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Preface

The growth of reliability has assumed a new dimension in the recent years 
primarily because of the consequential impact(s) of failures of present 
day’s complex systems that may lead to day-to-day annoyance to the opera-
tional efficiency and uneconomical maintenance, and even to the extent of 
endangering life to our planet where a compromise with quality and reli-
ability might be disastrous. 

Although several books have been published in the area of reliability 
theory and practice, no book has been published on the topics covered in 
this book as the information presented in this book has either been con-
fined to journals or given some space as a part of a chapter in a book. The 
topics covered in this book will interest not only the reliability community 
but also the teachers/educators and students of electrical, computer sci-
ence, electronics, communication engineering with their allied areas. The 
text of this book is envisioned to be useful and can also serve as a one-
semester course to senior undergraduate, graduate or postgraduate stu-
dents in engineering. For researchers, practising engineers, managers, and 
designers, it would serve as a valuable reference and primer in the area of 
network reliability.

A very concerted effort has been made to keep the book ideally suitable 
for first course or even for a novice stepping into the area of network reli-
ability. The mathematical treatment is kept as minimally as possible with 
an assumption on the readers’ side that they have basic knowledge in graph 
theory, probabilities laws, Boolean laws and set theory. A number of solved 
examples have been provided to make the topics pellucid with some exer-
cises given at the end of chapters for readers to voluntarily test themselves 
and to have a better command of the material. The references provided at 
the end of each chapter are no way complete as no book of this size can 
claim to give a comprehensive survey of the subject spanning over a several 
decades. But they indeed serve as a platform and guiding factor for further 
research in this area. 



xiv Preface

In engineering theory and applications, we think and operate in terms 
of logics and models with some acceptable and reasonable assumptions. 
Reliability theory is not an exception where a rather popular model for 
studying and analysing computer/ communication/ transportation/ 
water/ electrical networks is as a probabilistic graph with a characteristic 
of edges and/or nodes subject to failures. The network reliability model-
ling and analysis is an important issue in system design, manufacture and 
maintenance, wherein the performance of a network depends upon the 
probability of a specified set of nodes being communicable or not being 
communicable. The popular measures of network reliability in vogue are 
2-terminal reliability with or without capacity constraint on links, k-ter-
minal and all-terminal reliability. The publications of hundreds of research 
papers in the last few decades on the assessment of such measures indicate 
the importance of this area. 

Among the several approaches of network reliability evaluation, 
the multiple-variable-inversion sum-of-disjoint product (MVI-SDP) 
approach finds a well-deserved niche as it provides the reliability expres-
sion in a most efficient and compact manner. However, it does require an 
efficiently enumerated minimal inputs (minimal path, spanning tree, min-
imal k-trees, minimal cut, minimal global-cut, minimal k-cut) depending 
on the desired reliability. The present book is a maiden endeavour by the 
author to cover these two aspects in detail through the application of vari-
ous techniques devised by the ‘reliability fraternity’ and could be its USP.

The author does not claim to be an ace programmer, and has provided 
very efficient and user friendly Matlab® programs which can be down-
loaded at www.scrivenerpublishing.com However, they are amenable to 
such modifications for the readers who love to do programming. The book 
is organized as follows. 

Chapter 1 introduces the basic definitions, terminology, common 
assumptions with a broad category of techniques to tackle and evaluate 
network reliability problems. Chapter 2 succinctly provides the commonly 
employed hazard models and basic building blocks of a reliability block 
diagram. It describes a flexible Misra Matrix Method to solve a General 
series-parallel system reliability model consisting of various types of 
redundancies. 

Chapter 3 pertains to the notion of network connectivity with respect to 
a specified set of nodes of the network graph termed as Minimal Path Sets, 
in general or 2-terminal, k-terminal and all-terminal minimal path sets, in 
particular. It describes several methods of enumeration to such require-
ment for measuring network reliability metrics. The chosen methods are 
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simple enough for classroom teaching but become powerful once imple-
mented on a computer using a suitable programming language.

Chapter 4 deals with the dis-connectivity criteria of a network reliability 
graph under a specified set of nodes termed as Minimal Cut Sets, in general 
or 2-terminal, k-terminal and all-terminal minimal cut sets, in particular. 
It also provides a general algorithm developed by the author to enumerate 
them. It also explains various sub-problems encountered in enumerations 
and their solutions thereof.

Chapter 5 discusses and describes Sum-of-Disjoint-Product based MVI 
approaches such as KDH88, CAREL, HM-1 and HM-2 to obtain and eval-
uate 2-terminal, k-terminal and all-terminal network reliability/unreliabil-
ity measures. 

Chapter 6 puts network reliability methodology and measures discussed 
in earlier chapters under a unified framework and extend 2-terminal reli-
ability measure to link’s capacity-based reliability measure-CRR and 
describe a methodology to obtain the measure under such scenario.

In the last Chapter 7, the author has provided two case studies to show 
the approaches in action. 

The author has tried his level best to make the text complete with logical 
flow and free of omissions. Nevertheless, as a student of reliability engi-
neering, the author realises that ‘failures are inevitable and can never ever 
be predicted in advance, and cannot be eliminated’ but they and their con-
sequences can definitely be minimized and mitigated. The author takes full 
responsibility for all those that still remain and shall be grateful if any such 
shortcomings or suggestions be brought to his notice. 

Comments and suggestions regarding the book are most welcome and 
can be sent to skcrec@hijli.iitkgp.ernet.in.

Kharagpur, India Sanjay K. Chaturvedi 

March, 2016
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1

As the systems grow in size and complexity, they become more prone to 
failures and it becomes essential to ensure their performance by carrying 
out reliability analysis. Here, the word system connotes any assemblage 
of functional units and may be used to denote a complete installation or 
equipment. A system may be quite gigantic such as computer communica-
tion networks or it could be as small as an integrated circuitry.

The problem of determining the reliability of systems, whose com-
ponents can have one or more failure modes, often arises in variety of 
applications, ranging from telecommunication, transportation, power 
systems, and mechanical systems to integrated circuits and computer 
communication systems or large software structure. Therefore, all such 
systems can naturally be expressed as in the form of a network, arising 
from the interconnections of various system subdivisions. For instance, 
a telecommunication or a computer communication network may have 
vertices representing the physical locations of computers or transmitters/
receivers and may have several edges representing the communication 
links between different sites. Depending on whether vertices or edges 
work or fail, the network itself can be considered to be either working or 
failed.

1
Introduction

Network Reliability: Measures and Evaluation. Sanjay K. Chaturvedi. 
© 2016 Scrivener Publishing LLC. Published 2016 by John Wiley & Sons, Inc. 
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For the applications cited above, continued availability of communi-
cation between specified vertices of a network is an important require-
ment. With the widespread use of and dependence upon such networks, 
it becomes imperative for these networks to be highly reliable. Hence the 
networks are often designed with the criteria of having several communi-
cation paths between any two vertices.

Ideally, if completely diverse path between every pair of vertices were 
available, the probability of existing at least one communication path 
between any two vertices at a given time would be very high. However, 
cost of designing and maintaining such networks inhibit this solution. As 
a compromise, networks are designed in such a way that any two vertices 
connected through a few disjoint path sets; additional path sets that have 
common links are also made available.

A major problem in this area lies with the task of determining reliability 
of such a network and it is desirable to have some quantitative measure of 
a given network’s performance.

1.1 Graph Theory: A Tool for Reliability Evaluation

Graph theory has drawn increased interest of scientists and engineers in 
the last several decades. The main reason for this accelerated interest in 
graph theory is in its demonstrated ability to solve problems from a wide 
variety of areas. Because of their intuitive diagrammatic representation, 
graphs have been found extremely useful in modelling systems arising in 
physical science, engineering, social sciences and economic problems and 
reliability engineering has not been an exception.

The application of graph theory to reliability studies received little atten-
tion till 1970. Ever since the application of the graph theory for network 
reliability evaluation was suggested by (Misra & Rao, 1970), a large num-
ber of studies have appeared in the literature. To quote (Singh & Proctor, 
1976): “Until 1970, the subject received little attention with the exception of 
(Shooman, 1968) popular text Probabilistic Reliability, published in 1968. 
Nevertheless, he did little more than mention the topic. However (Misra & 
Rao, 1970), developed signal flow graphs- a development recognized as a sig-
nificant step forward in the evaluation of network reliability”. After this a 
number of algorithms, techniques and approaches have been suggested in 
the literature. In fact today, the use of graph theory has become inseparable 
from network reliability evaluation.

In performing the reliability analysis of large and complex systems, it 
is almost impossible to treat system in its entirety. The logical approach 
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is to decompose the system into its smaller functional entities composed 
of units, subsystems or components. Even a unit can be quite a sizeable 
subsystem. A unit can further be broken into elements each of which can 
only be a circuit or a part. In general, the hierarchical order is: system, sub-
systems, units, equipment, parts and components. The operational rela-
tionship amongst its constituent entities is provided through the logical 
relationship of system failure (or success) with the failure (or success) of its 
parts. These relationships are depicted through what is commonly known 
as the reliability logic diagram (RLD). Based on the functional interaction 
that subsystems or elements of a subsystem can have, the entities may fall 
in either of these categories viz., series, parallel, series-parallel (SP) or par-
allel-series (PS). However, certain design considerations or complex failure 
mode may produce a system in which its representation by pure parallel or 
series or their combination may not be possible or appropriate. In general, 
almost all practical systems fall in this category and are better known as 
non-series-parallel systems (NSP).

The reliability analysis and evaluation of NSP system are quite compli-
cated, memory intensive and time consuming as well. However, any tech-
nique, which computes reliability of NSP systems, can easily be applied 
to series/parallel systems as well. Many of the series-parallel (or parallel-
series) system are represented through Reliability Logic or Block Diagram. 
However, particularly for NSP systems, simpler ways to represent the sys-
tem through a graph like structure.

A network graph G= (V, E) consists of a set of vertices (or nodes) |V| 
or n and a set of edges (or links) |E| or e. If an edge connects two vertices 
i and j; j is said to be adjacent to i. The n number of nodes in the graph 
is assigned number 1, 2, 3…n sequentially. The e number of links of the 
network can be arbitrarily and sequentially assigned numbers. One of the 
earliest DARPA (Defence Advance Research and Project Agency, USA) 
communication network graph model is shown in Figure 1.1, Figure 1.2, 
and Figure 1.5. Here, |V| = n = 5 and |E| = e = 7 and source node ‘s’ can be 
number ‘1’ while the destination node ‘f ’ could be represented by ‘5’. With 
this graph model, depending on the state (working or failed) of vertices (or 
nodes) and / or edges (or links) with specified probability, the network can 
be considered either working or failed with estimated probability.

On the basis of reliability, networks/systems modelled through graphs 
have been classified as:

Undirected network
Directed network
Mixed network.
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1.1.1 Undirected Network

It is a connected graph G for a system wherein nodes are connected by 
undirected edges. An undirected edge is an edge with no head or tail (no 
arrow shown). Undirected edges in a graph are used to indicate two-way 
communication links between nodes. They are represented as unordered 
node pairs (i, j) joined by the communication link or edge. An edge is 
said to be incident upon two nodes if the two nodes are joined by the 
edge.

Example 1.1: The graph in Figure 1.1 is an example of an undirected 
 network where, node-set and edge-set are:

V = {1, 2, 3, 4, 5}, and
E = { (1, 2), (1, 3), (2, 1), (2, 3),(2, 4), (3, 1), (3, 2), (3, 4),  

(3, 5), (4, 2), (4, 3), (4, 5), (5, 3),(5, 4)}
= {1, 2, 3, 4, 5, 6, 7}

1.1.2 Directed Network

It is another form of a system representation through connected graph G 
wherein each edge has an orientation. Obviously, a source node would not 
have any edge incidents on it whereas a destination node would not have 
any edge emerging out of it. Some text also refers directed edges as arcs 
representing a unidirectional communication links between two nodes 
depicting the information flow in the direction that an arc points. An arc 
from node i to node j is represented as an ordered pair (i, j), where i is 
called the tail and j is called the head of the arc. Figure 1.2 is an example of 
a directed network, where node-set and edge set are:

V= {1, 2, 3, 4, 5}, and
E = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5)}

= {1, 2, 3, 4, 5, 6, 7}

Figure 1.1 An undirected reliability graph of a network.
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In a directed graph, a strongly connected component is a maximal 
set of nodes for which there exists a directed path between every 
ordered pair of nodes in the component, such that the paths pass 
only through nodes that are also in the component. Figure 1.3 shows 
two examples of strongly connected components and Figure 1.4 
shows two examples of components that are not strongly connected.

1.1.3 Mixed Network

A mixed network G is a graph in which some edges may be directed and some 
may be undirected. It is determined by the triplet (V, E, D) where V is the set 
of nodes, E is the set of undirected edges and D is the set of directed edges. 

Figure 1.2 A directed reliability graph of a network.
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(a) (b)

Figure 1.3 Strongly connected components.

(a) (b)

Figure 1.4 Weakly connected components.
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The underlying undirected graph is obtained by deleting the orientation of 
the arcs in D. An orientation of a mixed graph means, that we orient the undi-
rected edges (and leave the directed ones). Figure 1.5 shows such depiction.

Summarily, each item (component/part/subdivision etc…) of a system 
can be represented by a two terminal graph. Then the logical interconnec-
tion of various items form a network like structure and is better known 
as a probabilistic graph of the system due to the associated probability of 
success/failure of its each items, and this structure can also be designated 
as a system or a network (Misra, 1992) .To analyse such networks is an 
extremely difficult, time consuming and laborious task, almost impossible 
to do manually. Thus, the use of computer becomes absolutely necessary 
for which one would need a computer-coding scheme representing the 
network that can easily and suitably be manipulated by the algorithms in 
addition to computer-programs to provide a solution to the problem.

The commonly used schemes to code these networks have been:  incidence 
matrix, adjacency matrix and adjacency list representation. However, the most 
popular, simplest and easily manipulative coding scheme for a  moderate size 
network has been the adjacency matrix or connection matrix scheme. The 
connection matrices for the some cases are as shown in Table 1.1.

Table 1.1 Adjacency matrix representation of a graph.

Connection matrix  

Figure 1.1

Connection Matrix  

Figure 1.2

Connection matrix  

Figure 1.5

Node 1 2 3 4 5 Node 1 2 3 4 5 Node 1 2 3 4 5

1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0

2 1 0 1 1 0 2 0 0 1 1 0 2 0 0 1 1 0

3 1 1 0 1 1 3 0 0 0 1 1 3 0 1 0 1 1

4 0 1 1 0 1 4 0 0 0 0 1 4 0 1 1 0 1

5 0 0 1 1 0 5 0 0 0 0 0 5 0 0 1 0 0

Figure 1.5 A mixed reliability graph of a network.
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1.2 Large versus Complex System

At this juncture, it would be worthwhile to distinguish between- what is 
large and complex?

1.2.1 Large System

As stated at the beginning that the word system connotes any assemblage 
of functional units and may be used to denote a complete  installation 
or equipment. A system can be represented by a graph where a nodes- 
represents a component/unit/subsystem and a link represents their 
 functional connectivity.

When used in relation to a system, the word large connotes anything, 
which is greater than the average size, extent, quantity, or amount in com-
parison to another similar thing or some reference object. Hence, it is a 
relative word and it is hard to specify a system’s largeness in the absence of 
a reference.

Let the network shown in Figure 1.6 represents a communication net-
work with the transmitter, s, sending data or information to a receiver, f.

These (s, f) points have been connected through a number of intermediate 
links and relay-transmitters. There may be hundreds and thousands of relay-
transmitters connecting the transmitter and the receiver help them to commu-
nicate. This configuration could be representing a large network. Therefore, 
the largeness is in relation to the number of units or elements that a system 
consists of. A large system need not necessarily be a complex system.

1.2.2 Complex System

The word complex connotes a structure consisting of interconnected or 
interwoven parts or elements, which are difficult to analyse, understand, 
or handle.

Figure 1.6 A large network.

s

1 2

1’ 2’ 3’

3 (n–1)

(n–1)’

n

n’

f
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Therefore, a complex system is a system, which consists of intercon-
nected or interwoven parts (components) such that it becomes difficult 
to analyse it in respect of its reliability or a particular problem due to the 
constraints imposed by the existing techniques, algorithms, software (such 
as programming languages, operating systems) and hardware (such as 
memory).

To further clarify the complexity of a network in a clearer and simpler 
way; let us consider the system given in Figure 1.7, which is obtained from 
Figure 1.6 by introducing some interconnecting links between the relay-
transmitters pair.

The information now could be sent through many several alternative 
paths created by the addition of interconnections. On adding more inter-
connections, there would be an exponential rise in the number of paths 
to carry the information from s to f. In other words, the complexity of a 
network increases with the additions of new interconnecting links trans-
forming a large network to become more and more complex.

In reliability engineering, the large network shown in Figure 1.6 is sim-
ply a series-parallel arrangement of units, which can be analysed easily 
with the help of well-known probability laws of intersection and union. 
Such types of systems can be decomposed and are reducible to a single 
entity.

However, the system shown in Figure 1.7 is not reducible through series 
and parallel models and as such is known as non-series parallel system. 
Such a system not only requires better approaches and methodologies but 
also requires a better hardware and software platform for its analysis. SP or 
PS networks are generally non-complex systems whereas NSP systems fall 
in complex system category. The complexity of the NSP systems increases 
with the insertion of more and more interconnecting links connecting var-
ious nodes of the system.

Figure 1.7 A large and complex network.
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1.2.3 Large and Complex System

Therefore, a large and complex system is one, which has not only mul-
titude of system elements but has several interconnecting links as well. 
Summarily, the whole explanation of large and complex systems could be 
put in the  following way:

A system may be a large system but not necessary be complex if it is reduc-
ible and has necessarily a SP (or PS) structure. The reliability of such systems 
can be evaluated very fast and the time to obtain reliability does not vary poly-
nomially. However, if a system has lots of interconnections and is not reduc-
ible is called as a complex system. The complexity of the system increases, 
time to obtain reliability varies non deterministic polynomial in time.

1.3  Network Reliability Measures: Deterministic 
versus Probabilistic

Diverse network reliability problems entail different performance mea-
sures for the system, which are classified based on the network models. 
Some networks, such as urban road networks, entail traffic characteristic 
like waiting time, travel time, congestion etc. Transportation networks are 
usually studied to determine the maximum capacity flow between (s, f) 
node and/or characteristic of shortest path. For some cases, transmission 
speed and capacity could be the performance measure of interest. One can 
refer to (Sheir, 1991) for an overview of the subject. However, reliability 
theory, in general, and in this text, in particular, studies the network based 
on one of the most important network reliability measure, viz., specified 
node-set connectivity in probabilistic sense.

(Frank & Frisch, 1970) and (Wilkov, 1972) made earlier attempts to pro-
vide various definitions of system reliability. They identified two distinct 
classes of reliability measures:

Deterministic, and
Probabilistic.

The deterministic criteria made use of discrete measures to define 
the reliability of a network. The assumption made when dealing with 
deterministic measures is that the network is subjected to a destructive 
force or an enemy who has complete knowledge of the topology of the 
network. The purpose of this intelligent enemy is to destroy or disrupt 
network communication. Thus the main measure of reliability is the least 
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amount of damage the enemy must be able to inflict to render the network 
inoperative.

Deterministic measures thus can be viewed as simple bounds on the 
reliability of the network, since they are often measured as the network’s 
worst-case vulnerability to failure. For example, in the (s, f) connectivity 
reliability problem, two deterministic measures of reliability are the num-
ber of edges and the number of nodes that must be destroyed or removed 
to disrupt the communication between the specified nodes. The minimum 
number of edges that must be removed in order to disconnect the nodes 
s and f is simply the number of edges in a minimum cardinality (s, f)-cut. 
The minimum number of nodes that must be removed to disconnect s and 
f is the (node) connectivity between the vertices s & f.

Both of these measures are computable in polynomial time. However, 
one of the main problems with deterministic measure is that it gives rise to 
some counterintuitive notions of network reliability. For example, consider 
the graphs shown in Figure 1.8.

According to one deterministic measure that uses (node) connectiv-
ity as a measure of the graph’s reliability, the graphs of Figure 1.8(a) and 
(b) are equally reliable since the (s, f)-connectivity of each graph is three. 
However, an intuition leads one to believe that graph (a) is the more reli-
able of the two.

The same problem arises when the cardinality of a minimum (s, f)-cut 
set is used as a measure of unreliability. Consider the graphs shown in 
Figure 1.9. Both graphs (a) and (b) have a minimum cardinality (s, f)-cut of 
size one. This deterministic measure therefore implies that both are equally 
reliable. This is again counterintuitive, as one expects graph (a) to be the 
more reliable of the two. This leads to the notion that a more intuitively 
acceptable measure of reliability might be a probabilistic measure.

Therefore, for measuring the reliability of a network one can associate a 
statistical probability of failure/success with each of the components of the 
network in order to obtain a statistical measure of the overall unreliability/

Figure 1.8 Example of deterministic reliability.

s f

(a) (b)

s f
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reliability of the network. This notion supports an accepted definition of 
reliability as: ‘‘the probability that a given system or device is operational’’. 
This measure of reliability may be interpreted as a long-term average avail-
ability. That is, over a specified period of time, what is the probability that 
the network will remain operational? This also includes a fairly prevalent 
notion of reliability as the probability that a network is operational at any 
given moment of time. To avoid conflicts that arise with various levels of 
operation within a network’s hierarchy, only the topology of the network 
is considered. This allows a network to be modelled by a graph where the 
nodes of the graph represent the communication centres and communica-
tion links are represented by its edges.

The probabilistic methods for determining the reliability of a network 
generally assume the failure of edges and/or nodes as random events. Using 
predetermined probabilities that the edges and/or nodes are operational; 
the probability that the network remains operational is often of interest. A 
network is considered operational, if it is connected. The probability that 
the network is connected is often called probabilistic connectedness. This 
probabilistic model is often more appropriate than the deterministic model 
since it results in a probability that the network is connected at any point 
in time.

Based on the probabilistic connectedness of a specified set of nodes, 
the following three measures are in vogue in reliability texts as reliability 
measures:

1.3.1 Terminal-pair Reliability Measure

For any arbitrary network, terminal pair reliability (TR) is the probability 
that a communication path exists between two specified pair of nodes, viz., 
source node, s, and destination or terminal node, f. Network reliability and 
System reliability are the other terms being used synonymously for TR in 
the literature (Colbourn, 1987), (Misra, 1992).

Figure 1.9 Another example of deterministic reliability.

(a) (b)

s f s f
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1.3.2 All-Terminal Reliability Measure

All-terminal reliability requires that every node must be able to communi-
cate with every other node of the network. It is defined as the probability 
that for every pair of nodes (x, y), ∀ x and y ∈ n, in the network, a path 
exits from node x to y. This is equivalent to stating it as the connectivity 
problem in graph theory. In the literature, global reliability and g-reliability 
are the other terms often used synonymously for all-terminal reliability.

The all-terminal reliability problem deals with communication among 
all nodes in a network. In other words, it is the probability of existence of a 
minimal set of edges such that all nodes of the network graph remain con-
nected. A graph is connected if there is at least one path between every pair 
of nodes i.e., in this case a minimal operational sub graph is an operational 
spanning tree. For a spanning tree to be operational all of its edges must be 
operational (since it is a minimal operational sub graph), and therefore a 
spanning tree is in a failed state if any of its edges fail. A graph would have 
several spanning trees and the number of spanning trees grows exponen-
tially with the graph size (Christofides, 1975), (Deo, 1979).

1.3.3 k-terminal Reliability Measure

k-terminal reliability requires that a set of k-specified set of nodes of the 
network are able to communicate with each other and it is defined as the 
probability that a path exists between every pair of nodes belonging to the 
specified set of k nodes of the network. In other words, k-terminal reliabil-
ity is the probability that a specified set of k-nodes is able to communicate 
with each other. It is evident that both the above measures, namely, g-reli-
ability and k-terminal reliability are the generalized form of two-terminal 
reliability measure.

1.4 Common Assumptions

Two major and common assumptions are made in order to make the prob-
lem of computing probabilistic connectedness more tractable.

The first assumption is related with statistical independence 
of edge failure (or success).
Contention: The assumption that edge failures are statisti-
cally independent implies that the probability of a link being 
operational is independent of the states of the other links in 



Introduction 13

the network. The assumption is that link failures are caused 
by random events and that all links are affected individually. 
However, this assumption may not be valid while modelling 
a real communication network, since links in one particular 
area may fail due to natural causes such as a major storm 
or an earthquake. However, this assumption is often made 
because information about the dependencies of link failures 
is extremely difficult to obtain. In fact, such dependencies 
may not be known. Without the assumption of statistical 
independence the problem becomes much more difficult to 
solve. As a result this assumption is often made, even when 
modelling networks for which it is known that link failures 
are not independent.
The second assumption is that nodes are perfectly reliable, 
i.e., their probability of failure is zero or negligible.
Contention: The assumption that nodes are perfectly 
 reliable may, at first, seem unreasonable. However, there 
are  reasons for adopting it. Node failures necessarily 
induce edge  failures, and moreover introduce failures that 
are  statistically dependent. Hence the assumption of sta-
tistical independence requires the assumption of perfectly 
reliable nodes.

Much of the development in the area of network reliability has been 
done under the assumption of perfectly reliable nodes with unreliable 
links. However, if it is necessary to make the assumption that nodes do 
fail, the methods discussed in this book could be modified appropriately in 
order to accommodate such assumption.

1.5  Approaches for NSP Network Reliability 
Evaluation

Evaluation of reliability measures has attracted a lot of attention from 
researchers and many approaches have been developed over the past few 
decades. The literature on reliability evaluation of networks, considering 
only connectivity as performance criterion, can broadly be classified into 
two paradigms, viz., (Misra, 1992), (Misra, 1993) .

The paradigm that does not require knowledge of minimal 
path (or cut) sets in advance (Non Path or Cut sets based).
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The paradigm in which one of the prerequisite is- the enu-
meration of all possibilities through which a specified sets 
of nodes can communicate (or not communicate) with 
each other, i.e., which uses pathsets (two-terminal or span-
ning trees, or k-tree) or cutsets (two-terminal or global or 
k- cutsets) as the starting point (Minimal Path or Cut based).

Figure 1.10 shows a brief but representative categorization of existing 
NSP reliability evaluation approaches and Table 1.2 provides a categorised 
and representative bibliography (details of which can be found at the end 
of this book) work based on this classification. The detailed methodology 
of each of these methods is outside the scope of this text. However, we pro-
vide a brief description of some of them.

1.5.1 Non Path or Cut Sets Based Techniques

1.5.1.1 State Enumeration Technique

The state enumeration method is the simplest of all methods and is based 
on the concept of state of the system. It was once widely used until the use 
of graph theory and other approaches were become known for network 
reliability evaluation. This method evaluates network reliability from prob-
abilities associated with success states out of the 2n possible system states 
which in turn depend on the states of ‘n’ number of components (edges 
and/or nodes) in the network. These 2n possible system states are identified 
for being success or failure states of the system and the reliability of the 
system can be evaluated as:

 
( ) ( ) −

∈ ∈=
= −∑ ∏ ∏

1

1

1

i i

n

j k non o
S S

perationaloperational
j ki

R p p  (1.1)

As a state of the system is governed by the state of its elements where 
some elements would be operational and others non-operational, thus, in 
the above expression, n

1 
denotes the number of system success states out-

of-2n possible states; p
j
 and p

k
 are the reliabilities (success probabilities) of 

the element constituting ith success state out-of- n
1 
states. In other words, 

the product term constitutes the product of success and failure probabili-
ties of the constituent elements of the network to provide the success prob-
ability of that particular success state of the system.

The final reliability expression resulting from success (or failure) states is 
quite unwieldy and requires a lot of time to calculate reliability value from 
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Figure 1.10 A representative classification of network reliability evaluation approaches.

NSP network reliability evaluation

Reliability measures

Path sets/cut sets based techniques Non-path set/cut set based

techniques

Mixed networkUndirected networkDirected network

2-terminal k-terminal g-terminal

Connectivity measures

State enumeration

Topological

Transformation

Factoring theorem

(Reduction and

decomposition)

BDD/OBDD/ROBDD

Calculation of bounds

Monte carlo simulation

Domination theory

Sum of disjoint product

SVI MVI

Inclusion-exclusion

BDD/OBDD/ROBDD

the expression with associated round-off errors. This method is obviously 
unwieldy and unacceptably slow, as it requires an evaluation of probabili-
ties associated with all system success states out-of-the 2n possible system 
states. In other words, enumeration of all system states becomes very large 
and cumbersome even for small networks; this method is seldom used for 
reliability evaluation (Elsayed, 1996), (Misra, 1992).
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1.5.1.2 Network Decomposition Technique

Among various techniques to evaluate network reliability, factoring the-
orem based approach stands out distinctly as one of the useful and pop-
ular approach. This approach was originally proposed by (Moskowitz, 
1958) but was formally introduced for developing algorithms for reli-
ability evaluation of series-parallel and non-series parallel networks 
with single or two modes of failures by (Misra, 1970). The factoring 
theorem states:

 R(G) =  p
e
 ∗ R(G|e is functional) +  

(1–p
e
) ∗ R(G|e is not functional) (1.2)

 = p
e
 ∗ R(G

e
)+(1–p

e
) ∗ R(G–e)

The decomposition formula (1.2), which forms the basis for network 
reduction, decomposes a large size network into smaller set of manage-
able sized networks. The main strategy applied in factoring technique is 
to identify and to factor out such edges, which are bi-directional in their 
orientation in a given network graph. By doing so, one decomposes a NSP 
network to a series of SP/PS networks whose reliabilities can easily be com-
puted. If a network is factored on a selected edge e, two networks graphs 
G

e
 and (G – e) would then be obtained. Depending up on the structure of 

these two graphs whether SP/PS reducible or not, it would need a further 
factorization on another edge (which is generally the case for large and 
complex networks) in an iterative manner until all sub graphs of the net-
work have been successfully converted to SP/PS-reducible graphs. In fact, 
we need to determine reliability of 2x-sub networks in a network consisting 
of x number of bi-directional edges.

This approach has inherent limitation of its applicability to networks, 
which possess even fewer bi-directional edges, as the number of sub graphs 
that would be required to evaluate for their reliability would grow, expo-
nentially, similar to the phenomenon of ‘states-explosion’ as the number 
of elements increases observed in state enumeration technique. Further 
algorithms based on this approach do not offer us a compact reliability 
expression and impracticable for large systems. Even Misra Matrix method 
(Misra, 1970), fastest method to date for SP-networks and would be dis-
cussed in next chapter, does not stand well with large and complex NSP 
networks when combined with decomposition theorem. For instance, the 
network of Figure 1.11 comprised of 21 nodes and 33 links is estimated to 
require an evaluation of more than 250 thousand series-parallel networks. 
Therefore, the computational time becomes enormously large even with 
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this type and size of systems. Hence the scope of this approach is limited to 
either small systems or systems with fewer bi-directional elements.

1.5.1.3 Probability Transformation Technique

These are basically reduction and approximate technique, but have been 
improved upon to provide reasonably accurate results from an engineer-
ing point of view. The procedure consists of simplifying complex and large 
structures by converting them into equivalent series-parallel configura-
tions, which can be conveniently handled. The transformation techniques 
currently available in the literature: star-delta, delta-star, and quadrilateral 
star-delta or delta-star transformation techniques.

Generally, the equations for delta-star and star-delta transformations 
are derived by matching the probabilities of successful communication 
between given a set of nodes. A closed form solution is possible with delta-
star; however we need a simple and rapid iterative procedure to solve three 
simultaneous non-linear algebraic equations in case of star-delta trans-
formation. As a network is transformed, its complexity is reduced at each 
stage of simplification and finally we would be left with an equivalent edge 
with its reliability or unreliability equal to system reliability or unreliability.

(Rosenthal & Frisque, 1977) proposed Delta-Star transformation to 2-ter-
minal reliability problems. (Gadani & Misra, 1981), (Gadani & Misra, 1982) 
and (Misra, 1992) provide various transformation techniques, viz., Delta-
Star, Star-Delta, and Quadrilateral-Star, and discuss their utility to evaluate 
system reliability and other parameters of interest for both- maintained and 
non-maintained systems. But we shouldn’t forget that these are all approxi-
mate yet economical methods of system reliability estimation for a large and 

Figure 1.11 A test example (21 Nodes and 33 Links).
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complex network. The numerical results of number of graph transforma-
tions, run-time, and accuracy for the approximate algorithms can be seen in 
(Gadani, 1980), (Gadani & Misra, 1982), (Shooman & Kershenbaum, 1992).

Yet another method known as topological method, originally proposed 
by (Misra & Rao, 1970) and subsequently provided in a formal and com-
puterized algorithm by (Satyanarayan & Prabhakar, 1978), cannot be used 
economically for large networks as the 2-terminal reliability problem, 
the simplest of the various reliability problems, is shown to be NP-hard 
(Provan & Ball, 1983), (Satyanarayan & Wood, 1983), (Aggrawal & Barlow, 
1984), (Aggarwal & Satyanarayan, 1984), (Proven & Ball, 1984), (Yoo & 
Deo, 1988)and topological algorithms proposed to solve this problem are 
usually computationally intensive. The problem remains NP-hard even 
for planar networks (Vertigan, 1990) Interested readers may refer (Misra, 
1992) Chapter 6 –Reliability Evaluation Techniques - for various reliability 
evaluation algorithms.

1.5.1.4 Binary Decision Diagram Based Technique

Binary Decision Diagram (BDD) is a state-of-art of data structures to 
encode and to manipulate Boolean functions. Reliability, Risk and depend-
ability studies are heavy consumers of Boolean functions. Boolean func-
tions are represented by a directed acyclic graph or network with restriction 
on the ordering of decision variables in a graph. BDD is based on a decom-
position of Boolean function called the Shannon expansion. A function ‘f ’ 
can be decomposed in terms of a variable ‘x’ as:

f = x.f
x = 1

 + x.f
x = 0

A node and its descendants in BDD represent a Boolean function ‘f ’, 
where for node label ‘x’, one outgoing edge is directed to the sub graph 
representing, f

x = 1
, and the other to f

x = 0
 .The basic idea is to choose an edge 

(component) and break the model down into two cases: the first assumes 
the component has failed, the second assumes it has not failed. For each 
case, a new reliability graph is built by taking into account the behaviour 
of the chosen edges.

An ordered binary decision diagram (OBDD) is a BDD with the con-
straint that the variables are ordered and every source to sink path in the 
OBDD visits the variables in ascending order. A reduced ordered binary 
decision diagram (ROBDD) is an OBDD where each node represents a 
distinct Boolean expression. But due to poor representation of engineering 
failure logic, still BDD approach is in the development phase. The appli-
cation of BDD in reliability evaluation is relatively new development in 
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the area of reliability engineering. The introduction of BDD in risk analy-
sis, whose primary modelling tools have been FTA and ETA, has renewed 
their algorithm framework (Misra, 2008).

Summarily, most of the NPOC technique based algorithms tend to be less 
efficient and uneconomical as compared to the algorithms based on POC 
approach (Grnarov et al., 1980). Sometimes, they offer approximate solution 
and are not suited for reliability evaluation of large and complex networks.

1.5.2 Minimal POC Based Techniques

A minimal path set is generally used in the sense of a minimal chain of ele-
ments of the network required to establish continuity between a specified 
set of terminals (nodes or vertices). However, the minimal path sets may 
also consist of acyclic graphs in case of flow networks (Misra & Prasad, 
1982) instead of just being a simple chain structure of constituent ele-
ments. These path sets could be for 2-terminal connectivity, k-terminal 
connectivity or all-terminal connectivity.

The system reliability can also be computed indirectly by taking advan-
tages of duality in graphs, i.e., a minimal path in dual graph will be the cut 
in original. In other words, instead of computing reliability we can compute 
unreliability in the sense of a minimal set of elements whose failure ensures 
network failure. This set we call as minimal cut sets of the network. These 
cut sets could be for the disruption of 2-terminal connectivity, k- terminal 
connectivity or all-terminal connectivity.

Therefore, success of all the components in at least one minimal path set 
ensures system success whereas failure of all components in a minimal cut 
set ensures system failure. A vast majority of methods to evaluate network 
reliability belong to POC paradigm. These techniques work in a two-step 
procedure, viz.,

Enumeration of minimal path sets or cut sets of the network, 
and
Combining path sets or cut sets logically using the laws of 
probability.

1.5.2.1 Inclusion-Exclusion Technique

This is one of the earliest techniques using the probability laws of unioniza-
tion and idempotence to compute network reliability expression. Taking 
an example of a two-terminal reliability measures for instance, the suc-
cess of all the components in at least one minimal path set ensures system 
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success, whereas failure of all components in a minimal cut set ensures 
system failure. Therefore, If the set of all minimal path or cut sets between 
a specified pair of nodes viz., source and sink, for a network, G are known, 
then the terminal reliability, R(G), is given by,

 

( ) =

=

=
−

1

1

,if areminimal parth sets.

 

1 ,if are minimal cut sets.

m

i i
i

n
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Where, m is the total number of path sets of network and n is the total 
number of cut sets of the network and P (.) describes the probability func-
tion. The right hand side of expression of Eq. (1.3) can be evaluated using 
inclusion-exclusion principle, i.e.,
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1.5.2.2 Monte-Carlo Simulation Based Technique

Monte Carlo (MC) Simulation has been applied effectively for analysing 
the variety of engineering applications and reliability engineering is not an 
exception. In this approach, system reliability indices can be obtained as 
the expected value of a test function applied to a system state. This func-
tion, called System Function or System Structure Function, determines 
whether a specific configuration of the system based on its component’s 
states corresponds to an operating or failed state, i.e.,

Let there be a state vector, x = (x
1
, x

2
, x

3
, …, x

n
), where,

 

=
1,  if component is functioning.

0,  if component has failed.i

i 
x

i 
 

The structure function Ф(x) is defined by

 

( )Φ =
1,  if system is functioning.

0,  if system has failed.

 
x

 
 (1.5)
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The reliability is then defined as the probability that Φ(x) =1 (i.e., 
as a ratio of number for which Φ(x) =1 (success) based on the states of 
 components to the total number of simulation runs in a number of simula-
tion runs.

Note that the structure function can also be expressed in terms of mini-
mal path (or cut) sets, i.e., Let X

1
, X

2
, ..., X

l 
be the complete list of all mini-

mal path sets, and let C
1
, C

2
, ...,C

m
 be the complete list of all minimal cut 

sets of a monotone system, (Gertsbakh & Shpungin, 2009) then

 
( ) =

Φ = − −∏ ∏1
1 1 ,

j

l

ij i X
x x

 

and

 

( ) ( )=
Φ = − −∏ ∏1

1 1

j

m

ij
i C

x x

 

In short, the simulation approach is performed by following the fol-
lowing broad steps: determine the state of each component and, by the 
application of a structure function, and depending on the chosen reliability 
measure, assess if the system has succeeded or failed using some search 
algorithm such as depth-first search or so. A single simulation run gener-
ates either a system success or failure, and multiple simulation runs can be 
used to determine reliability estimation.

1.5.2.3 Domination Theory Based Technique

The approach first appeared in (Barlow, 1982), and is generally known as 
domination theory. The notion of dominations was discovered in the pro-
cess of seeking a reduction in the complexity of the inclusion-exclusion 
formula for calculating the probability that all components are functioning 
in at least one of a given networks minimal path sets or cut sets. When 
applied to a reliability computation, each of the intersections appearing in 
the inclusion-exclusion formula represents the collection of components 
appearing in one or more events of the intersection in question, and each 
term in the expansion of 1{ }m

i iP X=  contributes elements of the form pk 
or −pk to the reliability polynomial. While the inclusion-exclusion for-
mula provides an explicit expression for the reliability polynomial, it can 
entail substantial computational complexity. The generation of the (say m) 
minimal path (or cut) sets of a given system involves an algorithm that is 
exponential in m, and the number of different intersections of m sets is 
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also exponential in m. What results is a doubly exponential algorithm for 
computing system reliability. From this inconvenient truth, and the need 
for something simpler, domination theory was born.

