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Preface

Tits buildings or simple buildings are combinatorial constructions success-
fully exploited to study various types of groups (classical, simple algebraic,
Kac–Moody). One of historical backgrounds of this concept is Cartan’s
well-known classification of simple Lie groups. We refer to [Abramenko
(1996); Brown (1989); Garrett (1997); Ronan (1989); Scharlau (1995); Tits
(1974)] for various aspects of building theory.

Buildings can be obtained from groups admitting Tits systems. Such
groups form a sufficiently wide class which contains classical groups, reduc-
tive algebraic groups and others. The formal definition of a building is pure
combinatorial and does not depend on a group. In [Tits (1974)] a build-
ing is defined as a simplicial complex with a family of subcomplexes called
apartments and satisfying certain axioms. All apartments are isomorphic
to the simplicial complex obtained from a Coxeter system which defines the
building type.

The vertex set of a building can be labeled by the nodes of the diagram
of the associated Coxeter system. The set of all vertices corresponding
to the same node is called a Grassmannian (more general objects were
investigated in [Pasini (1994)]). This term is motivated by the fact that
every building of type An is isomorphic to the flag complex of an (n + 1)-
dimensional vector space and the Grassmannians of the building can be
identified with the Grassmannians of this vector space. Every building
Grassmannian has a natural structure of a partial linear space (point-line
geometry); this partial linear space is called the Grassmann space associated
with the Grassmannian.

The aim of this book is to present both classical and more recent re-
sults on Grassmannians of buildings of classical types (An, Bn = Cn, Dn).
These results will be formulated in terms of point-line geometry. A large
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portion of them is a part of the area known as characterizations of geomet-
rical transformations under mild hypotheses. Roughly speaking, we want
to show that some mappings of Grassmannians can be extended to map-
pings of the associated buildings. Other results are related with structural
properties of apartments. Also we show that our methods work for some
geometric constructions non-related with buildings — Grassmannians of
infinity-dimensional vector spaces, the sets of conjugate linear involutions
and Grassmannians of exchange spaces.

The book is self-contained and prospective audience includes researchers
working in algebra, combinatorics and geometry, as well as, graduate and
advanced undergraduate students. The requirement to the reader is know-
ledge of basics of algebra and graph theory.
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Chapter 0

Introduction

This short chapter is an informal description of the main objects of the
book — buildings and their Grassmannians. All precise definitions will be
given in Chapter 2.

The simplest buildings are so-called Coxeter complexes — a class of
simplicial complexes defined by Coxeter systems. Let W be a group and
S be a set of generators for W such that each element of S is an involu-
tion. The pair (W, S) is a Coxeter system if the group W has the following
presentation

〈 S : (ss′)m(s,s′) = 1, (s, s′) ∈ S × S, m(s, s′) < ∞ 〉,
where m(s, s′) is the order of ss′. The associated Coxeter complex Σ(W, S)
is the simplicial complex whose simplices can be identified with special
subsets of type w〈X〉 with X ⊂ S and w ∈ W . Every Coxeter system
can be uniquely (up to an isomorphism) reconstructed from its diagram.
The diagram associated with (W, S) is the graph whose vertex set is S

and s, s′ ∈ S are connected by m(s, s′) − 2 edges. In the case when W is
finite, we get a Dynkin diagram without directions. There is a complete
description of all finite Coxeter systems.

Similarly, more complicated buildings can be obtained from the Tits
systems. A Tits system (G, B, N, S) is a structure on a group G consisting
of two subgroups B, N which span G and a set of generators S of the
quotient group

W := N/(B ∩ N);

note that the pair (B, N) is called a BN-pair. By one of the basic properties
of the Tits systems, (W, S) is a Coxeter system. The second remarkable
property is the fact that every subgroup containing B, such subgroups are
called special, can be reconstructed from elements of W and B. Moreover,

1
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there is a natural one-to-one correspondence between special subgroups and
subgroups of W generated by subsets of S. The building associated with
the Tits system (G, B, N, S) is the simplicial complex ∆(G, B, N, S) whose
simplices can be identified with special subsets of type gP , where g ∈ G

and P is a special subgroup. If w ∈ W then for every g, g′ ∈ N belonging
to w and every special subgroup P we have gP = g′P ; denote this special
subset by wP . All such special subsets form a subcomplex Σ isomorphic
to Σ(W, S). The left action of the group G on the building defines the
family of subcomplexes gΣ, g ∈ G. These subcomplexes are isomorphic to
Σ(W, S) and called apartments.

Following [Tits (1974)], we define an abstract building as a simplicial
complex ∆ with a family of subcomplexes called apartments and satisfying
the following axioms:

• all apartments are Coxeter complexes,
• for any two simplices of ∆ there is an apartment containing both of

them,
• a technical condition concerning the existence of “nice” isomorphisms

between apartments.

By this definition, every Coxeter complex is a building with a unique apart-
ment. So, there exists a Coxeter system (W, S) such that all apartments of
∆ are isomorphic to Σ(W, S). The type of the building ∆ is defined by the
diagram of (W, S). We restrict ourselves to so-called thick buildings only;
in such buildings maximal simplices form a sufficiently wide class. Coxeter
complexes do not satisfy this condition.

Let V be an (n+1)-dimensional vector space and ∆(V ) be the flag com-
plex of V , i.e., the simplicial complex consisting of all flags of V . For every
base B of V the subcomplex ΣB which consists of all flags formed by linear
subspaces spanned by subsets of B is called the apartment of ∆(V ) asso-
ciated with the base B. Every ΣB is isomorphic to the simplicial complex
of the Coxeter system (W, S), where W is the group of all permutations
on the set {1, . . . , n + 1} and S is formed by all transpositions (i, i + 1);
the associated diagram is An. The simplicial complex ∆(V ) together with
the family of all such apartments is a building of type An. Note that this
building can be obtained from the Tits system of the group GL(V ).

Let ∆ be a building and (W, S) be the associated Coxeter system. The
vertex set of ∆ can be naturally decomposed in |S| disjoint subsets called
Grassmannians. If the building is associated with a Tits system for a certain
group G then the Grassmannians are the orbits of the left action of G on
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the vertex set. In the general case, this decomposition is related to the fact
that the vertex set of ∆ can be labeled by elements of S and this labeling
is unique up to a permutation on S.

Let G be a Grassmannian of ∆. The intersection of G with an apartment
of ∆ is called an apartment of the Grassmannian G. Two distinct elements
a, b ∈ G are said to be adjacent if there exists a simplex P ∈ ∆ such that
P ∪{a} and P ∪{b} are maximal simplices. In this case, the subset formed
by all c ∈ G such that P ∪ {c} is a maximal simplex will be called the line
joining a and b. So, we get a structure known as a partial linear space or
a point-line geometry, i.e., a set of points together with a family of subsets
called lines and satisfying some simple axioms. This partial linear space is
said to be the Grassmann space associated with G.

The term “Grassmannian” is motivated by the following example. Let V

be an (n+1)-dimensional vector space. The Grassmannians of the building
∆(V ) are the usual Grassmannians Gk(V ), k ∈ {1, . . . , n}, formed by all
k-dimensional linear subspaces of V . The Grassmann spaces corresponding
to G1(V ) and Gn(V ) are the projective space associated with V and the
dual projective space, respectively. In particular, any two distinct elements
of these Grassmannians are adjacent. The Grassmann space of Gk(V ),
1 < k < n, is more complicated. It contains non-adjacent elements. Note
that our adjacency relation coincides with the classical adjacency relation
introduced in [Chow (1949)]: two elements of Gk(V ) are adjacent if and
only if their intersection is (k − 1)-dimensional.

Recall that a building is spherical if the associated Coxeter system is
finite, and it is irreducible if the diagram is connected. Irreducible thick
spherical buildings of rank ≥ 3 were classified in [Tits (1974)]. There are
precisely the following seven types of such buildings:

An

Bn = Cn

Dn
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E6

E7

E8

F4

The first three types are called classical, the remaining four are known
as exceptional. Every thick building of type An (n ≥ 3) is isomorphic
to the flag complex of a certain (n + 1)-dimensional vector space. All
thick buildings of types Cn and Dn can be obtained from polar spaces, see
Chapter 4. Exceptional buildings are related with so-called metasymplectic
and parapolar spaces, see [Cohen (1995)].

In the present book we will consider Grassmannians associated with
buildings of classical types only. Some information concerning Grassman-
nians of exceptional buildings can be found in [Cohen (1995)].

Investigation of building Grassmannians goes back to [Chow (1949);
Dieudonné 2 (1951)] (see also Chapter III in [Dieudonné (1971)]) and is
continued in [Cameron (1982)]. Currently, there are several research direc-
tions:

• axiomatic characterizations of Grassmann spaces, a survey can be found
in [Cohen (1995)];

• embeddings in projective spaces, hyperplanes and generalized rank, see
[Cooperstein (2003)] for a survey;

• subspaces of Grassmann spaces [Cooperstein, Kasikova and Shult
(2005); Cooperstein (2005, 2007)];

• apartment properties [Blok and Brouwer (1998); Cooperstein and Shult
(1997); Cooperstein, Kasikova and Shult (2005); Pankov 3 (2007)];
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• characterizations of geometrical transformations of Grassmannians un-
der “mild hypotheses” [Havlicek (1995); Huang (1998, 2000, 2001);
Huang and Kreuzer (1995); Kreuzer (1998); Pankov, Prażmowski and
Żynel (2006)] and the author’s papers refereed in the book.

We describe all apartments preserving mappings of Grassmannians asso-
ciated with buildings of classical types and collineations (isomorphisms)
of the corresponding Grassmann spaces. Actually, the Fundamental Theo-
rem of Projective Geometry and classical Chow’s theorems [Chow (1949)]
are partial cases of our results. The methods are based on deep structural
properties of apartments (connections between the adjacency relation and
apartments). Roughly speaking, we work in the latter two directions men-
tioned above. Also, we establish similar results for some geometric construc-
tions non-related with buildings, for example, Grassmannians of infinite-
dimensional vector spaces and the sets of conjugate linear involutions. One
of them joins Chow’s theorem with Dieudonné–Rickart’s classification of
automorphisms of the linear group [Dieudonné 1 (1951); Rickart (1950)].
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Chapter 1

Linear Algebra and Projective
Geometry

In Sections 1.1 and 1.2 we consider vector spaces over division rings and
the associated projective spaces; it must be pointed out that vector spaces
are not assumed to be finite-dimensional.

The main objects of the chapter are so-called semilinear mappings of
vector spaces and the mappings of Grassmannians induced by them (Section
1.3).

By the Fundamental Theorem of Projective Geometry, every
collineation (isomorphism) of projective spaces is induced by a semilin-
ear isomorphism of the associated vector spaces. In Section 1.4 we prove
a more general result known as Faure–Frölicher–Havlicek’s version of the
Fundamental Theorem.

The second result of Section 1.4 is Mackey’s theorem concerning isomor-
phisms of the lattices formed by closed linear subspaces of normed vector
spaces (real and complex). This theorem states that all such isomorphisms
are induced by linear and conjugate-linear homeomorphisms of the associ-
ated normed spaces (the second possibility is realized only in the complex
case).

The Fundamental Theorem of Projective Geometry can be reformu-
lated in the following form [Baer (1952)]: every isomorphism of the lattices
formed by linear subspaces of vector spaces is induced by a semilinear iso-
morphism. By this reason, Mackey’s result is interpreted as the Fundamen-
tal Theorem for normed spaces.

In Section 1.5 we recall basic facts on reflexive sesquilinear forms.

7
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1.1 Vector spaces

1.1.1 Division rings

Let R be a non-empty set with additive and multiplicative operations +
and · satisfying the following conditions:

• (R, +) is an Abelian group (the identity element is denoted by 0),
• (R \ {0}, ·) is a group (the identity element is denoted by 1).

If the distributive axioms

a(b + c) = ab + ac and (b + c)a = ba + ca ∀ a, b, c ∈ R

hold then we say that (R, +, ·) is a division ring. A division ring is called
a field if the multiplicative operation is commutative.

Exercise 1.1. Show that 0a = a0 = 0 and −1a = −a for every a ∈ R.

For every division ring R we define the opposite (or dual ) division ring
R∗ as follows: R and R∗ have the same set of elements and the same additive
operation, the multiplicative operation ∗ on R∗ is defined by the formula

a ∗ b = ba.

It is clear that R∗∗ coincides with R, and we have R∗ = R only in the case
when R is a field.

The following result is well-known; see, for example, Theorem 1.14 in
[Artin (1957)].

Theorem 1.1 (J. H. M. Wedderburn). Every finite division ring is a
field.

Let R and R′ be division rings. We say that a mapping σ : R → R′ is
a homomorphism if

σ(a + b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b)

for all a, b ∈ R. Bijective homomorphisms are called isomorphisms.

Exercise 1.2. Show that the equalities

σ(0) = 0, σ(1) = 1, σ(−1) = −1

hold for every non-zero homomorphism σ : R → R′.

Proposition 1.1. Every non-zero homomorphism σ : R → R′ is injective.
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Proof. If σ : R → R′ is not injective then σ(a) = 0 for a certain non-zero
element a ∈ R and we have

σ(b) = σ(aa−1b) = σ(a)σ(a−1b) = 0
for every b ∈ R. �

An isomorphism of a division ring to itself is said to be an automorphism.
The group formed by all automorphisms of R is denoted by Aut(R). An iso-
morphism of R to the opposite division ring R∗ is called anti-automorphism
of R (if R is a field then every anti-automorphism is an automorphism).

Proposition 1.2. Every non-zero homomorphism of R to itself is identity.
In particular, Aut(R) = {1R}.
Proof. Let σ : R → R be a homomorphism. For every n ∈ N we have

n = 1 + · · · + 1︸ ︷︷ ︸
n

,

hence
σ(n) = σ(1) + · · · + σ(1)︸ ︷︷ ︸

n

= 1 + · · · + 1︸ ︷︷ ︸
n

= n.

This implies that σ(m) = m for all m ∈ Z. Since σ preserves division, the
restriction of σ to Q is identity.

For every real number a > 0 there exists b ∈ R such that a = b2, and
we have

σ(a) = σ(b)2 > 0.

This means that σ is order preserving: if a > b then a − b > 0 and
σ(a) − σ(b) = σ(a − b) > 0

which implies that σ(a) > σ(b).
Every a ∈ R \ Q corresponds to unique section of rational numbers

{ q ∈ Q : q < a }, { r ∈ Q : a < r }.
Since σ is order preserving, it transfers this section in the section corre-
sponding to σ(a). On the other hand, σ sends every section to itself (its
restriction to Q is identity) and we get σ(a) = a. �

The group Aut(C) is not trivial. It contains, for example, the complex
conjugate mapping z → z̄.

Exercise 1.3. Show that every non-zero continuous homomorphism of C

to itself is identity or coincides with the complex conjugate mapping. Hint:
the restriction of every non-zero homomorphism σ : C → C to Q is identity
and σ(i) = ±i.



July 2, 2010 14:9 World Scientific Book - 9in x 6in ClassicalBuilding

10 Grassmannians of Classical Buildings

There are a lot of other automorphisms of C, but they are non-
continuous; moreover, there exist non-surjective homomorphisms of C to
itself.

Example 1.1 (Finite fields). Every finite field coincides with a certain
Galois’ field GF(p, r) (p is a prime number). If r = 1 then we get Zp and
the group of automorphisms is trivial. In the general case, our field consists
of pr elements; its multiplicative group is a cyclic group of order pr − 1;
the group of automorphisms is a cyclic group of order r generated by the
automorphism a → ap.

Example 1.2 (The division ring of real quaternions). Consider the
division ring H formed by the real quaternion numbers a + bi + cj + dk.
This is a 4-dimensional vector space over R (the canonical base consists of
1, i, j, k) with the multiplicative operation defined by the following condi-
tions

i2 = j2 = k2 = −1,

ij = k, jk = i, ki = j.

This division ring is non-commutative (for example, ik = i2j = −j = −ki).
Every automorphism of H is inner (x → qxq−1 for a certain q �= 0). The
conjugate mapping

a + bi + cj + dk → a − bi − cj − dk

is an anti-automorphism.

1.1.2 Vector spaces over division rings

Let R be a division ring and (V, +) be an Abelian group (the identity
element is 0). Let also

R × V → V, (a, x) → ax

be a left action of R on V satisfying the following conditions:

(1) 1x = x for all x ∈ V ,
(2) a(bx) = (ab)x for all a, b ∈ R and x ∈ V .

If the distributive axioms
a(x + y) = ax + ay and (a + b)x = ax + bx ∀ a, b ∈ R, x, y ∈ V

hold then we say that V is a left vector space over R. Elements of V and
R are called vectors and scalars, respectively.

Similarly, every right action of R on V satisfying the conditions
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(3) x1 = x for all x ∈ V ,
(4) (xb)a = x(ba) for all a, b ∈ R and x ∈ V

defines a right vector space over R if the corresponding distributive axioms
hold. Clearly, this action can be considered as a left action, then (4) must
be rewritten as

a(bx) = (ba)x or a(bx) = (a ∗ b)x,

where ∗ is the multiplicative operation of the opposite division ring.
Therefore, every right vector space over R can be presented as a left

vector space over R∗, and conversely. In what follows we restrict ourselves
to left vector spaces only.

Let V and V ′ be left vector spaces over a division ring R. A mapping
l : V → V ′ is said to be linear if

l(x + y) = l(x) + l(y) and l(ax) = al(x)

for all x, y ∈ V and a ∈ R. We say that the vector spaces V and V ′ are
isomorphic if there exists a linear bijection of V to V ′. Linear bijections
are called linear isomorphisms. The group of all linear automorphisms of
V (linear isomorphisms of V to itself) is denoted by GL(V ).

A subset S ⊂ V is a linear subspace of V if

ax + by ∈ S

for all x, y ∈ S and a, b ∈ R. By this definition, {0} and V are linear
subspaces. The intersection of any collection of linear subspaces is a linear
subspace. For every linear mapping l : V → V ′ all vectors x ∈ V satisfying
l(x) = 0 form a linear subspace of V ; it is called the kernel of l and denoted
by Ker l.

For every subset X ⊂ V the intersection of all linear subspaces contain-
ing X is called the linear subspace spanned by X and denoted by 〈X〉; this
subspace consists of all linear combinations

a1x1 + · · · + akxk,

where x1, . . . , xk ∈ X and a1, . . . , ak ∈ R. A subset X ⊂ V is said to be
independent if the linear subspace 〈X〉 is not spanned by a proper subset
of X , in other words, for any distinct non-zero vectors x1, . . . , xk ∈ X the
equality

a1x1 + · · · + akxk = 0

holds only in the case when all scalars a1, . . . , ak are zero.
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An independent subset X ⊂ V is called a base of V if 〈X〉 coincides
with V . Similarly, we define bases of linear subspaces. Every independent
subset X ⊂ V is a base of the linear subspace 〈X〉.
Proposition 1.3. Every independent subset X ⊂ V can be extended to a
base of V ; in particular, bases of V exist.

Proof. Let X be the set of all independent subsets containing X . This set
is non-empty (X ∈ X) and it is partially ordered by the inclusion relation.
If Y is a linearly ordered subset of X (for any Y, Y ′ ∈ Y we have Y ⊂ Y ′

or Y ′ ⊂ Y ) then the subset

Z :=
⋃

Y ∈Y

Y

is independent. Indeed, suppose that

a1x1 + · · · + akxk = 0

holds for non-zero vectors x1, . . . , xk ∈ Z and non-zero scalars a1, . . . , ak;
consider Y1, . . . , Yk ∈ Y containing x1, . . . , xk, respectively; one of these
subsets contains the others and is not independent, a contradiction. By
Zorn lemma, the set X has maximal elements. Every maximal element of
X is a base of V containing the subset X . �

Theorem 1.2. Any two bases of a vector space have the same cardinality
(possible infinite).

Proof. See Section II.2 in [Baer (1952)]. �

The cardinality of bases of V is called the dimension of V and denoted
by dimV . Since every linear subspace can be considered as a vector space,
the dimension of linear subspaces also is defined.

Every linear isomorphism maps independent subsets to independent
subsets and bases to bases; thus isomorphic vector spaces have the same di-
mension. Every one-to-one correspondence between bases of V and V ′ can
be uniquely extended to a linear isomorphism between these vector spaces.

Proposition 1.4. For any two linear subspaces S, U ⊂ V there exists a
base of V such that S and U are spanned by subsets of this base.

Proof. Suppose that S ∩ U �= 0. We take any base X of S ∩ U and
extend it to bases BS and BU of S and U , respectively. Show that the
subset BS ∪ BU is independent (this is trivial if one of the subspaces is
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contained in the other, and we consider the case when S and U are not
incident).

If the statement fails then there exist distinct vectors
x1, . . . , xk ∈ BS , y1, . . . , ym ∈ BU

such that
k∑

i=1

aixi +
m∑

j=1

bjyj = 0

and all scalars ai, bj are non-zero. Then
k∑

i=1

aixi = −
m∑

j=1

bjyj ∈ S ∩ U.

Since BS and BU both are independent, all xi and yj belong to X = BS∩BU

which contradicts the fact that X is independent.
By Proposition 1.3, the subset BS ∪ BU can be extended to a base of

V . This base is as required.
In the case when S ∩ U = 0, the proof is similar. We leave it as an

exercise for the reader. �
For any two subsets X, Y ⊂ V we define

X + Y := { x + y : x ∈ X, y ∈ Y }.
If X, Y are linear subspaces then the sum X + Y coincides with the linear
subspace 〈X, Y 〉.

Let S be a linear subspace of V . The associated quotient vector space
V/S is formed by all subsets x + S (we have x + S = y + S if x − y ∈ S)
and the vector space operations on V/S are defined as follows

(x + S) + (y + S) := (x + y) + S, a(x + S) := ax + S.

A linear subspace U is called a complement of S if
S ∩ U = 0 and S + U = V ;

in this case, U is isomorphic to V/S (the mapping x → x + S is a linear
isomorphism). Therefore, all complements of S have the same dimension
called the codimension of S and denoted by codimS.

Proposition 1.5. Let S and U be linear subspaces of V . If these subspaces
both are finite-dimensional then

dim(S + U) = dimS + dim U − dim(S ∩ U).
In the case when at least one of these subspaces is infinite-dimensional, we
have

dim(S + U) = max{ dimS, dimU }.
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This statement is a simple consequence of Proposition 1.4 and the fol-
lowing remark.

Remark 1.1. Recall that the cardinality of a set X is denoted by |X |. The
sum of two cardinalities α and β is the cardinality |X ∪ Y |, where X and
Y are disjoint sets of cardinalities α and β (respectively). If α ≤ β and β

is infinite then α + β = β.

For every linear subspace S ⊂ V we have

dimS + codim S = dim V ;

in the infinite-dimensional case, this formula means that

max{ dimS, codimS } = dim V.

Denote by G(V ) the set of all linear subspaces of V . The Grassmannians of
V can be defined as the orbits of the action of the group GL(V ) on G(V );
in what follows we do not consider two trivial Grassmannians formed by 0
and V , respectively. If dimV = n is finite then for every k ∈ {1, . . . , n− 1}
we write Gk(V ) for the Grassmannian consisting of all k-dimensional linear
subspaces of V . In the case when dim V = α is infinite, there are the
following three types of Grassmannians:

• β < α and Gβ(V ) consists of all linear subspaces of dimension β (the
codimension of these linear subspaces is α),

• β < α and Gβ(V ) consists of all linear subspaces of codimension β (the
dimension of these linear subspaces is α),

• Gα(V ) = Gα(V ) consists of all linear subspaces whose dimension and
codimension is α.

1.1.3 Dual vector space

Let V be a left vector space over a division ring R. Linear mappings of
V to R are called linear functionals. We define the sum v + w of linear
functionals v and w as follows

(v + w)(x) := v(x) + w(x) ∀ x ∈ V ;

and for any linear functional v and any scalar a ∈ R the linear functional
va is defined by the formula

(va)(x) := v(x)a ∀ x ∈ V.
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The set of all linear functionals together with the operations defined above
is a right vector space other R. The associated left vector space over R∗

will be denoted by V ∗ and called the dual vector space.
Let B = {xi}i∈I (|I| = dim V ) be a base of V . There is a one-to-

one correspondence between linear functionals and mappings of the base B

to R, since every linear functional can be uniquely reconstructed from its
restriction to B. Denote by B∗ the subset formed by the linear functionals
x∗

i , i ∈ I, satisfying

x∗
i (xj) = δij

(δij is Kroneker symbol). This subset is independent.
If dimV = n < ∞ then for every x∗ ∈ V ∗ we have

x∗ =
n∑

i=1

x∗(xi)x∗
i .

Thus B∗ is a base of V ∗ and dimV = dimV ∗. The base B∗ will be called
dual to B.

If V is infinite-dimensional then B∗ is not a base of V ∗. Indeed, a
linear functional cannot be presented as a linear combination of elements
from B∗ if it takes non-zero values on an infinite subset of B. In this case,
dimV < dimV ∗ (see Section II.3 in [Baer (1952)] for the details).

Lemma 1.1. The kernel of every non-zero linear functional is a linear
subspace of codimension 1.

Proof. Let v ∈ V ∗ \ {0}. If the codimension of Ker v is greater than
1 then consider S ∈ G2(V ) contained in a complement of Ker v. There
exist linearly independent vectors x, y ∈ S satisfying v(x) = v(y). Then
v(x − y) = 0 which contradicts the fact that S intersects Ker v precisely in
0. �

Exercise 1.4. Show that

codim(S ∩ U) ≤ codimU + 1

for every linear subspace U ⊂ V and every linear subspace S ⊂ V of
codimension 1. As a consequence establish that

codim(S1 ∩ · · · ∩ Sk) ≤ k

for any linear subspaces S1, . . . , Sk ⊂ V of codimension 1.
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For every subset X ⊂ V the linear subspace
X0 := { v ∈ V ∗ : v(x) = 0 ∀ x ∈ X }

is known as the annihilator of X . Similarly, for every Y ⊂ V ∗ the linear
subspace

Y 0 := { y ∈ V : w(y) = 0 ∀ w ∈ Y }
is called the annihilator of Y . If S and U are linear subspaces of V or linear
subspaces of V ∗ then S ⊂ U implies that U0 ⊂ S0.

Proposition 1.6. If S ⊂ V is a linear subspace of finite codimension then
dimS0 = codimS and S00 = S. Similarly, if U is a finite-dimensional
linear subspace of V ∗ then codimU0 = dim U and U00 = U .

Proof. Suppose that codim S = k < ∞. Consider a base B = {xi}i∈I

of V such that S is spanned by a subset of B. Let B∗ be the subset of
V ∗ which consists of all linear functionals x∗

i , i ∈ I, satisfying x∗
i (xj) = δij .

There are precisely k distinct vectors from B which do not belong to S,
denote them by xi1 , . . . , xik

. The restriction of v ∈ S0 to B can take non-
zero values only on these vectors. Therefore, x∗

i1
, . . . , x∗

ik
form a base of S0

and dim S0 = k. Since S coincides with the intersection of the kernels of
x∗

i1 , . . . , x
∗
ik

, we have S00 = S.
Let {v1, . . . , vk} be a base of U . Then U0 is the intersection of the

kernels of v1, . . . , vk and, by the second part of Exercise 1.4, its codimension
is equal to m ≤ k. Since dim U00 = m (it was established above), the
inclusion U ⊂ U00 implies that U00 = U and m = k. �

Denote by Gfin(V ) and Gfin(V ) the sets of all proper linear subspaces of
V with finite dimension and finite codimension, respectively. If V is finite-
dimensional then Gfin(V ) and Gfin(V ) both coincide with G(V ). Proposition
1.6 gives the following.

Corollary 1.1. The annihilator mapping S → S0 is a bijection of Gfin(V )
to Gfin(V ∗). This bijection reverses inclusions:

S ⊂ U ⇐⇒ U0 ⊂ S0.

If dimV = n < ∞ then the annihilator mapping transfers Gk(V ) to
Gn−k(V ∗) for every k ∈ {1, . . . , n − 1}. In the infinite-dimensional case, it
sends Gk(V ) to Gk(V ∗) for every natural k.

Every vector x ∈ V defines the linear functional v → v(x) of V ∗ (an
element of V ∗∗). If V is finite-dimensional then this correspondence is a
linear isomorphism between V and V ∗∗. In the finite-dimensional case, we
will identify the second dual vector space V ∗∗ with V .



July 2, 2010 14:9 World Scientific Book - 9in x 6in ClassicalBuilding

Linear Algebra and Projective Geometry 17

1.2 Projective spaces

In the first subsection we introduce the point-line geometry language which
will be exploited throughout the book. Projective spaces over division rings
will be considered in the second subsection.

1.2.1 Linear and partial linear spaces

Let P be a non-empty set and L be a set consisting of proper subsets of P .
Elements of P and L will be called points and lines, respectively. Two or
more points are said to be collinear if there is a line containing them. We
say that the pair Π = (P,L) is a partial linear space if the following axioms
hold:

(1) each line contains at least two points and for every point there is a line
containing it;

(2) for any two distinct collinear points p and q there is precisely one line
containing them, this line will be denoted by p q.

A linear space is a partial linear space, where any two points are collinear.
In what follows we will always suppose that a partial linear space contains
more than one line.

We say that partial linear spaces Π = (P,L) and Π′ = (P ′,L′) are
isomorphic if there exists a bijection f : P → P ′ such that f(L) = L′; this
bijection is called a collineaton of Π to Π′. A bijection of P to P ′ is said
to be a semicollineaton of Π to Π′ if it maps lines to subsets of lines. An
injection of P to P ′ sending lines to subsets of lines is called an embedding
of Π in Π′ if distinct lines go to subsets of distinct lines.

Let Π = (P,L) be a partial linear space. For every subset X ⊂ P we
define

LX := { L ∩ X : L ∈ L, |L ∩ X | ≥ 2 };
the pair (X,LX) is called the restriction of the partial linear space Π to the
subset X .

The collinearity graph of Π is the graph whose vertex set is P and whose
edges are pairs of distinct collinear points. Our partial linear space is called
connected if the collinearity graph is connected. In a connected graph the
distance d(v, w) between two vertices v and w is the smallest number i such
that there is a path of length i connecting v and w; every path between v

and w consisting of d(v, w) edges is said to be a geodesic. If Π is connected
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then we define the distance between two points of Π as the distance between
the corresponding vertices of the collinearity graph.

We say that S ⊂ P is a subspace of Π if for any two distinct collinear
points p, q ∈ S the line p q is contained in S. By this definition, every
set of mutually non-collinear points is a subspace. A subspace is said to
be singular if any two points of this subspace are collinear (the empty set
and one-point subspaces are singular). The intersection of any collection of
subspaces is a subspace; moreover, it is a singular subspace if all subspaces
from the collection are singular.

Exercise 1.5. Show that maximal singular subspaces exist and every sin-
gular subspace is contained in a certain maximal singular subspace. Hint:
use Zorn lemma.

The minimal subspace containing a subset X ⊂ P (the intersection of
all subspaces containing X) will be called the subspace spanned by X and
denoted by 〈X〉. In the general case, the subspace spanned by a clique
of the collinearity graph (a subset consisting of mutually collinear points)
does not need to be singular. We say that a subset X ⊂ P is independent
if the subspace 〈X〉 is not spanned by a proper subspace of X .

Let S be a subspace of Π (possible S = P ). An independent subset
X ⊂ S is said to be a base of S if 〈X〉 = S. We define the dimension of
S as the smallest cardinality α such that S has a base of cardinality α + 1
(if the cardinality α is infinite then α + 1 = α). The dimensions of the
empty set and one-point subspaces are equal to −1 and 0 (respectively),
lines are 1-dimensional subspaces. Two-dimensional linear spaces and two-
dimensional singular subspaces of partial linear spaces are called planes.

A triple of mutually collinear points is said to be a triangle if these
points are not collinear (in other words, the points span a plane).

A proper subspace of a partial linear space is called a hyperplane if it
has a non-empty intersection with every line (it is clear that a hyperplane
contains a line or intersects it precisely in a point).

Recall that in a projective plane each line contains at least three points
and any two distinct lines have a non-empty intersection (by the second
axiom of partial linear spaces, this intersection is a point). A projective
space is a linear space where every line contains at least three points and
the following axiom holds: if a, b, c, d are distinct points and the lines ab

and cd have a non-empty intersection then the lines ac and bd have a non-
empty intersection. Projective spaces can be also defined as linear spaces
where all planes are projective.
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1.2.2 Projective spaces over division rings

Let V be a left vector space over a division ring and dimV ≥ 3 (the
dimension of V is not assumed to be finite). For every S ∈ G2(V ) the
subset consisting of all 1-dimensional linear subspaces of S, in other words,
G1(S) is called a line of G1(V ). Denote by L1(V ) the set of all such lines
and consider the pair

ΠV := (G1(V ),L1(V )).

For any distinct P1, P2 ∈ G1(V ) there is the unique line G1(P1 + P2) con-
taining them. Every line G1(S) contains at least three points (if vectors x, y

form a base of S then 〈x〉, 〈y〉, 〈x+y〉 are three distinct points on the line).
Thus ΠV is a linear space. In the case when dim V = 3, any two lines have
a non-empty intersection and ΠV is a projective plane.

If P1, P2, P3, P4 are distinct points of ΠV and P1 +P2 has a non-zero in-
tersection with P3 +P4 then all Pi are contained in a certain 3-dimensional
linear subspace; in particular, P1 + P3 and P2 + P4 have a non-zero inter-
section. Therefore, ΠV is a projective space.

Exercise 1.6. Show that S ⊂ G1(V ) is a subspace of ΠV if and only if
there exists a linear subspace S ⊂ V such that S = G1(S).

Let X be a subset of G1(V ). For every P ∈ X we choose a non-zero
vector xP ∈ P and consider the set X := {xP }P∈X . It follows from Exercise
1.6 that X is an independent subset of ΠV if and only if X is an independent
subset of V . Hence X is a base of the subspace G1(S), S ∈ G(V ) if and
only if X is a base of the linear subspace S. Thus the dimension of G1(S)
is equal to dim S − 1; in particular, ΠV is a projective space of dimension
dimV − 1.

Theorem 1.3. If the dimension of a projective space is not less than 3
(the dimension can be infinite) then this projective space is isomorphic to
the projective space associated with a certain vector space.

Proof. See Chapter VII in [Baer (1952)]. �

Remark 1.2. For projective planes this fails. All projective spaces over
division rings satisfy Desargues’ axiom; but there exist non-Desarguesian
projective planes.

Denote by P ∗(V ) the Grassmannian consisting of all linear subspaces
of codimension 1 in V (in other words, P ∗(V ) coincides with Gn−1(V ) or
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G1(V ) if V is n-dimensional or infinite-dimensional, respectively). A subset
X ⊂ P ∗(V ) is said to be a line if there is a linear subspace S ⊂ V of
codimension 2 such that X consists of all elements of P ∗(V ) containing S.
Let L∗(V ) be the set of all such lines. An easy verification shows that

Π∗
V := (P ∗(V ),L∗(V ))

is a linear space; moreover, it is isomorphic to ΠV ∗ by the annihilator
mapping (Corollary 1.1). The projective space Π∗

V is called dual to ΠV .

Exercise 1.7. Show that for every finite-dimensional subspace S of Π∗
V

there exists S ∈ Gfin(V ) such that S consists of all elements of P ∗(V )
containing S. Hint: use Corollary 1.1.

1.3 Semilinear mappings

Throughout the section we suppose that V and V ′ are left vector spaces
over division rings R and R′, respectively.

1.3.1 Definitions

We say that a mapping l : V → V ′ is semilinear if it is additive:

l(x + y) = l(x) + l(y) ∀ x, y ∈ V,

and there exists a homomorphism σ : R → R′ such that

l(ax) = σ(a)l(x) (1.1)

for all a ∈ R and x ∈ V . In the case when R = R′ and σ is identity, we
get a linear mapping. As for linear mappings, all vectors x ∈ V satisfying
l(x) = 0 form a linear subspace called the kernel of l and denoted by Ker l.
If l is non-zero (Ker l �= V ) then there exists the unique homomorphism
σ : R → R′ satisfying (1.1) and the mapping l is said to be σ-linear.

Every semilinear mapping between real vector spaces is linear. In the
general case, semilinear mappings form a more wide class.

A semilinear mapping of V to V ′ is called a semilinear isomorphism if it
is bijective and the associated homomorphism of R to R′ is an isomorphism.
If l : V → V ′ is a σ-linear isomorphism then the inverse mapping l−1

is a σ−1-linear isomorphism of V ′ to V . Semilinear isomorphisms map
independent subsets to independent subsets and bases to bases. Semilinear
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isomorphisms of V to V ′ exist if and only if dim V = dimV ′ and R is
isomorphic to R′.

Exercise 1.8. Show that every semilinear bijection sending independent
subsets to independent subsets is a semilinear isomorphism.

The following example shows that there exist semilinear bijections over
non-surjective homomorphisms of division rings.

Example 1.3. The complexification mapping of R2n to Cn:
(x1, y1, . . . , xn, yn) → (x1 + y1i, . . . , xn + yni)

is a semilinear bijection; the associated homomorphism is the natural em-
bedding of R in C.

The group of all semilinear automorphisms of V (semilinear isomor-
phisms of V to itself) is denoted by ΓL(V ). It contains GL(V ) as a sub-
group. Consider the homomorphism of ΓL(V ) to Aut(R) which sends ev-
ery σ-linear automorphism of V to σ. The kernel of this homomorphism is
GL(V ). Hence GL(V ) is a normal subgroup of ΓL(V ) and the correspond-
ing quotient group is isomorphic to Aut(R).

Example 1.4. The homothetic transformation x → ax, x ∈ V , is a semilin-
ear automorphism of V (the associated automorphism of R is r → ara−1).
This transformation is linear only in the case when the scalar a belongs to
the center of the division ring R. The group of all homothetic transforma-
tions H(V ) is isomorphic to the multiplicative group of the division ring;
moreover, it is a normal subgroup of ΓL(V ).

1.3.2 Mappings of Grassmannians induced by semilinear

mappings

Every semilinear mapping l : V → V ′ induces the mapping
(l)1 : G1(V ) \ G1(Ker l) → G1(V ′)

〈x〉 → 〈l(x)〉, x �∈ Ker l.

In the case when l is a semilinear isomorphism, this mapping is a
collineation of ΠV to ΠV ′ .

If l : V → V ′ is a σ-linear mapping then for every non-zero scalar a ∈ R′

the mapping al is σ′-semilinear with
σ′(r) = aσ(r)a−1 ∀ r ∈ R,

and (al)1 coincides with (l)1.
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Proposition 1.7. Let l : V → V ′ be a semilinear mapping such that l(V )
contains two linearly independent vectors. If s : V → V ′ is a semilinear
mapping satisfying (l)1 = (s)1 then s = al for a certain scalar a ∈ R′.

This statement is a direct consequence of the following lemma.

Lemma 1.2. Let l : V → V ′ and s : V → V ′ be additive mappings such
that

s(x) ∈ 〈l(x)〉 ∀ x ∈ V.

If l(V ) contains two linearly independent vectors then s = al for a certain
scalar a ∈ R′.

Proof. For every vector x ∈ V there exists a scalar ax ∈ R′ (possible
zero) such that

s(x) = axl(x).

Suppose that vectors l(x) and l(y) both are non-zero. Then

axl(x) + ayl(y) = s(x + y) = ax+y(l(x) + l(y))

and ax = ay = ax+y if l(x), l(y) are linearly independent. If l(y) is a
scalar multiple of l(x) then we take any vector z ∈ V such that l(x) and
l(z) are linearly independent (by our hypothesis, this is possible) and get
ax = az = ay. Therefore, for all vectors x ∈ V satisfying l(x) �= 0 the scalar
ax is a constant. The equality l(x) = 0 implies that s(x) = 0 and we have
s(x) = al(x) for every scalar a ∈ R′. �

Proposition 1.8 ([Zick (1983)]). Let l : V → V ′ be an additive mapping
which satisfies

l(〈x〉) ⊂ 〈l(x)〉 ∀ x ∈ V.

If l(V ) contains two linearly independent vectors then l is semilinear.

Proof. For a non-zero scalar a ∈ R consider the mapping x → l(ax).
Lemma 1.2 implies the existence of a scalar σ(a) ∈ R′ such that

l(ax) = σ(a)l(x) ∀ x ∈ V.

We set σ(0) := 0 and get a mapping σ : R → R′. For any scalars a, b ∈ R

and any vector x ∈ V we have

σ(a + b)l(x) = l(ax + bx) = l(ax) + l(bx) = (σ(a) + σ(b))l(x),

σ(ab)l(x) = l(abx) = σ(a)σ(b)l(x)

which means that σ is a homomorphism. �
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It was noted above that for every semilinear isomorphism l : V → V ′

the mapping (l)1 is a collineation of ΠV to ΠV ′ . Conversely, we have the
following.

Proposition 1.9. Let l : V → V ′ be a semilinear mapping such that (l)1
is a collineation of ΠV to ΠV ′ . Then l is a semilinear isomorphism of V

to V ′.

Proof. Let S ∈ G2(V ) and {x, y} be a base of S. Then a → 〈x + ay〉 is
a bijection of the division ring R to G1(S) \ {〈y〉}. The mapping (l)1 sends
〈x + ay〉 to

〈l(x) + σ(a)l(y)〉,
where σ : R → R′ is the homomorphism associated with l. Since the
restriction of (l)1 to the line G1(S) is a bijection on the line G1(l(S)), the
homomorphism σ is surjective; hence it is an isomorphism of R to R′.
The latter implies that l(V ) is a linear subspace of V ′; then l(V ) = V ′

(otherwise, (l)1 is not surjective). Since Ker l = 0, the mapping l is a
semilinear isomorphism. �

Every semilinear isomorphism of V to V ′ induces bijections between the
Grassmannians of the same indices; in particular, it defines a collineation
of Π∗

V to Π∗
V ′ .

Proposition 1.10. Suppose that G and G′ are Grassmannians of V and
V ′ (respectively) with the same index. Let l̄ : G → G′ and s̄ : G → G′ be the
bijections induced by semilinear isomorphisms l : V → V ′ and s : V → V ′,
respectively. If l̄ = s̄ then s = al for a certain scalar a ∈ R′.

Proof. Let P ∈ G1(V ). Consider the set X consisting of all elements of
G containing P . Then

P =
⋂

S∈X
S

and

l(P ) =
⋂

S∈l̄(X )

S, s(P ) =
⋂

S∈s̄(X )

S.

Since l̄ = s̄, we have l(P ) = s(P ) for every P ∈ G1(V ). In other words,
(l)1 = (s)1 and Proposition 1.7 gives the claim. �
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A semilinear injection l : V → V ′ is called a semilinear embedding of
V in V ′ if it maps independent subsets to independent subsets. Semilinear
embeddings of V in V ′ exist only in the case when dimV ≤ dimV ′ and R

isomorphic to a certain division subring of R′.

Example 1.5. The mapping

(x1, . . . , xn) → (x1 + 0i, . . . , xn + 0i)

is a semilinear embedding of Rn in Cn. Similarly, the natural embedding
of Qn in Rn is a semilinear embedding.

Now we consider the mappings of Grassmannians induced by semilinear
embeddings. We restrict ourselves to the case when dim V = n is finite (the
infinite-dimensional case is similar).

Let l : V → V ′ be a semilinear embedding. Then for any linear subspace
S ⊂ V we have

dim〈l(S)〉 = dim S,

and the mapping

(l)k : Gk(V ) → Gk(V ′)

S → 〈l(S)〉
is defined for every k ∈ {1, . . . , n − 1}.
Exercise 1.9. Show that the following assertions are fulfilled:

(1) (l)k is injective for every k ∈ {1, . . . , n − 1},
(2) (l)1 is an embedding of ΠV in ΠV ′ ,
(3) (l)n−1 is an embedding of Π∗

V in Π∗
V ′ if dimV ′ = n,

(4) if s : V → V ′ is a semilinear embedding such that (l)k = (s)k for a
certain k ∈ {1, . . . , n − 1} then s is a scalar multiple of l.

Proposition 1.11. Let l : V → V ′ be a semilinear embedding such that
(l)k is bijective for a certain k ∈ {1, . . . , n − 1}. Then l is a semilinear
isomorphism.

Proof. In the case when k = 1, our bijection maps any triple of collinear
points of ΠV to collinear points of ΠV ′ and any triple of non-collinear
points to non-collinear points. Hence it is a collineation of ΠV to ΠV ′ . By
Proposition 1.9, l is a semilinear isomorphism.
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Suppose that k > 1. Let S′ ∈ Gk−1(V ′). We choose U ′
i ∈ Gk(V ′),

i = 1, 2, such that
S′ = U ′

1 ∩ U ′
2.

Since (l)k is bijective, there exist Ui ∈ Gk(V ), i = 1, 2, satisfying
〈l(Ui)〉 = U ′

i .

Then U1 ∩U2 belongs to Gk−1(V ) (we leave the details for the reader) and
〈l(U1 ∩ U2)〉 = S′.

Thus (l)k−1 is surjective, and by the statement (1) of Exercise 1.9, it is
bijective. Step by step, we establish that (l)1 is bijective. �

1.3.3 Contragradient

Now suppose that V and V ′ have the same finite dimension n. Recall that
in this case V = V ∗∗ and V ′ = V ′∗∗. For every x ∈ V and x∗ ∈ V ∗ we will
write x∗ · x instead of x∗(x).

Let u : V → V ′ be a σ-linear isomorphism. The adjoint mapping
u∗ : V ′∗ → V ∗

is defined by the condition
u∗(x∗) · x = σ−1(x∗ · u(x)) ∀ x ∈ V, x∗ ∈ V ′∗.

This is a (σ−1)-linear isomorphism and u∗∗ = u. The inverse mapping
ǔ := (u∗)−1 : V ∗ → V ′∗

is known as the contragradient of u. Since
(u∗)−1 = (u−1)∗,

the contragradient of the contragradient coincides with u. An easy verifi-
cation shows that

ǔ(x∗) · u(x) = σ(x∗ · x) ∀ x ∈ V, x∗ ∈ V ∗.
Therefore, ǔ transfers the annihilator of a linear subspace S ⊂ V to the
annihilator of u(S) and we get

u(U0)0 = ǔ(U)
for every linear subspace U ⊂ V ∗. So, the mapping

Gk(V ∗) → Gk(V ′∗)

U → u(U0)0

coincides with (ǔ)k for every k ∈ {1, . . . , n − 1}.
Exercise 1.10. Show that the contragradient mapping u → ǔ is an iso-
morphism of ΓL(V ) to ΓL(V ∗) transferring GL(V ) to GL(V ∗).
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1.4 Fundamental Theorem of Projective Geometry

1.4.1 Main theorem and corollaries

Let V and V ′ be left vector spaces over division rings R and R′, respectively.
The dimensions of V and V ′ are assumed to be not less than 3. Let also
l : V → V ′ be a semilinear injection. The mapping

(l)1 : G1(V ) → G1(V ′)

P → 〈l(P )〉
does not need to be injective, see Example 1.3. For any P, P1, P2 ∈ G1(V )
satisfying P ⊂ P1 + P2 (a triple of collinear points of ΠV ) we have

〈l(P )〉 ⊂ 〈l(P1)〉 + 〈l(P2)〉.
If 〈l(P1)〉 = 〈l(P2)〉 then the line G1(P1 + P2) goes to a point. In the case
when 〈l(P1)〉 and 〈l(P2)〉 are distinct, the restriction of (l)1 to G1(P1 + P2)
is a bijection on a subset of the line G1(〈l(P1 + P2)〉).

The following generalized version of the Fundamental Theorem of Pro-
jective Geometry was proved in [Faure and Frolicher (1994)] and [Havlicek
(1994)], independently.

Theorem 1.4. Suppose that a mapping f : G1(V ) → G1(V ′) satisfies the
following conditions: for any P, P1, P2 ∈ G1(V )

P ⊂ P1 + P2 =⇒ f(P ) ⊂ f(P1) + f(P2)

and f(G1(V )) is not contained in a line. Then f is induced by a semilinear
injection of V to V ′.

Theorem 1.4 together with Proposition 1.9 give the classical version of
the Fundamental Theorem of Projective Geometry.

Corollary 1.2. Every collineation of ΠV to ΠV ′ is induced by a semilinear
isomorphism of V to V ′.

Remark 1.3. Denote by PΓL(V ) the group formed by all collineations of
the projective space ΠV to itself. Consider the homomorphism of ΓL(V )
to PΓL(V ) which sends l to (l)1. The Fundamental Theorem of Projective
Geometry (Corollary 1.2) states that this homomorphism is surjective. By
Proposition 1.7, the kernel of the homomorphism is H(V ) (Example 1.4).
Therefore, PΓL(V ) is isomorphic to the quotient group ΓL(V )/H(V ). In
the case when V is finite-dimensional, the contragradient isomorphism of
ΓL(V ) to ΓL(V ∗) (Exercise 1.10) sends H(V ) to H(V ∗); hence it induces
an isomorphism between PΓL(V ) and PΓL(V ∗).
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Corollary 1.3. If V and V ′ have the same finite dimension then every
semicollineation of ΠV to ΠV ′ is a collineation.

Proof. Every semicollineation of ΠV to ΠV ′ satisfies the conditions of
Theorem 1.4; hence it is induced by a semilinear mapping l : V → V ′. Our
semicollineation maps every triple of collinear points to collinear points and
it is sufficient to show that triples of non-collinear points go to non-collinear
points.

If this fails then there exist linearly independent vectors x, y, z ∈ V such
that l(x), l(y), l(z) are linearly dependent. Let B be a base of V containing
x, y, z. Since dim V = dimV ′ is finite, l(B) spans a proper subspace of V ′

which contradicts 〈l(B)〉 = 〈l(V )〉 = V ′. �

Corollary 1.3 will be generalized in Section 3.5.

Problem 1.1. Is there a semicollineation of ΠV to ΠV ′ in the case when
dimV > dimV ′?

It was noted in the previous section that semilinear isomorphisms of V

to V ′ induce collineations of Π∗
V to Π∗

V ′ . We can show that there exist no
other collineations of Π∗

V to Π∗
V ′ only in the case when our vector spaces

are finite-dimensional.

Corollary 1.4. If V and V ′ are finite-dimensional then every collineation
of Π∗

V to Π∗
V ′ is induced by a semilinear isomorphism of V to V ′.

Proof. Let f be a collineation of Π∗
V to Π∗

V ′ . It can be considered as a
collineation of ΠV ∗ to ΠV ′∗ . By the Fundamental Theorem of Projective
Geometry, the latter collineation is induced by a semilinear isomorphism
u : V ∗ → V ′∗ and

f(S) = u(S0)0

for every linear subspace S ⊂ V of codimension 1. By Subsection 1.3.3, we
have f = (ǔ)1 in the finite-dimension case. �

Exercise 1.11. Show that every semicollineation of Π∗
V to Π∗

V ′ is a
collineation if dimV = dim V ′ < ∞.

Let X be a partially ordered set. The supremum of a subset Y ⊂ X

is the least element of X which is greater than or equal to all elements of
Y . Similarly, the infimum of Y is the greatest element of X which is less
than or equal to every element of Y . The supremum and infimum of Y
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are denoted by sup Y and inf Y , respectively. If sup Y (inf Y ) exists then
it is unique. The set X is called a lattice if every subset consisting of two
elements has the supremum and infimum. The set G(V ) is partially ordered
by the inclusion relation. Since for all S, U ∈ G(V ) we have

sup{S, U} = S + U and inf{S, U} = S ∩ U,

it is a lattice. Every semilinear isomorphism of V to V ′ induces an order
preserving bijection of G(V ) to G(V ′) (an isomorphism between the lat-
tices). The classical Fundamental Theorem of Projective Geometry can be
reformulated in the following form (see, for example, [Baer (1952)]).

Corollary 1.5. Let f : G(V ) → G(V ′) be an order preserving bijection: for
all S, U ∈ G(V )

S ⊂ U ⇐⇒ f(S) ⊂ f(U).

Then f is induced by a semilinear isomorphism of V to V ′.

Proof. It is not difficult to prove that f transfers G1(V ) and G2(V ) to
G1(V ′) and G2(V ′), respectively. Hence the restriction of f to G1(V ) is
a collineation of ΠV to ΠV ′ and there exists a semilinear isomorphism
l : V → V ′ such that f(P ) = l(P ) for all P ∈ G1(V ). Then for every
S ∈ G(V )

f(G1(S)) = G1(f(S))

coincides with

l(G1(S)) = G1(l(S))

and we get f(S) = l(S). �

1.4.2 Proof of Theorem 1.4

Let f : G1(V ) → G1(V ′) be a mapping which satisfies the conditions of
Theorem 1.4: for any P, P1, P2 ∈ G1(V )

P ⊂ P1 + P2 =⇒ f(P ) ⊂ f(P1) + f(P2)

and f(G1(V )) is not contained in a line. This means that the restriction of
f to every line is a constant or a bijection to a subset of a line.

