikely to arise in the design of walls in sands. The first concerns the length of time for 
which the initial undrained shear strength can be relied on: in other words, for how long 
after excavation is an analysis based on total stresses and the ‘maximum shear stress’ failure 
criterion τmax = τu valid?

The answer to this question is extremely complex, and will depend on factors that even 
in the same soil may vary from site to site, such as the proximity of sources of recharge, 
the extent of local fissuring and the presence of high-permeability layers. Excavation is 
an unloading process that will result eventually in the swelling and softening of the clay 
and hence a reduction in undrained shear strength τu. In terms of effective stresses, the 
negative excess pore water pressures induced on excavation maintain the average effective 
stress ′ = σ + σ( 0.5( ))1 3s  temporarily artificially high, so that the Mohr circle of effective 
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remains
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Effective stress failure
envelope  τ = σʹ tan φćrit
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until Mohr circle
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Initial Mohr
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effective
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low u → high s0́

sf́
σʹ

s0́

τ

Figure 9.15 Failure after dissipation of negative excess pore water pressures following excavation.
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stress is initially well within the failure envelope (Figure 9.15). As the clay swells, the 
negative excess pore water pressures dissipate and the average effective stress s′ is reduced. 
The shear stress required to maintain the stability of the excavation remains constant, 
and when the Mohr circle of effective stress touches the effective stress failure envelope, 
collapse will occur.

Many of the factors needed to assess the time-scale over which the undrained analysis 
might be valid are practically unquantifiable. Clearly the approach should never be used for 
permanent works, and even for temporary works it is advisable to err on the side of caution. 
Softening is likely to occur first near the retained and excavated soil surfaces, and may be 
taken into account by using effective stress analysis or reduced undrained shear strengths in 
these zones. The recommendations of Gaba et al. (2003) in this respect are summarized at 
the end of Section 7.6 of this book.

9.6.2 Effect of high in situ lateral stresses

The second problem concerns the significance of the high in situ lateral earth pressures 
usually present in overconsolidated clay deposits. The in situ horizontal stresses in over-
consolidated clays are generally high because of their stress history. Deposition corre-
sponds approximately to one-dimensional consolidation, during which the horizontal and 
vertical effective stresses increase in proportion to each other (Figure 9.16). On unload-
ing, which might occur owing to the melting of a glacier or the erosion of overlying soil, 
the horizontal effective stress tends to remain ‘locked-in’, decreasing proportionately less 
quickly than the vertical effective stress. In extreme cases (of which the London Clay is 
one example), a zone of soil extending to a depth of several metres below the new surface 
may be brought to the verge of passive failure simply as a result of the vertical unloading 
process.

The process of installing a diaphragm-type retaining wall in an overconsolidated clay will 
almost certainly reduce the horizontal effective stresses close to the wall to below their in situ 
values. However, the pre-excavation lateral earth pressure coefficient is still likely to be greater 
than or equal to one (Powrie, 1985 and Gaba et al., 2003, Appendix A5). Furthermore, the 
soil remaining in front of the wall below formation level might on excavation be brought to 
passive failure simply as a result of the further unloading without the need for an increase 
in the horizontal stress. In these circumstances, the wall movement required to mobilize 
fully passive pressures in front might be thought to be rather less than that needed to reduce 
the stresses behind to the active limit. This could lead to the development of larger bending 
movements under in-service or working conditions than might have been allowed for using 

σ v́
Active failure
σ h́ = Ka σ v́ 

Current stress state

Passive failure
σ h́ = KP σ v́ 

σ h́ = σ v́ 
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Figure 9.16 Schematic stress history for an overconsolidated clay deposit.
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traditional design methods, in particular if fully active conditions are assumed to have been 
reached in the soil behind the wall (the Fp method described in Section 9.4).

Finite element analyses carried out by Potts and Fourie (1984) appeared to confirm that 
in-service bending moments in embedded walls in overconsolidated clays could be very 
much greater than those calculated on the basis of fully active conditions behind the wall. 
However, the finite element analyses took no account of the stress relief likely to be caused 
by wall installation, and the potentially very different stress–strain responses of the soil on 
either side of the wall.

Powrie et al. (1998) argue that, when an embedded wall moves as the soil is removed 
from within the main excavation, the rates of mobilization of soil strength are likely to be 
different on either side of the wall. This is because the stress paths followed are different 
in each case, particularly when considered in relation to the stress path imposed on the 
soil during wall installation. A diaphragm wall is usually excavated panel-by-panel under 
a bentonite support slurry; the reinforcing cage is lowered in; and concrete is tremied into 
the bottom of the panel excavation, displacing the bentonite slurry upward. Thus during 
wall installation, the soil on either side of a diaphragm wall is subjected to a reduction 
in horizontal stress (to the hydrostatic pressure of the bentonite slurry) as the panel is 
excavated, followed by an increase in horizontal stress as the concrete is poured. When 
the main excavation is made, the soil behind the wall is subjected to a reversal of this 
stress path (i.e. a reduction in horizontal stress), while the soil remaining in front experi-
ences a continuing increase in the ratio of horizontal to vertical stress. The response of 
the soil behind the wall is therefore likely to be stiffer than that of the soil in front (see 
Section 6.2), leading to the more rapid mobilization of soil strength with shear strain in 
the retained soil (Figure 9.17). In other words, as the wall moves, the horizontal stresses 
behind will probably fall much more rapidly than the horizontal stresses in front of it 
increase—particularly for an unpropped wall, where the relationship between wall move-
ment and shear strain is the same for the soil behind and in front of the wall. For a rigid 
wall propped at the crest, the shear strain in the soil in front of the wall is ~(1 + h/d) 
times that in the retained soil, where h is the retained height and d is the embedded depth 
(Section 9.7).
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Figure 9.17  Different rates of mobilization of strength with shear strain in stress paths simulating those 
experienced by soil elements behind and in front of an embedded retaining wall. (Data from 
Powrie et al., Géotechnique, 48, 4, 483–494, 1998.)
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The stress changes in the soil behind and in front of a diaphragm wall, during wall instal-
lation and subsequent excavation of the soil from in front of the wall, are considered in 
Example 9.3.

Example 9.3:  Stress changes in the ground during diaphragm 
wall installation and excavation

For a soil element at a depth of 10 m below ground level, calculate the vertical and horizontal 
total and effective stresses and pore water pressures (a) in situ; (b) on excavating a diaphragm 
wall trench under bentonite; (c) on pouring the concrete; and (d) with the concrete set.

Take the unit weights of water γw = 10 kN/m3; soil γs = 20 kN/m3; concrete γc = 
24 kN/m3; and bentonite γb = 11 kN/m3; and the in situ lateral earth pressure coefficient 
Ko = 1.8. Assume that the water table is at ground level, and that the average effective 
stress = ′σ + ′σ =( ) constant1

2 v hs  in undrained conditions. The total depth of the dia-
phragm wall is 18 m.

Assume also that, as the diaphragm wall panel is excavated, the horizontal total stress 
σh is reduced to γb ⋅ z, the hydrostatic pressure of the bentonite support slurry; and that 
during concreting, σh is increased to the hydrostatic pressure of wet concrete, γc ⋅ z, up to a 
critical depth hc of 1/3 the wall depth; and is increased to γchc + γb (z − hc) below hc (Lings 
et al., 1994). Explain the last assumption.

SOluTIOn

The various stresses are calculated as in Table 9.9 below, in the order indicated in  brackets 
( ) at each stage. The critical depth hc = 18 m/3 = 6 m. The assumption that σh increases 
to the hydrostatic pressure of wet concrete only above a critical depth hc of 1/3 of the wall 
depth during concreting and to γc · hc + γb · (z − hc) below it represents the effect of the 
concrete starting to set or consolidate during placement.

The stress paths followed are plotted as ′σh (y axis) against ′σv (x axis) in Figure 9.18.

Table 9.9 Calculation of stresses before, during and after diaphragm wall installation, Example 9.3

Stage
Vertical total 

stress, σv (kPa)
Horizontal total 
stress, σh (kPa)

Pore water pressure, 
u (kPa)

Vertical effective 
stress, ′σv (kPa)

Horizontal 
effective stress, 

′σh (kPa)

(a) In situ 200 (1)
= 10 m × 
20 kN/m3

280 (5)
= ′σ + uh

100 (2)
= 10 m × 10 kN/m3

100 (3)
= σv − u

180 (4)
= × ′σ1.8 v

(b) Bentonite 200 (1)
= 10 m × 
20 kN/m3

110 (2)
= 10 m × 
11 kN/m3

15 (3)
because v h′σ + ′σ  = 
σv + σh − 2u = 
constant = 280 
kPa from stage (a); 
thus 2u = 
(310 − 280) kPa

185 (4)
= σv − u

95 (5)
= σh − u

(c) Concrete 
pour

200 (1)
= 10 m × 
20 kN/m3

188 (2)
= (6 m × 
24 kN/m3) + 
(4 m × 11 kN/m3)

54 (3)
as above: ′σ + ′σv h= 
constant; thus 2u 
= (388 − 280)

146 (4)
= σv − u

134 (5)
= σh − u

(d) Concrete 
set

200 (1)
= 10 m × 
20 kN/m3

188 (4)
Assumed to 
remain constant 
but this is not 
certain

100 (2)
= 10 m × 
10 kN/m3

100 (3)
= σv − u

88 (5)
= σh − u
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Powrie et al. (1998) suggest that, when the combined effects of the high in situ lateral earth 
pressure coefficient, stress relief owing to wall installation, the different rates of mobilization 
of soil strength with shear strain on each side of the wall, and the enhanced shear strains (for a 
given wall rotation) in front of a wall propped at the top are taken into account, a ULS calcula-
tion based on factored soil strengths, following BS8002, EC7 or Gaba et al. (2003), is likely to

• Overestimate the in-service lateral stresses in the soil behind an unpropped embedded 
wall relative to those in front.

• Provide a reasonable estimate of the relative magnitudes of the in-service lateral stresses 
behind and in front of a rigid embedded wall propped at the crest, although in reality 
the lateral stresses behind such a wall are likely to be reduced by wall bending effects 
(Section 9.8).

The empirical procedure suggested by Gaba et al. (2003) to estimate in-service or SLS 
limit state bending moments from a limit equilibrium analysis for a wall propped at the top 
(Figure 9.14) reflects this, in that it is based on fully active conditions behind the wall. The 
validity of this approach depends on a combination of

• A relatively high rate of mobilization of strength with strain in the soil behind the wall, 
causing horizontal stresses in the retained soil to fall quickly towards the active limit.

• A degree of wall flexibility, so that bending moments are reduced by stress redistribution.

Experience suggests that in most practical situations, at least one of these conditions is 
likely to be satisfied. We might note, however, that the approach indicated in Figure 9.14 
does not lead to the calculation of greater bending moments as the depth of embedment is 
increased, as might occur with some other methods of analysis or in reality.

9.7  GEOSTRUCTURAL MECHANISM TO ESTIMATE 
WALL MOVEMENTS

One of the main shortcomings of a traditional limit equilibrium calculation is that it gives 
the designer no explicit information on ground movements that may be relevant to a SLS. 
For stiff walls, where the effective stress distributions on either side may be assumed to be 
approximately linear, an idealized displacement mechanism or geostructural mechanism can 
be used to relate the rigid body rotation of the wall to the maximum shear strain in the adja-
cent soil, and hence to the ground movements if the effects of wall bending are neglected. 
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The shear strain in the adjacent soil may then be related to the mobilized strength required 
for equilibrium by means of an appropriate stress–strain curve, enabling soil and wall defor-
mations under working conditions to be estimated from the equilibrium calculation. In this 
approach, the condition of equilibrium of the wall is satisfied to find the mobilized soil 
strength ′ϕmob; the stress–strain relationship for the soil is used to determine the soil strain 
corresponding to the mobilized strength ′ϕmob; and the displacements are compatible with 
these strains according to the assumed displacement mechanism.

The stress–strain relationship is used in the form of a graph of mobilized soil strength 
′ϕmob as a function of shear strain γ. Since ′ϕ = ′−sin [ / ]mob

1 t s  where = ′σ − ′σ0.5[ ]1 3t  and 
′ = ′σ + ′σ0.5[ ]1 3s  (Figure 5.6), the use of a single ′ϕ − γmob  curve for the soil on one side of the 

wall is equivalent to the assumption of an increasing shear modulus with average effective 
stress s′, and hence with depth. In principle, both the pre-excavation earth pressure coef-
ficient and the probably different stress–strain responses of the soil on either side of the wall 
could be taken into account in the ′ϕ − γmob  relationships used (e.g. Figure 9.17).

In centrifuge model tests on unpropped embedded walls retaining clay (Bolton and 
Powrie, 1988), significant soil movements during excavation occurred mainly in the zones 
defined approximately by lines drawn at 45°, extending upward from the toe of the wall on 
both sides. For a rigid wall OV rotating about its toe O, this pattern of deformations would 
be consistent with a shearing triangle AOV, beyond which the soil is effectively rigid (Figure 
9.19a). From the Mohr circle of strain increment shown in Figure 9.19b for the  triangle 
AOV, the shear strain increment δγ within this zone is uniform and equal to twice the incre-
ment of wall rotation δθ. For a rigid wall rotating into the soil the pattern of deformation is 
reversed, but the relation δγ = 2δθ still holds.
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Figure 9.19  (a) Idealized deformation pattern for a rotating bulkhead and (b) corresponding Mohr circle of strain. 
(c) Synthesis of idealized displacement mechanism for a stiff unpropped wall, rotating about a point 
near its toe. (Redrawn from Bolton and Powrie, Géotechnique, 38, 2, 167–189, 1988. With permission.)
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For a rigid unpropped embedded wall VW rotating about a point O near its toe, six of 
these deforming triangles may be used to construct an idealized displacement mechanism, 
as shown in Figure 9.19c. As before, the shear strain increment δγ in each of the six deform-
ing triangles is uniform and equal to twice the incremental wall rotation δθ.

The stress analysis shown in Figure 9.2 can be used for an unpropped wall of any geom-
etry to calculate the mobilized soil strength ′ϕmob required for equilibrium. (The mobilized 
soil strength ′ϕmob is assumed to be uniform with depth, and in the simplest case is the same 
on both sides of the wall.) The shear strain corresponding to a given mobilized soil strength 
can be determined from an appropriate laboratory test on a representative soil element. The 
idealized strain field shown in Figure 9.19c can then be used to estimate the magnitude of 
the wall rotation and soil movements.

Bolton and Powrie (1988) applied this approach to a centrifuge model test on an unpropped 
wall of retained height 10 m and embedment depth 20 m. The calculation was based on the 
undeformed wall geometry, and the pore water pressures measured immediately after exca-
vation in the centrifuge test. In these conditions, a mobilized soil strength ′ϕmob  of 17.5° was 
required for equilibrium, with wall friction δ = ′ϕmob. The corresponding shear strain accord-
ing to plane strain laboratory test data (starting from a mobilized strength of zero, which 
corresponds to a pre-excavation lateral earth pressure coefficient of 1) is 1.1% (Figure 9.20a). 
This implies an incremental wall rotation δθ of 0.55%. Figure 9.21 shows that the soil move-
ments calculated using the idealized displacement pattern shown in Figure 9.19, with δθ = 
0.55%, are very similar to those measured in the centrifuge test.

Alternatively, the idealized displacement pattern may be used to limit the permissible mobi-
lized soil strength ′ϕmob, on the basis of an allowable wall movement. Suppose that the maxi-
mum allowable movement at the top of an embedded retaining wall of total length 20 m was 
100 mm. This would imply a maximum wall rotation δθ of approximately (0.1 m/20 m) or 
0.5%. The corresponding increment of shear strain in the retained soil is 1%, which accord-
ing to the ϕ − γmob  curve of Figure 9.20b places a limit on the mobilized soil strength of 16.7°.

Taking the critical state strength ′ϕcrit  as 22°, the corresponding soil strength factor is 
′ϕ ′ϕ =tan / tan 1.35crit mob . This is greater than the strength mobilization factor M = 1.2 (applied 

to the peak soil strength, ′ϕtan peak), required by BS8002 (BSI, 2001) or the partial factor on 
soil strength (tan φ′) of 1.25 required in EC7 (BSI, 2004). This is partly because most natural 
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ob

 (d
eg

re
es

)

Rupture

for equilibrium φḿob = 17.5˚  
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Géotechnique, 38, 2, 167–189, 1988. With permission.)



500 Soil mechanics: concepts and applications

© 2010 Taylor & Francis Group, LLC

clays tend to be stiffer than the reconstituted kaolin sample to which Figure 9.20 relates. Also, 
in a design according to EC7, the increased excavation depth—and in the case of BS8002, the 
10 kPa surcharge on the retained soil surface—both serve to distance the wall from failure.

A similar analysis for walls propped at the crest is described by Bolton and Powrie (1988). 
This suggests that for a stiff wall and a given wall rotation δθ, the shear strain on the exca-
vated side of the wall is (1 + h/d) times that on the retained side, where h is the retained 
height and d is the depth of embedment. If this type of calculation were used as an aid to 
design, the permissible mobilized soil strength would depend on a number of factors, includ-
ing the acceptable ground movement, the initial stress state of the soil, and its stiffness mea-
sured in appropriate stress and strain paths. For a propped wall, the different shear strain/
wall rotation relationships on either side would also need to be taken into account. Further 
details, including a worked example, are given by Bolton et al. (1989, 1990).

The calculation can easily be generalized to allow for a pre-excavation stress state that 
does not correspond to a mobilized soil strength of zero (i.e. a pre-excavation earth pres-
sure coefficient that is not equal to 1), and different rates of soil strength mobilization with 
shear strain on each side of the wall. Both of these features are apparent in the data shown 
in Figure 9.17. The different strengths mobilized on each side of the wall would then have to

• Satisfy the conditions of equilibrium, through their associated earth pressure coef-
ficients and the appropriate idealized stress distributions.

• Correspond to the same shear strain increment in the case of an unpropped wall, or a 
shear strain increment in the soil in front of the wall that is (1 + h/d) times that in the 
retained soil in the case of a wall propped at the top. 

An extension of the approach to take into account wall flexibility is discussed in Section 9.8.2.

Space scale 2 m
(a)

(b)

Displacement scale 0.2 m

Space scale 2 m
Displacement scale 0.2 m

Figure 9.21  Comparison of (a) measured and (b) calculated soil movements for an unpropped wall of retained 
height 10 m and embedment 20 m. (Redrawn from Bolton and Powrie, 1988. Géotechnique, 38, 
2, 167–189. With permission.)
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9.8 EFFECT OF RELATIVE SOIL: WALL STIFFNESS

The stiffness of an embedded retaining wall may affect both deformations and bending 
moments under working conditions. However, most methods of analysis based on limiting 
linear stress distributions do not take account of the flexibility of the wall. It is useful at least 
to identify a threshold wall stiffness above which the effects of wall bending may reasonably 
be neglected. For a wall of given total length H and flexural rigidity EI, bending effects are 
most significant when the wall is propped at the crest.

In this section, some of the ways in which the effect of wall flexibility on the behaviour of 
embedded retaining walls has been quantified are described.

9.8.1 Early work by Rowe

Rowe (1952) reported the results of a series of model tests on anchored sheet pile walls of 
various stiffness, retaining dry sand. Rowe quantified the stiffness of a wall by means of a 
flexibility ρ = H4/EI, where H is the overall height of the wall (= d + h), and EI is its flexural 
rigidity or bending stiffness.

Rowe found that for truly rigid props (or, in the case of his model tests, unyielding tie-
back anchors), the horizontal stress distribution on the retained side of the wall was non-
linear (Figure 9.22). This is because a reduction in lateral stress at the midsection of the wall 
must be accompanied by an increase in lateral stress at the unyielding section near the prop.1 
If the wall is propped just below the crest, there may even be a small backward movement 
of the wall above the prop, into the retained ground.

However, an outward movement at the anchor point of just H/1000 was enough to gener-
ate fully active conditions and a linear variation in lateral stress with depth behind the wall. 
In practice, although modern support systems may be rather stiffer than those used by Rowe 
(1952), movements at the prop or anchor point of this order would probably occur unless 
the supports were pre-stressed.

Wall deformation occurs partly as a result of rigid body rotation (in the case of a propped 
wall, about the position of the prop), and partly as a result of bending (Figure 9.23). Rowe 
(1952) found that the lateral stress distribution in front of the wall depended on the relative 
importance of the bending component of wall deformation, and hence on the bending stiff-
ness of the wall. If the wall was stiff, so that the deflection at the level of the excavated soil 
surface (also known as the dredge level) was of the same order as the deflection at the toe, 
the stress distribution in front of the wall was approximately triangular. Measured bending 
moments were in agreement with those from a ‘free earth support’ calculation based on a 
fully active triangular stress distribution behind the wall and a smaller-than-passive (i.e. fac-
tored) triangular stress distribution in front (Figure 9.24a). (This factored free earth support 
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σ′h   = K0 σ′v   (in situ)

σ′h   = Ka σ′v   (active)

Figure 9.22 Reduction of lateral stress in the retained soil owing to arching.
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calculation was the design method in use at the time, and corresponds to the application of 
a factor of safety Fp to the passive pressure coefficient, method (b) in Section 9.4.)

If the wall was more flexible, so that the deflection at dredge level was significantly greater 
than that at the toe, the centroid of the stress distribution in front of the wall was raised 
(Figure 9.24b). This resulted in smaller anchor loads and bending moments than those given 
by the (factored) free earth support calculation. More generally, the observation that the 
stress distribution in front of the wall remained approximately linear until the movement of 
the wall at dredge level began to exceed the movement at the toe (as indicated in Figure 9.23) 
suggests that a ‘stiff’ wall could be defined as a wall in which bending deflections are small 
enough in comparison with displacements arising from rigid body rotation not to affect the 
linearity of the lateral stress distribution.

Rowe recognized that the critical wall flexibility ρc at which the deflection at dredge level 
becomes equal to the deflection at the toe and the stress distribution in front of the wall 
begins to change significantly from the linear idealization should be related in some way 
to the stiffness of the soil. In a later paper, Rowe (1955) presented an analysis of anchored 
sheet-pile walls in which it was assumed that the lateral effective stresses behind the wall 
had fallen to the active limit, and the lateral effective stress pb in front of the wall at a depth 
z below formation level was given by the expression /b =p mzy d, where d is the embedment 
of the wall, y is the deflection and m is a soil stiffness parameter which has the same units 
as, and might (if y/d is taken as an indication of the magnitude of the linear strain) be viewed 
as a measure of the rate of increase of Young’s modulus with depth, / *∂ ∂ =E z E .

Rowe concluded that, within the ranges of retained height ratio α = h/H, depth βH to 
the anchor point, retained soil surface surcharge and degree of anchor yield likely to be 
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encountered in practice, the results of the analyses could be presented as a single moment 
reduction curve for design office use. This curve (Figure 12 in Rowe’s 1955 paper, repro-
duced here in consistent units as Figure 9.25) shows the bending moment as percentage of 
the free earth support value (assuming fully active conditions behind the wall) as a function 
of the logarithm of mρ. The parameter mρ is sometimes known as the flexibility number, 
and is given the symbol R. (In consistent units, mρ is dimensionless: however Rowe’s values 
have been multiplied by 144 to achieve this, because Rowe has m in lb/ft3 and ρ in ft5/lb 
in2. On the logarithmic plot, multiplication by 144 is achieved by adding log10[144] = 2.16.)

Rowe’s design chart (Figure 9.25) represents his analytical solution to within ±10% for 
anchored walls with retained height ratios h/H (where H = h + d) in the range 0.65–0.75; 
anchor depths βH in the range 0 < β < 0.2; surcharges acting at the retained soil surface of 
up to 0.2γH in magnitude; and a movement at the anchor point of up to 0.008H. The curves 
given are for the case of a rigid prop or anchor, which would be expected to give slightly 
larger prop or anchor loads and bending moments than a yielding support. Rowe (1955) 
notes that the results of his analysis are generally in close agreement with those of his earlier 
(1952) experiments.

Rowe’s design chart may not be suitable for walls where the groundwater level in the 
retained soil is high, because retained height ratios h/H less than 0.65 would probably be 
required. If the chart is used in such circumstances, it must be remembered that only the 
component of the bending moment owing to effective stresses should be reduced. The chart 
may be unsuitable for walls in clay soils where the in situ earth pressure coefficient is high, 
because of the assumption in Rowe’s analysis that the retained soil is in the active state (see 
Section 9.6 for a fuller discussion of this point). Also, Figure 9.16 relates to the case of a rigid 
prop or anchor: the pre-stressing of props or anchors would be expected to lead to higher 
wall bending moments.

9.8.2 Modern approach

Figure 9.24 shows that the deflection of an embedded wall at any depth is due partly to 
rotation as a rigid body about the prop, and partly to the effects of bending. Using the geo-
structural mechanism approach described in Section 9.7, it may be shown that on excava-
tion in front of an in situ wall in a soil of unit weight γ, rigid body rotation is governed by 
γ/G*, while bending deformation depends on γH4/EI for undrained conditions. (H4 is the 
overall wall length and EI is the bending stiffness per metre run, in kNm2/m. G* is the rate 
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Figure 9.25  Moment reduction as a function of wall flexibility. mρ is in consistent units, i.e. it is properly 
dimensionless—see text. (Redrawn from Rowe, Proceedings of the Institution of Civil Engineers, Pt 
1, 4, 32–69, 1955. With permission.)
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of increase of shear modulus G with depth. A flexibility number quantifying the relative 
importance of wall deflections resulting from bending and rigid body rotation may then be 
identified as R = (γ/G*)/(γH4/EI) = G*H4/EI.

This is confirmed by Diakoumi and Powrie (2013), who developed the geostructural mech-
anism described in Section 9.7 to account for differential wall rotation (bending) over the 
depth of a flexible embedded cantilever retaining wall propped at the crest. Bending moment 
and prop load reduction curves developed by Diakoumi and Powrie (2013) are presented in 
Figures 9.26a and b respectively, for soils of strength ′ϕ = ° °20 and30ult , with pore pressures 
of zero and corresponding to linear seepage from a full height groundwater level behind the 
wall. The bending moments and prop loads are normalised with reference to those given by 
a ULS calculation according to EC7 (BSI, 2004), based on the same mobilised strength in 
the soil (i.e. the same partial factor on soil strength) behind and in front of the wall. (The 
parameter ρ is Rowe’s wall flexibility ρ = H4/EI; thus G*ρ = G*H4/EI, which is equal to the 
dimensionless flexibility number, R).

The increase in bending moments in Figure 9.26 above the EC7 values for very stiff walls 
(having log10(G*ρ) < 1.5 to 2.5, depending on the value of ′ϕult) is a result of the much greater 
strains in the soil in front of the wall than behind associated with the geostructural mecha-
nism, coupled with the assumption that the soil stiffness is the same on both sides. It is 
unlikely to occur in practice, as the soil stiffness is will probably be greater behind the wall 
than in front (Section 9.6.2).

Critical flexibility numbers, Rc, calculated using the same approach, are shown as a func-
tion of the design ultimate strength ′ϕult  in Figure 9.27, for pore water pressures of zero and 
corresponding to linear seepage from a full height groundwater level behind the wall. These 
were determined according to the criterion that for a ‘stiff’ wall, the deformation at dredge 
level should not be greater than that at the toe. They are consistent with the previous results 
in that the curves shown in Figure 9.26 cross the x axis (F/FEC7 or M/MEC7 = 1) at the values 
of log10(G*ρ) indicated in Figure 9.27.
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Figure 9.26  (a) Maximum normalized bending moment M/MEC7 and (b) normalized prop force F/FEC7, plotted 
against relative soil/wall flexibility log10(G*ρ) for soil having angles of effective shearing resistance 

′ϕ = °20ult  and 30°, for zero pore water pressures and pore pressures corresponding to linear 
seepage from a full height groundwater level on the retained side of the wall. (Redrawn from 
Diakoumi and Powrie, 2013. Géotechnique, 63, 2, 95–106. With permission.)



In-ground retaining structures: embedded walls and tunnels 505

© 2010 Taylor & Francis Group, LLC

For unpropped walls or walls propped at formation level, critical flexibility numbers will 
generally be greater than for walls propped at the crest, because for a wall of given total 
length H and bending stiffness per metre run EI bending effects are less significant.

For multi-propped walls, in which the opportunity for rigid body rotation may be limited, 
a system stiffness γ/ w av

4EI h  was defined by Clough et al. (1989). (γw is the unit weight of 
water and hav is the average distance between the supports.) The unit weight of the soil could 
have been used instead of the unit weight of water, because it is the soil that loads the wall 
and causes it to deform in bending. This would give a system stiffness of γ/ av

4EI h .
Addenbrooke et al. (2000) suggested that the displacement of a multi-propped wall in 

given ground conditions may be investigated with reference to the parameter ∆ = / av
5EI h . 

Although this is not dimensionless, Addenbrooke et al. (2000) found that wall displace-
ments were similar (in given soil conditions) for different combinations of EI and hav giving 
the same value of Δ.

Example 9.4: Assessing wall flexibility effects in an anchored embedded retaining wall

Figure 9.28 shows a cross-section through an anchored sheet pile retaining wall.

 a. Assuming that fully active conditions have been reached in the soil behind the wall 
with ′ϕ = ′ϕmob crit and an angle of soil/wall friction δ given by δ = × ′ϕtan 0.75 tan crit, 
calculate the operational partial factor on soil strength Fsp on the passive side of the 
wall.

 b. Calculate the maximum bending moment and the anchor load associated with this 
equilibrium condition.

 c. Explain why the in-service maximum bending moment could be less than this 
value, and estimate the in-service maximum bending moment and anchor load 
using Rowe’s moment reduction chart (Figure 9.25).

The retaining wall is made from interlocking Larssen 4A steel sheet piles having a 
Young’s modulus 210 × 106 kPa, and a relevant second moment of cross-sectional area of 
4.4916 × 10−4 m4 per metre run if there is no slip at the clutches between adjacent piles 
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Figure 9.27  Relationship between critical flexibility number log10 Rc distinguishing ‘rigid’ from ‘flexible’ walls 
and soil angle of effective shearing resistance ′ϕult, for zero pore water pressures and pore pres-
sures corresponding to linear seepage from a full height groundwater level on the retained 
side of the wall. (Redrawn from Diakoumi and Powrie, Géotechnique, 63, 2, 95–106, 2013. With 
permission.)
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(Figure 9.28b), or 1.4125 × 10−4 m4 per metre if friction cannot be relied on to prevent 
slip from taking place, so that the piles act independently (Figure 9.28c). The soil stiffness 
parameter m is estimated to be 6000 kPa/m.

This example is based on the sheet-pile wall used in the construction of the road tun-
nel on the A1(M) at Hatfield in Hertfordshire, approximately 40 km north of London, 
described by Symons et al. (1987).

SOluTIOn

 a. Assuming fully active conditions, the lateral earth pressure coefficient in the soil 
behind the wall is Ka = 0.2207 (from Table 9.1, for ′ϕ = °35crit  and wall friction 
angle δ given by δ = × ′ϕtan 0.75 tan crit). The (as yet unknown) earth pressure coef-
ficient in the soil in front of the wall below formation level is Kp. The effective 
stresses and pore water pressures at key depths (i.e. at the soil surface, at the toe of 
the wall and at the level of the water table) behind and in front of the wall are given 
in Table 9.10.

  The unit weight of water has been taken as 10 kN/m3. The lateral stress distribu-
tion is shown in Figure 9.29a.

  Taking moments about the anchor (ignoring the pore water pressures, which bal-
ance each other exactly because they are hydrostatic below the same groundwater 
level on each side of the wall),

(c)

Neutral axes of piles acting independently
if there is slippage at the interlocks

(b)

Interlock or clutch

Neutral axis of overall section if thereN l f ll f h
is no slip at the interlocks or clutches

Individual pile

(a)

Groundwater
level Groundwater level

Grouted a ground
anchor

Glacial sands and gravels
φ′crit = 35°, γ = 20 kN/m3

9.
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m
3.
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Figure 9.28  (a) Cross-section through anchored sheet pile retaining wall (Example 9.4); cross-sections 
through Larssen 4A steel sheet piles, showing neutral axis if (b) there is no slip at the clutches, 
and (c) if the piles act independently.
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[0.5 40.8kPa 9.25m] 9.25m
2
3

[40.8kPa 3.75m] 9.25m
3.75m

2

[0.5 8.3kPa 3.75m] 9.25m 2
3.75m

3

[0.5 37.5 (kPa) 3.75m] 9.25m 2
3.75m

3pK

giving

 3048.6 826.2

or 3.69
p

p

K

K

=

=

Table 9.10 St            ress at key depths behind and in front of the wall, Example 9.4

Depth behind 
wall (m) γz (kPa)

Pore water 
pressure, u (kPa) (γz − u) (kPa) ′σ = × γ −(kPa) K ( z u)h a

0 0 0 0 0
9.25 185 0 185 40.8
13.0 260 37.5 222.5 49.1
Depth in front 
of wall (m) γz (kPa)

Pore water 
pressure, u (kPa) (γz − u) (kPa) ′σ = × γ −(kPa) K ( z u)h a

0 0 0 0 0
3.75 75 37.5 37.5 37.5 Kp

(a) (b)

26.6˚
Anchor load T

(fully active) 9.25 m

3.75 m

σ′h = Pa40.8 kP

σσ′hh == 49.1 kPa49 1 kPa
σ′h = 138.4 kPa

(c)

σ′h = .8 kPa40.

σh , net = 89.3 kPa

u = kPa37.5 k

u = 37.5 kPa37 5 kP

T

T

M

Bending
moment F Shear force

Depth z
(z ≤ 9.25 m)σ′h = 40.8 ×         kPa

9.25
z

At depth z,
F = T cos 26.6˚‒             × z ×    

9.25
40.8 z

2
1

M = Tz cos 26.6˚‒            ×   ×
9.25

40.8 z
3
z

2
z

Figure 9.29  (a) Lateral stress distribution; (b) net pressures; (c) calculation of shear force and bending 
moment.
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 From Table 9.2, this corresponds to a mobilized soil strength of just under 25°, 
assuming wall friction such that δ = × ′ϕtan 0.75 tan mob. Thus, the operational par-
tial factor on soil strength on the passive side of the wall is

 tan35
tan25

1.5spF = °
°

=

 b. The net pressure diagram is shown in Figure 9.29b.
  The horizontal component of the anchor load, Tcos 26.6°, is calculated from the 

condition of horizontal force equilibrium,

 
° + × × ×

= × × + ×
+ × ×

[ cos 26.6 ] [0.5 (3.69 37.5) kPa 3.75m]

[0.5 40.8kPa 9.25m] [40.8kPa 3.75m]

[0.5 8.3kPa 3.75m]

T

  giving

 [T cos 26.6°] = 97.8 kN/m

  or

 T = 109 kN/m

  The maximum bending moment occurs where the shear force is zero. For depths 
z less than 9.25 m, the calculation of shear force and bending moment is illustrated 
in Figure 9.29c. At a depth z (≤ 9.25 m), the lateral effective stress is

 ′σ = 



 ×

9.25
40.8kPah

z

  and the pore water pressure is zero.
  The shear force is zero when

 ° = 



 × ×





[ cos26.6 ]
9.25

40.8
2

T
z z

  giving z2 = 44.35 m2 or z = 6.66 m.
  The bending moment M is given by

 

[ cos26.6 ]kN / m [ ]m

–
9.25

40.8kPa
2

m
3

m

[( cos26.6 ) 0.735 ]kNm/m3

M T z

z z z

T z z

= ° ×





 × × 



 × 











= ° × −

  At z = 6.66 m,

 M = 434kNm/mmax
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 c. The bending moment and anchor load in (b) have been calculated on the basis of a 
linear stress distribution. If the wall is flexible, the stress distribution in front of it 
will be non-linear, with comparatively higher lateral stresses just below the exca-
vated soil surface (as in Figure 9.24b). The effect of this will be to reduce the wall 
bending moments and the anchor load.

  The moment reduction factor depends on the relative soil–wall flexibility mρ = 
mH4/EI. For this example, m = 6000 kPa/m, H = 13 m, E = 210× 106 kPa, and I is 
between 4.4916 × 10−4 m4/m and 1.4125 × 10−4 m4/m. Thus

 





= × ×
× × × ×−

(6000 13 )(kPa/m m )
(210 10 4.4916 10 )(kPa m / m)

4

min

4 4

6 4 4

mH
EI

 and

 





= × ×
× × × ×−

(6000 13 )(kPa / m m )
(210 10 1.4125 10 )(kPa m / m)

4

max

4 4

6 4 4

mH
EI

 or

 
< 





<1816 5777
4mH

EI

 
3.26 log 3.7610

4mH
EI

⇒ < 





<

 From Figure 9.25, the moment reduction factor is therefore between 0.7 (for mH4/
EI = 5777) and 0.85 (for mH4/EI = 1816). The reduction in anchor load is 0.6 
times the reduction in moment, giving an anchor load reduction factor of between 
0.82 and 0.91. Thus, the maximum in-service bending moment could be reduced to

 ≤ ≤304kNm/m 369kNm/mmax,desM

 and the anchor load to

 ≤ ≤89kN/m 99kN/mdesT

 assuming that the anchors are not pre-stressed. In reality, the anchors were 
 pre-stressed, and the maximum measured bending moment was still only 110 
kNm/m.

9.9 STRIP LOADS

Non-uniform surcharges are difficult to take into account in a stress field analysis, because 
their influence on the horizontal stress in the vicinity of the wall is not easy to quantify. 
A strip load running parallel to the wall may be modelled using the procedure suggested 
by Pappin et al. (1986), which is illustrated in Figure 9.30. Other methods of representing 
strip, patch and line loads in limit equilibrium analyses are given by Gaba et al. (2003, their 
Section 4.1.7).
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9.10 MULTI-PROPPED EMBEDDED WALLS

In the permanent condition, embedded retaining walls are often propped at more than one 
level. Examples of this include underground car parks and building basements, in which each 
floor slab will probably act as a prop; and cut-and-cover tunnels, which may be propped by 
reinforced concrete slabs at both roof and carriageway level (as in Example 9.1).

A multi-propped wall is a statically indeterminate structure (i.e. the prop forces and wall 
bending moments cannot be calculated using the condition of statical equilibrium alone). 
For the purpose of estimating bending moments and prop loads, the wall may be analysed as 
a series of simply supported beams, spanning between props at adjacent levels (Figure 9.31). 
The lateral effective stress in the retained soil is often assumed to be at the active limi∙∙t, 
provided that this is consistent with the ground conditions. The bottom part of the wall is 
analysed as a propped embedded wall, at the stage of construction just before the formation 
level slab is installed. The uppermost prop may be at or below the level of the top of the wall.

A multi-propped wall is likely to act in different ways (e.g. as an unpropped cantilever, 
an embedded wall propped at the crest, or as an embedded wall with more than one prop) 
at different stages during its construction. In investigating the bending moments and prop 
loads, it is necessary to consider each phase of wall construction separately, including stages 
during which the wall is supported by temporary props, to determine the largest load in each 
part of the structure.

