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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technol-
ogy transfer in control engineering. The rapid development of control technology
has an impact on all areas of the control discipline. New theory, new controllers,
actuators, sensors, new industrial processes, computer methods, new applications,
new philosophies. . . , new challenges. Much of this development work resides in in-
dustrial reports, feasibility study papers and the reports of advanced collaborative
projects. The series offers an opportunity for researchers to present an extended ex-
position of such new work in all aspects of industrial control for wider and rapid
dissemination.

In some Advances in Industrial Control monographs, the author’s perspective
is one of looking back at successful developments that have found application in
practice. Other monographs in the series explore future possibilities, presenting a
coherent body of theory with supporting illustrative examples and case studies. This
entry to the Advances in Industrial Control series, Networked and Distributed Pre-
dictive Control: Methods and Nonlinear Process Network Applications by Panagi-
otis D. Christofides, Jinfeng Liu, and David Muñoz de la Peña is a very persuasive
exemplar of the “future possibilities” monograph category.

The starting point for the authors’ development is the question: if a process has
an existing point-to-point (hard-wired) control system, how do we design a net-
worked control system (wired or, more in tune with recent technological develop-
ments, wireless) to augment the existing control and what performance benefits can
be achieved? What follows from this is a thorough analysis and assessment of differ-
ent control architectures blended with advanced control design methods. The control
design techniques are selected as model predictive control for nonlinear processes
but accommodating typical disruptive network characteristics of asynchronous feed-
back and communication delays.

The reader, whether an industrial engineer or academic researcher, will find a
coherent theoretical development that unites model predictive control and Lyapunov
stability methods as a control technique termed Lyapunov-based model predictive
control. This is shown to have some nice properties of practical utility concerning
closed loop stability and the stability region. The authors use this technique and
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viii Series Editors’ Foreword

progress through a sequence of increasingly advanced networked control system
configurations, devoting a chapter to each particular control structure.

A major strength of the monograph is the attention given to careful and detailed
process control examples and case studies that illustrate the characteristics and per-
formance potential of individual networked control systems. One of these is an in-
depth case study treatment of a wind–solar energy generation plant, whilst other ex-
amples are taken from the chemical process industries. All that is missing from these
studies is an estimate of implementation costs and a cost benefit analysis! Process,
chemical, and control engineers will find these simulated examples illuminating.

As a forward-looking monograph series on control design, technology, imple-
mentation and industrial practice, we are pleased to add this volume to the series as
its first entry on networked control systems. As wireless control technology gains
in reliability we expect to see many further theoretical and practical developments
in this field. This monograph also complements the Advances in Industrial Con-
trol series’s first entry on the closely related field of control using the Internet, so
that readers may find the monograph, Internet-based Control Systems: Design and
Applications (ISBN 978-1-84996-358-9) by Shuang-Hua Yang of interest.

M.J. Grimble
M.A. Johnson

Industrial Control Centre
Glasgow
Scotland, UK



Preface

Traditionally, process control systems rely on control architectures utilizing dedi-
cated, wired links to measurement sensors and control actuators to regulate appro-
priate process variables at desired values. While this paradigm to process control
has been successful, we are currently witnessing an augmentation of the existing,
dedicated control systems, with additional networked (wired and/or wireless) actu-
ator/sensor devices which have become cheap and easy-to-install. Such an augmen-
tation in sensor information, actuation capability and network-based availability of
data has the potential to dramatically improve the ability of process control systems
to optimize closed-loop performance and prevent or deal with abnormal situations
more effectively. However, augmenting dedicated control systems with real-time
sensor and actuator networks poses a number of new challenges in control system
design that cannot be addressed with traditional process control methods, including:
(a) the handling of additional, potentially asynchronous and delayed measurements
in the overall networked control system, and (b) the substantial increase in the num-
ber of process state variables, manipulated inputs and measurements which may
impede the ability of centralized control systems (particularly when nonlinear con-
strained optimization-based control systems like model predictive control are used),
to carry out real-time calculations within the limits set by process dynamics and
operating conditions.

This book presents rigorous, yet practical, methods for the design of networked
and distributed predictive control systems for chemical processes described by non-
linear dynamic models. Beginning with an introduction to the motivation and ob-
jectives of this book, the design of model predictive control systems via Lyapunov-
based control techniques accounting for networked control-relevant issues, like han-
dling of asynchronous and delayed measurements, is first presented. Then, the book
focuses on the development of a two-tier networked control architecture which nat-
urally augments dedicated control systems with networked control systems to main-
tain closed-loop stability and significantly improve closed-loop performance. Sub-
sequently, the book focuses on the design of distributed predictive control systems,
that utilize a fraction of the time required by the respective centralized control sys-
tems, to cooperate in an efficient fashion and to compute optimal manipulated input
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x Preface

trajectories that achieve the desired stability, performance, and robustness for large-
scale nonlinear process networks. Throughout the book, the control methods are
applied to large-scale nonlinear process networks and wind–solar energy genera-
tion systems and their effectiveness and performance are evaluated through detailed
computer simulations.

The book requires basic knowledge of differential equations, linear and nonlinear
control theory, and optimization methods and is intended for researchers, graduate
students, and process control engineers. Throughout the book, practical implemen-
tation issues are discussed to help engineers and researchers understand the appli-
cation of the methods in greater depth.

In addition to our work, Prof. James F. Davis, Dr. Benjamin J. Ohran, doctoral
candidates Mohsen Heidarinejad and Xianzhong Chen, and doctoral student Wei Qi,
all at UCLA, contributed substantially to the research results included in the book
and in the preparation of the final manuscript. We would like to thank them for their
hard work and contributions. We would also like to thank all the other people who
contributed in some way to this project. In particular, we would like to thank our
colleagues at UCLA and the Universidad de Sevilla for creating a pleasant working
environment, and the United States National Science Foundation and the European
Commission for financial support. Last, but not least, we would like to express our
deepest gratitude to our families for their dedication, encouragement, and support
over the course of this project. We dedicate this book to them.

Panagiotis D. Christofides
Jinfeng Liu

David Muñoz de la Peña

Los Angeles, CA, USA
Seville, Spain
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Chapter 1
Introduction

1.1 Motivation

Increasingly faced with the requirements of safety, environmental sustainability, and
profitability, chemical process operation is relying extensively on highly automated
control systems. This realization has motivated extensive research, over the last forty
years, on the development of advanced operation and control strategies to achieve
economically optimal plant operation by regulating process variables at appropriate
values. With respect to process control, control systems traditionally utilize dedi-
cated, point-to-point wired communication links using a small number of sensors
and actuators to regulate appropriate process variables at desired values. While this
paradigm to process control has been successful, chemical plant operation could
substantially benefit [12, 16, 66, 80, 114, 119] from an efficient integration of the
existing, point-to-point control networks (wired connections from each actuator or
sensor to the control system using dedicated local area networks) with additional
networked (wired or wireless) actuator or sensor devices that have become cheap
and easy-to-install. Such an augmentation in sensor information, actuation capabil-
ity and network-based availability of wired and wireless data is now well under-
way in the process industries and clearly has the potential to dramatically improve
the ability of the single-process and plant-wide model-based control systems to op-
timize process and plant performance. Network-based communication allows for
easy modification of the control strategy by rerouting signals, having redundant
systems that can be activated automatically when component failure occurs, and
in general, it allows having a high-level supervisory control over the entire plant.
However, augmenting existing control networks with real-time wired or wireless
sensor and actuator networks challenges many of the assumptions made in the de-
velopment of traditional process control methods dealing with dynamical systems
linked through ideal channels with flawless, continuous communication. In the con-
text of networked control systems, key issues that need to be carefully handled at the
control system design level include data losses due to field interference and time-
delays due to network traffic as well as due to the potentially heterogeneous nature
of the additional measurements. In the context of control system architectures, aug-
menting dedicated, local control systems with control systems that utilize real-time
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2 1 Introduction

Fig. 1.1 A traditional control
system with two control loops

sensor and actuator networks gives rise to the need to coordinate separate control
systems that operate on a process. However, the rigorous design of cooperative, dis-
tributed control architectures for nonlinear processes is a challenging task that can-
not be addressed with traditional process control methods dealing with the design of
centralized control systems. To design cooperative, distributed control systems, key
fundamental issues that need to be addressed include the design of the individual
control systems and of their communication strategy so that they efficiently cooper-
ate in achieving the closed-loop plant objectives. Motivated by the above, this book
presents general methods for the design of networked and distributed predictive
control systems, accompanied by their application to nonlinear process networks.

1.2 Networked and Distributed Control Architectures

To provide concrete motivation for the control problems addressed in this book,
we discuss below the general concept of networked and distributed process control
using block diagrams and a chemical process example.

1.2.1 Networked Control Architectures

Traditionally, the different components (i.e., sensor, controller, and actuator) in a
control system are connected via wired, point-to-point links, and the control laws
are designed and operate based on local continuously-sampled process output mea-
surements. For a system with multiple control loops, the controllers, in general, are
designed to work in a decentralized fashion. Figure 1.1 shows a traditional control
system with two control loops. In Fig. 1.1, two local control systems (i.e., LCS 1
and LCS 2) are designed based on two different continuously-sampled outputs, y1
and y2, of the system. The two controllers do not exchange information and operate
in a decentralized fashion.

Communication networks make the transmission of data much easier and provide
a higher degree of freedom in the configuration of control systems. However, new
issues arise in the design of a networked control system (NCS), for example, the
introduction of data losses and time-varying delays in the control loop as well as the
use of asynchronous measurements. On the other hand, additional information of
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Fig. 1.2 A networked
configuration for the system
shown in Fig. 1.1 (dashed
lines denote measurements
and control actions
transmitted via real-time
communication networks)

Fig. 1.3 An alternative
networked configuration for
the system shown in Fig. 1.1
(dashed lines denote
measurements and control
actions transmitted via
real-time communication
networks)

a system which previously were difficult or impossible to access because of phys-
ical or economical reasons may be now available via networked devices like, for
example, networked sensors deployed over chemical plants. The additional infor-
mation may be used to improve the closed-loop performance and the fault tolerance
of a control system. However, because of the nature of the additional sensing (for
example, concentration versus temperature measurements) and the fact that this in-
formation is collected and transmitted through real-time wired or wireless networks,
a control system should also be able to handle heterogeneous (for example, contin-
uous, asynchronous and delayed) measurements. In order to take advantages of the
use of networks in the transmission of information and to use the additional infor-
mation provided by networked devices, one approach is to design an NCS which
takes data losses, delays and heterogeneous measurements explicitly into account
to replace the local control loops. Figure 1.2 shows this kind of NCS design for
the system shown in Fig. 1.1. In Fig. 1.2, an NCS is designed to replace the two
local controllers in Fig. 1.1 taking into account all the available measurements (i.e.,
originally available measurements y1, y2, and additional measurement y3). The key
issues in the design of such an NCS include the handling of data losses, time-varying
delays, and the utilization of heterogeneous measurements.

Instead of replacing the local control loops, an alternative to the above networked
control configuration is to design an NCS to augment the local control loops to take
advantage of the additional measurements to manipulate additional control inputs or
adjust the control actions of the existing local controllers to improve the closed-loop
performance. The networked control configuration resulting in this case is shown in
Fig. 1.3. The main question is how to design the NCS to maintain the closed-loop
stability achieved by the local controllers while improving the closed-loop perfor-
mance.
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1.2.2 Cooperative, Distributed Control Architectures

Consider the second networked control configuration shown in Fig. 1.3. In this con-
figuration, there is no communication between the networked controller and the two
local controllers. In this sense, the three controllers work in a decentralized fashion.
When the local controllers are designed via classical (e.g., proportional-integral-
derivative (PID) control), geometric or Lyapunov-based control methods for which
an explicit formula for the calculation of the control action is available, and the
networked controller is designed via model-based control methods, like model pre-
dictive control (MPC), the coupling between the networked controller and the local
controllers may be taken into account if the networked controller is carefully de-
signed. However, when the local controllers are designed via MPC for which there
is no explicit controller formula to calculate the future control actions, it is nec-
essary to establish some, preferably small, communication between the different
controllers so that they can coordinate their actions, which leads to the design of
distributed control systems.

Figure 1.4 shows such a control configuration for the system shown in Fig. 1.1.
In this distributed control system, an LCS is designed to determine u1 and u2 and an
NCS is designed to calculate u3 based on all the information available via networks.
In order to coordinate the control actions, the two controllers communicate to ex-
change information which could be future input trajectories the two controllers will
apply or/and system measurements. In this case, we need to consider how the dis-
tributed controllers should communicate, what information they need to exchange
and how to coordinate their actions to achieve stability of the entire closed-loop
system.

In the distributed control configuration shown in Fig. 1.4, the control inputs are
distributed into the two controllers by their functionalities; that is, the LCS deter-
mines u1 and u2 to ensure the closed-loop stability, and the NCS determines u3 to
improve the closed-loop performance. An alternative to this kind of decomposition
of the control inputs is to decompose the inputs spatially; that is, a distributed con-
troller is designed for each control input (or each subsystem) as shown in Fig. 1.5.
In the distributed control configuration of Fig. 1.5, three NCSs are designed to ma-
nipulate the three control inputs, respectively, based on all the available measure-
ments. The three controllers communicate to coordinate their actions. This type of
distributed control configuration is more flexible in the control loop selection com-
pared with the one shown in Fig. 1.4.

1.2.3 A Reactor–Separator Process Example

Consider a three vessel, reactor–separator process consisting of two continuously
stirred tank reactors (CSTRs) and a flash tank separator shown in Fig. 1.6. A feed
stream to the first CSTR F10 contains the reactant A which is converted into the
desired product B . The desired product B can then further react into an undesired
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Fig. 1.4 A distributed
control configuration for the
system shown in Fig. 1.1
(dashed lines denote
information transmitted via
real-time communication
networks)

Fig. 1.5 An alternative
distributed control
configuration for the system
shown in Fig. 1.1 (dashed
lines denote information
transmitted via real-time
communication networks)

Fig. 1.6 Reactor–separator
process with recycle

side-product C. The effluent of the first CSTR along with additional fresh feed F20
makes up the inlet to the second CSTR. The reactions A → B and B → C take
place in the two CSTRs in series before the effluent from CSTR 2 is fed to the flash
tank. The overhead vapor from the flash tank is condensed and recycled to the first
CSTR, and the bottom product stream is removed. A small portion of the overhead
is purged before being recycled to the first CSTR.

The control objective is to stabilize the process at a desired operating steady-state
and achieve an optimal level of closed-loop performance. To accomplish the control
objective, we may design three local single loop controllers to manipulate the three
heat inputs, Q1, Q2, Q3, based on continuous temperature measurements of the
three vessels. The three local controllers may be designed via proportional-integral-
derivative (PID) control. This control configuration is shown in Fig. 1.7, which is
the common traditional local control system configuration for a process shown in
Fig. 1.6. This local control configuration corresponds to the control architecture
shown in Fig. 1.1.

In the reactor–separator process, the additional information that we have access
to because of additionally deployed networked sensors could be the species concen-
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Fig. 1.7 Local control
configuration for the
reactor–separator process

Fig. 1.8 A networked control configuration for the reactor–separator process. In this configura-
tion, a networked control system is designed to replace the three local control loops in the local
control configuration

tration measurements of each component in the three vessels. These measurements
are subject to sampling delays and network transmission data package dropouts and
they may not be available at every sampling time. To use the additional information,
we may design an NCS to replace the three local control loops. This networked
control configuration of the reactor–separator process is shown in Fig. 1.8 which
corresponds to the control architecture shown in Fig. 1.2.

Instead of replacing the local control loops, an alternative to the above networked
control configuration is to design an NCS to augment the local control loops to take
advantage of the additional species concentration measurements as well as of the
temperature measurements to adjust additional manipulated inputs, for instance, the
feed flow rate to the second vessel, F20. This networked control configuration of
the reactor–separator process is shown in Fig. 1.9 which corresponds to the control
architecture shown in Fig. 1.3.

Figure 1.10 shows a distributed control configuration for the reactor–separator
process. In this design, two networked controllers are designed to manipulate
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Fig. 1.9 A networked control configuration for the reactor–separator process. In this configura-
tion, a networked control system in addition to the three local controllers is designed to improve
the closed-loop performance

Fig. 1.10 A distributed control configuration for the reactor–separator process. In this configura-
tion, the two networked controllers communicate via the plant-wide network to coordinate their
actions

the three heat inputs and the feed flow rate to vessel 2, respectively, and com-
municate through the plant-wide network to exchange information and coor-
dinate their actions. This control configuration corresponds to the one shown
in Fig. 1.4.

Figure 1.11 shows the alternative distributed control configuration correspond-
ing to Fig. 1.5 for the reactor–separator process. In this design, four networked con-
trollers are designed to manipulate the four control inputs and communicate through
the plant-wide network to exchange information and coordinate their actions.



8 1 Introduction

Fig. 1.11 A distributed control configuration for the reactor–separator process. In this configura-
tion, four networked controllers are designed to manipulate the four control inputs and communi-
cate via the plant-wide network to coordinate their actions

1.3 Background

Within control theory, the study of control over networks has attracted considerable
attention in the literature (e.g., [7, 11, 69, 76, 103]) and early research focused on
analyzing and scheduling real-time network traffic (e.g., [34, 96]). Research has also
focused on the stability of network-based control systems. A common approach is to
insert network behavior between the nodes of a conventional control loop, designed
without taking the network behavior into account. More specifically, in [111], it was
proposed to first design the controller using established techniques considering the
network transparent, and then to analyze the effect of the network on closed-loop
system stability and performance. This approach was further developed in [77] us-
ing a small gain analysis approach. In the last few years, however, several research
papers have studied control using the IEEE 802.11 and Bluetooth wireless networks,
see, for example, [85, 101, 115, 116] and the references therein. In the design and
analysis of networked control systems, the most frequently studied problem con-
siders control over a network having constant or time-varying delays. This network
behavior is typical of communications over the Internet but does not necessarily rep-
resent the behavior of dedicated wireless networks in which the sensor, controller,
and actuator nodes communicate directly with one another but might experience
data losses. An appropriate framework to model lost data, is the use of asynchronous
systems [29, 94, 99]. In this framework, data losses occur in an stochastic manner,
and the process is considered to operate in an open-loop fashion when data is lost.
The most destabilizing cause of packet loss is due to bursts of poor network perfor-
mance in which case large groups of packets are lost nearly consecutively. A more
detailed description of bursty network performance using a two-state Markov chain
was considered in [81]. Modeling networks, using Markov chains results in describ-
ing the overall closed-loop system as a stochastic hybrid system [32]. Stability re-
sults have been presented for particular cases of stochastic hybrid systems (e.g., [29,
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63]). However, these results do not directly address the problem of augmentation of
dedicated, wired control systems with networked actuator and sensor devices to im-
prove closed-loop performance.

With respect to other results on networked control, in [46], stability and dis-
turbance attenuation issues for a class of linear networked control systems sub-
ject to data losses modeled as a discrete-time switched linear system with arbitrary
switching was studied. In [35], (see also [3, 20, 28]), optimal control of linear time-
invariant systems over unreliable communication links under different communica-
tion protocols (with and without acknowledgement of successful communication)
was investigated and sufficient conditions for the existence of stabilizing control
laws were derived. In [29], the stability properties of a class of networked control
systems modeled as linear asynchronous systems was studied. Networked control
systems in which the plant is modeled by a nonlinear system have received less at-
tention. Limited access systems where each unit must compete with the others for
access to the network have been studied in [77, 78, 110, 111] within a sampled-data
system framework. In these works, practical stability of the system is guaranteed if
the maximum time for which access to the network is not available is smaller than
a given constant denoted as the maximum allowable transmission interval (MATI).
A common theme of the above-mentioned works is that the controller is designed
without taking into account the network dynamics and subsequently, the robustness
of the closed-loop system in the presence of the network dynamics is studied. Fur-
thermore, the importance of time delays in the context of networked control systems
has also motivated significant research effort in modeling such delays and design-
ing control systems to deal with them, primarily in the context of linear systems
(e.g., [24, 45, 71, 112, 113, 118]).

In another recent line of work, Antsaklis and coworkers [70, 71] have proposed a
strategy based on using an estimate of the state computed via the nominal model of
the plant to decide the control input over the period of time in which feedback is lost
between consecutively received measurements. In [70, 71], this framework was ap-
plied to optimize the bandwidth needed by a networked control system modeled as
a sampled-data linear system with variable sampling rate. Other relevant works re-
lated to this approach include [74, 75], where the design of a linear output-feedback
controller to stabilize a linear networked control system in the presence of delays,
sampling and data losses was addressed. Within process control, important recent
work on the subject of networked process control includes the development of a
quasi-decentralized control framework for multi-unit plants that achieves the de-
sired closed-loop objectives with minimal cross communication between the plant
units [100]. In this work, the key idea is to embed in the local control system of
each unit a set of dynamic models that provide an approximation of the interac-
tions between a given unit and its neighbors in the plant when measurements are not
transmitted through the plant-wide network and to update the state of each model
using measurements from the corresponding unit when communication is reestab-
lished. In addition to these works, fault diagnosis and fault-tolerant control methods
that account for network-induced measurement errors have been developed in [26].
Finally, it is also important to note that within process control practice, wireless
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communication standards (e.g., ISA100 and WirelessHART) which are appropriate
for chemical process industry applications have been developed based on the IEEE
802.15.4 standard [66] and applications of wireless field networks in the monitor-
ing and control of chemical processes including heat exchangers and a phosphate
fertilizer plant have been reported [119]. Despite these efforts, the problem of de-
signing networked control systems that explicitly account for asynchronous and de-
layed measurements at both the design and implementation stages in the context of
nonlinear systems, has received limited attention.

MPC has been widely used in the handling of measurement losses and delays be-
cause of its ability to predict the evolution of a system with time while accounting
for the effect of data losses and delays. However, most of the available results deal
with linear systems (e.g., [36, 49]). MPC is also a natural control framework to deal
with the design of coordinated, distributed control systems because of its ability to
handle input and state constraints, and also because it can account for the actions
of other actuators in computing the control action of a given set of control actuators
in real-time. With respect to available results in this direction, several distributed
MPC (DMPC) methods have been proposed in the literature that deal with the co-
ordination of separate MPCs that communicate in order to obtain optimal input tra-
jectories in a distributed manner; see [8, 92, 95] for reviews of results in this area.
More specifically, in [17], the problem of distributed control of dynamically coupled
nonlinear systems that are subject to decoupled constraints was considered. In [37,
93], the effect of the coupling was modeled as a bounded disturbance compensated
using a robust MPC formulation. In [98, 108], it was proven that through multiple
communications between distributed controllers and using system-wide control ob-
jective functions, stability of the closed-loop system can be guaranteed for linear
systems. In [39], DMPC of decoupled systems (a class of systems of relevance in
the context of multi-agents systems) was studied. In [62], a DMPC algorithm was
proposed under the main condition that the system is nonlinear, discrete-time and
no information is exchanged between local controllers, and in [90], DMPC for non-
linear systems was studied from an input-to-state stability point of view. In [60,
61], a game theory based DMPC scheme for constrained linear systems was pro-
posed. Previous work on MPC design for systems subject to asynchronous or de-
layed feedback has primarily focused on centralized MPC designs [27, 36, 49, 53,
72]. In addition to these works, control and monitoring of complex distributed sys-
tems with distributed intelligent agents were studied in [13, 84, 102]. Despite this
progress, little attention has been given to the design of DMPC for systems sub-
ject to asynchronous or delayed measurements except in a recent work [22] where
the issue of delays in the communication between distributed controllers was ad-
dressed.

1.4 Objectives and Organization of the Book

Motivated by the lack of general networked and distributed control methods for
process systems, the broad objectives of this book are as follows:
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1. To develop Lyapunov-based predictive control methods for nonlinear systems
that provide an explicit characterization for the closed-loop stability region and
account for the effect of asynchronous feedback and time-varying measurement
delays.

2. To present a framework for the design of networked predictive control systems
for nonlinear processes that naturally augment dedicated control systems with
networked control systems.

3. To develop distributed predictive control methods for large-scale nonlinear pro-
cess networks taking into account asynchronous measurements and time-varying
delays as well as different sampling rates of measurements.

4. To illustrate the applications of the developed networked and distributed pre-
dictive control methods to nonlinear process networks and wind–solar energy
generation systems.

The book is organized as follows. In Chap. 2, we first review some basic results
on Lyapunov-based control, model predictive control and Lyapunov-based model
predictive control (LMPC) of nonlinear systems and then present two Lyapunov-
based model predictive control designs for systems subject to data losses and time-
varying measurement delays. In order to guarantee the closed-loop stability, in the
design of the LMPCs, constraints based on Lyapunov functions are incorporated.
The theoretical results are illustrated through a chemical reactor example.

In Chap. 3, we present a two-tier networked control architecture to augment
preexisting, point-to-point control systems with networked control systems, which
take advantage of real-time wired or wireless sensor and actuator networks. Specif-
ically, we will first present the two-tier networked control architecture for systems
with continuous and asynchronous measurements; and then extend the results to
include systems with continuous and asynchronous measurements which involve
time-varying measurement delays. Two chemical process examples are used to il-
lustrate the applicability and effectiveness of the two-tier control architecture. More-
over, the two-tier control architecture is also applied to the optimal management and
operation of a standalone wind–solar energy generation system.

In Chap. 4, we focus on a class of distributed control problems that arise when
new control systems which may use networked sensors and actuators are added
to already operating control loops designed via MPC to improve closed-loop per-
formance. To address this control problem, a distributed model predictive control
method is introduced where the preexisting control system and the new control sys-
tem are redesigned/designed via LMPC. The distributed control design stabilizes
the closed-loop system, improves the closed-loop performance and allows handling
input constraints. Furthermore, the distributed control design requires that these con-
trollers communicate only once at each sampling time and is computationally more
efficient compared to the corresponding centralized model predictive control design.
The distributed control method is extended to include nonlinear systems subject
to asynchronous and delayed measurements. The applicability and effectiveness of
these distributed predictive control designs are illustrated through extensive simula-
tions using a chemical plant example described by a nonlinear model.
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In Chap. 5, we extend the results of Chap. 4 to distributed model predictive con-
trol of large-scale nonlinear systems in which several distinct sets of manipulated
inputs are used to regulate the system. For each set of manipulated inputs, a different
model predictive controller is used to compute the control actions, which is able to
communicate with the rest of the controllers in making its decisions. We present two
distributed control architectures designed via LMPC techniques. In the first archi-
tecture, the distributed controllers use a one-directional communication strategy, are
evaluated in sequence and each controller is evaluated only once at each sampling
time; in the second architecture, the distributed controllers utilize a bi-directional
communication strategy, are evaluated in parallel and iterate to improve closed-loop
performance. The case in which continuous state feedback is available to all the dis-
tributed controllers is first considered and then the results are extended to include
large-scale nonlinear systems subject to asynchronous and delayed state feedback.
The theoretical results are illustrated through a catalytic alkylation of benzene pro-
cess example. Moreover, we also discuss how to handle disruptions in the com-
munication between the distributed controllers by incorporating suitable feasibility
problems for accepting/rejecting received information.

The designs of the distributed predictive control architectures in Chap. 5 are
based on the assumptions that all the measurements of the system states are sam-
pled simultaneously. In Chap. 6, we consider the design of a distributed predictive
control system using multirate sampling for large-scale nonlinear uncertain systems
composed of several coupled subsystems. Specifically, we assume that the states of
each local subsystem can be divided into fast sampled states (which are available
every sampling time) and slowly sampled states (which are available every sev-
eral sampling times). The distributed predictive controllers are connected through
a shared communication network and cooperate in an iterative fashion at time in-
stants in which full system state measurements (both fast and slow) are available, to
guarantee closed-loop stability. When local subsystem fast sampled state informa-
tion is only available, the distributed controllers operate in a decentralized fashion
to improve closed-loop performance. In the design of the distributed controllers, we
also take into account bounded measurement noise, process disturbances and com-
munication noise. The multirate distributed predictive control system is applied to a
chemical reactor–separator process.

Chapter 7 summarizes the main results of the book and discusses future research
directions in networked and distributed process control.



Chapter 2
Lyapunov-Based Model Predictive Control

2.1 Introduction

MPC, also known as receding horizon control (RHC), is a popular control strategy
for the design of high performance model-based process control systems because of
its ability to handle multi-variable interactions, constraints on control (manipulated)
inputs and system states, and optimization requirements in a systematic manner.
MPC is an online optimization-based approach, which takes advantage of a system
model to predict its future evolution starting from the current system state along a
given prediction horizon. Using model predictions, a future control input trajectory
is optimized by minimizing a typically quadratic cost function involving penalties
on the system states and control actions. To obtain finite dimensional optimization
problems, MPC optimizes over a family of piecewise constant trajectories with a
fixed sampling time and a finite prediction horizon. Once the optimization prob-
lem is solved, only the first manipulated input value is implemented and the rest
of the trajectory is discarded; this optimization procedure is then repeated in the
next sampling step [25, 91]. This is the so-called receding horizon scheme. The
success of MPC in industrial applications (e.g., [25, 89]) has motivated numerous
research investigations into the stability, robustness and optimality of model predic-
tive controllers [65]. One important issue arising from these works is the difficulty
in characterizing, a priori, the set of initial conditions starting from where controller
feasibility and closed-loop stability are guaranteed. This issue motivated research
on LMPC designs [67, 68] (see also [42, 86]) which allow for an explicit character-
ization of the stability region of the closed-loop system and lead to a reduced com-
putational complexity of the controller optimization problem. Despite this progress,
the adoption of communication networks in the control loops and the use of hetero-
geneous measurements motivate the development of MPC schemes that take data
losses (or asynchronous feedback) and time-varying delays explicitly into account.
However, little attention has been given to these issues except for a few results on
MPC of linear systems with delays (e.g., [36, 49]).

Motivated by the above considerations, in this chapter, we adopt the LMPC
framework [67, 68] and introduce modifications on the LMPC design both in the
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optimization problem formulation and in the controller implementation to account
for data losses and time-varying delays, respectively. The design of the LMPC is
based on uniting receding horizon control with explicit Lyapunov-based nonlinear
controller design techniques. In order to guarantee the closed-loop stability, in the
design of the LMPCs, constraints based on Lyapunov functions are incorporated in
the controller formulations. The theoretical results are illustrated through a chemical
reactor example. The results of this chapter were first presented in [53, 72], and an
application of the control methods to a continuous crystallizer can be found in [50].

2.2 Notation

Throughout this book, the operator | · | is used to denote the absolute value of a scalar
and the operator ‖ · ‖ is used to denote Euclidean norm of a vector, while we use
‖ ·‖Q to denote the square of a weighted Euclidean norm, i.e., ‖x‖Q = xT Qx for all
x ∈ Rn. A continuous function α : [0, a) → [0,∞) is said to belong to class K if
it is strictly increasing and satisfies α(0) = 0. A function β(r, s) is said to be a class
K L function if, for each fixed s, β(r, s) belongs to class K function with respect
to r and, for each fixed r , β(r, s) is decreasing with respect to s and β(r, s) → 0 as
s → 0. The symbol Ωr is used to denote the set Ωr := {x ∈ Rn : V (x) ≤ r} where
V is a scalar positive definite, continuous differentiable function and V (0) = 0, and
the operator ‘/’ denotes set subtraction, that is, A/B := {x ∈ Rn : x ∈ A,x /∈ B}.
The symbol diag(v) denotes a square diagonal matrix whose diagonal elements are
the elements of the vector v. The notation t0 indicates the initial time instant. The
set {tk≥0} denotes a sequence of synchronous time instants such that tk = t0 + kΔ

and tk+i = tk + iΔ where Δ is a fixed time interval and i is an integer. Similarly, the
set {ta≥0} denotes a sequence of asynchronous time instants such that the interval
between two consecutive time instants is not fixed.

2.3 System Description

Consider nonlinear systems described by the following state-space model:

ẋ(t) = f
(
x(t), u(t),w(t)

)
, (2.1)

where x(t) ∈ Rn denotes the vector of state variables, u(t) ∈ Rm denotes the vector
of control (manipulated) input variables, w(t) ∈ Rw denotes the vector of distur-
bance variables and f is a locally Lipschitz vector function on Rn × Rm × Rw

such that f (0,0,0) = 0. This implies that the origin is an equilibrium point for the
nominal system (i.e., system of Eq. 2.1 with w(t) ≡ 0 for all t ) with u = 0.

The input vector is restricted to be in a nonempty convex set U ⊆ Rm which is
defined as follows:

U := {
u ∈ Rm : ‖u‖ ≤ umax}, (2.2)
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where umax is the magnitude of the input constraint.
The disturbance vector is bounded, that is, w(t) ∈ W where:

W := {
w ∈ Rw : ‖w‖ ≤ θ, θ > 0

}
(2.3)

with θ being a known positive real number. The vector of uncertain variables, w(t),
is introduced into the model in order to account for the occurrence of uncertainty
in the values of the process parameters and the influence of disturbances in process
control applications.

Remark 2.1 Note that the assumption that f is a locally Lipschitz vector function
is a reasonable assumption for most of chemical process models.

2.4 Lyapunov-Based Control

We assume that there exists a feedback control law u(t) = h(x(t)) which satis-
fies the input constraint on u for all x inside a given stability region and renders
the origin of the nominal closed-loop system asymptotically stable. This assump-
tion is essentially equivalent to the assumption that the nominal system is stabi-
lizable or that there exists a Lyapunov function for the nominal system or that the
pair (A,B) in the case of linear systems is stabilizable. Using converse Lyapunov
theorems [11, 40, 48, 64], this assumption implies that there exist functions αi(·),
i = 1,2,3,4 of class K and a continuously differentiable Lyapunov function V (x)

for the nominal closed-loop system, that satisfy the following inequalities:

α1
(‖x‖) ≤ V (x) ≤ α2

(‖x‖), (2.4)

∂V (x)

∂x
f

(
x,h(x),0

) ≤ −α3
(‖x‖), (2.5)

∥∥∥∥
∂V (x)

∂x

∥∥∥∥ ≤ α4
(‖x‖), (2.6)

h(x) ∈ U (2.7)

for all x ∈ O ⊆ Rn where O is an open neighborhood of the origin. We denote the
region Ωρ ⊆ O as the stability region of the closed-loop system under the control
u = h(x). Note that explicit stabilizing control laws that provide explicitly defined
regions of attraction for the closed-loop system have been developed using Lya-
punov techniques for specific classes of nonlinear systems, particularly input-affine
nonlinear systems; the reader may refer to [2, 11, 41, 97] for results in this area in-
cluding results on the design of bounded Lyapunov-based controllers by taking ex-
plicitly into account constraints for broad classes of nonlinear systems [18, 19, 47].

By continuity, the local Lipschitz property assumed for the vector field
f (x,u,w), the fact that the manipulated input u is bounded in a convex set and
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the continuous differentiable property of the Lyapunov function V , there exists pos-
itive constants M , Lw , Lx and L′

x such that:

∥
∥f (x,u,w)

∥
∥ ≤ M, (2.8)

∥∥f (x,u,w) − f
(
x ′, u,0

)∥∥ ≤ Lw‖w‖ + Lx

∥∥x − x ′∥∥, (2.9)
∥∥∥∥
∂V (x)

∂x
f (x,u,0) − ∂V (x ′)

∂x
f

(
x′, u,0

)
∥∥∥∥ ≤ L′

x

∥∥x − x′∥∥ (2.10)

for all x, x′ ∈ Ωρ , u ∈ U and w ∈ W . These constants will be used in characterizing
the stability properties of the system of Eq. 2.1 under LMPC designs.

Remark 2.2 Note that while there are currently no general methods for constructing
Lyapunov functions for general nonlinear systems, for broad classes of nonlinear
models arising in the context of chemical process control applications, quadratic
Lyapunov functions are widely used and provide very good estimates of closed-loop
stability regions.

Remark 2.3 Note that the inequalities of Eqs. 2.4–2.10 are derived from the basic as-
sumptions (i.e., Lipschitz vector field and existence of a stabilizing Lyapunov-based
controller). The various constants involved in the upper bounds are not assumed to
be arbitrarily small.

2.5 Model Predictive Control

MPC is widely adopted in industry as an effective approach to deal with large mul-
tivariable constrained control problems. The main idea of MPC is to choose control
actions by repeatedly solving an online constrained optimization problem, which
aims at minimizing a performance index over a finite prediction horizon based on
predictions obtained by a system model. In general, an MPC design is composed of
three components:

1. A model of the system. This model is used to predict the future evolution of the
system in open-loop and the efficiency of the calculated control actions of an
MPC depends highly on the accuracy of the model.

2. A performance index over a finite horizon. This index will be minimized subject
to constraints imposed by the system model, restrictions on control inputs and
system state and other considerations at each sampling time to obtain a trajectory
of future control inputs.

3. A receding horizon scheme. This scheme introduces the notion of feedback into
the control law to compensate for disturbances and modeling errors.

Consider the control of the system of Eq. 2.1 and assume that the state measure-
ments of the system of Eq. 2.1 are available at synchronous sampling time instants
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{tk≥0}, a standard MPC is formulated as follows [25]:

min
u∈S(Δ)

∫ tk+N

tk

[∥∥x̃(τ )
∥∥

Qc
+ ∥∥u(τ)

∥∥
Rc

]
dτ + F

(
x(tk+N)

)
, (2.11)

s.t. ˙̃x(t) = f
(
x̃(t), u(t),0

)
, (2.12)

u(t) ∈ U, (2.13)

x̃(tk) = x(tk), (2.14)

where S(Δ) is the family of piece-wise constant functions with sampling period Δ,
N is the prediction horizon, Qc and Rc are strictly positive definite symmetric
weighting matrices, x̃ is the predicted trajectory of the nominal system due to con-
trol input u with initial state x(tk) at time tk , and F(·) denotes the terminal penalty.

The optimal solution to the MPC optimization problem defined by Eqs. 2.11–2.14
is denoted as u∗(t |tk) which is defined for t ∈ [tk, tk+N). The first step value of
u∗(t |tk) is applied to the closed-loop system for t ∈ [tk, tk+1). At the next sampling
time tk+1, when a new measurement of the system state x(tk+1) is available, the
control evaluation and implementation procedure is repeated. The manipulated in-
put of the system of Eq. 2.1 under the control of the MPC of Eqs. 2.11–2.14 is
defined as follows:

u(t) = u∗(t |tk), ∀t ∈ [tk, tk+1), (2.15)

which is the standard receding horizon scheme.
In the MPC formulation of Eqs. 2.11–2.14, Eq. 2.11 defines a performance index

or cost index that should be minimized. In addition to penalties on the state and
control actions, the index may also include penalties on other considerations; for
example, the rate of change of the inputs. Equation 2.12 is the nominal model of
the system of Eq. 2.1 which is used in the MPC to predict the future evolution of
the system. Equation 2.13 takes into account the constraint on the control input,
and Eq. 2.14 provides the initial state for the MPC which is a measurement of the
actual system state. Note that in the above MPC formulation, state constraints are
not considered but can be readily taken into account.

It is well known that the MPC of Eqs. 2.11–2.14 is not necessarily stabilizing. To
achieve closed-loop stability, different approaches have been proposed in the litera-
ture. One class of approaches is to use infinite prediction horizons or well-designed
terminal penalty terms; please see [6, 65] for surveys of these approaches. Another
class of approaches is to impose stability constraints in the MPC optimization prob-
lem [1, 4, 65]. There are also efforts focusing on getting explicit stabilizing MPC
laws using offline computations [59]. However, the implicit nature of MPC control
law makes it very difficult to explicitly characterize, a priori, the admissible initial
conditions starting from where the MPC is guaranteed to be feasible and stabilizing.
In practice, the initial conditions are usually chosen in an ad hoc fashion and tested
through extensive closed-loop simulations.
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2.6 Lyapunov-Based Model Predictive Control

In this section, we introduce the LMPC design proposed in [67, 68] which allows
for an explicit characterization of the stability region and guarantees controller fea-
sibility and closed-loop stability.

For the predictive control of the system of Eq. 2.1, the LMPC is designed based
on an existing explicit control law h(x) which is able to stabilize the closed-loop
system and satisfies the conditions of Eqs. 2.4–2.7. The formulation of the LMPC
is as follows:

min
u∈S(Δ)

∫ tk+N

tk

[∥∥x̃(τ )
∥
∥

Qc
+ ∥

∥u(τ)
∥
∥

Rc

]
dτ, (2.16)

s.t. ˙̃x(t) = f
(
x̃(t), u(t),0

)
, (2.17)

u(t) ∈ U, (2.18)

x̃(tk) = x(tk), (2.19)

∂V (x(tk))

∂x
f

(
x(tk), u(tk),0

) ≤ ∂V (x(tk))

∂x
f

(
x(tk), h

(
x(tk)

)
,0

)
, (2.20)

where V (x) is a Lyapunov function associated with the nonlinear control law h(x).
The optimal solution to this LMPC optimization problem is denoted as u∗

l (t |tk)
which is defined for t ∈ [tk, tk+N). The manipulated input of the system of Eq. 2.1
under the control of the LMPC of Eqs. 2.16–2.20 is defined as follows:

u(t) = u∗
l (t |tk), ∀t ∈ [tk, tk+1), (2.21)

which implies that this LMPC also adopts a standard receding horizon strategy.
In the LMPC defined by Eqs. 2.16–2.20, the constraint of Eq. 2.20 guarantees

that the value of the time derivative of the Lyapunov function, V (x), at time tk is
smaller than or equal to the value obtained if the nonlinear control law u = h(x)

is implemented in the closed-loop system in a sample-and-hold fashion. This is a
constraint that allows one to prove (when state measurements are available every
synchronous sampling time) that the LMPC inherits the stability and robustness
properties of the nonlinear control law h(x) when it is applied in a sample-and-hold
fashion.

One of the main properties of the LMPC of Eqs. 2.16–2.20 is that it possesses the
same stability region Ωρ as the nonlinear control law h(x), which implies that the
origin of the closed-loop system is guaranteed to be stable and the LMPC is guar-
anteed to be feasible for any initial state inside Ωρ when the sampling time Δ and
the disturbance upper bound θ are sufficiently small. Note that the region Ωρ can be
explicitly characterized; please refer to Sect. 2.4 for more discussion on this issue.
The stability property of the LMPC is inherited from the nonlinear control law h(x)

when it is applied in a sample-and-hold fashion; please see [14, 79] for results on
sampled-data systems. The feasibility property of the LMPC is also guaranteed by
the nonlinear control law h(x) since u = h(x) is a feasible solution to the optimiza-
tion problem of Eqs. 2.16–2.20. The main advantage of the LMPC approach with
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respect to the nonlinear control law h(x) is that optimality considerations can be
taken explicitly into account (as well as constraints on the inputs and the states [68])
in the computation of the control actions within an online optimization framework
while improving the closed-loop performance of the system.

Remark 2.4 Since the closed-loop stability and feasibility of the LMPC of
Eqs. 2.16–2.20 are guaranteed by the nonlinear control law h(x), it is unneces-
sary to use a terminal penalty term in the cost index (see Eq. 2.16 and compare it
with Eq. 2.11) and the length of the horizon N does not affect the stability of the
closed-loop system but it affects the closed-loop performance.

2.7 LMPC with Asynchronous Feedback

In this section, we modify the LMPC introduced in the previous section to take into
account data losses or asynchronous measurements, both in the optimization prob-
lem formulation and in the controller implementation. In this LMPC scheme, when
feedback is lost, instead of setting the control actuator outputs to zero or to the last
available values, the actuators implement the last optimal input trajectory evaluated
by the controller (this requires that the actuators must store in memory the last opti-
mal input trajectory received). The LMPC is designed based on a nonlinear control
law which is able to stabilize the closed-loop system and inherits the stability and
robustness properties in the presence of uncertainty and data losses of the nonlin-
ear controller, while taking into account optimality considerations. Specifically, the
LMPC scheme allows for an explicit characterization of the stability region, guaran-
tees practical stability in the absence of data losses or asynchronous measurements,
and guarantees that the stability region is an invariant set for the closed-loop system
under data losses or asynchronous measurements if the maximum time in which
the loop is open is shorter than a given constant that depends on the parameters
of the system and the nonlinear control law that is used to formulate the optimiza-
tion problem. A schematic diagram of the considered closed-loop system is shown
in Fig. 2.1.

Fig. 2.1 LMPC design for systems subject to data losses. Solid lines denote point-to-point, wired
communication links; dashed lines denote networked communication and/or asynchronous sam-
pling/actuation
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2.7.1 Modeling of Data Losses/Asynchronous Measurements

We assume that feedback of the state of the system of Eq. 2.1, x(t), is available
at asynchronous time instants ta where {ta≥0} is a random increasing sequence of
times; that is, the intervals between two consecutive instants are not fixed. The dis-
tribution of {ta≥0} characterizes the time the feedback loop is closed or the time
needed to obtain a new state measurement. In general, if there exists the possibility
of arbitrarily large periods of time in which feedback is not available, then it is not
possible to provide guaranteed stability properties, because there exists a nonzero
probability that the system operates in open-loop for a period of time large enough
for the state to leave the stability region. In order to study the stability properties in
a deterministic framework, we assume that there exists an upper bound Tm on the
interval between two successive time instants in which the feedback loop is closed
or new state measurements are available, that is:

max
a

{ta+1 − ta} ≤ Tm. (2.22)

This assumption is reasonable from process control and networked control systems
perspectives [69, 78, 110, 111] and allows us to study deterministic notions of sta-
bility. This model of feedback/measurements is of relevance to systems subject to
asynchronous measurement samplings and to networked control systems, where the
asynchronous property is introduced by data losses in the communication network
connecting the sensors/actuators and the controllers.

2.7.2 LMPC Formulation with Asynchronous Feedback

When feedback is lost, most approaches set the control input to zero or to the last
implemented value. Instead, in this LMPC for systems subject to data losses, when
feedback is lost, we take advantage of the MPC scheme to update the input based on
a prediction obtained using the system model. This is achieved using the following
implementation strategy:

1. At a sampling time, ta , when the feedback loop is closed (i.e., the current system
state x(ta) is available for the controller and the controller can send information
to the actuators), the LMPC evaluates the optimal future input trajectory u(t) for
t ∈ [ta, ta + NΔ).

2. The LMPC sends the entire optimal input trajectory (i.e., u(t) ∀t ∈ [ta, ta +NΔ))
to the actuators.

3. The actuators implement the input trajectory until the feedback loop is closed
again at the next sampling time ta+1; that is, the actuators implement u(t) in
t ∈ [ta, ta+1).

4. When a new measurement is received (a ← a + 1), go to Step 1.
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In this implementation strategy, when the state is not available, or the data sent
from the controller to the actuators is lost, the actuators keep implementing the last
received optimal trajectory. If data is lost for a period larger than the prediction
horizon, the actuators set the inputs to the last implemented values or to fixed val-
ues. This strategy is a receding horizon scheme, which takes into account that data
losses may occur. This strategy is motivated by the fact that when no feedback is
available, a reasonable estimate of the future evolution of the system is given by the
nominal trajectory. The LMPC design taking into account data losses/asynchronous
measurements, therefore modifies the standard implementation scheme of switch-
ing off the actuators (u = 0) or setting the actuators to nominal values or to the
last computed input values. The idea of using the model to predict the evolution
of the system when no feedback is possible has also been used in the context of
sampled-data linear systems, see [70, 71, 74, 75]. The actuators not only receive
and implement given inputs, but must also be able to store future trajectories to im-
plement them in case data losses occur. This means that to handle data losses, not
only the control algorithms must be modified, but also the control actuator hardware
that implements the control actions.

When data losses are present in the feedback loop, the existing LMPC schemes
[42, 67, 68, 86] can not guarantee the closed-loop stability no matter whether the
actuators keep the inputs at the last values, set the inputs to constant values, or keep
on implementing the previously evaluated input trajectories. In particular, there is
no guarantee that the LMPC optimization problems will be feasible for all time,
i.e., that the state will remain inside the stability region for all time. In the LMPC
design of Eqs. 2.16–2.20, the constraint of Eq. 2.20 only takes into account the first
prediction step and does not restrict the behavior of the system after the first step. If
no additional constraints are included in the optimization problem, no claims on the
closed-loop behavior of the system can be made. For this reason, when data losses
are taken into account, the constraints of the LMPC problem have to be modified.
The LMPC that takes into account data losses in an explicit way is based on the
following finite horizon constrained optimal control problem:

min
u∈S(Δ)

∫ ta+NΔ

ta

[∥∥x̃(τ )
∥∥

Qc
+ ∥∥u(τ)

∥∥
Rc

]
dτ, (2.23)

s.t. ˙̃x(t) = f
(
x̃(t), u(t),0

)
, (2.24)

˙̂x(t) = f
(
x̂(t), h

(
x̂(ta + jΔ)

)
,0

)
, ∀t ∈ [

ta + jΔ, ta + (j + 1)Δ
)
, (2.25)

u(t) ∈ U, (2.26)

x̃(ta) = x̂(ta) = x(ta), (2.27)

V
(
x̃(t)

) ≤ V
(
x̂(t)

)
, ∀t ∈ [ta, ta + NRΔ), (2.28)

where x̂(t) is the trajectory of the nominal system under the nonlinear con-
trol law u = h(x̂(t)) when it is implemented in a sample-and-hold fashion,
j = 0,1, . . . ,N − 1, and NR is the smallest integer satisfying NRΔ ≥ Tm. This op-
timization problem does not depend on the uncertainty and assures that the LMPC
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inherits the properties of the nonlinear control law h(x). To take full advantage of
the use of the nominal model in the computation of the control action, the prediction
horizon should be chosen in a way such that N ≥ NR .

The optimal solution to the LMPC optimization problem of Eqs. 2.23–2.28 is
denoted as u∗

a(t |ta) which is defined for t ∈ [ta, ta + NΔ). The manipulated input
of the system of Eq. 2.1 under the LMPC of Eqs. 2.23–2.28 is defined as follows:

u(t) = u∗
a(t |ta), ∀t ∈ [ta, ta+1), (2.29)

where ta+1 is the next time instant in which the feedback loop will be closed again.
This is a modified receding horizon scheme which takes advantage of the predicted
input trajectory in the case of data losses.

In the design of the LMPC of Eqs. 2.23–2.28, the constraint of Eq. 2.25 is used to
generate a system state trajectory under the nonlinear control law u = h(x) imple-
mented in a sample-and-hold fashion; this trajectory is used as a reference trajectory
to construct the Lyapunov-based constraint of Eq. 2.28 which is required to be sat-
isfied for a time period which covers the maximum possible open-loop operation
time Tm. This Lyapunov-based constraint allows one to prove the closed-loop sta-
bility in the presence of data losses in the closed-loop system.

Remark 2.5 The LMPC of Eqs. 2.23–2.28 optimizes a cost function, subject to a set
of constraints defined by the state trajectory corresponding to the nominal system in
closed-loop. This allows us to formulate an LMPC problem that does not depend on
the uncertainty and so it is of manageable computational complexity.

2.7.3 Stability Properties

The LMPC of Eqs. 2.23–2.28 computes the control input u applied to the system
of Eq. 2.1 in a way such that in the closed-loop system, the value of the Lyapunov
function at time instant ta (i.e., V (x(ta))) is a decreasing sequence of values with
a lower bound. Following Lyapunov arguments, this property guarantees practical
stability of the closed-loop system. This is achieved due to the constraint of Eq. 2.28.
This property is summarized in Theorem 2.1 below. To state this theorem, we need
the following propositions.

Proposition 2.1 Consider the nominal sampled trajectory x̂(t) of the system of
Eq. 2.1 in closed-loop for a controller h(x), which satisfies the conditions of
Eqs. 2.4–2.7, obtained by solving recursively:

˙̂x(t) = f
(
x̂(t), h

(
x̂(tk)

)
,0

)
, t ∈ [tk, tk+1), (2.30)

where tk = t0 + kΔ, k = 0,1, . . . . Let Δ,εs > 0 and ρ > ρs > 0 satisfy:

−α3
(
α−1

2 (ρs)
) + L′

xMΔ ≤ −εs/Δ. (2.31)
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Then if ρmin < ρ where:

ρmin = max
{
V

(
x̂(t + Δ)

) : V (
x̂(t)

) ≤ ρs

}
(2.32)

and x̂(t0) ∈ Ωρ , the following inequality holds:

V
(
x̂(t)

) ≤ V
(
x̂(tk)

)
, ∀t ∈ [tk, tk+1), (2.33)

V
(
x̂(tk)

) ≤ max
{
V

(
x̂(t0)

) − kεs, ρmin
}
. (2.34)

Proof Following the definition of x̂(t), the time derivative of the Lyapunov function
V (x) along the trajectory x̂(t) of the system of Eq. 2.1 in t ∈ [tk, tk+1) is given by:

V̇
(
x̂(t)

) = ∂V (x̂(t))

∂x
f

(
x̂(t), h

(
x̂(tk)

)
,0

)
. (2.35)

Adding and subtracting ∂V (x̂(tk))
∂x

f (x̂(tk), h(x̂(tk)),0) and taking into account
Eq. 2.5, we obtain:

V̇
(
x̂(t)

) ≤ −α3
(∥∥x̂(tk)

∥∥) + ∂V (x̂(t))

∂x
f

(
x̂(t), h

(
x̂(tk)

)
,0

)

− ∂V (x̂(tk))

∂x
f

(
x̂(tk), h

(
x̂(tk)

)
,0

)
. (2.36)

From the Lipschitz property of Eq. 2.10 and the above inequality of Eq. 2.36, we
have that:

V̇
(
x̂(t)

) ≤ −α3
(
α−1

2 (ρs)
) + L′

x

∥∥x̂(t) − x̂(tk)
∥∥ (2.37)

for all x̂(tk) ∈ Ωρ/Ωρs . Taking into account the Lipschitz property of Eq. 2.8 and
the continuity of x̂(t), the following bound can be written for all t ∈ [tk, tk+1):

∥∥x̂(t) − x̂(tk)
∥∥ ≤ MΔ. (2.38)

Using the expression of Eq. 2.38, we obtain the following bound on the time deriva-
tive of the Lyapunov function for t ∈ [tk, tk+1), for all initial states x̂(tk) ∈ Ωρ/Ωρs :

V̇
(
x̂(t)

) ≤ −α3
(
α−1

2 (ρs)
) + L′

xMΔ. (2.39)

If the condition of Eq. 2.31 is satisfied, then V̇ (x̂(t)) ≤ −εs/Δ. Integrating this
bound on t ∈ [tk, tk+1) we obtain that the inequality of Eq. 2.33 holds. Using
Eq. 2.33 recursively, it is proved that, if x(t0) ∈ Ωρ/Ωρs , the state converges to Ωρs

in a finite number of sampling times without leaving the stability region. Once the
state converges to Ωρs ⊆ Ωρmin , it remains inside Ωρmin for all times. This statement
holds because of the definition of ρmin in Eq. 2.32. �

Proposition 2.1 ensures that if the nominal system under the control u = h(x)

implemented in a sample-and-hold fashion with state feedback every sampling time
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starts in the region Ωρ , then it is ultimately bounded in Ωρmin . The following Propo-
sition 2.2 provides an upper bound on the deviation of the system state trajectory
obtained using the nominal model of Eq. 2.1, from the closed-loop state trajectory
of the system of Eq. 2.1 under uncertainty (i.e., w(t) �= 0) when the same control
actions are applied.

Proposition 2.2 Consider the systems:

ẋa(t) = f
(
xa(t), u(t),w(t)

)
, (2.40)

ẋb(t) = f
(
xb(t), u(t),0

)
(2.41)

with initial states xa(t0) = xb(t0) ∈ Ωρ . There exists a class K function fW (·) such
that:

∥∥xa(t) − xb(t)
∥∥ ≤ fW (t − t0), (2.42)

for all xa(t), xb(t) ∈ Ωρ and all w(t) ∈ W with:

fW (τ) = Lwθ

Lx

(
eLxτ − 1

)
. (2.43)

Proof Define the error vector as e(t) = xa(t) − xb(t). The time derivative of the
error is given by:

ė(t) = f
(
xa(t), u(t),w(t)

) − f
(
xb(t), u(t),0

)
. (2.44)

From the Lipschitz property of Eq. 2.9, the following inequality holds:

∥
∥ė(t)

∥
∥ ≤ Lw

∥
∥w(t)

∥
∥ + Lx

∥
∥xa(t) − xb(t)

∥
∥ ≤ Lwθ + Lx

∥
∥e(t)

∥
∥ (2.45)

for all xa(t), xb(t) ∈ Ωρ and w(t) ∈ W . Integrating ‖ė(t)‖ with initial condition
e(t0) = 0 (recall that xa(t0) = xb(t0)), the following bound on the norm of the error
vector is obtained:

∥∥e(t)
∥∥ ≤ Lwθ

Lx

(
eLx(t−t0) − 1

)
. (2.46)

This implies that the inequality of Eq. 2.42 holds for:

fW (τ) = Lwθ

Lx

(
eLxτ − 1

)
(2.47)

which proves this proposition. �

Proposition 2.3 below bounds the difference between the magnitudes of the Lya-
punov function of two states in Ωρ .
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Proposition 2.3 Consider the Lyapunov function V (·) of the system of Eq. 2.1.
There exists a quadratic function fV (·) such that:

V (x) ≤ V
(
x′) + fV

(∥∥x − x′∥∥)
(2.48)

for all x, x′ ∈ Ωρ where:

fV (s) = α4
(
α−1

1 (ρ)
)
s + Mvs

2 (2.49)

with Mv > 0.

Proof Since the Lyapunov function V (x) is continuous and bounded on compact
sets, there exists a positive constant Mv such that a Taylor series expansion of V

around x′ yields:

V (x) ≤ V
(
x′) + ∂V (x′)

∂x

∥∥x − x ′∥∥ + Mv

∥∥x − x′∥∥2
, ∀x, x′ ∈ Ωρ. (2.50)

Note that the term Mv‖x − x′‖2 bounds the high order terms of the Taylor series of
V (x) for x, x ′ ∈ Ωρ . Taking into account Eq. 2.6, the following bound for V (x) is
obtained:

V (x) ≤ V
(
x ′) + α4

(
α−1

1 (ρ)
)∥∥x − x ′∥∥ + Mv

∥∥x − x′∥∥2
, ∀x, x′ ∈ Ωρ, (2.51)

which proves this proposition. �

In Theorem 2.1 below, we provide sufficient conditions under which the LMPC
design of Eqs. 2.23–2.28 guarantees that the state of the closed-loop system of
Eq. 2.1 is ultimately bounded in a region that contains the origin.

Theorem 2.1 Consider the system of Eq. 2.1 in closed-loop, with the loop closing
at asynchronous time instants {ta≥0} that satisfy the condition of Eq. 2.22, under the
LMPC of Eqs. 2.23–2.28 based on a controller h(x) that satisfies the conditions of
Eqs. 2.4–2.7. Let Δ,εs > 0, ρ > ρmin > 0, ρ > ρs > 0 and N ≥ NR ≥ 1 satisfy the
condition of Eq. 2.31 and the following inequality:

−NRεs + fV

(
fW (NRΔ)

)
< 0 (2.52)

with fV (·) and fW (·) defined in Eqs. 2.49 and 2.43, respectively, and NR being
the smallest integer satisfying NRΔ ≥ Tm. If x(t0) ∈ Ωρ , then x(t) is ultimately
bounded in Ωρa ⊆ Ωρ where:

ρa = ρmin + fV

(
fW (NRΔ)

)
(2.53)

with ρmin defined as in Eq. 2.32.
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Proof In order to prove that the closed-loop system is ultimately bounded in a region
that contains the origin, we prove that V (x(ta)) is a decreasing sequence of values
with a lower bound. The proof is divided into two parts.

Part 1: In this part, we prove that the stability results stated in Theorem 2.1 hold
in the case that ta+1 − ta = Tm for all a and Tm = NRΔ. This case corresponds to
the worst possible situation in the sense that the LMPC needs to operate in open-
loop for the maximum possible amount of time. In order to simplify the notation,
we assume that all the notations used in this proof refer to the final solution of the
LMPC of Eqs. 2.23–2.28 solved at time ta . By Proposition 2.1 and the fact that
ta+1 = ta + NRΔ, the following inequality can be obtained:

V
(
x̂(ta+1)

) ≤ max
{
V

(
x̂(ta)

) − NRεs, ρmin
}
. (2.54)

From the constraint of Eq. 2.28, the inequality of Eq. 2.54 and taking into account
the fact that x̂(ta) = x̃(ta) = x(ta), the following inequality can be written:

V
(
x̃(ta+1)

) ≤ max
{
V

(
x(ta)

) − NRεs, ρmin
}
. (2.55)

When x(t) ∈ Ωρ for all times (this point will be proved below), we can apply Propo-
sition 2.3 to obtain the following inequality:

V
(
x(ta+1)

) ≤ V
(
x̃(ta+1)

) + fV

(∥∥x̃(ta+1) − x(ta+1)
∥∥)

. (2.56)

Applying Proposition 2.2, we obtain the following upper bound on the deviation of
x̃(t) from x(t):

∥
∥x(ta+1) − x̃(ta+1)

∥
∥ ≤ fW(NRΔ). (2.57)

From the inequalities of Eqs. 2.56 and 2.57, the following upper bound on
V (x(ta+1)) can be written:

V
(
x(ta+1)

) ≤ V
(
x̃(ta+1)

) + fV

(
fW(NRΔ)

)
. (2.58)

Using the inequality of Eq. 2.55, we can rewrite the inequality of Eq. 2.58 as follows:

V
(
x(ta+1)

) ≤ max
{
V

(
x(ta)

) − NRεs, ρmin
} + fV

(
fW (NRΔ)

)
. (2.59)

If the condition of Eq. 2.52 is satisfied, from the inequality of Eq. 2.59, we know
that there exists εw > 0 such that the following inequality holds:

V
(
x(ta+1)

) ≤ max
{
V

(
x(ta)

) − εw,ρa

}
, (2.60)

which implies that if x(ta) ∈ Ωρ/Ωρa , then V (x(ta+1)) < V (x(ta)), and if
x(ta) ∈ Ωρa , then V (x(ta+1)) ≤ ρa .

Because fW (·) and fV (·) are strictly increasing functions of their arguments
and fV (·) is convex (see Propositions 2.2 and 2.3 for the expressions of fW (·) and
fV (·)), the inequality of Eq. 2.60 also implies that:

V
(
x(t)

) ≤ max
{
V

(
x(ta)

)
, ρa

}
, ∀t ∈ [ta, ta+1). (2.61)
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Using the inequality of Eq. 2.61 recursively, it can be proved that if x(t0) ∈ Ωρ ,
then the closed-loop trajectories of the system of Eq. 2.1 under the LMPC of
Eqs. 2.23–2.28 stay in Ωρ for all times (i.e., x(t) ∈ Ωρ, ∀t). Moreover, it can be
proved that if x(t0) ∈ Ωρ , the closed-loop trajectories of the system of Eq. 2.1 sat-
isfy:

lim sup
t→∞

V
(
x(t)

) ≤ ρa.