Lemma 1.3. Let v1, v2, v3 ∈ V and w1, w2, w3 ∈ V ′ be vectors satisfying
the following conditions:

• f(〈vi〉) = 〈wi〉 for i = 1, 2, 3,
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• f(〈v1 + v2〉) = 〈w1 + w2〉 and f(〈v1 + v3〉) = 〈w1 + w3〉,
• w1, w2, w3 are linearly independent.

Then

f(〈v2 + v3〉) = 〈w2 + w3〉 and f(〈v1 + v2 + v3〉) = 〈w1 + w2 + w3〉.
Proof. It is clear that v1, v2, v3 are linearly independent and 〈v1+v2+v3〉
is the intersection of

〈v1 + v2〉 + 〈v3〉 and 〈v1 + v3〉 + 〈v2〉.
Then f(〈v1 + v2 + v3〉) is contained in the intersection of

〈w1 + w2〉 + 〈w3〉 and 〈w1 + w3〉 + 〈w2〉.
The latter intersection coincides with 〈w1 +w2 +w3〉 and we get the second
equality. Similarly,

〈v2 + v3〉 = (〈v2〉 + 〈v3〉) ∩ (〈v1〉 + 〈v1 + v2 + v3〉)
and f(〈v2 + v3〉) is contained

(〈w2〉 + 〈w3〉) ∩ (〈w1〉 + 〈w1 + w2 + w3〉)
which gives the first equality. �

Lemma 1.4. Let P, Q ∈ G1(V ) and x ∈ P + Q with x �∈ Q. Then there
exists a unique vector y ∈ Q such that P = 〈x + y〉.
Proof. Trivial. �

By our hypothesis, there exist vectors x1, x2, x3 ∈ V such that

f(〈x1〉), f(〈x2〉), f(〈x3〉)
are not contained in a line. Our first step is to establish the existence of
vectors y1, y2, y3 ∈ V ′ satisfying the conditions

f(〈xi〉) = 〈yi〉 and f(〈xi + xj〉) = 〈yi + yj〉.
Proof. Let us take any non-zero vector y1 ∈ f(〈x1〉). Since 〈x1〉 is con-
tained in 〈x1 + x2〉 + 〈x2〉,

y1 ∈ f(〈x1〉) ⊂ f(〈x1 + x2〉) + f(〈x2〉).
Lemma 1.4 implies the existence of y2 ∈ f(〈x2〉) such that

f(〈x1 + x2〉) = 〈y1 + y2〉.
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If y2 is zero then f(〈x1 + x2〉) coincides with f(〈x1〉) and the restriction of
f to the line associated with the linear subspace

〈x1 + x2〉 + 〈x1〉 = 〈x1〉 + 〈x2〉
is constant; in this case, we get f(〈x1〉) = f(〈x2〉) which is impossible.
Thus y2 �= 0. Similarly, we establish the existence of a non-zero vector
y3 ∈ f(〈x3〉) satisfying

f(〈x1 + x3〉) = 〈y1 + y3〉.
By Lemma 1.3, the vectors y1, y2, y3 are as required. �

Let x ∈ V \ {0}. We choose i ∈ {1, 2, 3} such that f(〈x〉) �= f(〈xi〉).
The restriction of f to the line associated with the linear subspace

〈x〉 + 〈xi〉 = 〈x + xi〉 + 〈x〉
is injective and we apply Lemma 1.4 to

yi ∈ f(〈xi〉) ⊂ f(〈xi + x〉) + f(〈x〉).
So, there exists a vector l(x) ∈ f(〈x〉) such that

f(〈xi + x〉) = 〈yi + l(x)〉.
Since f(〈xi + x〉) �= f(〈xi〉), we have l(x) �= 0. We set l(0) := 0 and assert
that l : V → V ′ is a semilinear mapping.

Show that the mapping l : V → V ′ is well-defined (the definition of the
vector l(x) does not depend on the choice of the number i ∈ {1, 2, 3}).
Proof. Suppose that

f(〈x1〉) �= f(〈x〉) �= f(〈x2〉).
There exists a non-zero vector l(x) ∈ f(〈x〉) satisfying

f(〈x1 + x〉) = 〈y1 + l(x)〉.
We need to show that

f(〈x2 + x〉) = 〈y2 + l(x)〉.
If f(〈x〉) is not contained in f(〈x1〉) + f(〈x2〉) then the required equality
follows from Lemma 1.3. In the case when

f(〈x〉) ⊂ f(〈x1〉) + f(〈x2〉),
we consider successively the triples x1, x3, x and x3, x2, x. �
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Our next step is the equality l(v +w) = l(v)+ l(w) for all v, w ∈ V (the
mapping l is additive).

Proof. First consider the case when l(v) and l(w) are linearly inde-
pendent. We choose i ∈ {1, 2, 3} such that f(〈xi〉) is not contained in
f(〈v〉)+ f(〈w〉) (this is possible, since f(〈x1〉), f(〈x2〉), f(〈x3〉) are not con-
tained in a line). We have

f(〈xi + v〉) = 〈yi + l(v)〉 and f(〈xi + w〉) = 〈yi + l(w)〉,
and Lemma 1.3 implies that

f(〈v + w〉) = 〈l(v) + l(w)〉 and f(〈xi + v + w〉) = 〈yi + l(v) + l(w)〉.
Thus

〈l(v + w)〉 = 〈l(v) + l(w)〉 and 〈yi + l(v + w)〉 = 〈yi + l(v) + l(w)〉.
By the first equality, l(v + w) = a(l(v) + l(w)) for a certain scalar a ∈ R′;
the second equality guarantees that a = 1.

Now suppose that l(w) is a scalar multiple of l(v). Then

f(〈v〉) = f(〈w〉) = f(〈v + w〉).
We take any vector z ∈ V such that l(w), l(z) are linearly independent.
Then l(w+z) = l(w)+l(z); moreover, l(v+w), l(z) are linearly independent
and

l(v + w + z) = l(v + w) + l(z). (1.2)

Since f(〈w〉) �= f(〈z〉), the restriction of f to the line associated with the
linear subspace 〈w〉 + 〈z〉 is injective and

f(〈v〉) = f(〈w〉) �= f(〈w + z〉).
This means that l(v), l(w + z) are linearly independent; hence

l(v + w + z) = l(v) + l(w + z) = l(v) + l(w) + l(z)

and (1.2) gives the claim. �

For every non-zero vector x ∈ V and any non-zero scalar a ∈ R we have

〈l(ax)〉 = f(〈ax〉) = f(〈x〉) = 〈l(x)〉.
In other words, l(〈x〉) ⊂ 〈l(x)〉 and the mapping l : V → V ′ satisfies the
conditions of Proposition 1.8. Therefore, l is semilinear and f = (l)1.

Remark 1.4. This proof was taken from the paper [Faure (2002)] dedicated
to A. Frölicher.
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1.4.3 Fundamental Theorem for normed spaces

Let F be the field of real or complex numbers. Let also N be a normed space
over F ; this means that N is a vector space (over F ) with a real-valued
function x → ||x|| called a norm and satisfying the following conditions:

• ||x|| ≥ 0 for all x ∈ N , and ||x|| = 0 implies that x = 0,
• ||x + y|| ≤ ||x|| + ||y|| for all x, y ∈ N ,
• ||ax|| = |a| · ||x|| for every vector x ∈ N and every scalar a ∈ F .

Our normed space is, in a natural way, a matric space (hence it is also a
topological space); the metric is defined by

d(x, y) := ||x − y|| ∀ x, y ∈ N.

Denote by Gcl(N) the set of all closed linear subspaces of N . Every finite-
dimensional linear subspace is closed; hence Gcl(N) coincides with G(N) if
the dimension of N is finite.

The sum of two closed linear subspaces does not need to be closed. For
linear subspaces S, U ⊂ N we denote by S � U the closure of S + U ; since
the closure of a linear subspace is a linear subspace, we have S�U ∈ Gcl(N).
The set Gcl(N) is partially ordered by the inclusion relation; moreover, for
all S, U ∈ Gcl(V )

sup{S, U} = S � U and inf{S, U} = S ∩ U.

So, Gcl(N) is a lattice. Note that Gcl(N) is not a sublattice of the lattice
G(N) if N is infinite-dimensional.

Example 1.6. The vector space Fn is normed by

||x|| := (|x1|2 + · · · + |xn|2)1/2, x = (x1, . . . , xn);

in particular, (F, | · |) is a 1-dimensional normed space.

Example 1.7. The vector space CF ([0, 1]) consisting of all continuous func-
tions g : [0, 1] → F is normed by

||g|| := sup{ |g(x)| : x ∈ [0, 1] }.
Example 1.8. Let p ∈ N and lp(F ) be the vector space formed by all
sequences x = {xn}n∈N ⊂ F satisfying

||x||p :=

( ∞∑
n=1

|xn|p
)1/p

< ∞.

Then (lp(F ), || · ||p) is a normed space.
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Let M be other normed vector space over F . We will investigate order
preserving bijections of Gcl(N) to Gcl(M) (isomorphisms between the lat-
tices). Recall that a bijection h between two topological spaces is called
a homeomorphism if h and h−1 both are continuous. Clearly, every linear
homeomorphism of N to M induces an order preserving bijection of Gcl(N)
to Gcl(M).

Now suppose that our normed spaces are complex. If a semilinear
mapping l : N → M is continuous then the associated homomorphism
σ : C → C is continuous. By Exercise 1.3, σ is identity or the complex con-
jugate mapping. In what follows a semilinear mapping between complex
vector spaces will be called conjugate-linear if the associated homomor-
phism of C to itself is the complex conjugate mapping. Every conjugate-
linear homeomorphism of N to M induces an order preserving bijection of
Gcl(N) to Gcl(M).

Theorem 1.5 (G. W. Mackey, P. A. Fillmore, W. E. Longstaff).
Let f : Gcl(N) → Gcl(M) be an order preserving bijection:

S ⊂ U ⇐⇒ f(S) ⊂ f(U)

for all S, U ∈ Gcl(N). If N and M are real normed spaces then f is induced
by a linear homeomorphism of N to M . In the case when N and M are
infinite-dimensional complex normed spaces, f is induced by a linear or
conjugate-linear homeomorphism of N to M .

Remark 1.5. If N and M are finite-dimensional complex normed spaces
then every semilinear isomorphism of N to M induces an order preserving
bijection of G(N) = Gcl(N) to G(M) = Gcl(M).

Theorem 1.5 was first proved in [Mackey (1942)] for real normed spaces.
The complex version of this result was given in [Fillmore and Longstaff
(1984)].

1.4.4 Proof of Theorem 1.5

We need some elementary facts concerning linear and conjugate-linear map-
pings. Let N and M be normed spaces over F = R, C. For a linear mapping
l : N → M (if M = F then l is a linear functional) the following conditions
are equivalent:

• l is continuous,
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• l transfers bounded subsets to bounded subsets (a subset X is bounded
if there exists a real non-negative number a such that ||x|| ≤ a for all
x ∈ X).

In the complex case, the same holds for conjugate-linear mappings. In
[Rudin (1973)] (Section 1.32) this statement is proved for linear mappings;
for conjugate-linear mappings the proof is similar. If l : N → M is a
continuous linear or conjugate-linear mapping then the number

||l|| := sup{ ||l(x)|| : x ∈ N, ||x|| ≤ 1 }
is finite and called the norm of l; it is clear that

||l(x)|| ≤ ||l|| · ||x|| and ||al|| = |a| · ||l||
for all x ∈ N and a ∈ F .

Now we start to prove the theorem. Let f : Gcl(N) → Gcl(M) be an
order preserving bijection. Then f transfers G1(N) and G2(N) to G1(M)
and G2(M), respectively. This means that the restriction of f to G1(N) is
a collineation of ΠN to ΠM . By the Fundamental Theorem of Projective
Geometry, it is induced by a certain semilinear isomorphism l : N → M .
As in the proof of Corollary 1.5, we establish that

f(S) = l(S) ∀ S ∈ Gcl(N).

We need to show that l is a homeomorphism of N to M .
Real case. The mapping l is linear. Let v : M → R be a non-zero

continuous linear functional. Then Ker v is a closed linear subspace of
codimension 1 and

S := l−1(Ker v)

is a closed linear subspace of codimension 1 in N . For every closed lin-
ear subspace of codimension 1 there exists a continuous linear functional
whose kernel coincides with this linear subspace (a consequence of the Hahn-
Banach Theorem, see Section 3.5 in [Rudin (1973)]). Consider a continuous
linear functional w : N → R such that Kerw = S. We fix z ∈ N satisfying
w(z) = 1. Every x ∈ N can be presented in the form x = y + w(x)z, where
y ∈ S. Then

v(l(x)) = v(l(y)) + v(w(x)l(z)) = w(x)v(l(z)) (1.3)

(since l(y) ∈ Ker v).
Let X be a bounded subset of N . Then w(X) is a bounded subset of R

and (1.3) guarantees that the same holds for v(l(X)). Since v is arbitrary
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taken, the set v(l(X)) is bounded for every continuous linear functional
v : M → R, in other words, l(X) is weakly bounded. In a normed space
every weakly bounded subset is bounded (Section 3.18 in [Rudin (1973)]).
Thus l transfers bounded subsets to bounded subsets; hence it is continuous.
Similarly, we establish that l−1 is continuous.

Complex case. The normed spaces are assumed to be infinite-
dimensional. Let σ be the automorphism of C associated with l. In this
case, we have

v(l(x)) = σ(w(x))v(l(z))

instead of (1.3). The arguments given above work only in the case when σ

is identity or the complex conjugate mapping. Therefore, we need to show
that l is linear or conjugate-linear. This fact is a direct consequence of
Kakutani–Mackey’s result which will be proved below (Proposition 1.12).

Lemma 1.5. Let σ be an automorphism of C. If for every sequence of
complex numbers zn → 0 the sequence {σ(zn)}n∈N is bounded then σ is
continuous.

Proof. By the additivity of σ, it is sufficient to verify that σ is continuous
in 0. Indeed, if zn → z then (zn − z) → 0 and

σ(zn − z) → 0 =⇒ σ(zn) → σ(z).

Suppose that σ is non-continuous in 0. Then there exist a sequence zn → 0
and a real number a > 0 satisfying

|σ(zn)| > a ∀ n ∈ N.

Clearly, {zn}n∈N contains a subsequence {z′n}n∈N such that |z′n| < 1/n2 for
every n ∈ N, in other words, nz′n → 0. Since the restriction of σ to N is
identity,

|σ(nz′n)| = n|σ(z′n)| > na ∀ n ∈ N

and the sequence {σ(nz′n)}n∈N is unbounded, a contradiction. �

Lemma 1.6. If N is infinite-dimensional then there exist an indepen-
dent subset {xn}n∈N ⊂ N and a sequence of continuous linear functionals
{vn}n∈N of N such that

vi(xj) = δij . (1.4)
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Proof. It is not difficult to choose two linearly independent vectors
x1, x2 ∈ N and two continuous linear functionals v1, v2 of N satisfying
(1.4). Suppose that (1.4) holds for linearly independent vectors x1, . . . , xn

and continuous linear functionals v1, . . . , vn. Then there exists a continuous
linear functional vn+1 such that

• all xi belong to Ker vn+1,
• vn+1(x′

n+1) = 1 for a certain vector x′
n+1 which does not belong to

〈x1, . . . , xn〉
(see Section 3.5 in [Rudin (1973)]). We define

xn+1 := x′
n+1 −

n∑
i=1

vi(x′
n+1)xi.

Then vn+1(xn+1) = 1 and vi(xn+1) = 0 for all i ≤ n. �

Lemma 1.7. If N is infinite-dimensional then it contains an indepen-
dent subset {xn}n∈N satisfying the following condition: for every bounded
sequence of scalars {an}n∈N there exists a continuous linear functional
v : N → F such that

v(xn) = an ∀ n ∈ N.

Proof. Let X = {xn}n∈N and {vn}n∈N be as in the previous lemma. We
can assume that

||vn|| = 1/2n ∀ n ∈ N

(indeed, for every n ∈ N there exists a scalar bn such that ||bnvn|| = 1/2n

and we can take x′
n ∈ 〈xn〉 satisfying bnvn(x′

n) = 1).
Let {an}n∈N be a bounded sequence of scalars and a = sup |ai|. For

every vector

x = v1(x)x1 + · · · + vn(x)xn ∈ 〈X〉
we define

v(x) := v1(x)a1 + · · · + vn(x)an.

Then

|v(x)| ≤ |a1| · ||v1|| · ||x|| + · · · + |an| · ||vn|| · ||x||

≤ a||x||(1/2 + · · · + 1/2n) < a||x||.
So, v : 〈X〉 → F is a continuous linear functional; by the Hahn-Banach
Theorem, it can be extended to a continuous linear functional of N . �
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Proposition 1.12 ([Kakutani and Mackey (1946)]). Suppose that N

and M are infinite-dimensional complex normed spaces. Let l : N → M be a
semilinear isomorphism which sends closed linear subspaces of codimension
1 to closed linear subspaces. Then l is linear or conjugate-linear.

Proof. Let σ be the automorphism of C associated with l. Let also
{xn}n∈N be a subset of N with the property described in the previous
lemma. Show that for every sequence of complex numbers an → 0 the
sequence {σ(an)}n∈N is bounded.

If {σ(an)}n∈N is unbounded then {an}n∈N contains a subsequence
{bn}n∈N such that

|σ(bn)| ≥ n||l(xn)|| ∀ n ∈ N. (1.5)

Let v : N → C be a continuous linear functional satisfying v(xn) = bn for
every n. We take z ∈ N such that v(z) = 1. Then xn = yn + bnz, where
yn ∈ Ker v. We have

l(xn)/σ(bn) = l(yn/bn) + l(z).

By (1.5),

l(xn)/σ(bn) → 0 and l(−yn/bn) → l(z).

Hence l(z) belongs to the closure of l(Ker v). Ker v is a closed linear sub-
space of codimension 1 and the linear subspace l(Ker v) is, by our hypoth-
esis, closed. Thus l(z) belongs to l(Ker v). Since l is bijective, we get
z ∈ Ker v which contradicts v(z) = 1.

By Lemma 1.5, σ is continuous. This means that it is identity or the
complex conjugate mapping. �

1.5 Reflexive forms and polarities

1.5.1 Sesquilinear forms

Let V be a left vector space over a division ring R and σ : R → R be an
anti-automorphism (an isomorphism of R to the opposite division ring R∗).
We say that

Ω : V × V → R

is a sesquilinear form over σ or simple a σ-form if

Ω(x + y, z) = Ω(x, z) + Ω(y, z), Ω(z, x + y) = Ω(z, x) + Ω(z, y),
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Ω(ax, by) = aΩ(x, y)σ(b)

for all vectors x, y, z ∈ V and all scalars a, b ∈ R; if σ is identity (this is
possible only in the commutative case) then Ω is a usual bilinear form.

For every y ∈ V the mapping x → Ω(x, y) is a linear functional of V

and we get a σ-linear mapping of V to V ∗. Conversely, every semilinear
mapping l : V → V ∗ gives a sesquilinear form

(x, y) → l(y) · x.

Therefore, there is a one-to-one correspondence between sesquilinear forms
on V and semilinear mappings of V to V ∗.

Our form Ω is said to be non-degenerate if the associated semilinear
mapping of V to V ∗ is injective (if V is finite-dimensional then dimV =
dimV ∗ and it is a semilinear isomorphism). This condition is equivalent
to the fact that for every non-zero y ∈ V there exists x ∈ V such that
Ω(x, y) �= 0.

1.5.2 Reflexive forms

Suppose that dimV = n is finite. A sesquilinear form Ω : V × V → R is
called reflexive if

Ω(x, y) = 0 =⇒ Ω(y, x) = 0

for every x, y ∈ V . We give a few examples.

Example 1.9. A non-zero sesquilinear form Ω : V × V → R is said to be
symmetric or skew-symmetric if

Ω(x, y) = Ω(y, x) ∀ x, y ∈ V

or

Ω(x, y) = −Ω(y, x) ∀ x, y ∈ V,

respectively. In each of these cases, the associated anti-automorphism is
identity (we leave the verification to the reader); hence R is commutative.
A sesquilinear form Θ : V × V → R is called alternating if

Θ(x, x) = 0 ∀ x ∈ V.

Every alternating form is skew-symmetric. Conversely, if the characteristic
of R is not equal to 2 then every skew-symmetric form on V is alternating.
In the case of characteristic 2, the classes of symmetric and skew-symmetric
forms are coincident. Non-degenerate alternating forms exist only on even-
dimensional vector spaces over fields.
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Example 1.10. Let σ be a non-identity anti-automorphism of R. We say
that a non-zero sesquilinear form Ω : V × V → R is σ-Hermitian or skew
σ-Hermitian if

Ω(x, y) = σ(Ω(y, x)) ∀ x, y ∈ V

or

Ω(x, y) = −σ(Ω(y, x)) ∀ x, y ∈ V,

respectively. An easy verification shows that Ω is a σ-form and σ2 = 1R in
each of these cases.

It is clear that the forms considered above are reflexive. Also note that
for every reflexive σ-form Ω : V × V → R and every non-zero scalar a ∈ R

the scalar multiple

(x, y) → Ω(x, y)a

is a reflexive σ′-form with

σ′(b) = a−1σ(b)a ∀ b ∈ R.

There is a complete description of all non-degenerate reflexive forms.

Theorem 1.6 (G. Birkhoff, J. von Neumann). If Ω : V × V → R is
a non-degenerate reflexive form then one of the following possibilities is
realized:

• R is commutative and Ω is symmetric or alternating,
• Ω is a scalar multiple of a Hermitian form.

Proof. See, for example, Section 1.6 in [Dieudonné (1971)] or Chapter 7
in [Taylor (1992)]. �

Let Ω : V ×V → R be a reflexive form. We say that two vectors x, y ∈ V

are orthogonal and write x ⊥ y if Ω(x, y) = 0. The orthogonality relation
is symmetric (by the reflexivity). If X and Y are subsets of V then X ⊥ Y

means that every x ∈ X is orthogonal to all y ∈ Y ; in this case, we say that
the subsets X and Y are orthogonal. The linear subspace consisting of all
vectors orthogonal to a subset X ⊂ V is called the orthogonal complement
of X and denoted by X⊥.

A non-zero vector x ∈ V satisfying Ω(x, x) = 0 is said to be isotropic.
A linear subspace S is called totally isotropic if the restriction of Ω to S is
total zero, in other words, S is contained in S⊥. The Grassmannian formed
by all k-dimensional totally isotropic subspaces will be denoted by Gk(Ω).
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From this moment we suppose that the form Ω is non-degenerated. Let
u : V → V ∗ be the semilinear isomorphism associated with Ω. Then

Ω(x, y) = u(y) · x ∀ x, y ∈ V.

Since the orthogonal relation is symmetric, we have

S⊥ = u(S)0 = u−1(S0) (1.6)

for every linear subspace S ⊂ V ; in particular,

dimS⊥ = codimS.

This implies that dimS⊥⊥ = dim S; since S ⊂ S⊥⊥, we get

S⊥⊥ = S.

If S is totally isotropic then S ⊂ S⊥ and dimS ≤ codimS.
The mapping S → S⊥ is a bijective transformation of G(V ) sending

Gk(V ) to Gn−k(V ). This transformation is order reversing:

S ⊂ U ⇐⇒ U⊥ ⊂ S⊥.

The square of the transformation is identity.

Remark 1.6. Taking S0 = U in (1.6) we obtain u(U0)0 = u−1(U) which
implies that

ǔ(U) = u−1(U).

Therefore, (ǔ)k = (u−1)k for all k. This means that ǔ is a scalar multiple
of u−1. Since ǔ = (u∗)−1, we have u∗ = au for non-zero a ∈ R.

1.5.3 Polarities

Let V be as in the previous section. A bijection π : G1(V ) → Gn−1(V ) is
called a polarity if

P ⊂ π(Q) ⇐⇒ Q ⊂ π(P ) ∀ P, Q ∈ G1(V ). (1.7)

Example 1.11. Let be ⊥ be the orthogonal relation associated with a
non-degenerate reflexive form. Then

S ⊂ U⊥ ⇐⇒ U ⊂ S⊥

for any S, U ∈ G(V ) (since the orthogonal relation is symmetric). This
means that the restriction of the transformation S → S⊥ to G1(V ) is a
polarity.



July 2, 2010 14:9 World Scientific Book - 9in x 6in ClassicalBuilding

Linear Algebra and Projective Geometry 41

So, every non-degenerate reflexive form defines a polarity. Conversely,
we have the following.

Proposition 1.13. For every polarity π : G1(V ) → Gn−1(V ) there exists
a non-degenerate reflexive form Ω such that the restriction of the transfor-
mation S → S⊥ (where ⊥ is the orthogonal relation associated with Ω) to
G1(V ) coincides with π.

Proof. Show that π is a collineation of ΠV to Π∗
V . Let P1, P2 be distinct

elements of G1(V ) and X be the set formed by all (n−1)-dimensional linear
subspaces containing P1 + P2. By (1.7), our polarity transfers

G1(π(P1) ∩ π(P2)) (1.8)

to the set X . Clearly, P ∈ G1(V ) belongs to the line G1(P1 +P2) if and only
if it is contained in every element of X . By (1.7), the latter is equivalent
to the fact that π(P ) contains every element of the set (1.8). Thus

P ⊂ P1 + P2 ⇐⇒ π(P1) ∩ π(P2) ⊂ π(P )

and π is a collineation.
The Fundamental Theorem of Projective Geometry guarantees the exis-

tence of a semilinear isomorphism u : V → V ∗ such that π(P ) = u(P )0 for
every P ∈ G1(V ). It follows from (1.7) that the sesquilinear form defined
by u is reflexive. �
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Chapter 2

Buildings and Grassmannians

This chapter is a survey of basic facts concerning buildings and related
topics. Buildings of classical groups will be considered as examples. We
introduce the concepts of building Grassmannians and the associated Grass-
mann spaces. Grassmannians of finite-dimensional vector spaces and Grass-
mannians formed by totally isotropic subspaces of non-degenerate reflexive
forms are special cases of this general construction.

In the second part of the chapter, we prove Abramenko–Van
Maldeghem’s result on apartments preserving mappings of the chamber sets
of buildings (maximal simplices of a building are called chambers). Also
we show that the same method cannot be applied to apartments preserving
mappings of building Grassmannians.

2.1 Simplicial complexes

2.1.1 Definition and examples

Let X be a non-empty set and ∆ be a set consisting of finite subsets of X

(we do not require that X is finite). Suppose that the following conditions
hold:

(1) every one-element subset belongs to ∆,
(2) if A ∈ ∆ then every subset of A belongs to ∆.

Then ∆ is called a simplicial complex; elements of X and ∆ are said to be
vertices and simplices, respectively.

Let Y be a subset of X and Σ be a simplicial complex whose vertex set
is Y . If Σ ⊂ ∆ then Σ is called a subcomplex of ∆.

43
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Let ∆ and ∆′ be simplicial complexes whose vertex sets are X and X ′,
respectively. A mapping f : X → X ′ is said to be a morphism of ∆ to ∆′ if
f(∆) ⊂ ∆′ (the image of every simplex is a simplex). A bijective morphism
f : X → X ′ is an isomorphism if f(∆) = ∆′. Isomorphisms of a simplicial
complex to itself are called automorphisms.

Suppose that X is a set with an incidence relation ∗ (this is a symmetric
and reflexive binary relation). A subset consisting of pairwise incident
elements is said to be a flag. The flag complex associated with the relation
∗ is the simplicial complex whose vertex set is X and whose simplices are
finite flags.

Now we give a few examples.

Example 2.1. Consider the set of all proper subsets of {1, . . . , n+1} with
the natural incidence relation (two subsets are incident if one of them is
contained in the other). The associated flag complex is denoted by An.

Example 2.2. Let us consider the 2n-element set

J := {1, . . . , n,−1, . . . ,−n}.
A subset X ⊂ J is said to be singular if

j ∈ X =⇒ −j �∈ X.

We write J for the set of all singular subsets. Every maximal singular
subset consists of n elements and for every i ∈ {1, . . . , n} it contains i

or −i. For every k ∈ {1, . . . , n} we denote by Jk the set of all singular
subset consisting of k elements (every one-element subset is singular and
we identify J1 with J). The flag complex associated with the natural
incidence relation on J will be denoted by Cn.

Now define

X+ := {1, . . . , n}, X− := {1, . . . , n − 1,−n}
and consider the sets

J+ := { X ∈ Jn : n − |X+ ∩ X | is even },

J− := Jn \ J+ = { Y ∈ Jn : n − |X+ ∩ Y | is odd }.
Then X+ and X− are elements of J+ and J−, respectively; moreover,
Y ∈ Jn is an element of J− if and only if n − |X− ∩ Y | is even. Also note
the following remarkable property: for X, Y ∈ Jn the number n − |X ∩ Y |
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is odd if and only if one of these subsets belongs to J+ and the other is an
element of J−. Let

J ∗ := J \ Jn−1.

We define an incidence relation ∗ on J ∗ as follows: in the case when X ∈ Jk,
k ≤ n − 2, and Y ∈ J ∗, we write X ∗ Y if X and Y are incident in the
usual sense (one of these subsets is contained in the other); if X ∈ J+ and
Y ∈ J− then X ∗ Y means that X ∩ Y belongs to Jn−1 (for example, X+

and X− are incident). The associated flag complex is called the oriflamme
complex and denoted by Dn.

Example 2.3. Let V be a finite-dimension vector space over a division ring
and ∆(V ) be the flag complex defined by the natural incidence relation on
the set of all proper linear subspaces of V . If Ω is a non-degenerate reflexive
form on V then we write ∆(Ω) for the subcomplex of ∆(V ) consisting of
all flags formed by totally isotropic subspaces of Ω.

Now suppose that V is a (2n)-dimensional vector space over a field whose
characteristic is not equal to 2 and Ω is a non-degenerate symmetric form
on V . The dimension of maximal totally isotropic subspaces is assumed to
be equal to n. Then every (n − 1)-dimensional totally isotropic subspace
is contained in precisely two maximal totally isotropic subspaces. The
action of the group SO(Ω) (the group formed by all linear automorphisms
of determinant 1 which preserve the form Ω) on the Grassmannian Gn(Ω) is
not transitive: there are precisely two orbits which will be denoted by G+(Ω)
and G−(Ω). Note that for two maximal totally isotropic subspaces S and U

the codimension of S ∩ U in S is odd if and only if one of these subspaces
belongs to G+(Ω) and the other is an element of G−(Ω). Let G∗(Ω) be the
set of all totaly isotropic subspaces whose dimension is not equal to n − 1.
As in the previous example, we define the oriflamme incidence relation ∗
on G∗(Ω). If S ∈ Gk(Ω), k ≤ n − 2, and U ∈ G∗(Ω) then S ∗ U means that
S and U are incident in the usual sense; for S ∈ G+(Ω) and U ∈ G−(Ω) we
write S ∗U if their intersection is (n− 1)-dimensional. The associated flag
complex is called the oriflamme complex of Ω and denoted by Orif(Ω).

We will restrict ourselves to simplicial complexes satisfying the following
condition: every simplex is contained in a certain maximal simplex and all
maximal simplices have the same cardinality. The rank of a such simplicial
complex is the number of vertices in maximal simplices. The flag complexes
considered in Examples 2.1, 2.2 and 2.3 satisfy this condition.
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2.1.2 Chamber complexes

Let ∆ be a simplicial complex of rank n. Two maximal simplices C and C′

are said to be adjacent if

|C ∩ C′| = n − 1.

Let Ch(∆) be the set of all maximal simplices of ∆ and Γch(∆) be the graph
whose vertex set is Ch(∆) and whose edges are pairs of adjacent elements.
We say that ∆ is a chamber complex if the graph Γch(∆) is connected. In
this case, maximal simplices of ∆ are said to be chambers; and we define the
distance d(C, C′) between two chambers C and C′ as the distance between
the corresponding vertices in the graph Γch(∆).

In a chamber complex of rank n, every simplex consisting of n − 1
vertices is called a panel. A chamber complex is said to be thick if every
panel is contained in at least 3 chambers; and it is called thin in the case
when every panel is contained in precisely 2 chambers.

Lemma 2.1. If f and g are isomorphisms between thin chamber complexes
∆ and ∆′ such that the restrictions of f and g to a certain chamber are
coincident then f = g.

Proof. Suppose that the restrictions of f and g to a chamber C0 are
coincident and consider a chamber C adjacent with C0. Then f(C) and
g(C) are chambers containing the panel

f(C0 ∩ C) = g(C0 ∩ C)

and distinct from the chamber f(C0) = g(C0). Thus f(C) = g(C) (since
our chamber complexes are thin) and the restrictions of f and g to C are
coincident. By connectedness, the same holds for every chamber of ∆. �

Let ∆ be a simplicial complex whose vertex set is X . We say that ∆ is
labeled by a set S if there exists a mapping α : X → S which satisfies the
following conditions:

• the restriction of α to every maximal simplex is bijective,
• for all A, B ∈ ∆ the inclusion A ⊂ B implies that α(A) ⊂ α(B);

in this case, the mapping α is called a labeling of ∆. If α is a labeling of
∆ by S then for any permutation t on the set S the mapping tα also is a
labeling of ∆.

Lemma 2.2. If ∆ is a chamber complex labeled by a set S then any two
labelings of ∆ by S are coincident up to a permutation on S.
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Proof. Let α and β be labelings of ∆ by S. Denote by α′ and β′ their
restrictions to a chamber C0. Since α′ and β′ are bijective, there exists a
permutation t on S such that β′ = tα′. Show that β = tα.

We take any chamber C adjacent with C0. Then C \C0 and C0 \C are
one-point sets. Suppose that

C0 \ C = {x} and C \ C0 = {y}.
Then

α(x), α(y) ∈ S \ α(C ∩ C0).

Since the latter subset consists of unique element, we get α(x) = α(y).
The same holds for the labeling β. The equality β(x) = tα(x) (recall that
x ∈ C0) implies that β(y) = tα(y). Therefore, the restrictions of β and tα

to C are coincident. The connectedness of Γch(∆) gives the claim. �

Lemma 2.3. Let ∆ be a labeled chamber complex. If 3 distinct chambers
of ∆ are mutually adjacent then their intersection is a panel.

Proof. Let α be a labeling of ∆. If C1 and C2 are adjacent chambers
then

C1 \ C2 = {x} and C2 \ C1 = {y}
for certain vertices x, y and α(x) = α(y) (see the proof of the previous
lemma). If a chamber C3 is adjacent with C1, C2 and it does not contain
the panel C1∩C2 then x, y ∈ C3; since α(x) = α(y), this contradicts the fact
that the restriction of α to C3 is bijective. Therefore, C1 ∩ C2 is contained
in C3. �

2.1.3 Grassmannians and Grassmann spaces

Let ∆ be a chamber complex of rank n and α be a labeling of ∆ by a set
S. Then |S| = n. For every s ∈ S we define the (α, s)-Grassmannian

Gα,s(∆) := α−1(s).

If α′ is another labeling of ∆ by the set S then, by Lemma 2.2, there exists
a permutation t on the set S such that α′ = tα and every Grassmannian
Gα′,s′(∆) coincides with a certain Grassmannian Gα,s(∆).

Therefore, the vertex set of ∆ can be decomposed in n disjoint subsets
which will be called Grassmannians. This decomposition does not depend
on a labeling of the complex ∆.
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Let G be a Grassmannian of ∆. Two distinct vertices a, b ∈ G are said
to be adjacent if there exist adjacent chambers A and B such that a ∈ A

and b ∈ B; this is equivalent to the existence of a panel P such that P ∪{a}
and P ∪ {b} are chambers.

The Grassmann graph ΓG associated with the Grassmannian G is the
graph whose vertex set is G and whose edges are pairs of adjacent vertices.

Proposition 2.1. The Grassmann graph ΓG is connected.

Proof. Let a, b ∈ G. We take chambers A and B such that a ∈ A and
b ∈ B. Every path in Γch(∆) connecting A and B induces a path in ΓG
which connects a and b. �

Every simplex of ∆ intersects G in at most one vertex. Consider a panel
P which does not intersect G. The set consisting of all x ∈ G such that
P ∪ {x} is a chamber will be called the line of G associated with (defined
by) the panel P . Clearly, any two distinct elements of this line are adjacent.
Denote by L the set of all such lines. The partial linear space G := (G,L)
is known as the Grassmann space or the shadow space corresponding to
the Grassmannian G. The collinearity relation of G coincides with the
adjacency relation and the associated collinearity graph is the Grassmann
graph ΓG .

Let f be an isomorphism of ∆ to a chamber complex ∆′. Then ∆′ is
labeled and f transfers Grassmannians to Grassmannians (if α is a labeling
of ∆ then αf−1 is a labeling of ∆′); moreover, f induces collineations
between the Grassmann spaces.

The term “Grassmannian” is motivated by the following example.

Example 2.4. Let V be an n-dimensional vector space over a division
ring. The flag complex ∆(V ) is labeled by the dimension function and its
rank is equal to n− 1. This is a chamber complex (it will be shown later).
The Grassmannians of ∆(V ) coincide with the Grassmannians of the vector
space V . If k = 1, n−1 then any two distinct elements of Gk(V ) are adjacent
and the associated Grassmann spaces are the projective space ΠV and the
dual projective space Π∗

V . In the case when 1 < k < n − 1, two elements
of Gk(V ) are adjacent if their intersection is (k − 1)-dimensional (this is
equivalent to the fact that the sum of these linear subspaces is (k + 1)-
dimensional); every line consists of all elements of Gk(V ) “lying between”
two incident linear subspaces of dimension k − 1 and k + 1.
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2.2 Coxeter systems and Coxeter complexes

2.2.1 Coxeter systems

Let W be a group generated by a set S. If s, s′ ∈ S then we write m(s, s′)
for the order of the element ss′. We suppose that m(s, s) = 1 for every
s ∈ S and m(s, s′) ≥ 2 if s �= s′. The first condition guarantees that every
element of S is an involution. We have m(s, s′) = m(s′, s) and the equality
m(s, s′) = 2 holds if and only if the involutions s and s′ commute. Denote
by I the set of all pairs (s, s′) ∈ S × S such that m(s, s′) is finite.

The pair (W, S) is called a Coxeter system if the group W has the
presentation

〈 S : (ss′)m(s,s′) = 1, (s, s′) ∈ I 〉;
this means that every mapping h of the set S to a group G satisfying

(h(s)h(s′))m(s,s′) = 1 ∀ (s, s′) ∈ I

can be extended to a homomorphism of W to G.
The diagram associated with the Coxeter system (W, S) is the graph

whose vertex set is S and any two distinct s, s′ ∈ S are connected by
m(s, s′) − 2 edges (in the case when m(s, s′) = ∞, we draw one edge
labeled by ∞). Note that two generators are not connected by an edge if
they commute.

Coxeter systems (W, S) and (W ′, S′) are called isomorphic if there exists
an isomorphism h : W → W ′ such that h(S) = S′. Coxeter systems are
isomorphic if and only if they have the same diagram.

A Coxeter system is called irreducible if its diagram is connected.

Remark 2.1. Let {Si}i∈I be the connected components of the diagram
associated with a Coxeter system (W, S). We define Wi := 〈Si〉 for every
i ∈ I. Then each (Wi, Si) is an irreducible Coxeter system and W is the
“bounded” direct product of all Wi, Subsection IV.1.9 in [Bourbaki (1968)].

A Coxeter system (W, S) is called finite if W is finite (the group W does
not need to be finite if S is finite). There are precisely 11 types of finite
irreducible Coxeter systems (Subsection VI.4.1 in [Bourbaki (1968)]):

An

Bn = Cn
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Dn

E6

E7

E8

F4

4

G2

3

H3

3

H4

i

l2(i), i = 3 or i ≥ 5

Let W be a group generated by a set S. The length l(w) = lS(w) of
an element w ∈ W (with respect to the generating set S) is the smallest
number n such that w has an expression w = s1 . . . sn with each si ∈ S.
An expression w = s1 . . . sn is called reduced if n = l(w). We say that the
pair (W, S) satisfies the exchange condition if for every reduced expression
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w = s1 . . . sn and every s ∈ S satisfying l(sw) ≤ n there exists i ∈ {1, . . . , n}
such that

sw = s1 . . . ŝi . . . sn

(the symbolˆmeans that the corresponding term is omitted).

Theorem 2.1. Let W be a group and S ⊂ W be a set of involutions which
generates W . Then (W, S) satisfies the exchange condition if and only if it
is a Coxeter system.

Proof. See Subsection IV.1.6 in [Bourbaki (1968)]. �

The following properties of a Coxeter system (W, S) can be drawn from
the exchange condition.

Exercise 2.1. Show that if s1, . . . , sn, s′1, . . . , s′n ∈ S, w = s1 . . . sn =
s′1 . . . s′n and l(w) = n then

{s1, . . . , sn} = {s′1, . . . , s′n}.
Hint: the proof is induction by l(w); apply the exchange condition to s1w

and s′1w.

By Exercise 2.1, for every w ∈ W there exists a subset Sw ⊂ S such
that every reduced expression of w is formed by all elements of Sw. For
every subset X ⊂ S we define WX := 〈X〉.
Exercise 2.2. Show that WX consists of all w ∈ W satisfying Sw ⊂ X .
Hint: establish that

Ssw′ ⊂ {s} ∪ Sw′

for every s ∈ S and prove that

Sww′ ⊂ Sw ∪ Sw′

induction by l(w).

Using Theorem 2.1 and Exercise 2.2 we establish the following.

Theorem 2.2. Let (W, S) be a Coxeter system. Then for every subset
X ⊂ S the pair (WX , X) is a Coxeter system, and

WX ∩ WY = WX∩Y

for all subsets X, Y ⊂ S.

Proof. See Subsection IV.1.8 in [Bourbaki (1968)]. �
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2.2.2 Coxeter complexes

Let (W, S), S = {s1, . . . , sn} be a Coxeter system. We define

W k := 〈S \ {sk}〉, k = 1, . . . , n;

and for every subset J = {j1, . . . , jm} ⊂ {1, . . . , n}
W J := 〈S \ {sj1 , . . . , sjm}〉.

Then, by Theorem 2.2,

W J = W j1 ∩ · · · ∩ W jm .

Exercise 2.3. Show that

wW i = w′W j =⇒ i = j and ww′−1 ∈ W i.

Thus wW i = W i implies that w ∈ W i, and we have w = 1 if the latter
equality holds for all i.

The Coxeter complex Σ(W, S) is the simplicial complex whose vertex set
consists of all special subsets wW k with w ∈ W and k ∈ {1, . . . , n}; special
subsets X1, . . . , Xm form a simplex if there exists w ∈ W such that

X1 = wW j1 , . . . , Xm = wW jm .

We identify this simplex with the special subset

X1 ∩ · · · ∩ Xm = wW J ,

where J = {j1, . . . , jm}. Then every maximal simplex

{wW 1, . . . , wWn}
will be identified with the element w ∈ W .

The complex Σ(W, S) is finite if the Coxeter system is finite.

Proposition 2.2. The Coxeter complex Σ(W, S) is a thin chamber com-
plex.

Proof. Denote by C0 the maximal simplex formed by W 1, . . . , Wn. Then
wC0 is the maximal simplex corresponding to w ∈ W . If w = si1 . . . sik

then

C0, C1 = si1C0, C2 = si1si2C0, . . . , Ck = si1 . . . sik
C0 = wC0

is a path in Γch(∆). Therefore, C0 can be connected with every element of
Ch(∆) and the graph Γch(∆) is connected.
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Let Pk be the panel formed by

W 1, . . . , Ŵ k, . . . , Wn

(the vertex W k is omitted). If a chamber wC0 contains Pk then

w ∈
⋂
i�=k

W i = {1, sk}

(by Exercise 2.3). Thus Pk is contained only in the chambers C0 and skC0.
Then wPk is contained only in the chambers wC0 and wskC0. �

The mapping wW k → sk is the canonical labeling of Σ(W, S) by the set
S (by Lemma 2.2, any other labeling of Σ(W, S) by S is the composition of
the canonical labeling with a permutation on S). We write Aut0(Σ(W, S))
for the group of all automorphisms of Σ(W, S) preserving the canonical
labeling. In the general case, there exist automorphisms of Σ(W, S) which
do not belong to this group (see Example 2.5).

Exercise 2.4. For every w ∈ W denote by lw the automorphism of Σ(W, S)
which sends every special subset X to wX . Show that w → lw is an
isomorphism of W to the group Aut0(Σ(W, S)). Hint: use Lemma 2.1 to
prove the surjectivity.

The Grassmannians of Σ(W, S) coincide with the orbits of the action
of the group W = Aut0(Σ(W, S)) on the vertex set of Σ(W, S). Denote
by Gk(W, S) the Grassmannian containing W k; it consists of all special
subsets wW k, w ∈ W . Grassmannians of Coxeter complexes are closely
related with the concept of so-called Coxeter matroids [Borovik, Gelfand
and White (2003)].

2.2.3 Three examples

In this subsection we consider the Coxeter systems of types An, Cn, Dn and
show that the associated Coxeter complexes are An, Cn, Dn (respectively).

Example 2.5 (Type An, n ≥ 1). Let W = Sn+1, where Sn+1 is the sym-
metric group consisting of all permutations of the set I := {1, . . . , n + 1}.
Let also S be the set formed by the transpositions

si = (i, i + 1), i = 1, . . . , n.

Then (W, S) is a Coxeter system whose diagram is
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S
n-1

S
n

S
1

S
2

S
3

For every number k ∈ {1, . . . , n} the subgroup W k is the stabilizer of the
subset {1, . . . , k} and the mapping

wW k → {w(1), w(2), . . . , w(k)}
is well-defined. This is an isomorphism of Σ(W, S) to the complex An

(Example 2.1); it transfers the Grassmannian Gk(W, S) to the set of all k-
element subsets of I. The automorphism of the complex An sending every
subset X ⊂ I to I \X induces an automorphism of Σ(W, S) which does not
preserve the canonical labeling.

Example 2.6 (Type Bn = Cn, n ≥ 2). We say that a permutation s on
the set J := {1, . . . , n,−1, . . . ,−n} is symplectic if

s(−j) = −s(j) ∀ j ∈ J.

All symplectic permutations form the group denoted by Spn. Elements of
this group preserve J (the set of all singular subsets, see Example 2.2).
The group Spn is generated by the “symplectic transpositions”

si = (i, i + 1)(−i,−(i + 1)), i = 1, . . . , n − 1,

and the transposition

sn = (n,−n).

Suppose that W = Spn and S is the set of generators considered above.
Then (W, S) is a Coxeter system with the diagram

S
n-1 S

nS
1

S
2 S

3

As in the previous example, the subgroup W k is the stabilizer of the subset
{1, . . . , k} and the mapping

wW k → {w(1), w(2), . . . , w(k)}
is an isomorphism of Σ(W, S) to the complex Cn (Example 2.2). This
isomorphism sends the Grassmannian Gk(W, S) to Jk (the set formed by
all singular subsets consisting of k elements).
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Example 2.7 (Type Dn, n ≥ 4). In this example we suppose that W is
the subgroup SOn ⊂ Spn generated by the set S consisting of s1, . . . , sn−1

(defined in the previous example) and the “symplectic transposition”

sn = (n − 1,−n)(−(n − 1), n).

Then (W, S) is a Coxeter system whose diagram is

S
1

S
2

S
3

S
n-1S

n-2

S
n

The action of the group W on the set Jn is not transitive. For example,
W does not contain permutations transferring

X+ := {1, . . . , n} to X− := {1, . . . , n − 1,−n}
(since every symplectic permutation sending X+ to X− is the composition
of (n,−n) and an element of Wn). The reader can show that J+ and J−
(Example 2.2) are the orbits of the action of W on Jn and the mapping

wW k → {w(1), w(2), . . . , w(k)} if k ≤ n − 2,

wWn−1 → {w(1), . . . , w(n − 1), w(−n)},
wWn → {w(1), . . . , w(n − 1), w(n)}

is an isomorphism of Σ(W, S) to the oriflamme complex Dn (Example
2.2). This isomorphism transfers the Grassmannians of Σ(W, S) to the
sets J1, . . . ,Jn−2,J−,J+.

2.3 Buildings

2.3.1 Definition and elementary properties

Let ∆ be a simplicial complex and A be a set of subcomplexes of ∆ satisfying
the following axioms:

(1) every element of A is isomorphic to a Coxeter complex,
(2) for any two simplices of ∆ there is an element of A containing both of

them.

Then ∆ is a chamber complex (since every Coxeter complex is a chamber
complex, Proposition 2.2). The simplicial complex ∆ is a building if the
following additional axiom holds:
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(3) for all Σ, Σ′ ∈ A such that Σ∩Σ′ contains a chamber of ∆ there exists
an isomorphism of Σ to Σ′ preserving pointwise all simplices contained
in Σ ∩ Σ′ (by Lemma 2.1, such isomorphism is unique);

in this case, elements of A are said to be apartments and A is called a system
of apartments.

The axiom (3) guarantees that any two apartments Σ, Σ′ ∈ A are iso-
morphic: we take chambers C ∈ Σ and C′ ∈ Σ′ and consider an apartment
Σ′′ containing them; by the axiom (3), Σ′′ is isomorphic to both Σ and Σ′.
Similar arguments can be used to prove the following property (we leave
the details for the reader):

(4) if Σ, Σ′ ∈ A then for any simplices A, B ∈ Σ ∩ Σ′ there exists an
isomorphism of Σ to Σ′ preserving A and B pointwise.

Remark 2.2. The axiom systems (1), (2), (3) and (1), (2), (4) are equiva-
lent, Section IV.1 in [Brown (1989)]. Moreover, by Section 4.3 in [Garrett
(1997)], the axiom (1) can be drawn from the axioms (2) and (3).

Example 2.8. Every Coxeter complex can be considered as a building with
unique apartment.

Let ∆ be a building and A be a system of apartments for ∆. We write
AC for the set of all apartments containing a chamber C. By the axiom
(3), for any two apartments Σ, Σ′ ∈ AC there is a unique isomorphism fΣΣ′

of Σ to Σ′ whose restriction to C is identity. We have

fΣ′Σ = fΣ′′ΣfΣ′Σ′′

for all Σ, Σ′, Σ′′ ∈ AC (because fΣ′′ΣfΣ′Σ′′ is an isomorphism of Σ′ to Σ
preserving C pointvise). Now we fix an apartment Σ ∈ AC . Since the
union of all apartments from AC coincides with ∆ (by the axiom (2)), all
isomorphisms

fΣ′Σ, Σ′ ∈ AC ,

fit together to give a surjective morphism of ∆ to Σ. This morphism will
be denoted by ρΣ,C and called the retraction of ∆ on Σ centered at C.

If α is a labeling of Σ (apartments are labeled by the axiom (1)) then
αρΣ,C is a labeling of ∆. Therefore, we have the following.

Proposition 2.3. Every building is a labeled chamber complex.

Proposition 2.4. Let Σ ∈ A and C, C′ be chambers of Σ. Then Σ contains
every geodesic of the graph Γch(∆) connecting C and C′.
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Proof. Suppose that

C = C0, C1, . . . , Ck = C′

is a geodesic of Γch(∆) which is not contained in Σ. We choose an index i

such that Ci−1 ∈ Σ and Ci �∈ Σ. There is a unique chamber C′′ ∈ Σ distinct
from Ci−1 and containing the panel Ci−1 ∩ Ci. Consider the retraction
ρ = ρΣ,C′′ . The chamber ρ(Ci) ∈ Σ contains the panel

ρ(Ci−1 ∩ Ci) = Ci−1 ∩ Ci,

hence it coincides with Ci−1 or C′′. Since there is an apartment containing
both C′′ and Ci, we have

ρ(Ci) �= ρ(C′′) = C′′.

So ρ(Ci) = Ci−1 and

C = C0, C1, . . . , Ci−1 = ρ(Ci), ρ(Ci+1), . . . , ρ(Ck) = C′

is a part in Γch(∆) (if A, B are adjacent chambers then ρ(A), ρ(B) are
adjacent or coincident). This path contains at most k − 1 edges which
contradicts the assumption that d(C, C′) = k. �

In general, the building ∆ can admit different systems of apartments;
but the union of any collection of apartment systems is again an apart-
ment system, Section IV.4 in [Brown (1989)]. This implies the existence
of a largest system of apartments. Moreover, there exists a unique (up to
isomorphism) Coxeter system (W, S) such that all apartments of ∆ are iso-
morphic to the Coxeter complex Σ(W, S), Section IV.3 in [Brown (1989)].