Gaba et al. (2003) recommend that, for design purposes, multi-propped walls are anal-
ysed using numerical methods so as to take account of soil–structure interaction and con-
struction sequence effects.

9.11 TUNNELS

Tunnels are used to carry railways, roads, sewers and other services below ground—usually 
beneath built-up areas or under rivers. They are constructed in a variety of ways, depend-
ing on their size and the prevailing ground conditions. Small diameter tunnels for pipes and 
service ducts may be constructed using a small tunnel boring machine (known as a mole), 
operated by remote control. Large tunnels must be excavated more conventionally, and 

B A

q

A (1 ‒ Ka)

2√Ka A/√Ka

≤qKa

B/√Ka
Total area
= qB√Ka

Figure 9.30  Additional lateral effective stress acting on the back of the wall owing to a strip load run-
ning parallel to the wall. (Redrawn from Pappin et al., Proceedings of a Symposium on Computer 
Applications in Geotechnical Engineering, Midland Geotechnical Society, Birmingham, and Arup 
Geotechnics program FREW, 1986. With permission.)
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although tunnel boring machines are now generally used, some tunnels are still dug out by 
hand. Tunnels in rock may be substantially self-supporting, but in most soil conditions it 
will be necessary to construct a permanent lining of steel, masonry or reinforced concrete to 
support the surrounding ground as soon as possible after excavation.

The construction of large tunnels was revolutionized by Marc Brunel’s invention in or 
before 1825 of the tunnelling shield, which offered almost complete support to the advanc-
ing face of the tunnel during excavation. The shield was used to construct the world’s first 
tunnel underneath a navigable waterway. The tunnel now carries the East London under-
ground railway line below the River Thames in London, between Wapping and Rotherhithe.

A description of the ground engineering problems encountered during the construction of 
this tunnel is given by Skempton and Chrimes (1994). The following description of Brunel’s 
shield is an edited version of that given by Beaver (1973) in his book, A History of Tunnels. 
One of the twelve frames which comprised Marc Brunel’s 1825 tunnelling shield is illus-
trated in Figure 9.32.

The tunnel was formed of two parallel horseshoe-shaped arches, each 14 ft (4.2 m) wide 
and 17 ft (5.1 m) high, within a rectangular mass of brickwork 37.5 ft (11.25 m) wide and 
22 ft (6.6 m) high (Figure 9.33). The shield consisted of twelve cast- and wrought-iron 
frames, each nearly 22 ft (6.6 m) high and a little over 3 ft (0.9 m) wide. When placed 
side-by-side against the face of the excavation, like books on a shelf, they formed a shield 
whose top, bottom and sides supported the earth 9 ft (2.7 m) in advance of the brickwork. 
Each frame was divided into three storeys or compartments, about 7 ft (2.1 m) high and 
3 ft (0.9 m) wide, and occupied by a single miner. The assembled shield accommodated 
36 men, all occupying separate working chambers. At the front of the assembly, the face 
of the tunnel was supported by a total of 504 poling-boards, each of which was 3 ft (0.9 
m) wide, 6 in (0.15 m) deep and 3 in (0.075 m) thick. The poling-boards were in turn sup-
ported against the front of the frame, by means of screw-jacks.

The feet of the frames were broad iron shoes, while the roof of the uppermost cell was 
formed by a pivoted plate called a stave. The earth at the sides was supported by staves 
fixed to the outermost frames. The tunnel was progressed by each man removing one 
of his poling-boards and excavating the earth behind it to a depth of 4.5 in (0.113 m). 
The board was then replaced and driven forward by means of the screw-jacks. This pro-
cess was repeated until all of the poling-boards had been moved forward. The frames 
were then pushed forward, one at a time, by means of large screw-jacks butted against 
the brickwork just behind the shield. The bricklayers worked so close to the advancing 

P1 1

P2A
P2B 2

P3A
P3B

Wall span between adjacent props analysed
as simply-supported beam; lowest section
analysed as propped cantilever.
Total load in prop 2 = P2A + P2B
Total load in prop 3 = P3A + P3B etc.

3

Figure 9.31 Simplified analysis of multi-propped walls.
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frames that the brickwork was carried right up to the shield. In this way, the only 
exposed areas of ground were those left by the removal of an individual poling-board.

P. Beaver
A History of Tunnels

Marc Brunel’s first tunnelling shield, which was patented by him in 1818 but never built, 
was in many ways more similar to a modern tunnelling machine. The 1818 patent was for a 
12 ft (3.6 m) diameter auger (i.e. a drill) encased in an iron cylinder. The idea was that the 
blade could be rotated manually by the miners, while the cylinder was pushed forward (like 
the 1825 shield) along the line of the tunnel, by means of jacks reacting against the brick-
work of the permanent lining. The practical problem with the proposal at the time was that 
it would not have been feasible to rotate the cutting blade manually. With the development 
of suitable power plant in the twentieth century, this difficulty was overcome.

As an alternative to using a shield or a tunnel boring machine in low-permeability soils, 
temporary support during construction can be provided by raising the air pressure within 
the tunnel. This is now avoided unless there is no alternative, because of the health hazards 
associated with working in compressed air.

Figure 9.32  One of the twelve frames which made up Marc Brunel’s 1825 tunnelling shield. (From Beamish, 
R, Memoir of the life of Sir Marc Isambard Brunel, London, Longmans, 1862.)
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Shallow tunnels on land are often constructed in an open excavation and then re-buried, 
in what is known as the cut-and-cover technique. Short, shallow tunnels of up to three 
or four metres in height—for example a tunnel constructed beneath an existing railway 
embankment—may be jacked into place using a technique known as pipe-jacking, which 
was originally developed for use with small diameter pipelines. The road tunnels across 
the River Conwy in North Wales and the River Medway in Kent (south-east England) are 
immersed tubes, installed section-by-section in a shallow trench excavated on the river bed.

Shallow tunnels may be rectangular, but many tunnels are circular in cross-section, or 
at least have an arched roof. This is because a circular cross-section enables the tunnel to 
resist the vertical and lateral stresses exerted by the ground by means of compressive stresses 
rather than in bending, giving a generally more efficient form of construction.

Much of the remainder of this section is concerned with tunnels which may be analysed in 
plane strain as long cavities of essentially circular cross-section. In the construction of such 
a tunnel, there are two main issues that must be addressed. These are

• What support must be provided to the surrounding ground, both in the short term and 
in the long term, in order for the tunnel not to collapse?

• What are the ground movements associated with the tunnel, and how will these affect 
existing buildings, pipelines and buried structures?
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Figure 9.33  Cross-section through the first Thames Tunnel. (From Law, H., Memoir of the Thames Tunnel [to 
1828], London, John Weale, 1846. Reprinted from Quarterly Papers in Engineering, vols 3 and 5.)
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9.11.1 Stress analysis of a tunnel of circular cross-section

The top of a circular tunnel is known as the crown, and the bottom is termed the invert. 
There are also springings and haunches, as defined in Figure 9.34a. The diameter of the tun-
nel is D, and the depth of the crown below ground level is known as the cover, C. The inter-
nal support pressure required to prevent collapse, σTC, may be determined by considering the 
equilibrium of an element of soil above the crown of the tunnel, as shown in Figure 9.34b.

The total stress in the radial direction is σr, and the total stress in the circumferential 
direction, also known as the hoop stress, is σθ. The unit weight of the soil is γ, so that the 
weight of the soil element shown in Figure 9.34b is (per metre depth into the paper)
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w r
r

r r r= γ × + δ










δθ × δ ≈ γ δ δθ  (9.3)

The condition of horizontal equilibrium is satisfied by symmetry. Resolving forces 
vertically,

 σ + δσ × + δ δθ + γ δ θ = σ δθ + σ δ × δθ
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Because δθ is small, sin(δθ/2) ≈ δθ/2, so that
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 (9.4)

Dividing through by δθ, multiplying out and ignoring terms involving the squares or small 
quantities (e.g. δσr × δr),

 r r r r rr rσ δ + δσ + γ δ = σ δθ

Dividing through by rδr,

 
r r r

r rσ + δσ + γ = σθ

 
r r

r r⇒ δσ = σ − σ − γθ

In the limit as δr and δσr → 0, the equation of equilibrium becomes

 
dr r

r rδσ = σ − σ − γθ  (9.5)
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Figure 9.34 (a) Definition of tunnel geometry; (b) equilibrium of soil element above crown.
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9.11.2 Collapse of tunnels in clay: short-term total stress analysis

In a clay soil of undrained shear strength τu that is on the verge of undrained failure,

 σ − σ = τθ( ) 2 ur

(σθ is greater than σr because σr has been reduced at the boundary of the tunnel until the 
tunnel is about to collapse). Substituting this into Equation 9.5,

 σ = τ
− γ

d
d

2 u

r r
r

or

 σ = τ



 − γ





d
2

du

r
rr

which may be integrated between limits of σr = σTC inside the tunnel at radius r = D/2, and 
general values σr = σR at a radius r = R:

 d
2

du

/2TC
∫ ∫σ = τ − γ



σ
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RR

giving

 σ − σ = τ 



 − γ − 











( ) 2 ln
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2R TC u
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 2 ln
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2TC u
R

D
R

D
Rσ = σ − τ 



 + γ − 











 (9.6)

where σTC is the support pressure when the tunnel is on the verge of collapse. If the tunnel 
centreline or axis is a depth R below the ground surface, the depth of cover C = (R − [D/2]). 
With a surface surcharge σR = q, the support pressure needed just to prevent collapse is

 2 ln
2

1TC uq C
C
D

σ = + γ − τ 





+





 (9.7)

The support pressure needed just to prevent the tunnel from collapsing (σTC) is sometimes 
expressed in terms of a parameter called the stability number at collapse, which is given the 
symbol TC and is defined as

 2
c

TC

c

T
q C

D

=
+ γ +





− σ

τ
 (9.8)

9.11.3 Collapse of tunnels: effective stress analysis

In terms of effective stresses, the relationship between σ ŕ and σθ́ at failure is

 ′σ = ′σθ ,p rK
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where Kp = (1 + sin φ′)/(1 − sin φ′) and φ′ is the critical state strength (effective angle of 
friction) of the soil. If the pore water pressures are zero, Equation 9.5 is valid in terms of 
effective stresses, giving

 d
d

( 1)p

r

K

r
r r′σ





=
′σ −

− γ
 (9.9)

Equation 9.9 may be integrated by making the substitution y = σ′r/r. Differentiating the 
expression σ′r = yr gives

 
d
d

d
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r
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r′σ = 





+ γ  (9.10)

Substituting this into Equation 9.9,
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The limits of ′σ = ′σ  TCr  at the edge of the tunnel, r = D/2, and ′σ = ′σ r R at a radius r = R 
become = ′σ2 /TCy D at r = D/2, and = ′σ2 /y RR  at r = R. Thus
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 (9.12)

For a tunnel having a depth to the crown (i.e. a cover) of C (= R − [D/2], where R is depth 
of the tunnel axis below the ground surface), with no surcharge applied to the soil surface 
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so that ′σ =  0R , Equation 9.12 may be rearranged to give the internal support pressure ′σTC 
needed just to prevent collapse:
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For a deep tunnel with D << C, σ′TC is approximately equal to γD/[2(Kp − 2)]. For a tunnel of 
diameter D = 4 m with a depth of cover C = 10 m in a soil having unit weight γ = 20 kN/m3 
and φ′ = 35° (Kp = 3.69), the support pressure is (according to Equation 9.13)

 20kN / m 2m
3.69 2

1
4
24

22.5kPaTC

3
(1.69)

′σ = ×
−







× − 

















=

which is very small in comparison with the overburden pressure above the crown of 200 kPa. 
The error introduced by neglecting the term in D/(2C + D) would in this  example be less 
than 5%.

It must be reiterated that in the above analysis it has been assumed that the tunnel is on 
the verge of collapse, and that the pore water pressures are zero. If the pore water pressures 
are non-zero, the entire component of the total stress owing to the pore water pressure must 
be carried by the tunnel lining, assuming that the lining is impermeable. This is because the 
arching effect, which reduces the effective stress component of the load on the tunnel lining, 
cannot occur through the pore water, as water is unable to carry shear stresses.

Similarly, tunnels in coarse sands cannot be supported by increasing the air pressure 
inside the tunnel, because this would have no effect except to increase the pore water pres-
sure in the surrounding ground. Tunnels in sands must be supported by a structural lining. 
As these soils cannot sustain negative pore water pressures (and therefore have no undrained 
shear strength), tunnelling through them may present more of a technical challenge than 
tunnelling through clays.

One final point is that the integrity of the tunnel invert is just as important as the integ-
rity of the tunnel crown. The major UK tunnel collapses at Penmanshiel (on the East Coast 
railway line between Berwick-on-Tweed and Edinburgh in Scotland) in 1979, and Heathrow 
Airport (London) in 1994 (Muir-Wood, 2000) both followed disturbance to the invert 
which left the tunnel linings unable to carry the compressive loads needed to support the 
soil on each side of and below the tunnel cavity.

9.11.4 Collapse of tunnel headings

We have so far considered the collapse of the roof of a long tunnel, which is essentially a 
plane strain event. The collapse of an advancing tunnel face, and/or the section of tunnel 
close to it (known as the heading) in which the lining has not yet been constructed, involves 
a complex three-dimensional failure mechanism (Figure 9.35a). This was investigated exper-
imentally for tunnels in soft clay by Mair (1979).
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For tunnels in clay, Figure 9.35b gives values of the stability number

 
[ ]=

+ γ + − σ
τ

( / 2)
c

TC

c

T
q C D D

 (9.8)

determined experimentally by Mair (1979), as a function of the cover to diameter ratio 
C/D for various heading lengths P/D, where P is the length of the unsupported heading. 
(In Mair’s tests, the surface surcharge q was zero.)

9.11.5 Ground movements due to tunnelling

Experience and observation (e.g. O’Reilly and New, 1982) have shown that in clays, the con-
struction of a tunnel will usually cause a settlement trough at the ground surface, of the shape 
shown in Figure 9.36. The settlement trough follows a Gaussian distribution, of equation

 emax
/22 2S S x i= −  (9.14)

S is the settlement at a general horizontal distance x from the centreline of the tunnel, Smax is 
the maximum settlement (at x = 0, above the centreline of the tunnel), and i is a parameter 
defining the width of the settlement zone.
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Figure 9.35  (a) Undrained collapse of a tunnel heading in clay (C/D = 1.5, P/D = 0), and (b) associated stabil-
ity numbers. (Reproduced from Mair, Centrifugal modelling of tunnel construction in soft clay, PhD 
dissertation, University of Cambridge, 1979. With permission.)
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Equation 9.14 may be integrated to give the volume of the settlement trough:

 = π ×2s maxV iS  (9.15)

For undrained excavations in clays, where there is no change in the specific volume of 
the soil, the settlement trough represents an additional volume of material, over and above 
the volume of the tunnel itself, which must have been excavated to form the tunnel. The 
volume of the settlement trough is divided by the nominal volume of the tunnel to give the 
proportion of additional material excavated. This quantity is known as the volume loss, VL. 
In a reasonably well-controlled tunnelling operation in London Clay, a volume loss of about 
1.4% is achievable.
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 (9.16)

or

 
0.313

max
L

2

S
V D
i

=  (9.17)

At horizons between the crown of the tunnel and the ground surface, the shape of the 
settlement pattern is similar but the values of Smax and i will vary with depth z (Figure 9.36).

Mair et al. (1993) show that a reasonable fit to data from a number of full-scale tunnels 
in clay and centrifuge model tests is given by Equations 9.14 and 9.17 with VL = 1.4% and

 0.175 0.325 1
0 0

i
z

z
z

= + −
















 (9.18)

where is z0 the depth to the centreline of the tunnel, z0 = C + (D/2). At the surface (z = 0), 
i = 0.5 × z0.

Ground surface

z0

z
S

X

δ

Smax

2.5 i

Point of in
ection

Tunnel, diameter D

–x

Figure 9.36 Settlement troughs above a tunnel. (Redrawn from Mair et al., Géotechnique, 43, 2, 315–320, 
1993. With permission)
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In using Equations 9.14, 9.17 and 9.18 to predict the surface and sub-surface settlements 
associated with tunnels in clays, it is necessary to estimate the volume loss VL. VL will 
depend on the ground conditions, the method of construction and the quality of workman-
ship. The tunnel support pressure σT must be sufficiently in excess of the collapse pressure 
σTC (given by Equation 9.7 or Figure 9.35) to limit the ground loss to a reasonable value. 
The remoteness of a tunnel from collapse may be quantified by means of the load factor, LF. 
With a surface surcharge q,

 LF 0 T

0 TC

z q
z q

= γ + − σ
γ + − σ

 (9.19)

where z0 is the depth to the tunnel centreline, z0 = C + (D/2). In this context, LF may be 
viewed as the inverse of a factor of safety. When σT = γz0 + q, LF = 0. As σT is reduced LF 
increases until, when the tunnel is on the verge of collapse, σT = σTC and LF = 1.

Figure 9.37 shows the experimental relationship given by Taylor (1984), between the 
maximum settlement at the surface (normalized with respect to the tunnel diameter D) and 
the load factor LF, for tunnels in speswhite kaolin clay. Figure 9.37 may be used to estimate 
the load factor—and hence the tunnel support pressure—needed to limit the maximum 
surface settlement Smax—and hence, using Equations 9.17 and 9.18, the volume loss VL—to 
an acceptable value.

KEY POINTS

• Limit state design involves carrying out calculations to investigate potential ultimate 
(ULS) and serviceability (SLS) limit states. ULSs are concerned with outright collapse; 
SLSs may be concerned with excessive stresses or deformations.

• In carrying out ULS calculations for an embedded retaining wall, a procedure of the 
type given in Eurocode 7 (BSI, 2004) should be followed. Although other methods 
have been used in the past, these can give misleading results and should therefore be 
avoided.
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Figure 9.37  Normalized maximum surface settlement as a function of load factor for circular tunnels in 
soft clay. (Redrawn from Taylor, Ground movements associated with tunnels and trenches, PhD 
 dissertation, University of Cambridge, 1984. With permission.)
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• The actual stress distributions acting on an embedded retaining wall under in-service 
or working conditions will in general be different from those used in the ULS design 
calculation. This is because the soil strength mobilized under working conditions may 
be different on each side of the wall. Also, the effective stress distribution against a 
flexible wall will be non-linear, as a result of wall bending. The relative soil/wall stiff-
ness may be quantified by means of a dimensionless flexibility number R:

 =
* 4

R
G H

EI

 where G* is the rate of increase of soil shear modulus with depth, EI is the flexural 
rigidity of the wall and H is the total wall length. The critical value of R, Rc, separating 
‘stiff’ from ‘rigid’ behaviour, depends on both the soil strength φ′ and the pore water 
pressure regime. Bending effects are also less significant if the wall is unpropped or 
propped at formation level, than if the wall is propped at the crest.

• The collapse of a tunnel of circular cross-section can be investigated by means of a 
stress analysis of the surrounding soil. This enables the minimum internal support 
pressure (σTC in a total stress analysis, or ′σTC in an effective stress analysis) that must 
be provided by the tunnel lining just to prevent failure, to be calculated. The col-
lapse of a tunnel heading may be assessed by means of the experimental data given in 
Figure 9.35.

• Soil settlements owing to tunnelling may be estimated semi-empirically, on the basis 
of the Gaussian curve shown in Figure 9.36.

SELF-ASSESMENT AND LEARNING QUESTIONS

EMBEDDED RETAINING WALLS AND ULS DESIGN

 9.1  Figure 9.38 shows the idealized geometry of a proposed retaining wall, together with 
soil and groundwater conditions.

 a. Estimate the long-term pore water pressure distribution associated with steady 
state seepage around the wall.

 b. Using the idealized soil profile, calculate the depth of embedment required for the 
wall to be just stable in the long term, and the corresponding prop load.

 c. Explaining your method, estimate the ULS design depth of embedment of the wall 
and the associated prop load.

 All soils have unit weight 20 kN/m3. Take the unit weight of water as 10 kN/m3. The 
upper sands and gravels have ′ϕ = °30crit  and ′ϕ = °34peak , the clays have ′ϕ = °20crit  and 

′ϕ = °22peak , and the lower sands have ′ϕ = °32crit  and ′ϕ = °36peak . Use the earth pres-
sure coefficients given in Tables 9.1 and 9.2.

  [(a) Assume all head drop occurs in the clays. As long as the wall penetrates below the 
clays, the pore pressures in the clays behind the wall will remain unchanged. The pore 
pressures in the clays in front of the wall will correspond to uniform upward seepage 
to a water table at the excavated soil surface; (b) depth of embdement ~9.15 m, prop 
load ~560 kN/m using earth pressure coefficients based on ′ϕ = δ = ′ϕmob crit; (c) exact 
answers will depend on approach adopted; following BS8002 with ′ϕtan mob as the 
lesser of ′ϕtan crit and ′ϕtan /1.2peak  and wall friction δ ′ϕtan = 0.75tan mob, with a 10 kPa 
surcharge and 0.5 m overdig, gives a depth of embedment ~10.65 m and a prop load 
~717 kN/m.]
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 9.2.  a.  Figure 9.39 shows a cross-section through a rough embedded retaining wall, 
propped at the crest. Stating any assumptions you make, estimate the long-term 
pore water pressure distribution around the wall.

 b.  Assuming that the critical state angle of soil friction of 35° is fully mobilized 
in the retained soil, calculate the earth pressure coefficient (based on effective 
stresses) in the soil in front of the wall required for moment equilibrium about the 
prop. Using Table 9.2, estimate the corresponding mobilized friction angle in the 
soil in front of the wall.

 c.  Is the wall safe? Explain briefly your reasoning. (Take the unit weight of water 
γw = 10 kN/m3.)

   [(a) Pore water pressure at base of wall = 42.9 kPa, using the linear seepage approxi-
mation. (b) For equilibrium with fully-active stresses behind the wall, Kp = 9.01 
which requires ′ϕmob (with δ ′ϕ= mob) ≈ 35.5°. (c) The wall is therefore not safe.]

 9.3. a.  Figure 9.40 shows a cross-section through an embedded retaining wall propped 
at its crest, with the geometry, soil parameters and surcharge loading already 
modified as for a ULS design calculation. Show that the hydrostatic pressure of 
water in a flooded tension crack behind the wall is greater than the minimum 
(active) horizontal stress according to the undrained shear strength failure crite-
rion down to a depth of 34 m below original ground level. Why is this depth so 
great?

3.5 m

8 m

3 m

GWL
behind wall

GWL
in front of wall

Prop

Sheet pile
retaining wall
δ = φ ćrit  

Beach gravel
φ ćrit  = 35˚
γ = 20 kN/m3

Figure 9.39 Cross-section through embedded retaining wall, Q9.2.

13.5 m
including
overdig
of 0.5 m

1.5 m
PROP

Surcharge 10 kPa

Terrace Gravel
φ d́es  = 33˚, γ = 20 kN/m3

London Clay
Design undrained shear strength
τu = 39 + 4z kPa where z is
the depth from the retained
soil surface
γ = 20 kN/m3

GWL

d

Figure 9.40 Cross-section through embedded retaining wall, Q9.3.
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 b.  Draw up a table showing the short term horizontal stresses at depths behind and 
in front of the wall between which changes in stress may be treated as linear 
with depth. Assume that the pore water pressures below the groundwater level 
in the Terrace Gravels are hydrostatic, and allow for the possibility of a flooded 
tension crack developing between the clay and the wall on the retained side. Use 
an active earth pressure coefficient = ′σ γ +/ ( – )a hK z q u  of 0.2386 in the Terrace 
Gravel, (based on the design effective angle of friction ′ϕ °= 33des  and wall friction 
δ = ′ϕdes des); and take the limiting horizontal total stresses in the clay (undrained) 
as σh = (γz + q) − 2τu,des behind the wall, and σh = (γz + q) − 2.45τu,des (which cor-
responds to τw,des = 0.5.τu,des) in front. Sketch the distribution of stresses acting on 
the wall.

 c.  Show that the design depth of embedment assuming undrained conditions in the 
LC is in the region of 4.2 m, and calculate the corresponding prop load.

   [(a) Depth of flooded tension crack is so large because the undrained shear strength 
increases with depth. (b) Prop load ~ 406 kN/m.]

 9.4 a.  Figure 9.41 shows a cross-section through an embedded retaining wall propped 
at its crest. From the water levels indicated, and assuming linear seepage through 
the clay soil, define a long-term steady state distribution of pore water pressures 
in the vicinity of the wall. Hence, determine the pore water pressure at the toe of 
the wall, in terms of the depth of embedment d.

 b.  Carry out a stability calculation for the wall in the long-term condition to show 
that the design depth of embedment d required is 17.1 m, and calculate the prop 
load.

    For the sand, Ka = 0.3328, and for the Weald Clay Ka = 0.4915 and Kp = 2.237 
(all calculated for a partial factor of 1.25 on tan φ′ with δ/φ′ = 1.0). Do not apply 
any further factors or measures such as an overdig on the excavation side or a 
surcharge on the retained side of the wall. The unit weights of the soils are given 
in Figure 9.41.

Coarse sand
φ  ́ = 30˚, γ = 19 kN/m3

Weald clay
φ  ́ = 20˚, γ = 20 kN/m3

GWLProp

4 m

6 m

d

GWL

Figure 9.41 Propped embedded retaining wall, Q9.4.
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 c. Explain why a soil-structure interaction analysis of the wall, in which the wall 
and prop are modelled as elastic beams, and the soil as an elastic-perfectly plastic 
medium, might result in a higher prop load and a lower wall embedment depth 
than your limit equilibrium calculation in (b).

 d. The wall in Figure 9.41 is to be constructed of contiguous bored piles, so that there 
are small (0.1 m) gaps between adjacent piles. Previous experience has shown that 
water can seep out of the soil face between such piles. Explain qualitatively (pos-
sibly with the aid of a sketch) what might happen to the pore water distribution 
around the wall if it is not impermeable. What problems might seepage into the 
excavation cause, and how might you prevent these?

   [(a) pore water pressure at base of wall ub = [d + (10d/(6 + 2d))] γw assuming all 
head lost in the clay. (b) Prop load ~ 800 kN/m; (c) this calculation aims to estimate 
the bending moments and prop load under working conditions, taking account of pre-
failure stress strain behaviour of the soil, and soil/structure interaction effects, e.g. wall 
flexibility. (d) a permeable wall would result in lower pore pressures owing to horizon-
tal seepage and drainage through the wall. Question courtesy of Dr. J. A. Smethurst.]

 9.5 a.  Define carefully, with the aid of sketches where appropriate, the term ‘und-
rained’, as applied to a clay soil. In your answer, explain how the undrained shear 
strength is related to the specific volume of a clay soil.

   Figure 9.42 shows a cross-section through an embedded retaining wall propped 
at its crest.

 b. Show from first principles that on the retained side of the wall a flooded tension 
crack might form between the wall and the clay to a depth z = (2τu,design − q)/(γ − 
γw), where q is the surcharge acting on the retained ground surface, and τu,design is 
the factored undrained soil strength.

 c. Draw up a table showing the short term horizontal stresses at key depths behind 
and in front of the wall, between which changes in stress may be treated as lin-
ear. Assume that the pore water pressures in the Terrace Gravels are hydrostatic 
below the water table shown, and allow for the possibility that a flooded tension 

London Clay
τu = 56 kPa, γ = 20 kN/m3

GWLProp 10 kPa surcharge

1 m

7 m
(includes 0.5 m
overdig)

d

Terrace Gravels
φ  ́ = 35˚, γ = 20 kN/m3

Figure 9.42 Cross-section through embedded retaining wall, Q9.5.
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crack may develop between the wall and the clay. For the Terrace Gravels, take 
K z q ua h= ′ + =σ γ/ – .( ) 0 3056  (calculated for a partial factor of 1.25 on tan φ′ 
with wall friction angle δ = 0.5φ′). Apply a partial factor of 1.4 to the clay und-
rained shear strength, and take the limiting horizontal stresses in the undrained 
clay as σh = (γz + q) − 2τu,design on the retained side of the wall, and σh = (γz + q) + 
2.45τu,design (which corresponds to τw,design = 0.5 × τu,design) in front of the wall. At 
the bottom of the excavation, assume that the undrained shear strength τu varies 
from zero at the ground surface to full strength at 0.5 m depth (to account for loss 
of strength owing to possible water infiltration into the clay). Soil unit weights are 
given in Figure 9.42.

 d. Using the values determined in part (c), sketch the stress distribution acting on 
the wall. Show that the design depth of embedment d is about 5 m (4.98 m), and 
calculate the prop load.

 e. Explain why increasing the depth of the excavation by 1 m causes the required 
design embedment depth d to more than double.

   [(d) Prop load ~136 kN/m. (e) lateral stresses behind and in front of the wall at for-
mation level are not very different, so the net stabilizing moment increases relatively 
slowly with depth. Question courtesy Dr J. A. Smethurst.]

 9.6  Discuss the differences, from a design point of view, between in situ and backfilled 
retaining walls. Your answer should address issues such as the form of the retaining 
structure, the nature of the retained soil, and groundwater effects.

 9.7  Explain briefly the terms upper bound and lower bound, in the context of engineer-
ing plasticity, and explain how these concepts can be used as a basis for retaining wall 
design.

 Discuss the modes of failure which would need to be taken into account in the design of
 a. A mass (gravity) retaining wall
 b. An embedded retaining wall.

  Illustrate your answer with sketches and examples where appropriate, and indicate 
suitable ways of applying a factor of safety to the limit state calculation in each case.

  Discuss briefly the main shortcomings of limit-based design, and suggest alterna-
tive methods that may be used.

TUNNELS

 9.8  A circular tunnel, 10 m2 in diameter, is to be driven through a soft deposit of marine 
clay. The axis of the tunnel is at a depth of 20 m below the soil surface. The soft clay 
has unit weight γ = 16 kN/m3, and undrained shear strength τu = 40 kPa. A surcharge 
of q = 10 kPa acts at the surface of the clay.

 a. Calculate the tunnel support pressure required just to prevent collapse, σTC

  If the maximum allowable surface settlement is 50 mm, estimate
 b. The maximum allowable volume loss, VL

 c. The load factor, LF; and
 d. The required tunnel support pressure, σT.
  [(a) 139 kPa; (b) 1.6%; (c) 0.45; (d) 200 kPa.]
 9.9  Figure 9.43 shows the horse-shoe shaped cross-section of an old brick railway tun-

nel. The brickwork may be considered impermeable, but water seeps into the tunnel 
through the open base. Calculate, by means of a carefully-sketched flownet, the rate 
(in m3/s per metre length) at which water must be pumped out of the tunnel to main-
tain the water level below the track bed as indicated.
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  Explain briefly, but do not attempt to sketch, how your flownet would be modified 
if the tunnel were uniformly leaky around its perimeter.

 [76 l/h (2.1 × 10−5 m3/s) per metre length of the tunnel. If the tunnel were uniformly 
leaky, the flowlines would enter it at various points around the perimeter where on 
the condition u = 0 (i.e. the head equal to the elevation above datum level) would need 
to be satisfied.]

NOTE

 1. When a load is applied to a soil surface, the settlement zone will extend beyond the 
loaded area. (This can be demonstrated using the Newmark chart described in Section 
6.4.) Similarly, when an initially uniformly-loaded soil surface is unloaded over part 
of its area, the zone of soil movement will extend beyond the unloaded region. If the 
soil outside the unloaded area is prevented from moving by an unyielding support, the 
contact stress between the soil and the support must increase. This process is conven-
tionally termed arching.
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Chapter 10

Calculation of improved bearing 
capacity factors and earth pressure 
coefficients using plasticity methods

10.1 INTRODUCTION AND OBJECTIVES

In the zone of soil below a foundation, the major principal stress ′σ1 (or σ1 in a total stress 
analysis) is vertical. In the zones of soil to each side, the major principal stress is horizontal. 
There is therefore a 90° rotation in the direction of the principal stresses between the active 
zone beneath the footing and the passive zones on each side. In the stress field analyses 
of shallow foundations presented in Section 8.2, this 90° rotation in the major principal 
stress direction was achieved in one ‘jump’, across a single frictionless stress discontinuity 
(Figure 10.1a).

These frictionless stress discontinuities are extremely unlikely to be present in reality, and 
an improved (i.e. less conservative) lower bound to the collapse load can be obtained if they 
are not used in the analysis. There must still be a 90° rotation of the principal stress direc-
tions between the active and passive zones, but this can be achieved by means of a series 
of stress jumps across stronger discontinuities, along which a greater proportion of the soil 
strength is mobilized. Figure 10.1b–d shows how the 90° rotation can be achieved with 
two stress jumps of 45°, three jumps of 30°, and an infinite number of infinitesimally small 
jumps contained within a fan zone.

In some situations—for example foundations subjected to inclined loads, and rough 
retaining walls—non-frictionless stress discontinuities must be used to enable the rotation 
of the principal stresses through angles other than 90°, as required by the problem geometry. 
The aim of this chapter is to show how stress discontinuities and fan zones can be used to 
calculate bearing capacity factors for foundations with inclined loads, and earth pressure 
coefficients for rough retaining walls and retaining walls with non-vertical backs or non-
horizontal backfill. In the last section (Section 10.9), improved upper bound calculations for 
the failure of shallow foundations subjected to vertical loads are presented.

The stress analyses presented in this chapter might initially seem somewhat daunting and 
mathematical. It is true that you will need a thorough understanding of the use of Mohr 
circles of stress. Having acquired this, and mastered the geometrical relationships intro-
duced in Sections 10.2 and 10.3, the calculation of bearing capacity factors for foundations 
subjected to inclined loads, and earth pressure coefficients for retaining walls with rough or 
sloping backs and non-horizontal backfills, is simply a matter of working calmly and logi-
cally through the procedure given in Section 10.4.
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10.1.1 Objectives

After having worked through this chapter, you should understand

• How stress discontinuities, on which the mobilized soil strength may be less than the 
full strength of the soil, can be used in lower bound (stress field) solutions to  separate 
zones of stress in which the average total or effective stresses (s or s′), and the principal 
stress directions, are different (Sections 10.1 to 10.3)

• That in general, better (i.e. less conservative) lower bounds are obtained as the soil 
strength mobilized on the discontinuities approaches the full strength of the soil 
(Sections 10.1 to 10.3)

• That the least conservative lower bounds are obtained by using fan zones, made up of 
an infinite number of infinitesimal stress discontinuities on which the full strength of 
the soil is mobilized, to rotate the principal stresses as we move between two uniform 
stress zones (Sections 10.2 to 10.4)

Single frictionless stress
discontinuity (δ = 0)
Jump in direction of major
principal effective stress = 90˚

(a) (b)

(c) (d)

Two stress discontinuities (δ ≠ 0)
Jump in direction of major
principal effective
stress = 45˚ × 2 = 90˚

�ree stress discontinuities (δ ≠ 0)
Jump in direction of major
principal effective
stress = 30˚ × 3 = 90˚

Fan zone: in�nite number of in�nitesimal
stress jumps (δ ≠ φʹ), giving an overall
rotation in the direction of the major principal
effective stress of 90˚

σ'f σ'f

σ'0 σ'0

σ'1 σ'1

σ'1

σ'1

σ'1

σ'f σ'f

σ'0 σ'0

σ'1
σ'1 σ'1σ'1

σ'1
σ'1

Lc Lc

Lc Lc

Figure 10.1 Use of (a) one, (b) two, (c) three and (d) many stress discontinuities to rotate principal stresses.
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You should be able to

• Visualize stress fields in which the principal stress directions are rotated as we move from 
a uniform zone in which the stress state is known in both magnitude and  orientation 
(e.g. a conventional active or passive zone, below a free soil surface), through a fan 
zone, to a second uniform zone in which the stress state is only partly defined (e.g. the 
zone of soil adjacent to a rough retaining wall, or below a strip  foundation) (Sections 
10.1 to 10.8)

• Calculate the change in average total or effective stress between the two uniform stress 
zones as a function of the angle through which the principal stress directions are 
rotated (Sections 10.2 and 10.3)

• Use the stress field approach to calculate bearing capacity factors Nq and Nc for 
 foundations subjected to inclined loads (Section 10.5), and earth  pressure coefficients 
for rough retaining walls (Section 10.6), walls with a non-horizontal  backfill (Section 
10.7), and walls with a sloping or battered back (Section 10.8)

You should have an appreciation of

• The significance in a stress field of the α- and β-characteristics or characteristic direc-
tions, along which the full strength of the soil is mobilized (Section 10.4)

• The use of mechanisms involving zones of soil that shear as they deform (rather 
than remaining rigid) to calculate improved upper bounds for the collapse loads of 
 foundations (Section 10.9)

• The correlation between the slip lines or velocity discontinuities in the theoretically 
correct upper bound mechanism, and the characteristic directions in the theoretically 
correct lower bound stress field (Section 10.9)

10.2  STRESS DISCONTINUITIES AND THEIR USE TO 
CALCULATE IMPROVED BEARING CAPACITY FACTORS 
FOR A SHALLOW FOUNDATION SUBJECTED TO A 
VERTICAL LOAD: EFFECTIVE STRESS (φ′) ANALYSIS

In the analysis of Section 8.2, a single frictionless stress discontinuity was used to separate 
two zones in which the stress states were different; although the condition of equilibrium 
required that the normal effective stress on the plane of the discontinuity was the same 
in each zone. Imagine now a discontinuity on which the ratio τ/σ′ = tan δ (where δ is the 
strength mobilized on the discontinuity, and δ ≤ φ′). For equilibrium both τ and σ′ must be 
the same on both sides of the discontinuity, so that the Mohr circles of effective stress for 
the two zones intersect, as shown in Figure 10.2a.

Analysis of the Mohr circles of stress (Figure 10.2) shows that, if the average effective 
stress s′ [which locates the centre of the circle, s′ = ′σ + ′σ0.5( )1 3 ] increases as we move from 
Zone 1 to Zone 2, then

 1. The discontinuity is at an angle of ′ = ∆ + δ0.5 Bs D 0.5( )1  anticlockwise from the plane 
on which the major principal effective stress acts in Zone 1.

 2. The discontinuity is at an angle of ′ = − ∆ − δ0.5 As D π / 2 0.5( )2  anticlockwise from the 
plane on which the major principal effective stress acts in Zone 2.
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 3. The jump in the direction of the major principal stress θ is therefore [π/2 − 0.5(Δ − δ)] − 
[0.5(Δ + δ)] = (π/2 − 0.5Δ + 0.5δ − 0.5Δ − 0.5δ) = (π/2 − Δ); that is,

 θ = π − ∆



2
  (10.1)

   Considering the triangle ′s DC1 , DC = t1 sin(Δ + δ). Considering the triangle ′s DC,1  
DC  =  t2 sin(Δ − δ). Therefore, ( / ) ( / ) sin( ) sin( )2 1 2 1t t s s= ′ ′ = ∆ + δ ∆ − δ . Substituting for 
Δ (= π/2 − θ), sin( ) sin( ) sin( 2 ) sin( 2 )2 1′ ′ = ∆ + δ ∆ − δ = π − θ + δ π − θ − δs s . As sin(π/2 ± 
A) = cos A, sin(π/2 − θ + δ)/sin(π/2 − θ − δ) = cos(δ − θ)/cos(δ + θ) and

 cos
cos
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′
′
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  (10.2)

 4. Applying the sine rule to the triangle ′ODs1, sin sin1 1′ ∆ = δs t , or sin sin sin1 1t s′ = ϕ = δ ∆′ , 
so that

 ∆ = δ
′ϕ

sin
sin
sin

  (10.3)

We now have the tools to investigate quantitatively how the calculated bearing capacity 
of a strip foundation improves with the introduction of more, stronger stress discontinuities 
as shown qualitatively in Figure 10.1. We will illustrate this by means of a worked example, 
Example 10.1.