This proves that x(t) ∈ Ωρ for all times and x(t) is ultimately bounded in Ωρa for
the case when ta+1 − ta = Tm for all a and Tm = NRΔ.

Part 2: In this part, we extend the results proved in Part 1 to the general case, that
is, ta+1 − ta ≤ Tm for all a and Tm ≤ NRΔ which implies that ta+1 − ta ≤ NRΔ. Be-
cause fW(·) and fV (·) are strictly increasing functions of their arguments and fV (·)
is convex, following similar steps as in Part 1, it can be shown that the inequality
of Eq. 2.61 still holds. This proves that the stability results stated in Theorem 2.1
hold. �

Remark 2.6 Theorem 2.1 is important from an MPC point of view because if the
maximum time without data losses is smaller than the maximum time that the sys-
tem can operate in open-loop without leaving the stability region, the feasibility of
the optimization problem for all times is guaranteed, since each time feedback is
regained, the state is guaranteed to be inside the stability region, thereby yielding a
feasible optimization problem.

Remark 2.7 In the LMPC of Eqs. 2.23–2.28, no state constraint has been considered
but the presented approach can be extended to handle state constraints by restricting
the closed-loop stability region further to satisfy the state constraints.

Remark 2.8 It is also important to remark that when there are data losses in the
control system, standard MPC formulations do not provide guaranteed closed-loop
stability results. For any MPC scheme, in order to obtain guaranteed closed-loop
stability results, even in the case where initial feasibility of the optimization problem
is given, the formulation of the optimization problem has to be modified accordingly
to take into account data losses in an explicit way.

Remark 2.9 Although the proof of Theorem 2.2 is constructive, the constants ob-
tained are conservative. This is the case with most of the results of the type pre-
sented in this book. In practice, the different constants are better estimated through
closed-loop simulations. The various inequalities provided are more useful as guide-
lines on the interaction between the various parameters that define the system and
the controller and may be used as guidelines to design the controller and the net-
work.
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2.7.4 Application to a Chemical Reactor

Consider a well mixed, nonisothermal continuously stirred tank reactor (CSTR)
where three parallel irreversible elementary exothermic reactions take place of the
form A → B , A → C and A → D. B is the desired product and C and D are
byproducts. The feed to the reactor consists of pure A at flow rate F , tempera-
ture TA0 and molar concentration CA0 + ΔCA0 where ΔCA0 is an unknown time-
varying uncertainty. Due to the nonisothermal nature of the reactor, a jacket is used
to remove/provide heat to the reactor. Using first principles and standard modeling
assumptions, the following mathematical model of the process is obtained [21]:

dT

dt
= F

Vr

(TA0 − T ) −
3∑

i=1

ΔHi

σcp

ki0e
−Ei
RT CA + Q

σcpVr

, (2.62)

dCA

dt
= F

Vr

(CA0 + ΔCA0 − CA) +
3∑

i=1

ki0e
−Ei
RT CA, (2.63)

where CA denotes the concentration of the reactant A, T denotes the temperature
of the reactor, Q denotes the rate of heat input/removal, Vr denotes the volume of
the reactor, ΔHi, ki0,Ei, i = 1,2,3 denote the enthalpies, preexponential constants
and activation energies of the three reactions, respectively, and cp and σ denote the
heat capacity and the density of the fluid in the reactor, respectively. The values of
the process parameters are shown in Table 2.1.

For Qs = 0 KJ/h (Qs is the steady-state value of Q), the CSTR of Eqs. 2.62–2.63
has three steady-states (two locally asymptotically stable and one unstable). The
control objective is to stabilize the system at the open-loop unstable steady state
Ts = 388 K, CAs = 3.59 mol/l. The manipulated input is the rate of heat in-
put Q. We consider a time-varying uncertainty in the concentration of the inflow
|ΔCA0| ≤ 0.5 kmol/m3. The control system is subject to data losses in both the
sensor-controller and the controller-actuator links.

To demonstrate the theoretical results, we first design the nonlinear control law
h(x) as a Lyapunov-based feedback law using the method presented in [97]. The

Table 2.1 Process parameters of the CSTR of Eqs. 2.62–2.63

F 4.998 [m3/h] k10 3 × 106 [h−1]

Vr 1 [m3] k20 3 × 105 [h−1]

R 8.314 [KJ/kmol K] k30 3 × 105 [h−1]

TA0 300 [K] E1 5 × 104 [KJ/kmol]

CA0 4 [kmol/m3] E2 7.53 × 104 [KJ/kmol]

ΔH1 −5.0 × 104 [KJ/kmol] E3 7.53 × 104 [KJ/kmol]

ΔH2 −5.2 × 104 [KJ/kmol] σ 1000 [kg/m3]

ΔH3 −5.4 × 104 [KJ/kmol] cp 0.231 [KJ/kg K]
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CSTR of Eqs. 2.62–2.63 belongs to the following class of nonlinear systems:

ẋ(t) = f
(
x(t)

) + g
(
x(t)

)
u(t) + w

(
x(t)

)
, (2.64)

where xT = [T −Ts CA −CAs] is the state, u = Q−Qs is the input and w = ΔCA0
is a time varying bounded disturbance with the upper bound θ = 0.5 kmol/m3. We
consider the Lyapunov function V (x) = xT Px with:

P =
[

1 0
0 104

]
. (2.65)

The values of the weights have been chosen to account for the different range of
numerical values for each state. The following feedback law [97] asymptotically
stabilizes the open-loop unstable steady-state of the nominal process:

h(x) =
{

−Lf V +√
(Lf V )2+(LgV )4

LgV
if LgV �= 0,

0 if LgV = 0,
(2.66)

where Lf V = ∂V (x)
∂x

f (x) and LgV = ∂V (x)
∂x

g(x) denote the Lie derivatives of the
scalar function V with respect to the vectors fields f and g in Eq. 2.64, respectively.
This controller will be used in the design of the LMPC of Eqs. 2.16–2.20 and the
LMPC of Eqs. 2.23–2.28. The stability region Ωρ is defined as V (x) ≤ 1000, i.e.,
ρ = 1000.

First, we have to choose an appropriate sampling time and a maximum prediction
horizon for the LMPC based on the properties of h(x). The inequalities obtained in
the main results of this section are conservative to be used to estimate an appropriate
sampling time for a given uncertainty bound and the maximum time that the system
can operate in open-loop without leaving the stability region. In order to obtain
practical estimates, we resort to extensive off-line closed-loop simulations under
the Lyapunov-based controller of Eq. 2.66. After trying different sampling times, we
choose Δ = 0.05 h. For this sampling time, the closed-loop system with u = h(x)

is practically stable and the performance is similar to the closed-loop system with
continuous measurements. With this sampling time, the maximum time such that
the system remains in Ωρ when controlled in open-loop with the nominal sampled
input trajectory is 5Δ (i.e., NR = 5). This value is also estimated using data from
simulations.

We implement the LMPCs presented in the previous sections using a sampling
time Δ = 0.05 h and a prediction horizon N = NR = 5. The cost function is de-
fined by the weighting matrices Qc = P and Rc = 10−6. The values of the weights
have been tuned in a way such that the values of the control inputs are comparable
to the ones computed by the Lyapunov-based controller (i.e., same order of magni-
tude of the input signal and convergence time of the closed-loop system when no
uncertainty or data losses are taken into account).

We will first compare the LMPC of Eqs. 2.23–2.28 with the original LMPC of
Eqs. 2.16–2.20. In this scheme, no data losses were taken into account. We imple-
ment the two LMPCs using the same strategy, that is, sending to the actuator the
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Fig. 2.2 (a, c) State and input trajectories of the CSTR of Eqs. 2.62–2.63 with the LMPC of
Eqs. 2.23–2.28 with no data losses; (b, d) state and input trajectories of the CSTR of Eqs. 2.62–2.63
with the LMPC of Eqs. 2.16–2.20 with no data losses

whole optimal input trajectory, so in case data losses occur, the input is updated
as in the modified receding horizon scheme. The same weights, sampling time and
prediction horizon are used.

In Fig. 2.2, the trajectories of both LMPCs are shown assuming no data is lost,
that is, the state x(tk) is available every sampling time. It can be seen that both
closed-loop systems are practically stable. Note that regarding optimality, for a
given state, the LMPC of Eqs. 2.16–2.20 (not necessarily the closed-loop trajec-
tory) yields a lower cost than the LMPC of Eqs. 2.23–2.28, because the constraints
that define the LMPC of Eqs. 2.16–2.20 are less restrictive (i.e., the Lyapunov-
based constraint must hold only in the first sampling time whereas in the LMPC of
Eqs. 2.23–2.28 it must hold along the whole prediction horizon).

When data losses occur, the LMPC of Eqs. 2.23–2.28 is more robust. The sta-
bility region is an invariant set for the closed-loop system if Tm ≤ NΔ. That is
not the case with the LMPC of Eqs. 2.16–2.20. In Fig. 2.3, the trajectories of the
closed-loop system under both LMPCs are shown for the worst case of data loss
scenario with Tm = 5Δ; that is, the system receives only one measurement of the
actual state every 5 samples. These trajectories account for the worst-case effect
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Fig. 2.3 (a, c) Worst case state and input trajectories of the CSTR of Eqs. 2.62–2.63 with the
LMPC of Eqs. 2.23–2.28 with Tm = 5Δ; (b, d) state and input trajectories of the CSTR of
Eqs. 2.62–2.63 with the LMPC of Eqs. 2.16–2.20 with Tm = 5Δ

of the data losses. The trajectories are shown in the state space along with the
closed-loop stability region Ωρ . It can be seen that the trajectory under the LMPC
of Eqs. 2.16–2.20 leaves the stability region, while the trajectory under the LMPC
of Eqs. 2.23–2.28 remains inside. When data losses are taken into account, in order
to inherit the stability properties of the Lyapunov-based controller of Eq. 2.66, the
constraints must be modified to take into account data losses as in the LMPC of
Eqs. 2.23–2.28.

We now compare the LMPC of Eqs. 2.23–2.28 with the Lyapunov-based con-
troller of Eq. 2.66 applied in a sample-and-hold fashion following a “last available
control” strategy, i.e., when data is lost, the actuator keeps implementing the last
received input value. Note that, through extensive simulations, we have found that
in this particular example, the strategy of setting the input to zero when data losses
occur, yields worst results than the strategy of implementing the last available input.
In Fig. 2.4, the worst case trajectories with Tm = 2Δ for both controllers are shown.
It can be seen that, due to the instability of the open-loop steady state, for this small
amount of losses, the Lyapunov-based controller is not able to stabilize the system.
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Fig. 2.4 Worst case state and input trajectories of the CSTR of Eqs. 2.62–2.63 with Tm = 2Δ

in closed-loop with (a) the LMPC of Eqs. 2.23–2.28 and (b) the Lyapunov-based controller of
Eq. 2.66

Table 2.2 Total performance costs along the closed-loop trajectories of the CSTR of
Eqs. 2.62–2.63 under the Lyapunov-based controller of Eq. 2.66 and the LMPC of Eqs. 2.23–2.28

sim. Lyapunov-based controller of Eq. 2.66 LMPC of Eqs. 2.23–2.28

1 0.1262 × 1012 0.0396 × 1012

2 0.3081 × 1012 0.2723 × 1012

3 0.0561 × 1012 0.0076 × 1012

4 0.9622 × 1011 0.2884 × 1011

5 3.8176 × 1011 1.3052 × 1011

6 0.9078 × 1011 0.0950 × 1011

7 0.4531 × 1012 0.2678 × 1012

8 0.6752 × 1011 0.5689 × 1011

9 1.0561 × 1011 0.6776 × 1011

10 0.5332 × 1012 0.3459 × 1012

This is due to the fact that this control scheme does not update the control actuator
output using the model, as the LMPC of Eqs. 2.23–2.28 does.

We have also carried out another set of simulations to demonstrate that the LMPC
of Eqs. 2.23–2.28, although inherits the same stability and robustness properties of
the Lyapunov-based controller that it employs, it does outperform the Lyapunov-
based controller of Eq. 2.66 from a performance index point of view. Table 2.2
shows the total cost computed for 10 different closed-loop simulations under the
LMPC and the Lyapunov-based controller implemented in a sample-and-hold fash-
ion, using the nominal model to predict the evolution of the system when data is lost.
To carry out this comparison, we compute the total cost of each simulation based on
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Fig. 2.5 LMPC design for
systems subject to
time-varying measurement
delays

the performance index of the LMPC which has the form:
∫ tf

t0

[∥∥x(τ)
∥∥

Qc
+ ∥∥u(τ)

∥∥
Rc

]
dτ, (2.67)

where t0 = 0 is the initial time of the simulations and tf = 4 h is the end of the
simulation. For each pair of simulations (one for each controller), a different ini-
tial state inside the stability region, a different random uncertainty trajectory and
a different data losses realization is chosen. As it can be seen in Table 2.2, the to-
tal cost under the LMPC of Eqs. 2.23–2.28 is lower than the corresponding total
cost under the Lyapunov-based controller. This demonstrates that in this example,
the LMPC shares the same robustness and stability properties and is more optimal
than the Lyapunov-based controller, which is not designed taking into account any
optimality consideration.

The simulations have been done in MATLAB� using fmincon and a Runge–
Kutta solver with a fixed integration time of 0.001 h. To simulate the time-varying
uncertainty, a different random value w(t) has been applied at each integration step.

2.8 LMPC with Delayed Measurements

In this section, we deal with the design of LMPC for nonlinear systems subject
to time-varying measurement delays in the feedback loop. In the LMPC design that
will be presented, when measurement delays occur, the nominal model of the system
is used together with the latest available measurement to estimate the current state,
and the resulting estimate is used to evaluate the LMPC; at time instants where
no measurements are available due to the delay, the actuator implements the last
optimal input trajectory evaluated by the controller as discussed in the previous
section. The LMPC accounting for delays is also designed based on a nonlinear
control law which is able to stabilize the closed-loop system and inherits the stability
and robustness properties in the presence of uncertainty and time-varying delays of
the nonlinear control law, while taking into account optimality considerations. The
closed-loop system considered in this section is shown in Fig. 2.5.

2.8.1 Modeling of Delayed Measurements

We assume that the state of the system of Eq. 2.1 is received by the controller at
asynchronous time instants ta where {ta≥0} is a random increasing sequence of times



34 2 Lyapunov-Based Model Predictive Control

Fig. 2.6 A possible sequence
of delayed measurements

and that there exists an upper bound Tm on the interval between two successive mea-
surements as described in Eq. 2.22. We also assume that there are delays in the mea-
surements received by the controller due to delays in the sampling process and data
transmission. In order to model delays in measurements, another auxiliary variable
da is introduced to indicate the delay corresponding to the measurement received
at time ta , that is, at time ta , the measurement x(ta − da) is received. In general, if
the sequence {da≥0} is modeled using a random process, there exists the possibility
of arbitrarily large delays. In this case, it is improper to use all the delayed mea-
surements to estimate the current state and decide the control inputs, because when
the delays are too large, they may introduce enough errors to destroy the stability of
the closed-loop system. In order to study the stability properties in a deterministic
framework, we assume that the delays associated with the measurements are smaller
than an upper bound D, that is:

da ≤ D. (2.68)

The size of D is, in general, related to measurement sensor delays and data trans-
mission network delays. We note that for chemical processes, the delay in the mea-
surements received by a controller are mainly caused in the measurement sampling
process. We also assume that the time instant when a measurement is sampled is
recorded and transmitted together with the measurement. This assumption is prac-
tical for many process control applications and implies that the delay in a measure-
ment received by the controller is calculable and can be assumed to be known.

Note that because the delays are time-varying, it is possible that at a time instant
ta , the controller may receive a measurement x(ta −da) which does not provide new
information (i.e., ta − da ≤ ta−1 − da−1); that is, the controller has already received
a measurement of the state after time ta − da . We assume that each measurement is
time-labeled, and hence the controller is able to discard a newly received measure-
ment if ta −da < ta−1 −da−1. Figure 2.6 shows part of a possible sequence of {ta≥0}.
At time ta , the state measurement x(ta − da) is received. There exists a possibility
that between ta and ta+j , with ta+j − ta = D − da and j being an unknown integer,
all the measurements received do not provide new information. Note that any mea-
surements received after ta+j provide new information because the maximum delay
is D and the latest received measurement was x(ta − da). The maximum possible
time interval between ta+j and ta+j+1 is Tm. Therefore, the maximum amount of
time in which the system might operate in open-loop following ta is D + Tm − da .
This upper bound will be used in the formulation of the LMPC design for systems
subject to delayed measurements below.

Remark 2.10 The sequences {ta≥0} and {da≥0} characterize the time needed to ob-
tain a new measurement in the case of asynchronous measurements or the quality of
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the network link in the case of networked (wired or wireless) communications sub-
ject to data losses and time-varying delays. The model is general and can be used to
model a wide class of systems subject to asynchronous, delayed measurements.

2.8.2 LMPC Formulation with Measurement Delays

A controller for a system subject to time-varying measurement delays must take
into account two important issues. First, when a new measurement is received, this
measurement may not correspond to the current state of the system. This implies
that in this case, the controller has to make a decision using an estimate of the
current state. Second, because the delays are time-varying, the controller may not
receive new information every sampling time. This implies that in this case, the
controller has to operate in open-loop using the last received measurements. To
this end, when a delayed measurement is received the controller uses the nom-
inal system model and the input trajectory that has been applied to the system
to get an estimate of the current state and then an MPC optimization problem is
solved in order to decide the optimal future input trajectory that will be applied
until new measurements are received. This approach implies that the previous con-
trol input trajectory should be stored in the controller. The implementation strategy
for the LMPC for systems subject to time-varying measurement delays is as fol-
lows:

1. When a measurement x(ta −da) is available at ta , the LMPC checks whether the
measurement provides new information. If ta −da > maxl<a tl −dl , go to Step 2.
Else the measurement does not contain new information and is discarded, go to
Step 5.

2. The LMPC estimates the current state of the system x̃(ta) and computes the
optimal input trajectory of u based on x̃(ta) for t ∈ [ta, ta + NΔ).

3. The LMPC sends the entire optimal input trajectory to the actuators.
4. The actuators implement the input trajectory until a new measurement is received

at time ta+1.
5. When a new measurement is received (a ← a + 1), go to Step 1.

The LMPC that takes into account time-varying measurement delay in an explicit
way is based on the following constrained optimal control problem:

min
u∈S(Δ)

∫ ta+NΔ

ta

[∥∥x̃(τ )
∥∥

Qc
+ ∥∥u(τ)

∥∥
Rc

]
dτ, (2.69)

s.t. ˙̃x(t) = f
(
x̃(t), u(t),0

)
, ∀t ∈ [ta − da, ta + NΔ), (2.70)

u(t) = u∗
d(t), ∀t ∈ [ta − da, ta), (2.71)

x̃(ta − da) = x(ta − da), (2.72)

˙̂x(t) = f
(
x̂(t), h

(
x̂(ta + jΔ)

)
,0

)
, t ∈ [

ta + jΔ, ta + (j + 1)Δ
)
, (2.73)



36 2 Lyapunov-Based Model Predictive Control

Fig. 2.7 A possible scenario
of the measurements received
by the LMPC of
Eqs. 2.69–2.75 and the
corresponding state
trajectories defined in the
LMPC

x̂(ta) = x̃(ta), (2.74)

V
(
x̃(t)

) ≤ V
(
x̂(t)

)
, ∀t ∈ [ta, ta + ND,aΔ), (2.75)

where u∗
d(t) indicates the actual control input trajectory that has been applied to the

system, x(ta − da) is the delayed measurement that is received at ta with delay size
da , x̃(ta) is an estimate of the current system state, j = 0, . . . ,N − 1, and ND,a is
the smallest integer satisfying ND,aΔ ≥ Tm + D − da .

The optimal solution to the LMPC optimization problem of Eqs. 2.69–2.75 is
denoted as u∗

d(t |ta) which is defined for t ∈ [ta, ta + NΔ). The manipulated input
of the system of Eq. 2.1 under the control of the LMPC of Eqs. 2.23–2.28 is defined
as follows:

u(t) = u∗
d(t |ta), ∀t ∈ [ta, ta+i ), (2.76)

for all ta such that ta − da > maxl<a tl − dl and for a given ta , the variable i denotes
the smallest integer that satisfies ta+i − da+i > ta − da .

In the LMPC design of Eqs. 2.69–2.75, if at a sampling time, a new measure-
ment x(ta − da) is received, an estimate of the current state x̃(ta) is obtained using
the nominal model of the system (the constraint of Eq. 2.70) and the control input
trajectory applied to the system from ta − da to ta (the constraint of Eq. 2.71) with
the initial condition x̃(ta − da) = x(ta − da) (the constraint of Eq. 2.72). The esti-
mated state x̃(ta) is then used to obtain the optimal future control input trajectory.
The LMPC of Eqs. 2.69–2.75 uses the nominal model to predict the future trajec-
tory x̃(t) for a given input trajectory u(t) ∈ S(Δ) with t ∈ [ta, ta + NΔ). A cost
function is minimized (Eq. 2.69), while assuring that the value of the Lyapunov
function along the predicted trajectory x̃(t) satisfies a Lyapunov-based constraint
(the constraint of Eq. 2.75) where x̂(t) is the state trajectory corresponding to the
nominal system in closed-loop with the nonlinear control law h(x) (the constraint of
Eq. 2.73) with the initial condition x̂(ta) = x̃(ta) (the constraint of Eq. 2.74). Note
that the length of the constraint ND,a depends on the current delay da so it may
have different values at different time instants and has to be updated before solving
the optimization problem of Eqs. 2.69–2.75. If the controller does not receive any
new measurement at a sampling time, it keeps implementing the last evaluated opti-
mal trajectory. This strategy is a receding horizon scheme, which takes time-varying
measurement delays explicitly into account.

Figure 2.7 shows a possible scenario for a system of dimension 1. A delayed
measurement x(ta − da) is received at time ta and the next new measurement is
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not obtained until ta+i . This implies that at time ta we evaluate the LMPC of
Eqs. 2.69–2.75 and we apply the optimal input u∗

d(t |ta) from ta to ta+i . The solid
vertical lines are used to indicate sampling times in which a new measurement is
obtained (that is, ta and ta+i ) and the dashed vertical line is used to indicate the time
corresponding to the measurement obtained in ta (that is, ta − da ).

2.8.3 Stability Properties

In this subsection, we present the stability properties of the LMPC of Eqs. 2.69–2.75
for systems subject to time-varying measurement delays. Theorem 2.2 below pro-
vides sufficient conditions under which the LMPC of Eqs. 2.69–2.75 guarantees
stability of the closed-loop system in the presence of time-varying measurement
delays.

Theorem 2.2 Consider the system of Eq. 2.1 in closed-loop, which closes at asyn-
chronous time instants {ta≥0} that satisfy the condition of Eq. 2.22, under the
LMPC of Eqs. 2.69–2.75 based on a controller h(x) that satisfies the conditions
of Eqs. 2.4–2.7. Let Δ,εs > 0, ρ > ρmin > 0, ρ > ρs > 0, N ≥ 1 and D ≥ 0 satisfy
the condition of Eq. 2.31 and the following inequality:

−NRεs + fV

(
fW(NDΔ)

) + fV

(
fW(D)

)
< 0. (2.77)

with fV (·) and fW(·) defined in Eqs. 2.49 and 2.43, respectively, ND being the
smallest integer satisfying NDΔ ≥ Tm + D, and NR being the smallest integer sat-
isfying NRΔ ≥ Tm. If N ≥ ND , x(t0) ∈ Ωρ and d0 = 0, then x(t) is ultimately
bounded in Ωρd

⊆ Ωρ where:

ρd = ρmin + fV

(
fW (NDΔ)

) + fV

(
fW(D)

)
. (2.78)

Proof In order to prove that the system of Eq. 2.1 in closed-loop with the LMPC
of Eq. 2.69–2.75 is ultimately bounded in a region that contains the origin, we will
prove that the Lyapunov function V (x) is a decreasing function of time with a lower
bound on its magnitude. We assume that the delayed measurement x(ta − da) is
received at time ta and that a new measurement is not obtained until ta+i . The LMPC
of Eq. 2.69–2.75 is solved at ta and the optimal input trajectory u∗

d(t |ta) is applied
from ta to ta+i .

Part 1: In this part, we prove that the stability results stated in Theorem 2.2 hold
for ta+i − ta = ND,aΔ and all da ≤ D.

The trajectory x̂(t) corresponds to the nominal system in closed-loop with the
nonlinear control law u = h(x̂) implemented in a sample-and-hold fashion with
initial condition x̃(ta); please see the constraint of Eqs. 2.73 and 2.74. By Proposi-
tion 2.1, the following inequality can be obtained:

V
(
x̂(ta+i )

) ≤ max
{
V

(
x̂(ta)

) − ND,aεs, ρmin
}
. (2.79)
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The constraint of Eq. 2.75 guarantees that:

V
(
x̃(t)

) ≤ V
(
x̂(t)

)
, ∀t ∈ [ta, ta + ND,aΔ), (2.80)

and the constraint of Eq. 2.74 guarantees that V (x̂(ta)) = V (x̃(ta)). This implies
that:

V
(
x̃(ta+i )

) ≤ max
{
V

(
x̃(ta)

) − ND,aεs, ρmin
}
. (2.81)

When x(t) ∈ Ωρ for all times (this point will be proved below), we can apply Propo-
sition 2.3 to obtain the following inequalities:

V
(
x̃(ta)

) ≤ V
(
x(ta)

) + fV

(∥∥x(ta) − x̃(ta)
∥∥)

, (2.82)

V
(
x(ta+i )

) ≤ V
(
x̃(ta+i )

) + fV

(∥∥x(ta+i ) − x̃(ta+i )
∥∥)

. (2.83)

Applying Proposition 2.2, we obtain the following upper bounds on the deviation of
x̃(t) from x(t):

∥∥x(ta) − x̃(ta)
∥∥ ≤ fW(da), (2.84)

∥∥x(ta+i ) − x̃(ta+i )
∥∥ ≤ fW(NDΔ). (2.85)

Note that the constraints of Eqs. 2.70–2.72 and the implementation procedure allow
us to apply Proposition 2.2 because it is guaranteed that the actual system state x(t)

and the state estimated using the nominal model x̃(t) are obtained using the same
input trajectory. Note also that we have taken into account that NDΔ ≥ Tm +D −da

for all da . Using the inequalities of Eqs. 2.81–2.84, the following upper bound on
V (x(tk+j )) is obtained:

V
(
x(ta+i )

) ≤ max
{
V

(
x(ta)

) − ND,aεs, ρmin
} + fV

(
fW (da)

) + fV

(
fW(NDΔ)

)
.

(2.86)
In order to prove that the Lyapunov function is decreasing between two consec-

utive new measurements, the following inequality must hold:

ND,aεs > fV

(
fW (NDΔ)

) + fV

(
fW (da)

)
(2.87)

for all possible 0 ≤ da ≤ D. Taking into account that fW (·) and fV (·) are strictly
increasing functions of their arguments, that ND,a is a decreasing function of the
delay da and that if da = D then ND,a = NR , if the condition of Eq. 2.77 is satisfied,
the condition of Eq. 2.87 holds for all possible da and there exists εw > 0 such that
the following inequality holds:

V
(
x(ta+i )

) ≤ max
{
V

(
x(ta)

) − εw,ρd

}
, (2.88)

which implies that if x(ta) ∈ Ωρ/Ωρd
, then V (x(ta+i )) < V (x(ta)), and if

x(ta) ∈ Ωρd
, then V (x(ta+i )) ≤ ρd .
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Because the upper bound on the difference between the Lyapunov function of the
actual trajectory x and the nominal trajectory x̃ is a strictly increasing function of
time, the inequality of Eq. 2.88 also implies that:

V
(
x(t)

) ≤ max
{
V

(
x(ta)

)
, ρd

}
, ∀t ∈ [ta, ta+i ). (2.89)

Using the inequality of Eq. 2.89 recursively, it can be proved that if x(t0) ∈ Ωρ ,
then the closed-loop trajectories of the system of Eq. 2.1 under the LMPC of
Eqs. 2.69–2.75 stay in Ωρ for all times (i.e., x(t) ∈ Ωρ,∀t). Moreover, using the
inequality of Eq. 2.89 recursively, it can be proved that if x(t0) ∈ Ωρ , the closed-
loop trajectories of the system of Eq. 2.1 under the LMPC of Eqs. 2.69–2.75 satisfy:

lim sup
t→∞

V
(
x(t)

) ≤ ρd . (2.90)

This proves that x(t) ∈ Ωρ for all times and x(t) is ultimately bounded in Ωρd
for

the case when ta+i − ta = ND,aΔ.
Part 2: In this part, we extend the results proved in Part 1 to the general case,

that is, ta+i − ta ≤ ND,aΔ. Taking into account that fV (·) and fW (·) are strictly
increasing functions of their arguments and fV (·) is convex, following similar steps
as in Part 1, it can be shown that the inequality of Eq. 2.87 holds for all possible
da ≤ D and ta+i − ta ≤ ND,aΔ. Using this inequality and following the same line
of arguments as in the previous part, the stability results stated in Theorem 2.2 can
be proved. �

Remark 2.11 When time-varying measurement delays are not present and new mea-
surements of x(t) are fed into the controller every synchronous sampling time, the
LMPC of Eqs. 2.69–2.75 may be simplified to the LMPC of Eqs. 2.16–2.20. Com-
paring the LMPC of Eqs. 2.16–2.20 with the one of Eqs. 2.69–2.75, the difference
is that the Lyapunov-based constraint of Eq. 2.20 has to hold only for one time
step. This implies that even if the same implementation procedure is used, and the
same optimization problem is solved (in order to estimate the current state), if the
Lyapunov-based constraint is not changed, stability cannot be proved. This point
will be illustrated in the example in Sect. 2.8.4.

Remark 2.12 In the LMPC of Eqs. 2.23–2.28 for systems with asynchronous feed-
back without delays, the Lyapunov-based constraint of Eq. 2.28 has to hold for a
time period which is equal to or bigger than the maximum time without new mea-
surement. This constraint makes the computed control action more conservative
(and thus less optimal) because the controller may have to satisfy the Lyapunov-
based constraint over unnecessarily large horizons. If the LMPC of Eqs. 2.23–2.28
is implemented for systems subject to time-varying delays, it will be, in general, less
optimal than the LMPC of Eqs. 2.69–2.75. This point will also be illustrated in the
example in Sect. 2.8.4.
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2.8.4 Application to a Chemical Reactor

Consider the CSTR described by Eqs. 2.62–2.63 in Sect. 2.7.4. We assume that the
manipulated input (the rate of heat input Q) is bounded by |Q| ≤ 105 KJ/h and
the time-varying uncertainty in the reactant concentration of the inflow is bounded
by |ΔCA0| ≤ 0.2 mol/l. The control system is subject to time-varying measure-
ment delay in the measurements of the concentration of the reactant, CA, and in
the measurements of the temperature, T . Note that we do not consider the possi-
ble different sampling rates of temperature and concentration sensors in this exam-
ple. Note also that the delay in the measurements could be regarded as the total
time needed for online sensors to get a sample, analyze the sample and transmit
the data to the controller. The same nonlinear controller of Eq. 2.66 with the same
Lyapunov function V (x) and weighting matrix P is used in the design of the LM-
PCs used in the simulations. The stability region Ωρ is defined as V (x) ≤ 700, i.e.,
ρ = 700.

The sampling time of the LMPCs is chosen to be Δ = 0.025 h, the maximum
allowable measurement delay is D = 6Δ = 0.15 h and the maximum interval be-
tween two consecutive measurements is Tm = Δ = 0.025 h which implies that
there is a measurement available every Δ but it may not contain new state in-
formation. The cost function is defined by the weighting matrices Qc = P and
Rc = 10−6.

We first compare the LMPC of Eqs. 2.69–2.75 with the LMPC of Eqs. 2.16–2.20
in the case where no time-varying measurement delays are present. For this sim-
ulation, we choose the prediction horizon of the two LMPCs N equal to 7
(N ≥ D + Tm). We implement the LMPC of Eqs. 2.16–2.20 using the same ap-
proach employed in the implementation of the LMPC of Eqs. 2.69–2.75, that is,
the current state is estimated using the nominal model when a delayed measure-
ment is received and the last optimal input is applied when no new measurement
is received. In Fig 2.8, the trajectories of the CSTR under both LMPCs are shown
assuming no measurement delay is present, that is, the state x(tk) is available every
sampling time. It can be seen that both closed-loop systems are practically stable
and the trajectories remain in the stability region Ωρ .

In order to simulate the process in the presence of measurement delay, we use a
random process to generate the delay sequence {da≥0}, and the time sequence {ta≥0}
and corresponding delay sequence {da≥0} in which the control system is subjected
to is shown in Fig. 2.9. In this figure, we see the time-varying nature of the mea-
surement delays and the largest delays are equal to the maximum allowable delay
D = 6Δ = 0.15 h. Note that when da+1 = da + Δ, the controller does not receive
any new measurement.

When time-varying measurement delays are present, the LMPC of Eqs. 2.69–2.75
is more robust. The stability region is invariant for the closed-loop system if
D + Tm ≤ NΔ. This is not the case with the LMPC of Eqs. 2.16–2.20. In Fig. 2.10,
the trajectories of the closed-loop system under both controllers are shown in the
presence of measurement delay with D = 6Δ = 0.15 h. It can be seen that the
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Fig. 2.8 (a, c) State and input trajectories of the CSTR of Eqs. 2.62–2.63 with the LMPC of
Eqs. 2.69–2.75 when no measurement delay is present; (b, d) state and input trajectories of the
CSTR of Eqs. 2.62–2.63 with the LMPC of Eqs. 2.16–2.20 when no measurement delay is present

Fig. 2.9 Time sequence
{ta≥0} and corresponding
delay sequence {da≥0} used
in the simulation shown in
Fig. 2.10

LMPC of Eqs. 2.16–2.20 can not stabilize the system at the desired open-loop un-
stable steady-state and the trajectories leave the stability region, while the LMPC
of Eqs. 2.69–2.75 keeps the trajectories inside the stability region. When mea-
surement delay is present, in order to provide stability guarantees, the constraints
must be modified to take into account the measurement delay as in the LMPC of
Eqs. 2.69–2.75.

We have also carried out a set of simulations to compare the LMPC of
Eqs. 2.69–2.75 with the LMPC of Eqs. 2.23–2.28 for nonlinear systems subject
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Fig. 2.10 (a, c) State and input trajectories of the CSTR of Eqs. 2.62–2.63 with the LMPC of
Eqs. 2.69–2.75 when D is 6Δ and Tm = Δ; (b, d) state and input trajectories of the CSTR of
Eqs. 2.62–2.63 with the LMPC of Eqs. 2.16–2.20 when D is 6Δ and Tm = Δ

to data losses from a performance index point of view. We also implement the
LMPC of Eqs. 2.23–2.28 using the same approach employed in the implementa-
tion of the LMPC of Eqs. 2.69–2.75. Table 2.3 shows the total cost computed for
20 different closed-loop simulations under the LMPC of Eqs. 2.69–2.75 and the
LMPC of Eqs. 2.23–2.28. To carry out this comparison, we have computed the total
cost of each simulation based on the performance index of Eq. 2.67 with the initial
simulation time t0 = 0 and the final simulation time tf = 2 h.

The prediction horizon in this set of simulations is N = 10. For each pair of sim-
ulations (one for each controller) a different initial state inside the stability region, a
different uncertainty trajectory and a different random measurement delay sequence
is chosen. As can be seen in Table 2.3, the LMPC of Eqs. 2.69–2.75 has a cost lower
than the corresponding total cost under the LMPC designed for systems subject to
data losses in 16 out of 20 simulations (see also Remark 2.12). This illustrates that
the LMPC of Eqs. 2.69–2.75 is, in general, more optimal. This is because the LMPC
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Table 2.3 Total performance
costs along the closed-loop
trajectories of the CSTR of
Eqs. 2.62–2.63 under LMPC
of Eqs. 2.69–2.75 and LMPC
of Eqs. 2.23–2.28

sim. LMPC of Eqs. 2.69–2.75 LMPC of Eqs. 2.23–2.28

1 1.8295 × 104 2.4428 × 104

2 4.2057 × 104 6.0522 × 104

3 3.2481 × 103 1.0428 × 104

4 7.4328 × 102 7.3961 × 102

5 1.4229 × 103 2.7798 × 105

6 4.9435 × 104 6.1596 × 104

7 3.2519 × 104 3.4319 × 104

8 2.7590 × 104 4.7075 × 104

9 9.4216 × 102 9.4866 × 102

10 5.4505 × 102 5.4322 × 102

11 1.9723 × 104 3.1282 × 104

12 2.7235 × 104 3.8772 × 104

13 1.8671 × 103 1.9200 × 103

14 3.7789 × 104 4.0050 × 104

15 2.1839 × 103 2.1392 × 103

16 4.2920 × 104 4.4594 × 104

17 1.5153 × 102 1.7190 × 102

18 4.9955 × 103 9.9094 × 103

19 3.2086 × 104 4.8838 × 104

20 1.5420 × 103 1.5197 × 103

designed for system subject to data losses requires the Lyapunov-based constraint
of Eq. 2.28 to be satisfied along the whole possible maximum open-loop operation
time (that is t ∈ [ta, ta + NRΔ)) which yields a more conservative controller from a
performance point of view.

We have also carried out a set of simulations to study the dependence on the
value of the maximum delay D of the set in which the trajectory of the process
under the proposed LMPC scheme is ultimately bounded. In order to estimate the
size of each set for a given D, we start the system very close to the equilibrium
state and run it for a sufficient long time. In this set of simulations, we set ΔCA0 =
0.1 kmol/m3 and N = 7. The simulation time is 25 h. Figure 2.11 shows the location
of the states, (CA,T ), at each sampling time and the estimated regions for D =
2Δ,4Δ,6Δ. Three ellipses are used to estimate the boundaries of the sets, and they
are chosen to be as small as possible but still include all the corresponding points
indicating the states. From Fig. 2.11, we see that the size of these sets becomes larger
as D increases. The results are expected because the size of the sets is not only
dependent on the system and the controller, but it also depends on the maximum
measurement delay. The longer the size of the delay, the further the system can
move away from the steady-state which means a larger set (if the state is still in
the stability region Ωρ ). Note that all the sets for D = 2Δ,4Δ,6Δ are included
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Fig. 2.11 (a) Estimate of the set in which the state trajectories of the CSTR of Eqs. 2.62–2.63 with
the LMPC of Eqs. 2.69–2.75 are ultimately bounded when the maximum allowable measurement
delay D is 2Δ; (b) estimate of the set in which the state trajectories of the CSTR of Eqs. 2.62–2.63
with the LMPC of Eqs. 2.69–2.75 are ultimately bounded when the maximum allowable mea-
surement delay D is 4Δ; (c) estimate of the set in which the state trajectories of the CSTR of
Eqs. 2.62–2.63 with the LMPC of Eqs. 2.69–2.75 are ultimately bounded when the maximum
allowable measurement delay D is 6Δ; (d) comparison of the three sets

in the stability region of the closed loop system under the LMPC accounting for
time-varying delays (Ωρ,ρ = 700).

2.9 Conclusions

In this chapter, LMPC designs were developed for the control of a broad class
of nonlinear uncertain systems subject to data losses/asynchronous measurements
and time-varying measurement delays. The main idea is that in order to provide
guaranteed stability results in the presence of data losses or time-varying mea-
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surement delays, the constraints that define the LMPC optimization problems as
well as the implementation procedures have to be modified to account for data
losses/asynchronous measurements or time-varying measurement delays. The pre-
sented LMPCs possess an explicit characterization of the closed-loop system sta-
bility regions. The applications of the presented LMPCs were illustrated using a
nonlinear CSTR example.





Chapter 3
Networked Predictive Process Control

3.1 Introduction

In Chap. 2, we presented two LMPC designs for networked control systems sub-
ject to feedback data losses and time-varying measurement delays. From a control
system architecture point of view, the two LMPC designs are centralized and aim
to replace existing, dedicated control systems. In this chapter, we present a two-tier
networked control architecture to augment existing, point-to-point control systems
with networked control systems, which take advantage of real-time wired or wireless
sensor and actuator networks. This two-tier control architecture is a decentralized
control architecture and involves the use of hybrid communication networks. In this
case, key issues that need to be carefully handled at the control system design level
include data losses due to field interference, and time-delays due to network traffic
as well as measurement sampling.

The class of networked control problems considered in this chapter arises nat-
urally in the context of process control systems based on hybrid communication
networks (i.e., point-to-point wired links integrated with networked wired or wire-
less communication) and utilizing multiple heterogeneous measurements (e.g., tem-
perature and concentration). Assuming that there exists a lower-tier control sys-
tem which relies on point-to-point communication and continuous measurements to
stabilize the closed-loop system, we use LMPC to design an upper-tier networked
control system which profits from both continuous and asynchronous/delayed mea-
surements as well as from additional networked control actuators. The main idea is
to formulate appropriate constraints in the MPC optimization problem based on the
existing lower-tier control system, in a way such that the MPC inherits the robust-
ness and stability properties of the lower-tier controller. The two-tier control system
architecture has the ability to preserve the stability properties of the lower-tier con-
trol system while improving the closed-loop performance. The applicability and
effectiveness of the two-tier control architecture is demonstrated using two chemi-
cal process examples. Moreover, the two-tier control architecture is also applied to
the optimal management and operation of a standalone hybrid wind–solar energy
generation system. Specifically, we design a supervisory control system via MPC

P.D. Christofides et al., Networked and Distributed Predictive Control,
Advances in Industrial Control,
DOI 10.1007/978-0-85729-582-8_3, © Springer-Verlag London Limited 2011
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which computes the power references for the wind and solar subsystems at each
sampling time while minimizing a suitable cost function. The power references are
sent to two local controllers which drive the two subsystems to the requested power
references. We explicitly incorporate some important practical considerations, for
example, how to extend the life time of the equipment by reducing the peak values
of inrush or surge currents, into the formulation of the MPC optimization problem.
We present several simulation case studies that demonstrate the applicability and
effectiveness of the supervisory predictive control architecture. The results of this
chapter were first presented in [51, 57, 88].

3.2 System Description

In this chapter, we consider nonlinear systems described by the following state-
space model:

ẋ(t) = f
(
x(t), us(t), ua(t),w(t)

)
, (3.1)

ys(t) = hs

(
x(t)

)
, (3.2)

ya(t) = ha

(
x(t)

)
, (3.3)

where x(t) ∈ Rn denotes the vector of state variables, ys(t) ∈ Rns denotes measure-
ments that are available continuously, ya(t) ∈ Rna denotes measurements that are
sampled at asynchronous time instants, us(t) ∈ Rms and ua(t) ∈ Rma are two differ-
ent sets of possible control inputs, and w(t) ∈ Rw denotes the vector of disturbance
variables. The disturbance vector is assumed to be bounded, i.e., w(t) ∈ W where:

W := {
w ∈ Rw : ‖w‖ ≤ θ, θ > 0

}
(3.4)

with θ being a known positive real number.
We assume that f is a locally Lipschitz vector function, hs and ha are suffi-

ciently smooth vector functions, f (0,0,0,0) = 0, hs(0) = 0 and ha(0) = 0. This
means that the origin is an equilibrium point for the nominal system with us = 0
and ua = 0.

The system of Eqs. 3.1–3.3 has both continuous synchronous and sampled asyn-
chronous measurements. We assume that ys(t) is available for all t , while ya(t)

is sampled and only available at some time instants ta where {ta≥0} is a random
increasing sequence of times. Moreover, there may be time-varying measurement
delays associated with the asynchronous measurements ya(t). Please see Sect. 3.3
for a precise definition of the measurement/network model that considered in this
chapter.

Remark 3.1 The two sets of inputs include both systems with multiple inputs, or
systems with a single input divided artificially into two parts; that is:

ẋ(t) = f̂
(
x(t), u(t),w(t)

)
(3.5)
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with u(t) = us(t) + ua(t). This implies that the two-tier control architecture pre-
sented in this chapter can be used to design control systems which produce adjust-
ments to the actions of an already operating local control system to improve the
closed-loop performance.

3.3 Modeling of Measurements

The system of Eqs. 3.1–3.3 is controlled using both continuous synchronous, ys ,
and asynchronous, delayed measurements, ya . This class of systems arises natu-
rally in process control applications, where different process variables have to be
measured such as temperature, flow rates, species concentrations or particle size
distributions. This model is also of interest in the context of processes controlled
through a hybrid communication network in which networked wired/wireless sen-
sors and actuators are used to add redundancy to existing control loops (which use
point-to-point wired communication links and continuous measurements) because
networked communication is often subject to data losses due to field interference
(for example, in wireless communication) and time-varying delays due to network
traffic.

We assume that ys is available for all t , while delayed ya samples are received at
an asynchronous rate. We also assume that each ya measurement is time-labeled, so
the controller is able to discard nonrelevant information. Delays in the computation
and implementation of control actions can be readily lumped with the measurement
delays and are not treated separately. The time instants at which a new delayed ya

sample is received are denoted ta , where {ta≥0} is a random increasing sequence
of times. To model the time-varying delay, an auxiliary variable da is introduced to
indicate the delay corresponding to the sample received at time ta , that is, at time
instant ta , the sample ya(ta − da) = ha(x(ta − da)) is received.

In general, if the sequence {da≥0} is modeled using a random process, it is im-
proper to use all the delayed measurements to estimate the current state and decide
the control inputs, because when the delays are too large, they may introduce enough
errors to destroy the stability of the closed-loop system. In order to study the stabil-
ity properties in a deterministic framework, in this chapter, we only take advantage
of delayed measurements such that the delays associated with the measurements are
smaller than an upper bound D, i.e., da ≤ D,a = 0,1 . . . . The sequence {ta≥0} only
indicates time instants in which new measurements are available with a correspond-
ing measurement delay smaller than or equal to D.

We assume that the measurement of the full state x can be obtained by a proper
combination of measurements ys and ya at a given time instant. Due to the asyn-
chronous nature of ya , the time interval between two consecutive state x measure-
ments is unknown, moreover, due to the time-varying measurement delay of ya , the
full state x is also subject to time-varying delays. This implies that a controller that is
designed to profit from the extra information provided by the asynchronous, delayed
measurements ya must take into account that between two consecutive state mea-
surements it has to operate in open-loop and that the received state measurements
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Fig. 3.1 Lower-tier
controller with dedicated
point-to-point, wired
communication links and
continuous sensing and
actuation

are delayed so the real state of the system has to be estimated using the nominal
model of the system and the available measurement information.

Remark 3.2 The sequence {ta≥0} does not take into account time instants in which
a sample that does not provide new information or a sample that involves a delay
larger than D is received, that is, the controller discards samples with already known
information, or with a delay too large to use this sample to estimate the current state
(recall that the measurements are time-labeled).

Remark 3.3 We have considered that the delayed full state is available asyn-
chronously to simplify the notation. The results can be extended to controllers based
on partial state information.

3.4 Lower-Tier Controller

The continuous measurements ys(t) can be used to design a continuous output feed-
back controller to stabilize the system. We term the control system based only on
the continuous measurements ys(t) as lower-tier controller. This controller does not
use the asynchronous measurements ya(t). Figure 3.1 shows a schematic of the
lower-tier control system. Following this idea, we assume that there exists an out-
put feedback controller us(t) = ks(ys) (where ks(ys) is assumed to be a sufficiently
smooth function of ys ) that renders the origin of the nominal closed-loop system
asymptotically stable with ua(t) ≡ 0. Using converse Lyapunov theorems [11, 40,
48, 64], this assumption implies that there exist functions αi(·), i = 1,2,3,4 of
class K and a continuously differentiable Lyapunov function V (x) for the nominal
closed-loop system, that satisfy the following inequalities:

α1
(‖x‖) ≤ V (x) ≤ α2

(‖x‖), (3.6)

∂V (x)

∂x
f

(
x, ks

(
hs(x)

)
,0,0

) ≤ −α3
(‖x‖), (3.7)

∥∥
∥∥
∂V (x)

∂x

∥∥∥
∥ ≤ α4

(‖x‖), (3.8)

for all x ∈ O ⊆ Rn where O is an open neighborhood of the origin. We denote
the region Ωρ ⊆ O as the stability region of the closed-loop system under the con-
troller ks(ys). In the remainder, we will refer to the controller ks(ys) as the lower-tier
controller.
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The lower-tier controller ks(ys) is able to stabilize the system, however, it does
not profit from the extra information provided by ya(t). In the remainder of this
chapter, we present a two-tier control architecture that profits from this extra infor-
mation to improve closed-loop performance.

Remark 3.4 The assumption that there exists a lower-tier controller which can sta-
bilize the closed-loop system using only the continuous measurements ys(t) and
the inputs us(t) implies that, in principle, it is not necessary to use the additional
information provided by the asynchronous measurements and the extra inputs ua(t)

in order to achieve closed-loop stability. However, the main objective of the two-
tier control architecture is to profit from this extra information and control effort
to improve the closed-loop performance while maintaining the stability properties
achieved by the lower-tier controller.

Remark 3.5 Note that in many application areas, specifically in chemical plants,
there are control systems that have already been implemented using dedicated, local
control networks. These control systems will not be replaced by networked control
systems. Instead, networked control systems should be designed and implemented
to augment the preexisting control systems to maintain stability and improve closed-
loop performance. This is why we assume that there exists a preexisting stabilizing
controller ks(ys) for the lower-tier control system based on the continuous measure-
ments ys(t).

Remark 3.6 We have considered static lower-tier controllers to simplify the nota-
tion. The formulation can be extended to dynamic lower-tier controllers. In the ex-
amples in Sects. 3.5.3, 3.5.4, 3.6.3 and 3.6.4, proportional-integral (PI) controllers
are used as the lower-tier controllers.

Remark 3.7 The lower-tier controller provides some degree of robustness with re-
spect to the uncertainty w. The conditions of Eqs. 3.6–3.8 and the Lipschitz property
of f guarantee that: (a) the closed-loop nominal system under the lower-tier con-
troller is asymptotically stable; (b) the closed-loop system state under the lower-tier
controller subject to the disturbances is ultimately bounded, provided θ is suffi-
ciently small, in a region that contains the origin that depends on the size of the
uncertainty. These properties are made explicit in Proposition 3.1 in the next sec-
tion. Please see [40] for more details.

3.5 Two-Tier Networked Control Architecture
with Continuous/Asynchronous Measurements

In this section, we consider the design of the two-tier control architecture for the
system of Eqs. 3.1–3.3 with continuous and asynchronous measurements without
delays; that is da = 0 for all time instants. The extension of the two-tier control
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Fig. 3.2 Two-tier networked control architecture (solid lines denote dedicated point-to-point,
wired communication links and continuous sensing and actuation; dashed lines denote networked
(wired or wireless) communication or asynchronous sampling and actuation)

architecture for the system of Eqs. 3.1–3.3 with continuous and asynchronous mea-
surements involving time-varying delays (i.e., da �= 0) will be presented in Sect. 3.6.

The main objective of the two-tier control architecture is to improve the per-
formance of the closed-loop system using the information provided by ya(t) while
guaranteeing that the stability properties of the lower-tier controller are maintained.
This is done by defining a controller (upper-tier controller) based on the full state
measurements obtained from both the synchronous and asynchronous measure-
ments at time steps ta . In the two-tier control architecture, the upper-tier controller
decides the trajectory of ua(t) between successive samples, i.e., for t ∈ [ta, ta+1)

and the lower-tier controller decides us(t) using the continuously available mea-
surements. Figure 3.2 shows a schematic of the two-tier control architecture. Due to
the asynchronous nature of ya(t), the upper-tier controller has to take into account
that the time interval between two consecutive samples is unknown and there exists
the possibility of an infinitely large interval.

Remark 3.8 Note that since the lower-tier controller has already been designed,
this controller views the input ua(t) as a disturbance that has to be rejected if the
controller that is used to manipulate ua(t) is not properly designed. Therefore, the
design of the upper-tier controller has to take into account the decisions that will
be made by the lower-tier controller to maintain closed-loop stability and guarantee
improved closed-loop performance.

3.5.1 Upper-Tier Networked LMPC Formulation

In order to take advantage of the model of the system and the asynchronous state
measurements, we use MPC to decide ua(t). The main idea is the following: at each
time instant ta that a new state measurement is obtained, an open-loop finite horizon
optimal control problem is solved and an optimal input trajectory is obtained. This
input trajectory is implemented until a new measurement arrives at time ta+1. If the
time between two consecutive measurements is longer than the prediction horizon,
ua(t) is set to zero until a new measurement arrives and the optimal control problem
is solved again. In order to guarantee that the resulting closed-loop system is stable,
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we design the MPC via LMPC. In the LMPC designs presented in Chap. 2, the sta-
bility constraints are defined based on a known nonlinear state feedback controller.
In this chapter, the constraint of the upper-tier networked LMPC design is based on
the lower-tier output feedback controller. The upper-tier LMPC optimization prob-
lem is defined as follows:

min
ua∈S(Δ)

∫ ta+NΔ

ta

[∥∥x̃(τ )
∥∥

Qc
+ ∥∥us(τ )

∥∥
Rc1

+ ∥∥ua(τ )
∥∥

Rc2

]
dτ, (3.9)

s.t. ˙̃x(t) = f
(
x̃(t), us(t), ua(t),0

)
, (3.10)

us(t) = ks

(
hs

(
x̃(t)

))
, (3.11)

˙̂x(t) = f
(
x̂(t), ks

(
hs

(
x̂(t)

))
,0,0

)
, (3.12)

x̃(ta) = x̂(ta) = x(ta), (3.13)

V
(
x̃(t)

) ≤ V
(
x̂(t)

)
, ∀t ∈ [ta, ta + NΔ), (3.14)

where x(ta) is the state obtained from both ys(ta) and ya(ta), x̃(t) is the pre-
dicted trajectory of the two-tier nominal system with ua computed by this upper-
tier LMPC, and x̂(t) is the predicted trajectory of the two-tier nominal system for
the input trajectory ua(t) ≡ 0 for all t ∈ [ta, ta + NΔ). The optimal solution to this
optimization problem is denoted u∗

a(t |ta). This signal is defined for all t ≥ ta with
u∗

a(t |ta) = 0 for all t ≥ ta + NΔ.
The control inputs of the two-tier control architecture based on the above LMPC

are defined as follows:

us(t) = ks

(
hs

(
x(t)

))
, ∀t, (3.15)

ua(t) = u∗
a(t |ta), ∀t ∈ [ta, ta+1), (3.16)

where u∗
a(t |ta) is the optimal solution of the LMPC of Eqs. 3.9–3.14 at time step ta .

This implementation technique takes into account that the lower-tier controller uses
the continuously available measurements, while the upper-tier controller has to op-
erate in open-loop between consecutive asynchronous measurements.

Note that the constraint of Eq. 3.14 in the LMPC of Eqs. 3.9–3.14 is needed
to ensure that the value of the Lyapunov function of the closed-loop system under
the two-tier control architecture is lower than or equal to the Lyapunov function of
the closed-loop system when it is only controlled by the lower-tier controller. By
imposing the constraint of Eq. 3.14, we can prove that the stability of the closed-
loop system under the two-tier control architecture with inputs determined as in
Eqs. 3.15–3.16 which is shown in Sect. 3.5.2.

Remark 3.9 By definition, u∗
a(t |ta) = 0 for all t ≥ ta + NΔ. This implies that the

upper-tier controller switches off when it has been operating in open-loop for a
large time, because in this case, the last received information is no longer useful to
improve the performance of the lower-tier controller. The two-tier networked con-
trol architecture is (by design) stable because of the lower-tier controller stability
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properties. The main problem is how to improve the closed-loop performance us-
ing asynchronous communications in a way such that the stability properties of the
closed-loop system under the lower-tier controller are not compromised. Setting the
control input of the upper-tier controller to zero after a given time is necessary to
maintain the stability properties, because after a sufficiently large time, the upper-
tier input implemented in open-loop is not improving the closed-loop performance
and may act as a disturbance.

3.5.2 Stability Properties

Combining the information from a hybrid communication system may lead to los-
ing the stability properties of the lower-tier controller. The resulting closed-loop
system is an asynchronous system [73] and we follow a Lyapunov-based approach
to study the stability properties of the two-tier control architecture with the upper-
tier controller design as in Eqs. 3.9–3.14. The main idea, is to compute the input
ua(t) applied to the system in a way such that it is guaranteed that the value of the
Lyapunov function at time instants ta , V (x(ta)), is a decreasing sequence of values
with a lower bound. This guarantees practical stability of the closed-loop system.
This property is presented in Theorem 3.1 below. To state this theorem, we need the
following propositions.

Proposition 3.1 Consider the system of Eqs. 3.1–3.3 in closed-loop with a lower-
tier controller ks . If ks satisfies the conditions of Eqs. 3.6–3.8, there exists a K L
function β(r, s), a K function γ and a constant θmax such that if x(t0) ∈ Ωρ and
ua(t) = 0 for all t then:

V
(
x(t)

) ≤ β
(
V

(
x(t0)

)
, t − t0

) + γ
(

max
τ∈[t0,t]

∥∥w(τ)
∥∥
)

(3.17)

for all w ∈ W with θ ≤ θmax.

This proposition provides us with a bound on the trajectories of the Lyapunov
function of the state of the system of Eqs. 3.1–3.3 in closed-loop with the lower-tier
controller and ua(t) = 0. The proof of Proposition 3.1 can be found in [40].

Proposition 3.2 Consider the following state trajectories:

ẋa(t) = f
(
xa(t), ks

(
hs

(
xa(t)

))
, ua(t),w(t)

)
, (3.18)

ẋb(t) = f
(
xb(t), ks

(
hs

(
xb(t)

))
, ua(t),0

)
(3.19)

with initial states xa(t0) = xb(t0) ∈ Ωρ . There exists a class K function fW such
that:

∥
∥xa(t) − xb(t)

∥
∥ ≤ fW (t − t0) (3.20)
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with:

fW (τ) = Lwθ

L′
x

(
eL′

xτ − 1
)

(3.21)

for all xa(t), xb(t) ∈ Ωρ and all w(t) ∈ W .

Proof Define the error vector as e(t) = xa(t) − xb(t). The time derivative of the
error is given by:

ė(t) = f
(
xa(t), ks

(
hs

(
xa(t)

))
, ua(t),w(t)

)

− f
(
xb(t), ks

(
hs

(
xb(t)

))
, ua(t),0

)
. (3.22)

By the local Lipschitz property assumed for the vector field f (x,us, ua,w), there
exist positive constants Lw , Lx and Lu1 such that:

∥∥ė(t)
∥∥ ≤ Lw

∥∥w(t) − 0
∥∥ + Lx

∥∥xa(t) − xb(t)
∥∥

+ Lu1
∥∥ks

(
hs

(
xa(t)

)) − ks

(
hs

(
xb(t)

))∥∥ (3.23)

for all xa(t), xb(t) ∈ Ωρ and w(t) ∈ W . By continuity and smoothness properties of
ks and hs , there exists a positive constant Lu2 such that:

∥∥ks

(
hs

(
xa(t)

)) − ks

(
hs

(
xb(t)

))∥∥ ≤ Lu2
∥∥xa(t) − xb(t)

∥∥ (3.24)

for all xa(t), xb(t) ∈ Ωρ . Thus the following inequality can be obtained from the
inequality of Eq. 3.23:

∥∥ė(t)
∥∥ ≤ Lw

∥∥w(t)
∥∥+(Lx + Lu1Lu2)

∥∥xa(t) − xb(t)
∥∥

≤ Lwθ + (Lx + Lu1Lu2)
∥∥e(t)

∥∥. (3.25)

Integrating ‖ė(t)‖ with initial condition e(t0) = 0 (recall that xa(t0) = xb(t0)), the
following bound on the norm of the error vector is obtained:

∥∥e(t)
∥∥ ≤ Lwθ

L′
x

(
eL′

x (t−t0) − 1
)
, (3.26)

where L′
x = Lx + Lu1Lu2. This implies that the condition of Eq. 3.20 holds for:

fW(τ) = Lwθ

L′
x

(
eL′

xτ − 1
)
, (3.27)

which proves this proposition. �

Theorem 3.1 Consider the system of Eqs. 3.1–3.3 in closed-loop with ys avail-
able for all t , ya available at asynchronous time instants {ta≥0} without delay (i.e.,
da ≡ 0) and a lower-tier controller ks satisfying the conditions of Eqs. 3.6–3.8.
Let the closed-loop system be controlled under the two-tier control architecture
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with the upper-tier LMPC of Eqs. 3.9–3.14 and control inputs determined as in
Eqs. 3.15–3.16. If x(t0) ∈ Ωρ , θ ≤ θmax, N ≥ 1, Δ > 0 and there exist a concave
function g such that:

g(x) ≥ β(x,NΔ) (3.28)

for all x ∈ Ωρ , and a positive constant c ≤ ρ such that:

c − g(c) ≥ fV

(
fW (NΔ)

)
(3.29)

with fV (·) defined in Eq. 2.49 and fW (·) defined in Eq. 3.21, then x(t) is ultimately
bounded in Ωρc ⊆ Ωρ where:

ρc = max
{
max

c
β(c,NΔ) + fV

(
fW (NΔ)

)
, γ (θmax)

}
. (3.30)

Proof In order to prove that the closed-loop system is ultimately bounded in a region
that contains the origin, we will prove that V (x(ta)) is a decreasing sequence of val-
ues with a lower bound for the worst possible case, that is, the upper-tier controller
always operates in open-loop for a period of time longer than NΔ between consecu-
tive samples, that is, ta+1 − ta > NΔ for all a. The trajectory x̂(t) corresponds to the
nominal system in closed-loop with the lower-tier controller with initial state x(ta).
Taking into account Proposition 3.1, the following inequality holds:

V
(
x̂(t)

) ≤ β
(
V

(
x(ta)

)
, t − ta

)
. (3.31)

The constraint of Eq. 3.14 of the upper-tier LMPC of Eqs. 3.9–3.14 guarantees that:

V
(
x̃(t)

) ≤ V
(
x̂(t)

)
, ∀t ∈ [ta, ta + NΔ). (3.32)

Assuming that x(t) ∈ Ωρ for all times (which is automatically satisfied when the
system is proved to be ultimately bounded below), we can apply Proposition 2.3
(presented in Chap. 2) to obtain the following inequalities:

V
(
x(ta + NΔ)

) ≤ V
(
x̃(ta + NΔ)

) + fV

(∥∥x(ta) − x̃(ta)
∥∥)

. (3.33)

Applying Proposition 3.2, we obtain the following upper bound on the deviation of
x̃(t) from x(t):

∥∥x(ta + NΔ) − x̃(ta + NΔ)
∥∥ ≤ fW (NΔ). (3.34)

Using the inequalities of Eqs. 3.31–3.34, the following upper bound on V (x(ta +
NΔ)) is obtained:

V
(
x(ta + NΔ)

) ≤ β
(
V

(
x(ta)

)
,NΔ

) + fV

(
fW (NΔ)

)
. (3.35)

Taking into account that for all t ≥ ta +NΔ the upper-tier controller is switched off,
i.e., ua(t) = 0, and only the lower-tier controller is in action, the following bound
on V (x(ta+1)) is obtained from Proposition 3.1:

V
(
x(ta+1)

) ≤ max
{
V

(
x(ta + NΔ)

)
, γ (θmax)

}
(3.36)
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for all w(t) ∈ W . Because function g(·) is concave, z − g(z) is an increasing func-
tion. If there is a positive constant c ≤ ρ satisfying the condition of Eq. 3.29, then the
condition of Eq. 3.29 holds for all z > c. Taking into account that g(z) ≥ β(z,NΔ)

for all z ≤ ρ, the following inequality is obtained:

z − β(z,NΔ) ≥ fV

(
fW (NΔ)

)
(3.37)

when c ≤ z ≤ ρ. From the inequality of Eq. 3.37 and the inequality of Eq. 3.35, we
obtain that:

V
(
x(ta+1)

) ≤ max
{
V

(
x(ta)

)
, γ (θmax)

}
(3.38)

for all V (x(tk)) ≥ c. It follows using Lyapunov arguments that:

lim sup
t→∞

V
(
x(t)

) ≤ ρc, (3.39)

where:

ρc = max
{
max

c
β(c,NΔ) + fV

(
fW (NΔ)

)
, γ (θmax)

}
. (3.40)

�

Remark 3.10 In general, the size of the region in which the state is ultimately
bounded, depends on the prediction horizon NΔ. The prediction horizon NΔ sets
the maximum amount of time on which the upper-tier controller will be operating
in open-loop.