2.3.2 Buildings and Tits systems

Suppose that G is a group spanned by proper subgroups B and N ; more-
over, B ∩N is a normal subgroup of N . Let S be a set of generators of the
quotient group

W := N/(B ∩ N).

If w ∈ W then for any two elements g1 and g2 belonging to the class w we
have g−1

2 g1 ∈ B ∩ N and g1B = g2B; thus wB and

C(w) := BwB

are well-defined. We require that the following two technical conditions
hold:
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(1) C(s)C(w) ⊂ C(w) ∪ C(sw) for all s ∈ S and w ∈ W ,
(2) sBs−1 is not contained in B for every s ∈ S.

Then (G, B, N, S) is said to be a Tits system and W is called the Weyl group
of this Tits system; also we say that the subgroup B, N form a BN-pair of
the group G.

The conditions (1) and (2) give the following remarkable properties,
Section V.2 in [Brown (1989)]:

(3) every s ∈ S is an involution and (W, S) is a Coxeter system;
(4) C(w) ∩ C(w′) = ∅ if w �= w′;
(5) for every subgroup W ′ = 〈S′〉 with S′ ⊂ S

BW ′B :=
⋃

w∈W ′
C(w)

is a subgroup of G; in particular, we have BWB = G, and BW ′B
coincides with B if W ′ = {1};

(6) C(s)C(w) = C(sw) if l(sw) ≥ l(w), and C(s)C(w) = C(w) ∪ C(sw) if
l(sw) ≤ l(w).

Now assume that S = {s1, . . . , sn}. For every number k ∈ {1, . . . , n} and
every subset J ⊂ {1, . . . , n} we define W k and W J as in Subsection 2.2.2.
By the property (5), all

P J := BW JB, J ⊂ {1, . . . , n},
are subgroup of G and

P J = P j1 ∩ · · · ∩ P jm if J = {j1, . . . , jm}.
These subgroups are called special. Every special subgroup contains B.
Conversely, every subgroup of G containing B is special, Section V.2 in
[Brown (1989)].

Exercise 2.5. Show that

gP i = g′P j =⇒ i = j and gg′−1 ∈ P i.

Consider the simplicial complex ∆ = ∆(G, B, N, S) whose vertex set
consists of all special subsets gP k with g ∈ G and k ∈ {1, . . . , n}; special
subsets X1, . . . , Xm form a simplex if there exists g ∈ G such that

X1 = gP j1 , . . . , Xm = gP jm .

We identify this simplex with the special subset

X1 ∩ · · · ∩ Xm = gP J ,
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where J = {j1, . . . , jm}. Then maximal simplices will be identified with
special subsets gB.

Remark 2.3. A subgroup of G is called parabolic if it is conjugate to a spe-
cial subgroup. There is a one-to-one correspondence between simplices of
∆ and parabolic subgroups, given by gP → gPg−1 (it easy follows from the
fact that there are no two distinct special subgroups which are conjugate).

If w ∈ W then for any two elements g1 and g2 of the class w we have
g1P

J = g2P
J for every J ⊂ {1, . . . , n} and denote this special subset by

wP J . Let Σ be the subcomplex of ∆ formed by all special subsets wP J

with w ∈ W , J ⊂ {1, . . . , n}; it will be called the fundamental apartment
of ∆. The mapping

wW k → wP k

is an isomorphism of the Coxeter complex Σ(W, S) to the fundamental
apartment Σ. For every g ∈ G denote by lg the automorphism of ∆ trans-
ferring every special subset X to gX . The subcomplexes

gΣ := lg(Σ), g ∈ G,

are called apartments of ∆. Then {gΣ}g∈G is an apartment system and ∆
is a building, Section V.3 in [Brown (1989)].

The mapping gP k → sk is the canonical labeling of the building ∆ by
the set S (any other labeling of ∆ by S is the composition of the canonical
labeling with a permutation on S, Lemma 2.2). Denote by Aut0(∆) the
group formed by all automorphisms of ∆ preserving the canonical labeling
(there exist automorphisms of ∆ which do not belong to this group, see
Remark 2.4). The mapping g → lg is a homomorphism of G to Aut0(∆);
it does not need to be injective and surjective (Remark 2.4).

The Grassmannians of ∆ coincide with the orbits of the left action of
the group G on the vertex set of ∆. Denote by Gk(∆) the Grassmannian
containing P k, it consists of all special subsets gP k.

2.3.3 Classical examples

In this subsection we consider buildings associated with general linear, sym-
plectic, and orthogonal groups.

Example 2.9 (The general linear group). Let G = GL(V ), where V

is an (n+1)-dimensional vector space over a division ring. We take any base
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X0 = {x1, . . . , xn+1} of this vector space and denote by B the stabilizer of
the maximal flag

〈x1〉 ⊂ 〈x1, x2〉 ⊂ · · · ⊂ 〈x1, . . . , xn〉
in the group G. Let also N ⊂ G be the stabilizer of the projective base
〈x1〉, . . . , 〈xn+1〉. Then B ∩ N consists of all linear automorphisms pre-
serving each 〈xi〉. This is a normal subgroup of N and the corresponding
quotient group is isomorphic to the symmetric group Sn+1. Let S be the
set of generators of Sn+1 considered in Example 2.5. Then (G, B, N, S) is
a Tits system, Section V.5 in [Brown (1989)]. The associated building ∆
can be identified with the flag complex ∆(V ) (Example 2.3). Indeed, for
every number k ∈ {1, . . . , n} the subgroup P k is the stabilizer of the linear
subspace 〈x1, . . . , xk〉 and the mapping

gPk → g(〈x1, . . . , xk〉)
is the required isomorphism. For every base X ⊂ V denote by ΣX the
subcomplex of ∆(V ) consisting of all flags formed by the linear subspaces
spanned by subsets of X ; this subcomplex is isomorphic to the complex
An (Example 2.1). Then the fundamental apartment Σ is identified with
ΣX0 and gΣ = Σg(X0) for every g ∈ G. The Grassmannian Gk(∆) (the
Grassmannian containing P k) is Gk(V ). The associated Grassmann spaces
were described in Example 2.4.

Remark 2.4. By the Fundamental Theorem of Projective Geometry
(Corollary 1.5), every element of Aut0(∆(V )) is induced by a semilinear
automorphism of V . For every homothetic transformation the associated
automorphism of ∆(V ) is identity. Hence the homomorphism g → lg of
GL(V ) to the group Aut0(∆(V )) is not injective. This homomorphism is
surjective only in the case when every automorphism of the associated di-
vision ring is inner, for example, if V is a real vector space or a vector space
over the division ring of real quaternion numbers (indeed, if l is a σ-linear
automorphism of V such that (l)1 = (s)1 for a certain linear automorphism
s : V → V then l is a scalar multiple of s which is equivalent to the fact that
the automorphism σ is inner). Also note that semilinear isomorphisms of V

to V ∗ (if they exist) induce automorphisms of ∆(V ) which do not preserve
the canonical labeling.

Example 2.10 (The symplectic group). Let Ω be a non-degenerate al-
ternating form on a (2n)-dimensional vector space V over a field. Then
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every 1-dimensional linear subspace is totally isotropic and the dimension
of maximal totally isotropic subspaces is equal to n. A base X ⊂ V is said
to be an Ω-base if for each x ∈ X there is precisely one y ∈ X satisfying
Ω(x, y) �= 0. Such bases form a sufficiently wide class.

We fix an Ω-base

X0 = {x1, y1, . . . , xn, yn}
satisfying Ω(xi, yi) �= 0 for all i. Suppose that G = Sp(Ω) (the group formed
by all linear automorphisms of V preserving the form Ω). Let B ⊂ G be
the stabilizer of the flag

〈x1〉 ⊂ 〈x1, x2〉 ⊂ · · · ⊂ 〈x1, . . . , xn〉
(all linear subspaces in this flag are totally isotropic) and N ⊂ G be the
stabilizer of the projective base

〈x1〉, 〈y1〉, . . . , 〈xn〉, 〈yn〉.
Then B ∩ N is a normal subgroup of N and the corresponding quotient
group is isomorphic to Spn. If S is the set of generators of Spn considered
in Example 2.6 then (G, B, N, S) is a Tits system, Section V.6 in [Brown
(1989)]. As in the previous example, we show that the associated building
can be identified with the subcomplex ∆(Ω) ⊂ ∆(V ) (Example 2.3). The
fundamental apartment is the intersection of ∆(Ω) with ΣX0 , and every
apartment is the subcomplex ∆(Ω) ∩ ΣX , where X is a certain Ω-base.
These apartments are isomorphic to the complex Cn (Example 2.2).

The Grassmannians of this building are Gk(Ω), k ∈ {1, . . . , n}. Two
elements of Gn(Ω) are adjacent if their intersection is (n − 1)-dimensional;
every line in Gn(Ω) consists of all maximal totally isotropic subspaces con-
taining a certain element of Gn−1(Ω). In the case when k < n, elements
S, U ∈ Gk(Ω) are adjacent if S ⊥ U and S ∩ U belongs to Gk−1(Ω) (this is
equivalent to the fact that S + U is an element of Gk+1(Ω)); the lines are
defined as for Grassmannians of finite-dimensional vector spaces (by pairs
of incident totally isotropic subspaces of dimension k − 1 and k + 1).

Example 2.11 (The orthogonal group). Let V be a (2n)-dimensional
vector space over a field whose characteristic is not equal to 2. Let also
Ω be a non-degenerate symmetric form defined on V . The dimension of
maximal totally isotropic subspaces is assumed to be equal to n. We say
that a base X ⊂ V is an Ω-base if it consists of isotropic vectors and for
each x ∈ X there is precisely one y ∈ X satisfying Ω(x, y) �= 0. As in the
previous example, these bases form a sufficiently wide class.
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Consider the oriflamme complex Orif(Ω) (Example 2.3). Every Ω-base
X defines the subcomplex OrifX ⊂ Orif(Ω) consisting of all “oriflamme
flags” formed by the totally isotropic subspaces spanned by subsets of X ;
this subcomplex is isomorphic to the oriflamme complex Dn (Example 2.2).
Let us fix an Ω-base X0 = {x1, . . . , x2n} and a maximal simplex (a maximal
oriflamme flag) in the subcomplex OrifX0 . Suppose that G = SO(Ω) and
denote by B the stabilizer of this maximal simplex in G. Let N ⊂ G

be the stabilizer of the projective base 〈x1〉, . . . , 〈x2n〉. Then B ∩ N is a
normal subgroup of N and the corresponding quotient group is isomorphic
to SOn. Let S be the set of generators of the group SOn from Example
2.7. Then (G, B, N, S) is a Tits system, Section V.7 in [Brown (1989)].
Standard arguments show that the associated building can be identified
with the oriflamme complex Orif(Ω). Every apartment of this building is
OrifX , where X is an Ω-base.

The Grassmannians of this building are Gk(Ω), k ≤ n − 2, and Gδ(Ω),
δ ∈ {+,−}. The adjacency relation on Gk(Ω), k ≤ n−2, is defined as in the
previous example. Two elements of Gδ(Ω) are adjacent if their intersection
belongs to Gn−2(Ω); every line consists of all elements of Gδ(Ω) containing
a certain (n − 2)-dimensional totally isotropic subspace.

Example 2.12. Let G be a reductive algebraic group over a field and B be
a Borel subgroup of G containing a maximal torus T (we refer [Humphreys
(1975)] for the precise definitions). Denote by N the normalizer of T in
G. Then B and N form a BN-pair of G. The associated Tits system and
building are described in [Tits (1974)] (Chapter 5).

2.3.4 Spherical buildings

A building ∆ is called spherical if the associated Coxeter system is finite.
In this case, by Proposition 2.4, the diameter of the graph Γch(∆) is finite
and equal to the diameter of the graph Γch(Σ), where Σ is an apartment
of ∆. We say that two chambers of a spherical building are opposite if the
distance between them is maximal (is equal to the diameter).

The term “spherical” is motivated by the following.

Proposition 2.5. In a spherical building every apartment Σ is the union
of all geodesics connecting two opposite chambers C, C′ ∈ Σ.

Proof. See Section IV.5 in [Brown (1989)]. �
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Corollary 2.1. Every spherical building admits a unique system of apart-
ments; in other words, if ∆ is a spherical building and A, A′ are apartment
systems for ∆ then A = A′.

Corollary 2.2. Every isomorphism between spherical buildings is apart-
ments preserving (sends apartments to apartments).

Proof. Let ∆, ∆′ be spherical buildings and A, A′ be their systems of
apartments. If f is an isomorphism of ∆ to ∆′ then f(A) is an apartment
system for ∆′. By Corollary 2.1, we have f(A) = A′. �

A building is called irreducible if the associated Coxeter system is irre-
ducible. Irreducible thick spherical buildings of rank ≥ 3 were classified in
[Tits (1974)]. There are three classical types

An, Bn = Cn, Dn,

and four exceptional types

F4 and Ei, i = 6, 7, 8
(the building type is the type of the associated Coxter system). In particu-
lar, there exists no thick building of type Hi, i = 3, 4.

We restrict ourselves to buildings of classical types only. Every thick
building of type An, n ≥ 3, is isomorphic to the flag complex ∆(V ), where
V is an (n + 1)-dimensional vector space over a division ring (this fact is a
reformulation of Theorem 1.3). All thick buildings of types Cn and Dn can
be obtained from so-called polar spaces (this construction will be considered
in Chapter 4).

2.3.5 Mappings of the chamber sets

Let ∆ and ∆′ be buildings. Isomorphisms of ∆ to ∆′ (if they exist) induce
isomorphisms between the graphs Γch(∆) and Γch(∆′). Conversely, we have
the following.

Theorem 2.3 (J. Tits). If the diagram of the Coxeter system associated
with ∆ does not contain edges labeled by ∞ then every isomorphism of
Γch(∆) to Γch(∆′) is induced by an isomorphism of ∆ to ∆′.

Proof. See [Tits (1974)], p.51. �

Theorem 2.4 ([Abramenko and Van Maldeghem (2000)]). If ∆ is
a thick spherical building then for any two distinct chambers C1, C2 ∈ ∆
the following conditions are equivalent:
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• C1 and C2 are adjacent,
• there exists a chamber C �= C1, C2 such that no chamber is opposite to

a unique member of the set {C, C1, C2}.
In particular, if ∆′ also is a thick spherical building then every bijection of
Ch(∆) to Ch(∆′) preserving the relation to be opposite (two chambers of ∆
are opposite if and only if their images are opposite) is an isomorphism of
Γch(∆) to Γch(∆′).

The intersection of an apartment of ∆ with the chamber set Ch(∆) will
be called an apartment in Ch(∆). We say that a mapping

f : Ch(∆) → Ch(∆′)

is apartments preserving if its restriction to every apartment of Ch(∆) is a
bijection on a certain apartment of Ch(∆′). Every apartments preserving
mapping is injective (since for any two chambers there is an apartment
containing them). We want to show that apartments preserving mappings
are adjacency preserving; our proof will be based on the following charac-
terization of the adjacency relation in terms of apartments.

Lemma 2.4. Let ∆ be a thick building. Distinct chambers C, C′ ∈ ∆ are
adjacent if and only if the intersection of all apartments of Ch(∆) contain-
ing them coincides with {C, C′}.

Proof. If the intersection of all apartments of Ch(∆) containing both
C and C′ coincides with {C, C′} then, by Proposition 2.4, C and C′ are
adjacent.

Conversely, suppose that C and C′ are adjacent and denote by X the
intersection of all apartments of Ch(∆) containing C, C′. Assume that
X �= {C, C′}.

First we establish the existence of C′′ ∈ X \ {C, C′} such that

C, C′, C′′ or C′′, C, C′

is a geodesic in Γch(∆). We take any geodesic γ of Γch(∆) connecting C

with a certain element of X \ {C, C′}; by Proposition 2.4, γ is contained
in X . If γ contains C′ then the first possibility is realized. If C′ does not
belong to γ then γ contains a chamber C′′ (C′′ �= C′) adjacent with C; this
chamber is not adjacent with C′ (otherwise, by Lemma 2.3, C′′ contains
the panel C ∩ C′ which is impossible, since C, C′, C′′ ∈ X and apartments
are thin chamber complexes).
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Consider the first case (C, C′, C′′ is a geodesic); the second is similar.
We choose a chamber Ĉ containing the panel C′ ∩C′′ and distinct from C′

and C′′ (our building is thick). The chambers C and Ĉ are not adjacent
(it follows from Lemma 2.3). Hence C, C′, Ĉ is a geodesic in Γch(∆). Then
every apartment containing C and Ĉ contains C′; but C′′ does not belong
to this apartment which contradicts C′′ ∈ X . �

Theorem 2.5. Suppose that ∆ and ∆′ are thick buildings of the same rank.
Then every apartments preserving mapping of Ch(∆) to Ch(∆′) preserves
the adjacency relation (two chambers of ∆ are adjacent if and only if their
images are adjacent); in particular, every apartments preserving bijection
of Ch(∆) to Ch(∆′) is an isomorphism of Γch(∆) to Γch(∆′).

Proof. Let f : Ch(∆) → Ch(∆′) be an apartments preserving mapping.
It was noted above that f is injective. Lemma 2.4 guarantees that f trans-
fers adjacent chambers to adjacent chambers.

Let C and Ĉ be chambers of ∆ and A be an apartment of Ch(∆)
containing them. Suppose that the rank of ∆ is equal to n. Then A
contains precisely n distinct chambers adjacent with C; denote them by
C1, . . . , Cn. Their images

f(C1), . . . , f(Cn) ∈ f(A)

are adjacent with f(C). Since the rank of ∆′ also is equal to n, the apart-
ment f(A) does not contain other chambers adjacent with f(C). Hence if
f(C) and f(Ĉ) are adjacent then we have Ĉ = Ci for a certain i. Therefore,
C and Ĉ are adjacent if and only if their images are adjacent. �

Remark 2.5. Theorem 2.5 is a modification of a result obtained in [Abra-
menko and Van Maldeghem (2008)]. We do not assume that the mapping
is bijective, but require that the buildings are of the same rank.

2.4 Mappings of Grassmannians

The intersections of a building Grassmannian with apartments of the asso-
ciated building are called apartments of this Grassmannian. We say that
a mapping between two building Grassmannians is apartments preserving
if its restriction to every apartment is a bijection to an apartment. Apart-
ments preserving mappings are injective, since for any two elements of a
building Grassmannian there is an apartment containing them.
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Example 2.13. Let V be an n-dimensional vector space over a division
ring. Every apartment of the Grassmannian Gk(V ) consists of all k-
dimensional linear subspaces spanned by subsets of a certain base of V .
In the cases when k = 1, n− 1, this is a base of the projective space ΠV or
the dual projective space Π∗

V , respectively.

Let V and V ′ be vector spaces of the same finite dimension n ≥ 3.
It is not difficult to prove that every apartments preserving bijection of
G1(V ) to G1(V ′) (a bijection which sends bases of ΠV to bases of ΠV ′) is a
collineation of ΠV to ΠV ′ ; similarly, every apartments preserving bijection
of Gn−1(V ) to Gn−1(V ′) is a collineation of Π∗

V to Π∗
V ′ . In Chapters 3 and

4 we establish such kind results for other Grassmannians associated with
buildings of classical types.

Let ∆ and ∆′ be buildings of the same classical type Xn, X ∈ {A, C, D}.
Let also G and G′ be Grassmannians of ∆ and ∆′, respectively. Denote by
G and G′ the associated Grassmann spaces (Subsection 2.1.3).

We suppose that G and G′ both are not projective spaces. In this
case, we show that every isomorphism of ΓG to ΓG′ (Subsection 2.1.3) is a
collineation of G to G′. For projective spaces this fails (since any two points
of a projective space are collinear and every bijection between projective
spaces gives an isomorphism of their collinearity graphs).

We describe all collineations of G to G′ and show that they can be ex-
tended to isomorphisms of ∆ to ∆′ (for projective spaces the latter state-
ment is trivial). In almost all cases (except the case when X ∈ {C, D} and
n = 4), these results easy follow from elementary properties of maximal sin-
gular subspaces of Grassmann spaces. Note that such kind theorems were
first proved in [Chow (1949)] for Grassmannians of finite-dimensional vector
spaces and Grassmannians formed by maximal totally isotropic subspaces
of non-degenerate reflexive forms.

One of our main results is the description of all apartments preserving
mappings of G to G′; in particular, we establish that every apartments
preserving bijection of G to G′ is a collineation of G to G′ (hence it can be
extended to an isomorphism of ∆ to ∆′).

The idea used to prove Theorem 2.5 does not work for building Grass-
mannians, since for any a, b ∈ G the intersection of all apartments of G
containing both a, b coincides with {a, b}.

Our method is based on combinatorial properties of so-called maximal
inexact subsets. We say that a subset of an apartment is inexact if there
exist other apartments containing this subset. Certain Grassmannians have
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maximal inexact subsets of precisely one type; but there exist other Grass-
mannians with maximal inexact subsets of two different types. We char-
acterize the adjacency relation in terms of maximal inexact subsets. Using
this characterization we show that every apartments preserving mapping of
G to G′ is adjacency preserving (two elements of G are adjacent if and only
if their images are adjacent).

Following [Cooperstein, Kasikova and Shult (2005)] we present results
of “opposite nature” (characterizations of apartments in terms of the ad-
jacency relation) for certain Grassmannians associated with buildings of
classical types.

2.5 Appendix: Gamma spaces

A partial linear space Π = (P,L) is called a gamma space if it satisfies the
following axiom:

(Γ) if a point is collinear with two distinct points of a line then it is collinear
with all points of this line.

This axiom implies that for any point p ∈ P and any line L ∈ L the set of
all points on L collinear with p is empty, or consists of a single point, or
coincides with L. In linear spaces the axiom holds trivially.

Now we establish some elementary properties of gamma spaces. It will
be shown later that all Grassmann spaces associated with buildings of clas-
sical types are gamma spaces.

Let Π = (P,L) be a gamma space. Consider a subset X ⊂ P consisting
of mutually collinear points (a clique in the collinearity graph of Π) and
suppose that |X | ≥ 2. We write [X ]1 for the set formed by all points
belonging to the lines joining points of X (a point q belongs to [X ]1 if there
exist distinct points p, p′ ∈ X such that q is on the line pp′). It is clear that
X ⊂ [X ]1.

Exercise 2.6. Show that [X ]1 is a clique of the collinearity graph.

For every natural i ≥ 2 we define

[X ]i := [[X ]i−1]1.

Then [X ]i is contained in [X ]j if i ≤ j, and, by Exercise 2.6, each [X ]i is a
clique of the collinearity graph.
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Proposition 2.6. If X is a clique in the collinearity graph of a certain
gamma space and |X | ≥ 2 then

〈X〉 =
∞⋃

i=1

[X ]i

is a singular subspace.

Proof. Denote by S the union of all [X ]i. If p and q are distinct points
of S then p ∈ [X ]i and q ∈ [X ]j for certain i, j. It is clear that p and q

both belong to [X ]m, where m = max{i, j}; the line joining these points is
contained in [X ]m+1. Thus S is a singular subspace. Since 〈X〉 contains
every [X ]i, we have X ⊂ S ⊂ 〈X〉 which gives the claim. �

Corollary 2.3. If X is a clique in the collinearity graph of a gamma space
Π = (P,L) and a point p ∈ P is collinear with all points of X then p is
collinear with all points of 〈X〉.

Using Zorn lemma we can show that every graph has maximal cliques
and every clique is contained in a certain maximal clique.

Proposition 2.7. In a gamma space the class of maximal singular sub-
spaces coincides with the class of maximal cliques of the collinearity graph.

Proof. By Proposition 2.6, every maximal clique X of the collinearity
graph is contained in the singular subspace 〈X〉. Let S be a maximal
singular subspace containing 〈X〉 (Exercise 1.5). Since S is a clique of the
collinearity graph, we have X = 〈X〉 = S.

Every maximal singular subspace U is contained in a certain maximal
clique Y of the collinearity graph. It was established above that Y is a
maximal singular subspace and we get U = Y . �
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Classical Grassmannians

It was mentioned in the previous chapter that every thick building of type
An−1 (n ≥ 4) is isomorphic to the flag complex ∆(V ), where V is an n-
dimensional vector space over a division ring. The Grassmannians of ∆(V )
are the usual Grassmannians Gk(V ). The associated Grassmann spaces will
be denoted by Gk(V ); their elementary properties will be studied in Section
3.1. Note that G1(V ) = ΠV and Gn−1(V ) = Π∗

V .
Let V ′ be other n-dimensional vector space over a division ring. Fol-

lowing our programme, we will examine collineations of Gk(V ) to Gk(V ′)
and apartments preserving mappings of Gk(V ) to Gk(V ′).

The classical Chow’s theorem will be proved in Section 3.2. It states
that every collineation of Gk(V ) to Gk(V ′), 1 < k < n − 1, is induced by
a semilinear isomorphism of V to V ′ or a semilinear isomorphism of V to
V ′∗ (the second possibility can be realized only in the case when n = 2k).
Also we characterize the adjacency relation in terms of the relation to be
opposite (as in Theorem 2.4) and show that every bijection of Gk(V ) to
Gk(V ′), 1 < k < n − 1, preserving the opposite relation is a collineation of
Gk(V ) to Gk(V ′).

If k = 1, n − 1 then apartments of Gk(V ) are bases of ΠV and Π∗
V ,

respectively. In Section 3.3 we characterize apartments of Gk(V ), 1 < k <

n − 1, in terms of the adjacency relation. This characterization follows
from a more general result concerning apartments in parabolic subspaces of
Gk(V ). As an application, we describe all subspaces of Gk(V ) isomorphic
to the Grassmann spaces of finite-dimensional vector spaces.

Section 3.4 is dedicated to apartments preserving mappings. All apart-
ments preserving bijections of Gk(V ) to Gk(V ′) are collineations of Gk(V )
to Gk(V ′). If 1 < k < n − 1 then every apartments preserving mapping
of Gk(V ) to Gk(V ′) is induced by a semilinear embedding of V in V ′ or a

69
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semilinear embedding of V in V ′∗ (as in Chow’s theorem, the second possi-
bility can be realized only in the case when n = 2k). There is an example
showing that the latter statement fails for k = 1, n − 1.

In Sections 3.5–3.7 we demonstrate how our methods work for some
constructions rather similar to Grassmannians of finite-dimensional vector
spaces — spine spaces, Grassmannians of exchange spaces and the sets of
conjugate linear involutions. In particular, Chow’s theorem and the theo-
rem on apartments preserving bijections are closely related with classical
Dieudonné–Rickart’s results on automorphisms of the group GL(V ).

In Section 3.8 we extend some results to the case of infinite-dimensional
vector spaces focusing on Grassmannians formed by linear subspaces with
infinite dimension and codimension.

3.1 Elementary properties of Grassmann spaces

Let V be an n-dimensional vector space over a division ring and 3 ≤ n < ∞.
Let also k ∈ {1, . . . , n− 1}. Recall that two k-dimensional linear subspaces
of V (elements of the Grassmannian Gk(V )) are adjacent if their intersection
is (k − 1)-dimensional; the latter is equivalent to the fact that the sum of
these linear subspaces is (k + 1)-dimensional.

Now suppose that M and N are incident linear subspaces of V and

dim M < k < dimN

(possible M = 0 or N = V ). We define

[M, N ]k := { S ∈ Gk(V ) : M ⊂ S ⊂ N }.
If M = 0 or N = V then instead of [M, N ]k we will write

〈N ]k or [M〉k,

respectively. In the case when

dimM = k − 1 and dimN = k + 1,

the set [M, N ]k is a line of Gk(V ). This line contains at least three points:
we choose two linearly independent vectors x, y ∈ N such that N is spanned
by M and x, y then

〈M, x〉, 〈M, y〉, 〈M, x + y〉
are three distinct points on the line.
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The set of all such lines will be denoted by Lk(V ). Two distinct elements
of Gk(V ) are collinear (joined by a line) if and only if they are adjacent;
and for any adjacent S, U ∈ Gk(V ) there is the unique line

[S ∩ U, S + U ]k
containing them. The pair

Gk(V ) := (Gk(V ),Lk(V ))
is a partial linear space. It is clear that G1(V ) = ΠV and Gn−1(V ) = Π∗

V ;
moreover,

Gk(V ∗) and Gn−k(V )
are canonically isomorphic (by the annihilator mapping).

The partial linear spaces Gk(V ), k ∈ {1, . . . , n − 1}, are the Grass-
mann spaces of the building ∆(V ). The associated Grassmann graphs (the
collinearity graphs of Gk(V )) will be denoted by Γk(V ).

Recall that three distinct mutually collinear points of a partial linear
space form a triangle if they are not collinear (in other words, these points
span a plane).

Lemma 3.1. Let 1 < k < n−1. For any triangle S1, S2, S3 in Gk(V ) only
one of the following two possibilities is realized:

(1) a star-triangle: there is a (k−1)-dimensional linear subspace contained
in each Si,

(2) a top-triangle: there is a (k+1)-dimensional linear subspace containing
all Si.

Proof. The fulfillment of both (1) and (2) implies that S1, S2, S3 are
collinear. Therefore, one of these conditions does not hold. Suppose that
S3 is not contained in the (k+1)-dimensional linear subspace S1+S2. Then
the dimension of the linear subspace

U := (S1 + S2) ∩ S3

is not greater than k − 1. Since S3 is adjacent with S1 and S2, U is a
(k − 1)-dimensional linear subspace contained in S1 and S2. �

By Proposition 2.1, the Grassmann space Gk(V ) is connected. Now we
prove the following.

Proposition 3.1. The Grassmann space Gk(V ) is a connected gamma
space. For any k-dimensional linear subspaces S, U ⊂ V the distance be-
tween S and U is equal to

dim(S + U) − k = k − dim(S ∩ U).
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Proof. The case k = 1, n − 1 is trivial. Let 1 < k < n − 1. If S ∈ Gk(V )
is adjacent with two distinct points S1, S2 of a certain line [M, N ]k and S

does not belong to this line then
M = S1 ∩ S2 ⊂ S or S ⊂ S1 + S2 = N

(S, S1, S2 form a star-triangle or a top-triangle, respectively). In each of
these cases, S is adjacent with all points of the line [M, N ]k. Thus the
axiom (Γ) holds (Section 2.5).

For any two linear subspaces S, U ⊂ V there is a base B ⊂ V such that
S and U are spanned by subsets of B (Proposition 1.4). Suppose that the
linear subspaces S and U both are k-dimensional. Let

X ∪ {x1, . . . , x2m}
be a subset of B such that

S ∩ U = 〈X〉,
S = 〈X, x1, . . . , xm〉,

U = 〈X, xm+1, . . . , x2m〉.
The k-dimensional linear subspaces

Si := 〈X, x1+i, . . . , xm+i〉, i = 0, . . . , m,

form a path in Γk(V ) connecting S and U . For every path
S = U0, U1, . . . , Ul = U

we have
dim(U0 ∩ · · · ∩ Ul) ≥ k − l.

On the other hand, U0 ∩ · · · ∩ Ul is contained in the linear subspace S ∩ U

whose dimension is equal to k − m. Thus k − l ≤ k − m and m ≤ l which
means that d(S, U) = m. �

Remark 3.1 (Grassmann embedding). Suppose that V is a vector
space over a field and consider the exterior power vector space ∧kV . If
vectors x1, . . . , xk and y1, . . . , yk span the same k-dimensional linear sub-
space of V then

x1 ∧ · · · ∧ xk = a(y1 ∧ · · · ∧ yk)
for a certain non-zero scalar a. This implies that the Grasmann mapping

gk : Gk(V ) → G1(∧kV )

〈x1, . . . , xk〉 → 〈x1 ∧ · · · ∧ xk〉
is well-defined. This mapping is injective and the image of every line of
Gk(V ) is a line of Π∧kV . Thus gk is an embedding of the Grassmann space
Gk(V ) in the projective space Π∧kV .
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Now we describe maximal singular subspaces of Gk(V ), 1 < k < n − 1.
Since Gk(V ) is a gamma space, the class of maximal singular subspaces of
Gk(V ) coincides with the class of maximal cliques of the Grassmann graph
Γk(V ) (Proposition 2.7).

Example 3.1. For every (k+1)-dimensional linear subspace N ⊂ V the set
〈N ]k will be called a top. This is a singular subspace of Gk(V ) isomorphic
to a k-dimensional projective space. If S ∈ Gk(V ) does not belong to 〈N ]k
then

dim(S ∩ N) ≤ k − 1

and there exist elements of 〈N ]k which are not adjacent with S. This means
that 〈N ]k is a maximal singular subspace of Gk(V ). Every triangle of 〈N ]k
is a top-triangle.

Example 3.2. For every (k−1)-dimensional linear subspace M ⊂ V the set
[M〉k is said to be a star. This is a singular subspace of Gk(V ) isomorphic
to an (n − k)-dimensional projective space. Stars are maximal singular
subspaces, since the canonical collineation between Gk(V ) and Gn−k(V ∗)
(the annihilator mapping) sends stars to tops and tops to stars. Every
triangle of a star is a star-triangle.

Proposition 3.2 ([Chow (1949)]). Every maximal singular subspace of
Gk(V ), 1 < k < n − 1, is a star or a top.

Proof. It was noted above that the class of maximal singular subspaces
coincides with the class of maximal cliques of the Grassmann graph. Hence
it is sufficient to show that every clique of the Grassmann graph is contained
in a star or a top.

Let X be a clique of Γk(V ) and S1, S2 be distinct elements of X . Suppose
that X is not contained in a star. In this case, there exists S3 ∈ X which
does not contain S1 ∩ S2 and S1, S2, S3 form a top-triangle. Then S3 is
contained in the (k + 1)-dimensional linear subspace

N := S1 + S2.

If a k-dimensional linear subspace S does not belong to the top 〈N ]k then

dim(N ∩ S) ≤ k − 1

and S is not adjacent with at least one of Si. Thus S �∈ X and our clique
is a subset of 〈N ]k. �
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Example 3.3. Let M and N be incident linear subspaces of V satisfying

dim M < k < dimN

(possible M = 0 or N = V ). Then [M, N ]k is a subspace of Gk(V ); sub-
spaces of such type are called parabolic [Cooperstein, Kasikova and Shult
(2005)]. The parabolic subspace [M, N ]k is isomorphic to the Grassmann
space Gk−m(N/M), where m is the dimension of M . This subspace is
singular only in the case when M is (k − 1)-dimensional or N is (k + 1)-
dimensional. By Proposition 3.2, every singular subspace of Gk(V ) is
parabolic. The canonical collineation between Gk(V ) and Gn−k(V ∗) trans-
fers parabolic subspaces to parabolic subspaces.

The following result [Cooperstein, Kasikova and Shult (2005); Żynel
(2000)] generalizes Proposition 3.2. It will be proved in Section 3.3.

Theorem 3.1. Every subspace of Gk(V ), 1 < k < n−1, isomorphic to the
Grassmann space of a finite-dimensional vector space is parabolic.

Let S and U be adjacent elements of Gk(V ), 1 < k < n − 1. The set of
all elements of Gk(V ) adjacent with both S, U is the union of all maximal
cliques of the Grassmann graph (all maximal singular subspaces of Gk(V ))
containing S and U . By Proposition 3.2, this is

[S ∩ U〉k ∪ 〈S + U ]k.

A k-dimensional linear subspace of V is adjacent with all elements of this
set if and only if it belongs to the line

[S ∩ U, S + U ]k

joining S and U .
Denote by X∼ the set consisting of all elements of Gk(V ) adjacent with

each element of a subset X ⊂ Gk(V ). We get the following characterization
of lines in terms of the adjacency relation.

Proposition 3.3. For any adjacent S, U ∈ Gk(V ), 1 < k < n − 1, the line
joining S and U coincides with the subset {S, U}∼∼.

The intersection of two distinct stars [M〉k and [M ′〉k contains at most
one element; this intersection is not empty if and only if M, M ′ are adjacent
elements of Gk−1(V ). The same holds for the intersection of two distinct
tops. The intersection of the star [M〉k and the top 〈N ]k is empty or a line;
the second possibility is realized only in the case when M ⊂ N .
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3.2 Collineations of Grassmann spaces

Throughout the section we suppose that V and V ′ are n-dimensional vector
spaces over division rings and 4 ≤ n < ∞. We will study collineations
between the Grassmann spaces Gk(V ) and Gk(V ′) for 1 < k < n − 1.

3.2.1 Chow’s theorem

For every semilinear isomorphism u : V → V ′ the bijection

(u)k : Gk(V ) → Gk(V ′)

(Subsection 1.3.2) is a collineation of Gk(V ) to Gk(V ′). By duality, it can
be considered as the collineation of Gn−k(V ∗) to Gn−k(V ′∗) induced by the
contragradient ǔ (Subsection 1.3.3).

Let l : V → V ′∗ be a semilinear isomorphism. By duality, we can
identify (l)k with the collineation of Gk(V ) to Gn−k(V ′) sending each S to
l(S)0. This is a collineation of Gk(V ) to Gk(V ′) if n = 2k.

Theorem 3.2 ([Chow (1949)]). Let 1 < k < n− 1. Then every isomor-
phism of Γk(V ) to Γk(V ′) is the collineation of Gk(V ) to Gk(V ′) induced
by a semilinear isomorphism of V to V ′ or a semilinear isomorphism of V

to V ′∗; the second possibility can be realized only in the case when n = 2k.

Remark 3.2. In the cases when k = 1, n − 1, every bijection of Gk(V ) to
Gk(V ′) is an isomorphism of Γk(V ) to Γk(V ′).

It follows immediately from Theorem 3.2 that every collineation of
Gk(V ) to Gk(V ′) is induced by a semilinear isomorphism of V to V ′ or
V ′∗. This statement generalizes the classical version of the Fundamental
Theorem of Projective Geometry (Corollary 1.2).

Proof. Let f be an isomorphism of Γk(V ) to Γk(V ′). By Proposition
3.3, f is a collineation of Gk(V ) to Gk(V ′). Then f and f−1 map maximal
singular subspaces to maximal singular subspaces. Recall that maximal
singular subspaces of our Grassmann spaces are stars and tops. The in-
tersection of two distinct maximal singular subspaces is empty, or a single
point, or a line; the third possibility is realized only in the case when these
singular subspaces are of different types (one of them is a star and the other
is a top) and the associated (k − 1)-dimensional and (k + 1)-dimensional
linear subspaces are incident.
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Now suppose that for a (k − 1)-dimensional linear subspace S ⊂ V the
image of the star [S〉k is a star. Let U be a (k − 1)-dimensional linear
subspace adjacent with S. We choose a (k+1)-dimensional linear subspace
N containing S and U . The stars [S〉k and [U〉k intersect the top 〈N ]k by
lines. Since [S〉k goes to a star, the image of 〈N ]k is a top; hence f([U〉k)
is a star. By connectedness (Proposition 3.1), the same holds for every
(k − 1)-dimensional linear subspace U ⊂ V . Similarly, we establish that all
stars go to tops if the image of a certain star of Gk(V ) is a top. Therefore,
one of the following possibilities is realized:

(A) stars go to stars,
(B) stars go to tops.

The same arguments show that tops go to tops and tops go to stars in the
cases (A) and (B), respectively.

Case (A). In this case, there exists a bijection

fk−1 : Gk−1(V ) → Gk−1(V ′)

such that

f([S〉k) = [fk−1(S)〉k
for all S ∈ Gk−1(V ). For every U ∈ Gk(V )

S ∈ 〈U ]k−1 ⇔ U ∈ [S〉k ⇔ f(U) ∈ [fk−1(S)〉k ⇔ fk−1(S) ∈ 〈f(U)]k−1

and we have

fk−1(〈U ]k−1) = 〈f(U)]k−1.

Thus fk−1 and the inverse mapping send tops to tops which implies that
fk−1 is an isomorphism of type (A) between the Grassmann graphs Γk−1(V )
and Γk−1(V ′). Step by step, we get a sequence of such isomorphisms

fi : Gi(V ) → Gi(V ′), i = k, . . . , 1,

where fk = f and

fi([S〉i) = [fi−1(S)〉i
for all S ∈ Gi−1(V ) if i > 1. Then

fi−1(〈U ]i−1) = 〈fi(U)]i−1 (3.1)

for each U ∈ Gi(V ); in particular, f1 is a collineation of ΠV to ΠV ′ . By the
Fundamental Theorem of Projective Geometry, f1 is induced by a semilin-
ear isomorphism l : V → V ′. We can prove that fi = (l)i induction by i.
Indeed, if fi−1 is induced by l then for every U ∈ Gi(V ) we have

fi−1(〈U ]i−1) = 〈l(U)]i−1
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and (3.1) gives the claim.
Case (B). Stars and tops are projective spaces of dimension n − k and

k, respectively. Since f is a collineation and preserves the dimensions of
singular subspaces, we have n = 2k. By duality, f can be considered as a
colleniation of Gk(V ) to Gk(V ′∗) sending stars to stars. Hence it is induced
by a semilinear isomorphism of V to V ′∗. �

The following remarkable result is closely related with Chow’s theorem.

Theorem 3.3 ([Huang (1998)]). Let 1 < k < n − 1. If a surjection of
Gk(V ) to Gk(V ′) sends adjacent elements to adjacent elements then it is
a collineation of Gk(V ) to Gk(V ′); in particular, every semicollineation of
Gk(V ) to Gk(V ′) is a collineation.

3.2.2 Chow’s theorem for linear spaces

There is an analogue of Chow’s theorem for linear spaces. Let Π = (P,L)
be a linear space. Two distinct lines of Π are non-intersecting or have a
common point; in the second case, these lines are said to be adjacent. Every
pair of adjacent lines spans a plane. However, in contrast to the projective
case, there are planes containing pairs of non-adjacent lines (for example,
parallel lines in affine planes). The Grassmann graph Γ1(Π) is the graph
whose vertex set is L and whose edges are pairs of adjacent lines. It is
not difficult to prove that Γ1(Π) is connected and every maximal clique
of this graph is a star or a subset of a top (a star is formed by all lines
passing through a point, a top is the set of all lines contained in a plane).
Every collineation between linear spaces induces an isomorphism between
the associated Grassmann graphs; this isomorphism sends stars to stars.

Theorem 3.4 ([Havlicek (1999)]). Let Π = (P,L) and Π′ = (P ′,L′) be
linear spaces of the same finite dimension n ≥ 3. Suppose that f : L → L is
an isomorphism of Γ1(Π) to Γ1(Π′). Then one of the following possibilities
is realized:

• The isomorphism f maps stars to stars and it is induced by a
collineation of Π to Π′.

• All tops are maximal cliques and f transfers stars to tops and tops to
stars. In this case, Π and Π′ both are 3-dimensional generalized pro-
jective spaces and f is induced by a collineation of Π to the generalized
projective space dual to Π′.
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Remark 3.3. A generalized projective space can be defined as a linear space
where any two lines contained in a plane have a common point (if every
line of a generalized projective space contains at least three points then
it is a projective space). Every finite-dimensional generalized projective
space is the union of a finite collection of the following “components”:
points, lines containing more than two points, projective spaces; points from
distinct components are joined by lines of cardinality 2 [Buekenhout and
Cameron (1995)]. Suppose that Π = (P,L) is a generalized projective space
of dimension 3 and denote by P ∗ the set of all planes of Π. A subset of P ∗

is called a line if it consists of all planes containing a certain line L ∈ L; the
set of all such lines is denoted by L∗. Then Π∗ := (P ∗,L∗) is a generalized
projective space of dimension 3; this generalized projective space is called
dual to Π. There is natural one-to-one correspondence between elements of
L and L∗. Since two lines of Π are adjacent if and only if the corresponding
lines of Π∗ are adjacent, L∗ can be identified with L and every collineation
of Π to Π∗ induces an automorphism of the Grassmann graph Γ1(Π).

3.2.3 Applications of Chow’s theorem

Proposition 3.4. Let k, m ∈ {1, . . . , n − 1} and k �= m. Let also

gk : Gk(V ) → Gk(V ′) and gm : Gm(V ) → Gm(V ′)

be bijections satisfying the following condition: S ∈ Gk(V ) and U ∈ Gm(V )
are incident if and only if gk(S) and gm(U) are incident. Then there exists
a semilinear isomorphism l : V → V ′ such that

gk = (l)k and gm = (l)m,

in other words, gk and gm are induced by the same semilinear isomorphism
of V to V ′.

Proof. By symmetry, we can restrict ourselves to the case when k < m.
It is clear that

gk(〈U ]k) = 〈gm(U)]k

for all U ∈ Gm(V ). Let us define

Gk,m(V ) :=
m⋃

i=k

Gi(V ) and Gk,m(V ′) :=
m⋃

i=k

Gi(V ′).

For every U ∈ Gk,m(V ) there exists g(U) ∈ Gk,m(V ′) such that

gk(〈U ]k) = 〈g(U)]k.
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Indeed, we choose m-dimensional linear subspaces U1, . . . , Ui satisfying

U = U1 ∩ · · · ∩ Ui,

then

g(U) := gm(U1) ∩ · · · ∩ gm(Ui)

is as required. The mapping

g : Gk,m(V ) → Gk,m(V ′)

is bijective and its restrictions to Gk(V ) and Gm(V ) coincide with gk and
gm, respectively. For all M, N ∈ Gk,m(V ) we have

M ⊂ N ⇐⇒ g(M) ⊂ g(N);

in particular, g transfers Gk+1(V ) to Gk+1(V ′). This means that gk is a
collineation of ΠV to ΠV ′ if k = 1. In the case when k > 1, the mapping gk

is an isomorphism of Γk(V ) to Γk(V ′) (since gk and the inverse mapping
send tops to tops). Therefore, gk is induced by a semilinear isomorphism
l : V → V ′; an easy verification shows that gm = (l)m. �

By duality, we have the following.

Corollary 3.1. Let k, m ∈ {1, . . . , n − 1} and k �= m. Let also

gk : Gk(V ) → Gn−k(V ′) and gm : Gm(V ) → Gn−m(V ′)

be bijections such that S ∈ Gk(V ) and U ∈ Gm(V ) are incident if and only
if gk(S) and gm(U) are incident. Then gk and gm are induced by the same
semilinear isomorphism of V to V ′∗.

Let Ω be a non-degenerated reflexive form defined on V and ⊥ be the
associated orthogonal relation (Subsection 1.5.2). Consider the bijective
transformation of G(V ) sending each linear subspace S ⊂ V to S⊥. Suppose
that f is the restriction of this transformation to Gk(V ). Then f is a
collineation of Gk(V ) to Gn−k(V ) satisfying the following condition:

(P) for any S, U ∈ Gk(V ) the linear subspaces S, f(U) are incident if and
only if U, f(S) are incident.

If k = 1 then f is a polarity (Subsection 1.5.3). The following result
generalizes Proposition 1.13.

Theorem 3.5 ([Pankov 1 (2004)]). Let n �= 2k and f be a bijection of
Gk(V ) to Gn−k(V ) satisfying the condition (P). Then there exists a non-
degenerate reflexive form Ω such that the restriction of the transformation
S → S⊥ (where ⊥ is the orthogonal relation associated with Ω) to Gk(V )
coincides with f .



July 2, 2010 14:9 World Scientific Book - 9in x 6in ClassicalBuilding

80 Grassmannians of Classical Buildings

Proof. Since k �= n − k, we can apply Corollary 3.1 to the bijections

f : Gk(V ) → Gn−k(V ) and f−1 : Gn−k(V ) → Gk(V ).

So, f and f−1 both are induced by a semilinear isomorphism u : V → V ∗.
Let us consider the bijective transformation h of G(V ) which sends every
linear subspace S to u(S)0. The restrictions of h to Gk(V ) and Gn−k(V )
coincide with f and f−1, respectively. Therefore, the restriction of h2 to
Gk(V ) is identity. This implies that h2 is identity (we leave the details for
the reader). The latter means that the sesquilinear form defined by u is
reflexive. This reflexive form is as required. �

Remark 3.4. In the case when n = 2k, the condition (P) is equivalent to
the fact that f is an involution of Gk(V ) (f2 is identity) and the statement
given above fails.

3.2.4 Opposite relation

Let 1 < k < n − 1. Two vertices of the Grassmann graph Γk(V ) (elements
of the Grassmannian Gk(V )) are said to be opposite if the distance between
them is maximal (equal to the diameter of the graph). By Proposition 3.1,
the diameter of Γk(V ) is equal to{

k if 2k ≤ n

n − k if 2k > n.

Therefore, in the case when 2k ≤ n, two elements of Gk(V ) are opposite if
and only if their intersection is zero.

The adjacency relation can be characterized in terms of the relation to
be opposite.

Theorem 3.6. Let 1 < k < n − 1. For any distinct k-dimensional linear
subspaces S1, S2 ⊂ V the following conditions are equivalent:

(1) S1 and S2 are adjacent,
(2) there exists S ∈ Gk(V ) \ {S1, S2} such that every U ∈ Gk(V ) opposite

to S is opposite to at least one of Si.

Proof. Since the annihilator mapping of Gk(V ) to Gn−k(V ∗) is an isomor-
phism between the associated Grassmann graphs, we can restrict ourselves
to the case when 2k ≤ n. In this case, two k-dimensional linear subspaces
are opposite if and only if their intersection is zero.
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(1) =⇒ (2). If S1 and S2 are adjacent elements of Gk(Π) then every
S ∈ Gk(V ) \ {S1, S2} belonging to the line joining S1 and S2 is as required.
Indeed, if U ∈ Gk(V ) is opposite to S then it intersects S1 +S2 in a certain
1-dimensional linear subspace P ; since S1 ∩ S2 ⊂ S, this linear subspace is
not contained S1 ∩ S2 and

(S1 ∩ S2) + P

is a unique point of the line joining S1 and S2 which is not opposite to U .
(2) =⇒ (1). The proof of this implication will be given in several steps.
First we establish that for any 1-dimensional linear subspaces P1 ⊂ S1

and P2 ⊂ S2 the sum P1 + P2 has a non-zero intersection with S.
Suppose that this intersection is zero. Then P1 + P2 is contained in a

k-dimensional linear subspace opposite to S. By our hypothesis, this linear
subspace is opposite to at least one of Si. Thus there is Pi which is not
contained in Si, a contradiction.

In particular, every 1-dimensional linear subspace P ⊂ S1 ∩ S2 is con-
tained in S (we take P1 = P2 = P ); hence

S1 ∩ S2 ⊂ S. (3.2)

Our second step is to show that

dim(S ∩ S1) = dim(S ∩ S2) = k − 1. (3.3)

It is sufficient to establish that every 2-dimensional linear subspace con-
tained in Si (i = 1, 2) has a non-zero intersection with S.

Let us take a 2-dimensional linear subspace U ⊂ S1 and a 1-dimensional
linear subspace P2 ⊂ S2 which is not contained in S. By (3.2), P2 is not
contained in S1; hence U +P2 is 3-dimensional. Let P1 and Q1 be distinct 1-
dimensional linear subspaces of U . By the first step of the proof, the linear
subspaces P1 + P2 and Q1 + P2 meet S in 1-dimensional linear subspaces
P and Q, respectively. It is clear that P �= Q. Since U and P + Q are 2-
dimensional linear subspaces contained in the 3-dimensional linear subspace
U + P2, their intersection is non-zero. The inclusion P + Q ⊂ S gives the
claim.

Now we choose 1-dimensional linear subspaces P1 ⊂ S1 and P2 ⊂ S2

such that

Si = (S ∩ Si) + Pi

(this is possible by (3.3)). Then P1 + P2 has a non-zero intersection with
S (by the first step of the proof) and S + P1 contains P2. Thus S1 and S2

both are contained in the (k +1)-dimensional linear subspace S +P1 which
means that they are adjacent. �
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Corollary 3.2. Let 1 < k < n − 1. Every bijection of Gk(V ) to Gk(V ′)
preserving the relation to be opposite (two elements of Gk(V ) are opposite if
and only if their images are opposite) is a collineation of Gk(V ) to Gk(V ′).

Remark 3.5. In the case when k = 2, n−2, two distinct elements of Gk(V )
are adjacent or opposite and the latter statement is trivial.

Theorem 3.6 can be reformulated in the following form.

Theorem 3.7. Let 1 < k < n − 1. For any distinct k-dimensional linear
subspaces S1, S2 ⊂ V the following conditions are equivalent:

(1) S1 and S2 are adjacent,
(3) there exists S ∈ Gk(V ) \ {S1, S2} such that every complement of S is a

complement to at least one of Si.