Example 10.1:  Development of improved bearing capacity factors for a long shallow 
foundation subjected to a vertical load: effective stress (φ′) analysis

Calculate theoretical bearing capacity factors for a long shallow foundation in a soil 
having an angle of shearing resistance ′ϕ = °30crit , using stress field analyses with the 
 following stress discontinuities:

Stress state
on discontinuity

Mohr circle of stress
for Zone 2. Centre
at s'2, radius t2

Mohr circle of stress
for Zone 1. Centre
at s'1, radius t1

Plane of major principal
e�ective stress in Zone 1

Plane of
major
principal
e�ective
stress
in Zone 2

Discontinuity
Zone 2

Rotation of major
principal e�ective
stress =    [π – Δ +δ– Δ –δ]
=     – Δ

1
2π

2 [π– (Δ –δ)]
2

(Δ +δ )

Δ +δ

Δ +δ

Δ –δ

2

δ

τ
τ = σ' tan φ'

τ = σ' tan δ

O

σ'1

σ'1

σ'1

σ'1
in Zone 2

σ'1 in Zone 1

σ'
Zone 1

A
C

B

D

s'2s'1
t1

t2ΔΔ
Δ

Δ

φ'

(a)

(b)

Figure 10.2  (a) Mohr circles of effective stress for (b) zones of soil on either side of a stress discontinuity 
of strength δ.
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 a. A single discontinuity, rotating the major principal stress through 90°
 b. Two discontinuities, each rotating the major principal stress through 45°
 c. Three discontinuities, each rotating the major principal stress through 30°
 d. Six discontinuities, each rotating the major principal stress through 15°
 e. Nine discontinuities, each rotating the major principal stress through 10°
 f. 18 discontinuities, each rotating the major principal stress through 5°
 g. 45 discontinuities, each rotating the major principal stress through 2°
 h. 90 discontinuities, each rotating the major principal stress through 1°

Tabulate and comment on your results.

SOluTIOn

Let the vertical stress immediately below the foundation at failure be fσ′  and the  vertical 
stress (surcharge) at the same depth on either side be oσ′ . At failure, the soil below the 
foundation will be in the active condition and the soil on either side of the foundation pas-
sive. We will call the active zone below the foundation ‘Zone 2’ and the passive zones to 
the side ‘Zone 1’, because the average effective stress will be greater below the foundation 
than to the side and hence will decrease as we go from Zone 2 to Zone 1. Consideration 
of the Mohr circle of stress for the passive zone of soil (Zone 1) to the side of the founda-
tion (Figure 10.3a) gives

 s′σ = ′ − ϕ′(1 sin )o 1   (10.4)

while the Mohr circle of stress for the active zone (Zone 2) below the foundation (Figure 
10.3b) gives

 (1 sin )f 2′σ = ′ + ′ϕs   (10.5)

where 1′s  and 2′s  are the average effective stresses in Zones 1 and 2 respectively. Thus
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Zone 1
(passive)

(a)

(b)

Zone 2
(active)

Plane of
major principal
effective stress

Plane of
major
principal
effective
stress

τ

τ

τ = σ' tan φ'

τ = σ' tan φ'

O

O

φ'

φ'

σ'0

σ'1 σ'1

σ'1

σ'1

s'1

t1

s'2
σ'f

t2

σ'

σ'

Figure 10.3  Mohr circles of effective stress for (a) passive and (b) active zones adjacent to and below a shal-
low foundation subjected to a vertical load: φ′ analysis, Example 10.1.
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where Kp = (1 + sin φ′)/(1 – sin φ′) is the passive earth pressure coefficient.
For a single discontinuity, the rotation θ in the direction of the major principal effective 

stress across it is 90°, its frictional strength δ = 0 and the two Mohr circles representing 
Zones 2 (active) and 1 (passive) touch (Figure 8.2), giving a bearing capacity Nq of

 q
f

o
p
2= ′σ

′σ
=N K   (8.1)

which for φ′ = 30° gives 9q p
2= =N K .

For two discontinuities, the rotation in the direction of the major principal effective 
stress θ across each of them is 45° and there is one intermediate zone (Zone a, say) 
between Zones 2 and 1. From Equation 10.1, Δ = (90° – θ) = 45°; and for φ′ = 30°, 
Equation 10.3 then gives δ = sin–1(sin Δ  · sin φ′) = 20.7°.

The ratios of the average principal stresses in adjacent zones are given by Equation 10.2,
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Substituting this into Equation 10.6 gives
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For three discontinuities, θ = 30° and there are two intermediate zones (Zones a and b) 
between Zones 2 and 1. From Equation 10.1, Δ = (90° – θ) = 60°; and from Equation 10.3 
with φ′ = 30°, δ = sin–1(sin Δ · sin φ′) = 25.66°.

The ratios of the average principal stresses in adjacent zones are given by Equation 10.2,
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Substituting this into Equation 10.6 gives
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In general for n discontinuities, θ = (90/n)° and there are (n – 1) intermediate zones 
(zones a, b, … [n – 1]) between Zones 2 and 1. From Equation 10.1, Δ = (90° – θ) = 
{90 · (n – 1)/n}°. δ can be calculated from Equation 10.3 as δ = sin–1(sin Δ · sin φ′) with 
φ′ = 30°, and the ratios of average principal stresses in adjacent zones are given by
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Substituting this into Equation 10.6 gives
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The easiest way of doing the calculation for the different numbers of discontinuities 
specified is to use a spreadsheet, which for φ′ = 30° gives the numerical values of bearing 
capacity factor Nq shown in Table 10.1.

As the number of discontinuities n increases, the ratio of the average effective stresses in 
adjacent zones tends toward 1. The value of Nq converges towards the ‘correct’  solution, 



Calculation of improved bearing capacity factors and earth pressure coefficients 537

© 2010 Taylor & Francis Group, LLC

Nq = Kp · e(π · tanφ′) = 18.40 (Equations 8.2 and 10.9). The most significant improvement 
is perhaps that made by going from a single discontinuity (which gives Nq = 9) to two 
 discontinuities (Nq = 14.72).

The most refined solution is obtained with an infinite number of infinitesimal stress 
 discontinuities, each of which is as strong as the soil so that δ → (tends to) φ′. Across such 
a  discontinuity, the rotation of the major principal effective stress θ → δθ; and the jump 
in the average  principal effective stress s s′ − ′ → ′δ2 1 s. Setting 1′s  equal to a general value, s′, 
Equation 10.2 becomes

 
cos( )
cos( )

2

1

′
′

= ′ + δ ′
′

= ϕ′ − δθ
ϕ′ + δθ

s
s

s s
s

As cos (A ± B) = cos A cos B ∓ sin A sin B, and since δθ is small so that cos δθ ≈ 1 and 
sin θ ≈ δθ,

 1
cos sin
cos sin

+ δ ′
′

≈ ϕ′ + δθ ϕ′
ϕ′ − δθ ϕ′

s
s

Dividing through the top and bottom of the expression on the right-hand side by cos φ′, 
and using the binomial expansion (1 + x)n ≈ 1 + nx if n is small,

 

s
s

+ δ ′
′

≈ + δθ ϕ′ × − δθ ϕ′

≈ + δθ ϕ′ × + δθ ϕ′
≈ + δθ ϕ′

−1 (1 tan ) (1 tan )

(1 tan ) (1 tan )

1 2 tan

1

or

 
s
s
δ ′

′
≈ δθ ϕ′2 tan   (10.7)

Table 10.1  Improvement in calculated bearing capacity factor Nq with increasing number of stress 
discontinuities; effective stress analysis for a soil with φ′ = 30°, Example 10.1

Number of 
discontinuities 
(n)

Rotation in direction 
of major principal 

stress θ across each 
discontinuity (degrees)

Δ = (90° – θ) 
(degrees)

Strength of discontinuity 
δ = sin–1(sin Δ · sin φ′) 

(degrees)
R = cos(δ – θ) 
÷ cos(δ + θ) Nq = Kp · Rn

1 90 0 0 (3)a 9
2 45 45 20.7 2.215 14.72
3 30 60 25.7 1.769 16.62
6 15 75 28.9 1.347 17.93
9 10 80 210.5 1.222 18.23

18 5 85 210.9 1.106 18.38
45 2 88 210.98 1.041 18.39
90 1 89 210.99 1.020 18.39

a Note: simply substituting δ = 0 and θ = 90° into Equation 10.2 does not work, as it gives an indeterminate ratio of zero 
÷ zero. To obtain the correct answer, we need to calculate the limit of cos(δ − θ)/cos(δ + θ) as δ → 0, which after some 
algebra and trigonometry may be shown to be (1 + sin φ′)/(1 – sin φ′).
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For a zone comprising an infinite number of infinitesimal discontinuities (known as a fan 
zone—e.g. Figure 10.1d), which results in an overall rotation of the major principal effective 
stress direction of θ, integration of Equation 10.1 between limits of 1′ = ′s s  at θ = 0 and 2′ = ′s s  
at θ = θ gives

 2

1

2 tan′
′

= θ ϕ′s
s

e   (10.8)

The angle subtended at the centre of the fan zone is equal to the rotation of the principal 
stress direction, θ.

In the case of a shallow foundation subjected to a vertical load, the rotation in the 
 direction of the major principal effective stress between the active zone (Zone 2) below 
the foundation and the passive zones (Zone 1) to either side is θ = π/2. The ratio of the 
average effective stresses in these zones may therefore be calculated using Equation 10.8 
with θ = π/2, giving

 2

1

tan′
′

= π ϕ′s
s

e

Substituting this expression for ′ ′s s2  into Equation 10.6, we obtain a bearing capacity 
factor Nq given by

 N K e= ′σ
′σ

= π ϕ′
q

f

o
p

tan   (10.9)

where Kp is the passive earth pressure coefficient, (1 + sin φ′)/(1 – sin φ′). For φ′ = 30°, Nq 
is numerically equal to 18.4.

The spatial relationship between the active and passive zones below and to one side of the 
foundation (Zones 2 and 1) and the fan zone between them, which is made up of an infi-
nite number of infinitesimal stress discontinuities, is shown in Figure 10.4. Two particular 
points are that:

 1. The included angle of the fan zone separating the active Zone 2 (below the foundation) 
from the passive Zone 1 (to one side) is the same as the rotation in the direction of the 
major principal effective stress as we go from one zone to the other (in this case, from 
vertical to horizontal, i.e. 90°).

 2. As the fan zone is made up of a series of infinitesimal discontinuities on which the 
full strength of the soil is mobilized (i.e. τ = σ′ tan φ′), the boundaries of the fan zone 
are directions along which the full strength of the soil is mobilised in both Zones 2 
and 1. These are known as characteristic directions; their significance is explained in 
Section 10.4.2. (In this case, on the right hand side of the footing as shown, the bound-
aries are associated with a positive i.e. anti clockwise shear stress and are denoted 
α-characteristics. On the left-hand side of the footing—which is not shown in Figure 
10.4—the fan zone boundaries are β-characteristics, along which the full strength of 
the soil is also mobilised but with the shear stress negative, i.e. clockwise. Consideration 
of the Mohr circle of stress shows that in all three zones, the α-characteristics must 
intersect the β-characteristics at an angle of 90° ± φ′.)

Strictly, the solution is incomplete because the two fan zones on either side of the centreline 
will interfere with each other at depth. A rigorous lower bound solution would require the 
addition of further stress discontinuities to prevent this from happening (see Abbott, 1966).
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10.3  STRESS DISCONTINUITIES AND THEIR USE TO 
CALCULATE IMPROVED BEARING CAPACITY FACTORS 
FOR A SHALLOW FOUNDATION SUBJECTED TO A 
VERTICAL LOAD: TOTAL STRESS (τu) ANALYSIS

In the case of an analysis using the undrained shear strength failure criterion, the strong dis-
continuity has a shear strength τ (where τ ≤ τu). Again, the condition of equilibrium requires 
that both τ and σ must be the same on both sides of the discontinuity, and the Mohr circles 
of total stress for the two zones intersect as shown in Figure 10.5.

If the average total stress s (which locates the centre of the Mohr circle, s = 0.5(σ1 + σ3)) 
increases as we move from Zone 1 to Zone 2, then

 1. The discontinuity is at an angle of s = ∆0.5 C D 0.51  anticlockwise from the plane on 
which the major principal total stress acts in Zone 1.

 2. The discontinuity is at an angle of s = π − ∆0.5 A D 0.5( )2  anticlockwise from the plane 
on which the major principal total stress acts in Zone 2.

 3. The jump in the direction of the major principal total stress θ is therefore [0.5(π − Δ)] − 
[0.5Δ] = (π/2 − Δ), that is,

 
2

θ = π − ∆



   (10.10)

 4. From the triangles s1CD and s2CD, the difference between the average total stresses 
s2 − s1 is

 ( – ) 2 cos2 1 u= τ ∆s s   (10.11)

where

Zone 2
(active)

Lc

Zone 1
(passive)

α-characteristic
in Zone 2 forms
boundary of
fan zone

α-characteristic
in Zone 1 forms
boundary of
fan zone

σ'f

σ'0

Figure 10.4  Shallow footing subjected to a vertical load: active and passive zones below and to one side of 
the foundation separated by a fan zone, effective stress analysis.
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 sin
u

∆ = τ
τ

  (10.12)

  For an infinitesimal discontinuity that is as strong as the soil, τ → (tends to) τu; the 
rotation of the major principal total stress θ → δθ; and

 s 2 cos 2 cos
2

22 1 u u u− → δ = τ ∆ = τ π − δθ



 = τ δθs s   (10.13)

(because cos(π/2 − δθ) = sin δθ and sin δθ → δθ as δθ → 0).
  For a fan zone comprising an infinite number of infinitesimal discontinuities, which 

results in an overall rotation of the major principal total stress direction of θ, integra-
tion of Equation 10.13 between limits of s = s1 at θ = 0 and s = s2 at θ = θ gives

 22 1 us s− = τ θ   (10.14)

  Again, the angle subtended at the centre of the fan zone is θ.

Plane of
major
principal
total stress
in Zone 1

Plane of
major
principal
total stress
in Zone 2

Rotation of major
principal total stress

Discontinuity

Mohr circle of stress
for Zone 1. Centre
at s1, radius τu

Mohr circle of stress
for Zone 2. Centre
at s2, radius τu

(b)

(a)

D

C
B A

s2s1

Zone 2

Zone 1

π – Δ= (            ) –     =     – Δ

σ1

σ1

σ1

σ1

τ

τ

τu

τu

τmax = τu

τu

2
π – Δ

2

Δ
2

Δ
2

π
2

σ'1in Zone 1
σ1

in Zone 2

σΔ

ΔΔ Δ Δ

Δ

Figure 10.5  (a) Mohr circles of total stress for (b) zones of soil on either side of a stress discontinuity of strength τ.
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As with the effective stress analysis in Section 10.2, we can use Equations 10.10 to 10.12 
and 10.14 to explore the way in which the calculated bearing capacity of a long shallow 
foundation is improved as an increasing number of increasingly strong discontinuities are 
introduced. This is illustrated in Example 10.2.

Example 10.2:  Development of improved bearing capacity factors for 
a long shallow foundation subjected to a 
vertical load: total stress (τu) analysis

Calculate theoretical bearing capacities, expressed as Nc = (σf – σo)/τu, for a long shallow 
foundation on a clay soil of undrained shear strength τu assuming undrained conditions 
and 1, 2, 3, 5, 10, 90 and an infinite number of stress discontinuities. σf is the average 
vertical stress immediately below the foundation at failure and σo is the vertical stress in 
the soil on either side, at the level of the base of the footing (the founding plane). Tabulate 
and comment on your results.

SOluTIOn

Figure 10.6a shows the Mohr circle of total stress for the uniform passive zone to one 
side of a shallow foundation (Zone 1), in which the vertical total stress at the depth of 
the base of the foundation is σ0. Figure 10.6b shows the Mohr circle of total stress for the 
uniform active zone (Zone 2) below the foundation, in which the vertical total stress at 
the base of the footing is σf.

From the Mohr circle of total stress shown in Figure 10.6a, the average total stress s1 
in Zone 1 is

 1 o us = σ + τ

From the Mohr circle of total stress shown in Figure 10.6b, the average total stress s2 
in Zone 2 is

 2 f us = σ − τ

Plane of
major
principal
total
stress

Plane of
major principal
total stress

Zone 2 (passive)

Zone 1 (passive)

(a)

(b)

σ

σ

σf

σ1

σ1σ1
σ0

σ1

τu

s2

s1

–τu

O

τ

τu

–τu

O

τ

Figure 10.6  Mohr circles of total stress for (a) passive and (b) active zones adjacent to and below a shallow 
foundation: τu analysis, Example 10.2.
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Combining these equations,

 
s s

2f 0

u

2 1

u

σ − σ
τ

= + −
τ

  (10.15)

The rotation θ in the direction of the major principal total stress between Zones 1 and 2 
is 90° or π/2 radian.

For a single discontinuity, the rotation in the direction of the major principal total 
stress across it θ = 90°, its shear strength τ = 0 and the two Mohr circles representing 
Zones 2 (active) and 1 (passive) touch (Figure 8.3), giving a bearing capacity Nc of

 N 4c
f 0

u

= σ − σ
τ

=  (from Equation 8.3)

For two discontinuities, the rotation in the direction of the major principal total stress θ 
across each of them is 45° and there is one intermediate zone (Zone a) between Zones 2 
and 1. From Equation 10.10, Δ = (90° – θ) = 45°; Equation 10.11 then gives average prin-
cipal total stress differences between successive zones of

 s s s s( ) ( )− = − = ⋅ τ ⋅ ∆ = ⋅ τ ⋅ ° = τ2 cos 2 cos45 1.4142 a a 1 u u u

or

 – 2 1.414 2.8282 1 u u( ) = × ⋅τ = ⋅τs s

Combining this with Equation 10.15 gives

 N 4.828c
f 0

u

( )=
σ − σ

τ
=

For three discontinuities, θ = 30° and there are two intermediate zones (Zones a and b) 
between Zones 2 and 1. From Equation 10.10, Δ = (90° – θ) = 60°; and from Equation 10.11

 s s s s s s( ) ( )( )− = − = − = ⋅ τ ⋅ ∆ = ⋅ τ ⋅ ° = τ2 cos 2 cos602 a a b b 2 u u u

or

 (s2 − s1) = 3 · τu

Combining this with Equation 10.15 gives

 N 5.0c
f 0

u

( )=
σ − σ

τ
=

In general for n discontinuities, θ = (90/n)° and there are (n – 1) intermediate zones 
(zones a, b, … [n − 1]) between Zones 2 and 1. From Equation 10.10, Δ = (90° – θ) = 
{90 · (n – 1)/n}° and from Equation 10.11

 s s s s s s s s
n
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Combining this with Equation 10.15 gives

 n
n
n

n
n
n

2 2 cos
90 1

2 1 cos
90 1f 0

u

� �( ) ( )σ − σ
τ

= + ⋅
−





= ⋅ + ⋅
−











  (10.16)

If required, the proportional shear strength mobilised on the discontinuities in each 
case can be calculated from Equation 10.12, τ/τu = sinΔ.

For an infinite number of infinitesimal discontinuities, Equation 10.14 is used for 
(s2 – s1) in Equation 10.15 with θ = π, giving

 N 2 5.14c
f 0

u

= σ − σ
τ

= + π =   (10.17)

Implementing the equations into a spreadsheet gives the values of bearing capacity 
 factor Nc shown in Table 10.2.

As the number of discontinuities n increases, the difference between the average total 
stresses in adjacent zones tends towards 0. The value of Nc converges towards the ‘correct’ 
solution, Nc = 2 + π, obtained for an infinite number of discontinuities in fan zones sepa-
rating the active zone below the foundation from the passive zones on either side. The most 
significant improvement in one step occurs on going from a single discontinuity (which 
gives Nc = 4) to two discontinuities (Nc = 4.83).

As with the effective stress analysis in Example 10.1, a full lower bound solution would 
require the introduction of further stress discontinuities to prevent the fan zones through 
which the principal stress is rotated on either side of the foundation from interfering with 
each other at depth.

10.4 APPLICATION TO STRESS ANALYSIS

10.4.1 General approach

Stress discontinuities may be used to calculate improved lower bounds to the bearing capac-
ity of a foundation as in Sections 10.2 and 10.3, and also to analyse other problems in which 
there is a rotation in the direction of the major principal stress between two zones of soil. 
Examples include the bearing capacity of footings subjected to inclined loads; rough retain-
ing walls; and retaining walls with a sloping backfill. The general approach—which we have 
already adopted in the derivation of improved bearing capacity factors in Sections 10.2 and 
10.3—is as follows.

Table 10.2  Improvement in calculated bearing capacity factor Nc with increasing number of stress 
discontinuities; total stress analysis, Example 10.2

Number of 
discontinuities (n)

θ = 90/n 
(degrees)

Δ = 90(n – 1)/n 
(degrees) (sa – sb)/τu = 2cos Δ τ/τu = sin Δ Nc = 2(1 + ncos Δ)

1 90 0 2 0 4
2 45 45 1.414 0.707 4.828
3 30 60 1 0.8668 5
5 18 72 0.618 0.952 5.09

10 9 80 0.313 0.988 5.129
90 1 89 0.0349 0.9998 5.141
∞ →0 →90 – →1 2 + π
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 1. Identify the first zone (Zone 1 in Examples 10.1 and 10.2), in which the  principal 
stresses are known in both magnitude and direction. Usually, this zone will be 
 immediately below a free soil surface. The magnitude of the average stress ′s1 (or s1 
in a total stress analysis) may be a function of depth z. For foundations, it is usual to 
carry out the analysis at z = 0 (i.e. failure at the level of the founding plane is assumed 
to correspond to failure of the whole mass, or the weight of the soil is neglected, as 
in Sections 8.2 and 10.3). For retaining walls, the analysis is usually carried out for a 
general depth z (at which σv = γz in the zone of soil below the free surface), to obtain 
an earth pressure coefficient K = σ′h/(γz – u).

 2. Identify the second zone (Zone 2 in Examples 10.1 and 10.2 above), in which the  principal 
stresses are known in direction but not in magnitude. This might be beneath the load in 
the case of a footing, or against the wall in the case of a retaining wall analysis.

 3. Deduce the angle θ through which the major principal stress rotates between zones 
1 and 2. Use Equation 10.8 (φ′ analysis) or Equation 10.14 (τu analysis) to calculate 
′s2 (s2 in a total stress analysis) in terms of ′s1 (or s1) and θ, both of which are known. 

Make sure that the relative magnitudes of the average stresses in Zones 1 and 2 are 
correct. In Equations 10.8 and 10.14 it is assumed that 2 1′ > ′s s  and s2 > s1 (as in 
Examples 10.1 and 10.2), but depending on the problem under investigation, the 
 relative magnitudes of s′2 and s′1 (or s2 and s1) could be reversed.

The application of the general method is illustrated for a number of specific cases in 
Sections 10.5–10.8. In a retaining wall analysis, the invocation of wall friction is usually 
advantageous. For foundations, it is shown in Section 10.5 that the effect of an inclined load 
on a footing is to reduce very significantly the bearing capacity factors Nq and Nc.

10.4.2 Visualization of stress fields using characteristic directions

The aim of a lower bound analysis is to demonstrate the existence of a possible  equilibrium 
stress state, in which the combination of shear and normal stresses never moves outside 
the limits prescribed by the failure criterion for the soil. The stress field in the soil around 
a retaining wall or a shallow foundation may be built up from zones in which the prin-
cipal stress directions remain constant (e.g. uniform active and passive zones) and fan 
zones within which a smooth and continuous rotation of the principal stress directions 
takes place.

The various stress zones can be represented visually by means of the directions of the 
planes on which the soil is at failure; that is the planes on which the stress state touches the 
failure envelope. These are known as the characteristic directions. The direction of the plane 
on which the shear stress is positive (i.e. anticlockwise) is termed the α-characteristic, and 
the direction of the plane on which the shear stress is negative(i.e. clockwise) is termed the 
β-characteristic.

The Mohr circle of effective stress for an analysis using the maximum stress ratio failure 
criterion (τ/σ′)max = tan φ′ (Figure 10.7a) shows that the α-characteristic, on which the shear 
stress is positive, is at an angle of (45° + φ′/2) anticlockwise from the plane on which the major 
principal effective stress acts. The β-characteristic, on which the shear stress is  negative, is 
at an angle of ±(45° + φ′/2) clockwise from the plane on which the major  principal effective 
stress acts. In a uniform active zone, the plane on which the major  principal  effective stress 
acts is horizontal, so that the characteristic directions are at ±(45° + φ′/2) to the horizontal 
(Figure 10.7b). In a uniform passive zone, the plane on which the major principal effective 
stress acts is vertical, so that the characteristic directions are at ±(45° + φ′/2) to the vertical, 
or at ±(45° − φ′/2) to the horizontal (Figure 10.7c).
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In an analysis using the maximum shear stress failure criterion τmax = τu, the  characteristic 
planes are those on which the stress state is τ = ±τu. The Mohr circle of total stress (Figure 10.8a) 
shows that the α-characteristic, on which the shear stress is positive, is at an angle of 45° anti-
clockwise from the plane on which the major principal total stress acts. The β-characteristic, 
on which the shear stress is negative, is at an angle of 45° clockwise from the plane on which 
the major principal total stress acts. In uniform active and passive zones, the characteristic 
directions are at ±45° to the horizontal (Figure 10.8b and c). The α-characteristic is at 45° 
anticlockwise from the horizontal in an active zone, and at 45° clockwise from the horizontal 
in a passive zone.

10.5 SHALLOW FOUNDATIONS SUBJECTED TO INCLINED LOADS

We have already seen, in Sections 10.2 and 10.3, how the introduction of stress discontinui-
ties and fan zones between the active zone beneath a shallow foundation and the passive 
zones to either side may be used to calculate improved bearing capacity factors Nq and Nc 
for vertical loading. In this Section, the technique is used to calculate the bearing capacities 
of footings subjected to inclined loads in Examples 10.3–10.5.

When a footing is subjected to an inclined load, the problem geometry is not symmetrical. 
Failure will occur on the side of the footing towards which the shear (horizontal) component 
of the applied load is directed, because the rotation in the principal stress directions (and 
hence the difference in average stress) between the two zones of soil is smaller on this side of 
the footing. The bearing capacities calculated in Examples 10.3 and 10.4, and the bearing 
capacity factors given in Tables 10.4 and 10.6, reflect this.
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Figure 10.7  Characteristic directions for a (τ/σ)max = tan φ analysis. (a) Mohr circle of effective stress; 
(b) active zone; (c) passive zone.
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Figure 10.8  Characteristic directions for a τmax = τu analysis. (a) Mohr circle of total stress; (b) active zone; 
(c) passive zone.
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Also, as discussed in Section 8.4, the bearing capacity factors Nq and Nc are usually 
multiplied by empirical enhancement factors to account for effects such as the strength of 
the soil above the founding plane and—in the case of Nq but not Nc—the self-weight of the 
soil. This is still the case with the bearing capacity factors developed in this section.

10.5.1 Effective stress (φ′) analysis

Example 10.3:  Failure of a strip footing subjected to an inclined 
load: effective stress (φ′) analysis

A long wall is to be built on a soil of angle of shearing resistance ϕ′ = °30crit  and unit 
weight 20 kN/m3. The wall will be founded above the water table, on a 1 m deep concrete 
strip footing. The loads transmitted to the soil will be 75 kN/m vertically and 25 kN/m 
 horizontally. Assuming that these loads are uniformly distributed over the area of the 
foundation, construct Mohr circles of effective stress for the zones of soil beneath and 
adjacent to the footing, for a footing width such that these zones of soil are on the verge of 
failure with the mobilization of the critical state soil strength ϕ′crit. Indicate the planes on 
which the major principal effective stress acts in each zone and calculate the footing width.

(It may be assumed without proof that the ratio of average principal effective stress 
between two uniform stress zones separated by a fan zone of included angle θ is given by 

/2 1
2 tans s e′ ′ = θ ϕ′, and that the rotation of the direction of major principal effective stress is θ.)

Is your answer an upper or a lower bound, and why?

SOluTIOn

The loads given are those that act on the surface of the soil and, therefore, include the 
weight of the foundation itself. If the footing has width b, the normal effective stress 
applied to the soil is b′σ = 75/ kPan , and the shear stress τ is 25/b kPa.

The first step is to investigate the applied stresses that would cause the foundation just 
to fail.

The footing is shown in cross-section in Figure 10.9a. Figure 10.9b shows the idealized 
loading applied to the soil, which will be used in the analysis.

Zone 1, to one side of the footing, is a passive zone in which the major principal  effective 
stress is horizontal. The vertical effective stress at founding plane level is 20kPa0′σ = , 
resulting from the weight of the overlying soil. This is the minor principal effective stress, 
and the Mohr circle of effective stress for Zone 1 may be drawn as shown in Figure 10.9c.

The major principal effective stress in Zone 1 is (1 sin )/(1 sin )crit crit o+ ′ϕ − ′ϕ × ′σ . In the 
present case, with 20kPa0′σ =  and ′ϕ = °30crit , the major principal effective stress is equal 
to 60 kPa, and the average principal effective stress 40kPa1′ =s .

Alternatively, the average effective stress in Zone 1 is given by Equation 10.18

 
1 sin1

0

crit

′ = ′σ
− ′ϕ

s   (10.18)

In Zone 1, the major principal effective stress is horizontal, that is, the plane on which 
it acts is vertical.

In Zone 2 (beneath the footing), the stresses depend on the foundation width, and 
are  therefore unknown in magnitude. It is known, however, that the ratio of f′σ : τf is 
75:25  = 3:1. On the Mohr circle diagram, the stress state on the horizontal plane in 
Zone 2 must lie on a line drawn at an angle δ = tan−1 (1/3) = 18.44° from the origin 
( taking anticlockwise shear stress as positive), as shown in Figure 10.9d.

From the Mohr circle of effective stress for Zone 2 (Figure 10.9d), the plane on which 
the major principal effective stress acts is (Δ + δ)/2 clockwise from the horizontal (see 
also Figure 10.2a). The rotation of the plane on which the major principal effective stress 
acts as we go from Zone 1 to Zone 2 is therefore θ = [(π/2) − (Δ + δ)/2] (Figure 10.9e).
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From the geometry of the Mohr circle (Figure 10.9d or Figure 10.2a),

 sin
sin

sin crit

∆ = δ
′ϕ

 (10.3)

In the present case, δ = 18.44° and 30crit′ϕ = °, giving Δ = 39.2°. Thus (Δ + δ)/2 = 
28.82° = 0.503 radians, and θ = [(π/2) − (Δ + δ)/2] = 1.068 radians.

Applying Equation 10.2,

 s s e s e′ = ′ × = ′ ×θ ′ϕ π − ∆ −δ ′ϕ
2 1

2 tan
1

( )tancrit crit   (10.19)

with θ = 0.5(π − Δ − δ) = 1.068 radians, 30crit′ϕ = ° and 40kPa1s′ = ,

 40kPa 137.3kPa2
2 1.068 tan30⇒ ′ = × =× × °s e

From the Mohr circle of stress for Zone 2 (Figure 10.9d), the vertical component of the 
load on the footing f′σ  is given by

 cos[ ] (1 sin cos[ ])f 2 2 2 crit′σ = ′ + ∆ + δ = ′ + ′ϕ ∆ + δs t s   (10.20)
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Figure 10.9  Loads on (a) footing and (b) the soil; (c) Mohr circle of effective stress for Zone 1; (d) Mohr 
circle of effective stress for Zone 2; (e) rotation of plane of major principal effective stress, 
Example 10.3.
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which in the present case is equal to

 137.3 kPa 1 sin30 cos57.64 174 kPa( )× + ° ° =

This is the vertical stress component that will cause failure, which will occur at a foot-
ing width b given by

 75/ 174b =

or

 0.43 mb =

The solution is in principle a lower bound, as it is based on a system of equilibrium 
stresses which does not violate the failure condition for the soil. However, we have not 
shown that the stress field can be extended throughout the entire body of soil (i.e. to 
infinite depth and to infinite lateral extent), so the solution as it stands is strictly incom-
plete. The extension of the stress field throughout the soil requires the introduction of 
additional stress discontinuities to prevent the fan zones from interfering with each other.

Also, the failure load has been calculated on the basis of the failure of the soil immedi-
ately below the foundation—in other words, the stabilizing effect of the self-weight of the 
soil has been neglected. As explained in Section 8.4.1, this will lead to a conservative solu-
tion in the case of an effective stress analysis. The neglect of the strength of the soil above 
the founding plane introduces a degree of conservatism in both the effective stress and 
total stress analyses. These comments apply to all of the analyses presented in Section 10.5.

In the general case, Equations 10.18 to 10.20 may be combined to give f′σ  in terms of o′σ  
and a revised bearing capacity factor Nq, which may be used when the load applied to the 
foundation is not vertical:

 s
1 sin1

0′ = ′σ
− ϕ′

  (10.18)

 s s e e
1 sin2 1

( )tan 0 ( )tan′ = ′ × = ′σ
− ϕ′







×π − ∆ − δ ϕ′ π − ∆ − δ ϕ′  (10.19)

 s′σ = ′ + ϕ′ ∆ + δ(1 sin cos[ ])f 2  (10.20)

giving

 e′σ = ′σ × + ϕ′ ∆ + δ
− ϕ′







× π − ∆ − δ ϕ′1 sin cos[ ]
1 sinf 0

( )tan

or

 eN
1 sin cos[ ]

1 sin
f

0
q

( )tan′σ
′σ

= = + ϕ′ ∆ + δ
− ϕ′







× π − ∆ − δ ϕ′   (10.21)

where

 sin
sin
sin

∆ = δ
ϕ′

  (10.3)

If the load applied to the foundation is vertical, δ = Δ = 0 and Equation 10.21 reduces to 
Equation 10.9. The value of Nq calculated using Equation 10.21 reduces as δ is increased. For 

30crit′ϕ = ° and critδ = ′ϕ , Δ = 90° = π/2 and Nq = 2.75. This may be compared with Nq = 18.4 
when δ = 0 and Nq = 8.7 when δ = tan−1(1/3) (i.e. δ/φ′ = 0.614), as in Example 10.3.
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Values of N /q f 0= ′σ ′σ , calculated using Equations 10.3 and 10.21 for different soil strengths 
φ′ and obliquity of load /δ ϕ′, are given in Table 10.3. In using Table 10.3, it must be  remembered 
that σ′f is the vertical component of the load. The resultant stress, applied at an angle δ to the 
vertical, is equal to /cosf′σ δ.

We can use Equations 10.3 and 10.21 or the information given in Table 10.3 to develop an 
interaction diagram (cf. Figure 8.15) showing combinations of vertical load V and  horizontal 
load H that would cause failure. For a given foundation, these could be plotted as actual 
loads in kN. Alternatively and more generally, a normalised interaction diagram may be 
plotted in terms of (H/Vmax) against (V/Vmax), where Vmax is the vertical load that would 
cause failure of the foundation in the absence of any horizontal component H.

For a long footing of width B and depth d, founded above the water table in a soil of unit 
weight γ, we have

 d0′σ = γ ⋅

 fV B= ′σ ⋅

and

 Nf 0 q′σ = ′σ ⋅

where Nq is calculated for the given values of φ′ and load obliquity δ using Equation 10.21, 
or taken from Table 10.3. Thus

 V N B0 q= ′σ ⋅ ⋅

From the definition of δ,

 H V= ⋅ δtan

Applying Equation 10.9,

 V B B K emax f max 0 p
tan= ′σ ⋅ = ′σ ⋅ ⋅⋅

π ϕ′

Thus in normalised terms,

 V
V

N

K e
=

⋅ π⋅ ′ϕ
max

q

p
tan

 (10.22)

and

 H
V

N

K e
=

⋅ δ
⋅ π⋅ ′ϕ

tan

max

q

p
tan

 (10.23)

where Nq is the bearing capacity factor appropriate to the values of φ′ and δ calculated using 
Equation 10.21 or taken from Table 10.3.

The hard work has already been done in constructing Table 10.3. To plot a normalised 
interaction diagram for a shallow strip footing in a soil with a given effective angle of 
shearing resistance φ′, we simply have to manipulate the relevant numbers in Table 10.3 as 
illustrated below for φ′ = 20° and 36°. The values of Nq taken directly from Table 10.3 are 
shown in bold type in Table 10.4.
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The interaction diagrams are plotted in Figure 10.10. Points to note are that

 1. The curves are broadly similar in form to those shown in Figures 8.13a and 8.15.
 2. The straight lines joining the left-most point on each calculated curve (which is indi-

cated by a small dot and corresponds to δ/φ′ = 1) to the origin represent  sliding failure 
with H = V · tan φ′—not bearing failure—and assume (as does the whole analysis) 

Table 10.3 Bearing capacity factors Nq for inclined loads, according to Equations 10.3 and 10.21

φ′ (degrees) δ/φ′ = 0 δ/φ′ = 0.2 δ/φ′ = 0.4 δ/φ′ = 0.6 δ/φ′ = 0.8 δ/φ′ = 1.0

15 3.941 3.655 3.335 2.975 2.553 1.788
16 4.335 3.995 3.616 3.195 2.709 1.847
17 4.772 4.368 3.923 3.433 2.874 1.908
18 5.258 4.780 4.257 3.688 3.048 1.969
19 5.798 5.233 4.622 3.962 3.232 2.031
20 6.399 5.734 5.019 4.258 3.426 2.094
21 7.071 6.287 5.454 4.577 3.632 2.157
22 7.821 6.900 5.930 4.920 3.849 2.220
23 8.661 7.580 6.452 5.291 4.079 2.285
24 9.603 8.334 7.024 5.692 4.322 2.349
25 10.66 9.17 7.65 6.13 4.58 2.41
26 11.85 10.11 8.34 6.59 4.85 2.48
27 13.20 11.15 9.10 7.10 5.14 2.55
28 14.72 12.32 9.94 7.65 5.45 2.61
29 16.44 13.62 10.87 8.25 5.78 2.68
30 18.40 15.09 11.89 8.90 6.12 2.75
31 20.63 16.73 13.03 9.61 6.49 2.81
32 23.18 18.59 14.29 10.39 6.88 2.88
33 26.09 20.69 15.70 11.23 7.30 2.95
34 29.44 23.07 17.26 12.15 7.75 3.01
35 33.30 25.77 19.01 13.16 8.22 3.08
36 37.75 28.85 20.97 14.27 8.73 3.15
37 42.92 32.37 23.17 15.49 9.27 3.22
38 48.93 36.39 25.64 16.83 9.85 3.28
39 55.96 41.02 28.43 18.31 10.48 3.35
40 64.20 46.36 31.59 19.95 11.15 3.42

Table 10.4  Combinations of normalised vertical and horizontal loads at failure calculated from the data 
in Table 10.3 for soils with φ′ = 20° and φ′ = 36°

δ/φ′ 0 0.2 0.4 0.6 0.8 1

Nq from Table 10.3 for φ′ = 20° 6.399 5.734 5.019 4.258 3.426 2.094
δ, degrees for φ′ = 20° 0 4 8 12 16 20
V/Vmax = Nq/6.399 1 0.896 0.784 0.665 0.535 0.327
H/Hmax = (V/Vmax) · tanδ 0 0.063 0.110 0.141 0.154 0.119

Nq from Table 10.3 for φ′ = 36° 37.75 28.85 20.97 14.27 8.73 3.15
δ, degrees for φ′ = 36° 0 7.2 14.4 21.6 28.8 36
V/Vmax = Nq/37.75 1 0.764 0.556 0.378 0.231 0.083
H/Hmax = (V/Vmax) · tanδ 0 0.0966 0.143 0.150 0.127 0.061
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that the base of the foundation is perfectly rough so that the limiting angle of friction 
between it and the soil is equal to φ′, the effective angle of shearing resistance of the 
soil itself.

