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Foreword

As a genuine believer in strong emergence, I guess it would be self-defying if not outright contradictory, for 
me to say that this edited volume will have such and such effects in the field or on the readers. 

On the other hand, I can confidently say that in these times of Kurzweilian acceleration and Clarkian “tools-
r-us” adage, yet another book-object to think with and about multi-agent systems and emergent phenomena 
will certainly help us catch up with the pace of “reality” changes. Who could have predicted the emergence 
of micro-crediting schemes made possible by the ubiquity of cell phones? Or the effects of sites hosting 
user generated videos on the U.S. presidential campaign and on politics in general,or the crowd sourcing 
phenomenon as well as the economy of the niche.

As our tools get more and more complex, so do we, as well as our relations with others. The editors’ efforts 
invested into this edited volume resulted in something that will certainly help understand ourselves better 
by supporting the “extrospective” processes. An explanation of this neologism would be in order here: if we 
adopt the distributed mind/cognition theory, then I believe that (at least in this transitory phase of getting 
used to it) extrospection may a better word to describe what was once (during the mind-does-not-go-beyond-
our-skin-bag era) called introspection. 

The three sections of the volume—Initial States, Emergences, and Second Order Emergences—make 
for a new organic whole. The first section covers foundations of MAS (sociology of emergence, enactivist 
critique of questions of structure and agency in sociology, and issues of heterogeneous societies). In the 
second, we find a concentrate on emergences, where at least two levels of emergence are treated. First, there 
is the simultaneous focus on the three components of MAS, agents, their interactions, and properties of the 
groups. Second is the wide acceptance that MAS theories and tools do offer practical solutions in the world 
of today. Finally, the last part offers insights into the behavior of agents that become aware of emergent 
behaviors or emergent phenomena.

I am positive that even non-specialists will find this volume informative, and that every reader will get the 
update of latest on-goings in the field. The introduction by the editors gives an excellent advance organizer 
for what’s ahead, and definitely helps the assimilation of the chapters. 

What tags would I use for this book? Multi Agent Systems, emergence, second order cybernetics, hetero-
geneous societies, mixed realities, distributed cognition … in one word? Del.icio.us!

Georgi Stojanov
Paris, May, 2008
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Preface

Tow ards More Live Ly Machines

If there is one thing anthropology (and archaeology) teaches, it is that our tools are key to our identity as 
humans. In fact, this was one of the earlier—though now discarded—definitions of human (qua Carlyle). But, 
despite numerous other ethological examples of tool-use, we still tend to think of ourselves as ontologically 
grounded in the tools we use. Homo habilis is, after all, a “tool using man.” 

Certainly, anthropologists like Mead and Bateson (anticipating what would later become distributed cogni-
tion), have noted our embeddedness in systems composed of humans and their material culture (Bateson 1972). 
But, in the millennia since Acheulian hand-axes, we have not only developed more and more complex tools 
(and relied on them more), but, the tools themselves have begun to take on a life of their own. As Haraway 
wrote (in a style at once half ethnographic and half prognostication), our “machines are disturbingly lively, 
and we ourselves frighteningly inert” (Haraway 1985). 

The fear of non-human agency is a theme in 20th century dystopian fiction—aliens, monstrous forces 
awakened by nuclear blasts (“The Thing,” “Gojira”), robots carefully hemmed by laws hard-wired into their 
programming (Asimov’s I, Robot), Draconian supercomputers orchestrating the end of humanity (“War 
Games,” “Terminator”). And yet, just as compelling a case could be made that the possibility of non-human 
agency and intelligence represents the culmination of our human potential (Heckman 2008; Collins 2008).  

If the 20th century suggested fear and unease with non-human agents, the 21st century adds a utopian edge, 
particularly in the hopes we have for Multi-Agent Systems (MAS). Whether optimizing resource allocation, 
organizing complex systems, or simulating human behaviors, the hope is that non-human agents may prove 
a palliative to the kinds of alienation we face in a society characterized by high degrees of mobility, tenuous 
relationships with place and people, and in general, unremitting complexity (Allison 2006).  Thus, navigat-
ing news coverage, financial systems, traffic, internet searches, and so forth, are all thought to be assisted 
by systems of agent proxies (self)-organized about our individuated needs. From the fears of “Terminator” 
(being replaced by the robot), we all become hopeful cyborgs, variously hybrid agents embedded in our 
machines (Clark 2003).  

Traditionally, multi-agent systems are composed of either software or robot agents, although many re-
searchers have utilized “human agents” as a baseline in their development of non-human agents. Woolridge 
(2002:11) adds that they are:

at least to some extent capable of autonomous action—of deciding for themselves what they need to do in 
order to satisfy their design objectives. Second, they are capable of interacting with other agents, not simply 
by exchanging data, but, by engaging in the analogues of the kind of social activity that we all engage in 
every day of our lives—cooperation, coordination, negotiation, and the like. 

Although Wooldridge’s work grounds the articles in this volume in a common vision of MAS, we also 
go beyond this more engineering-inflected vision of MAS.  



xviii  

In Disney’s retelling of The Sorcerer’s Apprentice in its 1940 Fantasia, Mickey Mouse is overwhelmed 
by a material world over which he loses control. His broom, split into pieces, continues the (multi-agent) 
work of carrying (and dumping) water without Mickey, to the extent that the house floods. And yet, in MAS, 
the hope is exactly that—programmers and roboticists look (in some way) to lose control over the systems 
they’ve engineered, with the hope that some different kind of solution will emerge. For some, this is an ad-
aptation to the world around us. For example, for Serugeno et al (2006: 45): 

The complexity of today’s applications is such (e.g., world scale) that no centralized or hierarchical control 
is possible. In other cases, it is the unforeseeable context, in which the application evolves or moves, which 
makes any supervision difficult.

In other words (qua “The Sorcerer’s Apprentice”), we’ve already “lost control” in any deterministic, more 
Newtonian sense: financial markets, ecological catastrophe, refugee flows, and Internet traffic. Our problems 
are increasingly non-linear; traveling salesman-type (NP) problems are more and more the rule than the 
exception. The solution cannot be the reinstatement of patriarchical authority (the return of the sorcerer), 
but it’s opposite—the manumission of control. The hapless apprentice, after all, had only granted the broom 
limited autonomy (to carry water and nothing else). If he had granted the broom the freedom to decide when 
there was enough water, than the problem could, literally, have solved itself.

This was certainly the hope embodied in something like Rodney Brooks-style reactive architectures, where 
the scientist looked to what kinds of behavioral phenomena might emerge from autonomous, multi-agent 
systems in way not reducible to individual agents or local rules. These kinds of hopes take on an almost mystic 
quality in something like artificial life, where emergence literally animates local rules, investing them with 
an elusive, black-box quality: life itself (Helmreich 1998). Although none of the contributors to this volume 
invest the same kind of religiosity in emergence, we nevertheless believe that MAS may be generative of 
novel adaptations with ultimately salutary effects for the humans who rely upon them.  

This volume aims to address all of these issues and the emergence of societal phenomena in the interactions 
of systems of agents (software, robot or human) in particular.  In a given environment, agents interact with 
each other, imitating, communicating, exchanging, and competing. Based on these heterogeneous modali-
ties of interaction, a variety of socialities may emerge: language and communication, identities, economies, 
cultures.  Tracking those emergences not only allows us to program more realistic simulations of biologies 
(human and otherwise), but may allows us to more effectively combine (qua hybrid agents) with our lively 
machines to form new socialities that are, themselves, doubly emergent—self-reflexively emergent.

We know (or, at least, think we know) what our non-human agents want. But what kinds of agency and 
intentionality emerge in hybrid systems composed of humans embedded in machine assemblages of non-human 
agents? The articles here go well beyond describing the next generation of MAS in simulations and system 
engineering; they gesture to the novel systems that we form (and that we might form) with our varied, lively 
tools. That is, the contributors to the present work are not only describing their research in the present, they 
are also gesturing to the kinds of MAS (with their own, attendant emergences) that may exist in the future. 
It is our belief that this meeting of AI research, cognitive science, and the social sciences, may constitute a 
novel direction for MAS that not only describes our lives in information society, but also intervenes in future 
assemblages of hybrid agents and agencies.  

In other words, we hope the book acts as an agent in itself, in particular, what Michel Serres terms a 
“quasi-object,” that is, an object that not only takes on agential properties, but also catalyzes agencies in oth-
ers. Just as we now emulate the non-human agents we originally developed to simulate us, so the analysis of 
extant MAS may stimulate the development of new multiagencies, heretofore undiscovered conurbations of 
human and non-human, information and social sciences.  
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Accordingly, we have divided the books into three sections that attempt to structure this dialectic of rev-
elation and evocation. We have tried to resist the power of the text (as an agent in its own right) to dictate 
the course of chapters. As artifacts of a particular way of seeing and ordering the world, texts present us with 
linear teleologies (in Aristotelian terms, the necessity of a “beginning, “middle” and “end”): things begin, 
develop according to their narrative logic, then culminate. Someone has the first word (an introduction), and 
someone, the last (a conclusion). We have tried to avoid characterizing this work (as well as MAS in general) 
as linear and have therefore ordered the book along principles which, in first-generation cybernetics, were 
called “circular causality”: accordingly, the end of the book takes us back to the beginning, and the cascade 
of emergent phenomena and organizations described herein refer back and forth to teach other in a tempo-
rally chiasmic (if not emergent) fashion. Of course, we have not entirely succeeded. As Bruno Latour has 
pointed out of non-human “actants,” our tools make reciprocal demands upon us, and to escape the kind of 
consciousness demanded of us by the text, we would need to leave the text behind all together.  

sec Tion i: iniTia L sTaTes

In Conway’s now-apocryphal Game of “Life,”  “initial states” describe the configuration of cellular automata 
(and the rules for successive turns).  Here, contributors offer insights into the foundations of MAS. But these 
states are themselves hardly given—they “emerge” out of the play of different disciplines, many of which 
come together in the space of this volume, and which we, in turn, hope may spur subsequent emergences. 
Along with these disciplines come diverse assumptions about psychology, social interaction, language, 
cognitive development, and culture, all of which form what Hegel might have called the “second nature” of 
MAS (Helmreich 1998). The first chapter, Sawyer’s “The Science of Social Emergence,” critically exam-
ines the sociology of emergence, developing an often-ignored, Durkheimian heritage into what amounts to 
a manifesto for a social science of emergence resting on a complex understanding of agents.  Goldspink’s 
and Kay’s “Agentive Cognitive Capabilities and Orders of Social Emergence,” builds, in many ways, on 
Sawyer’s insights; interrogating the movement from agential properties to social emergence, and using an 
enactivist perspective to critique questions of structure and agency in sociology and to explore the challenge 
of modeling a social emergence that builds from cognitive to social levels. Bullington’s “Agents in Social 
Interaction” takes up the genealogical task from the perspective of social psychology and ethology, the other 
two disciplines MAS research has most often drawn from, in particular, asking how different agents (hu-
man and non-human) interact together, and how insights from these studies can help researchers build more 
“life-like” agents to interact with us, including some of our more emergent properties (emotion, empathy 
and inference). Upal’s “Predictive Models of Cultural Information Transmission” and Romero’s “Interaction 
of Agent in E-Business” each take these interdisciplinary legacies into two applications—simulation and 
e-business, respectively—and, in the process, bridging the theoretical and conceptual configurations of this 
section with the emergent organizations in the next.

sec Tion ii: eMergences

There are at least two levels of emergence at play in this section of the book. The first, as Sawyer writes, 
involves applications of the central premise of social emergence, the “simultaneous focus on three levels of 
analysis: individuals, their interactional dynamics, and the socially emergent properties of the group.”  

The second is the growing awareness among people within and without the information and computing 
sciences regarding the utility of MAS for “solving” (keeping in mind that only sub-optimal solutions may be 
possible) the problems of today’s world.  This section is witness to the varied contexts to which MAS have 
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been applied, and to the possibilities for their applications in areas rather far removed from areas usually 
associated with MAS.

These two directions mirror the general dynamics of emergence itself—the social sciences, cognitive sci-
ences, and AI suggest the properties non-human agents might emulate, and influence the scope of simulations 
produced. At the same time, developments in MAS simulations suggest answers to old problems bedeviling 
social theory (e.g., structure versus agency) and gesture towards new opportunities for human-non-human 
interaction, hybrid MAS facilitated by these human/animal behavior emulating agencies.  

Conover’s “A simulation of Temporally Variant Agent Interaction via Passive Inquiry” critiques the one-
dimensional, temporal assumptions built into extant simulations (and, synedochically, Conway’s “Game 
of Life”) and suggests the possibility of introducing heterogeneous temporalities into simulation design. 
Schilling’s “Agent Feedback Messaging: A Messaging Infrastructure for Distributed Message Delivery” ex-
ploits some of those diverse temporalities in order to build scalable models of agent communications based 
in part on biofeedback.  

Zhang et al. look to interactionist models of social cognition in order to build MAS where decision-making 
emerges from the interactions between agents rather than through the more autonomous models of decision 
making in classic rational choice theory. Similarly, in Part 1 of their “Developing Relationships between 
Autonomous Agents: Promoting Pro-Social Behaviour through Virtual Learning Environments,” Watson et 
al. look to social interactionism, networking, and community, in order to build “socially interactive virtual 
agents” for the creation of virtual learning environments (VLEs), while Takác’s “Construction of Meanings 
in Biological and Artificial Agents” underscores the problem and promise of communicative models in MAS. 
Tacking back and between ethological examples and AI simulation, Takáč proposes interactionist communi-
cations premised on models of evolutionary adaptation. 

Abramson’s “Training Coordination Proxy Agents Using Reinforcement Learning” examines the ways 
agents might build on models of teamwork in order to coordinate with other agents to fulfill the needs of 
human agents. Likewise, 

Duong’s “The Generative Power of Signs: The Importance of the Autonomous Perception of Tags to the 
Strong Emergence of Institutions” looks to one of the relatively undeveloped directions in agent perception 
in order to build new models for the emergent of MAS socialities.  

Sierra’s and Santibáñez’s “Propositional Logic Syntax Acquisition Using Induction and Self-Organisa-
tion” explores the possibility for emergent socialities between diverse agents based on almost sui generis 
communicative models where syntactical structures emerge in the space of agent interaction. In their “Hybrid 
Emotionally Aware Mediated Multiagency,” on the other hand, Vincenti and Braman explore the possibilities 
latent in more affective communications: what advantages might an “emotion-based agent” have over other 
kinds of social agents? Could emotion-based agents couple more effectively with human agents? Finally, 
Collins’s and Trajkovski’s “Mapping Hybrid Agencies through Multiagent Systems” inverts the usual assump-
tions implicit in MAS by suggesting that it is the human agents who may be emulating non-human agents, 
and that the task for the researcher is as much to develop different human behaviors as much as it is different 
models for non-human agents. In the process, they draw a much richer, and more ambiguous, picture of agent 
communication (including the possibilities in miscommunication). Fittingly, the application of some of these 
ideas leads us to questions of second-order emergence.    

sec Tion iii: second o rder eMergences

Second order emergences describe the agents changing their behaviors according to their awareness of emer-
gent phenomena or behaviors. Here, we include not only a host of reflexively understood human phenomena, 
which, strictly speaking, gives rise to a recursive chain of emergences, but also to the possibility that our 
awareness of the possibilities inherent in MAS may catalyze new combinations of hybrid agents and new 
applications for those combinations. “Second order emergence” also refers to the state of MAS research in 
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general. Now almost two decades old, MAS research has moved into a new stage involving new sites of 
application as well as new hybridities linking together not only different systems, but also human and non-
human agents in new ways—all enabled by our growing consciousness of both the usefulness of MAS as 
well as their (always already) ubiquity in our lives.  

In Part II of “Developing Relationships between Autonomous Agents,” Watson et al. take the social theories 
they elaborate in Part I in their designs of Virtual Learning Environments designed to reduce the incidence 
(as well as mitigate the effects) of school bullying. In these hybrid agent interactions, “believability” is an 
emergent category—non-human agents can be “too believable” (and hence unbelievable), as are ideas about 
empathy and engagement. In “Reputation: Social Transmission for Partner Selection,” however, Paolucci 
and Conte look at reputation as the “meta-belief” enabling other beliefs and, in the process, generating other, 
emergent socialities—cooperation, altruism, and other reciprocal behaviors. Finally, in part II of Conover’s 
“A Simulation of Temporally Variant Agent Interaction via Belief Promulgation,” the forms emerging from 
temporal variance in a MAS are exploited by agents who attempt to influence each other’s beliefs in the 
process stretching Conway’s cellular automata to new, and emergent, applications in both simulations and 
future, hybrid MAS.

Newlin applies MAS to neurophysiology, and in the process introduces a tantalizing example of second-
order emergence in the self-reflexive monitoring of oneself facilitated by the imitative impulse structured 
into our frontal-parietal mirror neuron system. In their “Relationship Between the Processes of Emergence 
and Abstraction in Societies” Baumer and Tomlinson also incorporate emergent cognition into their models, 
in this case what the authors terms an “abstraction-emergence loop” that captures the way agents general-
ize on their experience and thereby influence the behavior of subsequent local behaviors. But MAS cannot 
only be confined to applications in what might be called “lower-levels” of cognition. In Walker’s “Emergent 
Reasoning Structures in Law,” applications of a “Default-Logic” framework result in MAS capable of both 
rendering legal decisions as well as deliberating on the structure of legal reasoning itself, while in the process 
implicating both human- and non-human agents in the future of the legal process itself.

The final articles consider reflexivity in MAS, agents examining each other for new (wanted or unwanted) 
properties. Richardson’s “Agents in Security: a Look at the Use of Host-Based Monitoring and Protection and 
Network Intrusion Detection” develops a model network intrusion where “malicious” and “normal” traffic 
are (secondarily) emergent concepts arising from an emergent MAS consensus. North et al. detail search 
tools for emergent agents. As new properties emerge in MAS, the relationship of the observer changes, that 
is, new kinds of properties are sought after and search engines represent the boundary between one kind of 
emergence (emergent properties of agents) and another emergence (new foci emerges from the conscious-
ness of emergent properties).  

Recursively, that search for new properties leads us looping back to the kinds of assumptions we held 
about MAS and their possibilities to begin with. Hence, back to the beginning of the book!
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Sociology should be the foundational science of social emergence. But to date, sociologists have neglected 
emergence, and studies of emergence are more common within microeconomics. Moving forward, I argue 
that a science of social emergence requires two advances beyond current approaches—and that sociology is 
better positioned than economics to make these advances. First, consistent with existing critiques of micro-
economics, I argue that we need a more sophisticated representation of individual agents. Second, I argue 
that multi-agent models need a more sophisticated representation of interaction processes. The agent com-
munication languages currently used by multi-agent systems researchers are not appropriate for modeling 
human societies. I conclude by arguing that the scientific study of interaction and emergence will have to 
migrate out of microeconomics and become a part of sociology. Sociologists, for their part, should embrace 
multi-agent modeling to pursue a more rigorous study of these traditional sociological issues.

inTroduc Tion

Social emergence is the central phenomenon of the 
social sciences. The science of social emergence is 
the basic science underlying all of the social sciences, 
because social emergence is foundational to all of 
them. Political science, economics, education, his-
tory, and sociology study phenomena that socially 
emerge from complex systems of individuals in 

interaction. In this chapter, I argue that sociology 
should become the basic science of social emer-
gence, and I outline a theoretical framework to 
guide this study. 

But this is not the sociology we see today; few 
sociologists study social emergence. In the second 
half of the twentieth century, economics has made 
the best case for being the foundational social sci-
ence, by making social emergence central to its 
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theory and practice. Perhaps the most important 
strength of the neoclassical economic approach 
is that it has rigorous formalisms for modeling 
the ways that individual action generates aggre-
gate outcomes at the level of an entire population 
(Bowles, 2001; Durlauf & Young, 2001). Because 
social emergence is the central phenomenon of the 
social sciences, and economics has developed the 
most successful model of social emergence, this 
has naturally led to “economic imperialism,” with 
neoclassical economists beginning to analyze non-
economic phenomena traditionally associated with 
sociology (Boulding, 1969, p. 8; Hirshleifer, 1985; 
Radnitzky & Bernholz, 1987; Tullock, 1972). These 
imperialists argue that economics is “the universal 
grammar of social science” (Hirshleifer, 1985, p. 
53), and that it simply represents “straight think-
ing” applied to social science (Radnitzky, 1992, 
p. 15). And, in fact, microeconomics has been the 
only game in town for those interested in studying 
social emergence. 

However, there are many problems with the 
models of social emergence dominant in micro-
economics. Critics such as the “New Economic 
Sociologists” (see Krier, 1999; Zafirowski, 1999) 
claim that the microeconomic account of social 
emergence is empirically unfounded, methodologi-
cally individualist, neglects the social embeddedness 
of actors, neglects the importance of institutions 
and social networks, and neglects the unavoidable 
inefficiencies introduced by institutions, power, and 
path dependence. I focus on two specific critiques 
in this chapter. The first one is well known: many 
critics of microeconomics have called for a more 
sophisticated representation of the individual agents. 
Some agent models have begun to develop more 
accurate agent representations by drawing on the 
field of cognitive psychology, and occasionally on 
sociological theories of agency. 

My second critique is less widely acknowledged: 
I argue that microeconomics radically simplifies 
important elements of social emergence—particu-
larly, the key role played by symbolic interaction. 
Microeconomics uses formalisms that impose a 
simplistic representation of individual agents, and 
a simplistic representation of agent interaction. 
Some microeconomists have begun to use multi 
agent system models, but when they do, they tend 

to reproduce the overly simplistic models of agents 
and agent interaction associated with the optimiz-
ing mathematics of rational choice. Multi-agent 
models, whether developed by economists or by 
sociologists, need a more sophisticated representa-
tion of interaction processes. The most sophisticated 
of these are modeled using what is called an Agent 
Communication Language (ACL), but the ACLs 
developed to date in the MAS research community 
are not appropriate for modeling human societies. 
Social modelers can develop better representations 
of interaction by drawing on the science of micro-
interaction within sociology. I have done several 
empirical studies of emergence in conversation, 
and I have shown that different communication 
mechanisms change the processes of social emer-
gence (e.g. Sawyer, 2003b). This leads to a second 
critique of rational choice models: such models of 
social emergence have a radically simplified account 
of human interaction. 

To respond to these two critiques, and develop 
a science of social emergence, the social sciences 
must bring together studies of interaction and stud-
ies of emergence. Despite the weaknesses of exist-
ing ACLs, I nonetheless believe that multi-agent 
simulations have the potential to enable the study 
of interaction in emergence processes (Hedström, 
2005; Sawyer, 2005). In this paper, I begin by sum-
marizing the two dominant paradigms in sociologi-
cal research, and providing a historical account that 
shows why sociology has not yet brought together 
studies of interaction and emergence. Then, I present 
a theoretical framework that I call the emergence 
paradigm that brings together interaction and emer-
gence, and I discuss the potential explanatory scope 
of this paradigm. I conclude by discussing some of 
the implications for the social sciences at large.

background

Twentieth century sociology did not focus on social 
emergence; sociology as a discipline has failed to 
recognize the importance of social emergence to the 
foundational issues facing the discipline (Coleman, 
1987; Saam, 1999). In some cases, an expressed 
interest in emergence is seen as synonymous with 
methodological individualism, because it is primar-



 �

The Science of Social Emergence

ily methodological individualists who have empha-
sized the importance of emergence to sociology. 
For example, Coleman’s emphasis on “foundations” 
was an attempt to address the failure of sociologists 
to develop models of social emergence (Coleman, 
1987, p. 171); and social mechanists have also pro-
posed methodologically individualist versions of 
emergence (see Sawyer, 2004a).

Sociology has devoted a lot of attention both 
to interaction and to emergence, but unfortunately 
not to both at the same time. In the last chapter of 
my book Social emergence (Sawyer, 2005), I give 
an account of the history of 20th century sociology 
that explains this neglect, which I briefly summarize 
here. The study of interaction has been a strong trend 
in sociology since Georg Simmel’s 19th century 
writings, but it became a significant component 
in academic sociology in the 1950s, 1960s, and 
1970s, with the rise of symbolic interactionism, 
ethnomethodology, and conversation analysis. But 
because these sociologists in part defined them-
selves in opposition to structural functionalism, 
they resisted attributing any autonomous causal 
power to the macrosocial or structural level. As a 
result of this neglect of macrosocial phenomena, 
interactionist sociology contributed very little to 
the science of emergence—even though it pointed 
the way to a new science of social emergence by 
demonstrating how one could empirically study 
human interactional mechanisms.

In contrast to interactionism, mainstream 
sociology had always considered emergence to 

be an important phenomenon to be explained, 
from Durkheim’s early writings (Sawyer, 2005) to 
Blau’s structural sociology (1977). But the focus 
on very large-scale macrosocial phenomena made 
it impossible to closely focus on the interactions 
among agents that are the mechanisms of emergence 
processes. Most sociologists assume that communi-
cation is not central to sociology’s main concerns, 
and that its study can be safely tucked away into the 
subfield of microsociology (symbolic interactionism, 
conversation analysis, sociolinguistics). In general, 
sociology assumes that all social constraint must be 
institutional; the implicit assumption is that com-
munication is epiphenomenal—that it has no causal 
consequences, either for emergent macro phenomena 
or for individuals. Instead, the ultimate causal forces 
in social life are either institutions, networks, and 
group properties (for the collectivist), or rational 
actions taken in the context of pairwise game-like 
encounters (for the individualist). Consequently, for 
different reasons, both collectivists and individu-
alists implicitly assume that interaction is of only 
marginal concern to the sociologist. 

If sociology becomes the science of social 
emergence, it will be different from the sociology 
that we have today. The study of social emergence 
requires a simultaneous focus on three levels of 
analysis: individuals, their interactional dynam-
ics, and the socially emergent macro properties of 
the group. In this chapter, I describe what a new 
sociology of social emergence might look like; I 
explain how this new sociology would relate to past 

Figure 1. The emergence paradigm

Social Structure (Level E) 
Written texts (procedures, laws, regulations); material systems and infrastructure 

(architecture, urban design, communication and transportation networks) 
Stable emergents (Level D) 

Group subcultures, group slang and catchphrases, conversational routines, shared 
social practices, collective memory 
Ephemeral emergents (Level C) 

Topic, context, interactional frame, participation structure; relative role and status 
assignments 

Interaction (Level B) 
Discourse patterns, symbolic interaction, collaboration, negotiation 

Individual (Level A) 
Intention, agency, memory, personality, cognitive processes 
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sociological theory and practice; and I outline how 
this reformulated sociology could transform the 
disciplinary boundaries of the social sciences, with 
a particularly strong impact on economics. 

The eMergence paradig M

To bring together both interaction and emergence, 
one must integrate two paradigms in sociological 
research that have, for the most part, remained in-
dependent. One paradigm, microsociology—which 
studies interactions between individuals—includes 
ethnomethodology, symbolic interactionism, con-
versation analysis, and to some extent, sociolinguis-
tics. The other paradigm, macrosociology, studies 
large-scale social phenomena such as institutions 
(schools, governments, economies, corporations, 
markets) and roles and statuses (social class, gen-
der, race). 

Integrating symbolic interaction into the study of 
emergence requires that we consider two interme-
diate levels of social reality: stable emergents and 
ephemeral emergents (see Figure 1). In any social 
situation, there is a continuing dialectic: social 
emergence, where individuals are co-creating and 
co-maintaining ephemeral and stable emergents; 
and downward causation from those emergents. 
The new, modified versions of the emergents at 
Levels C and D continually constrain the flow of 
the interaction. During conversational encounters, 
interactional frames emerge, and these are collective 
social facts that can be characterized independently 
of individual’s interpretations of them. Once a frame 
has emerged, it constrains the possibilities for ac-
tion. Although the frame is created by participating 
individuals through their collective action, it is ana-
lytically independent of those individuals, and it has 
causal power over those individuals. I refer to this 
process as collaborative emergence (Sawyer 2003a), 
to distinguish it from models of emergence that fail 
to adequately theorize interactional processes and 
emergence mechanisms. The emergence paradigm 
emphasizes the identification of the mechanisms of 
collaborative emergence that lead to ephemeral and 
stable emergents. By introducing these intermediate 
levels, and the corresponding notion of collabora-
tive emergence, my goal is to move beyond various 

undeveloped conceptions of emergence in sociol-
ogy, which try to make too large a jump from the 
individual to the structural level. 

In the philosophy of science, accounts of emer-
gence focus on properties of systems or properties 
of specific events in time, rather than focusing on 
the systems themselves. The debate focuses on 
which properties of a system at a specific event in 
time are emergent, and which properties are not 
emergent—merely aggregative or resultant from the 
properties of the system’s components. From this 
perspective, one would not claim, for example, that 
the Catholic church is an emergent phenomenon; 
rather, the debate would focus on specific properties 
of the Catholic church—for example, the central-
ized nature of doctrinal authority in the Catholic 
church. A property is said to be emergent when it 
cannot be predicted from a complete knowledge of 
the system’s components and their interactions; and 
when that system property is novel, not possessed by 
any of the system’s components. Some philosophers 
go further and argue that an emergent property 
cannot be explained by analyzing the system’s 
components and their interactions, although this 
claim is controversial, and in fact most multi agent 
system developers would claim that their simulations 
provide explanations of emergent system properties 
(see Sawyer, 2004b).

In much of traditional sociological theory, 
lower levels represent smaller groups of people, 
and higher levels represent larger groups—the 
Catholic church is the highest level of analysis, and 
progressively lower levels would be administrative 
units such as the diocese and the individual parish. 
In contrast, the emergents at Levels C and D are 
not structures in the traditional sociological sense 
of organizations and networks. They are emergent 
properties of sociological events, and have an exis-
tence independent of any particular configuration of 
individuals. Although levels C and D are at lower 
levels of analysis than the social structures of Level 
E, they do not necessarily correspond to smaller 
groups. Rather, they represent emergent properties 
of groups of any size.

The emergence paradigm accepts an important 
role for methodological individualism in sociology; it 
can play an important role in identifying the mecha-
nisms and processes of social emergence in specific 
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token instances. But methodological individualism 
is incomplete, because the emergence paradigm 
supports a social realism in which emergents have 
autonomous causal powers. Due to social emergence, 
social life cannot be fully explained by analyzing the 
actions or mental states of the participant individu-
als, and then by analyzing the interactions of these 
individuals, working “upwards” to an explanation 
of the emergents. This sort of analysis can partially 
explain the collaborative emergence of ephemeral 
interactional frames, but cannot adequately repre-
sent the analytic independence of emergents, and 
the ways that they causally constrain and enable 
participants.

My argument for social realism is based in 
somewhat complex arguments in the philosophy of 
science; I will briefly summarize the argument that 
I present in (Sawyer, 2005). Just as social simulators 
claim, I grant that a social simulation may be a valid 
representation of the mechanism underlying a given 
instance of a macrosocial phenomenon. For example, 
Hedström (2005) describes an elaborate simulation 
of unemployment in Stockholm, Sweden, which 
contains a separate agent for every unemployed 
individual. But if the macrosocial phenomenon 
(unemployment, in this case) has many different 
potential underlying mechanisms, any one social 
simulation would only explain one instance of it. 
Perhaps the mechanisms that account for urban 
unemployment are different in every major city; if 
so, a simulation of Stockholm would not be of use in 
explaining the broader macrosocial phenomenon of 
urban unemployment. But even in such a situation 
of what philosophers call “multiple realizability,” 
it might nonetheless be possible to develop social 
laws, that do not refer to specific individuals, that 
provide explanations of urban unemployment. If 
such a situation holds, I then argue that attributing 
causal powers to the system property “unemploy-
ment rate” is warranted.

The emergence paradigm generally focuses on 
even lower levels of analysis than a macrosocial 
property like the unemployment rate. Instead, it 
advocates a focus on the causal forces that originate 
in an emergent that was created by the participants in 
a given encounter—to continue with the Stockholm 
unemployment example, one might study specific 
practices that emerge among unemployed youths in 
Stockholm, such as preferred leisure activities or 

distinctive slang and ways of talking. Emergence 
paradigm research focuses on the microinteractional 
mechanisms whereby shared social phenomena 
emerge, and how those emergents constrain those 
mechanisms. 

Level c : ephemeral emergents

Level C includes the interactional frames of con-
versation analysis. In conversation, an interactional 
frame emerges from collective action and then 
constrains and enables collective action. These two 
processes are always simultaneous and inseparable. 
They are not distinct stages of a sequential process—
emergence at one moment, and then constraint in the 
next; rather, each action contributes to a continuing 
process of collaborative emergence, at the same 
time that it is constrained by the shared emergent 
frame that exists at that moment. The collaborative 
emergence of frames has been studied by several 
researchers in interactional sociolinguistics and 
conversation analysis, including Deborah Tannen, 
Alessandro Duranti, and Charles Goodwin (Duranti 
& Goodwin, 1992; Tannen, 1993). 

The emergent frame is a dynamic structure 
that changes with each action. No one can stop 
the encounter at any one point and identify with 
certainty what the frame’s structure is. It is always 
subject to continuing negotiation, and because of its 
irreducible ambiguity, there will always be intersub-
jectivity issues, with different participants having 
different interpretations of the frame’s constraints 
and affordances.

Level d: stable emergents

The second form of collaborative emergence is from 
Level B to Level D, with a complicated mediation 
through Level C. Level D represents the shared, col-
lective history of a group. Stable emergents of small 
groups include group learning, group development, 
peer culture, and collective memory. Stable emer-
gents of an entire society include its culture and its 
language; their collaborative emergence has been 
studied by cultural and linguistic anthropology. 

The line between stable and ephemeral emer-
gents is a fine one; for purposes of definition, I 
consider an emergent to be stable if it lasts across 
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more than one encounter. Stable emergents have 
different degrees of stability; some are stable over 
generations, and others are stable only for weeks 
or months. From most to least stable, examples of 
stable emergents include language, catchphrases, 
trends and tastes, cohort private jokes and stories, 
the ensemble feel of a theater group during a month-
long run of a play. Under this definition, distinctive 
slang used by unemployed youths in Stockholm 
would be stable emergents, because they are used in 
many different encounters, but would be relatively 
unstable. The issue of how stable emergents are 
related to ephemeral emergents is still unresolved 
within social science. In different ways, the is-
sue is central to folkloristics, ethnomusicology, 
popular culture studies, the study of peer cultures 
and subcultures, and collective behavior studies of 
rumors and fads. 

Ephemeral emergence occurs within a single 
encounter. Most sociological discussions of emer-
gence have focused on the broader macrostructures 
that emerge and how those emergent patterns con-
strain future interaction. Yet, these studies have 
not had much success in tracing the exact details 
of the moment-to-moment emergence processes 
whereby macrostructures are collectively created. 
In contrast, various strands of microsociology have 
focused exactly on the moment-to-moment details of 
how ephemeral emergents result from interaction. 
However, in shifting their focus to interactional 
process, they have tended to neglect the nature of 
what emerges, and of what perdures across repeated 
encounters.

The collaborative emergence of stable emergents 
is the concern of the field known as collective be-
havior, the study of phenomena such as mob actions, 
riots, mass delusions, crazes, fads, and fashions. 
Park and Burgess (1921) first noted a special kind 
of behavior that they called “collective behavior.” 
Lang and Lang (1961) called it “collective dynam-
ics.” They were also concerned with how collective 
action transforms into stable emergents; and during 
the 1960s, this became the concern of social move-
ments researchers (Evans, 1969, p. 10).

But these classic theories of collective behavior 
went from the individual to the emergents directly, 
without an examination of the mechanisms of in-
teraction. These theorists used extremely simplistic 

notions of interaction such as “social contagion” 
(Blumer, 1939) or “milling” (Park & Burgess, 
1921); historically, this is because these writings on 
collective behavior predated the development of so-
phisticated methodologies for analyzing interaction. 
The sociology of collective behavior never made 
connections to the study of how stable emergents 
are created over time—oral culture, ritual change, 
and related subjects from linguistic anthropology. 
It’s time to revisit these phenomena of collective 
behavior, with the additional power provided by 
multi agent system techniques.

Several social theorists have recognized the 
theoretical benefits of introducing stable emergents 
as a mediator between individual and macrostruc-
ture. These include Collins’s repetitive patterns of 
behavior (1981), Giddens’ situated social practices 
(1984), and Lawler, Ridgeway, and Markovsky’s 
microstructures (1993). For Lawler, Ridgeway, 
and Markovsky, microstructures “emerge from 
and organize particular encounters” (1993, p. 272). 
Stable emergents are symbolic phenomena that have 
a degree of intersubjective sharing among some 
(more or less stable) group of individuals. 

Some network analysts have argued that in 
many cases, institutions are crystallizations of 
emergent activity patterns and personal networks. 
Granovetter (1990) cited two historical examples of 
such institutional emergence: the development of 
the electrical utility industry in the United States 
between 1880 and 1930, and the professionalization 
of psychiatric practice. In both cases, the original 
institutions were “accretions of activity patterns 
around personal networks” (p. 105). Empirical and 
historical study suggests that these economic insti-
tutions emerged from the same processes as other 
social institutions. This sort of historical analysis of 
institutional emergence demonstrates that institu-
tions are contingent and are socially constructed; 
the processes of their emergence must be studied 
empirically, and they cannot be predicted from 
neoclassical economic theory. As Granovetter (1990) 
concluded, explanations of institutions that do not 
incorporate the contingencies of social emergence 
“fail to identify causal mechanisms; they do not 
make an adequate connection between micro and 
macro levels, and so explain poorly when historical 
circumstances vary from the ones under which they 
were formulated” (p. 106).
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downward c ausation

As levels of reality, stable and ephemeral emergents 
have an independent ontological status, and they 
have causal powers. These causal powers result in 
constraining and enabling effects on individuals. 
For example, in a conversation, once an interac-
tional frame has emerged, it then constrains the 
future interaction of the participants, constraining 
both interaction (at Level B) by acting directly on 
the interactional semiotics of the interaction, and 
also constraining individuals directly (at Level A). 
Numerous examples of both forms of causation are 
documented in (Sawyer, 2003b).

Emergents Constrain Individuals

Participants are constrained by stable and ephem-
eral emergents. For example, the strategic options 
that the ephemeral emergent frame makes avail-
able are limited; and that limiting of the selection 
set is a form of constraint, although not a strictly 
deterministic one. Social encounters are often im-
provisational, and in improvisational encounters, 
there is always contingency, and actions are never 
fully constrained.

There are four distinct types of downward cau-
sation operating on individuals:

• Structures constraining individuals (EA)
• Stable emergents constraining individuals 

(DA)
• Ephemeral emergents constraining individuals 

(CA)
• Properties of interaction constraining individu-

als (BA)

Many sociologists have observed (beginning 
with Weber, 1968) that complex social systems have 
a unique feature not held by any other complex sys-
tem: individuals are aware of the social products that 
emerge from their encounters. In no other complex 
system do the components internalize representa-
tions of the emergents that they participated in 
creating. When sociologists have considered social 
causation, they have largely limited their analysis to 
this form of “interpretivist” downward causation. 

However, many complex systems manifest 
downward causation (Andersen et al., 2000); for 

example, philosophers of mind generally accept 
that mental states are emergent from the physical 
brain and yet have causal powers over the physical 
brain. Note that this downward causation does not 
require that neurons have awareness or agency; by 
analogy, there is no reason why individuals could 
not be constrained even when they are not aware 
of it. 

Structural sociology does not recognize interac-
tion as an autonomous level of reality, and the first 
three forms of downward causation are conflated 
within most macrosociology, which places Levels C 
and D at the structural level. Because macrosociol-
ogy does not distinguish these types of emergents, 
it has difficulty accounting for the mechanisms 
whereby emergent properties constrain individu-
als. Microsociologists who study interaction do not 
recognize downward causation because they deny 
that levels C, D, and E have ontological status apart 
from interaction. 

Anthropologists—both French structuralist 
anthropologists of the 1960s and Chicago-style 
symbolic anthropologists of the 1970s—have argued 
that cultures provide emblems or ready-mades to 
individuals, and that these combine to form a shared 
system of knowledge which individual actors can 
then use in interaction. This is a downward causal 
force from the stable emergents that make up culture. 
These emblems and ready-mades are stable emer-
gents from prior interaction. Anthropologists have 
not adequately examined the historical processes of 
collaborative emergence, typically considering that 
the symbolic structures of the culture are relatively 
stable and pre-exist any given encounter. 

Emergents Constrain Interaction

Because interaction is an autonomous level of 
analysis, there is downward causation onto Level B 
that is not mediated through individual representa-
tions at Level A. 

• Structures constrain interaction (EB) (this was 
a focus of Althusserian discourse analysis)

• Stable emergents constrain interaction (DB) 
(the focus of much of linguistic anthropology)

• Ephemeral emergents constrain interaction 
(CB) (the focus of Sawyer, 2003b)
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Emergents constrain the kinds of discursive pat-
terns that can occur, and this is a strictly semiotic, 
interactional phenomenon, independent of human 
agency. Linguistic anthropologists and sociolin-
guists have demonstrated a wide range of situations 
where interaction patterns are directly constrained 
by the situation, even in cases where that situation has 
been collaboratively negotiated by the participants. 
This causal arrow is analytically distinct from any 
participating individual—their strategic intentions 
or agency—because it operates directly on interac-
tion processes themselves. Examples include studies 
of politeness and formality (Brown & Levinson, 
1978), greeting rituals (Irvine 1974), and collabora-
tive joke-telling (Brenneis, 1984). Accounting for 
the dialectic between emergence and downward 
causation requires a semiotic argument about the 
nature of interaction (e.g., Sawyer, 2003a).

inTerac Tion and eMergence

In (Sawyer, 2005), I argued that interaction is central 
to studies of emergence, because different interac-
tion languages and mechanisms result in different 
emergence mechanisms and outcomes. I began by 
comparing the interaction mechanisms of reactive 
agent societies (evolved from artificial life research), 
cognitive agent societies (evolved from intelligent 
agent research), and collaborative systems (evolved 
from distributed artificial intelligence research).

Collaborative systems represent the current 
leading edge of social simulation research—with the 
most complex agent models and the most complex 
communication languages. These researchers study 
how teams improvisationally respond to unexpected 
developments, as agents operate in complex and 
changing environments, and individual agents pos-
sess only partial information about the environment 
and about other agents. In such environments, plans 
cannot be developed in advance, with subtasks par-
celed out to team members; rather, the distribution 
of the task must emerge dynamically as the team 
proceeds. Agents must be able to communicate 
when they realize they cannot complete a task that 
they’ve previously committed to; this also requires 
that agents be able to perceive the impact of this 
difficulty on the overall group plan, and decide 
what information is necessary to communicate to 

its partners (also see Levesque, Cohen, & Nunes, 
1990). Team members must be jointly committed to 
such plan “repair,” and this process requires sophis-
ticated inter-agent communication. Emergence in 
these systems is found in the dynamically changing 
configurations of agents, responding in distributed 
team-like fashion to unexpected developments as 
the task proceeds. 

In some of these collaborative systems, disagree-
ments are resolved by a team or subteam leader, 
rather than by negotiation among team members. 
Yet researchers remain keenly interested in mod-
eling “distributed leadership” in such systems, 
so that agents can negotiate their plans without 
a leader (Tambe, 1997, p. 115); this is thought to 
require further as-yet untheorized enhancements 
to agent communication languages. In a situation 
in which people do not share a mental state of joint 
intention, they can still collaborate and improvisa-
tionally generate emergent properties. But this can 
only happen when metapragmatics are introduced 
to the communication language. In an empirical 
study of improvised dialogues (Sawyer, 2003b), I 
demonstrated that the metapragmatic features of 
human communication lead to unintended emergent 
effects, and that these emergent effects have causal 
consequences for the future flow of the encounter. 
Yet metapragmatics have not yet been implemented 
in agent communication languages.

Speakers use the metapragmatic function of 
language to reflexively communicate about the 
emergent process and flow of the encounter, or about 
the ground rules and the communication language 
itself. In a simple everyday conversation, when no 
dialogue or topic is selected in advance, how do 
agents determine the variables of the interactional 
frame? In my study of emergence in improvising 
theater dialogues (Sawyer, 2003b), I found that the 
interactional frame emerged from the metaprag-
matic properties of the discourse. 

In small group encounters, no single agent cre-
ates the frame; it emerges from the give and take 
of interaction. The interactional frame includes 
all of the pragmatic elements of the encounter: the 
socially-recognized roles and practices enacted 
by each agent, the publicly shared and perceived 
motives of those agents, the relationships among 
them, and the collective definition of the joint activ-
ity they are engaged in. The frame is constructed 
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turn by turn; one agent proposes a new development 
for the frame, and others respond by modifying 
or embellishing that proposal. Each new proposal 
for a development in the frame is the creative in-
spiration of one agent, but that proposal does not 
become a part of the frame until it is evaluated by 
the others. In the subsequent flow of dialogue, the 
group collaborates to determine whether to accept 
the proposal, how to weave that proposal into the 
frame that has already been established, and then 
how to further elaborate on it. 

The metapragmatic properties of interaction are 
not represented in current agent communication 
languages, and this may prevent them from being 
used to fully understand the relationships between 
interaction and emergence. As the cutting edge of 
multi agent simulation research implements increas-
ingly complex agents, and as it increases the number 
of agents and the task complexity, empirically ac-
curate simulations of human interaction will require 
more sophisticated ACLs. Of particular relevance 
will be studies of improvised dialogues, and how 
different dialogues result in different emergence 
processes and outcomes.

LiMiTaTions of a  science of 
socia L eMergence

The study of emergence incorporates a wide range 
of phenomena that are studied across the social 
sciences. But the potential scope of the science of 
emergence is logically limited, both at the macro 
level and at the individual level. 

Limitations at the Macro Level

Level E represents stable emergents that have 
become fixed in objective material form. These 
include the technological and material systems 
of a society—communication networks, systems 
of highways and rail lines, residential population 
distributions, urban architecture, physical locations 
of goods and services, distribution networks for 
goods and services, and many other such features 
(Collins, 1981, pp. 994-995). Level E also includes 
those stable emergents that have become codified 
externally through writing technology: schedules, 

project plans, organizational charts, procedural and 
operations manuals, audit procedures, legal codes, 
constitutions. 

Many Level E phenomena are already the pur-
view of other social sciences: 

• Political systems are fixed by the documents and 
records that support institutions. These systems 
are studied by political science. 

• Economic systems are fixed by patterns and 
technologies of distribution of goods, the sta-
tus of contemporary technology (the means of 
production), locations of factories, and financial 
communication technologies that make possible 
international interbank transfers and letters of 
credit that, in turn, make international trade 
possible. These systems are studied by econom-
ics. 

• Educational systems are fixed by the locations 
of schools, by their classroom architectures, 
by the documents and records that support the 
institutions of schooling, by the textbooks that 
encode knowledge. These systems are studied 
by education researchers.

The physical world is fixed in a way that stable 
emergents are not. Level E phenomena are not subject 
to normal social emergence, and they fall outside 
of the scope of the emergence paradigm—with its 
emphasis on symbolic interaction—because their 
emergence from interaction is lost to history, and 
their continued existence does not depend on interac-
tional phenomena at Level B. For the most part these 
material phenomena are resistant to explanation 
in terms of social emergence. Level E phenomena 
always socially emerge from historical processes, 
although their emergence is often too distant in the 
historical past to be of empirical interest to sociolo-
gists, and as a result they are usually studied by 
historians rather than sociologists. 

Modern transportation infrastructures are ex-
amples of Level E phenomena. Before the industrial 
era in the United States, shipping and travel tended 
to follow inland waterways. In the 19th century, rail 
lines—materialized social emergents—increas-
ingly influenced the development of the United 
States. They influenced the settlement patterns of 
the American West, and determined the rise and 
fall of many Midwestern cities. Once established, 
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these transportation networks had causal power over 
individuals. In the second half of the 20th century, 
another complex set of materialized social facts 
emerged: the automobile, interstate highways, and 
cheap fossil fuel. Because these material facts exist 
at Level E, they cannot be explained by studying in-
teraction and emergence processes occurring today. 
Generally it is historians, rather than sociologists, 
who explain these historical cases of emergence. The 
emergence paradigm could be combined with social 
history to help us explain the emergence of Level 
E structures through historical time. But questions 
within the circle of emergence are more central to 
sociology, and sociology proper should focus on 
the empirical study of contemporary processes of 
social emergence. 

Sociologists often conflate Levels C, D, and E 
into “macrostructure” and Levels A and B into the 
“microlevel.” Introducing the distinction between 
Levels D and E results in a rethinking of the no-
tion of social structure, because many conceptions 
of structure include Level D phenomena. From 
the perspective of the emergence paradigm, it is 
critical to clarify the divide between levels D and 
E, because Level D phenomena fall under the pur-
view of the emergence paradigm whereas Level E 
phenomena do not. 

Limitations at the Lower Levels

To the extent that the individual can be studied 
outside of the circle of emergence, the individual 
will be the subject of the discipline of psychology. 
This psychology will be much more limited in 
scope than the current discipline, because much of 
what we think of as “the individual” is subject to 
emergence processes—for example, the personality 
forms, language is acquired, and early concepts are 
learned during childhood interactions with parents 
and peers—and these aspects of the individual must 
be studied via social emergence. 

Individual brains have properties that are not 
subject to downward causation from the upper 
levels, and the task of psychology is to identify those 
properties of individual brains that are universal 
across sociocultural context and across individuals. 
These properties include such things as memory 
capacity, processing speed, abilities to multitask, 

factors of personality, and cognitive developmen-
tal pathways. All of these things may, at least in 
principle, be ultimately tied to the genotype of the 
organism and to its expression during development. 
To that extent, they are not subject to downward 
causal forces, and as such, would fall outside the 
realm of social emergence.

The emergence paradigm is of interest whenever 
properties of Levels B, C, or D begin to influence 
or constrain the way individuals think, solve prob-
lems, or behave. Social causation is significant 
during socialization; contemporary sociocultural 
research has found that a large part of the child’s 
development depends on social and cultural context 
(Rogoff, 2003). Social causation also plays a sig-
nificant role throughout adult life when situations 
influence individual behavior; many such cases 
have been documented by both social psychologists 
and sociologists.

To the extent that individuals are influenced 
and constituted by their social situation, the study 
of the individual will be a part of the emergence 
paradigm. For example, to the extent that develop-
ing individuals can change during development to 
reflect the society or culture that they live in, the 
study of individual development would fall within 
the emergence paradigm. This study is currently 
the purview of psychologists, but only of psycholo-
gists of a certain persuasion—sometimes known as 
“cultural psychologists” or “sociocultural psycholo-
gists”; the mainstream of psychology is still focused 
on those universal, biologically based behavioral 
phenomena that are constant across the situation.

If the emergence paradigm takes hold, psy-
chology will split into two distinct disciplines. 
The first, the study of biologically based universal 
properties of human brains, will increasingly merge 
with neuroscience. The second, those phenomena 
that cannot be explained by reduction to neurosci-
ence, will migrate into the new sociology of social 
emergence. Alternatively, as the universalist ele-
ments of psychology merge with neuroscience, the 
discipline of psychology may give itself new life 
by reformulating itself as emergence psychology, 
a psychology broken free from its reductionist 
theoretical assumptions.
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socio Logy  and The socia L 
sciences

I have argued that sociologists should attempt to re-
make sociology as the foundational science of social 
emergence. A science of social emergence must be 
heavily based on studies of symbolic interaction and 
of communication processes. If sociology indeed 
becomes the science of social emergence, there 
are ramifications for many other social sciences as 
well, because the science of social emergence would 
provide foundational theoretical frameworks and 
explanations for all of the social sciences.

The emergence paradigm suggests that the 
social sciences are currently misconfigured in 
three ways that result from the failure of sociology 
to define itself as the foundational study of social 
emergence. First, much of what is currently consid-
ered to be part of psychology requires emergentist 
and interactionist explanation; but only rarely have 
psychologists collaborated with, or even become 
familiar with, sociologists. Second, sociology has 
an important role to play in explaining collective 
symbolic products, such as those studied by cultural 
anthropology, folkloristics, and popular culture 
studies—again, disciplines that rarely turn to sociol-
ogy for theory or methodology. These disciplines 
study stable emergents; yet none of these disciplines 
have adequate theoretical foundations of how their 
objects of study emerge, maintain themselves, and 
change over time. A sociology centered on social 
emergence would provide theoretical foundations 
to these social sciences.

And third, the microeconomic study of social 
emergence should be located in the discipline of 
sociology. My argument here is consistent with a 
long history of scholars who have argued that eco-
nomics is a subdiscipline of sociology, because the 
economic system is part of the social system (scholars 
making such an argument include Comte, Weber, 
Mises, and other Austrian school economists). 
Based on the argument I make in this chapter, the 
main reason that the study of emergence belongs 
in sociology rather than economics is because of 
the importance of incorporating a sophisticated 
analysis of symbolic interaction, and sociology is 
a more appropriate discipline than economics for 
the incorporation of the science of interaction with 
the science of emergence.

Since the 1980s, there has been increasing dis-
cussion about the relation between economics and 
sociology. Economic sociologists (e.g., Smelser & 
Swedberg, 1994) and social economists (e.g., Dur-
lauf & Young, 2001) disagree about what the new 
division of labor between economics and sociology 
should be. I add to this debate my proposal that 
the sociology of social emergence should be the 
foundational, basic science, and economics should 
be one of the applied social sciences. Economics is 
the science of economic institutions, but the study 
of how they emerge is a question for this reformu-
lated sociology. 

The emergence paradigm is consistent with the 
foundational assumptions of economic sociology: 
economic action is a form of social action, economic 
action is socially situated, and economic institutions 
are social institutions (Granovetter & Swedberg, 
1992). Both are positivist and reject interpretivism 
(Krier, 1999). I accept the criticisms of neoclassical 
microeconomics made by the economic sociologists: 
the rejection of neoclassical assumptions regarding 
market efficiency, and individual optimization or 
utility maximization (Etzioni, 1991). The social 
emergence of economic institutions is no different 
from the social emergence of any other institution 
(Granovetter & Swedberg, 1992); all social phenom-
ena emerge from individual collective action, and 
there is no reason to believe that there are different 
emergence processes for different social phenom-
ena. Economic action is a form of social action, 
and economic institutions are social institutions. 
Economists who import rational choice models into 
sociological problems agree with this, but assume 
that rational economic action is the fundamental 
form of social action. However, empirical evidence 
has made this assumption increasingly difficult to 
maintain. 

One claim microeconomics makes vis-à-vis 
sociology is the rigor of its mathematical method. 
The claim is that without mathematics, sociology is 
not a science, because it can only provide discursive 
accounts of single phenomena: historicism or story 
telling, rather than a lawful science of regularities. 
But the sociology of social emergence now has an 
equally powerful and equally rigorous methodol-
ogy: multi-agent based simulation. The power 
and rigor of sociology’s new methodology will 
replace the mathematics of utility maximization, 
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because those formalisms cannot be expanded to 
model symbolic interaction and how it contributes 
to emergence. Empirically grounded, theoretically 
rich, sociological models of action, simulated using 
multi agent systems, will result in models of social 
emergence that will then become foundational to 
economics, replacing the mathematical formalisms 
of rational choice. 

If the emergence paradigm takes hold, then 
academic departments are currently configured in a 
theoretically unstable fashion, because to the extent 
that microeconomics studies emergence processes in 
general and how they give rise to stable emergents, 
should be a part of sociology. This disciplinary 
reconfiguration leaves to economics the study of 
emergent economic phenomena, just as it leaves 
to political science the study of emergent political 
systems, to education the study of emergent edu-
cational systems, and so on. However, it removes 
a chunk of microeconomics as currently practiced: 
the use of rational choice models of individuals, 
combined with simple aggregation assumptions 
as the interaction mechanism, to develop micro-
explanations of macroeconomic phenomena. The 
study of social emergence has taken place largely 
in microeconomics because sociology has not been 
receptive to studies of social emergence; those 
scholars interested in emergence mechanisms have 
had no choice but to affiliate with microeconomics. 
But its models of social emergence are simplistic, 
empirically ungrounded, and have largely failed 
(see the critiques of Granovetter, 1985, and Etzioni, 
1991). They persist in the face of such problems 
because social science needs a foundation in social 
emergence, and at present microeconomics has the 
only one. 

It is frequently observed that microeconomics has 
a radically simplified theory of both the individual 
and of the social. Neoclassical microeconomics’ 
model of the individual is a homo economicus who 
has complete, certain information, and rationally 
maximizes exchange value. This simplified model of 
the individual has allowed the study of social emer-
gence to operate within economics. However, toward 
the end of the 20th century experimental economists 
and behavioral economists began to challenge as-
sumptions of rationality, certainty, and complete 
information, drawing on experimental findings 
from psychology that show that individuals operate 

with bounded rationality, bounded willpower, and 
bounded self-interest. Social economists (Durlauf 
& Young, 2001) have introduced heterogeneity in 
individuals, direct interaction as well as interaction 
mediated by market prices (peer groups, social 
networks, and role models), individual preferences 
that are influenced by these interactions, and the 
use of dynamical systems theory and models. As 
these challenges continue and expand, it will be-
come increasingly obvious that the study of social 
emergence belongs within sociology. 

Sociologists have focused their critiques of 
microeconomics on its inadequate model of the 
individual, rather than on its simplistic approach to 
interaction and aggregation—exchange of goods, 
price, and the interaction between demand and 
supply. Rather than focus my critique on its as-
sumptions of rational action, I think economics has 
a more significant weakness vis-à-vis sociology: the 
forms of symbolic interaction that give rise to the 
emergence of social phenomena are not amenable 
to study using economic concepts. As Coleman 
(1986) observed, sociologists have not realized that 
“the major theoretical obstacle to social theory built 
on a theory of action is not the proper refinement 
of the action theory itself, but the means by which 
purposive actions of individuals combine to produce 
a social outcome” (p. 1321). Before the approaches 
to social emergence found in neoclassical micro-
economics can expand to incorporate an empirically 
valid theory of interaction and emergence, they will 
have to merge with the sociological study of human 
symbolic interaction. 

Unlike economics, sociology has a long his-
tory of studying situated symbolic interaction. For 
economics to model social emergence as I have 
described it, economics would have to import whole 
subdisciplines of sociological theory and practice, 
subdisciplines whose object of study has no obvious 
relation to rational economic action—conversation 
analysis, symbolic interaction, interactional socio-
linguistics. Such a disciplinary redefinition would 
make no sense for economics. Yet for sociology, the 
redefinition required to incorporate the study of so-
cial emergence is a natural development, a synthesis 
of the two dominant 20th century sociological para-
digms—the focus on emergence in macrosociology 
and in methodological individualism, and the focus 
on interaction found in interactionist sociology.
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c onc Lusion

Social emergence is one of the big questions that 
sociology was founded to answer over 100 years 
ago. The appropriate methodology to study social 
emergence has only recently become available: 
multi-agent simulations that combine the close focus 
on interaction associated with conversation analysis 
with the independent analysis of the ephemeral 
and stable emergents that result. The emergence 
paradigm doesn’t propose any definite answers 
to longstanding sociological questions, but it has 
significant implications for how sociological theory 
and methodology should proceed. 

The emergence paradigm shows that we cannot 
answer the fundamental question of the social sci-
ences—How do individuals and collectivities mutu-
ally make each other up?—without close analysis of 
the bidirectional mechanisms interacting between 
these three intermediate levels. Most micro-macro 
debate neglects the most important components of 
the mechanism—the interactional phenomena at 
the center of the circle of emergence. 

The study of emergence without sophisticated 
representations of interaction will always have 
limited value to sociology. Several decades of 
microsociological research have demonstrated the 
causal role played by interaction in social life. In-
versely, studying interaction without also examining 
the role it plays in emergence processes is also of 
limited value. Several decades of macrosociological 
research have demonstrated that collective action 
does indeed give rise to apparently autonomous mac-
rosocial phenomena. A science of social emergence 
requires a joint focus on both interaction and emer-
gence; bringing these two longstanding strands of 
sociological research together can result in a unified 
science of social emergence, one that is empirically 
accurate and theoretically sophisticated.

f uTure r esearch direc Tions

In the near term, the science of social emergence 
needs a better understanding of two foundational 
topics: representations of individual agents, and 
representations of interaction. To increase our 
understanding of individual agents, the science of 

social emergence can draw on the fields of cognitive 
psychology and of behavioral economics. To increase 
our understanding of interaction, the science of 
social emergence can draw on empirical studies of 
microinteraction within sociology, and theoretical 
analyses of interaction in sociology, anthropology, 
and linguistics. 

If sociology begins to reformulate itself as 
the foundational study of social emergence, and 
if microeconomists who study social emergence 
increasingly modify their models to incorporate 
interaction and emergence mechanisms, the two 
strands of social emergence study will begin to con-
verge. And as microeconomists increasingly address 
the flaws in their models of social emergence, they 
will find it increasingly inappropriate to be housed 
in departments of economics—because economic 
institutions emerge from the same human actions, 
and through the same emergence processes, as all 
other social institutions. Sophisticated models of 
emergence from communicative interaction are 
not likely to rest comfortably in a department of 
economics. 

It is a historical accident that many such studies 
are now conducted by economists. Economics was 
the first discipline to develop rigorous formalisms 
with which to model emergence; and because these 
models were consistent with economic assumptions 
and not with sociological ones, the discipline of so-
ciology has never been completely comfortable with 
them (in spite of notable attempts such as Coleman, 
1990). Eventually, studies of social emergence will 
be grouped in a single discipline, and that discipline 
is more likely to be sociology. The emergence of 
macro phenomena cannot be explained with a 
narrow focus on maximizing utility—not even the 
emergence of macro economic phenomena can be 
explained this way. 

This reconfiguration will happen only after many 
years, perhaps decades: after sociology reconfigures 
itself as the basic science of social emergence, devel-
ops appropriately sophisticated methods for simulat-
ing human symbolic interaction, and begins to have 
demonstrable successes, and after microeconomics 
responds by revamping its models to incorporate 
socially embedded individuals, interacting using 
complex communication systems. This new unified 
discipline will study ephemeral and stable emergents 
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as symbolic emergents of interaction, combining 
empirical rigor and theoretical foundations. 
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a bs Trac T

This chapter critically examines our theoretical understanding of the dialectical relationship between emergent 
social structures and agent behaviors. While much has been written about emergence individually as a concept, 
and the use of simulation methods are being increasingly applied to the exploration of social behavior, the 
concept of “social emergence” remains ill defined. Furthermore, there has been little theoretical treatment or 
practical explorations of how both the range and type of emergent structures observed may change as agents 
are endowed with increasingly sophisticated cognitive abilities. While we are still a very long way from being 
able to build artificial agents with human-like cognitive capabilities, it would be timely to revisit the extent of 
the challenge and to see where recent advances in our understanding of higher order cognition leave us. This 
chapter provides a brief recount of the theory of emergence, considers recent contributions to thinking about 
orders of emergence, and unpacks these in terms of implied agent characteristics. Observations are made 
about the implications of alternative cognitive paradigms and the position is proposed that an enactivist view 
provides the most logical pathway to advancing our understanding. The chapter concludes by presenting an 
account of reflexive and non-reflexive modes of emergence, which incorporates this view.  

inTroduc Tion

Building and working with artificial societies using 
the methods of multi-agent social simulation serves 
us in several ways: 1) It allows us to operationalize 
social theories and to compare simulated behaviors 
with those observed in the real world; and 2) it allows 
us to build new theory by exploring the minimal 

mechanisms that might explain observed social 
behavior. Most importantly 3) it provides a unique 
ability to explore the interplay between levels of 
phenomena and to understand dynamic properties 
of systems. A great deal can and has been achieved 
in both these areas with even the simple methods 
we currently have available. However, Keith Sawyer 
(2003) has recently reminded us that, to date, we 
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have worked with agents with very limited cognitive 
capability and that this necessarily limits the range 
and type of behavior which can be explored. This 
echoes a sentiment made a decade ago by Christiano 
Castelfranchi (1998a) that social simulation is not 
really social until it can provide an adequate account 
of the implication of feedback between macro and 
micro which becomes possible with higher cognitive 
functioning of social agents.  

In many respects, developments in our capac-
ity to simulate artificial societies have led us to 
confront anew a long-standing issue within social 
theory. This is a problem that social science con-
ducted within traditional disciplinary boundaries 
has become quite adept at avoiding. Indeed it can 
be argued that the particular form disciplinary 
fragmentation takes in social science is a primary 
strategy for avoiding it. The problem is referred to 
in a number of ways depending on the disciplinary 
tradition.  This chapter begins by revisiting this most 
important of problems. In terms of the challenge it 
poses to artificial societies it can be expressed in 
the following three questions:

1. What are the fundamental cognitive charac-
teristics which distinguish human agents from 
animal or automaton? 

2. How do these characteristics influence the 
range and type of behaviors agents may gen-
erate and the emergent structures which they 
may give rise to? 

3. How can we theorize about the relationship 
between cognitive capability and categories 
of emergent form?

These questions form the focus for this chap-
ter. We begin to address them by revisiting the 
contribution of alternative schools of thought to 
our understanding of the nature and origins of 
emergent structure and alternative concepts of 
orders of emergence. We then discuss the implica-
tions of the two competing cognitive paradigms 
within AI—that of cognitivism and the enactive 
view. Finally we turn to current research on the 
development of human cognition and examine 
its implications for anticipating different orders 
of emergent structure—proposing what we call 
reflexive and non-reflexive classes of emergence. 

Finally a research program for the advancement of 
understanding in this area is proposed. 

This work has its origins in two strands of 
research with which the authors are currently in-
volved. The first addresses the relationship between 
micro and macro levels of social behavior and or-
ganization directly. Over the past decade we have 
explored the characteristics of the micro-macro 
problem (see Chris Goldspink & Kay, 2003, 2004) 
in pursuit of a coherent and consistent account of 
the interpenetration (circular causality) between 
micro and macro phenomena. Our aim is to develop 
a theory which can provide a substantive account 
of fundamental social generative mechanisms. To 
date no such social theory exists that satisfactorily 
explains this dynamic. 

The other strand is one author’s involvement 
with the Centre for Research in Social Simulation 
and though it the European Union funded project 
titled Emergence in the Loop (EMIL). The aim of 
EMIL is to :  a) provide a theoretical account of the 
mechanisms of normative self-regulation in a num-
ber of computer mediated communities b) specify 
the minimum cognitive processes agents require to 
behave in normative ways c) develop a simulator 
which can replicate the range and type of normative 
behavior identified by the empirical research so as 
to further deepen our understanding of how and 
under what conditions normative self-regulation is 
possible and the range and type of environmental 
factors which influence it. 

a  brief r ecoun T of The 
Theor y o f eMergence 

The notion of emergence has a long history, hav-
ing been invoked in a number of disciplines with 
varying degrees of centrality to the theoretical and 
methodological development of associated fields.  
Unfortunately the concept has largely remained 
opaque and ambiguous in its conceptualization, 
leading to the criticism that it stands as little more 
than a covering concept – used when no adequate 
account or explanation exists for some unexpected 
phenomena. Clayton has argued that the concept 
covers: 
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…a wide spectrum of ontological commitments. 
According to some the emergents are no more than 
patterns, with no causal powers of their own; for 
others they are substances in their own right… 
(Clayton, 2006: 14). 

The origin of the concept has been attributed 
to George Henry Lewes who coined the term in 
1875 (Ablowitz, 1939). It subsequently found wide 
adoption within the philosophy of science but more 
recently has been advanced within three distinct 
streams: philosophy, particularly of science and 
mind; systems theory, in particular complex systems; 
and social science where it has largely been referred 
to under the heading of the micro-macro link and/or 
the problem of structure and agency. Interestingly 
there has been relatively little cross fertilization of 
thinking between these streams. 

The c ontribution from philosophy of 
science

The philosophy of science and philosophy of mind 
stream is arguably the oldest – some date it back to 
Plato (Peterson, 2006) but the debate is widely seen as 
having come to focus with the British Emergentists 
(Eronen, 2004; Shrader, 2005; Stanford Encyclopae-
dia of Philosophy, 2006). This school sought to deal 
with the apparent qualitatively distinct properties 
associated with different phenomena (physical, 
chemical, biological, mental) in the context of the 
debate between mechanism and vitalism: the former 
being committed to Laplacian causal determinism 
and hence reductionism and the latter invoking ‘non-
physical’ elements in order to explain the qualitative 
difference between organic and in-organic matter. 
This stream remains focused on explaining differ-
ent properties of classes of natural phenomena and 
with the relationship between brains and minds 
(See Clayton & Davies, 2006 for a recent summary 
of the positions). As a consequence this has been 
the dominant stream within artificial intelligence. 
Peterson (2006: 695) summarizes the widely agreed 
characteristics of emergent phenomena within this 
stream as follows.  Emergent entities:

1. Are characterized by higher-order descriptions 
(i.e. form a hierarchy).

2. Obey higher order laws.
3. Are characterized by unpredictable novelty.
4. Are composed of lower level entities, but lower 

level entities are insufficient to fully account 
for emergent entities (irreducibility).

5. May be capable of top-down causation.
6. Are characterized by multiple realization or 

wild disjunction (Fodor, 1974) (alternative 
micro-states may generate the same macro 
states). 

A key concept within these discussions is that 
of supervenience: a specification of the ‘loose’ de-
terminisms held to apply between levels such that 
‘…an entity cannot change at a higher level without 
also changing at a lower level’  (Sawyer, 2001: 556). 
Within this stream prominence of place is given 
to both downward and upward causation. Clayton 
and Davies (2006) specify downward causation as 
involving macro structures placing constraint on 
lower level processes hence ‘Emergent entities pro-
vide the context in which local, bottom up causation 
takes place and is made possible’ (Peterson, 2006: 
697). Davies (2006) argues that the mechanism of 
downward causation can usefully be considered 
in terms of boundaries. Novelty, he argues, may 
have its origin in a system being ‘open’. If novel 
order emerges it must do so within the constraints 
of physics. He concludes:

…top-down talk refers not to vitalistic augmentation 
of known forces, but rather to the system harnessing 
existing forces for its own ends. The problem is to 
understand how this harnessing happens, not at the 
level of individual intermolecular interactions, but 
overall – as a coherent project. It appears that once 
a system is sufficiently complex, then new top down 
rules of causation emerge. (Davies 2006: 48). 

For Davies then, top-down causation is as-
sociated with self-organization and may undergo 
qualitative transitions in form with increasing 
system complexity. For Davies also it is the ‘open-
ness’ of some systems that ‘provides room’ for 
self-organizing process to arise, but he concludes, 
‘openness to the environment merely explains why 
there may be room for top-down causation; it tells 
us nothing about how that causation works.’ The 
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devil then, is in the detail of the mechanisms spe-
cific to particular processes in particular contexts 
and particular phenomenal domains. Perhaps then 
a part of the problem with the concept is that it has 
been approached at too abstract a level. 

The c ontribution from social 
science

The micro-macro problem—the relationship 
between the actions of individuals and resulting 
social structures and the reciprocal constraint those 
structures place on individual agency—has long 
standing in social science as well as in philosophy. 
The problem is central to many social theories devel-
oped throughout the 19th and 20th century. Examples 
include: Marxian dialectical materialism (Engels, 
1934) built upon by, among others, Vygotsky (1962) 
and Lyont’ev (1978);  the social constructionism of  
Berger and Luckmann (1972); Gidden’s structura-
tion theory (1984); and the recent work of critical 
realists (Archer, 1998; Archer, Bhaskar, Ciollier, 
Lawson, & Norrie, 1998; Bhaskar, 1997, 1998). 
These alternative theories are frequently founded 
on differing assumptions, extending from the es-
sentially objectivist/rationalist theory of Coleman 
(1994), through the critical theories of Habermas 
and to the radical constructivism of Luhmann 
(1990; 1995). 

Fuchs & Hofkirchner (2005: 33) have recently 
suggested a four category schema for classifying 
social theory according to the ontological position 
adopted with respect to the micro-macro relation-
ship. The majority of existing social theories, they 
argue, fall into one or other of two categories which 
they label individualism and sociologism. Neither of 
these ‘paradigms’ provides a theoretical foundation 
which supports exploration let alone the possibility 
of advancing understanding of the interplay between 
agency and structure, rather the problem is avoided 
by restricting analysis to one level or the other. A 
third category, dualism, while considering both 
aspects, insists on the adoption of a dichotomous 
stance and as a consequence does not support any 
understanding of the interplay between levels. Only 
those theories categorized as dialectical therefore 
have relevance. Even here, it is reasonable to con-
clude that little practical advance has been achieved, 

as most positions result in a straddling of bottom up 
and top-down arguments and/or suffer from exces-
sively vague conceptualization. These theories also 
quickly break down into a dichotomy the moment 
an attempt is made to make them operational. 

What has been largely agreed, despite the very 
different theoretical and often inadequate handling 
of this problem, is that structure and agency come 
together in activity or in body-hood – the specific 
psycho-motor state at the instant of enaction. Both 
Vygotsky and Giddens, for example, focus on action 
as the point of intersection between human agency 
and social structures and it is implicit in Bourdieu’s 
habitus also. 

The c ontribution from systems 
Theory

Systems language was clearly evident in the work 
of the early Emergentists and in a great deal of so-
ciology and anthropology which took seriously the 
structure/agency problem – notably that of Margaret 
Mead and Gregory Bateson. However, ‘systems’ as 
a focus of systematic research arguably took form 
with von Bertalanffy’s attempt to establish a Gen-
eral Systems Theory in 1950 (Bertalanffy, 1950; 
Bertalanffy_von, 1968). As the science of ‘wholes’ 
systems theory stands in contrast to reductionism’s 
concern with parts. Systems theory was put forward 
as a counter to what was perceived as excessive re-
ductionism dominating scientific discourse during 
much of the 20th century.

In the early stages of development of the theory 
systems tended to be modeled as ‘black boxes’ 
effectively masking the relationship between mi-
cro and macro elements. The application of the 
concept to social science, in particular through the 
development by Ernst von Glasersfeld and Heinz 
von Foerster (Keeney, 1987) of social cybernetics 
along with soft systems approaches (Checkland, 
1988) provided a theoretical lens and methods use-
ful for describing the systemic behavior of social 
systems. So while the aspiration of GSM to establish 
a general science of systems is generally regarded 
to have failed (Jackson, 2000), systems approaches 
have contributed valuable methods for the study of 
the interplay between levels in a social system. The 
Systems view of emergence was founded on:
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• Holism; the whole is greater than the sum of 
its parts.

• A concern with feedback both positive and 
negative. 

• A concern with boundaries and boundary 
conditions. 

More recently the development of complex 
systems theory and its application to natural, social 
and cognitive phenomena has provided additional 
concepts upon which much current debate about 
emergence draws. Many of these concepts and 
methods have become widely used within the multi-
agent modeling community (Castelfranchi, 1998b; 
Conte, Hegselmann, & Terna, 1997; Gilbert, 1995; 
Holland, 1998). 

Within contemporary debate, and in contrast to 
the position taken by the British Emergentists who 
argued that irreducibility was the exception (Eronen, 
2004), most real world systems are now argued to 
be non-linear (S. Kauffman, 2000; S. A. Kauffman, 
1993, 1996; Stewart, 1990) and hence irreducible. It 
is non-linearity which contributes to these system’s 
capacity for novelty and unpredictability through 
the presence of deterministic Chaos (Lorenz, 2001; 
Williams, 1997) and/or equifinality. Equifinality as 
it is known within systems theory, or the principle 
of ‘wild disjunction’ as it is known in philosophy, 
refers to a system where a single high level property 
may be realized by more than one set of micro-states 
which have no lawful relationship between them 
(Richardson, 2002a, 2002b; Sawyer, 2001). As there 
is no a-priori basis by which the likely micro state 
can be determined, such systems are irreducible 
and unpredictable in principle. 

o bservations

The concept of emergence has led to the estab-
lishment of a number of general principles which 
describe the relationship between micro and macro 
phenomena, as well as some methods and techniques 
for identifying and exploring it. Specifically, we can 
conclude that there are systems which are:

• Inherently analytically reducible (to which 
the concept of emergence does not apply);

• Analytically reducible in principle but dif-

ficult to reduce in practice and/or where an 
advance in science/knowledge is needed for 
reduction to be possible because the results 
were ‘unexpected’ (Chalmers, 2006) (to which 
the concept of ‘weak’ emergence can be ap-
plied);

• Not reducible in principle (to which the prin-
ciple of ‘strong’ emergence is relevant).

We argue that all living systems and all social 
systems belong to the latter class. Accordingly we 
agree with McKelvey (1997) that a great deal of social 
order may be attributable to complex organization in-
volving non-liner relations between elements. It is for 
this reason that simulation methods are regarded as 
important but only to the extent that we can construct 
artificial societies which are reasonable analogues of 
the social systems we want to understand and this 
implies agent architectures which are capable of 
generating the range of social behaviors/structures 
of interest. The problem here is that we still have a 
very rudimentary understanding of what cognitive 
capabilities support or are necessary for what range 
and types of social structures.  

In the following section we draw on the limited 
prior attention given to this problem and attempt 
to clarify what is currently known. Throughout 
the discussion, pointers are provided to where the 
mechanisms being outlined have, at least in part, 
been incorporated into computer simulations of 
artificial intelligence or artificial societies. 

o rders of eMergence

A number of authors have identified what they 
refer to as orders of emergence. Gilbert, for ex-
ample distinguishes between first and second 
order emergence. First order emergence includes 
macro structures which arise from local interac-
tions between agents of limited cognitive range 
(particles, fluids, reflex action). By contrast, second 
order emergence is argued to arise ‘where agents 
recognise emergent phenomena, such as societies, 
clubs, formal organizations, institutions, localities 
and so on where the fact that you are a member or 
a non-member, changes the rules of interaction 
between you and other agents.’ (Gilbert, 2002). 
This reflects high order cognition on the part of the 
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agent. In particular it reflects a range of capabilities 
including but not limited to the ability to distinguish 
class characteristics; assess ‘self’ for conformity 
with class characteristics and/or signals from other 
agents which suggest acceptance or belonging; the 
ability to change rule associations and behavior as 
a function of these changes. First and second order 
emergence then each imply qualitatively distinct 
mechanisms and suggest a continuum of orders of 
emergence linked, in biological entities at least, to 
cognitive capability. 

In a similar vein, Castelfranchi (1998a: 27) 
has distinguished what he refers to as cognitive 
emergence. ‘Cognitive emergence occurs where 
agents become aware, through a given ‘concep-
tualization’ of a certain ‘objective’ pre-cognitive 
(unknown and non deliberated) phenomenon that 
is influencing their results and outcomes, and then, 
indirectly, their actions.’ This approach is based on 
a first generation AI (Franklin, 1998) approach to 
conceptualizing agents:  agent cognition is assumed 
to involve acting on beliefs desires and intentions 
(BDI). Thus Castelfranchi conceives of a feedback 
path from macro pattern to micro behavior in much 
the same way as Gilbert, except that here a cogni-
tive mechanism is specified. Castelfranchi argues 
that this mechanism has a significant effect on 
emergence and indeed ‘characterises the theory of 
social dynamics’ – that is, it gives rise to a distinct 
class of emergent phenomena. In this account, the 
representations agents have about the beliefs, desires 
and intentions of other agents plays a causal role 
in their subsequent behavior and therefore shapes 
the structures they participate in generating. In this 
same chapter Castelfranchi argues that understand-
ing this process is fundamental to social simulation: 
it is where social simulation can make its greatest 
contribution. 

These ideas are more comprehensively reflected 
in the five orders of emergence suggested by Ellis  
(2006:99-101). These are:

1. Bottom up leading to higher level generic 
properties (examples include the properties 
of gases, liquids and solids)

2. Bottom up action plus boundary conditions 
leading to higher level structures (e.g. convec-
tion cells, sand piles, cellular automata) 

3. Bottom up action leading to feedback and 
control at various levels leading to meaning-
ful top down action - teleonomy (e.g. living 
cells, multi-cellular organisms with ‘instinc-
tive’ – phylogenetically determined reactive 
capability)

4. as per 3 but with the addition of explicit goals 
related to memory, influence by specific events 
in the individuals history (i.e. learning)

5. In addition to 4 some goals are explicitly 
expressed in language (humans).

Ellis’s framework makes clear that the range and 
type of emergence possible in a system depends 
fundamentally on the range and class of behavior 
agents are able to generate and that this varies de-
pending on the properties of the agent.

If we consider Ellis’ category one emergence, it 
is apparent that particles have fixed properties and 
are able to enter into a limited range of interactions 
(specified by physical laws) based on those proper-
ties. Swarms of particles can nevertheless demon-
strate some rudimentary self-organization and hence 
emergence (Kennedy & Eberhart, 2001). Physics has 
furnished good accounts of many specific examples 
(Gell-Mann, 1995) but they have limited implication 
for our understanding of social behavior. 

Category two has also recently been well ex-
plored as it is the focus of complexity theorists. 
Examples include the work of Per Bak (1996) 
on sand piles and earthquakes, Lorenz (2001) on 
weather systems and Prigogine (1997; 1985) on 
far from equilibrium systems. Many so called so-
cial simulations also belonging here– specifically 
those which incorporate agents which have fixed 
behaviors and no capacity for learning (individual 
or social). These include classic simulations based 
on swarms (Boids) and/or involving fixed decision 
criteria or rules such Schelling’s segregation model, 
the cooperation models of Axelrod (1984) or the 
Sugarscape models of Epstein and Axtell (1996). 
Some may argue that these models involve agents 
with goals and therefore represent examples of 
fourth order emergence. The transition between 3rd 
order and fourth, as will be argued below, involves 
a move to agent autonomy that is missing in these 
models: their goals are designed in and not a result 
of their own operation it is for this reason that we 
argue they belong to order two. 
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It is significant that Ellis provides primarily 
biological examples for his category three order 
of emergence. The paradigmatic biological entity 
which illustrates the processes of reciprocal micro-
macro causality and for which we have an excellent 
description which has been made operational both 
in vitro and in silico (see for example McMullin & 
Grob, 2001; F. Varela, Maturana, & Uribe, 1974) is 
the cell. While the mechanisms of autocatalysis and 
the metabolic pathways of cell self-production are 
well known, well documented and closely studied, 
the most concise articulation of the fundamental pro-
cesses involved come with the theory of autopoiesis 
developed by the theoretical biologists Humberto 
Maturana and Francisco Varela (H. Maturana & 
Varela, 1980; H. R. Maturana & Varela, 1992; F. 
Varela, 1979; F. Varela et al., 1974). Unfortunately 
this account is not widely appreciated even within 
biology itself1. Varela (1997: 78) states: 

Autopoiesis is a prime example of a …dialectics 
between the local component levels and the global 
whole, linked together in reciprocal relation through 
the requirement of constitution of an entity that self-
separates from its background. 

The theory of autopoiesis provides a foundation 
for understanding other emergent processes, par-
ticularly those associated with biological entities. 
The originating authors themselves extended it to 
cover multi-cellular entities and to provide a more 
general theory of cognition. Others have gone so far 
as to argue that it furnishes a theory of society and/or 
organization (Niklas Luhmann, 1995; von_Krogh 
& Roos, 1995; Zeleny, 1991) although this remains 
controversial (Bednarz, 1988; Mingers, 2002, 2004) 
and we specifically reject it as incompatible with 
the original concept and as unnecessary (Goldspink, 
2000; Kay, 1999). 

Unlike the self-organizing processes which char-
acterize the second order, the defining characteristic 
of biological self-organization is the attainment of 
‘strong autonomy’ (Rocha, 1998). While Ellis does 
not say so directly, it would appear that it is the ad-
vent of a self-referential operational closure which 
demarcates third and higher orders of emergence 
from the lower orders. 

Maturana and Varela argue that cognition is as-
sociated with this operational closure or autonomy. 

Autonomy is used here to refer to a constitutive 
process rather than as a categorical distinction and 
cognition is defined as the range of behaviors the 
agents can generate to remain viable or to retain 
its identity as a self-constituting agent (Froesea, 
Virgo, & Izquierdo, 2007; Thompson & Varela, 
2001). For those immersed in symbolic AI it may 
come as a surprise that a biological cell may thus 
be described as a cognitive entity. This theme will 
be developed further in a following section as it 
is central to the idea of enactive cognition finding 
increasing uptake within second generation AI, 
artificial life and robotics (Barandiaran, 2005; Di 
Paolo & Lizuka, 2007; Di Paolo, Rohde, & De Jae-
gher, 2007; Moreno & Etxeberria, 1995; Moreno, 
Umerez, & Ibanes, 1997). 

In his third order category Ellis includes a range 
of capabilities of biological entities up to and in-
cluding ‘instinctive’ action. These suggest that this 
category would pertain to single and multi-cellular 
organisms including those with a central nervous 
system. It may be that this order is too broadly 
cast. Multi-cellularity is arguably another threshold 
point as differentiated aggregates of cells display 
greater capacity to respond to their environment, 
even where they do not possess a central nervous 
system, than do individual cells. Furthermore those 
with a central nervous system enjoy even greater 
behavioral flexibility. As a consequence each prob-
ably originates a distinct macro phenomenology 
different from that of the cells that constitute them 
(H. R. Maturana & Varela, 1992). 

The primary point of distinction between order 
three and order four would appear to be between 
(phylogenetically) fixed individual characteristics 
and a capacity for an individual agent to have goals 
and to learn.  The mechanisms by which these 
characteristics are acquired and fixed at the level of 
individuals (sexual transmission and natural selec-
tion) are ignored by Ellis or seen as unimportant from 
the perspective of emergence. This is reasonable if 
our concern is with social behavior which manifests 
over relatively short time cycles in geological terms. 
When does a capacity to adjust structure in response 
to an environment as implied by the characteristics 
of Ellis’ third order become the learning ability as-
sociated with the forth order? 

Ellis explicitly demarcates the goal directedness 
of the fourth order from apparent goals implied in 
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the teleonomic operation of living things implicit in 
the third. We must therefore assume he means active 
goal-setting : the exercise of what we commonly 
refer to as agency or free will. Agency results from 
the vastly expanded behavioral plasticity available 
when an organism develops an advanced nervous 
system.  Also, to learn an agent must have some 
form of memory. Memory too is generally associated 
with the existence of a central nervous system and is 
often seen as involving stored representations. But 
the idea of ‘representations’ is highly problematic 
from a biological point of view. What is it that is 
represented and how? We consider this problem in 
the next section. 

Ellis would seem to be pointing to a category here 
which deals with non-human animals but the transi-
tion points are not well defined from the perspective 
of mechanisms of emergence. Learning in animals 
can stretch from simple operant conditioning to com-
plex evaluative processes involving logical reflexion. 
Different stages along this continuum would appear 
to support significantly different forms of emergent 
structure. Ellis makes no distinction, for example, 
between individual and social learning. 

Ellis marks his final transition from category four 
to category five by moving from simple learning 
capability to the capacity for language. Animals 
such as apes have rudimentary language ability 
– are they included in here or is this category the 
human catch-all category?  Unfortunately the more 
closely we look at the jump between fourth and fifth 
order the more it resembles an abyss. 

There has been a considerable research effort 
directed at understanding the origins and develop-
mental phases associated with the attainment of the 
distinctive human cognitive capabilities. These are 
the capabilities which seem to relate to the transi-
tion between Ellis’ category four and five orders of 
emergence. Much of this has drawn on comparative 
neurology, and sociological and psychological study 
of non-human animals, in particular apes. Insights 
are available also from developmental psychology 
and neurology directed at understanding human 
ontogeny: the phases of development from infant to 
adult. Note that these may overlap as phylogeneti-
cally determined capabilities characteristic of some 
animals may correspond to early stages of human 
ontogenetic development. This corpus offers those 

of us involved with AI two opportunities a) a capac-
ity to aim to better stage the development of agent 
specifications - aiming to provide a reasonable model 
for simple intelligence before the more complex and 
b) a capacity, even before we can effectively model 
or simulate more advanced intelligence, to theorize 
about the implications it may have for emergence 
of social structure. 

Some work has already been undertaken in this 
area, most notably in the area of robotics rather than 
computer simulation of social phenomena (although 
robots can be regarded as physical simulations 
and multi-agent software simulations as simulated 
robotics). Of particular note here is the work of 
Dautenhahn (2001; 2002), Bryson (2007; n.d) and 
Steels (1997; 2005; 1999) in the area of language. 

Gardenfors (2006) identifies the following as 
needing to be explained (presented in order of their 
apparent evolution).

• Sensations
• Attention
• Emotions
• Memory
• Thought and imagination
• Planning
• Self-consciousness/theory of mind
• Free-will
• Language

These are present to varying degrees in different 
organisms and develop at different stages in humans 
as they develop from infancy to adulthood.  The 
degree of interrelatedness is not, however, straight 
forward. Apes for example demonstrate self-aware-
ness and theory of mind but do both without lan-
guage whereas in humans language appears to play 
a significant role in both. For the time being then 
too little is known about these transitions.

It is perhaps in understanding these transitions 
that we find the greatest challenges for advancing ar-
tificial societies and it is here that we find philosophy 
may have dealt us an unhelpful turn. The advent of 
the central nervous system and the observation that 
cognitive function is correlated with brain size has 
contributed to a distinctive account of the function 
of brain and its relationship to mind (Johnson, 1990; 
Lakoff & Johnson, 1999). In this convention, mind 
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and hence cognition has been argued to originate 
in brains and to involve symbol manipulation. As 
we consider the literature on what makes human 
cognition distinctive, we need to be mindful of 
the effect of this and alternative paradigms. What 
are these alternatives and what difference do they 
make to our understanding of orders of emergence 
in general and social emergence in particular?

Two paradig Ms: Two possib Le 
approaches

Within AI there are two alternative and some argue 
antithetical paradigms of cognition – symbolic and 
connectionist. Symbolic AI assumes that it is pos-
sible to model every general intelligence using a 
suitable symbol system and that intelligence involves 
symbol manipulation (Franklin, 1998). 

In their book The Embodied Mind, Varela & 
Rosch (1992) state:

The central intuition … is that intelligence—human 
intelligence included—so resembles computation 
in its essential characteristics that cognition can 
actually be defined as computations of symbolic 
representations (F. Varela, Thompson, & Rosch, 
1992: 40).

The symbolic approach inevitably constructs a 
duality. The environment is experienced as a facticity 
and acted upon directly, but is also conceived and 
symbolically represented in the mind. Mind and 
behaviour are linked as hypothesis and experiment. 
The mind looks for patterns in representations and 
tests the degree to which these accord with the 
outside world. 

More recently, this tradition has been challenged. 
The advent of complexity theory has given greater 
impetus to connectionist models of mind such as 
neural networks. Here emergent structure or pattern 
arises from massively interconnected webs of active 
agents. Applied to the brain, Varela et al state:

The brain is thus a highly cooperative system: the 
dense interconnections amongst its components 
entail that eventually everything going on will be 
a function of what all the other components are 
doing (1992: 94). 

It is important to note that no symbols are invoked 
or required by this model. Meaning is embodied in 
fine-grained structure and pattern throughout the 
network. Unlike symbolic systems, connectionist 
approaches can derive pattern and meaning by 
mapping a referent situation in many different (and 
context dependent) ways. Meaning in connection-
ist models is embodied by the overall state of the 
system in its context. It is implicit in the overall 
‘performance in some domainre’. Herein lays its 
major problem from the perspective of multi-agent 
simulation. In connectionist models the micro-
states which support a given macro state is opaque 
– relatively inaccessible to an observer and difficult 
to interpret – indeed, there will often be several or 
many micro configurations compatible with a given 
macro-state (Richardson, 2002b).  Several attempts 
have been made to address this problem. The first 
was to consider hybrid systems  in an attempt to 
gain the advantage of each (Khosla & Dillon, 1998). 
The second has been to find a middle ground. This 
is apparent for example in Gardenfors’ theory of 
conceptual spaces (Gardenfors, 2004). At the same 
time the practical value of connectionist systems 
– their capacity to categorize contexts or situations 
in a non-brittle way– has been seen as a significant 
advantage in robotics (Brooks, 1991). 

Back in 1992 Varela et al noted that:

…an important and pervasive shift is beginning 
to take place in cognitive science under the very 
influence of its own research. This shift requires 
that we move away from the idea of the world as 
independent and extrinsic to the idea of a world as 
inseparable from the structure of [mental] processes 
of self modification. This change in stance does not 
express a mere philosophical preference; it reflects 
the necessity of understanding cognitive systems not 
on the basis of their input and output relationships 
but by their operational closure (1992: 139).

They go on to argue that connectionist ap-
proaches, while an advance on cognitivism are not 
consistent with an approach which views biological 
agents as operationally closed in that ‘…the results 
of its processes are those processes themselves’ 
(1992, p. 139). They assert:
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Such systems do not operate by representation. 
Instead of representing an independent world, they 
enact a world as a domain of distinctions that is 
inseparable from the structure embodied by the 
cognitive system (1992: 140).

These authors argue for an approach of cogni-
tion as ‘enaction’, an intertwining of experience 
and conceptualization which results from the 
structural coupling of an autonomous organism 
and its environment. Autopoietic theory provided 
a concrete and operationalizable account of the 
intertwining of micro and macro at the level of the 
cell. The enactive theory of cognition goes some 
way towards providing a basis for understanding this 
process in multi-cellular animals. Enactive cogni-
tion is currently enjoying significant attention and 
hence conceptual extension as well as experimental 
grounding in the field of robotics (see for example 
De Jaegher & Di Paolo, 2007; Di Paolo et al., 2007; 
Metta, Vernon, & Sandini, 2005). The attraction 
here is pragmatic – it helps to address longstanding 
problems within robotics, in particular the problem 
of symbol grounding (Harnad, 1990). To date it 
has seen little uptake within social simulation. The 
implications of enaction go well beyond pragmatics 
however. 

The enactive turn in AI has as an explicit target 
a resolution of the micro-macro problem.  While 
symbolic AI assumes the existence of an objective 
independent world and a mental model with some 
correspondence to the real world, enaction dispenses 
with this dichotomy. As an autonomous entity, the 
cognizing agent is concerned only to maintain its 
viability in an environment. It adjusts its structure 
to accommodate perturbation from the environment 
(which includes other cognitive agents) in order to 
do so. Advanced nervous systems and capabilities 
such as language simply extend the requisite variety 
available to the agent extending the range and type 
of environmental perturbations it can survive.  As 
agents and environments structurally couple they co-
determine one another to ‘satisfice’ the conditions for 
mutual viability. From this perspective, the impor-
tance of environment recedes from determinant to 
constraint. Intelligence moves from problem solving 
capacity to flexibility to enter into and engage with a 
shared world. However, McGee (2005a; 2005b) has 

recently argued that despite its promise, enactive 
cognition is not yet sufficiently well articulated to 
‘speak of hypothetical mechanisms’. The limiting 
factor here would appear to be as much one of 
insufficient application as theoretical difficulty.  
In the final section we attempt a definition of two 
classes of emergence which we call reflexive and 
non-reflexive. These draw on the enactive paradigm 
and attempt to provide a concrete specification of 
the mechanisms which underlay each.  

Tow ards an enac Tive 
specifica Tion of aspec Ts of 
cogni Tion and Their 
associa Ted orders of 
eMergence

How then do we advance our understanding of the 
effect of different cognitive capability on orders of 
emergence? A useful strategy may be to simplify 
the problem. By way of a mental exercise we will 
take simple extremes and recast the problem in terms 
of an enactive view. From an enactive position the 
critical phases of cognitive development appear to 
be as follows: 

• Autonomy (operational closure)
• Structural Coupling
• Reflexivity/self consciousness
• Language/consensual domains

All living beings (from amoeba to humans) are 
distinguished by autonomy and as autonomous enti-
ties they necessarily enter into structural coupling 
with their environment. We take this as one pole of 
the continuum and identify the class of emergence 
which it can support as non-reflexive. This is the 
enactive equivalent to social order which is a prod-
uct of emergence without the feedback loop from 
macro to micro which Castelfranchi (1998a) refers 
to as immergence.   The mechanisms are, however, 
more sophisticated than are currently modeled in 
Artificial Societies as they involve autonomous 
agents – these are essentially what Ellis refers to 
in his category four – i.e. biological agents which 
can change their structure (learn) in response to 
environmental perturbation.  It should be feasible 
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to simulate this type of agent with current technol-
ogy or at least to achieve a close proxy although we 
have not yet managed to do so beyond the most basic 
chemical system analogues of cell autopoiesis. If 
we were to achieve it how might we describe the 
system operation? 

Non-Reflexive Social Emergence

Non-reflexive emergence arises from the mechanism 
of structural coupling between operationally closed 
(autonomous) agents. Structural coupling will arise 
between such agents which have sufficient cogni-
tive range (behavioral repertoire) when they are 
located in a common environment.  Assuming that 
their phylogeny and ontogeny is such that they can 
co-exist, through the process of recurrent mutual 
perturbation, each will adjust its structure so as 
to accommodate the other – their structures will 
become mutually aligned or structurally coupled. 
This process has been approximated in a simulation 
by Stoica-Kluver and Kluver (2006). 

An observer may notice regularities in the 
resulting patterns of interaction and these may be 
labeled as ‘norms’ for example although Castelfran-
chi would refer to them as social functions as they 
‘work without being understood’.  These patterns 
represent mutual accommodations, and an observer 
might attribute to those accommodations some social 
‘function’. The accommodations an agent makes 
to remain viable in one domain of interaction will 
need to be reconciled (within its body-hood) against 
accommodations being made (simultaneously) as 
it also participates with different agents in other 
domain/s in which it is simultaneously participating 
– agency and structure converge and are both instan-
tiated at the point of enaction. The accommodations 
made will be those that allow the agent to remain 
viable and to maintain its organization (i.e. which 
‘satisfice’ the constraints and allow conservation 
of identity) based on its unique ontogeny (structure 
resulting from its history of interactions in a variety 
of domains including the current one). 

Here the emergent structure can be seen to be ‘in’ 
(i.e. internalized within its own cognitive structure) 
each agent to the extent that each has had to make 
structural adjustments to operate in the shared 
domain. The structural adjustment each needs to 

make in order to persist will, however, be unique. 
In other words the structural accommodations each 
has made in order to contribute to the patterns, will 
not be the same. The structure, then, can also be 
regarded as ‘in’ the network, as it is the intersection 
of these disparate agent structures which gives it its 
particular form at a particular time. As any agent 
could leave the domain and have minimal effect 
on the resulting pattern, each agent’s ‘contribution’ 
will be relatively small. The pattern can be thought 
about as like a hologram. The whole is in every part 
(agent) such that removal of parts (agents) reduces 
the resolution (coherence) but does not constitute 
loss of overall pattern. However, the loss of too many 
components may reduce the coupling to the point 
that the existing pattern de-coheres and transforms 
into something different. Each agent contributes 
to the pattern formation, so it is conceivable that 
the pattern will only be realized with some critical 
minimal number of agents present which have had 
a sufficient mutual history to have aligned their 
structures.  

In natural systems, the local level interactions 
between agents are constrained by the existing 
structures of the agents and the state of their en-
vironment.  With biological agents the system is 
open in that any emergent structure is possible as 
long as it remains consistent with the biological 
viability of the agents as living (autopoietic) enti-
ties. This biological constraint includes limits to 
environmental conditions conducive to life (i.e. 
not too hot or too cold, the need for energy, limita-
tions to sensory channels, channel bandwidths and 
affective/psychomotor response capabilities etc). 
These are primarily a product of phylogeny (the 
evolutionary history of the organism at the level 
of the species) rather than ontogeny (the history of 
development at the level of the individual), and are 
therefore slow to change and not under the control 
of the emergent social system. As a consequence 
the basic dimensionality of the phase space of the 
social system does not change over the time frame 
of interest for understanding social systems.  The 
dimensionality of the phase space is determined by 
the dimensions of variability possible by individuals 
– i.e. the plasticity of their nervous systems and by 
higher order dimensions which emerge from their 
interaction. 
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Reflexive Social Emergence

What changes if we now jump to the opposite pole 
on our hypothetical continuum? Here we attempt 
to outline the difference made by agents which are 
self aware and which can interact in language. 

Biological agent’s sensory surfaces are selected 
to be sensitive to difference in dimension of their 
world relevant to their survival and their cognitive 
apparatus is thus geared to make distinctions rel-
evant to maintaining their viability in past environ-
ments.  Once cognitive complexity exceeds a critical 
threshold (Gardenfors, 2006) these distinctions can 
be represented in language. Maturana and Varela 
(1980) describe language as involving the co-ordina-
tion of the co-ordination of actions – i.e. language 
provides a meta process by which agents orientate 
themselves within a world. Structural coupling 
can arise purely through behavioral coordination 
of action (as discussed above), but it can also take 
place in and through linguistic exchange – the 
mutual co-ordination of co-ordination of behaviors.  
This gives rise to a consensual linguistic domain 
characterized by a more or less shared lexicon. This 
process has been simulated using both shared refer-
ents and simple structural coupling in the absence 
of objective referents (Gong, Ke, Minett, & Wang, 
2004; Hutchins & Hazlehurst, 1995; Steels, 1997, 
1998; Steels, 2005; Steels & Kaplan, 1998; Steels & 
Kaplan, 1999), as has the emergence of a rudimentary 
grammar (Howell & Becker, n.d; Vogt, n.d).

The advent of language radically increases the 
behavioral plasticity of agents and has significant 
implications for the dimensionality of the phase 
space and of the resulting higher order structures 
it can generate and support.  This is because lan-
guage makes possible the emergence of domains 
of interaction which can themselves become the 
target for further linguistic distinction and hence 
new domains.  In other words, language allows the 
agent to make distinctions on prior distinctions 
(to language about its prior language or to build 
further abstractions on prior abstractions). This 
supports the possibility of infinite recursion and 
infinite branching (there are no doubt biological 
constraints on this in humans). This is an intrinsi-
cally social process. Furthermore, a capacity to 
distinguish (label or categorize) processes supports 

reification and this simplifies the cognitive handling 
of processual phenomena and allows the resulting 
reifications to be treated by the agent in the same 
manner as material objects. 

These capabilities greatly expand the structural 
flexibility of the agents: they can now invent shared 
epistemic worlds. The phase space of agent cognition 
is now based primarily on constraints of ontogeny 
rather than phylogeny and is hence under the influ-
ence of the agent/s. 

Language makes possible a further major 
qualitative difference in natural and human social 
emergence. Humans (and possibly some other pri-
mates, cetaceans and elephants)2 have developed 
sufficient cognitive capacity to become self-aware 
and as such exhibit reflexive behavior.  This occurs 
when the agent is capable of distinguishing ‘self’ 
and ‘other’ i.e. the agent can entertain the notion of 
‘I’ as a concept and treat that concept as an object. 
The advent of this capacity for reflexive identity 
also supposes the existence of a range of conceptual 
operators that act on identity – identity construction 
and maintenance becomes a part of the agent’s world 
creation. Exploration of this process is proceeding 
under the title of Neurophenomenology (Rudrauf, 
Lutz , Cosmelli, Lachaux , & Le Van Quyen, 2003; 
Thompson & Varela, 2001).  

In other words, agents can now notice the patterns 
that arise as they interact with others and distinguish 
those patterns in language. Such a mechanism would 
be the enactive equivalent to Castelfranchi’s (1998a) 
Cognitive Emergence.   Here a reflexive agent can 
notice an emergent pattern of social behavior and 
explicitly denote it as a ‘norm’ for example. While 
this denotation may be idiosyncratic (i.e. based on 
the necessarily limited perception of the individual 
agent), the agent can nonetheless act on the basis 
of this denotation.  Once distinguished and reified 
within a domain, agents can decide (on the basis of 
rational as well as value based or emotional criteria) 
how to respond – they can choose to ignore the 
norm or to behave in ways they believe will limit 
the reoccurrence of the behaviors that are outside 
the agreed/shared patterns of the group. Once a 
pattern has been distinguished in language it can 
make the transition to a rule: a formally stated, 
linguistically explicit requirement with stated con-
ditionals and possible resources to maintain it. This 
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suggests that an agent can form hypotheses about 
the relationship between a macro structural aspect 
of the social system in which it is a participant and 
then act on that hypothesis, potentially changing the 
structure which it participates in generating. This 
gives rise to a feedback path between macro and 
micro phenomena that is not present in any other 
natural phenomena.  

Consistent with Castelfranchi’s claim, agents 
possessing this cognitive complexity form the 
components of a social system which would exhibit 
a distinct class of emergence.  From the emergent 
perspective this is argued on the basis that reflexive 
agents will display qualitatively different behaviors 
from non-reflexive through the ability to modify their 
own sets of behavioral change triggers.  For agents 
which have linguistic capability, the two processes 
(linguistic and non-linguistic) intertwine or even 
become one and would not be able to be empirically 
disentangled. Their respective influences will only 
be able to be examined through simulations or by 
comparing agents with different (phylogenetic) 
capabilities (i.e. different species) and this sets some 
interesting methodological challenges.

The r ole of the o bserver

Another significant implication of the relation-
ships described above is the observer dependant 
nature of emergence in social systems. In human 
social systems every agent is an observer and it 
is the process of observation and the associated 
distinction-making which is the reflexive engine 
of emergence. In natural systems, the agents of 
the system are unable to observe and distinguish 
linguistically or to distinguish external structures 
as separate from themselves hence the process of 
observation has no impact on the dynamics of the 
system or the way in which emergence takes place.  
To some extent we can see an acknowledgement 
of this effect in methodological discussions within 
ethnography, action research (Carr & Kemmis, 
1986) and grounded theory (Corbin & Strauss, 
1990).  In each of these methodologies the impact 
of the researcher on the social system under study 
is acknowledged and seen as part of the process. 
The view being proposed here is that any agent that 
becomes a part of the system being observed has 

the potential to influence that system. An agent can 
become a part of the system simply by being itself 
observed or conceived as observing by those who 
constitute the system. In other words, the effect of 
the entry of a new observing agent is to change the 
system boundary so as to include that agent. The 
boundary is itself an entity of ambiguous status 
– it is an epistemic distinction albeit one based 
on potentially ontological markers. In most social 
theory, positing the observer as a necessary part 
of the system removes any ontological privilege 
and threatens either infinite recursion or paradox. 
Based on the position advocated here, a degree of 
both may well be fundamental to the type of system 
being described (Hofstadter, 2007).

implications for emergence

Complex systems of all kinds demonstrate a ca-
pacity to give rise to complex macro patterns as a 
result of local interactions between agents in highly 
connected webs. This local interaction can often be 
characterized as involving some signaling between 
agents. As we have seen above, in human social sys-
tems, this signaling behavior takes on a qualitatively 
different form. This has three key implications for 
our understanding of emergence that to date have 
largely been ignored by the literature.

1. Social systems will display an increased 
range of emergent possibilities: The re-
flexive nature of social systems implies that 
a greater range of emergent structures should 
be expected and they will be subject to more 
rapid change.

2. Dimensions of phase space are non-con-
stant: As the agents in the social system define 
and redefine the phase space as a function of 
their reflexive distinctions they will create and 
change the dimensions of that phase space, 
in order to support their own viability in that 
space.

3. Phase space comes under control of the 
system and is dynamic: The dimensionality 
of the phase space associated with ontogenetic 
parameters is derived through the self-dis-
tinguishing characteristics of the agents and 
can be influenced by their situated behavior. 
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Significantly the feedback path between macro 
and micro would add significant non-linearity 
to the system and it becomes important to iden-
tify and explain order producing mechanisms 
within the network. 

c onc Lusion and f uTure 
direc Tions

In this chapter we have attempted to provide an 
operational specification of the gap implicit in Ellis’ 
fourth and fifth order emergence. In a sense we have 
demarcated the extremes using the lens of enactive 
cognition. Enactive cognition was selected as it 
provides a theoretical underpinning which avoids 
the dualism inherent in symbolic systems and the 
confusion of fundamental processes which results 
from this. It has been argued to be both theoretically 
better capable of capturing the essential mechanisms 
and of providing a practical way of avoiding the now 
well documented pitfalls of symbolic AI. From this 
perspective the first challenge that must be addressed 
to advance social simulation is to achieve some form 
or proxy of constitutive autonomy in our multi-agent 
models. Significant work is currently underway on 
this problem in robotics but there have been few 
systematic attempts within social simulation. 

Once this has been achieved we then need to 
model autonomous closure in linguistic systems. 
We would seem to be a very long way from this at 
present. It may be possible however to achieve this 
first in some abstract domain – simulating perhaps 
Luhmann’s self-referential systems of communica-
tive acts. This is probably unlikely however. 

In our sketching out the extremes many questions 
remain about what might lay in the middle. This 
middle includes very significant phases of human 
cognitive development – including theory of mind 
and narrative intelligence. There can be no doubt 
that these will support qualitatively distinct classes 
of emergent social phenomena. There is evidence 
from the study of apes that forms of these cognitive 
capabilities do not require language. These may be 
much more accessible to our still limited capacity to 
simulate than the human equivalents which appear 
to intertwine with linguistic capability. We probably 
have much to learn then from the study of primate 
communities and from research into cognition in 

species other than humans. At present these attract 
considerably less attention within the social simu-
lation community and perhaps this is a mistake. 
We have learned a lot from ants – how much more 
from apes? Robotics also appears well equipped 
to incorporate the insights coming from situated, 
embodied and enactive cognition. It s more difficult 
to see how embodied proxies may be incorporated 
into multi-agent simulations but no doubt there 
are ways. Such systems will doubtless need to be 
able to bootstrap some level of operational closure 
and it will be behavior within the self-determining 
boundary that – free from the inevitable teleological 
hand of the designer can reveal insights into how 
we humans do what we seem to do so effortlessly 
– construct social worlds in which we can live vi-
able and interesting lives. 
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1 Quite why this should be the case is not clear. 
It does challenge the dominant paradigm 
within molecular biology and may have been 
displaced by the apparent potential offered by 
genomics (Oyama, 2000). It may also be that 
its implications are most significant outside 
of the biology discipline.

2 It is important to note that we can infer the 
existence of threshold effects here but cannot 
precisely specify the critical points of com-
plexity at which self-awareness and language 
becomes possible. The ability for language 
is of course evident in species other than hu-
mans, but the degree to which their linguistic 
plasticity involves or enables reflexivity in the 
system is a subject for further research.
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Social interaction represents a powerful new locus of research in the quest to build more truly human-like 
artificial agents. The work in this area, as in the field of human computer interaction, generally, is becom-
ing more interdisciplinary in nature. In this spirit, the present chapter will survey concepts and theory from 
social psychology, a field many researchers may be unfamiliar with. Dennett’s notion of the intentional 
system will provide some initial grounding for the notion of social interaction, along with a brief discussion 
of conversational agents. The body of the chapter will then survey the areas of animal behavior and social 
psychology most relevant to human-agent interaction, concentrating on the areas of interpersonal relations 
and social perception. Within the area of social perception, the focus will be on the topics of emotion and 
attribution theory. Where relevant, research in the area of agent-human interaction will be discussed. The 
chapter will conclude with a brief survey of the use of agent-based modeling and simulation in social theory. 
The future looks very promising for researchers in this area; the complex problems involved in developing 
artificial agents who have mind-like attributes will require an interdisciplinary effort. 

inTroduc Tion

As our technologies become more interactive in na-
ture, the necessity of building in a social component 
has become more important than ever. The present 
chapter will review and discuss a variety of theories 
that have been used to guide academic research and 
development in the area of multi-agent interaction. 
Of particular interest are those models specifying 
an underlying theory of the character and develop-

ment of social interaction, as well as those that have 
focused attention on the affective components of 
human-agent and agent-agent interaction.   

As originally conceived (e.g., Maes, 1995), soft-
ware agents were to carry out tasks on our behalf 
such as seeking out information that we might be 
interested in, or finding the best prices for products, 
or even carrying out negotiations on our behalf. 
The notion that we would have a relationship with 
an agent and how that relationship would unfold, 
and even how the agent could be designed with 



��  

Agents and Social Interaction

social capabilities in mind seemed somewhat far 
removed from the issues related to the design of an 
autonomous search agent.

In order to develop more life-like agents that 
are capable of interacting in a believable way with 
humans, it is necessary to imbue them with some 
of the same attributes that are thought to underlie 
human social interaction. Otherwise, the agents may 
be thought of by users as dumb or simply annoying 
(e.g., the Microsoft Office Paperclip). The develop-
ment of simulations of an agent’s interactions with 
humans (or with other agents) thus could be guided 
by some underlying theory of social interaction. If 
so, then which theories of human social interaction, 
particularly theories of mind and social cognition, 
could play a role in the development of multi-agent 
systems and in human-agent systems? The overall 
goal of this chapter is to introduce selected theory 
and research in the area of social psychology to 
others who may not be familiar with the concepts 
and theory in this field. Thus, though portions of 
the chapter will review instances where social 
psychological concepts have been applied to actual 
systems, the focus will be on surveying concepts 
and ideas, not on the practical application of such 
ideas to system development.