Proof. As in the proof of Theorem 3.6, we can restrict ourselves to the
case when 2k ≤ n. The implication (1) =⇒ (3) is obvious. Since an
element of Gk(V ) is opposite to S ∈ Gk(V ) if and only if it is contained in
a complement of S (this is true only in the case when 2k ≤ n), we have
(3) =⇒ (2) and Theorem 3.6 gives the claim. �

Remark 3.6. Theorem 3.6 was first proved in [Blunck and Havlicek (2005)]
for the case when n = 2k, and it was shown later [Havlicek and Pankov
(2005)] that Blunck–Havlicek’s method works for the general case. In
[Huang and Havlicek (2008)] the same characterization was obtained for
an abstract graph satisfying certain technical conditions; an easy verifica-
tion shows that these conditions hold for the Grassmann graph Γk(V ).

Remark 3.7. Let m be a positive integer which is less than the diameter
of Γk(V ). For a subset X ⊂ Gk(V ) we define

Xm := { Y ∈ Gk(V ) : d(X, Y ) ≤ m ∀ X ∈ X }.
By [Lim (2010)], for any S, U ∈ Gk(V ) satisfying 0 < d(S, U) ≤ m one of the
following possibilities is realized: S, U are adjacent and ({S, U}m)m is the
line joining S with U , or they are non-adjacent and ({S, U}m)m coincides
with {S, U}. As a consequence, we have the following result [Lim (2010)]:
if f : Gk(V ) → Gk(V ′) is a surjection such that

d(S, U) ≤ m ⇐⇒ d(f(S), f(U)) ≤ m

for any S, U ∈ Gk(V ) then f is an isomorphism of Γk(V ) to Γk(V ′).
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By the remarks given above, Theorem 3.6 is a partial case of more
general results. On the other hand, our proof of Theorem 3.6 is short and
it can be modified for Grassmannians of infinite-dimensional vector spaces,
see Section 3.8. The same idea also will be exploited in Section 4.7. By
these reasons, we present this proof here.

3.3 Apartments

3.3.1 Basic properties

Let V be an n-dimensional vector space over a division ring and 3 ≤ n < ∞.
Let also B = {x1, . . . , xn} be a base of V . Denote by Ak the associated
apartment of the Grassmannian Gk(V ), it consists all k-dimensional linear
subspaces 〈xi1 , . . . , xik

〉 and

|Ak| =
(

n

k

)
.

Remark 3.8. The apartment of Gk(V ) defined by a base B′ ⊂ V coincides
with Ak if and only if the vectors of B′ are scalar multiples of the vectors
of B. Thus there is a one-to-one correspondence between apartments and
bases of the projective space ΠV .

Exercise 3.1. Show that for any S, U ∈ Gk(V ) the intersection of all apart-
ments of Gk(V ) containing S and U coincides with {S, U}.

The annihilator mapping transfers Ak to the apartment of Gn−k(V ∗)
associated with the dual base B∗ (Subsection 1.1.3).

The restriction of the Grassmann graph Γk(V ) to a subset X ⊂ Gk(V )
will be denoted by Γ(X ). It is clear that Γ(Ak) is isomorphic to the John-
son graph J(n, k) (the graph whose vertex set is formed by all k-element
subsets of {1, . . . , n} and two such subsets are connected by an edge if their
intersection consists of k − 1 elements). If k = 1, n − 1 then Ak is a base
of ΠV or Π∗

V , respectively. If 1 < k < n − 1 then the maximal cliques of
Γ(Ak) are the intersections of Ak with the stars

[M〉k, M ∈ Ak−1

and the tops
〈N ]k, N ∈ Ak+1;

they will be called stars and tops of Ak (respectively). Every maximal
clique of Γ(Ak) is a base of the corresponding maximal singular subspace
of Gk(V ).
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Proposition 3.5. The Grassmann space Gk(V ) is spanned by every apart-
ment of Gk(V ).

Proof. The case k = 1 is trivial and we prove the statement induction by
k. Let B = {x1, . . . , xn} be a base of V and A be the associated apartment
of Gk(V ). Denote by X the subspace of Gk(V ) spanned by A and define
Pi := 〈xi〉 for every i. Since [Pi〉k can be identified with the Grassmann
space Gk−1(V/Pi), the inductive hypothesis implies that [Pi〉k is spanned
by A ∩ [Pi〉k. Therefore,

[Pi〉k ⊂ X
for every i. Now consider a k-dimensional linear subspace S ⊂ V such that
xi �∈ S for all i. We take any (k − 1)-dimensional linear subspace M ⊂ S

and define

Si := M + Pi

for every i. Then S1, . . . , Sn span the star [M〉k (otherwise, S1 + · · ·+Sn is
a proper subspace of V which contradicts the fact that B is a base). Every
Si belongs to X and we get S ∈ [M〉k ⊂ X which completes our proof. �

Now we investigate apartments of parabolic subspaces (Example 3.3).
Let M and N be incident linear subspaces of V such that

dimM = m < k < l = dim N.

We take any base of V whose subsets span M and N ; the intersection of
the associated apartment of Gk(V ) with the parabolic subspace [M, N ]k is
called an apartment of [M, N ]k. The natural collineation of [M, N ]k to the
Grassmann space Gk−m(N/M) establishes a one-to-one correspondence be-
tween apartments of [M, N ]k and apartments of Gk−m(N/M). Proposition
3.5 guarantees that [M, N ]k is spanned by every of its apartments. The
restrictions of the Grassmann graph Γk(V ) to apartments of [M, N ]k are
isomorphic to the Johnson graph J(l − m, k − m).

Theorem 3.8 ([Cooperstein, Kasikova and Shult (2005)]). Let 1 <

k < n− 1 and l, m be natural numbers satisfying k < l ≤ n and 0 ≤ m < k.
Let also X be a subset of Gk(V ) such that Γ(X ) is isomorphic to the John-
son graph J(l−m, k−m) and every maximal clique of Γ(X ) is an indepen-
dent subset of the Grassmann space Gk(V ). Then X is an apartment in a
parabolic subspace of Gk(V ); in particular, this is an apartment of Gk(V )
if l = n and m = 0.
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The following example shows that the second condition in Theorem 3.8
(concerning the independence of maximal cliques) cannot be dropped.

Example 3.4. Let us take the following five vectors

(1, 0, 0, 0, 0)
(0, 1, 0, 0, 0)
(0, 0, 1, 0, 0)
(0, 0, 0, 1, 0)
(1, 1, 1, 1, 0)

in R5 and consider the subset of G2(R5) consisting of all 2-dimensional
linear subspaces spanned by pairs of these vectors. The restriction of the
Grassmann graph Γ2(R5) to this subset is isomorphic to J(5, 2). However,
it is not an apartment of G2(R5).

Theorem 3.1 is a simple consequence of Theorem 3.8 and Proposition
3.5. Let f be a collineation of the Grassmann space Gm(W ) to a subspace
of Gk(V ). We take any apartment A ⊂ Gm(W ). Then f(A) satisfies the
conditions of Theorem 3.8; hence it is an apartment in a parabolic subspace
of Gk(V ). This parabolic subspace is spanned by f(A) and we get the claim.

3.3.2 Proof of Theorem 3.8

If l = k + 1 or m = k − 1 then any two distinct elements of X are adjacent
and the statement is trivial.

Suppose that k + 1 < l and m < k − 1. Then X contains non-adjacent
elements. Let Y be a maximal clique of Γ(X ). Then Y is contained in
precisely one maximal clique of Γk(V ) (since Y is an independent subset of
Gk(V ) containing more than 2 elements and the intersection of two distinct
maximal cliques of Γk(V ) does not contain a triangle). We say that Y is a
star or a top of X if the maximal clique of Γk(V ) containing Y is a star or
a top, respectively.

We take an (l − m)-dimensional vector space W and any apartment
A ⊂ Gk−m(W ). Let f : A → X be an isomorphism of Γ(A) to Γ(X ). As in
the proof of Theorem 3.2, one of the following possibilities is realized:

(A) stars go to stars and tops go to tops,
(B) stars go to tops and tops go to stars.

In the case (B), we consider the apartment A∗ ⊂ Gl−k(W ∗) formed by
the annihilators of the elements from A; the mapping U → f(U0) is an
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isomorphism of Γ(A∗) to Γ(X ) satisfying (A). By this reason, we restrict
ourselves to the case (A).

Every top Y ⊂ X consists of k − m + 1 elements; suppose that

Y = {S1, . . . , Sk−m+1}.
Since this is an independent subset, the linear subspace

MY := S1 ∩ · · · ∩ Sk−m+1

is m-dimensional, and for every i ∈ {1, . . . , k − m + 1}
Xi :=

⋂
j �=i

Sj

is an (m+1)-dimensional linear subspace. Denote by BY the set formed by
all Xi. This is a base of [MY , T ]m+1, where T is the (k + 1)-dimensional
linear subspace corresponding to Y. Every element of Y is the sum of k−m

elements of BY .
Suppose that a top Y ′ ⊂ X has a non-empty intersection with Y. Then

the (k + 1)-dimensional linear subspaces corresponding to Y and Y ′ are
adjacent and Y ∩ Y ′ consists of unique element S. For every U ∈ Y \ {S}
there exists unique U ′ ∈ Y ′ \ {S} adjacent with U (this follows from the
fact that Γ(X ) is isomorphic to the Johnson graph J(l −m, k −m)). Since
S, U, U ′ form a star-triangle, we have

S ∩ U = S ∩ U ′.

This implies the following properties:

(1) MY = MY′ ,
(2) if X ∈ BY is contained in S then it belongs to BY′ ; thus BY ∩ BY′

consists of k − m elements and there is a unique element of BY which
does not belong to BY′ .

By connectedness of Grassmann spaces, MY = MY′ for any two tops
Y,Y ′ ⊂ X ; in what follows this m-dimensional linear subspace will be
denoted by M .

For every S ∈ X we denote by B(S) the union of all BY such that
S ∈ Y. There are precisely l − k distinct tops of X containing S and, by
the property (2), the set B(S) consists of l − m elements. Now, we show
that B(S) coincides with B(U) if S, U ∈ X are adjacent.

There is unique top Y ⊂ X containing S and U . By the definition,
BY is contained in both B(S) and B(U). Consider X ∈ B(S) \ BY . Let
Y ′ ⊂ X be a top containing S and such that X ∈ BY′ . We choose unique



July 2, 2010 14:9 World Scientific Book - 9in x 6in ClassicalBuilding

Classical Grassmannians 87

U ′ ∈ Y ′ adjacent with U and denote by Z the top of X containing U and
U ′. Since X is not contained in S (X �∈ BY), we have X ⊂ U ′; by the
property (2), this implies X ∈ BZ ⊂ B(U). Therefore, B(S) ⊂ B(U); the
same arguments give the inverse inclusion.

By connectedness,

B(S) = B(U) ∀ S, U ∈ X ;

denote this set by B. Since B is formed by l−m distinct (m+1)-dimensional
linear subspaces containing M , the sum of all elements of B is a linear
subspace N whose dimension is not greater than l; also we have M ⊂ N .
On the other hand, every element of X is the sum of k − m elements from
B; and every star of X is an independent subset consisting of l − k + 1
elements. This implies that dim N ≥ l and N is l-dimensional. Then B is
a base of [M, N ]m+1 and X is the associated apartment of [M, N ]k (we get
an apartment of Gk(V ) if l = n and m = 0).

3.4 Apartments preserving mappings

Let V and V ′ be n-dimensional vector spaces over division rings and n ≥ 3.
In this section we investigate apartments preserving mappings of Gk(V ) to
Gk(V ′). Recall that every apartments preserving mapping is injective.

3.4.1 Results

All collineations of Gk(V ) to Gk(V ′) (if they exist) are apartments preserv-
ing (since they are induced by semilinear isomorphisms). Conversely, we
have the following.

Theorem 3.9 (M. Pankov). Every apartments preserving bijection of
Gk(V ) to Gk(V ′) is a collineation of Gk(V ) to Gk(V ′).

Remark 3.9. If V is a vector space over a field then every base {x1, . . . , xn}
of V defines the regular base of Π∧kV consisting of all

〈xi1 ∧ · · · ∧ xik
〉.

Clearly, the projective space Π∧kV has non-regular bases. The Grassmann
embedding gk (Remark 3.1) establishes a one-to-one correspondence be-
tween apartments of Gk(V ) and regular bases of Π∧kV . Let f be a bijective
transformation of the projective space Π∧kV preserving the family of reg-
ular bases (f and f−1 map regular bases to regular bases). A point of
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Π∧kV is contained in a regular base if and only if it belongs to the image of
Gk(V ). Thus f transfers the image of Gk(V ) to itself and the restriction of
f to this subset can be identified with an apartments preserving bijective
transformation of Gk(V ).

Let l : V → V ′ be a semilinear embedding. For every k ∈ {1, . . . , n− 1}
the mapping

(l)k : Gk(V ) → Gk(V ′)

(Subsection 1.3.2) is an apartments preserving embedding of Gk(V ) in
Gk(V ′). Recall that (l)k is bijective if and only if l is a semilinear iso-
morphism (Proposition 1.11).

Let u : V → V ′∗ be a semilinear embedding. By duality, we can identify
(u)k with the embedding of Gk(V ) in Gn−k(V ′) sending each S to 〈u(S)〉0.
In the case when n = 2k, this is an apartments preserving embedding of
Gk(V ) in Gk(V ′).

Theorem 3.10 (M. Pankov). Let 1 < k < n − 1. Then every apart-
ments preserving mapping of Gk(V ) to Gk(V ′) is the embedding of Gk(V )
in Gk(V ′) induced by a semilinear embedding of V in V ′ or a semilinear
embedding of V in V ′∗; the second possibility can be realized only in the
case when n = 2k.

If k = 1, n − 1 then there exist apartments preserving mappings of Gk(V )
to Gk(V ′) which cannot be induced by semilinear mappings.

Example 3.5 ([Huang and Kreuzer (1995)]). Let us consider the in-
jective mapping α : R → G1(Rn) defined by the formula

t → 〈(t, t2, . . . , tn)〉.
For any distinct t1, . . . , tn ∈ R \ {0} we have∣∣∣∣∣∣∣

t1 . . . tn1
...

. . .
...

tn . . . tnn

∣∣∣∣∣∣∣ �= 0.

Hence any subset of α(R) consisting of n distinct points is a base of the pro-
jective space ΠRn ; in particular, any three points of α(R) are non-collinear.
The sets R and G1(Rn) have the same cardinality and we consider any bi-
jection of G1(Rn) to α(R). This mapping transfers bases of ΠRn to bases
of ΠRn , but it is not induced by a semilinear mapping (since the images of
three distinct collinear points are non-collinear).
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In the case when 1 < k < n− 1, Theorem 3.9 is a direct consequence of
Theorem 3.10 and Proposition 1.11.

Let f be an apartments preserving bijection of Gk(V ) to Gk(V ′). Sup-
pose that k = 1. Then f maps bases of ΠV to bases of ΠV ′ . Since three
points of a projective space are non-collinear if and only if they are con-
tained in a certain base of this space, the mapping f sends each triple of
non-collinear points to non-collinear points. This implies that the inverse
mapping transfers triples of collinear points to collinear points. Hence f−1

is a semicollineation of ΠV ′ to ΠV and Corollary 1.3 gives the claim. The
case k = n − 1 is similar, by Exercise 1.11.

Remark 3.10. Theorem 3.9 was first proved in [Pankov (2002)]. Our proof
of Theorem 3.10 is a modification of the proof given in [Pankov 2 (2004);
Pankov 3 (2004)].

3.4.2 Proof of Theorem 3.10: First step

Let B = {x1, . . . , xn} be a base of V and A be the associated apartment of
Gk(V ). Throughout the subsection we suppose that 1 < k ≤ n − k.

We write A(+i) and A(−i) for the sets consisting of all elements of
A which contain xi and do not contain xi, respectively. If S is a linear
subspace spanned by a subset of B then we denote by A(S) the set of all
elements of A incident with S; in the case when S is spanned by xi and
xj , we will write A(+i, +j) instead of A(S). Clearly, A(S) coincides with
a certain A(−i) if S is (n − 1)-dimensional.

A subset of A is called exact if it is contained only in one apartment of
Gk(V ); otherwise, it is said to be inexact. It is trivial that R ⊂ A is exact
if the intersection of all S ∈ R containing xi coincides with 〈xi〉 for every i.

Lemma 3.2. A subset R ⊂ A is exact if and only if for each i the inter-
section of all S ∈ R containing xi coincides with 〈xi〉.
Proof. Suppose that for a certain number i there exists j �= i such that
xj belongs to every S ∈ R containing xi. We choose a vector x = axi + bxj

with a, b �= 0. Then

(B \ {xi}) ∪ {x}
is a base of V which defines another apartment of Gk(V ) containing R, thus
R is inexact. If there are no elements of R containing xi then we can take
any vector x which is not a scalar multiple of xi and is not contained in the
linear subspace spanned by B \ {xi}. �
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By Lemma 3.2,
A(−i) ∪ A(+i, +j), i �= j,

is an inexact subset.

Lemma 3.3. If R is a maximal inexact subset of A then
R = A(−i) ∪A(+i, +j)

for some distinct i, j.

Proof. For each i there is an element of R containing xi (if all elements
of R do not contain xi then R is a subset of the non-maximal inexact subset
A(−i) which contradicts the fact that our inexact subset is maximal). By
Lemma 3.2, there exist distinct i and j such that xj belongs to all elements
of R containing xi. Then every S ∈ R is an element of A(−i) or A(+i, +j)
and

R ⊂ A(−i) ∪ A(+i, +j).
Since R is a maximal inexact subset, we have the inverse inclusion. �

A subset R ⊂ A is said to be complement if A\R is a maximal inexact
subset. In this case, Lemma 3.3 implies the existence of distinct i, j such
that

A \R = A(−i) ∪ A(+i, +j).
Then

R = A(+i) ∩ A(−j);
in what follows this complement subset will be denoted by A(+i,−j).

We say that distinct complement subsets
R1 = A(+i1,−j1), . . . ,Rk = A(+ik,−jk)

form a regular collection if their intersection is a one-element set. In the
general case,

R1 ∩ · · · ∩ Rk = A(M) ∩ A(N),
where M and N are linear subspaces spanned by subsets of B and

dimM = |{i1, . . . , ik}| ≤ k ≤ n − k ≤ n − |{j1, . . . , jk}| = dim N

(note that some of i1, . . . , ik or j1, . . . , jk can be coincident). This intersec-
tion is not empty if and only if

{i1, . . . , ik} ∩ {j1, . . . , jk} = ∅; (3.4)
in this case, M is contained in N .

Example 3.6. If (3.4) holds and i1, . . . , ik are distinct then
R1 ∩ · · · ∩ Rk = {〈xi1 , . . . , xik

〉}
and the collection is regular.
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Example 3.7. Suppose that n = 2k, the condition (3.4) holds, and
j1, . . . , jk are distinct. Then

R1 ∩ · · · ∩ Rk = {〈xi′1 , . . . , xi′
k
〉},

where

{i′1, . . . , i′k} = {1, . . . , n} \ {j1, . . . , jk}.
The collection is regular.

Lemma 3.4. The collection R1, . . . ,Rk is regular if and only if (3.4) holds
and one of the following possibilities is realized:

(A) i1, . . . , ik are distinct,
(B) n = 2k and j1, . . . , jk are distinct.

Proof. If (3.4) is fulfilled and the conditions (A) and (B) both do not
hold then

dim M < k < dimN

and A(M) ∩ A(N) contains more than one element. �

A collection of k − 1 distinct complement subsets R1, . . . ,Rk−1 ⊂ A is
said to be regular if it can be extended to a regular collection of k distinct
complement subsets; in other words, there exists a complement subset Rk ⊂
A such that

Rk �= R1, . . . ,Rk−1 and R1, . . . ,Rk−1,Rk

is a regular collection.
The adjacency relation can be characterized in terms of regular collec-

tions of complement subsets.

Lemma 3.5. The following conditions are equivalent:

(1) S, U ∈ A are adjacent,
(2) there exists a regular collection of k − 1 distinct complement subsets of

A such that each element of this collection contains S and U .

Proof. (1) =⇒ (2). Suppose that S and U are adjacent and

S ∩ U = 〈xi1 , . . . , xik−1 〉.
We choose

xi ∈ S \ U and xj �∈ S + U.
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Then

A(+i1,−j) ∩ · · · ∩ A(+ik−1,−j) ∩A(+i,−j) = {S}.
Hence these complement subsets form a regular collection and the comple-
ment subsets

A(+i1,−j), . . . ,A(+ik−1,−j)

are as required.
(2) =⇒ (1). Conversely, suppose that each element of a regular collec-

tion

A(+i1,−j1), . . . ,A(+ik−1,−jk−1)

contains S and U . By definition, this collection can be extended to a regular
collection of k distinct complement subsets; and it follows from Lemma 3.4
that one of the following possibilities is realized:

(A) i1, . . . , ik−1 are distinct,
(B) n = 2k and j1, . . . , jk−1 are distinct.

Since xi1 , . . . , xik−1 belong to S ∩ U , (A) guarantees that the dimension of
S ∩ U is equal to k − 1. The vectors xj1 , . . . , xjk−1 do not belong to S + U

and (B) implies that S + U is (k + 1)-dimensional. In each of these cases,
S and U are adjacent. �

Proposition 3.6. Let 1 < k ≤ n− k and f : Gk(V ) → Gk(V ′) be an apart-
ments preserving mapping. Then f is adjacency preserving: two elements
of Gk(V ) are adjacent if and only if their images are adjacent.

Proof. First of all we recall that f is injective. Let S and U be k-
dimensional linear subspaces of V and A be an apartment of Gk(V ) con-
taining them. Then f(A) is an apartment of Gk(V ′) and f maps inexact
subsets of A to inexact subsets of f(A); indeed, if a subset R is contained
in two distinct apartments of Gk(V ) then f(R) is contained in their images
which are distinct apartments of Gk(V ′). Since A and f(A) have the same
number of inexact subsets, every inexact subset of f(A) is the image of
a certain inexact subset of A. This implies that an inexact subset of A
is maximal if and only if its image is a maximal inexact subset of f(A).
Therefore, a subset R ⊂ A is complement if and only if f(R) is a com-
plement subset of f(A); moreover, f |A and the inverse mapping transfer
regular collections of complement subsets to regular collections (this follows
immediately from the definition of a regular collection). By Lemma 3.5, S

and U are adjacent if and only if f(S) and f(U) are adjacent. �
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3.4.3 Proof of Theorem 3.10: Second step

By duality, every apartments preserving mapping f : Gk(V ) → Gk(V ′)
can be identified with an apartments preserving mapping of Gn−k(V ∗) to
Gn−k(V ′∗). Suppose that the latter mapping is induced by a semilinear
embedding u : V ∗ → V ′∗ and consider the mapping

g : G(V ) → G(V ′)

S → 〈u(S0)〉0.
The restriction of g to Gk(V ) coincides with f . The mapping g is dimension
preserving and we have

S ⊂ U =⇒ g(S) ⊂ g(U)

for all S, U ∈ G(V ). By Theorem 1.4, the restriction of g to G1(V ) is induced
by a semilinear injection l : V → V ′. Since this restriction is apartments
preserving, l is a semilinear embedding. For every linear subspace S ⊂ V

we choose P1, . . . , Pm ∈ G1(S), m = dim S such that

S = P1 + · · · + Pm.

Then

〈l(S)〉 = 〈l(P1)〉 + · · · + 〈l(Pm)〉 = g(P1) + · · · + g(Pm) ⊂ g(S)

which implies that 〈l(S)〉 coincides g(S) (since the dimension of these linear
subspaces is equal to m). Thus g is induced by l and f = (l)k.

Therefore, we can prove the theorem only in the case when k ≤ n − k.
Let 1 < k ≤ n − k and f be an apartments preserving mapping of Gk(V )
to Gk(V ′).

By Proposition 3.6, f is an adjacency preserving injection. Hence it
transfers stars and tops to subsets of stars or tops. For every star there is
an apartment intersecting this star in a set consisting of n−k+1 elements;
on the other hand, the intersections of tops with apartments contain at
most k + 1 elements. Since k ≤ n − k, the image of a star can be a subset
of a top only in the case when n = 2k. In particular, stars go to subsets of
stars if k < n − k.

By the same reason, the image of every maximal singular subspace of
Gk(V ) is contained in precisely one maximal singular subspace of Gk(V ′).
Indeed, the intersection of two distinct maximal singular subspaces is
empty, or a single point, or a line; thus it intersects apartments in sub-
sets containing at most two elements.
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Distinct maximal singular subspaces of Gk(V ) go to subsets of distinct
maximal singular subspaces of Gk(V ′) (otherwise there exist non-adjacent
elements of Gk(V ) whose images are adjacent).

Suppose that f transfers stars to subsets of stars. Then, as in the proof
of Theorem 3.2, f induces an injective mapping

fk−1 : Gk−1(V ) → Gk−1(V ′)
such that

f([S〉k) ⊂ [fk−1(S)〉k
for all S ∈ Gk−1(V ). Now we show that fk−1 is apartments preserving.

Consider a base B ⊂ V and the associated apartment Ak ⊂ Gk(V ). Let
B′ be one of the bases of V ′ associated with the apartment A′

k := f(Ak).
Let also

Ak−1 ⊂ Gk−1(V ) and A′
k−1 ⊂ Gk−1(V ′)

be the apartments defined by the bases B and B′, respectively. Every
S ∈ Ak−1 is the intersection of two adjacent U1, U2 ∈ Ak and

fk−1(S) = f(U1) ∩ f(U2) ∈ A′
k−1.

Since the mapping fk−1 is injective and |Ak−1| = |A′
k−1| < ∞, we get

fk−1(Ak−1) = A′
k−1.

Step by step, we construct a sequence of apartments preserving map-
pings

fi : Gi(V ) → Gi(V ′), i = k, . . . , 1,

such that fk = f ,
fi([S〉i) ⊂ [fi−1(S)〉i

for all S ∈ Gi−1(V ) and
fi−1(〈U ]i−1) ⊂ 〈fi(U)]i−1

for all U ∈ Gi(V ) if i > 1. By Theorem 1.4, f1 is induced by a semilinear
injection l : V → V ′. Since f1 is apartments preserving, l is a semilinear
embedding.

We prove that fi = (l)i induction by i. If fi−1 is induced by l then
fi−1(〈U ]i−1) ⊂ 〈fi(U)]i−1 ∩ 〈〈l(U)〉]i−1

for every U ∈ Gi(V ). The latter intersection contains more that one element
which implies that fi(U) coincides with 〈l(U)〉.

In the case when the image of a certain star of Gk(V ) is contained in
a top, we show that each star goes to a subset of a top (the standard
arguments from the proof of Theorem 3.2). Since n = 2k, we can identify
f with an apartments preserving mapping of Gk(V ) to Gk(V ′∗) which sends
stars to subsets of stars. The latter mapping is induced by a semilinear
embedding of V in V ′∗.
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3.5 Grassmannians of exchange spaces

3.5.1 Exchange spaces

We say that a linear space Π = (P,L) satisfies the exchange axiom, or
simple, Π is an exchange space if for every subset X ⊂ P and any points
p, q ∈ P \ 〈X〉

p ∈ 〈X, q〉 =⇒ q ∈ 〈X, p〉.
This axiom holds for projective and affine spaces.

Theorem 3.11. In an exchange space every independent subset can be
extended to a base of this space, and any two bases of an exchange space
have the same cardinality.

Proof. See §8 in [Karzel, Sörensen and Windelberg (1973)]. �

Every semicollineation between projective spaces of the same finite di-
mension is a collineation (Corollary 1.3). The same holds for exchange
spaces.

Theorem 3.12 ([Kreuzer (1996)]). Let Π = (P,L) and Π′ = (P ′,L′)
be finite-dimensional exchange spaces such that

dimΠ ≤ dimΠ′. (3.5)

Then every semicollineation of Π to Π′ is a collineation.

Proof. Let f be a semicollineation of Π to Π′. Consider a subset X ⊂ P

containing at least two points. First, we prove induction by i that

f([X ]i) ⊂ [f(X)]i

(Section 2.5). For i = 1 this is trivial; if the inclusion holds for i = k − 1
then

f([X ]k) = f([[X ]k−1]1) ⊂ [f([X ]k−1)]1 ⊂ [[f(X)]k−1]1 = [f(X)]k.

By Proposition 2.6, we have

f(〈X〉) =
∞⋃

i=1

f([X ]i) ⊂
∞⋃

i=1

[f(X)]i = 〈f(X)〉.

Therefore, if B is a base of Π then

f(〈B〉) = f(P ) = P ′ ⊂ 〈f(B)〉
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and Π′ is spanned by f(B). The inequality (3.5) guarantees that f(B) is a
base of Π′. Thus our spaces have the same dimension and f transfers bases
of Π to bases of Π′. This implies that f maps any triple of non-collinear
points to non-collinear points (since three distinct points are non-collinear if
and only if there is a base containing them, Theorem 3.11). Then f−1 sends
triples of collinear points to collinear points, hence f−1 is a semicollineation
of Π′ to Π. �

Now suppose that our exchange spaces have the same finite dimension
and consider a mapping f : P → P ′ which sends bases of Π to bases of
Π′. Then f is injective and transfers any triple of non-collinear points to
non-collinear points (standard arguments). In the case when f is bijective,
the inverse mapping is a semicollineation of Π′ to Π. Theorem 3.12 gives
the following.

Corollary 3.3. Let Π = (P,L) and Π′ = (P ′,L′) be exchange spaces of the
same finite dimension. Then every bijection of P to P ′ sending bases of Π
to bases of Π′ is a collineation of Π to Π′.

The following example shows that the condition (3.5) in Theorem 3.12
cannot be dropped.

Example 3.8 ([Kreuzer (1996)]). Let S be a plane in a 3-dimensional
projective space Π = (P,L). Consider the following set of lines

L′ := {S} ∪ { L ∈ L : L �⊂ S };
in other words, we remove all lines contained in S and add S as a line.
An easy verification shows that Π′ := (P,L′) is an exchange plane. The
identity transformation of P is a semicollineation of Π to Π′ which is not a
collineation.

Remark 3.11. A more complicated example of a semicollineation of a 4-
dimensional projective space to a non-Desarguesian projective plane was
given in [Ceccherini (1967)].

3.5.2 Grassmannians

Let Π = (P,L) be an exchange space of finite dimension n. For every
number k ∈ {0, . . . , n−1} we denote by Gk(Π) the Grassmannian consisting
of all k-dimensional subspaces of Π. It follows from Theorem 3.11 that any
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two incident k-dimensional subspaces of Π are coincident; note that for an
arbitrary linear space the same holds only in the case when k = 0, 1.

Two elements of the Grassmannian Gk(Π) are said to be adjacent if their
intersection is (k − 1)-dimensional.

Lemma 3.6. If S, U ∈ Gk(Π) are adjacent then the subspace 〈S, U〉 is
(k + 1)-dimensional.

Proof. We take any base X of S ∩ U and any points p ∈ S \ U and
q ∈ U \ S. The exchange axiom guarantees that X ∪ {p}, X ∪ {q}, and
X ∪ {p, q} are bases of S, U , and 〈S, U〉 (respectively). �

Remark 3.12. It was noted in Subsection 3.2.2 that there exist pairs of
non-adjacent elements of Gk(Π) which span (k + 1)-dimensional subspaces.

The Grassmann graph Γk(Π) is the graph whose vertex set is Gk(Π) and
whose edges are pairs of adjacent subspaces. It is not difficult to prove that
this graph is connected and every star is a maximal clique (stars and tops
are defined as for Grassmannians of finite-dimensional vector spaces).

Proposition 3.7. Every maximal clique of Γk(Π) is a star or a subset of
a top.

Proof. Similar to the proof of Proposition 3.2, see [Pankov (2006)]. �
For index one Grassmann graphs we have an analogue of Chow’s the-

orem (Theorem 3.4); note that the exchange axiom is not required. For
larger indices such kind results are unknown.

Consider a certain base B of Π. The set consisting of all k-dimensional
subspaces spanned by subsets of B is called the base subset of Gk(Π) asso-
ciated with (defined by) the base B. In the case when Π is the projective
space of an (n + 1)-dimensional vector space V , the Grassmannian Gk(Π)
can be identified with Gk+1(V ) and base subsets are apartments.

Lemma 3.7. For any adjacent S, U ∈ Gk(Π) there is a base subset of Gk(Π)
containing S and U .

Proof. There exists an independent subset Y ⊂ P such that S and U

are spanned by subsets of Y (see the proof of Lemma 3.6). We extend Y

to a base of Π; the associated base subset of Gk(Π) contains S and U . �

Remark 3.13. Two k-dimensional subspaces S and U are contained in a
base subset of Gk(Π) if and only if

dim〈S, U〉 = 2k − dim(S ∩ U),
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see [Pankov (2006)]. In the general (non-projective) case, this formula does
not hold and there exist pairs of k-dimensional subspaces which are not
contained in base subsets of Gk(Π).

Theorem 3.13 ([Pankov (2006)]). Let Π = (P,L) and Π′ = (P ′,L′) be
exchange spaces of the same finite dimension n ≥ 2 such that each line of
Π and Π′ contains at least 3 points. Suppose that f : Gk(Π) → Gk(Π′) is
an injection sending base subsets to base subsets. Then f maps adjacent
elements to adjacent elements.

Proof. The case k = 0 is trivial (any two distinct points are adjacent).
If k = n − 1 then the required statement is a direct consequence of the
following observation: two distinct (n − 1)-dimensional subspaces of Π or
Π′ are adjacent if and only if there is a base subset containing them.

Let 0 < k < n − 1. Consider a base B = {p1, . . . , pn+1} of Π and
the associated base subset B ⊂ Gk(Π). We write B(+i) and B(−i) for the
sets consisting of all elements of B which contain pi and do not contain pi,
respectively. We define exact, inexact, and complement subsets of B as for
apartments in Grassmannians of finite-dimensional vector spaces.

Using the fact that every line contains at least three points, we establish
the direct analogue of Lemma 3.2: a subset R ⊂ B is exact if and only if
for every i the intersection of all S ∈ R containing pi coincides with pi.
We describe maximal inexact subsets of B (cf. Lemma 3.3) and show that
every complement subset of B is

B(+i,−j) := B(+i) ∩ B(−j), i �= j.

Now define

m := min{k, n − k − 1}.
We say that m + 1 distinct complement subsets

B(+i1,−j1), . . . ,B(+im+1,−jm+1)

form a regular collection if their intersection is a one-element set. In this
case, one of the following three possibilities is realized (an analogue of
Lemma 3.4):

(1) m = k and i1, . . . , ik+1 are distinct,
(2) m = k = n − k − 1 and i1, . . . , ik+1 or j1, . . . , jk+1 are distinct,
(3) m = n − k − 1 and j1, . . . , jn−k are distinct.
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A collection of m distinct complement subsets is said to be regular if it can
be extended to a regular collection of m + 1 distinct complement subsets.
We have the standard characterization of the adjacency relation in terms
of complement subsets (cf. Lemma 3.5); in other words, the following
conditions are equivalent:

• S, U ∈ B are adjacent,
• there exists a regular collection of m distinct complement subsets of B

such that each element of this collection contains S and U .

Now consider adjacent k-dimensional subspaces S and U of Π. By Lemma
3.7, there is a base subset B ⊂ Gk(Π) containing them. The injectivity of f

guarantees that inexact subsets of B go to inexact subsets of f(B). As in
the proof of Theorem 3.10, we establish that a subset of B is complement
if and only if its image is a complement subset of f(B). Therefore, two
elements of B are adjacent if and only if the same holds for their images;
in particular, f(S) and f(U) are adjacent. �

Remark 3.14. In the general case, there are pairs of k-dimensional sub-
spaces which are not contained in base subsets of Gk(Π); thus we cannot
assert that a mapping of Gk(Π) to Gk(Π′) sending base subsets to base sub-
sets is injective. By the same reason, the pre-images of adjacent elements
of Gk(Π′) need not to be adjacent, see Example 3.9.

Theorem 3.14 ([Pankov (2006)]). Let Π = (P,L) and Π′ = (P ′,L′) be
as in the previous theorem and f be a bijection of Gk(Π) to Gk(Π′) such that
f and f−1 map base subsets to base subsets. Then f is an isomorphism of
Γk(Π) to Γk(Π′); in the case when 2k+1 < n, it is induced by a collineation
of Π to Π′.

Proof. By Theorem 3.13, f is an isomorphism of Γk(Π) to Γk(Π′). There-
fore, f and f−1 map maximal cliques to maximal cliques. Every maximal
clique is a star or a subset of a top (Proposition 3.7). In the case when
2k + 1 < n, stars go to stars (for every star there is a base subset intersect-
ing this star in a subset consisting of n − k + 1 elements, the intersections
of base subsets with tops contain at most k + 2 elements). Thus f induces
a bijection

fk−1 : Gk−1(Π) → Gk−1(Π′).

As in the proof of Theorem 3.10, we show that fk−1 maps base subsets to
base subsets. The inverse mapping is induced by f−1, hence it also sends
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base subsets to base subsets. We construct a sequence of bijections

fi : Gi(Π) → Gi(Π′), i = k, . . . , 0,

where fk = f and each fi together with the inverse mapping send base
subsets to base subsets. Then f0 is a collineation of Π to Π′ (Corollary 3.3)
and an easy verification shows that f is induced by f0. �

Remark 3.15. Since dual principle does not work for exchange spaces,
we cannot apply our method to the case when 2k + 1 ≥ n. However, if
n = 3, k = 1 and f is as in Theorem 3.14 then, by Theorem 3.4, one of the
following possibilities is realized:

• f is induced by a collineation of Π to Π′;
• Π and Π′ both are projective spaces and f is induced by a collineation

of Π to the projective space dual to Π′.

Example 3.9. Suppose that Π′ is a projective space and Π is the linear
space obtained from Π′ by removing a certain point p. It is not difficult
to prove that Π is an exchange space and dim Π = dim Π′. Consider the
bijection of L to L′ which sends every L ∈ L to the line of Π′ containing
L (this mapping is induced by the natural embedding of Π in Π′). This
bijection transfers base subsets to base subsets. The inverse mapping does
not satisfy this condition, since it is not adjacency preserving (lines of Π′

passing through the point p go to non-intersecting lines of Π).

Remark 3.16. Every strong embedding of Π in Π′ (an embedding sending
independent subsets to independent subsets) induces an injection of Gk(Π)
to Gk(Π′) which transfers base subsets to base subsets. Using the arguments
given above, we can show that every injection f : L → L′ transferring base
subsets to base subsets is induced by a strong embedding of Π in Π′ [Pankov
(2006)]. In contrast to the projective case, the assumption that f is bijective
does not guarantee that this embedding is a collineation (Example 3.9).

3.6 Matrix geometry and spine spaces

Let V be an n-dimensional vector space over a division ring. Let also W be
an (n − k)-dimensional linear subspace of V . Consider the set X ⊂ Gk(V )
consisting of all complements of W . There is a one-to-one correspondence
between elements of X and all k × (n − k)-matrices over the associated
division ring: we take any M ∈ X and fix bases in M and W , then every
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S ∈ X can be considered as the graph of a linear mapping l : M → W , and
we identify S with the matrix of this linear mapping in the fixed bases. The
distance between two matrices A and B is defined as the rank of A−B; it is
equal to the distance between the corresponding elements of X . Information
concerning adjacency preserving transformations of the set of rectangular
matrices can be found in [Wan (1996)] (Theorem 3.4).

The construction considered above has a natural generalization
[Prażmowski (2001)]. We fix a linear subspace W ⊂ V and denote by
Fk,m(W ) the set consisting of all S ∈ Gk(V ) satisfying

dim(W ∩ S) = m

(we assume that m is not greater than dimW and k which guarantees that
the set Fk,m(W ) is not empty). The restriction of the Grassmann space
Gk(V ) to this set (Subsection 1.2.1) is a partial linear space. Partial linear
spaces of such kind are called spine spaces. In the case when m = 0 and
dimW = n− k, we get the geometry of rectangular matrices. If m is equal
to dim W or k then our spine space is a parabolic subspace of Gk(V ).

Suppose that 1 < k < n − 1 and the line

[M, N ]k, M ∈ Gk−1(V ), N ∈ Gk+1(V ),

induces a line in the spine space (the intersection of [M, N ]k with Fk,m(W )
contains at least two points). In the general case, there are the following
three possibilities:

(τ) dim(M ∩ W ) = m, dim(N ∩ W ) = m + 1;
(α) dim(M ∩ W ) = dim(N ∩ W ) = m;
(ω) dim(M ∩ W ) = m − 1, dim(N ∩ W ) = m + 1.

The associated line of the spine space is said to be an x-line, x ∈ {τ, α, ω}, if
the corresponding case is realized. For example, the geometry of rectangular
matrices (m = 0 and dimW = n − k) contains only τ -lines.

Every automorphism of the spine space can be extended to an automor-
phism of the Grassmann space Gk(V ) [Prażmowski and Żynel (2002)].

Let B be a base of V such that W is spanned by a subset of B. The
intersection of the associated apartment of Gk(V ) with Fk,m(W ) is said to
be the base subset of Fk,m(W ) defined by (associated with) the base B.

Two distinct elements of Fk,m(W ) are called x-adjacent, x ∈ {τ, α, ω},
if they belong to a certain x-line. Two x-adjacent elements of Fk,m(W ) are
contained in a base subset if and only if x ∈ {α, ω}.
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In almost all cases, every bijective transformation of Fk,m(W ) preserv-
ing the class of base subsets preserves the α-adjacency and ω-adjacency re-
lations or interchanges them [Pankov, Prażmowski and Żynel (2005)]. The
proof of this statement is based on a characterization of the α-adjacency
and ω-adjacency relations in terms of complement subsets (the definitions
of exact, inexact, and complement subsets are standard).

3.7 Geometry of linear involutions

3.7.1 Involutions and transvections

Suppose that V is an n-dimensional left vector space over a division ring
R, the characteristic of R is not equal to 2 and n ≥ 3.

Let u be an involution of the group GL(V ) (u2 = 1). Consider the linear
subspaces

S+(u) := Ker (1 − u) and S−(u) := Im (1 − u).

We have

u(x) = x if x ∈ S+(u) and u(x) = −x if x ∈ S−(u).

Since the intersection of these linear subspaces is 0 and the sum of their
dimensions is n, we get

S+(u) + S−(u) = V.

We say that u is a (k, n−k)-involution if the dimension of S+(u) and S−(u)
is equal to k and n − k, respectively.

Exercise 3.2. Let u be an involution of GL(V ) and x be a vector satisfying
u(x) ∈ 〈x〉. Show that x belongs to S+(u) or S−(u). Hint: there exist
unique vectors x+ ∈ S+(u) and x− ∈ S−(u) such that x = x+ + x−.

The set of all (k, n− k)-involutions will be denoted by Ik,n−k(V ). This
set can be identified with

Gk,n−k(V ) := { (S, U) ∈ Gk(V ) × Gn−k(V ) : S + U = V }.
It is clear that v ∈ GL(V ) is conjugate to a (k, n−k)-involution u (there ex-
ists l ∈ GL(V ) such that v = lul−1) if and only if v is a (k, n−k)-involution.
Therefore, each Ik,n−k(V ) is a maximal set of conjugate involutions.

Lemma 3.8. Involutions u and v commute if and only if

u(S+(v)) = S+(v) and u(S−(v)) = S−(v).
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Proof. Suppose that uv = vu. If x ∈ S+(v) then

vu(x) = uv(x) = u(x)

and u(x) ∈ S+(v). Similarly, we show that the linear subspace S−(v) is
invariant for u.

Conversely, suppose that the linear subspaces S+(v) and S−(v) both
are invariant for u. Then uv(x) = vu(x) for every x belonging to S+(v)
or S−(v). Since V is the sum of these linear subspaces, the latter equality
holds for all x ∈ V . �

Let B be a base of V . The base subset of Ik,n−k(V ) associated with
(defined by) B is formed by all (k, n−k)-involutions u such that S+(u) and
S−(u) both are spanned by subsets of the base B. By Lemma 3.8, any two
elements of this subset commute.

Proposition 3.8. The class of maximal commutative subsets of Ik,n−k(V )
coincides with the class of base subsets.

Proof. Let u and v be commutative involutions. Then v(S+(u)) = S+(u)
and the restriction of v to the linear subspace S+(u) is an involution; denote
this involution by v′. It is clear that

S+(v′) = S+(v) ∩ S+(u) and S−(v′) = S−(v) ∩ S+(u);

hence

S+(v) ∩ S+(u) + S−(v) ∩ S+(u) = S+(u).

Similarly, we get the equality

S+(v) ∩ S−(u) + S−(v) ∩ S−(u) = S−(u)

which implies that

S+(v) ∩ S+(u) + S−(v) ∩ S+(u) + S+(v) ∩ S−(u) + S−(v) ∩ S−(u) = V.

The same arguments show that for every commutative subset X of
Ik,n−k(V ) there exists a collection of linear subspaces S1, . . . , Sm satisfying
the following conditions:

• S1 + · · · + Sm = V ,
• Si ∩ Sj = 0 if i �= j,
• for every u ∈ X the linear subspaces S+(u) and S−(u) can be presented

as the sums of some Si.
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This means that every commutative subset of Ik,n−k(V ) is contained in a
certain base subset and every base subset is a maximal commutative subset
of Ik,n−k(V ). �

Let t ∈ GL(V ). Suppose that Ker (1 − t) is (n − 1)-dimensional. Then
the dimension of Im (1 − t) is equal to 1 and

t(x) = x + α(x)x0,

where x0 is a non-zero vector and α is a linear functional whose kernel
coincides with Ker (1 − t). If

Im (1 − t) ⊂ Ker (1 − t)

(in other words, x0 ∈ Kerα) then t is said to be a transvection. The
subgroup of GL(V ) generated by all transvections is denoted by SL(V ).

Remark 3.17. Note that α(x0) �= −1 (since t(x0) �= 0) and

t−1(x) = x − α(x)
1 + α(x0)

x0.

If t is a transvection then t−1(x) = x − α(x)x0 also is a transvection.

Remark 3.18. If l ∈ GL(V ) and t commute then

l(Ker (1 − t)) = Ker (1 − t) and l(Im (1 − t)) = Im (1 − t);

but these equalities do not guarantee that lt = tl.

3.7.2 Adjacency relation

Two distinct elements

(S, U), (S′, U ′) ∈ Gk,n−k(V )

are said to be adjacent if one of the following possibilities is realized:

• S = S′ and U is adjacent with U ′ in Gn−k(V ),
• U = U ′ and S is adjacent with S′ in Gk(V ).

The Grassmann graph Γk,n−k(V ) is the graph whose vertex set is Gk,n−k(V )
and whose edges are pairs of adjacent elements.

We use the following lemma to show that this graph is connected.

Lemma 3.9. For any distinct S, S′ ∈ Gk(V ) there exists U ∈ Gn−k(V )
which is a complement to both S and S′.
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Proof. Consider an independent subset

X ∪ {x1, . . . , xm, y1, . . . , ym}
such that

S ∩ S′ = 〈X〉,

S = 〈X, x1, . . . , xm〉,

S′ = 〈X, y1, . . . , ym〉.
If T is a complement to S + S′ then

U := T + 〈x1 + y1, . . . , xm + ym〉
is as required. �

Proposition 3.9. The graph Γk,n−k(V ) is connected.

Proof. Let (S, U) and (S′, U ′) be distinct elements of Gk,n−k(V ). First,
we consider the case when U = U ′ and prove induction by the distance

d(S, S′) = k − dim(S ∩ S′)

that the graph Γk,n−k(V ) contains a path connecting (S, U) with (S′, U).
This is trivial if d(S, S′) = 1. Suppose that d(S, S′) ≥ 2. We take any
(k − 1)-dimensional linear subspace W satisfying

S ∩ S′ ⊂ W ⊂ S.

Then W + U �= V and S′ is not contained in W + U . This implies the
existence of a 1-dimensional linear subspace P ′ ⊂ S′ such that S′′ := W+P ′

is a complement of U . We have

d(S′, S′′) = d(S, S′) − 1.

By the inductive hypothesis, there exists a path in Γk,n−k(V ) connecting
(S′, U) with (S′′, U). Since (S′′, U) is adjacent with (S, U), we get the
claim.

The case when S = S′ is similar.
In the general case, we take any (n−k)-dimensional linear subspace U ′′

satisfying

S + U ′′ = S′ + U ′′ = V

(Lemma 3.9) and construct a path joining

(S, U), (S, U ′′), (S′, U ′′), (S′, U ′). �
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For linear subspaces M and N we denote by [M, N ]k,n−k the set of all
(S, U) ∈ Gk,n−k(V ) such that S and U are incident to M and N , respec-
tively.

Proposition 3.10. Every maximal clique of Γ1,n−1(V ) is of type

[P, V ]1,n−1, P ∈ G1(V ) or [V, H ]1,n−1, H ∈ Gn−1(V ).

Similarly, every maximal clique of Γn−1,1(V ) is of type

[V, P ]n−1,1, P ∈ G1(V ) or [H, V ]n−1,1, H ∈ Gn−1(V ).

In the case when 1 < k < n − 1, the Grassmann graph Γk,n−k(V ) admits
only the following four types of maximal cliques:

• [S, M ]k,n−k, S ∈ Gk(V ), M ∈ Gn−k−1(V ) and S ∩ M = 0;
• [S, N ]k,n−k, S ∈ Gk(V ), N ∈ Gn−k+1(V ) and S + N = V ;
• [Q, U ]k,n−k, Q ∈ Gk−1(V ), U ∈ Gn−k(V ) and Q ∩ U = 0;
• [T, U ]k,n−k, T ∈ Gk+1(V ), U ∈ Gn−k(V ) and T + U = V .

Proof. The case when k = 1, n − 1 is trivial. If 1 < k < n − 1 then the
statement easy follows from Proposition 3.2. �

We say that two (k, n − k)-involutions are adjacent if the correspond-
ing elements of Gk,n−k(V ) are adjacent. There is the following algebraic
interpretation of this adjacency relation.

Proposition 3.11. For involutions u, v ∈ Ik,n−k(V ) the following condi-
tions are equivalent:

(1) u and v are adjacent,
(2) uv and vu are transvections.

Proof. (1) =⇒ (2). Suppose that S+(u) = S+(v) (the case when
S−(u) = S−(v) is similar). Then

Ker (1 − uv) = Ker (1 − vu) = S+(u) + (S−(u) ∩ S−(v)) (3.6)

is (n− 1)-dimensional. There exist a linear functional α whose kernel coin-
cides with (3.6) and a non-zero vector x0 such that

uv(x) = x + α(x)x0. (3.7)

Then

v(x) = u(x) + α(x)u(x0) (3.8)
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and

x = v2(x) = u(u(x) + α(x)u(x0)) + α(u(x) + α(x)u(x0))u(x0)

= x + α(x)x0 + α(u(x) + α(x)u(x0))u(x0)

which means that u(x0) ∈ 〈x0〉. Then (3.8) implies that v(x0) ∈ 〈x0〉.
Using Exercise 3.2 we show that x0 belongs to the linear subspace (3.6)
which coincides with Kerα. Therefore, uv is a transvection; then vu also
is a transvection (Remark 3.17).

(2) =⇒ (1). If uv is a transvection then (3.7) holds for a certain linear
functional α and a non-zero vector x0 ∈ Kerα. As above, we establish that
u(x0) ∈ 〈x0〉. By Exercise 3.2, x0 belongs to S+(u) or S−(u).

Suppose that x0 ∈ S+(u). For every x ∈ S+(v)

u(x) = uv(x) = x + α(x)x0

and

x = u2(x) = u(x) + α(x)u(x0) = x + 2α(x)x0.

This implies that S+(v) ⊂ Kerα. Since u(x) = v(x) for every x ∈ Kerα,
we have S+(v) = S+(u) and

S−(v) ∩ (Kerα) = S−(u) ∩ (Ker α)

is (n − k − 1)-dimensional.
Suppose that x0 ∈ S−(u). For every x ∈ S−(v)

u(x) = −uv(x) = −x − α(x)x0.

As in the previous case, we get S−(v) ⊂ Kerα which implies that S−(v)
coincides with S−(u) and S+(v) is adjacent with S+(u). �

Let X be a non-empty subset of Ik,n−k(V ). Denote by X c the set
consisting of all (k, n− k)-involutions commuting with every element of X .
If X c is non-empty then X cc contains X .

Lemma 3.10 ([Mackey (1942)]). Suppose that k = 1, n − 1. Then two
distinct (k, n−k)-involutions u, v are adjacent if and only if for any distinct
u′, v′ ∈ {u, v}cc we have

{u, v}cc = {u′, v′}cc. (3.9)
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Proof. We restrict ourselves to the case when k = 1 (the case k = n − 1
is similar). Recall that every (k, n − k)-involution s is identified with

(S+(s), S−(s)) ∈ Gk,n−k(V ).
Let u = (P, U) and v = (P ′, U ′). By Lemma 3.8, a (1, n − 1)-involution
(P ′′, U ′′) commute with u if and only if

P ⊂ U ′′ and P ′′ ⊂ U.