 3. The exact shape of the curve, when normalised in this way, depends on the angle of 
shearing resistance.

10.5.2 Total stress (undrained shear strength, τu) analysis

The effect of an inclination of the load on the bearing capacity of a strip footing in und-
rained conditions is illustrated in Example 10.4.

Example 10.4:  Failure of a strip footing subjected to an 
inclined load: total stress (τu) analysis

 a. A strip footing is constructed on a stratum of clay of uniform undrained shear 
strength τu. When loaded quickly, the footing fails at an applied vertical stress of 
386 kPa. Estimate τu.

 b. A second identical footing is built, and a shear stress of 60 kPa is applied. The vertical 
load is then increased. At what vertical stress will failure occur? (It may be assumed 
without proof that the ratio of average principal total stress between two uniform 
stress zones, separated by a fan zone of included angle θ, is given by s2 − s1 = 2τuθ, 
and that the rotation of the direction of major principal total stress is θ.)

SOluTIOn

 a. The first step is to estimate τu. Figure 10.11a shows the zones of soil below and to 
one side of the footing. Zone 1 is a passive zone, in which the major principal total 
stress is horizontal and (at the ground surface) σv = 0. From the Mohr circle of total 
stress shown in Figure 10.11b,

 1 us = τ

  In the case of the vertical footing load, Zone 2 is a conventional uniform active 
zone, in which the major principal total stress is vertical. From the Mohr circle of 
total stress shown in Figure 10.11c, sσ = + τf 2 u.
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Figure 10.10  Normalised interaction diagram showing combinations of (H/Vmax) and (V/Vmax) causing failure 
of a long shallow foundation in a soil having φ' = 20° and 36°, calculated using Equation 10.21 
and data in Table 10.3; effective stress analysis.
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  The rotation in the direction of principal total stress between Zone 1 and Zone 2 
is 90° = π/2 radians, so from Equation 10.14

 ; (1 ),2 1 u 2 1 u u− = πτ = + πτ = τ + πs s s s

 and

 ( )f 2 u uσ = + τ = + π τs 2

  In the present case, σf = 386 kPa:

 
=

386 kPa
2u⇒ τ

+ π

 75kPau⇒ τ =

  With the shear load applied, let the vertical component of the resultant inclined 
load that causes failure be σ f

*, as shown in Figure 10.11d. The Mohr circle of total 
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Figure 10.11  (a) Vertical load on footing; (b) Mohr circle of total stress for Zone 1; (c) Mohr circle of total 
stress for Zone 2 when the footing load is vertical; (d) inclined load on footing; (e) Mohr circle 
of total stress for Zone 2 when resultant footing load is inclined; (f) rotation of plane of major 
principal total stress.
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stress for Zone 1 is the same as before, but the Mohr circle of total stress for Zone 2 
(below the footing) is now as shown in Figure 10.11e.

  From the geometry of the Mohr circle,

 sσ = + τ ∆cosf
*

2 u

 where ∆ = τ τ = ⇒ ∆ = °sin / 60/75 53.13u .
  The plane on which the major principal total stress acts is now at an angle of Δ/2 

clockwise from the horizontal (Figure 10.11c; also Figure 10.3a), so that the overall 
rotation of the plane of major principal total stress between Zone 1 and Zone 2 is 
now θ = (90° − Δ/2) = 1.107 radians (Figure 10.11f).

 Applying Equation 10.14,

 s s− = τ θ = τ
π

−
∆





= τ π − ∆2 2
2 2

( )2 1 u u u

 so that

 s sσ = + τ ∆ = + τ π − ∆ + ∆cos ( cos )f
*

2 u 1 u  (10.24)

 In the present case with s1 = τu,

 σ = τ + π − ∆ + ∆ = τ(1 cos ) 3.814f
*

u u

 or

 σ = × =3.814 75kPa 286kPaf
*

In the general case with the vertical component of the load applied to the foundation 
denoted by σf and s1 = σ0 + τu, Equation 10.24 leads to a revised bearing capacity factor Nc:

 N
σ − σ

τ
= = + π − ∆ + ∆(1 cos )f 0

u
c  (10.25)

where sin Δ = τ/τu, and τ is the shear stress applied to the foundation. If τ = 0, Δ = 0 and cos 
Δ = 1, and Equation 10.25 reduces to Equation 10.17, giving Nc = (2 + π) = 5.14. Nc then 
reduces as τ is increased, until when τ = τu, Nc = (1 + π/2) = 2.57. This explains why, if a soft 
mud is just strong enough to support a car when the car is stationary, the car will sink into 
the mud when the driver tries to move it. (It is sometimes possible to move the car by letting 
some air out of the tyres, to reduce the normal contact pressure between the tyres and the 
mud. In contrast on a sand, an increase in the normal pressure will increase the shear stress 
that can be applied without causing failure.)

Values of Nc = (σf − σ0)/τu, calculated using Equation 10.25 for various values of τ/τu, are 
given in Table 10.5. As with Table 10.3, σf is the vertical component of the load acting on 
the footing; the horizontal component is τ. The resultant applied load is inclined at an angle 
tan−1(τ/σf) to the vertical, and has magnitude B· f

2 2σ + τ , where B is the width of the footing.
The application of the bearing capacity factors given in Table 10.5 to the analysis of the 

foundation of a real retaining wall is illustrated in Example 10.5.

Table 10.5 Bearing capacity factors Nc for inclined loads, according to Equation 10.25

τ/τu 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Nc 5.142 5.036 4.920 4.791 4.647 4.484 4.298 4.080 3.814 3.458 2.571
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Example 10.5: Bearing capacity of the Cricklewood retaining wall

Assess the adequacy of the Cricklewood retaining wall analysed in Examples 7.5 and 8.1 
in terms of its short-term bearing capacity, using Equation 10.25.

SOluTIOn

From Example 8.1, the shear stress on the base of the Cricklewood retaining wall is 
22 kPa. The undrained shear strength of the intact soil is 60 kPa. Thus, sin Δ = τ/τu = 
22/60 or Δ = 21.5° (= 0.375 radian). Hence, from Equation 10.25, Nc = (1 + π − Δ + 
cos Δ) ≈ 4.7. Ignoring depth effects (because we have already used the strength of 
the soil above the founding plane to provide the passive pressure in front of the wall) 
other than to take σ0 = (3 m × 20 kN/m3) + 10 kPa = 70 kPa, the ultimate (failure) 
stress is σf =(Nc × τu) + σ0 = (4.7 × 60 kPa) + 70 kPa = 352 kPa

This is equivalent to an ultimate vertical load of 352 kPa × 4.4 m = 1548 kN, com-
pared with the actual vertical load of 1162 kN. From Example 8.1, the eccentricity of the 
applied load is 0.153 m or 3.5% of the foundation width: this is well within the middle 
third and is unlikely to affect significantly the bearing capacity.

The vertical load is about 1.33 times less than that which would cause failure at the 
same applied horizontal stress, ignoring the slight adverse effect of load eccentricity. It may 
therefore be concluded that the wall will not suffer a bearing capacity failure in the short 
term, but on the basis of the assumed undrained shear strength of 60 kPa is unlikely to be 
sufficiently remote from bearing capacity failure for design purposes.

As with the effective stress analysis, we can use Equations 10.12 and 10.25 or the infor-
mation given in Table 10.5 to develop an interaction diagram showing combinations of 
vertical load V and horizontal load H causing failure of a footing in undrained conditions. 
Again, these could be plotted as actual loads in kN for a given foundation geometry and 
soil strength.

Construction of the normalised interaction diagram is in this case slightly more awkward, 
owing to the term in σ0 in Equation 10.25. This can be overcome by specifying (V – B · σ0) 
rather than V as the vertical load term, or more simply by carrying out the analysis for a 
surface footing, so that σ0 = 0. To keep the analysis general we will adopt the first approach: 
if you find this initially confusing, you can on first reading adopt the second approach by 
mentally crossing out all the terms in σ0.

For a long footing of width B, we have from the application of Equation 10.17

 2 5 140 max f 0 max u uV B B B B( ) ( ) ( )− ⋅ σ = σ − σ = + π ⋅ ⋅ τ = ⋅ ⋅ ⋅ τ

From Equation 10.25,

 1 cos0 f 0 uV B B B( ) ( ) ( )− ⋅ σ = σ − σ = + π − ∆ + ∆ ⋅ ⋅ τ

where

 ∆ = τ τsin / u (10.12)

The horizontal load on the foundation, H, is given by

 H B B= ⋅ τ = ⋅ τ ⋅ ∆sinu
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In normalised terms,

 ( )
( )

− ⋅ σ
− ⋅ σ

=
+ π − ∆ + ∆

+ π
V B

V B
(1 cos )

2
0

0 max

 (10.26)

and

 
( )

( )
− ⋅ σ

=
∆

+ π
H

V B
sin
20 max

 (10.27)

We can again make use of the work we have already done by taking the numbers needed 
to plot the interaction diagram directly from Table 10.5, as indicated below. Numbers taken 
directly from Table 10.5 are shown in bold type in Table 10.6.

The interaction diagram is plotted in Figure 10.12. In this case, there is a single normalised 
plot for all soils, irrespective of the undrained shear strength τu. However, the normalisation 
process does require the depth of burial of the foundation, which controls σ0, to be considered 
in the interpretation of the results. Sliding failure, rather than bearing failure, occurs when 
τ = τu, giving sin Δ = 1 and H/(V – B · σ0)max = 1/(2 + π) = 0.194 and (V – B · σ0)/(V – B · σ0)max

< 0.5, and is indicated by a horizontal straight line joining the point H/(V – B · σ0)max = 
0.194, (V – B · σ0)/(V – B · σ0)max = 0.5 to the H/(V – B · σ0)max (y) axis. Again, the whole analy-
sis assumes that the interface between the foundation and the soil is perfectly rough, so that it 
can mobilise the full undrained shear strength of the soil (τu) at failure. Also, the effect of any 
embedment of the foundation in increasing its lateral (sliding) resistance has been ignored.

Table 10.6  Combinations of normalised vertical and horizontal loads at undrained failure calculated from 
the data in Table 10.5 (total stress analysis, soil of undrained shear strength τu)

τ/τu = sin Δ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Nc 5.142 5.036 4.920 4.791 4.647 4.484 4.298 4.080 3.814 3.458 2.571
H/V*max 0 0.019 0.039 0.058 0.078 0.097 0.117 0.136 0.156 0.175 0.194
V*/V*max 1 0.979 0.957 0.93174 0.904 0.872 0.836 0.793 0.742 0.673 0.5

Note: V* = V – B · σ0.
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Figure 10.12  Normalised interaction diagram showing combinations of H/(V – B · σ0)max and (V – B · σ0)/
(V – B · σ0)max causing undrained failure of a long shallow foundation in a soil of any undrained 
shear strength τu, calculated using Equation 10.25 and data in Table 10.5: total stress  (undrained 
shear strength, τu) analysis.
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10.5.3  Interaction diagrams for eccentric vertical 
loading (combined vertical and moment 
loading): a simplified approach

We were able to use the data in Tables 10.3 (effective stress analysis) and 10.5 (total stress anal-
ysis) to develop interaction diagrams giving combinations of vertical load V and horizontal load 
H at failure. However, rigorously taking account of the effect of an eccentric (off-centre) verti-
cal load—which creates a moment on the foundation as discussed in Section 8.5 and Example 
8.1—is more difficult. A simplified approach proposed by Meyerhof (1953) is as follows.

We saw in Section 8.5 that a vertical load V acting at a distance or eccentricity e from the 
centre of a foundation of width B is statically equivalent to a vertical load V through and 
a moment M = V · e about the centre. Meyerhof’s approach was simply to reduce the width 
of the foundation by an amount 2e, such that the (initially off-centre) load acts through the 
centre of a modified foundation of width B′ = (B – 2e): Figure 10.13.

The effect of this on the foundation load at failure arises purely from the change in geom-
etry, and can be applied to the result of either an effective stress (φ′) or a total stress (τu) 
analysis. The (now pure) vertical load V causing failure of the reduced-width foundation is 
simply the vertical load Vmax that (acting on its own through the centre) would have caused 
bearing failure of the original foundation, scaled by the relative foundation widths; that is,

 V
B e

B
V

( )=
−

⋅
2

max (10.28)

The moment M = V · e, which can be re-written in terms of Vmax for the original founda-
tion of width B as

 M
B e

B
V e

( )=
−

⋅ ⋅
2

max  (10.29)

Normalising by dividing V by Vmax and M by B · Vmax (as in Section 8.5), and introducing 
a normalised eccentricity e′ = e/B, we can eliminate the foundation width B from Equations 
10.28 and 10.29, which become (in terms of the parametric variable, e′, where 0 ≤ e′ ≤ 0.5)

 1 2
max

V
V

e( )= − ′  (10.30)

and

 
M

B V
e e( )

⋅
= ′ ⋅ − ′1 2

max

 (10.31)

The resulting interaction diagram is plotted in Figure 10.14. It is broadly similar in shape 
to that in Figure 8.13(a).

v v

B – 2e

e

B/2B/2

Figure 10.13  Reducing the effective width of the foundation from B to B′ so that an initially eccentric vertical 
load acts through the centre.
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10.6  CALCULATION OF EARTH PRESSURE COEFFICIENTS 
FOR ROUGH RETAINING WALLS

The active and passive earth pressure coefficients derived in Section 7.3 on the  assumption 
that the wall was frictionless are true lower bounds, but for design purposes they are 
unduly over-conservative. This is particularly so in the case of the effective stress analysis 
(Equations 7.3 and 7.4).

In the absence of wall friction, the stress states behind and in front of a retaining wall 
may be represented by uniform active and passive zones, as shown in Figure 10.15. Within 
either of these zones, the orientation of the planes on which the major and minor principal 
stresses act does not change.

In the effective stress (φ′) analysis, the characteristic planes are at 45° + (φ′/2) to the 
 horizontal in the active zone behind the wall, and at 45° − (φ′/2) to the horizontal in the 
passive zone in front of the wall. In the total stress (τu) analysis, the characteristic planes 
are at 45° to the horizontal in both the active and the passive zones. In both the φ′ and the 
τu analyses, the characteristic directions indicate the likely orientation of slip surfaces as 
shown in Figure 10.15, at least in the absence of external restraints such as props.

Wall friction results in a rotation of the principal stress directions adjacent to the wall, so 
that the stress state of the soil behind or in front of the wall can no longer be represented 
by a single active or passive zone. Similarly, there must also be a rotation in the direction of 
the principal stresses between the free soil surface and a frictionless wall if the soil surface 
is not horizontal, or if the back of the wall is not vertical. The effect of the rotation in the 
direction of the principal stresses can be taken into account in all three cases by means of 
fan zones, as shown in Sections 10.6–10.8.

10.6.1 Wall friction: effective stress φ′ analysis

 a. Active case
  Figure 10.16a shows the soil behind a rough retaining wall with soil/wall friction 

angle δ. Zone 1 is a conventional active zone, in which the vertical effective stress at 
a depth z below the free soil surface is γz−u, where u is the pore water pressure. In an 
active zone, the horizontal stress is reduced as the wall moves outward. In Zone 1, the 

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
0 0.2 0.4 0.6

V/Vmax

M
/(

B
∙V

m
ax
)

0.8 1 1.2

Figure 10.14  Normalised interaction diagram showing combinations of M/(B · Vmax) and V/Vmax causing failure 
of a long shallow foundation, calculated using the reduced effective width concept proposed 
by Meyerhof (1953).
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major principal effective stress is therefore vertical, and acts on the horizontal plane. 
The Mohr circle of effective stress for Zone 1 is shown in Figure 10.16b.

  Assuming that the soil in Zone 2 tends to settle relative to the wall, the soil exerts a 
downward shear force on the wall. As action and reaction are equal and opposite, the 
wall exerts an upward shear stress on the soil. With the excavation on the right-hand side 
of the wall as shown in Figure 10.16a, the shear stress at the soil/wall interface is anti-
clockwise as viewed from inside the body of soil, and therefore plots as positive on the 
Mohr diagram. The Mohr circle of effective stress for Zone 2 is shown in Figure 10.16c.
In Zone 1 at a depth z,

 ( ) (1 sin )1 1 1z u s t sγ − = ′ + = ′ + ϕ′

or

 
1 sin1s

z u
′ = γ −

+ ϕ′
 (10.32)

Potential critical
slip planes

(a)

45˚– φ'/2 45˚+ φ'/2
45˚ 45˚ 45˚ 45˚

(b)

Potential critical
slip planes

Passive

α
β

α

α

αβ

β β

Active

Passive

Active

Figure 10.15  Representation of simple active and passive zones behind and in front of a retaining wall using 
α- and β-characteristics: (a) φ′ analysis; (b) τu analysis.
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Figure 10.16  Calculation of active earth pressure coefficient for rough retaining wall, φ′ analysis: (a) division 
of soil into zones; (b) Mohr circle of effective stress for Zone 1; (c) Mohr circle of effective stress 
for Zone 2; (d) rotation in major principal effective stress direction between Zones 1 and 2.
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  From the Mohr circle for Zone 2 (Figure 10.16c), the lateral component of the 
 resultant effective stress acting on the wall is

 cos( ) 1 sin cos( )h 2 2 2s t s [ ]′σ = ′ − ∆ − δ = ′ − ϕ′ ∆ − δ  (10.33)

  The major principal effective stress in Zone 2 acts on a plane that is [90° − 
(Δ  −  δ)/2] clockwise from the vertical (Figure 10.16c), so that the overall rotation 
in the major principal effective stress direction between Zones 1 and 2 is θ = (Δ − 
δ)/2 (Figure 10.16d). Substituting this into Equation 10.8, and noting that the average 
 principal effective stress in this case decreases as we go from Zone 1 to Zone 2,

 1

2

( )tans
s

e
′
′

= ∆−δ ϕ′

or

 2 1
{( )tan }s s e′ = ′ − ∆−δ ϕ′  (10.34)

  Combining Equations 10.32 to 10.34,

 

[1 sin cos( )]

[1 sin cos( )]

( )
1 sin cos( )

1 sin

h 2

1
{( )tan }

{( )tan }

s

s e

z u e

′σ = ′ − ϕ′ ∆ − δ
= ′ − ϕ′ ∆ − δ

= γ − − ϕ′ ∆ − δ
+ ϕ′

− ∆−δ ϕ′

− ∆−δ ϕ′

 so that the active lateral earth pressure coefficient K z u= ′σ γ −/( )a h  is

 
1 sin cos[ ]

1 sina
( )tanK e= − ϕ′ ∆ − δ

+ ϕ′






× − ∆−δ ϕ′ (10.35)

 where sin Δ = sin δ/sin φ′.
  If the wall is frictionless, δ = Δ = 0 and Equation 10.35 reduces to Equation 7.3, with

 ( )v z u′σ = γ −

  Active earth pressure coefficients calculated using Equation 10.35 with various 
 values of φ′ and wall friction δ are given in Table 10.7. Equation 10.35 forms the basis 
of the charts of active earth pressure coefficients given in Eurocode 7 (BSI, 2004) 
and by Gaba et al. (2003) for vertical walls with level backfills. The values given in 
Table 10.7 are generally slightly larger (and therefore more conservative) than those 
in Table 9.1.

 b. Passive case
  Figure 10.17a shows the soil in front of a rough retaining wall with soil/wall fric-

tion angle δ. Zone 1 is a conventional passive zone, in which the vertical effective 
stress at a depth z below the free soil surface is γz − u, where u is the pore water 
pressure. In a passive zone, the horizontal stress increases as the wall is pushed into 
the soil. In Zone 1, the major principal effective stress is therefore horizontal, and 
acts on the vertical plane. The Mohr circle of effective stress for Zone 1 is shown in 
Figure 10.17b.
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  Assuming that the soil in Zone 2 tends to heave (i.e. move upward) relative to the 
wall, the soil will exert an upward shear stress on the wall. The wall therefore exerts 
a downward shear stress on the soil. With the excavation on the right-hand side of 
the wall as shown in Figure 10.17a, the shear stress at the soil/wall interface is again 
anticlockwise as viewed from inside the body of soil, and is plotted as positive on the 
Mohr diagram. The Mohr circle of effective stress in Zone 2 is shown in Figure 10.17c.
In Zone 1 at a depth z,

 ( ) (1 sin )1 1 1z u s t sγ − = ′ − = ′ − ϕ′

or

 
1 sin1s

z u
′ = γ −

− ϕ′
 (10.36)

  From the Mohr circle for Zone 2 (Figure 10.17c), the lateral component of the resul-
tant effective stress acting on the wall is

 cos( ) [1 sin cos( )]h 2 2 2s t s′σ = ′ + ∆ + δ = ′ + ϕ′ ∆ + δ  (10.37)

  The major principal effective stress in Zone 2 acts on a plane that is (Δ + δ)/2 
 clockwise from the vertical (Figure 10.17c). The overall rotation in the major  principal 
effective stress direction between Zones 1 and 2 is θ = (Δ + δ)/2 (Figure 10.17d). 
Substituting this into Equation 10.8, and noting that the average principal effective 
stress now increases as we go from Zone 1 to Zone 2,

Zone 1

Zone 2
(a) (b)

(c)

(d)

O

O
(σh́, τw)

σ1́

σ1́

σ1́

σʹ
t1

s2́

t2

s2́

τ=σ  ́ tan φʹφʹ

σv́ = γz – u

σʹ

τ

τ=σ  ́ tan φʹ
τ=σ  ́ tan δ

Stress state on wall

Plane of major
principal effective
stress in Zone 2

Plane of
major principal
effective stress
in Zone 1

(Δ +δ)

Δ
δ

φʹ

2
( ) = θΔ + δ

τ

Figure 10.17  Calculation of passive earth pressure coefficient for rough retaining wall, φ′ analysis: (a) division 
of soil into zones; (b) Mohr circle of effective stress for Zone 1; (c) Mohr circle of effective stress 
for Zone 2; (d) rotation in major principal effective stress direction between Zones 1 and 2.
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 2

1

( )tans
s

e
′
′

= ∆−δ ϕ′ (10.38)

  Combining Equations 10.36 to 10.38,

 

s

s e

z u e

′σ = ′ + ϕ′ ∆ + δ
= ′ + ϕ′ ∆ + δ

= γ −
+ ϕ′ ∆ + δ

− ϕ′

∆+δ ϕ′

∆+δ ϕ′

[1 sin cos( )]

[1 sin cos( )]

( )
1 sin cos( )

1 sin

h 2

1
( ) tan

( ) tan

 so that the passive lateral earth pressure coefficient /( )p hK z u= ′σ γ −  is

 
1 sin cos( )

1 sinp
( )tanK e= + ϕ′ ∆ + δ

− ϕ′
× ∆+δ ϕ′ (10.39)

 where sin Δ = sin δ/sin φ′.
  If the wall is frictionless, δ = Δ = 0 and Equation 10.39 reduces to Equation 7.4, 

with ( )v z u′σ = γ − .
  Passive earth pressure coefficients calculated using Equation 10.39 with various 

values of φ′ and wall friction δ are given in Table 10.8. Equation 10.39 forms the basis 
of the charts of passive earth pressure coefficients given in Eurocode 7 (BSI, 2004) 
and by Gaba et al. (2003) for vertical walls with level backfills. The values given in 
Table 10.8 are generally slightly smaller (and therefore more conservative) than those 
in Table 9.2.

  In the analyses in Section 10.6.1, the stress state on the wall is given by the intersec-
tion of the line τ = σ′ tan δ with the Mohr circle for Zone 2. One possible source of 
confusion is that, at first sight, this gives two possible stress states. In the active side 
analysis, the stress state on the retaining wall is the lower of these, while in the passive 
side analysis, it is the higher.

10.6.2 Wall adhesion: total stress (τu) analysis

 a. Active case
  Figure 10.18a shows the soil behind a rough retaining wall with soil/wall adhesion 

τw. Zone 1 is a conventional active zone, in which the vertical total stress at a depth 
z below the free soil surface is γz. In a conventional active zone such as Zone 1, the 
major principal total stress is vertical, and acts on the horizontal plane. The Mohr 
circle of total stress for Zone 1 is shown in Figure 10.16b.

  Assuming that the soil in Zone 2 tends to settle relative to the wall, the soil is sub-
jected to an upward shear stress at the soil/wall interface. With the excavation on 
the right-hand side of the wall as shown in Figure 10.18a, the shear stress at the soil/
wall interface is anticlockwise (as viewed from inside the body of soil), and plots as 
positive on the Mohr diagram. The Mohr circle of total stress for Zone 2 is shown in 
Figure 10.18c.

  In Zone 1 at a depth z,

 1 uz sγ = + τ

or

 1 us z= γ − τ  (10.40)
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  From the Mohr circle for Zone 2 (Figure 10.18c), the lateral component of the resul-
tant total stress acting on the wall is

 cosh 2 usσ = − τ ∆  (10.41)

  As with the φ′ analysis, the stress state on the active side of the wall is chosen so as 
to give the lowest possible horizontal stress.

  The major principal total stress in Zone 2 acts on a plane that is 90° − Δ/2 clockwise 
from the vertical (Figure 10.18c), so that the overall rotation in the major principal 
total stress direction between Zones 1 and 2 is θ = Δ/2 (Figure 10.18d). Substituting 
this into Equation 10.4, and noting that the average principal total stress in this case 
decreases as we go from Zone 1 to Zone 2,

 1 2 us s− = τ ∆  (10.42)

  Combining Equations 10.40 to 10.42,

Table 10.8 Passive earth pressure coefficients calculated using Equation 10.39

φ′ (degrees) Kp with δ = 0 Kp with δ = φ′/2 Kp with δ = 2φ′/3
Kp with tan δ = 0.75 × 

tan φ′ Kp with δ = φ′
12 1.525 1.6861 1.724 1.739 1.763
13 1.580 1.7657 1.809 1.826 1.855
14 1.638 1.8500 1.900 1.920 1.953
15 1.698 1.9393 1.996 2.020 2.057
16 1.761 2.0341 2.099 2.126 2.168
17 1.826 2.1347 2.209 2.240 2.287
18 1.894 2.2417 2.326 2.361 2.415
19 1.965 2.3556 2.451 2.492 2.552
20 2.040 2.4770 2.584 2.631 2.699
21 2.117 2.6066 2.728 2.782 2.857
22 2.198 2.7449 2.881 2.943 3.028
23 2.283 2.8930 3.047 3.117 3.212
24 2.371 3.0515 3.225 3.305 3.411
25 2.464 3.2215 3.416 3.509 3.627
26 2.561 3.4042 3.623 3.729 3.861
27 2.663 3.6006 3.847 3.969 4.116
28 2.770 3.8123 4.090 4.229 4.393
29 2.882 4.0407 4.353 4.512 4.695
30 3.000 4.2877 4.639 4.822 5.026
31 3.124 4.5550 4.951 5.162 5.389
32 3.255 4.845 5.291 5.534 5.788
33 3.392 5.160 5.664 5.944 6.227
34 3.537 5.504 6.072 6.395 6.712
35 3.690 5.879 6.522 6.895 7.250
36 3.852 6.289 7.017 7.449 7.847
37 4.023 6.738 7.564 8.066 8.512
38 4.204 7.232 8.170 8.754 9.255
39 4.395 7.777 8.844 9.525 10.088
40 4.599 8.378 9.595 10.390 11.026

These are consistent with the charts given in Eurocode 7 (BSI, 2004) and Gaba et al. (2003).
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 cos ( cos ) (1 cos )h 2 u 1 u us s zσ = − τ ∆ = − τ ∆ + ∆ = γ − τ + ∆ + ∆  (10.43)

 so that the total lateral earth pressure ‘coefficient’ Kac (as in the expression σh = γz − 
Kacτu, Section 9.3.2) is given by

 (1 cos )acK = + ∆ + ∆  (10.44)

where sin Δ = τw/τu.
  If the wall is frictionless, τw = Δ = 0 and cos Δ = 1, and Equation 10.43 reduces 

to Equation 9.1a, with σv = γz and Kac = 2. If τw = τu, = 90° = π/2 radians, and Kac = 
2.57. This may be compared with Kac = 2.828 obtained by means of an upper bound 
approach (Equation 9.1a, with τw = τu).

  Values of Kac calculated using Equation 10.44, for various values of τw/τu are given 
in Table 10.9.

 b. Passive case
  Figure 10.19a shows the soil in front of a rough retaining wall with soil/wall adhe-

sion τw. Zone 1 is a conventional passive zone, in which the vertical total stress at a 
depth z below the free soil surface is γz. In a conventional passive zone such as Zone 1, 
the major principal total stress is horizontal, and acts on the vertical plane. The Mohr 
circle of total stress for Zone 1 is shown in Figure 10.19b.

  Assuming that the soil in Zone 2 tends to heave (i.e. move upward) relative to the 
wall, the soil is subjected to a downward shear stress at the soil/wall interface. With 
the excavation on the right-hand side of the wall, the shear stress at the soil/wall 
 interface is anticlockwise and is plotted as positive. The Mohr circle of total stress 

Table 10.9  Values of Kac and Kpc calculated using Equations 10.44 and 10.49 (lower bound approach) and 
Equations 9.2 (upper bound approach)

τw/τu 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Kac = Kpc (Equations 
10.44 and 10.49)

2 2.095 2.181 2.259 2.328 2.390 2.444 2.490 2.527 2.556 2.571

Kac = Kpc (Equations 9.2) 2 2.098 2.191 2.280 2.366 2.449 2.530 2.608 2.683 2.757 2.828
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Figure 10.18  Calculation of active earth pressure coefficient for rough retaining wall, τu analysis: (a)  division 
of soil into zones; (b) Mohr circle of total stress for Zone 1; (c) Mohr circle of total stress for 
Zone 2; (d) rotation in major principal total stress direction between Zones 1 and 2.
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in Zone 2 is shown in Figure 10.19c. As this is the passive side, the stress state on 
the wall is that which has the highest possible lateral stress component.
In Zone 1 at a depth z,

 1 uz sγ = − τ  

or

 1 us z= γ + τ  (10.45)

  From the Mohr circle for Zone 2 (Figure 10.19c), the lateral component of the resul-
tant total stress acting on the wall is

 cosh 2 usσ = + τ ∆ (10.46)

  The major principal total stress in Zone 2 acts on a plane that is/2 clockwise from 
the vertical (Figure 10.19c), so that the overall rotation in the major principal total 
stress direction between Zones 1 and 2 is θ = Δ/2 (Figure 10.19d), as with the active 
side analysis. Substituting this into Equation 10.14, and noting that the average prin-
cipal total stress now increases as we go from Zone 1 to Zone 2,

 2 1 us s− = τ ∆ (10.47)

  Combining Equations 10.45 to 10.47,
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(a) (b)

(c)

(d)
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O σ
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σ1

σ1
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τ
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Δ Δ
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Figure 10.19  Calculation of passive earth pressure coefficient for rough retaining wall, τu analysis: (a) division 
of soil into zones; (b) Mohr circle of total stress for Zone 1; (c) Mohr circle of total stress for 
Zone 2; (d) rotation in major principal total stress direction between Zones 1 and 2.
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 cos ( cos ) (1 cos )h 2 u 1 u us s zσ = + τ ∆ = + τ ∆ + ∆ = γ + τ + ∆ + ∆  (10.48)

 so that the lateral earth pressure ‘coefficient’ Kpc (as in the expression σh = γz+Kpc τu) 
is given by

 (1 cos )pcK = + ∆ + ∆  (10.49)

where sin Δ = τw/τu.
  If the wall is frictionless, τw = Δ = 0 so that cos Δ = 1, and Equation 10.48 reduces 

to Equation 7.6b, with σv = γz, and Kpc = 2. If τw = τu, Δ = 90° = π/2 radians, and 
Kpc  =  2.57. Again, this may be compared with Kpc = 2.828 from an upper bound 
approach (Equation 9.1b, with τw = τu). Values of Kpc calculated using Equation 10.49, 
for various values of τw/τu are given in Table 10.9.

  In Section 10.6, we have calculated earth pressure coefficients relating the horizon-
tal effective (or total) stress to the nominal vertical effective (or total) stress at depth z, 

u (or )v,nominal v,nominalz z′σ = γ − σ = γ . This is in contrast to the analysis of shallow founda-
tions presented in Sections 10.2, 10.3 and 10.5, in which the weight of the soil was 
completely neglected.

  The foundation analyses could be viewed as having been carried out for the soil just 
below the corner of the footing, where it is possible to progress from Zone 2 to Zone 1 
through the fan zone at depth z = 0 (Figure 10.20a).

  In the retaining wall analyses of Section 10.6, we have assumed that the lateral 
stress ′σh (or σh) acts on the wall in Zone 2 at the same depth z at which the nominal 
 vertical stress (or )v,nominal v,nominalz u z′σ = γ − ′σ = γ  was calculated. This is only  possible 
at the upper surface of the soil, adjacent to the wall. In effect, the analysis has been 
carried out with the soil above each depth z acting as a surcharge, and the result-
ing stress states have been superimposed (Figure 10.20b). For the φ′ failure criterion, 
superposition is a perfectly acceptable procedure. It can be shown quite easily that 
the superposition of two stress states lying on or inside the failure envelope (τ/σ′)max = 
tan φ′ will produce a third stress state that lies either inside the failure  envelope, or 
on it if the principal effective stress directions in each of the first two stress states are 
coincident.

σf́

σ0́

Zone 2

(a)

(b)

Lc

z
Zone 1

Zone 1

Zone 2

Zone 1

Zone 2

Zone 1

Zone 2

At z = 0:
σv́ =σ0́ in Zone 1
σv́ =σf́ in Zone 2

+ +

Figure 10.20 Interpretation of stress analyses for (a) footing; (b) retaining wall.
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10.7 SLOPING BACKFILL

If the backfill behind the retaining wall is not level, but slopes upward away from the wall at 
an angle β to the horizontal, the Mohr circle of stress for the zone of soil immediately below 
the free surface (Zone 1) is altered because:

• The plane on which the stress state is known is the plane parallel to the surface, rather 
than the horizontal plane.

• This plane is not a principal plane, because there is a shear stress acting on it.

The reasoning used in the infinite slope analysis (Section 8.10, Figure 8.26) shows that 
the normal total stress σ and the shear stress τ acting on a plane parallel to the surface and 
a depth z below it are

 cos2zσ = γ β

and

 z cos sinτ = γ β β

If the pore water pressure at depth z is quantified by means of the pore pressure ratio ru, 
so that u = ruγz (Section 8.11.2), the normal effective stress is

 z u z r z z rσ′ = γ β − = γ β − γ = γ β −cos cos (cos )2 2
u

2
u

This defines the stress state in the zone of soil below the retained surface (Zone 1). 
Construction of the Mohr circle of effective stress for this zone is described in Section 
10.7.1, and construction of the Mohr circle of total stress in Section 10.7.2.

10.7.1 Effective stress (φ′) analysis

The effective stresses acting on a plane at depth z below a surface which slopes upward at 
an angle β to the horizontal (Figure 10.21a) are

στ

s1́ σ1́
σʹ

Δ Δ Δ + φḿob, β

σ ́ = γz cos2β – u
τ = γz cos β sin β

τ =σ ́ tan φʹ

φʹτ

(a) (b)

φḿob, β

σ1́

(Δ + φḿob, β)
2

(c)

Plane of major principal
effective stress

( )/2φḿob, βΔ +β

–β

Figure 10.21  (a) Sloping backfill geometry; (b) Mohr circle of effective stress; (c) orientation of plane on 
which the major principal effective stress acts.
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 zτ = γ β βcos sin

 σ′ = γ β −(cos )2
uz r

so that the ratio τ/σ′ is given by

 
z

z r r
τ
σ′

=
γ β β

γ β −
=

β β
β −

= ′ϕ β
cos sin

(cos )
cos sin
cos

tan
2

u
2

u
mob,

where ′ϕ βmob,  is the strength mobilized on planes parallel to the sloping soil surface. With the 
ground sloping upward from bottom left to top right as shown in Figure 10.21a, the shear 
stress is anticlockwise, that is positive. The Mohr circle of effective stress is shown in Figure 
10.21b. The plane of major principal effective stress is at an angle of ∆ + ′ϕ − ββ([ ]/2 )mob,  from 
the horizontal (Figure 10.21c), where sin ∆ = ′ϕ ϕ′βsin /sinmob, . The maximum possible value 
of ′ϕ βmob,  is the actual soil strength, φ′.

10.7.2 Total stress (τu) analysis

The total stresses acting on a plane at depth z below a surface which slopes upward at an 
angle β to the horizontal (Figure 10.21a) are

 τ = γz cosβ sinβ

 σ = γ βcos2z

so that the ratio τ/σ is

 
τ
σ

= γ β β
γ β

= βcos sin
cos

tan
2

z
z

With the ground sloping upward from bottom left to top right as shown in Figure 10.21a, 
the shear stress is anticlockwise (i.e. positive). The Mohr circle of total stress is shown in 
Figure 10.22a. The plane of major principal total stress is at an angle of [Δ/2 − β] clock-

wise from the horizontal (Figure 10.22b), where ∆ = γ β β
τ

sin
cos sin

u

z
. The maximum possible 

value of β occurs when γz cos β sin β = τu.
To calculate the stresses acting on the retaining wall, using either an effective stress 

 analysis or a total stress analysis, the procedure given in Section 10.4.1 is then followed:

• Calculate the principal stress directions in the zone of soil adjacent to the wall (Zone 2), 
on the basis of the known soil/wall friction angle δ or the known soil/wall adhesion τw.

τ =τu
τ =γz cos β sin β;
σ =γz cos2β

β
σσ1

σ1s1
2
Δ

2
Δ

Δ
τu

τ

β

–β Plane of major
principal total
stress

(a) (b)

Figure 10.22  (a) Mohr circle of total stress; (b) orientation of plane on which the major principal total stress 
acts.
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• Calculate the angle of rotation θ of the plane on which the major principal stress acts, 
as we pass through the fan zone that separates Zone 2 from Zone 1.