Remark 3.11 Referring to Theorem 3.1, the assumption that there exists a concave
function g such that g(x) ≥ β(x,NΔ) imposes an upper bound on NΔ and is made,
without any loss of generality, to simplify the proof of Theorem 3.1, that is, the result
of Theorem 3.1 could still be proved without this assumption but the proof would be
more involved. The assumption that there exists a positive constant c ≤ ρ such that
c −g(c) ≥ fV (fW (NΔ)) guarantees that the derivative of the Lyapunov function of
the state of the closed-loop system outside the level set V (x) = c is negative under
the two-tier control architecture with the upper-tier LMPC of Eqs. 3.9–3.14.

Remark 3.12 As in all MPC schemes, it is not possible to provide quantitative re-
sults that guarantee that the performance of the closed-loop system is better than any
other controller, unless an infinite horizon is used. It makes sense that the system
in closed-loop with the two-tier control architecture has in general a better perfor-
mance because the cost function is taken into account in the optimization problem
of the upper-tier controller. The case studies in Sects. 3.5.3 and 3.5.4 provide results
that demonstrate this point.

Remark 3.13 Note that in order to take advantage of the asynchronous measure-
ments, an alternative to the two-tier control architecture is to control the system of
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Fig. 3.3 Centralized
networked control system

Eqs. 3.1–3.3 using a centralized MPC that calculate the input trajectories of both us

and ua at each asynchronous sampling time ta when a new full state measurement is
available by combining ys(ta) and ya(ta). Figure 3.3 shows a schematic of this kind
of state feedback centralized control system. In particular, we may use the central-
ized LMPCs presented in Sects. 2.7 and 2.8 of Chap. 2 which are designed taking
data losses or time-varying measurement delays explicitly into account, both in the
optimization problem formulations and in the controller implementations. For the
case that there is no time-varying delays in the asynchronous measurements (i.e.,
ya(ta) = ha(x(ta)) with da = 0), the centralized LMPC taking into account asyn-
chronous measurements for the system of Eqs. 3.1–3.3 is based on the following
optimization problem:

min
ua,us∈S(Δ)

∫ ta+NΔ

ta

[∥∥x̃(τ )
∥
∥

Qc
+ ∥

∥us(τ )
∥
∥

Rc1
+ ∥

∥ua(τ )
∥
∥

Rc2

]
dτ, (3.41)

s.t. ˙̃x(t) = f
(
x̃(t), us(t), ua(t),0

)
, (3.42)

˙̂x(t) = f
(
x̂(t), ks

(
hs

(
x̂(ta + jΔ)

))
,0,0

)
,

∀t ∈ [
ta + jΔ, ta + (j + 1)Δ

)
, (3.43)

x̃(t) = x̂(t) = x(tk), (3.44)

V
(
x̃(t)

) ≤ V
(
x̂(t)

)
, ∀t ∈ [ta, ta + NΔ), (3.45)

where the lower-tier controller ks is used to generate the reference trajectory x̂ (ks is
implemented in a sample-and-hold fashion). The optimal solution to this optimiza-
tion problem is denoted u∗

c,s(t |ta) and u∗
c,a(t |ta). These signals are defined for all

t ≥ ta with u∗
c,s(t |ta) = u∗

c,s(ta + NΔ|ta) and u∗
c,a(t |ta) = u∗

c,a(ta + NΔ|ta) for all
t ≥ ta + NΔ. The inputs of the closed-loop system of Eqs. 3.1–3.3 are defined as
follows:

us(t) = u∗
c,s(t |ta), ∀t ∈ [ta, ta+1), (3.46)

ua(t) = u∗
c,a(t |ta), ∀t ∈ [ta, ta+1). (3.47)

In Sects. 3.5.3 and 3.5.4, we denote this control design as the centralized LMPC.
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3.5.3 Application to a Chemical Reactor

Consider the CSTR example described by Eqs. 2.62–2.63 introduced in Sect. 2.7.4.
In this section, we consider a flow rate disturbance in the feed flow rate F of pure A,
ΔF , and choose the rate of heat input or removal Q and the change of the inlet reac-
tant A concentration ΔCA0 as the control inputs. The control objective is to stabilize
the system at the open-loop unstable steady-state Ts = 388 K, CAs = 3.59 mol/l.
The flow rate uncertainty is bounded by |ΔF | ≤ 3 m3/h.

We assume that measurements of temperature T are available continuously, and
the measurements of the concentration CA are available asynchronously at time
instants {ta≥0}. We also assume that there exists a lower bound Δmin on the time
interval between two consecutive concentration measurements.

In order to model the time sequence {ta≥0}, we use a lower-bounded random
Poisson process. The Poisson process is defined by the number of events per unit
time W . The interval between two consecutive concentration sampling times (events
of the Poisson process) is given by Δa = max{Δmin,

− lnχ
W

}, where χ is a random
variable with uniform probability distribution between 0 and 1. For the simulations
carried out in this section we pick Δmin = 0.025 h, which is meaningful from a
practical point of view with respect to concentration measurements.

The CSTR model of Eqs. 2.62–2.63 belongs to the class of nonlinear systems
described by the system of Eqs. 3.1–3.3 where xT = [x1 x2] = [T − Ts CA − CAs]
is the state, us = Q and ua = ΔCA0 are the manipulated inputs, w = ΔF is a time
varying bounded disturbance, ys = x1 = T − Ts is obtained from the continuous
temperature measurement T and ya = x2 = CA − CAs is obtained from the asyn-
chronously sampled concentration measurement CA.

First, an output feedback controller (lower-tier controller) based on the contin-
uous temperature measurements (i.e., x1) is designed to stabilize the process using
only the rate of heat input us = Q as the manipulated input, which is bounded by
|us | ≤ 105 KJ/h. In particular, the following proportional-integral (PI) control law is
used as the lower-tier controller:

us(t) = K

(
x1(t) + 1

Ti

∫ t

0
x1(τ ) dτ

)
, (3.48)

where K is the proportional gain and Ti is the integral time constant. To compute the
parameters of the PI controller, the linearized model ẋ = Ax + Bus of the CSTR of
Eqs. 2.62–2.63 around the equilibrium point is obtained. The proportional gain K is
chosen to be −8100. This value guarantees that the origin of ẋ = (A+BK[1 0])x is
asymptotically stable with its eigenvalues being λ1 = −1.06×105 and λ2 = −4.43.
A quadratic Lyapunov function V (x) = xT Px with:

P =
[

0.024 5.21
5.21 1.13 × 103

]
(3.49)
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Fig. 3.4 State and input
trajectories of the CSTR of
Eqs. 2.62–2.63 under the
lower-tier PI control of
Eq. 3.48

is obtained by solving an algebraic Lyapunov equation AT
c P + PAc + Qc = 0 for

P with Ac = A + BK[1 0] and Qc being the following weighting matrix:

Qc =
[

1 0
0 104

]
. (3.50)

This Lyapunov function will be used to design the upper-tier LMPC and the central-
ized LMPC. The integral time constant is chosen to be Ti = 49.6 h. For simplicity,
the Lyapunov function V (x) is determined on the basis of the closed-loop system
under the proportional (P) term of the PI controller only; the effect of the integral
(I) term is very small for the specific choice of the controller parameters used in the
simulations. The state and input trajectories of the CSTR of Eqs. 2.62–2.63 starting
from x0 = [370 3.41 ]T under the PI controller are shown in Fig. 3.4. From Fig. 3.4,
we see that the PI controller of Eq. 3.48 stabilizes the temperature and concentra-
tion of the CSTR of Eqs. 2.62–2.63 at the equilibrium point in about 0.1 h and 0.4 h,
respectively.

Next, we implemented the presented two-tier control architecture to improve the
performance of the closed-loop system. In this set of simulations, the PI controller
of Eq. 3.48 is used as the lower-tier controller. Instead of abandoning the less fre-
quent concentration measurement, we take advantage of both the continuous mea-
surements of the temperature T and the asynchronous concentration measurements
CA together with the nominal model of the system of Eqs. 2.62–2.63 to design the
upper-tier LMPC of Eqs. 3.9–3.14. The inlet concentration change ΔCA0, which is
bounded by |ΔCA0| ≤ 1 kmol/m3, is the manipulated input for the upper-tier LMPC.
In the design of the upper-tier LMPC, the performance index is defined by Qc given
in Eq. 3.50 and Rc1 = Rc2 = 0. The values of the weights in Qc have been chosen
to account for the different range of numerical values for each state. The sampling
time of the LMPC is Δ = 0.025 h; the prediction horizon is N = 11 so that the
prediction captures most of the dynamic evolution of the process.
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Fig. 3.5 Concentration
sampling times, +: sampling
times generated with W = 30,
×: sampling times generated
with W = 20

The two-tier control architecture is implemented as discussed in Sect. 3.5.1. The
lower-tier controller uses the continuous temperature measurements to control us(t).
When the measurements of T and CA are obtained at time instant ta , x(ta), is ob-
tained from the two measurements. Based on the state x(ta), the LMPC optimiza-
tion problem of Eqs. 3.9–3.14 is solved and an optimal input trajectory u∗

a(t |ta) is
obtained. This optimal input trajectory is implemented until a new concentration
measurement is obtained at time ta+1 (note that a indexes the number of concentra-
tion samples received, not a given sampling time). Note that because a PI controller
is used in the lower-tier, we need to predict the controller dynamics (the control
effects generated by the integral part) in the optimization problem of the LMPC.

The stability and robustness of the two-tier control architecture have been studied
with two different initial conditions x(0) = [370 3.41]T and x(0) = [375 3.46 ]T
associated with two different concentration measurement sequences {ta≥0} (see
Fig. 3.5) generated with W = 30 and W = 20, respectively. The average time inter-
vals between two consecutive sampling times are 0.0625 h for W = 30 and 0.0833 h
for W = 20. In addition, two different disturbance trajectories of w(t) with a ran-
dom value at each simulation step are added to the closed-loop system. The state
and inputs trajectories of the CSTR of Eqs. 2.62–2.63 under the two-tier control
architecture are shown in Fig. 3.6. From Fig. 3.6, we see that the two-tier control ar-
chitecture stabilizes the temperature and concentration of the system in about 0.1 h
and 0.05 h, respectively. This implies that the resulting closed-loop system response
is faster compared with the speed of the closed-loop response under the PI con-
trollers. Moreover, the cost associated with the resulting closed-loop trajectories is
lower.

Another set of simulations was carried out to compare the two-tier control ar-
chitecture with the lower-tier PI control system from a performance point of view.
Table 3.1 shows the total cost computed for 20 different closed-loop simulations un-
der the two-tier control architecture and the PI control. To carry out this comparison,
we have computed the total cost of each simulation based on the performance index
defined as follows:

∫ tf

t0

∥∥x(τ)
∥∥

Qc
dτ, (3.51)

where t0 = 0 is the initial time and tf = 0.5 h is the length of the simulations. For
this set of simulations W is chosen to be 10. For each pair of simulations (one for
each control scheme) a different initial state inside the stability region, a different
uncertainty trajectory and a different random concentration measurement sequence
are chosen. As it can be seen in Table 3.1, the two-tier control architecture has a cost
lower than the corresponding total cost under the PI controller in all the simulations.
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Fig. 3.6 State and input
trajectories of the CSTR of
Eqs. 2.62–2.63 under the
two-tier control architecture
when W = 30 (solid curves)
and W = 20 (dashed curves)

Table 3.1 Total performance costs along the closed-loop trajectories of the CSTR of Eqs. 2.62–
2.63 under the local PI controller of Eq. 3.48 and the two-tier control with the upper-tier LMPC of
Eqs. 3.9–3.14

sim. Two-Tier PI sim. Two-Tier PI

1 203.92 704.54 11 224.03 831.63

2 188.74 815.47 12 203.78 738.47

3 198.33 922.87 13 265.44 617.15

4 221.76 640.87 14 210.58 704.95

5 240.44 656.47 15 190.68 723.05

6 226.44 847.43 16 209.66 695.60

7 199.19 779.03 17 205.90 808.71

8 233.40 736.65 18 211.29 749.24

9 200.45 702.26 19 214.79 737.62

10 198.74 753.25 20 217.13 813.70

We have also carried out another set of simulation to compare the presented
two-tier scheme with a controller using the measurements of T and CA to decide
both control inputs us and ua in the centralized LMPC of Eqs. 3.41–3.45; see Re-
mark 3.13. This implies that this approach does not take full advantage of the contin-
uous measurement of T . The LMPC of Eqs. 3.41–3.45 optimizes the future sampled
input trajectory ua(t), us(t) with sampling time Δ. When at a time instant ta , both
the measurements of T and CA are available (a state measurement is available), this
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Fig. 3.7 State and input
trajectories of the CSTR of
Eqs. 2.62–2.63 under the
centralized LMPC of
Eqs. 3.41–3.45 with
concentration sampling times
generated with W = 30 (solid
curves) and W = 20 (dashed
curves)

optimization problem is evaluated and two optimal input trajectories u∗
c,s(t |ta) and

u∗
c,a(t |ta) are obtained and implemented until the next measurement of both T and

CA are available.
For this set of simulations, the centralized LMPC of Eqs. 3.41–3.45 uses the same

parameters as the ones of the two-tier control architecture. The same initial condi-
tions, concentration sampling times (see Fig. 3.5) and disturbance trajectories are
used in this set of simulations. The state and inputs trajectories of the closed-loop
system under the LMPC of Eqs. 3.41–3.45 are shown in Fig. 3.7. From Fig. 3.7,
it can be seen that the centralized LMPC stabilizes the system (solid curves) when
the time intervals between two consecutive measurements are small (0.0625 h), but
loses stability and can not stabilize the system (dashed curves) when these time in-
tervals get bigger (0.0833 h). The centralized LMPC of Eqs. 3.41–3.45 does not
profit from the continuous measurements of the temperature, thus, the stability re-
gion of the closed-loop system is in general reduced to a much smaller one compared
to that obtained under the two-tier control architecture.

Remark 3.14 The performance index considered in this example penalizes only the
closed-loop system state and not the control action because the two-tier control ar-
chitecture utilizes different manipulated inputs from the lower-tier PI controller and
this would complicate the comparison if penalty on the control action is included
in the cost. Since the performance index has only penalty on the closed-loop sys-
tem state, we have included an input constraint on the upper-tier manipulated input,
ΔCA0, to avoid computation of unnecessarily large control actions by the upper-tier
controller (i.e., |ua | ≤ 1 kmol/m3).
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Remark 3.15 Note that in this particular example, the improvement in the closed-
loop performance is achieved due to the extra control input ua which is guided by
the LMPC of Eqs. 3.9–3.14 that uses all available measurements. Since PI controller
is used as the lower-tier controller, the extra available asynchronous measurements
would not have changed the closed-loop performance achieved by the lower-tier
controller because the PI controller cannot use the extra measurements. This is also
the case for the all the examples discussed in this chapter.

3.5.4 Application to a Reactor–Separator Process

Consider the reactor–separator process shown in Fig. 1.6 described in Sect. 1.2.3.
Under the assumption that the three vessels have static holdup and other standard
modeling assumptions, the dynamic equations describing the behavior of the sys-
tem, obtained through material and energy balances, are given below [21]:

dxA1

dt
= F10

V1
(xA10 − xA1) + Fr

V1
(xAr − xA1) − k1e

−E1
RT1 xA1, (3.52)

dxB1

dt
= F10

V1
(xB10 − xB1) + Fr

V1
(xBr − xB1) + k1e

−E1
RT1 xA1 − k2e

−E2
RT1 xB1, (3.53)

dT1

dt
= F10

V1
(T10 − T1) + Fr

V1
(T3 − T1) + −ΔH1

Cp

k1e
−E1
RT1 xA1

+ −ΔH2

Cp

k2e
−E2
RT1 xB1 + Q1

ρCpV1
, (3.54)

dxA2

dt
= F1

V2
(xA1 − xA2) + F20

V2
(xA20 − xA2) − k1e

−E1
RT2 xA2, (3.55)

dxB2

dt
= F1

V2
(xB1 − xB2) + F20

V2
(xB20 − xB2) + k1e

−E1
RT2 xA2 − k2e

−E2
RT2 xB2, (3.56)

dT2

dt
= F1

V2
(T1 − T2) + F20

V2
(T20 − T2) + −ΔH1

Cp

k1e
−E1
RT2 xA2

+ −ΔH2

Cp

k2e
−E2
RT2 xB2 + Q2

ρCpV2
, (3.57)

dxA3

dt
= F2

V3
(xA2 − xA3) − Fr + Fp

V3
(xAr − xA3), (3.58)

dxB3

dt
= F2

V3
(xB2 − xB3) − Fr + Fp

V3
(xBr − xB3), (3.59)

dT3

dt
= F2

V3
(T2 − T3) + Q3

ρCpV3
. (3.60)
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Table 3.2 Process variables
of the reactor–separator
process of Eqs. 3.52–3.63

xA1, xA2, xA3 Mass fractions of A in vessels 1, 2, 3

xB1, xB2, xB3 Mass fractions of B in vessels 1, 2, 3

xC1 Mass fraction of C in vessel 3

xAr , xBr , xCr Mass fractions of A, B, C in the recycle

T1, T2, T3 Temperatures in vessels 1, 2, 3

T10, T20 Feed stream temperatures to vessels 1, 2

F1, F2 Effluent flow rate from vessels 1, 2

F10, F20 Feed stream flow rates to vessels 1, 2

Fr , Fp Flow rates of the recycle and purge

V1, V2, V3 Volumes of vessels 1, 2, 3

E1, E2 Activation energy for reactions 1, 2

k1, k2 Pre-exponential values for reactions 1, 2

ΔH1, ΔH2 Heats of reaction for reactions 1, 2

αA, αB , αC Relative volatilities of A, B, C

Q1, Q2, Q3 Heat inputs into vessels 1, 2, 3

Cp , R, ρ Heat capacity, gas constant and solution density

The model of the flash tank separator was derived under the assumption that the rel-
ative volatility for each of the species remains constant within the operating temper-
ature range of the flash tank. This assumption allows calculating the mass fractions
in the overhead based upon the mass fractions in the liquid portion of the vessel.
It has also been assumed that there is a negligible amount of reaction taking place
in the separator. The following algebraic equations model the composition of the
overhead stream relative to the composition of the liquid holdup in the flash tank:

xAr = αAxA3

αAxA3 + αBxB3 + αCxC3
, (3.61)

xBr = αBxB3

αAxA3 + αBxB3 + αCxC3
, (3.62)

xCr = αCxC3

αAxA3 + αBxB3 + αCxC3
. (3.63)

The definitions for the variables used in Eqs. 3.52–3.63 and the corresponding pa-
rameter values used in this example can be found in Tables 3.2 and 3.3, respectively.
Note that the reactions A → B and B → C are referred to as reactions 1 and 2, re-
spectively.

Each of the tanks in the process has an external heat input. The manipulated
inputs to the system are the heat inputs to the three vessels, Q1, Q2 and Q3, and the
feed stream flow rate to vessel 2, F20.

We assume that the measurements of temperatures T1, T2 and T3 are available
continuously, and the measurements of mass fractions xA1, xB1, xA2, xB2, xA3 and
xB3 are available asynchronously at time instants {ta≥0}. The same method used in
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Table 3.3 Process
parameters of the
reactor–separator process of
Eqs. 3.52–3.63

T10 300 [K] k1 2.77 × 103 [s−1]

T20 300 [K] k2 2.5×103 [s−1]

F10 5.04 [m3/h] ΔH1 −6 × 104 [KJ/kmol]

Fr 50.4 [m3/h] ΔH2 −7 × 104 [KJ/kmol]

Fp 5.04 [m3/h] αA 3.5

V1 1.0 [m3] αB 1

V2 0.5 [m3] αC 0.5

V3 1.0 [m3] Cp 4.2 [KJ/kg K]

E1 5×104 [KJ/kmol] R 8.314 [KJ/kmol K]

E2 6 × 104 [KJ/kmol] ρ 1000 [kg/m3]

Table 3.4 Steady-state
operation parameters of xs1
and xs2 of the
reactor–separator process of
Eqs. 3.52–3.63

xs1 xs2

Q1s 12.6 × 105 [KJ/h] Q1s 12.6 × 105 [KJ/h]

Q2s 16.2 × 105 [KJ/h] Q2s 13.32 × 105 [KJ/h]

Q3s 12.6 × 105 [KJ/h] Q3s 11.88 × 105 [KJ/h]

F20s 5.04 [m3/h] F20s 5.04 [m3/h]

Table 3.5 Steady-states xs1 and xs2 of the reactor–separator process of Eqs. 3.52–3.63

xA1s xB1s T1s xA2s xB2s T2s xA3s xB3s T3s

xs1 0.383 0.581 447.8 0.391 0.572 444.6 0.172 0.748 449.6

xs2 0.605 0.386 425.9 0.605 0.386 422.6 0.346 0.630 427.3

the example in Sect. 3.5.3 is used in this example to generate the time sequence
{ta≥0}.

For each set of steady-state inputs Q1s , Q2s , Q3s and F20s corresponding to a
different operation condition, the system of Eqs. 3.52–3.63 has one stable steady-
state xT

s . In this example, we will study two different operating conditions corre-
sponding to two different steady-states xs1 and xs2. The parameters of the steady-
state operation points and the values of the two steady-states are given in Table 3.4
and Table 3.5. The control objective is to steer the system to the steady-states from
the initial state:

x(0)T = [0.890, 0.110, 388.732, 0.886, 0.113, 386.318, 0.748, 0.251, 390.570 ].
(3.64)

The system of Eqs. 3.52–3.63 belongs to the class of nonlinear systems described
by the system of Eqs. 3.1–3.3 where xT = [x1 x2 x3 x4 x5 x6 x7 x8 x9 ] = [xA1 −
xA1s xB1 −xB1s T1 −T1s xA2 −xA2s xB2 −xB2s T2 −T2s xA3 −xA3s xB3 −xB3s T3 −
T3s] is the state, uT

s = [us1 us2 us3 ] = [Q1 − Q1s Q2 − Q2s Q3 − Q3s ] and ua =
F20 − F20s are the manipulated inputs, yT

s = [ys1 ys2 ys3 ] = [x3 x6 x9 ] is obtained
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Table 3.6 Control
parameters for steady-states
xs1 and xs2 of the
reactor–separator process of
Eqs. 3.52–3.63

xs1 xs2

K1 −5000 K1 −5000

K2 −5000 K2 −5000

K3 −5000 K3 −5000

Ti 5 [h] Ti 5 [h]

Fig. 3.8 State trajectories of the reactor–separator process of Eqs. 3.52–3.63 under lower-tier con-
trol law for steady-state xs1 (solid curves) and steady-state xs2 (dashed curves)

from the continuous temperature measurements and yT
a = [x1 x2 x4 x5 x7 x8 ] is ob-

tained from the asynchronously sampled mass fraction measurement. Time varying
bounded process noise was added to the simulations.

Based on the continuous temperature measurements (i.e., ys ), three PI controllers
(lower-tier controllers) are first designed following the Eq. 3.48 to stabilize the sys-
tem of Eqs. 3.52–3.63 from the initial state x(0) to the steady-state xs using only the
heat inputs as the manipulated inputs, which are bounded by |Qi | ≤ 2 × 106 KJ/h
(i = 1,2,3). Using the same method as described in Sect. 3.5.3, the parameters of
the PI controllers are obtained as shown in Table 3.6; and two different quadratic
Lyapunov functions are obtained, one for each steady state xs1, xs2. The two Lya-
punov functions are used to design the upper-tier LMPC controller and the cen-
tralized LMPC of Eqs. 3.41–3.45. The state and input trajectories of the system of
Eqs. 3.52–3.63 under the lower-tier PI control are shown in Figs. 3.8 and 3.9. From
Fig. 3.8, we see that the PI control law stabilizes the temperatures and mass fractions
in the three vessels in about 0.7 h for both steady-states.

We design next the upper-tier LMPC of Eqs. 3.9–3.14 and the corresponding
two-tier control architecture. The feed flow rate to vessel 2, ua = F20 − F20s , is the
manipulated input for the upper-tier LMPC, which is bounded by 1 ≤ F20 ≤ 9 m3/h.
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Fig. 3.9 Inputs trajectories of the reactor–separator process of Eqs. 3.52–3.63 under lower-tier
control law for steady-state xs1 (solid curves) and steady-state xs2 (dashed curves)

Fig. 3.10 Mass fractions
sampling times generated
with W = 1 (+) and
W = 0.5 (×)

The performance index is defined by Qc being the following weighting matrix:

Qc = diag
([

104 104 1 104 104 1 104 104 1
])

(3.65)

and Rc1 = Rc2 = 0. The sampling time of the LMPC is Δ = 0.025 h and the predic-
tion horizon is N = 15.

Two different simulations have been carried out with different mass fraction mea-
surement sequences {ta≥0} (see Fig. 3.10) generated with W = 1 and W = 0.5 for
steady-states xs1 and xs2, respectively. The average time intervals between two con-
secutive sampling times are 0.188 h for W = 1 and 0.375 h for W = 0.5. The state
and input trajectories of the reactor–separator process of Eqs. 3.52–3.63 under the
two-tier control architecture are shown in Figs. 3.11 and 3.12. Figure 3.11 shows
that the two-tier control architecture stabilizes the temperatures and the mass frac-
tions of the system in about 0.3 h. This implies that the resulting closed-loop system
response is faster relative to the speed of the closed-loop response under the low-tier
PI controllers.

Another set of simulations was also carried out to compare the two-tier control ar-
chitecture with the lower-tier controller from a performance point of view. Table 3.7
shows the total cost computed for 10 different closed-loop simulations under the
two-tier control architecture and the lower-tier controller. To carry out this compar-
ison, we have computed the total cost of each simulation based on the performance
index defined in Eq. 3.51 with Qc given in Eq. 3.65 with different operation condi-
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Fig. 3.11 State trajectories of the reactor–separator process of Eqs. 3.52–3.63 under the two-tier
control architecture when W = 1 (solid curves) and W = 0.5 (dashed curves)

Fig. 3.12 Inputs trajectories of the reactor–separator process of Eqs. 3.52–3.63 under the two-tier
control architecture when W = 1 (solid curves) and W = 0.5 (dashed curves)

tions in a simulation length of tf = 0.75 h. For this set of simulations W is 1. As it
can be seen in Table 3.7, the two-tier control architecture has a cost lower than the
corresponding total cost under the lower-tier controller in all the simulations.

We have also carried out another set of simulations to compare the computational
time needed to evaluate the upper-tier LMPC of Eqs. 3.9–3.14 with that of the cen-
tralized LMPC of Eqs. 3.41–3.45. For these simulations, the centralized LMPC uses
the same parameters as the ones of the upper-tier LMPC in the present example. The
simulations have been carried out using MATLAB� in a PENTIUM� 3.20 GHz.
The nonlinear optimization problem has been solved using the function fmincom.
To integrate the system model of Eqs. 3.52–3.63, both in the simulations and in the



70 3 Networked Predictive Process Control

Table 3.7 Total performance costs along the closed-loop trajectories of the reactor–separator pro-
cess of Eqs. 3.52–3.63 under the local PI controller and the two-tier control with the upper-tier
LMPC of Eqs. 3.9–3.14

sim. Two-Tier PI sim. Two-Tier PI

1 1.179 × 105 2.760 × 105 6 1.560 × 105 3.742 × 105

2 1.164 × 105 2.795 × 105 7 1.645 × 105 3.951 × 105

3 1.273 × 105 2.991 × 105 8 1.701 × 105 4.107 × 105

4 1.351 × 105 3.177 × 105 9 1.962 × 105 4.408 × 105

5 1.364 × 105 3.240 × 105 10 1.848 × 105 4.492 × 105

optimization algorithm, an Euler method with a fixed integration time of 0.001 h has
been implemented in C programming language. The mean time to solve the LMPC
optimization problem of this set of simulations is 23.24 s for the upper-tier LMPC
and 37.59 s for the centralized LMPC. From this set of simulations, we see that the
computational time needed to solve the centralized LMPC optimization problem is
substantially larger even though the closed-loop performance in terms of the total
performance cost is comparable to the one of the two-tier control architecture. This
is because the centralized LMPC has to optimize both the inputs us and ua .

3.6 Two-Tier Networked Control Architecture
with Continuous/Delayed Measurements

In this section, we extend the design of two-tier networked control architecture pre-
sented in the previous section for the system of Eqs. 3.1–3.3 with continuous and
asynchronous measurements involving time-varying delays (i.e., da �= 0).

3.6.1 Upper-Tier Networked LMPC Formulation

At each time instant ta when a new asynchronous measurement ya(ta − da) is re-
ceived, a delayed state measurement x(ta − da) is obtained by combining this mea-
surement with the previously received synchronous measurement ys(ta −da). Based
on this delayed state measurement x(ta − da), the nominal model of the system of
Eqs. 3.1–3.3, the continuous measurements ys(t) and the control inputs applied from
ta −da to ta , an estimate of the current state x̃(ta) is computed. Note that this implies
that the upper-tier controller has to store its past control input trajectory, know the
explicit expression and parameters of the lower-tier controller and use the contin-
uous measurements ys(t) to predict the control inputs carried out by the lower-tier
controller. The estimated state x̃(ta) is then used to obtain the optimal future con-
trol input trajectory of ua by means of an LMPC optimization problem. This input
trajectory is implemented until a new measurement arrives at time ta+1. If the time
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between two consecutive measurements is longer than the prediction horizon, ua

is set to zero until a new measurement arrives and the optimal control problem is
solved again. Specifically, the upper-tier LMPC optimization problem taking into
account delays in asynchronous measurements is defined as follows:

min
ua∈S(Δ)

∫ ta+NΔ

ta

[∥∥x̃(τ )
∥∥

Qc
+ ∥∥us(τ )

∥∥
Rc1

+ ∥∥ua(τ)
∥∥

Rc2

]
dτ, (3.66)

˙̃x(t) = f
(
x̃(t), us(t), ua(t),0

)
, ∀t ∈ [ta − da, ta + NΔ), (3.67)

us(t) = ks

(
hs

(
x̃(t)

))
, (3.68)

ua(t) = u∗
a(t), ∀t ∈ [ta − da, ta), (3.69)

x̃(ta − da) = x(ta − da), (3.70)

˙̂x(t) = f
(
x̂(t), ks

(
hs

(
x̂(t)

))
,0,0

)
, t ∈ [ta, ta + NΔ), (3.71)

x̂(ta) = x̃(ta), (3.72)

V
(
x̃(t)

) ≤ V
(
x̂(t)

)
, ∀t ∈ [ta, ta + NΔ), (3.73)

where u∗
a(t) indicates the actual input trajectory of ua that has been applied to

the system, x(ta − da) is the state obtained combining both the measurements of
ys(ta − da) and ya(ta − da), and x̃(ta) is an estimate of the current system state.
The optimal solution to this optimization problem is denoted u∗

d(t |ta). This signal is
defined for all t ≥ ta with u∗

d(t |ta) = 0 for all t ≥ ta + NΔ.
The control inputs of the two-tier control architecture based on the above LMPC

are defined as follows:

us(t) = ks

(
hs

(
x(t)

))
, ∀t, (3.74)

ua(t) = u∗
d(t |ta), ∀t ∈ [ta, ta+1), (3.75)

where u∗
d(t |ta) is the optimal solution of the LMPC of Eqs. 3.66–3.73 at time step ta .

Remark 3.16 In the LMPC of Eqs. 3.66–3.73 both the estimation of x(ta) from
x(ta − da) and the evaluation of the future optimal input trajectory in [ta, ta+1) are
carried out at the same time. First, the constraints of the problem guarantee that
x̃(ta) has been estimated using the nominal model (the constraint of Eq. 3.67) and
the actual inputs applied to the system (the constraint of Eq. 3.69) from the initial
state x(ta − da) (the constraint of Eq. 3.70). Once the current state is estimated, the
future input trajectory is optimized to minimize the cost function taking into account
the actions of the lower-tier controller (the constraint of Eq. 3.71) while guarantee-
ing that a Lyapunov-based constraint is satisfied (the constraint of Eq. 3.73). The
optimization problem of Eqs. 3.66–3.73 has been presented in order to get a com-
pact controller formulation. It is possible to decouple the observer and the LMPC
optimization problem as long as the observer provides an upper bound on the es-
timation error of x(ta). For example, a high-gain observer can be used to estimate
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Fig. 3.13 Possible worst
scenario of the delayed
measurements received by the
networked controller and the
corresponding state
trajectories defined in the
LMPC of Eqs. 3.66–3.73

x(ta) from the continuous measurements and the applied inputs, and then use this
estimated state to define the LMPC optimization problem.

Remark 3.17 The constraints of Eqs. 3.67 and 3.73 are a key element of the two-
tier control architecture. In general, guaranteeing closed-loop stability of a decen-
tralized control system is a difficult task because of the interactions between the
different controllers and can only be done under certain assumptions (see, for ex-
ample, [8, 92]). The constraint of Eq. 3.67 guarantees that the upper-tier controller
takes into account the effect of the lower-tier controller to the applied inputs (recall
that the lower-tier controller is designed without taking ua into account). The con-
straint of Eq. 3.73 is used to guarantee that the value of the Lyapunov function is a
decreasing sequence of time with a lower bound.

3.6.2 Stability Properties

In this subsection, we prove the stability result of the two-tier control architecture
with the upper-tier LMPC of Eqs. 3.66–3.73.

Theorem 3.2 Consider the system of Eqs. 3.1–3.3 in closed-loop with ys available
for all t , ya available at asynchronous time instants {ta≥0} involving time-varying
delays such that da ≤ D for all a ≥ 0 and a lower-tier controller ks satisfying the
conditions of Eqs. 3.6–3.8. Let the closed-loop system be controlled under the two-
tier control architecture with the upper-tier LMPC of Eqs. 3.66–3.73 and control
inputs determined as in Eqs. 3.74–3.75. If x(t0) ∈ Ωρ , θ ≤ θmax, N ≥ 1, Δ > 0 and
there exist a concave function g such that:

g(x) ≥ β
(
x + fV

(
fW (D)

)
,NΔ

)
(3.76)

for all x ∈ Ωρ , and a positive constant c ≤ ρ such that:

c − g(c) ≥ fV

(
fW (D + NΔ)

)
(3.77)

with fV (·) defined in Eq. 2.49 and fW (·) defined in Eq. 3.21, then x(t) is ultimately
bounded in Ωρd

⊆ Ωρ where:

ρd = max
{
max

c
β
(
c + fV

(
fW (D)

)
,NΔ

) + fV

(
fW(D + NΔ)

)
, γ (θmax)

}
. (3.78)
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Proof In order to prove that the system of Eqs. 3.1–3.3 in closed-loop under the
two-tier control architecture with the upper-tier LMPC of Eqs. 3.66–3.73 is ulti-
mately bounded in a region that contains the origin, we will prove that the value
of the Lyapunov function at times {ta≥0}, V (x), is a decreasing sequence of values
with a lower bound on its magnitude for the worst possible case from a communica-
tion point of view, and hence for all possible sequences of measurement times and
delays. The worst possible case from the communications point of view is that the
measurements used to evaluate the upper-tier LMPC are always received with the
maximum delay D; that is da = D for all a, and that the upper-tier LMPC always
operates in open-loop for a period of time longer than NΔ between consecutive
sampling times, that is, ta+1 − ta > NΔ for all a. If the measurements are received
with a smaller delay or more often, the LMPC has more precise information of the
state of the system.

Figure 3.13 shows the worst case scenario for a system of dimension 1. Solid
vertical lines are used to indicate the times at which new measurements are obtained
(ta and ta+1) and when the upper-tier controller switches off at time ta + NΔ. The
dashed vertical line indicates the time corresponding to the measurement obtained
at ta (that is, ta − D). In this figure, three different state trajectories are shown. The
actual state trajectory of the system of Eqs. 3.1–3.3 (including the uncertainty) is
denoted as x(t). The estimated state trajectory from ta − D to ta and the predicted
sampled trajectory under the two-tier control architecture with the upper-tier LMPC
of Eqs. 3.66–3.73 along the prediction horizon with initial state the estimated state
are denoted as x̃(t). The nominal trajectory under the lower-tier controller ks with
ua ≡ 0 along the prediction horizon with initial state the estimated state x̃(ta) is
denoted as x̂(t). The state trajectories x̃(t) and x̂(t) are obtained using the nominal
model as defined in the LMPC optimization problem of Eqs. 3.66–3.73.

The trajectory x̂(t) corresponds to the nominal system in closed-loop with the
lower-tier controller with initial state x̃(ta). Taking into account Proposition 3.1 the
following inequality holds:

V
(
x̂(t)

) ≤ β
(
V

(
x̃(ta)

)
, t − ta

)
. (3.79)

The constraint of Eq. 3.73 guarantees that:

V
(
x̃(t)

) ≤ V
(
x̂(t)

)
, ∀t ∈ [ta, ta + NΔ). (3.80)

Taking into account the constraints of Eqs. 3.67 and 3.70 and that the closed-loop
trajectories are defined by the following equation:

ẋ(t) = f
(
x(t), ks

(
hs

(
x(t)

))
, ua(t),w(t)

)
, (3.81)

we can apply Proposition 3.2 to obtain the following upper bounds on the deviation
of x̃(t) from x(t):

∥
∥x(ta) − x̃(ta)

∥
∥ ≤ fW (D), (3.82)

∥
∥x(ta + NΔ) − x̃(ta + NΔ)

∥
∥ ≤ fW (τf + D). (3.83)
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Note that in Eqs. 3.82–3.83, Proposition 3.2 is used to obtain a bound on the differ-
ence between x̃ and x from ta −da to ta to simplify the notation and the proof. Note
that from ta − da to ta , the real trajectory of us is applied to evaluate x̃, so a tighter
bound on the difference between x̃ and x can be obtained. As mentioned before, the
estimation of x(ta) can be done using any observer which provides a bound on the
estimation error.

From Proposition 2.3 and the above inequalities, we obtain the following inequal-
ities:

V
(
x̃(ta)

) ≤ V
(
x(ta)

) + fV

(
fW (D)

)
, (3.84)

V
(
x(ta + NΔ)

) ≤ V
(
x̃(ta + NΔ)

) + fV

(
fW(D + NΔ)

)
. (3.85)

From the inequalities of Eqs. 3.79–3.85, the following upper bound on
V (x(ta + NΔ)) is obtained:

V
(
x(ta + NΔ)

) ≤ β
(
V

(
x(ta)

) + fV

(
fW (D)

)
,NΔ

) + fV

(
fW(D + NΔ)

)
. (3.86)

Taking into account that for all t > ta +NΔ the upper-tier controller is switched off,
i.e., ua(t) = 0, and only the lower-tier controller is in action, the following bound
on V (x(ta+1)) is obtained from Proposition 3.1:

V
(
x(ta+1)

) ≤ max
{
V

(
x(ta + NΔ)

)
, γ (θmax)

}
(3.87)

for all w(t) ∈ W . Because function g(·) is concave, z − g(z) is an increasing func-
tion. If there is a constant c0 ≤ c ≤ ρ satisfying the condition of Eq. 3.77, then
the condition of Eq. 3.77 holds for all z > c. Taking into account that g(z) ≥
β(z + fV (fW (D)),NΔ) for all z ≤ ρ, the following inequality is obtained:

z − β
(
z + fV

(
fW (D)

)
,NΔ

) ≥ fV

(
fW (D + NΔ)

)
(3.88)

when c ≤ z ≤ ρ. From this inequality and the inequality of Eq. 3.87, we obtain that:

V
(
x(ta+1)

) ≤ max
{
V

(
x(ta)

)
, γ (θmax)

}
(3.89)

for all V (x(ta)) ≥ c. It follows using Lyapunov arguments that:

lim sup
t→∞

V
(
x(t)

) ≤ ρd, (3.90)

where:

ρd = max
{
max

c
β
(
c + fV

(
fW (D)

)
,NΔ

) + fV

(
fW(D + NΔ)

)
, γ (θmax)

}
. (3.91)

�
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3.6.3 Application to a Chemical Reactor

Consider the CSTR of Eqs. 2.62–2.63 discussed in Sects. 2.7.4 and 3.5.3. In the
current section, we assume that ys = x1 = T − Ts is obtained from the continuous
temperature measurements T , and ya = x2 = CA − CAs is obtained at time instants
{ta≥0} from the asynchronously sampled concentration measurement CA subject
to time-varying measurement delays. We also have a lower bound Tmin = 0.15 h
on the time interval between two consecutive concentration measurements and an
upper bound D on the size of the delay; both will be computed via simulations even
though conservative estimates could be computed from the theoretical results.

We use a lower-bounded Poisson process to model the time sequence {ta≥0}
as discussed in Sect. 3.5.3. In order to model the delay size sequence {da≥0}, the
size of delay associated with the concentration measurement at ta is modeled by
an upper-bounded random process given by da = min{D,φH }, where φ is a uni-
formly distributed variable between 0 and 1, and H = ta − ta−1 + da−1 is the size
of the time interval between current time ta and the time corresponding to the last
concentration measurement ta−1 − da−1. This generation method guarantees that
da ≤ D for all a. We assume that the initial state is known; that is, d0 = 0 and
t0 = 0.

We use the lower-tier PI controller of Eq. 3.48 which is based on the continuous
temperature measurements, and the same Lyapunov function V (x) = xT Px. We
implemented the two-tier control architecture with the LMPC of Eqs. 3.66–3.73 to
improve the performance of the closed-loop system obtained under PI-only control.
For the simulations carried out in this subsection, we pick the delay of each measure-
ment to be da = D = 0.15 h for all a. These settings correspond to the worst-case
effect from a communication point of view. For the other simulation settings, we
use the ones used in Sect. 3.5.3 except that the prediction horizon is chosen to be
N = 6. Note that the minimum time interval between two consecutive concentration
measurements Tmin is fixed by the system dynamics and the prediction horizon is set
be equal to the minimum time interval between two consecutive ya measurements,
that is NΔ = Tmin.

The two-tier control architecture is implemented as discussed in the previous
section. The lower-tier controller uses the continuous temperature measurements to
decide us(t). When a new measurement of CA is obtained at time instant ta with de-
lay D, an estimate of the state of the CSTR, x(ta −D), is obtained by combining the
concentration measurement and the previously received continuous measurement of
the temperature T . Based on the state x(ta − D), the model of the process and the
control actions applied, an estimate of the current state x̃(ta) is obtained. Based on
this state estimate x̃(ta), the LMPC of Eqs. 3.66–3.73 is solved and an optimal input
trajectory of ua is obtained. This optimal input trajectory is implemented until a new
concentration measurement is obtained at time ta+1.

A simulation of the closed-loop system under the two-tier control architecture
with the same initial condition x(0) = [370 3.41]T has been carried out. The sam-
pling sequence {ta≥0} generated with W = 1 and delay size sequence {da≥0} with
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Fig. 3.14 Worst case state
and input trajectories of the
CSTR of Eqs. 2.62–2.63
under the two-tier control
architecture with the
networked LMPC of
Eqs. 3.66–3.73

simulation length of 0.5 h are the following:

{ta≥0} = {0 0.198 0.395 0.500} h, (3.92)

{da≥0} = {0 0.150 0.150 0.150} h. (3.93)

The state and input trajectories of the CSTR under the two-tier control architecture
with the upper-tier LMPC of Eqs. 3.66–3.73 are shown in Fig. 3.14. From Fig. 3.14,
we see that the two-tier control architecture stabilizes the temperature and concen-
tration of the system at the desired equilibrium point in about 0.1 h and 0.05 h, re-
spectively. This implies that the resulting closed-loop system response is faster for
this particular simulation. Moreover, the cost associated with the resulting closed-
loop trajectories is lower. This result has been validated by extensive simulations.

We also carried out a set of simulations to compare the two-tier control archi-
tecture with the lower-tier PI control system from a performance point of view.
Table 3.8 shows the total cost computed for 20 different closed-loop simulations
under the two-tier control architecture with the LMPC of Eqs. 3.66–3.73 and the PI
controller. To carry out this comparison, we have computed the total cost of each
simulation based on the performance index defined in Eq. 3.51 from the initial time
to the end of the simulation tf = 0.5 h. For each pair of simulations (one for each
control scheme), a different initial state inside the stability region, a different uncer-
tainty trajectory and a different random concentration measurement sequence with
random delay size sequence are generated. As it can be seen in Table 3.8, the two-
tier control architecture has a cost lower than the corresponding total cost under the
PI controller in all the closed-loop system simulations.
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Table 3.8 Total performance
costs along the closed-loop
trajectories of the CSTR of
Eqs. 2.62–2.63 under the PI
controller of Eq. 3.48 and the
two-tier control architecture
with the upper-tier LMPC of
Eqs. 3.66–3.73

sim. Two-Tier PI sim. Two-Tier PI

1 107.60 557.06 2 124.98 1090.29

3 188.53 1392.73 4 169.06 403.82

5 143.07 376.15 6 179.22 1330.25

7 202.28 1252.36 8 152.23 749.93

9 141.84 732.20 10 157.99 1049.38

Table 3.9 Steady-state
values of manipulated inputs
of the reactor–separator
process of Eqs. 3.52–3.63

Parameters Values

Q1s 12.6 × 105 [KJ/hr]

Q2s 16.2 × 105 [KJ/hr]

Q3s 12.6 × 105 [KJ/hr]

F20s 5.04 [m3/hr]

3.6.4 Application to a Reactor–Separator Process

Consider the reactor–separator process of Eqs. 3.52–3.63 introduced in Sects. 1.2.3
and 3.5.4 with the parameter values given in Table 3.3. We assume that the mea-
surements of temperatures T1, T2 and T3 are available continuously, and the mea-
surements of mass fractions xA1, xB1, xA2, xB2, xA3 and xB3 are available asyn-
chronously at time instants {ta≥0} and are subject to time-varying measurement
delay. We also assume that there exists a lower bound Tmin = 0.2 h on the time
interval between two consecutive measurements of the mass fractions. The same
method used in the previous examples in this chapter is used in the present example
to generate the time sequence {ta≥0}. The control objective is to steer the system
from the initial state:

x(0)T = [0.890, 0.110, 388.7, 0.886, 0.113, 386.3, 0.748, 0.251, 390.6],
(3.94)

to the steady-state:

xT
s = [0.383, 0.581, 447.8, 0.391, 0.572, 444.6, 0.172, 0.748, 449.6], (3.95)

corresponding to the operating condition shown in Table 3.9.
In the present example, we assume that yT

s = [ys1 ys2 ys3] = [x3 x6 x9] is ob-
tained from the continuous temperature measurements and yT

a = [x1 x2 x4 x5 x7 x8]
is obtained from the sampled asynchronous, delayed mass fraction measurements.
We use the same performance index defined in Eq. 3.51 with Qc given in Eq. 3.65.
We also use the same lower-tier PI controllers as used in Sect. 3.5.4 which are de-
signed based on the continuous temperature measurements (i.e., ys(t)). The same PI
controller parameters and Lyapunov function V (x) as in the example of Sect. 3.5.4
are also used.
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Fig. 3.15 State trajectories of the reactor–separator process of Eqs. 3.52–3.63 under the two-tier
control architecture with the networked LMPC of Eqs. 3.66–3.73

Fig. 3.16 Input trajectories of the reactor–separator process of Eqs. 3.52–3.63 under the two-tier
control architecture with the networked LMPC of Eqs. 3.66–3.73

We design the upper-tier LMPC of Eqs. 3.66–3.73 based on the three PI con-
trollers. The feed flow rate to vessel 2, ua = F20 − F20s , is the manipulated input
for the LMPC, which is bounded by 1 ≤ F20 ≤ 9 m3/h. The sampling time of the
LMPC is chosen to be Δ = 0.025 h; the prediction horizon is chosen to be N = 8.
For the simulations carried out in this subsection, we set the prediction horizon NΔ

to be equal to the minimum time interval between two consecutive ya measure-
ments, Tmin, and the delay associated with each measurement to be da = D = 0.2 h
for all a which also corresponds to the worst-case effect of measurement delays.
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Table 3.10 Total
performance costs along the
closed-loop trajectories of the
reactor–separator process of
Eqs. 3.52–3.63 under the PI
controller and the two-tier
control architecture with the
upper-tier LMPC of
Eqs. 3.66–3.73

sim. Two-Tier PI

1 1.006 × 104 2.148 × 104

2 2.046 × 104 3.123 × 104

3 3.621 × 104 6.310 × 104

4 1.148 × 104 4.440 × 104

5 3.103 × 104 6.052 × 104

6 7.141 × 104 1.631 × 105

7 1.389 × 104 6.961 × 104

8 1.928 × 104 2.770 × 104

9 1.872 × 104 8.538 × 104

10 1.417 × 104 7.260 × 104

The mass fraction measurement sequence {ta≥0} (generated with W = 1) and the
delay size sequence {da≥0} with a simulation length 0.75 h are shown below:

{ta≥0} = {0, 0.248, 0.495, 0.868, 1.000} h, (3.96)

{da≥0} = {0, 0.200, 0.200, 0.200, 0.200} h. (3.97)

The state and input trajectories of the reactor–separator process of Eqs. 3.52–3.63
under the two-tier control architecture with the upper-tier LMPC of Eqs. 3.66–3.73
are shown in Figs. 3.15 and 3.16. Figure 3.15 shows that the two-tier control ar-
chitecture drives the temperatures and the mass fractions in the closed-loop system
close to the equilibrium point in about 0.25 h. This implies that the resulting closed-
loop system response is faster relative to the speed of the closed-loop response under
the lower-tier PI controllers. For the same simulation length of tf = 1 h, the per-
formance cost associated with the resulting closed-loop trajectories is 8.658 × 104

which is much smaller than that of the closed-loop system under the lower-tier PI
control system (2.105 × 105).

Moreover, we carried out a set of simulations to compare the two-tier control
architecture with the lower-tier PI control system with the same parameters from a
performance point of view. Table 3.10 shows the total cost computed for 10 different
closed-loop simulations under the two-tier control architecture and the lower-tier PI
control system. To carry out this comparison, we have computed the total cost of
each simulation based on the performance index defined in Eq. 3.51 with different
operating conditions. The length of each simulation is tf = 0.75 h. For this set
of simulations, W is chosen to be 1. For each pair of simulations (one for each
control scheme), a different initial state inside the stability region, a different noise
trajectory and a different random mass fraction measurement sequence with random
delay size sequence are generated. As can be seen in Table 3.10, the two-tier control
architecture has a cost lower than the corresponding total cost under the lower-tier
PI control system in all the simulations.

Finally, we studied the effect of input constraints on the performance of the
closed-loop system under the two-tier control architecture. Specifically, in this set
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Fig. 3.17 State trajectories of the reactor–separator process of Eqs. 3.52–3.63 subject to input
constraints under the lower-tier PI controller

Fig. 3.18 Input trajectories of the reactor–separator process of Eqs. 3.52–3.63 subject to input
constraints under the lower-tier PI controller

of simulations, we take into account input constraints in the lower-tier controller
manipulated inputs us , namely |Q1| ≤ 1.48 × 105 KJ/h, |Q2| ≤ 1.83 × 105 KJ/h
and |Q3| ≤ 1.48 × 105 KJ/h. The same simulation settings (initial condition, target
state, lower-tier controller design, upper-tier controller design, mass fraction mea-
surement sequence and delay size sequence) as in the previous simulations are used.

The state and input trajectories under the lower-tier PI controllers are shown in
Figs. 3.17 and 3.18. From Fig. 3.17, we see that the PI controllers stabilize the
system at the target steady-state in about 0.8 h which is a little slower than the
corresponding closed-loop response without input constraints (in such a case the
closed-loop system is stabilized in about 0.7 h). From Fig. 3.18, we see that the
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Fig. 3.19 State trajectories of the reactor–separator process of Eqs. 3.52–3.63 subject to input
constraints under the two-tier control architecture with the networked LMPC of Eqs. 3.66–3.73

Fig. 3.20 Input trajectories of the reactor–separator process of Eqs. 3.52–3.63 subject to input
constraints under the two-tier control architecture with the networked LMPC of Eqs. 3.66–3.73

three heat inputs Q1, Q2 and Q3 operate at their maximum allowable values for
about 0.15 h. The corresponding accumulated performance cost is 2.180 × 105.

The state and input trajectories under the two-tier control architecture with the
upper-tier LMPC of Eqs. 3.66–3.73 are shown in Figs. 3.19 and 3.20. Figure 3.19
shows that the two-tier control architecture drives the temperatures and the mass
fractions of the closed-loop system close to the equilibrium point in about 0.3 h
which is a little slower than the closed-loop system response without input con-
straints (in this case the closed-loop system stabilizes in about 0.25 h). From
Fig. 3.20, we see that the heat inputs Q1, Q2 and Q3 also operate at their max-
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imum allowable values for about 0.15 h. The corresponding accumulated perfor-
mance cost is 9.443 × 104 which is much smaller than the cost obtained under the
lower-tier control system (2.180×105). From this set of simulations, we see that the
two-tier control architecture maintains the property of improving the performance
of the closed-loop system when input constraints are present. It is also important
to note that advanced anti-windup schemes could be used in conjunction with the
lower-tier PI controller to mitigate the effect of integrator wind-up and improve the
closed-loop system performance; however, the basic conclusion of this part of the
study would not change.

Remark 3.18 In some applications, when input constraints are present, the stabil-
ity of the closed-loop system under the lower-tier controller may be lost because
of saturation of the control inputs. To avoid loosing stability, the lower-tier con-
troller in the two-tier control architecture can be detuned to primarily take care of
the closed-loop system stability by sacrificing closed-loop performance. Thus, when
input constraints are present, the lower-tier controller can be potentially detuned to
satisfy the input constraints (or saturate for less time) and the upper-tier controller
can be used to recover the loss of closed-loop performance.

3.7 Application to a Wind–Solar Energy Generation System

In this section, we apply the two-tier control architecture to develop a supervisory
predictive control method for the optimal management and operation of a wind–
solar energy generation system. We design a supervisory control system via MPC
which computes the power references for the wind and solar subsystems at each
sampling time while minimizing a suitable cost function. The power references are
sent to two local controllers which drive the wind and solar subsystems to the de-
sired power reference values. We discuss how we can incorporate practical consid-
erations (for example, how to extend the life time of the equipments by reducing
the peak values of inrush or surge currents) into the formulation of the MPC opti-
mization problem by determining an appropriate cost function and constraints. We
will present several simulation case studies that demonstrate the applicability and
effectiveness of the proposed supervisory predictive control architecture.

3.7.1 Wind–Solar System Description

The wind–solar energy generation system considered in this section is based on the
models developed in [104–106]. A schematic of the system is shown in Fig. 3.21.
In this system, there are three subsystems: wind subsystem, solar subsystem and a
lead-acid battery bank which is used to overcome periods of scarce generation.

First, we describe the modeling of the wind subsystem. In the wind energy gener-
ation subsystem, there is a windmill, a multipolar permanent-magnet synchronous



3.7 Application to a Wind–Solar Energy Generation System 83

Fig. 3.21 Wind–solar energy generation system

generator (PMSG), a rectifier, and a DC/DC converter to interface the generator
with the DC bus. The converter is used to control indirectly the operating point of
the wind turbine (and consequently its power generation) by commanding the volt-
age on the PMSG terminals.

The mathematic description of the wind subsystem written in a rotor reference
frame is as follows [105]:

i̇q = −Rs

L
iq − ωeid + ωeφm

L
− πvbiquw

3
√

3L

√
i2
q + i2

d

, (3.98)

i̇d = −Rs

L
id − ωeiq − πvbiduw

3
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3L

√
i2
q + i2

d

, (3.99)

ω̇e = P

2J

(
Tt − 3

2

P

2
φmiq

)
, (3.100)

where iq and id are the quadrature current and the direct current in the rotor refer-
ence frame, respectively; Rs and L are the per phase resistance and inductance of
the stator windings, respectively; ωe is the electrical angular speed; φm is the flux
linked by the stator windings; vb is the voltage on the battery bank terminals; uw

is the control signal (duty cycle of the DC/DC converter (DC/DC Converter 1 in
Fig. 3.21)), P is the PMSG number of poles, J is the inertial of the rotating parts
and Tt is the wind turbine torque. The wind turbine torque can be written as:

Tt = 1

2
Ct(λ)ρARv2, (3.101)

where ρ is the air density, A is the turbine-swept area, R is the turbine radius, v is
the wind speed, and Ct(λ) is a nonlinear torque coefficient which depends on the tip
speed ratio (λ = Rωm

v
with ωm = 2ωe

P
being the angular shaft speed).

Based on Eqs. 3.98–3.100, we can express the power generated by the wind
subsystem and injected into the DC bus as follows:

Pw = πvb

2
√

3

√
i2
q + i2

duw. (3.102)
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The model of the wind subsystem can be rewritten in the following compact
form:

ẋw = fw(xw) + gw(xw)uw, (3.103)

where xw = [iq id ωe]T is the state vector of the wind subsystem and fw =
[fw1 fw2 fw3]T , gw = [gw1 gw2 gw3]T are nonlinear vector functions whose explicit
form is omitted for brevity.

Next, we describe the modeling of the solar subsystem. In the solar subsystem,
there is a photo-voltaic (PV) panel array and a half-bridge buck DC/DC converter.
The solar subsystem is connected to the DC bus via the DC/DC converter. In this
subsystem, similar to the wind subsystem, the converter is used to control the oper-
ating point of the PV panels.

The mathematic description of the solar subsystem is as follows [106]:

v̇pv = ipv

C
− is

C
upv, (3.104)

i̇s = − vb

Lc

+ vpv

Lc

upv, (3.105)

ipv = npIph − npIrs

(
e

q(vpv+ipvRs )

nsAcKT − 1

)
, (3.106)

where vpv is the voltage level on the PV panel array terminals, is is the current
injected on the DC bus, C and Lc are electrical parameters of the buck converter
(DC/DC Converter 2 in Fig 3.21), upv is the control signal (duty cycle), ipv is the
current generated by the PV array, ns is the number of PV cells connected in series,
np is the number of series strings in parallel, K is the Boltzman constant, Ac is the
cell deviation from the ideal p–n junction characteristic, Iph is the photocurrent,
and Irs is the reverse saturation current. The power injected by the PV solar module
into the DC bus can be computed by:

Ps = isvb. (3.107)

Note that this power indirectly depends on the control signal upv .
The model of the solar subsystem can be rewritten in the following compact

form:

ẋs = fs(xs) + gs(xs)upv, (3.108)

hs(xs) = 0, (3.109)

where xs = [vpv is]T is the state vector of the solar subsystem and fs = [fs1 fs2]T ,

gs = [gs1 gs2]T are nonlinear vector functions and hs(xs) is a nonlinear scalar func-
tion whose explicit form is omitted for brevity.

The DC bus collects the energy generated by both wind and solar subsystems and
delivers it to the load and, if necessary, to the battery bank. The voltage of the DC
bus is determined by the battery bank which comprises of lead-acid batteries.The
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load could be an AC or a DC load. In the case under consideration in this section,
it is assumed to be an AC load; therefore, a voltage inverter is required. We also
assume that the future load of the system for certain length of time is known, that is
the total power demand is known.

Because all subsystems are linked to the DC bus, their concurrent effects can be
easily analyzed by considering their currents in the common DC side. In this way,
assuming an ideal voltage inverter, the load current can be referred to the DC side
as an output variable current iL. Therefore, the current across the battery bank can
be written as:

ib = π

2
√

3

√
i2
q + i2

duw + is − iL, (3.110)

where iL is assumed to be a known current.
The lead-acid battery bank may be modeled as a voltage source Eb connected in

series with a resistance Rb and a capacitance Cb. Based on this simple model and
Eq. 3.110, the DC bus voltage expression can be written as follows:

vb = Eb + vc +
(

π

2
√

3

√
i2
q + i2

duw + is − iL

)
Rb, (3.111)

where vc is the voltage in capacitor Cb and its dynamics can be described as follows:

v̇c = 1

Cb

(
π

2
√

3

√
i2
q + i2

duw + is − iL

)
. (3.112)

The model of the battery bank can also be rewritten in the following compact form:

v̇c = fc(xw, xs, vc), (3.113)

where fc(xw, xs, vc) is a nonlinear scalar function.
The dynamics of the generation system can be written in the following compact

form:

ẋ = f (x) + g(x)u, (3.114)

h(x) = 0, (3.115)

where x = [xT
w xT

s vc], u = [uw upv], f (x) and g(x) are suitable composition of
fw , fs , gw , gs and fc, and h(x) = hs(xs). The explicit forms of f (x) and g(x) are
omitted for brevity.