This implies that
{u, v}c = [U ∩ U ′, P + P ′]1,n−1

and
{u, v}cc = [P + P ′, U ∩ U ′]1,n−1.

If u and v are adjacent (P = P ′ or U = U ′) then any distinct u′, v′ ∈ {u, v}cc

are adjacent and (3.9) holds. In the case when P �= P ′ and U �= U ′, the
equality (3.9) fails for any adjacent u′, v′ ∈ {u, v}cc. �

Problem 3.1. Is there a characterization of the adjacency relation in terms
of the commutativity relation for the case when 1 < k < n − 1?

3.7.3 Chow’s theorem for linear involutions

We give a few examples.

Example 3.10. For every semilinear automorphism l : V → V the map-
ping

u → lul−1 ∀ u ∈ GL(V )
is an automorphism of the group GL(V ). It transfers each Ik,n−k(V ) to
itself. The associated transformation of Gk,n−k(V ) is

(S, U) → (l(S), l(U)).

Example 3.11. Recall that the contragradient mapping u → ǔ is an iso-
morphism of GL(V ) to GL(V ∗). If u is a (k, n − k)-involution then the
same holds for ǔ; moreover,

S+(ǔ) = (S−(u))0 and S−(ǔ) = (S+(u))0

(an exercise for the reader). For every semilinear isomorphism s : V → V ∗

the mapping
u → s−1ǔs ∀ u ∈ GL(V )

is an automorphism of the group GL(V ). It transfers each Ik,n−k(V ) to
itself. The associated transformation of Gk,n−k(V ) is

(S, U) → (s−1(U0), s−1(S0)).
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Automorphisms of the group GL(V ) considered in Examples 3.10 and
3.11 will be called regular.

Example 3.12. In the case when n = 2k, the mapping u → −u is a bijec-
tive transformation of Ik,k(V ). The associated transformation of Gk,k(V )
sends (S, U) to (U, S).

A bijective transformation f of Ik,n−k(V ) is called commutativity pre-
serving if f and f−1 map commutative involutions to commutative invo-
lutions; by Proposition 3.8, this is equivalent to the fact that f and f−1

transfer base subsets to base subsets.
It is clear that all transformations considered above are commutativity

preserving and the associated transformations of Gk,n−k(V ) are automor-
phisms of the Grassmann graph Γk,n−k(V ). In the case when n = 2k, there
exist commutativity preserving transformations of Ik,k(V ) which do not
induce automorphisms of Γk,k(V ).

Example 3.13. Let n = 2k. Consider any proper subset X ⊂ Ik,k(V )
satisfying the following condition:

u ∈ X =⇒ −u ∈ X .

The transformation

u →
{
−u ∀ u ∈ X

u ∀ u �∈ X
is commutativity preserving; but the associated transformation of Gk,k(V )
is not an automorphism of Γk,k(V ) (we leave the details for the reader).

Theorem 3.15 ([Havlicek and Pankov (2005)]). If n �= 2k then every
automorphism of Γk,n−k(V ) is induced by a semilinear automorphism of V

(Example 3.10) or a semilinear isomorphism of V to V ∗ (Example 3.11).
Let n = 2k and f be an automorphism of Γk,k(V ). Then

f = ig,

where g is the automorphism of Γk,k(V ) induced by a semilinear automor-
phism of V or a semilinear isomorphism of V to V ∗ and i is the transfor-
mation sending every (S, U) to (U, S).

Remark 3.19. Some generalizations of this result were obtained in
[Prażmowski and Żynel (2009)].
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Remark 3.20. It must be pointed out that all results concerning the ad-
jacency relation on Gk,n−k(V ) (Propositions 3.9, 3.10 and Theorem 3.15)
hold in the case of an arbitrary characteristic.

Corollary 3.4 ([Dieudonné 1 (1951); Rickart (1950)]). In the case
when k = 1, n − 1, every commutativity preserving bijective transforma-
tion of Ik,n−k(V ) can be extended to a regular automorphism of the group
GL(V ).

Proof. Let k = 1, n − 1 and f be a commutativity preserving bijective
transformation of Ik,n−k(V ). By Lemma 3.10, the associated transforma-
tion of Gk,n−k(V ) is an automorphism of Γk,n−k(V ). Theorem 3.15 gives
the claim. �

Remark 3.21. Commutativity preserving transformations of Ik,n−k(V ),
1 < k < n − 1, were investigated in [Pankov (2005)].

3.7.4 Proof of Theorem 3.15

Let f be an automorphism of the graph Γk,n−k(V ). In what follows the
subsets

[S, V ]k,n−k, S ∈ Gk(V ) and [V, U ]k,n−k, U ∈ Gn−k(V )

will be called special. Our first step is to show that f and f−1 map special
subsets to special subsets. In the cases when k = 1, n−1, the class of special
subsets coincides with the class of maximal cliques of Γk,n−k(V ) and the
statement is trivial.

Suppose that 1 < k < n − 1. Let S ∈ Gk(V ). Consider T ∈ Gn−k+1(V )
satisfying S + T = V . Then [S, T ]k,n−k is a maximal clique of Γk,n−k(V )
and the same holds for f([S, T ]k,n−k). By Proposition 3.10, one of the four
possibilities is realized. Assume that our cliques are of the same type; in
other words, there exist

W ∈ Gk(V ) and Z ∈ Gn−k+1(V )

such that W + Z = V and

f([S, T ]k,n−k) = [W, Z]k,n−k.

Now we show that

f((S, U)) ∈ [W, V ]k,n−k ∀ (S, U) ∈ [S, V ]k,n−k.
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Let us take any

(S, U0) ∈ [S, T ]k,n−k

and suppose that (S, U) is adjacent with (S, U0). Then the linear subspace
P := U ∩ U0 is (n − k − 1)-dimensional and [P, T ]n−k is a line of the
Grassmann space Gn−k(V ). This line contains at least three elements and
only one of them has a non-zero intersection with S. Thus the intersection
of [S, T ]k,n−k and [S, P ]k,n−k contains more than one element and the same
holds for their images

f([S, T ]k,n−k) = [W, Z]k,n−k and f([S, P ]k,n−k).

Since f([S, P ]k,n−k) is a maximal clique of Γk,n−k(V ), the linear subspace
W is the first component in every element of f([S, P ]k,n−k) and

f((S, U)) ∈ [W, V ]k,n−k.

By the connectedness of the graph Γk,n−k(V ), the same holds for every
(S, U) ∈ [S, V ]k,n−k. Therefore,

f([S, V ]k,n−k) ⊂ [W, V ]k,n−k.

We apply the same arguments to the mapping f−1 and get the inverse
inclusion. In the case when f([S, T ]k,n−k) is a maximal clique of one of the
remaining three types, the proof is similar.

Similarly, we show that for every U ∈ Gn−k(V ) the image of the special
subset [V, U ]k,n−k is a special subset.

The intersection of two distinct special subsets is non-empty if and only
if these special subsets are of different types and the sum of the associated
k-dimensional and (n−k)-dimensional linear subspaces coincides with V (it
is clear that this intersection is a one-element set). Since for any distinct
Si ∈ Gk(V ) (i = 1, 2) there exists U ∈ Gn−k(V ) such that Si + U = V

(Lemma 3.9), one of the following possibilities is realized:

(A) f preserves the type of every special subset,
(B) f changes the types of all special subsets.

Case (A). There exist bijective transformations f ′ and f ′′ of Gk(V ) and
Gn−k(V ) (respectively) such that

f((S, U)) = (f ′(S), f ′′(U)) ∀ (S, U) ∈ Gk,n−k(V ).

Thus for any S ∈ Gk(V ) and U ∈ Gn−k(V )

S + U = V ⇐⇒ f ′(S) + f ′′(U) = V.
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The mappings f ′ and f ′′ are automorphisms of the Grassmann graphs
Γk(V ) and Γn−k(V ), respectively (this statement is trivial if k = 1, n − 1,
and it follows immediately from Theorem 3.7 if 1 < k < n − 1).

Suppose that k = 1, n − 1. In this case, S ∈ Gk(V ) and U ∈ Gn−k(V )
are incident if and only if f ′(S) and f ′′(U) are incident. By Proposition
3.4, f ′ and f ′′ are induced by the same semilinear automorphism of V .

If 1 < k < n− 1 then each of these mappings is induced by a semilinear
automorphism of V or a semilinear isomorphism of V to V ∗ (the second
possibility is realized only in the case when n = 2k). Suppose that f ′

is induced by a semilinear automorphism l : V → V . If f ′′ is induced
by a semilinear automorphism s : V → V then for any S ∈ Gk(V ) and
U ∈ Gn−k(V )

S + U = V ⇐⇒ S + l−1s(U) = V ;

this implies that l−1(s(U)) = U for every U ∈ Gn−k(V ) and

f((S, U)) = (l(S), l(U)) ∀ (S, U) ∈ Gk,n−k(V ).

Now, suppose that n = 2k and f ′′ is induced by a semilinear isomorphism
s : V → V ∗. As above, we establish that

(sl−1(U))0 = U ∀ U ∈ Gk(V ).

Let W ∈ Gk−1(V ). We choose

U1, . . . , Uk+1 ∈ Gk(V )

such that

U1 ∩ · · · ∩ Uk+1 = W and U1 + · · · + Uk+1 = V.

Then

0 = (sl−1(V ))0 =
k+1⋂
i=1

(sl−1(Ui))0 =
k+1⋂
i=1

Ui = W.

The equality W = 0 implies that k = 1 which contradicts the assumption
that n = 2k ≥ 3.

If n = 2k and f ′ is induced by a semilinear isomorphism u : V → V ∗

then the same arguments show that f ′′ also is induced by u; thus f is the
composition of the transformations

(S, U) → (u(U)0, u(S)0) and (S, U) → (U, S).

Case (B). There exist bijective mappings

g′ : Gk(V ) → Gn−k(V ) and g′′ : Gn−k(V ) → Gk(V )
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such that

f((S, U)) = (g′′(U), g′(S)) ∀ (S, U) ∈ Gk,n−k(V ).

By duality, these mappings can be considered as bijections of Gk(V ) and
Gn−k(V ) to Gk(V ∗) and Gn−k(V ∗), respectively. As in the case (A), we
establish that one of the following possibilities is realized: (i) g′ and g′′ are
induced by the same similinear isomorphism u : V → V ∗ and

f((S, U)) = (u(U)0, u(S)0) ∀ (S, U) ∈ Gk,n−k(V );

(ii) n = 2k, the mappings g′ and g′′ are induced by the same similinear
automorphism l : V → V ′ and f is the composition of the transformations

(S, U) → (l(S), l(U)) and (S, U) → (U, S).

3.7.5 Automorphisms of the group GL(V )

Theorem 3.16 ([Dieudonné 1 (1951); Rickart (1950)]). If f is an
automorphism of the group GL(V ) then

f(u) = α(u)g(u) ∀ u ∈ GL(V ),

where g is a regular automorphism and α is a homomorphism of GL(V ) to
the center of R.

Proof. The automorphism f preserves the set of all involutions; more-
over, it transfers Ik,n−k(V ) to Im,n−m(V ) (because each Ik,n−k(V ) can be
characterized as a maximal set of conjugate involutions). By Proposition
3.8, base subsets of Ik,n−k(V ) go to base subsets of Im,n−m(V ). Since a
base subset of Ik,n−k(V ) consists of

(
n
k

)
elements and(

n

k

)
=
(

n

m

)
⇐⇒ m = k, n − k,

the image of Ik,n−k(V ) coincides with Ik,n−k(V ) or In−k,k(V ). Therefore,
the restriction of f to the set I1,n−1(V ) is a commutativity preserving
bijection to I1,n−1(V ) or In−1,1(V ). By Corollary 3.4, there exists a regular
automorphism g of GL(V ) such that

f(u) = g(u) ∀ u ∈ I1,n−1(V ) or f(u) = −g(u) ∀ u ∈ I1,n−1(V ).

For every transvection t we take adjacent (1, n−1)-involutions u, v satisfying
t = uv and get f(t) = g(t) in each of these cases. So, f and g are coincident
on SL(V ) and h := g−1f sends every element of SL(V ) to itself.
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If t is a transvection then ltl−1 is a transvection for any l ∈ GL(V ) and

h(l)th(l−1) = ltl−1

which means that α(l) := l−1h(l) commutes with every transvection. By
Remark 3.18, α(l) preserves every 1-dimensional linear subspace; hence it
is a homothetic transformation. All linear homothetic transformations of
V form the center of the group GL(V ) (this subgroup is isomorphic to the
center of R). The mapping l → α(l) is a homomorphism of GL(V ) to the
center. An easy verification shows that f(l) = α(l)g(l). �

3.8 Grassmannians of infinite-dimensional vector spaces

Let V and V ′ be vector spaces over division rings. Throughout the section
we suppose that dim V = dimV ′ = α is infinite. In this case, we have the
following three types of Grassmannians associated with V :

Gβ(V ) = { S ∈ G(V ) : dim S = β, codimS = α },

Gβ(V ) = { S ∈ G(V ) : dim S = α, codimS = β }
for every cardinality β < α and

Gα(V ) = Gα(V ) = { S ∈ G(V ) : dim S = codimS = α }.
They are orbits of the action of the group GL(V ) on the set G(V ).

3.8.1 Adjacency relation

Let G be a Grassmannian of V . We say that linear subspaces S, U ∈ G are
adjacent if

dim(S/(S ∩ U)) = dim(U/(S ∩ U)) = 1

which is equivalent to

dim((S + U)/S) = dim((S + U)/U) = 1.

We define the associated Grassmann graph as in the finite-dimensional
case. The Grassmann graphs corresponding to Gβ(V ), Gβ(V ), and Gα(V )
will be denoted by Γβ(V ), Γβ(V ), and Γα(V ) (respectively). Semilinear
isomorphisms of V to V ′ induce isomorphisms between the Grassmann
graphs of the same indices.

Let k ∈ N. The Grassmann graph Γk(V ) is connected and every iso-
morphism of Γk(V ) to Γk(V ′) is induced by a semilinear isomorphism of
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V to V ′ (the proof is similar to the proof of Theorem 3.2 and we leave it
as an exercise for the reader). Since the annihilator mapping defines an
isomorphism of Γk(V ) to Γk(V ∗) (see Subsection 1.1.3), the Grassmann
graph Γk(V ) is connected.

The following example shows that the direct analogue of Chow’s theo-
rem does not hold for Grassmannians formed by linear subspaces of infinite
dimension and codimension.

Example 3.14 ([Blunck and Havlicek (2005)]). Let S ∈ Gβ(V ) and
β be infinite. Denote by X the connected component of Γβ(V ) containing
S; it consists of all X ∈ Gβ(V ) such that

dim(S/(S ∩ X)) = dim(X/(S ∩ X))

is finite. We take any S′ ∈ X \ {S}. There exists U ∈ Gβ(V ) \ X such that

U ∩ S = 0 and U ∩ S′ �= 0.

Let l : V → V be a semilinear automorphism sending S to S′. The associ-
ated automorphism of Γβ(V ) transfers X to itself. We define

f(X) :=

{
l(X) X ∈ X
X X ∈ Gβ(V ) \ X .

This mapping is an automorphism of Γβ(V ), but it is not induced by a
semilinear automorphism of V . Indeed, U ∩ S = 0 and f(U) = U has a
non-zero intersection with f(S) = S′.

Problem 3.2. Let X be a connected component of Γβ(V ), β < α, and f be
an automorphism of Γβ(V ). Is there a semilinear automorphism l : V → V

such that f(S) = l(S) for all S ∈ X ?

There is the following infinite-dimensional version of Theorem 3.7.

Theorem 3.17 ([Blunck and Havlicek (2005)]). Let G be a Grass-
mannian of V . For any distinct S1, S2 ∈ G the following conditions are
equivalent:

(1) S1 and S2 are adjacent,
(2) there exists S ∈ G \ {S1, S2} such that every complement of S is a

complement to at least one of Si.

For every S ∈ Gα(V ) all complements of S belong to Gα(V ) (for other
Grassmannians this fails) and we have the following.
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Corollary 3.5. Suppose that f : Gα(V ) → Gα(V ′) is a bijection preserving
the complementary of subspaces: S ∈ Gα(V ) is a complement of U ∈ Gα(V )
if and only if f(S) is a complement of f(U). Then f is an isomorphism of
Γα(V ) to Γα(V ′).

3.8.2 Proof of Theorem 3.17

If G = G1(V ),G1(V ) then any two distinct elements of G are adjacent and
the implication (2) =⇒ (1) is trivial.

(1) =⇒ (2). If S1 and S2 are adjacent then any S ∈ G \ {S1, S2}
satisfying

S1 ∩ S2 ⊂ S ⊂ S1 + S2

is as required (see the proof of Theorem 3.6).
(2) =⇒ (1). Suppose that S ∈ G\{S1, S2} satisfies the condition (2). As

in the proof of Theorem 3.6, we establish that for any 1-dimensional linear
subspaces P1 ⊂ S1, P2 ⊂ S2 the sum P1 + P2 has a non-zero intersection
with S and

S1 ∩ S2 ⊂ S. (3.10)

Now we show that

S ⊂ S1 + S2. (3.11)

This inclusion is trivial if S1 + S2 = V . In the case when S1 + S2 �= V ,
it is sufficient to show that S is contained in every H ∈ G1(V ) containing
S1 + S2 (since the intersection of all such linear subspaces coincides with
S1 +S2). If S �⊂ H ∈ G1(V ) then H +S = V and H contains a complement
U of S; if S1 + S2 ⊂ H then U is not a complement of Si (i = 1, 2) which
contradicts (2).

The linear subspaces S1 and S2 are not incident. Indeed, if S1 ⊂ S2

then (3.10) and (3.11) imply that

S1 ⊂ S ⊂ S2

and every complement of S is not a complement of Si (i = 1, 2); similarly,
we get S2 �⊂ S1.

Our next step is to show that

Si �⊂ S, i = 1, 2.

Suppose, for example, that S1 ⊂ S. Since S1 �⊂ S2, there exists H ∈ G1(V )
which contains S2 and does not contain S1. We have

V = S1 + H ⊂ S + H ;
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thus S + H = V and H contains a certain complement U of S. Then U

is not a complement of S1 (S1 is a proper subspace of S) and it is not a
complement of S2 (U and S2 both are contained in H), a contradiction.

We take any 2-dimensional linear subspace U ⊂ S1 and a 1-dimensional
linear subspace of S2 which is not contained in S. As in the proof of
Theorem 3.6, we establish that U has a non-zero intersection with S ∩ S1.
This means that

dim(S1/(S ∩ S1)) = 1

and the same holds for S2. Thus there exist 1-dimensional linear subspaces
P1 ⊂ S1 and P2 ⊂ S2 such that

Si = (S ∩ Si) + Pi, i = 1, 2.

Note that P1 �= P2 (otherwise P1 = P2 ⊂ S1 ∩ S2 ⊂ S and both S1, S2 are
contained in S).

The linear subspace P1 + P2 intersects S in a 1-dimensional linear sub-
space P . We have

S1 + S2 ⊂ S + P1 + P2 = S + P + P1 = S + P1 ⊂ S1 + S2

which implies that

S1 + S2 = S + P1. (3.12)

By the same arguments,

S1 + S2 = S + P2. (3.13)

Let U be a complement of S1 + S2. By (3.12), U + P1 is a complement
of S. Since P1 ⊂ S1, the linear subspace U +P1 is not a complement of S1;
hence it is a complement of S2. So,

U + (S1 + S2) = V = U + (S2 + P1)

and the inclusion S2 + P1 ⊂ S1 + S2 implies that

S1 + S2 = S2 + P1.

Using the equality (3.13), we establish that

S1 + S2 = S1 + P2.

Therefore,

dim((S1 + S2)/S1) = dim((S1 + S2)/S2) = 1

which means that S1 and S2 are adjacent.
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3.8.3 Base subsets

Let G be a Grassmannian of V and B be a base of V . The base subset
of G associated with (defined by) B consists of all elements of G spanned
by subsets of B. For any two elements of G there exists a base subsets
containing them (Proposition 1.4).

Every base subset of G1(V ) is a base of the projective space ΠV and
conversely. Base subsets of G1(V ) are not bases of the dual projective
space Π∗

V = ΠV ∗ , since dimV < dimV ∗ (Subsection 1.1.3).
The mappings between Grassmannians of the same indices induced by

semilinear isomorphisms of V to V ′ transfer base subsets to base subsets.
We prove the following generalization of Theorem 3.9.

Theorem 3.18 ([Pankov 1 (2007)]). Let f be a bijection of Gβ(V ) to
Gβ(V ′), β < α, such that f and f−1 map base subsets to base subsets.
Then f is induced by a semilinear isomorphism of V to V ′.

3.8.4 Proof of Theorem 3.18

If β = 1 then, as in Subsection 3.4.1, we show that f and f−1 are semi-
collineations between the projective spaces associated with V and V ′; thus
f is a collineation of ΠV to ΠV ′ and the Fundamental Theorem of Projective
Geometry gives the claim.

Let G be a Grassmannian of V distinct from G1(V ) and G1(V ). Let
also B = {xi}i∈I be a base of V and B be the associated base subset of G.
Exact, inexact, and complement subsets of B are defined as for apartments
in Grassmannians of finite-dimensional vector spaces. We write B(+i) and
B(−i) for the sets of all elements of B which contain xi and do not contain
xi, respectively. The subsets B(+i) and B(−i) will be called simple subsets
of first and second type, respectively. We also define

B(+i, +j) := B(+i) ∩ B(+j) and B(+i,−j) := B(+i) ∩ B(−j)

for all i, j ∈ I.
As in Subsection 3.4.2, we establish that for every maximal inexact

subset X ⊂ B there exist distinct i, j ∈ I such that

X = B(+i, +j) ∪ B(−i).

The associated complement subset is B(+i,−j). Note that every comple-
ment subset is the intersection of two simple subsets of different types.

For two distinct complement subsets B(+i,−j) and B(+i′,−j′) one of
the following possibilities is realized:
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(1) i = i′ or j = j′,
(2) i = j′ or j = i′, then the intersection of the complement subsets is

empty,
(3) {i, j} ∩ {i′, j′} = ∅.
In the first case, our complement subsets are said to be adjacent. An easy
verification shows that for two distinct complement subsets X ,Y ⊂ B with
a non-empty intersection the following two conditions are equivalent:

• X and Y are adjacent,
• for any distinct complement subsets X ′,Y ′ ⊂ B satisfying

X ∩ Y ⊂ X ′ ∩ Y ′

the inverse inclusion holds.

In other words, the intersection of two distinct complement subsets is max-
imal if and only if these complement subsets are adjacent.

A collection of mutually adjacent complement subsets of B will be called
an A-collection. For each i ∈ I

{B(+i,−j)}j∈ I\{i} and {B(+j,−i)}j∈ I\{i}

are maximal A-collections. It is easy to see that every maximal A-collection
is a collection of such kind. Thus every simple subset of B can be character-
ized as the union of all complement subsets belonging to a certain maximal
A-collection.

Let B′ be the base subset of G associated with other base B′ = {x′
i}i∈I .

The simple subsets of B′ corresponding to i ∈ I will be denoted by B′(+i)
and B′(−i).

A bijection g : B → B′ is said to be special if g and g−1 map inexact
subsets to inexact subsets.

Lemma 3.11. Let g : B → B′ be a special bijection. Then g and g−1

send simple subsets to simple subsets; moreover, there exists a bijective
transformation δ : I → I such that

g(B(+i)) = B′(+δ(i)), g(B(−i)) = B′(−δ(i)) ∀ i ∈ I

or

g(B(+i)) = B′(−δ(i)), g(B(−i)) = B′(+δ(i)) ∀ i ∈ I.

Proof. It is clear that maximal inexact subsets go to maximal inexact
subsets in both directions. Thus g and g−1 map complement subsets to
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complement subsets. Since two distinct complement subsets are adjacent
if and only if their intersection is maximal, the adjacency relations of com-
plement subsets is preserved and maximal A-collections go to maximal A-
collections (in both directions). Then g and g−1 transfer simple subsets
to simple subsets. Two distinct simple subsets are of different types if and
only if their intersection is empty or a complement subset. This means that
g and g−1 map simple subsets of different types to simple subsets of dif-
ferent types; hence they preserve the types of all simple subsets or change
the type of every simple subset. Since B(−i) = B \ B(+i), there exists a
bijective transformation δ : I → I satisfying the required condition. �

Let g : B → B′ be a special bijection. We say that g is a special bijection
of the first type if it preserves the types of all simple subsets; otherwise, g

is said to be a special bijection of the second type.
Let S, U ∈ B. The equality

S ∩ U = 〈xi〉
implies that the dimension of S and U is not greater than the codimension;
hence G = Gβ(V ), β ≤ α. This equality is equivalent to the fact that
S, U ∈ B(+i) and for every j ∈ I \ {i} we have S �∈ B(+j) or U �∈ B(+j).

Similarly, the equality

S + U = 〈B \ {xi}〉
implies that the dimension of S and U is α; then G = Gβ(V ), β ≤ α. This
equality is equivalent to the fact that S, U ∈ B(−i) and for every j ∈ I \{i}
we have S �∈ B(−j) or U �∈ B(−j).

We have proved the following.

Lemma 3.12. Let g and δ be as in the previous lemma. Let also S, U ∈ B.
If g is a special bijection of the first type and G = Gβ(V ), β ≤ α, then

S ∩ U = 〈xi〉 ⇐⇒ g(S) ∩ g(U) = 〈x′
δ(i)〉.

If g is a special bijection of the first type and G = Gβ(V ), β ≤ α, then

S + U = 〈B \ {xi}〉 ⇐⇒ g(S) + g(U) = 〈B′ \ {x′
δ(i)}〉.

If g is a special bijection of the second type then

S ∩ U = 〈xi〉 ⇐⇒ g(S) + g(U) = 〈B′ \ {x′
δ(i)}〉,

S + U = 〈B \ {xi}〉 ⇐⇒ g(S) ∩ g(U) = 〈x′
δ(i)〉,

and G = Gα(V ).
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By Lemma 3.12, special bijections of the second type exist only in the
case when G = Gα(V ).

For every linear subspace U ⊂ V we denote by [U ] the set of all elements
of G incident with U .

Lemma 3.13. Suppose that G = Gβ(V ), β ≤ α. Then for every i ∈ I and
every S ∈ [〈xi〉] \ B there exist M, N ∈ B such that

M ∩ N = 〈xi〉 (3.14)

and M, N, S are contained in a base subset of G.

Proof. Consider the set of all X ⊂ B such that S ∩〈X〉 = 0. Using Zorn
lemma, we establish the existence of a maximal subset X ⊂ B satisfying
this condition (see the proof of Proposition 1.3). Then 〈X〉 is a complement
of S (for every vector xj ∈ B \X the linear subspace 〈X, xj〉 has a non-zero
intersection with S and xj belongs to S + 〈X〉). Therefore, the cardinality
of X is equal to α. This implies the existence of linear subspaces M ′, N ′

spanned by non-intersecting subsets of X and such that

• dimM ′ = dim N ′ = β if β is infinite,
• dimM ′ = dim N ′ = β − 1 if β is finite.

The linear subspaces

M := 〈M ′, xi〉 and N := 〈N ′, xi〉

belong to B and satisfy (3.14). We take any base Y of S containing xi. It is
not difficult to prove that X∪Y is a base of V (see the proof of Proposition
1.4). The associated base subset of G contains M, N, S. �

Remark 3.22. In the case when G = Gβ(V ), β ≤ α, we need the following
“dual” version of Lemma 3.13: if

Si := 〈B \ {xi}〉, i ∈ I,

then for every S ∈ [Si] \ B there exist M, N ∈ B such that

M + N = Si

and M , N , S are contained in a base subset of G. The dual principles
do not work and this statement cannot be obtained immediately from
Lemma 3.13.
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Now we prove the theorem. Let f : Gβ(V ) → Gβ(V ′), β < α, be a
bijection such that f and f−1 map base subsets to base subsets.

Let P ∈ G1(V ). We take any base of V which contains a vector belonging
to P and consider the associated base subset B ⊂ Gβ(V ). The restriction
of f to B is a special bijection to the base subset f(B). By Lemma 3.12,
this is a special bijection of first type and there exists h(P ) ∈ G1(V ′) such
that

f(B ∩ [P ]) ⊂ [h(P )].

Let S ∈ [P ] \ B. Lemma 3.13 implies the existence of M, N ∈ B ∩ [P ]
satisfying M ∩ N = P and a base subset B̂ ⊂ Gβ(V ) containing M, N, S.
We have

f(B̂ ∩ [P ]) ⊂ [P ′]

for a certain P ′ ∈ G1(V ′). Lemma 3.12 guarantees that

h(P ) = f(M) ∩ f(N) = P ′

and f(S) belongs to [h(P )]. So,

f([P ]) ⊂ [h(P )].

We apply the same arguments to f−1 and establish the inverse inclusion.
Therefore, there exists a mapping h : G1(V ) → G1(V ′) satisfying

f([P ]) = [h(P )] ∀ P ∈ G1(V ).

The mapping h is bijective (the inverse mapping is induced by f−1) and
the latter equality implies that

h(G1(S)) = G1(f(S)) ∀ S ∈ Gβ(V ). (3.15)

Let B be a base of V and B be the associated base subset of Gβ(V ).
Let also B′ be one of the bases of V ′ associated with the base subset f(B).
We write B1 and B′

1 for the bases of ΠV and ΠV ′ defined by B and B′,
respectively. It follows from Lemma 3.12 that h(B1) = B′

1.
So, h and h−1 send projective bases to projective bases. This means

that h is induced by a semilinear isomorphism l : V → V ′. Then

h(G1(S)) = G1(l(S))

for every linear subspace S ⊂ V and, by (3.15), we have f(S) = l(S) for
every S ∈ Gβ(V ).
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Chapter 4

Polar and Half-Spin Grassmannians

All thick buildings of types Cn (n ≥ 3) and Dn (n ≥ 4) can be obtained
from polar spaces of rank n. By [Buekenhout and Shult (1974)], polar spaces
can be defined as partial linear spaces satisfying some natural axioms (each
line contains at least three points, there is no point collinear with all other
points, ...) and Buekenhout–Shult’s well-known property which says that a
point is collinear with one or all points of a line. Using Teirlinck’s character-
ization of projective spaces, we show that this definition is equivalent to the
classical Tits–Veldkamp definition of polar spaces (Theorem 4.1); in partic-
ular, all maximal singular subspaces of a polar space are projective spaces
of the same finite dimension m (the number m + 1 is called the rank of the
polar space). One of our main objects is the polar Grassmannian Gk(Π),
k ∈ {0, 1, . . . , n− 1}, consisting of all k-dimensional singular subspaces of a
rank n polar space Π. Basic properties of polar spaces and their Grassman-
nians will be studied in Sections 4.1 and 4.2. In particular, it will be shown
that for every rank n polar space one of the following possibilities is realized:

• each (n−2)-dimensional singular subspace is contained in at least three
distinct maximal singular subspaces (type Cn),

• each (n−2)-dimensional singular subspace is contained in precisely two
maximal singular subspaces (type Dn).

Section 4.3 is dedicated to examples: polar spaces associated with re-
flexive sesquilinear forms and quadratic forms, polar spaces of type D3

(these polar spaces are isomorphic to the index two Grassmann spaces of
4-dimensional vector spaces). We do not consider polar spaces obtained
from pseudo-quadratic forms and polar spaces of type C3 associated with
Cayley algebras. Remarks concerning embeddings in projective spaces and
classification of polar spaces finish the section.

123
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In Sections 4.4 and 4.5 we consider polar buildings and investigate ele-
mentary properties of their Grassmann spaces. Let Π be a polar space of
rank n and ∆(Π) be the simplicial complex consisting of all flags formed
by singular subspaces of Π. Then ∆(Π) is a building of type Cn. The
Grassmannians of this building are the polar Grassmannians of Π. The
corresponding Grassmann spaces will be denoted by Gk(Π). The building
∆(Π) is thick only in the case when Π is a polar space of type Cn. Sup-
pose that Π is a polar space of type Dn. Then Gn−1(Π) can be naturally
decomposed in two disjoint subsets called the half-spin Grassmannians and
denoted by G+(Π) and G−(Π). As in Example 2.3, the polar space Π defines
a thick building of type Dn. The Crassmannians of this building are the
polar Grassmannians Gk(Π), k ≤ n − 3, and the half-spin Grassmannians.
As in the previous case, the Grassmann space associated with Gk(Π) is
Gk(Π). The Grassmann spaces of the half-spin Grassmannians are denoted
by Gδ(Π), δ ∈ {+,−}.

Let Π and Π′ be polar spaces of the same type Xn, X ∈ {C, D}, and
n ≥ 3; in the case when X = D, we require that n ≥ 4. In Section 4.6 we
investigate collineations of Gk(Π) to Gk(Π′). We also consider collineations
of Gδ(Π) to Gγ(Π′), δ, γ ∈ {+,−}, if our polar spaces are of type Dn. In
almost all cases, such collineations are induced by collineations of Π to Π′.
However, if our polar spaces are of type D4 then their half-spin Grassmann
spaces (the Grassmann spaces of the half-spin Grassmannians) are polar
spaces of type D4 and there are two additional possibilities:

• the collineations of G1(Π) to G1(Π′) induced by collineations of Π to
Gδ(Π′), δ ∈ {+,−};

• the collineations of Gδ(Π) to Gγ(Π′), δ, γ ∈ {+,−}, induced by
collineations of Π to G−γ(Π′).

In Section 4.7 we give an example showing that the adjacency relation on
Gn−1(Π) cannot be characterized in terms of the opposite relation as in
Theorem 3.6; however, the direct analogue of Theorem 3.6 holds for the
half-spin Grassmannians. Characterizations of apartments in terms of the
adjacency relation (analogues of Theorems 3.8) will be obtained only for the
polar Grassmannians formed by maximal singular subspaces and half-spin
Grassmannians (Section 4.8). In Section 4.9 we describe all apartments
preserving mappings of polar and half-spin Grassmannians; in particular,
it will be shown that all apartments preserving bijections are collineations
of the corresponding Grassmann spaces.
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4.1 Polar spaces

4.1.1 Axioms and elementary properties

Following [Buekenhout and Shult (1974)] we define a polar space (of finite
rank) as a partial linear space Π = (P,L) satisfying the following axioms:

(1) each line contains at least 3 points,
(2) if p ∈ P and L ∈ L then p is collinear with one or all points of the line

L (the Buekenhout–Shult property),
(3) there is no point collinear with all other points,
(4) every flag consisting of singular subspaces is finite (this implies that

every singular subspace is finite-dimensional).

The collinearity relation will be denoted by ⊥: we write p ⊥ q if p and q

are collinear points, and p �⊥ q otherwise. More general, X ⊥ Y means
that every point of X is collinear with every point of Y . For every subset
X ⊂ P we define

X⊥ := { p ∈ P : p ⊥ X }.
The axiom (2) guarantees that X⊥ is a subspace of Π; moreover, for every
point p ∈ P the subspace p⊥ is a hyperplane of Π (recall that a proper
subspace of a partial linear space is called a hyperplane if it has a non-
empty intersection with every line).

It follows from the axiom (2) that polar spaces are connected gamma
spaces and the distance between non-collinear points is equal to 2.

Let X ⊂ P be a subset satisfying X ⊥ X (a clique of the collinearity
graph of Π). By Section 2.5, X is contained in a certain singular subspace
of Π. Recall that the minimal singular subspace containing X is called
spanned by X and denoted by 〈X〉. Since for every point p ∈ P

p ⊥ X =⇒ p ⊥ 〈X〉
(Corollary 2.3), we have X⊥ = 〈X〉⊥.

If S is a singular subspace of Π and p �⊥ S then the axiom (2) implies
that S ∩ p⊥ is a hyperplane of S (hyperplanes of a line are points). If S

is a maximal singular subspace then S⊥ = S (Π is a gamma space and,
by Proposition 2.7, S is a maximal clique of the collinearity graph); in this
case, S ∩ p⊥ is a hyperplane of S for every point p ∈ P \ S.

Theorem 4.1 ([Buekenhout and Shult (1974)]). Suppose that a polar
space Π = (P,L) contains a singular subspace of dimension greater than 1.
Then the following assertions are fulfilled:



July 2, 2010 14:9 World Scientific Book - 9in x 6in ClassicalBuilding

126 Grassmannians of Classical Buildings

(1) all maximal singular subspaces are projective spaces of the same finite
dimension,

(2) for every maximal singular subspace S there exists a maximal singular
subspace disjoint from S.

Remark 4.1. Polar spaces of rank n ≥ 3 were defined in [Tits (1974)]
and [Veldkamp (1959/1960)] as partial linear spaces satisfying the following
axioms:

• all maximal singular subspaces are (n − 1)-dimensional projective
spaces,

• for every maximal singular subspace S and every point p �∈ S, all points
of S collinear with p form a hyperplane of S,

• there exist two disjoint maximal singular subspaces.

It follows from Theorem 4.1 that the Tits–Veldkamp and Buekenhout–Shult
definitions of polar spaces are equivalent.

The original proof given by F. Buekenhout and E. Shult was rather
complicated. In [Buekenhout (1990)] Theorem 4.1 was drawn from the
following result.

Theorem 4.2 ([Teirlinck (1980)]). Suppose that a linear space has a
family of hyperplanes H which satisfies the following conditions:

(a) for every distinct hyperplanes H1, H2 ∈ H and every point p there is a
hyperplane H ∈ H containing H1 ∩ H2 and p,

(b) for every point p there exists a hyperplane H ∈ H which does not
contain p.

If every line contains at least 3 points then the linear space is a projective
space.

4.1.2 Proof of Theorem 4.1

Lemma 4.1. Every hyperplane in a linear space is a maximal proper sub-
space of this linear space.

Proof. If H is a hyperplane of a linear space then this linear space is
spanned by H and any point p �∈ H (since for every point q �= p the line p q

intersects H). �
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Proposition 4.1. Every singular subspace of Π whose dimension is not
less than 2 is a projective space.

Proof. Clearly, we can restrict ourselves to maximal singular subspaces.
Let S be a maximal singular subspace whose dimension is assumed to be
not less than 2. It was noted above that

Hp := S ∩ p⊥

is a hyperplane of S for every point p ∈ P \ S. Denote by Sp the singular
subspace spanned by Hp and p. If q ∈ Sp \ Hp then Hq coincides with Hp

(it is clear that Hp ⊂ Hq and Lemma 4.1 gives the claim). We show that
the family of hyperplanes

{Hp}p∈P\S

satisfies the conditions of Theorem 4.2.
(a). Let Hp and Hq be distinct hyperplanes of S. Then p �∈ Sq and

q �∈ Sp. We take any point t ∈ Hq \ Hp. Since t �⊥ p, the line t q contains
a unique point q′ collinear with p. This point does not belong to Hq.
Therefore, q′ ∈ Sq \Hq. Suppose that the line p q′ intersects S in a certain
point. This point belongs to the intersection of Hp and Hq′ = Hq. This
means that the line p q′ is contained in Sq (since Sq contains q′ and Hp∩Hq)
which contradicts the fact that p �∈ Sq. Thus the line p q′ does not intersect
S. Each point of p q′ is collinear with all points of Hp∩Hq. For every point
u ∈ S we can choose a point v ∈ p q′ collinear with u. The hyperplane Hv

contains u and Hp ∩ Hq.
(b). For every point u ∈ S the axiom (3) implies the existence of a point

p ∈ P \S which is not collinear with u. The associated hyperplane Hp does
not contain u. �

Proposition 4.2. All maximal singular subspaces of Π have the same di-
mension.

Proof. Let S and U be maximal singular subspaces of dimension n and
k (respectively) and k ≤ n. Suppose that the dimension of complements of
S ∩ U in U is equal to m (see Remark 4.2). Then

dim(S ∩ U) = k − m − 1.

Let t1, . . . , tm+1 be a base of a certain complement of S ∩ U in U . The
subspace S ∩ U⊥ is the intersection of the hyperplanes

S ∩ t⊥1 , . . . , S ∩ t⊥m+1
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and

dim(S ∩ U⊥) ≥ n − m − 1.

Since U = U⊥ (U is a maximal singular subspace), we get

k − m − 1 ≥ n − m − 1

and k ≥ n which implies k = n. �

Remark 4.2. Let M , N , T be subspaces of a projective space such that
M, N ⊂ T . We say that N is a complement of M in T if

M ∩ N = ∅ and 〈M, N〉 = T.

Then

dim M + dim N + 1 = dim T

(for projective planes this is trivial; for projective spaces whose dimension
is greater than 2 this follows from Theorem 1.3).

So, if a polar space contains a singular subspace of dimension greater
than 1 then all maximal singular subspaces are projective spaces of a certain
finite dimension n ≥ 2; the number n+1 is said to be the rank of this polar
space. If a polar space does not satisfy the condition of Theorem 4.1 then
all maximal singular subspaces are lines, and we say that it is a polar space
of rank 2 or a generalized quadrangle.

Lemma 4.2. Let S be a maximal singular subspace in a polar space of rank
n. Let also U be a singular subspace such that the dimension of complements
of S ∩ U in U is equal to m. Then

dim(S ∩ U⊥) = n − m − 2

and

〈U, S ∩ U⊥〉 (4.1)

is a maximal singular subspace containing U .

Proof. As in the proof of Proposition 4.2, we establish that

dim(S ∩ U⊥) ≥ n − m − 2.

The subspace (4.1) is spanned by S ∩U⊥ and a compliment of S ∩U in U .
Since these subspaces are disjoint and the latter subspace is m-dimensional,
the dimension of (4.1) is not less than n − 1. This means that (4.1) is a
maximal singular subspace and its dimension is equal to n − 1. The latter
guarantees that S ∩ U⊥ is (n − m − 2)-dimensional. �
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Proposition 4.3. For every maximal singular subspace S there exists a
maximal singular subspace disjoint from S.

Proof. Let S and U be maximal singular subspaces such that S ∩U �= ∅.
By the axiom (3), there exists a point p non-collinear with a certain point
t ∈ S ∩ U . Clearly, p �∈ U and we denote by U ′ the maximal singular
subspace spanned by p and U ∩ p⊥ (Lemma 4.2). If U ′ contains a point
q ∈ S \ U then

U ∩ p⊥ = U ∩ q⊥

which is impossible (t ∈ S ∩U is collinear with q and non-collinear with p).
Therefore, S ∩ U ′ is contained in S ∩ U . Since t �∈ U ′,

dim(S ∩ U ′) < dim(S ∩ U).

Step by step, we construct a maximal singular subspace disjoint from S.�

Theorem 4.1 is the union of Propositions 4.2 and 4.3.

4.1.3 Corollaries of Theorem 4.1

Let Π = (P,L) be a polar space of rank n.

Proposition 4.4. Every non-maximal singular subspace of Π can be pre-
sented as the intersection of two maximal singular subspaces.

Proof. Let S be a singular subspace and U be a maximal singular sub-
space containing S. By Theorem 4.1, there exists a maximal singular sub-
space U ′ disjoint from U . Consider the maximal singular subspace

U ′′ := 〈S, U ′ ∩ S⊥〉
(Lemma 4.2). Note that S and U ′ ∩ S⊥ are disjoint. The subspace U ∩U ′′

does not intersect U ′ ∩ S⊥ and the inclusion S ⊂ U ∩ U ′′ guarantees that
U ∩ U ′′ coincides with S. �

If S is a singular subspace of Π then S⊥ is the union of all maximal
singular subspaces containing S (recall that Π is a gamma space and the
class of maximal singular subspaces coincides with the class of maximal
cliques of the collinearity graph). By Proposition 4.4, for any pair of singu-
lar subspaces S and U the inclusion S⊥ ⊂ U⊥ implies that U ⊂ S; hence,
S⊥ = U⊥ if and only if S = U .

Now suppose that X is a clique of the collinearity graph of Π. As above,
X⊥ is the union of all maximal singular subspaces containing X and X⊥⊥
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is the intersection of all these subspaces. Then 〈X〉 ⊂ X⊥⊥ and Proposition
4.4 implies that

X⊥⊥ = 〈X〉.
As a consequence, we obtain the following characterization of lines in terms
of the collinearity relation: if p and q are distinct collinear points then

p q = {p, q}⊥⊥.

This means that every isomorphism between the collinearity graphs of polar
spaces is a collineation between these polar spaces.

We will need the following result concerning pairs of non-collinear points
in polar spaces.

Lemma 4.3. If n ≥ 3 and p, q are non-collinear points of Π then the
subspace p⊥ ∩ q⊥ is a polar space of rank n − 1.

Proof. The axioms (1), (2), (4) are trivial. We verify (3).
Suppose that there exists a point t ∈ p⊥∩q⊥ collinear with all points of

p⊥∩q⊥. For every point s ∈ p⊥\{p} the line p s contains two distinct points
collinear with t (one of these point is p and the other is the intersection with
the hyperplane q⊥); by the axiom (2), t is collinear with s. Thus p⊥ ⊂ t⊥

and p = t which contradicts p �∈ p⊥ ∩ q⊥.
So, p⊥ ∩ q⊥ is a polar space. It is clear that p⊥ ∩ q⊥ does not contain

(n − 1)-dimensional singular subspaces. Every maximal singular subspace
containing p intersects q⊥ in an (n − 2)-dimensional subspace. Therefore,
our polar space is of rank n − 1. �

4.1.4 Polar frames

Let Π = (P,L) be a polar space of rank n. We say that a subset

{p1, . . . , p2n}
is a frame of Π if for every i ∈ {1, . . . , 2n} there is unique σ(i) ∈ {1, . . . , 2n}
such that

pi �⊥ pσ(i).

First of all we show that frames exist.
Let S and U be disjoint maximal singular subspaces of Π. We take

any base B = {p1, . . . , pn} of S. By Lemma 4.2, for every i ∈ {1, . . . , n}
there is a unique point of U collinear with all points of B \ {pi}; we denote
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it by pn+i. This point is non-collinear with pi (otherwise pn+i ⊥ S and
the maximal singular subspace S contains pn+i which is impossible, since
S ∩ U = ∅). Then {p1, . . . , p2n} is a frame of Π.

Proposition 4.5. Every frame is an independent subset.

Proof. If B = {p1, . . . , p2n} is a frame of Π then B \ {pi} is contained in
the hyperplane p⊥σ(i); but this hyperplane does not contain pi. �

Remark 4.3. In some cases, frames are not bases of a polar space (exam-
ples will be given in Subsection 4.3.1).

Since every subset of an independent subset is independent, any k dis-
tinct mutually collinear points in a frame span a (k−1)-dimensional singular
subspace.

Proposition 4.6. Let B be a frame and S, U be singular subspaces spanned
by subsets of B. Then S∩U is spanned by the set S ∩U ∩B. In particular,
if this set is empty then S and U are disjoint.

Proof. Suppose that B = {p1, . . . , p2n}. Since B is an independent sub-
set, the subspaces S and U are spanned by S ∩ B and U ∩B, respectively.
First, we establish that

(S ∩ B) ∩ (U ∩ B) = ∅ =⇒ S ∩ U = ∅.
An easy verification shows that there exist disjoint subsets X, Y ⊂ B

such that 〈X〉, 〈Y 〉 are maximal singular subspaces and

S ∩ B ⊂ X, U ∩ B ⊂ Y.

Suppose that 〈X〉 and 〈Y 〉 have a non-empty intersection and consider a
point p belonging to 〈X〉 ∩ 〈Y 〉. The intersection of all

〈X \ {pi}〉, pi ∈ X,

is empty and there exists pi ∈ X such that 〈X \ {pi}〉 does not contain p.
Then

(X \ {pi}) ∪ {p}
is a base of 〈X〉. The point pσ(i) ∈ B \ X = Y is collinear with all points
of this base (it is trivial that pσ(i) ⊥ X \ {pi} and we have pσ(i) ⊥ p, since
p and pσ(i) belong to 〈Y 〉). This means that pσ(i) ⊥ 〈X〉 which contradicts
the fact that pi ∈ 〈X〉. Therefore, 〈X〉 and 〈Y 〉 are disjoint. Since S ⊂ 〈X〉
and U ⊂ 〈Y 〉, we get the claim.
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Now suppose that S ∩U ∩ B �= ∅. Then S is spanned by the subspaces

〈S ∩ U ∩ B〉 and 〈(B ∩ S) \ (U ∩ B)〉.
By the first part of our proof, these subspaces are disjoint and the second
subspace is disjoint from U ; hence it does not intersects S∩U . The inclusion

〈S ∩ U ∩ B〉 ⊂ S ∩ U ⊂ S

guarantees that 〈S ∩ U ∩ B〉 coincides with S ∩ U . �

Corollary 4.1. If B is a frame of Π then there is no point of Π collinear
with all points of B.

Proof. A point collinear with all points of B is contained in every maxi-
mal singular subspace spanned by a subset of B. By Proposition 4.6, there
exist disjoint maximal singular subspaces spanned by subsets of B. �

Proposition 4.7. For any singular subspaces S and U there is a frame of
Π such that S and U are spanned by subsets of this frame.

Proof. We prove the statement induction by n. The case n = 2 is trivial
and we suppose that n ≥ 3.

If S ⊥ U then there exists a maximal singular subspace M containing S

and U . We choose a base of M such that S and U are spanned by subsets
of this base. It was shown above that this base can be extended to a frame
of Π.

Now suppose that S �⊥ U . In this case, there are non-collinear points
p ∈ S and q ∈ U . The singular subspaces

S ′ := S ∩ q⊥ and U ′ := U ∩ p⊥

are contained in the polar space p⊥ ∩ q⊥ (Lemma 4.3). By the inductive
hypothesis, there exists a frame B′ of p⊥ ∩ q⊥ such that S′ and U ′ are
spanned by subsets of B′. Since

S = 〈S′, p〉 and U = 〈U ′, q〉,
the frame B′ ∪ {p, q} is as required. �

Corollary 4.2. For any singular subspaces S1, S2 there exist maximal sin-
gular subspaces M1, M2 such that

M1 ∩ M2 = S1 ∩ S2

and Si ⊂ Mi for i = 1, 2.
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Proof. Consider a frame B such that S1 and S2 are spanned by subsets
of B. There exists a maximal singular subspace

M1 = 〈X〉, X ⊂ B,

containing S1 and intersecting S2 precisely in S1∩S2. If M = 〈B \X〉 then
the maximal singular subspace

M2 := 〈S2, M ∩ S⊥
2 〉

contains S2 and intersects M1 precisely in S1 ∩ S2. �

4.2 Grassmannians

4.2.1 Polar Grassmannians

As above, we suppose that Π = (P,L) is a polar space of rank n. For every
k ∈ {0, 1, . . . , n−1} denote by Gk(Π) the polar Grassmannian consisting of
all k-dimensional singular subspaces of Π. Then G0(Π) = P .

In the case when k ≤ n − 2, we say that S, U ∈ Gk(Π) are adjacent
if S ⊥ U and their intersection is (k − 1)-dimensional (or, equivalently, if
S and U span a (k + 1)-dimensional singular subspace). If S and U are
distinct elements of Gn−1(Π) then S �⊥ U ; such subspaces are said to be
adjacent if their intersection belongs to Gn−2(Π).

Let M and N be incident singular subspaces of Π such that
dimM < k < dim N.

As in Section 3.1, we define
[M, N ]k := { S ∈ Gk(Π) : M ⊂ S ⊂ N };

if M = ∅ then we will write 〈N ]k instead of [M, N ]k. Also denote by
[M〉k the set of all elements of Gk(Π) containing M . In the case when
0 ≤ k < n − 1, we say that [M, N ]k is a line of Gk(Π) if

dimM = k − 1 and dimN = k + 1.

The set [M〉n−1 is said to be a line of Gn−1(Π) if M belongs to Gn−2(Π).
The set of all lines of Gk(Π) will be denoted by Lk(Π).

Two distinct elements of Gk(Π) are joined by a line if and only if they
are adjacent. For any adjacent S, U ∈ Gk(Π) there is precisely one line
containing them:

[S ∩ U, 〈S, U〉]k if k ≤ n − 2
and [S ∩ U〉k if k = n − 1.

Exercise 4.1. Show that every line of Gk(Π), k < n − 1, contains at least
three distinct points.
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The pairs

Gk(Π) := (Gk(Π),Lk(Π)), k ∈ {0, 1, . . . , n − 1},
are partial linear spaces; they are called the Grassmann spaces of Π. It is
clear that G0(Π) = Π. The Grassmann space Gn−1(Π) also is known as
the dual polar space of Π [Cameron (1982)].

Proposition 4.8. The Grassmann space Gk(Π) is connected for every k.
The distance between S, U ∈ Gn−1(Π) is equal to

n − 1 − dim(S ∩ U).