The chapter will begin with a look at the question 
of what guides our social interactions with others, 
whether they are human or artificial. Dennett’s 
(1978, 1989) concept of the intentional stance will be 
examined in some detail, and will be used as a basis 
for understanding interaction at a basic level. The 
search for relevant concepts and research findings 
that could be applied to deepen our understanding 
of agent interaction will continue with a review of 
selected concepts from the ethological and animal 
behavior literatures, including the concepts of fixed 
action pattern, imprinting, and imitation.

The next section will include a brief review of 
theories and evidence from social psychology that 
are applicable to multi-agent systems research. So-
cial psychology represents a rich source of theory 
and insights into the nature of social interaction in 
multi-agent systems, and the review will include the 
areas of social perception and impression formation, 
selected portions of the interpersonal relationship 
and social exchange literatures, as well as examples 
of research in the agent-human literature that have 
built on these underlying ideas. The aim here is not 

to provide a comprehensive review of these research 
areas, but to point out their relevance as we go for-
ward with research in the field of agent interaction, 
particularly agent-human interaction. 

Affective components have played a guiding 
role in research in the area of human-agent interac-
tion, as exemplified in the work of Rosalind Picard 
and her group at MIT. Thus, Picard’s work and its 
application to the area of social interaction will be 
discussed, along with that of Cynthia Breazeal and 
her efforts to build interactive robots.

The final section of the chapter will include a 
brief survey of the work in agent-based modeling, 
as well as a look into the future of this research. 
Of particular interest is the potential contribution 
this research can make to our overall understanding 
of social interaction.  For example, can it provide 
confirming evidence for models of social behavior 
emerging from the human experimental social and 
developmental laboratories, as well as ethnographic 
and field research? Also, what types of interactive 
systems will emerge from this research and how 
will they change the way we use computing tech-
nology? 

issues, cha LLenges, prob LeMs

social interaction between a gents, 
Both Human and Artificial 

What is it that seems to guide our interactions with 
other agents? Whether these agents are people, 
animals, or machines? We will turn to a variety 
of disciplines for insight into this question, among 
them social psychology, philosophy and computer 
science. 

Among philosophers, Dennett (1978) has used 
the term “intentional system” to describe “…a 
system whose behavior can be – at least sometimes 
– explained and predicted by relying on ascriptions 
to the system of beliefs and desires” (Dennett, 1978). 
He is careful to note that in using the terms ‘beliefs’ 
and ‘desires,’ he is not suggesting that the entity has 
beliefs and desires, only that we behave towards the 
entity as if it possessed such things. An entity is an 
intentional system only in the case where someone 
is seeking to explain and predict its behavior. 
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To further clarify these points, Dennett uses 
the example of someone seeking to predict the next 
move of a chess-playing computer. There are three 
‘stances’ one can take in attempting to predict the 
computer’s behavior. First, if one knows exactly 
how the computer is designed – including the hard-
ware and software, then if the computer functions 
as it was intended, one can predict its behavior in 
response to any given move. This is referred to as 
the design stance. Second, one takes a physical 
stance if one knows the actual physical state of 
the entity at any moment in time. For instance, 
with a human chess opponent, this would require 
knowledge of (among other things) the firing pat-
terns of all the neurons in the brain, or in the case 
of the chess playing computer, the physical state of 
all the electrical circuitry in the processor and all 
connected components. From this knowledge, one 
could predict the system’s physical state in response 
to a particular move. Of course, because of the 
complexity of the chess-playing computer system 
(or a chess playing human), a person could never 
have the kind of detailed knowledge required by the 
design and physical stances. Therefore, one’s best 
strategy for predicting the computer’s next chess 
move is to assume that it will make the most rational 
move, given that its design is optimal and that it is 
not currently malfunctioning. This last strategy, 
assuming that one is dealing with a rational entity, 
whether animal, human or machine, is referred to 
as the intentional stance. The implication of this 
stance, according to Dennett, is that we ascribe to 
the system the possession of certain information 
(beliefs), and suppose it to be directed by certain 
goals (desires) (Though, it should be stressed again, 
that Dennett is not implying that the intentional 
system has beliefs and desires). When we take an 
intentional stance toward a person, an animal, or a 
machine, we are using a theory of behavior in order 
to explain or predict the behavior of the other entity, 
one involving the implied rationality of the entity.

Turning to our interactions with artificial agents, 
the question of how humans think about the tech-
nologies that they interact with on a daily basis 
was investigated in a series of studies by Reeves 
and Nass. Their research suggests that we tend 
to interact with computers as if they were people 
(Reeves and Nass, 1996). Using such methods as 

brainwave monitoring, home video, and question-
naires to measure peoples’ responses to media in all 
its forms, they found that people tended to interact 
with computers and other media technology in a 
fundamentally social and natural way, and may 
not even have realized that they were doing so. For 
example, people tend to evaluate the performance 
of other people more favorably when the evaluation 
is given to the other person face to face, as opposed 
to giving the evaluation of the same performance to 
a third party. Reeves and Nass obtained the same 
finding when a computer’s performance was being 
evaluated instead of another person. The theory they 
proposed to explain these findings suggests that for 
most of our history, humans only responded both 
socially and naturally to other humans (and perhaps 
animals), so no mechanism other than a human 
social response for dealing with artificial entities 
has ever developed.

Major Types of interactive systems

Conversational agents. The Turing test provides 
a model for human-machine interaction (Turing, 
1950). Turing used a parlor game as an interac-
tion model, designed originally as a response to 
the question of whether machines can think. The 
‘imitation’ game involves two unseen people, a male 
and a female, along with a group of interrogators. 
The interrogators attempt to decide which person 
is the male, and which is the female based on writ-
ten responses alone. The male tries to convince the 
interrogators that he is the female, while the female 
attempts to convince the interrogators that she is 
the female and that the other person is the male. In 
the revised version, a computer and a human take 
the place of the male and female, and the decision 
to be made is which is the human and which is 
the computer, based again on written responses to 
questions alone. The object of the machine is to try 
to cause the questioner to mistakenly conclude that 
the machine is the other person; the object of the 
other person is to try to help the questioner correctly 
identify the machine. Turing (1950) described his 
hopes for the test this way:

I believe that in about fifty years’ time it will be 
possible to programme computers, with a storage 
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capacity of about 109, to make them play the imita-
tion game so well that an average interrogator will 
not have more than 70 percent chance of making the 
right identification after five minutes of questioning. 
… I believe that at the end of the century the use of 
words and general educated opinion will have altered 
so much that one will be able to speak of machines 
thinking without expecting to be contradicted. (Tur-
ing, 1950, p. 436).

Most observers believe that Turing would be 
disappointed at the performance of computers 
in this test today, judged by performance in the 
Loebner Prize Competition—an annual event in 
which computer programs are submitted to the 
Turing Test. Turing’s test has nonetheless provided 
a kind of model for the development and evalua-
tion of programs designed to provide an interactive 
component for their human users. Perhaps the best-
known example of a conversational agent of the 
type suggested by Turing is Weizenbaum’s ELIZA 
(Weizenbaum, 1966). The program was developed 
using the model (Weizenbaum suggested the term 
parody) of a non-directive psychotherapist. Rather 
than offer interpretations of a client’s behavior, 
the non-directive therapist is trained to reflect 
the client’s statements, in order to draw out their 
underlying emotional components (Rogers, 1951). 
A typical conversation would proceed as in the 
following; ELIZA’s responses are capitalized (from 
Weizenbaum, 1966): 

Men are all alike. 

IN WHAT WAY? 

They’re always bugging us about something or 
other. 

CAN YOU THINK OF A SPECIFIC EXAMPLE? 

Well, my boyfriend made me come here. 

YOUR BOYFRIEND MADE YOU COME HERE 

He says I’m depressed much of the time. 

I AM SORRY TO HEAR YOU ARE DEPRESSED 

It’s true. I am unhappy 

DO YOU THINK COMING HERE WILL HELP YOU 
NOT TO BE UNHAPPY 

I need some help, that much seems certain. 

WHAT WOULD IT MEAN TO YOU IF YOU GOT 
SOME HELP 

Perhaps I could learn to get along with my mother. 

TELL ME MORE ABOUT YOUR FAMILY 

My mother takes care of me. 

WHO ELSE IN YOUR FAMILY TAKES CARE OF 
YOU 

My father. 

YOUR FATHER 

You are like my father in some ways. 

WHAT RESEMBLANCE DO YOU SEE 

You are not very aggressive but I think you don’t want 
me to notice that.
…and so on.

At the time, many people who interacted with 
ELIZA became quite quickly and emotionally 
involved with the program, in part motivating Wei-
zenbaum to write Computer Power and Human 
Reason: From Judgment to Calculation, in which 
he explained the limitations of computers, and 
argued against the anthropomorphic views people 
had of the system he created (Weizenbaum, 1976). 
Web-based implementations of ELIZA can be 
found in several places, so one can experience the 
interaction for oneself.

Robots and interactive virtual graphic charac-
ters. With interactive conversational agents, as in the 
Turing test, the social context – social cues such as 
facial expressions and gestures, etc. - is taken away, 
so that the only information one has is the answer 
to a question displayed on a computer screen. The 
need to create software agents and robots that can 
interact with humans in a credible way has motivated 
more recent research, which has concentrated on 
building creature-like machines designed to provoke 
social responses on the part of humans (Bickmore 
& Picard, 2005; Breazeal, 2002a, 2003). These two 
types of agent-human systems will be discussed 



  ��

Agents and Social Interaction

in more detail below, in the context of their use of 
social psychological theory.

The place of social psychological 
Theory in the development of 
a gent-based interaction 

Social psychology can be defined as the scientific 
study of the way in which people’s thoughts, feelings, 
and behaviors are influenced by the real or imagined 
presence of other people (Allport, 1985). This group 
of social scientists has had a great deal to say about 
human to human agent interaction, and their work 
could potentially make a contribution to the area 
of human to software/robot agent interaction. This 
review will not cover the whole of social psychology, 
as there are some areas of the field that would not 
provide as great a contribution as others at the present 
time. For example, there is a great deal of interest in 
the study of self-perception and self-understanding, 
including the mechanisms of self-awareness (Carver 
& Scheier, 1981; Duval & Wicklund, 1972). There 
are no claims on the part of any researcher in the 
field of robotics or software agents that these entities 
have any consciousness or awareness. In addition, 
although aggression and altruism are also important 
research areas within social psychology, they will 
also not be included in this review. We will instead 
concentrate on the social behavior of animals, the 
process of social perception, and social exchange 
theory and interpersonal relations. Following this 
section we will review work involving the use of 
social psychological theory in the development if 
interactive artificial agents.

social behavior in a nimals

Behavior in lower species provide an interesting 
analog for understanding the behavior in artificial 
agents, whether software agents or robots. There 
has already been a great deal of work in the area 
of what has come to be called swarm intelligence 
(Bonabeau, et al., 1999). In this research, social 
insects, such as ants and bees, are viewed as collec-
tive problem solvers, where, although composed of 
simple interacting organisms, they are collectively 
able to solve complex problems. Their intelligence 
lies in the networks of interactions among individu-

als and between individuals and the environment. 
This analog has been translated into systems where 
software agents, acting according to simple rules 
in a virtual environment exhibit complex collective 
behavior, attempt to solve complex organizational 
problems (Bonabeau, 2002). This research has been 
largely concerned with the operation of population-
level mechanisms. 

Lower species also conduct social interactions at 
the individual level as well, and perhaps this level 
can provide some insights to researchers in the 
areas of robotics and other embodied (yet virtual) 
agents. Ethologists (Lorenz, Tinbergen, Hinde, and 
others) have studied animal social behavior both in 
the laboratory and the field for many years. Three 
major concepts are important for the purposes of 
the present chapter: fixed action patterns, imprint-
ing and imitation. 

A fixed action pattern is a response, thought to 
be innate, that occurs reliably in the presence of 
identifiable stimuli (called sign stimuli or releasing 
stimuli). These responses are distinguished from 
other types of behavior in that, unlike reflexes, they 
involve numerous muscles and parts of the body; and 
unlike purposive behavior, the responses are inflex-
ible and run off in a mechanical way (Tinbergen, 
1951). A classic example of a fixed action pattern 
is the aggressive response on the part of a male 
stickleback fish to the entry of another stickleback 
into his territory, caused by the sight of the threat 
posture of the encroaching stickleback. Tinbergen 
(1951) carried out numerous studies of this behavior 
and determined that the red belly in the proper ori-
entation, even on an artificial model of a fish, was 
enough to trigger the response. Thus the red belly 
is a sign stimulus or releaser for the fixed action 
pattern of the aggressive response. 

The remaining two concepts from ethology are 
part of the process of learning, particularly in young 
animals. Learning to distinguish your species from 
other, potentially harmful species is an important 
achievement. This can be accomplished in several 
ways. In some species it is attained during a very 
brief period in life called a critical period. During 
this early period, certain species of birds engage 
in a ‘following-response’ towards the mother. That 
is, they simply follow behind her because she pos-
sesses or exhibits a particular pattern of releasers 
that serves to trigger the behavior, much as the 
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sign stimulus triggers the fixed action pattern. 
The releaser is composed of several attributes that 
the species has in common; for example an odor, 
shape or size, or, in the case of the greylag goose, 
the movement of the mother, that then triggers a 
response. Ethologists refer to this process as im-
printing or the triggering of specific behaviors in the 
face of a pattern of releasers (Lorenz, 1961). In this 
case, imprinting has been explained as a primitive 
form of learning in which an individual finds out 
about the characteristics of their social group. In 
humans, the process of imprinting involves a strong 
emotional response to the mother that is referred 
to as attachment. This process is believed by some 
researchers to be irreversible, and important for the 
socialization of the child (Brown, 1965). A fictional 
portrayal of this process involving artificial agents 
was portrayed in the film “Artificial Intelligence,” 
when the parents of the eternal child/robot “David” 
were given specific instructions on how to cause him 
to begin to perceive and behave toward the female 
human as “Mother.” Though there is currently no 
actual analog for this process between humans and 
artificial creatures, Breazeal (2003), in developing 
Kismet, a sociable robot, used the idea of ‘releasers’ 
to encode and mediate the information from the 
robot’s internal and external environments, and to 
generate an emotional response towards its human 
partner based on this information. 

The final concept from ethology and the study 
of animal behavior that is relevant to work in agent 
interaction is imitation, which is also considered 
a primitive form of social learning. Though the 
topic remains controversial in ethology (Miklosi, 
1999), there is a great deal of evidence for the role 
of imitation in human social learning and cognition 
in infants (Bandura, 1986). The evidence suggests 
that infants are able to model novel behaviors that 
they are physically capable of expressing. Meltzoff 
and Moore (1989) have demonstrated imitation of 
facial gestures in infants as young as 42 minutes. 

In robotic applications such as household clean-
ing, building, and elderly care, which involve social 
interaction, robots will need to be able to coordinate 
their actions with their human partners. Thus, robots 
need to be able to recognize the actions of their hu-
man partners in order to understand the goals of the 
actions, and they will need to imitate their behavior 
as a method for learning new skills. Breazeal and 

Scassellati (2002) discuss the problems associated 
with building robots capable of imitation. Unlike 
studies of imitation in animal behavior or in infants, 
where the main goals most often are descriptive or 
involve the discovery of the mechanisms responsible 
for producing the behavior, in robotics the goal 
is to create or generate a behavior with minimal 
underlying capabilities. Two major issues in the 
development of robots that are capable of imitation 
that are currently far from being solved involve: (1) 
the perception of movement or “how does a robot 
know what to imitate, and (2) representing motor 
movements, or “how does a robot know how to 
imitate.” Although there are differences in methods 
and goals, Breazeal and Scassellati nonetheless be-
lieve that animal research can contribute to work in 
interactive robotics and vice versa, and that greater 
understanding of robot imitation and social learning 
will contribute to our understanding of robot social 
cognition (Breazeal & Scassellati, 2002). 

interpersonal behavior

Theories of interpersonal behavior are perhaps the 
most relevant for current work in artificial agent-
human interaction. Social exchange theory forms 
the basis for later work in this area. The basic idea 
behind exchange theory is that humans are rational, 
utility maximizing creatures. Thus, we seek to maxi-
mize the social rewards a relationship with another 
person can provide. Given these assumptions, social 
exchange theory suggests that how we feel about 
our relationships is a function of the perception of 
the rewards we receive and the costs we incur, along 
with our feelings about what kind of relationship we 
deserve and the probability of obtaining a better one 
(Brehm, 1992; Kelley & Thibaut, 1978). When we 
find ourselves in a relationship with another person 
(or an artificial agent?) then, we evaluate the costs 
and benefits of that relationship to ourselves, and if 
the costs outweigh the benefits we seek to dissolve 
the relationship. 

Even though there is empirical support for so-
cial exchange theory, some have criticized its view 
that people are simply out to get the most reward 
from a relationship at the least cost. Later versions 
of social exchange theory have incorporated the 
concept of equity in a relationship; in other words, 
we seek fairness in the amount of reward we offer 
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the other person in a relationship and in the costs 
we incur. Thus, we want to be treated equally, and 
to the degree that the relationship is perceived as 
inequitable, we will seek to end it (Walster, Walster, 
& Berscheid, 1978; Berscheid & Reis, 1998). 

Social exchange theory can help us understand 
what happens after a relationship begins, but what 
attracts us to other people to begin with? Here the 
major focus of the work has been on the examina-
tion of variables that determine attraction. Among 
the more important variables are (Berscheid & 
Reis, 1998): 

• Proximity: We are more likely to develop 
relationships with the people who we are 
physically near. 

• Physical attractiveness: Although we tend 
to pair up with those who are most similar to 
us in attractiveness. 

• Similarity: We are more likely to be at-
tracted to others who share our attitudes and 
values. 

It is clear that applications that are meant to 
provide assistance to people, particularly the kind 
of live-in robotic assistants for the elderly that are 
envisioned, will be a part of a person’s living space for 
extended periods of time. It thus becomes important 
to understand the process of developing a long-term 
relationship with an artificial agent. Research con-
ducted by Bickmore and Picard (2005) is perhaps 
the best example of the use of concepts from social 
psychology to understand the interaction between 
humans and artificial agents. These researchers 
were interested in the development of long-term re-
lationships with an artificial ‘relational’ agent. They 
developed an interactive embodied virtual character 
(Laura) that would interact with and help to motivate 
people as they engaged in a month-long exercise 
program. During the study, participants interacted 
with the agent on a daily basis over a 30-day period 
for at least a few minutes, in order to encourage the 
development of a basic level of relationship. While 
interaction took place via a kind of interactive chat, 
the animated character also used body language 
and facial expression to provide additional social 
cues. In a ‘relational’ condition, additional strate-
gies were implemented in the design of the agent to 
encourage a relationship. For example, in a strategy 

involving meta-relational communication, the agent 
would periodically ask how things were going and 
would offer to make changes if needed. Periodically 
checking on the status of the relationship would 
then demonstrate concern and caring for the user  
(Bickmore & Picard, 2005). In a ‘non-relationship’ 
condition, these additional relationship-encouraging 
strategies were left off.

The results of the experiment suggested that 
even though there were few statistically significant 
differences between the experimental groups in their 
participation in the exercise program, the ‘relational’ 
group ‘liked’ the agent better, felt they had a ‘good’ 
relationship (approached statistical significance), 
showed an interest in continuing the relationship, 
and, when given the option of giving ‘Laura’ a sen-
timental farewell at the end of the program, chose to 
do this more often than the ‘non-relational’ group. In 
interviews conducted after the study, participants’ 
impressions of the agent were very favorable; and 
they found interacting with ‘Laura’ very natural 
(Bickmore & Picard, 2005).  

This study represents one of the first attempts 
to use concepts from the social psychological lit-
erature in the design of an artificial agent. Based 
on the finding of significant effects on relationship 
measures for the experimental condition in which 
these (and other) concepts were used, researchers 
and designers of such systems should begin to ap-
ply these techniques more widely. As we continue 
to explore the nature of the relationship between 
humans and artificial agents, perhaps the concepts 
from the social exchange literature might also be 
useful. Finally, as Bickmore and Picard suggest, 
agents that function in the role of ‘helper’ have a 
special obligation to develop a sense of trust in their 
human partners. Thus, going forward, research into 
the development of trust in these types of relation-
ships will be particularly important. 

social perception

This area of social psychology is concerned with how 
we form impressions of and make judgments about 
other people. For instance, what kinds of nonverbal 
cues are used in our attempts to understand another 
person’s behavior? In addition, social perception 
concerns how we understand and attribute causes 
to another person’s behavior.
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Nonverbal communication. Impression forma-
tion will be important for the development of long-
term relationships between humans and artificial 
agents. Part of our impression of another person 
is based, of course, on what they say to us, but an 
awful lot of information is derived from nonverbal 
channels. Work on nonverbal communication, and 
particularly the communication of emotion via facial 
expression has been an important focus for research 
in the area of social perception and impression for-
mation (Ekman, 1965). Nonverbal communication 
refers to the way in which people communicate, 
intentionally or unintentionally, without words, 
including using facial expressions, tone of voice, and 
body position, among others. The most important of 
these, for the purposes of this chapter, is the use of 
facial expressions to communicate emotion. Charles 
Darwin (1872) is credited with beginning the work in 
this area with his contention that facial expressions 
served as a means of communicating information to 
others in the social group. For example, an expres-
sion of disgust may signal that the food I am eating 
doesn’t taste very good; an angry expression may 
be followed by aggression, etc. Darwin believed 
that expressions for the so-called primary emotions 
(anger, happiness, surprise, fear, disgust, and sad-
ness) were universal, that is, anyone, anywhere in 
the world should be capable of understanding and 
displaying these expressions. This view has received 
support, based on a great deal of cross-cultural 
research over a number of years conducted by Paul 
Ekman and his colleagues (e.g., Ekman & Friesen, 
1975; Ekman, Friesen, & Ellsworth, 1982). Because 
of the importance of the face for communication of 
information about the internal state of the organism, 
designers of interactive systems, including robots, 
are taking these research findings to heart as they 
build new systems.

Emotion. In order to develop a complete under-
standing of how the mind works, most cognitive 
scientists and some artificial intelligence workers 
(e.g., Minsky, 2006) believe that it is necessary to 
understand emotion. In evolutionary terms, emotion 
may play a critical role in the allocation of cognitive 
and other resources to areas needed to solve envi-
ronmental problems (Izard, 1977). Some theorists 
believe that negative emotions (anger, sadness, etc.) 
are a signal that some action needs to be taken to 
bring the organism back into a balanced state, while 

positive emotions (happiness) signal a more or less 
balanced, satisfactory state (Frijda, 1994; Plutchik, 
1991). The emotion process unfolds as cognitive ap-
praisal systems evaluate environmental conditions, 
and recruit resources (motor, respiratory, hormonal 
and other systems) to respond to the environmental 
appraisals. Facial expressions are also thought to 
perform a communicative function, giving others 
in the social group information on the internal 
state of the organism, providing input on how best 
to respond. The purpose of this brief explanation 
is not to provide the reader with a comprehensive 
understanding of emotion theory, but to emphasize 
its importance in the creation of interactive agents, 
and to provide context for the discussion of affec-
tive computing.

There are two threads of work in the area of 
human-agent interaction related to the topic of 
social perception with particular relevance to the 
expression and communication of emotion. One 
is Rosalind Picard’s work on affective comput-
ing (Picard, 1997), which is concerned with the 
development of computing technologies that are 
capable of understanding and expressing emotion. 
Of course, whether computers have emotions, or 
whether they truly feel empathy for their human 
partners is beyond the scope of this research. The 
major technological difficulties involve developing 
systems that can understand and express emotion 
computationally.

Recognizing emotion. The ability on the part 
of an artificial agent to automatically recognize 
the emotion of a human agent will be critical to 
the development of interactive applications. Picard 
presents a scenario for such an application in this 
way:

Imagine you are seated with your computer tutor, 
and suppose that it not only reads your gestural 
input, musical timing and phrasing, but that it can 
also read your emotional state. In other words, it 
not only interprets your musical expression, but 
also your facial expression, and perhaps other 
physical changes corresponding to your emotional 
feelings-maybe heart rate, breathing, blood pres-
sure, muscular tightness, and posture…Given affect 
recognition, the computer tutor might gauge if it is 
maintaining your interest during the lesson, before 
you quit out of frustration and it is too late to try 
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something different. “Am I holding your interest?” 
it would consider. In the affirmative, it might nudge 
you with more challenging exercises. If it detects 
you are frustrated…, then it might slow things 
down and proffer encouraging feedback. (Picard, 
1997, p. 16)

Recognizing emotion will require a variety of 
skills on the part of the system, each of which present 
technical challenges to the developers of such a sys-
tem. Among these requirements are those involving 
vision and hearing for gathering information about 
facial expressions, gestures and vocal intonations, 
but in addition, once the sensory information has 
been gathered, an interpretation must be made based 
on knowledge about the situation and knowledge 
about emotion generation (Picard, 1997). Research 
suggests that computers are capable of recognizing 
videotaped actor portrayals of facial expressions 
of emotion with greater than chance accuracy 
(e.g., Cohen, et al., 2003), and in more complicated 
tests involving multimodal systems (Kapoor & 
Picard, 2005). In the latter study, the goal was to 
extract, process and interpret naturally occurring 
non-verbal behavior during natural learning situa-
tions, in order to provide personalized assistance to 
children engaged in learning tasks, a much greater 
challenge for the system. The researchers obtained 
data on facial features and head gestures, as well 
as data from a posture-sensing chair, which were 
then fed into feature extraction processes and the 
data classified as to whether interest was being ex-
pressed. The system achieved an overall accuracy 
rate of 86%, which was significantly better than 
using the individual sensory modalities alone. The 
challenge for this research area continues to be, 
as the Kapoor and Picard study suggests, being 
able to interpret multi-modal data in real time, in 
naturalistic settings, for ongoing emotional states 
involving constantly changing expressive states; and 
while an 86% accuracy rate is significantly better 
than chance, is it good enough for applications that 
seek to provide accurate and timely feedback to 
their human partners?

Expression of emotion. Picard (1997) has simi-
larly developed criteria that need to be met in order 
for computers to be said to express emotion. These 
include input, in which the computer receives in-
structions about which emotion to express; feedback, 

which concerns the fact that, in humans, affective 
expressions can influence an ongoing affective state, 
as demonstrated in several laboratory experiments 
(Laird & Bresler, 1992). Other criteria proposed by 
Picard include social display rules or what are the 
relevant social norms that determine when, where, 
and how emotions are expressed; and the output from 
the expressive process, including changing facial 
expressions, posture or gait, or vocal signals. Each 
of these present enormously complicated technical 
challenges, let alone in combination, which is why, 
to date we have seen few examples of such systems. 
One exception to this is the work of Cynthia Breazeal, 
and her group’s work on the development of socially 
engaging robots. She is also greatly interested in 
the development of emotion sensing and expressive 
systems for use in the service of humans.1* 

The Sociable Machines Project at MIT is respon-
sible for building Kismet, an expressive, anthro-
pomorphic robot, capable of interacting in a social 
way with humans (Breazeal, 2003). In a nutshell 
(and greatly oversimplifying the entire process), 
the robot is capable of expressing emotions based 
on a complex system of sensors, drives (e.g., being 
over or under stimulated by an interacting human 
partner), and a perceptual system that keeps track 
of external and internal events. There is an emo-
tion system comprised of an appraisal subsystem, 
which takes the results of the perceptual system 
and computes a value which it then hands to an 
emotion activation subsystem to make a decision 
about which emotion would be most appropriate, 
based on the value handed off from the appraisal 
subsystem. Finally, the motor system takes the 
result from the emotion system and generates the 
appropriate facial expression and posture. The robot 
is capable of conducting an ongoing interaction with 
a human partner in real time, in which the behavior 
of the human influences the emotional state of the 
robot and where the goal of the partner is to keep 
the robot’s drives satisfied. This basically takes the 
form of keeping the robot awake and stimulated, 
but not overly stimulated, in which case the robot 
perceives threat and responds accordingly through 
appropriate facial expression and posture.   

Breazeal and her colleagues also conducted a 
series of studies in which they examined the degree 
to which people categorized Kismet’s facial expres-
sions into one of seven categories of emotional 
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expression. Whether they observed the expressions 
on a still photograph or saw Kismet model these 
expressions via videotape, the participants (which 
consisted of a group of 12 year old children and a 
group of adults) were able to correctly categorize 
the expressions significantly more often than by 
chance. Further, while “scolding” the robot during 
interactive sessions, the robot’s sad face and body 
posture caused some participants to report that they 
felt ‘terrible’ or ‘guilty,’ perhaps evidence for the 
human partner experiencing a sense of empathy 
with the robot (Breazeal, 2003).

Taken as a whole, the work of Picard and Breazeal 
shows a great deal of promise for the development 
of systems that are capable of interacting with hu-
mans in a credible way. One example of a system 
that would have a great deal of practical value is a 
Furby-like creature that could serve as a compan-
ion for elderly people. Of course, such a system 
would have to be extremely easy to use as well as 
reliable; a person would need to be able to get it up 
and running easily, and it should not need a team 
of computer scientists and mechanical engineers 
to keep it running. Much more likely in the near 
future are learning technologies of the sort discussed 
above, combining multi-modal feedback from the 
learner to the system with the ability to tailor les-
sons to a learner on the fly based on this feedback. 
The acquisition of this feedback is a problem at 
present, requiring special headsets and, if physi-
ological data is required, straps and sensors that 
provide ways of measuring processes like blood 
pressure and heart rate.   

Attribution theory. Attribution theory is con-
cerned with how we attribute cause to a person’s 
behavior. People engage in this process as they 
attempt to understand the relationship between 
social situations and behavior, and predict future 
outcomes based on past occurrences of behavior. 
For instance, when we consider why a person stole 
another person’s wallet, are we likely to place more 
weight on the person as causal agent, that is, to 
make a dispositional attribution? Or are we more 
likely to place greater weight on the environment, 
which would constitute a situational attribution? 
Such questions have intrigued social psycholo-
gists for years, beginning with Heider (1958), who 
developed most of the basic ideas and vocabulary. 
Once again, rather than attempt a comprehensive 
review of research and theory in this area, we will 

survey some of the major theoretical and empirical 
contributions, and then, because there has been no 
direct application of these ideas, we will speculate 
on their relevance to agent interaction.

Jones and Davis developed correspondent in-
ference theory to understand the way in which we 
make internal (dispositional) attributions, or how 
we infer dispositions from corresponding behaviors 
(Jones, 1990; Jones & Davis, 1965). The theory is 
concerned with how we narrow down our choices 
for the dispositions that we think might have caused 
a particular behavior to occur. To do this, we look 
for what Jones and Davis call non-common effects, 
that is, effects or consequences of a particular 
behavior that could not be produced by another 
behavior or course of action. For example, suppose 
a friend decides to take a job at an investment bank 
in San Francisco. If we want to understand why this 
person chose this particular job we need some way 
of narrowing down our choices for an explanation. 
Correspondent inference theory suggests that we 
look for other choices our friend could have made, 
and examine the effects of the second choice. If 
the second choice produces effects that the first 
cannot, for instance, if we learn that our friend 
turned down a job working at a non-profit agency 
in rural Oklahoma, there would seem to be little 
overlap between the effects of the first choice and 
the second. In other words, there would be a large 
number of non-common effects. If this were the 
case, it would be more difficult for us to determine 
what caused the choice of jobs. If, on the other hand, 
we find out that our friend turned down a job at a 
consulting firm in San Francisco before accepting 
the job at the bank, we can narrow down the causal 
factors more easily, because there is more overlap 
between the effects. In this case there would be few 
non-common effects.

While correspondent inference theory focuses 
only on dispositional attributions, Harold Kelley’s 
covariation model dealt with how people initially 
decide whether to make an internal (dispositional) 
or external (situational) attribution (Kelley, 1967). 
Kelley assumes that when we are in the process of 
forming judgments about another person, we gather 
information with which we can test hypotheses. We 
then look at the pieces of information that covary 
with other pieces, as if we are conducting a statisti-
cal test, and base our judgment on these pieces of 
information. Where does the information come 
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from? There are three sources: first we call on our 
knowledge of or guess about the way a person has 
acted in similar situations (distinctiveness data), 
second, the way a person has acted in the same situ-
ation in the past (consistency data), and third, the 
way other people have acted in the same situation 
(consistency data). For example, in trying to decide 
why Jeff liked a particular movie, we consider how 
Jeff and others who have seen the film respond to it, 
and how they have responded to films like it in the 
past. If Jeff basically raves about all films of this type, 
or if others who have seen it are not enthusiastic, we 
are likely to attribute dispositional causes to Jeff’s 
behavior. If Jeff rarely raves about films of this type 
or any other type, or if others also rave about it, we 
are inclined to make a situational attribution, that 
there was something about the film that caused his 
behavior. As with correspondent inference theory, 
there is a great deal of empirical support for Kelley’s 
model (Ross & Nisbett, 1991).

Much of the research in social psychology tends 
to take place in a controlled laboratory environment, 
and while the theories discussed above have been 
confirmed in these types of settings, some inter-
esting, somewhat contradictory findings have also 
emerged. Whenever you tend to find a character in 
a movie so compelling that you suspend disbelief 
and feel sadness at their misfortune for instance, 
you are making a mistake in judgment about this 
person. In reality, this person was an actor whose 
situation dictated that she behave in a certain way, 
yet we seem unable to view the person’s behavior 
in an objective light. Though this may seem like an 
extreme example, results from laboratory experi-
ments suggest that our judgment, in some cases is 
biased by our readiness to attribute the behavior of 
others to their dispositions. This tendency is referred 
to as the fundamental attribution error. In a clas-
sic experiment on this concept, groups of college 
students were asked to read an essay written by a 
fellow student that either supported or opposed the 
rule of Fidel Castro in Cuba. Half the participants 
were told that the writer had freely chosen their 
position before writing the paper, while the other 
half were told that the students had been assigned the 
topic beforehand. The participants were then asked 
to what degree the writer actually supported the 
position she wrote about. Logically, the participants 
should have concluded that being assigned the topic 

would not indicate actual support for the position; 
instead, the participants concluded that the authors 
actually supported their positions, whether they 
had freely chosen the topic or not (Jones & Harris, 
1967). Thus, in general we tend to underestimate 
the role of the situation when making attributions 
about another’s behavior, however, when judging 
the causes of our own behavior, we tend to be biased 
in the other direction, towards seeing situational 
components as the major cause. This is referred to 
by social psychologists as the actor/observer bias 
(Ross & Nisbett, 1991). 

It is unclear just how the findings of attribution 
theory will be applied to the design of agent-human 
interactions. Breazeal (2003) has suggested that one 
of the next steps in the evolution of socially interac-
tive robots like Kismet is that they be capable of 
acquiring mental models of other people. Scassel-
lati (2000) has taken an important first step in this 
direction by examining the processes involved in 
shared attention. Going beyond this level, should 
designers build in the same reasoning biases that 
humans have, like the fundamental attribution error, 
into the systems they build? This would presum-
ably cause the system to make the same errors in 
judgment as a human. Would these errors make the 
system seem more human? Or would it cause a human 
observer to feel more negatively towards the system 
(“Stupid robot!”), and thus be less likely to trust it? 
After all, aren’t computers supposed to be logical? 
Or would we view the system as more unfeeling if 
it did not occasionally make mistakes? The answer 
would seem to be that it depends on the purpose 
for which the system was constructed. For a con-
versational system or one designed as a companion 
it would seem better to have the system appear as 
human-like as possible. In the interpersonal attrac-
tion literature this is known as the similarity effect; 
the more similar we are, the more I may like you 
(Berscheid & Reis, 1998). On the other hand, for a 
system designed for use in dangerous environments 
with a human partner, biased reasoning processes 
when it comes to making judgments about other 
people or the environment could be dangerous, 
and so should not be built in. In short, the ability to 
reason about the interpersonal environment would 
seem to be of some importance in the design of 
interactive systems if what we are interested in is 
the construction of artificial minds.   
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a gent-based Modeling and social 
psychological Theory 

There are two distinct strands in the agent literature 
that have utilized social psychological theory. One 
strand in this effort has used theory and research 
findings to develop new technologies, so their pri-
mary purpose has been on the engineering side. We 
have talked at great length in this chapter about this 
research. Representative of this approach is the work 
of Bickmore and Picard (2005), discussed above, and 
their use of the literature on human interpersonal 
relationships in the development of a software agent. 
Also representative of the engineering approach is 
the work of Breazeal and her colleagues, who have 
utilized work on the display and communication 
of emotion to develop socially engaging robots, 
and Rosalind Picard, who has pioneered the work 
on machine detection of affective states in human 
partners.

The second strand in the agent literature, which 
will only be briefly described here, uses agent-
based modeling methods in the study of social 
psychological processes. In this research, the focus 
has been on the emergence of patterns relevant to 
social phenomena from the interaction of a group 
of autonomous software agents, programmed with 
a few simple rules. The approach has been referred 
to as generative in that, a phenomenon is explained 
by postulating underlying mechanisms that, through 
their interaction, generate the phenomenon. The 
phenomenon is said to emerge as a result of the 
interaction of the underlying mechanisms (Epstein, 
1999; Smith & Conrey, 2007). 

 The use of simulation to develop and test theories 
in the social sciences has a long history (Abelson, 
1963). In contrast to the generative approach to 
theory building discussed above, these programs 
embody a particular theory of social and/or cognitive 
process. Robert Abelson (1963) was one of the first 
social psychologists to develop computer simulations 
of social cognition. One of his first efforts was the 
development of a program that simulated Heider’s 
Balance Theory (Heider, 1958), which suggests that 
if a person holds contradictory thoughts, the person 
must rationalize the contradiction, or change one 
of the thoughts in order to bring the process into 
balance. For example, the statement “my simulation 
produced silly results” contains a thought that is 

positively valued in the person’s belief system (my 
simulation) and a thought that is negatively valued 
(silly results). According to Heider, holding these 
contradictory thoughts causes discomfort until 
the person is able to somehow balance the values 
by somehow rationalizing the negatively valued 
thought. Abelson’s program took statements that 
were out of balance and attempted to bring the 
statement into balance so that it would fit into a 
pre-determined simulation of a belief system.

One of the first social scientists to use a gen-
erative approach was Thomas Schelling (1978). He 
explored the question of whether segregation can 
arise from a group of agents who do not explicitly 
desire segregation. His program used the simple rule 
that if the population with your ‘color’ fell below a 
certain percentage in your neighborhood, move to 
an empty space on a virtual grid. The pattern that 
emerged upon running the simulation to comple-
tion was that the populations appeared completely 
segregated. Thus, the motive to not be in a minority 
in one’s neighborhood, not a desire to be segregated 
appeared to cause this pattern.

Following Schelling, Robert Axelrod, a political 
scientist at the University of Michigan designed a 
series of computer tournaments, which would have 
the effect of evaluating strategies for winning an 
iterated Prisoner’s Dilemma. However, he also used 
these results to try to answer the ‘generative’ ques-
tion: can cooperation emerge from the interactions 
of rational self-interested individuals (Axelrod, 
1984). Axelrod has continued to generate interest-
ing research on these questions, which have some 
applicability to real world issues such as conflict 
resolution (Axelrod, 1997).

The agents in Axelrod’s research represent enti-
ties stripped of everything psychological except self-
interest; thus, these agents provide social scientists 
with tremendous control over extraneous variables 
like emotion, feelings of empathy, or other relation-
ship-oriented variables that human beings possess. 
They represent the process of social exchange at its 
most fundamental level. Thus game theory is often 
used in this type of research because it contains 
simplifying assumptions about social behavior (basi-
cally that we are rational, self-interested creatures) 
that are appropriate for modeling the interaction 
between two or more human agents or between 
computational agents.
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For those seeking more information about the 
generative approach in social science, Smith & 
Conrey (2007) have written an excellent article in 
which they provide a justification for the use of an 
agent-based approach to the development and testing 
of theory in social psychology. They also provide a 
review of the use of the generative approach in social 
psychology and the social sciences in general, and 
a comprehensive bibliography which should serve 
as a guide for the interested reader.

c onc Lusion

We have reviewed theories and research in social 
psychology that may be of interest to researchers and 
those engaged in the design of interactive technolo-
gies. Beginning with a detour into the philosophical 
literature and a summary of Dennett’s concept of 
the intentional system, the chapter subsequently 
examined the Turing test, as well as conversational 
systems that utilize written verbal means of com-
munication only, such as ELIZA. The contribution 
of social psychological (including animal social 
behavior) concepts was then surveyed, as well as the 
application of these concepts to research in agent-
human interaction. We reviewed selected theories in 
interpersonal relations, along with their application 
to an understanding of long-term relations between 
humans and artificial agents in the work of Bickmore 
and Picard. The survey also included concepts from 
social perception, with special attention to the use of 
emotion as a method of communicating the state of an 
organism, along with applications from the work of 
Picard and Breazeal to artificial agents. Attribution 
theory, the study of how we draw conclusions about 
the causes of an agent’s behavior - are they inside 
the agent (personality) or outside (environment)? 
– was discussed, and though there have been no 
direct applications of this particular set of theories 
to agent-human interaction to date, if agents are to 
seem life-like, should they be subject to the same 
attribution biases as a human? A different strand 
of research, in which artificial agents are used to 
simulate social processes was then examined. This 
area has received renewed interest from social sci-
entists, in part because of the computational power 
of modern personal computing platforms, and the 
availability of simulation software. Smith and Con-

rey (2007) have surveyed the major contributions to 
the literature and argued for the use of agent-based 
modeling in the development and testing of theory 
in social psychology. Finally, though the issues of 
whether artificial agents are truly intelligent, or 
are really capable of having feelings, or attaining 
consciousness, though important issues, may never 
have a final resolution. Philosophers and scientists 
will continue to debate these questions, but until we 
have a better grasp on what it means for a human to 
be conscious, or intelligent, or have emotions, it is 
premature to speculate about how these processes 
manifest themselves in an artificial being. 

It is hoped that the present chapter inspires 
researchers and designers concerned with re-
searching and developing interactive technologies 
to investigate the literature in the field of social 
psychology more closely. In a review such as this, 
one can only scratch the surface of the concepts 
and issues in this field, knowing that most of the 
ideas that have inspired researchers for many years 
cannot be given the space that they deserve. The 
field of human-computer interaction encompasses 
many researchers from many different backgrounds, 
who have come together to solve some of the most 
complex problems in computer science, engineering, 
and psychology. It behooves researchers from these 
areas to learn as much as they can from each other 
(and from fields like ethology and animal behavior, 
anthropology, and linguistics), because it is only as 
a truly interdisciplinary field that these problems 
can be solved. The applications resulting from this 
collaboration: live-in companions who can provide 
a psychological dimension to their interaction, 
workers who are able to learn new skills from their 
human counterparts, tutors who are genuinely able 
to enrich the learning experience for both children 
and adults, can be a great benefit to humans.

         

f uTure r esearch direc Tions 

The future for the topic of this chapter, the contribu-
tion of social psychological theory to understanding 
and developing systems that engage in social inter-
actions, looks very bright. The history of research 
efforts along these lines lies mainly in two unrelated 
bodies of work; first, there is the research that has 
sought to develop and test social theory using agent 
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simulation (Abelson, 1965; Axelrod, 1984, 1997; 
Axtell & Epstein, 1999). These efforts represent a 
viable alternative and a complement to the current 
use of laboratory, ethnographic, and survey meth-
ods, characterized by Smith and Conrey (2007) 
as Variable Based Modeling as opposed to Agent 
Based Modeling. One of the advantages of such an 
approach for social scientists is that they are not 
limited in the scope of their research. That is, one 
is not constrained to conduct analyses at the level of 
the ‘individual’ actor, as most social psychological 
research is. One can create individual agents that 
act as nodes in a connectionist cognitive network, 
or agents that simulate the social networks within a 
large organization; the choice is up to the ingenuity 
of the researcher.  

For researchers and designers of interactive 
systems the challenges include incorporating 
mechanisms whereby the agents are able to learn 
from their human partners. The interaction between 
human and artificial agent is most often represented 
as a parent-infant form of relationship. Thus, the de-
velopment of systems that are capable of some form 
of imitation, which is thought to be one of the more 
primitive forms of social learning, is an important 
goal of this area of research and development. In 
addition, the ability of an agent to begin to take an 
intentional stance toward their human partners, in 
other words, to begin to reason about the behavior 
of their partners, as discussed in the section on at-
tribution theory, would be a significant milestone 
towards the development of artificial agents who 
are able to reason in a social way.
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This chapter will critically review existing approaches to the modeling transmission of cultural information and 
advocate a new approach based on a new generation of agent-based social simulation systems. It will outline 
how such systems can be useful for studying the formation of patterns of widely shared cultural beliefs.

inTroduc Tion

Intuitively, most people seem to understand the term 
‘culture’ as it is used in everyday conversation1; 
however, it remains a notoriously difficult concept 
to pin down precisely.  A 1952 review identified 164 
definitions of culture (Kroeber & Kluckhohn, 1952) 
and the situation has not improved since.  Modern 
cultural scientists often resort to metaphors such 
as an onion or an iceberg to define culture.  The idea 
is that culture is a hierarchy consisting of multiple 
layers, many of which are hidden from view.   For in-
stance, Hofstede’s cultural onion (Figure 1) consists 
of publicly observable symbols−gestures, pictures, 
words/jargon, hairstyles, and flags−as the outermost 

layer.  Heroes−idealized people, dead or alive, seen 
as possessing highly prized characteristics−form the 
next layer.  Rituals−group activities seen as essential 
by the group but superfluous to the achievement of 
the actual goal, carried out for their own sake−form 
the third layer.  The core of a culture consists of 
shared beliefs about how things should be.

Each of the layers can be further deconstructed 
into multiple sublayers.  For instance, the privately-
held widely-shared beliefs of a cultural group can be 
further divided into beliefs about the social world, 
beliefs about the physical world, and beliefs about 
other groups, etc.  Another source of complexity 
is the fact that aspects at any level and sublevel 
are related to aspects at other levels and sublev-
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els.  Elaborating this view, Bloch (2000), argues 
that “cultures form consistent wholes … every 
element−wherever it came from−was moulded to fit 
in with the others because of a psychological need 
for integration which led to an organically patterned 
‘world view’” (p. 197). 

Despite the complexity, understanding culture 
has been important for several disciplines includ-
ing anthropology, sociology, and social and cross-
cultural psychology.  The work in these fields has 
contributed to our understanding of certain aspects 
of culture, for instance, we have several quantitative 
measures of cultural differences among a variety of 
nations (Hofstede 1994).  However, this work has 
been criticized for failing to develop computation-
ally predictive models of culture that would allow 
us to explain the macro-level cultural patterns in 
terms of individual level cognitive tendencies and 
make testable predictions about the future direc-
tion of a society (Gilbert & Conte 1995; Laland & 
Odling-Smee 2000).  The challenge then is to design 
models that can not only account for multiple layers 
of culture and the rich connections between these 
layers, without abstracting away the complexity, 
but are also computationally predictive at the same 
time.

A complete theory of culture may also be able 
to satisfactorily explain how cultural layers come 
to be formed.  Historically, we know that cultural 

patterns seem to pass like waves on the shores of 
time with each new wave rearranging the lines 
made by the previous waves.  For instance, last 
few centuries of Western European art history is 
a story of dynamism with one trend of cultural in-
novation following another.  Any two waves that are 
temporally contiguous in history appear to have a 
paradoxical relationship with each other.  The new 
trend is both defined in opposition to the old one 
and as a continuation and improvement of the old 
trend.  Visual arts are certainly not the only aspect 
of culture to exhibit this pattern.  Other cultural 
trends including religious doctrines, pop cultural 
trends, and patterns of political thought also appear 
to evolve similarly.  Thus Lutheranism builds on 
Catholicism while it also reforms it and seems to 
stand in opposition to it.  Postmodernist art builds 
on Modernist art while at the same time redefining 
it.    Explaining these pattern of stability and change 
in the evolution of cultural trends is a question of 
central importance for the social sciences.

Several critics of traditional cultural theory 
have offered alternatives to the standard verbal 
and/or mathematical modeling approaches.  The 
alternatives include: memetics and agent-based 
social simulation.  Next, I critically examine these 
alternatives and suggest a new promising approach 
based on a multi-agent architecture specifically de-
signed to lead to a computational model of cultural 
information transmission.

Figure 1. Hofstede’s cultural onion
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MeMeTics

Memetics is the study of culture inspired by 
Dawkins (1989) who coined the term meme to refer 
to a discrete unit of cultural information that is 
transmitted from one mind to another analogously 
to the way in which a gene propagates from one 
organism to another as a unit of genetic information.  
Dawkins argued that different aspects of culture, 
such as different tunes, catch-phrases, religious 
beliefs, and clothing fashions, compete to occupy 
mental space, similar to the competition among 
genes to be included in the DNA.  Thus, only those 
ideas that are best fit for a mind are remembered and 
communicated to others, becoming widely-shared 
cultural beliefs.  While the general idea has been 
well received, translating it into a viable research 
program has run into several difficulties.  The first 
problem is finding a universally accepted way of 
dividing cultural information into discrete units.  
Cultural information seems to be too cohesive and 
well connected to yield to any single way of carving it 
up at the joints.  There is also little evidence that the 
human mind is a replicating machine which simply 
makes a copy of the information it receives from 
others.  Instead, when cultural information, such 
as a catch-phrase or a folk tale, spreads from one 
person to another, it seems to go through complex 
series of filters before being reproduced.

People have to integrate the new information 
they receive through their senses into their existing 
world model.  The comprehension process involves 
a complex two-way interaction between the newly 
received information and the knowledge that an 
individual possesses prior to learning.  The newly 
obtained information may result in revision of some 
of the previously held beliefs.  Finally, an individual 
may decide to communicate this information to oth-
ers if he/she believes that taking the communication 
actions serves the speaker’s goals (Grice, 1969).  
Thus, sometimes there may be a causal relation-
ship between an individual receiving a message A 
and then uttering a message B with A and B having 
some syntactic and/or semantic similarities with 
each other but that is not universally true.  Not 
all messages that are received are equally likely 
to cause transmission of future messages.  Thus 
informational messages are replicated with too low 

fidelity to perform a gene-like role in transmission 
of cultural information (Sperber 2000).  This makes 
it hard, if not impossible, to use the abstractions 
employed in genetic evolutionary theory or in 
epidemiology to devise closed form mathematical 
models of cultural information transmission of 
any predictive value.  In fact, understanding and 
modeling the comprehension, belief revision, and 
communication biases that people have may be use-
ful to figuring out the kind of social patterns that 
are likely to arise at the societal level.  

One of the biases that people have is the bias to 
pay more attention to expectation violating objects 
and events (Schank 1979).  Holders of this bias 
could have been evolutionarily favored because 
they may have been better able to identify gaps in 
their existing world model and take advantage of 
the learning opportunities offered to them by novel 
events and objects around them and build more pre-
dictive models of their environment (Upal 2005a; 
Upal et al. 2007).  A number of recent studies have 
shown that people do in fact better remember and 
recall counterintuitive ideas but that the relationship 
between the amount of counterintuitiveness and 
recall is not linear; that objects and events that are 
too counterintuitive are actually recalled less well 
(Barrett & Nyhoff 2001; Boyer & Ramble 2001; 
Gonce et al. 2006).  Thus the objects and events that 
are minimally counterintuitive i.e., they only violate 
expectations about one feature (such as a talking 
tree) are best recalled when compared with intuitive 
objects that do not violate any expectations(e.g., a 
green tree) or maximally counterintuitive concepts 
that violate multiple expectations (e.g., a blinking 
talking tree).  Anthropologists (Boyer 1994; Sperber 
1996) have argued that this bias results in most of 
the widespread religious concepts being minimally 
counterintuitive.

Previously, we have argued that context in which 
concepts are embedded plays a critical role in the 
memorabilty of a concept i.e., minimally counter-
intuitive ideas are only more memorable when the 
context in which they are embedded makes them 
expectation violating concepts (Upal 2005a; Upal et 
al. 2007).  Thus concepts that are counterintuitive 
in one context may be intuitive in another context.  
To get attention in the new context then concepts 
have to somehow appear counterintuitive in the 
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new context.  One way for this to happen is for 
the new concepts to be even more counterintuitive 
thus ratcheting up counterintuitiveness.  Hence 
the concepts which may have been perceived as 
maximally counterintuitive in the original context 
come to be minimally counterintuitive in the new 
context and exploit transmission advantages of 
greater memorability.  Ratcheting or snowballing 
of counterintuitiveness may help explain why some 
concepts such as God which appear maximally 
counterintuitive to us today are still prevalent in 
widespread religions and how interlinked layers of 
beliefs come to be (Upal 2008).

My main point here, however, is that in order 
to have a predictive theory of cultural information 
transmission, we need to take into account people’s 
memory biases.  Memetics, and epidemiological 
models of information transmission (Watts 2002) 
as currently formulated to abstract away these 
details by appealing to mathematical evolutionary 
models or mathematical epidemiological models 
are not likely to lead to predictive models cultural 
information transmission.

a gen T-based socia L 
siMuLaTion (abss )

The key idea behind agent-based social simula-
tion (ABSS) is to design simple bottom-up com-
puter models of individuals using software modules 
(called agents) and allow the agents to interact with 
each other through a few simple interaction rules.  
If any social patterns emerge then it is easy to 
identify individual cognitive tendencies and social 
interactions that cause them.  This allows the ABS 
researchers to tease apart the micro-macro causal 
links by carefully making one local change at a time 
and by analyzing its impact on the emergent social 
patterns.  For instance, Thomas Schelling, one of the 
early pioneers of the ABS approach, designed 1500 
agents that lived on a 500 x 500 board (Schelling 
1971).  The agent’s cognitive structure consisted of 
one simple inference rule, namely, if the propor-
tion of your different colored neighbors is above a 
tolerance threshold then move to a different cell, 
otherwise stay at your current location.  He showed 
that even populations entirely consisting of agents 

with high tolerance end up living in segregated 
neighborhoods.  Since Schelling’s pioneering work, 
the ABS systems have been used to discover possible 
explanations of a number of social patterns.  Thus 
we now know the local interaction patterns that can 
give rise to the emergence of complex patterns of 
social networks.  If individuals prefer to establish 
connections with well connected individuals then a 
society is likely to have scale free network structure 
with a few people having a large number of social 
connections while a vast majority have a small 
number of friends (Barabasi 2002).

As successful as the ABS strategy has been, it has 
not been able to explain the emergence of complex 
layers of cultural patterns that characterize human 
cultures.  To understand why it is so difficult to 
simulate such patterns, we need to better understand 
the key notion of emergence better.  Emergence 
is not magic−even though it is treated as such by 
some in the ABS community.  Social patterns that 
are seen after running an agent-based simulation 
are a direct consequence of the internal cognitive 
structure of the agent’s cognitive decision-making 
rules and agent-interaction rules even when we can-
not foresee those consequences.  This means that 
agent-structures and their interaction rules have 
to have certain properties to lead to the emergence 
of particular social patterns.  Emergent social pat-
terns are strongly constrained by the internal agent 
structure and agent interaction rules.  For instance, 
if agent memory capacity is one-bit (Bainbridge 
1995; Doran 1998; Epstein 2001; Bainbridge 2006) 
then society of such agents can never have multiple 
beliefs much less richly connected beliefs that make 
cultural patterns what they are.

In order to have societies with complex shared 
beliefs, individual agents need to be able to represent 
such beliefs and be able to acquire and modify them.  
The problem is that normative knowledge acquisition 
and belief revision are computationally intractable 
and simulating even a single agent that can perform 
these tasks in real time is not possible, hence design-
ing cognitively-rich multiagent simulations that can 
be run efficiently is one of the greatest challenges 
facing those interested in creating simulations of 
layered cultural patterns.  I believe that one way to 
address this challenge is to house the cognitively 
rich agents in synthetic “toy-domains” that are just 
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complex enough to exercise the enhanced knowl-
edge representation and reasoning capabilities of 
cognitively-rich agents but not too complex to make 
the simulation intractable.  I will illustrate this ap-
proach with the help of a synthetic domain called 
Multiagent Wumpus World.  Before, describing this 
domain, however, I will talk about a cognitively-rich 
agent-based social simulation architecture called 
the CCI-Architecture that I have designed to study 
the transmission of cultural information.

c o MMunica Ting, 
c o Mprehending, and 
inTegra Ting (cci ) a gen Ts

The CCI agents attempt to comprehend the informa-
tion they perceive through their sensors, integrate it 
with their prior knowledge and take the action they 
perceive as best in a given situation.  The possible 
actions an agent can undertake include comprehen-
sion actions, speech actions, and movement actions.  
The CCI agents are goal directed agents that plan 

sequences of actions to achieve their goals.  Agents 
attempt to build accurate models of their environ-
ment by acquiring information about cause-effect 
relationships among various environmental stimuli.  
At each instant, agents sense their environment and 
decide what action to take.

The CCI agents are comprehension driven.  
They attempt to explain their observations using 
their existing knowledge and their causal reason-
ing engine.  On observing an effect OE, an agent 
searches for a cause C that could have produced 
that effect.  If multiple causes are available then the 
agent may have to reason to eliminate some of the 
possible causes to select the most likely cause for 
the current observations.  The assumed cause AC 
allows the agent to make some further predictions 
about the unobserved effects of the assumed cause.  
The assumed effects (AEs) deduced from ACs are 
added to the agent’s world model which helps the 
agent form expectations about aspects of the world 
that the agent has not observed yet.  Agent may also 
be able to observe causes.  The observed causes 
(OCs) allow the agent to predict the effects (PEs) 
of those causes.  

Figure 2. A 10 x 10 version of the Multiagent Wumpus World (MWW) domain.  This version has 10 agents, 
10 Wumpuses, and 10 Treasures.
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Agents also sense actions performed by other 
agents that are in the vicinity of the observing 
agent and attempt to comprehend those actions.  
Other agents are assumed to be intentional agents 
and hence causes of their actions are those agent’s 
intentions.  The CCI agents ignore the information 
received from others if they cannot find any jus-
tification for it.  Inferring these intentions allows 
the observing agent to make predictions about the 
future behavior of the agent. 

An agent A may decide to send a message M 
to an agent B that happens to be within listening 
distance if it believes that sending B the message 
M will result in changing B’s mental state to cause 
it to perform an action C which can help A achieve 
some of its goals.  

At every instant, agents consult their knowledge-
base to form expectations about the future.  If these 
expectations are violated, they attempt to explain 
the reasons for these violations and if they can find 
those explanations, they revise their world model. 

We have embedded the CCI agents into the 
Multiagent Wumpus World (MWW) domain shown 
in Figure 2.  MWW is an extension of Russell and 
Norvig’s (2003) single agent Wumpus World and 
is inspired by the well known minesweeper game 
where an agent’s objective is to navigate a minefield 
while looking for rewards.

Multiagent w umpus w orld (Mww )

MWW has the same basic configuration as the 
single agent Wumpus World (WW). MWW is an 
N x N board game with a number of wumpuses 
and treasures that are randomly placed in various 
cells.  Wumpuses emit stench and treasures glitter.  
Stench and glitter can be sensed in the horizontal 
and vertical neighbors of the cell containing a wum-
pus or a treasure. Similar to the single agent WW, 
once the world is created, its configuration remains 
unchanged i.e., the wumpuses and treasures remain 
where they are throughout the duration of the game.  
Unlike the single agent version, MWW is inhabited 
by a number of agents randomly placed in various 
cells at the start of the simulation.  An agent dies 
if it visits a cell containing a wumpus.  When that 
happens, a new agent is created and placed at a 
randomly selection location on the board.

The MWW agents have a causal model of their 
environment.  They know that stench is caused by 
the presence of a wumpus in a neighboring cell 
while glitter is caused by the presence of treasure 
in a neighboring cell.  Agents sense their environ-
ment and explain each stimulus they observe.  While 
causes (such as wumpuses and treasures) explain 
themselves, effects (such as stench and glitter) do not.  

Figure 3. A part of the MWW
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The occurrence of effects can only be explained by 
the occurrence of causes that could have produced 
the observed effects e.g., glitter can be explained 
by the presence of a treasure in a neighboring cell 
while stench can be explained by the presence of a 
wumpus in a neighboring cell.  An observed effect, 
however, could have been caused by many unob-
served causes e.g., the stench in cell (2, 2) observed 
in Figure 3 could be explained by the presence of a 
wumpus in any of the four cells:

• Cell (1, 2),
• Cell (3, 2),
• Cell (2, 1), or
• Cell (2, 3)

An agent may have reasons to eliminate some of 
these explanations or to prefer some of them over 
the others.  The MWW agents use their existing 
knowledge to select the best explanation.  Agent’s 
knowledge base contains both the game rules as 
well as their world model.  A world model contains 
agent’s observations and past explanations.  The 
observations record information (stench, glitter, 
treasure, wumpus, or nothing) the agent observed 
in each cell visited in the past.  The MWW agents 
use their past observations and game knowledge 
to eliminate some possible explanations e.g., if an 
agent sensing stench in cell (2, 2) has visited the 
cell (1, 3) in the past and did not find sense any 
glitter there, then it can eliminate “wumpus at (2, 
3)” as a possible explanation because if there were 
a wumpus at (2, 3) there would be stench in cell (1, 
3).  Lack of stench at (1, 3) means that there cannot 
be a wumpus at (2, 3).  Agents use their knowledge 
base to form expectations about the cells that they 
have not visited e.g., if the agent adopts the expla-
nation that there is a wumpus in cell (2, 1) then it 
can form the expectation that there will be stench 
in cells (1, 1) and (3, 1).

In each simulation round, an agent has to decide 
whether to take an action or to stay motionless.  
Possible actions include:

• The action to move to the vertically or hori-
zontally adjacent neighboring cell

• The action to send a message to another agent 
present in the same cell as the agent, and

• The action to process a message that the agent 
has received from another agent.

The MWW agents are goal directed agents that 
aim to visit all treasure cells on the board while 
avoiding wumpuses.  Agents create a plan to visit all 
treasure cells they know about.  The plan must not 
include any cells that contain wumpuses in them.  

If an agent lacks confidence in the knowledge that 
it currently has about a critical cell then that agent 
may decide to ask another agent in its vicinity for 
information about the cell.  When an agent detects 
another agent in its vicinity, it ranks all the cells 
by how confident it is of its knowledge about a cell.  
It has the highest confidence in the cells that it has 
already visited.  Next are the cells whose neighbors 
the agent has visited and so on.  Agents also rank 
cells by how critical it is to find out information 
about that cell.  The order in which the cells are to 
be visited determines the criticality e.g., if a cell is 
the next to be visited then finding information about 
that cell is assigned the highest priority while a cell 
that is not planned to be visited for another 10 rounds 
gets low priority.  The agents then use an informa-
tion seeking function that takes the two rankings 
(confidence and criticality) as inputs and decides 
what cell (if any) to seek information about. 

Once the first agent has sent the request for 
information, the second agent may also request 
information about a cell from the first agent in 
turn.  A negotiation between the two agents ensues 
and communication takes place only if the both 
agents find the communication beneficial.  This 
way information about the presence or absence of 
treasure, glitter, wumpus, or stench can be trans-
mitted throughout the population and after some 
time t, the shared beliefs among agents may come 
to have a certain pattern.  I believe that designing 
progressively richer versions of CCI and MWW and 
studying the impact of each local change to see how 
changes in agent’s internal cognitive structure cause 
changes in the patterns of shared beliefs is the most 
effective approach to developing predictive models 
of cultural transmission. 

My students and I have conducted a number of 
such experiments with various versions of CCI & 
MWW.  Upal  (2006) reported that the version of a 
10 × 10 MWW with 10-agents was most challeng-



��  

Predictive Models of Cultural Information Transmission

ing for CCI agents when it contained 10 randomly 
distributed wumpuses and treasures compared 
with MWWs containing 5 or 20 wumpuses and 
treasures.  This is the version we used in the sub-
sequent experiments.  We found that even without 
any communication, false beliefs generated in 
such a society have a particular structure to 
them; they are more likely to be about objects 
and events whose presence is harder to confirm 
or disconfirm.  Upal & Sama (2007) reported 
that communication does not eliminate or even 
decrease the prevalence of such false beliefs.  
There is some evidence to suggest that in human 
societies, people are also more likely to have false 
beliefs about unconfirmable entities and events.  
Bainbridge and Stark (1987) made confirmability 
the core of their theory of religion to argue that 
religious beliefs are unconfirmable algorithms to 
achieve rewards that are highly desired by people 
yet cannot be obtained.  Similarly, there is some 
evidence to suggest that many false ethnic stereo-
types people have are about things that are harder to 
confirm or disconfirm such as the sexual practices 
of the neighboring tribes (Smith 2006).

c onc Lusion

After reviewing existing approaches to cultural 
modeling, I argue that a new approach based on 
building cognitively rich agent-based models is 
needed if we are to have any hope of building predic-
tive models of cultural information transmission.  I 
describe architecture of one such multiagent society 
in detail and describe the work we have done to this 
point to study the formation of cultural patterns in 
human societies.  While agents in our model have 
vastly more complex knowledge representation and 
reasoning capabilities than any previous agent-based 
social simulation model and they are able to have 
beliefs that are linked with each other in various 
interesting ways, their representation and reasoning 
capabilities are still too limited to result in complex 
belief patterns such as those that characterize reli-
gious movements (Upal 2005b).  To this end, we are 
currently working to enhance the capabilities of our 
model.  We believe that this approach provides the 
best hope for the development of predictive models 
of cultural information transmission.
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a bs Trac T

Despite the popularity of agents for the information technology infrastructure, questions remain because it 
is not clear what do e-business agents do for businesses and what could they do for consumers. Who ben-
efits most from agents? Are they practical? Can we trust them? Are they as efficient as human agents? Are 
they already implemented in online businesses? In this chapter, we will discuss the role that agents play in 
e-business applications.  

inTroduc Tion

Imagine this scenario: where the space on your 
hard drive is getting low so your computer deletes 
some old video files you have already watched. It 
is Sunday and you are low on milk, eggs, salt, and 
some other essentials, so your refrigerator orders 
more groceries; the toner in your printer is low, so 
it orders more toner; you receive an e-mail from 
your credit card company and the e-mail is replied 
automatically, all of this is done without any effort 
from you. You are probably thinking that these 
technologies are not yet available, but all of these 

things are possible. These tasks and many more 
can all be performed by e-business agents. Beyond 
just moving an e-mail from your credit company 
to a folder, your agent can receive an e-mail from a 
new credit card company, make a folder for future 
emails from that company and will begin moving 
older e-mails to an archive folder without asking you.  
But your agent does not move all the e-mails from 
your credit card company to the archive. Your agent 
leaves your monthly statements from your credit 
card in your inbox because it knows that you would 
like to review your bill before you pay it.  Instead 
of just ordering milk and eggs, your refrigerator 
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also orders meat and some bread, anticipating your 
needs. An agent does not just perform the tasks you 
ask it to complete; an agent may make assumptions 
and perform tasks based on past experiences. An 
agent can order meals that it believes you will enjoy, 
or it might order a generic toner in case it knows 
that you do not have preference for a specific brand. 
One of the most common agents consumers own 
is Tivo1. Tivo can record television shows that it is 
programmed to record, and it also makes inferences 
on the shows it thinks you may want to watch.

Business agents are supposed to guide people 
where they need to go, and help a company make 
informed decisions, make recommendations, and if 
given the authority, hire employees, make purchases, 
and overall, help the company to run smoothly and 
efficiently.  Similarly, e-business agents, sometimes 
referred to as digital agents, virtual agents, software 
agents, or intelligent agents, do many different 
things for people and business and must therefore 
be evaluated in order to determine what services 
they can best provide.

According to Weiss (2001), agents are a new 
paradigm and concept for developing software ap-
plications, and these are most prominent in e-busi-
ness for agent based technology.  These agents are 
used in many different applications, not only on a 
small scale but also on a large scale.  Weiss (2001) 
states that while there is no universally accepted 
concept of what an agent is in terms of e-business, 
he identifies four widely accepted properties which 
are used to characterize agents: autonomy (autono-
mous computational entities), social ability (ability 
to interactive with other agents), reactivity (ability to 
interact with they environment), and proactiveness 
(ability to achieve own goals).  An agent technology 
can also be described as a computational system that 
runs independently, communicates asynchronously, 
and can run dynamically on several processes, 
several machines, and can support the anonymous 
interoperation of agents (Helal et al., 1999).

Agents are autonomous computational devices 
that can interact with their environment including 
other agents in order to achieve their goals.  Agents 
will have the ability to adjust to their environment 
and have some intelligence.  Agents can represent 
individuals thus acting as delegates or they can act 
on behalf of groups thus acting as mediators.  

A key difference between objects and agents 
is their autonomy of action (Weiss, 2001).  Agents 
operate under their own control, can work for a 
long period, take initiative, react to stimuli guided 
by their goals, and leverage their ability to achieve 
their goals.  A society of agents can be viewed as 
one that results because of agent interaction or a 
group of agents that operate under common restric-
tion.  A catalog of agent interaction patterns can be 
used to construct the agent society.  The pattern of 
interaction may also specify constraints or policies 
that must be fulfilled.  Policies define the constraints 
on the agent society.  Roles are the center of agent 
control, and protocols reflect the pattern of behavior.  
This role for agents helps users by delegating time-
consuming peripheral tasks.  Some problems that 
arise are, how much discretion should be assigned 
to the agent, and how will the agent interact with 
the world? (Weiss, 2001).

e-business

The e-business domain needs more automation for 
its customers, which can be facilitated through the 
implementation of agent technologies.  Mesenbourg 
(2000) highlights distinctions between electronic 
business and electronic commerce.  Electronic 
business is a process that a business organization 
conducts over computer-mediated network channels 
whereas commerce is any transaction conducted 
over computer-mediated network channels that 
transfers ownership of, or rights to use, goods or 
services.  The process involves electronic marketing, 
electronic searching, the procurement and payment 
and the authentication and the processing of the 
payment through a financial institution.

Many current successful Web sites started off in 
garages or college dormitories, and were created by 
Web developers just for fun.  In some cases, we have 
seen that these small companies balloon into giant 
corporations.  A contributing factor is that a Web 
site is essentially no different than a corner shop, 
and it can easily survive by providing a service or 
product to a small percentage of the global popula-
tion.  However, ballooning can occur when a small 
Web site is available to over a billion people.  Once 
a Web site, which is intended to be small, can be 
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discovered by a billion customers, it can become a 
multi-million dollar company, as long as the service 
or product provided is basic and appealing enough to 
customers.  Kalakota and Robinson (1999) describe 
the interactions between agents in e-business and 
how Web sites can turn into a multi-million dollar 
companies. Their main idea is “big dumb Web sites 
become big dot com companies” and they explain 
why and how this comes about.  This study wants 
people to imagine a small town corner shop that 
only needs to be built in one city, but is somehow 
accessible by every city in the world and can have 
an unlimited number of customers within it.  

Kalakota and Robinson (1999) state that the world 
contains over a billion Internet users and a billion cell 
phone users.  There will only be more Internet and 
cell phone users in the future and this will contribute 
to the small Web site, big company issue.  They ex-
plain how business has been traditionally conducted 
and how now, with e-commerce, the methodology 
of commerce has changed significantly.  In the old 
methods, we had raw material suppliers selling to a 
supplier, and then the supplier sends to a distributor, 
and the distributor sells to a retailer and the retailers 
manage to get the product to the consumer.  A good 
example is Walmart (www.walmart.com) and the 
way that it manages its supply chain network.  With 
new e-commerce, many of these tiers are replaced 
or streamlined and go unnoticed.  A supplier can 
easily become a retailer by creating a Web site and 
allowing customers to buy products on demand from 
anywhere in the world.  They could also use other 
distributing services to ensure their products reach 
their customers.  Instead of having a distributor, 
storefront and retailers, these suppliers can elimi-
nate search costs, inventory costs and other retailer 
costs by allowing all customers to see stocking and 
inventory and create products on demand.  

The e-business model has evolved and the flow 
is extremely simple.  Kalakota and Robinson (1999) 
state that the world is becoming more service-
oriented and they use Dell (www.dell.com) as an 
example.  In Dell’s model, if a customer wants a 
computer, instead of going to a retailer and buy-
ing a computer, the customer decides what kind of 
computer they want and Dell builds it and sends 
it to them.  They conclude that e-commerce has 
changed the way we do business and changed the 

way a company operates, no longer is distributing 
and retailing the most important aspects of a suc-
cessful business, but possibly the product or service 
being sold, which is more important.  

Techno Logy

While the proliferation of technological advance-
ment and globalization of businesses has made 
possible the tremendous growth of e-business ap-
plications. Helal et al. (1999) mantain that Web-based 
e-business applications and systems developed by 
individual companies are neither compatible nor 
interoperable with each other.  Therefore, there is 
a need for new mechanisms and procedures that 
will smooth the progress of interoperability and 
cooperation in e-business, not only for business to 
business operations (B2B), but also for business 
to consumers operations (B2C).  For instance, e-
business applications need more automation and 
security for users, which can only be obtained 
through the implementation of agent technologies.  
In this regard, previous studies have suggested that 
‘agent technology’ is one of the core technologies 
that will accommodate the growing proliferation 
of e-business applications.

Also, agents typically represent different users, 
and there may be several of them in a specific en-
vironment performing different tasks (i.e. service 
exchange and coordination).  In the case of e-business 
agent communities, these consist of a large number 
of agents in a dynamic environment in order to of-
fer special services for a more effective, mutually 
beneficial, and more appropriate interaction (Helal 
et al. 1999).

Helal et al. (1999) state that the global economy 
is the driving force for e-business to be conducted as 
a service-centric system.  This system should offer 
modular services which are flexible and composed of 
rapidly deployable services, referred to as e-services.  
Because of these changes in e-business, there is a 
rise in the use of negotiation-based, autonomous and 
intelligent computing.  This study suggests that in the 
near future it is expected that the e-services market 
will be created by software agents.  The protocols for 
these agents will be based on a three-tier architecture 
of agents, brokers and super-brokers.  This study 
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explains what an ideal e-business agent community 
aims to do.  It is supposed to make it easy to developer 
virtual enterprises, so companies can join and share 
resources for the purposes of producing, marketing, 
exchanging information, and products and services 
between businesses.  In addition, the agents should 
represent a potential relationship between members 
and allow for interoperability amongst them.  The 
agents should also help with the creation of rela-
tionships between agents with common interests 
and provide a discipline open network.  Finally, the 
agents should accommodate solutions to the issues 
of trust, efficiency and credentials.

Helal et al. (1999), focusing primarily on in-
teractions in the auto-trading community, use an 
example of every aspect of the auto-trading industry 
including the sales to customers, the infrastructure 
necessary for inventories and distributing to even 
finding new hires and determining which ones can 
make a dealership profitable.  It uses its proposed 
layered agent community architecture to solve the 
issues of the example.  The implementation of these 
agents has been created using Java.  Each of the 
agents follows a specific set of commands which 
are defined by an XML file using a specific XML 
schema defining an agent.  The algorithms that 
they have created are extremely complex and have 
not been tested with real data.  Helal et al. (1999) 
conclude that they need to gain more information 
and knowledge on the e-services community to 
develop more robust and sophisticated algorithms.  
They also refer to the use of supply-chain manage-
ment and other logistic methods which are tougher 
to analyze. Questions still remain, such as: what 
is the rationale or reason to the way each agent’s 
algorithm was created?

The proliferation of technological advancement 
has made possible the phenomenon of e-Business. 
Information Technology has created flexibility in the 
business markets with the emergence of virtual en-
terprises or net enterprises and also the globalization 
of business. However, while this is true, according 
to Helal et al. (1999), “if we analyze the Web-based 
e-Business applications and systems developed by 
individual companies, we find that they are neither 
compatible nor interoperable with each other”. As 
a result, there is a need for new mechanisms and 
technologies that will facilitate interoperability and 

cooperation in e-Business that will support business 
to business (B2B) exchange. 

While there is no universally accepted definition 
for agents, an agent technology can be described as “a 
computational system that operates autonomously; 
communicates asynchronously; and runs dynami-
cally on different processes in different machines, 
which support the anonymous interoperation of 
agents” (Helal et al. 1999). Agents typically represent 
different users, and there are thus several of them in 
a given environment. E-business agent communi-
ties consist of a large number of agents and their 
dynamic environment, grouping together to offer 
special e-Services for a more effective, mutually 
beneficial, and more opportune e-business. These 
characteristics of agents render them useful for 
solving issues in information intensive e-business; 
which includes advertising, service exchange and 
coordination across services is very important. 

The use of Java programming language and 
extensible markup language (XML) to encode in-
formation and services with meaningful structure 
and Semantics is becoming more common (Glushko 
et al., 1999).  Due to the enormous amount of data 
that Web sites generate because of the nature of the 
Internet and its impact on e-commerce (e.g. tracking 
information and consumer behavior), new technol-
ogy is needed to analyze and process this data.  The 
introduction of XML for associating meta-content 
data is increasing and gaining acceptance among 
vendors. Companies are using XML technology 
to perform numerous tasks. These tasks include 
displaying of product catalog, placing orders and 
reporting financial and operation information. 

HTML provides a universal standard for Web 
development which allows Web sites to be displayed 
on all browsers. This allows the companies to reach 
its intended customers or market share without the 
need for special technology. Similarly, XML tech-
nology is universally acceptable and can be used 
on different technologies.  XML allows buyers and 
sellers to compare products across many vendors 
and catalog formats. This reduces the need to build 
customer interface to view different catalog formats. 
Also, a seller catalog can be viewed by many po-
tential customers with different Web technology.  
XML may allow suppliers to differentiate products 
using means other than price. Agents that search 
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catalogs on the Internet can make pricing decisions 
based on the availability and location of the product, 
therefore consumers can use shopping agents to find 
products with competitive prices. This is because 
XML allows agents to read product catalogs across 
the Internet and to return those products which meet 
the user search criteria. If a user is looking for the 
cheapest ticket to a baseball game, the agent can 
compare all the baseball price tickets and return 
the cheapest one to the user.  Therefore, it is the 
need for information-exchange which brought about 
XML, providing an easy format for information 
exchange and easily analyzed by humans.  One 
problem with this format it that it is time-consuming 
for the parties involved to come to an agreement 
(Glushko et al., 1999).  Another issue with XML 
is that vendors usually fear making their product 
information readily available, because competitors 
with lower prices may attract those customers easily 
(Weiss, 2001).

Online shopping is not a personal transaction 
and therefore requires some level of trust, unlike a 
face-to-face transaction where buyer and seller make 
an immediate exchange of payment for product.  En-
suring the quality of transactions is another pattern 
of agent based systems (Weiss, 2001).  Currently, 
there is no mechanism to ensure the quality of the 
products sold.  One method is to elicit feedback or 
comments from previous buyers on the quality of 
the product and the promptness of delivery.  E-bay 
(www.ebay.com) has such a mechanism to rate the 
performance of its vendors, but a potential problem 
is that vendors that are rated poorly may assume new 
identities and continue to sell products without let-
ting buyers be aware of their poor performance.

Consequently, agent based systems should be 
autonomous, and currently the dominant example 
for interaction with computers is direct manipula-
tion.  The user must initiate the tasks and monitor all 
subsequent events related to the task.  For example, 
a user who wants get a deal on an auction that offers 
an item on sale must usually go to a search engine 
to find the auction.  The user must then monitor 
the auction for his desired price.  The monitoring 
of the auction price and search for the auction is 
peripheral to the users main objective of acquiring 
the item.  Agents can be used as substitutes for the 
user performance of peripheral activities.  Users 

can delegate some of their tasks to agents that will 
perform the tasks independently.  This is a coop-
erative process where the user and the agent both 
initiate communication.  It allows autonomy for 
the agent to achieve goals without interacting with 
the user or another agent.  The independent agent 
does not require approval from the user at every 
step of completing an action; it can complete the 
tasks on its own.

Similarly, autonomous agents require trust from 
users, and users must be able to trust that the agent 
will act in an unbiased manner.  For example, the 
user would not want the agent to choose vendors 
for a cut in the proceeds.  Users may also like to 
specify the degree of autonomy each agent should 
have.  For example, the user may not want to delegate 
responsibilities that have financial consequences 
(Weiss, 2001).

Because users differ in their preferences, vendors 
need to adapt to each one individually, therefore 
agents should be able to adapt to their environment 
(Weiss, 2001).  Tailoring information to users re-
quires maintaining a user model, and when creating 
a user model two characteristics must be identified 
during the interaction. First, whether this is the user’ 
first time visit and there is no information avail-
able; and second, the ability to add information of 
a repeat visitor.  There are several solutions for this 
issue: one can have users register to use the site and 
permanently keep their profiles or one can choose 
to have a model during that particular time frame 
when the user is interacting with the site.  Systems 
should consider both direct and indirect users, for 
example, the user that shops online for his daugh-
ter or some other third party.  Systems should also 
track changes in user preferences over time. One 
method of gathering user information is to have each 
user fill out a form.  This allows you to capture the 
information directly from the user himself and to 
provide a personalized profile at first contact.  There 
may be few flaws with this approach because users 
may be reluctant to provide this information upfront, 
or because changes in user preferences will not be 
reflected in their profiles.

Furthermore, there may be piracy concerns 
when creating user profiles because it requires the 
disclosure of personal information (e.g. vendor pref-
erence).  One can personalize information between 
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vendors and consumers by analyzing their click 
stream.  This process can take place without the 
user’s knowledge and may raise privacy concerns.  
Users generally want to remain in control and are 
not likely to allow anyone monitoring their usage 
patterns without their consent.  Users decide on what 
information to share on an interaction by interaction 
basis.  Buyers that like to remain anonymous in a 
transactions pose serious problems to vendors that 
want to personalize service.

One of the possible problems in e-business that 
Weiss (2001) mentions is user profiling and the way 
it can be implemented.  The problem is described 
as “how to capture user profiles without requiring 
too much explicit input from the user.”  Although, 
the idea is to track users’ profiles as their behavior 
over time.  Weiss (2001) explains that the solution 
includes advanced dynamic user modeling and the 
agents involved should be used to tailor the interac-
tion style, providing more or less detail based on the 
receptiveness of the user.  The user profile should 
best describe the user by its interactions.  Custom 
catalogs can be created by monitoring buying pat-
terns and preferences.  An issue with the creation 
of user profiles is how to capture user information 
without requiring too much explicit information 
directly from the user.  Such a system must be 
adaptable and have the ability to update changes 
in user preferences.  User profiles can contain user 
interests and those interests may be rated by the de-
gree of interest the user has in the subject.  The user 
agent can request the user to provide demographic 
information which allows the agent to group the 
user into a class.

If limiting user input is a goal, the user profile 
should begin after the user has had the time to create 
a pattern or history.  User preference can be deduced 
using cluster analysis.  Once the user profile has been 
created, the system can be updated by soliciting 
information directly from the user.  This method 
derives user profiles by monitoring user use.  Product 
extractors create catalogs of product preferences 
listed in user profiles.  Other key characteristics of 
the user may be deduced from the product extractor 
like user’s age, level of expertise, and some predictive 
information about preferences on product features 
(Weiss, 2001).  Agents can monitor the information 
source for changes in preferences by continuous 

polling.  Notification agents move only to a single 
remote location and are created with a condition that 
typically comprises an event and a Boolean expres-
sion on the event data.  Wrapper agents are used to 
translate vendor specific information (Weiss, 2001).  
In summary, Weiss (2001) has examples that are 
very well thought out, but the agent concept is still a 
theory and there is no widely accepted definition or 
understanding of what an agent is.  These examples 
help understanding the purpose and the abilities of 
agents; however, they do not go into detail on how 
to implement these agents and how they would be 
integrated into systems.

Another pattern discussed by Weiss (2001) is 
search cost.  An example is that a user searches 
the Web for an item to purchase through an auction 
and iteratively monitors the state of that item.  The 
fact that the user can only find the best deal avail-
able at the time of attempting to purchase an item 
limits the searching capabilities.  The concept of 
autonomy would do this for a user, and instead of 
approving all tasks and forcing the user to query and 
control their search, an autonomous agent should 
execute and perform tasks automatically.  These 
agents should also have a level of autonomy, as in, 
the higher the set level the more tasks that will be 
performed automatically, which would obviously 
be used for less critical concepts.  There is also 
this concept of a need to interact.  In many cases, 
agents cannot complete a task alone; they must rely 
on the capabilities of other agents to do certain 
tasks.  All activities between the agents must be 
coordinated to reach a common goal; however, they 
must also not interfere with each other or overstep 
their bounds.

The dynamic features of the online marketplace 
cause the search for vendors to fluctuate.  Consum-
ers and vendors can enter and leave the marketplace 
and change their prices and requirements at any 
time.  It becomes difficult to maintain contact lists 
of vendors and clients.  If each user maintains his 
personal list of vendors, then he may not be able 
to get better deals from vendors that are not on 
their list.  A solution to this is to use a mediator to 
match the trading parties.   Mediators can maintain 
contact lists and alert the parties when a good deal 
is offered.  The problem with this solution is that 
individual preferences cannot be tracked with a 
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mediator since it does not represent the consumer 
preferences.  

The consumer and the vendor need to be rep-
resented by unique identities.  Identities must be 
tracked and authenticated.  There are many ways of 
assigning identities including labels like a personal 
e-mail address or account name.  Once issue with 
identities is the effortless process of acquiring a 
new identity.  Therefore, tracking schemes that 
rely on information that can be changed quickly are 
unreliable.  A user may have more than one email 
address and can seem to represent more that one 
user just by using an alternate email address thereby 
thwarting efforts to track them.  There must be an 
incentive to have users keep the same identity for 
extended periods of time for this type of tracking 
can be useful.

infor MaTion  over Load

Improvements in technology have allowed busi-
nesses accumulate enormous amount of data about 
buyers and their online behavior. Therefore, so much 
data has been generated, and information overload 
is another key pattern for intelligent agents where 
they adaptability to new information capabilities 
can be critical.  Entities and individuals may wish 
to find relevant information on making deals and 
generating profit.  However, there are many differ-
ent vendors and interfaces which make it difficult 
to conduct transactions in the market.  An answer 
to this issue has been to provide portal to the Web.  
The portal occasionally collects information from 
different sources and put them in a format that makes 
it easier for users to process.  This information is 
then placed in a hierarchical index.  A disadvantage 
of this index is that it is not personalized for each 
individual user and his preferences (Maes, 1994).

Agent based system should provide multiple in-
terfaces. A problem with finding information is the 
number of interfaces used to present it.  Store fronts 
have different organizations and many vendors do 
not follow the same conventions when describing 
their products.  The product description and terms 
of sale may be different.  Some vendors add the 
cost of shipping to their price and others do not.  
A shared vocabulary for terms of sale would be a 

solution, however this must gain wide acceptance 
by vendors to be useful to users (Maes, 1994).

hu Man -Like  agen Ts

McBreen and Jack (2000) performed a series of ex-
periments to evaluate the effectiveness of interactive 
agent e-commerce systems. They evaluated human-
like agents and cartoon-like humanoid agents. For 
the human-like agents, videos, disembodied voices, 
and facial expressions were preferred.  Most of the 
participants preferred human-like agents than the 
animated humanoid agent. Consequently, the prog-
ress of human-like agents will depend on advances 
in speech and voice recognition technology. So, this 
is an area were online business can explore and its 
development will depend on advances in graphics 
interfaces.

buying , se LLing , and  on Line  
auc Tions

Agents can perform several roles in online auc-
tions. They could monitor auctions and keep users 
informed of the latest activities in the auctions. 
Agent can also analyze market conditions and store 
information on bidders in order to estimate trends 
and behavioral patterns. Agents can determine 
the auctions to bid in. Agents are more suitable to 
manage online auctions over human beings because 
there are able to perform complex activities faster 
than human beings He (2004).

Each agent based systems needs to provide some 
form of interaction.  Since agents have only a partial 
representation of their environment, they are limited 
in their expertise, or access to resources.  Occasion-
ally, they have to rely on other agents to achieve 
goals that are outside their reach.  For instance, in 
an online auction, a buyer or seller may have agents 
working as delegates, and the behavior of an agent 
is difficult to explain outside the context of the auc-
tion itself and the rules that exist (He, 2004).  In 
general, agents compile user profiles that are updated 
regularly, and then go to the marketplace with that 
profile, locate a vendor, and negotiate the price.  
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This user profile allows the vendor to customize 
its offer to the agent (Weiss, 2001).

MeTrics  and  Measure Men T in 
e-business

Mesenbourg (2000) uses the United States Census 
Bureau to measure e-business development, and it 
describes the e-business framework, the strategies 
used and specific complexities.  In today’s world, 
consumers are heavily leveraging the use of elec-
tronic devices and other media, which instanta-
neously interact with each other, and the population 
of Internet users is expanding at exponential rates.  
A large number of consumers are continuously 
connected with Internet media devices. Clearly, 
improvements in technology are playing a major 
role in this exponential growth of use.  In previous 
years, before the advancement of e-commerce, 
the measurement of the economy was simpler and 
most of the services in the U.S. where related to the 
financial industry, which most would still consider 
a true product.  Mesenbourg (2000) explains that 
the problem today is that the world of e-business is 
much like the Wild West and very undefined, and 
basic examples of e-business infrastructure are: 
computers, routers and other telecommunication 
devices.

The size of something that isn’t tangible is often 
hard to determine.  Mesenbourg (2000) discusses 
a method for measurements of e-commerce on an 
economy, and specifically for the United States 
Census Bureau that eventually can be used in the 
near future.  He also mentions how this would also 
help determine what kinds of technologies and 
educational facilities are necessary for a popula-
tion born into an e-commerce world.  This method 
could ultimately help in a structured development of 
the Internet and supplement growing e-commerce 
entities by affording them more information within 
their business community.  It will also help supple-
ment areas in development both geographically and 
according to their type of business.
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This chapter presents a description of ongoing experimental research into the emergent properties of multi-agent 
communication in “temporally asynchronous” environments. Many traditional agent and swarm simulation 
environments divide time into discrete “ticks” where all entity behavior is synchronized to a master “world 
clock”. In other words, all agent behavior is governed by a single timer where all agents act and interact 
within deterministic time intervals. This discrete timing mechanism produces a somewhat restricted and ar-
tificial model of autonomous agent interaction. In addition to the behavioral autonomy normally associated 
with agents, simulated agents should also have “temporal autonomy” in order to interact realistically.  Part 
I of this two-part series focuses on an exploration of the effects of incremental migration of John Conway’s 
“Game of Life” form a simple cellular automata simulation to a framework for the exploration of spatially 
embedded agents.

inTroduc Tion

When we discus agents, we use the term agent 
as it is generally described in common literature 
(Wooldridge, 2002); (Ferber, 1999). Primarily, an 
agent should have attributes of autonomity, inten-
tionality, and proactivity. However, in addition to 
the behavioral autonomy normally associated with 
agents, we add the concept of temporal autonomy to 
give agents the freedom to “activate” without global 

coordination. This includes the ability to send mes-
sages to other agents at any time, and respond to 
the environment (including other agents) in variable 
time. In our previous work, we discussed the effects 
of temporal asynchronicity on a modified version of 
John Conway’s famous Game of Life. This chapter 
extends that research to include message-based 
interaction of simple agent swarms and revisits 
previous research into a temporally asynchronous 
version of Game of Life where relevant (Conover & 
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Trajkovski, 2007). By “temporal asynchronicity”, we 
mean that agents are free to send messages or respond 
to their environment independently of any globally 
coordinated synchronization mechanism.

Experiments with a number of different models 
of interaction show that the variability of the rate at 
which certain groups of agents exchange informa-
tion affects the overall state of a swarm of agents. 
However, these effects are not necessarily intuitively 
predictable. In our research, we look at the effects 
of this variability on the average age of agents in 
an environment, overall population density, and the 
effect of message exchange leading to unity and/or 
diversity of simple agent “beliefs”. Here we describe 
the research and results behind the development 
of a highly multi-threaded Java™ application for 
the simulation of swarms of “temporally variable” 
autonomous agents. We will also demonstrate that 
measurable differences can be observed and repro-
duced in various agent “swarm” type simulations 
by varying the asynchronous variably of timing in 
clusters of autonomous agents. 

We start by classifying two distinct behavioral 
models for spatially embedded swarms of agents, 
with each model being examined as a collection of 
secondary sub-models. By “spatially embedded”, we 
mean that the agents are constrained in space within 
a finite world. Each agent communicates with a fixed 
set of neighboring agents throughout the duration 
of a simulation. The two primary behavioral groups 
are differentiated as follows:

• Passive inquiry: Each agent examines the 
state of its environment at periodic time in-
tervals and updates its own state based upon 
an examination of agents in its immediate 
vicinity. 

• Belief promulgation: Each agent periodically 
communicates with neighboring agents by 
sending simple belief messages. The recipients 
of the messages alter their own states based 
upon the type and strength of the messages 
received. 

As an initial experiment, we have chosen to 
examine the effects of temporal autonomy on the 
well known Game of Life (Gardner, 1970). Though 
the Game of Life is a simulation normally asso-

ciated with cellular automata (Wolfram, 1994), 
diverse applications have been found in theoreti-
cal fields such as number theory and game theory 
(Berlekamp, Conway, & Guy, 1982), computation 
(Mitchell, Crutchfield, & Hraber, 1994), as well as 
in applied fields such a materials science (Varde 
et al.., 2004). For our purposes, it is reasonable to 
view this same simulation as a rectangular grid of 
agents where each agent is capable of limited com-
munication with neighboring agents. Agents may 
be considered active (on) or inactive (off) based 
upon the rules of the “game” as opposed to agent 
states representing “live” or “dead” cells as with the 
Game of Life. Many agent simulations treat agent 
behavior as state changes that occur in accordance 
with a global clock or similar timing mechanism 
(Hautamäki, 1997)(Fonseca, Griss, & Letsinger, 
2002)(Bordini et al.., 2006). However, if we wish 
simulated agents to be truly autonomous, then 
each agent needs the additional freedom of acting 
autonomously in time.

The introduction of Temporal Autonomy into 
the Game of Life provides a reference model for 
the exploration of non-deterministic temporal 
variability within an existing, well studied, and 
deterministic simulation. Though some work has 
been done in examining the effects of synchronous 
versus asynchronous updating in the Game of Life 
(Blok & Bergersen, 1998)(Schönfisch & Roos, 1999), 
little work has been done studying these effects as 
they pertain to agent interaction. To enable explora-
tion of temporal autonomy in agent interaction, we 
have written a small simulation environment in Java 
which alters the traditional Game of Life behavior. 
In this environment each cell in the world may ex-
ist within its own independent thread of execution. 
Though several techniques could be employed to 
simulate this multi-threaded behavior, the ease of 
thread creation and manipulation in Java makes a 
truly multithreaded approach practical.

Subsequent sections of this chapter provide an 
overview of our continued work in the area of agent 
interaction in “temporally asynchronous” environ-
ments and outline preliminary results. First, we 
provide a brief overview of the simulation environ-
ment, and then outline the simulation methodologies 
and results. The experiments are divided into two 
distinct sets: In the first set, the Game of Life model 
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is used but each cell is treated as an autonomous 
agent who periodically examines its environment 
and alters is own state accordingly. In the second set, 
the familiar Game of Life model is initially used, but 
all agent activity is triggered by neighboring agent 
event generation and message passing. This model 
is then evolved into a simulation where primitive 
agent “beliefs” are propagated through the world and 
variations in agent activation variance ratios affect 
the global behavior of the agent collective.

The  siMuLaTions

Our first simulation re-purposes the Game of Life 
world as a grid of agents, each with eight neighbors. 
The grid is internally represented as a torus; the top 
and bottom edges of the grid are connected, as well 
as the left and right edges. Though our simulation 
platform is capable of representing the world as 
either a simple rectangle or a torus, the torus model 
has been favored since it allows all agents in the 
environment to have the same number of neighbors 
and no agent is more isolated from the “society” 
than any other agent. A simple two-dimensional 

linked list is used to represent all cell connections. 
For all of the trials outlined in this chapter, a 25x25 
list was used, providing a grid of 625 discrete cells. 
Implementation details can be found in Section “The 
Application Framework”.

Temporal asynchronicity is achieved by es-
tablishing a mean vivification time where agents 
independently “awaken”, momentarily interact 
with their environment, and then return to “sleep”. 
Vivification is defined as the process of triggering 
an agent into examining or interacting with its 
neighboring agents. Each agent exists within its 
own thread of execution and will randomly vary 
its vivification time within predetermined limits. 
The vivification delay variance ratio rmv is defined 
as the ratio between the total variance dv and the 
mean vivification delay time dm . For example, the 
mean vivification time for all agents in the world 
may be 500ms and the variance set at ± 125ms. Over 
the course of a given trial, each agent will examine 
its environment every 500ms on average, but will 
randomly vary this time (between each vivification) 
with a range of 250ms (125ms × 2), centered at 
500ms. The shaded region of Figure 1 graphically 
depicts the range of potential vivification intervals 

Figure 1. The shaded region of this figure depicts the range of the vivification intervals according to the 
vivification variance ratio
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according to the vivification variance ratio. 
We view each cell as a container for a single agent, 

where each agent is capable of two states: active or 
inactive. Since the objective of this experiment is 
to examine the effects of random time variances in 
asynchronously communicating agents, each agent 
is intentionally fixed in space and contained within 
a cell within the world. Each agent is capable of 
communication only with its adjacent neighbors 
by querying the neighbor’s binary state (active or 
inactive). With each agent vivification, the agent 
examines the state of its adjacent neighbors, and 
then sets its own state as discussed below. Fur-
thermore, we define a vivification which results in 
the agent adopting an active state to be successful. 
A vivification which causes the agent to adopt an 
inactive state is said to be unsuccessful. Being 
a standalone application designed to examine a 
specific phenomena in agent/swarm interaction, 
no formally standardized specifications—such as 
FIPA (Intelligent Artificial Agents, 2007)—are 
warranted. Inter-agent communication happens via 
simple direct interrogation of an agent’s immediate 
neighborhood, or by sending simple event notifica-
tions to adjacent neighbors.

As a given simulation progresses, each agent 
tracks its own count of consecutive vivifications that 
cause it to remain in the active state. This represents 
the agent’s age, which is always decoupled from 
“wall-time”1. In the trials which are synchronized to 
a single global clock, agents age one unit per world 
generation. In the trials where we eliminate the 
fixed global clock from the simulation, the concept 
of a world “generation” has no precise meaning. 
In generation-less modes, each agent may update 
its internal state without regard to the activities 
of neighboring agents. With every unsuccessful 
vivification, the age is reset to zero and the agent 
becomes “inactive”. A dedicated monitor thread 
(at the world level) periodically samples all active 
agents in the world grid to compute the average 
ages, population density, etc. 

To aid our understanding of the overall effects 
of temporal autonomy, we first take a brief look at 
the traditional “Conway Model” of the Game of Life. 
After studying the simulation in its traditional sense, 
we can then examine the effects of incrementally 
modifying some of the simulation’s constraints; 

specifically the constraint of synchronous updating. 
Each simulation consists of multiple trials, each with 
32,000 generations or snapshots (depending on the 
trial type). The number of snapshots per trial was 
capped at 32,000 for pragmatic reasons; we wanted 
to graph and analyze the data in a spreadsheet or 
statistical package—some of which are limited to 
2 rows. This number was also sufficiently high to 
clearly observe behavioral differences between 
simulation types. Section “Rule Variations” dis-
cusses all of the simulation types in greater detail. 
The remainder of this section presents a migration 
of simulation types ranging from synchronous to 
generational asynchronous to non-generational.

a  brief o verview of the c onway 
Model

John Conway’s Game of Life is one of the earliest 
and most enduring examples of cellular automata 
(Wolfram, 2002). In the traditional version of this 
simulation, a rectangular two dimensional grid of 
cells is displayed where each cell exists in one of two 
states; “live” or “dead”. The grid is synchronized to 
a master clock where each cell has a specific rule 
applied to it with each successive clock tick. The 
most critical aspect of this simulation is that all 
cells are computed and rendered synchronously (or 
“simultaneously”). In other words, all cells in the 
grid are evaluated and then updated in two separate 
passes. In the first pass, all cells are evaluated and 
their new states are determined. In the second pass, 
the results of the preceding evaluations are applied. 
The following are the rules of the traditional Game 
of Life:

• The Game of Life world consists of a two 
dimensional rectangular grid of cells, each 
with the potential for harboring “life” or “no 
life”. 

• All cells on the life grid are updated simultane-
ously in a series of successive generations. 

• Life is “born” into an empty cell if the cell is 
bordered by exactly 3 live cells. In our revised 
view, an agent becomes “active” when exactly 
3 neighbors are also “active”. 

• Existing life is sustained in any cell containing 
exactly two neighbors. If a cell with exactly 
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two neighbors is empty, it will remain empty. 
In the context of agents, this means that no 
state change is made. 

• Any life within a cell with fewer than two 
neighbors will die. An agent with fewer than 
two neighbors in the “active” state will switch 
to the “inactive” state. 

• Any life within a cell with four or more neigh-
bors will die. An agent with more than three 
neighbors in the “active” state will switch to 
the “inactive” state. 

One of the most important distinguishing char-
acteristics of Conway’s Game of Life is that it is 
purely deterministic (though often unpredictable). 
I.e., identical world states at time t produce identical 
world states at time t+t’. On an infinitely sized grid, 
there are three possible outcomes from any initial 
starting state: 1) All life is extinguished after a finite 
number of generations. 2) Life will expand outward 
from its region (or regions) of origin, ever increasing 
the number of live cells. 3) Life will stabilize into 
a static state or into an oscillating pattern between 
two or more repeating states2. 

Much analysis of the Game of Life and as-
sociated world states has been done since Martin 
Gardner first publicized Conway’s work in Scientific 
American in 1970. William Gosper, one of the more 
prolific researchers on the subject, developed a 
technique known as Hashlife which—as the name 
suggests—uses hash tables to compute resulting 
world states after potentially millions of generations 
(Gosper, 1984). Due to the deterministic nature of 
the traditional simulation, in many cases it is pos-
sible to accelerate the evolution of the world grid 
without having to perform all of the intermediate 
calculations. Those interested in further study of 
the Game of Life in its pure synchronous cellular 
automata form would be well served to explore 
the work of Gosper. Conway himself discusses the 
Game of Life briefly in his book On Numbers and 
Games (Conway, 1976). However, for the bulk of 
our research, we will be looking at the simulation 
from an asynchronous perspective. Removing the 
“synchronous update” constraint effectively turns 
the game into a completely unique simulation.

ru Le varia Tions

As discussed above, several factors make it difficult 
to perform any meaningful analysis of the Game 
of Life as a simulation of agents. The deterministic 
nature of the simulation coupled with a tremendous 
sensitivity to initial conditions (sometimes known 
as the “butterfly effect” (Lorenz, 1979)) makes this 
simulation—in its pure form—unsuitable for agent 
interaction research. This is partially due to the 
fact that even the slightest difference in the initial 
starting conditions may radically affect subsequent 
world states. However, with some relatively simple 
modifications, the Game of Life can be transformed 
into a platform and framework for studying the 
effects of non-deterministic agent interaction. In 
subsequent sections we will examine a series of 
simulations ranging from a traditional cellular 
automata approach to a version where each cell 
behaves autonomously and non-deterministically. 
Though other studies have looked at how overall 
population affects population survival rates (Baray, 
1998), our goal here is to examine population age 
and density effects attributed to alterations of simple 
interaction dynamics.

We start by first looking at the effects of removing 
the synchronous update constraint from the simula-
tion while maintaining the concept of “generations”. 
A “generation” is defined as a finite set of agent 
interactions triggered by a single clock pulse. We 
then move onto “generation-less” interaction mod-
els, where the global “world clock” is removed and 
replaced with temporally autonomous agents. The 
remainder of this chapter details the results of four 
variations of agent interaction on a Game of Life 
board where each agent obeys the life/death rules 
of the traditional model, but the agent vivification 
methodology is altered.

We look at several traversal models which are 
inspired by the basic “Conway Rules” but examine 
the results of loosening the Game of Life restrictions 
in several different ways. In total, four distinct pas-
sive inquiry models are explored; Random Traversal, 
Random Selection, Continuous Interaction, and 
Treaded Interaction. Though each mode will be 
described in greater detail later, a brief description 
of each follows:
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• Random traversal: This is a generation-based 
mode which operates via random selection 
without replacement. N unique agents are vis-
ited in a random order per generation, where N 
is the total number of agents. This is referred 
to as a “traversal” because every agent in the 
world is visited once and only once. 

• Random selection: This also is a genera-
tion-based mode which operates via random 
selection with replacement. N visitations are 
made to randomly selected agents. In this 
model, it can be statistically shown that ap-
proximately  11 e−−  agents will be visited per 
generation. Some agents will be visited more 
than once. 

• Continuous interaction: This is the fist of 
the “generation-less” modes where the simu-
lation runs by continuously selecting agents 
randomly for activation. In place of a “genera-
tion” which neatly subdivides the world into 
discrete time units, a snapshot timer is used. 
This snapshot timer gathers information about 
the world at predetermined intervals. 

• Threaded interaction: In this final mode, 
each agent executes within its own thread. 
Updates are not synchronous or atomic; each 
agent acts autonomously in time, independent 
of the behavior or timing of any other agent 
in the world. 

In the following sections, we examine a series 
of simulations ranging from a traditional cellular 
automata approach to a version where each cell 
behaves autonomously and non-deterministically. In 
these sections, the following designations apply: avgage   
is the mean average age of a population of agents 
for all snapshots in a trial, rmsage   is an accumulated 
RMS value of the average ages,  pdavg is the average 
population density across all snapshots in a trial, and 
pdrms represents the accumulated population density 
RMS value for all sample points in a given trial.  It is 
important to note that with each snapshot, all active 
agent ages are averaged together to determine the 
average population age per snapshot. So, avgage  for 
a trial represents the average of all snapshot aver-
ages, where each snapshot average is determined 
by the ages of all agents in the world at the moment 
of the snapshot.

r andom Traversal Model

The “random traversal model” is the first model 
where we explore the Game of Life in an asyn-
chronous updating environment. Though still 
generational, all agents in this model are activated 
in random order while guaranteeing that all agents 
are activated once—and only once—per genera-
tion. Thus, the algorithm is similar to a basic “card 
dealing” algorithm or “random selection without 
replacement”. This mode is likely akin to a care-
lessly implemented version of the traditional Game 
of Life (i.e. the updates are asynchronous rather than 
synchronous). However, in this case, the design has 
been intentionally chosen to explore the effects of 
agent age in a non-deterministically evaluated world 
that still obeys the same basic inter-agent update 
rules as the Game of Life.

Though the world in the Conway model is purely 
deterministic, it is difficult to predict the ultimate 
behavior of the agents—hence, it is difficult to 
predict any future state of the world after a large 
number of generations without actually iterating 
though all interim generations. Ironically, random 
traversal provides very consistent results regardless 
of initial starting conditions. Each trial began with 
a randomly generated initial population covering 
20% of the world.  After several thousand genera-
tions in each trial, the average agent ages and agent 
population densities converge to results similar to 
those shown in Table 1.  Figure 2a shows the graph 
of all data points gathered for an arbitrarily chosen 
trial summarized in Table 1.

It can be shown (non-trivially) that the maxi-
mum density of a Game of Life world is 50% world 
coverage in a “still-life” configuration (Elkies, 
1998). A “still-life” configuration is any life board 
configuration where live cells exist, but no changes 
occur in successive generations. In other words, if tS
represents the state of the world at time t then t t nS S +=  
for all 0n >  . Considering that the maximum steady 
state density is 50% then the addition of any active 
agents would increase the density beyond 50%, thus 
disrupting the steady state. It is possible to have a 
valid configuration that exceeds a density of 50% 
for a single generation at time t, but this would in 
turn cause more agents to become inactive at time 

1t + . This implies that the average population density 
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(a) R andom T raversal Scatter 
Plot 

(b) R andom Selection Scatter 
Plot 

 

Figure 2. These graphs depict the average age of all active agents at the time of the data collection snapshot 
for 32,000 snapshots for a randomly chosen trial of the given type. The population density can be calculated 
be dividing the number of active agents by 625 – the number of cells in the world.

Table 1. This table represents the summary data from a random subset of trials run in random traversal mode. 
The ages age and population densities pd are representative of the entire population at periodic snapshot 
intervals over the course of an entire trial of 32,000 “generations”.

ageavg agerms pdavg pdrms

6.1795 6.3045 0.4202 0.4206

6.2038 6.3278 0.4209 0.4214

6.2355 6.3408 0.4208 0.4212

6.2563 6.3880 0.4215 0.4218

6.2815 6.4207 0.4208 0.4211

6.2911 6.4144 0.4217 0.4220

6.3545 6.4608 0.4219 0.4221

ˆ
avgage =  0.05856 ˆ

rmsage =  0.05685

ˆ
avgpd =  0.00060 ˆ

rmspd  = 0.00057

will remain below 50% regardless of the order in 
which the agents are chosen for vivification. We have 
yet to develop a full probabilistic model for results 
shown in Table 1. However, we will use this data 
as the baseline for the discussion of the behavior 
of other the agent vivification/activation strategies 
discussed below.

r andom selection Model

Before delving into the first non-generational model, 
we look at another selection model that sequen-
tially operates on agents. This model is essentially 
random selection with replacement. Though the 
Random Selection model is generational, it differs 
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from the Random Traversal model in the sense that 
the random selection is not guaranteed to select 
all agents in the world for vivification during any 
given generation. A random agent is selected for 
vivification N times per generation where N is the 
number of cells (hence agents) in the world. The 
probability of any given agent not being selected 
for vivification within any given generation is 
( )1 1/ NN− . As N approaches ∞, Equation 1 arises. 
Therefore, in the general case, the probability of 
any given agent being activated at least once in a 
generation (and hence has a probability of change) 
is approximately 

11 e−− .

11 1lim 1
N

N
e

N e
−

→∞

≈ ÷− = =∆ ◊
 

   (1)

The average age and population density data 
for this vivification model is shown in Table 2. 
Though this model results in slightly higher popu-
lation densities than the random traversal model, 
the average agent age is approximately double that 
of random selection without replacement—with 
a larger, though still relatively small ˆ. From this 
data we can see that by simply altering the selection 
model—even within a generational model—we can 

introduce significant changes in the dynamics of the 
overall population. The graph of the data presented 
in Table 2 can be seen in Figure 2b.

     
c ontinuous Model

The “continuous” model represents a bridge between 
the concept of an agent vivification model with gen-
erations and a fully multi-threaded implementation. 
Here agents simply update themselves continuously 
in random order. There is no time t where one 
“generation” starts or ends. As the model runs, data 
snapshots are taken at consistent intervals. The delay 
time between agent updates is configurable, but does 
not impact the overall behavior of the model. This 
is due to the fact that all agents update themselves 
atomically, and the delay between atomic updates 
is irrelevant. 

This model is interesting in its own right as it’s 
the only model where static “still-life” structures 
frequently emerge. In other words, if a still-life 
world state S is reached at snapshot time t then 
St=St+n for all 0n >  . It is interesting to note that, 
in the trials run, the highest “still-life” density ever 
achieved was roughly 47%.  Of the 15 trials shown 
in Table 3, all but three reached a still life structure 

Table 2. This table represents the summary data from a random subset of trials run in random selection mode. 
The ages age and population densities pd are representative of the entire population at periodic snapshot 
intervals over the course of an entire trial of 32,000 “generations”. Of the data in table, the mean avgage   and 

avgpd  are 12.9077 and 0.4316 respectively.

avgage rmsage
avgpd rmspd

12.6338 13.0338 0.4322 0.4325

12.6493 13.0923 0.4308 0.4312

12.7075 13.1258 0.4308 0.4312

12.7828 13.2651 0.4309 0.4313

12.9205 13.4276 0.4317 0.4320

13.0278 13.4969 0.4324 0.4327

13.6322 14.2437 0.4325 0.4328

ˆ
avgage = 0.3505 ˆ

rmsage = 0.4168

ˆ
avgpd = 0.0008 ˆ

rmspd = 0.0007
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Table 3. This table summarizes the data from 8 trial runs in the “continuous traversal” model. Only two trials 
lasted 32,000 snapshots before reaching a “still-life” configuration where no further changes in the world 
took place. For the trails that did not reach a full 32,000 snapshots, all other columns of data are calculated 
from the beginning of the trial up to and including the first snapshot that indicated the would was in a “still-
life” state. In a still-life state, agents simply continue to age indefinitely.

Snapshots ageavg agerms pdavg pdrms

3687 12.9362 13.4417 0.4317 0.4320

5338 12.9960 13.4752 0.4325 0.4328

7110 13.0392 13.5628 0.4324 0.4327

10162 12.9818 13.4721 0.4324 0.4326

15168 12.9866 13.4789 0.4323 0.4325

16651 12.9581 13.4411 0.4322 0.4325

32000 12.9736 13.4401 0.4322 0.4325

32000 12.7430 13.1830 0.4321 0.4323

  ˆ
avgage  = 0.0679  ˆ

rmsage  = 0.0844

 ˆ
avgpd  = 0.0002  ˆ

rmspd  = 0.0002

(a) “Still-L ife”  R eached 
 

(b) “Still-L ife”  not R eached 

 

Figure 3. Figure 3a shows the same type of graph for another trial which only ran for 5042 snapshots before 
reaching a still-life state. Figure 3b shows Active Agents versus Average Agent Age cluster graph for a trial 
which ran to completion without reaching a still-life state.  