Note that the maximum power that can be drawn from the wind and solar sub-
systems is determined by the maximum power that can be generated by the two
subsystems. When the two subsystems are not sufficient to complement the genera-
tion to satisfy the load requirements, the battery bank can discharge to provide extra
power to satisfy the load requirements. However, when the power limit that can be
provided by the battery bank is surpassed, the load must be disconnected to recharge
the battery bank and avoid damages. In this section, we do not consider the power
needed to charge the battery bank explicitly. However, this power can be lumped
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Fig. 3.22 Supervisory control of a wind–solar energy generation system

into the total power demand. In the reminder of this section, we refer to the total
power demand as PT .

3.7.2 Control Problem Formulation and Controller Design

We consider two control objectives of the wind–solar energy generation system.
The first and primary control objective is to compute the operating points of the
wind subsystem and of the solar subsystem together to generate enough energy to
satisfy the load demand. The second control objective is to optimize the operating
points to reduce the peak value of surge currents. With respect to the second control
objective, specifically, we consider that there are maximum allowable increasing
rates of the generated power of the two subsystems and that frequent discharge and
charge of the battery bank should be avoided to maximize battery life. Note that the
constraints on the maximum increasing rates impose indirect bounds on the peak
values of inrush or surge currents to the two subsystems.

The control system is shown in Fig. 3.22 in which the supervisory control sys-
tem optimizes the power references Pw,ref and Ps,ref (operating points) of the wind
and solar subsystems, respectively. The two local controllers (wind subsystem con-
troller and the solar subsystem controller) manipulate uw and upv to track the power
references, respectively.

Remark 3.19 Note that we consider wind–solar energy generation systems that al-
ready operate in normal generating conditions, and do not address the issues related
to system startup or shut down. Moreover, we focus on the application of the super-
visory control system and do not provide specific conditions (and detailed theoreti-
cal derivation) under which the stability of the closed-loop system is guaranteed. We
also note that, in the case of an energy generation system containing several solar
and wind subsystems, the supervisory control approach can be extended to control
the system in a conceptually straightforward manner by letting the supervisory con-
troller determine the power references of all the subsystems.
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3.7.2.1 Wind Subsystem Controller Design

For the wind subsystem controller, the objective is to track the power reference
computed by the supervisory predictive controller.

In order to proceed, we introduce the maximum power that can be provided by a
wind subsystem, Pw,max, first. Pw,max depends on a few turbine parameters and on
a simple measurement of the angular shaft speed as follows [105]:

Pw,max = Pw,max(x) = Koptω
3
m − 3

2

(
i2
q + i2

d

)
rs, (3.116)

where Kopt = Ct (λopt)ρAR3

2λ2
opt

and λopt is the tip speed ratio at which the coefficient

Cp(λ) = Ct(λ)λ reaches its maximum [105], and Ct(·) is the torque coefficient of
the wind turbine.

We follow the controller design proposed in [107]. Specifically, the controller is
designed as follows:

uw =
{

uw1 if Pw,ref < Pw,max,

uw2 if Pw,ref ≥ Pw,max,
(3.117)

where:

uw1 = −[
6rs(iqfw1 + idfw2) − 3φsr (ωefw1 + iqfw3) + 2

(
γ
∥∥sw1(xw)

∥∥

+ ξmax‖∂sw1/∂xw‖)sign
(
sw1(xw)

)]

/
(
6rs(iqgw1 + idgw2) − 3φsrωegw1

)
(3.118)

and

uw2 = −fw1/gw1 + 2Koptωefw3/(φsrgw1) − iqfw3/(gw1ωe) + 2
(
γ
∥∥sw2(xw)

∥∥

+ ξmax‖∂sw2/∂xw‖)sign
(
sw2(xw)

)
/(3φsrωegw1) (3.119)

with γ = 1000 and ξmax = 0.02 being design constants and
∥∥∥∥
∂sw1

∂xw

∥∥∥∥ = 3

2

√
4r2

s

(
i2
q + i2

d

) + φ2
sr

(
ω2

e + i2
q

) − 4rsφsrωeiq (3.120)

and

∥
∥∥∥
∂sw2

∂xw

∥
∥∥∥ =

√(
3

2
φsrωe

)2

+
(

3Koptω2
e − 3

2
φsr iq

)2

. (3.121)

In the control design shown in Eq. 3.117, sw1 = Pw,ref − Pw and sw2 = Pw,max are
the sliding surfaces. When the power reference is less than the maximum power
that can be provided by the wind subsystem, the control law uw1 will operate the
subsystem to generate the desired power; when the power reference is greater than
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the maximum power that can be provided by the wind subsystem, the control law
uw2 will drive the subsystem to operate at points in which the subsystem provides
the maximum power.

3.7.2.2 Solar Subsystem Controller Design

The objective of the solar subsystem controller is to force the subsystem to track
the power reference computed by the supervisory controller. The maximum power
operating point (MPOP) of the solar subsystem can be computed, in principle, by
the following expression [106]:

∂Ppv

∂vpv

= ∂ipv

∂vpv

vpv + ipv = 0. (3.122)

The maximum solar power provided, Ppv,max, is computed numerically through
direct evaluation of the following expression [106] in the region where Eq. 3.122 is
close to zero:

Ppv,max = Ppv,max(x) = − ∂ipv

∂vpv

v2
pv

∼= − Δipv

Δvpv

v2
pv. (3.123)

We follow the controller design proposed in [106] to design the solar subsystem
controller. Specifically, this controller is designed as follows:

⎧
⎪⎪⎨

⎪⎪⎩

if Ppv,max ≥ Ps,ref, upv =
{

1 if h1 ≥ 0,

0 if h1 < 0,

if Ppv,max < Ps,ref, upv =
{

0 if h2 ≥ 0,

1 if h2 < 0,

(3.124)

where h1 = Ps,ref − isvb and h2 = ∂ipv/∂vpv + ipv/vpv .

3.7.2.3 Supervisory Controller Design

The objective of the supervisory control system is to determine the power refer-
ences of the wind and solar subsystems. We will design the supervisory controller
via MPC. By using MPC, we can take optimality considerations into account as
well as handle different kinds of constraints. As stated before, the primary control
objective is to manipulate the operating points of the wind subsystem and of the so-
lar subsystem together to generate enough energy to satisfy the load demand. This
control objective will be considered in the design of the cost function for the MPC
optimization problem (please see Sect. 3.7.3). The second control objective is to
optimize the operating points to reduce the peak value of surge currents. In order
to take into account this control objective, we will incorporate hard constraints in
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the MPC optimization problem to restrict the maximum increasing rates of the gen-
erated power of the two subsystems as well as a term in the cost function to avoid
frequent discharge and charge of the battery bank.

We consider the case where the future load of the system for certain length of
time is known, that is the total power demand, PT (t), is known. The main implemen-
tation element of supervisory predictive control is that the supervisory controller is
evaluated at discrete time instants tk = t0 + kΔ, k = 0,1, . . . , with t0 the initial time
and Δ the sampling time, and the optimal future power references, Pw,ref and Ps,ref,
for a time period (prediction horizon) are obtained and only the first part of the ref-
erences are sent to the local control systems and implemented on the two units. In
order to design this controller, first, a proper number of prediction steps, N , and a
sampling time, Δ, are chosen.

The MPC design for the supervisory control system is described as follows:

min
Pw,ref,Ps,ref∈S(Δ)

∫ tk+N

tk

L
(
x̃(τ ),Pw,ref(τ ),Ps,ref(τ )

)
dτ, (3.125)

s.t. Pw,ref(t) ≤ min
t

{
Pw,max(t)

}
, t ∈ [tk+j , tk+j+1), (3.126)

Ps,ref(t) ≤ min
t

{
Ppv,max(t)

}
, t ∈ [tk+j , tk+j+1), (3.127)

Pw,ref(tk+j+1) − Pw,ref(tk+j ) ≤ dPw,max, (3.128)

Ps,ref(tk+j+1) − Ps,ref(tk+j ) ≤ dPs,max, (3.129)

˙̃x(t) = f
(
x̃(t)

) + g
(
x̃(t)

)
u(t), (3.130)

h
(
x̃(t)

) = 0, (3.131)

x̃(tk) = x(tk), (3.132)

Pw,max(t) = Pw,max
(
x̃(t)

)
, (3.133)

Ppv,max(t) = Ppv,max
(
x̃(t)

)
, (3.134)

where x̃ is the predicted future state trajectory of the wind–solar energy generation
system, L(x,Pw,ref,Ps,ref) is a positive definite function of the state and the two
power references that defines the optimization cost, dPw,max and dPs,max are the
maximum allowable increasing values of Pw,ref and Ps,ref in two consecutive power
references, N is the prediction horizon, j = 0, . . . ,N − 1 and x(tk) is the state
measurement obtained at time tk . We denote the optimal solution to the optimization
problem of Eqs. 3.125–3.134 as P ∗

w,ref(t |tk) and P ∗
s,ref(t |tk) which are defined for

t ∈ [tk, tk+N).
The power references of the two subsystems generated by the supervisory con-

troller of Eqs. 3.125–3.134 are defined as follows:

Pw,ref(t) = P ∗
w,ref(t |tk), ∀t ∈ [tk, tk+1), (3.135)

Ps,ref(t) = P ∗
s,ref(t |tk), ∀t ∈ [tk, tk+1). (3.136)
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In the optimization problem of Eqs. 3.125–3.134, Eq. 3.125 defines the opti-
mization cost that needs to be minimized, which will be carefully designed in the
simulations in Sect. 3.7.3. Because the MPC optimizes the two power references
in a discrete time fashion and the references are constants within each sampling
interval, the constraints of Eqs. 3.126–3.127 require that the computed power ref-
erences should be smaller than the minimal of the maximum available within each
sampling interval, which means the power references should be achievable for the
wind and solar subsystems. Constraints of Eqs. 3.128–3.129 impose constraints on
the increasing rate of the two power references. In order to estimate the maximum
available power of the two subsystems along the prediction horizon, the model of
the system (Eq. 3.130), the current state (Eq. 3.131) and the equations expressing
the relation between the maximum available power and the state of each subsystem
(Eq. 3.133 and Eq. 3.134) are used. Note that in the MPC optimization problem,
in order to estimate the future maximum available power of each subsystem, we
assume that the environmental conditions such as wind speed, insolation and tem-
perature remain constant. When the sampling time is small enough and the predic-
tion horizon is short enough, along with high-frequency wind variations caused by
gusts and turbulence being reasonably neglected, this assumption makes physical
sense [104].

In the remainder of this section, the sampling time and the prediction horizon
of the MPC are chosen to be Δ = 1 s and N = 2. The maximum increasing values
of the two power references are chosen to be dPw,max = 1000 W and dPs,max =
500 W, respectively. Note that the choice of the prediction horizon is based on the
fast dynamics of the generation system, the uncertainty associated with long-term
future power demand and is also made to achieve a balance between the evaluation
time of the optimization problem of the supervisory MPC and the desired closed-
loop performance.

3.7.3 Simulation Results

In this subsection, we carry out several sets of simulations to demonstrate the ef-
fectiveness and applicability of the designed MPC when the control objectives are
taken into account. Note that in all the simulations, standard numerical methods,
e.g., Runge–Kutta, are used to carry out the numerical integration of the closed-
loop system.

3.7.3.1 Constraints on the Maximum Increasing Rates of Pw,ref and Ps,ref

In this set of simulations, the control objective is to operate the wind–solar energy
generation system to satisfy the total power demand, PT , subject to constraints on
the rate of change of Pw,ref and Ps,ref. Because the constraints on the maximum
increasing rates of Pw,ref and Ps,ref are considered as hard constraints in the formu-
lation of the MPC (i.e., constraints of Eqs. 3.128–3.129), in the cost function, we
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only penalize the total power demand. The cost function designed for these control
objectives is shown as follows:

L(x,Pw,ref,Ps,ref) = α(PT − Pw,ref − Ps,ref)
2 + βP 2

s,ref, (3.137)

where α = 1 and β = 0.01 are constant weighting factors. The first term, α(PT −
Pw,ref − Ps,ref)

2, in the cost function penalizes the difference between the power
generated by the wind–solar system and the total power demand, which drives the
wind and solar subsystems to satisfy the total demand to the maximum extent. Be-
cause there are infinite combinations of Pw,ref and Ps,ref that can minimize the first
term, in order to get a unique solution to the optimization problem, we also put a
small penalty on Ps,ref. This implies that the wind subsystem is operated as the pri-
mary generation system and the solar subsystem is only activated when the wind
subsystem alone can not satisfy the power demand. In the simulation, we assume
that the environmental conditions remain constant with wind speed v = 12 m/s, in-
solation λl = 90 mW/cm2 and PV panel temperature T = 65°C.

Figure 3.23 shows the results of the simulations. From Fig. 3.23, we see that at
t = 4 s there is a demand power increase from 2100 W to 4000 W (Fig. 3.23(a)),
and that because of the constraints on the maximum increasing rates of Pw,ref and
Ps,ref, the wind–solar system cannot supply sufficient power (Fig. 3.23(b)–(c)) and
the shortage of power is made up by the battery bank (Fig. 3.23(a)).

Note that we assume that the future power demand for a short time period is
known to the MPC. Because of this, at t = 8 s, when the MPC supervisory con-
troller receives information about a power demand increase at t = 9 s, and having
information of the limits on the power generation of the two subsystems, it coor-
dinates the power generations of the wind and solar subsystems to best satisfy the
power demand by reducing the power generation of the wind subsystem and ac-
tivating the solar subsystem in advance at t = 8 s. This coordination renders the
two subsystems able to approach as much as possible to the total power demand
requirement at t = 9 s (even though they cannot fully meet this requirement due
to operation constraints of the wind and solar subsystems) by boosting their power
production at the maximum possible rate, i.e., about 1,500 W boost in power pro-
duction from t = 8 s to t = 9 s. On the other hand, if there is no information of the
future power demand increase that is fed to the MPC, the wind–solar system would
not increase its production as fast to approach the total power demand requirement
because the solar subsystem would stay dormant up to t = 9 s (the power demand
requirement at t = 8 s can be fully satisfied by the wind subsystem only) and the
presence of a hard constraint on the rate of change of power generated by the solar
subsystem would not allow to boost its production enough to meet the total power
demand requirement at t = 9 s (in this case, the total power demand requirement
cannot be achieved by operation of the wind subsystem only); as a result the boost
in total power production in this case would be only 1,200 W.
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Fig. 3.23 Power trajectories with constraints on the maximum increasing rates of Pw,ref and Ps,ref.
(a) Generated power Pw + Ps (solid line), total power demand PT (dashed line) and power pro-
vided by battery bank Pb (dotted line); (b) power generated by wind subsystem Pw (solid line),
wind power reference Pw,ref (dash-dotted line) and maximum wind generation Pw,max (dashed
line); (c) power generated by solar subsystem Ps (solid line), solar power reference Ps,ref (dash–
dotted line) and maximum solar generation Ps,max (dashed line)

3.7.3.2 Suppression of Battery Power Fluctuation

In this set of simulations, we modify the cost function of Eq. 3.137 to take into
account the fluctuation of the battery power in order to avoid frequent battery charge
and discharge. The cost function is modified as follows:

L(x,Pw,ref,Ps,ref) = α(PT − Pw,ref − Ps,ref)
2 + βP 2

s,ref + ζΔP 2
b , (3.138)

where ΔPb is the change of the power provided by the battery bank between two
consecutive steps and ζ = 0.4 is a weighting factor. Note that this newly added term
requires that we store the trajectory of Pb . In this set of simulations, the environ-
mental conditions are set with wind speed v = 11 m/s, insolation λl = 90 mW/cm2

and PV panel temperature T = 65°C.
Figure 3.24 shows the simulation results. From Fig. 3.24, we see that there is a

power demand decrease at t = 3 s, and though the wind and solar subsystems are
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Fig. 3.24 Power trajectories taking into account suppression of battery power fluctuation. (a) Gen-
erated power Pw + Ps (solid line), total power demand PT (dashed line) and power provided by
battery bank Pb (dotted line); (b) power generated by wind subsystem Pw (solid line), wind power
reference Pw,ref (dash-dotted line) and maximum wind generation Pw,max; (c) power generated by
solar subsystem Ps (solid line), solar power reference Ps,ref (dash-dotted line) and maximum solar
generation Ps,max; (d) generated power Pw +Ps (solid line), total power demand PT (dashed line)
and power provided by battery bank Pb (dotted line)

able to provide enough power to satisfy the demand, the supervisory controller will
not reduce the power generated by the battery to 0 immediately at t = 3 s; instead,
the supervisory controller operates the system to make the power provided by the
battery bank decrease slower and reach its recharge state at t = 5 s (Fig. 3.24(a)).
Fig. 3.24(d) shows the power trajectory of the battery bank if no penalty on the
change of the power provided by the battery bank is applied.
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Fig. 3.25 Environmental conditions and load current. (a) Wind speed v; (b) insolation λl ; (c) PV
panel temperature T ; (d) load current iL

3.7.3.3 Varying Environmental Conditions

In this part, we carry out simulations under varying environmental conditions.
Time evolution of wind speed, PV panel temperature and insolation are shown in
Fig. 3.25(a)–(c). Fig. 3.25(d) shows the trajectory of total power demand.

It can be seen from Fig. 3.26(a) that the wind/solar/battery powers coordinate
their behavior to meet the load demand. Time evolution of output power and max-
imum available power from the wind subsystem and solar subsystem are plotted
in Fig. 3.26(b)–(c). When sufficient energy supply can be extracted from the two
subsystems such as during 0∼60 s, 100∼140 s and 160∼173 s, the battery is being
recharged. In other periods, load demand is relatively high and the weather condi-
tion, which determines the maximum available generation capacity of the two sub-
systems, cannot permit sufficient energy supply. Thus, the supervisory controller
drives wind/solar parts to their instant maximum capacity and calls the battery bank
for shortage compensation.
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Fig. 3.26 Power trajectories under varying environmental conditions. (a) Generated power
Pw +Ps (solid line), total power demand PT (dashed line) and power provided by battery bank Pb

(dotted line); (b) power generated by wind subsystem Pw (solid line), wind power reference Pw,ref
(dash-dotted line) and maximum wind generation Pw,max (dashed line); and (c) power generated
by solar subsystem Ps (solid line), solar power reference Ps,ref (dash-dotted line) and maximum
solar generation Ps,max (dashed line)

3.7.3.4 Consideration of High-Frequency Disturbance of Weather Conditions

In the preceding scenaria, we assumed that the variation of weather-related pa-
rameters, like wind speed and insolation, within each sampling time interval is
negligible. While this assumption is reasonable in most cases, additional attention
for robust system operation should be given under even harsher conditions where
high frequency disturbances that influence the values of wind speed and insolation
are present. This scenario is possible when the wind turbine encounters turbulent
flow [82], or when insolation is affected by abrupt changes in atmospheric turbid-
ity [33].

To study this case from a control point of view and evaluate the robustness
of the control system in this case, we introduce disturbances in two parameters;
specifically, 10% variation in the wind speed and 5% variation in the insolation.
The profiles of the wind speed and insolation are shown in Figs. 3.27(a) and (b).
We have used the system model to establish that the control system operating
on the wind subsystem can tolerate the wind disturbance and no additional mea-
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Fig. 3.27 Environmental conditions and load current. (a) Wind speed with high frequency distur-
bance v; (b) insolation with high frequency disturbance λl ; (c) PV panel temperature T ; (d) load
current iL

sures are needed to be taken to secure its reliability. However, for the solar sub-
system, which is characterized by faster dynamics, in order to maintain its closed-
loop stability we need to use a more conservative estimate of the insolation (i.e.,
95% of the value of the measured insolation) in the evaluation of the power ref-
erence. This conservative estimate of insolation ensures that the predicted maxi-
mum power delivered by the solar subsystem does not exceed what the weather
permits.

The closed-loop profiles of power generation are displayed in Fig. 3.28(a)–(c).
Again, the entire energy generation system operates reliably, thereby yielding posi-
tive results for the robustness of the control system with respect to abrupt variations
in wind speed and insolation. Both maximum power generation capabilities of the
two subsystems are perturbed as a result of the weather disturbance, but both the
wind subsystem and the solar subsystem operate in a robust fashion and the total
power demand is met.
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Fig. 3.28 Power trajectories under varying environmental conditions with high frequency distur-
bance. (a) Generated power Pw + Ps (solid line), total power demand PT (dashed line) and power
provided by battery bank Pb (dotted line); (b) power generated by wind subsystem Pw (solid line),
wind power reference Pw,ref (dash-dotted line) and maximum wind generation Pw,max (dashed
line); and (c) power generated by solar subsystem Ps (solid line), solar power reference Ps,ref
(dash-dotted line) and maximum solar generation Ps,max (dashed line)

3.8 Conclusions

In this chapter, we presented a two-tier networked control architecture for process
control problems that involve nonlinear processes and heterogeneous measurements
consisting of continuous measurements and asynchronous measurements (with or
without delays). The presented architecture consists of: (a) a lower-tier control sys-
tem, which relies on point-to-point communication and continuous measurements,
to stabilize the closed-loop system, and (b) an upper-tier networked control sys-
tem, designed using LMPC theory, that profits from both the continuous and the
asynchronous, delayed measurements as well as from additional networked con-
trol actuators to improve the closed-loop system performance. The applicability and
effectiveness of the methods were demonstrated using two chemical process exam-
ples.

In addition, the two-tier control architecture was also applied to the supervisory
control of a standalone wind–solar energy generation system. Specifically, we fo-
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cused on the development of a supervisory predictive control method for the optimal
management and operation of wind–solar energy generation systems. We designed
a supervisory control system designed via MPC which computes the power refer-
ences for the wind and solar subsystems at each sampling time while minimizing a
suitable cost function. The power references are sent to two local controllers which
drive the two subsystems to the power references. We discussed how to incorporate
practical considerations, for example, how to reduce the peak values of inrush or
surge currents, into the formulation of the MPC optimization problem. Simulation
results demonstrated the effectiveness and applicability of the presented approach.



Chapter 4
Distributed Model Predictive Control:
Two-Controller Cooperation

4.1 Introduction

In Chap. 3, we presented a two-tier networked control architecture for nonlinear
processes, shown in Fig. 3.2. In this architecture, the preexisting local control sys-
tem (LCS) uses continuous sensing and actuation and an explicit control law (for
example, the local controller is a classical controller, like a proportional-integral-
derivative controller, or a nonlinear controller designed via geometric or Lyapunov-
based control methods for which an explicit formula for the calculation of the con-
trol action is available). On the other hand, the networked control system (NCS)
uses networked (wired or wireless) sensors and actuators and has access to hetero-
geneous, asynchronous measurements that are not available to the LCS. The NCS is
designed via LMPC. An important feature of the two-tier networked control archi-
tecture of Fig. 3.2 is that there is no communication between the LCS and NCS since
the networked LMPC can estimate the control actions of the local controller using
the explicit formula of this controller, and thus, it can take into account the actions
of the local controller in the computation of its optimal input trajectories. In this
sense, the two-tier networked control architecture of Fig. 3.2 can be thought of as
a decentralized control system. This lack of communication is an appealing feature
because the addition of the NCS does not lead to any modification of the preex-
isting LCS and improves the overall performance and robustness of the combined
NCS/LCS architecture (i.e., the achievable closed-loop performance is invariant to
disruptions in the communication between the NCS and LCS).

Despite this progress, there are important controller design problems that remain
unresolved in the broad context of networked control systems. For example, when
the LCS is a model predictive control system for which there is no explicit controller
formula to calculate its future control actions, it is necessary to redesign both the
NCS and the LCS and establish some level of (preferably small) communication
between them so that they can coordinate their actions. To this end, we will adopt
in this chapter a distributed MPC (DMPC) approach to the design of the NCS and
LCS, as shown in Fig. 4.1. It is important to remark at this point that an alternative
approach to address the integrated design of the NCS and LCS would be to design a
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Fig. 4.1 Distributed MPC
control architecture for
networked control system
design

fully centralized MPC to decide the manipulated inputs of all the control actuators
(i.e., both u1 and u2 in Fig. 4.1). However, the computational complexity of MPC
grows significantly with the increase of optimization (decision) variables, which
may prohibit certain online centralized MPC applications with a large number of
decision variables.

Specifically, in this chapter, we present a DMPC design where both the preexist-
ing local control system and the networked control system are designed via LMPC.
The DMPC design that will be presented—see Fig. 4.1—uses a hierarchical control
architecture in the sense that the LCS is able to stabilize the closed-loop system and
the NCS takes advantage of additional control inputs and coordinates with the LCS
to improve the closed-loop performance. This hierarchical DMPC design is differ-
ent from previous DMPC designs which decompose a centralized control problem
spatially (see also Chap. 6 of this book for results in this direction). In particular,
the proposed design provides the potential of maintaining stability and performance
in the face of new/failing actuators, (for example, the failure of the actuator of the
NCS (zero input) in Fig. 4.1 does not affect the closed-loop stability). Working
with general nonlinear models of chemical processes and assuming that there ex-
ists a nonlinear controller that stabilizes the nominal closed-loop system using only
the preexisting control loops (LCS), two separate Lyapunov-based model predic-
tive controllers will be designed that coordinate their actions in an efficient fashion.
Specifically, the DMPC design preserves the stability properties of the nonlinear
controller, improves the closed-loop performance and allows handling input con-
straints. In addition, the distributed control design requires reduced communication
between the two distributed controllers since it requires that these controllers com-
municate only once at each sampling time and is computationally more efficient
compared to the corresponding centralized MPC design.

In addition, we will extend the results to include nonlinear systems subject to
asynchronous and delayed measurements. In the case of asynchronous feedback,
under the assumption that there exists an upper bound on the interval between two
successive state measurements, distributed controllers that utilize one-directional
communication and coordinate their actions to ensure that the state of the closed-
loop system is ultimately bounded in a region that contains the origin will be de-
signed. In the case of asynchronous measurements that also involve time-delays,
under the assumption that there exists an upper bound on the maximum measure-
ment delay, a DMPC system that utilizes bidirectional communication between the
distributed controllers and takes the measurement delays explicitly into account to
enforce practical stability in the closed-loop system will be designed. These DMPC
designs also possess explicitly characterized sets of initial conditions starting from
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where they are guaranteed to be feasible and stabilizing. The theoretical results will
be demonstrated through a chemical process example. The results of this chapter
were first presented in [10, 52, 56].

4.2 System Description

In this chapter, we consider nonlinear systems described by the following state-
space model:

ẋ(t) = f
(
x(t), u1(t), u2(t),w(t)

)
, (4.1)

where x(t) ∈ Rn denotes the vector of state variables, u1(t) ∈ Rm1 and u2(t) ∈ Rm2

are two different sets of control inputs and w(t) ∈ Rw denotes the vector of distur-
bance variables. The two sets of control inputs are restricted to be in two nonempty
convex sets U1 ⊆ Rm1 and U2 ⊆ Rm2 and the disturbance vector is bounded, i.e.,
w(t) ∈ W where:

W := {
w ∈ Rw : ‖w‖ ≤ θ, θ > 0

}
(4.2)

with θ being a known positive real number.
We assume that f is a locally Lipschitz vector function and f (0,0,0,0) = 0.

This means that the origin is an equilibrium point for the nominal system of Eq. 4.1
with u1 = 0 and u2 = 0.

Remark 4.1 In general, distributed control systems are formulated based on the as-
sumption that the controlled systems are decoupled or partially decoupled. However,
we consider a fully coupled process model with two sets of possible manipulated
inputs; this is a very common occurrence in chemical process control as we will
illustrate in the example of Sect. 4.4.3. It is important to note that even though we
have motivated the control problem of Eq. 4.1 by the augmentation of LCS with
NCS, the same control formulation could be used when a new control system which
may use a local control network is added to a process that already operates under an
MPC; see example in Sect. 4.4.3.

4.3 Lyapunov-Based Control

We assume that there exists a nonlinear state feedback control law u1(t) = h(x(t))

which satisfies the input constraint on u1 for all x inside a given stability region
and renders the origin of the nominal closed-loop system asymptotically stable with
u2(t) = 0. Using converse Lyapunov theorems, this assumption implies that there
exist functions αi(·), i = 1,2,3,4 of class K and a continuous differentiable Lya-
punov function V (x) for the nominal closed-loop system that satisfy the following
inequalities:

α1
(‖x‖) ≤ V (x) ≤ α2

(‖x‖), (4.3)
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∂V (x)

∂x
f

(
x,h(x),0,0

) ≤ −α3
(‖x‖), (4.4)

∥∥∥∥
∂V (x)

∂x

∥∥∥∥ ≤ α4
(‖x‖), (4.5)

h(x) ∈ U1 (4.6)

for all x ∈ O ⊆ Rn where O is an open neighborhood of the origin. We denote the
region Ωρ ⊆ O as the stability region of the closed-loop system under the control
u1 = h(x) and u2 = 0.

By continuity, the local Lipschitz property of the vector field f (x,u1, u2,w) and
the fact that the manipulated inputs u1 and u2 are bounded in convex sets, there
exists a positive constant M such that:

∥
∥f (x,u1, u2,w)

∥
∥ ≤ M (4.7)

for all x ∈ Ωρ , u1 ∈ U1, u2 ∈ U2 and w ∈ W . In addition, by the continuous differ-
entiable property of the Lyapunov function V , there exist positive constants Lx , Lw

and L′
x such that:

∥∥f (x,u1, u2,w) − f
(
x′, u1, u2,0

)∥∥ ≤ Lw‖w‖ + Lx

∥∥x − x′∥∥, (4.8)
∥∥∥∥
∂V (x)

∂x
f (x,u1, u2,w) − ∂V (x′)

∂x
f

(
x′, u1, u2,0

)
∥∥∥∥

≤ L′
w‖w‖ + L′

x

∥∥x − x′∥∥ (4.9)

for all x, x′ ∈ Ωρ , u1 ∈ U1, u2 ∈ U2 and w ∈ W . These constants will be used
to characterize the stability properties of the system of Eq. 4.1 under the DMPC
designs.

4.4 DMPC with Synchronous Measurements

In this section, we present a DMPC design for the system of Eq. 4.1 with syn-
chronous measurements. In Sects. 4.5 and 4.6, we will extend the results presented
in this section to include systems subject to asynchronous measurements without
and with time-varying delays, respectively.

Specifically, in the current section, we assume that measurements of the system
state x are available at synchronous sampling times {tk≥0} with tk = t0 + kΔ, k =
0,1, . . . where t0 is the initial time and Δ is the sampling time.

4.4.1 DMPC Formulation

In this section, we design two separate LMPCs to compute u1 and u2 and refer to
the LMPC computing the trajectories of u1 and u2 as LMPC 1 and LMPC 2, respec-
tively. Figure 4.1 shows a schematic of the distributed control method discussed in
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this section. The implementation strategy of the distributed control architecture is
as follows:

1. At tk , both LMPC 1 and LMPC 2 receive the state measurement x(tk) from the
sensors.

2. LMPC 2 evaluates the optimal input trajectory of u2 based on the x(tk) and sends
the first step input value of u2 (i.e., u2 ∈ [tk, tk+1)) to its corresponding actuators
and the entire optimal input trajectory of u2 (i.e., u2 ∈ [tk, tk+N) with N the
prediction horizon of the LMPCs) to LMPC 1.

3. Once LMPC 1 receives the entire optimal input trajectory of u2 from LMPC 2, it
evaluates the future input trajectory of u1 based on x(tk) and the entire optimal
input trajectory of u2.

4. LMPC 1 sends the first step input value of u1 (i.e., u1 ∈ [tk, tk+1)) to its corre-
sponding actuators.

5. When a new measurement is received (k ← k + 1), go to Step 1.

First, we define the optimization problem of LMPC 2. This optimization problem
depends on the latest state measurement x(tk), however, LMPC 2 does not have any
information about the value that u1 will take. In order to make a decision, LMPC 2
must assume a trajectory for u1 along the prediction horizon. To this end, the nonlin-
ear control law u1 = h(x) is used. In order to inherit the stability properties of this
control law, u2 must satisfy a Lyapunov-based constraint that guarantees a given
minimum decrease rate of the Lyapunov function V . The design of LMPC 2 is
based on the following optimization problem:

min
u2∈S(Δ)

∫ tk+N

tk

[∥∥x̃(τ )
∥∥

Qc
+ ∥∥u1(τ )

∥∥
Rc1

+ ∥∥u2(τ )
∥∥

Rc2

]
dτ, (4.10)

s.t. ˙̃x(t) = f
(
x̃(t), u1(t), u2(t),0

)
, (4.11)

u1(t) = h
(
x̃(tk+j )

)
, ∀t ∈ [tk+j , tk+j+1), j = 0, . . . ,N − 1, (4.12)

u2(t) ∈ U2, (4.13)

x̃(tk) = x(tk), (4.14)

∂V (x(tk))

∂x
f

(
x(tk), h

(
x(tk)

)
, u2(tk),0

)

≤ ∂V (x(tk))

∂x
f

(
x(tk), h

(
x(tk)

)
,0,0

)
, (4.15)

where Qc , Rc1 and Rc2 are positive definite weighting matrices, x̃ is the predicted
trajectory of the nominal system with u2 being the input trajectory computed by this
LMPC and u1 being the nonlinear control law h(x) applied in a sample-and-hold
fashion. The optimal solution to this optimization problem is denoted by u∗

2(t |tk)
which is defined for t ∈ [tk, tk+N). This information is sent to LMPC 1.

The constraint of Eq. 4.13 defines the constraint on the control input u2 and
the Lyapunov-based constraint of Eq. 4.15 guarantees that the value of the time
derivative of the Lyapunov function at the initial evaluation time, if u1 = h(x(tk))
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and u2 = u∗
2(tk|tk) are applied, is lower than or equal to the value obtained when

u1 = h(x) and u2 = 0 are applied.
The optimization problem of LMPC 1 depends on the latest state measurement

x(tk) and the decision taken by LMPC 2 (i.e., u∗
2(t |tk)). This allows LMPC 1 to com-

pute an input u1 such that the closed-loop performance is optimized, while guaran-
teeing that the stability properties of the nonlinear control law h(x) are preserved.
Specifically, LMPC 1 is based on the following optimization problem:

min
u1∈S(Δ)

∫ tk+N

tk

[∥∥x̃(τ )
∥∥

Qc
+ ∥∥u1(τ )

∥∥
Rc1

+ ∥∥u2(τ )
∥∥

Rc2

]
dτ, (4.16)

s.t. ˙̃x(t) = f
(
x̃(t), u1(t), u2(t),0

)
, (4.17)

u1(t) ∈ U1, (4.18)

u2(t) = u∗
2(t |tk), (4.19)

x̃(tk) = x(tk), (4.20)

∂V (x(tk))

∂x
f

(
x(tk), u1(tk), u

∗
2(tk|tk),0

)
,

≤ ∂V (x(tk))

∂x
f

(
x(tk), h

(
x(tk)

)
, u∗

2(tk |tk),0
)
, (4.21)

where x̃ is the predicted trajectory of the nominal system with u2 being the optimal
input trajectory u∗

2(t |tk) computed by LMPC 2 and u1 being the input trajectory
computed by LMPC 1. The optimal solution to this optimization problem is denoted
by u∗

1(t |tk) which is defined for t ∈ [tk, tk+N).
The constraint of Eq. 4.18 defines the constraint on the control input u1 and

the Lyapunov-based constraint of Eq. 4.21 guarantees that the value of the time
derivative of the Lyapunov function at the initial evaluation time, if u1 = u∗

1(tk|tk)
and u2 = u∗

2(tk|tk) are applied, is lower than or equal to the value obtained when
u1 = h(x(tk)) and u2 = u∗

2(tk|tk) are applied.
Once both optimization problems are solved, the inputs of the DMPC design

based on the above LMPC 1 and LMPC 2 are defined as follows:

u1(t) = u∗
1(t |tk), ∀t ∈ [tk, tk+1), (4.22)

u2(t) = u∗
2(t |tk), ∀t ∈ [tk, tk+1). (4.23)

Remark 4.2 At Step 2 of the presented implementation strategy, the whole optimal
input trajectory of LMPC 2 is sent to LMPC 1. From the stability point of view, it
is unnecessary to send the whole optimal input trajectory. Only the first step of the
optimal input trajectory of LMPC 2 is needed to send to LMPC 1 in order to guaran-
tee the stability of the closed-loop system under the DMPC (please see Sect. 4.4.2
for the proof of the closed-loop stability). Thus, the communication between the
two LMPCs can be minimized by only sending the first step of an optimal input
trajectory without loss of the closed-loop stability. However, the transmission of
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the whole optimal trajectory at a sampling time can, to some extend, improve the
closed-loop performance because LMPC 1 has more information on the possible
future input trajectory of LMPC 2.

Remark 4.3 The key idea of the DMPC formulation is to impose a hierarchy on the
order in which the controllers are evaluated in order to guarantee that the resulting
control actions stabilize the system. In this section, we assume flawless communi-
cations and synchronous state measurements at each sampling time without delay.
If data losses and delays are taken into account, the control method has to be modi-
fied because at each time step coordination between both LMPCs is not guaranteed;
these issues are addressed in Sects. 4.5 and 4.6.

Remark 4.4 Since the computational burden of nonlinear MPC methods is usually
high, the DMPC design only requires LMPC 2 and LMPC 1 to “talk” once every
sampling time (that is, LMPC 2 sends its optimal input trajectory to LMPC 1) to
minimize the communication between the two LMPCs. This strategy is more robust
when communication between the distributed MPCs can be subject to disruptions.
Note also that the computational complexities of the LMPC optimization problems
of the DMPC design can be further reduced by appropriately reducing the dimen-
sion of the system model used in the formulation of optimization problems; the
reader may refer to [38, 43] for discussion on model reduction via two-time-scale
techniques.

Remark 4.5 The constraints of Eqs. 4.15, 4.19 and 4.21 are a key element of the
DMPC design. In general, guaranteeing closed-loop stability of a distributed con-
trol system is a difficult task because of the interactions between the distributed con-
trollers and can only be done under certain assumptions (see, for example, [8, 92]).
The constraint of Eq. 4.19 guarantees that LMPC 1 takes into account the effect
of LMPC 2 to the applied inputs (recall that LMPC 2 is designed without taking
LMPC 1 into account). The constraints of Eqs. 4.15 and 4.21 together with the hier-
archical control strategy (i.e., LMPC 2 is solved first and LMPC 1 is solved second)
guarantee that the value of the Lyapunov function of the closed-loop system is a
decreasing sequence of time with a lower bound.

Remark 4.6 Note that the stability properties of the closed-loop system are inher-
ited from the nonlinear control law u1 = h(x). Once the Lyapunov-based constraints
of Eqs. 4.15 and 4.21 are satisfied, closed-loop stability is guaranteed. The main
purpose of LMPC 1 and LMPC 2 is to optimize the inputs u1 and u2 to improve
performance. Thus, during the evaluation of the optimal solutions of LMPC 1 and
LMPC 2 within a sampling period, we can terminate the optimization (i.e., limit the
number of iterations in the process of searching for the optimal solutions) to obtain
sub-optimal input trajectories without losing the stability properties. An extreme
application of this idea is when the optimization process is terminated at the be-
ginning of every optimization process which gives the inputs: u1(t) = h(x(tk)) and
u2(t) = 0 for t ∈ [tk, tk+1), which guarantees stability of the closed-loop system but
not optimal performance.
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Remark 4.7 In the DMPC design of Eqs. 4.10–4.21, LMPC 2 and LMPC 1 are
evaluated in sequence, which implies that the minimal sampling time of the system
should be greater than or equal to the sum of the evaluation times of LMPC 2 and
LMPC 1. In order to solve both optimization problems in parallel, LMPC 1 can use
old input trajectories of LMPC 2, that is, at tk , LMPC 1 uses u∗

2(t |tk−1) to define
its optimization problem. This strategy, however, may introduce extra errors in the
optimization problem and may not guarantee closed-loop stability.

Remark 4.8 The Lyapunov-based constraints of Eqs. 4.10 and 4.21 guarantee that
the choice of u2 cannot render LMPC 1 infeasible. In addition, the two constraints
guarantee that the DMPC design inherits the stability region of the nonlinear control
law h(x).

4.4.2 Stability Properties

In this subsection, we present the stability properties of the DMPC of Eqs. 4.10–
4.21. The DMPC of Eqs. 4.10–4.21 computes the inputs u1 and u2 applied to the
system of Eq. 4.1 in a way such that the value of the Lyapunov function at time
instant tk (i.e., V (x(tk))) is a decreasing sequence of values with a lower bound.
This is achieved due to the Lyapunov-based constraints of Eqs. 4.15 and 4.21. This
property is presented in Theorem 4.1 below.

Theorem 4.1 Consider the system of Eq. 4.1 in closed-loop with x available at
synchronous sampling time instants {tk≥0} under the DMPC of Eqs. 4.10–4.21 based
on a control law u1 = h(x) that satisfies the conditions of Eqs. 4.3–4.6. Let εw > 0,
Δ > 0 and ρ > ρs > 0 satisfy the following constraint:

−α3
(
α−1

2 (ρs)
) + L′

xMΔ + L′
wθ ≤ −εw/Δ. (4.24)

If x(t0) ∈ Ωρ , ρmin ≤ ρ and N ≥ 1 where:

ρmin = max
{
V

(
x(t + Δ)

) : V (
x(t)

) ≤ ρs

}
, (4.25)

then the state x(t) of the closed-loop system is ultimately bounded in Ωρmin .

Proof The proof consists of two parts. We first prove that the optimization prob-
lems of Eqs. 4.10–4.15 and 4.16–4.21 are feasible for all states x ∈ Ωρ . Then we
prove that, under the DMPC of Eqs. 4.10–4.21, the state of the system of Eq. 4.1 is
ultimately bounded in a region that contains the origin.

Part 1: We first prove the feasibility of LMPC 2 of Eqs. 4.10–4.15, and then the
feasibility of LMPC 1 of Eqs. 4.16–4.21. All input trajectories of u2(t) such that
u2(t) = 0,∀t ∈ [tk, tk+1) satisfy all the constraints (including the input constraint
of Eq. 4.13 and the Lyapunov-based constraint of Eq. 4.15), thus the feasibility
of LMPC 2 is guaranteed. The feasibility of LMPC 1 follows because all input



4.4 DMPC with Synchronous Measurements 107

trajectories u1(t) such that u1(t) = h(x(tk)),∀t ∈ [tk, tk+1) are feasible solutions
to the optimization problem of LMPC 1 since all such trajectories satisfy the input
constraint of Eq. 4.18; this is guaranteed by the closed-loop stability property of the
nonlinear control law h(x) and the Lyapunov-based constraint of Eq. 4.21.

Part 2: From the conditions of Eqs. 4.3–4.6 and the constraints of Eqs. 4.15 and
4.21, if x(tk) ∈ Ωρ it follows that:

∂V (x(tk))

∂x
f

(
x(tk), u

∗
1(tk |tk), u∗

2(tk|tk),0
)

≤ ∂V (x(tk))

∂x
f

(
x(tk), h

(
x(tk)

)
, u∗

2(tk|tk),0
)

≤ ∂V (x(tk))

∂x
f

(
x(tk), h

(
x(tk)

)
,0,0

)

≤ −α3
(∥∥x(tk)

∥∥)
. (4.26)

The time derivative of the Lyapunov function along the actual state trajectory
x(t) of the system of Eq. 4.1 in t ∈ [tk, tk+1) is given by:

V̇
(
x(t)

) = ∂V (x(t))

∂x
f

(
x(t), u∗

1(tk|tk), u∗
2(tk |tk),w(t)

)
. (4.27)

Adding and subtracting ∂V (x(tk))
∂x

f (x(tk), u
∗
1(tk|tk), u∗

2(tk|tk),0) and taking into ac-
count the conditions of Eq. 4.4, we obtain the following inequality:

V̇
(
x(t)

) ≤ −α3
(∥∥x(tk)

∥∥) + ∂V (x(t))

∂x
f

(
x(t), u∗

1(tk|tk), u∗
2(tk|tk),w(t)

)

− ∂V (x(tk))

∂x
f

(
x(tk), u

∗
1(tk|tk), u∗

2(tk|tk),0
)
. (4.28)

From the conditions of Eqs. 4.3–4.6, 4.9 and Eq. 4.28, the following inequality is
obtained for all x(tk) ∈ Ωρ/Ωρs

:

V̇
(
x(t)

) ≤ −α3
(
α−1

2 (ρs)
) + L′

x

∥∥x(t) − x(tk)
∥∥ + L′

w‖w‖. (4.29)

Taking into account Eq. 4.7 and the continuity of x(t), the following bound can be
written for all t ∈ [tk, tk+1):

∥∥x(t) − x(tk)
∥∥ ≤ MΔ. (4.30)

Using this expression, we obtain the following bound on the time derivative of the
Lyapunov function for t ∈ [tk, tk+1), for all initial states x(tk) ∈ Ωρ/Ωρs

:

V̇
(
x(t)

) ≤ −α3
(
α−1

2 (ρs)
) + L′

xMΔ + L′
wθ. (4.31)

If the condition of Eq. 4.24 is satisfied, then there exists εw > 0 such that the fol-
lowing inequality holds for x(tk) ∈ Ωρ/Ωρs :

V̇
(
x(t)

) ≤ −εw/Δ (4.32)
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in t ∈ [tk, tk+1). Integrating this bound on t ∈ [tk, tk+1), we obtain that:

V
(
x(tk+1)

) ≤ V
(
x(tk)

) − εw, (4.33)

V
(
x(t)

) ≤ V
(
x(tk)

)
, ∀t ∈ [tk, tk+1) (4.34)

for all x(tk) ∈ Ωρ/Ωρs . Using Eqs. 4.33–4.34 recursively it is proved that, if
x(t0) ∈ Ωρ/Ωρs

, the state converges to Ωρs
in a finite number of sampling times

without leaving the stability region. Once the state converges to Ωρs ⊆ Ωρmin , it re-
mains inside Ωρmin for all times. This statement holds because of the definition of
ρmin. This proves that the closed-loop system under the DMPC of Eqs. 4.10–4.21 is
ultimately bounded in Ωρmin . �

Remark 4.9 Referring to Theorem 4.1, the condition of Eq. 4.24 guarantees that
if the state of the closed-loop system at a sampling time tk is outside the level
set V (x(tk)) = ρs but inside the level set V (x(tk)) = ρ, the derivative of the Lya-
punov function of the state of the closed-loop system is negative under the DMPC
of Eqs. 4.10–4.21.

Remark 4.10 For continuous-time systems under continuous control implementa-
tion, a sufficient condition for set invariance is that the derivative of a Lyapunov
function is negative on the boundary of a set. For systems with continuous-time dy-
namics and sample-and-hold control implementation, this condition is not sufficient
because the derivative may become positive during the sampling period and the sys-
tem may leave the set before a new sample is obtained. Referring to Theorem 4.1,
ρmin is the maximum value that the Lyapunov function can achieve in a time period
of length Δ when x(tk) ∈ Ωρs . Ωρmin defines an invariant set for the state x(t) under
sample-and-hold implementation of the inputs of the DMPC of Eqs. 4.10–4.21.

Remark 4.11 To take advantage of both sets of manipulated inputs u1 and u2, one
option is to design a centralized MPC. In order to guarantee robust stability of the
closed-loop system, such a centralized MPC must include a set of stability con-
straints. To do this, we may use the LMPC of Eqs. 2.16–2.20 introduced in Chap. 2.
This LMPC guarantees practical stability of the closed-loop system, allows for an
explicit characterization of the stability region and yields a reduced complexity opti-
mization problem. The LMPC for the system of Eq. 4.1 based on a nonlinear control
law h(x) satisfying the conditions of Eqs. 4.3–4.6 is based on the following opti-
mization problem:

min
u1,u2∈S(Δ)

∫ tk+N

tk

[∥∥x̃(τ )
∥∥

Qc
+ ∥∥u1(τ )

∥∥
Rc1

+ ∥∥u2(τ )
∥∥

Rc2

]
dτ, (4.35)

s.t. ˙̃x(t) = f
(
x̃(t), u1(t), u2(t),0

)
, (4.36)

u1(t) ∈ U1, (4.37)

u2(t) ∈ U2, (4.38)
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Fig. 4.2 Centralized LMPC
control architecture

x̃(tk) = x(tk), (4.39)

∂V (x(tk))

∂x
f

(
x(tk), u1(tk), u2(tk),0

)

≤ ∂V (x(tk))

∂x
f

(
x(tk), h

(
x(tk)

)
,0,0

)
, (4.40)

where x̃ is the predicted trajectory of the nominal system for the input trajectory
computed by this centralized LMPC.

The optimal solution to the optimization problem of Eqs. 4.35–4.40 is denoted
by u∗

c1(t |tk) and u∗
c2(t |tk). The manipulated inputs of the closed-loop system under

the above centralized LMPC are defined as follows

u1(t) = u∗
c1(t |tk), ∀t ∈ [tk, tk+1), (4.41)

u2(t) = u∗
c2(t |tk), ∀t ∈ [tk, tk+1). (4.42)

In what follows, we refer to this controller as the centralized LMPC. Figure 4.2
shows a schematic of this kind of control system.

Remark 4.12 The DMPC design presented in this section can be extended to in-
clude multiple MPCs using two different approaches. One approach is to use a one-
directional sequential communication strategy (i.e., LMPC j sends information to
LMPC j −1) and by letting each LMPC send along with its trajectory, all the trajec-
tories received from previous controllers to its successor LMPC (i.e., LMPC j sends
both its trajectory and the trajectories received from LMPC j + 1 to LMPC j − 1).
A schematic of this approach is shown in Fig. 5.1 and it will be discussed in Chap. 5.
Another approach is to have one master controller which communicates with all the
other controllers using one-directional communication. This type of extension is
shown in Fig. 5.14 which is a hierarchical type DMPC. More discussions of this
type of DMPC and the corresponding approaches for handling communication dis-
ruptions in the DMPC can be found in Sect. 5.7.

4.4.3 Application to a Reactor–Separator Process

The example considered in this section is the reactor–separator process of
Eqs. 3.52–3.63 described in Sects. 1.2.3 and 3.5.4 with the parameter values given
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Table 4.1 Noise parameters
σp φ θp

xA1 1 0.7 0.25

xA2 1 0.7 0.25

xA3 1 0.7 0.25

xB1 1 0.7 0.25

xB2 1 0.7 0.25

xB3 1 0.7 0.25

T1 10 0.7 2.5

T2 10 0.7 2.5

T3 10 0.7 2.5

in Table 3.3. The manipulated inputs to the system are the heat inputs to the three
vessels, Q1, Q2 and Q3, and the feed stream flow rate to vessel 2, F20.

The reactor–separator process of Eqs. 3.52–3.63 was numerically simulated us-
ing a standard Euler integration method. Process noise was added to the right-hand
side of each ordinary differential equation in the process model to simulate distur-
bances/model uncertainty and it was generated as autocorrelated noise of the form
wk = φwk−1 + ξk where k = 0,1, . . . is the discrete time step of 0.001 h, ξk is gen-
erated by a normally distributed random variable with standard deviation σp , and φ

is the autocorrelation factor and wk is bounded by θp , that is ‖wk‖ ≤ θp . Table 4.1
contains the parameters used in generating the process noise.

We assume that the measurements of the temperatures T1, T2, T3 and the mea-
surements of the mass fractions xA1, xB1, xA2, xB2, xA3, xB3 are available syn-
chronously and continuously at time instants {tk≥0} with tk = t0 + kΔ, k = 0,1, . . .

where t0 is the initial time and Δ is the sampling time. For the simulations carried
out in this section, we pick the initial time to be t0 = 0 and the sampling time to be
Δ = 0.02 h = 1.2 min.

The control objective is to regulate the system to a stable steady-state xs corre-
sponding to the operating point defined by Q1s , Q2s , Q3s of u1s and F20s of u2s .
The steady-state values for u1s and u2s and the values of the steady-state are given
in Table 4.2 and Table 4.3, respectively. Taking this control objective into account,
the process model of Eqs. 3.52–3.63 belongs to the following class of nonlinear
systems:

ẋ(t) = f
(
x(t)

) + g1
(
x(t)

)
u1(t) + g2

(
x(t)

)
u2(t) + w(t), (4.43)

where xT = [x1 x2 x3 x4 x5 x6 x7 x8 x9] = [xA1 − xA1s xB1 − xB1s T1 − T1s xA2 −
xA2s xB2 − xB2s T2 − T2s xA3 − xA3s xB3 − xB3s T3 − T3s] is the state, uT

1 =
[u11 u12 u13] = [Q1 − Q1s Q2 − Q2s Q3 − Q3s] and u2 = F20 − F20s are the ma-
nipulated inputs which are subject to the constraints |u1i | ≤ 106 KJ/h (i = 1,2,3)

and |u2| ≤ 3 m3/h, and w = wk is a time varying bounded noise. The process of
Eqs. 3.52–3.63 with the DMPC of Eqs. 4.10–4.21 is shown in Fig. 4.3.
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Fig. 4.3 Reactor–separator process with distributed control architecture

Table 4.2 Steady-state
values for u1s and u2s of the
reactor–separator process of
Eqs. 3.52–3.63

Q1s 12.6 × 105 [KJ/h] Q3s 11.88×105 [KJ/h]

Q2s 13.32 × 105 [KJ/h] F20s 5.04 [m3/h]

Table 4.3 Steady-state
values for xs of the
reactor–separator process of
Eqs. 3.52–3.63

xA1s 0.605 xA2s 0.605 xA3s 0.346

xB1s 0.386 xB2s 0.386 xB3s 0.630

T1s 425.9 [K] T2s 422.6 [K] T3s 427.3 [K]

To illustrate the theoretical results, we first design the nonlinear control law u1 =
h(x) which can stabilize the closed-loop system as follows [97]:

h(x) =
{

−Lf V +√
(Lf V )2+(Lg1V )4

(Lg1V )2 Lg1V if Lg1V �= 0,

0 if Lg1V = 0,
(4.44)

where Lf V = ∂V (x)
∂x

f (x) and Lg1V = ∂V (x)
∂x

g1(x) denote the Lie derivatives of the
scalar function V (x) with respect to the vector fields f and g1, respectively. We
consider a Lyapunov function V (x) = xT Px with P being the following weight
matrix:

P = diag
(
5.2 × 1012[4 4 10−4 4 4 10−4 4 4 10−4]). (4.45)

The values of the weights in P have been chosen in a way such that the control
law of Eq. 4.44 stabilizes the closed-loop system globally (note that xs is the only
closed-loop system steady-state) and provides good closed-loop performance.

Based on the control law of Eq. 4.44, we design the centralized and the dis-
tributed LMPCs. In the simulations, the same parameters are used for both control
designs. The prediction step is the same as the sampling time, that is Δ = 0.02 h =
1.2 min; the prediction horizon is chosen to be N = 6; and the weight matrices for



112 4 Distributed Model Predictive Control: Two-Controller Cooperation

Fig. 4.4 State trajectories of the reactor–separator process of Eqs. 3.52–3.63 under the DMPC of
Eqs. 4.10–4.21 (solid lines) and centralized LMPC of Eqs. 4.35–4.40 (dashed lines)

the LMPC designs are chosen as:

Qc = diag
([

2 × 103 2 × 103 2.5 2 × 103 2 × 103 2.5 2 × 103 2 × 103 2.5
])

,

Rc1 = diag
([

5 × 10−12 5 × 10−12 5 × 10−12
])

and Rc2 = 100.

(4.46)

The state and input trajectories of the process of Eqs. 3.52–3.63 under the DMPC
of Eqs. 4.10–4.21 and the centralized LMPC of Eqs. 4.35–4.40 from the initial state:

x(0)T = [0.890 0.110 388.7 0.886 0.113 386.3 0.748 0.251 390.6]. (4.47)

are shown in Figs. 4.4 and 4.5. Figure 4.4 shows that both the distributed and the
centralized LMPC designs provide a similar closed-loop performance and drive the
temperatures and the mass fractions in the closed-loop system close to the desired
steady-state in about 0.3 h and 0.5 h, respectively.

We have also carried out a set of simulations to compare the DMPC of Eqs. 4.10–
4.21 with the centralized LMPC of Eqs. 4.35–4.40 with the same parameters from
a performance point of view. Table 4.4 shows the total cost computed for 15 differ-
ent closed-loop simulations under the DMPC of Eqs. 4.10–4.21 and the centralized
LMPC of Eqs. 4.35–4.40. To carry out this comparison, we have computed the total
cost of each simulation with different operating conditions (different initial states
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Fig. 4.5 Input trajectories of the reactor–separator process of Eqs. 3.52–3.63 under the DMPC of
Eqs. 4.10–4.21 (solid lines) and centralized LMPC of Eqs. 4.35–4.40 (dashed lines)

and process noise) as follows:

∫ tM

t0

[∥∥x(τ)
∥∥

Qc
+ ∥∥u1(τ )

∥∥
Rc1

+ ∥∥u2(τ )
∥∥

Rc2

]
dτ, (4.48)

where t0 is the initial time of the simulations and tM = 1 h is the end of the simula-
tions. As we can see in Table 4.4, the DMPC of Eqs. 4.10–4.21 has a cost lower than
the centralized LMPC of Eqs. 4.35–4.40 in 10 out of 15 simulations. This illustrates
that in this example, the closed-loop performance of the DMPC of Eqs. 4.10–4.21
is comparable to the one of the centralized LMPC of Eqs. 4.35–4.40.

Remark 4.13 Table 4.4 shows that both controllers yield a similar performance for
this particular process, but in general there is no guarantee that the total performance
cost along the closed-loop system trajectories of either control scheme should be
better than the other because the solution provided by the centralized LMPC of
Eqs. 4.35–4.40 and the DMPC of Eqs. 4.10–4.21 are proved to be feasible and sta-
bilizing but the convergence of the cost under DMPC of Eqs. 4.10–4.21 to the one
under the centralized LMPC of Eqs. 4.35–4.40 is not established. This is because
the communication between the two distributed MPCs is limited to one directional
and moreover, the controllers are implemented in a receding horizon scheme and the
prediction horizon is finite. In addition, there are disturbances modeled by stochastic
noise in the simulations which introduce uncertainty in the results.

Moreover, we have studied the importance of communicating optimal input tra-
jectories of LMPC 2 of Eqs. 4.10–4.15 to LMPC 1 of Eqs. 4.16–4.21. We have
carried out a set of simulations in which both LMPC controllers operate in a de-
centralized manner; that is, LMPC 2 does not send its optimal input trajectory to
LMPC 1 each sampling time (there is no communication between the two LMPCs).
In order to evaluate its control input, LMPC 1 assumes that LMPC 2 applies the
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Table 4.4 Total performance
costs along the closed-loop
trajectories of the
reactor–separator process of
Eqs. 3.52–3.63 under the
DMPC of Eqs. 4.10–4.21 and
the LMPC of Eqs. 4.35–4.40

sim. DMPC of Eqs. 4.10–4.21 LMPC of Eqs. 4.35–4.40

1 65216 70868

2 70772 73112

3 57861 67723

4 62396 70914

5 60407 67109

6 83776 66637

7 61360 68897

8 47070 66818

9 79658 64342

10 65735 72819

11 62714 70951

12 76348 70547

13 49914 66869

14 89059 72431

15 78197 70257

steady-state input F20s ; that is u2 = 0. The same parameters as in previous sets of
simulations are used for the controllers. Figures 4.6 and 4.7 show the results under
this decentralized LMPC scheme. From Fig. 4.6, we can see that for this particular
example, this control scheme can not stabilize the system at the required steady-
state. This result is expected because when there is no communication between the
two distributed controllers, they can not coordinate their control actions and each
controller views the input of the other controller as a disturbance that has to be
rejected.

We have also carried out a set of simulations to compare the computation time
needed to evaluate the distributed LMPCs (i.e., LMPC 1 of Eqs. 4.16–4.21 and
LMPC 2 of Eqs. 4.10–4.15) with that of the centralized LMPC of Eqs. 4.35–
4.40. The simulations have been carried out using MATLAB� in a PENTIUM�

3.20 GHz processor. The optimization problems have been solved using the built-
in function fmincom of MATLAB�. To solve the ordinary differential equations in
the process model, an Euler method with a fixed integration time of 0.001 h has
been implemented in C programming language. For 50 evaluations, the mean time
to solve the centralized LMPC of Eqs. 4.35–4.40 is 9.40 s; the mean times to solve
LMPC 1 of Eqs. 4.16–4.21 and LMPC 2 of Eqs. 4.10–4.15 are 3.19 s and 4.53 s,
respectively. From this set of simulations, we see that the computation time needed
to solve the centralized LMPC of Eqs. 4.35–4.40 is larger than the sum of the val-
ues for LMPC 1 of Eqs. 4.16–4.21 and LMPC 2 of Eqs. 4.10–4.15 even though the
closed-loop performance in terms of the total performance cost is comparable to
the one of the DMPC of Eqs. 4.10–4.21. This is because the centralized LMPC of
Eqs. 4.35–4.40 has to optimize both the inputs u1 and u2 in one optimization prob-
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Fig. 4.6 State trajectories of the reactor–separator process of Eqs. 3.52–3.63 under the DMPC of
Eqs. 4.10–4.21 without communication between the two LMPCs (solid lines) and with communi-
cation between the two LMPCs (dashed lines)

Fig. 4.7 Input trajectories of the reactor–separator process of Eqs. 3.52–3.63 under the DMPC of
Eqs. 4.10–4.21 without communication between the two LMPCs (solid lines) and with communi-
cation between the two LMPCs (dashed lines)

lem and the DMPC of Eqs. 4.10–4.21 has to solve two smaller (in terms of decision
variables) optimization problems.
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Fig. 4.8 State trajectories of the reactor–separator process of Eqs. 3.52–3.63 under the DMPC of
Eqs. 4.10–4.21 with limited (solid lines) and unconstrained (dashed lines) evaluation time

Fig. 4.9 Input trajectories of the reactor–separator process of Eqs. 3.52–3.63 under the DMPC of
Eqs. 4.10–4.21 with limited (solid lines) and unconstrained (dashed lines) evaluation time

Following Remark 4.6, we have also carried out a set of simulations to illus-
trate that the optimization processes of LMPC 1 of Eqs. 4.16–4.21 and LMPC 2 of
Eqs. 4.10–4.15 can be terminated at any time to get suboptimal solutions without
loss of the closed-loop stability. In this set of simulations, we assume that the allow-
able evaluation times of LMPC 1 and LMPC 2 at each sampling time are 1 s and
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2 s, and we terminate the two optimization processes when they have been carried
out for 1 s and 2 s, respectively. The closed-loop state and input trajectories under
the DMPC of Eqs. 4.10–4.21 with limited and unconstrained computation time are
shown in Figs. 4.8 and 4.9. From Fig. 4.8, we see that the DMPC of Eqs. 4.10–4.21
with limited evaluation time can stabilize the closed-loop system but the state re-
sponses are slower, leading to a higher cost (57778) compared with the one (47117)
obtained under the DMPC of Eqs. 4.10–4.21 with unconstrained computation time.