Remark 4.4. In the general case, the distance formula is more compli-
cated.

Proof. Let S, U ∈ Gk(Π). We define

cd(S, U) := k − dim(S ∩ U)

(if k = n − 1 then cd(S, U) = 1 is equivalent to the fact that S and U are
adjacent).

Suppose that k = n− 1 and cd(S, U) > 1. We take any point p ∈ U \ S

and denote by S1 the maximal singular subspace spanned by S ∩ p⊥ and p.
Then S1 is adjacent with S and

cd(S1, U) = cd(S, U) − 1.

Step by step, we construct a sequence of maximal singular subspaces

S = S0, S1, . . . , Si = U, i = cd(S, U),

such that Sj−1 and Sj are adjacent for every j ∈ {1, . . . , i}. As in the proof
of Proposition 3.1, for every path

S = U0, U1, . . . , Ul = U

in the collinearity graph of Gn−1(Π) we have

dim(U0 ∩ U1 ∩ · · · ∩ Ul) ≥ (n − 1) − l.

The trivial inclusion

U0 ∩ U1 ∩ · · · ∩ Ul ⊂ S ∩ U

guarantees that

dim(S ∩ U) ≥ (n − 1) − l.
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Thus l ≥ cd(S, U) which means that the distance between S and U is equal
to cd(S, U).

Let k ≤ n−2 and S, U be non-adjacent elements of Gk(Π). If S ⊥ U then
S, U are contained in the singular subspace 〈S ∪U〉 and a path connecting
S with U can be constructed as in the proof of Proposition 3.1. In the case
when S �⊥ U , we prove the connectedness induction by cd(S, U).

If cd(S, U) = 1 then there exists a frame {p1, . . . , p2n} of Π such that
S = 〈pi1 , . . . , pik

, pm〉 and U = 〈pi1 , . . . , pik
, pσ(m)〉.

We choose
j ∈ {1, . . . , 2n} \ {i1, σ(i1), . . . , ik, σ(ik), m, σ(m)}

(this is possible, since k ≤ n − 2). The k-dimensional singular subspace
〈pi1 , . . . , pik

, pj〉
is adjacent with both S and U .

In the case when cd(S, U) > 1, we take a point p ∈ U satisfying p �⊥ S

and write S2 for the k-dimensional singular subspace spanned by S ∩ p⊥

and p. Then
cd(S, S2) = 1 and cd(S2, U) = cd(S, U) − 1.

There exist S1 ∈ Gk(Π) adjacent with both S, S2 and the inductive hypo-
thesis implies the existence of a path connecting S2 with U . �

Lemma 4.4. Let 0 < k < n − 1 and U be a (k − 1)-dimensional singular
subspace of Π. The following assertions are fulfilled:

(1) [U〉k is a polar space of rank n − k,
(2) for every frame B of [U〉k there is a frame B of Π such that U is

spanned by a subset of B and
B = A ∩ [U〉k,

where A consists of all k-dimensional singular subspaces spanned by
subsets of B.

Proof. (1). An easy verification shows that [U〉k is a polar space and
every its maximal singular subspace is [U, M ]k, where M is a maximal
singular subspace of Π. The latter means that the rank of our polar space
is equal to n − k.

(2). Let {S1, . . . , S2n−2k} be a frame of [U〉k. In each Si we take a point
pi ∈ Si \ U and denote by X the set of all pi. For every pi there is unique
pσ(i) such that pi �⊥ pσ(i). By Lemma 4.3, X⊥ is a polar space of rank k.
This polar space contains U and we choose a frame Y of X⊥ such that U

is spanned by a subset of Y . Then X ∪ Y is a frame of Π satisfying the
required conditions. �
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4.2.2 Two types of polar spaces

Theorem 4.3. For a rank n polar space one of the following possibilities
is realized:

(C) every (n−2)-dimensional singular subspace is contained in at least three
distinct maximal singular subspaces,

(D) every (n − 2)-dimensional singular subspace is contained in precisely
two maximal singular subspaces.

We say that a rank n polar space is of type Cn or Dn if the corresponding
case is realized.

Proof. Let Π = (P,L) be a polar space of rank n. First consider the case
when n = 2.

Suppose that {p1, p2, p3, p4} is a frame of Π where

p1 �⊥ p3 and p2 �⊥ p4.

Every point pi lies on precisely two lines from the collection

p1p2, p1p4, p2p3, p3p4.

Let L be a third line passing through p1.

L

p

p4

p2

p1

p3

q q'

There is a point p ∈ L collinear with p3 and pp3 is a third line passing
through p3. Now consider a point q ∈ L \ {p1, p} and take a unique point
q′ ∈ p3p4 collinear with q (it is clear that the point q′ is distinct from p3

and p4). A point on the line qq′ collinear with p2 gives a third line passing
through p2. This line contains a point collinear with p4 and we get a third
line through p4. Therefore, for every i ∈ {1, 2, 3, 4} there are at least three
distinct lines passing through pi. Since any pair of points is contained in a
certain frame, the polar space Π is of type C2 if there is a point belonging
to at least three distinct lines.
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Now suppose that n ≥ 3. We need to prove the following: if a cer-
tain S ∈ Gn−2(Π) is contained in at least three distinct maximal singular
subspaces then the same holds for all elements of Gn−2(Π).

Let N be an (n−3)-dimensional subspace of S. By Lemma 4.4, [N〉n−2 is
a generalized quadrangle. Since S (as a point of this generalized quadrangle)
lies on at least three distinct lines, the generalized quadrangle is of type
C2. This means that every element of [N〉n−2 is contained in at least three
distinct maximal singular subspaces.

Therefore, U ∈ Gn−2(Π) is contained in at least three distinct maximal
singular subspaces if it has an (n − 3)-dimensional intersection with S, in
particular, if S and U are adjacent. The connectedness of the Grassmann
space Gn−2(Π) gives the claim. �

Every line of Gn−1(Π) contains at least three distinct points if Π is a
polar space of type Cn. In the case when Π is of type Dn, the Grassmann
space Gn−1(Π) is trivial: every line consists of two points; in other words,
lines are edges of the collinearity graph.

Remark 4.5. If Π is a generalized quadrangle of type C2 then G1(Π) is a
generalized quadrangle of type C2. If Π is a generalized quadrangle of type
D2 then G1(Π) does not satisfy the polar axiom (1).

Exercise 4.2. Let Π be a generalized quadrangle of type D2 and
{p1, p2, q1, q2} be a frame of Π such that pi �⊥ qi for i ∈ {1, 2}. Show
that every line of Π intersects the lines p1p2 and q1q2 or the lines p1q2 and
p2q1. Therefore, if every line of Π consists of three points then Π looks as
in the picture below.

Proposition 4.9. Every frame in a polar space of type Dn is a base of this
polar space.

Proof. Let Π = (P,L) be a polar space of type Dn and

B = {p1, . . . , pn, q1, . . . , qn}
be a frame of Π such that pi �⊥ qi for every i ∈ {1, . . . , n}. By Proposition
4.5, B is an independent subset and we need to show that Π is spanned by
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B. In the case when n = 2, this follows from Exercise 4.2. Suppose that
n ≥ 3 and prove the statement induction by n.

By the inductive hypothesis, the polar space p⊥1 ∩ q⊥1 is spanned by
B \ {p1, q1}. For every point t ∈ p⊥1 \ {p1} the line p1t intersects p⊥1 ∩ q⊥1
and p⊥1 ⊂ 〈B〉. The same inclusion holds for all points of B. Suppose that
p ∈ P is non-collinear with every point of B. We take x ∈ p1p2 collinear
with p and y ∈ q1q2 collinear with x. Then

B′ = (B \ {p1, q2}) ∪ {x, y}
is a frame of Π and p ∈ 〈B′〉 = 〈B〉. �

4.2.3 Half-spin Grassmannians

Throughout this subsection we suppose that Π = (P,L) is a polar space of
type Dn. We show that the Grassmannian Gn−1(Π) can be uniquely decom-
posed in two disjoint parts such that the distance between two elements of
Gn−1(Π) is odd if and only if these elements belong to the different parts.
Recall that

d(S, U) = n − 1 − dim(S ∩ U).

for all S, U ∈ Gn−1(Π).

Lemma 4.5. Let S and U be adjacent elements of Gn−1(Π). Then for any
N ∈ Gn−1(Π) the distance d(S, N) is odd if and only if d(U, N) is even.

Proof. The statement is trivial if N coincides with S or U and we assume
that N is distinct from S and U . Observe that every point of S \U is non-
collinear with every point of U \ S. This means that at least one of the
subspaces S ∩N, U ∩N is contained in S ∩U (otherwise N contains points
x ∈ S \ U and y ∈ U \ S which cannot be collinear).

Lemma 4.2 implies the existence of a point

p ∈ N \ (S ∩ U)

collinear with all points of S ∩ U . If S ∩ N and U ∩ N both are contained
in S ∩U then p does not belong to S ∪U and 〈S ∩U, p〉 is a third maximal
singular subspace containing S ∩ U which contradicts the assumption that
Π is of type Dn.

Therefore, only one of these subspaces is contained in S ∩ U . Consider
the case when

S ∩ N ⊂ S ∩ U and U ∩ N �⊂ S ∩ U.
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Then

S ∩ N = S ∩ U ∩ N

is a hyperplane of U ∩ N (since S ∩ U is a hyperplane of U). This implies
that

d(S, N) = d(U, N) + 1.

The second case is similar. �

Theorem 4.4. There is a unique pair of disjoint subsets

X ,Y ⊂ Gn−1(Π)

satisfying the following conditions:

X ∪ Y = Gn−1(Π),

the distance between two elements of Gn−1(Π) is odd if and only if one of
them belongs to X and other belongs to Y.

Proof. We fix N ∈ Gn−1(Π) and define

X := {S ∈ Gn−1(Π) : d(S, N) is even},

Y := {U ∈ Gn−1(Π) : d(U, N) is odd}.
These are disjoint subsets whose union is Gn−1(Π). By the previous lemma,
any two adjacent elements of Gn−1(Π) belong to the different subsets.
Therefore, if the distance between two elements of Gn−1(Π) is odd then
one of them belongs to X and the other belongs to Y; in the case when the
distance is even, the elements both belong to X or Y.

Suppose that

X ′,Y ′ ⊂ Gn−1(Π)

is another pair of subsets satisfying the same conditions. Then X ′ intersects
at least one of the subsets X ,Y. Let X ∩ X ′ �= ∅ and S be an element of
this intersection. Then d(S, U) is even for every U belonging to X ∪ X ′.
This means that X ′ = X , hence Y ′ = Y. �

The subsets described in Theorem 4.4 will be denoted by

G+(Π), G−(Π)

and called the half-spin Grassmannians of Π. The distance between any
two elements of the half-spin Grassmannian (in the collinearity graph of
Gn−1(Π)) is even.
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Let δ ∈ {+,−}. Two elements of Gδ(Π) are said to be adjacent if their
intersection is (n−3)-dimensional (the distance in the collinearity graph of
Gn−1(Π) is equal to 2). The intersection

[M〉δ := [M〉n−1 ∩ Gδ(Π)
is called a line of Gδ(Π) if M is (n − 3)-dimensional. The set of all such
lines will be denoted by Lδ(Π).

If n = 2 then any two distinct elements of Gδ(Π) are disjoint and there
is only one line which coincides with Gδ(Π). In what follows we will restrict
ourselves to the case when n ≥ 3.

Two distinct elements of Gδ(Π) are joined by a line if and only if they
are adjacent. If S, U ∈ Gδ(Π) are adjacent then [S ∩ U〉δ is the unique line
containing them.

If δ ∈ {+,−} then we write −δ for the sing satisfying {δ,−δ} = {+,−}.
Proposition 4.10. Every line of Gδ(Π), δ ∈ {+,−}, contains at least three
points.

Proof. Let M ∈ Gn−3(Π). Consider any (n − 2)-dimensional singular
subspace N1 containing M . By Proposition 4.4, this is the intersection of
two maximal singular subspaces S1 and U1; one of them belongs to Gδ(Π)
and the other is an element of G−δ(Π). Suppose that U1 ∈ G−δ(Π). We
choose two distinct (n − 2)-dimensional singular subspaces N2, N3 �= N1

contained in U1 and containing M (in other words, N1, N2, N3 are distinct
points on the line [M, U1]n−2). Proposition 4.4 implies the existence of
Si ∈ Gδ(Π) (i = 2, 3) intersecting U1 precisely in Ni. Then S1, S2, S3 are
distinct points on the line [M〉δ. �

The patrial linear spaces
Gδ(Π) := (Gδ(Π),Lδ(Π)), δ ∈ {+,−},

are called the half-spin Grassmann spaces of Π.

Exercise 4.3. Shows that every path of length j in the collinearity graph of
Gδ(Π), δ ∈ {+,−}, can be extended to a path of length 2j in the collinearity
graph of Gn−1(Π). Hint: if S, U ∈ Gδ(Π) are adjacent then there exist
p ∈ S \ U and q ∈ U \ S satisfying p ⊥ q.

Proposition 4.11. The half-spin Grassmann space Gδ(Π), δ ∈ {+,−}, is
connected. The distance between S, U ∈ Gδ(Π) (in the collinearity graph of
Gδ(Π)) is equal to

n − 1 − dim(S ∩ U)
2

.
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Proof. Let S, U ∈ Gδ(Π). By Proposition 4.8, the collinearity graph of
Gn−1(Π) contains a path

S = S0, S1, . . . , Si = U, i = n − 1 − dim(S ∩ U).

Theorem 4.4 guarantees that i is even and

S0, S2, . . . , Si−2, Si

is a path in the collinearity graph of Gδ(Π). The distance formula follows
immediately from Exercise 4.3. �

4.3 Examples

4.3.1 Polar spaces associated with sesquilinear forms

Let V be an n-dimensional left vector space over a division ring R and Ω be
a non-degenerate reflexive form defined on V . Suppose that Ω has totally
isotropic subspaces of dimensions 2. This implies that n ≥ 4 (the dimension
of a totally isotropic subspace is not greater than the codimension). We
write L(Ω) for the set formed by all lines of ΠV such that the associated
2-dimensional linear subspaces are totally isotropic. Distinct P, P ′ ∈ G1(Ω)
are joined by a such line if and only if P ⊥ P ′ (⊥ is the orthogonal relation
defined by Ω). We will investigate the pair

ΠΩ := (G1(Ω),L(Ω)).

Since two “proportional” forms (one of the forms is a scalar multiple of
the other) have the same set of totally isotropic subspaces, we can assume
that Ω is one of the forms given in Theorem 1.6: alternating, symmetric,
or Hermitian.

Suppose that

Ω(x, y) = εσ(Ω(y, x)) ∀ x, y ∈ V,

where σ is an anti-automorphism of R satisfying σ2 = 1R and ε = ±1; in
other words, Ω is one of the forms considered in Examples 1.9 and 1.10.
We define the trace set

T (σ, ε) := { a + εσ(a) : a ∈ R }
and say that the form Ω is trace-valued if

Ω(x, x) ∈ T (σ, ε) (4.2)

for every x ∈ V . This condition holds if the characteristic of R is not equal
to 2. Also every alternating form is trace-valued.
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Remark 4.6. In the general case, all vectors x ∈ V satisfying (4.2) form
a linear subspace W ⊂ V . All isotropic vectors belong to W and the
restriction of Ω to W is trace-valued.

Example 4.1. Suppose that R is a field of characteristic 2 and the form Ω
is bilinear (σ = 1R and ε = 1 = −1). Since the trace set is zero, the form
Ω is trace-valued only in the case when it is alternating.

Lemma 4.6. Let S be a 2-dimensional linear subspace of V containing an
isotropic vector x. If Ω is trace-valued then S contains an isotropic vector
linearly independent with x.

Proof. The statement is trivial if S is totally isotropic. Otherwise, we
choose a vector y ∈ S such that Ω(x, y) = 1 and a scalar a ∈ R satisfying

a + εσ(a) + Ω(y, y) = 0

(this is possible, since our form is trace-valued). Then

Ω(ax + y, ax + y) = Ω(ax, ax) + aΩ(x, y) + εσ(aΩ(x, y)) + Ω(y, y) = 0.�
In other words, if the form Ω is trace-valued and a line of ΠV has a non-

empty intersection with G1(Ω) then this intersection contains more than
one point. Using this fact we prove the following.

Lemma 4.7. If Ω is trace-valued then there is a base of V consisting of
isotropic vectors.

Proof. Let B = {x1, . . . , xn} be a base of V and x be an isotropic vector.
The intersection of the linear subspaces

〈B \ {xi}〉, i = 1, . . . , n,

is empty and we choose j such that x does not belong to 〈B\{xj}〉. Assume
that j = n. Lemma 4.6 implies the existence of isotropic vectors

yi ∈ 〈x, xi〉 \ {x}, i = 1, . . . , n − 1.

The base x, y1, . . . , yn−1 is as required. �

Proposition 4.12. If Ω is trace-valued then ΠΩ is a polar space.

Proof. The polar axiom (1) is trivial and we leave the verification of the
axiom (2) for the reader. If the axiom (3) fails then there exists an isotropic
vector orthogonal to all isotropic vectors; by Lemma 4.7, this vector is
orthogonal to all vectors of V which is impossible, since our form is non-
degenerate. The axiom (4) follows from the fact that singular subspaces of
ΠΩ can be identified with totally isotropic subspaces. �
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It follows immediately from Theorem 4.1 and Proposition 4.12 that
all maximal totally isotropic subspaces have the same dimension. This
dimension is called the Witt index of the form Ω. The Witt index is not
greater than n

2 and equal to the rank of the polar space ΠΩ. For example,
if Ω is alternating then n is even and the Witt index is equal to n

2 .

Remark 4.7. The verification of Tits – Veldkamp axioms is more com-
plicated [Dieudonné (1971); Taylor (1992)]. The statement concerning the
dimension of maximal totally isotropic spaces is a part of well-known Witt
theorem.

Lemma 4.8. Let σ be a non-identity anti-automorphism of R satisfying
σ2 = 1R. Then there exists a non-zero scalar a ∈ R such that

a + σ(a) = 0.

Proof. The statement is trivial if the characteristic is equal to 2 (we can
take, for example, a = 1). Suppose that the characteristic is not equal to
2. In this case, the trace set

T (σ, 1) = { a + σ(a) : a ∈ R }
coincides with the set of all scalars b ∈ R satisfying σ(b) = b. Let us take
any b ∈ R \ T (σ, 1) (such elements exist, since σ is non-identity). Then

c := b + σ(b) ∈ T (σ, 1)

and the equality

c =
c

2
+ σ

( c

2

)
guarantees that the scalar

a := b − c

2
�= 0

is as required. �

By Theorem 1.6, there are precisely the following three types of polar
spaces associated with reflexive forms:

• symplectic polar spaces (defined by alternating forms),
• symmetric polar spaces (defined by symmetric forms, the characteristic

is not equal to 2),
• Hermitian polar spaces (defined by trace-valued Hermitian forms).
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Proposition 4.13. Let ΠΩ be one of the polar spaces considered above.
Then ΠΩ is of type Dm only in the following case: the characteristic of R

is not equal to 2, the dimension n is even and Ω is a symmetric form of
Witt index n

2 .

Proof. Let m be the Witt index of the form Ω and S be a totally isotropic
subspace of dimension m − 1. Then S is the intersection of two maximal
totally isotropic subspaces U1 and U2. We take 1-dimensional linear sub-
spaces Pi (i = 1, 2) such that

Ui = S + Pi.

It is clear that P1 �⊥ P2.
Suppose that Ω is alternating. Then for every 1-dimensional linear

subspace P ⊂ P1 + P2 the linear subspace S + P is totally isotropic and
our polar space is of type Cm.

Consider the case when Ω is a Hermitian form associated with an anti-
automorphism σ : R → R. If x, y ∈ V are isotropic vectors then

Ω(x + by, x + by) = Ω(x, by) + Ω(by, x) = σ(bΩ(y, x)) + bΩ(y, x).

We choose vectors x ∈ P1, y ∈ P2 and a scalar b ∈ R such that a = bΩ(y, x)
satisfies the condition of Lemma 4.8. Then 〈x + by〉 belongs to G1(Ω) and

S + 〈x + by〉
is a third maximal totally isotropic subspace containing S. The polar space
is of type Cm.

Now suppose that Ω is symmetric and the characteristic of R is not
equal to 2. We have

Ω(x + by, x + by) = 2bΩ(x, y)

for any isotropic vectors x and y. Since P1 �⊥ P2, this means that the linear
subspace P1 + P2 does not contain elements of G1(Ω) distinct from P1 and
P2.

If m < n
2 then S + P1 + P2 is a proper linear subspace of S⊥, since

dim(S + P1 + P2) = m + 1 < n − m + 1 = dim S⊥.

We take any 1-dimensional linear subspace P ′ ⊂ S⊥ which is not contained
in S + P1 + P2. By Lemma 4.6, P1 + P ′ contains P ′′ ∈ G1(Ω) distinct from
P1. Then S + P ′′ is a third maximal totally isotropic subspace containing
S. The polar space is of type Cm.

Every maximal totally isotropic subspace U containing S is contained in
S⊥. If n = 2m then S⊥ is (m + 1)-dimensional and U intersects P1 + P2 in
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a 1-dimensional linear subspace P . Since P is totally isotropic, it coincides
with P1 or P2. This implies that there are precisely two maximal totally
isotropic subspaces containing S and the polar space is of type Dm. �

Frames of the polar space ΠΩ are independent subsets of ΠV . If the
Witt index is less than n

2 then every frame spans a proper subspace of
ΠV whose intersection with G1(Ω) is a subspace of ΠΩ; this subspace is
proper (by Lemma 4.7) and frames are not bases of ΠΩ. However, if the
characteristic of R is not equal to 2 and Ω is alternating then every frame
is a base of ΠΩ [Blok and Brouwer (1998); Cooperstein and Shult (1997)].
In the case of characteristic 2, this fails.

Example 4.2. Suppose that n = 4, R is a field of characteristic 2 and
the form Ω is alternating. Let B = {p1, p2, q1, q2} be a frame of the polar
space ΠΩ such that pi �⊥ qi for each i. There exist vectors x1, x2, y1, y2 ∈ V

satisfying

pi = 〈xi〉, qi = 〈yi〉 and Ω(xi, yi) = Ω(yi, xi) = 1.

Consider two pairs of collinear points

p′ ∈ p1p2, q′ ∈ q1q2 and p′′ ∈ p1q2, q′′ ∈ p2q1

distinct from the points of B. Then for some non-zero scalars a, b ∈ R we
have

p′ = 〈x1 + ax2〉, q′ = 〈y2 + ay1〉,

p′′ = 〈x1 + by2〉, q′′ = 〈x2 + by1〉.

Almost all points of the line p′q′ (except the point q′) are of type

〈(x1 + ax2) + t(y2 + ay1)〉, t ∈ R,

and almost all points of the line p′′q′′ (except the point q′′) are of type

〈(x1 + by2) + s(x2 + by1)〉, s ∈ R.

These lines have a common point (t = b, s = a). This means that 〈B〉 is
the grid consisting of all lines which intersect p1p2 and q1q2 or p1q2 and
p2q1. Therefore, 〈B〉 is a proper subspace of ΠΩ; it does not contain, for
example, any line passing through p1 and distinct from p1p2 and p1q2.
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4.3.2 Polar spaces associated with quadratic forms

Let V be an n-dimensional vector space over a field F . A non-zero mapping
Q : V → F is called a quadratic form if

Q(ax) = a2Q(x)

for all a ∈ F, x ∈ V and there exists a bilinear form Ω : V × V → F such
that

Q(x + y) = Q(x) + Q(y) + Ω(x, y)

for all x, y ∈ V . It is clear that Ω is symmetric. The form Q is said to be
non-degenerate if Q(x) �= 0 for every non-zero vector x belonging to V ⊥ (we
do not require that the associated form Ω is non-degenerate and write V ⊥

for the linear subspace of all vectors orthogonal to V ). By this definition,
Q is non-degenerate if the associated form Ω is non-degenerate.

A non-zero vector x ∈ V is called singular if Q(x) = 0 and we say that a
linear subspace S is totally singular if every non-zero vector of S is singular.
Every totally singular subspace is totally isotropic for the associated form
Ω; but totally isotropic subspaces of Ω need not to be totally singular. If
the characteristic of F is not equal to 2 then Q can be uniquely recovered
from Ω by the formula

Q(x) =
Ω(x, x)

2
.

This equality guarantees that Q is non-degenerate if and only if Ω is non-
degenerate; moreover, a linear subspace is totally singular (for Q) if and
only if it is totally isotropic (for Ω).

From this moment we assume that Q is non-degenerate and there exist
totally singular subspaces of dimension 2. We write G1(Q) for the set of all
1-dimensional totally singular subspaces and denote by L(Q) the set formed
by all lines of ΠV such that the associated 2-dimensional linear subspaces
are totally singular. Consider the pair

ΠQ := (G1(Q),L(Q)).

It is clear that P, P ′ ∈ G1(Q) are joined in ΠQ by a line only in the case when
P ⊥ P ′ (⊥ is the orthogonal relation defined by Ω). If the characteristic of
F is not equal to 2 then ΠQ coincides with the polar space ΠΩ.

Suppose that the characteristic of F is equal to 2. The equality

Q(2x) = 2Q(x) + Ω(x, x)

shows that Ω is alternating. We restrict our self to the case when Ω is
non-degenerate and refer [Dieudonné (1971)] for the general case. Since
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totally singular subspaces are totally isotropic, ΠQ is a subspace of the
polar space ΠΩ. Thus ΠQ satisfies the polar axioms (1), (2) and (4). This
is a proper subspace of ΠΩ (all vectors are isotropic, but Q �≡ 0 and there
are non-singular vectors).

Exercise 4.4. Prove the following analogue of Lemma 4.6: for every sin-
gular vector x ∈ V and any vector y ∈ V such that Ω(x, y) �= 0 there exists
a singular vector z ∈ 〈x, y〉 independent with x. Hint: take a scalar a ∈ F

satisfying aΩ(x, y) + Q(y) = 0, the vector ax + y is as required.

Exercise 4.5. Prove the analogue of Lemma 4.7: there exists a base of V

consisting of singular vectors. Hint: apply Exercise 4.4 to a singular vector
x ∈ V and a base of V formed by vectors non-orthogonal to x.

Using Exercise 4.5 we establish that ΠQ satisfies the axiom (3). There-
fore, ΠQ is a polar space. All singular subspaces of ΠQ can be identified
with totally singular subspaces of Q.

We do not consider here so-called pseudo-quadratic forms associated
with Hermitian forms (see [Tits (1974)], Section 8.2); as quadratic forms,
they give new examples of polar spaces only in the case of characteristic 2.

4.3.3 Polar spaces of type D3

Let V be a 4-dimensional vector space over a division ring R.

Exercise 4.6. Show that the Grassmann space G2(V ) is a polar space.

Maximal singular subspaces of G2(V ) (stars and tops) are projective
planes, thus the rank of the polar space is equal to 3. Since every line is
contained in precisely one star and precisely one top, this is a polar space
of type D3.

Remark 4.8. If R is commutative then this polar space can be obtained
from the Klein quadratic form defined on the 6-dimensional vector space
∧2V [Cameron (1991); Taylor (1992)].

Conversely, let Π = (P,L) be a polar space of type D3. Consider the
associated half-spin Grassmannian space Gδ(Π), δ ∈ {+,−}. There is
natural one-to-one correspondence between lines of Gδ(Π) and points of Π
(every line of Gδ(Π) consists of all elements of Gδ(Π) passing through a
certain point). Any two distinct elements of Gδ(Π) are adjacent and Gδ(Π)
is a linear space.
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Lemma 4.9. If Π is a polar space of type D3 then Gδ(Π), δ ∈ {+,−}, is
a 3-dimensional projective space.

Proof. Let S1, S2, S3 be a triangle in Gδ(Π). Then

p1 = S2 ∩ S3, p2 = S1 ∩ S3, p3 = S1 ∩ S2

form a triangle in Π and span a certain plane U . This plane belongs to
G−δ(Π), since each Si intersects U in the line plpm, where i �= l, m.

Denote by X the set consisting of all elements of Gδ(Π) which intersect
U in lines (for every S ∈ Gδ(Π) the intersection S∩U is empty or a line). If
S and S′ are distinct elements of X then S ∩S′∩U is a certain point p and
the associated line [p〉δ joins S and S′; it is clear that this line is contained
in X . Therefore, X is a subspace of Gδ(Π) and a line of Gδ(Π) is contained
in X if and only if the associated point belongs to U .

There is a one-to-one correspondence between elements of X and lines
of U (every line of U is contained in precisely one element of X ). This is a
collineation of the subspace X to the projective plane dual to U . Clearly,
S1, S2, S3 form a base of the projective plane X and we have established
that every plane of Gδ(Π) is projective.

If p ∈ P \U then U∩p⊥ is a line in U and the maximal singular subspace
〈U ∩ p⊥, p〉 belongs to Gδ(Π); in other words, the line of Gδ(Π) defined by
the point p has a non-empty intersection with X . This means that X is a
hyperplane of Gδ(Π) and we get the claim. �

So, we can suppose that G+(Π) = ΠV , where V is a 4-dimensional
vector space over a division ring. Consider the bijection

f : G2(V ) → P

induced by the natural one-to-one correspondence between lines of G+(Π)
and points of Π. It was established above that for every plane X of G+(Π)
there exists U ∈ G−(Π) such that X consists of all elements of G+(Π)
intersecting U in lines. This is a one-to-one correspondence and we get
another bijection

g : G3(V ) → G−(Π).

Exercise 4.7. Show that f is a collineation of G2(V ) to Π and g is a
collineation of Π∗

V to G−(Π).

Exercise 4.8. Let h be a collineation of G2(V ) to Π. Show that A ⊂ G2(V )
is an apartment if and only if h(A) is a frame of Π. Hint: use Theorem 3.8.
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By Exercises 4.7 and 4.8, we get the following.

Proposition 4.14. If Π is a polar space of type D3 then there exists a
4-dimensional vector space V such that

Π, G+(Π), G−(Π)

are isomorphic to

G2(V ), ΠV , Π∗
V ,

respectively. Moreover, every collineation of Π to G2(V ) establishes a one-
to-one correspondence between frames of Π and apartments of G2(V ).

4.3.4 Embeddings in projective spaces and classification

The Veldkamp space V(Π) of a polar space Π (the rank of Π is assumed
to be not less than 3) is the linear space whose points are hyperplanes of
Π and the line joining hyperplanes H1 and H2 consists of all hyperplanes
containing H1 ∩ H2. The mapping p → p⊥ is an embedding of Π in V(Π)
and it is not difficult to prove that this embedding transfers lines to lines.

Theorem 4.5 ([Veldkamp (1959/1960)]). Let Π be a polar space of
rank n ≥ 3; in the case when n = 3, we require in addition that Π is
of type Cn and every 2-dimensional singular subspace is a Desarguesian
projective plane. Then V(Π) is a projective space.

This result was exploited in the following classification of polar spaces.

Theorem 4.6 ([Tits (1974)]). Up to isomorphism there are the following
three types of polar spaces whose rank is not less than three:

• the polar spaces associated with non-degenerate reflexive sesquilinear,
quadratic, and pseudo-quadratic forms;

• the Grassmann space G2(V ), where V is a 4-dimensional vector space,
this polar space is defined by Klein’s quadratic form if V is a vector
space over a field;

• the polar spaces of type C3 associated with Cayley algebras, maxi-
mal singular subspaces of such polar spaces are non-Desarguesian (Mo-
ufang) projective planes.

In particular, every polar space whose rank is greater than 3 is isomorphic
to the polar space associated with a certain reflexive sesquilinear, quadratic,
or pseudo-quadratic form.
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4.4 Polar buildings

4.4.1 Buildings of type Cn

Let Π = (P,L) be a polar space of rank n ≥ 3. Consider the flag complex
∆(Π) obtained from the set of all proper singular subspaces of Π with the
natural incidence relation. Every frame B of Π defines the subcomplex
ΣB ⊂ ∆(Π) consisting of all flags formed by singular subspaces spanned
by subsets of B; this subcomplex is called the apartment associated with
(defined by) the frame B. The complex ∆(Π) together with the set of all
such apartments is a building of type Cn. This building is thick only in
the case when Π is of type Cn. The Grassmannians of ∆(Π) are the polar
Grassmannians Gk(Π), k ∈ {0, 1, . . . , n− 1}; the corresponding Grassmann
spaces are Gk(Π). In what follows the associated Grassmann graphs (the
collinearity graphs of Grassmann spaces) will be denoted by Γk(Π).

By [Tits (1974)], every thick building of type Cn (n ≥ 3) is isomorphic
to the Cn-building of a rank n polar space.

4.4.2 Buildings of type Dn

Now let Π = (P,L) be a polar space of type Dn and n ≥ 4. We write G∗(Π)
for the set of all proper singular subspaces whose dimension is not equal to
n − 2 and define the oriflamme incidence relation ∗ on G∗(Π):

• if S ∈ Gk(Π), k ≤ n − 3, and U ∈ G∗(Π) then S ∗ U means that S and
U are incident in the usual sense,

• for S ∈ G+(Π) and U ∈ G−(Π) we write S ∗ U if their intersection
belongs to Gn−2(Π).

The associated flag complex will be called the oriflamme complex of Π and
denoted by Orif(Π). For every frame B the corresponding apartment OrifB
is the subcomplex of Orif(Π) consisting of all oriflamme flags formed by
singular subspaces spanned by subsets of B. The complex Orif(Π) together
with the set of all such apartments is a thick building of type Dn. The
Grassmannians are the polar Grassmannians Gk(Π), k ∈ {0, 1, . . . , n − 3},
and the half-spin Grassmannians Gδ(Π), δ ∈ {+,−}. The corresponding
Grassmann spaces are Gk(Π) and Gδ(Π); we write Γk(Π) and Γδ(Π) for
the associated Grassmann graphs.

Every thick building of type Dn (n ≥ 4) is isomorphic to the oriflamme
building obtained from a polar space of type Dn [Tits (1974)].
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4.5 Elementary properties of Grassmann spaces

4.5.1 Polar Grassmann spaces

Let Π = (P,L) be a polar space of rank n ≥ 3. First, we describe triangles
in the Grassmann space Gk(Π), 1 ≤ k ≤ n − 1.

Lemma 4.10. If 1 ≤ k ≤ n − 2 and S1, S2, S3 ∈ Gk(Π) form a triangle
in Gk(Π) then Si ⊥ Sj for all i, j ∈ {1, 2, 3} and only one of the following
possibilities is realized:

(1) a star-triangle: k < n − 2 and there is a (k − 1)-dimensional singular
subspace contained in each Si,

(2) a top-triangle: there is a (k + 1)-dimensional singular subspace con-
taining all Si.

The Grassmann space Gn−1(Π) does not contain triangles: any three mutu-
ally collinear points of Gn−1(Π) are collinear if Π is of type Cn and Gn−1(Π)
does not contain triples of mutually collinear points if Π is of type Dn.

Proof. Let 1 ≤ k ≤ n− 2 and S1, S2, S3 ∈ Gk(Π) be a triangle in Gk(Π).
Since Si is adjacent with Sj (i �= j), we have Si ⊥ Sj for all i, j ∈ {1, 2, 3}.
As for Grassmannians of finite-dimensional vector spaces, if S3 is not con-
tained in the (k + 1)-dimensional singular subspace spanned by S1 and S2

then

〈S1, S2〉 ∩ S3

is a (k − 1)-dimensional singular subspace contained in S1 and S2; in this
case, the singular subspace spanned by S1, S2, S3 is (k + 2)-dimensional
which is possible only for k < n − 2.

Let S1, S2, S3 ∈ Gn−1(Π) be mutually collinear points of Gn−1(Π). Then

U1 := S2 ∩ S3, U2 := S1 ∩ S3, U3 := S1 ∩ S2

belong to Gn−2(Π). Since

U1, U2 ⊂ S3, U1, U3 ⊂ S2, U2, U3 ⊂ S1,

we have Ui ⊥ Uj for all i, j ∈ {1, 2, 3}. Suppose that at least two of these
three subspaces are distinct, for example, U1 �= U2. Then

S3 = 〈U1, U2〉
and U3 ⊥ S3. The singular subspace S3 is maximal and we get the inclusion

S1 ∩ S2 = U3 ⊂ S3
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which implies that U3 is contained in each Si. Hence U1 = U2 = U3, a
contradiction. Therefore, all Ui are coincident and S1, S2, S3 are points on
a line of Gn−1(Π). �

Proposition 4.15. Gk(Π) is a gamma space.

Proof. By Lemma 4.10, if a point of Gn−1(Π) is collinear with two dis-
tinct points on a line then it belongs to this line and Gn−1(Π) is a gamma
space. The case k = 0 was considered in Subsection 4.1.1 and we suppose
that 0 < k < n−1. If S ∈ Gk(Π) is collinear with two distinct points S1, S2

of a line [M, N ]k and S does not belong to this line then S ⊥ N (since N

is spanned by S1 and S2) and

M = S1 ∩ S2 ⊂ S or S ⊂ N

(S, S1, S2 form a star-triangle or a top-triangle, respectively). In each of
these cases, S is collinear with all points of the line [M, N ]k. �

It follows from Proposition 4.15 that the class of maximal singular sub-
spaces of Gk(Π) coincides with the class of maximal cliques of the Grass-
mann graph Γk(Π).

Example 4.3. By the second part of Lemma 4.10, every line of Gn−1(Π)
is a maximal singular subspace.

Example 4.4. Suppose that k ≤ n− 2. For every (k + 1)-dimensional sin-
gular subspace N the set 〈N ]k is called a top. This is a singular subspace of
Gk(Π) isomorphic to a (k+1)-dimensional projective space. As in Example
3.1, we show that this singular subspace is maximal. Every triangle in a
top is a top-triangle.

Example 4.5. As in the previous example, we suppose that k ≤ n − 2.
Let M be a (k − 1)-dimensional singular subspace and N be a maximal
singular subspace containing M . Then [M, N ]k is a singular subspace of
Gk(Π). In the case when k = n − 2, this is a line. If k < n − 2 then the
subspace [M, N ]k is said to be a star. It can be identified with a star in the
Grassmann space 〈N ]k. The star [M, N ]k is isomorphic to an (n − k − 1)-
dimensional projective space. Let S be a k-dimensional singular subspace
of Π which does not belong to [M, N ]k. If S ⊂ N then there exists an
element of [M, N ]k non-adjacent with S (since [M, N ]k is a maximal clique
in the collinearity graph of 〈N ]k). If S does not belong to 〈N ]k then S �⊥ N
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and we take any point p ∈ N satisfying p �⊥ S; every element of [M, N ]k
containing p (it is clear that such elements exist) is non-adjacent with S.
Therefore, [M, N ]k is a maximal singular subspace of Gk(Π). Every triangle
in a star is a star-triangle.

Proposition 4.16. The following assertions are fulfilled:

(1) every maximal singular subspace of Gn−1(Π) is a line;
(2) if k ≤ n − 2 then every maximal singular subspace of Gk(Π) is a top

or a star; in particular, all maximal singular subspaces of Gn−2(Π) are
tops.

Proof. It was noted above that the class of maximal singular subspaces
of Gk(Π) coincides with the class of maximal cliques of the Grassmann
graph Γk(Π). The statement (1) follows from the second part of Lemma
4.10.

(2). Let X be a maximal clique of Γk(Π) and k ≤ n−2. Suppose that X
is not a star. As in the proof of Proposition 3.2, we choose S1, S2, S3 ∈ X
which form a top-triangle in Gk(Π). If S ∈ Gk(Π) is not contained in the
(k + 1)-dimensional singular subspace

N := 〈S1, S2〉
then S is non-adjacent with at least one of Si. This mean that S �∈ X and
our clique coincides with the top 〈N ]k. �

Example 4.6. Let M be an m-dimensional singular subspace and m < k.
Then [M〉k is a subspace of Gk(Π); subspaces of such type are called
parabolic [Cooperstein, Kasikova and Shult (2005)]. This subspace is sin-
gular only in the case when k = n − 1 and m = n − 2. Suppose that
m < n−2. By Lemma 4.4, [M〉m+1 is a polar space of rank n−m−1. The
parabolic subspace [M〉k can be identified with the Grassmann space of in-
dex k−m−1 associated with this polar space (every U ∈ [M〉k corresponds
to [M, U ]m+1).

Example 4.7. Let n ≥ 4. If 0 < k < n − 1 and M, N is a pair of incident
singular subspaces of Π such that

dim M < k < dimN

then [M, N ]k is a subspace of Gk(Π) isomorphic to the Grassmann space
of a finite-dimensional vector space (in the case when dimM = k − 1 and
dimN = k + 1, we get a line). Subspaces of such type are called classical
[Cooperstein (2005)].
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Let S and U be adjacent elements of Gk(Π). The set of all elements of
Gk(Π) adjacent with both S and U is the union of all maximal cliques of
Γk(Π) (maximal singular subspaces of Gk(Π)) containing S and U . In the
case when k �= n− 2, the intersection of all these cliques is the line joining
S and U . For k = n − 2 this fails, since there is only one maximal clique
(the top 〈〈S, U〉]n−2) containing S and U .

For every subset X ⊂ Gk(Π) we denote by X∼ the set consisting of all
elements of Gk(Π) adjacent with every element of X . As for the Grassmann
spaces of finite-dimensional vector spaces, we have the following characte-
rization of lines in terms of the adjacency relation if k �= n − 2.

Proposition 4.17. Let k �= n − 2. Then for any adjacent S, U ∈ Gk(Π)
the line joining S and U coincides with the set {S, U}∼∼.

4.5.2 Half-spin Grassmann spaces

Let Π = (P,L) be a polar space of type Dn. We investigate the associated
half-spin Grassmann spaces Gδ(Π), δ ∈ {+,−} (they are defined only for
n ≥ 3). If n = 3 then both Gδ(Π) are 3-dimensional projective spaces
(Subsection 4.3.3) and we will suppose that n ≥ 4.

Lemma 4.11. Let S1, S2, S3 be a triangle in Gδ(Π). Then there exist
unique M ∈ Gn−4(Π) and U ∈ G−δ(Π) such that M ⊂ U ,

M = S1 ∩ S2 ∩ S3

and each Si has an (n − 2)-dimensional intersection with U .

Proof. The subspaces
U1 := S2 ∩ S3, U2 := S1 ∩ S3, U3 := S1 ∩ S2

belong to Gn−3(Π). We have Ui ⊥ Uj for all i, j ∈ {1, 2, 3} (since Ui and
Uj both are contained in Sl with l �= i, j). The equality Ul = Uj (l �= j)
implies that Ul is contained in all Si and we get U1 = U2 = U3 which means
that S1, S2, S3 are points on a line, a contradiction. Therefore, all Ui are
distinct and the dimension of the singular subspace

U := 〈U1, U2, U3〉
is not less than n − 2.

Suppose that dimU = n− 2 or two distinct Ui, for example, U1 and U2

are non-adjacent. In each of these cases, the subspace U is spanned by U1

and U2. Then U ⊂ S3 (since U1 and U2 both are contained in S3) and
S1 ∩ S2 = U3 ⊂ U ⊂ S3;

in other words, U3 is contained in all Si which is impossible.
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So, U is a maximal singular subspace and U1, U2, U3 are mutually ad-
jacent. This means that U1, U2, U3 form a star-triangle in Gn−3(Π). Then
the (n − 4)-dimensional singular subspace

M := U1 ∩ U2 ∩ U3

coincides with S1∩S2∩S3. Each Si intersects U in the (n−2)-dimensional
subspace 〈Ul, Um〉, where l, m �= i. Hence U belongs to G−δ(Π).

Let U ′ be a maximal singular subspace of Π intersecting each Si in an
(n − 2)-dimensional subspace. Since Π is of type Dn, U ′ ∩ Si and U ′ ∩ Sj

(i �= j) are distinct and their intersection is (n − 3)-dimensional. On the
other hand, this intersection is contained in Si ∩ Sj = Ul (l �= i, j) which
implies that it coincides with Ul. Therefore, each Ul is contained in U ′ and
U = U ′. �

Proposition 4.18. Gδ(Π) is a gamma space.

Proof. Let S1, S2, S3 be a triangle in Gδ(Π). We need to show that S1

is collinear with all points of the line joining S2 and S3. If S is a point on
this line then S2∩S3 ⊂ S; in particular, S contains the (n−4)-dimensional
singular subspace

S1 ∩ S2 ∩ S3

(Lemma 4.11). This guarantees that S1 ∩ S is (n − 3)-dimensional. �

We want to describe maximal singular subspaces of Gδ(Π). By Propo-
sition 4.18, the class of maximal singular subspaces coincides with the class
of maximal cliques of the associated Grassmann graph Γδ(Π).

Let U ∈ G−δ(Π). We write [U ]δ for the set of all elements of Gδ(Π)
intersecting U in (n − 2)-dimensional subspaces.

Proposition 4.19. For every U ∈ G−δ(Π) the set [U ]δ is a maximal sin-
gular subspace of Gδ(Π) isomorphic to an (n − 1)-dimensional projective
space.

Singular subspaces of such kind will be called special.

Proof. As in the proof of Lemma 4.9, we establish that [U ]δ is a singular
subspace of Gδ(Π) and a line [T 〉δ, T ∈ Gn−3(Π), is contained in [U ]δ if
and only if T ⊂ U . Every hyperplane of U is contained in precisely one
element of [U ]δ; this correspondence defines a collineation between [U ]δ and
the projective space dual to U . So, [U ]δ is an (n−1)-dimensional projective
space.
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For every S ∈ Gδ(Π)\ [U ]δ there exists a frame B such that S and U are
spanned by subsets of B (Proposition 4.7). It is not difficult to construct

〈X〉 ∈ [U ]δ, X ⊂ B,

non-adjacent with S (we leave the details for the reader). This means that
[U ]δ is a maximal singular subspace of Gδ(Π). �

Proposition 4.20. If M ∈ Gn−4(Π) then [M〉δ is a maximal singular sub-
space of Gδ(Π) isomorphic to a 3-dimensional projective space.

Maximal singular subspace of such kind are said to be stars.

Proof. If S and U are distinct elements of [M〉δ then they both contain
the (n− 4)-dimensional singular subspace M which means that their inter-
section is (n−3)-dimensional and S, U are adjacent; moreover, the inclusion
M ⊂ S ∩ U guarantees that the line [S ∩U〉δ joining S and U is contained
in [M〉δ. Hence [M〉δ is a singular subspace of Gδ(Π).

Let S1, S2, S3 be a triangle contained in [M〉δ and U be the associated
element of G−δ(Π) (see Lemma 4.11). Consider the subspace

X := [U ]δ ∩ [M〉δ.
If [Mi〉δ (i = 1, 2) are distinct lines of X then

M1 ∩ M2 = M and Mi ⊂ U, i = 1, 2;

in other words, M1, M2 are adjacent elements of Gn−3(Π) and the subspace
spanned by them is (n−2)-dimensional. There is a unique element of Gδ(Π)
intersecting U in 〈M1, M2〉; it is a common point of our lines. Thus X is
a projective plane and S1, S2, S3 form a base of X . We have proved that
every plane in [M〉δ is projective.

Suppose that T ∈ Gn−3(Π) contains M and T �⊂ U . Then [T 〉δ is a line
of [M〉δ which is not contained in X . The maximal singular subspace

〈T, U ∩ T⊥〉
intersects U in the (n − 2)-dimensional subspace U ∩ T⊥ (by Lemma 4.2);
hence it belongs to X and the line [T 〉δ has a non-empty intersection with
X . This means that the plane X is a hyperplane of [M〉δ. Therefore, [M〉δ
is a 3-dimensional projective space.

Let S ∈ Gδ(Π) \ [M〉δ. As in the proof of Proposition 4.19, we take a
frame B such that S and M are spanned by subsets of B and construct

〈X〉 ∈ [M〉δ, X ⊂ B,
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non-adjacent with S. This guarantees that [M〉δ is a maximal singular
subspace of Gδ(Π). �

Proposition 4.21. Every maximal singular subspace of Gδ(Π) is a star or
a special subspace.

Proof. We show that every maximal clique X of the Grassmann graph
Γδ(Π) is a star or a special subspace. Lines are not maximal cliques of
Γδ(Π) (they are contained, for example, in stars), thus X contains a triangle
S1, S2, S3. Let M and U be the associated elements of Gn−4(Π) and G−δ(Π),
respectively (Lemma 4.11). Clearly, [M〉δ and [U ]δ are the unique star and
the unique special subspace containing our triangle.

First, we establish that every S ∈ Gδ(Π) adjacent with all Si belongs to
[M〉δ or [U ]δ. Since U ∩ Si is a hyperplane of Si, the subspace S intersects
each U ∩ Si in a subspace whose dimension is not less than n − 4. One of
the following two possibilities is realized:

• S ∩ U ∩ S1 = S ∩ U ∩ S2 = S ∩ U ∩ S3,
• S ∩ U ∩ Si �= S ∩ U ∩ Sj for some i, j.

In the first case, the equality

M =
3⋂

i=1

(U ∩ Si)

guarantees that

S ∩ U ∩ Si = S ∩ M

for each i. Since M is (n− 4)-dimensional and the dimension of S ∩U ∩Si

is not less than n − 4, we have M ⊂ S and S belongs to [M〉δ. In the
second case, the dimension of S ∩ U is not less than n − 3; thus S ∩ U is
(n − 2)-dimensional and S ∈ [U ]δ.

Now consider

S ∈ [M〉δ \ [U ]δ and S′ ∈ [U ]δ \ [M〉δ.
Then S ∩ U and S′ ∩ U span U (the first subspace contains M and the
second is a hyperplane of U which does not contain M). Hence every point
of S ∩ S′ is collinear with all points of U and we get

S ∩ S′ ⊂ U

(since U is a maximal singular subspace). The latter inclusion implies that

S ∩ S′ = (S ∩ U) ∩ (S′ ∩ U).
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Since S ∩ U = M (this follows from S ∈ [M〉δ \ [U ]δ) and S′ ∩ U does not
contain M , the subspaces S and S′ are not adjacent.

So, every element of [M〉δ \ [U ]δ is non-adjacent with every element of
[U ]δ \ [M〉δ. The inclusion

X ⊂ [M〉δ ∪ [U ]δ

shows that X coincides with [M〉δ or [U ]δ. �

Example 4.8. Let M be an m-dimensional singular subspace of Π. Then
[M〉δ is a subspace of Gδ(Π); subspaces of such type are called parabolic
[Cooperstein, Kasikova and Shult (2005)]. In the case when m < n − 4,
this subspace is non-singular. As in Example 4.6, we consider [M〉m+1.
This is a polar space of type Dn−m−1. The parabolic subspace [M〉δ can be
identified with one of the half-spin Grassmann spaces of this polar space.

Exercise 4.9. Show that the intersection of two distinct stars of Gδ(Π) is
empty, or a single point or a line (the second possibility is not realized if
n = 4); moreover, this intersection is a line if and only if the associated
(n − 4)-dimensional singular subspaces are adjacent.

Exercise 4.10. Show that the intersection of two distinct special subspaces
of Gδ(Π) is empty or a line, the second possibility is realized if and only if
the associated elements of G−δ(Π) are adjacent.

If [M〉δ and [U ]δ are a star and a special subspace satisfying M ⊂ U

then their intersection is a plane (see the proof of Proposition 4.20).

Exercise 4.11. Show that every plane of Gδ(Π) is contained in precisely
one star and precisely one special subspace. Hint: take any triangle in a
plane and consider the associated elements of Gn−4(Π) and G−δ(Π) (Lemma
4.11).

As above, we write X∼ for the set consisting of all elements of Gδ(Π)
adjacent with all elements of X ⊂ Gδ(Π). We have the standard character-
ization of lines in terms of the adjacency relation.

Proposition 4.22. For any adjacent S, U ∈ Gδ(Π) the line joining S and
U coincides with the set {S, U}∼∼.

Proof. The intersection of all maximal singular subspaces of Gδ(Π) (stars
and special subspaces) containing both S and U coincides with the line
joining S and U . �
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A few remarks concerning polar spaces of type D4 finish the subsection.

Proposition 4.23. If n = 4 then Gδ(Π) is a polar space of type D4.

Proof. The polar axioms (1), (3) and (4) hold and we verify (2). Let S

be a point of Gδ(Π) which does not belong to a line [L〉δ, L ∈ L. If S has
a non-empty intersection with L then it is collinear with all points of [L〉δ.
If L and S are disjoint then S ∩ L⊥ is a line of Π (Lemma 4.2) and

〈L, S ∩ L⊥〉
is the unique point on the line [L〉δ collinear with S. Therefore, Gδ(Π)
is a polar space. Maximal singular subspaces of Gδ(Π) (stars and special
subspaces) are 3-dimensional and every plane is contained in precisely one
star and one special subspace (Exercise 4.11). The polar space is of type
D4. �

Exercise 4.12. Suppose that n = 4. Show that the natural one-to-one
correspondence between lines of Gδ(Π) and lines of Π is a collineation of
G1(Gδ(Π)) to G1(Π). Consider the half-spin Grassmann spaces of the polar
space Gδ(Π): one of them consists of stars and the other is formed by special
subspaces; show that they are isomorphic to Π and G−δ(Π), respectively.