In domination theory first we list out all minimal path sets representing 
the working components of the network. The union of these components 
in a fixed collection of minimal path sets is called a formation. Further, 
i-formation is defined as a union of the components in a collection of i 
minimal path sets. A particular formation can also be referred as even 
or odd if it is the union of an even or odd number of minimal path sets 
respectively. Whereas, the signed domination of a given union of minimal 
path sets is simply the difference between the number of even and odd for-
mations for that union. Thus the domination theory can be viewed as an 
accounting mechanism that helps one to keep track of the basic elements 
of the inclusion-exclusion calculation.

1.5.2.4 Reliability Bounds Technique

Since in a large complex and interconnected network, the number of path 
sets or cut sets can be exceedingly very high, say in thousands, therefore 
it would not be practical proposition to calculate reliability based on full 
expansion of the unionization of all the path sets or cut sets. Alternatively, 
one can work on the basis of bounds on system reliability obtained from 
path sets or cut sets and terminate the process of reliability computation at 
a stage when we find that consideration of any additional path sets or cut 
sets does not improve the accuracy any further.

Let X
1
, X

2
, ..., X

l 
be the complete list of all minimal path sets, and let C

1
, 

C
2
, ...,C

m
 be the complete list of all minimal cut sets of a monotone system. 

Denoting p
i
 the reliability of ith component and R(G) as the system reliabil-

ity and if all system components are statistically independent, then, R(G) 
would be bounded by (Barlow & Proschan, 1975).

 

( ) ( )
= ∈ = ∈

− − ≤ ≤ − −∏ ∏ ∏ ∏
1 1

1 1 1 1

i k

m l

j j
i j C k j X

p R G p  (1.6)

In other words, the upper bound on system reliability would be the 
reliability of a fictitious network made up of the parallel connections of 
several series subsystems consisting of each minimal path sets of the origi-
nal network. Likewise, the lower bound would be the reliability of system 
obtained by the series connections of several parallel subsystems formed 
by the minimal cut sets of the original network. By doing so, there would 
be many components that repeat themselves in the branches of these 
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fictitious networks formed by minimal path/cut sets. But they are treated 
as independent and distinct components in these systems. Therefore, this 
technique of reliability estimation appears to be promising and provides 
a practical and an economical method of assessing network reliability for 
small to moderate size networks.

1.5.2.5 Sum-of-disjoint Product Based Technique

The techniques based on Sum-of-disjoint product (SDP) have been often 
used effectively and efficiently in evaluation to provide a compact reliabil-
ity expression. These techniques start with a Boolean polynomial formed 
by either success terms (e.g., path sets) or failure terms (cut sets). This class 
of techniques relies on Boolean algebra manipulation to convert a path/cut 
sets polynomial, consisting of un-complemented system variable, into a set 
of exclusive and mutually disjoint (emd) terms. The algebraic sum of these 
emds provides the reliability expression, i.e.,
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Where, a bar over a variable in equation (1.7) denotes its complement. 
Note that while evaluating the product terms in equation (1.7), the laws of 
probability play a major role in providing a compact expression. This can 
be expended in a similar manner if spanning trees or k-trees or their dual 
terms are known.

Historically speaking, the foundation of a serious effort in minimizing 
system reliability expression using SDP approach was laid by (Aggarwal 
et al., 1975) (known as AMG-algorithm), mainly keeping in mind the fact, 
that the system reliability has to be determined repetitively during the 
design phase of a system and it was felt necessary to obtain the reliability 
expression in compact form that can be easily handled and computed fast. 
Another consideration that went in favour of compactness of the reliability 
expression was to minimize the round off errors in multiplicative compu-
tations involving un-complemented variables in reliability expression that 
were vogue at that time. This was the first ever attempt to obtain a compact 
reliability expression involving both complemented and un-complemented 
variables. Subsequently, four years later, (Abraham, 1979) modified AMG-
algorithm to provide even lesser number of terms in the system reliability 
expression. Hundreds of papers have appeared in the literature thereafter, 
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each one claiming to provide less number of terms in the network reli-
ability expression than before for a given test problem. In fact this exercise 
is necessary in order to reduce computational time for TR evaluation of 
large and complex networks. Furthermore, network reliability evaluation 
is generally a routine procedure while designing networks and may have to 
be used repetitively many times.

The SDP based techniques can be classified into two categories, viz.,

i. Those, which use single variable inversion (SVI) and,
ii. Those, which employ multiple variable inversions (MVI).

In contrast to SVI technique, MVI technique inverts a part of the 
product of variables instead of a single variable at a time. This provides 
fewer numbers of disjoint terms, each of which covers a greater domain of 
Boolean structure function than is possible with single variable inversion.

The biggest advantages of the SDP techniques lie in their simplicity 
and independency with regard to the input they accept to generate mutu-
ally disjoint terms, which in turn have one-to-one relationship with the 
network reliability expression. The input to SDP approaches is a Boolean 
function formed by network variables (nodes and/or links) representing 
either path sets, cut sets, spanning trees or k-trees or their duals. Therefore, 
depending on the input function, the result would be in the form of two-
terminal, all-terminal or k-terminal reliability polynomial. We utilize this 
advantage of SDP approaches for evaluating k-terminal reliability and all-
terminal reliability of a network in subsequent chapters by providing a uni-
fied framework as well.

Exercises

1.1  Represent the adjacency matrix and connection matrix for the 
 network given in Figure Ex. 1.1; also check whether it can be solved 
by series-parallel (SP) or parallel-series (PS) reduction  technique 
for reliability evaluation.

1

2

3

4

5

6

Figure Ex. 1.1 A complex network.
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1.2  Enumerate the number of states of the network shown in Figure 
Ex. 1.1, by assuming the binary states (0-fail, 1-success) of the 
elements #1 to #6. Identify what are the success and failure states 
from such enumerations between the ‘round’ terminals.

1.3  Using the Decomposition method, draw the sub graphs of the 
RBD of the system shown in Figure Ex. 1.2 by taking element #2 as 
pivotal element.

1

2

3

Figure Ex. 1.2 A parallel network.
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Reliability has become a key factor in the design and operation of modern 
large, complex, and expensive systems. It is no longer economically feasi-
ble to over design system facilities and to introduce excessive redundancy. 
Since 1950s, the mathematical theory of reliability started receiving a great 
deal of attention from engineers and mathematician. (Moor & Shannon, 
1956), presented their first significant paper on mathematical modules of 
multi component system. In their paper, they examined that by proper 
incorporation of redundant units a network of high reliability could be 
constructed using relatively less reliable components. Subsequently, several 
papers have been published on the reliability evaluation of redundant and 
majority voting systems. A large number of techniques exist to improve the 
system reliability. Some of the important techniques have been:

Parts improvement method,
Effective and creative design,
Use of overrated components,
Structural redundancy.

2
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The parts improvements technique involve with the improvement of 
reliability of at least the most critical, if not all, components. However, cost 
involved in the applications of new production techniques and automa-
tion required for this alternative thereof limits its use. Moreover, whatever 
improvement we may employ, production of a perfect part (100 % reliabil-
ity) is almost impossible. Besides, this approach becomes unwieldy when 
one deals with large and complex systems. The effective and creative design 
approach needs some careful thinking on the part of design engineer to 
create a new or improved system with high reliability. Use of overrated 
component approach obviously would restrict its use due to the cost con-
straints and the availability of component with the requisite ratings.

However, structural redundancy provides a very effective means of 
improving system reliability by incorporating alternative routes at the 
component or subsystem levels. It not only needs comparatively less skill 
on the part of designer but also provides a quick solution to achieve desired 
level of reliability, if no constraint on space, weight, volume, cost etcetera 
are demanded. In a nutshell, if the state-of-art is such that either it is not 
possible to produce highly reliable components or the cost of producing 
such components is very high, we can improve the system reliability by the 
technique of introducing redundancies by deliberate creation of alternative 
parallel paths, if the design allows doing so.

Wide-ranging applications of redundancy in system design can be 
found in almost all types of systems, viz., interconnected power systems, 
protective schemes in nuclear reactors, data processing systems etcetera. 
The list is endless. However, when a system is formed from units connected 
in series, parallel and in mixed configurations of series-parallel or parallel-
series, a suitable and efficient method of calculating its reliability becomes 
essential.

Therefore, both in system analysis and design, the following aids and 
tools are of great importance:

A set of applicable mathematical models,
Concept and procedure for estimating system reliability and 
comparing alternative designs, and
Efficient computer programs to conduct an effective and 
efficient reliability analysis; and predict the overall reliability 
of such systems consisting of arbitrary or mixed redundan-
cies viz., active, standby and/ or k-out-of-m.

There are several methods available to evaluate the overall reliability of 
such systems. As pointed out in Chapter 1, Section 1.1 that any technique, 
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which can evaluate reliability of NSP systems, can undoubtedly be appli-
cable to SP systems, i.e., path sets or cut sets based approaches, decomposi-
tion and reduction techniques or composite methods etc. However, these 
methods are found to be less efficient in dealing with these types of systems.

(Misra & Rao, 1970), presented a procedure for reliability evaluation 
of redundant networks using flow graphs. This was the first time that the 
graph theory was used for reliability evaluation for systems and was con-
sidered a breakthrough in the area of reliability evaluation. In another 
companion paper by Misra, (Misra, 1970) a matrix method was intro-
duced using properties of graphs. This technique computes the overall sys-
tem reliability very fast and efficiently with minimum effort on the part of 
the user and without keeping a track of any sequence of operators. It was 
considered to be a major breakthrough in the reliability evaluation tech-
niques that do not rely on path or cut sets enumeration but on the basics of 
series-parallel reduction rule. The approach is still considered to be one of 
the fastest approaches to date for evaluating reliability of SP-systems. This 
approach (Misra, 1970) was extended to non-series parallel configurations 
using factoring theorem.

Another important advantage we draw from the above algorithm is to 
obtain a reducible large and complex system to a non-reducible system, in 
the form of its connection matrix wherein non-zero elements of the matrix 
represent the equivalent reliabilities of the units connected between a pair 
of nodes. It is not without a reason as no practical system is solely a non-
reducible system, as it would have different types of redundancies and par-
allelism at subsystems or components level, and sometimes at systems level 
as well. This connection matrix of the non-reducible system can be utilized 
to enumerate path sets, cut sets, spanning trees and k-trees for which these 
algorithms inherently require the connection matrix of non-reducible 
model, as would be described later in Chapter 3.

This chapter briefly introduces the various types of failure distributions 
useful in reliability analysis and management, module representation of 
reliability graphs, and Misra Matrix method (Misra & Rao, 1970) by suit-
ably modifying and extending its applicability to the systems having mixed 
redundancies.

2.1 Notation and Assumptions

The notations useful for this chapter are:
m = number of units in a redundant module.

E
i
 = Event that units i operates successfully.
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E
i
 = Event that units i have failed.

p
i
(t) = The reliability or probability of success of ith unit.

q
i
(t) = The unreliability or probability of failure of ith unit.

R
series

(t) = Reliability of a series module.

R
parallel

(t) = Reliability of a parallel module.

R
standby

(t) = Reliability of a standby module.

R
km

(t) = Reliability of a k-out of-m: G module.

While describing the methodology to evaluate SP-system reliability, we 
make the following assumptions:

i. The logical manner or configuration in which modules have 
been connected to form the system is known.

ii. The units in a module are statistically independent, i.e., the 
failure of one component does not affect the probability of 
failure of other component.

iii. The units in standby module are identical whereas in other 
redundant modules they may have similar or/and dissimilar 
units.

iv. The reliability or the hazard rate pattern of each unit in the 
system and the relationships among the units, in the form of 
a reliability graph, are known. Additionally, either the reli-
ability or the failure rate distribution parameters of the unit 
is known.

v. Mission time is implicit in the system reliability calculation.

2.2 Unit-Reliability and Failure Models

Every system whatsoever big, can be divided into several parts and units. 
The failure of system as a whole or a part, all depends upon the functional 
interactions of system components. Besides, the behavioural characteristics 
exhibited by one class of components differ from those exhibited by the other 
class of components. Each unit of the system may contribute  significantly to 
the over-all reliability of the system. Thus it is imperative to have a math-
ematical model representing the failure characteristics of units. This also 
helps in comparing different behavioural patterns and to draw definite and 
general conclusions for similar units. Here we briefly describe the four com-
monly employed hazard rate model used in reliability analysis and design.
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2.2.1 Constant-Hazard Model

The simplest case that we consider is the constancy of failure rate with time. 
For an ith component with constant hazard rate, this model takes the form:

h
i
(t) = λ

i
 Where, λ

i
 is a constant and is independent of time,

and would have the reliability expression as:

 p
i
(t) = e–λit (2.1)

An example that exhibits this characteristic is electronic components 
and this model has been used extensively in reliability research and studies.

2.2.2 Linear-Hazard Model

The linear-hazard model is the simplest among the time-dependent model 
for reliability analysis and design. Unlike the constant hazard-model, which 
assumes that units do not deteriorate with time, this module assumes that 
the rate, at which the random failures of units occur, linearly increases 
with time. Many mechanical components that are under stresses fail due to 
wear-out and deterioration. The general form of this model for some unit 
i, is given as:

 h
i
(t) = a

i
 + b

i

and the component reliability can be written as:

 p
i
(t) = e–(ait + bit

2/2) (2.2)

2.2.3 Weibull-Hazard Model

There are many situations in which the failure rate cannot be approximated 
by a straight line. In such cases, the Weibull model can be used to fit the 
non-linear behaviour of h

i
 (t). This model is expressed as:

 h
i
(t) = a

i
tbi

This gives us the reliability expression as:

 
( )

+
−

+=

1

1

bi
i

i

a t

b
ip t e  (2.3)

This model has two parameters, viz., scale parameter, a, which affects 
the amplitude and the shape parameter b. The characteristic life, (at 
which the 63.2% failures are expected to be observed in a population or 
at which the failure probability is 0.632) and a commonly used term with 
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this distribution, given in terms of its parameter is 
++=

1

11 bb

a
 time 

unit. This is the most general representation as it can generates a wide 
range of hazard modes for various values of parameters a and b. This 
model also includes the two previously discussed forms, i.e., b = 0, would 
produce the constant-hazard model and b =1 could represent a linearly 
increasing hazard model.

2.2.4 Extreme Value-Hazard Model

This model can be represented by:

 h
i
(t) = a

i
ebit

and the reliability expression for some component i is given by:

 
( ) ( )−

=
1

b ti i

i

a
e

b
ip t e  (2.4)

2.3 Module Representation of Reliability Graphs

The section describes the most commonly used models in reliability engi-
neering and can be termed as basic building blocks of a much bigger sys-
tems. A module is defined to be a unit, or simply several connected units in 
different configurations. A configuration permitted, as a module is limited 
to either of the following:

2.3.1 Single-Unit Module

A single unit module is a module, which consists of a solitary unit. The 
module reliability is the reliability of unit itself. The connection of this 
module, end to end, yields a model known as series model.

2.3.2 Multi-Unit Module

Several units connected in various configurations form this module. 
However, depending on the interrelationship, the units may have, this 
module is sub classified into following models:
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2.3.2.1 Series Model

The series model is the most commonly encountered model and is also 
the simplest configuration to analyse. Apart from at the working stage of a 
system, this model is being used to depict the system at early design stages 
where the details on design are gradually evolving. In this model, all units 
must operate successfully if the system is to function. Since, upon the fail-
ure of any one-unit, the system fails. The dependency or independency of 
failure would make no difference. The reliability of this model would always 
be less than or equal to the least reliable unit. The block diagram representa-
tion of the model is shown in Figure 2.1 and the reliability of this module,, 
is given by (2.5). Equation (2.5) is also known as the product rule in reli-
ability engineering.
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(2.5)

Example 2.1: A power supply contains three rectifiers in series. Each rec-
tifier has a distribution with shape parameter b equal to 1.2 but different 
characteristic lives given by 12000 hours, 15000 hours and 21000 hours, 
respectively. Determine the design-life of the power supply for a reliability 
requirement of 0.90.

Solution: Since, the characteristic life, 
i

1

b +1
i

i
i

b +1
= ,

a
 Equation (2.3) 

can be rewritten as:

( )
b +1i

i

t

è

ip t e ,
−

=  where b
1
 = b

2
 = b

3
 = 1.2, and θ

1
 = 12000, θ

2
 = 15000, 

θ
3
 = 21000, and system reliability, R

s
(t

d
) = 0.90, t

d
 = ?

Therefore, the reliability of the series system of three Weibull units at 
t = 5000 hours is given by:

Unit 1 Unit 2 Unit mUnit 3

Figure 2.1 Series model.

www.ebook3000.com
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Solving for t
d
 yields the design-life of power supply, t

d
 = 3219.737 hours.

2.3.2.2 Parallel Model

A system with m number of units is said to be an m-unit parallel model if 
the successful functioning of any one of the units lead to the module suc-
cess. This type of structure is also known as active redundant model. In 
reliability sense, such a system could be represented as shown in Figure 2.2. 
The reliability of this model is given by equation (2.6):
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 (2.6)

Unit 3

Unit m

Unit 1

Unit 2

...

Figure 2.2 Parallel model.
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However, this model would not be a true representative of many practi-
cal situations. For instance, in a communication system with three trans-
mitters, the average message load may be such that at least two transmitters 
must be operational at all times to avoid message loss. Resistors and capac-
itors can also create design problems when they are put actively in paral-
lel. The failure of one of two such components operating in parallel would 
change the circuit constants. Under such circumstances, another type of 
modules known as standby and k-out-of-m model are more appropriate 
and practical to use.

Example 2.2: A pressure gauge has been observed to Weibull failure 
 distribution with a shape parameter of 1.1 and a characteristic life of 
15000 hours. If two such gauges are used in redundant configuration, then 
determine the reliability of the system for 5000 hours.

Solution: The units are identical with p
1
 (5000) = p

2
 (5000) = 0.9052. 

Therefore, the reliability of pressure gauge system, R
s
 (5000) = p

1
 (5000) + 

p
2
 (5000) – p

1
 (5000) * p

2
 (5000) = 0.9910.

2.3.2.3 Standby Model

Unlike the parallel model, wherein all units are operating at any given 
time, in this model, one or more standby units wait to take over the opera-
tion from the on-line operating unit as soon as this unit fails. The standby 
units replace the failed unit instantaneously on failure of operative unit in 
sequence, either manually or automatically such that the proper system 
operation continues uninterrupted. Hence the reliability of operator or 
sensing device and switching mechanism become critical and must be very 
high. A general m-unit standby model is shown in Figure 2.3.

Assuming that all units are identical, the reliability of this model is given 
by equation (2.7) as:

Unit 1

Unit 2

Unit m

Unit 3

…

…

…

S

Figure 2.3 Standby model with common switching device.
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p t
R t p t

j
 (2.7)

Note that the above equation is valid under the assumption with perfect 
switch and no failure in the standby mode. Due to the fact that the standby 
unit becomes alive only after the failure of on-line unit, the reliability of 
this module would be higher than that of a module having equal number 
of units in parallel in active redundant mode of operation. Several recent 
and old texts provide on variations on such model such as (Misra, 1992), 
(Misra, 1993), (Elsayed, 1996), (Ebeling, 2011).

Example 2.3: A printing company has three presses with one operating 
and other two are in standby. Each press is identical with a failure rate of 
0.02 failures per hour. The company received an order that require 75 hour 
of continuous time on a press. Determine the reliability of the printing sup-
port while order is being processed.

Solution: Here, total number of units in the standby configuration is m = 3. 
For constant failure rate, 0.2231. Using equation (2.7), the reliability of print-

ing support, ( ) ( ) ( )
= × + + =

2
ln 0.2231 ln 0.2231

75 0.2231 1 0.8088.
1! 2!

sR

2.3.2.4 k-out-of-m Model

Another important practical model is one where to avoid failure of the 
system; more than one of its parallel units are required to function. If any k 
out of m units of the models are essential to function than such models are 
known as k-out-of –m: Good or simply k-out-of –m: G models as k units are 
supposed to be Good, out of the m units.

On the other hand, if k units out of m, must fail (or Bad) for a system to 
fail, the model is known as k-out-of –m: B model.

In general, a k-out-of –m: G model can also be modelled on the basis of 
(m-k+1)-out-of –m: B model. A schematic representation of k-out-of –m: G 
model is shown in Figure 2.4.

For this module, where the units are identical and statistically indepen-
dent, the binomial distribution can be used to evaluate module’s reliability, 
i.e., if p(t) is the success of each unit, than the probability that k out of m 
units would be successful is given by:
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In this type of module, there may be a crossover point where the single-
component reliability will be greater than the k-out-of –m system reliability 
and configuration does not provide any benefit unless the component reli-
ability is more than the crossover point reliability. If R is the single com-
ponent reliability, then the cross over point can be determined by solving:
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m m
m ii

ii k

R t R t R t

 

Example 2.4: In the design of computer systems, increased reliability can 
be achieved through the use of triple redundancy (consisting of three iden-
tical units with reliability of R each and a 2-out-of–3 configuration) feed-
ing into a common voting system with a reliability of R

v
 as shown in the 

Figure 2.5. Prove that the system reliability is given by R2(3–2R) × R
v
.

Unit 1

Unit 2
Voter

Unit 3

Figure 2.5 Voting system.

Unit 3

Unit m

Unit 1

Unit 2

...

k/m

Figure 2.4 k-out-of-m model.
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Solution: As the units are identical, we can use equation (2.8) with k = 2, 
m = 3 and p(t) = R, i.e.,

 
( ) ( ) ( )−

=
= − = −∑3 33 2

2 3 2
1 3 2 ,

ii
ii

R R R R R

Since, the voter is in series with the 2-out-of-3 redundant system, there-
fore the reliability of triple redundant system = R2(3–2R) × R

v

Example 2.5: In the above example, if R
v
 = 0.9, determine the crossover 

point reliability.

Solution: The crossover point can be found by solving = =2 3R R  

( ) ( ) ( )−
=

− = −∑3 33 2

2
1 3 2 ,

i

i ii
R R R R  which gives R=0.5. It means that if 

the unit reliability is below 0.5, the system reliability will be worse than 

0.5 where as if unit reliability is > 0.5 then the system reliability will be 
better than 0.5. At crossover point, the system reliability is R2(3–2R)R

v
 = 

0.52(3–2 × 0.5) × 0.9 = 0.45.
There are several other approaches exist to calculate the reliability of 

such systems. (Balaguruswami & Misra, 1976), provided an approach for 
evaluating the exact reliability with different unit failure probabilities and 
with general type of failure distributions of the constituent units. (Barlow 
& Heidtmann, 1984) proposed that reliability of this model could be com-
puted exactly by expanding a generating function g(z) and collecting the 
terms corresponding the power of ‘z’ varying from k to m. The recursive 
use of probability law of union or SDP techniques can also be applied to 
solve k-out-of –m redundancy problem (Locks, 1984).

Example 2.6: Consider a 3-out-of-4 configuration with dissimilar units. 
Determine the reliability expression and system reliability for reliability of 
the units as 0.6, 0.7, 0.8, and 0.9, respectively.

Solution: If the units are labelled as 1, 2, 3, and 4 then working of the 
following units together will yield system success, viz., E

1
 = {1, 2, 3} or 

E
2
 = {1, 2, 4} or E

3
 = {1, 3, 4} or E

4 
= {2, 3, 4}. Unionizing these situations 

would yield, reliability of 3-out-of-4: G system with dissimilar units as,

 R
S
(t) =  p

1
(t)p

2
(t)p

3
(t) + p

1
(t)p

2
(t)p

4
(t) + p

1
(t)p

3
(t)p

4
(t) + p

2
(t)p

3
(t)p

4
(t)  

– 4 p
1
(t) p

2
(t)p

3
(t)p

4
(t) + p

1
(t) p

2
(t)p

3
(t)p

4
(t)
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 R
S
(t) =  0.6 × 0.7 × 0.8 + 0.6 × 0.7 × 0.9 + 0.6 × 0.8 × 0.9 ×  

+ 0.7 × 0.8 × 0.9 – 4 × 0.6 × 0.7 × 0.8 × 0.9 ×  

+ 0.6 × 0.7 × 0.8 × 0.9 = 0.7428

For identical units with equal reliability, p
1
(t) = p

2
(t) = p

3
(t) = p

4
(t) = p

R
s
(t)=4p3–3p4

JG Algorithm for k-out-of–m System: In this text, we describe an 
approach by (Jain & Gopal, 1985), which would update the reliability of 
such model recursively as the units are added one by one to in a system 
configuration. The basic recursion formula of the algorithm is:
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Where, R
k, k+i

(t) is the reliability of a k-out-of- (k + i): G system. By varying i 
from i = 0 to i = m-k, we can determine the reliability of k-out-of-m model. 
If the units are identical, than equation (2.9) could be simplified as:
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It also offers the solution exactly in ( )
m

k

terms. For instance, using JG 

algorithm the following equations would evolve from the recursive use of 
equation (2.9) for k-out-of-4:G system for k =1, 2, 3, i.e.,

for k = 1,1 – out – of – 4:G, = + + + 1 2 31 1 2
1,4 1,1 2,2 3,3 4,4

1 1 2 1 2 3

q q qq q q
R R R R R

p p p p p p
 

for k = 2,2 – out – of – 4:G, = + + + + 1 3 2 31 2 1 2
2,4 2,2 3,3 4,4

1 2 1 2 1 3 2 3

q q q qq q q q
R R R R

p p p p p p p p

for k = 3,3 – out – of – 4:G, = + + + 31 2
3,4 3,3 4,4

1 2 3

qq q
R R R

p p p

Where, R
i,i
 = R

1
 × R

2
 ... R

i

Example 2.7: Determine the reliability of a 3-out-of-4 configuration with 
dissimilar units using JG algorithm with the data given in earlier example.

Solution: The Reliability of 3 – out – of – 4:G,
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= × × × × × × × + +
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31 2
3,4 3,3 4,4

1 2 3

0.4 0.3 0.2
0.6 0.7 0.8 0.6 0.7 0.8 0.9

0.6 0.7 0.8

0.7428

qq q
R R R

p p p

2.4 Misra Matrix Method

This section presents a method for general but large SP system comprising 
various redundancies. At the basic level, where only parallel redundancies 
are assumed to exist in the system, the following steps are being followed 
(Misra, 1970), (Misra, 1992):

1. Given the reliability of each unit in the system and relation-
ships between the units in the form of a reliability graph, the 
method starts with the development of a weighted connection 
matrix [C] on fly i.e., while the data about the system is being 
read from a file or inputted by the user into the computer, the 
elements of the connection matrix gets updated. The input 
data consists of such information about each unit on its

Starting node,
Finishing node, and
Reliability of the unit.

2. While reading the data of a unit, if it is found that a non-zero 
entry already exists for that position in the connection matrix 
[C] then the reliability of the new unit is combined using the 
union law and the entry at that position is updated. In other 
words, all units connected between any pair of nodes, say, i 
and j are being replaced by a single unit  having an equiva-
lent reliability value as determined by using  equation (2.6) 
between this pair of nodes.

3. Finally the weighted matrix [C] obtained so would have a 
property that for any non-zero entry in [C] there exists one 
and only one link between any pair of nodes.

4. Further, to minimize the storage requirement, the column 
corresponding to source node in [C] matrix stores the 
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out-degree information of each node whereas the row cor-
responding to the sink node is utilized for storing the in-
degree information of each node.

5. The algorithm starts with the elimination process of entries 
in the connection matrix [C] with a node, say, i, that has its 
out-degree and in-degree equal to unity. After eliminating 
and updating the entry in matrix [C], another node having 
the property of equal and unity in-out degree is looked for 
elimination.

6. The process continues till all such nodes will get exhausted. 
At this point, matrix [C] would have only one non-zero 
entry corresponding to the element C (source, terminal) of 
[C] which would be the overall reliability of the systems.

We modify input information about the system feed to the computer 
and the vital step 5 of the original algorithm wherein the units connected 
in parallel are replaced with an equivalent unit. This modification would 
make it more general and applicable to the existence of the type of redun-
dancies discussed in the previous sections.

2.5 Algorithm

The steps in the extended and modified algorithm are summarized as 
under:

1. Read number of nodes, n and
2. Initialize weighted connection matrix [C]

nxn 
with all element 

set to zero.
3. Read the data in the following manner for each unit in the 

system:
i. Node numbers to which the unit is connected.
ii. Read either Reliability or the type of failure distribution 

of unit viz., exponential, Rayleigh (Linear), Weibull or 
Extreme value.

If reliability of the unit is given then go to next step, Otherwise, read 
distribution parameters (a, b) and time, t. Calculate the reliability, p

xyi
(t), 

say, for a unit i connected between nodes x and y for the following hazard 
rate functions:
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Update connection matrix [C] if, element C(x,y) = 0, then C(x,y) = p
xyi

(t), 
Otherwise, update the value of C(x,y) in the following manner:
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(2.13)

(2.14)

(2.15)

(2.16)

4. Define in and out degrees for each node in [C].
5. Eliminate the node z that has degrees in

zz
 = out

z
 = 1.

6. Transfer the product C(i,z) ∗ C(z,j) to location by modify-

ing the old C(i,j) entry using

 C(i,j)
new

 = C(i,j)
old

 + C(i,z) ∗ C(z,j) – C(i,j)
old

 ∗ C(i,z) ∗ C(z,j) (2.17)

Also reset the entries C(i,z) = C(z,j) = 0.
7. Check whether all the intermediate nodes have been elimi-

nated: if not, go to step 6. Otherwise print out the element 
C(Source, sin k) of the [C], which is the reliability of the 
network

8. Stop.
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We illustrate the above algorithm by taking some examples.

Example 2.8: To illustrate the above algorithm, let us consider a fairly 
complicated reliability graph, of 8 nodes and 16 units from (Henley & 
Williams, 1973) with modifications, shown in Figure 2.6. The reliability of 
each unit is given in Table 2.1. The tags of units have been attached with an 
arbitrarily order to input the system data to the computer and to show the 
versatility of the algorithm.

Solution: It is apparent from Figure 2.6, that module consisting of units 
number 11, 13, 15 is a 2-out-of-3 model whereas units number 14 and 
16 constitue a stanby module. The development of matrix [C] as the data 
supplied sequentially has been shown below in a tabular form for brevity, 
wherein the highlighted entry show an alteration in the element’s value 
upon addition of a new unit.

1

3

7

2

5

4

6

9 8

10

12

11

13

15

14

16

3

1

86

4

2

5

7

2/3

s

Figure 2.6 Reliability logic diagram of a 16 units systems.

Table 2.1 Reliability of units for system shown in figure 2.6.

Unit
i

R
i

Unit
i

R
i

Unit
i

R
i

Unit
i

R
i

1. 0.80 5. 0.85 9. 0.62 13. 0.85

2. 0.75 6. 0.82 10. 0.88 14. 0.90

3. 0.70 7. 0.90 11. 0.85 15. 0.85

4. 0.87 8. 0.89 12 0.75 16. 0.90
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Unit no. #2 added between nodes 2–4

Element C(1,2) updated on addition of Unit no. 

#3 using (2.12): active redundancy

0 0.8 0 0 0 0 0 0 0 0.94 0 0 0 0 0 0

0 0 0 0.75 0 0 0 0 0 0 0 0.75 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Unit no. # 4 added between nodes 3–4

Element C(2, 4) updated on addition of Unit no. 

#5 using (2.12): active redundancy

0 0.94 0 0 0 0 0 0 0 0.94 0 0 0 0 0 0

0 0 0 0.75 0 0 0 0 0 0 0 0.9625 0 0 0 0

0 0 0 0.87 0 0 0 0 0 0 0 0.87 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Unit no. #6 added between nodes 4–5. Unit no. #7 added between nodes 1–3.

0 0.94 0 0 0 0 0 0 0 0.94 0.9 0 0 0 0 0

0 0 0 0.9625 0 0 0 0 0 0 0 0.9625 0 0 0 0

0 0 0 0.87 0 0 0 0 0 0 0 0.87 0 0 0 0

0 0 0 0 0.82 0 0 0 0 0 0 0 0.82 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Matrix [C] initialized. 8×8 Unit no.# 1 is added between nodes 1–2.

0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Unit no. #8 added between nodes 5–6.

Element C(4, 5) updated on addition of Unit no. 

#9 using (2.12): active redundancy

0 0.94 0.9 0 0 0 0 0 0 0.94 0.9 0 0 0 0 0

0 0 0 0.9625 0 0 0 0 0 0 0 0.9625 0 0 0 0

0 0 0 0.87 0 0 0 0 0 0 0 0.87 0 0 0 0

0 0 0 0 0.82 0 0 0 0 0 0 0 0.9316 0 0 0

0 0 0 0 0 0.89 0 0 0 0 0 0 0 0.89 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Unit no. # 10 added between nodes 4–6. Unit no. #11 added between nodes 6–8.

0 0.94 0.9 0 0 0 0 0 0 0.94 0.9 0 0 0 0 0

0 0 0 0.9625 0 0 0 0 0 0 0 0.9625 0 0 0 0

0 0 0 0.87 0 0 0 0 0 0 0 0.87 0 0 0 0

0 0 0 0 0.9316 0.88 0 0 0 0 0 0 0.9316 0.88 0 0

0 0 0 0 0 0.89 0 0 0 0 0 0 0 0.89 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.85

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Unit no. #12 added between nodes 4–7.

Element C(6, 8) updated on addition of Unit no. 

#13 using (2.14–2.16): 2–out-of-3

0 0.94 0.9 0 0 0 0 0 0 0.94 0.9 0 0 0 0 0

0 0 0 0.9625 0 0 0 0 0 0 0 0.9625 0 0 0 0

0 0 0 0.87 0 0 0 0 0 0 0 0.87 0 0 0 0

0 0 0 0 0.9316 0.88 0.75 0 0 0 0 0 0.9316 0.88 0.75 0

0 0 0 0 0 0.89 0 0 0 0 0 0 0 0.89 0 0

0 0 0 0 0 0 0 0.85 0 0 0 0 0 0 0 0.7225

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Unit no. # 14 added between nodes 7–8  

using (2.8).

Element C(6, 8) updated on addition of Unit  

no. #15 using (2.10)

0 0.94 0.9 0 0 0 0 0 0 0.94 0.9 0 0 0 0 0

0 0 0 0.9625 0 0 0 0 0 0 0 0.9625 0 0 0 0

0 0 0 0.87 0 0 0 0 0 0 0 0.87 0 0 0 0

0 0 0 0 0.9316 0.88 0.75 0 0 0 0 0 0.9316 0.88 0.75 0

0 0 0 0 0 0.89 0 0 0 0 0 0 0 0.89 0 0

0 0 0 0 0 0 0 0.7225 0 0 0 0 0 0 0 0.93925

0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0.9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Element C(7, 8) updated on addition of Unit 

no. #16

0 0.94 0.9 0 0 0 0 0

0 0 0 0.9625 0 0 0 0

0 0 0 0.87 0 0 0 0

0 0 0 0 0.9316 0.88 0.75 0

0 0 0 0 0 0.89 0 0

0 0 0 0 0 0 0 0.93925

0 0 0 0 0 0 0 0.994824

0 0 0 0 0 0 0 0

Matrix [C] at the end
of data read
operation 

8

7

6

5

4
1

2
0.94000 0.96250

0.75000 0.99482

0.93160

0.93925

0.88000

0.89000

0.87000
3

0.90000

Figure 2.7 Reduced system at the end of data-read.

A reduced system can easily be constructed from matrix [C] as shown 
in Figure 2.7

Now the reliabilty evaluation process starts from step#5 onwards. The 
tabular from shows these steps with respective Figures of reduced system 
side by side after sequential elimination of nodes. It is worthwhile to note 
that at each step the size of [C] reduced by one.

Matrix [C] with in/out degrees of each node and elimination of node 2 begins. 

2 0.94 0.9 0 0 0 0 0

1 0 0 0.9625 0 0 0 0

1 0 0 0.87 0 0 0 0

3 0 0 0 0.9316 0.88 0.75 0

1 0 0 0 0 0.89 0 0

1 0 0 0 0 0 0 0.93925

1 0 0 0 0 0 0 0.994824

0 1 1 2 1 2 1 2
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5

8

7

64
1

0.9047

0.8700
3

0.9000

Node 2 gets eliminated and respective 

element’s value also gets updated.

2 0.9 0.90475 0 0 0 0

1 0 0.87 0 0 0 0

3 0 0 0.9316 0.88 0.75 0

1 0 0 0 0.89 0 0

1 0 0 0 0 0 0.93925

1 0 0 0 0 0 0.994824

0 1 2 1 2 1 2

Node 3 gets eliminated and equivalent 

transmittance between node 1 & 4 gets computed

1 0.979331 0 0 0 0

3 0 0.9316 0.88 0.75 0

1 0 0 0.89 0 0

1 0 0 0 0 0.93925

1 0 0 0 0 0.994824

0 1 1 2 1 2

5

1

8

7

6
4

0.97933

0.93160

0.88000

0.89000

Node 5 gets eliminated and equivalent 

transmittance between node 4 & 6 gets 

computed.

1 0.979331 0 0 0

2 0 0.979495 0.75 0

1 0 0 0 0.93925

1 0 0 0 0.994824

0 1 1 1 2

1
6

8

7

4
0.979331

0.75000 0.994824

0.979495 0.93925

Node 6 gets eliminated.

1 0.979331 0 0

2 0 0.75 0.919991

1 0 0 0.994824

0 1 1 2

1

8

7

4
0.979331

0.75000 0.994824

0.919991
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Node 7 gets eliminated and 

equivalent transmittance between 

node 4 & 8 gets computed.

1 0.979331 0

1 0 0.979687

0 1 1

1
4

80.979331 0.979687

Node 4 gets 

eliminated

1 0.959438

0 1

81 0.959438
Reliability of the
system and final
reduced system.

As a second example, we consider a more realistic system- a Fire 
Detector System.
Example 2.9: Reliability logic diagram of a pneumatic system (Chaudhari 
et al., 2001) shown in Figure 2.8.

It consists of 3 parts: heat detection, smoke detection, and a manually-
operated alarm button. In the heat-detection section, there is a circuit with 
4 s-identical fuse plugs, FP

1
, FP

2
, FP

3
, FP

4
, which are used to force the air 

out of the circuit, if the temperature experienced exceeds 72°C. The circuit 
is connected to pressure switch, PS. The PS begins functioning when at 
least 1 of the plugs operate, and transmits a signal to the start relay, SR, 
to produce alarm and thereby causing a system shut down. The smoke-
detector, SD, has three units (SD

1
, SD

2
, SD

3
) which are connected to a vot-

ing unit (VU) through a logical 2-out-of-3 system. Thus, at least 2 smoke 
detector must give a fire signal before the fire alarm is activated. For the 
successful transmission of an electrical signal from heat detection and/or 
smoke detector, the DC source must be working. In the manual activation 
section, there is an operator OP, who should always be prsent. If the opera-
tor observes a fire, then the operator turns-on the manual-switch, MS, to 
relieve pressure in the circuit of the heat-detection section. This activates 
the PS, which in turn gives an electrical signal to SR. We solve this example 
by actually executing the program (can be downloaded from www.scriven-
erpublishing.com) for the data file as shown in the box. The program needs 
the following information.

The first line of the data file shows the total number of nodes in the sys-
tem, which is 8 in this case. The next line onwards, we give node numbers 
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to which a unit is connected; specify that the unit follows a certain failure 
distribution (d) i.e., w for the Weibull; the Weibull parameters a, and b; 
time; and the type of module. For k-out-of-m module one more parameter 
is specified, i.e., the value of k. Note at line number 4, 10 and 13 of data file 
where the parameter k is 2.