 

before 32,000 snapshots were captured. The “Snap-
shots” column reflects the number of snapshots 
taken before reaching any potential still-life state. 
If 32,000 snapshots were reached, this indicates 

that no still-life pattern emerged within the trial 
run. In no trial did the world ever “collapse” to a 
population of zero. The cluster graphs in Figure 3 
show all data points from two separate trials, one 
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that reached “still-life” early and one that remained 
dynamic until the end of the trial.

Threaded Model

In the threaded model each agent is controlled by 
its own thread which activates the agent at vary-
ing non-deterministic time intervals. Since every 
agent acts autonomously, updates are not atomic. In 
other words, adjacent agents can update themselves 
simultaneously. This intentional design decision 
attempts to replicate real-world agent interaction 

dynamics as closely as possible. For example, since 
there exists a finite amount of time between an agent 
experiencing its environment and then reacting to 
that environment, reactions may not always reflect 
the “current” state of an environment.

All agents in the world run with a fixed mean 
vivification interval within a variable range. For 
example, the mean vivification interval for a given 
trial could be fixed at 500ms with a random vari-
ance of ± 250ms. This would represent a vivification 
variance ratio of 1:1. Trials were conducted with 
a mean vivification delay time dm of 500ms with 
delay variances dv chosen to produce dm/dv ratios 

Table 4. This table is a summary of average ageavg, agerms, pdavg, and pdrms gathered from approximately 50 
unique trials sorted and grouped by rmv.

rmv ageavg agerms pdavg pdrms

0.00 4.3575 4.4179 0.4065 0.4070

0.25 4.4734 4.5331 0.4082 0.4088

0.50 4.7333 4.7913 0.4115 0.4119

0.75 5.0794 5.1618 0.4148 0.4153

1.00 5.4556 5.5459 0.4174 0.4178

1.25 5.9317 6.0522 0.4197 0.4201

1.50 6.4028 6.5470 0.4215 0.4219

1.75 6.9438 7.1373 0.4227 0.4231

2.00 7.3821 7.5556 0.4231 0.4235

Figure 4. These graphs depict the vivification variance ratio versus average agent age and density as pre-
sented in Table 4.

(a) V ariance R atio vs. A verage A gent A ge (b) V ariance R atio vs. A verage A gent Density 
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the ages and densities of the agent populations as 
the vivification variance ratios increase. Figure 5 
illustrates a progression of age cluster graphs of 
rmv from 0.25 to 1.00 and finally to 2.00. As can 
be seen, the higher the value of rmv, the more 
snapshot points that extend into the higher regions 
of the graph. This evidence indicates that higher 
degrees of timing variability in multi-threaded agent 
interaction produce greater age variability—and 
ultimately higher average survival rates—for the 
population as a whole. The graph in Figure 5d re-
flects the same age data as presented in Figure 5b, 
but with respect to time as opposed to population 
density. From this last graph, it can be seen that the 

rmv ranging from 0.0 to 2.0, as summarized in 
Table 4. To verify our initial hypothesis that rmv is 
the relevant independent variable, several prelimi-
nary trials were conducted with dm ranging from 
250ms to 1000ms while adjusting dv holding rmv 
constant. These adjustments produced no statisti-
cally significant deviation in our results, so all of 
our reported trials are run with a dm of 500ms for 
consistency. Table 4 displays the mean values of 
data gathered from approximately 50 unique trials 
grouped by rmv. 

 Figures 4a and 4b illustrate rmv versus both 
the agent ages and population densities shown in 
Table 4. Both graphs depict subtle S-curves for both 

Figure 5.  Figures 5a-5c illustrate a progression of cluster graphs from Rmv  of 0.25 to 1.00 and finally to 
2.00. Figure 5d is simply a view of average agent age versus time taken from the same trial as shown in 
Figure 5b. Also notice the spikes in Figure 5d; these spikes directly correspond to the highest—and more 
isolated—points in Figure 5b.

(a) mvR  0.25 (b) mvR 1.00 

(c) mvR  2.00 (d) Average age vs. Progress 
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average population age maintained the same level 
of variability throughout the trial.

c onc Lusion

In this chapter we focused our attention on a Game 
of Life inspired simulation of agents.  In all of our 
simulations, the agents were spatially embedded 
within individual cells in a world represented by a 
two dimensional grid. Furthermore, each agent was 
only capable of passively examining its immediate 
neighborhood and then potentially adopting a new 
state based on the observed states of its neighbors.  
A series of experiments which gradually decoupled 
the agents for a globally coordinated world clock 
ultimately resulted in each agent having complete 
temporal autonomy.  By varying the degree of flex-
ibility of agent’s internal timing, we were able to 
observe the pronounced effect that timing variability 
has on the overall population dynamics.

Given this relatively simple model of interac-
tion, it is clear that the phenomena exhibited by the 
introduction of temporal autonomy warrants further 
study.  Thus far, we have shown the local variably 
in periodicity of passive interrogations of the world 
state produces a global population effect.  Though we 
suspect that a probabilistic model of agent behavior 
can be produced, our experimental methodologies 
are currently focused on an empirical approach. The 
next chapter in this two part series—A Simulation 
of Temporally Variant Agent Interaction via Belief 
Promulgation – extends the simulations undertaken 
in this study and adds the critical component of 
active agent communication.  In the next study 
we give the agents the ability to actively influence 
neighboring agents by conveying simple belief rep-
resentations to the neighborhood. As in this chapter, 
we will demonstrate that temporal variance plays a 
significant role in population dynamics.

r eferences

Baray, C. (1998). Effects of population size upon 
emergent group behavior. Complexity Interna-
tional, 06. 

Berlekamp, E. R., Conway, J. H., & Guy, R. K. 
(1982). Winning ways for your mathematical plays 
(Vol. 2). Academic Press. 

Blok, H. J., & Bergersen, B. (1998, Apr). Synchro-
nous vs. asynchronous updating in the Game of 
Life. Dept. of Physics and Astronomy, University of 
British Columbia, B.C., Canada, V6T 1Z1: . 

Bordini, R., Braubach, L., Dastani, M., Seghrouchni, 
A. E. F., Gomez-Sanz, J., Leite, J., . (2006). A survey 
of programming languages and platforms for multi-
agent systems. In Informatica 30 (pp. 33–44). 

Conover, A., & Trajkovski, G. (2007, Nov 9–11). 
Effects of temporally asynchronous interaction on 
simple multi-agent behavior. In Emergent agents 
and socialities: Social and organizational aspects 
of intelligence. technical report fs-07-04 (pp. 
34–41). The American Association for Artificial 
Intelligence, 445 Burgess Drive, Menlo Park, CA, 
94025, USA: AAAI Press. 

Conway, J. H. (1976). On numbers and games. New 
York: Academic Press. 

Elkies, N. D. (1998). Voronoi’s impact on modern 
science. In (Vol. 1, pp. 228–253). Institute of Math., 
Kyiv. 

Ferber, J. (1999). Multi-agent systems: An introduc-
tion to distributed artificial intelligence. Addison-
Wesley Professional. 

Fonseca, S. P., Griss, M. L., & Letsinger, R. (2002, 
Mar 22). Agent behavior architectures – A MAS 
framework comparison (Tech. Rep. No. HPL-2001-
332). : Hewlett Packard Laboratories. 

Gardner, M. (1970, Oct). Mathematical games - the 
fantastic combinations of John Conway’s new soli-
taire game, Life. Scientific American, 120–123. 

Gosper, W. (1984). Exploiting regularities in large 
cellular spaces. Physica-D, 10, 75–80. 

Hautamäki, J. (1997). A survey of frameworks (Tech. 
Rep. No. A-1997-3). : Department of Computer Sci-
ence, University of Tampere. 

Intelligent Artificial Agents, T. F. for. (2007, Nov). 
FIPA specifications. 



  ��

A Simulation of Temporally Variant Agent Interaction via Passive Inquiry

Lorenz, E. N. (1979). Predictability: Does the flap of 
a butterfly’s wings in brazil set off a tornado in texas?  
(Talk given at the annual meeting of the AAAS 
December 29, 1979 in Washington). : American 
Association for the Advancement of Science. 

Mitchell, M., Crutchfield, J. P., & Hraber, P. T. (1994). 
Evolving cellular automata to perform computa-
tions: Mechanisms and impediments. Physica D, 
75(1-3), 361–391. 

Schönfisch, B., & Roos, A. M. de. (1999). Syn-
chronous and asynchronous updating in cellular 
automata. Biosystems, 51(3), 123–143. 

Varde, A. S., Takahashi, M., Rundensteiner, E. A., 
Ward, M. O., Maniruzzaman, M., & Jr., R. D. S. 
(2004). Apriori algorithm and Game-of-Life for 
predictive analysis in materials science. 

Wolfram, S. (1994). Cellular automata and complex-
ity. Reading, Mass.: Addison-Wesley. 

Wolfram, S. (2002). A new kind of science. Cham-
paign, IL: Wolfram Media. 

Wooldridge, M. (2002). Introduction to multiagent 
systems. John Wiley & Sons. 

a ddi Tiona L r eading 

Bersini, H., & Detours, V. (1994, Jul). Asynchrony 
induces stability in cellular automata based models. 
In R. A. Brooks & P. Maes (Eds.), Proceedings of 
the 4th international workshop on the synthesis and 
simulation of living systems (artificial life iv) (pp. 
382–387). Cambridge, MA, USA: MIT Press. 

Bonabeau, E., & Théraulaz, G. (2000, Mar). Swarm 
smarts. Scientific American, 282(3), 72–79. 

Boyd, J. E., Hushlak, G., & Jacob, C. J. (2004). 
Swarmart: Interactive art from swarm intelligence. 
In H. Schulzrinne, N. Dimitrova, A. Sasse, S. 
B. Moon, & R. Lienhart (Eds.), Proceedings of the 
12th ACM international conference on multime-
dia, october 10-16, 2004, new york, NY, USA (pp. 
628–635). ACM. 

Dennett, D. C. (1978). Brainstorms. Cambridge, 
MA: Bradford Books. 

Findler, N. V., & Malyankar, R. M. (1995). Emergent 
behaviour in societies of heterogeneous, interact-
ing agents: Alliances and norms. In N. Gilbert & 
R. Conte (Eds.), Artificial societies: The computer 
simulation of social life (pp. 212–237). UCL Press: 
London. 

Foner, L. N. (1995). Clustering and information shar-
ing in an ecology of cooperating agents. the AAAI 
Spring Workshop on Information Gathering from 
Distributed, Heterogeneous Environments. 

Franklin, S., & Graesser, A. (1996). Is it an agent, 
or just a program? : A taxonomy for autonomous 
agents. In Intelligent agents III. agent theories, 
architectures and languages (ATAL’96) (Vol. 1193). 
Berlin, Germany: Springer-Verlag. 

Gaston, M. E., & desJardins, M. (2005). Agent-
organized networks for dynamic team formation. 
In F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. 
P. Singh, & M. Wooldridge (Eds.), 4rd international 
joint conference on autonomous agents and mul-
tiagent systems (AAMAS 2005), july 25-29, 2005, 
utrecht, the netherlands (pp. 230–237). ACM. 

Geire, R. N., & Moffatt, B. (2003, Apr). Distributed 
cognition: Where the cognitive and the social merge. 
Social Studies of Science, 33(2), 1–10. 

Guessoum, Z. (2004). Adaptive agents and multia-
gent systems. IEEE Distributed Systems Online, 
5(7). 

Gulyás, L., & Kampis, G. (2006, Oct 12–15). Emer-
gence as a relational property in societies of agents. 
In Interaction and emergent phenomena in societies 
of agents (pp. 1–7). The American Association for 
Artificial Intelligence, 445 Burgess Drive, Menlo 
Park, CA, 94025, USA: AAAI Press. 

Hofstadter, D. R. (1979). Gödel, escher, bach: An 
eternal golden braid. New York: Vintage Books. 

Holland, J. H. (1998). Emergence: From chaos to 
order. J. Artificial Societies and Social Simula-
tion, 1(4). 

Huget, MP. (Ed.).  (2003). Communication in mul-
tiagent systems: Agent communication languages 
and conversation policies (lecture notes in computer 
science / lecture notes in artificial intelligence). 
Springer. 



��  

A Simulation of Temporally Variant Agent Interaction via Passive Inquiry

Juan, T., & Sterling, L. (2003). A meta-model for 
intelligent adaptive multi-agent systems in open 
environments. In Aamas (pp. 1024–1025). ACM. 

Jung, C. (1999). Emergent mental attitudes in lay-
ered agents. Lecture Notes in Computer Science, 
1555, 195–? ?  

Kearney, P. (1994). Experiments in multi-agent 
dynamics. In C. Castelfranchi & E. Werner (Eds.), 
Artificial social systems — selected papers from the 
fourth european workshop on modelling autono-
mous agents in a multi-agent world, maamaw-92 
(lnai volume 830) (pp. 24–40). Springer-Verlag: 
Heidelberg, Germany. (see conclusions) 

Kennedy, J., Eberhart, R. C., & Shi, Y. (2001). Swarm 
intelligence. San Francisco: Morgan Kaufman. 

Lam, D. N., & Barber, K. S. (2004). Verifying and 
explaining agent behavior in an implemented agent 
system. In Aamas (pp. 1226–1227). IEEE Computer 
Society. 

Lauer, M. R., Mitchem, P. A., & Gagliano, R. A. 
(1995). Resource optimization and self interest: 
Variations on the game of life. ss, 00, 136. 

Le Strugeon, E., Mandiau, R., & Libert, G. (1994). 
Towards a dynamic multi-agent organization. Lec-
ture Notes in Computer Science, 869, 203–? ?  

Lerman, K. (2004). A model of adaptation in col-
laborative multi-agent systems. Adaptive Behavior, 
12(3-4), 187–197. 

Lewin, R. (1999). Complexity: Life at the edge of 
chaos. University of Chicago Press. 

Lu, Q., Korniss, G., & Szymanski, B. K. (2006, 
Oct 12–15). Naming games in spatially-embed-
ded random networks and emergent phenomena 
in societies of agents. In Interaction and emergent 
phenomena in societies of agents (pp. 148–155). The 
American Association for Artificial Intelligence, 
445 Burgess Drive, Menlo Park, CA, 94025, USA: 
AAAI Press. 

Lynch, A. (1999). Thought contagion: How belief 
spreads through society. J. Artificial Societies and 
Social Simulation, 2(2). 

Marcenac, P. (1998). Modeling multiagent systems 
as self-organized critical systems. In Hicss (5) (pp. 
86–95). 

Minsky, M. (1985). Society of mind. Simon & 
Schuster. Paperback. 

Parsons, S., Gymtrasiewicz, P., & Wooldridge, M. 
(Eds.).  (2002). Game theory and decision theory in 
agent-based systems (multiagent systems, artificial 
societies, and simulated organizations) (hardcover). 
Springer. Hardcover. 

Parunak, H. V. D., Brueckner, S., Sauter, J. A., & 
Matthews, R. S. (2005). Global convergence of 
local agent behaviors. In F. Dignum, V. Dignum, 
S. Koenig, S. Kraus, M. P. Singh, & M. Wooldridge 
(Eds.), 4rd international joint conference on au-
tonomous agents and multiagent systems (AAMAS 
2005), july 25-29, 2005, utrecht, the netherlands 
(pp. 305–312). ACM. 

Parunak, H. V. D., Brueckner, S., & Savit, R. (2004). 
Universality in multi-agent systems. In Aamas (pp. 
930–937). IEEE Computer Society. 

Privosnik, M., & Marolt, M. (2001, Sep1–6). The 
development of emergent properties in massive 
multi-agent systems. In Wseas. Malta: WSEAS. 

Schilling, R. (2006, Oct 12–15). A project to develop 
a distributed, multi-agent communication architec-
ture using message feedback. In Interaction and 
emergent phenomena in societies of agents (pp. 
96–103). The American Association for Artificial 
Intelligence, 445 Burgess Drive, Menlo Park, CA, 
94025, USA: AAAI Press. 

Servat, D., Perrier, E., Treuil, JP., & Drogoul, A. 
(1998, Jul). When agents emerge from agents: 
Introducing multi-scale viewpoints in multi-agent 
simulations. In J. S. Sichman, R. Conte, & N. Gil-
bert (Eds.), Proceedings of the 1st international 
workshop on multi-agent systems and agent-based 
simulation (MABS-98) (Vol. 1534, pp. 183–198). 
Berlin: Springer. 

Simon Parsons, Piotr Gymtrasiewicz, M. W. (Ed.).  
(2002). Game theory and decision theory in agent-
based systems (multiagent systems, artificial societ-
ies, and simulated organizations). Springer. 



  ��

A Simulation of Temporally Variant Agent Interaction via Passive Inquiry

Smith, A. E. (2000). Swarm intelligence: From natu-
ral to artificial systems. IEEE Trans. Evolutionary 
Computation, 4(2), 192–193. 

Sørensen, M. H. (2003). Interactivism at work 
toward design heuristics for ambient intelligence. 
(extended abstract) 

Tarasewich, P., & McMullen, P. R. (2002). Swarm 
intelligence: Power in numbers. Commun. ACM, 
45(8), 62–67. 

Thrèaulaz, G. (2001). Swarm intelligence. San 
Francisco: Morgan Kaufman. 

Trajkovski, G. P. (2001). An imitation-based ap-
proach to modeling homogeneous agents societies. 
Lecture Notes in Computer Science, 2258, 246–? 
?  

Trappl, R., Luck, M., Marik, M., & Stepankova, O. 
(Eds.).  (2001). Multi-agent systems and applica-
tions. Springer. 

Wavish, P. (1991, Aug). Exploiting emergent behav-
iour in multi-agent systems. In Proc. of the third 
european workshop on modelling autonomous 
agents in a multi-agent world (pp. 297–310). Kai-
serslautern, Germany: North-Holland. 

Weiss, G. (Ed.).  (2000). Multiagent systems: A 
modern approach to distributed artificial intel-
ligence. The MIT Press. 

Wolfram, S. (1994). Cellular automata and complex-
ity. Reading, Mass.: Addison-Wesley. 

Wolfram, S. (2002). A new kind of science. Cham-
paign, IL: Wolfram Media. 

endno Tes

1 To ease some visualization and rendering 
implementation details, the agent age was 
capped at 64 units. Though infrequent, it is 
possible for an agent to age beyond this limit. 
In this case, the age stops incrementing sbut 
the agent’s state is otherwise preserved and 
continues to follow all other rules. The overall 
effect is negligible since we are only looking 
at relative differences between trials.

2 “Glider-like” patterns also fall into this cat-
egory since the total number of live cells does 
not continue to grow; only the relative position 
of the cells within the world change.
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This chapter presents a generalized messaging infrastructure that can be used for distributed agent systems. 
The principle of agent feedback messaging, upon which the infrastructure is built, is presented with examples. 
Agent feedback messaging allows agents to function as an intelligent agent ecosystem that spans multi-node 
computing clusters and facilitates agent communications in a way that mimics naturally occurring biofeed-
back mechanisms. An implementation of agent feedback messaging, AFM, is also described. Biosimulation 
and a solution to the travelling salesman problem are also presented as examples.

inTroduc Tion
 

Developing an agent communicatons infrastructure 
that supports scalable multi agent systems will help 
accelerate the adoption of intelligent agents within 
AI specializations and industry alike. Unfortunately, 
however, relatively little work has been done directly 
on agent communications infrastructures compared 
to other challenges and opportunities in agent design. 
There is a large body of literature documenting the 
application of intellligent agents to solve higher level 
problems such as knowledge representation (Picard 
& Gleizes, 2002), beleivability (Bates, 1997), and 

distributed content management (Zhang & Lesser, 
2004). Multi-agent systems applied to business prob-
lems such as supply chain management (Hillersberg 
et al, 2004) are also fairly common. Approaches to 
agent communications and agent organization based 
on newer network architectures such as wireless 
networks like Shah, Nixon and Ferguson propose 
(Shah, Nixon, & Ferguson, 2004) are less commonly 
found. However, in most of the literature researched 
for this chapter, the agent systems discussed were 
developed toward a narrowly focused problem. And 
very little attention was paid toward developing 
a general messaging framework that utilizes the 
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capabilities of networking technologies developed 
after the year 2000. Finally, no literature is presently 
found that makes attempts to simultaneously deal 
with higher level knowledge representation, agent 
communication, agent organization, and practical 
modeling of real world processes. Agent feedback 
messaging aims to provide a single, multi-agent 
architecture and communications framework that 
gives agent developers the means to deal with all 
of these issues. The resulting multi-agent architec-
ture, agent feedback messaging, meets this goal by 
separating intelligent agents from their message 
communication infrastructure. 

Agent Feedback Messaging achieves scalability 
in multi agent systems design by functionally sepa-
rating intelligent agents from their communications 
infrastructure at the application level. The task 
of agent communications is relegated to a com-
munications infrastructure. The communications 
infrastructure runs in its own thread space at the 
application layer of the network protocol. Agents 
are not allowed to control other agents or invoke 
their methods directly. Each agent resides in its own 
thread space and communicates with other agents by 
interacting with the communications infrastructure. 
Agents also listen for responses (feedback) delivered 
by other agents. Hence, the name of the architecture, 
agent feedback messaging

How the communication infrastructure sends 
messages between hosts is an implementation level 
detail. The example implementation presented in 
this chapter uses the Internet Inter-Orb Protocol 
(IIOP) to transmit messages between hosts. The 
federation design pattern for agents catalogued by 
Hayden et al (Hayden, Carrick, & Yang, 1999) is the 
closest example of a similar approach, however in 
implementation described below, federation is used 
only to transmit messages between multiple hosts 
running agents, and not between agents directly.

Agent feedback messaging is an effective way to 
develop arbitrary ecosystems of cooperating agents 
and enforces message delivery characteristics that: a) 
eliminate dependencies between agents; b) removes 
the need to include network code in agents such as 
sockets or datagram programming; and, c) allows 
the physical layer of the network to change without 
affecting agent functionality.

This chapter will provde you with an under-
standing of agent feedback messaging and provide 

examples of its usage. An implementation is also 
presented.

a gen T c o MMunica Tions and 
The princip Le of f eedback

Agent feedback messaging is an approach to agent 
communications that relies on a message transport 
mechanism which functions independently from the 
activities of the agents themselves. The idea, in a 
nutshell, is to remove the burden of communications 
management from the agents and relegate it to a reli-
able message delivery subsystem. At the same time, 
the message delivery subsystem is built to guarantee 
that messages between agents are delivered accord-
ing to a well defined set of rules, so that message 
delivery is both reliable and predictable. 

Another key characteristic of agent feedback 
messaging is the way it allows agent designers to 
embody naturally occuring and man made processes. 
This is done by allowing agent developers to break 
down processes into communities of agents with 
varying agent granularity. The phases and steps 
of a given process can also be changed around at 
will by simply telling each agent what messages it 
should respond to and what messages it needs to 
generate. Even the ordering of code execution in a 
program can be rearranged by dispursing a large 
program among multiple agents. 

Agent feedback messaging also allows agents to 
appear and disappear at will throughout the agent 
community without requiring the multi agent sys-
tem to be stopped and restarted. That is, an agent 
can appear and dissappear in the system during 
runtime without disrupting the functioning of the 
other agents. And finally, agents are able to operate 
as both service providers and clients to other agents 
simultaneously.

Agent Feedback Messaging was inspired by 
the kinds of “communication” that occurs between 
organs of a human through the cardiovascular sys-
tem. Consequently, agent feedback messaging can 
be made clearer if we compare the approach to the 
cardiovascular system. The cardiovascular system 
can be seen as the backbone of a large, complex 
chemical communications infrastructure. It trans-
ports nutrients, minerals and oxygn around the body 
which can be seen as biological messages.  
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There are several observations about the cardio-
vascular system we can make that will be useful 
in our disucssion about agent feedabck messaging. 
As an organ of the body need nutrients (messages) 
from the blood stream, it extracts them from the 
part of the blood stream that happens to be passing 
by at any given moment. Likewise, if a particuar 
organ needs to send any message to another organ, 
it simply deposits it into the same blood stream. The 
cardiovascular system itself:

• Is a closed circular communications system
• Exhibits autonomy: it relies on its own mecha-

nism for managing the speed and direction of 
messages (the heart).

• Delivers ‘’messages’’ to all parts of the 
body

• Does not control which organs receive any 
particular message

• Circulates messages at its own rate.
• Allows organs of the body to “communicate” 

asynchronously.
• Does not actively manage communications 

between organs, and does not allow point-to-
point nor synchronous messaging.

Likewise, organs can be compared to intelligent 
agents. Each organ:

• Is attached at only one unique point to the 
cardiovascular system.

• Communicates with all other organs in the 
body by inserting messages into the blood 
stream only at its point of attachment.

• Is only allowed to extract messages in finite 
amounts at its point of attachment.

• Does not diectly control the speed at which 
messages are transported (the heart does 
that).

• Utilizes messages on its own time once it 
receives them.

• Can only respond, or effect a change in the 
larger body by reading messages that pass by 
or by inserting new messages into the blood 
stream.

• Is exposed to all messages inserted upstream 
even if the message was not meant for that 
particular organ.

• Uses the cardiovascular system to communi-
cate with other organs asyncoronously

And to make our comparison complete, the 
messages (cells and nutrients):

• Can contain resources that are added to or 
used up by organs (e.g. absorption of oxygen 
in blood cells).

• Can contain resources that are only partially 
depleted over time.

• Are not limited to a specific type.
• Generally circulate through the cardiovascu-

lar system at one speed. (e.g. a blood cell in 
the heart does not accelerate to pass another 
moving blood cell that is in the leg)

When organs interact with each other by using 
the messaging capabilities provided by the cardio-
vascular system, a state of homeostasis, or balance, is 
achieved in the overall body even though the organs 
are limited to communicating through a messaging 
infrastructure they have no control over. Likewise, 
agents using agent feedback messaging are able to 
achieve a similar state of balance in a community 
of agents of arbitrary size; a sort of system wide 
homeostasis.

Table 1 compares the concepts of a cardiovas-
cular system with software concepts that are useful 
to an implementation of agent feedback messaging 
infrastructure.

The project to develop agent feedback messaging 
revealed that certain rules would need to be applied 
to the agent communications layer. The rules that 
have been settled upon, as of this writing, allow the 
agent developer to make some concrete assumptions 
about how messages are delivered:

1. An agent is never aware of which agents will 
receive the messages it sends

2. An agent is not required to respond to every 
message message presented to it.

3. Only the agent that creates a message has the 
right to destroy it.

4. Any message an agent creates will be delivered 
to all other agents in the system before being 
returned to it’s creator.

5. A message is presented to all agents in suc-
cession, rather than being broadcast.
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6. For a given set of active agents the order of 
agents the message is presented to does not 
change.

7. For a given agent in a set of active agents, the 
first agent to receive its messages is unique.

8. A message can be assigned read/write poli-
cies, so that agents can add or modify message 
information as it passes by.

9. The order in which messages are inserted 
into a stream relative to other messages is 
maintained.

10. The order in which a given agent sees messages 
reflects the relative message order in which it 
was inserted into the message stream.

11. The relative rate of travel between messages 
in the message stream is zero - messages 
always travel in the message stream at the 
same speed. 

12. The amount of time it takes for a message 
to circulate to all agents is independent of 
the amount of time it takes for any agent to 
process the message.

Any agent messaging system that imposes these 
rules on message delivery can also be said to be an 
agent feedback messaging system. 

The benefit of imposing these rules on agent com-
munication can be seen in the design of the agents 
themselves and is discussed in detail below. From a 
systems design standpoint, a community of agents 
can be built up in a part and parcel fashion. Specific 
communication paths do not need to be hard coded 
into agent code, which allows the design work to be 
broken down into manageable sub-elements. 

The communications infrastructure underlying 
agent feedback messaging can be implemented 
as a software solution, hardware solution, or as a 
combination of both. The present implementation 
of agent feedback messaging, discussed below, is 
built with in Java with an API that can be used by 
developers who want to build their own implementa-
tions. The resulting communications infrastructure 
is extremely amenable to the development of agent 
communities of an arbitrary number of agents and 
promotes the reuse of agent messages for multiple 
purposes. 

Table 1. Comparison between the cardiovascular system and agent feedback messaging
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 Figure 1 provides a graphical representation 
of agent feedback messaging. A circular message 
stream is the central feature of agent feedback 
messaging. When an agent inserts a message into 
the message stream it is attempting to incite other 
agents to perform some activity and, in turn, input 
their own messages (feedback) into the message 
stream. The feedback messages are then picked up 
by the agent that sent the first message. The number 
of feedback messages created in response to a given 
message is up to the agent developer. Agent feedback 
messaging does not require feedback messages to 
be generated in response to any message. 

benefi Ts of The a pproach
 

The approach to communications taken on the agent 
feedback messaging project is a marked departure 
from the traditional agent point-to-point communi-
cations. The departure was necessary to avoid prob-
lems associated with large scale agent design that 
are well documented. Becker et al (Becker, Lesser, 
& Zilberstein 2005) make it clear that when agents 
are responsible for delivery of messages directly, the 
resulting myopic communication designs ultimately 
sacrafice overall system performance. Even when 
highly scalable federated agent communication 
approaches using remote method invocation (RMI) 
are used as in the Cougaar project (Cerys, Rozga, 

& Berliner, 2006), the programmer must still man-
age the complexities of determining which agents 
communicate with other agents and when. Hayden 
et al (Hayden, Carrick, & Yang, 1999) properly as-
sociate these issues with two desirable features of 
agent communication systems: a) allowing agents 
to serve as both client and service-provider, and 
consequently b) allowing agents to use a complete 
agent network, a communication network between 
agents that forms a complete graph.

 Agent feedback messaging achieves this feat 
by completely removing the burden of message ad-
dressing and delivery from the sending agent. The 
only way an agent is allowed to communicate with 
other agents is by inserting messages blindly into a 
constantly moving circular message flow, or stream. 
No destination agent is specified by the sender at 
any time. It is the responsibility of the receiving 
agent to detect messages it needs in the message 
stream and process them. This limits an agent’s 
communication tasks considerably and removes the 
need to hard-code the destination of a message. 

 Every agent is assigned its own unique point 
of interaction with the message stream from which 
it can read messages from other agents and insert 
new ones. The circular message stream, operated 
by its own set of threads, retrieves new messages 
from all agents simultaneously. Each message is 
delivered by the message stream to all other agents 
in succession and is eventually returned to the 

Figure 1. Agent feedback messaging architecture
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The basic interaction that occurs between all 
agents is depicted in Figure 2.

r educing a gent c oding

In terms of writing agent code, the overall effect 
of the approach described is a dramatic reduction 
in the coding required of the agent developer. In a 
system where any agent is allowed to communicate 
with any other agent, the possible communication 
paths form a complete directed graph, and can be 
expressed as

p = n (n - 1)

where n is the number of agents in the system and p 
are the possible number of communication paths. If 
an agent is required to obtain a handle or reference 
to another agent in order to send a messge, then 
the possible number of lines of code that must be 
written for all agents to send one message can be 
expressed as 

c = lrn(n - 1)

where 
 

c is the total lines of code for all agents. 

l is the number of lines of code required for an agent 
to send one message 

r is the number of lines of code requred to detect 
and read the message.

n is the number of agents in the system.

When agent developers are not required to 
hard code message destinations into the agents 
themselves, the overall effect is that the number 
of lines written for all agents to send one message 
can be limited to

c = lnr

The time for a given response to be returned 
to an agent is undefined, and is viewed as mostly 
a hardware performance issue. However, the rules 

(a) Agent a dispatches a message

(b) Agent b receives the message and 
dispatches a response (feedback)

(c) Agent a receives its original message and destroys it. It 
then receives the response from agent b

(d) Agent b destroys the
response message it created

Figure 2. Basic agent interaction

originating agent. As each agent is presented with 
a message it determines if the message applies to 
it before the message stream sends the message to 
the next agent.



�0  

Agent Feedback Messaging

 The designer of an agent determines what 
messages the agent must respond to. To handle the 
case where an agent is required to indicate it has 
no response to a message, the agent can a) create 
and send another new “no response” message back, 
or b) add the “no response” data to the message 
it received, or c) do nothing. The third option, do 
nothing, is a valid “no response” action because 
this allows for intentionally delayed responses to 
occur.

dependency  issues and Their 
Manage Men T

 
Before discussing an implementation of agent 
feedback messaging, it will be helpful to describe 
how agent feedback messaging can help developers 
address dependencies in their programs. Although 
biological simulation was the original intended use 
for agent feedback messaging, I have also found 
that it can be used as a general solution to work 
around dependencies introduced into programs and 
make code more managable. As Horling (Horling 
et al, 2006) illustrates, the task of managing the 
code behind agent behavior and communication 
can increase with the number of distributed au-
tonomous agents involved. Therefore, eliminating 
dependencies between agents such those that occur 
when programming logic spans agent boundaries 
has been a goal of feedback messaging project from 
the beginnging.

Many of the issues surrounding managabil-
ity appear to be related to the need to ultimately 
execute the code behind agents and communicate 
data between them in a linear fashion, even in the 
case of instruction pipelining and multi-processor 
architectures. Parallelism cannot eliminate the fact 
that on a given processor only one instruction can be 
run at a time. The best one can hope for is to mitigate 
the limitations this imposes on agent design.

 From the software design standpoint, this could 
be said to be a side-effect of the Turing model which 
imposes linear processing. Unfortunately, however 
applications reducable to a Turing Model do not al-
ways map well to higher level processes (biological 
or human defined) that occur in a non-linear fashion. 
The Turing Model necessitates that one piece (or 
block) of code be evaluated before others. 

imposed on the message delivery infrastructure 
guarantee that messages and their associated re-
sponse messages (feedback) are always delivered 
in the proper order: a message’s delivery always 
preceeds the delivery of feedback messages. It is 
therefore possible to guarantee that message/feed-
back delivery occurs in a prescribed order under a 
simulated timeline.

Modifying Messages w hile in Transit

Agent feedback messaging also allows for the 
special case of a message to be modified directly 
as it is passed from agent to agent. Therefore, all 
messages have a read/write policy. This is possible 
because the only time a message is destroyed is 
when the sending agent determines that it should 
be, and only after a message has been delivered to 
all other agents at least once. 

 Some messages contain data that can be only 
read (read only policy), while others allow agents to 
add or change information (read/write policy), and 
yet other messages require agents to add information 
(write required policy). Write required policies are 
used to solicit information from agents that can be 
supplied immediately, such as the agent’s name or the 
results of a mathematical operation. The read/write 
policy of a message is determined by the developer 
of the agent that sends the message.

 While other agent communication infrastruc-
tures emphasize the delivery of messages between 
agents in a broadcast fashion (multicast delivery) 
(Shah, Nixon, & Ferguson, 2004), agent feedback 
messaging delivers each message to agents one 
agent at a time (linear delivery). Both approaches 
have advantages, but I have found that when the 
combined processing time attributable to message 
delivery itself, message filtering (deciding if an 
agent should get a message), message sharing (sema-
phore locking/unlocking), and response processing 
(feedback) are taken into account, linear delivery 
provides advantages that outweigh any percieved 
loss of performance over multicast delivery. Further-
more, because agent feedback messaging requires 
each agent to be executed in its own thread space 
and share data through inter-thread shared memory 
structures, the complexity associated with managing 
method call stacks for a large number of agents is 
reduced.
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In general, when one block of code is required 
to be executed before another block of code we can 
say that the execution of the second block of code 
is dependent upon the first block. We can call this 
a dependency.

There are many reasons why dependencies ex-
ist, but they can greatly impact how computer code 
itself is written and maintained, particularly in 
distributed multi agent systems. Dependencies can 
be imposed on a program by the the language it is 
written in as well as the architecture it is executed 
on, even if the dependency is not required by the 
programmer. An example would be a single proces-
sor machine that can only execute one instruction 
at a time. Dependencies can also be determined 
by the higher-level design of the application such 
as the system’s functional policies (e.g. a security 
requirement), a business process the application must 
support, or a biological processes the application 
might simulate. 

For the purposes of discussion it is helpful to 
categorize dependencies into three general cat-
egories. These categories, explained below are 
code dependencies, temporal dependencies, and 
process dependencies. Whereas process dependen-
cies describe the timing of code execution across 
application boundaries (in the macro-application 
sense), code and temporal dependencies describe the 
timing of code execution within a single application 
(in the micro-application sense).

c ode dependencies

Code dependencies describe the order of execu-
tion of code which can be attributed to the design 
of a computer language or underlying hardware. 
Programmers always rely on code dependencies 
to make sure a program executes its instructions 
in a prescribed order. Code dependencies also exist 
whenever the order of execution of machine level 
instructions is enforced simply because the lan-
guage does not include syntatic features that allow 
parallel execution of routines. Parallel architectures 
and pipelining in processors helps alleviate this 
problem at the machine level, but introducing code 
dependencies even when they are not necessary 
is unavoidable in many cases. Giving control of 
code dependencies to the developer however allows 

code blocks to be spread out over multiple agents 
and multiple hardware hosts. One algorighm, for 
example can be re-written to be executed on any 
number of computing nodes.

For example, consider the following three line 
program

int a = .rstCalculation();
int b = secondCalculation();
int c = a+b;

 A code dependency exists between line one 
and line two for the simple reason that the processor 
can execute only one function at a time. Since the 
ability to excecute both functions simultaneously 
does not exist on a single processor system, and 
because language itself does not allow the program-
mer to specify that both functions can be run in 
simultaneously (in a multi-processor system), the 
code dependency cannot be reduced unless the first 
line and the second line executed in two separate 
agents. 

 The third line, however is dependent upon the 
previous two. This code dependency is not imposed 
by any restrictions of the hardware or language 
as is the case with the first two lines. This code 
dependency exists, rather because the programmer 
chose to write the code that way. 

Temporal dependencies

A temporal dependency is the deliberate ordering of 
code block execution even though it is not imposed 
by a code or process dependency (process dependen-
cies are described below). Temporal dependencies 
exist whenever one part of a program must be ex-
ecuted prior to another part in order to satisfy some 
design constraint. This type of dependency would 
most likely occur, for example, when one function 
is required to be before another to satisfy a system 
policy. In a real-time system, temporal dependen-
cies are strictly enforced since the functioning of 
the system relies on the execution of a routine at a 
pre-defined moment in time. 

 For example in a non real-time system, temporal 
dependencies can be created by the timing of code 
excution to support well defined steps in a single 
business process (e.g. payroll processing).  Temporal 
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dependencies can also be created by simple require-
ments external to the application. For example, one 
part of a program may only be allowed to run at 
night for maintenance purposes, while another part 
of a program can be run during the day for routine 
operations.

process dependencies

A process dependency (or `̀ process level’’ depen-
dency) is the deliberate ordering of code execution 
at the application level to correspond with the steps 
in a process. Process dependencies can also be cre-
ated to execute one code block (or perhaps an entire 
appliction) prior to another in order to meet some 
system policy. Process dependencies, for example, 
can be imposed to reflect the requirement of one 
business process (or simulated natural process) to 
terminate before another starts. 

For example, a business may require the ex-
ecution of a data collection program prior to the 
execution of an analytics program that operates on 
the collected data. Or, in a program simulating an 
ecosystem where a heavy rain causes a river to flood, 
a process dependency must be created to ensure that 
a rain simulation starts prior to the execution of a 
river flood simulation. 

Management and c ontrol of 
dependencies

The three types of dependencies described above can 
make agent design and maintenance difficult when 
a programmer must deal with all three simultane-
ously. Agent feedback messaging is intended to help 
alleviate this issue by allowing a developer to focus 
on the process and temporal dependencies without 
having to worry about the code dependencies that 
are imposed by the underlying system. Temporal and 
Process dependencies are completely controlled by 
the agent developer through the following means:

a. By specifying which agents produce messages 
and when

b. By specifying what feedback messages, if any, 
to generate as responses to messages

c. Determining the order in which agents are 
assigned on the message stream.

 Furthermore, since each agent has its own call 
stack and runs in its own thread space independent 
of the other agents and the message communications 
infrastructure. The developer does not have to worry 
about returning message results from an agent to 
the top of a function call stack before delivering it 
to another agent. Messages are passed, rather, by 
the communication stream in a producer/consumer 
fashion through the use of shared memory structures 
such as shared FIFO queues. 

 This better control over dependencies and agent 
feedback messaging’s circular message stream 
helps the development of simulations by providing 
a way for an agent to dispatch both data and service 
requests to all other agents without having to keep 
track of which agents actually receive the message. 
The agent that sends a message doesn’t even need 
to be the agent that responds to any replies to the 
message. This allows an agent developer to have 
complete control over the granularity of agents 
involed in a simulation.

 In their simplest forms, system designs based 
on agent feedback messaging allow each agent to 
deliver messages in a “fire and forget” fashion. 
Messages are created by an agent and completely 
released into the communications stream. They are 
only seen again by the agent that created them after 
all the other agents have seen them. The agent also 
does not wait for an immediate response, but rather 
does other processing while it waits for its messages 
to be returned.

a gen T design MeThodo Logy

With a generic `̀ fire and forget’’ message delivery 
system in place agent design methodology can 
handle scenarios where an agent serves simultane-
ously as both a client and service provider, even in 
the case where an agent fills both roles for its own 
requests. This allows for a very straightforward 
development methodology.  In order to develop 
agents, a basic set of four questions is answered 
for each agent:

1. What messages are the agent required to listen 
for?

2. What is the read/write policy of the mes-
sage?
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3. What actions are performed in response to 
the message?

4. What messages does the agent send, and when 
does it send them? Recall that the target agent 
of a message is never defined by the sender.

 With these questions answered for each agent, 
a message delivery matrix can then be developed 
for an entire system of agents. See Table 2 for an 
example.

 Keeping a master catalogue of agents and 
agent messages is also useful in the development 
of systems that use agent feedback messaging. 
This makes it possible to develop systems that use 
existing messages and agents designed by other 
developers independently. When existing agents in 
the catalogue do not meet a designer’s needs, mes-
sages from the catalogue can still be used by another 
developer because they are separate artifacts.

a n iMpLeMen TaTion

An implementation of agent feedback messag-
ing is now presented. I will discuss how such a 
messaging system can be implemented using an 
arbitrarily defined multi-host compute cluster. I 
will also discuss how federation of agents can be 
achieved using CORBA. The passing of messages 
from host to host using CORBA valuetypes will 
also be discussed. 

af M: a n implementation of a gent 
f eedback Messaging

AFM is an implementation of agent feedback 
messaging and serves to demonstrate how agent 
feedback messaging can be implemented in a practi-
cal solution. AFM has also produced some useful 
benchmarks which are described below that could 
be used as a basis of comparison to other agent 
communication infrastructures. 

AFM puts each agent into its own thread space. 
Each agent utilizes a number of lightweight process-
es (four threads per agent) that utilize semaphores 
and shared memory space (FIFO queues) to pass 
messages from one agent to the next. The agent 
thread space and mechanisms for moving messages 

between agents is depicted in Figure 3.
AFM’s design requires each host to pass agent 

messages exactly one time to all agents on a given 
host before sending them on to another host. The 
host that receives each message, in turn sends the 
message to all agents running on that host, and 
then passes the message to the next host, and so 
on. After each message has been presented to all 
agents running on all other hosts, it is returned to 
the originating agent.

The passing of messages between hosts is de-
picted in Figure 4. This design in effect creates a 
large, circular, multi-host, message stream that all 
agents have access to. In order to deliver messages 
between hosts, AFM uses CORBA valuetypes to 
send marshalled message data via IIOP. CORBA 
valuetypes are used for two reasons. First, they 
allow message objects to be passed by value from 
host to host without involving agents directly in 
network communications. Second, messages defined 
as valuetypes support the passing of entire graphs 
of messages while preserving shared values in the 
graph. Pages 54 and 55 of the book Java Program-
ming With CORBA (Brose, Vogel, & Duddy 2001) 
describe this mechanism. This approach adds to the 
AFM implementation the ability to define message 
heirarchies using both class inheritance and member 
encapsulation. 

 The FIPA Agent Messaging Transport Protocol 
(FIPA, 2008) could be used to transmit messages 
between hosts as well as long as the use of the 
protocol is restricted to AFM’s communications 
infrastructure and not programmed directly into 
agents. Transporting of valuetypes via the exist-
ing FIPA Interface Definition Lanaguage (IDL) 
interface would most likely require some additional 
work however, such as extensions to the FIPA IDL 
definition. In addition, parts of the protocol would 
also be ignored by AFM. That protocol requires 
in every message the designation of a destination 
agent to receive the message. In AFM it would not 
be required to specify the destination agent because 
it is the responsibility of an agent wishing to receive 
a message to it. Consequently the field containing 
the destination agent would be ignored by AFM.

 AFM is implemented in Java. There are several 
features in the Java platform that makes it an attrac-
tive platform for implmenting an agent feedback 
messaging system:
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• Robust shared memory object support and 
semaphores

• Large thread count management with critical 
sections

• Automatic garbage collection
• Strong support for CORBA interoperability
• Platform independence
• Acceptance in the scientific community

f ederated a gent c ommunications

Federated design architectures make it possible 
to implement agent feedback messaging as a scal-
able mesaging infrastructure where hosts running 
agents can be added and removed to the network 
dynamically. However, federated approaches have 
rarely been applied to the realm of intelligent agent 
communications. The FIPA Abstract Architecture 
(FIPA, 2006) is the most notable exception.

 Agent feedback messaging attempts to open 
the door to effective federated designs in agent 
communications. Forslund, et al (Forslund, Smith, 
& Culpepper, 2000) demonstrate that integrating 
the functionality of several stand-alone systems 
through federation is an effective way to integrate 
network based services across clusters of computing 
nodes and security domains. Hayden et al (Hayden, 
Carrick, & Yang, 1999) also document some fed-
erated agent design patterns useful for building 
multi-agent systems. These are the same approaches 
taken to implement the message communications 
infrastructure with the present implementation of 
agent feedback messaging.

 Federation on the project to develop AFM 
was achieved by defining an interface for message 
communications between hosts using the CORBA 
IDL. Each host registers itself wth an object request 
broker so that other hosts can discover the messag-
ing service at runtime. Because standard IIOP is 
used other non-AFM systems, such as datagram 
broadcasting systems and peer-to-peer systems can 
be used in conjunction with AFM.

 IIOP is also not the only networking protocol 
that AFM can be implemented on top of. Since the 
networking protocol in use is completely transpar-
ent to the agents running in the system it can be 
replaced by something else entirely.

a gent Messaging benchmarks

The biological simulation dscussed below reveals 
some usable application wide benchmarks that might 
be applied to all agent messaging systems.

•  Idle message delivery time: The time it takes 
for one message to be delivered to all agents 
in the system and a result to be returned when 
the system is idle (no other messages being 
delivered). Can be expressd in revolutions per 
unit of time where the dispatch and return of 
one message is one revolution.

•  Per agent thread count: The number of 
threads required per agent.

•  Per agent memory usage: The average amount 
of memory used per agent.

•  Messages delivery rate: The number of mes-
sages sent and successfully delivered per unit 
of time.

•  Message throughput: The maximum numer of 
messages the communications infrastructure 
can deliver per unit of time.

 Plotting the se benchmarks against the number 
of agents in the system provide a useful operating 
envelope for an agent message delivery system.

Two exa MpLes

I will now discuss how some common problems can 
be solved using agent feedback messaging. I will 
cover detailed examples of a simple biosimulation 
and the travelling salesman problem.

biosimulation

The first test case of AFM was to develop a very 
simple simulation involving biofeedback. The source 
code for the simulation is packaged as part of the 
AFM distribution. The idea to use intelligent agents 
to simulate natural biofeedback mechanisms was 
my original inspiration for agent feedback messag-
ing when work to develop the approach started in 
the early 1990’s.

 In this simulation, agents are created to simulate 
the distribution of nutrients throughout the body 
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Figure 3. Agent thread spaces

Table 2. Biosim message delivery matrix and the interactions that take place between vari-
ous body parts to signal to a person that he needs 
to eat more food. Agents represent the brain, heart, 
stomach, legs, and arms. The decision to eat and the 
act of eating are both managed by a single ̀ `Human’’ 
agent.

 The simulation demonstrates many aspects of 
agent feedback messaging, however the top five 
are:

1. No agent knows what agents are responsible 
for handling messages it sends.

2. All responses to messages can be in the form 
of other messages generated by different agents 
(feedback messages).

3. Messages can contain values that get updated 
as a message is passed from agent to agent 
(e.g. a message representing a resouce can be 
“depleated” as it passes between agents).

4. The order in which agents are instantiated in 
the system can be used to ensure that some 
agents receive messages prior to others.

5. It is possible to simulate biological processes 
when all responses to messages are received 
in a delayed manner (asynchronously).

 Table 2 a message delivery matrix, identifies 
the agents in the simulation and the messages each 
agent generates and receives.

 The simulation starts when the Human agent 
creates all the other agents and then sends a Start-
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Simulation message. No reply is expected from this 
message. The Heart agent simulates the passage of 
time by generating a HeartBeat message at regular 
intervals. In a real simulation the Heart agent could 
be programmed to generate a HeartBeat message 
once it determines that all simulation activity as-
sociated with a single heart beat has completed. 
The Heart agent would determine this by listening 
to messages produced by other agents.

 As time passes, the arms and legs use up nutri-
ents they have stored. Each appendage keeps track 
of how many nutrients it has stored in its internal 
state and each uses nutrients at a different rate. As 
each appendage runs out of nutrients it dispatches a 
NeedMoreNourishment message requesting more. 
The feedback appendages expect to receieve at some 
point in the future is a NourishmentQuantityMes-
sage. Each appendage continuously dispatches 
NeedMoreNourishment messages until it receives 
enough NourishmentQuantityMessages to satisfy its 
internal requirements to have a surplus of nourish-
ment in storage.

 The Stomach agent, upon seeing NeedMor-
eNourishment messages, dispatches a Nourish-
mentQuantityMessage; one for each NeedMor-
eNourishment message it receives. Stomach keeps 
track as part of its internal state how much nourish-
ment it can release. As the supply of nourishment in 
the stomach depletes, the Stomach agent begins to 
request more protein (which it uses to create nourish-

ment) by dispatching NeedMoreProtein messages. 
Like the appendages, the Stomach simply expects 
to see a ProteinMessage at some point in the future, 
but it does not know when that message will arrive. 
NeedMoreProtein messages are dispatched in regu-
lar intervals until it has the protein it requires.

 The Brain agent, which is responsible for 
listening for NeedMoreProteinMessages, signals 
that more food must be eaten by dispatching an Eat 
message. As with all the other body parts, Brain 
does not know what agent actually is responsible 
for responding to this message. The more Need-
MoreProteinMessages Brain receives, the more Eat 
messages it dispatches. 

The Human agent, an agent that simulates the 
complicated process of actully eating, responds to 
Eat messages by dispatching Protein messages. The 
Stomach agent in turn picks this message up and 
interprets it as a signal that it should generate more 
nourishment. Each Protein message the Stomach 
agent receives causes Stomach to add a specific 
quantity of nourishment available to its nourishment 
store, which it can dispatch at a future time whenever 
it sees a NeedMoreNourishment message.

Agent feedback messaging allows messages to 
be modified as they are passed from one agent to 
another. This makes it possible for one message to 
represent a resource that changes as it circulates 
among agents. In this simulation, as Nourish-
mentQuantityMessages are read by each agent, 

Figure 4. Message passing between hosts
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the agent “extracts” nutrients from the message by 
reducing the amount of nutrients the message has. 
When the NutrientQuantityMessage runs out of 
nutrients it is no longer valuable and will be ignored 
by other agents.

The simulation also illustrates that the order 
of agents on the message stream can be used to 
enforce priorities in message consumption. Down-
stream agents closer to the Stomach agent receive 
NourishmentQuanityMessages first, and therefore 
have the first opportunity to use the resources in 
the message prior to downstream messages. Only 
when the needs of Stomach’s nearest downstream 
neighbors are met will other agents find nourishment 
available in NourishmentQuantityMessage.

The Travelling salesman problem

Solving the travelling salesman problem proved to 
be one of the more interesting uses of agent feedback 
messaging. In the setup of the solution, each agent 
was programmed to act as a single city. In addition 
to having one agent for each city, an additional agent 
was used to start and stop the simulation, and keep 
track of the solution. The message delivery matrix 
for the agents appears in Table 6. 

Another benefit of solving the travelling sales-
man problem with agent feedback messaging can 
be illustrated when we look at how it solves cases 
with more than three cities. For the TSP problem, the 
AFM approach will enforce the following rule:

For any TSP problem with i cities, and any non-
complete path that begins with X�,X�,..Xn where n 
< i, all permutations that begin with X�,X�,..Xn will 
not be searched if X�,X�,..Xn forms a path that is 
more costly than an the best known solution. 

The agents solve the problem by simulating the 
following scenario:

The mayors of all the towns decide to 
work together to solve the travelling salesman 
problem. They get together and agree on one 
randomly picked path of cities as a potential 
solution. They label the path “The Best Known 
Path”. They assume it’s not the best path, but 
they all agree that whenever they . nd a path 
that is better, the new path will become the of-
ficial “Best Known Path”.

The mayor in each town returns to his city, 
where he immediately hires runners from the 
town to travel to other cities. Each mayor hires 
n-� runners, where n is the number of cities.  
 

Each runner is assigned his own city and 
travels directly to that city. The runner takes 
with him a list of all the cities that have been 
visited before him. On the very first trip at the 
very beginning of the search, each runner’s list 
only has his hometown on the list.

When a runner arrives at his appointed city, 
he contacts the mayor of that city and shows him 
his list of previously visited cities. The list also 
contains the cost of travelling the entire path to 
the new city. The mayor then makes a simple 
decision. If the path of cities on the runner’s list 
more costly than the known shortest solution, he 
discards the list. Otherwise, the mayor adds his 
city to the list and copies it. He makes j copies, 
where j is the number of cities left to visit that 
are not on the list of previously visited cities. 
The mayor then sends a new list of cities that 
have been visited with each new runner. 

Table 3. Distance between 3 cities
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The new group of runners travel to their ap-
pointed city and the process repeats.

To demonstrate how to solve this problem using 
agent feedback messaging a simple problem involv-
ing three cities is shown. The problem consists of 
three cities, A, B, C. The distances between the 
three cities are shown in Table 3.

Four agents are created: one for each city, and 
one monitor agent to keep track of the solution. 
The arrangement of the agents is arbitrary, and 
they have been randomly connected to the com-
munications infrastructure. Their configuration is 
shown in Figure 5.

The messages inserted into the message stream 
by each agent will contain two basic pieces of in-
formation: a) the path that makes up the solution, 
and b) the distance of the path. 

As each message visits an agent, the agent will 
check the message to see if adding itself to the path 
creates a new path that is longer than the currently 
known shortest path. If the path is not longer than 
the shortest path, the agent copies the message, 
adds itself to the path, updates the distance, and 
dispatches the new message. If the path is longer 
than the shortest known path, then the message is 
ignored.  As a result, the only paths that are built up 
in a message are better than the best known solution. 
As each message reaches the solution monitor, it is 
checked to see if it contains a complete path. If it 
does, and the path is shorter, then the new solution 
is saved by the solution monitor. The new solution 
is then dispatched to all the agents in a new mes-
sage. If the solution is not better, than it is ignored. 
The only time a complete solution is generated in 

a message is if it contains a solution that is better 
that the currently known solution.

Consequently, as messages are discovered to 
contain a non-optimal solution they are never cop-
ied. The end result is that the solution is able to be 
calculated without having to perform an exhaustive 
search of the solution set. 

Figure 6 shows the messages that will be gener-
ated by each city and how they will propagate to 
the other cities. City B’s message that is sent out at 
the start of the simulation is shown. There are a few 
things to note about the messages that are generated 
because of the message that City B sends out:

1. All permutations of the solution beginning 
with city B will be generated . Note how 
message 1 causes two additional messages 
to be generated: message 2 with path BC and 
message 3 with path BA

2. Message 2 causes city A to generate message 
4 with path BCA.

3. Message 3 will cause city C to generate a fifth 
message with path BAC (not shown) when the 
message is moved around to agent city C.

4. Message one will be destroyed by the agent 
that created it when it reaches the city B agent 
and will not cause other messages to be cre-
ated.

Having seen what happens in response to initial 
message generated by any particular agent, we 
can take a look at the message generated by all the 
agents when the simulation starts. The pattern of 
message generation we see in Figure 6 will be the 
same for all agents, however, all agents will cre-
ate and dispatch their messages at the same time. 

Figure 5. Agents created to solve TSP
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Figure 6. Message generation created and solution caused by one agent’s message

Figure 7. Multiple cities generating the first message

Figure 8. Multiple cities generating subsequent messages; this process is repeated
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Consequently, the message stream will be much 
more congested for a period of time. Figures 7 and 
8 show how the number of messages grow as they 
are built up over time.

As the simulation runs, the best known solution 
will be constantly updated by the solution monitor 
agent as better solutions are found. The net result 
is a search algorithm that gets progressively better 
as the simulation runs.

Consider a problem set with the four cities identi-
fied in Table 2. As was mentioned earlier, the strategy 
used to solfve the TSP involves picking a randomly 
generated path that is assumed to be non-optimal. 
Let’s assume that for our new five-city problem, the 
monitor agent arbitrarily picks a solution of A,B, C, 
D, E. This path is not optimal, but will be used at 
the start of the simulation as the best known path. 
Solutions generated by the agents are compared 
to this path. If at any time an agent gets a partial 
path, and adding itself to that path creates a solu-
tion worse than the monitor’s best known path the 
agent does not generate a copy the partial path, as 
it knows that it is not possible to result in a better 
solution that what is already known. 

 For example, given that A,B,C,D,E is the best 
known path at the beginning of the simulation, agent 
A will eventually receive a message with path B,D. 
Agent A, knowing that the solution needs to be at 
least shorter than A,B,C,D,E will realize that when 
it adds itself to B,D it creates a solution with a path 
that is at least 27. It will not copy the message with 
path B,D and insert a new message that with a path 
of B,D,A into the message stream. Consequently, all 
permutations of the solution that start with B,D,A 
will not be checked. This will ensure that the agents 
do not have to search the entire solution domain to 
find the optimal answer.

 The solution C,D,E,B,A will, however eventu-
ally be generated by agent A. When it is generated 
the solution monitor will store that path as the best 
known path and communicate it to all agents, and 
all other solutions from that moment on will need 
to at least be better than C,D,E,B,A. Whatever the 
optimal path is, it will eventually be generated by 
an agent and delivered to the solution monitor.

c onc Lusion

The performance of agent feedback messaging, as 
implemented in AFM, is good enough to begin the 
creation of large scale simulations of both natural 
and man-made processes. The number of agents that 
can be reasonably instantiated on a single computer 
without a significant loss in overall performance 
is high enough to attempt agent based simulations 
of larger models, such as Forrester’s production 
distribution system (Forrester 1962). In addition to 
continued work on the biosimulation example pre-
sented above, work has also begun on simulations of 
Forrester’s production models as well as simulations 
of a biodiesel manufacturing operation.

Agent feedback messaging also reduces the 
amout of time managing code dependencies which 
provides more time for managing the procedural and 
temporal dependencies that define a given simula-
tion. The granularity of components smulated in a 
given model can also be manipulated relatively eas-
ily, with the number of agents in a simulaton being 
inversly proportionate the to the size of object in the 
model being simulated. A large number of agents can 
be used to simulate the smallest elements in a model 
(e.g. cells in an animal), or a single agent can be used 
to simulate one large object (an abstract animal). 

Table 4. TSP problem with 5 cities
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Table 5. TSP matrix

Table 6. Some non-optional paths for the five cities

During simulation development, coarse grained 
agents can be used to validate a simulation against 
broad parameters. Fine grained sets of agents can 
then be developed that deal with detailed parameter 
sets in a model. This provides enough flexibility 
to pursue bottom-up and top-down approaches to 
agent design simultaneously.

Efforts to integrate agent feedback messaging 
with external data sources have also resulted in 
opportunities to integrate intelligent agents with 
commonly used Web services technologies. 

f uTure r esearch direc Tions

Since agent feedback messaging is a generalized 
messaging framework for multiagent systems, the 
possibilities of research where the approach can be 
useful are unlimited. However, there are a handful 
of key areas where the current implementation, 
AFM, can be put to use immediately.

• Scalabiliy Testing: One area of critical re-
search that needs will be accomplished as the 
next order of business will be the measurement 
of benchmarks of AFM across a large number 
of nodes.

• Biological simuation: Further refinement of 
the physiological model shown as an example 
in this chapter. In particular, a proper work-
ing physiological model should be built that 
can at least simulate accurate blood flows and 
overall functioning of major organs.
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• Manufacturing: Implementation of Forrest-
er’s models (1962) as presented in the book 
in their entirety.

• Genetic algorithms and genetic program-
ming: A simple genetic algorithm is planned 
for development to guage how effectively 
genetic programming can be carried out using 
AFM.

• Semantic Webs and natural language pro-
cessing: The building up of Semantic Webs 
with structured and unstructured data such 
as that found on Web sites

• Data fusion: It is entirely possible to use AFM 
to accomplish the fusion of data from multiple 
sensors in a real time environment. The ad-
vantage of this research will be to incorporate 
embedded sensors into agent designs.

• Robotics: Developing a robotics control sys-
tem usin AFM is also a high priority area of 
research planned for AFM.

• Emotional Modeling: Emotional modeling 
is an underserved area of artificial intelli-
gence. 

• Societies of Agents: Using agent feedback 
messaging should lend itself well to the study 
of phenomena that occur in societies of agents. 
The scalability of the approach presnted in 
this chapter should easily allow studies of 
agent socities that number in the thousands 
or millions of agents.
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a bs Trac T

Multi-agent systems have been used to model complex social systems in many domains. The entire movement 
of multi-agent paradigm was spawned, at least in part, by the perceived importance of fostering human-like 
adjustable autonomy and behaviors in social systems. But, efficient scalable and robust social systems are 
difficult to engineer. One difficulty exists in the design of how society and agents evolve and the other diffi-
culties exist in how to capture the highly cognitive decision-making process that sometimes follows intuition 
and bounded rationality. We present a multi-agent architecture called CASE (Cognitive Agents for Social 
Environments). CASE provides a way to embed agent interactions in a three-dimensional social structure. 
It also presents a computational model for an individual agent’s intuitive and deliberative decision-making 
process. This chapter also presents our work on creating a multi-agent simulation which can help social and 
economic scientists use CASE agents to perform their tests. Finally, we test the system in an urban dynamic 
problem. Our experiment results suggest that intuitive decision-making allows the quick convergence of 
social strategies, and embedding agent interactions in a three-dimensional social structure speeds up this 
convergence as well as maintains the system’s stability.
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inTroduc Tion

In social environments, people interact with each 
other and form different societies (or organizations 
or groups). To better understand people’s social 
interactions, researchers have increasingly relied 
on computational models [16, 40, 41, 42]. A good 
computational model that takes into consideration 
both the individual and social behaviors could 
serve as a viable tool to help researchers analyze or 
predict the complex phenomena that emerge from 
the interactions of massive autonomous agents, 
especially for the domain that often requires a long 
time to evolve or requires exposing real people 
to a dangerous environment. However, efficient, 
scalable, and robust social systems are difficult to 
engineer [3].

One difficulty exists in modeling the system by 
holding both the societal view and the individual 
agent view. The societal view involves the careful 
design of agent-to-agent interactions so that an 
individual agent’s choices influence and are in-
fluenced by the choices made by others within the 
society. The agent view involves modeling only an 
individual agent’s decision-making processes that 
sometimes follow intuition and bounded rational-
ity [29]. Previous research in modeling theory of 
agents and society in a computational framework 
has taken singly a point of view of society or agent. 
While the single societal view mainly concentrates 
on the centralist, static approach to organizational 
design and specification of social structures and thus 
limits system dynamics [12, 16, 35], on the other 
hand, the single agent view focuses on modeling the 
nested beliefs of the other agents, but this suffers 
from an explosion in computational complexity as 
the number of agents in the system grows.

Another difficulty in modeling theory of agent 
and society exists in quantitative or qualitative 
modeling of uncertainty and preference. In the case 
of quantitative modeling, the traditional models 
like game theory and decision theory have their 
own limitations. Game theory typically relies on 
concepts of equilibria that people rarely achieve 
in an unstructured social setting, and decision 
theory typically relies on assumptions of rationality 
that people constantly violate [27]. In the case of 
qualitative modeling, there are three basic models: 

prescriptive, normative and descriptive [31, 37]. A 
prescriptive model is one which can and should be 
used by a real decision maker. A normative model 
requires the decision maker to have perfect rational-
ity, for example, the classical utility function belongs 
to this category. Many normative theories have been 
refined over time to better “describe” how humans 
make decisions. Kahneman and Tversky’s Prospect 
Theory [18, 34] and von Neuman and Morgenstein’s 
Subjective Utility Theory [36] are noted examples 
of normative theories that have taken on a more 
descriptive guise. One of the central themes of the 
descriptive model is the idea of Bounded Rationality 
[29], i.e., humans don’t calculate the utility value 
for every outcome; instead we use intuition and 
heuristics to determine if one situation is better than 
another. However, existing descriptive methods are 
mostly informal, therefore there is a growing need 
to study them in a systematic way and provide a 
qualitative framework in which to compare various 
possible underlying mechanisms.

Motivated by these observations, we have 
developed a cognitive agent model called CASE 
(Cognitive Agent in Social Environment). CASE 
is designed to achieve two goals. First, it aims to 
model the “meso-view” of multi-agent interaction by 
capturing both the societal view and the agent view. 
On one hand, we keep an individual perspective on 
the system assumed by the traditional multi-agent 
models, i.e. an agent is an autonomous entity and 
has its own goals and beliefs in the environment 
[5, 43]. On the other hand, we take into account 
how agent’s decisions are influenced by the choices 
made by others. This is achieved by embedding 
agents’ interactions in three social structures: group, 
which represents social connections, neighborhood, 
which represents space connections and network, 
which span social and space categories. These three 
structures reproduce the way information and social 
strategy is passed and therefore the way people influ-
ence each other. In our view, social structures are 
external to individual agent and independent from 
their goals. However, they constrain the individual’s 
commitment to goals and choices and contribute to 
the stability, predictability and manageability of the 
system as a whole.

Our second goal is to provide a computational 
descriptive decision model of the highly cognitive 
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process wherein an individual agent’s decision-
making. The descriptive theory assumes agents 
undergo two fundamental stages when reaching 
a final decision: an early phase of editing and a 
subsequent phase of evaluation [19]. In the edit-
ing phase, the agent sets up priorities for how the 
information will be handled in the subsequent 
decision-making phase and forms heuristics which 
will be used during the decision-making process, 
i.e. the agent only acts with bounded rationality. In 
the evaluation phase, there exist two generic modes 
of cognitive function: an intuitive mode in which 
decisions are made automatically and rapidly, and 
a controlled mode, which is deliberate and slower. 
When making decisions, the agent uses satisfying 
theory [30], i.e. it takes “good enough” options rather 
than a single “best” option.

The rest of the chapter is organized as follows. 
Section 2 introduces the related work. In Section 3, 
we give an overview to cognitive models for social 
agents, from both the societal view and individual 
agent view, and introduce preliminary contextual 
information. Section 4 presents CASE from the 
perspective of the societal view, i.e. how an agent’s 
decision affects another. Section 5 presents CASE 
from the perspective of the individual agent’s view, 
i.e. an intuitive and deliberative decision-making 
mechanism. Section 6 is a simulation supporting 
CASE agents that provides an integrated environ-
ment for researchers to manage, analyze and visu-
alize their data. Section 7 reports the experiments 
and Section 8 concludes the chapter.

re LaTed  work

Multi-agent systems have been widely used to 
model human behaviors in social systems from the 
computational perspective. There have been many 
successful systems addressing this issue. Due to the 
lack of space, we limit this discussion to several of 
the most relevant systems. We review them from two 
categories: agent modeling and agent simulation.

a gent Modeling

COGnitive agENT (COGENT) [6] is a cognitive 
agent architecture based on Rasmussen’s integrated 

theory of human information processing [28] and 
the Recognition Primed Decision (RPD) model 
[21]. It provides the decision-aiding at multiple 
levels of information processing, ranging from 
perceptual processing and situation feature extrac-
tion through information filtering and situation 
assessment, and not a direct process of real human 
social behaviors.

COgnitive Decision AGEnt (CODAGE) [20] 
is an agent architecture that derived its decision 
model from cognitive psychological theories to 
take bounded rationality into account. However, 
CODAGE does not consider an agent’s influence on 
other agents and there is no communication between 
agents. We consider communication important since 
it permits individuals to expand their spheres of 
interest beyond the self. Moreover, CODAGE is a 
centralized system where only one decision maker 
makes decisions for each agent, while CASE is a 
distributed system where each agent makes their 
own decisions.

PsychSim [27] is a multi-agent simulation for 
human social interaction. In order to represent 
agents’ influence on each other, PsychSim gives 
each agent full decision models of other agents. 
In PsychSim, bounded rationality is implemented 
as three limitations on agents’ beliefs: 1) limiting 
the recursive nested-belief reasoning process to a 
certain level, 2) limiting the finite horizon of the 
agents’ look-ahead, and 3) allowing the possible 
error in the agents’ belief about others. However, 
we treat bounded rationality as a human tendency 
to anchor on one trait or piece of information when 
making decisions (the detail of this can be found 
in Section 5).

Construct-Spatial [24] combines an agent’s 
communication and movement simultaneously. It 
aims to simulate many real world problems that 
require a mixed model containing both social and 
spatial features. They integrate two classical mod-
els: Sugarscape [7], a multi-agent grid model, and 
Construct [2], a multi-agent social model, and run 
virtual experiments to compare the output from 
the combined space to those from each of the two 
spaces. Our model is similar in that we also capture 
multi-dimensional interactions between agents. We 
embed agents’ interactions in three social structures: 
group, which represents social connections, neigh-
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borhood, which represents space connections and 
network, which span social and space categories. 
These three structures reproduce the way informa-
tion and social strategy is passed and therefore the 
way people influence each other.

Hales and Edmonds [14] introduce an interesting 
idea of using “tag” mechanisms for the spontane-
ous self-organization of group level adaptations in 
order to achieve social rationality. Their idea is to 
use agents that make decisions based on a simple 
learning mechanism that imitates other agents who 
have achieved a higher utility. This research reminds 
us that sometimes the simplest of techniques can 
have the most far-reaching results. However, agents 
in their system need a relatively large number of 
tag bits (32 tag bits for a population of 100 agents) 
for all agents to reach a socially rational decision. 
In this chapter we use a different approach for 
generating socially rational behaviors. We embed 
social interaction into three social structures and 
provide a model for diffusing one agent’s strategy 
to others.

Jiang and Ishida [17] introduce an evolution 
model about the emergence of the dominance of 
a social strategy and how this strategy diffuses to 
other agents. Our model is similar in that it includes 
multiple groups and allows for diffusion of strategy. 
But our model differs in two aspects. First is in how 
the groups are defined. Jiang and Ishida define a one 
to one relationship between groups and strategies, 
i.e. for every one strategy there exists one group 
and each agent belongs to the group that has their 
strategy. However, in our model, an agent can belong 
to multiple groups at one time. The second differ-
ence exists in whether or not the group’s strategy 
is dynamic. Because Jiang and Ishida define a one 
to one relationship between groups and strategies, 
there must always exist one group for every possible 
strategy. This means group strategies are static and 
will not change over time. In our model, we model 
the dynamics between the group and the agent, so 
both the group’s strategy and the agent’s may be 
changed with time.

a gent simulation

RePast1, perhaps one of the most feature filled pack-
ages, provides templates for easy construction of 

behavior for individual agents and integrates GIS 
(Geographic Information System) support, which 
is a feature that our simulations will need. It is also 
fully implemented on all systems. The multi agent 
system named MASON2 is a lightweight system with 
a good amount of functionality. It has the ability to 
generate videos and snapshots as well as charts and 
graphs. JADE3 is a project that we looked at for its 
ability to be distributed across multiple machines 
that do not need to be running on the same oper-
ating system, which is a feature of our system. It 
also allows configuration of a distributed model 
to be controlled by a remote GUI, which is also a 
feature we implement in our package. Cougaar4, 
developed for use by the military is influential in 
that it allows for huge scaling of projects to simu-
late many agents working together, which is a very 
appealing feature for our simulations. JAS5 (Java 
Agent based Simulation) library is a package that 
supports time unit management by allowing the user 
to specify how a system will operate in terms of 
hours, minutes or seconds. This is helpful for spatial 
modeling and simulations. SWARM6, developed 
at the Santa Fe Institute, allows for users to write 
their own software. It also allows for development 
on a variety of systems. The package is open source 
and has a large community of developers as well. 
EcoLab7 allows for the user to generate histograms 
and graphs but is only able to be implemented on a 
limited amount of systems. It provides a scripting 
language which can access the model’s methods 
and instance variables, allowing experiments to be 
set up dynamically at runtime. This is good for the 
user without programming skills. Breve8 allows the 
user to define agent behavior in a 3D world. It also 
allows for extensive use of plug-ins that fit seam-
lessly with user generated code.

c ogni Tive Mode Ls for socia L 
agen Ts: an  o ver view

According to social scientists, social behavior is 
behavior directed towards, or taking place between, 
agents of the same societies [26]. Understanding the 
emergence and nature of social behavior is necessary 
prior to the design of a computational framework. 
Social behaviors are complex phenomena, which 
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may be better examined at two different levels: the 
society level and the individual agent level. These 
two levels are not independent but are intimately 
related and often overlap.

The society

Any society is the result of an interaction between 
agents, and the behavior of the agents is constrained 
by the assembly of societal structures [9]. For this 
reason, a society is not necessarily a static structure, 
that is, an entity with predefined characteristics and 
actions. If societies such as public institutions or 
companies possess an individuality of their own 
which distinguishes them from the assembly cre-
ated by the individualities of their members, it is not 
necessarily the same for simpler collective structures 
such as working groups or herds of animals. Even 
though societies are considered as being complex, 
such as colonies of bees or ants, they should not 
necessarily be considered as individuals in their own 
right if we wish to understand their organization and 
the regulation and evolution phenomena prevailing 
them there. Therefore, in our view, a society is the 
emergence of properties of individual interactions, 
without it being necessary to define a specific objec-
tive which represents such an outcome9.

While decision rules were developed for the 
purpose of understanding decision-making on the 
individual level, it is not illogical to think that such 
a theory could be expanded to account for decision-
making made by a group of individuals. There are 
generally two alternative methods of extending in-
terest beyond the self. Both of these ways, however, 
present some problems. 

The first method is to define a notion of social util-
ity to replace individual utilities [4]. Such a concept 
is problematic, because, as put by Luce and Raiffa, 
the notion of social rationality is neither a postulate 
of the model nor does it appear to follow as a logical 
consequence of individual rationality [22]. Pareto 
optimality provides a concept of group interest as 
a direct attribute of the group, but this falls short 
of a viable solution for the concept of individually 
rational decision makers since no player would 
consent to reducing its own satisfaction simply to 
benefit another – it is not self-enforcing. Adopting 
this view would require the group to behave as a 

“super player”, who can force agents to conform 
to a concept of group interest that is not compat-
ible with individual interests. Therefore, there is a 
clear demand for keeping self-enforcement as the 
baseline of decision-making for agents behaving 
under social context [32, 33].

The second method is to incorporate the utility 
of other agents into the creation of individual utility, 
such as the RMM (Recursive Modeling Method) 
model [10]. The problem of this method is that the 
nesting of these agent models is potentially unbound-
ed. Further, people rarely use such a deep recursive 
model although infinite nesting is required for 
modeling rational behavior [19]. Many multi-agent 
models of human decision-making made reasonable 
domain specific limitations to the number of nested 
levels and gains in computational efficiency [27]. 
But there is an inherent loss of precision. To better 
understand and quantify how people influence each 
other, Hogg and Jennings [15] introduce a framework 
for making socially acceptable decisions, based on 
social welfare functions which combine social and 
individual perspectives in a unified manner. It seems 
that the notion of the social welfare function, which 
represents the combination of individual and social 
interests, is especially useful for modeling social 
influence so that an individual agent’s behavior is 
affected by others but is still able to maintain its 
individual goal and utility.

The a gent

From a human cognitive psychological perspective, 
a person’s behaviors can be viewed as the outcome 
of his/her decision-making process [25, 11]. Kahne-
man and Tversky suggest that a person’s decision-
making processes follow intuition and bounded 
rationality [19]. Further, the knowledge that a person 
has learned through his/her life experience can be 
viewed as the extension of his/her intuitions [25]. In 
psychology, intuition has broad meaning encompass-
ing both one’s ability to identify valid solutions to 
problems and to quickly select a workable solution 
among many potential solutions. For example, the 
RPD model aims to explain how people can make 
relatively fast decisions without having to compare 
options [21], the Prospect Theory captures human 
intuitive attitudes toward risk, and the Multi-Attri-
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bute Decision-Making model [1, 39] draws intuition 
in terms of qualitative information. 

First introduced by Simon, bounded rationality 
presents an alternative notion of individual optimi-
zation in multi-agent settings to the classic utility 
theory [29, 23]. Agents are only bounded rationally 
and use the satisfying theory to make decisions. The 
idea of the satisfying theory is to reconstruct utility 
around preferences, rather than actions. It basically 
states that the only information we can draw from 
are the preferences of individuals. This concept is 
an important one, since it reminds us not to ascribe 
spurious qualities to the individuals studied and 
abstracted by a utility function; such a function is a 
mere representation and may contain aspects that do 
not actually reflect the individual’s nature. Stirling’s 
satisfying game theory also shows that people do 
not judge the utility based off analysis of desired 
results, but based off their preferences [30].

agen T-socie Ty dua LiTy

The agent/society duality, shown in Fig. 1, charac-
terizes the processes that take place between the 
agents and the societies which result from them. We 
are dealing with dynamic interaction, the logic of 
which depends simultaneously on the capabilities 
of individual agents and the dynamic interactions 
between them. On one hand, agents have their own 
goals and are capable of performing various actions. 

On the other hand, according to social scientists, 
agents interact with each other and the interactions 
are embedded in three social structures [13, 26]: 

1. Group: represents social connections, 
2. Neighborhood: represents space connections, 

and 
3. Network: represents connections that span 

the social and space categories. 

The purpose of these structures is to reproduce 
the way information and social strategy are passed 
and the way people influence each other. A group 
is a collection of agents who “think alike”, or make 
similar decisions. It allows for a diffusion of social 
strategies through social space. An agent can belong 
to multiple groups at a time and can change groups 
over time. Each agent also has its own neighborhood 
and network. A neighborhood includes the agents 
whose behaviors this agent can observe within a 
predefined physical distance. It allows for a diffu-
sion of information through physical space. One 
agent only has one neighborhood which includes the 
agents that it can directly observe. However, these 
neighbors can be different at every step because the 
agent moves. A network includes the agents that this 
agent chooses to communicate and interact with. 
Agents can’t choose who is in their neighborhood 
but they can choose who they want to interact with. 
Therefore, the network connection allows for selec-
tive diffusion of information. Each agent also only 
has one network but its members can change over 

 

•Bounded rationality
•Intuitive/deliberative
  decision 

Group Network 

Communication 

•Actions 

•Social Rules 
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Figure 1. Agent-Society Duality
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time. For example, if the agent has not heard from 
one agent over a certain step, the communication 
connection to that agent will be dropped.

a gent-society evolvement

Let agent a≠A where A is the set of all agents. Each 
agent has a social strategy. This social strategy can 
be either ordinal or cardinal. We denote the social 
strategy for agent a by Sa.

Let g≠G where G is the set of all groups. Each 
group also has a social strategy, denoted by Sg. 
Groups are formulated on the basis of a common 
preference. Each agent identifies itself with any 
group such that the agent’s strategy falls within 
some threshold of the group’s strategy.

∀a≠ A and g≠G, a≠ g i f  dif f (S a ,  S g)<d                      
                       
      (1)

where diff(Sa, Sg) is the difference between the 
agent’s strategy Sa and the group’s strategy Sg, and 
d is the threshold. It can be seen that agent a can 
belong to more than one group at a time and can 
belong to different groups over time.

When an agent joins a group they are given a 
rank in that group. An agent will have one rank 
for every group they belong to. The agent’s rank 
can be evaluated based on the agent’s importance, 
credibility, popularity, etc. Rank defines how much 
the agent will influence the group as well as how 
much the group will influence them. A high-rank-
ing agent influences the group, and therefore its 
members, more than a low ranking agent and at the 
same time is influenced more than a low ranking 
agent. An agent’s rank is specific to the domain and 
may change over time.

Each time step, every group will update their 
strategy. The update is determined by its members’ 
strategy and the percentage of the total group rank 
they hold.

Figure 2. Agent execution function

 
 

/* The function is executed independently by  
each agent, denoted agent a below.*/ 

execute(KBa, Sa, env, mQueue, t) 
inputs: KBa is the knowledge base for agent a 

Sa, the strategy of agent a 
env, the environment 
mQueue, the message queue for agent a 
t, the current step 

// making decision 
observation(env); 
update(KBa); 
check(mQueue); 
M = situation_assess(KBa); 
action = decision(KBa, Sa, M); 

// performing the output of decision-making 
do(action); 
inform_resource_synchronize(env); 
update(env); 
inform_server_synchronize(masterserver); 

// updating society’s strategy 
update_group_strategy(); 
update_neighborhood_strategy(); 
update_network_strategy(); 

// updating agent’s strategy 
update_agent_strategy(); 

// moving to next step 
t++; 
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Sg =
g
a

a ga g
bb g

RS
R≠

≠

×ƒ ƒ    (2)

where g
aR  denotes agent a’s group rank. This allows 

for groups to be completely dynamic because both 
their members and their strategy can change each 
time step.

Just like an agent’s rank in it groups, an agent 
also has a rank in its neighborhood and network. 
Each agent keeps track of the agents in its neigh-
borhood and the agents it communicates with. 
Every time an agent observes another agent in his 
neighborhood, that agent’s neighborhood rank will 
increase. Also, each time an agent communicates 
with another agent, that agents communication 
rank increases. Therefore every agent will have 
a rank value for every agent it interacts with, and 
a separate rank for every agent he communicates 
with. When an agent updates its strategy, it will 
take into account these ranks. Agents with a high 
rank relative to the other agents will have a stronger 
influence. Therefore the longer two agents are near 
each other, the more they will influence each other. 
The same is true for communications. Below is the 
update function for the neighborhood’s strategy and 
the network’s strategy.

Sn =
n
a

a na n
bb n

RS
R≠

≠

×ƒ ƒ    (3)

Sw =
w
a

a wa w
bb w

RS
R≠

≠

×ƒ ƒ
   (4)

where Sn is the strategy for neighborhood n, Pw is the 
strategy for network w, n

aR  is agent a’s neighborhood 
rank and w

aR  is agent a’s network rank.
Each time step, every agent also updates their 

strategy. An agent’s update function is defined as:

Sà  = α × Sa + β × Sg + γ × Sn + λ × Sw (5)

where α, β, γ, λ ≠  [0, 1] and α+β+γ+λ = 1. These 
values represent what percentage of influence the 
agent takes from itself, its group, its neighborhood 
and its network. This allows for multiple agent types. 
For example, (1, 0, 0, 0) represents a selfish agent 
because it cares nothing about the whole society, 
and (0, 0.33, 0.33, 0.34) represents a selfless agent 
who cares about the three social structures equally. 
Our system is fully distributed and uses discretized 
time. At each time step, every agent has an execu-
tion cycle, shown in Figure 2.

Figure 3. Two-phase decision-making process
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Two -phase  decision -Making  
process

Kahneman and Tversky suggest a two-phase deci-
sion model for descriptive decision-making: an 
early phase of editing and a subsequent phase of 
evaluation. In the editing phase, the decision-maker 
constructs a representation of the acts, contingencies 
and outcomes that are relevant to the decision. In 
the evaluation phase, the agent assesses the value 
of each alternative and chooses the alternative of 
highest value. Our decision model incorporates 
their idea and specifies it by the following five 
mechanisms:

• Editing
 Framing: The agent frames an outcome 

or transaction in its mind and the utility 
it expects to receive.

	 Anchoring: The agent’s tendency to 
overly or heavily rely on one trait or 
piece of information when making deci-
sions. 

 Accessibility: The importance of a fact 
within the selective attention. 

• Evaluation
  Two modes of function: Intuition and 

deliberation.
  Satisfying theory:  Being good 

enough.

Figure 3 shows the two-phase decision-making 
process. Next we discuss each phase in a sub-sec-
tion.

editing phase

One important feature of the descriptive model is 
that it is reference based. This notion grew out of 
another central notion called framing where agents 
subjectively frame an outcome or transaction in their 
minds and the utility they expect to receive is thus 
affected. This closely patterns the manner in which 
humans make rational decisions under conditions 
of uncertainty. 

Framing can lead to another phenomenon re-
ferred to as anchoring. Anchoring or focalism is 
a psychological term used to describe the human 

tendency to overly or heavily rely (anchor) on one 
trait or piece of information when making decisions. 
A classic example would be a man purchasing an 
automobile, the client tends to “anchor” his decision 
on the odometer reading and year of the car rather 
than the condition of the engine or transmission. 

Accessibility is the ease with which particular 
information come to mind. The concept of accessibil-
ity is applied more broadly in this research than in 
common usage. The different aspects and elements 
of a situation, the different objects in a scene, and 
the different attributes of an object, all can be de-
scribed as more or less accessible for an individual 
agent exposed to a certain decision situation. As it 
is used here, the concept of accessibility subsumes 
the notions of stimulus salience, selective attention, 
and response activation or priming. 

The editing phase gives us the main ideas that 
have been incorporated practically into the next 
phase, evaluation, to make quick intuitive deci-
sions.

evaluation phase

In the evaluation phase, there exist two modes of 
cognitive function: an intuitive mode in which 
decisions are made automatically and rapidly, and 
a deliberative mode, which is effortful and slower. 
The operations of the intuition function are fast, 
effortless, associative, and difficult to control or 
modify, while the operations of the deliberation func-
tion are slower, serial, and deliberately controlled; 
they are also relatively flexible and potentially rule 
governed. Intuitive decisions occupy a position 
between the automatic operations of perception and 
the deliberate operations of reasoning.

Intuitions are thoughts and preferences that 
come to mind quickly and without much reflection. 
In psychology, intuition can encompass the ability 
to know valid solutions to problems and decision 
making. For example, the RPD model aimed to ex-
plain how people can make relatively fast decisions 
without having to compare options [21]. Klein found 
that under time pressure, high stakes, and changing 
parameters, experts used their base of experience 
to identify similar situations and intuitively choose 
feasible solutions. Thus, the RPD model is a blend 
of intuition and deliberation. Intuition is the pat-
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tern-matching process that quickly suggests fea-
sible courses of action. Deliberation is a conscious 
reasoning of the courses of action.

We adopted a different approach from the RPD 
model to handle the intuitive and deliberative deci-
sion-making process. For our purpose, what becomes 
accessible in the current situation is a key issue in 
determining the tone of decision-making, i.e. intui-
tive or deliberative. Accessibility is determined in 
the editing phase by three factors. 

• First, an agent utilizes prior knowledge of 
previous states to frame potential outcomes 
for its current state. In framing these potential 
outcomes, an agent ascribes reference based 
expected utility functions to them. Here, infor-
mation anchoring or bias becomes a positive 
force as it leads to the agent’s ability to make 
reference based utilities for each potential 
outcome. 

• Second, when an agent makes decisions, it 
does not have to search all of its knowledge 
base. Instead, it concentrates on the relevant 
and important information. 

• Third, a decision which was chosen before 
receives more attention (or high accessibil-

ity) than other alternatives and tends to be 
more positively evaluated before it is chosen 
again.

Based on the above analyses, we compile an 
information list. In addition to physical properties 
such as size and distance, the list keeps track of 
an abstract property called accessibility. The ac-
cessibility represents the relevance, similarity or 
importance of the information. At the beginning, 
this fact is known to the designer. It will be dynami-
cally updated along with system processing. For 
example, the deliberation process may increase the 
accessibility because this information is important; 
if this information has been used in a previously suc-
cessful decision, its accessibility will be increased, 
but if the previous decision was not successful, the 
accessibility will be decreased. The accessibility of 
all information is normalized and compared with 
a threshold for triggering the intuitive function for 
decision-making.

When making decisions, agents use the satis-
fying theory, i.e. they will take the good enough 
choice rather than the best one. We model the deci-
sion-making as a Multi-Attribute Decision-Making 
problem [1, 39], which includes a finite discrete set 

Figure 4. Two-phase decision-making algorithm

 

decision(KBa, Sa, M) 
inputs: KBa, the knowledge base for agent a 

Sa, the strategy for agent a 
M, the current situation 

 
//editing phase 

anchors = getAnchor(M); 
topAccessibleMemory = query(KBa, anchors); 

 
//evaluation phase 

//intuitive decision-making 
if (topAccessibleMemory is enough) 
rebuild individual tree 

return satisfyingDM(topAccessibleMemory, Sa); 
 
//deliberative decision-making 
else 

wholeMemory = query(KBa, M); 
if (wholeMemory is enough) 

return satisfyingDM(wholeMemory, Sa); 
else 

ask(network, anchors); 



���  

Modeling Cognitive Agents for Social Systems and a Simulation in Urban Dynamics

of alternatives which is valued by a finite discrete set 
of attributes i. A classical evaluation of alternatives 
leads to the aggregation of all criteria into a unique 
criterion called value function V of the form:

V(α) = w · v(α) = ( ( ))i I i if w v≠   (6)

where α is an action, V(α) is the overall value for 
action α, wi is a scaling factor to represent the rela-
tive importance of the ith attribute, vi(α) is a single 
attribute value with respect to attribute index i ≠  I 
and f is the aggregation function. Function f normally 
is domain dependent, for example, it can be an ad-
ditive value function for preference independence, a 
discounted value function when there is reward for 
different preferences, or a Constant Absolute Risk 
Aversion function for risk-averse decision-making. 
The action being finally selected is the first action 
whose value reaches a predefined desire value D:

ε(α) = ∃α s.t. V(α) > D   (7)

Figure 4 shows the two-phase decision-making 
algorithm. 

a  siMuLaTion for case agen Ts

We have developed a simulation for the above 
agent system. Our system is capable of scaling 
huge simulations, to be capable of being deployed 

on many machines with the ability to control what 
is happening in the simulation through the use of 
a single GUI running on one machine, and it is 
able to process large amounts of data and perform 
operations on that data.

service-o riented a rchitecture

The Service-Oriented Architecture (SOA) [8] is 
a design pattern commonly used in many large 
corporations, such as NASA. It provides a flexible 
and stable architecture for large scale software 
systems. For this reason we felt it would be a good 
fit for the distributed multi agent system we were 
developing.

SOA requires that services should be “loosely 
coupled”, in other words encapsulated and have as 
few dependencies on other services as possible. This 
allows for services to be easily swapped and their 
implementation to be easily upgraded. One service 
could easily be swapped out for another service that 
accomplishes the same result.

For our system we use a three tier approach as 
seen in Figure 5, which consists of:

• The client tier
• The middleware tier
• The data tier

The client tier consists of the user interface. As 
defined by the nature of the SOA design pattern, the 

Figure 5. A three tier SOA diagram
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user interface maintains service encapsulation and 
could theoretically be used with any core system. 
All that would need to be ensured was that the core 
followed the service contract as far as how to com-
municate with the client tier. The first two services 
that the interface provides are server control and 
simulation control. This allows the user to set up 
their own system distribution and experiment. The 
other two services the interface provides are MAS-
Vis and Quantum GIS. MASVis is a data analysis 
and visualization package we developed for social 
simulations. It is built on the fundamental design of 
having data sources that connect through multiple 
filters to process elements of data and which can 
be plotted to display the data. Our simulation also 
supports GIS. The GIS system we use to display 
our data is Quantum GIS10. Quantum GIS is suit-
able for our needs because it allows for reprogram-
ming. It is quite light and allows for plug-ins so it 
is easily expandable. It also requires few resources, 
being able to run on very little RAM and consume 
little processing power, which is necessary for our 
simulations since our simulations use the processor 
heavily. Further, it is completely compatible on all 
operating systems and has a very large community 
of active developers. Both MASVis and Quantum 
GIS are still works in progress.

The middleware tier consists of the core CASE 
agent system as described earlier. The core system 
is made up of the collection of master and slave 
servers as well as the CASE agents that occupy 

them. The middleware tier will also consist of the 
service providers that help the middleware tier 
communicate with both the client tier as well as 
the data tier. We have developed two experimental 
domains: Sugarscape and Foreclosure. Sugarscape 
is a classical test-bed for growing agent-based soci-
eties [7]. Foreclosure is a domain we developed for 
helping social scientists to analyze the nationwide 
“foreclosure crisis” problem (refer to section 4 for 
more details).

The data tier helps encapsulate the data, and 
stores it separately from the simulation running in 
the core system; this could entail having the data 
tier on a separate server. Not only does this help 
ensure the stability of the data, it also allows for 
the use of metadata. In our simulation, the data tier 
records its data using XML specifications specifying 
important meta information such as date, author, 
simulation, etc. This allows for a more robust data 
system, which can easily be searched using filters, 
such as range of dates or author.

Using these three tiers will help ensure that our 
simulation is robust enough to allow for any part of 
it to be updated with little or no difficulty. Also the 
modular nature of the SOA allows for other research-
ers to use only the parts of the system that they find 
to be appropriate for their own project.

Next, we explain in detail the middleware tier 
which focuses on the system distribution and the 
client tier which describes the user interface.

Figure 6. Master/Slave relationship
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system distribution

For the system to be effective at dealing with the 
large number of agents required for social research, 
it has to be highly distributed both in processing as 
well as in memory. To achieve this we developed a 
Master/Slave system, as showed in Figure 6. 

The system has a single master server in charge 
of initializing and synchronizing the other servers 
(slaves). The master’s responsibilities include initial-
izing each step, facilitating agent communication 
and agent movement from one server to another, and 
most importantly load balancing all of the servers to 
ensure optimal performance. The slave is originally 

initialized with a given bounds and a set of agents. 
The slave’s responsibility is to update all of its agents 
each step, this is a two step process:

• First it updates all of the agents’ knowledge 
for what they perceived that step

• Secondly it has each of its agents implement 
its decided action for that step.

The agents are run in the maximum number of 
threads the server can handle; this ensures optimal 
performance through parallelization.

To ensure effective load balancing the master 
keeps track of the rest of the server by using a KD 

Figure 7. A graphical representation of the KD tree

Figure 8. A screenshot of the server control interface
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tree. The KD tree works by splitting the bounded 
region of the simulation on a different axis each time, 
until there is a single leaf per slave server, as seen 
in Figure 7. Splitting the region up in this manner 
allows the master server to go in and shift these splits 
one way or the other to balance the load between 
slaves. By shifting a KD split, the master server 
reduces the amount of the region and the amount of 
agents that a slave server is responsible for, and by 
doing so alleviates that server’s load. Figure 8 is a 
screenshot of the server control interface. 

user interface

In creating the user interface, the primary consid-
eration is that users will not be concerned with all 
of the system’s features at once. Furthermore, there 
will not be enough screen space to conveniently 
and aesthetically portray all of these features, spe-
cifically the settings, server, data, graphical, and 
simulation windows, at once. To house each element 
of the system’s features in detached windows, able 
to be hidden and then restored whenever needed, 
is therefore clearly plausible and arguably neces-
sary for such an open-ended agent simulation. This 
can be argued for each individual element of the 
system’s features.

Once a user calibrates the appropriate settings 
for his simulation implementation, he may not need 
to keep these settings in focus throughout the run-
ning of the simulation; rather, the user may be more 
focused on the system’s output and the results of 

the simulation. To keep these settings on the screen 
for the duration of the simulation would force the 
user to work with cluttered space, constantly hav-
ing to move windows around in order to see and 
collect data. To house all of the simulation settings 
in a detached window, able to be hidden and then 
restored whenever needed, is, therefore, clearly 
plausible and arguably necessary for such a wide-
breadth multi-agent simulation.

This same logic can apply to the server win-
dow, where server hosts can be added, managed, 
or booted. Clearly, server management is not the 
primary focus of any type of simulation. While 
servers need to be added at the beginning of a simu-
lation and monitored and/or booted throughout the 
duration of the simulation, the server window need 
not be opened and visible the entire time. Again, 
the detached and hide-able window system works 
effectively in this situation.

This detached-window argument can also be 
applied to output-based elements of the simulation 
user interface. Consider when a user is focused on 
only the raw textual data output of a simulation. 
Clearly, any visual representation of the data in 
question, whether it is a graphical representation 
of this data or a step-by-step visualization of the 
individual agents in the system, would be extrane-
ous and unneeded in the given situation.

Obviously, this scenario can be flipped into a 
situation in which the user is only focused on visuals, 
in which case the raw textual data output would be 
unneeded. Similar to the case of the settings win-

Figure 9. A screenshot of the Sugarscape Interface
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dow, housing both graphical data representations 
and textual data output in detached, escapable and 
restorable windows, is a necessary feature.

To keep almost every aspect of the simulation 
in separate, hide-able windows requires the use of 
a main menu, or a master controller, that cannot be 
closed. This controller handles not only the core, 
system-wide commands for MASVis but also the 
hide and restore functions for all other windows, 
while still remaining as small as possible and pre-
serving screen space.

Without a doubt, users of MASVis have an 
advantage with a user interface system with sepa-
rate, moveable, hide-able windows. Such a system 
allows for a maximization of the valuable resource 
of screen real estate and also puts the system’s focus 
on what currently matters to the user. Figure 9 is a 
screenshot of the Sugarscape interface.

experi Men T

Multi-agent systems are increasingly used to identify 
and analyze the social and economic problems of 
urban areas and provide solutions to these prob-
lems [9]. We tested the CASE architecture in the 
urban dynamics field. We did not use the classical 
benchmarks such as Santa-Fe Artificial Stock 
Market (SF-ASM) which is commonly used by the 
Agent-Based Simulation (ABS) community of social 
science and economics. This is because such clas-
sical testing domains were originally designed for 
game theory, which uses reactive agents and relies 
on the concept of equilibrium that is rarely seen in 

real-world environments, and decision theory, which 
was grounded on the level of a single individual 
with a lack of social interests. 

Our simulation in urban dynamics focuses on 
the nationwide “foreclosure crisis” problem. With 
more than 430,000 foreclosure filings reported 
nationwide, the nation’s rate of foreclosure is at an 
all time high11. This experiment simulated mortgage 
default in San Antonio, Texas. “San Antonio is domi-
nated by predominately young Hispanic families. 
In the last decade the city’s young and dynamic 
population has seen median household income grow 
significantly as childhood poverty declined rapidly. 
Unemployment remains fairly low, however, due 
to a lag in higher educational attainment the bulk 
of the city’s households earn only low-to-meddle 
incomes. Despite this and other factors there was a 
considerable rise in homeownership as the growing 
population began to move into neighborhoods in both 
the metro and suburban areas of the city.”12 By the 
first quarter 2007, San Antonio’s rate of foreclosures 
is nearly twice the national average and is among 
the top 20 cities with the highest foreclosure rates 
in the U.S.13. 

Based on the above observation, we choose 
to model San Antonio’s “foreclosure crisis” as a 
multi-agent system. This chapter reports our initial 
experiment. We modeled a simple housing market 
where agents purchase and sell homes. The agents 
need to carry out three tasks: selecting a home to 
purchase, obtaining a loan to purchase that home 
and making monthly payments on that loan. Each 
agent selects a home that is feasible for it to purchase 
based on its individual annual income, credit score 

Table 1. Three teams

Team Feature Purpose

Reactive Team •Reactive Agents The base team

ID Team (Intuition + 
Deliberation)

•Keep every condition in
  Reactive Team
•Replace Reactive rule by 
  Intuitive & Deliberative 
  decision rule 

Test the effectiveness of pure 
I&D decision rule

IDS Team (Intuition + 
Deliberation + Society)

•Keep every condition in I&D Team 
•Add the three social structures to it (group, 
neighborhood and network)

Test the effectiveness of 
combined social structure and 
I&D decision rule
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and current interest rates. On the first time step each 
agent attempts to purchase a home and continues to 
do so each time step afterwards until it finds a suit-
able match. Throughout the simulation the interest 
rates and additional monthly expenses as signed 
to each agent are subject to change and no agent 
is given prior knowledge of the schedule or degree 
of these changes. Once an agent has purchased and 
occupied a home for one time step, that agent must 
begin making payments on the loan it initially took 
out to purchase that home. If during one time step 
an agent can not make its monthly mortgage pay-
ment (i.e. its annual income is less than the sum of 
its monthly expenses and mortgage payment) then 

that agent is forced into a situation of default. In 
remaining time steps that agent may attempt to 
purchase another home of equal or lesser value but 
this is made rather difficult as its credit score has 
dropped significantly. This is done to reflect the 
difficulty in reality of obtaining a new home after 
a foreclosure.

The purpose of this simulation is to examine the 
relationship between an individual agent’s strategy, 
and the diffusion of those strategies to its society 
(groups, neighborhood and network), and finally 
the overall foreclosure rate of the city. Our initial 
simulation used only 100 homeowners (agents) and 
100 homes that were both randomly generated within 

Figure 10. The result of the reactive team

Figure 11. The result of the ID Team
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several carefully selected statistical parameters to 
reflect demographic realities of the city along the 
following lines: housing values, homeownership 
history, FICA (Federal Insurance Contributions Act) 
scores and household income. We ran the system 
for 100 steps with each single step simulating one 
month in reality.

We defined two groups of agents within the 
system: an aggressive group and a conservative 
group. Agents that are members of the aggressive 
group are more adapt to “over-extend” their credit 
lines and purchase a home that may or may not be 
within their budget. While agents who are members 
of the conservative group are more apt to purchase a 
home that is well within their budget. Initially each 
agent is given their own strategy that falls within 
some statistical range of one of the two groups. 
This initial strategy defines an agent’s propensity to 
join one of the two groups. As time passes, agents 
are influenced in a variety of ways: either through 
members of their own groups, their neighbors who 
may or may not belong to the same group, and their 
extended social network. An agent’s neighborhood is 
a direct function of its observability, i.e. the amount 
of agents it can observe at a given time. An agent’s 
network is not a physical construct, but rather a 
meta-physical medium constructed from the agents 
it decides to frequently communicate with. Hence as 
the size of an agent’s neighborhood, social network, 
and group membership grows its strategy becomes 
more dominant within society as a whole.

We use three teams as defined in Table 1. Except 
for the decision rules, conditions of all teams were 
exactly the same.

We report three experiments. Experiment 1 
involves only the Reactive Team. These agents do 
not utilize any social structure (neighborhoods, 
groups or networks) and hence have no ability 
to learn through time or adapt to environmental 
changes. Figure 10 is the result of the reactive team. 
It shows that the foreclosure rate is extraordinarily 
high (~%60) and is rather unstable, moving up and 
down 15 points between some time steps. These 
large variations in the foreclosure rate are a prod-
uct of both the agent’s simplistic decision making 
mechanisms and their inability to diffuse successful 
strategies to other agents. Indicative of the fact that 
we do not see this high variable of foreclosure rates 
in reality is the underlying fact that humans utilize 
a much more complex and sophisticated means for 
making decisions.

Experiment 2 tests the ID Team. Figure 11 il-
lustrates the results of adding only this intuition and 
deliberation capability to reactive agents. The upper 
line shows the number of agents who use intuitive 
decision-making. At the beginning of the simula-
tion, this number is quite low. But agents are able to 
quickly learn from the decisions they made before 
and use them to make new decisions. The low line 
is the number of foreclosures. It is lower than the 
Reactive Team in Experiment 1 as the agents are 
able to recognize recurring instances of potential 
default and avoid them if possible. However, this 

Figure 12. The result of the IDS team
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adaptability is limited only to an individual agent 
and there are no mechanisms for one agent to 
diffuse its successful strategy onto other agents. 
This limitation is indicated by the presence still of 
variability in the foreclosure rate. The inability of 
individual agent leads to decreased stability of the 
system as a whole. 

To further explore this, in experiment 3 we 
test the IDS Team. We add the three social struc-
tures (neighborhood, group and network) on top 
of the existing individual agent decision-making 
mechanisms. In doing so we allowed the agents to 
diffuse their successful strategies through physical 
(neighborhood) and non-physical (group and social 
network) space. As Figure 12 indicates, we see the 
same adaptability present in Experiment 2 as the 
knowledge base of the individual agents expands, 
allowing them to better predict future events based 
on past experiences, in addition to an increased level 
of stability (measured by less variability in the fore-
closure rate) as the successful strategy is diffused 
through various social structures. Experiments 2 
and 3 confirm our hypothesis that human decision-
making is “embedded” in a social context.

conc Lusion

In this paper, we have presented CASE, a multi-
agent architecture for supporting human social 
interaction as well as the intuitive and deliberative 
decision-making process. This approach allows us 
to observe a wide range of emergent phenomena of 
complex social systems and analyze their impact. 
The chapter also reports our first step in developing 
a robust and flexible multi-agent simulation that can 
be used by social scientists and economists.

Within CASE, there are many issues awaiting our 
research team. We are currently expanding CASE in 
four directions. The first direction is toward agent 
modeling. Our current agents use a simple memory 
structure for intuitive decision-making. The problem 
with this is it is not very adaptive to the dynamic 
environment. We are currently analyzing different 
situation assessment and learning technologies and 
will incorporate them into our agents. Another on-
going project is to theoretically study the emergent 
patterns in the interplay between the multi-dimen-

sional relations (group, neighborhood and network) 
in the behavior of agents.

Second, we will add a range of technologies 
for the simulation. The purpose of the simulation 
is to provide an integrated environment for social 
scientists and economists to manage, analyze and 
visualize their data. Therefore it is important to 
provide a user friendly interface and a low program-
ming-skill-required environment. We will continue 
simplifying the task of setting up different testing 
domains and develop a rich charting package for 
MASVis that will further simplify the creation of 
visualizations.

Third, we will continue investigating various 
data structures and algorithms of load balancing to 
better distribute CASE agents on clusters of com-
puters or different types of grids. This development 
will further simplify and speed up the simulation 
by reducing the computing load and memory load 
in a single machine. 

Fourth, we are also expanding the scale of the 
foreclosure experiment in order to draw more conclu-
sions to the question regarding the social and eco-
nomic factors that affect the “foreclosure climate” 
of a city. The questions that we will investigate 
include: 1) Where are the foreclosures occurring? 
2) Are they clustered or isolated events? 3) Who is 
being foreclosed upon and do they share common 
characteristics? 4) What social and economic factors 
are driving an increase in the foreclosure rate? and 
5) Could we predict the likelihood and location of 
future foreclosures?
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This chapter discusses certain issues in the development of Virtual Learning Environments (VLEs) populated 
by autonomous social agents, with specific reference to existing applications designed to promote pro-social 
behaviour among children. We begin by describing the ways in which human groups are organised and 
maintained, and present the primary school class as a particular example of a social network. Contemporary 
psychological descriptions of bullying are explained, and current anti-bullying interventions are briefly re-
viewed. Two VLEs are described, which have been designed to counteract the problems inherent in bullying as 
exemplars of social and educational environments. This chapter concludes in Part II where the requirements 
for believable, autonomous agents, used in virtual learning environments, are outlined. 
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inTroduc Tion

Virtual environments have progressed quickly from 
simple text based interfaces, including internet chat 
rooms and instant messengers, to more visual and 
immersive environments (such as IMVU1). Further-
more, the popularity of such virtual environments 
as a medium for interaction has become cemented 
in recent years for both escapist purposes in the 
case of online video games (e.g. World of Warcraft, 
2004) and also for more ‘ordinary’ interactions (e.g. 
Second Life, 2003). 

Within these environments users are able to 
create social networks with other users, whom they 
may never even meet in the real world. The appeal 
for such interaction is widespread though, and opens 
up new questions for developers of artificial intelli-
gences. Virtual autonomous agents are increasingly 
developed as social agents, i.e. agents can interact 
not only with objects in their environment, but 
also with each other, and with users, e.g. Gratch 
& Marsella (2001), Rickel et al. (2001), Malfaz & 
Salichs (2006).

Some virtual environments are now also used 
for educational purposes, and the phrase Virtual 
Learning Environment (VLE) has been coined to 
describe such applications. Mostly these are internet 
based environments that are used for uploading 
teaching materials and information for students (e.g. 
the University of Hertfordshire’s ‘StudyNet’2), but 
with powerful computers becoming more readily 
available, the scope for more sophisticated envi-
ronments is also increasing. See, for example, the 
MRE (Mission Rehearsal Exercise) project, which 
developed a VLE designed to educate American 
military officers regarding peacekeeping scenarios 
in the Bosnian conflict (Swartout et al.,  2001), and 
Treasure Hunt which includes empathetic synthetic 
agents (McQuiggan & Lester, 2006).

This chapter argues that carefully constructed 
graphical and interactive VLEs populated by socially 
interactive virtual agents can be an invaluable and in-
novative educational tool, with the potential to reach 
a wide audience providing educationally valuable 
and useful applications for the general public.

Children are an especially approachable audi-
ence to reach with VLEs. They are generally open 
to new and exciting experiences and are becoming 

much more technology friendly (Clements, 1998). 
Furthermore, they are usually very honest and direct 
in voicing their opinions, which can be very useful 
(if sometimes a little blunt) for software developers 
(Druin et al., 1998).

Most children of primary school age have already 
developed an extensive set of cognitive and emo-
tional skills, but it is around this time that children 
will really begin to experience the social world for 
a protracted period of time. They will find other 
children that they like and some that they don’t; 
friendships will be formed and some children will 
be left alone. At such a critical point in a child’s 
social development life can become very difficult 
for some children if they are being victimised by 
their peers. Indeed, these early experiences can 
shape our social development for many years to 
come. Given the social nature of this development, 
interaction with social agents seems a natural way 
in which to address the issues involved in bullying, 
victimisation, and how to make friends.

Objectives of this chapter are to describe some 
of the psychological literature concerning human 
social networks, with specific reference to primary 
school classes and the phenomenon of childhood 
bullying. We will also describe some existing VLEs 
aimed at helping children’s social development, 
which have been developed by members of the e-
CIRCUS project consortium.

groups  and  socia L ne Tworks

By his very nature, man is a social animal (Aronson, 
1998). Indeed, groups of some kind have existed 
from mankind’s earliest inception if only to guard 
against threats to their survival (Baron & Byrne, 
1996). Group activity is responsible for almost all 
human achievement from building the physical 
structures that house us, to developing the moral 
and legal codes that we live our lives by.

Groups are extremely diverse in nature; they can 
differ in terms of size, longevity, and purpose. As 
well as differences between each other, groups can 
also vary within themselves along a whole range 
of dimensions including (but not limited to) age, 
gender, or ethnicity. Take, for example, the differ-
ences between a man and woman married for 50 
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years, a sports team who meet for one hour a week, 
or a crowd of strangers who stop to watch a street 
performer for a mere two minutes. 

While groups and group dynamics vary greatly, it 
is also possible to find commonalities that all groups 
share. In doing so, we can develop a definition of 
what it is to be a group. Forsyth (1999) suggests that 
there are five characteristics which are common to 
most groups: interaction, structure, cohesion, social 
identity, and goals.

Within a group there is interaction between its 
individual members. While members will not nec-
essarily interact with all other members, they will 
interact with some other members. Such interaction 
can be physical (in the case of sports teams), verbal, 
or even textual (e.g. for internet forum contributors). 
Many such interactions are required to complete 
tasks, though some interactions also arise from 
the simple need for interpersonal relationships and 
peer support.

All groups have a structure of some kind. This 
need not be a formalised structure as in a military 
hierarchy, but each member of a group will find a 
clearly defined role for themselves. These roles will, 
in turn, dictate how members are to behave while 
conducting group-relevant business. A group’s 
structure and roles leads to the formation of group 
norms, which lay down the conditions of group 
membership by illustrating how members should 
behave in a given situation.

Without a degree of cohesion between members, 
a group would fall apart. Cohesion is maintained 
on two levels. At a personal level, members must 
remain drawn to each other through reciprocal 
liking/respect or emotional ties, for example, after 
the immediate desire to join a group has passed. 
At the group level, cohesion reflects the extent to 
which people feel like they belong together. The 
more cohesion a group has, the more important it 
becomes to its members (Cartwright, 1968). Co-
hesion is maintained through members following 
group norms – or shared guidelines to behaviour. 
If an individual member begins to deviate from 
the group’s norms then they may find themselves 
quickly rejected (Argyle, 1994).

Most people are astutely aware of the groups 
to which they belong, and are able to recognise 
other members of their group(s). Such awareness 

leads us to develop a sense of social (or collective) 
identity, which may or may not become part of our 
own self-concept – depending on the importance 
that we place upon the group (e.g. Tajfel, 1981). 
We can place ourselves in many different types of 
social category – from arbitrary group membership 
(e.g. sports clubs or cliques) to naturally occurring 
demographic groups (e.g. “I am British”).