4.5 DMPC with Asynchronous Measurements

In this section, we design DMPC for the system of Eq. 4.1 subject to asynchronous
measurements. In Sect. 4.6, we will extend the results to systems subject to delayed
measurements.

4.5.1 Modeling of Asynchronous Measurements

We assume that the state of the system of Eq. 2.1, x(t), is available asynchronously
at time instants ta where {ta≥0} is a random increasing sequence and the interval
between two consecutive time instants is bounded by Tm; that is, the time sequence
satisfies the condition of Eq. 2.22. This assumption is reasonable from a process
control point of view.

4.5.2 DMPC Formulation

In Sect. 4.4, we introduced a DMPC design under the assumption of continuous,
synchronous measurements. It was proved that the proposed control scheme guar-
antees practical stability of the closed-loop system and has the potential to main-
tain the closed-loop stability and performance in the face of new or failing con-
trollers/actuators and to reduce computational burden in the evaluation of the op-
timal manipulated inputs compared with a centralized LMPC controller. However,
when asynchronous measurements are present, the results obtained in Sect. 4.4 no
longer hold. In order to simplify (but without loss of generality) the notations and
description of the DMPC for system subject to asynchronous measurements (as well
as asynchronous and delayed measurements discussed in Sect. 4.6), we will adopt
the same strategy used in Sect. 4.4, that is, to design two LMPCs and coordinate
their actions. The LMPC controllers computing the input trajectories of u1 and u2
are still referred to as LMPC 1 and LMPC 2, respectively. In this section, we extend
the results of Sect. 4.4 to take into account asynchronous measurements explicitly,
both in the constraints imposed on the LMPC designs and in the implementation
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Fig. 4.10 DMPC design for
systems subject to
asynchronous measurements

strategy. A schematic diagram of the considered closed-loop system is shown in
Fig. 4.10.

In the presence of asynchronous measurements, the controllers need to operate in
open-loop between successive state measurements. We take advantage of the MPC
scheme to update the inputs based on a prediction obtained by the model. This is
achieved by having the control actuators to store and implement the last computed
optimal input trajectories. The implementation strategy is as follows:

1. When a measurement is available at ta , LMPC 2 computes the optimal input
trajectory of u2.

2. LMPC 2 sends the entire optimal input trajectory to its actuators and also sends
the entire optimal input trajectory to LMPC 1.

3. Once LMPC 1 receives the entire optimal input trajectory for u2, it evaluates the
optimal input trajectory of u1.

4. LMPC 1 sends the entire optimal input trajectory to its actuators.
5. When a new measurement is received (a ← a + 1), go to Step 1.

We first design the optimization problem of LMPC 2 for systems subject to asyn-
chronous measurements. This optimization problem depends on the latest state mea-
surement x(ta). In order to make a decision, LMPC 2 must assume LMPC 1 applies
the nonlinear control law u1 = h(x). The LMPC 2 is based on the following opti-
mization problem:

min
u2∈S(Δ)

∫ ta+NΔ

ta

[∥∥x̃(τ )
∥∥

Qc
+ ∥∥u1(τ )

∥∥
Rc1

+ ∥∥u2(τ )
∥∥

Rc2

]
dτ, (4.49)

s.t. ˙̃x(t) = f
(
x̃(t), u1(t), u2(t),0

)
, (4.50)

u1(t) = h
(
x̃(ta + jΔ)

)
, ∀t ∈ [

ta + jΔ, ta + (j + 1)Δ
)
, (4.51)

u2(t) ∈ U2, (4.52)

˙̂x(t) = f
(
x̂(t), h

(
x̂(ta + jΔ)

)
,0,0

)
,

∀t ∈ [
ta + jΔ, ta + (j + 1)Δ

)
, (4.53)

x̃(ta) = x̂(ta) = x(ta), (4.54)

V
(
x̃(t)

) ≤ V
(
x̂(t)

)
, ∀t ∈ [ta, ta + NRΔ), (4.55)

where x̃ is the predicted trajectory of the nominal system with u2 being the in-
put trajectory computed by the LMPC of Eqs. 4.49–4.55 (i.e., LMPC 2) and u1
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being the nonlinear control law h(x) applied in a sample-and-hold fashion with
j = 0, . . . ,N − 1, x̂ is the predicted trajectory of the nominal system with u1 be-
ing h(x) applied in a sample-and-hold fashion and u2 = 0, and NR is the smallest
integer that satisfies the inequality Tm ≤ NRΔ. To take full advantage of the nomi-
nal model in the computation of the control action, we take N ≥ NR . The optimal
solution to this optimization problem is denoted by u∗

a2(t |ta) which is defined for
t ∈ [ta, ta + NΔ). Once the optimal input trajectory of u2 is available, it is sent to
LMPC 1 as well as to its corresponding control actuators.

Note that the constraints of Eqs. 4.53–4.54 generate a reference state trajectory
(i.e., a reference Lyapunov function trajectory) of the closed-loop system; and the
constraint of Eq. 4.55 ensures that the predicted decrease of the Lyapunov function
from ta to ta + NRΔ, if u1 = h(x) and u2 = u∗

a2(t |ta) are applied, is at least equal
to the one obtained from the constraint of Eq. 4.53. By imposing the constraint of
Eq. 4.55 (as well as the constraint of Eq. 4.62), we can prove that the distributed con-
trol system inherits the stability properties of the nonlinear control law h(x) when
it is implemented in a sample-and-hold fashion. Note also that we have considered
input constraints (see Eq. 4.52).

The optimization problem of LMPC 1 for systems subject to asynchronous mea-
surements depends on x(ta) and the decision taken by LMPC 2 of Eqs. 4.49–4.55
(i.e., u∗

a2(t |ta)). This allows LMPC 1 to compute a u1 such that the closed-loop per-
formance is optimized, while guaranteeing that the stability properties of the nonlin-
ear control law h(x) are preserved. Specifically, LMPC 1 is based on the following
optimization problem:

min
u1∈S(Δ)

∫ ta+NΔ

ta

[∥∥x̌(τ )
∥∥

Qc
+ ∥∥u1(τ )

∥∥
Rc1

+ ∥∥u2(τ )
∥∥

Rc2

]
dτ, (4.56)

s.t. ˙̌x(t) = f
(
x̌(t), u1(t), u2(t),0

)
, (4.57)

˙̃x(t) = f
(
x̃(t), h

(
x̃(ta + jΔ)

)
, u2(t),0

)
,

∀t ∈ [
ta + jΔ, ta + (j + 1)Δ

)
, (4.58)

u2(t) = u∗
a2(t |ta), (4.59)

u1(t) ∈ U1, (4.60)

x̌(ta) = x̃(ta) = x(ta), (4.61)

V
(
x̌(t)

) ≤ V
(
x̃(t)

)
, ∀t ∈ [ta, ta + NRΔ), (4.62)

where x̌ is the predicted trajectory of the nominal system if u2 = u∗
a2(t |ta) and u1

computed by the LMPC 1 of Eqs. 4.56–4.62 are applied, and x̃ is the predicted
trajectory of the nominal system if u2 = u∗

a2(t |ta) and the nonlinear control law
h(x) are applied in a sample-and-hold fashion with j = 0, . . . ,N − 1. The optimal
solution to this optimization problem is denoted by u∗

a1(t |ta) which is defined for
t ∈ [ta, ta + NΔ). The constraint of Eq. 4.62 guarantees that the predicted decrease
of the Lyapunov function from ta to ta + NRΔ, if u1 = u∗

a1(t |ta) and u2 = u∗
a2(t |ta)
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are applied, is at least equal to the one obtained when u1 = h(x) and u2 = u∗
a2(t |ta)

are applied. Note that the trajectory x̃(t) predicted by the constraint of Eq. 4.58 is
the same as the optimal trajectory predicted by LMPC 2 of Eqs. 4.49–4.55. This
trajectory will be used in the proof of the closed-loop stability properties of the
controller. The manipulated inputs of the distributed control scheme of Eqs. 4.49–
4.62 are defined as follows:

u1(t) = u∗
a1(t |ta), ∀t ∈ [ta, ta+1), (4.63)

u2(t) = u∗
a2(t |ta), ∀t ∈ [ta, ta+1). (4.64)

Note that, as explained before, the actuators apply the last evaluated optimal input
trajectories between two successive state measurements.

4.5.3 Stability Properties

In this subsection, we prove that the distributed control scheme of Eqs. 4.49–4.62
inherits the stability properties of the nonlinear control law h(x) implemented in a
sample-and-hold fashion. This property is presented in Theorem 4.2 below.

Theorem 4.2 Consider the system of Eq. 4.1 in closed-loop with x available at
asynchronous sampling time instants {ta≥0}, satisfying the condition of Eq. 2.22,
under the DMPC of Eqs. 4.49–4.62 based on a control law u1 = h(x) that satisfies
the conditions of Eqs. 4.3–4.6. Let Δ,εs > 0, ρ > ρmin > 0, ρ > ρs > 0 and N ≥
NR ≥ 1 satisfy the condition of Eq. 2.31 and the following inequality:

−NRεs + fV

(
fW (NRΔ)

)
< 0 (4.65)

with fV (·) and fW (·) defined in Eqs. 2.49 and 2.43, respectively, and NR being
the smallest integer satisfying NRΔ ≥ Tm. If x(t0) ∈ Ωρ , then x(t) is ultimately
bounded in Ωρa

⊆ Ωρ where:

ρa = ρmin + fV

(
fW (NRΔ)

)
(4.66)

with ρmin defined in Eq. 4.25.

Proof In order to prove that the closed-loop system is ultimately bounded in a region
that contains the origin, we prove that V (x(ta)) is a decreasing sequence of values
with a lower bound.

Part 1: In this part, we prove that the stability results stated in Theorem 4.2 hold
in the case that ta+1 − ta = Tm for all a and Tm = NRΔ. This case corresponds to the
worst possible situation in the sense that LMPC 1 of Eqs. 4.56–4.62 and LMPC 2
of Eqs. 4.49–4.55 need to operate in open-loop for the maximum possible amount
of time. In order to simplify the notation, we assume that all the variables used in
this proof refer to the different optimization variables of the problems solved at time
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step ta ; that is, x̂(ta+1) is obtained from the nominal closed-loop trajectory of the
system of Eq. 4.1 under the Lyapunov-based controller u1 = h(x) implemented in a
sample-and-hold fashion and u2 = 0 starting from x(ta). By Proposition 2.1 and the
fact that ta+1 = ta + NRΔ, the following inequality can be obtained:

V
(
x̂(ta+1)

) ≤ max
{
V

(
x̂(ta)

) − NRεs, ρmin
}
. (4.67)

From the constraints of Eqs. 4.55 and 4.62 in LMPC 2 and LMPC 1, the following
inequality can be written:

V
(
x̌(t)

) ≤ V
(
x̃(t)

) ≤ V
(
x̂(t)

)
, ∀t ∈ [ta, ta + NRΔ). (4.68)

From inequalities of Eqs. 4.67 and 4.68 and taking into account that x̂(ta) = x̃(ta) =
x̌(ta) = x(ta), the following inequality is obtained:

V
(
x̌(ta+1)

) ≤ max
{
V

(
x(ta)

) − NRεs, ρmin
}
. (4.69)

When x(t) ∈ Ωρ for all times (this point will be proved below), we can apply Propo-
sition 2.3 to obtain the following inequality:

V
(
x(ta+1)

) ≤ V
(
x̌(ta+1)

) + fV

(∥∥x̌(ta+1) − x(ta+1)
∥∥)

. (4.70)

Applying Proposition 2.2, we obtain the following upper bound on the deviation of
x̌(t) from x(t):

∥∥x(tk+1) − x̌(tk+1)
∥∥ ≤ fW (NRΔ). (4.71)

From the inequalities of Eqs. 4.70 and 4.71, the following upper bound on
V (x(tk+1)) can be written:

V
(
x(ta+1)

) ≤ V
(
x̌(ta+1)

) + fV

(
fW(NRΔ)

)
. (4.72)

Using the inequality of Eq. 4.69, we can rewrite the inequality of Eq. 4.72 as follows:

V
(
x(ta+1)

) ≤ max
{
V

(
x(ta)

) − NRεs, ρmin
} + fV

(
fW (NRΔ)

)
. (4.73)

If the condition of Eq. 4.65 is satisfied, from the inequality of Eq. 4.73, we know
that there exists εw > 0 such that the following inequality holds:

V
(
x(ta+1)

) ≤ max
{
V

(
x(ta)

) − εw,ρa

}
, (4.74)

which implies that if x(ta) ∈ Ωρ/Ωρa , then V (x(ta+1)) < V (x(ta)), and if
x(ta) ∈ Ωρa , then V (x(ta+1)) ≤ ρa .

Because the upper bound on the difference between the Lyapunov function of
the actual trajectory x and the nominal trajectory x̌ is a strictly increasing function
of time (see Proposition 2.2 and Proposition 2.3 for the expressions of fW(·) and
fV (·)), the inequality of Eq. 4.74 also implies that:

V
(
x(t)

) ≤ max
{
V

(
x(ta)

)
, ρa

}
, ∀t ∈ [ta, ta+1). (4.75)
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Using the inequality of Eq. 4.75 recursively, it can be proved that if x(t0) ∈ Ωρ , then
the closed-loop trajectories of the system of Eq. 4.1 under the DMPC of Eqs. 4.49–
4.62 stay in Ωρ for all times (i.e., x(t) ∈ Ωρ, ∀t ). Moreover, using the inequality of
Eq. 4.74 recursively, it can be proved that if x(t0) ∈ Ωρ , the closed-loop trajectories
of the system of Eq. 4.1 under the DMPC of Eqs. 4.49–4.62 satisfy:

lim sup
t→∞

V
(
x(t)

) ≤ ρa. (4.76)

This proves that x(t) ∈ Ωρ for all times and x(t) is ultimately bounded in Ωρa for
the case when ta+1 − ta = Tm for all a and Tm = NRΔ.

Part 2: In this part, we extend the results proved in Part 1 to the general case, that
is, ta+1 − ta ≤ Tm for all a and Tm ≤ NRΔ which implies that ta+1 − ta ≤ NRΔ. Be-
cause fV (·) and fW (·) are strictly increasing functions of their arguments and fV (·)
is convex, following similar steps as in Part 1, it can be shown that the inequality
of Eq. 4.73 still holds. This proves that the stability results stated in Theorem 4.2
hold. �

4.5.4 Application to a Reactor–Separator Process

Consider the reactor–separator process of Eqs. 3.52–3.63 described in Sect. 1.2.3
with the parameter values given in Table 3.3. As in the simulations carried out in
Sect. 4.4.3, in this section, the process was also numerically simulated using a stan-
dard Euler integration method, and bounded process noise was added to all the sim-
ulations to simulate disturbances/model uncertainty. The manipulated inputs to the
system are the heat inputs, Q1, Q2 and Q3, and the feed stream flow rate to vessel
2, F20. For each set of steady-state inputs Q1s , Q2s , Q3s and F20s corresponding
to a different operating condition, the process has one stable steady-state xs . The
control objective is to steer the process from the initial state:

xT
0 = [0.89 0.11 388.7 0.11 386.3 0.75 0.25 390.6], (4.77)

to the steady-state:

xT
s = [0.61 0.39 425.9 0.61 0.39 422.6 0.35 0.63 427.3], (4.78)

which is the steady-state corresponding to the operating condition: Q1s = 12.6 ×
105 KJ/h, Q3s = 11.88 × 105 KJ/h, Q2s = 13.32 × 105 KJ/h and F20s = 5.04 m3/h.

The process belongs to the following class of nonlinear systems:

ẋ(t) = f
(
x(t)

) + g1
(
x(t)

)
u1(t) + g2

(
x(t)

)
u2(t) + w(t), (4.79)

where xT = [x1 x2 x3 x4 x5 x6 x7 x8 x9] = [xA1 − xA1s xB1 − xB1s T1 − T1s xA2 −
xA2s xB2 − xB2s T2 − T2s xA3 − xA3s xB3 − xB3s T3 − T3s] is the state, uT

1 =



4.5 DMPC with Asynchronous Measurements 123

Fig. 4.11 Asynchronous measurement sampling times {ta≥0} with Tm = 3Δ: the x-axis indicates
{ta≥0} and the y-axis indicates the size of the interval between ta and ta−1

[u11 u12 u13] = [Q1 − Q1s Q2 − Q2s Q3 − Q3s] and u2 = F20 − F20s are the ma-
nipulated inputs which are subject to the constraints |u1i | ≤ 106 KJ/h (i = 1,2,3)
and |u2| ≤ 3 m3/h, and w is a bounded noise.

We use the same design of h(x) as in Eq. 4.44, and we consider the same Lya-
punov function V (x) = xT Px with P = diag(5.2 × 1012[4 4 10−4 4 4 10−4 4 4
10−4]) as in Sect. 4.4.3.

For the simulations carried out in this section, it is assumed that the state mea-
surements of the process are available asynchronously at time instants {ta≥0} with
an upper bound Tm = 3Δ on the maximum interval between two successive asyn-
chronous state measurements, where Δ is the controller and sensor sampling time
and is chosen to be Δ = 0.02 h = 1.2 min. Based on the Lyapunov-based controller
h(x), we design LMPC 1 and LMPC 2. The prediction horizons of both LMPC 1
of Eqs. 4.56–4.62 and LMPC 2 of Eqs. 4.49–4.55 are chosen to be N = 6 and NR

is chosen to be 3 so that NRΔ ≥ Tm. The weighting matrices for the LMPCs are
chosen in a way such that the DMPC of Eqs. 4.10–4.21 presented in Sect. 4.4 and
the DMPC of Eqs. 4.49–4.62 can both stabilize the closed-loop system with state
measurements obtained at each sampling time. Specifically, the weighting matrices
are chosen as follows:

Qc = diag
(
103[2 2 0.0025 2 2 0.0025 2 2 0.0025

])
, (4.80)

Rc1 = diag([5 × 10−12 5 × 10−12 5 × 10−12]) and Rc2 = 100.
To model the time sequence {ta≥0}, we use an upper bounded random Poisson

process. The Poisson process is defined by the number of events per unit time W .
The interval between two successive concentration sampling times (events of the
Poisson process) is given by Δa = min{− lnχ/W,Tm}, where χ is a random vari-
able with uniform probability distribution between 0 and 1. This generation ensures
that maxa{ta+1 − ta} ≤ Tm. In this example, W is chosen to be W = 20. The gener-
ated time sequence {ta≥0} for a simulation length of 1.0 h is shown in Fig. 4.11 and
the average time interval between two successive time instants is 0.046 h.

In this set of simulations, when the system operates in open-loop, all the control
designs to be tested use their last evaluated optimal input trajectories. The state and
input trajectories of the process of Eqs. 3.52–3.63 in closed-loop under the DMPC
of Eqs. 4.49–4.62 taking into account asynchronous measurements explicitly and
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Fig. 4.12 State trajectories of the reactor–separator process of Eqs. 3.52–3.63 under the DMPC
of Eqs. 4.49–4.62 (solid lines) and the DMPC of Eqs. 4.10–4.21 (dashed lines) in the presence of
asynchronous measurements

the DMPC of Eqs. 4.10–4.21 are shown in Figs. 4.12 and 4.13. In Fig. 4.12, it can
be seen that the DMPC of Eqs. 4.49–4.62 provides a better performance and is
able to stabilize the process at the desired steady state in about 0.5 h; the DMPC
of Eqs. 4.10–4.21 fails to drive the state of the process to the desired steady state
within 1 h because it does not account for the asynchronous measurements.

4.6 DMPC with Delayed Measurements

In this section, we consider DMPC of systems subject to asynchronous measure-
ments involving time-varying delays.

4.6.1 Modeling of Delayed Measurements

We assume that the state of the system of Eq. 4.1 is received by the controllers at
asynchronous time instants ta where {ta≥0} is a random increasing sequence of times
and that there exists an upper bound Tm on the interval between two successive mea-
surements. In order to model delays in measurements, another auxiliary variable da
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Fig. 4.13 Input trajectories of the reactor–separator process of Eqs. 3.52–3.63 under the DMPC
of Eqs. 4.49–4.62 (solid lines) and the DMPC of Eqs. 4.10–4.21 (dashed lines) in the presence of
asynchronous measurements

Fig. 4.14 DMPC design for
systems subject to delayed
measurements

is introduced to indicate the delay corresponding to the measurement received at
time ta , that is, at time ta , the measurement x(ta − da) is received. We assume that
the delays associated with the measurements are smaller than an upper bound D. As
explained in Sect. 2.8.1, the maximum amount of time the system might operate in
open-loop following ta is D + Tm − da ; please also see Fig. 2.6 for a possible se-
quence of delayed measurements. This upper bound will be used in the formulation
of the DMPC design for systems subject to delayed measurements below.

4.6.2 DMPC Formulation

As in Sects. 2.8 and 3.6, we take advantage of the system model both to estimate
the current system state from a delayed measurement and to control the system
in open-loop when new information is not available. Specifically, when a delayed
measurement is received, the controllers use the system model and the manipulated
inputs that have been applied to the system to get an estimate of the current state and
then an MPC optimization problem is solved in order to decide the optimal future
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input trajectory that will be applied until new measurements are received. However,
in the distributed schemes previously presented (see Fig. 4.10), LMPC 2 does not
know the input trajectory which has been implemented by LMPC 1 because there
is only one-directional communication from LMPC 2 to LMPC 1. In order to get a
good estimate of the current state from a delayed measurement, the DMPC structure
shown in Fig. 4.10 needs to be modified to have bidirectional communication so that
LMPC 1 can send its optimal input trajectory to LMPC 2. A schematic of the DMPC
scheme for systems subject to asynchronous and delayed measurements considered
in this section is shown in Fig. 4.14. When at ta , a delayed measurement x(ta −da) is
received, the information sent from LMPC 1 to LMPC 2 allows LMPC 2 to estimate
the current state by using the system model of Eq. 4.1 and the input trajectories
u1(t) (which has received from LMPC 1) and u2(t) (which LMPC 2 has stored in
memory) applied in t ∈ [ta − da, ta). The implementation strategy in the presence
of delayed measurements is as follows:

1. When a measurement x(ta − da) is available at ta , LMPC 2 checks whether the
measurement provides new information. If ta −da > maxl<a tl −dl , go to Step 2.
Else the measurement does not contain new information and is discarded, go to
Step 6.

2. LMPC 2 estimates the current state of the system x̃(ta) and computes the optimal
input trajectory of u2 based on x̃(ta).

3. LMPC 2 sends its entire optimal input trajectory to its actuators and also sends
x̃(ta) and its entire optimal input trajectory to LMPC 1.

4. Once LMPC 1 receives x̃(ta) and the entire optimal input trajectory for u2, it
evaluates the optimal input trajectory of u1 based on x̃(ta).

5. LMPC 1 sends its entire optimal input trajectory to its actuators and LMPC 2.
6. When a new measurement is received (a ← a + 1), go to Step 1.

The LMPC 2 for systems subject to delayed measurements is based on the fol-
lowing optimization problem:

min
u2∈S(Δ)

∫ ta+NΔ

ta

[∥∥x̃(τ )
∥∥

Qc
+ ∥∥u1(τ )

∥∥
Rc1

+ ∥∥u2(τ )
∥∥

Rc2

]
dτ, (4.81)

s.t. ˙̃x(t) = f
(
x̃(t), u1(t), u2(t),0

)
, ∀t ∈ [ta − da, ta + NΔ), (4.82)

u1(t) = u∗
d1(t), ∀t ∈ [ta − da, ta), (4.83)

u2(t) = u∗
d2(t), ∀t ∈ [ta − da, ta), (4.84)

u1(t) = h
(
x̃(ta + jΔ)

)
, ∀t ∈ [

ta + jΔ, ta + (j + 1)Δ
)
, (4.85)

u2(t) ∈ U2, (4.86)

x̃(ta − da) = x(ta − da), (4.87)

˙̂x(t) = f
(
x̂(t), h

(
x̂(ta + jΔ)

)
,0,0

)
,

∀t ∈ [
ta + jΔ, ta + (j + 1)Δ

)
, (4.88)
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x̂(ta) = x̃(ta), (4.89)

V
(
x̃(t)

) ≤ V
(
x̂(t)

)
, ∀t ∈ [ta, ta + ND,aΔ), (4.90)

where j = 0, . . . ,N − 1, and ND,a is the smallest integer satisfying ND,aΔ ≥ Tm +
D − da and u∗

d1(t), u
∗
d2(t) are the latest input trajectories sent by the controllers

to the actuators. The optimal solution to this optimization problem is denoted by
u∗

d2(t |ta) which is defined for t ∈ [ta, ta + NΔ). Once this optimal input trajectory
of u2 is available, it is sent to the control actuators controlled by LMPC 2 and to
LMPC 1 together with the estimate of the current state x̃(ta).

There are two types of calculations in the optimization problem of Eqs. 4.81–4.90.
The first type of calculation is to estimate the current state x̃(ta) based on the de-
layed measurement x(ta −da) and input values that have applied to the system from
ta − da to ta (the constraints of Eqs. 4.82, 4.83, 4.84 and 4.87). The second type
of calculation is to evaluate the optimal input trajectory of u2 based on x̃(ta) while
satisfying the input constraint of Eq. 4.86 and the constraint of Eq. 4.90. The con-
straint of Eq. 4.90 is required to ensure the practical closed-loop stability. Note that
the length of the constraint ND,a depends on the current delay da , so it may have
different values at different time instants and has to be updated before solving the
optimization problem of Eqs. 4.81–4.90.

The LMPC 1 for systems subject to delayed measurements depends on x̃(ta) and
u∗

d2(t |ta). Specifically, it is based on the following optimization problem:

min
u1∈S(Δ)

∫ ta+NΔ

ta

[∥∥x̌(τ )
∥
∥

Qc
+ ∥

∥u1(τ )
∥
∥

Rc1
+ ∥

∥u2(τ )
∥
∥

Rc2

]
dτ, (4.91)

s.t. ˙̃x(t) = f
(
x̃(t), h

(
x̃(ta + jΔ)

)
, u2(t),0

)
,

∀t ∈ [
ta + jΔ, ta + (j + 1)Δ

)
, (4.92)

˙̌x(t) = f
(
x̌(t), u1(t), u2(t),0

)
, (4.93)

u2(t) = u∗
d2(t |ta), (4.94)

u1(t) ∈ U1, (4.95)

x̌(ta) = x̃(ta), (4.96)

V
(
x̌(t)

) ≤ V
(
x̃(t)

)
, ∀t ∈ [ta, ta + ND,aΔ). (4.97)

The optimal solution to the optimization problem of Eqs. 4.91–4.97 is denoted as
u∗

d2(t |ta) which is defined for t ∈ [ta, ta +NΔ) and it is sent to the control actuators
controlled by LMPC 1 and LMPC 2. Note that LMPC 1 gets x̃(ta) from LMPC 2,
so it does not need to estimate the current state and only needs to evaluate the op-
timal input trajectory of u1 based on x̃(ta) while satisfying the input constraint of
Eq. 4.95 and the constraint of Eq. 4.97. The constraint of Eq. 4.97 is required to
ensure closed-loop practical stability.
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The manipulated inputs of the DMPC of Eq. 4.81–4.97 for systems subject to
asynchronous and delayed measurements are defined as follows:

u1(t) = u∗
d1(t |ta), ∀t ∈ [ta, ta+i ), (4.98)

u2(t) = u∗
d2(t |ta), ∀t ∈ [ta, tk+i ) (4.99)

for all ta such that ta − da > maxl<a tl − dl and for a given ta , the variable i denotes
the smallest integer that satisfies ta+i − da+i > ta − da .

4.6.3 Stability Properties

In this subsection, we present the stability property of the distributed control scheme
of Eqs. 4.81–4.97. This property is presented in Theorem 4.3 below.

Theorem 4.3 Consider the system of Eq. 4.1 in closed-loop with x available at
asynchronous sampling time instants {ta≥0} involving time-varying delays such that
da ≤ D for all a ≥ 0, satisfying the condition of Eq. 2.22, under the DMPC of
Eqs. 4.81–4.97 based on a control law u1 = h(x) that satisfies the conditions of
Eqs. 4.3–4.6. Let Δ,εs > 0, ρ > ρmin > 0, ρ > ρs > 0, N ≥ 1 and D ≥ 0 satisfy the
condition of Eq. 2.31 and the following inequality:

−NRεs + fV

(
fW(NDΔ)

) + fV

(
fW (D)

)
< 0 (4.100)

with fV (·) and fW(·) defined in Eqs. 2.49 and 2.43, respectively, ND the smallest in-
teger satisfying NDΔ ≥ Tm +D, and NR the smallest integer satisfying NRΔ ≥ Tm.
If N ≥ ND , x(t0) ∈ Ωρ and d0 = 0, then x(t) is ultimately bounded in Ωρd

⊆ Ωρ

where:

ρd = ρmin + fV

(
fW(NDΔ)

) + fV

(
fW (D)

)
(4.101)

with ρmin defined in Eq. 4.25.

Proof We assume that at ta , a delayed measurement containing new information
x(ta − da) is received, and that the next measurement with new state informa-
tion is not received until ta+i . This implies that ta+i − da+i > ta − da and that
the DMPC of Eqs. 4.81–4.90 is evaluated at ta and the optimal input trajectories
u∗

d1(t |ta) and u∗
d2(t |ta) are applied from ta to ta+i (see the input trajectories defined

in Eqs. 4.98–4.99). We follow a similar approach as before; that is, to prove that
V (x(ta)) is a decreasing sequence of values with a lower bound.

Part 1: In this part, we prove that the stability results stated in Theorem 4.3 hold
for ta+i − ta = ND,aΔ and all da ≤ D. By Proposition 2.1, the following inequality
can be obtained:

V
(
x̂(ta+i )

) ≤ max
{
V

(
x̂(ta)

) − ND,aεs, ρmin
}
. (4.102)
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From the constraints of Eqs. 4.90 and 4.97 in LMPC 2 of Eq. 4.90 and LMPC 1 of
Eq. 4.97, the following inequality can be written:

V
(
x̌(t)

) ≤ V
(
x̃(t)

) ≤ V
(
x̂(t)

)
, ∀t ∈ [ta, ta + ND,aΔ). (4.103)

From the inequalities of Eqs. 4.102, 4.103 and taking into account that x̂(ta) =
x̌(ta) = x̃(ta), the following inequality is obtained:

V
(
x̌(ta+i )

) ≤ max
{
V

(
x̃(ta)

) − ND,aεs, ρmin
}
. (4.104)

When x(t) ∈ Ωρ for all times (this point will be proved below), we can apply Propo-
sition 2.3 to obtain the following inequalities:

V
(
x̃(ta)

) ≤ V
(
x(ta)

) + fV

(∥∥x(ta) − x̃(ta)
∥
∥)

, (4.105)

V
(
x(ta+i )

) ≤ V
(
x̌(ta+i )

) + fV

(∥∥x(ta+i ) − x̌(ta+i )
∥
∥)

. (4.106)

Applying Proposition 2.2, we obtain the following bounds on the deviation of x̃(t)

and x̌(t) from x(t):
∥∥x(ta) − x̃(ta)

∥∥ ≤ fW(da), (4.107)
∥∥x(ta+i ) − x̌(ta+i )

∥∥ ≤ fW(NDΔ). (4.108)

Note that Proposition 2.2 can be applied because the constraints of Eqs. 4.82, 4.83,
4.84, 4.87 and the implementation procedure guarantee that x̃(ta) and x̌(ta+i ) have
been estimated using the same inputs applied to the system. We have also taken into
account that NDΔ ≥ ND,a + da for all da . Using the inequalities of Eqs. 4.104,
4.105–4.106 and 4.107–4.108, the following upper bound on V (x(ta+i )) is ob-
tained:

V
(
x(ta+i )

) ≤ max
{
V

(
x(ta)

) − ND,aεs, ρmin
} + fV

(
fW (NDΔ)

) + fV

(
fW (da)

)
.

(4.109)
In order to prove that the Lyapunov function is decreasing between two consecutive
new measurements, the following inequality must hold:

ND,aεs > fV

(
fW (NDΔ)

) + fV

(
fW (da)

)
(4.110)

for all possible 0 ≤ da ≤ D. Taking into account that fW (·) and fV (·) are strictly
increasing functions of their arguments, that ND,a is a decreasing function of the
delay da and that if da = D then ND,a = NR , if the condition of Eq. 4.100 is sat-
isfied, the condition of Eq. 4.110 holds for all possible da and there exists εw > 0
such that the following inequality holds:

V
(
x(ta+i )

) ≤ max
{
V

(
x(ta)

) − εw,ρd

}
, (4.111)

which implies that if x(ta) ∈ Ωρ/Ωρd
, then V (x(ta+i )) < V (x(ta)), and if

x(ta) ∈ Ωρd
, then V (x(ta+i )) ≤ ρd .
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Because the upper bound on the difference between the Lyapunov function of the
actual trajectory x and the nominal trajectory x̌ is a strictly increasing function of
time, the inequality of Eq. 4.111 also implies that:

V
(
x(t)

) ≤ max
{
V

(
x(ta)

)
, ρd

}
, ∀t ∈ [ta, ta+i ). (4.112)

Using the inequality of Eq. 4.112 recursively, it can be proved that if x(t0) ∈ Ωρ ,
then the closed-loop trajectories of the system of Eq. 4.1 under the DMPC of
Eqs. 4.81–4.97 stay in Ωρ for all times (i.e., x(t) ∈ Ωρ, ∀t ). Moreover, using the in-
equality of Eq. 4.111 recursively, it can be proved that if x(t0) ∈ Ωρ , the closed-loop
trajectories of the system of Eq. 4.1 under the DMPC of Eqs. 4.81–4.97 satisfy:

lim sup
t→∞

V
(
x(t)

) ≤ ρd . (4.113)

This proves that x(t) ∈ Ωρ for all times and that x(t) is ultimately bounded in Ωρd

when ta+i − ta = ND,aΔ for all a.
Part 2: In this part, we extend the results proved in Part 1 to the general case,

that is, ta+i − ta ≤ ND,aΔ. Taking into account that fV (·) and fW (·) are strictly
increasing functions of their arguments and following similar steps in Part 1, it
is easy to prove that the inequality of Eq. 4.110 holds for all possible da ≤ D

and ta+i − ta ≤ ND,aΔ. Using this inequality and following the same line of ar-
gument as in the previous part, the stability results stated in Theorem 4.3 can be
proved. �

Remark 4.14 The sufficient conditions presented in Theorem 4.3 state that in order
to guarantee practical stability, V (x(ta)) must be a decreasing sequence of values
with a lower bound for the worst possible case from a feedback control point of
view; that is, the measurements are received every Tm (maximum time between
successive measurements) with a delay equal to the maximum delay D.

Remark 4.15 In this section, we do not explicitly consider delays introduced in the
system by the communication network or by the time needed to solve each of the
LMPC optimization problems. Such delays are usually small (particularly in the
context of DMPC) compared to the measurement delays and can be modeled as part
of an overall measurement delay.

4.6.4 Application to a Reactor–Separator Process

We consider the reactor–separator process of Eqs. 3.52–3.63 described in Sect. 1.2.3
with the parameter values given in Table 3.3. In this subsection, we compare the
performance of the DMPC of Eqs. 4.81–4.97 with that of the DMPC of Eqs. 4.49–
4.62 in the case where the delayed state measurements of the process are available
asynchronously at time instants {ta≥0}. The same sampling time Δ and weighting
matrices Qc, Rc and Rc2 used in Sect. 4.5.4 are used. The prediction horizons of
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Fig. 4.15 Asynchronous time sequence {ta≥0} and corresponding delay sequence {da≥0} with
Tm = 0.04 h and D = 0.12 h: (a) the x-axis indicates {ta≥0} and the y-axis indicates the size of da ;
(b) the upper axis indicates {ta≥0}, the lower axis indicates ta −da , each arrow points from ta −da

to corresponding ta and the dashed arrows indicate the measurements which do not contain new
information

both LMPC 1 and LMPC 2 are chosen to be N = 8 in this set of simulations so that
the horizon covers the maximum possible open-loop operation interval. Note that
the same estimated current state is used to evaluate both of the controllers.

The Poisson process used in Sect. 4.5.4 is used to generate {ta≥0} with W = 30
and Tm = 0.04 h and another random process is used to generate the associated delay
sequence {da≥0} with D = 0.12 h. Figure 4.15 shows the time instants when new
state measurements are received, the associated delay sizes and the instants when
the received measurements do not contain new information (which are discarded).
The average time interval between two successive sampling times is 0.035 h and the
average time delay is 0.057 h.

The state and input trajectories of the process of Eqs. 3.52–3.63 in closed-loop
under the DMPC of Eqs. 4.81–4.97 and the DMPC of Eqs. 4.49–4.62 are shown in
Figs. 4.16 and 4.17. In Fig. 4.16, we see that the DMPC of Eqs. 4.81–4.97 is able to
stabilize the process at the desired steady state in about 0.6 h, but the control design
of Eqs. 4.49–4.62 which does not account for measurement delays fails to drive the
state to the desired steady state within 1 h.

Remark 4.16 We have also carried out simulations to evaluate the computational
time of the LMPCs. The simulations have been carried out using MATLAB� in
a PENTIUM� 3.20 GHz processor. The optimization problems have been solved
using the built-in nonlinear programming function fmincom of MATLAB�. For 50
evaluations, the mean time to solve LMPC 2 of Eqs. 4.49–4.55 and LMPC 1 of
Eqs. 4.56–4.62 are 5.52 seconds and 2.90 seconds, respectively, with the prediction
horizon N = 6; the mean time to solve LMPC 2 of Eqs. 4.81–4.90 and LMPC 1 of
Eqs. 4.91–4.97 are 13.95 seconds and 6.83 seconds, respectively, with the prediction
horizon N = 8. These computational times can be reduced significantly by using a
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Fig. 4.16 State trajectories of the reactor–separator process of Eqs. 3.52–3.63 under the DMPC
of Eqs. 4.81–4.97 (solid lines) and the DMPC of Eqs. 4.49–4.62 (dashed lines) in the presence of
asynchronous and delayed measurements

Fig. 4.17 Input trajectories of the reactor–separator process of Eqs. 3.52–3.63 under the DMPC
of Eqs. 4.81–4.97 (solid lines) and the DMPC of Eqs. 4.49–4.62 (dashed lines) in the presence of
asynchronous and delayed measurements

compiled nonlinear programming solver implemented in C or other programming
languages.
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4.7 Conclusions

In this chapter, we focused on a class of nonlinear control problems that arise when
new control systems which may use networked sensors and/or actuators are added
to already operating control loops to improve closed-loop performance. To address
this control problem, a DMPC method was introduced where both the preexisting
control system and the new control system are designed via LMPC theory. The pre-
sented DMPC design stabilizes the closed-loop system, improves the closed-loop
performance and allows handling input constraints. In addition, the distributed con-
trol design requires reduced communication between the two distributed controllers
since it requires that these controllers communicate only once at each sampling time
and is computationally more efficient compared to the corresponding centralized
model predictive control design. In addition, the DMPC method is also extended
to include nonlinear systems subject to asynchronous and delayed measurements.
Extensive simulations using a chemical plant network example, described by a non-
linear model, demonstrated the applicability and effectiveness of the DMPC designs.





Chapter 5
Distributed Model Predictive Control:
Multiple-Controller Cooperation

5.1 Introduction

In Chap. 4, we presented a DMPC architecture with one-directional communica-
tion for a very broad class of nonlinear systems. In this architecture, two separate
controllers designed via LMPC were considered, in which one LMPC was used to
guarantee the stability of the closed-loop system and the other LMPC was used to
improve the closed-loop performance. In this chapter, we focus on DMPC of large-
scale nonlinear systems in which several distinct sets of manipulated inputs are used
to regulate the system. For each set of manipulated inputs, a different model pre-
dictive controller, which is able to communicate with the rest of the controllers in
making its decisions, is used to compute the control actions. Specifically, under the
assumption that feedback of the state of the process is available to all the distributed
controllers at each sampling time and that a model of the plant is available, we
present two different DMPC architectures designed via LMPC techniques. In the
first architecture, the distributed controllers use a one-directional communication
strategy, are evaluated in sequence and each controller is evaluated only once at
each sampling time; in the second architecture, the distributed controllers utilize
a bidirectional communication strategy, are evaluated in parallel and iterate to im-
prove closed-loop performance. In order to ensure the stability of the closed-loop
system, each model predictive controller in both architectures incorporates a stabil-
ity constraint which is based on a suitable nonlinear control law which can stabilize
the closed-loop system. We prove that the two DMPC architectures enforce practical
stability in the closed-loop system while improving performance.

Moreover, the DMPC designs will be also extended to include nonlinear systems
subject to asynchronous and delayed state feedback. In the case of asynchronous
feedback, under the assumption that there is an upper bound on the maximum in-
terval between two consecutive measurements, we first extend both the DMPC ar-
chitectures to take explicitly into account asynchronous feedback. Subsequently, we
design a DMPC scheme using bi-directional communication for systems subject
to asynchronous measurements that also involve time-delays under the assumption
that there exists an upper bound on the maximum feedback delay. Sufficient condi-
tions under which the proposed distributed control designs guarantee that the states

P.D. Christofides et al., Networked and Distributed Predictive Control,
Advances in Industrial Control,
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of the closed-loop system are ultimately bounded in regions that contain the origin
are provided. The theoretical results are illustrated through a catalytic alkylation of
benzene process example.

Finally, in this chapter, we will focus on a hierarchical type DMPC and dis-
cuss how to handle communication disruptions—communication channel noise and
data losses—between the distributed controllers. To handle communication disrup-
tions, feasibility problems are incorporated in the DMPC architecture to determine
whether the data transmitted through the communication channel is reliable or not.
Based on the results of the feasibility problems, the transmitted information is ac-
cepted or rejected by the stabilizing MPC. In order to ensure the stability of the
closed-loop system under communication disruptions, each model predictive con-
troller utilizes a suitable Lyapunov-based stability constraint. The results of this
chapter were first presented in [9, 30, 54, 55, 58].

5.2 System Description

In this chapter, we consider nonlinear systems described by the following state-
space model:

ẋ(t) = f
(
x(t)

) +
m∑

i=1

gi

(
x(t)

)
ui(t) + k

(
x(t)

)
w(t), (5.1)

where x(t) ∈ Rn denotes the vector of state variables, ui(t) ∈ Rmi , i = 1, . . . ,m, are
m sets of control (manipulated) inputs and w(t) ∈ Rw denotes the vector of distur-
bance variables. The m sets of inputs are restricted to be in m nonempty convex sets
Ui ⊆ Rmui , i = 1, . . . ,m, which are defined as follows:

Ui := {
ui ∈ Rmi : ‖ui‖ ≤ umax

i

}
, i = 1, . . . ,m, (5.2)

where umax
i , i = 1, . . . ,m, are the magnitudes of the input constraints. The distur-

bance vector is bounded, i.e., w(t) ∈ W where:

W := {
w ∈ Rw : ‖w‖ ≤ θ, θ > 0

}
(5.3)

with θ being a known positive real number.
We assume that f , gi , i = 1, . . . ,m, and k are locally Lipschitz vector, matrix and

matrix functions, respectively, and that the origin is an equilibrium of the unforced
nominal system (i.e., the system of Eq. 5.1 with ui(t) = 0, i = 1, . . . ,m, w(t) = 0
for all t ) which implies that f (0) = 0.

Remark 5.1 In this chapter, in order to account for DMPC designs in which the
distributed controllers are evaluated in parallel, we consider nonlinear systems with
control inputs entering the system dynamics in an affine fashion. We note that the
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results presented in Sects. 5.4.1 and 5.5.2 can be extended to more general nonlinear
systems, for example, systems described by the following state-space model:

ẋ(t) = f
(
x(t), u1(t), . . . , um(t),w(t)

)
. (5.4)

5.3 Lyapunov-Based Control

We assume that there exists a nonlinear control law h(x) = [h1(x)T · · · hm(x)T ]T
with ui = hi(x), i = 1, . . . ,m, which renders (under continuous state feedback) the
origin of the nominal closed-loop system asymptotically stable while satisfying the
input constraints for all the states x inside a given stability region. Using converse
Lyapunov theorems, this assumption implies that there exist functions αi(·), i =
1,2,3,4 of class K and a continuously differentiable Lyapunov function V (x) for
the nominal closed-loop system that satisfy the following inequalities:

α1
(‖x‖) ≤ V (x) ≤ α2

(‖x‖), (5.5)

∂V (x)

∂x

(

f (x) +
m∑

i=1

gi(x)hi(x)

)

≤ −α3
(‖x‖), (5.6)

∥∥
∥∥
∂V (x)

∂x

∥∥
∥∥ ≤ α4

(‖x‖), (5.7)

hi(x) ∈ Ui, i = 1, . . . ,m (5.8)

for all x ∈ O ⊆ Rnx where O is an open neighborhood of the origin. We denote the
region Ωρ ⊆ O as the stability region of the closed-loop system under the nonlinear
control law h(x).

By continuity, the local Lipschitz property assumed for the vector fields f (x),
gi(x), i = 1, . . . ,m, and k(x) and taking into account that the manipulated inputs
ui , i = 1, . . . ,m, and the disturbance w are bounded in convex sets, there exist
positive constants M , Mgi

, Lx , Lui
and Lw (i = 1, . . . ,m) such that:

∥∥∥∥∥
f (x) +

m∑

i=1

gi(x)ui + k(x)w

∥∥∥∥∥
≤ M, (5.9)

∥
∥gi(x)

∥
∥ ≤ Mgi

, i = 1, . . . ,m, (5.10)
∥∥f (x) − f

(
x′)∥∥ ≤ Lx

∥∥x − x ′∥∥, (5.11)
∥
∥gi(x) − gi

(
x′)∥∥ ≤ Lui

∥
∥x − x′∥∥, i = 1, . . . ,m, (5.12)

∥∥k(x)
∥∥ ≤ Lw (5.13)

for all x, x′ ∈ Ωρ , ui ∈ Ui , i = 1, . . . ,m, and w ∈ W . In addition, by the continuous
differentiable property of the Lyapunov function V (x), there exist positive constants
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L′
x , L′

ui
, i = 1, . . . ,m, and L′

w such that:
∥∥∥∥
∂V (x)

∂x
f (x) − ∂V (x′)

∂x
f

(
x′)

∥∥∥∥ ≤ L′
x

∥∥x − x′∥∥, (5.14)

∥∥
∥∥
∂V (x)

∂x
gi(x) − ∂V (x ′)

∂x
gi

(
x′)

∥∥
∥∥ ≤ L′

ui

∥
∥x − x′∥∥, i = 1, . . . ,m, (5.15)

∥∥∥
∥
∂V (x)

∂x
k(x)

∥∥∥
∥ ≤ L′

w (5.16)

for all x, x′ ∈ Ωρ , ui ∈ Ui , i = 1, . . . ,m, and w ∈ W .

5.4 Sequential and Iterative DMPC Designs with Synchronous
Measurements

The objective of this section is to design DMPC architectures including multiple
MPCs for large-scale nonlinear process systems with continuous, synchronous state
feedback. Specifically, we will discuss two different DMPC architectures. The first
DMPC architecture is a direct extension of the DMPC presented in Sect. 4.4 in
which different MPC controllers are evaluated in sequence, only once at each sam-
pling time and require only one-directional communication between consecutive
distributed controllers (i.e., the distributed controllers are connected by pairs). In
the second architecture, different MPCs are evaluated in parallel, once or more than
once at each sampling time depending on the number of iterations, and bidirectional
communication among all the distributed controllers (i.e., the distributed controllers
are all interconnected) is used.

In each DMPC architecture, we will design m LMPCs to compute ui , i =
1, . . . ,m, and refer to the LMPC computing the input trajectories of ui as LMPC i.
In addition, we assume that the state x of the system of Eq. 5.1 is sampled syn-
chronously and the time instants at which we have state measurement samplings are
indicated by the time sequence {tk≥0} with tk = t0 + kΔ, k = 0,1, . . . where t0 is
the initial time and Δ is the sampling time. The results will be extended to include
systems subject to asynchronous and delayed measurements in Sects. 5.5 and 5.6.

5.4.1 Sequential DMPC

A schematic of the architecture considered in this subsection is shown in Fig. 5.1.

5.4.1.1 Sequential DMPC Formulation

We first present the implementation strategy of this DMPC architecture and then
design the corresponding LMPCs. The implementation strategy of this DMPC ar-
chitecture is as follows:
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Fig. 5.1 Sequential DMPC
architecture

1. At tk , all the LMPCs receive the state measurement x(tk) from the sensors.
2. For j = m to 1

2.1. LMPC j receives the entire future input trajectories of ui , i = m, . . . , j + 1,
from LMPC j + 1 and evaluates the future input trajectory of uj based on
x(tk) and the received future input trajectories.

2.2. LMPC j sends the first step input value of uj to its actuators and the entire
future input trajectories of ui , i = m, . . . , j , to LMPC j − 1.

3. When a new measurement is received (k ← k + 1), go to Step 1.

In this architecture, each LMPC only sends its future input trajectory and the
future input trajectories it received to the next LMPC (i.e., LMPC j sends input
trajectories to LMPC j − 1). This implies that LMPC j , j = m, . . . ,2, does not
have any information about the values that ui , i = j − 1, . . . ,1 will take when the
optimization problems of the LMPCs are designed. In order to make a decision,
LMPC j , j = m, . . . ,2 must assume trajectories for ui , i = j − 1, . . . ,1, along
the prediction horizon. To this end, the nonlinear control law h(x) is used. In or-
der to inherit the stability properties of the controller h(x), each control input ui ,
i = 1, . . . ,m must satisfy a constraint that guarantees a given minimum contribu-
tion to the decrease rate of the Lyapunov function V (x). Specifically, the design of
LMPC j , j = 1, . . . ,m, is based on the following optimization problem:

min
uj ∈S(Δ)

∫ tk+N

tk

[
∥
∥x̃(τ )

∥
∥

Qc
+

m∑

i=1

∥
∥ui(τ )

∥
∥

Rci

]

dτ, (5.17)

s.t. ˙̃x(t) = f
(
x̃(t)

) +
m∑

i=1

gi

(
x̃(t)

)
ui, (5.18)

ui(t) = hi

(
x̃(tk+l )

)
,

i = 1, . . . , j − 1,∀t ∈ [tk+l , tk+l+1), l = 0, . . . ,N − 1, (5.19)

ui(t) = u∗
s,i (t |tk), i = j + 1, . . . ,m, (5.20)

uj (t) ∈ Uj , (5.21)

x̃(tk) = x(tk), (5.22)
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∂V (x(tk))

∂x
gj

(
x(tk)

)
uj (tk) ≤ ∂V (x(tk))

∂x
gj

(
x(tk)

)
hj

(
x(tk)

)
. (5.23)

In the optimization problem of Eqs. 5.17–5.23, u∗
s,i(t |tk) denotes the optimal

future input trajectory of ui obtained by LMPC i of the form of Eqs. 5.17–5.23
evaluated before LMPC j , x̃ is the predicted trajectory of the nominal system
with ui = us,i , i = j + 1, . . . ,m, ui , i = 1, . . . , j − 1, the corresponding elements
of h(x) applied in a sample-and-hold fashion and uj predicted by LMPC j of
Eqs. 5.17–5.23. The optimal solution to the optimization problem of Eqs. 5.17–5.23
is denoted as u∗

s,j (t |tk) which is defined for t ∈ [tk, tk+N).
The constraint of Eq. 5.18 is the nominal model of the system of Eq. 5.1, which

is used to predict the future evolution of the system; the constraint of Eq. 5.19 de-
fines the value of the inputs evaluated after uj (i.e., ui with i = 1, . . . , j − 1); the
constraint of Eq. 5.20 defines the value of the inputs evaluated before uj (i.e., ui

with i = j + 1, . . . ,m); the constraint of Eq. 5.21 is the constraint on the manipu-
lated input uj ; the constraint of Eq. 5.22 sets the initial state for the optimization
problem; the constraint of Eq. 5.23 guarantees that the contribution of input uj to
the decrease rate of the time derivative of the Lyapunov function V (x) at the initial
evaluation time (i.e., at tk), if uj = u∗

s,j (tk|tk) is applied, is bigger than or equal to
the value obtained when uj = hj (x(tk)) is applied. This constraint allows proving
the closed-loop stability properties of this DMPC.

The manipulated inputs of the system of Eq. 5.1 under the DMPC are defined as
follows:

ui(t) = u∗
s,i(t |tk), i = 1, . . . ,m,∀t ∈ [tk, tk+1). (5.24)

In what follows, we refer to this DMPC architecture as the sequential DMPC.

Remark 5.2 Note that, in order to simplify the description of the implementation
strategy presented above in this subsection, we do not distinguish LMPC m and
LMPC 1 from the others. We note that LMPC m does not receive any information
from the other controllers and LMPC 1 does not have to send information to any
other controller.

Remark 5.3 Note also that the assumption that the full state x of the system is
sampled synchronously is a widely used assumption in the control system design.
The control system designs presented in this section can be extended to the case
where only part of the state x is measurable by designing an observer to estimate the
whole state vector from output measurements and by designing the control system
based on the measured and estimated states. In this case, the stability properties of
the resulting output feedback control systems are affected by the convergence of the
observer and need to be carefully studied.

5.4.1.2 Stability Properties

The sequential DMPC of Eqs. 5.17–5.24 computes the inputs ui , i = 1, . . . ,m, ap-
plied to the system of Eq. 5.1 in a way such that in the closed-loop system, the
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value of the Lyapunov function at time instant tk (i.e., V (x(tk))) is a decreasing se-
quence of values with a lower bound. Following Lyapunov arguments, this property
guarantees practical stability of the closed-loop system. This is achieved due to the
constraint of Eq. 5.23. This property is presented in Theorem 5.1 below.

Theorem 5.1 Consider the system of Eq. 5.1 in closed-loop under the sequential
DMPC of Eqs. 5.17–5.24 based on a nonlinear control law h(x) that satisfies the
condition of Eqs. 5.5–5.8 with class K functions αi(·), i = 1,2,3,4. Let εw > 0,
Δ > 0 and ρ > ρs > 0 satisfy the following constraint:

−α3
(
α−1

2 (ρs)
) + L∗ ≤ −εw/Δ, (5.25)

where L∗ = (L′
x + ∑m

i=1 L′
ui

umax
i )M + L′

wθ with M , L′
x , L′

ui
(i = 1, . . . ,m) and

L′
w defined in Eqs. 5.9–5.16. For any N ≥ 1, if x(t0) ∈ Ωρ and if ρmin ≤ ρ where:

ρmin = max
{
V

(
x(t + Δ)

) : V (
x(t)

) ≤ ρs

}
, (5.26)

then the state x(t) of the closed-loop system is ultimately bounded in Ωρmin .

Proof The proof consists of two parts. We first prove that the optimization problem
of Eqs. 5.17–5.23 is feasible for all j = 1, . . . ,m and x ∈ Ωρ . Then we prove that,
under the DMPC of Eqs. 5.17–5.24, the state of the system of Eq. 5.1 is ultimately
bounded in Ωρmin . Note that the constraint of Eq. 5.23 of each distributed controller
is independent from the decisions that the rest of the distributed controllers make.

Part 1: In order to prove the feasibility of the optimization problem of
Eqs. 5.17–5.23, we only have to prove that there exists a uj (tk) which satisfies
the input constraint of Eq. 5.21 and the constraint of Eq. 5.23. This is because the
constraint of Eq. 5.23 is only enforced on the first prediction step of uj (t) and does
not depend on the values of the inputs chosen by the rest of the controllers (see
Remark 5.9). In the prediction time t ∈ [tk+1, tk+N), the input constraint of Eq. 5.24
can be easily satisfied with uj (τ ) being any value in the convex set Uj .

We assume that x(tk) ∈ Ωρ (x(t) is bounded in Ωρ which will be proved in
Part 2). It is easy to verify that the value of uj such that uj (tk) = hj (x(tk)) satisfies
the input constraint of Eq. 5.21 (assumed property of h(x) for x ∈ Ωρ ) and the
constraint of Eq. 5.23, thus, the feasibility of the optimization problem of LMPC j

of Eqs. 5.17–5.23, j = 1, . . . ,m, is guaranteed.
Part 2: From the condition of Eq. 5.6 and the constraint of Eq. 5.23, if x(tk) ∈ Ωρ ,

it follows that:

∂V (x(tk))

∂x

(

f
(
x(tk)

) +
m∑

i=1

gi

(
x(tk)

)
u∗

s,i(tk|tk)
)

≤ ∂V (x(tk))

∂x

(

f
(
x(tk)

) +
m∑

i=1

gi

(
x(tk)

)
hi

(
x(tk)

)
)

≤ −α3
(∥∥x(tk)

∥
∥)

. (5.27)
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The time derivative of the Lyapunov function V along the actual state trajectory x(t)

of the system of Eq. 5.1 in t ∈ [tk, tk+1) is given by:

V̇
(
x(t)

) = ∂V (x(t))

∂x

(

f
(
x(t)

) +
m∑

i=1

gi

(
x(t)

)
u∗

s,i (tk |tk) + k
(
x(t)

)
w(t)

)

. (5.28)

Adding and subtracting ∂V (x(tk))
∂x

(f (x(tk)) + ∑m
i=1 gi(x(tk))u

∗
s,i(tk|tk)) and taking

into account Eq. 5.27, we obtain the following inequality:

V̇
(
x(t)

) ≤ −α3
(∥∥x(tk)

∥∥)

+ ∂V (x(t))

∂x

(

f
(
x(t)

) +
m∑

i=1

gi

(
x(t)

)
u∗

s,i (tk|tk) + k
(
x(t)

)
w(t)

)

− ∂V (x(tk))

∂x

(

f
(
x(tk)

) +
m∑

i=1

gi

(
x(tk)

)
u∗

s,i(tk|tk)
)

. (5.29)

Taking into account Eqs. 5.5 and 5.9, the following inequality if obtained for all
x(tk) ∈ Ωρ/Ωρs from Eq. 5.29:

V̇
(
x(t)

) ≤ −α3
(
α−1

2 (ρs)
)+

(

L′
x +

m∑

i=1

L′
ui

u∗
s,i (tk|tk)

)
∥∥x(t)−x(tk)

∥∥+L′
w

∥∥w(t)
∥∥.

(5.30)
Taking into account Eq. 5.9 and the continuity of x(t), the following bound can be
written for all t ∈ [tk, tk+1):

∥∥x(t) − x(tk)
∥∥ ≤ MΔ. (5.31)

Using this expression, the bounds on the disturbance w(t) and the inputs ui ,
i = 1, . . . ,m, and Eq. 5.30, we obtain the following bound on the time derivative
of the Lyapunov function for t ∈ [tk, tk+1), for all initial states x(tk) ∈ Ωρ/Ωρs :

V̇
(
x(t)

) ≤ −α3
(
α−1

2 (ρs)
) +

(

L′
x +

m∑

i=1

L′
ui

umax
i

)

M + L′
wθ. (5.32)

If the condition of Eq. 5.25 is satisfied, then there exists εw > 0 such that the fol-
lowing inequality holds for x(tk) ∈ Ωρ/Ωρs :

V̇
(
x(t)

) ≤ −εw/Δ (5.33)

for t ∈ [tk, tk+1). Integrating the inequality of Eq. 5.33 on t ∈ [tk, tk+1), we obtain
that:

V
(
x(tk+1)

) ≤ V
(
x(tk)

) − εw, (5.34)

V
(
x(t)

) ≤ V
(
x(tk)

)
, ∀t ∈ [tk, tk+1) (5.35)
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Fig. 5.2 Iterative DMPC
architecture

for all x(tk) ∈ Ωρ/Ωρs . Using Eqs. 5.34 and 5.35 recursively it can be proved that,
if x(t0) ∈ Ωρ/Ωρs , the state converges to Ωρs in a finite number of sampling times
without leaving the stability region. Once the state converges to Ωρs

⊆ Ωρmin , it
remains inside Ωρmin for all times. This statement holds because of the definition
of ρmin. This proves that the closed-loop system under the sequential DMPC of
Eqs. 5.17–5.24 is ultimately bounded in Ωρmin . �

Remark 5.4 The sequential DMPC approach can be applied to more general non-
linear systems as described in Eq. 5.4 (see Remark 5.1) by a proper redesign of the
Lyapunov-based constraints of Eqs. 5.23 (j = 1, . . . ,m) following the method used
in the design of the constraints of Eq. 4.15 and 4.21, see Sect. 4.4.1.

5.4.2 Iterative DMPC

An alternative architecture to the sequential DMPC architecture presented in the
previous subsection is to evaluate all the distributed LMPCs in parallel and iterate to
improve closed-loop performance. A schematic of this control architecture is shown
in Fig. 5.2.

5.4.2.1 Iterative DMPC Formulation

In this architecture, each distributed LMPC must be able to communicate with all
the other controllers (i.e., the distributed controllers are all interconnected). More
specifically, when a new state measurement is available at a sampling time, each
distributed LMPC controller evaluates and obtains its future input trajectory; and
then each LMPC controller broadcasts its latest obtained future input trajectory to
all the other controllers. Based on the newly received input trajectories, each LMPC
controller evaluates its future input trajectory again and this process is repeated until
a certain termination condition is satisfied. Specifically, the implementation strategy
is as follows:
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1. At tk , all the LMPCs receive the state measurement x(tk) from the sensors and
then evaluate their future input trajectories in an iterative fashion with initial
input guesses generated by h(·).

2. At iteration c (c ≥ 1):
2.1. Each LMPC evaluates its own future input trajectory based on x(tk) and the

latest received input trajectories of all the other LMPCs (when c = 1, initial
input guesses generated by h(·) are used).

2.2. The controllers exchange their future input trajectories. Based on all the
input trajectories, each controller calculates and stores the value of the cost
function.