Example 2.9: Data-Input File: illustration 2.m

8

1 2 d w 1.5 0.5 0.2 0

2 3 d w 1.5 0.5 0.2 0

2 6 d w 1.8 0.8 0.2 2 2

2 5 d w 2.3 1.3 0.2 1

3 4 d w 1.6 0.6 0.2 0

4 7 d w 1.6 0.6 0.2 0

7 8 d w 1.7 0.7 0.2 0

2 5 d w 2.2 1.2 0.2 1

2 6 d w 1.7 0.7 0.2 2 2

2 5 d w 2.1 1.1 0.2 1

6 7 d w 1.9 0.9 0.2 0

2 6 d w 1.8 0.8 0.2 2 2

2 5 d w 2.0 1.0 0.2 1

5 7 d w 1.6 0.6 0.2 0

10

8

4

SD1

SD2

SD3

1

82/3DC

FP1

FP2

FP3

FP4

PSMSOP

SRVU

PS

5

43

762

1

2 5 6

7

3

9 11

12

14

13

Figure 2.8 Reliability block diagram of fire detector system.
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We run the program at the Matlab®. prompt by writing:

>> misMatMethod
---------------------------------------------------------------
if you get this error:...
Error in ==> C:...\formCMat.m
On line 27 ==> cij (unit(i-1).node(1),unit(i-1).node(2))= ...
CHECK:The data file must be terminated where the data ends.
 In other words the total line in the file must be equal to the num-
ber of units in the system
Check the blinking cursor at the end of data file.
For this, use PgDn key on the keyboard.
----------------------------------------------------------------
Checked. So proceed...?: 1 (Yes)/0:1
The data input file: illustration2.m
The Result file : illustration2Res.m
The CMAT file after data of each unit read
 (LEAVE BLANK FOR NOT NEEDED)):
The CMAT file thereafter each node elimination
 (LEAVE BLANK FOR NOT NEEDED)):
The System Reliability is: 0.856303.
The computation time is = 0.651000 seconds.

----------------------------------------------------------------
The output file, illustration2Res.m, contains the following information 

of the system:
*************** THE SYSTEM DETAIL *******************
____________________________________________________

MODULE NO.#: 1, which is consisted of 1 units connected in series, in 
between nodes [1 and 2], respectively.
 The reliabilities of units of this module are: [0.914441], respectively.

MODULE NO.#: 2, which is consisted of 1 units connected in series, in 
between nodes [2 and 3], respectively.
The reliabilities of units of this module are: [0.914441], respectively.

MODULE NO.#: 3, which is consisted of 3 units connected in 2 out -of- 3 
configuration, in between nodes [2 and 6], respectively.
The reliabilities of units of this module are: [0.946306 0.937230 0.946306], 
respectively.

MODULE NO.#: 4, which is consisted of 4 units connected in parallel, in 
between nodes [2 and 5], respectively.
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The reliabilities of units of this module are: [0.975621 0.971425 0.966520 
0.960789], respectively.

MODULE NO.#: 5, which is consisted of 1 units connected in series, in 
between nodes [3 and 4], respectively.
The reliabilities of units of this module are: [0.926681], respectively.

MODULE NO.#: 6, which is consisted of 1 units connected in series, in 
between nodes [4 and 7], respectively.
The reliabilities of units of this module are: [0.926681], respectively.

MODULE NO.#: 7, which is consisted of 1 units connected in series, in 
between nodes [7 and 8], respectively.
The reliabilities of units of this module are: [0.937230], respectively.

MODULE NO.#: 8, which is consisted of 1 units connected in series, in 
between nodes [6 and 7], respectively.
The reliabilities of units of this module are: [0.954102], respectively.

MODULE NO.#: 9, which is consisted of 1 units connected in series, in 
between nodes [5 and 7], respectively.
The reliabilities of units of this module are: [0.926681], respectively.
The C matrix of the above system is:
-----------------------------------
0.000000 0.914441 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.914441 0.000000 0.999999 0.990738 0.000000 0.000000
0.000000 0.000000 0.000000 0.926681 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.926681 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.926681 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.954102 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.937230
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

The System Reliability is = 0.856303

2.6 Implementation and Documentation

The modified and general algorithm presented in this chapter has been 
programmed in Matlab®. The program has the following modules:

2.6.1 Main Module

This module requires at least two files that shall have the information of the 
system for which the reliability evaluation to be performed. The first file 
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will have the input data for the system while the second file is kept reserved 
for output. The other two files are optional and are meant to keep a track of 
iterations made in [C] throughout the input operation and post-processing 
of [C] during the node elimination process.

For reading inputs, forming [C] during every unit-data read and pro-
cessing the [C] thereafter, it calls several other supporting routines for viz.,

i. for inputting system information and building matric [C]-> 
formCMat

ii. for post-processing [C], it calls -> processCmat
iii. for outputting the System’s detail-> systemDetail

Before the program begins to process [C], it validates the inputs. On 
finding any discrepancy in the input data, it prompts a user with warning 
messages for the following inconsistencies in the data exist:

i. A unit connected between a node-pair is specified to belong 
to a parallel or a standby module; and no other unit has been 
specified thereafter in the data input between this node-pair. 
As per the definitions of parallel and standby module, the 
program expects at least two units in these configurations.

ii. A unit connected between a node-pair is specified to belong 
to a k-out-of-m module; and the data supplied for the units 
connected between this node pair is ≤ k or > m.

2.6.2 Function formCmat

The calling format of this routine is:

function [cMAT,nNodes, module,error1] =
formCMat(dataFin,[cMatfout])

It accepts one input argument viz., the system data input file name. The 
other argument for outputting [C] at each data read is optional.

It provides four output arguments viz., the [C] at the end of data read 
operation, number of nodes in the system, modules in the systems and an 
error flag which turns-on on finding the inconsistency in the input data. 
Variable module is an array of structures, which contains the following 
information:

Number of units in a module,
Node-pair numbers to which a module is connected,
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Type of configuration of modules, viz., series (0), parallel 
(1), k-out-of-m (2) or standby (3) where the number inside 
thr round brackets are the configuration-type identifiers,
Minimum number of units needed for a module success. 
It is initialized with unity except for the type-2 configura-
tion, k-out-of-m, for which value of k is to be supplied in the 
input file (See illustration 2.2).
Total number of units in a module, and
Reliabilities of each unit in a module.

As pointed out earlier that [C] builds up takes place on fly, the data read 
operation is done by this routine. The input would contain the information 
of the system and each unit. At system level, the number of nodes in the 
system has to be known whereas at unit level, the following information 
would be required in sequence:

Node-pair to which a unit is connected.
Whether reliability of the unit or the distribution that the 
unit follows is known? The program differentiates it by sens-
ing the next data input. A character p signifies that prob-
ability of success of this unit is known whereas a character d 
implies that the unit follows a distribution pattern.
Once the input is read as p, the next data would be the value 
of reliability of the unit otherwise program seeks for the type 
of distribution and distribution parameters for the type of 
distribution specified.

The program capable of distinguishing four types of failure distributions 
described in Section 2.2. However, the flexibility inherent in modular pro-
gramming makes it a trivial issue as the list can always be appended with 
new types of distributions.

The following letters are used to identify hazard rate distribution types 
in data input:

 c Constant
 r Rayleigh (Linear)
 w Weibull
 e Extreme value

Based on the character specified, the reliability equations (2.11) are used 
to calculate the reliability of the unit.

Further, if between any pair of nodes, if the unit(s) has already been 
added than depending upon the module type, it uses the appropriate 



58 Network Reliability

equation from (2.12 ), (2.13), (2.14) and (2.16) to calculate the module 
reliability. This value of reliability for each module appears in [C] at the 
end of data-read.

2.6.3 Function processCmat

The calling sequence of this routine is:

function rel = processCmat(cmat, nNodes,[cmatFile]).

The function accepts in two parameters, the matrix [C] and number of 
nodes in the system. The third parameter is an optional parameter and is 
used to store intermediate value of matrix [C], wherein besides there is a 
change in the value of elements of [C], the size of [C] also reduces by 1 at 
the end of each, iteration.

When [C] would have a single element, the value contained would be 
the reliability of the system. This value is outputted by this function.

2.6.4 Function systDetail

Once the system reliability has been computed, this function helps in pro-
ducing the output of the type shown for the illustration 2.2. The declaration 
of this routine is as under:

function systDetail(fn,cmat,module,sysRel)

2.7 Remarks

The versatility and applicability of Misra Matrix has been demonstrated by 
extending it for more general SP-networks, where a unit or module can fol-
low any type of failure patterns. The following facts indicate the supremacy 
of this method over the other approaches:

1. If we intend to apply path sets based approach on illustration 
2.1 then the original graph of the system of 16 units shown 
in Figure 2.6 would have a total of 55 path sets. The number 
of path sets and path sets unions required for computing the 
system reliability, therefore, would be 255–1, which is far in 
excess of 1016.

2. However, the reduced graph of the same system shown in 
Figure 2.7 would have only six minimal path sets. Similarly, 
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the reduced graph of example 2.2, which could be drawn eas-
ily by using [C], would have a total of eight minimal path sets.

Hence, one could have a second thought to apply the path sets based 
technique, viz., sum of disjoint product based approach discussed in later 
chapters. But it is worth to mention that not only it might demand a fur-
ther reduction procedure but would also require a SDP based approach 
to find disjoint terms. Therefore, the application of path sets enumeration 
method to the original or reduced graph for SP- systems is very time con-
suming, if not difficult. The Misra Matrix Method (Misra, 1970), (Misra, 
1992) does both the tasks in one go. Hence, there are no exaggerations 
in saying that the method is much and more superior to the entire fam-
ily of the methods available till date to evaluate the system reliability of 
SP- networks.

A sample input-output of the program to compute system reliability for 
example 2.2 has been shown. The modifications incorporated in the origi-
nal algorithm (Misra, 1992) have made the algorithm more versatile and 
would be useful in system analysis and design.

However, the approach described in this chapter is applicable only for 
SP-networks. In case of NSP-networks, our strategy for system reliability 
evaluation would be through path and cut sets enumeration and the pro-
cess of computing SDP terms, which has one to one relationship with reli-
ability expression.

Exercises

2.1  Reduce the SP-network shown in Figure Ex. 2.1 and obtain the 
reliability expression for a series-parallel system. What will be the 
reliability of this system assuming that the reliability of each ele-
ment is 0.95.

S T

X1

X2

X3

X4

X5

X6

X7

Figure Ex. 2.1 A series-parallel system.
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2.2  Evaluate the reliability of the network shown in Figure Ex. 2.2. The 
reliability of each element is shown inside the parenthesis.

S T

X1(0.8)

X2 (0.8)

X3 (0.9)

X4 (0.7)

X5 (0.9)

X6 (0.95)

X7 (0.6)

X8 (0.6)

X9 (0.6)

Figure Ex. 2.2 A series-parallel system.

2.3  Evaluate reliability of the network shown in Figure Ex. 2.3. The 
reliability of each element is shown above the boxes.
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Figure Ex. 2.3 A series-parallel network.

2.4  If 2/3-redundant block and standby block is replaced with active 
parallel redundant blocks with equal number of units as in original 
in Figure 2.6, then determine the reliability of the system?
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The network reliability is usually concerned with the task of evaluating 
the terminal reliability or the probability of establishing communication 
between a set of specified nodes, which is often carried out using either 
path sets or cut sets of a probabilistic graph. 

Although there is plethora of methods that exist to evaluate reliability 
measures, the most widely used technique in vogue still remains through 
path sets or cut sets and therefore enumeration of path sets (or spanning 
trees, or k-trees, let us call as path sets or success terms, in general) or its 
dual cut sets are the most fundamental step in evaluating the reliability 
measures of a network. Therefore, to make network reliability computation 
using path or cut sets competitively attractive, we must have an efficient 
method for enumerating path or cut sets as these path sets or cut sets are 
used to obtain system reliability expression in a compact form by employ-
ing SDP techniques.

The methods for enumerating path sets can broadly be divided into two 
categories:

a. By utilizing and exploitation of the information contained in 
the matrix representation of a network graph, and

3
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b. Graph Traversal or Exhaustive Search Technique by using 
a suitable data structure containing the information of the 
network graph. 

Generally, the methods based on first category do not require the knowl-
edge advanced mathematics or graph theory.

Although there are several data structures available for a network graph 
representation, in this text, we represent a network graph through the con-
nection /adjacency/incidence matrix whose size is dictated by the number 
of nodes and/or links in a network. This actually results in storing a single 
matrix of (n × n) or (n × l) size and avoids using other complex form of 
representations of a network such as link-list or tree and their manipula-
tions thereof for path sets generation. 

In order to distinguish links from the nodes in all the test problems, we 
have shown nodes by bold numbers and links by the numbers in  normal print.

3.1 Enumeration of (s, f) Connected Path Sets

For small size networks, one can easily enumerate the path or cut simply by 
visual inspection. However, increase in the network size and complexities 
necessitate in applying some logics, mathematics and graph theoretic. In 
many networks, one is usually interested to compute reliability between a 
specified pair of nodes, and all other remaining nodes. 

Any network graph, directed or undirected, can be represented by its 
connection or adjacency or incidence matrix. The connection matrix con-
tains a total of 2*l number of non-zero elements, if the graph is undirected 
or (l + number of bi-directional elements) otherwise. Non-zero elements 
in each row are the nodes, which are adjacent to the node addressed by 
that row index. On the other hand, the incidence is node by link matrix 
whose size is dictated by the number of nodes and links in the network 
graph. The elements of this matrix can be either 0/1 or -1/1. Reading the 
matrix row-wise (remember the ‘a’ row represents a particular node of the 
network graph), and encountering a 0 or -1 in any column implies that the 
particular link does not join this node whereas a 1 implies it does.

Before we delve into the methods of enumerations of (s, f) terminal pair 
paths, there are certain useful properties of the network graph utilized for 
such enumerations such as:

i. The degree of a node is the number of branches incident on 
it. For directed network graph, there will an in-degree and 
an out-degree for each node.
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ii. The paths for any terminal pair of the network graph are 
combinations of branches of different order. The cardinal-
ity (number of elements) of such path sets ranges from 1 to 
(n-1) and cut set ranges from 1 to (L+1) where L = (l-n+1), 
the number of basic loops in the graph. 

iii. A subnet graph corresponding to a combination is said to 
be a path if

It touches both the terminal nodes, i.e., both the terminal 
nodes must be of degree one. 
It does not contain any loop, and 
It represents a connected graph.

iv. For a subnet graph representing a path, the intermediate 
nodes in the subnet graph should be of degree two only. 

v. If a subnet graph which has any intermediate node of degree 
other than 2 or 0 represents either a disconnected graph or a 
non-minimal path.

These simple observations have favoured researchers to devise meth-
ods to look for all path sets between any specified pair of nodes of a given 
network viz., in general source and sink. Here, we will describe some 
simple to computer-requiring methods for network graph to fulfil these 
objectives. 

3.1.1 Method 1: Using Powers of Connection matrix

The method starts with the connection matrix representation of the net-
work graph. This matrix is algebraically (remember, not numerically) 
multiplied iteratively by itself. The maximum cardinality path, i.e., (n-1), 
possible in the network dictates the number of times this multiplication 
to continue. Besides, at each multiplication, one must apply the laws of 
Boolean algebra such as commutative, absorption, identity, and idempo-
tent. In a multiplication, if number of elements turns out to be lesser than 
the order of the forming matrix, those elements are discarded. The ele-
ments corresponding to the specified node pair(s) in the matrix of each 
order would represent the path sets of different order from one node to 
another. Collecting these terms with the removal of redundant terms 
would be number of minimal path sets enumerated by this approach. Note 
that, this matrix can also provide the path sets of different order for every 
pair of nodes by extracting the elements of specified node pair(s) in each 
order of the matrix. 

Let us illustrate this method through an example. 
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Example 3.1: Consider the ARPA network shown in Figure 3.1 below. 
Enumerate the path sets of the network using the powers of its connection 
matrix

Figure 3.1 Example ARPA network.
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Solution: The connection matrix of the network is, (Note that the elements 
are branch numbers labels).

 

CM =

0 1 2 0 0

1 0 3 4 0

2 3 0 5 6

0 4 5 0 7

0 0 6 7 0

Due to symmetry of the matrix, only lower diagonal terms of the resultant 
matrix are shown.

 

CM2

0 23 13 14 25 26

0 12 45 35 36 47

0 34 67 57

0 56

0

=

+
− + +
− − +
− − −
− − − −

 

CM3

123 254 145 324 135 267 136 147 257

123 345 467 125 367 126 4

=

+ + + +
− + + + 556 357

123 345 567 124 347

345 567 346

567

+
− − + +
− − − +
− − − −
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CM 4

1245 1345 2467 2345 2567 1467 1367 1456 2347 1357

1245 346

=

+ + + + +
− + 77 3567 1234 4567 1267 1257

1245 3467 1235 1236 3456 1247

12

+ +
− − + + +
− − − 445 3467 1246 3457

3467

+ +
− − − −

Therefore, path sets between node pair (1, 5) are

{2, 6} from element CM(1, 5) in CM2

{1, 3, 6}, {1, 4, 7}, {2, 5, 7} from element CM(1, 5) in CM3

{1, 4, 5, 6}, {2, 3, 4, 7}, {1, 3, 5, 7} from element CM(1, 5) in CM4

Example 3.2: Enumerate the path sets from node 1 to other nodes from the 
powers of matrix.

Solution: By extracting the element (1, i) for i = 2, 3, 4, 5 from the different 
powers of connection matrix from CM to CM4, we obtain, 

Between (1, 2) = {1}, {2, 3}, {2, 5, 4}, {1, 3, 4, 5}, {2, 4, 6, 7}. Discarded path 
is a non-minimal redundant path. 

Between (1, 3) = {2}, {1, 3}, {1, 4, 5}, {2, 3, 4, 5}, {2, 5, 6, 7}, {1, 4, 6, 7}. 
Discarded paths are non-minimal redundant path.

Between (1, 4) = {1, 4}, {2, 5}, {2, 3, 4}, {{1, 3, 5}, {2, 6, 7}, {1, 3, 6, 7}.

Between (1, 5) = {2, 6}, {1, 3, 6}, {1, 4, 7}, {2, 5, 7}, {1, 3, 5, 7}, {1, 4, 5, 6}, 
{2, 3, 4, 7}.

3.1.2 Method 2: Traversing Through Connection Matrix

Taking the connection matrix as the starting point, the method begins 
with scanning the first row corresponding to source node and collects the 
non-zeros entries in its all columns, signifying source node’s connectivity 
with other nodes, to form ‘incomplete paths’ by appending each adjacent 
node as a separate paths. Now, for each ‘incomplete path’, its last element 
is checked for – whether it is terminal node? If so, then a path is found 
else every columns corresponding to the row of last element (recently 
appended node in the list) in the ‘incomplete path’ are checked for adja-
cent nodes. Each non-zeros entry is appended in the ‘incomplete path’, if 
not already exiting’ to provide several other paths. If no non-zero entry is 
found corresponding to the last entry in an ‘incomplete path’ or a repeat 
of an element occurs, then that path is discarded whereas if the last entry 
is corresponding to the terminal node, it constitutes a path’ and is stored. 
This process is applied to all ‘incomplete paths’ till there is no incomplete 
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path remained (Ahmad, 1989). The node-wise path obtained so can easily 
be converted to the link-wise path thereafter.

Example 3.3: Apply the traversing through connection matrix method to 
the example 3.1. 

Solution: The connection matrix for the network graph is:

 

CM =

0 1 2 0 0

1 0 3 4 0

2 3 0 5 6

0 4 5 0 7

0 0 6 7 0

By using the bold numbers for node-labels, the steps followed are:

1. From the first row, we get the following ‘incomplete paths’: 
{1, 2}, {1, 3}, i.e., the source node ‘1’ is connected with node 
{2} and {3}, respectively. It has no direct connection to 
 terminal node ‘5’, entry being 0 (No first order path).

2. Taking Incomplete path {1, 2} and now, scanning row 2, we 
get two incomplete paths: 
 {1, 2, 1} (Discarded as node 1 repeats), {1, 2, 3} and {1, 2, 4}. (No 
path has its last node entry ‘5’-the terminal node). Similarly for 
{1, 3}, we get: {1, 3, 1}, {1, 3, 2} {1, 3, 4} and {1, 3, 5}.

3. Checking these ‘five incomplete paths’ obtained so, we found 
that path #1 = {1, 3, 5} has its last entry ‘5’. So it is path from 
node 1 to 5. The remaining four incomplete paths are: {1, 2, 
3}, {1, 2, 4}, {1, 3, 2}, and {1, 3, 4}.

4. Proceeding as in step 2 above and appending these incom-
plete paths one by one, we get:
{1, 2, 3}  {1, 2, 3, 1}, {1, 2, 3, 2}, {1, 2, 3, 4} (Incomplete path) 
and {1, 2, 3, 5} (Path # 2)
{1, 2, 4} {1, 2, 4, 2}, {1, 2, 4, 3}, (Incomplete path) and {1, 2, 4, 5} 
(Path #3)
{1, 3, 2} {1, 3, 2, 1}, {1, 3, 2, 3}, {1, 3, 2, 4} (Incomplete path)
{1, 3, 4} {1, 3, 4, 2}, {1, 3, 4, 3}, {1, 3, 4, 5} (Path#4)

5. Again proceeding as in step 2 for the Incomplete paths {1, 2, 3, 4}, 
{1, 2, 4, 3},{1, 3, 2, 4}, {1, 3, 4, 2}
{1, 2, 3, 4}  {1, 2, 3, 4, 2}, {1, 2, 3, 4, 3}, {1, 2, 3, 4, 5} (Path # 5),

www.ebook3000.com

http://www.ebook3000.org
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{1, 2, 4, 3}  {1, 2, 4, 3, 1}, {1, 2, 4, 3, 2}, {1, 2, 4, 3, 4},  
{1, 2, 4, 3, 5} (Path # 6),
{1, 3, 2, 4}  {1, 3, 2, 4, 2}, {1, 3, 2, 4, 3}, {1, 3, 2, 4, 5} (Path #7)
{1, 3, 4, 2}  {1, 3, 4, 2, 1}, {1, 3, 4, 2, 3}. 

Now, the procedure terminates as there is no incomplete path left. 
Therefore, the procedure generates the following seven (1, 5) node 
wise and link wise path sets between (s, t) pair (1, 5) as: 

{1, 3, 5}  {2, 6}, {1, 2, 3, 5}  {1, 3, 6}, {1, 2, 4, 5}  {1, 4, 7}, 
{1, 3, 4, 5}  {2, 5, 7}, {1, 2, 3, 4, 5} {{1, 3, 5, 7}, {1, 2, 4, 3, 5}  
{1, 4, 5, 6}, {1, 3, 2, 4, 5}  {2, 3, 4, 7}.

3.1.3 Method 3: Using Incidence Matrix

The method is based on the property (iii) stated in Section 3.1 (Mishra & 
Misra, 1980). The path sets for any terminal pair of the network graph are 
combinations of the links of different order. Path of cardinality one exists, 
if there is a direct link between a specified source-terminal pair of nodes 
and can easily be found from the incidence matrix (by scanning it column-
wise for a pair of specified nodes), which is an (n × l) order ‘nodes versus 
links’ matrix representing a network graph. The paths of cardinality two or 
more can be obtained by generating combinations of number of links from 
2 to (n–1), i.e., C

i
l ∀i = 2, 3(n–1). Further, a column vector denoting D

i
, as 

the degree of node i in the subnet graph, corresponding to a links-combi-
nation can be generated from the incidence matrix by adding algebraically 
the columns of incidence matrix corresponding to the links present in the 
combination. 

Conditions in property (iii) provided in Section 3.1 of a network graph 
can be satisfied if 

a. The degree of node corresponding to terminal pair of nodes 
in D

i
 must be equal to 1, i.e., a necessary and sufficient con-

dition. This condition is exploited to reduce the labour of 
forming number of combinations and exhaustive search, and

b. The degree of nodes other than terminal nodes should either 
be equal to ‘0’ or ‘2’. This is a necessary condition but not 
sufficient one, i.e., a combination of links satisfying this 
condition might render either a disconnected graph or path 
consists of loop or a non-minimal path. This insufficiency 
imposes to check the connectivity of graph represented by a 
combination or the path so formed must be compared with all 
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the previously enumerated paths that no subset of the combi-
nation under consideration is a path.

Example 3.4: Consider the network of example 3.1 once again. Check the 
combination of links {1, 5, 6, 7} for the conditions a and b above.

Solution: The incidence matrix of the network graph of example 3.1 is:

 

IM =

1 1 0 0 0 0 0

1 0 1 1 0 0 0

0 1 1 0 1 1 0

0 0 0 1 1 0 1

0 0 0 0 0 1 1

The vector for this combination can be obtained by algebraically add-
ing the columns corresponding to links present in this combination, 
D = [1, 1, 2, 2, 2]. As per conditions (a) and (b) above, it should be a path 
between terminal nodes, {1, 2}. But it is a non-minimal path being a super-
set of path {1} that joins nodes {1, 2}.

Also note that a combination i for which the degree of nodes, other than 
terminal nodes, in D

i
 is not equal to ‘0’ or ‘2’ can also represent either a 

disconnected graph or non-minimal path. But they are discarded without 
any checks. 

Example 3.5: Enumerate the path sets from node {1} to all other nodes of 
the network graph given in example 3.1 using the incidence matrix of the 
network graph.

Solution: The first order path from node 1 to other nodes can be found 
from the incidence matrix by looking through all columns corresponding 
to node 1. Link {1} connects node 2 and link {2} connects node 3 while 
other nodes are not directly connected with node 1 necessitating the gen-
erations of combinations as provided in Table 3.1 

The path sets methods described above generate path sets either in ran-
dom order or at most increasing order of cardinality. Apart from enumera-
tion, the ordering of path/cut sets also plays an important role in reducing 
the number of disjoint terms generated to obtain a compact TR expression. 
An experiment described in (Soh & Rai, 1993) considers the several order-
ing schemes, viz.,
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(Continued)

Table 3.1 Path Sets Enumeration using Incidence Matrix.

S. 

no.

Link-

combinations

Column 

vector, 

D
i

Contributed 

path between 

terminal 

nodes Remark

1. 13 (12100) (1,3) Using the incidence matrix, 

the Links combinations of 

order 2, 3, 4 are formed. 

Note that combination 

‘12’ is not used as it 

violates condition 

i) giving a degree of 

source node 1 equal to 

2. Each combination 

is to be checked using 

some suitable technique 

for connectivity and 

minimality. ×’s shows the 

violations and hence that 

combination is discarded.

2. 14 (12010) (1,4)

3. 15 (11110) ×

4. 16 (11101) ×

5. 17 (11011) ×

6. 23 (11200) (1,2)

7. 24 (11110) ×

8. 25 (10210) (1,4)

9. 26 (10201) (1,5)

10. 27 (11011) ×

11. 134 (12110) × Path sets are by collecting the 

combinations satisfying 

the properties, conditions 

and checks as mentioned 

in section 3.1 are:

12. 135 (12210) (1,4) Between terminal nodes 

{1,2}

13. 136 (12201) (1,5) {1], {23}. {245}, {2467}

14. 137 (12111) × Between terminal nodes 

{1,3}

15. 145 (12120) (1,3) {2}, {13}, {145}, {1467}

16. 146 (12111) × Between terminal nodes 

{1,4}

17. 147 (12021) (1,5) {13}, {25}, {135}, {234), {267}, 

(1367)

18. 156 (11211) × Between terminal nodes 

{1,5}

19. 157 (11121) × {26}, {136}, {147}, {257}, 

{1357}, {1456}, {2347}

20. 167 (11112) ×
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Table 3.1 Cont.

S. 

no.

Link-

combinations

Column 

vector, 

D
i

Contributed 

path between 

terminal 

nodes Remark

21. 234 (12210) (1,4)

22. 235 (11310) ×

23. 236 (11301) ×

24. 237 (11211) ×

25. 245 (11220) (1,2)

26. 246 (11211) ×

27. 247 (11121) ×

28. 256 (10311) ×

29. 257 (10221) (1,5)

30. 267 (10212) (1,4)

31. 1345 (13220) ×

32. 1346 (13211) ×

33. 1347 (13121) ×

34. 1356 (12311) ×

35. 1357 (12221) (1,5)

36. 1367 (12212) (1,4)

37. 1456 (12221) (1,5)

38. 1457 (12131) ×

39. 1467 (12122) (1,3)

40. 1567 (11222) × Satisfies conditions but not a 

minimal path

41. 2345 (12320) ×

42. 2346 (12311) ×

43. 2347 (12221) (1,5)

44. 2356 (11420) ×

45. 2357 (11321) ×

46. 2367 (11312) ×

47. 2456 (11311) ×

48. 2457 (11231) ×

49. 2467 (11222) (1,2)

50. 2567 (10322) ×
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i. Decreasing Hamming distance where distance is equal to 
the number of variables in a term common with the refer-
ence term and reference term is the first term lexicographi-
cally in the minimal set with smaller number of variables.

ii. Lexicographical that follows the order of alphabets used to 
represent path/cut sets

iii. Increasing order of cardinality 
iv. Cardinality + Lexicographic
v. Cardinality + Hamming distance

The outcome of the experiment was that either (Cardinality + Lexicographic) 
or (Cardinality + Hamming distance) gives lesser number of disjoint terms as 
compared to the order if a single ordering scheme is being used.

A computer program based on the path sets enumeration method, 
 similar to the Method #2, devoid of use of any complex data structure 
or mathematical operations yet generates minimal path sets in increas-
ing order of cardinality in lexicographic order between any specified pair 
of nodes of a network is described in Appendix 3A.1 and a Matlab® code 
which can be downloaded at www.scrivenerpublishing.com. 

3.2  Enumeration of All-node Connected Path Sets: 
Spanning Tree

In case we want all the users to remain connected together, the global reli-
ability quantifies the grade of service. The path sets required for global 
reliability evaluation are different from those required for the 2-terminal 
reliability evaluation. The basic difference is that for global reliability a path 
set must contain all the nodes of network graph, which are spanning trees 
of the graph. Spanning tree enumeration in a network graph is an impor-
tant issue and task in many problems encountered in computer network 
and circuit analysis. A spanning tree of a network graph is a minimal net-
work, which connects all nodes but without a loop. Also,

An edge contained in certain spanning tree is called branch 
of that tree while an edge of the graph G not contained in 
that particular spanning tree is called a chord.
For a connected graph of n nodes and l edges, spanning tree 
has (n-1) branches and (l-n+1) chords.
No more than (l-n+1) chords of a spanning tree can be 
replaced to get another spanning tree.
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The distance between two spanning trees T
i
 and T

j
 of a graph 

is the number of edges of G present in one tree but not in 
the other.
The maximum distance between two spanning trees of a 
graph is, d

m
 ≤ min{n-1, l-n+1}.

The simple approach to enumerate all spanning is the application of 
elementary tree transformation based on addition of a chord and deletion 
of an appropriate branch from one spanning tree of the graph through 
these successive exchanges (Deo, 1979) (Piekarski, 1965). Other well-
known search methods such as Kruskal’s and Prim’s  algorithms  available 
in  several elementary texts can also be used. However, we describe here 
some  methods developed and/or employed by reliability fraternity.

3.2.1  Method 1: Using the Cartesian Product of the Node  
Cut Sets

This method is proposed in (Aggarwal & Rai, 1981) and uses the Cartesian 
product of (n-1) vertex cut sets whose elements are the links connected any 
of the (n-1) nodes of the given graph, i.e.,

 
C Ci

n
i= × =

−
1
1

,

Where C
i
 is a vertex cut set of the graph and C is a set of sub graph 

of G with (n-1) links. It should be noted that any circuit of G with (n-1) 
branches will have an even number of identical appearances in C and will 
have to be removed from the C.

Example 3.6: Enumerate the all spanning trees of the network graph shown 
in Example 3.1.

Solution: Let us select nodes 1, 2, 4, and 5. The vertex cut sets in terms of 
links of these nodes are, {1, 2}, {1, 3, 4}, {4, 5, 7} and {6, 7}.

Now, we obtain the Cartesian product of vertex cut sets one-by-one in an 
iterative manner and discarding the entries with repeated element, i.e, link.

C = {1, 2}×{1, 3, 4} = {{1, 3}, {1, 4}, {1, 2}, {2, 3}, {2, 4}}

C = C × {4, 5, 7}= {{1, 3}, {1, 4}, {1, 2}, {2, 3}, {2, 4}}×{4, 5, 7}

 =  {{1, 3, 4}, {1, 3, 5}, {1, 3, 7}, {1, 4, 5}, {{1, 4, 7}, {1, 2, 4}, {1, 2, 5}, {1, 2, 7}, 
{2, 3, 4}, {2, 3, 5}, {2, 3, 7}, {2, 4, 5}, {2, 4, 7}}
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C =  C × {6, 7} = {{1, 3, 4}, {1, 3, 5}, {1, 3, 7}, {1, 4, 5}, {{1, 4, 7}, {1, 2, 4}, 
{1, 2, 5}, {1, 2, 7}, {2, 3, 4}, {2, 3, 5}, {2, 3, 7}, {2, 4, 5}, {2, 4, 7}}× {6, 7}, 
finally

C =  {{1, 3, 4, 6}, {1, 3, 6, 7}, {1, 3, 5, 6}, { 1, 3, 5, 7}, {1, 3, 6, 7}, {1, 4, 5, 6}, 
{1, 4, 5, 7}, {1, 4, 6, 7}, {{1, 2, 4, 6}, {1, 2, 4, 7}, {1, 2, 5, 6}, {1, 2, 5, 7}, 
{1, 2, 6, 7}, {2, 3, 4, 6}, {2, 3, 4, 7}, {2, 3, 5, 6}, {2, 3, 5, 7}, {2, 3, 6, 7}, 
{2, 4, 5, 6}, (2, 4, 5, 7}, {2, 4, 6, 7}}

Therefore, the method correctly generates 21 spanning trees of the net-
work graph.

3.2.2 Method 2: Using the Incidence Matrix

This is an extension of the method described in Section 3.1.3 for enumerat-
ing all the (s, f) path sets (Samad, 1987) with observing and noting some 
properties of a network graph with respect to a spanning tree:

i. The order of a sub graph touching all the nodes of a graph 
would be (n-1), i.e., it will have (n-1) links. Thus, combina-
tions n

mC−1  (where m is the number of links in the network) 
will contain all the trees of the graph with each combination 
belong to either of the following:

A spanning tree
A sub graph with loops, 
A disconnected sub graph.

ii. A tree cannot have any branch with both end-vertices of 
degree one. 

iii. Further, a branch having one vertex of degree one is removed 
from the tree then the sub graph left will always be con-
nected. In other words, the sequential removal of branch at 
every stage removes only one node from the sub graph.

iv. A connected graph with (n-1) branches may have loop if the 
number of vertices is equal to or less than (n-1).

v. In a disconnected graph, there is at least one branch removal 
of which will cause the removal of two nodes of the network. 
This implies that a graph is disconnected then a sequential 
branch removal process will cause removal of two nodes for 
some particular branch of the network graph. 

Therefore, to generate spanning trees of a network graph, the following 
steps are followed:
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1. Column vectors for combinations n
mC−1  are generated from 

the incidence matrix by adding algebraically (n–1) columns 
of the incidence matrix of the network graph.

2. Each column vectors generated so are tested for whether it 
represents a (i) sub graph with loop(s) (ii) a disconnected 
sub graph, otherwise it is a spanning tree.

3. A zero entry in a particular column vector would represent a 
sub graph with loop(s) signifying to drop this combination.

4. If an entry in a particular column vector is greater than or equal 
to 1, then it may either be a disconnected graph or a spanning 
tree. One can use a sequential removal of branch from this 
combination to test for a disconnected sub graph. The sequen-
tial branch removal is done till only two branches are left and at 
each removal the column vector has to be updated. If a sequen-
tial branch removal causes to remove two nodes signifying an 
isolated branch (disconnected graph), then this combination 
is dropped. Also, if a branch removal does not remove a node 
implying the combination forms a circuit in the graph.

The method is explained with the following example.

Example 3.7: Apply the incidence matrix approach to enumerate spanning 
trees of the network graph given in example 3.1.

Solution: Starting with the incidence matrix of the network graph, the vari-
ous valid/invalid combinations formed with their respective sub graphs are 
shown in the following Table 3.2. Here m=7, n=5. The enumerated valid 
combinations providing spanning trees are 21 as shown in Table 3.2

IM =

1 1 0 0 0 0 0

1 0 1 1 0 0 0

0 1 1 0 1 1 0

0 0 0 1 1 0 1

0 0 0 0 0 1 1

1

2

4

3 5

6

71

2

3

4

5

3.3 Number of Spanning Trees
In this section, we describe some methods to have a count on the number 
of spanning trees a network graph would have if one is interested to know 
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(Continued)

Table 3.2 Spanning trees enumeration using incidence matrix.

Branch 

combinations Network sub graph

Algebraic sum 

column vector

 1 2 3 4
1

2

4

31

2

3

4

5

2 3 2 1 0

 1 2 3 5
1

2

3 51

2

3

4

5

2 2 3 1 0

 1 2 3 6
1

2

3

6

1

2

3

4

5

2 2 3 0 1

 1 2 3 7
1

2

3 71

2

3

4

5

2 2 2 1 1

1 2 4 5
1

2

4

51

2

3

4

5

2 2 2 2 0
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(Continued)

Branch 

combinations Network sub graph

Algebraic sum 

column vector

1 2 4 6
1

2

4

6

1

2

3

4

5

2 2 2 1 1

 1 2 4 7
1

2

4

71

2

3

4

5

2 2 1 2 1

 1 2 5 6
1

2

5

6

1

2

3

4

5

2 1 3 1 1

 1 2 5 7
1

2

5 71

2

3

4

5

2 1 2 2 1

1 2 6 7
1

2

6

71

2

3

4

5

2 1 2 1 2

Table 3.2 Cont.
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(Continued)

Branch 

combinations Network sub graph

Algebraic sum 

column vector

1 3 4 5
1

4

3 51

2

3

4

5

1 3 2 2 0

1 3 4 6
1

4

3

6

1

2

3

4

5

1 3 2 1 1

 1 3 4 7
1

4

3 71

2

3

4

5

1 3 1 2 1

1 3 5 6
1

3 5

6

1

2

3

4

5

1 2 3 1 1

1 3 5 7
1

3 5 71

2

3

4

5

1 2 2 2 1

Table 3.2 Cont.
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(Continued)

Branch 

combinations Network sub graph

Algebraic sum 

column vector

 1 3 6 7
1

3

6

71

2

3

4

5

1 2 2 1 2

 1 4 5 6
1

4

5

6

1

2

3

4

5

1 2 2 2 1

 1 4 5 7
1

4

5 71

2

3

4

5

1 2 1 3 1

 1 4 6 7
1

4

6

71

2

3

4

5

1 2 1 2 2

 1 5 6 7
1

5

6

71

2

3

4

5

1 1 2 2 2

Table 3.2 Cont.
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(Continued)

Branch 

combinations Network sub graph

Algebraic sum 

column vector

 2 3 4 5

2

4

3 51

2

3

4

5

1 2 3 2 0

 2 3 4 6

2

4

3

6

1

2

3

4

5

1 2 3 1 1

 2 3 4 7

2

4

3 71

2

3

4

5

1 2 2 2 1

 2 3 5 6

2

3 5

6

1

2

3

4

5

1 1 4 1 1

2 3 5 7

2

3 5 71

2

3

4

5

1 1 3 2 1

Table 3.2 Cont.
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(Continued)

Branch 

combinations Network sub graph

Algebraic sum 

column vector

 2 3 6 7

2

3

6

71

2

3

4

5

1 1 3 1 2

2 4 5 6

2

4

5

6

1

2

3

4

5

1 1 3 2 1

 2 4 5 7

2

4

5 71

2

3

4

5

1 1 2 3 1

2 4 6 7

2

4

6

71

2

3

4

5

1 1 2 2 2

2 5 6 7

2

5

6

71

2

3

4

5

1 0 3 2 2

Table 3.2 Cont.
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Branch 

combinations Network sub graph

Algebraic sum 

column vector

3 4 5 6

4

3 5

6

1

2

3

4

5

0 2 3 2 1

    3 4 5 7

4

3 5 71

2

3

4

5

0 2 2 3 1

     3 4 6 7

4

3

6

71

2

3

4

5

0 2 2 2 2

3 5 6 7
3 5

6

71

2

3

4

5

0 1 3 2 2

 4 5 6 7

4

5

6

71

2

3

4

5

0 1 2 3 2

Table 3.2 Cont.
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before deciding to enumerate them for certain application, e.g., design of 
electrical circuits, reliability analysis, graph with a maximum number of 
spanning trees etc.