Groups usually occur in order to achieve a 
shared goal, or to follow some common purpose. 
Goals can vary immensely, from the serious (e.g. 
defending a country from attack) to the frivolous 
(e.g. just meeting to enjoy each other’s company). 
McGrath (1984) has identified four different types 
of task that groups can perform in order to achieve 
their goals. These are Generating tasks, Choosing 
tasks, Negotiating tasks, and Executing tasks. Some 
groups focus on just one task, while others may 
carry out all of them at some point.

Groups need to generate strategies that can be 
used to achieve their goals, for example a sports team 
or army unit will develop new tactics which can be 
used to outfox their opponents. To solve problems, 
groups must often choose between numerous po-
tential solutions. In doing so, groups will usually 
need to negotiate differences of opinion within 
their own members. These kinds of tasks are most 
common for groups responsible for making policy 
– e.g. business management or government organi-
sations. Finally, most groups execute tasks. Sports 
teams compete against each other, and governments 
enforce their policies. 

school c lasses as social networks

A specific group of interest for some researchers is 
that formed by the members of a school class. Clearly, 
a class of school children legitimately fits Forsyth’s 
(1999) characteristics of a group. Whether it takes 
the form of working on class projects together or 
simply asking their neighbour for a pencil, pupils 
within a class will naturally interact with other. 
Indeed, teacher and pupils will also interact with 
each other. Not only is there an obvious hierarchy 
in a classroom setting whereby the teacher leads 
the class in activities, but there will also be a sub-
structure in terms of which children sit together, 
and which children are favoured or ignored by their 
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peers. Cohesion for a school class is not governed 
by mutual appreciation for each other, but rather is 
enforced by school policy. In this way, cohesion in 
school classes is created from characteristics such 
as age and ability, and norms are dictated by the 
rules laid down by the teacher. As a school class 
is a fairly rigid social group (membership remains 
fairly stable after the class is first formed), children 
can easily form a sense of social identity, a sense of 
‘belonging’ to a certain class. This is often enforced 
further by school activities (e.g. class performances) 
or by asking classes to compete against each other 
(e.g. on sports days). Finally, all members of a 
school class engage in the same goal – educational 
activity. 

While some groups are formed arbitrarily (e.g. 
the crowd of people watching a street performer), or 
determined based upon the member’s characteristics 
(e.g. our school class), yet others may be formed 
through the pursuit of a specific goal. This kind of 
a group is often known as a leisure group (Argyle, 
1994), or social network. Social networks are formed 
usually for the explicit purpose of socialising and 
are often organised around a single common activ-
ity or belief, such as dancing, attending church, or 
simply ‘hanging-out’ together. There is usually little 
material reward to the members of these groups and 
so the social aspect, rather than being a means to 
an end, becomes an end in itself.

Cairns & Cairns (1994) have shown that members 
of childhood friendship networks are very similar to 
each other not only with regards to gender, ethnicity 
and attitudes towards behavioural norms, but also 
in terms of prevalence of aggressive and deviant 
behaviour. Children tend to group themselves with 
similar peers, and continue to socialize each other 
in similar directions (e.g. Berndt, 1992). 

An interesting example of a social network 
could be a subset of children from the school class 
that has already been described. Let us assume that 
there are six children from our class who all enjoy 
football (soccer). To follow this common passion, 
they meet on the school field every lunch time, with 
a ball, to play their favourite game. This seems like 
a harmonious union, at first. However, consider that 
these six children will naturally have different per-
sonalities – let us suppose that they differ in terms 
of how competitive they are towards each other, and 

how much they like each other. We will return to 
this scenario at a later point in this chapter.

a ggressive behaviour

An unfortunate part of human social activity is to 
act aggressively towards others – either as a group 
process, or as an individual. Aggression can be 
confused with assertiveness, ambition, or self-con-
fident behaviour. For example, workers who initiate 
industrial action to counter poor working conditions 
could be construed as aggressive. However, in this 
chapter a more narrow description is used, which 
implies more malicious intent. Therefore, we will 
define aggressive behaviour as behaviour which is 
directed at causing physical or psychological harm 
to others (Aronson, Wilson, & Akert, 1997). An 
important point to note is the role of intentionality in 
this definition. Behaviour which causes harm is not 
considered to be aggressive if it occurs accidentally. 
For example, while being mistakenly hurt in a traffic 
accident is likely to cause more damage than being 
punched in a bar-brawl, it is the bar-brawl that is 
considered aggressive as someone actually holds 
the intention to cause pain.

bullying in schools

Let us now return to our school class. One particular 
kind of aggressive behaviour that can occur among 
school children is bullying. Bullying behaviour has 
been extensively researched, leading to comprehen-
sive estimates of prevalence and future implications. 
Some reviews show that between 8-46% of children 
are bullied in primary schools (e.g. Wolke, Woods, 
Bloomfield & Karstadt, 2006). Other sources show 
that victimisation at school can lead to issues such 
as low self-esteem (Matsui, Kakuyama, Tsuzuki, & 
Onglacto, 1996), anxiety (Salmon, James & Smith, 
1998), depression (Craig, 1998), or hyperactivity/be-
havioural conduct issues (Farrington, 1993).

To be properly classified as bullying, as op-
posed to one-off aggressive acts, a victim must be 
the target of negative action on the part of one or 
more others. Furthermore, bullying is a repeated 
act, which continues regularly over time (Olweus, 
1999). Bullies also often rely on a real or implied 
imbalance of strength (Whitney & Smith, 1993).
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Most bullying can be classified into one of three 
categories (Wolke, Woods, Stanford, & Schulz, 
2001):

• Direct physical bullying: e.g. pushing, hit-
ting, kicking, or stealing belongings.

• Direct verbal bullying: e.g. name calling, 
teasing, or threatening.

• Indirect (or relational) bullying: e.g. social 
exclusion, rumour spreading or withdrawal of 
friendships.

In general, girls and boys display different styles 
of aggression whereby boys employ more direct 
and physical actions, while girls prefer indirect 
aggression (Björkqvist, 1994). This trend is con-
tinued with bullying behaviour – boys use much 
more physical forms of bullying, while girls tend 
to use more relational and verbal forms (Crick & 
Grotpeter, 1995).

bullying r oles as a g roup process

One particularly successful avenue of research into 
bullying has uncovered six distinct roles that children 
can take on in episodes of bullying. Furthermore, 
these same roles have been confirmed in a number 
of studies (Salmivalli et al., 1996; Sutton & Smith, 
1999; Wolke & Stanford, 1999). These roles (though 
sometimes labelled differently) are: 

• The ‘pure’ bully who bullies others but is never 
victimised themselves

• The ‘pure’ victim who is bullied by others
• The bully-assistant who helps bully, but never 

initiates the bullying
• The bully-reinforcer who provides positive 

feedback to the bully, without actually bul-
lying anyone themselves

• The defender who tries to help the victim
• The outsider/bystander who tries not to get 

involved

On occasion, some children are also classified 
as bully-victims (Wolke et al 2001). These children 
are sometimes victims, but they also bully others 
themselves.

A number of significant trends were found by 
Salmivalli et al. (1996) through a peer-nomination 
methodology, whereby children are asked to show 
which other children in their class fall into the 
various bullying roles. Of the 573 children in their 
study, 87% were found to be involved in bullying 
(i.e. could be reliably assigned to a bullying role). 
Gender differences showed that girls are more likely 
than boys to be outsiders (40.2% girls, 7.3% boys) 
or defenders (30.1% girls, 4.5% boys), while boys 
are more likely to be a reinforcer (37.3% boys, 1.7% 
girls) or assistant (12.2% boys, 1.4% girls). More boys 
than girls were rated as bullies (10.5% boys, 5.9% 
girls), while the number of victims was similar for 
both genders (11.8% boys, 11.5% girls). 

Figure 1. Example network diagram of a typical school class (Adapted from Salmivalli et al., 1997).

Legend:
Circles represent girls, squares represent boys.

The letters stand for each role:
Bully
Victim
Bully-Assistant
Bully-Reinforcer
Defender
Outsider
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It was also shown that victims tend to have a 
lower social status within their class than any other 
role, as characterised by low social-acceptance 
and high social-rejection scores. Male bullies, 
female reinforcers, and female assistants shared a 
similar acceptance/rejection pattern, though not to 
the same extent. The most popular children were 
defenders (high acceptance, low rejection). This 
low social status could provide an explanation for 
why certain children are victimised to begin with. 
However, Olweus (1991) has pointed out that the 
ways in which a victim is perceived by their peers 
can be changed throughout the bullying process. 
For example – through a process of cognitive dis-
sonance, or as attempt to rationalise one’s own bad 
behaviour, others may (mistakenly) come to feel 
that a victim ‘deserves’ to be bullied. 

In addition to the evidence above that different 
bullying roles may be predicted by social status, there 
is also evidence to suggest that children with simi-
lar and complimentary bullying roles tend to form 
their own social networks. Salmivalli, Huttunen, & 
Lagerspetz (1997) conducted a large scale review 
of Finnish school children and found a number of 
interesting relationships. Firstly, children whose 
bullying roles were similar or complimentary (e.g. 
bullies, assistants, and reinforcers) tended to form 
friendship networks with each.  Secondly, bullies 
and their associates formed larger networks than 
did defenders and bystanders. Thirdly, children 
who were not members of friendship networks were 
more likely to be victims (Figure 1).

The adage “birds of a feather flock together” 
seems, then, to hold true for children involved in 
bullying. Children with similar or compatible bul-
lying roles tend to group themselves together and 
then go on to conflict with others to form varied, 
but obvious, social networks. 

curren T an Ti-bu LLying  
inTer ven Tions

One of the most important implications of these 
findings relates to the nature in which interven-
tions should be applied. Far from a dyadic approach 
which only includes bully and victim, a successful 
intervention needs to take into account the interplay 

between the various bullying roles, and needs to 
reach all children involved in bullying.

Sutton & Smith (1999) suggest that encourag-
ing existing defenders to counter assistants and 
reinforcers could be a worthwhile course of action 
– especially since reinforcers are younger (and 
therefore assumedly more easily impressionable) 
than outsiders. They also show that defender is a 
natural secondary role for outsiders, indicating that 
it would be feasible to promote positive behaviour 
amongst these children. Indeed, some evidence has 
already shown that training bystanders to act as a 
support network for victims can have a positive effect 
for victims, the peer supporters themselves, and the 
school environment as a whole (Cowie, 2000).

A number of such interventions already exist 
in some form. Maines & Robinson (1991) promote 
the inclusion of observers along with bullies and 
members of their gang in thinking about ways to 
reduce victimisation in the “no blame” approach. 
Some governments have also adopted this position. 
In England and Wales, for example, the Department 
for Education advocates a “whole school approach” 
(DfE, 1994). While popular, Lodge & Frydenberg 
(2005) have shown that the impact of these holistic 
approaches unfortunately varies from country to 
country. In Norway a 50% reduction of bullying 
was described after a nationwide campaign (Ol-
weus, 1994), while success in the US, Germany, 
and Belgium has not been so pronounced (Smith, 
Anadiou, & Cowie, 2003). Other reports show ef-
fect sizes of between 15% (Smith & Sharp, 1994) 
to 30% (Pepler, Craig, Ziegler, & Charach, 1994). 
Further studies actually show an increase in reports 
of bullying (Soutter & McKenzie, 2000), though 
this could be due to increased awareness, leading 
to increased reports, rather than an actual increase 
in prevalence. Given the varied success of the tra-
ditional interventions above, new ways of tackling 
bullying in schools are beginning to focus on the 
use of computers.

c omputers in education

Information and Communication Technology (ICT) 
is continually playing a more central role in primary 
education. In the UK, aside from schools updating 
the delivery medium of classes from the blackboard 
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to the interactive whiteboard, pupils are being en-
couraged from an early age to use computers. The 
ICT curriculum in UK focuses not only on teach-
ing children how to use word processors, but also 
includes spreadsheet/database maintenance, basic 
statistical analysis, and image editing. A number 
of specialist resources are also available for less 
traditional subjects, such as “Kar2ouche”, which 
has a number of modules for PSHE (Personal and 
Social Health Education) curriculum.

More sophisticated VLEs are now also beginning 
to be introduced into school systems, again usually 
to teach less conventional subjects. Scaife & Rogers 
(2001) discuss a virtual theatre implemented as part 
of the EU’s i3 ESE project ‘PUPPET’. One scenario 
takes place on a virtual farm, where children have 
to show an autonomous agent (a piglet) how to 
return to the sty through a user-controlled avatar 
(the farmer). For use outside of the classroom – but 
still with an educational purpose – Johnson et al. 
(1998) describe the NICE (Narrative Immersive 
Constructionist/Collaborative Environments) proj-
ect. This project developed a VLE within a CAVE 
environment in which children create and maintain 
basic ecosystems. Users interact with other remote 
users across a network and go on to create stories 
based on their experiences. 

A number of anti-bullying applications already 
exist and are in operation in some schools. “Text 
Someone”3 provides a phone based system which 
allows children to text or email their concerns to 

their school. The system records all incoming mes-
sages, notifies teachers when a new message has 
been received, and allows teachers to send replies. 
“Securus”4 monitors computer networks and alerts 
teachers if it detects inappropriate language, or signs 
of depression, predator grooming, drugs, and ha-
rassment. “Vantage Sentinel”5 is a risk management 
and incident reporting system similar to Securus, 
though with wider scope for primary care institu-
tions as well as schools. It should be noted that all 
these systems are primarily for use by teachers, for 
the recording of bullying incidences, rather than 
for use by children. As effective as they may be in 
this regard, as far as children are concerned these 
applications can act only as a deterrent while they 
are using the monitored systems – they do not act 
at the root cause of bullying, and do not serve to 
educate children.

a nti-bullying virtual Learning 
environments

Not only is software an innovative and fun new way 
to address the issue with children but it seems all the 
more pertinent given the rise of cyber-bullying via 
mobile phones and the internet. Kar2ouche, from Im-
mersive Education Ltd, is an anti-bullying software 
which is aimed at children themselves. Kar2ouche 
allows users to generate their own storyboards, but 
is limited in that there is no interaction between user 
and characters – the users author their own story but 

Figure 2. Screenshots of episode and interaction scenes within FearNot!
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do not easily learn anything new, without discussion 
of others’ stories. An interactive approach is taken 
by FearNot!, a new VLE that is aimed at promoting 
pro-social behaviour among children themselves. 
The authors of this chapter are members of the 
consortium of the EU Framework 6 project e-CIR-
CUS (http://www.e-circus.org), which includes the 
development and evaluation of FearNot!

FearNot! (Fun with Empathic Agents to achieve 
Novel Outcomes in Teaching) is a VLE populated 
with synthetic characters designed to simulate a 
primary school setting. FearNot! shows a series of 
cartoon-like episodes to users, in which an incident 
of bullying may occur. These episodes are emergent 
in that the characters do not follow a script, but can 
react dynamically to events in the environment. In 
between each of these episodes, users are able to 
interact with the victimised character in order to 
advise them on how best to cope with the bullying. 
The victimised character will take this advice on 
board for the following episode, allowing the user’s 
contribution to guide the path of the story.

Since boys and girls bully in different ways, the 
episodes in FearNot! have been designed to reflect 
these differences. The episodes for boys to play 
include more physical than relational incidences, 
while the girls episodes are more indirect than 
physical. The character parameters, implemented 
with the FAtiMA architecture (Dias, 2005; Dias, 
Ho, Vogt, Beeckman, Paiva, & André, 2007), have 
been carefully designed in order to reflect the range 
of bullying roles encountered in real life. For exam-

ple, bullies and their associates are more confident 
than victims. It is this architecture, which allows 
our agents to act autonomously as it includes com-
ponents representing personality, emotion, mood, 
motivation, and autobiographical memory.

Users interact with FearNot! individually. This 
allows for users to engage emotionally with the 
characters, and to build up an empathic relation-
ship with them. Studies during the development of 
FearNot! have already shown that the characters 
are believable (Woods, Hall, Sobral, Dautenhahn, 
& Wolke, 2003) and successful in eliciting a range 
of different emotions in users (e.g. Hall et al., 2005; 
Watson et al, 2007). Individual usage also allows 
children to deal with a potentially sensitive issue 
confidentially, and without fear of reprisal from 
their classmates – this is especially important for 
children who are being bullied.

Due to the emotional engagement generated by 
the characters, children are keen to help the victim 
character and to provide advice. Because children 
are able to see the consequences of the advice they 
offer, they are able to learn how to cope with bullying 
vicariously without having to actually experience it 
themselves. In this way, FearNot! aims to reduce bul-
lying by promoting onlookers to become defenders 
and to improve knowledge about bullying and about 
the best strategies to deal with being bullied. 

One of the most successful strategies to deal 
with bullying in schools is to develop a peer sup-
port network – or, in other words, to make friends 
(Hunter, Boyle, & Warden, 2004). Indeed, as already 

Figure 3. Screenshot of C-SoNeS and close-up of agents talking to each other
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suggested in this chapter, being a member of a group 
is the best predictor of not being bullied. Therefore, 
an alternative method to stopping bullying would 
be to promote the generation of social groups and 
friendships, thus preventing bullies from finding 
potential victims in the first place. 

This approach is currently under consideration 
by Dawidowicz, an MPhil student affiliated with the 
e-CIRCUS project team. Different from FearNot! 
which has been developed over several years and has 
already been tested with hundreds of children, this 
work is an early stage of development. “C-SoNeS” 
(Children’s Social Network Simulation)6, is designed 
to teach children potential strategies to make friend-
ships. This VLE currently consists of a simulated 
playing field, on which six autonomous agents are 
playing with a ball. The eventual aim for this project 
is to allow users to control their own avatar in order to 
learn about how social networks operate. In advance 

of user-controlled input, however, the network of 
agents must be able to act as an ecologically valid 
simulation of real social networks.

The football-like game which agents play in 
this VLE does not have any rules, and the agents’ 
only goals are to reach and kick the ball – there are 
no opposing teams and no goal scoring behaviour. 
Rather, each agent competes against the others in 
attempting to reach the ball and kick it on again 
first. Each agent also maintains a record of its 
relationships with the other agents. At each time-
step an agent will perform one behaviour from its 
repertoire – these behaviours currently include and 
are limited to: running toward the ball, kicking the 
ball, obstacle avoidance, going to the field entrance, 
collecting the ball (when it leaves the playing field), 
pushing, and talking. 

The last of these behaviours, pushing and 
talking, are most note-worthy as they can affect 

Legend:
Each node represents one agent, while connecting lines represent relationships from one agent towards another. The thickness 
of each line represents the quality/strength of each relationship.

Figure 4. Example network diagram, cf. Dawidowicz (2007)
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the relationships between agents (negatively and 
positively, respectively). If agent A pushes agent 
B, then the relationship of B towards A decreases. 
However, agent A’s relation towards agent B does 
not change. In other words if agent A pushes agent 
B, then B will ‘dislike’ A, while agent A will not 
be affected at all. On the other hand, when agents 
talk to each other, both will improve their relation-
ship towards the other (or ‘like’ the other) slightly 
more in a reciprocal fashion. It should be noted 
that agents only talk in pairs, and that talking only 
occurs when the ball has been kicked outside of the 
playing field. Relationships increase or decrease by 
a fixed integer which is set before each simulation 
is run. There are no upper or lower thresholds that 
relationships can reach.

Using this setup, Dawidowicz (2007) ran a series 
of studies in order to observe the effects of manipu-
lating certain agent parameters, in order to refine 
these parameters for the VLE to better simulate real 
life. At the end of each run, the software generated 
a diagram (see Figure 4) which shows the dyadic 
relationships between each agent in terms of both 
negativity/positivity and strength. By examining 
the network diagram, one can see how the relation-
ships between agents are affected by the various 
parameter manipulations. 

In this way a simple VLE has been developed 
in which agents can develop basic relationships to 
each other in a manner in a manner analogous to 
the social networks which are found in incidences 
of bullying in primary schools. However, this VLE 
still requires further development before it is ready 
to be used as an educational tool. For example, as 
previously stated, incidences of bullying are not 
based on simple dyadic relationships, but are reliant 
on more complex relationships. This is especially 
true of indirect/relational bullying. 

conc Lusion

This chapter has presented some of the literature 
concerning social networks and has described the 
ways in which social groups are organised and 
maintained. Social networks found between chil-
dren in primary school classes were the focus, and 

contemporary psychological perspectives on the 
nature of bullying among school-age children were 
outlined. Current anti-bullying interventions and 
the role of ICT in primary schools were described 
to provide context for the use of VLEs as anti-bul-
lying interventions. Two VLEs were introduced 
which have been designed to promote learning and 
pro-social behaviour among young children, with 
the help of autonomous social agents. 

FearNot! employs emotionally aware agents 
that model a typical bullying network to educate 
children about the various coping strategies that 
can be used to stop bullying. The software has been 
used in large-scale studies (Hall et al, 2005) where 
345 children interacted once with the software. In 
autumn 2007 we began a longitudinal study, in col-
laboration with other project partners and schools 
in UK (University of Warwick) and Germany 
(University of Würzburg). The study targets around 
1200 school children in total and children will 
interact with the software over several weeks. An 
alternative VLE, still under development, includes 
agents which develop their own social network ‘from 
scratch’ in order for children to learn how to build 
and maintain friendships. 

Lessons learned from the development of Fear-
Not! and C-SoNeS will be presented in Part II of this 
chapter, along with recommendations for design-
ers of other VLEs. Part II will explain some of the 
technical and engagement-oriented considerations 
that need to be made before creating a VLE, and 
will provide some contemporary methodologies 
which have been used successfully throughout the 
e-CIRCUS project.

acknow Ledg Men T

This work was partially supported by the European 
Community (EC) and is currently funded by the 
e-CIRCUS project IST-4-027656-STP. The authors 
are solely responsible for the content of this publica-
tion. It does not represent the opinion of the EC, and 
the EC is not responsible for any use that might be 
made of data appearing therein.



  ���

Developing Relationships Between Autonomous Agents

references

Argyle, M. (1994). The psychology of interpersonal 
behaviour (5th Ed.). St. Ives, UK: Penguin Books.

Aronson, E. (1998). The social animal (7th Ed.). 
USA: Freeman.

Aronson, E., Wilson, T. D., & Akert, R. M. (1997). 
Social psychology (2nd Ed.) (Chapter 12. Aggres-
sion: Why we hurt other people). USA: Addison-
Wesley. 

Baron, R. A., & Byrne, D. (1996). Social psychology 
(8th Ed.) (Chapter 11. Aggression: Its nature, causes, 
and control.) USA: Allyn and Bacon.

Berndt, T.J. (1992). The features and effects of 
friendship in early adolescence. Child Development, 
53, 1447-1460.

Björkqvist, K. (1994). Sex differences in physical, 
verbal, and indirect aggression. Sex Roles, 30(3/4), 
177-188.

Blizzard Entertainment (developer). World of war-
craft. Vivendi Universal (publisher). 2004.

Cairns, R., & Cairns, B. (1994). Lifelines and risks: 
Pathways of youth in our time. Cambridge, UK: 
Cambridge University Press.

Cartwright, D. (1968). The nature of group-cohesive-
ness. In D. Cartwright & A. Zander (Eds.), Group 
dynamics: Research and theory (3rd Ed.). New York, 
USA: Harper & Row.

Clements, D. (1998, February). Young children and 
technology. Paper presented at the Forum on Early 
Childhood Science, Mathematics, and Technology 
Education, Washington DC, USA.

Cowie, H. (2000). Bystanding or standing-by: 
Gender issues in coping with bullying in English 
schools. Aggressive Behaviour, 26, 85-97.

Craig, W.M. (1998). The relationship among bully-
ing, victimization, depression, anxiety and aggres-
sion in elementary school children. Personality and 
Individual Differences, 24, 123-130.

Crick, N.R., & Grotpeter, J.K. (1995). Relational 
aggression, gender, and social-psychological adjust-
ment. Child Development, 66, 710-722.

Dawidowicz, R. (2007). Social relationships in a 
multi-agent virtual environment. MPhil dissertation, 
University of Hertfordshire, UK.

Department for Education (1994). Don’t suffer in 
silence: An anti-bullying pack for schools. London: 
HMSO.

Dias, J. (2005). FearNot!: Creating emotional 
autonomous synthetic characters for emphatic 
interactions. Unpublished doctoral dissertation, 
Universidade Técnica de Lisboa, Portugal.

Dias, J., Ho, W.C., Vogt, T., Beeckman, N., Paiva, 
A., & André, E. (2007). I know what I did last 
summer: Autobiographic memory in synthetic 
characters. Conference proceedings ACII 2007. 
Berlin, Germany: Springer.

Druin, A., Bederson, B., Boltman, A., Miura, A., 
Knotts-Callahan, D., Platt, M. (1998). Children as 
our technology design partners. In Druin, A. (Ed.). 
The design of children’s technology (pp. 51-72). San 
Francisco, USA: Morgan Kaufmann

Farrington, D.P. (1993). Understanding and pre-
venting bullying. In M. Tonry (Ed.), Crime and 
justice, Vol. 17.

Forsyth, D.R. (1999). Group dynamics (3rd Ed.). 
Belmont, USA: Wadsworth Publishing Company.

Gratch, J., & Marsella, S. (2001). Tears and fears: 
Modelling emotions and emotional behaviours 
in synthetic agents. Conference Proceedings 
AGENTS’01 (pp. 278-285).

Hall, L., Woods, S., Aylett, R., Newall, L., & Paiva, 
A. (2005). Achieving empathic engagement through 
affective interaction with synthetic characters. 
Conference Proceedings ACII 2005 (pp. 731-738). 
Berlin, Germany: Springer.

Hunter, S.C., Boyle, J.M.E., & Warden, D. (2004). 
Help seeking amongst child and adolescent victims 
of peer-aggression and bullying: The influence of 
school-stage, gender, victimisation, appraisal, and 
emotion. British Journal of Educational Psychol-
ogy, 74, 375-390.

Johnson, A., Roussos, M., Leigh, J., Vasilakis, C., 
Barnes, C., & Moher, T. (1998). The NICE project: 



���  

Developing Relationships Between Autonomous Agents

learning together in a virtual world. Conference 
Proceedings IEEE 1998 (pp. 176-183).

Linden Research, Inc (developer) Second life. Linden 
Research, Inc (publisher). 2003.

Lodge, J., & Frydenberg, E. (2005). The role of peer 
bystanders in school bullying: Positive steps toward 
promoting peaceful schools. Theory into Practice, 
44(4), 329-336.

Maines, B., & Robinson, G. (1991). Don’t beat 
the bullies! Educational Psychology in Practice, 
7,168-172.

Malfaz, M., & Salichs, M.A. (2006). Learning be-
haviour-selection algorithms for autonomous social 
agents living in a role-playing game. Conference 
Proceedings AISB’06 (pp. 45-52).

Matsui, T., Kakuyama, T., Tsuzuki, Y., & Onglacto, 
M.L. (1996). Long-term outcomes of early victimi-
zation by peers among Japanese male university 
students: Models of a vicious cycle. Psychological 
Reports, 79, 711-720.

McGrath, J.E. (1984). Groups: Interaction and per-
formance. Englewood Cliffs, USA: Prentice Hall.

McQuiggan, S.W., & Lester, J.C. (2006) Learning 
empathy: A data-driven framework for modelling 
empathetic companion agents. Conference Proceed-
ings AAMAS’06 (pp. 961-968).

Olweus, D. (1991). Bully/victim problems among 
school children: Basic facts and effects of a school-
based intervention program. In K. Rubin, & D. Pepler 
(Eds.) The development and treatment of childhood 
aggression. New Jersey, USA: Erlbaum.

Olweus, D. (1994). Bullying at school: Long term 
outcomes for the victims and an effective school 
based intervention program. In R. Huesmann (Ed.). 
Aggressive behaviour. Current perspectives. New 
York, USA: Plenum.

Olweus, D. (1999). Norway. In P.K. Smith, Y. Morita, 
J. Junger-Tas, D. Olweus, R. Catalano, & P. Slee 
(Eds.), The nature of school bullying: A cross-na-
tional perspective. London, UK: Routledge.

Pepler, D.J., Craig, W., Ziegler, S., & Charach, A. 
(1994). An evaluation of an anti-bullying interven-

tion in Toronto schools. Canadian Journal of Com-
munity Mental Health. Special Issue: Prevention: 
Focus on Children and Youth, 13, 95-110.

Rickel, J., Gratch, J., Hill, R., Marsella, S., Swartout, 
W. (2001). Steve goes to Bosnia: Towards a new 
generation of virtual humans for interactive expe-
riences. In AAAI Spring Symposium  on Artificial 
Intelligence and Interactive Entertainment.

Salmivalli, C., Huttunen, A., & Lagerspetz, K.M.J. 
(1997). Peer networks and bullying in schools. Scan-
dinavian Journal of Psychology, 38, 305-312.

Salmivalli, C., Lagerspetz, K., Björkqvist, K., 
Österman, K., & Kaukainen, A. (1996). Bullying 
as a group process: Particpant roles and their rela-
tions to social status within the group. Aggressive 
Behaviour, 22, 1-15.

Salmon, G., James, A., & Smith, D.M. (1998). Bul-
lying in schools: Self reported anxiety, depression, 
and self esteem in secondary school children. British 
Medical Journal, 317, 924-925.

Scaife, M., & Rogers, Y. (2001). Informing the de-
sign of a virtual environment to support learning in 
children. International Journal of Human Computer 
Studies, 55, 115-143. 

Smith, P., Anadiou, K., & Cowie, H. (2003). In-
terventions to reduce school bullying. Canadian 
Journal of Psychiatry, 48, 591-599.

Smith, P.K., & Sharp, S. (Eds.). (1994). School 
bullying: Insights and perspectives. London, UK: 
Routledge.

Soutter, A., & McKenzie, A. (2000). The use 
and effects of ant bullying and anti-harassment 
policies in Australian schools. School Psychology 
International. Special Issue: Bullies and Victims, 
21, 96-105.

Sutton, J., & Smith, P.K. (1999). Bullying as a group 
process: An adaptation of the participant role ap-
proach. Aggressive Behaviour, 25, 97-111.

Swartout, W., Hill, R., Gratch, J., Johnson, W.L., 
Kyriakakis, C., CLaBore, C., Lindheim, R., Marsel-
la, S., Miraglia, D., Moore, B., Morie, J., Rickel, J., 
Thiébaux, M., Tuch, L., Whitney, R., & Douglas, J. 
(2001) Toward the holodeck: Integrating graphics, 



  ���

Developing Relationships Between Autonomous Agents

sound, character and story. Conference Proceedings 
AGENT’01 (pp. 409-416).

Tajfel, H. (1981). Human groups and social cat-
egories. New York, USA: Cambridge University 
Press.

Watson, S., Vannini, N., Davis, M., Woods, S., Hall, 
M., Hall, L., & Dautenhahn, K. (2007). FearNot! 
an anti-Bullying Intervention: Evaluation of an in-
teractive virtual learning environment. Conference 
Proceedings AISB’07 (pp. 446-452). 

Whitney, I., & Smith, P.K. (1993). A survey of 
the nature and extent of bullying in junior/middle 
and secondary schools. Educational Research, 35, 
3-25.

Wolke, D., & Stanford, K. (1999). Bullying in school 
children. In D. Messer & S. Millar (Eds.), Develop-
mental Psychology. London, UK: Arnold.

Wolke, D., Woods, S., Bloomfield, L., & Karstadt. 
(2006). Bullying involvement in primary school and 
common health problems. Archives of Disease in 
Childhood, 85, 197-201.

Wolke, D., Woods, S., Stanford, K., & Schulz, H. 
(2001). Bullying and victimisation of primary school 
children in South England and South Germany: 
Prevalence and school factors. British Journal of 
Psychology, 92, 673-696.

Woods, S., Hall, L., Sobral, D., Dautenhahn, K., 
& Wolke, D. (2003) A study into the believability 
of animated characters in the context of bullying 
intervention. Conference Proceedings IVA 2003 
(pp. 310-314). Berlin, Germany: Springer.

addi Tiona L reading

Andreou, E. (2001). Bully/victim problems and 
their association with coping behaviour in conflic-
tual peer interactions among school-age children. 
Educational Psychology, 21(1), 59-66.

Arsenio, W.F., & Lemerise, E.A. (2001). Varieties 
of childhood bullying: Values, emotion processes, 
and social competence. Social Development, 10(1), 
59-73.

Aylett, R., Louchart, S., Dias, J., Paiva, A., & Vala, 
M. (2005) FearNot! An experiment in emergent 
narrative. Conference Proceedings IVA 2005 (pp. 
305-316). Berlin, Germany: Springer.

Aylett, R., Paiva, A., Woods, S., Hall, L., & Zoll, C. 
(2004). Expressive characters in anti-bullying educa-
tion. In L. Canamero & R. Aylett (Eds.), Animating 
Expressive Characters for Social Interaction. John 
Benjamins Publishing Company. 

Bates, J., Loyall, A.B., & Reilly, W.S. (1994). An ar-
chitecture for action, emotion, and social behaviour. 
Selected papers from the 4th European Workshop 
on Modelling Autonomous Agents in a Multi-Agent 
World, Artificial Social Systems, 55-68.

Gilbert, N., & Troitzsch, K.G. (2005). Simulation 
for the social scientist (2nd Ed.). Glasgow, UK: Open 
University Press.

Hall, L., Paiva, A., Aylett, R., & Woods, S. (Un-
published manuscript) Empathy in human computer 
interaction.

Kanetsuna, T., Smith, P.K., & Morita, Y. (2006). 
Coping with bullying at school: Children’s recom-
mended strategies and attitudes to school-based 
interventions in Engand and Japan. Aggressive 
Behaviour, 32, 570-580.

Lee, J.J., & Hoadley, C.M. (2006) “Ugly in a world 
where you can choose to be beautiful”: Teaching 
and learning about diversity via virtual worlds. 
Conference Proceedings International Conference 
on Learning Sciences (pp. 383-389).

Louchart, S., & Aylett, R. (2004). Narrative theory 
and emergent interactive narrative. International 
Journal of Continuing Engineering Education and 
Lifelong Learning, 14(6), 506-518.

Menesini, E., Codecasa, E., Benelli, B., & Cowie, H. 
(2003). Enhancing children’s responsibility to take 
action aganst bullying: Evaluation of a befriending 
intervention in Italian middle schools. Aggressive 
Behaviour, 29, 1-14.

Menesini, E., Eslea, M., Smith, P.K., Genta, M.L., 
Giannetti, E., Fonzi, A., & Constable, A. (1997). 
Cross-national comparison of children’s attitudes 
towards bully/victim problems in school. Aggressive 
Behaviour, 23, 245-257.



���  

Developing Relationships Between Autonomous Agents

Prendinger, H., & Ishizuka, M. (2001). Social role 
awareness in animated agents. Conference Proceed-
ings Autonomous Agents 2001 (pp.270-277).

Solberg, M.E., & Olweus, D. (2003). Prevalence 
estimation of school bullying with the Olweus 
bully/victim questionnaire. Aggressive Behaviour, 
29, 239-268.

Stewart, T.C., West, R.L., & Coplan, R. (2007). 
Multi-agent models of social dynamics in children. 
Cognitive Systems Research, 8, 1-14.

endno Tes

1 IMVU (Instant Messaging Virtual Universe) is 
an internet based messenger application with 
3D virtual environments and user-controlled 

personalisable avatars (http://www.imvu.
com).

2 A free demonstration of StudyNet is avail-
able here: http://www.studynet1.herts.ac.uk/
open_index.html. 

3 Text Someone is provided by Truancy Call 
Ltd (http://www.textsomeone.com).

4  Securus is provided by Securus Software 
(http://www.securus-software.com).

5 Vantage Sentinel is provided by Vantage 
Technologies Ltd (http://www.vantage-tech-
nologies.co.uk).

6 For further information about implemen-
tation of the C-SoNeS software, please 
contact the developer: Rafal Dawidowicz, 
Warszawska 157/50, Kielce, 25-547, Poland, 
R.P.Dawidowicz@Gmail.com
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In this chapter, we focus on the issue of understanding in various types of agents. Our main goal is to build 
up notions of meanings and understanding in neutral and non-anthropocentric terms that would not exclude 
preverbal living organisms and artificial systems by definition. By analyzing the evolutionary context of un-
derstanding in living organisms and the representation of meanings in several artificially built systems, we 
come to design principles for building “understanding” artificial agents and formulate necessary conditions 
for the presence of inherent meanings. Such meanings should be based on interactional couplings between 
the agents and their environment, and should help the agents to orient themselves in the environment and to 
satisfy their goals. We explore mechanisms of action-based meaning construction, horizontal coordination, 
and vertical transmission of meanings and exemplify them with computational models.

inTroduc Tion

Different kinds of agents—bacteria, animals, hu-
mans, some computer programs and robots—have 
something in common: they all are achieving some 
goals by sensing and acting in certain (real or vir-
tual) environments (Kelemen, 2003). Some of them 
can communicate among themselves or even with 
humans. To what extent can we say that they under-
stand what they do? If they attribute some meanings 

to situations and events in their environments, what 
is the nature of these meanings? Do they use the 
same meanings when they communicate? Where 
do these meanings come from? Are they innate 
(pre-programmed) or learned? These questions are 
the central focus of this chapter. 

Some people may be reluctant to use the terms 
“understanding” and “meaning” in association with 
other than human agents. Notions of understanding 
often presuppose intentionality or consciousness.  
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However, such notions either exclude some types 
of agents from consideration by definition, or at 
least obfuscate the matter even more by reducing 
the problem to a harder one (as detecting/proving 
intentionality or consciousness in non-human agents 
is very problematic). Our approach is different. We 
will look for as neutral and non-anthropocentric 
characterizations of meaning and understanding as 
possible, applicable to preverbal living organisms 
and artificial agents as well. This is in line with 
similar efforts to define life and consciousness in 
such a general way that the human life and human 
consciousness are just their possible instantiations 
(Langton, 1989; Holland, 2003). 

After providing a formal background, we will 
start our quest for meaning by drawing lessons from 
preverbal stages of phylogeny and ontogeny and by 
studying sensorimotor intelligence of animals and 
infants. Then we will introduce basic problems with 
understanding in artificially constructed systems 
and analyze several examples. The main issue that 
we will elaborate on is that of the origin of meanings. 
We will explore possibilities and limits of construc-
tivist approach to meaning by the computational 
modeling methodology glossed as “understanding 
by building” (Pfeifer & Scheier, 1999). 

The contribution of such an approach is threefold. 
First, we live in times when human-computer and 
computer-computer interaction is no longer a sci-
ence fiction, but a practical engineering problem. 
We need to design representational formalisms that 
will allow us to endow machines with ontologies 
necessary for their successful solving of given tasks 
and for their mutual coordination/communication. 
The representation must be sufficiently complex to 
capture peculiarities of physical and social environ-
ments, including their dynamical character. In open 
environments, the ability to learn and autonomously 
construct useful representation of relevant meanings 
is crucial. Second, operationalization of Semantic 
theories and building relevant computational models 
can help clarify the notion of “understanding” in 
artificial systems that has been a source of con-
troversy in Artificial Intelligence for a long time, 
and provide mechanisms for symbol and language 
grounding. Last but not least, the computational 
models can help us better understand ourselves. 
They can have a backward impact on theories of 

learning and language development, and on cogni-
tive science in general.

Theories  of  Meaning

Philosophers and linguists have studied the big ques-
tion of “what does it mean to mean something” for 
many centuries. Nowadays, the study of meaning 
is mainly in the realm of Semantics and semiotics. 
In denotational Semantics, linguistic meanings 
are some objects. Concerning the nature of these 
objects, the fundamental distinction should be made 
between the realist and cognitive (or conceptualist) 
approaches. In the realist approach, meanings are 
some entities “out there” in the world. In the cogni-
tive approach, meanings are mental entities “in the 
head”. Gärdenfors (2000) characterizes cognitive 
Semantics by the following six tenets:

1. Meaning is a conceptual structure in a cogni-
tive system (not truth conditions in possible 
worlds).

2. Conceptual structures are embodied (mean-
ing is not independent of perception or bodily 
experience).

3. Semantic elements are constructed from 
geometrical or topological structures (not 
symbols that can be composed according to 
some system of rules).

4. Cognitive models are primarily image-sche-
matic (not propositional). Image schemas are 
transformed by metaphoric and metonymic 
operations (Lakoff & Johnson, 1980).

5. Semantics is primary to syntax and partly 
determines it (syntax cannot be described 
independently of Semantics).

6. Contrary to the Aristotelian paradigm based on 
necessary and sufficient conditions, concepts 
show prototype effects (Rosch, 1978).

The first two tenets imply that language un-
derstanding cannot be managed by any isolated 
language module (in the sense of Fodor, 1983), but 
it is an integral part of the very same conceptual 
system that serves reasoning, orientation and acting 
in the world (Lakoff, 1987; Barsalou, 1999). 

Gärdenfors (2000) represents meanings in 
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so-called conceptual spaces construed in such 
a way that representations of similar objects are 
geometrically close to each other. Other influen-
tial cognitive Semantic theories include e.g. Force 
Dynamics of Talmy (2000), frame Semantics of 
Fillmore (1982), mental spaces of Fauconnier (1985) 
and Cognitive Grammar of Langacker (1987, 1991). 
We will review in more detail a cognitive theory of 
representation of Šefránek (2002), which aspires to 
be relevant for real (alive) cognitions in the biologi-
cal world. This theory is an effort with a declared 
goal to posit a non-trivial and falsifiable level of 
analysis of cognition and understanding without 
the necessity to resort to the brain and neural pro-
cesses. Rather, this theory focuses on the contents 
of cognition (meanings). The crucial assumption 
of this approach is that meanings can be separated 
from language, i.e. they also exist in animals and 
preverbal infants. In general, the theory applies 
to some organisms situated in some environment. 
The organisms have needs and goals, which they 
try to satisfy by performing actions (behavior). The 
organisms possess representations composed of 
meanings. The theory of meaning is built upon the 
notion of identification criteria. The identification 
criteria are abstractions of the organism’s ability to 
recognize (identify, distinguish) certain aspects of 
its (internal or external) environment. Elementary 
identification criteria recognize objects (individu-
als), natural kinds of objects, natural properties of 
objects, and natural relations among objects. More 
complex criteria, constructed from the elementary 
ones, recognize situations, rules (types of situations), 
goals (desired situations), changes in environment, 
plans (projected changes), methods (successful 
plans), events and types of events. The construction 
of the complex criteria is based on the important 
notion of transformations of criteria.

Šefránek (2002) further proposes the way how 
to move from protoSemantics, protoinference and 
protocommunication of simple organisms, through 
2-word protolanguage, to the full-fledged language 
with propositional representation and syntax. The 
ability to understand the complex language is 
inherently connected with reasoning, more specifi-
cally, with hypothetical (non-monotonic) reasoning 
(Ginsberg, 1987). 

fro M preverba L To  Linguis Tic  
Meanings : an  evo LuTionar y 
view

Within the presented cognitive Semantics views, 
lexical meanings are a part of the conceptual sys-
tem that has been shaped by experience with the 
surrounding world. This implies that understand-
ing does not begin with language; we can also talk 
about understanding at a preverbal level. 

We will start with an evolutionary view on 
onset of understanding in living organisms. Some 
scientists, e.g. Goodwin (1978) and Kováč (2000), 
trace/postulate elementary forms of cognition at 
very deep levels of the phylogenetic tree, even at 
bacterial, cellular and molecular levels. Some of the 
systems that appeared in the course of evolution have 
persisted, because their structure reflected relevant 
characteristics of their environment. According 
to Kováč (2000), biological evolution consists in 
generation of hypotheses about the nature of the 
environment, in falsifying these hypotheses, and in 
maintaining the hypotheses that have not been falsi-
fied. Hence, evolutionary adaptations of organisms 
can be viewed as a form of phylogenetic learning 
with knowledge being encoded in their structure. 
The chances of persisting are higher for organisms 
that actively explore their environment and adapt 
to it or adjust it by their behavior. 

The simplest cognitive systems only consist 
of mechanisms of sensing and acting on their 
environment. In the most elementary sense, they 
attribute meaning to parts of their environment by 
recognizing, via their sensors and actuators, infor-
mation useful for achieving their goals (Nehaniv, 
2000). Thinking appears at the highest stages of 
evolution as an abstract action – testing of various 
motor acts without actually involving the muscles. 
Deliberation, (short-term) anticipation, proto-plan-
ning, and eventually “what-if” thinking (the ability 
to mentally simulate various scenarios and evaluate 
their consequences without the necessity to realize 
them physically) increased the survival chances of 
organisms and provided them with a significant 
evolutionary advantage.

Gärdenfors (1996a) distinguishes two kinds of 
representations required for language to evolve: cued 
and detached. A cued representation must always 
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be triggered by something present in the current 
situation. An organism reacting to certain states of 
its environment in certain ways (e.g. eating objects 
recognized as food and avoiding objects recognized 
as predators) performs categorization and possesses 
cued representations of the respective categories. 
However, these representations are only activated in 
the presence of their referents. Cued representations, 
observable as non-volitional behavioral reactions, 
are innate and have evolved phylogenetically. 

A significant mechanism that enhances the 
limited memory of an organism consists in putting 
externalized marks in the environment, for example 
effluvial marks that help animals in orientation (or 
a notoriously known knot in the handkerchief as a 
“don’t forget” sign). In these cases, a mark put in 
the environment later triggers the respective cued 
representation. 

On the contrary, a detached representation may 
stand for objects and events neither present nor 
triggered by anything in the current situation of 
the organism. For example, a chimp looking for a 
(non-present) twig to reach for a banana possesses 
a detached representation of a twig and its use. 
It is speculated that the appearance of detached 
representations in phylogeny co-occurs with the 
development of neocortex (Gärdenfors, 1996b); 
in ontogeny it corresponds to object permanence 
(Piaget & Inhelder, 1966).

Possession of detached representations is a 
necessary condition for higher cognitive functions 
such as planning, deception, self-awareness and 
linguistic communication (Gärdenfors, 1996a). 
Language is a symbolic sign system that enables 
externalization and communication of detached 
representations. Thanks to its detached nature, it 
enables talking about things not present here and 
now, even about things that cannot exist physi-
cally. According to Gärdenfors (2004), language 
evolved in order to make cooperation about future 
goals possible. Language Semantics is grounded in 
conceptual meanings of various origins. Some of 
these meanings are innate, if they had been vital 
for survival on the evolutionary timescale (Fodor, 
1981). Other meanings are constructed by observing 
the environment and consequences of one’s own 
actions (Piaget & Inhelder, 1966; Bloom, 2000). 
Yet other meanings are transmitted culturally and 

are stimulated by the language itself (Whorf, 1956; 
Waxman, 2004). 

Meanings  in ar Tificia L 
sys TeMs

basic problems

The appearance of the first artificial systems that 
could to some extent use natural language, e.g. 
ELIZA (Weizenbaum, 1966) and SHRDLU (Wino-
grad, 1971), in the early history of AI have raised 
questions about the nature of understanding in 
such systems: Do these systems truly understand 
language or they just manipulate symbols that are 
meaningless to them? These questions became a 
subject of many heated debates and controversies. 
The Chinese Room Argument (Searle, 1980) and 
the Symbol Grounding Problem (Harnad, 1990) 
are examples of attempts to answer, or at least 
reformulate these questions.

John Searle (1980) has argued that, solely by 
observing a behavior (the communication, in this 
case), one cannot determine whether the system 
truly understands what it is talking about. He pro-
posed a thought experiment, known as the Chinese 
Room: Let us imagine that a person who does not 
speak Chinese is locked in the room. People outside 
the room send into the room questions written in 
Chinese. In the room, there is a box with Chinese 
characters and a book of rules for manipulating the 
characters, enabling to produce answers for ques-
tions written with Chinese characters. The person 
in the room composes the answers entirely by 
comparing the shapes of the characters with those 
in the box and by using formal rules. Let us suppose 
that the person gets so proficient in manipulating 
the characters that he gives correct answers to the 
questions. Nobody outside the room can tell that the 
person doesn’t speak a word of Chinese, neither that 
(s)he understands the content of the communication 
(s)he is participating in. (S)he has produced answers 
by manipulating uninterpreted formal symbols.  

The Chinese Room Argument led Steven Harnad 
(1990) to formulate his own version of the problem, 
known as the Symbol Grounding Problem: “How 
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can the Semantic interpretation of a formal symbol 
system be made intrinsic to the system, rather than 
just parasitic on the meanings in our heads? How 
can the meanings of the meaningless symbol tokens, 
manipulated solely on the basis of their (arbitrary) 
shapes, be grounded in anything but other meaning-
less symbols?” (p. 335).

Hence, internal representations have no intrinsic 
meaning per se. According to Maturana and Varela 
(1987), they get it via structural coupling with the 
environment. This coupling has two components: 
individual and social. The former one, called Physi-
cal Symbol Grounding (Vogt, 2002), refers to the 
ability of each individual to create an intrinsic link 
between world entities and internal representations, 
while the latter one, called Social (or External) 
Symbol Grounding, refers to the collective negotia-
tion for the selection of shared symbols and their 
meanings (Cangelosi, 2006). 

In the rest of this section, we briefly review sev-
eral relevant possibilities of meaning representation 
in artificial systems and computational models. We 
analyze them with respect to their expressive power 
and the ability to cope with the Symbol Grounding 
Problem.

discrimination Trees and prototypes

Now we will describe several models, in which 
meanings are represented by regions in some geo-
metrical space typically defined over possible sensor 
values of agents that perceive a shared environment 
– either a single-sensor one-dimensional space, or 
in the multidimensional Cartesian product of the 
sensors’ ranges. In these models, meanings are 
not externally given, but created individually by 
each agent. 

Figure 1. Splitting a discrimination tree. The range of the sensor is repeatedly split into halves (the resulting 
tree does not have to be balanced)

Figure 2. Voronoi tessellation of space to categories generated by prototypes. Round points represent examples 
of categories, ‘x’ points are prototypes computed as the centroids of the examples. 
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One possibility of partitioning the sensor spaces 
is via discrimination trees (Steels, 1997), which 
are used in models of language formation based 
on computer simulations (Bodík & Takáč, 2003; 
Smith, 2003, 2005) or on experiments with real 
robots (de Jong & Vogt, 1998; Steels & Kaplan, 
1999; Steels, 1999). For each sensory channel, the 
agent constructs a separate binary discrimination 
tree. Nodes of the tree represent subintervals of 
the corresponding sensor’s range. They determine 
the granularity of the agent’s representation: all 
sensor readings that fall within an interval of some 
node are treated equal. Initially, each tree only 
consists of a root that represents the whole range 
of the corresponding sensor. Trees are adaptively 
refined by splitting an interval of some node into 
halves, spawning two subnodes (Figure 1), in the 
so-called discrimination games (Steels & Kaplan, 
1999) played in order to find among the mean-
ings the one that uniquely distinguishes a chosen 
object (the topic) from all other concurrently pres-
ent objects (the context). The utility of each split 
is monitored by recording its use and success in 
future discriminations; environmentally irrelevant 
(unused or unsuccessful) distinctions are discarded. 
Hence, discrimination tasks provide grounding for 
the constructed meanings.

An alternative, prototype representation of 
meanings in the sensory space is based on the em-
pirical findings that some exemplars of categories 
are more representative than others (Rosch, 1978). 
Such representation of categories is effective, be-
cause only the best exemplars (prototypes) need to 

be remembered. Each point in the sensory space is 
considered a member of the category represented by 
the spatially closest prototype (see Figure 2). Pro-
totypes were used as a representation of meanings 
in experiments with software agents in a simulated 
environment (Vogt, 2005; Vogt & Divina, 2007) 
as well as with real robots (Vogt, 2000, 2002). We 
will illustrate the use of discrimination trees and 
prototypes in the section dedicated to computational 
models of horizontal coordination of lexicon.

dual-r oute neural networks

Connectionist models of symbol grounding often 
employ a dual-route architecture that typically 
involves both visual input (e.g. retina projection) 
and linguistic input (e.g. localist or graphemic/pho-
netic encoding of symbols). The output layer has 
symbolic units for representing words, and either 
a categorical representation of input stimuli (e.g. a 
localist node for each category, or a visual repre-
sentation of category prototypes) or representation 
of a desired action (e.g. values of joint angles of an 
arm). All input and output layers are connected via 
a shared hidden layer. The route from visual input 
to symbolic output is used for language production 
tasks, such as naming of an object represented in 
the visual scene or its category. The route from 
linguistic input to visual/categorical/motor output 
is used for language understanding tasks. The two 
other possible routes are used for categorization and 
sensory-based action (the route from visual input to 
categorical/motor units) and for linguistic imitation 

Figure 3. Example of a dual-route neural network used in the experiment of Cangelosi (1999)
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(from linguistic input to symbolic output) (Cangelosi, 
2005). Dual-route networks were used e.g. in the 
models of Cangelosi (1999), Cangelosi and Parisi 
(2001) and Mirolli and Parisi (2005). 

In the model of Cangelosi (1999), a population 
of 80 organisms lives in a virtual environment that 
contains three edible and three poisonous types 
of mushrooms. The model incorporates genetic 
evolution of organisms. To gain fitness, organisms 
have to avoid toadstools and identify the type of 
edible mushrooms and eat them. The behavior of 
each organism is driven by a dual-route network 
(Figure 3) that enables performing actions (based 
on mushroom location and perceptual features 
and/or linguistic input from other agents) and nam-
ing (either as imitation of a linguistic production of 
another agent or naming the mushroom for another 
agent based on the mushroom location and its per-
ceptual features). At the beginning, the lexicon is 
totally random and meaningless. Toward the end of 
the evolution, the agents are able to evolve shared 
compositional languages. Although the presented 
model is deliberately simple, it illustrates a correct 
connectionist approach to symbol grounding. Mean-
ings, implicitly represented in connection weights of 
the networks are private and created individually in 
each organism. The language learning is connected 
to sensorimotor activities via a shared hidden layer 
in the dual route architecture.

c orpus-based Meanings

Although not sufficient for language grounding in the 
real world (see the Chinese Room Argument), distri-
butional and contextual information is an important 
cue to word meanings (Li et al., 2004; Bullinaria 
& Levy, 2007). This is impressively demonstrated 
by chatbots based on a contextual corpus search. A 
chatbot is a computer program designed to simulate 
an intelligent conversation with human users. Many 
chatbots (like ELIZA) are based on recognizing 
keywords in the human user’s input and answering 
according to pre-programmed rules. Jabberwacky, 
made by Rolo Carpenter (2007), is based on differ-
ent principles: there are no fixed rules programmed 
into the system and it operates entirely through user 
interaction. The system maintains a large database 
of all previous conversations and attempts to use 

this information to find the most appropriate re-
sponse in the current context. The search is based 
on a complex layered set of heuristics that produce 
results through analyses of conversational context 
and a positive feedback (Icogno, 2007).

The success in giving an impression of real 
thinking depends on a large-enough database. Hav-
ing been online on the world wide Web since 1997, 
Jabberwacky has recorded more than 13 million 
conversations. It reflects back what it had learned 
from its conversation partners. In this way, it can use 
jokes, idioms, word games, slang, and even speak 
foreign languages. Two recent instantiations of Jab-
berwacky – George and Joan have won the Loebner 
prize in 2005 and 2006. The Loebner Prize is an 
annual competition that awards prizes to the chatbot 
considered by the judges to be the most humanlike 
of those entered. The format of the competition is 
that of a standard Turing test (Turing, 1950). 

Although Jabberwacky’s conversations can be 
interpreted by humans as having some Semantic 
content, i.e. as being “about something”, this content 
is extrinsic and Jabberwacky knows nothing about 
it. Hence, its linguistic knowledge is not grounded 
in the real world. However, from a different point 
of view, Jabberwacky is situated in the world of 
conversational sequences, where it learns from 
scratch to react appropriately in various contexts. 
The knowledge of what is “appropriate” is encoded 
in the recorded history of reactions of the chatbot’s 
human partners. In line with Brooks (1991), we 
can view Jabberwacky’s intelligent behavior as 
an emergent effect of its interactions, where the 
knowledge is distributed both in its architecture 
and the environment.

o ther Models

Due to space limitations, our collection of example 
models cannot be exhaustive. Other interesting ap-
proaches to meaning representation and formation 
include semiotic schemas (Roy, 2005), dynamic 
maps (Cohen, 1998), redescriptions of co-occurring 
events (Cohen et al., 1996) and Embodied Construc-
tion Grammar (Bergen & Chang, 2003). We refer 
interested readers to the original literature.
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cons Truc Tion  of  Meanings

individual Meanings

The moral of the story told so far is that the pres-
ence of understanding/meanings both in the animal 
kingdom and in the artificial world should be viewed 
more like a continuum with many degrees rang-
ing from elementary forms to very complex ones, 
rather than being a subject of yes/no questions. In 
line with the presented facts, we will now sum-
marize our own perspective on understanding in 
as non-anthropocentric (and even non-biological) 
terms as possible.

We will only talk about understanding in agents 
(biological or artificial) with respect to the environ-
ment (real or virtual) they are situated in. A situated 
agent is an autonomous entity that achieves some 
goals in its environment by sensing and acting 
(Kelemen, 2003). Note that this definition does not 
imply or require any consciousness or intentionality: 
the agent can achieve some goals (or serve some 
purpose) without “knowing” about it. 

Adaptive agents modify themselves to achieve 
their goals better. We will distinguish phylogenetic 
(design-time) and ontogenetic (run-time) adapta-
tions. Learning is an ontogenetic adaptation based 
on a feedback loop between perception and action 
(or, more generally, input and output). The impact 
of adaptations on an agent’s behavior can be conve-
niently described in terms of representations regard-
less of their origin and actual implementation. If an 
agent categorizes the world by producing different 
behavioral responses for different classes of inputs, 
we say that it possesses cued representations, which 
are the most elementary forms of meanings. More 
complex cognitive abilities like decision-making and 
planning require detached representations that can 
be retained, retrieved and processed independently 
of external triggers from the current environmental 
context of the agent.

socially shared Meanings

So far, we have talked about subjective or private 
meanings dependent on each agent’s phylogenetic 
and ontogenetic history. Cooperative planning 
among agents requires externalization and com-

munication of their meanings by exchanging 
publicly observable signals. We say that a signal 
is understood as having a Semantic content for an 
observing agent, if the observer behaves toward it in 
accordance with this content (van Gulick, 1988). This 
view is interactionist: private meanings cannot be 
transferred directly from one agent to another; they 
can only be inferred from behavioral interactions. 
However, the communication can only be success-
ful if the private meanings are sufficiently similar. 
This is granted, if the associations between signals, 
meanings and their referents are non-arbitrary and 
had been shaped by the same mechanism, like in 
the innate signaling systems of animal species or in 
systems of non-adaptive agents driven by the same 
preprogrammed code. However, in symbolic com-
munication systems, the links between meanings and 
signals are arbitrary by definition (Chandler, 2007). 
If they were formed or influenced by individual 
adaptation, inter-similarity of meanings between 
different agents cannot be taken for granted. Mean-
ings of individual agents need to be attuned to each 
other by adaptation in social interactions. Interac-
tions can be unidirectional (vertical), if agent’s own 
representations are adapted to an existing com-
munication system without affecting it (e.g., if an 
infant learns a language (s)he is exposed to). If the 
interactions are bidirectional (horizontal), i.e. they 
result in adaptation on both communicating sides, 
the whole language behaves as a dynamical system, 
wherein “public” (negotiated) meanings emerge as 
(moving) equilibria (Gärdenfors, 2000).

design principles for building 
“understanding” a gents

The just-presented interactionist perspective on 
meanings can be summarized in the criteria of 
genuine understanding in artificial agents, and 
design principles for building such agents:

1. Meanings should stem from interactions of 
agents with the environment they are situated 
in. In case of software agents, the environment 
does not have to be physical: they can “live”, 
i.e. sense and perform actions, in a virtual 
one, e.g. search in databases or negotiate e-
commerce transactions.
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2. Non-trivial environments are dynamic and 
changing in time. Hence, besides static objects 
and relations, the agents must be capable of 
capturing/representing dynamic character-
istics of the world, such as changes, actions, 
their consequences and events. 

3. Because the environment is open, all possible 
meanings cannot be anticipated (given before-
hand in design time) and the agents should 
learn. Learning (construction of meanings) 
should be incremental and continuous.

4. In order to enable mutual understanding in 
communication, the agents should be endowed 
with mechanisms for social coordination of 
individually constructed meanings.

co Mpu TaTiona L Mode Ls

In this section, we will present several computa-
tional models that illustrate the above-mentioned 
design principles. Because of didactic reasons, we 
selected models that focus on some of the principles 
or a particular way of their implementation, even if 
they do not obey all the principles at once.

Individual Sensorimotor Exploration

First, we will present a computational model of 
individual construction of meanings grounded 
in sensorimotor interactions (Takáč, 2006a). The 
model consists of a single agent situated in a 
simulated environment – a two-dimensional lattice 
with randomly distributed objects of four types: 
fruits, toys, furniture and the agent itself. In the 
beginning, the agent cannot distinguish any types 
– it just receives information about perceivable 
properties of objects in its vicinity in the form of 
frames – sets of <attribute: numeric value> pairs. 
The attributes encode properties like the position 
on the lattice, size, weight, color, shape, etc. The 
time is discrete in the model. In each time step, the 
agent’s perceptual input consists of one frame for 
each perceivable object. The agent can then select 
one of the objects for manipulation and try to lift 
it or put it down. Successful manipulations result 
in attribute changes of the manipulated object 
(its vertical position in this case). The actions are 

parameterized – the agent can choose the exerted 
force of lifting and the vertical position of its arm 
(these parameters are a simplified abstraction of 
a simulated action – in fact, the agent has neither 
arm, nor any motors etc.). The maximum force and 
the arm position are limited by the “construction” 
of the agent.  

The agent can observe consequences of its ac-
tions by comparing attribute values of objects in 
two subsequent time steps. Actual impact of the 
actions is regulated by the environment simulator 
based on simplified physical laws, e.g. an attempt to 
lift an object with a force too little with respect to 
the object’s weight results in no change, otherwise 
the change in the vertical position of the object is 
proportional to the vertical position of the agent’s 
arm during lifting. 

The agent actively explores its environment by 
performing random actions and gradually learns to 
distinguish relevant environmental properties and 
builds categories of objects, actions and changes 
similar in some respect. The representation of cat-
egories is based on identification criteria inspired 
by the already mentioned cognitive Semantics of 
Šefránek (2002). Each identification criterion is an 
activation function that returns, for some input, the 
degree of the input’s membership in the category 
(Figure 4). The possible inputs include a percep-
tual frame of one object (in criteria of objects and 
properties), a (“proprioceptive”) frame of action 
parameters and type (in action criteria), perceptual 
frames of several objects (in relational criteria), 
frames of the same object at different times (in 
change criteria) and output activities of other criteria 
(in compositional criteria of situations and events). 
In the beginning, the agent has no criteria – they 
are gradually constructed from scratch by extract-
ing common statistical properties of encountered 
examples of categories. For technical details of 
the representation, see Takáč (2006b; 2007a). If a 
single action performed on different objects leads 
to a sufficiently similar outcome (attribute change), 
all these objects will be considered examples of the 
same category (with respect to the action and the 
outcome). A significantly different outcome triggers 
creation of new categories. The same principle is 
used for grouping different actions performed upon 
a single object. 
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In the computer simulations of our model, we 
let the agent interact with its environment and mea-
sured the utility of the constructed representation 
for predicting outcomes of the performed actions. 
The experimental results have confirmed that the 
proposed mechanism of action-based category for-
mation leads to ecologically relevant categories, i.e. 
those supporting prediction of results of the agent’s 
own actions. For technical details of the learning 
algorithm and its evaluation, see Takáč (2006a). 

A qualitative analysis of constructed meanings 
in example simulation runs showed that the agent 
created object categories that could be interpreted 
with respect to the associated causal knowledge 
e.g. as “things too heavy to be lifted” and “things 
that cannot be put down, because they are already 
on the ground”. Attributes other than weight and 
vertical position were present in the criteria too, 
which means that they helped the agent in classi-
fication (e.g. if all heavy objects were in the same 
part of the grid, or had some specific color). Hence, 
the constructed representation was situated and it 
also encoded the agent’s subjective interactional 
learning context. 

This experiment models activities in the sen-
sorimotor stage of child development (Piaget & 
Inhelder, 1966), in which, by performing random 

and uncoordinated movements, infants learn about 
surrounding objects and possibilities of interacting 
with them. Repeated causal patterns are recorded, 
which opens the door for later deliberative planning 
aimed at satisfying one’s goals. An important as-
pect of the model is that the agent is only endowed 
with learning mechanisms in design time and all 
the knowledge about a particular environment the 
agent is exposed to is only acquired in run time. 
This enables the agent to be flexible and to adapt 
to different environments, which are unknown 
beforehand or which can change during the agent’s 
lifetime (imagine a task of programming a robot 
that will be sent to a remote planet with unknown 
conditions). 

Looking back at the design principles of under-
standing agents, this model obeys the principles 
1-3. However, the perception/action interface of 
the model was (deliberately) very abstract and 
simplified. In embodied systems operating in real 
environments, the tasks related to perception and 
processing of noisy analog sensory signal and the 
effector control (such as servo-motors of mechanical 
arm, etc.) rank among very hard. As the model only 
consisted of one agent, there was no social coordina-
tion of meanings (principle 4) and no language. We 
deal with these issues in the following sections. 

Figure 4. Identification criterion with the multivariate Gaussian activity curve operating in a two-dimensional 
input space
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horizontal c oordination

In this section, we will present a computational 
modeling framework of Steels (2000) illustrating the 
emergence of coordinated communication system 
from horizontal cultural interactions. Horizontal 
interactions are bidirectional, which means that 
both communicating sides try to attune to each 
other: they change their private associations between 
externally observable signals, internal meanings 
and corresponding referents in the world, and also 
shift the internal meanings themselves. 

The adaptation is driven by feedback about suc-
cess/failure in communication. However, success 
does not necessarily mean that the communicating 
agents have identical meanings associated with the 
same signal. Instead, the success is judged by the 
pragmatic criteria: as private meanings are not ac-
cessible externally, signs should match at the referent 
level, which is manifested by the agents’ behavior. 
Behavioral criteria are plausible: for example, if I 
ask someone to give me a pen and (s)he gives me 
an apple or opens the door instead, I can reasonably 
suspect that (s)he did not understand me.

In models based on this framework, the agents 
(simulated or embodied in real robots) play various 
types of so-called language games with various 
pragmatic goals (Steels & Kaplan, 1999). The games 
proceed in rounds; in each round, two agents are 
randomly chosen from the population – one in the 
role of a speaker and the other in that of a hearer. 
First, in the discrimination game, the speaker tries 
to uniquely identify and lexicalize a particular object 
present in the environment, chosen as the topic. Then, 
in the guessing game, the hearer tries to guess the 
topic from the signal emitted by the speaker. 

Agents store their conceptual knowledge 
(meanings) in discrimination trees, and the lexical 
knowledge in the form of many-to-many associa-
tions between nodes of the trees and signals. The 
trees and associations are constructed and adapted 
individually according to success/failure in language 
games (the acquired associations are adapted by 
manipulating their numeric-valued strengths). 

In case of success in a discrimination game, the 
speaker tries to lexicalize the selected meaning by 
using the so-called introspective obverter strategy 
(Smith, 2003): from all signals associated with the 

meaning, the speaker emits the one that maximizes 
the estimated probability of being understood prop-
erly. The hearer tries to interpret the emitted signal 
by finding its own internally associated meaning 
and then to look for a corresponding referent of the 
meaning among the present objects. Afterwards, 
the hearer receives a feedback indicating whether 
its guess was correct or not and adapts the strengths 
of the involved associations accordingly. In another 
variant called the observational game (Oliphant, 
1997), the hearer receives no feedback. Instead, the 
speaker narrows down the set of possible referents 
of the uttered signal by pointing, and the hearer 
adapts its lexicon by Hebbian learning (if there is 
more than one candidate, the hearer associates the 
signal with each of the candidates). Meanings can 
then be disambiguated cross-situationally (Siskind, 
1996; Smith, 2005). 

The Talking Heads experiment (Steels, 1999) 
was a famous physical realization of the guessing 
game scheme. The experimental setup consisted 
of two pan-tilt cameras in which different agents 
could be loaded. The loaded agents could perceive 
and communicate about a shared environment that 
consisted of a magnetic white board with various 
geometric shapes of various colors. 

Out of other models that use guessing games, 
we will mention the one realized by Vogt (2002). 
In this model, language games were played by two 
agents embodied in two mobile LOGO robots. The 
agents used prototype representation of meanings. 
The goal of the language game was to communicate 
a name for one of light sources that the robots could 
detect in their environment. 

In both mentioned experiments, the agents suc-
cessfully arrived at a coordinated grounded lexicon 
under real physical conditions. The importance of 
these models is that they demonstrate how a globally 
coherent communication system can emerge from 
scratch as a result of local interactions of language 
users. The agents start with no meanings (undif-
ferentiated sensory channels) and void lexicons and 
the whole system gets off the ground because of the 
invention mechanism implemented in the model: 
in case a speaker lacks a signal to express some 
meaning, it can emit a random signal. Such a signal 
would almost surely be misunderstood; neverthe-
less, the speaker and the hearer record the associa-
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tion between their meanings and the used signal, 
and can use it in the future. This way, signals may 
propagate in the population. The agents’ tendency 
to use the signals and meanings that were success-
fully used in the past creates a positive feedback 
loop. Variant signals and meanings compete with 
each other and the successful ones are reinforced. 
This results in self-organization and the emergence 
of a coherent communication system. Spontaneous 
self-organization of language within the time span 
of one generation with purely cultural horizontal 
interactions has also been observed among humans 
in the case of Nicaraguan Sign Language (Kegl et 
al., 1999). 

Looking back at the design principles, the 
presented models obey the principles 1, 3 and 4. 
Each agent creates and continuously reshapes its 
meanings individually, based on interactions with 
the environment. The meanings are private, not 
available to other agents and possibly different in 
each agent. They are attuned to each other so that 
the agents were able to reach their goals in language 
games. However, the design principle 2 is violated: 
agents only communicate about static objects cur-
rently present in their vicinity. They have no means 
to neither represent nor communicate dynamical 
aspects of their environment. Communication is 
based on cued representations only. 

Learning by social instruction

In this section, we will focus on unidirectional 
interactions between agents and their influence on 
the meaning adaptation process. A unidirectional 
adaptation process is an instance of learning, where 
the unaffected agent is called the teacher and the 
adapting agent is the learner. Such learning is a 
significant part of the language acquisition process 
occurring between infants and their caregivers. 
We will present a computational model motivated 
by the empirical research of Waxman (2004) who 
studied the influence of verbal instruction (naming) 
on category formation process. The results of her 
research suggest that consistent using of the same 
name for distinct objects motivates the infant to 
look for similarities and promotes formation of 
categories. 

The computational model (Takáč, in press) con-
sists of two agents situated in a simulated environ-

ment: a teacher describing various aspects of the 
present situation, and a learner inducing meanings 
of the teacher’s words by noticing cross-situation 
similarities between their referents. The simulated 
environment contains planar geometrical shapes 
characterized by randomly generated numeric attri-
butes such as the number of vertices, coordinates of 
the centroid of the shape and the size of the bound-
ing rectangle. The environment is dynamic in that 
randomly selected objects can be resized, moved, or 
removed from the environment and newly generated 
objects can be added in each time step (multiple 
changes can happen simultaneously). 

The learner’s representation of meanings is based 
on the already mentioned identification criteria. In 
the beginning, the learner has no criteria – they 
can be induced by extracting common statistical 
properties of presented examples. However, in 
the course of time, the teacher (an agent with 
predefined meanings and lexicon) names various 
aspects of static objects, properties, relations and 
dynamic changes and the learner has to determine 
what these names refer to, to create the appropriate 
criteria and associate them with the words. Along 
with an uttered expression, the teacher provides a 
non-verbal hint by “pointing” to an instance of the 
named category, i.e. the object having the property, 
being changed or being in the relation. 

This simplification is used deliberately, in order 
to show that even in the absence of the referent 
indeterminacy, the learner has to solve the sense in-
determinacy, because different words could describe 
different aspects of the same (known) referent. 

The induction of meanings is guided by the no 
true synonymy and no true homonymy assumptions. 
Although natural languages do contain words with 
multiple meanings (homonyms) and multiple ex-
pressions for a single meaning (synonyms), in case 
of bootstrapping the language and concepts from 
scratch, it is useful to start with no homonymy and 
no synonymy. 

• No true synonymy: Different words have dif-
ferent meanings, even if they share a referent 
(in that case they express different aspects of 
the referent). This assumption corresponds to 
the Principle of Contrast (Clark, 1987) known 
from child language acquisition. 
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• No true homonymy: A single word has a 
single meaning, even if it is used with more 
referents. This assumption is crucial for cross-
situational disambiguation of the meaning: all 
the referents of a single word across different 
situations are considered instances of the same 
category denoted by the word. 

Example: Let us consider an agent that lives in 
a world of geometric shapes placed on a 50×50 grid 
with the point coordinates (1, 1) on the bottom left 
and (50, 50) on the top right. If the agent perceives 
an object f = {vertices: 3; size: 18; color: 3; posX: 1; 
posY: 23} denoted by words “left”, “big”, “triangle”, 
it creates three identification criteria, which are 
initially identical and represent the “snapshot” of 
the perceived object f. The criteria begin to dif-
ferentiate, when they are updated by more and 
more instances. E.g., frames of various objects that 
have all kinds of colors, positions, sizes and other 
properties, but all have three vertices, will update 
the „snapshot“ criterion associated with the word 
„triangle“. Attributes not common to all instances 
will be removed from the criterion and others will 
gain lower importance because of their high vari-
ance in the sample. Hence, the property of having 
three vertices (with zero variance in the sample) 
will become decisive in the criterion associated 
with the word “triangle”. Also, the word “left” will 
be heard with many different objects sharing the 
property of low value of the attribute posX, etc. 
The more contexts of the word’s use, the bigger 
the probability that the referents will vary in the 
properties irrelevant for the meaning of the word. 
However, if e.g. all triangles in the agent’s world are 
big, then having a big size will become part of the 
meaning of the word “triangle”. Hence, the induced 
representation is situated and contextual. 

Computer simulations of this model demon-
strated how an existing conceptual system could 
be culturally transmitted by means of vertical 
linguistic interactions (Takáč, in press). However, 
languages are not transmitted as petrified systems, 
but they themselves undergo changes and evolve 
in the course of generations (Deacon, 1997), e.g. 
neologisms appear and archaisms disappear, some 
elements of syntax simplify and get regularized, etc. 
The emerging structure of an evolving language is 
constrained by the ontogenetic process of language 

acquisition, which is in turn determined by mostly 
innate (or preprogrammed) learning mechanisms 
(Briscoe, 2001). In another experiment reported in 
Takáč (in press), the iterated learning framework 
of Kirby and Hurford (2001) was applied to study 
the meaning shifts within iterated vertical trans-
mission.

conc Lusion

In this chapter, we elaborated the notion of (inher-
ent) meanings. We suggested how artificial agents 
could individually construct meanings based on 
interactions with their environment and how their 
individual meanings could be coordinated collec-
tively. This is especially important in unknown, 
dynamic and open environments, where all possible 
meanings cannot be anticipated in design-time.

Regarding communication, we pointed out that 
mutual understanding does not necessarily require 
evocation of identical individual meanings; rather, it 
results in a collectively attuned behavior. This cre-
ates an important base for our communication (and 
co-existence) with artificially built agents. Inherent 
meanings of the agents that are constructed differ-
ently and have different purposes and ecological 
niches will be different from ours. In spite of that, our 
communication can be meaningful, provided that 
we negotiate a common communication system.

fu Ture  research  direc Tions

We illustrated the mechanisms of the individual 
construction and collective coordination of mean-
ings by several computational models. These models 
are simplified in many aspects; nevertheless they 
support the viability of the proposed ideas. First of 
all, because of methodological reasons, each model 
deliberately focuses on some of the phenomena in 
isolation: there is no communication in the model 
of individual meaning construction, there are no 
extra-linguistic activities in the models of mean-
ing coordination, etc. Hence, a natural (and more 
realistic) extension of the models should combine 
these approaches. 

In the model of sensorimotor exploration, the 
agent had no goals and performed actions randomly. 
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It was nevertheless able to acquire and represent 
propositional knowledge about environmental con-
sequences of its actions. The next research step is 
to endow the agent with needs, need-driven goals 
and an action planning mechanism. 

After integrating a communication level and 
mechanisms of horizontal and vertical coordina-
tion into this model, one can experimentally test 
whether the goal-achieving autonomous agents 
profit from exchanging their individually acquired 
knowledge via the emergent common communica-
tion system.

Future research should also consider the ex-
pressive power of various types of meaning repre-
sentation. Meaning representation should capture 
hierarchic and taxonomic relations and support verb 
Semantics. In discrimination tree based represen-
tation, dynamical aspects of the environment are 
not captured at all. In identification criteria based 
Semantics, meanings of verbs are constructed from 
criteria of one-step changes of attribute values. Rep-
resentation of larger sequences of changes may be 
necessary for some verbs. For other verbs, discrete 
sequences may be insufficient at all and some kind 
of continuous representation of the dynamics (e.g. 
phase portraits) may be required.

In the presented models, the language use was 
always cued by a current situation. However, the 
primary evolutionary advantage of human language 
is its detached use, i.e. that it enables talking about 
things being not here and now. Detached com-
munication would be too ambiguous without some 
form of grammar that helps to reduce indeterminacy 
(Gärdenfors, 1996b). Incorporating a grammar to 
models of language emergence and acquisition is 
an important future research direction. First steps 
in this direction have already been taken (Steels, 
2004; Steels & Wellens, 2006).

We demonstrated how categorical meanings 
could be constructed by extracting common 
statistical properties of examples. However, for 
construction of more complex meanings, it would 
be desirable to enhance the model with analysis, 
synthesis, non-monotonic reasoning and other 
cognitive operations (Šefránek, 2002).

The final issue is that of the scalability of the 
presented models. Here we want to refer to a very 
ambitious project New Ties (from “New and Emer-

gent World Models Through Individual, Evolution-
ary, and Social learning”, http://www.new-ties.org). 
The project’s goal is to evolve a large-size artificial 
society capable of exploring and understanding its 
environment through cooperation and interaction 
(Vogt & Divina, 2005; Gilbert et al., 2006). The 
very same mechanisms of meaning and language 
coordination can then open for us the doorway to 
exploring mixed human-machine societies. 
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a bs Trac T

In heterogeneous multi-agent systems, where human and non-human agents coexist, intelligent proxy agents can 
help smooth out fundamental differences. In this context, delegating the coordination role to proxy agents can 
improve the overall outcome of a task at the expense of human cognitive overload due to switching subtasks. 
Stability and commitment are characteristics of human teamwork, but must not prevent the detection of better 
opportunities. In addition, coordination proxy agents must be trained from examples as a single agent, but 
must interact with multiple agents. We apply machine learning techniques to the task of learning team prefer-
ences from mixed-initiative interactions and compare the outcome results of different simulated user patterns. 
This chapter introduces a novel approach for the adjustable autonomy of coordination proxies based on the 
reinforcement learning of abstract actions. In conclusion, some consequences of the symbiotic relationship that 
such an approach suggests are discussed. 

inTroduc Tion 

Advances in communication technologies has 
led to increased agent interactions and increased 
complexity in the decision-making process. To 
deal with this added burden, the coordination role 
is delegated to a proxy agent. Coordination proxy 
agents [Scerri et al., 2003] are personal agents that 
take on the coordination role on behalf of a human 
user (Fig. 1). While the optimization of the global 

task can be better achieved by the self-organization 
of proxy agents in dynamic environments, switching 
roles or teams involves preferences, such as loyalty, 
boredom, and persistence thresholds, in addition to 
interpretations that might need to be elicited from 
the human in the loop. For example, individual driv-
ers differ in their tendency to switch lanes in urban 
traffic; truck drivers might prefer a less optimal route 
going through their favorite spots. This chapter ad-
dresses issues in determining when switching roles 
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or teams is appropriate to satisfy both the urgency 
of the subtask relative to the global task, the prefer-
ences of the user, and when input from the user is 
warranted. We hypothesize that a distinct class of 
agents, proxy agents, will emerge at the junction 
of the human and non-human worlds that will take 
on not only decision-making tasks such as coordi-
nation, but also the social interactive task and the 
adaptation task on our behalf. We envision those 
agents to be embedded in personal mobile devices 
such as cell phones and personal digital assistants 
and personalized through a training process. 

In this chapter, we claim that through result-
driven reinforcement learning, the human can train 
coordination proxies in a task with examples biasing 
the way the task is achieved with respect to the out-
come of the task in a multiagent system. Similarly, in 
mixed-initiative planning involving goal selection, 
directives from the user are obtained interactively 
in case of plan conflict or provided a priori in the 
form of plan constraints. Mixed-initiative interac-
tions in multi-agent systems provide a flexible way 
to harness the cognitive capabilities of the human 
in the loop in solving a problem while delegating 
more mundane tasks to the proxy agents. As in the 
turn-taking problem found in dialog management 
[Allen, 1999], the key decisions for mixed-initiative 

interactions, as applied to the adjustable autonomy 
of proxy agents, include knowing when to ask for 
help, when to ask for more information, and when 
to inform the user of a decision. This chapter claims 
that learning user preferences is not sufficient for 
training coordination proxies if those preferences 
conflict with other agents’ preferences and affect 
the outcome of the task. As long as preferences 
are inconsistent with each other as evidenced by 
the outcome of the task, a proxy agent must keep 
training and continue interacting while suggesting 
alternatives. 

This chapter is organized as follows. A learning 
approach for training coordination proxies in mak-
ing decisions is first introduced. We then motivate 
experiments in the prey/predator canonical coor-
dination domain and present empirical results and 
an analysis of our evaluation. Finally, we conclude 
with a summary of related work and extrapolate 
on the consequences of such interactions. The 
key contribution of this work is a mixed-initiative 
approach based on the reinforcement learning of 
abstract actions and its algorithm scalable to large 
state space for the adjustable autonomy problem of 
coordination proxy agents. 

 

 

 

 
 

Figure 1. Example of coordination proxies helping in traffic by negotiating the road
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Learning a pproach 

A proxy agent can operate in three modes charac-
terizing its dialogue to the user: (a) automatic or no 
interaction, (b) warn-user and (c) wait-for-user. As 
the proxy agent learns the preferences of its user, it 
should evolve to the automatic mode of interaction. 
`̀ Warn-user’’ is an asynchronous mode of interac-
tion where the opportunity to change roles is given 
to the human without interrupting the task of the 
proxy or the human. The ̀ `wait-for-user’’ mode is a 
synchronous mode of interaction that will interrupt 
the task (subject to timeout). Deciding autonomously 
which mode to be in for a specific situation con-
stitutes adjustable autonomy [Scerri et al., 2003]. 
This chapter claims that the urgency to interrupt 
the human should be based on the ambiguity of a 
decision reflecting the uncertainty of a situation 
given the preferences of the user and the expected 
outcome of the task. As was shown in the Ellsberg 
paradox [Ellsberg, 1961], ambiguity, as the absence 
of definitive information, affects behavioral change 
in a non-rational way. 

Our learning approach consists of (1) clustering 
examples of conflicting goal states to expedite the 
case-based retrieval of past examples, (2) learning 
which goal to follow through the reinforcement of 
user interaction preferences and the outcome of the 
task and (3) learning alternatives through comple-
mentary credit assignments. As a result, preferences 
will be learned only when they help coordination in 
some way. Inconsistencies in the user preferences 
combined with situational ambiguities will trigger 
mixed-initiative interactions. An approach for de-
tecting decision-making ambiguities is introduced. 
Those steps can be combined to learn online in an 
incremental way to adjust to novel situations. 

 
cL us Tering of 
c onf Lic Ting g oa L sTaTes 

This clustering step quantizes a large continuous 
state space into a compressed representation that 
is amenable to tabular reinforcement learning 
techniques. Clustering as a semi-supervised pre-
processing step ensures that distinct states are kept 
apart and prevents oscillations in state values due to 

perceptual aliasing when scaling up reinforcement 
learning to large state space. 

A myopic agent with limited perception will 
not have goal conflicts since only one goal at a 
time will be perceived. Through communication 
and shared knowledge an agent might be aware 
of other goals, increasing the occurrence of deci-
sions or ‘’choice points.’’ To scale up, patterns 
of observation are generalized and compressed 
through the competitive Hebbian learning process 
of self-organizing feature maps (SOFM) [Kohonen, 
1997]. A SOFM transforms an input data space n°   
to a lower-dimensional space (usually two or one) 
of prototype vectors, the neurons, where each vec-
tor, 1 2( , ,..., ) n

i nm x x x= ≠ °  ,  is relatively ordered with 
respect to its ̀ `neighbors’’ preserving the structure 
of the input space in a lower dimension suitable 
for visual representation. The update equation of a 
prototype vector m given a temporally decreasing 
rate α (0 1)< <  is as follows: 

( 1) ( ) ( )[ ( ) ( )]m t m t t x t m t+ = + −     (1)

The granularity of clustering needs to be based 
on the capability of recognizing goal conflicts. A 
distance function alone does not guarantee that 
important distinctions will be recognized. The 

Algorithm 1. Clustering of conflicting goals

Input: prototype vectors mi
Output: updated prototype vectors mi
Initialize: conflict set W ← {}
REPEAT
     Generate input signals {s, g} from P(s, 

g),  s ≠S, g ≠G
     /* P(s,g) is the joint distribution of 

states s and goals g */
     IF new choice point THEN
         FOREACH w ≠ W
            Update  mw  closer  to sw
         W ← {}
         m ← argmini (distance (s, mi))
         WHILE (conflict ←{m,g’}≠ W and g’≠ 

g)
              m ← argmini (eligibility (mi))
          eligibility(m) ←1
          W ← W ∪ {s,m,g}
      ENDIF
      Decay eligibilities
UNTIL (stopping criterion met)
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initial set of prototype vectors also impacts the 
effectiveness of clustering. A semi-supervised ap-
proach is presented here where the `̀ least recently 
used’’ prototype vector wins if a conflicting goal, 
g G≠ , at time t fails to be recognized as distinct 
(Algorithm 1). This is in accordance to the general 
principle in using feature maps for pattern recog-
nition that prototype vectors be placed at the class 
borders to avoid misclassifications [Kohonen, 1997]. 
An eligibility trace decaying with time indicates 
the recent usage of a prototype vector. This is a 
conceptual clustering [Michalski et al., 1983] ap-
proach where two data points are put in different 
clusters regardless of the distance metric because 
they belong to different concepts and is a way to 
incorporate domain knowledge. 

r einforce Men T Learning 

f rom Markov decision processes 
(Mdp ) to r einforcement Learning 

Formally, an MDP is a 4-tuple{S,A,T,R} where  S is 
the set of states, A the set of actions, T  the transition 
model specifying the probabilities mapping S×A× S  
to [0,1] and R, the reward function, mapping S×A× S  
to ° . Algorithms in dynamic programming such 
as value and policy iterations solve MDPs  provided 
T  and  R . The complete search space of an MDP 

is exponential in the number of steps required to 
solve the problem, {S×A}n . Reinforcement learn-
ing (RL) approximately solves MDPs without a 
model of transition probabilities T by directing its 
search of the state space based on sample return 
estimates obtained by interacting with the environ-
ment [Kaelbling et al., 1996]. Those estimates are 
encapsulated in the value function V (s) for state s or 
the action-value function Q (s, a) associating state 
s  to action a. Monte-Carlo methods (Eq. 2) apply 
to RL when estimating sample returns r  based on 
the outcome of an episode while temporal-differ-
ence methods [Sutton and Barto, 1998], such as 
Q-learning (Eq. 3), are based on the next temporal 
step 's , possibly discounted by a discount factor γ  
and learning rate α. 

0

1( )
n

nV s r
n

= Σ     (2)

( ) ( ) [ max ( ') ( )]V s V s r V s V s= + + −   (3)

r einforcement Learning of a bstract 
a ctions 

Abstract actions are high-level actions, for example 
a planning decision, that are implemented by several 
primitive actions but are temporally abstract. How 
can credit assignment be given to a high-level action 

Figure 2. Non-deterministic HAM controller for goal conflict resolution
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since the external terminal reward might also depend 
on the successful execution of lower-level actions? 
High-level actions, such as conflict resolution deci-
sions, occur `̀ offline’’ and are not temporally part 
of the execution of a discrete sequence of steps. 
Similarly, in mixed-initiative strategies involving 
a human, the high-level decision from the human 
is not under the control of the coordination proxy 
agent. The decisions depend only on the current 
state at certain synchronization points that occur 
at random time intervals. Consequently, the high-
level actions are not completely Markovian since 
they depend on past temporally selected high-level 
decisions. In the theory of semi-Markov decision 
processes (SMDPs), the high-level reward obtained 
is the mean reward accrued during the time taken 
to accomplish the goal weighted by the probability 
of reaching the goal in t time steps [Putterman, 
2005]. Given two different temporal scales k  and 
t, Q-learning for SMDPs is defined as follows: 

1 1 2( , ) (1 ) ( , ) [ ...t
k k k k t tQ s a Q s a r r+ + += − + + +

'
max ( ', ')]ka A

Q s a
≠

+     (4)

Based on the theory of SMDPs, hierarchical 
abstract machines (HAMs) [Parr and Russell, 1998] 

address the issue of combining high-level actions 
with primitive actions in a Markov decision process. 
A HAM is a non-deterministic finite state machine 
specifying valid transitions constraining the under-
lying temporal MDP. The `̀ HAM-induced’’ MDP 
can then be solved more efficiently. It is however 
possible to learn in the reduced state space of HAMs 
directly. Figure 2 shows a general HAM for goal 
conflict resolution. Machine states superimpose to 
environmental states to identify behavioral states (e.g. 
explore, hunt, stop, etc.) and choice points. Given an 
environment statec s, a machine state m, a reward r 
in the environment state, a past choice point c in a 
HAM, the accumulated reward rc since the previous 
choice point c, and the accumulated discount γc  (0 
≤ γ < 1),  since the previous choice point c, HAMQ-
learning proceeds as follows: 

([ , ], ) (1 ) ([ , ], )c c k c cQ s m a Q s m a= −

[ ([ , ]) ([ , ], )]c c c cr V s m Q s m a+ + −    (5)

where c c cr r r= +  and c c=  . The value of the cur-
rent state  ([ , ])V s m   is obtained from the underlying 
temporal MDP as the expected sum of discounted 
reward 1

0[ ]t t
tE r∞ −
=Σ .

Figure 3. Coordination proxy system architecture with interactions from the environment and with other 
agents
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r einforcement Learning of user 
preferences 

The compressed patterns of goal states learned 
in the SOFM preprocessing step described above 
constitute a proxy agent’s internal representation 
of choice points augmented with HAMQ-learned 
action values for the two possible actions of select-
ing or not selecting the goal state. This function ap-
proximation approach separates learning the action 
value function from learning the state representation 
(but see [Abramson et al., 2003] for a combined 
approach). The intermediate reward rc is obtained 
from the user decision at the choice point while the 
discounted terminal rewards upon reaching the goal 
states are obtained from the underlying temporal 
MDP. Figure 3 describes the architecture of a coor-
dination proxy that learns from reinforcement. 

By decomposing the state space into machine 
states and temporal states, HAMs avoid the looping 
problem [Papudesi and Huber, 2003] in introducing 
intermediate rewards based on user preferences, 
however choice-point rewards can override the 
outcome if ([ , ])c cr V s m>>  misleading the agent in 
learning non-optimal preferences for the coordi-
nation task. The novel mixed-initiative HAMQ 
algorithm (Algorithm 3 and Figure 4), based on 
the credit assignment of choices and alternatives, 
enables coordination proxies to dynamically adjust 
their interactions depending on the preferences 
of their users and the outcome of the task. It is a 
Monte-Carlo algorithm based on the smooth average 
of episodic returns of environmental states on the 
temporal scale combined with Q-learning on the 
higher-level decision and planning scale. Eligibil-
ity traces [Sutton and Barto, 1998] are used here as 
uncertainty variables modulated by the strength of 
the pattern matching association of a goal state to 
a machine state. The complementary credit assign-
ment to alternatives is a key characteristic of this 
algorithm. The sign of the action value at a choice 
point determines whether the choice is selectable. 
Ambiguity arises when more than one option at a 
choice point is selectable or when none are select-
able. The constraints for the fairness and rationality 
of reward ra for action ca A≠   at choice point c and 
actions ' ca A≠ , 'a a≠ , are as follows [Papudesi and 
Huber, 2003]: 

([ , ])a cr V s m≤      (6)

1
1 a

c

r r
A

= −
−      (7)

0a
a A

r
≠

=ƒ       (8)

Those constraints are extended to the terminal 
rewards

aM bigui Ty deTec Tion 

The goal of many human interaction programs is to 
resolve ambiguity. For example, speech recognition 
programs resolve the semantic ambiguity of words 
by the syntactic phrase structure or by the perspec-
tive-taking of spatial-visual cues in a multi-modal 
environment. Recent advances in augmented reality 
(AR) have to deal with the unambiguous presenta-
tion of generated information such as the drawing 
of coutours and labels of objects of interest. In 
aligning the graphics with the dynamic physical 
environment that include the human-in-the-loop, 
AR systems adapt the granularity of presentation 
of information to the time-varying estimate of 
the registration error in deciding whether to push 
back the disambiguation task to the user [Julier et 
al., 2003]. Similarly, a proxy agent has to adapt its 
autonomy to the consistency of the situation and 
the user patterns. 

In a prescriptive approach, such as reinforce-
ment learning, with the human-in-the-loop, it is the 
absence of ambiguity that is a problem. To detect 
ambiguity, we first extend the concept of fairness and 
rationality to model decisions as a zero-sum game 
against Nature. A decision is a choice to participate 
in a game between gambles where the price to pay 
to enter the game is the sum of the expected utility 
of the gambles. The question is whether this is a fair 
game. Let a positive utility indicates an acceptable 
outcome where a betting will be lost if Nature wins, 
i.e. the goal is not achieved, and a negative utility 
indicates an unacceptable outcome where a betting 
in favor of Nature will be lost if the agent wins, 
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Second, in the case of a clear choice between an 
acceptable and unacceptable outcome, an ambiguity 
tolerance threshold reflecting the inconsistency of 
user preferences needs to be found. Attitudes toward 
ambiguity, as tolerance of uncertainty, influence 
preferences on an individual level. Measuring this 
tolerance gives a way to evaluate whether a choice 
is really fair in the eye of the user. An ambiguity 
tolerance factor should ‘’correct’’ the maximum 
expected utilities, encapsulated in the Q-values, to 
account for a user’s decision. Following Hurwicz’s 
coefficient [Hurwicz, 1951] α  where uij  is the ex-
pected utility of action i in state j: 

arg max (1 )arg minij ijii
u u≤ −    (8)

Figure 4. Mixed-initiative training flowchart illus-
tration of Algorithm 2

Table 1. Unfair game

Nature wins Agent wins

Option 1 Acceptable Unacceptable

Option 2 Acceptable Unacceptable

Algorithm 2.  Mixed-initiative training (binary 
choice points)

Input: prototype vectors m
c

       eligibility traces e{[m
c
]}

Output: a mixed-initiative policy
Parameters: α, γ
Initialize:
       FORALL m

c

            Q([m
c
]) = 0

            E([m
c
]) = 0

        set usermode
REPEAT
   WHEN choice point c
      C ← {}
      W ← {}
      k ← k + 1
      γ

c
 ← γ

      FOREACH goal state s ≠ S
         [s, m

c
] ← map (s) 

         /* each goal state s at a choice 
point c 
            is mapped to a prototype vector 
m */
          C ← C ∪ {[s, m

c
]}

          inform user of Q([m
c
])

          IF (usermode == WAIT or C is AMBIGUOUS) 
THEN
             [s,m

c
]← askuser

          ELSE
             [s,m

c
]← argmax(C)

          ENDIF
      FORALL m
         Q([m

c
]) = (1 - α

k
)Q([m

c
])+α

k
γe([m

c
])Q([m

c
])
         e([m

c
]) = 0

      FOREACH s’≠ S, s’≠ s
         W ← W ∪ {[s’,m

c
]}

      obtain reward r
s

      Q([s,m
c
]) ← (1 - α

k
)Q([s,m

c
]) + α

k
r
s

      e([s,m
c
]) ← similarity (s, m

c
)

      FOREACH w ≠ W
         Q([s’,m

c
]) ← (1 - α

k
)Q([s’, m

c
]) - α

k
r
s’

         e([s’,m
c
]) ← - similarity(s’,m

c
)

      WHEN goal is attained
         obtain V([s,m])
         FORALL [s,m

c
]

            δ = γ
c
e([s,m

c
])V([s,m])

            Q([s,m
c
])← (1 - α

k
)Q([s,m

c
]) + α

k
δ

    γ
c
←γγ

c

UNTIL end of episode

i.e. achieves the goal. Since only one gamble will 
be successful, the game is not fair if the gambles 
bet on the same player. Nature will be sure to win 
something (Table 1). 
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The tolerance factor α can be computed during a 
training phase using objective utilities (such as cost) 
or evolved online as the most recent linear threshold 
discriminating between rational and non-rational 
preferences. As user rewards get incorporated into 
the Q-value of an action and the expected utilities 
converge, the less interrupt due to ambiguity should 
be triggered. Ambiguities are detected when for a 
given coefficient α, 

arg min
arg max arg min

i ij

i ij i ij

u
u u

≥
+     (9)

         

c o MpLeMen Tar y c redi T 
a ssign Men T 

What does not work is sometimes more interesting 
than what works because we can learn from the 
unexpected. This is the intuition behind comple-
mentary credit assignment. Exploration towards 
more promising state-action pairs can be guided 
by directly rewarding/penalizing paths not taken. 
Instead of relying on an explicit exploration strat-
egy such as ε-greedy, the environmental feedback 
can reach a greater number of state-action pairs 
through complementary rewards/penalties, thereby 
quickly reducing the state space. This approach is 
particularly attractive in mixed-initiative reinforce-
ment learning since we want to quickly bias the 
search space towards states that were preferred by 
the human-in-the-loop in achieving the task and 
not necessarily towards optimal states. In addition, 
the number of interactions are drastically reduced 
since alternatives will be automatically taken in 
case of failure. In our approach, the eligibility trace 
is manipulated as a marker for credit assignment, 
weighted by the similarity of the current state to 
the matched prototype vector and the temporal 
discount γ, and is extended to state-action pairs in 
the conflict set (Algorithm 2). 

As with eligibility traces, conflicts occur when 
the state-action pair is revisited again in an episode 
that might distort the terminal reward [Sutton and 
Barto, 1998]. Replacing traces [Singh and Sut-
ton, 1996] reset the eligibility trace and avoid this 
problem. Following this approach, the last visit of 
each state-action pair between subgoals sets its 

eligibility. Subsequent visits reset the eligibility 
trace for the next subgoal as follows where m is the 
prototype vector matching the current state s and 
the decision/action a. 

1

( , )

( ) ( , )

( )

tm m

t m m

t t

similarity s m if a a

e m similarity s m if a a

e m if m m−

=


= − ≠
 ≠

   (10)

experi Men Ta L eva Lua Tion 

Experiments with different simulated patterns of 
user preferences were conducted: (1) autonomous, (2) 
conservative, (3) risky, (4) heuristic, and (5) mixed. In 
an autonomous pattern, the proxy agent learns how 
and when to switch teams independently of its user. 
In a conservative pattern, the users initially select a 
team at random and never switch teams afterwards; 
in a risky pattern, the users initially select a team 
at random and always switch teams afterwards; in 
a heuristic pattern, users have a principled way of 
selecting a team. In our experiments for a heuristic 
pattern, agents select the team with the highest sum 
of preferences and switch teams accordingly. In a 
mixed pattern, a heuristic, risky or conservative 
pattern is selected randomly by the proxy agent. 
This last pattern reflects best the heterogeneity of 
human users. We show corresponding learning 
performance results of coordination proxies in the 
prey/predator domain (introduced below) in terms 
of autonomously resolving conflicts based on user 
preferences and the outcome of the task. 

prey/ preda Tor 

The prey/predator pursuit game is a canonical 
example in the teamwork literature [Benda et al., 
1985] because one individual predator alone cannot 
accomplish the task of capturing a prey. Practical 
applications of the prey/predator pursuit game in-
clude, for example, unmanned ground/air vehicles 
target acquisition and search and rescue operations. 
Due to the decomposability of the global reward as 
a sum of local rewards, the original problem can be 
extended to multiple teams by including additional 
preys. Prey/predators can sense each other if they are 



���  

Training Coordination Proxy Agents Using Reinforcement Learning

in proximity p but do not otherwise communicate. 
Predators communicate with other predators by 
broadcasting messages to their neighbors accord-
ing to a communication range h. Four predators 
are needed to capture a prey by filling out four dif-
ferent roles: surround the prey to the north, south, 
east and west. Those roles are independent of each 
other and can be started at any time obviating the 
need for scheduling. The only requirement is that 
they have to terminate at the same time either suc-
cessfully when a capture occurs or unsuccessfully 
if no team can be formed. The predator agents are 
homogeneous and can assume any role but hetero-
geneity can be introduced by restricting the role(s) 
an agent can assume. The prey and predators move 
concurrently and asynchronously at different time 
steps. In addition to the four orthogonal naviga-
tional steps, the agents can opt to stay in place. 
Non-determinism is introduced with the modeling 
of path collisions. In case of collision, the agents 
are held back to their previous position. The prefer-
ence uij of predator agent i for a role j is inversely 
proportional to the Manhattan distance d required 
to achieve the role. 

The predators move in the direction of their 
target when assigned a role or explore the space ac-
cording to a memory-based scheme on the last few 
steps. The decision space for the role allocation of P 
predators and p preys is ( )TpΟ  where T is the number 

of teams of size t. This problem belongs to the most 
difficult class of problems for constraint satisfaction 
in multi-agent systems due to the dynamic nature of 
the environment and the mutually-exclusive prop-
erty of role allocation. An optimization algorithm 
can be used in parallel fashion by each agent based 
on sensed and communicated information from the 
other agents in the group to autonomously determine 
which role to assume (Algorithm 3). It is assumed 
that the other agents reach the same conclusions 
because they use the same optimization algorithm 
[Gerkey and Mataric, 2004] and the same payoff 
function. This type of algorithm degrades gracefully 
when communication is completely impaired since 
it does not rely on the communication of intent or 
preference from the other agents and can rely solely 
on sensory information. Information necessary to 
determine the payoff of each role needs to be com-
municated. Therefore, it is the current local state 
within the perception range, or augmented with 
second-hand information, that is communicated to 
the neighbors instead of the intended role. What is 
being communicated is a location on the grid. The 
`̀ Hungarian’’ algorithm [Kuhn, 1955, Papadimi-
triou and Steiglitz, 1998] based on weighted graph 
bipartite matching was found to outperform other 
types of distributed role allocation in dynamic and 
uncertain environments [Abramson et al., 2005], 
albeit with the assumption of a homogeneous cost 

Figure 5. Prey/Predator on a toroidal grid
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function, and is used here to determine the optimal 
role for the agent in a team characterized by the prey 
to pursue as the goal. 

Which team to join when multiple preys are pres-
ent requires a commitment for teamwork beyond 
role allocation optimization if not enough agents are 
available to accomplish the overall task. Human us-
ers of coordination proxy agents might have vested 
interest in selecting one team over another such as 
friendships, trust, loyalty, etc. 

Figure 6 describes the HAM for selecting a team 
with the common goal of capturing a prey. Our state 
representation of goal conflict consists of 5 features: 

the distance of the prey from the agent, the number 
of agents allocated to the prey, the mean proximity 
of the agents allocated to the prey, whether the goal 
is different from the current goal, and the direction 
of the prey from the agent (4 quadrant values based 
on the coordinate system: NW, NE, SW, SE) using 
1-of-n encoding. Associated with the state repre-
sentation are two high-level decisions - accept the 
target or not - determined by the sign of the action 
value . An ambiguity will occur if the decision 
values do not uniquely show one acceptable goal 
or if no goals are acceptable. 

Algorithm 3. Distributed role allocation

Initialize:
   set initial role to explore
   active ← true
REPEAT
     IF (active) THEN
        act according to role
        sense environment
        broadcast local state to neighbors
        active ← false
    ENDIF
   collect neighbors’ new information
   estimate possible roles with
       allocation algorithm
   select role
   active ← true
UNTIL (termination condition)

Figure 6. Prey/Predator HAM
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Table 2. Cluster granularity for varying communication ranges based on random samples of 2400 choice 
points in the training set and average error for 400 choice points in the testing set (p = 2, α = 0.07)

Comm Range Avg Clusters Avg Err

5 240 0.0137

7 344 0.0182

9 377 0.0287

11 367 0.0268

Table 3. Inconsistency of user patterns (over 100 runs of 5 predators and 2 preys) as number of deviations 
from greedy moves and minimum ambiguity tolerance threshold (Eq. 9)

User Patterns Mean Std Inconsistency (mean/std) Ambiguity Tolerance Threshold

Heuristic 0.36 0.17 2.11 0.5

Mixed 0.37 0.14 2.64 0.15

Conservative 0.46 0.15 3.06 0.11

Risky 0.51 0.04 12.75 0.07

eMpirica L r esu LTs 

The experiments were conducted with RePast [North 
et al., 2006], an agent-based simulation and modeling 
tool where agents act concurrently in a decentralized 
manner. Its powerful scheduling mechanism was 
used to model the asynchronous behavior of the 
agents in a discrete-event simulation. In addition, 
its neighborhood mechanism was used to model 
broadcast communication between neighbors. 

Table 2 shows the number of clusters (number of 
winning neurons) obtained in the preprocessing step 
(Algorithm 1) of a random sample of 2400 choice 
points when varying the communication range h 
of 4 predators and 2 preys on a 30x30 grid and 5% 
message loss depending on the Manhattan distance. 
In our implementation only the winning prototype 
vectors determined by their cosine distance to the 
input vector were trained. The increase in granularity 
indicates the increased number of distinct recogniz-
able situations in the training set with increasing 
h (t-test p-value of 0.003 over 10 runs between 
clusterings with h=5 and h=11). Results shown are 
obtained after convergence to a maximum norm 
correction distance less than 1.E-4 of 1000 initial 
prototype vectors or 5000 training epochs. 

The following experiments were done on a 15x15 
grid with 5 predator agents, 2 random preys, and 5% 
message loss. The agents start at random locations on 
the grid and the predators are as likely to be slower 
or faster than the prey. A terminal reward of +1.0 is 
propagated after each capture or a penalty of -1.0 
if no preys are captured after 200 cycles (episode). 
Each user strategy has a 80-95% success rate to ac-
complish the task. Table 3 shows the inconsistency 
of each user pattern with respect to the greedy move 
in terms of distance to the prey. Learning occurs 
across 500 episodes. Each agent has a copy of the 
set of prototype vectors, updated in a pre-clustering 
step, and will incrementally update the action value 
associated with each vector through the mixed-ini-
tiative HAMQ algorithm (Algorithm 2). Figure 7 
compares performance trend results for the different 
user patterns with refinement of those strategies by 
the coordination proxies and performance improve-
ment by the proxy agent acting autonomously (with 
Boltzmann exploration) for catching the first prey. 
Results for the last prey, although indicative of the 
overall performance, also include external factors 
such as exploration to the decision-making process. 
Duplicate consecutive goal states were eliminated. 
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Figure 7. Comparative performance of user pattern refinements and autonomous learning of 5 mixed-initia-
tive predator agents in capturing the first prey 7, 2, 0.07, 0.99, 4 5h p r E= = = = = −

An intermediate reward is allocated when the proxy 
agent selects the same decision as the user pattern 
(user precision). Trend results are also shown in 
terms of ambiguities resulting from this refinement 
in Figure 8 and in terms of precision to those user 
patterns in Figure 9. 

The results for the different user patterns com-
pared with autonomous learning show clearly that 

Figure 8. Ambiguity rate for 2 preys

mixed-initiative HAMQ learning can produce a 
more stable behavior while reducing interactions 
due to ambiguities with the human in the loop and 
increased user precision. Good rational behavior 
such as the one based on a heuristic did not show 
a degradation in performance. If an unforeseen 
situation arises resulting in no selectable goal, the 
coordination proxy agent will initiate an interac-
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tion with its user. The standard deviations of the 
learned behaviors over 100 episodes were as fol-
lows: (1) autonomous 47.54, (2) heuristic 25.42, (3) 
risky 43.42 , (4) conservative 34.91, and (5) mixed 
35.25. This methodology can also validate user 
patterns according to their precision rate since 
successful behavior will most likely be followed. 
The key factor in reducing the ambiguity rate for 
all behaviors seems to be in the credit assignment 
to alternatives which avoids repeating mistakes 
and implicitly direct exploration towards the most 
promising actions. Kolmogorov-Smirnov test p-
values of average ambiguity rate over 10 runs in 
ablation studies were (1) autonomous 3.E-5, (2) 
heuristic 2.E-4, (3) risky 2.E-4 , (4) conservative 
2.E-4 and (5) mixed 3.E-5. 

         

r eLaTed w ork 

Previous work on adjustable autonomy [Scerri et 
al, 2000, Tambe et al., 2002] has concentrated on 
learning user preferences in isolation without rela-
tion to the outcome of the task. Learning co-adaptive 
predictive models of the exogenous outcome instead 
of co-adaptive behaviors has been suggested in the 
context of the El Farol coordination problem where 
the paradox was that agents could coordinate without 
communication by not going to the same place, the 
El Farol Bar, at the same time [Arthur, 1994]. It was 

observed that the online adaptation of strategies to 
recent situations rather than convergence was the key 
to achieving coordination in a multi-agent system. 
Other work in this area found that coordination 
could be achieved with less variance if the agents 
relied on the accuracy of the same adaptive gradient 
algorithm [Bell and Sethares, 2001]. 

Techniques from advice taking [Maclin and 
Shavlik, 1994, Boicu et al., 2005] where the user 
preference is explicitly incorporated into the internal 
representation of the agent are complementary to 
this approach. Similar to apprenticeship learning 
[Abbell and Ng, 2005], state-action trajectories are 
used to refine an existing policy through a reinforce-
ment learning algorithm. In W-learning [Humphrys, 
1995], each behavior in a flexible subsumption 
architecture competes with other behaviors as 
selfish agents, indirectly collaborating through the 
communication of the W value and a winner-take-all 
scheme. In our approach, the user and the result-
driven proxy agent interact directly as collaborating 
agents trying to learn from each other. 

Complementary reinforcement learning has been 
applied in different ways. Optimistic initial values 
[Sutton and Barto, 1998] indirectly allocate a credit 
assignment to paths not taken but also do not elimi-
nate the exploration of alternatives and consequently 
are slower to converge. In complimentary reinforce-
ment back-propagation [Ackley and Littman, 1990] 
a negative environmental feedback can directly 
influence the association of state-action pairs by 
propagating back a complementary output. 

         

Figure 9. User precision rate for 2 preys
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c onc Lusion 

We have shown how coordination proxies can safely 
adjust their autonomy in switching teams based on 
user preferences and taking into account the outcome 
of the decision. Hierarchies of abstract machines are 
superimposed to the temporal behavior of the proxy 
agent to specify the high-level behavior of the human 
in the loop. The representation of goal states instead 
of environmental states enables reinforcement learn-
ing to scale up and generalize to different situations. 
The complementary credit assignment to alternatives 
seems to be a key factor in speeding up the learning 
process which is critical for user interactions and 
this hypothesis will be further studied. In addition, 
more understanding on formalizing ambiguity with 
respect to mixed-initiative is also desired. 

This approach suggests a symbiotic relationship 
between humans and proxy agents where each agent 
learns and benefits from each other and is in contrast 
with anthropomorphic approaches to human-com-
puter interactions. More importantly, this approach 
does not constrain the development of artificial 
intelligence but might isolate us from human and 
non-human agents alike. 
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a bs Trac T

The first intelligent agent social model, in 1991, used tags with emergent meaning to simulate the emergence 
of institutions based on the principles of interpretive social science. This symbolic interactionist simulation 
program existed before Holland’s Echo, however, Echo and subsequent programs with tags failed to preserve 
the autonomy of perception of the agents that displayed and read tags. The only exception is Axtell, Epstein, 
and Young’s program on the emergence of social classes, which was influenced by the symbolic interaction-
ist simulation program. Axtell, Epstein, and Young’s program has since been credited for strong emergence. 
This chapter explains that autonomy of perception is the essential difference in the symbolic interactionist 
implementation of tags that enables this strong emergence.  