3. If a termination condition is satisfied, each controller sends its entire future input
trajectory corresponding to the smallest value of the cost function to its actuators;
if the termination condition is not satisfied, go to Step 2 (c ← c + 1).

4. When a new measurement is received, go to Step 1 (k ← k + 1).

Note that at the initial iteration, all the LMPCs use h(x) to estimate the input
trajectories of all the other controllers. Note also that the number of iterations c can
be variable and it does not affect the closed-loop stability of the DMPC architecture
presented in this subsection; a point that will be made clear below. For the iterations
in this DMPC architecture, there are different choices of the termination condition.
For example, the number of iterations c may be restricted to be smaller than a max-
imum iteration number cmax (i.e., c ≤ cmax) and/or the iterations may be terminated
when the difference of the performance or the solution between two consecutive
iterations is smaller than a threshold value and/or the iterations maybe terminated
when a maximum computational time is reached.

In order to proceed, we define x̂(t |tk) for t ∈ [tk, tk+N) as the nominal sampled
trajectory of the system of Eq. 5.1 associated with the feedback control law h(x) and
sampling time Δ starting from x(tk). This nominal sampled trajectory is obtained
by integrating recursively the following differential equation:

˙̂x(t |tk) = f
(
x̂(t |tk)

) +
m∑

i=1

gi

(
x̂(t |tk)

)
hi

(
x̂(tk+l |tk)

)
,

∀τ ∈ [tk+l , tk+l+1), l = 0, . . . ,N − 1. (5.36)

Based on x̂(t |tk), we can define the following variable:

un,j (t |tk) = hj

(
x̂(tk+l |tk)

)
,

j = 1, . . . ,m,∀τ ∈ [tk+l , tk+l+1), l = 0, . . . ,N − 1, (5.37)

which will be used as the initial guess of the trajectory of uj .
The design of the LMPC j , j = 1, . . . ,m, at iteration c is based on the following

optimization problem:

min
uj ∈S(Δ)

∫ tk+N

tk

[
∥∥x̃(τ )

∥∥
Qc

+
m∑

i=1

∥∥ui(τ )
∥∥

Rci

]

dτ, (5.38)
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s.t. ˙̃x(t) = f
(
x̃(t)

) +
m∑

i=1

gi

(
x̃(t)

)
ui, (5.39)

ui(t) = u
∗,c−1
p,i (t |tk), ∀i �= j, (5.40)

uj (t) ∈ Uj , (5.41)

x̃(tk) = x(tk), (5.42)

∂V (x(tk))

∂x
gj

(
x(tk)

)
uj (tk) ≤ ∂V (x(tk))

∂x
gj

(
x(tk)

)
hj

(
x(tk)

)
, (5.43)

where x̃ is the predicted trajectory of the nominal system with uk , the input tra-
jectory, computed by the LMPCs of Eqs. 5.38–5.43 and all the other inputs are
the optimal input trajectories at iteration c − 1 of the rest of distributed controllers
(i.e., u

∗,c−1
p,i (t |tk) for i �= j ). The optimal solution to the optimization problem of

Eqs. 5.38–5.43 is denoted as u
∗,c
p,j (t |tk) which is defined for t ∈ [tk, tk+N). Accord-

ingly, we define the final optimal input trajectory of LMPC j (that is, the optimal
trajectories computed at the last iteration) as u∗

p,j (t |tk) which is also defined for
t ∈ [tk, tk+N).

Note that in the first iteration of each distributed LMPC, the input trajectory
defined in Eq. 5.37 is used as the initial input trajectory guess; that is, u

∗,0
p,j (t |tk) =

un,j (t |tk) with i = 1, . . . ,m.
The manipulated inputs of the system of Eq. 5.1 under this DMPC design with

LMPCs of Eqs. 5.38–5.43 are defined as follows:

ui(t) = u∗
p,i(t |tk), i = 1, . . . ,m,∀t ∈ [tk, tk+1). (5.44)

In what follows, we refer to this DMPC architecture as the iterative DMPC. The
stability properties of the iterative DMPC are stated in the following Theorem 5.2.

Remark 5.5 In general, there is no guaranteed convergence of the optimal cost or
solution of an iterated DMPC to the optimal cost or solution of a centralized MPC
for general nonlinear constrained systems because of the nonconvexity of the MPC
optimization problems and the fact that the DMPC does not solve the centralized
LMPC in a distributed fashion due to the way the Lyapunov-based constraint of
the centralized LMPC is broken down into constraints imposed on the individual
LMPCs; please also see Remark 5.12 below. However, with the implementation
strategy of the iterative DMPC presented in this section, it is guaranteed that the
optimal cost of the distributed optimization of Eqs. 5.38–5.43 is upper bounded by
the cost of the Lyapunov-based controller h(·) at each sampling time.

Remark 5.6 Note that in the case of linear systems, the constraint of Eq. 5.54 is
linear with respect to uj and it can be verified that the optimization problem of
Eqs. 5.50–5.54 is convex. The input given by LMPC j of Eqs. 5.50–5.54 at each it-
eration may be defined as a convex combination of the current optimal input solution
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and the previous one, for example,

uc
p,j (t |tk) =

m,i �=j∑

i=1

wiu
c−1
p,j (t |tk) + wju

∗,c
p,j (t |tk), (5.45)

where
∑m

i=1 wi = 1 with 0 < wi < 1, u
∗,c
p,j is the current solution given by the op-

timization problem of Eqs. 5.50–5.54 and uc−1
p,j is the convex combination of the

solutions obtained at iteration c − 1. By doing this, it is possible to proved that the
optimal cost of the distributed LMPC of Eqs. 5.50–5.54 converges to the one of the
corresponding centralized control system [5, 98]. This property is summarized in
Corollary 5.1 in Sect. 5.4.2.2. We also note that in the case of linear systems, the
convexity of the distributed optimization problem also holds for all the other DMPC
designs presented in this chapter and Chap. 6. In addition to Corollary 5.1, the reader
may also refer to [5, 8, 93, 98] for more discussions on the conditions under which
convergence of the solution of a distributed linear or convex MPC design to the so-
lution of a centralized MPC or a Pareto optimal solution is ensured in the context of
linear systems.

5.4.2.2 Stability Properties

Theorem 5.2 Consider the system of Eq. 5.1 in closed-loop under the sequential
DMPC of Eqs. 5.38–5.44 based on a nonlinear control law h(x) that satisfies the
condition of Eqs. 5.5–5.8 with class K functions αi(·), i = 1,2,3,4. Let εw > 0,
Δ > 0 and ρ > ρs > 0 satisfy the constraint of Eq. 5.25. For any N ≥ 1 and c ≥ 1,
if x(t0) ∈ Ωρ and if ρmin ≤ ρ where ρmin is defined as in Eq. 5.26, then the state
x(t) of the closed-loop system is ultimately bounded in Ωρmin .

Proof Similar to the proof of Theorem 5.1, the proof of Theorem 5.2 also consists of
two parts. We first prove that the optimization problem of Eqs. 5.38–5.43 is feasible
for each iteration c and x ∈ Ωρ . Then we prove that, under the DMPC architecture
of Eqs. 5.38–5.44, the state of the system of Eq. 5.1 is ultimately bounded in Ωρmin .

Part 1: In order to prove the feasibility of the optimization problem of
Eqs. 5.38–5.43, we only have to prove that there exists a uj (tk) which satisfies
the input constraint of Eq. 5.41 and the constraint of Eq. 5.43. This is because the
constraint of Eq. 5.43 is only enforced on the first prediction step of uj (tk) and in
the prediction time t ∈ [tk+1, tk+N), the input constraint of Eq. 5.44 can be easily
satisfied with uj (t) being any value in the convex set Uj .

We assume that x(tk) ∈ Ωρ (x(t) is bounded in Ωρ which will be proved in
Part 2). It is easy to verify that the value of uj such that uj (tk) = hj (x(tk)) sat-
isfies the input constraint of Eq. 5.41 (assumed property of h(x) for x ∈ Ωρ) and
the constraint of Eq. 5.43 for all possible c, thus, the feasibility of LMPC j of
Eqs. 5.38–5.43, j = 1, . . . ,m, is guaranteed.
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Part 2: By adding the constraint of Eq. 5.43 of each LMPC together, we have:

m∑

j=1

∂V (x(tk))

∂x
gj

(
x(tk)

)
u

∗,c
p,j (tk|tk) ≤

m∑

j=1

∂V (x(tk))

∂x
gj

(
x(tk)

)
hj

(
x(tk)

)
. (5.46)

It follows from the above inequality and condition of Eq. 5.5 that:

∂V (x(tk))

∂x

(

f
(
x(tk)

) +
m∑

j=1

gj

(
x(tk)

)
u

∗,c
p,j (tk|tk)

)

≤ ∂V (x(tk))

∂x

(

f
(
x(tk)

) +
m∑

j=1

gj

(
x(tk)

)
hj

(
x(tk)

)
)

≤ −α3
(∥∥x(tk)

∥
∥)

. (5.47)

Following the same approach as in the proof of Theorem 5.1, we know that if
the condition of Eq. 5.25 is satisfied, then the state of the closed-loop system can
be proved to be maintained in Ωρmin under the iterative DMPC architecture of
Eqs. 5.38–5.44. �

Corollary 5.1 Consider a class of linear time-invariant systems:

ẋ(t) = Ax(t) +
m∑

i=1

Biui(t), (5.48)

where A and Bi are constant matrices with appropriate dimensions. If we define
the inputs of the distributed LMPC of Eqs. 5.38–5.43 at iteration c as in Eq. 5.45,
then at a sampling time tk , as the iteration number c → ∞, the optimal cost of the
distributed optimization problem of Eqs. 5.38–5.43 converges to the optimal cost of
the corresponding centralized control system.

Proof Taking into account that x(tk) and h(x(tk)) are known at tk , the constraint of
Eq. 5.43 can be written in the following linear form:

C
(
x(tk)

)
uj (tk) ≤ D

(
x(tk)

)
, (5.49)

where C(x(tk)) and D(x(tk)) are constants at each tk and only depend on x(tk).
This implies that the constraint of Eq. 5.43 is linear with respect to uj . For a lin-
ear system, it is also easy to verify that the constraints of Eqs. 5.38–5.42 are convex.
Therefore, the optimization problem of Eqs. 5.38–5.43 is convex. If the inputs of the
distributed controllers at each iteration c are defined as in Eq. 5.45, then the conver-
gence of the cost given by the distributed optimization problem of Eqs. 5.38–5.43
to the corresponding centralized control system can be proved following similar
strategies used in [5, 98] for time tk . �
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Remark 5.7 Note that the DMPC designs have the same stability region Ωρ as the
one of the nonlinear control law h(x). When the stability of the nonlinear control
law h(x) is global (i.e., the stability region is the entire state space), then the stability
of the DMPC designs is also global. Note also that for any initial condition in Ωρ ,
the DMPC designs are proved to be feasible.

Remark 5.8 The choice of the horizon of the DMPC designs does not affect the
stability of the closed-loop system. For any horizon length N ≥ 1, the closed-loop
stability is guaranteed by the constraints of Eqs. 5.23 and 5.43. However, the choice
of the horizon does affect the performance of the DMPC designs.

Remark 5.9 Note that because the manipulated inputs enter the dynamics of the sys-
tem of Eq. 5.1 in an affine manner, the constraints designed in the LMPC optimiza-
tion problems of Eqs. 5.17–5.23 and 5.38–5.43 to guarantee the closed-loop stability
can be decoupled for different distributed controllers as in Eqs. 5.23 and 5.43.

Remark 5.10 In the sequential DMPC architecture presented in Sect. 5.4.1, the dis-
tributed controllers are evaluated in sequence, which implies that the minimal time
to obtain a set of solutions to all the LMPCs is the sum of the evaluation times of
all the LMPCs; whereas in the iterative DMPC architecture presented in Sect. 5.4.2,
the distributed controllers are evaluated in parallel, which implies that the minimal
time to obtain a set of solutions to all the LMPCs in each iteration is the largest
evaluation time among all the LMPCs.

Remark 5.11 An alternative to the DMPC designs is to design a centralized MPC to
compute all the inputs. A centralized LMPC design for the system of Eq. 5.1 based
on the nonlinear control law h(x) is as follows (please also see Sect. 2.6):

min
u1...um∈S(Δ)

∫ tk+N

tk

[
∥∥x̃(τ )

∥∥
Qc

+
m∑

i=1

∥∥ui(τ )
∥∥

Rci

]

dτ, (5.50)

s.t. ˙̃x(t) = f
(
x̃(t)

) +
m∑

i=1

gi

(
x̃(t)

)
ui, (5.51)

ui(t) ∈ Ui, i = 1, . . . ,m, (5.52)

x̃(tk) = x(tk), (5.53)
m∑

i=1

∂V (x(tk))

∂x
gi

(
x(tk)

)
ui(tk)

≤
m∑

i=1

∂V (x(tk))

∂x
gi

(
x(tk)

)
hi

(
x(tk)

)
, (5.54)

where x̃ is the predicted trajectory of the nominal system with ui , i = 1, . . . ,m,
the input trajectory computed by this centralized LMPC. The optimal solution to
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this optimization problem is denoted by u∗
ci(t |tk), i = 1, . . . ,m, which is defined for

t ∈ [tk, tk+N). The manipulated inputs of the closed-loop system of Eq. 5.1 under
this centralized LMPC are defined as follows:

ui(t) = u∗
ci(t |tk), i = 1, . . . ,m,∀t ∈ [tk, tk+1). (5.55)

In what follows, we refer to this controller as the centralized LMPC.

Remark 5.12 Note that the sequential (or iterative) DMPC is not a direct decomposi-
tion of the centralized LMPC because the set of constraints of Eq. 5.23 (or Eq. 5.43)
for j = 1, . . . ,m in the DMPC formulation of Eqs. 5.17–5.23 (or Eq. 5.38–5.43)
imposes a different feasibility region from the one of the centralized LMPC of
Eqs. 5.50–5.54 which has a single constraint (Eq. 5.54).

Remark 5.13 Note also that for general nonlinear systems, there is no guarantee
that the closed-loop performance of one (centralized or distributed) MPC architec-
ture discussed in this section should be superior than the others since the solutions
provided by these MPC architectures are proved to be feasible and stabilizing but
the superiority of the performance of one MPC architecture over another is not es-
tablished. This is because the MPC designs are implemented in a receding horizon
scheme and the prediction horizon is finite; and also because of the different MPC
designs are not equivalent as we discussed in Remark 5.12 and the nonconvexity
property as we discussed in Remark 5.5. In applications of these MPC architec-
tures, especially for chemical process control in which nonconvex problems is a very
common occurrence, simulations should be conducted before making decisions as
to which architecture should be used.

5.4.3 Application to an Alkylation of Benzene Process

The process of alkylation of benzene with ethylene to produce ethylbenzene is
widely used in the petrochemical industry. Dehydration of the product produces
styrene, which is the precursor to polystyrene and many copolymers. Over the last
two decades, several methods and simulation results of alkylation of benzene with
catalysts have been reported in the literature. The process model developed in this
section is based on these references [23, 44, 83, 117]. More specifically, the pro-
cess considered in this work consists of four CSTRs and a flash tank separator, as
shown in Fig. 5.3. The CSTR-1, CSTR-2 and CSTR-3 are in series and involve the
alkylation of benzene with ethylene. Pure benzene is fed from stream F1 and pure
ethylene is fed from streams F2, F4 and F6. Two catalytic reactions take place in
CSTR-1, CSTR-2 and CSTR-3. Benzene (A) reacts with ethylene (B) and produces
the desired product ethylbenzene (C) (reaction 1); ethylbenzene can further react
with ethylene to form 1,3-diethylbenzene (D) (reaction 2) which is the byproduct.
The effluent of CSTR-3, including the products and leftover reactants, is fed to a
flash tank separator, in which most of benzene is separated overhead by vaporization
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Fig. 5.3 Process flow
diagram of alkylation of
benzene

and condensation techniques and recycled back to the plant and the bottom product
stream is removed. A portion of the recycle stream Fr2 is fed back to CSTR-1 and
another portion of the recycle stream Fr1 is fed to CSTR-4 together with an addi-
tional feed stream F10 which contains 1,3-diethylbenzene from further distillation
process that we do not consider in this example. In CSTR-4, reaction 2 and catalyzed
transalkylation reaction in which 1,3-diethylbenzene reacts with benzene to produce
ethylbenzene (reaction 3) takes place. All chemicals left from CSTR-4 eventually
pass into the separator. All the materials in the reactions are in liquid phase due to
high pressure and their molar volumes are assumed to be constants. The dynamic
equations describing the behavior of the process, obtained through material and en-
ergy balances under standard modeling assumptions, are given below:

dCA1

dt
= F1CA0 + Fr2CAr − F3CA1

V1
− r1(T1,CA1,CB1), (5.56)

dCB1

dt
= F2CB0 + Fr2CBr − F3CB1

V1
− r1(T1,CA1,CB1)

− r2(T1,CB1,CC1), (5.57)

dCC1

dt
= Fr2CCr − F3CC1

V1
+ r1(T1,CA1,CB1) − r2(T1,CB1,CC1), (5.58)

dCD1

dt
= Fr2CDr − F3CD1

V1
+ r2(T1,CB1,CC1), (5.59)

dT1

dt
= Q1 + F1CA0HA(TA0) + F2CB0HB(TB0)

∑A,B,C,D
i Ci1CpiV1

+
∑A,B,C,D

i (Fr2CirHi(T4) − F3Ci1Hi(T1))
∑A,B,C,D

i Ci1CpiV1

+ −ΔHr1r1(T1,CA1,CB1) − ΔHr2r2(T1,CB1,CC1)
∑A,B,C,D

i Ci1Cpi

, (5.60)
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dCA2

dt
= F3CA1 − F5CA2

V2
− r1(T2,CA2,CB2), (5.61)

dCB2

dt
= F3CB1 + F4CB0 − F5CB2

V2
− r1(T2,CA2,CB2)

− r2(T2,CB2,CC2), (5.62)

dCC2

dt
= F3CC1 − F5CC2

V2
+ r1(T2,CA2,CB2) − r2(T2,CB2,CC2), (5.63)

dCD2

dt
= F3CD1 − F5CR2

V2
+ r2(T2,CB2,CC2), (5.64)

dT2

dt
= Q2 + F4CB0HB(TB0)

∑A,B,C,D
i Ci2CpiV2

+
∑A,B,C,D

i (F3Ci1Hi(T1) − F5Ci2Hi(T2))
∑A,B,C,D

i Ci2CpiV2

+ −ΔHr1r1(T2,CA2,CB2) − ΔHr2r2(T2,CA2,CB2)
∑A,B,C,D

i Ci2Cpi
, (5.65)

dCA3

dt
= F5CA2 − F7CA3

V3
− r1(T3,CA3,CB3), (5.66)

dCB3

dt
= F5CB2 + F6CB0 − F7CB3

V3
− r1(T3,CA3,CB3)

− r2(T3,CB3,CC3), (5.67)

dCC3

dt
= F5CC2 − F7CC3

V3
+ r1(T3,CA3,CB3) − r2(T3,CB3,CC3), (5.68)

dCD3

dt
= F5CD2 − F7CD3

V3
+ r2(T3,CB3,CC3), (5.69)

dT3

dt
= Q3 + F6CB0HB(TB0)

∑A,B,C,D
i Ci3CpiV3

+
∑A,B,C,D

i (F5Ci2Hi(T2) − F7Ci3Hi(T3))
∑A,B,C,D

i Ci3CpiV3

+ −ΔHr1r1(T3,CA3,CB3) − ΔHr2r2(T3,CB3,CC3)
∑A,B,C,D

i Ci3Cpi
, (5.70)

dCA4

dt
= F7CA3 + F9CA5 − FrCAr − F8CA4

V4
, (5.71)

dCB4

dt
= F7CB3 + F9CB5 − FrCBr − F8CB4

V4
, (5.72)
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dCC4

dt
= F7CC3 + F9CC5 − FrCCr − F8CC4

V4
, (5.73)

dCD4

dt
= F7CD3 + F9CD5 − FrCDr − F8CD4

V4
, (5.74)

dT4

dt
= Q4 + ∑A,B,C,D

i (F7Ci3Hi(T3) + F9Ci5Hi(T5))
∑A,B,C,D

i Ci4CpiV4

+
∑A,B,C,D

i (−MiHi(T4) − F8Ci4Hi(T4) − MiHvapi)
∑A,B,C,D

i Ci4CpiV4
, (5.75)

dCA5

dt
= Fr1CAr − F9CA5

V5
− r3(T5,CA5,CD5), (5.76)

dCB5

dt
= Fr1CBr − F9CB5

V5
− r2(T5,CB5,CC5), (5.77)

dCC5

dt
= Fr1CCr − F9CC5

V5
− r2(T5,CB5,CC5)

+ 2r3(T5,CA5,CD5), (5.78)

dCD5

dt
= Fr1CDr + F10CD0 − F9CD5

V5

+ r2(T5,CB5,CC5) − r3(T5,CA5,CD5), (5.79)

dT5

dt
= Q5 + F10CD0HD(TD0)

∑A,B,C,D
i Ci5CpiV5

+
∑A,B,C,D

i (Fr1CirHi(T4) − F9Ci5Hi(T5))
∑A,B,C,D

i Ci5CpiV5

+ −ΔHr2r2(T5,CB5,CC5) − ΔHr3r3(T5,CA5,CD5)
∑A,B,C,D

i Ci5Cpi
, (5.80)

where r1, r2 and r3 are the reaction rates of reactions 1, 2 and 3, respectively and
Hi , i = A,B,C,D, are the enthalpies of the reactants. The reaction rates are related
to the concentrations of the reactants and the temperature in each reactor as follows:

r1(T ,CA,CB) = 0.0840e
−9502
RT C0.32

A C1.5
B , (5.81)

r2(T ,CB,CC) = 0.0850e
−20643

RT C2.5
B C0.5

C

(1 + kEB2CD)
, (5.82)

r3(T ,CA,CD) = 66.1e
−61280

RT C1.0218
A CD

(1 + kEB3CA)
, (5.83)
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where:

kEB2 = 0.152e
−3933
RT , (5.84)

kEB3 = 0.490e
−50870

RT . (5.85)

The heat capacities of the species are assumed to be constants and the molar
enthalpies have a linear dependence on temperature as follows:

Hi(T ) = Hiref + Cpi(T − Tref ), i = A,B,C,D, (5.86)

where Cpi, i = A,B,C,D are heat capacities.
The model of the flash tank separator is developed under the assumption that the

relative volatility of each species has a linear correlation with the temperature of the
vessel within the operating temperature range of the flash tank, as shown below:

αA = 0.0449T4 + 10, (5.87)

αB = 0.0260T4 + 10, (5.88)

αC = 0.0065T4 + 0.5, (5.89)

αD = 0.0058T4 + 0.25, (5.90)

where αi , i = A,B,C,D, represent the relative volatilities. It has also been assumed
that there is a negligible amount of reaction taking place in the separator and a
fraction of the total condensed overhead flow is recycled back to the reactors. The
following algebraic equations model the composition of the overhead stream relative
to the composition of the liquid holdup in the flash tank:

Mi = k
αi(F7Ci3 + F9Ci5)

∑A,B,C,D
j (F7Cj3 + F9Cj5)

∑A,B,C,D
j αj (F7Cj3 + F9Cj5)

, i = A,B,C,D,

(5.91)
where Mi , i = A,B,C,D are the molar flow rates of the overhead reactants and k

is the fraction of condensed overhead flow recycled to the reactors. Based on Mi ,
i = A,B,C,D, we can calculate the concentration of the reactants in the recycle
streams as follows:

Cir = Mi
∑A,B,C,D

j Mi/Cj0
, i = A,B,C,D, (5.92)

where Cj0, j = A,B,C,D, are the mole densities of pure reactants. The condensa-
tion of vapor takes place overhead, and a portion of the condensed liquid is purged
back to separator to keep the flow rate of the recycle stream at a fixed value. The
temperature of the condensed liquid is assumed to be the same as the temperature
of the vessel.

The definitions for the variables used in the above model can be found in Ta-
ble 5.1, with the parameter values given in Table 5.2.
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Table 5.1 Process variables of the alkylation of benzene process of Eqs. 5.56–5.80

CA1, CB1, CC1, CD1 Concentrations of A,B,C,D in CSTR-1

CA2, CB2, CC2 ,CD2 Concentrations of A,B,C,D in CSTR-2

CA3, CB3, CC3, CD3 Concentrations of A,B,C,D in CSTR-3

CA4, CB4, CC4, CD4 Concentrations of A,B,C,D in separator

CA5, CB5, CC5, CD5 Concentrations of A,B,C,D in CSTR-4

CAr , CBr , CCr , CDr Concentrations of A,B,C,D in Fr , Fr1, Fr2

T1, T2, T3, T4, T5 Temperatures in each vessel

Tref Reference temperature

F3, F5, F7, F8, F9 Effluent flow rates from each vessel

F1, F2, F4, F6, F10 Feed flow rates to each vessel

Fr , Fr1, Fr2 Recycle flow rates

HvapA, HvapB, HvapC, HvapD Enthalpies of vaporization of A,B,C,D

HAref , HBref , HCref , HDref Enthalpies of A,B,C,D at Tref

ΔHr1, ΔHr2, ΔHr3 Heat of reactions 1, 2 and 3

V1, V2, V3, V4, V5 Volume of each vessel

Q1, Q2, Q3, Q4, Q5 External heat/coolant inputs to each vessel

CpA, CpB , CpC , CpD Heat capacity of A,B,C,D at liquid phase

αA, αB , αC , αD Relative volatilities of A,B,C,D

CA0, CB0, CC0, CD0 Molar densities of pure A,B,C,D

TA0, TB0, TD0 Feed temperatures of pure A, B, D

k Fraction of overhead flow recycled to the reactors

Each of the tanks has an external heat/coolant input. The manipulated inputs to
the process are the heat injected to or removed from the five vessels, Q1, Q2, Q3,
Q4 and Q5, and the feed stream flow rates to CSTR-2 and CSTR-3, F4 and F6.

The states of the process consist of the concentrations of A, B , C, D in each
of the five vessels and the temperatures of the vessels. The state of the process
is assumed to be available continuously to the controllers. We consider a stable
steady state (operating point), xs , of the process which is defined by the steady-state
inputs Q1s , Q2s , Q3s , Q4s , Q5s , F4s and F6s which are shown in Table 5.3 with
corresponding steady-state values shown in Table 5.4.

The control objective is to regulate the system from an initial state to the steady
state. The initial state values are shown in Table 5.6.

The first distributed controller (LMPC 1) will be designed to decide the values
of Q1, Q2 and Q3, the second distributed controller (LMPC 2) will be designed to
decide the values of Q4 and Q5, and the third distributed controller (LMPC 3) will
be designed to decide the values of F4 and F6. Taking this into account, the process
model of Eqs. 5.56–5.80 belongs to the following class of nonlinear systems:

ẋ(t) = f (x) + g1(x)u1(t) + g2(x)u2(t) + g3(x)u3(t), (5.93)
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Table 5.2 Parameter values of the alkylation of benzene process of Eqs. 5.56–5.80

F1 7.1 × 10−3 [m3/s] Fr 0.012 [m3/s]

F2 8.697 × 10−4 [m3/s] Fr1 0.006 [m3/s]

Fr2 0.006 [m3/s] V1 1 [m3]

F10 2.31 × 10−3 [m3/s] V2 1 [m3]

HvapA 3.073 × 104 [J/mole] V3 1 [m3]

HvapB 1.35 × 104 [J/mole] V4 3 [m3]

HvapC 4.226 × 104 [J/mole] V5 1 [m3]

HvapD 4.55 × 104 [J/mole] CpA 184.6 [J/mole K]

HAref 7.44 × 104 [J/mole] HBref 5.91 × 104 [J/mole]

HCref 2.02 × 104 [J/mole] HBref −2.89 × 104 [J/mole]

ΔHr1 −1.536 × 105 [J/mole] CpB 59.1 [J/mole K]

ΔHr2 −1.118 × 105 [J/mole] CpC 247 [J/mole K]

ΔHr3 4.141 × 105 [J/mole] CpD 301.3 [J/mole K]

CA0 1.126 × 104 [mole/m3] Tref 450 [K]

CB0 2.028 × 104 [mole/m3] TA0 473 [K]

CC0 8174 [mole/m3] TB0 473 [K]

CD0 6485 [mole/m3] TD0 473 [K]

k 0.8

Table 5.3 Steady-state input
values for xs of the alkylation
of benzene process of
Eqs. 5.56–5.80

Q1s −4.4 × 106 [J/s] Q2s −4.6 × 106 [J/s]

Q3s −4.7 × 106 [J/s] Q4s 9.2 × 106 [J/s]

Q5s 5.9 × 106 [J/s] F4s 8.697 × 10−4 [m3/s]

F4s 8.697 × 10−4 [m3/s]

where the state x is the deviation of the state of the process from the steady
state, uT

1 = [u11 u12 u13] = [Q1 − Q1s Q2 − Q2s Q3 − Q3s], uT
2 = [u21 u22] =

[Q4 − Q4s Q5 − Q5s] and uT
3 = [u31 u32] = [F4 − F4s F6 − F6s] are the manipu-

lated inputs which are subject to the constraints shown in Table 5.5.
In the control of the process, u1 and u2 are necessary to keep the stability of the

closed-loop system, while u3 can be used as an extra manipulated input to improve
the closed-loop performance. To illustrate the theoretical results, we first design the
nonlinear control law h(x) = [h1(x) h2(x) h3(x)]T . Specifically, h1(x) and h2(x)

are designed as follows [97]:

hi(x) =
⎧
⎨

⎩
−Lf V +

√
(Lf V )2+(Lgi

V )4

(Lgi
V )2 Lgi

V if Lgi
V �= 0,

0 if Lgi
V = 0,

(5.94)

where i = 1,2, Lf V = ∂V
∂x

f (x) and Lgi
V = ∂V

∂x
gi(x) denote the Lie derivatives of

the scalar function V with respect to f and gi (i = 1,2), respectively. The controller
h3(x) is chosen to be h3(x) = [0 0]T because the input set u3 is not needed to
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Table 5.4 Steady-state values for xs of the alkylation of benzene process of Eqs. 5.56–5.80

CA1 9.101 × 103 [mole/m3] CA2 7.548 × 103 [mole/m3]

CB1 22.15 [mole/m3] CB2 23.46 [mole/m3]

CC1 1.120 × 103 [mole/m3] CC2 1.908 × 103 [mole/m3]

CD1 2.120 × 102 [mole/m3] CD2 3.731 × 102 [mole/m3]

T1 4.772 × 102 [K] T2 4.77 × 102 [K]

CA3 6.163 × 103 [mole/m3] CA4 1.723 × 103 [mole/m3]

CB3 24.84 [mole/m3] CB4 13.67 [mole/m3]

CC3 2.616 × 103 [mole/m3] CC4 5.473 × 103 [mole/m3]

CD3 5.058 × 102 [mole/m3] CD4 7.044 × 102 [mole/m3]

T3 4.735 × 102 [K] T4 4.706 × 102 [K]

CA5 5.747 × 103 [mole/m3] CD5 1.537 × 102 [mole/m3]

CB5 3.995 [mole/m3] T5 4.783 × 102 [K]

CC5 3.830 × 103 [mole/m3]

Table 5.5 Manipulated input
constraints of the alkylation
of benzene process of
Eqs. 5.56–5.80

|u11| ≤ 7.5 × 105 [J/s] |u12| ≤ 5 × 105 [J/s]

|u13| ≤ 5 × 105 [J/s] |u21| ≤ 6 × 105 [J/s]

|u22| ≤ 5 × 105 [J/s] |u31| ≤ 4.93 × 10−5 [m3/s]

|u32| ≤ 4.93 × 10−5 [m3/s]

Table 5.6 Initial state values of the alkylation of benzene process of Eqs. 5.56–5.80

CA1 9.112 × 103 [mole/m3] CA2 7.557 × 103 [mole/m3]

CB1 25.09 [mole/m3] CB2 27.16 [mole/m3]

CC1 1.113 × 103 [mole/m3] CC2 1.905 × 103 [mole/m3]

CD1 2.186 × 102 [mole/m3] CD2 3.695 × 102 [mole/m3]

T1 4.430 × 102 [K] T2 4.371 × 102 [K]

CA3 6.170 × 103 [mole/m3] CA4 1.800 × 103 [mole/m3]

CB3 29.45 [mole/m3] CB4 16.35 [mole/m3]

CC3 2.617 × 103 [mole/m3] CC4 5.321 × 103 [mole/m3]

CD3 5.001 × 102 [mole/m3] CD4 7.790 × 102 [mole/m3]

T3 4.284 × 102 [K] T4 4.331 × 102 [K]

CA5 5.889 × 103 [mole/m3] CD5 2.790 × 102 [mole/m3]

CB5 5.733 [mole/m3] T5 4.576 × 102 [K]

CC5 3.566 × 103 [mole/m3]

stabilize the process. We consider a Lyapunov function V (x) = xT Px with P being
the following weight matrix:

P = diag
([1 1 1 1 10 1 1 1 1 10 1 1 1 1 10 1 1 1 1 10 1 1 1 1 10]). (5.95)
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Fig. 5.4 Trajectories of the Lyapunov function V (x) of the alkylation of benzene process of
Eqs. 5.56–5.80 under the controller h(x) of Eq. 5.94 implemented in a sample-and-hold fash-
ion (solid line), the centralized LMPC of Eqs. 5.50–5.54 (dashed line), the sequential DMPC of
Eqs. 5.17–5.23 (dash-dotted line) and the iterative DMPC of Eqs. 5.38–5.43 with c = 1 (dotted
line)

The weights in P are chosen by a trial-and-error procedure. The basic idea behind
this procedure is that more weight should be put on the temperatures of the five
vessels because temperatures have more significant effect on the overall control per-
formance, and the controller h(x) should be able to stabilize the closed-loop system
asymptotically with continuous feedback and actuation.

Based on h(x), we design the centralized LMPC of Eqs. 5.50–5.54, the sequential
DMPC of Eqs. 5.17–5.23 and the iterative DMPC of Eqs. 5.38–5.43. The sampling
time used is Δ = 30 s and the weight matrices:

Qc = diag
([

1 1 1 1 103 1 1 1 1 103 10 10 10 10 104 1 1 1 1 103 1 1 1 1 103]), (5.96)

and Rc1 = diag([10−8 10−8 10−8]), Rc2 = diag([10−8 10−8]) and Rc3 =
diag([1 1]).

First, we carried out a set of simulations which demonstrate that the nonlinear
control law h(x) and the different schemes of LMPCs can all stabilize the closed-
loop system asymptotically. Figure 5.4 shows the trajectories of the Lyapunov func-
tion V (x) under the different control schemes. Note that because of the constraints
of Eqs. 5.54, 5.23 and 5.43, the trajectories of the Lyapunov function of the closed-
loop system under the centralized LMPC, the sequential DMPC and the iterative
DMPC are guaranteed to be bounded by the corresponding Lyapunov function tra-
jectory under the controller h(x) implemented in a sample-and-hold fashion with
the sampling time Δ until V (x) converges to a small region around the origin (i.e.,
Ωρmin ). This point is also illustrated in Fig. 5.4.

Next, we compare the mean evaluation times of the centralized LMPC optimiza-
tion problem and the sequential and iterative DMPC optimization problems. Each
LMPC optimization problem was evaluated 100 times at different conditions. Dif-
ferent prediction horizons were considered in this set of simulations. The simu-
lations were carried out using JAVA™ programming language in a PENTIUM�
3.20 GHz computer. The optimization problems were solved using the open source
interior point optimizer Ipopt [109]. The results are shown in Table 5.7. From Ta-
ble 5.7, we can see that in all cases, the time needed to solve the centralized LMPC
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Table 5.7 Mean evaluation
time of different LMPC
optimization problems for
100 evaluations

Centralized LMPC N = 1 (s) N = 3 (s) N = 6 (s)

2.192 8.694 27.890

Sequential LMPC 1 0.472 2.358 6.515

LMPC 2 0.497 1.700 4.493

LMPC 3 0.365 1.453 3.991

Iterative LMPC 1 0.484 2.371 6.280

LMPC 2 0.426 1.716 4.413

LMPC 3 0.185 0.854 2.355

Table 5.8 Total performance costs along the closed-loop trajectories I of the alkylation of benzene
process of Eqs. 5.56–5.80

Centralized

J (×107)

1.8858

Sequential 1.8891

cmax 1 3 5 7 9 11 13 15

Iterative 1.8955 1.8883 1.8867 1.8863 1.8862 1.8859 1.8858 1.8858

Fig. 5.5 Total performance costs along the closed-loop trajectories of the alkylation of benzene
process of Eqs. 5.56–5.80 under centralized LMPC of Eqs. 5.50–5.54 (dashed line), sequential
DMPC of Eqs. 5.17–5.23 (dash-dotted line) and iterative DMPC of Eqs. 5.38–5.43 (solid line)

is much larger than the time needed to solve the sequential or iterative DMPCs. This
is because the centralized LMPC has to solve a much larger (in terms of decision
variables) optimization problem than the DMPCs. We can also see that the evalua-
tion time of the centralized LMPC is even larger than the sum of evaluation times
of LMPC 1, LMPC 2 and LMPC 3 in the sequential DMPC, and the times needed
to solve the DMPCs in both sequential and iterative distributed schemes are of the
same order of magnitude.

In the following set of simulations, we compare the centralized LMPC and the
two DMPC schemes from a performance index point of view. In this set of simula-
tions, the prediction horizon is N = 1. To carry out this comparison, the same initial
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Table 5.9 Total performance
costs along the closed-loop
trajectories II of the
alkylation of benzene process
of Eqs. 5.56–5.80

Centralized

J (×107)

5.052

Sequential 7.039

cmax 1 3 5 6

Iterative 7.2286 7.2241 7.2240 7.2240

Table 5.10 Total
performance costs along the
closed-loop trajectories III
of the alkylation of benzene
process of Eqs. 5.56–5.80

Centralized

J (×107)

3.8564

Sequential 3.6755

cmax 1 3 4

Iterative 3.6663 3.6639 3.6639

condition and parameters were used for the different control schemes and the total
cost under each control scheme was computed as follows:

J =
∫ tM

t0

[∥∥x(τ)
∥∥

Qc
+ ∥∥u1(τ )

∥∥
Rc1

+ ∥∥u2(τ )
∥∥

Rc2
+ ∥∥u3(τ )

∥∥
Rc3

]
dτ, (5.97)

where t0 = 0 is the initial time of the simulations and tM = 1000 s is the end of the
simulations. Table 5.8 shows the total cost along the closed-loop system trajectories
(trajectories I) under the different control schemes. For the iterative DMPC design,
different maximum number of iterations, cmax, are used. From Table 5.8, we can see
that in this set of simulations, the centralized LMPC gives the lowest performance
cost, the sequential DMPC gives lower cost than the iterative DMPC when there is
no iteration (cmax = 1). However, as the iteration number c increases, the perfor-
mance cost given by the iterative DMPC decreases and converges to the cost of the
one corresponding to the centralized LMPC. This point is also shown in Fig. 5.5.

Note that the above set of simulations only represents one case of many pos-
sible cases. As we discussed in Remarks 5.5 and 5.13, there is no guaranteed
convergence of the performance of distributed MPC to the performance of a cen-
tralized MPC and there is also no guaranteed superiority of the performance of
one DMPC scheme over the others. In the following, we show two sets of sim-
ulations to illustrate these points. In both sets of simulations, we chose different
matrices Rc1 and Rc2, and all the other parameters (Qc , Rc3, Δ, N ) remained the
same as the previous set of simulations. In the first set of simulations, we picked
Rc1 = diag([5 × 10−5 5 × 10−5 5 × 10−5]), Rc2 = diag([5 × 10−5 5 × 10−5]). The
total performance cost along the closed-loop system trajectories (trajectories II) un-
der this simulation setting are shown in Table 5.9. From Table 5.9, we can see that
the centralized LMPC provides a much lower cost than both the sequential and
iterative distributed LMPCs. We can also see that as the number of iterations in-
creases, the iterative distributed LMPC converges to a value which is different from
the one obtained by the centralized LMPC. In the second set of simulations, we
picked Rc1 = diag([1×10−4 1×10−4 1×10−4]), Rc2 = diag([1×10−4 1×10−4])
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Fig. 5.6 Sequential DMPC
for nonlinear systems subject
to asynchronous
measurements

Fig. 5.7 Iterative DMPC for
nonlinear systems subject to
asynchronous measurements

and the total performance cost along the closed-loop system trajectories (trajecto-
ries III) are shown in Table 5.10 from which we can see that the centralized LMPC
provides a higher cost than both distributed LMPCs.

5.5 Sequential and Iterative DMPC Designs with Asynchronous
Measurements

In this section, we design sequential and iterative DMPC schemes, taking into ac-
count asynchronous measurements explicitly in their designs, that provide deter-
ministic closed-loop stability properties. Similarly, in each DMPC architecture, we
will design m LMPCs to compute ui , i = 1, . . . ,m, and refer to the LMPC com-
puting the input trajectories of ui as LMPC i. Schematic diagrams of the sequential
and iterative DMPC designs for systems subject to asynchronous measurements are
shown in Figs. 5.6 and 5.7.

5.5.1 Modeling of Asynchronous Measurements

We assume that the state of the system of Eq. 5.1, x(t), is available asynchronously
at time instants ta where {ta≥0} is a random increasing sequence of times. We also
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assume that there exists an upper bound Tm on the interval between two successive
measurements, that is, the sequence satisfies the condition of Eq. 2.22.

5.5.2 Sequential DMPC with Asynchronous Measurements

5.5.2.1 Sequential DMPC Formulation

For the design of the sequential DMPC for systems subject to asynchronous mea-
surements (see Fig. 5.6), we take advantage of the MPC scheme when feedback is
lost to update the control inputs based on a state prediction obtained by the model
and to have the control actuators store and implement the last computed optimal
input trajectories. Specifically, the implementation strategy is as follows:

1. When a new measurement is available at ta , all the LMPCs receive the state
measurement x(ta) from the sensors.

2. For j = m to 1
2.1. LMPC j receives the entire future input trajectories of ui , i = m, . . . , j + 1,

from LMPC j + 1 and evaluates the future input trajectory of uj based on
x(ta) and the received future input trajectories.

2.2. LMPC j sends the entire input trajectories of uj to its actuators and the
entire input trajectories of ui , i = m, . . . , j , to LMPC j − 1.

3. When a new measurement is received (a ← a + 1), go to Step 1.

In order to make a decision, LMPC j , j = m, . . . ,2 must assume trajectories for
ui , i = j − 1, . . . ,1, along the prediction horizon since the communication is one-
directional. To this end, the controller h(x) is used. In order to inherit the stability
properties of the controller h(x), each control input ui , i = 1, . . . ,m must satisfy a
set of constraints that guarantee a given minimum contribution to the decrease rate
of the Lyapunov function V (x) in the case of asynchronous measurements. To this
end, the input trajectories, un,i(t |ta) (i = 1, . . . ,m), defined in Eq. 5.37 are used.

Specifically, the design of LMPC j , j = 1, . . . ,m, is based on the following
optimization problem:

min
uj ∈S(Δ)

∫ ta+NΔ

ta

[
∥∥x̃j (τ )

∥∥
Qc

+
m∑

i=1

∥∥ui(τ )
∥∥

Rci

]

dτ, (5.98)

s.t. ˙̃xj (t) = f
(
x̃j (t)

) +
m∑

i=1

gi

(
x̃j (t)

)
ui(t), (5.99)

˙̂xj (t) = f
(
x̂j (t)

) +
j∑

i=1

gi

(
x̂j (t)

)
un,i(t |ta) +

m∑

i=j+1

gi

(
x̂j (t)

)
ui(t), (5.100)

ui(t) = un,i(t |ta), i = 1, . . . , j − 1, (5.101)
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ui(t) = u
a,∗
s,i (t |ta), i = j + 1, . . . ,m, (5.102)

us,j (t) ∈ Uj , (5.103)

x̃j (ta) = x̂j (ta) = x(ta), (5.104)

V
(
x̃j (t)

) ≤ V
(
x̂j (t)

)
, ∀t ∈ [ta, ta + NRΔ), (5.105)

where NR is the smallest integer satisfying Tm ≤ NRΔ. The vector x̃j is the pre-
dicted trajectory of the nominal system with uj computed by the above optimization
problem (i.e., LMPC j ) and the other control inputs defined by Eqs. 5.101–5.102.
The vector x̂j is the predicted trajectory of the nominal system with uj = un,j (t |ta)
and the other control inputs defined by Eqs. 5.101–5.102. In order to fully take
advantage of the prediction, we choose N ≥ NR . The optimal solution to this opti-
mization problem is denoted u

a,∗
s,j (t |ta) and is defined for t ∈ [ta, ta + NΔ).

The constraint of Eq. 5.99 is the nominal model of the system, which is used to
generate the trajectory x̃j ; the constraint of Eq. 5.100 defines a reference trajectory
of the nominal system (i.e., x̂j ) when the input uj is defined by un,j (t |ta); the con-
straint of Eq. 5.101 defines the value of the inputs evaluated after uj (i.e., ui with
i = 1, . . . , j −1); the constraint of Eq. 5.102 defines the value of the inputs evaluated
before uj (i.e., ui with i = j +1, . . . ,m); the constraint of Eq. 5.103 is the constraint
on the manipulated input uj ; the constraint of Eq. 5.104 sets the initial state for the
optimization problem; and the constraint of Eq. 5.105 guarantees that the contribu-
tion of input uj to the decrease rate of the time derivative of the Lyapunov function
from ta to ta + NRΔ, if uj = u

a,∗
s,j (t |ta), t ∈ [ta, ta + NRΔ) is applied, is bigger or

equal to the value obtained when uj = un,j (t |ta), t ∈ [ta, ta +NRΔ) is applied. This
constraint guarantees that the sequential DMPC design of Eqs. 5.98–5.105 main-
tains the stability of the nonlinear control law h(x) implemented in a sample-and-
hold fashion and with open-loop state estimation in the presence of asynchronous
measurements.

The manipulated inputs of the closed-loop system under the above sequential
DMPC are defined as follows:

ui(t) = u
a,∗
s,i (t |tk), i = 1, . . . ,m,∀t ∈ [ta, ta+1). (5.106)

5.5.2.2 Stability Properties

The sequential DMPC design of Eqs. 5.98–5.105 maintains the closed-loop stabil-
ity properties of the nonlinear control law h(x) implemented in a sample-and-hold
fashion and with open-loop state estimation in the presence of asynchronous mea-
surements. This property is presented in Theorem 5.3 below. To state this theorem,
we need the following corollaries.

From Proposition 2.1, we can obtain the following corollary for systems with
m sets of control inputs, entering the dynamics of the system in an affine fashion,
which ensures that if the nominal system of Eq. 5.1 under the control ui = hi(x)
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(i = 1, . . . ,m) implemented in a sample-and-hold fashion with state feedback every
sampling time starts in Ωρ , then it is ultimately bounded in Ωρmin .

Corollary 5.2 Consider the nominal sampled trajectory x̂ of the system of Eq. 5.1
in closed-loop with a nonlinear control law ui = hi(x) (i = 1, . . . ,m), satisfying the
conditions of Eqs. 5.5–5.8 and applied in a sample-and-hold fashion, obtained by
solving recursively the following equation:

˙̂x(t) = f
(
x̂(t)

) +
m∑

i=1

gi

(
x̂(t)

)
hi

(
x̂(ta)

)
, t ∈ [tk, tk+1), (5.107)

where tk = t0 + kΔ, k = 0,1, . . . . Let Δ,εs > 0 and ρ > ρs > 0 satisfy:

−α3
(
α−1

2 (ρs)
) + L′M ≤ −εs/Δ (5.108)

with L′ = L′
x + ∑m

i=1 L′
ui

umax
i . Then, if ρmin < ρ where ρmin is defined as in

Eq. 5.26 and x̂(0) ∈ Ωρ , the following inequality holds:

V
(
x̂(t)

) ≤ V
(
x̂(tk)

)
, ∀t ∈ [tk, tk+1), (5.109)

V
(
x̂(tk)

) ≤ max
{
V

(
x̂(t0)

) − kεs, ρmin
}
. (5.110)

Proof Following the definition of x̂(t) in Eq. 5.107, the time derivative of the Lya-
punov function V (x) along the trajectory x̂(t) of the system 5.1 in t ∈ [tk, tk+1) is
given by:

V̇
(
x̂(t)

) = ∂V (x̂(t))

∂x

(

f
(
x̂(t)

) +
m∑

i=1

gi

(
x̂(t)

)
hi

(
x̂(tk)

)
)

. (5.111)

Adding and subtracting ∂V (x̂(tk))
∂x

(f (x(tk)) + ∑m
i=1 gi(x(tk))hi(x̂(tk))) and taking

into account Eq. 5.6, we obtain:

V̇
(
x̂(t)

) ≤ −α3
(∥∥x̂(tk)

∥∥) + ∂V (x̂(t))

∂x

(

f
(
x̂(t)

) +
m∑

i=1

gi

(
x̂(t)

)
hi

(
x̂(tk)

)
)

− ∂V (x̂(tk))

∂x

(

f
(
x(tk)

) +
m∑

i=1

gi

(
x(tk)

)
hi

(
x̂(tk)

)
)

. (5.112)

From the Lipschitz property of Eqs. 5.14–5.15, the fact that the control inputs are
bounded in convex sets and the above inequality of Eq. 5.112, we have that:

V̇
(
x̂(t)

) ≤ −α3
(
α−1

2 (ρs)
) +

(

L′
x +

m∑

i=1

L′
ui

umax
i

)
∥∥x̂(t) − x̂(tk)

∥∥ (5.113)
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for all x̂(tk) ∈ Ωρ/Ωρs . Taking into account the Lipschitz property of Eq. 5.9 and
the continuity of x̂(t), the following bound can be written for all t ∈ [tk, tk+1):

∥∥x̂(t) − x̂(tk)
∥∥ ≤ MΔ. (5.114)

Using the expression of Eq. 5.114, we obtain the following bound on the time deriva-
tive of the Lyapunov function for t ∈ [tk, tk+1), for all initial states x̂(tk) ∈ Ωρ/Ωρs

:

V̇
(
x̂(t)

) ≤ −α3
(
α−1

2 (ρs)
) + L′MΔ, (5.115)

where L′ = L′
x + ∑m

i=1 L′
ui

umax
i . If the condition of Eq. 5.108 is satisfied, then

V̇ (x̂(t)) ≤ −εs/Δ. Integrating this bound on t ∈ [tk, tk+1) we obtain that the in-
equality of Eq. 5.109 holds. Using Eq. 5.109 recursively, it is proved that, if
x(t0) ∈ Ωρ/Ωρs , the state converges to Ωρs in a finite number of sampling times
without leaving the stability region. Once the state converges to Ωρs

⊆ Ωρmin , it re-
mains inside Ωρmin for all times. This statement holds because of the definition of
ρmin as in Eq. 5.26. �

From Proposition 2.2, we can have the following Corollary 5.3 to get an upper
bound on the deviation of the state trajectory obtained using the nominal model of
Eq. 5.1, from the real-state trajectory when the same control actions are applied for
systems with m sets of control inputs entering the dynamics of the system in an
affine fashion.

Corollary 5.3 Consider the systems:

ẋa(t) = f
(
xa(t)

) +
m∑

i=1

gi

(
xa(t)

)
ui(t) + k

(
xa(t)

)
w(t), (5.116)

ẋb(t) = f
(
xb(t)

) +
m∑

i=1

gi

(
xb(t)

)
ui(t), (5.117)

where initial states xa(t0), xb(t0) ∈ Ωρ with xb(t0) = xa(t0) + nx and ‖nx‖ ≤ θx .
There exists a function fW(·, ·) such that:

∥∥xa(t) − xb(t)
∥∥ ≤ fW(θx, t − t0), (5.118)

for all xa(t), xb(t) ∈ Ωρ and all w(t) ∈ W with:

fW (θx, τ ) =
(

Lwθ

L′′ + θx

)(
eL′′τ − 1

)
, (5.119)

where L′′ = Lx + ∑m
i=1 Lui

umax
i .
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Proof Define the error vector as e(t) = xa(t) − xb(t). The time derivative of the
error is given by:

ė(t) = f
(
xa(t)

) − f
(
xb

(
x(t)

)) +
m∑

i=1

(
gi

(
xa(t)

) − gi

(
xb(t)

))
ui(t) + k

(
xa(t)

)
w(t).

(5.120)
From the Lipschitz property of Eq. 5.11–5.13 and the fact that the control inputs are
bounded in convex sets, the following inequality holds:

∥
∥ė(t)

∥
∥ ≤ Lx

∥
∥xa(t) − xb(t)

∥
∥ +

m∑

i=1

Lui

∥
∥xa(t) − xb(t)

∥
∥Lw

∥
∥w(t)

∥
∥

≤
(

Lx +
m∑

i=1

Lui

)

umax
i

∥
∥e(t)

∥
∥ + Lwθ (5.121)

for all xa(t), xb(t) ∈ Ωρ and w(t) ∈ W . Integrating ‖ė(t)‖ with initial condition
‖e(t0)‖ = ‖nx‖ and that ‖nx‖ ≤ θx , the following bound on the norm of the error
vector is obtained:

∥
∥e(t)

∥
∥ ≤

(
Lwθ

L′′ + θx

)(
eL′′(t−t0) − 1

)
, (5.122)

where L′′ = Lx +∑m
i=1 Lui

umax
i . This implies that the inequality of Eq. 5.118 holds

for:

fW (τ) =
(

Lwθ

L′′ + θx

)(
eL′′τ − 1

)
, (5.123)

which proves this corollary. �

In Theorem 5.3 below, we provide sufficient conditions under which the DMPC
of Eqs. 5.98–5.106 guarantees that the state of the closed-loop system is ultimately
bounded in a region that contains the origin.

Theorem 5.3 Consider the system of Eq. 5.1 in closed-loop with x available at
asynchronous sampling time instants {ta≥0}, satisfying the condition of Eq. 2.22,
under the DMPC design of Eqs. 5.98–5.106 based on a control law h(x) that sat-
isfies the conditions of Eqs. 4.3–5.8. Let Δ,εs > 0, ρ > ρmin > 0, ρ > ρs > 0 and
N ≥ NR ≥ 1 satisfy the conditions of Eqs. 5.108 and the following inequality:

−NRεs + fV

(
fW (0,NRΔ)

)
< 0 (5.124)

with fV defined in Eq. 2.49 and fW defined in Eq. 5.119, and NR being the smallest
integer satisfying NRΔ ≥ Tm. If the initial state of the closed-loop system x(t0) ∈
Ωρ , then x(t) is ultimately bounded in Ωρa ⊆ Ωρ where:

ρa = ρmin + fV

(
fW (0,NRΔ)

)
(5.125)
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with ρmin defined in Eq. 5.26.

Proof In order to prove that the state of the closed-loop system is ultimately
bounded in a region that contains the origin, we prove that V (x(ta)) is a decreasing
sequence of values with a lower bound. Specifically, we focus on the time interval
t ∈ [ta, ta+1) and prove that V (x(ta+1)) is reduced compared with V (x(ta)) or is
maintained in an invariant set containing the origin.

To simplify the notation, we assume that all the signals used in this proof re-
fer to the different optimization problems solved at ta with the initial condition
x(ta), and the trajectory x̃j (t), j = 1, . . . ,m, is corresponding to the optimal input
u

a,∗
s,j+1(t |ta). We also note that the predicted trajectories x̃j+1(t) and x̂j (t) gener-

ated in the optimization problems of LMPC j + 1 and LMPC j are identical. This
property will be used in the proof.

Part 1: In this part, we prove that the stability results stated in Theorem 5.3 hold
in the case that ta+1 − ta = Tm for all a and Tm = NRΔ. This case corresponds to
the worst situation in the sense that the controllers need to operate in open-loop for
the maximum possible amount of time. By Corollary 5.2 and the fact that ta+1 =
ta + NRΔ, the following inequality is obtained:

V
(
x̂(ta+1)

) ≤ max
{
V

(
x̂(ta)

) − NRεs, ρmin
}
. (5.126)

From the constraints of Eq. 5.105 in the LMPCs, the following inequality can be
written:

V
(
x̃j (t)

) ≤ V
(
x̂j (t)

)
, j = 1, . . . ,m,∀t ∈ [ta, ta + NRΔ). (5.127)

By the fact that x̃j+1(t) and x̂j (t) are identical, the following equations can be
written:

V
(
x̂j (t)

) = V
(
x̃j+1(t)

)
, j = 1, . . . ,m − 1,∀t ∈ [ta, ta + NRΔ). (5.128)

From the inequalities of Eqs. 5.127 and 5.128, the following inequalities are ob-
tained:

V
(
x̃1(t)

) ≤ · · · ≤ V
(
x̃j (t)

) ≤ · · · ≤ V
(
x̃m(t)

) ≤ V
(
x̂m(t)

)
, ∀t ∈ [ta, ta + NRΔ).

(5.129)
Note that the trajectory x̃1 is the nominal trajectory (i.e., x̃) of the closed-loop sys-
tem under the control of the sequential DMPC of Eqs. 5.98–5.106. Note also that the
trajectory x̂m is the nominal sampled trajectory (i.e., x̂) of the closed-loop system
defined in Eq. 5.107. Therefore, the following trajectory can be written:

V
(
x̃(t)

) ≤ V
(
x̂(t)

)
, ∀t ∈ [ta, ta + NRΔ). (5.130)

From the inequalities of Eq. 5.126 and 5.130 and the fact that x̂(ta) = x(ta), the
following inequality is obtained:

V
(
x̃(ta+1)

) ≤ max
{
V

(
x(ta)

) − NRεs, ρmin
}
. (5.131)
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When x(t) ∈ Ωρ for all times (this point will be proved below), we can apply Propo-
sition 2.3 to obtain the following inequality:

V
(
x(ta+1)

) ≤ V
(
x̃(ta+1)

) + fV

(∥∥x̃(ta+1) − x(ta+1)
∥∥)

. (5.132)

Applying Corollary 5.3, we obtain the following upper bound on the deviation of
x̃(t) from x(t):

∥∥x(ta+1) − x̃(ta+1)
∥∥ ≤ fW (0,NRΔ). (5.133)

From the inequalities of Eqs. 5.132 and 5.133, the following upper bound on
V (x(ta+1)) can be written:

V
(
x(ta+1)

) ≤ V
(
x̃(ta+1)

) + fV

(
fW (0,NRΔ)

)
. (5.134)

Using the inequality of Eq. 5.131, we can rewrite the inequality of Eq. 5.134 as
follows:

V
(
x(ta+1)

) ≤ max
{
V

(
x(ta)

) − NRεs, ρmin
} + fV

(
fW(0,NRΔ)

)
. (5.135)

If the condition of Eq. 5.124 is satisfied, from the inequality of Eq. 5.135, we know
that there exists εw > 0 such that the following inequality holds:

V
(
x(ta+1)

) ≤ max
{
V

(
x(ta)

) − εw,ρa

}
(5.136)

which implies that if x(ta) ∈ Ωρ/Ωρa , then V (x(ta+1)) < V (x(ta)), and if
x(ta) ∈ Ωρa , then V (x(ta+1)) ≤ ρa .

Because the upper bound on the difference between the Lyapunov function of the
actual trajectory x and the nominal trajectory x̃ is a strictly increasing function of
time (see Corollary 5.3 and Proposition 2.3 for the expressions of fV (·) and fW(·)),
the inequality of Eq. 5.136 also implies that

V
(
x(t)

) ≤ max
{
V

(
x(ta)

)
, ρa

}
, ∀t ∈ [ta, ta+1). (5.137)

Using the inequality of Eq. 5.137 recursively, it can be proved that if x(t0) ∈ Ωρ ,
then the closed-loop trajectories of the system of Eq. 5.1 under the sequential DMPC
of Eqs. 5.98–5.106 stay in Ωρ for all times (i.e., x(t) ∈ Ωρ, ∀t ). Moreover, using the
inequality of Eq. 5.137 recursively, it can be proved that if x(t0) ∈ Ωρ , the closed-
loop trajectories of the system of Eq. 5.1 under the sequential DMPC of Eqs. 5.98–
5.106 satisfy

lim sup
t→∞

V
(
x(t)

) ≤ ρa. (5.138)

This proves that x(t) ∈ Ωρ for all times and x(t) is ultimately bounded in Ωρa
for

the case when ta+1 − ta = Tm for all a and Tm = NRΔ.
Part 2: In this part, we extend the results proved in Part 1 to the general case, that

is, ta+1 − ta ≤ Tm for all a and Tm ≤ NRΔ which implies that ta+1 − ta ≤ NRΔ. Be-
cause fV (·) and fW(·) are strictly increasing functions of time and fV (·) is convex,
following similar steps as in Part 1, it can be shown that the inequality of Eq. 5.135
still holds. This proves that the stability results stated in Theorem 5.3 hold. �
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Remark 5.14 Note that the stability results stated in Theorem 5.3 also hold when
the sequential DMPC of Eqs. 5.98–5.105 is applied to a nonlinear system described
by Eq. 5.4.

5.5.3 Iterative DMPC with Asynchronous Measurements

5.5.3.1 Iterative DMPC Formulation

In contrast to the one-directional communication of the sequential DMPC architec-
ture, the iterative DMPC architecture utilizes a bidirectional communication strategy
in which all the distributed controllers are able to share their future input trajectories
information after each iteration. In the presence of asynchronous measurements, the
iterative DMPC of Eqs. 5.38–5.44 presented in Sect. 5.4.2 cannot guarantee closed-
loop stability. In this subsection, we modify the implementation strategy and the
formulation of the distributed controllers to take into account asynchronous mea-
surements (see Fig. 5.7). The implementation strategy is as follows:

1. When a new measurement is available at ta , all the LMPCs receive the state mea-
surement x(ta) from the sensors and then evaluate their future input trajectories
in an iterative fashion with initial input guesses generated by h(·).

2. At iteration c (c ≥ 1):
2.1. Each LMPC evaluates its own future input trajectory based on x(ta) and the

latest received input trajectories of all the other LMPCs (when c = 1, initial
input guesses generated by h(·) are used).

2.2. The controllers exchange their future input trajectories. Based on all the
input trajectories, each controller calculates and stores the value of the cost
function.

3. If a termination condition is satisfied, each LMPC sends its entire future input
trajectory corresponding to the smallest value of the cost function to its actuators;
if the termination condition is not satisfied, go to Step 2 (c ← c + 1).