4.6 Collineations

Throughout the section we suppose that Π = (P,L) and Π′ = (P ′,L′) are
polar spaces of same type Xn, X ∈ {C, D} and n ≥ 3; in the case when
X = D, we will require that n ≥ 4.

4.6.1 Chow’s theorem and its generalizations

Every collineation of Π to Π′ induces a collineation of Gk(Π) to Gk(Π′) for
each k ∈ {1, . . . , n − 1}. Moreover, if our polar spaces are of type Dn then
we get a collineation of Gδ(Π) to Gγ(Π′) with δ, γ ∈ {+,−}.

There is the following analogue of Theorem 3.2.

Theorem 4.7 ([Chow (1949)]). Every isomorphism of Γn−1(Π) to
Γn−1(Π′) is the collineation of Gn−1(Π) to Gn−1(Π′) induced by a
collineation of Π to Π′. Moveover, if our polar spaces are of type Dn

(n ≥ 5) then every isomorphism of Γδ(Π) to Γγ(Π′), δ, γ ∈ {+,−}, is
the collineation of Gδ(Π) to Gγ(Π′) induced by a collineation of Π to Π′.
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Remark 4.9. In [Chow (1949)] this result was established only for the
polar spaces associated with reflexive forms, but the method works in the
general case.

Remark 4.10. Suppose that Π and Π′ both are symplectic polar spaces
and write V and V ′ for the associated (2n)-dimensional vector spaces. It
was proved in [Huang (2000)] that every surjection of Gn−1(Π) to Gn−1(Π′)
sending adjacent elements to adjacent elements is a collineation of Gn−1(Π)
to Gn−1(Π′); in particular, every semicollineation of Gn−1(Π) to Gn−1(Π′)
is a collineation. The following more general version of this result was
established in [Huang (2001)]: if a mapping

f : Gn−1(Π) → Gn−1(Π′)

sends adjacent elements to adjacent elements and for every S ∈ Gn−1(Π)
there exists U ∈ Gn−1(Π) such that the distance between f(S) and f(U)
is maximal then f can be extended to the embedding of Gn(V ) in Gn(V ′)
induced by a semilinear embedding of V in V ′.

Theorem 4.8 ([Pankov, Prażmowski and Żynel (2006)]). Let f be
an isomorphism of Γk(Π) to Γk(Π′) and 0 ≤ k ≤ n − 2. If

n �= 4 or k �= 1

then f is the collineation of Gk(Π) to Gk(Π′) induced by a collineation of
Π to Π′ (f is a collineation of Π to Π′ if k = 0).

In Subsection 4.6.3 we establish that an isomorphism of Γk(Π) to Γk(Π′)
(k ≤ n−3) is induced by a collineation of Π to Π′ if it transfers stars to stars
and tops to tops. It follows from elementary properties of triangles that the
latter condition holds for n ≥ 5. Using Chow’s idea, we show that every
isomorphism of Γn−2(Π) to Γn−2(Π′) induces an isomorphism of Γn−3(Π)
to Γn−3(Π′) which sends stars to stars and tops to tops (Subsection 4.6.4).
This is a modification of the proof given in [Pankov, Prażmowski and Żynel
(2006)]. Theorem 4.7 will be presented as a simple consequence of Theorem
4.8.

Now consider the remaining case n = 4 and k = 1. Suppose that our
polar spaces are of type D4. Then the half-spin Grassmann spaces are polar
spaces of type D4 and there is natural one-to-one correspondence between
their lines and lines of the polar spaces (every line of Gδ(Π), δ ∈ {+,−},
consists of all elements of Gδ(Π) containing a certain line of Π). This means
that a collineation f of Π to Gδ(Π′) (if it exists) induces a bijection of L to



July 2, 2010 14:9 World Scientific Book - 9in x 6in ClassicalBuilding

Polar and Half-Spin Grassmannians 161

L′; an easy verification shows that this is a collineation of G1(Π) to G1(Π′).
It will be shown later that such collineations map all tops to stars and
some stars to tops. The collineation f also induces a collineation between
one of the half-spin Grassmann spaces of Π and G−δ(Π′) (since G−δ(Π′)
is one of the half-spin Grassmann spaces of the polar space Gδ(Π′), see
Exercise 4.12); this collineation sends stars to special subspaces and special
subspaces to stars.

Theorem 4.9. If n = 4 then every isomorphism of Γ1(Π) to Γ1(Π′) is the
collineation of G1(Π) to G1(Π′) induced by a collineation of Π to Π′ or a
collineation of Π to one of the half-spin Grassmann spaces of Π′; the second
possibility can be realized only in the case when the polar spaces are of type
D4.

Theorem 4.10. If Π and Π′ are of type D4 then every isomorphism of
Γδ(Π) to Γγ(Π′), δ, γ ∈ {+,−}, is the collineation of Gδ(Π) to Gγ(Π′)
induced by a collineation of Π to Π′ or a collineation of Π to G−γ(Π′).

4.6.2 Weak adjacency on polar Grassmannians

To prove Theorems 4.7 and 4.8 we will use elementary properties of so-called
weak adjacency relation defined on Gk(Π), 0 < k < n − 1. In Section 4.9
these properties also will be exploited to study apartments preserving
mappings.

Two elements of the Grassmannian Gk(Π), 0 < k < n−1, are said to be
weakly adjacent if their intersection belongs to Gk−1(Π). By this definition,
any two adjacent elements of Gk(Π) are weakly adjacent; the converse fails.
The weak Grassmann graph Γw

k (Π) is the graph whose vertex set is Gk(Π)
and whose edges are pairs of weakly adjacent elements. Since Γk(Π) is
a subgraph of Γw

k (Π), the weak Grassmann graph is connected and every
clique of Γk(Π) is a clique in Γw

k (Π).

Example 4.9. As in Example 3.1, we show that every top of Gk(Π) is a
maximal clique of Γw

k (Π).

Example 4.10. For every M ∈ Gk−1(Π) the parabolic subspace [M〉k will
be called a big star. This is a clique of Γw

k (Π) containing non-adjacent
elements. If S1 and S2 are distinct non-adjacent elements of [M〉k and
S ∈ Gk(Π) is weakly adjacent with both S1, S2 then S belongs to [M〉k.
Indeed, if S intersects S1 and S2 in distinct (k − 1)-dimensional subspaces
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then we take points

pi ∈ (S ∩ Si) \ (S1 ∩ S2), i = 1, 2;

since p1 ⊥ p2 (these points belong to S) and

Si = 〈S1 ∩ S2, pi〉,
we get S1 ⊥ S2 which contradicts the assumption that S1 and S2 are non-
adjacent. Therefore, big stars are maximal cliques of Γw

k (Π).

Proposition 4.24. Every maximal clique of Γw
k (Π) is a top or a big star.

Proof. Let X be a maximal clique of Γw
k (Π). If any two distinct elements

of X are adjacent then it is a maximal clique of Γk(Π); hence X is a top
(stars are non-maximal cliques of Γw

k (Π), since they are proper subsets of
big stars). If S1 and S2 are distinct non-adjacent elements of X then every
element of X contains S1 ∩ S2 (see Example 4.10) and X is the big star
corresponding to S1 ∩ S2. �

4.6.3 Proof of Theorem 4.8 for k < n − 2

Let f be an isomorphism of Γk(Π) to Γk(Π′) and k < n − 2. It follows
directly from the characterization of lines in terms of the adjacency relation
(Proposition 4.17) that f is a collineation of Gk(Π) to Gk(Π′) and Theorem
4.8 is true for k = 0. If k > 0 then f and f−1 map maximal singular
subspaces (stars and tops) to maximal singular subspaces.

Lemma 4.12. If f is a collineation of Gk(Π) to Gk(Π′), k < n− 2, trans-
ferring tops to tops and stars to stars then it is induced by a collineation of
Π to Π′.

Proof. Two stars [M, N ]k and [M ′, N ′]k are called adjacent if M = M ′

and N is adjacent with N ′. Two distinct stars X ,X ′ are non-adjacent if
and only if their intersection is empty or there exist distinct stars Y,Y ′ such
that X ∩X ′ is a proper subset of Y ∩Y ′. In other words, pairs of adjacent
stars can be characterized as pairs with maximal intersections. This means
that f and f−1 maps adjacent stars to adjacent stars.

For every M ∈ Gk−1(Π)

[M〉k =
⋃

N∈ [M〉n−1

[M, N ]k.
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Any two elements of [M〉n−1 can be connected by a path of Γn−1(Π) con-
tained in [M〉n−1 (the parabolic subspace [M〉n−1 is isomorphic to the
Grassmann space consisting of maximal singular subspaces of a certain
polar space, Example 4.6). This implies the existence of a subspace

fk−1(M) ∈ Gk−1(Π′)

such that the associated big star of Gk(Π′) contains f([M〉k). It is clear
that

f([M〉k) = [fk−1(M)〉k
for every M ∈ Gk−1(Π) (we apply the same arguments to f−1) and the
mapping

fk−1 : Gk−1(Π) → Gk−1(Π′)

is bijective. Since for every S ∈ Gk(Π)

M ∈ 〈S]k−1 ⇔ S ∈ [M〉k ⇔ f(S) ∈ [fk−1(M)〉k ⇔ fk−1(M) ∈ 〈f(S)]k−1,

we have

fk−1(〈S]k−1) = 〈f(S)]k−1.

Therefore, fk−1 is an isomorphism of Γk−1(Π) to Γk−1(Π′) such that fk−1

and the inverse mapping send tops to tops (this is a collineation of Π to
Π′ if k = 1). If k ≥ 2 then fk−1 maps stars to stars. As in the proof of
Theorem 3.2, we get a sequence of collineations

fi : Gi(Π) → Gi(Π′), i = k, . . . , 0,

such that fk = f and establish that every fi is induced by f0. �
So, we need to show that f maps stars to stars and tops to tops, except

the case when n = 4 and k = 1. Since the dimension of stars and tops is
equal to

n − k − 1 and k + 1

(respectively), this is true if n �= 2k + 2.
Suppose that n = 2k + 2. Every top-triangle is contained in precisely

one maximal singular subspace (a top). If S1, S2, S3 ∈ Gk(Π) form a star-
triangle then the singular subspace

〈S1, S2, S3〉
is (k + 2)-dimensional; in the case when k > 1, this singular subspace
is not maximal and the star-triangle is contained in more than one star.
Therefore, if k > 1 then star-triangles go to star-triangles, top-triangles go
to top-triangles and we get the claim.
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4.6.4 Proof of Theorems 4.7 and 4.8

Let f be an isomorphism of Γn−2(Π) to Γn−2(Π′). Maximal cliques of these
graphs are tops and f induces a bijection

g : Gn−1(Π) → Gn−1(Π′).

This mapping transfers a line [S〉n−1, S ∈ Gn−2(Π), to the line [f(S)〉n−1.
Hence g is a collineation of Gn−1(Π) to Gn−1(Π′) and

dim(g(M) ∩ g(N)) = dim(M ∩ N)

for all M, N ∈ Gn−1(Π) (the latter equality follows from the distance for-
mula given in Proposition 4.8).

Now we show that f is an isomorphism of Γw
n−2(Π) to Γw

n−2(Π
′).

Let S1, S2 be weakly adjacent elements of Gn−2(Π). Let also M ′
1, M

′
2 be

maxima singular subspaces of Π′ such that

M ′
1 ∩ M ′

2 = f(S1) ∩ f(S2)

and f(Si) ⊂ M ′
i for i = 1, 2 (Corollary 4.2). If f(S1) and f(S2) are not

weakly adjacent then

dim(M ′
1 ∩ M ′

2) < n − 3

and

dim(g−1(M ′
1) ∩ g−1(M ′

2)) < n − 3.

Since g is induced by f , we have

Si ⊂ g−1(M ′
i), i = 1, 2,

and the latter inequality contradicts the fact that S1 and S2 are weakly
adjacent. Similarly, we establish that f−1 preserves the weak adjacency
relation.

Since f and f−1 transfer tops to tops, big stars go to big stars in both
directions. This means that f induces a bijection

h : Gn−3(Π) → Gn−3(Π′).

In the case when n = 3, this is a collineation of Π to Π′ which induces f .
If n ≥ 4 then h is a collineation of Gn−3(Π) to Gn−3(Π′) preserving the
types of all maximal singular subspaces. By Lemma 4.12, h is induced by
a collineation of Π to Π′; this collineation induces f .

Theorem 4.8 is proved and we use it to prove Theorem 4.7.
Since maximal cliques of Γn−1(Π) and Γn−1(Π′) are lines of the associ-

ated Grassmann spaces, every isomorphism t between these graphs induces
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a bijection t̃ of Gn−2(Π) to Gn−2(Π′). This bijection is an isomorphism of
Γn−2(Π) to Γn−2(Π′) (two distinct lines have a non-empty intersection if
and only if the associated (n − 2)-dimensional singular subspaces are ad-
jacent). By Theorem 4.8, t̃ is induced by a collineation of Π to Π′; this
collineation induces t.

Now suppose that our polar spaces are of type Dn and f is an isomor-
phism of Γδ(Π) to Γγ(Π′), δ, γ ∈ {+,−}. Then f is a collineation of Gδ(Π)
to Gγ(Π′) (by Proposition 4.22, lines of half-spin Grassmann spaces can be
characterized in terms of the adjacency relation). Hence f maps lines to
lines and induces a bijection of Gn−3(Π) to Gn−3(Π′). Since two distinct
(n − 3)-dimensional singular subspaces of Π or Π′ are adjacent if and only
if the associated lines of the half-spin Grassmann space Gδ(Π) or Gγ(Π′)
span a plane, this bijection is an isomorphism of Γn−3(Π) to Γn−3(Π′). In
the case when n ≥ 5, we apply Theorem 4.8 and get the claim.

Similarly, we draw Theorem 4.10 from Theorem 4.9.

4.6.5 Proof of Theorem 4.9

Throughout the subsection we assume that n = 4.
Suppose that f is an isomorphism of Γ1(Π) to Γ1(Π′). It was noted in

Subsection 4.6.3 that f is a collineation of G1(Π) to G1(Π′); moreover, f

is induced by a collineation of Π to Π′ if it preserves the types of maximal
singular subspaces (Lemma 4.12). Now we suppose that the image of a
certain star is a top; under this assumption, we establish that our polar
spaces are of type D4 and f is induced by a collineation of Π to one of the
half-spin Grassmann spaces of Π′. Therefore, if the polar spaces are of type
C4 then f and f−1 both map stars to stars (hence tops go to tops) and f

is induced by a collineation of Π to Π′.
0. Preliminaries. Our proof will be based on some trivial observations

concerning pairs of triangles. In the present case (n = 4, k = 1), every
triangle is contained in precisely one maximal singular subspace.

We say that triangles

∆ = {L1, L2, L3} and ∆′ = {L′
1, L

′
2, L

′
3}, Li �= L′

j ∀ i, j, (4.3)

in G1(Π) form a regular pair if Li and L′
j are adjacent only in the case when

i �= j; in other words, every line from each of these triangles is adjacent
with precisely two lines of the other.

Lemma 4.13. If the triangles (4.3) form a regular pair then one of the
following possibilities is realized:
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• There exist a plane S and a point p �∈ S, p ⊥ S, such that one of the
triangles is a star-triangle in [p, 〈p, S〉]1 and the other is a top-triangle
in 〈S]1.

• There exist maximal singular subspaces U, U ′ intersecting precisely in a
point p and such that ∆ and ∆′ are star-triangles in [p, U ]1 and [p, U ′]1,
respectively.

Proof. Direct verification. �

We say that triangles

∆ = {L, L1, L2} and ∆′ = {L, L′
1, L

′
2}, Li �= L′

j ∀ i, j, (4.4)

in G1(Π) form a regular pair if Li and L′
j are adjacent only in the case when

i = j.

Lemma 4.14. If the triangles (4.4) form a regular pair then one of the
following possibilities is realized:

• There exist two planes S, S′ intersecting precisely in L and such that
S ⊥ S′ and ∆, ∆′ are top-triangles in 〈S]1 and 〈S′]1, respectively.

• There exist two maximal singular subspaces U, U ′ intersecting precisely
in L and a point p ∈ L such that ∆, ∆′ are star-triangles in [p, U ]1 and
[p, U ′]1, respectively.

Proof. Direct verification. �

1. Let f be an injection of G1(Π) to G1(Π′) preserving the adjacency
relation: two elements of G1(Π) are adjacent if and only if their images
are adjacent. Then f transfers maximal singular subspaces of G1(Π) (stars
and tops) to subsets of maximal singular subspaces of G1(Π′). Every max-
imal singular subspace of G1(Π′) contains at most one image of a maximal
singular subspace of G1(Π) (otherwise there exist non-adjacent elements
of G1(Π) whose images are adjacent). We will assume that f satisfies the
following condition:

(A) triangles go to triangles.

It is clear that two triangles in G1(Π) form a regular pair if and only if
their images form a regular pair in G1(Π′). The condition (A) guarantees
that the image of every maximal singular subspace of G1(Π) is contained
in precisely one maximal singular subspace of G1(Π′) (since triangles are
bases of maximal singular subspaces).
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Suppose that the image of a certain star [p, U ]1, U ∈ G3(Π), p ∈ U , is
contained in a top 〈S′]1, S′ ∈ G2(Π′). Our first step is the following.

Lemma 4.15. There exists a maximal singular subspace U ′ of Π′ contain-
ing S′ and satisfying the following conditions:

• for every point q ∈ U there is a plane S(q) ⊂ U ′ such that

f([q, U ]1) ⊂ 〈S(q)]1,

• for every plane S ⊂ U there is a point q(S) ∈ U ′ such that

f(〈S]1) ⊂ [q(S), U ′]1.

Proof. Let S be a plane in U which does not contain the point p. Con-
sider any regular pair of triangles

∆1 ⊂ [p, U ]1 and ∆2 ⊂ 〈S]1.

Their images also form a regular pair in G1(Π′). By our hypothesis, f(∆1)
is a top-triangle contained in 〈S′]1. Then Lemma 4.13 guarantees that
f(∆2) is a star-triangle; moreover, there exist a maximal singular subspace
U ′ of Π′ and a point q(S) ∈ U ′ such that

q(S) �∈ S′ ⊂ U ′

and f(∆2) is contained in the star [q(S), U ′]1. The latter means that f(〈S]1)
is a subset of [q(S), U ′]1.

Similarly, for another plane T ⊂ U which does not contain p, the image
of the top 〈T ]1 is contained in a certain star [q(T ), U ′′]1 and

q(T ) �∈ S′ ⊂ U ′′.

If U ′ and U ′′ are distinct then their intersection is S′. Since the points q(S)
and q(T ) do not belong to S′,

[q(S), U ′]1 ∩ [q(T ), U ′′]1 = ∅.
On the other hand,

f(〈S]1) ⊂ [q(S), U ′]1 and f(〈T ]1) ⊂ [q(T ), U ′′]1;

the tops 〈S]1 and 〈T ]1 have a non-empty intersection (since S∩T is a line),
a contradiction. Therefore, U ′′ coincides with U ′.

Now, let q ∈ U \ {p}. We choose a plane S ⊂ U which does not contain
the points q and p. Then f(〈S]1) is contained in the star [q(S), U ′]1 (it was
established above). We consider any regular pair of triangles

∆1 ⊂ [q, U ]1 and ∆2 ⊂ 〈S]1.
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Their images form a regular pair and f(∆2) is a star-triangle in [q(S), U ′]1.
If f(∆1) is a star-triangle then, by Lemma 4.13, f transfers the star [q, U ]1
to a subset of a certain star [q(S), U ′′]1 such that

U ′ ∩ U ′′ = q(S).

Since S′ ⊂ U ′, the latter equality guarantees that

[q(S), U ′′]1 ∩ 〈S′]1 = ∅.
However, [p, U ]1 and [q, U ]1 have a non-empty intersection (the line qp)
and their images are contained in 〈S′]1 and [q(S), U ′′]1, respectively. Thus
f(∆1) is a top-triangle. This means that f([q, U ]1) is contained in a certain
top 〈S(q)]1 with S(q) ⊂ U ′.

Consider a plane S ⊂ U containing the point p and any point q ∈ U \S.
Then f([q, U ]1) is contained in the top 〈S(q)]1. Using Lemma 4.13, we
establish that f(〈S]1) is a subset of a certain star [q(S), U ′′]1 such that

q(S) �∈ S(q) ⊂ U ′′.

We take any plane T ⊂ U which does not contain the points p and q. The
image of the top 〈T ]1 is contained in the star [q(T ), U ′]1 and q(T ) �∈ S(q).
As above, we show that U ′′ coincides with U ′. �

Since distinct maximal singular subspaces go to subsets of distinct max-
imal singular subspaces, the mappings

q → S(q) and S → q(S)

(we define S(p) := S′) are injective.
In the case when f is a collineation of G1(Π) to G1(Π′), the inclusions

in Lemma 4.15 must be replaced by the equalities. Moreover, the inverse
mapping f−1 sends every star

[q(S), U ′]1, S ∈ 〈U ]2,

to the top 〈S]1. We apply the arguments from the proof of Lemma 4.15
to f−1 and establish that q → S(q) is a one-to-one correspondence be-
tween points of U and planes of U ′; similarly, S → q(S) is a one-to-one
correspondence between planes of U and points of U ′.

2. Suppose that f is a collineation of G1(Π) to G1(Π′) and U is as in
the previous step. Let Q be a maximal singular subspace of Π intersecting
U in a certain plane S. The image of the top 〈S]1 is the star [q(S), U ′]1.

Let q ∈ Q \ S. We take any regular pair of triangles

∆1 ⊂ 〈S]1 and ∆2 ⊂ [q, Q]1.

Then f(∆1) is a star-triangle in [q(S), U ′]1. By Lemma 4.13, there are the
following two possibilities for the triangle f(∆2):
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• f(∆2) is a top-triangle then f([q, Q]1) coincides with a certain top 〈T ′]1
with T ′ ⊂ U ′,

• f(∆2) is a star-triangle then f([q, Q]1) is a star [q(S), Q′]1 such that Q′

intersects U ′ precisely in the point q(S).

The first possibility is not realized, since for any plane T ′ ⊂ U ′ the top
〈T ′]1 is the image of a certain star [t, U ]1.

Now, suppose that q ∈ S. If the image of the star [q, Q]1 is a top then,
by the first step of our proof, the same holds for all points of Q which is
impossible. Therefore, f([q, Q]1) is a star for every point q ∈ Q.

Let M be a third maximal singular subspace containing S. We take
points q ∈ Q \ S and t ∈ M \ S. Then every element of [q, Q]1 is non-
adjacent with every element of [t, M ]1. However,

f([q, Q]1) = [q(S), Q′]1

contains elements adjacent with some elements of

f([t, M ]1) = [q(S), M ′]1.

This means that there are no 3 distinct maximal singular subspaces con-
taining S and our polar spaces are of type D4.

3. Suppose that the polar spaces are of type D4 and, as in the first
step, f is an injection of G1(Π) to G1(Π′) preserving the adjacency relation
and satisfying the condition (A). We also assume that the maximal singular
subspaces U and U ′ belong to Gδ(Π) and Gγ(Π′), δ, γ ∈ {+,−}, respectively.

Let Q be an element of Gδ(Π) adjacent with U . The intersection of U

and Q is a certain line L. We take a point q ∈ L and consider any regular
pair of star-triangles

∆1 = {L, L1, L2} ⊂ [q, U ]1 and ∆2 = {L, L′
1, L

′
2} ⊂ [q, Q]1.

The image of the star [q, U ]1 is contained in the top 〈S(q)]1 and f(∆1) is
a top-triangle. By Lemma 4.14, f(∆2) also is a top-triangle which means
that f([q, Q]1) is a subset of a certain top.

Lemma 4.15 implies the existence of a maximal singular subspace Q′

of Π′ satisfying the following conditions: for every point q ∈ Q there is a
plane T (q) ⊂ Q′ such that

f([q, Q]1) ⊂ 〈T (q)]1,

and for every plane S ⊂ Q there is a point t(S) ∈ Q′ such that

f(〈S]1) ⊂ [t(S), Q′]1.
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Now we choose two planes S ⊂ U and M ⊂ Q intersecting in L and
satisfying S ⊥ M . Consider any regular pair of top-triangles

∆1 = {L, L1, L2} ⊂ 〈S]1 and ∆2 = {L, L′
1, L

′
2} ⊂ 〈M ]1.

Then

f(∆1) ⊂ [q(S), U ′]1 and f(∆2) ⊂ [t(M), Q′]1.

Since these star-triangles form a regular pair, Lemma 4.14 implies that
q(S) = t(M) and U ′ ∩Q′ = f(L). In particular, Q′ is an element of Gγ(Π′)
adjacent with U ′.

The half-spin Grassmann spaces are connected and the same holds for
every Q ∈ Gδ(Π). Thus we get a mapping

g : Gδ(Π) → Gγ(Π′)

satisfying the following conditions: if M ∈ Gδ(Π) then for any point q ∈ M

there is a plane SM (q) ⊂ g(M) such that

f([q, M ]1) ⊂ 〈SM (q)]1,

and for any plane S ⊂ M there is a point qM (S) ∈ g(M) such that

f(〈S]1) ⊂ [qM (S), g(M)]1.

Remark 4.11. The mapping g sends adjacent elements to adjacent ele-
ments; but it does not need to be injective.

In the case when f is a collineation of G1(Π) to G1(Π′), we apply the
same arguments to f−1 and get the following:

• the latter two inclusions must be replaced by the equalities;
• q → SM (q) is a one-to-one correspondence between points of M and

planes of g(M); similarly, S → qM (S) is a one-to-one correspondence
between planes of M and points of g(M);

• the mapping g is bijective.

Since every plane of Π is contained in a certain element of Gδ(Π), the im-
ages of all tops are subsets of stars (in the general case). If f is a collineation
of G1(Π) to G1(Π′) then f and f−1 map tops to stars; the maximal singu-
lar subspaces associated with these stars are elements of Gδ(Π) and Gγ(Π′),
respectively.

4. As in the previous step, we assume that the polar spaces are of
type D4 and f is an injection of G1(Π) to G1(Π′) preserving the adjacency
relation and satisfying the condition (A).
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We take any point q ∈ P and consider the associated star [q〉δ in the
half-spin Grassmann space Gδ(Π). For every M ∈ [q〉δ the image of the star
[q, M ]1 is contained in the top 〈SM (q)]1. Let M and N be distinct elements
of [q〉δ. The stars [q, M ]1 and [q, N ]1 have a non-empty intersection (the
line M ∩ N). This means that the planes SM (q) and SN (q) are weakly
adjacent. Thus the set

{SM (q)}M∈ [q〉δ
(4.5)

is a clique of the weak Grassmann graph Γw
2 (Π′). Every element of [q, M ]1

is adjacent with a certain element of [q, N ]1 distinct from the line M ∩ N .
Hence every element of 〈SM (q)]1 is adjacent with an element of 〈SN (q)]1
distinct from f(M ∩ N). The latter guarantees that

SM (q) ⊥ SN (q)

and these planes are adjacent. Therefore, all elements of (4.5) are contained
in a certain maximal singular subspace Uq (the set (4.5) contains more than
one element and there is only one maximal singular subspace satisfying this
condition). Since each

g(M) ∈ Gγ(Π′), M ∈ [q〉δ,
intersects Uq in the plane SM (q), we have Uq ∈ G−γ(Π′).

Denote by h the mapping of P to G−γ(Π′) which sends every point q ∈ P

to the maximal singular subspace Uq.
5. Now, assume that f is a collineation of G1(Π) to G1(Π′).
Let X be a maximal clique of Γw

2 (Π′) containing (4.5). For every element
of X the mapping f−1 transfers the associated top to a star

[t, T ]1, T ∈ Gδ(Π).

It has a non-empty intersection with every star

[q, M ]1, M ∈ [q〉δ,
which implies that t = q. Hence T belongs to [q〉δ and X coincides with
(4.5). This maximal clique is the top 〈Uq]2.

The latter guarantees that the mapping h is injective. Show that h is
bijective.

Let T ′ ∈ G−γ(Π′) and S′
1, S

′
2 be distinct planes contained in T ′. The

intersection of these planes is a certain line L′. The mapping f−1 transfers
the tops 〈S′

i]1 to stars [qi, Qi]1, i = 1, 2; both Qi are elements of Gδ(Π). For
any regular pair of top-triangles

∆1 = {L′, L1, L2} ⊂ 〈S′
1]1 and ∆2 = {L′, L′

1, L
′
2} ⊂ 〈S′

2]1
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the star-triangles

f−1(∆1) ⊂ [q1, Q1]1 and f−1(∆2) ⊂ [q2, Q2]1

form a regular pair. By Lemma 4.14, we have q1 = q2. Therefore, T ′ = Uq

for a certain point q ∈ P and we get the claim.
Let L be a line of Π. For every point q ∈ L there exists a star

[q, Q]1, Q ∈ Gδ(Π),

containing L. The image of this star is a top 〈M ′]1 with M ′ ⊂ Uq and we
obtain that f(L) ⊂ Uq. Conversely, suppose that the line f(L) is contained
in Uq. Then f(L) is an element of a certain top 〈M ′]1, M ′ ⊂ Uq. The
mapping f−1 sends this top to a star [q, Q]1; since L belongs to this star,
we have q ∈ L.

Thus h transfers every line L ∈ L to the line of G−γ(Π′) associated with
the line f(L). This means that h is a collineation of Π to G−γ(Π′) and f

is induced by this collineation.

Remark 4.12. In the case when f is not a collineation, the mapping h

transfers every line L ∈ L to a subset of the line of G−γ(Π′) associated
with f(L).

4.6.6 Remarks

In this subsection we establish some results closely related with Theorems
4.8 and 4.9.

Proposition 4.25. Let k, m ∈ {0, . . . , n−1} be distinct numbers. Suppose
that

gk : Gk(Π) → Gk(Π′) and gm : Gm(Π) → Gm(Π′)

are bijections such that S ∈ Gk(Π) and U ∈ Gm(Π) are incident if and only
if gk(S) and gm(U) are incident. Then gk and gm are induced by the same
collineation of Π to Π′.

Proof. Similar to Proposition 3.4. �

As a consequence, we get the following.

Theorem 4.11 ([Pankov, Prażmowski and Żynel (2006)]). Suppose
that a bijection

f : Gk(Π) → Gk(Π′), k < n − 1,
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preserves the relation ⊥:

S ⊥ U ⇐⇒ f(S) ⊥ f(U).

Then it is the collineation of Gk(Π) to Gk(Π′) induced by a collineation of
Π to Π′.

Proof. Every subspaces 〈S]k, S ∈ Gn−1(Π), can be characterized as a
maximal subset X ⊂ Gk(Π) satisfying the following condition:

S ⊥ U ∀ S, U ∈ X .

This means that f induces a bijection of Gn−1(Π) to Gn−1(Π′) and we get
a pair of bijections satisfying the condition of Proposition 4.25. �

We will investigate isomorphisms between the weak Grassmann graphs
and need the following lemma.

Lemma 4.16. Two distinct elements S, U ∈ Gk(Π), 1 ≤ k ≤ n − 2, are
adjacent if and only if they belong to the intersection of two distinct maximal
cliques of Γw

k (Π).

Proof. If S and U are adjacent then the big star [S ∩ U〉k and the top
〈〈S, U〉]k are as required. Conversely, suppose that there are two distinct
maximal cliques of Γw

k (Π) containing both S and U . Since the intersection
of two distinct maximal cliques of the same type (two tops or two big stars)
is empty or a single point, one of these cliques is a big star and the other
is a top. This implies that S and U are adjacent. �

Theorem 4.12 ([Pankov, Prażmowski and Żynel (2006)]). Let 1 ≤
k ≤ n − 2. Then every isomorphism of Γw

k (Π) to Γw
k (Π′) is induced by a

collineation of Π to Π′.

Proof. Let f be an isomorphism of Γw
k (Π) to Γw

k (Π′). Then f and f−1

transfer maximal cliques (tops and big stars) to maximal cliques. By
Lemma 4.16, f is an isomorphism of Γk(Π) to Γk(Π′). Therefore, it is
induced by a collineation of Π to Π′ if n �= 4 or k �= 1. Consider the case
when n = 4 and k = 1. The mappings f and f−1 send tops to tops and big
stars to big stars (since any two distinct elements of a top are adjacent and
a big star contains non-adjacent elements). Hence f induces a bijection of
P to P ′. This is the required collineation of Π to Π′. �

Remark 4.13. The collineation of G1(Π) to G1(Π′) considered in the pre-
vious subsection (the case when Π and Π′ are of type D4) does not preserve
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the relation ⊥ and it is not an isomorphism between the weak Grassmann
graphs. For every point q ∈ P it transfers the big stars [q〉1 to 〈Uq]1, where
Uq is a maximal singular subspace of Π′.

4.7 Opposite relation

As for Grassmannians of finite-dimensional vector spaces, two elements of
a polar or half-spin Grassmannian are said to be opposite if the distance
between them is maximal (is equal to the diameter of the associated Grass-
mann graph).

4.7.1 Opposite relation on polar Grassmannians

Let Π be a polar space of rank n. Two points of Π (elements of G0(Π))
are opposite if and only if they are non-collinear. Two maximal singular
subspaces are opposite if and only if they are disjoint.

The direct analogue of Theorem 3.6 does not hold in the general case;
in other words, the following two conditions are not equivalent:

(1) S1, S2 ∈ Gk(Π) are adjacent,
(2) there exists S ∈ Gk(Π) \ {S1, S2} such that every U ∈ Gk(Π) opposite

to S is opposite to at least one of Si.

Example 4.11 ([Kwiatkowski and Pankov (2009)]). We consider a
(2n)-dimensional vector space V over a field R of characteristic 2 and a
non-degenerate alternating form Ω defined on V . Let

p1, . . . , pn, q1, . . . , qn

be a frame of the polar space ΠΩ such that pi �⊥ qi for each i. There exist
vectors x1, . . . , xn, y1, . . . , yn ∈ V satisfying

pi = 〈xi〉, qi = 〈yi〉 and Ω(xi, yi) = Ω(yi, xi) = 1.

The maximal singular subspaces of ΠΩ corresponding to the maximal to-
tally isotropic subspaces

〈x1, x2, x3, . . . , xn〉, 〈y1, y2, x3, . . . , xn〉,
and

〈x1 + y2, x2 + y1, x3, . . . , xn〉
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will be denoted by S1, S2, and S (respectively). Their intersection is the
(n−3)-dimensional singular subspace N associated with the totally isotropic
subspace 〈x3, . . . , xn〉. We assert that for any collinear points

p′ ∈ S1 \ N and q′ ∈ S2 \ N

the line p′q′ intersects S. Indeed,

p′ = 〈ax1 + bx2 + z′〉 and q′ = 〈ay2 + by1 + z′′〉
for some a, b ∈ R and z′, z′′ ∈ N ; every point of the line p′q′ is of type

〈s(ax1 + bx2) + t(ay2 + by1) + z〉
with z ∈ N and s, t ∈ R; this point belongs to S if s = t = 1. Thus
if U ∈ Gn−1(ΠΩ) intersects both S1 and S2 then it intersects S. This
means that every element of Gn−1(ΠΩ) opposite to S is opposite to at least
one of Si. However, S1 and S2 are not adjacent. In the case when the
characteristic is not equal to 2, this construction is impossible.

Remark 4.14 (M. Kwiatkowski). Let p and q be distinct points of Π.
We say that the Veldkamp line (the line in the associated Veldkamp space,
Subsection 4.3.4) joining p⊥ and q⊥ is thick if it contains t⊥, t �= p, q;
otherwise, it is said to be thin. Clearly, the line is thick if p ⊥ q; and
it is thin if p �⊥ q and Π is of type Dn. It is not difficult to show that all
Veldkamp lines are thick if Π is the polar space defined by an alternating or
Hermitian form. The points p and q satisfy (2) if and only if the Veldkamp
line joining p⊥ and q⊥ is thick: we take any point t such that t⊥ belongs
to the Veldkamp line, then every point non-collinear with t is non-collinear
with p or q. Thus the conditions (1) and (2) are not equivalent if k = 0
and Π is, for example, the polar space associated with an alternating or
Hermitian form.

4.7.2 Opposite relation on half-spin Grassmannians

The direct analogue of Theorem 3.6 holds for half-spin Grassmannians.

Theorem 4.13 ([Kwiatkowski and Pankov (2009)]). If Π is a polar
space of type Dn, n ≥ 4, then for any distinct S1, S2 ∈ Gδ(Π), δ ∈ {+,−},
the following conditions are equivalent:

(1) S1 and S2 are adjacent,
(2) there exists S ∈ Gδ(Π) \ {S1, S2} such that every U ∈ Gδ(Π) opposite

to S is opposite to at least one of Si.
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Corollary 4.3. If Π and Π′ are polar spaces of type Dn, n ≥ 4, then
every bijection of Gδ(Π) to Gγ(Π′), δ, γ ∈ {+,−}, preserving the relation
to be opposite (S, U ∈ Gδ(Π) are opposite if and only if their images are
opposite) is a collineation of Gδ(Π) to Gγ(Π′).

Our proof of Theorem 4.13 is a modification of the proof of Theorem
3.6 given in Subsection 3.2.4; a verification of the conditions proposed in
[Huang and Havlicek (2008)] (see Remark 3.6) is not simpler.

Proof. We will distinguish the following two cases:

• n is even then the dimension of the intersection of two elements of
Gδ(Π) is odd and S, U ∈ Gδ(Π) are opposite if and only if S ∩ U = ∅;

• n is odd then the dimension of the intersection of two elements of Gδ(Π)
is even and S, U ∈ Gδ(Π) are opposite if and only if S ∩ U is a single
point.

(1) =⇒ (2). Suppose that S1, S2 are adjacent and show that every
S �= S1, S2 belonging to the line of Gδ(Π) joining S1 and S2 is as required.
Suppose that U ∈ Gδ(Π) is opposite to S, but it is non-opposite to each Si.

If n is even then U intersects S1 and S2 in subspaces whose dimensions
are not less than 1. We take lines Li contained in U ∩ Si, i = 1, 2. Since
S1 ∩ S2 ⊂ S and S is opposite to U , these lines do not intersect S1 ∩ S2.
Hence Si is spanned by S1 ∩ S2 and Li. The latter means that L1 �⊥ L2

which contradicts the fact that these lines are contained in U .
Consider the case when n is odd. According our assumption, the dimen-

sions of U ∩ S1 and U ∩ S2 are not less than 2. Let Pi be planes contained
in U ∩ Si, i = 1, 2. Each of these planes has a non-empty intersections
with S1 ∩ S2 (because S1 ∩ S2 is (n − 3)-dimensional). Since U is opposite
to S and S1 ∩ S2 ⊂ S, these intersections both are 0-dimensional (points).
This implies the existence of lines Li ⊂ Pi (i = 1, 2) which do not intersect
S1 ∩ S2. As above, we get L1 �⊥ L2.

(2) =⇒ (1). Our first step is the following statement: for every distinct
collinear points pi ∈ Si, i = 1, 2, the line p1p2 intersects S.

Suppose that n is even. If p1p2 does not intersect S then we take any
frame of Π whose subsets span S and the line p1p2. Let U be the maximal
singular subspace spanned by points of the frame and disjoint from S. This
is an element of Gδ(Π) opposite to S. By our hypothesis, U does not
intersect at least one of Si which contradicts the inclusion p1p2 ⊂ U .

Now consider the case when n is odd. The intersection of S1 and S2

is non-empty. We assert that there exists a plane containing p1p2 and
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intersecting each Si in a line. If p1p2 does not intersect S1 ∩ S2 or the
subspace S1 ∩ S2 contains more than one point (in the second case the
dimension of S1 ∩ S2 is not less than 2) then we take any point t ∈ S1 ∩ S2

which does not belong to p1p2; the plane spanned by p1p2 and t is as
required. If S1 ∩ S2 is a single point belonging to the line p1p2 then this
point coincides with p1 or p2. Suppose that S1 ∩ S2 = {p1}. Then any
point t ∈ S1 \ S2 collinear with p2 gives the claim (such point exists, since
S1 ∩ p⊥2 is (n− 2)-dimensional and the dimension of S1 ∩ S2 is equal to 0).
The case when S1 ∩ S2 = {p2} is similar.

Let P be a plane containing p1p2 and intersecting each Si in a line. If
dim(P ∩ S) ≤ 0 then we take a frame whose subsets span P and S; using
this frame, we construct U ∈ Gδ(Π) opposite to S and containing P . Then
U is opposite to at least one of Si. Since P ⊂ U , the latter contradicts the
fact that P intersects each Si in a line. Therefore, P ∩ S contains a line
and this line intersects p1p2 (since P is a plane).

Our second step is to prove the equality

dim(S ∩ Si) = n − 3, i = 1, 2.

Let us take a point p ∈ S2 \ S. Then S1 ∩ p⊥ is a hyperplane of S1

or p ∈ S1 ∩ S2 and S1 ∩ p⊥ coincides with S1. In the first case, we set
H := S1 ∩ p⊥; in the second case, we take any hyperplane H ⊂ S1. Let
u, v be distinct points on a line L ⊂ H . The lines up and vp intersect
S in points u′ and v′, respectively. Since p �∈ S, we have p �= u′, v′ and
the points u′, v′ are distinct. The lines L and u′v′ both are contained in
the plane 〈L, p〉; thus they have a non-empty intersection. The inclusion
u′v′ ⊂ S guarantees that L intersects S. So, every line of H has a non-
empty intersection with S. The subspace H is (n− 2)-dimensional and the
dimension of S ∩ H is not less than n − 3. Since S ∩ H ⊂ S ∩ S1, the
subspace S ∩ S1 is (n − 3)-dimensional. Similarly, we show that S ∩ S2 is
(n − 3)-dimensional.

Now we establish the equality

dim(S1 ∩ S2) = n − 3

which completes our proof. Define

U := (S ∩ S1) ∩ (S ∩ S2).

Since S ∩ S1 and S ∩ S2 are (n − 3)-dimensional subspaces of S, there are
the following three possibilities:

• S ∩ S1 = S ∩ S2 and U is (n − 3)-dimensional,
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• dimU = n − 4,
• dimU = n − 5 and S is spanned by S ∩ S1 and S ∩ S2.

By U ⊂ S1 ∩ S2, the dimension of S1 ∩ S2 is equal to n− 3 in the first and
second cases. Moreover, if U is an (n − 5)-dimensional subspace distinct
from S1 ∩ S2 then S1 ∩ S2 is (n − 3)-dimensional.

Suppose that U = S1 ∩ S2 is (n − 5)-dimensional. We take any line
L ⊂ S1 \ S and consider the subspace L⊥ ∩ S2.

If every point of this subspace belongs to S then L⊥ ∩ S2 is contained
in S ∩ S2. The subspace S ∩ S2 is (n − 3)-dimensional and the dimension
of L⊥ ∩ S2 is not less than n − 3; thus

S ∩ S2 = L⊥ ∩ S2.

Since S is spanned by S ∩ S1 and S ∩ S2, the later equality implies that
L ⊥ S which is impossible (S is a maximal singular subspace and L �⊂ S).

Therefore, L⊥ ∩ S2 contains a point p �∈ S. Using arguments of the
second step, we show that the intersection of S with the plane 〈L, p〉 is
a line. This line intersects L which contradicts the inclusion L ⊂ S1 \ S.
Hence this case is not realized. �

4.8 Apartments

4.8.1 Apartments in polar Grassmannians

Let Π = (P,L) be a polar space of rank n and B = {p1, . . . , p2n} be a frame
of Π. Denote by Ak the associated apartment of Gk(Π), k ∈ {0, 1, . . . , n−1}.
It consists of all k-dimensional singular subspaces spanned by subsets of the
frame B; in particular, A0 coincides with B.

Proposition 4.26. |Ak| = 2k+1
(

n
k+1

)
.

Proof. The apartment Ak consists of all k-dimensional singular sub-
spaces 〈pi1 , . . . , pik+1〉 such that

{i1, . . . , ik+1} ∩ {σ(i1), . . . , σ(ik+1)} = ∅.
There are 2n possibilities to choose pi1 , then pi2 can be chosen in 2n − 2
ways and so on. Since the order of the points is not taken into account, Ak

consists of
2n · (2n − 2) · · · (2n − 2k)

(k + 1)!
= 2k+1

(
n

k + 1

)
elements. �
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Exercise 4.13. Show that for any S, U ∈ Gk(Π) the intersection of all
apartments of Gk(Π) containing S and U coincides with {S, U}.

Consider the set
J = {1, . . . , n,−1, . . . ,−n}.

Recall that a subset X ⊂ J is called singular if
j ∈ X =⇒ −j �∈ X.

We define the polar Johnson graph PJ(n, k), k ∈ {0, 1, . . . , n − 1}, as the
graph whose vertex set is formed by all singular subsets consisting of k + 1
elements. Two such subsets are connected by an edge if their intersection
consists of k elements, and in the case when k < n−1, we also require that
their union is singular. Then PJ(n, n−1) coincides with the n-dimensional
hypercube graph Hn. By the definition, a subset of P = G0(Π) is a frame
of Π if the restriction of Γ0(Π) to this subset is isomorphic to PJ(n, 0).

For every subset X ⊂ Gk(Π) we denote by Γ(X ) the restriction of the
Grassmann graph Γk(Π) to X . Then Γ(Ak) is isomorphic to the polar
Johnson graph PJ(n, k). In the case when 0 < k < n − 1, the maximal
cliques of Γ(Ak) are the intersections of Ak with the stars

[M, N ]k, M ∈ Ak−1, N ∈ An−1,

and the tops
〈T ]k, T ∈ Ak+1

(if k = n− 2 then the first possibility is not realized); every maximal clique
of Γ(Ak) is an independent subset spanning a maximal singular space of
Gk(Π). The maximal cliques of Γ(An−1) are pairs of adjacent elements; for
every S ∈ An−1 there are precisely n elements S1, . . . , Sn ∈ An−1 adjacent
with S and

S ∩ S1, . . . , S ∩ Sn

form a base of the top 〈S]n−2.
The following example shows that the Grassmann space Gk(Π) does not

need to be spanned by apartments of Gk(Π).

Example 4.12. Suppose that Π = ΠΩ, where Ω is a non-degenerate trace-
valued reflexive form defined on an n-dimensional vector space V . The
Witt index of Ω is assumed to be less than n

2 . Every frame of Π spans a
proper subspace U in ΠV . The associated apartment of Gk(Π) is contained
in the subspace

{ S ∈ Gk(Π) : S ⊂ U }
By Lemma 4.7, this is a proper subspace of Gk(Π).
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Let M be an m-dimensional singular subspace of Π. Consider the
parabolic subspace [M〉k, m < k. We take any frame of Π which con-
tains a subset spanning M ; the intersection of [M〉k with the associated
apartment of Gk(Π) is called an apartment of our parabolic subspace. By
Lemma 4.4, the natural collineation of [M〉k to the Grassmann space of
index k − m − 1 associated with the polar space [M〉m+1 (Example 4.6)
establishes a one-to-one correspondence between apartments. The restric-
tions of the Grassmann graph Γk(Π) to apartments of [M〉k are isomorphic
to the polar Johnson graph PJ(n − m − 1, k − m − 1); in particular, the
restriction of Γn−1(Π) to an apartment of [M〉n−1 is isomorphic to the
(n − m − 1)-dimensional hypercube graph.

Consider a subset X ⊂ Gn−1(Π) and for every S ∈ X denote by XS

the set of all elements of X adjacent with S. We say that X is locally
independent if for every S ∈ X the set of all S∩U , U ∈ XS , is an independent
subset of 〈S]n−2. Apartments of Gn−1(Π) and apartments in parabolic
subspaces of Gn−1(Π) are locally independent.

Theorem 4.14 ([Cooperstein, Kasikova and Shult (2005)]). Let X
be a locally independent subset of Gn−1(Π) such that Γ(X ) is isomorphic
to the m-dimensional hypercube graph, 2 ≤ m ≤ n. If m = n then X is an
apartment of Gn−1(Π); in the case when m < n, this is an apartment in a
parabolic subspace of Gn−1(Π).

The proof is similar to the proof of Theorem 3.8.

Proof. Let S ∈ X . There are precisely m elements of X adjacent with
S; we denote them by S1, . . . , Sm. Then

M(S) := S ∩ S1 ∩ · · · ∩ Sm

is an (n−m−1)-dimensional singular subspace and for every i ∈ {1, . . . , m}
the singular subspace

Xi :=
⋂
j �=i

(S ∩ Sj)

is (n−m)-dimensional. The set formed by all Xi will be denoted by B0(S);
this is a base of [M(S), S]n−m if m < n and a base of the singular subspace
S if m = n.

Let U be an element of X adjacent with S. For every S′ ∈ X adjacent
with S and distinct from U there exists unique U ′ ∈ X adjacent with both
S′, U and non-adjacent with S (this follows directly from the fact that Γ(X )
is isomorphic to Hm). It is not difficult to see that

S′ ∩ S ∩ U = U ′ ∩ S ∩ U.
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This implies the following:

(1) M(S) = M(U),
(2) every X ∈ B0(S) satisfying X ⊂ S ∩ U belongs to B0(U); therefore,

B0(S)∩B0(U) consists of m−1 elements and there is a unique element
of B0(S) which does not belong to B0(U).

By connectedness of polar Grassmann spaces, we have
M(S) = M(U) ∀ S, U ∈ X ;

in what follows this (n − m − 1)-dimensional singular subspace will be
denoted by M .

For every S ∈ X we denote by B(S) the union of all B0(U) such that
U ∈ X is adjacent with S. Then B(S) consists of 2m elements; moreover,
this is a frame of the polar space [M〉n−m if m < n and a frame of Π if
m = n. Now, we show that B(S) coincides with B(U) if S, U ∈ X are
adjacent.

If X ∈ B0(S) then X ∈ B(U) (since B0(S) is contained in B(U) by
the definition). Consider the case when X ∈ B0(S′) \ B0(S) for a certain
S′ ∈ X \ {U} adjacent with S. We take U ′ ∈ X adjacent with both S′ and
U . Then S ∩ S′ and U ′ ∩ S′ are distinct hyperplanes of S′; since X is not
contained in S ∩ S′ (X �∈ B0(S)), we have X ⊂ U ′ ∩ S′ which means that
X ∈ B0(U ′) ⊂ B(U).

By connectedness,
B(S) = B(U) ∀ S, U ∈ X ;

denote this set by B. In the case when m = n, this is a frame of Π and X
is the associated apartment of Gn−1(Π). If m < n then B is a frame of the
polar space [M〉n−m and X is the associated apartment of the parabolic
subspace [M〉n−1. �

Remark 4.15. In the general case, the Grassmann space Gn−1(Π) and its
parabolic subspaces are not spanned by apartments. By this reason, we
cannot use Theorem 4.14 to prove an analogue of Theorem 3.1. However,
in some special cases this is possible, see [Cooperstein, Kasikova and Shult
(2005)].

4.8.2 Apartments in half-spin Grassmannians

Now suppose that Π is a polar space of type Dn and n ≥ 4. Let B be a
frame of Π and An−1 be the associated apartment of Gn−1(Π). Then

Aδ := An−1 ∩ Gδ(Π), δ ∈ {+,−},
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is the apartment of the half-spin Grassmannian Gδ(Π) associated with the
frame B.

Proposition 4.27. |Aδ| = 2n−1.

Proof. This follows from Proposition 4.26, since |A+| = |A−| and An−1

is the disjoint union of A+ and A−. �

Exercise 4.14. Show that for any S, U ∈ Gδ(Π) the intersection of all
apartments of Gδ(Π) containing S and U coincides with {S, U}.

The vertex set of the hypercube graph Hn (the set of all singular subsets
consisting of n elements) can be decomposed in two disjoint subsets J+ and
J− (Example 2.2). The distance between two vertices is odd if and only
if one of them belongs to J+ and the other belongs to J−. The distance
between any two vertices from Jδ, δ ∈ {+,−}, is even. The half-cube graph
1
2Hn is the graph whose vertex set is Jδ and whose edges are pairs of vertices
at the distance 2 (this construction does not depend on δ ∈ {+,−}). Note
that 1

2H4 is isomorphic to PJ(4, 0).
If X ⊂ Gδ(Π) then we write Γ(X ) for the restriction of the Grassmann

graph Γδ(Π) to the set X . It is clear that Γ(Aδ) is isomorphic to the half-
cube graph 1

2Hn. The maximal cliques of Γ(Aδ) are the intersections of Aδ

with the stars

[S〉δ, S ∈ An−4,

and the special subspaces

[U ]δ, U ∈ G−δ(Π);

they will be called stars and special subsets of Aδ (respectively). Every
maximal clique of Γ(Aδ) is an independent subset spanning a maximal
singular space of Gδ(Π).