In the beginning was the Word, and the Word was 
with God, and the Word was God.  The same was in 
the beginning with God.  All things were made by 
him; and without him was not any thing made that 
was made.  In him was life; and the life was the light 
of men.  And the light shineth in darkness; and the 
darkness comprehended it not. (John 1:1-5, KJV)

inTroduc Tion

Holland saw the creative power of the word as im-
portant in the formation of living systems when he 
included the tag as one of the three basic mechanisms 
of complex adaptive systems.  A “tag” is simply a 
sign, such as a name or a physical trait, which is used 
to classify an agent.  In the social world, a tag may be 
a social marker, such as skin color, or simply the name 
of a social group.  A tag goes hand in hand with the 
other two mechanisms Holland thought important 



���  

The Generative Power of Signs

to complex adaptive  systems, an internal model 
(whether tacit or explicit) to give meaning to tags, 
and building blocks to accumulate and recombine 
the structures that result from those meanings into 
hierarchical aggregates (Holland 1995).  

Holland is commonly thought to be the first to 
use tags to simulate social phenomena.  However, 
there is another variation on tags, the symbolic inter-
actionist simulation technique, that was developed 
before Holland’s complex adaptive system research 
program, the Echo project (Duong 1991, Holland 
1992).   Like Echo, symbolic interactionist simulation 
recognizes the primacy of signs in the formation 
of living systems, but differs from Echo in that its 
agents have autonomous perception of the meaning 
of signs.  The difference is understandable, because 
the principle of autonomy of perception is more 
prominent from the social sciences standpoint than 
from the biological standpoint, even if it exists in 
biology as well (Maturana, Lettvin, Mcculloch and 
Pitts. 1960).  Many of the ideas in microsociology 
are inherited from phenomenology and hermeneu-
tics, philosophies that contemplate the mysteries of 
autonomy, such as the paradox that human beings 
can only interpret meanings through their indi-
vidual experiences with their senses, and yet they 
still come to share meaning (Winograd and Flores 
1987).  This hermeneutic paradox is core issue of 
micro-macro integration in sociology from the angle 
of perception:  to solve the hermeneutic paradox 
is to solve the mystery of the “invisible hand” by 
which autonomous, selfish agents synchronize their 
actions into institutions for the good of the whole. 
Since emergence in agent-based social simulation 
is fundamentally about solving the micro macro 
link, symbolic interactionist simulation seeks to 
solve the hermeneutic paradox. It is by virtue of 
the preservation of autonomy that symbolic inter-
actionist simulations exhibit strong emergence and 
constitute minimal social engines.

background

In Holland’s Echo program and its successors that 
simulate the emergence of cooperation in iter-
ated prisoner’s dilemma (IPD) programs, tags are 
implemented with replicator dynamics.  Referring 

to the work of  Riolo, Cohen, and Axlerod as well 
as the work of Hales and Edmonds, Hales discusses 
the tag implementation:   “the models implement 
evolutionary systems with assumptions along the 
lines of replicator dynamics (i.e. reproduction into 
the next generation proportional to utility in the 
current generation and no ‘genetic style’ crossover 
operations but low probability mutations on tags 
and strategies).” (Hales, 2004).  Replicator dynamics 
do not keep the principle of autonomy of percep-
tion:  one agent interprets a sign the same way as 
another agent because they have a common ancestor, 
not because they both induced the sign separately 
based on their individual experiences.  Simulations 
of the emergence of common meaning of tags us-
ing replicator dynamics exhibit high amounts of 
genetic linkage (biological or mimetic), so that the 
relation between the sign and the behavior is an 
artifact of the method, rather than emergent from 
the simulation. Any simulation of contagion that 
explains macro level institututions with micro-level 
imitation does not exhibit strong emergence: since 
institutions are behaviors held in common, institu-
tions would be an aggregate of copying behavior 
rather than emergent phenomena.  Micro macro 
sociologist James Coleman believed that to explain 
institutions, we must explain the arise of a network 
of relations in a social system, and not just an ag-
gregate (Coleman, 1994).

Autonomy of perception has been proposed as 
a necessary requirement for strong emergence in 
social systems.  Bedau (2002) and other philosophers 
of emergence agree that “emergent properties have 
irreducible causal power on underlying entities.”  
Downward causation, or “immergence” as Gilbert 
(1995) called it, is necessary for emergence in the 
strong sense.   Desalles, Galam and Phan (2007) 
give more details, saying that for strong emergence 
to occur, agents must be equipped to identify emer-
gent phenomena, and Muller adds that this must be 
through the physical world, rather than by direct 
copying of other agent’s perceptions (Muller 2004).  
According to Desalles et al, agents must describe 
the emergent phenomena they observe in a language 
other than the language of the lower level process 
itself, and agents must have a change of behavior 
that feeds back to the level of observation of the 
process.  This insightful definition of strong emer-
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gence acknowledges the importance of autonomy 
of perception, that is, of not allowing agents to 
copy each other’s internal states, in developing 
a new emergent language (with tags) to describe 
emergent phenomena. Immergence, or the ability 
of the lower level agent to change its behavior based 
on the emergent social phenomena, opens the door 
for generative feedback between micro and macro 
social levels.  Such a generative engine, which some 
social scientists would call a dialectic, characterizes 
strong emergence.  

Luc Steels’ research program also addresses the 
hermeneutic paradox:  his agent’s signs come to have 
shared meaning, even though they have autono-
mous perception.  However, his agent’s signs were 
not tags related to social structure as in symbolic 
interactionist simulation.  In Steel’s work, arbitrary 
signs come to have meaning as agents use them to 
differentiate objects by their features. As individuals 
make distinctions based on their own perceptions 
and associations, they come to have shared words 
to refer to features and shared ontologies of what 
distinctions to make are important, in an emergence 
with upper lower feedback (Steels 1996).  Ironi-
cally, even though these agents may be embodied 
as robots, they are not truly situated, as they are 
describing their environment but not applying this 
description to their utility, or in anyway changing 
their world with their language.  The ontologies 
these agents use to cut up the world are arbitrary, 
whereas the ontologies of human languages cut up 
the world based on utility.  Although language is 
reproduced, culture and the way that the world is 
manipulated is not.  

sy Mbo Lic  inTerac Tionis T 
siMuLaTion

In symbolic interactionist simulation, the mecha-
nism of autonomous emergence of the meaning of 
signs facilitates a strong emergence of practical 
ontologies that coevolve with practical behaviors in 
symbolic interactionist simulation. Symbolic intera-
cionist agents interpret signs based on utility, so that 
an interpretation makes sense given the background 
of the agent’s individual experiences.  In symbolic 
interactionist simulation, a sign is interpreted in 

a certain way because it makes utilitarian sense, 
and not because it is copied. Agents communicate 
solely through signs, inducing the meanings of both 
displayed and read signs. Inductions are based on 
economic and practical gain, and as a result of these 
utilitarian interpretations, symbol system and social 
institutions coevolve.

The first symbolic interactionist simulation (Du-
ong, 1991, Duong and Reilly 1995) was a simulation 
of a workforce of employers and employees.  In some 
of the runs, for example, there were 3 employers 
and 50 employees in a society.  Each employee 
had either a high or low level of talent, which the 
employer could not see until after the employee was 
hired.  However, the employer would look at the 
signs that an employee displayed to guess whether 
that it was talented. The prediction was based on 
the employer’s individual past experiences with 
employees.  The employee displayed a fixed sign 
(such as skin color or race), a sign that costs money 
(such as a new suit) and a sign that is free (such as 
a fad).  The fixed sign was made to be uncorrelated 
with talent.  Employees obtained money through 
employment, and thus employees that could stay 
employed longer could make more money than 
employees that were fired frequently.  A certain 
percentage of the workforce of each employer was 
laid off every cycle, but  employees that were not 
talented were laid off in greater proportions.  Thus, 
an employee that is talented has more of a capacity to 
make money, and the potential to differentiate itself 
from a non-talented employee using that money.  The 
employees would choose a set of signs to display 
based on their prediction of whether they would be 
hired after an employer saw them.  This prediction 
was based on their individual past interviews out-
comes.  Of course, employees could only display the 
purchasable signs that they could afford.  Both the 
employer and the employee agents had IAC neural 
networks to induce the meanings of the signs based 
on their private experiences with the signs.  Even 
though the signs were arbitrary and autonomously 
perceived (employers did not consult each other 
on the meanings of signs, nor did employees), they 
came to have a shared meaning.  Agents learned 
to buy  expensive suits as status symbols, and race 
often became an issue despite the fact that race 
was uncorrelated with talent, because it sometimes 
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became correlated with the suit.  Races could get 
into a vicious circle where they could not afford a 
suit because they were not hired and were not hired 
because they did not wear a suit, at which time social 
classes based on race would form.  

Axtell, Epstein and Young’s model of the 
emergence of social classes subsequently adapted 
the autonomy of the symbolic interactionist tag 
methodology (2000).  Desalles et al (2007) took 
note of the strong emergence Axtell et al achieved 
by use of  autonomously interpreted tags. Axtell et 
al achieved the emergence of social class based on 
fixed tags (such as skin color or race) in a one shot 
bargaining model. 

sis Ter

Another symbolic inteactionist simulation which 
uses a one shot bargaining model, SISTER (Symbolic 
Interactionist Simulation of Trade and Emergent 
Roles) was prior to and influential on Axtell, Epstein 
and Young’s work on the emergence of social classes 
(The Economist 1997).  SISTER also simulates the 
coevolution of  symbol systems and social structure 
(Duong 1995, Duong 1996, Duong 2005, Duong and 
Grefrenstette 2005)

SISTER is a study of the “free tags” of the original 
model on the emergence of social classes (Duong 
1991).  The free tags were the equivalent of words 
in a language, but applied to the identification of 
people. The dynamics involved in the emergence of 
meaning of tags are the same for the more general 
emergence of meaning of words.  Symbolic inter-
actionist simulation kept the principles of autonomy 
and hermeneutics in its study of the emergence of 
language that subsequent more well known works, 
such as Steels’, did.  However, it also addressed criti-
cal issues that they did not.  Steels and subsequent 
studies of the emergence of language are separated 
from studies of the emergence of culture. What is 
missing are models of language as coevolving with 
culture, models which capture the coevolutionary 
dialectic in which language and culture create each 
other and enable each other to grow.  The dynamics 
of the propagation of signs which start out random 
is studied, but the dynamics of how they come to 
denote, hold, and spread new concepts needs more 

exploration.  SISTER models the emergence of lan-
guage as a dynamic creator of culture.  If we define 
culture as the knowledge available to a society, both 
of the objects and the social structure, then SISTER 
shows how symbols emerge to hold culture and al-
low it to complexify, and how they enable culture 
to continue despite the deaths of individuals.  

SISTER offers a solution to the hermeneutic 
paradox as do Steel’s models, of how it is that people 
can only interpret the meaning of signs from the 
context of their individual life experiences, and yet 
still come to share meaning.  SISTER agents are 
autonomous because they are closed with respect to 
meaning: they each have their own private induction 
mechanisms, and do not copy one another’s signs or 
interpretations of signs, but induce the meanings of 
the signs from their own experiences alone.  SISTER 
however, is different from Steels’ work in that the 
feedback is directly connected to the utility of the 
agent.  A sign gets a particular interpretation based 
on what is good for the agent for it to mean, for its 
survival, rather than from the grunting approval 
of another agent.   SISTER agents see “as the frog 
sees green” … just as the frog does not observe 
reality as it is, but constructs it as is beneficial to its 
survival (Maturana, Lettvin, Mcculloch and Pitts. 
1960), so do SISTER agents interpret signs based 
on whatever it is that gets them the most food.   The 
combination of a direct relation of interpretation 
to utility along with perceptual autonomy is what 
makes SISTER agents both embodied and situated.  
If we do not model the advantage to utility that an 
interpretation confers at every step, we lose the 
ability to model important social processes of what 
becomes popular.  

One example of such a process to model is that 
of the legend. Legends hold deep cultural meaning, 
often so deep as to be universal. Legends are told 
and retold orally over many generations.  Each time 
they are retold, the teller contributes to the creation 
of the legend in small ways.  As all the authors of 
a legend recreate it to meet their needs, it comes to 
be very good at meeting needs, settling down on a 
compromise between all needs.  Imitation without 
such modification does not promote cultural prod-
ucts which contribute to the needs of all, deeply 
intertwined with the rest of the culture.  It is not a 
deep consensus.  
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The principles of hermeneutics are important to 
the study of the emergence of language because we 
can not separate language learning from concept 
learning, concept creation, and language creation.  
If we look at language as a passive thing, it does not 
matter if we include utility or not.  If all a word is, 
is a random sign, and all we are explaining is how 
one random sign gets chosen over another random 
sign, then we need look no further than imitation.  
However, if we look at a word as a holder of a con-
cept, a concept which serves to meet the needs of 
people within a web of other concepts, and which 
can only emerge as a word to denote it emerges, then 
it is appropriate to model the emergence of words 
in agents which interpret their meanings solely 
from their individual perspectives and usefulness 
to their lives.  All the interpretations together create 
words and concepts which best serve the cultural 
needs of all the individuals.  In the study of the 
emergence of language, it is not the sequence of 
phonemes that becomes popular that is important, 
but rather the capturing of the dynamic in which 
words make possible the ontologies that we use to 
construct our world.  Studies in the emergence of 
language should address how words make the most 
practical ontologies, through the contributions of 
all utterers of words, rather than address the most 
practical sounds uttered.

SISTER shows that social systems with an 
emergent symbol system denoting an ontology of 

roles can enable cultural knowledge to continue 
despite the deaths of its individual members.  The 
reason that it can continue is that signs denoting 
roles create expectations of behavior in agents 
who interact with a role.  These expectations serve 
to train newcomers to the society into the proper 
behaviors of the role.  Each sign for a role is a focal 
point of a set of social behaviors in a social network, 
in that the sign means a different thing to different 
other roles in a social network, and agents of each 
role have a certain set of expectation for agents of 
other roles that they interact with.  The signs and 
the set of relations they denote are emergent, and 
must be emergent if they are going to denote any 
arbitrary set of behaviors.  The knowledge in the 
society is held in the expectations that signs bring 
to the different agent’s mind.  These meanings are 
all induced by the private inductive mechanisms 
of agents, and yet the meanings of the signs come 
to be shared. 

SISTER outputs a division of labor and social 
structure that increases the utility (that is, “satisfac-
tion”) of agents.  Agent ontologies of roles emerge 
that guide agents in complex social relations and 
behaviors needed for survival.  SISTER captures the 
fundamental social process by which macro-level 
roles emerge from micro-level symbolic interaction.  
SISTER comprises a multi-agent society in which 
agents evolve trade and communication strategies 
over time through the use of tags.   The knowledge in 

Figure 1.  Agents that evolve the same tags in their separate GAs and have the same behaviors are in the 
same roles
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SISTER is held culturally, suspended in the mutual 
expectations agents have of each other based on the 
signs (tags) that they read and display.  Language 
emerges and is maintained robustly, despite the 
stresses of deaths of individual agents. SISTER 
shows how a complex endogenous communication 
system can develop to coordinate a complex divi-
sion of tasking.

SISTER employs coevolution, in which agents 
each have their own genetic algorithm (GA), whose 
fitness is dependant on successful interaction with 
other agents.  These GAs evolve tags that come to 
indicate a set of behaviors associated with a role. Fig-
ure 1 illustrates evolved tags indicating agent roles.   
Roles are nowhere determined in the simulation and 
exist in no one place, but rather are suspended in the 
mutual expectations of the coevolving agents.  These 
mutual expectations emerge endogenously and are 
expressed through signs with emergent meanings.  
All institutional knowledge is distributed in these 
subtle mutual expectations.

how sis Ter  w orks

SISTER simulates a differentiation into the roles of 
a division of labor in an economic system (Duong, 
1995, 1996, 2005). In SISTER, initially homogenous 
agents differentiate into the heterogeneous agents 
reflecting a division of labor.  Roles solve the problem 
of how agents may work together to increase their 
utility.  Every “day” of the model, agents harvest 
goods in the morning according to their production 
plans, trade in a market in the afternoon according 
to their trade plans, and consume their food at night, 
judging a single chromosome of plans for the day 
by their satisfaction in consumption (according 
to a Cobb-Douglass utility function).  Agents are 
free to devote their efforts to harvesting goods or 
trading them.  The simple economic assumption of 
economy of scale is built in (it is more efficient to 
produce a single good than to diversify production), 
as is a utility function that rewards accumulation 
of multiple goods.  These combine to encourage 
trade among agents.  

Figure 2.  Agents must have a corresponding trade plan encoded in their genetic algorithms for a trace to 
take place.  Each chromosome has all the plans of trade and production for a single day, and the plan to 
display a sign as well (the Passive trader’s chromosome tells him to display sign 9, in a section that is not 
illustrated).
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SISTER focuses on how agents determine who 
to trade with.  Agents seek trading partners based 
on a displayed sign.  Signs are induced both by the 
wearer, and by the agent seeking trade.  See figure 2 
for an example of a trade plan.  This “double induc-
tion” of a sign is a simulation of Parson’s “double 
contingency” (Parsons, 1951), and facilitates the 
emergence of a shared symbol system.  Signs have 
no meaning in the beginning of the simulation, 
but come to have a shared meaning. Agents come 
to agree on what a sign implies about behavior.  
As they come to a consensus, a system of roles is 
developed.

   For example, suppose the goods of a simula-
tion run include berries and milk.  Suppose agents 
coincidently have the trade plan in figure 2, and 
each agent benefits from the trade.  Both agents are 
satisfied with the trade and the sign: they remember 
this sign, and repeat it in future trades.  The more 
the trade is repeated in the presence of the original 
sign, the more it becomes a stable element in the 
environment and therefore something that other 
agents can learn.  Since an agent with an active 
trade plan is looking for any agent who displays a 

particular sign, any agent can get in on the trade 
just by displaying the appropriate sign.  The agents 
come to believe that the sign means “milk,” in the 
sense that if an agent displays the sign, then other 
agents will ask him to sell milk.  This puts selective 
pressure on that agent to make and sell milk.  If a 
random agent displays the sign for a composite good 
(a good composed of other goods, like “berry-fla-
vored milk”), it learns the recipe for the composite 
good from marketers trying to sell the ingredients 
for the composite good.    Over time, the society 
divides into roles, with groups of agents displaying 
the same sign and having the same behavior.  

The signs are Berger and Luckmann’s “objec-
tivations” that become coercive:  if a new agent is 
inserted into the simulation, then to participate in 
trade he must learn the sign system already pres-
ent (Berger and Luckman, 1966).  The signs are a 
guide to his behavior:  When he displays a sign, the 
other agents pressure him to have the correspond-
ing behavior.  Thus a sign creates expectations 
of behavior, in accordance with Parson’s ideas of 
double contingency and Luhmann’s model of mu-
tual expectations (Parsons, 1951; Luhmann, 1984).  

Figure 3. A scenarios from SISTER representing the trades made in a single day of the simulation.   Agents 
with the same color square have come to have the same role:  that is, the same trading behaviors and same 
sign.  The smaller shapes represent goods traded.  An arc connecting shapes represents a trade. The stars are 
composite goods, or goods composed of other goods.  Agents have developed complex roles and composite 
goods.  
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The mutual expectations that the agents have of the 
roles allows individuals to take advantage of what 
other individuals have learned in previous interac-
tions.  The knowledge of the society is held in the 
mutual expectations of the symbol system, as in 
Parsons’ and Luhmann’s theories (Parsons, 1951; 
Luhmann, 1984).  The reason that role systems can 
hold more information about how to make cultural 
products is that agents can replace one another and 
can learn from the expectations that other agents 
have of their replacement class.  This is how they 
become trained to do their role.  However, this 
training is not inflexible:  what they do is ultimately 
connected to their utility.  They can reject a trade 
if it is not to their advantage.  Thus SISTER agents 
have the flexibility needed to complexify.  Figure 
3 illustrates a role based society that is advanced 
enough to make composite goods, with a relatively 
high mutual information.

  
Experiment

In this experiment, agents which display induced 
signs are compared to a control in which agents 
are forced to display a unique ID. The use of an 
ID prevents the formation of a system of roles de-
noted by the induced signs.   We refer to a society 
where agents read and display signs freely as a 
“role recognition treatment” and a society where 
agents are forced to display a unique ID as an 
“individual recognition treatment.”  Whether the 
sign is arbitrary or an ID, an agent seeking a trade 
has to induce the sign to seek in trade.  However, 
in the role recognition treatment, the displayer of a 
sign induces the sign it should display at the same 
time that the agent seeking a trade induces the sign 
to read.  This double induction allows a system of 
arbitrary symbols to come to have meaning, but 
there is no double induction in the control.  Duong 
and Grefenstette (2005) contains an experiment 
where individual recognition is compared to role 
recognition in the ability to create complex goods.  
The experiment of this article has both treatments 
making complex goods, and compares their ability 
to make them when there is a complete turnover in 
their population as a result of death and rebirth of 
agents.  Death and birth is added to test the ability 
of new agents to acquire the language of the exist-

ing agents and achieve cultural continuity that is 
greater than the individual behaviors of members 
of the culture. The individual recognition treatment 
and the role recognition treatment are run twenty 
times each.

In this experiment, three different death rates 
are applied to each treatment.  The average utility 
of the agents (the number of goods and the even-
ness of the spread of the goods, measured with a 
Cobb-Douglas utility function) is compared in each 
treatment, as well as the mutual information in the 
symbol systems that have evolved.  The higher the 
correspondence between behavior and the sign 
displayed, the higher the information content, or 
mutual information, in the symbol system.  Although 
the signs of the individual recognition treatment are 
not modifiable by the displayers of the signs, there 
is still a symbol system whose information may be 
measured. The individual recognition treatment can 
reach high values of mutual information if agents 
displaying different ID’s have different behaviors.  
If a treatment has a higher utility value, then the 
agents are more successful in trading with each 
other.  If they have higher mutual information, which 
is correlated with that utility, then it is likely that 
they are trading better as a result of the information 
contained in their symbol systems.  Thus language 
makes knowledge and culture possible. They de-
velop a language that is practical for the purposes 
of setting up networks of trade.  If this language can 
carry these practical recipes for interaction on even 
through a complete turnover of the population, then 
language has reproduced culture, and expectation 
of the meanings of signs have spread knowledge to 
new members, so that culture continues despite the 
deaths of  members.

The hypothesis of this experiment is: When 
birth and death are introduced into agent societies, 
those with role recognition (arbitrary signs) have 
greater continuity of knowledge of how to make 
complex goods than societies with only individual 
recognition.

While the number of agents remains at 16, agents 
are periodically killed and replaced by randomizing 
the chromosomes of the private genetic algorithms 
in each of their heads. When an agent is replaced, 
it is given a new unique id.  The death rate is tested 
at several values, a 0.001 chance of death resulting 
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in a complete turnover of agents in about every 
1000 cycles, a 0.002 chance of death resulting in a 
turnover of agents in about every 500 cycles, and 
a 0.005 chance of death resulting in a turnover of 
agents in about two hundred cycles.  A cycle is de-
fined as a period of 1000 days of trade, after which 
reproductions in the GAs take place (learning). The 
tests are all on how well an agent does after one 
turnover, so the cycle lengths tested are different.  
Additionally, a 5 bit sign is used to represent the 16 
agents rather than a 4 bit sign, in order to give new 
“names” to the new agents that arise in the system.  
A 5 bit sign represents 32 different unique names 
for the individually recognized agents, who must 
display their unique name in their sign.  32 unique 
names are needed if all of the agents will die and 
be replaced about once.  

r esults

For the parameters of this experiment, 130 is the 
level of utility where agents have no trade, but have 
become good at making everything for themselves.  
Any utility over that level indicates trade, and under 
that level indicates new agents are having difficulty 
learning.   The average utility is significantly greater 
in the role recognition treatment, at over the 99% 
confidence level, than in the individual recognition 
treatment.  Average utilities of the role treatments, 
for death rates 0.001, 0.002, and 0.005 are 145, 133, 
and 125. Average utilities of individual treatments 
are  127, 121, and 115.  These show that increasing 
death rates are harder on both individual and role 

utilities at above the 99% confidence level.  Figure 
11 shows these results in tabular format.  

 Death flattens the trade and mutual information 
in all of the treatments for the individuals. The con-
trol run (with no death) for the individual treatment 
does not have much trade, but has more than zero.  
This is reflected in the average mutual information 
scores of the 1000 cycle control, 0.14, as compared 
to the death  rate 0.001 treatment, 0; the 500 cycle 
control , 0.27, as compared to the death rate 0.002 
treatment,  0.04; and the 200 cycle control, 0.34 as 
opposed to the death 0.005 treatment, 0.    These 
decreases in mutual information from the control 
are all significant above the 98% confidence level.  
In contrast, the average mutual information in the 
role recognition runs actually increased from the 
control; however this increase is not significant.  
This is reflected in the average mutual information 
scores of the 1000 cycle control, 0.665, as compared 
to the death rate 0.001 treatment, 0.715; the 500 
cycle control 0.794, as compared to the death rate 
0.002 treatment, 0.858; and the 200 cycle control, 
0.65 as opposed to the death 0.005 treatment, 0.575.    
The increase in the average mutual information of 
the role recognition treatment over the individual 
recognition treatment is significant above the 99% 
level.

 In the role treatment, average utility is cor-
related with average mutual information in death 
rates 0.001, 0.002 and 0.005 at values 0.43, 0.36 and 
0.50.  These results are significant above the 95% 
level except for the 0.36 value, which is significant 
above the 90% level.  Individual recognition values 
are too low to have correlations.  

Treatment Death Rate Avg Utility Death Treatment Mutual 
Information(MI)

No Death MI CorrellationMI,Utility  

Role .001 145 0.715 0.665 0.43

.002 133 0.858 0.794 0.36

.005 125 0.575 0.65 0.5

Individual .001 127 0 0.14 N/A

.002 121 0.04 0.27 N/A

.005 115 0 0.34 N/A

Figure 4.  Results for the death scenario.  Utility is higher in the role treatment than in the individual treat-
ment.   Role mutual information actually increases under the stress of death.  
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conc Lusion

This experiment supports the hypothesis that the use 
of arbitrary symbols helps to preserve the knowledge 
in society even though individual knowers die.  When 
an agent dies in an individual based recognition 
society, all the social coordination associated with 
its place in society is lost.  If an agent dies in a role 
recognition society, even if there is only one agent 
in that role at a time, other agents in the society or 
new agents may adjust their sign and receive the 
selective pressures to adjust their behaviors to the 
dead agent’s niche.  The role system exists because 
of an emergent symbol system to denote it, and is 
reproduced through the expectations that these 
symbols bring to mind in the agents.  Language 
acquisition occurs along with concept acquisition, 
as a result of the pressures of these expectations.

 This finding contributes to artificial intelligence, 
because it shows a way to keep a coevolving society 
of agents learning new things.  When new agents 
are brought into a society, they can bring change to 
the society more readily than old agents that have 
already-converged genetic algorithms directing 
them.  Thus, death is a type of macro level mutation 
for coevolving systems.  Death enables roles in the 
society to readjust to each other, change as the need 
arises, and complexify.  If role recognition makes 
agents robust in the face of death, then it can help 
keep the diversity up in a coevolving system when 
used in concert with death.  This finding further 
contributes to artificial intelligence in that robot 
agents in the real world will die by accident, and role 
based recognition is a way to keep the knowledge 
that they have accumulated alive socially despite 
their accidental death.

 Role recognition is superior to individual rec-
ognition of agents in preserving knowledge because 
the agents serve as replacements for each other.  
Roles form robust replacement classes of agents, 
which enable the preservation of the knowledge 
of society, even when individual members of a 
class die.  Role classes also promote the creation 
of knowledge, not only because agents within a 
role class may learn from each other’s experiences.  
This experiment has shown that role recognition, 
in conjunction with death, facilitates the creation 
of knowledge through the diversity that death and 

birth bring to a society.  Roles coordinate knowledge 
across generations.  These roles are indicated by an 
ontology in a symbol system, that coevolves with 
them, and that regenerates them by bringing to mind 
expectations of behavior, which pressure agents to 
behave accordingly.   Thus, language is generative 
of culture, and can regenerate it to recover from the 
deaths of individual members.  

fu Ture  research  direc Tions

When Desalles et al praised Axtell et al’s strong 
(symbolic interactionist-style) emergence, Desalles 
et al noted an immergence, a downward irreducible 
causation that changed the behavior of the races by 
means of a tacit, rather than an explicit, understand-
ing of the signs.  The signs did not point to something 
outside of the agent, they point to utility alone as 
in Maturana et al’s frog that sees green. Desalles 
et al noted that the (symbolic interactionist-style) 
agent’s internal models were not reflexive, that 
they did not map to the agent’s world.   However, 
Desalles along with many other current theorists of 
“immergence” fail to realize that it is the tacit nature 
of the model that allows an entire social engine to 
form, an invisible hand that makes need-filling in-
stitutions out of individual selfish actions.  Desalle 
et al proposed an improvement to Axtell et al in 
which agents can categorize their knowledge into 
a previously developed ontology.  Rather than an 
improving upon the strong emergence this change 
would disable the autonomous social engine, because 
the previously developed ontology is an exogenous 
and static input.  What is needed for true objectiv-
ity, the move from tacit as-the-frog-sees-green to 
explicit, more objective models of the environment 
that is entirely endogenous is a breakthrough in 
cognitive science.  Since endogenous objectivation 
is beyond our technical knowledge, tacit knowledge 
is the only simulatable phenomena that can form an 
entire need filling engine at this time.  

Of course, people cognate detailed models of 
the environment for their utility just as Maturana 
et al’s frog did, and even though no one person 
has a complete explicit map of the entire world of 
thought, these models are more shared than the tacit 
knowledge of Maturana et al’s frog. This objective 
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knowledge is useful in society and to the symbolic 
interactionist practice of “taking the shoes of an-
other.”  The technology that could put an agent in 
the shoes of another would be a technology that 
could take in correlations that it an agent discovered 
through induction, and put out a model of cause.  
Until cognitive science is at the point where it can 
derive an objective causal simulation from subjec-
tive correlative data,   programs which purport to 
simulate immergence must use tacit models.   The 
alternative, considering the state of the science now, 
is to hard code a representation of the “emergent” 
property, losing the endogeny necessary for the 
simulation’s fidelity.  In the mean time, it is best to, 
as Holland did, recognize that a tacit model is just 
as much an internal model as an explicit model.  

Endogenously created cognitive maps would go 
a step farther in simulating the symbolic interac-
tionist paradigm, as reflexivity at the level of get-
ting into the other’s shoes is required, and thus the 
ability to find an objective representation is needed.  
Further, symbolic interactionist simulations to this 
point have only covered the first two mechanisms 
in Holland’s recipe for complex adaptive systems:  
tags and internal models.  They have no building 
blocks, no dynamically recombinable signs that 
can mean new things to be interpreted during the 
interaction, as in Garfinkel’s ethnomethodology in 
symbolic interactionism requires (Garfinkel 1967).  
Endogenous internal causal models from correlated 
relations and recombinable symbols that are in 
language are ambitious next steps for not only the 
symbolic interactionist paradigm, but for cogni-
tive science in general.  Maybe the techniques of 
cognitive science can benefit from the techniques 
of symbolic interactionism in these next steps for 
modeling emergent meanings.
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a bs Trac T

This chapter addresses the problem of the acquisition of the syntax of propositional logic. An approach based 
on general purpose cognitive capacities such as invention, adoption, parsing, generation, and induction is 
proposed. Self-organisation principles are used to show how a shared set of preferred lexical entries and 
grammatical constructions, that is, a language, can emerge in a population of autonomous agents which do 
not have any initial linguistic knowledge. Experiments in which a population of autonomous agents constructs 
a grammar that allows communicating the formulas of a propositional logic language are presented. These 
experiments extend previous work by considering a larger population and a much larger search space of 
grammar rules. In particular, the agents are allowed to order the expressions associated with the constitu-
ents of a logical formula in arbitrary order. Previous work assumed that the expressions associated with the 
connectives should be placed in the first position of the sentence.

inTroduc Tion  

Recent work in linguistics and artificial intelligence 
(Steels, 1998, 2000, 2004; Batali, 2002; Kirby 2002) 
has suggested that some of the complex structure 
of language may be the result of a quite different 
process from biological evolution. Interesting ex-
periments showing the emergence of compositional 
and recursive syntax in populations of agents without 

initial linguistic knowledge have been presented 
as evidence in support of alternative explanations. 
This chapter combines general purpose cogni-
tive capacities (e.g., invention, adoption, parsing, 
generation and induction) and self-organisation 
principles proposed as effective mechanisms for 
syntax acquisition in these experiments in order to 
address the problem of the acquisition of the syntax 
of propositional logic.
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The important role of logic in knowledge rep-
resentation and reasoning (McCarthy, 1990) is 
well known in artificial intelligence. Much of the 
knowledge used by artificial intelligent agents today 
is represented in logic, and linguists use it as well for 
representing the meanings of words and sentences. 
This chapter differs from previous approaches in 
using the syntax of logic as the subject of learning. 
Some could argue that it is not necessary to learn 
such a syntax, because it is built in the internal 
knowledge representation formalism used by the 
agents. We’d argue on the contrary that logical con-
nectives and logical constructions are a fundamental 
part of natural language, and that it is necessary to 
understand how an agent can both conceptualise 
and communicate them to other agents.

The research presented in this chapter assumes 
previous work on the conceptualisation of logical 
connectives (Piaget, 1985; Santibáñez, 1984, 1988, 
1989). In (Sierra 2001, 2002) a grounded approach 
to the acquisition of logical categories (connectives) 
based on the discrimination of a “subset of objects” 
from the rest of the objects in a given context is 
described. The “subset of objects” is characterized 
by a logical formula constructed from perceptually 
grounded categories. This formula is satisfied by the 
objects in the subset and not satisfied by the rest of 
the objects in the context. In this chapter we only 
focus on the problem of the acquisition of the syntax 
of propositional logic, because it is a necessary step 
to solve the complete problem of the acquisition of 
a grounded logical language (encompassing the 
acquisition of both the syntax and the semantics of 
propositional logic).

The rest of the chapter is organised as follows. 
First we present the formalism used for representing 
the grammars constructed by the agents. Then we 
describe in some detail the language games played 
by the agents, focusing on the main cognitive pro-
cesses they use for constructing a shared lexicon 
and grammar: invention, adoption, induction and 
self-organisation. Next we report the results of some 
experiments in which a population of autonomous 
agents constructs a shared language that allows 
communicating the formulas of a propositional logic 
language. Finally we summarize some related work 
and the main contributions of the chapter.

g ra MMaTica L f or Ma LisM

We use a restricted form of Definite Clause Gram-
mar in which non-terminals have three arguments 
attached to them. The first argument conveys 
semantic information. The second is a score in the 
interval [0, 1] that estimates the usefulness of that 
association in previous communication. The third 
argument is a counter that records the number of 
times the association has been used in previous 
language games.

Many grammars can be used to express the 
same meaning. The following holistic grammar 
can be used to express the propositional formula 
right∏light.

s([and, right, light]), 0.01) → andrightlight  

       (1)

This grammar consists of a single rule which 
states that 'andrightlight' is a valid sentence mean-
ing right∏light. Notice that we use Prolog grammar 
rules for describing the grammars. The semantic 
argument of non-terminals uses Lisp like notation 
for representing propositional formulas (e.g., the 
Prolog list [and, [not, right], light] is equivalent to 
∑right∏light). The third argument (the use counter) 
of non-terminals is not shown in the examples.

The same formula can be expressed as well using 
the following compositional, recursive grammar: 
s is the start symbol, c1 and c2 are the names of 
two syntactic categories associated with unary and 
binary connectives, respectively. Like in Prolog, 
variables start with a capital letter and constants 
with a lower case letter.

s(light, 0.70) → light     (2) 
s(right, 0.25) → right   (3) 
s(up, 0.60) → up     (4) 
c1(not, 0.80) → not    (5) 
s([P, Q],S) → c1(P, S1), s(Q, S2), 
 {S is S1∗S2∗0.10}     (6) 
c2(or, 0.30) → or     (7) 
c2(and, 0.50) → and     (8) 
c2(if, 0.90) → if     (9) 
c2(iff, 0.60) → iff     (10)
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s([P, Q, R],S) → c2(P, S1), s(Q, S2), s(R, S3), 
 {S is S1 ∗ S2 ∗ S3 ∗ 0.01}    (11)

This grammar breaks down the sentence ‘and-
rightlight’ into subparts with independent meanings. 
The whole sentence is constructed concatenating 
these subparts. The meaning of the sentence is 
composed combining the meanings of the subparts 
using the variables P, Q and R.

The score of a lexical rule is the value of the sec-
ond argument of the left hand side of the rule (e.g., the 
score of rule 8 is 0.50). The score of a grammatical 
rule is the last number of the arithmetic expression 
that appears on the right hand side of the rule (e.g., 
the score of rule 11 is 0.01). The Prolog operator 
“is” allows evaluating the arithmetic expression at 
its right hand side. The score of a sentence gener-
ated using a grammatical rule is computed using 
the arithmetic expression on the right hand side of 
that rule (e.g., the score of sentence andrightlight 
is 0.50*0.25*0.70*0.01=0.00875).

Language  ga Mes

Syntax acquisition is seen as a collective process by 
which a population of autonomous agents constructs 
a grammar that allows them to communicate some 
set of meanings. In order to reach such an agreement 
the agents interact with each other playing language 
games. In the experiments described in this chap-
ter a particular type of language game called the 
guessing game (Steels 1999, 2002) is played by two 
agents, a speaker and a hearer:

1.  The speaker chooses a formula from a given 
propositional language, generates a sentence 
that expresses this formula and communi-
cates that sentence to the hearer.

2.  The hearer tries to interpret the sentence 
generated by the speaker. If it can parse the 
sentence using its lexicon and grammar, it 
extracts a meaning which can be logically 
equivalent or not to the formula intended 
by the speaker.

3.  The speaker communicates the meaning it had 
in mind to the hearer and both agents adjust 
their grammars in order to become successful 
in future language games.

In a typical experiment hundreds of language 
games are played by pairs of agents randomly chosen 
from a population. The goal of the experiment is 
to observe the evolution of: (1) the communicative 
success; (2) the internal grammars constructed by 
the individual agents; and (3) the external language 
used by the population. The communicative suc-
cess is the average of successful language games in 
the last ten language games played by the agents. 
A language game is considered successful if the 
hearer can parse the sentence generated by the 
speaker, and the meaning interpreted by hearer is 
logically equivalent to the meaning intended by 
the speaker.

invention

In the first step of a language game the speaker tries 
to generate a sentence that expresses a propositional 
formula.

The agents in the population start with an empty 
lexicon and grammar. It is not surprising thus that 
they cannot generate sentences for some meanings 
at the early stages of a simulation run. In order to 
allow language to get off the ground, the agents are 
allowed to invent new words for those meanings they 
cannot express using their lexicons and grammars. 
New words are sequences of one, two or three letters 
randomly chosen from the alphabet.

The invention algorithm is a recursive procedure 
that invents a sentence E for a meaning M. If M is 
atomic (not a list), it generates a new word E. If M is 
a list of elements (i.e., a unary or binary connective 
followed by one or two formulas, respectively), it 
tries to generate an expression for each of the ele-
ments in M using the agent’s grammar. If it cannot 
generate an expression for an element of M using 
the agent’s grammar, it invents an expression for 
that element calling itself recursively on that ele-
ment. Once it has generated an expression for each 
element in M, it concatenates these expressions 
randomly in order to construct a sentence E for the 
whole meaning M.

For example, if an agent tries to generate a 
sentence for the formula [and, light, right], it has 
an entry in its lexicon that associates the atomic 
formula light with the sequence of letters ‘a’, but 
it does not have entries for and and right, then two 
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sequences of letters such as ‘en’ and ‘rec’ could be 
invented for expressing the meanings and and right, 
respectively. These sequences could be concatenated 
randomly generating any of the following sentences 
for the meaning [and, light, right]: ‘enreca’, ‘enarec’, 
‘aenrec’, ‘recena’, ‘arecen’, ‘recaen’.

As the agents play language games they learn 
associations between expressions and meanings, 
and induce linguistic knowledge from such associa-
tions in the form of grammatical rules and lexical 
entries. Once the agents can generate sentences for 
expressing a particular meaning using their own 
grammars, they select the sentence with the highest 
score out of the set of sentences they can generate 
for expressing that meaning, and communicate 
that sentence to the hearer. The algorithm used for 
computing the score of a sentence from the scores 
of the grammatical rules applied in its generation 
is explained in detail later.

a doption

The hearer tries to interpret the sentence generated 
by the speaker. If it can parse the sentence using its 
lexicon and grammar, it extracts a meaning which 
can be logically equivalent or not to the formula 
intended by the speaker.

As we have explained earlier the agents start 
with no linguistic knowledge at all. Therefore they 
cannot parse the sentences generated by the speakers 
at the early stages of a simulation run. When this 
happens the speaker communicates the formula it 
had in mind to the hearer, and the hearer adopts an 
association between that formula and the sentence 
used by the speaker.

It is also possible that the grammars and lexicons 
of speaker and hearer are not consistent, because 
each agent constructs its own grammar from the 
linguistic interactions in which it participates, and 
it is very unlikely that speaker and hearer share 
the same history of linguistic interactions unless 
the population consists only of these two agents. 
When this happens the hearer may be able to parse 
the sentence generated by the speaker, but its in-
terpretation of that sentence may be different from 
the meaning the speaker had in mind. In this case 
the strategy used to coordinate the grammars of 
speaker and hearer is to decrement the score of the 

rules used by speaker and hearer in the processes of 
generation and parsing, respectively, and allow the 
hearer to adopt an association between the sentence 
and the meaning used by the speaker.

The adoption algorithm used in this chapter is 
very simple. Given a sentence E and a meaning 
M, the agent checks whether it can parse E and 
interpret it as meaning M (or MH, where MH is a 
formula logically equivalent to M). This may happen 
when the hearer can parse the sentence used by the 
speaker, but it obtains a different meaning from the 
one intended by the speaker. In a language game the 
hearer always chooses the interpretation with the 
highest score out of the set of all the interpretations it 
can obtain for a given sentence. So it is possible that 
the hearer knows the grammatical rules used by the 
speaker, but the scores of these rules are not higher 
than the scores of the rules it used for interpretation. 
If the hearer can interpret sentence E as meaning 
M, the hearer does not take any action. Otherwise 
it adopts the association used by the speaker add-
ing a new holistic rule of the form s(M, 0.01) →  E  
to its grammar. Observe that the score of the rule 
is initialized to 0.01. The same initial score value 
is used for all the rules generated using invention, 
adoption or induction. The induction algorithm, used 
to generalise and simplify the agents’ grammars, 
compares this rule with other rules already present 
in the grammar and replaces it with more general 
rules whenever it is possible.

induction

In addition to invent and adopt associations between 
sentences and meanings, the agents use some induc-
tion mechanisms to extract generalizations from 
the grammar rules they have learnt so far (Steels, 
2004). The induction rules used in this chapter are 
based on the rules for chunk and simplification in 
(Kirby, 2002; Stolcke, 1994) although we have ex-
tended them so that they can be applied to grammar 
rules which have scores attached to them. We use 
the approach proposed in (Vogt, 2005) for comput-
ing the scores of sentences and meanings from the 
scores of the rules used in their generation. 

The induction rules are applied whenever the 
agents invent or adopt a new association, to avoid 
redundancy and increase generality in their gram-
mars.
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Simplification  Let r1 and r2 be a pair of grammar 
rules such that the left hand side semantics of r1 
contains a subterm m1, r2 is of the form  n(m1,S) 
→ e1, and e1 is a substring of the terminals of r1. 
Then simplification can be applied to r1 replacing 
it with a new rule that is identical to r1 except that 
m1 is replaced with a new variable X in the left 
hand side semantics, and e1 is replaced with n(X, 
S) on the right hand side. The second argument of 
the left hand side of r1 is replaced with a new vari-
able SR. If the score of r1 was a constant value c1, 
an expression of the form {SR is S * 0.01} is added 
to the right hand side of r1. If the score of r1 was a 
variable, then the arithmetic expression {SR is S1 
* c1} in the right hand side of r1 is replaced with 
{SR is S *S1 * 0.01}. 

Suppose an agent’s grammar contains rules 2, 
3 and 4, which it has invented or adopted in previ-
ous language games. It plays a language game with 
another agent, and invents or adopts the following 
rule. 

s([and, light, right], 0.01) → andlightright.  
      (12) 

It could apply simplification to rule 12 (using 
rule 3) and replace it with 13.

s([and, light, R],S) → andlight, s(R, SR), 
{S is SR ∗ 0.01}     
      (13) 

Rule 13 could be simplified again, replacing it 
with 14. 

s([and, Q, R],S) → and, s(Q, SQ), s(R, SR), 
{S is SQ ∗ SR ∗ 0.01}   (14) 

Suppose the agent plays another language game 
in which it invents or adopts a holistic rule which 
associates the formula [or, up, light] with the sentence 
’oruplight’, and it applies simplification in a similar 
way. Then the agent’s grammar would contain the 
following rules that are compositional and recursive, 
but which do not use syntactic categories for unary 
or binary connectives. 

s([and, Q, R],S) → and, s(Q, SQ), s(R, SR), 
{S is SQ ∗ SR ∗ 0.01}    (15) 

s([or, Q, R],S) → or, s(Q, SQ), s(R, SR), 
{S is SQ ∗ SR ∗ 0.01}    (16) 

Chunk I  Let r1 and r2 be a pair of grammar rules 
with the same left hand side category symbol. If 
the left hand side semantics of the two rules differ 
in only one subterm, and there exist two strings of 
terminals that, if removed, would make the right 
hand sides of the two rules the same, then chunk 
can be applied. Let m1 and m2 be the differences 
in the left hand side semantics of the two rules, and 
e1 and e2 the strings of terminals that, if removed, 
would make the right hand sides of the rules the 
same. A new category n is created and the following 
two new rules are added to the grammar. 

n(m1, 0.01) → e1 
n(m2, 0.01) → e2 

Rules r1 and r2 are replaced by a new rule that 
is identical to r1 (or r2) except that e1 (or e2) is 
replaced with n(X, S) on the right hand side, and 
m1 (or m2) is replaced with a new variable X in the 
left hand side semantics. The second argument of 
the left hand side of r1 is replaced with a new vari-
able SR. If the score of r1 was a constant value c1, 
an expression of the form {SR is S*0.01}is added 
to the right hand side of r1. If the score of r1 was a 
variable, then the arithmetic expression {SR is S1 
* c1} in the right hand side of r1 is replaced with 
{SR is S * S1 * 0.01}. 

For example the agent of previous examples, 
which has rules 15 and 16 for conjunctive and dis-
junctive formulas in its grammar, could apply chunk 
I to these rules and create a new syntactic category 
for binary connectives as follows. 

s([P, Q, R], S) → c2(P, S1), s(Q, S2), s(R, S3), 
{S is S1 ∗ S2 ∗ S3 ∗ 0.01}    (17)
c2(and, 0.01) → and     (18)
c2(or, 0.01) → or     (19)

Rules 15 and 16 would be replaced with 17, 
which generalises them because it can be applied 
to arbitrary formulas constructed using binary con-
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nectives, and rules 18 and 19, which state that and 
and or belong to c2 (the syntactic category of binary 
connectives), would be added to the grammar. 

Chunk II  If the left hand side semantics of two 
grammar rules r1 and r2 can be unified applying 
substitution X/m1 to r1 and there exists a string of 
terminals e1 in r2 that corresponds to a nonterminal 
c(X, S) in r1, then chunk can be applied to r2 as 
follows. Rule r2 is deleted from the grammar and 
a new rule of the following form c(m1, 0.01) → e1 
is added to it. 

Suppose the agent of previous examples adopts 
or invents the following rule. 

s([iff, up, right], 0.01) → iffupright.  (20) 

Simplification of rule 20 with rules 4 and 3 leads 
to replace rule 20 with 21.

s([iff, Q, R],S) → iff,s(Q, SQ),s(R, SR), 
{S is SQ ∗ SR ∗ 0.01}     (21) 

Then chunk II could be applied to rules 21 and 
17, replacing rule 21 with rule 22. 

c2(iff, 0.01) → iff    (22) 

self-o rganisation 

The agent in the previous examples has been very 
lucky, but things are not always that easy. Different 
agents can invent different words for referring to the 
same propositional constants or connectives. The 
invention process uses a random order to concatenate 
the expressions associated with the components of 
a given meaning. Thus an agent that has invented 
or adopted rules 2, 3 and 8 may invent any of the 
following holistic sentences for communicating the 
meaning [and,light,right]: lightandright, rightand-
light, andrightlight, andlightright, lightrightand, 
rightlightand.

This has important consequences, because the 
simplification rule takes into account the order in 
which the expressions associated with the mean-
ing components appear in the terminals of a rule. 

Imagine that the agent has invented or adopted the 
following holistic rules for expressing the meanings 
[and,light,right] and [if,light,right]. 

s([and, light, right], 0.01) → andlightright 
s([if, light, right], 0.01) → ifrightlight

The result of simplifying these rules using rules 
2 and 3 would be the following rules which cannot 
be used for constructing a syntactic category for 
binary connectives, because they do not satisfy the 
preconditions of chunk I. There do not exist two 
strings of terminals that, if removed, would make 
the right hand sides of the rules the same. 

S([and, X, Y ], SC) → and, s(X, SX), s(Y, SY), {SC 
is SX ∗ SY ∗ 0.56} 

S([if, X, Y ], SC) → if, s(Y, SY ), s(X, SX), {SC is 
SY ∗ SX ∗ 0.56} 

The agents must therefore reach agreements on 
how to name propositional constants and connec-
tives, and on how to order the expressions associated 
with the different components of non-atomic mean-
ings. Self-organisation principles help to coordinate 
the agents’ grammars in such a way that they prefer 
to use the rules that are used more often by other 
agents (Steels 1997, 2004; Batali 2002). The set of 
rules preferred by most agents for naming atomic 
meanings, and for ordering the expressions associ-
ated with the components of non-atomic meanings 
constitutes the external language spread over the 
population. 

The goal of the self-organisation process is that 
the agents in the population be able to construct 
a shared external language and that they prefer 
using the rules in that language over the rest of the 
rules in their individual grammars. 

Coordination takes place at the third stage of 
a language game, when the speaker communicates 
the meaning it had in mind to the hearer. Depend-
ing on the outcome of the language game speaker 
and hearer take different actions. We have talked 
about some of them already, such as invention or 
adoption, but they can also adjust the scores of the 
rules in their grammars to become more successful 
in future games. First we consider the case in which 
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the speaker can generate a sentence for the mean-
ing using the rules in its grammar. If the speaker 
can generate several sentences for expressing that 
meaning, it chooses the sentence with the highest 
score, the rest are called competing sentences. 

The score of a sentence (or a meaning) is com-
puted at generation (parsing) multiplying the scores 
of the rules involved (Vorgt, 2005). Consider the 
generation of a sentence for expressing the meaning 
[and, right, light] using the following rules. 

s(light, 0.70) → light     (23)
s(right, 0.25) → right     (24)
c2(and, 0.50) → and    (25) 
s([P, Q, R], S) → c2(P, S1), s(Q, S2), 
s(R, S3), {S is S1·S2·S3·0.01}    (26)

The score S of the sentence andrightligth, 
generated by rule 26, is computed multiplying the 
score of that rule (0.01) by the scores of the rules 
25, 24 and 23 which generate the substrings of that 
sentence. The score of a lexical rule is the value of 
the second argument of the left hand side of the rule 
(e.g., the score of rule 25 is 0.50). The score of a 
grammatical rule is the last number of the arithmetic 
expression that appears on the right hand side of the 
rule (e.g., the score of rule 26 is 0.01). The score of 
a sentence generated using a grammatical rule is 
computed using the arithmetic expression on the 
right hand side of that rule. For example, using the 
rules above, the score of the sentence andrightlight 
is 0.50*0.25*0.70*0.01=0.00875. 

Suppose that the hearer can interpret the sentence 
communicated by the speaker. If the hearer can 
obtain several interpretations (meanings) for that 
sentence, the meaning with the highest score is se-

lected, the rest are called competing meanings.
If the meaning interpreted by the hearer is 

logically equivalent to the meaning the speaker 
had in mind, the game succeeds and both agents 
adjust the scores of the rules in their grammars. 
The speaker increases the scores of the rules it 
used for generating the sentence communicated 
to the hearer and decreases the scores of the rules 
it used for generating competing sentences. The 
hearer increases the scores of the rules it used for 
obtaining the meaning the speaker had in mind and 
decreases the scores of the rules it used for obtain-
ing competing meanings. This way the rules that 
have been used successfully get reinforced. The 
rules that have been used for generating competing 
sentences or competing meanings are inhibited to 
avoid ambiguity in future games. 

The rules used for updating the scores of gram-
mar rules are the same as those proposed in (Steels, 
1999). The rule’s original score S is replaced with 
the result of evaluating expression 27 if the score is 
increased, and with the result of evaluating expres-
sion 28 if the score is decreased. The constant µ is 
a leaning parameter which is set to 0.1.

minimum(1,S + µ) (27) 
maximum(0,S − µ) (28) 

If the meaning interpreted by the hearer it is not 
logically equivalent to the meaning the speaker had 
in mind, the game fails. Speaker and hearer decrease 
the scores of the rules they used for generating and 
interpreting the sentence, respectively. This way 
the rules that have been used without success are 
inhibited. 

Table 1. Lexicons constructed by the agents after playing 10000 language games about propositional con-
stants in a particular simulation run

Prop Const a b c l r u 

Lexicon a1 s(a,1) → c s(b,1) → v s(c,1) → hw s(l,1) → hcm s(r,1) → l s(u,1) → zb 

Lexicon a2 s(a,1) → c s(b,1) → v s(c,1) → hw s(l,1) → hcm s(r,1) → l s(u,1) → zb 

Lexicon a3 s(a,1) → c s(b,1) → v s(c,1) → hw s(l,1) → hcm s(r,1) → l s(u,1) → zb 

Lexicon a4 s(a,1) → c s(b,1) → v s(c,1) → hw s(l,1) → hcm s(r,1) → l s(u,1) → zb 

Lexicon a5 s(a,1) → c s(b,1) → v s(c,1) → hw s(l,1) → hcm s(r,1) → l s(u,1) → zb 

Lexicon a6 s(a,1) → c s(b,1) → v s(c,1) → hw s(l,1) → hcm s(r,1) → l s(u,1) → zb 
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If the speaker can generate a sentence for the 
meaning it has in mind, but the hearer cannot in-
terpret that sentence, the hearer adopts a holistic 
rule associating the meaning and the sentence used 
by the speaker. This holistic rule can be simplified 
and chunked later using the rest of the rules in the 
hearer’s grammar. 

In order to simplify the agents’s grammars and 
avoid possible sources of ambiguity a mechanism 
for purging rules that have not been useful in past 
language games is introduced. Every ten language 
games the rules which have been used more than 
thirty times and have scores lower than 0.01 are 
removed from the agents’ grammars. 

experi Men Ts 

We present the results of some experiments in 
which five agents construct a shared language 
that allows communicating the set of formulas of 
a propositional language L = {a, b, c, l, r, u} with 
six propositional constants. 

First the agents play 10000 language games 
in which they try to communicate propositional 
constants. Then they play 15000 language games 
in which they try to communicate logical formulas 
constructed using unary and binary connectives. 
At the end of the first part of a typical simulation run 
(see table 1) all the agents prefer the same expres-
sions (i.e., words) for referring to the propositional 
constants of the language L = {a, b, c, l, r, u}. 

We describe now the individual grammar built 
by every agent at the end of a particular simulation 
run. The grammars built by the agents, although 

different, are compatible enough to allow total 
communicative success. That is, the agents always 
generate sentences that are correctly understood by 
the other agents. The grammars of all the agents have 
recursive rules for expressing formulas constructed 
using unary and binary connectives. Agents a4 and 
a5 have invented a syntactic category for unary 
connectives (see table 2). The other agents have  
specific rules for formulas constructed using nega-
tion, which use the same word ’zmi’ preferred by 
the former agents for expressing negation. 

The grammar rules used for expressing negation 
place the word associated with the connective in the 
second position of the sentence. This is indicated by 
the number that appears in first place on the right 
hand side of a grammar rule. Thus the number 1 
indicates that the expression associated with the 
connective is located in the first position of the sen-
tence, the number 2 that it is located in the second 
position and the number 3 that it is located in the 
third position. Prolog does not allow the use of left 
recursive grammar rules. We use this convention 
thus in order to be able to represent two different 
types of grammar rules for unary connectives (which 
place the expression associated with the connective 
in the first and the second position of the sentence, 
respectively) and six different types of grammar 
rules for binary connectives. The induction rules 
(simplification and chunk) have been extended ap-
propriately to deal with this convention. 

But the position of the expression associated 
with a binary connective in a sentence does not 
determine uniquely the form of the sentence. It is 
necessary to specify as well the positions of the 
expressions associated with the arguments of the 
connective. 

Table 2. Grammar rules constructed by every agent for expressing negations (i.e., formulas of the form ¬P) 
in a particular simulation run

Grammar rules constructed by every agent for expressing negations: ¬P 

Agent a1 s([not, P], R) → 2, zmi, s(P,Q), {R is Q*1}

Agent a2 s([not, P], R) → 2, zmi, s(P,Q), {R is Q*1}

Agent a3 s([not, P], R) → 2, zmi, s(P,Q), {R is Q*1}

Agent a4 s([X,P],R) → 2, c2(X,S), s(P,Q), {R is S*Q*1}
c2(not, X) → zmi, {X is 1}

Agent a5 s([X,P],R) → 2, c1(X,S), s(P,Q), {R is S*Q*1}
c1(not, X) → zmi, {X is 1}
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Table 3. Grammar rules constructed by every agent for expressing conjunctions (i.e., formulas of the form Y 
∏ Z) in a particular simulation run

Grammar rules constructed by every agent for expressing conjunctions: Y∏Z 

Agent a1 s([and, Y, Z], T) → 2, i, s(Y,Q), s(Z,R), {T is Q*R*1}

Agent a2 s([X, Y, Z], T) → 2, c2(X,P), s(Y,Q), s(Z,R), {T is P*Q*R*1} 
c2(and, X) → i, {X is 1}

Agent a3 s([X, Y, Z], T) → 2, c1(X,P), s(Z,R), s(Y,Q), {T is P*Q*R*1} 
c1(and, X) → i, {X is 1}

Agent a4 s([X, Y, Z], T) → 2, c4(X,P), s(Y,Q), s(Z,R), {T is P*Q*R*1} 
c4(and, X) → i, {X is 1}

Agent a5 s([X, Y, Z], T) → 2, c2(X,P), s(Y,Q), s(Z,R), {T is P*Q*R*1} 
c2(and, X) → i, {X is 1}

Table 4. Grammar constructed by every agent in a particular simulation run

Grammar a1 

s([not, Y], R) → 2, zmi, s(Y,Q), {R is Q*1}
s([or, Y, Z], T) → 1, zc, s(Z,Q), s(Y,R), {T is Q*R*1}
s([and, Y, Z], T) → 2, i, s(Y,Q), s(Z,R), {T is Q*R*1}
s([if, Y, Z], T) → 2, ir, s(Z,Q), s(Y,R), {T is Q*R*1}
s([X, Y, Z], T) → 1, c1(X,P), s(Y,Q), s(Z,R), {T is P*Q*R*1}
c1(iff, X) → v, {X is 1}

Grammar a2 

s([not, Y], R) → 2, zmi, s(Y,Q), {R is Q*1}
s([or, Y, Z], T) → 1, zc, s(Z,Q), s(Y,R), {T is Q*R*1}
s([if, Y, Z], T) → 2, ir, s(Z,Q), s(Y,R), {T is Q*R*1}
s([X, Y, Z], T) → 2, c2(X,P), s(Y,Q), s(Z,R), {T is P*Q*R*1}
c2(and, X) → i, {X is 1}
s([X, Y, Z], T) → 1, c1(X,P), s(Y,Q), s(Z,R), {T is P*Q*R*1}
c1(iff, X) → v, {X is 1}

Grammar a3 

s([not, Y], R) → 2, zmi, s(Y,Q), {R is Q*1}
s([or, Y, Z], T) → 1, zc, s(Z,Q), s(Y,R), {T is Q*R*1}
s([iff, Y, Z], T) → 1, v, s(Y,Q), s(Z,R), {T is Q*R*1}
s([X, Y, Z], T) → 2, c1(X,P), s(Z,Q), s(Y,R), {T is P*Q*R*1}
c1(and, X) → i, {X is 1}
c1(if, X) → ir, {X is 1}

Grammar a4 

s([X,Y],R) → 2, c2(X,P), s(Y,Q), {R is P*Q*1}
c2(not, X) → zmi, {X is 1}
s([if, Y, Z], T) → 2, ir, s(Z,Q), s(Y,R), {T is Q*R*1}
s([or, Y, Z], T) → 1, zc, s(Z,Q), s(Y,R), {T is Q*R*1}
s([X, Y, Z], T) → 2, c4(X,P), s(Y,Q), s(Z,R), {T is P*Q*R*1}
c4(and, X) → i, {X is 1}
s([X, Y, Z], T) → 1, c3(X,P), s(Y,Q), s(Z,R), {T is P*Q*R*1}
c3(iff, X) → v, {X is 1}

Grammar a5 

s([X,Y],R) → 2, c1(X,P), s(Y,Q), {R is P*Q*1}
c1(not, X) → zmi, {X is 1}
s([or, Y, Z], T) → 1, zc, s(Z,Q), s(Y,R), {T is Q*R*1}
s([iff, Y, Z], T) → 1, v, s(Y,Q), s(Z,R), {T is Q*R*1}
s([if, Y, Z], T) → 2, ir, s(Z,Q), s(Y,R), {T is Q*R*1}
s([X, Y, Z], T) → 2, c2(X,P), s(Y,Q), s(Z,R), {T is P*Q*R*1}
c2(and, X) → i, {X is 1}
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Consider the grammar rules used by agents a2 
and a3 for expressing conjunctions (see table 3). Both 
grammar rules place the expression associated with 
the connective and in the second position of the sen-
tence, but differ in the positions in which they place 
the expressions associated with the arguments of the 
conjunction. The grammar rule of agent a2 places 
the expression associated with the first argument 
of the connective (variable Y) in the first position 
of the sentence, and the expression associated with 
the second argument of the connective (variable Z) 
in the third position of the sentence. The grammar 
rule of agent a3 places the expression associated 
with the first argument of the connective (variable 
Y) in the third position of the sentence (observe the 
order in which the nonterminals s(Y,Q) and s(Z,R) 
appear on the right hand sides of both rules), and 
the expression associated with the second argument 
of the connective (variable Z) in the first position of 
the sentence. Both agents would use thus different 
sentences for expressing the same formula. For 
example, agent a2 would use the sentence ’hwizb’ 
for expressing the formula c∏u, while agent a3 

would use the sentence ’zbihw’ for expressing the 
same formula. However this will not prevent agent 
a2 from understanding agent a3 and viceversa, 
because the formula interpreted by agent a3 after 
parsing the sentence ’hwizb’ would be u∏c which 
is logically equivalent to the formula c∏u that agent 
a2 was trying to communicate.

Table 4 shows the grammar rules constructed 
by every agent at the end of a particular simulation 
run. It can be observed that all agents have created 
syntactic categories for binary connectives, although 
the extent of such categories in the grammars of 
the individual agents differs depending on the 
positions in which the expressions associated with 
the connectives and their arguments are placed in 
the sentence. 

In order to analyze the agents’ grammars it is 
important to distinguish between the grammar rules 
that are used for expressing formulas constructed 
with commutative connectives and the gram-
mar rules that are used for expressing formulas 
constructed with non-commutative connectives. 
Because if two agents use the same expression to 

Figure 1. Evolution of the communicative success in experiments involving a population of five agents. In the 
first part of the experiment the agents play 10000 language games about atomic formulas (segment [0,1000] 
in the X-axis). In the second part they play 15000 language games about logical formulas constructed using 
unary and binary connectives (i.e., ¬, ∏, ∨, → and ↔). The second part of the experiment corresponds to 
segment [1001,2500] in the X-axis, i.e., to games 10001 to 25000. 
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refer to a particular commutative connective and 
they place such an expression in the same position 
in the sentence, they will always understand each 
other correctly, even if they place the expressions 
associated with the arguments of such a connective 
in different positions in the sentence. In table 4 we 
can observe in fact that all agents place in the first 
position of the sentence the expressions associated 
with the connectives ’or’ and ’iff’, and that they 
use the same words (’zc’ and ’v’, respectively) for 
expressing such connectives. As we have explained 
already, all the agents place the expression associ-
ated with the connective ’and’ in the second position 
of the sentence and all of them use the word ’i’ for 
expressing it, although agents a1, a2, a4 and a5 place 
the expression associated with the first argument of 
the conjunction in the first position of the sentence, 
and agent a3 places the expression associated with 
the first argument of the conjunction in the third 
position of the sentence. 

The positions in which the expressions associated 
with the arguments of non-commutative connectives 
are placed in a sentence determine however the 
meaning of the sentence. We can observe in table 
4 that all agents use the word ’ir’ for expressing the 
connective ’if’, that they all place it in the second 
position of the sentence, and that all of them place the 
expressions associated with the antecedent and the 
consequent of an implication in the same positions 
(third and first, respectively) of the sentence. 

Figure 1 shows the evolution of the communica-
tive success in an experiment in which a population 
of five agents constructs a shared language (a com-
mon lexicon and a grammar) that allows them to 
communicate logical formulas from a propositional 
language with six propositional constants. The 
communicative success is the average of success-
ful language games in the last ten language games 
played by the agents.

The agents reach total communicative success 
in 20800 language games. That is, after each agent 
has played on average 2000 language games about 
propositional constants and 2160 language games 
about formulas constructed using unary and binary 
connectives. The results shown in figure 1 are aver-
aged over ten simulation runs with different initial 
random seeds. 

re LaTed  work

Batali (2002) studies the emergence of recursive 
communication systems as the result of a process of 
negotiation among the members of a population. The 
alternative explored in this research is that learners 
simply store all of their analyzed observations as 
exemplars. No rules or principles are induced from 
them. Instead exemplars are used directly to convey 
meanings and to interpret signals. 

 The agents acquire their exemplars by record-
ing observations of other agents expressing mean-
ings. A learner finds the cheapest phrase with the 
observed string and meaning that can be created by 
combining or modifying phrases from its existing 
set of exemplars, creating new tokens and phrases 
if necessary. 

As an agent continues to record learning observa-
tions, its exemplar set accumulates redundant and 
contradictory elements. In order to choose which of 
a set of alternative exemplars, or modified analyses 
based on them, will be used in a particular episode 
the cost of different solution phrases are compared, 
and a competition process among exemplars based 
on reinforcement and discouragement is estab-
lished. An exemplar is reinforced when it is used in 
the phrase an agent constructs to record a learning 
observation, and it is discouraged when it is found 
to be inconsistent with a learning observation. Rein-
forcement and discouragement implement therefore 
a competition among groups of exemplars. 

In the computational simulations described in 
(Batali, 2002) ten agents negotiate communication 
systems that enable them to accurately convey 
meanings consisting of sets of 2 to 7 atomic 
formulas (constructed from 22 unary and 10 bi-
nary predicates) which involve at most 3 different 
variables, after each agent has made fewer than 
10000 learning observations. Each agent acquires 
several hundred exemplars, of which a few dozen 
are singleton tokens identical to those of other agents 
in the population. 

The agents express meanings by combining their 
singleton tokens into complex phrases using the 
order of phrases, as well as the presence and posi-
tion of empty tokens, to indicate configurations of 
predicate arguments. Empty tokens are also used 
to signal the boundaries of constituents, the pres-
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ence of specific argument maps, and details of the 
structure of the phrases containing them. 

The research presented in (Batali, 2002) ad-
dresses the problem of the emergence of recursive 
communication systems in populations of autono-
mous agents, as we do. It differs from the work 
described in the present chapter by focusing on 
learning exemplars rather than grammar rules. 
These exemplars have costs, as our grammar rules 
do, and their costs are reinforced and discouraged 
using self-organization principles as well. The main 
challenge for the agents in the experiments described 
in (Batali, 2002) is to construct a communication 
system that is capable of naming atomic formulas 
and, more importantly, marking the equality rela-
tions among the arguments of the different atomic 
formulas that constitute the meaning of a given string 
of characters. This task is quite different from the 
learning task proposed in the present chapter which 
focuses on categorizing propositional sentences 
and connectives, and marking the scope of each 
connective using the order of the constituents of 
a sentence. 

Kirby (2002) studies the emergence of basic 
structural properties of language such as compo-
sitionality and recursion as a result of the influence 
of learning on the complex dynamical process of 
language transmission over generations. It describes 
computational simulations of language transmission 
over generations consisting of only two agents: an 
adult speaker and a new learner. Each generation 
in a simulation goes through the following steps: 
1.-The speaker is given a set of meanings, and pro-
duces a set of utterances for expressing them either 
using its knowledge of language or by some random 
process of invention. 2.-The learner takes this set 
of the utterance-meaning pairs and uses it as input 
for its induction learning algorithm. 3.-Finally a 
new generation is created where the old speaker is 
discarded, the learner becomes the new speaker, and 
a new individual is added to become a new learner. 
At the start of a simulation run neither the speaker 
nor the learner have any grammar at all. 

The induction algorithm thus proceeds by taking 
an utterance, incorporating the simplest possible rule 
that generates that utterance directly, searching then 
through all pairs of rules in the grammar for possible 
subsumptions until no further generalisations can be 

found, and deleting finally any duplicate rules that 
are left over. The inducer uses merge and chunk to 
discover new rules that subsume pairs of rules that 
have been learnt through simple incorporation, and 
simplification for generalising some rules using 
other rules that are already in the grammar. 

The meaning space of the second experiment 
described in (Kirby, 2002) consists of formulas 
constructed using 5 binary predicates, 5 objects 
and 5 embedding binary predicates. Reflexive 
expressions are not allowed (i.e., the arguments of 
each predicate must be different). Each speaker tries 
to produce 50 degree-0 meanings, then 50 degree-1 
meanings, and finally 50 degree-2 meanings. The 
grammar of generation 115 in one of the simulation 
runs has syntactic categories for nouns, verbs, and 
verbs that have a subordinating function. It also has 
a grammar rule that allows expressing degree-0 
sentences using VOS (verb, object, subject) order, 
and another recursive rule that allows expressing 
meanings of degree greater than 0. In the ten simu-
lation runs performed the proportion of meanings 
of degrees 0, 1 and 2 expressed without invention 
in generation 1000 is 100%. 

The most important difference between our work 
and that presented in (Kirby, 2002) is that the latter 
one focusses on language transmission over genera-
tions. Rather than studying the emergence of recur-
sive communication systems in a single generation 
of agents, as we do, it shows that the bottleneck 
established by language transmission over several 
generations favors the propagation of compositional 
and recursive rules because of their compactness and 
generality. In the experiments described in (Kirby, 
2002) the population consists of a single agent of a 
generation that acts as a teacher and another agent 
of the following generation that acts as a learner. 
There is no negotiation process involved, because 
the learned never has the opportunity to act as a 
speaker in a single iteration. We consider however 
populations of five agents which can act both as 
speakers and hearers during the simulations. Having 
more than two agents ensures that the interaction 
histories of the agents are different from each other, 
in such a way that they have to negotiate in order 
to reach agreements on how to name and order the 
constituents of a sentence.

The induction mechanisms used in the pres-
ent chapter are based on the rules for chunk and 
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simplification in (Kirby, 2002), although we have 
extended them so that they can be applied to gram-
mar rules which have scores attached to them. 
Finally the meaning space used in (Kirby, 2002), a 
restricted form of atomic formulas of second order 
logic, is different from the meaning space considered 
in the present chapter, arbitrary formulas from a 
propositional logic language, although both of them 
require the use of recursion. 

conc Lusion

This chapter has addressed the problem of the 
acquisition of the syntax of propositional logic by 
a population of autonomous agents which do not 
have any initial linguistic knowledge. An approach 
based on general purpose cognitive capacities such 
as invention, adoption, parsing, generation and 
induction, and on self-organisation mechanisms 
has been used. 

The results of some experiments in which a 
population of five agents comes up with a common 
vocabulary and a grammar (i.e., a shared language) 
that allows communicating all the formulas of a 
propositional logic language with six propositional 
constants have been described. This language has 
a number of interesting properties found in natu-
ral languages such as word order dependence and 
recursion. It includes syntactic categories for 
propositional sentences and for different types 
of logical connectives. It contains as well gram-
matical constructions that determine the particular 
order in which the expressions associated with the 
constituents of different types of logical formulas 
(negations, conjunctions, disjunctions, equivalences 
and implications) are placed in a sentence. These 
word order patterns are used therefore to mark the 
scope of each connective in a sentence. 

The experiments described in this chapter ex-
tend previous work (Sierra, 2006) by considering 
a larger population and a much larger search space 
of grammar rules. In particular the agents are al-
lowed to order the expressions associated with the 
constituents of a logical formula in arbitrary order. 
Previous work assumed that the expressions associ-
ated with the connectives should be placed in the 
first position of the sentence. The branching factor 

of the search space of grammar rules considered by 
each agent is extended thus from one to two in the 
case of formulas constructed using negation, and 
from two to six in the case of formulas constructed 
using binary connectives. 
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a bs Trac T

Emotions influence our everyday lives, guiding and misguiding us. They lead us to happiness and love, but 
also to irrational acts. Artificial intelligence aims at constructing agents that can emulate thinking processes, 
but artificial life still lacks emotions and all the consequences that come from them. This work introduces 
an emotionally aware framework geared towards multi-agent societies. Basing our model on the shoulders 
of solid foundations created by pioneers who first explored the coupling of emotions and agency, we extend 
their ideas to include inter-agent interaction and virtual genetics as key components of an agent’s emotive 
state. We also introduce possible future applications of this framework in consumer products as well as 
research endeavors.

inTroduc Tion

We as human beings are influenced by many factors 
as we carry out our daily activities and routines. 
Emotions in particular play an important role that 
often provokes biased decisions. Emotion as it 
influences one’s behavior can do so in erratic and 
unpredictable ways with variations between indi-
viduals and circumstances. The unpredictability of 
emotion based responses can lead to many varia-
tions of interaction. This would certainly apply to 
interactions between humans, but also to interactions 

between humans and environmental artifacts and 
also to human-agent interactions. Decisions biased 
by a particular emotional state can produce erratic, 
impulsive or risky decision making behaviors within 
a given context (Loewenstein, Weber, Hsee, & 
Welch, 2001). If these states can cause a person to 
act in a potentially destructive fashion we should 
investigate ways to limit these effects. Various fac-
tors can contribute in eliciting such states and can 
be influenced by events in the environment, mental 
defect or disease, genetic disposition, traumatic 
events, social interactions or based from ones own 
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perceptions. (Selyse & Fortier 1950; Loewenstein et 
al., 2001; Ohman & Wiens, 2004). Our approach is to 
use these behaviors and emotional models together 
with human and non human agents as the foundation 
for hybrid emotionally aware agent architecture for 
multiagent systems. 

Due to the nature and complications associ-
ated with emotions, our aim is not to simulate 
complex emotional states or conditions within 
agents themselves, but to investigate how simple 
emotional simulations can be used to for a variety 
of purposes. Such phenomena can be modeled 
within a homogenous multi-agent system composed 
of emotionally enhanced sets of agents given both 
a finite set of options and emotional states. Our 
agents have limited abilities and actions based 
on their current emotional well being. Following 
previous experimentation with limited perceptual 
context for a given agent and its combined effect on 
understanding and formation of personal goals, we 
now apply emotion in limiting an agent’s perception 
and motivational attributes (Trajkovski, Collins, 
Braman & Goldberg, 2006). In experimentations 
by Trajkovski, a hybrid interaction between human 
users and non-human agents can form a system 
that attempts to learn and adapt from each other in 
various conditions and contexts (2006). Emotions 
in our framework create a limiting heuristic that is 
directly associated with an agent’s ability to sense 
and interact within the system. 

The current state of an agent is derived from its 
ability to satisfy its drive to find “goal” locations 
within the environment. Similar to human behavior, 
an agent may become distressed or agitated if they 
fail at their attempts to find these simulated goals. 
These agents can compute the length of time that 
has past and/or the number of moves they have 
made; this compounded with the introduction of 
obstacles along its path will elicit a angry response 
as it becomes frustrated at the rise in difficulty or 
lack of a drive satisfier. In other cases in conjunc-
tion to these influences, agents may come into 
contact with others within the system. Agents in 
our framework however are limited to perception 
in a limited sensory field. 

We see emotions as both a dynamic and prevail-
ing influence over response mechanisms for an agent. 
Often emotions are attributed to “clouding” one’s 
ability to make rational decisions which implies 

that they have a tendency to interfere with rational 
thinking and our ability to interpret perceptual 
information (Artz, 2000). In other situations they 
can however be extremely useful in making certain 
decisions “by rapidly reducing the options that one 
can consider” (Greenberg, 2002). Agents (human 
or non-human) while working with large amounts 
of data or available options will want to be able to 
filter, select and restructure it, with least possible 
effort (Shneiderman, 2005). In a similar application, 
emotions can be used in these situations to help filter 
out certain options. These changes in perception 
and available options are areas being explored by 
attributing certain basic states in goal seeking agents 
and examining its overall consequence. 

Often a human emotional response is induced by 
an event or an “object” that has been given meaning 
which is part of a particular stimulus. With various 
stimuli are attributed meanings which are a result of 
an appraisal process that derives significance to such 
stimuli or events (Planalp, 1999). Objects, events 
and interactions are interpreted by each individual 
agent which contributes to their particular state. 
Following the distinct emotional conditions estab-
lished by Elkman & Friesen (1975) which identify 
six emotional states that are innate across cultures, 
which are based on facial expressions (Anger, Fear, 
Sadness, Disgust, Surprise and Joy) we have chosen 
two emotions in which to focus our research. From 
these basic states, anger and joy (or happiness) has 
been selected for this framework. These two states 
can be attributed to individual factors concerning 
the achievement of goals (Planalp, 1999). 

Generally those who are in a less stressed 
condition or in a happier state of emotion are less 
inclined to make riskier judgments. People in a 
happier state would not wish to take actions with 
risky or potentially negative outcomes so as not to 
disrupt their current positive state (Isen, Nygren 
& Ashby, 1988). An angry person or someone in 
a “bad” mood is more likely to make poor judg-
ments (Loewenstein et al, 2001). Anger often can 
influence us to act in ways that are not in our best 
interest (Borcherdt, 1993). Fear and anxiety often 
play a role in behavior patterns as one avoids the 
object or causal of such stress. Depression as re-
lated to stressors can also distort judgment and the 
interpretation of perceived information as obtained 
from the environment (Gotlib, 1983). We envision 
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the application of these emotional conditions to our 
artificial agents and apply these concepts as a basis 
of our experimentation. 

Agents in our experiments will be limited to 
emotions that range between two finite states (anger 
and happiness) which are based on fuzzy logic. An 
agent can be in any state between full happiness and 
complete anger where a numerical value is assigned 
to denote such state. We propose that each agent’s 
range of perception and actions be limited based of 
their current emotional condition such that angry 
agents have the least options available compared to 
happy agents. In a broader sense we are limiting an 
angry agent’s ability to make poor judgment while 
giving a happier (thus less influenced) agent more 
ability and control within the environment. With 
the simulation of these properties for each agent we 
investigate the possibility of emergent properties 
regarding inter-agent interactions. 

background

Adding an emotional element into agent architec-
tures is one that has been given much discussion. 
It is an approach that is useful in modeling certain 
human-human and human-agent interactions. Bates 
(1994) first brings up the concept that it is important 
for an agent to have an emotional component because 
humans tend to relate more to what is like them. 
One of the initial papers that come from this area is 
from research conducted by Damasio (1994). Many 
resulting projects were spawned after this project as 
individuals started working on emotional engines 
that resemble in many ways or at least simulate 
certain aspects of real life behaviors. It is important 
to note that there are two schools of thought when 
it comes to emotional engines for agents. The first 
incorporates the findings of Damasio (1994) into 
the models and tries to recreate an environment 
that is inspired directly by his work. The second 
instead creates frameworks that may take some 
concepts from Damasio’s work, but are based on 
independent thinking. 

damasian f rameworks

Although many researchers have followed the steps 
first left by Damasio (1994), we find in the work by 

Sloman (1998) the most interesting interpretation. 
Groups such as Ventura and Pinto-Ferreira (1998), 
Velásquez (1997), Gadanho and Hallam (1998) 
and others focus solely on the Damasio approach, 
Sloman (1998) focuses on a model that is created 
through the evolution of the capabilities of life forms 
through history and pre-history.

Sloman (1998) affirms that there is a need to 
create control systems that do not rely on a fixed 
architecture and changing values, but more dynamic 
frameworks. This idea is motivated by the fact that 
humans have control structures that are dynamic in 
nature, both at the conscious as well as unconscious 
level. Sloman (1998) also states that, within our 
minds, we have other modules, some of which deal 
with inputs, others with outputs, and yet others with 
processing information. This does not necessarily 
mean that each module has a different architecture 
and behavior, or that a single module cannot take 
care of multiple functions. It does mean though that 
the overall functionality is achieved through the 
interaction of multiple components.

The model created by Sloman (1998) is the sum-
mary of the analysis of several fields unrelated to 
robotics and agency. He bases his main notions on 
evolution and the adaptation of the human mind 
to ever-changing natural conditions. The fields of 
biology, philosophy, psychology and many more all 
contributed to the refinement of our understanding 
of human control modules. The first model that Slo-
man (1998) analyzes is the reactive model. In this 
particular model, which characterized many organ-
isms through their evolution, deals with relatively 
simple reactions based on inputs. This model is 
characterized by outputs, or actions, that are gener-
ated by processes that do not take into consideration 
ramifications of behaviors and foresight. This means 
that this particular model lacks a planning module. 
New behaviors can be learned through positive or 
negative reinforcement, but they cannot be gener-
ated as an internal response to a set of conditions 
that recall past experiences. The motivations that 
drive such control mechanisms are instincts, such 
as hunger, fear or mating. Reactive models are also 
designed to work in conjunction with other organ-
isms; great examples of such collaborative beings 
are insects. This model is shown in Figure 1.

The evolution of a reactive model is the addition 
to this system of deliberative models (Sloman, 1998). 
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Figure 1. First representation of the model by Sloman (1998)

Figure 2. Second representation of the model by Sloman (1998)

This component elaborates long-term memories 
and creates new plans and drives, to add to the 
ones built into the reactive system through evolu-
tion and conditioning. Besides a higher processing 
layer, this particular model requires the presence of 
reusable memory that can be accessed to store and 
retrieve information as the controller performs its 
functions. Sloman (1998) also affirms the necessity 
for a quick-response module, as careful evaluation 
of a situation is not always the ideal response to the 

environment. In dangerous situations, for example, 
an alarm module would take over and perform the 
necessary operations to place the organism back 
into safety, and then higher functions can process 
the information just received. Figure 2 shows this 
model.

Damasio (1994) states that there are two kinds 
of emotions. Primary emotions are generated by 
external or internal stimulations of sense organs, 
and secondary emotions instead are generated by 
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the cognitive system. When compared to the de-
liberative model (Sloman, 1998), we can see some 
similarities between the emotion system described 
by Damasio (1994) and Sloman’s alarm module. 
Damasio (1994) also states that secondary emotions 
always trigger higher cognitive reactions that, in 
turn, generate psychological changes. This analysis 
requires a slight modification of the alarm system, 
which should be divided into a section that deals with 
emergency situations as the deliberative model, and 
a second section that deals with similar situations, 
but interacts only with the deliberative, or cognitive, 
module (Sloman, 1998). The author compares this 
new component of the alarm system to the process 
of growing up and the acquisition of maturity, as 
also supported by Goleman (1994).

Sloman’s proposed architecture involves the 
controllers discussed so far with the addition of a 
meta-managegement mechanism (Sloman, 1998). 
The meta-management process performs functions 
that work at a higher level compared to the other 
modules. Such component performs reflective kinds 
of elaboration, both on events and actions linked 
to the environment and on the internal state of the 
agent. Sloman (1998) affirms that, should a robot be 
given such a module, it may then start reflecting on 
the concept of “self” and “others”. Moreover, this 
particular system may be overridden by the alarm 
module in certain cases, thus it may shift the focus 

of the operations on other tasks or problems. Sloman 
(1998) also introduces the idea of tertiary emotions. 
These emotions are initiated purely cognitively and 
may or may not trigger other physical changes. 
For example, a state of infatuation may lead to a 
decreased level of attention and also sweating and 
tension. Figure 3 shows this last model.

non-damasian f rameworks

The application of Camurri and Coglio (1998), based 
on the model created by Camurri et al. (1997), works 
in a setting of the performing arts, introduces a very 
interesting framework that is not based directly on 
the work by Damasio (1994). The agent created 
by the researchers works by observing and being 
emotionally influenced by a dancer, creating as a 
consequence outputs of music and rhythm based 
on its internal emotional state.

This engine is explained in greater detail in 
Camurri et al. (1997) and is shown in Figure 4. A 
macroscopic analysis reveals several components 
of control. There are five active components: Input, 
Output, Reactive, Rational and Emotional.

The Input component is responsible for either 
gathering information from the environment or 
receiving communications from other agents or 

Figure 3. Third representation of the model by Sloman (1998)
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humans. In turn, it will analyze and format it as 
appropriate to pass on to the Reactive, Rational or 
Emotional components. Given the responsibility 
of the Input module to forward the inputs where 
appropriate, this component is required to access 
the rational and emotional states. Moreover, the 
Input component can also receive feedback directly 
from Output, thus taking also this information into 
consideration when relaying messages.

The Output component is responsible for creat-
ing outputs based on the agent’s internal state. The 
outputs of this module are generated by processing 
the outputs of the Reactive and Rational compo-
nents. Although the Emotional component does 
not feed the Output one directly, it will influence 
the calculations of the overall output by signaling 
the agent’s emotional state to this last component. 
The Output component is also responsible for an 
internal feedback mechanism that affects the Input 
controller, as reported earlier.

The Reactive module is responsible for the real-
time behavior of the agent, which is necessary given 
its application in the world of music and dance. This 
component collaborates closely with the Input and 
Output modules, and its processing is modulated 
by both the rational as well as the emotional state 
of the agent.

The Rational component maintains a view of the 
external world as well as one of the agent, consisting 
of its goal. This component has no real-time type 
of operations, leaving it the possibility to perform 
rather complex operations. This component of the 
agent interacts with all the other modules in sev-
eral ways. Perhaps what is most important for this 

discussion is the role that self-awareness in relation 
to the goal plays in the overall emotional state of 
the agent. As the Rational module detects that goals 
are being accomplished, the emotional state of the 
agent increments towards a positive attitude, thus 
creating a better “mood” that will, in turn, affect 
the rest of the operations.

Finally, the Emotional component is governed by 
emotional stimuli generated from Input, Reaction 
and Rational. This module contains an emotional 
space. Such space is divided into several sectors that 
identify different emotive states. As the emotional 
state of the agent changes, it can be traced within 
this emotional space, which reveals the state of 
the agent.

inTroduc Tion  To  The  hybrid  
archi Tec Ture

Our described architecture was original conceived 
as a task specific stand-alone multi-agent system 
described in Vincenti, Braman and Trajkovski 
(2007). This idea however has been expanded into 
a broader scope to fit multiple applications. What 
was once the foundation of a single system can now 
be adapted and applied in a plethora of situations. 
Figure 5 illustrates the basic framework of the 
system as agents processes interact with various 
internal components before an output or action is 
computed.   

As this framework is designed for flexibility, vari-
ous modules are utilized to encapsulate functionality 
and to make future changes easier to implement. 

Figure 4.  Model by Camurri et al. (1997)
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Figure 5. Hybrid emotionally aware mediated agent architecture, with F1 and F2 representing centers of 
information fusion

Figure 6. Architecture of the Emotion-Based Agent core

Figure 7. Detailed view of the “Emotional” module
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This modular approach also allows particular agents 
the ability to function on the emotion based engine 
alone, essentially bypassing other components and 
the F1, F2 components. As with other agent archi-
tecture, other modules can be added with little to 
no impact on the underlying structure. In some 
implementations it may be useful for the users of 
the system to directly interact with an agent or a 
set of agents without any safeguarding mechanisms 
in place. The Expert Controller can be bypassed 
in these cases and data can be sent directly to the 
output selector module. 

 
emotion-based a gent

An essential element to the overall architecture 
is the Emotion-Based Agent. Each agent has the 
internal components described in Figure 6 where 
we have taken a horizontal layering approach with 
mediated outputs from each component. As this 
approach focuses on the emotional aspects of each 
agent, we have not included meta-cognitive states 
that may also influence behaviors. Adopting and 
modifying a framework resembling the Camurri 
architecture (Camurri et al., 1997) each agent 
discerns input percepts from its environment and 
makes decisions based on the totality of the inputs 
from each component. These components include 
the Rational, Emotional and Reactive modules that 
are inherent in each emotionally aware agent. 

This model allows for direct communication 
between the emotional module and the output as 
combined with a rational influence as we believe 
that the emotional state of an agent should modify 
the range of actions. Camurri and Coglio (1998) state 
that, in order to implement an emotional component 
that evolves over time, it needs to be influenced by 
external events. We believe an internal component 
is also crucial, especially when operating in a multi-
agent environment, as a corollary to Camurri and 
Coglio (1998). Therefore we created an elaborate 
Emotional module, composed of four components: 
Genetic, Internal, Interagent Verbal and Interagent 
Non-Verbal. The interaction among these compo-
nents is shown in Figure 7.

The Genetic component of the architecture 
deals with assigning the associated weights for each 
subsequent component. These weights represent the 
level of influence each component has on the final 

output. We view this component as a way to simulate 
certain human characteristics of personality and 
behavioral differences. Some people are easily influ-
ences by others, what is said to them (either negative 
or positive reactions) while other have tendencies 
of emotional instability. This architecture provides 
us a mechanism to model some of these behaviors 
as its influence on other components.

The Internal component analyzes information 
about the agent and elaborates the emotional state. 
An example of such analysis may be the time elapsed 
in the simulation, with the agent unable to either find 
clues or reach the overall goal. As time goes on, the 
morale of the agent may lower. The rate at which the 
morale of the agent is affected by internal events is 
dictated by its genetic predisposition.

The Interagent Verbal component instead relies 
on communications with other agents in order to 
influence the mood. Communications between 
agents will consist of clues that they will pass 
along. Each clue will be dictated by where the agent 
“believes” the goal is. Along with the belief, there 
is a weight assigned to the communication. The 
weight indicates the emotional state of the agent 
that is communicating the information. The agent 
will then internalize both the belief as well as the 
emotional state of the other agent. The emotive 
component of the communication will affect the 
agent’s own emotional state at a rate dictated by 
the genetic component.

The Interagent Non-Verbal component relies on 
the concept that, in society, it is often easy to be 
able to guess what mood a person is in by simply 
looking at them. Our agents do not only advertise 
their emotional state through communications, but 
also visually. When an agent senses the presence 
of other agents and interacts, this component will 
analyze and read the apparent emotional state of 
its peers. Also in this case, the rate at which the 
agent will internalize emotions is set by the genetic 
component.

Interfacing the Human and the 
Artificial Agent 

The coupling of the human and the agent happens 
through direct interaction between the interfaces 
of the two agents. The interface is based on the no-
tion of an emergent coupling interaction occurring 
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between them. The interface between these agents 
abstractly is mediation itself. The non-human agent 
in the system learns from its interactions with the 
human agent while utilizing its own knowledge 
about the current situation and building on its pre-
vious knowledge. The interface between them is 
non-invasive and as natural as possible to create a 
dynamic and adaptable system where each agent can 
learn and adjust from various forms of interaction. 
The impact of the coupling process to the emotion 
based agent and the controller agent is interpreted 
and sent as output for use in the meditation 1 mod-
ule labeled F1 (Figure 5). The parameters that are 
passed to the mediation one module are derived by: 
1. The Emotion based agent senses environmental 
conditions and various input from the human user 
(or other agents). 2. The human or controller agent 
generates data by its interaction with the emotional 
agent and through its actions caused by interpreta-
tions of the environment.  

The interface between the emotionally enhanced 
agent and the human user can be accomplished 
in several ways. First we can view the emotion-
based agent as a meta-agent or a leader agent in a 
multi-agent system of emotionally enhanced set of 
agents. In this case the multi-agent system itself 
is the interface between the human user and the 
meta-agent, of which both becomes part of the 
multi-agent system itself. Each agent interacts with 
other agents or the environment collecting data to 
be interpreted by the meta-agent whose main goal 
is to understand the interactions and intentions of 
the human. Using a multi-agent approach to the 
interface allows us design flexibility on how data 
is collected and interpreted by the emotion based 
agent. In a real world setting, implementing a system 
based on ubiquitous computing strategies would al-
low for agents to be deployed in multiple locations 
surrounding the user while remaining transparent to 
normal everyday functions. The human user would 
not need to know the state of the multi-agent system 
composed of ubiquitous devices. Each agent would 
interact with other agents either wirelessly or in a 
wired network fashion, while collaborating with 
the Meta-Agent (Emotional-Based Agent) about the 
data is collecting on its human subject.

Yet another possible solution is to use direct 
input into the system such as text, graphical ma-
nipulations, or other detectable hardware input 

that the system can process. Following previous 
research conducted with coupling interfaces using 
simple virtual environments (Trajkovski, Collins, 
Braman, Goldberg, 2006) we proposed a system 
where an individual agent and human user coupled 
collectively to form a multi-agent system where 
the non-human agent attempts to learn from hu-
man input. Depending on the need such human 
input can be collected directly from physical data 
manipulations or hardware input (i.e. keyboard, 
mouse, joystick, steering wheel, break/gas pedals, 
VR gloves etc.). Input would then drive a simple 
subsumption architecture where agents would act 
accordingly in an attempt to learn and react to the 
human user while actively collaborating with the 
main Emotional-Agent.

f 1

The Fusion one (F1) module is an averaging process 
that fuses output from both the Emotion based Agent 
and the human controller as base parameters. The 
process of which the data is sampled from both 
agents is dependant on the interface option that 
was selected for the particular problem domain. 
This module outputs data to the Fusion two (F2) 
and to the Emotive output selector. The Emotional 
based Agent makes decisions based on its own 
emotional state and from what it senses from the 
environment and the human user. The averaging of 
these two outputs are useful because they allow for 
a equal weighted approach to the decision making 
process. For example of both agents are “angry” 
then logically there should be some stressor to both 
agents for this to occur and we can say that there is 
a good reason for this emotional state. An “angry” 
decision made by the human user in this case may 
be justified and allowed. In contrast if one agent is 
very happy and the other is very angry then there 
is some problem in one or the others interpretation 
of environmental conditions or perhaps there is 
some underlying internal condition that is cause the 
emotion. If only the non-human agent is angry or 
stressed while the human agent is happy, perhaps 
the human agent in its positive state has failed to 
detect important environmental conditions. If a 
multi-agent system approach is being used them 
there may be an issue in the system itself during 
the interacting of the agents that have caused extra 
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stress. Averaging the output from both of these 
agents helps to correct any major differences in 
emotional states by essentially compromising on a 
final decision. If the outputs from both agents are 
similar then outcomes will be relatively equal in 
control. If output is significantly different then the 
output is averaged to a mediated outcome.

Expert Controller 

The Expert controller serves as a balancing and 
safe-guarding mechanism for the overall output 
of the system. This control mechanism serves as a 
process that mediates the output from the emotion-
ally biased output from the other agents with its 
own non-biased output. Other agents in the system 
are influenced by internal and external emotional 
states whereas the Expert Controller is not. When 
external percepts are needed by the controller 
(when internal schemas alone are not sufficient) 
the Expert controller in a reactive or utility based 
fashion makes logical deductions for its output. All 
output from the Expert Controller is directed into 
the Fusion two module where it is mediated with 
the results of the Fusion one module. 

f 2

The second process that fuses inputs into a single, 
coherent output (F2) is based on the Fuzzy Media-
tion model by Vincenti and Trajkovski (2007a). This 
method is based on the evaluation of the absolute 
difference between inputs of an expert controller 
and a novice one. The outcome of this algorithm 
is a single mediated value to be passed on to the 
object to be controlled.

This mediation will assume that the expert con-
troller process is the expert, and the output of the 
first fusion is the value generated by the novice one. 
Fuzzy Mediation functions in three steps.

The first step, analysis of the inputs, evaluates 
the difference between two inputs, in our case the 
outcome of the first mediation and the direction that 
the expert controller computes. The deviation is then 
translated into a linguistic modifier, chosen from 
a series of fuzzy sets. A typical breakdown of the 
numeric range of possible deviations may include 
the following modifiers: “Similar control”, “Slight 
deviation” and “Wide deviation”.

The second step involves the revision of the 
weight of control. As the two controllers perform 

Table 1. Mamdani inference rules

If Then

Inputs are similar Shift control to the novice

Inputs are slightly different Maintain the balance unaltered

Inputs are widely different Shift control to the expert

Figure 8. Interaction between fusion processes and the emotive output selector
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in similar ways, more control is given to the novice. 
Instead, as the controllers show a wide deviation in 
the desired direction of the agent, the expert regains 
control, overriding the weight accumulated by the 
novice controller. The action taken to modify control 
is based on the linguistic modifier associated with 
the deviation found in the first step, and is based on 
a set of Mamdani-style rules (Mamdani & Assilian, 
1975) such as the ones shown in Table 1.

The final step of Fuzzy Mediation is the calcula-
tion of the single output. Such value is computed 
using the formula shown below:

MO = µT * EI + µt * NI

where MO is the mediated output, µT and µt refer 
to the weights of control assigned to the expert (µT) 
and the novice (µt), and finally EI and NI are the 
original inputs originated by the expert (EI) and 
the novice (NI).

Previous studies (Vincenti & Trajkovski, 
2006; Vincenti & Trajkovski, 2007a; Vincenti & 
Trajkovski, 2007b) have shown the validity of this 

algorithm. In situations where the novice is unable 
to deal with the situation presented at all, the expert 
gains full control of the object. On the other hand, 
as the controllers perform more similarly, Fuzzy 
Mediation allows the novice to control the object 
without any interference from the expert.

When operating in this setting, the second fusion 
will take as inputs the directional outputs from the 
first fusion and the expert controller process. The 
single-value output represents the mediated heading 
of the agent. Figure 8 shows the flow of information 
and interaction between fusion processes and the 
emotive output selector.

It is important to note that, although the first 
fusion outputs both a <direction> and a <emotive 
state> value, the second fusion utilizes only the 
<direction> element. The <emotive state> will be 
used by the Emotive Output Selector for the com-
putation of the final output.

emotive o utput selector

Our model is based on the notion that the ability of 
each individual agent is limited by its current level 
of emotional context. This means that a happy agent 
has an increased number of options in comparison to 
an angry agent. Happier agents will have a greater 
ability to explore due to the enhanced number of 
available directions. This limitation in capabilities 
extends to all agents; in a goal-seeking simulation 
agents are limited no matter their current explora-
tion role or mode. 

As shown in Figure 9, a happy agent has sixteen 
possible movements. An agent that is in a transitional 
state has at least eight (N,S,E,W,NE,NW,SE,SW) 
and depending on the transitional status into an-
other emotional state may have one or more or the 

Figure 9. Three levels of agent directionality (In or-
der: Happy State, Normal State and Angry State)

Figure 10. Fuzzy Sets Representing Emotive 
States
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directional capabilities as denoted by the dashed 
lines. The amount of these extra directions is based 
on how far the transition has progressed to the next 
state (see Figure 10); the particular directions that 
are chosen from the given set are chosen at random. 
An agent in an angry state shown at the bottom of 
Figure 9 is limited to only movements only in the 
four cardinal directions. We see this limitation on 
ability tied to that of emotion and motivation where 
an agent that is happier is more motivated thus hav-
ing more options available.

 Anger can be said to be closely related to that of 
depression (Pelusi, 2006). We also see this in a wider 
scope and relate depression with that to a lessening 
of motivation in agents. It has also been observed in 
human subjects with depressive disorders that their 
cognitive flexibility is reduced due to emotional 
instability and negative thought patterns leading 
to reduced solutions to given problems. (Deveney 
& Deldin, 2006). Applying this to agent interac-
tions we have limited the actions and perception 
of angry agents.

The emotive output selector represents the last 
level of processing that the data will undergo before 
being fed to the agent, which will respond by turn-
ing to the final heading. The inputs for this module 
are represented by the <direction> computed by the 
second fusion and the <emotive state> from the first 
fusion, as shown in Figure 8. The emotive state will 
be mapped to the sets shown in Figure 10. Each 
emotive state will have a set of actions, which may 
be represented as a greater or lesser possibility of 
directions, as shown in Figure 9. The output from 
the second mediation will then be standardized to 

the closest available direction, based on the ones 
available.

For example, if the mediated output directs the 
agent at a heading of 44°, the agent in a “Normal” 
state may have the range of motion {0°, 45°, 90°, 
135°, 180°, 225°, 270°, 315°}, thus standardizing the 
output to 45°. If, instead, the agent is in an “Angry” 
state, with an associated range of motions {0°, 90°, 
180°, 270°}, the final output will be standardized 
to a heading of 0°.

In the case of the emotional state being mapped 
to two sets, then the agent will have at its avail a 
number of possible headings that is dependent on 
which emotive state is closest to. So, if the emotive 
state leans more towards a “Normal” state than a 
“Happy” state, although it will not have the range 
of motions associated with “Happy”, it will have 
the ones available to “Angry” and then a portion 
(chosen randomly) of the ones additionally available 
with the next emotive state.

The a gen T and iTs 
environ Men T

During an agent’s exploration of the environment it 
will traverse the environment in either two modes: 
1) Traveling and 2) Exploration. In traveling mode 
agents simply traverse the space within the limita-
tions of their emotional state as it applies to their 
ability to move. An agent may switch to exploration 
mode if an object, goal or other agent falls within the 
sensing layer of their perception (see Figure 11). 

If an object is detected within this sphere an 

Figure 11.  Structure of the agent
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agent may switch from simply traversal, but to an 
exploration state so that the agent may investigate 
the type of sensed object. If an obstacle is detected 
the agent may simply move to avoid it or follow a 
path around it to continue in a particular direction. 
If a goal is detected then it may record this event. 
If another agent is detected it will attempt to com-
municate with the detected agent. Limitations in 
the agents mobility based on their emotional state 
may make such activities more difficult.

The environment in which the agents will oper-
ate is shown in Figure 12.

This environment is suitable for this kind of 
research for several reasons. First, it allows enough 
room for agents to be isolated. Studying group be-
haviors entails analyzing both faces of the coin by 
reviewing how agents interact as they are operating 
as a group, as well as individually. Then, it allows 
for clues to point to the goal, with the interruption 
caused by obstacles that may be on the way. This 
concept was inspired by the thought of a driver who 
can see the destination of her/his journey (such as 
a tall building in a city), but who needs to navigate 
through complex paths to reach it (as if driving 
through intricate one-way streets in order to reach the 
tall building). These hints are built into the environ-
ment. After the initial observations, we will allow 
agents to leave trails of hints that indicate a path that 
will subsequently lead to the goal, as introduced by 
Dabirsiaghi and Trajkovski (2006). 

conc Lusion

This framework can be extended into several do-
mains as each agent can be applied to the components 
of the system to be modeled. One of the first visions 
of applicability is applying these agents into human 
assistive devices or utilizing them as interface based 
agents. One particular example involves agents 
that restrict menu functionality or security access 
to certain functions of the interface or program. 
As previously noted, users in certain emotional 
conditions may not be best suited to make critical 
unbiased decisions. If the interface automatically 
adjusts in limiting key components it would restrict 
the human user from taking actions that may have a 
negative impact or one in which he/she would later 
regret. We see an interface that adjusts to the user’s 
emotional level to provide automatically the best 
displays and choices as to maximize their efforts. 
The human element of emotion in interface design is 
often overlooked. Consider an angry employee with 
a particularly high level of access or administration 
rights or an individual that may have access to key 
financial functions. An emotional driven interface 
could automatically account for these emotional 
contexts and shift the user’s access to a lower and 
safer level at which they would be unable to take 
risky actions without consent from another user or 
authority figure. It is known that many employees 

Figure 12. Depiction of the original environment
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purposely put the goals of a company in jeopardy if 
they themselves are angry and feel vengeful towards 
their employer or even may involve themselves in a 
computer based crime in an attempt to “get even” 
(Quigley, 2002).

 Motor vehicles could also benefit from this 
type of technology as agents can be imbedded in 
areas of the vehicles and work together with the 
human driver. The safety of the passengers would 
be the goal of the system of agents where sensed 
input from the environment can be mediated with 
driver interactions and the expert controller. Road 
rage as an emotional related safety issue is often is 
related to anger and aggression on part of the driver 
(Depasquale et al, 2001). Emotionally aware agents 
could interpret aggressive responses from the hu-
man user and adjust to correct for these behaviors 
limiting the humans abilities based on the emotional 
context of the situation. Taking away the ability to 
accelerate to high dangerous speeds is one such 
example.

This chapter summarizes the basic framework 
for our investigation of the effects of emotional 
states of agents in a multi-agent system. We have 
also discussed the foundations of the theoretical 
background that supports the rationale of the project 
as well as future applications that can be derived 
from experimentations. 

We believe that this approach explores concepts 
that were so far left unattended in the domain of 
agency. First of all, we take into consideration a 
genetic component that directs the inner workings 
of the emotional state. As a second focal point of 
this research, we believe that it is important to keep 
in mind that emotional states dictate the range of 
options of action that we have available.

fu Ture  work

Our long term goals of this project include further 
variations in implementation strategies and several 
experiments with these agents in different environ-
ment types. One such variation on agent cooperation 
is to utilize some rational-state mechanism where 
agents can learn areas of the environment where 
goals are likely to be found. Goals, once found can 
be removed from the space and relocated at random, 

or the agent itself is removed and a new reinitial-
ized agent is placed. Differences in communication 
mechanisms are another aspect that can be evaluated 
in this context. If an agents communication mod-
ule is associated and influenced by the emotional 
state, how with this effect agent-agent interaction 
in terms of cooperation? An agent’s propensity to 
communicate with other agents may be a function of 
its emotion. An angry agent (or shy, mal informed, 
“genetically damaged”) may not be willing to com-
municate or cooperate with any other agents thus 
will also decrease the abilities of the individual 
agent and the team. Angry agents may also have 
a sharp decrease in its veracity and more prone to 
communicate false information.

Looking at social aspects of emotional agency 
we also will be conducting experiments that ac-
count for various group dynamics. We find such 
simulations useful for understanding human-human 
interactions by looking at emotion based agents in 
dynamic environments. We plan to demonstrate the 
combined effects of emotion when the agents are 
divided into various teams and are in competition 
with other agents. Will opposing agents frustrate 
others by conveying misleading and false informa-
tion to opposing agents? Will frustrations affect the 
entire team? Will they affect both teams if frus-
trations propagate throughout the whole system? 
Competing teams may have a sub-goal to purposely 
mislead opposing agents with false information or 
coordinate activities that hinder the efforts of the 
other team in their own effort to seek a goal.

In future projects we may allow for agents to 
reproduce and possibly transmit information or 
“genetic” materials from parent to child agent. From 
these types of simulations we can also attempt to 
reproduce several symptoms of certain disorders 
in a way in which they can be controlled. Several 
complex models will need to be developed in order 
to accurately simulate such conditions.

We also plan to investigate the effects of envi-
ronmental change, inter-agent interaction issues and 
various internal frustrations as elements that can 
adversely affect, change or disrupt agent emotional 
states and how the individual elements impact the 
multi-agent system itself. The potential of emergent 
behaviors seem promising within these emotion 
based simulation.
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In this chapter, we give an overview of the results of a Human-Robot Interaction experiment, in a near zero-
context environment. We stimulate the formation of a network joining together human agents and non-human 
agents, in order to examine emergent conditions and social actions. Human subjects, in teams of three to four, 
are presented with a task–to coax a robot (by any means) from one side of a table to the other–not knowing 
with what sensory and motor abilities the robotic structure is equipped. On the one hand, the “goal” of the 
exercise is to “move” the robot through any linguistic or paralinguistic means. But, from the perspective of 
the investigators, the goal is both broader and more nebulous–to stimulate any emergent interactions whatso-
ever between agents, human or non-human. Here we discuss emergent social phenomena in this assemblage 
of human and machine, in particular, turn-taking and discourse, suggesting (counter-intuitively) that the 
“transparency” of non-human agents may not be the most effective way to generate multi-agent sociality. 

inTroduc Tion

One strand of research in Artificial Intelligence 
(AI) in general and multiagent systems (MAS) 
research in particular has been concerned with the 
simulation of extant life–genetic algorithms, neural 
nets, ethological simulations like swarming, etc. 
Another strand (less popular since its zenith in the 
early 1990s) explores the possibility that artificial 

agents might themselves constitute a kind of life 
(Helmreich, 1998; Langdon, 1995). There have been 
countless insights over the past three decades in AI 
and cognitive science in general that have hinged 
upon isomorphisms between these two “phyla”: the 
biological, on the one hand, and the machinic, on the 
other, with great insights into, say, mirror neurons 
(on the biological side) and genetic algorithms (on 
the machine) side, generated by cross-experiments. 
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All of these, however, ignore the extant to which 
humans and non-humans together are imbricated in a 
kind of “second-nature” where nature, machine and 
human are connected together in complex, mutually 
constitutive ways, precisely what Deleuze and Guat-
tari (1980) invoke in their conception of “machinic 
assemblage,” the temporary coming-together of 
heterogeneous elements linked not by filiation but 
by transformation, an “unnatural participation” that 
links the human and the non-human. 

In other words, defining “humans” and “ma-
chines” so as to emulate one with the other may be 
ontologically problematic when the two are multiply 
interpenetrated in the first place. In Human-Com-
puter Interaction (HCI) and Human-Robot Interac-
tion (HRI), researchers attempt to accommodate 
machines to human needs, creating, for example, 
“socially acceptable” robots for future, human 
interaction (Koay et al, 2006). But these kinds of 
interventions are premised on an unchanging human 
to which non-human agents might be compared. 

Our research looks at our cyborg present–a world 
where acting “human” always already involves ma-
chinic practice (Collins, 2007; Trajkovski, 2007). For 
us, the question in HCI is not to better accommodate 
non-human agents to humans by more effective 
“interfaces” better emulating human behavior but 
to maximize our existing cyborg lives–the bodily 
hexis, communications, socialities and cultural 
schema that proliferate in the interstices of the hu-
man and the machine.

background

In the following chapter, we report on a series of 
ongoing experiments involving human agent-non-
human agent interaction. In these, we consider the 
human-robot as our proper object, and the actions 
of all involved agents as formative of a temporary, 
shifting, cognitive, social and cultural network. 
These interactions, we argue, can be considered 
properly social and, in the Durkheimian sense, 
emergent, that is, not explicable at the level of the 
individual agent (Sawyer, 1991). In this, we draw 
upon synergistic insights from a variety of academic 
disciplines–AI, cybernetics, cognitive science, 
science studies, cultural studies and anthropology, 
each examining the cyborg from a slightly different 

perspective. All of them, though, might be said to 
engage cybernetics, and in particular the “second 
generation” cybernetics of Humberto Maturana and 
Francisco Varela (1980). Looking to “autopoietic” 
systems (literally, systems that make themselves), 
Maturana and Varela undermined dichotomies of 
subject and object by focusing on the way that organ-
isms “structurally couple” to their environments, 
that is, not so much adapting to them as producing 
them in the course of recursively producing them-
selves. It is the system itself that is generative of 
change, rather than some objective reality outside 
of it. By the 1990s, Varela (1999:48) had extended 
these insights into autopoeitic systems to more open 
systems, including human perception itself, describ-
ing, for example, vision as “emergent properties of 
concurrent subnetworks, which have a degree of 
independence and even anatomical separability, but 
cross-correlate and work together so that a visual 
percept is this coherency.”

Applying this to HCI means, ultimately, ques-
tioning the extent to which action should be most 
usefully considered first and foremost a product 
of human intention and, instead, leading us to a 
model of cognition and social life that arises out of 
the interaction of a heterogeneity of agents. This is 
what Michael Woolridge (2002:105) means when 
he reminds us that “There’s no such thing as a 
single agent system.” The strength of cybernetics 
and multiagent systems research is precisely this 
radical deconstruction of the Leibnizian monad for 
models of life that focus less on the “molar” than 
on the traffic between agencies.