The well-known Cayley’s Theorem in graph theory provides the number 
of labelled spanning trees in a complete graph as nn−2 , where a labeled 
tree is a tree with its vertices are assigned unique numbers from 1 to n. 
Cayley’s theorem provides a way to count the spanning trees in a complete 
labeled graph, whereas the Matrix Tree Theorem applies to labelled graphs 
in general and is a generalization of Cayley’s formula.

3.3.1 Matrix Tree Theorem

If G is a connected labelled graph with adjacency matrix A and degree 
matrix D, then the number of unique spanning trees of G is equal to the 
value of any cofactor of the matrix H = [D – A]. Matrix H is also referred as 
Laplacian, Lucacian or Kirchoff matrix.

The degree matrix D = (d
ij
) is defined as

 

d
v if i j

elsewhereij
i=

( ) =degree  

 0

The (i, j) cofactor of an n×n matrix M is defined to be −( ) ( )( )+
1

i j
M i jdet | , 

where M i j|( )  is the (n–1) × (n–1) matrix formed by deleting row i and 
column j of matrix M.

Example 3.8: Use the Matrix theorem to count the number of spanning 
trees in the network graph of example 3.1, reproduced below:

1

2

4

3 5

6

71

2

3

4

5

Solution: The adjacency matrix of the network graph is:
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A D= =

0 1 1 0 0

1 0 1 1 0

1 1 0 1 1

0 1 1 0 1

0 0 1 1 0

2 0 0 0 0

0 3 0 0 0

0,  00 4 0 0

0 0 0 3 0

0 0 0 0 2

 

H D A= − =

− −
− − −
− − − −

− − −
− −

2 1 1 0 0

1 3 1 1 0

1 1 4 1 1

0 1 1 3 1

0 0 1 1 2

,

and (1,1) cofactor of H is det  

3 1 1 0

1 4 1 1

1 1 3 1

0 1 1 2

21

− −
− − −
− − −

− −

=  provides the 

number of spanning trees of the network graph.
Another method to find the number of spanning tree is provided by 

(Kelmans & Chelnokov, 1974). If 
1 2 3 0≥ ≥ ≥ … ≥ =( )n

 be the 
eigenvalues of H, then number of spanning trees would be equal to:

 
number of spanning trees =

=
−∏1
1

1

n
ii

n

.

Example 3.9 and Solution: Considering the above example again, the eigen-
values of eigen H( ) [ . . . . . ]= −0 0000 1 5858 3 0000 4 4142 5 0000            , 
and product of its eigenvalues (except zero) comes out to be 105. Therefore 

the number of spanning trees would be, 105

5
21= . 

Generally, the methods described here may not be feasible for enumera-
tion or counting the number of spanning trees, especially for large and 
special graphs found in various applications for which one would resort to 
some other computationally efficient methods other than those described 
in this text. Besides, for comparing the numbers of spanning trees in 
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different classes of graphs, exact formula are needed. Even though there 
are several other known methods for counting the number of spanning 
trees, further research is still on, and interested readers may research on 
this subject from the literature.

3.4  Enumeration of k-node Connected Path Sets: 
k-Trees

A k-tree can be defined as a tree that covers all the k-specified set of 
 vertices of a network graph G. A k-tree might be a spanning tree and vice-
a-versa. The vertices such that the deletion of these does not disturb the 
k- connectedness of these k-specified nodes can be referred as redundant 
nodes. The number of such redundant vertices may or may not be equal to 
n–|k|. The method to enumerate k-trees described here needs the spanning 
trees of the given network graph and follows the following steps (Rath & 
Soman, 1993) :

1. Enumerate all the spanning trees of the network graph.
2. Specify k-set of vertices and identify the vertices (redundant 

vertices) not contained in the specified k-set.
3. For each redundant vertex, form a set of link(s) incident on it.
4. Compare each spanning tree elements with each set of 

link(s) in a sequential manner. If the number of common 
element is one, delete it from that particular spanning tree. If 
the difference of elements at any juncture is more than one, 
then keep the spanning tree as it is.

5. Take the recurring instances of a term once and non-recur-
ring instances as it is. The terms after this process represent 
all k-trees for a specified node-set.

Example 3.10: Enumerate k-trees for the specified node set {1, 3, 4} for the 
network graph of example 3.7.

Solution: The redundant node-set for the network graph is {2, 5}. The link-
set connected to node {2} is {1, 3, 4} and with {5}, it is {6, 7}. These link 
sets are compared with 21 spanning trees of the network graph enumer-
ated earlier to produce nine k-trees for the specified node-set {1, 3, 4} as 
presented in Table 3.3.
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Table 3.3 Generating k-Trees.

Spanning trees

Comparing with

k-trees for node connectivity 

{1, 3, 4}

{1, 3, 4} with 

column #1

{6, 7} with 

column #2

 1 2 4 6

 1 2 4 7

 1 2 5 6

 1 2 5 7

 1 2 6 7

 1 3 4 6

 1 3 4 7

 1 3 5 6

 1 3 5 7

 1 3 6 7 

 1 4 5 6

 1 4 5 7

 1 4 6 7

 2 3 4 6

 2 3 4 7

 2 3 5 6

 2 3 5 7

 2 3 6 7

 2 4 5 6

 2 4 5 7

 2 4 6 7

1 2 4 6

1 2 4 7

2 5 6

2 5 7

2 6 7

1 3 4 6

1 3 4 7

1 3 5 6

1 3 5 7

1 3 6 7

1 4 5 6

1 4 5 7

1 4 6 7

2 3 4 6

2 3 4 7

2 5 6

2 5 7

2 6 7

2 5 6

2 5 7

2 6 7

1 2 4

1 2 4

2 5

2 5

2 6 7

1 3 4

1 3 4

1 3 5

1 3 5

1 3 6 7

1 4 5

1 4 5

1 4 6 7

2 3 4

1 3 4

2 5

2 5

2 6 7

2 5

2 5

2 6 7

1 2 4

2 5

2 6 7

1 3 4

1 3 5

1 3 6 7

1 4 5

1 4 6 7

2 3 4
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Appendix 3A.1: Enumeration of Path Sets Algorithm, 
Illustration and Matlab® Code Notation

In this description, the following notations are being used:

f: Destination or sink node
l: Number of links
n: Number of nodes 
s: Source node
V: Set of vertices or nodes
L: Set of edges or links
(.) Set of elements.
{.} A set

[A]: 2- dimensional 0/1 element dynamic array whose first dimension 
grows with each iterations of the algorithm whereas the second is fixed and 
equal to the number of nodes in the network.

[P]: 2- dimensional dynamic array. During the iterative process, its rows 
grow depending on the number of nonzero element found in the  current 
iteration. The second dimension expands by one in each iterative step.

[AA], [PP]: Temporary storage for A and P, respectively.
X

i
: ith row of [X]

X 
i, j

: Element in ith row and jth column of [X]
Y r: Value of element at rth position in vector Y
[ ]: A null matrix or a vector with no elements.

Let us take a simple example ARPA network to illustrate the concept for 
the development of Matlab® code:

Illustration 3A.1: The ARPA network has been shown in Figure 3A.1 (a), 
(b) for undirected and directed cases respectively. The source has 
been assigned the number 1 while the destination is given the number 
5. Connection matrix for Figure 3A. 1 (a) and (b) would be as shown in 
Table 3A. 1.

Let us consider Figure 3A. 1 (a) to enumerate path sets. The steps to fol-
low are shown in a tabular form in Table 3A. 2 for the sake of brevity. We 
start with source node, 1, and store it in a matrix [P]. Matrix [A] is the row 
of connection matrix corresponding to the source node. [PP] contains [P] 
with each entry of [P] appended by the non-zeros locations of [A]. 

As A has non-zeros at locations 2 and 3, we append [P] with these values 
and stored it in [PP]. We take out rows of connection matrix corresponding 
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Figure 3A 1: ARPA network (Undirected, Directed).

(a). Undirected (b). Directed

2 4
2 4

1

5
3

1

3 5

Table 3A.1 Adjacency matrix.

Connection Matrix Figure 3A.1(a) Connection Matrix Figure 3A.1(b)

Node 1 2 3 4 5 Node 1 2 3 4 5

1 0 1 1 0 0 1 0 1 1 0 0

2 1 0 1 1 0 2 0 0 1 1 0

3 1 1 0 1 1 3 0 1 0 1 1

4 0 1 1 0 1 4 0 0 0 0 1

5 0 0 1 1 0 5 0 0 0 0 0

to the last element in each row of [PP] i.e., 2nd and 3rd rows by setting ele-
ments (1 & 2) of 2nd row and elements (1 & 3) of 3rd row to zero (marked 
with star). We store these modifications in rows in matrix [AA]. It com-
pletes one cycle of the search.

As a next step, we update [P] by [PP] and [A] by [AA]. At this point, we 
perform two checks viz., 

i. Whether the last element in any row(s) of [PP] contains sink 
node and,

ii. Whether all entries in that row(s) of [AA] are zero. 

Depending on the observations, we draw the following conclusions:

If last value in some row(s) of [PP] is the sink node number, 
then path set(s) has been found and we remove this row(s) 
from [PP] and [AA] before updating them into [P] and [A]. 
In this case, row(s) of [AA] might or might not have all val-
ues zero e.g., it could be seen in iteration number two for 
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path set {1, 3, 5}, and in iteration number three for path set 
{1, 3, 4, 5} and are shown in bold and italic. 
However, if some row(s) of [AA] has all zeros but [PP] does 
not have last element as sink node number, this implies for-
mation of loop(s). This can be seen for the set {1, 3, 4, 2} in 
iteration number three, which is shown in bold and under-
lined. Hence, we discard this set(s) also and proceed further 
with the remaining entries in [PP] and [AA]. We stop the 
procedure when the iterative count becomes one less than 
the number of nodes in the network. Thus, the minimal path 
sets of the above example would be:

{1, 3, 5}, {1,2, 3, 5}, {1,2, 4, 5}, {1, 3, 4, 5}, {1, 2, 3, 4, 5}, {1, 2, 4, 3, 5} 
and {1,3,2,4,5} respectively.

Similar steps could be followed for directed case as well and the 
method would give six minimal path sets with the omission of path set  
{1, 2, 4, 3, 5}.

Table 3A.2 Steps to enumerate path sets for the network of Figure 3A.1(a).

Iteration No. [P] [A] [PP] [AA]

1. 1 0 1 1 0 0 1 2

1 3

0* 0 1 1 0

0* 1 0 1 1

2. 1 2
1 3

0 0 1 1 0
0 1 0 1 1

1 2 3

1 2 4

1 3 2

1 3 4

1 3 5

0* 0* 0 1 1

0 0* 1 0 1

0* 0 0*1 0

0 1 0* 0 1

 0 1 0 1 0

3. 1 2 3

1 2 4

1 3 2

1 3 4

0 0 0 1 1

0 0 1 0 1

0 0 0 1 0

0 1 0 0 1

1 2 3 4

1 2 3 5

1 2 4 3

1 2 4 5

1 3 2 4

1 3 4 2

1 3 4 5

0 0* 0* 0 1 

0 0 0* 1 0

0* 0* 0 0* 1  

0 0 1 0* 0

0 0* 0* 0 1

0* 0 0* 0* 0

0 0 0* 0* 0

4. 1 2 3 4

1 2 4 3

1 3 2 4

0 0 0 0 1
0 0 0 0 1
0 0 0 0 1

1 2 3 4 5

1 2 4 3 5

1 3 2 4 5

*Replacement of Element with Zero. 
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The following points may be noted for the illustration outlined above:

i. Size of [AA] is fixed and equal to the nodes in the graph.
ii. Maximum size of [PP] = total non-zeroes entries in [A]

 
* 

Iteration number (i.e., cardinality of the path)
iii. At any point of time, the length of P would be equal to the 

(iteration count +1).
iv. If at any point, if a particular row of [PP] contains sink node 

number implying a valid path set.
v. In [AA] if all elements in a row are zero and last node in PP is 

not sink implying Invalid path set. Otherwise a valid path set.

For assigning branch number, we replace the upper diagonal elements 
of connection matrix by 1, 2, 3…l sequentially, as shown in Table 3A. 3. In 
other words, the non-zero elements in adjacent matrix are the link- number 
assigned to them. However, we have to consider whole adjacent matrix if 
the links are possessing directions too.

Table 3A.3 Assignment of branch number (undirected).

Connection matrix Figure 3A.1(a)

Node 1 2 3 4 5

1 0 1 2 0 0

2 - 0 3 4 0

3 - - 0 5 6

4 0 - - 0 7

5 0 0 - - 0

The conversion to get link-wise path sets is straightforward. The path sets 
for undirected case then turn out to be:

{2, 6}, {1, 3, 6}, {1, 4, 7}, {2, 5, 7}, {1, 3, 5, 7}, {1, 4, 5, 6}, and {2, 3, 4, 7}

The procedure to enumerate path sets, described generates path sets in 
increasing order of their cardinality and in lexicographic order- a condi-
tion, which is helpful in achieving a compact network reliability expression 
in form of sum of disjoint products (sdp). The ordering of path sets for the 
illustration, as claimed, could easily be checked. Albeit the method uses con-
nection matrix but it does not require performing any complicated matrix 
operations. The other feature of the algorithm is that it automatically assigns 
branch numbers to the network branches, if the path sets are desired in terms 
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of branch number, therefore, providing less burden on the user end. The 
highlights of the method presented above may be summarized as follows:

It can find path sets for a specified pair of nodes.
The iterative count also depicts the cardinality of a path 
set, if found. Thus, setting the iterative count ≤ (n – 1) can 
 generate path sets of desired order of cardinality.
Path sets are obtained in increasing order of their cardinality 
and Lexicographic order.
It can also convert path set in terms of network nodes to 
network links. 

We write each step of the idea outlined above in a systematic and algorith-
mic manner. 

Algorithm: Various steps involved in the algorithm are as follows:

1. Generate adjacency matrix [ADJMAT] from the network 
data.

2. Set kk = 1, where kk is the cardinality of the path set, 
 initialize array P with source node, A= row of [ADJMAT] 
 corresponding to the source node.

3. Set i =1, j = 1, IlengthPrv = 0 (Number of elements in I on 
previous iteration), initialize PP = [ ] and AA= [ ] empty 
vector. 

4. I = Find all nodes that are adjacent to the last node number 
in P

i
 by finding the 

index of non-zero elements in A
i
. Ilength = number of 

 elements in I, r =1 (for indexing elements in I).
5. PP

j
 = [ P

i
 Ir ], augment P

i
 with Ir, the rth value contained in I.

AA
j
 = Ir row of [ADJMAT] with all elements, corresponding 

to the entries in PP
j,
 are set to zero.

if Ir == Sink Node, path = PP
j
 and if conversion to branch 

wise needed, call functions for (i) assigning branch number 
and (ii) converting path set branch wise.

elseif all values in AA
j
==0 and Ir ≠ Sink Node  an invalid 

path set.
6. Repeat from step 5 for next j and r, until j ≠ Ilength +

 

IlengthPrv
.

7. Repeat from step 4 until next i≠ number of rows in P, 
IlengthPrv = IlengthPrv + Ilength.



Path Sets Enumeration 93

8. Release memory that correspond to valid path sets and/or 
invalid path sets in PP, and AA; replace P=PP, A=AA;

9. Repeat from step 3 for next kk until kk < total nodes in the 
network else Stop.

In order to implement the algorithm, it is necessary to code the network 
which includes assigning number to the branches.

Assigning Numbers to Branches

The diagonal entries in matrix [ADJMAT] are all zeros and number of 
non-zeros elements in upper-diagonal is equal to the number of branches 
present in the undirected graph. Thus, only upper or lower diagonal entries 
may be utilized for assigning number to the branches in the network. The 
steps involved are as follow:

1. If UNDIRECTED, extract and store the upper diagonal val-
ues of [ADJMAT] in B, else set B= [ADJMAT]

2. Assign decimal number sequentially starting from 1 onwards 
by tracing each non-zero value column-wise in B.

Path Sets in Terms of Network Links

The conversion of node-wise path sets to the branch-wise path sets is done 
as follows: 

(PTH: path set nodewise, PTHBR: path set branchwise) ,Initialize to [ ] at 
the beginning.

1. Set i=1, lenPth = length (cardinality) of Path set
2. TMP=[ PTHi PTH (i+1)], initialize X with ith and (i+1)th value 

of PTH
3. If UNDIRECTED, Sort TMP in increasing order of values.
4. Augment PTHBR = [PTHBR B

TMP
1

, TMP
2 ]

5. Repeat step 2, until next i ¹ lenPth-1 else STOP

In order to demonstrate the algorithmic steps in details, once again we revert 
to the ARPA network shown in Figure 3A. 1.

Illustration 3A.2: Let us begin with Figure 3A. 1. (a). The steps are as 
follows:

Undirected

The algorithm starts with building the adjacency matrix as shown in 
Table 3A. 4. The iterations start from step 2 onwards.
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Table 3A.4 Adjacency matrix (Undirected).

Nodes ⇒
⇓

1 2 3 4 5

0 1 1 0 0

1 0 1 1 0

1 1 0 1 1

0 1 1 0 1

0 0 1 1 0

1. Iteration, kk = 1

P = 1(sourceNode), sinkNode =5, A = 0 1 1 0 0

3. i = 1 , j = 1, IlengthPrv = 0, P
I
 = 1, A

1
 = 0 0 1 1 0, AA=PP= [ ],

4. I= 2 3, Ilength = 2, r=1

5. I1=1, PP
1
=1 2, AA

1 
= 0 0 1 1 0

6. j=2, r=2

5. I2 = 3, PP
2
= 1 3, AA

2
 = 0 1 0 1 1

6. j = 3, r = 3, j>2, true

7. i=2 > 1 row in P, true

8. P =[1 2; 1 3] ; A =[0 0 1 1 0; 0 1 0 1 1], AA=[ ], PP=[ ].

2. Iteration, kk = 2

3. i = 1, j =1, IlengthPrv = 0, P
1
 = 1 2, AA

1
 = 0 0 1 1 0

4. I = 3 4, Ilength = 2, r = 1

5. I1 = 3, PP
1
 = 1 2 3, AA

1
 = 0 0 0 1 1

6. j = 2, r = 2

5. I2 = 4, PP
2
 = 1 2 4, AA

2
 = 0 0 1 0 1

6. j = 3, r = 3, j > 2 true

7. IlelngthPrv = 2, i = 2

4. I = 2 4 5, Ilength = 3, r = 1

5. I2 = 2, PP
3
 = 1 3 2, AA

3
 = 0 0 0 1 0

6. j = 4, r =2

5. I2 = 4, PP
4
 = 1 3 4, AA

4
 = 0 1 0 0 1

6. j = 5, r =3

5. I3 = 5, PP
5
 = 1 3 5, AA

5
 = 0 0 0 1 0, Path Set Found.

6. j = 6, r = 4, j > 5 true
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7. IlengthPrv = 5, i= 3 > rows in P, true

8.  P = [1 2 3; 1 2 4; 1 3 2; 1 3 4], A = [0 0 0 1 1; 0 0 1 0 1; 0 0 0 1 0; 0 

1 0 0 1], AA= [ ], PP = [ ].

3. Iteration, kk = 3

3. i = 1, j =1, IlengthPrv = 0, P
1
 = 1 2 3, AA

1
 = 0 0 0 1 1

4. I = 4 5, Ilength = 2, r = 1

5. I1 = 4, PP
1
 = 1 2 3 4, AA

1
 = 0 0 0 0 1

6. j = 2, r =2

5. I2 = 5, PP
2
 = 1 2 3 5, AA

2
 = 0 0 0 1 0, Path Set Found.

6. j = 3, r = 3, j > 2 true

7. IlengthPrv = 2, i =2

4. I = 3 5, Ilength = 2, r = 1

5. I1 = 3, PP
3
 = 1 2 4 3 , AA

3
 = 0 0 0 0 1

6. j = 4, r = 2

5. I2 = 5, PP
4
 = 1 2 4 5 , AA

4
 = 0 0 1 0 0, Path Set Found.

6. j = 5, r =3, j > 4 true

7. IlengthPrv = 4, i = 3

4. I = 4, Ilength = 1, r = 1

5. I1 = 4, PP
5
 = 1 3 2 4 , AA

5
 = 0 0 0 0 1

6. j = 6, r =2, j > 5 true

7. IlengthPrv = 5, i = 4

4. I = 2 5, Ilength = 2, r = 1

5. I1= 2, PP
6 
= 1 3 4 2 , AA

6 
= 0 0 0 0 0, I1 = 5 Invalid Path Set.

6. j = 7, r = 2

5. I2= 5, PP
7 
= 1 3 4 5 , AA

7 
= 0 0 0 0 0, Path Set Found.

6. j = 8, r = 3, j > 7 true

7. IlengthPrv = 7, i = 5 > rows in P true

8.  P = [1 2 3 4; 1 2 4 3; 1 3 2 4], A=[ 0 0 0 0 1; 0 0 0 0 1 ;0 0 0 0 1], 

AA = [ ], PP = [ ]

4. Iteration, kk=4

3. i = 1, j = 1, IlengthPrv = 0, P
1
 = 1 2 3 4, AA

1
 = 0 0 0 01

4. I = 5, Ilength = 1, r = 1

5. I1= 5, PP
1 
= 1 2 3 4 5 , AA

1 
= 0 0 0 0 0, Path Set Found
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6. j = 2, r = 2, j > 1 true

7. IlengthPrv = 1, i = 2

4. I = 5, Ilength = 1, r = 1

5. I2= 5, PP
2
 = 1 2 4 3 5, AA

2
 = 0 0 0 0 0, Path Set Found.

6. j = 3, r = 2, j > 2 true

7. IlengthPrv = 2, i = 3

4. I = 5, Ilength = 1, r =1

5. I3= 5, PP
3
 = 1 3 2 4 5, AA

3
 = 0 0 0 0 0, Path Set Found. 

6. J = 4, r = 2, j > 3 true

7. Ilength = 3, i = 4 > rows in P true

8. P = [ ], A = [ ], PP= [ ], AA = [ ]

9. kk = 5 (= = total number of nodes) Stop.

Hence the algorithm finds a total of seven path sets viz. {1 3 5}, {1 2 3 5}, 
{1 2 4 5}, {1 3 4 5}, {1 2 3 4 5}, {1 2 4 3 5} and {1 3 2 4 5}, respectively.

Directed

Similar steps are being followed for the directed case, too i.e., we start with 
the adjacency matrix of the directed graph as shown in Table 3A. 5. 

Table 3A.5 Adjacency matrix (Directed)

Nodes ⇒
⇓

1 2 3 4 5

0 1 1 0 0

0 0 1 1 0

0 1 0 1 1

0 0 0 0 1

0 0 0 0 0

Due to the only one bi-directional link between nodes 2–3, the total 
path sets found by algorithm are six, i.e., one at iteration number, kk = 2, 
two at kk = 3, and three at kk = 4. The path sets are {1 3 5}, {1 2 3 5}, {1 2 4 
5}, {1 3 4 5}, {1 2 3 4 5}, and {1 3 2 4 5}, respectively.

The sample input/output (I/O) of the program for this example can be 
seen in the Appendix 3A.2: , that includes the following cases for path sets 
viz., (i) undirected and branch-wise (ii) undirected and node-wise and, 
(iii) output of directed and branch-wise.
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Appendix 3A.2: Sample program I/O for Figure 3A.1

Data File Input: Each row of the data shows that connection with other 
nodes. For example, row#1 of the input says that node #1 is connected with 
node #2 and #3, respectively. The data is written in a file named ‘exDat.m’, 
where .m is the file extension of a Matlab file. The program is run by writ-
ing ‘pathsEnum’ on the Matlab® command prompt.

Undirected OR Directed

2 3 2 3

1 3 4 3 4

1 2 4 5 2 4 5

2 3 5 5 

3 4 end

end

Undirected and Branchwise

» pathsEnum

adjMatdataFile(withpath)?:d:\skcmatlab\pSet\exDat.m

SourceNode No.?:1

TerminalNode No.?:5

TotalNodes?:5

Directed/undirected: 1/0? 0

Please specify path sets to be enumerated BranchWise or 
NodeWise(1 or 0):1

TotalBranch :?:7

FOR OUTPUT

Please enter Output file with full path:exRes.m

t = 0.0600

Total path sets found= 7

Generated output file

2 6

1 3 6

1 4 7

2 5 7
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1 3 5 7
1 4 5 6
2 3 4 7
end

Total path sets found = 7

Time: 0.06000000000

Branch areNumbered as:

 Node# Node# BrNo.#

 1 2 1

 1 3 2

 2 3 3

 2 4 4

 3 4 5

 3 5 6

 4 5 7

Undirected and Nodewise

» pathsEnum

adjMatdataFile(withpath)?:d:\skcmatlab\pSet\exDat.m

Source Node No.?:1

Terminal Node No. ?:5

Total Nodes?:5

Directed/undirected: 1/0? 0

Please specify path sets to be enumerated BranchWise or 
NodeWise(1 or 0):0

FOR OUTPUT

Please enter Output file with full path: d:\skcmatlab \pSet\
exResN.m

t = 0

Total path sets found= 7

Generated output file

1 3 5 

1 2 3 5 

1 2 4 5 
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1 3 4 5 

1 2 3 4 5 

1 2 4 3 5 

1 3 2 4 5 

end

Total path sets found= 7
Time: 0.00000000000
For directed case, number of bidirectional links is also entered 

as input if path sets to be enumerated are branch-wise. 

Output of Directed and Branchwise

>> pathsEnum

adjMatdataFile(withpath)?:exDat.m

SourceNode No.?:1

TerminalNode No. ?:5

TotalNodes?:5

Directed/undirected :1/0? 1

Please specify paths to be enumerated

BranchWise or NodeWise(1 or 0):1

TotalBranch :?:7

Number of bidirectional links:? 1

FOR OUTPUT

Please enter Output file with full path:exRes.m

t = 0.0152

Total Paths found= 6

3 7

1 4 7

1 5 8

3 6 8

1 4 6 8

3 2 5 8

end

Total path sets found = 6

Time: 0.11000000000



100 Network Reliability

Branch are Numbered as:

 Node# Node# Br.No.#

 1 2 1

 3 2 2

 1 3 3

 2 3 4

 2 4 5

 3 4 6

 3 5 7

 4 5 8

Exercises

3.1  Consider the communication network shown in Figure Ex. 3.1. 
Construct its incidence matrix. Obtain the vector D for the com-
bination of links {1, 2, 3, 9, 12} and apply the properties as outlined 
in method#3 to make your comments.

Figure Ex. 3.1 Communication network Graph.

4 92 4 7
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3.2  Enumerate by visual inspection, the minimal paths for the net-
works shown in Figure Ex. 3.2.
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3.3  Use the incidence matrix approach to enumerate path and span-
ning trees of the networks of above network graphs. 

3.4  For the network shown in Figure Ex. 3.2, enumerate all path sets 
between node 2 and all other nodes using the powers of connec-
tion matrix.

3.5  Enumerate the k-trees for the node set {1, 4, 5} for the network 
shown in example 3.7.
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A cut set is a set of links (branches), which literally cuts the success path 
by severing all the possible lines of communication between the transmit-
ting and receiving terminals. A minimal cut set of a network graph G is a 
set of links, whose removal or non-functioning ensures the network dis-
connectivity for a specified set of nodes provide removal of no proper sub-
set of these links disconnects G. The number of path sets or cut sets in any 
general network depends to a large extent on the topology of the network 
and it would be advantageous to work with path sets or cut sets, whichever 
has its number less. In most of the practical systems, particularly in highly 
redundant and well-connected networks, the number of cut sets is usually 
much less than the number of path sets and it may be advantageous to 
work with cut sets rather than path sets in such cases.

An advance estimate of the number of path sets or cut sets helps deter-
mine the approach that one may use eventually to evaluate reliability of 
a given network graph. One such estimate was provided by (Aggarwal, 
Chopra, & Wajwa, 1982), which suggests that relatively for a network of n 
nodes and l links, the number of cut sets between any pair of nodes would 
be of the order of 2n-2, whereas the number of path sets is of the order of 
2l-n+2. Note that the estimation for other types of minimal cuts (global or 

4
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k-minimal) is not known. Besides, if average degree of nodes in a given 
network graph is more than 4, then l>2n, thereby 2l-n+2 > 2n-2. It means that 
such networks generally have a large number of path sets than the number 
of cut sets. Also where element reliabilities are high, cut sets based reliabil-
ity evaluation provides more accurate results. Therefore, depending upon 
the situation, one can use either path sets or cut sets for computing a reli-
ability measure.

The path sets enumeration technique described in Chapter 3 are equally-
well applicable to enumerate cut sets as well if one can develop a dual of the 
network graph under consideration (Samad, 1987), (Shen, 1995). However, 
not always being possible to construct a dual graph even for a small size 
network is the reason for its inapplicability and unpopularity among the 
engineers and researchers.

The techniques of cut sets enumeration can be broadly divided into 
(i) Direct methods that utilize the structure of the network graph and its 
representation through a suitable data structure and manipulation there-
after (ii) Path sets based techniques with the use of Boolean/ set theoretic 
laws and concepts. These cut sets enumeration methods suffer the disad-
vantage of knowing of minimal path sets in advance, in order to determine 
cut sets. Therefore, these methods are generally not efficient. This chapter 
presents some methods to enumerate 2-terminal, global and k-cut set of a 
given network graph.

4.1 (s, f) Cut Sets Enumeration

4.1.1 Method 1: Using Connection Matrix

This algorithm to enumerate minimal cut sets is described in (Ahmad, 
1990), and is an extension of the method proposed by the same author for 
acyclic directed graph (Ahmad, 1988). The method follows the following 
steps:

1. Construct the connection matrix of the network graph 
wherein the elements of the matrix represent the link label 
connecting the nodes. If the graph is reducible, reduce 
it with the corresponding changes in the elements in this 
matrix.

2. Collect all the labels appearing in the first row- a source min-
imal cut, and in the last column-a destination minimal cut.
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3. Form a set ‘S’ of all columns combinations of order 1 to 
(n-3), n≥4 (n<4 provides the trivial cases) with columns 2 to 
(n-1). Delete a combination by observing:
a. If the combination consists of only those column having 

zeros in the first row,
b. If the combination consists of those rows having non-

zero entries in the last column.
The above rules help not only to reduce the number of com-
binations to be handled to generate minimal cut sets but 
also remove the combinations that eventually generate non- 
minimal cut sets. On the reduced combinations set, 

4. Take one combination; collect all the links-labels appearing 
in the row(s) corresponding to row#1 + this combination 
without considering columns represented by this combina-
tion. This combination will provide another cut set.

5. Repeat step #4 for all remaining combinations.

Let us take an example to illustrate the above algorithm.

Example 4.1: Apply the above algorithm on the ARPA network graph 
shown in Figure 4.1.

Solution: The network graph and its connection matrix are reproduced for 
the sake of brevity as below:

CM =

0 1 2 0 0

1 0 3 4 0

2 3 0 5 6

0 4 5 0 7

0 0 6 7 0
5

4

3

2

1

1

2

3 5 7

6

4

Figure 4.1 ARPA network.

Steps:

1. From the CM above, collecting terms from first row, {1, 2}, 
and last column, {6, 7}, produce two minimal cut sets.

2. Here, n = 5, Order of combinations to be formed = (5–3), 
i.e., 1 to 2 from the columns # 2 to # 4 of CM, i.e., all the 
combination of set {2, 3, 4} up to 2nd order.

S = {{2},{3},{4},{2,3},{2,4},{3,4}}, Further, 
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Only combination {4} has zero entry in the first row, there-
fore, discarded.

Row (combination) {3,4} has non-zero entry in their 
last column; therefore, discard this combination and its 
supersets appearing in S. This gives the updated set, S 
={{2},{3},{2,3},{2,4}}

3. For combination, {2} , we consider elements in rows 1 & 2 
except elements that appears in column2 1 & 2, i.e., the link 
labels in rows, {1,2} except in columns {1, 2} are = {2, 3, 4}, 
Similarly, for combination {3}, we consider {1, 3} and the cut 
set is = {1, 3, 5, 6}

For combination, {2, 3}, we consider {1, 2, 3} and the cut 
set is = {4, 5, 6}

For combination, {2, 4}, we have {1, 2, 4} and the cut set is 
= {2, 3, 5, 7}. Therefore, there are six minimal cut sets pro-
duced by the algorithm: {1, 2},{6, 7}, {2, 3, 4}, {1, 3, 5, 6},  
{4, 5, 6}, and {2, 3, 5, 7}.

4.1.2 Method 2: Using Minimal Path Sets

There are several methods appeared in the literature for enumeration the 
(s, f) minimal cutsets necessitating the knowledge of path sets a priori. We 
would provide the notion only for some of these methods as they are com-
putationally cumbersome.

4.1.2.1 Using Set-theoretic Product of Path Sets 

This iterative method proposed by (Schabe, 1995) is based on set-theoretic 
considerations and is an improvement over the method proposed by (Elias, 
Mokhles, & Ibrahim, 1993) who have also provided a review on the subject. 
In order to speed-up computation, it suggests the ordering of path accord-
ing to their size (number of elements constituting a path, i.e., cardinality) 
starting with the path of smallest cardinality and paths of equal cardinality 
are ordered lexicographically. It employs the following two notions:

a. A subsystem having a single path, (e.g., series subsystem), 
P

1
= {e

1
, e

2
, e

3
, ...e

k
} has k = card(P

1
), cutsets.

b. If a subsystem characterized by a cutset {C
1
, C

2
, C, ... C

k
} 

(not minimal) is connected in parallel with a certain path

P e e e ek i i i im+ = { }1 1 2 3
, , ,... , then the cutset of new system would 

be the cross product of sets, i.e
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It takes the following broad steps:

1. If an element e P i Pj i∈ ∀ = 1 2 3, , ... pathsets , then e
j
 is a mini-

mal cut of cardinality one. Store it in, say,  and remove it 
from all pathsets.

2. Remove redundant and/or repetitive terms (pathsets) from 
the set obtained in step 1.

3. Select a path sets, obtain the set theoretic cross-product, 

= …{ }⊗ …{ }C C C C e e e ek i i i im1 2 3 1 2 3
, , , , , , . Minimizing 

it by removing the redundant and/or repetitive terms. The 
remaining terms are added to the cutsets list.

4. The process is continued till we obtain the cross-product 
with the last path set in the list.

Example 4.2: Let us consider the seven (s, f) path sets of a network graph 
of Figure 4.1 enumerated in Chapter 3: {2, 6}, {1, 3, 6}, {1, 4, 7}, {2, 5, 7}, {1, 
3, 5, 7}, {1, 4, 5, 6}, {2, 3, 4, 7}, ordered in cardinality + lexicographically. 
It is evident from the minimal pat list that there is no cut of cardinality 1 
(step 1). The cross-product of first two path sets gives:

 
= { }⊗ { } = { } { } { } { } { } { }{ }2 6 1 3 6 1 2 2 3 2 6 1 6 3 6 6, , , , , , , , , , , , ,

On removing redundant terms, {1, 6}, {2, 6} and {3, 6}, the reduced set is 
 = {{1,2}, {2,3}, {6}}, which is used to update  by taking its cross-

product with the next path set, i.e.,

 = {1,4,7}⊗{{1,2},{2,3},{6}} 

 = {{1,2},{1,2,3},{1,6},{1,2,4},{2,3,4},{4,6},{1,2,7},{2,3,7},{6,7}}

 = {{1,2},{1,6},{2,3,4},{4,6},{2,3,7},{6,7}} 

Finally, it produces six minimal cutsets as,

 ={2,3,4,7}⊗{{1,2},{1,5,6},{2,3,4},{2,3,7},{4,5,6},{6,7}} 

  = {{1,2},{2,3,4},{2,3,5,7}, {1,3,5,6},{4,5,6},{6,7}}. 

4.1.2.2 Using Path Sets Matrix

It utilizes a path matrix of order number of paths × links of the network 
graph whose elements are either 1 or 0 depending on the presence/absence 
of a link (represented by the column of path matrix) in that particular path 
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(represented by the row of path matrix). Obviously, a column containing 
all ones signify the presence of a minimal cut of orders one. This column 
can be removed from the matrix from further considerations.

Now a test is conducted by combining (Boolean O Ring) the columns of 
order two at a time, checking whether any combination of such order gives 
a column containing all ones? If so then that combination would constitute 
a cut and is stored if it is found to be minimal by comparing it with the 
previously stored minimal cutsets. The process is repeated for next order 
combinations to the highest combination possible. 

The 7 × 7 order (7 path and 7 elements) order path matrix for the net-
work graph of example 4.1 is:

 

0 1 0 0 0 1 0

1 0 1 0 0 1 0

1 0 0 1 0 0 1

0 1 0 0 1 0 1

1 0 1 0 1 0 1

1 0 0 1 1 1 0

0 1 1 1 0 0 1
 

One has to form the combinations of order C C C C C C2
7

3
7

4
7

5
7

6
7

7
7, , , , ,and  

and each combination would have to be tested for constituting a cut (by 
observing if a column contains all ones) and then for its minimality through 
the comparison with already enumerated minimal cuts. For instance, if we 
combine column 1 and 2, we get all ones in the first column. It means com-
bination of links {1, 2} constitutes a cut. However, column 1 and 3 do not 
provide all ones after combination, hence cannot form a cut of order two.

4.1.2.3 Using Path Sets Inversion

This method was introduced by Locks (Locks, 1978) wherein the inversion 
is accomplished by a recursive method of combining a two-step application 
of De’ Morgan’s theorem with a subsequent minimization. For a system hav-
ing ‘P’ minimal paths, the recursion has P stages-one for each path. At any 
ith stage, i<=P, the minimalized inverse of first (i-1) paths is logically multi-
plied by the inverse of ith minimal path to form the inverse of first i number 
of minimal path and the process continues until i equals P. Summarily, it 
inverts each minimal paths, takes the Boolean product of the paths one-by-
one and applies the Boolean minimization of each stage of the product cycle.
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Example 4.3: Let us apply the method to network graph of example 4.1 
having the seven minimal path sets as:

P= {{2, 6}, {1, 3, 6}, {1, 4, 7}, {2, 5, 7}, {1, 3, 5, 7}, {1, 4, 5, 6}, {2, 3, 4, 7}}. 
For first path, the inversion would be

2 6 2 6, = + , using De’ Morgan’s theorem where bar over the link’s 
number denotes a failed link. Similarly, for second path, 1 3 6 1 3 6, , = + + .

The Boolean multiplication of MC 2 6 1 3 6 12 23 26  

16 36 6 12 23 6.
Now, the result obtained above as MC is again to get an updated MC 

through Boolean multiplication with the next inverted path. This pro-
cess of Boolean multiplication continues until the last path in inverted 
form gets multiplied with the MC updated in the previous step. The final 
Boolean product, MC, would represent the minimal cutset of the network 
graph and is obtained in the final step by multiplying the inverted form of 
last path {2,3,4,7} as:

 MC 2 3 4 7 12 156 234 2357 456 67

 

= + + + + + + +
+ + + + + +
1 2 1 2 5 6 2 3 4 2 3 5 7 2 4 5 6 2 6 7 1 2 3 1 3 5 6

2 3 4 2 3 5 7 3 4 5 6 3 6 7 1 2 4 11 4 5 6 2 3 4 2 3 4 5

4 5 6 4 6 7 1 2 7 1 5 6 7 2 3 4 7 2 3 5 7 4 5 6 7 6 7

+ +
+ + + + + + + +

After performing the minimization by cancelling the duplicate and 
redundant terms, we get the following six terms in the MC,

 
MC 1 2 2 1 4 62 34 3 356 56 7

This can easily be verified as the minimal cutset of the network graph.