Let M be an m-dimensional singular subspace of Π and m < n − 4.
Consider the parabolic subspace [M〉δ of the half-spin Grassmann space
Gδ(Π) (Example 4.8). The definition of apartments in [M〉δ is standard.
We identify every U ∈ [M〉δ with the subspace [M, U ]m+1 in the polar space
[M〉m+1. In the present case, [M〉m+1 is a polar space of type Dn−m−1

and this correspondence is a collineation of [M〉δ to one of the half-spin
Grassmann spaces of [M〉m+1. By Lemma 4.4, this collineation establishes
a one-to-one correspondence between apartments. The restrictions of the
Grassmann graph Γδ(Π) to apartments of [M〉δ are isomorphic to the half-
cube graph 1

2Hn−m−1.
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Theorem 4.15 ([Cooperstein, Kasikova and Shult (2005)]). Let Π
be a polar space of type Dn, n ≥ 4, and X be a subset of Gδ(Π), δ ∈ {+,−},
such that Γ(X ) is isomorphic to the half-cube graph 1

2Hm, 4 ≤ m ≤ n,
and every maximal clique of Γ(X ) is an independent subset of the half-spin
Grassmann space Gδ(Π). If m = n then X is an apartment of Gδ(Π); in the
case when m < n, this is an apartment in a parabolic subspace of Gδ(Π).

If Π is of type D4 then the half-spin Grassmann spaces of Π are polar
spaces of type D4 and every apartment of Gδ(Π), δ ∈ {+,−}, is a frame
of Gδ(Π). Since frames are independent subsets of polar spaces, Theorem
4.15 gives the following.

Corollary 4.4. If Π is a polar space of type D4 then the family of all
frames of the polar space Gδ(Π), δ ∈ {+,−}, coincides with the family of
all apartments of Gδ(Π).

Proposition 4.28. If Π is a polar space of type Dn, n ≥ 4, then half-spin
Grassmann space Gδ(Π), δ ∈ {+,−}, is spanned by every apartment of
Gδ(Π).

Proof. In the case when n = 4, this follows immediately from Proposi-
tion 4.9 and Corollary 4.4. Suppose that n ≥ 5 and prove the statement
induction by n. Let B = {p1, . . . , p2n} be a frame of Π and A be the asso-
ciated apartment of Gδ(Π). Denote by X the subspace of Gδ(Π) spanned
by A.

Every [pi〉1 is a polar space of type Dn−1 and [pi〉δ can be identified with
one of the half-spin Grassmann spaces of this polar space. Then A ∩ [pi〉δ
is the apartment of [pi〉δ associated with the frame of [pi〉1 formed by all
lines pipj with j �= i, σ(i). By the inductive hypothesis, [pi〉δ is spanned by
A ∩ [pi〉δ and we have

[pi〉δ ⊂ X
for every i. Now consider S ∈ Gδ(Π) such that pi �∈ S for all i. We take any
U ∈ G−δ(Π) intersecting S in an (n − 2)-dimensional subspace and define

Si := 〈pi, U ∩ p⊥i 〉
for every i. Then Si belongs to [pi〉δ or coincides with U ; the second
possibility is realized if pi ∈ U . We denote by I the set of all i such that
pi �∈ U ; it is clear that I �= ∅. The intersection of all U ∩p⊥i , i ∈ I, is empty
(otherwise, there is a point collinear with all points of the frame B which
contradicts Corollary 4.1). This means that the projective space 〈U ]n−2 is
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spanned by the set of all U ∩ p⊥i , i ∈ I. Then the special subspace [U ]δ is
spanned by the set of all Si, i ∈ I. Since Si ∈ X for every i ∈ I, we get
S ∈ [U ]δ ⊂ X which completes our proof. �

Since every parabolic subspace [M 〉δ, M ∈ Gm(Π), can be identified with
one of the half-spin Grassmann spaces of the polar space [M〉m+1 such that
apartments correspond to apartments, Proposition 4.28 guarantees that
parabolic subspaces are spanned by apartments. As in Section 3.3, we get
the following.

Corollary 4.5. Every subspace of Gδ(Π), δ ∈ {+,−}, isomorphic to the
half-spin Grassmann space associated with a polar space of type Dm, m < n,
is parabolic.

4.8.3 Proof of Theorem 4.15

Let Π′ be a polar space of type Dm. We take any frame B of Π′ and consider
the associated apartments

A ⊂ Gm−1(Π′), Aδ ⊂ Gδ(Π′), δ ∈ {+,−}.
Let f : A+ → X be an isomorphism of Γ(A+) to Γ(X ).

Every maximal clique Z of Γ(X ) is contained in precisely one maximal
clique of Γδ(Π) (since Z is an independent subset of Gδ(Π) containing
more than 3 elements and the intersection of two distinct maximal cliques
of Γδ(Π) is not greater than a plane); we say that Z is a star of X or a
special subset of X if the maximal clique of Γδ(Π) containing Z is a star or
a special subspace, respectively. Every special subset S ⊂ A+ consists of
m elements. If f(S) is a star then m = 4. Therefore, f transfers special
subsets of A+ to special subsets of X if m ≥ 5.

Consider the case when m = 4. The graphs Γ(A+) and Γ(X ) are iso-
morphic to PJ(4, 0) and every maximal clique of these graphs consists of 4
elements. For any maximal cliques S and S′ of Γ(A+) there is a sequence
of maximal cliques

S = S0,S1, . . . ,Si = S′

such that |Sj−1 ∩ Sj | = 3 and Sj−1,Sj are of different types (one of them
is a star and the other is a special subset) for every j ∈ {1, . . . , i}. If the
intersection of two distinct maximal cliques of Γδ(Π) contains a triangle
then these cliques are of different types, and it is not difficult to prove that
one of the following possibilities is realized:



July 2, 2010 14:9 World Scientific Book - 9in x 6in ClassicalBuilding

Polar and Half-Spin Grassmannians 185

(1) special subsets go to special subsets and stars go to stars,
(2) special subsets go to stars and stars go to special subsets.

In the second case, we take any automorphism g of Γ(A+) satisfying (2)
(we leave its construction for the reader); then fg is an isomorphism of
Γ(A+) to Γ(X ) satisfying (1).

Therefore, we can assume that f transfers special subsets to special
subsets in all cases. Then for every U ∈ A− there exists U ′ ∈ G−δ(Π) such
that

f(A+ ∩ [U ]+) = X ∩ [U ′]δ.

We define f(U) := U ′ and denote by Y the subset of G−δ(Π) consisting of
all f(U), U ∈ A−. So, f is extended to a bijection of A to X ∪ Y. This
is an isomorphism of Γ(A) to Γ(X ∪ Y); indeed, S ∈ X and U ∈ Y are
adjacent (as elements of Gn−1(Π)) if and only if S ∈ [U ]δ, and the latter is
possible only in the case when f−1(S) ∈ [f−1(U)]+.

So, Γ(X ∪Y) is isomorphic to the m-dimensional hypercube graph and
we want to show that X ∪ Y is a locally independent subset of Gn−1(Π).

Let S ∈ X ∪ Y. As in the proof of Theorem 4.14, we consider

S1, . . . , Sm ∈ X ∪ Y
adjacent with S (all Si belong to Y if S ∈ X , and they are elements of X
if S ∈ Y). The dimension of the subspace

M(S) := S ∩ S1 ∩ · · · ∩ Sm

is not less than n − m − 1. In the case when S ∈ Y,

X ∩ [S]δ = {S1, . . . , Sm}
is an independent subset of [S]δ. This implies that all S ∩ Si form an inde-
pendent subset of 〈S]n−2 and the subspace M(S) is (n−m−1)-dimensional.

Now, suppose that S ∈ X . We take any U ∈ Y adjacent with S. For
every S′ ∈ Y \ {U} adjacent with S there exists unique U ′ ∈ X adjacent
with both S′ and U . As in the proof of Theorem 4.14, we have

S′ ∩ S ∩ U = U ′ ∩ S ∩ U.

This implies that

M(S) = M(U).

Hence M(S) is (n − m − 1)-dimensional which guarantees that all S ∩ Si

form an independent subset of 〈S]n−2.
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Therefore, X ∪ Y is locally independent. By Theorem 4.14, this is an
apartment in Gn−1(Π) (if m = n) or an apartment in a parabolic subspace
of Gn−1(Π) (if m < n). This gives the claim.

Remark 4.16. Our proof of Theorem 4.15 is different from the original
proof given in [Cooperstein, Kasikova and Shult (2005)].

4.9 Apartments preserving mappings

In this section, we suppose that Π = (P,L) and Π′ = (P ′,L′) are polar
spaces of same type Xn, X ∈ {C, D} and n ≥ 3; if X = D then we require
that n ≥ 4.

4.9.1 Apartments preserving bijections

The collineations of Gk(Π) to Gk(Π′) induced by collineations of Π to Π′

are apartments preserving. If our polar spaces are of type Dn then the same
holds for the collineations of Gδ(Π) to Gγ(Π′), δ, γ ∈ {+,−}, induced by
collineations of Π to Π′.

In the case when Π and Π′ are polar spaces of type D4, we have also
the following two types of additional collineations:

• the collineations of G1(Π) to G1(Π′) induced by collineations of Π to
the half-spin Grassmann spaces of Π′,

• the collineations of Gδ(Π′) to Gγ(Π′), δ, γ ∈ {+,−}, induced by
collineations of Π to G−γ(Π′).

By Corollary 4.4, these collineations are apartments preserving.

Theorem 4.16 (M. Pankov). Every apartments preserving bijection of
Gk(Π) to Gk(Π′) is a collineation of Gk(Π) to Gk(Π′) (it is a collinearion
of Π to Π′ if k = 0). If our polar spaces are of type Dn, n ≥ 4, then
every apartments preserving bijection of Gδ(Π) to Gγ(Π′), δ, γ ∈ {+,−}, is
a collineation of Gδ(Π′) to Gγ(Π′).

Remark 4.17. This result was proved in [Pankov 3 (2007)]; for some par-
tial cases it was established in [Pankov 4 (2004); Pankov 2 (2007)].

The proof is based on elementary properties of maximal inexact and
complement subsets; the adjacency relation will be characterized in terms
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of complement subsets. However, in opposite to Grassmannians of finite-
dimensional vector spaces, certain polar Grassmanians contain two different
types of complement subsets; this makes our proof more complicated.

All apartments preserving mappings will be described in Subsection
4.9.7.

4.9.2 Inexact subsets of polar Grassmannians

Let B = {p1, . . . , p2n} be a frame of Π and A be the associated apartment
of Gk(Π). Recall that A consists of all k-dimensional singular subspaces

〈pi1 , . . . , pik+1〉,
where

{i1, . . . , ik+1} ∩ {σ(i1), . . . , σ(ik+1)} = ∅.
If k = n− 1 then every element of A contains precisely one of the points pi

or pσ(i) for each i.
We write A(+i) and A(−i) for the sets consisting of all elements of A

which contain pi and do not contain pi, respectively. Note that

A(+i) = A(−σ(i))

if k = n − 1. For any i1, . . . , is and j1, . . . , ju belonging to {1, . . . , 2n} we
define

A(+i1, . . . , +is,−j1, . . . ,−ju)

as the intersection

A(+i1) ∩ · · · ∩ A(+is) ∩ A(−j1) ∩ · · · ∩ A(−ju).

Let R ⊂ A. We say that R is exact if there is only one apartment of
Gk(Π) containing R; otherwise, R is said to be inexact. If R ∩ A(+i) is
not empty then we define Si(R) as the intersection of all elements of R
containing pi; we will write Si(R) = ∅ in the case when the intersection of
R and A(+i) is empty. If

Si(R) = pi

for all i then the subset R is exact. However, in contrast to Grassmannians
of finite-dimensional vector space, the converse fails.

Lemma 4.17. Let R ⊂ A. If there exist distinct i, j such that

pj ∈ Si(R) and pσ(i) ∈ Sσ(j)(R).

Then R is inexact.
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Proof. It is clear that j �= σ(i). On the line pipj we choose a point p′i
distinct from pi and pj . The point p′i is collinear with a unique point of the
line pσ(i)pσ(j); denote this point by p′σ(j). Then

(B \ {pi, pσ(j)}) ∪ {p′i, p′σ(j)}
is a frame of Π. This frame defines a new apartment of Gk(Π) containing
the subset R. �

Remark 4.18. In particular, we established that

B \ {pi, pj}, j �= i, σ(i)

is an inexact subset of B (frames are apartments in the Grassmannian
G0(Π) = P ).

Lemma 4.18. If Π is a polar space of type Cn then for each i ∈ {1, . . . , 2n}
there exists a point p′i �= pi, pσ(i) such that

(B \ {pi}) ∪ {p′i} and (B \ {pσ(i)}) ∪ {p′i}
are frames of Π.

Proof. Let S and U be disjoint (n − 2)-dimensional singular subspaces
spanned by subsets of B \ {pi, pσ(i)}. Since Π is a polar space of type Cn,
there exists a maximal singular subspace

S′ �= 〈S, pi〉, 〈S, pσ(i)〉
containing S. Lemma 4.2 implies the existence of a point p ∈ S′ satisfying
p ⊥ U . This point does not belong to S (for every point q ∈ S we have
q �⊥ U). Hence p is non-collinear with pi and pσ(i). Since p ⊥ (S ∪ U) and

B \ {pi, pσ(i)} ⊂ S ∪ U,

p is collinear with all points of B \ {pi, pσ(i)}. The point p′i := p is as
required. �

Lemma 4.19. If S and U are singular subspaces spanned by subsets of B

then S⊥ ∩ U is spanned by a subset of B.

Proof. The case when S ⊥ U is trivial. Suppose that S �⊥ U and denote
by X the set of all points from U ∩ B which are not contained in S⊥.
The singular subspace spanned by (U ∩ B) \ X is contained in S⊥ ∩ U .
If this subspace does not coincide with S⊥ ∩ U then S⊥ has a non-empty
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intersection with 〈X〉. Let p be a point belonging to this intersection. There
exists pi ∈ X such that

(X \ {pi}) ∪ {p} (4.6)

is a base of 〈X〉. It is clear that pσ(i) belongs to S and it is collinear with
all points of the base (4.6). Then pσ(i) ⊥ 〈X〉 which contradicts pi ∈ 〈X〉.
Thus S⊥ does not intersect 〈X〉 and S⊥ ∩ U is spanned by (U ∩ B) \ X .�

Proposition 4.29. If k = n − 1 then A(−i) is inexact, but this inexact
subset is not maximal. For every k ∈ {0, . . . , n−2} the following assertions
are fulfilled:

(1) A(−i) is a maximal inexact subset if Π is of type Cn,
(2) A(−i) is exact if Π is of type Dn.

Proof. Suppose that k = n− 1. In this case, the subset A(−i) coincides
with A(+σ(i)). Let us take any U belonging to A \A(−i) = A(+i). Then

Si(A(−i) ∪ {U}) = U,

Sσ(i)(A(−i) ∪ {U}) = Sσ(i)(A(−i)) = pσ(i).

Since for every j �= i, σ(i) the intersection of all elements of A(−i) contain-
ing pj is the line pjpσ(i), we get

Sj(A(−i) ∪ {U}) = pj , pj ∈ U,

Sj(A(−i) ∪ {U}) = pjpσ(i), pj �∈ U.

In the second case, pσ(j) belongs to U ; then

pσ(j) ∈ Si(A(−i) ∪ {U}) and pσ(i) ∈ Sj(A(−i) ∪ {U}).
By Lemma 4.17, the subset

A(−i) ∪ {U}
is inexact. This means that A(−i) is inexact; moreover, this inexact subset
is not maximal.

Consider the case when k ≤ n − 2. We have

Sj(A(−i)) = pj for j �= i (4.7)

(it is not difficult to choose two elements of A(−i) whose intersection is
precisely the point pj). Therefore, if A(−i) is contained in the apartment
of Gk(Π) associated with a frame B′ �= B then

B′ = (B \ {pi}) ∪ {p}
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and p �= pi. The point p is collinear with all points of B \ {pi, pσ(i)} and
non-collinear with pσ(i). Also we have p �⊥ pi (otherwise the point p is
contained in every maximal singular subspace spanned by pi and a subset
of B \ {pi, pσ(i)} which implies pi = p, see Proposition 4.6). If S is an
(n−2)-dimensional singular subspace spanned by a subset of B \{pi, pσ(i)}
then the points p, pi, pσ(i) define three distinct maximal singular subspaces
containing S which is impossible if Π is of type Dn. Thus A(−i) is exact if
Π is of type Dn.

Suppose that Π is a polar space of type Cn. By Lemma 4.18, there is a
point p′i �= pi, pσ(i) such that

(B \ {pi}) ∪ {p′i}
is a frame of Π. The associated apartment of Gk(Π) contains A(−i). The
subset A(−i) is inexact.

Let U be an element of A \ A(−i) = A(+i). Then U is spanned by
pi and some points pi1 , . . . , pik

. By Lemma 4.19, pi is the unique point of
U collinear with all points pσ(i1), . . . , pσ(ik) and (4.7) guarantees that the
subset

A(−i) ∪ {U}
is exact. Since this is true for every U ∈ A \ A(−i), the inexact subset
A(−i) is maximal. �

Consider the subset

Rij := A(+i, +j) ∪ A(+σ(i), +σ(j)) ∪ A(−i,−σ(j)), j �= i, σ(i).

It is clear that

Rij = A(+i, +j) ∪A(−i) if k = n − 1

and

Rij = B \ {pi, pσ(j)} if k = 0.

Now we prove the following equality

A \Rij = A(+i,−j) ∪ A(+σ(j),−σ(i)). (4.8)

Proof. Let U be an element of A \ Rij . Then U does not belong to
A(−i,−σ(j)) and we have

U ∈ A(+i) or U ∈ A(+σ(j)).

In the first case,

U �∈ A(+i, +j) =⇒ U ∈ A(+i,−j).
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In the second case,

U �∈ A(+σ(i), +σ(j)) =⇒ U ∈ A(+σ(j),−σ(i)).

Therefore,

A \Rij ⊂ A(+i,−j) ∪ A(+σ(j),−σ(i)).

Since A(+i,−j) and A(+σ(j),−σ(i)) do not intersect Rij , the inverse in-
clusion holds. �

Proposition 4.30. The subset Rij is inexact; moreover, it is a maximal
inexact subset, except the case when k = 0 and Π is of type Cn.

Proof. Let k = 0. Then Rij = B \ {pi, pσ(j)} is an inexact subset
(Remark 4.18). If Π is of type Cn then A(−i) = B \ {pi} is an inexact
subset containing Rij (Proposition 4.29) and the inexact subset Rij is not
maximal. In the case when Π is of type Dn, the subsets

A(−i) = B \ {pi} and A(−σ(j)) = B \ {pσ(j)}
are exact (Proposition 4.29) which means that Rij is a maximal inexact
subset.

Suppose that k ≥ 1. Since

Si(Rij) = pipj and Sσ(j)(Rij) = pσ(j)pσ(i),

Lemma 4.17 implies that the subset Rij is inexact.
For every l �= i, σ(j) we can choose two elements of Rij whose intersec-

tion is pl (we leave the details for the reader). This means that

Sl(Rij) = pl if l �= i, σ(j).

By (4.8), for every U belonging to A\Rij one of the following possibilities
is realized:

• U ∈ A(+i,−j) intersects Si(Rij) = pipj precisely in the point pi; since
pσ(j) is the unique point on the line Sσ(j)(Rij) = pσ(j)pσ(i) collinear
with pi, the set Rij ∪ {U} is exact.

• U ∈ A(+σ(j),−σ(i)) intersects Sσ(j)(Rij) = pσ(j)pσ(i) precisely in the
point pσ(j); since pi is the unique point on the line Si(Rij) = pipj

collinear with pσ(j), the set Rij ∪ {U} is exact.

Therefore, Rij ∪ {U} is exact for each U ∈ A \ Rij and the inexact subset
Rij is maximal. �
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If the set A(−i) is inexact (see Proposition 4.29) then it will be called
an inexact subset of first type. Similarly, if Rij is inexact (see Proposition
4.30) then it is said to be an inexact subset of second type.

Proposition 4.31. Every maximal inexact subset is of first type or of sec-
ond type. In particular, the following assertions are fulfilled:

(1) if k = n − 1 then each maximal inexact subset is of second type,
(2) if k ∈ {1, . . . , n − 2} and Π is of type Cn then each maximal inexact

subset is of first type or of second type,
(3) if k ∈ {0, . . . , n − 2} and Π is of type Dn then each maximal inexact

subset is of second type,
(4) if k = 0 and Π is of type Cn then each maximal inexact subset is of

first type.

Proof. Let k = 0. The statement is trivial if Π is of type Cn.
Suppose that Π is of type Dn. We need to show that B \ {pi, pσ(i)} is

exact. Assume that there exist points p′i, p
′
σ(i) such that

(B \ {pi, pσ(i)}) ∪ {p′i, p′σ(i)}
is a frame. For every (n − 2)-dimensional singular subspace S spanned by
a subset of B \ {pi, pσ(i)} the pairs of subspaces

〈S, pi〉, 〈S, pσ(i)〉 and 〈S, p′i〉, 〈S, p′σ(i)〉
are coincident (since Π is of type Dn). This means that {pi, pσ(i)} coincides
with {p′i, p′σ(i)} (we leave the details for the reader) and B \ {pi, pσ(i)} is
exact.

Let k ≥ 1 and R be a maximal inexact subset of A. First, we consider
the case when all Si(R) are non-empty. Denote by I the set of all numbers
i such that the dimension of Si(R) is greater than zero. The subset R is
inexact and I is non-empty. Suppose that for certain l ∈ I the subspace
Sl(R) is spanned by pl, pj1 , . . . , pju and the subspaces

M1 := Sσ(j1)(R), . . . , Mu := Sσ(ju)(R)

do not contain the point pσ(l). Then pl is collinear with all points of the
subspaces M1, . . . , Mu. Since

pj1 �⊥ M1, . . . , pju �⊥ Mu,

pl is the unique point of Sl(R) collinear with all points of M1, . . . , Mu

(Lemma 4.19). If the same holds for every l ∈ I then Lemma 4.19 implies
that R is exact. Therefore, there exist i ∈ I and j �= i, σ(i) such that

pj ∈ Si(R) and pσ(i) ∈ Sσ(j)(R).
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Then R is contained Rij . Indeed, for every U ∈ R one of the following
possibilities is realized:

• pi ∈ U then U ∈ A(+i, +j) ⊂ Rij ,
• pσ(j) ∈ U then U ∈ A(+σ(i), +σ(j)) ⊂ Rij ,
• pi, pσ(j) �∈ U then U ∈ A(−i,−σ(j)) ⊂ Rij .

We have R = Rij , since the inexact subset R is maximal.
Now suppose that Si(R) = ∅ for certain i. Then R is contained in

A(−i) and we get a maximal inexact subset of first type if Π is of type Cn.
If the polar space is of type Dn then A(−i) is exact and one of the following
possibilities is realized:

(1) Sj(R) = ∅ for certain j �= i, σ(i). Then R ⊂ A(−j,−i) and R is a
proper subset of Rj σ(i).

(2) All Sl(R), l �= i, σ(i), are non-empty and there exists j �= i, σ(i) such
that the subspace Sj(R) contains pσ(i). Since every U ∈ R \ A(+j)
is contained in A(−j,−i) and every U ∈ R ∩ A(+j) belongs to
A(+j, +σ(i)), we obtain the inclusion

R ⊂ A(+j, +σ(i)) ∪A(−j,−i).
As in the previous case, R is a proper subset of Rj σ(i).

(3) Each Sj(R), j �= i, σ(i) is non-empty and does not contain pσ(i).

In the cases (1) and (2), R is a proper subset of a maximal inexact subset
which contradicts our assumption.

Consider the case (3). Since the subset R is inexact, there exists a frame
B′ �= B such that R is contained in the associated apartment of Gk(Π). We
denote by I the set of all numbers j �= i, σ(i) such that the dimension of
Sj(R) is greater than zero. If I is empty then

B′ = (B \ {pi, pσ(i)}) ∪ {p′i, p′σ(i)}. (4.9)
As in the case when k = 0, we get {pi, pσ(i)} = {p′i, p′σ(i)} which implies
that B = B′. Therefore, I �= ∅.

Let l ∈ I. If Sl(R) is spanned by pl, pj1 , . . . , pju (by our assumption,
these points are distinct from pi and pσ(i)) and the subspaces

M1 := Sσ(j1)(R), . . . , Mu := Sσ(ju)(R)
do not contain pσ(l) then pl is the unique point of Sl(R) collinear with
all points of M1, . . . , Mu. If the same holds for all elements of I then, by
Lemma 4.19, we get (4.9) again. As above, we establish that R is contained
in a certain complement subset Rjm, j, m �= i, σ(i). The inclusion

R ⊂ A(−i) ∩Rjm

means that R is a proper subset of Rjm which is impossible. �



July 2, 2010 14:9 World Scientific Book - 9in x 6in ClassicalBuilding

194 Grassmannians of Classical Buildings

4.9.3 Complement subsets of polar Grassmannians

Let A be as in the previous subsection. We say that R ⊂ A is a complement
subset if A \ R is a maximal inexact subset. A complement subset is said
to be of first type or of second type if the corresponding maximal inexact
subset is of first type or of second type, respectively. If A(−i) is a maximal
inexact subset (this fails in some cases) then the associated complement
subset is A(+i). By (4.8), the maximal inexact subset Rij (k > 0 or Π is
of type Dn) gives the complement subset

Cij := A(+i,−j) ∪ A(+σ(j),−σ(i))

which coincides with A(+i, +σ(j)) if k = n − 1. Note that

Cij = Cσ(j)σ(i).

The follows assertions follow immediately from Proposition 4.31:

(1) if k = n − 1 then each complement subset is of second type;
(2) if k ∈ {1, . . . , n− 2} and Π is of type Cn then each complement subset

is of first type or of second type;
(3) if k ∈ {0, . . . , n− 2} and Π is of type Dn then each complement subset

is of second type; in the case when k = 0, this is a pair of collinear
points;

(4) if k = 0 and Π is of type Cn then each complement subset is of first
type (a single point).

Now we characterize the adjacency and weak adjacency relations of
Gk(Π), k ≥ 1, in terms of complement subsets of second type. In the case
when k = n − 1 or the polar space is of type Dn, each complement subset
is of such type. If S, U are distinct elements of A then we write c(S, U) for
the number of compliment subsets of second type in A containing both S

and U . Let us define

mc := max { c(S, U) : S, U ∈ A, S �= U }.

Lemma 4.20. Let k ≥ 1 and S, U be distinct elements of A. The following
assertions are fulfilled:

(1) S, U are adjacent if and only if c(S, U) = mc,
(2) if k < n − 1 and n �= 4 or k �= 1 then S, U are weakly adjacent if and

only if c(S, U) = mc − 1.
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Proof. Let S, U ∈ A and m be the dimension of S ∩U . If k = n−1 then
the complement subset A(+i, +j) contains both S, U if and only if the line
pipj is contained S ∩ U ; thus

c(S, U) =
(

m + 1
2

)
and we get the claim.

Suppose that 1 ≤ k ≤ n − 2. If the complement subset Cij = Cσ(j)σ(i)

contains S and U then one of the following possibilities is realized:

(A) the subsets A(+i,−j) and A(+σ(j),−σ(i)) both contain S and U ;
(B) only one of the subsets A(+i,−j) or A(+σ(j),−σ(i)) contains both

S, U ;
(C) each of the subsets A(+i,−j) and A(+σ(j),−σ(i)) contains precisely

one of the subspaces.

The case (A). We have

S, U ∈ A(+i,−j) ∩ A(+σ(j),−σ(i))

if and only if

pi, pσ(j) ∈ S ∩ U.

Thus there are precisely (
m + 1

2

)
distinct Cij = Cσ(j)σ(i) satisfying (A).

The case (B). If S and U belong to A(+i,−j) then A(+σ(j),−σ(i))
does not contain the subset {S, U}. As above, pi ∈ S ∩ U and there are
m + 1 possibilities for i. Also we have

pj �∈ S ∪ U and pσ(j) �∈ S ∩ U.

Hence there are

2n − 2(k − m) − 2(m + 1) = 2(n − k − 1)

possibilities for j. This means that there exist precisely

2(m + 1)(n − k − 1)

distinct Cij = Cσ(j)σ(i) satisfying (B).
The case (C). Suppose that

S ∈ A(+i,−j) \ A(+σ(j),−σ(i)) and U ∈ A(+σ(j),−σ(i)) \ A(+i,−j).
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Then pσ(j) ∈ U . Since U does not belong to A(+i,−j) and pj �∈ U , we
have pi �∈ U . Similarly, pi ∈ S implies that pσ(j) �∈ S. So,

pi ∈ S \ U and pσ(j) ∈ U \ S.

Since pσ(i) �∈ U and pj �∈ S,

pi ⊥ U and pσ(j) ⊥ S.

The set B \U contains precisely 2(n−k−1) points collinear with all points
of U and B ∩ (S \ U) contains not greater than n − k − 1 such points
(if pl ∈ B \ U is collinear with all points of U then the same holds for
pσ(l) ∈ B \ U , but S \ U does not contain at least one of these points).
Similarly, U \ S contains not greater than n − k − 1 points of B collinear
with all points of S. Therefore, there exist at most

l(m) := min{(k − m)2, (n − k − 1)2}
distinct Cij = Cσ(j)σ(i) satisfying (C). In the case when m = k − 1 (S and
U are adjacent or weakly adjacent), we have

B ∩ (S \ U) = {pu} and B ∩ (U \ S) = {pv}.
If S and U are adjacent then v �= σ(u) and Cuσ(v) = Cvσ(u) is the unique
compliment subset satisfying (C). If S and U are weakly adjacent then
there are no compliment subsets of such kind.

So, we established that

c(S, U) ≤
(

m + 1
2

)
+ 2(m + 1)(n − k − 1) + l(m);

moreover,

c(S, U) =
(

k

2

)
+ 2k(n − k − 1) + 1

if S, U are adjacent and

c(S, U) =
(

k

2

)
+ 2k(n − k − 1)

if they are weakly adjacent. A direct verification shows that(
k

2

)
+ 2k(n − k − 1) ≥

(
m + 1

2

)
+ 2(m + 1)(n − k − 1) + l(m)

for m ≤ k − 2 and we get the equality only in the case when n = 4 and
k = 1. �
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Remark 4.19. Suppose that Π is of type Cn and 1 ≤ k ≤ n − 2. In
this case, the adjacency and weak adjacency relations can be characterized
in terms of maximal inexact subsets of first type. For the intersection of
2n−k−2 distinct maximal inexact subsets of first type one of the following
possibilities is realized:

• the intersection is empty,
• it consists of k + 2 mutually adjacent elements of A,
• it consists of 2 weakly adjacent elements of A.

Lemma 4.21. Suppose that 1 ≤ k ≤ n − 2 and Π is a polar space of type
Cn. Let R be a complement subset of A. If R is of first type then there are
precisely 2n − 1 distinct complement subsets of A disjoint from R. If R is
of second type then there are precisely 3 distinct complement subsets of A
disjoint from R.

Proof. We take any l ∈ {1, . . . , 2n} and consider the complement subset
A(+l). There is only one complement subset of first type which does not
intersect A(+l); this is A(+σ(l)). If a complement subset

Cij = Cσ(j)σ(i) = A(+i,−j) ∪A(+σ(j),−σ(i))
is disjoint from A(+l) then

i = σ(l) or j = l;
in other words, this is Cσ(l)m = Cσ(m)l and we have 2n − 2 possibilities for
m (since m �= l, σ(l)). Therefore, there are precisely 2n − 2 + 1 distinct
complement subsets of A disjoint from A(+l).

Now let us fix i, j ∈ {1, . . . , 2n} such that j �= i, σ(i) and consider the
associated complement subset Cij = Cσ(j)σ(i). There are only two comple-
ment subsets of first type disjoint from it:

A(+σ(i)) and A(+j).
Suppose that Ci′j′ does not intersect Cij . Then

A(+i,−j) ∩ A(+i′,−j′) = ∅ =⇒ i′ = σ(i) or i′ = j or j′ = i.

Using the equalities
A(+σ(j),−σ(i)) ∩ A(+i′,−j′) = ∅,
A(+i,−j) ∩ A(+σ(j′),−σ(i′)) = ∅,

A(+σ(j),−σ(i)) ∩ A(+σ(j′),−σ(i′)) = ∅,
we establish that

i′ = j, j′ = i or i′ = σ(i), j′ = σ(j).
Thus Cji = Cσ(i)σ(j) is the unique complement subset of second type disjoint
from Cij = Cσ(j)σ(i). �
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Proposition 4.32. Let f : Gk(Π) → Gk(Π′) be an apartments preserving
mapping and k ≥ 1. Then f is adjacency preserving (two elements of
Gk(Π) are adjacent if and only if their images are adjacent). In the case
when k ≤ n − 2, if k �= 1 or our polar spaces are not of type D4 then f

is weak adjacency preserving (two elements of Gk(Π) are weakly adjacent if
and only if their images are weakly adjacent).

Proof. First of all, recall that the mapping f is injective. Let S and U

be distinct elements of Gk(Π) and A be an apartment of Gk(Π) containing
them. Then f(S) and f(U) belong to the apartment f(A). As in the
proof of Proposition 3.6, we show that f transfers inexact subsets of A to
inexact subsets of f(A). Since A and f(A) have the same number of inexact
subsets (Π and Π′ are polar spaces of the same type), each inexact subset
of f(A) is the image of a certain inexact subset of A. Then an inexact
subset of A is maximal if and only if the same holds for its image. Thus R
is a complement subset of A if and only if f(R) is a complement subset of
f(A).

In the case when k = n − 1 or our polar spaces are of type Dn, all
complement subsets are of second type; if 1 ≤ k ≤ n−2 and the polar spaces
are of type Cn then, by Lemma 4.21, the mapping f preserves the types of
all maximal inexact and complement subsets. It follows from Lemma 4.20
that S and U are adjacent if and only if f(S) and f(U) are adjacent.

Suppose that 1 ≤ k ≤ n − 2. If n �= 4 or k �= 1 then Lemma 4.20 shows
that S and U are weakly adjacent if and only if their images are weakly
adjacent. In the case when k = 1 and the polar spaces are of type C4, this
statement follows immediately from Remark 4.19. �

Remark 4.20. If the polar spaces are of type D4 then there exist col-
ineations of G1(Π) to G1(Π′) which do not preserve the weak adjacency
relation (Remark 4.13) and the second part of Proposition 4.32 does not
hold in this case.

Remark 4.21. If our polar spaces are of type Cn then Gk(Π), 1 ≤ k ≤
n− 2, contains complement subsets of both types. Denote by n1(n, k) and
n2(n, k) the numbers of elements in complement subsets of first and second
type, respectively (it is clear that complement subsets of the same type
have the same number of elements). Every apartments preserving mapping
does not change the types of complement subsets if n1(n, k) �= n2(n, k).
However, n1(n, k) = n2(n, k) for some pairs n, k and we need Lemma 4.21
to distinguish complement subsets of different types.
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4.9.4 Inexact subsets of half-spin Grassmannians

Now we suppose that Π is a polar space of type Dn and n ≥ 4. Let
B = {p1, . . . , p2n} be a frame of Π and A be the associated apartment of
Gδ(Π), δ ∈ {+,−}. Recall that it consists of all maximal singular subspaces

〈pi1 , . . . , pin〉 ∈ Gδ(Π),

where

{i1, . . . , in} ∩ {σ(i1), . . . , σ(in)} = ∅.
Every element of A contains precisely one of the points pi or pσ(i) for every
i. As in Subsection 4.9.2, we define A(+i), A(−i),

A(+i1, . . . , +is,−j1, . . . ,−ju)

and introduce the concepts of exact, inexact, and complement subsets. For
every subset R ⊂ A we denote by Si(R) the intersection of all elements of
A(+i) ∩R; if this subset is empty then we write Si(R) = ∅.
Proposition 4.33. If j �= i, σ(i) then

A(−i) ∪ A(+i, +j) (4.10)

is an inexact subset.

Proof. It is trivial that

pj ∈ Si(A(−i) ∪ A(+i, +j)) (4.11)

Suppose that S is an element of (4.10) containing pσ(j). Then S does not
contain pj and, by (4.11), we have pi �∈ S. The latter guarantees that
pσ(i) ∈ S. Therefore, pσ(i) belongs to every element of (4.10) containing
pσ(j) and

pσ(i) ∈ Sσ(j)(A(−i) ∪ A(+i, +j)).

As in the proof of Lemma 4.17, we construct a frame

(B \ {pi, pσ(j)}) ∪ {p′i, p′σ(j)}
which defines a new apartment of Gδ(Π) containing (4.10). �

Proposition 4.34. If R is a maximal inexact subsets of A then

R = A(−i) ∪A(+i, +j)

for certain i, j such that j �= i, σ(i).
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Proof. Since R is inexact, we have Si(R) �= pi for a certain number i.
If Si(R) is empty then R is contained in the non-maximal inexact subset
A(−i) which contradicts the assumption that the inexact subset R is maxi-
mal. Thus there exists pj ∈ Si(R) such that j �= i. An easy verification
shows that

R ⊂ A(−i) ∪ A(+i, +j).

Since the latter subset is inexact and the inexact subset R is maximal, the
inverse inclusion holds. �

The complement subset corresponding to A(−i) ∪ A(+i, +j) is

A(+i,−j) = A(+i, +σ(j)).

By Proposition 4.34, every compliment subset of A coincides with certain
A(+l, +m), m �= l, σ(l).

Lemma 4.22. Subspaces S, U ∈ A are adjacent if and only if there are
precisely (

n − 2
2

)
distinct complement subsets of A containing S and U .

Proof. See the proof of Lemma 4.20 in the case when k = n − 1. �

Remark 4.22. Suppose that n = 4. Then every complement subset of A
consists of two adjacent elements. On the other hand, Gδ(Π) is a polar
space of type D4 and A is a frame of this space; by Proposition 4.31, in
a polar space of type Dn every complement subset of a frame is a pair of
collinear points.

Proposition 4.35. Suppose that Π is a polar space of type Dn, n ≥ 4, and
f : Gδ(Π) → Gγ(Π′), δ, γ ∈ {+,−}, is an apartments preserving mapping.
Then f is adjacency preserving (two elements of Gδ(Π) are adjacent if and
only if their images are adjacent).

Proof. Let A be an apartment of Gδ(Π). As in the proof of Proposition
4.32, we establish that R is a complement subset of A if and only if f(R) is
a complement subset of the apartment f(A). Then Lemma 4.22 gives the
claim. �
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4.9.5 Proof of Theorem 4.16

By Subsection 4.6.1, we need to establish that every apartments preserving
bijection is an isomorphism between the associated Grassmann graphs. For
polar Grassmannians of index > 0 and half-spin Grassmannians this follows
immediately from Propositions 4.32 and 4.35. For Grassmannians of index
0 we have the following.

Proposition 4.36. For a mapping f : P → P ′ the following conditions are
equivalent:

(1) f is apartments (frames) preserving,
(2) f is a collinearity preserving injection (two points are collinear if and

only if their images are collinear).

Proof. The implication (2) =⇒ (1) easy follows from the frame definition.
(1) =⇒ (2). Let f : P → P ′ be a mapping which sends frames of

Π to frames of Π′. This mapping is injective. Since any two points are
contained in a certain frame, it is sufficient to show that two points in a
frame B = {p1, . . . , p2n} of Π are collinear if and only if their images are
collinear. As in the proof of Propositions 4.32, we establish that a subset
X ⊂ B is complement if and only if f(X) is a complement subset of the
frame f(B). In the case when Π and Π′ are of type Dn, each complement
subset of B is a pair of collinear points and we get the claim.

Suppose that our polar spaces are of type Cn. For each i ∈ {1, . . . , 2n}
there exists a point p′i such that

(B \ {pi}) ∪ {p′i} and (B \ {pσ(i)}) ∪ {p′i}
are frames of Π (Lemma 4.18). Then

(f(B) \ {f(pi)}) ∪ {f(p′i)} and (f(B) \ {f(pσ(i))}) ∪ {f(p′i)} (4.12)
are frames of Π′. Since f(B) is a frame, there are unique u, v ∈ {1, . . . , 2n}
such that

f(pi) �⊥ f(pu) and f(pσ(i)) �⊥ f(pv). (4.13)
It is clear that u �= v and f(p′i) is non-collinear with both f(pu), f(pv).
Thus there is no frame of Π′ containing the subset

{f(p′i), f(pu), f(pv)}.
We have

{f(pi), f(pσ(i))} = {f(pu), f(pv)}
(otherwise, one of the frames (4.12) contains f(p′i), f(pu), f(pv)). Then
(4.13) implies that u = σ(i) and v = i. Therefore, f(pi) �⊥ f(pσ(i)) which
guarantees that f(pi) is collinear with f(pj) if j �= σ(i). �
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4.9.6 Embeddings

Proposition 4.37. Every apartments preserving mapping f : P → P ′ is
an embedding of Π in Π′.

Proof. By Proposition 4.36, f is a collinearity preserving injection. Let
p1, p2 ∈ P be distinct collinear points and {p1, p2, . . . , p2n} be a frame of Π
containing them. We suppose that

pi �⊥ pi+n ∀ i ∈ {1, . . . , n}.
Then all p′i := f(pi) form a frame of Π′ and

p′i �⊥ p′i+n ∀ i ∈ {1, . . . , n}.
The line p1p2 is a maximal singular subspace of the generalized quadrangle

{p3, . . . , pn, pn+3, . . . , p2n}⊥

(Lemma 4.3) and we have

p1p2 = {p1, p2, p3, . . . , pn, pn+3, . . . , p2n}⊥.

Similarly, we obtain that

p′1p
′
2 = {p′1, p′2, p′3, . . . , p′n, p′n+3, . . . , p

′
2n}⊥.

Thus a point p ∈ P is on the line p1p2 if and only if f(p) is on the line
p′1p

′
2 = f(p1)f(p2). This means that f transfers lines to subsets of lines

and distinct lines go to subsets of distinct lines. �

Let f : P → P ′ be an apartments preserving mapping. By Proposition
4.37, it is an embedding of Π in Π′. For every singular subspace S of Π
there is a frame such that S is spanned by a subset of this frame. This
implies that f(S) consists of mutually collinear points and

dim〈f(S)〉 = dim S.

So, for every k ∈ {1, . . . , n − 1} we have the mapping

(f)k : Gk(Π) → Gk(Π′)

S → 〈f(S)〉.
An easy verification shows that this is an apartments preserving embedding
of Gk(Π) in Gk(Π′).

Similarly, we construct the apartments preserving embedding (f)δ of
Gδ(Π) in Gγ(Π′), δ, γ ∈ {+,−}, if our polar spaces are of type Dn.
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Theorem 4.17 (M. Pankov). Let 1 ≤ k ≤ n − 1. If k �= 1 or the po-
lar spaces are not of type D4 then every apartments preserving mapping
of Gk(Π) to Gk(Π′) is the embedding of Gk(Π) in Gk(Π′) induced by an
apartments preserving embedding of Π in Π′. If our polar spaces are of
type Dn and n ≥ 5 then every apartments preserving mapping of Gδ(Π) to
Gγ(Π′), δ, γ ∈ {+,−}, is the embedding of Gδ(Π) in Gγ(Π′) induced by an
apartments preserving embedding of Π in Π′.

Remark 4.23. In [Pankov 2 (2007)] a such kind result was proved for
symplectic Grassmannians; in [Pankov 3 (2007)] it was announced for all
Grassmannians associated with polar spaces of type Cn.

Now suppose that our polar spaces are of type D4. In this case, the
associated half-spin Grassmann spaces are polar spaces of type D4. Let f

be an apartments preserving embedding of Π in Gδ(Π′), δ ∈ {+,−}. Then
f induces an embedding of G1(Π) in G1(Π′); by Corollary 4.4, this embed-
ding is apartments preserving. Also f induces an apartments preserving
embedding of one of the half-spin Grassmann spaces of Π in G−δ(Π′).

Theorem 4.18 (M. Pankov). Suppose that the polar spaces are of type
D4. Then every apartments preserving mapping of G1(Π) to G1(Π′) is the
embedding of G1(Π) in G1(Π′) induced by an apartments preserving embed-
ding of Π in Π′ or in one of the half-spin Grassmann spaces of Π′. Similarly,
every apartments preserving mapping of Gδ(Π) to Gγ(Π′), δ, γ ∈ {+,−}, is
the embedding of Gδ(Π) in Gγ(Π′) induced by an apartments preserving
embedding of Π in Π′ or in G−γ(Π′).

4.9.7 Proof of Theorems 4.17 and 4.18

Let 1 ≤ k ≤ n − 1 and f : Gk(Π) → Gk(Π′) be an apartments preserving
mapping. By Proposition 4.32, it is adjacency preserving (two elements of
Gk(Π) are adjacent if and only if their images are adjacent). In the case
when k ≤ n− 2, the mapping f preserves the weak adjacency relation (two
elements of Gk(Π) are weakly adjacent if and only if their images are weakly
adjacent) if k �= 1 or the polar spaces are not of type D4.

1. If k = n − 1 then f maps lines to subsets of lines and induces a
mapping

fn−2 : Gn−2(Π) → Gn−2(Π′).
This mapping is injective (otherwise there exists a line of Gn−1(Π′) contain-
ing the images of two distinct lines of Gn−1(Π), this implies the existence
of non-adjacent elements of Gn−1(Π) whose images are adjacent).
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If 1 ≤ k ≤ n − 2 and f preserves the weak adjacency relation then it
transfers maximal cliques of Γw

k (Π) to cliques of Γw
k (Π′). Big stars go to

subsets of big stars (since any two elements of a top are adjacent and a
big star contains non-adjacent elements). The image of every big star is
contained in precisely one big star (the intersection of two distinct big stars
is empty or consists of one element). Therefore, f induces a mapping

fk−1 : Gk−1(Π) → Gk−1(Π′).

It is injective (otherwise there exist weakly adjacent elements of Gk(Π′)
whose pre-images are not weakly adjacent).

It must be pointed out that the mapping fk−1 is not defined only in the
case when k = 1 and our polar spaces are of type D4.

Let B be a frame of Π and A be the associated apartment of Gk(Π).
Denote by B′ the frame of Π′ corresponding to the apartment f(A). As
in the proof of Theorem 3.10 (Subsection 3.4.3), we show that fk−1 maps
the apartment of Gk−1(Π) associated with B to the apartment of Gk−1(Π′)
defined by B′. Therefore, fk−1 is apartments preserving.

In the case when n �= 4 or the polar spaces are of type C4, we construct
a sequence of apartments preserving mappings

fi : Gi(Π) → Gi(Π′), i = k, . . . , 0,

such that fk = f ,

fi([S〉i) ⊂ [fi−1(S)〉i
for all S ∈ Gi−1(Π) and

fi−1(〈U ]i−1) ⊂ 〈fi(U)]i−1

for all U ∈ Gi(Π) if i ≥ 1. An easy verification shows that each fi, i ≥ 1, is
induced by f0.

2. Now suppose that our polar spaces are of type D4.
Consider the case k = 2. Since f1 is apartments preserving, it is adja-

cency preserving and maximal singular subspaces of G1(Π) go to subsets of
maximal singular subspaces of G1(Π′). On the other hand, f1 is induced
by f ; this implies that f1 maps tops to subsets of tops. Then stars go to
subsets of stars (for every star there is a top intersecting this star in a line
and the intersection of two distinct tops contains at most one element). In
the present case, two stars of G1(Π) are adjacent (Subsection 4.6.3) if and
only if their intersection is a line. As in Subsection 4.6.3, we establish that
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f1 transfers big stars to subsets of big stars. The image of every big star is
contained in precisely one big star and f1 induces a mapping f0 : P → P ′.
It is not difficult to prove that f0 is an apartments preserving embedding
of Π in Π′ which induces f1 and f .

If k = 3 then f2 is induced by an apartments preserving embedding of
Π to Π′ (it was established above). It is clear that this embedding also
induces f .

Let k = 1. Then f is an adjacency preserving injection of G1(Π) to
G1(Π′) satisfying the condition (A) from Subsection 4.6.5. It transfers max-
imal singular subspaces of G1(Π) to subsets of maximal singular subspaces
of G1(Π′) and distinct maximal singular subspaces go to subsets of distinct
maximal singular subspaces. The image of every maximal singular sub-
space of G1(Π) is contained in precisely one maximal singular subspace of
G1(Π′). If stars go to subsets of stars then, by the arguments given above,
f is induced by an apartments preserving embedding of Π in Π′. In the
case when the image of a certain star is contained in a top, we have the
mapping h : P → G−γ(Π′) (Subsection 4.6.5); it sends every line L ∈ L
to a subset of the line of G−γ(Π′) corresponding to f(L) (Remark 4.12).
The reader can show that h is an apartments preserving embedding of Π
in G−γ(Π′) which induces f .

3. Suppose that our polar spaces are of type Dn and g is an apartments
preserving mapping of Gδ(Π) to Gγ(Π′), δ, γ ∈ {+,−}. By Proposition
4.35, the mapping g is adjacency preserving (two elements of Gδ(Π) are
adjacent if and only if their images are adjacent). Then it transfers maximal
singular subspaces of Gδ(Π) (stars and special subspaces) to subsets of
maximal singular subspaces of Gγ(Π′). As above, distinct maximal singular
subspaces go to subsets of distinct maximal singular subspaces.

There are the following four possibilities for the intersection of two dis-
tinct maximal singular subspaces: the empty set, a single point, a line, and
a plane. For every plane there is an apartment intersecting this plane in a
triangle. In the other cases, the intersections with apartments contain at
most two elements. This means that g transfers every plane to a subset
spanning a plane.

Show that the images of distinct planes are contained in distinct planes.
This guarantees that g maps lines to subsets of lines.

Let X1 and X2 be planes of Gδ(Π) such that g(X1) and g(X2) are con-
tained in a plane X ′ of Gγ(Π′). Then every element of X1 is adjacent with
every element of X2 and there exists a maximal singular subspace of Gδ(Π)
containing both these planes. This implies the existence of an apartment
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A ⊂ Gδ(Π) which intersects each Xi in a triangle; but the apartment g(A)
intersects X ′ in a subset containing at most three points. This is possible
only in the case when X1 = X2.

Similarly, we establish that distinct lines go to subsets of distinct lines.
Therefore, g induces an injection of Gn−3(Π) to Gn−3(Π′). This mapping
is apartments preserving (standard verification); hence it is induced by an
apartments preserving embedding of Π in Π′ or in one of the half-spin
Grassmann spaces of Π′ (the second possibility can be realized only for
n = 4). This embedding induces g.

Remark 4.24. In the case when n = 4, the half-spin Grassmann spaces
Gδ(Π) and Gγ(Π′) are polar spaces of type D4. By Corollary 4.4 and
Proposition 4.37, g is an embedding of Gδ(Π) in Gγ(Π′). This implies that
it transfers lines to subsets of lines and distinct lines go to subsets of distinct
lines.



July 2, 2010 14:9 World Scientific Book - 9in x 6in ClassicalBuilding

Bibliography

Abramenko, P. (1996). Twin buildings and applications to S-arithmetic groups,
Lecture Notes in Mathematics 1641 (Springer-Verlag, Berlin).

Abramenko, P. and Van Maldeghem, H. (2000). On opposition in spherical build-
ings and twin buildings, Ann. Comb. 4, 2, pp. 125–137.

Abramenko, P. and Van Maldeghem, H. (2008). Intersections of apartments,
Preprint arXiv:0805.4442, to appear in J. Combin. Theory Ser. A.

Artin, E. (1957). Geometric Algebra (Interscience Publishers, New York-London).
Baer, R. (1952). Linear Algebra and Projective Geometry (Academic Press, New

York).
Blok, R. J. and Brouwer, A. E. (1998). Spanning point-line geometries in buildings

of spherical type, J. Geom. 62, 1-2, pp. 26–35.
Blunck, A. and Havlicek, H. (2005). On bijections that preserve complementarity

of subspaces, Discrete Math. 301, 1, pp. 46–56.
Borovik, A. V., Gelfand, I. M. and White, N. (2003). Coxeter Matroids, Progress

in Mathematics 216 (Birkhäuser, Boston).
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