This, we believe, has its philosophic appeal, but 
this is not our primary reason for enjoining this 
research; moving to this dynamic, networked model 
of HCI promises to move us beyond unproductive 
abstractions (“the human”) to real, empirical un-
derstandings of humans living in and through their 
machine worlds (as well as machines “machining” 
through their human worlds). That is, ultimately (and 
contrary to the etymology), these approaches gesture 
towards a more anthropological (and sociological) 
approach to the study of cyborg lives, implicit in 
Gregory Bateson’s (1972:318) parable: “Consider a 
man felling a tree with an axe. Each stroke of the 
axe is modified or corrected, according to the shape 
of the cut face of the tree left by the previous stroke. 
This self-corrective (i.e., mental) process is brought 
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about by a total system, trees-eyes-brain-muscles-
axe-stroke-tree; and it is this total system that has 
the characteristics of immanent mind.” 

The material world around us is, through pro-
cesses of externalization and sublation, alternately 
appears as part of an objective outside, or a subjective 
inside, but the lines between the two are continu-
ously negotiated in the course of daily life. It is a 
short step from this central insight to a full-blown 
“cyborg anthropology” that, as Downey, Dumit and 
Williams (2000:344) explain, holds “that machines 
and other technologies are attributed agency in the 
construction of subjectivities and bounded realms 
of knowledge.”

But it would be equally misleading to represent 
these emergent cyborgs as bounded entities, i.e., 
simply expanding reified notions of the subject to 
include that subject’s machines. This is the mistake 
that Dobashi (2005:233) makes in a study of Japanese 
housewives and keitai (cellular phones). Rejecting 
a determinist framework where “housewives” and 
“cell phones” are considered as discrete entities, 
Dobashi looks instead “to the simultaneous de-
velopment of both processes into one undividable 
entity.” But this “cyborgification of housewives” 
(233) is equally flawed, simply substituting “human 
+ machine” for “human,” augmenting the human 
with the non-human, the non-human with the hu-
man. The more productive direction would be to see 
these networks unfolding in time, bringing together 
multiple agents in temporary communication; that 

is, we may be embedded in machinic networks, but 
to hypostatize their dynamic heterogeneity would 
be to replace one metaphysics with another.

  What we mean (or should mean) by “cybor-
gification” is something much more shifting and 
protean–part of the exciting promise of the cyborg 
is, after all, the possibility of novel ways of thinking 
and acting. To this we look to the “actor-network 
theory” (ANT) that examines just such sites of 
“hybridity,” i.e., those complex translations be-
tween humans and nonhumans that momentarily 
coalesce into novel forms before dispersing into 
other systems. This is Latour’s “network”, not to 
be confused with the more static configurations of 
routers and servers. 

The  experi Men T

In the following experiment, we stimulate the for-
mation of a network joining together human agents 
and non-human agents in order to examine emergent 
conditions and social actions. 4-5 volunteers drawn 
from undergraduate anthropology and cultural 
studies classes, after giving informed consent, were 
presented with a task: to coax a robot (by any means) 
from one side of a table to the other. 

Carol, a robot built in the Cognitive Agency and 
Robotics Laboratory (CARoL) was used in these 
experiments. The basic microcontroller that we 
use to control our robots in CARoL is Acroname’s 

Figure 1. Carol, the robot used in the experiments, and its relevant components 
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BrainStem, The BrainStem is a microcontroller that 
is supported by various operating systems. Each 
module can operate as a slave device, run concurrent 
C-like programs (in a programming language called 
TEA) and handle reflexive actions automatically. The 
usefulness of this module is linked to its capability 

for controlling multiple analog and digital sensors. 
In addition, the BrainStem can operate up to four 
servos, which allows it to be used in a multitude 
of operations. 

The BrainStem can be controlled through two 
programs: the Console and GP. These programs 

Table 1. The menu implemented in the program of the robot for the second iteration

Position of first obstacle (sonar facing forward) Side the sonar moves to Second obstacle Robot moves

Close  (≤6 inches) Left Close Forward

Far Forward

Too Far Reset

Far (6-12 inches) Right Close Left

Far Right

Too Far Reset

Too far > 2 inches Reset menu

Table 2. Statistics on talking in the first iteration

 Frequency % Valid % Cumulative % 

Valid talk team social 2 1.9 6.5 6.5

 talk robot order 28 27.2 90.3 96.8

 talk robot social 1 1.0 3.2 100.0

Total 31 30.1 100.0

Missing System 72 69.9

Total  103 100.0

Table 3. Statistics on movements in the first iteration

 Freq % Valid % Cumulative %t

Valid

 hand front 20 19.4 27.8 27.8

hand side 10 9.7 13.9 41.7

hand back 4 3.9 5.6 47.2

gesturing 4 3.9 5.6 52.8

moving position 2 1.9 2.8 55.6

rotate left 5 4.9 6.9 62.5

rotate right 6 5.8 8.3 70.8

move forward 6 5.8 8.3 79.2

move back 13 12.6 18.1 97.2

rotate confused/twitch 2 1.9 2.8 100.0

Total 72 69.9 100.0  

Missing System 31 30.1   

Total  103 100.0   
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have the ability to control movement and sensor 
readings, help in debugging, uploading files, and 
executing reflexes. This platform works well with 
PalmOS-based PDAs, which we use for expanding 
the computational and storage power of the basic 
BrainStem unit. The robot used for these experi-
ments is shown in Figure 1. The experiment uses 
its two servos for movement of the tracks (left and 
right track), and another one to move the sonar 
sensor that is mounted for obstacle detection. The 
control is hosted on the Palm Pilot on top of the 
robotic structure.

For the first iteration, Carol was programmed to 
execute a simple obstacle avoidance program. When 

the sonar detects an obstacle within its range, it backs 
up, and scans for obstacles 90 degrees to the left and 
90 degrees to the right with its sonar. Afterwards, 
it either turns full left of full right, depending on 
which side the farthest obstacle is detected at the 
time of the sonar scan. In order for the robot to start 
moving, it needs to detect an obstacle very close 
to its sonar (a hand movement in front of it would 
start the program). Initially, the robot is placed on 
the table in such a way that its axis of movement 
is at a 45 degree angle with the edges of the table 
that it is placed on.

For the second iteration of the experiment, we 
emulated a 2-level menu to control the movements 

Table 4. Talking during second iteration

 Freq. % Valid % Cumulative % 

Valid

 talk team strat. 30 13.0 36.1 36.1 

talk team social 18 7.8 21.7 57.8 

talk robot order 21 9.1 25.3 83.1 

talk robot social 14 6.1 16.9 100.0 

Total 83 35.9 100.0  

Missing System 148 64.1   

Total  231 100.0   

Table 5. Relevant movements during second iteration

 Freq. % Valid % Cumulative %

Valid

 hand front 42 18.2 28.4 28.4 

hand side 40 17.3 27.0 55.4 

hand back 4 1.7 2.7 58.1 

tapping/snapping 10 4.3 6.8 64.9 

gesturing 1 .4 .7 65.5 

moving position 2 .9 1.4 66.9 

rotate left 27 11.7 18.2 85.1 

move forward 14 6.1 9.5 94.6 

rotate confused/twitch 8 3.5 5.4 100.0 

Total 148 64.1 100.0  

Missing System 83 35.9   

Total  231 100.0   
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of the robot. The menu details are given in Table 1. 
When the sonar registers an obstacle within 12 inches 
from it, it evaluates whether it is in the 0-6 or 6-12 
inch region, and turns left of right. Depending on 
whether the next obstacle is close or far, it executes 
a command. When the obstacle is further than 12 
inches, after 10 seconds, the menu resets.

Volunteers were given no information on the 
robot’s programming or sensors. And yet, this is not 
exactly a “0-context” experiment. On the one hand, 
the “goal” of the exercise is to “move” the robot 
through any linguistic or paralinguistic means. 

But, from the perspective of the investigators, 
the goal is both broader and more nebulous: to 
stimulate any emergent interactions whatsoever 
between agents, human or non-human.

Of course, this begs the question of the observer, 
a problem that Hayles (1999) has identified as the 

most pressing legacy of first-generation cybernetics. 
Are things “objectively” interesting or emergent, or 
are they only this way from a given perspective? For 
Francisco Varela et al (1991:172), this need not lead 
to solipsism; cognitive categories like colors exist 
neither wholly “outside” nor “inside” the perceiving 
agent. For Latour, the observer and the observed 
form part of “network” enabling the production of 
facts. As Jan Harris (2005:169) summarizes,

Thus rather than a polarity of a subject and object 
in which the former, via the methodology of natural 
science, attains knowledge of the latter, we have a 
network of ‘circulating’ references or translations. 
The objects of the field imply the facts of the labora-
tory, likewise these facts return us to the field. What 
is important, then, is neither brute objects nor the 
incorporeal facts that express them, but the processes 

Figure 2. Path covered by the robot in movement in generic distance units, first iteration
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Figure 3. Talking instances, over time, for the first iteration of the experiment
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that lead us from one to the other. These processes 
are a variety of facts of organization, in this manner 
the order of things revealed by science emerges as 
the result of an ordering of things. 

This insight has methodological significance for 
our experiment. Rather than take a more computa-
tional perspective on multi-agent interaction (using, 
for example, the robot’s programming as the basis 
for understanding agents’ interaction), we have 
adopted the androcentric perspective of the human 
observers, examining emergent behaviors through a 
video camera (itself a part of the actor-network). 

Here we present data and analyze two examples 
of human-robot interaction from our research.

 

resu LTs

By transcribing speech and actions and coding 
them, we generate a map of agents’ actions as they 
unfold over time, understood as linguistic actions 
(after Austin) or paralinguistic actions (movements, 
gesture); data were also analyzed according to fre-
quency and cross-tabulated. For the first iteration, 
the summary of the talk and movement are given 
in Tables 2 and 3 respectively, whereas Tables 4 
and 5 summarize the second iteration. Some of the 
parameters of the interactions sessions derived from 
the transcripts are shown in Figures 2-5.

Figure 4. Cumulative dynamics (in number of occurrences) of hand movements for all team members over 
time (in seconds) during the second experiment
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Figure 5. Cumulative dynamics (in number of occurrences) of hand movements for team member A over time 
(in seconds) during the second experiment
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But we also find here examples of emergent 
socialities. That is, the artifice of the experi-
ment–guiding and coaxing a robot into a goal, both 
specifies a certain kind of stereotypical structure 
(a team of human agents working towards a goal) 
while introducing a potential element of disorder, 
a non-human agent with which the human agents 
must interact. The first may not be generative of any 
particular novelty (as the results of group work in 
the classroom oftentimes suggests). But the second 
configuration lays the ground-work for novelty 
by introducing the confusion of a more complex, 
2-level menu.  This has the effect of generating 
more interaction between agents, rather than less, 
a counter-intuitive finding that we explore more 
below.  In what Michel Serres calls the “parasite,” 
perfectly transparent information–i.e., the perfect 
identity of speaker and hearer–renders conversation 
unnecessary. Communication only takes place in 
the presence of disorder (miscommunication, misap-
prehension, etc.). As Brown (2002:16-17) writes,

In information terms, the parasite provokes a new 
form of complexity, it engineers a kind of difference 
by intercepting relations. All three meanings then 
coincide to form a ‘parasite logic’–analyze (take 
but do not give), paralyze (interrupt usual function-
ing), catalyze (force the host to act differently). This 
parasite, through its interruption, is a catalyst for 
complexity. It does this by impelling the parties it 
parasitizes to act in at least two ways. Either they 
incorporate the parasite into their midst–and thereby 
accept the new form of communication the parasite 
inaugurates–or they act together to expel the para-
site and transform their own social practices in the 
course of doing so.

In the following examples, the robot acts the 
part of the “parasite,” interrupting the flat function-
ing of a team of human agents and forcing it to act 
differently. 

In the first example, we see examples of emer-
gent sociality through turn-taking. The human 
agents attempt to form what are known as “adja-
cency pairs” with the non-human agent, initiating 
a conversational turn (by speech or gesture) that 
the non-human agent is supposed to complete by 
moving in the direction of the goal. This is isomor-
phic to one of the basic “rules” of turn-taking in 
conversation:

Transcript 1. See text for comments. Roman letters 
a-d correspond to the human agent’s; ‘r’ to the non-
human agent. Text in brackets refers to gesture and 
movement. The schematics at the top of the transcript 
show the relative position of the human and the 
nonhuman subjects on and around the table.

 b c 
---------------------------r----------- a
 d

0:52 d Go straight
0:52 c Go straight
0:52 r [Move back]
0:55 d [left hand in front]
0:55 r [rotate left]
0:56 d [left hand in front]
0:56 r [move back]
0:58 a [right hand side, then right hand front]
0:58 r [rotate right]
1:00 c [right hand in front]
1:00 r [move forward off table]
1:01 a [catch falling robot with left hand–reset]
1:02 r [twitch]
1:04 a Forward. Go straight.
1:05 c [let hand in front]
1:05 r [move back]
1:07 c [left hand on right side]
1:07 r [rotate left]
1:08 r [move forward]
1:09 c [right hand in front]
1:10 b Left.
1:11 c Left!
1:11 c [point to the left]
1:11 r [move back]
1:13 b Left. To the left.
1:14 r [rotate left]
1:15 r [move forward]
1:17 b There we go.

Transcript 2. Excerpt from the second experiment 
transcript. See text for the comments on this tran-

dab 
-----r---------------------------------------
 ecf

06.44 a It it wants to kill itself, who are we to tell it no?
06:47 d Well I’m here to catch it if it tries to go.
06:48 a Turn it that way. Turn it.
06:49 d Hey can we turn it that way? It’s getting ready to 
   fall off, dude.
06:50 r [rotates right, left]
07:00 r [pi repositions robot]
07:02 c [Right hand close front; left hand close side]
07:05 c [right hand close front; left hand close side]
07:05 b [right hand close front]
07:05 e Right hand above front
07:06 r [moves forward, stops]
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If the turn-so-far is so constructed as to involve the 
use of a ‘current speaker selects next’ technique, then 
the party so selected has the right and is obliged to 
take next turn to speak; no other have such rights 
or obligations, and transfer occurs at that place. 
(Sacks et al, 704).

If the nonhuman agent ‘r’ completes the adja-
cency pair, then the human agent is entitled to an-
other turn. This is an in-built “bias” in turn-taking, 
which privileges the “current speaker selects next” 
turn allocation to the subordinate rule, self-selection 
(see transcript 1).

And this solves a typical problem–the problem of 
conversational bias. Sacks et al (1974:712) write:

The ‘last as next’ bias, however, remains invariant 
over increases. Not only does this have the effect of 
stimulating “self-selects” turns in the human agents 
and, in the comparison to the first examples, increas-
ing the total number of parties – and, with each 
additional increment in the number of parties, tends 
progressively to concentrate the distribution of turns 
among a sub-set of the potential next speakers.

This is confirmed in such stereotypical settings 
as classroom discourse, where, unless the instruc-

tor intervenes, conversation quickly concentrates 
around a handful of speakers, leaving the rest of the 
class out of the conversation. Here, the introduction 
of a non-human agent has the effect of “selecting” an-
other speaker by simply moving down the table–the 
initial human-agent is not able to take advantage 
of its prior right to initiate another adjacency pair 
after the non-human agent has moved out of range. 
A begins his turn, but quickly remits to B when 
the robot moves down the table out of range. The 
non-human agent allows for the ‘last as next’ bias 
to be superseded by ‘self-select’ and, therefore, an 
engagement with all of the human agents in the 
robot’s trajectory. 

The above example shows how the non-human 
agent intervenes in what might be thought of as 
an example of ordinary turn-taking, facilitated 
by the robot’s simple obstacle avoidance. Once 
human agents understand the non-human agent’s 
drive, then forming stereotypical adjacency pairs 
with it is unproblematic. However, the second case 
demonstrates what might be thought of as a “con-
versational anomaly” where the non-human agent 
fails to complete adjacency pairs altogether. 

Here, the non-human agent is unresponsive or, 
alternately, responds in an undesirable way to the 
speech and gestures of the human agents. If the 
nonhuman agent (“r”) does not respond, however, 
then this constitutes a conversation “lapse” and al-
lows another human agent to self-select, initiating 
her own adjacency pair with the non-human agent. 
In the case of primary conversation, it means that 
the current speaker (the human agent) has failed to 
“select” the next speaker (the non-human agent). 
As Sacks et al (1974:715) write, “At any transi-
tion-place where none of the options to speak has 
been employed, the possibility of a lapse, and thus 
discontinuous talk, arises.”

Not only does this have the effect of stimulating 
“self-selects” turns of linguistic and paralinguistic 
actions in the human agents, but it results in at 
least two novel behaviors: 1) a level of strategy 
and metacommentary directed not at the robot, as 
in the first example, but to the other human agents 
and 2) the invention of “co-operative” turns, i.e., 
instances (like in the interval between 7:02-7:05 
in Transcript 2, where three human agents train 
their hands on the nonhuman agent at the same 
time). This particular example, with human agent 

07:08 b Female hands?
07:09 b Right hand front
07:16 r [rotates left]
07:20 a It doesn’t like you. You’re not cussing at it. It 
   does not fear you.
07:21 b [right hand close front]
07:21 e [left hand close front, right hand front above]
07:21 c [left hand side]
07:21 b We need another hand on that side
07:24 r [rotates right]
07:24 e It’s moving at least
07:30 r [Moves forward]
07:31 d [right hand front]
07:32 d Not towards me, towards the goal there, come on.
07:35 d [right hand close front, left hand close side]
07:25 r [rotate left]
07:42 a We’re cussing it!
07:42 a You’re in the trash if you don’t get moving, buddy.
07:46 d Go that way, the way you were looking before.
07:48 b Maybe if you guys come over here and . . .

fcab
dr-----------------------------------------
e
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“b” suggesting that the robot is moving because 
of “female hands” is significant in that adjacency 
pairs up to that point had been dominated by 2 of 
the male agents, a and d, respectively. As Gibson 
(2005:135) reminds us,

The second thing we know about conversation is 
that not everyone is dealt the same hand, in terms 
of opportunities to speak and be addressed, in terms 
of what each can hope to say as speaker and hearer 
as addressee. Conversation, in other words, is a site 
for the differentiation of persons, perhaps, though 
not necessarily, along lines established by attributes, 
personalities, or positions in an encompassing in-
stitutional structure.

Thus, here, the non-human agent is not only a 
catalyst for turn-taking, but is additionally a foil for a 
challenge to traditional classroom hierarchies which 
tend to favor males over females.  What is counter-
intuitively interesting about the second iteration is 
that the quality of the interaction–the richness of 
the emergent community–seems inversely related 
to the expectative fit of the different agents; the total 
number of instances of talk and movement in the 
first iteration are 105, compared to the second at 231. 
If we look at the goal of the system as essentially 
autopoietic (as opposed to systems that are allopoi-
etic, created from the outside), then the number and 
quality of the interactions in the second example 
are more richly differentiated and elaborated. This 
is the quality of the parasite–that hermetic agent 
generating difference by creating noise in the sys-
tem–miscommunications, conversational lapses, 
misunderstanding, crossed signals. 

The  Quasi -ob Jec T

In the above experiments, the non-human agent 
is on one level, subordinate to the human agents. 
Without their input (and in the absence of another 
obstacle), the non-human agent goes nowhere. On 
the other hand, if we look at the these interactions 
as emergent socialities, the non-human agent has a 
pivotal role–that of amanuensis for all subsequent 
social interaction. Without the peregrinations of 
what Michel Serres has called the “quasi-object”, 

there is no emergent social interaction to begin with, 
like the ontological important of a ball for a game of 
rugby. As he summarizes in a recent interview with 
Bruno Latour (Serres and Latour, 1995:108),

The ball is played, and the teams place themselves 
in relation to it, not vice versa. As a quasi-object 
the ball is the true subject of the game. It is like a 
track of the fluctuating collectivist around it. The 
same analysis is valid for the individual: the clumsy 
person plays with the ball and makes it gravitate 
around himself; the mean player imagines himself 
to be a subject by imagining the ball to be an ob-
ject–the sign of a bad philosopher. On the contrary, 
the skilled player knows that the ball plays with him 
or plays off him, in such a way that he gravitates 
around it and fluidly follows the positions it takes, 
but especially the relations that it spawns.

That is, the quasi-object is simultaneously quasi-
subject (whether human or non-human), taking on 
aspects of object and subject and in the process 
weaving a network of relations between agents. In 
this, the non-human agent would seem to be the sine 
qua non quasi-object, but humans, too, must accede 
to the level of quasi-object in order to function in a 
world of intelligent agents. As Brown (2002:21-22) 
writes in his summary of Serres’s work: “Sociality 
is neither an automatic adding of individuals, nor an 
abstract contractual arrangement. It is a collectivist 
assembled and held together by the circulation of 
an object.”

conc Lusion

It is now axiomatic that the cognitive world varies 
considerably from “sense-think-act” cycle of early 
AI and robotics (Clark, 2001:88). Now, theories of 
enaction, of interactivism, of emergence, suggest a 
dynamic, multi-directionality of perception reduc-
ible to neither the material nor the ideational world 
and additionally organized socially as multi-agent 
systems. What is less studied is the messiness of 
those multi-agent systems themselves, the way they 
involve complex “translations “ (Latour) between 
human and non-human agents, or “transcodings” 
between different representational and discursive 
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modalities. After all, the “machinic” world has the 
potential to discombobulate: to re-shuffle relation-
ships and practices linking humans to the non-hu-
man world. As a corollary of this, we can also say 
that human participations in the machinic re-forge 
the machine (Deleuze and Guattari, 1980:398): “It 
is through the intermediary of assemblages that the 
phylum selects, qualifies, and even invents the tech-
nical elements. Thus one cannot speak of weapons 
or tools before defining the constituent assemblages 
they presuppose and enter into.”

In our experiment, the assemblage made up 
of non-human robot and PIs gives way to a new 
assemblage—a new network—made up of vol-
unteers, PIs and robot.  In the process, the robot’s 
“function” shifts. It may have begun with obstacle 
avoidance, but, by the second iteration, becomes a 
gesture-machine, a conversation-machine, a turn-
taking machine.  

It is not too much to say that we can’t say in 
advance of the network’s formation what its compo-
nents may or may not do; this is the obvious legacy 
of almost three decades of research in distributed 
cognition, autopoiesis and multi-agent systems. 
But HRI and HCI still, by and large, construe the 
human and the computer as ontologically prior to 
their combination which, as we have argued, is 
both philosophically problematic and empirically 
unjustified. 

This also has profound implications for the design 
of human-computer interfaces in the classroom or 
the company. Is the most “user-friendly” design 
necessarily the best? Is there any place for resis-
tance in the non-human agent? What do we want 
the non-human agent for? If it’s a phone-tree, than 
we would want it to confirm existing expectations 
of human-non-human interaction but if we are in 
the classroom, than–counter intuitively-- it may be 
desirable to present a classroom of human agents 
with anomalous non-human agents. 
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appendix  1. suMMar y of k ey  Ter Ms

Actor-Network Theory (ANT): A body of sociological theory originating in the work of Bruno Latour.  
ANT is a powerful tool allowing social scientists to describe network chains of human and non-human agen-
cies engaging in a variety of practices and discourses, from opening a door to scientific discovery.   

Adjacency Pairs: In conversation analysis, sociolinguists (e.g., Harvey Sacks) have examined human 
speech as a dyadic exchange involving turn-taking.  Sociolinguistic phenomena such as “salutations” demand 
a dyadic exchange for their completion.  

Agent: In Multi-agent systems, an “agent” generally refers to either software or robots capable of some 
degree of autonomy in a designated environment.  However: humans can also be considered “agents,” 
although this involves a reduction of the complexities of human behavior and cognition to more machinic 
drives and expectations.  

Assemblage: An “assemblage” is a temporary, shifting concatenation of human- and non-human ele-
ments.  Initially proposed by Gilles Deleuze and Felix Guattari (1980), including both “machinic” and 
“animal” elements.  

Autopoiesis: Literally “self-making,” autopoietic systems organize themselves in an environment through 
a process of “structural coupling.”  They were first studied by Humberto Maturana and Francisco Varela.  
Initially confined to closed systems (e.g., cells), the characteristics of “auopoietic” systems were extended 
to “allopoetic” systems (e.g., perception and cognition) by Francisco Varela.  

Cyborg: “Cyborgs” combine humans and machines.  The term originates in NASA proposals for engi-
neering humans for extreme environments.  

Hybridity: In our contemporary world, it may be more (empirically) accurate to study humans as com-
binations of humans and machines.  In other words, we have become (and perhaps always were) inseparable 
from our tools.  

Observer: In what has been called “first-generation” cybernetics, the “observer” enjoyed a panoptic view 
(and perfect knowledge) of the observed system.  Subsequent insights in cybernetics and systems theory 
have located the observer in the system she observes, i.e., imbricated the observer in an ultimately reflexive 
system where the act of observation and observed phenomena are dialectally linked.  

Parasite: The title of a book by the historian of science, Michel Serres, “the parasite” suggests that 
communication and information exchange might be understood with “parasitic” metaphors and that, fur-
thermore, the “unproductive” parasite (whether in speech or biology) is in some ways constitutive of, rather 
than extraneous to, the system.
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This chapter is a continuation from Part I, which has described contemporary psychological descriptions of 
bullying in primary schools and two Virtual Learning Environments (VLEs) designed as anti-bullying interven-
tions. The necessary requirements for believable, autonomous agents used in virtual learning environments 
are now outlined. In particular, we will describe the technical and engagement-oriented considerations that 
need to be made. The chapter concludes with recommendations of how to meet these needs and how to design 
a VLE by including potential users in the development process.
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inTroduc Tion

Part I of this chapter has described how human 
social networks operate, and have focused spe-
cifically on the issue of childhood bullying within 
primary school classes. We also introduced two 
VLEs (FearNot! And C-SoNeS), which have been 
created as anti-bullying interventions.

In developing these VLEs, the authors have 
uncovered a number of issues which needed to be 
resolved successfully in order that the software was 
developed to be functionally and pedagogically 
sound. Many of these issues seem generalisable and 
pertinent to developers of other VLEs, and so this 
chapter aims to impart some hard-learned lessons 
to allow the greater community to prosper from 
our endeavours.

This chapter intends to show what consider-
ations are necessary when designing an engaging 
VLE and will outline a number of ways in which 
these requirements can be met. In this way, it is 
hoped that future development teams can benefit 
by drawing from our experiences in the design and 
implementation of VLEs.

Lessons  To  be  Learned  for  
The  deve Lop Men T of  vLes

As part of the development team of FearNot! and 
C-SoNeS, the authors have learned a number of 
lessons which are hoped to be of use to future 
developers of VLEs for young people. Broadly 
speaking there are two main considerations to make: 
technical considerations and engagement-oriented 
considerations.

Technical c onsiderations

Technical considerations concern the design 
and implementation of a VLE from a software 
developer’s point of view. The most important 
aspect here is to ensure that the VLE works and is 
stable enough when installed on school computers 
– children will not learn anything from software 
which does not work! This may not be so much 
of a concern for VLEs which are not designed for 
the classroom, such as the NICE system (Johnson 

et al, 1998) which uses a CAVE environment, for 
the simple reason that researchers often have more 
control over, and access to, the available hardware 
for development and testing. However, this concern 
should be carefully considered by developers of 
systems designed to be used in the classroom, for 
a number of reasons. 

Firstly, programmers will not usually have ac-
cess to a school’s computers during the development 
of software. This is an issue because schools (at 
least in the UK), while often possessing relatively 
new PCs, do not equip their computers to as high a 
specification as those usually used in a developer’s 
laboratory. It is a simple fact that primary schools 
do not need as powerful machines as those used in 
software development, and so prefer to purchase 
lower specification computers in order to keep their 
expenditure to a minimum. For example, in installing 
FearNot! in local primary schools for evaluation, 
the authors found that most school computers have 
rather low specifications in terms of slow processors, 
a lack of RAM, and do not usually have separate 
graphic cards (rather they share on-board memory 
between graphics and RAM). While a general survey 
of the current state of computers in UK primary 
schools was conducted by the e-CIRCUS project’s 
educational experts, it was almost impossible to 
determine the precise specification of equipment 
available in schools. This has caused some problems 
since the FearNot! application runs in the OGRE 
3D1 graphical engine, and has led to the undesirable 
situation where some schools who want to take part 
in the project are unable to because their systems 
simply do not meet FearNot!’s minimum system 
requirements. 

It is very difficult to determine a general level of 
computer sophistication in primary schools because 
there is large variability. Schools are responsible 
for the purchase of their own computers in the UK, 
meaning that there is no consistency in terms of the 
systems installed. There is a wide range of choice 
available for schools; from laptops to desktops, 
different suppliers, and different combinations of 
hardware. This compounds the issue of reduced 
performance further – not only do developers have 
to ‘scale-down’ their applications, but they must 
also be stable enough to run across many different 
configurations of low specification machines.
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While schools differ from each other in terms 
of the hardware they purchase, they often also dif-
fer in terms of the software installed and ways in 
which administration rights are managed. Some 
schools have their own technical support officer, 
meaning that access to machines is often fairly 
straightforward (assuming researchers are able to 
develop a healthy rapport with the school!). Others, 
however, are maintained centrally by their LEA 
(Local Education Authority) and so access is ‘by ar-
rangement only’; and therefore much more difficult. 
Some computers run as standalone units, while yet 
others are governed by one of many different avail-
able server-based systems, such as Novell NetWare 
(http://www.novell.com/products/netware/), or 
RM’s Community Connect 3 system (http://www.
rm.com/cc3). Again this creates concerns for de-
velopers – should the application run from a server 
or as on individual machines? Does the user need 
‘write-access’ to save their progress at all?

To summarise, school laboratories are not as 
well equipped as those developing VLEs, and there 
is great variation between schools in terms of hard-
ware, software and ease of access for researchers. In 
designing a school-based VLE, it is recommended 
that developers perform a thorough survey of the 
equipment available in their area before they even 
begin to write their code. Once a developer knows 
what is available he/she can begin to plan what is 
technically possible within this framework. It is 
also recommended that development is carried out 
on machines representative of those available to 
schools. This would greatly aid the developer in 

understanding what is/isn’t possible with school 
machines and will also ease any bug-testing and 
troubleshooting. While these ‘practical’ issues 
raised above seem quite obvious in hindsight, it 
is very important to be aware of these technical 
constraints, and even an experienced research team 
such as the e-Circus consortium had to deal with 
some of these problems. 

engagement-o riented 
c onsiderations

Let us assume that a development team is capable 
of meeting the technical constraints above. A suc-
cessful VLE must also be able to keep the atten-
tion of users – without engagement a VLE will not 
succeed in its attempts to educate users. For deep 
engagement and the exploration of sensitive personal 
issues, a VLE needs to be capable of generating 
empathy between user and agents (Dautenhahn, 
Bond, Canamero, & Edmonds, 2002).

In essence, empathy is the ability of an observer 
to react emotionally when he/she recognises that 
another individual is experiencing a particular 
emotion (Stotland, Mathews, Sherman, Hannson, & 
Richardson, 1978). In other words, empathy refers 
to our ability to understand the emotional state of 
another (e.g. Wispé, 1987). The two challenges for 
developers are to create agents which can 1) react 
empathically themselves (‘empathy-feeling agents’) 
and 2) evoke empathy in their users (‘empathy-
evoking agents’) (Paiva et al., 2004). Furthermore, 
these challenges need to be met by different aspects 

Figure 1. Example facial expressions used to convey agent emotional states in FearNot! (figure modified 
from Paiva et al, 2004)
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of agent design. Empathy-feeling agents require a 
carefully implemented internal architecture to al-
low them to ‘feel’2, while empathy-evoking agents 
require outward expressions and animations which 
serve to communicate their ‘feelings’.

According to Paiva et al (2004) there are a 
number of constraints which determine the way 
in which an architecture must be implemented if 
an agent is to be able to ‘feel’ empathy for others. 
A successful agent architecture must contain the 
capacity for agents to: 

• Recognise the emotional state of other 
agents

• Communicate with each other agents
• Process emotions (allow situations to trigger 

emotions in the agent)
• Express emotions (via different modalities)
• Respond to emotions, through different coping 

strategies

Paiva et al (2004) continue to describe the ways in 
which agents need to express their internal states if 
they are to evoke empathy in the user. They suggest 
three main factors for building empathy: facial and 
body expressions, situations, and ‘proximity’. 

As facial and body expressions are one of the 
main ways in which humans can communicate 
personal information about their emotions (Rus-
sel & Fernández-Dols, 2002), so too can synthetic 
agents use this outlet to show users how they feel. 
Naturally, it follows that a user must be able to 

perceive and identify the expression displayed by 
the character – a task for the graphics designer. One 
way to facilitate understanding is to take a lesson 
from actors and cartoonists who often use highly 
stylised and exaggerated gestures to convey their 
emotions more easily. 

In addition, the expression displayed by an agent 
must also be congruent with how a user would ex-
pect the agent to feel at any given time, lest the user 
becomes confused. Indeed, the situation itself may 
also be used as a way of communicating empathy. 
Humans are intuitively empathic, and so will readily 
understand how a synthetic character should feel if 
placed in a certain situation. In the same way that 
stylised and exaggerated expressions can create 
empathy within a user, ensuring that the situations 
that agents are placed into are similarly unambigu-
ous, can also facilitate the empathic process. This 
can be done by keeping a character’s actions clear 
and explicit, or by presenting situations with which 
a user is already familiar.

Familiarity seems key to the creation of empathy. 
Empathy is stronger among people, who do not know 
each other, if they consider themselves to be similar 
to each other. For example, it has been shown that 
people are comfortable with feeling empathy for cin-
ema and television characters (Tannenbaum & Gaer, 
1965; Hoffner & Cantor, 1991), while von Feilitzen 
& Linne (1975) found that people are more likely 
to feel sorry for someone (real or imaginary) they 
perceive as similar to themselves. In order to create 
an empathic bond between user and agent Paiva et 

Figure 2. Mori’s Uncanny Valley, cf. MacDorman (2005)
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al. (2005) describe the notion of ‘proximity’ and 
show how they were able to design environments, 
characters and situations with which users were 
familiar and could identify with. Indeed, a number 
of evaluations of FearNot! have provided evidence 
that proximity does improve empathic engagement 
in the manner described here (Hall & Woods, 2004; 
Watson et al, 2007).

Just because an agent seems to meet the crite-
ria laid out above, empathic engagement will not 
automatically follow. Even if a character is able to 
feel empathy, express its emotions, and is similar to 
the user, it must also be believable. Believability is 
a difficult concept to tie down, but for the purpose 
of virtual agents has been defined as: a character 
“that provides the illusion of life thus permitting 
the audience’s suspension of disbelief” (Bates, 
1994, p.122). Essentially, character believability can 
be created through a combination of appearance, 
autonomy, and expressivity (Paiva et al, 2005). 

While evidence has shown that a polished ap-
pearance is not necessary to keep a user’s attention 
(Woods et al, 2003; Woods et al., 2005; Watson et al, 
2007), it is the first thing that a new user will notice 
about a VLE and is becoming more important as us-
ers often compare VLEs to commercial video games 
as a familiar reference point. In terms of appearance, 
level of realism is the key consideration – are realis-
tic looking characters more or less believable than 
cartoon-like agents, for example? Should characters 
be designed as human-like, animal-like, or even as 

aliens? An important consideration is to ensure that 
whatever direction a developer takes, he/she must 
be sure to avoid the pitfalls of the ‘uncanny valley’ 
(Mori, 1970; MacDorman, 2005).

The uncanny valley theory states that as robots 
display ever more human-like characteristics, people 
will react with increasing familiarity until a certain 
point where subtle flaws in the robot cause people 
to feel repulsion (also called the ‘Zombie effect’). 
It is this area of repulsion that forms the uncanny 
valley. However, improving a robot beyond this 
point can also improve reactions once more until a 
point is reached where robots are indistinguishable 
from health human beings. 

The uncanny valley theory can also be applied 
to computer-generated characters, as in the feature 
films Shrek (2001) and Final Fantasy: The Spirits 
Within (2001) (Wechsler, 2002), and virtual agents 
(Gulz & Haake, 2006; Hall et al, 2006). Therefore, 
the following discussion of robot appearance is also 
relevant to the design of interactive agents, especially 
within 3D virtual environments.

Based upon McCloud’s (1993) design space of 
comics, Dautenhahn (2002) has posited a two-di-
mensional scale (realistic to iconic versus represen-
tational to abstract) that can be used to categorise 
the appearance of different believable social robots. 
By using this scale, developers can decide on how 
best to design a robot – simple designs may be better 
than lifelike designs, and a robot’s behaviour and 
purpose should be taken into account before auto-

Figure 3. Examples of robots with mechanoid, humanoid, and android appearances

   
Lynx 5 Robotic Arm 

(Lynxmotion) 
Asimo 

(Honda) 
Actroid DER2 

(Kokoro & Osaka Uni) 
Mechanoid Robot Humanoid Robot  Android Robot 
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matically deciding on an anthropomorphic form. 
Indeed, this approach has been used effectively to 
create a child-sized robot, KASPAR3, who has been 
used in a variety of human-robot interaction studies 
(Blow et al, 2006; Robins et al. 2008).

Robots can also be placed on an anthropomorphic 
scale from mechanoid through humanoid to android 
(Walters, 2007). It has been found that mechanical-
looking robots have lower expectations of ability 
placed upon them, and are treated less politely and 
more subserviently than their more human-like 
counterparts (Hinds, Roberts & Jones, 2004). 

Moreover, Woods, Dautenhahn, & Schulz (2004) 
have found that the uncanny valley effect holds true 
when children interact with robots. Children were 
shown 85 standardised images of robots falling 
along the mechanoid/android continuum and were 
asked to rate them on a number of criterion measures 
(including friendliness, aggressiveness, and some 
personality characteristics). Both mechanoid and 
android robots were rated as aggressive, mechanoid 
robots were considered to be angry, while humanoid 
robots were seen as most friendly. 

Taken with in conjunction with Gulz & Haake’s 
(2006) work, these results show the importance of 
carefully designing the appearance of robots or 
virtual agents. Agents do not necessarily need be 
designed to appear realistic, but their appearance 
should fit their purpose in a believable manner.

 Autonomous characters often seem more be-
lievable than their scripted counterparts (take, for 
example, Tamogotchis, Nintendogs, and the ever 
increasing use of AI in commercial video games). 
However, autonomy is not easy to implement with 
synthetic agents due to the technical difficulties 
of generating actions and speech, for example, 
dynamically. Scripted characters can, in some 
cases, be more believable than autonomous agents 
– though this requires great effort on the part of 
developers to pre-empt or limit what users are able 
to do in the VLE.

For characters to be believable, they must be 
able to accurately express their current state – their 
‘mood’ or ‘feelings’ – in the same way that humans 
can communicate  their state through non-verbal 
channels e.g. facial expressions. This is not just a 
job for graphical artists who will have to animate 
characters, but rather is a very difficult task of 

definition and communication of states. The Disney 
animators Thomas & Johnston (1981) have described 
3 points of interest which should be considered when 
designing emotionally expressive agents. 1) An 
agent’s emotional state must be clearly defined in a 
manner which is unambiguous to the observer/user. 
2) If the emotional state affects the agent’s reason-
ing then the consequences must be obvious in the 
agent’s subsequent actions. 3) Emotions may need 
to be exaggerated in order to communicate them 
effectively to the observer. It is also true that even 
if an agent is able to effectively communicate it’s 
emotions to the user, that agent must also maintain 
coherence between its emotions and behaviour – an 
unpredictable character that lacks temporal and/or 
cross-situational consistency will not be believable 
(Moffat, 1997).

The ‘Expressivator’ (Sengers, 1998) is an in-
teresting system that shows how one can develop 
agents that are able to express themselves in an 
ecologically valid manner. Whereas classical ar-
chitectures view agents as problem solving entities 
that move quickly form one behaviour to another, 
the Expressivator supports ‘transition behaviours’ 
which can express relations between behaviours. 
These serve to show the user why an agent’s be-
haviour is changing from one state to the next, and 
therefore provide an explanation of intentionality. 
In addition, there is a ‘sign management’ system 
whereby an agent keeps a record of the behaviours it 
has shown, and thus can select further behavioural 
displays not only on internal states, but also on the 
way in which it’s behaviour has already (probably) 
been perceived.

Empathic engagement and believability go hand-
in-hand – it is very difficult to have one without 
the other. While it may seem straightforward to 
construct an environment under the guidelines 
outlined above, the greatest problem that develop-
ers face is that the aspects of believability and the 
empathic notion of proximity can change from one 
audience to another. To give an example, an early 
evaluation of FearNot! including children, teachers, 
and AI experts showed that children responded 
more positively towards a number of aspects of the 
software than did teachers or experts, and were also 
therefore more likely to express empathic reactions 
(Hall, Woods, Dautenhahn, Sobral, Paiva, Wolke, 
& Newall, 2004).
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To realize that proximity will change between 
audiences should be obvious. Since proximity refers 
to the similarity between user and virtual environ-
ment, it follows that different users will require 
different characters with which to empathise. In the 
same way, different users will also have different 
concepts of what is believable – of what appearance, 
amount of character autonomy, and level of expres-
sivity they prefer. This begs the question, then, of 
how user preferences can be identified. One solution 
is to simply ask them! 

While the role of user as a developer has been 
challenged with the argument that users are not 
designers and that their ideas are usually inferior 
to those of design professionals (Webb, 1996), it is 
widely accepted in Human Computer Interaction 
(HCI) that the role of the user as a tool to aid de-
velopment should not be underestimated. Users are 
traditionally employed to test or evaluate previously 
implemented aspects of an interface, which limits 
their input to purely reactive feedback rather than 
allowing a proactive role in the original design itself. 
This, unfortunately, allows that user feedback may 
be ignored, either because of a developer’s reluctance 
to change their interface, or because deadlines do 
not allow for a re-design (Scaife, Rogers, Adrich, 
& Frances, 1997).

An alternative is the ‘participatory design’ (PD) 
approach (Schuler & Mamioka, 1993) in which users 
are treated more as partners in the design process 
and are given more responsibility than simply feed-
ing back on work already done. Since an application 
will usually be targeted at a particular user group, 
it is of the utmost importance to consult with that 
group at every stage of a VLE’s development. This 
approach has been successful with adults (e.g. Mül-
ler, Wildman, & White, 1993) who understand their 
role and the domain they are operating in, but using 
children in such a role can be more difficult.

Children can be valuable contributors to a design 
team as they provide honest opinions and meta-
phors (Druin & Solomon, 1996) especially as they 
are becoming quite technologically sophisticated 
(Oosterholt, Kusano, & de Vries, 1996). Children 
do require more guidance than adults, however, 
which means that they are not ideal for a full PD 
approach. This is why Scaife et al (1997) have 
adapted the PD approach for children to take the role 

of ‘native informers’. They describe a framework 
for ‘Informant Design’ (ID), which can be useful 
for developers of software for children. By taking 
children as informants, Scaife et al (1997) recognise 
that children may be privy to useful information 
that designers are not (especially what can encour-
age learning), whilst also acknowledging that they 
will not have the skills or time to contribute to a 
complete PD approach.

It is beyond the scope of this chapter to provide 
a full description of the ID framework, but it es-
sentially defines four design phases, which users 
can contribute to each phase, what the contributors 
input should be, and what methods can be used to 
elicit these inputs. Under this framework, children 
are involved in three out of the four design phases 
and can advise on which aspects of a topic are most 
difficult to learn, help build a motivational interface, 
and iteratively evaluate development.

There are a number of methodologies that can 
be employed by a design team at different stages 
of development that can yield informative results. 
Furthermore, these methodologies can also be 
employed with different groups to uncover vari-
ous pieces of information. This chapter will now 
continue to describe some methods that have been 
used successfully by the e-CIRCUS team, under the 
ID framework outlined above. The main methods 
used to date have been questionnaires, design walls, 
photo-elicitation, mood boards, and focus groups/
discussions. It should be noted, though, that this is 
not meant to be an exhaustive list, and that there 
are many more HCI methodologies that can be of 
value (see, for example, Sharp, Rogers, & Preece, 
2007 for a recent review).

Questionnaires (e.g. Oppenheim, 1992) are 
widely used in many different research fields. 
They are an excellent resource for collecting a 
large amount of data quickly, and with little effort 
for the researcher. Usually they will return data of 
a numerical or quantitative nature, though open-
ended questions can allow for qualitative analysis. 
Questionnaires are ideal for asking about specific 
aspects of a VLE which is already in development 
as they allow respondents to quickly show the extent 
to which they like or dislike part of the VLE with 
the use of Likert (Likert, 1932) or Guttman (Gutt-
man, 1950) scales, for example. The most common 
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way to use questionnaires is to show target users 
a trailer video of a VLE (e.g. Hall et al, 2004) or 
allow them to interact with a VLE (e.g. Woods et 
al, 2003; Hall et al, 2005) before asking them to 
complete a questionnaire. Alternatively, question-
naires can be used to gauge any changes made to 
a VLE if, for example, two versions of a VLE are 
demonstrated before evaluation (e.g. Watson et al, 
2007). One potential drawback of a questionnaire-
based methodology is the possibility of a novelty 
effect – that respondents will answer questionnaires 
more positively than they would do normally as a 
result of the excitement of trying something new. 
However, the effects of this bias can be reduced if 
respondents are given enough time to acclimatise 
to a new VLE before they are asked to complete a 
questionnaire. While questionnaires are very useful 
for asking about a product already in development, 
because they mostly require fixed responses, they 
are not as effective when designing a VLE for the 
first time. 

Based loosely upon contextual analysis and 
affinity diagrams (e.g. Beyer & Holtzblatt, 1999; 
Raven & Flanders, 1996), ‘Design Walls’ can be a 
useful tool at the beginning of a project to identify 
the themes and issues within a problem that a VLE 
is to be designed to solve. Usually, this methodol-
ogy will take experts as its respondents, as they 
will likely have more knowledge about a specific 
subject area than the developers of a VLE. Take, 
as an example, the e-CIRCUS project which was 
tasked with developing a VLE (named ORIENT) to 

educate young people about integration issues faced 
by immigrants. Few people on the e-CIRCUS team 
possessed previous experience in this area, and so 
a workshop was organised to encourage input from 
experts who were already working with immigrants. 
The design wall exercise was conducted in order to 
identify 1) the challenges faced by immigrants, and 
2) potential solutions to these challenges. As a result 
of this exercise, the e-CIRCUS team were able to 
begin planning their new VLE as the problem area 
had now been well defined. 

‘Photo-elicitation’ is a relatively new methodol-
ogy that assists researchers in designing environ-
ments with which users will be familiar, and has 
already been used to good effect with children 
(Richardson, 2006; Hall et al., 2007). Essentially, 
the method involves allowing respondents to take 
photographs of anything they wish. When the 
photographs are returned to the researcher they 
can be analysed visually to identify any recurrent 
themes or images. It is assumed that the more 
often a theme occurs, the more important it is to 
the user group, and can therefore be incorporated 
into a VLE to promote familiarity. The amount of 
guidance given to the respondents can change the 
specificity of images returned – for example, by 
asking respondents to photograph clothes that they 
like inside a shopping centre developers can gain 
some insight on how to design the physical appear-
ance of their characters.

Figure 4. Photographs of the Design Wall exercise carried out by the e-CIRCUS team in planning the ORI-
ENT VLE
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Another methodology which allows target users 
to design aspects of a VLE is known as the ‘Mood 
Board’, and is especially well suited to designing 
visual aspects of a VLE, including the interface. 
Mood boards have been used successfully in a va-
riety of areas including the development of mixed 
reality systems (Lucero & Martens, 2006) and 
interface design (Øritsland & Buur, 2003). Indeed, 
mood boards can also be used as part of an aug-
mented reality system themselves (Martens et al 
2006). Under this methodology, potential users are 
invited to browse through contemporary media (e.g. 
newspapers/magazines, etc) which are relevant to 
the user’s demographic. They can then select images 
from the magazines and arrange them in a collage 
to represent whatever aspect of the VLE they have 
been asked to focus on. This methodology was 
also used effectively by the e-CIRCUS team along 
with the design walls to begin designing interaction 
modalities and ways in which the ORIENT VLE 
could move from one scenario to another. 

A methodology that is very familiar to computer 
scientists and psychologists includes interviews or 
focus groups and discussions. These methods are 
useful at all stages of a development for a couple 
of reasons. Firstly, they allow respondents to use 
their own words, and define their own points of 

interest – which is useful in early design stages. 
On the other hand, they also allow researchers the 
opportunity to ask direct questions about specific 
aspects of a VLE, while also following-up on new 
items that respondents may bring to the discussion. 
Variations of the focus group design, in the shape 
of ‘Classroom Discussion Forums’ (CDFs), (Hall, 
Woods, Dautenhahn, & Wolke, 2004), have been 
used extensively and effectively by members of the 
e-CIRCUS team. In this way, the target user group 
of children and teachers have been continuously 
involved in the design and development of FearNot! 
throughout the whole development process. Recent, 
though unpublished, changes to FearNot! as a result 
of CDFs include improvements to the graphical 
appearance, the design of more relevant bullying 
episodes (e.g. bullying via a mobile phone), and 
updating of the character’s language to include more 
contemporary and regional phraseology.

By following the principles outlined above, 
FearNot! has successfully encouraged empathy in 
the user as a mechanism to generate engagement 
(e.g. Hall et al., 2005; Watson et al., 2007), and, 
regarding our work on the development of social 
networks in VLEs, it is planned to take the elicita-
tion of empathy one step further by including the 
user as an avatar in the environment itself. 

Figure 5. Photographs of the (female) Mood Board exercise carried out by the e-CIRCUS team in planning 
the ORIENT VLE
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conc Lusion

This chapter has shown that a VLE needs to be em-
pathically engaging and believable to be successful 
in educating its users. Some of the ways have been 
described in which the e-CIRCUS project has been 
successful in achieving this goal with the FearNot! 
software. Furthermore, evidence was provided that 
the facets that combine to make a VLE believable 
and engaging can, and will, vary between differ-
ent user-groups. To counteract these issues, it was 
argued that asking potential users what they want 
is the best way to ensure the eventual success of a 
VLE. To that end, a number of user-centred design 
methodologies were described that have worked well 
for the e-CIRCUS project team. We explained the 
use of questionnaires, design walls, photo-elicita-
tion, mood boards, and focus groups/discussions and 
show how they can be applied in different phases 
of a VLE’s implementation, though do not suggest 
these to comprise an exhaustive list.

In conclusion, the final message of this chapter 
is that a VLE’s development team should employ a 
user-centred design methodology as the best way 
in which to plan, develop and test social agents 
which are believable, empathically engaging, and 
educational for the target user group.

f uTure r esearch direc Tions

The technical development and implementation of 
FearNot! has been completed, and efforts are cur-
rently focussed on evaluating the impact that it will 
have on bullying in primary schools. In a longitudi-
nal study, approximately 350 children from the UK 
and 250 from Germany will use FearNot! for three 
weeks, with criteria questionnaires administered 
once before and twice after the intervention. The 
same number of children will match this pattern of 
questionnaires, without the FearNot! intervention, 
to act as a control condition. 

It is hoped that the FearNot! VLE will reduce 
victimisation and improve knowledge about bullying 
and the most effective coping strategies. This study 
will also contribute to the psychological understand-
ing of bullying in primary schools by investigating 
the efficacy of moral disengagement as a possible 

predictor variable of bullying behaviour. The study 
is due for completion in February 2008, and results 
will be available later that year. Assuming that 
FearNot! is successful in its aims, the e-CIRCUS 
project team hopes to make the VLE available to 
the public for educational purposes.

The e-CIRCUS team is also developing a dif-
ferent, new VLE named ORIENT. This VLE will 
apply many of the lessons described in this chapter 
to create an application designed to teach adolescents 
about the issues faced by immigrants who are at-
tempting to acclimatise to a new host nation. This 
VLE will take the form of a 3-dimensional landscape, 
in which users can control their own avatar for 
navigating through the environment and interac-
tion with the agent population. Users will work in 
groups, with a number of interaction modalities to 
be considered, including Nintendo Wii controllers4, 
mobile phones equipped with RFID5 scanners, and 
a dance mat6. Users will be assigned individual 
but complimentary roles, and will need to work 
together in order to solve a number of ‘engagement 
scenarios’ such as learning the cultural norms and 
rites that accompany everyday activities (e.g. eating 
a meal). The synthetic agents in ORIENT will be 
even more sophisticated than those in FearNot! and 
will include facets of the FAtiMA and PSI models 
(Dörner & Hille, 1995), along with a sophisticated 
autobiographic memory. The agents will play the 
roles of characters from different cultures, which 
have their own norms and societies. The technical 
implementation of ORIENT has already begun in 
2007, and evaluations will begin in 2009.

With regards to our work on developing C-
SoNeS, the inclusion of ‘gossip’ between agents 
may be considered. By implementing such a func-
tion, agents will be able to exchange information 
about other agents in order that relationships can be 
affected by third-party information. For example, 
agent could A tell agent B that he has a positive 
relationship to agent C, thus improving agent B’s 
relationship to agent C. Once ‘gossip’ between 
agents had been implemented, users may interact 
directly with agents in the VLE by controlling their 
own avatar. In doing so, it is hoped that children 
will be able to learn about the ways in which social 
networks develop and will be able to practice mak-
ing and maintaining friendships.
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endno Tes

1 OGRE (Object-Oriented Graphics Rendering 
Engine) 3D is an open-source, cross platform, 
3D graphics engine (http://www.ogre3d.
org).

2 We do not claim for the purpose of this chapter 
that the virtual agents are genuinely capable 
of ‘feeling’, in the way the term is applied to 
human and other biological organisms.

3 KASPAR (Kinesics And Synchronisation in 
Personal Assistant Robotics) was developed 
at the University of Hertfordshire as part of 
the RobotCub (http://www.robotcub.org/) 
and Aurora (http://www.aurora-project.com) 
projects.

4 The official Nintendo Wii controllers website 
can be found here: http://wii.nintendo.com/
controller.jsp. 

5 RFID (Radio Frequency Identification) tech-
nology incorporates a small radio tag which 
can wirelessly broadcast its identity to a 
reader/scanner. The scanner is usually able to 
display the identity of a tag on a screen. For 
a more detailed description see http://www.
rfidc.com/docs/introductiontorfid_technol-
ogy.htm. 

6  E.g., Red Octane’s Ignition Dance Pad 3.0 
(http://www.redoctane.com/ignitionpadv3.
html).
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This chapter is focused on social reputation as a fundamental mechanism in the diffusion and possibly evolu-
tion of socially desirable behaviour (e.g., cooperation, altruism, and norm-abiding behaviour). Reputation 
is seen as both a property of agents and a process of transmission of beliefs about this property. The main 
current views and hypotheses about reputation are found to underestimate the importance of the process 
of transmission. Next, a cognitive analysis of reputation and of its transmission is presented. Hypotheses 
concerning the transmissibility of reputation are discussed, and checked by means of simulation. Finally, 
speculations concerning the role of reputation in the evolution of reciprocal altruism are discussed, and ideas 
for future studies are sketched out.

inTroduc Tion

This chapter will be focussed on the cognitive 
properties of reputation favouring its transmission. 
We propose a definition of reputation as socially 
transmitted (meta-) beliefs (i.e., beliefs about beliefs) 
concerning properties of agents, namely their at-
titudes towards some socially desirable behaviour, 
be it cooperation, reciprocity, or norm-compliance. 
Such a definition led us to put forward the hypothesis 
that reputation plays a crucial role in the evolution 
of these behaviours: reputation transmission allows 
socially desirable behaviour to emerge and persist 
even with low probability of repeated interaction. 

This role of reputation depends on the extent to 
which agents are likely to transmit it to one another. 
In this perspective, we are indebted to contributions 
from the memetic theory (for a definition of a meme, 
see Dawkins, 1976; Blackmore, 1999; for a recent 
collection of contributions on memes and memetics, 
see Aunger, 2000), especially in its current compu-
tational version (see Best and Edmonds, 2001). 

Indeed, the cognitive properties of reputation 
and in particular the reasons why reputation is 
harboured in the mind help predict its transmis-
sibility (Dawkins, 1976). In turn, transmissibility 
of reputation bears important consequences for 
the role of reputation with regard to socially desir-
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able behaviour. This suggestion is supported by 
findings from several computer simulation studies 
on norm-abiding behaviour conducted in the last 
years within our research group. More generally, 
as will be argued at the end of this chapter, the 
view of reputation presented here may contribute 
to the still debated (see the discussion in Nature: 
Roberts & Sherratt, 2002) problem of reciprocal 
altruism theory in settings with low probability of 
repeated interaction.

The chapter is organised as follows. In the next 
subsection, we will situate the research on reputation 
in the broader context of the reciprocal interaction 
of culture and behaviour. Thereafter, the main cur-
rent views and hypotheses about reputation will be 
presented and discussed, and found only partially 
consistent with current experience and observation. 
Next, our view of a cognitive model of reputation as 
a socially spreading meta-belief will be presented, 
and hypotheses about reputation transmissibil-
ity will be formulated. Findings from simulation 
studies about the role of reputation with regard to 
a special type of socially desirable behaviour, i.e. 
norm-compliance, will be shown to be consistent 
with the model provided before and confirm the 
emphasis laid on reputation transmission. In the fol-
lowing section, speculative hypotheses concerning 
the utility of the present approach for the theory of 
reciprocal altruism will be discussed at some length. 
Finally, a summary and ideas for future studies will 
be sketched out.

When Does Culture Influence 
behaviour? 

This question has two different readings: (a) to what 
extent a given behaviour is influenced by culture as 
opposed to other factors (genetic, environmental, 
etc.)—here behaviour is given, and one must find the 
explanatory factor; (b) whether and to what extent 
a given cultural input influences behaviour—here 
culture is given, and one must predict its effect on 
behaviour.

The first meaning is a classic nurture/nature 
question: for example, to what extent are gender 
differences to be explained as an effect of culture 
rather than nature? This question presupposes a 
view of culture as less inertial, more dynamic and 
modifiable than nature. 

Personally, we are more interested in the ques-
tion whether a given behaviour is the result of an 
evolutionary process -- whether biological or cultural 
-- or is an accidental and contingent phenomenon. 
In this respect,  the key question is how cultural 
evolution is possible at all.

The second meaning -- whether and to what 
extent a given cultural input influences behaviour 
-- seems more challenging. Two empirical cautions 
are necessary, though. 

First, behaviour is a fundamental component 
of culture, which is (also) expressed through and 
by means of behaviour; consequently, it is difficult 
to isolate cultural phenomena that are not yet be-
havioural. 

Second, cultural phenomena start to exist the 
moment they influence behaviour, otherwise they 
are simply products of human activity and thought. 
In other words, how could one tell that something 
belongs to culture if it is not reflected upon the 
behaviours of its members? What is culture, in the 
end, but the set of human products that affects their 
behaviours?

Therefore, culture is both an effect and a cause 
of behaviour and, before, of mental states and 
processes. (This feedback loop between behaviour 
and culture shows that the evolutionary process 
of emergence is not only a bottom-up process of 
emergence but  a multidirectional one.)

Empirically, it is difficult to point out differences 
between culture and behaviour in nature.  Therefore, 
a scientific approach to culture requires that cultural 
evolutionary processes are not only observed, but 
that corresponding hypotheses are formulated and 
tested. This is possible by means of artificial data 
especially if these are compared with natural ones.  
Artificial societies can help a lot, here, provided 
multidirectional emergence is taken into account in 
the modelling and implementation. These require-
ment have  effects on the way agents are modelled 
and implemented: they need not only be adaptive, 
but also endowed with mental states and social 
cognitive capacities. This is, in our view, what is 
needed for the feedback loop between culture and 
behaviour to be explained. 

In this chapter, we will argue for this claim us-
ing examples from simulation models of altruism. 
In particular, we will try to show the necessity of a 
social cognitive model of reputation as a fundamen-
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tal evolutionary ingredient of indirect reciprocity, 
supported by artificial and natural data concerning 
the role of reputation as a cultural artefact in the 
emergence of altruism.

 

background

The extensive literature on reputation is generally 
focused on the deterrent role of reputation and on 
learning to reciprocate (see, Ostrom, 2000). Con-
versely, the evolutionary role of reputation has been 
relatively underestimated. 

In game-theory (Kreps & Wilson, 1982; Raube 
& Weesie, 1990; Buskens, 1998; Buskens & Wee-
sie, 1999, etc.) and in the sociological literature 
(Granovetter, 1985; Coleman, 1990; Burt, 1993), 
reputation is defined as “... information that agents 
receive about the behaviour of their partners from 
third parties and that they use to decide how to 
behave themselves.” (Buskens, 1998), or as “char-
acteristic or attribute ascribed to one persona… 
By another… usually represented as a prediction 
about likely future behavior… however, primar-
ily an empirical statement”  (Wilson, 1985). The 
spread of reputation, from the game theoretic point 
of view, is essential to the evolution of cooperation 
in repeated interactions. The emergence of indirect 
reciprocity with low probability of repeated inter-
action has been studied (e.g., Nowak & Sigmund, 
1998) with repeated interaction being replaced by 
agents’ individual “image”, i.e. their attitude towards 
altruism, by unspecified “tags” (Riolo et al., 2001), 
that generate similarity-based cooperation, or by 
costly signaling (Gintis et al, 2001). This is either 
directly available to anyone, or based upon direct 
exposition to others’ interactions. No attention is 
paid to the transmission of social beliefs from one 
agent to another. 

According to these definitions, reputation is 
viewed as a

• Mechanism acting on interaction: It con-
cerns agents' attitude toward reciprocity

• Learned factor, acquired from third parties 
that spread it

• Entering the decision-making of the parts, 
initially for forecasting possible future lack 
of reciprocation

• Effect-, rather than process-, oriented: 
Precisely because it is viewed as acting on 
exchange, the advantage of reputation is 
envisaged in its effects (affecting lack of 
reciprocation, as in contract violation), rather 
than in the transmission process (gossip).

Everyday life experience suggests that reputation 
acts not only on exchange, but also on cooperation, 
altruism and normative behaviour. It is not only a 
deterrent factor, contributing to social learning, 
but prior to this, it is a collective self-defensive 
mechanism: by means of reputation, in an ideal 
world, the good guys isolate the bad ones, cheaters, 
transgressors, and free-riders. 

Moreover, reputation is often inaccurate: despite 
of (or thanks to) the high frequency and probability 
of errors, rumours and gossip about reputation spread 
very easily in the social environment. In addition, 
reputation takes effect even while traveling in the 
social space, and not only once it gets to destina-
tion (that is, when it is known to the target or to 
its partner). Finally, reputation is mainly acquired 
indirectly. Rather than supporting or implying direct 
experience of the target, its transmission serves to 
replace and avoid it. It enters at least two types of 
decisions:

• How to interact with reputed agents (social 
decision)

• Whether to spread their reputation (memetic 
decision)

Whilst it may be relatively clear what the social 
decision is based upon, the question as to what 
are the grounds for the memetic decision, namely 
whether to transmit rumours and participate in gos-
sip, is less trivial. Why do “third parties” transmit 
information about others’ reputation? What is their 
utility in doing so? And why is gossip in particular 
so much fun? In this chapter, we intend to address 
such questions, and provide a perspective on reputa-
tion that might help to answer them.

In substance, our perspective on reputation sub-
sumes the classical game-theoretic and sociological 
one. Rather than concentrating on the property only, 
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we propose a model of reputation that accounts for 
its high transmissibility. From the game-theoretic 
(and sociological) hypothesis, according to which 
reputation allows for exchange with repeated inter-
action, we will move to a memetic hypothesis (cf. 
Castelfranchi et al., 1998, Conte, 2000), in which 
the propagation of reputation facilitates cooperation 
(altruism, norm-abiding behaviour) with low prob-
ability of repeated interaction. In fact, information 
travels faster than agents: cheaters  are preceded, 
and rendered inoffensive, by their fame.

a  c ogni Tive view of 
r epu TaTion

We propose here a view of reputation as a complex, 
multifaceted object, resulting from a process of 
social transmission (gossip). Therefore, it is both 
an agent and a population phenomenon. 

At the level of the agent, it can be seen as both a 
factual property and as a mental state, more precisely 
a meta-belief. As to the former, it is an objective 
and emergent property of the reputed agent, the 
target. It is objective in the sense that it takes effect 
even independent of the target’s beliefs. It is also 
emergent since agents gradually and unintentionally 
grow a reputation as a combined effect of their own 
behaviour, of others’ direct and indirect perceptions, 
actions and of their communication (gossip). As a 
mental representation of the reputing agents, it is a 
cognitive social object, concerning not directly the 
behaviour of the target, but others’ explicit evalua-
tions of it. In this sense, reputation is a meta-belief, 
a belief about others’ beliefs. Such a representation 
may lead the reputing agent to form a corresponding 
belief of her own. But this step is not necessary for 
her to act as a third party and pass it on to others. 
(We will call here third parties the agents receiving 
and passing information to others without neces-
sarily using it in social decisions concerning the 
targets of reputation.) 

Elsewhere (Conte, 2002), a detailed cognitive 
model of the epistemic decision to form or not 
reputation beliefs is presented. Drawing upon that 
model, we will limit ourselves to call the reader’s 
attention on the difference between forming a 

belief and a meta-belief. As we shall argue in the 
next section, the latter does not imply the former 
although it may favour it.

At the (sub-) population level, reputation is a 
meme. A meme is usually defined as a unit of cul-
tural evolution (Cavalli-Sforza and Feldman, 1981; 
Dawkins, 1976; Blackmore, 1999; for a collection of 
views on the field of memetics, see Aunger, 2000). 
However, a cognitive view of memetics has been 
proposed (cf. Conte, 2000), where a meme is defined 
as a representation which succeeds (is stable and 
frequent) as long as it travels through social minds. 
As we will endeavour to show, reputation transmis-
sibility may be advantageous even independent of 
informational accuracy.

The o bject

As a mental representation, reputation is a social 
meta-belief in two senses. At the first level, it con-
cerns other agents’ (the target) properties (the target’s 
presumed attitude towards socially desirable behav-
iour), whether these have been already encountered 
or not. At the meta-level, it is a belief about others’ 
evaluations of the target against a socially desirable 
behaviour. Therefore, reputation information may 
be either directly or indirectly acquired. 

At the first level, it is an evaluative information: if 
“good”, it tells that the target is presumed to display 
a (norm-conforming, socially accepted) behaviour, 
and if “bad” it tells the opposite. According to 
Miceli and Castelfranchi (2000), an evaluation is a 
hybrid representation. An agent has an evaluation 
when she believes that a given entity is good for, 
can achieve, a given goal of hers. An agent has a 
social evaluation when her belief concerns another 
agent as a means for her goal.  

Two different types of decisions are based upon 
social reputation: 

• Social-strategic decision-making, about 
whether and how to interact with the target. 
In this decision, informational accuracy is 
necessary. Errors may either lead the evalua-
tor to trust a cheater and therefore endanger 
her own resources, or to avoid a good partner 
and therefore reduce her chances for a useful 
transaction.
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• Memetic decision-making, about whether 
to transmit information to other members 
of the group, who might benefit from this 
information. In this decision, accuracy is less 
crucial, since the evaluator’s resources are not 
(directly) endangered by the output. 

Let us see more precisely what are the features 
of this second, memetic decision.

The process of Transmission

From a cognitive point of view, a speaker s utters a 
given sentence p (Castelfranchi, 1992) in order to

• Obtain the goal g1: hearer h believes that 
speaker believes that p in order to

• Obtain the goal g2: hearer accepts that p is 
true (that is, forms the belief that p). 

Figure 1 shows a plan for communication, where 
g1 is a means for g2. However, the figure is still 
incomplete, since it does not show that both goals, 
in ordinary communication, are communicative: 
the speaker wants the hearer to realise that the 
speaker intended to achieve both effects by means 
of communication.

In the case of communication about reputation, 
instead, the communicative action is performed 
to

• Obtain that the hearer believes that t is assigned 
a given reputation by others, rather than by 
the speaker herself (fig. 2: g2), and to

Figure 1. Plan for communication, where g1 is a means for g2.

Figure 2. Communicative action is performed to obtain that the hearer believes that t is assigned a given 
reputation by others, rather than by the speaker herself
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• Obtain that the hearer propagates t’s reputa-
tion (fig. 3: g4), possibly but not necessarily by 
having him believe that t is in fact assigned a 
given reputation (fig. 3: g3).

Whilst g2 is communicative – the speaker wants 
the hearer to believe that the speaker used the lan-
guage to achieve that effect – g4 is not. (Indeed, the 
speaker usually conceals this intention under the 
opposite communication: “I  tell you in confidence, 
therefore don’t spread the news….”) To believe that 
q does not imply to believe that p. Consequently, 
communication about reputation is a communica-
tion about a meta-belief, i.e. about others’ mental 
attitudes. To communicate q: “others believe p” 
does not bind the speaker to implicitly commit to 
the truth value of p, but only of q.

Therefore, unlike ordinary sincere communica-
tion, only the acceptance of a meta-belief is required 
in communication about reputation. And unlike 
ordinary deception (for a definition of the latter, 
see Castelfranchi & Poggi, 1998), communication 
about reputation implies:

• No personal commitment of the speaker with 
regard to the main content of the information 
delivered (p). If speaker reports on t’s bad 
reputation, he is by no means stating that t 
deserved it.

• No responsibility with regard to the credibility 
of (the source of) information (“I was told 
that t is a bad guy”). Two aspects ought to be 
considered here. First, the source of the meta-
belief q is implicit (“I was told...”). Secondly, 
the set of agents whom the belief p is attributed 
is non-defined. (“t is ill/well-reputed”).

Of course, this does not mean that communica-
tion about reputation is always sincere. Quite on 
the contrary, one can and often does deceive about 
others’ reputation. But to be effective, the liar neither 
commits to the truth of the information transmitted 
nor takes responsibility with regard to its conse-
quences. If one wants to deceive about reputation, 
one should report it as a rumour independent of or 
even despite one’s own beliefs! 

As a consequence of this analysis, we can derive 
that unlike other (social) beliefs, reputation may 
spread even if the majority does not believe it to 
be deserved. The meta-belief can spread without 
spreading the belief. More precisely, the cognitive 
analysis presented above allows some predictions 
about reputation transmissibility to be made.

evolutionary c onsequences

To further investigate the consequences of our 
analysis, we move on to inquiring what are the plau-

Figure 3. The communicative action is performed to obtain that the hearer propagates t’s reputation (g4), 
possibly but not necessarily by having him believe that t is in fact assigned a given reputation (g3)
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sible reasons that allowed for reputation to evolve 
and survive. In this perspective, we are indebted to 
contributions from the memetic theory (Dawkins, 
1976; Blackmore, 1999; Aunger, 2000), especially 
in its current computational version (see Best and 
Edmonds, 2001), and to cultural evolution theory 
(Cavalli-Sforza and Feldman, 1981). In memetics, 
beliefs may propagate (and therefore contribute to 
the evolution of social systems) even independent 
or irrespective of their truth value (see also Doran, 
1998). Moreover, it is sometimes the propagation of 
information itself, rather than its objective content, 
which provides “added value” to the information in 
question, and determines its reproductive success. In 
our view, this is precisely the case of reputation.

In this sense, reputation as a property of an 
agent affects the environment experienced by that 
agent, as in the niche construction theory (Feldman, 
2003). To show the evolutionary characteristics of 
reputation, we will now evaluate it with respect to 
the three components stated in Feldman (2003), i.e., 
variation, descent, and differential survival. (note: 
in Conte and Paolucci 2002 we present a similar 
discussion based on the three original parameters 
proposed by Dawkins (1976), i.e., fecundity, fidel-
ity, and longevity.)

Starting with descent, in accord with the previous 
analysis, several factors contribute to high fecundity 
of reputation transmission:

• Double source. Source is both direct (one's 
past experience, and generalization thereof) 
and indirect (communication from third par-
ties). Obviously this duplicates accessibility 
to reputation information.

• No commitment. The speaker's commitment 
to the truth of information conveyed is a non-
necessary condition for communication about 
reputation. Hence, the probability that the 
memetic decision-making leads to commu-
nication is higher and the range of reputation 
transmission is wider.

• No responsibility. The costs of the memetic 
decision about reputation are lower than 
the costs of other types of communication. 
Agents will not be considered responsible for 
circulating rumours and gossip that turned 
out to be false, provided they circulate them 

as such and not as confirmed evidence. Nor 
will they be held a fortiori accountable for 
the social harm that may follow from such 
rumours (unless they are found out deliber-
ately to spread around false information). In 
other words, agents are neither responsible 
nor accountable for reputation transmission 
if they transmit meta-belief q, rather than 
belief p, and if meta-belief is not patently false. 
However, for the reasons analyzed above, a 
social meta-belief is less controllable than a 
belief. Furthermore, whenever it is found to 
be false, who can be said to be lying in the 
chain of informants who spread around false 
reputation? Finally, the more anonymous the 
set of E whom a given evaluation is attributed, 
the less a meta-belief can be controlled, and 
a fortiori the less responsible a given “third 
party” is considered. 

About variation, the cognitive analysis does not 
allow us to harbor high expectations about accuracy 
in the spread of information about reputation. In 
fact, on one hand the memetic decision about repu-
tation does not require that the agent is confident 
about the truth of the information received. On the 
other, agents will not feel compelled to transmit 
only information they are certain about, because 
they are not likely to respond of the effects of 
reputation transmission. Consequently, errors and 
false reputation are expected to spread as easily 
as truthful information. But this lack of accuracy 
does not necessarily brings a lack in fidelity, that 
is, from the point of view of the transmitted meme, 
the probability of being duplicated without modi-
fication. Variation in the transmission could result 
from defective communication, an difficult event 
if acknowledgment or redundancy mechanisms are 
implemented, or if a specific agent decides, accord-
ing to its goals, to modify the information received 
before transmitting it. It is reasonable to expect that 
such a decision may be rare, both because of lack 
of motivation (apart from explicit cheating) and 
for the interference with the opposite reputation, 
which is supposed to be spread at some extent in 
the population.

Lastly, about differential survival, we start from 
considering that it is  our common experience that  
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fame is “sticky”. Once you get a given reputation, 
you are not likely to get rid of it so easily. This is 
consistent with our cognitive analysis: if reputation 
accuracy is not checked, it spreads as an unrestrained 
and uncontrollable flow. But what about the differ-
ence between bad and good reputation? Is good 
reputation as sticky as bad reputation? Are errors 
in reputation, whether in the positive or in the nega-
tive sense, equally likely to spread? Our common 
intuition is that there is an imbalance here, i.e. a bias 
for bad reputation. This spreads quicker and sticks 
to the target more than good reputation, which is 
more fragile. In our experience calumnies are more 
fertile and more stable than positive errors. Is this 
really the case, and if so, why is it so? And what 
about more subtle reputation aspects that cannot be 
described by the simple “good/bad” dycothomy?

To propose tentative answers to some of these 
questions, we resort now to agent-based simula-
tion.

siMuLaTion evidence

Our simulations (Castelfranchi et al., 1998; Paolucci 
et al., 2000) showed that repeated interaction is an 
insufficient condition for norm-abiding behaviour 
to compete with cheat. In our studies, agents move 

on a toroidal grid in search of scarce but self-re-
plenishing food, which they eat as they find it (no 
accumulation is allowed). Occasionally, an agent 
may attack another, while this is eating a piece of 
food. Stronger agents keep (“snatch”) the food. 
Agents’ strength increases as an effect of moving 
around and attacking or receiving attacks. A norm of 
precedence on food (i.e., not to attack agents eating 
food marked as “their own”) was then implemented 
in mixed populations of norm-abiders (respecting 
the norm) and cheaters (not respecting the norm). By 
definition, to abide the norm may be immediately 
costly (avoid convenient attacks) and cheat is often 
a more rational choice for self-interested agents. In 
mixed population with comparable subpopulation 
density, these experiments, norm abiders score 
higher than cheaters on equity (fair distribution 
of strength on the sub-population), but lower on 
efficiency (average strength of the sub-popula-
tion). See (Conte & Paolucci, 2002) for a detailed 
description of numerical values and strategies used 
in the experiments. 

Things do not improve much when norm-abiders 
directly acquire information about the reputation of 
cheaters and then punish them by returning illegal 
attacks (see Fig.4, without exchange of information, 
left side). In our frame, we found by trial and error 
that a minimal set of conditions for the normative 

Figure 4. Things do not improve much when norm-abiders directly acquire information about the reputation 
of cheaters and then punish them by returning illegal attacks
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population to overcome in efficiency of the cheating 
population is composed by: 

• Memory of past interactions
• Punishment of cheaters (by cheating them in 

return)
• Spreading of truthful reputation

Reputation spreading is implemented thanks to 
an algorithm for information exchange: whenever 
two norm-abiders meet (they occupy nearby posi-
tions), they pass on to one another each its own 
memory, i.e. a list in which others are recorded as 
Rs (respectful) or Cs (cheaters). As a result of this 
exchange, each agent gets a superlist, which contains 
both the agents' lists.

With information spreading, the average ef-
ficiency of the normative strategy is superior. An 
obvious explanation for these findings can be easily 
stated. Since reputation transmission is less costly 
than other actions, included moving around, it travels 
much faster than agents. It therefore precedes direct 
experience: agents will punish cheaters even when 
they did not directly suffer from their misdoing. 
Hence, agents will profit from reputation information 
without paying for its acquisition. The transmis-
sion process spares agents the cost of knowledge 

acquisition, but at the same time renders it accessible 
to a wider population. Here, what matters is the 
transmissibility of reputation, and in particular, its 
fecundity. Thanks to its fecundity, reputation is more 
efficient and less costly than repeated interaction. 
In a successive GA-like experiment (Paolucci and 
Conte, 1999), the norm-abiding behaviour showed 
a higher reproductive success than cheat, at least 
when offspring inherited both parents' attitude 
towards the norm and their reputation.

A follow-up question is now, what if the infor-
mation transmitted is not accurate? Indeed, infor-
mational reciprocity does not prevent errors and 
deception in reputation transmission. In  another 
experiment (Paolucci, 2000), we have added two 
sources of inaccuracy: agents may simply make 
copying errors (communication failures, noise), and 
there is a tendency to forget information received 
(memory effect, relaxation rate). While our purpose 
was mainly of investigating the effects of noise, 
we serendipitously found that our result can also 
be classified in terms of the main bias induced by 
noise. Different combination of noise and relaxation 
intensities gave rise to two main effects:

• Inclusive error (courtesy, or social opti-
mism): A subset of cheaters was erroneously 

Figure 5. Summary of simulation findings
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assigned a good reputation (in the recipients’ 
lists of records, some Cs were copied as Rs)

• Exclusive error (calumny, or social cyni-
cism): A subset of respectful was erroneously 
believed to be bad guys (some Rs were copied 
as Cs). 

We had two expectations about findings. First, 
and consistent with assumptions and results previ-
ously obtained by studies on the role of reputation 
in optimising exchange interactions,, accuracy of 
information about reputation was expected to be 
vital for norm-abiders. Errors were expected to 
benefit cheaters at the expense of the good guys. 
Secondly, we predicted the two types of errors to 
produce the same effects. In fact, courtesy was ex-
pected to spare cheaters the costs of some deserved 
retaliation (thereby, producing an absolute benefit for 
cheaters). Calumny, in turn, was supposed to raise 
the costs sustained by some unlucky norm-abid-
ers (to the cheaters’ relative benefit). An essential 
symmetry of errors in reputation transmission was 
therefore expected. 

Simulation findings (as resumed in fig. 5) point 
to both some good and some bad news. The good 
news was that (only) the spread of accurate repu-
tation allowed respectful to out-compete cheaters. 
This confirmed our expectation that informational 
accuracy is always preferable for respectful agents 

and disadvantageous for cheaters. As is shown by 
the first set of data, the control or reference condi-
tion (in which no errors in reputation transmission 
were allowed) leads to results far better for respect-
ful agents than either of the error conditions does. 
Conversely, the results concerning cheaters (see the 
fourth set of data) show exactly the opposite pat-
tern. Inaccuracy is always preferable for cheaters 
in either direction.

To check these results, we have run a new 
set of simulations, in a different framework. All 
original  simulation code has been migrated from C 
language to Java, with the support of the REPAST 
(http://repast.sourceforge.net/) framework. The 
sequence of agent’s activation has been modified 
from contemporary moves to randomly scheduled 
sequential moves. With our pleasure, the indica-
tions coming from reference simulations confirm 
previous results (Paolucci, 2005).

In this new set of simulations, we model explic-
itly courtesy and calumny as different algorithms. 
Instead of adding noise and memory effect, we 
start by introducing a strength of belief, ranging 
from 0 to 1, associated with each reputation item. 
While checking each other’s records, agents must 
make a decision based on their own record (R or 
C) and the transmitted information (again, R or C), 
and an update strategy must specify what happens 
for each possible combination. We examine the 
following strategies:

Figure 6. The normative strategy remains more efficient with accurate information and no noise
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• Reference strategy: Only “C” are transmit-
ted, and they are accepted with belief 1.0;

• Courtesy strategy: RR and CC cause the 
belief to be set to the maximum of the two 
beliefs, while RC and CR cause the receiver 
to subtract the strength of the transmissed 
belief from its own.

• Calumny strategy: Transmission of C on an 
R is accepted with strength 1.0: RR and CC 
cause the belief to be set to the maximum of 
the two beliefs, while transmission of an R 
over a C is ignored. 

Note the the courtesy strategy is really sym-
metric with respect to R and C, but since C are 
more probable (at least with reasonable noise) to 
be accurate than R, we consider it to be effectively 
courteous. Simulations are then run with and without 
noise, defined here as mistakes resulting in faulty 
transmission. The numerical value given is the 
probability of error with respect to the single copy. 
Taking into account the average volume of informa-
tion exchanges, a rate of 0.0001 causes in average a 
single copying error each eight turns, that is, about 
250 mistakes per 2000-turns run.

Results are summarized in Fig. 6.  With accurate 
information and no noise, the normative strategy 
remains more efficient. Moreover, the calumny 
strategy exhibits higher efficiency than the courtesy 

strategy. With noise, the situation changes, although 
not so strongly for the reference and calumny strate-
gies; with very low noise they keep the lead, while 
for higher noise they are overcome by cheaters' 
efficiency. What is instead surprising is the effect 
of noise on the courtesy strategy: even the slightest 
amount of noise is enough to destroy its equilibrium, 
and to show a nature of extreme exploitability (note 
the very high result obtained by cheaters).

The findings confirm the results of the previous 
experiment, where calumny and courtesy were only 
a side-effect of noise.

These results point to some interesting news from 
a social point of view. Unlike expected, errors and 
biases in propagation are not equivalent. Calumny is 
by far less detrimental than optimism for respectful 
agents. Apparently, then, for norm-abiding agents 
not to be out-competed by cheaters, calumny is 
preferable over optimism. The expected symmetry 
in transmission errors does not seem to occur.

Although intrinsically antisocial and aggressive, 
calumny cooperates with the diffusion of norm-abid-
ing behaviour more than courtesy, which is instead 
a tolerant, mild, more acceptable behaviour. In the 
simulations, bad reputation (whether false or not) 
proved socially disruptive in two distinct senses. 
On one hand, it ends up with increasing the num-
ber of retaliations and hence of aggressions at the 
population level. On the other, this effect is due to 

Figure 7. From the point of view of norm-abiders, for many values of the parameters,  a preference order 
emerges among the conditions in the simulations
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a non-trivial interactive side-effect. Calumny acts 
as a self-fulfilling prophecy. In fact, its targets will 
be attacked also by their fellows (other norm-abid-
ers). Hence, these unlucky agents will update their 
own lists, by “deliberately” turning their attackers, 
once considered old friends, into Cs (since the old 
friends now behave as cheaters). Rather than to a 
retaliatory strategy, this behaviour is due to a fatal 
chain of misperceptions: the initial error inevitably 
leads to further misperceptions and consequently 
to a behavioural adjustment. Much as happens in 
real life, errors generate further errors. 

This renders good reputation intrinsically fragile. 
An attack which is perceived as undeserved will 
lead the victim to perceive the attacker as a cheater, 
whilst this might simply be a good guy, which fell 
prey to misperception. Unlike bad reputation, good 
reputation does not act like a self-fulfilling prophecy. 
Those who are erroneously perceived as honest 
guys are not induced in an analogous error: they 
have no reason to modify their records! They will 
not confirm this misperception by changing their 
behaviour according to it. Errors towards optimism 
will not modify effective behaviours, while errors 
towards cynicism will.

Bad reputation is not only stickier than good repu-
tation. It is also acquired earlier. In our simulations, 
a fundamental asymmetry occurs also between good 
and bad reputation, and not only between the two 
errors implemented. Bad reputation is found out 
earlier in direct experience. In the simulation, that 
which is perceived to violate the norm is recorded 
as a cheater. That which does not, instead, is not 
recorded as a norm-abider, since it might be the case 
that that violation was contextually inconvenient. 
Hence, bad reputation spreads faster than good 
reputation. 

Once you get a bad reputation, it will stick to 
you because 

• Others will not revise it immediately even 
if you don't behave according to your bad 
reputation (asymmetry)

• Others will have lesser and lesser reasons to 
revise it because you will increasingly behave 
according to your bad reputation (self-fulfill-
ing prophecy).

a symmetry: Threat or escape? 

In some sense, asymmetry in reputation transmis-
sion turns into a bias towards bad reputation, and 
may be interpreted as a threat against accuracy and 
hence against the fitness of altruism, cooperation, 
norm-abiding behaviour, etc. If informational ac-
curacy is a necessary condition for norm-abiders not 
to be out-competed by cheaters, why good reputation 
is so fragile even when it is true, and bad reputation 
is so sticky even when it is false?

Here, we can give some preliminary answer on 
the basis of our simulation, but this question would 
deserve a rather more complex investigation and 
should be backed by other, possibly natural data.

Referring again to our data, we can see that not 
just a stable indication on the superior efficiency 
of calumny with respect to courtesy appears. From 
the point of view of norm-abiders, for many values 
of the parameters (see Fig. 7), a preference order 
emerges among the conditions experimented in 
our simulations. This preference can be expressed 
as follows

Accuracy > Calumny > No transmission > Optimism

In other words, whilst truthful information is 
always preferable for norm-abiders, calumny is the 
second-best option, preferable not only over opti-
mism but also over no reputation transmission. This 
hierarchy seems to point to a couple of principles 
of informational altruism,

• Spread news about others' bad reputation even 
if uncertain (since calumny is preferable to no 
reputation transmission)

• Do not spread news about good reputation un-
less certain (since no reputation transmission 
is preferable to optimism).

In sum, despite its disruptive effects at the social 
level, social cynicism is apparently less danger-
ous than both social optimism and silence! Doves 
should act like hawks at the informational level in 
order not to be invaded by their enemies. This is 
mirrored by asymmetry in reputation propagation, 
and in particular by calumny’s higher frequency over 
optimism. Is it this also the reason why calumny 
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is so much fun, in particular more fun than a more 
discreet, reserved habit in reporting rumours and 
gossip? 

r epu TaTion as infor MaTiona L 
r eciproca L aLTruis M

In this section, we will discuss some speculative 
hypotheses concerning the role reputation as a 
specific mechanism of partner selection and as an 
effect of reciprocal altruism which contributed to 
its stability,. 

The focus here is on the evolution of reciprocity. 
One main problem about the theory of reciprocal 
altruism, i.e. the evolution of indirect reciprocity 
(which does not presuppose repeated interaction 
among donors and recipients) is still in search of an 
explanation. The main previous attempt by Nowak 
and Sigmund to solve this problem in terms of an 
agent property (“image”), will be analyzed. While 
pointing into the right direction, this attempt will be 
argued to be is yet unsatisfactory, especially since 
it does not model reputation as a spreading belief, 
but only as a property of agents. 

The problem

In sociobiology (Trivers, 1971; Dawkins, 1976), 
reciprocity may be direct, that is, such that the 
donor is reciprocated by its recipient (A <-> R), or 
indirect, such that the donor is reciprocated after 
several loops by some other recipient than its own 
(A1 -> A2 -> …->An -> A1).  

direct r eciprocity
 

In evolutionary game theory, the evolution of coop-
eration is usually based upon repeated interaction 
and direct reciprocity (Axelrod, 1997; see also 
Zeggelink et al., 2000). Obviously, direct reciproc-
ity presupposes individual recognition, and high 
probability that any two members of the population 
will meet again after the first encounter. A famous 
ethological experiment (Wilkinson, 1984) about 
vampire bats showed that these animals help only 
individuals coming from the same group, where the 
probability of repeated encounters is high. 

indirect r eciprocity
 

Conversely, indirect reciprocity does not require 
recognition. To reciprocate, the recipient of an 
altruistic act does not need to re-encounter its pre-
vious donor. Indeed, evolutionary game theorists 
have turned their attention to indirect reciprocity 
and to the emergence of cooperation in low-density 
populations. In these conditions, i.e. when donors 
receive help after several loops, cooperation does 
not seem to emerge (Boyd and Richerson, 1989) 
and altruists are bound to die out. 

Things improve considerably for altruists if they 
are allowed to select “trustworthy“ partners they 
have never met before. Nowak and Sigmund (1998) 
carried out simulation experiments in which donors 
select recipients according to the extent to which 
these have helped someone in previous interactions 
(the authors call this variable “image“).  Over time, 
a strategy called discriminating cooperation, in 
which donors give help to recipients whose image 
scores are equal or higher than the benefits received, 
emerges and persists. Nowak and Sigmund show 
that discriminating cooperation is never invaded by 
defective strategies (although with increasing size 
of population and increasing mutation rate multiple 
strategies tend to co-exist). With a similar approach, 
(Riolo et al., 2001) uses  unspecified “tags” to ac-
tivate similarity-based cooperation, and (Ginitis et 
al, 2001) use costly signaling (an altruistic act that 
evolves to be considered a signal of “high quality”) 
to the same end.

Insufficiency of Image in Partner 
selection

 
Although insightful, the works just described do 
not show the potential of reputation for indirect 
reciprocity. Rather than reputation, the authors speak 
about a “visible” property of agents, immediately 
and universally (or at least widely) accessible to 
everybody. No attention is paid to the transmis-
sion of social beliefs from one agent to another. No 
information transmission is at work, and virtually 
no errors occur. 

This solution is not fully satisfactory with regard 
to the problem of partner selection (see Zeggelink et 
al., 2001). First, it is poorly realistic. If we could tell 
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altruists so easily, there would be no social dilemma 
about altruism and cooperation. Secondly, it can-
not be a general solution. In Nowak and Sigmund’s 
work, interaction can only be altruistic (if donors 
don’t give help, the interaction has no course), and 
cheat equals to no help. Consequently, publicity of 
trustworthiness cannot harm altruists. What would 
be the case if still unknown cheaters were allowed 
to act at the expense of altruists, which cannot 
disguise themselves? If partner selection is based 
upon public image, it will advantage both sub-
populations. An effect that could be assimilated to 
cheating can be seen in tag structures (Riolo et al., 
2001), where agents with zero tolerance can exploit 
the structure of o group up to its destruction. The 
periodical formation and collapse of tag groups 
is apt to model both acceptable phenomena, like 
fashion changes, and dangerous ones, like social 
unrest. For the latter, there is a need to understand 
how exploitation from cheaters can be prevented 
and controlled.

Rather than upon a public property, therefore, 
indirect reciprocity ought to rely upon some more 
selective mechanism, which operates to the ad-
vantage of altruists only. This is precisely what 
reputation does: it consists of the transmission of 
agents’ images among altruists. 

Benefits of Reputation

Essentially, we put forward the hypothesis that 
reputation is a secondary effect of reciprocal altru-
ism. Let us see why.

Being based upon transmission, and not on public 
display, reputation allows trustworthy partners to 
be selected and their identities to be kept hidden to 
cheaters. It kills two birds, selection and secrecy of 
trustworthy partners.

As with image and tags, reputation transmission 
allows the number of agents one has information 
about to exceed the number of agents one inter-
acts with. Therefore, even with low probability 
of repeated interaction, the number of altruists 
one helps is higher, and the probability to receive 
some help is also higher. However, unlike image 
and tags, reputation allows (un)trustworthy part-
ners to be known only to cooperators or altruists. 
Consequently, altruists are enabled to select their 
fellows, but at the same time they cannot be found 
out so easily by cheaters. 

Transmission of reputation points to a second-
level reciprocal altruism, i.e. informational altru-
ism. Agents have higher probability of survival and 
reproduction not only if they provide material help 
to one another, but also if they provide information 
about one another’s attitude to help, as a means to 
avoid self-defeating investments. Informational 
reciprocal altruism (reputation transmission) is here 
defined as exchange of information that contributes 
to the reproductive advantage of first-level recipro-
cal altruism. 

One might ask what are the conditions allow-
ing for reciprocity at the informational level, and 
what happens with cheat at the informational level. 

Figure 8. Possible interrelationships the four steps
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Indeed, it could be objected that if conditions for 
reciprocity of help are not verified, conditions for 
reciprocity of information are also not verified. 

A couple of considerations seem to attenuate 
this objection:

• Material help costs are usually higher than 
the costs of communication. Consequently, 
incentive to cheat is stronger at the first than 
at the informational level.

• Material help power is less frequent than in-
formation, if only because it does not circulate 
(memetic effect). Consequently, informational 
altruism is more likely to occur than material 
one.

 However, a fundamental question arises here. 
How do altruists select trustworthy partners for 
information transmission? The most intuitive an-
swer is thanks to direct reciprocity. Exchange of 
information among known altruists greatly expands 
the boundaries of help at both levels. If known al-
truists are trustworthy recipients of both material 
and informational help (direct reciprocity), they are 
also credible sources of information. Therefore, also 
well-reputed agents (known to known altruists) 
become recipients of material and informational 
help (indirect reciprocity). Rather than upon per-
sonal experience and public image, discriminating 
cooperation is based upon reputation transmission. 
Note that there is still space for cheating, but a costly 
cheating: to be included in informational recirpocal 
altruism, an agent must cooperate at the material 
help level, with high immediate costs.

Considering both the dimensions of material 
and informational help, and of direct and indirect 
reciprocity, four steps emerge: direct material, di-
rect informational, indirect material and indirect 
informational reciprocity. 

In Figure 8, possible interrelationships among 
these steps are shown. As argued above, direct 
material help (step 1) forms a background for direct 
informational reciprocity (step 2), since known altru-
ists are credible sources and trustworthy recipients 
of information. Information received by one's fel-
lows works as a mechanism of partner selection for 
both indirect material and informational reciprocity. 
Now, agents won't give help only to known altruists, 

but also to well-reputed agents, known to known 
altruists (step 3). Analogously, information will be 
entrusted to and received by well-reputed agents 
never met before, but known to known altruists (step 
4). The consequent enlargement of information at the 
agents' disposal will further expand the number of 
potential trustworthy partners for indirect material 
reciprocity (from step 4 back to step 3). 

suMMar y and f uTure w ork

In this chapter, we have proposed a view of reputa-
tion as a complex, multifaceted object both at the 
agent and at the population level. At the agent level, 
it is a property of the target which emerges from the 
propagation of social meta-beliefs, i.e. beliefs about 
how the target is evaluated by social neighbours. 

An analysis of the cognitive features of such 
meta-belief allows to characterise reputation as 
an evolutionary process, characterised by efficient 
transmission (descent), quite stable even if contra-
dicted by experience (with limited variation), and 
under some hypothesis endowed with differential 
survival. In particular, reputation spreads quite fast 
but is often inaccurate, and it a common opinion 
that bad reputation spreads faster.

Current treatments of reputation (e.g., the game-
theoretic one) underestimate the role of transmis-
sion, and emphasise the importance of accurate 
information in repeated exchange. Our simulations 
studies on the effects of transmission of reputation 
in artificial populations of norm-abiders and cheat-
ers shed a different light on the subject matter. Due 
to transmission, reputation plays a role not only 
in repeated encounters, to discourage contract 
violation, but also in preventing interaction with 
ill-reputed agents. This allowed us to put forward 
some evolutionary speculations about second-level 
reciprocal altruism, or reciprocal altruism at the 
level of information. But what about possible cheat 
at the level of information? 

In our simulations, accuracy results less crucial 
in reputation transmission (in deciding to pass 
received information from one to another, agents 
do not need to check the accuracy of information) 
than in direct interactions with the target. Initially 
unforeseen, the exploration on accuracy has given 
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an indication on the difference between a calumny 
bias and an optimistic bias. 

The effects of two different errors in reputation 
transmission (inclusive, or courtesy, and exclusive, 
or calumny), showed that, apart from the fact that 
accurate information is always to be preferred, 
calumny is preferable both over optimism and over 
no propagation of reputation. 

A further set of simulations showed that norm-
abiders are less likely to be out-competed by cheaters 
if they are alert and spread bad news even at the 
expense of some of their own members (calumny). 
The qualitative analysis of simulations highlighted 
an important feature of calumny, i.e. its antisocial 
influence. Agents that are mistreated because 
misperceived will misperceive and mistreat their 
old friends (self-fulfilling prophecy). This and other 
qualitative aspects of the simulations contributed 
to explain a phenomenon frequently observed in 
social life, i.e. the fragility of good reputation and 
the stickiness of bad reputation. 

These findings seem to encourage further 
experimental simulation on the subject matter. A 
follow-up question concerns the social danger con-
sequent to reputation transmission. To what extent, 
within which limits false reputation is tolerable 
from a social point of view, and at which point the 
chain of misperceptions and misbehaviours leads to 
prejudice, discrimination and social breakdown? Is 
this a merely quantitative matter, or is there some 
interesting qualitative phenomenon we should take 
into account? 

To further pursue these research objectives, a 
research group has been established with the sup-
port of EC funding, under the eRep project, that 
includes in his aims both natural and simulative 
experiments.  Some of  the simulative experiments 
will be performed with the support of a reputation 
module that distinguishes between image and 
reputation (Sabater et al., 2006). More details can 
be found at http://megatron.iiia.csic.es/eRep/.

All our findings points out the direction for a 
more sound understanding of a well known social 
phenomenon, gossip as the spread of calumny.  
Findings are corroborated by the stability they show, 
even in face of remodeling of the simulation frame: 
they support our general claim that, in order to tell 
something about social and cultural phenomena, it is 

necessary to include in the modeling explicit mental 
components in the structure of the agent. 

After having stated our point, though, we also 
want to remind a couple of opposing caveat. The 
first is that modeling culture without modeling in 
some measure the mind as a vehicle for the forma-
tion, modification and spreading of culture - be it 
trough tags, signs, semes or memes - is too limited 
as a position and easily risks to jump to the wrong 
conclusions. To describe culture, or a part of it, 
we need to describe also the mind, or part of it. 
The second starts form the fact that a science of 
the mind is still far away from being established 
and widely recognized as something settled, but 
this should not restrain the scientist from using it 
while describing culture. Indeed, even the simplest 
models of the mind can give hints in the description 
of cultural phenomena - as we have shown for the 
case of reputation.
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a bs Trac T

This chapter concludes a two part series which examines the emergent properties of multi-agent communica-
tion in “temporally asynchronous” environments. Many traditional agent and swarm simulation environments 
divide time into discrete “ticks” where all entity behavior is synchronized to a master “world clock”. In other 
words, all agent behavior is governed by a single timer where all agents act and interact within deterministic 
time intervals. This discrete timing mechanism produces a somewhat restricted and artificial model of autono-
mous agent interaction. In addition to the behavioral autonomy normally associated with agents, simulated 
agents should also have “temporal autonomy” in order to interact realistically. This chapter focuses on the 
exploration of a grid of specially embedded, message-passing agents, where each message represents the 
communication of a core “belief”.  Here, we focus our attention on the how the temporal variance of belief 
propagation from individual agents induces emergent and dynamic effects on a global population. 

inTroduc Tion

In the chapter entitled A Simulation of Temporally 
Variant Agent Interaction via Passive Inquiry, we ex-
amined a mechanism of agent interaction where each 
agent – in a specially embedded two-dimensional 
grid – periodically examines the states of neighbor-
ing agents and modifies its own state according to 

an inherent set of rules.  In those experiments, the 
agents did not attempt to actively influence their 
neighbors in any way.  In this chapter, we give agents 
the ability to send events to neighboring agents in 
attempt to influence their behavior.  Here, we out-
line two approaches: The first approach extends the 
previous Game of Life simulations by eliminating 
autonomous agent vivification and replacing it with 
event triggered vivification.  The second approach 
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abandons the Game of Life inspired rule-set and 
instead implements a world of agents, each possess-
ing a simple belief with a corresponding strength. 
In this last model, agents “compete” to alter the 
belief of neighboring agents. Finally, we conclude 
with some details relevant to the implantation of the 
simulation environment; including a brief overview 
of agent behavior customization and the data logging 
techniques used throughout these simulations.

Message  driven  
co MMunica Tion

Thus far, we have focused on the exploration of 
the globally emergent behaviors in passive agent 
interaction systems. The agents reacted to their 
environment, but did so in a manner where each 
agent’s vivification was independent of neighboring 
vivifications. In the message based version of this 
simulation, the focus shifts from agents behaving 
passively within the environment into a model where 
each agent actively attempts to exert influence over 
the environment. The emergent behaviors observed 
in previous sections resulted from agents examin-
ing their immediate surroundings and updating 
themselves accordingly. Global behavior arose from 
the non-deterministic agent vivification order and 
the asynchronous nature of the updates. In this set 
of experiments, global emergence is driven by the 
exchange of messages.

In this section, we expanded our simulation to 
accommodate active agents which directly com-
municate—albeit in a primitive manner. Informa-
tion is exchanged as simple messages which are 
reflective of an agent’s internal state. Though agents 
may take on many states during a simulation, each 
agent communicates its active state with its spatially 
embedded neighbors. The active model is divided 
into two distinct subtypes. The first subtype, dis-
cussed in Section “Message Driven Game of Life”, 
is a direct extension of the previous “Conway” 
model; but agents respond to events generated by 
neighbors rather than vivificating autonomously. 
The second subtype, discussed in Section “Fuzzy 
‘Belief’ Promulgation”, is a completely new model 
based upon temporally variant “belief” interaction. 
The models in both subtypes display interesting and 
rather unique behavioral characteristics.

Message driven Game of Life

In this mode, each agent begins in a random Boolean 
state conforming to the basic “Conway” life/death 
(active/inactive) rules. As with the threaded model 
discussed in Section “Threaded Model”, the agents 
behave autonomously within a global mean vivifica-
tion delay time dm of 500ms with delay variances 
dv chosen to produce dm/dv ratios rmv ranging 
from 0.0 to 2.0. However, instead of agents simply 
examining their neighborhood at intervals which 
are independent of the environment, the agents 

Table 1. This table shows a sampling of data (5 trials for each mvr  tested) taken from our complete database 
of trials for sorted by avgage  

rmv µd µa µm  ˆd ˆa  ˆm

0.15 0.407 4.44 35.5 0.00055 0.030 0.217

0.25 0.409 4.54 36.3 0.00045 0.024 0.217

0.50 0.411 4.72 37.8 0.00055 0.031 0.278

0.75 0.415 5.14 41.1 0.00045 0.059 0.464

1.00 0.417 5.33 42.6 0.00055 0.019 0.167

1.25 0.420 6.00 48.1 0.00045 0.061 0.501

1.50 0.421 6.17 49.3 0.00045 0.066 0.534

1.75 0.423 7.02 56.2 0.00045 0.103 0.850

2.00 0.424 7.12 56.9 0.00110 0.137 1.163
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Figure 1. Graphs of the statistics gathered for the experiments conducted in Section “Message Driven Game 
of Life”, along with the plots of the standard deviations for the experimental data
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now trigger the vivification of their neighbors by 
sending events. To maintain temporal autonomy, 
agents still “vivificate” as before, but in lieu of pas-
sive examination of neighboring states, the agent 
queries an internal message queue for the presence 
of pending notifications received from other agents. 
If an agent is inactive, it cannot become active until 
it receives a notification from a live neighbor. Only 
active agents are capable of sending messages to 
other agents. When any given agent vivificates, it 
determines the state of its own environment and 
sends notifications to all neighbors, if it becomes 
or remains active. An agent will only send one 
message to each of its neighboring agents once per 
vivification regardless of how many messages are 
in the queue. Once the vivification cycle completes 
(all neighbors have been notified), the sending agent 
clears its own message queue and awaits new mes-
sages from neighboring agents.

As in Section “Threaded Model”, we are primar-
ily interested in the average population density and 
average population age of the agents as a given trial 
progresses. However, this time we also examine the 
number of messages received by each agent between 
vivifications. A summary of the data gathered in the 
first set of message based activation trials is shown 
in Table 1, ordered by mvr . Other values include; the 
average population density µd, the population’s aver-
age age µa, the average number of messages received 
per agent µm, and the standard deviations ˆd, ˆa, ˆm, 
of data in each sample set grouped by rmv.

f uzzy “belief” promulgation

In the “Message Driven” architecture, each agent 
actively attempts to influence its neighbors’ “beliefs” 
by promulgating belief messages to all adjacent 
agents upon vivification. Though formal models 
of agent belief interaction have been studied by 
others (Cantwell, 2005)(Pasquier & Chaib-draa, 
2003), our experimentation requires only a very 
simplistic model of belief representation. In a similar 
spirit to work done in dynamic team formation of 
agents (Gaston & desJardins, 2005) and “Naming 
Games in Spatially-Embedded Random Networks” 
(Lu, Korniss, & Szymanski, 2006), our research 
examines agent clustering driven by agent states. 
However, we focus on an exploration of the effects 

of temporal variance in swarms of agents capable 
of interacting purely asynchronously.

Every agent participates in a primary active 
belief which is directly conveyed to each of its spa-
tially embedded neighbors via “belief messages”. 
Agents send and receive messages corresponding to 
some belief and may adopt a new belief based upon 
“peer-pressure” from neighboring agents. As agents 
receive messages, they modify their own active belief 
in accordance with the messages received from other 
agents. Loosely speaking, the goal of any individual 
is to convince its neighbors to become like it. Mes-
sages generated by any given agent will affect the 
beliefs of others in the immediate neighborhood, 
which in turn will continue to affect other agents 
farther away. This also introduces feedback into 
the system, since any agent propagating a message 
will eventually be affected by its own actions at a 
later point in time. Ultimately, we see a cluster-
ing of agents with the same “beliefs”, but whose 
populations are driven primarily by the “temporal 
variability” of the actual interactions.

Currently, there are three distinct messages 
types, each corresponding to an inherent agent belief. 
Each belief is represented by a unique primary color; 
RED, GREEN, or BLUE. The experimental reason 
for having three message types represented by color 
is for easy real-time visualization of a world with 
more than just two competing (Boolean) forces, as 
in the previous model. As agents communicate, their 
internal state is visually represented by a blending 
of the colors corresponding to the actual beliefs. 
Though any agent may be in a “fuzzy” belief state at 
any given moment, the belief that is communicated 
is always discrete. In other words, if an agent has 
been exposed to multiple RED, GREEN, and BLUE 
messages, it will exist in a state that blends these 
beliefs, but will always communicate the discrete 
belief most closely represented. 

Though the message produced by any given 
agent could easily be based purely upon a count of 
the number of messages received of a given type, we 
wanted a more flexible system that allowed message 
types to be weighted or other transformations applied 
to the fuzzy state. The method used to determine the 
most appropriate message associated with a belief is 
based on the color values themselves. The messages 
are blended into a color in RGB color-space and the 
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message generation algorithm is derived from the 
following rules applied in order: 

1. If all three RGB color component values are 
equal, a message type is chosen at random. 

2. If there exists an RGB color component that 
exceeds all others, the message corresponding 
to the strongest color component is chosen. 

3. If any two RGB color values are equal, a 
random message type corresponding to one 
of the two equal values is chosen. 

Figure 2 is a collage of screen-shots from a 
running simulation. Each agent is displayed as a 
cell labeled with a single letter corresponding to 
the fundamental belief and a color representing the 
agent’s fuzzy belief state. Snapshots of a progress-
ing simulation can be seen while moving clockwise 
around the figure, starting at the far left. The first 
image shows the starting state of a simulation with 
all agents in one of three random states. The sec-
ond image is further along in a simulation where 
clustering of beliefs begins to take place. Finally, 

the last image shows the near complete clustering 
of beliefs. A fourth, but omitted, screen-shot would 
show the one remaining belief once all others have 
become extinct.

The simulation engine allows for beliefs and 
message types to carry distinct weights. However, 
in the experiments outlined here, all beliefs and 
messages carry the same weight. In other words, 
the “popularity” of a belief is based solely upon the 
number of messages exchanged within the environ-
ment and not any properties inherent in the beliefs 
themselves. The only aspect of the simulation we 
vary during the course of an experiment is the allow-
able timing variances of each of the three primary 
message types. In this research effort, the timing 
variation is always manually controlled1. The most 
striking and readily observable phenomenon is the 
somewhat non-intuitive effect that timing variance 
has on population density; the lower the timing 
variance (the closer zero), the more likely a certain 
belief is to survive. In other words, the messages 
being passed with the least amount of timing varia-
tion are the messages most likely to influence the 
beliefs of the recipients.

Figure 2. Three snapshots of the clustering of agent types throughout the world; time advances clockwise 
from the left-most image
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All beliefs b are assigned a unique b
vd   value, 

which represents the inherent timing variation as-
sociated with the dissemination of that particular 
belief. All agents participating in a given belief 
adopt the prescribed vivification properties of the 
belief itself. When an agent adopts a new belief 
b, its dv will be updated to match the current b

vd  . 
For example, an agent participating in a GREEN 
belief might announce that belief with very regular 
vivifications; while an agent with a RED belief may 
announce that belief with an extreme timing varia-
tion. A small section of a sample experimental run 
is shown in Figure 3 which is divided up into four 
distinct sub-figures. Figure 3a shows a plot of the 
relative population densities for the three message 
types from the beginning of a trial to an arbitrary 
point in time within the trial. In this plot, the rela-
tive number of agents participating in a given belief 

versus time is represented. Figures 8b through 8d 
require a bit more explanation. The heavier solid 
line in each of these figures corresponds to one of 
the lines in Figure 3a and the lighter line represents 
the dv of all the agents of a particular belief. As the 
simulation ran,  b

vd   was dynamically altered, af-
fecting the global populations of agents with given 
beliefs over time.

The plot of the GREEN belief variance (Figure 3c) 
depicts the total population agents participating in 
the “GREEN” belief and the correspondin  GREEN

vd  
value over time. The values of GREEN

vd   were manually 
altered over time via the dedicated sliders in the 
GUI interface (Figure 4) manipulating the overall 
population. The higher the thin line on the graph, 
the greater the variance of vivification at that time. 
The “GREEN” plot clearly illustrates the popula-
tion of agents participating the in belief changing 

Figure 3. Population and vivification variance ratios vs. time

. T ime and Population

. T ime and Population

(a) Population vs. T ime (b) R ed variance vs

(c) Green variance vs. T ime and Population (d) B lue variance vs
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inversely with the variance level. The “RED” belief 
plot (Figure 3b) is also interesting to observe since 
the same effects can be seen, but the population 
changes lag slightly behind the changes in RED

vd . The 
“BLUE” belief exhibits this phenomenon as well, 
though only one of the variance changes produces 
a clearly discernible response with an immediate 
change in population; the other responses are more 
subtly visible.

The a ppLica Tion f ra Mework

Here we provide a brief overview of the experi-
mentation platform itself. The simulation is a small, 
custom platform written in Java that uses no “off-
the-shelf” agent or swarm simulation frameworks. 
Though many quality frameworks exist (Bordini 
et al.., 2006)(Terrence Fong, Illah Nourbakhsh & 
Dautenhahn, 2003), our intent was certainly not to re-
invent the work of others. The rationale for creating 
a custom platform is twofold. First, the data we are 
looking for is very specific and narrow in scope, so 
a full fledged framework would be overkill. Second, 

we needed fine grained control over hundreds (and 
perhaps thousands) of individual threads. Due to the 
inherent simplicity and versatility of thread man-
agement in Java, developing our own mini-platform 
was the easiest solution that fit the requirements of 
the experiments we wished to conduct. 

Since—in the message based simulations—each 
agent uses an internal queue to accumulate incom-
ing messages from neighboring agents, a message 
queuing system is necessary. A full featured message 
queuing system such as JMS(Sun Microsystems, 
2007b)(Henjes, Menth, & Zepfel, 2006) would 
introduce unnecessary overhead. In our implementa-
tion, each agent has its own linked list behaving as 
a message queue. When an agent sends a message 
to another agent, the message is added to the target 
agent’s queue. As part of the normal agent vivifica-
tion cycle, the agent processes all messages in the 
queue in bulk; processing the entire queue during 
each vivification. In future, networked versions of the 
simulation, a system such as JMS will likely become 
necessary once the need for sophisticated distributed 
message processing becomes necessary. 

Figure 4. Collage of the key interface elements of the temporal variance experimentation platform
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A collage of the full interface to the applica-
tion with several associated dialog boxes is shown 
in Figure 4. Though some of the main interface 
controls in the figure are obscured by other win-
dows, a brief description of the available controls 
is presented. The “paint” radio buttons across the 
top of the main application interface configure the 
display of the age (number of consecutive successful 
vivifications) of the agents, the number of messages 
received between successive vivifications, or the 
agent state. The “tick” value can mean one of two 
things, depending on the mode of operation. In a 
globally-clocked simulation, the value represents 
the number of actual generations the world has 
been running. In a threaded simulation this value 
reflects the number of statistical snapshots taken 
since the simulation began. The lower-left corner of 
the user interface provides continuous real-time data 
pertaining to the progress of the simulation. Shown 
are the population Density, average population Age, 
raw Population, and the average number of number 
of Messages received by each agent per vivification 
interval. Along the bottom of the main interface 
window is a “chart” button which displays a real-
time graph display provided by the LGPL licensed 
JChart2D library (JChart2D, 2007). On this graph 
we can watch plots—such as the one shown in the 
background of Figure 4—in real-time.