4.2 Global Cut Sets Enumeration

There is not much text/literature available on enumeration of global 
cutsets. Here, we present a simple but powerful g-minimal cutsets enu-
meration approach which can handle undirected networks without any 
redundant overheads (Mishra & Chaturvedi, Global Reliability Evaluation 
using g-Minimal Cutsets, 2009). The major advantages of the algorithm 
are 
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a. It uses previous node-sets to generate next order node-sets 
to avoid exhaustive generation of node sets. 

b. It only uses network connectivity criterion using a part of 
the adjacency matrix to verify that a node-sets will indeed 
generate a g-minimal cutset and,

c. It yields non-redundant g-minimal cutsets, thus alleviating 
from redundancy removal overheads.

The approach combines set theory and an iterative process to yield high 
efficiency. The iterative process uses the connectivity information of the 
network combined with previously gathered information to generate new 
subsets logically. The following background is needed before we present 
the details on algorithm.

4.2.1 Testing Connectivity of a Specified Node Set

The very question that needs an answer very frequently in this algorithms 
is: Is graph (s,f) connected? Is a specified set of nodes connected? Breadth 
First Search or Depth First Search methods ae some of the well-known 
methods to answer such questions. However, given the adjacency matrix 
of a graph, it is also possible to determine whether a graph is connected by 
trying various permutations of rows and the corresponding coloumns of 
adjacency matrix. This however is an inefficient method due to n! number 
of permutations. One can also use the following therorem and corollary 
from graph theory (Deo, 1979) :

Theorem: Let A be adjacency matrix of a simple graph G. Then ijth entry in 
Ar is the number of different edge sequences of r edges between vertices v

i
 

and v
j
.

Corollary: If A is adjacency matrix of a graph G with n vertices, and B= 
A +A2 +A3…+An-1 (in the ring of integers), then G is disconnected if there 
exists at least one entry in B that is zero.
However, this is again an inefficient method and involves a large number of 
matrix multiplications. Therefore, the method utilizes the following tech-
nique that can be easily determined from adjacency matrix.

4.2.1.1 Node Fusion Technique

Method of adjacent node fusion is used to check the connectivity of a par-
ticular node sequence or combination set by taking out rows and columns 
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corresponding to this set of nodes from the adjacency matrix of the net-
work. Let these extracted rows and columns form a matrix [B]. Now, ith 
and jth rows of this matrix are merged, if node, i, is adjacent to node, j. We 
do this merging by applying the Boolean OR operation to ith and jth rows. 
Similar operation we apply to ith and jth columns. Then jth row and column 
are deleted. We repeat this process till the exhaustion of all adjacent nodes. 

The basic idea in this method is the fusion (merger) of vertices adja-
cent to a selected vertex in a recursive manner. The process ends when no 
more vertices are available to fuse further indicating that all connected 
component of the graph has been fused to a single vertex. In the adjacency 
matrix, the fusion of jth vertex to the ith vertex is accomplished by logical 
OR-ing operation, i.e., by logically adding the jth row to the ith row as well 
as the jth column to ith column. Then the jth row and column are discarded 
from the matrix or care has been taken that they should not be considered 
in fusion process. The upper bound on the execution time is proportional 
to n(n-1). 

A simple example illustrates the method as follows.

Example 4.4: Let us illustrate it by taking an arbitrary network graph 
examples for connected and not connected case of specified node sets by 
taking out the rows and columns corresponding to the node set, say {1 2 
3 4} and {1 2 5 7}, respectively. The steps are shown below in Table 4.1.

Table 4.1 Illustrating Node-Fusion technique.

Test set

Extracted rows 
and columns to 
form matrix [B] Step 1 Step 2 Step 3

{1 2 3 4}
(Connected) 0 1 1 0

0 0 1 1

0 0 0 1

0 0 0 0

Node 2 is adjacent 
and fused and 
row and column 
2 deleted.

1 1 1

0 0 1

0 0 0

Repeat Step 1

1 1

0 0

Repeat Step 1

1

{1 2 5 7}
(Not 

Connected)

0 1 0 0

0 0 0 0

0 0 1 1

0 0 0 0

Node 1 & 2 fused

1 0 0

0 1 1

0 0 0

No further 
fusion 
possible.
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The program listing of the connectivity testing using node fusion 
can be seen in Appendix 4A.1

4.2.2  Generation of Node Set Combination from its Lower 
Order Node-Sets

Let there be a graph of n-nodes and (1, 5, 7) be a node-set of order three. 
To generate all the fourth order. The highest node number in this set is 
node#7. By incrementing it by one till ‘n’ and appending it with the set 
(1, 5, 7) would provide the fourth-order sets. For instance, the fourth 
order node sets yielded by {1, 5, 7} would be: {1, 5, 7, 8}, {1, 5, 7, 9}, {1, 5, 
7, 10}… {1, 5, 7, n}. 

Note that in this process one need not to generate all possible node-com-
binations as many of the node-sets are going to be discarded using a validity 
check criteria and only a node-set(s) which satisfies the criteria are being 
used to generate next higher order sets. In other words, this process greatly 
reduces the number of node-sets combinations need to be generated to 
form minimal cutsets. The next section presents the validity check criteria. 

The Matlab® program on generation of node set combination from 
its lower order node sets can be seen in Appendix 4A.1

4.2.3 Checking Validity of a Node Set

The approach is simple and takes the advantages of information that can 
easily be extracted from the adjacency matrix representation of a network 
graph. In fact, any node set of a particular order would have the following 
three properties, viz.,

a. Eligible for both a valid node cutset formation and for gen-
eration of next order node cutset or

b. It would be only suitable for generating next higher order 
node cutset or

c. It would not be at all useful and hence, should be discarded 
for further consideration.

To check whether a first order node-set is useful to form a minimal 
 cutsets and also be useful for generating higher order node-sets, we look 
for the graph connectivity after removing the row and column correspond-
ing to the selected first order node set. If this criterion is satisfied, then this 
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node would form a g-minimal cutset as well as will be used to form second 
order node-sets generation. Clearly, out of n nodes, few nodes may not be 
satisfying this criterion, thus reducing the number of generations in next 
stage.

However, for higher node-sets combinations, if any node-set is not 
connected themselves then it is discarded for further use. Otherwise, this 
set is further checked for its connectivity with any other node (not in 
the set) of the network. If not found, then this set is again discarded for 
further use. Otherwise, it is checked for the last condition, i.e., remov-
ing sub-graph corresponding to this set whether remaining nodes are 
connected? These validity check criteria have proven to provide only 
those node-sets, which will form g-minimal cutsets. Note that all these 
criteria can easily be checked by the node-fusion technique described in 
Section 4.2.1. The example provided later further explains these criteria 
and technique. 

The Matlab® program on validity checking of a node set can be seen in 
Appendix 4A.2

4.2.4 Formation of Cutset

Up to this point, we have worked on the sets of network nodes of different 
orders only. However, to form link cutsets, we can follow the steps given 
as under:

1. Take a valid node-set and collect all the branches that are 
connected with each node of this set.

2. Compose a single set using set-theoretic XOR-operation to 
form a link cutset of the network.

This procedure is repeated for each valid node set of a particular order.
The program for formation of cutset by converting node set into link 

cutset can be seen in Appendix 4A.2.

4.2.5  General Algorithm to Enumerate Minimal Cutsets for a 
Reliability Measure

The steps of the algorithm for a given network graph are (Mishra & 
Chaturvedi, 2009).
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1. If source and terminal nodes are known than assign high-
est node number # N to the source node and #1 to the sink 
node. Otherwise, assign node number sequentially and 
assume highest node number #N is source node with node 
#1 as sink node.

2. Form adjacency matrix representation of the network. This 
matrix is being used to test connectivity criterion of a speci-
fied node set. 

3. Check, whether after removing ith node from the network ∀ 
i =1 to N-1, rest of the nodes remains connected with source 
node? If yes, then ith node forms a g-minimal cutset and will 
also be used to form next higher order node set. Store these 
m- numbers (out of N ) nodes of first order node sets.

4. Generate next higher order node-sets combinations for each 
jth qualified node-set, j = 1, 2…m obtained in previous step 
in the following manner: 
Define and Determine, nHigh = highest node number in 
the set, nMax = maximum node number connected to this 
node set.
If nHigh ≠ N-1, append node set with element nHigh+1 to 
nMax, sequentially to form node sets. Repeat this step for 
all j to obtain higher order combinations for each qualified 
node set. Let the total number of these node sets be l.

5. Validate these l-node sets for forming g- minimal cutsets by 
testing these two conditions:
a. Check whether pth node-set, ∀ p = 1, 2…l, is connected 

themselves in the network? If No, repeat for next node-
set. If yes, then check that each element of this node set 
is also connected with at least one other node of the net-
work. If No, repeat for next node set. If yes, then

b. Check whether removing this pth node set from the 
network, whether the remaining nodes of the network 
remain connected from the source.
If both the above conditions are satisfied then the node 
set is a valid node set. Store all these node-sets and repeat 
steps from step #4 till (N-1)th order node set.

6. If 2-terminal (or k-terminal) node sets are required then 
specify 2- (or k-) nodes of the network else go to step #8.



Cut Sets Enumeration 115

Figure 4.2 Flowchart of the algorithm: g-minimal cutsets.

Start

L = total no. of links

Prepare the adjacency matrix which

represents the real network

Remaining nodes connected with source node 

End

Stop

No

Yes

No

Yes

Yes

Repeat for all (N-1)th order node set.

No

No

Repeat for all pth

Repeat for all ith

No

N = total no. of nodes

Remove ith node from the network ∀ i = 1 to N-1

Store these ‘m’ numbers of ith nodes for formation of higher

order node sets and g-minimal cutsets. i.e.  j = 1, 2…m

Assign: nHigh = highest node number in the set
nMax = maximum node number connected to this node set.

If nHigh ≠ N-1, append node set with element 

nHigh +1 to nMax, sequentially to form node sets

Store these/numbers of node sets and check validity for forming g- cut sets

Is pth node-set, ∀p = 1,

2…l, is connected themselves

Elements of pth is also

connected with at 

least one other node 

Store and convert all these node-sets in to g-minimal cut sets

Print the g-minimal cut sets

7. Keep those node sets only in which at least one node of 
specified source-terminal nodes (or k-nodes) appears and 
discard all other node sets.
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8. Convert all node-sets to link cutsets by using set-theoretic 
XOR-operation on links connected to each element of a 
node set.

Step #8 provides all minimal cutsets for a selected reliability measure. 
The flow chart of g-minimal cutsets enumeration procedure is provided 

(Mishra, 2009).
The above steps of the algorithm have been implemented in Matlab®. 

The main and associated programs for enumeration of g-minimal cutset 
can be downloaded from www.scrivenerpublishing.com/Chaturvedi_
Network_Reliability_2016_Matlab_Programs.rar. The next section, by 
taking an example, describes the algorithmic steps of the method.

Example 4.5: Figure 4.3 shows an ARPA communication network of 4 sink 
nodes, viz., 1-4 and 5 as a source node, the undirected branches and nodes 
are identified with numeric characters only. Here bold numbers show the 
link number and node numbers are shown inside circle with normal fonts. 

Solution: The steps of the method to obtain the global minimal cutsets of 
the given network are as follows:

Step#1: The adjacency matrix A of the reliability graph of Figure 4.3 is 
given below.

 

A =

0 1 1 1 0

1 0 1 0 1

1 1 0 1 1

1 0 1 0 1

0 1 1 1 0
 

5

2

4

3 1

4 8

3

5

6

7

1

2

Figure 4.3 Network reliability graph of an ARPA communication network.
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Step#2: First order node set are, = [{1}, {2}, {3}, {4}]. Removing node# 1, 
the rest of the nodes remains connected with node #5 using the node-
fusion technique. This is true for node #2, #3 and #4 as well. Therefore, the 
valid first order node sets are {1}, {2}, {3}, and {4}, respectively. Here, l = 4.
Step# 3: To generate next order node sets, nHigh and nMax with the above 
first order node-sets are:

Node-Set {1} {2} {3} {4}

nHigh (nMax) 1(4) 2(3) 3(4) 4(4)

Therefore, the following five, second order node sets are generated, i.e., 
here, l = 5 and thus the second order node-sets are: [{1, 2}, {1, 3}, {1, 4}, 
{2, 3}, {3, 4}].

Step #4: Node-fusion technique results provide that all these second 
order node sets, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {3, 4}, are connected with 
themselves (can also be seen in the network). This testing can simply be 
done by taking the rows and columns corresponding to each node-set 
in sequence. 

{1, 2}  connected with other nodes {3, 4}, and removing node #1 and 
#2, rest of the nodes remain connected with source node #5 implying that 
it is a valid node sets. Similarly, {1, 3}, {1, 4}, {2, 3} and {3, 4} are also valid 
node sets. 

Taking second-order node sets to generate third-order sets as:

Node-Set {1, 2} {1, 3} {1, 4} {2, 3} {3, 4}

nHigh (nMax) 2(4) 3(4) 4(4) 3(4) 4(4)

and repeating Step # 4 generates four node sets of 3rd order: {1, 2, 3}, {1, 2, 4}, 
{1, 3, 4}, {2, 3, 4}, respectively. However, the valid node sets satisfying the 
two verifying conditions are {1, 2, 3}, {1, 2, 4} and {1, 3, 4} respectively. 
Lastly, it generates a valid node set {1, 2, 3, 4}.

The total number of node sets generated by the algorithm is 13, i.e., [{1}, 
{2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, 
{1, 2, 3, 4}].

Step # 5: The conversion of these node sets to link cutsets is obtained by 
employing the set theoretic XOR-operation on the links associated with 
each element of a node set. For instance, consider a node set {1, 2, 4}. The 
links connected to node {1} are {6, 7, 8}, to {2} are {1, 3, 6} and to {4} are 
{4, 5, 8}, respectively. Set theoretic XOR-operation provides the set {1, 3, 4, 
5, 7}, which is a g-minimal cut set.
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Figure 4.4 Sub-graphs of Figure 4.3 after Removal of Respective Link Cutsets.(Continued)
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Figure 4.4 Sub-graphs of Figure 4.3 after Removal of Respective Link Cutsets.
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Each node set produces a unique cutset and thus 13 g-minimal cut-
sets are: 
[{1 2 4}, {1 3 6}, {4 5 8}, {6 7 8}, {1 2 5 8}, {1 3 7 8}, {2 3 4 6}, {2 3 5 7}, {4 5 
6 7}, {1 2 5 6 7}, {1 3 4 5 7}, {2 3 4 7 8}, {2 3 5 6 8}].

The resultant sub graphs after removing branches contained in g- 
 minimal cutsets of Figure 4.3 have been shown in Figure 4.4 (i-xiii) for 
visualisation of resulting networks. A program sample I/O for enumeration 
of g-minimal cutset and evaluation of g-terminal reliability for network 
graph shown in Figure 4.3 can be seen in Appendix 4A.3. and Appendix 
4A.4 , respectively. The details of the algorithms and their Matlab pro-
grammes are  discussed in Chapter 5.

Example 4.6: Let us consider another example to enumerate minimal cut-
sets for other reliability measures as well for the network graph shown in 
Figure 4.5.

Solution: Step#1 and 2: The adjacency matrix A of the reliability network 
of the Figure 4.5.

Note that we have numbered 6 to source and 1 to terminal node.

Step#3: First order node set = [{1}, {2}, {3}, {4}, {5}]. Removing node #1, 
the rest of the nodes remains connected with node #6. This is true for node 
#2, #3, #4 and #5 as well. Therefore, the valid first order node sets are {1}, 
{2}, {3}, {4}, and {5}, respectively.
Step# 4: To generate next order node sets, nHigh and nMax are:

Node-Set {1} {2} {3} {4} {5}

nHigh (nMax) 1(5) 2(4) 3(5) 4(5) 5(5)

4

8

3
5

6

7

9

1

2

2 4

6

3 5

1

Figure 4.5 An undirected network (6 Nodes and 9 Links).
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Therefore, the following nine, second order, node sets are generated, i.e., 
l = 9: [{1, 2}, {1, 3}, {1, 4}, {1, 5},{2, 3},{2, 4},{3, 4},{3, 5}, {4, 5}].
Step #5: {1, 2}, {1, 3} Not connected with themselves, whereas {1, 4}, {1, 
5}, {2, 3}, {2, 4}, {3, 4}, {3, 5}, {4, 5} are connected with themselves (can be 
seen in the network of Figure 4.5). This testing can simply be done by tak-
ing the rows and columns corresponding to a node set. {1, 4} connected 
with other nodes {2, 3, 5}, and removing node #1and #4, rest of the nodes 
remain connected with source node #6 implying that it is a valid node sets. 
Similarly, {1, 5}, {2, 4}, and {3, 5} are also valid node sets. However, node 
set {2, 3} connected with other nodes {4, 5, 6} but violates condition (ii) 
as the remaining nodes get disconnected from the source. Similarly, {3, 4} 
connected with other nodes {1, 2, 5} but violates condition (ii) and {4, 5}  
connected with other nodes {1, 2, 3} but violates condition (ii).

Therefore, the valid second order node sets are {1, 4}, {1, 5}, {2, 4}, 
and {3, 5}, respectively. Taking second-order node sets and repeating 
Step # 4,

Node-Set {1, 2} {1, 3} {1, 4} {1, 5} {2, 3} {2, 4} {3, 4} (3, 5) {4, 5}

nHigh (nMax) 2(5) 3(5) 4(5) 5(5) 3(5) 4(5) 4(5) 5(5) 5(5)

The following 10 node sets of 3rd order are generated: [{1, 2, 3}, {1, 2, 4}, 
{1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4},{2, 3, 5}, {2, 4, 5}, {3, 4, 5}. 
However, the valid node sets satisfying the two conditions are only {1, 2, 4}, 
{1, 3, 5} and {1, 4, 5}, respectively. 

The steps are followed in the similar manner and generate five node 
sets of fourth order, i.e., {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5} and 
{2, 3, 4, 5}, respectively, giving {1, 2, 4, 5} and {1, 3, 4, 5} as valid node sets. 
Lastly, it generates a valid node set {1,2,3, 4, 5}.

Therefore using this algorithm, 15 valid node sets, i.e., [{1}, {2}, {3}, {4}, 
{5}, {1, 4},{1, 5}, {2, 4}, {3, 5},{1, 2, 4}, {1, 3, 5}, {1, 4, 5}, {1, 2, 4, 5}, {1, 3, 
4, 5}, {1, 2, 3, 4, 5}] are been generated. 

For g-terminal node sets:
Step # 8: The conversion of these node sets to link cutsets is obtained by 
employing the set theoretic XOR-operation on the links associated with 
each element of a node set. For instance, consider a node set {1, 2, 4}. The 
links connected to node {1} are {8, 9}, to {2} are {1, 3, 4} and to {4} are {4, 5, 
7, 8}, respectively. Set theoretic XOR-operation provides the set {1, 3, 5, 
7, 9}, which is a g-minimal cut set.

Each node set produces a unique cutset and thus 15 g-minimal cut-
sets are: 
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[{1 2}, {8 9}, {1 3 4}, {2 3 4}, {4 5 6}, {6 7 8}, {6 7 9}, {1 3 5 6}, {2 3 5 6}, {4 
5 7 8}, {4 5 7 9}, {1 3 5 7 8}, {1 3 5 7 9}, {2 3 5 7 8}, {2 3 5 7 9}]. Note that the 
links here are labelled with italics numbers. 

For 2-terminal node sets: 
Specify the source node. Let it be node#1. Recall that node #6 is already 
assigned as source node. Discarding those node sets in which either ter-
minal node#1 do not appear: [{1}, {1, 4}, {1, 5}, {1, 2, 4}, {1, 3, 5}, {1, 4, 5}, 
{1, 2, 4, 5}, {1, 3, 4, 5}, {1, 2, 3, 4, 5}]. Thus there are nine 2-terminal node 
sets. Following step 8 of the algorithm, the 2-terminal nine minimal cut-
sets are: 

[{1 2}, {8 9}, {2 3 4}, {4 5 6}, {6 7 8}, {1 3 5 6}, {4 5 7 9}, {1 3 5 7 9}, {2 3 
5 7 8}].

For k-terminal node sets: 
Similar selection process of node sets is applied in case of k-minimal sets 
formation. Let us take nodes # {2, 4, 5, 6} as k-nodes. Discard those node 
sets in which any element of the k-nodes does not appear. then the 13 node 
sets are: [{2}, {4}, {5}, {1, 4}, {1, 5}, {2, 4}, {3, 5},{1, 2, 4}, {1, 3, 5}, {1, 4, 
5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {1, 2, 3, 4, 5}]. Note that node #6 will appear 
implicitly in selecting a k-node set, i.e., the node sets will be same even we 
take nodes {2, 4, 5} as k-nodes. Following step 8 of the algorithm, the 13 
k-terminal minimal cutsets are: 

[{1 2}, {1 3 4}, {2 3 4}, {4 5 6}, {6 7 8}, {6 7 9}, {1 3 5 6}, {4 5 7 8}, {4 5 7 9},  
{1 3 5 7 8}, {1 3 5 7 9}, {2 3 5 7 8}, {2 3 5 7 9}].
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Appendix 4A.3: Sample Program I/O for Network 
Graph of Figure 4.3

Each row corresponds to the number assigned to the nodes of the network.
Format: Node Connected To Nodes Connecting Link Number Assigned 
In the Network i.e., first line below signifies that the source node (highest 
node number 5) is connected with nodes number 2, 3 and 4 with the con-
necting links are 6, 7 and 8 respectively. Writing ‘end’ terminates the data 
in the data input file.

Input Data File:
2 3 4 6 7 8
1 3 5 6 3 1
1 2 4 5 7 3 5 2
1 3 5 8 5 4
end

Sample Run on Matlab Prompt

>> genCutset

adjMatdataFile(withpath)?:fig4.3Dat.m

SourceNode No.? (Assign Highest Number):5

TotalBranch :?:8

FOR OUTPUT

Please enter Output file with full path:fig4.3ResGTerminal.m

TerminalNode No. ?:1

Output Data file
1 2 4 
6 7 8 
1 2 5 8 
1 3 7 8 
2 3 4 6 
4 5 6 7 
1 3 4 5 7 
2 3 5 6 8 
end
Total number of cuts = 8

>> genCutset

adjMatdataFile(withpath)?:fig4.3Dat.m
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SourceNode No.? (Assign Highest Number):5

TotalBranch :?:8

FOR OUTPUT

Please enter Output file with full path:fig4.3ResGTerminal.m

Evaluating Cuts for g-Terminal Reliability

Output Data file
1 2 4 
1 3 6 
4 5 8 
6 7 8 
1 2 5 8 
1 3 7 8 
2 3 4 6 
2 3 5 7 
4 5 6 7 
1 2 5 6 7 
1 3 4 5 7 
2 3 4 7 8 
2 3 5 6 8 
end
Total number of cuts = 13
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Appendix 4A.4: g-Terminal Reliability Evaluation 
Program Sample I/O for Example of Figure 4.3

Input Data File: fig4.3ResGTerminal.m
1 2 4 
1 3 6 
4 5 8 
6 7 8 
1 2 5 8 
1 3 7 8 
2 3 4 6 
2 3 5 7 
4 5 6 7 
1 2 5 6 7 
1 3 4 5 7 
2 3 4 7 8 
2 3 5 6 8 
end

Sample Matlab Prompt
>>carelKdhTst3
Please enter pathSet(BranchWise)file with full dir path: fig4.3ResGTerminal.m
Branches in the Net:?8
Nodes in the Net:?5
Reliability of single branch:?0.9
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Results Provided by the Program (Output of 
g- reliability Expression for the Figure 4.3 for Method 
HM-1 of (Chaturvedi & Misra, 2002).

****************DisjointSet***********SDPREL************CUMSUMREL****
 0 0 -1 0 -1 -1 -1 -1 0.00100000000
For Cut No#= 2.
-----------------
 0 1 0 1 -1 0 -1 -1 0.00099000000 0.00199000000
For Path No#= 3.
-----------------
 1 -1 -1 0 0 -1 -1 0 0.00090000000 0.00289000000
 0 1 2 0 0 2 -1 0 0.00008910000 0.00297910000
For Cut No#= 4.
-----------------
 1 -1 -1 3 3 0 0 0 0.00089100000 0.00387010000
 0 -1 2 1 -1 0 0 0 0.00008100000 0.00395110000
 0 1 2 0 3 0 0 0 0.00000729000 0.00395839000
For Cut No#= 5.
-----------------
 0 0 -1 3 0 2 -1 0 0.00008100000 0.00403939000
 0 0 2 3 0 0 4 0 0.00000729000 0.00404668000
For Cut No#= 6.
-----------------
 0 5 0 1 5 4 0 0 0.00008019000 0.00412687000
 0 1 0 0 3 4 0 0 0.00000729000 0.00413416000
For Cut No#= 7.
-----------------
 2 0 0 0 -1 0 -1 3 0.00008100000 0.00421516000
 2 0 0 0 3 0 4 0 0.00000729000 0.00422245000
For Cut No#= 8.
-----------------
 1 0 0 7 0 7 0 3 0.00008019000 0.00430264000
 1 0 0 3 0 4 0 0 0.00000729000 0.00430993000
 0 0 0 1 0 2 0 6 0.00000729000 0.00431722000
For Cut No#= 9.
-----------------
 1 8 8 0 0 0 0 4 0.00008019000 0.00439741000
 0 1 2 0 0 0 0 4 0.00000729000 0.00440470000
For Cut No#= 10.
-----------------
 0 0 8 9 0 0 0 5 0.00000729000 0.00441199000
For Cut No#= 11.
-----------------
 0 8 0 0 0 9 0 6 0.00000729000 0.00441928000
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For Cut No#= 12.
-----------------
 6 0 0 0 8 7 0 0 0.00000729000 0.00442657000
For Cut No#= 13.
-----------------
 5 0 0 7 0 0 8 0 0.00000729000 0.00443386000

Output Data file
SystemUnrel = 0.00443386000
SystemReliability = 0.99556614000

total disjoint cuts= 22

Exercises

4.1  Enumerate by visual inspection, the minimal cuts for the networks 
shown in Figure Ex. 4.1. Verify them by using Method 1.
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Figure Ex. 4.1 Network graphs.
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4.2  Apply the approaches described in Method 2 to obtain minimal 
cut sets of above network graphs.

4.3  Apply the global cut sets enumeration procedure to obtain the 
global cut sets of the above network graphs.
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Generally, for large and complex systems, reliability evaluation is quite 
a cumbersome and time-consuming process due to the large number 
of terms in the resulting reliability expression. Thereafter, the process of 
assessing numerical value from the obtained expression makes evaluation 
of accurate value of system reliability a difficult task due to the build-up of 
round-off error. However, the methods based on sum of disjoint product 
(SDP) technique have been used to tackle reliability evaluation problems 
more efficiently and effectively to produce a compact reliability expres-
sion. It should further be noted that this disjoint form of expression has 
a one-to-one mapping with the probability (reliability) expression as well 
(Aggarwal et al., 1975a), (Aggarwal et al., 1975b). In fact, with the advent of 
multiple inversions techniques, a new impetus has been given to the tech-
niques of network reliability evaluation using path/cut sets of the network 
to produce a minimized form of expression. More compact the reliability 
expression is, more it would help tackle larger and larger system by reduc-
ing computational burden, storage requirement and the round off errors.

5
Reliability Evaluation using 
MVI Techniques

Network Reliability: Measures and Evaluation. Sanjay K. Chaturvedi. 
© 2016 Scrivener Publishing LLC. Published 2016 by John Wiley & Sons, Inc. 
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In this chapter, MVI based approaches KDH88 (Heidtmann, 1989) 
and CAREL (Soh & Rai, 1991) are presented. Other two approaches 
(HM–1 and HM–2) (Chaturvedi & MIsra, 2002) to evaluate reliability 
of large and complex systems by integrating the best features of several 
efficient  techniques are also described. These approaches have resulted 
in an  extensive reduction in the number of mutually disjoint terms 
and thus have provided a minimized and compact network reliability 
expression. Besides, they have not only saved CPU time appreciably 
but have also shown their viability to run a large problem even on a 
low-end PC. To demonstrate the advantage of handling such large and 
complex networks on relatively small computers, one can refer a com-
parison of approaches with earlier techniques by solving several prob-
lems of varied complexities on a low-end PC (Chaturvedi & MIsra, 
2002).

5.1 Notation and Assumptions

The following notations are used in this chapter:

i index variable; i =1, 2, 3, 4,…
E

i
 Success event of ith element.

T
i
 success of ith path set

m Total number of path sets
U,V,W A set of Boolean variables, e.g., U = {u

1
, u

2
, u

3
…}

R(G) System Reliability
Q(G) System Unreliability

 Besides the usual notation, the following acronyms have been used in 
this chapter:

CAREL MVI algorithm by (Soh & Rai, 1991)
DG Dependent Group
IG Independent Group
KDH88 MVI algorithm by (Heidtmann, 1989) 
GKG–VT MVI algorithm by (Veeraraghavan & Trivedi, Aug 1991) 
MVI Multiple Variable Inversion
PROB MVI algorithm by (Grnarov et al., 1979).
SVI Single Variable Inversion
MCC Minimal Conditional Cube
emd Exclusive and Mutually Disjoint Terms
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The following assumptions are implicit in this chapter:

1. Each element or a branch is in either of the two states,  
i.e., good or failed with known probability.

2. Nodes are perfectly reliable.
3. The path/cut sets (minimal path, spanning trees, k-trees, 

minimal cut sets, global cut sets, k-minimal cut sets) are 
known a priori.

5.2 Preliminaries 

Consider a graph G (n, l) representing a network. The model is free from 
self-loops and directed cycles. The system can be represented by a proba-
bilistic graph. The model may have several simple path sets between speci-
fied sets of nodes of interest. An edge or link is said to be operational or 
available if communication is possible via this link. If the two nodes joined 
by a link are unable to communicate through the link, it is said to be in 
a failed state. The probability that edge i is operational is denoted p

i
. The 

probability that edge i is failed is q
i
= 1 – p

i
.

An operational sub graph is a sub graph in which sufficient edges are 
operational that permits the sites in question to communicate. In the two-
terminal case a minimal operational sub graph is an operational (s,  f)-
path. A path is operational if all edges along the path are operational. 
Therefore, a path is in a failed state if any of the edges along it have failed. 
If the nodes s and f are disconnected, the graph or network is in a failed 
state. 

5.2.1 Definitions

Some important definitions pertinent to this chapter are as follows:
Variable: A variable that can assume a Boolean value either 0 or 1, e.g., the 
links of networks.
Cube: It is the manner by which Boolean product of variables in a  system 
are being represented. 
Uniproduct/Minproduct: It is the product of complemented or un- 
complemented variables.
Subproduct/Minterm: It is the product of all variables, complemented or 
un-complemented form that appears exactly once.
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Mixproduct: It is the product of all variables with at least one comple-
mented (un-complemented) variable.
Dependent Group: It is a set of terms consisting of variables in which at 
least one variable would be contained in more one term.
Independent Group: It is a set of variables, which would have no variable 
common among them.
Disjoint Terms: A set of the variable(s) that appears complemented in one 
term and un-complemented in other term.

Both the SVI and MVI techniques accept a Boolean function of 
network variables (nodes and/or links) representing minimal path 
sets or cut sets to compute reliability measures. However, in contrast 
to SVI  approach wherein variables are inverted sequentially one at a 
time, in MVI approach a group of the variables are inverted at once. 
In SVI, the minimization of the expression has been achieved through 
the ordering of path or cut sets so far. In MVI, not only the ordering of 
path or cut sets but the simultaneous inversions of a group of variables 
result into a more compact expression as compared to the expression 
that would be rendered by a SVI technique. In other words, the MVI 
techniques have a built-in feature of rendering a minimized reliability 
expression.

In Table 5.1, we provide some useful and pertinent Boolean lemmas, 
which are intrinsically used by all the MVI techniques to obtain a compact 
and disjoint form of Boolean/reliability expression. Let U, V, and W be 
three events belonging to some arbitrary event space S. Also a bar over an 
event signifies its complement of that event.

Example 5.1: Consider a MVI term u u u u1 2 3 4 , following the rules pro-
vided in Table 5.1, expand it to get its SVI expression.

Table 5.1 Boolean Lemmas.

S. No Lemma Explanation

1. UV.U ≡ �
2. UV UV = U + U.V

3. UV.U ≡ U (U + UV) U = U

4. UV.U ≡ UV (U + U.V) U = U.V

5. UV.UW = U + U.V.W (U + U.V)(U + U.W) = U + U.U.W + U.V.U. 

+ U.V.W

6. UV + UW =  

U.(U + (V + W))

U.U + U. (V + W) = U. (U + (V + W))
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Solution:

u u u u u u u u u

u u u u u u

u u u u u u

u

u

1 2 3 4 1 1 2 3 4

1 1 2 2 3 4

1 1 2 1 2 3 4

= +

= + +

= + +

=

.(

. )

11 1 2 1 2 3 3 4

1 1 2 1 2 3 1 2 3 4

+ +

= + +

+ ⋅

+ ⋅

u u u u u u u

u u u u u u u u u u

. (

.

)

)

5.3 MVI Methods

This section presents some methods in obtaining the reliability expression 
for a specified reliability measure of a given network graph.

5.3.1 Method 1: KDH88

KDH88 (Heidtmann, 1989) is an MVI extension of SVI algorithm pro-
posed by (Abraham, 1979). Using the minimal path sets, it recursively gen-
erates the disjoint terms for each path set. The recursive build-up of the 
terms is achieved with an inner loop within the outer loop. In the inner 
loop, part of the products are inverted at once instead of sequential inver-
sion of single variable (SVI approach), thus covering a greater domain of 
the Boolean structure function to generate fewer terms. Each outer recur-
sion is followed by a sequence of inner loop for each min path sets resulting 
in a modification of or no modification of one or more terms. Recursion 
of outer loop provides a portion of reliability expression contributed by a 
single min path sets at that instant of outer recursion. The pseudo code of 
the above approach would appear as:

1. For all Ti, i = 2, 3… m
 For all Tj, j = 1, 2… (i-1)
 If disjoint
 Continue;
 Else
  Obtain the disjoint terms and apply the disjoint process recur-

sively for next j with each term produced in this step.
 End
 End
 End
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2. Compute reliability
Let us illustrate the above procedure by taking the sample network 

graphs shown in Figure 5.1 (a) (5 nodes, 8 links) and (b) (6 nodes, 9links), 
respectively to determine the expression for 2- terminal reliability. 

Example 5.2: The enumeration methods described in Chapter 3 
and Chapter 4 enumerate 9 path sets and 8 cut sets for the network of 
Figure 5.1(a) as follows:

(a) (b)

5
7

2

1 5

1 63
2

4

4 8

3 7
1

2

1

3

3

2

4

6

4

5
8

9

56

Figure 5.1 Example networks for reliability evaluation.

Path sets: {(1,6), (2, 7), (4, 8), (1, 3, 7), (2, 3, 6), (2, 5, 8), (4, 5, 7), (1, 3, 5, 
8), (4, 5, 3, 6)}.
Cut sets: {(1, 2, 4), (6, 7, 8), (1, 2, 5, 8), (1, 3, 7, 8), (2, 3, 4, 6), (4, 5, 6, 7), 
(1, 3, 4, 5, 7), (2, 3, 5, 6, 8)}. Apply the KDH88 disjointing procedure on 
7th minimal path.

Solution: Path set number seven i.e., {4, 5, 7} is to be made disjoint with 
all its predecessors. KDH88 would abide by the following steps by check-
ing and making the resulting terms disjoint with previous path sets 
successively:

(Dropping the (,) coma to separate variables (here link numbers) for 
convenience) and utilizing the Boolean lemmas provided in Table 5.1, 

i. 16 457× ,
(No variables are common between them).

ii. 16 27 457 16 2 457× × = × ×
(By using Boolean identity xy yz xyz. = ).

iii. 16 2 48 457 16 2 8 457× × × = × × ×  

iv. 16 2 48 137 457 1 2 8 457 1 2 8 3 6 457× × × × = × × × + × × × × ×  

(By using Boolean identities, xy xzw xy yz. .=  and 

xy yz xyz. = respectively.)

v. 1 2 8 236 457 1 2 8 3 6 236 457

1 2 8 457 1 2 8 3 6 457

× × × × + × × × × × ×

= × × × + × × × × ×
(By using Boolean xy xz xy. = )
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vi. 1 2 8 258 457 1 2 8 3 6 258 457

1 2 8 457 1 2 8 3 6 457

× × × × + × × × × × ×

= × × × + × × × × ×

 

Hence, the reliability expression contributed by this path set to the over-
all 2TR expression would be:

1 1 1 1 1 1 11 2 8 4 5 8 1 2 8 3 6 4 5 7−( ) −( ) −( ) + − − − −p p p p p p p p p p p p p p( )( )( )( )
 

We pursue similar steps for making a certain minimal cut set disjoint 
successively, if the cut sets were known a priori. For instance, if cut set 
number four i.e., {1, 3, 7, 8} is to be made disjoint then KDH88 would give 
rise to the following results:

 2 6 1368 2 5 6 4 1378× × + × × × × ,  

The unreliability expression contribution turns out to be as:

 
p p q q q q q p p p q q q q2 6 1 3 7 8 2 5 6 4 1 3 7 8+ . 

Example 5.3: Apply KDH88 on the network shown in Figure 5.1(b).

Solution: The 13 numbers of path sets and 9 numbers of cut sets of the 
system represented by this network graph are:

Path sets: {(1, 4, 8), (2, 5, 8), (2, 6, 9), (1, 3, 5, 8), (1, 3, 6, 9), (1, 4, 7, 9), (2, 
3, 4, 8), (2, 5, 7, 9), (2, 6, 7, 8), (1, 3, 5, 7, 9), (1, 3, 6, 7, 8), (1, 4, 5, 6, 9), (2, 
3, 4, 7, 9)}.
Cut sets: {(1, 2), (8, 9), (2, 3, 4), (4, 5, 6), (6, 7, 8), (1, 3, 5, 6), (4, 5, 7, 9), (1, 
3, 5, 7, 9), (2, 3, 5, 7, 8)}.

By making path set number eight i.e., {2, 5, 7, 9} disjoint with path sets 
number 1, 2…7, we get:

 
14 6 8 2579 1 1 11 4 6 8 2 5 7 9× × × = − − −( )( )( )p p p p p p p p

 
It would be worth to note that how the terms under bar are interpreted 

once they emerge into multiples.
Similarly, by making cut sets number three i.e., {2, 3, 4}, for instance, 

would result into following form:

 
1 89 234 11 8 9 2 3 4× × = −p q q q q q( )

 

 
= + −p p p p p q q q1 8 9 8 9 2 3 4( )

 

5.3.2 Method 2: CAREL

The algorithm CAREL (Soh & Rai, 1991) uses the Boolean algebraic manip-
ulation and advantages of (Rai & Aggarwal, 1978), PROB by (Grnarov 
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et al., 1979) and SYSREL by (Hariri & Raghvendara, 1987) by proposing 
four operators viz. COMpare, REDuce, CoMBine and GENerate. The COM 
operator generates a set of conditional cubes, E

j
, j = 1,2… (i-1) for a path 

identifier T
i
 and describes an event that T

i
 is operational while P

j
 for all 

j = 1,2… (i-1) fail. The RED operator removes the redundant conditional 
cubes i.e., cubes, which are superset of some cube(s), from the generated 
set E

j
’s to form non-redundant cubes called as minimal conditional cubes 

(MCC). These MCC are, in generals, not disjoint among themselves and 
are partitioned into two groups, viz., independent (IG) and dependent 
(DG). The independent group would have disjoint terms whereas depen-
dent groups comprise of terms, which are made to be disjoint. If all MCC 
fall in IG category, then CMB generates a single term in a straightforward 
manner. However, for DG, the CMB operator is quite involved and differ-
entiates CAREL from rest of the earlier methods. Finally, the GEN operator 
generates the exclusive and mutually disjoints (emd) events by combining 
each mutually disjoint term of DG with single term obtained from IG and 
path identifier T

i
. The steps of the algorithm may be summarized as:

1. For all path sets T
i
, i = 2, 3… m

a. Obtain conditional cube (CC) sets by eliminating the 
common element(s) present in T

j
, for all j = 1, 2… (i-1).

b. Obtain minimal conditional cube sets (MCC) i.e., if a 
conditional cube set, say CC

k
, is a sub set of another CC

l
, 

then drop CC
l
. Divide these MCC into two groups, viz. 