• Apply Equation 10.8 (effective stress analysis) or Equation 10.14 (total stress analysis), 
to calculate the change in average effective stress s' or average total stress s between 
Zones 1 and 2.

This procedure is illustrated in Example 10.6 (Section 10.8).

10.8 WALL WITH A SLOPING (BATTERED) BACK

When, in an active side analysis, the back of a retaining wall is sloping or battered at 
an angle ω to the vertical (measured positive into the soil, as shown in Figure 10.23a), 
the stress state in the zone of soil adjacent to the wall (Zone 2) is no longer defined with 
reference to the vertical plane. This will affect the orientation of the plane on which the 
major principal stress acts in Zone 2. In addition, the calculated stress state on the wall 
(which is expressed in terms of the components normal and parallel to the wall) must be 
resolved into its horizontal components to calculate the horizontal force acting on the 
wall. In the case of a passive side analysis, the same consideration will apply if the front 
of the wall is sloping.

Zone 2
Zone 1

Zone 2

Zone 1
Active

Passive

ω

ω
τ

s2́
Δ +δ

Δ τ =σ  ́ tan φʹ

σ1́
σʹ

φʹ

δ

Stress state
on wall

(a) (b)

(c) (d)

ω

τ Δ

σ1́
s2́

Δ + δ

σ1́
σʹ

φʹ

δ

Stress state
on wall

Plane of major
principal effective
stress in Zone 2
(active side)

[90° – (          )]2
Δ – δ

ω

σ1́
Plane of major
principal effective
stress in Zone 2
(passive side)

( )

(e)

2
Δ + δ( )2

Δ + δ –ω

Figure 10.23  (a) Wall geometry; (b) Mohr circle of effective stress and (c) orientation of plane of major 
principal effective stress for zone of soil adjacent to the wall (Zone 2), active case; (d) Mohr 
circle of effective stress and (e) orientation of plane of major principal effective stress for zone 
of soil adjacent to the wall (Zone 2), passive case.
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10.8.1 Effective stress (φ′) analysis

The stress state on a wall with soil/wall friction angle δ is (as before) given by (τw, ′σw), 
where the wall shear stress τ = ′σ δtanw w . Mohr circles of effective stress for the zones of soil 
 adjacent to the wall are shown in Figure 10.23b (active case) and d (passive case).

In the active case, the effective stress acting normal to the wall is given by

 s t s′σ = ′ + ∆ + δ = ′ + ϕ′ ∆ + δcos( ) [1 sin cos( )]n 2 2 2

and the plane on which the major principal effective stress acts (Figure 10.23c) is at an angle 
of [π/2 − (Δ− δ)/2 + ω] clockwise from the vertical, where ∆ = δ ϕ′sin sin /sin .

In the passive case, the effective stress acting normal to the wall is given by

 s t sσ′ = ′ + ∆ + δ = ′ + ϕ′ ∆ + δcos( ) [1 sin cos( )]n 2 2 2

and the plane on which the major principal effective stress acts (Figure 10.23e) is at an angle 
of [(Δ+ δ)/2 − ω] clockwise from the vertical, where sin Δ = sin δ/sin φ′.

10.8.2 Total stress (τu) analysis

Let the shear stress on a wall with soil/wall adhesion be τw. Mohr circles of total stress for the 
zones of soil adjacent to the wall are shown in Figure 10.24a (active case) and c (passive case).

In the active case, the total stress acting normal to the wall is given by

 σ = − τ ∆cosn 2 us

and the plane on which the major principal total stress acts (Figure 10.24b) is at an angle of 
[π/2 − Δ/2 + ω] clockwise from the vertical, where sin Δ = τw/τu.

In the passive case, the total stress acting normal to the wall is given by

 σ = + τ ∆cosn 2 us

Stress state
on wall

(a) (b)

(c) (d)

Δ

Δ
s2

s2

σ1

σ1

σ1

σ1
σ

ω

– ω
ω

σO

τuτw

τ

O

τuτw

τ

Plane of major
principal total stress
in Zone 2 (active side)

2[ ]π – 2
Δ

Δ

Δ

2
Δ

2
Δ

Stress state
on wall

Plane of major
principal total stress
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Figure 10.24  (a) Mohr circle of total stress and (b) orientation of plane of major principal total stress for 
zone of soil adjacent to the wall (Zone 2), active case; (c) Mohr circle of total stress and 
(d) orientation of plane of major principal total stress for zone of soil adjacent to the wall 
(Zone 2), passive case.
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and the plane on which the major principal total stress acts (Figure 10.24d) is at an angle of 
[Δ/2 − ω] clockwise from the vertical, where sin Δ = τw/τu.

To calculate the earth pressure coefficients, which relate the lateral stresses on the wall to 
the nominal vertical stresses at depth z, σv, nominal = γ z (total) and σ′v,nominal = γ z − u (effective) 
in the zone of soil below the free surface, the procedure given in Section 10.4.1 must again 
be followed, as illustrated in Example 10.6.

Example 10.6: Battered retaining wall with a sloping backfill

Figure 10.25 shows a cross-section through a gravity wall retaining dry soil of unit 
weight γ = 18 kN/m3 and effective critical state friction angle φ′crit = 30°. The mass of the 
wall is sufficient to provide a factor of safety (defined as the available sliding resistance ÷ 
the active horizontal thrust) of 2 against sliding along the base. It is proposed to raise the 
retained soil surface so that the backfill will slope upward from the wall at an angle of 
15°. By what proportion must the mass of the wall be increased to maintain the ratio of 
available sliding resistance to active horizontal thrust of 2? The angle of soil/wall friction 
δ = 20°, and the back of the wall has a batter of 5°.

SOluTIOn

The problem is to derive a general active earth pressure coefficient that takes account of 
the effects of wall batter, wall friction and backfill slope. This may then be evaluated for 
both the original case (β = 0) and the modified case (β = 15°), to calculate the change in 
the lateral thrust.

Figure 10.26a shows the Mohr circle of effective stress at a depth z below the free soil 
surface (Zone 1). This is essentially the same as Figure 10.21b with u = 0 and tan φ′mob, β = β.

From Figure 10.26a,

 z s t sγ β = ′ + ∆ + β = ′ + ′ϕ ∆ + βcos cos( ) [1 sin cos( )]2
1 1 1 1 crit 1   (10.50)

and the plane on which the major principal effective stress acts is at an angle of [(Δ1 + 
β)/2 − β] = [(Δ1 − β)/2] clockwise from the horizontal, where sin Δ1 = sin β/sin φ′crit.

Figure 10.26b shows the Mohr circle of effective stress adjacent to the wall (Zone 2) 
for a general batter angle ω and a general wall friction angle δ. As the wall is the mirror 
image of that shown in Figure 10.18a, the upward shear stress on the soil at the soil/wall 
interface is now clockwise as viewed from inside the body of soil, and therefore plots as 
negative on the Mohr diagram. (The final results obtained should, of course, be the same 
whichever way the wall is drawn or built.)

From Figure 10.26b, the normal component of the effective stress acting on the wall 
is given by

 s t s′σ = ′ − ∆ − δ = ′ − ′ϕ ∆ − δcos( ) [1 sin cos( )]n 2 2 2 2 crit 2   (10.51)

and the plane on which the major principal effective stress acts is at an angle of [π/2 − 
(Δ2 − δ)/2 + ω] anticlockwise from the vertical, where sin Δ2 = sin δ/sin φ′crit.

Dry soil
γ = 18 kN/m3

φćrit = 30°

ω = 5°

δ = 20°

β = 15°

Figure 10.25 Cross-section through gravity retaining wall, Example 10.6.
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The shear stress acting on the wall is τw = σ′n tan δ.
The rotation in the direction of the major principal effective stress between Zones 

1 and 2 is θ = [(Δ2 − δ)/2 − ω] − [(Δ1 − β)/2] (Figure 10.26c). Using Equation 10.8, and 
noting that in this case ′ < ′2 1s s ,

 s s e′ = ′ − ∆ −δ − ω − ∆ +β ′ϕ
2 1

{( 2 )tan }2 1 crit   (10.52)

Combining Equations 10.50 to 10.52,
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Figure 10.26  (a) Mohr circle of effective stress for soil below the free surface (Zone 1); (b) Mohr circle of 
effective stress for soil adjacent to wall (Zone 2); (c) rotation in direction of major principal 
effective stress between Zones 1 and 2, Example 10.6.
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or
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crit 1

{( 2 )tan }2 1 crit
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′σ
γ
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× − ∆ − δ − ω − ∆ +β ′ϕ   (10.53)

If σ′n = Kaγz at depth z, and τw = σ′n tan δ, the total force acting normal to the back of 
the wall as a result of σ′n is

 
cos

0.5N a
2F

h
K h=

ω
× γ

the total force acting parallel to the back of the wall, downward (resulting from τw) is

 =
ω

× γ δ
cos

0.5 tanT a
2F

h
K h

and the total horizontal thrust acting on the wall is given by

 F F F K h= ω − ω = γ × − ω δcos sin 0.5 {1 tan tan }H N T a
3   (10.54)

where h is the height of the wall. When the slope of the backfill is raised from 0° to 15°, 
the only parameter in Equation 10.54 that changes is Ka. Thus, the increase in lateral 
thrust is directly proportional to the increase in Ka. If the same ratio of available sliding 
resistance to active horizontal thrust is to be maintained, the mass of the wall must be 
increased in the same proportion.

With ω = 5°, δ = 20°, φcrit = 30° and β = 0, Δ1 = 0 and Δ2 = 43.16°, giving θ = 6.58° 
and Ka1 = 0.286.

With ω = 5°, δ = 20°, φ′crit = 30° and β = 15°, Δ1 = 31.17° and Δ2 = 43.16°, giving 
θ = −1.5° and Ka2 = 0.395. Thus, the proportion by which the mass of the wall must 
be increased is given by

 K K
K
−

= − ÷ =(0.395 0.286) 0.286 38%a2 a1

a1

10.9 IMPROVED UPPER BOUNDS FOR SHALLOW FOUNDATIONS

10.9.1 Total stress (τu) analysis

In Section 8.3.1, we analysed the undrained failure of a shallow foundation on a clay soil 
by considering mechanisms of collapse consisting of circular arcs. In this section, we shall 
consider two slightly different classes of collapse mechanism. The first involves a series of 
blocks that slide relative to one another as rigid bodies, rather like the retaining wall mecha-
nisms shown in Figure 7.38. Although this does not lead to an improved (i.e. reduced) upper 
bound, it does illustrate a useful principle.

The second class of mechanism involves two blocks, which move as rigid bodies, sepa-
rated by a zone that shears as it deforms to maintain the kinematic admissibility of the 
mechanism. The shear zone in the second mechanism is directly analogous to the fan zone 
in the stress field solution given in Section 10.3. Furthermore, the shear zone mechanism and 
the fan zone stress field both give the same result, σf − σ0 = (2 + π)τu. As this answer has been 
obtained using both upper bound and lower bound approaches, it must be the theoretically 
correct solution.
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 a. Failure mechanism consisting of three sliding blocks
  Figure 10.27 shows the first of the alternative mechanisms for the undrained failure 

of a shallow foundation on a clay of undrained shear strength τu. This mechanism may 
be analysed either by work or by statics.

  For the analysis by work, it is necessary to construct a velocity diagram or hodograph, 
based on a reference velocity v0. In this case, v0 is taken as the downward  component 
of the velocity of the foundation, and the hodograph is shown in Figure 10.28. As the 
mechanism deforms, energy is dissipated on all of the surfaces along which relative sliding 
occurs, including those separating adjacent blocks. In general, the rate at which energy 
is dissipated is given by the force parallel to the sliding surface multiplied by the relative 
velocity of sliding. The force parallel to the sliding surface is equal to the undrained shear 
strength of the clay τu multiplied by the length of the sliding surface l. For each of the 
sliding surfaces involved in the mechanism of Figure 10.27, the lengths, forces and energy 
dissipation rates are shown in Table 10.10.

  The rate at which energy is dissipated within the mechanism must be equal to the 
rate at which potential energy is lost by the foundation load σf as it moves downward, 
minus the rate at which potential energy is gained by the surrounding surcharge σ0 as 
it moves upward. From Figure 10.28, the upward velocity of the surcharge is equal to 
the downward velocity of the foundation, v0. Hence, the net rate at which potential 
energy is lost is

 ( ) kNm/s( kW) per metre.f 0 0 0 f 0 0Bv Bv Bvσ − σ = σ − σ =

Equating this to the rate of energy dissipation within the mechanism (from Table 10.10),

σ0σ0

σf

e

d
Slip surfaces

Angles marked are 45°

c

a
1

2
b 3 τu

τu

τu

Figure 10.27  Failure mechanism for a shallow foundation on clay, comprising three sliding blocks (τu analysis). 
(Foundation width ab = be = B.)
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Figure 10.28 Hodograph for the mechanism shown in Figure 10.27.
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 ( ) 6f 0 0 u 0Bv v Bσ − σ = τ

 = σ − σ
τ

= 6c
f 0

u

N

  This is a less unsafe upper bound than that given by the mechanism shown in 
Figure 8.4, but more unsafe than that given by the mechanism shown in Figure 8.5.

  For the mechanism shown in Figure 10.27, the same result may be obtained from a 
statical equilibrium analysis, provided that all of the forces acting on the mechanism 
are taken into account. Figure 10.29 shows free body diagrams for each of the three 
wedges considered separately.

  The vertical equilibrium of block 1 requires that

 σ = τ °





+ °2
2

cos45 2 sin45f u 1B
B

N

  Noting that cos 45° = sin 45° = (1/√2), this gives

 σ = τ +





2
2

2f 1B
B

Nu

or

 = σ − τ
2

( )1 f uN
B

  (10.55)

  For the vertical equilibrium of block 3,

Table 10.10 Calculation of energy dissipation rate for mechanism shown in Figure 10.27

Sliding 
surface Length, l (m)

Force parallel to slip 
surface = τu × l (kN/m)

Relative sliding velocity 
(parallel to slip surface) (m/s)

Rate of energy dissipation = 
force × velocity 
(kNm/s per m)

ac B/√2 τuB/√2 v0√2 τuv0B
bc B/√2 τuB/√2 v0√2 τuv0B
cd B τuB 2v0 2τuv0B
bd B/√2 τuB/√2 v0√2 τuv0B
de B/√2 τuB/√2 v0√2 τuv0B
Total 6τuv0B

 These quantities are all expressed per metre length of the foundation, perpendicular to the plane of the paper.

3
21
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N3N1
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N1N1 N3
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τuτuτu
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Figure 10.29 Free body diagrams for the three sliding blocks of the mechanism shown in Figure 10.27.
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 σ = − τ °
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cos45 2 sin450 u 3B
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so that

 σ = − τ





+2
2

20 u 3B
B

N

or

 = σ + τ
2

( )3 f uN
B

  (10.56)

  For horizontal equilibrium of block 2,

 ° = ° + τ °





+ τcos45 cos45 2
2

cos451 3 u uN N
B

B

or

 = + τ
2 2

21 3
u

N N
B   (10.57)

  Substituting for N1 and N3 from Equations 10.55 and 10.56 into Equation 10.57,

 σ − τ = σ + τ + τ
2

( )
2

( ) 2f u f u u
B B

B

or

 
σ − σ

τ
= 6f 0

u

 exactly as before. Although the self-weight of the soil has been ignored in both the 
work balance and the equilibrium calculations, in this case its effect is neutral. It is 
worth noting that the equilibrium analysis relies on the shear stresses on the internal 
surfaces, bc and bd being known. This would not be the case if bc and bd were not slip 
planes.

 b. Failure mechanism consisting of two rigid blocks separated by a fan shear zone
  Figure 10.30a shows the second alternative mechanism for the undrained failure of a 

shallow foundation on clay. The triangular zones (Zones 1 and 3) below and to the side 
of the footing are similar to those shown in Figure 10.27, but they are now separated by 
a zone (Zone 2) whose third boundary is a circular arc centred on b. Consideration of 
the kinematics shows that Zone 2 cannot simply move as a rigid body. If Zone 2 were to 
rotate about the point b while Zone 1 slid down along ac and Zone 3 slid upward along 
de, gaps would open up between Zones 1 and 2 at c, and between Zones 2 and 3 at b 
(Figure 10.30b): this mechanism is not kinematically admissible (i.e. it cannot physically 
occur).
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  The movement of the mechanism shown in Figure 10.30a can be accommodated 
by dividing up the middle zone into a number of wedges, each of which is able to 
slide  relative to its neighbours along radial slip lines or velocity discontinuities 
(Figure 10.31a). The hodograph, from which the relative velocities of slip are calcu-
lated, is shown in Figure 10.31b.

  For a wedge of radius R that subtends an angle δθ at the centre of the circular arc, 
forming part of a shear zone moving with a speed at the circumference of v, the rate at 
which energy is dissipated at the circumference is given by the arc length × the shear 
stress on the arc × the speed of relative displacement, or

 ( ) ( ) ( )uR vδθ × τ ×

  The rate at which energy is dissipated along the radial slip line is given by the radius × 
the shear stress on radius × the relative velocity of slip, or

 ( ) ( ) ( )uR v× τ × δθ

  Thus for a shear zone made up of a number of wedges, the overall rate at which 
energy is dissipated is

 (2R )uv∑ τ δθ

  In the limit as the thickness of each wedge is decreased towards zero, δθ becomes 
infinitesimally small (δθ → dθ), and the number of wedges tends towards infinity. The 
rate of energy dissipation in a shear zone subtending an angle of θ at the centre of the 
circular arc is then given by integration:

 2 d = 2Ru
0

uRv v∫ ( )τ θ τ θ
θ

 (10.58)

c d2

b1 3 ea

(a)

(b)

σ0

σf

Figure 10.30  (a) Failure mechanism for a shallow foundation on clay, comprising two sliding blocks 
and a shear zone (τu analysis); (b) kinematic inadmissibility if the middle zone moves as a 
rigid body.
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Figure 10.32 shows the hodograph for the mechanism of undrained failure of the  shallow 
foundation of Figure 10.30a, with the fan shear zone divided into an infinite number of 
infinitesimally thin wedges. As before, all velocities are determined in terms of a reference 
velocity, which is taken as the downward component v0 of the velocity of the foundation.

  The rate at which energy is dissipated is equal to the shear force multiplied by the 
 relative velocity of sliding along the plane slip surfaces ac and de, plus the rate at which 
energy is dissipated in the fan shear zone, as given by Equation 10.58.

  The shear force along each of the slip surfaces ac and de is

 × τ
2

u
B

  The velocity of relative sliding along each of these surfaces is (from Figure 10.32)

 ( 2) 0v

 so that the total rate of energy dissipation along ac and de is

 2
2

( 2) 2u 0 0 u
B

v Bv× × τ × = τ

Reference
velocity

O

ν0

ν3

ν1

Velocities at
circumference
of fan shear zone

2ν0

2ν0

Figure 10.32  Hodograph for the mechanism shown in Figure 10.30a, with the fan shear zone divided into an 
infinite number of infinitesimally thin wedges.

Arc length Rδθ
(a)

(b)

Radius of
shear zone R

Wedge angle δθ

31

2d

ν3
ν2d

ν2c

ν2b
ν2aν1

2c2b2a

Relative velocity
of slip along
radius between
adjacent wedgesSpeed at

circumference ν

O

δθ
νδθ =

Figure 10.31  (a) Division of Zone 2 into wedges that slip relative to each other; (b) hodograph for calcula-
tion of relative sliding velocities.
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  For the fan shear zone, the speed at the circumference v = (√2)v0, the radius R = 
(B/√2), and the angle subtended at the centre θ = 90° = π/2 radians. Thus, from 
Equation 10.58, the rate at which energy is dissipated in the fan shear zone is

 2
2

( 2)
20 u 0 u

B
v Bv× × ×

π
× τ = π τ

  Thus, the total rate at which energy is dissipated is

 2 (for ac and de) (for the fan shear zone) (2 )0 u 0 u 0 uBv Bv Bv⋅τ + π ⋅ τ = + π ⋅ τ

  The rate at which potential energy is lost by the foundation as it settles with a uni-
form downward velocity component v0 is

 f 0Bvσ

 and the rate at which potential energy is gained by the surrounding surcharge as it 
moves with an upward velocity component v0 is

 0 0Bvσ

 so that the net rate at which potential energy is lost is

 ( )f 0 0Bvσ − σ

  Equating this to the rate at which energy is dissipated along the slip lines ac and de 
and in the fan shear zone,

 ( ) (2 )f 0 0 0 uBv Bvσ − σ = + π τ

or

 N =
σ − σ

τ
= + π(2 )c

f 0

u

  (10.59)

 which is exactly the same as the lower bound solution derived in Section 10.3 
(Equation 10.17).

  Geometrically, the boundaries to the three different zones in the mechanism of Figure 
10.30a are the same as the stress discontinuities separating the active, passive and fan 
zones in the analysis of Section 10.3. The boundaries between the zones in the mecha-
nism of Figure 10.30a are lines along which relative slip takes place. In other words, the 
velocity changes as we move across the boundary from one zone into another.

  The boundaries separating different zones in a mechanism analysis are known as 
slip lines or velocity discontinuities. They are analogous to the stress discontinuities 
(across which the state of stress changes as we move from one zone into another) used 
in the lower bound analysis. In general, if the lower and upper bound solutions which 
have been obtained for a particular problem are the same, the stress discontinuities in 
the first will be coincident with the velocity discontinuities (or slip lines) in the second. 
Furthermore, the stress discontinuities in the lower bound solution will correspond 
to the α- and β-stress characteristics described in Section 10.4. Patterns of stress and 
velocity characteristics, which are sometimes known as slip line fields, are discussed 
in detail by Atkinson (1981).
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10.9.2 Effective stress (φ′) analysis

The upper bound to the collapse load of a shallow foundation derived in Section 8.3.2 using 
the (τ/σ′)max = tan φ′ failure criterion may also be improved by considering a mechanism 
that includes a shearing zone. Figure 10.33a shows such a mechanism, consisting of two 
rigid zones (Zones 1 and 3), separated by a fan shear zone made up of an infinite number of 
infinitesimally thin wedges (Zone 2).

The mechanism shown in Figure 10.33a is analogous to the mechanism of Figure 10.30a 
for the undrained shear strength (τmax = τu) analysis. Zone 2 is a fan shear zone, because a 
rigid block would again be kinematically inadmissible. However, as the relative movement 
on the shear planes within and at the edges of the fan shear zone is always at 90° to the 
resultant stress, there is no energy dissipation associated with it. Although this consequence 
of the normality condition is unrealistic, it is convenient for analysis. 

The mechanism shown in Figure 10.33a may be analysed by means of a work balance. 
The hodograph for the calculation of relative velocities is shown in Figure 10.33b. It must be 
remembered when constructing the hodograph that motion is not parallel to a slip surface, 
but at an angle ψ (= φ′). As before, the hodograph is constructed in terms of a reference 
velocity v0, which is taken as the downward component of the velocity of the foundation ab. 
The locus of velocities at the edge of the fan shear zone is itself a logarithmic spiral, because 
v = rω (where ω is the angular velocity of rotation) and r = r0eθ tanφ′.

Fan shear
zone

Velocities at
edge of fan
shear zone
(logarithmic spiral)

sin (45˚+φ ́/2)

φ ́45˚–

cos (45˚+φ ́/2)
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3 e

d
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c
2

B e(π/2 tan φ ́ )

B e(π/2 tan φ ́)

B
×

σf́

σ0́

2

φ ́45˚–
2

φ ́45˚+
2
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ν1 =ν0 /cos (45˚+φ ́/2)
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B
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φʹ

φʹν0

Figure 10.33  (a) Collapse mechanism for a shallow foundation, (τ/σ′)max = tan φ′ failure criterion; 
(b)  hodograph for calculation of relative velocities.
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The rate at which potential energy is lost by the foundation load σ′f is

 B vf 0′σ

From the hodograph shown in Figure 10.33b, the upward component of the velocity of the 
surface surcharge to the side of the footing is

 v etan 45
20

( /2)tan° + ′ϕ





π ′ϕ

so that the rate at which potential energy is gained is

 B v etan 45
2

tan 45
20

{( /2)tan }

0
( /2)tan′σ ° + ′ϕ



 × ° + ′ϕ



 ×

π ′ϕ
π ′ϕ

Equating these,

 N etan 45
2q

f

0

2 tan= σ
′σ

= ° + ′ϕ





π ′ϕ   (10.60)

As tan2 (45° + φ′/2) = (1 + sin φ′)/(1 − sin φ′) = Kp, this is exactly the same as Equation  10.9. 
Again, the upper and lower bound solutions are the same, so that Equation 10.9 is the 
 theoretically correct answer. The slip lines or velocity discontinuities in the mechanism 
of Figure 10.33a correspond exactly with the stress discontinuities and characteristics 
 associated with the stress field of Figure 10.4.

KEY POINTS

• Stress discontinuities, along which the mobilized soil strength may be less than the 
full strength of the soil, can be used in lower bound (stress field) solutions to separate 
zones of stress in which the average total or effective stress (s or s′), and the principal 
stress directions, are different.

• In general, better (i.e. less conservative) lower bounds are obtained as the soil strength 
mobilized along the discontinuities approaches the full strength of the soil.

• The least conservative lower bounds are obtained by using fan zones, made up of an 
infinite number of infinitesimal stress jumps, to rotate the principal stresses as we move 
between two uniform stress zones. The ratio of average effective stresses ′ ′2 1s s , or the 
change in average total stress s2 − s1, is related to the rotation θ of the principal stresses 
between the two uniform zones, which is the same as the included angle within the fan:

 
′
′

= θ ϕ′2

1

2 tans
s

e   (10.8)

or

 − = τ θ22 1 us s   (10.14)

• Stress fields can be constructed in which the principal stress directions are rotated 
as we move from a uniform zone, through a fan zone, to a second uniform zone. In 
the first uniform zone, the stress state is known in both magnitude and orientation 
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(e.g. a conventional active or passive zone below a free soil surface). In the second 
uniform zone, the stress state is only partly defined (e.g. the zone of soil adjacent to a 
rough retaining wall, or below a strip foundation). In this way, bearing capacity fac-
tors for foundations subjected to inclined loads, and earth pressure coefficients for 
rough retaining walls, walls with a non-horizontal backfill and walls with a sloping or 
battered back, can be calculated.

• The approach can also be used to plot interaction diagrams showing combinations of 
vertical and horizontal load at failure. A simplified analysis based on a reduced effec-
tive foundation width can be adopted to determine an interaction diagram for the 
combined effects of vertical and moment loading.

• The stress state in each zone can be visualized by means of the α- and β-characteristics, 
which indicate the directions along which the full strength of the soil is mobilized.

• For strip footings, improved upper bound solutions can be obtained using mechanisms 
incorporating shearing zones (i.e. zones that shear, rather than remain rigid, as they 
deform). The slip lines or velocity discontinuities in the theoretically correct upper 
bound mechanism coincide with the characteristic directions in the theoretically cor-
rect lower bound stress field.

SELF ASSESMENT AND LEARNING QUESTIONS

BEARING CAPACITY OF FOUNDATIONS

 10.1  Figure 10.34 shows a cross-section through the bottom of an under-reamed pile in 
a clay of undrained shear strength τu = 75 kPa. By considering the stress state of 
the soil in the zones immediately below the base of the pile and immediately above 
the ‘bell’ of the under-ream, estimate the bearing capacity factor Nc = (σf − σ0)/τu. 
(Note: the shear stress on the base of the pile must be zero, but what is the effect 
of shear stress τw between the top of the ‘bell’ of the under-ream and the adjacent 
soil?) Comment on the shortcomings of your solution.

 =
σ − σ

τ
= τ = = τ = τ









9.33 with 0; 9.90 withc

f 0

u
w c w uN N

 10.2  A long foundation of width B = 2 m is buried to a depth d = 1 m in a soil of 
unit weight γ = 20 kN/m3 and effective angle of shearing resistance φ′ = 30°. 
The foundation may be subjected to a vertical load V kN/m and a horizontal 
load H kN/m, acting at the same time through the centre of the foundation. The 
force H may act in either direction. The water table is level with the base of the 
foundation. Use the techniques of Sections 10.2 and 10.5.1 and/or the data in 
Table 10.3 to develop and plot an interaction diagram, showing combinations 
of H/Vmax (on the y-axis) and V/Vmax (on the x-axis) that would cause failure of 
the foundation. Your diagram should be to scale, give key numerical values, and 
include combinations of H and V that would cause sliding and bearing failure. In 
reality H may be up to 73.6 kN. Use your interaction diagram to determine the 
range of V such that failure will not occur. Would you use these values in design, 
and why?

 [129 kN ≤ V ≤ 575 kN for failure not to occur. The chart is not suitable for direct 
use in design as no strength or load factors have been applied, although the neglect 
of self weight is conservative.]
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 10.3  Figure 10.35 shows a cross-section through a long foundation, buried to a depth of 
1 m in a clay soil of unit weight γ = 20 kN/m3 and design (i.e. factored) undrained 
shear strength τu,des = 70 kPa. On one side of the foundation, the ground slopes 
downward at an angle β = π/16 radian (11.25°). The foundation is subjected to a 
horizontal load of 35 kPa acting in the direction away from the slope as shown.

 a. By constructing Mohr circles of stress for zones of soil below the foundation, to 
the left of the foundation and in the slope for a general slope angle β, calculate 
the allowable (design) normal total stress σn for the foundation, i.e. that which, 
acting in addition to the 35 kPa horizontal stress, would just cause failure of the 
foundation with the factored undrained shear strength of 70 kPa.

 b. A developer wishes to steepen the slope. Show that the maximum angle to 
which the slope could be cut without reducing the allowable bearing capacity 
of the foundation is just less than 27°.

 c. State two further calculations you would need to carry out to ensure an accept-
able design.

 It may be assumed without proof that the difference in average principal total 
stress between two uniform stress zones separated by a fan zone of included 
angle θ is given by (s2 – s1) = 2 · τu · θ; and that the rotation in the direction of 
major principal total stress through the fan zone is θ.

  [(a) 333.9 kPa. (c) long-term stability, global stability (landslide), settlement 
check.]

 10.4  Figure 10.36 shows a cross section through a long shallow foundation subjected to 
an inclined load P, acting through the centroid.

  If the soil has an effective angle of shearing resistance φ′ = 30° and the slope 
angle β = 15°, calculate the angle of load inclination α that will result in the simul-
taneous failure of the soil on both sides of the footing.

  (Hint: Draw Mohr circles of stress representing the stress states in each of the 
Zones I, II and III identified in Figure 10.36, assuming that the soil in each zone 
is at failure. Calculate the orientation to the horizontal of the plane on which the 

σ0

σf

60°

Figure 10.34 Under-reamed piled foundation, Q10.1.

Slope angle, β

Clay soil
τu,des = 70 kPa
γ = 20 kN/m3

1 m

σf

τf

Figure 10.35 Foundation adjacent to slope, Q10.3
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maximum principal stress acts in each zone, and hence the rotations in the direc-
tion of the major principal effective stress between Zones I–II and Zones I–III, 
following the procedure set out in Section 10.4. It may be assumed without proof 
that the ratio of the average principal effective stresses s′ in two uniform stress 
zones separated by a fan zone of included angle θ is given by s′2/s′1 = e(2θ · tanφ′) 
(Equation 10.8), and that the rotation in the direction of the major principal effec-
tive stress across the fan zone is θ.)
[α ≈ 6°]

RETAINING WALLS AND EARTH PRESSURES

 10.5  By considering Mohr circles of stress for zones of soil adjacent to the retaining wall 
and immediately below the free soil surface, deduce an expression for the active 
earth pressure coefficient σ′h/(γz − u) behind a retaining wall in a soil of effec-
tive angle of internal friction φ′, where the angle of soil/wall friction is δ and the 
retained soil surface is level.

 
z u

e
1 sin cos( )

1 sin
h {( )tan }′σ

γ −
= − ′ϕ ∆ − δ

+ ′ϕ








×








− ∆−δ ′ϕ

 10.6  Figure 10.37 shows a cross-section through a thrust block, which relies on the 
 pressure of the soil behind it to resist an imposed lateral thrust P whose value is a 
factor of 2.5 times smaller than that which would cause passive failure. Estimate 
the maximum allowable value of P if the width of the thrust block is 3 m, and its 
back is smooth. (Ignore the effect of shear stresses on the base of the thrust block 
and three-dimensional effects.)

  If the back of the thrust block is rough, with an angle of interface friction δ, 
show, by considering Mohr circles of stress at a depth z in zones of soil adjacent to 
and away from the thrust block, that the earth pressure coefficient Kp (= σ′h/[γz − 
u]) is given by

 =
+ ′ϕ ∆ + δ

− ′ϕ








× ∆ + δ ′ϕ1 sin cos( )
1 sinp

( )tanK e

where sin Δ = sin δ/sin φ′.

α

Soil unit weight γ
Effective friction angle φ’
Pore water pressures zero

Slope angle β
P
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III
III

Figure 10.36 Cross section through shallow foundation, Q10.4
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  Hence, calculate the maximum allowable value of P if δ = φ′.
  (It may be assumed without proof that the ratio of average principal effective stress 

between two uniform stress zones separated by a fan zone of included angle θ is given 
by s s e′ ′ = θ ϕ′

2 1
2 tan , and that the rotation of the direction of major principal effective 

stress is θ.)
 [ ]= δ = δ = ′ϕ576kN if 0 and 965 kN ifallowableP
 10.7 a.  A bulldozer has a blade which is 2.5 m wide. Estimate the total force on the 

bulldozer blade when it is used to move a 1.5 m high bank of dry sand having 
φ′ = 30° and unit weight γ = 18 kN/m3, if the angle of friction between the sand 
and the bulldozer blade is 15°.

 b. If this is 85% of the maximum force the bulldozer can provide, estimate the 
 maximum depth of clay of undrained shear strength τu = 80 kPa that the bulldozer 
could move, assuming that the adhesion between the clay and the bulldozer blade 
is 0.5τu and that the depth of the blade is 1.6 m. (Note: conditions in front of the 
bulldozer blade will be passive in both cases.)

 [(a) Force = 217 kN; maximum force = 255.4 kN; maximum height of clay = 0.52 m.]
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Chapter 11

Site investigation, in situ 
testing and modelling

11.1 INTRODUCTION AND OBJECTIVES

The ability to idealize real structures in a way that is amenable for analysis—in essence, 
modelling—is an essential part of the engineer’s art. Geotechnical engineering is  inherently 
associated with the ground, which to a large extent has to be taken, modelled and  analyzed 
as it is found. (Although ground improvement is possible, it is an expense that most  clients 
will usually wish to avoid.) All of the material covered so far in this book has been  associated 
with one or both of these activities: idealizing the behaviour of a geotechnical structure into a 
form that can be analysed by means of a mathematical or conceptual model, and  developing 
an understanding of the behaviour of the geotechnical materials on site or  available to a 
particular project, through soil tests and the use of a constitutive model.

The above are two of the three distinct but interlinked elements known as  geotechnical 
triangle, viz.

• Appropriate conceptual and mathematical models for assessing and predicting the per-
formance of structures.

• An understanding of the behaviour of the ground, obtained through in situ and labo-
ratory testing and interpreted through a constitutive model.

• An understanding of the ground profile, including groundwater conditions at a par-
ticular project site.

  (Burland, 2012).

In developing an understanding of the behaviour of the ground, we have so far in this 
book focused primarily on laboratory tests. The difficulty of recovering undisturbed sam-
ples of natural ground for testing, coupled with the potential unrepresentativeness of small 
samples, means that testing in situ in the field as well as in the laboratory is often required. 
The well pumping tests described in Chapter 3 are an example of this. An understanding 
of the ground profile involves developing a robust mental model of the ground, which can 
only be obtained by means of a planned programme of field exploration known as a site 
investigation.

The aim of this chapter is to provide an introduction to key elements of the geotechnical 
triangle not yet covered in any detail. These are

• Developing a ground model by means of a geotechnical site investigation (Section 11.2)
• Investigating the behaviour of the ground by in situ tests (Section 11.3)
• Assessing the performance of structures using numerical and physical models 

(Section 11.4)
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In addition, there is a short section (11.5) on ways in which the raw material the geotech-
nical engineer has to work with—the natural ground—might be improved (usually in terms 
of enhancing its stiffness or strength) in a reasonably cost effective way.

It is not possible in one brief chapter to do justice to any of these subjects. However, there 
are some excellent books available on site investigation and soil improvement,  useful codes 
of practice, and several large, well-established international conferences at which recent 
 developments in in situ testing, numerical and physical modelling are presented and  discussed. 
Recommendations for further information and reading are given in the each section.

11.1.1 Objectives

After having worked through this chapter, you should have an appreciation of

• The need to develop a sound conceptual model of the ground and groundwater condi-
tions at a proposed construction site, and how this can be achieved by means of a study 
of relevant documents combined with field investigations (Section 11.2)

• The use of in situ tests to measure or estimate soil parameters, including the assump-
tions and uncertainties associated with the interpretation of field test data (Section 11.3)

• The application of numerical and physical models in geotechnical engineering, includ-
ing the limitations and approximations involved (Section 11.4)

• Some of the methods that can be used to improve the strength and/or stiffness of the 
natural ground, including the circumstances and soil types in which each is applicable 
(Section 11.5)

You should be able to

• Estimate the soil strength and stiffness, on the basis of the blowcount in a standard 
penetration test (Section 11.3.1)

• Carry out a preliminary interpretation of cone penetrometer test data, to assess the 
soil types present (Section 11.3.2)

• Estimate the shear modulus G and the undrained shear strength τ u of a clay soil, on 
the basis of the results of a pressuremeter test (Section 11.3.3)

The stress analysis of the pressuremeter test given in Section 11.3.3(b) is rather compli-
cated, and probably mainly for the enthusiast.

11.2 SITE INVESTIGATION

11.2.1 Planning the investigation

In terms of informing geotechnical engineering design, there are three main objectives of a 
geotechnical site investigation. These are

• To establish the ground and groundwater conditions, ideally as a conceptual three-
dimensional model indicating the different soil and rock types present, the depth, 
thickness and continuity of each layer, how the interface levels between the strata 
vary across the site, any significant inhomogeneities or discontinuities, and ground-
water levels.

• To characterise and obtain knowledge of the engineering properties of the various soils 
 present (e.g. strength, stiffness, permeability and variations spatially e.g. with depth).
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• To obtain other relevant information, for example relating to the possible con-
tamination of the site and its geochemistry as it might impact on buried structures 
(e.g.  sulphate or other chemical attack) or on construction dewatering (e.g. biofouling 
of a dewatering system; Powrie et al., 1990; Powrie and Preene, 1994).