The main visualization area itself shows all 
agent activity as the simulation progresses. Values 

are only painted on “active” agents and the value 
displayed is determined by the “paint” setting at 
the top. Additionally, the color of any given agent 
will vary depending on the “paint” type. In the 
simple value types, the agents start out as dark blue 
and gradually change to yellow as the given value 
increases. If the “state” is being painted, then the 
color of the agent is dependant on the actual state 
of the agent; where specific colors are assigned to 
specific states. This coloring mechanism provides a 
clear and intuitive visualization of the agent activity 
within the world. 

Most of the settings for a given simulation are 
configured in the control panel view shown in Fig-
ure 4. Though most of the options on the control 
panel are self explanatory, we will discus a few 
options of particular interest. All of the traversal 
modes discussed in this chapter are selectable from 
the “Traversal” drop-down list, while the mean vivi-
fication time interval is controlled via the “Global 
Clock Delay” spinner. The world can be configured 
as either a simple rectangle or a torus via the “Grid 
as Torus” check-box. “Fuzzy Evaluation Mode” ef-
fectively controls the usage of “beliefs” as opposed 
to simple Boolean messages, which were used in 
the earlier experiments. “Use Cell Aging Rules” 
controls the age advancement of the agents within 
the simulation. “Stagger Start Times” allows all of 
the agent clocks to have a randomly determined 
start time, which is useful in simulations with 

Figure 5. Javascript code used to implement the Conway Game of Life rules
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low delay variances; thus preventing the pseudo-
generational like behavior that would occur if all 
agents attempted to vivificate simultaneously). The 
“Random Message Order” and “Notify Sender” 
check-boxes control whether neighbors should be 
selected in random order and whether the sender of 
a message should also be included in the recipient 
list, respectively.

Finally, a few options exist in the control panel 
which were either not used in any of the trials out-
lined, or their effects do not impact trial results. 
“Allow Negative Cell Aging” can force cells to 
age backwards instead of becoming “inactive” in 
the Game of Life-like simulations. “Allow Old Cell 
Death” causes any cell which ages past a certain 
point to automatically become inactive. The ability 
to run custom rule evaluation scripts is selectable 
and described briefly below, as is the ability of 
the simulation to log all snapshots results into an 
embedded database.

scripted r ule evaluation

Java 6 introduced pluggable scripting language 
engine support. Though this functionality was 
available in previous versions of Java, it was 
implemented through non-standard mechanisms. 
Java 6 implemented “JSR-223” which created a 
standardized mechanism for the integration and 
interfacing of scripting environments within the Java 
platform. JavaScript (also known as ECMAScript) 
is integrated and available by default, but scripting 
languages such as Groovy, BeanShell, and even 
Scheme are able to be utilized with little work on 
the part of the application programmer2. The key 
component of any pluggable scripting language 
is that Java objects are handled seamlessly by the 
scripting environment. In other words, Java objects 
are treated as first class objects in the scripting 
environment. This allows for nearly unlimited cus-
tomized control over the behavior of an agent. The 
major benefit of the scripting is that no code needs 
to be recompiled (or complicated customization 
systems implemented) to alter the behavior of the 
simulation. The framework created for experiments 
outlined in this chapter utilize this functionality to 
implement custom rule evaluation methods written 
in the JavaScript programming language.

Figure 5 illustrates the GUI interface dialog box 
where the user may enter custom code generate a 
new state from an existing state and information 
about the number of adjacent neighbors. Though 
the parameters here are simple (and not all used 
in the example), more complicated scripts are pos-
sible with little overall performance degradation 
of the simulation.  Shown in this illustration, is the 
JavaScript code for evaluating the grid based on the 
Game of Life rules.

derby database

The Apache Derby RDBMS is an embeddable 
database system derived from Cloudscape code 
donated to the Apache Software Foundation (Ziko-
polous, Baklarz, & Scott, 2005) by IBM. As of Sun 
Microsystems’ Java 6, Derby now serves as Sun’s 
officially supported embedded RDBMS in the form 
of JavaDB (Sun Microsystems, 2007a). The primary 
benefit of Apache Derby is that it is capable of run-
ning in either network, stand-alone, or embedded 
modes, making data collection a relatively simple 
task without the need for a dedicated database 
server. The simulation framework uses an embed-
ded Derby engine which logs all relevant data for 
further analysis. Being nearly completely SQL-92 
compliant, Derby allows data to be easily queried 
and/or exported for interpretation by dedicated data 
analysis and charting tools such as SPSS, R, or Mi-
crosoft Excel. ODBC drivers also exist for Derby, 
which allow straight forward access via nearly any 
database aware application. Additionally, with the 
most recent versions of Java3 and recent JDBC driv-
ers, you are no longer required to manually load the 
database driver class in your code as was previously 
required4. This allows for easy migration to nearly 
any database system with JDBC drivers and allows 
the Derby database to be accessed from nearly any 
JDBC compliant front-end. 

hardw are/ sof Tware deTai Ls

The simulation environment was programmed us-
ing Sun Microsystems’ Java 6 Developer Kit and 
the Netbeans Integrated Development Environment 
and has been tested on both Windows® XP/Vista 
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and GNU/Linux®. Running on a 2.2Ghz Athlon 
XP development machine with a 25x25 grid (625 
threads) and screen updates disabled, memory us-
age for the average simulation trial hovered around 
60MB with less than 2% overall CPU utilization. 
Running with visualization (real-time graphs and 
live visualization) enabled, the CPU utilization 
jumped to approximately 20%. Profiling confirmed 
that the dramatic increase in CPU utilization was 
simply due to Swing5 paint methods. With real-time 
visualization disabled, the multi-threaded simula-
tion requires very little system overhead.

Java’s threading seems sufficient for medium 
scale simulations on a single, moderately config-
ured PC. Grids of up to 75x75 (5625 threads) have 
been implemented successfully, but increasing the 
thread count much beyond that is likely to generate 
“Out of Memory” errors due to the excessive thread 
overhead on the operating system6. Later tests on a 
dual core CPU revealed that a slightly larger number 
of threads were indeed possible, but the greatest 
limitation empirically stems from operating system 
and/or JRE limitations. For significantly larger 
simulations on a single CPU—which could involve 
many thousands of concurrent threads—some sort 
of “thread simulation” would likely be necessary. 
Such a simulation would involve all agents being 
under the control of a single master thread which 
activates agents in a manner which preserves the 
behavior of a true multi-threaded environment.

Another important implementation decision to 
note is the intentional lack of “thread safety” in 
the simulation. The implications of this may seem 
subtle at first glance but are very significant in the 
context of creating realistic behavioral models. 
In any environment where “reaction time” is a 
factor, there is always the possibly that an agent’s 
environment will change between the time that the 
environment is sensed and the time that the agent 
reacts. For example, in the simulation conducted 
in Section “Threaded Model” an agent examines 
all of its neighbors at time ti through i n tlt + +  , makes a 
decision as to what state to adopt 1i n tlt + + +  , and finally 
alters its state accordingly at time 2i n tlt + + +  ; where ti is 
the initial time at which the agent begins examining 
its environment, n is the number of neighbors, and tl  
is a nondeterministic inter-thread latency introduced 
by the other concurrently executing threads. Since 
this general timing rule applies to all agents in the 

world, an agent may adopt a state at the end of a 
vivification cycle that is inconsistent with the world 
as it existed at ti. This is consistent with the “real-life” 
actions of physical agents when one considers that 
reaction time is finite and variable. For example, hu-
man agents form conscious perceptions of the world 
by a process Daniel Dennett refers to as “backward 
projection in time” (Dennett, 1998).

c onc Lusion

Though formal mathematical models of the vari-
ous results have yet to be completed, the goal of 
the research presented here is to establish that the 
manipulation of timing variability in temporally 
autonomous agent systems impacts the emergent 
population behavior. Throughout this research, 
two primary phenomena were analyzed. First, the 
study of the effects of asynchronous updating in 
the Game of Life clearly reveals the fact that simple 
changes in traversal policies create significant dif-
ferences in population behavior. Given the nature 
of the changes, it would seam reasonable to assume 
that the global behavior of each system would be 
unique. However, the purpose of these experiments 
was to establish a progression towards a system 
that mimicked complete temporal autonomy of a 
swarm of independent agents. Second, the study of 
temporal autonomy in agent swarm behavior reveals 
that altering the timing variability of interacting 
agents also produces effects in the overarching 
behavior of the entire system. Emergent clusters 
of agents participating in independent beliefs are 
directly affected by the timing variability of their 
communications. We can see the potential for the 
foundations of this research to be applicable to 
any system which models discrete entities acting 
autonomously in time; such as in vehicular traffic 
flow modeling, data network communication, neural 
networks, etc.

Expanded research may also include the ability 
to connect multiple worlds together over a network. 
Given Java’s ease of network interaction, the imple-
mentation mechanics of such a system would be 
relatively straight forward. However, numerous 
design decisions would need to be made regarding 
the nature of the experiments themselves and the 
topologies of interconnection. For example, six 
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separate simulations could be networked together 
forming the surface of a cube. Each agent at the 
boundary of any given world would interact with 
agents at the boundary of an “adjacent” world. This 
would preserve the topology of agents acting on a 
single two-dimensional surface. Another possibly is 
that of “stacking” simulations on top of each other, 
where each machine represents a plane of agents 
which communicate in a virtual three-dimensional 
space. Regardless of the interconnection topol-
ogy, the timing variances of agent communication 
across network connections would be much harder 
to control and additional elements of experimental 
uncertainty would be introduced. However, this 
type of experimentation would be interesting in its 
own right, as it would be possible to easily simu-
late the behavior of interacting groups, where the 
groups each differ in their intra-communication 
dynamics.

The next immediate and major phase of this 
ongoing research project is the exploration of an 
expanded belief system with “belief graphs” that 
allow for the modeling of interconnected and inter-
related belief systems. However, as of this writing 
the simulation framework is being modified to 
accommodate dynamically adapting vivification 
variance ratios. For example, given the desired target 
ratios of agent populations holding specific beliefs 
within a swarm, those ratios can be achieved and 
maintained by controlling the timing variances of 
the interaction of each belief. For example, suppose 
we want a world that is 20% “Red”, 30% “Green”, 
and 50% “Blue”. In a configuration where all beliefs 
have equal weight and equal timing variances, the 
most predominant belief will generally prevail and 
quickly dominate the entire world. However, by 
dynamically controlling just the vivification delay 
variances of the agents holding specific target be-
liefs (leaving the mean message exchange rate and 
message weights equal), we can establish steady 
and predictable agent population ratios. 
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1 The simulation engine itself has since been 
expanded to allow for automated alteration 
of timing variances.

2 See https://scripting.dev.java.net for list of 
scripting languages that can be integrated 
into Java.

3 JDK 1.6 as of this writing
4 For this functionality, the driver must comply 

with the JDBC 4 specifications.
5 “Swing” is the default windowing toolkit 

included with the official distribution of the 
Java platform.

6 These numbers were determined by trial and 
error in Windows XP Pro SP2. Preliminary 
testing on Linux (kernel version 2.4.33) re-
vealed a signifiganly lower maximum thread 
count. More investigation is needed to deter-
mine the cause of this disparity.
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a bs Trac T

Following the discovery in Rhesus monkeys of “mirror neurons” that fire during both execution and observa-
tion of motor behavior, human studies have documented a fronto-parietal mirror neuron system (MNS) with 
apparently similar functions. We discuss some issues related to the human research, including measurement 
with neuroimaging techniques and recent neurotechnologies for manipulating regional brain function. We 
note the remarkable overlap between several brain systems studied in people:  the MNS, the Theory of Mind 
(ToM), the “self”-system of the brain, and the neural “default mode.” The functional architecture of these 
systems may have important implications for how the MNS is organized and its functions. We propose that 
“auto-mirroring” in which self-observation of one’s own motor behavior can be either facilitated or blocked, 
may be a fundamental aspect of the MNS. Finally, the implications of hemispheric asymmetry in the right 
and left MNS are discussed. Although MNS research is in its infancy, it bears promise to reveal basic aspects 
of the brain’s functional architecture.

Despite impressive gains in understanding the brain, 
fundamental questions concerning brain organiza-
tion and function remain unanswered, unresolved, 
or highly controversial.  This is not surprising given 
the enormous complexity of neural processes.  In 
this discussion we will focus on one brain system 
that may be particularly important for human 
functioning:  mirror neurons or the mirror neuron 
system (MNS).  The MNS is a fronto-parietal brain 

system that is activated when an individual performs 
a specific behavior and observes that same func-
tion being performed by another person.  In other 
words, the MNS is sensitive to the “mirroring” of 
one’s behavior in other people.  Even though the 
discovery of mirror neurons is relatively recent 
(Gallese et al., 1996), there is now a significant body 
of research, both human and nonhuman primate , 
providing evidence that the MNS is an important 
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characteristic of brain organization (Gallese & 
Goldman, 1998; Oberman & Ramachandran, 2007; 
Rizzolatti & Craighero, 2004).

Discovery.  The remarkable discovery of mirror 
neurons was made in Rhesus monkeys—entirely 
inadvertently.  Gallese et al. (1996) were studying 
the electrophysiology of the premotor cortex in 
macaques when they noticed that the same neurons 
that were active when the monkeys performed simple 
behaviors were also stimulated when the animals 
saw other monkeys or humans doing the same thing 
they were doing.  More recent research has extended 
this finding to the human brain using neuroimag-
ing techniques, primarily functional magnetic 
resonance imaging (fMRI), electroencephalography 
(EEG), and neurotechnologies such as transcranial 
magnetic stimulation (TMS).

 The existence of mirror neurons in Rhesus 
monkeys and the MNS in humans has raised 
many important questions about the function(s) 
of this brain system.  Ideas about the functions of 
the MNS have ranged from the neural substrate of 
imitative learning (in humans), empathy, reciproc-
ity in human relations, the brain’s foundation for 
social interaction, the kernel of language, under-
standing the intentions of the behavior of others 
through internal simulation, and even to the nature 
of consciousness.  Of course, these functions are 
not mutually exclusive.  The ultimate limits of the 
importance of the MNS have not been delineated 
despite intensive research, both human and animal, 
over the last decade.  However, recent critiques of 
the human MNS literature (Dinstein et al, 2008; 
Turella et al., in press), particularly fMRI studies, 
have raised questions about whether mirror neurons 
in monkeys are really homologous in function with 
the MNS in people.  

 Purpose.  The purpose of this discussion is to 
explore the MNS literature, integrate it with other 
information concerning brain function, particularly 
prefrontal executive functions, and begin to develop 
models of how the MNS may function as part of 
control systems in the brain.  Better understanding 
of the MNS may inform the design and implementa-
tion of control systems for autonomous agents such 
as robots.

 To presage our conclusions, we—as have oth-
ers—argue that the MNS is particularly important in 

social processes that involve gauging the intentions 
of others and predicting their behavior as it relates to 
our own.  This is one of the fundamental functions 
of the “self” system of the brain.  Moreover, it has 
immediate implications for the design of robotic 
systems.  Autonomous agents may move closer to 
having a “self” when they incorporate aspects of 
the MNS in their control systems.  The construction 
of “self” in human and robotic systems has been 
somewhat of a “Holy Grail” for a long time.

 Multi-agent societies. This discussion focuses 
on intrapsychic processes and dyadic interactions 
primarily because the literature, whether animal 
or human, has not progressed beyond this level.  
Discoveries of mirror neurons and the MNS in hu-
mans have broad implications for social interaction 
in small groups and in larger multi-agent societ-
ies.  Whether the MNS chiefly supports imitative 
learning or internal gauging of the motivations and 
behavioral proclivities of others (or both), these are 
inherently social processes.  These functions can 
and may provide the foundation for social processes 
that would be difficult to conceptualize or study 
without recourse to a system such as the MNS.

 The same arguments apply to robotic au-
tonomous agents and their interactions with other 
robots or with humans.  The spread of information 
in a multi-agent society and the coordination of 
communication and behavior among autonomous 
agents require some internal mechanism roughly 
comparable to the MNS.  In fact, MNS-like systems 
have been incorporated in autonomous agents using 
neural network software (see Oztop et al., 2006 for 
a review).  One next step is to study social interac-
tion in robotic systems that have simulated MNSs 
in their control systems.  This will require careful 
consideration of the proposed architecture of the 
MNS in humans, the limitations and critiques of this 
literature, and experimentation that is cognizant of 
these factors.

The f ron To- parie Ta L Mns

Mirror neurons have been measured typically with 
single-cell electrophysiology in monkeys (Gallese 
& Goldman, 1998).  The primary regions of mirror 
neurons studied in the Rhesus monkey are the ventral 
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premotor cortex (area F5), the superior temporal 
sulcus (STS), and the rostral part of the inferior 
parietal lobe (area PF).  It has been noted (Fogassi & 
Ferrari, 2007) that this area of the premotor cortex 
(F5) in macaques is neuroanatomically homologous 
to Broca’s area on the left side in the human brain.  
This observation has led to suggestions that mir-
ror neurons may have played a central role in the 
development of speech functions in ancient humans.  
This is a social function of profound importance.  
In contrast to the left hemisphere, it raises the ques-
tion of what parallel—but different—functions may 
be controlled by the premotor cortex of the right 
hemisphere, and how mirror neurons in that area 
promote that functioning.

Mapping.  The MNS has been localized in 
human brains through neuroimaging techniques, 
particularly functional magnetic resonance imaging 
(fMRI).  The MNS is more broadly distributed in 
the human brain than was originally thought.  For 
example, Dinstein et al. (2007) mapped the MNS 
in humans using fMRI in overlapping brain regions 
during both executed movements and observed 
movements (their proposed definition of the MNS).  
These areas included the ventral premotor cortex 
and anterior inferior frontal sulcus, and several 
regions in the parietal lobe (anterior intraparietal 
sulcus, superior intraparietal sulcus, and posterior 
intraparietal sulcus), as well as an area within the 
lateral occipital cortex.  This is a large amount of 
gray matter.  This alone speaks to the importance of 
the MNS for human activity, assuming it is, in fact, 
a functional system as we and others have proposed.  
We will discuss criticisms of this assumption in the 
Critiques section below.

Dinstein et al. (2007) used a variant of the “rock-
paper-scissors” game to map the MNS.  Two factors 
are important in this paradigm:  (i) participants 
performed actual motor movements using their 
dominant hands while being scanned, and (ii) they 
chose the game moves (and corresponding hand 
movements) themselves;  they were not instructed 
which hand movements to make when.  Therefore, 
the authors overcame an important limitation (dis-
cussed below in the Measurement section) of the 
MRI environment by using actual motor behavior, 
and this behavior was spontaneous, though con-
strained to three choices in the game.  The rock-

paper-scissors experimental paradigm may prove 
useful in future studies of the MNS.  

Measure Men T
 

fMRI. We noted above that the MNS in humans 
has been studied by a variety of neurotechnologies, 
including fMRI, EEG, and TMS.  While fMRI is 
a powerful technique for studying brain function, 
particularly in terms of topographical and temporal 
resolution, it has some fundamental limitations.  
Most important in the present context is that the 
person must be supine (lying on their backs) with 
their heads in a severely confined magnet structure.  
Moreover, they must lie perfectly still without mov-
ing their heads in the scanner, which emits very loud 
noises at irregular intervals.  The obtrusiveness of 
fMRI, severe limitations on motor movement, and 
difficulties in observing the behavior of self and oth-
ers are primary concerns in studies of the MNS.
 EEG.  Scalp electrophysiology is a less obtrusive 
measure than fMRI.  Participants in an EEG study 
are fully able to observe the (mirror) behavior of 
other people, such as an experimental confederate, 
an important consideration for studies of the MNS.  
Also, it is not technically difficult to record EEG 
in two or more individuals at the same time.  This 
allows interesting studies of MNS activation in 
social reciprocity.

 Despite these advantages, EEG introduces a 
new set of limitations.  Topographical resolution is 
poor because recording is at the surface, although 
temporal resolution is superior to or comparable 
to that of fMRI.  Because of these limitations in 
localizing EEG activity, only gross differences can 
be ensured between frontal (premotor and motor 
cortex) and parietal MNS activation, though this 
is probably the most important neuroanatomical 
distinction.  Secondly, EEG is prone to high-am-
plitude movement artifacts that can spill into the 
same frequency range as the brain waves of inter-
est.  This places limitations on motor behavior that 
are much less stringent than fMRI, but significant 
nonetheless.  

 Rolandic mu suppression. In EEG studies of 
the human MNS, suppression or desynchronization 
of the rolandic mu rhythm (8-13 Hz. recorded over 
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the sensorimotor cortex; roughly electrode sites C3 
over the left hemisphere, Cz over the vertex of the 
head, and C4 over the right hemisphere) has been 
interpreted as a sensitive measure of MNS activa-
tion.  The mu rhythm is suppressed during both 
execution and observation of motor movements.  
Tognoli et al. (2007) also found that while social 
interaction was important in eliciting MNS activa-
tion, mu suppression was insensitive to the nature 
of this interaction.  In contrast, parietal phi rhythms 
(9.2 to 11.5 Hz.) recorded over the right hemisphere 
were strongly related to the degree of coordination 
or interdependence of their social interaction.  If 
replicated, these findings represent an important 
advance in understanding the relationship between 
the frontal and parietal components of the MNS.  

TMS.  This procedure involves single brief, 
intense pulses of magnetic energy over certain 
locations of the motor cortex using an electromag-
netic paddle.  In this case, there is a motor evoked 
potential (twitch) in the contralateral limb that can 
be measured electrophysiologically.  Manipulations 
expected to activate the MNS have been shown to 
facilitate these evoked potentials in the contralateral 
hand.  Maeda et al (2002) demonstrated specificity 
of facilitation in the muscles that would be activated 
to mimic observed hand movement and greater 
facilitation when the observed hand was shown 
as if in the participant’s perspective.  Importantly, 
facilitation was also greatest when the behavior was 
goal-directed (e.g., picking up food to eat versus 
picking up an inedible object).

 Correlational measures. The measurements 
were correlational in all of these cases.  They as-
sess the correlation between external manipulations 
expected to affect the MNS and localized brain 
activation.  They do not manipulate brain function 
directly.  This is an important limitation of the 
human research.  An alternative might be to use 
neurotechnologies to stimulate or inhibit regional 
brain activity—presumably of MNS structures 
or control structures unrelated to the MNS—and 
determine the effects on cognitive and behavioral 
functions thought be associated with the MNS.  

Two noninvasive neurotechnologies that bear 
this potential are repetitive TMS (rTMS) and weak 
transcranial direct current stimulation (tDCS). We 
are unaware of any applications of rTMS or weak 

tDCS to study the MNS.  This may be a fruitful 
area for future research because they go well beyond 
correlational studies.  Moreover, research of this type 
can address concerns raised about the comparability 
of mirror neurons in Rhesus monkeys and the human 
MNS (see Critiques discussion below). 

c onvergence of huMan 
f unc Tions r eLaTed To The 
Mns

 
The last decade has witnessed a remarkable con-
vergence of functional brain systems that overlap 
neuroanatomically with the MNS.  This co-localiza-
tion may indicate the breadth of functions that the 
MNS subserves.  These systems are summarized in 
Table 1 as the MNS, the “self” system, the Theory 
of Mind (ToM), and the “default mode” of the 
brain when at alert rest.  It seems unlikely that this 
convergence is coincidental, although the degree 
of integration of these functional systems will be 
a matter of debate.  

The “self” system.  It may seem at first far-
fetched to argue that the sense of human self is 
semi-localized within the brain.  Certainly there 
are large areas of the brain whose functions we do 
not associate with the self.  Several authors (e.g., 
Uddin et al., 2007) have argued that self functions, 
such as self-recognition, self-other distinction, 
self-awareness, self-consciousness, etc., are pri-
marily right fronto-parietal.  [This does not imply 
a “homunculus” within the brain, and certainly not 
a homunculus within a homunculus!]

Uddin et al. (2007) and Wheatley et al. (2007) 
argued that two different brain systems are pri-
marily related to a person’s representation of self:  
(1) the fronto-parietal MNS and (2) a midline 
cortical network for social cognition, consisting 
of superior temporal and medial prefrontal cortex 
(PFC), fusiform gyrus, posterior cingulate, insula, 
and amygdala.  Note first that these systems taken 
together include much of the cortex, excluding 
most primary and secondary sensory areas and 
more posterior parts of the brain.  These authors 
proposed that the two brain systems, rather than 
being separate and independent, cooperate closely 
in constructing self-representation and guiding 
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social interaction (self-other relations).  In this 
scheme, the MNS helps achieve understanding 
of others by internally simulating their behavior, 
emotions, and motives.  For example, Wheatley 
et al. (2007) found that observing and imagining 
moving shapes engaged the MNS, but the midline 
social network of the brain was activated only when 
those same moving shapes were reinterpreted as 
animate (living, moving humans or animals).  In 
terms of recognizing one’s own face (Uddin et al., 
2005) versus that of others (an important aspect of 
self-representation), self-face recognition activates 
right hemisphere MNS structures, while other-
face recognition activates only the well-described 
“default/resting state” brain network, consisting in 
this case of medial PFC and precuneus.  The lat-
ter default state is negatively correlated with that 
noted below (Default Mode section) as overlapping 
substantially with the MNS.

Theory of Mind (ToM).  ToM is normally 
defined as the full awareness that other individuals 
have minds that are similar to our own (Gallese, 
2007).  It follows from ToM that other people have 
motivations, thought processes, and emotions that 
are also similar to those we possess.  ToM is probably 
something that we take for granted, although it is at 
least partially species-specific and of inestimable 
value for survival.  Specifically, it allows us to judge 
and predict the intentions and future behavior of 
others, a function that is critical to social interaction, 
control of aggression, and mating systems.  Note 
that this is comparable to our conceptualization of 
the primary function of the MNS.

To achieve ToM, several more basic functions 
must be acquired.  First, the organism must have a 

clear distinction between “self” and “other”, some-
thing that is also prototypical of the foundation for a 
“self” system in the brain.  Following from this, the 
person or animal must have acquired the capacity 
for self-recognition, although not necessarily in the 
visual modality.  A third function is the psycho-
logical framing of self in relation to others—the 
“relational self”—whether in terms of social rank, 
familial relationships, sexual functioning, or other 
characteristics.  Finally, the person or animal must 
be able to assess social motives, or patterns of 
behavior in relation to others that are predictive of 
their future behavior.  

This “mind-reading” ability (Gallese, 2007; Gal-
lese & Goldman, 1998; Schulte-Ruther et al., 2007) is 
a critical component of ToM with clear evolutionary 
advantages.  Whether the ‘other’ is friend or foe, 
predator or prey, biological relative or stranger, the 
need to predict motivations reasonably accurately 
based on observable information and social context 
appears critical to survival and reproduction in a 
social world (Newlin, 2002, 2007).  It has been ar-
gued that these capacities are based on the human 
MNS (Agnew et al, 2007).  In other words, we can 
“read the minds” of others by internally simulating 
their intentions and social context.

Default mode of the brain.  Fox and Raichle 
(2007) summarized evidence that spontaneous brain 
activity when the person is at rest but alert represents 
a “default mode” of the brain.  This resting activity 
represents approximately 20% of the total body’s 
energy consumption although the brain is only about 
2% of the body’s mass.  This may be compared with 
task-related activations, which are energy swings 
that are usually small relative to this (< 5%).  Fox et 

Brain System Definition Characteristics

Mirror Neuron System (MNS) brain activity during action execution and 
observation

used to comprehend the  motives and 
intentions of others by simulating their 
actions and context 

“Self”-System constellation of functions related to self self-awareness, self-observation, self-other 
distinction, self-consciousness, etc.

Theory of Mind  (ToM) recognition that other people have minds 
similar to our own

fosters “mind-reading” to understand other 
people’s thoughts and affect

Default Mode brain activity patterns at alert rest patterns of activation that are negatively 
correlated between patterns

Table 1.  Summary of brain systems that overlap neuroanatomically with the MNS
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al.’s (2005) evidence for a default mode is based on 
several findings:  (i) this spontaneous brain activity 
is topographically and temporally organized, (ii) it 
shows positively inter-correlated patterns of brain 
areas with similar functionality, with separate pat-
terns that are negatively correlated with each other, 
and (iii) it is predictive of task-related activations 
and the quality of performance on these tasks.  
The evidence Fox and Raichle (2007) marshal in 
support of a default mode is impressive, though 
Morcom and Fletcher (2006) presented a critique 
of this conclusion. 

Our interest in the default mode is that one 
of these patterns of inter-related brain areas cor-
responds roughly to the MNS.  This “intrinsically 
defined anti-correlated network” consists primarily 
of the middle temporal area, frontal eye fields, and 
the inferior parietal sulcus, a neuroanatomical pat-
tern that at least partially overlaps with the MNS.  
It is important to recognize that just because the 
person in the MRI scanner is instructed to “rest,” 
this does not imply they are cognitively or affec-
tively quiescent or “blank.”  Fox and Raichle (2007) 
argue quite the contrary.  While it is not clear what 
psychological activity is actually occurring in the 
default mode, it is a highly organized activity that 
substantially correlates with the activation produced 
by cognitive tasks.   

Congruence. Taken together, the congruence of 
these four systems (Table 1) is highly interesting, 
but difficult to interpret.  If we assume for the mo-
ment that the brain is characterized by hierarchically 
organized systems that are controlled largely in a 
top-down manner by prefrontal executive areas 
(an arguable assumption), then we may ask what 
system(s) is (normally) superordinate? In other 
words, is the MNS subordinate to the self-system or 
to ToM, or is it an executive system (if, in fact, it is 
a “system” at all) that controls these other systems? 
Did the MNS evolve relatively recently (in geologic 
time) as a superordinate system, or as a subordinate 
processing system that supports language and social 
interaction?   Another possibility is that they are 
all slightly different manifestations of the same 
brain system, and that distinctions between them 
are artificial.  There are many other possibilities, 
of course.  For example, the hierarchy of executive 
systems may shift in relation to environmental 

demand, so that the MNS may be superordinate at 
some times and subordinate at others.  Our point is 
that some of the excitement concerning the discov-
ery and elaboration of the MNS is that it may shed 
light on brain organization that is fundamental to 
human functioning.  

Neuroanatomical localization says little about 
psychological function, although it does suggest 
hypotheses about the processes involved.  For ex-
ample, the fact that the MNS includes, among other 
regions, the premotor area, suggests that praxis is 
implicated.  Recent neuroimaging research empha-
sizes functional connectivity between different brain 
regions, as opposed to simply asking what areas are 
activated during a specific task.  The MNS literature 
has not really advanced to the connectivity stage 
of analysis.  Questions need to be asked about the 
topographical and temporal connectivity between 
different regions that are currently subsumed in the 
MNS.  In terms of temporal relations, do anterior 
or posterior regions of the MNS lead in time, and 
under what experimental conditions?  Following a 
better understanding of topographical and temporal 
connectivity within the MNS, the issue of connec-
tivity with other brain systems (i.e., not part of the 
MNS) can be addressed more fully.

A second issue concerns modularity.  Spe-
cifically, are there characteristics of the MNS that 
function as modules?  Although beyond the scope 
of this discussion, this issue is very important in 
relation to the ideas above concerning overlapping 
systems.  Modularity is a highly controversial area 
of research, and the question is likely to be a subject 
of future debate. 

a uTo-Mirroring

One factor that has been unrecognized in MNS 
research is the simple fact that when a person or 
Rhesus monkey engages in a behavior (other than 
facial expressions), they normally observe them-
selves performing that act, much as they might 
observe another individual mirroring their behavior.  
This process represents a feedback loop that we 
(Newlin, 2007) propose is critically important in 
how the MNS functions.  We were unable to find 
any consideration in the MNS literature of the role 



  ���

The Human Mirror Neuron System

of self-observation in one’s own behavior.  We refer 
to this as “auto-mirroring.”  None of the studies 
in this literature to date (to our knowledge) have 
manipulated whether or not the person was able 
to observe their own motor behavior.  Therefore, 
it is unclear whether auto-mirroring plays a major, 
minor, or no role at all in the feedback processes 
that control the MNS.  

For example, the rock-paper-scissors game that 
Dinstein et al. (2007) used to map the MNS could be 
adapted to study the possible role of self-observation 
in MNS activation. It would be interesting in terms 
of visual feedback pathways and self-awareness to 
manipulate whether or not the participants could 
see their own hand movements, perhaps using a 
video camera and monitor and displaying them in 
real time to the participant while in the scanner. If 
auto-mirroring were important, then self-observa-
tion of their own hand performing the game while 
in the MRI scanner would be expected to produce 
significantly greater MNS activation than when 
they could not see their own hand movements.  A 
second question would be whether self-observation 
produced greater MNS stimulation than observing 
the other participant’s game moves.

Our rationale for considering auto-mirroring an 
important factor for MNS operation is based on a 
number of disparate findings.  First, visual and audi-
tory feedback (self-observation) is an integral part 
of the natural guidance system for praxis in sighted, 
hearing individuals.  In fact, self-observation (Bem, 
1967) is a critical component of the “self-system,” 
the constellation of functions (discussed above) that 
include self-recognition, self-awareness, body im-
age, social context and status in relation to others, 
self-consciousness, etc.  If in fact the self system 
is related to the MNS, then self-observation of be-
havior must be considered an important aspect of 
MNS function.  At least, it is a hypothesis that is 
eminently testable by comparing simple behaviors 
executed with, versus without, the ability to observe 
the actions.  This basic experiment could be per-
formed in Rhesus monkeys as well.  We note that 
in human studies, an interesting comparison group 
would be individuals who are blind from birth, as 
they have likely adapted, at least in part, to having 
no visual self-observation.

 Conditions in which self-observation is dis-
turbed also support our conclusion that this self-

observation feedback loop is critical.  One example 
is the clinical phenomenon of unilateral neglect, in 
which patients who have sustained brain damage, 
usually to the right parietal area, ignore or even 
disown the contralateral sides of their own bod-
ies and are inattentive to stimuli presented in the 
corresponding hemifield.  An even more extreme 
example is the out-of-body experience, which can 
be elicited by deep electrical stimulation of certain 
areas of the right temporal-parietal junction (Blanke 
et al., 2002).  Neuroimaging with positron emission 
tomography in one patient who was stimulated in 
this same area produced brain activation in the right 
temporal-parietal junction (De Ridder et al., 2007).  
The out-of-body experience can also be produced in 
cleverly designed virtual reality experiments among 
healthy volunteers (Ehrsson, 2007;  Lenggenhager 
et al., 2007).  Moreover, there has been some suc-
cess in treating “phantom-limb” pain when patients 
observe a mirror image of their contralateral limb 
performing basic motor functions (Chan et al., 2007; 
Guimmarra et al., 2007). 

 Another important factor, noted above, that 
bolsters our overarching hypothesis concerning the 
centrality of auto-mirroring is the remarkable con-
vergence in the neuroimaging literatures concerning 
(1) the MNS, (2) the ToM, (3) the “self-system”, and 
(4) the “default mode” of the brain (areas active 
during alert periods of inactivity).  All of these 
systems are fronto-parietal.  We hypothesize that 
auto-mirroring is a basic function of the human 
MNS that supports and embodies all of these four 
systems.

 

heMispheric a sy MMeTr y
 
There are actually two MNSs (Aziz-Zadeh et al., 
2006).  These correspond to systems in the right and 
left hemisphere, connected primarily by fibers in 
the corpus callosum.  It is likely, though unproven, 
that interconnections between frontal and parietal 
regions within each MNS are greater than those 
between the right and left MNSs.  These consid-
erations raise a host of questions that the current 
literature has only begun to address.  For example, 
how specialized are the two MNSs in terms of their 
function?  Is one “dominant” over another?  How 
and when do they interact, and how cohesive are 
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the resulting processes?  Are there heuristics that 
guide the coordinated activities of the right and left 
MNS?  Is auto-mirroring a function of primarily the 
right rather than the left MNS?  What evolutionary 

advantages in terms of survival or reproduction were 
conferred by hemispheric specialization of these 
two systems?  In relation to empirical research, 
what experimental paradigms are well suited to 
studying these questions?

Table 2. Tentative hemispheric specialization for executive cognitive functions of the prefrontal cortex (PFC).  
[no strict localizationist assumptions are implied]

LEFT Prefrontal Cortext

Brain Area Function

BrocaSection 1 s area • expressive speech

dorsolateral PFC • verbal working memory
• verbal autobiographical memory
• deception 

ventromedial PFC • deception 
• empathy 

orbitofrontal PFC • emotionally laden stimulus processing 
• social rules 
• penalty processing 
• inhibition of negative attitudes 

lateral PFC • updating behavior during cognitive shifting 

ventrolateral PFC • task switching in response to feedback
• positive attitudes 

RIGHT Prefrontal Cortex

Brain Area Function

right PFC • temporal planning
• sequence organization

dorsolateral PFC • visuospatial working memory
• contextual autobiographical memory
• attention
• inhibition of motor responses 
• negative attitudes 

inferior PFC • inhibitory processes 

ventral PFC • suppression of affect
• inhibition of motor responses 
• stress responses 

ventrolateral PFC • task switching in response to feedback 
• processing incongruent stimuli 
• implicit association 
• affective switching 

orbitofrontal PFC • sustained attention
• reward processing 
• cooperation

lateral PFC • response to negative feedback 

anterior PFC • semantic monitoring and working memory 
• deception 
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At the present time, the primary reason for 
hypothesizing that the right and left MNS are func-
tionally specialized (and different from each other) 
is that the structures subsumed in these systems 
are themselves specialized.  For example, we noted 
above that the premotor area F5 in the macaque 
frontal cortex is thought to be fully homologous 
on the left—but not the right—side with Broca’s 
area in humans.  Hemispheric specialization—both 
in the left and right hemisphere—have been well 
documented for various aspects of human speech.  

Executive cognitive functions. Table 2 lists 
some (but certainly not all) of the executive cognitive 
functions that have been related to left, right, and 
both prefrontal cortices.  Much of the underlying 
research that substantiates this listing is based on 
neuroimaging studies, specifically fMRI.  

Shallice (2004) proposed laterally asymmetric 
executive functions for the left and right PFC.  Rather 
than the PFC controlling working memory, long an 
assumption of cognitive neuroscience, he relegated 
working memory functions to the parietotemporal 
cortex.  He proposed instead that the left PFC exerts 
supervisory (top-down) control over lower-level 
systems of the brain, such as working memory and 
verbal communication.  In contrast, the right PFC 
maintains control over errant mentation and behavior 
that does not accord with task goals.  

Shallice’s (2004) analysis, which is specific to 
the PFC, implies that MNS functions may differ 
between the right and left hemispheres. Specifically, 
the formal language functions of the left MNS, 
which is neuro-anatomically distinct from the 

right MNS, would be a higher-level system that 
is controlled by anterior regions of the PFC in the 
furtherance of current and future goals, i.e., goal-
directed motivation.  For example, the capacity to 
form internal representations of the verbal speech 
of one’s self and that of others, particularly as they 
intersect (mirror or complement each other), would 
allow more anterior (PFC) supervisory regions of 
the brain to guide social communication toward 
goals consistent with enhanced survival and re-
productive fitness.  At the same time, these internal 
representations provide “grist for the mill” of the 
right frontal MNS to detect and correct deviations 
in communication away from the same goals.  A 
further example is that face recognition, whether 
it is one’s own face or someone else’s, is primar-
ily a right frontal function that is part of the MNS 
(Uddin et al., 2005).  It determines social context 
and whether communication is appropriate to that 
social situation.  The evolutionary advantages of 
asymmetric supervisory control systems, as pro-
posed by Shallice (2004) are unclear at the present 
time, but may be important in understanding lateral 
asymmetry in the MNS.

Functional asymmetry.  The early differentia-
tion of cognitive functions that are laterally asym-
metric as primarily verbal (left hemisphere) versus 
visuospatial (right hemisphere) has given way to 
much more complex notions of hemispheric special-
ization.  This shift was necessitated by results such 
as those in Table 2 for prefrontal functions.   

Affect.  One dimension on which the right and 
left prefrontal areas differ is affect and motivation.  

 Table 3.  Progression (from top to bottom of table) of conceptualizations of hemispheric differences in psy-
chological functions of the prefrontal cortex

 
LEFT Prefrontal RIGHT Prefrontal

Cognition expressive speech visuospatial processes

Emotion positive affect
[plus anger]

negative affect
[except anger]

Motivation psychological 
approach

psychological 
withdrawal

Supervisory Control top-down strategic

 modulation

checking on reaching

 task goals
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This has direct relevance for understanding pos-
sible differences between the right and left MNSs.  
Davidson and his colleagues (Davidson, 1999) first 
noted, somewhat surprisingly, that negative affec-
tive states, such as fear, disgust, or depression, are 
associated with EEG alpha frequency (centered 
around 10 Hz.) power asymmetry that indicated right 
prefrontal specialization for these states.  The key 
assumption in these studies was that alpha reflects 
an “idling” (relatively quiescent) frequency, while 
beta (desynchronized high frequency EEG activ-
ity) represents brain activation.  The corresponding 
result was that positive emotional states, such as 
happiness, joy, or contentment, were associated 
with greater left prefrontal activation (i.e., more 
beta on the left and alpha on the right).  The initial 
conclusion was that right prefrontal areas were 
relatively specialized for negative affect, and the 
left with positive affect.  These conceptualizations 
are listed in Table 3.

Motivation.  This tentative interpretation proved 
to be short-lived as evidence mounted that anger—an 
arguably negative emotion—was associated with 
greater left prefrontal EEG activation rather than 
right (Harmon-Jones, 2003).  Davidson (2003) then 
proposed that left prefrontal activation represented a 
motivational “stance” of psychological approach, or 
moving toward stimuli.  Anger may be viewed as an 
aggressive emotion for which approach motivation 
is dominant rather than avoidance or withdrawal 
motivation (Harmon-Jones, 2003).  Conversely, 
they hypothesized that right prefrontal activity was 
associated with psychological withdrawal from 
stimuli, such as when fear, disgust, or depression 
leads to withdrawal.  It is also possible that approach 
motivation and corresponding left prefrontal activity 
reflect prosocial affect, while withdrawal motiva-
tion and right hemisphere activation represent more 
antisocial emotions.  Therefore, this lateral asym-
metry in anterior brain regions can be understood 
in terms of overarching motivational systems with 
characteristic affect that is consistent with that ori-
entation (see Table 3).  Many of the questions raised 
above about how the different brains interact with 
each other (see Congruence section above) apply 
equally to this conceptual system.

This major advance in our understanding of 
lateral asymmetry and emotional systems has direct 

implications for the two MNSs as the premotor areas 
on the right and left side are presumably specialized 
in corresponding ways.  For example, expressive 
speech is strongly related to the left premotor re-
gion (Broca’s area), and it is a function that is most 
often used for approach toward social entities and 
groups.  This may be true even for “angry speech.”  
We anticipate that further conceptualizations of 
prefrontal asymmetry of function, such as that of 
Shallice (2004), will further our understanding of 
how the right and left MNS are different and how 
they are coordinated.

Implications for multi-agent societies.  Newlin 
(2007) suggested that implementation of artificial 
MNSs in autonomous agents may benefit by dual, 
semi-independent and specialized control systems 
modeled after what is now known concerning 
functions of the right and left prefrontal cortexes 
of humans.  Evolution had millions of years to 
“develop” these asymmetric systems of the brain 
and to evolve control systems that coordinate them 
seamlessly.  Genetic algorithms that do not take this 
long(!) may be useful in finding means of coordina-
tion between dual asymmetric control systems in 
autonomous agents. 

 Robotic control systems with this degree of 
sophistication and complexity may be needed to 
engineer multi-agent societies that interact socially 
with a semblance of similarity to human societies.  
Over 100 years of sociology and social psychology 
attest to the complexity of human social interaction 
and the difficulties in studying it rigorously.  It is 
likely that artificial multi-agent societies, where 
the control systems are largely known, may help 
us understand how specific social processes emerge 
from the interaction of intelligent systems.  These 
processes include social learning through imitation 
and the gauging of other agents’ intents from internal 
simulation of their behavior, properties purport-
edly subserved by the MNS.  Whether the MNS, 
if it exists as a system, has these characteristics is 
unclear, although there is little doubt that humans 
readily imitate others and they are able to assess the 
motivations and intents of others with some degree 
of accuracy.  

 Critiques of Human MNS Research.  Criti-
cism of human MNS studies is important to temper 
enthusiasm for this relatively new area of research, 
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to improve the quality of fMRI studies of the 
MNS, and to highlight areas that are in dire need 
of further research.  Are mirror neurons in the 
Rhesus macaque truly homologous in function to 
the MNS in humans?  Obviously, the species are 
different, as are the measurement systems (single 
unit electrophysiology versus neuroimaging).   Be-
cause of the clear differences in measuring mirror 
neuron activity, the manipulations of executed and 
observed behavior have been different as well.  The 
leap between species may be too great, although 
we emphasize that if this were the case, the human 
research to date would still be of great value even if 
the interpretation in terms of mirror neurons proved 
to be overly ambitious.

 In their critique of the human MNS literature, 
Dinstein et al., (2008) first noted that the electro-
physiological literature upon which the monkey 
evidence for mirror neurons rests is actually very 
sparse.  In addition to being limited in number, most 
of the studies in macaques are qualitative rather 
than quantitative, and in all cases, the percentage 
of single neurons that exhibited mirror activity was 
small relative to the number tested.  These specific 
areas have many functions other than “mirroring,” 
so the latter observation is not surprising.

 Both Dinstein et al. (2008) and Turella et al. (in 
press) concluded that most, if not all, neuroimaging 
studies failed to demonstrate an MNS in humans 
using criteria adopted from the monkey studies.  
Many fMRI studies limited their analyses to pre-
viously identified MNS structures, an example of 
circular reasoning that precluded the determination 
of whether these are, in fact, MNS areas.  Both 
papers (Dinstein et al., 2008 and Turella et al., in 
press) argued that the essential criterion for assign-
ing MNS status to a brain region is that it responds 
selectively to both executed and observed action.  
Moreover, task analysis of the actions used in these 
fMRI studies indicates that many cognitive-motor 
functions are necessary for their execution, any 
one of which could account for their activation in 
these experimental paradigms rather than mirroring.  
Neither Dinstein et al. (2008) nor Turella et al. (in 
press) commented on the fact, noted above, that the 
dependent measures used in both the monkey studies 
and the human neuroimaging research are funda-
mentally correlational.  We argue that overcoming 

this obstacle by using noninvasive techniques that 
directly affect brain regions may provide the most 
persuasive evidence to support or negate the current 
assumption that the human MNS is homologous to 
mirror neurons in Rhesus monkeys.

 

c onc Lusion
 

We concur that the MNS is an important discov-
ery, with ramifications for many different aspects 
of human functioning.  Whether the MNS is truly 
homologous with mirror neurons in Rhesus monkeys 
remains unresolved, but this does not necessarily 
invalidate the current MNS literature in humans.  
For example, it is possible that in humans the sys-
tem evolved somewhat differently, perhaps due 
to formal language acquisition, greater prefrontal 
tissue, or some other human characteristic.  Also, 
the use of the term “system” to describe the human 
MNS remains an debatable issue that can only be 
resolved by further research.  In any case, the MNS 
studies to date provide a rich database for develop-
ing theories that can encompass the existing data, 
and lead to testable hypotheses to evaluate in future 
experiments.

 We highlight several issues that seem important 
in deciphering the essential function(s) of the MNS.  
First, the confluence of conceptually different, but 
related systems (i.e., MNS, “self”-system, ToM, 
and the brain’s default mode) may suggest theo-
retical models of how the MNS is organized and 
its fundamental functionality.   Issues concerning 
hierarchical organization may be paramount here.  
The notion of auto-mirroring (Newlin, 2007) can 
spur new research that also bears on these questions.  
Specifically, what sensory and motor feedback loops 
are important in MNS architecture?  Finally, there 
is abundant reason to believe that the right and left 
MNSs are specialized in terms of function.  This is 
a very under-studied area that may prove important 
in understanding the organization of the MNS.  
Techniques for studying lateral asymmetry have 
been well developed over the last few decades.  It 
seems particularly important to determine how 
the two MNSs are coordinated to achieve cohesive 
functions.
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a bs Trac T

This chapter presents an argument that the process of emergence is the converse of the process of abstraction. 
Emergence involves complex behavior resulting from simple rules, while abstraction forming simple rules 
that describe complex behavior. This converse relationship suggests the possibility that similar mechanisms 
underlie both processes, and a greater understanding of one can lead to a greater understanding of the other. 
Especially in the case of human and artificial social systems, the processes of abstraction and emergence are 
inextricably interconnected; the abstractions that individuals make will determine what behaviors emerge, and 
the behaviors that emerge in the society determine what abstractions will be made. This relationship between 
the two processes, which we call the abstraction-emergence loop, can be used to gain a better understanding 
of both. It is argued that the abstraction-emergence loop functions over various degrees of complexity and 
levels of detail, and that the loop has the greatest efficacy in certain ranges of detail. This way of under-
standing the two processes has particular bearing on social interactions; in order to understand macro-level 
emergent social phenomena, we must also simultaneously understand the micro-level phenomena from which 
they arise. In considering when emergence occurs, the role of the observer in the emergence abstraction 
loop is also discussed. In addition to describing various properties of the abstraction-emergence loop, this 
chapter presents descriptions of several ongoing and future research projects in the creation of autonomous 
agent societies, and offers pointers to future research directions aimed at exploring and understanding the 
nature of the abstraction-emergence loop. Such an understanding of the relationship between abstraction and 
emergence can be helpful in designing communities of autonomous agents that interact socially with each 
other and with humans, and may also be a helpful step toward understanding the phenomena of emergence 
and abstraction in general.
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inTroduc Tion

A number of different disciplines have taken on 
the task of studying emergent phenomena, try-
ing to understand how and why they emerge, and 
delineating what makes emergent phenomena dif-
ferent from other phenomena exhibited by complex 
systems. Within computer science, much of this 
work has fallen under the auspices of artificial life 
(ALife). This subfield focuses on creating computer 
programs and simulations that exhibit qualities we 
otherwise attribute to living things, such as the 
ability to reproduce. A common environment for 
such work is cellular automata (CA), a grid where 
each cell on the grid is in a certain state at each 
tick of a system clock, and each cell’s state at the 
next iteration is determined according to a set of 
rules that refer to its neighbor’s states in the cur-
rent clock tick (see (Sarkar 2000) for a survey). One 
of the earliest examples of this is von Neumann’s 
self-replicating machine (von Neumann 1966), the 
goal of which was to create a theoretical machine 
capable of universal computation. This CA has the 
ability to produce any other cellular automaton if 
given a description in the proper format of the au-
tomaton to be produced. If the automaton is given 
a description of itself, it is thus able to reproduce 
itself. A reproducing CA was also developed by 
Christopher Langton (1984), whose goal was not 
to create a CA capable of universal computation, 
but rather the simplest possible CA still capable of 
self-replication. These automata’s capacity for re-
production is a well-known example of emergence, 
in that the high-level phenomenon of reproduction 
emerging from the low-level rules of the system, 
where none of the low-level rules explicitly describe 
the process of reproduction.

Another classic example from ALife is the cel-
lular automaton known as the Game of Life, first 
developed by John Conway (Gardner 1970). The 

cells in this relatively simple CA have only 2 states, 
which are called alive and dead. A cell’s state at the 
next iteration is given by three simple rules. Any cell 
with one or zero live neighbors is dead. Any cell with 
two or three live neighbors is alive. Any cell with 
four or more neighbors is dead. From these relatively 
simple rules, vastly complex patterns emerge. One 
of the better know is that of the glider (Figure 1), a 
patter which moves one cell down and one cell to 
the right every four iterations (the direction of this 
movement depends on the orientation of the glider 
pattern). The high-level behavior of a unified pat-
tern moving is not actually built into the system. 
Indeed, the automaton has no representation of this 
glider pattern, only the representation of the states 
of its cells. Rather, the behavior emerges from the 
interactions between individual cells in the system 
based on the rules that govern it.

These are a few examples of the types of emer-
gence described in ALife. A system based on fairly 
simple, low-level rules exhibits some high-level be-
havior not directly or explicitly built into the system; 
the high-level behavior emerges from the low-level 
interactions within the system. It is important to note 
here that predictability has little to do with whether 
or not a phenomenon is emergent. As has been noted 
by Damper (Damper 2000), the property of self-
replication exhibited by von Neumann’s machine 
is not only predictable, it was in fact designed into 
the machine. This does not mean, however, that the 
property is not emergent. It is still emergent, because 
the high-level phenomenon of self-replication occurs 
as a result of interactions between low-level rules 
that do not explicitly describe the property of self-
replication. It can be seen here that as the system 
exhibits emergent properties, an observer must be 
present to observe those properties and note that 
they are indeed emergent. The importance of level 
of detail and the role of the observer in emergence 
will be addressed later in this chapter.

Figure 1. A glider from Conway’s Game of Life
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Emergence, however, does not fall only under 
the purview of artificial life; a number of other 
fields have studied emergent phenomena. In a field 
related to ALife, some researchers in social simula-
tion have tried to describe how certain simulated 
environments are more suited to the emergence of 
cultural phenomena (Epstein and Axtell 1996; Gil-
bert, Schuster et al. 2005). Other disciplines outside 
the computational sciences are also concerned with 
emergent phenomena, though sometimes referred to 
by a different name or with different terminology. 
For example, some sociologists are interested in how 
knowledge and meaning are socially constructed 
(Berger and Luckmann 1966), or how social norms 
are established, maintained, and fade (Deutch and 
Gerard 1955; Kelley 1955). Although sociologists 
do not necessarily self-identify as researchers who 
study emergent phenomena, from a certain perspec-
tive they can be seen as being concerned with how 
certain social phenomena emerge from the interac-
tions of individual members of a society.

This chapter argues that emergent phenomena in 
society provide researchers with unique opportuni-
ties for studying the process of emergence. In the 
other cases of emergence mentioned above, simple 
rules that govern a system give rise to complex 
behavior, behavior that is not directly or explicitly 
a part of the simple rules. In society, though, indi-
vidual members of the society are aware of, and 
form abstractions about, these emergent patterns, 
effectively altering the basic rules that govern the 
system and affecting what further patterns emerge. 
This cyclic property of societies gives researchers 
a powerful analytic lens through which to explore 
the phenomenon of emergence, and it will be one 
of the main topics of this chapter.

All of the above cited examples of research about 
emergence have studied emergence in a specific 
context, that is, emergent properties of a specific 
system or class of systems. This begs the question, 
might it be possible to study not emergent social 
norms or emergent gliders, but to study emergence 
per se? Similar to the way in which physics studies 
the situationally independent laws that govern the 
physical universe, might it be possible to study the 
situationally independent laws that drive emergence? 
Are emergence in cellular automata and emergence 
in human societies fundamentally examples of the 
same underlying phenomenon? Based on current 

research, answering such a question is quite diffi-
cult, if even possible at all. While much research on 
emergence has been done in emergence in computa-
tional systems like CA, relatively little has explored 
emergence in societies, where the individual actors 
in the system may be cognizant of, and react to, 
emergent aspects of the system itself. This chapter 
argues that, in order to understand the process of 
emergence fully, we must gain an understand of 
the ways it operates in various contexts, so that we 
may ask if it is even the same process at all. Fur-
thermore, social systems provide prime territory 
for examining the relationships between low-level 
interactions and high-level phenomena that are at 
the core of emergence.

defini Tions and previous 
w ork

Before proceeding in our discussion, it is important 
to agree upon definitions for terminology that will 
be used in this chapter. Emergence, abstraction, 
complexity, and other concepts important are not 
only somewhat difficult to define but also do not 
enjoy any sort of consensus about their definition. 
In addition to surveying and summarizing previ-
ous work, this section will also provide working 
definitions for several terms as they will be used 
in this chapter.

emergence

A wide variety of approaches have been taken in 
trying to define exactly what constitutes emergence, 
owing partly to the many different disciplines that 
have addressed the concept. A basic definition, the 
primary one for this chapter, is that emergence is the 
process of complex patterns resulting from simpler 
rules. However, approaches to studying this process 
have been many and varied. Rather than attempt an 
overview of all such definitions, this section will 
review some of the major definitions most relevant 
to the material at hand; for a more encompassing 
review, see (Damper 2000) or (Cariani 1990).

One major contribution to the study of emergence 
has been that of Holland’s work on constrained gen-
erating procedures (cgp) (Holland 1998), which are 
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essentially collections of finite state machines. Using 
games as an example of systems in which complex 
properties arise from simple rules, he seeks to use 
cgp to build emergence out of smaller procedural 
pieces. The goal is to use constraints to orchestrate 
the patterns that emerge from these generating 
procedures. Thus, while Holland’s work is a valu-
able contribution, its value is limited to situations 
where the conditions under which emergence occur 
can be explicitly specified and tightly constrained. 
Furthermore, while the variable version, the cgp-v, 
can reorganize the connections between its compo-
nents, Holland does not describe cgp-v’s as able to 
react to, and reorganized in terms of, the emergent 
behavior they themselves exhibit.

Another more recent contribution has been 
Wolfram’s attempt at mapping the computational 
universe through investigations of one-dimensional 
cellular automata (Wolfram 2002). By enumerating 
and executing all such CAs, Wolfram develops a 
classification wherein one particular class of CA 
gives rise to complex behavior that can be described 
as an instance of emergence. This classification 
bears resemblance to the λ-parameter developed 
by Langton (Langton 1991), in that systems with 
certain λ values are those that exhibit emergent 
properties. However, both Wolfram’s and Langton’s 
both examine systems in which the rules are fixed, 
while this chapter is more interested in systems 
where individual components can adapt based on 
properties of the system as a whole.

Cariani offers a classification system including 
three different types of emergence (Cariani 1990). 
The first, computational emergence, “is the view that 
complex global forms can arise from local compu-
tational interactions” (ibid, p. 776). Largely, this is 
the sort of emergence in which Holland, Wolfram, 
Langton, and others pursuing similar research pro-
grams are interested. The second, thermodynamic 
emergence, is couched in physical systems, such as 
the way that chemical bonding emerges from the 
laws of quantum mechanics. The third, emergence-
relative-to-a-model, occurs when the behavior of 
a system differs from the current model for the 
system and the model must then be changed to ac-
count for the novel behavior. This last definition is 
the closest to the emergence on which this chapter 
focuses. However, emergence-relative-to-a-model 
is a predominantly top-down view of emergence; 

it address the way an observer changes its model to 
reflect the phenomenon being observed, but it also 
implies a dichotomy between the observer and the 
phenomenon. This view of emergence does not take 
into account situations in which the observer is part 
of the system it is modeling, nor does it take into 
account situations in which multiple observers are 
present as distinct parts of the system. In this case, 
the observer may change its model, which causes it 
to change its behavior, which in turn causes others 
to change their models and behaviors, and so on. 
Societies are an example of such self-referential 
systems, and for this reason merit study of the unique 
forms of emergence they may exhibit.

This chapter, though, is certainly not the first 
to call for exploring the ways in which society 
may exhibit a case of emergence. Other research in 
social simulation (Gilbert 1995), artificial societies 
(Axelrod 2003), and “infosocieties” (Conte 2001) 
points to the unique opportunities that societies 
present for studying emergence. Complex systems 
with the ability to react to their emergent properties 
have been said to exhibit “second order emergence” 
(Baas 1993; Steels 1995; Gilbert 2002). Indeed, the 
concept of second order emergence is similar to the 
ideas presented in this chapter. Specifically, we aim 
to come to a better understanding of the relationship 
between first order emergence and second order 
emergence, and how we might manipulate one to 
affect the other.

a bstraction

Abstraction, too, has been given a great deal of 
consideration, but for the most part not by the same 
researchers studying emergence. The definition 
adopted for the purposes of this chapter is that 
abstraction is the process of forming simple rules 
that describe complex phenomena. We can readily 
see here a corollary to the definition of emergence; 
emergence moves from simple rules to complex 
patterns, while abstraction moves from complex 
patterns to simple rules. This similarity, which 
is central to the ideas presented in this chapter, is 
explored further in the next section.

One common example of abstraction is the math-
ematical representation of numbers; the concept of 
the number “five” abstracts away the details of col-
lections of objects and presents a notion of “fiveness” 
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to describe collections of five objects. This type of 
abstraction is a fundamental aspect of computer 
science (Abelson 1996); the essence of computa-
tion is creating abstract representations that can be 
manipulated mechanically. Furthermore, a number 
of methods have been developed to create abstrac-
tions automatically. Machine learning algorithms, 
especially methods like support vector machines 
and kernel-based methods (Vapnik 1995), reinforce-
ment learning (Kaelbling, Littman et al. 1996), and 
sequence learning (Berlin 2003) are designed to 
automatically create abstractions about the series 
of inputs given them. Each of these techniques is 
implemented in a different way, is amenable for use 
in different situations, and produces abstractions that 
are distinctly different. If, as this chapter argues, 
abstraction and emergence are converse processes of 
one another, there may be ways to similarly classify 
methods of inducing emergent behavior, and thus 
be able to use specific methods in order to achieve 
specific desired results.

Abstraction also features prominently in the 
reductionist approach to scientific inquiry. Under 
this philosophy, a natural phenomenon may be un-
derstood by decomposing the phenomenon into its 
constituent parts, understanding each part individu-
ally, and understanding how these parts interact and 
combine to produce the whole phenomenon. On the 
surface, this may seem to contradict the premise of 
emergence, that complex phenomena can emerge 
from simple rules that do not directly or explicitly 
reference the complex phenomenon of which they 
are a part. However, by taking into account the 
relationship between abstraction and emergence, 
we can see that emergence and reductionism are 
not in opposition but rather complement one an-
other. The abstractions formed in the reductionist 

approach derive from complex phenomena the sim-
pler principles underlying those phenomena. From 
the interaction of those principles, we can see the 
larger, more complex phenomena emerge, just as 
the principles of quantum mechanics give rise to the 
phenomenon of chemical bonding. The abstractions 
we form in the process of applying reductionism will 
affect the ways in which we perceive that resultant 
higher-level phenomenon.

Complexity

In the above definitions, emergence and abstraction 
are described as processes that move in opposite di-
rections along an axis of complexity (Figure 2). This 
begs the question of how complexity is defined. Once 
again, there are a number of options; see (Badii and 
Politi 1997) for a rather comprehensive review. One 
might use information theory (Shannon 1948) and 
say that the complexity of a system is based on the 
amount of information required to fully describe the 
system. This is feasible, as it means that systems ex-
hibiting emergent properties have the highest levels 
of complexity, especially in classification schemes 
similar to Langton’s and Wolfram’s. However, it 
becomes difficult to quantify in an information 
theoretic way just how much information is pres-
ent in social systems, or what entails a complete 
description of the system. Another possibility is 
Kolmogorov complexity (Li and Vitanyi 1997), 
which measures the complexity of a system based 
on the length of the description of the mechanism 
that generates the system. For example, a collection 
of strings would be only as complex as the length 
of the regular expression or finite automaton used 
to generate them. This is not necessarily as useful 
for our purposes, since emergent properties are by 

Figure 2. Emergence and abstraction work in opposite directions along an axis of complexity



  ���

Relationships Between the Processes of Emergence and Abstraction in Societies

definition far more complex than the mechanism 
that generates them. Similar problems occur if we 
attempt to adopt definitions of complexity from for-
mal languages and automata theory. The difficulty 
is that we need a method to compare the complexity 
of the rules that define a system to the behavior that 
the system exhibits. Since it is unclear whether one 
measure of complexity should be chosen over any 
other in the study of emergence, it is not claimed 
that any single method of determining complexity 
is most applicable to the systems being considered 
here. Rather, the abstraction-emergence loop, 
defined in the next section, provides a framework 
for studying the ways that abstraction and emer-
gence interact. While a single, unified measure of 
complexity would be of great value to the research 
program presented here, the development of such a 
method is beyond the scope of this chapter, and so 
no authoritative working definition of complexity 
will be given here.

The a bs Trac Tion- eMergence 
Loop

Why do emergent phenomena occur in some situa-
tions and not others? What what aspects of certain 
classes of algorithms examined by Wolfram causes 
them to exhibit emergent behavior? What aspect of 
those certain algorithms is lacked by others? Why 
do certain abstractions serve to very accurately 
describe complex phenomena while others do not? 
How can some abstractions lead to more complex 
behavior than that from which they were originally 
drawn? Is there perhaps some connection between 
these two processes that we can use to understand 
both more fully?

While connections between abstraction and 
emergence may be at work in many complex sys-
tems, these connections are brought to the forefront 
when the systems involve entities that can observe, 
take into account, and react to, the emergent pat-
terns to which they are contributing. Social systems 
are an example of just such a system. Individuals 
interact with others in a society, form abstractions 
about their interactions, and those abstractions in 
turn influence the patterns that emerge from fu-
ture interactions. We call this cyclic connection of 
mutual influence the abstraction-emergence loop; 

the abstractions that individuals make are the basis 
for the behaviors that emerge in a society, and the 
behaviors that emerge are the basis for the abstrac-
tions that individuals make.

This abstraction-emergence loop bears a great 
deal of similarity to processes described by various 
social theorists. For example, Berger and Luckmann 
(Berger and Luckmann 1966) describe the ways that 
institutions form based on social patterns. Through 
habituation and typification, members of a society 
abstract away the differences between various indi-
viduals who may perform a given task to form a role 
that describes the essence of the task. For example, 
the role of a judge in a court of law does not include 
the judge’s age, specific facial expressions used by 
the judge, or the judge’s posture while seated at the 
bench. It does, however, include calling court into 
session, sustaining or overruling objections, and 
ensuring that proper procedure is followed. Other 
members of legal cour room proceedings observe 
judges and develop a set of expectations, a role, about 
what constitutes being a judge and how one interacts 
with a judge. As judges observe one another, they, 
too, make abstractions about each other’s activities. 
These abstractions serve to influence what individual 
judges do in their own courts, and thus influences 
the patterns that emerge across courts in general. 
The two processes are not separate and distinct, as 
described here, but rather occur continuously and 
simultaneously; at the same time that individuals 
use their abstractions to influence their behavior, 
they are simultaneously forming or refining their 
abstractions, which then influence future behav-
ior. Furthermore, the status of judge-ship is being 
continually both reestablished and redefined by 
the judges themselves and other interactors in the 
courtroom.

This draws attention to similarities between the 
abstraction-emergence loop and Giddens’ descrip-
tions of the interactions between individual agency 
and social structure (Giddens 1979). As an individual 
acts in society, his or her actions are shaped by the 
structures inherent in the society of which he or she 
is a part. Continuing the example above, the indi-
vidual in the court room respects and defers to the 
judge as dictated by the relevant social structures. 
However, the individual also has personal agency, 
in that the individual’s actions also serve to shape 
social structure. The defendant may decry the judge 
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and biased and refuse to acknowledge the authority 
of the court, thereby working to establish a new 
possible structuring of that social interaction. Thus, 
the individual’s actions are both defined by, and 
serve to define, the structures present in their soci-
ety. Similarly, an individual’s actions both emerge 
from the abstractions the individual has made and 
simultaneously serve as actions from which new 
abstractions are made. While this cyclic nature is the 
essence of both the abstraction-emergence loop and 
Giddens’ structuration theory, Giddens was more 
concerned with how social interaction is structured 
and less with the process of how social structures 
emerge from individual interactions.

As stated above, the abstraction-emergence loop 
has some similarity to the concept of second order 
emergence (Baas 1993; Steels 1995; Gilbert 2002). 
In first order emergence, emergent properties arise 
directly from interactions within a system. In second 
order emergence, parts of the system react to the 
system’s own emergent properties, often changing 
the nature of the system itself. Although Gilbert 
sees second order emergence as a specific type of 
emergence particular to social systems, the position 
taken here is that the abstraction-emergence loop 
more accurately captures the nature of the situation 
than the concept of second order emergence for 
three main reasons. One, the ways in which parts 
of a system reacts to its own emergent properties 
are not described in discussions of second order 
emergence. The specifics of this reaction are handled 
as the abstraction portion of the abstraction-emer-
gence loop. Two, the name “second order” implies 
that there is something distinctly different about 
this second phase of emergence versus the first or 

perhaps a third. The argument here is that, since 
abstraction and emergence are simultaneous and 
continuous processes, one cannot divide emergent 
properties into a series of nth orders. Three, because 
the approach of second order emergence does not 
include the process by which the system’s compo-
nents react to its emergent properties, it does not 
address the ways in which the methods involved 
in these reactions affect what properties actually 
emerge. The abstraction-emergence loop places an 
emphasis on the methods by which reactions occur 
and their key role in influencing emergence.

Consider that there are a variety of different 
classes of learning algorithms: vector support ma-
chines, reinforcement learning, neural networks, 
social learning, and others. As described above, 
such algorithms can be seen as automated, me-
chanical methods of forming abstractions. Each 
of these methods includes a broad array of similar 
algorithms, each method’s algorithms have specific 
strengths and weaknesses, each method is par-
ticularly amenable to different types of problems, 
and each will result in the formation of different 
types of abstractions. According to the abstraction-
emergence loop, giving different agents the ability 
to form abstractions using these methods should 
give rise to different emergent phenomena. Such 
experiments are described in further detail in the 
future work section below.

Leve Ls and r anges of deTai L

As stated above, abstraction and emergence move in 
opposite directions along a continuum of complex-

Figure 3. Smaller loops contained within a large abstraction-emergence loop
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ity; abstractions moves from more complexity to 
less, emergence from less to more. However, there 
are not only two levels of complexity, high and 
low, but an entire spectrum. Within this spectrum, 
the abstraction-emergence loop can function over 
many different ranges of complexity and at many 
different levels of detail.

A range of complexity here refers to the differ-
ence in complexity between the complex phenomena 
and the simpler abstractions, or the difference in 
complexity between the simple rules and the more 
complex emergent phenomena. When examining 
instances of the abstraction-emergence loop, it may 
be beneficial to consider the range of complexity 
spanned between the abstractions and the emergent 
phenomena. It may be the case that the emergent 
phenomena for one instance of the loop serve as the 
simple rules for other instances of the loop spanning 
a range of higher complexity. Thus, a single large 
loop may actually be composed of many, smaller 
loops (Figure 3).

For example, the phenomenon of a football game 
can be seen as one large instance of the abstrac-
tion-emergence loop; individuals make abstractions 
about what it means for an activity to be recognized 
as a game of football, and these abstractions then af-
fect the way that those individuals go about enacting 
a game of football. However, this large loop many 
actually be composed of many, smaller loops. One 
component of many football games is the crowd of 
spectators, and participation in the crowd is partici-
pation in a smaller abstraction-emergence loop. As 
individuals participate in the game as spectators, 
they are drawing on abstractions they have made 
about what it means to be a spectator at a football 
game. As they do so, the patterns that emerge from 
their actions and interactions serve to fuel further 
abstraction. Simultaneously, the crowd of specta-
tors serves as another component in the definition 
a football game. As the abstraction-emergence loop 
alters the nature of the crowd, it simultaneously 
alters the nature of the football game, because the 
loop defining and redefining the crowd is a smaller 
part of the loop that defines and redefines the game 
as a whole.

The abstraction-emergence loop also functions 
at different levels of detail. Just as there is a broad 
spectrum of complexity over which the loop may 

operate, it may also operate over many different 
levels of detail. Consider Conway’s Game of Life. 
Depending on the level of detail on which an ob-
server focuses, he or she may see individual cells 
turning on and off, may see isolated patterns such 
as gliders moving across the board, may see larger 
patterns such as glider guns, or may see large 
overall trends that affect the entire contents of the 
board. The level of detail at which the observer ap-
proaches the system in part determines what that 
observer recognizes as emergent phenomena. While 
the subjective nature of emergence is beyond the 
scope of the current chapter, the important point 
is that focusing on different levels of detail leads 
to different emergent phenomena. Furthermore, in 
different instances, the abstraction-emergence loop 
operates on different levels of detail.

Consider the minutia of how an individual raises 
a glass of wine and takes a drink. One might use 
the right or the left hand. One may swirl, shake, 
or otherwise agitate the contents of the glass. The 
glass will reach a specific degree of inclination as 
it is tilted toward the drinker. One might imbibe 
the liquid in small sips, in large gulps, or the entire 
glass in one long draught. The activity might occur 
in the home, in a bar, at an expensive restaurant, in 
a park, on a mountain, alone, with a partner, with 
family, with strangers, or in any number of other 
situations. Despite these many differences, most 
observers would be able to abstract away from the 
lower level of detail to recognize the higher level 
activity of drinking wine. Because this phenomenon 
is concerned with only a specific level of detail, 
we abstract away differences at lower and higher 
levels of detail to recognize multiple occasions as 
instances of the same activity.

Before proceeding, it is important to recognize 
a connection between these concepts and some 
that have been explored in reinforcement learning. 
Q-learning (Watkins and Dayan 1992) is a form of 
reinforcement learning that attempts to correlate 
states with actions and determine the expected 
reward, called the Q-value, for taking each action 
in each state. Hierarchical Q-learning represents 
an attempt to adapt Q-learning to multiple levels 
of detail; leaf controllers deal with decisions at a 
low level, while a selection policy determine which 
leaf nodes to invoke. For a summary of hierarchi-
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cal Q-learning and related approaches, see (Berlin 
2003). The main difference between these methods 
and that advocated by the abstraction-emergence 
loop is that hierarchical Q-learning essentially 
represents an approach to divide the problem space 
by decomposing tasks into constituent parts, while 
the argument here is that tasks can sometimes be 
decomposed into smaller subtasks. Different levels 
of decomposition are appropriate for different tasks, 
based on the range of detail over which abstractions 
are being made. Also, these algorithms focus on a 
specific level of detail and degree of decomposition, 
which may affect the patterns that emerge from the 
learning process.

Returning to the role of detail in the abstrac-
tion-emergence loop, focusing on specific levels and 
ranges of detail is one of the properties on which 
social simulation hinges. Sugarscape (Epstein and 
Axtell 1996) is one somewhat well-known environ-
ment for social simulation. Sugarscape is basically 
a cellular automaton but is more complex than the 
Game of Life. In sugarscape, there are many indi-
vidual entities, each one designated as being of a 
certain race. These entities must use energy to move 
around a grid; if their energy falls to zero they per-
ish. In order to gain energy, they need to find and 
consume sugar that occupies some squares of the 
grid. There is also a valued commodity known as 
spice, which allows for trade between individuals of 
different races. An important aspect of this simula-
tion platform is the focus on a certain level of detail. 
The designers choose not to care about the specifics 
of a trade might be negotiated between two entities. 
With humans trading in a market, the customer may 
haggle with the shopkeeper, the shopkeeper may be 
pushy and overbearing, and the customer may end 
up accepting a price higher than might have been 
preferred. All of these complex details would affect 
the abstractions an individual makes when devel-
oping a notion of the experience of the market and 
what it is like to trade with a shopkeeper. However, 
in sugarscape, these low level details of interaction 
are not the focus; they are omitted, and the trade 
simply occurs. As Epstein and Axtell demonstrate, 
this level of detail is more than sufficient to simulate 
a wide variety of social phenomena. However, this 
level of detail is not sufficient for describing many 
phenomena.

Let us return now to the wine and consider trying 
to determine the difference between an individual 
tasting wine, in the oenophile sense of tasting, and 
an individual “just drinking” wine. At a higher 
level of detail, the actions look very similar; the 
individual raises a glass containing a liquid derived 
from the fermented juice of grapes and imbibes 
some quantity of that liquid. However, wine tasting 
is an action that can be recognized only by focusing 
at a lower level of detail. When tasting, one swirls 
the wine in the glass to open it up and release the 
flavors, smells the bouquet, holds the wine up to 
the light to examine its color, tilts it in the glass to 
examine viscosity, sips a mouthful of the liquid, 
swishes it around the mouth to explore the flavor, 
pauses for a moment after swallowing, and often 
delivers a summary description of the wine and the 
tasting experience as a whole. Although in many 
cases social interaction does not occur at this level 
of detail, there are times in which the minutia of 
daily interaction becomes integral to the constitution 
of that interaction (Garfinkel and Sacks 1970). By 
creating social simulations that do not include this 
level of detail, researchers automatically exclude 
the possibility of different higher level phenomena 
arising from activities with different combinations 
of these lower level details. While a good deal of the 
social simulation literature focuses on macro-level 
emergent phenomena in societies, there is relatively 
little exploration of micro-level emergent phenom-
ena. Furthermore, there is no exploration of the con-
nections between the two. How does the emergence 
of low level phenomena affect what higher level 
phenomena emerge, and how do abstractions about 
high level phenomena affect the abstractions that 
individuals make about lower level interactions? In 
order to understand these connections, we must build 
social simulations that incorporate a wide range of 
detail in their interactions. Not only does the ab-
straction-emergence loop described in this chapter 
offer one framework for exploring this connection, 
but such simulations would be a prime method for 
studying the effects of the abstraction-emergence 
loop across many varied levels of detail, examining 
how instances of the loop at different levels interact 
with and affect one another.
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predic Tion and c on Tro L of 
eMergence

One of the main goals of the line of work advocated 
in this chapter is the ability to predict and control 
emergent phenomena. A parallel may be drawn to 
the approach taken by the natural sciences. Based 
on experimentation, scientists develop laws that 
describe the workings of the natural universe, for 
instance, the second law of thermodynamics, or 
Newton’s three laws of motion, or s = s0 + v0t + 
0.5at2. Based on these laws, we are able to make 
predictions about the consequences of certain actions 
we take, e.g., if my wine glass were to slip from my 
hands, we could predict its trajectory, its position 
along that trajectory at any given moment, and the 
precise moment at which it would strike the floor 
and shatter. Granted, this would involve significantly 
more complex formulae than the single one listed 
above for position, but it could nonetheless be done 
with quite a good degree of accuracy. Furthermore, 
we are not only able to make predictions based on 
these laws, but we can use these predictions to alter 
the nature of our physical environment. Based on 
Bernoulli’s equations, in conjunction with a number 
of other principles, engineers are able to manufacture 
objects that, when traveling forward at a great enough 
velocity, do not fall towards the earth but actually 
rise into the air. Just as knowledge of physical laws 
allows for control and manipulation of the physical 

environment, knowledge about the laws governing 
emergence may grant us the ability to control and 
manipulate emergent phenomena.

The abstraction-emergence loop provides one 
possible approach to the manipulation of emergent 
phenomena. In this framework, the abstractions that 
individuals make are intrinsically connected to the 
overall patterns that emerge from their behavior. By 
developing a greater understanding of how this con-
nection actually operates, developers of multiagent 
systems may be able to predict how different alter-
native implementations of their individual agents 
would affect the emergent behaviors of the system, 
thus enabling them to design certain properties into 
individual agents that are known to give rise to a 
certain desired class of emergent phenomena. For 
example, if a designer wants a market simulation that 
stabilizes with a high cost of basic goods, perhaps 
within a certain number of iterations, he or she may 
choose to implement agents that make abstractions 
about their exchanges with other agents using a 
specific type of algorithm, perhaps reinforcement 
learning. Because of the designer’s knowledge of 
how the abstractions involved in reinforcement 
learning are connected to the emergent phenomenon 
of market stabilization, the designer is able to choose 
a method of abstraction for the individual agents 
that will give rise to the desired result.

The abstraction-emergence loop may also have 
implications for the orchestration of large-scale 
social change. Just as the emergent properties of a 

Figure 4.  A community of animated agents inhabits a virtual island
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multiagent system are intrinsically linked to the ab-
stractions that individual agents make, the emergent 
properties of human societies are intrinsically linked 
to the abstractions that individuals make about their 
interactions with others. With an understanding of 
just how these individual abstractions are linked 
to the emergent patterns, if one can get people to 
change the abstractions they make or the way they 
go about making them, it may be possible to change 
the emergent social structures currently in place or 
cause entirely new structures to emerge. Similarly, 
with an understanding of how the loop works in 
both directions, it may be possible to predict just 
how individuals will make abstractions about these 
new social structures and thus influence further 
emergent structures. Some methods for exploring 
these possibilities are provided in the future work 
section.

f uTure w ork

The focus of this chapter has on been describing 
the abstraction-emergence loop, its properties, and 
the directions it suggests for possible research on 
emergence. This section describes a number of 
future projects intended to explore the abstrac-
tion-emergence loop further and determine to what 
extent it can help us understand, predict, and control 
emergent phenomena.

normative echoes

One of the approaches advocated in this chapter is 
the development of social simulation that includes 
not only high level actions, but also the low level 
details of social interaction. As an initial exploration 
of this, the authors developed Normative Echoes, an 
interactive installation which revolves around using 
the abstraction-emergence loop to allow communi-
ties of animated characters to develop patterns of 
speech based on the patterns of words and phrases 
spoken by human users. The installation features 
groups of animated autonomous agents that inhabit 
stationary computers, which represent islands of 
virtual space (Figure 4) (Baumer, Tomlinson, et 
al. 2006). Users interact with agents by speaking 
into a microphone at either island that serves as the 

agents’ ears out into the physical world. The words 
and phrases spoken by participants are recorded as 
.wav files, which the agents then use to communi-
cate with one another around a central bonfire. Not 
only do the characters use the words and phrases 
they learn from participants, but they also use the 
patterns they learn from each other. Using simple 
signal processing, the participant’s speech is broken 
up into .wav files based on drops in amplitude of the 
input. These individual .wav files correspond to the 
words and phrases that compose the participant’s 
speech, which become the atomic units of which 
the agents’ speech patterns are formed. The agents 
perform no sophisticated speech-to-text or natural 
language processing, so there is no Semantic content 
to their communications. Rather, their communi-
cation takes the form of sharing patterns with one 
another. Initially, agents use the patterns of words 
and phrases used by participants. For example, if 
a participant says, “Hi, how’s it going?” the agents 
connect the various sonic components that make 
up this utterance to form a pattern. These patterns 
are represented using a language called Scenario 
ML (Alspaugh 2005), a rich XML-based language 
developed for describing scenarios in software engi-
neering. As agents communicate with one another, 
they may alter these patterns. For example, one 
agent may say “Hi,” and another may respond with 
repeating the greeting “Hi,” or may respond with 
“How’s it going?” or even just “....going?” Based on 
the frequency with which certain patterns are used 
and what patterns are used as replies to what other 
patterns, the agents make abstractions about those 
things that are said and those things that are not 
said. These abstractions are then used to influence 
further communication, thus affecting what patterns 
emerge. It may be the case that every agents often 
say “Hi” to one another, but rarely say “How’s it 
going?” The system also includes slight random 
perturbations to keep the communications between 
the agents from becoming entirely homogeneous and 
to encourage the development of new structures. 
Participants may also interact with these characters 
by moving them between islands with tablet PCs 
that serve as virtual rafts. In this case, the agents 
experience a sort of cultural diaspora; the agent that 
was moved takes with it the vocabulary and patterns 
it has learned on its island and brings them to the 
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inhabitants of the new island. Simultaneously, the 
agent that was moved learns the speech patterns 
that are used on the new island and thus becomes 
absorbed into that society.

Normative Echoes was shown in the demonstra-
tion program of AIIDE-06 (Baumer, Tomlinson, 
et al. 2006). While there, participants’ interactions 
with the installation were video recorded, and the 
authors are in the process of analyzing the human 
participants’ interactions with the installation by 
means of video analysis. The goal of this analysis 
is in part to understand what happens when human 
users try to understand the behavior of software that 
is, in turn, trying to understand them. Importantly, 
while the animated agents are interacting with one 
another, they are also interacting with human par-
ticipants, who are also interacting with one another. 
While these agents are making abstractions about 
the humans’ and each other’s speech patterns and 
trying to understand them, the humans are simul-
taneously forming abstractions about the speech 
patterns of the agents and trying to understand 
them. In this way, we hope to explore what happens 
when the abstraction-emergence loop is expanded 
to include both artificial agents and humans in-
teracting socially. Specifically, the humans and 
the computational agents use different methods to 
create abstractions about their interactions with one 
another. How will the abstractions formed differ? 
Will these different abstractions cause difficulty 
in establishing mutual understanding between the 
humans and computational agents? How will these 
different abstractions influence the emergence of 
patterns in the social exchanges within and between 
the two groups?

Rule-To-Property Complexity

In the above discussion of complexity, a number 
of different possible complexity measures were 
discussed for use in measuring the amount of 
complexity at various points along the abstraction-
emergence loop. However, as noted above, there is 
no single unified complexity measure by which to 
quantify emergence. Many complexity measures 
either address the complexity of the system required 
to produce a phenomenon, such as Kolmogorov 
complexity (Li and Vitanyi 1997), or address the 

complexity of the phenomenon itself, such as in-
formation theory (Shannon 1948). The difficulty 
becomes that, with emergence, we assert that the 
emergent phenomenon has more complexity than 
the system from which it arises. While the lack of 
an objective, quantitative measure has not been an 
impediment to research on emergence thus far, it 
would certainly help matters. For instance, if it were 
possible to measure the complexity of a system and 
the complexity of the behavior the system exhibits 
using the same scale, then this quantitative measure 
of complexity could be used to determine whether or 
not a phenomenon should be considered emergent by 
determining if the phenomenon’s complexity is sig-
nificantly higher than the complexity of the system 
from which it arose. It would also provide a method 
for measuring the amount of complexity that is being 
reduced in the process of abstraction by comparing 
the complex phenomenon to the simple rules being 
produced. Furthermore, by measuring the amount 
of complexity in an emergent phenomenon and the 
amount of complexity in abstractions formed about 
that phenomenon, one could measure the ranges of 
complexity over which the abstraction-emergence 
loop operates, possibly determining variations in 
its strength in operating over different size ranges. 
Such a complexity measure would prove extremely 
useful in exploring emergent phenomena, either via 
the abstraction-emergence loop or through other 
approaches.

social s imulation

Another possible area for research is to further 
explore social simulations that have a more phenom-
enological basis. It has already been argued in this 
chapter that we can benefit from developing social 
simulations that incorporate not only high level be-
havior but also the low level details of interaction in 
order to explore the connections between these low 
level interactions and the high level phenomena to 
which they give rise. One method of doing this would 
be to construct a number of different simulations, 
each one with agents that form abstractions using 
different methods, such as kernel-based methods 
(Vapnik 1995), reinforcement learning (Kaelbling, 
Littman, et al. 1996), or sequence learning (Berlin 
2003). By examining the differences in the emergent 
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phenomena that arise in the system, it may be pos-
sible to create generalizations about how different 
forms of abstraction affect the emergent results, 
and how those emergent results feed back into 
future abstractions. For example, all simulations 
in which agents use reinforcement learning may 
give rise to a set of emergent phenomena that is 
classifiably different than the phenomena that arise 
from simulations using kernel-based methods. A 
classification system of these emergent phenomena 
would prove quite useful in advancing a general 
study of emergence.

Furthermore, it would also be informative to do 
experiments with simulations where different agents 
employ different types of abstractions to understand 
how the different methods of abstraction affect one 
another. Do the different abstractions that the differ-
ent agents form affect their interactions? Do different 
combinations of different methods of abstraction 
lead to new categories of emergent phenomena? Are 
the emergent phenomena when different agents use 
different methods of abstractions any more or less 
complex than with a system in which all agents use 
the same methods of abstraction? These are only a 
few of the many interesting and valuable research 
questions to be pursued along these lines.

second Life

In addition to studying artificial social systems, 
the abstraction-emergence loop can also provide 
insight when studying human social systems. In 
another project, the authors are considering the pos-
sibility of using the online social world of Second 
Life (LindenLab 2003) as a test bed to explore the 
application of the abstraction-emergence loop to the 
study of human social behavior. There are several 
rationales behind using Second Life as a means for 
studying human social interaction. Anthropologists 
and social scientists are already using online gaming 
to study social behavior (Boellstorff 2006; Nardi and 
Harris 2006). In physical reality, recognizing human 
activities and partitioning them into their constitu-
ent parts is a very challenging problem, but in the 
virtual worlds of online gaming, what constitutes 
an individual action is determined programmati-
cally by the system. Thus, rather than focusing on 
the task of activity recognition, the research can 

focus on using the abstraction-emergence loop to 
study the roles of abstraction and emergence in 
human society. Furthermore, Linden Lab, creators 
of Second Life, explicitly supports the use of their 
software for educational purposes. Lastly, much 
of the content for the game is created by players; 
there already exist many scripts for performing 
meta-tasks within the game that the research team 
may be able to harness.

The actual plan of study consists of two main 
phases. In the first phase, human participants’ 
Second Life accounts will be instrumented to col-
lect data about their actions and interactions with 
other players. This data will include what actions 
are taken by which players, the context of those 
actions described in terms of who else is present 
and what other actions are taken, and the temporal 
relationships between those actions. As with the 
social simulations described above, a number of 
different computational methods will be tested to 
form abstractions from these data that describe the 
interaction patterns between players. These abstrac-
tions will then be used to try to predict what patterns 
will emerge during player interactions. Based on 
discrepancies between the predicted and actual ac-
tions, the abstractions will be further modified until 
the abstractions are relatively adequate predictors 
of player actions. The second phase of the study 
will involve the validation of those abstractions. 
The abstractions will be used to guide a simulation 
where each agent in the simulation is based on one 
of the characters in the study. Data describing this 
simulation will be given to human participants, 
as well as data logs describing actual interactions 
from the game. The test will be whether or not 
participants can distinguish between data generated 
by the simulation and data gathered by the game. 
According to the abstraction-emergence loop, the 
types of abstractions individual players make about 
their interactions will affect what social patterns 
emerge, and vice versa. If the patterns that emerge 
from these computational abstractions resemble 
those that emerge from human social interactions, 
then the computational abstractions may be an ac-
curate representation of those formed by human 
players. Furthermore, just as algorithms for creating 
abstractions may be classified into groups, if the 
properties of the abstraction-emergence loop hold, 
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then the patterns that emerge from these various clas-
sifications of abstraction algorithms will be similarly 
classifiable. For example, the use of reinforcement 
learning should lead to the emergence of patterns 
that are similar to each other and simultaneously 
different from the patterns emerging from the use 
of genetic algorithms.

Another, more complex test would be to in-
troduce into the actual game world autonomous 
characters, or bots, whose behavior is governed by 
the abstractions acquired during the first phase and 
used for the simulations described here. The test in 
this case is if the bots, using the abstraction-emer-
gence loop to continuously modify their behavior, 
can integrate into the fabric of society within the 
game. Currently there do not exist well-defined 
quantitative metrics for measuring this form of 
membership in the society of a virtual world. Fur-
thermore, the bots would run the risk of deceiving 
Second Life’s paying clientele and betraying their 
trust that live humans are controlling the characters 
with whom they interact. Nevertheless, such in situ 
social analysis of the abstraction-emergence loop 
would be helpful in determining the nature of its 
effect on human societies.

It could be argued that this process amounts to 
a Turing test for the social interactions that emerge 
from the acquired abstractions. As mentioned above, 
this chapter argues for more phenomenological 
forms of social simulation, and the tests described 
here present a way of evaluating the efficacy of 
interaction-level social simulations in reproducing 
the details of social exchange. Furthermore, within 
societies, mutual intelligibility is one of the more 
important products of the abstraction-emergence 
loop. Verifying whether such intelligibility can 
be obtained is core to verifying the effects of the 
abstraction-emergence loop.

Another question raised by the above methodol-
ogy is whether the results will have any implications 
beyond the video gaming domain studied. Early 
sociological and anthropological work that focused 
on online interaction often portrayed online social 
interaction as a method of exploring multiple alter-
nate personalities, or expressing certain otherwise 
non-dominant facets of one’s own personality. For 
example, some MUD (multi-user dungeon) play-

ers have several characters, each with a different 
personality, and choose which character to play 
based on their current mood or what facets of their 
own personality they felt like exploring (Turkle 
1995). However, more recent work suggests that 
people use the Internet not to be someone else but 
as new ways of being themselves. For example, 
Trinidadians, for whom connection with family is 
an important value, use the Internet as a new way to 
be Trinidadian, such as sending email reminders to 
their child in London to bring an umbrella because 
the forecast predicts rain today (Miller and Slater 
2000). This later work suggests that social dynamics 
in an online setting bear very close resemblance to 
social dynamics at work in offline situations. If the 
abstraction-emergence loop can be used to analyze, 
model, and simulate social behavior online, it may 
be able to do the same for a broader range of human 
social dynamics.

c onc Lusion

The study of emergent phenomena presents research-
ers with a number of difficult challenges, not the 
least of which is developing an overall conceptual 
approach to the process of emergence. This chapter 
has presented an argument that the processes of 
emergence and abstraction are closely related and 
inextricably connected, and that the study of each 
can mutually inform the study of the other. This is 
especially true in the case of social systems, where 
individuals make abstractions about their interac-
tions that influence what patterns emerge in what 
was called the abstraction-emergence loop. By 
drawing parallels to classes of algorithms for au-
tomatic creation of abstractions, it was argued that 
it may be possible to create similar classifications 
of emergent phenomena. The relationship between 
the abstraction-emergence loop and level of detail 
was discussed, and the concept of range of detail 
was introduced, which can be used to asses the 
difference between the level of complexity of an 
emergent phenomenon and abstractions about that 
phenomenon. Finally, a number of projects were 
described that are designed to explore the role of 
the abstraction-emergence loop and its efficacy in 
helping us understand emergent phenomena.
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Why is it important to study emergence? The 
ultimate goal of this line of work is to understand 
emergence to the point of being able to manipulate 
and control it; this chapter focuses on doing so in a 
number of different computational systems. How-
ever, it may be possible to transfer the knowledge 
gained in understanding emergence in computational 
systems to other domains. With an understanding of 
just how abstractions affect emergence, one would 
be able to predict what patterns would emerge from 
certain abstractions and thus, in the design of vari-
ous sorts of complex systems, choose from among 
a number of alternatives for the system’s low level 
rules, thus enabling the achievement of the desired 
high level effect from the system. Particularly, this 
chapter proposes applying this methodology not only 
to computational systems, but also to social systems. 
Creating classifications of methods for the mechani-
cal formation of abstractions and complementary 
classifications of emergent phenomena to which 
they give rise is not nearly as a great a challenge 
as creating similar classifications of abstraction 
and emergence in humans. However, the potential 
impact on society of understanding the connections 
involved in the abstraction-emergence loop and 
of being able to influence the emergence of social 
structure knowledgeably are substantial.
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In modern legal systems, a large number of autonomous agents can achieve reasonably fair and accurate 
decisions in tens of thousands of legal cases. In many of those cases, the issues are complicated, the evi-
dence is extensive, and the reasoning is complex. The decision-making process also integrates legal rules 
and policies with expert and non-expert evidence. This chapter discusses two major types of reasoning that 
have emerged to help bring about this remarkable social achievement: systems of rule-based deductions and 
patterns of evidence evaluation. In addition to those emergent structures, second-order reasoning about legal 
reasoning itself not only coordinates the decision-making, but also promotes the emergence of new reasoning 
structures. The chapter analyzes these types of reasoning structures using a many-valued, predicate, default 
logic – the Default-Logic (D-L) Framework. This framework is able to represent legal knowledge and rea-
soning in actual cases, to integrate and help evaluate expert and non-expert evidence, to coordinate agents 
working on different legal problems, and to guide the evolution of the knowledge model over time. The D-L 
Framework is also useful in automating portions of legal reasoning, as evidenced by the Legal Apprenticetm 
software. The framework therefore facilitates the interaction of human and non-human agents in legal deci-
sion-making, and makes it possible for non-human agents to participate in the evolution of legal reasoning 
in the future. Finally, because the D-L Framework itself is grounded in logic and not on theories peculiar to 
the legal domain, it is applicable to other knowledge domains that have a complexity similar to that of law 
and solve problems through default reasoning.
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inTroduc Tion
 

The logical structure of legal reasoning, and espe-
cially its second-order reasoning about the reasoning 
process itself, is a primary mechanism by which new 
legal rules and new plausibility schemas emerge, 
and through which such rules and schemas adapt 
to the nuances of legal cases. This reasoning struc-
ture not only coordinates the efforts of numerous 
autonomous agents, but also promotes the emergence 
and evolution of new reasoning structures by re-
sponding to the tremendous variability provided by 
individual legal cases. This chapter describes the 
Default-Logic (D-L) Framework, which accurately 
models the logical structure of legal reasoning in 
actual legal cases. Moreover, it is the logical struc-
ture of legal reasoning itself, and not any particular 
set of rules within the legal knowledge domain, 
that creates this evolutionary mechanism. This 
means that the evolutionary mechanism captured 
by the D-L Framework can operate in domestic, 
foreign and international legal systems; that non-
human autonomous agents can participate in this 
evolution, interacting with human agents; and that 
similar reasoning structures can operate in many 
knowledge domains other than law.

 Legal reasoning is a distinctive method of 
reasoning that has emerged because of adherence 
to the rule of law. The rule of law requires that 
similar cases should be decided similarly, that 
each case should be decided on its merits, and that 
decision-making processes should comply with all 
applicable legal rules. One safeguard for achieving 
these fundamental goals is to make the reasoning 
behind legal decisions transparent and open to 
scrutiny. If the legal rules and policies are the same 
between cases, and the evidence and reasoning in 
particular cases are publicly available and subject 
to scrutiny, then the legal decisions in those cases 
are more likely to be evidence-based and consistent. 
Transparency makes the decisions less likely to be 
merely subjective, and more likely to have an objec-
tive rationale. An important means of achieving the 
rule of law, therefore, is articulating and scrutinizing 
the various elements of the reasoning exhibited in 
legal cases. Such reasoning involves interpreting 
constitutions, statutes, and regulations, balancing 
legal principles and policies, adopting and refining 

legal rules, adapting those rules to particular cases, 
evaluating the evidence in each case, and making 
ultimate decisions that are based on all of these 
elements.

 Legal decision-making today requires many 
agents performing many different tasks. As the 
number and diversity of legal cases has increased, 
and the legal issues in those cases have become more 
specialized, it has become necessary to distribute 
the functions needed for optimal decision-making 
over more and more agents. First, these agents 
include the specialists in the law itself – the law-
makers (legislators, regulators, and judges), the 
law-appliers (such as judges and administrative 
personnel), and the advocates using the law (the 
lawyers representing parties). Such agents, either 
individually or in groups, establish the legal rules 
(e.g., by enacting statutes or issuing regulations), 
clarify their meaning (e.g., when deciding motions), 
and ensure that the rules are applied in appropriate 
cases (e.g., by advocating for particular outcomes, 
rules and policies). Second, there are the agents 
(witnesses) who supply the evidence needed to ap-
ply the legal rules accurately. Some witnesses have 
personal knowledge of disputed issues of fact. Other 
witnesses are experts who have scientific, technical, 
or other specialized knowledge that is relevant in 
particular cases – for example, knowledge about 
forensic science, product testing, medical care or 
engineering. Such agents supply the evidence needed 
to apply the legal rules accurately. Third, there are 
agents who act as the “factfinders.” Depending 
upon the nature of the proceeding, a jury, judge, 
or administrative official listens to the witnesses, 
reads the relevant documents, evaluates all of the 
evidence, and decides what that evidence establishes 
as the “facts” for legal purposes. In modern legal 
systems, with tens of thousands of legal cases, a 
very large number of autonomous human agents 
participate, and they together achieve reasonably 
fair and accurate decisions. This achievement is 
possible because the reasoning in those cases is 
organized and supervised under the rule of law; 
the law, evidence and reasoning are transparent 
and publicly available; and the decision-making 
processes are open to scrutiny.

 This chapter examines the logical structure of 
the reasoning involved in such cases, with particular 
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attention to those structures that have emerged and 
evolved to help achieve consistency and accuracy. 
Following a brief background discussion and a sum-
mary of the major issues and problems, the chapter 
describes the elements of the D-L Framework, 
which has been developed to model the important 
structures of the reasoning. The next section uses 
that framework to describe the two basic types of 
reasoning that have emerged in law: systems of rule-
based deductions and patterns of evidence evalua-
tion. The D-L Framework can also model another 
distinctive feature in legal reasoning: second-order 
reasoning about the reasoning process itself. The 
chapter discusses modeling such second-order 
reasoning using the D-L Framework. This sets up 
a general discussion of the emergence of reasoning 
structures or patterns in law. The chapter ends with 
a conclusion and a suggestion about future research 
directions.

background

The practical nature of legal reasoning renders 
traditional deductive logic not particularly useful 
as a modeling framework. Legal reasoning is fun-
damentally practical in at least three ways. First, 
legal reasoning is action-oriented – its purpose is 
to evaluate the justification for governmental action 
or inaction. Legal reasoning determines whether a 
statute has been validly enacted, whether an admin-
istrative rule should be enforced, and whether a court 
should impose a sentence on a criminal defendant 
or order a civil defendant to pay compensation to 
a plaintiff. Second, legal reasoning and decision-
making occur in real time and are constrained by 
limited resources, including incomplete informa-
tion. It is a species of decision-making under uncer-
tainty (Kahneman, Slovic & Tversky 1982; Morgan 
& Henrion 1990). Within the time and resource 
constraints, those engaged in legal reasoning must 
determine the appropriate legal rules, evaluate the 
evidence, decide whether the evidence is complete 
enough and the residual uncertainty is acceptable, 
and arrive at an ultimate decision. Third, legal rea-
soning is practical in the sense that it must always 
balance the “epistemic objective” of law against 
the applicable “non-epistemic objectives” (Walker 

2003). The epistemic objective in law is to make 
findings of fact that are as accurate as possible under 
the circumstances, while basing those findings on 
the limited evidence that is available. Law aims at 
truth, but the findings must be reasonably inferred 
from the evidence. Weighed against this pursuit 
of truth are numerous non-epistemic objectives 
– such as ensuring procedural fairness to parties, 
improving administrative efficiency, or achieving 
other governmental goals (e.g., an adequate supply 
of electric power or economic efficiency within secu-
rities markets). Each institution of government bal-
ances these objectives differently. Legal reasoning, 
therefore, is practical because it is oriented toward 
decisions and actions, it occurs under constraints 
of limited resources and incomplete information, 
and because it must always balance epistemic and 
non-epistemic objectives.

 Modeling the distinctive reasoning structures 
that have emerged within this practical context 
requires a broad view of “logic” as the study of 
“correct reasoning,” including theories and methods 
for distinguishing correct from incorrect reasoning 
(Copi & Cohen 1998). Traditional deductive logic 
is not a particularly useful framework for modeling 
legal reasoning because traditional logic is designed 
to capture the deductive structure of mathematics. 
More useful in law are recent developments in logic, 
such as informal logic (Hitchcock & Verheij 2006; 
Walton 1996, 2002), abductive logic (Josephson & 
Tanner 1994), and nonmonotonic logic (Brewka, 
Dix & Konolige 1997; Kyburg & Teng 2001; Levi 
1996; Prakken 1997), as well as decision theory, 
risk-benefit analysis, and risk analysis.

 The D-L Framework discussed in this chapter 
models legal reasoning as an application of default 
reasoning. Default reasoning uses presumptive infer-
ence patterns, together with the available evidence, 
to warrant defeasible conclusions about possible 
actions (Besnard 1989; Brachman & Levesque 
2004; Brewka, Dix, & Konolige 1997; Josephson & 
Tanner 1996; Kyburg & Teng 2001; Levi 1996; Pol-
lock 1990; Prakken 1997; Toulmin, Rieke, & Janik 
1984; Walton 1996, 2002). Such reasoning patterns 
possess four important characteristics. First, default 
reasoning is practical, providing a reasonable basis 
for decisions and actions. Such reasoning is also 
dynamic, because the evidence can change over 
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time, as can the degree of support from the evi-
dence to the conclusion. Also, multiple parties can 
participate interactively in the reasoning process. 
Third, default reasoning is defeasible, meaning 
that new evidence or a re-analysis of old evidence 
can defeat an earlier conclusion or undermine its 
evidentiary support (Pollock & Cruz 1999; Prakken 
1997; Walton 2002). Nevertheless, in the absence 
of such defeating considerations, default reasoning 
is presumptively valid – that is, it is reasonable to 
treat the (provisional) conclusion as being probably 
true (Walton 2002). The D-L Framework introduced 
here builds these four characteristics into its logical 
model.

 The D-L Framework also has many points of 
congruence with the extensive research into legal 
reasoning from the perspective of artificial intel-
ligence (AI). The prominent role of rules in the 
D-L Framework is in keeping with the “rule-based 
reasoning” (RBR) approach in AI research (Brant-
ing 2000; Rissland 1990). Other portions of the D-L 
Framework weigh policy arguments or relevant fac-
tors, and are related to the AI interest in reasoning 
by analogy to case precedents, called “case-based 
reasoning” (CBR) (Branting 2000; Ashley & Riss-
land 2003; Rissland 1990). AI researchers have 
also combined these two approaches into hybrid 
systems (Branting 2000; Prakken & Sartor 1997; 
Rissland 1990). Tree structures, which are central 
to the D-L Framework, are commonly used in AI 
(Branting 2000; Ashley & Rissland 2003; Prakken, 
Reed & Walton 2003). Moreover, AI research-
ers have investigated the use of “argumentation 
schemes” from informal logic, which bear some 
loose resemblance to plausibility schemas in the D-L 
Framework (Prakken & Sartor 2004; Prakken, Reed 
& Walton 2003; Walton 1996). Plausibility schemas 
are nevertheless unlike argumentation schemes in 
important respects (Walker 2007a, 2007c). Finally, 
the Decision ApprenticeTM software developed by 
Apprentice Systems, Inc. incorporates the D-L 
Framework and successfully applies it to law in the 
application called Legal ApprenticeTM (for details, 
visit www.apprenticesystems.com).

 There are also isolated pockets of theoretical 
work on legal reasoning methods that provide useful 
input to the D-L Framework. For example, within 
research using traditional legal methods, there are 
studies of the probative value of the forensic sci-

ences (Faigman, Kaye, Saks & Sanders 2002), and 
research into general patterns of evidence evalua-
tion (Anderson, Schum & Twining 2005; Kadane & 
Schum 1996; Schum 1994). There is also extensive 
case law and commentary on when expert opinions 
are valid enough to be admissible as evidence – for 
example, under the U.S. Supreme Court’s trilogy 
of cases, Daubert v. Merrell Dow Pharmaceuticals, 
Inc., 509 U.S. 579 (1993); General Electric Co. v. 
Joiner, 522 U.S. 136 (1997); Kumho Tire Co. v. 
Carmichael, 526 U.S. 137 (1999). Legal reasoning is 
also examined as such in the context of legal writ-
ing (Neumann 2005) and skills training for lawyers 
(Krieger & Neumann 2003). Moreover, the logic of 
legal reasoning is studied within particular legal 
areas, such as tort law (Porat & Stein 2001; Walker 
2004) or international trade law (Walker 1998, 2003). 
Fields outside of law have also studied aspects of 
legal reasoning, such as psychological research on 
juries (Hastie 1993) or research in rhetoric (Saunders 
2006; Ross 2006). The D-L Framework, however, 
incorporates insights from these various areas of 
inquiry into a single, integrated model for legal 
reasoning as a whole. It also captures the emergent 
structures of legal reasoning.

 Finally, it is essential that the D-L Framework 
accurately, adequately and efficiently models ac-
tual reasoning in actual legal cases. It is the great 
variety of legal cases, with the hierarchies of legal 
decision-makers overseeing the reasoning and the 
extensive documentation of that reasoning, that cre-
ates an evolutionary environment. That evolution-
ary structure refines legal concepts and patterns of 
reasoning, and adapts them to solving legal problems 
(Walker 1999, 2007b). These evolutionary forces 
make it likely that the reasoning patterns that do 
emerge and evolve are both useful and normative. 
This evolutionary aspect of legal reasoning neces-
sitates empirical research into the actual balances 
between epistemic and non-epistemic objectives 
struck in particular legal areas.

su MMar y of  Ma Jor  issues  and  
prob LeMs

This chapter models legal knowledge, but the mod-
eling framework is applicable to decisional knowl-
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edge in any domain that has similar engineering 
problems (Russell and Norvig 2003; Singh, Rao, 
and Georgeff 1999). The major problems in this 
and similar domains are:

• Accurately capturing the detailed knowledge 
of the domain, using structures that are suited 
to that knowledge and to the practice of us-
ing that knowledge to solve problems in that 
domain;

• Integrating expert and non-expert knowledge 
into a single practical model;

• Applying the knowledge model to solve the 
next problem;

• Evolving and adapting the knowledge model 
over time, on the basis of experience with 
solving problems; and

• Coordinating the use of such knowledge among 
autonomous agents (both human and non-hu-
man) and among different problem sets over 
time.

The D-L Framework captures the detailed 
knowledge of the legal domain, and shows how 
the emergent structures of legal reasoning can help 
to solve these engineering problems in law and in 
other knowledge domains.

The  def au LT-Logic  fra Mework

The Syntax, Ontology, and 
semantics of the default-Logic 
f ramework

Because of the highly pragmatic nature of legal 
reasoning, and because the reasoning structures 
have emerged and evolved over time within the 
law, logical models of those structures must be 
developed empirically. It is important, for example, 
to empirically abstract the logic of reasoning in 
particular legal areas, such as tort law (Walker 
2004) or international trade disputes (Walker 1998, 
2006), or the logic of general concepts found across 
all legal areas, such as the concept of standard of 
proof (Walker 1996). Only then can a formal model 
represent those structures that are actually used and 
useful, and accurately capture legal reasoning as it 

actually occurs in particular cases. The D-L Frame-
work described in this chapter has been developed 
in this way. It incorporates some but not all of the 
logical elements found in traditional predicate logic, 
and also includes additional elements not found in 
that logic. It includes only those logical structures 
actually used and useful in legal reasoning.

 The knowledge-capture environment of the 
D-L Framework can be either textual or graphical, 
but the graphical syntax is very intuitive for human 
agents to use. The Decision Apprenticet m software 
uses Microsoft Office VisioTM as a graphical environ-
ment for capturing legal rules. The software builds 
the knowledge model as the user selects, drags, and 
connects Visio shapes. The software turns these 
shapes into “smart shapes” that represent the ele-
ments of the syntax – objects with various attributes 
that allow only combinations of elements that are 
syntactically acceptable. Figure 1 shows represen-
tative shapes for the D-L ontology, and illustrates 
which combinations of shapes are permissible.

 The ontology and Semantics for the D-L Frame-
work are as follows:

• Proposition: The informational content of a 
declarative sentence or clause, which can be 
meaningfully assigned either a truth-value 
or a plausibility-value. Examples are: “The 
defendant is a citizen of the United States” 
and “Jessica Jones is liable to the plaintiff for 
battery.” The Decision Apprenticet m shape 
representing a proposition is shown in Figure 
1. A proposition whose active value in a line 
of reasoning is its truth-value is called simply 
a proposition, to distinguish it from an evi-
dentiary assertion. The border of the shape is 
a solid line. By contrast, a proposition whose 
active value in a line of reasoning is its plau-
sibility-value is called an “evidentiary asser-
tion” or simply an “assertion,” to distinguish 
it from a proposition whose active value is its 
a truth-value. The Decision Apprenticet m shape 
for an evidentiary assertion has as its border 
a dashed line, to indicate that its operative 
attribute is its plausibility-value.
 The truth-value of a proposition is an at-

tribute taking one of three values: “true 
/ undecided / false.”
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Assertions in a Schema (Operating on Plausibility-Values): 

 
 

Figure 1. Illustrative Decision Apprentice™ Shapes for Selected Elements of the D-L Framework

Unanalyzed Proposition: 

      
Analyzed Proposition: 

      
Unanalyzed Assertion: 

      
Analyzed Assertion: 

      
Implications and Implication Tree (Operating on Truth-Values): 
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 The plausibility-value of an assertion 
is an attribute taking a value from a 
plausibility scale. Plausibility scales 
can have any number of values, either 
qualitative or quantitative. For example, 
a qualitative plausibility scale might be 
ordinal and have five values (such as 
“highly plausible / somewhat plausible 
/ undecided / somewhat implausible / 
highly implausible”) or seven values 
(such as “highly plausible / very plau-
sible / somewhat plausible / undecided / 
somewhat implausible / very implausible 
/ highly implausible”). By contrast with 
these qualitative scales, mathematical 
probability provides an infinite-valued 
quantitative plausibility scale, using the 
set of real numbers between zero and 
one, and having values such as 0.56.

 A proposition or an evidentiary assertion 
can be either unanalyzed or analyzed 
into its predicate-subject structure (see 
Table 1 for illustrations).