IG and DG.
c. i.  Combine IG to produce a single disjoint term, i.e., 

IG
n
.

ii. Combine DG to form sets of disjoint terms.
d. Generate the emd by combing T

i 
and IG

n
 with each of the 

disjoint terms obtained in step c. (ii) of DG. 
2. Compute R

To make the idea more clear about IG and DG, a brief explanation to 
segregate IG and DG along with the operations and results of CAREL four 
operators viz., COM, RED, CMB, and GEN is illustrated as example 5.4.

Example 5.4: Consider a network having following seven path sets:

(i) 2 6 9 or bfi (ii) 1 5 9 or aei (iii) 1 4 8 or adh (iv)2 3 8 or bch (v) 2 6 7 8 
or bfgh (vi) 2 3 5 9 or bcei and (vii) 1 3 7 9 or acgi

Here, we represent a branch of the network graph either via an integer 
or an English alphabet, with a = 1 to i = 9. Explain the various possible 
scenarios in CAREL. 
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Solution: The following possible scenarios generally occur while applying 
the CAREL in disjointing process:

Case a: dependent group
Let path set, adh (number # 3) to be made disjoint with all earlier path 

sets.

S.No Operator Result Comment

(i) COM
bfi  and aei. 

There is no link common with 

path set, adh.

(ii) RED
bfi  and aei.

No set absorption. Also element 

i is common, DG is formed 

with these terms.

(iii) CMB i  and ibf ae. As bfi  aei  → i  +ibf ae. 

(iv) GEN adhi  and adhibf ae. Equivalent to reliability 

expression:

p
1
 p

4
 p

8
 {(1-p

9
) + p

9
 (1- p

2
 p

6
)

(1-p
1
 p

5
)}.

Case b: independent group
Let path set, bcei (number # 6) to be made disjoint with all earlier path 

sets.

S.no Operator Result Comment

(i) COM f , a , adh ,
 
h  and

 

fgh

Common elements (bi, ei, NIL, 

bc, b) have been removed 

from all previous path sets.

(ii) RED f , a  and h. fgh  and adh  have been 

absorbed by h  being the 

supersets of f and/or h .  

No further common element, 

so operator places them  

into IG.

(iii) CMB a f h . Single term of IG.

(iv) GEN bcei a f h Equivalent to reliability 

expression 

p
2
 p

3
 p

5
 p

9
 (1-p

1
)(1-p

6
)(1-p

8
).
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Case c: both independent and dependent group
Let path set acgi (number #7) to be made disjoint with all prior path 

sets.

S.no Operator Result Comment

(i) COM bf , e, dh, bh, bfh, 

and be.

Common elements (I, ai, a, c, g, 

and ci) have been removed. 

(ii) RED bf , e, dh and
 
bh. bfh  and be  have been absorbed 

by bf  and e  respectively. e  

forms IG and rest fall in DG.

(iii) CMB b dh, and b f h. As bf *dh*bh ->b dh  + b f h.

(iv) GEN acgie (bdh +b f h ) Equivalent to reliability 

expression

p
1 
p

3 
p

7 
p

9
(1-p

5
) [(1-p

2
) (1-p

4
p

8
) + 

p
2 
(1-p

6
)(1-p

8
)].

Let us once again consider the network graph of example 5.2 to 
 demonstrate CAREL.

Example 5.5: Apply the CAREL on example 5.2.

Solution: For the path set number#7 CAREL would follow the steps on 
applying its operators as under:

i. Applying COM operator

S. no. Previous path set Path set # 7 Remark

1. 1 6 4 5 7 Common links of Path # 7 have 

been removed from all earlier 

path sets.
2. 2 7

3. 4 8

4. 1 3 7

5. 2 3 6

6. 2 5 8

Note that the binary representation of the above terms becomes the condi-
tional cubes in CAREL terminology.

ii. Applying RED operator
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S. no. Path sets a priori Path set number seven Remark

1. 1 6 4 5 7 Being a subset, term 

number two absorbs 

terms five and six.
2. 2

3. 8

4. 1 3

5. 236

6. 258

The operator RED is also responsible for placing the terms in independent 
and dependent groups’ category. Thus, it places the second and third terms 
in IG, while the first and fourth terms belong to DG. The binary form of 
which are known as minimal conditional cubes (MCC).

iii. By applying CMB operator
   On combining the IG terms would give a single term as:

 2 8 457× ×
   On combining DG terms,

 16 13 457 1 457 1 3 6 457× × = × + × × ×

iv. By applying GEN operator
    IG’s single term is combined with each of the terms of DG to gen-

erate disjoint form for path set number seven as:

 1 2 8 457 1 3 6 2 8 457× × × + × × × × ×
    Hence, the reliability expression contributed by this path set 

would be:

  (1 – p
1
)(1 – p

2
)(1 – p

8
)p

4
 p

5
 p

8
 + p

1
 (1 – p

2
)(1 – p

8
)(1 – p

3
) 

(1–p
6
)p

4
 p

5
 p

7

    It is the same expression that we have obtained by applying 
KDH88 earlier.

Example 5.6: We apply the above process on the network graph of Figure 
5.1(a) on knowing the minimal cut sets. Let it be the minimal cut set num-
ber four again. 
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The sequence of steps would be:

i. Operator COM

S. no Earlier cut sets Cut set number four Remark

1 1 2 4

1 3 7 8

Common links of 

cut set# 4 are 

removed from all 

earlier cut sets.

2 6 7 8

3 1 2 5 8

ii. Operator RED

S. no Cut sets a priori Cut set number four Remark

1 2 4 1 3 7 8 No absorption, but 

Terms 1 and 3 

are dependent.
2 6

3 2 5

iii. Operator CMB
   The DG would give the following terms:

 2 1378 2 4 5 1378× + × × × ,

iv. Operator GEN
    Combining with the IG would give the following expression con-

tributed to TR:

 

2 6 1378 2 4 5 6 1378 2 6 1 3 7 8

2 4 5 6 1 3 7 8

× × + × × × × =
+
p p q q q q

q p p p q q q q .

5.3.3 Comparison between KDH88 and CAREL

From the description of methodologies outlined in KDH88 and CAREL in 
the above examples/illustrations, we may make the following observations:

i. In KDH88, in order to obtain disjoint terms for a given path 
set or cut set, the process of comparison, checking and gen-
eration have to be carried out on all previous path sets with 
the path set under consideration. Consequently, it would 
require a large chunk of computer memory as the network 
complexity and size increase. However, it uses the simple 
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notation of representing the disjoint terms, where an integer 
value in a term signifies the path index that has modified 
and generated the disjoint term. To get the reliability expres-
sion, equal integer values in a term are grouped together. 

For instance, a final and arbitrary sequence code such as 
011100220 represents that the branches 1, 5, 6 and 9 consti-
tute a path set (corresponding to 0 entries in the sequence). 
In order to make it disjoint with all prior path sets, the posi-
tions 2, 3, 4 and 7, 8 in the sequence have been modified by 
the path set number#1 and #2, respectively. The reliability 
expression contributed by this path set would be: p

1 
p

5 
p

6 
p

9 

(1-p
2 
p

3 
p

4
) (1-p

7 
p

8
) 

ii. The CMB operator is the most time consuming and bur-
dened operator among the four operators in CAREL. 
Additionally, CAREL uses a superscripted notation where 
variables indices are also to be tracked while formulating the 
disjoint terms in the final expression for a given path set. The 
notational complexity, its understanding and translating it 
into a computer program could be problematic. 

For instance, the CAREL would characterize the same 
sequence exemplified in KDH88 as: 0 –34 –34 –34-0-0 –25 –25 

0; the superscripted index 4 on inverted variables shows its 
belongingness to DG or IG number four with three terms 
in a cluster and superscripted index 5 to either DG or IG 
number 5 with two terms together, respectively. It is worth 
mentioning here that while doing such operations of combi-
nations, not only the superscript but also the number over 
which they reside has to be tracked to interpret the final and 
resulting term accurately. 

Consequently, the first two operators in CAREL could 
be implemented in bit form whereas for the other two, one 
has to resort some other means of coding it into a computer 
program. 

The aforementioned points might be the reasons for exorbitant program 
execution time; memory requirements and even for system getting hung 
up. The type of warning message, which appeared after the four hours of 
patient waiting since the launch of the program, is shown in Figure 5.2 
for the Figure 5.3 (16-Nodes, 30 links network graph, path sets = 499 and 
cut sets = 644) of the sample networks whose unreliability was tried to be 
evaluated using KDH88 in the year 2001 on a 200 MHz, 32 MB RAM, and 
4.3 GB HDD personal computer running under win98 environment.
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Figure 5.2 The warning message for a large network on applying KDH88.

Figure 5.3 16-Node, 30 links network graph,
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It may necessitate to code path or cut sets in some alternative way rather 
than in a string of 0/1/-1 but also some improvement in these existing 
methods to achieve the desired goal of obtaining reliability/unreliability 
expression and evaluation of complex systems (Chaturvedi, 2002).
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5.4 Method 3: Hybrid Methods-HM 

5.4.1 An Alternative Representation of Path or Cut Sets 

Instead of representing path or cut sets in binary string as in CAREL, one 
can represent path or cut sets with their equivalent integer values to segre-
gate the irredundant independent and dependent groups. This is achieved 
by the use of bit-wise OR/AND /XOR functions available in most of the 
computer language based application packages that operate on the integer 
representation. These integer values, as and when desired, can be expanded 
(compressed) using decimal to binary (binary to decimal) conversion, rou-
tine to the length of number of branches present in the network under 
consideration for their interpretation. 

The path sets representation of network of 6-nodes,13 branches shown 
Figure 5.4, and operation responsible for generating and identifying inde-
pendent and dependent groups on first two path sets are shown in Table 5.2

The combined operation, viz., E
j
 = bitxor (bitor (P

i
, P

j
), P

j
), for all i = 1, 

2, …(j-1), describes an event that the path set P
j
 is operational while all 

path sets prior to P
j
 have failed. In other words, it generates a conditional 

integer set. The binary form of this integer sets generates conditional cubes 
(CC) of CAREL.

The bitwise AND operation among the integers in the reduced or mini-
mal integer set forms two subsets viz., IG and DG. A zero result in the 
AND operation places that integer into independent integer group. One 
can easily substantiate it by expanding the integer values of IG or DG in 
binary form to see that in all binary vectors, none has a ‘1’ at a common 
position while the DG would have such vector(s). 

It is to be noted that all the operations described above are performed 
on integer representations. Once the irredundant groups (IG/DG) are 

Figure 5.4 A 6 nodes, 9 links network.
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identified, we convert integer values to their equivalent binary representa-
tion by maintaining the length of each binary vector equal to the number 
of branches in the network. Subsequently, in the independent group, we 
replace each 0 entry by –1 and each nonzero entry by the path sets number 
to which they come from. This representation consequently would coin-
cide with the representation used in KDH88. 

For the dependent group, the index of the each path set is identified so 
that appropriate changes in the KDH88 generated disjoint terms can be 
made later, to identify that which path set has created the alteration, when 
the path sets in this group are made disjoint with respect to the path set 
under consideration. 

On dependent group, we apply KDH88 recursively to generate mutu-
ally exclusive terms. Finally, each of these terms, generated by following 
KDH88, is combined with the single term obtained by combining the inde-
pendent group elements to generate disjoint terms of path set P

i
. In other 

words, we could conclude that KDH88 completely replaces CAREL CMB 
and GEN operator.

Table 5.2 Path Sets Representation and Bit-Wise Operations

Path 

set no. Path sets

Binary 

representation 

up to the length 

of network 

branches i.e. , 

of Figure 5.4: 

(6n9l)

Equivalent 

integer 

representation

Operation on e.g. for 

first two path sets 

and expanded result 

in binary form.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

1 4 8

2 5 8

2 6 9

1 3 5 8

1 3 6 9

1 4 7 9

2 3 4 8

2 5 7 9

2 6 7 8

1 3 5 7 9

1 3 6 7 8

1 4 5 6 9

2 3 4 7 9

100100010

010010010

010001001

101010010

101001001

100100101

011100010

010010101

010001110

101010101

101001110

100111001

011100101

290

146

137

338

329

293

226

149

142

341

334

313

229

bitxor (290,146) = 432

dec2bin (432) = 

110110000

bitor (290,146) = 434

dec2bin (434) = 

110110010

bitand(290,146) = 2

dec2bin (2) = 

000000010
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5.4.2 Hybrid Methods (HM)

The following two modifications in KDH88 or CAREL schemes can be 
done to speed up the process of obtaining disjoint terms (Chaturvedi & 
Misra, 2002)

5.4.2.1 HM-1

We can make the following improvements in the steps outlined in CAREL:
(c). ii  Identify the indexes of path sets in T

j
, j= 1,2,…, (i-1), 

which forms the DG sets.
 iii  IApply KDH88 on these path sets, identified in the 

step above, to generate disjoint terms with respect 
to path set T

i
.

(d). Combine IG
n
 with each disjoint term obtained above.

  2. Compute TR.

5.4.2.2 HM-2

Alternatively, we can make the following improvements in KDH88:

1. Segregate path sets into two groups:
i.  Group-I shall have path sets T

k
, ∀ k= 1, 2, 3… m

1,
 i.e., path sets 

of cardinality (n-1) and,
ii.  Rest of the path sets, i.e., a total of (m-m

1
+1) into Group-II’ 

Complement the variables not present in T
k
, ∀ k = 1, 2…m

1
.

iii.  Compute TR
1
 for path set number one and TR

k
, ∀ k= 1, 2…m

1
.

2. For all path sets of Group-II, T
i
, i = 2, 3… (m- m

1
+1)

a.  Identify and obtain the indexes of path sets corresponding to 
MCCs (please refer CAREL 1 (b).

b.  Apply KDH88 on these path sets to obtain disjoint terms for T
i
.

3. Compute TR TR TR TRm ii

m m= + +
=

− +∑1 2

1

1

1

The above schemes are explained in the ensuing sections/subsections:

5.5 Applying HM-1 and HM-2

In order to explain the intricacies of the schemes introduced in this chap-
ter, let us apply them to determine the irredundant group for a path set, say, 
142 (listed at ninth row) of Table 5.2. The corresponding conditional cubes 
(CC) are given in Table 5.3.
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ANDing operation puts MCC 2 and 3 in independent group whereas 
MCC 1 and 7 are placed under dependent group category.

We replace zeros by –1 meaning that these links are absent, and the 
nonzero entries by the path set number. Now we can solve it by applying 
the schemes outlined earlier as HM-1 and HM-2.

5.5.1 Applying HM-1

As we have become aware of that CC number 2 and 3 fall under the inde-
pendent group category while 1 and 7 fall under dependent group category. 
They together form minimal conditional cubes (MCC) and remaining CC 
have been dropped as they are contained in one of these path sets, i.e., in 
1, 2, 3 or 7. Hence,
IG =

  -1 -1 -1 -1 2 -1 -1 -1 -1 -> generated due to MCC or path set 
number 2

  -1 -1 -1 -1 -1 -1 -1 -1 3 -> generated due to MCC or path set 
number 3

Now path sets number 1 and 7 are to be made disjoint with path set 
number 9. From the dependent group index 1 and 7, path sets 1, 7 and 9 
are converted into KDH88 notational format i.e.,

Min Terms =

   0 -1 -1  0 -1 -1 -1 0 -1 (100100010; path set 1)
 -1   0   0  0 -1 -1 -1 0 -1 (011100010; path set 7)
 -1   0 -1 -1 -1   0   0 0 -1 (010001110; path set 9)

Table 5.3 MCC and CC for Path Sets Prior to Ninth Path Set i.e., (142)

S. 

no

All prior path 

sets to the 9th 

path set CCs

CCs binary 

equivalent

MCCs  

(S. no. of 

CC) Remark

1.

2.

3.

4.

5.

6.

7.

8.

290

146

137

338

329

293

226

149

288

16

1

336

321

289

96

17

100100000

000010000

000000001

101010000

101000001

100100001

001100000

000010001

288 (1)

16 (2)

1 (3)

96 (7)

CC number:

6 is contained in 1.

4,8 are contained in 2 

5 is contained in 3.
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Applying KDH88, we obtain two terms, viz.,

TG =

 -1 0 -1 1 -1 0 0 0 -1
   1 0  7 0 -1 0 0 0 -1

Combining independent terms provides us
IG

n
 =

 -1 -1 -1 -1 2 -1 -1 -1 3

The process of combining IG
n
 with each terms of TG, generates the 

exclusive and mutually disjoint terms for path set number 9 as:
TG =

 -1 0 -1 1 2 0 0 0 3 = 4 5 9 2678× × ×  

   1 0  7 0 2 0 0 0 3 = 1 3 5 9 24678× × × ×

Therefore, the contribution of this path set to the network reliability 
expression would be:

1 1 1 1 1 1 14 5 9 1 3 5 9 4 2 6 7 8−( ) −( ) −( ) + − − − − ×p p p p p p p p p p p p( )( )( )( )

5.5.2 Applying HM-2

We have seen that the path set numbered 1, 2, 3 and 7 would only gener-
ate MCC while others have been absorbed and hence dropped from the 
process of making them disjoint. In other words, to get the disjoint terms 
for path number 9, we are only concerned with these four path sets, which 
mean a reduction of four path sets out of the eight path sets that should 
have been compared had we used the scheme of KDH88. Now on these 
path sets, viz.,1, 2, 3 and 7, we apply KDH88 to obtain disjoint terms cor-
respond to path set numbered 9. This results into the following disjoint 
terms:

 -1 0 -1 1 2 0 0 0 3 -> 4 5 9 2678× × × -> (1 – p
4
)(1 – p

5
)(1 – p

9
)  

                                                                                          × p
2
 p

6
 p

7
 p

8

 1 0 4 0 2 0 0 0 3 ->1 3 5 9 24678× × × × -> (1 – p
1
)(1 – p

3
) 

                                                                               (1 – p
5
)(1 – p

9
)p

4
 × p

2
 p

6
 p

7
 p

8

This is the same expression what we have got using HM-1 earlier.
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5.5.3 Complete Solution to Example 5.2

Having provided the adequate insight into the methodologies, we are now 
in a position to provide the complete solution for the network shown in 
Figure 5.1 (a) and (b). Over and above, both the methods provide the same 
expression and the only difference lies in the speed with which they pro-
vide the solution.

For Figure 5.1 (a), following the procedure (HM-1 or HM-2), we obtain 
the following terms of the reliability expression:

Using Path Sets

i.  For Path set # 1

 
p p1 6

ii.  For Path set # 2

 
( )1 1 6 2 7− p p p p

iii.  For Path set # 3

 
( )( )1 11 6 2 7 4 8− −p p p p p p

iv.  For Path set # 4

 
( )( )( )1 1 12 4 8 6 1 3 7− − −p p p p p p p

v.  For Path set # 5

 
( )( )( )1 1 11 4 8 7 2 3 6− − −p p p p p p p

vi.  For Path set # 6

 
( )( )( )1 1 14 6 7 2 5 8− − −p p p p p p

 
( )( )( )( )1 1 1 11 3 6 7 1 3 6 7− − − −p p p p p p p p

vii.  For Path set # 7

 
( )( )( )1 1 11 2 8 4 5 7− − −p p p p p p

 
( )( )( )( )1 1 1 12 3 6 8 1 4 5 7− − − −p p p p p p p p
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viii. For Path set # 8

 
( )( )( )( )1 1 1 12 4 6 7 1 3 5 8− − − −p p p p p p p p

ix.  For Path set # 9

 
( )( )( )( )1 1 1 11 2 7 8 3 4 5 6− − − −p p p p p p p p

With the assumption of equal links reliabilities, p, above expressions 
would reduce to:

 
R G p p p p p p p( ) = + − − + − +3 4 9 10 27 18 42 3 4 5 6 7 8 ;

for p = 0.9, the system reliability would be 0.99763164000.
 Executing the HM-1 program (available at www.scrivenerpublishing.
com) on Matlab® prompt, for Figure 5.1(a) renders the following: 

>> carelKdhTst3
Please enter pathSet(BranchWise)file with full dir 

path:fig5.1aResPth.m
Branches in the Net:?8
Nodes in the Net:?5
Reliability of single branch:?0.9
FOR OUTPUT
Please enter Output file with full path:fig5.1aResPthHM1.m
t = 0.044625087941659
SystemRel =0.99763164000, Total FunCall= 14
total disjoint paths= 11

For detailed output, open the fig5.1aResPthHM1.m file.

Using Cut Sets

i.  For Cut set # 1

 
q q q1 2 4

ii.  For Cut set # 2

 
( )1 1 2 4 6 7 8− q q q q q q



154 Network Reliability

iii.  For Cut set # 3

 
( )( )1 14 6 7 1 2 5 8− −q q q q q q q

iv.  For Cut set# 4

 
( )( )1 12 6 1 3 7 8− −q q q q q q

 
( )( )( )1 1 14 5 6 1 2 3 7 8− − −q q q q q q q q

v.  For Cut set # 5

 
( )( )1 11 7 8 2 3 4 6− −q q q q q q q

vi.  For Cut set # 6

 
( )( )1 12 8 4 5 6 7− −q q q q q q

 
( )( )( )1 1 11 3 8 2 4 5 6 7− − −q q q q q q q q

vii.  For Cut set # 7

 
( )( )( )1 1 12 6 8 1 3 4 5 7− − −q q q q q q q q

viii. For Cut set # 8

 
( )( )( )1 1 11 4 7 2 3 5 6 8− − −q q q q q q q q

On the assumption of equal unreliability (q) of links, the network unre-
liability expression would be:

 
Q G q q q q q q( ) = + − − + −2 4 2 13 14 43 4 5 6 7 8

;

For q = 0.1, TQ (G) = 0.00236836000000
or using minimal cutsets and executing the program renders:

>> carelKdhTst3
Please enter pathSet(BranchWise)file with full dir 

path:fig5.1aCuts.m
Branches in the Net:?8
Nodes in the Net:?5
Reliability of single branch:?0.1
FOR OUTPUT
Please enter Output file with full path:fig5.1aResCutsHM1.m
t = 0.039368435172284
SystemRel =0.00236836000, Total FunCall= 13
total disjoint paths= 10
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Note that the input to reliability of single branch in the above is 0.1, 
which is unreliability of the links.

For detailed output, open the fig5.1aResPthHM1.m file.

Similarly, for Figure 5.1 (b)

Using Path Sets

i.  For Path set # 1

 
p p p1 4 8

ii.  For Path set # 2

 
( )1 1 4 2 5 8− p p p p p

iii.  For Path set # 3

 
( )1 8 2 6 9− p p p p

 
( )( )1 11 4 5 2 6 8 9− −p p p p p p p

iv.  For Path set # 4

 
( )( )1 12 4 1 3 5 8− −p p p p p p

v.  For Path set # 5

 
( )( )1 12 8 1 3 6 9− −p p p p p p

 
( )( )( )1 1 12 4 8 1 3 6 8 9− − −p p p p p p p p

vi.  For Path set # 6

 
( )( )1 16 8 1 4 7 9− −p p p p p p

 
( )( )( )1 1 12 3 8 1 4 6 7 9− − −p p p p p p p p

vii.  For Path set # 7

 
( )( )( )1 1 11 5 6 9 2 3 4 8− − −p p p p p p p p

viii. For Path set # 8

 
( )( )( )1 1 11 4 6 8 2 5 7 9− − −p p p p p p p p
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ix.  For Path set # 9

 
( )( )( )1 1 14 5 9 2 6 7 8− − −p p p p p p p

 
( )( )( )( )1 1 1 11 3 5 9 2 6 7 8− − − −p p p p p p p p

x.  For Path set # 10

 
( )( )( )( )1 1 1 12 4 6 8 1 3 5 7 9− − − −p p p p p p p p p

xi.  For Path set # 11

 
( )( )( )( )1 1 1 12 4 5 9 1 3 6 7 8− − − −p p p p p p p p p

xii.  For Path set # 12

 
( )( )( )( )1 1 1 12 3 7 8 1 4 5 6 9− − − −p p p p p p p p p

xiii. For Path set # 13

 
( )( )( )( )1 1 1 11 5 6 8 2 3 4 7 9− − − −p p p p p p p p p

On the assumption of equal links reliabilities, p, the network reliability 
expression would become:

 
R G p p p p p p p( ) = + − − + − +3 6 8 21 40 24 53 4 5 6 7 8 9

For p = 0.9, the network reliability would be 0.97718440500.

Using Cut Sets

i.  For Cut set # 1

 
q q1 2

ii.  For Cut set # 2

 
( )1 1 2 8 9− q q q q

iii.  For Cut set # 3

 
( )( )1 11 8 9 2 3 4− −q q q q q q

iv.  For Cut set # 4

 
( )( )1 12 8 9 4 5 6− −q q q q q q

 
( )( )( )1 1 11 3 8 9 2 4 5 6− − −q q q q q q q q
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v.  For Cut set # 5

 
( )( )( )1 1 12 4 5 9 6 7 8− − −q q q q q q q

 
( )( )( )1 1 11 4 9 2 6 7 8− − −q q q q q q q

 
1 1 1 11 3 5 9 2 6 7 8 9−( ) −( ) −( ) −q q q q q q q q q( )

vi.  For Cut set # 6

 
( )( )( )1 1 12 4 8 1 3 5 6− − −q q q q q q q

 
1 1 1 12 4 7 9 1 3 5 6 8−( ) −( ) −( ) −q q q q q q q q q( )

vii.  For Cut set # 7

 
( )( )( )1 1 12 6 8 4 5 7 9− − −q q q q q q q

 
1 1 1 11 3 6 8 2 4 5 7 9−( ) −( ) −( ) −q q q q q q q q q( )

viii.  For Cut set # 8

 
1 1 1 12 4 6 8 1 3 5 7 9−( ) −( ) −( ) −q q q q q q q q q( )

ix.  For Cut set # 9

 
1 1 1 11 4 6 9 2 3 5 7 8−( ) −( ) −( ) −q q q q q q q q q( )

On the assumption of equal links unreliability (q), the unreliability 
expression would be:

Q G q q q q q q q q( ) = + − − − + − +2 3 8 7 28 21 52 3 4 5 6 7 8 9

For q = 0.1, Q (G) = 0.02281559500000
The Hybrid methods (Chaturvedi & Misra, 2002) are applied to a set of 

13 test networks of small to large size shown in Figure 5.5, and the results 
have been compared on the basis of the following criterion:

i. The numbers of disjoint terms generated.
ii. Feasibility and CPU time taken on a low-end Desktop PC.

The branches reliability (unreliability), for the entire set of sample net-
works shown in Figure 5.5, has been chosen as 0.9 (0.1), nevertheless 
the program can accept the non-identical links (with different reliabili-
ties as well). The results have also been compared in Table 5.4, Table 5.5 
and Table  5.6, respectively, providing the number of total disjoint paths 
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(DPATH) produced when KDH88 or CAREL alone has been used and 
CPU time taken by KDH88 and HM.

The CPU time taken by CAREL has not been compared as it has already 
been established in (Luo & Trivedi, 1998)vide Table 2: comparison of I_VT, 
VT, KDH88 and CAREL that KDH88 completely outperforms CAREL in all 
respects. The CPU time includes writing data to output file, which includes:

i.  path/cut set indexing,
ii.  creating disjoint terms for each path/cut set, 
iii.   computing reliability/unreliability contribution by each 

disjoint terms, 
iv.  system reliability computation at each point,
v.   calling disjointing-function in KDH88 and HM at each 

point number of times recursively,
vi.  recording total number of recursions, and 

vii.  system reliability/ unreliability computation.

Figure 5.5 Example network graphs of varied complexities.
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Table 5.4 Comparison of two terminal reliability evaluation with various 

 methods (Path sets).

Figure 

no.

Path 

sets 

DPATH CPU time (sec)

Reliab 

ilityKDH88

HM-I

HM-II CAREL KDH88 HM-I HM-II

1. 9 11 11 11 0.22 0.16 0.16 0.9976

2. 13 17 17 16 0.77 0.27 0.22 0.9772

3. 14 23 23 23 0.44 0.44 0.44 0.9967

4. 18 83 83 94 2.86 2.75 1.60 0.9941

5. 20 30 30 30 1.15 0.55 0.54 0.9841

6. 24 38 38 39 0.93 0.77 0.60 0.9752

7. 25 53 53 50 1.37 1.05 0.94 0.9975

8. 29 77 77 76 2.80 2.91 1.49 0.9962

9. 36 528 528 542 35.92 17.47 18.18 0.9972

10. 44 82 80 87 5.17 2.47 1.82 0.9742

11. 281 2360 2302 2386 1009.36 152.75 133.69 0.9874

12. 780 ! 46707 54032 ! 2724.69 2226.25 0.9971

13. 1681 ! 90814 - ! 11762.63 8781.71 0.9738

All test examples have been run on a 200 MHz, 32 MB RAM, and 4.3 GB HDD under win98 

environment.

! Program got terminated due to stack overflow on the hardware and software platform 

used.

- Example not included in and solved by the method.

5.6  Global and k-terminal Reliability with SDP 
Approach

We have earlier mentioned about the advantage of SDP technique that it 
can be used with any given type of inputs, viz., path sets, cut sets, spanning 
trees or k-trees, and accordingly they would provide us reliability or unreli-
ability expression for TR, global (or all-terminal reliability) and k-terminal 
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Table 5.6 Recursive call to disjointing-function.

Figure no.

Numbers of recursive call to disjointing-function by

KDH88 HM-1 HM-2

1. (5n8l) 38 13 18

2. (6n9l) 54 23 31

3. (7n14l) 600 184 222

4. (11n21l) 54605 3253 4455

5. (8n12l) 325 79 133

6. (8n12l) 312 91 145

7. (7n13l) 321 96 130

8. (8n13l) 862 188 266

9. (16n30l) ! 74451 103139

10. (9n14l) 722 201 315

11. (13n22l) 126767 10451 13488

12. (20n30l) ! 2965149 3456764

13. (21n33l) ! 2419829 2828294

reliability for a given network. To emphasize and illustrate this point once 
again, let us consider the two networks (a) and (b) of Figure 5.1 again and 
determine their g-reliability and k-terminal reliabilities.

5.6.1 All-terminal Reliability Evaluation

The spanning trees for the Figure 5.1 (a) and (b), respectively are listed in 
Table 5.7. In order to assess the relative advantages of various SDP meth-
ods, we obtain results for these two networks by running the programs 
for Abraham, KDH88, and HM-1 methods and to verify relative advan-
tages offered by SVI and MVI approaches. The results of the programs 
of computing g-reliability have been tabulated in Table 5.8. It is easy to 
verify that both the approaches, namely, SVI and MVI, provide the same 
g- r eliability expression for the example. For example in case of network 
given in Figure 5.1(a), g-reliability is obtained as:



162 Network Reliability

Table 5.7 Spanning trees for the networks graphs.

Figure 5.1(a) Figure 5.1(b)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

1 2 4 6 

1 2 4 7 

1 2 4 8 

1 2 5 6 

1 2 5 7 

1 2 5 8 

1 2 6 8 

1 2 7 8 

1 3 4 6 

1 3 4 7 

1 3 4 8 

1 3 5 6 

1 3 5 7 

1 3 5 8 

1 3 6 8 

1 3 7 8 

1 4 5 6 

1 4 5 7 

1 4 5 8 

1 4 6 7 

1 4 7 8 

1 5 6 7 

1 5 6 8 

1 6 7 8 

2 3 4 6 

2 3 4 7 

2 3 4 8 

2 3 5 6 

2 3 5 7 

2 3 5 8 

2 3 6 8 

2 3 7 8 

2 4 5 6 

2 4 5 7 

2 4 5 8 

2 4 6 8 

2 4 7 8 

3 4 6 7 

3 4 6 8 

3 5 6 7 

3 5 6 8 

3 6 7 8 

4 5 6 7 

4 5 6 8 

4 6 7 8

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

1 2 4 6 8 

1 2 4 6 9 

1 2 4 7 8 

1 2 4 7 9 

1 2 4 8 9 

1 2 5 6 8 

1 2 5 6 9 

1 2 5 7 8 

1 2 5 7 9 

1 2 5 8 9 

1 2 6 7 8 

1 2 6 7 9 

1 2 6 8 9 

1 3 4 6 8 

1 3 4 6 9 

1 3 4 7 8 

1 3 4 7 9 

1 3 4 8 9 

1 3 5 6 8 

1 3 5 6 9 

1 3 5 7 8 

1 3 5 7 9 

1 3 5 8 9 

1 3 6 7 8 

1 3 6 7 9 

1 3 6 8 9 

1 4 5 6 8 

1 4 5 6 9 

1 4 5 7 8 

1 4 5 7 9 

1 4 5 8 9 

1 4 6 7 8 

1 4 6 7 9 

1 4 6 8 9 

2 3 4 6 8 

2 3 4 6 9 

2 3 4 7 8 

2 3 4 7 9 

2 3 4 8 9 

2 3 5 6 8 

2 3 5 6 9 

2 3 5 7 8 

2 3 5 7 9 

2 3 5 8 9 

2 3 6 7 8 

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

2 3 6 7 9 

2 3 6 8 9 

2 4 5 6 8 

2 4 5 6 9 

2 4 5 7 8 

2 4 5 7 9 

2 4 5 8 9 

2 4 6 7 8 

2 4 6 7 9 

2 4 6 8 9



Reliability Evaluation using MVI Techniques 163

R
s
 = p

1
 p

2
 p

4 
p

6 
+ p

1
 p

2
 p

4 
p

7 
(1-p

6
) + p

1
 p

2
 p

4 
p

8 
(1-p

6
) (1-p

7
) + p

1
 p

2
 p

5 
p

6 
(1-p

4
) +

 

p
1
 p

2
 p

5 
p

7 
(1-p

4
) (1-p

6
) +

 
p

1
 p

2
 p

5 
p

8 
(1-p

4
) (1-p

6
) (1-p

7
) +

 
p

1
 p

2
 p

6 
p

8 
(1-p

4
) (1-p

5
) 

+ p
1
 p

2
 p

7 
p

8 
(1-p

4
) (1-p

5
) (1-p

6
) +

 
p

1
 p

3
 p

4 
p

6 
(1-p

2
) + p

1
 p

3
 p

4 
p

7 
(1-p

2
) (1-p

6
) +

 
p

1
 

p
3
 p

4 
p

8 
(1-p

2
) (1-p

6
) (1-p

7
) + p

1
 p

3
 p

5 
p

6 
(1-p

2
) (1-p

4
) + p

1
 p

3
 p

5 
p

7 
(1-p

2
) (1-p

4
) 

(1-p
6
) + p

1
 p

3
 p

5 
p

8 
(1-p

2
) (1-p

4
) (1-p

6
) (1-p

7
) + p

1
 p

3
 p

6 
p

8 
(1-p

2
) (1-p

4
) (1-p

5
) 

+ p
1
 p

3
 p

7 
p

8 
(1-p

2
) (1-p

4
) (1-p

5
) (1-p

6
) + p

1
 p

4
 p

5 
p

6 
(1-p

2
) (1-p

3
) + p

1
 p

4
 p

5 
p

7 

(1-p
2
) (1-p

3
) (1-p

6
) + p

1
 p

4
 p

5 
p

8 
(1-p

2
) (1-p

3
) (1-p

6
) (1-p

7
) + p

1
 p

4
 p

6 
p

7 
(1-p

2
) 

(1-p
3
) (1-p

5
) + p

1
 p

4
 p

7 
p

8 
(1-p

2
) (1-p

3
) (1-p

5
) (1-p

6
) + p

1
 p

5
 p

6 
p

7 
(1-p

2
) (1-p

3
) 

(1-p
4
) + p

1
 p

5
 p

6 
p

8 
(1-p

2
) (1-p

3
) (1-p

4
) (1-p

7
) + p

1
 p

6
 p

7 
p

8 
(1-p

2
) (1-p

3
) (1-p

4
) 

(1-p
5
) +

 
p

2
 p

3
 p

4 
p

6 
(1-p

1
) 

+
 
p

2
 p

3
 p

4 
p

7 
(1-p

1
) (1-p

6
) + p

2
 p

3
 p

4 
p

8 
(1-p

1
) (1-p

6
) (1-p

7
) + p

2
 p

3
 p

5 
p

6 
(1-p

1
) 

(1-p
4
) + p

2
 p

3
 p

5 
p

7 
(1-p

1
) (1-p

4
) (1-p

6
) + p

2
 p

3
 p

5 
p

8 
(1-p

1
) (1-p

4
) (1-p

6
) (1-p

7
) + 

p
2
 p

3
 p

6 
p

8 
(1-p

1
) (1-p

4
) (1-p

5
) + p

2
 p

3
 p

7 
p

8 
(1-p

1
) (1-p

4
) (1-p

5
) (1-p

6
) + p

2
 p

4
 p

5 

p
6 
(1-p

1
) (1-p

2
)

 
+ p

2
 p

4
 p

5 
p

7 
(1-p

1
) (1-p

3
) (1-p

6
) + p

2
 p

4
 p

5 
p

8 
(1-p

1
) (1-p

3
) (1-p

6
) 

(1-p
7
) + p

2
 p

4
 p

6 
p

8 
(1-p

1
) (1-p

3
) (1-p

5
) + p

2
 p

4
 p

7 
p

8 
(1-p

1
) (1-p

3
) (1-p

5
) (1-p

6
) + 

p
3
 p

4
 p

6 
p

7 
(1-p

2
) (1-p

3
) + p

3
 p

4
 p

6 
p

8 
(1-p

1
) (1-p

2
) (1-p

7
) + p

3
 p

5
 p

6 
p

7 
(1-p

1
) (1-p

2
) 

(1-p
4
) + p

3
 p

5
 p

6 
p

8 
(1-p

1
) (1-p

2
) (1-p

4
) (1-p

7
) + p

3
 p

6
 p

7 
p

8 
(1-p

1
) (1-p

2
) (1-p

4
) 

(1-p
5
) + p

4
 p

5
 p

6 
p

7 
(1-p

1
) (1-p

2
) 

(1-p
3
) + p

4
 p

5 
p

6 
p

8 
(1-p

1
) (1-p

2
) (1-p

3
) (1-p

7
) + p

4
 p

6 
p

7
p

8 
(1-p

1
) (1-p

2
) (1-p

3
) 

(1-p
5
).

Executing the HM-1 program (available at www.scrivenerpublishing.
com) on Matlab® prompt, for Figure 5.1(a) renders the following:

>> carelKdhTst3
 Please enter pathSet(BranchWise)file with full dir 
path:fig5.1aSpanTree.m
Branches in the Net:?8
Nodes in the Net:?5
Reliability of single branch:?0.9
FOR OUTPUT
Please enter Output file with full path:fig5.1aSpanTreeHM1.m
t = 0.212887012623047
SystemRel =0.99556614000, Total FunCall= 44
total disjoint paths= 45

Table 5.8 g- Reliability evaluation and comparison with different methods (with 

all link reliabilities =0.9).