Often, much of this information is obtained by field investigations including explor-
atory boreholes and trial pits, in situ testing using the techniques discussed in Section 11.3, 
and the laboratory testing of soil samples recovered from the site. However, a substantial 
amount of information can usually be obtained from published sources and local records. 
For this reason, a geotechnical investigation should normally be carried out in phases, the 
first of which is a desk study based on a site inspection and existing information contained 
in documents including

• Topographical, geological, hydrogeological and geotechnical maps
• Geological memoirs and handbooks (for example as published in the United Kingdom 

under the auspices of the Institute for Geological Sciences)
• General historical maps and other local records indicating previous uses of the site
• Aerial and other photographs
• Previous investigations at the site and in the vicinity (national institutions such as the 

British Geological Survey in the UK may hold records of previous boreholes)
• Previous experience in the area
• Local climatic conditions
• Data on soil properties available in the published academic and professional literature 

(e.g. in journal and conference papers)

This list is based on that given in Eurocode 7—Geotechnical design—Part 2: Ground 
investigation and testing, BS EN 1997-2: 2007; British Standards Institution, 2007.

The findings of the desk study and the site inspection are then used to inform the 
 selection of test methods and borehole or sampling point locations for the ground 
 investigation itself. EC7 recommends that the ground investigation is carried out in two 
phases, classified as preliminary and design, although it recognises that in many cases—
particularly where both phases require the mobilization to the site of specialist boring 
and testing equipment—these may be carried out at the same time. In some instances the 
data obtained from the desk study and site inspection might be sufficient to achieve the 
objectives of the preliminary ground investigation, which are to obtain enough data to 
be able to

• Assess the overall stability and general suitability of the site, both in its own right and 
in comparison with alternatives

• Assess the positioning of the structure within the site
• Evaluate the possible effects of the proposed works on the environment and neigh-

bouring structures
• Identify areas from which fill materials might be obtained (traditionally known as 

borrow pits)
• Consider possible foundation types and ground improvement methods
• Plan the design investigation
• Give an initial ground model in terms of the types of soil or rock present and their 

stratification, and the groundwater level or pore pressure profile
• Give preliminary strength and deformation properties for the soils present
• Provide an indication of potential contamination at the site based on EC7: BSI, 2007
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The design phase normally comprises field investigations including drilled boreholes and/
or excavations (e.g. trial pits) for soil sampling, groundwater measurements, and in situ 
 testing. Trial pits are small excavations (up to about 2 m in both diameter and depth) that 
enable the soil to be observed directly and samples taken, although the stability of the 
pit must be ensured, for example by the provision of adequate side supports. Boreholes 
 (commonly 150 mm or so in diameter and up to several tens of metres deep) enable soil 
samples from much greater depths to be recovered, inspected and tested in the laboratory to 
investigate characteristics such as the soil strength, compressibility, stress–strain relation-
ship, permeability, particle size distribution, liquid and plastic limits and so on, using the 
methods described in Chapters 1–5.

The amount and type of information produced by the geotechnical site investigation 
(including the soil tests) must be appropriate to the scale of the project, and relevant to the 
geotechnical design and analysis procedures that will be employed. There is no point in 
commissioning a state-of-the-art laboratory testing programme if all the designer wants is 
a rough indication of the soil strength. Similarly, there is no point in carrying out a sophis-
ticated, state-of-the-art computer analysis on the basis of the results of a few index tests 
(although it has been done). It is all a question of balance.

Do not be misled by the fact that this section on site investigation that is quite short. Most 
of the book is relevant to site investigation in that it describes the tests that can be carried 
out on the samples obtained, or the analyses for which the data are required. However, if 
you find yourself having to plan and implement a geotechnical site investigation, further 
guidance should be sought (e.g. from Clayton et al., 1995) and the relevant codes of prac-
tice followed (e.g. EC7; BSI, 2007 and BS 5930; British Standards Institution, 2010). The 
relevance of soil fabric to site investigation practice is discussed in detail by Rowe (1972).

11.2.2 Developing the ground model

The main elements of the geotechnical investigation used in the development of the ground 
model for the site are the descriptions of the soil seen in trial pits and in samples recovered 
from boreholes, interpreted in the context of the findings of the desk study. The borehole 
records form a key data set; the record or log for each borehole should include the following 
information:

• Sufficient details to identify the project, the location and the individual borehole
• Ground level at the top of the borehole (relative to same identifiable, fixed and repro-

ducible benchmark)
• A description of the soil types present, using the soil description scheme given in 

Table 1.5
• The depths and reduced levels of the interfaces between successive soil strata
• A record of the depths at which water was first encountered (known as water strikes), 

and standing water levels at the start and end of each day
• The depths from which each sample was taken, and the method of sampling
• A record of any in situ tests carried out
• Other details, such as date(s), time(s), personnel, type of drilling rig and so on

A typical borehole log is shown in Figure 11.1.
Boreholes should be deep enough to enable the proposed engineering structure to be 

designed with confidence. The analytical techniques described in this book give some 
guidance on this. For example, the soil below a long foundation is significantly loaded 
to a depth of approximately six times the width of the foundation, while the soil below a 
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SITE: LIMEHOUSE LINK ROAD STAGE II

Date: 2-12-87

Samples and In situ Tests

Depth
(m)

0.90–1.40

1.50

1.70

2.60

4.00–4.50

6.00–6.30

6.30

7.50

KEY
REMARKSD - Disturbed Sample

B - Bulk Sample
U - Undisturbed Sample
W - Water Sample
V - Vane Shear Test
S - Standard Penetration Test
C - Cone Penetration Test
M - Mackintosh Probe
∙ S.P.T./C.P.T. Where 0.3 m penetration not
achieved, blows given for quoted penetration

BI

D1

D2

D3

B2

B3

D4

D5

Type Water

Hole size 150 mm diameter to 7.50 m
Ground
level

BOREHOLE
D2.3

3.06 m O.D.
Sheet 1 of 1
Scale: 1:50

O.D. Level
(m)

2.46

1.66

1.36

0.26

0.60

1.40

1.70

2.60

4.00

5.90

6.30

7.50

–0.94

–2.84

–3.24

–4.44

Depth
(m) Descriptions of Strata

Brick rubble

(MADE GROUND)

(MADE GROUND)

Clay, gravel and brick rubble

Firm grey brown and brown mottled silty CLAY

Firm grey mottled silty CLAY

Very soft grey silty and sandy CLAY

Light grey brown medium fine SAND

Grey brown sandy GRAVEL

Stiff grey brown fissured silty CLAY

Borehole completed at 7.50 m depth.

Legend
Blowcount

or vane
shear

strength
kPa

N - Blows for 0.3 m
  in penetration test

Water met
Depth to water
on completion
Depth, hours
after completion

(1) Borehole cased to 6.50 m depth.
(2) Water met at 4 m, level rose to 3.80 m, casing at 3.50 m.
(3) Water sealed out by casing at 6.50 m and hole dry on completion.
(4) Depth to water after removing casing 2.30 m.
(5) 50 mm pipe inserted to 7.50 m depth with cover.

( )

Figure 11.1  Typical borehole log. (Reproduced with the permission of the London Docklands Development 
Corporation, Thames Quay, 191 Marsh Wall, London E14 9TJ.)
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square foundation is significantly loaded to a depth of approximately twice the width of 
the foundation (Section 6.3). In a site investigation for an excavation or an underground 
structure, the boreholes must generally penetrate to at least two or three times the 
depth of the excavation. This is to allow for the likely depth of an embedded  retaining 
wall (Chapter 9), and for the estimation of the rate at which groundwater must be 
pumped from wells during construction, to keep the excavation stable and workably dry 
(Chapter 3).

Choosing the locations of the boreholes on plan is more difficult. Geological maps 
can be helpful and will sometimes indicate the locations of discontinuities in soil 
 stratification, or provide a warning of the possible presence of features such as  buried 
river beds. In the investigation of a site where there is a significant depth of made ground 
(i.e. artificially placed material), or which may be contaminated, inspection of the 
available records and plans relating to its previous use will prove invaluable. In general, 
the greater the number of boreholes, the smaller the risk of encountering unforeseen 
ground conditions after the project has commenced, but the higher the cost of the site 
investigation. Like most things, it is a question of balance; like most things, it is easier 
to judge whether the balance was correct with the benefit of hindsight. It is impossible, 
however, to eliminate risk entirely.

As an aid to the visualization of the likely sequence of strata below ground, it is usual 
to plot geological cross-sections along each line of boreholes, showing the  different 
soil layers and the groundwater level(s). The interface levels between the various strata 
are generally assumed to vary linearly between boreholes. With lenses and other 
 discontinuous layers, which may peter out between boreholes, a degree of informed 
engineering geological judgement may be required to estimate their likely extent. A 
 typical geological cross-section is illustrated in Figure 11.2. Three-dimensional geologi-
cal interpretations can be made with the aid of an appropriate computer package, but 
whatever the method used to assimilate and interpret the data, this is the essence of the 
ground model.
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Figure 11.2  A typical geological cross-section, interpolated from borehole data. (Jubilee Line Extension, 
London Underground Limited.)
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11.2.3 Soil sampling and testing

Apart from the difficulty of testing a representative volume of material, perhaps the main 
problem with the laboratory testing of soil recovered from the field is sample disturbance. 
Disturbance arises from the sampling process, in transporting the sample to the labora-
tory, and in preparing the sample for the test. It is very difficult to recover intact samples of 
most non-clay soils, which must usually be tested following recompaction to their estimated 
in situ void ratio. Some sampling techniques will result in the loss of fine particles. This will 
affect the grading curve, and may give a completely false impression of the likely mechanical 
behaviour of the soil. For example, the permeability of a soil is sometimes estimated on the 
basis of the D 10 particle size (Section 3.3). If this procedure is used with a sample from which 
the fine particles have been lost, the permeability of the soil will be seriously overestimated.

Disturbance can be minimized by taking relatively large block samples (of volume per-
haps 10–20 litres) from the site back to the laboratory for smaller specimens to be prepared 
from it for testing. However, this is only really possible with clay soils or lightly cemented 
sands, near the ground surface. Samples from boreholes must be recovered remotely, which 
normally involve greater disturbance. Clay samples are usually recovered from a borehole 
by means of a sampling tube, which is simply pushed (or, more usually, hammered) into 
the soil at the current bottom of the borehole. Samples taken in this way are optimistically 
described as ‘undisturbed’, but in reality the disturbance caused by sampling can be severe 
(Figure 3.15). The amount of sample disturbance depends, among other things, on the area 
ratio of the sampler (i.e. the ratio of the wall area to the internal area of the tube). The high-
est quality samples are taken by thin-walled tubes, pushed into the soil, using an apparatus 
known as a piston sampler.

Conventional, standard size ‘U100’ sampling tubes have an internal diameter of 100 mm. 
They are hammered or pushed into the soil with a cutting shoe screwed onto the leading 
end, to facilitate penetration. The internal diameter of the cutting shoe is typically 1 mm 
less than the internal diameter of the sample tube. This reduces resistance during driving, 
but means that the sample can expand laterally until it makes contact with the internal walls 
of the tube. High-quality piston samplers may have an internal diameter of approximately 
102 mm and a wall thickness of 2 mm, giving an area ratio of 4%: they are pushed care-
fully into the soil. Changes in water content between sampling and laboratory testing are 
minimized by sealing the sample into the sampling tube with wax as soon as it is recovered 
from the borehole. A detailed investigation into the effects of sample disturbance prior to 
testing, with reference to a soft estuarine deposit at Bothkennar, Scotland, is presented by 
Hight et al. (1992); and a numerical and analytical study of the effects of sample design and 
geometry by Clayton et al. (1998).

We have already seen how the stress–strain behaviour of a soil—particularly if it is a 
clay—depends on its stress history, its stress state and the changes in stress imposed. It is 
therefore important that the stress state at the start of a laboratory test, and the changes in 
stress imposed in the test, should correspond as closely as possible to those anticipated in 
the field. For example, if a soil sample is taken from a depth of 10 m, the vertical effective 
stress in the ground at this depth (about 100 kPa, assuming that the groundwater level is 
near the soil surface) would normally define a sensible starting point for a laboratory test. 
If the soil in the field is to be subjected to an increase in vertical effective stress of 50 kPa as 
a result of the construction of a building, the laboratory test should cover at least the stress 
range 100–150 kPa.

The effect of soil structure (bonding and fabric—the latter being the size, shape and 
arrangement of the solid particles, the organic inclusions and the associated voids) on 
soil behaviour can be very significant. This was discussed with respect to permeability in 
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Section 3.6. Unfortunately, it is almost impossible to preserve the structure of a  nonclay soil 
during sampling, while even for a clay the structure might be severely disrupted (Figure 3.15).

One way of attempting to overcome the likely disturbance to the soil structure (and, with 
non-plastic soils, the void ratio) that occurs during sampling is to carry out soil tests in the 
field or in situ. Soil strength and stiffness can be measured in situ in a variety of ways: some 
of the techniques available are described in Section 11.3. Soil permeability can be measured 
in situ by means of field pumping tests, as described in Section 3.5. An additional advantage 
of field pumping tests over laboratory investigations is that the average effective permeabil-
ity of a very large volume of soil may be estimated. One particular parameter, the in situ 
horizontal stress, can only be measured directly in the field—for example, by means of a 
pressuremeter (Section 11.3.3).

11.3 IN SITU TESTING

The main problems associated with the laboratory testing of soils are disturbance during sam-
pling and the difficulty of testing samples large enough to be representative of the soil in the 
field, where the effects of structure and fabric can be highly significant. In an attempt to over-
come these problems, several methods of testing the soil in situ have been developed. Some of 
these are described in this section: a more detailed critical appraisal is given by Wroth (1984).

It is pointed out by Wood and Wroth (1977) that the mode of deformation imposed 
on the soil may differ widely between different forms of soil test. This will lead to 
 discrepancies between the values of soil parameters (such as the undrained shear strength) 
measured using different techniques (e.g. a pressuremeter—Section 11.3.3—or a shear 
vane—Section 11.3.4—in the field, and a shearbox or a triaxial cell in the laboratory). 
These  discrepancies are in addition to the effects of sample size and sampling disturbance, 
and must be borne in mind when attempting to compare data from different soil tests.

11.3.1 Standard penetration test

Standard penetration test (SPT) is probably the oldest and simplest form of in situ soil test. 
It is carried out in boreholes during site investigation. A split barrel sampler attached to the 
end of a series of rods is driven into the soil below the bottom of a borehole to a depth of 
150 mm, by means of a falling weight arrangement known as a drop-hammer. The number 
of hammer blows required to drive the sampler a further 300 mm is then recorded: this is 
the SPT blowcount, which is conventionally given the symbol N.

Although the test is described as ‘standard’, the energy actually delivered to the split bar-
rel sampler depends on the design of the hammer arrangement, which varies from country 
to country according to local tradition and equipment. The energy delivered to the sampler 
may be as much as 85% of the potential energy of the hammer (i.e. the falling weight) at the 
top of its travel, or as little as 45%.

Skempton (1986) shows that many apparent inconsistencies in SPT data from around 
the world may be attributed to differences in this energy ratio. Seed et al. (1984), suggested 
that an equivalent energy ratio of 60% should be adopted as an internationally recognized 
standard. This is consistent with current the UK practice for rod lengths (which are approxi-
mately the same as borehole depths) in excess of 10 m and borehole diameters of up to 
115 mm. Correction factors for other types of equipment are given by Skempton (1986); and 
for rod lengths less than 10 m and borehole diameters greater than 115 mm in Table 11.1.

The resistance of the soil to penetration would be expected to increase with soil relative 
density, strength and stiffness, and empirical correlations between the SPT blowcount and 
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each of these parameters are widely used in practice. The SPT blowcount would also be 
expected to increase with the average effective stress p′, which itself increases with depth 
and, because of the effect of the lateral stress, with over consolidation ratio. Skempton 
(1986) presents data illustrating that

• The SPT blowcount N increases almost linearly with overburden pressure v′σ  at a 
 constant density index I D.

• At a constant overburden pressure, N increases roughly in proportion to D
2I , so that, 

as pointed out by Meyerhof (1957),

 
N
I

a b v
D
2

= + ′σ

• At a given density index and overburden pressure, N is higher for sands with a larger 
mean grain size (D 50).

Stroud (1989) points out that it is reasonable to correlate the soil stiffness with the SPT 
blowcount directly, because both depend on the average effective stress p′ and, therefore, 
both will increase with depth. However, in the case of the frictional soil strength φ′ and the 
density index I D of a granular soil, which would not generally be expected to change very 
significantly with depth, it is necessary to normalize the SPT blowcount to a reference verti-
cal effective stress, which is conventionally taken as 100 kPa. This is so that increases in SPT 
blowcount due to increases in over-burden pressure alone may be discounted. The normal-
ized SPT blowcount is denoted by the symbol N 1, or (N 1) 60 when the energy ratio is 60%.

Normalization of SPT blowcounts is carried out by means of a correction factor C N:

 N C N1 N=  (11.1)

Skempton (1986) shows that, for normally consolidated sands, C N varies between

 vC 200/[100 (kPa)]N = + ′σ  (11.2a)

for fine sands of medium relative density, to

  vC 300/[200 (kPa)]N = + ′σ  (11.2b)

for dense, coarse sands. For overconsolidated fine sands,

 vC 170/[70 (kPa)]N = + ′σ   (11.2c)

Table 11.1  Correction factors to SPT blowcount for rod lengths <10 m and 
borehole diameters >115 mm

Correction factor

Rod length (m) >10 1.0
6 –10 0.95
4 – 6 0.85
3 – 4 0.75

Borehole diameter (mm) 65 –115 1.0

150 1.05

200 1.15

Source: Skempton, Géotechnique, 36, 3, 425–447, 1986.  With permission.
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Equation 11.2b gives numerically similar results to the correction factor suggested by 
Peck et al. (1974),

 C kPaN v0.77 log [2000/ ( )]10= ′σ  (11.3)

The density index of sands may be estimated on the basis of the normalised SPT blow-
count, (N 1) 60, according to Table 11.2.

Table 11.2 shows that, for I D > 0.35,

 (N 1) 60/I D 2 ≈ 60 (11.4)

Stroud (1989) argues that the correlation between (N 1) 60 and I D depends on ′ϕcrit; Table 11.2 
and Equation 11.4 are based on data from angular to sub-angular quartz sands, with φ′ crit ≈ 
33° – 34°.

It is now well-known that the stiffness of a soil is not constant, but reduces with  increasing 
strain following the last significant change in direction of the stress path. Stroud (1989) 
takes this into account by presenting correlations between the effective stress secant Young’s 
 modulus E ' divided by the SPT blowcount N 60 (not normalized, because both  stiffness 
and SPT blowcount increase with increasing overburden pressure), and the parameter 
q net/q ult . (q net is the net load applied to a foundation, and q ult is the ultimate load or the bear-
ing capacity, given by, e.g. f′σ  in Equation 8.7). The expectation is that the values of Young’s 
modulus derived from these correlations will be used primarily to estimate the settlement of 
foundations. The settlement of the foundation—and the deformation of the soil—increases 
with q net/q ult, which may therefore be regarded as an indicator of the shear strain.

The correlations given by Stroud (1989) between E '/N 60 and q net/q ult for normally con-
solidated and overconsolidated sands and gravels are reproduced in Figure 11.3a. The cor-
responding relationships for overconsolidated clays with plasticity indices (PI) of 15% and 
50% are shown in Figure 11.3b. In each case, the actual data points on which the correla-
tions are based are included, as an indication of the potential error.

Correlations between ′ϕpeak and (N 1) 60 at different overconsolidation ratios are also given 
by Stroud (1989). These are reproduced in Figure 11.4. Peck et al. (1974) take this a step 
further by giving correlations between the SPT blowcount and the bearing capacity factors 
N q and N γ (N q and N γ are defined in Sections 8.2–8.4). These bearing capacity factors are 
calculated on the basis of the peak strength ′ϕpeak, and the Peck et al. (1974) correlation takes 

Table 11.2 Correlation of density index ID with normalized SPT blowcount (N1)60

ID Classification (N1)60 N I( ) /1 60 D
2

Very loose

0.15 3 –
Loose

0.35 8 65
0.5 Medium 15 60
0.65 25 59

Dense

0.85 42 58
Very dense

1.00 58 58

Source: Terzaghi and Peck, Soil Mechanics in Engineering Practice, 2nd edn., John Wiley, New York, 
1948.  As modified by Skempton, Géotechnique, 36, 3, 425–447, 1986.  With permission.
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no account of differences in the overconsolidation ratio. Terzaghi and Peck (1967) give rela-
tionships between the SPT blowcount and the allowable bearing pressure on a strip footing, 
intended to limit the maximum likely settlement to less than 25 mm.

The undrained shear strength τ u of an overconsolidated clay may be related to the SPT 
blowcount using the simple expression

 τ u = f 1N 60 (11.5)

(Stroud, 1974). As τ u would generally be expected to increase with depth, it is the  corrected 
blowcount N 60, rather than the normalized corrected blowcount, (N 1) 60, which is used in the 
correlation. The parameter f 1 (which has units of kPa) depends on the  plasticity index (PI) of 
the clay. The data presented by Stroud and Butler (1975) suggest that f 1 = 4.5 kPa for plastic-
ity indices (PI) greater than 30%. As the PI decreases from 30% to 15%, the parameter f 1 
increases from 4.5 to 6 kPa.

For weak rocks such as mudstone and marl, the relationship between E /N 60 and q net/q ult,u 
(where q ult,u is the ultimate load in undrained conditions) 1 is similar in form to that shown 
in Figure 11.3 for sands and overconsolidated clays. For moderate degrees of loading (0.2 ≤ 
[q net/q ult,u] ≤ 0.4), E '/N 60 ≈ 1 MPa. The ultimate shear strength τ u of a weak rock 2 may be 
estimated approximately using Equation 11.5 with f 1 = 5 kPa, giving τ u/N 60 = 5 kPa. For 
chalk, E '/N 60 ≈ 5 MPa at 0.2 ≤ (q net/q ult,u) ≤ 0.4, and τ u/N 60 ≈ 25 kPa (Stroud, 1989).

11.3.2 Cone penetration test

In a cone penetration test (CPT), a cone at the end of a series of rods is pushed at a steady 
rate of 15–25 mm/s into the soil, and the resistance to penetration Q c (a force in kN) is 
measured by means of a load cell just behind the cone. The force due to side friction imme-
diately above the cone is also measured, using a sleeve (known as a friction sleeve) mounted 
on strain-gauged supports. As both loads are measured electrically, continuous readings 
are usually produced. Most cones have a diameter of 37.5 mm, an apex angle of 60°, and a 
projected area (perpendicular to the direction of penetration) of 1000 mm 2.

Other cone geometries are sometimes used, and the geometry of the cone will affect 
the results obtained. Some versions of the apparatus incorporate a pore water pressure 
transducer with its filter either on or just behind the cone: such a device is known as a 
piezocone. The pore water pressures measured during piezocone penetration can help 
to identify the soil type: generally, excess pore water pressures (i.e. pressures over and 
above the in situ equilibrium values) will be developed in clays, but not in sands. A typi-
cal piezocone tip, with the filter for pore water pressure measurement in the generally 
preferred position just behind the cone (known as the u 2 position), is shown schematically 
in Figure 11.5a.

Considerable attention must be paid to the design and specification of the load cells and 
the seals and ensuring that the pore pressure measurement system is fully saturated if reli-
able piezocone test data are to be obtained. It is also necessary to correct the measured cone 
resistance and sleeve friction load to account for the fact that the pore water pressure u 2 acts 
on the shoulder at the back of the cone and on the end of the friction sleeve, as illustrated 
in Figure 11.5b. This is important mainly in soft, fine grained soils where the porewater 
pressures generated during driving can be large in comparison with the cone resistance q c 
and the sleeve friction f s. Further details of the quite complex preparation, calibration and 
correction procedures needed to ensure a successful cone penetration or piezocone test are 
given by Meigh (1987) and Lunne et al. (1997).

Raw CPT data are normally expressed as the cone resistance q c (calculated as the force, 
Q c, divided by the projected area of the cone, A c), and the sleeve friction f s (calculated as 
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the total force acting on the friction sleeve, F s, divided by the surface area of the friction 
sleeve, A s). Typical piezocone test data plotted as pore water pressure, f s, q c and friction 
ratio f s/q c against depth are shown in Figure 11.6a.

Wroth (1984) argued that, to compensate for the effects of increasing overburden stresses 
with depth, the CPT data should be presented in terms of the normalized cone resistance Q t, 
the normalized friction ratio F r and the pore pressure ratio B q, where
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− σ
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Figure 11.5  (a) Schematic cross section through a piezocone tip showing load cells and seals. (Adapted from 
Lunne et al., Cone Penetration Testing in Geotechnical Practice, Blackie Academic and Professional, 
London, 1997 and Zuidberg, Proceedings of the 2nd International Symposium on Penetration Testing, 
ISOPT-1, Orlando, Specialty Session No. 13, 24, A.A. Balkema, Rotterdam, 1988.) (b) Correction 
of measured loads for u 2 and u 3 pore water pressure effects. (Adapted from Lunne et al., Cone 
Penetration Testing in Geotechnical Practice, Blackie Academic and Professional, London, 1997).
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q t is calculated from the measured cone resistance, q c, by correcting for the fact that the pore 
water pressure behind the cone, u 2, acts on the back of the cone between the cone and the 
friction sleeve: q t = q c + u 2 (1 − a), where a = the area of the shaft, A n, divided by the projected 
area of the cone, A c (Figure 11.6b). σ v0 is the vertical total stress, u 0 the in situ pore water 

8

Norm
ally consolidated

9

7ϕ'

6

5

4

3
21

0.1
1

10

100

Q
t

1000

1

10

100

Q
t

1000

(b) (c)

1
Fr (%) Bq

10 –0.4 0 0.4 0.8 1.2

Increasing
OCR, age
cementation

Increasing
OCR, age

Increasing
sensitivity

Increasing
sensitivity

Increasing
OCR

4

3

1

5

6

uo
u

qtσvo7

Hydrostatic

(a)

–30

–25

–20

–15

–10

–5

0
1.0 0.5

Pore water
pressure
(MPa)

Friction
(MPa)

Friction
ratio

( fs/qc × 100)

Cone
resistance

(MPa)
Soil

profile
0 0.20.1 0 4 8 12 16 20 8 4 0

Sand

Sand

Sand

+ 28–6
+ 33–6
+ 36–8
+ 32–7
+ 30–8
+ 29–2
+ 30–9
+ 39–3
+ 38–2
+ 28–3
+ 30–9
+ 27–6

D
ep

th
 b

el
ow

 d
at

um
 (m

)

Peat

Peat

Note: soil profile is interpreted
          from piezocone test data

Clay

Clay

Figure 11.6  (a) Typical piezocone test data. (Redrawn with permission from Zuidberg et al., Proceedings of 
the 2nd European Symposium on Penetration Testing, Amsterdam, 963–970, 1982; reprinted from 
Verruijt et al., Proceedings of the 2nd European Symposium on Penetration Testing, Amsterdam,  
A.A. Balkema, Rotterdam, 1982.) (b) and (c) Identification of soil types from piezocone test data. 
(Redrawn from Lunne et al., Cone Penetration Testing in Geotechnical Practice, Blackie Academic 
and Professional, London, 1997 With permission.)



Site investigation, in situ testing and modelling 601

© 2010 Taylor & Francis Group, LLC

pressure and 0v′σ  the effective stress (= σ v0 − u 0) at the level of the cone. f s is the measured 
sleeve friction: ideally the sleeve friction corrected for pore pressure effects, f t = f s − (u 2 − u 3). 
(A sx/A s), should be used in place of f s, but u 3 is rarely measured (A sx is the cross sectional area 
of the friction sleeve, which is here assumed to be constant, and As is its external surface 
area—Figure 11.7b). Δu is the excess pore water pressure during driving, Δu = u 2 − u 0.

Different soil types may be identified by means of empirical correlations between the 
three normalized parameters Q t, F r and B q suggested by Robertson (1990) and shown in 
Figures 11.6b and c. For data from a basic CPT in which pore water pressures have not been 
measured, Figure 11.6b alone may be used.

The main advantages of the cone penetration or piezocone test are that the disturbance 
to the soil is minimal, and that a continuous record of the soil profile can be produced. 
However, the need to use an empirical correlation to determine the soil type is a potential 
weakness. Also, thin layers of sand (less than 100 mm thick) in a clay stratum, and thin lay-
ers of clay (less than 150–200 mm thick) in a sand stratum, might well remain undetected.

For sands, a correlation between q c and ′ϕpeak may be obtained by means of bearing capac-
ity theory. This requires certain assumptions to be made, for example concerning the degree 
of friction between the cone and the soil, and the mode of soil deformation. A correlation 
between q c and ′ϕpeak for clean, relatively uniform, uncemented, unaged sands presented by 
Durgunoglu and Mitchell (1975) is reproduced in Figure 11.7.

A correlation—again for sands and based on somewhat limited experimental data—
between the cone resistance q c and the effective stress secant Young’s modulus E ' at 25% 
and 50% of the deviator stress at failure (corresponding to equivalent degrees of loading 
(q/q ult) = 0.25 and 0.5: see Section 11.3.1) is given in Figure 11.8.

In clays, cone penetration is likely to be undrained and the cone resistance q c may be 
expressed in the form

 q c = σ v + N k τ u (11.9a)

where σ v is the vertical total stress at the depth of the cone, τ u is the undrained shear strength 
of the soil, and N k is termed the cone factor. N k is analagous to the bearing capacity factor 
N c, introduced in Section 8.2. Rearranging Equation 11.9a,

 τ u = (q c − σ v)/N k (11.9b)

N k depends on both the geometry of the cone and the rate of penetration. A further 
problem of interpretation arises, because the undrained shear strength corresponding to 
the mode of deformation imposed in the CPT may not be the same as the undrained shear 
strength measured in some other test (e.g. shear box, triaxial or shear vane), which might be 
carried out as a calibration. If the calibration test is carried out in the laboratory, the effects 
of sample disturbance and the limited sample size may also be significant. Bearing these 
difficulties in mind, Meigh (1987) gives the ranges of values for N k quoted in Table 11.3, 
for a 60° cone of diameter 37.5 mm, tested at a rate of penetration of 15–25 mm/s, with τ u 
determined from plate loading tests.

Table 11.3 Typical values of cone factor N k for marine and glacial clays

Average Nk Range of Nk

Stiff, fissured marine clays (e.g. London Clay) 27 24 – 30
Glacial clays 18 14 – 22

Source: Meigh Cone Penetrometer Testing, Construction Industry Research and Information 
Association/Butterworths, London, 1987.   With permission.
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Other correlations that may be used to quantify engineering parameters such as soil 
strength and stiffness or to estimate the bearing capacity and settlement of foundations 
directly from the CPT data are given by Lunne et al. (1997). The factors affecting the rate of 
excess pore pressure dissipation during cone penetration are analysed by Teh and Houlsby 
(1991); the interpretation of piezocone tests in silty soils in which partial drainage occurs 
during piezocone driving is discussed by Tonni and Gottardi (2011).

11.3.3 Pressuremeter tests

11.3.3.1 General description

The pressuremeter is a cylindrical device designed to apply a uniform radial pressure to the 
sides of a borehole in which it is placed. There are two different basic types:

• The Menard pressuremeter (MPM), which is lowered into a pre-formed borehole
• The self-boring pressuremeter (SBP), which forms its own borehole and thus causes 

less disturbance to the soil prior to testing

In both cases, the pressuremeter test involves the application of known stress to the soil 
and the measurement of the resulting soil deformation. The interpretation of pressuremeter 
test data in engineering terms does not, therefore, rely on empirical correlations. In this 
respect, the pressuremeter test is in a different class from the standard and cone penetration 
tests.

A diagrammatic representation of the essential features of a pressuremeter is given 
in Figure 11.9. The sides of the borehole are loaded by pressurizing the fluid contained 
within a flexible rubber membrane. The outside of the rubber membrane is usually pro-
tected by steel strips. The expansion of the cavity is determined either by measuring the 
volume of fluid needed to pressurize the membrane, and/or by measuring the movement 
of the soil at the cavity wall directly using either feeler arms or displacement transducers 
(lvdts). Three feeler arms or lvdts, located in the same horizontal plane at a spacing of 
120°, are usually used.

Generally, pressuremeters are designed for maximum inflation pressures in the ranges 
2.5–10 MPa in soils and 10–20 MPa in very stiff soils and weak rocks. The interpreta-
tion of pressuremeter test data is based on the analysis of an expanding cylindrical cavity, 
with deformation in the horizontal plane only. The length of the expanding portion of a 
pressuremeter should therefore be at least six times the diameter to avoid significant end 
effects.

Corrections must be made to the measured pressure, volume change and cavity deforma-
tion to account for the compressibility of the fluid and pipework, differences in elevation 
between the instrument and the pressure transducer, and the stiffness of the membrane. 
Spurious volume changes, resulting from the expansion of pipework and the compression of 
the fluid, are likely to be most significant in stiff soils. Pressure loss (where the pressure actu-
ally applied to the soil is less than the pressure inside the membrane, owing to the stiffness 
of the membrane) is likely to be most significant in soft soils. The calibration procedures 
that must be carried out to quantify and eliminate these effects are described by Mair and 
Wood (1987).

The corrected data from a pressuremeter test are plotted as a graph of cavity pressure p against 
the increase in cavity volume V or the cavity strain ε c, as shown in Figure 11.10. The cavity 
strain ε c is defined as the outward movement of the cavity wall y c divided by the original cavity 
radius (i.e. the radius at the start of the pressuremeter test) ρ 0. It is shown in Section 11.3.3b 
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that for small strains this is approximately equal to half the proportional increase in cavity 
volume, that is, ε c = y c/ρ 0 ≈ 0.5 V/V 0, where V 0 is the initial volume of the cavity.

The main difference between a Menard pressuremeter and a self-boring pressuremeter is that 
the Menard pressuremeter is inserted into a preformed borehole. Some disturbance is therefore 
inevitable, and at the start of a Menard pressuremeter test, the instrument will probably not 
be in contact with the sides of the borehole. This difference is reflected in the data from the 
early stages of the test, before the Menard pressuremeter makes contact with the borehole wall.

In a Menard pressuremeter test (Figure 11.10a), the stress–strain curve should steepen 
sharply at a point such as A, as the device comes into contact with the preformed borehole 
wall and  compresses any softened soil. Unless the soil is a normally consolidated clay, the 
relationship between the increase in pressure and the increase in cavity strain will then be 
approximately linear until a point B is reached. At B, the soil at the borehole wall starts to 
deform plastically. As the cavity pressure is increased further, the plastic zone extends fur-
ther into the surrounding soil, until eventually some limiting pressure p L is attained.

In a high-quality self-boring pressuremeter test, the corrected pressure–volume change 
curve should start with the pressuremeter in contact with the sides of the borehole. No soft-
ening or disturbance of the surrounding ground should be apparent. Ideally, there should be 
no increase in cavity volume until the cavity pressure exceeds the in situ lateral total stress in 
the ground, σ h0. The in situ horizontal total stress may therefore be identified from the point 
A in Figure 11.10b, at which the cavity volume starts to increase significantly with increasing 
pressure. In a self-boring pressuremeter, which detects increases in cavity volume by means 
of displacement transducers contained within the device, each transducer may give a differ-
ent ‘lift-off’ pressure. (The ‘lift-off’ pressure is the cavity pressure at which the displacement 
transducer or feeler arm starts to indicate significant movement, and would be expected in a 
self-boring pressuremeter test to be equal to the in situ lateral stress.) Estimating the in situ 
horizontal total stress from the test data therefore requires some care and experience.

After the in situ lateral effective stress has been exceeded, the cavity volume should increase 
approximately linearly with the applied pressure, until the soil at the borehole wall starts to 
deform plastically at B. In reality, the ‘linear’ portion AB may be very short or almost non-
existent (Figure 11.13). The same is true for the Menard pressuremeter test. As the cavity 
pressure is increased further, the radius of the plastic zone increases until eventually a limit-
ing pressure p L is reached.

It is not straightforward to estimate the in situ lateral total stress from Menard pres-
suremeter test data, owing to the disturbance and softening of the soil at the borehole wall. 
Even if the point A in Figure 11.10a corresponds to the device making contact with intact soil 
at the side of the borehole, it cannot be taken as an indication of the in situ lateral stress. This 
is because the soil at A is being loaded not from its in situ condition, but from an unloaded 
state following pressuremeter installation. Mair and Wood (1987) describe an iterative pro-
cedure proposed by Marsland and Randolph (1977), which can be used to estimate the in situ 
lateral total stress from Menard pressuremeter test results in high-plasticity overconsolidated 
clays, such as London Clay, which behave approximately elastically during initial loading.

In addition to the in situ horizontal total stress, the graph of cavity pressure against cavity 
strain may be used to estimate the shear modulus of the soil, the undrained shear strength of 
a clay, and the peak strength ′ϕpeak and the angle of dilation ψ of a sand. By incorporating pore 
water pressure transducers into the device, it is also possible to measure the horizontal con-
solidation coefficient c h (which governs consolidation due to horizontal strain with horizon-
tal drainage) and the effective angle of friction φ′ for clays. In the present discussion, we will 
focus on the most common applications, which are the determination of the in situ horizontal 
total stress and the shear modulus, and the undrained shear strength of clays. Details of the 
procedures used to determine the other parameters are given by Mair and Wood (1987).
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11.3.3.2 Stress analysis

The interpretation of pressuremeter test data is based on the analysis of an expanding 
 cylindrical cavity in an infinite body of soil. Deformation of the soil is assumed to take place 
in the horizontal plane (Figure 11.11a) while the vertical total stress σ z remains constant. 
(The same results are obtained if it is initially assumed that the vertical strain ε z, rather than 
the vertical total stress increment Δσ z, is zero.)

If the cavity pressure is increased by an amount p, the cavity radius increases by an amount 
y c from its initial value ρ (i.e. its value before the cavity pressure increment p is applied). In 
the soil outside the cavity, a general cylindrical ‘shell’ of initial radius r is pushed outward 
to a new radius r + y, as shown in cross-section in Figure 11.11b. Similarly, a cylindrical 
‘shell’ in the surrounding soil slightly further away from the cavity, of initial radius r + dr, 
is pushed out to a new radius (r + dr) + (y + dy).

The radial strain increment ε r at radius r is defined as

 Δε r = change in radial distance between shells ÷ initial radial distance between shells
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Figure 11.11  (a) Idealized geometry of deformation during pressuremeter test and (b) cross-section showing 
radial displacement of cylindrical shells of soil of different initial radii.
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From Figure 11.11b,

 Δε r = −[(dr + dy) − dr] ÷ [(r + dr) − r] = −dy/dr (11.10)

where the negative sign indicates that, for the sense of y shown in Figure 11.13b, the radial 
strain increment is tensile.

The circumferential or tangential strain increment ρε θ at radius r is defined as

 ∆ε =θ change in circumference ÷ initial circumference

From Figure 11.11b,

 Δε θ = −[2π(r + y) − 2πr] ÷ [2πr] = −y/r (11.11)

where the negative sign indicates that, for the sense of y shown in Figure 11.11b, the circum-
ferential strain is tensile.