4. When a new measurement is received (a ← a + 1), go to Step 1.

The design of the LMPC j , j = 1, . . . ,m, at iteration c is based on the following
optimization problem:

min
uj ∈S(Δ)

∫ ta+NΔ

ta

[
∥∥x̃j (τ )

∥∥
Qc

+
m∑

i=1

∥∥ui(τ )
∥∥

Rci

]

dτ, (5.139)

s.t. ˙̃xj (t) = f
(
x̃j (t)

) +
m∑

i=1

gi

(
x̃j (t)

)
ui, (5.140)

ui(t) = u
a,c−1
p,i (t |ta), ∀i �= j, (5.141)

∥∥uj (t) − u
a,c−1
p,j (t |ta)

∥∥ ≤ Δuj , ∀t ∈ [ta, ta + NRΔ), (5.142)
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uj (t) ∈ Uj , (5.143)

x̃j (ta) = x(ta), (5.144)

∂V (x̃j (t))

∂x̃j

(
1

m
f

(
x̃j (t)

) + gj

(
x̃j (t)

)
uj (t)

)

≤ ∂V (x̂(t |ta))
∂x̂

(
1

m
f

(
x̂(t |ta)

) + gj

(
x̂(t |ta)

)
un,j (t |ta)

)
,

∀t ∈ [ta, ta + NRΔ), (5.145)

where x̃j is the predicted trajectory of the nominal system of Eq. 5.1 with uj com-
puted by this LMPC and all the other inputs are the optimal input trajectories at
iteration c − 1 of the rest of the distributed controllers, x̂(t |ta) and un,i(t |ta) (i =
1, . . . ,m) are defined in Eqs. 5.36 and 5.37, respectively. The optimal solution to this
optimization problem is denoted u

a,c
p,j (t |ta) which is defined for t ∈ [ta, ta + NΔ).

Accordingly, we define the final optimal input trajectory of LMPC j of Eqs. 5.139–
5.145 as u

a,∗
p,j (t |ta) which is also defined for t ∈ [ta, ta + NΔ).

Similar to the iterative DMPC with continuous measurements, for the first iter-
ation of each distributed LMPC, the input trajectories defined in Eq. 5.37 based on
the trajectory generated in Eq. 5.36 are used as the initial input trajectory guesses;
that is, u

a,0
p,i = un,i with i = 1, . . . ,m.

The constraint of Eq. 5.142 puts a limit on the input change in two consecutive
iterations. This constraint allows LMPC j of Eqs. 5.139–5.145 to take advantage
of the input trajectories received in the last iteration (i.e., u

a,c−1
p,i , ∀i �= j ) to predict

the future evolution of the system state without introducing big errors. For LMPC j

(i.e., uj ), the magnitude of input change in two consecutive iterations is restricted to
be smaller than a positive constant Δuj . Note that this constraint does not restrict the
input to be in a small region and as the iteration number increases, the final optimal
input could be quite different from the initial guess. The constraint of Eq. 5.145 is
used to guarantee the closed-loop stability.

The manipulated inputs of the closed-loop system under the above iterative
DMPC are defined as follows:

ui(t) = u
a,∗
p,i (t |ta), i = 1, . . . ,m, ∀t ∈ [ta, ta+1). (5.146)

5.5.3.2 Stability Properties

The iterative DMPC design of Eqs. 5.139–5.146 takes into account asynchronous
measurements explicitly in the controller design and the implementation strategy. It
maintains the closed-loop stability properties of the nonlinear control law h(x) im-
plemented in a sample-and-hold fashion and with open-loop state estimation. This
property is presented in Theorem 5.4. To state this theorem, we need another propo-
sition.
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Proposition 5.1 Consider the systems:

ẋa(t) = f
(
xa(t)

) +
m∑

i=1

gi

(
xa(t)

)
uc

i (t), (5.147)

ẋb(t) = f
(
xb(t)

) +
m, i �=j∑

i=1

gi

(
xb(t)

)
uc−1

i (t) + gj

(
xb(t)

)
uc

j (t) (5.148)

with initial states xa(t0), xb(t0) ∈ Ωρ such that xb(t0) = xa(t0)+nx and ‖nx‖ ≤ θx .
There exists a function fX,j (·, ·) such that:

∥∥xa(t) − xb(t)
∥∥ ≤ fX,j (θx, t − t0) (5.149)

for all xa(t), xb(t) ∈ Ωρ , and uc
i (t), uc−1

i ∈ Ui and ‖uc
i (t) − uc−1

i (t)‖ ≤ Δui (i =
1, . . . ,m) with:

fX,j (τ ) =
(

C2,j

C1,j

+ θx

)(
eC1,j τ − 1

)
, (5.150)

where C1,j = Lx + ∑m, i �=j

i=1 Lgi
umax

i and C2,j = ∑m, i �=j

i=1 Mgi
Δui .

Proof Define the error vector as e(t) = xa(t) − xb(t). The time derivative of the
error is:

ė(t) = f
(
xa(t)

) − f
(
xb(t)

) +
m, i �=j∑

i=1

gi

(
xa(t)

)
uc

i (t) −
m, i �=j∑

i=1

gi

(
xb(t)

)
uc−1

i (t).

(5.151)
Adding and subtracting

∑m, i �=j

i=1 gi(xb(t))u
c
i (t) to/from the right-hand side of the

above equation, we obtain the following equation:

ė(t) = f
(
xa(t)

) − f
(
xb(t)

) +
m, i �=j∑

i=1

(
gi

(
xa(t)

)
uc

i (t) − gi

(
xb(t)

)
uc

i (t)
)

+
m, i �=j∑

i=1

(
gi

(
xb(t)

)
uc

i (t) − gi

(
xb(t)

)
uc−1

i (t)
)
. (5.152)

From the Lipschitz properties of Eqs. 5.10–5.12, the fact that the manipulated inputs
are bounded in convex sets and the difference between uc

i (t) and uc−1
i (t) is bounded,

the following inequality can be obtained:

∥∥ė(t)
∥∥ ≤ Lx

∥∥xa(t) − xb(t)
∥∥ +

m, i �=j∑

i=1

Lui

∥∥xa(t) − xb(t)
∥∥∥∥uc

i (t)
∥∥

+
m, i �=j∑

i=1

∥∥gi

(
xb(t)

)∥∥∥∥uc
i (t) − uc−1

i (t)
∥∥
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≤ Lx

∥∥e(t)
∥∥ +

m, i �=j∑

i=1

Lui
umax

i

∥∥e(t)
∥∥ +

m, i �=j∑

i=1

Mgi
Δui. (5.153)

Denoting C1,j = Lx + ∑m, i �=j

i=1 Lgi
umax

i and C2,j = ∑m, i �=j

i=1 Mgi
Δui , we can ob-

tain:
∥∥ė(t)

∥∥ ≤ C1,j

∥∥e(t)
∥∥ + C2,j . (5.154)

Integrating ‖ė(t)‖ with initial condition ‖e(t0)‖ = ‖nx‖ (recall that xb(t0) =
xa(t0) + nx ) and taking into account that ‖nx‖ ≤ θx , the following bound on the
norm of the error vector is obtained:

∥
∥e(t)

∥
∥ ≤

(
C2,j

C1,j

+ θx

)
(
eC1,j (t−t0) − 1

)
. (5.155)

This implies that Eq. 5.149 holds for:

fX,j (θx, τ ) =
(

C2,j

C1,j

+ θx

)
(
eC1,j τ − 1

)
. (5.156)

�
Proposition 5.1 bounds the difference between the nominal state trajectory under

the optimized control inputs and the predicted nominal state trajectory generated in
each LMPC optimization problem. To simplify the proof of Theorem 5.4, we define
a new function fX(τ) based on fX,i , i = 1, . . . ,m, as follows:

fX(τ) =
m∑

i=1

(
1

m
L′

x + L′
ui

umax
i

)(
1

C1,i

fX,i(0, τ ) − C2,i

C1,i

τ

)
. (5.157)

It is easy to verify that fX(τ) is a strictly increasing and convex function of its
argument. In Theorem 5.4 below, we provide sufficient conditions under which the
iterative DMPC of Eqs. 5.139–5.146 guarantees that the state of the closed-loop
system is ultimately bounded in a region that contains the origin.

Theorem 5.4 Consider the system of Eq. 5.1 in closed-loop with x available at
asynchronous sampling time instants {ta≥0}, satisfying the condition of Eq. 2.22,
under the DMPC design of Eqs. 5.139–5.146 based on a control law h(x) that sat-
isfies the conditions of Eqs. 4.3–5.8. Let Δ,εs > 0, ρ > ρmin > 0, ρ > ρs > 0 and
N ≥ NR ≥ 1 satisfy the conditions of Eqs. 5.108 and the following inequality:

−NRεs + fX(NRΔ) + fV

(
fW (0,NRΔ)

)
< 0 (5.158)

with fX defined in Eq. 5.157, fV defined in Eq. 2.49, fW defined in Eq. 5.119,
and NR being the smallest integer satisfying NRΔ ≥ Tm. If the initial state of the
closed-loop system x(t0) ∈ Ωρ , then x(t) is ultimately bounded in Ωρb

⊆ Ωρ where:

ρb = ρmin + fX(NRΔ) + fV

(
fW (0,NRΔ)

)
(5.159)

with ρmin defined in Eq. 5.26.
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Proof We follow a similar strategy to the one in the proof of Theorem 5.3. In or-
der to simplify the notation, we assume that all the signals used in this proof refer
to the different optimization variables of the problems solved at ta with the initial
condition x(ta). This proof also includes two parts.

Part I: In this part, we prove that the stability results stated in Theorem 5.4 hold in
the case that ta+1 − ta = Tm for all a and Tm = NRΔ. The derivative of the Lyapunov
function of the nominal system of Eq. 5.1 under the control of the iterative DMPC
of Eqs. 5.139–5.146 from ta to ta+1 is expressed as follows:

V̇
(
x̃(t)

) = ∂V (x̃(t))

∂x

(

f
(
x̃(t)

) +
m∑

i=1

gi

(
x̃(t)

)
u

a,∗
p,i (t |ta)

)

, ∀t ∈ [ta, ta + NRΔ).

(5.160)
Adding the above equation and the constraints of Eq. 5.145 in each LMPC together,
we can obtain the following inequality for t ∈ [ta, ta + NRΔ):

V̇
(
x̃(t)

) ≤ ∂V (x̃(t))

∂x

(

f
(
x̃(t)

) +
m∑

i=1

gi

(
x̃(t)

)
u

a,∗
p,i (t |ta)

)

+ ∂V (x̂(t |ta))
∂x

(

f
(
x̂(t |ta)

) +
m∑

i=1

gi

(
x̂(t |ta)

)
un,i(t |ta)

)

− ∂V (x̃1(t))

∂x

(
1

m
f

(
x̃1(t)

) + g1
(
x̃1(t)

)
u

a,∗
p,1(t |tk)

)

− · · ·
− ∂V (x̃m(t))

∂x

(
1

m
f

(
x̃m(t)

) + gm

(
x̃m(t)

)
ua,∗

p,m(t |ta)
)

. (5.161)

Reworking the above inequality, the following inequality can be obtained for
t ∈ [ta, ta + NRΔ):

V̇
(
x̃(t)

) ≤ ∂V (x̂(t |ta))
∂x

(

f
(
x̂(t |ta)

) +
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)
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m
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m
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)
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+ · · · (5.162)

+ ∂V (x̃(t))

∂x

(
1

m
f

(
x̃(t)

) + gm(x̃)ua,∗
p,m(t |ta)

)

− ∂V (x̃m(t))

∂x

(
1

m
f

(
x̃m(t)

) + gm

(
x̃m(t)

)
ua,∗

p,m(t |ta)
)

. (5.163)
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By the continuity and locally Lipschitz properties of Eqs. 5.14–5.15, the following
inequality can be obtained for t ∈ [ta, ta + NRΔ):

V̇
(
x̃(t)

) ≤ V̇
(
x̂(t |ta)

) +
(

1

m
L′

x + L′
u1

u
a,∗
p,1(t |ta)

)∥∥x̃(t) − x̃1(t)
∥∥ + · · ·

+
(

1

m
L′

x + L′
um

ua,∗
p,m(t |ta)

)∥∥x̃(t) − x̃m(t)
∥∥. (5.164)

Applying Proposition 5.1 to the above inequality of Eq. 5.164, we obtain the fol-
lowing inequality:

V̇
(
x̃(t)

) ≤ V̇
(
x̂(t |ta)

) +
(

1

m
L′

x + L′
u1

umax
1

)
fX,1(0, t − ta) + · · ·

+
(

1

m
L′

x + L′
um

umax
m

)
fX,m(0, t − ta). (5.165)

Integrating the inequality of Eq. 5.165 from t = ta to t = ta+ = NRΔ and taking
into account that x̃(ta) = x̂(ta) and ta+1 − ta = NRΔ, the following inequality can
be obtained:

V
(
x̃(ta+1)

) ≤ V
(
x̂(ta+1)

)

+
(

1

m
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x + L′
u1

umax
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)
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+
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x + L′
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umax
m

)(
1

C1,m
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)
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(5.166)

From the definition of fX(·), we have

V
(
x̃(ta+1)

) ≤ V
(
x̂(ta+1)

) + fX(NRΔ). (5.167)

By Corollaries 5.2 and 5.3 and following similar calculations to the ones in the proof
of Theorem 5.3, we obtain the following inequality

V
(
x(ta+1)

) ≤ max
{
V

(
x(ta)

) − NRεs, ρmin
} + fX(NRΔ) + fV

(
fW(0,NRΔ)

)
.

(5.168)
If the condition of Eq. 5.158 is satisfied, we know that there exists εw > 0 such that
the following inequality holds:

V
(
x(ta+1)

) ≤ max
{
V

(
x(ta)

) − εw,ρb

}
, (5.169)

which implies that if x(ta) ∈ Ωρ/Ωρb
, then V (x(ta+1)) < V (x(ta)), and if

x(ta) ∈ Ωρb
, then V (x(ta+1)) ≤ ρb .

Because the upper bound on the difference between the Lyapunov function of the
actual trajectory x and the nominal trajectory x̃ is a strictly increasing function of
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time, the inequality of Eq. 5.169 also implies that:

V
(
x(t)

) ≤ max
{
V

(
x(ta)

) − εw,ρb

}
, ∀t ∈ [ta, ta+1]. (5.170)

Using the inequality of Eq. 5.170 recursively, it can be proved that if x(t0) ∈ Ωρ ,
then the closed-loop trajectories of the system of Eq. 5.1 under the iterative DMPC
design stay in Ωρ for all times (i.e., x(t) ∈ Ωρ for all t). Moreover, if x(t0) ∈ Ωρ , the
closed-loop trajectories of the system of Eq. 5.1 under the iterative DMPC design
satisfy:

lim sup
t→∞

V
(
x(t)

) ≤ ρb. (5.171)

This proves that x(t) ∈ Ωρ for all times and x(t) is ultimately bounded in Ωρb
for

the case when ta+1 − ta = Tm for all a and Tm = NRΔ.
Part 2: In this part, we extend the results proved in Part 1 to the general case, that

is, ta+1 − ta ≤ Tm for all a and Tm ≤ NRΔ which implies that ta+1 − ta ≤ NRΔ.
Because fV , fW and fX are strictly increasing functions of time and fX, fV are
convex, following similar steps as in Part 1, it can be shown that the inequality of
Eq. 5.168 still holds. This proves that the stability results stated in Theorem 5.4
hold. �

Remark 5.15 Referring to the design of the LMPC of Eqs. 5.139, the constraint
of Eq. 5.142 ensures that the deviation of the predicted future state evolution (using
input trajectories obtained in the last iteration) from the actual system state evolution
is bounded. It also ensures that the results stated in Theorem 5.4 do not depend on
the iteration number c which means the iterations of the DMPC can be terminated
at any iteration and the stability properties stated in Theorem 5.4 continue to hold.
The constraint of Eq. 5.142 can be also imposed as the termination condition of the
iterative DMPC; that is, the DMPC stops iterating when ‖up,i(t) − u

a,c−1
p,i (t |ta)‖ ≤

Δui , i = 1, . . . ,m, for all t ∈ [ta, ta + NRΔ). In this case, however, the stability
properties stated in Theorem 5.4 have dependence on the iteration number c in a
way that they hold only after the termination condition of Eq. 5.142 is satisfied.

5.5.4 Application to an Alkylation of Benzene Process

Consider the alkylation of benzene with ethylene process of Eqs. 5.56–5.80 de-
scribed in Sect. 5.4.3. The control objective is still to drive the system from the
initial condition as shown in Table 5.6 to the desired steady-state as shown in Ta-
ble 5.4. The manipulated inputs are the heat injected to or removed from the five
vessels, Q1, Q2, Q3, Q4 and Q5, and the feed stream flow rates to CSTR-2 and
CSTR-3, F4 and F6, whose steady-state input values are shown in Table 5.3. We
design three distributed LMPCs to manipulate the 7 inputs. Similarly, the first dis-
tributed controller (LMPC 1) will be designed to decide the values of Q1, Q2 and
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Q3, the second distributed controller (LMPC 2) will be designed to decide the val-
ues of Q4 and Q5, and the third distributed controller (LMPC 3) will be designed
to decide the values of F4 and F6. The deviations of these inputs from their corre-
sponding steady-state values are subject to the constraints shown in Table 5.5. We
use the same design of h(x) as in Sect. 5.4.3 with a quadratic Lyapunov function
V (x) = xT Px with P being the following weight matrix:

P = diag
([1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]). (5.172)

Based on h(x), we design the sequential DMPC of Eqs. 5.98–5.106 and the iterative
DMPC of Eqs. 5.139–5.146 with the following weighting matrices:

Qc = diag
([

1 1 1 1 103 1 1 1 1 103 10 10 10 10 3000 1 1 1 1 103 1 1 1 1 103]),
(5.173)

and Rc1 = diag([1 × 10−8 1 × 10−8 1 × 10−8]), Rc2 = diag([1 × 10−8 1 × 10−8])
and Rc3 = diag([10 10]). The sampling time of the LMPCs is chosen to be Δ = 30 s.
For the iterative DMPC of Eqs. 5.139–5.146, Δui is chosen to be 0.25umax

i for all
the distributed LMPCs and maximum iteration numbers (i.e., c ≤ cmax) are applied
as the termination conditions. In all the simulations, bounded process noise is added
to the right hand side of the ordinary differential equations of the process model to
simulate disturbances/model uncertainty.

We consider that the state of the process of Eqs. 5.56–5.80 is sampled asyn-
chronously and that the maximum interval between two consecutive measurements
is Tm = 75 s. The asynchronous nature of the measurements is introduced by the
measurement difficulties of the full state given the presence of several species con-
centration measurements. We will compare the sequential and iterative DMPC for
systems subject to asynchronous measurements with a centralized LMPC which
takes into account asynchronous measurements explicitly as presented in Sect. 2.7.
The centralized LMPC uses the same weighting matrices, sampling time and pre-
diction horizon as used in the DMPCs. To model the time sequence {ta≥0}, we apply
an upper bounded random Poisson process. The Poisson process is defined by the
number of events per unit time W . The interval between two successive state sam-
pling times is given by Δa = min{− lnχ/W,Tm}, where χ is a random variable
with uniform probability distribution between 0 and 1. This generation ensures that
maxa{ta+1 − ta} ≤ Tm. In the simulations, W is chosen to be 30 and the time se-
quence generated by this bounded Poisson process is shown in Fig. 5.8. For this set
of simulations, we choose the prediction horizon of all the LMPCs to be N = 3 and
choose NR = N so that NRΔ ≥ Tm.

We first compare the DMPC designs for systems subject to asynchronous mea-
surements with the centralized LMPC from a stability point of view. Figure 5.9
shows the trajectory of the Lyapunov function V (x) under these control designs.
From Fig. 5.9, we see that the DMPC designs as well as the centralized LMPC de-
sign are able to drive the system state to a region very close to the desired steady
state. From Fig. 5.9, we can also see that the sequential DMPC, the centralized
LMPC and the iterative DMPC with cmax = 5 give very similar trajectories of V (x).
Another important aspect we can see from Fig. 5.9(b) is that at the early stage of the
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Fig. 5.8 Asynchronous measurement sampling times {ta≥0} with Tm = 75 s: the x-axis indicates
{ta≥0} and the y-axis indicates the size of the interval between ta and ta−1

closed-loop system simulation, because of the strong driving force related to the dif-
ference between the set-point and the initial condition, the process noise/disturbance
has small influence on the process dynamics, even though the controller(s) has/have
to operate in the presence of asynchronous measurements. When the states are get-
ting close to the set-point, the Lyapunov function starts to fluctuate due to the dom-
ination of noise/disturbance over the vanishing driving force. However, the DMPC
designs are able to maintain practical stability of the closed-loop system and keep
the trajectory of the Lyapunov function in a bounded region (V (x) ≤ 250) very close
to the steady state.

Next, we compare the evaluation times of the LMPCs in these control designs.
The simulations are carried out by JAVA™ programming language in a PENTIUM�

3.20 GHz computer. The optimization problems are solved by the open source in-
terior point optimizer Ipopt [109]. We evaluate the LMPC optimization problems
for 100 runs. The mean evaluation time of the centralized LMPC is about 23.7 s.
The mean evaluation time for the sequential DMPC scheme, which is the sum of
the evaluation times (1.9 s, 3.6 s and 3.2 s) of the three LMPCs, is about 8.7 s.
The mean evaluation time of the iterative DMPC scheme with one iteration is 6.3 s
which is the largest evaluation time among the evaluation times (1.6 s, 6.3 s and
4.3 s) of the three LMPCs. The mean evaluation time of the iterative DMPC archi-
tecture with four iterations is 18.7 s with the evaluation times of the three LMPCs
being 6.9 s, 18.7 s and 14.0 s. From this set of simulations, we see that the DMPC
designs lead to a significant reduction in the controller evaluation time compared
with a centralized LMPC design though they provide a very similar performance.

5.6 Iterative DMPC Design with Delayed Measurements

In this section, we consider the design of DMPC for systems subject to delayed
measurements. In Chap. 4, we pointed out that in order to obtain a good estimate of
the current system state from a delayed state measurement, a DMPC design should
have bi-directional communication among the distributed controllers. Consequently,
we focus on the design of DMPC for nonlinear systems subject to delayed measure-
ments in an iterative DMPC framework.
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Fig. 5.9 Trajectories of the Lyapunov function of the alkylation of benzene process of
Eqs. 5.56–5.80 under the nonlinear control law h(x) implemented in a sample-and-hold fashion
and with open-loop state estimation, the iterative DMPC of Eqs. 5.139–5.146 with cmax = 1 and
cmax = 5, the sequential DMPC of Eqs. 5.98–5.106 and the centralized LMPC accounting for
asynchronous measurements: (a) V (x); (b) Log(V (x))

5.6.1 Modeling of Delayed Measurements

We assume that the state of the system of Eq. 5.1 is received by the controllers
at asynchronous time instants ta where {ta≥0} is a random increasing sequence of
times and that there exists an upper bound Tm on the interval between two successive
measurements. We also assume that there are delays in the measurements received
by the controllers due to delays in the sampling process and data transmission. In
order to model delays in measurements, another auxiliary variable da is introduced
to indicate the delay corresponding to the measurement received at time ta , that is,
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Fig. 5.10 Iterative DMPC
for nonlinear systems subject
to delayed measurements

at time ta , the measurement x(ta − da) is received. In order to study the stability
properties in a deterministic framework, we assume that the delays associated with
the measurements are smaller than an upper bound D.

5.6.2 Iterative DMPC Formulation

As in the DMPC designs for systems subject to asynchronous measurements, we
take advantage of the system model both to estimate the current system state from a
delayed measurement and to control the system in open-loop when new information
is not available. To this end, when a delayed measurement is received, the distributed
controllers use the system model and the input trajectories that have been applied
to the system to get an estimate of the current state and then based on the estimate,
MPC optimization problems are solved to compute the optimal future input trajec-
tory that will be applied until new measurements are received. A schematic of the
iterative DMPC for systems subject to delayed measurements is shown in Fig. 5.10.
The implementation strategy for the iterative DMPC design is as follows:

1. When a measurement x(ta − da) is available at ta , all the distributed controllers
receive the state measurement and check whether the measurement provides new
information. If ta −da > maxl<a tl −dl , go to Step 2. Else the measurement does
not contain new information and is discarded, go to Step 3.

2. All the distributed controllers estimate the current state of the system xe(ta) and
then evaluate their future input trajectories in an iterative fashion with initial
input guesses generated by h(·).

3. At iteration c (c ≥ 1):
3.1. Each controller evaluates its own future input trajectory based on xe(ta) and

the latest received input trajectories of all the other distributed controllers
(when c = 1, initial input guesses generated by h(·) are used).

3.2. The controllers exchange their future input trajectories. Based on all the
input trajectories, each controller calculates and stores the value of the cost
function.
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4. If a termination condition is satisfied, each controller sends its entire future input
trajectory corresponding to the smallest value of the cost function to its actuators;
if the termination condition is not satisfied, go to Step 3 (c ← c + 1).

5. When a new measurement is received (a ← a + 1), go to Step 1.

In order to estimate the current system state xe(ta) based on a delayed measure-
ment x(ta − da), the distributed controllers take advantage of the input trajectories
that have been applied to the system from ta − da to ta and the system model of
Eq. 5.1. Let us denote the input trajectories that have been applied to the system
as u∗

d,i(t), i = 1, . . . ,m. Therefore, xe(ta) is evaluated by integrating the following
equation:

ẋe(t) = f
(
xe(t)

) +
m∑

i=1

gi

(
xe(t)

)
u∗

d,i(t), ∀t ∈ [ta − da, ta) (5.174)

with xe(ta − da) = x(ta − da).
Before going to the design of the iterative DMPC, we need to define another

nominal sampled trajectory x̌(t |ta) for t ∈ [ta, ta + NΔ), which is obtained by
replacing x̂(t |ta) with x̌(t |ta) in Eq. 5.36 and then integrating the equation with
x̌(ta|ta) = xe(ta). Based on x̌(t |ta), we define a new input trajectory as follows:

ue
n,j (t |ta) = hj

(
x̌(ta + lΔ|ta)

)
,

j = 1, . . . ,m, ∀t ∈ [
ta + lΔ, ta + (l + 1)Δ

)
, l = 0, . . . ,N − 1, (5.175)

which will be used in the design of the LMPC to construct the stability constraint
and used as the initial input guess for iteration 1 (i.e., u

∗,0
d,i = ue

n,i for i = 1, . . . ,m).
Specifically, the design of LMPC j , j = 1, . . . ,m, at iteration c is based on the

following optimization problem:

min
uj ∈S(Δ)

∫ ta+NΔ

ta

[
∥∥x̃j (τ )

∥∥
Qc

+
m∑

i=1

∥∥ui(τ )
∥∥

Rci

]

dτ, (5.176)

s.t. ˙̃xj (t) = f
(
x̃j (t)

) +
m∑

i=1

gi

(
x̃j (t)

)
ui(t), (5.177)

ui(t) = u
∗,c−1
d,i (t |ta), ∀i �= j, (5.178)

∥∥uj (t) − u
∗,c−1
d,j (t |ta)

∥∥ ≤ Δuj , ∀τ ∈ [ta, ta + ND,aΔ), (5.179)

uj (τ ) ∈ Uj , (5.180)

x̃j (ta) = xe(ta), (5.181)
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,
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∀τ ∈ [ta, ta + ND,aΔ), (5.182)

where ND,a is the smallest integer satisfying ND,aΔ ≥ Tm + D − da . The optimal
solution to this optimization problem is denoted u

∗,c
d,j (a|ta) which is defined for t ∈

[ta, ta + NΔ). Accordingly, we define the final optimal input trajectory of LMPC j

of Eqs. 5.176–5.182 as u∗
d,j (t |tk) which is also defined for t ∈ [ta, ta + NΔ). Note

again that the length of the constraint ND,a depends on the current delay da , so it
may have different values at different time instants and has to be updated before
solving the optimization problems.

The manipulated inputs of the closed-loop system under the above iterative
DMPC for systems subject to delayed measurements are defined as follows:

ui(t) = u∗
d,i(t |ta), i = 1, . . . ,m,∀t ∈ [ta, ta+q) (5.183)

for all ta such that ta −da > maxl<a tl −dl and for a given ta , the variable q denotes
the smallest integer that satisfies ta+q − da+q > ta − da .

5.6.3 Stability Properties

The stability properties of the iterative DMPC of Eqs. 5.176–5.183 are stated in the
following theorem.

Theorem 5.5 Consider the system of Eq. 5.1 in closed-loop with x available at
asynchronous sampling time instants {ta≥0} involving time-varying delays such that
da ≤ D for all a ≥ 0, satisfying the condition of Eq. 2.22, under the iterative DMPC
of Eqs. 5.176–5.183 based on a control law u = h(x) that satisfies the conditions of
Eqs. 5.5–5.8. Let Δ,εs > 0, ρ > ρmin > 0, ρ > ρs > 0, N ≥ 1 and D ≥ 0 satisfy the
condition of Eq. 5.108 and the following inequality:

−NRεs + fX(NDΔ) + fV

(
fW (0,NDΔ)

) + fV

(
fW(0,D)

)
< 0 (5.184)

with fV defined in Eq. 2.49, fW defined in Eq. 5.119, ND being the smallest integer
satisfying NDΔ ≥ Tm +D and NR being the smallest integer satisfying NRΔ ≥ Tm.
If the initial state of the closed-loop system x(t0) ∈ Ωρ , N ≥ ND and d0 = 0, then
x(t) is ultimately bounded in Ωρd

⊆ Ωρ where:

ρd = ρmin + fX(NDΔ) + fV

(
fW(0,NDΔ)

) + fV

(
fW(0,D)

)
(5.185)

with ρmin defined in Eq. 5.26.

Proof We assume that at ta , a delayed measurement x(ta − da) containing new in-
formation is received, and that the next measurement with new state information is
not received until ta+i . This implies that ta+i − da+i > ta − da and that the itera-
tive DMPC of Eqs. 5.176–5.183 is solved at ta and the optimal input trajectories
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u∗
d,i(t |ta), i = 1, . . . ,m, are applied from ta to ta+i . In this proof, we will refer to

x̃(t) for t ∈ [ta, ta+i ) as the state trajectory of the nominal system of Eq. 5.1 under
the control of the iterative DMPC of Eqs. 5.176–5.183 with x̃(ta) = xe(ta).

Part I: In this part, we prove that the stability results stated in Theorem 5.5 hold
for ta+i − ta = ND,aΔ and all da ≤ D. By Corollary 5.2 and taking into account
that x̌(ta) = xe(ta), the following inequality can be obtained:

V
(
x̌(ta+i )

) ≤ max
{
V

(
xe(ta)

) − ND,aεs , ρmin
}
. (5.186)

By Corollary 5.3 and taking into account that xe(ta − da) = x(ta − da), x̃(ta) =
xe(ta) and NDΔ ≥ ND,aΔ + da , the following inequalities can be obtained:

∥
∥xe(ta) − x(ta)

∥
∥ ≤ fW(0, da), (5.187)

∥
∥x̃(ta+i ) − x(ta+i )

∥
∥ ≤ fW(0,NDΔ). (5.188)

When x(t) ∈ Ωρ for all times (this point will be proved below), we can apply Propo-
sition 2.3 to obtain the following inequalities:

V
(
xe(ta)

) ≤ V
(
x(ta)

) + fV

(
fW (0, da)

)
,V

(
x(ta+i )

)

≤ V
(
x̃(ta+i )

) + fV

(
fW (0,NDΔ)

)
. (5.189)

From Eqs. 5.186 and 5.189, the following inequality is obtained:

V
(
x̌(ta+i )

) ≤ max
{
V

(
x(ta)

) − ND,aεs, ρmin
} + fV

(
fW (0, da)

)
. (5.190)

By Proposition 5.1 and following similar steps as in the proof of Theorem 5.4, the
following inequality can be obtained:

V
(
x̃(ta+i )

) ≤ V
(
x̌(ta+i )

) + fX(ND,aΔ). (5.191)

From Eqs. 5.189, 5.190 and 5.191, the following inequality is obtained:

V
(
x(ta+i )

) ≤ max
{
V

(
x(ta)

) − ND,aεs, ρmin
} + fV

(
fW (0, da)

)

+ fV

(
fW (0,NDΔ)

) + fX(ND,aΔ). (5.192)

In order to prove that the Lyapunov function is decreasing between two consecutive
new measurements, the following inequality must hold:

ND,aεs > fV

(
fW(0, da)

) + fV

(
fW(0,NDΔ)

) + fX(ND,aΔ) (5.193)

for all possible 0 ≤ da ≤ D. Taking into account that fW , fV and fX are strictly
increasing functions of time, ND,a is a decreasing function of the delay da and
that if da = D then ND,a = NR , then if the condition of Eq. 5.184 is satisfied, the
condition of Eq. 5.193 holds for all possible da and there exists εw > 0 such that the
following inequality holds:

V
(
x(ta+i )

) ≤ max
{
V

(
x(ta)

) − εw,ρd

}
, (5.194)
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Fig. 5.11 Asynchronous time sequence {ta≥0} and corresponding delay sequence {da≥0} with
Tm = 50 s and D = 40 s: the x-axis indicates {ta≥0} and the y-axis indicates the size of da

which implies that if x(ta) ∈ Ωρ/Ωρd
, then V (x(ta+i )) < V (x(ta)), and if

x(ta) ∈ Ωρd
, then V (x(ta+i )) ≤ ρd .

Because the upper bound on the difference between the Lyapunov function of the
actual trajectory x and the nominal trajectory x̃ is a strictly increasing function of
time, the inequality of Eq. 5.194 also implies that:

V
(
x(t)

) ≤ max
{
V

(
x(ta)

)
, ρd

}
, ∀t ∈ [ta, ta+i ). (5.195)

Using the inequality of Eq. 5.195 recursively, it can be proved that if x(t0) ∈ Ωρ ,
then the closed-loop trajectories of the system of Eq. 5.1 under the iterative DMPC
of Eqs. 5.176–5.183 stay in Ωρ for all times (i.e., x(t) ∈ Ωρ,∀t). Moreover, us-
ing the inequality of Eq. 5.195 recursively, it can be proved that if x(t0) ∈ Ωρ ,
the closed-loop trajectories of the system of Eq. 5.1 under the iterative DMPC of
Eqs. 5.176–5.183 satisfy:

lim sup
t→∞

V
(
x(t)

) ≤ ρd . (5.196)

This proves that x(t) ∈ Ωρ for all times and x(t) is ultimately bounded in Ωρd
when

ta+i − ta = ND,aΔ.
Part 2: In this part, we extend the results proved in Part 1 to the general case,

that is, ta+i − ta ≤ ND,aΔ. Taking into account that fV , fW and fX are strictly
increasing functions of time and following similar steps as in Part 1, it can be readily
proved that the inequality of Eq. 5.193 holds for all possible da ≤ D and ta+i − ta ≤
ND,aΔ. Using this inequality and following the same line of argument as in the
previous part, the stability results stated in Theorem 5.5 can be proved. �

5.6.4 Application to an Alkylation of Benzene Process

Consider the alkylation of benzene with ethylene process of Eqs. 5.56–5.80 de-
scribed in Sect. 5.4.3. We set up the simulations as described in Sect. 5.5.4.

We consider that the state of the process of Eqs. 5.56–5.80 is sampled at asyn-
chronous time instants {ta≥0} with an upper bound Tm = 50 s on the interval be-
tween two successive measurements. Moreover, we consider that there are delays
involved in the measurement samplings and the upper bound on the maximum delay
is D = 40 s. The delays in measurements can naturally arise in the context of species
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concentration measurements. We will compare the iterative DMPC of Eqs. 5.176–
5.183 with a centralized LMPC which takes into account delayed measurements
explicitly as presented in Sect. 2.8. The centralized LMPC uses the same weighting
matrices, sampling time and prediction horizon as used in the DMPC. In order to
model the sampling time instants, the same Poisson process as used in Sect. 5.5.4
is used to generate {ta≥0} with W = 30 and Tm = 50 s and another random process
is used to generate the associated delay sequence {da≥0} with D = 40 s. For this
set of simulations, we also choose the prediction horizon of all the LMPCs to be
N = 3 so that the horizon covers the maximum possible open-loop operation inter-
val. Figure 5.11 shows the time instants when new state measurements are received
and the associated delay sizes. Note that for all the control designs considered in
this subsection, the same state estimation strategy shown in Eq. 5.174 is used.

Figure 5.12 shows the trajectory of the Lyapunov function V (x) under different
control designs. From Fig. 5.12, we see that both the iterative DMPC for systems
subject to delayed measurements and the centralized LMPC accounting for delays
are able to drive the system state to a region very close to the desired steady state
(V (x) ≤ 250); the trajectories of V (x) generated by the iterative DMPC design are
bounded by the corresponding trajectory of V (x) under the nonlinear control law
h(x) implemented in a sample-and-hold fashion and with open-loop state estima-
tion. From Fig. 5.12, we can also see that the centralized LMPC and the iterative
DMPC with cmax = 5 give very similar trajectories of V (x).

In the final set of simulations, we compare the centralized LMPC and the iterative
DMPC from a performance index point of view. To carry out this comparison, the
same initial condition and parameters were used for the different control schemes
and the total cost under each control scheme was computed as follows:

J =
∫ tf

0

[∥∥x(τ)
∥∥

Qc
+ ∥∥u1(τ )

∥∥
Rc1

+ ∥∥u2(τ )
∥∥

Rc2
+ ∥∥u3(τ )

∥∥
Rc3

]
dτ, (5.197)

where tf = 1500 s is the final simulation time. Figure 5.13 shows the total cost
along the closed-loop system trajectories under the iterative DMPC of Eqs. 5.176–
5.183 and the centralized LMPC accounting for delays. For the iterative DMPC
design, different maximum numbers of iterations, cmax, are used. From Fig. 5.13,
we can see that as the iteration number c increases, the performance cost given
by the iterative DMPC design decreases and converges to a value which is very
close to the cost of the one corresponding to the centralized LMPC. However, we
note that there is no guaranteed convergence of the performance of iterative DMPC
design to the performance of a centralized MPC because of the nonconvexity of the
LMPC optimization problems, and the different stability constraints imposed in the
centralized LMPC and the iterative DMPC design.

5.7 Handling Communication Disruptions in DMPC

In this section, we focus on a hierarchical type DMPC (see Remark 4.12) for
the system of Eq. 5.1 and discuss how to handle communication disruptions—
communication channel noise and data losses—between the distributed controllers.
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Fig. 5.12 Trajectories of the Lyapunov function of the alkylation of benzene process of
Eqs. 5.56–5.80 under the nonlinear control law h(x) implemented in a sample-and-hold fashion
and with open-loop state estimation, the iterative DMPC of Eqs. 5.176–5.183 with cmax = 1 and
cmax = 5 and the centralized LMPC accounting for delays: (a) V (x); (b) Log(V (x))

In the sequel, we design m LMPCs to calculate the m sets of control inputs, re-
spectively, and refer to the controller that calculates ui (i = 1, . . . ,m) as LMPC i.
In this approach, LMPC 1 communicates with the rest of LMPCs (i.e., LMPC 2 to
LMPC m) using one-directional communication and cooperates with them to main-
tain the closed-loop stability.

In the proposed design, to handle communication channel noise between the dis-
tributed controllers, feasibility problems are incorporated in the DMPC architecture
to determine if the data transmitted through the communication channel is reliable
or not. Based on the results of the feasibility problems, the transmitted information
is accepted or rejected by LMPC 1. When there are communication data losses be-
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Fig. 5.13 Total performance costs along the closed-loop trajectories of the alkylation of benzene
process of Eqs. 5.56–5.80 under the centralized LMPC accounting for delays (dashed line) and
iterative DMPC of Eqs. 5.176–5.183 (solid line)

Fig. 5.14 Hierarchical type
distributed LMPC control
architecture (F means solving
a feasibility problem)

tween the distributed controllers, the closed-loop system under the proposed DMPC
is guaranteed to be practically stable because of the stability constraints incorpo-
rated in the LMPC designs. A schematic diagram of the DMPC design for systems
subject to communication disruptions between distributed controllers is depicted in
Fig. 5.14.

5.7.1 Model of the Communication Channel

We consider data losses and channel noise in communication between the m dis-
tributed controllers. For a given input r ∈ Rm to the communication channel, the
output r̃ ∈ Rm is characterized as:

r̃ = lr + n, (5.198)

where l is a Bernoulli random variable with parameter α and n ∈ Rm is a vector
whose elements are white gaussian noise with zero mean and the same variance σ 2.
The random variable l is used to model data losses in the communication channel.
The white noise, n, is used to model channel noise, quantization error or any other
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Fig. 5.15 Bounded
communication channel noise

error to the transmitted signal, and it is independent of the data losses in a proba-
bilistic sense. If the receiver determines that a successful transmission is made, then
l = 1, otherwise l = 0. Furthermore, in order to get deterministic stability results,
we assume that, when a successful transmission is made, the noise, n, attached to
the input signal, r , is bounded by θc (that is ‖n‖ ≤ θc) as shown in Fig. 5.15. Both
assumptions are meaningful from a practical standpoint. We further assume that the
capacity of the communication channel [15] is high enough so that we can transmit
data through it with a high rate.

Remark 5.16 Note that there are a variety of approaches to detect whether data
loss has happened at the receiver side of a communication channel. One common
approach is to measure the power of the received signal and compare it with a pre-
configured signal transmission power level. If the power of the received signal is
much smaller than the preconfigured signal transmission power level, then data loss
is declared; and if the power of the received signal is close to the preconfigured
signal transmission power level, then the transmission is assumed to be successful.

5.7.2 DMPC with Communication Disruptions

The implementation strategy for the DMPC with feasibility problems is as follows:

1. At tk , all controllers receive the sensor measurements x(tk).
2. For i = 2, . . . ,m

2.1. LMPC i evaluates the optimal input trajectory of ui based on x(tk) and
sends the first step input values of ui to its corresponding actuators.

2.2. LMPC i sends the entire optimal input trajectory of ui to LMPC 1 through
a communication channel.

3. LMPC 1 solves a feasibility problem for each input trajectory it received to de-
termine if the trajectory should be accepted or rejected.

4. LMPC 1 evaluates the future input trajectory of u1 based on x(tk) and the results
of the feasibility problems for the trajectories it received from LMPC i with
i = 2, . . . ,m.

5. LMPC 1 sends the first step input value of u1 to its corresponding actuators.



5.7 Handling Communication Disruptions in DMPC 187

6. When a new measurement is received (k ← k + 1), go to Step 1.

In the sequel, we describe the design of LMPC j (j = 2, . . . ,m) and its corre-
sponding feasibility problem and the design of LMPC 1. In the formulations, the
input trajectories un,i(t |tk) defined in Eq. 5.37 based on the sampled state trajectory
defined in Eq. 5.36 will be used.

Upon receiving the sensor measurement x(tk), LMPC j obtains its optimal input
trajectory by solving the following optimization problem:

min
uj ∈S(Δ)

∫ tk+N

tk

[
∥∥x̃j (τ )

∥∥
Qc

+
m∑

i=1

∥∥ui(τ )
∥∥

Rci

]

dτ, (5.199)

˙̃xj (t) = f
(
x̃j (t)

) +
m∑

i=1

gi

(
x̃j (t)

)
ui(t), (5.200)

ui(t) = un,i(t |tk), i �= j, (5.201)

x̃j (tk) = x(tk), (5.202)

uj (t) ∈ Uj , (5.203)

∂V (x(tk))

∂x
gj

(
x(tk)

)
uj (tk) ≤ ∂V (x(tk))

∂x
gj

(
x(tk)

)
hj

(
x(tk)

)
, (5.204)

where q = 0, . . . ,N − 1, x̃j is the predicted trajectory of the nominal system with
uj being the input trajectory computed by this LMPC j and ui (i �= j ) determined
by un,i(t |tk).

Let u∗
j (t |tk) denote the optimal solution of the optimization problem of

Eqs. 5.199–5.204. LMPC j sends the first step value of u∗
j (t |tk) to its actuators

and transmits the whole optimal input trajectory through the communication chan-
nel to LMPC 1. LMPC 1 receives a corrupted version of u∗

j (t |tk) which can be
formulated as:

ũj (t |tk) = lu∗
j (t |tk) + n. (5.205)

If data losses occur during the transmission of the control input trajectory from
LMPC j to LMPC 1, LMPC 1 assumes that LMPC j applies hj (x) (i.e., uj =
hj (x)). Note that we do not consider explicitly the step of determining whether data
losses occur or not in the transmission of input trajectories. Please see Remark 5.16
on approaches of determining transmission data losses.

When a transmission of the input trajectory u∗
j (t |tk) is successful, LMPC 1 re-

ceives ũj (t |tk) which is a noise-corrupted version of u∗
j (t |tk). To determine the reli-

ability of the received information, LMPC 1 solves a feasibility problem. Based on
the result of the feasibility problem, LMPC 1 determines if the received information
should be accepted or rejected. The feasibility problem for the information received
from LMPC j is as follows:

find z ∈ S(Δ), (5.206)
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ũj (t |tk) − θc ≤ z(t) ≤ ũj (t |tk) + θc, t ∈ [tk, tk+N), (5.207)

z(t) ∈ Uj , t ∈ [tk, tk+N), (5.208)

∂V (x(tk))

∂x
gj

(
x(tk)

)
z(tk) > gj

(
x(tk)

)
hj

(
x(tk)

)
. (5.209)

According to the bounded noise value and the received signal from the communi-
cation channel, LMPC 1 considers all the possibilities of noise effect on the opti-
mal trajectory of LMPC j (i.e., the constraint of Eq. 5.207) and checks whether in
these cases the input received from LMPC j still satisfies the stability constraint
of Eq. 5.204 (i.e., the constraint of Eq. 5.209). Note that when the optimization
problem of Eqs. 5.206–5.209 is not feasible, it is guaranteed that the original signal
u∗

j (t |tk) after transmission through the channel still satisfies the stability constraint
of Eq. 5.204. The feasibility of this problem is used to test whether there exists any
possible value of the noise that could (due to corruption) end up making the imple-
mented control action cause an increase in the Lyapunov function derivative, i.e.,
that ∂V (x(tk))

∂x
gj (x(tk))uj (0) > gj (x(tk))hj (x(tk)). If the problem is infeasible, it is

guaranteed that the noise cannot make the control action destabilizing, and hence,
the control action is accepted. On the other hand, if the problem is feasible, it opens
up the possibility of the noise rendering the control action destabilizing, and hence,
it is discarded. We also note that there is no requirement that θc is sufficient small,
however, larger values of θc increase the range of z(t) and influence the feasibility
of the problem of Eqs. 5.206–5.209.

If the optimization problem of Eqs. 5.206–5.209 is not feasible, then the tra-
jectory information received by LMPC 1 (i.e., ũj (t |tk)) is used in the evaluation
of LMPC 1; and if the optimization problem of Eqs. 5.206–5.209 is feasible, then
ũj (t |tk) is discarded and the input trajectory un,j (t |tk) will be used in the evalua-
tion of LMPC 1. If we define the trajectory of uj that is used in the evaluation of
LMPC 1 as ũ∗

j (t |tk), then it is defined as follows:

ũ∗
j (t |tk) =

⎧
⎪⎪⎨

⎪⎪⎩

ũj (t |tk) if the problem of Eqs. 5.206–5.209 is not feasible
and there is no data loss,

un,j (t |tk) if the problem of Eqs. 5.206–5.209 is feasible or
there exists data loss.

Note that when data loss in the communication channel occurs, the input trajectory
un,j (t |tk) is also used in the evaluation of LMPC 1. Note also that the above strategy
on the use of the corrupted communication information is just one of many possible
options to handle communication disruptions in the DMPC architecture.

Employing ũ∗
j , j = 2, . . . ,m, LMPC 1 obtains its optimal trajectory according to

the following optimization problem:

min
u1∈S(Δ)

∫ tk+N

tk

[
∥∥x̃1(τ )

∥∥
Qc

+
m∑

i=1

∥∥ui(τ )
∥∥

Rci

]

, (5.210)
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˙̃x1(t) = f
(
x̃1(t)

) +
m∑

i=1

gi

(
x̃1(t)

)
ui(t), (5.211)

u1(t) ∈ U1, (5.212)

uj (t) = ũ∗
j (t |tk), j = 2, . . . ,m, (5.213)

x̃(tk) = x(tk), (5.214)

∂V (x(tk))

∂x
g1

(
x(tk)

)
u1(tk) ≤ ∂V (x(tk))

∂x
g1

(
x(tk)

)
h1

(
x(tk)

)
. (5.215)

In the LMPC 1 formulation of Eqs. 5.210–5.215, LMPC 1 takes advantage of
the knowledge of m − 1 feasibility problems (i.e., ũ∗

j , j = 2, . . . ,m) to predict the

future evolution of the system x̃1. Let u∗
1(t |tk) denote the optimal solution of the

optimization problem of Eqs. 5.210–5.215.
Based on the solutions of the m LMPC optimization problems, the manipulated

inputs of the DMPC design are defined as follows:

ui(t) = u∗
i (t |tk), ∀t ∈ [tk, tk+1), i = 1, . . . ,m. (5.216)

Remark 5.17 Note that the white gaussian noise considered in this section is the
accumulation of thermal effects and quantization errors. We do not consider the
effects of multi-path transmission, terrain blocking, interference, etc. Furthermore,
we assume that when package loss happens, all of the information that should be
transmitted is lost; however, without loss of generality, the method presented in
this section can be extended to the case in which data loss happens only in some
packets of information following a similar methodology like Eqs. 5.206–5.209 to
deal with this issue. The interested reader may refer to [15, 87] for more details on
communication channel modeling.

5.7.3 Stability Properties

As it will be proved in Theorem 5.6 below, the DMPC framework takes advan-
tage of the constraints of Eqs. 5.204 and 5.215 to compute the optimal trajectories
u1, . . . , um such that the Lyapunov function value V (x(tk)) is a decreasing sequence
with a lower bound and achieves the closed-loop stability of the system.

Theorem 5.6 Consider the system of Eq. 5.1 in closed-loop under the DMPC design
of Eqs. 5.199–5.216 based on a control law h(x) that satisfies the conditions of
Eqs. 5.5–5.8. Let εw > 0, Δ > 0 and ρ > ρs > 0 satisfy the following constraint:

−α3
(
α−1

2 (ρs)
) +

(

L′
x +

m∑

i=1

L′
ui

umax
i

)

MΔ + L′
wθ ≤ −εw/Δ. (5.217)
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If x(t0) ∈ Ωρ and if ρmin ≤ ρ where ρmin = max{V (x(t + Δ)) : V (x(t)) ≤ ρs}, then
the state x(t) of the closed-loop system is ultimately bounded in Ωρmin .

Proof The proof consists of two parts. We first prove that the optimization prob-
lems of Eqs. 5.199–5.204 and 5.210–5.215 are feasible for all states x ∈ Ωρ . Sub-
sequently, we prove that, under the DMPC design of Eqs. 5.199–5.216, the state of
the system of Eq. 5.1 is ultimately bounded in a region that contains the origin.

Part 1: First, we consider the feasibility of LMPC j of Eqs. 5.199–5.204
(j = 2, . . . ,m) and of LMPC 1 of Eqs. 5.210–5.215. All input trajectories of uj (t)

(j = 1, . . . ,m) such that uj (t) = un,j (t |tk),∀t ∈ [tk, tk+N) satisfy all the constraints
(including the input constraints of Eqs. 5.203 and 5.212 and the constraints of
Eq. 5.204 and 5.215) of LMPC j , thus the feasibility of LMPC j as well as LMPC 1
is obtained.

Part 2: Considering the inequality of Eq. 5.6, addition of inequalities of
Eqs. 5.204 for j = 2, . . . ,m and 5.215 implies that if x(tk) ∈ Ωρ , the following
inequality holds:

∂V (x(tk))

∂x

(

f
(
x(tk)

) +
m∑

i=1

gi

(
x(tk)

)
u∗

i (tk|tk)
)

≤ ∂V (x(tk))

∂x

(

f
(
x(tk)

) +
m∑

i=1

gi

(
x(tk)

)
un,i(tk|tk)

)

≤ −α3
(∥∥x(tk)

∥∥)
. (5.218)

The time derivative of the Lyapunov function along the state trajectory x(t) of the
system of Eq. 5.1 in t ∈ [tk, tk+1) is given by:

V̇
(
x(t)

) = ∂V (x)

∂x

(

f
(
x(t)

) +
m∑

i=1

gi

(
x(t)

)
u∗

i (tk|tk) + k
(
x(t)

)
w(t)

)

. (5.219)

Adding and subtracting ∂V (x(tk))
∂x

(f (x(tk)) + ∑m
i=1 gi(x(tk))u

∗
i (tk|tk)) to the right-

hand side of Eq. 5.219 and taking Eq. 5.218 into account, we obtain the following
inequality:

V̇
(
x(t)

) ≤ −α3
(∥∥x(tk)

∥∥)

+ ∂V (x)

∂x

(

f
(
x(t)

) +
m∑

i=1

gi

(
x(t)

)
u∗

i (tk|tk) + k
(
x(t)

)
w(t)

)

− ∂V (x(tk))

∂x

(

f
(
x(tk)

) +
m∑

i=1

gi

(
x(tk)

)
u∗

i (tk|tk)
)

. (5.220)
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From Eq. 5.5, Eqs. 5.14–5.16, and the inequality of Eq. 5.220, the following in-
equality is obtained for all x(tk) ∈ Ωρ/Ωρs

:

V̇
(
x(t)

) ≤ −α3
(
α−1

2 (ρs)
) + L′

w

∥∥w(t)
∥∥ +

(

L′
x +

m∑

i=1

L′
ui

u∗
i (tk|tk)

)
∥∥x(t) − x(tk)

∥∥.

(5.221)
Taking into account Eq. 5.9 and the continuity of x(t), the following bound can
be written for all t ∈ [tk, tk+1), ‖x(t) − x(tk)‖ ≤ MΔ. Using this expression, we
obtain the following bound on the time derivative of the Lyapunov function for
t ∈ [tk, tk+1), for all initial states x(tk) ∈ Ωρ/Ωρs :

V̇
(
x(t)

) ≤ −α3
(
α−1

2 (ρs)
) +

(

L′
x +

m∑

i=1

L′
ui

umax
i

)

MΔ + L′
wθ. (5.222)

If the condition of Eq. 5.217 is satisfied, then there exists εw > 0 such that the
following inequality holds for x(tk) ∈ Ωρ/Ωρs :

V̇
(
x(t)

) ≤ −εw/Δ, ∀t ∈ [tk, tk+1). (5.223)

Integrating this bound on t ∈ [tk, tk+1), we obtain that:

V
(
x(tk+1)

) ≤ V
(
x(tk)

) − εw, (5.224)

V
(
x(t)

) ≤ V
(
x(tk)

)
, ∀t ∈ [tk, tk+1) (5.225)

for all x(tk) ∈ Ωρ/Ωρs . Using Eqs. 5.224–5.225 recursively, it is proved that, if
x(t0) ∈ Ωρ/Ωρs

, the state converges to Ωρs
in a finite number of sampling times

without leaving the stability region. Once the state converges to Ωρs ⊆ Ωρmin , it
remains inside Ωρmin for all times. This statement holds because of the definition of
ρmin. This proves that the closed-loop system under the DMPC of Eqs. 5.199–5.216
is ultimately bounded in Ωρmin . �

Remark 5.18 Note that the use of the corrupted input trajectory information of uj

(i.e., ũj ) where j = 2, . . . ,m does not affect the feasibility of the optimization prob-
lems of Eqs. 5.199–5.204 and 5.210–5.215 as well as the stability of the closed-loop
system; however, it does affect the closed-loop system performance. This is the rea-
son for the introduction of the feasibility problem of Eqs. 5.206–5.209 which is
used to decide whether the corrupted information can be used or not to improve the
closed-loop performance. An application of the DMPC architecture with the feasi-
bility problem of Eqs. 5.199–5.216 to a chemical process can be found in [30].

5.8 Conclusions

In this chapter, we designed sequential and iterative DMPC schemes for large-scale
nonlinear systems. In the sequential DMPC architecture, the distributed controllers
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adopt a one-directional communication strategy and are evaluated in sequence and
once at each sampling time; in the iterative DMPC architecture, the distributed
controllers utilize a bidirectional communication strategy, are evaluated in paral-
lel and iterate to improve closed-loop performance. We considered three cases for
the design of the sequential and iterative DMPC schemes: systems with continu-
ous, synchronous state measurements, systems with asynchronous measurements
and systems with delayed measurements. For all the three cases, appropriate im-
plementation strategies, suitable Lyapunov-based stability constraints and sufficient
conditions under which practical closed-loop stability is ensured, were provided.
Extensive simulations using a catalytic alkylation of benzene process example were
carried out to compare the DMPC architectures with existing centralized LMPC
algorithms from computational time and closed-loop performance points of view.
Moreover, we focused on a hierarchical type DMPC and discussed how to han-
dle communication disruptions in the communication between the distributed con-
trollers by incorporating feasibility problems to decide the reliability of the trans-
mitted information.



Chapter 6
Multirate Distributed Model Predictive Control

6.1 Introduction

In Chap. 5, we considered the design of DMPC architectures for large-scale nonlin-
ear systems assuming that all the measurements of the system states are available
at the same sampling instants. In this chapter, we consider the design of a network-
based DMPC system using multirate sampling for large-scale nonlinear uncertain
systems composed of several coupled subsystems. Specifically, we assume that the
states of each local subsystem can be divided into fast sampled states (which are
available every sampling time) and slowly sampled states (which are available every
several sampling times). The distributed model predictive controllers are connected
through a shared communication network and cooperate in an iterative fashion at
time instants in which full system state measurements (both fast and slow) are avail-
able, to guarantee closed-loop stability. When only local subsystem fast sampled
state information is available, the distributed controllers operate in a decentralized
fashion to improve closed-loop performance. In this control architecture, the con-
trollers are designed via LMPC techniques taking into account bounded measure-
ment noise, process disturbances and communication noise. Sufficient conditions
under which the state of the closed-loop system is ultimately bounded in an invari-
ant region containing the origin are derived. The theoretical results are demonstrated
through a nonlinear chemical process example. The results of this chapter were first
presented in [31].

6.2 System Description

We consider a class of nonlinear systems which is composed of m interconnected
subsystems where each of the subsystems can be described by the following state-
space model:

ẋi(t) = fi(x) + gsi(x)ui(t) + ki(x)wi(t), (6.1)
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where i = 1, . . . ,m, xi(t) ∈ Rni denotes the vector of state variables of subsystem
i, ui(t) ∈ Rmi and wi(t) ∈ Rwi denote the set of control (manipulated) inputs and
disturbances associated with subsystem i, respectively. The variable x ∈ Rn denotes
the state of the entire nonlinear system which is composed of the states of the m

subsystems, that is:

x = [
xT

1 · · ·xT
i · · ·xT

m

]T ∈ Rn. (6.2)

The dynamics of x can be described in a compact form as follows:

ẋ(t) = f (x) +
m∑

i=1

gi(x)ui(t) + k(x)w(t), (6.3)

where f = [f T
1 · · ·f T

i · · ·f T
m ]T , gi = [0T · · ·gT

si · · ·0T ]T with 0 being the zero ma-
trix of appropriate dimensions, k is a matrix composed of ki (i = 1, . . . ,m) and zeros
whose explicit expression is omitted for brevity, and w = [wT

1 · · · wT
i · · ·wT

m]T is
assumed to be bounded, that is:

W := {
w ∈ Rw : ‖w‖ ≤ θ, θ > 0

}
(6.4)

with θ being a known positive real number.
The m sets of inputs are restricted to be in m nonempty convex sets Ui ⊆ Rmui ,

i = 1, . . . ,m, which are defined as:

Ui := {
ui ∈ Rmi : ‖ui‖ ≤ umax

i

}
, (6.5)

where umax
i , i = 1, . . . ,m, are the magnitudes of the input constraints in an element-

wise manner. We will design m controllers to compute the m sets of control inputs
ui , i = 1, . . . ,m, respectively. We will refer to the controller computing ui associ-
ated with subsystem i as controller i.

We assume that f , gi , i = 1, . . . ,m, and k are locally Lipschitz vector, matrix
and matrix functions, respectively, and that the origin is an equilibrium point of
the unforced nominal system (i.e., system of Eq. 6.3 with ui(t) = 0, i = 1, . . . ,m,
w(t) = 0 for all t) which implies that f (0) = 0.

6.3 Modeling of Measurements and Communication Networks

We assume that the states of each of the m subsystems, xi (i = 1, . . . ,m), are di-
vided into two parts: xf,i , states that can be measured at each sampling time (e.g.,
temperatures and pressures) and xs,i , states which are sampled at a relatively slow
rate (e.g., species concentrations). Specifically, we assume that xf,i , are available at
synchronous time instants tp = t0 + pΔ, p = 0,1, . . . , where t0 is the initial time
and Δ is the sampling time; and assume that xs,i , are available every T sampling
times (i.e., xs,i , are available at tk with k = 0, T ,2T , . . .). Note that, in order to sim-
plify the development, we assume that the slowly sampled states of different sub-
systems are all available at the same time instants. This modeling of measurements
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is relevant to systems involving heterogeneous measurements which have different
sampling rates; please see the example in Sect. 6.6.

We also assume that for each subsystem its local sensors, actuators and controller
are connected using point-to-point links, which implies that xf,i and xs,i are avail-
able without delay to controller i once they are measured. We further assume that
the controllers for different subsystems are connected through a shared communica-
tion network and communicate when the full system state is available (i.e., at time
instants tk with k = 0, T ,2T , . . .). When each predictive controller communicates
with the rest of the controllers, they share state and future input trajectories infor-
mation.

Moreover, in addition to process disturbances, we consider measurement noise
and communication network noise. Specifically, we consider measurement noise
caused by the lack of complete accuracy of measurement sensors. This type of noise
is defined as the difference between the reading value of a state from a sensor and
the true value of the state. We assume that the sensor reading values of states xf,i

and xs,i are x̌s
f,i and x̌s

s,i , respectively; and x̌s
f,i and x̌s

s,i are modeled as follows:

x̌s
f,i = xf,i + ns

xf,i
, (6.6)

x̌s
s,i = xs,i + ns

xs,i
, (6.7)

where ns
xf,i

and ns
xs,i

are the measurement noise terms associated with xf,i and xs,i ,
respectively. The measurement noise is assumed to be bounded, that is, ‖ns

xf,i
‖ ≤

θs
xf,i

and ‖ns
xs,i

‖ ≤ θs
xs,i

with θs
xf,i

and θs
xs,i

being positive real numbers. It should
be mentioned that this assumption on the type of measurement noise is meaningful
from a practical standpoint due to the limit on the accuracy of the measurement
sensors and the fact that measurement noise is usually modeled as a percentage of
the actual value.