Example

Number of 

spanning-

trees

Disjoint 

terms

Program execution time in 

seconds

g-ReliabilityAbraham KDH88 HM-1

Figure 5.1 (a) 45 45 0.99 1.76 0.77 0.995566140

Figure 5.1 (b) 55 55 1.31 3.29 0.99 0.975253204
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On the assumption of equal links’ reliabilities, p, we would obtain the fol-
lowing polynomial: R

s
 = 45 p4 – 128 p5 + 142 p6 – 72 p7 + 14 p8

5.6.2 Characteristics of a g-reliability Expression

There are certain facts, peculiar with g-reliability and not observed in other 
types of measures, worth to mention:

1. It can be observed from Table 5.8 that as far as g-reliability 
is concerned, both the SVI and MVI approaches result in 
the same number of disjoint terms equal to the number of 
spanning trees of the networks and there is no advantage of 
using MVI over the SVI method for obtaining SDP terms for 
g-reliability expression of the network. However, the HM-1 
comes out faster than either SVI (such as Abraham’s method) 
or any other MVI based methods such as KDH88 etc. This is 
evident from Table 5.8 and can be attributed mainly to less 
number of comparisons involved in HM-1 method.

2. The lowest degree term in the expression is (n-1) and coef-
ficient of this term is equal to the number of spanning trees 
of the network graph under consideration.

3. The terms are alternatively positive and negative.
4. The sum of all the coefficient of the expression is unity. Also 

true for other reliability measures.
5. For a non-reducible network graph, if the expression is plot-

ted against p would provide S-shaped curve implying that 
for s-coherent system when entire component attain suf-
ficiently high reliability then only the network reliability 
would be greater than the reliability of a single link. It is also 
hold good for the other reliability measures.

5.6.3 k-terminal Reliability Evaluation

We can utilize the method of (Samad, 1987) or of (Rath & Soman, 1993) to 
enumerate k-trees (with specified k-nodes) by using the spanning trees enu-
merated earlier for the networks of Figure 5.1 to determine the k-terminal 
reliability in SDP form. The k-trees enumerated by the method of (Rath & 
Soman, 1993) and is discussed in Section 3.4 are listed in Table 5.9 and the 
results of the programs of computing k-terminal reliability are tabulated in 
Table 5.10.
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Table 5.9 k-trees for the networks.

Figure 5.1 (a)k-nodes:  

{1, 3, 5}

Figure 5.1 (b) k-nodes:  

{1, 2, 4, 5}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

3 7 

1 2 6 

1 2 7 

1 3 6 

1 6 7 

2 3 6 

3 4 8 

3 5 8 

4 5 7 

4 5 8 

4 7 8 

1 2 4 8 

1 2 5 8 

1 4 5 6 

1 5 6 8 

2 4 5 6 

2 4 6 8

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

1 4 7 

1 2 4 6 

1 2 5 6 

1 2 5 7 

1 2 6 7 

1 3 4 6 

1 3 5 6 

1 3 5 7 

1 3 6 7 

1 4 5 6 

1 4 8 9 

2 3 4 6 

2 3 4 7 

2 3 5 6 

2 3 5 7 

2 3 6 7 

2 4 5 6 

2 4 5 7 

2 4 6 7 

1 2 5 8 9 

1 2 6 8 9 

1 3 5 8 9 

1 3 6 8 9 

2 3 4 8 9 

2 3 5 8 9 

2 3 6 8 9 

2 4 5 8 9 

2 4 6 8 9

Table 5.10 k- Terminal Reliability Evaluation and Comparison with Different 

Methods (with all link reliabilities =0.9)

Example k-nodes

Number 

of k-trees

Disjoint terms(Program 

execution time in seconds) k-terminal 

reliabilityAbraham KDH88 HM-1

Figure 5.1  

(a)

{1, 3, 5} 15 29 (0.28) 23 (0.27) 21 (0.22) 0.99752067000

Figure 5.1  

(b)

{1, 2, 4, 5} 28 30 (0.49) 29 (0.67) 29 (0.44) 0.98509551300
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The expression provided by the Abraham’s method (SVI) and HM-1 (MVI) 
provide the following reliability expressions, respectively:

SVI:
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MVI
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For equal reliabilities of links, both the above k-terminal reliability 
expressions yield the following polynomial:

 R
s
= p2 + 10p3 – 10p4 – 26p5 + 51p6 – 32p7 + 7p8

Similar expression can be obtained for the Figure 5.1(b) with the help of 
the program outputs given in Appendix 5A.1 , 5A.2 and 5A.3.

Executing the HM-1 program (available at www.scrivenerpublishing.
com) on Matlab® prompt for Figure 5.1(b) renders the following:

>> carelKdhTst3
 Please enter pathSet(BranchWise)file with full dir 
path:fig5.1b1245KTree.m
Branches in the Net:?9
Nodes in the Net:?6
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Reliability of single branch:?0.9
FOR OUTPUT
Please enter Output file with full path:fig5.1b1245KTreeHM1.m
t = 0.051977635829758
SystemRel =0.98509551300, Total FunCall= 32
total disjoint paths= 29

5.6.4 Number of k-trees

To observe how the number of k-trees varies for a given network, let us 
consider two criteria:

i. By taking the different k-node sets of same size, and
ii. By varying the size of k-node set by sequentially adding one 

node at a time in the set.

The variation that we get in the number of k-trees for a specified k-node 
set is shown in Table 5.11 for the Figure 5.1(a) and in Table 5.13 for the 
Figure 5.1(b). It can be observed that, a higher number for k-trees is 
obtained for that set, which contains the nodes that are distant-apart in 
the network.

The property of a network with respect to the number of k-trees, it would 
have, on varying the size of k-node set with the addition of one node at a 
time in the k-node set for the Figure 5.1(a) and (b) are shown in Table 5.12 
and Table 5.14 respectively.

Table 5.11 Variation in the number of k-trees for different order of k-node set.

k-node sets of different order

Example 2 k-trees 3 k-trees 4 k-trees

Figure 5.1 (a) 1 2

1 3

1 4

1 5

2 3

2 4

2 5

3 4

3 5

4 5

8

7

9

9

7

9

9

7

7

8

1 2 3

1 2 4

1 2 5

1 3 4

1 3 5

1 4 5

2 3 4

2 3 5

2 4 5

3 4 5

16

19

19

16

17

19

17

16

19

16

1 2 3 4

1 2 3 5

1 2 4 5

1 3 4 5

2 3 4 5

29

29

33

29

29
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Table 5.12 Variation in number of k-trees with size of the k-node set.

Example k-node set Number of k-trees

Figure 5.1 (a) 1 2   8

1 2 3 16

1 2 3 4 29

1 2 3 4 5 45

Table 5.13 Variation in the number of k-trees for different order of k-node set.

k-node sets of different order

Example 2 k-trees 3 k-trees 4 k-trees 5 k-trees

Figure 5.1  

(b)

1 2

1 3

1 4

1 5

1 6

2 3

2 4

2 5

2 6

3 4

3 5

3 6

4 5

4 6

5 6

11

10

8

12

13

9

8

9

12

5

9

9

9

11

12

1 2 3

1 2 4

1 2 5

1 2 6

1 3 4

1 3 5

1 3 6

1 4 5

1 4 6

1 5 6

2 3 4

2 3 5

2 3 6

2 4 5

2 4 6

2 5 6

3 4 5

3 4 6

3 5 6

4 5 6

15

14

19

23

12

18

20

18

20

23

11

15

18

15

18

19

11

12

15

15

1 2 3 4

1 2 3 5

1 2 3 6

1 2 4 5

1 2 4 6

1 2 5 6

1 3 4 5

1 3 4 6

1 3 5 6

1 4 5 6

2 3 4 5

2 3 4 6

2 3 5 6

2 4 5 6

3 4 5 6

18

25

30

28

32

37

24

27

32

30

21

24

28

25

18

1 2 3 4 5

1 2 3 4 6

1 2 3 5 6

1 2 4 5 6

1 3 4 5 6

2 3 4 5 6

34

39

46

46

39

34

Table 5.14 Variation in number of k-trees with size of the k-node set.

Example k-node set Number of k-trees

Figure 5.1 (b) 1 2 11

1 2 3 15

1 2 3 4 18

1 2 3 4 5 34

1 2 3 4 5 6 55
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It can be observed that as we add nodes in the k-node set, the number of 
k- trees also increases. This increase in number of k-trees would continue 
till the k-node set becomes a set, which contains all the networks nodes. At 
this point, the number of k-trees coincides with the number of spanning 
trees of the network.

5.7 Unreliability with SDP Approach

We continue to apply the methods discussed in this Chapter to obtain 
unreliability measures by providing the necessary inputs to the algorithm 
described in this Chapter. This does not forbid readers to apply other 
methods referenced in this text or elsewhere.

Example 5.4: Considering the Figure 5.4, obtain its 2-terminal, global, 
k-terminal unreliability for the node set [2, 4, 5, 6] expressions and their 
respective values for each link unreliability of 0.1.

Solution: Referring example 4.6 in Chapter 4 and Figure 5.4, 

There are nine 2-terminal minimal cutsets between node  
{1, 6}: [{1 2 }, {8 9}, {2 3 4}, {4 5 6}, {6 7 8}, {1 3 5 6}, {4 5 7 9}, 
{1 3 5 7 9}, {2 3 5 7 8}.
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For equal unreliability of links, i.e., q
i
 = q = 0.1, ∀ i = 1, 2, 

3…9,

Q
{1, 6}

 = 2q2 + 3q3 – q4 - 8q5 – 7q6 + 28q7 – 21 q8 + 5q9 = 0.0228, 
and reliability = 0.9772

Comment: Applying SDP approach on 13 pathsets of this net-
work, the above result(Reliability) comes out to be the same 
with 17 disjoint terms (again reduction in number of disjoint 
terms, less number of efforts in disjoint process and thereby 
less round-off errors).

The global minimal cutsets of the network turns out to be 15, 
i.e., : [{1 2}, {8 9}, {1 3 4}, {2 3 4}, {4 5 6}, {6 7 8}, {6 7 9}, {1 3 
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5 6}, {2 3 5 6}, {4 5 7 8}, {4 5 7 9}, {1 3 5 7 8}, {1 3 5 7 9}, {2 3 
5 7 8}, {2 3 5 7 9}], and 
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For equal unreliability of links, i.e., q
i
 = q = 0.1, ∀ i = 1, 2, 

3…9,

Q
g
 = 2q2 + 5q3 - q4 - 14q5 - 20q6 + 73q7 - 60q8 + 16q9 = 0.0247, 

and reliability = 0.9753

Comment: Applying SDP approach on 55 spanning trees of 
this network, the above result (Reliability) comes out to be the 
same with 55 disjoint terms ( in comparison to 26 terms- an 
almost 50% reduction in number of disjoint terms, less number 
of efforts in disjoint process and thereby less round-off errors).

The 13 k-terminal minimal cutsets are: [{1 2}, {1 3 4}, {2 3 4 
}, {4 5 6 }, {6 7 8}, {6 7 9}, {1 3 5 6 }, {4 5 7 8 }, {4 5 7 9 }, {1 3 
5 7 8 }, {1 3 5 7 9}, {2 3 5 7 8}, {2 3 5 7 9}], and
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For equal unreliability of links, i.e., q
i
 = q = 0.1, ∀ i = 1, 2, 

3…nLink, 
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Q
{2, 4, 5, 6}

 = q2 + 5q3 – 8q5 – 20q6 + 48q7 – 32 q8 + 7q9 = 0.014 
904 487, and reliability = 0.985 095 513

Executing the HM-1 program (available at www.scrivenerpublishing.
com) on Matlab® prompt renders the following:

>> carelKdhTst3
 Please enter pathSet(BranchWise)file with full dir 
path:fig5.4K2456Cuts.m
Branches in the Net:?9
Nodes in the Net:?6
Reliability of single branch:?0.1
FOR OUTPUT
Please enter Output file with full path:fig5.4K2456CutsHM1.m
t = 0.046603541735033
SystemRel =0.01490448700, Total FunCall= 48
total disjoint paths= 23
>> 1-sysRel
ans = 0.985095513000000

Comment: Applying SDP approach on 28 k-trees for same 
k-node set of this network, the above result(reliability) comes 
out to be the same with 29 disjoint terms (again reduction in 
number of disjoint terms, less number of efforts in disjoint pro-
cess and thereby less round-off errors).

5.8 Some Suggested Guidelines

Based on their study, (Mishra, 2009), (Mishra et al., 2016) formulated some 
guidelines before proceeding to carry out the reliability analysis of a net-
work system represented by a non-reducible network graph. Here are some 
suggestions for systems represented by a directed network:

i. For most of the networks, the number of minimal pathsets 
is generally much less than the number of minimal cutsets. 
Number of terms in reliability expression also behaves in 
a similar manner for most of the networks. Therefore, it is 
advisable to use minimal pathsets rather than in evaluating 
2-terminal reliability for systems modelled through directed 
graphs. 



172 Network Reliability

ii. The number of global cutsets is always less than the num-
ber of spanning trees for all cases. The difference between 
this gets widen as the network complexity further increases. 
Similar observations hold for number of terms in reliabil-
ity expression. Therefore, it is beneficial to use global cutsets 
rather than spanning trees (arborescence) in evaluating g-reli-
ability for systems modelled through directed graphs.

iii. The number of k-terminal cutsets or pathsets is depends on 
network configuration or topology. However, more investi-
gations are yet to be done to reach the exact conclusion.
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Appendix 5A.1: Program Output of g-reliability  
Expression for the Figure 5.1(b).

Results are provided by the program for method HM-1
***************DisjointSet************SDPREL***********CUMSUMREL

 0 0 -1 0 -1 0 -1 0 -1 0.59049000000

For Path No#= 2.
-----------------
 0 0 -1 0 -1 0 -1 1 0 0.05904900000 0.64953900000

For Path No#= 3.
-----------------

 0 0 -1 0 -1 1  0 0 -1 0.05904900000 0.70858800000

For Path No#= 4.
-----------------

 0 0 -1 0 -1 2   0 3 0 0.00590490000 0.71449290000

For Path No#= 5.
-----------------

 0 0 -1 0 -1 2 4 0 0 0.00590490000 0.72039780000

For Path No#= 6.
-----------------

 0 0 -1 1 0 0 -1 0 -1 0.05904900000 0.77944680000

For Path No#= 7.
-----------------

 0 0 -1 2 0 0 -1 6   0 0.00590490000 0.78535170000

For Path No#= 8.
-----------------

 0 0 -1 3 0 6 0 0 -1 0.00590490000 0.79125660000

For Path No#= 9.
-----------------

 0 0 -1 4 0 7 0 8 0 0.00059049000 0.79184709000

For Path No#= 10.
-----------------

 0 0 -1 5 0 7 9 0 0 0.00059049000 0.79243758000
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For Path No#= 11.
-----------------

 0 0 -1 3 8 0 0 0 -1 0.00590490000 0.79834248000

For Path No#= 12.
-----------------

 0 0 -1 4 9 0 0 11 0 0.00059049000 0.79893297000

For Path No#= 13.
-----------------

 0 0 -1 5 10 0 12 0 0 0.00059049000 0.79952346000

For Path No#= 14.
-----------------

 0 1 0 0 -1 0 -1 0 -1 0.05904900000 0.85857246000

For Path No#= 15.
-----------------

 0 2 0 0 -1 0 -1 14 0 0.00590490000 0.86447736000 

For Path No#= 16.
-----------------

 0 3 0 0 -1 14 0 0 -1 0.00590490000 0.87038226000 

For Path No#= 17.
-----------------

 0 4 0 0 -1 15 0 16 0 0.00059049000 0.87097275000 

For Path No#= 18.
-----------------

 0 5 0 0 -1 15 17 0 0 0.00059049000 0.87156324000 

For Path No#= 19.
-----------------

 0 6 0 14 0 0 -1 0 -1 0.00590490000 0.87746814000 

For Path No#= 20.
-----------------

 0 7 0 15 0 0 -1 19 0 0.00059049000 0.87805863000 

For Path No#= 21.
-----------------

 0 8 0 16 0 19 0 0 -1 0.00059049000 0.87864912000 
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For Path No#= 22.
-----------------

 0 9 0 17 0 20 0 21 0 0.00005904900 0.87870816900 

For Path No#= 23.
-----------------

 0 10 0 18 0 20 22 0 0 0.00005904900 0.87876721800 

For Path No#= 24.
-----------------

 0 11 0 16 21 0 0 0 -1 0.00059049000 0.87935770800 

For Path No#= 25.
-----------------

 0 12 0 17 22 0 0 24 0 0.00005904900 0.87941675700 

For Path No#= 26.
-----------------

 0 13 0 18 23 0 25 0 0 0.00005904900 0.87947580600 

For Path No#= 27.
-----------------

 0 6 19 0 0 0 -1 0 -1 0.00590490000 0.88538070600 

For Path No#= 28.
-----------------

 0 7 20 0 0 0 -1 27 0 0.00059049000 0.88597119600 

For Path No#= 29.
-----------------

 0 8 21 0 0 27 0 0 -1 0.00059049000 0.88656168600 

For Path No#= 30.
-----------------

 0 9 22 0 0 28 0 29 0 0.00005904900 0.88662073500 

For Path No#= 31.
-----------------

 0 10 23 0 0 28 30 0 0 0.00005904900 0.88667978400 

For Path No#= 32.
-----------------

 0 11 24 0 29 0 0 0 -1 0.00059049000 0.88727027400 
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For Path No#= 33.
-----------------

 0 12 25 0 30 0 0 32 0 0.00005904900 0.88732932300 

For Path No#= 34.
-----------------

 0 13 26 0 31 0 33 0 0 0.00005904900 0.88738837200 

For Path No#= 35.
-----------------

 14 0 0 0 -1 0 -1 0 -1 0.05904900000 0.94643737200 

For Path No#= 36.
-----------------

 15 0 0 0 -1 0 -1 35 0 0.00590490000 0.95234227200 

For Path No#= 37.
-----------------

 16 0 0 0 -1 35 0 0 -1 0.00590490000 0.95824717200 

For Path No#= 38.
-----------------

 17 0 0 0 -1 36 0 37 0 0.00059049000 0.95883766200 

For Path No#= 39.
-----------------

 18 0 0 0 -1 36 38 0 0 0.00059049000 0.95942815200 

For Path No#= 40.
-----------------

 19 0 0 35 0 0 -1 0 -1 0.00590490000 0.96533305200 

For Path No#= 41.
-----------------

 20 0 0 36 0 0 -1 40 0 0.00059049000 0.96592354200 

For Path No#= 42.
-----------------

 21 0 0 37 0 40 0 0 -1 0.00059049000 0.96651403200 

For Path No#= 43.
-----------------

 22 0 0 38 0 41 0 42 0 0.00005904900 0.96657308100 
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For Path No#= 44.
-----------------

 23 0 0 39 0 41 43 0 0 0.00005904900 0.96663213000 

For Path No#= 45.
-----------------

 24 0 0 37 42 0 0 0 -1 0.00059049000 0.96722262000 

For Path No#= 46.
-----------------

 25 0 0 38 43 0 0 45 0 0.00005904900 0.96728166900 

For Path No#= 47.
-----------------

 26 0 0 39 44 0 46 0 0 0.00005904900 0.96734071800 

For Path No#= 48.
-----------------

 27 0 40 0 0 0 -1 0 -1 0.00590490000 0.97324561800 

For Path No#= 49.
-----------------

 28 0 41 0 0 0 -1 48 0 0.00059049000 0.97383610800 

For Path No#= 50.
-----------------

 29 0 42 0 0 48 0 0 -1 0.00059049000 0.97442659800 

For Path No#= 51.
-----------------

 30 0 43 0 0 49 0 50 0 0.00005904900 0.97448564700 

For Path No#= 52.
-----------------

 31 0 44 0 0 49 51 0 0 0.00005904900 0.97454469600 

For Path No#= 53.
-----------------

 32 0 45 0 50 0 0 0 -1 0.00059049000 0.97513518600 

For Path No#= 54.
-----------------

 33 0 46 0 51 0 0 53 0 0.00005904900 0.97519423500 
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For Path No#= 55.
-----------------

 34 0 47 0 52 0 54 0 0 0.00005904900 0.97525328400 

SystemRel =0.97525328400

total disjoint paths= 55

execution time =0.99000000000
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Appendix 5A.2: Program Output of k-terminal  
Reliability Expression for Figure 5.1(b).

Results are provided by the program for the SVI method Abraham.
***************DisjointSet***********SDPREL************CUMSUMREL

For Path No#= 1
-----------------

 -1 -1 0 -1 -1 -1 0 -1 0.81000000000 0.81000000000 

For Path No#= 2
-----------------

 0 0 1 -1 -1 0 -1 -1 0.07290000000 0.88290000000 

 0 0 0 -1 -1 0 1 -1 0.06561000000 0.94851000000 

For Path No#= 3
-----------------

 0 0 1 -1 -1 1 0 -1 0.00729000000 0.95580000000 

For Path No#= 4
-----------------

 0 1 0 -1 -1 0 1 -1 0.00729000000 0.96309000000 

For Path No#= 5
-----------------

 0 1 1 -1 -1 0 0 -1 0.00729000000 0.97038000000 

For Path No#= 6
-----------------

 1 0 0 -1 -1 0 1 -1 0.00729000000 0.97767000000 

For Path No#= 7
-----------------

 1 1 0 0 -1 -1 1 0 0.00072900000 0.97839900000 

 1 0 0 0 -1 1 1 0 0.00065610000 0.97905510000 

 0 1 0 0 -1 1 1 0 0.00065610000 0.97971120000 

 0 0 0 0 -1 1 1 0 0.00590490000 0.98561610000 

For Path No#= 8
-----------------

 1 1 0 1 0 -1 1 0 0.00007290000 0.98568900000 

 1 0 0 1 0 1 1 0 0.00006561000 0.98575461000 

 0 1 0 1 0 1 1 0 0.00006561000 0.98582022000 

 0 0 0 1 0 1 1 0 0.00059049000 0.98641071000 
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For Path No#= 9
-----------------

 1 -1 1 0 0 -1 0 -1 0.00729000000 0.99370071000 

 0 1 1 0 0 1 0 -1 0.00065610000 0.99435681000 

For Path No#= 10
-----------------

 1 -1 1 0 0 -1 1 0 0.00072900000 0.99508581000 

 0 1 1 0 0 1 1 0 0.00006561000 0.99515142000 

 0 1 1 0 0 0 1 0 0.00059049000 0.99574191000 

 0 0 1 0 0 1 1 0 0.00059049000 0.99633240000 

For Path No#= 11
-----------------

 1 -1 1 0 1 -1 0 0 0.00072900000 0.99706140000 

 0 1 1 0 1 1 0 0 0.00006561000 0.99712701000 

For Path No#= 12
-----------------

 0 0 1 0 1 1 1 0 0.00006561000 0.99719262000 

For Path No#= 13
-----------------

 0 0 1 1 0 1 1 0 0.00006561000 0.99725823000 

For Path No#= 14
-----------------

 0 1 1 0 0 0 1 1 0.00006561000 0.99732384000 

For Path No#= 15
-----------------

 0 1 1 1 0 0 1 0 0.00006561000 0.99738945000 

For Path No#= 16
-----------------

 1 0 1 0 0 0 1 1 0.00006561000 0.99745506000 

For Path No#= 17
-----------------

 1 0 1 0 1 0 1 0 0.00006561000 0.99752067000 

SystemRel =0.99752067000, Total FunCall= 265

total disjoint paths= 29

execution time = 0.28000000000
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Appendix 5A.3: Program Output of k-terminal  
Reliability Expression for Figure 5.1(b).

Results are provided by the program for the MVI method HM-1.

******************DisjointSet*************SDPREL************CUMSU
MREL**********funNextStep called(times)****

 0 -1 -1 0 -1 -1 0 -1 -1 0.72900000000 

For Path No#= 2.
-----------------

 0 0 -1 0 -1 0 1 -1 -1 0.06561000000 0.79461000000 

For Path No#= 3.
-----------------

 0 0 -1 2 0 0 -1 -1 -1 0.06561000000 0.86022000000 

For Path No#= 4.
-----------------

 0 0 -1 1 0 3 0 -1 -1 0.00656100000 0.86678100000 

For Path No#= 5.
-----------------

 0 0 -1 2 4 0 0 -1 -1 0.00656100000 0.87334200000 

For Path No#= 6.
-----------------

 0 2 0 0 -1 0 1 -1 -1 0.00656100000 0.87990300000 

For Path No#= 7.
-----------------

 0 3 0 6 0 0 -1 -1 -1 0.00656100000 0.88646400000 

For Path No#= 8.
-----------------

 0 4 0 1 0 7 0 -1 -1 0.00065610000 0.88712010000 

For Path No#= 9.
-----------------

 0 5 0 6 8 0 0 -1 -1 0.00065610000 0.88777620000 

For Path No#= 10.
-----------------

 0 3 7 0 0 0 1 -1 -1 0.00065610000 0.88843230000 
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For Path No#= 11.
-----------------

 0 -1 -1 0 -1 2 1 0 0 0.00656100000 0.89499330000 

 0 2 6 0 10 0 1 0 0 0.00005904900 0.89505234900 

For Path No#= 12.
-----------------

 6 0 0 0 -1 0 -1 -1 -1 0.06561000000 0.96066234900 

For Path No#= 13.
-----------------

 1 0 0 0 -1 12 0 -1 -1 0.00656100000 0.96722334900 

For Path No#= 14.
-----------------

 7 0 0 12 0 0 -1 -1 -1 0.00656100000 0.97378434900 

For Path No#= 15.
-----------------

 8 0 0 13 0 14 0 -1 -1 0.00065610000 0.97444044900 

For Path No#= 16.
-----------------

 9 0 0 13 15 0 0 -1 -1 0.00065610000 0.97509654900 

For Path No#= 17.
-----------------

 10 0 14 0 0 0 -1 -1 -1 0.00656100000 0.98165754900 

For Path No#= 18.
-----------------

 4 0 15 0 0 17 0 -1 -1 0.00065610000 0.98231364900 

For Path No#= 19.
-----------------

 5 0 16 0 18 0 0 -1 -1 0.00065610000 0.98296974900 

For Path No#= 20.
-----------------

 0 0 -1 11 0 3 4 0 0 0.00059049000 0.98356023900 

For Path No#= 21.
-----------------

 0 0 -1 11 20 0 5 0 0 0.00059049000 0.98415072900 

For Path No#= 22.
-----------------

 0 20 0 11 0 7 8 0 0 0.00005904900 0.98420977800 
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For Path No#= 23.
-----------------

 0 21 0 11 22 0 9 0 0 0.00005904900 0.98426882700 

For Path No#= 24.
-----------------

 11 0 0 0 -1 12 13 0 0 0.00059049000 0.98485931700 

For Path No#= 25.
-----------------

 22 0 0 24 0 14 15 0 0 0.00005904900 0.98491836600 

For Path No#= 26.
-----------------

 23 0 0 24 25 0 16 0 0 0.00005904900 0.98497741500 

For Path No#= 27.
-----------------

 20 0 25 0 0 17 18 0 0 0.00005904900 0.98503646400 

For Path No#= 28.
-----------------

 21 0 26 0 27 0 19 0 0 0.00005904900 0.98509551300 

SystemRel =0.98509551300

total disjoint paths= 29
execution time =0.44000000000

Exercises

5.1.  Given the probabilistic graph G shown in Figure Ex. 5.1, (nodes 
are perfectly reliable). Find the terminal pair (s, f) reliability 
expression.

Figure Ex. 5.1 A network graph.

s f

X1

X4

X5X3

X2

5.2.  Figure Ex. 5.2, shows the graph representing the ARPA network 
configuration in 1971. List all respective minimal paths for this 
network to obtain the terminal pair (S, T) and global reliability 
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expression. Obtain the reliability (unreliability) of the network by 
assuming each link’s reliability as 0.9.

Figure Ex. 5.2 ARPA network configuration in 1971.

S T

5.3.  Find minimal pathsets and minimal cutsets for the networks 
shown below, and obtain the terminal pair (S, T) reliability (unre-
liability) expression considering each link has equal probability of 
success equal to 0.9.

S T
1 2

3
4 5 6

7

8 9
1

2 3

4

5

6 7

8

9 10
S T

c

a d

h

k

f

g

l

b i

S T

j

e 1

2

3

4

5

8

6

7S T

5.4.  Consider the directed graph G, shown in Figure Ex. 5.3, enumer-
ate all minimal path sets, cutsets through visual inspection and 
obtain terminal reliability (unreliability) expression.
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Figure Ex. 5.3 A directed graph G.

S T

a

b

c

d

e

f

g

h

5.5.  For the network shown in Fig. Ex. 5.4, obtain the terminal reliabil-
ity expression for (S,T) pair using Factoring theorem, verify the 
result using SDP approach using pathsets and cutsets.

Figure Ex. 5.4 An example network.

S T

5.6.  Plot the curve for p 0.1:0.99 for terminal and g-terminal reliability 
for the Figure 5.1 (a) and Figure 5.1 (b) and comment.
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In the design of communication networks, reliability has emerged as an 
important parameter due to the fact that failure of these networks affects 
its user adversely. The interest in the area of reliability evaluation is quite 
evident from numerous formulations of network reliability problems and 
articles appearing in the literature for the past couple of decades. This has 
resulted in the evaluation of various methodologies, techniques and algo-
rithms to tackle these problems in an efficient and effective manner. 

Briefly speaking, the two-terminal, k-terminal, and g-terminal reli-
ability analysis techniques for general reliability structures include serial-
reduction/parallel-combination, event-space enumeration, cutset/pathset 
unionizations, and pivotal decomposition using keystone components 
etcetera. Event-space enumeration is a sure-fire method but the enumera-
tive efforts are excessive even for a small structure. An extensive work has 
been done for determining the network reliability measures, viz., two-, g-, 
and k-terminal reliability. This chapter provides a minimal cutset based 
unified framework to evaluate 2-,g-, and k-terminal reliability using MVI-
SDP approach (Mishra & Chaturvedi, 2009).

6
Unified Framework and 
Capacitated Network Reliability

Network Reliability: Measures and Evaluation. Sanjay K. Chaturvedi. 
© 2016 Scrivener Publishing LLC. Published 2016 by John Wiley & Sons, Inc. 
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6.1 The Unified Framework

In earlier Chapters, the methodology and usefulness of the MVI-SDP 
approach have been demonstrated to obtain reliability expression and its 
numerical value in a straight forward manner. However, the expression 
and inference rendered by the technique depends on the type of input pro-
vided to any SDP algorithm. Basically, the SDP technique is used to pro-
vide disjoint form of the terms (success or failure) appearing on its input. 
This is one of the biggest advantages that have been exploited to propose 
a common framework by using a suitable SDP algorithm with a single 
algorithm of enumerating different types of terms (already described in 
Chapter 4 and 5)  suitable for a desired reliability measure. Summarily, 
Figure 5.1 depicts the majority of the methodologies adopted for applying 
the SDP techniques.

Clearly, the key issues in applying the approach are network represen-
tation (simple the better), enumeration of all possibilities of connectivity 
among a specified sets of nodes (depending on the reliability measures, 
viz., 2-, k-, or g- terminal) and making these possibilities disjoint with each 
other to form the reliability expression. Although, from spanning trees, 
one can generate pathsets or k-trees (Rath & Soman, 1993), but for a given 
network, processing of a large number of spanning trees to obtain path-
sets and k-trees is so time consuming that researchers resorted to several 
 specific algorithms rather than a single one. 

The idea of the unified approach is depicted in Figure 6.2, where a single 
algorithm provides all types of minimal cutsets, which are used to evalu-
ate respective reliability measures using MVI-SDP techniques. Note that 

Figure 6.1 A scheme for evaluating reliability measures using SDP approach.
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from the same framework 2-terminal capacitated reliability can also be 
obtained, which is discussed in next section of this Chapter. 

6.2 Capacitated Reliability Measure: An Introduction

In earlier Chapters, it has been stated that a system can be modelled as 
a probabilistic graph G (V, E), which consists of a set of V nodes and a 
set E of links, directed or undirected depending upon the corresponding 
links being one-way (or two-way). Various measures for the reliability 
index for such networks have been proposed by (Colbourn, 1987). The 
most  common quantitative index in reliability analysis of such system is 
‘s-f reliability’. However, the assumption that the network can always carry 
the desired amount of information between (s, f) pairs of nodes whenever 
a connectivity exist (or the links capacities are large enough to sustain the 
transmission of any size) is unrealistic and economically unjustifiable in 
the design and analysis of such networks as the link capacity is a function 
of cost and definitely limited. Each link of the network can have different 
capacity and is required to transmit a specified amount of flow from source 
to the terminal node.

The reliability of such capacity constrained network can be defined as 
the probability that the network has capable of carrying at least, a minimum 

Figure 6.2 An alternative scheme for evaluating network reliability measures using SDP 

approach.
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specified capacity, (W
min

), between (s, f) pair of nodes. This definition can 
also be extended to other flow networks such as power distribution net-
work, transportation network or a water supply network. Such perfor-
mance index is also referred as capacity related reliability (CRR) (Soh & 
Rai, 1991). 

The efficient methodologies in vogue use a priori information of either 
minimal path sets or cutsets of the network. The CRR computation is 
accomplished in two steps, viz.,

i. Enumerate all the valid and irredundant sub-graphs (success 
or failure) of the networks, i.e. irredundant composite path 
(CP) from minimal pathsets or subset cut groups (SCG) 
from the minimal cutsets of the network. These sub-graphs 
formed due to a CP (or Removal of a SCG from the original 
graph) would either allow (or obstruct) the desired amount 
of information flow, say, W

min,
 through the network.

ii. Application of any technique such as sum of the disjoint 
product (SVI or MVI) to obtain the mutually exclusive 
terms of CP or SCG thereafter to obtain CRR or unreliability 
expression.

Efficient approaches do exist for the second step to obtain the mutually 
disjoint terms; however, the first step is still in open area of research and 
has attracted much attention in the recent past. The main thrusts in these 
methods have been on the efficient enumeration of success (or failure) sub 
networks in terms of the nodes and branches of the network for a desired 
capacity of flow. From this information, these methods obtain disjoint 
sets of these terms by employing well-established Sum-of-Disjoint-Product 
(SDP) techniques thereafter. The greatest advantage of this approach is that 
the disjoint terms so obtained would have a one-to-one correspondence 
with the reliability (unreliability) expression.

As noted in earlier Chapters that in most practical system, the number 
of minimal cutsets is much smaller than the number of minimal path-
sets. It would be beneficial to address the CRR evaluation based on mini-
mal cutsets rather than minimal pathsets with regards to computational 
efforts and memory requirements. Additionally, it is easier to handle a 
single minimal cutset at a time rather than handle two or more path-
sets at a time to form a composite path (CP). Therefore, this Chapter 
focuses to enumerate irredundant subsets of minimal cutsets (SCG) of 
a communication network having heterogeneous link capacities, each of 
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which is capable of blocking a flow of specified value, W
min

, and is first 
step in CRR evaluation by using SDP techniques (Chaturvedi, 2007). 
The algorithm described in this Chapter generates the irredundant SCG 
that can be fed as input to any SDP based reliability evaluation algorithm 
discussed in earlier Chapters to obtain the CRR. The generation of such 
terms requires a priori knowledge of minimal cutsets arranged in order of 
increasing order of their flow blocking capacity and within the same value 
of blocking-capacity, a lexicographic ordering. The ordering scheme not 
only helps in reducing effort in enumerations but also help eliminates the 
internal/external redundancies through simple validity checks by pro-
posing two equations. Besides, we describe a subset-generating scheme, 
starting from a certain order onwards to aid the generation of SCG pro-
cess. This scheme is being used to generate next higher order subsets of 
a cut from the unqualified SCG, if any, to reduce the number of subsets 
enumerations. 

The technique (Chaturvedi, 2007) explained in this Chapter is applied 
to several complex networks and a comparison with respect to the num-
ber of subsets generation, number of external/internal redundant subsets 
removal in obtaining irredundant SCG with recent algorithms are pro-
vided to show computational efforts and thus a better performance of the 
approach than the existing ones. Some of the definitions useful to under-
stand the approach for flow networks for a specified W

min
 are provided here 

under:

6.2.1 Some Related Definitions

6.2.1.1 Minimal Cutset and Subset Cut Group 

Minimal cutset for a flow network is a set of links of the network, which 
would obstruct the (s, f) connectivity and would not allow any amount 
of flow from source to destination whereas the minimal subset cut group 
(SCG) is a set of links of the network that would allow (s, f) connectivity 
of the network on the removal of links contained in it but the sub-net-
work will not be able to transmit a specified amount of flow, i.e., it would 
block the desired flow through the network despite the network being (s, f) 
connected. 

6.2.1.2 External Redundant Subset Cut Group

A subset of a minimal cut is said to be external redundant SCG if has already 
been formed by some earlier minimal cutset (s) or its subset cut group.
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6.2.1.3 Internal Redundant Subset Cut Group

A higher order subset of a minimal cutset is said to be internal redundant 
SCG if its lower order subsets would also capable of blocking a required 
amount of flow through the network.

6.2.1.4 Invalid Cut Set Cut Group

The SCG would be called as invalid one, if there exist some or no SCG of 
a minimal cutset that would be capable of obstructing the desired amount 
of flow through the network, those SCG would be called as invalid SCG.

6.2.1.5 Description of the Algorithm

The approach first constructs a cut-matrix from the minimal cut informa-
tion from the minimal cutsets arranged in increasing order of their cut 
capacity.  The number of rows of this matrix will be equal to the number 
of minimal cutsets and number of columns would be the total number of 
links present in the network under study. It then detects single-link SCG, 
if any, from this cut matrix. This single-link SCG is removed from further 
consideration as any supersets of single-link SCG will be a redundant SCG. 
Then, for remaining links contained in each cutset, it is determined that 
whether generation of subsets of the cut (SCG) is required? If so, then what 
order onwards to block the specified amount of flow, W

min
? 

To answer the above questions, an enumeration scheme that enumerates 
a particular order of subsets from a given set is provided. And two simple 
equations, which operate on the cut-matrix to check the validity of a cutset 
(as SCG (as a whole) or it needs subsets enumerations and of what order 
onwards?) are devised. These two equations are further applied to validate 
the irredundant SCG, redundant SCG or invalid SCG. The end product of 
algorithm is irredundant SCG devoid of any redundancy check overheads 
by which most of the existing algorithm suffer.  In the next section, entire 
approach has been presented with an example.

6.3 Algorithm Description 

In the following section, we present some of the preliminaries forming the 
building blocks of the approach by utilizing the following information on 
the network system, viz., ‘s-f’ minimal cutsets, link-capacities, minimum 
specified carrying capacity of the network; and cut capacities and maxi-
mum carrying capacity of the network from the cut information. Let the 
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cutset-matrix, be A and its cut-capacity vector (as a sum of each link capac-
ity contained in a particular cut) for each cutset be, CA. 

6.3.1 Equations: The idea

For a specified flow, W
min

, a minimal cut of the network may itself be a 
SCG or its subsets would form SCG. There could be three possibilities for 
a SCG i.e., (i) it can block the desired flow, W

min
 or (ii) it can be a redun-

dant one (external/internal) or (iii) it cannot block the flow at all (invalid). 
The equation to compute the capacity of the network on removal of some 
links contained in a SCG (or cutset as whole) with a capability of removing 
external redundancy is based on the following idea:

For any ith minimal cut set, ordered in their respective flow-capacity and 
lexicography, a SCG of this cutset would either keep the maximum carry-
ing capacity of the network intact or it would decrease the capacity to a cer-
tain lower level less than the maximum carrying capacity of the network, 
i.e., to the current flow-capacity of the network, N

s
, on removal of such 

links in SCG from the network can be computed by, 

 
N CXs = [ ]min  (6.1)

Where, 

CX CA f j ij k= − ∀ ≤ 
CA

j
 = Capacity of jth element of CA

f
k
 = Sum of capacities of links contained in kth SCG (or cut) of certain 

order.
Equation (6.1) not only provides the exact network flow capacity on 

removing a set of links from the network whose capacity-sum is in f
k
 but 

also helps in identifying external or both external/internal redundant SCG. 
However, working on several examples, it does fail to locate the existence 
of SCG that would be only internally redundant. 