If the soil can be idealized as a uniform, isotropic, linear elastic material that obeys 
Hooke’s law, Equation 6.1 can be written in terms of the principal total stress and strain 
increments in the radial (r), circumferential (θ) and vertical (z) directions:

 Δε r = (1/E u)(Δσ r − ν uΔσ θ − ν uΔσ z) (11.12a)

 Δε θ = (1/E u)(Δσ θ − ν uΔσ r − ν uΔσ z) (11.12b)

 Δε z = (1/E u)(Δσ z − ν uΔσ r − ν uΔσ θ) (11.12c)

But Δσ z = 0 (because σ z is constant), so that

 Δε r = (1/E u)(Δσ r − ν uΔσ θ)  (11.13a)

 Δε θ = (1/E u)(Δσ θ − ν uΔσ r) (11.13b)

 Δε z = (1/E u)(−ν uΔσ r − ν uΔσ θ) (11.13c)

Adding Equation 11.13a to ν u times Equation 11.13b to eliminate σ θ,

 Δε r + ν uΔε θ = [(1 − ν 2 u)/E u] Δσ r

or

 Δσ r = [E u/(1 − ν 2 u)][Δε r + ν uΔε θ] (11.14a)

Similarly, adding Equation 11.13b to ν u times Equation 11.13a to eliminate Δσ r,

 Δσ θ = [E u/(1 − ν 2 u)][Δε θ + ν uΔε r] (11.14b)
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We have now derived the radial and circumferential stress increments Δσ r and Δσ θ, 
in terms of the undrained (total stress) elastic parameters E u (Young’s modulus) and ν u 
(Poisson’s ratio), and the radial and circumferential strain increments Δε r and Δε θ.

The equation of equilibrium for an annular segment is the same as it is in the analysis of a 
tunnel (Section 9.11), except that gravity now acts out of (perpendicular to) the plane under 
consideration rather than in-plane, as in the case of a horizontal tunnel. Deleting the unit 
weight term from Equation 9.5, and writing Equation 9.5 in terms of stress increments Δσ r 
and Δσ θ rather than stresses σ r and σ θ, the equation of equilibrium becomes

 r(dΔσ r /dr) = (Δσ θ − Δσ r) (11.15)

Substituting from Equation 11.10 for Δε r and from Equation 11.11 for Δε θ into Equation 11.14,

 Δσ r = [E u/(1 − ν 2u)][−(dy/dr) − (ν uy/r)] (11.16a)

and

 Δσ θ = [E u/(1 − ν 2u)][−(y/r) − (ν udy/dr)] (11.16b)

Substituting Equation 11.16 into Equation 11.15, and noting that the expression 
[E u/(1 − ν 2u)] appears on both sides and therefore cancels out:
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(11.17)

Equation 11.17 is a differential equation in terms of the single variable y. Its general solu-
tion, which may be verified by substitution, is

 y = A/r + Br

where A and B are constants whose values depend on the boundary conditions. As y must 
approach zero with increasing radial distance from the cavity, B = 0 and

 y = A/r (11.18)

In the pressuremeter test, the value of the constant A can be determined because the out-
ward radial movement of the cavity wall y c is measured or can be deduced from the cavity 
volume change,

 A = y cρ (11.19)

where ρ is the current radius of the pressuremeter cavity.
Alternatively, defining the cavity strain as ε c = y c/ρ 0 (where ρ 0 is the cavity radius at the 

start of the pressuremeter test),

 A = ε cρρ 0 (11.20)
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Substitution of Equation 11.20 into Equations 11.10 and 11.11 gives the following expres-
sions for the radial and circumferential strains (measured from zero at the start of the pres-
suremeter test, so that the ‘strain increment’ notation can be dropped):

 ε r = −dy/dr = A/r 2 = ε cρρ 0/r 2 (11.21a)

 ε θ = −y/r = −A/r 2 = −ε cρρ 0/r 2 = −ε r (11.21b)

Substitution of Equation 11.21 into Equation 11.14 gives the following expressions for 
radial and circumferential total stress increments:

 Δσ r = [E u/(1 + ν u)][ε cρρ 0/r 2] (11.22a)

 Δσ θ = −[E u/(1 + ν u)][ε cρρ 0/r 2] = −Δσ r (11.22b)

From Equation 6.6, E u/(1 + ν u) = 2G, so that

 Δσ r = 2Gε cρρ 0/r 2 = 2Gε r (11.23a)

 Δσ θ = −2Gε cρρ 0/r 2 = 2Gε θ (11.23b)

This result is remarkable in two respects.

• Substitution of Equation 11.22 into Equation 11.12c with Δσ z = 0 shows that ε z = 0, 
so that all deformation occurs in the horizontal plane. The vertical strain is zero, while 
the vertical stress remains constant.

• During cavity expansion, the surrounding soil deforms at constant volume. This is 
because the radial and circumferential strains are equal and opposite and the vertical 
strain is zero. Furthermore, there is no change in average total stress p, because the 
vertical total stress remains constant while the increase in radial total stress Δσ r is 
exactly countered by the decrease in circumferential total stress Δσ θ. This means that, 
if the soil behaviour is approximately isotropic and elastic, so that deformation at 
constant volume takes place at constant average effective stress pʹ, there is no change 
in pore water pressure. Cavity expansion is entirely a shearing process, rather than the 
compression process it might at first sight appear.

At the cavity wall, the increase in radial total stress Δσ r is equal to the increase in cavity 
pressure p. Substituting r = ρ, the current cavity radius, into Equation 11.23a,

 Δp = 2Gεcρρ0/Δρ 2 = 2Gε cρ 0/ρ

so that the graph of cavity pressure p against cavity strain ε c will have slope (dp/dε c) = 
2G(ρ 0/ρ), or

 G = (1/2)(ρ/ρ 0)(dp/dε c) (11.24)



610 Soil mechanics: concepts and applications

© 2010 Taylor & Francis Group, LLC

At the start of a test, the cavity radius ρ is equal to the initial cavity radius ρ 0, giving 
ρ/ρ 0 = 1 and G = (1/2)(dp/dε c). It is usual, however, to measure the shear modulus during 
an unload/reload cycle (Figure 11.13), to ensure that all of the soils are deforming approxi-
mately elastically. In this case, the factor (ρ/ρ 0) will be significant if the cavity strain at the 
start of the unload/reload cycle is relatively large. A second reason for determining the shear 
modulus from an unload/reload cycle is to avoid the effects of the disturbance caused by 
pressuremeter installation. Some installation disturbance is almost inevitable, even with a 
self-boring pressuremeter.

As an alternative to the cavity strain ε c, pressuremeter test data may be presented in 
terms of the cavity volume change, ΔV. As the cavity increases in radius from ρ to ρ + 
Δy c, the volume increases from πρ 2h to π(ρ + Δy c) 2h, where h is the height of the cavity. 
Thus, the proportional increase in volume (calculated with reference to the current cavity 
 volume) is

 ΔV/V = [π(ρ + Δy c) 2h − πρ 2h]/[πρ 2h]

 = [2ρΔy c + Δy 2c]/ρ 2

If y c ≪ ρ, the term in y 2c can be neglected and

 ΔV/V ≈ 2Δy c/ρ = 2Δε c × ρ 0/ρ

where Δε c is the increase in cavity strain.
In the limit as Δε c → dε c and ΔV → dV,

 dε c = (1/2) × ρ/ρ 0 × dV/V (11.25)

and, substituting for dε c into Equation 11.24,

 G = V(dp/dV) (11.26)

In determining the shear modulus from an unload/reload cycle, the magnitude of the 
stress cycle must be small enough to ensure that the soil behaviour remains approxi-
mately elastic, and that plastic yielding in unloading does not occur. Consideration of the 
Mohr circle of total stress (Figure 11.12) shows that, starting from an in situ state of σ r = 
σ θ = σ h0, the shear stress in the wall of the cavity at a cavity pressure of σ h0 + p is given by

 τ c = Δσ r = Δp (11.27)

τ
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(= cavity pressure p)

τc

τc = Δp

σh0

σθ = σh0 – Δp
σr = σh0 + Δp

σ

Figure 11.12 Mohr circle of total stress for the soil adjacent to the pressuremeter cavity.
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An ideal clay soil will start to deform plastically when the cavity shear stress τ c reaches 
the undrained shear strength of the material τ u,

 τ c = τ u (11.28)

Plastic behaviour will therefore start to occur at a cavity pressure of p p, where

 p p = σ h0 + τ u (11.29)

After this point, the elastic solution for stresses and strains is not valid. As the cavity pres-
sure is increased, the plastic zone spreads outward into the surrounding soil.

If the cavity pressure has been increased sufficiently to cause failure of the soil in the bore-
hole wall (i.e. to a value p = pp = σ h0 + τ u), the behaviour of the soil on unloading will be 
elastic until the cavity pressure has been reduced to such an extent that the shear stress at the 
borehole wall is equal to τ u in the opposite sense, that is, p = σ h0 − τ u. Thus, the reduction in 
cavity pressure during an unload/reload cycle should not exceed 2τ u, if the behaviour of the 
soil is to remain approximately elastic. This limit to the magnitude of an unload/reload cycle 
carried out to measure the shear modulus G is indicated in Figure 11.13, which illustrates 
the interpretation of the data obtained from a well-executed pressuremeter test.

The undrained shear strength of a clay can be estimated from the relationship between the 
cavity pressure and the cavity volume after first yield (i.e. at cavity pressures p > σ h0 + τ u). 
At a general stage of the pressuremeter test with p > σ h0 + τ u, an annular zone of soil of 
external radius r p around the cavity is at failure, with

 σ r − σ θ = 2τ u (11.30)

(Figure 11.14. Note that σ r > σ θ because the cavity is expanding into the surrounding soil. 
This is in contrast to the case of the circular tunnel analysed in Section 9.11, in which the 
surrounding soil collapses into the cavity.)

Substituting Equation 11.30 into Equation 11.15, the condition of equilibrium in the plastic 
zone becomes

 r(dσ r /dr) = (σ θ − σ r) = −2τ u (11.31)
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Figure 11.13  Interpretation of self-boring pressuremeter test results in Bartoon Clay, Zeebrugge, Belgium. 
(Redrawn from Wroth, Géotechnique, 34, 4, 449–489, 1984. With permission.)
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which may be rearranged and integrated between limits of σ r = p (the current cavity pres-
sure) at the cavity wall, r = ρ, and σ r = σ h0 + τ u (which is just sufficient to cause plastic 
behaviour) at the outer limit of the plastic zone, which is at a radius r = r p:

 
r

rr

p

r

d
2

du
h0 u p

∫ ∫σ = − τσ +τ

ρ

giving

 p = (σ h0 + τ u) + 2τ u[ln(r p/ρ)] (11.32)

We must now find r p, the outer radius of the plastic region. Inside the plastic zone, the 
relationship between radius r and displacement y given by Equations 11.18 and 11.20 does 
not apply, because Equation 11.18 was derived on the assumption that the material behaved 
elastically, obeying Hooke’s law. If the plastic zone deforms at constant volume, the volume 
of soil which now occupies an annular zone of inner radius ρ and outer radius r p originally 
occupied an annular zone of inner radius (ρ − y c) and outer radius (r p − y rp). (r p is the cur-
rent radius of the edge of the plastic zone and y rp is its outward radial displacement from its 
original position. ρ is the current radius of the pressuremeter cavity, and y c is the increase in 
radius from the original position.) Equating the two volumes, for a cavity of height h:

 [πr 2p − πρ 2]h = [π(r p − y rp) 2 − π(ρ − y c) 2]h

Dividing through by πh, multiplying out the terms in brackets, and assuming that y rp << 
r p and y c << ρ gives

 r py rp = ρy c = ρρ 0ε c (11.33)

where ε c = y c/ρ 0. Just outside the plastic zone, the elastic relationships still apply. In 
particular,

 ε r = −ε θ = y rp/r p (from Equation 11.21)

and

 Δσr = 2Gεr (from Equation 11.23a)
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Figure 11.14  (a) Plastic and elastic zones around the pressuremeter at a general stage of the test 
(p > σ h0 + τ u) and (b) Mohr circle of total stress in plastic zone.
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so that, with Δσ r = τ u at r = r p,

 ε r = −ε θ = y rp/r p = τ u/2G (11.34)

Combining Equations 11.33 and 11.34 to eliminate y rp,

 y rp = τ ur p/2G = ρρ 0ε c/r p

or

 r
G c2

p
0

u

= ρρ ε
τ

 (11.35)

Substituting Equation 11.35 into Equation 11.32, and recalling that ln(√x)  = 0.5 × 
ln(x),

 p = (σ h0 + τ u) + τ u{ln[(2Gρ 0ε c)/(ρτ u)]} (11.36a)

Using Equation 11.25, Equation 11.36a may be rewritten in terms of ΔV/V rather 
than ε c,

 p = (σ h0 + τ u) + τ u{ln[(G/τ u) × (ΔV/V)]}

or

 p = σ h0 + τ u × {1 + ln(G/τ u) + ln(ΔV/V)} (11.36b)

The significance of Equation 11.36b is that, during the plastic phase of the pressuremeter 
test, a graph of cavity pressure p against the natural logarithm of the proportional cav-
ity volume change ΔV/V should have slope τ u. Also, if the line is projected to the point 
ln(ΔV/V) = 0 (which corresponds to ΔV/V = 1), the corresponding value of p is p L, where

 p L = ′σh0 + τ u × {1 + ln(G/τ u)} (11.37)

which gives an additional check on the values of G and τ u determined using Equations 11.24 
or 11.26 and 11.36b.

The above analysis of the pressuremeter test is basically that given by Gibson and 
Anderson (1961). They also present a similar analysis of a pressuremeter test in sand, which 
is in terms of effective stresses and the frictional failure criterion τ = σ′ tan φ′. Starting from 
an in situ horizontal effective stress ′σh0, the increase in radial effective stress ∆ ′σr as the cav-
ity pressure is increased is equal in magnitude to the decrease in circumferential effective 
stress ∆ ′σθ. It is assumed that there is no change in pore water pressure, so that all changes 
in cavity pressure are carried by the soil skeleton as changes in effective stress. Provided that 
the material behaviour is essentially elastic, this is consistent with deformation at constant 
volume because the average effective stress s′ remains the same.

From the Mohr circle of effective stress shown in Figure 11.15, the increase in cavity pres-
sure Δp p when the soil at the borehole wall starts to fail is given by

 Δp p = r∆ ′σ  = t = s′sin φ′
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where ′ = ′σh0,s , the initial in situ horizontal effective stress. Hence

 ∆ = ∆ ′σ = ′σ ′φsinp h0p r  (11.38)

The maximum reduction in cavity pressure Δp u/r,max can then be applied in an unload/
reload cycle without causing failure in the opposite sense (i.e. with σ θ > σ r) is given by the 
diameter of the Mohr circle of effective stress shown in Figure 11.15. This is because, as σ r 
is reduced, σ θ increases by the same amount. The Mohr circle of effective stress at the onset 
of plastic behaviour in cavity collapse is, therefore, the same as that at the onset of plastic 
behaviour in cavity expansion, with the values of σ r and σ θ reversed. Hence

 Δpu/r,max = 2[(p − u) max − ′σh0] (11.39)

where [(p − u) max − ′σh0] = ′σh0sin φ′

 ⇒ ′σh0
 = [(p − u) max]/[1 + sin φ′] (11.40)

where p is the cavity pressure and u is the pore water pressure in the soil at the cavity wall, 
and (p − u) max is the maximum difference between these quantities. Substituting Equation 
11.40 into Equation 11.39 to eliminate ′σh0

,

 Δp u/r,max = 2{(p − u) max} × −
+ ′ϕ



















1
1

1 sin

 ⇒Δp u/r,max = 2[(p − u) max] × ′ϕ
+ ′ϕ











sin
1 sin

 (11.41)

For pressuremeter tests in clays, the assumption that shear takes place at constant volume 
is generally not unreasonable. For sands, however, this assumption is less realistic, because a 
sand is likely to dilate strongly, at least following the onset of plastic behaviour. The analysis 
presented by Hughes et al. (1977) takes into account the effects of dilation by means of an 
idealized relationship between volumetric strain ε vol and shear strain γ:

 ε vol = c − γsin ψ (11.42)

where c is a constant (Figure 11.16), together with a stress–dilatancy equation, which relates 
the peak and critical state angles of friction and the angle of dilation ψ:
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Figure 11.15  Mohr circle of effective stress for pressuremeter test in sand, at onset of plasticity at the 
cavity wall.
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Equation 11.43 was originally proposed by Rowe (1962): an example of a simpler, 
 empirical stress–dilatancy equation relating ′ϕpeak, φ′crit and ψ was given in Equation 2.14 
(Bolton, 1986).

In the analysis presented by Hughes et al. (1977), it is assumed that the sand will dilate indef-
initely with constant peak angle of friction ′ϕpeak and constant angle of dilation ψ. The failure 
criterion τ = σ′ tan φ′ is expressed in terms of the peak strength ′ϕpeak (as are Equations 11.38 to 
11.41). Making these assumptions, Hughes et al. (1977) show that, after the onset of plasticity 
at the borehole wall, the cavity pressure p and the cavity strain ε c are related by:

 ln(p − u 0) = s ln{ε c/(1 + ε c) + c/2} + A (11.44)

where A is a constant, u 0 is the initial in situ pore water pressure, and

 s = [(1 + sin ψ) sin φ′ peak]/(1 + sin φ′ peak) (11.45)

If ε c is small, so that 1 + ε c ≈ 1, Equation 11.44 becomes

 ln(p − u 0) ≈ s ln(ε c + c/2) + A (11.46)

and the value of s may be deduced from the slope of a graph of ln(p − u 0) against ln(ε c + c/2). 
To plot this graph, the value of the constant c (Figure 11.16) must be estimated for the 
sand under consideration. The stress–dilatancy relationship, Equation 11.43, may be used 
to eliminate either peak′ϕ  or ψ from Equation 11.45, giving (after a considerable amount of 
algebra)

 sin φ′ peak = s/[1 + (s − 1) sin φ′ crit] (11.47)

and

 sin ψ = s + (s − 1) sin φ′crit (11.48)

11.3.4 Vane shear test

The shear vane apparatus consists of four blades on the end of a shaft, which is pushed 
into a clay soil and rotated at a constant angular speed of between 6 and 12°/min. The 
torque T required to do this is related to the undrained shear strength of the soil, assuming 
that the failure occurs by the rotation of a cylinder of soil of depth D and diameter B. It is 

Dilation

Shear strain γ

sin ψ

εvol = c – γ sin ψ

Compression
volumetric

strain εvol

O

Figure 11.16  Idealized shear–volumetric strain relationship used in the analysis of a pressuremeter test in 
sand. (Redrawn from Hughes et al., Géotechnique, 27, 4, 455–477, 1977. With permission.)
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conventionally assumed that the undrained shear strength τ u is mobilized uniformly on all 
shearing surfaces (Figure 11.17).

Taking moments about the axis of the shaft, and with reference to Figure 11.17, the torque 
T is given by

 ∫ ( )= π × τ ×





+ π τ

2
2 2 d

0

/2

T BH
B

r r ru u

B

or

 T
B B
2 6u

2 2

= τ × π + π





 (11.49)

Usually, the height of the vane is equal to twice the overall diameter, that is, H = 2B. Field 
vanes for use in weaker soils (τ u < 50 kPa) are generally 150 mm long, while field vanes for 
use in stronger soils (50 kPa < τ u < 100 kPa) are 100 mm long. Pocket and laboratory ver-
sions are also available, for the rapid assessment of the undrained shear strength of smaller 
samples of soil.

Wroth (1984) quotes theoretical and experimental evidence presented by Donald et al. 
(1977) and Menzies and Merrifield (1980) which shows that, while the shear stress dis-
tribution on the vertical surface of the rotating cylinder of soil is approximately uniform, 
the shear stress distribution on the cylinder ends is very different from that assumed in the 
conventional analysis (Figure 11.18).

If the shear stress distribution on the top and bottom surfaces is represented by the 
expression

 τ = τ u × [r/(B/2)] n (11.50)
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Figure 11.17  Vane shear test (a) schematic arrangement; (b) calculation of torque due to shear stress on 
cylinder ends.
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where n is a constant, the torque due to the shear stress on the ends of the cylinder becomes
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 (11.51)

giving an overall torque of

 T
B H B

n2 2( 3)u

2 3

= τ × π + τ
+







 (11.52)

(Wroth, 1984). Equation 11.49 is a special case of Equation 11.52, with n = 0. The experimen-
tal data of Menzies and Merrifield (1980) for London Clay conform approximately to Equation 
11.50 with n = 5. The relationship between the undrained shear strength τ u and the overall 
torque T according to the revised analysis [Equation 11.52 with n = 5 and H = 2B) is compared 
in Table 11.4 with that obtained using the conventional assumption of Equation 11.49 with 
H = 2B, or Equation 11.52 with n = 0 and H = 2B]. The proportions of the total torque due to 
shear stresses on the vertical surface (T v/T) in each case are also compared Table 11.4.

Table 11.4 has two main implications:

• The shear strength deduced from a given torque using the conventional analysis will 
err on the conservative side by about 9%.

• The shear strength measured is essentially that which operates on vertical planes. As 
this accounts for 94% of the resistive torque (compared with 86% in the conventional 
analysis), the influence on the result of anisotropy will be comparatively small.

The analysis and interpretation of the shear vane test are discussed in more detail by 
Wroth (1984).

Notes
τav is the average shear stress on the vertical edge.
τm is a normalizing shear stress, chosen so that the three
horizontal-edge stress distributions all represent the same torque.
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Figure 11.18  Theoretical and experimental distributions of shear stress at the edges of a shear vane. 
(a) Computed by Donald et al., 1977; (b) vertical edge; (c) horizontal edge, based on measure-
ments made by Menzies and Merrifield (1980). (Redrawn from Wroth, Géotechnique, 34, 4, 
449–489, 1984. With permission.)
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11.3.5 Plate bearing test

Plate bearing test involves the application of a gradually increasing vertical load to a min-
iature foundation, represented by a circular plate of between 300 mm and 1 m in diameter, 
and the measurement of the resulting settlement. The main problem associated with either 
using the resulting load–settlement curve directly, or deducing the effective strength or stiff-
ness of the soil from the plate load at failure, is that of scale. It is apparent from Chapter 6 
that the depth to which the soil below a foundation suffers a significant increase in stress 
depends primarily on the extent of the loaded surface area. It is unlikely, therefore, that all 
of the soil which will contribute to the settlement of the full-size foundation will feature in 
the behaviour of the plate loading test. This may not be a problem, provided that there are 
no undetected soft or weak layers outside the zone of influence of the plate test, and provided 
that the stiffness of the soil generally increases with depth. These issues must be investigated 
by means of site investigation boreholes and appropriate in situ or laboratory tests: the 
results of a plate loading test should not be considered in isolation. A plate loading test is not 
an adequate substitute for a suitably detailed site investigation and soil testing programme.

11.4 MODELLING

As outlined in the introduction to this chapter, modelling is an everyday activity for almost 
all engineers. Many of the traditional procedures in engineering design are in effect models 
or idealizations of real behaviour, without which most problems would be too complex to 
analyse. In some circumstances, direct physical modelling of a real construction at a smaller 
scale may assist in the development of an understanding of the important behavioural mech-
anisms involved. Numerical modelling techniques such as finite element analysis (Section 
11.4.1) are now well established aids to geotechnical design.

The essential feature of a model is that a decision is taken at an early stage as to the 
important aspects of the overall behaviour of the construction under consideration. These 
are separated out and analysed, while the aspects that are judged not to be important are 
neglected. If this initial decision is wrong, the model may be inappropriate to the situation 
to which it is applied. The consequences of this could be disastrous.

In any theoretical analysis, the stress/strain/strength behaviour of the soil must be described 
in a mathematical form. Soil strength is generally easier to quantify than the complete stress–
strain relationship. This has led to the development of analytical models based on the theo-
rems of plasticity and conditions at collapse, which involve only the soil strength. These 
were described in Chapters 7–10. In some circumstances, it is necessary to attempt to predict 
soil movements associated with foundations and other geotechnical structures. There is no 
alternative but to attempt to describe the stress–strain behaviour in some idealized manner, 
and carry out an appropriate calculation. The simplest approach—although it is somewhat 
unrealistic—is to model the soil as an elastic material, as described in Chapter 6.

Models based on the concepts of elasticity, plasticity and limiting equilibrium have been 
extensively described in Chapters 6–10. These models still form the basis of most routine 

Table 11.4  Effect of assumed distribution of shear stress on cylinder ends on τ u/T and T v/T. T is the 
total torque; T v is the component of torque due to shear on vertical surfaces

Conventional analysis (Equation 
11.49 with H = 2B)

Revised analysis (Equation 11.52 with 
n = 5 and H = 2B)

τ u/T (m −3) 0.273/B 3 0.3/B 3

T v/T 0.857(= 6/7) 0.941(= 16/17)
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geotechnical design: the results of a physical model test or a finite element analysis that 
were obviously incompatible would generally be scrutinized very carefully indeed. In large 
projects, perhaps involving novel designs, the use of numerical or physical modelling tech-
niques is not uncommon. The availability of more powerful personal computers has led to 
numerical modelling playing an increasingly significant role, even in routine geotechnical 
analysis. The aim of this section is to provide a brief overview of the principles and potential 
shortcomings of numerical and physical modelling techniques.

11.4.1 Numerical modelling

The use of finite element analysis to investigate steady state groundwater flow was discussed 
in Section 3.18. The finite element method may also be used to solve numerically the equi-
librium equations for a soil mass, while satisfying the condition of compatibility and the 
stress–strain relationship for the soil, for given boundary conditions.

In finite element analysis, the region of interest is divided into discrete (finite) elements 
with common nodes. A typical finite element mesh for the analysis of an embedded retain-
ing wall is shown in Figure 11.19. Smaller elements are used in regions where the changes in 
stress and strain are expected to be most significant—in this case, in the vicinity of the wall 
and the excavation. Some programs will generate the mesh automatically. Others include an 
adaptive mesh refinement procedure (AMR), which automatically reconfigures the mesh as 
the analysis progresses, to concentrate elements in zones of extreme deformation (Hicks 
and Mar, 1994).

The mesh should extend far enough laterally from the feature under investigation for changes 
in stress to be negligible. The lower boundary to the mesh will often (as in Figure 11.19) cor-
respond to some underlying stiff stratum. If no such stratum is present, the boundary should 
ideally be deep enough for changes in stress at this depth to be negligible. For a plane strain 
problem, this would typically be 6–10 times the width of the loaded or unloaded zone. It is 
usual to take full advantage of symmetry: for example, in the mesh shown in Figure 11.19b, 
only one half of the total excavation is modelled. The centreline and the far vertical bound-
ary are usually free to slide in the vertical direction (i.e. they are supported on rollers), while 
the bottom boundary is usually taken as pinned (Figure 11.19b). Modelling the far vertical 
boundary in this way does, however, mean that strictly it is a line of symmetry.

Most geotechnical finite element programs use the displacement method, in which the dis-
placement within each element is expressed as a polynomial function (known as the interpo-
lating polynomial) of the nodal displacements and the position of the element (Zienkiewicz, 
1967). The displacements are converted into strains using the condition of compatibility. 
The element stresses are then determined by means of the material stress–strain relation-
ship. Finally, the principle of virtual work is used to calculate the equivalent nodal forces 
that are in equilibrium with the internal stresses. The nodal forces should balance the loads 
due to the self-weight of the soil and the stresses at the boundaries.

The variation of strain within an individual element is determined by the interpolating 
polynomial used to calculate the displacements, and defines the order of the element. The 
order of the elements used will determine to a large extent the number of elements required 
in the finite element mesh for the analysis of a given problem. Elements in which the strain is 
assumed to be constant—such as constant strain triangles—are somewhat crude. Although 
higher order elements are available, a linear variation in strain within triangular or rectan-
gular elements—known as linear strain triangles and linear strain quadrilaterals—is nor-
mally found to give sufficient accuracy for many geotechnical problems. Full details of the 
implementation of the finite element method are given in Irons and Ahmad (1980), Smith 
and Griffiths (1996), and Potts and Zdravković (1999, 2001).
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Finite element methods are used routinely in structural analysis, and many programs are 
available commercially. However, a commercial finite element package designed mainly for 
solving structural or solid mechanics problems is unlikely to be suitable for geotechnical 
applications, for which the following features are required:

• The ability to carry out the analysis in terms of effective stresses, which means that the 
program must be capable of taking due account of pore water pressures.

• The ability to model consolidation of the soil, in which changes in specific volume are 
coupled to changes in effective stress as non-equilibrium pore water pressures dissipate.
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Figure 11.19  (a) Cross section through an underpass formed of propped embedded retaining walls, and 
(b) typical finite element mesh used in analysis. (Redrawn from Richards and Powrie, Proceedings 
of the Institution of Civil Engineers, Geotechnical Engineering, 107, 207–216, 1994. With permission.)
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• The facility to add elements, to simulate the construction of (for example) embank-
ments, and the facility to remove elements, to simulate excavation processes.

• The facility to model structural elements, such as props and retaining walls, using bar 
or beam elements if required.

With advances in computer technology over the past 20 years or so, numerical modelling 
using finite element analysis has become a popular and powerful analytical tool. Where con-
struction methods are complex, a numerical model may be the only way in which the effects 
of different construction sequences can be investigated. While most analyses are still carried 
out in conditions of plane strain or of axial symmetry, fully three-dimensional models are 
feasible if required.

The range of constitutive models required in geotechnical finite element analysis is likely 
to be rather more extensive than that needed for the analysis of many structures, for which a 
simple linear elastic model may often be sufficient. For soils, a transition point— dependent 
on effective stresses—from elastic to plastic behaviour is essential, for example based on 
a frictional failure criterion such as (τ/σ′) max = tan φ′crit (known as Mohr–Coulomb), or 
q = Μp′ (Cam clay).

A model which treats the soil as an elastic material until a stress state on the failure 
envelope is reached, after which the soil behaves as an ideal plastic material, is described as 
elastic–perfectly plastic and represents a bare minimum requirement for geotechnical analy-
sis. Further features may be incorporated including anisotropic behaviour, with different 
stiffness moduli in the vertical ( vE′) and horizontal ( hE′) directions ( )v hE E′ ≠ ′ ; a soil modulus 
increasing with depth ( )0E E mzz′ = ′ += ; or a modulus that changes with strain in some empiri-
cally defined way (Jardine et al., 1986).

Models such as Cam clay (Figures 5.26 and 5.27); modified Cam clay (Figure 5.29); or a 
finite element formulation of the behavioural regime proposed by Schofield (1980: Figure 
5.42), in which the shape of the yield surface on the dry side of the critical state is altered to 
mimic the Hvorslev surface and the tensile cut-off, may also be used.

Cam clay models will give an elastic stiffness that varies with average effective stress p′. 
The equation of one of the elastic unload–reload lines (on a graph of v against lnp′) shown 
in Figure 5.16b may be written as

 v = v κ − κ ln p′ (11.53)

where v κ is the intersection of the elastic line with the specific volume (v) axis. (v κ is not a 
soil constant: it is different for each elastic line.) Differentiating Equation 11.53 with respect 
to p′,

 dv/dp′ = −κ/p′

By definition, the elastic bulk modulus K = dp′/dε vol. The volumetric strain increment 
dε vol = −dv/v, so that

 K = −vdp′/dv = vp′/κ (11.54)

[The volumetric strain increment dε vol is defined as −dv/v so that a reduction in vol-
ume, denoted by a negative dv, corresponds to a compressive. i.e. positive, volumetric strain 
increment.]

Cam clay does not model the reduction in soil stiffness with strain following a change 
in the direction of the stress path (the recent stress history effect: Figure 6.2). There are, 
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however, models available which do: these include the three-surface model described in 
Section 5.21 (Stallebrass, 1990), and the brick model developed by Simpson (1992).

A further potential problem with the use of Cam clay is that the critical state is expressed 
not in terms of the angle of friction crit′ϕ  [(τ/σ′max) = tan crit′ϕ ], but in terms of the parameter 
M [q = Mp′: Equation 5.27]. The relationship between crit′ϕ  and M depends on the intermedi-
ate principal effective stress σ2, as indicated by Equation 5.36:

 ′ϕ =
− +  − −

M

b b b M
sin

3

6 (1 ) [(2 1) ]
crit

2
 (5.36)

where

 b 2 3

1 3

= ′σ − ′σ
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 (5.35)

The adoption of a value of M measured in triaxial compression tests will lead to an exces-
sively high value of crit′ϕ  in plane strain. This is because in triaxial compression 2 3′σ = ′σ , giv-
ing b = 0 and

 = ′ϕ
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crit
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In plane strain, σ 2 ≈ 0.5 × (σ 1 + σ 3), giving b ≈ 0.5 and

 = × ′ϕ3 sinplanestrain critM  (11.55b)

Assuming a constant value of ′ϕcrit, and eliminating sin ′ϕcrit from Equations 11.55a and 
11.55b,
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For example, with ′ϕcrit = 22°, M triaxial compression = 0.856 and M plane strain = 0.649.
It is generally accepted that a finite element analysis in which the high stiffness of soils 

at small strains is not modelled will tend to overestimate soil movements at the edges of 
the finite element mesh, where the changes in stress are very small (Jardine et al., 1986). 
Although the high stiffness of soils at small strains can be modelled empirically by means of 
a non-linear stress–strain curve, the realistic representation of soil stiffness in a numerical 
analysis is rather more complex than this. First, the use of the same stress–strain relation-
ship for all soil elements is unlikely to be appropriate in the field. Real stress paths will differ 
widely (e.g. between elements on different sides of a retaining wall). Secondly, it is necessary 
to alter the stiffness of the soil whenever the direction of the stress path changes. These 
problems can only really be overcome by the use of a soil model that takes into account the 
recent stress history of the soil, both at the start of and during the analysis.

Although a simple linear elastic/perfectly plastic model is unlikely to represent real 
soil behaviour it may, with the judicious selection of stiffness parameters, be possible to 
obtain realistic results. On the basis of the observed movements of a number of retaining 
walls in London Clay, Burland and Kalra (1986) back-calculated a soil stiffness profile 
for use in elastic–perfectly plastic finite element analyses in which the soil stiffness 
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increases linearly with depth. Having been calibrated against field data, this profile may 
be used with some confidence in predictive analyses of retaining wall displacements in 
similar conditions.

Chandler (1995) and Powrie et al. (1999) carried out finite element analyses of an 
embedded retaining wall on the A406 North Circular Road at Waterworks Corner, South 
Woodford, London, using three different soil models [Cam clay, an elastic– perfectly 
plastic model, and the brick model—described by Simpson (1992)]. The results showed 
that the calculated wall movements depended primarily on the effective soil stiffness. 
The calculated lateral stress depended more on the soil model than the soil  stiffness, 
while the calculated soil surface settlement profiles depended on both the soil model and 
the soil stiffness.

Higgins et al. (1993) back-analysed the M25 Bell Common retaining wall, using (1) a 
linear elastic/perfectly plastic soil model, with parameters derived from the back-analysis of 
previous excavations in London Clay; and (2) logarithmic relationships between G/p′ and 
axial strain, and between K/p′ and volumetric strain, based on triaxial test data (Jardine 
et al., 1986). They concluded that while it was possible to obtain reasonable results in terms 
of wall movements and bending moments using either method, it was necessary to model the 
construction sequence in some detail. On the other hand, calculated ground movements (as 
distinct from retaining wall movements) can be very sensitive to the soil model used in the 
analysis (Gunn, 1993; Burd et al., 1994).

To summarize, stress-based variables (such as structural bending moments) and per-
haps the movements of a propped retaining wall can probably be calculated reasonably 
closely using simple models, provided that the parameters which control the soil stiffness 
are selected with care. However, the satisfactory calculation of strain-based variables (such 
as the soil surface settlements behind a retaining wall or above a tunnel) depends on the use 
of a realistic soil model as well.

The facility to model and investigate the effects of construction processes is one of the 
strengths of finite element analysis. However, some degree of approximation will in many 
cases be necessary, especially where there are localized or three-dimensional effects in an 
otherwise plane strain analysis. In the case of the in situ retaining wall shown in Figure 
11.19, the sequence of analysis (starting with the wall already in place) was as follows:

 1. Removal of elements (over a period representing 22 days), simulating excavation 
between the walls to 5.5 m below the original ground level

 2. Addition of a bar element, simulating the installation of a temporary prop at a depth 
of 5 m below the original ground level

 3. Removal of elements (over a period representing 28 days), simulating excavation to 
10.3 m below the original ground level

 4. Addition of concrete elements, simulating the placement of a permanent reinforced 
concrete prop slab at the formation level

 5. Addition of a bar element at the top of the wall, simulating the installation of a perma-
nent prop at the crest level

 6. Removal of the bar element at 5 m below the ground level, simulating the removal of 
the temporary prop

 7. 120 years’ excess pore water pressure dissipation, modelling the long-term behaviour 
of the wall

It is quite common in finite element analyses of in situ retaining walls to start with the wall 
already in place. This is primarily because although it is possible to model wall installation, 
the complexity of the analysis is increased considerably. Also, the effects of wall installation 
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are in reality three-dimensional (particularly if the wall is made up of individual bored 
piles), and can only be represented approximately in a two-dimensional analysis.

Wall installation effects may be significant in three different ways:

 1. The ground movements that occur during wall installation may be of the same order 
as those during the main excavation stage.

 2. In an overconsolidated clay, the process of wall installation will tend to reduce the 
horizontal stresses to below their in situ values.

 3. The wall installation process defines the recent stress history of the soil, thereby influ-
encing the soil stiffness at the start of excavation.

If wall installation is not modelled explicitly, the second of these effects is sometimes 
approximated by specifying horizontal effective stresses at the start of the analysis that are 
less than the actual in situ values. This is not ideal, because the assumed reduction in lateral 
stress extends across the entire mesh, whereas in reality it would be confined to the soil in 
the vicinity of the wall. Nonetheless, provided that the reduced lateral stresses are chosen 
with regard to the intended construction process (e.g. diaphragm wall panels or bored piles), 
it is arguably better than doing nothing.

In an analysis in which the soil consolidates as non-equilibrium pore water pressures dis-
sipate, the time increment over which a loading or unloading process (e.g. excavation) takes 
place must be specified. The program will then automatically calculate the degree of drain-
age which takes place, without the need for the user to decide whether a process is effectively 
drained or undrained. Alternatively, if it is obvious that a process is either fully drained or 
truly undrained, an appropriate non-consolidation analysis can be carried out.

In formulating the stress–strain relationship, some programmers use a tangent stiffness 
procedure, in which the stiffness matrix of the soil at the start of an increment of load-
ing (or unloading) is assumed to apply throughout that load increment. If the stress–strain 
curve changes from linear elastic to plastic during the load increment, this will lead to 
errors. If the stress–strain curve is non-linear, errors will build up as the analysis progresses 
(Figure 11.20a). The size of the error can be reduced by applying the load in a number of 
small increments, as shown in Figure 11.20b. A more satisfactory approach is to use an itera-
tive procedure, in which the stress–strain state after the application of the load is repeatedly 
checked and corrected until it lies on the stress–strain curve (Figure 11.20c). Although the 
iteration process adds to the time taken for each load increment, the overall time taken for 
an analysis to run can be reduced because the load can be applied in fewer increments. A 
further substantial benefit is that there is rather less uncertainty that the correct solution has 
in fact been obtained.