In addition to measurement noise, we consider communication channel noise
of the shared communication network. At tk with k = 0, T ,2T , . . . , when fast and
slowly sampled states are available to each controller, the distributed controllers ex-
change information which is subject to communication channel noise. Specifically,
we assume that controller i sends x̌s

i = [x̌s,T
f,i x̌

s,T
s,i ]T as well as its control input tra-

jectory ui to the other controllers; and the values received by controller j (j �= i),
x̌

j
i and ǔ

j
i , are modeled as follows:

x̌
j
i = x̌s

i + n
c,j
xi

, (6.8)

ǔ
j
i = ui + n

j
ui

, (6.9)

where n
c,j
xi

and n
j
ui

are the communication noise terms. The communication noise

terms are also assumed to be bounded; that is, ‖nc,j
xi

‖ ≤ θ
c,j
xi

and ‖nj
ui

‖ ≤ θui
with

θ
c,j
xi

and θui
being positive real numbers. The noise terms in Eqs. 6.8–6.9 are gaus-

sian white noise variables with zero mean and covariance matrix σ 2
x

j
i

and σ 2
ui

with

appropriate dimensions, respectively. The power of the input signal (which can be
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system state variables or control input trajectories) should be much greater than the
channel noise variance in a way such that the input signal does not disappear in the
noise, which implies that σ 2

x
j
i

and σ 2
ui

should be sufficiently small. Furthermore, in

order to get deterministic stability results, we assume that the channel noise is also
bounded by θ

c,j
xi

and θui
.

According to the above modeling, at time tk with k = 0, T ,2T , . . . when fast and
slowly sampled states are available, the state information received by controller i

(i = 1, . . . ,m) is described as follows:

x̌i (tk) = [
x̌i

1, . . . , x̌
i
i−1, x̌

s
i , x̌

i
i+1, . . . , x̌

i
m

] = x(tk) + ni
x, (6.10)

where ni
x ∈ Rnx denotes combined communication and measurement noise and

‖ni
x‖ ≤ θ i

x with θ i
x being a suitable composition of θs

xf,i
, θs

xs,i
and θ

c,i
xj

(j �= i).
This class of systems is relevant to the case of large-scale chemical processes

that are controlled by distributed control systems that exchange information over a
shared communication network through which it is not cost-effective to communi-
cate at every sampling time. Instead, in order to achieve closed-loop stability and
good closed-loop performance, the controllers communicate every several sampling
times. Please see Fig. 6.1 in Sect. 6.5 for a schematic of such type of DMPC system
with the distributed controllers designed via LMPC techniques.

6.4 Lyapunov-Based Control

We assume that there exists a locally Lipschitz nonlinear control law h(x) =
[h1(x)T · · · hm(x)T ]T with ui = hi(x), i = 1, . . . ,m, which renders the origin of
the nominal interconnected closed-loop system asymptotically stable while satis-
fying the input constraints for all x inside the closed-loop stability region. This
assumption implies that there exist class K functions αi(·), i = 1,2,3,4 and a
continuously differentiable Lyapunov function V (x) for the nominal closed-loop
system, that satisfy the following inequalities:

α1
(‖x‖) ≤ V (x) ≤ α2

(‖x‖), (6.11)

∂V (x)

∂x

(

f (x) +
m∑

i=1

gi(x)hi(x)

)

≤ −α3
(‖x‖), (6.12)

∥∥∥∥
∂V (x)

∂x

∥∥∥∥ ≤ α4
(‖x‖), (6.13)

hi(x) ∈ Ui, i = 1, . . . ,m (6.14)

for all x ∈ O ⊆ Rnx where O is an open neighborhood of the origin. We denote the
region Ωρ ⊆ O as the stability region of the closed-loop system under h(x).

By continuity, the local Lipschitz property assumed for the vector fields f (x),
gi(x), i = 1, . . . ,m, k(x) and h(x) and taking into account that the manipulated
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Fig. 6.1 DMPC architecture
with multirate sampling
(solid line denotes fast state
sampling and/or
point-to-point links; dashed
line denotes slow state
sampling and/or shared
communication networks)

inputs ui , i = 1, . . . ,m, and the disturbance w are bounded in convex sets, there
exist positive constants M , Mgi

, Lx , Lui
, Lhi

and Lw (i = 1, . . . ,m) such that:

∥∥∥∥∥
f (x) +

m∑

i=1

gi(x)ui + k(x)w

∥∥∥∥∥
≤ M, (6.15)

∥∥gi(x)
∥∥ ≤ Mgi

, i = 1, . . . ,m, (6.16)
∥∥f (x) − f

(
x′)∥∥ ≤ Lx

∥∥x − x′∥∥, (6.17)
∥∥gi(x) − gi(x

′)
∥∥ ≤ Lui

∥∥x − x′∥∥, i = 1, . . . ,m, (6.18)
∥∥hi(x) − hi(x

′)
∥∥ ≤ Lhi

∥∥x − x′∥∥, i = 1, . . . ,m, (6.19)
∥
∥k(x)

∥
∥ ≤ Lw (6.20)

for all x, x′ ∈ Ωρ , ui ∈ Ui , i = 1, . . . ,m, and w ∈ W . In addition, by the continuous
differentiable property of the Lyapunov function V (x), there exist positive constants
L′

x , L′
ui

, Cgi
, i = 1, . . . ,m, and L′

w such that:

∥∥
∥∥
∂V (x)

∂x
f (x) − ∂V (x′)

∂x
f (x′)

∥∥
∥∥ ≤ L′

x

∥
∥x − x′∥∥, (6.21)

∥∥∥∥
∂V (x)

∂x
gi(x) − ∂V (x ′)

∂x
gi(x

′)
∥∥∥∥ ≤ L′

ui

∥∥x − x′∥∥, i = 1, . . . ,m, (6.22)

∥∥∥∥
∂V (x)

∂x
gi(x)

∥∥∥∥ ≤ Cgi
, i = 1, . . . ,m, (6.23)

∥∥∥∥
∂V (x)

∂x
k(x)

∥∥∥∥ ≤ L′
w (6.24)

for all x, x′ ∈ Ωρ , ui ∈ Ui , i = 1, . . . ,m, and w ∈ W .
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6.5 Multirate DMPC

In this section, the m controllers manipulating the m sets of inputs will be de-
signed through LMPC techniques. For the LMPC associated with controller i,
i = 1, . . . ,m, we will refer to it as LMPC i. A schematic of the control system
is shown in Fig. 6.1.

6.5.1 Multirate DMPC Formulation

At a sampling time in which slowly and fast sampled states are available, the dis-
tributed controllers coordinate their actions and predict future input trajectories
which, if applied until the next instant that both slowly and fast sampled states are
available, guarantee closed-loop stability. At a sampling time in which only fast
sampled states are available, each distributed controller tries to further optimize the
input trajectories calculated at the last instant in which the controllers communi-
cated, within a constrained set of values to improve the closed-loop performance
with the help of the available fast sampled states of its subsystem.

We propose to adopt an iterative DMPC approach when we have access to both
fast and slowly sampled state measurements. Specifically, the implementation strat-
egy of the DMPC architecture at time instants in which fast and slowly sampled
states are available is as follows:

1. At tk with k = 0, T ,2T , . . . , all the controllers first broadcast their local subsys-
tem states to the other controllers and then evaluate their future input trajectories
in an iterative fashion with initial input guesses generated by h(·).

2. At iteration c (c ≥ 1)
2.1. Each controller evaluates its own future input trajectory based on x̌i (tk)

(noisy version of x(tk)) and the last received control input trajectories (when
c = 1, initial input guesses generated by h(·) are used).

2.2. All the distributed controllers exchange their latest future input trajectories.
Based on the input information, each controller calculates and stores the
corresponding value of the cost function.

3. If a termination condition is satisfied, each controller sends its entire future input
trajectory corresponding to the smallest value of the cost to its actuators; if the
termination condition is not satisfied, go to Step 2 (c ← c + 1).

The implementation strategy of the DMPC architecture at time instants when
only local fast sampled states are available is as follows:

1. Controller i, i = 1, . . . ,m, receives its local fast sampled states, x̌s
f,i which are

affected by measurement noise.
2. Each controller i estimates the current full system state and evaluates its future

input trajectory and sends the first step input value to its actuators.

In the sequel, we describe these steps in detail.
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We first describe the design of the LMPCs at time instants in which fast and
slowly sampled states are available. To proceed, we define a nominal sampled tra-
jectory for each subsystem xi

h(t |tk), k = 0, T ,2T , . . . , which will be employed in
the construction of the stability constraint of LMPC i (i = 1, . . . ,m). This nomi-
nal sampled trajectory is obtained by integrating recursively, for t ∈ [tk, tk+T ) and
k = 0, T ,2T , . . . , the following equation:

ẋi
h(t |tk) = f

(
xi
h(t |tk)

) +
m∑

i=1

gi

(
xi
h(t |tk)

)
hi

(
xi
h(tk+l |tk)

)
, ∀ ∈ [tk+l , tk+l+1),

(6.25)

xi
h(tk|tk) = x̌i (tk), (6.26)

where l = 0, . . . , T − 1, x̌i(tk) is the system state received by controller i at tk .
Based on this sampled trajectory, we can define the following input trajectories:

ui
h,j (t |tk) = hj

(
xi
h(tk+l |tk)

)
, j = 1, . . . ,m,∀t ∈ [tk+l , tk+l+1), l = 0, . . . , T − 1.

(6.27)
From the definition of xi

h, we see that this trajectory is a prediction of the evo-
lution of the system of Eq. 6.3 under the control law h(x) applied in a sample-and-
hold fashion. This sampled trajectory, xi

h(t |tk), will be used in the formulation of
LMPC i.

At time tk , k = 0, T ,2T , . . . , the LMPCs are evaluated in an iterative fashion
to obtain the future input trajectories. Specifically, the optimization problem of
LMPC j at iteration c is as follows:

min
uj ∈S(Δ)

∫ tk+N

tk

[
∥∥x̃j (τ )

∥∥
Qc

+
m∑

i=1

∥∥ui(τ )
∥∥

Rci

]

dτ, (6.28)

s.t. ˙̃xj (t) = f
(
x̃j (t)

) +
m∑

i=1

gi

(
x̃j (t)

)
ui(t), (6.29)

ui(t) = ǔ
∗,c−1
i (t |tk), ∀i, �= j, (6.30)

∥∥uj (t) − u
∗,c−1
j (t |tk)

∥∥ ≤ Δuj , ∀t ∈ [tk, tk+T ), (6.31)

uj (t) ∈ Uj , (6.32)

x̃j (tk) = x̌j (tk), (6.33)

∂V (x̃j (t))

∂x

(
1

m
f

(
x̃j (t)

) + gj

(
x̃j (t)

)
uj (t)

)

≤ ∂V (x
j
h(t |tk))
∂x

(
1

m
f

(
x

j
h(t |tk)

) + gj

(
x

j
h(t |tk)

)
u

j
h,j (t |tk)

)
,

∀t ∈ [tk, tk+T ), (6.34)
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where state x̃j is the predicted trajectory of the nominal system with uj computed
by this LMPC and all the other inputs are received from the other controllers (i.e.,
ǔ

∗,c−1
i (t |tk) which is a noisy version of u

∗,c−1
i (t |tk)).

The optimal solution to this optimization problem is denoted by u
∗,c
j (t |tk) which

is defined for t ∈ [tk, tk+N). Accordingly, we define the final optimal input trajec-
tory of LMPC j (that is, the optimal trajectories computed at the last iteration) as
u

∗,f
j (t |tk) which is also defined for t ∈ [tk, tk+N). Note that for the first iteration

of each distributed LMPC, the input trajectories defined in Eq. 6.27 are used as the
initial input trajectory guesses; that is, u

∗,0
i = u

j
h,i with i = 1, . . . ,m. The constraint

of Eq. 6.34 is used to guarantee the closed-loop stability and the prediction horizon
N should be chosen to satisfy N ≥ T .

The manipulated inputs of the above control design from time tk to tk+1 (k =
0, T ,2T , . . .) are defined as follows:

ui(t) = u
∗,f
i (t |tk), i = 1, . . . ,m, ∀t ∈ [tk, tk+1). (6.35)

Next, we describe the design of the distributed controllers at the time instants in
which only local fast sampled states are available. In order to improve the perfor-
mance, between two slow sampling times, each controller uses the available local
fast sampled measurements to adjust its control input based on the calculated opti-
mal input trajectory for the current time obtained at the last time instant in which fast
and slowly sampled states were available. In order to guarantee closed-loop stabil-
ity, the maximum deviation of the adjusted inputs from the optimal input trajectory
at each time step is bounded.

Between two slow sampling times, each controller estimates the current full
system state using an observer based on the system model and the available in-
formation. Specifically, the observer for controller i takes the following form for
t ∈ [tl−1, tl):

˙̂xi(t) = f
(
x̂i (t)

) + gi

(
x̂i (t)

)
u∗

i (t) +
m,j �=i∑

j=1

gj

(
x̂i (t)

)
ǔ

∗,i
j (t |tk), (6.36)

x̂i (tl−1) = xi
e(tl−1), (6.37)

where x̂i is the state of this observer, ǔ
∗,i
j (t |tk) is the optimal input trajectory of

LMPC j (j = 1, . . . ,m, j �= i) received by LMPC i (i.e., it is a noisy version of
u

∗,f
j (t |tk) + ni

uj
), u∗

i (t) is the actual input that has been applied to subsystem i,

and xi
e(tl−1) is the full state estimate obtained at tl−1. The state estimate xi

e(tl),
l �= 0, T ,2T , . . . , is a combination of the state of the observer of Eqs. 6.36–6.37 and
of the available local state information x̌s

f,i (tl) as follows:

xi
e(tl) = [

x̂i
1(tl)

T · · · x̌i (tl)
T · · · x̂i

m(tl)
T
]T

, (6.38)

where x̌i (tl)
T = [x̌s,T

f,i x̂T
s,i].



6.5 Multirate DMPC 201

The optimization problem of LMPC j for a time instant tl , l �= 0, T ,2T , . . . is as
follows:

min
uj ∈S(Δ)

∫ tk+N

tk

[
∥∥x̃j (τ )

∥∥
Qc

+
m∑

i=1

∥∥ui(τ )
∥∥

Rci

]

dτ, (6.39)

s.t. ˙̃xj (t) = f
(
x̃j (t)

) +
m∑

i=1

gi

(
x̃j (t)

)
ui(t), (6.40)

ui(t) = ǔ
∗,j
i (t |tk), ∀i �= j, t ∈ [tl , tk+N), (6.41)

ui(t) = hi(x̃
j (t)), ∀i �= j, t ∈ [tk+N, tl+N), (6.42)

∥∥uj (t) − u
∗,f
j (t |tk)

∥∥ ≤ Δuj , t ∈ [tl , tk+N), (6.43)

uj (t) ∈ Uj , (6.44)

x̃j (tl) = x
j
e (tl), (6.45)

where tk is the last time instant in which both fast and slowly sampled states are
available, the state x̃j is the predicted trajectory of the nominal system with uj

computed by this LMPC and all the other inputs are determined by the constraints
of Eqs. 6.41 and 6.42. In this optimization problem, the input uj is restricted to be

within a bounded region around the reference input trajectories given by u
∗,f
i (t |tk)

and h(x). This ensures that the stability of the closed-loop system is maintained;
please also see the proof of Theorem 6.1 below. The optimal solution to this opti-
mization problem is denoted by u

∗,l
j (t |tl) which is defined for t ∈ [tl , tl+N).

The manipulated inputs of the control design of Eqs. 6.39–6.45 from tl to tl+1

(l �= 0, T ,2T , . . .) are defined as follows:

ui(t) = u
∗,l
i (t |tl), i = 1, . . . ,m, ∀t ∈ [tl , tl+1). (6.46)

In the design of Eqs. 6.28–6.35 and 6.39–6.46, the closed-loop stability of the
system of Eq. 6.3 is guaranteed by the design of Eqs. 6.28–6.35 at each sampling
time tk , k = 0, T ,2T , . . . , when the full state measurements are available. The de-
sign of Eqs. 6.39–6.46 takes advantage of the predicted input trajectories u

∗,f
i ,

i = 1, . . . ,m, at sampling times tk , k = 0, T ,2T , . . . , and the additional available
fast-sampling state measurements to adjust the predicted inputs, u

∗,f
i , to improve

the closed-loop performance.

Remark 6.1 In the proposed implementation strategies, we adopt an iterative DMPC
approach when both the fast and slowly sampled states are available. Note that a
sequential DMPC approach or a centralized LMPC approach can also be applied in
the proposed multirate DMPC framework.



202 6 Multirate Distributed Model Predictive Control

6.5.2 Stability Properties

The multirate DMPC of Eqs. 6.28–6.35 and 6.39–6.46 computes the inputs ui ,
i = 1, . . . ,m, applied to the system of Eq. 6.3 in a way such that in the closed-
loop system, the value of the Lyapunov function at time instant tk (i.e., V (x(tk)))
is a decreasing sequence of values with a lower bound. This is achieved due to
the constraints of Eq. 6.34 incorporated in each LMPC. This property is presented
in Theorem 6.1 below. To prove this theorem, we need the following definitions,
propositions and corollaries.

Definition 6.1 We define Ωρn as follows:

ρn = max
{
V

(
x(t)

) : (x(t) + n
) ∈ Ωρ,‖n‖ ≤ θx

}
, (6.47)

where θx = max1≤i≤m{θi
x} defines the upper bound on the noise n. The region Ωρn

will be used as the stability region of the system under the control law h(x) in the
presence of measurement noise, process disturbances and communication noise.

Definition 6.2 The closed-loop state trajectory of the nominal system for time t ∈
[tk, tk+1) under the nonlinear control law h(x) based on actual system state (x(tk))
and applied in sample and hold fashion is denoted by xh,2(t) which is obtained by
integrating, for t ∈ [tk, tk+1), the following equation:

ẋh,2(t) = f
(
xh,2(t)

) +
m∑

i=1

gi

(
xh,2(t)

)
hi

(
xh,2(tk)

)
, (6.48)

where xh,2(tk) ∈ Ωρn .

Definition 6.3 The closed-loop state trajectory of the nominal system for time
t ∈ [tk, tk+1) under the nonlinear control law h(x) based on noisy system states
and applied in sample and hold fashion is denoted by xh(t) which is obtained by
integrating, for t ∈ [tk, tk+1), the following equation:

ẋh(t) = f
(
xh(t)

) +
m∑

i=1

gi

(
xh(t)

)
hi

(
x̌h(tk)

)
, (6.49)

where xh(tk) ∈ Ωρn and x̌h(tk) = xh,2(tk) + n(tk), ‖n‖ ≤ θx .

Proposition 6.1 Consider the systems:

ẋa(t) = f
(
xa(t)

) +
m∑

i=1

gi

(
xa(t)

)
hi

(
x̌a(0)

)
, (6.50)

ẋb(t) = f
(
xb(t)

) +
m∑

i=1

gi

(
xb(t)

)
hi

(
x̌b(0)

)
, (6.51)
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where the initial states xa(0), xb(0) ∈ Ωρn , ‖xa(0) − xb(0)‖ ≤ θab , ‖xa(0) −
x̌a(0)‖ ≤ θa and ‖xb(0) − x̌b(0)‖ ≤ θb. If 0 < ρn < ρ, then there exists a function
fE(·, ·, ·, ·) such that:

∥∥xa(t) − xb(t)
∥∥ ≤ fE(θab, θa, θb, t), (6.52)

for all xa(t), xb(t) ∈ Ωρn with fE(θab, θa, θb, t) = (θab + L2
L1

)eL1t − L2
L1

where L1 =
Lx + ∑m

i=1 umax
i Lui

, L2 = (θa + θb + θab)
∑m

i=1 Mgi
Lhi

with θab, θa and θb being
positive real numbers.

Proof Define the error vector as e(t) = xa(t) − xb(t). The time derivative of the
error, e(t), is as follows:

ė(t) = f
(
xa(t)

) − f
(
xb(t)

) +
m∑

i=1

(
gi

(
xa(t)

)
hi

(
x̌a(0)

) − gi

(
xb(t)

)
hi

(
x̌b(0)

))
.

(6.53)
Adding to and subtracting

∑m
i=1 gi(xa(t))hi(x̌b(0)) from the above equation, we

obtain:

ė(t) = f
(
xa(t)

) − f
(
xb(t)

) +
m∑

i=1

gi

(
xa(t)

)(
hi

(
x̌a(0)

) − hi

(
x̌b(0)

))

+
m∑

i=1

hi

(
x̌b(0)

)(
gi

(
xa(t)

) − gi

(
xb(t)

))
. (6.54)

Using the conditions defined in Eqs. 6.17–6.19 obtained by the local Lipschitz prop-
erty assumed for the vector fields f (·), gi(·), hi(·), i = 1, . . . ,m, and the fact that
hi(·) satisfies input constraints (hi(·) ∈ Ui ), we obtain the following inequality:

∥
∥ė(t)

∥
∥ ≤ Lx

∥
∥xa(t) − xb(t)

∥
∥ +

m∑

i=1

Mgi
Lhi

∥
∥x̌a(0) − x̌b(0)

∥
∥

+
m∑

i=1

umax
i Lui

∥∥xa(t) − xb(t)
∥∥. (6.55)

Using that ‖x̌a(0) − x̌b(0)‖ ≤ θa + θb + θab and defining L1 = Lx + ∑m
i=1 umax

i Lui

and L2 = (θa + θb + θab)
∑m

i=1 Mgi
Lhi

, we obtain:
∥∥ė(t)

∥∥ ≤ L1
∥∥e(t)

∥∥ + L2. (6.56)

Integrating ‖ė(t)‖ with initial condition ‖e(0)‖ ≤ θab, the following bound on the
norm of the error vector is obtained:

∥∥e(t)
∥∥ ≤

(
θab + L2

L1

)
eL1t − L2

L1
. (6.57)

This proves Proposition 6.1. �
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The following corollary which is an extension of Proposition 2.1 provides suffi-
cient conditions that ensure that h(·) can achieve closed-loop stability of the nominal
system in the presence of bounded measurement and communication noise.

Corollary 6.1 Consider the closed-loop nominal sampled trajectory xh(t) of the
system of Eq. 6.3 as defined in Definition 6.3. Let Δ,εs, θx > 0 and 0 < ρs < ρn < ρ

satisfy:

−α3
(
α−1

2 (ρs)
) +

(

L′
x +

m∑

i=1

umax
i L′

ui

)
(
fE(0,0, θx,Δ) + MΔ

) + θx

m∑

i=1

Cgi
Lhi

≤ −εs/Δ, (6.58)

where fE is defined in Proposition 6.1. Then, for any k, if xh(tk) ∈ Ωρn/Ωρs the
following inequalities hold:

V
(
xh(tk+1)

) ≤ V
(
xh(tk)

) − εs (6.59)

V
(
xh(t)

) ≤ V
(
xh(tk)

)
, ∀t ∈ [tk, tk+1). (6.60)

Also, if ρmin ≤ ρn where:

ρmin = max
{
V

(
xh(t + Δ)

) : V (
xh(t)

) ≤ ρs

}
(6.61)

and xh(t0) ∈ Ωρn
, the following inequalities hold:

V
(
xh(tk)

) ≤ max
{
V

(
xh(t0)

) − kεs, ρmin
}
, (6.62)

V
(
xh(t)

) ≤ max
{
V

(
xh(tk)

)
, ρmin

}
, ∀t ∈ [tk, tk+1). (6.63)

Proof Following Definition 6.3, the time derivative of the Lyapunov function along
the nominal sampled trajectory xh(t) of the system of Eq. 6.3 in t ∈ [tk, tk+1) is
given by:

V̇
(
xh(t)

) = ∂V (xh(t))

∂x

(

f
(
xh(t)

) +
m∑

i=1

gi

(
xh(t)

)
hi

(
x̌h(tk)

)
)

. (6.64)

Adding and subtracting ∂V (xh,2(tk ))

∂x
(f (xh,2(tk)) + ∑m

i=1 gi(xh,2(tk))hi(xh,2(tk))) to
and from the above equation and taking into account the Eq. 6.12, we obtain:

V̇
(
xh(t)

) ≤ −α3
(∥∥xh,2(tk)

∥∥) + ∂V (xh(t))

∂x
f

(
xh(t)

) − ∂V (xh,2(tk))

∂x
f

(
xh,2(tk)

)

+ ∂V (xh(t))

∂x

m∑

i=1

gi

(
xh(t)

)
hi

(
x̌h(tk)

)

− ∂V
(
xh,2(tk)

)

∂x

m∑

i=1

gi

(
xh,2(tk)

)
hi

(
xh,2(tk)

)
. (6.65)
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Adding and subtracting ∂V (xh(t))
∂x

∑m
i=1 gi(xh(t))hi(xh,2(tk)) to and from the above

inequality, we have:

V̇
(
xh(t)

) ≤ −α3
(∥∥xh,2(tk)

∥∥) + ∂V (xh(t))

∂x
f

(
xh(t)

) − ∂V (xh,2(tk))

∂x
f

(
xh,2(tk)

)

+ ∂V (xh(t))

∂x

m∑

i=1

gi

(
xh(t)

)
hi

(
x̌h(tk)

)

− ∂V (xh(t))

∂x

m∑

i=1

gi

(
xh(t)

)
hi

(
xh,2(tk)

)

+ ∂V (xh(t))

∂x

m∑

i=1

gi

(
xh(t)

)
hi

(
xh,2(tk)

)

− ∂V (xh,2(tk))

∂x

m∑

i=1

gi

(
xh,2(tk)

)
hi

(
xh,2(tk)

)
. (6.66)

From Eq. 6.11 we have:

−α3
(∥∥xh,2(tk)

∥∥) ≤ −α3
(
α−1

2 (ρs)
)

(6.67)

for all xh,2(tk) ∈ Ωρn/Ωρs . From the Lipschitz properties of Eqs. 6.21–6.24 and the
fact that hi(·) ∈ Ui , we obtain the following inequality:

V̇
(
xh(t)

) ≤ −α3
(
α−1

2 (ρs)
) +

(

L′
x +

m∑

i=1

umax
i L′

ui

)
∥
∥xh(t) − xh,2(tk)

∥
∥

+
m∑

i=1

Cgi
Lhi

∥∥x̌h(tk) − xh,2(tk)
∥∥. (6.68)

Using the triangular inequality, we obtain:

∥∥xh(t) − xh,2(tk)
∥∥ ≤ ∥∥xh(t) − xh,2(t)

∥∥ + ∥∥xh,2(t) − xh,2(tk)
∥∥, ∀t ∈ [tk, tk+1).

(6.69)
Taking into account Eq. 6.15 and the continuity of xh,2(t), the following bound can
be written for all t ∈ [tk, tk+1):

∥∥xh,2(t) − xh,2(tk)
∥∥ ≤ MΔ. (6.70)

Using that ‖xh(t) − xh,2(t)‖ ≤ fE(0,0, θx,Δ) and ‖x̌h(tk) − xh,2(tk)‖ ≤ θx , we
obtain from Eq. 6.68 the following bound on the time derivative of the Lyapunov
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function for t ∈ [tk, tk+1), for all initial states xh(tk) ∈ Ωρn/Ωρs :

V̇
(
xh(t)

) ≤ −α3
(
α−1

2 (ρs)
) +

(

L′
x +

m∑

i=1

umax
i L′

ui

)
(
fE(0,0, θx,Δ) + MΔ

)

+ θx

m∑

i=1

Cgi
Lhi

. (6.71)

If the condition of Eq. 6.58 is satisfied, then V̇ (xh(t)) ≤ −εs/Δ. Integrating this
bound on t ∈ [tk, tk+1), we obtain that the inequalities of Eqs. 6.59–6.60 hold. Ap-
plying this result recursively, if xh(t0) ∈ Ωρn/Ωρs , then there exists k∗ > 0 such that
xh(tk∗) ∈ Ωρs , xh(tk) ∈ Ωρn/Ωρs , ∀k ≤ k∗ and V (xh(tk)) ≤ V (xh(t0)) − kεs . Once
the state converges to Ωρs ⊂ Ωρmin (or if it starts there) it remains inside Ωρmin for
all times. This statement holds because from the definition of ρmin, if xh(tk) ∈ Ωρs ,
then xh(tk+1) ∈ Ωρmin . It follows that the condition of Eq. 6.62 holds, and thus, xh(t)

is ultimately bounded in Ωρmin . The bound on the evolution of the state between
sampling times follows from Eq. 6.58. �

In Theorem 6.1 below, we provide sufficient conditions under which the DMPC
of Eqs. 6.28–6.35 and 6.39–6.46 guarantees that the state of the closed-loop system
is ultimately bounded in a region that contains the origin. To simplify the proof of
Theorem 6.1, we define new functions fH (τ) and fX2(τ ) based on fE and fX,i

(i = 1, . . . ,m) (see Proposition 5.1), respectively, as follows:

fH (τ) =
m∑

i=2

(
1

m
L′

x + Mgi
Lhi

+ umax
i L′

ui

)

×
(

1

L1
fE

(
θi
x + θ1

x ,0,0, τ
) − L2τ + θ i

x + θ1
x

L1

)
(6.72)

fX2(τ ) =
(

1

m
L′

x + Lu1u
max
1

)(
1

C1,1
fX,1(0, τ ) − C2,1

C1,1
τ

)

+
m∑

i=2

(
1

m
L′

x + L′
ui

umax
i

)

×
(

1

C1,i

fX,i

(
θi
x + θ1

x , τ
) − C2,i

C1,i

τ − θi
x + θ1

x

C1,i

)
. (6.73)

It is easy to verify that fH (τ) and fX2(τ ) are strictly increasing and convex func-
tions of their arguments.

Theorem 6.1 Consider the system of Eq. 6.3 in closed-loop with the DMPC design
of Eqs. 6.28–6.35 and 6.39–6.46 based on the controller h(x) that satisfies the con-
ditions of Eqs. 6.11–6.14 with class K functions αi(·), i = 1,2,3,4. If there exist
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Δ > 0, εs > 0, θx > 0, ρ > ρn > ρmin > 0, ρ > ρn > ρs > 0 and N ≥ T ≥ 1 that
satisfy the conditions of Eqs. 6.58 and the following inequality:

− T εs + fX2(T Δ) + fV

(
fW (θx, T Δ)

) + fV

(
fW(θx,0)

) + fH (T Δ)

+
m∑

i=1

Cg,iΔui(T − 1)Δ < 0 (6.74)

with fV defined in Eq. 2.49, fW defined in Eq. 5.119, fH defined in Eq. 6.72 and
fX2 defined in Eq. 6.73, and if the initial state of the closed-loop system x(t0) ∈ Ωρn

,
then x(t) is ultimately bounded in Ωρb

⊆ Ωρn where:

ρb = ρmin + fX2(T Δ) + fV

(
fW(θx, T Δ)

) + fV

(
fW(θx,0)

) + fH (T Δ)

+
m∑

i=1

Cg,iΔui(T − 1)Δ (6.75)

with ρmin defined in Eq. 6.61.

Proof We first consider two consecutive time instants in which both fast and slowly
sampled states are available and we have full system state measurements which are
affected by noise: tk and tk+T (k = 0, T ,2T , . . .). We will prove that the Lyapunov
function of the system is decreasing from tk to tk+T . In the following, we denote
the trajectory of the nominal system of Eq. 6.3 under the DMPC of Eqs. 6.28–6.35
and 6.39–6.46 starting from x̌1(tk) (which is the state received by LMPC 1 at tk) as
x̃, and we also denote the predicted nominal system trajectory in the evaluation of
the LMPC of Eqs. 6.28–6.34 at the final iteration as x̃j with j = 1, . . . ,m. It should
be mentioned that the initial condition for the nominal sampled trajectory x̃ under
the implementation of u∗

i can be x̃(tk) = xi
h(t |tk) for any i = 1, . . . ,m. Without loss

of generality, we assume that x̃(tk) = x̌1(tk) = x1
h(t |tk); use of any i = 2, . . . ,m in

x̃(tk) = xi
h(t |tk) would simply require an appropriate modification in the definitions

of fX2(·) and fH (·).
The derivative of the Lyapunov function of the nominal system of Eq. 6.3 un-

der the multirate DMPC of Eqs. 6.28–6.35 and 6.39–6.46 from tk to tk+T can be
expressed as follows:

V̇
(
x̃(t)

) = ∂V (x̃(t))

∂x

(

f
(
x̃(t)

) +
m∑

i=1

gi

(
x̃(t)

)
u∗

i (t)

)

, (6.76)

where x̃(tk) = x̌1(tk) = x1
h(tk |tk) and u∗

i (t) is the actual input applied to the system
and defined as follows:

u∗
i (t) =

{
u

∗,f
i (t |tk), t ∈ [tk, tk+1),

u
∗,l
i (t |tl), t ∈ [tl, tl+1), l = k + 1, . . . , k + T − 1.

(6.77)
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Combining Eq. 6.76 and the inequality constraints of Eq. 6.34 (i = 1, . . . ,m),

and adding and subtracting the term
∂V (x1

h(t |tk))
∂x

(f (x1
h(t |tk)) + ∑m

i=1 gi(x
1
h(t |tk)) ×

u1
h,i(t |tk)) to and from the right-hand side of the resulting inequality, we can obtain

the following inequality for all t ∈ [tk, tk+T ):

V̇
(
x̃(t)

) ≤ ∂V (x1
h(t |tk))
∂x

(

f
(
x1
h(t |tk)

) +
m∑

i=1

gi

(
x1
h(t |tk)

)
u1

h,i(t |tk)
)

+ ∂V (x1
h(t |tk))
∂x

(
1

m
f

(
x1
h(t |tk)

) + g1
(
x1
h(t |tk)

)
u1

h,1(t |tk)
)

− ∂V (x1
h(t |tk))
∂x

(
1

m
f

(
x1
h(t |tk)

) + g1
(
x1
h(t |tk)

)
u1

h,1(t |tk)
)

+ · · ·
+ ∂V (xm

h (t |tk))
∂x

(
1

m
f

(
xm
h (t |tk)

) + gm

(
xm
h (t |tk)

)
um

h,m(t |tk)
)

− ∂V (x1
h(t |tk))
∂x

(
1

m
f

(
x1
h(t |tk)

) + gm

(
x1
h(t |tk)

)
u1

h,m(t |tk)
)

+ ∂V (x̃(t))

∂x

(
1

m
f

(
x̃(t)

) + g1(x̃)u
∗,f

1 (t |tk)
)

− ∂V (x̃1(t))

∂x

(
1

m
f

(
x̃1(t)

) + g1
(
x̃1(t)

)
u

∗,f

1 (t |tk)
)

+ · · ·
+ ∂V (x̃(t))

∂x

(
1

m
f

(
x̃(t)

) + gm(x̃)u
∗,f
m (t |tk)

)

− ∂V (x̃m(t))

∂x

(
1

m
f

(
x̃m(t)

) + gm

(
x̃m(t)

)
u

∗,f
m (t |tk)

)

+
m∑

i=1

∂V (x̃(t))

∂x
gi

(
x̃(t)

)(
u∗

i (t) − u
∗,f
i (t |tk)

)
. (6.78)

Using the locally Lipschitz properties of Eqs. 6.21–6.24, the following inequality
can be obtained for t ∈ [tk, tk+T ) from the inequality of Eq. 6.78:

V̇
(
x̃(t)

) ≤ V̇
(
x1
h(t |tk)

)

+
(

1

m
L′

x + L′
u1

u
∗,f

1 (t |tk)
)∥∥x̃(t) − x̃1(t)

∥∥ + · · ·

+
(

1

m
L′

x + L′
um

u
∗,f
m (t |tk)

)∥∥x̃(t) − x̃m(t)
∥∥
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+
(

1

m
L′

x + Mg2Lh2 + umax
2 L′

u2

)∥∥x2
h(t |tk) − x1

h(t |tk)
∥∥ + · · ·

+
(

1

m
L′

x + MgmLhm + umax
m L′

um

)∥∥xm
h (t |tk) − x1

h(t |tk)
∥∥

+
m∑

i=1

Cgi

(
u∗

i (t) − u
∗,f
i (t |tk)

)
. (6.79)

Applying Propositions 5.1 and 6.1 to the inequality of Eq. 6.79, we have:

V̇
(
x̃(t)

) ≤ V̇
(
x1
h(t |tk)

)

+
(

1

m
L′

x + L′
u1

u
∗,f

1 (t |tk)
)

fX,1(0, t)

+
(

1

m
L′

x + L′
u2

u
∗,f

2 (t |tk)
)

fX,2
(
θ1
x + θ2

x , t
) + · · ·

+
(

1

m
L′

x + L′
um

u
∗,f
m (t |tk)

)
fX,m

(
θ1
x + θm

x , t
)

+
(

1

m
L′

x + Mg2Lh2 + umax
2 L′

u2

)
fE

(
θ1
x + θ2

x ,0,0, t
) + · · ·

+
(

1

m
L′

x + MgmLhm + umax
m L′

um

)
fE

(
θ1
x + θm

x ,0,0, t
) + · · ·

+
m∑

i=1

Cgi

(
u∗

i (t) − u
∗,f
i (t |tk)

)
. (6.80)

Integrating the inequality of Eq. 6.80 from t = tk to t = tk+T and taking into account
that x̃(tk) = x1

h(tk|tk), the constraints of Eqs. 6.31 and 6.43 and the definitions of
fX2(·), fH (·) and u∗(t), the following inequality can be obtained:

V
(
x̃(tk+T )

) ≤ V
(
x1
h(tk+T |tk)

) + fX2(T Δ) + fH (T Δ) +
m∑

i=1

Cg,iΔui(T − 1)Δ.

(6.81)
Using the above inequality and since V (x1

h(tk+T |tk)) ≤ max{V (x1
h(tk|tk)) −

T εs, ρmin} from Corollary 6.1, x̃(tk) = x1
h(tk|tk) and ‖V (x̃(tk)) − V (x(tk))‖ ≤

fV (fW (θx,0)) and ‖V (x̃(tk+T )) − V (x(tk+T ))‖ ≤ fV (fW(θx, T Δ)) from Corol-
lary 5.3 and Proposition 2.3, we can obtain the following inequality:

V
(
x(tk+T )

) ≤ max
{
V

(
x(tk)

) − T εs, ρmin
}

+ fX2(T Δ) + fH (T Δ) + fV

(
fW (θx, T Δ)

)

+ fV

(
fW (θx,0)

) +
m∑

i=1

Cg,iΔui(T − 1)Δ. (6.82)
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Fig. 6.2 Reactor–separator with recycle process network with reactions A → B and A → C

If there exist Δ > 0, εs > 0, θx > 0, ρ > ρn > ρmin > 0, ρ > ρn > ρs > 0 and
N ≥ T ≥ 1 that satisfy the conditions of Eqs. 6.58 and Eq. 6.74, then there exists
εw > 0 such that the following inequality holds:

V
(
x(tk+T )

) ≤ max
{
V

(
x(tk)

) − εw,ρb

}
, (6.83)

which implies that if x(tk) ∈ Ωρn/Ωρb
, then V (x(tk+T )) < V (x(tk)), and if x(tk) ∈

Ωρb
, then V (x(tk+T )) ≤ ρb .

Because the upper bound on the difference between the Lyapunov function of the
actual trajectory x and the nominal trajectory x̃ (the term fX2(T Δ) + fH (T Δ) +
fV (fW (θx, T Δ)) + fV (fW (θx,0)) + ∑m

i=1 Cg,iΔui(T − 1)Δ) is a strictly increas-
ing function of T , the inequality of Eq. 6.83 also implies that:

V
(
x(t)

) ≤ max
{
V

(
x(tk)

) − εw,ρb

}
, ∀t ∈ [tk, tk+T ). (6.84)

Using the inequality of Eq. 6.84 recursively, it can be proved that if x(t0) ∈ Ωρn ,
then the closed-loop trajectories of the system of Eq. 6.3 under the multirate DMPC
design stay in Ωρn for all times (i.e., x(t) ∈ Ωρn for all t ). Moreover, if x(t0) ∈ Ωρn ,
the closed-loop trajectories of the system of Eq. 6.3 under the multirate DMPC
design satisfy:

lim sup
t→∞

V
(
x(t)

) ≤ ρb. (6.85)

This proves the stability result stated in Theorem 6.1. �

6.6 Application to a Reactor–Separator Process

Consider the three vessel, reactor–separator process with different reactions taking
place in the vessels as shown in Fig. 6.2 [10]. A feed stream to the first CSTR con-
tains the reactant, A, which is converted into the desired product, B . Species A can
also react into an undesired side-product, C. The solvent does not react and is la-
beled as D. The effluent of the first CSTR along with additional fresh feed makes
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up the inlet to the second CSTR. The reactions A → B and A → C (referred to as 1
and 2, respectively) take place in the two CSTRs in series before the effluent from
CSTR 2 is fed to a flash tank. The overhead vapor from the flash tank is condensed
and recycled to the first CSTR, and the bottom product stream is removed. All three
vessels are assumed to have static holdup. The dynamic equations describing the be-
havior of the system, obtained through material and energy balances under standard
modeling assumptions, are given below:

dT1

dt
= F10

V1
(T10 − T1) + Fr

V1
(T3 − T1) + −ΔH1

ρCp

k1e
−E1
RT1 CA1

+ −ΔH2

ρCp

k2e
−E2
RT1 CA1 + Q1

ρCpV1
, (6.86)

dCA1

dt
= F10

V1
(CA10 − CA1) + Fr

V1
(CAr − CA1)

− k1e
−E1
RT1 CA1 − k2e

−E2
RT1 CA1, (6.87)

dCB1

dt
= −F10

V1
CB1 + Fr

V1
(CBr − CB1) + k1e

−E1
RT1 CA1, (6.88)

dCC1

dt
= −F10

V1
CC1 + Fr

V1
(CCr − CC1) + k2e

−E2
RT1 CA1, (6.89)

dT2

dt
= F1

V2
(T1 − T2) + F20

V2
(T20 − T2) + −ΔH1

ρCp

k1e
−E1
RT2 CA2

+ −ΔH2

ρCp

k2e
−E2
RT2 CA2 + Q2

ρCpV2
, (6.90)

dCA2

dt
= F1

V2
(CA1 − CA2) + F20

V2
(CA20 − CA2)

− k1e
−E1
RT2 CA2 − k2e

−E2
RT2 CA2, (6.91)

dCB2

dt
= F1

V2
(CB1 − CB2) − F20

V2
CB2 + k1e

−E1
RT2 CA2, (6.92)

dCC2

dt
= F1

V2
(CC1 − CC2) − F20

V2
CC2 + k2e

−E2
RT2 CA2, (6.93)

dT3

dt
= F2

V3
(T2 − T3) − HvapFr

ρCpV3
+ Q3

ρCpV3
, (6.94)

dCA3

dt
= F2

V3
(CA2 − CA3) − Fr

V3
(CAr − CA3), (6.95)

dCB3

dt
= F2

V3
(CB2 − CB3) − Fr

V3
(CBr − CB3), (6.96)
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dCC3

dt
= F2

V3
(CC2 − CC3) − Fr

V3
(CCr − CC3). (6.97)

Each of the tanks has an external heat input/removal actuator. The model of the
flash tank separator is derived under the assumption that the relative volatility for
each of the species remains constant within the operating temperature range of the
flash tank. This assumption allows calculating the mass fractions in the overhead
based upon the mass fractions in the liquid portion of the vessel. It has also been
assumed that there is a negligible amount of reaction taking place in the separator.
The following algebraic equations model the composition of the overhead stream
relative to the composition of the liquid holdup in the flash tank:

CAr = αACA3

K
, (6.98)

CBr = αBCB3

K
, (6.99)

CCr = αCCC3

K
, (6.100)

where

K = αACA3
MWA

ρ
+ αBCB3

MWB

ρ
+ αCCC3

MWC

ρ
+ αDxDρ, (6.101)

and xD is the mass fraction of the solvent in the flash tank liquid holdup and is found
from a mass balance. The definitions for the variables used in Eqs. 6.86–6.100 be
found in Table 6.1, with the parameter values given in Table 6.2.

The system of Eqs. 6.86–6.100 is numerically simulated using a standard Euler
integration method. Process noise was added to the right-hand side of each equation
in the differential equations to simulate disturbances/model uncertainty and it is
generated as autocorrelated noise of the form wk = φwk−1 + ξk where k = 0,1, . . .

is the discrete time step of 0.001 h, ξk is generated by a normally distributed ran-
dom variable with standard deviation σp, and φ is the autocorrelation factor and
wk is bounded by θp , that is ‖wk‖ ≤ θp . Table 6.3 contains the parameters used in
generating the process noise.

This process is divided into three subsystems corresponding to the first CSTR, the
second CSTR and the separator, respectively. For the three subsystems, we will refer
to them as subsystem 1, subsystem 2 and subsystem 3, respectively. The state of sub-
system 1 is defined as the deviations of the temperature and species concentrations
in the first CSTR from their desired steady-state; that is, xT

1 = [xT
f,1, x

T
s,1] where

xf,1 = T1 −T1s and xT
s,1 = [CA1 −CA1s CB1 −CB1s CC1 −CCs] denote fast sampled

and slowly sampled measurements of subsystem 1, respectively. Due to the simplic-
ity of temperature measurement at each sampling time, we denote the temperature as
the fast sampled measurement of each subsystem. The states of subsystems 2 and 3
are defined similarly; they are xT

2 = [T2 −T2s CA2 −CA2s CB2 −CB2s CC2 −CC2s]
and xT

3 = [T3 −T3s CA3 −CA3s CB3 −CB3s CC3 −CC3s ]. Accordingly, the state of
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Table 6.1 Process variables of the reactor–separator process of Eqs. 6.86–6.100

CA1, CA2, CA3 Concentrations of A in vessels 1, 2, 3

CB1, CB2, CB3 Concentrations of B in vessels 1, 2, 3

CC1, CC2, CC3 Concentrations of C in vessels 1, 2, 3

CAr , CBr , CCr Concentrations of A, B, C in the recycle

T1, T2, T3 Temperatures in vessels 1, 2, 3

T10, T20 Feed stream temperatures to vessels 1, 2

F1, F2, F3 Effluent flow rates from vessels 1, 2, 3

F10, F20 Feed stream flow rates to vessels 1, 2

CA10, CA20 Concentrations of A in the feed stream to vessels 1, 2

Fr Recycle flow rate

V1, V2, V3 Volumes of vessels 1, 2, 3

E1, E2 Activation energy for reactions 1, 2

k1, k2 Pre-exponential values for reactions 1, 2

ΔH1, ΔH2 Heats of reaction for reactions 1, 2

Hvap Heat of vaporization

αA, αB , αC , αD Relative volatilities of A, B, C, D

MWA, MWB , MWC Molecular weights of A, B, and C

Q1, Q2, Q3 Heat inputs into vessels 1, 2, 3

Cp , R, ρ Heat capacity, gas constant and solution density

Table 6.2 Parameter values of the reactor–separator process of Eqs. 6.86–6.100

T10 300 [k] T20 300 [K]

F10 5 [m3/h] F20 5 [m3/h]

Fr 1.9 [m3/h] CA10 4 [kmol/m3]

CA20 3 [kmol/m3] V1 1.0 [m3]

V2 0.5 [m3] V3 1.0 [m3]

E1 5 × 104 [KJ/kmol] E2 5.5 × 104 [KJ/kmol]

k1 3 × 106 [h−1] k2 3 × 106 [h−1]

ΔH1 −5 × 104 [KJ/kmol] ΔH2 −5.3 × 104 [KJ/kmol]

Hvap 5 [KJ/kmol] Cp 0.231 [KJ/kg K]

R 8.314 [KJ/kmol K] ρ 1000 [kg/m3]

αA 2 αB 1

αC 1.5 αD 3

MWA 50 [kg/kmol] MWB 50 [kg/kmol]

MWC 50 [kg/kmol]

the whole process is defined as a combination of the states of the three subsystems;
that is, xT = [xT

1 xT
2 xT

3 ].
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Table 6.3 Noise parameters
of the reactor–separator
process of Eqs. 6.86–6.100

σp φ θp

CA1 0.1 0.7 0.09

CB1 0.02 0.7 0.01

CC1 0.02 0.7 0.01

T1 10 0.7 1.17

CA2 0.1 0.7 0.09

CB2 0.1 0.7 0.03

CC2 0.1 0.7 0.01

T2 10 0.7 1.35

CA3 0.1 0.7 0.09

CB3 0.1 0.7 0.02

CC3 0.02 0.7 0.01

T3 10 0.7 1.35

Table 6.4 Steady-state
values for xs of the
reactor–separator process of
Eqs. 6.86–6.100

CA1s 3.31 [kmol/m3] CA2s 2.75 [kmol/m3]

CA3s 2.88 [kmol/m3] CB1s 0.17 [kmol/m3]

CB2s 0.45 [kmol/m3] CB3s 0.50 [kmol/m3]

CC1s 0.04 [kmol/m3] CC2s 0.11 [kmol/m3]

CC3s 0.12 [kmol/m3] T1s 369.53 [K]

T2s 435.25 [K] T3s 435.25 [K]

Table 6.5 Steady-state
values for Q1s , Q2s and Q3s

of the reactor–separator
process of Eqs. 6.86–6.100

Q1s 0 [KJ/h] Q2s 0 [KJ/h]

Q3s 0 [KJ/h]

The external heat input associated with each vessel is the control input associated
with each subsystem, that is, u1 = Q1 − Q1s , u2 = Q2 − Q2s and u3 = Q3 − Q3s .
The process has one unstable and two stable steady states. The control objective
is to regulate the process at the unstable steady-state xs shown in Table 6.4 with
corresponding steady-state inputs as shown in Table 6.5. The inputs are subject to
constraints as follows: |u1| ≤ 5 × 104 KJ/h, |u2| ≤ 1.5 × 105 KJ/h, and |u3| ≤ 2 ×
105 KJ/h. Three distributed LMPCs (controller 1, controller 2 and controller 3) will
be designed to manipulate each one of the three inputs in the three subsystems,
respectively. The process model of Eqs. 6.86–6.100 belongs to the following class
of nonlinear systems:

ẋ(t) = f
(
x(t)

) +
3∑

i=1

gi

(
x(t)

)
ui(t) + w

(
x(t)

)
,

where the explicit expressions of f , gi (i = 1,2,3), are omitted for brevity.
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We assume that xf,1, xf,2, xf,3 are measured and sent to controller 1, controller 2
and controller 3, respectively, at synchronous time instants tl = lΔ, l = 0,1, . . . ,
with Δ = 0.01 h = 36 s while we assume that each controller receives xs,i every
T = 4 sampling times. The three subsystems exchange their states at tk = kT Δ,
k = 0,1, . . . ; that is, the full system state x is sent to all the controllers every T = 4
sampling times.

In the simulations, we consider a quadratic Lyapunov function V (x) = xT Px

with:

P = diag
([

20 103 103 103 20 103 103 103 20 103 103 103]). (6.102)

We design the Lyapunov-based controller h(x) following the continuous bounded
control law [47] as follows:

h(x) = −p(x)(LGV )T , (6.103)

where

p(x) =
⎧
⎨

⎩

Lf V +√
(Lf V )2+(umax‖LGV T ‖)4

‖LGV T ‖2[1+
√

1+(umax‖LGV T ‖)2] , LGV �= 0,

0, LGV = 0

with Lf V = ∂V
∂x

f (x) and LGV = ∂V
∂x

G(x) where G = [g1 g2 g3] being the Lie
derivatives of the scalar function V with respect to the vector fields f and G, re-
spectively.

Based on h(x) and V (x), we design the three LMPCs following Eqs. 6.28–6.35
and 6.39–6.46 and refer to them as LMPC 1, LMPC 2 and LMPC 3. For each LMPC,
we also design a state observer following Eqs. 6.36–6.37. In the design of the LM-
PCs, the weighting matrices are chosen to be:

Qc = diag
([

20 103 103 103 20 103 103 103 20 103 103 103]), (6.104)

and R1 = R2 = R3 = 10−6. The prediction horizon for the optimization problem
is N = 5 with a time step of Δ = 0.01 h. In the simulations, we put a maximum
iteration number cmax on the DMPC evaluation and the maximum iteration number
is chosen to be cmax = 2. Also, we set Δui as 10% percent of umax

i (i = 1,2,3). The
optimization problems are solved by the open source interior point optimizer Ipopt
[109]. The initial condition which is utilized to carry out simulations is as follows:

x(0)T = [360.69 3.19 0.15 0.03 430.91 2.76 0.34 0.08 430.42 2.79 0.38 0.08].
(6.105)

We set the bound on the measurement noise to be 1% of the instantaneous value
of the signal measured by sensors. The communication channel noise is generated
using gaussian random variables with variances σn and σu bounded by θn and θu for
state values and control inputs, respectively. These values are shown in Tables 6.6
and 6.7.

Figures 6.3 and 6.4 show the temperature, concentration and input trajectories of
the process under the multirate DMPC design of Eqs. 6.28–6.35 and 6.39–6.46 in
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Table 6.6 Communication noise parameters for states of the reactor–separator process of
Eqs. 6.86–6.100

σn θn σn θn

CA1 1 0.033 CA2 1 0.027

CA3 1 0.028 CB1 1 0.001

CB2 1 0.004 CB3 1 0.005

CC1 1 0.001 CC2 1 0.001

CC3 1 0.001 T1 10 3.695

T2 10 4.352 T3 10 4.352

Table 6.7 Communication
noise parameters for control
inputs of the
reactor–separator process of
Eqs. 6.86–6.100

σu θu

u1 10 7.39

u2 30 22.17

u3 40 29.56

Fig. 6.3 State trajectories of the reactor–separator process of Eqs. 6.86–6.100 under the multirate
DMPC of Eqs. 6.28–6.35 and 6.39–6.46

the presence of communication and measurement noise. As it can be seen from these
figures, the multirate DMPC system can steer the system state to a neighborhood of
the desired steady-state.
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Fig. 6.4 Manipulated input trajectories of the reactor–separator process of Eqs. 6.86–6.100 under
the multirate DMPC of Eqs. 6.28–6.35 and 6.39–6.46

We also carried out a set of simulations to demonstrate the optimality of the
closed-loop performance of the multirate DMPC compared with different control
schemes. Specifically, we compared the multirate DMPC with five different con-
trol schemes from a performance point of view for the case in which there is no
communication and measurement noise. The six control schemes considered are as
follows: (1) the multirate DMPC of Eqs. 6.28–6.35 and 6.39–6.46; (2) a DMPC de-
sign with LMPCs formulated as in Eqs. 6.28–6.34 which are only evaluated at time
instants in which full system states are available and the inputs are implemented
in open-loop fashion between two full system state measurements (in this case, the
additional fast sampled measurements are not used to improve the closed-loop per-
formance); (3) multirate DMPC design but without communication between the
distributed controllers and each controller estimating the full system states and the
actions of the other controllers based on the process model and h(x) (in this case, a
distributed LMPC in the DMPC design takes advantage of both fast and slowly sam-
pled measurements of its own local subsystem but does not receive any input or state
information from the other subsystems); (4) the DMPC design as in (2) but without
communication between the distributed controllers and each controller estimating
the full system states and actions of the other controllers based on the process model
and h(x); (5) h(x) applied in sample-and-hold; (6) a centralized LMPC introduced
in [72]. We perform these simulations under different initial conditions and differ-
ent process noise/disturbances. To carry out this comparison, we have computed the
total cost of each simulation based on the index of the following form:

J =
∫ tM

t0

[
∥∥x(τ)

∥∥
Qc

+
3∑

j=1

∥∥uj (τ )
∥∥

Rcj

]

dτ, (6.106)

where t0 = 0 is the initial time of the simulations and tM = 1 h is the end of the
simulations. Table 6.8 shows the total cost computed for 10 different closed-loop
simulations under the six different control schemes. From Table 6.8, we see that the
centralized LMPC gives the best performance and the multirate DMPC design gives
the second best performance in all the simulations. Also, Table 6.8 demonstrates that
when there is communication between controllers or there is MPC implementation
when there is only partial state information in each controller (fast sampled state),



218 6 Multirate Distributed Model Predictive Control

Table 6.8 Total performance costs along the closed-loop trajectories of the reactor–separator pro-
cess of Eqs. 6.86–6.100 under different control schemes

sim. (1) (2) (3) (4) (5) (6)

1 43963 633589 72200 812903 1116578 27057

2 21512 606628 28079 743874 1095819 7370

3 23041 604148 27407 706319 1084445 15112

4 24681 613289 30211 720131 1104045 8838

5 31440 618649 36290 723598 1106508 18654

6 21775 654268 25950 859380 1079984 15287

7 28553 667143 34209 879852 1109976 13168

8 28974 659250 34565 865643 1109363 13424

9 28228 672756 33949 891549 1110884 12991

10 23929 668499 29688 887300 1106623 11903

the closed-loop performance is improved. Note that the Lyapunov-based controller
is a feasible solution to the DMPC problem; however, the DMPC solution can sub-
stantially improve closed-loop performance while it inherits closed-loop stability
from the Lyapunov-based controller. All of the DMPC designs yield improvement
in performance compared to the Lyapunov-based controller.

6.7 Conclusions

In this chapter, we designed a DMPC system using multirate sampling for large-
scale nonlinear uncertain systems composed of several coupled subsystems. Specif-
ically, we considered that the states of each local subsystem can be divided into fast
sampled states (which are available every sampling time) and slowly sampled states
(which are available every several sampling times). The distributed controllers com-
municate over a shared communication network in an iterative manner at time in-
stants in which full system state measurements (both fast and slow) are available and
the controllers communicate, to guarantee closed-loop stability. When local subsys-
tem fast sampled state information is available, the distributed controllers operate in
a decentralized fashion to improve closed-loop performance. In the multirate con-
trol architecture, the controllers were designed via LMPC techniques taking into
account bounded measurement and communication noise and process disturbances.
Sufficient conditions under which the state of the closed-loop system is ultimately
bounded in an invariant region containing the origin were derived. Finally, the ap-
plicability and performance of the proposed DMPC scheme were demonstrated
through a nonlinear chemical process network example.



Chapter 7
Conclusions

This book presented approaches to networked and distributed predictive control of
nonlinear process systems via model predictive control and Lyapunov-based con-
trol techniques. Following an introduction to the motivation and objectives of this
book, Lyapunov-based predictive control methods for nonlinear systems which pro-
vide an explicit characterization for the closed-loop stability region and account for
the effect of asynchronous feedback and time-varying measurement delays were
first developed. Then, a two-tier framework for the design of networked predictive
control systems for nonlinear processes that naturally augment dedicated control
systems with networked control systems was presented. Subsequently, distributed
predictive control methods for large-scale nonlinear process networks taking into
account asynchronous measurements and time-varying delays as well as different
sampling rates of measurements were presented. Throughout the book, the effec-
tiveness and performance of the control approaches were illustrated via applications
to nonlinear process networks and wind-solar energy generation systems.

Specifically, in Chap. 2, two LMPC designs for nonlinear systems subject to
data losses and time-varying measurement delays were presented. In order to pro-
vide guaranteed closed-loop stability results in the presence of data losses and/or
time-varying measurement delays, the constraints that define the LMPC optimiza-
tion problems as well as the implementation procedures were modified to account
for data losses/asynchronous measurements and time-varying measurement delays.
The presented LMPCs possess an explicit characterization of the closed-loop sys-
tem stability regions. Using a nonlinear CSTR example, it was demonstrated that
the presented LMPC approaches are robust to data losses and measurement delays.

In Chap. 3, a two-tier networked control architecture, which naturally augments
preexisting, point-to-point control systems with networked control systems, was
presented. The two-tier networked control architecture is a decentralized control
architecture which is able to take advantage of asynchronous and delayed measure-
ments and additional actuation capabilities provided by real-time wired or wireless
sensor and actuator networks. Using a nonlinear CSTR example and a nonlinear
reactor–separator example, the two-tier control architecture was demonstrated to be
more optimal compared with conventional control systems and to be more robust
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compared with centralized predictive control systems. The two-tier control archi-
tecture was also applied to the problem of optimal management and operation of a
standalone wind-solar energy generation system.

In Chap. 4, a DMPC design involving two controllers was presented where
the preexisting LCS and the new NCS were redesigned/designed via LMPC. This
DMPC design uses a hierarchical control architecture in the sense that the LCS
stabilizes the closed-loop system and the NCS takes advantage of additional con-
trol inputs to improve the closed-loop performance and provide the potential of
maintaining the desired closed-loop stability and performance levels in the face
of new/failing actuators. The extensions of this DMPC architecture to account for
asynchronous and delayed measurements were also discussed. Using a nonlinear
reactor–separator example, the stability, performance and robustness of the DMPC
designs were illustrated.

In Chap. 5, sequential and iterative DMPC designs for large-scale nonlinear sys-
tems in which several distinct sets of manipulated inputs are used to regulate the
overall system were presented. In the sequential DMPC architecture, the distributed
controllers communicate via a one-directional communication network and are eval-
uated in sequence; in the iterative DMPC architecture, the distributed controllers
communicate via a bidirectional communication network, are evaluated in paral-
lel and iterate to improve closed-loop performance. Sequential and iterative DMPC
designs accounting for asynchronous and delayed measurements were also consid-
ered. In addition, an approach to handle communication disruptions and data losses
between the distributed controllers was discussed in the framework of the hierarchi-
cal DMPC architecture of Chap. 4. Using a nonlinear catalytic alkylation of ben-
zene process example, the DMPC designs were compared with the corresponding
centralized MPC designs from stability, evaluation time, and convergence points of
view.

In Chap. 6, a multirate DMPC design for large-scale nonlinear uncertain systems
with fast and slowly sampled states was developed. The distributed model predictive
controllers are connected through a shared communication network and cooperate
in an iterative fashion at time instants in which both fast and slowly sampled mea-
surements are available, to guarantee closed-loop stability. When only local subsys-
tem fast sampled state information is available, the distributed controllers operate
in a decentralized fashion to improve closed-loop performance. Using a reactor–
separator process example, the stability property and performance of the multirate
DMPC architecture was illustrated.

Future research in networked and distributed predictive process control as well as
related areas includes the development of general methods for the handling of broad
class of communication disruptions between distributed controllers, the design of
distributed state estimation systems which provide fast and guaranteed convergence
and the development of distributed plant monitoring and fault-tolerant control sys-
tems. The reader may refer to [12, 92, 95] for more discussions on the related open
problems.
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