• Subject: An object, property, situation or 
event referred to in a proposition, and about 
which the proposition makes a statement. 
In the Decision Apprentice™ software, the 
shape representing a subject can be inserted 
into a proposition shape, as shown in Figure 
1. A “predicate” is not a separate element or 
shape, but merely the remainder of a proposi-
tion excluding its subjects. A predicate func-
tions as a propositional schema that generates 
meaningful propositions when the appropriate 
number of subjects are supplied (e.g.: “… is a 
citizen of … ”; “… is liable to  … for battery”) 
(Chierchia & McConnell-Ginet 2000; Copi & 
Cohen 1998; Larson & Segal 1995; Rodes & 
Pospesel 1997; Saeed 2003; Sainsbury 1991). 
In the D-L Framework, it may not be useful 
to identify and represent every subject in a 
proposition – only those that play an important 
referring role in the legal analysis.
 A subject can be a definite subject – that 

is, a specific individual named by a 
proper name or a definite description 
(e.g.: Jessica Jones; the defendant).

 A subject can also be a group or class 

whose members are identified solely by 
one or more attributes (e.g.: Americans 
over age 50; tort cases filed this year in 
U.S. courts).

• Implication: A complex proposition (con-
ditional proposition) consisting of one or 
more propositions as conditions and a single 
proposition as a conclusion, in which the 
truth-value of the conclusion is determined 
by the truth-values of the conditions. In the 
D-L Framework, the conclusion is placed 
at the top and its conditions are placed on a 
lower level, with the conditions connected to 
the conclusion by “implication arrows” run-
ning from the conditions to the conclusion, 
usually mediated by a truth-value connective 
(see Table 1 for illustration).

• Plausible inference: A complex proposition 
(conditional assertion) consisting of one or 
more evidentiary assertions as conditions and 
a single evidentiary assertion as a conclusion, 
in which the positive plausibility-value of the 
conclusion is determined by the plausibility-
values of the conditions. In the D-L Frame-
work, the conclusion is placed at the top and 
its conditions are placed on a lower level, with 
the conditions connected to the conclusion by 
“implication arrows” running from the condi-
tions to the conclusion, usually mediated by 
a plausibility connective.

• Logical connective: An operator that mediates 
between the conditions and conclusion of an 
implication or plausible inference, and which 
specifies a formula for assigning a truth-value 
or plausibility-value to the conclusion as a 
function of the truth-values or plausibility-val-
ues of the conditions (see Table 1 for illustra-
tions). Logical connectives fall into two major 
categories – those operating on truth-values 
and those operating on plausibility-values.

• Truth-value connectives: The D-L Frame-
work primarily uses three truth-value con-
nectives:
 Conjunction (“and”): A connective 

specifying that the truth-value of the 
conclusion is “true” if all of the truth-
values of the conjunctive conditions are 
“true” (Copi & Cohen 1998; Gottwald 
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2001; Rodes & Pospesel 1997; Sainsbury 
1991).

 Disjunction (“or”): A connective 
specifying that the truth-value of the 
conclusion is “true” if at least one of the 
truth-values of the disjunctive conditions 
is “true” (Copi & Cohen 1998; Gottwald 
2001; Rodes & Pospesel 1997; Sainsbury 
1991).

 Defeater (“unless”): A connective 
specifying that the truth-value of the 
conclusion is “false” if the truth-value of 
the defeater condition is “true” (Brewka, 
Dix, & Konolige 1997; Pollock 1990). 
The defeater condition may itself con-
sist of either conjunctive conditions or 
disjunctive conditions.

• Plausibility connectives:
 Minimum (“min”): A connective speci-

fying that the plausibility-value of the 
conclusion is equal to the lowest plau-
sibility-value possessed by any of its 
conditions (Gottwald 2001). The m in  
plausibility connective is a generalized 
version of the a n d  truth-value connec-
tive.

 Maximum (“max”): A connective 
specifying that the plausibility-value of 
the conclusion is equal to the highest 
plausibility-value possessed by any of 
its conditions (Gottwald 2001). The m a x  
plausibility connective is a generalized 
version of the o r  truth-value connec-
tive.

 Rebut (“rebut”): A type of defeating 
connective specifying that, if the rebut-
ting condition is plausible to any degree 
(its plausibility-value is positive), then 
the plausibility-value of the conclusion 
is the inverse degree of implausibility 
(that is, its plausibility-value is negative, 
and to the same degree as the rebutting 
condition is positive) (Pollock 1990; 
Prakken & Sartor 1997, 2004; Prakken, 
Reed & Walton 2003). For example, if the 
rebutting condition is “highly plausible” 
on a seven-point ordinal scale, then the 

conclusion is “highly implausible” on 
the same scale.

 Undercut (“undercut”): A type of de-
feating connective specifying that, if the 
undercutting condition is plausible to any 
degree (its plausibility-value is positive), 
then the plausibility-value of the conclu-
sion is whatever it would have been in 
the absence of the branch of reasoning 
to which the undercutting defeater is at-
tached (Pollock 1990; Prakken & Sartor 
1997, 2004; Prakken, Reed & Walton 
2003). An undercutting condition defeats 
the line of support for the conclusion, 
whereas a rebutting condition defeats 
the conclusion itself.

• Implication tree: An inverted directed acyclic 
graph consisting of chained levels of implica-
tions, in which a condition of one implication 
becomes the conclusion of another implication 
(see Table 1 for illustration).

• Plausibility schema: An inverted directed 
acyclic graph consisting of evidentiary as-
sertions and plausibility connectives (see 
Figure 1 for illustration), and which functions 
as a schema producing plausible inferences 
whenever (1) specific subjects are substituted 
into the schema, (2) plausibility-values are 
assigned to the evidentiary conditions of the 
schema, and (3) the plausibility-values of the 
evidentiary conditions, mediated by the plau-
sibility-connective of the schema, determine 
a positive plausibility-value for the schema 
conclusion. Such an instantiated plausibility 
schema produces a plausible inference.

• Inference tree: An inverted directed acyclic 
graph consisting of (1) the ultimate conclu-
sion at the top; (2) an implication tree imme-
diately supporting that ultimate conclusion; 
(3) terminal propositions in each branch of 
the implication tree, which are supported in 
turn only by evidentiary assertions; and (4) 
lower levels of branches (below the terminal 
propositions) consisting of plausible inferences 
(instantiated plausibility schemas and perhaps 
additional evidentiary assertions). See Figure 
2 for illustration.
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using the default-Logic f ramework 
to Model Two Legal r easoning 
structures

 
The D-L Framework provides the tools for model-
ing, in any particular legal case, the reasoning that 
warrants the legal findings, decisions, and actions in 
that case. The D-L model for the complete reasoning 
is an inference tree. As discussed above, an infer-
ence tree typically has at least two major regions: 
an implication tree near the top, directly supporting 
the ultimate conclusion, and plausible inferences 
below the terminal propositions of the implication 
tree. Figure 2 illustrates the general structure of 
an inference tree. The two sub-sections that follow 
discuss the two major regions of an inference tree 
– rule-based deductions and evidence evaluation.

implication Trees a s Modeling 
systems of r ule-based deductions 
in Law

The upper portion of any inference tree is an im-
plication tree, which models all of the implications 
or lines of reasoning to the ultimate conclusion that 
are acceptable under the applicable legal rules. The 
ultimate conclusion at the top is the root node of an 
inverted “tree” structure because lower-level condi-

tions never depend for their truth-values on a higher-
level proposition in the same branch. Implication 
trees branch downward and outward from a single 
root conclusion. For example, the rules of tort law 
for battery, which can justify a court judgment that 
the defendant must pay damages, can be modeled 
as one large implication tree that begins as shown 
in Figure 2. The legal interpretation of this tree is 
that “the defendant is liable to the plaintiff for bat-
tery” (conclusion) if (1) “the defendant performed a 
voluntary act,” (2) “the defendant acted intending to 
cause a harmful or offensive contact with a person,” 
and (3) “the defendant’s act caused a harmful  or  
offensive contact with the plaintiff,”  unless this 
line of reasoning is defeated because “the defendant 
was privileged to perform the action,” which would 
be true if either “the defendant acted reasonably 
in making a lawful arrest” or “the defendant acted 
reasonably in self-defense against intentionally in-
flicted bodily harm” (American Law Institute 1966; 
Dobbs 2000). In each branch of an implication tree, 
the conditions of the last rule in that branch are the 
“terminal propositions” of the rules. In Figure 2, 
these are the five last propositional shapes (those 
with solid lines) in the branches. The truth-value 
of a terminal proposition can be determined to be 
either “true” or “false” only by stipulation of the 
parties, by certain types of decisions or rulings 
by the presiding legal official, or by an evaluation 

Figure 2. Illustration of a Partial Inference Tree in Decision Apprentice™ Applying Tort Rules for Battery
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of the evidence by the factfinder. The terminal 
propositions of an implication tree identify all of 
the factual issues that are relevant to warranting the 
ultimate conclusion. The implication tree therefore 
constrains the evidence and factfinding in the case 
to what is relevant to deciding the truth-values of 
the terminal propositions.

plausibility schemas as Modeling 
patterns of evidence evaluation

When decision-making begins in a particular legal 
case, the truth-values of all of the propositions 
within the applicable implication tree are “unde-
cided.” Evidence evaluation is the process of using 
evidence to determine whether the truth-values of 
particular terminal propositions should change from 
“undecided” to either “true” or “false.” Reasoned 
decision-making involves:  producing evidence for 
the legal record that is relevant to proving one or 
more of the terminal propositions of the implica-
tion tree; organizing that evidence into plausible 
inferences using plausibility schemas; attaching the 
schematized evidence to the appropriate terminal 
propositions; evaluating the plausibility-values of 
the evidentiary assertions; and using those plausi-
bility-values to assign new truth-values to terminal 
propositions. The logical connectives can then use 
those truth-values to propagate truth-values up the 
implication tree to determine the truth-value of the 
ultimate conclusion at the top. The topics discussed 
in this sub-section of the chapter are:  the evaluation 
of the plausibility of single evidentiary assertions, the 
use of plausibility schemas to organize evidentiary 
assertions and to make plausible inferences, and the 
use of instantiated plausibility schemas to determine 
the truth-value of a terminal proposition.

 In a typical legal case, the parties produce 
witnesses, documents, and other evidence. The 
witnesses and documents then provide evidentiary 
assertions “for the legal record,” which constitute the 
bulk of the evidence. The factfinder formulates other 
evidentiary assertions – for example, in describing 
the behavior of a witness or in characterizing the 
results of a medical chart or other exhibit. When 
evaluating the plausibility of an evidentiary asser-
tion, an agent selects a suitable plausibility scale and 
assigns a plausibility-value from that scale to the 

evidentiary assertion. Choosing the best plausibil-
ity scale to employ for evaluating any particular 
evidentiary assertion depends upon the pragmatic 
context – that is, upon the precision needed in the 
content and upon the potential for error that is ac-
ceptable in assessing plausibility (Walker 2007a). 
For example, some legal cases might require only 
a low degree of precision (e.g., measurements of 
length in inches) and accept even a moderate degree 
of plausibility (allowing a significant potential for 
error), with the result that even a single measurement 
with an ordinary ruler will yield acceptably accurate 
values. Other cases, by contrast, might require a high 
degree of precision (e.g., measurements of length in 
microns) and a high level of quantitative plausibil-
ity (e.g., 99.99% confidence that the measurement 
is accurate to within 2 microns). In general, as the 
level of required precision increases, the potential for 
error inherent in assessing plausibility for measure-
ments with that precision also tends to increase. In 
addition, it often costs some amount of resources to 
produce additional evidence in an attempt to make 
the conclusion acceptably plausible. A reasonable 
decision-maker would therefore use plausibility 
scales that achieve the least-cost combination of 
precision and degree of plausibility that will yield 
acceptably accurate results in the pragmatic con-
text.

 The factfinder next organizes individual eviden-
tiary assertions into patterns of reasoning relevant 
to proving the terminal propositions in the case, 
using what the D-L Framework calls “plausibility 
schemas.” Plausibility schemas are general patterns 
of evidentiary reasoning that presumptively warrant 
plausible inferences, by producing lines of default 
inference that are plausible but subject to revision. 
Such schemas also allow the factfinder to strike the 
appropriate pragmatic balance of acceptable uncer-
tainty. Plausibility schemas consist of evidentiary 
assertions and plausibility connectives. An eviden-
tiary assertion is a proposition whose active value in 
a line of reasoning is its plausibility-value (see the 
ontology above). Plausibility connectives are logi-
cal operators that determine the plausibility-value 
of the assertion that is the schema conclusion as a 
function of the plausibility-values of the assertions 
that form the evidentiary conditions of the schema. 
Four plausibility connectives that occur repeatedly 
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in the patterns of reasoning found in legal cases 
are m in , m a x , r e b u t  and u n d e r c u t  (defined in the 
ontology above).

 One problem in the operation of plausibility 
schemas is that factfinding agents may adopt dif-
ferent plausibility scales for evaluating different 
evidentiary assertions. When this occurs, there 
must be a rule for operating on a mixture of plau-
sibility scales – for example, where one assertion 
has a plausibility-value on a seven-point ordinal 
scale and another in the same plausibility schema 
has a quantitative value on the real-number scale. 
For the plausibility connectives of minimum (m in ) 
and maximum (m a x ), the factfinding agent must 
determine whether a particular value on one scale is 
lower or higher than a value on another scale. Given 
such a combined ordering of possible plausibility-
values, however, the plausibility-value of the schema 
conclusion can be determined on the plausibility 
scale of the critical evidentiary assertion – that is, 
for m in , the evidentiary assertion with the lowest 
plausibility-value, and for m a x , the evidentiary as-
sertion with the highest plausibility-value.

 By contrast, the two defeater plausibility con-
nectives, r eb u t  and u n d er c u t , take single assertions 
as rebutting or undercutting defeaters, and so do 
not have this multiple-scale problem (although m in  
or m a x  connectives under the defeating assertions 

may have this problem). In the case of a plausibil-
ity rebutter, if the rebutting assertion has a positive 
plausibility-value, then the connective r e b u t  assigns 
to the schema conclusion the degree of plausibil-
ity that is the inverse to the plausibility-value of 
the rebutting assertion. That is, as the degree of 
plausibility of the rebutting assertion increases, the 
degree of plausibility of the conclusion decreases 
(alternatively, the degree of implausibility of the 
conclusion increases). For example, on the seven-
point plausibility scale above, if the plausibility-value 
of the rebutting assertion is “highly plausible,” then 
the plausibility-value of the schema conclusion 
would be “highly implausible.” On a plausibility 
scale of mathematical probability, if the rebutter’s 
plausibility-value is 0.56, then the conclusion’s 
plausibility-value would be 0.44 (1 – 0.56).

 In the case of a plausibility undercutter, if the 
undercutting assertion has a positive plausibility-
value, then the connective u n d e r c u t  assigns to the 
schema conclusion the degree of plausibility that it 
would have had in the absence of the line of reason-
ing that is undercut. An undercutter connective can 
be useful in capturing the logic of an assertion that 
defeats only one condition of a set of conditions. 
As illustrated in the schema in Figure 1, a positive 
undercutting assertion would simply take out of 
play the right-hand branch below the m in  connec-

Figure 3. Decision Apprentice™ Diagram for the Plausibility Schema for the Statistical Syllogism
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tive of the schema, leaving the plausibility-value 
of the left-hand assertion under the m in  connective 
to determine the plausibility-value of the schema 
conclusion.

 An example of a plausibility schema commonly 
found in actual reasoning is the “statistical syllo-
gism” or “direct-inference” schema, which models 
one type of presumptive reasoning about a definite 
subject or specific individual (Walker 2007a, 2007c; 
Kyburg 1983; Levi 1977, 1981; Pollock 1990; Salmon 
1973). Examples of such conclusions are “the tire that 
caused the accident had a defect” and “the claimant 
contracted pneumoconiosis,” where “the tire” and 
“the claimant” are definite subjects (for pertinent 
legal cases, see Kumho Tire Co. Ltd. v. Carmichael, 
526 U.S. 137 (1999), and Director, Office of Workers’ 
Compensation Programs, Department of Labor v. 
Greenwich Collieries, 512 U.S. 267 (1994)). A D-L 
diagram for the plausibility schema modeling the 
statistical syllogism is shown in Figure 3 (Walker 
2007c, p. 11). The plausibility connective m in  joining 
the evidentiary conditions of the schema assigns a 
plausibility-value to the schema conclusion that is 
equal to the plausibility-value of the least plausible 
of the three joined assertions. The three conditions 
state the evidentiary assertions that together render 
the conclusion plausible. The first evidentiary asser-
tion (from the left) is a generalization asserting that 
most objects in Category P are also in Category Q. 
The second evidentiary assertion is that the specific 
object that is the definite subject of the conclusion 
(O) is in Category P. The third evidentiary assertion 
states that the objects in Category P adequately rep-
resent Object O, with respect to a sufficient number 
of variables (attributes) that are predictive of being 
in Category Q. Thus, a factfinder using this pattern 
of reasoning to warrant assigning a plausibility-
value to such a conclusion must substitute specific 
values for the three logical subjects (“Category P,” 
“Category Q,” and “Object O”) and then assign 
plausibility-values to each of the three evidentiary 
conditions of the inference. Subject substitution 
creates an instance of the schema (an instantiated 
schema). In addition, assigning plausibility-values 
that generate a positive plausibility-value for the 
schema conclusion creates a plausible inference.

One component of many plausibility schemas is 
an assertion that states a generalization (Chierchia 

and McConnell-Ginet 2000; Copi and Cohen 1998; 
Kadane and Schum 1996; Rodes and Pospesel 1997; 
Schum 1994; Toulmin 1958). A generalization is an 
assertion stating that its description is true of some 
of the subjects in the class to which it refers (a proper 
subset of the referenced subject class), but does 
not assert that it is true of all subjects in the class. 
Examples of generalizations are: “most witnesses 
testifying under oath tell the truth”; “one-third of 
Americans are overweight”; and “60% of the test 
group in the study developed the disease.” These 
three generalizations have the following logical 
forms (respectively): “most Ps are Qs”; “X/Y of 
Ps are Qs”; and “X% of the members of group P 
are members of group Q.” Logicians call group P 
the “reference class” or “reference group” for the 
generalization (Kyburg 1990). Two logical attributes 
of a generalization that can affect its plausibil-
ity-value are its degree of quantification and any 
modal hedge employed. Generalizations imply or 
explicitly assert a degree of quantification over the 
reference class – that is, they assert what portion 
of members of class P is also included in class Q. 
Moreover, generalizations often contain an explicit 
modal “hedge” that qualifies the entire assertion. 
Examples of modal hedges are expressions of fre-
quency (e.g., “sometimes” or “often”), typicality 
(e.g., “typically” or “normally”), temporal limitation 
(e.g., “in the past” or “at least for the immediate 
future”), or degree of confidence of the speaker (e.g., 
“perhaps” or “almost certainly”). Generalizations 
may be warranted by scientific, technical or other 
specialized knowledge, or they may derive from 
personal experience or “common sense.”

 Plausibility schemas play an important role 
in integrating expert evidentiary assertions with 
non-expert evidentiary assertions into a single 
line of evidentiary reasoning. For example, the 
generalization in the statistical-syllogism schema 
may be supported by either expert or non-expert 
evidence – statistical or other scientific evidence in 
one case, but only scattered anecdotal evidence in 
another case. Regardless of the nature of the sup-
port for the generalization, the evidentiary assertion 
that the definite subject is in Category P may be 
based upon non-expert eyewitness testimony. The 
plausibility connective of the schema specifies the 
algorithm for assigning a plausibility-value to the 
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schema conclusion, regardless of the mixture of 
expert and non-expert evidence supporting that 
conclusion. For example, an instantiation of the 
statistical-syllogism plausibility schema shown in 
Figure 3 might be the result of a scientific study and 
have a high level of plausibility, while there may 
be substantial uncertainty about whether Object 
O is in fact in Category P. In such a case, the low 
plausibility-value for the second evidentiary asser-
tion might be the critical minimum value for the 
instantiated schema, resulting in a correspondingly 
low plausibility-value for the schema conclusion. 
The evaluating agent might then consider several 
strategies for increasing the plausibility-value of 
that second evidentiary assertion. Alternatively, 
the agent might rely on a different line of reasoning 
altogether, using different schemas and evidence, 
thus bypassing this weak statistical-syllogism line 
of reasoning.

 After the factfinder uses the available eviden-
tiary assertions to instantiate a plausibility schema, 
the factfinder uses the instantiated schema to de-
termine the truth-value of a terminal proposition 
in the implication tree. The two primary factors 
in selecting which plausibility schema to use in 
reasoning to a particular terminal proposition are 
(1) the logical form of the terminal proposition and 
(2) the nature of the evidence available in the case. 
For example, whether the terminal proposition is a 
generalization about a group or a proposition about 
a specific individual will determine what kind of 
schema conclusion is allowed. Second, different 
schemas may require different kinds of evidentiary 
assertions as input. Some schemas might require 
evidence that is scientific and statistical, while oth-
ers might not. The agent evaluating the evidence 
selects a schema that fits the terminal proposition 
and the evidence in the particular case. In the Le-
gal Apprenticet m software, the user “attaches” the 
instantiated schema to the terminal proposition to 
which it is relevant, thus extending the branch of 
the inference tree out of the rule-based implication 
tree and into the evidence-evaluation region. The 
schema instantiated with evidence is specific to the 
particular case, whereas the implication tree and the 
plausibility schemas themselves are generic struc-
tures for all cases within the knowledge domain.

 Finally, in order for an instantiated plausibil-
ity schema to provide an inference from plausible 

evidence to a decision about the ultimate issue at the 
top of the implication tree, there must be an algo-
rithm for determining the truth-value of a terminal 
proposition as a function of the plausibility-value of 
the schematized evidence attached to that proposi-
tion. Law calls this rule the applicable “standard of 
proof” (James, Hazard, and Leubsdorf 1992; Walker 
1996). For example, the standard of proof for most 
issues of fact in civil cases is preponderance of 
the evidence. Under this rule, if the schematized 
evidence evaluates as having any plausibility-value 
other than “undecided,” then the preponderance rule 
assigns the corresponding truth-value to the terminal 
proposition – that is, it assigns the value “true” to 
the terminal proposition if the schema evaluates the 
attached evidence as plausible to any degree, and 
assigns the value “false” to the terminal proposi-
tion if the schema evaluates the attached evidence 
as implausible to any degree. Standards of proof 
are the links between the output of schematized, 
evaluated evidence and the input to an implication 
tree.

 The branches of an instantiated plausibility 
schema can themselves generate chains of instan-
tiated plausibility schemas, with the evidentiary 
conditions of a higher-level schema becoming the 
conclusions of lower-level plausibility schemas. 
For example, the second evidentiary assertion of 
the statistical-syllogism schema in Figure 3 is itself 
an assertion categorizing a definite subject, so in 
a particular case such an assertion could become 
the conclusion of an additional statistical-syllogism 
schema. At some point in any particular branch, of 
course, the evaluating agent must stipulate plau-
sibility-values for evidentiary assertions – using 
intuition (human agents), default values (human and 
non-human agents), sensitivity analysis (all agents), 
or some other method.

Modeling second-o rder r easoning 
a bout r ules and evidence

 
While many instances of legal reasoning employ 
“substantive” rules of law and the relevant evidence 
to reach ultimate conclusions, other instances con-
sist of second-order reasoning about which rules, 
evidentiary assertions or plausible inferences are 
allowed. Such second-order reasoning in law is 
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also rule-based reasoning, but it generally employs 
“process rules.” Process rules in law are traditionally 
divided into rules of procedure and rules of evidence. 
Rules of procedure govern the dynamics and tim-
ing of default reasoning by authorizing particular 
procedural decisions under certain conditions. For 
example, early in a civil proceeding a defendant 
may move to dismiss the case for lack of jurisdic-
tion; any party may move for summary judgment 
before trial based on depositions and affidavits; or a 
party may move for a directed verdict during a trial, 
based upon the testimony introduced to that point 
in time (Federal Rules of Civil Procedure; James, 
Hazard, and Leubsdorf 1992). The presiding official 
must decide whether to grant a procedural motion 
or deny it. Implication trees can model the legal 
rules that govern such decisions, and plausibility 
schemas can organize the relevant evidence in a 
particular case.

 Evidentiary process rules govern the process of 
evaluating evidence and making findings about ter-
minal propositions. Evidentiary decisions (rulings 
on motions) might apply:  rules about admissibility 
(excluding some relevant evidence from the case 
altogether, or prohibiting its attachment to certain 
terminal propositions); rules about relevancy (relat-
ing particular evidentiary assertions to particular 
terminal propositions); rules about sufficiency of 
evidence (deciding whether the totality of evidence 
attached to a terminal proposition can warrant a find-
ing that the proposition is true); standards of proof 
(establishing the threshold degree of plausibility 
required to find a terminal proposition to be true); and 
rules allocating the burden of persuasion (determin-
ing what finding to make when the attached evidence 
evaluates precisely on the threshold required by the 
standard of proof). These evidentiary rules govern 
the presiding official’s decisions about the process 
of evidentiary evaluation in a particular case. An 
example is the rule admitting an expert opinion into 
evidence only if it is “scientific, technical, or other 
specialized knowledge” and it “will assist the trier 
of fact” (Federal Rule of Evidence 702; Daubert v. 
Merrell Dow Pharmaceuticals, Inc., 509 U.S. 579 
(1993); General Electric Co. v. Joiner, 522 U.S. 136 
(1997); Kumho Tire Co. v. Carmichael, 526 U.S. 
137 (1999)). Another example is a ruling that the 
relevant evidence is legally insufficient to warrant 
a finding of fact by the factfinder. Such a ruling can 

directly determine, “as a matter of law,” the truth-
value of a terminal proposition in an implication 
tree. Implication trees can model such evidentiary 
rules, and plausibility schemas can help warrant 
their application in particular cases.

 Process rules therefore apply the rule of law to 
the process of using implication trees and plausibil-
ity schemas in a particular case. More generally, 
they are rules that govern the dynamics of default 
reasoning within multiagent systems. Process rules 
are particularly important in coordinating multiple 
independent agents to achieve consistent, fair and 
efficient decision processes. Different participants 
can play different roles in rule application, evidence 
production, evidence evaluation, and other decision-
making tasks, yet the process rules coordinate and 
regulate the dynamic process. Legal proceedings 
consist of many points at which different participants 
may make different decisions, depending upon the 
process rules, substantive legal rules and the avail-
able evidence. In judicial litigation, for example, the 
parties, trial judge, jury and appellate court have 
distinct roles to play, and in administrative rule-
makings, the public commenters, expert advisory 
groups, regulators and reviewing courts have their 
own distinct roles. Presiding officials oversee the 
factfinding process by making decisions that are 
themselves governed by legal rules and the evidence 
in the record, while reviewing courts oversee the 
decision-making discretion of the presiding trial 
official.

 A key feature of the D-L Framework, and a key 
insight into the emergence of reasoning structures, is 
that no new types of logical structures are required 
to model legal process rules or their operation. The 
D-L Framework integrates substantive and process 
reasoning by attaching process implication trees 
as branches of the main implication tree in a legal 
proceeding. For example, a jurisdictional require-
ment, and its associated implication tree, would be 
a high-level conjunctive branch for any implication 
tree for a valid judicial judgment. On the other hand, 
an evidentiary requirement, and its implication 
tree, might be a defeater branch connected near a 
terminal proposition of the main implication tree. 
This means that the D-L Framework can capture the 
domain knowledge for evolution and coordination 
using the same ontology that captures substantive 
legal rules and the factfinding in particular cases.
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The eMergence of r easoning 
sTruc Tures in Law

The regime of the rule of law, with its insistence on 
transparent and documented reasoning, responds 
to the multiplicity and diversity of legal cases by 
creating useful logical structures and adapting them 
to the legal problems they are designed to solve. A 
system of rule-based deductions captured by an 
implication tree represents one type of emergent 
structure. The plausibility schemas recognized in 
law are such structures as well. Such structures 
promote consistency among independent legal 
decision-makers in different cases, while also pro-
moting the principled and consistent evaluation of 
evidence specific to those cases. But law is not only 
a domain that happens to have emergent reasoning 
structures – it is a domain in which these emergent 
structures promote the emergence and evolution of 
other structures. In law, the emergence of reasoning 
structures is not merely a by-product, but rather an 
intentional product of the system. The reason for 
this is once again the rule of law. A fundamental 
value within law is its ability to adapt its rules to 
new types of situations, and to adapt them in a prin-
cipled rather than haphazard way. The common law 
is a particularly good example of a system designed 
to produce gradual adaptation to new problems 
through the emergence of new rules and other logical 
structures. In law, as in ordinary life, the most ap-
propriate new structures generally evolve gradually 
from successful decisions in past cases.

 The adherence to process rules promotes the 
evolution of new implication trees and new plau-
sibility schemas. Legal systems use process rules 
to evolve new legal rules from past legal decisions, 
and to evolve new plausibility schemas from past 
evaluations of evidence. For example, a motion 
for summary judgment in a particular civil case 
might present a novel factual situation, and the 
arguments by the attorneys might lead the court to 
decide the motion by instituting a new substantive 
rule or a new process rule. Such a motion can also 
lead to a judicial ruling that the available evidence 
is insufficient for a reasonable factfinder to make a 
particular finding of fact – a ruling that other courts 
can apply in similar circumstances. Over time, such 
rulings can result in the emergence of new plausibil-

ity schemas for organizing such evidence. Process 
rules therefore play an important role in creating 
emergent reasoning structures in law.

 When a reasoned decision is made to adopt a 
new legal rule (i.e., to modify an implication tree), 
the reasoning balances “policy rationales” for and 
against a rule change. Policy rationales can be either 
epistemic or non-epistemic (Walker 2003, 2004). 
Epistemic policies have the objective of increasing 
the accuracy of factual findings, or increasing the 
number of accurate findings, as well as improving 
the evidentiary warrant for findings and decisions. 
An example of an epistemic policy is allocating the 
burden of producing evidence to the party that is in 
the best position to produce that type of evidence. 
Non-epistemic policies pursue non-epistemic objec-
tives (e.g., administrative efficiency and fairness to 
the parties). The reasoning that justifies a particular 
rule change ideally balances all of the epistemic 
and non-epistemic policies that are relevant to the 
proposed rule.

 When a reasoned decision is made to adopt a 
new plausibility schema, the reasoning also bal-
ances the epistemic objective against the appropriate 
non-epistemic objectives. Plausibility schemas are 
designed to warrant default inferences to defeasible 
yet presumptively true conclusions. A major strategy 
for designing a plausibility schema is to develop a 
“theory of uncertainty” for the type of inference 
involved (Walker 2001). A theory of uncertainty 
explains how the available evidence could be plau-
sible but the conclusion could still be false (or in 
the case of a plausible defeater, how the conclusion 
could still be true). It identifies the possible sources 
of error inherent in the type of inference, and ana-
lyzes the sources, types, and degrees of uncertainty 
associated with drawing the conclusion. In exam-
ining the inherent uncertainty, however, a theory 
of uncertainty also explains why it is reasonable 
to draw the conclusion in a tentative way, even on 
the basis of incomplete evidence. Every plausibility 
schema, therefore, reflects a theory of uncertainty 
about why the schema’s inference is defeasible yet 
acceptable in the pragmatic legal context. The D-L 
Framework can assist the evolutionary process by 
clearly identifying the patterns of reasoning that 
actually occur in legal cases.

 An important advantage of the D-L Framework 
is the potential it offers to involve non-human au-
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tonomous agents in the process of emergence and 
evolution. To the extent that the D-L Framework can 
adequately model important aspects of rule-based 
deduction, evidence evaluation, and second-order 
process reasoning, non-human agents may be able to 
make more intelligent searches for relevant reason-
ing patterns within the vast libraries of legal cases. 
Second, they may be able to assist human agents 
by helping them to organize the applicable legal 
rules into implication trees, or by revising impli-
cation trees as new cases are decided. Such agents 
might be able to play a similar role in designing 
and maintaining plausibility schemas. Third, such 
agents might serve a supervisory or quality-assur-
ance function for human decision-makers in new 
legal cases, especially in legal areas where a high 
volume of cases must be decided. As these agents try 
to apply existing rules and schemas to novel issues, 
they may be able to suggest new rules or schemas, 
and explore the implications of their adoption by 
applying them virtually and hypothetically to past 
cases. The important point is that automation using 
the D-L Framework makes possible such collabora-
tion between human and non-human agents.

conc Lusion

The domain of law provides a strategic area for 
empirically studying multiagent, problem-oriented 
systems. Legal cases are numerous and complex, 
and contain reasoning that is extensive and well-
documented. The logical structure of legal reason-
ing, including its second-order reasoning about the 
process of legal reasoning, is a primary mechanism 
by which new legal rules and new plausibility sche-
mas emerge, and by which such rules and schemas 
adapt to the nuances of legal cases. This reasoning 
structure not only coordinates the efforts of nu-
merous autonomous agents, but also promotes the 
emergence and evolution of new reasoning struc-
tures by responding to the tremendous variability 
in individual legal cases. The D-L Framework 
discussed in this chapter successfully captures 
legal reasoning structures, integrates and evaluates 
expert and non-expert evidence, and coordinates 
agents working on different legal problems. It also 
clarifies how those structures evolve new rules, 
schemas and structures over time.

 In the D-L Framework, a complete inference tree 
for the reasoning in a particular legal case consists 
of an implication tree that models all of the appli-
cable substantive and process rules, together with 
the schematized evidentiary assertions attached to 
the terminal propositions of that implication tree. 
The syntax and Semantics of this framework allow 
the automation of key tasks, and the emergence of 
dynamic structures for integrating human and non-
human agents. Moreover, it is the logical structure 
of legal reasoning itself, and not any particular set 
of rules within the legal knowledge domain, that 
creates this evolutionary mechanism. This means 
that the evolutionary mechanism applies to domestic, 
foreign and international legal systems; that non-
human autonomous agents can participate in this 
evolution, interacting with human agents; and that 
similar reasoning structures can operate in many 
knowledge domains other than law.

fu Ture  research  direc Tions

The D-L Framework provides a useful, standardized 
format for empirical research into the reasoning 
involved in legal cases. Such research has obvious 
advantages for substantive legal research. The re-
search gains may be just as significant, moreover, 
for discovering logical structures that allow the 
interaction of human and non-human agents in 
evolving reasoning structures in all domains with 
characteristics similar to law. Several directions 
for such research present themselves. Research is 
needed on the reasoning that balances the epistemic 
objective against non-epistemic objectives to ar-
rive at an appropriate new rule. Such research may 
discover patterns of rule development that might 
prove useful in many domains. Research is also 
needed on the variety of plausibility schemas that are 
used in different areas of law. Such research would 
clarify the patterns of default reasoning that human 
agents have considered valid, and may suggest new 
structures for developing new schemas. Finally, 
research is important on the process structures 
that make emergence and evolution possible. Legal 
reasoning represents a concerted human effort at 
principled, adaptive decision-making in the face of 
incomplete evidence and new situations – a type of 
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problem that confronts society in many domains. 
In each of these directions, the task is to discover 
empirically what structures have evolved, and to 
model and automate those structures to the extent 
possible, so that emergence and evolution can be 
more efficient in the future.
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a bs Trac T

Network Intrusion Detection Systems (NIDS) are designed to differentiate malicious traffic, from normal traf-
fic, on a network system to detect the presence of an attack.  Traditionally, the approach around which these 
systems are designed is based upon an assumption made by Dorothy Denning in 1987, stating that malicious 
traffic should be statistically differentiable from normal traffic. However, this statement was made regard-
ing host systems and was not meant to be extended without adjustment to network systems. It is therefore 
necessary to change the granularity of this approach to find statistical anomalies per host as well as on the 
network as a whole. This approach lends itself well to the use of emergent monitoring agents per host, that 
have a central aggregation point with a visualization of the network as a whole. This chapter will discuss 
the structure, training, and deployment of such an agent-based intrusion detection system and analyze its 
viability in comparison to the more traditional anomaly-based approach to intrusion detection.

inTroduc Tion

In what may seem to be a departure from the rest 
of this work, let us now deviate from agents and 
consider instead a networking problem that plagues 
security experts and network administrators alike; 
namely, the problem of intrusion on a network of  
machines.  In brief, a network can be considered 

any number of machines connected together in 
such a manner that they are able to send signals 
to each other across the connecting medium in 
blocks of information called packets.  Those of you 
versed in networking may wish to skip to the next 
paragraph, but for those of you unfamiliar with this 
particular venue, this is accomplished via protocols, 
or sets of formal rules governing how information 
is structured in an exchange either per packet or 
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across several packets; such rules are necessary 
to allow machines to communicate regardless of 
operating system.  These protocols are common 
knowledge and therefore, if someone wishing to send 
unwanted information on a network had access to 
the physical media, it would be trivial to structure 
the information to allow it to be transmitted suc-
cessfully.  Considering the fact that most modern 
networks are connected to the Internet, the question 
of anyone having access to the network becomes a 
very moot point.  Sending unwanted information 
on a network is known as an intrusion.

This goal of detecting intrusions on a network 
presents a complex problem spanning multiple 
levels of interaction and varied host behavior.  The 
traditional approach to detecting intrusions is to 
look at network behavior statistically and attempt to 
determine significant deviations from the expected 
behavior of the network as a whole.  This type of 
approach, around which these Network Intrusion 
Detection Systems (NIDS) are designed, is based 
upon an assumption made by Dorothy Denning in 
1987 stating that malicious traffic should be statisti-
cally differentiable from normal traffic; however, 
this statement was made regarding host systems and 
was not meant to be extended without adjustment to 
network systems.  While this is viable under certain 
types of attack, such as a botnet attack or slammer 
worm, it is insufficient to detect more advanced 
types of attack that may not trigger a statistical 
amount of errant traffic.  Similarly, network traffic 
is rarely predictable, meaning there will often be 
false alarms in such statistically based systems.  
Even if the traffic is broken into seasonality, or 
predictable periods of expected activity such as 
higher traffic during the typical nine to five work 
day, it is unlikely to produce the desired effect.  It 
is therefore necessary to change the granularity of 
this approach to find statistical anomalies per host 
as well as on the network as a whole.

To that end, this chapter proposes the use of 
emergent agents deployed on each host in the net-
work to find a seasonal baseline of activity for the 
host itself; these hosts will then report in aggregate 
to a more traditional NIDS device that will compile 
a view of the network as a whole and determine if 
there is suspicious activity present on the network 
as a whole.  This combined approach will provide 

a comprehensiveness and robustness not currently 
present in most NIDS systems.  This is an example 
of second emergence, where the emergent behav-
ior is routed back into the system to enhance the 
emergent result.

The remainder of this chapter is structured to 
provide an understanding of network intrusion 
detection systems and how social agents can be 
applied to this problem.  The first section provides 
an overview of the various approaches to NIDS 
that currently exist along with a discussion of their 
relative strengths and weaknesses.  The second 
section presents a formulation of the fundamental 
problem of determining whether a network has 
been compromised.  The third section describes 
the methodology used to approach this problem 
through the use of agent-based monitoring and the 
socialization.  Fourth, the experiments performed 
to validate the approach are described and Section 
5 the final section presents a brief conclusion.

background

Intrusion Detection Systems (IDSs) take many forms 
and approaches to detection and possibly prevention 
or recovery, ranging from open source applications 
such as Snort to extremely expensive dedicated 
appliances such as Cisco IDS.  The fundamental 
characteristic that defines the two major types of 
intrusion detection systems is the granularity of the 
observation: namely, the two types are host-based 
systems and network-based systems.  Both types 
share many characteristics along with the same 
fundamental goals but implement them in very 
different ways.  

The essential thing to remember is that there 
is no silver bullet in security and an IDS of any 
type should be one line of defense in a multi-tiered 
strategy.  The goal of any such intrusion detection 
system is to detect anomalous network behavior 
in an approximation of real time to minimize the 
damage to the network.  Network-based intrusion 
detection systems (or simply Network Intrusion 
Detection Systems or NIDS) are used to detect mali-
cious activity across an entire network viewed as a 
whole.  The typical model for this is to have a central 
aggregation point that collects all traffic sent over 
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the network and runs the analysis on the collected 
traffic.  The majority of NIDS use a signature-based 
detection method; signatures in this case refer to 
a particular, detectable pattern of behavior that is 
known to signify a known or potential attack on 
the network.  In open source applications, such as 
Snort, these signatures can normally be written by 
anyone whereas many of the corporate NIDS rely 
on custom signatures predefined by the issuing com-
pany.  These signatures are normally constructed to 
be as broad as possible without causing too many 
false positives.  This type of balance is often sought 
in statistical methods of security; too many false 
positives can cause a system administrator to ignore 
the barrage of alerts and therefore ignore when the 
alert is signifying a legitimate attack.  However, 
taking the opposite approach and constructing 
signatures that are too lax may keep the attention of 
the observing administrator but allow some attacks 
to pass unnoticed.  A signature normally consists of 
several characteristics including the type of traffic, 
associated ports, and a small portion of the actual 
exploit code.

There are several disadvantages of this approach 
to network intrusion detection systems.  One of the 
most significant is the potential for poor placement 
within the network itself; in order to be effective, 
the NIDS needs the ability to see all network traffic, 
even traffic sent from devices that may require a 
proxy to route traffic to the NIDS aggregation point.  
Any blind spots in the network can allow intrusions, 
or at least part of an intrusion, to pass by without 
being noticed, thus bypassing any signatures writ-
ten to capture that specific part of an exploit or at 
least delaying the detection enough to increase the 
amount of damage done to the network.  Another 
common problem is with the signatures themselves; 
either lack of signatures, poorly written signatures, 
or signatures that have not been updated can cause 
this approach to fail (Newsome, 2005).  While there 
are many listings of common signatures for NIDS, 
most of these must be tailored to the network being 
monitored and must be written by someone with 
skilled knowledge of the network itself.

This has led to the alternate approach of us-
ing anomaly-based detection; where signature 
based detections fail, anomaly detection excels.  
Anomaly detection by definition attunes itself to 

the network on which it is housed and can excel 
at detecting previously unknown exploits.  Used 
by itself, though, anomaly detection can be inef-
ficient and noisy.  Similar to poorly constructed 
rules, it produces many false positives when set 
to an alerting threshold that is too low (Gu, 2007).  
At a moderate threshold it can detect anomalies on 
the network, and although it cannot identify the 
nature of the intrusion, it can alert an administrator 
that something is wrong, and where the anomaly 
is located.  Anomaly-based detection uses traffic 
history, seasonality, and percentages to determine 
what is anomalous and what is permissible.  

Anomaly detection also has its own set of 
shortcomings.  Alerting too frequently is one of 
the most significant problems, and administrators 
will quickly begin to dread alerts because unlike 
signature-based systems, the anomaly-based NIDS 
can only identify that there is a problem without 
providing a specific reference to the type of problem 
that is occurring, requiring a network-wide hunt for 
the source of the problem.  Another drawback of 
anomaly detection is that it will not see intrusions 
that have already occurred on the network, such as 
backdoor connections, because they are built into 
the statistical normal profile.  Similarly, attacks that 
slowly ramp up the amount of traffic used will likely 
cause the system to simply adopt the traffic as part 
of the expected profile over time.  Finally, intrusions 
that are very covert and use normal traffic to mask 
themselves could go completely unnoticed.

The other major category of IDS is Host Intru-
sion Detection Systems (HIDS), which take a dif-
ferent approach to detecting attacks; specifically, 
they look at each host independently for signs of 
attack.  HIDS must be deployed on each system 
that is to be protected.  Like NIDS, these host-
based intrusion detection systems primarily use 
signature- and anomaly-based detection (Kodialam, 
2003).  An advantage to the host-based as opposed 
to the network-based systems is that the anomaly 
detection can rely on more detailed analysis and 
has the opportunity to more closely attune to its 
respective machine.  Finding unknown intrusions 
in network traffic can be very complex, whereas 
on a host there are more references to be consid-
ered such as processes, network accesses, system 
calls made, etc.  One of the biggest problems of 
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host-based intrusion detection systems is that not 
every system in the network is capable of support-
ing one and in general cannot be accomplished via 
proxy for devices that cannot inherently handle the 
requisite software.  One of the best examples of a 
HIDS system is OSSEC, an open source IDS that 
supports multiple platforms and multiple purpose-
specific modes of operation such as Web server 
monitoring.  Centralized reporting is also an issue 
that is not well-addressed by a HIDS system; if a 
malicious intruder were able to exploit a host and 
take control before the HIDS could send off an 
alert, the intruder could prevent that alert from ever 
being sent, thus blinding the administrators to the 
intrusion and the lack of communication between 
HIDS host systems means that the attack can spread 
without notice.

Host Intrusion Prevention Systems (HIPS) are 
a slight variation of HIDS; the biggest difference 
with HIPS is that they try to prevent the intrusion 
in real time as it is detected.  These systems sit 
inline with network traffic and monitor all traffic 
that flows through their location.  The HIPS can 
halt what it decides to be a malicious traffic flow 
while allowing others to continue.  They can do 
this in a number of ways including firewall rules 
that are added as intrusions are detected (Corman, 
2005).  They also detect host characteristics such 
as a buffer overflow to decide if an intrusion has 
taken place and attempt to stop their progress by 
halting processes.  The first example of a true HIPS 
is BlackICE developed by a company called Net-
workICE; this engine was purchased by IBM and 
remains part of their Proventia line of products.  
HIPS suffer from the same problems as most NIDS 
and HIDS such as false positive rates and tuning; a 
substantial portion of their monitoring also relies 
upon protocol analysis as previously discussed.  
Again, this is because protocols can be predictable 
and therefore allow errant behavior to be detected 
quickly (Zheng, 2005).

The final type of IDS is the hybrid system.  This 
means that the system simply combines different 
components of other types of intrusion detection 
systems.  An example of this is the Prelude system, 
an open source product for Unix.  This is the type 
of system that will be the focus of the remainder 
of the chapter.  The goal of this work is therefore 

to create a hybrid intrusion detection system based 
on an understanding of the fundamental problems 
necessary to overcome with any intrusion detection 
mechanisms and demonstrate the successful appli-
cation of a social agent network to this particular 
problem.

a lice and bob at w ork

The main difficulty in analyzing network traffic to 
determine whether an intrusion has occurred is the 
problem of distinguishing behavior that is unchar-
acteristic of normal operation.  Denning made the 
now historic assumption for host-based systems that 
malicious traffic is statistically differentiable from 
normal activity (Denning, 1987); this assumption 
was extended without alteration to networks and 
has been shown to be flawed based on the difficulty 
of using that mindset to deliver successful NIDS.  
However, taken with further granularity and put in 
a proper context, Denning’s assumption can still 
be proven to be correct; essentially, each host in 
a network will display some behavior errant from 
its expected function under malicious conditions 
which may have discernable repercussions on the 
network environment.  

The underlying problem then correlates to the 
detection of suspicious activity on a host system 
and propagating the awareness of that activity to the 
network as a whole. Depending upon the resources 
available to devote to such monitoring and the level 
of intervention allowed, the correct monitoring may 
detect an intrusion early enough to at least minimize 
the amount of damage that results.  However, the 
use of thresholds and anomaly detection is insuf-
ficient in this regard based on the nature of modern 
computing.

Consider two users, Alice and Bob, the perennial 
characters of networking scenarios, with different 
roles within a company environment.  If Alice’s 
role is in technical support and Bob’s role is in 
software development, it is expected that, even with 
the same machine specifications and configuration, 
their normal machine usage would be significantly 
different.  For example, Alice may need an instant 
messaging program for online support as well as 
remote access to other hosts on the network.  Bob, on 
the other hand, would be less likely to be accessing 
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hosts on the network other than perhaps a testing 
and production environment.  Therefore, repeated 
port scanning from Alice’s machine would be less 
indicative of malicious activity than it would on 
Bob’s machine based on their roles (i.e. a port scan 
from the instant messaging system that attempts to 
find a viable session host).  Similarly, a large vol-
ume of traffic from Alice’s machine to a previously 
unknown host may be part of her normal usage but 
may indicate compromise of Bob’s machine.  What 
this essentially demonstrates is that analyzing host 
characteristics is entirely insufficient in determining 
usage and it will be further demonstrated that there 
is no way to accurately apply a standard that will 
account for the behavior of the two different users 
even though the machines on which they operate 
are exactly the same.

Consider the case of thresholds in the above 
scenario; if the threshold of acceptable activity 
was set too high because of Alice’s standard and 
completely benign behavior, Bob’s machine could 
actually be compromised without raising an alarm.  
If the threshold was set too low, Alice would consis-
tently trigger false positive alarms by transmitting 
volumes of data to previously un-contacted hosts to 
resolve issues remotely for other users.  Similarly, 
anomaly detection based on traffic history would be 
insufficient to handle the nature of Alice’s expected 
normal behavior.  While this approach would most 
likely detect any errant behavior on Bob’s machine, 
whenever Alice contacted a new host, there is a 
potential for the system to trigger a false positive 
based on the nature of the new contact, payload size, 
protocol, etc.  Even in a host-based system where 
the thresholds could be tuned to the respective uses, 
Alice’s normal usage may still appear suspicious, 
especially given that she will likely be controlling 
other hosts remotely.

What is therefore necessary is a system capable 
of adapting dynamically to individual users on a 
machine and allowing for similar behavior within an 
environment without using the specific hosts previ-
ously seen or contacted under the same application.  
It is also necessary to allow for the aggregation of 
alerts to construct a view of the network as a whole 
and detect any potential repercussions to the com-
promise of an individual host.  The current systems 
that exist are not capable of this kind of flexibility 
or granularity of behavior.

Foundationally, what is necessary to begin this 
new approach is to construct a model of a distrib-
uted host-based intrusion detection system with 
components similar to both NIDS and HIDS for a 
granular approach to monitoring.  Because HIPS 
address the same fundamental issue with an addi-
tional reaction component, they will henceforth be 
considered beyond the scope of this work.  The model 
therefore begins at the host level with the monitoring 
of system resources and activity.  This approach to 
intrusion detection differs from a standard HIDS 
in that data collected will then be shared socially 
among the various nodes to make a determination 
on whether or not the behavior should be classified 
as malicious based on the number of hosts report-
ing similar suspicious occurrences throughout the 
network.  To address the issue of activity and re-
source discrepancies across users and machines, the 
host-based monitoring can be entrusted to learning 
agents which will develop their own unique model 
of their environment and adapt as the systems are 
used.  The focus of the agents for this work was to 
primarily consider the host-based characteristics, 
such as paging, processes, CPU usage, etc.; in this 
case, to reduce the scope to a manageable level, the 
agents will focus on processes and process parents 
running on the host system.  In this manner, the host 
system is allowed to establish its own baseline of 
normal behavior without triggering a multitude of 
false alarms across the network while still detect-
ing malicious activity.  By incorporating social 
aggregate reporting, the system is also designed to 
address the issue of network-wide attacks or multi-
point intrusions, creating an emergent picture of the 
network in an approximation of real time.

an  inTeLLigen T agen T based  
approach  To  inTrusion  
de Tec Tion

Fortunately, the area of artificial intelligence 
provides a unique path to achieving these desired 
ends, particularly intelligent agents able to adapt to 
their own host environment.  With some training, 
it is possible for an agent deployed on a machine 
to adapt to the typical usage of an individual user 
and therefore determine if erratic behavior is occur-
ring.  Namely, an agent passively observing the host 
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machine in a safe mode of operation (i.e. without 
a network connection) can gather the information 
requires allowing it to adaptively monitor the host 
and determine when it is misbehaving. Similarly, by 
allowing the agents to socialize within the network, 
it is possible to determine when activity is erratic 
based on prior observation.  It is also possible in 
a social environment to determine when a larger 
scale attack is occurring or to trace the extent of the 
damage from the compromise of a single host.  The 
remainder of this section will discuss the creation, 
socialization, and training of an agent for the task 
of host monitoring.  It is worth noting that the agent 
designed is limited in scope to the observation of 
the processes running on a host and the parents of 
those processes.  It is entirely feasible to build a more 
complex model from this idea to allow the monitor-
ing of other resources within the host such that an 
attack does not have to have a process signature in 
order to be detected.

a gent design

An agent deployed on a host machine must have the 
capability of observing the system usage in terms of 

ports, processes, applications, and users, which is 
a concern for the access control mechanisms of the 
operating system; it is hereafter assumed that the 
agent has the access privileges necessary to perform 
its intended operations.  The agent must have the 
ability to create a model of its environment and adapt 
that model to changing behaviors without raising a 
large number of false positives and simultaneously 
recognizing significant deviations from expected 
behavior.  It is also necessary for the agents to so-
cialize in order to determine acceptable behavior 
across multiple hosts and to communicate any pos-
sible malicious behavior between agents.   It is also 
necessary for this socialization to allow agents to 
query each other with regard to suspicious behavior 
that they have not previously experienced.

For simplicity, in the scope of this work, the 
system resources that will be considered will be 
restricted to processes running on the host system 
and the associated parent process, which is simply 
the running process which spawned the new pro-
cess.  From this point forward, whenever a process 
is considered, it can be assumed for the sake of 
brevity that this is not only the process but also the 
parent process that spawned it; for instance, cmd.

Figure 1.  Agent Logical Component Layout.  The agent module is a standalone executable with access to 
resource monitoring on the host system and network access through the host.  The model an agent constructs 
and modifies consists of the three lists seen above: allowed, watched, and forbidden processes and associ-
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exe is not itself a malicious process if spawned by a 
legitimate parent such as explorer.exe at startup but 
if it is spawned by malware.exe, it would likely be a 
risk to the system, so the combined set of the process 
and its parent must be considered as a single entity.  
It should be noted, however, that active ports and 
traffic flow analysis may be a more useful approach 
to analyzing behavior in a real deployment of this 
system, lending itself not only to a listing as will 
be discussed but also a stateful model of particular 
protocols of concern as in the protocol-based detec-
tion approach.  It is also assumed that all hosts are 
capable of supporting the agent, which may not be 
the case in a real network system.  In that case, a 
proxy would be necessary to at least communicate 
to surrounding agents that no data is available for 
the device being contacted such that an active agent 
does not assume it is contacting a compromised or 
disabled host.

The agent must therefore have the following 
capabilities: to store a model of its environment, in 
this case a set of lists of active processes that may 
or have been observed on the system along with an 
associated list of parent processes; to update the 
existing model over time; and to communicate with 
agents on other hosts using specified protocols.  The 
model of the environment considered for this work 
consists of the following:  a listing of the processes 
and associated parent processes that are currently 
running on the host system; a listing of allowed 
processes and associated parents that are expected 
to be seen on the host system; a warning or watch 
list of processes and parents that are currently un-
der suspicion; and a list of unwanted or forbidden 
processes and associated parents that should not be 
running on the host system, as seen in Figure 1.  The 
update of the model will be determined socially by 
a voting process described later in this section.  It is 
also possible for the agents to report their denied or 
watched processes to an aggregate server to allow 
for a network administrator to monitor the state of 
the network as a whole while the agents handle the 
majority of the decision making process as to what 
constitutes suspicious behavior, thereby minimiz-
ing the number of false positives that the network 
administrator would need to handle.

In general, an agent’s most complex decision 
will be when to elevate a process from watched to 

forbidden status and to reduce the status of a process 
from watched to acceptable on the host machine.  
A process is placed on the watch list in two ways:  
when the process appears and the agent has not 
seen the process before and when a communicating 
agent (as discussed in the next part of this section) 
reports the process as either watched or forbidden 
on its own respective host.  First consider the case 
of risk elevation from watched to forbidden.  This 
elevation will typically occur in the following 
manner:  a watched process appears on the host 
system after receiving the process in a notice from 
a communicating agent, a communicating agent 
announces the process as forbidden in the result 
of a vote, a vote called by the host agent results in 
a majority opposed to allowing the process, or a 
system administrator issues an override to forbid 
the process regardless of individual agent decisions.  
Similarly, a watched process can be reduced in risk 
from watched to acceptable in the following ways:  
a communicating agent announces the process 
as acceptable in the result of a vote, a vote called 
by the host agent results in a majority in favor of 
allowing the process, or a system administrator 
issues an override to allow the process regardless 
of individual agent decisions.  There also exists 
the case of uncertainty for a watched process in 
which the process does not elevate or reduce in 
risk; therefore it is expedient to place an expiration 
upon the watched process such that if no change in 
the status of the process occurs during the specified 
time, the process will be removed from the watch 
list completely such that a subsequent appearance on 
the watch list represents a new look at the process 
without prior prejudice or endorsement.

a gent socialization

Agents in this environment must communicate with 
both neighboring agents and foreign agents wishing 
to contact the host system.  It is assumed that each 
agent will have a listing of the allowed or expected 
processes on its host system and both a watch list 
of suspicious processes and a blacklist of forbidden 
processes along with a view of processes running 
at the time of communication.  When agents com-
municate, they will engage a handshake protocol to 
deliver a list of processes that are currently running 
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on their system that are not expected in the scope of 
the host’s normal behavior based upon these two lists.  
This can alert the contacting agent of processes that 
should raise an alert if they subsequently appear on 
the contacting agent’s host.  The handshake protocol 
is described below where C represents the contact-
ing agent and R represents the receiving agent and 
ID represents the network identifier (i.e. the IP or 
MAC address) of the agent’s host:

1. C → R: Hello(IDC, IDR)
2. R → C: Ack(IDC)
3. C → R: IDC | SusProc(IDC)
4. R → C: IDR | SusProc(IDR)
5. C → R: IDC | Go(IDR)
6. R → C: IDR | Go(IDC)

The Hello message is simply intended to begin 
agent communication, wherein the receiving agent 
can identify that the message is intended for its use.  
Subsequently the Ack message is to identify whether 
the receiving agent is active.  The Ack message is 
necessary because there is no guarantee of agent 
activity on the receiving end based on the nature 
of the contact, the type of communication (such as 
a communication to a host that does not have such 
agents in practice), or the state of the host being 
contacted.  There is a window of time ta in which the 
Ack can be accepted by the contacting agent before 
the receiving agent is assumed to be unresponsive; 
this is to prevent a self-inflicted Denial-of-Service 
(DoS) on the contacting host waiting for the receiv-
ing host to reply.  There are several causes of a lack 
of response, and ta should be adjusted such that the 
contacting agent will wait a sufficient amount of 
time to account for inherent network delay before 
assuming that the agent on the receiving host is not 
going to respond.  

It is possible for an agent to die during a malicious 
intrusion or at least to be silenced from communi-
cation even if an agent is installed on the receiving 
system.  Any other agent attempting to contact the 
deceased agent could assume the lack of response 
to imply that the agent was not functioning properly 
and the agent’s host should always be suspect in 
any communication if the receiving host does not 
respond with an Ack message.  If the receiving agent 
is unresponsive, it is left to the contacting agent to 

decide whether or not to continue communication 
with the host (or in environments in which the agents 
are given less control, to at least prompt the user 
that continuing communication could be unsafe).  
Later, the case will be examined in which agents 
can report on each other to call for a vote on how 
to treat the non-responsive agent.  

The SusProc message identifies the list of active 
processes that are either under watch or forbidden 
on the host system.  Given this information, the 
respective agents can compare the processes against 
their own list of watched and forbidden processes 
to determine if communication between the hosts 
should be allowed.  This decision is made by each 
agent individually.  The primary and most simplistic 
model that will be considered first is the concept 
that the agent will decide to halt communication 
if the other agent reports a running process that is 
forbidden on the host system and merely add the 
processes to the watch list if it has not previously seen 
the process reported for each process encountered.  
Each agent will respectively decide on a response for 
the Go message.  This is a simple yes or no decision 
on whether to proceed with the communication.  
Communication will cease (or at least prompt user 
intervention in a passive implementation) if either 
Go message returns false.

Even when the communication is allowed to go 
forward, the list of possibly malicious processes 
reported by the other agent are subject to watch, 
meaning that if any of these processes appears on 
the host system in the duration of time assigned for 
a process to be under watch, they will immediately 
be considered malicious and the following actions 
will be taken:  the agent will immediately upgrade 
the process from the watch list to the forbidden 
list; the agent will prompt the user, or in automated 
systems, make a decision as to whether to terminate 
the process; and the agent will sever the connection 
(if it remains active) with the host that reported the 
process.

For the agents to decide on what potentially 
unacceptable processes should be allowed on a host 
machine, one approach would be to allow neighbor-
hood voting on processes that occur on the host based 
on the watch list of the individual agent.  Because 
of this type of periodic socialization, it is necessary 
for initiating agents to have some way to verify that 
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neighboring agents are alive; a heartbeat, or periodic 
signal sent by the agent to signify continued activity, 
is one such possible method.  Heartbeats, though, 
are generally not advisable based on the amount 
of information about the network that is regularly 
broadcast (i.e. to an attacker attempting to map the 
network, there may be sufficient information in the 
heartbeat transmission to determine the number of 
hosts on the network at minimum) as well as the 
implied increase in traffic that this would cause on 
densely populated networks.  Therefore, instead of 
taking the heartbeat approach, when it is necessary 
to vote upon a process, the agent calling for the 
vote will transmit a pulse check which will then 
prompt an anonymous response of live agents that 
will participate in voting; an associated time win-
dow tv will then be given for responses which will 
determine the approximate number of participant 
responses accepted in the voting process.  This 
number of responses can be used as an upper bound 
of votes to be counted, but this approach can lead 
to complications which will be discussed in the 
next section.

Once the time interval tv has elapsed, the agent 
calling for the vote will announce the process 
(along with the associated parent process) that is 
in question.  Participating voting agents will re-
spond with ALLOW, DENY, or ABSTAIN.  If an 
agent has the process in its model of accepted or 
expected processes for its respective host, it will 
vote ALLOW.  If the voting agent has denied the 
process in the past or has the process in its disal-
lowed list of processes, it will vote DENY.  If the 
voting agent has no experience with the process, it 
will choose to OBSTAIN.  The vote is decided by 
simple majority, and the agent calling for the vote 
will announce the result, thereby allowing agents 
without experience with the process to update their 
tables to either allow or deny it on their own systems 
without a repeat vote.  If there is no majority in 
either direction, the agent can discard the process 
from its watch list, allow it to run, and call for a 
new vote if the process arises again similar to the 
case in which the process expires from the watch 
list without a change in status.

a gent Training

Inherently, this system relies upon the socialization 
of agents contacting other agents when initiating 
communication or deciding upon what processes 
are acceptable on the host system.  This will allow 
for a naturally emerging picture of acceptable and 
forbidden practices on a per host basis within a 
complex network.  However, without training, a 
model of acceptable behavior will never emerge 
naturally because no agent will be able to vote with 
significance on any process presented by another 
agent.  It is therefore necessary to allow a period 
of acceptance for host behavior.  There are two 
simplistic approaches to this training, each with its 
own implied advantages and disadvantages.

The first approach to training the agents is to 
allow the network to run for a period of time in 
with each agent may safely collect any running 
process on its host system as acceptable.  This is 
based upon the (potentially unsafe) assumption that, 
from startup, there is an interval of time T such that 
any compromise of the network would take greater 
than T time to achieve (Zhu, 2003).  Selecting the 
time interval, T, safely while allowing significant 
time for the agents to gather a comprehensive view 
of the host processes as it behaves on the network 
is a difficult problem left as open research in the 
scope of this chapter.

An alternate approach to this assumption is to 
allow the host system to run without a network 
connection for a period of time at startup, assum-
ing that the host is running either out of the box 
or immediately after imaging and has not been 
previously connected to the network and therefore 
possibly compromised.  During this time, the inher-
ent processes of the host’s normal operation will be 
accepted by the agent; provided that this is not a 
significant hindrance to the users, it may even be 
worthwhile to allow the user to startup the normal 
programs that would be run on the system, still 
without connecting it to the network.  However, 
this approach means that the behavior of the host 
as part of the network with its associated users is 
not captured by the agent and may initially cause a 
large number of votes to occur to decide on normal 
processes that may not occur within the host system 
in isolation.  It may also require significant inter-
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vention of the network administrator to override 
conservative agents that choose to forbid essential 
processes that occur as part of the network opera-
tion, such as child processes spawned by a network 
virus scan system such as McAfee or access control 
mechanism such as Novell.

For the purpose of this work, the method of agent 
training is chosen as a proof of concept without 
attempting to address the repercussions of a com-
plex network environment.  A combined approach 
is therefore used.  Each agent is allowed to run on 
the host in isolation for a period of time and then 
given a very short interval T during which the host 
is live on the network in order to gather as many na-
tive processes as possible and still capture as much 
network behavior as possible without risking too 
large an interval and therefore possibly allowing a 
compromise to become part of the accepted model 
of the host environment.

The system in practice

To test the validity of this model, it was decided to 
target Microsoft Windows XP as a host platform 
because of its wide adoption in large scale networks.  

As previously stated, processes and associated par-
ents were targeted as a key to detecting intrusions 
because they stay fairly similar across a network 
except in the event of suspicious activity.  Network 
traffic could also be targeted by such an agent sys-
tem but network traffic varies greatly, making the 
detection of anomalies significantly more difficult 
for an individual agent with a limited view of its 
context.  The approach taken will not detect an at-
tacker that is sophisticated enough to avoid spawning 
any suspicious processes on the host machine or an 
attacker who fails to compromise a computer, again 
spawning no processes to detect.  This type of attack 
requires that an agent have a more complex model 
of its environment similarly designed to evaluate 
what is allowed, suspicious, and forbidden for the 
resource or protocol included.

Arguably the most dangerous type of attacker 
is one who exploits a computer and then decides to 
remain on it with a backdoor of some sort that can 
be used to either compromise another machine and 
blame the first victim or remain for later use.  For-
tunately, most backdoors have some sort of process 
footprint which can then be flagged and denied by 
the agent.  There are several processes which are 

Figure  2.  Logical Layout of the Validation Testing Schema.  Each virtual host is physically located on the 
real host server, which is used as an aggregation point for all of the network-level messages of the system.  
The router is used to facilitate all communication between agents/hosts.
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exposed to the network that are commonly used by 
backdoors: explorer.exe, iexplore.exe, cmd.exe, ser-
vices.exe, svchost.exe.  These processes can control 
other processes but can also occur benignly in the 
routine operation of the host system.  Therefore, it 
is necessary not only to examine the process itself 
but also the parent process which initiates it.  This 
combination then allows rules to be applied to the 
process in context without a blanket decision to 
allow or deny.

The construction of the process monitor for the 
agent involves finding a way to get a running process 
list and then determine parent/child relationships; 
fortunately the Windows API has function calls to 
provide this information.  The process monitor then 
creates a linked list structure to scan through the 
results for the relationships among processes and 
compile them into a list of active processes and 
associated parents.  During the gathering phase, 
the agent will accept all process tuples present as 
allowable on the host.  After the gathering phase, 
the agent will add any process and parent that is not 
already allowed by the current environment model 
to the watch list if it is reported by another agent. 
Similarly a new process that spawns on the host 
machine will prompt the agent to call for a vote if 
it has had no prior experience with that process.

After each voting process, the agent will compile 
the results and update its environmental model, 
which consists of three text files (which can be 
combined to a single file with annotations if desired) 
containing allowed processes and parents, denied 
processes and parents, and watched processes and 
parents respectively. It should be noted that the 
agent communication could easily be converted to 
use a SSL secured connection but was tested using 
HTTP.  The security of the voting process and agent 
communication is discussed later in this section but 
for the purposes of validation testing was assumed 
to be outside of the scope of the implementation 
model.

Validation testing of the system was performed 
using five virtual machines.  One virtual machine 
running Windows XP was setup in VMWare and 
then copied.  This allowed for a uniform network 
similar to what could be found in many corporate 
configurations despite its size.  The agent program 
was added to each system and the individual agent 

results were written to a file in shared memory to 
evaluate potentially malicious processes in ag-
gregate although no agent was constructed to this 
purpose, providing a global view of potential threats 
on the network.  The layout of this schema can be 
seen in Figure 2.  The determination of the severity 
of the potentially malicious processes was made by 
a parsing script that read the text file and determined 
threat level based upon the number of times the 
process was reported.  The following extract shows 
the processes considered to be a risk.  It can be seen 
from the process view of almost any Windows XP 
system that the majority of the processes were ruled 
to be safe based solely upon the agent collection and 
interaction.  It should be noted that the agents in this 
implementation were incredibly verbose, reporting 
a warning even when a process was added to the 
watch list in order to observe the behavior of the 
agents as the test progressed.  One malicious use was 
initiated in one of the virtual machines that would 
cause Netcat (nc.exe) to spawn a command shell 
(cmd.exe) and transfer Netcat to another machine 
and then repeat the process from the new machine, 
which is a good indicator of malicious activity and 
in many ways functions as an autonomous worm 
program would.  This process was reported along 
with several processes that were simply unexpected 
and missed the collection phase in natural opera-
tion; the only user intervention in this case was 
the use of Netcat so all other processes reported 
spawned by the native operations of Windows XP 
Service Pack 2.  It can therefore be concluded that 
the agent system functioned properly in determin-
ing a majority of the processes to be safe and acted 
predictably when encountering new processes that 
arose on the host system.

Process c:\\windows\\system32\\services.
exe on host 10.1.10.2 is not allowed to have a 
child c:\\windows\\system32\\imapi.exe (CLAS-
SIFIED HIGH RISK) Instances Reported: 2 
Process c:\\windows\\system32\\cmd.exe on 
host 10.1.10.2 is not allowed to have a child 
c:\\windows\\system32\\ipconfig.exe  (CLAS-
SIFIED HIGH RISK) Instances Reported: 2  
Process c:\\windows\\system32\\svchost.exe on 
host 10.1.10.2 is not allowed to have a child 
c:\\windows\\system32\\dfrgntfs.exe (CLASSI-
FIED MODERATE RISK) Instances Reported: 1 
Process c:\\windows\\system32\\svchost.exe 
on host 10.1.10.2 is not allowed to have a 
child c:\\windows\\system32\\defrag.exe (CLAS-
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SIFIED MODERATE RISK) Instances Reported: 1 
Process c:\\windows\\system32\\svchost.exe on 
host 10.1.10.2 is not allowed to have a child 
c:\\windows\\system32\\dfrgntfs.exe (CLASSI-
FIED MODERATE RISK) Instances Reported: 1 
Process c:\\windows\\system32\\svchost.exe 
on host 10.1.10.2 is not allowed to have a 
child c:\\windows\\system32\\defrag.exe (CLAS-
SIFIED MODERATE RISK) Instances Reported: 1 
Process c:\\nc.exe on host 10.1.10.2 is not al-
lowed to have a child c:\\windows\\system32\\
cmd.exe (CLASSIFIED HIGH RISK) Instances Re-

ported: 2

The reported IP addresses in this case were all 
identical because of the internal router interface 
seen by each process as it was writing.  In a nor-
mal network the IP addresses of the host would be 
different for each host that is reporting, therefore 
allowing a network administrator to immediately 
identify which machine was reporting.  There are 
several processes in this list which are completely 
valid windows applications, but were not being 
run on each of the systems yet. Given enough time 
these processes would be found on all of the systems 
since the running configurations were identical and 
as such would be voted acceptable by the agent 
community.

The one process which was rated as a high risk 
(i.e. forbidden) that in fact was a backdoor was 
the process nc.exe.  This was the copy of Netcat 
running on a single system.  Netcat itself is simply 
a tool for constructing network connections and 
can be used in an entirely legitimate way or it can 
be used maliciously, just like packet sniffers and 
scanning.  While the risk is successfully classified 
as forbidden, any attempt to compromise further 
systems would escalate the threat level at the ag-
gregation point; additionally, the footprint of this 
exploit could likely be recognized by the network 
administrator.  Even with the successful validation 
testing of the concept, there are several issues that 
arise in practice for this approach that are addressed 
in the remainder of this section.

vote Tampering

The idea of agent voting is introduced as the primary 
means of creating an emergent view of the network 
as a whole.  However, there are fundamental issues 
with the concept of voting as it is simplistically 

described in previous sections, namely, the issue of 
participation and security.  The true goal of the voting 
process is to share previously acquired knowledge 
to allow agents to inform each other of potentially 
dangerous processes with which they have had prior 
experience.  In a more detailed analysis, it is more 
effective for agents to participate in voting of they 
are on a similarly configured host, i.e. an agent on a 
Windows machine intrinsically has more insight into 
an agent on another Windows machine that it would 
insight into an agent deployed on a Macintosh.  It is 
therefore possible for an agent to be active in voting 
and have no experience with any of the processes 
being used because they do not occur on the agent’s 
native platform at all or with the same name.  This 
can give rise to the case in which the majority of 
voting agents abstain.  There is a subtle distinction 
that must be made here in the difference between 
this type of abstention and an abstention of an agent 
who could potentially come into contact with that 
process later and it makes an enormous difference 
in the validity of the voting process.  It is therefore 
prudent in the initial call for a vote that the agent 
announces the characteristics of the host, at least 
in a minimal sense such that agents are voting on 
the same platform; this requires a substantial size of 
network, however, in order to assure that there are 
sufficient voters to make an accurate judgment.

There is also the issue of vote tampering.  The 
idea presented for the voting system assumes that 
most of the agents which initially respond to the 
call will participate, but in its current incarnation, 
there is an opportunity for an agent to vote multiple 
times or for an adversary to outvote the legitimate 
agents by flooding the network with votes as soon 
as the process is announced and blocking legitimate 
votes because only a certain number of them will 
actually be accepted.  To make this communica-
tion secure, each agent would therefore need to 
be assigned a unique identifier independent of the 
host’s identifying information to ensure that invalid 
data is not being added to the system which could 
invalidate the results by an agent voting multiple 
times.  Additional security is also required based 
on the fact that the identifier could be spoofed or 
false identifiers could be constructed.

Based on the fact that large networks are unlikely 
to allow a network map to reside in each agent’s 
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model o the network to allow accurate and precise 
voting, an alternate means of proving identity 
must be constructed.  The most secure way to do 
this would be through the use of digital signatures 
using a public key algorithm such as RSA because 
these would be impossible for an adversary to 
forge and require only a single key authority for 
the network.  However, this is infeasible given the 
goal of a lightweight agent that requires minimal 
processing to operate.  Therefore, a compromise 
to this would be to use the idea of a pre-shared 
key common to such protocols as WEP and WPA 
for wireless technology.  Each agent upon creation 
would be installed with the Pre-Shared Key (PSK) 
for the network, which would be used as part of a 
cryptographic hash to prove that they are a respond-
ing agent that is a legitimate part of the network.  
Based on the nature of cryptographic hashing and 
the fact that the PSK is not transmitted, it would 
be tremendously difficult for an adversary to de-
termine the PSK without compromising an agent.  
Similarly, the call for a vote should contain this 
verification to prevent an adversary from clogging 
the network by spoofing voting calls.  The voting 
protocol would then be multicast to all recipients as 
follows, with C being the calling agent and R being 
the responding agent:

1. C → R: Call(IDC, S, H[IDC | S | P])
2. R → C: Ack(IDC, IDR, H[IDC | IDR | P])
3. C → R: IDC | VoteProc(IDC, S, H[IDC | S | 

P])
4. R → C: IDR | VoteRep(IDC, IDR, V, H[IDC | 

IDR | S | V | P]))
5. C → R: IDC | Dec(IDC, D, H[IDC | S | D | P])

In the above protocol, Call is the initial call for 
respondents; this would be the place to add identify-
ing characteristics for the host to determine which 
voters should have a vote.  S is simply a sequence 
number to prevent replaying a call or voting to 
occupy the network and H is a cryptographic hash 
function to provide integrity checking.  The P 
enclosed within the construction of the hash is the 
pre-shared key and proves the association with the 
network.  The responding agent will use the IDC, 
S, and its own copy of P to validate the match of 
the hash function before responding.

The message is sent in multicast to all agents 
within the network or sector of the network assigned; 
the pre-shared key can also be assigned by sector to 
limit voting jurisdiction in which all messages that 
do not have the correct P for integrity verification 
will simply ignore the voting calls and responses.  
The reply Ack message sent from each responding 
agent is merely an acknowledgement that it will 
participate in the vote; again, the integrity check is 
placed within the message so that the calling agent 
can accurately identify, by ID, which agents during 
the vote will have their votes recorded.

The VoteProc message is the announcement 
of the suspicious process which is up for voting.  
Similar credentials to the call for the initial response 
are used to associate this message with the initial 
call.  The responding agents in this case will rely 
with their vote V in the VoteRep message, which is 
included in the hash to prevent vote tampering en 
route by an adversary.  As the calling agent receives 
these messages, it can assign the votes based on the 
expected IDs of the agents which initially declared 
that they would respond.  Again, the calling agent 
will only wait for a specific period of time for a 
response to avoid the case where a responding 
agent can stall the calling agent by declaring that 
it will vote and then never sending its actual vote.  
The final message is simply the announcement of 
the decision made by the calling agent based upon 
all of the respective responses of the voting agents.  
Here the decision D is included in the hash to prevent 
tampering.  The pre-shared key is not perfect, but it 
means that an adversary must compromise an agent 
itself in order to be able to spoof messages in the 
system; this type of verification is not necessary 
in the handshake between communicating hosts 
because there is no assumed trust between agents in 
that case whereas the voting process is based upon 
the notion of getting accurate and legitimate votes 
from agents within the network or neighborhood 
within the network.

conc Lusion 

This chapter presents the idea of applying the con-
cept of agents in a social environment to approach 
the security problem of intrusion detection.  The 
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fundamental approach is to allow each agent to 
emerge its own baseline of behavior for the host it 
monitors.  By allowing the agents to decide socially 
whether a process should be allowed, it will reduce 
the number of false positives and propagate the 
denial of decidedly malicious processes.  This is 
then extended to allow reporting to a central col-
lection point to allow a network administrator to 
see the current threats to the network according to 
the decisions of the agents. The advantages 
of this system over the traditional approach to IDS 
are numerous.  This system can detect 0-day attacks 
because there is no reliance upon signatures but 
rather a focus on behavioral characteristics.  Many 
of the false positives are also ruled out because of 
the voting procedure in place.  Additionally, this 
system can also be used to stop users from installing 
software that is unwanted.  User installed software 
in this case would also be treated as anomalous if 
it is not widely distributed.

The biggest disadvantage to this approach is 
the potential for false positives if a network is not 
uniform.  During times where a major network 
upgrade was occurring, the agents would have 
many false positives and may require a reset if the 
voting decided the process should be denied.  An 
additional problem is that an intrusion has already 
occurred and been successful if the agent detects 
malicious activity.  Therefore, this system is capable 
of detecting attacks after the fact and preventing 
their spread, but some amount of damage has oc-
curred already.  This threat could be mitigated by 
allowing the agents to automatically kill processes 
that are on the forbidden list.

fu Ture  research  direc Tions

This approach to intrusion detection provides a flex-
ible framework for future exploration of more com-
plex analysis of resources present on the network, 
such as port information or per packet monitoring 
depending upon the desired granularity.  The dif-
ficulty in extending this approach to fine grained 
monitoring is the significant increase in the number 
of votes necessary to resolve disputes.  An additional 
problem with this system that is not addressed herein 
is the compromise of an agent in which an agent will 

still respond but respond as the attacker wishes it to 
respond, meaning it would likely vote in opposition 
to the real decision that should be made.  This type 
of situation would require agents to decide on how 
much they trust neighboring agents in the voting 
process or it would require a central authority (which 
could also be an agent) to make social judgments 
or require a peer-to-peer negotiation of trust if the 
agent appears to be misbehaving (Gouda, 2004).  
This requires an almost hierarchical approach to 
the agents in terms of voting and negotiating trust, 
something that would require careful regulation to 
prevent a corrupt society from shutting out all other 
agents.  Cliques could also form in which agents 
are only trusting of a few other agents and will not 
break out of the behavior on their own.  However, 
this agent-based system provides a promising area 
of research into artificial intelligence and a viable 
alternative to threshold and signature based systems 
that currently exist.
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a bs Trac T

Search has been recognized as an important technology for a wide range of software applications. Agent-
based modelers often face search challenges both when looking for agents that need to be connected to one 
another and when seeking appropriate target agents while defining agent behaviors. This chapter presents 
an approach to simplifying such search problems and shows examples of its use. The approach presented in 
this chapter offers both imperative and declarative methods to find sets of agents with particular attributes 
in particular locales. The imperative approach allows for flexible reactions to the agents that are discovered 
through querying. The declarative approach builds on the imperative approach and introduces a temporal 
dimension to the process by explicitly allowing for searches that activate in the future depending on the 
conditions that obtain in a given model.
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Today’s search engines draw the most relevant infor-
mation to our attention, and as more data become 
available online, the importance of search engines 
will only increase.  In the future, people around the 
world will likely look for new ways to identify the 
authenticity of online information sources.

According to Ntoulas et al. (2004):

As the Web grows larger and more diverse, search 
engines are becoming the “killer app” of the Web.  
Whenever users want to look up information, they 
typically go to a search engine, issue queries and 
look at the results. Recent studies confirm the grow-
ing importance of search engines.  According to 
(ACNielsen 2004), for example, Web users spend 
a total of 13 million hours per month interacting 
with Google alone.

Search technologies are not just used by people 
for information retrieval. Software programs within 
automated Web services systems are also beginning 
to use search technologies to identify other programs 
to act as service providers. Liu et al. (2004) elaborate 
on this growing trend:

Web services are self-describing software appli-
cations that can be advertised, located, and used 
across the Internet using a set of standards such 
as SOAP [Simple Object Access Protocol], WSDL 
[Web Services Description Language], and UDDI 
[Universal Description Discovery and Integra-
tion] (Papazoglou and Georgakopoulos 2003).  
Web services encapsulate application functionality 
and information resources, and make them avail-
able through standard programmatic interfaces.  
Web services are viewed as one of the promising 
technologies that could help business entities to 
automate their operations on the Web on a large 
scale by automatic discovery and consumption of 
services.  Business-to-Business (B2B) integration 
can be achieved on a demand basis by aggregat-
ing multiple services from different providers into 
a value-added composite service.

Liu et al. (2004) also state the following:

The emerging Service-Oriented Computing (SOC) 
paradigm promises to enable businesses and orga-

nizations to collaborate in an unprecedented way by 
means of standard Web services.  To support rapid 
and dynamic composition of services in this para-
digm, Web services that meet requesters’ functional 
requirements must be able to be located and bounded 
dynamically from a large and constantly changing 
number of service providers based on their Quality 
of Service (QoS).

Agent-based modelers and multi-agent simula-
tionists often face similar challenges when speci-
fying searches for groups of agents within models.  
This chapter, which builds on the discussion found 
in North et al. (October 2006c), addresses this issue 
by first considering the kinds of searches com-
monly found in agent-based models and multi-agent 
simulations.  It then grounds the need for search 
in Holland’s properties and features of Complex 
Adaptive Systems (CAS) (1995).  Building on this 
foundation, this chapter then introduces both Repast 
Simphony (Repast S) and the Repast S approach to 
simplifying many agent-based modeling and multi-
agent simulation search problems.  An example 
application of the search capability within Repast 
S is then provided. Finally, this chapter presents 
some conclusions.

background

Several kinds of searches appear to be common in 
agent-based models and multi-agent simulations, 
including queries for:

• Agents that are to be connected to one another 
either at simulation startup time or later dur-
ing simulation execution (e.g., finding a set 
of friends with specific properties for each 
person in a social network model);

• Appropriate target agents while defining agent 
behaviors (e.g., finding the set of people that 
are physically near a specific infected person 
at a given point in time in a contagious disease 
propagation model);

• Agents that approach or connect to a given 
agent (e.g., finding students that walk within 
a certain distance of a hall monitor in a el-
ementary school simulation); and
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• Agents that change properties, state, or at-
tributes (e.g., alerting a guard when a nearby 
person unexpectedly draws a weapon in a 
terrorism simulation).

Are these types of queries needed for systems 
with emergence and if so, why?  If they are needed, 
how can these queries be efficiently and conveniently 
embodied in agent-based models and multi-agent 
simulations? Holland’s three properties and four 
mechanisms common to all CAS suggest an answer 
to these questions (1995)1:

• The nonlinearity property is present when 
components or agents exchange resources 
or information in ways that are not simply 
additive (e.g., rumors can be dramatically 
transformed when retold).

• The diversity property is present when agents 
or groups of agents differentiate from one 
another over time (e.g., people are unique).

• The aggregation property is present when a 
group of agents is treated as a single agent at 
a higher level (e.g., people form clubs).

• The flows mechanism is present when re-
sources or information are exchanged between 
agents such that the resources can be repeat-
edly forwarded from agent to agent (e.g., 
rumors spread from person to person).

• The tagging mechanism is present when there 
are identifiable flags that let agents attempt 
to identify the traits of other agents (e.g., a 
scowling person may be hostile).

• The internal models mechanism is present 
when formal, informal, or implicit representa-
tions of the world are embedded within agents 
(e.g., each person has a view of others in a 
club).

• The building blocks mechanism is present 
when an agent participates in more than one 
kind of interaction where each interaction is 
a building block for larger activities (e.g., a 
person can be a member of a club and also 
work in an office).

In principle, every one of these properties and 
mechanism can make use of searching or querying 
for agents.  For example, returning to Holland’s 

three properties and four mechanisms common to 
all CAS (1995):

• The nonlinearity property can arise from 
many sources including the nonlinear results 
of queries for agent lists (e.g., making lists of 
the people in each region of a geographical 
space can produce nonlinear results).

• The diversity property can be leveraged by 
using partial matches in queries for agent 
lists (e.g., finding all active Artificial Intelli-
gence (AI) researchers in given geographical 
region).

• The aggregation property can arise by group-
ing agents using queries (e.g., a selected 
subset of the active AI researchers in a given 
geographical region might form a professional 
association for that region).

• The flows mechanism can use querying to 
identify future sources of and targets for flows 
(e.g., finding a list of AI researchers to notify 
about a given conference).

• The tagging mechanism provides sets of agent 
attributes for querying (e.g., tagging people 
as active AI researchers allows them to be 
candidates to receive AI conference announce-
ments).

• The internal models mechanism can use 
querying as a tool for model building (e.g., 
people may form ideas about AI by finding 
and contacting active AI researchers).

• The building blocks mechanism can be lever-
aged much like the diversity property by using 
partial matches in queries for agent lists (e.g., 
finding all of the active AI researchers in given 
geographical region and then contacting them 
for both a conference announcement and an-
nual association dues).

This discussion suggests that querying can play 
integral role in CAS.  As such, many emergent or 
potentially emergent behaviors in agent-based mod-
els might implicitly leverage, explicitly leverage, or 
even require search functions.  This chapter builds 
on this idea by offering an approach to simplifying 
such agent-based modeling and multi-agent simula-
tion search problems.  This new approach has been 
implemented within Repast S.
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rep as T s 2

Repast (ROAD 2007) is a widely used free and 
open source agent-based modeling and simulation 
toolkit with four released platforms, namely Repast 
for Java, Repast for the Microsoft .NET framework, 
Repast for Python Scripting, and Repast S.  North 
et al. (2005a and 2005b) provide an overview of the 
Repast S runtime and development environments.

As discussed in North et al. (2005a and 2005b), 
once a model is designed the Repast S model software 
design and development is nominally intended to 
proceed as follows3:

• The modeler designs and implements model 
pieces, as needed, in the form of plain old Java 
objects (POJOs) or Groovy4 objects (POGOs), 
often using automated tools.

• The modeler uses declarative configuration 
settings to pass the model pieces and legacy 
software connections to the Repast S runtime 
system.

• The modeler uses the Repast S runtime system 
to declaratively tell Repast S how to instantiate 
and connect model components.

• The Repast S runtime system automatically 
manages the model pieces based on (1) interac-
tive user input and (2) declarative or imperative 
requests from the components themselves.

Repast S uses two major types of declarative 
specifications, namely model and scenario descrip-
tors, to integrate models.  Model descriptors define 
what can be in a model such as the allowed agent 
types, permitted agent relationships.  Scenario 
descriptors define what actually is in a model such 
as agent data sources, visualizations, and logging.  
Model and scenario descriptors are stored in sepa-
rate XML files.  Model descriptors are created at 
model development time while scenario descriptors 
are created at run time.  The Repast S development 
environment provides both a wizard for creating 
and a point-and-click editor for modifying model 
descriptors.  The Repast S runtime environment 
includes a point-and-click panel for creating and 
maintaining scenario descriptors.

Repast S uses Java annotations to declaratively 
mark code for later operations.  Annotations are 

metadata tags that are compiled into binary class 
files.  Like comments, annotations are not directly 
executed.  Unlike comments, annotations can be 
stored in the compiled versions of source code5.  
This storage allows executing Java programs such 
as the Repast S runtime system to read and act on 
the encoded metadata.  This allows Repast S de-
velopers to declaratively mark or annotate code at 
design time for special processing by the Repast S 
runtime system.  This facility is used for tasks such 
as declaring watchers as discussed later.

con Tex Ts and  pro Jec Tions 6

Repast S represents agent-based modeling and 
simulation (ABMS) spaces and places through the 
use of contexts and projections.  Repast S contexts 
are hierarchically nested named containers that 
hold model components.  The model components 
can be any type of POJO or POGO, including other 
contexts, but are often expected to be agent objects.  
Each model component can be present in as many 
contexts as the modeler desires.  The hierarchical 
nesting means that a model component that is present 
in a context is also present in all of that context’s 
parent contexts.  Of course, the converse is not 
true in the general case.  The hierarchical nesting 
structure itself can be declaratively or imperatively 
specified by the modeler. Context membership and 
structure is completely dynamic and agents can be 
in any number or combination of contexts at any 
time.  Furthermore, agents can themselves contain 
any number of contexts and can even be contexts.  
In addition, the contents of components within 
contexts (e.g., agent properties) can be declaratively 
logged at runtime.

In addition to supporting hierarchical nesting, 
contexts support projections.  Repast S projections 
are named sets of relationships defined over the 
constituents of a context.  For example, a Repast S 
network projection stores a network or graph rela-
tionship between the members of its context.  The 
members of this context can then ask who they are 
linked to and who is linked to them.  Similarly, the 
Repast S grid projection stores a set of Cartesian 
coordinates for each member of the context.  The 
members of this context can ask where they are.  



  ���

Search as a Tool for Emergence

Each context can support any mixture of projections.  
Also, projections can be declaratively visualized 
at runtime as shown in Figure 1.  A wide range of 
projections and projection options are included in 
Repast S, such as:

• Nnetworks for modeling directed graphs, un-
directed graphs, trees, and weighted graphs

• Multidimensional discrete grids for modeling 
toroidal and bounded surfaces

• Multidimensional continuous spaces for mod-
eling toroidal and bounded surfaces

• Geographical information systems (GIS) 
surfaces

Repast S contexts and projections work with 
watchers.  Repast S watchers are automated listen-
ers or call back procedures that trigger based on 
complex queries.  These queries define what kinds 
of agents to watch, where to watch for the tracked 
agents, what to look for in each tracked agent, 
and when to react to events in the tracked agents.  
Watchers are typically defined declaratively using 
Java annotations.  Repast S contexts work directly 

with watchers by allowing watcher queries to use 
context names and properties to define what and 
where to watch.  Similarly, projections work directly 
with watchers by allowing watcher queries to use 
projection names, properties, and relationships.

Quer ying

Simply put, Repast S querying provides support for 
finding complex subsets of agents.  Queries are de-
fined using the following conceptual predicates:

• Equals: This predicate determines whether 
the object is equal to a given object.

• Property equals: This predicate determines 
whether a property in the object is equal to a 
given value.

• Property less than: This predicate determines 
whether a property in the object is less than a 
given value.

• Property greater than: This predicate de-
termines whether a property in the object is 
greater than a given value.

Figure 1.  The Repast S Runtime System showing a context with two networks and a three dimensional con-
tinuous space; the construction of this model is detailed later in this chapter
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• Network adjacent: This predicate determines 
whether the object is linked to a given object 
in a specified network.

• Network successor: This predicate deter-
mines whether the object has an inbound edge 
from a given object in a specified network.

• Network predecessor: This predicate deter-
mines whether the object has an outbound edge 
to a given object in a specified network.

• Touches: This GIS predicate determines 
whether the object touches a given object in 
space.

• Contained by: This GIS predicate determines 
whether the object is contained by a given 
object in space.

• In envelope: This GIS predicate determines 
whether the object is within a given envelope 
(bounding box) in space.

• And: This predicate implements intersec-
tion.

• Or: This predicate implements union.
• Not: This predicate implements negation.
• Von Neumann: This predicate determines 

whether an object is within the Von Neumann 
neighborhood of a given object in a grid.

• Moore: This predicate determines whether 
an object is within the Moore Neighborhood 
of a given object in a grid.

• Within distance: This GIS and non-GIS 
predicate determines whether the object is 
within a given distance of a specified object 
in a GIS space, a non-GIS grid or continuous 
space, or within a given path length in a net-
work. Concrete subclasses implement specific 
functions for each projection type.

Searches that utilize these conceptual predi-
cates can also be performed imperatively using 
Java syntax or declaratively using watcher syntax. 
Both of these approaches are discussed later in this 
section. Groovy uses the same syntax as Java for 
the predicates.

When used in an imperative mode, Repast S 
queries normally return a list scanning object or 
Iterator.  These iterators can be used in programmed 
agent behaviors to operate on and react to members 
of the list.  An example is shown in Figure 2.  In this 
example, an agent starts a search for an associate 
who might accept a specific business offer by asking 
each associate about their interest in the offer. The 
process begins by creating a network query that 
returns all of the associates linked to the main agent 
(i.e., “this”).  Each of these linked associates is then 
asked if they are interested in the offer.  If they are, 
the agent then attempts to negotiate a deal. 

A direct approach to the search for a specific 
associate is shown in Figure 3.  Here an agent 

Figure 2. An example of an imperative query in Repast S

// Create a network query that lists all of an 
agent’s associates.

Query<Associate> netQuery = new NetworkAdjacent 
(context, this);

Iterable<Associate> associates = netQuery.que-
ry();

// Scan the list of associates that were found.
for (Associate associate : associates) {

 // Ask the next associate if they are interested 
in the offer.

 if (associate.interested(offer)) {

  // Attempt to negotiate a deal.
  this.negotiateDetails(associate);

 }

}
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looks for another agent with a specific first and 
last name. The agent simply creates a query that 
uniquely specifies the object of the search, “Chris 
Jones,” and then searches for them starting with 
the main context.

Querying treats grids, networks, GIS, and other 
environments in a consistent and uniform manner.  
An imperative example is shown in Figure 4.  In 
this example three projection queries are defined.  
The first searches a network, the second searches 
a grid, and the third simultaneously searches both 
a grid and a network.

Repast S querying also allows agent subsets to 
be created in a declarative manner.  This lays the 
groundwork for a declarative query language.  A 
simple example that might be used by a salesperson 
is shown in Figure 5.  In this example the salesperson 
is using a Repast S watcher to keep an eye on the 
people within 75 kilometers of them in Chicago to 
see if anyone has enough wealth to afford a specific 
business offer.  If anyone within this 75 kilometer 
radius becomes a candidate, the salesperson is no-
tified through invocation of the salesCall method. 
Repast S makes the querying an efficient process 
since the runtime system uses the listener design 

Figure 3. Additional example of an imperative query 
in Repast S

Figure 4. Examples of imperative queries incorpo-
rating multiple agent relationships

// Create a query that can search the main 
content in the simulation.
Query<Associate> query = new AndQuery(

new PropertyEquals (mainContext, “First 
Name”, “Chris”),

new PropertyEquals (mainContext, “Last 
Name”, “Jones”));

// Find Chris Jones.
Associate chrisJones = query.query().next();

// Three kinds of relationships are created, 
each by changing one
// line of code.

// These lines create a network query.
Q u e r y < A g e n t > n e t Q u e r y = n e w 
NetworkAdjacent(context, myAgent);
Iterable<Agent> results = netQuery.query();

// These lines create a grid network query.
Query<Agent> vnQuery = new VNQuery(grid, 
myAgent)
results = vnQuery.query();

// These lines create a combination of a grid 
and a network query.
Query<Agent> unionQuery = new OrQuery(netQuery, 
vnQuery);
results = unionQuery.query();

Figure 5. An example of a declarative behavior trigger query in Repast S

@Watch(watcheeClassName = “Associate”,
 watcheeFieldName = “wealth”,
 query = “within 75000 ‘chicago’”
 triggerCondition = “$watchee.wealth > 10000”,
 whenToTrigger = WatcherTriggerSchedule.IMMEDIATE)
 public void salesCall(Associate associate) {

 // Ask the associate if they are interested in the offer.
 if (associate.interested(offer)) {

  // Attempt to negotiate a deal.
  this.negotiateDetails(associate);

 }
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pattern to limit checking to only those times and 
objects for which the watched values change.  

an  exa MpLe search -based  
app Lica Tion

The preceding discussion has considered the kinds 
of searches commonly found in agent-based models 
and multi-agent simulations.  It then grounded the 
need for search in Holland’s (1995) properties and 
features of CAS.  Subsequently it introduced both 
Repast S and the Repast S approach to simplify-
ing many agent-based modeling and multi-agent 
simulation search problems.  A few example code 
extracts were then presented in Figures 2 through 5. 
The next step is to illustrate the value of such search 
techniques using a simple, but fully self-contained, 
example application. A snapshot of the running 
example application was shown in Figure 1.

The example model contains a set of agents, 
two networks, and a three dimensional continuous 
space. The example application was inspired by 
the widely used Boids model developed by Craig 
Reynolds (1987, 2001). Reynolds (2001) notes that the 
Boids “flocking is a particularly evocative example 
of emergence: where complex global behavior can 
arise from the interaction of simple local rules” 
(Reynolds 2001).

The example model presented here uses simpli-
fied rules combined with search to illustrate the 
Repast S approach to agent-based modeling and 
multi-agent simulation search problems. The ex-
ample model itself is intentionally simple in order 
to allow readers to focus on the search concepts 
being discussed. Real search-based models can 
use the same principles with more complex rules, 
more sophisticated queries, more types of agents, 
and more diverse environments.

The example model has four essential compo-
nents:

1. The model has one agent type, namely the 
“SearchExampleAgent.” Each agent has a 
speed, a preferred directional heading (i.e., 
angle) in the XY plane, and a preferred di-
rectional heading in the XZ plane. Agents are 
created and their three attributes are randomly 
assigned when the model is initialized. Each 

agent’s speed is assigned a double precision 
uniform random number drawn from the inter-
val [-2.0, 2.0). The agent adjusts its preferred 
speed over time based on a combination of its 
influences’ speeds and random draws. Each 
agent’s preferred directional headings are 
assigned a double precision uniform random 
number drawn from the interval [0.0, 2π). 
Agent’s determine their direction and speed 
at any given time using a complex query that 
is discussed later in this chapter.

2. The model has a three dimensional continuous 
space. All of the agents exist and move around 
in this space. By default each axis (i.e., X, Y, 
and Z) ranges in the interval [0.0, 100.0]. The 
space has periodic boundary conditions so 
that it forms a torus.

3. The model has a family network that tracks 
family membership. This network is config-
ured when the model is initialized and remains 
constant as the simulation progresses. Each 
agent’s family is defined by a query to be the 
other agents within 25 units at initialization 
time.

4. The model has a friendship network which 
tracks friendships. Friendships are formed and 
broken throughout each simulation run based 
on several different queries to be discussed 
later.

Using these components, each run of the model 
follows these steps:

1. The model is initialized as follows:
a. A set of 50 agents are created and ran-

domly placed in the continuous space.
b. Each agent’s preferred headings are 

randomly initialized.
c. Each agent is connected to its family 

members and friends using the first 
query in Table 1. Family members start 
out as friends but this can change over 
time as the model runs.

2. Each time step is executed as follows:
a. Agents find new friends (i.e., agents 

within 20 units that are not currently 
friends) using the second query in Table 
1. Note that under this definition family 
members can become, but do not neces-
sarily have to be, friends.
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b. Agents forget distant friends (i.e., cur-
rent friends over 40 units away) using 
the third query in Table 1.

c. Agents determine the preferred headings 
of their influences (i.e., agents within two 
steps in the family network or within 
three steps in the friends network) using 
the fourth query in Table 1.

d. Agents set their next heading as fol-
lows:

i. The next XY angle is set to be the 
average of their preferred heading 
and that of their influences. Note 
that the preferred XY angle is not 
changed; only a temporary value is 
calculated.

ii. The next XZ angle is set to be the 
average of their preferred heading 
and that of their influences. Once 
again, the preferred XZ angle is not 
changed; only a temporary value is 
calculated.

iii. The speed is set to be the average 
of each agent’s preferred heading 

and that of their influences plus a 
uniform random number drawn from 
the range [-0.5, 0.5). The speed is 
bounded to the range [-2.0, 2.0]. Note 
that unlike the preferred angles, the 
preferred agent’s speed is changed.

iv. The agent moves forward based on 
its calculated heading.

The example model is created using a series of 
steps that will now be outlined. These steps assume 
that the free and open source Repast S system has 
been downloaded from ROAD (2007) and has been 
installed as provided for in the installation instruc-
tions. It should be noted that there are multiple 
methods for creating Repast S models. They can be 
created with pure Java, pure Groovy, pure visual 
specification, or a mixture of these approaches. 
The steps presented here represent only one of such 
possible paths7:

1. Create a new Repast S project by selecting 
the “File” menu’s “New” submenu and then 
“Repast Simphony Project.”

Table 1. Queries used in the example model

Step Name
Construction
Step Number Description Query

Find Neighbors 
in 3D

14 This query finds all agents within 25 
units of the current agent.

neighbor in
(new ContinuousWithin(
space, this, 25).query())

Find New Friends 21 This query finds all agents within 20 
units of the current agent that are not 
directly connected in the friendship 
network.

friend in
(new AndQuery(
new ContinuousWithin(space, this, 
20),
new NotQuery(context,
new NetPathWithin(friends, this, 1))).
query())

Forget Distant 
Friends

23 This query finds all agents further than 
40 units from the current agent that are 
directly connected in the friendship 
network.

friend in
(new AndQuery(
new NotQuery(context,
new ContinuousWithin(space, this, 
40)),
new NetPathWithin(friends, this, 1)).
query())

Check Influences 25 This query finds all agents within two 
steps of the current agent on the family 
network or within three steps of the 
current agent on the friendship network.

influence in
(new OrQuery(
new NetPathWithin(family, this, 2),
new NetPathWithin(friends, this, 3)).
query())
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2. Set the “project name” to “Search Model” and 
select “Next” and then “Finish.”

3. A new Repast S project will be created and 
the model descriptor “Score8” file editor will 
open.

As previously discussed, model descriptors 
define what can be in a model such as the allowed 
agent types, permitted agent relationships, and 
watching information.  The Score editor presents a 
hierarchical view of the model descriptor or Score 
file. The default Score file for a project is automati-
cally initialized by the New Project Wizard to contain 
a main context named after the model itself (e.g., 
“SearchModel”). Complete the following steps to 
create the model in the new project:

4. Add an agent to the file by right clicking on 
the SearchModel context, selecting the “Cre-
ate Member” menu then the “Create Member” 
submenu:
a. The default agent name will be “Search-

ModelAgent.”
b. Open the “SearchModelAgent” tree 

item.
c. Right click on the “Attributes” tree item, 

select the “Create Member” menu, and 
then select the “Scalar Attribute” menu 
item

d. Right click on the new “Scalar Attribute” 
tree item and select “Show Properties” 
from the popup menu.

e. In the properties area, set the “Label” 
property to “initialCount”.

f. In the properties area, set the “Default 
Value” property to “50” to automatically 
create 50 agents.

5. Add a continuous space to the model by right 
clicking on “SearchModel” context then 
selecting the “Create Member” menu then 
“Projection – Continuous Space” submenu:
a. In the properties area, set the “Label” 

property to “Space”.
b. In the properties area, set the “Border 

Rule” property to “PERIODIC”.
c. In the properties area, set the “Dimen-

sionality” property to 3 for a three 
dimensional space.

d. Open up the “Space” item in the tree view 
to reveal the “X Extent,” “Y Extent,” and 
“Z Extent” items:

i. Select the “X Extent” item and then 
set the “Default Value” to “100”.

ii. Select the “Y Extent” item and then 
set the “Default Value” to “100”.

iii. Select the “Z Extent” item and then 
set the “Default Value” to “100”.

6. Add a family network to the model by right 
clicking on “SearchModel” context then 
selecting the “Create Member” menu then 
“Projection – Network” submenu:
a. In the properties area, set the “Label” 

property to “Family”.
b. In the properties area, set the “Directed” 

property to “true”. This means the 
network does not have to be reflexive 
(i.e., someone considered a relative 
may not consider the other person to be 
related).

7. Add a friendship network to the model by 
right clicking on “SearchModel” context then 
selecting the “Create Member” menu then 
“Projection – Network” submenu:
a. In the properties area, set the “Label” 

property to “Friends”.
b. In the properties area, set the “Directed” 

property to “true”. As before, this means 
the network does not have to be reflexive 
(i.e., someone considered to be a friend 
might not return the favor).

8. Save the Score file by selecting the “File” 
menu’s “Save” submenu to store the results.

9. Create a new agent:
a. Open “Search Model Project” then the 

“src” directory then the “searchmodel” 
package.

b. Right click on the “searchmodel” pack-
age and from the menu select the “New” 
submenu then the “Repast Simphony 
Agent” submenu.

c. The New Repast Simphony Agent Wiz-
ard will start.

d. In the properties area, set the “File 
name” to “SearchModelAgent.agent” 
then press “Finish.”

e. The visual behavior editor for the 
“SearchModelAgent.agent” will ap-
pear.
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10. Add a property for the XY angle:
a. Set the properties as shown in Figure 

6.
b. Optionally move the label to the upper 

right corner of the property icon.
11. Repeat step 10 for the XZ angle.
12. Repeat step 10 for the speed property.
13. Add a “Find Family” behavior initiation step 

and set the properties as shown in Figure 7.
14. Add a “Find the 3D Space” task, set the prop-

erties, and link the task as shown in Figure 8. 
Also see the first query in Table 1.

15. Add a “Find Neighbors in 3D” loop, set the 
properties, and link the task as shown in Figure 
9.

16. Add a “Note a Close Relative” task, set the 
properties, and link the task as shown in Figure 
10.

17. Add and link the ending step to the “Find 
Neighbors in 3D” task.

18. Add a “Move” behavior initiation step and set 
the properties as shown in Figure 11.

19. Add a “Find the 3D Space and Network” task, 
set the properties, and link the task as shown 
in Figure 12.

20. Add a “Setup Counters” task, set the properties, 
and link the task as shown in Figure 13.

21. Add a “Find New Friends” loop, set the proper-
ties, and link the task as shown in Figure 14. 
Also see the second query in Table 1.

22. Add a “Make a New Friend” task, set the 
properties, and link the task as shown in Figure 
15.

23. Add a “Forget Distant Friends” loop, set the 
properties, and link the task as shown in Figure 
16. Also see the third query in Table 1.

24. Add a “Forget the Distant Friend” task, set 
the properties, and link the task as shown in 
Figure 17.

25. Add a “Check Influences” loop, set the proper-
ties, and link the task as shown in Figure 18. 
Also see the fourth query in Table 1.

26. Add a “Note the Next Influence’s Heading” 
task, set the properties, and link the task as 
shown in Figure 19.

27. Add a “Finish Moving” task, set the properties, 
and link the task as shown in Figure 20.

28. Save the new agent by selecting the “File” 
menu’s “Save” submenu to store the final 
results shown in Figure 21.

Figure 6. The XY Angle properties



���  

Search as a Tool for Emergence

Figure 7. The “Find Family” behavior step

Figure 8. The “Find the 3D Space” task
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Figure 9. The “Find Neighbors in 3D” loop

Figure 10. The “Note a Close Relative” task
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Figure 11. The “Move” task

Figure 12. The “Find the 3D Space and Network” task
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Figure 13. The “Setup Counters” task

Figure 14. The “Find New Friends” loop
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Figure 15. The “Make a New Friend” task

Figure 16. The “Forget Distant Friends” loop
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Figure 17. The “Forget the Distant Friend” task

Figure 18. The “Check Influences” loop
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Figure 19. The “Note the Next Influence’s Heading” task

Figure 20. The “Finish Moving” task
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Figure 21. The completed agent

Figure 22. The executing model
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29. Start the model by closing the green activation 
icon then the “Run Search Example Model” 
menu option.

30. The “Search Example Model” will load into 
the Repast S runtime.

31. Setup a 3D display:
a. Right click on the “Displays” option and 

then choose “Add Display.”
b. Fill in the “Display Configuration” then 

click “Next.”
c. Click on the “Edit Style” option on the 

next wizard page.
d. Select your choice of style and then click 

on “OK.”
e. Accept the continuous space style by 

clicking “Next” on the “Continuous 
Space Style” wizard page.

f. Select the “Family” network and then 
click on the “Edit Style” option on the 
next wizard page.

g. Select your choice of style and then click 
on “OK.”

h. Select the “Friends” network and then 
click on the “Edit Style” option on the 
next wizard page.

i. Select your choice of style and then click 
on “OK.”

j. Click “Next” on Edge Style wizard 
page.

k. Click “Finish” on the “Schedule Details” 
wizard  page.

32. Choose the “Run” forward arrow icon to run 
the model.

33. The 3D visualization will appear and model 
will execute as shown in Figure 22.

34. Note the agent’s behavior.
35. Run the model for as long as desired and then 

press the blue “Stop” square when done.

conc Lusion

Search has been recognized as an important technol-
ogy for a wide range of software applications. This 
chapter has demonstrated the relevance of search for 
agent-based modeling. Approaches to simplifying 
such search problems and examples of their use 
were presented.  Both imperative and declarative 

methods were offered to find sets of agents with 
particular attributes in particular locales.  The im-
perative approach allows for flexible reactions to the 
agents that are discovered through querying, while 
the declarative approach builds on the imperative 
approach and introduces a temporal dimension to 
the process by explicitly allowing for searches that 
activate in the future depending on the conditions 
that are obtained in a given model.

fu Ture   research  direc Tions

There are a variety of potential next steps for search 
in agent-based modeling. In the near term these 
steps include the creation of a language query that 
matches the watcher style queries; continuing speed 
and scalability enhancements; and the introduc-
tion of additional search predicates. In the longer 
term, there is a need to develop design patterns for 
agent-based search much like those for agent-based 
modeling itself (Coplien 2001, Gamma et al. 1995, 
North and Macal 2007); and there ultimately is a 
need to create a theory of how search can be used 
to underpin emergence in agent-based models and 
societies of agents.

Queries are currently specified in Repast S us-
ing the Java-based approach shown in Figures 2 
through 4. This is an efficient and effective way to 
specify queries which provides a solid foundation 
for the core implementation. However, it would be 
advantageous to offer a second method for query 
specification based on the watcher language shown 
in Figure 5. This would provide users with a single 
unified approach for query specification which uses 
straightforward infix notation rather than the current 
Java prefix notation.

The current Repast S query and watcher mecha-
nisms are efficient but, naturally, there is room for 
improvement. It would be good to take advantage of 
the large and growing body of knowledge on search 
optimization to enhance the speed and scalability 
of the Repast S query and watcher mechanisms. In 
particular, there is potential for great benefits from 
optimizing multiple nested conjunctive queries (i.e., 
“and” predicates) that simultaneously search several 
projections. One important step in this direction is 
the previously mentioned creation of a watcher-style 
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query language. The creation of such a language 
will provide the Repast S system with the grist for 
optimization in the form of a parsed version of 
each input query and will also allow optimizations 
to be immediately shared across both queries and 
watchers.

The introduction of additional search predicates 
will give users a greater range of ways to search for 
agents. Of course, any new predicates will need to 
be added to the watcher query language and then 
optimized.

Design patterns form a “common vocabulary” 
describing tried and true solutions for commonly 
faced software design problems (Coplien 2001). 
Software design patterns were popularized by 
Gamma et al. (1995). There is a need to develop de-
sign patterns for agent-based search much like those 
detailed by North and Macal (2007) for agent-based 
modeling itself. Such design patterns for agent-based 
search may form the empirical foundation needed 
to produce a theory of how search can be used to 
underpin emergence in agent-based models. This 
theory, combined with the design patterns them-
selves, might then be used for designing the kinds 
of queries that are needed to produce various types 
of emergence in agent-based models and societies 
of agents
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endno Tes

1 Please see North and Macal (2005) for further 
exploration of these ideas relative to artificial 
life.

2 This discussion of Repast S follows North, 
Howe, Collier, and Vos (2005a, 2005b, 2006, 
and 2007).

3 To simplify the exposition, this discussion as-
sumes that the model design and implementa-
tion are sequential as is found in the waterfall 
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model of software development. An iterative 
approach, as described in North and Macal 
(2007), is recommended for actual agent-based 
model development.

4 Groovy (König et al. 2007) is such a dynamic 
language with the added benefit of tight in-
tegration with Java and, hence, the ability to 
integrate into Repast.

5 More details on Java annotations can be found 
in Viswanath (2005).

6 Contexts and projections are discussed in 
greater depth in North, Howe, Collier, and 
Vos (2006).

7 Continuously numbered bullet points are 
intentionally used in this example to make it 
easier for readers to track the model construc-
tion process.

8 The term “Score” as used here refers to the 
sheet music used to conduct a symphony 
orchestra.
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