The following equation solves the problem:
A SCG is said to be internally redundant, if any link contained in it 

has its,

 
Capacity value where W Ns  <   = −, min  (6.2)

The value of  provides the margin by which the network capacity can 
be improved through the reinsertions of link(s) from a SCG (note that the 
SCG is nothing but link(s) taken out from the network under consideration). 
And if any reinsertion of link(s) of this set cannot improve the capacity of 
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the network up to, W
min

, implying that this link(s) in this set is redundant 
and the SCG under consideration is an internally redundant SCG. 

6.3.2  Is Cut itself a SCG or does it need its Subsets 
Enumeration?

Equations (6.1) and (6.2) are utilized to ascertain whether a cut itself 
is a SCG or its subsets would form SCG. Obviously, any ith minimal cut 
would produce a current network flow capacity, N

s
, equal to zero occur-

ring only at ith position in Equation (6.1). Thus,  = W
min

. Now, if no link 
in the cut has a capacity <  would imply that the cut itself is a SCG. 
However, if the cut has some link(s) capacities ≤ , then there could be 
a certain sets of links of this cut, which are capable of blocking a flow of 
W

min
. Thus, subsets of this cut will have to be formed to determine those 

SCG. 
Other possibilities, which will force to enumerate subsets of a cut, 

could be:

i. When N
s
 ≠ 0 (< W

min
) but occur only at ith position. 

This situation occurs when the first order SCG from a cut 
have already been identified and removed. However, this 
situation can be dealt with, in a similar manner as is done 
for the cut itself and is explained in the beginning of this 
section. 

ii. When N
s
 ≠ 0 (< W

min
) occurs at ith and at jth position or only at 

jth position(s)(j < i)
This situation occurs when the first order SCG from a cut i 
(i > 1) and/or some of 
the SCG have already been identified and removed, how-
ever, these SCG are externally redundant. Besides, N

s
 < W

min
, 

may occur at more than one positions. 

6.3.3 What Initial Order?

Once it is established that the subsets of a minimal cutset are to be 
formed, the next task is to determine from what order of subsets to be 
enumerated initially to reduce the number of enumerations and valid-
ity checks? The situation arises when a minimal cutset has some link(s) 
capacity ≤  or situation (ii) as stated above. This is dealt with, in the 
following manner:
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For an ith cut:

i. Arrange the capacities of links contained in the cut in 
decreasing order.

ii. Calculate, M = CA
i 
- W

min

iii. Determine the minimum number of links needed to provide 
capacity value > M, by summing their individual capacities.

The number of links so determined would be the initial order of SCG to 
be enumerated, which would be checked for valid/invalid/redundant SCG. 
The remaining SCG, if any, are then carried over for next higher order SCG 
enumerations. 

The following examples are used to explain the above points. Consider 
a network shown in Figure 6.3 with its minimal cutsets and cut capacities 
as given in Table 6.1. The link capacities are shown in brackets along with 
their respective link number. Note that the minimal cutsets are arranged in 
order of their capacity and lexicography.

Example 6.1: Consider the 3rd cut with its link capacities shown in brack-
ets, {1 (10), 2(9)}, CA3 = 19. Let Wmin = 6. Applying Equation (6.1), Ns 
= min [15, 18, 0] = 0, occurs at position, i = 3. From Equation (6.2),  = 6. 
Since there is no link with capacity  ≤ , {1, 2} is itself an irredundant SCG.

Consider 4th cut, {9(9), 10(5), 11(6)}, CA
4
 = 20. Applying Equation (6.1) 

and (6.2); it is seen that provide, N
s
 = min [15, 12, 19, 0] = 0 occurs at posi-

tion i = 4 and  = 6. Since there are links with capacity ≤ , SCG will have 
to be formed.

Figure 6.3 Network of 6 Nodes and 11 Links with C
max

 = 15 units.

4(4)

1(10)

2(9)

6(6)

11(6)

8(8)

7(5)

10(5)

9(9)

3(7)s f5(5)
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Table 6.1 Minimal cutsets for the network of Figure 6.3.

Minimal cutset Cut capacity (∑)

C
1
 = {4, 5, 6} 

C
2
 = {4, 8, 11}

C
3
 = {1, 2}

C
4
 = {9, 10, 11}

C
5
 = {4, 7, 10, 11}

C
6
 = {1, 3, 6}

C
7
 = {2, 3, 4, 5}

C
8
 = {5, 6, 7, 9}

C
9
 = {7, 8, 9, 11}

C
10

 = {5, 6, 8, 9, 10}

C
11

 = {2, 3, 5, 7, 9}

C
12

 = {1, 3, 5, 8, 11}

C
13

 = {1, 3, 5, 7, 10, 11}

C
14

 = {2, 3, 5, 8, 9, 10}

15

18

19

20

20

23

25

25

28

33

35

36

38

43

Example 6.2 case (i): Consider the 8th cut {5 (5), 6 (6), 7 (5), 9(9)}, CA
8
 = 25. 

Let W
min

 = 10. This cut had a first order SCG {6}. The remaining links in the 
cut are {5, 7, 9}. Applying Equation (5.1), i.e., N

s
 = min {10, 18, 19, 11, 15, 

23, 20, 6} = 6 at position i = 8. From Equation (5.2),  = 4. Since there is no 
link ≤ , {5, 7, 9} is itself a SCG.

Example 6.3 case (ii): Consider 12th cut, which had a first order SCG {1}, 
i.e., {3(7), 5(5), 8(8), 11(6)}, CA

12
 = 36 and W

min
 = 10. Applying Equation 

(6.1) yields, N
s
 = 4 occurs at i = 2 (≠ 12). So, M = 26 and link capacity are 

arranged in decreasing order as {8, 7, 6, 5}. All four links are failed to pro-
vide capacity > 26 and so no SCG generation is performed. 

Consider 5th cut, {4(4), 7 (5), 10(5), 11(6)}. For W
min

 = 10, N
s
 = min 

{11, 8, 19, 9, 0} = 0 and N
s
 < W

min
 occurs at three positions, viz., at {2, 4, 5}. 

Therefore, after calculating M = 10 and arranging the capacities in decreas-
ing order {6, 5, 5, 4}, we find that the SCG of minimum order two are to be 
generated and if required, then higher order.

For W
min

 = 6, there is a single position at which N
s
 < W

min 
and M = 14. 

Thus, SCG of third order only are to be generated.
Clearly, this method greatly reduces the number of subsets generation. 

The following example illustrates and proves points.

Example 6.4: Consider i = 11th minimal cutset {2 (9), 3 (7), 5 (5), 7 (5), 9 
(9)} of the network. For, W

min
 = 10 units, Equation (5.1) and (5.2) yields 

Ns < W
min

 at three positions, viz., at {7, 8, 11} with M = 25. By arranging 
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the capacities of links in decreasing order as {9, 9, 7, 5, 5}, the minimum 
number of links needed to get capacity > M is four. It entails the SCGs to 
be generated of order four from this 5th order cutset, viz., {2, 3, 5, 7}, {2, 3, 
5, 9}, {2, 3, 7, 9}, (2, 5, 7, 9 and {3, 5, 7, 9}, respectively. Consider first SCG, 
{2, 3, 5, 7} for which, N

s
 = 4 occurs at 7th position (< i). This clearly implies 

that the SCG is redundant. Validating other SCG in this manner, it is found 
that all SCG are redundant.

In the above examples, the number of SCG of order two and higher 
would be 26, i.e., (25-6), had we started generating SCG of second order 
onwards. However, only five SCG are generated. Obviously, the number of 
SCG and their order would further reduce if the valid SCG were obtained 
at the initial stages. In fact, this happens as the desired capacity, W

min
, 

increases from some minimum value to the maximum carrying capacity 
of the network.

6.3.4  Efficient Enumeration of Particular Order SCG of a 
 Minimal Cut

Once we establish the order of enumeration, we can generate SCG of a 
particular order in the following manner. Let us represent a 6th order cut 
with a set of ordered numbers, S

6
 = {1, 2, 3, 4, 5, 6} to represent the position 

of a link in the cut. Let order of subsets generation required turns out to 
be the third order. Taking the last three terms of S

6
 (equal to the order of 

enumeration needed) provides a term = {4, 5, 6}. From this term, all other 
terms are generated by decreasing each term in a logical manner by noting 
that the first term in this set could decrease up to 1, second up to 2 and 
third up to 3. In other words, the last term of third order in the list would 
be {1, 2, 3}. Table 6.2 explains the enumeration scheme with remarks (a) 
and (b) at relevant points to write a computer program.

It may be noted that by following steps (a) and (b), SCG of any order can 
be generated. In implementation, a mapping is done, i.e., a minimal cutsets 
say {1, 5, 7, 8, 13, 14} is mapped with a set {1, 2, 3, 4, 5, 6} Note that a term 
{2, 3, 4}, for example for a cut {1, 5, 7, 8, 13, 14}, should be interpreted a 
SCG {5, 7, 8}. 

6.3.5 External or Both External/ Internal Redundancy Removal

In Equation (6.1) for the ith cutset, N
s
 < W

min
, may occur at position(s) lesser 

than ith. It implies that some SCG have already been encountered in the 
SCG of some other and already processed (such as SCG generation and 
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Table 6.2 Enumerating SCGs of a particular order from a set of numbers.

S. No. SCGs Remark

1. {4, 5, 6} (a) Decrease first digit up to 1

2. {3, 5, 6}

3. {2, 5, 6}

4. {1, 5, 6} (b) First digit cannot be decreased further. Decrease the next 

digit by one and replace all previous digit one less than 

this value keeping all other digits as they were. 

5. {3, 4, 6} Repeat (a)

6. {2, 4, 6}

7. {1, 4, 6} Repeat (b)

8. {2, 3, 6} Repeat (a)

9. {1, 3, 6} Repeat (b)

10. {1, 2, 6} Repeat (b). Only third digit can be reduced.

11. {3, 4, 5} Repeat (a)

12. {2, 4, 5}

13. {1, 4, 5} Repeat (b)

14. {2, 3, 5} Repeat (a)

15. {1, 3, 5} Repeat (b)

16. {1, 2, 5} Repeat (b). Only third digit can be reduced.

17. {2, 3, 4} Repeat (a)

18. {1, 3, 4} Repeat (b)

19. {1, 2, 4} Repeat (b). Only third digit can be reduced.

20. {1, 2, 3} No digit can be reduced. Stop.

external or internal redundant check etc…) cut (< i).  Thus, the SCG of a 
particular order of this ith cut is generated. On these each SCG, we reapply 
Equation (6.1) and check, if N

s
 < W

min
, occurs at a position(s) lesser than ith, 

if it happens then the SCG would be externally redundant. 
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Example 6.5: Reconsidering i = 11th minimal cutset {2, 3, 5, 7, 9} of the 
network shown in Figure 6.3 and consider the following cases:

Case (i): Let us consider one of its SCG {2, 3, 5, 7} for W
min

 = 10. Equation 
(6.1) for this combination would be: N

s
 = min {10, 18, 10, 20, 15, 16, 4, 15, 

23, 28, 9} = 4 units and N
s
< W

min
 occurs at 7th and 11th positions rather than 

only at 11th position, (< i, i.e., 7 < 11). This implies that although {2, 3, 5 7} 
is a SCG but it is a superset of SCG {2, 3} generated by 7th minimal cutset, 
{2, 3, 4, 5}, processed earlier and is therefore externally redundant. In fact, 
for the 7th minimal cutset, Equation (6.1) for the subset {2, 3} is min [15, 18, 
10, 20, 20, 16, 9] = 9, and minimum occurs at 7th position, which provides 
{2, 3} as a valid SCG and this SCG is not used further to generate its third 
order SCG. Likewise, {2, 5, 7, 9} would be detected as a superset of a valid 
SCG {5, 7, 9} produced by 8th cut set earlier.

Case (ii): Consider 5th minimal cutset, {4, 7, 10, 11}, of the same network 
wherein after the test on this cut, it is found that SCG of order two onwards 
are required to be generated. 

Let us consider the subset (SCG), {4, 7}, for which Equation (6.1) yields, 
min [11, 14, 19, 20, 11] = 11 > W

min
 (Not a valid SCG but possibly adding 

one or more link of the cut to this SCG might give a valid SCG. Thus it is 
be taken to generate next higher order combination). However, for its next 
order combination, {4, 7, 10} and {4, 7, 11}, Equation (6.1) yields:

min [11, 15, 19, 15, 6] = 6 (a valid SCG), and

min [11, 8, 19, 14, 5] = 5 (A redundant SCG). 

In this case the current network flow capacity on removing links 
{4, 7, 11} would be 5 units (can be verified visually). However, N

s
 < W

min
 

has occurred at two positions. Therefore, this SCG is redundant. Basically, 
{4,  7, 11}⊇ {4, 11} or {7, 11}, which are valid and non-redundant SCG. 
In fact, it is a case of both external for {4, 11} and internal redundant for 
{7, 11} SCG detected by Equation (6.1) but can also be removed using 
Equation (6.2).

Similar, situation can occur on a tie between the minimums, i.e., for a 
SCG, {10, 11}, min [15, 12, 19, 9, 9] = 9. Here again, the current network 
flow capacity would be 9 units. However, the set is not a valid SCG as N

s
 < 

W
min

 has occurred at 4th position as well.

6.3.6 Internal Redundancy Removal

Let us again illustrate it through a suitable example by extending the cases.
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Case (iii): Consider the example in Figure 6.4 of (Example and Figure 2 in 
(Soh & Rai, 2005). Only, the network is reproduced for the sake of brevity. 
The maximum network flow capacity is 10 units and let the desired net-
work capacity (W

min
) be 4 units. 

Consider SCG, {1, 2, 7, 11} of the third minimal cutset, {1, 2, 7, 11, 15} 
in the order of its blocking capacity with respective capacities of links as {3, 
1, 4, 3, 1}. Applying Equation (6.1) yields, N

s
 = min {10, 8, 1} = 1 < 4 units, 

which appears to be a non-redundant SCG.
However, capacity of link ‘2’ <  (= 3) and even if link ‘2’ is reinserted 

in the network could only raise the network capacity to 2 units, still less 
than W

min
. So link 2’s presence or absence does not matter for a specified 

W
min

 = 4. In fact, {1, 2, 7, 11}⊇ {1, 7, 11}, and {1, 7, 11} has already been 
detected as an irredundant SCG in an earlier iteration implying {1, 2, 7, 11} 
is an internally redundant SCG.

The foregoing paragraphs have explained the building blocks of the 
approach. Using the above observations and cases, one can easily write 
the various algorithmic steps to follow. The program available at www.
scrivenerpublishing.com contains the implementation of the algorithm in 
Matlab(R).

6.4 The CRR Evaluation Algorithm

Steps:

1. Cut Matrix: Formulate cut matrix, A (of order nC by L), 
wherein rows corresponds to the various minimal cutsets 

Figure 6.4 Network of 7 Nodes and 15 Links.

15 (1)

10 (2)9 (3)

11(3)

6 (5)

7 (4)

5 (2)

8 (2)

4 (4)

2 (1)
13 (9)

14 (2)

3 (8)

s

12 (4)1 (3)

f
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and columns indicate the links contained in that particular 
cutset. Besides, all the non-zero entries in a particular row 
(indicating the presence of links in that cutset) are replaced 
by the capacities of the individual links contained in the cut-
set, i.e.,

A
C

ij
j=
;  if j  branch having capacity C  contained in i  th

j
th ccutsets.

 otherwise.0;

2. Cut-Capacity Vector: Generate a column vector, CA (of order 
nC), which has it ith element as the sum of all the non-zero 
entries in the ith row of cut matrix, A, i.e.,

 

CA C i nCi
j

ij= ∑ ∀ = 1 2,

3. Generating and Validating SCG

a. First Order Minimal SCG

Scan the cut matrix column-wise. Locate the first non-
zero entries, 
C j Lij∀ = 1 2, ,  in each column and compute, N

s
 = min 

[CA
i
 - C

ij
]. 

If N
s
 < W

min
 then link l

ij
 is a valid SCG. Make all column 

entries zero corresponding to link, l
ij
. 

The next step generates higher order SCG and removes 
external/internal redundancies, if any, through validity 
check using Equations (6.1) & (6.2).

b. Higher Order Minimal SCG Generation and Redundancy 
Elimination

Select the rows sequentially (i = 1, 2…nC), which have more 
than one non-zero entries. Find the corresponding links to 
form a SCG

i
. Apply Equations (6.1) on this SCG

i
 to determine 

N
s
 and N

s
 < W

min
 at how many position(s).

i.  N
s
 < W

min
 occurs only at ith position.  Determine if any 

link capacity in SCG
i
 < . If No, store SCG

i
 and go to (b) 

to process next cut.
If yes then go to (iii).

ii.  If N
s
<W

min
 occurs at less than at ith position only or more 

than one positions. Go to (iii). 
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iii.  Determine the order of SCG to enumerate and generate 
SCG of this order. If no order of SCG can be found valid, 
go to (b) to process next cut. Otherwise,

iv. For each SCG, compute N
s
 as,

N
s
 = min [CX], nPos = [CX] < W

min

 = W
min

 – N
s
 

Where, 

CX CA C j ij= − ∀ ≤

CA
j
 = Capacity of jth element of CA

 C
k
 = Sum of capacities of links contained in kth SCG of 

certain order. 
v. External and Internal Redundancy Check

External

If N
s
 < W

min
 and occurred at position i, check for internal 

redundancy. 

If N
s
 has occurred at position (s) < i, then remove it from the 

list of combinations from further consideration.

Internal 

If any link capacity in SCG < , then it is an internal redun-
dant SCG; remove it from further consideration. 

Store and remove the qualified and redundant SCG. 

For remaining SCG, if any, check

If order of SCG < order of the cut, then generate next higher 
order SCG and repeat the step from 3 b (iv). Else, repeat 
from step 3(b) for next cut.

6.5 A Complete Example

Consider the network shown in Figure 6.3. Obviously, the capacity of the 
network, C

max
, is 15 units. Let W

min
 = 10 units, we apply each step of the 

algorithm on this network. The Cut-matrix, A, Cut-capacity vector and 
steps involved are shown side-by-side in Table 6.3.

Therefore, for specified minimum flow requirement, W
min

 = 10 units, 
the 14 non-redundant valid SCG are: {{1}, {6}, {4, 5}, {4, 8}, {4,11}, {8, 11}, 
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Figure 6.5  Sub-graphs of Figure 6.3  after Removal of Respective SCG for  

W
min

 = 10 units
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{9, 10}, {9, 11}, {10, 11}, {7, 11}, {2, 3}, {4, 7, 10}, {5, 7, 9}, {7, 8, 9} out of 
39 SCG generated by the algorithm. The resultant SCG of the network of 
Figure 6.3 have been shown in Figure 6.5 to show that removal of links 
contained in any SCG would render the network that cannot carry a load 
of 10 units, despite being (s, t) connected. 

The valid SCG so obtained are used to evaluate the CRR expression and 
its value for the network using any of SDP approaches (Single or Multi 
variable), as mentioned earlier. The program available at www.scriven-
erpublishing.com contains the Matlab® code from SCG enumeration to 
reliability.

The program can be executed as:

>> flwprg
minmalCutDataFile(withpath)?:fig6.3TCutData.m
Output Data File:fig6.3SCG10Units.m

The SCG generated and stored in the file fig6.3SCG10Units.m can be 
fed to MVI/SVI programs to evaluate the capacitated reliability of the flow 
constrained network graph.

6.6  Experimental Results, Comparison and 
Discussion

Since, the key issue in CRR problem lying in generation of valid SCG from 
subsets of cuts, author makes the performance comparison with reference 
to this with the recent approaches of (Soh & Rai, 2005) (Soh et al., 2006) 
based on-how the valid SCG are generated and from how many subsets. 
To make a comparison among the approaches, the following comparative 
statements can be made:

1. The approach takes an entire cut and tests whether it is a 
valid SCG or its subsets of a particular order onwards to be 
enumerated. However, A1 and SCE proposed by Soh and Rai 
generate the subsets from the links (defined as small links in 
their paper), if any. The difference between the generation 
schemes used in (Soh & Rai, 2005) (Soh et al., 2006)  lies 
in generating subsets from lower to higher (A1) and higher 
to lower orders (SCE). Both the schemes thus suffer from 
overheads of extracting small links from a cut, a test for 
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generating/not generating higher (lower) order SC, super-
sets extraction and removal of redundant subsets.

2. In the proposed approach, obtaining subsets is a single-step 
process utilizing Equations (6.1) and (6.2), respectively. The 
subsets themselves are SCG containing valid/invalid/redun-
dant SCG. In their approach SCG are obtained by the set-
theoretic difference operation performed on the cut by each 
of its subsets. In the process many internal/external redun-
dant terms gets generated.

3. The proposed approach obtains valid SCG using Equations 
(6.1) , (6.2) and cut matrix, which removes external/inter-
nal redundancies and redundant cuts of the network in 
a straightforward manner. In their approach the internal 
redundancies are removed from SC (SCG) to obtain mini-
mal subset cut (MSC) at the time of processing ith cut. When 
MSC for all cuts have been generated, the external redun-
dancies are removed to obtain network minimal subset cut 
(NMSC or valid SCG). 

4. Algorithms proposed by (Soh & Rai, 2005) (Soh et al., 2006) 
employed a theorem (T3) to remove the redundant cutsets 
and to reduce the number of subsets generations. It means 
that whenever a cut is taken for processing, it has to be com-
pared with all NMSC obtained from earlier processing of 
cuts or a valid NMSC will have to be compared for such cuts 
that have satisfied T3 earlier. Besides, there are situations 
where T3 does not provide any benefits, e.g., Network of 
Figure 7 and Network of Figure 9 for various values of W

min
 

of (Soh & Rai, 2005). There is no way a priori to ascertain 
whether T3 would provide benefits or not, thus there remain 
overheads of applying T3.

To compare the performance of the algorithm, we provide a comparison 
of some networks, which are treated as complex in (Soh & Rai, 2005) (Soh 
et al., 2006) . The complex networks are shown in Figure 6.6  and Figure 6.7, 
respectively. The cutsets of these networks are 214 and 7376, respectively. 
The results for various W

min
 are also tabulated in Table 6.4 and Table 6.5 

respectively Column#4 of the Tables shows whether T3 provides the ben-
efits or not. A graphical representation of experimental results of the num-
ber of subsets enumerated by various algorithms (Columns#2,3 and 5 of 
Table 6.4 and Table 6.5 ) with varying W

min
 is also shown in Figure 6.8 and 

Figure 6.9 respectively, for visualizing the efficiency of the algorithm.
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Figure 6.6 Network of 13 Nodes and 22 Links.
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Figure 6.7 Network of 20 Nodes and 30 Links.
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From the results provided (in bold) in Table 6.4 and Table 6.5, it can be 
well-observed that: 

1. If the desired flow remaining less than the minimum capac-
ity branch in the network, all the minimal cut sets would 
be valid cut groups. For these cases, there would not be any 
necessity of generating any subsets. It is the same conclu-
sion that has been drawn by in (Soh & Rai, 2005) (Soh et al., 
2006). However, the proposed algorithm outperforms both 
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Table 6.5 Results and comparison for the network in Figure 6.7.

W
min

Subsets by

Valid SCGA1 SCE

T3/ 

Benefit? By (Chaturvedi, 2007)

1–6 0 0 – 0 7 376

7 16 925 10 196 Y/Y 62 381 7 644

8 68 978 25 395 Y/Y 70 226 8 855

9 198 032 48 906 Y/Y 70 374 7 067

10–12 378 642 70 374 Y/Y 70 374 4 962

13 864 170 244 292 Y/N 223 371 4 675

14 1 114 879 331 881 Y/N 214 568 5 278

15 1 185 575 346 776 Y/N 222 601 4 794

16 1 197 592 3337 25 Y/N 131 241 2 184

17 1 198 806 321 063 Y/N 71 647 1 199

18 1 198 816 311 826 Y/N 51 634  782

19 1 513 832 474 411 Y/N 65 367  624

20 2 075 477 769 937 Y/N 96 971  647

21 2 466 397 967 941 Y/N 124 814  773

22 2 599 331 1 003 

599

Y/N 71 171  479

Table 6.4 Results and comparison for the network in Figure 6.6.

W
min

Subsets by

Valid SCGA1 SCE T3/Benefit? By (Chaturvedi, 2007)

1–3 0 0 – 0 214

4 213 175 Y/Y 1 246 230

5 388 245 Y/Y 1 480 218

6 731 390 Y/Y 1 637 294

7 1 085 620 Y/Y 3 127 298

8 1 842 1 044 Y/Y 4 753 287

9 2 986 1 555 Y/Y 2 411 190

10 5 971 2 756 Y/Y 2 667 246

11 7 880 3 900 Y/Y 1 359 171

12 10 060 5 039 Y/Y 1 707 143

13 17 354 8 462 Y/Y 2 201 173
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A1 and SCE as the W
min

 approaches closer to the maximum 
capacity of the network.

2. At certain points onwards, algorithms A1 and SCE both 
generate more subsets of cuts even after taking the benefits 
of T3 in comparison to the proposed algorithm. Thus, T3 
become overheads after a certain value of capacity require-
ment onwards.

3. Wherever T3 starts providing no benefit, the proposed algo-
rithm generates much less number of subsets in compari-
son to both the algorithms A1 and SCE with T3 application 
becoming redundant. 

4. As the network complexity increases, T3 does not provide 
much benefit. The proposed algorithm starts outperforming 
both A1 and SCE at an earlier stage and in a greater way.

5. From the foregoing points (3) and (4), it can be concluded that 
whenever network complexity increases or wherever T3 is not 
applicable, the proposed algorithm expected to perform bet-
ter than algorithms of in (Soh & Rai, 2005) (Soh et al., 2006).

Summarily, the method definitely efficient as it substantially reduces the 
number of subsets generations, removes the internal/external redundan-
cies simultaneously rather than its removal after generating all cut groups.  
Equation (6.1) can also be used to provide the network capacity on removal 
of certain links from a cut set. Further, as the desired capacity approaches 
closer to the maximum capacity of the network, the number of subsets 
generation drastically decreases in comparison to A1 and SCE wherein 
there are polynomial rise in number of generated subsets. 

Figure 6.8 Comparison of subsets generated for Figure 6.4.
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Figure 6.9 Comparison of subsets generated for Figure 6.5.
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The exercises of this chapter is deliberately left blank to the ingenuity of 
the readers to formulate by taking the several network graphs discussed in 
earlier Chapters of this text.
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This chapter presents two case studies; viz., (i) a Local Area Network 
catering the research and social needs of IIT Kharagpur community at 
various levels and network existed during 2000–2006. Since then due to 
rapidly changing technology, both in terms of software and hardware in 
this area, several advancements have been made to this network. (ii) Water 
Distribution Networks taken from the literature and studied by (Kansal & 
Devi, 2007) (Mishra & Chaturvedi, 2009). Note that the analyses of these 
cases have been conducted based on the text presented in this book; there-
fore, we have omitted much of the details of analyses.

7.1 Case Study-I: IIT Kharagpur LAN Network

The modelling approach is applied on a segment IIT Kharagpur LAN (IIT-
KGP-LAN) layout to evaluate reliability expressions for all node pairs. A 
brief introduction to the LAN layout taken from (Goyal, 2006) is presented 
below.

7
A LAN and Water Distribution 
Network: Case Studies

Network Reliability: Measures and Evaluation. Sanjay K. Chaturvedi. 
© 2016 Scrivener Publishing LLC. Published 2016 by John Wiley & Sons, Inc. 
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IIT Kharagpur campus is spread over a large area of about 2100 acres. It can 
broadly be divided into three areas: a) Academic, b) Hostels and c) Faculty/
Staff residential area. The first two areas were very well connected by the 
LAN. Connectivity to rest of the part was available only through dial up con-
nections to different servers. A segment of the IIT LAN, acting as backbone 
for connecting academic area and hostels, is taken in the present analysis.

As shown in Figure 7.1, the network segment taken in this analysis con-
sists of 45 nodes. There are basically three types of nodes in this layout 
and are named as: a) Foundation Core Switches (FCSW), b) Distribution 
Switches (DSW) and c) Access Switches (ASW). The network has three 
foundation cores, N1, N2 and N3, respectively (nodes 1, 2 and 3 in the  
Figure 7.1). These foundation cores are connected with each other using full 
mesh topology. The foundation core node N1 acts as the centre node of the 
network and is connected to different applications servers, emails servers, 
and different internet connections through firewall. However, these servers/
connections are not considered in present analysis. The distribution switches 
in academic area (node 17 to 25) are located in different departments of 
the institute. These are directly connected to node N1 using tree topology. 
Remaining two foundation cores are called Hostel cores as both of the nodes 
are connected to each distribution switch (node 4 to 16) located in hostels. 
All the distribution switches are further connected to access switches (node 
26 to 45), located at different laboratories in the academic area and different 
sections of the hostels, using tree topology. These access switches are then 

11 12 13 14 15 164 5 6 7 8 9

1

2 3

33 35 36 38 39 40 41 42 43 44 4534
30

31
32

26

28

27

29

23 24 2518 19 20 21 2217

10

Hostel area network

Core network

Academic area network

37

Figure 7.1 A Segment of IIT Kharagpur LAN Layout existed in the Year 2006.
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connected to hubs, which are further connected to computers. This whole 
network provides connectivity to nearly 10,000 computers.

Only foundation cores, distribution/access switches provided for dif-
ferent departments, distribution switches provided for hostels are consid-
ered in present analysis. A brief description of this IIT-KGP-LAN is given 
in Table 7.1. Rest of the network is connected to this network using tree 
topology and it can be included in the analysis without much effort, which 
is discussed later. Further, the reliability of each link was assumed as 0.9, 
otherwise, it entails an exhaustive reliability data analysis to ascertain the 
reliability of each link, which is not the notion of this case study.

7.1.1  k-Terminal and Global Reliability Evaluation for Hostel 
Area of IIT Kharagpur LAN 

The k-and g-terminal reliability expressions for Figure 7.2 have been eval-
uated using the k-trees (k- cutsets), and spanning trees (g- cutsets) as an 
input to (Chaturvedi & Misra, 2002) method. The final results of the k-, and 
g-terminal reliability for hostel area of IIT-KGP-LAN are shown in Table 7.2 
on the basis of number of terms. A comparison of results of the number of 
k-nodes with k-trees (k-cutsets) is shown in Figure 7.3, which clearly indi-
catess that the number of k-trees exponentially increase as the number of 
k-nodes are increased, whereas the number of k-cutsets are increasing very 
slightly with increase in number of k-nodes and it appears to be constant 
for the network having large number of k-nodes. The resultant all terminal 

reliability for hostel area of IIT-KGP-LAN was estimated to = 0.868 745 813.

7.1.2  All Terminal Reliability Evaluation for Academic Area of 
LAN

The Academic area network is a star connected network, therefore its all 
terminal reliability is equal to multiplication of reliability of its links. With 
29 links, its reliability becomes 0.929 = 0.047 101 287.

7.1.3  All Terminal Reliability Evaluation for IIT Kharagpur 
LAN Network

The two networks for Hostel and Academic area do not have any common 
link therefore ATR expressions of these two networks are independent 
of each other and multiplying the two all terminal reliability values gives 
complete network as shown in Figure 7.1 and its all terminal reliability = 
0.040 919 046.
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Table 7.1 Description of nodes in Figure 7.1.

Node# Name Node# Name

1 Academic Core 24 Library DSW

2 Hostel Core – 1 25 Biotechnology ASW

3 Hostel Core – 2 26
Physics & Meteorology Dept. 

ASW

4 JCB Hall DSW 27 Chemistry ASW

5 LLR Hall DSW 28 Geology & Geophysics ASW

6 VS Hall DSW 29
Humanities & Social Sciences 

ASW

7 HB Hall DSW 30 Materials Science ASW

8 BCR Hall DSW 31 Mathematics ASW

9 RK Hall DSW 32
Medical Science & Technology 

ASW

10 RP Hall DSW 33 Metallurgical & Materials ASW

11 Nehru Hall DSW 34 Mining ASW

12 Azad Hall DSW 35
Rubber Technology Center 

ASW

13 Patel Hall DSW 36
Architecture & Regional 

Planning ASW

14 MBM/SN Hall DSW 37
Industrial Engg. & 

Management ASW

15 IG/MT Hall DSW 38 Civil Dept. ASW

16 MS Hall DSW 39
V G School of Management 

ASW

17 Academic DSW 40 Information Technology ASW

18
Computer Science Dept. 

DSW
41

Reliability Engineering Center 

ASW

19
Electronics and Comm. 

Dept. DSW
42

Ocean Engg. & Naval Dept. 

ASW

20 Electrical Dept. DSW 43 Aerospace Engineering ASW

21 Mechanical Dept. DSW 44 Cryogenic Dept. ASW

22 Chemical Dept. DSW 45
Rural Development Center 

ASW

23
Agriculture and Food 

Dept. ASW
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Figure 7.2 Layout of hostel area of IIT Kharagpur LAN.

Figure 7.3 Plot of number of terms required for Reliability Evaluation of Figure 7.1.
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7.2  Case Study-II: Real-Type of Large Size 
Unsaturated Water Distribution Networks

The computation of reliability of a water distribution network requires 
enumerating various combinations of pipelines linking the source with all 
the demand nodes. Consider, a typical case network of 17-node 21-link 
(Figure 7.4 (a) (Kansal & Devi, 2007)), (Mishra & Chaturvedi, 2009) 
unsaturated real-type water distribution network (WDN) represented in 
Figure 7.4. In this network, node ‘1’ is a supply and all others are demand 
nodes. The nodes are connected through ‘21’ links. All nodes in this net-
work are important as these represent either supply or demand nodes. For 
the system to be reliable, no node should remain to be isolated. Table 7.3 
represents the connection (node-links) matrix of the network. Here the 
objective is to determine the reliability in terms of connectivity.

In order to find the system reliability, first step is to identify all the mini-
mal global cutsets of the network. For this purpose, the network is ana-
lyzed by the procedure for the generation of g-minimal cutsets, which for 
this WDN comes out to be 400. It may be noticed that the number of all 
spanning trees generated (Kansal & Kumar, 2000) for the same network 
was 3381, which is very large as compare to minimal global cutsets. After 
the enumeration of all the minimal global cutsets, if the probability of suc-
cess for each link is assumed to be 0.9 (or probability of failure of each link 
is 0.1), then the exact reliability of the network is found to be 0.836 104 
945 452.
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Figure 7.4 A case network of 17 Node 21 Link WDN.
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As a second case we consider a large size WDN of a planned city. The 
network presented in Figure 7.5 consists of 18 nodes connected via 31 links 
(Figure 7.4 (b) (Kansal & Devi, 2007)). The number of minimal global 
 cutsets for this WDN comes out to be 1237, which is still very less as com-
pare to the number of all spanning trees and the exact reliability of the 
network is found to be 0.959 441 084 191.

The global minimal cuts are obtained using the program and reliability 
of the network is obtained by using HM-2 (i.e., nmTst3.m). Following are 
the steps to run the program for Figure 7.5:

  >> genCutset
  adjMatdataFile(withpath)?:18N31La.m
  SourceNode No.? (Assign Highest Number):18
  TotalBranch :?:31
  FOR OUTPUT
  Please enter Output file with full path:18N31La_Out.m
  Evaluating Cuts for g-Terminal Reliability
  >> nmTst3
  Please enter pathSet(BranchWise)file with full dir path:18N31La_out.m
  Branches in the Net:?31
  Nodes in the Net:?18
  Reliability of single branch:?0.1
  FOR OUTPUT
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Figure 7.5 A case network of 18 Node 31 Link WDN.
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  Please enter Output file with full path:18N31La_outHM2.m
  t = 1.003797559706168e+03
  SystemRel =0.04055891581, Total FunCall=10080129
  total disjoint paths= 449794
  >> 1-sysRel
  ans = 0.959441084191438
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The present text was aimed at providing modelling and analysis techniques 
for the evaluation of reliability measures (2-terminal, all-terminal, k-ter-
minal reliability) for systems whose structure can be described in the form 
of a probabilistic graph. The techniques described in this text are used to 
look at networks of tens or hundreds of nodes and could said to be based 
on the exhaustive search algorithms intended to provide information on 
the network connectivity, dependability, and vulnerability-qualitatively or 
quantitatively, and are precursor to furthering the area of network reliabil-
ity. The challenge is to make such algorithms to cope up with networks of 
larger dimensions, by exploiting new and more compact data structures 
and their handing thereof, or even to explore the possibility of approxima-
tions (Bounds on network reliability). 

Many complex physical, technological, social, biological, and economi-
cal systems of today’s real world or even the ubiquitous internet can be rep-
resented in the form of a gigantic network graph and can be characterized 
by a set of nodes connected by directed or undirected arcs. The nodes then 
represent the entities of the system and the arcs represent the relational 
links among the entities. The node entities are homogeneous/heteroge-
neous, static/dynamic, and unpredictable whereas the edges manifolds 
to be wired/wireless, and fixed/arbitrary. In some networks (e.g., mobile 
networks), the nodes are constantly in motion and/or operate on limited 
power, and links can be obstructed by intervening objects resulting into an 
intermittent connectivity.  The complexity of such systems can reach mil-
lions or even billions of vertices. With the appearance of networks of such 
colossal orders and characteristics, a completely new field of research has 
emerged to study the statistical properties of these huge networks, together 
with the study of their robustness to random failures, errors and attacks. 
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These changes of scale necessitate and force the corresponding changes in 
modelling and analysis approaches. Besides, the growing dependence of 
our modern society on technological systems and information networks 
also demand a high degree of reliability of such networks. For example, 
the majority of communication applications from mobile conversations 
to credit card transactions assume the high level of reliability/availabil-
ity. Therefore, the degree to which the system is capable of providing the 
required operation needs to be quantitatively assessed by defining proper 
measurable quantities. Additionally, the quantitative assessment of such 
measures becomes essential in their design, planning, implementation, 
validation, manufacturing, and field operations. In this context, simply 
scaling-up of the approaches dealt in this book and many of the questions 
answered would not be feasible.

To tackle new scenarios in this area, the focus is directed towards to 
understand and use of the large-scale statistical properties of a system 
graph with the aim of predicting the behaviour of network on the basis of 
measured structural properties and the local rules governing individual 
nodes. For instance, if we consider Internet as a very large social connec-
tion network, then one of its amazing properties is so-called small world 
property, i.e., the shortest path length leading from one node to another 
would be, on the average, very small, about 5-6. This is provided by the 
fact that the network node in-degrees (measured by the number of edges 
incident to them) have so-called heavy tail distribution. Simply speaking, 
there are a relatively small number of very heavy “popular” nodes with 
large number of edges and majority of nodes with relative small weight. 

Ad hoc networking is another emerging technology, which allow 
devices to establish communication anytime and anywhere without the 
aid of a centralized infrastructure, due to its flexibility of rapid deploy-
ment in a given geographical region and malleable dynamic topology with 
multi-hop. Apart from the characteristics like ever changing topology, 
scalability, mobility, routing protocols, power management, heterogeneity, 
bandwidth management, interoperability etc. posing challenges to analysts 
and designers, it is yet to be seen that what other types of reliability metric, 
modelling, and analysis approach would be appropriate.

Quite recently, it has become clear for many of the real networks of pres-
ent era (e.g., wireless networks) that their complex structure is a natural 
consequence of the principles of their evolution and of their growth where 
random graph models of Erdős-Rényi  (Erdős & Rényi , 1959) and graph 
theory results based on this would not be feasible at all. The alternative 
could be Geometric Random Graph (GRG) (Penrose, 2003) or Waxman 
(Waxman, 1988) model or evolving graph models as they are capable 
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of capturing the information on topology of the present day’s dynamic 
networks (Albert & Barabasi, Jan 2002), (Hekemat & Mieghem, 2003), 
(Pellegrini et al., 2007) 

Apart from the modelling and analysis issues, there is another area wide 
open is-Design of such networks with some chosen performance(s) crite-
ria-which is affected by various factors such as reliability, cost, choices of 
link, network capacity, available technologies et. Last but not the least, field 
of network reliability is still wide open for novel researches and this quest 
of excellence is continued…
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