In many programs, it is assumed that the strain increment vector at failure is perpendicu-
lar to the failure surface when the stress and strain increment axes are superimposed (the 
normality condition: Figure 7.21, Section 7.8). For frictional failure criteria such as q = Mp′ 
and (τ/σ′) max = tan φ′, this implies a non-zero rate of dilation at failure: thus the calculated 
volumetric strain rates (or negative pore water pressures in undrained conditions) are likely 
to be unrealistically high.

Finite element analysis has become much more accessible in recent years and is no longer 
the preserve of specialists. Nonetheless, the use of finite element programs requires consider-
able skill and care if misleading results are to be avoided—or at least identified, investigated 
and discounted.

Woods and Clayton (1993) catalogue some of the problems experienced by users of 
a finite element program (CRISP) based on the concepts of critical state soil mechanics 
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(Britto and Gunn, 1987). The code is widely available, and relatively easy for users to 
modify or extend. The issues discussed by Woods and Clayton (1993) include:

• The use of the normality condition (also termed an associated flow rule), which can 
lead to excessive dilation, strength and stiffness

• The need for special interface elements in soil–structure interaction problems (e.g. a 
retaining wall that tends to separate from the soil)

• The use of a tangent stiffness solution routine, which may require a large number of 
increments for numerical accuracy

• The fact that bending moments in retaining walls should be calculated from the stresses 
within the wall, rather than from the stresses in the adjacent soil

It must also be recognized that there is no point in carrying out a sophisticated analysis 
unless it is justified by the quality of the data. A finite element analysis will not compensate 
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Figure 11.20  (a) Cumulative error due to tangent stiffness solution routine; (b) reduction in error by use of 
small load increments; (c) elimination of error by use of iterative solution technique.
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for an inadequate site investigation and laboratory testing programme. Finally, in some soil 
models, the effect on the results of an analysis of the parameter values used can be dispro-
portionately large. One possible example of this is the slope of the Hvorslev surface in the 
Schofield model (Figure 5.42), which governs the peak stress ratios q/p′ sustainable by the 
soil (Richards, 1995).

11.4.2 Physical modelling: geotechnical centrifuge testing

Physical modelling tends to be used for the investigation of basic mechanisms of collapse 
or deformation, parametric studies and the validation or calibration of numerical codes. In 
principle, physical modelling techniques could be used directly in design. In the UK this is 
relatively uncommon, but elsewhere it is more routine.

It has already been mentioned that in numerical modelling it can be difficult to describe 
the stress–strain relationship of the soil in a way that is appropriate to the stress–strain 
paths being followed by all soil elements at all times. Small-scale physical modelling at 
normal gravity (1g) does not solve this problem, because the stresses resulting from the 
soil self weight are too low. As stress–strain relationships depend on stress history, stress 
state and stress path, the stress–strain behaviour in the field will not be replicated in the 
model. Even if it is only conditions at failure that are being investigated, the low stresses 
in 1g tests in sands can give misleading results, because the effects of dilation may be far 
more significant than they would be at higher stresses in a field construction. In clays, the 
stresses driving failure may be much too small in relation to the undrained shear strength. 
These problems can be overcome by testing a 1/n scale model in a geotechnical centrifuge in 
a radial acceleration field of n times normal gravity, so that self weight stresses are the same 
at corresponding points in the model and in the field (Figure 11.21).

Most of the centrifuges used to test geotechnical models consist in essence of a rotating 
arm, balanced by means of a counterweight. The model itself is contained within a strong-
box, which is placed at the end of the centrifuge arm. Centrifuges used in geotechnical model 
testing range from a few centimetres in radius to perhaps 10 m. The very small machines are 
used primarily to investigate mechanisms of collapse in small-scale models at a high cen-
trifugal acceleration: there is no room to install instrumentation to measure soil movements, 
stresses or pore water pressures. The very large machines can be unwieldy and expensive to 
operate. Many geotechnical centrifuges therefore have radii in the range 1.5–4 m, with 2 m 
being a suitable radius for convenient and economical operation. A review of the historical 
development of centrifuge testing is given by Craig (1995), while a useful description of the 
principles and some applications of centrifuge modelling is given by Schofield (1980).

Prototype Model

g

rω2 = ng
rω

Figure 11.21  Inertial (centrifugal acceleration) effects in a centrifuge model replace gravitational effects 
in a field construction. (Redrawn from Schofield, Géotechnique, 30, 2, 129–170, 1980. With 
permission.)
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In centrifuge modelling, considerable thought must be given to the scaling relationships. 
In a 1 : n scale centrifuge model, linear dimensions are reduced by a factor of n, while stresses 
and pore water pressures are the same at corresponding depths in the model (at ng) and in 
the full-scale 1g prototype. (The term prototype is used to describe the full-scale construc-
tion to which the model would correspond, without meaning to imply that such a structure 
would ever necessarily actually be built.) From these, it follows that areas and forces are 
reduced in the model by a factor of n 2, and volumes and bending moments by a factor of n 3. 
Consolidation times scale in proportion to the square of the drainage path length, so that 
they are reduced in the centrifuge by a factor of n 2. This is a consequence of the reduced 
scale, not of testing the model in a centrifugal acceleration field. It is also one of the major 
advantages of small-scale testing: at a scale of 1:100, a year’s consolidation can be observed 
in less than an hour.

For true similarity in dynamic tests (in which accelerations and inertial forces are 
 important), the frequency in the model must be n times greater than in the prototype. 
This means that for dynamic events, time in the model is reduced by the scale factor n. In 
centrifuge tests in which an earthquake is simulated, the time scale factor associated with 
consolidation events (such as non-equilibrium pore pressure dissipation) is therefore dif-
ferent from that for dynamic events. This problem can be overcome by using silicone oil, 
with a viscosity n times greater than the viscosity of water, as a pore fluid. The increased 
viscosity of the silicone oil slows down its flow velocity, so that the timescales for consoli-
dation processes and dynamic events are the same. In quasi-static tests, in which loading 
and unloading take place relatively slowly (and which cover most types of geotechnical 
engineering construction in the majority of situations), the discrepancy in the dynamic 
timescale is irrelevant.

It is usual to use the same soil in the centrifuge model as in the prototype construction. 
This means that the ratio of the dimension of the structure L (e.g. the depth of an excava-
tion or the width of a foundation) to the typical particle size D 50 is n times smaller in the 
model than in the prototype. Usually, this will not have a significant effect, provided that the 
structure to particle size ratio L/D 50 is still large (Davis and Auger, 1979).

Sometimes, however, the particle size may be large in comparison with the feature being 
tested. For example, a 1-m thick resistive layer within a landfill cap tested at a scale of 1:40 
would be only 25-mm thick. In such a case, it might be necessary to carry out centrifuge 
tests using a soil in which the particle size had been reduced to maintain a large enough 
structure to particle size ratio, L/D 50. This could change soil parameters such as the con-
solidation coefficient quite considerably, with potentially significant implications as far as 
other aspects of the test were concerned. A number of tests at different scales could be car-
ried out—a procedure known as modelling of models—to establish the maximum scale 
factor at which similar results will be obtained using the same material in the model as in 
the prototype.

Some of the main scaling relationships for centrifuge modelling are given in Table 11.5. If 
there is ever any doubt as to the validity of the modelling procedure in any particular case, 
models should be tested at two or more different scales. If the scaled results are not the 
same, the implication is that something has been missed in the modelling process. Scaling 
considerations in general are discussed by Taylor (1995: pp. 19–33).

Centrifuge model tests have been carried out to investigate the behaviour of almost every 
conceivable geotechnical construction and process, including trench excavations, most kinds 
of retaining wall, reinforced soil, soil nails, tunnels, embankments, piled foundations, shal-
low foundations, landfill caps and liners, and pollution migration. Apparatus has been devel-
oped to construct embankments in stages, to drive piles into the soil, to load foundations to 
failure, to simulate or even carry out excavation processes, and to measure the properties 
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of the soil while the model is spinning round in the centrifuge. Some idea of the scope of 
centrifuge modelling activity worldwide is given by the proceedings of the last few inter-
national conferences on the topic (Phillips et al., 2002; Ng et al., 2006; Springman et al., 
2010), the book edited by Taylor (1995), and the collection of papers by Davies et al. (1998). 
A useful review of modelling contaminant transport is given by Culligan and Barry (1998).

Standard transducers are available to measure soil surface movements and pore water 
pressures. Structural loads such as axial forces in props and bending moments in piles or 
retaining walls are usually measured by means of specially designed load cells, or strain 
gauges arranged in an appropriate bridge network. Miniature video cameras can be used 
to record the progress of a centrifuge test, and the images can be analysed after the test to 
determine patterns of soil displacement from black marker beads embedded in the visible 
face of the model. More recently, techniques have been developed to measure soil movements 
directly (i.e. without the need for markers), using digital image analysis (White et al., 2003). 
The measurement of total stress within the soil mass, or total stress against a retaining wall, 
is difficult but has been attempted by some researchers (Page, 1996).

Figure 11.22a shows a schematic cross-section of a centrifuge model of a propped embed-
ded retaining wall in clay. The model is contained within a strongbox suitable for testing 
on a 1.8 m radius centrifuge, as shown in Figure 11.22b. The strongbox is constructed from 
aluminium alloy, and incorporates a perspex viewing window in the front face so that the 
cross-sectional plane of the model may be observed during the test.

Clay models are usually consolidated to a known equilibrium state before the changes in 
stress comprising the actual test are imposed. The one possible exception to this is a study 
carried out to investigate mechanisms of undrained collapse, in which the centrifugal accel-
eration might be increased steadily to initiate the rapid collapse of a model in a clay sample 
having a uniform profile of undrained shear strength τ u with depth. In such a case, a low 
permeability clay should be used to ensure that any changes in volume—and hence in und-
rained shear strength—that occur during the gradual increase in centrifugal acceleration 
are insignificant.

In the case of the model shown in Figure 11.22, the actual test is the excavation of the soil 
from in front of the retaining wall and the installation of props at two levels. This must be 

Table 11.5  Scale factors for centrifuge modelling, assuming that the soil in the model has the 
same properties as the soil in the prototype

Quantity Value in prototype
Value in model at a scale of 

1: n

Linear dimension L p L p/n

Area A p A p/n 2

Volume V p V p/n 3

Stress σ p σ p
Force F p F p/n 2

Moment M p M p/n 3

Displacement δ p δ p/n
Strain ε p ε p
Consolidation time t cp t cp/n 2

Frequency (dynamic tests) f p nf p
Time for dynamic events t dp t dp/n
Speed (dynamic tests) v p v p
Acceleration (dynamic tests) a p a p/n
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carried out or simulated without stopping the centrifuge, otherwise the known equilibrium 
stress state will be lost. The clay used to make the model shown in Figure 11.22 is prepared 
by one-dimensional consolidation in a large press. On removal from the press, a slot is cut 
in the clay sample to receive the model wall. The soil within the main excavation is also 
removed at this stage, and replaced by a rubber bag filled with a heavy fluid having the same 
unit weight as the soil. During reconsolidation, the vertical stress exerted by the fluid in the 
rubber bag on the soil below excavation level in front of the wall is the same as would have 
been exerted by the soil removed.

At the end of reconsolidation, the clay is in a state corresponding to an idealized field 
condition, in which the vertical effective stress increases with depth and the pore water pres-
sures are hydrostatic below the groundwater level set by the modeller. A valve-controlled 
wastepipe is used to drain the heavy fluid from the rubber bag, simulating the excavation of 
the soil from in front of the wall, at an appropriate stage following reconsolidation of the 
clay sample in the centrifuge. This is the most common technique for simulating excavation 
processes in the centrifuge.

(a)

(b)
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Figure 11.22  Centrifuge model of a twin-propped embedded retaining wall: (a) schematic cross-section. 
(Redrawn from Powrie et al., in Centrifuge’ 94, 655–661, A.A. Balkema, Rotterdam, 1994. With 
permission.) (b) Strongbox assembly. (From Richards, Centrifuge and numerical modelling of twin 
propped retaining walls, PhD dissertation, University of London (Queen Mary and Westfield 
College), 1995. With permission.)
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As with the finite element analysis of Figure 11.19, the centrifuge model test shown in 
Figure 11.22 starts with the wall in place. It has already been mentioned that the installation 
of a diaphragm wall may change the lateral stresses significantly from their initial in situ val-
ues. The exact effect of the installation of the wall depends on a number of factors, but a lat-
eral earth pressure coefficient prior to excavation in front of the wall (K i) of unity in the soil 
close to the wall in many cases represents a reasonable estimate (Tedd et al., 1984; Powrie, 
1985). If, as in the example shown in Figure 11.22, the heavy fluid is mixed to the same unit 
weight as the soil it replaced, the vertical and horizontal stresses in front of the wall above 
formation level are the same at any depth. This is consistent with a pre-excavation lateral 
earth pressure coefficient K i = 1, representing the effect of diaphragm wall installation. The 
pre-excavation lateral stresses on the wall below formation level are, however, unknown.

The draining of fluid from a rubber bag to simulate the stress changes resulting from exca-
vation can be used to simulate preexcavation earth pressure coefficients other than unity. 
For example, Lade et al. (1981) used paraffin oil with a density of 7.65 kg/m 3 to give a pre-
excavation earth pressure coefficient of approximately (1 − sin φ′) in a granular material. At 
the other extreme, Powrie and Kantartzi (1993, 1996) describe the use of sodium chloride 
solution of density 1162 kg/m 3, contained in a rubber bag filled to a height h above the level 
of the soil surface, to impose a profile of lateral earth pressure coefficient with depth similar 
to the in situ conditions in an overconsolidated clay deposit in the field. (The fluid height h 
and the unit weight of the salt solution were chosen so that at the base of the excavation the 
vertical stresses inside and outside the rubber bag were equal.) Following reconsolidation, 
the salt solution was drained to the level of the soil surface and diluted, simulating the stress 
changes caused by excavation of a diaphragm wall trench under bentonite slurry.

Other methods of simulating excavation in the centrifuge include the removal of rigid sup-
ports (Craig and Yildirim, 1976). Alternatively, the soil within the excavation could be con-
tained within a flexible porous fabric bag, which is winched clear at the appropriate stage 
of the centrifuge test using an electric motor, as proposed by Ko et al. (1982). The extent to 
which the latter method has actually been used successfully in practice is, however, unclear. 
Kimura et al. (1994) describe the development and operation of a mechanical scraper physi-
cally to excavate the soil from in front of a pre-installed retaining wall.

The evolution of centrifuge modelling techniques to investigate the behaviour of geotech-
nical structures such as embedded retaining walls has reflected the development of methods 
of construction in geotechnical engineering practice. For example, centrifuge model tests 
on embedded retaining walls carried out by Powrie (1986) demonstrated the efficiency of 
props at formation level in terms of minimizing wall movements for a given retained height 
to depth of embedment ratio. The main shortcoming of these tests [some of whose results 
were summarized by Powrie and Li (1991)] was that the propping system had to be installed 
prior to reconsolidation and excavation in the centrifuge.

The tests carried out by Richards (1995: Figure 11.22) to investigate the behaviour of 
in  situ walls propped at both crest and formation level incorporated props with locking 
devices so that the props would not begin to take load or resist movement until enabled to 
do so by the modeller (Richards and Powrie, 1998.) Walls propped at two levels are often 
used for underpasses at major interchanges on roads in urban areas.

Open excavations of all kinds are usually modelled by draining a heavy fluid from a rub-
ber bag. The technique is also used for closed excavations such as tunnels, although in some 
cases the tunnelling process is replicated by reducing the air pressure (starting from the aver-
age in situ soil stress) within a sealed membrane, and it is now possible to excavate a tunnel 
using a miniature tunnelling machine as described by Nomoto et al. (1994).

It may be difficult to justify the costs involved in the development of sophisticated con-
struction and excavation techniques unless some important aspects of soil behaviour are 
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neglected or obliterated by the use of a simple method. Sometimes this will be the case. It 
is now recognized that, if realistic results are to be obtained from centrifuge model tests 
on driven piles, the piles must be installed in the centrifuge at the test acceleration (Craig, 
1984). This has necessitated the development of in-flight pile-driving hammers (de Nicola 
and Randolph, 1994), which are now used as a matter of routine.

The modelling method adopted in any given situation will depend on a number of factors. 
These include the nature of the problem being investigated, the purpose of the model, and 
the constraints of time and cost. The various modelling techniques complement rather than 
compete against each other. Each has a contribution to make, and it falls to the geotechnical 
engineer to draw on the totality of these contributions both to reach an understanding of the 
problem in hand and to develop an appropriate method of geotechnical engineering design.

11.5 GROUND IMPROVEMENT

Although a defining feature of geotechnical engineering is the requirement to work with the 
natural materials on the site, various methods can be used to improve the strength and the stiff-
ness of the ground by treating it in situ. These include densifying treatments such as compac-
tion or preloading; pore water pressure reduction techniques such as dewatering (Chapter 3, 
and in particular Section 3.19) or electro-osmosis (Section 3.19.5); the bonding of soil par-
ticles by ground freezing (Section 3.19.6), grouting, and cement and lime stabilization; and the 
addition of reinforcing elements such as geotextiles and stone columns. The aim of this section 
is to give a brief overview of some of the more popular techniques of ground improvement not 
already covered in the context of groundwater control in Chapter 3, with particular emphasis 
on the basic physical and chemical mechanisms involved. It is not intended to make you into 
an expert on ground improvement techniques. You will need to consult specialist texts such 
as those by Hausmann (1990) when the need arises;  some more recent developments are 
described in the 11th Géotechnique symposium in print (Raison et al., 2000).

11.5.1 Grouting

Grouting, mentioned in Section 3.19.7 as a way of creating a physical barrier to the flow 
of groundwater through the soil pores, can also be used to make the ground stiffer and 
stronger Cement-based grouts may be used for coarse materials such as gravels and fissured 
rock, but will not penetrate a material finer than a very coarse sand. For medium sands, 
chemical grouts such as sodium silicate in colloidal suspension may be used. (A colloid is 
a solid particle small enough to remain indefinitely in suspension in a fluid, due to random 
molecular or Brownian motion.) The grouting of fine sands and silts requires the use of a 
solution grout such as an acrylic resin. In clay soils, grouts can only be injected into fissures 
and along rupture surfaces, but this can help to stabilize slopes—at least temporarily. While 
an effective water barrier can be formed by penetrating only the coarser materials (e.g. a 
gravel lens), satisfactory ground improvement requires virtually all of the particles must be 
bonded together.

If it cannot permeate between the soil particles, the grout may open and penetrate along 
a fissure. This process is known as hydrofracture. In theory, hydrofracture becomes a pos-
sibility when the grout injection pressure exceeds the smaller of the lateral or the vertical 
stresses in the ground, at the point of injection. In practice, hydrofracture is likely to occur 
at an injection pressure of 2–6 times the overburden. The creation of long, thin fissures 
serves no useful purpose. However, the injection of pressurized grout to form short, wedge-
shaped fractures might lead to some useful local compaction of the soil adjacent to each 
fracture. For this purpose, a reasonably viscous grout paste is used.
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Other applications of grouting include jacking up buildings that have suffered excessive 
settlement, underpinning buildings whose foundations are failing, and a technique known as 
compensation grouting. Compensation grouting is a pre-emptive measure, which involves the 
injection of grout during the construction of an underground excavation such as a tunnel. The 
aim is to cause a degree of heave at the soil surface that exactly compensates for the surface 
settlement due to the construction of the tunnel, with the result that there is no net movement 
at the soil surface (or at the base of the foundation of the building it is sought to protect). In 
this way, tunnels can be constructed beneath densely built-up areas without damaging exist-
ing buildings. Figure 11.23 illustrates the use of compensation grouting in connection with 
tunnelling work for the former Waterloo International railway station in London.

To control the grouting operation, the parameters influencing the rate of grout penetration 
into the surrounding soil (i.e. the pumping pressure, the grout flowrate and the grout viscosity) 
must be monitored continuously. Grout viscosity varies with gel strength, which increases as 
the grout begins to set or gelate. The rate of gelation will depend in turn on the nature of the 
grout, and factors such as the temperature of the ground. In compensation grouting, ground 
movements must also be monitored in order to provide a continuous check on the effectiveness 
of the operation. Careful consideration must also be given to the potentially adverse environ-
mental consequences of grouting, including pollution and the disruption of water courses.

Further details of grouting processes and applications are given by Hausmann (1990).

11.5.2 Preloading

Overconsolidated clays have generally higher stiffnesses and undrained shear strengths than 
normally consolidated clays (Figure 4.6). The stiffness and undrained shear strength of a 
normally consolidated soil in the field may therefore be improved by artificial overconsolida-
tion, known as preloading. Before construction work commences, the soil is preloaded to a 
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Figure 11.23  Effect of compensation grouting in reducing the settlements of structures during tunnelling 
near Waterloo railway station, London. (Redrawn from Wheeler, Ground Engineering, 26, 7, 
14–16, 1993. With permission.)
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vertical effective stress in excess of the anticipated working load. The preload may be applied 
by means of a surcharge at the ground surface (e.g. water in tanks or an additional over-
burden of soil), or by reducing the pore water pressures using vacuum wells (Section 3.19).

As preloading is usually used in connection with clay soils, there will be a delay between 
the application of the preload and the response of the soil in terms of increased effective 
stresses and settlements, because of the time taken for the soil to consolidate. Following 
the application of the preload, soil settlements must be monitored and compared with the 
expected behaviour, so that the preload can be removed at the optimum time. An example 
of this is given in Question 6.8. Consolidation times can be reduced by the installation of 
vertical drains, as described in Section 4.9.

As a first approximation, rates of consolidation may be estimated using the simple models 
presented in Chapter 4. Variations in vertical stress increment with distance (both horizon-
tally and vertically) from the loaded area may be estimated using elasticity-based methods, 
such as the Newmark chart described in Section 6.4.

Preloading can also be used with coralline or calcareous soils, which may exhibit very 
large strains on first loading due to the crushing of fragile hollow particles.

11.5.3 Surface compaction

Surface compaction of soils may be achieved in the following ways (Van Impe, 1989):

• Application of shearing stresses which essentially cause a local failure of the soil (by 
means of smooth metal rollers, sheepsfoot rollers or pneumatic tyred rollers)

• Application of tamping or dynamic energy (using pounders or rammers)
• Vibration (using vibrating plates)
• A combination of shear stresses and vibration (using vibrating rollers)

These types of surface compaction are most effective on granular materials compacted in 
thin layers (0.3–0.5 m thick), such as the soil used to backfill a trench or behind a retaining 
wall. Specifications for the satisfactory compaction of backfill material used in highway works 
are issued by the UK Department of Transport (DoT) (Department of Transport, 1993), and 
most manufacturers of compaction equipment provide technical literature enabling plant 
to be selected on the basis of its ability to meet the DoT specification in a given application.

Clay is sometimes used as a backfill, because it is less expensive and/or more readily avail-
able than granular material: it is generally, however, more difficult to compact. Excavated 
clay waste is usually in the form of clods with air voids in between. The overall specific 
volume of the excavated clods in bulk may be up to 50% greater than that of the intact clay. 
Compaction of the material is achieved by reshaping the clods so that they become more 
closely packed, reducing the volume of the air voids to about 5%. This requires sufficient 
compactive effort to overcome the undrained shear strength which, if the clay has been exca-
vated from some depth, may be quite high. The satisfactory compaction of clay fill depends 
on the application of shear stresses large enough to remould the clods, rather than dynamic 
loads or vibration. Unless there are initially significant air voids, any attempt at compaction 
of an essentially clayey soil is unlikely to be effective.

11.5.4 Heavy tamping

Heavy tamping involves the repeated dropping of a heavy weight (up to 170 tonnes) from 
a height of perhaps more than 20 m, onto a number of places on the surface of the soil, in 
a grid pattern at a spacing of up to 15 m. The technique was first used to compact layers 
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of loose, granular material from the surface. The vibrations due to heavy tamping com-
prise both longitudinal waves, which disturb and rearrange the soil skeleton, and transverse 
waves, which compact the soil at depth.

Heavy tamping may also be used on low-permeability plastic soils, where compaction 
can result from two mechanisms. First, immediate settlements may occur due to the com-
pression or dissolution into the pore water of small bubbles of gas. These gas bubbles may 
comprise between 1% and 4% of the total volume, and are found in many alluvial clays 
because of the presence of organic matter and micro-organisms. Second, the increase in pore 
water pressure, which results from dropping the heavy weight, is large enough to reduce 
the effective stresses to zero and cause fissures to develop in the soil. The fissures act as fast 
drainage paths, enabling pore water to escape and speeding up the process of consolidation. 
In low permeability soils, the time intervals between drops of the heavy weight must be long 
enough to allow consolidation to take place.

The depth D to which heavy tamping is effective may be estimated using Equation 11.56 
(Hausmann, 1990):

 D (metres) = 0.5 √WH (11.56)

where W is the mass of the falling weight in tonnes and H is the height of fall in metres. 
This is an empirical relationship, and is of no help in determining the grid spacing of the 
impact points required for effective compaction of the entire volume of soil. A more detailed 
appraisal is given by Gu and Lee (2002).

It is almost always necessary to spread a layer of stone fill 1.5–2 m thick on the surface of 
a site which is to be compacted using heavy tamping, both to support the plant (which could 
weigh 200–300 tonnes) and to prevent or limit the formation of craters. Heavy tamping is 
particularly useful for compacting loose, variable material that contains large voids (such as 
waste tips), but should be used with caution near existing buildings because of the possibil-
ity of damaging vibrations.

11.5.5 Cement and lime stabilization

Soils can be improved or stabilized by mixing in cement or quicklime. In both cases, the 
principal mechanism of improvement is the formation of chemical bonds between the soil 
particles. The main benefits are increased stiffness and durability, and better volume sta-
bility (i.e. the soil becomes less susceptible to shrinkage or swelling). The undrained shear 
strength (or the unconfined compressive strength, if appropriate) will also increase as a 
result of the chemical bonding or cementation of the soil particles, but the improved mate-
rial may be brittle because once the bonds are broken their strength is lost completely. Lime 
may be added to a clay to improve its workability; the water content at the plastic limit is 
increased and at a given water content the clay becomes more friable (i.e. crumbly). The 
addition of lime will also make the soil more difficult to compact, so that the dry density 
(Section 1.12) achieved for a given compactive effort will be smaller. However, the compac-
tion curve of dry density against water content (Figure 1.18) will be flatter, so that the dry 
density achieved by compaction is less dependent on the water content.

Cement stabilization of soils works because cement and water react to form cementitious 
calcium silicate and aluminate hydrates, which bind the soil particles together. In addition, 
the hydration reaction releases calcium hydroxide Ca(OH) 2, slaked lime, which may in turn 
react with some components of the soil, in particular clay minerals. Hydration of the cement 
occurs immediately on contact with water, but the secondary reactions are slower and may 
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continue for many months. Cement stabilization can be used successfully in a wide range 
of soils, because the primary reaction, hydration, is independent of soil type. Difficulties 
are normally only encountered with coarse gravels or soils with a high organic content. The 
effectiveness of the treatment depends on adequate mixing and compaction, which in high-
plasticity soils (i.e. clays) can be difficult to achieve.

In lime stabilization, no cementitious calcium silicates and aluminates are formed and the 
technique relies entirely on the reaction between the lime and the soil. Lime stabilization 
therefore only works in soils with a substantial proportion (>35%) of fine particles (<60 µm). 
Lime may be added as quicklime, CaO, or as hydrated (slaked) lime, Ca(OH) 2. Quicklime 
reacts with water to give hydrated lime plus a considerable amount of heat (65.3 kJ/mol). 
Quicklime is more cost effective in terms of transport and handling because hydrated lime 
contains about 25% water.

If quicklime is mixed into the soil it will react immediately with the pore water, resulting in 
a drying of the soil which is usually beneficial, particularly in terms of improving trafficability 
on site. On mixing lime with clay, the cations adsorbed onto the surfaces of the clay particles 
(e.g. sodium) are exchanged for calcium, resulting in a structural change which causes the clay 
particles to coagulate (i.e. form into small clumps). This reduces the plasticity index of the clay, 
improving its workability and potentially (after compaction) its strength and stiffness. For 
kaolinite clays, both the plastic limit (w PL) and the liquid limit (w LL) are increased, while for 
montmorillonite and illite, the plastic limit is increased but the liquid limit is reduced. In both 
cases, however, there is a reduction in the plasticity index (PI = w LL − w PL) (Van Impe, 1989).

The main contribution to the increase in undrained shear strength and stiffness of lime-
stabilized soils comes from cementation, as the second stage of the clay/lime reaction 
removes silica from the clay mineral lattice to form products similar to those resulting from 
the hydration of cement. The effectiveness of the cementation process increases with the 
specific surface area of the soil particles: lime stabilization does not work in clean sands and 
gravels. The degree of cementation is limited by the available silica, and there is no benefit in 
adding more lime than the amount required to utilize the silica content of the soil. The addi-
tion of too much lime can be counterproductive, in contrast to stabilization using cement, 
where the increase in strength depends on the amount of cement added.

Typically, the ratios of cement or lime to soil used in practice are in the range 2%–10%.

11.5.6 Soil reinforcement

Ground improvement may be achieved by methods which do not treat the bulk of the volume 
of soil, but aim to provide sufficient local reinforcement to influence the overall performance. 
An example of this is the use of horizontal reinforcement strips in a reinforced soil wall, as dis-
cussed in Section 7.9. Horizontal reinforcement, in the form of a polymer geotextile or geogrid 
layer (Figure 11.24), may also be incorporated into the base of an embankment to prevent it 
from spreading. A review of the uses and properties of geotextiles is given by John (1987), and 
a comprehensive guide to designing with geosynthetics by Koerner (2012).

In cases where excessive settlement is a potential problem, the ground may be reinforced 
vertically by the installation of stone (or gravel or sand) columns. In granular soils, stone 
columns are often installed using a technique known as vibroflotation. This involves the 
densification and compaction of the natural soil by means of a long, horizontally vibrating 
lance, typically 0.4 m in diameter, penetrating vertically into the ground. The centre of the 
lance is hollow, and is used to introduce additional material (the stone column) into the void 
formed by the compaction of the original ground.

In clay soils, which are not amenable to compaction by vibration, the hole for the stone 
column may be drilled out (as for a bored concrete pile), or formed by hammering a hollow 
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steel tube into the ground. In the latter case, the stone or gravel is introduced and compacted 
through the inside of the tube as it is gradually withdrawn. The main benefit is then the rein-
forcing effect of the stiffer and stronger granular columns. A potential secondary benefit is that 
the columns may act as vertical drains, reducing drainage path lengths and consolidation times. 
A case history describing the use of stone columns to stabilize and accelerate consolidation of 
the foundations for an embankment on alluvial clay is given by Cooper and Rose (1999).

Vertical reinforcement in clay soils can also be achieved by means of lime-stabilized col-
umns. Lime-stabilized columns are formed by remoulding the soil in place using a vertical 
mixer, while at the same time introducing an appropriate quantity (usually between 3% 
and 10% of the dry mass of the soil) of quicklime and/or gypsum. As mentioned in Section 
11.5.5, some benefit may derive from a reduction in the water content of the immediately 
surrounding ground as pore water is used in the hydration reaction, in addition to the 
increased strength of the lime-stabilized column due to the formation of cementitious bonds.

Lime-stabilized columns formed by mixing dry lime powder into the soil tend to show an 
increase in permeability compared with the untreated soil, and so may act to some extent 
as preferential drainage pathways. On the other hand, lime-stabilized columns installed by 
injecting a suspension of lime powder in water into the soil seem to have a lower permeabil-
ity than the untreated ground. Van Impe (1989) suggests that this difference may be due to 
the fact that the second method results in smaller effective pore spaces.

Applications of lime-stabilized columns include the reduction of soil settlements and the 
stabilization of slopes. However, there may be some uncertainty concerning the long-term 
durability of the lime-stabilized columns. Further details are given by Van Impe (1989) and 
Hausmann (1990).
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Figure 11.24  (a) Polymer mesh geotextile; (b) typical geogrid arrangement; (c) reinforcement of embank-
ment base using geotextile or geogrid layer.
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11.5.7 Assessing the success of ground improvement techniques

It is important that the improvement resulting from any form of ground treatment is assessed 
and quantified, preferably as the work progresses. This must generally be carried out using 
in situ testing techniques. The success or otherwise of any method of soil improvement will 
depend to a considerable extent on its suitability for the ground conditions to which it is 
applied. In this respect, it is always worth a search of the literature for previous documented 
experience before embarking on any programme of ground improvement. While it is true 
that we learn from mistakes, the best mistakes to learn from are those made by others, so 
that we do not repeat them ourselves.

KEY POINTS

• Modelling is an essential activity for a geotechnical engineer. Models are needed to 
assess the performance of structures, quantify the behaviour of soils and characterise 
the ground at a project site. These three aspects of geotechnical modelling are some-
times known as the geotechnical triangle.

• The ground model must be developed by means of a geotechnical site investigation, 
which comprises a desk study of relevant maps and documents together with appropri-
ate field and laboratory tests.

• Problems relating to the representativeness of small specimens and disturbance to the 
soil during sampling mean that in situ testing must often be carried out, in addition to 
exploratory boreholes and laboratory tests, to characterize and determine the relevant 
properties of the ground.

• Empirical correlations can be made between the blowcount in a Standard Penetration 
Test (SPT) and a number of soil parameters, including the density index I D, the stiff-
ness modulus E′, and the peak strength ′ϕpeak. To account for variations in equipment 
type and test procedure, the raw SPT blowcount N is conventionally corrected to a 
value corresponding to the delivery to the sampler of 60% of the potential energy of 
the hammer at the top of its travel. The corrected SPT blowcount is given the symbol 
N 60. In general, the SPT blowcount N 60 would be expected to increase with depth. In 
correlations between the SPT blowcount and soil parameters that also increase signifi-
cantly with depth (e.g. the stiffness modulus, E′), the corrected SPT blowcount N 60 
should be used. In correlations between the SPT blowcount and soil parameters that 
do not generally change very significantly with depth (e.g. the density index I D and the 
peak strength ′ϕpeak), the corrected SPT blowcount N 60 should be normalized to a refer-
ence stress, which is usually taken as v′σ  = 100 kPa. The normalized, corrected SPT 
blowcount is given the symbol (N 1) 60, and is calculated using the expression

 N 1 = C NN or (N 1) 60 = C NN 60 (11.1)

 where the values of the correction factor C N are as given in Equation 11.2.
• The in situ total horizontal stress σ h0, the soil shear modulus G and the undrained shear 

strength τ u of a clay soil can be measured in the field using a pressuremeter. Pressuremeter 
test data are plotted as a graph of cavity pressure p as a function of cavity strain ε c or 
increase in cavity volume V. The pressuremeter test is analysed as an expanding cylindri-
cal cavity in an elastic–perfectly plastic material. On this basis, the shear modulus G is 
determined from the slope of the graph of cavity pressure p against change in cavity vol-
ume, dp/dV, during an elastic phase of the test (usually within an unload/reload cycle):

 G = V(dp/dV) (11.26)
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 where V is the current cavity volume.
The undrained shear strength τ u should be equal to the slope of a graph of the cavity 
pressure p against the natural logarithm of the proportional volume change, ln(ΔV/V), 
during a plastic phase of the test.

• The behaviour of geotechnical structures can be investigated using numerical model-
ling techniques. One of the most popular is the finite element method. The features of a 
commercial finite element package that make it suitable for use in geotechnical analysis 
include the ability to work in terms of effective stresses, and the facility to add or remove 
elements to simulate construction and excavation processes. A wide variety of problems 
can be investigated using numerical modelling techniques. However, a considerable 
degree of approximation may still be necessary, particularly in terms of the constitutive 
relationship used for the soil, and perhaps in the representation of three-dimensional 
problems by a two-dimensional (either plane strain or axisymmetric) analysis.

• Small-scale physical model testing can also be used to gain an insight into the 
behaviour of a geotechnical construction. The main problem is that a small-scale 
model tested at normal gravity may be unrepresentative of a full-scale structure, 
because the self weight stresses at corresponding depths in the model and in the 
full-scale prototype are different. This can be overcome by testing a 1/n scale 
model in a geotechnical centrifuge, at a radial acceleration of n × normal grav-
ity. Approximations are introduced into themodelling procedure by the need to 
simulate excavation and construction processes while the model is in the centri-
fuge. Also, the relevant scaling rules between the model and the prototype should 
be established in each individual case. In necessary, scaling relationships can be 
confirmed by testing the same model at two or more different scales—a procedure 
known as modelling of models.

• Various techniques can be used to improve the strength and the stiffness of the ground, 
by treating it in situ. These include densifying treatments such as compaction or pre-
loading; pore water pressure reduction techniques such as dewatering or electro- 
osmosis (Chapter  3); the bonding of soil particles by ground freezing (Chapter 3), 
grouting, and cement and lime stabilization; and the addition of reinforcing elements 
such as geotextiles and stone columns. The suitability of each technique for any partic-
ular application depends on both the soil type and the purpose of the proposed ground 
treatment. The benefits of a ground improvement programme should be assessed and 
quantified as work progresses.

SELF-ASSESSMENT AND LEARNING QUESTIONS

IN SITU TESTING

11.1 a.  Describe the principal features of the Menard and self-boring pressuremeters, and 
compare their advantages and limitations.

 b. Figure 11.25 shows a graph of corrected cavity pressure p as a function of the cav-
ity strain ε c for a SBP test. The test was carried out in a borehole at a depth of 11 m 
in a stratum of sandy soil of unit weight 20 kN/m 3. The piezometric level was 1 m 
below the ground surface. Estimate

 i.  The in situ horizontal total stress
 ii.  The coefficient of earth pressure at rest, K 0
 iii.  The soil shear modulus, G.
  [(b) (i) 165 kPa; (ii) 0.54; (iii) 23 MPa based on unload/reload cycle.]
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MODELLING

 11.2 Compare and contrast the use of physical and numerical models as aids to design. 
Your answer should address issues such as the assumptions that have to be made in set-
ting up the model, limitations as to the validity of the results, and other factors which 
would lead to the use of one in preference to the other.

GROUND IMPROVEMENT

 11.3 Write brief notes on:
 a. Grouting
 b. Surface compaction and heavy tamping
 c. Cement and lime stabilization.

In each case, your answer should include (but not be restricted to) a discussion of the 
ground conditions and soil types for which the method is suitable.

 11.4 Give an account of:
 a. The principal applications of grouting in geotechnical engineering
 b. The factors influencing the penetration of grouts into soils
 c. The major differences in properties and performance between cement-based grouts 

and low-viscosity chemical grouts

NOTES

 1. The ultimate undrained load qult,u is used because, for the case histories on which the 
correlation is based, it was not possible to calculate q ult in effective stress terms. The 
value of qult,u is estimated on the basis of the undrained shear strength τ u (Stroud, 
1989).

 2. The strength of rock is more conventionally described by means of the unconfined 
compressive strength σ uc, which is defined as the axial stress σ a causing failure at zero 
lateral or confining pressure σ r. Consideration of the Mohr circle of total stress with 
σ a = σ uc and σ r = 0 shows that σ uc = 2τ u.
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